datasetId
large_stringlengths 6
107
| author
large_stringlengths 3
34
| last_modified
large_stringdate 2021-05-20 00:57:22
2025-05-05 12:15:05
| downloads
int64 0
4.28M
| likes
int64 0
7.74k
| tags
large listlengths 1
2.03k
| task_categories
large listlengths 0
16
| createdAt
large_stringdate 2022-03-02 23:29:22
2025-05-05 12:13:14
| trending_score
float64 1
39
⌀ | card
large_stringlengths 31
1M
|
---|---|---|---|---|---|---|---|---|---|
ParkSY/data_nerf_anything_depth_normalmap | ParkSY | 2025-05-05T05:59:15Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T05:36:29Z | null | ---
dataset_info:
features:
- name: input_image
dtype: string
- name: edit_prompt
dtype: string
- name: edited_image
dtype: string
- name: label
dtype: int64
- name: depthmap
dtype: string
- name: normalmap
dtype: string
splits:
- name: train
num_bytes: 1332384
num_examples: 8190
download_size: 266269
dataset_size: 1332384
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
justinian336/salvadoran-news-elmundo | justinian336 | 2025-05-05T01:30:12Z | 117 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2023-02-15T14:38:15Z | null | ---
dataset_info:
features:
- name: image_src
dtype: string
- name: title
dtype: string
- name: content
dtype: string
- name: category
dtype:
class_label:
names:
'0': Nacionales
'1': Economia
'2': Tecnomundo
'3': Politica
'4': Guia Mundialista
'5': El Mundo
'6': Editorial
'7': Confidencial
- name: date
dtype: string
- name: link
dtype: string
splits:
- name: train
num_bytes: 92200472
num_examples: 47007
download_size: 51272331
dataset_size: 92200472
---
# Dataset Card for "salvadoran-news-elmundo"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
mlfoundations-dev/nemo_nano_code_1000k | mlfoundations-dev | 2025-05-05T01:03:07Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T00:50:19Z | null | ---
dataset_info:
features:
- name: input
dtype: string
- name: output
dtype: string
- name: category
dtype: string
- name: license
dtype: string
- name: reasoning
dtype: string
- name: generator
dtype: string
- name: used_in_training
dtype: string
- name: version
dtype: string
- name: system_prompt
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 40531140108.885
num_examples: 1000000
download_size: 16693989550
dataset_size: 40531140108.885
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
xbilek25/train_hall_absorb_0.7_3600_7200 | xbilek25 | 2025-05-04T20:00:31Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T15:33:49Z | null | ---
dataset_info:
features:
- name: client_id
dtype: string
- name: path
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: sentence
dtype: string
- name: up_votes
dtype: int64
- name: down_votes
dtype: int64
- name: age
dtype: string
- name: gender
dtype: string
- name: accent
dtype: string
- name: locale
dtype: string
- name: segment
dtype: string
- name: variant
dtype: string
splits:
- name: train
num_bytes: 710317089.0
num_examples: 3600
download_size: 558743976
dataset_size: 710317089.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_2_dataset_0_for_gen_18_v2 | HungVu2003 | 2025-05-04T18:19:56Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-04T18:19:55Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 2023535
num_examples: 13750
download_size: 1099056
dataset_size: 2023535
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
openfoodfacts/product-database | openfoodfacts | 2025-05-04T18:17:42Z | 3,298 | 35 | [
"language:en",
"language:fr",
"language:de",
"language:es",
"language:it",
"language:nl",
"language:pl",
"language:pt",
"language:sv",
"language:bg",
"language:ro",
"language:fi",
"language:ru",
"language:nb",
"language:cs",
"language:th",
"language:da",
"language:hr",
"language:hu",
"language:ar",
"language:el",
"language:ja",
"language:ca",
"language:sr",
"language:sl",
"language:sk",
"language:tr",
"language:lt",
"language:zh",
"language:et",
"language:lv",
"language:xx",
"language:uk",
"language:id",
"language:he",
"language:vi",
"language:is",
"language:la",
"language:in",
"language:ko",
"language:sq",
"language:iw",
"language:ka",
"language:ms",
"language:bs",
"language:fa",
"language:bn",
"language:gl",
"language:kk",
"language:mk",
"language:nn",
"language:hi",
"language:aa",
"language:uz",
"language:so",
"language:af",
"language:eu",
"license:agpl-3.0",
"license:odbl",
"size_categories:1M<n<10M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2024-10-21T08:44:28Z | null | ---
language:
- en
- fr
- de
- es
- it
- nl
- pl
- pt
- sv
- bg
- ro
- fi
- ru
- nb
- cs
- th
- da
- hr
- hu
- ar
- el
- ja
- ca
- sr
- sl
- sk
- tr
- lt
- zh
- et
- lv
- xx
- uk
- id
- he
- vi
- is
- la
- in
- ko
- sq
- iw
- ka
- ms
- bs
- fa
- bn
- gl
- kk
- mk
- nn
- hi
- aa
- uz
- so
- af
- eu
license:
- agpl-3.0
- odbl
size_categories:
- 1M<n<10M
pretty_name: Open Food Facts Product Database
dataset_info:
config_name: default
configs:
- config_name: default
data_files:
- split: food
path: food.parquet
- split: beauty
path: beauty.parquet
---
# Open Food Facts Database
## What is 🍊 Open Food Facts?
### A food products database
Open Food Facts is a database of food products with ingredients, allergens, nutrition facts and all the tidbits of information we can find on product labels.
### Made by everyone
Open Food Facts is a non-profit association of volunteers. 25.000+ contributors like you have added 1.7 million + products from 150 countries using our Android or iPhone app or their camera to scan barcodes and upload pictures of products and their labels.
### For everyone
Data about food is of public interest and has to be open. The complete database is published as open data and can be reused by anyone and for any use. Check-out the cool reuses or make your own!
## The Parquet Dataset
This dataset is a simpler version of the [JSONL dump](https://world.openfoodfacts.org/data) provided by the Open Food Facts organization on a daily basis. It was converted into the Parquet format for easy of use.
### Data processing
* `Debug` tags were removed.
* `Tags`tags are conserved since they contain most information,
* `Hierarchy` tags were removed
* `lc` tags were removed. It corresponds to the ["language of the interface"](https://openfoodfacts.github.io/openfoodfacts-server/reference/api-tutorials/adding-missing-products/#sending-the-right-country-and-language-parameters-based-on-the-country-your-user-is-located-in-and-the-language-the-product-is-in),
* `langs` tags are kept for each `ingredients_text` and conserved as individual columns (*for now*).
The original JSONL dump was processed using [Pyarrow](https://arrow.apache.org/docs/python/).
## Conditions for reuse
The Open Food Facts database is available under the Open Database License.
The individual contents of the database are available under the Database Contents License.
Products images are available under the Creative Commons Attribution ShareAlike licence. They may contain graphical elements subject to copyright or other rights, that may in some cases be reproduced (quotation rights or fair use).
Please read Terms and conditions of use and re-use before re-using the data.
## Tell us about your reuse
We are very interested in learning what the Open Food Facts data is used for. It is not mandatory, but we would very much appreciate it if you tell us about your re-uses so that we can share them with the Open Food Facts community. You can also fill this form to get a chance to get your app featured.
- **Homepage:** https://world.openfoodfacts.org/
- **Repository:** https://github.com/openfoodfacts
- **Point of Contact:** [email protected] |
paulinus/so100_test | paulinus | 2025-05-04T18:02:08Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"region:us",
"LeRobot",
"so100",
"tutorial"
] | [
"robotics"
] | 2025-05-04T18:02:04Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- so100
- tutorial
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 1,
"total_frames": 629,
"total_tasks": 1,
"total_videos": 0,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:1"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
Lithium73fr/test2 | Lithium73fr | 2025-05-04T17:55:20Z | 0 | 0 | [
"task_categories:robotics",
"region:us",
"phosphobot",
"so100",
"phospho-dk"
] | [
"robotics"
] | 2025-05-02T18:43:56Z | null |
---
tags:
- phosphobot
- so100
- phospho-dk
task_categories:
- robotics
---
# test2
**This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).**
This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
|
GitBag/Qwen2.5-7B_hmmt-feb-25_eval | GitBag | 2025-05-04T17:48:21Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-04T17:48:20Z | null | ---
dataset_info:
features:
- name: problem
dtype: string
- name: answer
dtype: string
- name: response_0
dtype: string
- name: response_1
dtype: string
- name: response_2
dtype: string
- name: response_3
dtype: string
- name: response_4
dtype: string
- name: response_5
dtype: string
- name: response_6
dtype: string
- name: response_7
dtype: string
- name: response_8
dtype: string
- name: response_9
dtype: string
- name: response_10
dtype: string
- name: response_11
dtype: string
- name: response_12
dtype: string
- name: response_13
dtype: string
- name: response_14
dtype: string
- name: response_15
dtype: string
- name: response_16
dtype: string
- name: response_17
dtype: string
- name: response_18
dtype: string
- name: response_19
dtype: string
- name: response_20
dtype: string
- name: response_21
dtype: string
- name: response_22
dtype: string
- name: response_23
dtype: string
- name: response_24
dtype: string
- name: response_25
dtype: string
- name: response_26
dtype: string
- name: response_27
dtype: string
- name: response_28
dtype: string
- name: response_29
dtype: string
- name: response_30
dtype: string
- name: response_31
dtype: string
- name: eval_0
dtype: float64
- name: eval_1
dtype: float64
- name: eval_2
dtype: float64
- name: eval_3
dtype: float64
- name: eval_4
dtype: float64
- name: eval_5
dtype: float64
- name: eval_6
dtype: float64
- name: eval_7
dtype: float64
- name: eval_8
dtype: float64
- name: eval_9
dtype: float64
- name: eval_10
dtype: float64
- name: eval_11
dtype: float64
- name: eval_12
dtype: float64
- name: eval_13
dtype: float64
- name: eval_14
dtype: float64
- name: eval_15
dtype: float64
- name: eval_16
dtype: float64
- name: eval_17
dtype: float64
- name: eval_18
dtype: float64
- name: eval_19
dtype: float64
- name: eval_20
dtype: float64
- name: eval_21
dtype: float64
- name: eval_22
dtype: float64
- name: eval_23
dtype: float64
- name: eval_24
dtype: float64
- name: eval_25
dtype: float64
- name: eval_26
dtype: float64
- name: eval_27
dtype: float64
- name: eval_28
dtype: float64
- name: eval_29
dtype: float64
- name: eval_30
dtype: float64
- name: eval_31
dtype: float64
splits:
- name: train
num_bytes: 3844721
num_examples: 30
download_size: 1256848
dataset_size: 3844721
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
RafaelJaime/sas_opposition_exam_data | RafaelJaime | 2025-05-04T17:48:04Z | 376 | 0 | [
"language:es",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"medical"
] | [] | 2025-03-21T14:57:39Z | null | ---
dataset_info:
features:
- name: statement
dtype: string
- name: answers
sequence: string
- name: correct_answer
dtype: string
- name: theme
dtype: string
- name: version
dtype: string
splits:
- name: train
num_bytes: 5128074
num_examples: 10712
download_size: 2407181
dataset_size: 5128074
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: apache-2.0
language:
- es
tags:
- medical
---
# SAS Opposition Exam Dataset
This dataset contains questions and answers from all the exams of the SAS (Servicio Andaluz de Salud) public job offers. The questions and answers are sourced from the official webpage of the Andalusian Health Service [here](https://www.sspa.juntadeandalucia.es/servicioandaluzdesalud/profesionales/ofertas-de-empleo/oferta-de-empleo-publico-puestos-base/oep-extraordinaria-decreto-ley-122022-centros-sas/cuadro-de-evolucion-concurso-oposicion-centros-sas).
## Dataset Information
- **Statement**: The question in the exam.
- **Answers**: The possible answers for the question.
- **Real Answer**: The correct answer for the question.
- **Theme**: The topic or subject of the question.
### Dataset Creation Script
The script used to create this dataset can be found at: [generation_script.py](https://huggingface.co/datasets/RafaelJaime/sas_opposition_exam_data/blob/main/generation_script.py). |
HungVu2003/opt-350m_beta_1.0_alpha_0.8_num-company_3_dataset_1_for_gen_2 | HungVu2003 | 2025-05-04T16:47:43Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-04T16:47:41Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 2632052
num_examples: 12498
download_size: 1439908
dataset_size: 2632052
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Joseph7D/emotion-dataset | Joseph7D | 2025-05-04T16:34:13Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-04T16:34:09Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: emotion
dtype: string
splits:
- name: train
num_bytes: 3013664
num_examples: 26928
- name: test
num_bytes: 372292
num_examples: 3366
- name: validation
num_bytes: 378972
num_examples: 3366
download_size: 2318145
dataset_size: 3764928
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
---
|
JosephZ/mega_1m | JosephZ | 2025-05-04T16:14:08Z | 2 | 0 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2411.15435",
"region:us",
"scene-graph-generation"
] | [] | 2025-05-02T09:13:32Z | null | ---
dataset_info:
features:
- name: image_id
dtype: string
- name: file_name
dtype: string
- name: image
dtype: image
- name: objects
dtype: string
- name: relationships
dtype: string
- name: data_source
dtype: string
splits:
- name: train
num_bytes: 221848987040.66
num_examples: 988531
download_size: 221355388705
dataset_size: 221848987040.66
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: apache-2.0
language:
- en
tags:
- scene-graph-generation
---
This dataset MegaSG contains 1M images annotated with scene graphs , which was introduced in the paper [What Makes a Scene ? Scene Graph-based Evaluation and Feedback for Controllable Generation](https://arxiv.org/pdf/2411.15435) |
mteb/VoyageMMarcoReranking | mteb | 2025-05-04T16:11:59Z | 9 | 0 | [
"task_categories:text-ranking",
"annotations_creators:derived",
"multilinguality:monolingual",
"language:jpn",
"license:cc-by-4.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2312.16144",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-ranking"
] | 2025-02-18T20:02:06Z | null | ---
annotations_creators:
- derived
language:
- jpn
license: cc-by-4.0
multilinguality: monolingual
task_categories:
- text-ranking
task_ids: []
dataset_info:
- config_name: corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 26582357
num_examples: 53375
download_size: 12669365
dataset_size: 26582357
- config_name: default
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 3093432
num_examples: 53375
download_size: 359413
dataset_size: 3093432
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 139132
num_examples: 2048
download_size: 79174
dataset_size: 139132
- config_name: top_ranked
features:
- name: query-id
dtype: string
- name: corpus-ids
sequence: string
splits:
- name: test
num_bytes: 1778562
num_examples: 2048
download_size: 353814
dataset_size: 1778562
configs:
- config_name: corpus
data_files:
- split: test
path: corpus/test-*
- config_name: default
data_files:
- split: test
path: data/test-*
- config_name: queries
data_files:
- split: test
path: queries/test-*
- config_name: top_ranked
data_files:
- split: test
path: top_ranked/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">VoyageMMarcoReranking</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
a hard-negative augmented version of the Japanese MMARCO dataset as used in Voyage AI Evaluation Suite
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | Academic, Non-fiction, Written |
| Reference | https://arxiv.org/abs/2312.16144 |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["VoyageMMarcoReranking"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{clavié2023jacolbert,
archiveprefix = {arXiv},
author = {Benjamin Clavié},
eprint = {2312.16144},
title = {JaColBERT and Hard Negatives, Towards Better Japanese-First Embeddings for Retrieval: Early Technical Report},
year = {2023},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("VoyageMMarcoReranking")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 55423,
"number_of_characters": 8824820,
"num_documents": 53375,
"min_document_length": 19,
"average_document_length": 164.72532084309134,
"max_document_length": 1192,
"unique_documents": 53375,
"num_queries": 2048,
"min_query_length": 3,
"average_query_length": 15.9208984375,
"max_query_length": 73,
"unique_queries": 2048,
"none_queries": 0,
"num_relevant_docs": 53375,
"min_relevant_docs_per_query": 26,
"average_relevant_docs_per_query": 1.06201171875,
"max_relevant_docs_per_query": 29,
"unique_relevant_docs": 53375,
"num_instructions": null,
"min_instruction_length": null,
"average_instruction_length": null,
"max_instruction_length": null,
"unique_instructions": null,
"num_top_ranked": 2048,
"min_top_ranked_per_query": 26,
"average_top_ranked_per_query": 26.06201171875,
"max_top_ranked_per_query": 29
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/SCIDOCS-PL | mteb | 2025-05-04T16:11:26Z | 34 | 0 | [
"task_categories:text-retrieval",
"multilinguality:monolingual",
"source_datasets:mteb/scidocs",
"language:pol",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2305.19840",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-retrieval"
] | 2025-02-05T19:10:26Z | null | ---
language:
- pol
multilinguality: monolingual
source_datasets:
- mteb/scidocs
task_categories:
- text-retrieval
task_ids: []
dataset_info:
- config_name: corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 35547893
num_examples: 25657
download_size: 21449173
dataset_size: 35547893
- config_name: default
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 2873088
num_examples: 29928
download_size: 1330598
dataset_size: 2873088
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 131568
num_examples: 1000
download_size: 100886
dataset_size: 131568
configs:
- config_name: corpus
data_files:
- split: test
path: corpus/test-*
- config_name: default
data_files:
- split: test
path: data/test-*
- config_name: queries
data_files:
- split: test
path: queries/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">SCIDOCS-PL</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction, to document classification and recommendation.
