import json import datasets _CITATION = """\ @misc{quintero2024emotionaldatasetchile, author = {cypher-256}, title = {Emotional Dataset Chile}, year = 2025, url = {https://huggingface.co/datasets/cypher-256/emotional-dataset-chile} } """ _DESCRIPTION = """\ Este dataset contiene ejemplos en español chileno etiquetados con valencia o arousal emocional \ en formato de regresión continua (-1.0 a 1.0). Incluye dos configuraciones independientes: 'valencia' y 'arousal'. """ _HOMEPAGE = "https://huggingface.co/datasets/cypher-256/emotional-dataset-chile" _LICENSE = "MIT" _DATA_FILES = { "valencia": "valencia_dataset.jsonl", "arousal": "arousal_dataset.jsonl", } class EmotionalDatasetChileConfig(datasets.BuilderConfig): def __init__(self, name, **kwargs): super().__init__(name=name, **kwargs) class EmotionalDatasetChile(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ EmotionalDatasetChileConfig( name="valencia", version=datasets.Version("1.0.0"), description="Text samples labeled with emotional valence", ), EmotionalDatasetChileConfig( name="arousal", version=datasets.Version("1.0.0"), description="Text samples labeled with emotional arousal", ), ] def _info(self): features = datasets.Features( { "texto": datasets.Value("string"), self.config.name: datasets.Value("float32"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_file = _DATA_FILES[self.config.name] data_path = dl_manager.download_and_extract(data_file) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_path})] def _generate_examples(self, filepath): with open(filepath, encoding="utf-8") as f: for idx, line in enumerate(f): data = json.loads(line) yield idx, data