from transformers import GPT2LMHeadModel, AutoTokenizer import demo_util import numpy as np import torch from PIL import Image import os torch.backends.cuda.matmul.allow_tf32 = True torch.manual_seed(0) device = "cuda:1" dtype = torch.float16 config = demo_util.get_config("configs/titok_l32.yaml") titok_tokenizer = demo_util.get_titok_tokenizer(config) titok_tokenizer = titok_tokenizer.to(device) tokenizer = AutoTokenizer.from_pretrained("./image_tokenizer") model = GPT2LMHeadModel.from_pretrained("./checkpoint-20000").to(device).to(dtype).eval() def detokenize(tokens): encoded_tokens = torch.from_numpy(np.array(tokens).astype(np.int64)).view(1, 1, -1).to(device) reconstructed_image = titok_tokenizer.decode_tokens(encoded_tokens) reconstructed_image = torch.clamp(reconstructed_image, 0.0, 1.0) reconstructed_image = (reconstructed_image * 255.0).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()[0] return Image.fromarray(reconstructed_image) prompt = "" inputs = tokenizer(f"{text}<|startofimage|>", return_tensors="pt").to(device) input_ids = inputs["input_ids"] init = input_ids.shape[-1] soi_token = tokenizer.encode("<|image:0|>")[0] for _ in range(33): logits = model(input_ids).logits[:, -1, :] probas = torch.nn.functional.softmax(logits, dim=-1) pred_idx = torch.argmax(probas, dim=-1, keepdim=True) input_ids = torch.cat((input_ids, pred_idx), dim=-1) tokenizer.decode(input_ids[0]) tokens = input_ids[:, init:-1].detach().cpu().squeeze().numpy() - soi_token if np.any(tokens < 0) or np.any(tokens >= 4096): print("Illegal Image Tokens") else: img = detokenize(tokens) img.save(f"./out.png")