upload data
Browse files- .gitignore +20 -0
- README.md +69 -2
- data_scripts/face_alignment.py +79 -0
- data_scripts/face_parsing.py +333 -0
- data_scripts/process_images.py +72 -0
- data_scripts/resnet.py +109 -0
- data_scripts/weights/79999_iter.pth +3 -0
- delta_edit/README.md +110 -0
- delta_edit/__init__.py +0 -0
- delta_edit/clip/__init__.py +1 -0
- delta_edit/clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- delta_edit/clip/clip.py +221 -0
- delta_edit/clip/model.py +432 -0
- delta_edit/clip/simple_tokenizer.py +132 -0
- delta_edit/datasets/__init__.py +0 -0
- delta_edit/datasets/test_dataset.py +40 -0
- delta_edit/datasets/train_dataset.py +62 -0
- delta_edit/delta_mapper.py +73 -0
- delta_edit/editing_attributes.txt +29 -0
- delta_edit/generate_codes.py +138 -0
- delta_edit/models/__init__.py +0 -0
- delta_edit/models/encoders/__init__.py +0 -0
- delta_edit/models/encoders/helpers.py +140 -0
- delta_edit/models/encoders/model_irse.py +84 -0
- delta_edit/models/encoders/psp_encoders.py +235 -0
- delta_edit/models/stylegan2/__init__.py +0 -0
- delta_edit/models/stylegan2/model.py +673 -0
- delta_edit/models/stylegan2/npy_ffhq/fs3.npy +3 -0
- delta_edit/models/stylegan2/op/__init__.py +2 -0
- delta_edit/models/stylegan2/op/fused_act.py +38 -0
- delta_edit/models/stylegan2/op/upfirdn2d.py +52 -0
- delta_edit/options/__init__.py +0 -0
- delta_edit/options/test_options.py +28 -0
- delta_edit/options/train_options.py +27 -0
- delta_edit/scripts/__init__.py +0 -0
- delta_edit/scripts/inference.py +124 -0
- delta_edit/scripts/inference_laion.py +230 -0
- delta_edit/scripts/inference_real.py +210 -0
- delta_edit/scripts/train.py +63 -0
- delta_edit/utils/__init__.py +0 -0
- delta_edit/utils/map_tool.py +120 -0
- delta_edit/utils/stylespace_util.py +160 -0
- delta_edit/weights/e4e_ffhq_encode.pt +3 -0
- delta_edit/weights/net_face.pth +3 -0
- delta_edit/weights/stylegan2-ffhq-config-f.pt +3 -0
- filtered_laion_faces.npy +3 -0
- filtered_laion_faces.parquet +3 -0
.gitignore
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_debug*
|
2 |
+
.env
|
3 |
+
__pycache__
|
4 |
+
_sc.py
|
5 |
+
*.ckpt
|
6 |
+
*.bin
|
7 |
+
|
8 |
+
.idea
|
9 |
+
.idea/workspace.xml
|
10 |
+
.DS_Store
|
11 |
+
*/__pycache__git
|
12 |
+
.pyc
|
13 |
+
.iml
|
14 |
+
__pycache__/
|
15 |
+
*/__pycache__/
|
16 |
+
*/*/__pycache__/
|
17 |
+
*/*/*/__pycache__/
|
18 |
+
*/*/*/*/__pycache__/
|
19 |
+
*/*/*/*/*/__pycache__/
|
20 |
+
*/*/*/*/*/*/__pycache__/
|
README.md
CHANGED
@@ -1,3 +1,70 @@
|
|
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Filtered Laion Face
|
2 |
+
|
3 |
---
|
4 |
+
|
5 |
+
This repository provides the pipeline to construt the face augmneted dataset used in [MasterWeaver](https://arxiv.org/abs/2405.05806). The dataset contains ~160k text-image pairs from the [LAION-Face dataset](https://github.com/FacePerceiver/LAION-Face/). We have generated the corresponding captions using BLIP2 and created several attribute-augmented faces.
|
6 |
+
|
7 |
+
## Steps to Construct the Dataset
|
8 |
+
|
9 |
+
### 1. Clone the Repository
|
10 |
+
|
11 |
+
```bash
|
12 |
+
git clone https://huggingface.co/datasets/csyxwei/Filtered-Laion-Face
|
13 |
+
cd Filtered-Laion-Face
|
14 |
+
```
|
15 |
+
|
16 |
+
### 2. Download images
|
17 |
+
|
18 |
+
We have provided links of filerted laion face images in `filtered_laion_faces.parquet`. You can download the original image using [img2dataset tool](https://github.com/rom1504/img2dataset/blob/main/dataset_examples/laion-face.md):
|
19 |
+
|
20 |
+
```bash
|
21 |
+
pip install img2dataset
|
22 |
+
|
23 |
+
img2dataset --url_list ./filtered_laion_faces.parquet --input_format "parquet" \
|
24 |
+
--url_col "URL" --caption_col "TEXT" --output_format files \
|
25 |
+
--output_folder ./filtered_laion_faces/images --processes_count 16 --thread_count 128 --resize_mode no \
|
26 |
+
--save_additional_columns '["NSFW","similarity","LICENSE","SAMPLE_ID"]'
|
27 |
+
```
|
28 |
+
|
29 |
+
The downloaded images will be saved in the `./filtered_laion_faces/images` directory.
|
30 |
+
|
31 |
+
### 3. Process Laion Face Images
|
32 |
+
|
33 |
+
Next, use dlib and a face parsing model to crop and align the downloaded images:
|
34 |
+
|
35 |
+
```bash
|
36 |
+
cd data_scripts
|
37 |
+
|
38 |
+
CUDA_VISIBLE_DEVICES=4 python process_images.py
|
39 |
+
```
|
40 |
+
|
41 |
+
### 4. Augment the Face Images
|
42 |
+
|
43 |
+
After processing, construct the augmented faces using [DeltaEdit](https://github.com/Yueming6568/DeltaEdit). Refer to its [official repository](https://github.com/Yueming6568/DeltaEdit) for configuration details.
|
44 |
+
|
45 |
+
Then, run the following command::
|
46 |
+
|
47 |
+
```bash
|
48 |
+
cd ../delta_edit
|
49 |
+
|
50 |
+
CUDA_VISIBLE_DEVICES=7 python scripts/inference_laion.py \
|
51 |
+
--image_dir "../filtered_laion_faces/images_cropped_face" \
|
52 |
+
--save_dir "../filtered_laion_faces/images_cropped_face_aug/" \
|
53 |
+
--target ""
|
54 |
+
```
|
55 |
+
|
56 |
+
The final directory structure will be as follows:
|
57 |
+
|
58 |
+
```
|
59 |
+
filtered_laion_faces
|
60 |
+
└─ images
|
61 |
+
└─ images_cropped
|
62 |
+
└─ images_cropped_face
|
63 |
+
└─ images_cropped_face_mask
|
64 |
+
└─ images_cropped_face_aug
|
65 |
+
└─ captions
|
66 |
+
```
|
67 |
+
|
68 |
+
## Acknowledgements
|
69 |
+
|
70 |
+
This dataset is built upon the [Laion Face dataset](https://github.com/FacePerceiver/LAION-Face/) with tools from [FFHQ](https://github.com/NVlabs/ffhq-dataset), [face-parsing.PyTorch](https://github.com/zllrunning/face-parsing.PyTorch), and [DeltaEdit](https://github.com/Yueming6568/DeltaEdit/). We thank the authors for sharing the datasets and code.
|
data_scripts/face_alignment.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import scipy.ndimage
|
3 |
+
import PIL.Image
|
4 |
+
|
5 |
+
def image_align(image, face_landmarks, output_size=1024, transform_size=4096, enable_padding=True):
|
6 |
+
# Align function from FFHQ dataset pre-processing step
|
7 |
+
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
|
8 |
+
|
9 |
+
lm = np.array(face_landmarks)
|
10 |
+
lm_chin = lm[0 : 17] # left-right
|
11 |
+
lm_eyebrow_left = lm[17 : 22] # left-right
|
12 |
+
lm_eyebrow_right = lm[22 : 27] # left-right
|
13 |
+
lm_nose = lm[27 : 31] # top-down
|
14 |
+
lm_nostrils = lm[31 : 36] # top-down
|
15 |
+
lm_eye_left = lm[36 : 42] # left-clockwise
|
16 |
+
lm_eye_right = lm[42 : 48] # left-clockwise
|
17 |
+
lm_mouth_outer = lm[48 : 60] # left-clockwise
|
18 |
+
lm_mouth_inner = lm[60 : 68] # left-clockwise
|
19 |
+
|
20 |
+
# Calculate auxiliary vectors.
|
21 |
+
eye_left = np.mean(lm_eye_left, axis=0)
|
22 |
+
eye_right = np.mean(lm_eye_right, axis=0)
|
23 |
+
eye_avg = (eye_left + eye_right) * 0.5
|
24 |
+
eye_to_eye = eye_right - eye_left
|
25 |
+
mouth_left = lm_mouth_outer[0]
|
26 |
+
mouth_right = lm_mouth_outer[6]
|
27 |
+
mouth_avg = (mouth_left + mouth_right) * 0.5
|
28 |
+
eye_to_mouth = mouth_avg - eye_avg
|
29 |
+
|
30 |
+
# Choose oriented crop rectangle.
|
31 |
+
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
32 |
+
x /= np.hypot(*x)
|
33 |
+
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
34 |
+
y = np.flipud(x) * [-1, 1]
|
35 |
+
c = eye_avg + eye_to_mouth * 0.1
|
36 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
37 |
+
qsize = np.hypot(*x) * 2
|
38 |
+
|
39 |
+
img = PIL.Image.fromarray(image)
|
40 |
+
|
41 |
+
# Shrink.
|
42 |
+
shrink = int(np.floor(qsize / output_size * 0.5))
|
43 |
+
if shrink > 1:
|
44 |
+
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
45 |
+
img = img.resize(rsize, PIL.Image.ANTIALIAS)
|
46 |
+
quad /= shrink
|
47 |
+
qsize /= shrink
|
48 |
+
|
49 |
+
# Crop.
|
50 |
+
border = max(int(np.rint(qsize * 0.1)), 3)
|
51 |
+
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
|
52 |
+
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
|
53 |
+
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
54 |
+
img = img.crop(crop)
|
55 |
+
quad -= crop[0:2]
|
56 |
+
|
57 |
+
# Pad.
|
58 |
+
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
|
59 |
+
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
|
60 |
+
if enable_padding and max(pad) > border - 4:
|
61 |
+
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
62 |
+
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
63 |
+
h, w, _ = img.shape
|
64 |
+
y, x, _ = np.ogrid[:h, :w, :1]
|
65 |
+
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
|
66 |
+
blur = qsize * 0.02
|
67 |
+
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
68 |
+
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
|
69 |
+
img = np.uint8(np.clip(np.rint(img), 0, 255))
|
70 |
+
img = PIL.Image.fromarray(img, 'RGB')
|
71 |
+
quad += pad[:2]
|
72 |
+
|
73 |
+
# Transform.
|
74 |
+
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
|
75 |
+
if output_size < transform_size:
|
76 |
+
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
|
77 |
+
|
78 |
+
img_np = np.array(img)
|
79 |
+
return img_np
|
data_scripts/face_parsing.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
import os
|
10 |
+
import os.path as osp
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
import cv2
|
15 |
+
|
16 |
+
from resnet import Resnet18
|
17 |
+
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
18 |
+
|
19 |
+
|
20 |
+
class ConvBNReLU(nn.Module):
|
21 |
+
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs):
|
22 |
+
super(ConvBNReLU, self).__init__()
|
23 |
+
self.conv = nn.Conv2d(in_chan,
|
24 |
+
out_chan,
|
25 |
+
kernel_size = ks,
|
26 |
+
stride = stride,
|
27 |
+
padding = padding,
|
28 |
+
bias = False)
|
29 |
+
self.bn = nn.BatchNorm2d(out_chan)
|
30 |
+
self.init_weight()
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
x = self.conv(x)
|
34 |
+
x = F.relu(self.bn(x))
|
35 |
+
return x
|
36 |
+
|
37 |
+
def init_weight(self):
|
38 |
+
for ly in self.children():
|
39 |
+
if isinstance(ly, nn.Conv2d):
|
40 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
41 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
42 |
+
|
43 |
+
class BiSeNetOutput(nn.Module):
|
44 |
+
def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs):
|
45 |
+
super(BiSeNetOutput, self).__init__()
|
46 |
+
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
|
47 |
+
self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False)
|
48 |
+
self.init_weight()
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x = self.conv(x)
|
52 |
+
x = self.conv_out(x)
|
53 |
+
return x
|
54 |
+
|
55 |
+
def init_weight(self):
|
56 |
+
for ly in self.children():
|
57 |
+
if isinstance(ly, nn.Conv2d):
|
58 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
59 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
60 |
+
|
61 |
+
def get_params(self):
|
62 |
+
wd_params, nowd_params = [], []
|
63 |
+
for name, module in self.named_modules():
|
64 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
65 |
+
wd_params.append(module.weight)
|
66 |
+
if not module.bias is None:
|
67 |
+
nowd_params.append(module.bias)
|
68 |
+
elif isinstance(module, nn.BatchNorm2d):
|
69 |
+
nowd_params += list(module.parameters())
|
70 |
+
return wd_params, nowd_params
|
71 |
+
|
72 |
+
|
73 |
+
class AttentionRefinementModule(nn.Module):
|
74 |
+
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
75 |
+
super(AttentionRefinementModule, self).__init__()
|
76 |
+
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
|
77 |
+
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False)
|
78 |
+
self.bn_atten = nn.BatchNorm2d(out_chan)
|
79 |
+
self.sigmoid_atten = nn.Sigmoid()
|
80 |
+
self.init_weight()
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
feat = self.conv(x)
|
84 |
+
atten = F.avg_pool2d(feat, feat.size()[2:])
|
85 |
+
atten = self.conv_atten(atten)
|
86 |
+
atten = self.bn_atten(atten)
|
87 |
+
atten = self.sigmoid_atten(atten)
|
88 |
+
out = torch.mul(feat, atten)
|
89 |
+
return out
|
90 |
+
|
91 |
+
def init_weight(self):
|
92 |
+
for ly in self.children():
|
93 |
+
if isinstance(ly, nn.Conv2d):
|
94 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
95 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
96 |
+
|
97 |
+
|
98 |
+
class ContextPath(nn.Module):
|
99 |
+
def __init__(self, *args, **kwargs):
|
100 |
+
super(ContextPath, self).__init__()
|
101 |
+
self.resnet = Resnet18()
|
102 |
+
self.arm16 = AttentionRefinementModule(256, 128)
|
103 |
+
self.arm32 = AttentionRefinementModule(512, 128)
|
104 |
+
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
105 |
+
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
106 |
+
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
|
107 |
+
|
108 |
+
self.init_weight()
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
H0, W0 = x.size()[2:]
|
112 |
+
feat8, feat16, feat32 = self.resnet(x)
|
113 |
+
H8, W8 = feat8.size()[2:]
|
114 |
+
H16, W16 = feat16.size()[2:]
|
115 |
+
H32, W32 = feat32.size()[2:]
|
116 |
+
|
117 |
+
avg = F.avg_pool2d(feat32, feat32.size()[2:])
|
118 |
+
avg = self.conv_avg(avg)
|
119 |
+
avg_up = F.interpolate(avg, (H32, W32), mode='nearest')
|
120 |
+
|
121 |
+
feat32_arm = self.arm32(feat32)
|
122 |
+
feat32_sum = feat32_arm + avg_up
|
123 |
+
feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest')
|
124 |
+
feat32_up = self.conv_head32(feat32_up)
|
125 |
+
|
126 |
+
feat16_arm = self.arm16(feat16)
|
127 |
+
feat16_sum = feat16_arm + feat32_up
|
128 |
+
feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest')
|
129 |
+
feat16_up = self.conv_head16(feat16_up)
|
130 |
+
|
131 |
+
return feat8, feat16_up, feat32_up # x8, x8, x16
|
132 |
+
|
133 |
+
def init_weight(self):
|
134 |
+
for ly in self.children():
|
135 |
+
if isinstance(ly, nn.Conv2d):
|
136 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
137 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
138 |
+
|
139 |
+
def get_params(self):
|
140 |
+
wd_params, nowd_params = [], []
|
141 |
+
for name, module in self.named_modules():
|
142 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
143 |
+
wd_params.append(module.weight)
|
144 |
+
if not module.bias is None:
|
145 |
+
nowd_params.append(module.bias)
|
146 |
+
elif isinstance(module, nn.BatchNorm2d):
|
147 |
+
nowd_params += list(module.parameters())
|
148 |
+
return wd_params, nowd_params
|
149 |
+
|
150 |
+
|
151 |
+
### This is not used, since I replace this with the resnet feature with the same size
|
152 |
+
class SpatialPath(nn.Module):
|
153 |
+
def __init__(self, *args, **kwargs):
|
154 |
+
super(SpatialPath, self).__init__()
|
155 |
+
self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3)
|
156 |
+
self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
157 |
+
self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
158 |
+
self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0)
|
159 |
+
self.init_weight()
|
160 |
+
|
161 |
+
def forward(self, x):
|
162 |
+
feat = self.conv1(x)
|
163 |
+
feat = self.conv2(feat)
|
164 |
+
feat = self.conv3(feat)
|
165 |
+
feat = self.conv_out(feat)
|
166 |
+
return feat
|
167 |
+
|
168 |
+
def init_weight(self):
|
169 |
+
for ly in self.children():
|
170 |
+
if isinstance(ly, nn.Conv2d):
|
171 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
172 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
173 |
+
|
174 |
+
def get_params(self):
|
175 |
+
wd_params, nowd_params = [], []
|
176 |
+
for name, module in self.named_modules():
|
177 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
178 |
+
wd_params.append(module.weight)
|
179 |
+
if not module.bias is None:
|
180 |
+
nowd_params.append(module.bias)
|
181 |
+
elif isinstance(module, nn.BatchNorm2d):
|
182 |
+
nowd_params += list(module.parameters())
|
183 |
+
return wd_params, nowd_params
|
184 |
+
|
185 |
+
|
186 |
+
class FeatureFusionModule(nn.Module):
|
187 |
+
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
188 |
+
super(FeatureFusionModule, self).__init__()
|
189 |
+
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
|
190 |
+
self.conv1 = nn.Conv2d(out_chan,
|
191 |
+
out_chan//4,
|
192 |
+
kernel_size = 1,
|
193 |
+
stride = 1,
|
194 |
+
padding = 0,
|
195 |
+
bias = False)
|
196 |
+
self.conv2 = nn.Conv2d(out_chan//4,
|
197 |
+
out_chan,
|
198 |
+
kernel_size = 1,
|
199 |
+
stride = 1,
|
200 |
+
padding = 0,
|
201 |
+
bias = False)
|
202 |
+
self.relu = nn.ReLU(inplace=True)
|
203 |
+
self.sigmoid = nn.Sigmoid()
|
204 |
+
self.init_weight()
|
205 |
+
|
206 |
+
def forward(self, fsp, fcp):
|
207 |
+
fcat = torch.cat([fsp, fcp], dim=1)
|
208 |
+
feat = self.convblk(fcat)
|
209 |
+
atten = F.avg_pool2d(feat, feat.size()[2:])
|
210 |
+
atten = self.conv1(atten)
|
211 |
+
atten = self.relu(atten)
|
212 |
+
atten = self.conv2(atten)
|
213 |
+
atten = self.sigmoid(atten)
|
214 |
+
feat_atten = torch.mul(feat, atten)
|
215 |
+
feat_out = feat_atten + feat
|
216 |
+
return feat_out
|
217 |
+
|
218 |
+
def init_weight(self):
|
219 |
+
for ly in self.children():
|
220 |
+
if isinstance(ly, nn.Conv2d):
|
221 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
222 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
223 |
+
|
224 |
+
def get_params(self):
|
225 |
+
wd_params, nowd_params = [], []
|
226 |
+
for name, module in self.named_modules():
|
227 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
