File size: 22,192 Bytes
aabf3a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import json\n",
    "import os\n",
    "import shutil\n",
    "import tensorflow as tf\n",
    "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
    "from tensorflow.keras.utils import image_dataset_from_directory\n",
    "from tensorflow.keras.models import Sequential\n",
    "from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense\n",
    "from tensorflow.keras.callbacks import Callback"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_dataframe(annotations_path):\n",
    "    with open(annotations_path, 'r') as file:\n",
    "        data = json.load(file)\n",
    "\n",
    "    images = pd.DataFrame(data['images']).rename(columns={'id': 'image_id'})[['image_id', 'file_name']]\n",
    "\n",
    "    categories = pd.DataFrame(data['categories'])[['id', 'name']]\n",
    "    categories.rename(columns={'id': 'category_id'}, inplace=True)\n",
    "\n",
    "    usecols = ['image_id', 'category_id']\n",
    "    annotations = pd.DataFrame(data['annotations'])[usecols]\n",
    "\n",
    "    dataframe = annotations.merge(categories, on='category_id').merge(images, on='image_id')[['file_name', 'name']]\n",
    "    \n",
    "    return dataframe"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def copy_images_to_destination(base_dir, dataframe, split):\n",
    "    images_dir = os.path.join(base_dir, 'images')\n",
    "\n",
    "    for index, row in dataframe.iterrows():\n",
    "        file_name = row['file_name']\n",
    "        file_class = row['name']\n",
    "\n",
    "        dest_dir = os.path.join(split, file_class)\n",
    "        os.makedirs(dest_dir, exist_ok=True)\n",
    "\n",
    "        source_path = os.path.join(images_dir, file_name)\n",
    "        destination_path = os.path.join(dest_dir, file_name)\n",
    "\n",
    "        shutil.copyfile(source_path, destination_path)\n",
    "\n",
    "    print(\"Done copying images.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>file_name</th>\n",
       "      <th>name</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>131094.jpg</td>\n",
       "      <td>soft-cheese</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>131094.jpg</td>\n",
       "      <td>ham-raw</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>131094.jpg</td>\n",
       "      <td>hard-cheese</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>131094.jpg</td>\n",
       "      <td>bread-wholemeal</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>131094.jpg</td>\n",
       "      <td>cottage-cheese</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>76486</th>\n",
       "      <td>117029.jpg</td>\n",
       "      <td>damson-plum</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>76487</th>\n",
       "      <td>117524.jpg</td>\n",
       "      <td>damson-plum</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>76488</th>\n",
       "      <td>117849.jpg</td>\n",
       "      <td>damson-plum</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>76489</th>\n",
       "      <td>123468.jpg</td>\n",
       "      <td>damson-plum</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>76490</th>\n",
       "      <td>095795.jpg</td>\n",
       "      <td>bean-seeds</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>76491 rows × 2 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "        file_name             name\n",
       "0      131094.jpg      soft-cheese\n",
       "1      131094.jpg          ham-raw\n",
       "2      131094.jpg      hard-cheese\n",
       "3      131094.jpg  bread-wholemeal\n",
       "4      131094.jpg   cottage-cheese\n",
       "...           ...              ...\n",
       "76486  117029.jpg      damson-plum\n",
       "76487  117524.jpg      damson-plum\n",
       "76488  117849.jpg      damson-plum\n",
       "76489  123468.jpg      damson-plum\n",
       "76490  095795.jpg       bean-seeds\n",
       "\n",
       "[76491 rows x 2 columns]"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "train_df = create_dataframe('train/annotations.json')\n",
    "train_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "splits = ['train', 'val']\n",
    "\n",
    "for split in splits:\n",
    "    root = f'{split}'\n",
    "\n",
    "    for index, row in train_df.iterrows():\n",
    "        directory_name = row['name']\n",
    "        directory_path = os.path.join(root, directory_name)\n",
    "\n",
    "        if not os.path.exists(directory_path):\n",