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | None |
| Reference | https://allenai.org/data/scidocs |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["SCIDOCS-PL"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{wojtasik2024beirpl,
archiveprefix = {arXiv},
author = {Konrad Wojtasik and Vadim Shishkin and Kacper Wołowiec and Arkadiusz Janz and Maciej Piasecki},
eprint = {2305.19840},
primaryclass = {cs.IR},
title = {BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language},
year = {2024},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("SCIDOCS-PL")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 26657,
"number_of_characters": 32692750,
"num_documents": 25657,
"min_document_length": 12,
"average_document_length": 1271.0791986592353,
"max_document_length": 11840,
"unique_documents": 25657,
"num_queries": 1000,
"min_query_length": 14,
"average_query_length": 80.671,
"max_query_length": 235,
"unique_queries": 1000,
"none_queries": 0,
"num_relevant_docs": 29928,
"min_relevant_docs_per_query": 27,
"average_relevant_docs_per_query": 4.928,
"max_relevant_docs_per_query": 30,
"unique_relevant_docs": 25657,
"num_instructions": null,
"min_instruction_length": null,
"average_instruction_length": null,
"max_instruction_length": null,
"unique_instructions": null,
"num_top_ranked": null,
"min_top_ranked_per_query": null,
"average_top_ranked_per_query": null,
"max_top_ranked_per_query": null
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/CQADupstack-Unix-PL | mteb | 2025-05-04T16:10:57Z | 16 | 0 | [
"task_categories:text-retrieval",
"task_ids:multiple-choice-qa",
"annotations_creators:derived",
"multilinguality:translated",
"source_datasets:mteb/cqadupstack-unix",
"language:pol",
"license:unknown",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2305.19840",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-retrieval"
] | 2025-02-05T19:19:28Z | null | ---
annotations_creators:
- derived
language:
- pol
license: unknown
multilinguality: translated
source_datasets:
- mteb/cqadupstack-unix
task_categories:
- text-retrieval
task_ids:
- multiple-choice-qa
dataset_info:
- config_name: corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 48663218
num_examples: 47382
download_size: 28352236
dataset_size: 48663218
- config_name: default
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 44636
num_examples: 1693
download_size: 23577
dataset_size: 44636
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 76537
num_examples: 1072
download_size: 54080
dataset_size: 76537
configs:
- config_name: corpus
data_files:
- split: test
path: corpus/test-*
- config_name: default
data_files:
- split: test
path: data/test-*
- config_name: queries
data_files:
- split: test
path: queries/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CQADupstack-Unix-PL</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
CQADupStack: A Stack Exchange Question Duplicate Pairs Dataset
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | Written, Web, Programming |
| Reference | https://huggingface.co/datasets/clarin-knext/cqadupstack-unix-pl |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["CQADupstack-Unix-PL"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{wojtasik2024beirpl,
archiveprefix = {arXiv},
author = {Konrad Wojtasik and Vadim Shishkin and Kacper Wołowiec and Arkadiusz Janz and Maciej Piasecki},
eprint = {2305.19840},
primaryclass = {cs.IR},
title = {BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language},
year = {2024},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("CQADupstack-Unix-PL")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 48454,
"number_of_characters": 45977634,
"num_documents": 47382,
"min_document_length": 52,
"average_document_length": 969.1105272044236,
"max_document_length": 30428,
"unique_documents": 47382,
"num_queries": 1072,
"min_query_length": 14,
"average_query_length": 55.26026119402985,
"max_query_length": 136,
"unique_queries": 1072,
"none_queries": 0,
"num_relevant_docs": 1693,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 1.5792910447761195,
"max_relevant_docs_per_query": 22,
"unique_relevant_docs": 1693,
"num_instructions": null,
"min_instruction_length": null,
"average_instruction_length": null,
"max_instruction_length": null,
"unique_instructions": null,
"num_top_ranked": null,
"min_top_ranked_per_query": null,
"average_top_ranked_per_query": null,
"max_top_ranked_per_query": null
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/trec-covid | mteb | 2025-05-04T16:10:37Z | 1,263 | 2 | [
"task_categories:text-retrieval",
"multilinguality:monolingual",
"language:eng",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2104.09632",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-retrieval"
] | 2024-03-02T20:32:41Z | null | ---
language:
- eng
multilinguality: monolingual
task_categories:
- text-retrieval
task_ids: []
config_names:
- corpus
tags:
- mteb
- text
dataset_info:
- config_name: default
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: test
num_bytes: 1710499
num_examples: 66336
- config_name: corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 195185777
num_examples: 171332
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 3953
num_examples: 50
configs:
- config_name: default
data_files:
- split: test
path: qrels/test.jsonl
- config_name: corpus
data_files:
- split: corpus
path: corpus.jsonl
- config_name: queries
data_files:
- split: queries
path: queries.jsonl
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">TRECCOVID</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
TRECCOVID is an ad-hoc search challenge based on the COVID-19 dataset containing scientific articles related to the COVID-19 pandemic.
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | Medical, Academic, Written |
| Reference | https://ir.nist.gov/covidSubmit/index.html |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["TRECCOVID"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{roberts2021searching,
archiveprefix = {arXiv},
author = {Kirk Roberts and Tasmeer Alam and Steven Bedrick and Dina Demner-Fushman and Kyle Lo and Ian Soboroff and Ellen Voorhees and Lucy Lu Wang and William R Hersh},
eprint = {2104.09632},
primaryclass = {cs.IR},
title = {Searching for Scientific Evidence in a Pandemic: An Overview of TREC-COVID},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("TRECCOVID")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 171382,
"number_of_characters": 191508678,
"num_documents": 171332,
"min_document_length": 1,
"average_document_length": 1117.7434221277986,
"max_document_length": 122459,
"unique_documents": 171332,
"num_queries": 50,
"min_query_length": 30,
"average_query_length": 69.24,
"max_query_length": 165,
"unique_queries": 50,
"none_queries": 0,
"num_relevant_docs": 66336,
"min_relevant_docs_per_query": 631,
"average_relevant_docs_per_query": 493.5,
"max_relevant_docs_per_query": 1941,
"unique_relevant_docs": 35480,
"num_instructions": null,
"min_instruction_length": null,
"average_instruction_length": null,
"max_instruction_length": null,
"unique_instructions": null,
"num_top_ranked": null,
"min_top_ranked_per_query": null,
"average_top_ranked_per_query": null,
"max_top_ranked_per_query": null
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/mtop_intent | mteb | 2025-05-04T16:08:08Z | 2,668 | 2 | [
"task_categories:text-classification",
"annotations_creators:human-annotated",
"multilinguality:multilingual",
"language:deu",
"language:eng",
"language:fra",
"language:hin",
"language:spa",
"language:tha",
"license:unknown",
"modality:text",
"arxiv:2008.09335",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2022-05-19T15:03:15Z | null | ---
annotations_creators:
- human-annotated
language:
- deu
- eng
- fra
- hin
- spa
- tha
license: unknown
multilinguality: multilingual
task_categories:
- text-classification
task_ids: []
dataset_info:
- config_name: de
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 748424
num_examples: 13424
- name: validation
num_bytes: 100446
num_examples: 1815
- name: test
num_bytes: 195937
num_examples: 3549
download_size: 543111
dataset_size: 1044807
- config_name: en
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 761023
num_examples: 15667
- name: validation
num_bytes: 108483
num_examples: 2235
- name: test
num_bytes: 214022
num_examples: 4386
download_size: 629031
dataset_size: 1083528
- config_name: es
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 621403
num_examples: 10934
- name: validation
num_bytes: 87850
num_examples: 1527
- name: test
num_bytes: 170223
num_examples: 2998
download_size: 403224
dataset_size: 879476
- config_name: fr
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 671550
num_examples: 11814
- name: validation
num_bytes: 88815
num_examples: 1577
- name: test
num_bytes: 182408
num_examples: 3193
download_size: 484784
dataset_size: 942773
- config_name: hi
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1238687
num_examples: 11330
- name: validation
num_bytes: 228095
num_examples: 2012
- name: test
num_bytes: 303899
num_examples: 2789
download_size: 642592
dataset_size: 1770681
- config_name: th
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1175051
num_examples: 10759
- name: validation
num_bytes: 185878
num_examples: 1671
- name: test
num_bytes: 301794
num_examples: 2765
download_size: 621662
dataset_size: 1662723
configs:
- config_name: de
data_files:
- split: train
path: de/train-*
- split: validation
path: de/validation-*
- split: test
path: de/test-*
- config_name: en
data_files:
- split: train
path: en/train-*
- split: validation
path: en/validation-*
- split: test
path: en/test-*
- config_name: es
data_files:
- split: train
path: es/train-*
- split: validation
path: es/validation-*
- split: test
path: es/test-*
- config_name: fr
data_files:
- split: train
path: fr/train-*
- split: validation
path: fr/validation-*
- split: test
path: fr/test-*
- config_name: hi
data_files:
- split: train
path: hi/train-*
- split: validation
path: hi/validation-*
- split: test
path: hi/test-*
- config_name: th
data_files:
- split: train
path: th/train-*
- split: validation
path: th/validation-*
- split: test
path: th/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MTOPIntentClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
MTOP: Multilingual Task-Oriented Semantic Parsing
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Spoken, Spoken |
| Reference | https://arxiv.org/pdf/2008.09335.pdf |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["MTOPIntentClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{li-etal-2021-mtop,
abstract = {Scaling semantic parsing models for task-oriented dialog systems to new languages is often expensive and time-consuming due to the lack of available datasets. Available datasets suffer from several shortcomings: a) they contain few languages b) they contain small amounts of labeled examples per language c) they are based on the simple intent and slot detection paradigm for non-compositional queries. In this paper, we present a new multilingual dataset, called MTOP, comprising of 100k annotated utterances in 6 languages across 11 domains. We use this dataset and other publicly available datasets to conduct a comprehensive benchmarking study on using various state-of-the-art multilingual pre-trained models for task-oriented semantic parsing. We achieve an average improvement of +6.3 points on Slot F1 for the two existing multilingual datasets, over best results reported in their experiments. Furthermore, we demonstrate strong zero-shot performance using pre-trained models combined with automatic translation and alignment, and a proposed distant supervision method to reduce the noise in slot label projection.},
address = {Online},
author = {Li, Haoran and
Arora, Abhinav and
Chen, Shuohui and
Gupta, Anchit and
Gupta, Sonal and
Mehdad, Yashar},
booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume},
doi = {10.18653/v1/2021.eacl-main.257},
editor = {Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut},
month = apr,
pages = {2950--2962},
publisher = {Association for Computational Linguistics},
title = {{MTOP}: A Comprehensive Multilingual Task-Oriented Semantic Parsing Benchmark},
url = {https://aclanthology.org/2021.eacl-main.257},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("MTOPIntentClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"validation": {
"num_samples": 10837,
"number_of_characters": 431895,
"number_texts_intersect_with_train": 127,
"min_text_length": 5,
"average_text_length": 39.85374181046415,
"max_text_length": 154,
"unique_text": 10830,
"unique_labels": 88,
"labels": {
"3": {
"count": 919
},
"18": {
"count": 645
},
"27": {
"count": 117
},
"15": {
"count": 322
},
"24": {
"count": 81
},
"29": {
"count": 487
},
"14": {
"count": 713
},
"60": {
"count": 320
},
"84": {
"count": 69
},
"0": {
"count": 628
},
"25": {
"count": 1156
},
"1": {
"count": 188
},
"30": {
"count": 11
},
"16": {
"count": 692
},
"54": {
"count": 41
},
"59": {
"count": 464
},
"22": {
"count": 171
},
"9": {
"count": 49
},
"43": {
"count": 716
},
"63": {
"count": 103
},
"48": {
"count": 269
},
"11": {
"count": 114
},
"32": {
"count": 80
},
"4": {
"count": 453
},
"53": {
"count": 88
},
"65": {
"count": 92
},
"42": {
"count": 218
},
"5": {
"count": 139
},
"47": {
"count": 93
},
"35": {
"count": 41
},
"96": {
"count": 11
},
"33": {
"count": 42
},
"94": {
"count": 4
},
"13": {
"count": 23
},
"75": {
"count": 23
},
"34": {
"count": 43
},
"61": {
"count": 88
},
"52": {
"count": 65
},
"101": {
"count": 6
},
"49": {
"count": 29
},
"38": {
"count": 54
},
"17": {
"count": 40
},
"69": {
"count": 38
},
"45": {
"count": 58
},
"40": {
"count": 56
},
"51": {
"count": 39
},
"92": {
"count": 12
},
"77": {
"count": 11
},
"46": {
"count": 31
},
"7": {
"count": 22
},
"55": {
"count": 26
},
"87": {
"count": 6
},
"41": {
"count": 31
},
"36": {
"count": 45
},
"56": {
"count": 10
},
"37": {
"count": 36
},
"68": {
"count": 35
},
"90": {
"count": 6
},
"20": {
"count": 8
},
"85": {
"count": 8
},
"86": {
"count": 20
},
"44": {
"count": 39
},
"2": {
"count": 17
},
"76": {
"count": 5
},
"80": {
"count": 17
},
"72": {
"count": 34
},
"64": {
"count": 6
},
"19": {
"count": 49
},
"102": {
"count": 6
},
"89": {
"count": 20
},
"31": {
"count": 24
},
"79": {
"count": 33
},
"57": {
"count": 44
},
"104": {
"count": 18
},
"110": {
"count": 12
},
"62": {
"count": 24
},
"6": {
"count": 24
},
"21": {
"count": 3
},
"74": {
"count": 6
},
"73": {
"count": 7
},
"26": {
"count": 3
},
"66": {
"count": 6
},
"88": {
"count": 6
},
"10": {
"count": 6
},
"12": {
"count": 3
},
"93": {
"count": 6
},
"50": {
"count": 11
},
"107": {
"count": 3
}
},
"hf_subset_descriptive_stats": {
"en": {
"num_samples": 2235,
"number_of_characters": 81663,
"number_texts_intersect_with_train": 7,
"min_text_length": 8,
"average_text_length": 36.53825503355705,
"max_text_length": 125,
"unique_text": 2235,
"unique_labels": 88,
"labels": {
"3": {
"count": 189
},
"18": {
"count": 163
},
"27": {
"count": 29
},
"15": {
"count": 65
},
"24": {
"count": 15
},
"29": {
"count": 93
},
"14": {
"count": 136
},
"60": {
"count": 59
},
"84": {
"count": 12
},
"0": {
"count": 131
},
"25": {
"count": 223
},
"1": {
"count": 41
},
"30": {
"count": 2
},
"16": {
"count": 149
},
"54": {
"count": 8
},
"59": {
"count": 120
},
"22": {
"count": 30
},
"9": {
"count": 9
},
"43": {
"count": 150
},
"63": {
"count": 21
},
"48": {
"count": 58
},
"11": {
"count": 22
},
"32": {
"count": 14
},
"4": {
"count": 94
},
"53": {
"count": 16
},
"65": {
"count": 18
},
"42": {
"count": 44
},
"5": {
"count": 24
},
"47": {
"count": 22
},
"35": {
"count": 8
},
"96": {
"count": 2
},
"33": {
"count": 8
},
"94": {
"count": 1
},
"13": {
"count": 4
},
"75": {
"count": 5
},
"34": {
"count": 8
},
"61": {
"count": 17
},
"52": {
"count": 15
},
"101": {
"count": 1
},
"49": {
"count": 6
},
"38": {