228 |
+
wd_params.append(module.weight)
|
229 |
+
if not module.bias is None:
|
230 |
+
nowd_params.append(module.bias)
|
231 |
+
elif isinstance(module, nn.BatchNorm2d):
|
232 |
+
nowd_params += list(module.parameters())
|
233 |
+
return wd_params, nowd_params
|
234 |
+
|
235 |
+
|
236 |
+
class BiSeNet(nn.Module):
|
237 |
+
def __init__(self, n_classes, *args, **kwargs):
|
238 |
+
super(BiSeNet, self).__init__()
|
239 |
+
self.cp = ContextPath()
|
240 |
+
## here self.sp is deleted
|
241 |
+
self.ffm = FeatureFusionModule(256, 256)
|
242 |
+
self.conv_out = BiSeNetOutput(256, 256, n_classes)
|
243 |
+
self.conv_out16 = BiSeNetOutput(128, 64, n_classes)
|
244 |
+
self.conv_out32 = BiSeNetOutput(128, 64, n_classes)
|
245 |
+
self.init_weight()
|
246 |
+
|
247 |
+
def forward(self, x):
|
248 |
+
H, W = x.size()[2:]
|
249 |
+
feat_res8, feat_cp8, feat_cp16 = self.cp(x) # here return res3b1 feature
|
250 |
+
feat_sp = feat_res8 # use res3b1 feature to replace spatial path feature
|
251 |
+
feat_fuse = self.ffm(feat_sp, feat_cp8)
|
252 |
+
|
253 |
+
feat_out = self.conv_out(feat_fuse)
|
254 |
+
feat_out16 = self.conv_out16(feat_cp8)
|
255 |
+
feat_out32 = self.conv_out32(feat_cp16)
|
256 |
+
|
257 |
+
feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True)
|
258 |
+
feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True)
|
259 |
+
feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True)
|
260 |
+
return feat_out, feat_out16, feat_out32
|
261 |
+
|
262 |
+
def init_weight(self):
|
263 |
+
for ly in self.children():
|
264 |
+
if isinstance(ly, nn.Conv2d):
|
265 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
266 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
267 |
+
|
268 |
+
def get_params(self):
|
269 |
+
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], []
|
270 |
+
for name, child in self.named_children():
|
271 |
+
child_wd_params, child_nowd_params = child.get_params()
|
272 |
+
if isinstance(child, FeatureFusionModule) or isinstance(child, BiSeNetOutput):
|
273 |
+
lr_mul_wd_params += child_wd_params
|
274 |
+
lr_mul_nowd_params += child_nowd_params
|
275 |
+
else:
|
276 |
+
wd_params += child_wd_params
|
277 |
+
nowd_params += child_nowd_params
|
278 |
+
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params
|
279 |
+
|
280 |
+
|
281 |
+
def evaluate(image, net, mode='mask'):
|
282 |
+
|
283 |
+
to_tensor = transforms.Compose([
|
284 |
+
transforms.ToTensor(),
|
285 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
286 |
+
])
|
287 |
+
with torch.no_grad():
|
288 |
+
image = image.resize((512, 512), Image.BILINEAR)
|
289 |
+
img = to_tensor(image)
|
290 |
+
img = torch.unsqueeze(img, 0)
|
291 |
+
img = img.cuda()
|
292 |
+
out = net(img)[0]
|
293 |
+
parsing = out.squeeze(0).cpu().numpy().argmax(0)
|
294 |
+
if mode == 'face':
|
295 |
+
parsing = np.where(parsing == 14, 0, parsing)
|
296 |
+
parsing = np.where(parsing == 15, 0, parsing)
|
297 |
+
parsing = np.where(parsing == 16, 0, parsing)
|
298 |
+
# parsing = np.where(parsing == 17, 0, parsing)
|
299 |
+
parsing = np.where(parsing == 18, 0, parsing)
|
300 |
+
mask = np.where(parsing > 0, 1, 0)
|
301 |
+
mask = mask[:, :, None] * 1.0
|
302 |
+
image_masked = np.array(image) * mask
|
303 |
+
# image_masked = np.array(image)
|
304 |
+
return Image.fromarray(image_masked.astype('uint8'))
|
305 |
+
else:
|
306 |
+
return parsing
|
307 |
+
|
308 |
+
|
309 |
+
# def evaluate(image, net):
|
310 |
+
#
|
311 |
+
# to_tensor = transforms.Compose([
|
312 |
+
# transforms.ToTensor(),
|
313 |
+
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
314 |
+
# ])
|
315 |
+
# with torch.no_grad():
|
316 |
+
# image = image.resize((512, 512), Image.BILINEAR)
|
317 |
+
# img = to_tensor(image)
|
318 |
+
# img = torch.unsqueeze(img, 0)
|
319 |
+
# img = img.cuda()
|
320 |
+
# out = net(img)[0]
|
321 |
+
# parsing = out.squeeze(0).cpu().numpy().argmax(0)
|
322 |
+
#
|
323 |
+
# return parsing
|
324 |
+
|
325 |
+
if __name__ == "__main__":
|
326 |
+
n_classes = 19
|
327 |
+
net = BiSeNet(n_classes=n_classes)
|
328 |
+
net.cuda()
|
329 |
+
net.load_state_dict(torch.load('./weights/79999_iter.pth'))
|
330 |
+
net.eval()
|
331 |
+
image = Image.open('/home/weiyuxiang/02_man.jpg')
|
332 |
+
face_parsing = evaluate(image, net)
|
333 |
+
cv2.imwrite('/home/weiyuxiang/02_man_mask.png', face_parsing)
|
data_scripts/process_images.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import glob
|
4 |
+
import os
|
5 |
+
from tqdm import tqdm
|
6 |
+
from face_alignment import image_align
|
7 |
+
from face_parsing import BiSeNet, evaluate
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
#### image source and save path
|
12 |
+
face_params = np.load('../filtered_laion_faces.npy', allow_pickle=True)
|
13 |
+
laion_images_download_dir = '../filtered_laion_faces/images'
|
14 |
+
cropped_image_save_dir = '../filtered_laion_faces/images_cropped'
|
15 |
+
face_image_save_dir = '../filtered_laion_faces/images_cropped_face'
|
16 |
+
face_mask_save_dir = '../filtered_laion_faces/images_cropped_face_mask'
|
17 |
+
caption_save_dir = '../filtered_laion_faces/captions'
|
18 |
+
|
19 |
+
os.makedirs(cropped_image_save_dir, exist_ok=True)
|
20 |
+
os.makedirs(caption_save_dir, exist_ok=True)
|
21 |
+
|
22 |
+
### face parsing net
|
23 |
+
n_classes = 19
|
24 |
+
net = BiSeNet(n_classes=n_classes)
|
25 |
+
net.cuda()
|
26 |
+
net.load_state_dict(torch.load('./weights/79999_iter.pth'))
|
27 |
+
net.eval()
|
28 |
+
###
|
29 |
+
|
30 |
+
image_files = glob.glob(f'{laion_images_download_dir}/*.jpg')
|
31 |
+
image_files += glob.glob(f'{laion_images_download_dir}/*/*.jpg')
|
32 |
+
|
33 |
+
image_files.sort()
|
34 |
+
|
35 |
+
for image_path in tqdm(image_files):
|
36 |
+
image_name = os.path.basename(image_path)[:-4]
|
37 |
+
image_param = face_params[int(image_name)]
|
38 |
+
# {'delta_h': delta_h, 'delta_w': delta_w, 'landmarks': original_lm, 'blip2_caption': caption}
|
39 |
+
face_lm = image_param['landmarks']
|
40 |
+
blip2_caption = image_param['blip2_caption']
|
41 |
+
|
42 |
+
## crop image as square
|
43 |
+
delta_h, delta_w = image_param['delta_h'], image_param['delta_w']
|
44 |
+
|
45 |
+
## align face image
|
46 |
+
try:
|
47 |
+
image_np = cv2.imread(image_path)
|
48 |
+
h, w, _ = image_np.shape
|
49 |
+
if delta_h > 0:
|
50 |
+
face_lm[:, 1] = face_lm[:, 1] - delta_h
|
51 |
+
image_np = image_np[delta_h:delta_h + w, :, :]
|
52 |
+
if delta_w > 0:
|
53 |
+
face_lm[:, 0] = face_lm[:, 0] - delta_w
|
54 |
+
image_np = image_np[:, delta_w:delta_w + h, :]
|
55 |
+
aligned_image = image_align(image_np, face_lm, transform_size=512)
|
56 |
+
face_parsing = evaluate(Image.fromarray(aligned_image[:, :, ::-1]), net)
|
57 |
+
except Exception as e:
|
58 |
+
print(image_path, e)
|
59 |
+
continue
|
60 |
+
|
61 |
+
cv2.imwrite(os.path.join(cropped_image_save_dir, f'{image_name}.jpg'), image_np)
|
62 |
+
tmp_face_image_save_dir = os.path.join(face_image_save_dir, image_name)
|
63 |
+
tmp_face_mask_save_dir = os.path.join(face_mask_save_dir, image_name)
|
64 |
+
os.makedirs(tmp_face_image_save_dir)
|
65 |
+
os.makedirs(tmp_face_mask_save_dir)
|
66 |
+
cv2.imwrite(os.path.join(tmp_face_image_save_dir, f'{image_name}.jpg'), aligned_image)
|
67 |
+
cv2.imwrite(os.path.join(tmp_face_mask_save_dir, f'{image_name}.png'), face_parsing)
|
68 |
+
|
69 |
+
with open(os.path.join(caption_save_dir, f'{image_name}.txt'), 'w') as f:
|
70 |
+
f.write(blip2_caption)
|
71 |
+
|
72 |
+
np.save(os.path.join(tmp_face_image_save_dir, f'{image_name}.npy'), face_lm)
|
data_scripts/resnet.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.model_zoo as modelzoo
|
8 |
+
|
9 |
+
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
10 |
+
|
11 |
+
resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'
|
12 |
+
|
13 |
+
|
14 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
15 |
+
"""3x3 convolution with padding"""
|
16 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
17 |
+
padding=1, bias=False)
|
18 |
+
|
19 |
+
|
20 |
+
class BasicBlock(nn.Module):
|
21 |
+
def __init__(self, in_chan, out_chan, stride=1):
|
22 |
+
super(BasicBlock, self).__init__()
|
23 |
+
self.conv1 = conv3x3(in_chan, out_chan, stride)
|
24 |
+
self.bn1 = nn.BatchNorm2d(out_chan)
|
25 |
+
self.conv2 = conv3x3(out_chan, out_chan)
|
26 |
+
self.bn2 = nn.BatchNorm2d(out_chan)
|
27 |
+
self.relu = nn.ReLU(inplace=True)
|
28 |
+
self.downsample = None
|
29 |
+
if in_chan != out_chan or stride != 1:
|
30 |
+
self.downsample = nn.Sequential(
|
31 |
+
nn.Conv2d(in_chan, out_chan,
|
32 |
+
kernel_size=1, stride=stride, bias=False),
|
33 |
+
nn.BatchNorm2d(out_chan),
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
residual = self.conv1(x)
|
38 |
+
residual = F.relu(self.bn1(residual))
|
39 |
+
residual = self.conv2(residual)
|
40 |
+
residual = self.bn2(residual)
|
41 |
+
|
42 |
+
shortcut = x
|
43 |
+
if self.downsample is not None:
|
44 |
+
shortcut = self.downsample(x)
|
45 |
+
|
46 |
+
out = shortcut + residual
|
47 |
+
out = self.relu(out)
|
48 |
+
return out
|
49 |
+
|
50 |
+
|
51 |
+
def create_layer_basic(in_chan, out_chan, bnum, stride=1):
|
52 |
+
layers = [BasicBlock(in_chan, out_chan, stride=stride)]
|
53 |
+
for i in range(bnum-1):
|
54 |
+
layers.append(BasicBlock(out_chan, out_chan, stride=1))
|
55 |
+
return nn.Sequential(*layers)
|
56 |
+
|
57 |
+
|
58 |
+
class Resnet18(nn.Module):
|
59 |
+
def __init__(self):
|
60 |
+
super(Resnet18, self).__init__()
|
61 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
62 |
+
bias=False)
|
63 |
+
self.bn1 = nn.BatchNorm2d(64)
|
64 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
65 |
+
self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
|
66 |
+
self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
|
67 |
+
self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
|
68 |
+
self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
|
69 |
+
self.init_weight()
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
x = self.conv1(x)
|
73 |
+
x = F.relu(self.bn1(x))
|
74 |
+
x = self.maxpool(x)
|
75 |
+
|
76 |
+
x = self.layer1(x)
|
77 |
+
feat8 = self.layer2(x) # 1/8
|
78 |
+
feat16 = self.layer3(feat8) # 1/16
|
79 |
+
feat32 = self.layer4(feat16) # 1/32
|
80 |
+
return feat8, feat16, feat32
|
81 |
+
|
82 |
+
def init_weight(self):
|
83 |
+
state_dict = modelzoo.load_url(resnet18_url)
|
84 |
+
self_state_dict = self.state_dict()
|
85 |
+
for k, v in state_dict.items():
|
86 |
+
if 'fc' in k: continue
|
87 |
+
self_state_dict.update({k: v})
|
88 |
+
self.load_state_dict(self_state_dict)
|
89 |
+
|
90 |
+
def get_params(self):
|
91 |
+
wd_params, nowd_params = [], []
|
92 |
+
for name, module in self.named_modules():
|
93 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
94 |
+
wd_params.append(module.weight)
|
95 |
+
if not module.bias is None:
|
96 |
+
nowd_params.append(module.bias)
|
97 |
+
elif isinstance(module, nn.BatchNorm2d):
|
98 |
+
nowd_params += list(module.parameters())
|
99 |
+
return wd_params, nowd_params
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
net = Resnet18()
|
104 |
+
x = torch.randn(16, 3, 224, 224)
|
105 |
+
out = net(x)
|
106 |
+
print(out[0].size())
|
107 |
+
print(out[1].size())
|
108 |
+
print(out[2].size())
|
109 |
+
net.get_params()
|
data_scripts/weights/79999_iter.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:468e13ca13a9b43cc0881a9f99083a430e9c0a38abd935431d1c28ee94b26567
|
3 |
+
size 53289463
|
delta_edit/README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DeltaEdit: Exploring Text-free Training for Text-driven Image Manipulation
|
2 |
+
|
3 |
+
## Overview
|
4 |
+
|
5 |
+
This repository contains the **offical** PyTorch implementation of paper:
|
6 |
+
|
7 |
+
*DeltaEdit: Exploring Text-free Training for Text-driven Image Manipulation*, CVPR 2023
|
8 |
+
|
9 |
+
## News
|
10 |
+
|
11 |
+
- [2023-03-11] Upload the training and inference code for the facial domain (◍•ڡ•◍).
|
12 |
+
|
13 |
+
*To be continued...*
|
14 |
+
|
15 |
+
We will release the training and inference code for the LSUN cat, church, horse later : )
|
16 |
+
|
17 |
+
## Dependences
|
18 |
+
|
19 |
+
- Install CLIP:
|
20 |
+
|
21 |
+
```shell script
|
22 |
+
conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=<CUDA_VERSION>
|
23 |
+
pip install ftfy regex tqdm gdown
|
24 |
+
pip install git+https://github.com/openai/CLIP.git
|
25 |
+
```
|
26 |
+
|
27 |
+
- Download pre-trained models :
|
28 |
+
|
29 |
+
- The code relies on the [Rosinality](https://github.com/rosinality/stylegan2-pytorch/) pytorch implementation of StyleGAN2.
|
30 |
+
- Download the pre-trained StyleGAN2 generator model for the faical domain from [here](https://drive.google.com/file/d/1EM87UquaoQmk17Q8d5kYIAHqu0dkYqdT/view?usp=sharing), and then place it into the folder `./models/pretrained_models`.
|
31 |
+
- Download the pre-trained StyleGAN2 generator model for the LSUN cat, church, horse domains from [here](https://drive.google.com/drive/folders/1YRhXGM-2xk7A4TExM_jXaNg1f2AiCRlw?usp=share_link) and then place them into the folder `./models/pretrained_models/stylegan2-{cat/church/horse}`.
|
32 |
+
|
33 |
+
## Training
|
34 |
+
|
35 |
+
### Data preparing
|
36 |
+
|
37 |
+
- DeltaEdit is trained on latent vectors.
|
38 |
+
|
39 |
+
- For the facial domain, 58,000 real images from [FFHQ](https://github.com/NVlabs/ffhq-dataset) dataset are randomly selected and 200,000 fake images from the z space in StyleGAN are sampled for training. Note that all real images are inverted by [e4e](https://github.com/omertov/encoder4editing) encoder.
|
40 |
+
|
41 |
+
- Download the provided FFHQ latent vectors from [here](https://drive.google.com/drive/folders/13NLq4giSgdcMVkYQIiPj4Xhxz4-wlXSD?usp=sharing) and then place all numpy files into the folder `./latent_code/ffhq`.
|
42 |
+
|
43 |
+
- Generate the 200,000 sampled latent vectors by running the following commands for each specific domain:
|
44 |
+
|
45 |
+
```python
|
46 |
+
CUDA_VISIBLE_DEVICES=0 python generate_codes.py --classname ffhq --samples 200000
|
47 |
+
CUDA_VISIBLE_DEVICES=0 python generate_codes.py --classname cat --samples 200000
|
48 |
+
CUDA_VISIBLE_DEVICES=0 python generate_codes.py --classname church --samples 200000
|
49 |
+
CUDA_VISIBLE_DEVICES=0 python generate_codes.py --classname horse --samples 200000
|
50 |
+
```
|
51 |
+
|
52 |
+
### Usage
|
53 |
+
|
54 |
+
- The main training script is placed in `./scripts/train.py`.
|
55 |
+
- Training arguments can be found at `./options/train_options.py`.
|
56 |
+
|
57 |
+
For training please run the following commands:
|
58 |
+
|
59 |
+
```python
|
60 |
+
CUDA_VISIBLE_DEVICES=0 python scripts/train.py
|
61 |
+
```
|
62 |
+
|
63 |
+
## Inference
|
64 |
+
|
65 |
+
- The main inferece script is placed in `./scripts/inference.py`.
|
66 |
+
- Inference arguments can be found at `./options/test_options.py`.
|
67 |
+
- Download the pretrained DeltaMapper model for editing human face from [here](https://drive.google.com/file/d/1Mb2WiELoVDPDIi24tIfoWsjn1l2xTjtZ/view?usp=sharing), and then place it into the folder `./checkpoints` .
|
68 |
+
- Some inference data are provided in `./examples`.
|
69 |
+
|
70 |
+
To produce editing results please run the following commands :
|
71 |
+
|
72 |
+
```python
|
73 |
+
CUDA_VISIBLE_DEVICES=1 python scripts/inference.py --target "chubby face","face with eyeglasses","face with smile","face with pale skin","face with tanned skin","face with big eyes","face with black clothes","face with blue suit","happy face","face with bangs","face with red hair","face with black hair","face with blond hair","face with curly hair","face with receding hairline","face with bowlcut hairstyle"
|
74 |
+
```
|
75 |
+
|
76 |
+
The produced results are showed in the following.
|
77 |
+
|
78 |
+
You can also specify your desired target attributes to the flag of `--target`.
|
79 |
+
|
80 |
+
## Inference for real images
|
81 |
+
|
82 |
+
- The main inferece script is placed in `./scripts/inference_real.py`.
|
83 |
+
- Inference arguments can be found at `./options/test_options.py`.
|
84 |
+
- Download the pretrained DeltaMapper model for editing human face from [here](https://drive.google.com/file/d/1Mb2WiELoVDPDIi24tIfoWsjn1l2xTjtZ/view?usp=sharing), and then place it into the folder `./checkpoints` .
|
85 |
+
- Download the pretrained e4e encoder e4e_ffhq_encode.pt from [e4e](https://github.com/omertov/encoder4editing).
|
86 |
+
- One test image is provided in `./test_imgs`.
|
87 |
+
|
88 |
+
To produce editing results please run the following commands :
|
89 |
+
|
90 |
+
```python
|
91 |
+
CUDA_VISIBLE_DEVICES=1 python scripts/inference_real.py --target "chubby face","face with eyeglasses","face with smile","face with pale skin","face with tanned skin","face with big eyes","face with black clothes","face with blue suit","happy face","face with bangs","face with red hair","face with black hair","face with blond hair","face with curly hair","face with receding hairline","face with bowlcut hairstyle"
|
92 |
+
```
|
93 |
+
## Results
|
94 |
+
|
95 |
+

|
96 |
+
|
97 |
+
## Acknowledgements
|
98 |
+
|
99 |
+
This code is developed based on the code of [orpatashnik/StyleCLIP](https://github.com/orpatashnik/StyleCLIP) by Or Patashnik et al.
