File size: 24,502 Bytes
d3f8bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ac44a
 
 
d3f8bd4
61ac44a
 
 
 
 
 
 
d3f8bd4
 
 
 
 
 
 
61ac44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f8bd4
 
 
61ac44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f8bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ac44a
d3f8bd4
 
61ac44a
d3f8bd4
 
 
 
 
61ac44a
d3f8bd4
 
61ac44a
 
 
d3f8bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ac44a
d3f8bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
---
license: cc-by-nc-sa-4.0
dataset_info:
  features:
  - name: __key__
    dtype: string
  - name: __url__
    dtype: string
  - name: jpg
    dtype: image
  - name: json
    struct:
    - name: label
      dtype: string
  splits:
  - name: internal_train
    num_bytes: 4231024640
    num_examples: 190080
  - name: internal_valid
    num_bytes: 910479360
    num_examples: 40770
  - name: internal_test
    num_bytes: 911656960
    num_examples: 40860
  - name: external_train
    num_bytes: 4291031040
    num_examples: 192680
  - name: external_valid
    num_bytes: 893061120
    num_examples: 39670
  - name: external_test
    num_bytes: 869038080
    num_examples: 39360
  download_size: 12106291200
configs:
- config_name: internal
  data_files:
  - split: train
    path: data/dataset_internal_train_part*.tar
  - split: valid
    path: data/dataset_internal_valid_part*.tar
  - split: test
    path: data/dataset_internal_test_part*.tar
  default: true
- config_name: external
  data_files:
  - split: train
    path: data/dataset_external_train_part*.tar
  - split: valid
    path: data/dataset_external_valid_part*.tar
  - split: test
    path: data/dataset_external_test_part*.tar
tags:
- histology
- pathology
- webdataset
- image
task_categories:
- image-feature-extraction
- image-classification
---

# Histology images from uniform tumor regions in TCGA Whole Slide Images (TCGA-UT-Internal, TCGA-UT-External)

<div style="text-align: center;">
  <img src="logo.webp" width="600" alt="TCGA Histology Dataset Logo">
</div>


This repository provides a benchmarking framework for the TCGA histology image dataset originally published on [Zenodo](https://zenodo.org/records/5889558). It includes predefined train/validation/test splits and example code for foundation model evaluation.

## Task
Classification of 31 different cancer types from tumor histopathological images.

## Original Dataset Description

This dataset contains 1,608,060 image patches of hematoxylin & eosin stained histological samples from various human cancers. The data was collected and processed as follows:

- Source: TCGA dataset from 32 solid cancer types (GDC legacy database, downloaded between December 1, 2016, and June 19, 2017)
- Initial data: 9,662 diagnostic slides from 7,951 patients in SVS format
- Annotation: At least three representative tumor regions were selected as polygons by two trained pathologists
- Quality control: 926 slides were removed due to poor staining, low resolution, out-of-focus issues, absence of cancerous regions, or incorrect cancer types
- Final dataset: 8,736 diagnostic slides from 7,175 patients
- Patch extraction: 10 patches at 0.5 μm/pixel resolution (128 x 128 μm) were randomly cropped from each annotated region

Note: Additional resolution levels are available in the original Zenodo dataset. Please refer to the Zenodo repository for the complete dataset.

TCGA Barcode format (TCGA-XX-XXXX) represents patient ID. For details, see the [TCGA Barcode documentation](https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/).

## Updates in This Version

The dataset has been modified and organized for benchmarking purposes:

1. **Label Consolidation**:
   - Colon Adenocarcinoma (COAD) and Rectum Adenocarcinoma (READ) have been merged due to their histological similarity

2. **Structured Splits**:
   ### Internal Split (70:15:15): TCGA-UT-Internal
   - Ensures no patient overlap between train, validation, and test sets
   - Approximate distribution: 70% train, 15% validation, 15% test

   ### External Split: TCGA-UT-External
   - Separates data based on medical facilities to evaluate cross-institutional generalization
   - No facility overlap between train, validation, and test sets
   - Maintains similar class distributions across splits