"count": 11
},
"17": {
"count": 7
},
"69": {
"count": 8
},
"45": {
"count": 11
},
"40": {
"count": 10
},
"51": {
"count": 7
},
"92": {
"count": 2
},
"77": {
"count": 2
},
"46": {
"count": 7
},
"7": {
"count": 4
},
"55": {
"count": 6
},
"87": {
"count": 2
},
"41": {
"count": 7
},
"36": {
"count": 8
},
"56": {
"count": 2
},
"37": {
"count": 6
},
"68": {
"count": 8
},
"90": {
"count": 2
},
"20": {
"count": 2
},
"85": {
"count": 2
},
"86": {
"count": 4
},
"44": {
"count": 7
},
"2": {
"count": 4
},
"76": {
"count": 1
},
"80": {
"count": 3
},
"72": {
"count": 6
},
"64": {
"count": 1
},
"19": {
"count": 9
},
"102": {
"count": 1
},
"89": {
"count": 4
},
"31": {
"count": 4
},
"79": {
"count": 6
},
"57": {
"count": 12
},
"104": {
"count": 3
},
"110": {
"count": 2
},
"62": {
"count": 5
},
"6": {
"count": 4
},
"21": {
"count": 1
},
"74": {
"count": 1
},
"73": {
"count": 2
},
"26": {
"count": 1
},
"66": {
"count": 1
},
"88": {
"count": 1
},
"10": {
"count": 1
},
"12": {
"count": 1
},
"93": {
"count": 1
},
"50": {
"count": 2
},
"107": {
"count": 1
}
}
},
"de": {
"num_samples": 1815,
"number_of_characters": 77727,
"number_texts_intersect_with_train": 23,
"min_text_length": 10,
"average_text_length": 42.824793388429754,
"max_text_length": 154,
"unique_text": 1814,
"unique_labels": 87,
"labels": {
"1": {
"count": 32
},
"0": {
"count": 65
},
"3": {
"count": 174
},
"6": {
"count": 4
},
"84": {
"count": 12
},
"15": {
"count": 57
},
"11": {
"count": 20
},
"14": {
"count": 120
},
"16": {
"count": 107
},
"17": {
"count": 6
},
"19": {
"count": 9
},
"24": {
"count": 13
},
"29": {
"count": 78
},
"30": {
"count": 2
},
"4": {
"count": 78
},
"88": {
"count": 1
},
"51": {
"count": 7
},
"25": {
"count": 199
},
"40": {
"count": 9
},
"38": {
"count": 10
},
"22": {
"count": 29
},
"41": {
"count": 6
},
"43": {
"count": 106
},
"5": {
"count": 23
},
"45": {
"count": 9
},
"46": {
"count": 6
},
"32": {
"count": 13
},
"48": {
"count": 50
},
"42": {
"count": 34
},
"49": {
"count": 5
},
"92": {
"count": 2
},
"47": {
"count": 17
},
"57": {
"count": 9
},
"52": {
"count": 11
},
"54": {
"count": 8
},
"55": {
"count": 5
},
"18": {
"count": 115
},
"59": {
"count": 107
},
"60": {
"count": 46
},
"61": {
"count": 15
},
"9": {
"count": 9
},
"63": {
"count": 17
},
"64": {
"count": 1
},
"77": {
"count": 2
},
"86": {
"count": 3
},
"65": {
"count": 16
},
"72": {
"count": 6
},
"66": {
"count": 1
},
"79": {
"count": 6
},
"12": {
"count": 1
},
"102": {
"count": 1
},
"75": {
"count": 5
},
"7": {
"count": 2
},
"37": {
"count": 6
},
"36": {
"count": 7
},
"35": {
"count": 7
},
"87": {
"count": 2
},
"31": {
"count": 4
},
"33": {
"count": 7
},
"94": {
"count": 1
},
"73": {
"count": 1
},
"53": {
"count": 12
},
"27": {
"count": 15
},
"69": {
"count": 8
},
"13": {
"count": 4
},
"68": {
"count": 5
},
"74": {
"count": 1
},
"85": {
"count": 1
},
"110": {
"count": 2
},
"34": {
"count": 7
},
"80": {
"count": 3
},
"62": {
"count": 4
},
"44": {
"count": 5
},
"90": {
"count": 2
},
"50": {
"count": 2
},
"89": {
"count": 4
},
"56": {
"count": 2
},
"101": {
"count": 1
},
"2": {
"count": 2
},
"20": {
"count": 1
},
"26": {
"count": 1
},
"104": {
"count": 3
},
"93": {
"count": 1
},
"21": {
"count": 1
},
"107": {
"count": 1
},
"10": {
"count": 1
},
"96": {
"count": 2
}
}
},
"es": {
"num_samples": 1527,
"number_of_characters": 67720,
"number_texts_intersect_with_train": 41,
"min_text_length": 11,
"average_text_length": 44.34839554682384,
"max_text_length": 134,
"unique_text": 1525,
"unique_labels": 79,
"labels": {
"3": {
"count": 79
},
"22": {
"count": 28
},
"5": {
"count": 23
},
"33": {
"count": 5
},
"45": {
"count": 8
},
"34": {
"count": 6
},
"35": {
"count": 6
},
"89": {
"count": 4
},
"32": {
"count": 13
},
"51": {
"count": 5
},
"104": {
"count": 3
},
"31": {
"count": 4
},
"44": {
"count": 6
},
"110": {
"count": 2
},
"46": {
"count": 4
},
"14": {
"count": 122
},
"37": {
"count": 6
},
"36": {
"count": 8
},
"38": {
"count": 7
},
"40": {
"count": 10
},
"24": {
"count": 13
},
"16": {
"count": 97
},
"17": {
"count": 7
},
"80": {
"count": 3
},
"41": {
"count": 7
},
"62": {
"count": 4
},
"69": {
"count": 4
},
"76": {
"count": 1
},
"68": {
"count": 3
},
"72": {
"count": 4
},
"18": {
"count": 86
},
"63": {
"count": 16
},
"65": {
"count": 12
},
"15": {
"count": 52
},
"11": {
"count": 19
},
"19": {
"count": 8
},
"9": {
"count": 7
},
"13": {
"count": 3
},
"75": {
"count": 2
},
"25": {
"count": 185
},
"10": {
"count": 1
},
"88": {
"count": 1
},
"73": {
"count": 1
},
"77": {
"count": 1
},
"79": {
"count": 4
},
"66": {
"count": 1
},
"102": {
"count": 1
},
"64": {
"count": 1
},
"74": {
"count": 1
},
"86": {
"count": 4
},
"6": {
"count": 4
},
"84": {
"count": 12
},
"7": {
"count": 4
},
"29": {
"count": 87
},
"20": {
"count": 2
},
"85": {
"count": 2
},
"27": {
"count": 3
},
"93": {
"count": 1
},
"43": {
"count": 125
},
"48": {
"count": 28
},
"42": {
"count": 34
},
"90": {
"count": 1
},
"50": {
"count": 2
},
"49": {
"count": 5
},
"47": {
"count": 13
},
"4": {
"count": 62
},
"96": {
"count": 1
},
"53": {
"count": 16
},
"101": {
"count": 1
},
"59": {
"count": 21
},
"60": {
"count": 49
},
"61": {
"count": 6
},
"0": {
"count": 112
},
"1": {
"count": 29
},
"2": {
"count": 3
},
"30": {
"count": 2
},
"92": {
"count": 2
},
"94": {
"count": 1
},
"54": {
"count": 1
}
}
},
"fr": {
"num_samples": 1577,
"number_of_characters": 68008,
"number_texts_intersect_with_train": 12,
"min_text_length": 11,
"average_text_length": 43.12492073557387,
"max_text_length": 141,
"unique_text": 1575,
"unique_labels": 78,
"labels": {
"0": {
"count": 105
},
"1": {
"count": 19
},
"3": {
"count": 154
},
"6": {
"count": 4
},
"75": {
"count": 3
},
"16": {
"count": 96
},
"29": {
"count": 69
},
"4": {
"count": 67
},
"34": {
"count": 7
},
"32": {
"count": 14
},
"14": {
"count": 98
},
"40": {
"count": 8
},
"25": {
"count": 164
},
"22": {
"count": 28
},
"45": {
"count": 10
},
"5": {
"count": 23
},
"46": {
"count": 3
},
"33": {
"count": 7
},
"51": {
"count": 6
},
"48": {
"count": 46
},
"43": {
"count": 104
},
"42": {
"count": 32
},
"49": {
"count": 5
},
"47": {
"count": 12
},
"52": {
"count": 13
},
"57": {
"count": 6
},
"53": {
"count": 14
},
"27": {
"count": 29
},
"61": {
"count": 17
},
"60": {
"count": 56
},
"59": {
"count": 51
},
"15": {
"count": 44
},
"18": {
"count": 62
},
"64": {
"count": 1
},
"65": {
"count": 14
},
"77": {
"count": 2
},
"86": {
"count": 3
},
"9": {
"count": 7
},
"19": {
"count": 5
},
"72": {
"count": 6
},
"66": {
"count": 1
},
"63": {
"count": 15
},
"11": {
"count": 11
},
"79": {
"count": 5
},
"24": {
"count": 13
},
"2": {
"count": 1
},
"84": {
"count": 11
},
"7": {
"count": 4
},
"17": {
"count": 6
},
"30": {
"count": 1
},
"88": {
"count": 1
},
"110": {
"count": 2
},
"31": {
"count": 4
},
"35": {
"count": 6
},
"38": {
"count": 7
},
"37": {
"count": 6
},
"36": {
"count": 6
},
"44": {
"count": 7
},
"92": {
"count": 2
},
"54": {
"count": 8
},
"55": {
"count": 5
},
"68": {
"count": 7
},
"69": {
"count": 6
},
"80": {
"count": 2
},
"13": {
"count": 4
},
"74": {
"count": 1
},
"62": {
"count": 4
},
"102": {
"count": 1
},
"85": {
"count": 1
},
"50": {
"count": 1
},
"89": {
"count": 3
},
"56": {
"count": 2
},
"101": {
"count": 1
},
"104": {
"count": 3
},
"93": {
"count": 1
},
"10": {
"count": 1
},
"96": {
"count": 2
},
"76": {
"count": 1
}
}
},
"hi": {
"num_samples": 2012,
"number_of_characters": 78749,
"number_texts_intersect_with_train": 16,
"min_text_length": 7,
"average_text_length": 39.139662027833005,
"max_text_length": 131,
"unique_text": 2011,
"unique_labels": 88,
"labels": {
"1": {
"count": 39
},
"3": {
"count": 171
},
"15": {
"count": 57
},
"16": {
"count": 140
},
"29": {
"count": 82
},
"9": {
"count": 9
},
"18": {
"count": 134
},
"22": {
"count": 28
},
"5": {
"count": 23
},
"35": {
"count": 7
},
"32": {
"count": 13
},
"51": {
"count": 7
},
"25": {
"count": 204
},
"14": {
"count": 120
},
"38": {
"count": 10
},
"24": {
"count": 13
},
"4": {
"count": 84
},
"0": {
"count": 118
},
"44": {
"count": 7
},
"48": {
"count": 49
},
"42": {
"count": 39
},
"43": {
"count": 120
},
"27": {
"count": 28
},
"53": {
"count": 16
},
"55": {
"count": 6
},
"101": {
"count": 1
},
"59": {
"count": 108
},
"60": {
"count": 58
},
"63": {
"count": 19
},
"61": {
"count": 17
},
"65": {
"count": 18
},
"69": {
"count": 6
},
"68": {
"count": 7
},
"79": {
"count": 6
},
"13": {
"count": 4
},
"11": {
"count": 22
},
"2": {
"count": 4
},
"6": {
"count": 4
},
"7": {
"count": 4
},
"84": {
"count": 10
},
"19": {
"count": 9
},
"17": {
"count": 7
},
"20": {
"count": 2
},
"26": {
"count": 1
},
"85": {
"count": 1
},
"33": {
"count": 8
},
"45": {
"count": 11
},
"34": {
"count": 8
},
"80": {
"count": 3
},
"37": {
"count": 6
},
"36": {
"count": 8
},
"40": {
"count": 10
},
"104": {
"count": 3
},
"87": {
"count": 2
},
"31": {
"count": 4
},
"41": {
"count": 6
},
"93": {
"count": 1
},
"46": {
"count": 7
},
"47": {
"count": 16
},
"90": {
"count": 1
},
"49": {
"count": 4
},
"50": {
"count": 2
},
"89": {
"count": 2
},
"57": {
"count": 12
},
"56": {
"count": 2
},
"52": {
"count": 15
},
"54": {
"count": 8
},
"62": {
"count": 4
},
"75": {
"count": 5
},
"72": {
"count": 6
},
"73": {
"count": 2
},
"110": {
"count": 2
},
"10": {
"count": 1
},
"96": {
"count": 2
},
"76": {
"count": 1
},
"88": {
"count": 1
},
"92": {
"count": 2
},
"77": {
"count": 2
},
"102": {
"count": 1
},
"21": {
"count": 1
},
"107": {
"count": 1
},
"30": {
"count": 2
},
"86": {
"count": 3
},
"12": {
"count": 1
},
"94": {
"count": 1
},
"64": {
"count": 1
},
"66": {
"count": 1
},
"74": {
"count": 1
}
}
},
"th": {
"num_samples": 1671,
"number_of_characters": 58028,
"number_texts_intersect_with_train": 28,
"min_text_length": 5,
"average_text_length": 34.726511071214844,
"max_text_length": 105,
"unique_text": 1670,
"unique_labels": 81,
"labels": {
"0": {
"count": 97
},
"1": {
"count": 28
},
"3": {
"count": 152
},
"6": {
"count": 4
},
"84": {
"count": 12
},
"2": {
"count": 3
},
"15": {
"count": 47
},
"19": {
"count": 9
},
"17": {
"count": 7
},
"29": {
"count": 78
},
"25": {
"count": 181
},
"14": {
"count": 117
},
"85": {
"count": 1
},
"33": {
"count": 7
},
"34": {
"count": 7
},
"37": {
"count": 6
},
"35": {
"count": 7
},
"38": {
"count": 9
},
"16": {
"count": 103
},
"32": {
"count": 13
},
"41": {
"count": 5
},
"4": {
"count": 68
},
"93": {
"count": 1
},
"44": {
"count": 7
},
"5": {
"count": 23
},
"22": {
"count": 28
},
"47": {
"count": 13
},
"48": {
"count": 38
},
"42": {
"count": 35
},
"43": {
"count": 111
},
"49": {
"count": 4
},
"50": {
"count": 2
},
"89": {
"count": 3
},
"27": {
"count": 13
},
"56": {
"count": 2
},
"52": {
"count": 11
},
"54": {
"count": 8
},
"55": {
"count": 4
},
"59": {
"count": 57
},
"60": {
"count": 52
},
"61": {
"count": 16
},
"24": {
"count": 14
},
"9": {
"count": 8
},
"36": {
"count": 8
},
"65": {
"count": 14
},
"63": {
"count": 15
},
"18": {
"count": 85
},
"69": {
"count": 6
},
"11": {
"count": 20
},
"62": {
"count": 3
},
"79": {
"count": 6
},
"72": {
"count": 6
},
"53": {
"count": 14
},
"68": {
"count": 5
},
"40": {
"count": 9
},
"13": {
"count": 4
},
"75": {
"count": 3
},
"7": {
"count": 4
},
"45": {
"count": 9
},
"51": {
"count": 7
},
"46": {
"count": 4
},
"20": {
"count": 1
},
"80": {
"count": 3
},
"104": {
"count": 3
},
"31": {
"count": 4
},
"110": {
"count": 2
},
"96": {
"count": 2
},
"10": {
"count": 1
},
"57": {
"count": 5
},
"76": {
"count": 1
},
"30": {
"count": 2
},
"88": {
"count": 1
},
"92": {
"count": 2
},
"73": {
"count": 1
},
"77": {
"count": 2
},
"86": {
"count": 3
},
"66": {
"count": 1
},
"102": {
"count": 1
},
"64": {
"count": 1
},
"74": {
"count": 1
},
"101": {
"count": 1
}
}
}
}
},
"test": {
"num_samples": 19680,
"number_of_characters": 781580,
"number_texts_intersect_with_train": 332,
"min_text_length": 3,
"average_text_length": 39.71443089430894,
"max_text_length": 168,
"unique_text": 19627,
"unique_labels": 102,
"labels": {
"29": {
"count": 794
},
"25": {
"count": 2294
},
"14": {
"count": 1429
},
"43": {
"count": 1487
},
"59": {
"count": 692
},
"37": {
"count": 88
},
"3": {
"count": 1687
},
"31": {
"count": 62
},
"46": {
"count": 82
},
"18": {
"count": 1146
},
"11": {
"count": 284
},
"0": {
"count": 1188
},
"4": {
"count": 906
},
"48": {
"count": 392
},
"5": {
"count": 295
},
"63": {
"count": 176
},
"16": {
"count": 1036
},
"22": {
"count": 331
},
"72": {
"count": 112
},
"53": {
"count": 178
},
"20": {
"count": 6
},
"60": {
"count": 545
},
"55": {
"count": 61
},
"80": {
"count": 50
},
"38": {
"count": 90
},
"51": {
"count": 60
},
"1": {
"count": 243
},
"17": {
"count": 86
},
"12": {
"count": 71
},
"35": {
"count": 87
},
"65": {
"count": 176
},
"61": {
"count": 80
},
"15": {
"count": 508
},
"9": {
"count": 85
},
"27": {
"count": 151
},
"90": {
"count": 23
},
"6": {
"count": 44
},
"45": {
"count": 68
},
"57": {
"count": 46
},
"75": {
"count": 74
},
"47": {
"count": 157
},
"74": {
"count": 57
},
"42": {
"count": 420
},
"103": {
"count": 16
},
"88": {
"count": 29
},
"19": {
"count": 40
},
"52": {
"count": 84
},
"26": {
"count": 3
},
"32": {
"count": 183
},
"24": {
"count": 190
},
"33": {
"count": 49
},
"85": {
"count": 18
},
"30": {
"count": 6
},
"44": {
"count": 53
},
"73": {
"count": 17
},
"62": {
"count": 34
},
"36": {
"count": 144
},
"54": {
"count": 49
},
"79": {
"count": 73
},
"49": {
"count": 35
},
"34": {
"count": 60
},
"84": {
"count": 41
},
"89": {
"count": 17
},
"69": {
"count": 62
},
"96": {
"count": 14
},
"41": {
"count": 39
},
"81": {
"count": 29
},
"40": {
"count": 73
},
"10": {
"count": 67
},
"7": {
"count": 43
},
"13": {
"count": 56
},
"2": {
"count": 12
},
"58": {
"count": 5
},
"77": {
"count": 25
},
"109": {
"count": 5
},
"56": {
"count": 6
},
"50": {
"count": 15
},
"101": {
"count": 18
},
"67": {
"count": 11
},
"68": {
"count": 23
},
"28": {
"count": 16
},
"64": {
"count": 8
},
"93": {
"count": 21
},
"92": {
"count": 6
},
"21": {
"count": 5
},
"108": {
"count": 11
},
"78": {
"count": 18
},
"86": {
"count": 11
},
"97": {
"count": 2
},
"91": {
"count": 8
},
"105": {
"count": 3
},
"106": {
"count": 12
},
"102": {
"count": 3
},
"94": {
"count": 8
},
"76": {
"count": 6
},
"8": {
"count": 2
},
"66": {
"count": 8
},
"82": {
"count": 5
},
"71": {
"count": 15
},
"98": {
"count": 5
},
"70": {
"count": 10
},
"95": {
"count": 6
}
},
"hf_subset_descriptive_stats": {
"en": {
"num_samples": 4386,
"number_of_characters": 161376,
"number_texts_intersect_with_train": 15,
"min_text_length": 3,
"average_text_length": 36.79343365253078,
"max_text_length": 132,
"unique_text": 4384,
"unique_labels": 102,
"labels": {
"29": {
"count": 159
},
"25": {
"count": 473
},
"14": {
"count": 303
},
"43": {
"count": 358
},
"59": {
"count": 215
},
"37": {
"count": 16
},
"3": {
"count": 350
},
"31": {
"count": 12
},
"46": {
"count": 17
},
"18": {
"count": 316
},
"11": {
"count": 59
},
"0": {
"count": 274
},
"4": {
"count": 202
},
"48": {
"count": 95
},
"5": {
"count": 56
},
"63": {
"count": 40
},
"16": {
"count": 235
},
"22": {
"count": 63
},
"72": {
"count": 23
},
"53": {
"count": 34
},
"20": {
"count": 1
},
"60": {
"count": 112
},
"55": {
"count": 18
},
"80": {
"count": 12
},
"38": {
"count": 19
},
"51": {
"count": 13
},
"1": {
"count": 60
},
"17": {
"count": 17
},
"12": {
"count": 14
},
"35": {
"count": 17
},
"65": {
"count": 37
},
"61": {
"count": 19
},
"15": {
"count": 113
},
"9": {
"count": 20
},
"27": {
"count": 39
},
"90": {
"count": 5
},
"6": {
"count": 10
},
"45": {
"count": 13
},
"57": {
"count": 11
},
"75": {
"count": 15
},
"47": {
"count": 37
},
"74": {
"count": 11
},
"42": {
"count": 96
},
"103": {
"count": 3
},
"88": {
"count": 5
},
"19": {
"count": 9
},
"52": {
"count": 23
},
"26": {
"count": 1
},
"32": {
"count": 33
},
"24": {
"count": 38
},
"33": {
"count": 9
},
"85": {
"count": 4
},
"30": {
"count": 1
},
"44": {
"count": 10
},
"73": {
"count": 3
},
"62": {
"count": 7
},
"36": {
"count": 26
},
"54": {
"count": 11
},
"79": {
"count": 15
},
"49": {
"count": 8
},
"34": {
"count": 11
},
"84": {
"count": 9
},
"89": {
"count": 3
},
"69": {
"count": 13
},
"96": {
"count": 5
},
"41": {