|
100 |
+
|
101 |
+
## Citation
|
102 |
+
If you use this code for your research, please cite our paper:
|
103 |
+
```
|
104 |
+
@InProceedings{lyu2023deltaedit,
|
105 |
+
author = {Lyu, Yueming and Lin, Tianwei and Li, Fu and He, Dongliang and Dong, Jing and Tan, Tieniu},
|
106 |
+
title = {DeltaEdit: Exploring Text-free Training for Text-Driven Image Manipulation},
|
107 |
+
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
|
108 |
+
year = {2023},
|
109 |
+
}
|
110 |
+
```
|
delta_edit/__init__.py
ADDED
File without changes
|
delta_edit/clip/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .clip import *
|
delta_edit/clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
delta_edit/clip/clip.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Union, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from .model import build_model
|
13 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
14 |
+
|
15 |
+
try:
|
16 |
+
from torchvision.transforms import InterpolationMode
|
17 |
+
BICUBIC = InterpolationMode.BICUBIC
|
18 |
+
except ImportError:
|
19 |
+
BICUBIC = Image.BICUBIC
|
20 |
+
|
21 |
+
|
22 |
+
if torch.__version__.split(".") < ["1", "7", "1"]:
|
23 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
24 |
+
|
25 |
+
|
26 |
+
__all__ = ["available_models", "load", "tokenize"]
|
27 |
+
_tokenizer = _Tokenizer()
|
28 |
+
|
29 |
+
_MODELS = {
|
30 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
31 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
32 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
33 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
34 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
35 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
|
40 |
+
os.makedirs(root, exist_ok=True)
|
41 |
+
filename = os.path.basename(url)
|
42 |
+
|
43 |
+
expected_sha256 = url.split("/")[-2]
|
44 |
+
download_target = os.path.join(root, filename)
|
45 |
+
|
46 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
47 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
48 |
+
|
49 |
+
if os.path.isfile(download_target):
|
50 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
51 |
+
return download_target
|
52 |
+
else:
|
53 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
54 |
+
|
55 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
56 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
57 |
+
while True:
|
58 |
+
buffer = source.read(8192)
|
59 |
+
if not buffer:
|
60 |
+
break
|
61 |
+
|
62 |
+
output.write(buffer)
|
63 |
+
loop.update(len(buffer))
|
64 |
+
|
65 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
66 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
67 |
+
|
68 |
+
return download_target
|
69 |
+
|
70 |
+
|
71 |
+
def _transform(n_px):
|
72 |
+
return Compose([
|
73 |
+
Resize(n_px, interpolation=BICUBIC),
|
74 |
+
CenterCrop(n_px),
|
75 |
+
lambda image: image.convert("RGB"),
|
76 |
+
ToTensor(),
|
77 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
78 |
+
])
|
79 |
+
|
80 |
+
|
81 |
+
def available_models() -> List[str]:
|
82 |
+
"""Returns the names of available CLIP models"""
|
83 |
+
return list(_MODELS.keys())
|
84 |
+
|
85 |
+
|
86 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=False):
|
87 |
+
"""Load a CLIP model
|
88 |
+
|
89 |
+
Parameters
|
90 |
+
----------
|
91 |
+
name : str
|
92 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
93 |
+
|
94 |
+
device : Union[str, torch.device]
|
95 |
+
The device to put the loaded model
|
96 |
+
|
97 |
+
jit : bool
|
98 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
99 |
+
|
100 |
+
Returns
|
101 |
+
-------
|
102 |
+
model : torch.nn.Module
|
103 |
+
The CLIP model
|
104 |
+
|
105 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
106 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
107 |
+
"""
|
108 |
+
if name in _MODELS:
|
109 |
+
model_path = _download(_MODELS[name])
|
110 |
+
elif os.path.isfile(name):
|
111 |
+
model_path = name
|
112 |
+
else:
|
113 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
114 |
+
|
115 |
+
try:
|
116 |
+
# loading JIT archive
|
117 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
118 |
+
state_dict = None
|
119 |
+
except RuntimeError:
|
120 |
+
# loading saved state dict
|
121 |
+
if jit:
|
122 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
123 |
+
jit = False
|
124 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
125 |
+
|
126 |
+
if not jit:
|
127 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
128 |
+
if str(device) == "cpu":
|
129 |
+
model.float()
|
130 |
+
return model, _transform(model.visual.input_resolution)
|
131 |
+
|
132 |
+
# patch the device names
|
133 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
134 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
135 |
+
|
136 |
+
def patch_device(module):
|
137 |
+
try:
|
138 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
139 |
+
except RuntimeError:
|
140 |
+
graphs = []
|
141 |
+
|
142 |
+
if hasattr(module, "forward1"):
|
143 |
+
graphs.append(module.forward1.graph)
|
144 |
+
|
145 |
+
for graph in graphs:
|
146 |
+
for node in graph.findAllNodes("prim::Constant"):
|
147 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
148 |
+
node.copyAttributes(device_node)
|
149 |
+
|
150 |
+
model.apply(patch_device)
|
151 |
+
patch_device(model.encode_image)
|
152 |
+
patch_device(model.encode_text)
|
153 |
+
|
154 |
+
# patch dtype to float32 on CPU
|
155 |
+
if str(device) == "cpu":
|
156 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
157 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
158 |
+
float_node = float_input.node()
|
159 |
+
|
160 |
+
def patch_float(module):
|
161 |
+
try:
|
162 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
163 |
+
except RuntimeError:
|
164 |
+
graphs = []
|
165 |
+
|
166 |
+
if hasattr(module, "forward1"):
|
167 |
+
graphs.append(module.forward1.graph)
|
168 |
+
|
169 |
+
for graph in graphs:
|
170 |
+
for node in graph.findAllNodes("aten::to"):
|
171 |
+
inputs = list(node.inputs())
|
172 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
173 |
+
if inputs[i].node()["value"] == 5:
|
174 |
+
inputs[i].node().copyAttributes(float_node)
|
175 |
+
|
176 |
+
model.apply(patch_float)
|
177 |
+
patch_float(model.encode_image)
|
178 |
+
patch_float(model.encode_text)
|
179 |
+
|
180 |
+
model.float()
|
181 |
+
|
182 |
+
return model, _transform(model.input_resolution.item())
|
183 |
+
|
184 |
+
|
185 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor:
|
186 |
+
"""
|
187 |
+
Returns the tokenized representation of given input string(s)
|
188 |
+
|
189 |
+
Parameters
|
190 |
+
----------
|
191 |
+
texts : Union[str, List[str]]
|
192 |
+
An input string or a list of input strings to tokenize
|
193 |
+
|
194 |
+
context_length : int
|
195 |
+
The context length to use; all CLIP models use 77 as the context length
|
196 |
+
|
197 |
+
truncate: bool
|
198 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
199 |
+
|
200 |
+
Returns
|
201 |
+
-------
|
202 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
203 |
+
"""
|
204 |
+
if isinstance(texts, str):
|
205 |
+
texts = [texts]
|
206 |
+
|
207 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
208 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
209 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
210 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
211 |
+
|
212 |
+
for i, tokens in enumerate(all_tokens):
|
213 |
+
if len(tokens) > context_length:
|
214 |
+
if truncate:
|
215 |
+
tokens = tokens[:context_length]
|
216 |
+
tokens[-1] = eot_token
|
217 |
+
else:
|
218 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
219 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
220 |
+
|
221 |
+
return result
|
delta_edit/clip/model.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
|
20 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
21 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
22 |
+
|
23 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
24 |
+
|
25 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
26 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
27 |
+
|
28 |
+
self.relu = nn.ReLU(inplace=True)
|
29 |
+
self.downsample = None
|
30 |
+
self.stride = stride
|
31 |
+
|
32 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
33 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
34 |
+
self.downsample = nn.Sequential(OrderedDict([
|
35 |
+
("-1", nn.AvgPool2d(stride)),
|
36 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
37 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
38 |
+
]))
|
39 |
+
|
40 |
+
def forward(self, x: torch.Tensor):
|
41 |
+
identity = x
|
42 |
+
|
43 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
44 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
45 |
+
out = self.avgpool(out)
|
46 |
+
out = self.bn3(self.conv3(out))
|
47 |
+
|
48 |
+
if self.downsample is not None:
|
49 |
+
identity = self.downsample(x)
|
50 |
+
|
51 |
+
out += identity
|
52 |
+
out = self.relu(out)
|
53 |
+
return out
|
54 |
+
|
55 |
+
|
56 |
+
class AttentionPool2d(nn.Module):
|
57 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
58 |
+
super().__init__()
|
59 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
60 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
61 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
62 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
64 |
+
self.num_heads = num_heads
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
68 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
69 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
70 |
+
x, _ = F.multi_head_attention_forward(
|
71 |
+
query=x, key=x, value=x,
|
72 |
+
embed_dim_to_check=x.shape[-1],
|
73 |
+
num_heads=self.num_heads,
|
74 |
+
q_proj_weight=self.q_proj.weight,
|
75 |
+
k_proj_weight=self.k_proj.weight,
|
76 |
+
v_proj_weight=self.v_proj.weight,
|
77 |
+
in_proj_weight=None,
|
78 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
79 |
+
bias_k=None,
|
80 |
+
bias_v=None,
|
81 |
+
add_zero_attn=False,
|
82 |
+
dropout_p=0,
|
83 |
+
out_proj_weight=self.c_proj.weight,
|
84 |
+
out_proj_bias=self.c_proj.bias,
|
85 |
+
use_separate_proj_weight=True,
|
86 |
+
training=self.training,
|
87 |
+
need_weights=False
|
88 |
+
)
|
89 |
+
|
90 |
+
return x[0]
|
91 |
+
|
92 |
+
|
93 |
+
class ModifiedResNet(nn.Module):
|
94 |
+
"""
|
95 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
96 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
97 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
98 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
102 |
+
super().__init__()
|
103 |
+
self.output_dim = output_dim
|
104 |
+
self.input_resolution = input_resolution
|
105 |
+
|
106 |
+
# the 3-layer stem
|
107 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
108 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
109 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
110 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
111 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
112 |
+
self.bn3 = nn.BatchNorm2d(width)
|
113 |
+
self.avgpool = nn.AvgPool2d(2)
|
114 |
+
self.relu = nn.ReLU(inplace=True)
|
115 |
+
|
116 |
+
# residual layers
|
117 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
118 |
+
self.layer1 = self._make_layer(width, layers[0])
|
119 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
120 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
121 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
122 |
+
|
123 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
124 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
125 |
+
|
126 |
+
def _make_layer(self, planes, blocks, stride=1):
|
127 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
128 |
+
|
129 |
+
self._inplanes = planes * Bottleneck.expansion
|
130 |
+
for _ in range(1, blocks):
|
131 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
132 |
+
|
133 |
+
return nn.Sequential(*layers)
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
def stem(x):
|
137 |
+
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
|
138 |
+
x = self.relu(bn(conv(x)))
|
139 |
+
x = self.avgpool(x)
|
140 |
+
return x
|
141 |
+
|
142 |
+
x = x.type(self.conv1.weight.dtype)
|
143 |
+
x = stem(x)
|
144 |
+
x = self.layer1(x)
|
145 |
+
x = self.layer2(x)
|
146 |
+
x = self.layer3(x)
|
147 |
+
x = self.layer4(x)
|
148 |
+
x = self.attnpool(x)
|
149 |
+
|
150 |
+
return x
|
151 |
+
|
152 |
+
|
153 |
+
class LayerNorm(nn.LayerNorm):
|
154 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
155 |
+
|
156 |
+
def forward(self, x: torch.Tensor):
|
157 |
+
orig_type = x.dtype
|
158 |
+
ret = super().forward(x.type(torch.float32))
|
159 |
+
return ret.type(orig_type)
|
160 |
+
|
161 |
+
|
162 |
+
class QuickGELU(nn.Module):
|
163 |
+
def forward(self, x: torch.Tensor):
|
164 |
+
return x * torch.sigmoid(1.702 * x)
|
165 |
+
|
166 |
+
|
167 |
+
class ResidualAttentionBlock(nn.Module):
|
168 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
169 |
+
super().__init__()
|
170 |
+
|
171 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
172 |
+
self.ln_1 = LayerNorm(d_model)
|
173 |
+
self.mlp = nn.Sequential(OrderedDict([
|
174 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
175 |
+
("gelu", QuickGELU()),
|
176 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
177 |
+
]))
|
178 |
+
self.ln_2 = LayerNorm(d_model)
|
179 |
+
self.attn_mask = attn_mask
|
180 |
+
|
181 |
+
def attention(self, x: torch.Tensor):
|
182 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
183 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
184 |
+
|
185 |
+
def forward(self, x: torch.Tensor):
|
186 |
+
x = x + self.attention(self.ln_1(x))
|
187 |
+
x = x + self.mlp(self.ln_2(x))
|
188 |
+
return x
|
189 |
+
|
190 |
+
|
191 |
+
class Transformer(nn.Module):
|
192 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
193 |
+
super().__init__()
|
194 |
+
self.width = width
|
195 |
+
self.layers = layers
|
196 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
197 |
+
|
198 |
+
def forward(self, x: torch.Tensor):
|
199 |
+
return self.resblocks(x)
|
200 |
+
|
201 |
+
|
202 |
+
class VisionTransformer(nn.Module):
|
203 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
204 |
+
super().__init__()
|
205 |
+
self.input_resolution = input_resolution
|
206 |
+
self.output_dim = output_dim
|
207 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
208 |
+
|
209 |
+
scale = width ** -0.5
|
210 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
211 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
212 |
+
self.ln_pre = LayerNorm(width)
|
213 |
+
|
214 |
+
self.transformer = Transformer(width, layers, heads)
|
215 |
+
|
216 |
+
self.ln_post = LayerNorm(width)
|
217 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
218 |
+
|
219 |
+
def forward(self, x: torch.Tensor):
|
220 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
221 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
222 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
223 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
224 |
+
x = x + self.positional_embedding.to(x.dtype)
|
225 |
+
x = self.ln_pre(x)
|
226 |
+
|
227 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
228 |
+
x = self.transformer(x)
|
229 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
230 |
+
|
231 |
+
x = self.ln_post(x[:, 0, :])
|
232 |
+
|
233 |
+
if self.proj is not None:
|
234 |
+
x = x @ self.proj
|
235 |
+
|
236 |
+
return x
|
237 |
+
|
238 |
+
|
239 |
+
class CLIP(nn.Module):
|
240 |
+
def __init__(self,
|
241 |
+
embed_dim: int,
|
242 |
+
# vision
|
243 |
+
image_resolution: int,
|
244 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
245 |
+
vision_width: int,
|
246 |
+
vision_patch_size: int,
|
247 |
+
# text
|
248 |
+
context_length: int,
|
249 |
+
vocab_size: int,
|
250 |
+
transformer_width: int,
|
251 |
+
transformer_heads: int,
|
252 |
+
transformer_layers: int
|
253 |
+
):
|
254 |
+
super().__init__()
|
255 |
+
|
256 |
+
self.context_length = context_length
|
257 |
+
|
258 |
+
if isinstance(vision_layers, (tuple, list)):
|
259 |
+
vision_heads = vision_width * 32 // 64
|
260 |
+
self.visual = ModifiedResNet(
|
261 |
+
layers=vision_layers,
|
262 |
+
output_dim=embed_dim,
|
263 |
+
heads=vision_heads,
|
264 |
+
input_resolution=image_resolution,
|
265 |
+
width=vision_width
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
vision_heads = vision_width // 64
|
269 |
+
self.visual = VisionTransformer(
|
270 |
+
input_resolution=image_resolution,
|
271 |
+
patch_size=vision_patch_size,
|
272 |
+
width=vision_width,
|
273 |
+
layers=vision_layers,
|
274 |
+
heads=vision_heads,
|
275 |
+
output_dim=embed_dim
|
276 |
+
)
|
277 |
+
|
278 |
+
self.transformer = Transformer(
|
279 |
+
width=transformer_width,
|
280 |
+
layers=transformer_layers,
|
281 |
+
heads=transformer_heads,
|
282 |
+
attn_mask=self.build_attention_mask()
|
283 |
+
)
|
284 |
+
|
285 |
+
self.vocab_size = vocab_size
|
286 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
287 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
288 |
+
self.ln_final = LayerNorm(transformer_width)
|
289 |
+
|
290 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
291 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
292 |
+
|
293 |
+
self.initialize_parameters()
|
294 |
+
|
295 |
+
def initialize_parameters(self):
|
296 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
297 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
298 |
+
|
299 |
+
if isinstance(self.visual, ModifiedResNet):
|
300 |
+
if self.visual.attnpool is not None:
|
301 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
302 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
303 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
304 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
305 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
306 |
+
|
307 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
308 |
+
for name, param in resnet_block.named_parameters():
|
309 |
+
if name.endswith("bn3.weight"):
|
310 |
+
nn.init.zeros_(param)
|
311 |
+
|
312 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
313 |
+
attn_std = self.transformer.width ** -0.5
|
314 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
315 |
+
for block in self.transformer.resblocks:
|
316 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
317 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
318 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
319 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
320 |
+
|
321 |
+
if self.text_projection is not None:
|
322 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
323 |
+
|
324 |
+
def build_attention_mask(self):
|
325 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
326 |
+
# pytorch uses additive attention mask; fill with -inf
|
327 |
+
mask = torch.empty(self.context_length, self.context_length)
|
328 |
+
mask.fill_(float("-inf"))
|
329 |
+
mask.triu_(1) # zero out the lower diagonal
|
330 |
+
return mask
|
331 |
+
|
332 |
+
@property
|
333 |
+
def dtype(self):
|
334 |
+
return self.visual.conv1.weight.dtype
|
335 |
+
|
336 |
+
def encode_image(self, image):
|
337 |
+
return self.visual(image.type(self.dtype))
|
338 |
+
|
339 |
+
def encode_text(self, text):
|
340 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
341 |
+
|
342 |
+
x = x + self.positional_embedding.type(self.dtype)
|
343 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
344 |
+
x = self.transformer(x)
|
345 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
346 |
+
x = self.ln_final(x).type(self.dtype)
|
347 |
+
|
348 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
349 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
350 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
351 |
+
|
352 |
+
return x
|
353 |
+
|
354 |
+
def forward(self, image, text):
|
355 |
+
image_features = self.encode_image(image)
|
356 |
+
text_features = self.encode_text(text)
|
357 |
+
|
358 |
+
# normalized features
|
359 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
360 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
361 |
+
|
362 |
+
# cosine similarity as logits
|
363 |
+
logit_scale = self.logit_scale.exp()
|
364 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
365 |
+
logits_per_text = logit_scale * text_features @ image_features.t()
|
366 |
+
|
367 |
+
# shape = [global_batch_size, global_batch_size]
|
368 |
+
return logits_per_image, logits_per_text
|
369 |
+
|
370 |
+
|
371 |
+
def convert_weights(model: nn.Module):
|
372 |
+
"""Convert applicable model parameters to fp16"""
|
373 |
+
|
374 |
+
def _convert_weights_to_fp16(l):
|
375 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
376 |
+
l.weight.data = l.weight.data.half()
|
377 |
+
if l.bias is not None:
|
378 |
+
l.bias.data = l.bias.data.half()
|
379 |
+
|
380 |
+
if isinstance(l, nn.MultiheadAttention):
|
381 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
382 |
+
tensor = getattr(l, attr)
|
383 |
+
if tensor is not None:
|
384 |
+
tensor.data = tensor.data.half()
|
385 |
+
|
386 |
+
for name in ["text_projection", "proj"]:
|
387 |
+
if hasattr(l, name):
|
388 |
+
attr = getattr(l, name)
|
389 |
+
if attr is not None:
|
390 |
+
attr.data = attr.data.half()
|
391 |
+
|
392 |
+
model.apply(_convert_weights_to_fp16)
|
393 |
+
|
394 |
+
|
395 |
+
def build_model(state_dict: dict):
|
396 |
+
vit = "visual.proj" in state_dict
|
397 |
+
|
398 |
+
if vit:
|
399 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
400 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
401 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
402 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
403 |
+
image_resolution = vision_patch_size * grid_size
|
404 |
+
else:
|
405 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
406 |
+
vision_layers = tuple(counts)