## Dataset Details

### Internal Split: TCGA-UT-Internal
| case                                                         | train (patches) | valid (patches) | test (patches) | train (patients) | valid (patients) | test (patients) |
|:-------------------------------------------------------------|----------------:|----------------:|---------------:|-----------------:|-----------------:|----------------:|
| Adrenocortical_carcinoma                                     |            3480 |             750 |            750 |               35 |                8 |               8 |
| Bladder_Urothelial_Carcinoma                                 |            6990 |            1500 |           1500 |              202 |               43 |              44 |
| Brain_Lower_Grade_Glioma                                     |           16480 |            3530 |           3520 |              326 |               70 |              71 |
| Breast_invasive_carcinoma                                    |           16580 |            3550 |           3560 |              513 |              110 |             111 |
| Cervical_squamous_cell_carcinoma_and_endocervical_adenocarcinoma |            4380 |             930 |            960 |              140 |               30 |              31 |
| Cholangiocarcinoma                                           |             630 |             120 |            150 |               21 |                4 |               5 |
| Colon_Rectum_adenocarcinoma                                  |            7020 |            1510 |           1500 |              190 |               41 |              41 |
| Esophageal_carcinoma                                         |            2360 |             510 |            510 |               78 |               17 |              17 |
| Glioblastoma_multiforme                                      |           16620 |            3570 |           3550 |              254 |               54 |              55 |
| Head_and_Neck_squamous_cell_carcinoma                        |            8250 |            1770 |           1770 |              221 |               48 |              48 |
| Kidney_Chromophobe                                           |            1710 |             360 |            390 |               57 |               12 |              13 |
| Kidney_renal_clear_cell_carcinoma                            |            8160 |            1740 |           1750 |              269 |               58 |              58 |
| Kidney_renal_papillary_cell_carcinoma                        |            4750 |            1020 |           1020 |              149 |               32 |              33 |
| Liver_hepatocellular_carcinoma                               |            5860 |            1250 |           1260 |              190 |               41 |              41 |
| Lung_adenocarcinoma                                          |           11520 |            2470 |           2470 |              303 |               65 |              66 |
| Lung_squamous_cell_carcinoma                                 |           11590 |            2490 |           2480 |              305 |               66 |              66 |
| Lymphoid_Neoplasm_Diffuse_Large_B-cell_Lymphoma              |             570 |             120 |            150 |               19 |                4 |               5 |
| Mesothelioma                                                 |            1470 |             320 |            300 |               42 |                9 |              10 |
| Ovarian_serous_cystadenocarcinoma                            |            1740 |             390 |            390 |               58 |               13 |              13 |
| Pancreatic_adenocarcinoma                                    |            2850 |             620 |            620 |               88 |               19 |              19 |
| Pheochromocytoma_and_Paraganglioma                           |             930 |             210 |            210 |               30 |                7 |               7 |
| Prostate_adenocarcinoma                                      |            6870 |            1470 |           1470 |              212 |               45 |              46 |
| Sarcoma                                                      |            9440 |            2010 |           2030 |              149 |               32 |              32 |
| Skin_Cutaneous_Melanoma                                      |            7040 |            1510 |           1510 |              226 |               48 |              49 |
| Stomach_adenocarcinoma                                       |            6770 |            1450 |           1450 |              182 |               39 |              39 |
| Testicular_Germ_Cell_Tumors                                  |            4210 |             900 |            900 |               92 |               20 |              20 |
| Thymoma                                                      |            2520 |             540 |            540 |               59 |               13 |              13 |
| Thyroid_carcinoma                                            |            7950 |            1710 |           1700 |              259 |               56 |              56 |
| Uterine_Carcinosarcoma                                       |            1470 |             320 |            330 |               34 |                7 |               8 |
| Uterine_Corpus_Endometrial_Carcinoma                         |            8730 |            1890 |           1860 |              266 |               57 |              58 |
| Uveal_Melanoma                                               |            1140 |             240 |            260 |               38 |                8 |               9 |
| **Total**                                                    |          190080 |           40770 |          40860 |             5007 |             1076 |            1092 |