"count": 9
},
"81": {
"count": 6
},
"40": {
"count": 16
},
"10": {
"count": 12
},
"7": {
"count": 8
},
"13": {
"count": 12
},
"2": {
"count": 4
},
"58": {
"count": 1
},
"77": {
"count": 5
},
"109": {
"count": 1
},
"56": {
"count": 1
},
"50": {
"count": 4
},
"101": {
"count": 4
},
"67": {
"count": 2
},
"68": {
"count": 4
},
"28": {
"count": 3
},
"64": {
"count": 2
},
"93": {
"count": 4
},
"92": {
"count": 2
},
"21": {
"count": 1
},
"108": {
"count": 3
},
"78": {
"count": 3
},
"86": {
"count": 2
},
"97": {
"count": 1
},
"91": {
"count": 2
},
"105": {
"count": 1
},
"106": {
"count": 2
},
"102": {
"count": 1
},
"94": {
"count": 2
},
"76": {
"count": 1
},
"8": {
"count": 1
},
"66": {
"count": 2
},
"82": {
"count": 1
},
"71": {
"count": 3
},
"98": {
"count": 1
},
"70": {
"count": 2
},
"95": {
"count": 1
}
}
},
"de": {
"num_samples": 3549,
"number_of_characters": 151445,
"number_texts_intersect_with_train": 69,
"min_text_length": 7,
"average_text_length": 42.67258382642998,
"max_text_length": 162,
"unique_text": 3536,
"unique_labels": 99,
"labels": {
"0": {
"count": 145
},
"1": {
"count": 45
},
"18": {
"count": 237
},
"3": {
"count": 312
},
"6": {
"count": 7
},
"31": {
"count": 10
},
"65": {
"count": 31
},
"10": {
"count": 12
},
"15": {
"count": 99
},
"16": {
"count": 195
},
"17": {
"count": 15
},
"14": {
"count": 256
},
"29": {
"count": 133
},
"7": {
"count": 7
},
"21": {
"count": 1
},
"36": {
"count": 24
},
"22": {
"count": 55
},
"27": {
"count": 27
},
"44": {
"count": 8
},
"86": {
"count": 2
},
"88": {
"count": 5
},
"35": {
"count": 17
},
"34": {
"count": 11
},
"89": {
"count": 3
},
"32": {
"count": 32
},
"25": {
"count": 425
},
"24": {
"count": 30
},
"13": {
"count": 12
},
"5": {
"count": 53
},
"4": {
"count": 160
},
"33": {
"count": 9
},
"46": {
"count": 16
},
"45": {
"count": 12
},
"43": {
"count": 245
},
"47": {
"count": 31
},
"48": {
"count": 72
},
"50": {
"count": 2
},
"49": {
"count": 7
},
"42": {
"count": 80
},
"92": {
"count": 2
},
"93": {
"count": 4
},
"51": {
"count": 10
},
"98": {
"count": 1
},
"52": {
"count": 13
},
"54": {
"count": 11
},
"53": {
"count": 32
},
"57": {
"count": 11
},
"101": {
"count": 4
},
"59": {
"count": 184
},
"60": {
"count": 90
},
"37": {
"count": 15
},
"19": {
"count": 9
},
"61": {
"count": 17
},
"12": {
"count": 13
},
"81": {
"count": 5
},
"80": {
"count": 6
},
"69": {
"count": 11
},
"70": {
"count": 1
},
"72": {
"count": 19
},
"79": {
"count": 14
},
"11": {
"count": 51
},
"75": {
"count": 14
},
"77": {
"count": 5
},
"74": {
"count": 10
},
"41": {
"count": 7
},
"9": {
"count": 17
},
"38": {
"count": 17
},
"30": {
"count": 1
},
"73": {
"count": 3
},
"96": {
"count": 2
},
"55": {
"count": 12
},
"64": {
"count": 1
},
"63": {
"count": 26
},
"62": {
"count": 7
},
"71": {
"count": 3
},
"68": {
"count": 4
},
"84": {
"count": 8
},
"28": {
"count": 2
},
"40": {
"count": 11
},
"90": {
"count": 5
},
"95": {
"count": 1
},
"58": {
"count": 1
},
"76": {
"count": 1
},
"103": {
"count": 1
},
"20": {
"count": 1
},
"94": {
"count": 2
},
"109": {
"count": 1
},
"108": {
"count": 3
},
"67": {
"count": 1
},
"78": {
"count": 3
},
"66": {
"count": 1
},
"2": {
"count": 2
},
"85": {
"count": 2
},
"97": {
"count": 1
},
"106": {
"count": 2
},
"26": {
"count": 1
},
"91": {
"count": 2
},
"56": {
"count": 1
},
"82": {
"count": 1
}
}
},
"es": {
"num_samples": 2998,
"number_of_characters": 130569,
"number_texts_intersect_with_train": 97,
"min_text_length": 6,
"average_text_length": 43.552034689793196,
"max_text_length": 168,
"unique_text": 2983,
"unique_labels": 90,
"labels": {
"3": {
"count": 179
},
"44": {
"count": 8
},
"22": {
"count": 55
},
"32": {
"count": 31
},
"88": {
"count": 5
},
"31": {
"count": 8
},
"45": {
"count": 13
},
"5": {
"count": 45
},
"35": {
"count": 16
},
"34": {
"count": 8
},
"51": {
"count": 8
},
"46": {
"count": 14
},
"33": {
"count": 8
},
"24": {
"count": 32
},
"14": {
"count": 248
},
"40": {
"count": 15
},
"36": {
"count": 25
},
"37": {
"count": 15
},
"38": {
"count": 17
},
"16": {
"count": 141
},
"17": {
"count": 14
},
"80": {
"count": 10
},
"41": {
"count": 8
},
"102": {
"count": 1
},
"72": {
"count": 19
},
"68": {
"count": 4
},
"69": {
"count": 8
},
"62": {
"count": 5
},
"79": {
"count": 11
},
"77": {
"count": 2
},
"81": {
"count": 4
},
"67": {
"count": 2
},
"78": {
"count": 3
},
"106": {
"count": 2
},
"66": {
"count": 1
},
"73": {
"count": 2
},
"71": {
"count": 3
},
"18": {
"count": 177
},
"63": {
"count": 28
},
"15": {
"count": 89
},
"65": {
"count": 29
},
"12": {
"count": 13
},
"13": {
"count": 7
},
"19": {
"count": 7
},
"11": {
"count": 50
},
"74": {
"count": 9
},
"9": {
"count": 15
},
"75": {
"count": 12
},
"10": {
"count": 10
},
"25": {
"count": 392
},
"86": {
"count": 2
},
"89": {
"count": 3
},
"21": {
"count": 1
},
"95": {
"count": 1
},
"105": {
"count": 1
},
"70": {
"count": 2
},
"76": {
"count": 1
},
"64": {
"count": 1
},
"6": {
"count": 9
},
"84": {
"count": 4
},
"7": {
"count": 8
},
"29": {
"count": 146
},
"20": {
"count": 1
},
"85": {
"count": 4
},
"28": {
"count": 3
},
"43": {
"count": 274
},
"42": {
"count": 62
},
"93": {
"count": 4
},
"48": {
"count": 48
},
"91": {
"count": 2
},
"49": {
"count": 6
},
"47": {
"count": 31
},
"94": {
"count": 2
},
"90": {
"count": 2
},
"50": {
"count": 4
},
"4": {
"count": 119
},
"53": {
"count": 30
},
"55": {
"count": 1
},
"101": {
"count": 2
},
"60": {
"count": 90
},
"61": {
"count": 7
},
"59": {
"count": 29
},
"0": {
"count": 225
},
"1": {
"count": 34
},
"2": {
"count": 2
},
"103": {
"count": 3
},
"27": {
"count": 2
},
"30": {
"count": 1
},
"52": {
"count": 2
},
"56": {
"count": 1
}
}
},
"fr": {
"num_samples": 3193,
"number_of_characters": 140029,
"number_texts_intersect_with_train": 45,
"min_text_length": 6,
"average_text_length": 43.854995302223614,
"max_text_length": 143,
"unique_text": 3187,
"unique_labels": 99,
"labels": {
"0": {
"count": 209
},
"1": {
"count": 40
},
"3": {
"count": 310
},
"6": {
"count": 10
},
"84": {
"count": 9
},
"103": {
"count": 3
},
"31": {
"count": 12
},
"65": {
"count": 21
},
"11": {
"count": 41
},
"32": {
"count": 31
},
"16": {
"count": 169
},
"14": {
"count": 236
},
"15": {
"count": 73
},
"22": {
"count": 57
},
"29": {
"count": 125
},
"27": {
"count": 36
},
"35": {
"count": 14
},
"89": {
"count": 3
},
"25": {
"count": 344
},
"24": {
"count": 32
},
"13": {
"count": 10
},
"36": {
"count": 23
},
"5": {
"count": 52
},
"34": {
"count": 10
},
"4": {
"count": 152
},
"43": {
"count": 261
},
"33": {
"count": 9
},
"45": {
"count": 13
},
"46": {
"count": 15
},
"42": {
"count": 80
},
"48": {
"count": 76
},
"92": {
"count": 2
},
"49": {
"count": 5
},
"18": {
"count": 126
},
"51": {
"count": 9
},
"52": {
"count": 14
},
"53": {
"count": 29
},
"57": {
"count": 8
},
"54": {
"count": 10
},
"56": {
"count": 1
},
"101": {
"count": 3
},
"61": {
"count": 16
},
"60": {
"count": 96
},
"37": {
"count": 14
},
"74": {
"count": 8
},
"40": {
"count": 12
},
"75": {
"count": 12
},
"12": {
"count": 11
},
"59": {
"count": 69
},
"71": {
"count": 3
},
"80": {
"count": 12
},
"68": {
"count": 4
},
"82": {
"count": 1
},
"72": {
"count": 17
},
"77": {
"count": 5
},
"63": {
"count": 31
},
"38": {
"count": 13
},
"79": {
"count": 12
},
"106": {
"count": 2
},
"7": {
"count": 6
},
"8": {
"count": 1
},
"10": {
"count": 11
},
"19": {
"count": 5
},
"17": {
"count": 16
},
"28": {
"count": 3
},
"85": {
"count": 3
},
"30": {
"count": 1
},
"44": {
"count": 10
},
"86": {
"count": 1
},
"88": {
"count": 5
},
"47": {
"count": 25
},
"90": {
"count": 5
},
"93": {
"count": 4
},
"50": {
"count": 2
},
"95": {
"count": 1
},
"105": {
"count": 1
},
"73": {
"count": 3
},
"98": {
"count": 1
},
"58": {
"count": 1
},
"55": {
"count": 12
},
"64": {
"count": 2
},
"9": {
"count": 9
},
"81": {
"count": 4
},
"69": {
"count": 12
},
"70": {
"count": 2
},
"41": {
"count": 6
},
"62": {
"count": 2
},
"76": {
"count": 1
},
"20": {
"count": 1
},
"94": {
"count": 1
},
"96": {
"count": 3
},
"109": {
"count": 1
},
"108": {
"count": 2
},
"67": {
"count": 2
},
"78": {
"count": 3
},
"66": {
"count": 1
},
"2": {
"count": 1
},
"91": {
"count": 1
},
"102": {
"count": 1
}
}
},
"hi": {
"num_samples": 2789,
"number_of_characters": 104295,
"number_texts_intersect_with_train": 32,
"min_text_length": 7,
"average_text_length": 37.395123700250984,
"max_text_length": 148,
"unique_text": 2785,
"unique_labels": 95,
"labels": {
"0": {
"count": 170
},
"3": {
"count": 278
},
"44": {
"count": 8
},
"25": {
"count": 322
},
"15": {
"count": 66
},
"16": {
"count": 150
},
"17": {
"count": 11
},
"20": {
"count": 1
},
"22": {
"count": 49
},
"29": {
"count": 109
},
"88": {
"count": 5
},
"31": {
"count": 10
},
"45": {
"count": 5
},
"5": {
"count": 42
},
"34": {
"count": 10
},
"36": {
"count": 23
},
"14": {
"count": 181
},
"40": {
"count": 8
},
"24": {
"count": 30
},
"1": {
"count": 33
},
"38": {
"count": 12
},
"4": {
"count": 146
},
"42": {
"count": 38
},
"32": {
"count": 28
},
"33": {
"count": 5
},
"18": {
"count": 158
},
"43": {
"count": 158
},
"48": {
"count": 49
},
"51": {
"count": 12
},
"96": {
"count": 4
},
"108": {
"count": 2
},
"52": {
"count": 19
},
"27": {
"count": 29
},
"53": {
"count": 25
},
"55": {
"count": 12
},
"57": {
"count": 10
},
"60": {
"count": 77
},
"61": {
"count": 10
},
"59": {
"count": 140
},
"63": {
"count": 26
},
"65": {
"count": 32
},
"13": {
"count": 7
},
"9": {
"count": 14
},
"11": {
"count": 43
},
"12": {
"count": 10
},
"79": {
"count": 10
},
"62": {
"count": 7
},
"72": {
"count": 18
},
"77": {
"count": 4
},
"6": {
"count": 3
},
"7": {
"count": 6
},
"103": {
"count": 3
},
"10": {
"count": 11
},
"19": {
"count": 4
},
"85": {
"count": 3
},
"35": {
"count": 8
},
"37": {
"count": 13
},
"46": {
"count": 8
},
"93": {
"count": 2
},
"90": {
"count": 2
},
"49": {
"count": 4
},
"47": {
"count": 11
},
"109": {
"count": 1
},
"54": {
"count": 9
},
"75": {
"count": 10
},
"86": {
"count": 2
},
"70": {
"count": 2
},
"81": {
"count": 6
},
"67": {
"count": 2
},
"78": {
"count": 3
},
"69": {
"count": 8
},
"106": {
"count": 2
},
"66": {
"count": 1
},
"41": {
"count": 3
},
"73": {
"count": 3
},
"84": {
"count": 5
},
"28": {
"count": 2
},
"80": {
"count": 4
},
"101": {
"count": 3
},
"74": {
"count": 9
},
"68": {
"count": 3
},
"64": {
"count": 2
},
"2": {
"count": 2
},
"89": {
"count": 2
},
"26": {
"count": 1
},
"56": {
"count": 1
},
"71": {
"count": 1
},
"82": {
"count": 1
},
"21": {
"count": 1
},
"30": {
"count": 1
},
"50": {
"count": 1
},
"95": {
"count": 1
},
"98": {
"count": 1
},
"58": {
"count": 1
},
"76": {
"count": 1
}
}
},
"th": {
"num_samples": 2765,
"number_of_characters": 93866,
"number_texts_intersect_with_train": 74,
"min_text_length": 6,
"average_text_length": 33.94792043399638,
"max_text_length": 117,
"unique_text": 2754,
"unique_labels": 94,
"labels": {
"0": {
"count": 165
},
"1": {
"count": 31
},
"3": {
"count": 258
},
"84": {
"count": 6
},
"7": {
"count": 8
},
"103": {
"count": 3
},
"15": {
"count": 68
},
"16": {
"count": 146
},
"17": {
"count": 13
},
"19": {
"count": 6
},
"29": {
"count": 122
},
"20": {
"count": 1
},
"22": {
"count": 52
},
"12": {
"count": 10
},
"14": {
"count": 205
},
"31": {
"count": 10
},
"45": {
"count": 12
},
"34": {
"count": 10
},
"35": {
"count": 15
},
"25": {
"count": 338
},
"36": {
"count": 23
},
"37": {
"count": 15
},
"24": {
"count": 28
},
"38": {
"count": 12
},
"32": {
"count": 28
},
"5": {
"count": 47
},
"4": {
"count": 127
},
"46": {
"count": 12
},
"33": {
"count": 9
},
"42": {
"count": 64
},
"43": {
"count": 191
},
"90": {
"count": 4
},
"47": {
"count": 22
},
"48": {
"count": 52
},
"94": {
"count": 1
},
"109": {
"count": 1
},
"52": {
"count": 13
},
"53": {
"count": 28
},
"55": {
"count": 6
},
"60": {
"count": 80
},
"59": {
"count": 55
},
"63": {
"count": 25
},
"65": {
"count": 26
},
"18": {
"count": 132
},
"86": {
"count": 2
},
"79": {
"count": 11
},
"11": {
"count": 40
},
"72": {
"count": 16
},
"67": {
"count": 2
},
"78": {
"count": 3
},
"9": {
"count": 10
},
"106": {
"count": 2
},
"66": {
"count": 2
},
"62": {
"count": 6
},
"75": {
"count": 11
},
"40": {
"count": 11
},
"61": {
"count": 11
},
"10": {
"count": 11
},
"13": {
"count": 8
},
"93": {
"count": 3
},
"77": {
"count": 4
},
"69": {
"count": 10
},
"2": {
"count": 1
},
"44": {
"count": 9
},
"6": {
"count": 5
},
"88": {
"count": 4
},
"51": {
"count": 8
},
"108": {
"count": 1
},
"54": {
"count": 8
},
"27": {
"count": 18
},
"74": {
"count": 10
},
"41": {
"count": 6
},
"49": {
"count": 5
},
"57": {
"count": 6
},
"68": {
"count": 4
},
"73": {
"count": 3
},
"28": {
"count": 3
},
"81": {
"count": 4
},
"80": {
"count": 6
},
"21": {
"count": 1
},
"85": {
"count": 2
},
"50": {
"count": 2
},
"89": {
"count": 3
},
"98": {
"count": 1
},
"30": {
"count": 1
},
"91": {
"count": 1
},
"95": {
"count": 1
},
"58": {
"count": 1
},
"56": {
"count": 1
},
"101": {
"count": 2
},
"71": {
"count": 2
},
"70": {
"count": 1
},
"82": {
"count": 1
},
"76": {
"count": 1
}
}
}
}
},
"train": {
"num_samples": 73928,
"number_of_characters": 2937230,
"number_texts_intersect_with_train": null,
"min_text_length": 3,
"average_text_length": 39.73095444215994,
"max_text_length": 216,
"unique_text": 73219,
"unique_labels": 113,
"labels": {
"1": {
"count": 906
},
"25": {
"count": 8111
},
"24": {
"count": 554
},
"0": {
"count": 4245
},
"59": {
"count": 2613
},
"33": {
"count": 453
},
"42": {
"count": 1674
},
"18": {
"count": 4386
},
"14": {
"count": 5093
},
"48": {
"count": 1422
},
"43": {
"count": 5613
},
"60": {
"count": 2307
},
"63": {
"count": 636
},
"29": {
"count": 3691
},
"16": {
"count": 4131
},
"34": {
"count": 188
},
"3": {
"count": 5708
},
"32": {
"count": 676
},
"41": {
"count": 116
},
"15": {
"count": 1979
},
"51": {
"count": 265
},
"98": {
"count": 28
},
"52": {
"count": 460
},
"22": {
"count": 1190
},
"47": {
"count": 517
},
"4": {
"count": 2900
},
"11": {
"count": 1001
},
"49": {
"count": 177
},
"38": {
"count": 300
},
"71": {
"count": 93
},
"57": {
"count": 223
},
"86": {
"count": 103
},
"53": {
"count": 538
},
"55": {
"count": 161
},
"44": {
"count": 239
},
"7": {
"count": 177
},
"36": {
"count": 420
},
"97": {
"count": 37
},
"50": {
"count": 95
},
"61": {
"count": 393
},
"77": {
"count": 93
},
"5": {
"count": 1155
},
"30": {
"count": 86
},
"21": {
"count": 44
},
"65": {
"count": 551
},
"35": {
"count": 288
},
"45": {
"count": 264
},
"67": {
"count": 60
},
"54": {
"count": 239
},
"20": {
"count": 100
},
"26": {
"count": 16
},
"80": {
"count": 161
},
"89": {
"count": 84
},
"27": {
"count": 785
},
"37": {
"count": 351
},
"46": {
"count": 246
},
"72": {
"count": 422
},
"12": {
"count": 255
},
"10": {
"count": 109
},
"75": {
"count": 290
},
"19": {
"count": 234
},
"62": {
"count": 197
},
"17": {
"count": 227
},
"88": {
"count": 50
},
"101": {
"count": 55
},
"69": {
"count": 242
},
"31": {
"count": 226
},
"6": {
"count": 228
},
"68": {
"count": 133
},
"56": {
"count": 63
},
"9": {
"count": 425
},
"40": {
"count": 243
},
"92": {
"count": 58
},
"85": {
"count": 89
},
"66": {
"count": 50
},
"74": {
"count": 240
},
"13": {
"count": 216
},
"110": {
"count": 6
},
"2": {
"count": 74
},
"79": {
"count": 280
},
"70": {
"count": 62
},
"90": {
"count": 51
},
"28": {
"count": 80
},
"81": {
"count": 71
},
"64": {
"count": 62
},
"58": {
"count": 53
},
"8": {
"count": 44
},
"100": {
"count": 25
},
"39": {
"count": 31
},
"96": {
"count": 46
},
"84": {
"count": 222
},
"94": {
"count": 10
},
"104": {
"count": 22
},
"103": {
"count": 34
},
"106": {
"count": 23
},
"93": {
"count": 59
},
"76": {
"count": 31
},
"78": {
"count": 42
},
"105": {
"count": 6
},
"82": {
"count": 42
},
"73": {
"count": 39
},
"108": {
"count": 17
},
"107": {
"count": 5
},
"95": {
"count": 20
},
"91": {
"count": 22
},
"102": {
"count": 16
},
"23": {
"count": 6
},
"112": {
"count": 11
},
"109": {
"count": 5
},
"83": {
"count": 6
},
"99": {
"count": 5
},
"87": {
"count": 3
},
"111": {
"count": 3
}
},
"hf_subset_descriptive_stats": {
"en": {
"num_samples": 15667,
"number_of_characters": 572977,
"number_texts_intersect_with_train": null,
"min_text_length": 4,