    "            os.makedirs(directory_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>file_name</th>\n",
       "      <th>name</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>149022.jpg</td>\n",
       "      <td>espresso-with-caffeine</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>149022.jpg</td>\n",
       "      <td>dark-chocolate</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>167905.jpg</td>\n",
       "      <td>espresso-with-caffeine</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>121313.jpg</td>\n",
       "      <td>espresso-with-caffeine</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>153429.jpg</td>\n",
       "      <td>espresso-with-caffeine</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1825</th>\n",
       "      <td>144675.jpg</td>\n",
       "      <td>oat-milk</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1826</th>\n",
       "      <td>103273.jpg</td>\n",
       "      <td>soup-potato</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1827</th>\n",
       "      <td>159922.jpg</td>\n",
       "      <td>red-cabbage</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1828</th>\n",
       "      <td>011275.jpg</td>\n",
       "      <td>pasta-in-conch-form</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1829</th>\n",
       "      <td>166537.jpg</td>\n",
       "      <td>chocolate</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1830 rows × 2 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "       file_name                    name\n",
       "0     149022.jpg  espresso-with-caffeine\n",
       "1     149022.jpg          dark-chocolate\n",
       "2     167905.jpg  espresso-with-caffeine\n",
       "3     121313.jpg  espresso-with-caffeine\n",
       "4     153429.jpg  espresso-with-caffeine\n",
       "...          ...                     ...\n",
       "1825  144675.jpg                oat-milk\n",
       "1826  103273.jpg             soup-potato\n",
       "1827  159922.jpg             red-cabbage\n",
       "1828  011275.jpg     pasta-in-conch-form\n",
       "1829  166537.jpg               chocolate\n",
       "\n",
       "[1830 rows x 2 columns]"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "val_df = create_dataframe('val/annotations.json')\n",
    "val_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Done copying images.\n"
     ]
    }
   ],
   "source": [
    "base_dir = 'train'\n",
    "dataframe = train_df\n",
    "copy_images_to_destination(base_dir, dataframe, 'train')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Done copying images.\n"
     ]
    }
   ],
   "source": [
    "base_dir = 'val'\n",
    "dataframe = val_df\n",
    "copy_images_to_destination(base_dir, dataframe, 'val')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found 70397 files belonging to 498 classes.\n",
      "Found 1799 files belonging to 498 classes.\n"
     ]
    }
   ],
   "source": [
    "train = image_dataset_from_directory(\n",
    "    directory='train',\n",
    "    label_mode='categorical',\n",
    "    batch_size=32,\n",
    "    image_size=(299, 299)\n",
    ")\n",
    "\n",
    "val = image_dataset_from_directory(\n",
    "    directory='val',\n",
    "    label_mode='categorical',\n",
    "    batch_size=32,\n",
    "    image_size=(299, 299)\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "train_datagen = ImageDataGenerator(\n",
    "    rescale=1./255,\n",
    "    shear_range=0.2,\n",
    "    zoom_range=0.2,\n",
    "    horizontal_flip=True\n",
    ")\n",
    "\n",
    "val_datagen = ImageDataGenerator(rescale=1./255)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "class MyCallback(Callback):\n",
    "    def on_epoch_end(self, epoch, logs={}):\n",
    "        if logs.get('val_categorical_accuracy') >= 0.81:\n",
    "            print('Validation accuracy reached 81%. Stopping training.')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"sequential\"\n",
      "_________________________________________________________________\n",
      " Layer (type)                Output Shape              Param #   \n",
      "=================================================================\n",
      " conv2d (Conv2D)             (None, 297, 297, 32)      896       \n",
      "                                                                 \n",
      " max_pooling2d (MaxPooling2D  (None, 148, 148, 32)     0         \n",
      " )                                                               \n",
      "                                                                 \n",