|
407 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
408 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
409 |
+
vision_patch_size = None
|
410 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
411 |
+
image_resolution = output_width * 32
|
412 |
+
|
413 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
414 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
415 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
416 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
417 |
+
transformer_heads = transformer_width // 64
|
418 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
419 |
+
|
420 |
+
model = CLIP(
|
421 |
+
embed_dim,
|
422 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
423 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
424 |
+
)
|
425 |
+
|
426 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
427 |
+
if key in state_dict:
|
428 |
+
del state_dict[key]
|
429 |
+
|
430 |
+
convert_weights(model)
|
431 |
+
model.load_state_dict(state_dict)
|
432 |
+
return model.eval()
|
delta_edit/clip/simple_tokenizer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
79 |
+
|
80 |
+
def bpe(self, token):
|
81 |
+
if token in self.cache:
|
82 |
+
return self.cache[token]
|
83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
84 |
+
pairs = get_pairs(word)
|
85 |
+
|
86 |
+
if not pairs:
|
87 |
+
return token+'</w>'
|
88 |
+
|
89 |
+
while True:
|
90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
91 |
+
if bigram not in self.bpe_ranks:
|
92 |
+
break
|
93 |
+
first, second = bigram
|
94 |
+
new_word = []
|
95 |
+
i = 0
|
96 |
+
while i < len(word):
|
97 |
+
try:
|
98 |
+
j = word.index(first, i)
|
99 |
+
new_word.extend(word[i:j])
|
100 |
+
i = j
|
101 |
+
except:
|
102 |
+
new_word.extend(word[i:])
|
103 |
+
break
|
104 |
+
|
105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
106 |
+
new_word.append(first+second)
|
107 |
+
i += 2
|
108 |
+
else:
|
109 |
+
new_word.append(word[i])
|
110 |
+
i += 1
|
111 |
+
new_word = tuple(new_word)
|
112 |
+
word = new_word
|
113 |
+
if len(word) == 1:
|
114 |
+
break
|
115 |
+
else:
|
116 |
+
pairs = get_pairs(word)
|
117 |
+
word = ' '.join(word)
|
118 |
+
self.cache[token] = word
|
119 |
+
return word
|
120 |
+
|
121 |
+
def encode(self, text):
|
122 |
+
bpe_tokens = []
|
123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
124 |
+
for token in re.findall(self.pat, text):
|
125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
127 |
+
return bpe_tokens
|
128 |
+
|
129 |
+
def decode(self, tokens):
|
130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
132 |
+
return text
|
delta_edit/datasets/__init__.py
ADDED
File without changes
|
delta_edit/datasets/test_dataset.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
|
6 |
+
class TestLatentsDataset(Dataset):
|
7 |
+
def __init__(self):
|
8 |
+
|
9 |
+
style_latents_list = []
|
10 |
+
clip_latents_list = []
|
11 |
+
wplus_latents_list = []
|
12 |
+
|
13 |
+
#change the paths here for testing other latent codes
|
14 |
+
# style_latents_list.append(torch.Tensor(np.load("./examples/sspace_img_feat.npy")))
|
15 |
+
# clip_latents_list.append(torch.Tensor(np.load("./examples/cspace_img_feat.npy")))
|
16 |
+
# wplus_latents_list.append(torch.Tensor(np.load("./examples/wplus_img_feat.npy")))
|
17 |
+
|
18 |
+
style_latents_list.append(torch.Tensor(np.load("/home/weiyuxiang/models/delta_edit/sspace_ffhq_feat.npy")))
|
19 |
+
clip_latents_list.append(torch.Tensor(np.load("/home/weiyuxiang/models/delta_edit/cspace_ffhq_feat.npy")))
|
20 |
+
wplus_latents_list.append(torch.Tensor(np.load("/home/weiyuxiang/models/delta_edit/wspace_ffhq_feat.npy")))
|
21 |
+
|
22 |
+
self.style_latents = torch.cat(style_latents_list, dim=0)
|
23 |
+
self.clip_latents = torch.cat(clip_latents_list, dim=0)
|
24 |
+
self.wplus_latents = torch.cat(wplus_latents_list, dim=0)
|
25 |
+
print(self.wplus_latents.shape)
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
|
29 |
+
return self.style_latents.shape[0]
|
30 |
+
|
31 |
+
def __getitem__(self, index):
|
32 |
+
|
33 |
+
latent_s1 = self.style_latents[index]
|
34 |
+
latent_c1 = self.clip_latents[index]
|
35 |
+
latent_w1 = self.wplus_latents[index]
|
36 |
+
latent_c1 = latent_c1 / latent_c1.norm(dim=-1, keepdim=True).float()
|
37 |
+
|
38 |
+
delta_c = torch.cat([latent_c1, latent_c1], dim=0)
|
39 |
+
|
40 |
+
return latent_s1, delta_c, latent_w1
|
delta_edit/datasets/train_dataset.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
|
8 |
+
class TrainLatentsDataset(Dataset):
|
9 |
+
def __init__(self, opts, cycle=True):
|
10 |
+
|
11 |
+
style_latents_list = []
|
12 |
+
clip_latents_list = []
|
13 |
+
wplus_latents_list = []
|
14 |
+
|
15 |
+
style_latents_list.append(torch.Tensor(np.load(f"./latent_code/{opts.classname}/sspace_noise_feat.npy")))
|
16 |
+
clip_latents_list.append(torch.Tensor(np.load(f"./latent_code/{opts.classname}/cspace_noise_feat.npy")))
|
17 |
+
wplus_latents_list.append(torch.Tensor(np.load(f"./latent_code/{opts.classname}/wspace_noise_feat.npy")))
|
18 |
+
|
19 |
+
style_latents_list.append(torch.Tensor(np.load(f"./latent_code/{opts.classname}/sspace_ffhq_feat.npy")))
|
20 |
+
clip_latents_list.append(torch.Tensor(np.load(f"./latent_code/{opts.classname}/cspace_ffhq_feat.npy")))
|
21 |
+
wplus_latents_list.append(torch.Tensor(np.load(f"./latent_code/{opts.classname}/wspace_ffhq_feat.npy")))
|
22 |
+
|
23 |
+
self.style_latents = torch.cat(style_latents_list, dim=0)
|
24 |
+
self.clip_latents = torch.cat(clip_latents_list, dim=0)
|
25 |
+
self.wplus_latents = torch.cat(wplus_latents_list, dim=0)
|
26 |
+
|
27 |
+
self.style_latents = self.style_latents[:200000+58000]
|
28 |
+
self.clip_latents = self.clip_latents[:200000+58000]
|
29 |
+
self.wplus_latents = self.wplus_latents[:200000+58000]
|
30 |
+
|
31 |
+
self.dataset_size = self.style_latents.shape[0]
|
32 |
+
print("dataset size", self.dataset_size)
|
33 |
+
self.cycle = cycle
|
34 |
+
|
35 |
+
def __len__(self):
|
36 |
+
if self.cycle:
|
37 |
+
return self.style_latents.shape[0] * 50
|
38 |
+
else:
|
39 |
+
return self.style_latents.shape[0]
|
40 |
+
|
41 |
+
def __getitem__(self, index):
|
42 |
+
if self.cycle:
|
43 |
+
index = index % self.dataset_size
|
44 |
+
|
45 |
+
latent_s1 = self.style_latents[index]
|
46 |
+
latent_c1 = self.clip_latents[index]
|
47 |
+
latent_w1 = self.wplus_latents[index]
|
48 |
+
latent_c1 = latent_c1 / latent_c1.norm(dim=-1, keepdim=True).float()
|
49 |
+
|
50 |
+
random_index = random.randint(0, self.dataset_size - 1)
|
51 |
+
latent_s2 = self.style_latents[random_index]
|
52 |
+
latent_c2 = self.clip_latents[random_index]
|
53 |
+
latent_w2 = self.wplus_latents[random_index]
|
54 |
+
latent_c2 = latent_c2 / latent_c2.norm(dim=-1, keepdim=True).float()
|
55 |
+
|
56 |
+
delta_s1 = latent_s2 - latent_s1
|
57 |
+
delta_c = latent_c2 - latent_c1
|
58 |
+
|
59 |
+
delta_c = delta_c / delta_c.norm(dim=-1, keepdim=True).float().clamp(min=1e-5)
|
60 |
+
delta_c = torch.cat([latent_c1, delta_c], dim=0)
|
61 |
+
|
62 |
+
return latent_s1, delta_c, delta_s1
|
delta_edit/delta_mapper.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import Module
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from models.stylegan2.model import EqualLinear, PixelNorm
|
9 |
+
|
10 |
+
class Mapper(Module):
|
11 |
+
|
12 |
+
def __init__(self, in_channel=512, out_channel=512, norm=True, num_layers=4):
|
13 |
+
super(Mapper, self).__init__()
|
14 |
+
|
15 |
+
layers = [PixelNorm()] if norm else []
|
16 |
+
|
17 |
+
layers.append(EqualLinear(in_channel, out_channel, lr_mul=0.01, activation='fused_lrelu'))
|
18 |
+
for _ in range(num_layers-1):
|
19 |
+
layers.append(EqualLinear(out_channel, out_channel, lr_mul=0.01, activation='fused_lrelu'))
|
20 |
+
self.mapping = nn.Sequential(*layers)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
x = self.mapping(x)
|
24 |
+
return x
|
25 |
+
|
26 |
+
class DeltaMapper(Module):
|
27 |
+
|
28 |
+
def __init__(self):
|
29 |
+
super(DeltaMapper, self).__init__()
|
30 |
+
|
31 |
+
#Style Module(sm)
|
32 |
+
self.sm_coarse = Mapper(512, 512)
|
33 |
+
self.sm_medium = Mapper(512, 512)
|
34 |
+
self.sm_fine = Mapper(2464, 2464)
|
35 |
+
|
36 |
+
#Condition Module(cm)
|
37 |
+
self.cm_coarse = Mapper(1024, 512)
|
38 |
+
self.cm_medium = Mapper(1024, 512)
|
39 |
+
self.cm_fine = Mapper(1024, 2464)
|
40 |
+
|
41 |
+
#Fusion Module(fm)
|
42 |
+
self.fm_coarse = Mapper(512*2, 512, norm=False)
|
43 |
+
self.fm_medium = Mapper(512*2, 512, norm=False)
|
44 |
+
self.fm_fine = Mapper(2464*2, 2464, norm=False)
|
45 |
+
|
46 |
+
def forward(self, sspace_feat, clip_feat):
|
47 |
+
|
48 |
+
s_coarse = sspace_feat[:, :3*512].view(-1,3,512)
|
49 |
+
s_medium = sspace_feat[:, 3*512:7*512].view(-1,4,512)
|
50 |
+
s_fine = sspace_feat[:, 7*512:] #channels:2464
|
51 |
+
|
52 |
+
s_coarse = self.sm_coarse(s_coarse)
|
53 |
+
s_medium = self.sm_medium(s_medium)
|
54 |
+
s_fine = self.sm_fine(s_fine)
|
55 |
+
|
56 |
+
c_coarse = self.cm_coarse(clip_feat)
|
57 |
+
c_medium = self.cm_medium(clip_feat)
|
58 |
+
c_fine = self.cm_fine(clip_feat)
|
59 |
+
|
60 |
+
x_coarse = torch.cat([s_coarse, torch.stack([c_coarse]*3, dim=1)], dim=2) #[b,3,1024]
|
61 |
+
x_medium = torch.cat([s_medium, torch.stack([c_medium]*4, dim=1)], dim=2) #[b,4,1024]
|
62 |
+
x_fine = torch.cat([s_fine, c_fine], dim=1) #[b,2464*2]
|
63 |
+
|
64 |
+
x_coarse = self.fm_coarse(x_coarse)
|
65 |
+
x_coarse = x_coarse.view(-1,3*512)
|
66 |
+
|
67 |
+
x_medium = self.fm_medium(x_medium)
|
68 |
+
x_medium = x_medium.view(-1,4*512)
|
69 |
+
|
70 |
+
x_fine = self.fm_fine(x_fine)
|
71 |
+
|
72 |
+
out = torch.cat([x_coarse, x_medium, x_fine], dim=1)
|
73 |
+
return out
|
delta_edit/editing_attributes.txt
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
face with big eyes,1,face with big eyes
|
2 |
+
face with big eyes,-1.2,face with small eyes
|
3 |
+
face with mouth open,1,face with mouth open
|
4 |
+
face with mouth open,-1.2,face with mouth closed
|
5 |
+
face with bushy eyebrows,3,face with bushy eyebrows
|
6 |
+
face with thick eyebrows,2,face with thick eyebrows
|
7 |
+
face with no eyebrows,1.5,face with no eyebrows
|
8 |
+
face with beard,2,face with beard
|
9 |
+
face with makeup,4,face with makeup
|
10 |
+
young face,4,young face
|
11 |
+
woman face,2,woman face
|
12 |
+
man face,2,man face
|
13 |
+
chubby face,1.5,chubby face
|
14 |
+
face with eyeglasses,1.5,face with eyeglasses
|
15 |
+
face with smile,1,face with smile
|
16 |
+
happy face,1,happy face
|
17 |
+
surprised face,1.5,surprised face
|
18 |
+
angry face,1.5,angry face
|
19 |
+
face with bangs,1.5,face with bangs
|
20 |
+
face with red hair,1.5,face with red hair
|
21 |
+
face with black hair,1.5,face with black hair
|
22 |
+
face with blond hair,1.5,face with blond hair
|
23 |
+
face with grey hair,2,face with grey hair
|
24 |
+
face with white hair,2,face with white hair
|
25 |
+
face with curly hair,1.5,face with curly hair
|
26 |
+
face with receding hairline,1.5,face with receding hairline
|
27 |
+
face with bowlcut hairstyle,1.5,face with bowlcut hairstyle
|
28 |
+
face with straight long hair,1.5,face with straight long hair
|
29 |
+
bald face,1.5,bald face
|
delta_edit/generate_codes.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import clip
|
4 |
+
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torchvision import utils
|
9 |
+
from utils import stylespace_util
|
10 |
+
from models.stylegan2.model import Generator
|
11 |
+
|
12 |
+
def save_image_pytorch(img, name):
|
13 |
+
"""Helper function to save torch tensor into an image file."""
|
14 |
+
utils.save_image(
|
15 |
+
img,
|
16 |
+
name,
|
17 |
+
nrow=1,
|
18 |
+
padding=0,
|
19 |
+
normalize=True,
|
20 |
+
range=(-1, 1),
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def generate(args, netG, device, mean_latent):
|
25 |
+
|
26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
model, preprocess = clip.load("ViT-B/32", device=device)
|
28 |
+
avg_pool = torch.nn.AvgPool2d(kernel_size=1024 // 32)
|
29 |
+
upsample = torch.nn.Upsample(scale_factor=7)
|
30 |
+
|
31 |
+
ind = 0
|
32 |
+
with torch.no_grad():
|
33 |
+
netG.eval()
|
34 |
+
|
35 |
+
# Generate images from a file of input noises
|
36 |
+
if args.fixed_z is not None:
|
37 |
+
sample_z = torch.load(args.fixed_z, map_location=device)
|
38 |
+
for start in range(0, sample_z.size(0), args.batch_size):
|
39 |
+
end = min(start + args.batch_size, sample_z.size(0))
|
40 |
+
z_batch = sample_z[start:end]
|
41 |
+
sample, _ = netG([z_batch], truncation=args.truncation, truncation_latent=mean_latent)
|
42 |
+
for s in sample:
|
43 |
+
save_image_pytorch(s, f'{args.save_dir}/{str(ind).zfill(6)}.png')
|
44 |
+
ind += 1
|
45 |
+
return
|
46 |
+
|
47 |
+
# Generate image by sampling input noises
|
48 |
+
w_latents_list = []
|
49 |
+
s_latents_list = []
|
50 |
+
c_latents_list = []
|
51 |
+
for start in range(0, args.samples, args.batch_size):
|
52 |
+
end = min(start + args.batch_size, args.samples)
|
53 |
+
batch_sz = end - start
|
54 |
+
print(f'current_num:{start}')
|
55 |
+
sample_z = torch.randn(batch_sz, 512, device=device)
|
56 |
+
|
57 |
+
sample, w_latents = netG([sample_z], truncation=args.truncation, truncation_latent=mean_latent,return_latents=True)
|
58 |
+
style_space, noise = stylespace_util.encoder_latent(netG, w_latents)
|
59 |
+
s_latents = torch.cat(style_space, dim=1)
|
60 |
+
|
61 |
+
tmp_imgs = stylespace_util.decoder(netG, style_space, w_latents, noise)
|
62 |
+
# for s in tmp_imgs:
|
63 |
+
# save_image_pytorch(s, f'{args.save_dir}/{str(ind).zfill(6)}.png')
|
64 |
+
# ind += 1
|
65 |
+
|
66 |
+
img_gen_for_clip = upsample(tmp_imgs)
|
67 |
+
img_gen_for_clip = avg_pool(img_gen_for_clip)
|
68 |
+
c_latents = model.encode_image(img_gen_for_clip)
|
69 |
+
|
70 |
+
w_latents_list.append(w_latents)
|
71 |
+
s_latents_list.append(s_latents)
|
72 |
+
c_latents_list.append(c_latents)
|
73 |
+
w_all_latents = torch.cat(w_latents_list, dim=0)
|
74 |
+
s_all_latents = torch.cat(s_latents_list, dim=0)
|
75 |
+
c_all_latents = torch.cat(c_latents_list, dim=0)
|
76 |
+
|
77 |
+
print(w_all_latents.size())
|
78 |
+
print(s_all_latents.size())
|
79 |
+
print(c_all_latents.size())
|
80 |
+
|
81 |
+
w_all_latents = w_all_latents.cpu().numpy()
|
82 |
+
s_all_latents = s_all_latents.cpu().numpy()
|
83 |
+
c_all_latents = c_all_latents.cpu().numpy()
|
84 |
+
|
85 |
+
os.makedirs(os.path.join(args.save_dir, args.classname), exist_ok=True)
|
86 |
+
np.save(f"{args.save_dir}/{args.classname}/wspace_noise_feat.npy", w_all_latents)
|
87 |
+
np.save(f"{args.save_dir}/{args.classname}/sspace_noise_feat.npy", s_all_latents)
|
88 |
+
np.save(f"{args.save_dir}/{args.classname}/cspace_noise_feat.npy", c_all_latents)
|
89 |
+
|
90 |
+
if __name__ == '__main__':
|
91 |
+
parser = argparse.ArgumentParser()
|
92 |
+
|
93 |
+
parser.add_argument('--classname', type=str, default='ffhq', help="place to save the output")
|
94 |
+
parser.add_argument('--save_dir', type=str, default='./latent_code', help="place to save the output")
|
95 |
+
parser.add_argument('--ckpt', type=str, default='./models/pretrained_models', help="checkpoint file for the generator")
|
96 |
+
parser.add_argument('--size', type=int, default=1024, help="output size of the generator")
|
97 |
+
parser.add_argument('--fixed_z', type=str, default=None, help="expect a .pth file. If given, will use this file as the input noise for the output")
|
98 |
+
parser.add_argument('--w_shift', type=str, default=None, help="expect a .pth file. Apply a w-latent shift to the generator")
|
99 |
+
parser.add_argument('--batch_size', type=int, default=10, help="batch size used to generate outputs")
|
100 |
+
parser.add_argument('--samples', type=int, default=200000, help="200000 number of samples to generate, will be overridden if --fixed_z is given")
|
101 |
+
parser.add_argument('--truncation', type=float, default=1, help="strength of truncation:0.5ori")
|
102 |
+
parser.add_argument('--truncation_mean', type=int, default=4096, help="number of samples to calculate the mean latent for truncation")
|
103 |
+
parser.add_argument('--seed', type=int, default=None, help="if specified, use a fixed random seed")
|
104 |
+
parser.add_argument('--device', type=str, default='cuda')
|
105 |
+
|
106 |
+
args = parser.parse_args()
|
107 |
+
|
108 |
+
device = args.device
|
109 |
+
# use a fixed seed if given
|
110 |
+
if args.seed is not None:
|
111 |
+
random.seed(args.seed)
|
112 |
+
torch.manual_seed(args.seed)
|
113 |
+
torch.cuda.manual_seed_all(args.seed)
|
114 |
+
|
115 |
+
if not os.path.exists(args.save_dir):
|
116 |
+
os.makedirs(args.save_dir)
|
117 |
+
|
118 |
+
netG = Generator(args.size, 512, 8).to(device)
|
119 |
+
if args.classname == 'ffhq':
|
120 |
+
ckpt_path = os.path.join(args.ckpt,f'stylegan2-{args.classname}-config-f.pt')
|
121 |
+
else:
|
122 |
+
ckpt_path = os.path.join(args.ckpt,f'stylegan2-{args.classname}','netG.pth')
|
123 |
+
print(ckpt_path)
|
124 |
+
checkpoint = torch.load(ckpt_path, map_location='cpu')
|
125 |
+
|
126 |
+
if args.classname == 'ffhq':
|
127 |
+
netG.load_state_dict(checkpoint['g_ema'])
|
128 |
+
else:
|
129 |
+
netG.load_state_dict(checkpoint)
|
130 |
+
|
131 |
+
# get mean latent if truncation is applied
|
132 |
+
if args.truncation < 1:
|
133 |
+
with torch.no_grad():
|
134 |
+
mean_latent = netG.mean_latent(args.truncation_mean)
|
135 |
+
else:
|
136 |
+
mean_latent = None
|
137 |
+
|
138 |
+
generate(args, netG, device, mean_latent)
|
delta_edit/models/__init__.py
ADDED
File without changes
|
delta_edit/models/encoders/__init__.py
ADDED
File without changes
|
delta_edit/models/encoders/helpers.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
|
5 |
+
|
6 |
+
"""
|
7 |
+
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
class Flatten(Module):
|
12 |
+
def forward(self, input):
|
13 |
+
return input.view(input.size(0), -1)
|
14 |
+
|
15 |
+
|
16 |
+
def l2_norm(input, axis=1):
|
17 |
+
norm = torch.norm(input, 2, axis, True)
|
18 |
+
output = torch.div(input, norm)
|
19 |
+
return output
|
20 |
+
|
21 |
+
|
22 |
+
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
|
23 |
+
""" A named tuple describing a ResNet block. """
|
24 |
+
|
25 |
+
|
26 |
+
def get_block(in_channel, depth, num_units, stride=2):
|
27 |
+
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
|
28 |
+
|
29 |
+
|
30 |
+
def get_blocks(num_layers):
|
31 |
+
if num_layers == 50:
|
32 |
+
blocks = [
|
33 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
34 |
+
get_block(in_channel=64, depth=128, num_units=4),
|
35 |
+
get_block(in_channel=128, depth=256, num_units=14),
|
36 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
37 |
+
]
|
38 |
+
elif num_layers == 100:
|
39 |
+
blocks = [
|
40 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
41 |
+
get_block(in_channel=64, depth=128, num_units=13),
|
42 |
+
get_block(in_channel=128, depth=256, num_units=30),
|
43 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
44 |
+
]
|
45 |
+
elif num_layers == 152:
|
46 |
+
blocks = [
|
47 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
48 |
+
get_block(in_channel=64, depth=128, num_units=8),
|
49 |
+
get_block(in_channel=128, depth=256, num_units=36),
|
50 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
51 |
+
]
|
52 |
+
else:
|
53 |
+
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
|
54 |
+
return blocks
|
55 |
+
|
56 |
+
|
57 |
+
class SEModule(Module):
|
58 |
+
def __init__(self, channels, reduction):
|
59 |
+
super(SEModule, self).__init__()
|
60 |
+
self.avg_pool = AdaptiveAvgPool2d(1)
|
61 |
+
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
|
62 |
+
self.relu = ReLU(inplace=True)
|
63 |
+
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
|
64 |
+
self.sigmoid = Sigmoid()
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
module_input = x
|
68 |
+
x = self.avg_pool(x)
|
69 |
+
x = self.fc1(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
x = self.fc2(x)
|
72 |
+
x = self.sigmoid(x)
|
73 |
+
return module_input * x
|
74 |
+
|
75 |
+
|
76 |
+
class bottleneck_IR(Module):
|
77 |
+
def __init__(self, in_channel, depth, stride):
|
78 |
+
super(bottleneck_IR, self).__init__()
|
79 |
+
if in_channel == depth:
|
80 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
81 |
+
else:
|
82 |
+
self.shortcut_layer = Sequential(
|
83 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
84 |
+
BatchNorm2d(depth)
|
85 |
+
)
|
86 |
+
self.res_layer = Sequential(
|
87 |
+
BatchNorm2d(in_channel),
|
88 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
|
89 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
|
90 |
+
)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
shortcut = self.shortcut_layer(x)
|
94 |
+
res = self.res_layer(x)
|
95 |
+
return res + shortcut
|
96 |
+
|
97 |
+
|
98 |
+
class bottleneck_IR_SE(Module):
|
99 |
+
def __init__(self, in_channel, depth, stride):
|
100 |
+
super(bottleneck_IR_SE, self).__init__()
|
101 |
+
if in_channel == depth:
|
102 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
103 |
+
else:
|
104 |
+
self.shortcut_layer = Sequential(
|
105 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
106 |
+
BatchNorm2d(depth)
|
107 |
+
)
|
108 |
+
self.res_layer = Sequential(
|
109 |
+
BatchNorm2d(in_channel),
|
110 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
|
111 |
+
PReLU(depth),
|
112 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
|
113 |
+
BatchNorm2d(depth),
|
114 |
+
SEModule(depth, 16)
|
115 |
+
)
|
116 |
+
|
117 |
+
def forward(self, x):
|
118 |
+
shortcut = self.shortcut_layer(x)
|
119 |
+
res = self.res_layer(x)
|
120 |
+
return res + shortcut
|
121 |
+
|
122 |
+
|
123 |
+
def _upsample_add(x, y):
|
124 |
+
"""Upsample and add two feature maps.
|
125 |
+
Args:
|
126 |
+
x: (Variable) top feature map to be upsampled.
|
127 |
+
y: (Variable) lateral feature map.
|
128 |
+
Returns:
|
129 |
+
(Variable) added feature map.
