cyrilzakka HF Staff commited on
Commit
5211382
·
verified ·
1 Parent(s): 02331df

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: Virtual Cell Challenge
3
+ size_categories:
4
+ - 100K<n<1M
5
+ ---
6
+ # ARC Institute Virtual Cell Challenge
7
+ Please check out the [official website](https://virtualcellchallenge.org/app/rules) for the challenge rules and deadlines.
8
+
9
+ ### About
10
+ For this challenge, single-cell functional genomics was used to generate approximately 300,000 single-cell RNA-seq profiles by silencing 300 carefully selected genes using CRISPR interference (CRISPRi). 10x Genomics GEM-X Flex and Illumina sequencing were used to obtain single-cell gene expression profiles. The data are split into three groups for the Virtual Cell Challenge, to allow for training, validation of initial results, and developing a final entry for the competition.
11
+
12
+ - Training set consisting of single-cell profiles for 150 gene perturbations (~150,000 cells)
13
+ - Validation set of 50 gene perturbations, for which entrants’ predicted transcriptomic results will be used to create a live ranking leaderboard during the challenge
14
+
15
+ #### Training data [15GB]
16
+ Gene Expression File in AnnData H5AD format.
17
+
18
+ **Obs**
19
+ | cell barcode-batch index | target_gene | guide_id | batch |
20
+ |--------------------------|-------------|----------|-------|
21
+ | AAACAAGCAACCTTGTACTTTAGG-Flex_1_01 | CHMP3 | CHMP3_P1P2_A\|CHMP3_P1P2_B | Flex_1_01 |
22
+ | TTTGGACGTGGTGCAGATTCGGTT-Flex_3_16 | non-targeting | non-targeting_00035\|non-targeting_03439 | Flex_3_16 |
23
+
24
+ **Var —** index of gene names to predict
25
+ adfile.var.index
26
+
27
+ ```
28
+ Index(['SAMD11', 'NOC2L', 'KLHL17', 'PLEKHN1', 'PERM1', 'HES4', 'ISG15', 'AGRN', 'RNF223', 'C1orf159', ... 'MT-ND5', 'MT-ND6', 'MT-CYB'], dtype='object', length=18080)
29
+ ```
30
+ **Control Cells**
31
+ There are 38,176 unperturbed control cells in the training data denoted with a target_gene value of ‘non-targeting’. Competitors can optionally predict expression values for the control set during submission or copy expression values over from the training set.
32
+
33
+ #### Validation data [1kb]
34
+ | Field name | Description |
35
+ |------------|-------------|
36
+ | target_gene | Gene symbol targeted for perturbation |
37
+ | n_cells | Recommended number of cells to predict for each perturbation to maximize model performance |
38
+ | median_umi_per_cell | The median number of Unique Molecular Identifiers per cell for each perturbation |
39
+
40
+
41
+ | target_gene | n_cells | median_umi_per_cell |
42
+ |-------------|---------|---------------------|
43
+ | SH3BP4 | 2925 | 54551.0 |
44
+ | ZNF581 | 2502 | 53803.5 |
45
+ | ANXA6 | 2496 | 55175.0 |
46
+ | PACSIN3 | 2101 | 54088.0 |
47
+ | MGST1 | 2096 | 54217.5 |
48
+ | IGF1R | 2056 | 53993.0 |
49
+ | ITGAV | 2034 | 55356.0 |
50
+ | SLIRP | 2000 | 54438.5 |
51
+ | CTSV | 1989 | 53173.0 |
52
+ | MTFR1 | 1787 | 53795.0 |
53
+ | ... | ... | ... |