      " conv2d_1 (Conv2D)           (None, 146, 146, 64)      18496     \n",
      "                                                                 \n",
      " max_pooling2d_1 (MaxPooling  (None, 73, 73, 64)       0         \n",
      " 2D)                                                             \n",
      "                                                                 \n",
      " conv2d_2 (Conv2D)           (None, 71, 71, 128)       73856     \n",
      "                                                                 \n",
      " max_pooling2d_2 (MaxPooling  (None, 35, 35, 128)      0         \n",
      " 2D)                                                             \n",
      "                                                                 \n",
      " flatten (Flatten)           (None, 156800)            0         \n",
      "                                                                 \n",
      " dense (Dense)               (None, 128)               20070528  \n",
      "                                                                 \n",
      " dense_1 (Dense)             (None, 498)               64242     \n",
      "                                                                 \n",
      "=================================================================\n",
      "Total params: 20,228,018\n",
      "Trainable params: 20,228,018\n",
      "Non-trainable params: 0\n",
      "_________________________________________________________________\n"
     ]
    }
   ],
   "source": [
    "model = Sequential()\n",
    "model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(299, 299, 3)))\n",
    "model.add(MaxPooling2D((2, 2)))\n",
    "model.add(Conv2D(64, (3, 3), activation='relu'))\n",
    "model.add(MaxPooling2D((2, 2)))\n",
    "model.add(Conv2D(128, (3, 3), activation='relu'))\n",
    "model.add(MaxPooling2D((2, 2)))\n",
    "model.add(Flatten())\n",
    "model.add(Dense(128, activation='relu'))\n",
    "model.add(Dense(498, activation='softmax'))\n",
    "\n",
    "model.summary()\n",
    "\n",
    "model.compile(optimizer=tf.keras.optimizers.Adam(),\n",
    "              loss=tf.keras.losses.CategoricalCrossentropy(),\n",
    "              metrics=[tf.keras.metrics.CategoricalAccuracy()])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/32\n",
      "   6/2200 [..............................] - ETA: 6:25 - loss: 504.5968 - categorical_accuracy: 0.0052    WARNING:tensorflow:Callback method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0608s vs `on_train_batch_end` time: 0.0957s). Check your callbacks.\n",
      "2200/2200 [==============================] - 291s 130ms/step - loss: 6.9090 - categorical_accuracy: 0.0398 - val_loss: 5.5961 - val_categorical_accuracy: 0.0411\n",
      "Epoch 2/32\n",
      "2200/2200 [==============================] - 279s 127ms/step - loss: 5.4654 - categorical_accuracy: 0.0420 - val_loss: 5.5951 - val_categorical_accuracy: 0.0417\n",
      "Epoch 3/32\n",
      "2200/2200 [==============================] - 276s 125ms/step - loss: 5.4428 - categorical_accuracy: 0.0449 - val_loss: 5.6058 - val_categorical_accuracy: 0.0417\n",
      "Epoch 4/32\n",
      "2200/2200 [==============================] - 285s 130ms/step - loss: 5.3952 - categorical_accuracy: 0.0528 - val_loss: 5.6658 - val_categorical_accuracy: 0.0411\n",
      "Epoch 5/32\n",
      "2200/2200 [==============================] - 282s 128ms/step - loss: 5.3362 - categorical_accuracy: 0.0630 - val_loss: 5.7703 - val_categorical_accuracy: 0.0406\n",
      "Epoch 6/32\n",
      "2200/2200 [==============================] - 326s 148ms/step - loss: 5.2673 - categorical_accuracy: 0.0755 - val_loss: 5.7254 - val_categorical_accuracy: 0.0411\n",
      "Epoch 7/32\n",
      "2200/2200 [==============================] - 300s 136ms/step - loss: 5.2040 - categorical_accuracy: 0.0875 - val_loss: 5.8228 - val_categorical_accuracy: 0.0411\n",
      "Epoch 8/32\n",
      "2200/2200 [==============================] - 382s 174ms/step - loss: 5.1794 - categorical_accuracy: 0.0927 - val_loss: 6.0131 - val_categorical_accuracy: 0.0411\n",
      "Epoch 9/32\n",
      "2200/2200 [==============================] - 372s 169ms/step - loss: 5.1426 - categorical_accuracy: 0.0984 - val_loss: 6.0550 - val_categorical_accuracy: 0.0406\n",
      "Epoch 10/32\n",
      "2200/2200 [==============================] - 335s 152ms/step - loss: 5.0958 - categorical_accuracy: 0.1058 - val_loss: 6.3628 - val_categorical_accuracy: 0.0389\n",
      "Epoch 11/32\n",