"average_text_length": 36.57222186761984,
"max_text_length": 148,
"unique_text": 15634,
"unique_labels": 113,
"labels": {
"1": {
"count": 220
},
"25": {
"count": 1616
},
"24": {
"count": 101
},
"0": {
"count": 921
},
"59": {
"count": 776
},
"33": {
"count": 83
},
"42": {
"count": 373
},
"18": {
"count": 1075
},
"14": {
"count": 1045
},
"48": {
"count": 335
},
"43": {
"count": 1208
},
"60": {
"count": 442
},
"63": {
"count": 131
},
"29": {
"count": 720
},
"16": {
"count": 868
},
"34": {
"count": 37
},
"3": {
"count": 1177
},
"32": {
"count": 121
},
"41": {
"count": 24
},
"15": {
"count": 424
},
"51": {
"count": 53
},
"98": {
"count": 7
},
"52": {
"count": 109
},
"22": {
"count": 218
},
"47": {
"count": 132
},
"4": {
"count": 618
},
"11": {
"count": 201
},
"49": {
"count": 42
},
"38": {
"count": 59
},
"71": {
"count": 16
},
"57": {
"count": 51
},
"86": {
"count": 18
},
"53": {
"count": 99
},
"55": {
"count": 46
},
"44": {
"count": 45
},
"7": {
"count": 33
},
"36": {
"count": 84
},
"97": {
"count": 7
},
"50": {
"count": 23
},
"61": {
"count": 85
},
"77": {
"count": 20
},
"5": {
"count": 214
},
"30": {
"count": 16
},
"21": {
"count": 10
},
"65": {
"count": 114
},
"35": {
"count": 54
},
"45": {
"count": 52
},
"67": {
"count": 12
},
"54": {
"count": 56
},
"20": {
"count": 21
},
"26": {
"count": 4
},
"80": {
"count": 33
},
"89": {
"count": 16
},
"27": {
"count": 183
},
"37": {
"count": 64
},
"46": {
"count": 49
},
"72": {
"count": 78
},
"12": {
"count": 47
},
"10": {
"count": 20
},
"75": {
"count": 60
},
"19": {
"count": 50
},
"62": {
"count": 36
},
"17": {
"count": 42
},
"88": {
"count": 10
},
"101": {
"count": 12
},
"69": {
"count": 49
},
"31": {
"count": 44
},
"6": {
"count": 44
},
"68": {
"count": 28
},
"56": {
"count": 14
},
"9": {
"count": 82
},
"40": {
"count": 49
},
"92": {
"count": 13
},
"85": {
"count": 18
},
"66": {
"count": 9
},
"74": {
"count": 43
},
"13": {
"count": 43
},
"110": {
"count": 1
},
"2": {
"count": 17
},
"79": {
"count": 51
},
"70": {
"count": 12
},
"90": {
"count": 11
},
"28": {
"count": 17
},
"81": {
"count": 14
},
"64": {
"count": 13
},
"58": {
"count": 14
},
"8": {
"count": 8
},
"100": {
"count": 8
},
"39": {
"count": 6
},
"96": {
"count": 13
},
"84": {
"count": 41
},
"94": {
"count": 2
},
"104": {
"count": 4
},
"103": {
"count": 6
},
"106": {
"count": 4
},
"93": {
"count": 14
},
"76": {
"count": 6
},
"78": {
"count": 9
},
"105": {
"count": 1
},
"82": {
"count": 9
},
"73": {
"count": 7
},
"108": {
"count": 5
},
"107": {
"count": 2
},
"95": {
"count": 4
},
"91": {
"count": 4
},
"102": {
"count": 3
},
"23": {
"count": 1
},
"112": {
"count": 3
},
"109": {
"count": 1
},
"83": {
"count": 1
},
"99": {
"count": 1
},
"87": {
"count": 1
},
"111": {
"count": 1
}
}
},
"de": {
"num_samples": 13424,
"number_of_characters": 580266,
"number_texts_intersect_with_train": null,
"min_text_length": 5,
"average_text_length": 43.226013110846246,
"max_text_length": 174,
"unique_text": 13264,
"unique_labels": 113,
"labels": {
"0": {
"count": 592
},
"1": {
"count": 150
},
"2": {
"count": 13
},
"18": {
"count": 873
},
"83": {
"count": 1
},
"3": {
"count": 1067
},
"4": {
"count": 514
},
"25": {
"count": 1449
},
"6": {
"count": 41
},
"7": {
"count": 23
},
"84": {
"count": 39
},
"15": {
"count": 390
},
"31": {
"count": 39
},
"65": {
"count": 107
},
"9": {
"count": 78
},
"14": {
"count": 939
},
"12": {
"count": 43
},
"11": {
"count": 188
},
"13": {
"count": 39
},
"16": {
"count": 736
},
"17": {
"count": 41
},
"75": {
"count": 48
},
"29": {
"count": 634
},
"20": {
"count": 16
},
"21": {
"count": 9
},
"22": {
"count": 205
},
"19": {
"count": 45
},
"107": {
"count": 1
},
"85": {
"count": 16
},
"28": {
"count": 14
},
"27": {
"count": 141
},
"86": {
"count": 18
},
"32": {
"count": 111
},
"33": {
"count": 80
},
"5": {
"count": 201
},
"35": {
"count": 54
},
"34": {
"count": 36
},
"36": {
"count": 76
},
"37": {
"count": 59
},
"40": {
"count": 38
},
"24": {
"count": 96
},
"38": {
"count": 57
},
"80": {
"count": 25
},
"45": {
"count": 49
},
"89": {
"count": 15
},
"41": {
"count": 20
},
"10": {
"count": 15
},
"42": {
"count": 323
},
"43": {
"count": 988
},
"44": {
"count": 41
},
"51": {
"count": 49
},
"46": {
"count": 45
},
"110": {
"count": 1
},
"88": {
"count": 10
},
"47": {
"count": 98
},
"48": {
"count": 270
},
"49": {
"count": 36
},
"90": {
"count": 11
},
"92": {
"count": 10
},
"91": {
"count": 4
},
"50": {
"count": 16
},
"93": {
"count": 10
},
"72": {
"count": 74
},
"96": {
"count": 7
},
"98": {
"count": 7
},
"52": {
"count": 94
},
"108": {
"count": 5
},
"109": {
"count": 1
},
"57": {
"count": 46
},
"56": {
"count": 12
},
"101": {
"count": 12
},
"53": {
"count": 91
},
"97": {
"count": 5
},
"54": {
"count": 54
},
"55": {
"count": 38
},
"58": {
"count": 9
},
"100": {
"count": 4
},
"59": {
"count": 663
},
"61": {
"count": 77
},
"60": {
"count": 387
},
"63": {
"count": 113
},
"64": {
"count": 10
},
"69": {
"count": 47
},
"71": {
"count": 16
},
"79": {
"count": 50
},
"81": {
"count": 14
},
"68": {
"count": 23
},
"82": {
"count": 9
},
"73": {
"count": 6
},
"74": {
"count": 42
},
"106": {
"count": 4
},
"62": {
"count": 36
},
"8": {
"count": 8
},
"103": {
"count": 5
},
"30": {
"count": 15
},
"39": {
"count": 5
},
"104": {
"count": 4
},
"70": {
"count": 11
},
"76": {
"count": 4
},
"78": {
"count": 9
},
"67": {
"count": 12
},
"77": {
"count": 16
},
"111": {
"count": 1
},
"95": {
"count": 3
},
"99": {
"count": 1
},
"66": {
"count": 9
},
"112": {
"count": 2
},
"23": {
"count": 1
},
"26": {
"count": 3
},
"87": {
"count": 1
},
"102": {
"count": 3
},
"94": {
"count": 1
},
"105": {
"count": 1
}
}
},
"es": {
"num_samples": 10934,
"number_of_characters": 476798,
"number_texts_intersect_with_train": null,
"min_text_length": 6,
"average_text_length": 43.60691421254801,
"max_text_length": 186,
"unique_text": 10740,
"unique_labels": 104,
"labels": {
"3": {
"count": 625
},
"44": {
"count": 38
},
"5": {
"count": 183
},
"22": {
"count": 198
},
"8": {
"count": 4
},
"31": {
"count": 29
},
"32": {
"count": 108
},
"104": {
"count": 3
},
"88": {
"count": 8
},
"33": {
"count": 69
},
"45": {
"count": 37
},
"35": {
"count": 48
},
"34": {
"count": 24
},
"89": {
"count": 14
},
"51": {
"count": 36
},
"46": {
"count": 34
},
"14": {
"count": 867
},
"36": {
"count": 72
},
"24": {
"count": 96
},
"37": {
"count": 59
},
"40": {
"count": 44
},
"38": {
"count": 50
},
"76": {
"count": 5
},
"16": {
"count": 549
},
"17": {
"count": 38
},
"21": {
"count": 7
},
"23": {
"count": 1
},
"39": {
"count": 6
},
"73": {
"count": 6
},
"80": {
"count": 28
},
"41": {
"count": 20
},
"81": {
"count": 11
},
"105": {
"count": 1
},
"95": {
"count": 4
},
"102": {
"count": 2
},
"62": {
"count": 32
},
"72": {
"count": 65
},
"68": {
"count": 16
},
"66": {
"count": 9
},
"69": {
"count": 32
},
"70": {
"count": 9
},
"78": {
"count": 5
},
"79": {
"count": 39
},
"71": {
"count": 16
},
"77": {
"count": 10
},
"67": {
"count": 7
},
"106": {
"count": 4
},
"82": {
"count": 5
},
"18": {
"count": 632
},
"64": {
"count": 9
},
"63": {
"count": 102
},
"15": {
"count": 324
},
"65": {
"count": 90
},
"9": {
"count": 67
},
"13": {
"count": 34
},
"11": {
"count": 152
},
"75": {
"count": 46
},
"12": {
"count": 40
},
"19": {
"count": 36
},
"74": {
"count": 41
},
"25": {
"count": 1356
},
"10": {
"count": 19
},
"86": {
"count": 18
},
"112": {
"count": 3
},
"110": {
"count": 1
},
"83": {
"count": 1
},
"84": {
"count": 38
},
"7": {
"count": 31
},
"6": {
"count": 40
},
"29": {
"count": 638
},
"20": {
"count": 16
},
"26": {
"count": 2
},
"85": {
"count": 15
},
"28": {
"count": 15
},
"27": {
"count": 20
},
"30": {
"count": 15
},
"43": {
"count": 942
},
"42": {
"count": 277
},
"50": {
"count": 21
},
"93": {
"count": 11
},
"47": {
"count": 94
},
"48": {
"count": 166
},
"49": {
"count": 24
},
"92": {
"count": 10
},
"90": {
"count": 4
},
"91": {
"count": 4
},
"94": {
"count": 2
},
"4": {
"count": 398
},
"96": {
"count": 1
},
"97": {
"count": 6
},
"52": {
"count": 7
},
"53": {
"count": 90
},
"54": {
"count": 6
},
"56": {
"count": 1
},
"55": {
"count": 3
},
"101": {
"count": 5
},
"59": {
"count": 125
},
"60": {
"count": 394
},
"61": {
"count": 41
},
"0": {
"count": 778
},
"1": {
"count": 130
},
"2": {
"count": 13
},
"103": {
"count": 6
},
"57": {
"count": 1
}
}
},
"fr": {
"num_samples": 11814,
"number_of_characters": 515029,
"number_texts_intersect_with_train": null,
"min_text_length": 5,
"average_text_length": 43.594802776367025,
"max_text_length": 184,
"unique_text": 11727,
"unique_labels": 110,
"labels": {
"0": {
"count": 719
},
"1": {
"count": 130
},
"18": {
"count": 554
},
"3": {
"count": 1049
},
"4": {
"count": 480
},
"25": {
"count": 1226
},
"6": {
"count": 42
},
"84": {
"count": 40
},
"7": {
"count": 33
},
"8": {
"count": 8
},
"103": {
"count": 6
},
"9": {
"count": 61
},
"15": {
"count": 285
},
"13": {
"count": 33
},
"75": {
"count": 40
},
"65": {
"count": 73
},
"16": {
"count": 671
},
"17": {
"count": 37
},
"14": {
"count": 822
},
"19": {
"count": 29
},
"29": {
"count": 614
},
"20": {
"count": 17
},
"21": {
"count": 2
},
"22": {
"count": 196
},
"36": {
"count": 66
},
"85": {
"count": 14
},
"28": {
"count": 12
},
"30": {
"count": 13
},
"86": {
"count": 16
},
"31": {
"count": 39
},
"33": {
"count": 82
},
"35": {
"count": 45
},
"34": {
"count": 30
},
"40": {
"count": 40
},
"24": {
"count": 85
},
"38": {
"count": 42
},
"32": {
"count": 115
},
"80": {
"count": 28
},
"89": {
"count": 13
},
"5": {
"count": 202
},
"42": {
"count": 271
},
"43": {
"count": 965
},
"44": {
"count": 38
},
"51": {
"count": 48
},
"46": {
"count": 42
},
"45": {
"count": 47
},
"110": {
"count": 1
},
"93": {
"count": 8
},
"47": {
"count": 73
},
"48": {
"count": 265
},
"49": {
"count": 32
},
"50": {
"count": 15
},
"90": {
"count": 11
},
"94": {
"count": 2
},
"92": {
"count": 11
},
"91": {
"count": 3
},
"10": {
"count": 18
},
"72": {
"count": 68
},
"52": {
"count": 80
},
"27": {
"count": 161
},
"56": {
"count": 13
},
"53": {
"count": 88
},
"54": {
"count": 43
},
"97": {
"count": 7
},
"98": {
"count": 6
},
"58": {
"count": 12
},
"55": {
"count": 24
},
"100": {
"count": 6
},
"57": {
"count": 43
},
"59": {
"count": 258
},
"11": {
"count": 135
},
"60": {
"count": 376
},
"63": {
"count": 104
},
"12": {
"count": 41
},
"41": {
"count": 11
},
"81": {
"count": 13
},
"62": {
"count": 29
},
"77": {
"count": 18
},
"68": {
"count": 23
},
"79": {
"count": 48
},
"37": {
"count": 58
},
"69": {
"count": 41
},
"82": {
"count": 8
},
"74": {
"count": 37
},
"106": {
"count": 4
},
"70": {
"count": 10
},
"71": {
"count": 16
},
"61": {
"count": 63
},
"2": {
"count": 6
},
"83": {
"count": 1
},
"26": {
"count": 1
},
"73": {
"count": 7
},
"88": {
"count": 9
},
"39": {
"count": 5
},
"104": {
"count": 4
},
"95": {
"count": 4
},
"96": {
"count": 10
},
"108": {
"count": 4
},
"109": {
"count": 1
},
"101": {
"count": 9
},
"99": {
"count": 1
},
"64": {
"count": 10
},
"78": {
"count": 9
},
"76": {
"count": 6
},
"66": {
"count": 8
},
"67": {
"count": 10
},
"23": {
"count": 1
},
"102": {
"count": 3
},
"112": {
"count": 1
},
"105": {
"count": 1
}
}
},
"hi": {
"num_samples": 11330,
"number_of_characters": 425919,
"number_texts_intersect_with_train": null,
"min_text_length": 4,
"average_text_length": 37.592144748455425,
"max_text_length": 216,
"unique_text": 11251,
"unique_labels": 113,
"labels": {
"0": {
"count": 615
},
"1": {
"count": 159
},
"2": {
"count": 14
},
"3": {
"count": 903
},
"4": {
"count": 452
},
"5": {
"count": 174
},
"6": {
"count": 25
},
"7": {
"count": 27
},
"8": {
"count": 8
},
"9": {
"count": 73
},
"10": {
"count": 18
},
"11": {
"count": 178
},
"12": {
"count": 42
},
"13": {
"count": 33
},
"14": {
"count": 654
},
"15": {
"count": 290
},
"16": {
"count": 694
},
"17": {
"count": 30
},
"18": {
"count": 689
},
"19": {
"count": 37
},
"20": {
"count": 15
},
"21": {
"count": 9
},
"22": {
"count": 197
},
"23": {
"count": 1
},
"24": {
"count": 85
},
"25": {
"count": 1237
},
"26": {
"count": 4
},
"27": {
"count": 163
},
"28": {
"count": 13
},
"29": {
"count": 519
},
"30": {
"count": 14
},
"31": {
"count": 39
},
"32": {
"count": 109
},
"33": {
"count": 64
},
"34": {
"count": 33
},
"35": {
"count": 41
},
"36": {
"count": 63
},
"37": {
"count": 56
},
"38": {
"count": 46
},
"39": {
"count": 5
},
"40": {
"count": 36
},
"41": {
"count": 21
},
"42": {
"count": 227
},
"43": {
"count": 713
},
"44": {
"count": 36
},
"45": {
"count": 36
},
"46": {
"count": 39
},
"47": {
"count": 66
},
"48": {
"count": 212
},
"49": {
"count": 24
},
"50": {
"count": 10
},
"51": {
"count": 37
},
"52": {
"count": 103
},
"53": {
"count": 82
},
"54": {
"count": 46
},
"55": {
"count": 31
},
"56": {
"count": 13
},
"57": {
"count": 46
},
"58": {
"count": 10
},
"59": {
"count": 560
},
"60": {
"count": 340
},
"61": {
"count": 68
},
"62": {
"count": 31
},
"63": {
"count": 86
},
"64": {
"count": 11
},
"65": {
"count": 88
},
"66": {
"count": 6
},
"67": {
"count": 9
},
"68": {
"count": 23
},
"69": {
"count": 33
},
"70": {
"count": 10
},
"71": {
"count": 13
},
"72": {
"count": 68
},
"73": {
"count": 6
},
"74": {
"count": 37
},
"75": {
"count": 53
},
"76": {
"count": 5
},
"77": {
"count": 15
},
"78": {
"count": 4
},
"79": {
"count": 47
},
"80": {
"count": 22
},
"81": {
"count": 6
},
"82": {
"count": 6
},
"83": {
"count": 1
},
"84": {
"count": 28
},
"85": {
"count": 11
},
"86": {
"count": 16
},
"87": {
"count": 1
},
"88": {
"count": 6
},
"89": {
"count": 13
},
"90": {
"count": 8
},
"91": {
"count": 3
},
"92": {
"count": 8
},
"93": {
"count": 8
},
"94": {
"count": 2
},
"95": {
"count": 2
},
"96": {
"count": 11
},
"97": {
"count": 6
},
"98": {
"count": 5
},
"99": {
"count": 1
},
"100": {
"count": 4
},
"101": {
"count": 10
},
"102": {
"count": 2
},
"103": {
"count": 5
},
"104": {
"count": 4
},
"105": {
"count": 1
},
"106": {
"count": 3
},
"107": {
"count": 2
},
"108": {
"count": 2
},
"109": {
"count": 1
},
"110": {
"count": 1
},
"111": {
"count": 1
},
"112": {
"count": 1
}
}
},
"th": {
"num_samples": 10759,
"number_of_characters": 366241,
"number_texts_intersect_with_train": null,
"min_text_length": 3,
"average_text_length": 34.04043126684636,
"max_text_length": 135,
"unique_text": 10622,
"unique_labels": 110,
"labels": {
"1": {
"count": 117
},
"0": {
"count": 620
},
"2": {
"count": 11
},
"18": {
"count": 563
},
"3": {
"count": 887
},
"4": {
"count": 438
},
"5": {
"count": 181
},
"22": {
"count": 176
},
"7": {
"count": 30
},
"84": {
"count": 36
},
"6": {
"count": 36
},
"8": {
"count": 8
},
"15": {
"count": 266
},
"65": {
"count": 79
},
"9": {
"count": 64
},
"25": {
"count": 1227
},
"14": {
"count": 766
},
"75": {
"count": 43
},
"11": {
"count": 147
},
"16": {
"count": 613
},
"17": {
"count": 39
},
"19": {
"count": 37
},
"29": {
"count": 566
},
"20": {
"count": 15
},
"24": {
"count": 91
},
"26": {
"count": 2
},
"85": {
"count": 15
},
"27": {
"count": 117
},
"30": {
"count": 13
},
"39": {
"count": 4
},
"86": {
"count": 17
},
"31": {
"count": 36
},
"88": {
"count": 7
},
"45": {
"count": 43
},
"33": {
"count": 75
},
"34": {
"count": 28
},
"35": {
"count": 46
},
"89": {
"count": 13
},
"32": {
"count": 112
},
"80": {
"count": 25
},
"36": {
"count": 59
},
"37": {
"count": 55
},
"40": {
"count": 36
},
"38": {
"count": 46
},
"41": {
"count": 20
},
"42": {
"count": 203
},
"51": {
"count": 42
},
"46": {
"count": 37
},
"44": {
"count": 41
},
"47": {
"count": 54
},
"43": {
"count": 797
},
"48": {
"count": 174
},
"49": {
"count": 19
},
"91": {
"count": 4
},
"50": {
"count": 10
},
"90": {
"count": 6
},
"81": {
"count": 13
},
"95": {
"count": 3
},
"72": {
"count": 69
},
"96": {
"count": 4
},
"98": {
"count": 3
},
"52": {
"count": 67
},
"57": {
"count": 36
},
"97": {
"count": 6
},
"54": {
"count": 34
},
"53": {
"count": 88
},
"55": {
"count": 19
},
"100": {
"count": 3
},
"56": {
"count": 10
},
"101": {
"count": 7
},
"60": {
"count": 368
},
"61": {
"count": 59
},
"59": {
"count": 231
},
"63": {
"count": 100
},
"13": {
"count": 34
},
"64": {
"count": 9
},
"66": {
"count": 9
},
"78": {
"count": 6
},
"68": {
"count": 20
},
"62": {
"count": 33
},
"10": {
"count": 19
},