### External Split: TCGA-UT-External

| case                                                         | train (patches) | valid (patches) | test (patches) | train (patients) | valid (patients) | test (patients) |
|:-------------------------------------------------------------|----------------:|----------------:|---------------:|-----------------:|-----------------:|----------------:|
| Adrenocortical_carcinoma                                     |            4500 |             390 |             90 |               45 |                5 |               1 |
| Bladder_Urothelial_Carcinoma                                 |            6990 |            1500 |           1500 |              190 |               50 |              49 |
| Brain_Lower_Grade_Glioma                                     |           16430 |            3540 |           3560 |              332 |               80 |              55 |
| Breast_invasive_carcinoma                                    |           16560 |            3570 |           3560 |              509 |              116 |             109 |
| Cervical_squamous_cell_carcinoma_and_endocervical_adenocarcinoma |            4380 |             930 |            960 |              145 |               31 |              25 |
| Cholangiocarcinoma                                           |             660 |             150 |             90 |               22 |                5 |               3 |
| Colon_Rectum_adenocarcinoma                                  |            7020 |            1500 |           1510 |              197 |               39 |              36 |
| Esophageal_carcinoma                                         |            2360 |             510 |            510 |               78 |               17 |              17 |
| Glioblastoma_multiforme                                      |           16630 |            3810 |           3300 |              244 |               76 |              43 |
| Head_and_Neck_squamous_cell_carcinoma                        |            8260 |            1750 |           1780 |              224 |               51 |              42 |
| Kidney_Chromophobe                                           |            1740 |             270 |            450 |               58 |                9 |              15 |
| Kidney_renal_clear_cell_carcinoma                            |            8170 |            1710 |           1770 |              269 |               57 |              59 |
| Kidney_renal_papillary_cell_carcinoma                        |            4750 |            1020 |           1020 |              146 |               34 |              34 |
| Liver_hepatocellular_carcinoma                               |            5870 |            1300 |           1200 |              189 |               43 |              40 |
| Lung_adenocarcinoma                                          |           11530 |            2470 |           2460 |              288 |               77 |              69 |
| Lung_squamous_cell_carcinoma                                 |           11580 |            2490 |           2490 |              296 |               68 |              73 |
| Lymphoid_Neoplasm_Diffuse_Large_B-cell_Lymphoma              |             600 |             90  |            150 |               20 |                3 |               5 |
| Mesothelioma                                                 |            1470 |             300 |            320 |               43 |               10 |               8 |
| Ovarian_serous_cystadenocarcinoma                            |            2220 |             120 |            180 |               74 |                4 |               6 |
| Pancreatic_adenocarcinoma                                    |            2860 |             600 |            630 |               85 |               20 |              21 |
| Pheochromocytoma_and_Paraganglioma                           |            1170 |             90  |             90 |               38 |                3 |               3 |
| Prostate_adenocarcinoma                                      |            6870 |            1470 |           1470 |              226 |               49 |              28 |
| Sarcoma                                                      |            9490 |            2070 |           1920 |              154 |               28 |              31 |
| Skin_Cutaneous_Melanoma                                      |            7030 |            1530 |           1500 |              233 |               40 |              50 |
| Stomach_adenocarcinoma                                       |            6990 |            1330 |           1350 |              187 |               37 |              36 |
| Testicular_Germ_Cell_Tumors                                  |            4600 |             630 |            780 |               96 |               10 |              26 |
| Thymoma                                                      |            2520 |             540 |            540 |               54 |               18 |              13 |
| Thyroid_carcinoma                                            |            7980 |            1650 |           1730 |              259 |               54 |              58 |
| Uterine_Carcinosarcoma                                       |            1470 |             330 |            320 |               37 |                7 |               5 |
| Uterine_Corpus_Endometrial_Carcinoma                         |            8730 |            1890 |           1860 |              272 |               48 |              61 |
| Uveal_Melanoma                                               |            1250 |             120 |            270 |               42 |                4 |               9 |
| **Total**                                                    |          192680 |           39670 |          39360 |             5052 |             1093 |            1030 |


## Foundation Model Benchmarking

We provide example implementations using four state-of-the-art foundation models:
- [CONCH](https://huggingface.co/MahmoodLab/CONCH)
- [GigaPath](https://huggingface.co/prov-gigapath/prov-gigapath)
- [UNI](https://huggingface.co/MahmoodLab/UNI)
- [UNI2](https://huggingface.co/MahmoodLab/UNI2-h)
- [H-Optimus-0](https://huggingface.co/bioptimus/H-optimus-0)
- [H-Optimus-1](https://huggingface.co/bioptimus/H-optimus-1)
- [Virchow](https://huggingface.co/paige-ai/Virchow)
- [Virchow2](https://huggingface.co/paige-ai/Virchow2)
- [Phikon](https://huggingface.co/owkin/phikon)
- [Phikon-v2](https://huggingface.co/owkin/phikon-v2)
- [Kaiko](https://github.com/kaiko-ai/towards_large_pathology_fms)
- [Lunit](https://huggingface.co/1aurent/vit_small_patch8_224.lunit_dino)
- [Hibou](https://huggingface.co/histai/hibou-L)
- [CTransPath](https://github.com/Xiyue-Wang/TransPath)
- ResNet

See `licenses/references.txt` for model citations.