|
130 |
+
Note in PyTorch, when input size is odd, the upsampled feature map
|
131 |
+
with `F.upsample(..., scale_factor=2, mode='nearest')`
|
132 |
+
maybe not equal to the lateral feature map size.
|
133 |
+
e.g.
|
134 |
+
original input size: [N,_,15,15] ->
|
135 |
+
conv2d feature map size: [N,_,8,8] ->
|
136 |
+
upsampled feature map size: [N,_,16,16]
|
137 |
+
So we choose bilinear upsample which supports arbitrary output sizes.
|
138 |
+
"""
|
139 |
+
_, _, H, W = y.size()
|
140 |
+
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
|
delta_edit/models/encoders/model_irse.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module
|
2 |
+
from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm
|
3 |
+
|
4 |
+
"""
|
5 |
+
Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
class Backbone(Module):
|
10 |
+
def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True):
|
11 |
+
super(Backbone, self).__init__()
|
12 |
+
assert input_size in [112, 224], "input_size should be 112 or 224"
|
13 |
+
assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
|
14 |
+
assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
|
15 |
+
blocks = get_blocks(num_layers)
|
16 |
+
if mode == 'ir':
|
17 |
+
unit_module = bottleneck_IR
|
18 |
+
elif mode == 'ir_se':
|
19 |
+
unit_module = bottleneck_IR_SE
|
20 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
21 |
+
BatchNorm2d(64),
|
22 |
+
PReLU(64))
|
23 |
+
if input_size == 112:
|
24 |
+
self.output_layer = Sequential(BatchNorm2d(512),
|
25 |
+
Dropout(drop_ratio),
|
26 |
+
Flatten(),
|
27 |
+
Linear(512 * 7 * 7, 512),
|
28 |
+
BatchNorm1d(512, affine=affine))
|
29 |
+
else:
|
30 |
+
self.output_layer = Sequential(BatchNorm2d(512),
|
31 |
+
Dropout(drop_ratio),
|
32 |
+
Flatten(),
|
33 |
+
Linear(512 * 14 * 14, 512),
|
34 |
+
BatchNorm1d(512, affine=affine))
|
35 |
+
|
36 |
+
modules = []
|
37 |
+
for block in blocks:
|
38 |
+
for bottleneck in block:
|
39 |
+
modules.append(unit_module(bottleneck.in_channel,
|
40 |
+
bottleneck.depth,
|
41 |
+
bottleneck.stride))
|
42 |
+
self.body = Sequential(*modules)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.input_layer(x)
|
46 |
+
x = self.body(x)
|
47 |
+
x = self.output_layer(x)
|
48 |
+
return l2_norm(x)
|
49 |
+
|
50 |
+
|
51 |
+
def IR_50(input_size):
|
52 |
+
"""Constructs a ir-50 model."""
|
53 |
+
model = Backbone(input_size, num_layers=50, mode='ir', drop_ratio=0.4, affine=False)
|
54 |
+
return model
|
55 |
+
|
56 |
+
|
57 |
+
def IR_101(input_size):
|
58 |
+
"""Constructs a ir-101 model."""
|
59 |
+
model = Backbone(input_size, num_layers=100, mode='ir', drop_ratio=0.4, affine=False)
|
60 |
+
return model
|
61 |
+
|
62 |
+
|
63 |
+
def IR_152(input_size):
|
64 |
+
"""Constructs a ir-152 model."""
|
65 |
+
model = Backbone(input_size, num_layers=152, mode='ir', drop_ratio=0.4, affine=False)
|
66 |
+
return model
|
67 |
+
|
68 |
+
|
69 |
+
def IR_SE_50(input_size):
|
70 |
+
"""Constructs a ir_se-50 model."""
|
71 |
+
model = Backbone(input_size, num_layers=50, mode='ir_se', drop_ratio=0.4, affine=False)
|
72 |
+
return model
|
73 |
+
|
74 |
+
|
75 |
+
def IR_SE_101(input_size):
|
76 |
+
"""Constructs a ir_se-101 model."""
|
77 |
+
model = Backbone(input_size, num_layers=100, mode='ir_se', drop_ratio=0.4, affine=False)
|
78 |
+
return model
|
79 |
+
|
80 |
+
|
81 |
+
def IR_SE_152(input_size):
|
82 |
+
"""Constructs a ir_se-152 model."""
|
83 |
+
model = Backbone(input_size, num_layers=152, mode='ir_se', drop_ratio=0.4, affine=False)
|
84 |
+
return model
|
delta_edit/models/encoders/psp_encoders.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import Conv2d, BatchNorm2d, PReLU, Sequential, Module
|
7 |
+
|
8 |
+
from models.encoders.helpers import get_blocks, bottleneck_IR, bottleneck_IR_SE, _upsample_add
|
9 |
+
from models.stylegan2.model import EqualLinear
|
10 |
+
|
11 |
+
|
12 |
+
class ProgressiveStage(Enum):
|
13 |
+
WTraining = 0
|
14 |
+
Delta1Training = 1
|
15 |
+
Delta2Training = 2
|
16 |
+
Delta3Training = 3
|
17 |
+
Delta4Training = 4
|
18 |
+
Delta5Training = 5
|
19 |
+
Delta6Training = 6
|
20 |
+
Delta7Training = 7
|
21 |
+
Delta8Training = 8
|
22 |
+
Delta9Training = 9
|
23 |
+
Delta10Training = 10
|
24 |
+
Delta11Training = 11
|
25 |
+
Delta12Training = 12
|
26 |
+
Delta13Training = 13
|
27 |
+
Delta14Training = 14
|
28 |
+
Delta15Training = 15
|
29 |
+
Delta16Training = 16
|
30 |
+
Delta17Training = 17
|
31 |
+
Inference = 18
|
32 |
+
|
33 |
+
|
34 |
+
class GradualStyleBlock(Module):
|
35 |
+
def __init__(self, in_c, out_c, spatial):
|
36 |
+
super(GradualStyleBlock, self).__init__()
|
37 |
+
self.out_c = out_c
|
38 |
+
self.spatial = spatial
|
39 |
+
num_pools = int(np.log2(spatial))
|
40 |
+
modules = []
|
41 |
+
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
|
42 |
+
nn.LeakyReLU()]
|
43 |
+
for i in range(num_pools - 1):
|
44 |
+
modules += [
|
45 |
+
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
|
46 |
+
nn.LeakyReLU()
|
47 |
+
]
|
48 |
+
self.convs = nn.Sequential(*modules)
|
49 |
+
self.linear = EqualLinear(out_c, out_c, lr_mul=1)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = self.convs(x)
|
53 |
+
x = x.view(-1, self.out_c)
|
54 |
+
x = self.linear(x)
|
55 |
+
return x
|
56 |
+
|
57 |
+
|
58 |
+
class GradualStyleEncoder(Module):
|
59 |
+
def __init__(self, num_layers, mode='ir', opts=None):
|
60 |
+
super(GradualStyleEncoder, self).__init__()
|
61 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
62 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
63 |
+
blocks = get_blocks(num_layers)
|
64 |
+
if mode == 'ir':
|
65 |
+
unit_module = bottleneck_IR
|
66 |
+
elif mode == 'ir_se':
|
67 |
+
unit_module = bottleneck_IR_SE
|
68 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
69 |
+
BatchNorm2d(64),
|
70 |
+
PReLU(64))
|
71 |
+
modules = []
|
72 |
+
for block in blocks:
|
73 |
+
for bottleneck in block:
|
74 |
+
modules.append(unit_module(bottleneck.in_channel,
|
75 |
+
bottleneck.depth,
|
76 |
+
bottleneck.stride))
|
77 |
+
self.body = Sequential(*modules)
|
78 |
+
|
79 |
+
self.styles = nn.ModuleList()
|
80 |
+
log_size = int(math.log(opts.stylegan_size, 2))
|
81 |
+
self.style_count = 2 * log_size - 2
|
82 |
+
self.coarse_ind = 3
|
83 |
+
self.middle_ind = 7
|
84 |
+
for i in range(self.style_count):
|
85 |
+
if i < self.coarse_ind:
|
86 |
+
style = GradualStyleBlock(512, 512, 16)
|
87 |
+
elif i < self.middle_ind:
|
88 |
+
style = GradualStyleBlock(512, 512, 32)
|
89 |
+
else:
|
90 |
+
style = GradualStyleBlock(512, 512, 64)
|
91 |
+
self.styles.append(style)
|
92 |
+
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
|
93 |
+
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
x = self.input_layer(x)
|
97 |
+
|
98 |
+
latents = []
|
99 |
+
modulelist = list(self.body._modules.values())
|
100 |
+
for i, l in enumerate(modulelist):
|
101 |
+
x = l(x)
|
102 |
+
if i == 6:
|
103 |
+
c1 = x
|
104 |
+
elif i == 20:
|
105 |
+
c2 = x
|
106 |
+
elif i == 23:
|
107 |
+
c3 = x
|
108 |
+
|
109 |
+
for j in range(self.coarse_ind):
|
110 |
+
latents.append(self.styles[j](c3))
|
111 |
+
|
112 |
+
p2 = _upsample_add(c3, self.latlayer1(c2))
|
113 |
+
for j in range(self.coarse_ind, self.middle_ind):
|
114 |
+
latents.append(self.styles[j](p2))
|
115 |
+
|
116 |
+
p1 = _upsample_add(p2, self.latlayer2(c1))
|
117 |
+
for j in range(self.middle_ind, self.style_count):
|
118 |
+
latents.append(self.styles[j](p1))
|
119 |
+
|
120 |
+
out = torch.stack(latents, dim=1)
|
121 |
+
return out
|
122 |
+
|
123 |
+
|
124 |
+
class Encoder4Editing(Module):
|
125 |
+
def __init__(self, num_layers, stylegan_size, mode='ir'):
|
126 |
+
super(Encoder4Editing, self).__init__()
|
127 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
128 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
129 |
+
blocks = get_blocks(num_layers)
|
130 |
+
if mode == 'ir':
|
131 |
+
unit_module = bottleneck_IR
|
132 |
+
elif mode == 'ir_se':
|
133 |
+
unit_module = bottleneck_IR_SE
|
134 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
135 |
+
BatchNorm2d(64),
|
136 |
+
PReLU(64))
|
137 |
+
modules = []
|
138 |
+
for block in blocks:
|
139 |
+
for bottleneck in block:
|
140 |
+
modules.append(unit_module(bottleneck.in_channel,
|
141 |
+
bottleneck.depth,
|
142 |
+
bottleneck.stride))
|
143 |
+
self.body = Sequential(*modules)
|
144 |
+
|
145 |
+
self.styles = nn.ModuleList()
|
146 |
+
log_size = int(math.log(stylegan_size, 2))
|
147 |
+
self.style_count = 2 * log_size - 2
|
148 |
+
self.coarse_ind = 3
|
149 |
+
self.middle_ind = 7
|
150 |
+
|
151 |
+
for i in range(self.style_count):
|
152 |
+
if i < self.coarse_ind:
|
153 |
+
style = GradualStyleBlock(512, 512, 16)
|
154 |
+
elif i < self.middle_ind:
|
155 |
+
style = GradualStyleBlock(512, 512, 32)
|
156 |
+
else:
|
157 |
+
style = GradualStyleBlock(512, 512, 64)
|
158 |
+
self.styles.append(style)
|
159 |
+
|
160 |
+
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
|
161 |
+
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
|
162 |
+
|
163 |
+
self.progressive_stage = ProgressiveStage.Inference
|
164 |
+
|
165 |
+
def get_deltas_starting_dimensions(self):
|
166 |
+
''' Get a list of the initial dimension of every delta from which it is applied '''
|
167 |
+
return list(range(self.style_count)) # Each dimension has a delta applied to it
|
168 |
+
|
169 |
+
def set_progressive_stage(self, new_stage: ProgressiveStage):
|
170 |
+
self.progressive_stage = new_stage
|
171 |
+
print('Changed progressive stage to: ', new_stage)
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
x = self.input_layer(x)
|
175 |
+
|
176 |
+
modulelist = list(self.body._modules.values())
|
177 |
+
for i, l in enumerate(modulelist):
|
178 |
+
x = l(x)
|
179 |
+
if i == 6:
|
180 |
+
c1 = x
|
181 |
+
elif i == 20:
|
182 |
+
c2 = x
|
183 |
+
elif i == 23:
|
184 |
+
c3 = x
|
185 |
+
|
186 |
+
# Infer main W and duplicate it
|
187 |
+
w0 = self.styles[0](c3)
|
188 |
+
w = w0.repeat(self.style_count, 1, 1).permute(1, 0, 2)
|
189 |
+
stage = self.progressive_stage.value
|
190 |
+
features = c3
|
191 |
+
for i in range(1, min(stage + 1, self.style_count)): # Infer additional deltas
|
192 |
+
if i == self.coarse_ind:
|
193 |
+
p2 = _upsample_add(c3, self.latlayer1(c2)) # FPN's middle features
|
194 |
+
features = p2
|
195 |
+
elif i == self.middle_ind:
|
196 |
+
p1 = _upsample_add(p2, self.latlayer2(c1)) # FPN's fine features
|
197 |
+
features = p1
|
198 |
+
delta_i = self.styles[i](features)
|
199 |
+
w[:, i] += delta_i
|
200 |
+
return w
|
201 |
+
|
202 |
+
|
203 |
+
class BackboneEncoderUsingLastLayerIntoW(Module):
|
204 |
+
def __init__(self, num_layers, mode='ir', opts=None):
|
205 |
+
super(BackboneEncoderUsingLastLayerIntoW, self).__init__()
|
206 |
+
print('Using BackboneEncoderUsingLastLayerIntoW')
|
207 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
208 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
209 |
+
blocks = get_blocks(num_layers)
|
210 |
+
if mode == 'ir':
|
211 |
+
unit_module = bottleneck_IR
|
212 |
+
elif mode == 'ir_se':
|
213 |
+
unit_module = bottleneck_IR_SE
|
214 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
215 |
+
BatchNorm2d(64),
|
216 |
+
PReLU(64))
|
217 |
+
self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
|
218 |
+
self.linear = EqualLinear(512, 512, lr_mul=1)
|
219 |
+
modules = []
|
220 |
+
for block in blocks:
|
221 |
+
for bottleneck in block:
|
222 |
+
modules.append(unit_module(bottleneck.in_channel,
|
223 |
+
bottleneck.depth,
|
224 |
+
bottleneck.stride))
|
225 |
+
self.body = Sequential(*modules)
|
226 |
+
log_size = int(math.log(opts.stylegan_size, 2))
|
227 |
+
self.style_count = 2 * log_size - 2
|
228 |
+
|
229 |
+
def forward(self, x):
|
230 |
+
x = self.input_layer(x)
|
231 |
+
x = self.body(x)
|
232 |
+
x = self.output_pool(x)
|
233 |
+
x = x.view(-1, 512)
|
234 |
+
x = self.linear(x)
|
235 |
+
return x.repeat(self.style_count, 1, 1).permute(1, 0, 2)
|
delta_edit/models/stylegan2/__init__.py
ADDED
File without changes
|
delta_edit/models/stylegan2/model.py
ADDED
@@ -0,0 +1,673 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from models.stylegan2.op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
|
9 |
+
|
10 |
+
class PixelNorm(nn.Module):
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
def forward(self, input):
|
15 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
16 |
+
|
17 |
+
|
18 |
+
def make_kernel(k):
|
19 |
+
k = torch.tensor(k, dtype=torch.float32)
|
20 |
+
|
21 |
+
if k.ndim == 1:
|
22 |
+
k = k[None, :] * k[:, None]
|
23 |
+
|
24 |
+
k /= k.sum()
|
25 |
+
|
26 |
+
return k
|
27 |
+
|
28 |
+
|
29 |
+
class Upsample(nn.Module):
|
30 |
+
def __init__(self, kernel, factor=2):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.factor = factor
|
34 |
+
kernel = make_kernel(kernel) * (factor ** 2)
|
35 |
+
self.register_buffer('kernel', kernel)
|
36 |
+
|
37 |
+
p = kernel.shape[0] - factor
|
38 |
+
|
39 |
+
pad0 = (p + 1) // 2 + factor - 1
|
40 |
+
pad1 = p // 2
|
41 |
+
|
42 |
+
self.pad = (pad0, pad1)
|
43 |
+
|
44 |
+
def forward(self, input):
|
45 |
+
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
|
46 |
+
|
47 |
+
return out
|
48 |
+
|
49 |
+
|
50 |
+
class Downsample(nn.Module):
|
51 |
+
def __init__(self, kernel, factor=2):
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
+
self.factor = factor
|
55 |
+
kernel = make_kernel(kernel)
|
56 |
+
self.register_buffer('kernel', kernel)
|
57 |
+
|
58 |
+
p = kernel.shape[0] - factor
|
59 |
+
|
60 |
+
pad0 = (p + 1) // 2
|
61 |
+
pad1 = p // 2
|
62 |
+
|
63 |
+
self.pad = (pad0, pad1)
|
64 |
+
|
65 |
+
def forward(self, input):
|
66 |
+
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
|
67 |
+
|
68 |
+
return out
|
69 |
+
|
70 |
+
|
71 |
+
class Blur(nn.Module):
|
72 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
kernel = make_kernel(kernel)
|
76 |
+
|
77 |
+
if upsample_factor > 1:
|
78 |
+
kernel = kernel * (upsample_factor ** 2)
|
79 |
+
|
80 |
+
self.register_buffer('kernel', kernel)
|
81 |
+
|
82 |
+
self.pad = pad
|
83 |
+
|
84 |
+
def forward(self, input):
|
85 |
+
out = upfirdn2d(input, self.kernel, pad=self.pad)
|
86 |
+
|
87 |
+
return out
|
88 |
+
|
89 |
+
|
90 |
+
class EqualConv2d(nn.Module):
|
91 |
+
def __init__(
|
92 |
+
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
self.weight = nn.Parameter(
|
97 |
+
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
98 |
+
)
|
99 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
100 |
+
|
101 |
+
self.stride = stride
|
102 |
+
self.padding = padding
|
103 |
+
|
104 |
+
if bias:
|
105 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
106 |
+
|
107 |
+
else:
|
108 |
+
self.bias = None
|
109 |
+
|
110 |
+
def forward(self, input):
|
111 |
+
out = F.conv2d(
|
112 |
+
input,
|
113 |
+
self.weight * self.scale,
|
114 |
+
bias=self.bias,
|
115 |
+
stride=self.stride,
|
116 |
+
padding=self.padding,
|
117 |
+
)
|
118 |
+
|
119 |
+
return out
|
120 |
+
|
121 |
+
def __repr__(self):
|
122 |
+
return (
|
123 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
124 |
+
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
125 |
+
)
|
126 |
+
|
127 |
+
|
128 |
+
class EqualLinear(nn.Module):
|
129 |
+
def __init__(
|
130 |
+
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
|
131 |
+
):
|
132 |
+
super().__init__()
|
133 |
+
|
134 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
135 |
+
|
136 |
+
if bias:
|
137 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
138 |
+
|
139 |
+
else:
|
140 |
+
self.bias = None
|
141 |
+
|
142 |
+
self.activation = activation
|
143 |
+
|
144 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
145 |
+
self.lr_mul = lr_mul
|
146 |
+
|
147 |
+
def forward(self, input):
|
148 |
+
if self.activation:
|
149 |
+
out = F.linear(input, self.weight * self.scale)
|
150 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
151 |
+
|
152 |
+
else:
|
153 |
+
out = F.linear(
|
154 |
+
input, self.weight * self.scale, bias=self.bias * self.lr_mul
|
155 |
+
)
|
156 |
+
|
157 |
+
return out
|
158 |
+
|
159 |
+
def __repr__(self):
|
160 |
+
return (
|
161 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
class ScaledLeakyReLU(nn.Module):
|
166 |
+
def __init__(self, negative_slope=0.2):
|
167 |
+
super().__init__()
|
168 |
+
|
169 |
+
self.negative_slope = negative_slope
|
170 |
+
|
171 |
+
def forward(self, input):
|
172 |
+
out = F.leaky_relu(input, negative_slope=self.negative_slope)
|
173 |
+
|
174 |
+
return out * math.sqrt(2)
|
175 |
+
|
176 |
+
|
177 |
+
class ModulatedConv2d(nn.Module):
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
in_channel,
|
181 |
+
out_channel,
|
182 |
+
kernel_size,
|
183 |
+
style_dim,
|
184 |
+
demodulate=True,
|
185 |
+
upsample=False,
|
186 |
+
downsample=False,
|
187 |
+
blur_kernel=[1, 3, 3, 1],
|
188 |
+
):
|
189 |
+
super().__init__()
|
190 |
+
|
191 |
+
self.eps = 1e-8
|
192 |
+
self.kernel_size = kernel_size
|
193 |
+
self.in_channel = in_channel
|
194 |
+
self.out_channel = out_channel
|
195 |
+
self.upsample = upsample
|
196 |
+
self.downsample = downsample
|
197 |
+
|
198 |
+
if upsample:
|
199 |
+
factor = 2
|
200 |
+
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
201 |
+
pad0 = (p + 1) // 2 + factor - 1
|
202 |
+
pad1 = p // 2 + 1
|
203 |
+
|
204 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
|
205 |
+
|
206 |
+
if downsample:
|
207 |
+
factor = 2
|
208 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
209 |
+
pad0 = (p + 1) // 2
|
210 |
+
pad1 = p // 2
|
211 |
+
|
212 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
|
213 |
+
|
214 |
+
fan_in = in_channel * kernel_size ** 2
|
215 |
+
self.scale = 1 / math.sqrt(fan_in)
|
216 |
+
self.padding = kernel_size // 2
|
217 |
+
|
218 |
+
self.weight = nn.Parameter(
|
219 |
+
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
220 |
+
)
|
221 |
+
|
222 |
+
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
223 |
+
|
224 |
+
self.demodulate = demodulate
|
225 |
+
|
226 |
+
def __repr__(self):
|
227 |
+
return (
|
228 |
+
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
|
229 |
+
f'upsample={self.upsample}, downsample={self.downsample})'
|
230 |
+
)
|
231 |
+
|
232 |
+
def forward(self, input, style):
|
233 |
+
batch, in_channel, height, width = input.shape
|
234 |
+
|
235 |
+
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
|
236 |
+
weight = self.scale * self.weight * style
|
237 |
+
|
238 |
+
if self.demodulate:
|
239 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
240 |
+
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
241 |
+
|
242 |
+
weight = weight.view(
|
243 |
+
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
244 |
+
)
|
245 |
+
|
246 |
+
if self.upsample:
|
247 |
+