"79": {
"count": 45
},
"71": {
"count": 16
},
"77": {
"count": 14
},
"69": {
"count": 40
},
"73": {
"count": 7
},
"74": {
"count": 40
},
"70": {
"count": 10
},
"12": {
"count": 42
},
"67": {
"count": 10
},
"93": {
"count": 8
},
"58": {
"count": 8
},
"102": {
"count": 3
},
"83": {
"count": 1
},
"23": {
"count": 1
},
"28": {
"count": 9
},
"92": {
"count": 6
},
"99": {
"count": 1
},
"82": {
"count": 5
},
"76": {
"count": 5
},
"21": {
"count": 7
},
"103": {
"count": 6
},
"105": {
"count": 1
},
"106": {
"count": 4
},
"108": {
"count": 1
},
"104": {
"count": 3
},
"110": {
"count": 1
},
"94": {
"count": 1
},
"112": {
"count": 1
},
"109": {
"count": 1
}
}
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/amazon_massive_intent | mteb | 2025-05-04T16:08:03Z | 79,081 | 21 | [
"task_categories:text-classification",
"annotations_creators:human-annotated",
"multilinguality:translated",
"language:afr",
"language:amh",
"language:ara",
"language:aze",
"language:ben",
"language:cmo",
"language:cym",
"language:dan",
"language:deu",
"language:ell",
"language:eng",
"language:fas",
"language:fin",
"language:fra",
"language:heb",
"language:hin",
"language:hun",
"language:hye",
"language:ind",
"language:isl",
"language:ita",
"language:jav",
"language:jpn",
"language:kan",
"language:kat",
"language:khm",
"language:kor",
"language:lav",
"language:mal",
"language:mon",
"language:msa",
"language:mya",
"language:nld",
"language:nob",
"language:pol",
"language:por",
"language:ron",
"language:rus",
"language:slv",
"language:spa",
"language:sqi",
"language:swa",
"language:swe",
"language:tam",
"language:tel",
"language:tgl",
"language:tha",
"language:tur",
"language:urd",
"language:vie",
"license:apache-2.0",
"size_categories:1M<n<10M",
"format:json",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"arxiv:2204.08582",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2022-05-15T20:59:15Z | null | ---
annotations_creators:
- human-annotated
language:
- afr
- amh
- ara
- aze
- ben
- cmo
- cym
- dan
- deu
- ell
- eng
- fas
- fin
- fra
- heb
- hin
- hun
- hye
- ind
- isl
- ita
- jav
- jpn
- kan
- kat
- khm
- kor
- lav
- mal
- mon
- msa
- mya
- nld
- nob
- pol
- por
- ron
- rus
- slv
- spa
- sqi
- swa
- swe
- tam
- tel
- tgl
- tha
- tur
- urd
- vie
license: apache-2.0
multilinguality: translated
task_categories:
- text-classification
task_ids: []
configs:
- config_name: default
data_files:
- path: train/*.json.gz
split: train
- path: test/*.json.gz
split: test
- path: validation/*.json.gz
split: validation
- config_name: ta
data_files:
- path: train/ta.json.gz
split: train
- path: test/ta.json.gz
split: test
- path: validation/ta.json.gz
split: validation
- config_name: is
data_files:
- path: train/is.json.gz
split: train
- path: test/is.json.gz
split: test
- path: validation/is.json.gz
split: validation
- config_name: pl
data_files:
- path: train/pl.json.gz
split: train
- path: test/pl.json.gz
split: test
- path: validation/pl.json.gz
split: validation
- config_name: zh-CN
data_files:
- path: train/zh-CN.json.gz
split: train
- path: test/zh-CN.json.gz
split: test
- path: validation/zh-CN.json.gz
split: validation
- config_name: el
data_files:
- path: train/el.json.gz
split: train
- path: test/el.json.gz
split: test
- path: validation/el.json.gz
split: validation
- config_name: ru
data_files:
- path: train/ru.json.gz
split: train
- path: test/ru.json.gz
split: test
- path: validation/ru.json.gz
split: validation
- config_name: te
data_files:
- path: train/te.json.gz
split: train
- path: test/te.json.gz
split: test
- path: validation/te.json.gz
split: validation
- config_name: cy
data_files:
- path: train/cy.json.gz
split: train
- path: test/cy.json.gz
split: test
- path: validation/cy.json.gz
split: validation
- config_name: he
data_files:
- path: train/he.json.gz
split: train
- path: test/he.json.gz
split: test
- path: validation/he.json.gz
split: validation
- config_name: de
data_files:
- path: train/de.json.gz
split: train
- path: test/de.json.gz
split: test
- path: validation/de.json.gz
split: validation
- config_name: af
data_files:
- path: train/af.json.gz
split: train
- path: test/af.json.gz
split: test
- path: validation/af.json.gz
split: validation
- config_name: ml
data_files:
- path: train/ml.json.gz
split: train
- path: test/ml.json.gz
split: test
- path: validation/ml.json.gz
split: validation
- config_name: sl
data_files:
- path: train/sl.json.gz
split: train
- path: test/sl.json.gz
split: test
- path: validation/sl.json.gz
split: validation
- config_name: vi
data_files:
- path: train/vi.json.gz
split: train
- path: test/vi.json.gz
split: test
- path: validation/vi.json.gz
split: validation
- config_name: mn
data_files:
- path: train/mn.json.gz
split: train
- path: test/mn.json.gz
split: test
- path: validation/mn.json.gz
split: validation
- config_name: tl
data_files:
- path: train/tl.json.gz
split: train
- path: test/tl.json.gz
split: test
- path: validation/tl.json.gz
split: validation
- config_name: it
data_files:
- path: train/it.json.gz
split: train
- path: test/it.json.gz
split: test
- path: validation/it.json.gz
split: validation
- config_name: jv
data_files:
- path: train/jv.json.gz
split: train
- path: test/jv.json.gz
split: test
- path: validation/jv.json.gz
split: validation
- config_name: sq
data_files:
- path: train/sq.json.gz
split: train
- path: test/sq.json.gz
split: test
- path: validation/sq.json.gz
split: validation
- config_name: fa
data_files:
- path: train/fa.json.gz
split: train
- path: test/fa.json.gz
split: test
- path: validation/fa.json.gz
split: validation
- config_name: nb
data_files:
- path: train/nb.json.gz
split: train
- path: test/nb.json.gz
split: test
- path: validation/nb.json.gz
split: validation
- config_name: km
data_files:
- path: train/km.json.gz
split: train
- path: test/km.json.gz
split: test
- path: validation/km.json.gz
split: validation
- config_name: th
data_files:
- path: train/th.json.gz
split: train
- path: test/th.json.gz
split: test
- path: validation/th.json.gz
split: validation
- config_name: ja
data_files:
- path: train/ja.json.gz
split: train
- path: test/ja.json.gz
split: test
- path: validation/ja.json.gz
split: validation
- config_name: hi
data_files:
- path: train/hi.json.gz
split: train
- path: test/hi.json.gz
split: test
- path: validation/hi.json.gz
split: validation
- config_name: id
data_files:
- path: train/id.json.gz
split: train
- path: test/id.json.gz
split: test
- path: validation/id.json.gz
split: validation
- config_name: kn
data_files:
- path: train/kn.json.gz
split: train
- path: test/kn.json.gz
split: test
- path: validation/kn.json.gz
split: validation
- config_name: fi
data_files:
- path: train/fi.json.gz
split: train
- path: test/fi.json.gz
split: test
- path: validation/fi.json.gz
split: validation
- config_name: ur
data_files:
- path: train/ur.json.gz
split: train
- path: test/ur.json.gz
split: test
- path: validation/ur.json.gz
split: validation
- config_name: my
data_files:
- path: train/my.json.gz
split: train
- path: test/my.json.gz
split: test
- path: validation/my.json.gz
split: validation
- config_name: lv
data_files:
- path: train/lv.json.gz
split: train
- path: test/lv.json.gz
split: test
- path: validation/lv.json.gz
split: validation
- config_name: fr
data_files:
- path: train/fr.json.gz
split: train
- path: test/fr.json.gz
split: test
- path: validation/fr.json.gz
split: validation
- config_name: ko
data_files:
- path: train/ko.json.gz
split: train
- path: test/ko.json.gz
split: test
- path: validation/ko.json.gz
split: validation
- config_name: sw
data_files:
- path: train/sw.json.gz
split: train
- path: test/sw.json.gz
split: test
- path: validation/sw.json.gz
split: validation
- config_name: sv
data_files:
- path: train/sv.json.gz
split: train
- path: test/sv.json.gz
split: test
- path: validation/sv.json.gz
split: validation
- config_name: nl
data_files:
- path: train/nl.json.gz
split: train
- path: test/nl.json.gz
split: test
- path: validation/nl.json.gz
split: validation
- config_name: da
data_files:
- path: train/da.json.gz
split: train
- path: test/da.json.gz
split: test
- path: validation/da.json.gz
split: validation
- config_name: ar
data_files:
- path: train/ar.json.gz
split: train
- path: test/ar.json.gz
split: test
- path: validation/ar.json.gz
split: validation
- config_name: ms
data_files:
- path: train/ms.json.gz
split: train
- path: test/ms.json.gz
split: test
- path: validation/ms.json.gz
split: validation
- config_name: en
data_files:
- path: train/en.json.gz
split: train
- path: test/en.json.gz
split: test
- path: validation/en.json.gz
split: validation
- config_name: am
data_files:
- path: train/am.json.gz
split: train
- path: test/am.json.gz
split: test
- path: validation/am.json.gz
split: validation
- config_name: pt
data_files:
- path: train/pt.json.gz
split: train
- path: test/pt.json.gz
split: test
- path: validation/pt.json.gz
split: validation
- config_name: ka
data_files:
- path: train/ka.json.gz
split: train
- path: test/ka.json.gz
split: test
- path: validation/ka.json.gz
split: validation
- config_name: ro
data_files:
- path: train/ro.json.gz
split: train
- path: test/ro.json.gz
split: test
- path: validation/ro.json.gz
split: validation
- config_name: tr
data_files:
- path: train/tr.json.gz
split: train
- path: test/tr.json.gz
split: test
- path: validation/tr.json.gz
split: validation
- config_name: hu
data_files:
- path: train/hu.json.gz
split: train
- path: test/hu.json.gz
split: test
- path: validation/hu.json.gz
split: validation
- config_name: zh-TW
data_files:
- path: train/zh-TW.json.gz
split: train
- path: test/zh-TW.json.gz
split: test
- path: validation/zh-TW.json.gz
split: validation
- config_name: bn
data_files:
- path: train/bn.json.gz
split: train
- path: test/bn.json.gz
split: test
- path: validation/bn.json.gz
split: validation
- config_name: hy
data_files:
- path: train/hy.json.gz
split: train
- path: test/hy.json.gz
split: test
- path: validation/hy.json.gz
split: validation
- config_name: es
data_files:
- path: train/es.json.gz
split: train
- path: test/es.json.gz
split: test
- path: validation/es.json.gz
split: validation
- config_name: az
data_files:
- path: train/az.json.gz
split: train
- path: test/az.json.gz
split: test
- path: validation/az.json.gz
split: validation
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MassiveIntentClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Spoken |
| Reference | https://arxiv.org/abs/2204.08582 |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["MassiveIntentClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{fitzgerald2022massive,
archiveprefix = {arXiv},
author = {Jack FitzGerald and Christopher Hench and Charith Peris and Scott Mackie and Kay Rottmann and Ana Sanchez and Aaron Nash and Liam Urbach and Vishesh Kakarala and Richa Singh and Swetha Ranganath and Laurie Crist and Misha Britan and Wouter Leeuwis and Gokhan Tur and Prem Natarajan},
eprint = {2204.08582},
primaryclass = {cs.CL},
title = {MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages},
year = {2022},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("MassiveIntentClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"validation": {
"num_samples": 103683,
"number_of_characters": 3583467,
"number_texts_intersect_with_train": 5457,
"min_text_length": 1,
"average_text_length": 34.56176036573016,
"max_text_length": 224,
"unique_text": 102325,
"unique_labels": 59,
"labels": {
"iot_hue_lightoff": {
"count": 867
},
"iot_hue_lightdim": {
"count": 867
},
"iot_cleaning": {
"count": 969
},
"general_quirky": {
"count": 5355
},
"takeaway_query": {
"count": 1224
},
"play_music": {
"count": 6273
},
"music_query": {
"count": 1530
},
"weather_query": {
"count": 6426
},
"music_settings": {
"count": 408
},
"audio_volume_down": {
"count": 408
},
"datetime_query": {
"count": 3264
},
"general_greet": {
"count": 102
},
"alarm_set": {
"count": 1581
},
"audio_volume_up": {
"count": 612
},
"alarm_query": {
"count": 969
},
"news_query": {
"count": 4182
},
"iot_hue_lighton": {
"count": 255
},
"iot_wemo_off": {
"count": 255
},
"iot_hue_lightchange": {
"count": 1122
},
"audio_volume_mute": {
"count": 765
},
"alarm_remove": {
"count": 714
},
"general_joke": {
"count": 765
},
"datetime_convert": {
"count": 459
},
"iot_wemo_on": {
"count": 357
},
"iot_hue_lightup": {
"count": 612
},
"iot_coffee": {
"count": 714
},
"social_post": {
"count": 2550
},
"music_dislikeness": {
"count": 102
},
"cooking_recipe": {
"count": 2091
},
"takeaway_order": {
"count": 1020
},
"music_likeness": {
"count": 816
},
"calendar_query": {
"count": 5202
},
"qa_stock": {
"count": 1224
},
"qa_factoid": {
"count": 4590
},
"calendar_set": {
"count": 6681
},
"recommendation_events": {
"count": 1326
},
"cooking_query": {
"count": 102
},
"calendar_remove": {
"count": 2397
},
"email_sendemail": {
"count": 3213
},
"play_radio": {
"count": 2346
},
"play_audiobook": {
"count": 1785
},
"play_game": {
"count": 1122
},
"lists_query": {
"count": 2550
},
"lists_remove": {
"count": 1887
},
"lists_createoradd": {
"count": 1275
},
"email_addcontact": {
"count": 255
},
"play_podcasts": {
"count": 1734
},
"recommendation_movies": {
"count": 612
},
"recommendation_locations": {
"count": 1581
},
"transport_ticket": {
"count": 1275
},
"transport_query": {
"count": 1836
},
"transport_taxi": {
"count": 1377
},
"transport_traffic": {
"count": 1122
},
"qa_definition": {
"count": 2805
},
"qa_currency": {
"count": 1632
},
"qa_maths": {
"count": 663
},
"social_query": {
"count": 918
},
"email_query": {
"count": 3723
},
"email_querycontact": {
"count": 816
}
}
},
"test": {
"num_samples": 151674,
"number_of_characters": 5230011,
"number_texts_intersect_with_train": 7273,
"min_text_length": 1,
"average_text_length": 34.48192175323391,
"max_text_length": 495,
"unique_text": 148972,
"unique_labels": 59,
"labels": {
"alarm_set": {
"count": 2091
},
"audio_volume_mute": {
"count": 1632
},
"iot_hue_lightchange": {
"count": 1836
},
"iot_hue_lighton": {
"count": 153
},
"iot_hue_lightoff": {
"count": 2193
},
"iot_cleaning": {
"count": 1326
},
"general_quirky": {
"count": 8619
},
"general_greet": {
"count": 51
},
"datetime_query": {
"count": 4488
},
"datetime_convert": {
"count": 765
},
"alarm_remove": {
"count": 1071
},
"alarm_query": {
"count": 1734
},
"music_likeness": {
"count": 1836
},
"iot_hue_lightup": {
"count": 1377
},
"takeaway_order": {
"count": 1122
},
"weather_query": {
"count": 7956
},
"general_joke": {
"count": 969
},
"play_music": {
"count": 8976
},
"iot_hue_lightdim": {
"count": 1071
},
"takeaway_query": {
"count": 1785
},
"news_query": {
"count": 6324
},
"audio_volume_up": {
"count": 663
},
"iot_wemo_off": {
"count": 918
},
"iot_wemo_on": {
"count": 510
},
"iot_coffee": {
"count": 1836
},
"music_query": {
"count": 1785
},
"audio_volume_down": {
"count": 561
},
"audio_volume_other": {
"count": 306
},
"music_dislikeness": {
"count": 204
},
"music_settings": {
"count": 306
},
"recommendation_events": {
"count": 2193
},
"qa_stock": {
"count": 1326
},
"calendar_set": {
"count": 10659
},
"play_audiobook": {
"count": 2091
},
"social_query": {
"count": 1275
},
"qa_factoid": {
"count": 7191
},
"transport_ticket": {
"count": 1785
},
"recommendation_locations": {
"count": 1581
},
"calendar_query": {
"count": 6426
},
"recommendation_movies": {
"count": 1020
},
"transport_query": {
"count": 2601
},
"cooking_recipe": {
"count": 3672
},
"play_game": {
"count": 1785
},
"calendar_remove": {
"count": 3417
},
"email_query": {
"count": 6069
},
"email_sendemail": {
"count": 5814
},
"play_radio": {
"count": 3672
},
"play_podcasts": {
"count": 3213
},
"lists_query": {
"count": 2601
},
"lists_remove": {
"count": 2652
},
"lists_createoradd": {
"count": 1989
},
"transport_taxi": {
"count": 1173
},
"transport_traffic": {
"count": 765
},
"qa_definition": {
"count": 2907
},
"qa_maths": {
"count": 1275
},
"social_post": {
"count": 4131
},
"qa_currency": {