### Benchmark Results
**Note:** The provided script is a simplified example of training code. In practice, hyperparameter tuning and additional techniques were employed to achieve the following results.
#### Internal Split Results

| Model | Accuracy (LogReg) | Balanced Accuracy (LogReg) | Accuracy (KNN) | Balanced Accuracy (KNN) | Accuracy (Prototype) | Balanced Accuracy (Prototype) |
|-----|-----------------|--------------------------|--------------|-----------------------|--------------------|-----------------------------|
| Kaiko(l14)* | 0.8608 | **0.8662** | 0.8116 | 0.7636 | 0.7708 | 0.7434 |
| H-Optimus-1 | **0.8616** | 0.8557 | **0.8164** | **0.7671** | **0.7730** | **0.7579** |
| UNI2 | 0.8564 | 0.8501 | 0.7962 | 0.7434 | 0.7546 | 0.7476 |
| H-Optimus-0 | 0.8498 | 0.8399 | 0.7930 | 0.7307 | 0.7492 | 0.7321 |
| Virchow2 | 0.8455 | 0.8351 | 0.7686 | 0.6989 | 0.6671 | 0.6500 |
| Phikon-v2 | 0.8289 | 0.8212 | 0.7467 | 0.6777 | 0.6982 | 0.6869 |
| Phikon | 0.8342 | 0.8111 | 0.7207 | 0.6255 | 0.6625 | 0.6385 |
| Virchow | 0.8223 | 0.8008 | 0.7244 | 0.6262 | 0.6087 | 0.5759 |
| Hibou | 0.8189 | 0.7985 | 0.7433 | 0.6618 | 0.6291 | 0.6034 |
| UNI | 0.8144 | 0.7923 | 0.7634 | 0.6897 | 0.7109 | 0.6946 |
| GigaPath | 0.8161 | 0.7878 | 0.7444 | 0.6676 | 0.6967 | 0.6675 |
| Lunit* | 0.7919 | 0.7535 | 0.7427 | 0.6539 | 0.6611 | 0.6427 |
| CONCH | 0.7672 | 0.7295 | 0.7028 | 0.6139 | 0.6150 | 0.6097 |
| CTransPath | 0.7255 | 0.6748 | 0.6200 | 0.5057 | 0.5158 | 0.4857 |
| ResNet | 0.6395 | 0.5581 | 0.5114 | 0.3816 | 0.3154 | 0.2973 |


\* Training data contains TCGA dataset.

#### External Split Results

| Model | Accuracy (LogReg) | Balanced Accuracy (LogReg) | Accuracy (KNN) | Balanced Accuracy (KNN) | Accuracy (Prototype) | Balanced Accuracy (Prototype) |
|-----|-----------------|--------------------------|--------------|-----------------------|--------------------|-----------------------------|
| H-Optimus-1 | **0.8080** | **0.7450** | **0.7700** | **0.6955** | **0.7572** | **0.7363** |
| Kaiko(b8)* | 0.7920 | 0.7370 | 0.7181 | 0.6597 | 0.7509 | 0.7134 |
| UNI2 | 0.7648 | 0.7262 | 0.7210 | 0.6498 | 0.7018 | 0.6839 |
| H-Optimus-0 | 0.7845 | 0.7213 | 0.7209 | 0.6579 | 0.7106 | 0.6842 |
| Virchow2 | 0.7744 | 0.6919 | 0.7221 | 0.6544 | 0.6482 | 0.6331 |
| UNI | 0.7373 | 0.6581 | 0.6668 | 0.5887 | 0.6612 | 0.6232 |
| Phikon-v2 | 0.7185 | 0.6535 | 0.5857 | 0.5040 | 0.6197 | 0.5752 |
| Virchow | 0.7274 | 0.6490 | 0.6464 | 0.5541 | 0.5847 | 0.5636 |
| GigaPath | 0.7246 | 0.6379 | 0.6426 | 0.5495 | 0.6361 | 0.5960 |
| Phikon | 0.7311 | 0.6351 | 0.5511 | 0.4586 | 0.5474 | 0.5104 |
| Hibou | 0.6696 | 0.6161 | 0.5155 | 0.4436 | 0.4911 | 0.4765 |
| Lunit* | 0.6851 | 0.6044 | 0.6021 | 0.5098 | 0.5862 | 0.5503 |
| CONCH | 0.6991 | 0.5975 | 0.6626 | 0.5735 | 0.5954 | 0.5905 |
| CTransPath | 0.6160 | 0.5215 | 0.5229 | 0.4205 | 0.4498 | 0.4128 |
| ResNet | 0.4967 | 0.3929 | 0.3960 | 0.2871 | 0.2657 | 0.2392 |


\* Training data contains TCGA dataset.