input = input.view(1, batch * in_channel, height, width)
|
248 |
+
weight = weight.view(
|
249 |
+
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
250 |
+
)
|
251 |
+
weight = weight.transpose(1, 2).reshape(
|
252 |
+
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
253 |
+
)
|
254 |
+
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
|
255 |
+
_, _, height, width = out.shape
|
256 |
+
out = out.view(batch, self.out_channel, height, width)
|
257 |
+
out = self.blur(out)
|
258 |
+
|
259 |
+
elif self.downsample:
|
260 |
+
input = self.blur(input)
|
261 |
+
_, _, height, width = input.shape
|
262 |
+
input = input.view(1, batch * in_channel, height, width)
|
263 |
+
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
|
264 |
+
_, _, height, width = out.shape
|
265 |
+
out = out.view(batch, self.out_channel, height, width)
|
266 |
+
|
267 |
+
else:
|
268 |
+
input = input.view(1, batch * in_channel, height, width)
|
269 |
+
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
|
270 |
+
_, _, height, width = out.shape
|
271 |
+
out = out.view(batch, self.out_channel, height, width)
|
272 |
+
|
273 |
+
return out
|
274 |
+
|
275 |
+
|
276 |
+
class NoiseInjection(nn.Module):
|
277 |
+
def __init__(self):
|
278 |
+
super().__init__()
|
279 |
+
|
280 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
281 |
+
|
282 |
+
def forward(self, image, noise=None):
|
283 |
+
if noise is None:
|
284 |
+
batch, _, height, width = image.shape
|
285 |
+
noise = image.new_empty(batch, 1, height, width).normal_()
|
286 |
+
|
287 |
+
return image + self.weight * noise
|
288 |
+
|
289 |
+
|
290 |
+
class ConstantInput(nn.Module):
|
291 |
+
def __init__(self, channel, size=4):
|
292 |
+
super().__init__()
|
293 |
+
|
294 |
+
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
295 |
+
|
296 |
+
def forward(self, input):
|
297 |
+
batch = input.shape[0]
|
298 |
+
out = self.input.repeat(batch, 1, 1, 1)
|
299 |
+
|
300 |
+
return out
|
301 |
+
|
302 |
+
|
303 |
+
class StyledConv(nn.Module):
|
304 |
+
def __init__(
|
305 |
+
self,
|
306 |
+
in_channel,
|
307 |
+
out_channel,
|
308 |
+
kernel_size,
|
309 |
+
style_dim,
|
310 |
+
upsample=False,
|
311 |
+
blur_kernel=[1, 3, 3, 1],
|
312 |
+
demodulate=True,
|
313 |
+
):
|
314 |
+
super().__init__()
|
315 |
+
|
316 |
+
self.conv = ModulatedConv2d(
|
317 |
+
in_channel,
|
318 |
+
out_channel,
|
319 |
+
kernel_size,
|
320 |
+
style_dim,
|
321 |
+
upsample=upsample,
|
322 |
+
blur_kernel=blur_kernel,
|
323 |
+
demodulate=demodulate,
|
324 |
+
)
|
325 |
+
|
326 |
+
self.noise = NoiseInjection()
|
327 |
+
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
328 |
+
# self.activate = ScaledLeakyReLU(0.2)
|
329 |
+
self.activate = FusedLeakyReLU(out_channel)
|
330 |
+
|
331 |
+
def forward(self, input, style, noise=None):
|
332 |
+
out = self.conv(input, style)
|
333 |
+
out = self.noise(out, noise=noise)
|
334 |
+
# out = out + self.bias
|
335 |
+
out = self.activate(out)
|
336 |
+
|
337 |
+
return out
|
338 |
+
|
339 |
+
|
340 |
+
class ToRGB(nn.Module):
|
341 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
342 |
+
super().__init__()
|
343 |
+
|
344 |
+
if upsample:
|
345 |
+
self.upsample = Upsample(blur_kernel)
|
346 |
+
|
347 |
+
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
|
348 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
349 |
+
|
350 |
+
def forward(self, input, style, skip=None):
|
351 |
+
out = self.conv(input, style)
|
352 |
+
out = out + self.bias
|
353 |
+
|
354 |
+
if skip is not None:
|
355 |
+
skip = self.upsample(skip)
|
356 |
+
|
357 |
+
out = out + skip
|
358 |
+
|
359 |
+
return out
|
360 |
+
|
361 |
+
|
362 |
+
class Generator(nn.Module):
|
363 |
+
def __init__(
|
364 |
+
self,
|
365 |
+
size,
|
366 |
+
style_dim,
|
367 |
+
n_mlp,
|
368 |
+
channel_multiplier=2,
|
369 |
+
blur_kernel=[1, 3, 3, 1],
|
370 |
+
lr_mlp=0.01,
|
371 |
+
):
|
372 |
+
super().__init__()
|
373 |
+
|
374 |
+
self.size = size
|
375 |
+
|
376 |
+
self.style_dim = style_dim
|
377 |
+
|
378 |
+
layers = [PixelNorm()]
|
379 |
+
|
380 |
+
for i in range(n_mlp):
|
381 |
+
layers.append(
|
382 |
+
EqualLinear(
|
383 |
+
style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
|
384 |
+
)
|
385 |
+
)
|
386 |
+
|
387 |
+
self.style = nn.Sequential(*layers)
|
388 |
+
|
389 |
+
self.channels = {
|
390 |
+
4: 512,
|
391 |
+
8: 512,
|
392 |
+
16: 512,
|
393 |
+
32: 512,
|
394 |
+
64: 256 * channel_multiplier,
|
395 |
+
128: 128 * channel_multiplier,
|
396 |
+
256: 64 * channel_multiplier,
|
397 |
+
512: 32 * channel_multiplier,
|
398 |
+
1024: 16 * channel_multiplier,
|
399 |
+
}
|
400 |
+
|
401 |
+
self.input = ConstantInput(self.channels[4])
|
402 |
+
self.conv1 = StyledConv(
|
403 |
+
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
|
404 |
+
)
|
405 |
+
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
|
406 |
+
|
407 |
+
self.log_size = int(math.log(size, 2))
|
408 |
+
self.num_layers = (self.log_size - 2) * 2 + 1
|
409 |
+
|
410 |
+
self.convs = nn.ModuleList()
|
411 |
+
self.upsamples = nn.ModuleList()
|
412 |
+
self.to_rgbs = nn.ModuleList()
|
413 |
+
self.noises = nn.Module()
|
414 |
+
|
415 |
+
in_channel = self.channels[4]
|
416 |
+
|
417 |
+
for layer_idx in range(self.num_layers):
|
418 |
+
res = (layer_idx + 5) // 2
|
419 |
+
shape = [1, 1, 2 ** res, 2 ** res]
|
420 |
+
self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape))
|
421 |
+
|
422 |
+
for i in range(3, self.log_size + 1):
|
423 |
+
out_channel = self.channels[2 ** i]
|
424 |
+
|
425 |
+
self.convs.append(
|
426 |
+
StyledConv(
|
427 |
+
in_channel,
|
428 |
+
out_channel,
|
429 |
+
3,
|
430 |
+
style_dim,
|
431 |
+
upsample=True,
|
432 |
+
blur_kernel=blur_kernel,
|
433 |
+
)
|
434 |
+
)
|
435 |
+
|
436 |
+
self.convs.append(
|
437 |
+
StyledConv(
|
438 |
+
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
|
439 |
+
)
|
440 |
+
)
|
441 |
+
|
442 |
+
self.to_rgbs.append(ToRGB(out_channel, style_dim))
|
443 |
+
|
444 |
+
in_channel = out_channel
|
445 |
+
|
446 |
+
self.n_latent = self.log_size * 2 - 2
|
447 |
+
|
448 |
+
def make_noise(self):
|
449 |
+
device = self.input.input.device
|
450 |
+
|
451 |
+
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
452 |
+
|
453 |
+
for i in range(3, self.log_size + 1):
|
454 |
+
for _ in range(2):
|
455 |
+
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
456 |
+
|
457 |
+
return noises
|
458 |
+
|
459 |
+
def mean_latent(self, n_latent):
|
460 |
+
latent_in = torch.randn(
|
461 |
+
n_latent, self.style_dim, device=self.input.input.device
|
462 |
+
)
|
463 |
+
latent = self.style(latent_in).mean(0, keepdim=True)
|
464 |
+
|
465 |
+
return latent
|
466 |
+
|
467 |
+
def get_latent(self, input):
|
468 |
+
return self.style(input)
|
469 |
+
|
470 |
+
def forward(
|
471 |
+
self,
|
472 |
+
styles,
|
473 |
+
return_latents=False,
|
474 |
+
inject_index=None,
|
475 |
+
truncation=1,
|
476 |
+
truncation_latent=None,
|
477 |
+
input_is_latent=False,
|
478 |
+
noise=None,
|
479 |
+
randomize_noise=True,
|
480 |
+
):
|
481 |
+
if not input_is_latent:
|
482 |
+
styles = [self.style(s) for s in styles]
|
483 |
+
|
484 |
+
if noise is None:
|
485 |
+
if randomize_noise:
|
486 |
+
noise = [None] * self.num_layers
|
487 |
+
else:
|
488 |
+
noise = [
|
489 |
+
getattr(self.noises, f'noise_{i}') for i in range(self.num_layers)
|
490 |
+
]
|
491 |
+
|
492 |
+
if truncation < 1:
|
493 |
+
style_t = []
|
494 |
+
|
495 |
+
for style in styles:
|
496 |
+
style_t.append(
|
497 |
+
truncation_latent + truncation * (style - truncation_latent)
|
498 |
+
)
|
499 |
+
|
500 |
+
styles = style_t
|
501 |
+
|
502 |
+
if len(styles) < 2:
|
503 |
+
inject_index = self.n_latent
|
504 |
+
|
505 |
+
if styles[0].ndim < 3:
|
506 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
507 |
+
|
508 |
+
else:
|
509 |
+
latent = styles[0]
|
510 |
+
|
511 |
+
else:
|
512 |
+
if inject_index is None:
|
513 |
+
inject_index = random.randint(1, self.n_latent - 1)
|
514 |
+
|
515 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
516 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
517 |
+
|
518 |
+
latent = torch.cat([latent, latent2], 1)
|
519 |
+
|
520 |
+
out = self.input(latent)
|
521 |
+
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
522 |
+
|
523 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
524 |
+
|
525 |
+
i = 1
|
526 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
527 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
528 |
+
):
|
529 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
530 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
531 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
532 |
+
|
533 |
+
i += 2
|
534 |
+
|
535 |
+
image = skip
|
536 |
+
|
537 |
+
if return_latents:
|
538 |
+
return image, latent
|
539 |
+
|
540 |
+
else:
|
541 |
+
return image, None
|
542 |
+
|
543 |
+
|
544 |
+
class ConvLayer(nn.Sequential):
|
545 |
+
def __init__(
|
546 |
+
self,
|
547 |
+
in_channel,
|
548 |
+
out_channel,
|
549 |
+
kernel_size,
|
550 |
+
downsample=False,
|
551 |
+
blur_kernel=[1, 3, 3, 1],
|
552 |
+
bias=True,
|
553 |
+
activate=True,
|
554 |
+
):
|
555 |
+
layers = []
|
556 |
+
|
557 |
+
if downsample:
|
558 |
+
factor = 2
|
559 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
560 |
+
pad0 = (p + 1) // 2
|
561 |
+
pad1 = p // 2
|
562 |
+
|
563 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
564 |
+
|
565 |
+
stride = 2
|
566 |
+
self.padding = 0
|
567 |
+
|
568 |
+
else:
|
569 |
+
stride = 1
|
570 |
+
self.padding = kernel_size // 2
|
571 |
+
|
572 |
+
layers.append(
|
573 |
+
EqualConv2d(
|
574 |
+
in_channel,
|
575 |
+
out_channel,
|
576 |
+
kernel_size,
|
577 |
+
padding=self.padding,
|
578 |
+
stride=stride,
|
579 |
+
bias=bias and not activate,
|
580 |
+
)
|
581 |
+
)
|
582 |
+
|
583 |
+
if activate:
|
584 |
+
if bias:
|
585 |
+
layers.append(FusedLeakyReLU(out_channel))
|
586 |
+
|
587 |
+
else:
|
588 |
+
layers.append(ScaledLeakyReLU(0.2))
|
589 |
+
|
590 |
+
super().__init__(*layers)
|
591 |
+
|
592 |
+
|
593 |
+
class ResBlock(nn.Module):
|
594 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
595 |
+
super().__init__()
|
596 |
+
|
597 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
598 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
599 |
+
|
600 |
+
self.skip = ConvLayer(
|
601 |
+
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
|
602 |
+
)
|
603 |
+
|
604 |
+
def forward(self, input):
|
605 |
+
out = self.conv1(input)
|
606 |
+
out = self.conv2(out)
|
607 |
+
|
608 |
+
skip = self.skip(input)
|
609 |
+
out = (out + skip) / math.sqrt(2)
|
610 |
+
|
611 |
+
return out
|
612 |
+
|
613 |
+
|
614 |
+
class Discriminator(nn.Module):
|
615 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
616 |
+
super().__init__()
|
617 |
+
|
618 |
+
channels = {
|
619 |
+
4: 512,
|
620 |
+
8: 512,
|
621 |
+
16: 512,
|
622 |
+
32: 512,
|
623 |
+
64: 256 * channel_multiplier,
|
624 |
+
128: 128 * channel_multiplier,
|
625 |
+
256: 64 * channel_multiplier,
|
626 |
+
512: 32 * channel_multiplier,
|
627 |
+
1024: 16 * channel_multiplier,
|
628 |
+
}
|
629 |
+
|
630 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
631 |
+
|
632 |
+
log_size = int(math.log(size, 2))
|
633 |
+
|
634 |
+
in_channel = channels[size]
|
635 |
+
|
636 |
+
for i in range(log_size, 2, -1):
|
637 |
+
out_channel = channels[2 ** (i - 1)]
|
638 |
+
|
639 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
640 |
+
|
641 |
+
in_channel = out_channel
|
642 |
+
|
643 |
+
self.convs = nn.Sequential(*convs)
|
644 |
+
|
645 |
+
self.stddev_group = 4
|
646 |
+
self.stddev_feat = 1
|
647 |
+
|
648 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
649 |
+
self.final_linear = nn.Sequential(
|
650 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
|
651 |
+
EqualLinear(channels[4], 1),
|
652 |
+
)
|
653 |
+
|
654 |
+
def forward(self, input):
|
655 |
+
out = self.convs(input)
|
656 |
+
|
657 |
+
batch, channel, height, width = out.shape
|
658 |
+
group = min(batch, self.stddev_group)
|
659 |
+
stddev = out.view(
|
660 |
+
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
661 |
+
)
|
662 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
663 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
664 |
+
stddev = stddev.repeat(group, 1, height, width)
|
665 |
+
out = torch.cat([out, stddev], 1)
|
666 |
+
|
667 |
+
out = self.final_conv(out)
|
668 |
+
|
669 |
+
out = out.view(batch, -1)
|
670 |
+
out = self.final_linear(out)
|
671 |
+
|
672 |
+
return out
|
673 |
+
|
delta_edit/models/stylegan2/npy_ffhq/fs3.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7260766e6d3d0a0298bc917f57550bed5e0684524b6ee38667e63f0926ac84c1
|
3 |
+
size 6193280
|
delta_edit/models/stylegan2/op/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
2 |
+
from .upfirdn2d import upfirdn2d
|
delta_edit/models/stylegan2/op/fused_act.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
module_path = os.path.dirname(__file__)
|
8 |
+
|
9 |
+
class FusedLeakyReLU(nn.Module):
|
10 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
11 |
+
super().__init__()
|
12 |
+
|
13 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
14 |
+
self.negative_slope = negative_slope
|
15 |
+
self.scale = scale
|
16 |
+
|
17 |
+
def forward(self, input):
|
18 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
19 |
+
|
20 |
+
|
21 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
22 |
+
rest_dim = [1] * (input.ndim - bias.ndim - 1)
|
23 |
+
input = input.cuda()
|
24 |
+
if input.ndim == 3:
|
25 |
+
return (
|
26 |
+
F.leaky_relu(
|
27 |
+
input + bias.view(1, *rest_dim, bias.shape[0]), negative_slope=negative_slope
|
28 |
+
)
|
29 |
+
* scale
|
30 |
+
)
|
31 |
+
else:
|
32 |
+
return (
|
33 |
+
F.leaky_relu(
|
34 |
+
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope
|
35 |
+
)
|
36 |
+
* scale
|
37 |
+
)
|
38 |
+
|
delta_edit/models/stylegan2/op/upfirdn2d.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
module_path = os.path.dirname(__file__)
|
6 |
+
|
7 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
8 |
+
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
|
9 |
+
|
10 |
+
return out
|
11 |
+
|
12 |
+
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
|
13 |
+
|
14 |
+
_, channel, in_h, in_w = input.shape
|
15 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
16 |
+
|
17 |
+
_, in_h, in_w, minor = input.shape
|
18 |
+
kernel_h, kernel_w = kernel.shape
|
19 |
+
|
20 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
21 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
22 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
23 |
+
|
24 |
+
out = F.pad(
|
25 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
26 |
+
)
|
27 |
+
out = out[
|
28 |
+
:,
|
29 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
30 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
31 |
+
:,
|
32 |
+
]
|
33 |
+
|
34 |
+
out = out.permute(0, 3, 1, 2)
|
35 |
+
out = out.reshape(
|
36 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
37 |
+
)
|
38 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
39 |
+
out = F.conv2d(out, w)
|
40 |
+
out = out.reshape(
|
41 |
+
-1,
|
42 |
+
minor,
|
43 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
44 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
45 |
+
)
|
46 |
+
out = out.permute(0, 2, 3, 1)
|
47 |
+
out = out[:, ::down_y, ::down_x, :]
|
48 |
+
|
49 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
50 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
51 |
+
|
52 |
+
return out.view(-1, channel, out_h, out_w)
|
delta_edit/options/__init__.py
ADDED
File without changes
|
delta_edit/options/test_options.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import ArgumentParser
|
2 |
+
|
3 |
+
class TestOptions:
|
4 |
+
|
5 |
+
def __init__(self):
|
6 |
+
self.parser = ArgumentParser()
|
7 |
+
self.initialize()
|
8 |
+
|
9 |
+
def initialize(self):
|
10 |
+
# arguments for inference script
|
11 |
+
|
12 |
+
self.parser.add_argument('--batch_size', default=1, type=int, help='Batch size for inference')
|
13 |
+
self.parser.add_argument('--workers', default=4, type=int, help='Number of test dataloader workers')
|
14 |
+
|
15 |
+
self.parser.add_argument('--stylegan_weights', default='weights/stylegan2-ffhq-config-f.pt', type=str, help='Path to StyleGAN model weights')
|
16 |
+
self.parser.add_argument('--stylegan_size', default=1024, type=int)
|
17 |
+
|
18 |
+
self.parser.add_argument("--threshold", type=int, default=0.03)
|
19 |
+
self.parser.add_argument("--checkpoint_path", type=str, default='weights/net_face.pth')
|
20 |
+
self.parser.add_argument("--save_dir", type=str, default='output')
|
21 |
+
self.parser.add_argument("--image_dir", type=str, default='./test_imgs')
|
22 |
+
self.parser.add_argument("--num_all", type=int, default=20)
|
23 |
+
|
24 |
+
self.parser.add_argument("--target", type=str, required=True, help='Specify the target attributes to be edited')
|
25 |
+
|
26 |
+
def parse(self):
|
27 |
+
opts = self.parser.parse_args()
|
28 |
+
return opts
|
delta_edit/options/train_options.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import ArgumentParser
|
2 |
+
|
3 |
+
class TrainOptions:
|
4 |
+
|
5 |
+
def __init__(self):
|
6 |
+
self.parser = ArgumentParser()
|
7 |
+
self.initialize()
|
8 |
+
|
9 |
+
def initialize(self):
|
10 |
+
|
11 |
+
self.parser.add_argument('--batch_size', default=64, type=int, help='Batch size for training')
|
12 |
+
self.parser.add_argument('--workers', default=4, type=int, help='Number of train dataloader workers')
|
13 |
+
|
14 |
+
self.parser.add_argument('--learning_rate', default=0.5, type=float, help='Optimizer learning rate')
|
15 |
+
|
16 |
+
self.parser.add_argument('--l2_lambda', default=1.0, type=float, help='l2 loss')
|
17 |
+
self.parser.add_argument('--cos_lambda', default=1.0, type=float, help='cos loss')
|
18 |
+
|
19 |
+
self.parser.add_argument('--checkpoint_path', default='checkpoints', type=str, help='Path to StyleCLIPModel model checkpoint')
|
20 |
+
self.parser.add_argument('--classname', type=str, default='ffhq', help="which specific domain for training")
|
21 |
+
self.parser.add_argument('--print_interval', default=1000, type=int, help='Interval for printing loss values during training')
|
22 |
+
self.parser.add_argument('--val_interval', default=5000, type=int, help='Validation interval')
|
23 |
+
self.parser.add_argument('--save_interval', default=10000, type=int, help='Model checkpoint interval')
|
24 |
+
|
25 |
+
def parse(self):
|
26 |
+
opts = self.parser.parse_args()
|
27 |
+
return opts
|
delta_edit/scripts/__init__.py
ADDED
File without changes
|
delta_edit/scripts/inference.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.append("")
|
5 |
+
sys.path.append("..")