      "2200/2200 [==============================] - 354s 161ms/step - loss: 5.0727 - categorical_accuracy: 0.1111 - val_loss: 6.4603 - val_categorical_accuracy: 0.0378\n",
      "Epoch 12/32\n",
      "2200/2200 [==============================] - 356s 162ms/step - loss: 5.0326 - categorical_accuracy: 0.1166 - val_loss: 6.7461 - val_categorical_accuracy: 0.0417\n",
      "Epoch 13/32\n",
      "2200/2200 [==============================] - 354s 161ms/step - loss: 5.0137 - categorical_accuracy: 0.1208 - val_loss: 6.9263 - val_categorical_accuracy: 0.0395\n",
      "Epoch 14/32\n",
      "2200/2200 [==============================] - 349s 159ms/step - loss: 4.9708 - categorical_accuracy: 0.1281 - val_loss: 6.9836 - val_categorical_accuracy: 0.0378\n",
      "Epoch 15/32\n",
      "2200/2200 [==============================] - 368s 167ms/step - loss: 4.9531 - categorical_accuracy: 0.1318 - val_loss: 6.6221 - val_categorical_accuracy: 0.0384\n",
      "Epoch 16/32\n",
      "2200/2200 [==============================] - 360s 164ms/step - loss: 4.9288 - categorical_accuracy: 0.1357 - val_loss: 6.6952 - val_categorical_accuracy: 0.0378\n",
      "Epoch 17/32\n",
      "2200/2200 [==============================] - 359s 163ms/step - loss: 4.8955 - categorical_accuracy: 0.1403 - val_loss: 6.6760 - val_categorical_accuracy: 0.0400\n",
      "Epoch 18/32\n",
      "2200/2200 [==============================] - 354s 161ms/step - loss: 4.8613 - categorical_accuracy: 0.1455 - val_loss: 7.7695 - val_categorical_accuracy: 0.0384\n",
      "Epoch 19/32\n",
      "2200/2200 [==============================] - 327s 148ms/step - loss: 4.8498 - categorical_accuracy: 0.1494 - val_loss: 7.5958 - val_categorical_accuracy: 0.0361\n",
      "Epoch 20/32\n",
      "2200/2200 [==============================] - 362s 165ms/step - loss: 4.7999 - categorical_accuracy: 0.1556 - val_loss: 7.8458 - val_categorical_accuracy: 0.0372\n",
      "Epoch 21/32\n",
      "2200/2200 [==============================] - 361s 164ms/step - loss: 4.7786 - categorical_accuracy: 0.1594 - val_loss: 8.5637 - val_categorical_accuracy: 0.0389\n",
      "Epoch 22/32\n",
      "2200/2200 [==============================] - 360s 164ms/step - loss: 4.7561 - categorical_accuracy: 0.1645 - val_loss: 8.0804 - val_categorical_accuracy: 0.0384\n",
      "Epoch 23/32\n",
      "2200/2200 [==============================] - 301s 137ms/step - loss: 4.7279 - categorical_accuracy: 0.1694 - val_loss: 8.9041 - val_categorical_accuracy: 0.0372\n",
      "Epoch 24/32\n",
      "2200/2200 [==============================] - 310s 140ms/step - loss: 4.6962 - categorical_accuracy: 0.1732 - val_loss: 9.0381 - val_categorical_accuracy: 0.0361\n",
      "Epoch 25/32\n",
      "2200/2200 [==============================] - 314s 142ms/step - loss: 4.6756 - categorical_accuracy: 0.1769 - val_loss: 8.6350 - val_categorical_accuracy: 0.0378\n",
      "Epoch 26/32\n",
      "2200/2200 [==============================] - 296s 134ms/step - loss: 4.6531 - categorical_accuracy: 0.1820 - val_loss: 9.3287 - val_categorical_accuracy: 0.0367\n",
      "Epoch 27/32\n",
      "2200/2200 [==============================] - 282s 128ms/step - loss: 4.6207 - categorical_accuracy: 0.1875 - val_loss: 9.8095 - val_categorical_accuracy: 0.0361\n",
      "Epoch 28/32\n",
      "2200/2200 [==============================] - 349s 158ms/step - loss: 4.6045 - categorical_accuracy: 0.1904 - val_loss: 9.4419 - val_categorical_accuracy: 0.0378\n",
      "Epoch 29/32\n",
      "2200/2200 [==============================] - 326s 148ms/step - loss: 4.5832 - categorical_accuracy: 0.1945 - val_loss: 9.4719 - val_categorical_accuracy: 0.0361\n",
      "Epoch 30/32\n",
      "2200/2200 [==============================] - 361s 164ms/step - loss: 4.5393 - categorical_accuracy: 0.2010 - val_loss: 9.8935 - val_categorical_accuracy: 0.0395\n",
      "Epoch 31/32\n",
      "2200/2200 [==============================] - 334s 152ms/step - loss: 4.5176 - categorical_accuracy: 0.2052 - val_loss: 9.9011 - val_categorical_accuracy: 0.0378\n",
      "Epoch 32/32\n",
      "2200/2200 [==============================] - 344s 156ms/step - loss: 4.4989 - categorical_accuracy: 0.2082 - val_loss: 10.2300 - val_categorical_accuracy: 0.0378\n"
     ]
    }
   ],
   "source": [
    "callback = MyCallback()\n",
    "history = model.fit(train, epochs=32, validation_data=val, callbacks=[callback])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "gpu",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.18"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}