### Getting Started

1. Clone this repository:
```bash
git clone [repository-url]
```

2. Install dependencies:
```bash
pip install -r requirements.txt
```

3. Login Hugging Face:
- The first time you run the program, you must log in with a Hugging Face account that has access to the dataset and the model you wish to use.

4. (Optional) Setup:
- A notebook file `setup.ipynb` is provided for repository cloning, environment setup, and code execution. It has been confirmed to work in the Google Colaboratory environment.

### Troubleshooting

#### Dependencies Installation

While `requirements.txt` specifies version numbers for dependencies, some installations might require additional steps or alternative approaches depending on your system configuration:

1. **SPAMS Library Installation**
   - If the standard SPAMS installation fails, try:
   ```bash
   pip install spams-bin
   ```
   - On some systems, you might need to install additional system libraries:
   ```bash
   pip install PyOpenGL PyOpenGL_accelerate
   ```

2. **Version Compatibility**
   - While we specify exact versions in `requirements.txt`, some dependencies might require different versions based on your hardware configuration
   - If you encounter compatibility issues, try installing without version constraints and test functionality

#### Dataset Label Data Type Issues

When creating the dataset, there is a possibility that an error occurs due to the data type of the label. If you encounter such an issue, try modifying line 83 in `extract_train.py` as follows:

From:
```python
label = torch.tensor(self.labels[idx], dtype=torch.long)
```
To:
```python
label = torch.tensor(int(self.labels[idx]), dtype=torch.long)
```

### Data Loading Example

The dataset uses WebDataset format for efficient loading. Here's an example from `extract_train.py`:

```python
patterns = {
    'train': [os.path.join(work_dir, f"data/dataset_{split}_train_part{str(i).zfill(3)}.tar") for i in range(39)],
    'valid': [os.path.join(work_dir, f"data/dataset_{split}_valid_part{str(i).zfill(3)}.tar") for i in range(file_range)],
    'test': [os.path.join(work_dir, f"data/dataset_{split}_test_part{str(i).zfill(3)}.tar") for i in range(file_range)],
}
dataset = wds.WebDataset(patterns[mode], shardshuffle=False) \
    .shuffle(buffer_size, seed=42) \
    .decode("pil").to_tuple("jpg", "json") \
    .map_tuple(func_transform, lambda x: encode_labels([x["label"]], label_encoder))
```

### Configuration and Usage

1. Configure your experiment in `config.yaml`:
```yaml
model_name: "h_optimus"    # Model selection: "h_optimus", etc.
split_type: "internal"     # Split type: "internal" or "external"
device: "cuda"            # Computation device: "cuda" or "cpu"
eval_name: "logreg"       # Evaluation method: "logreg", "knn", or "proto"
feature_exist: True       # Skip feature extraction if features already exist
max_iter: 1000           # Maximum iterations for training
cost: 0.0001             # Cost parameter for logistic regression
```

Configuration parameters:
- `model_name`: Foundation model to use for feature extraction
- `split_type`: Dataset split strategy
- `eval_name`: Methods of evaluation (logreg, knn, proto)
- `device`: Computation device (GPU/CPU)
- `feature_exist`: Skip feature extraction if True and features are already available
- `max_iter`: Maximum training iterations for logistic regression
- `cost`: Regularization parameter for logistic regression
- `k`: Number of Nearest Neighbors in KNN

2. Define models and transforms in `extract_train.py`:
```python
def get_model_transform(model_name):
    # Add your model and transform definitions here
    pass
```

3. Run the experiment:
```bash
python extract_train.py
```

This will:
- Extract features using the specified foundation model
- Save features to H5 files
- Perform linear probing, KNN, and prototype classification
- Output accuracy and balanced accuracy metrics

## License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC-BY-NC-SA 4.0).

- For non-commercial use: Please use the dataset under CC-BY-NC-SA
- For commercial use: Please contact us at [email protected]

## Citation

If you use this dataset, please cite the original paper:

```bibtex
@article{komura2022universal,
  title={Universal encoding of pan-cancer histology by deep texture representations},
  author={Komura, D., Kawabe, A., Fukuta, K., Sano, K., Umezaki, T., Koda, H., Suzuki, R., Tominaga, K., Ochi, M., Konishi, H., Masakado, F., Saito, N., Sato, Y., Onoyama, T., Nishida, S., Furuya, G., Katoh, H., Yamashita, H., Kakimi, K., Seto, Y., Ushiku, T., Fukayama, M., Ishikawa, S.},
  journal={Cell Reports},
  volume={38},
  pages={110424},
  year={2022},
  doi={10.1016/j.celrep.2022.110424}
}
```