"count": 1989
},
"email_addcontact": {
"count": 612
},
"email_querycontact": {
"count": 1326
}
}
},
"train": {
"num_samples": 587214,
"number_of_characters": 20507758,
"number_texts_intersect_with_train": null,
"min_text_length": 1,
"average_text_length": 34.92382334208653,
"max_text_length": 295,
"unique_text": 565055,
"unique_labels": 60,
"labels": {
"alarm_set": {
"count": 9282
},
"audio_volume_mute": {
"count": 5610
},
"iot_hue_lightchange": {
"count": 6375
},
"iot_hue_lightoff": {
"count": 7803
},
"iot_hue_lightdim": {
"count": 3876
},
"iot_cleaning": {
"count": 4743
},
"calendar_query": {
"count": 28866
},
"play_music": {
"count": 32589
},
"general_quirky": {
"count": 28305
},
"general_greet": {
"count": 1275
},
"datetime_query": {
"count": 17850
},
"datetime_convert": {
"count": 2652
},
"takeaway_query": {
"count": 6222
},
"alarm_remove": {
"count": 3978
},
"alarm_query": {
"count": 6630
},
"news_query": {
"count": 25653
},
"music_likeness": {
"count": 5763
},
"music_query": {
"count": 7854
},
"iot_hue_lightup": {
"count": 3876
},
"takeaway_order": {
"count": 6885
},
"weather_query": {
"count": 29223
},
"music_settings": {
"count": 2601
},
"general_joke": {
"count": 3672
},
"music_dislikeness": {
"count": 714
},
"audio_volume_other": {
"count": 918
},
"iot_coffee": {
"count": 6324
},
"audio_volume_up": {
"count": 5610
},
"iot_wemo_on": {
"count": 2448
},
"iot_hue_lighton": {
"count": 1122
},
"iot_wemo_off": {
"count": 2652
},
"audio_volume_down": {
"count": 2652
},
"qa_stock": {
"count": 7752
},
"play_radio": {
"count": 14433
},
"recommendation_locations": {
"count": 8823
},
"qa_factoid": {
"count": 27744
},
"calendar_set": {
"count": 41310
},
"play_audiobook": {
"count": 7650
},
"play_podcasts": {
"count": 9843
},
"social_query": {
"count": 5508
},
"transport_query": {
"count": 11577
},
"email_sendemail": {
"count": 18054
},
"recommendation_movies": {
"count": 3570
},
"lists_query": {
"count": 10098
},
"play_game": {
"count": 5712
},
"transport_ticket": {
"count": 6477
},
"recommendation_events": {
"count": 9690
},
"email_query": {
"count": 21318
},
"transport_traffic": {
"count": 5967
},
"cooking_query": {
"count": 204
},
"qa_definition": {
"count": 13617
},
"calendar_remove": {
"count": 15912
},
"lists_remove": {
"count": 8364
},
"cooking_recipe": {
"count": 10557
},
"email_querycontact": {
"count": 6477
},
"lists_createoradd": {
"count": 9027
},
"transport_taxi": {
"count": 5100
},
"qa_maths": {
"count": 3978
},
"social_post": {
"count": 14433
},
"qa_currency": {
"count": 7242
},
"email_addcontact": {
"count": 2754
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
Oriolshhh/parlabe-errors-castellanismes-35k | Oriolshhh | 2025-05-04T15:36:57Z | 0 | 0 | [
"language:ca",
"license:apache-2.0",
"size_categories:10K<n<100K",
"region:us",
"català",
"grammar-correction",
"castellanismes",
"text-to-text",
"synthetic"
] | [] | 2025-05-04T15:31:08Z | null | ---
language: ca
license: apache-2.0
tags:
- català
- grammar-correction
- castellanismes
- text-to-text
- synthetic
size_categories:
- 10K<n<100K
---
# Dataset de castellanismes en català (35.000 parelles)
Aquest dataset conté **35.000 parelles de frases** en format:
```text_erroni,text_correcte```
El conjunt inclou frases amb **castellanismes habituals** en el català oral i escrit, generades de manera sintètica per entrenar models que detectin i corregeixin aquestes interferències.
---
## Com s’ha generat?
Les parelles han estat generades mitjançant:
- **API de GPT** per introduir errors de castellanismes de forma natural
- **Filtratge automàtic** amb un script Python
- Selecció final per garantir diversitat i coherència lingüística
Exemples d’errors de castellanisme:
- *Tinc que anar a casa* → *He d’anar a casa*
- *Se lo compré a mi cosina ahir* → *Li vaig comprar a la meva cosina ahir*
- *No em dona igual el que pensis* → *No m’és igual el que pensis*
---
## Format
- Llengua: Català (`ca`)
- Format: `.csv` amb dues columnes:
- `text_erroni`
- `text_correcte`
- Nombre de parelles: 35.000
|
mteb/bengali_hate_speech | mteb | 2025-05-04T15:09:57Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-04T15:09:52Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': 0
'1': 1
'2': 2
'3': 3
'4': 4
splits:
- name: train
num_bytes: 445907.77559976594
num_examples: 1567
- name: test
num_bytes: 431110.58074897603
num_examples: 1515
download_size: 351631
dataset_size: 877018.356348742
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
shylee/eval_DP_cube_downDims1_cropNo_freeze1_16_16_ema0_1e-4_ckpt180000 | shylee | 2025-05-04T15:01:17Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"region:us",
"LeRobot",
"tutorial"
] | [
"robotics"
] | 2025-05-04T15:01:11Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- tutorial
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 1,
"total_frames": 321,
"total_tasks": 1,
"total_videos": 3,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:1"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.images.FrontCam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.TopCam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.WristCam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
Siddhant00/SLR43ForOpherus | Siddhant00 | 2025-05-04T14:54:06Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-04T14:46:05Z | null | ---
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 48000
- name: sentence
dtype: string
- name: path
dtype: string
- name: speaker
dtype: int64
splits:
- name: train
num_bytes: 966898681.0
num_examples: 2064
download_size: 935774325
dataset_size: 966898681.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
rainbowbridge/x_dataset_36658 | rainbowbridge | 2025-05-04T14:19:36Z | 1,210 | 0 | [
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:question-answering",
"task_categories:summarization",
"task_categories:text-generation",
"task_ids:sentiment-analysis",
"task_ids:topic-classification",
"task_ids:named-entity-recognition",
"task_ids:language-modeling",
"task_ids:text-scoring",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"task_ids:extractive-qa",
"task_ids:news-articles-summarization",
"multilinguality:multilingual",
"source_datasets:original",
"license:mit",
"size_categories:100M<n<1B",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"text-classification",
"token-classification",
"question-answering",
"summarization",
"text-generation"
] | 2025-01-27T09:42:25Z | null | ---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** rainbowbridge/x_dataset_36658
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5HBJT9LVMim1mFQnihWzwXze1tTJCRWG6gBmfGjuX8bYHQds
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{rainbowbridge2025datauniversex_dataset_36658,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={rainbowbridge},
year={2025},
url={https://huggingface.co/datasets/rainbowbridge/x_dataset_36658},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 48889665
- **Date Range:** 2025-01-21T00:00:00Z to 2025-02-13T00:00:00Z
- **Last Updated:** 2025-02-18T19:51:23Z
### Data Distribution
- Tweets with hashtags: 43.87%
- Tweets without hashtags: 56.13%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 27441046 | 56.13% |
| 2 | #riyadh | 313769 | 0.64% |
| 3 | #zelena | 270307 | 0.55% |
| 4 | #tiktok | 207010 | 0.42% |
| 5 | #bbb25 | 142273 | 0.29% |
| 6 | #ad | 120913 | 0.25% |
| 7 | #jhope_at_galadespiècesjaunes | 86117 | 0.18% |
| 8 | #royalrumble | 71515 | 0.15% |
| 9 | #granhermano | 68966 | 0.14% |
| 10 | #pr | 68325 | 0.14% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-01-27T09:43:29Z | 3193387 | 3193387 |
| 2025-01-30T21:46:28Z | 10063226 | 13256613 |
| 2025-02-03T09:49:08Z | 7311324 | 20567937 |
| 2025-02-06T21:52:36Z | 8681715 | 29249652 |
| 2025-02-10T11:26:25Z | 8454192 | 37703844 |
| 2025-02-13T23:30:18Z | 9715300 | 47419144 |
| 2025-02-18T04:50:00Z | 752652 | 48171796 |
| 2025-02-18T19:51:23Z | 717869 | 48889665 |
|
gunnybd01/StockIndicator-Data | gunnybd01 | 2025-05-04T11:08:57Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T11:02:37Z | null | ---
dataset_info:
features:
- name: Keys
dtype: string
- name: Trend_smr
dtype: string
- name: Volume_smr
dtype: string
- name: Volatility_smr
dtype: string
- name: Momentum_smr
dtype: string
- name: ShortPct
dtype: float64
- name: MediumPct
dtype: float64
- name: LongPct
dtype: float64
splits:
- name: train
num_bytes: 504378755
num_examples: 60000
download_size: 82123715
dataset_size: 504378755
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
GitBag/a_star_final_a_star_math_7_actor_aime-24_eval | GitBag | 2025-05-04T11:00:38Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T11:00:36Z | null | ---
dataset_info:
features:
- name: problem
dtype: string
- name: answer
dtype: int64
- name: response_0
dtype: string
- name: response_1
dtype: string
- name: response_2
dtype: string
- name: response_3
dtype: string
- name: response_4
dtype: string
- name: response_5
dtype: string
- name: response_6
dtype: string
- name: response_7
dtype: string
- name: response_8
dtype: string
- name: response_9
dtype: string
- name: response_10
dtype: string
- name: response_11
dtype: string
- name: response_12
dtype: string
- name: response_13
dtype: string
- name: response_14
dtype: string
- name: response_15
dtype: string
- name: response_16
dtype: string
- name: response_17
dtype: string
- name: response_18
dtype: string
- name: response_19
dtype: string
- name: response_20
dtype: string
- name: response_21
dtype: string
- name: response_22
dtype: string
- name: response_23
dtype: string
- name: response_24
dtype: string
- name: response_25
dtype: string
- name: response_26
dtype: string
- name: response_27
dtype: string
- name: response_28
dtype: string
- name: response_29
dtype: string
- name: response_30
dtype: string
- name: response_31
dtype: string
- name: eval_0
dtype: float64
- name: eval_1
dtype: float64
- name: eval_2
dtype: float64
- name: eval_3
dtype: float64
- name: eval_4
dtype: float64
- name: eval_5
dtype: float64
- name: eval_6
dtype: float64
- name: eval_7
dtype: float64
- name: eval_8
dtype: float64
- name: eval_9
dtype: float64
- name: eval_10
dtype: float64
- name: eval_11
dtype: float64
- name: eval_12
dtype: float64
- name: eval_13
dtype: float64
- name: eval_14
dtype: float64
- name: eval_15
dtype: float64
- name: eval_16
dtype: float64
- name: eval_17
dtype: float64
- name: eval_18
dtype: float64
- name: eval_19
dtype: float64
- name: eval_20
dtype: float64
- name: eval_21
dtype: float64
- name: eval_22
dtype: float64
- name: eval_23
dtype: float64
- name: eval_24
dtype: float64
- name: eval_25
dtype: float64
- name: eval_26
dtype: float64
- name: eval_27
dtype: float64
- name: eval_28
dtype: float64
- name: eval_29
dtype: float64
- name: eval_30
dtype: float64
- name: eval_31
dtype: float64
splits:
- name: train
num_bytes: 3887353
num_examples: 30
download_size: 1375386
dataset_size: 3887353
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_1.0_alpha_0.6_num-company_3_dataset_1_for_gen_19 | HungVu2003 | 2025-05-04T10:31:39Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T10:31:38Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3599649
num_examples: 12500
download_size: 1854129
dataset_size: 3599649
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
wyyyz139/character | wyyyz139 | 2025-05-04T10:22:48Z | 2 | 0 | [
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:json",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"region:us"
] | [] | 2025-05-04T02:57:50Z | null | ---
license: apache-2.0
---
|
HungVu2003/opt-350m_beta_0.5_alpha_0.6_num-company_3_dataset_2_for_gen_17 | HungVu2003 | 2025-05-04T08:52:23Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T08:52:21Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3882121
num_examples: 12500
download_size: 1222020
dataset_size: 3882121
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_2_dataset_1_for_gen_10_v2 | HungVu2003 | 2025-05-04T08:27:21Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T08:27:20Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 6383286
num_examples: 13750
download_size: 3232348
dataset_size: 6383286
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_2_dataset_1_for_gen_9_v2 | HungVu2003 | 2025-05-04T07:17:32Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-04T07:17:31Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 6393295
num_examples: 13750
download_size: 3239607
dataset_size: 6393295
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
rlawltjd/korean-nl2bash | rlawltjd | 2025-05-04T07:04:23Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-04T07:04:15Z | null | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 1170873
num_examples: 8089
download_size: 448025
dataset_size: 1170873
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
arielcerdap/tts-disfluencies-DA | arielcerdap | 2025-05-04T06:55:17Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-04T06:54:53Z | null | ---
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
- name: text
dtype: string
- name: speaker_tag_used
dtype: string
- name: temperature_used
dtype: float32
splits:
- name: train
num_bytes: 515151319.0
num_examples: 500
download_size: 499156183
dataset_size: 515151319.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
upvantage/deberta-1m-v2humanized | upvantage | 2025-05-04T06:39:20Z | 0 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T06:30:44Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': human
'1': ai
- name: type
dtype: string
splits:
- name: train
num_bytes: 1777430766
num_examples: 910928
- name: validation
num_bytes: 197496555
num_examples: 101214
download_size: 1192474307
dataset_size: 1974927321
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
flyingbugs/OpenR1-Math-220k-pruned-keep-0.1-end-start-0.0 | flyingbugs | 2025-05-04T05:13:34Z | 0 | 0 | [
"size_categories:10K<n<100K",
"modality:text",
"region:us"
] | [] | 2025-05-04T05:12:40Z | null | ---
dataset_info:
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: problem_type
dtype: string
- name: question_type
dtype: string
- name: source
dtype: string
- name: uuid
dtype: string
- name: is_reasoning_complete
sequence: bool
- name: generations
sequence: string
- name: correctness_math_verify
sequence: bool
- name: correctness_llama
sequence: bool
- name: finish_reasons
sequence: string
- name: correctness_count
dtype: int64
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 3975332374
num_examples: 93733
download_size: 1721086932
dataset_size: 3975332374
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
qhuang20/summarize_from_feedback_oai_preprocessing_1706381144_cnndm_relabel_pythia6.9b_emoji | qhuang20 | 2025-05-04T04:34:15Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T23:46:51Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: prompt_chosen
dtype: string
- name: prompt_rejected
dtype: string
- name: chosen_score
dtype: float64
- name: rejected_score
dtype: float64
- name: both_chosen_score
dtype: float64
- name: both_rejected_score
dtype: float64
- name: chosen_chosen_score
dtype: float64
- name: chosen_rejected_score
dtype: float64
- name: rejected_chosen_score
dtype: float64
- name: rejected_rejected_score
dtype: float64
- name: random_chosen_score
dtype: float64
- name: random_rejected_score
dtype: float64
splits:
- name: validation_cnndm
num_bytes: 26935641
num_examples: 2284
download_size: 3812053
dataset_size: 26935641
configs:
- config_name: default
data_files:
- split: validation_cnndm
path: data/validation_cnndm-*
---
|
HungVu2003/opt-350m_beta_0.0_alpha_0.2_num-company_2_dataset_1_for_gen_5_v2 | HungVu2003 | 2025-05-04T04:33:17Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T04:33:16Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 2292678
num_examples: 13750
download_size: 1031494
dataset_size: 2292678