|
6 |
+
|
7 |
+
import copy
|
8 |
+
import clip
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torchvision
|
13 |
+
from torch.utils.data import DataLoader
|
14 |
+
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
from datasets.test_dataset import TestLatentsDataset
|
18 |
+
|
19 |
+
from models.stylegan2.model import Generator
|
20 |
+
from delta_mapper import DeltaMapper
|
21 |
+
|
22 |
+
from options.test_options import TestOptions
|
23 |
+
|
24 |
+
from utils import map_tool
|
25 |
+
from utils import stylespace_util
|
26 |
+
|
27 |
+
|
28 |
+
def GetBoundary(fs3, dt, threshold):
|
29 |
+
tmp = np.dot(fs3, dt)
|
30 |
+
|
31 |
+
select = np.abs(tmp) < threshold
|
32 |
+
return select
|
33 |
+
|
34 |
+
|
35 |
+
def improved_ds(ds, select):
|
36 |
+
ds_imp = copy.copy(ds)
|
37 |
+
ds_imp[select] = 0
|
38 |
+
ds_imp = ds_imp.unsqueeze(0)
|
39 |
+
return ds_imp
|
40 |
+
|
41 |
+
|
42 |
+
def main(opts):
|
43 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
+
|
45 |
+
# Initialize test dataset
|
46 |
+
test_dataset = TestLatentsDataset()
|
47 |
+
test_dataloader = DataLoader(test_dataset,
|
48 |
+
batch_size=opts.batch_size,
|
49 |
+
shuffle=False,
|
50 |
+
num_workers=int(opts.workers),
|
51 |
+
drop_last=True)
|
52 |
+
|
53 |
+
# Initialize generator
|
54 |
+
print('Loading stylegan weights from pretrained!')
|
55 |
+
g_ema = Generator(size=opts.stylegan_size, style_dim=512, n_mlp=8)
|
56 |
+
g_ema_ckpt = torch.load(opts.stylegan_weights)
|
57 |
+
g_ema.load_state_dict(g_ema_ckpt['g_ema'], strict=False)
|
58 |
+
g_ema.eval()
|
59 |
+
g_ema = g_ema.to(device)
|
60 |
+
|
61 |
+
# load relevance matrix Rs
|
62 |
+
fs3 = np.load('./models/stylegan2/npy_ffhq/fs3.npy')
|
63 |
+
np.set_printoptions(suppress=True)
|
64 |
+
|
65 |
+
# Initialze DeltaMapper
|
66 |
+
net = DeltaMapper()
|
67 |
+
net_ckpt = torch.load(opts.checkpoint_path)
|
68 |
+
net.load_state_dict(net_ckpt)
|
69 |
+
net = net.to(device)
|
70 |
+
|
71 |
+
# Load CLIP model
|
72 |
+
clip_model, preprocess = clip.load("ViT-B/32", device=device)
|
73 |
+
|
74 |
+
os.makedirs(opts.save_dir, exist_ok=True)
|
75 |
+
|
76 |
+
neutral = 'face'
|
77 |
+
target_list = opts.target.split(',')
|
78 |
+
# print(target_list)
|
79 |
+
|
80 |
+
dt_list = []
|
81 |
+
select_list = []
|
82 |
+
for target in target_list:
|
83 |
+
classnames = [target, neutral]
|
84 |
+
dt = map_tool.GetDt(classnames, clip_model)
|
85 |
+
select = GetBoundary(fs3, dt, opts.threshold)
|
86 |
+
dt = torch.Tensor(dt).to(device)
|
87 |
+
dt = dt / dt.norm(dim=-1, keepdim=True).float().clamp(min=1e-5)
|
88 |
+
|
89 |
+
select_list.append(select)
|
90 |
+
dt_list.append(dt)
|
91 |
+
|
92 |
+
for bid, batch in enumerate(test_dataloader):
|
93 |
+
if bid == opts.num_all:
|
94 |
+
break
|
95 |
+
|
96 |
+
latent_s, delta_c, latent_w = batch
|
97 |
+
latent_s = latent_s.to(device)
|
98 |
+
delta_c = delta_c.to(device)
|
99 |
+
latent_w = latent_w.to(device)
|
100 |
+
delta_s_list = []
|
101 |
+
|
102 |
+
for i, dt in enumerate(dt_list):
|
103 |
+
delta_c[0, 512:] = dt
|
104 |
+
with torch.no_grad():
|
105 |
+
fake_delta_s = net(latent_s, delta_c)
|
106 |
+
improved_fake_delta_s = improved_ds(fake_delta_s[0], select_list[i])
|
107 |
+
delta_s_list.append(improved_fake_delta_s)
|
108 |
+
|
109 |
+
with torch.no_grad():
|
110 |
+
img_ori = stylespace_util.decoder_validate(g_ema, latent_s, latent_w)
|
111 |
+
|
112 |
+
img_list = [img_ori]
|
113 |
+
for delta_s in delta_s_list:
|
114 |
+
img_gen = stylespace_util.decoder_validate(g_ema, latent_s + delta_s, latent_w)
|
115 |
+
img_list.append(img_gen)
|
116 |
+
img_gen_all = torch.cat(img_list, dim=3)
|
117 |
+
torchvision.utils.save_image(img_gen_all, os.path.join(opts.save_dir, "%04d.jpg" % (bid + 1)),
|
118 |
+
normalize=True, range=(-1, 1))
|
119 |
+
print(f'completed👍! Please check results in {opts.save_dir}')
|
120 |
+
|
121 |
+
|
122 |
+
if __name__ == "__main__":
|
123 |
+
opts = TestOptions().parse()
|
124 |
+
main(opts)
|
delta_edit/scripts/inference_laion.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append("")
|
4 |
+
sys.path.append("..")
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import clip
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torchvision
|
13 |
+
from torch.utils.data import Dataset
|
14 |
+
from torch.utils.data import DataLoader
|
15 |
+
from torchvision import transforms
|
16 |
+
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from tqdm import tqdm
|
19 |
+
|
20 |
+
from datasets.test_dataset import TestLatentsDataset
|
21 |
+
|
22 |
+
from models.stylegan2.model import Generator
|
23 |
+
from models.encoders import psp_encoders
|
24 |
+
from delta_mapper import DeltaMapper
|
25 |
+
|
26 |
+
from options.test_options import TestOptions
|
27 |
+
|
28 |
+
from utils import map_tool
|
29 |
+
from utils import stylespace_util
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def get_keys(d, name):
|
34 |
+
if 'state_dict' in d:
|
35 |
+
d = d['state_dict']
|
36 |
+
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
|
37 |
+
return d_filt
|
38 |
+
|
39 |
+
class Imagedataset(Dataset):
|
40 |
+
def __init__(self,
|
41 |
+
path,
|
42 |
+
image_size=256,
|
43 |
+
split=None):
|
44 |
+
|
45 |
+
self.path = path
|
46 |
+
self.images = os.listdir(path)
|
47 |
+
self.images = [img for img in self.images if img.endswith('jpg')]
|
48 |
+
|
49 |
+
self.image_size = image_size
|
50 |
+
|
51 |
+
self.length = len(self.images)
|
52 |
+
|
53 |
+
transform = [
|
54 |
+
transforms.Resize(image_size),
|
55 |
+
transforms.ToTensor(),
|
56 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
57 |
+
]
|
58 |
+
|
59 |
+
self.transform = transforms.Compose(transform)
|
60 |
+
|
61 |
+
def __len__(self):
|
62 |
+
return self.length
|
63 |
+
|
64 |
+
def __getitem__(self, index):
|
65 |
+
cur_name = self.images[index]
|
66 |
+
img_path = os.path.join(self.path, cur_name)
|
67 |
+
|
68 |
+
img = Image.open(img_path).convert("RGB")
|
69 |
+
|
70 |
+
if self.transform is not None:
|
71 |
+
img = self.transform(img)
|
72 |
+
return img, img_path
|
73 |
+
|
74 |
+
def encoder_latent(G, latent):
|
75 |
+
# an encoder warper for G
|
76 |
+
#styles = [noise]
|
77 |
+
style_space = []
|
78 |
+
|
79 |
+
#styles = [G.style(s) for s in styles]
|
80 |
+
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)]
|
81 |
+
# inject_index = G.n_latent
|
82 |
+
#latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
83 |
+
style_space.append(G.conv1.conv.modulation(latent[:, 0]))
|
84 |
+
|
85 |
+
i = 1
|
86 |
+
for conv1, conv2, to_rgb in zip(
|
87 |
+
G.convs[::2], G.convs[1::2], G.to_rgbs
|
88 |
+
):
|
89 |
+
style_space.append(conv1.conv.modulation(latent[:, i]))
|
90 |
+
style_space.append(conv2.conv.modulation(latent[:, i+1]))
|
91 |
+
i += 2
|
92 |
+
|
93 |
+
return style_space, noise
|
94 |
+
|
95 |
+
def GetBoundary(fs3,dt,threshold):
|
96 |
+
tmp=np.dot(fs3,dt)
|
97 |
+
|
98 |
+
select=np.abs(tmp)<threshold
|
99 |
+
return select
|
100 |
+
|
101 |
+
def improved_ds(ds, select):
|
102 |
+
ds_imp = copy.copy(ds)
|
103 |
+
ds_imp[select] = 0
|
104 |
+
ds_imp = ds_imp.unsqueeze(0)
|
105 |
+
return ds_imp
|
106 |
+
|
107 |
+
def main(opts):
|
108 |
+
|
109 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
110 |
+
|
111 |
+
# NOTE load e4e
|
112 |
+
checkpoint_path = "weights/e4e_ffhq_encode.pt"
|
113 |
+
ckpt_enc = torch.load(checkpoint_path, map_location='cpu') #dict_keys(['state_dict', 'latent_avg', 'opts'])
|
114 |
+
encoder = psp_encoders.Encoder4Editing(50, 1024, 'ir_se')
|
115 |
+
encoder.load_state_dict(get_keys(ckpt_enc, 'encoder'), strict=True)
|
116 |
+
encoder.eval()
|
117 |
+
encoder.to(device)
|
118 |
+
|
119 |
+
#Initialize generator
|
120 |
+
print('Loading stylegan weights from pretrained!')
|
121 |
+
g_ema = Generator(size=opts.stylegan_size, style_dim=512, n_mlp=8)
|
122 |
+
g_ema_ckpt = torch.load(opts.stylegan_weights)
|
123 |
+
g_ema.load_state_dict(g_ema_ckpt['g_ema'], strict=False)
|
124 |
+
g_ema.eval()
|
125 |
+
g_ema = g_ema.to(device)
|
126 |
+
|
127 |
+
#load relevance matrix Rs
|
128 |
+
fs3=np.load('./models/stylegan2/npy_ffhq/fs3.npy')
|
129 |
+
np.set_printoptions(suppress=True)
|
130 |
+
|
131 |
+
#Initialze DeltaMapper
|
132 |
+
net = DeltaMapper()
|
133 |
+
net_ckpt = torch.load(opts.checkpoint_path)
|
134 |
+
net.load_state_dict(net_ckpt)
|
135 |
+
net = net.to(device)
|
136 |
+
|
137 |
+
#Load CLIP model
|
138 |
+
clip_model, preprocess = clip.load("ViT-B/32", device=device)
|
139 |
+
avg_pool = torch.nn.AvgPool2d(kernel_size=256//32)
|
140 |
+
upsample = torch.nn.Upsample(scale_factor=7)
|
141 |
+
|
142 |
+
|
143 |
+
# neutral='face'
|
144 |
+
# target_list = opts.target.split(',')
|
145 |
+
# print(target_list)
|
146 |
+
|
147 |
+
neutral = 'face'
|
148 |
+
attr_file = './editing_attributes.txt'
|
149 |
+
target_list = open(attr_file, 'r').readlines()
|
150 |
+
|
151 |
+
dt_list = []
|
152 |
+
select_list = []
|
153 |
+
dis_list = []
|
154 |
+
prompt_list = []
|
155 |
+
for target in target_list:
|
156 |
+
tar_att, dis, tar_prompt = target.strip().split(',')
|
157 |
+
|
158 |
+
classnames = [tar_att, neutral]
|
159 |
+
dt = map_tool.GetDt(classnames, clip_model)
|
160 |
+
select = GetBoundary(fs3, dt, opts.threshold)
|
161 |
+
dt = torch.Tensor(dt).to(device)
|
162 |
+
dt = dt / dt.norm(dim=-1, keepdim=True).float().clamp(min=1e-5)
|
163 |
+
|
164 |
+
select_list.append(select)
|
165 |
+
dt_list.append(dt)
|
166 |
+
dis_list.append(float(dis))
|
167 |
+
prompt_list.append(tar_prompt)
|
168 |
+
|
169 |
+
id_dirs = os.listdir(opts.image_dir)
|
170 |
+
id_dirs.sort()
|
171 |
+
|
172 |
+
for id_dir in tqdm(id_dirs):
|
173 |
+
test_dataset = Imagedataset(os.path.join(opts.image_dir, id_dir), image_size=256)
|
174 |
+
test_dataloader = DataLoader(test_dataset,
|
175 |
+
batch_size=opts.batch_size,
|
176 |
+
shuffle=False,
|
177 |
+
num_workers=int(opts.workers),
|
178 |
+
drop_last=True)
|
179 |
+
|
180 |
+
for bid, (batch, img_path) in enumerate(test_dataloader):
|
181 |
+
# if bid == opts.num_all:
|
182 |
+
# break
|
183 |
+
image_name = os.path.basename(img_path[0])[:-4]
|
184 |
+
cur_image_save_dir = os.path.join(opts.save_dir, id_dir, image_name)
|
185 |
+
|
186 |
+
if os.path.exists(cur_image_save_dir):
|
187 |
+
continue
|
188 |
+
|
189 |
+
os.makedirs(cur_image_save_dir, exist_ok=True)
|
190 |
+
|
191 |
+
input_img = batch.to(device)
|
192 |
+
with torch.no_grad():
|
193 |
+
latent_w = encoder(input_img)
|
194 |
+
latent_avg = ckpt_enc['latent_avg'].cuda()
|
195 |
+
latent_w = latent_w + latent_avg.repeat(latent_w.shape[0], 1, 1)
|
196 |
+
|
197 |
+
style_space, noise = encoder_latent(g_ema, latent_w)
|
198 |
+
latent_s = torch.cat(style_space, dim=1)
|
199 |
+
|
200 |
+
img_gen_for_clip = upsample(input_img)
|
201 |
+
img_gen_for_clip = avg_pool(img_gen_for_clip)
|
202 |
+
c_latents = clip_model.encode_image(img_gen_for_clip)
|
203 |
+
c_latents = c_latents / c_latents.norm(dim=-1, keepdim=True).float()
|
204 |
+
|
205 |
+
delta_s_list = []
|
206 |
+
|
207 |
+
for i, dt in enumerate(dt_list):
|
208 |
+
delta_c = torch.cat((c_latents, dt.unsqueeze(0)), dim=1)
|
209 |
+
with torch.no_grad():
|
210 |
+
fake_delta_s = net(latent_s, delta_c)
|
211 |
+
improved_fake_delta_s = improved_ds(fake_delta_s[0], select_list[i])
|
212 |
+
delta_s_list.append(improved_fake_delta_s)
|
213 |
+
|
214 |
+
with torch.no_grad():
|
215 |
+
img_ori = stylespace_util.decoder_validate(g_ema, latent_s, latent_w)
|
216 |
+
torchvision.utils.save_image(img_ori, os.path.join(cur_image_save_dir, "face.jpg"), normalize=True, value_range=(-1, 1))
|
217 |
+
# torchvision.utils.save_image(img_ori, os.path.join(cur_image_save_dir, "face.jpg"), normalize=True, range=(-1, 1))
|
218 |
+
|
219 |
+
for ii, delta_s in enumerate(delta_s_list):
|
220 |
+
img_gen = stylespace_util.decoder_validate(g_ema, latent_s + delta_s * dis_list[ii], latent_w)
|
221 |
+
torchvision.utils.save_image(img_gen, os.path.join(cur_image_save_dir, "{}.jpg".format(prompt_list[ii])), normalize=True, value_range=(-1, 1))
|
222 |
+
# torchvision.utils.save_image(img_gen, os.path.join(cur_image_save_dir, "{}.jpg".format(prompt_list[ii])), normalize=True, range=(-1, 1))
|
223 |
+
# img_list.append(img_gen)
|
224 |
+
# img_gen_all = torch.cat(img_list, dim=3)
|
225 |
+
# torchvision.utils.save_image(img_gen_all, os.path.join(opts.save_dir, "%04d.jpg" %(bid+1)), normalize=True, range=(-1, 1))
|
226 |
+
print(f'completed👍! Please check results in {opts.save_dir}')
|
227 |
+
|
228 |
+
if __name__ == "__main__":
|
229 |
+
opts = TestOptions().parse()
|
230 |
+
main(opts)
|
delta_edit/scripts/inference_real.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.append("")
|
5 |
+
sys.path.append("..")
|
6 |
+
|
7 |
+
import copy
|
8 |
+
import clip
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torchvision
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
from torch.utils.data import DataLoader
|
16 |
+
from torchvision import transforms
|
17 |
+
|
18 |
+
import torch.nn.functional as F
|
19 |
+
|
20 |
+
from datasets.test_dataset import TestLatentsDataset
|
21 |
+
|
22 |
+
from models.stylegan2.model import Generator
|
23 |
+
from models.encoders import psp_encoders
|
24 |
+
from delta_mapper import DeltaMapper
|
25 |
+
|
26 |
+
from options.test_options import TestOptions
|
27 |
+
|
28 |
+
from utils import map_tool
|
29 |
+
from utils import stylespace_util
|
30 |
+
|
31 |
+
|
32 |
+
def get_keys(d, name):
|
33 |
+
if 'state_dict' in d:
|
34 |
+
d = d['state_dict']
|
35 |
+
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
|
36 |
+
return d_filt
|
37 |
+
|
38 |
+
|
39 |
+
class Imagedataset(Dataset):
|
40 |
+
def __init__(self,
|
41 |
+
path,
|
42 |
+
image_size=256,
|
43 |
+
split=None):
|
44 |
+
self.path = path
|
45 |
+
self.images = os.listdir(path)
|
46 |
+
|
47 |
+
self.image_size = image_size
|
48 |
+
|
49 |
+
self.length = len(self.images)
|
50 |
+
|
51 |
+
transform = [
|
52 |
+
transforms.Resize(image_size),
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
55 |
+
]
|
56 |
+
|
57 |
+
self.transform = transforms.Compose(transform)
|
58 |
+
|
59 |
+
def __len__(self):
|
60 |
+
return self.length
|
61 |
+
|
62 |
+
def __getitem__(self, index):
|
63 |
+
cur_name = self.images[index]
|
64 |
+
img_path = os.path.join(self.path, cur_name)
|
65 |
+
|
66 |
+
img = Image.open(img_path).convert("RGB")
|
67 |
+
|
68 |
+
if self.transform is not None:
|
69 |
+
img = self.transform(img)
|
70 |
+
return img
|
71 |
+
|
72 |
+
|
73 |
+
def encoder_latent(G, latent):
|
74 |
+
# an encoder warper for G
|
75 |
+
# styles = [noise]
|
76 |
+
style_space = []
|
77 |
+
|
78 |
+
# styles = [G.style(s) for s in styles]
|
79 |
+
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)]
|
80 |
+
# inject_index = G.n_latent
|
81 |
+
# latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
82 |
+
style_space.append(G.conv1.conv.modulation(latent[:, 0]))
|
83 |
+
|
84 |
+
i = 1
|
85 |
+
for conv1, conv2, to_rgb in zip(
|
86 |
+
G.convs[::2], G.convs[1::2], G.to_rgbs
|
87 |
+
):
|
88 |
+
style_space.append(conv1.conv.modulation(latent[:, i]))
|
89 |
+
style_space.append(conv2.conv.modulation(latent[:, i + 1]))
|
90 |
+
i += 2
|
91 |
+
|
92 |
+
return style_space, noise
|
93 |
+
|
94 |
+
|
95 |
+
def GetBoundary(fs3, dt, threshold):
|
96 |
+
tmp = np.dot(fs3, dt)
|
97 |
+
|
98 |
+
select = np.abs(tmp) < threshold
|
99 |
+
return select
|
100 |
+
|
101 |
+
|
102 |
+
def improved_ds(ds, select):
|
103 |
+
ds_imp = copy.copy(ds)
|
104 |
+
ds_imp[select] = 0
|
105 |
+
ds_imp = ds_imp.unsqueeze(0)
|
106 |
+
return ds_imp
|
107 |
+
|
108 |
+
|
109 |
+
def main(opts):
|
110 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
111 |
+
|
112 |
+
# NOTE load e4e
|
113 |
+
checkpoint_path = "encoder4editing-main/e4e_ffhq_encode.pt"
|
114 |
+
ckpt_enc = torch.load(checkpoint_path, map_location='cpu') # dict_keys(['state_dict', 'latent_avg', 'opts'])
|
115 |
+
encoder = psp_encoders.Encoder4Editing(50, 1024, 'ir_se')
|
116 |
+
encoder.load_state_dict(get_keys(ckpt_enc, 'encoder'), strict=True)
|
117 |
+
encoder.eval()
|
118 |
+
encoder.to(device)
|
119 |
+
|
120 |
+
# Initialize test dataset
|
121 |
+
test_dataset = Imagedataset('./test_imgs', image_size=256)
|
122 |
+
test_dataloader = DataLoader(test_dataset,
|
123 |
+
batch_size=opts.batch_size,
|
124 |
+
shuffle=False,
|
125 |
+
num_workers=int(opts.workers),
|
126 |
+
drop_last=True)
|
127 |
+
|
128 |
+
# Initialize generator
|
129 |
+
print('Loading stylegan weights from pretrained!')
