Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pretty_name: Virtual Cell Challenge
|
3 |
+
size_categories:
|
4 |
+
- 100K<n<1M
|
5 |
+
---
|
6 |
+
# ARC Institute Virtual Cell Challenge
|
7 |
+
Please check out the [official website](https://virtualcellchallenge.org/app/rules) for the challenge rules and deadlines.
|
8 |
+
|
9 |
+
### About
|
10 |
+
For this challenge, single-cell functional genomics was used to generate approximately 300,000 single-cell RNA-seq profiles by silencing 300 carefully selected genes using CRISPR interference (CRISPRi). 10x Genomics GEM-X Flex and Illumina sequencing were used to obtain single-cell gene expression profiles. The data are split into three groups for the Virtual Cell Challenge, to allow for training, validation of initial results, and developing a final entry for the competition.
|
11 |
+
|
12 |
+
- Training set consisting of single-cell profiles for 150 gene perturbations (~150,000 cells)
|
13 |
+
- Validation set of 50 gene perturbations, for which entrants’ predicted transcriptomic results will be used to create a live ranking leaderboard during the challenge
|
14 |
+
|
15 |
+
#### Training data [15GB]
|
16 |
+
Gene Expression File in AnnData H5AD format.
|
17 |
+
|
18 |
+
**Obs**
|
19 |
+
| cell barcode-batch index | target_gene | guide_id | batch |
|
20 |
+
|--------------------------|-------------|----------|-------|
|
21 |
+
| AAACAAGCAACCTTGTACTTTAGG-Flex_1_01 | CHMP3 | CHMP3_P1P2_A\|CHMP3_P1P2_B | Flex_1_01 |
|
22 |
+
| TTTGGACGTGGTGCAGATTCGGTT-Flex_3_16 | non-targeting | non-targeting_00035\|non-targeting_03439 | Flex_3_16 |
|
23 |
+
|
24 |
+
**Var —** index of gene names to predict
|
25 |
+
adfile.var.index
|
26 |
+
|
27 |
+
```
|
28 |
+
Index(['SAMD11', 'NOC2L', 'KLHL17', 'PLEKHN1', 'PERM1', 'HES4', 'ISG15', 'AGRN', 'RNF223', 'C1orf159', ... 'MT-ND5', 'MT-ND6', 'MT-CYB'], dtype='object', length=18080)
|
29 |
+
```
|
30 |
+
**Control Cells**
|
31 |
+
There are 38,176 unperturbed control cells in the training data denoted with a target_gene value of ‘non-targeting’. Competitors can optionally predict expression values for the control set during submission or copy expression values over from the training set.
|
32 |
+
|
33 |
+
#### Validation data [1kb]
|
34 |
+
| Field name | Description |
|
35 |
+
|------------|-------------|
|
36 |
+
| target_gene | Gene symbol targeted for perturbation |
|
37 |
+
| n_cells | Recommended number of cells to predict for each perturbation to maximize model performance |
|
38 |
+
| median_umi_per_cell | The median number of Unique Molecular Identifiers per cell for each perturbation |
|
39 |
+
|
40 |
+
|
41 |
+
| target_gene | n_cells | median_umi_per_cell |
|
42 |
+
|-------------|---------|---------------------|
|
43 |
+
| SH3BP4 | 2925 | 54551.0 |
|
44 |
+
| ZNF581 | 2502 | 53803.5 |
|
45 |
+
| ANXA6 | 2496 | 55175.0 |
|
46 |
+
| PACSIN3 | 2101 | 54088.0 |
|
47 |
+
| MGST1 | 2096 | 54217.5 |
|
48 |
+
| IGF1R | 2056 | 53993.0 |
|
49 |
+
| ITGAV | 2034 | 55356.0 |
|
50 |
+
| SLIRP | 2000 | 54438.5 |
|
51 |
+
| CTSV | 1989 | 53173.0 |
|
52 |
+
| MTFR1 | 1787 | 53795.0 |
|
53 |
+
| ... | ... | ... |
|