|
130 |
+
g_ema = Generator(size=opts.stylegan_size, style_dim=512, n_mlp=8)
|
131 |
+
g_ema_ckpt = torch.load(opts.stylegan_weights)
|
132 |
+
g_ema.load_state_dict(g_ema_ckpt['g_ema'], strict=False)
|
133 |
+
g_ema.eval()
|
134 |
+
g_ema = g_ema.to(device)
|
135 |
+
|
136 |
+
# load relevance matrix Rs
|
137 |
+
fs3 = np.load('./models/stylegan2/npy_ffhq/fs3.npy')
|
138 |
+
np.set_printoptions(suppress=True)
|
139 |
+
|
140 |
+
# Initialze DeltaMapper
|
141 |
+
net = DeltaMapper()
|
142 |
+
net_ckpt = torch.load(opts.checkpoint_path)
|
143 |
+
net.load_state_dict(net_ckpt)
|
144 |
+
net = net.to(device)
|
145 |
+
|
146 |
+
# Load CLIP model
|
147 |
+
clip_model, preprocess = clip.load("ViT-B/32", device=device)
|
148 |
+
avg_pool = torch.nn.AvgPool2d(kernel_size=256 // 32)
|
149 |
+
upsample = torch.nn.Upsample(scale_factor=7)
|
150 |
+
|
151 |
+
os.makedirs(opts.save_dir, exist_ok=True)
|
152 |
+
|
153 |
+
neutral = 'face'
|
154 |
+
target_list = opts.target.split(',')
|
155 |
+
# print(target_list)
|
156 |
+
|
157 |
+
dt_list = []
|
158 |
+
select_list = []
|
159 |
+
for target in target_list:
|
160 |
+
classnames = [target, neutral]
|
161 |
+
dt = map_tool.GetDt(classnames, clip_model)
|
162 |
+
select = GetBoundary(fs3, dt, opts.threshold)
|
163 |
+
dt = torch.Tensor(dt).to(device)
|
164 |
+
dt = dt / dt.norm(dim=-1, keepdim=True).float().clamp(min=1e-5)
|
165 |
+
|
166 |
+
select_list.append(select)
|
167 |
+
dt_list.append(dt)
|
168 |
+
|
169 |
+
for bid, batch in enumerate(test_dataloader):
|
170 |
+
if bid == opts.num_all:
|
171 |
+
break
|
172 |
+
input_img = batch.to(device)
|
173 |
+
with torch.no_grad():
|
174 |
+
latent_w = encoder(input_img)
|
175 |
+
latent_avg = ckpt_enc['latent_avg'].cuda()
|
176 |
+
latent_w = latent_w + latent_avg.repeat(latent_w.shape[0], 1, 1)
|
177 |
+
|
178 |
+
style_space, noise = encoder_latent(g_ema, latent_w)
|
179 |
+
latent_s = torch.cat(style_space, dim=1)
|
180 |
+
|
181 |
+
img_gen_for_clip = upsample(input_img)
|
182 |
+
img_gen_for_clip = avg_pool(img_gen_for_clip)
|
183 |
+
c_latents = clip_model.encode_image(img_gen_for_clip)
|
184 |
+
c_latents = c_latents / c_latents.norm(dim=-1, keepdim=True).float()
|
185 |
+
|
186 |
+
delta_s_list = []
|
187 |
+
|
188 |
+
for i, dt in enumerate(dt_list):
|
189 |
+
delta_c = torch.cat((c_latents, dt.unsqueeze(0)), dim=1)
|
190 |
+
with torch.no_grad():
|
191 |
+
fake_delta_s = net(latent_s, delta_c)
|
192 |
+
improved_fake_delta_s = improved_ds(fake_delta_s[0], select_list[i])
|
193 |
+
delta_s_list.append(improved_fake_delta_s)
|
194 |
+
|
195 |
+
with torch.no_grad():
|
196 |
+
img_ori = stylespace_util.decoder_validate(g_ema, latent_s, latent_w)
|
197 |
+
|
198 |
+
img_list = [img_ori]
|
199 |
+
for delta_s in delta_s_list:
|
200 |
+
img_gen = stylespace_util.decoder_validate(g_ema, latent_s + delta_s, latent_w)
|
201 |
+
img_list.append(img_gen)
|
202 |
+
img_gen_all = torch.cat(img_list, dim=3)
|
203 |
+
torchvision.utils.save_image(img_gen_all, os.path.join(opts.save_dir, "%04d.jpg" % (bid + 1)),
|
204 |
+
normalize=True, range=(-1, 1))
|
205 |
+
print(f'completed👍! Please check results in {opts.save_dir}')
|
206 |
+
|
207 |
+
|
208 |
+
if __name__ == "__main__":
|
209 |
+
opts = TestOptions().parse()
|
210 |
+
main(opts)
|
delta_edit/scripts/train.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import DataLoader
|
6 |
+
|
7 |
+
sys.path.append("")
|
8 |
+
sys.path.append("..")
|
9 |
+
|
10 |
+
from datasets.train_dataset import TrainLatentsDataset
|
11 |
+
from options.train_options import TrainOptions
|
12 |
+
from delta_mapper import DeltaMapper
|
13 |
+
|
14 |
+
def main(opts):
|
15 |
+
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
|
18 |
+
train_dataset = TrainLatentsDataset(opts)
|
19 |
+
train_dataloader = DataLoader(train_dataset,
|
20 |
+
batch_size=opts.batch_size,
|
21 |
+
shuffle=True,
|
22 |
+
num_workers=int(opts.workers),
|
23 |
+
drop_last=True)
|
24 |
+
|
25 |
+
#Initialze DeltaMapper
|
26 |
+
net = DeltaMapper().to(device)
|
27 |
+
|
28 |
+
#Initialize optimizer
|
29 |
+
optimizer = torch.optim.Adam(list(net.parameters()), lr=opts.learning_rate)
|
30 |
+
|
31 |
+
#Initialize loss
|
32 |
+
l2_loss = torch.nn.MSELoss().to(device)
|
33 |
+
cosine_loss = torch.nn.CosineSimilarity(dim=-1).to(device)
|
34 |
+
|
35 |
+
#save dir
|
36 |
+
os.makedirs(os.path.join(opts.checkpoint_path, opts.classname), exist_ok=True)
|
37 |
+
|
38 |
+
for batch_idx, batch in enumerate(train_dataloader):
|
39 |
+
|
40 |
+
latent_s, delta_c, delta_s = batch
|
41 |
+
latent_s = latent_s.to(device)
|
42 |
+
delta_c = delta_c.to(device)
|
43 |
+
delta_s = delta_s.to(device)
|
44 |
+
|
45 |
+
fake_delta_s = net(latent_s, delta_c)
|
46 |
+
|
47 |
+
optimizer.zero_grad()
|
48 |
+
loss_l2 = l2_loss(fake_delta_s, delta_s)
|
49 |
+
loss_cos = 1 - torch.mean(cosine_loss(fake_delta_s, delta_s))
|
50 |
+
|
51 |
+
loss = opts.l2_lambda * loss_l2 + opts.cos_lambda * loss_cos
|
52 |
+
loss.backward()
|
53 |
+
optimizer.step()
|
54 |
+
|
55 |
+
if batch_idx % opts.print_interval == 0 :
|
56 |
+
print(batch_idx, loss.detach().cpu().numpy(), loss_l2.detach().cpu().numpy(), loss_cos.detach().cpu().numpy())
|
57 |
+
|
58 |
+
if batch_idx % opts.save_interval == 0:
|
59 |
+
torch.save(net.state_dict(), os.path.join(opts.checkpoint_path, opts.classname, "net_%06d.pth" % batch_idx))
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
opts = TrainOptions().parse()
|
63 |
+
main(opts)
|
delta_edit/utils/__init__.py
ADDED
File without changes
|
delta_edit/utils/map_tool.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import clip
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
imagenet_templates = [
|
7 |
+
'a bad photo of a {}.',
|
8 |
+
# 'a photo of many {}.',
|
9 |
+
'a sculpture of a {}.',
|
10 |
+
'a photo of the hard to see {}.',
|
11 |
+
'a low resolution photo of the {}.',
|
12 |
+
'a rendering of a {}.',
|
13 |
+
'graffiti of a {}.',
|
14 |
+
'a bad photo of the {}.',
|
15 |
+
'a cropped photo of the {}.',
|
16 |
+
'a tattoo of a {}.',
|
17 |
+
'the embroidered {}.',
|
18 |
+
'a photo of a hard to see {}.',
|
19 |
+
'a bright photo of a {}.',
|
20 |
+
'a photo of a clean {}.',
|
21 |
+
'a photo of a dirty {}.',
|
22 |
+
'a dark photo of the {}.',
|
23 |
+
'a drawing of a {}.',
|
24 |
+
'a photo of my {}.',
|
25 |
+
'the plastic {}.',
|
26 |
+
'a photo of the cool {}.',
|
27 |
+
'a close-up photo of a {}.',
|
28 |
+
'a black and white photo of the {}.',
|
29 |
+
'a painting of the {}.',
|
30 |
+
'a painting of a {}.',
|
31 |
+
'a pixelated photo of the {}.',
|
32 |
+
'a sculpture of the {}.',
|
33 |
+
'a bright photo of the {}.',
|
34 |
+
'a cropped photo of a {}.',
|
35 |
+
'a plastic {}.',
|
36 |
+
'a photo of the dirty {}.',
|
37 |
+
'a jpeg corrupted photo of a {}.',
|
38 |
+
'a blurry photo of the {}.',
|
39 |
+
'a photo of the {}.',
|
40 |
+
'a good photo of the {}.',
|
41 |
+
'a rendering of the {}.',
|
42 |
+
'a {} in a video game.',
|
43 |
+
'a photo of one {}.',
|
44 |
+
'a doodle of a {}.',
|
45 |
+
'a close-up photo of the {}.',
|
46 |
+
'a photo of a {}.',
|
47 |
+
'the origami {}.',
|
48 |
+
'the {} in a video game.',
|
49 |
+
'a sketch of a {}.',
|
50 |
+
'a doodle of the {}.',
|
51 |
+
'a origami {}.',
|
52 |
+
'a low resolution photo of a {}.',
|
53 |
+
'the toy {}.',
|
54 |
+
'a rendition of the {}.',
|
55 |
+
'a photo of the clean {}.',
|
56 |
+
'a photo of a large {}.',
|
57 |
+
'a rendition of a {}.',
|
58 |
+
'a photo of a nice {}.',
|
59 |
+
'a photo of a weird {}.',
|
60 |
+
'a blurry photo of a {}.',
|
61 |
+
'a cartoon {}.',
|
62 |
+
'art of a {}.',
|
63 |
+
'a sketch of the {}.',
|
64 |
+
'a embroidered {}.',
|
65 |
+
'a pixelated photo of a {}.',
|
66 |
+
'itap of the {}.',
|
67 |
+
'a jpeg corrupted photo of the {}.',
|
68 |
+
'a good photo of a {}.',
|
69 |
+
'a plushie {}.',
|
70 |
+
'a photo of the nice {}.',
|
71 |
+
'a photo of the small {}.',
|
72 |
+
'a photo of the weird {}.',
|
73 |
+
'the cartoon {}.',
|
74 |
+
'art of the {}.',
|
75 |
+
'a drawing of the {}.',
|
76 |
+
'a photo of the large {}.',
|
77 |
+
'a black and white photo of a {}.',
|
78 |
+
'the plushie {}.',
|
79 |
+
'a dark photo of a {}.',
|
80 |
+
'itap of a {}.',
|
81 |
+
'graffiti of the {}.',
|
82 |
+
'a toy {}.',
|
83 |
+
'itap of my {}.',
|
84 |
+
'a photo of a cool {}.',
|
85 |
+
'a photo of a small {}.',
|
86 |
+
'a tattoo of the {}.',
|
87 |
+
]
|
88 |
+
|
89 |
+
def zeroshot_classifier(classnames, templates,model):
|
90 |
+
with torch.no_grad():
|
91 |
+
zeroshot_weights = []
|
92 |
+
for classname in classnames:
|
93 |
+
texts = [template.format(classname) for template in templates] #format with class
|
94 |
+
texts = clip.tokenize(texts).cuda() #tokenize
|
95 |
+
class_embeddings = model.encode_text(texts) #embed with text encoder
|
96 |
+
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
|
97 |
+
class_embedding = class_embeddings.mean(dim=0)
|
98 |
+
class_embedding /= class_embedding.norm()
|
99 |
+
zeroshot_weights.append(class_embedding)
|
100 |
+
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
|
101 |
+
return zeroshot_weights
|
102 |
+
|
103 |
+
def GetDt(classnames,model):
|
104 |
+
text_features=zeroshot_classifier(classnames, imagenet_templates,model).t()
|
105 |
+
|
106 |
+
dt=text_features[0]-text_features[1]
|
107 |
+
dt=dt.cpu().numpy()
|
108 |
+
|
109 |
+
return dt
|
110 |
+
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
114 |
+
model, preprocess = clip.load("ViT-B/32", device=device)
|
115 |
+
|
116 |
+
neutral='face with eyes' #@param {type:"string"}
|
117 |
+
target='face with blue eyes' #@param {type:"string"}
|
118 |
+
classnames=[target,neutral]
|
119 |
+
dt = GetDt(classnames,model)
|
120 |
+
print(dt.shape)
|
delta_edit/utils/stylespace_util.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import torchvision
|
5 |
+
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
index = [0,1,1,2,2,3,4,4,5,6,6,7,8,8,9,10,10,11,12,12,13,14,14,15,16,16]
|
9 |
+
|
10 |
+
def conv_warper(layer, input, style, noise):
|
11 |
+
|
12 |
+
conv = layer.conv
|
13 |
+
batch, in_channel, height, width = input.shape
|
14 |
+
|
15 |
+
style = style.view(batch, 1, in_channel, 1, 1)
|
16 |
+
weight = conv.scale * conv.weight * style
|
17 |
+
|
18 |
+
if conv.demodulate:
|
19 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
20 |
+
weight = weight * demod.view(batch, conv.out_channel, 1, 1, 1)
|
21 |
+
|
22 |
+
weight = weight.view(
|
23 |
+
batch * conv.out_channel, in_channel, conv.kernel_size, conv.kernel_size
|
24 |
+
)
|
25 |
+
|
26 |
+
if conv.upsample:
|
27 |
+
input = input.view(1, batch * in_channel, height, width)
|
28 |
+
weight = weight.view(
|
29 |
+
batch, conv.out_channel, in_channel, conv.kernel_size, conv.kernel_size
|
30 |
+
)
|
31 |
+
weight = weight.transpose(1, 2).reshape(
|
32 |
+
batch * in_channel, conv.out_channel, conv.kernel_size, conv.kernel_size
|
33 |
+
)
|
34 |
+
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
|
35 |
+
_, _, height, width = out.shape
|
36 |
+
out = out.view(batch, conv.out_channel, height, width)
|
37 |
+
out = conv.blur(out)
|
38 |
+
|
39 |
+
elif conv.downsample:
|
40 |
+
input = conv.blur(input)
|
41 |
+
_, _, height, width = input.shape
|
42 |
+
input = input.view(1, batch * in_channel, height, width)
|
43 |
+
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
|
44 |
+
_, _, height, width = out.shape
|
45 |
+
out = out.view(batch, conv.out_channel, height, width)
|
46 |
+
|
47 |
+
else:
|
48 |
+
input = input.view(1, batch * in_channel, height, width)
|
49 |
+
out = F.conv2d(input, weight, padding=conv.padding, groups=batch)
|
50 |
+
_, _, height, width = out.shape
|
51 |
+
out = out.view(batch, conv.out_channel, height, width)
|
52 |
+
|
53 |
+
out = layer.noise(out, noise=noise)
|
54 |
+
out = layer.activate(out)
|
55 |
+
|
56 |
+
return out
|
57 |
+
|
58 |
+
def decoder(G, style_space, latent, noise):
|
59 |
+
|
60 |
+
out = G.input(latent)
|
61 |
+
out = conv_warper(G.conv1, out, style_space[0], noise[0])
|
62 |
+
skip = G.to_rgb1(out, latent[:, 1])
|
63 |
+
|
64 |
+
i = 1
|
65 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
66 |
+
G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs
|
67 |
+
):
|
68 |
+
out = conv_warper(conv1, out, style_space[i], noise=noise1)
|
69 |
+
out = conv_warper(conv2, out, style_space[i+1], noise=noise2)
|
70 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
71 |
+
|
72 |
+
i += 2
|
73 |
+
|
74 |
+
image = skip
|
75 |
+
|
76 |
+
return image
|
77 |
+
|
78 |
+
def decoder_validate(G, style_space, latent):
|
79 |
+
|
80 |
+
style_space = split_stylespace(style_space)
|
81 |
+
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)]
|
82 |
+
|
83 |
+
out = G.input(latent)
|
84 |
+
out = conv_warper(G.conv1, out, style_space[0], noise[0])
|
85 |
+
skip = G.to_rgb1(out, latent[:, 1])
|
86 |
+
|
87 |
+
i = 1
|
88 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
89 |
+
G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs
|
90 |
+
):
|
91 |
+
out = conv_warper(conv1, out, style_space[i], noise=noise1)
|
92 |
+
out = conv_warper(conv2, out, style_space[i+1], noise=noise2)
|
93 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
94 |
+
|
95 |
+
i += 2
|
96 |
+
|
97 |
+
image = skip
|
98 |
+
|
99 |
+
return image
|
100 |
+
|
101 |
+
def encoder_noise(G, noise):
|
102 |
+
|
103 |
+
styles = [noise]
|
104 |
+
style_space = []
|
105 |
+
|
106 |
+
styles = [G.style(s) for s in styles]
|
107 |
+
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)]
|
108 |
+
inject_index = G.n_latent
|
109 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
110 |
+
style_space.append(G.conv1.conv.modulation(latent[:, 0]))
|
111 |
+
|
112 |
+
i = 1
|
113 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
114 |
+
G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs
|
115 |
+
):
|
116 |
+
style_space.append(conv1.conv.modulation(latent[:, i]))
|
117 |
+
style_space.append(conv2.conv.modulation(latent[:, i+1]))
|
118 |
+
i += 2
|
119 |
+
|
120 |
+
return style_space, latent, noise
|
121 |
+
|
122 |
+
def encoder_latent(G, latent):
|
123 |
+
# an encoder warper for G
|
124 |
+
|
125 |
+
style_space = []
|
126 |
+
|
127 |
+
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)]
|
128 |
+
|
129 |
+
style_space.append(G.conv1.conv.modulation(latent[:, 0]))
|
130 |
+
|
131 |
+
i = 1
|
132 |
+
for conv1, conv2, to_rgb in zip(
|
133 |
+
G.convs[::2], G.convs[1::2], G.to_rgbs
|
134 |
+
):
|
135 |
+
style_space.append(conv1.conv.modulation(latent[:, i]))
|
136 |
+
style_space.append(conv2.conv.modulation(latent[:, i+1]))
|
137 |
+
i += 2
|
138 |
+
|
139 |
+
return style_space, noise
|
140 |
+
|
141 |
+
def split_stylespace(style):
|
142 |
+
style_space = []
|
143 |
+
|
144 |
+
for idx in range(10):
|
145 |
+
style_space.append(style[:, idx*512 : (idx+1) * 512])
|
146 |
+
|
147 |
+
style_space.append(style[:, 10*512: 10*512 + 256])
|
148 |
+
style_space.append(style[:, 10*512 + 256: 10*512 + 256*2])
|
149 |
+
style_space.append(style[:, 10*512 + 256*2: 10*512 + 256*2 + 128])
|
150 |
+
style_space.append(style[:, 10*512 + 256*2 + 128: 10*512 + 256*2 + 128 * 2])
|
151 |
+
style_space.append(style[:, 10*512 + 256*2 + 128*2: 10*512 + 256*2 + 128*2 + 64])
|
152 |
+
style_space.append(style[:, 10*512 + 256*2 + 128*2 + 64: 10*512 + 256*2 + 128*2 + 64*2])
|
153 |
+
style_space.append(style[:, 10*512 + 256*2 + 128*2 + 64*2: 10*512 + 256*2 + 128*2 + 64*2 + 32])
|
154 |
+
|
155 |
+
return style_space
|
156 |
+
|
157 |
+
def fuse_stylespace(style):
|
158 |
+
new_s = torch.cat(style, dim=1)
|
159 |
+
|
160 |
+
return new_s
|
delta_edit/weights/e4e_ffhq_encode.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ace1d9a8c05c10a399bcd500b8dda118f759ff1aac89dbdab7435f2136a0999
|
3 |
+
size 1201649680
|
delta_edit/weights/net_face.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f71dc9c1e1dfc29409a80d0f8c35c11f80ab503c79e43fb7e73f7ba3c27a75e2
|
3 |
+
size 331066573
|
delta_edit/weights/stylegan2-ffhq-config-f.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bae494ef77e32a9cd1792a81a3c167692a0e64f6bcd8b06592ff42917e2ed46e
|
3 |
+
size 381462551
|
filtered_laion_faces.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d87bc740b1cf34768a4fd5d0622b48873f801779bef9b98823533e40f538f70b
|
3 |
+
size 216228753
|
filtered_laion_faces.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76441b2ce1b3df6b9db079e99646f479be8cefa49f2ea72cc69084d6fecee391
|
3 |
+
size 24711982
|