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_2_dataset_0_for_gen_7_v2 | HungVu2003 | 2025-05-04T04:07:18Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T04:07:17Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 2110876
num_examples: 13750
download_size: 1132970
dataset_size: 2110876
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_0.5_alpha_0.6_num-company_3_dataset_0_for_gen_16 | HungVu2003 | 2025-05-04T03:38:07Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T03:38:06Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 7468487
num_examples: 12500
download_size: 1913775
dataset_size: 7468487
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
marcuscedricridia/OpenMathInstruct-1-1000-processed | marcuscedricridia | 2025-05-04T02:46:57Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T02:46:56Z | null | ---
dataset_info:
features:
- name: question
dtype: string
- name: generated_solution
dtype: string
splits:
- name: train
num_bytes: 586120.6902226892
num_examples: 1000
download_size: 293455
dataset_size: 586120.6902226892
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_0.5_alpha_0.6_num-company_3_dataset_2_for_gen_15 | HungVu2003 | 2025-05-04T01:43:48Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T01:43:47Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 4007928
num_examples: 12500
download_size: 1246351
dataset_size: 4007928
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
aciang/ITK | aciang | 2025-05-04T01:28:25Z | 0 | 0 | [
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T01:25:49Z | null | ---
license: apache-2.0
---
|
dgambettaphd/D_llm2_gen1_WXS_doc1000_synt64_lr1e-04_acm_FRESH | dgambettaphd | 2025-05-04T01:04:41Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-04T01:04:18Z | null | ---
dataset_info:
features:
- name: id_doc
dtype: int64
- name: text
dtype: string
- name: dataset
dtype: string
- name: gen
dtype: int64
- name: synt
dtype: int64
- name: MPP
dtype: float64
splits:
- name: train
num_bytes: 9773483
num_examples: 17000
download_size: 5870471
dataset_size: 9773483
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Bakovic/chatbot_medical_diabetique | Bakovic | 2025-05-03T23:34:34Z | 0 | 0 | [
"license:intel-research",
"region:us"
] | [] | 2025-05-03T23:32:29Z | null | ---
license: intel-research
---
|
sergiomadrid/exist_task3 | sergiomadrid | 2025-05-03T22:47:05Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T22:46:49Z | null | ---
dataset_info:
features:
- name: id
dtype: int32
- name: text
dtype: string
- name: lang
dtype: string
- name: label_task3_1
sequence: string
- name: label_task3_2
sequence: string
- name: label_task3_3
sequence:
sequence: string
splits:
- name: train
num_bytes: 1768649
num_examples: 2524
download_size: 847539
dataset_size: 1768649
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
AxeML/MiniSetPT | AxeML | 2025-05-03T21:31:33Z | 14 | 2 | [
"task_categories:text-generation",
"language:pt",
"license:mit",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"conversation",
"dialogs",
"dialogue"
] | [
"text-generation"
] | 2025-05-01T19:01:10Z | 2 | ---
license: mit
task_categories:
- text-generation
language:
- pt
tags:
- conversation
- dialogs
- dialogue
size_categories:
- 1K<n<10K
---
<p align="center">
<img src="IA.png" alt="Banner do Projeto">
</p>
# 📚 Dataset de Perguntas e Respostas por Tópico
Este repositório contém um dataset com **10.000 amostras** estruturadas para tarefas de **Processamento de Linguagem Natural (PLN)**, com foco em **perguntas temáticas e respostas desenvolvidas**.
## 📁 Estrutura dos Dados
Cada amostra é representada em formato JSON com os seguintes campos:
- `id` *(string)*: Identificador único da amostra (UUID).
- `topic` *(lista de strings)*: Lista com os tópicos abordados.
- `prompts` *(lista de strings)*: Conjunto de perguntas relacionadas ao tópico.
- `response` *(string)*: Resposta discursiva que contempla as perguntas propostas, escrita em linguagem natural.
### 🔍 Exemplo de Amostra
```json
{
"topic": ["jogos"],
"prompts": [
"Como os jogos eletrônicos podem ser utilizados como ferramentas educacionais?",
"Quais são os impactos psicológicos dos jogos competitivos em jogadores adolescentes?",
"Como a evolução gráfica dos jogos influenciou a indústria do entretenimento?",
"Quais são os principais elementos narrativos que tornam um jogo imersivo?"
],
"response": "Os jogos são uma forma de entretenimento multifacetada que abrange diversas áreas de interesse. Como ferramentas educacionais, os jogos eletrônicos podem promover o aprendizado interativo, desenvolvendo habilidades como resolução de problemas, trabalho em equipe e pensamento crítico, através de mecânicas engajadoras. No aspecto psicológico, jogos competitivos podem tanto estimular a resiliência e a estratégia quanto exigir atenção aos possíveis efeitos negativos, como estresse ou frustração, especialmente em adolescentes. A evolução gráfica dos jogos revolucionou a indústria do entretenimento, elevando padrões tecnológicos e criando experiências visuais mais realistas, o que atraiu um público mais amplo e diversificado. Por fim, a narrativa imersiva em jogos depende de elementos como desenvolvimento de personagens, worldbuilding coeso e escolhas impactantes, que juntos criam uma conexão emocional entre o jogador e o universo virtual. Assim, os jogos se consolidam como uma mídia rica e versátil, com aplicações e impactos significativos em diversas esferas.",
"id": "768cf005-1c0c-4f75-88b9-90cebdbeb81b"
}
```
## 🧠 Possíveis Aplicações
- Treinamento de modelos de geração de texto;
- Fine-tuning de LLMs em português;
- Tarefas de sumarização e compreensão de texto;
- Geração de respostas discursivas;
- Classificação temática;
- Estudos de coesão e coerência textual.
## 🗂️ Volume de Dados
- **Total de amostras**: 10.000
- **Idioma**: Português (Brasil)
## 📄 Licença
Este projeto está licenciado sob os termos da [Licença MIT](LICENSE). |
aarontrinh02/leetcode_pipeline_part2 | aarontrinh02 | 2025-05-03T21:08:05Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T02:47:35Z | null | ---
dataset_info:
features:
- name: query_positive
dtype: string
- name: instruction_positive
dtype: string
- name: document_positive
dtype: string
- name: positive_language
dtype: string
- name: query_negative
dtype: string
- name: instruction_negative
dtype: string
- name: hard_negative_document_1
dtype: string
- name: hard_negative_document_2
dtype: string
splits:
- name: train
num_bytes: 16458010
num_examples: 1999
download_size: 5274648
dataset_size: 16458010
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
anonymousEcaiHateLLM/Hate.2_labels_labeled | anonymousEcaiHateLLM | 2025-05-03T20:34:38Z | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T20:34:25Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: unsloth/Qwen2.5-14B-Instruct-bnb-4bit_label_1
dtype: float64
- name: unsloth/Qwen2.5-14B-Instruct-bnb-4bit_label_2
dtype: float64
- name: unsloth/gemma-2-9b-it-bnb-4bit_label_1
dtype: float64
- name: unsloth/gemma-2-9b-it-bnb-4bit_label_2
dtype: float64
- name: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit_label_1
dtype: float64
- name: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit_label_2
dtype: float64
- name: unsloth/mistral-7b-instruct-v0.3-bnb-4bit_label_1
dtype: float64
- name: unsloth/mistral-7b-instruct-v0.3-bnb-4bit_label_2
dtype: float64
- name: language
dtype: string
- name: mean_label_1
dtype: float64
- name: mean_label_2
dtype: float64
- name: Mean
dtype: int64
- name: lgb_label_1
dtype: float64
- name: lgb_label_2
dtype: float64
- name: Lgb
dtype: int64
- name: Vote
dtype: int64
splits:
- name: 2_labels
num_bytes: 79917049
num_examples: 240647
download_size: 44153399
dataset_size: 79917049
configs:
- config_name: default
data_files:
- split: 2_labels
path: data/2_labels-*
---
|
willnorris/cylinder-in-box-hollows-6 | willnorris | 2025-05-03T19:43:02Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot"
] | [
"robotics"
] | 2025-05-03T19:10:20Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 1,
"total_frames": 298,
"total_tasks": 1,
"total_videos": 2,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:1"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"observation.images.cam1": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channel"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.cam2": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channel"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": {
"motors": [
"shoulder_pan",
"shoulder_lift",
"elbow_flex",
"wrist_flex",
"wrist_roll",
"gripper"
]
}
},
"action": {
"dtype": "float32",
"shape": [
6
],
"names": {
"motors": [
"shoulder_pan",
"shoulder_lift",
"elbow_flex",
"wrist_flex",
"wrist_roll",
"gripper"
]
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"next.done": {
"dtype": "bool",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
momo1942/x_dataset_40590 | momo1942 | 2025-05-03T19:38:40Z | 795 | 0 | [
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:question-answering",
"task_categories:summarization",
"task_categories:text-generation",
"task_ids:sentiment-analysis",
"task_ids:topic-classification",
"task_ids:named-entity-recognition",
"task_ids:language-modeling",
"task_ids:text-scoring",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"task_ids:extractive-qa",
"task_ids:news-articles-summarization",
"multilinguality:multilingual",
"source_datasets:original",
"license:mit",
"size_categories:100M<n<1B",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"text-classification",
"token-classification",
"question-answering",
"summarization",
"text-generation"
] | 2025-01-29T06:31:00Z | null | ---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** momo1942/x_dataset_40590
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5Fk6Ur49sNZjSVaCj4AVbEhuYTYTnVSdh5evvMDPExZSdD8g
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{momo19422025datauniversex_dataset_40590,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={momo1942},
year={2025},
url={https://huggingface.co/datasets/momo1942/x_dataset_40590},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 54541574
- **Date Range:** 2025-01-23T00:00:00Z to 2025-02-13T00:00:00Z
- **Last Updated:** 2025-02-18T18:12:32Z
### Data Distribution
- Tweets with hashtags: 49.94%
- Tweets without hashtags: 50.06%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 27302504 | 50.06% |
| 2 | #riyadh | 416113 | 0.76% |
| 3 | #zelena | 307274 | 0.56% |
| 4 | #tiktok | 261916 | 0.48% |
| 5 | #bbb25 | 205680 | 0.38% |
| 6 | #ad | 150196 | 0.28% |
| 7 | #royalrumble | 121643 | 0.22% |
| 8 | #jhope_at_galadespiècesjaunes | 116582 | 0.21% |
| 9 | #granhermano | 92578 | 0.17% |
| 10 | #bbmzansi | 87251 | 0.16% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-01-29T06:31:58Z | 3075320 | 3075320 |
| 2025-02-01T18:34:52Z | 8753140 | 11828460 |
| 2025-02-05T06:37:51Z | 9310894 | 21139354 |
| 2025-02-08T18:42:36Z | 11749598 | 32888952 |
| 2025-02-12T06:46:20Z | 7821613 | 40710565 |
| 2025-02-17T03:33:43Z | 12307358 | 53017923 |
| 2025-02-18T03:11:07Z | 703943 | 53721866 |
| 2025-02-18T18:12:32Z | 819708 | 54541574 |
|
francescocrivelli/eval_v1_act_so100_testing_pi0_one_francesco_full | francescocrivelli | 2025-05-03T19:18:18Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot"
] | [
"robotics"
] | 2025-05-03T19:18:09Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 10,
"total_frames": 6351,
"total_tasks": 1,
"total_videos": 20,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:10"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.images.laptop": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"observation.images.phone": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
MBZUAI-IFM/AM_clean_final | MBZUAI-IFM | 2025-05-03T18:29:38Z | 0 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T18:22:03Z | null | ---
dataset_info:
features:
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: dataset_source
dtype: string
- name: metadata
dtype: string
- name: has_forbidden
dtype: bool
splits:
- name: train
num_bytes: 26009841975
num_examples: 1139323
download_size: 11628816168
dataset_size: 26009841975
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
cchoi1/kodcode-complete_1000_qwen7b_sol_iter0_att10_sol5_lr1e5_3ep_dpo_10000 | cchoi1 | 2025-05-03T18:10:44Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T18:10:41Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: task_id
dtype: string
splits:
- name: train
num_bytes: 10023107.103929024
num_examples: 2524
- name: test
num_bytes: 2509747.896070976
num_examples: 632
download_size: 2061810
dataset_size: 12532855.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
HungVu2003/opt-350m_beta_0.0_alpha_0.0_num-company_2_dataset_1_for_gen_13_v2 | HungVu2003 | 2025-05-03T17:54:37Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T17:54:36Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 820412
num_examples: 12500
download_size: 567135
dataset_size: 820412
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
junlinw/Qwen2.5-7B-Instruct-Turbo_MATH_10 | junlinw | 2025-05-03T17:50:41Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T17:50:39Z | null | ---
dataset_info:
features:
- name: ids
dtype: int64
- name: queries
dtype: string
- name: samples
sequence: string
- name: references
dtype: string
splits:
- name: train
num_bytes: 117454203
num_examples: 7500
download_size: 35970957
dataset_size: 117454203
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
thailevann/Government_services_QA | thailevann | 2025-05-03T17:46:10Z | 20 | 0 | [
"task_categories:question-answering",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"question-answering"
] | 2025-04-24T00:37:35Z | null | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: label
dtype: int64
- name: relevant
dtype: string
splits:
- name: train
num_bytes: 49161014
num_examples: 20955
download_size: 9270053
dataset_size: 49161014
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
task_categories:
- question-answering
size_categories:
- 1K<n<10K
---
|
HungVu2003/opt-350m_beta_0.0_alpha_0.0_num-company_2_dataset_1_for_gen_10_v2 | HungVu2003 | 2025-05-03T17:38:41Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T17:38:40Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 820715
num_examples: 12500
download_size: 567865
dataset_size: 820715
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
alucchi/Qwen2.5-1.5B-Instruct_n1000_e10_oadam0.0001_b16_1_a10_flash_compact_ttt_slow_generate | alucchi | 2025-05-03T17:30:51Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T17:30:41Z | null | ---
dataset_info:
- config_name: default
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: generated_text
dtype: string
- name: generated_grid_rect
dtype: string
- name: task_solution
sequence:
sequence:
sequence: int64
- name: match
dtype: bool
- name: score
dtype: float64
splits:
- name: train
num_bytes: 696999
num_examples: 70
download_size: 136054
dataset_size: 696999
- config_name: main
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: generated_text
dtype: string
- name: generated_grid_rect
dtype: string
- name: task_solution
sequence:
sequence:
sequence: int64
- name: match
dtype: bool
- name: score
dtype: float64
splits:
- name: train
num_bytes: 696999
num_examples: 70
download_size: 136054
dataset_size: 696999
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: main
data_files:
- split: train
path: main/train-*
---
|
Hieuman/wiki_en_smallavae | Hieuman | 2025-05-03T17:28:55Z | 124 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-04-08T05:40:03Z | null | ---
dataset_info:
features:
- name: text_1
dtype: string
- name: text_2
dtype: string
- name: label
dtype: string
- name: style_comparison
dtype: string
- name: content_comparison
dtype: string
- name: content_label
dtype: string
splits:
- name: train
num_bytes: 167683819.0
num_examples: 17072
download_size: 71112622
dataset_size: 167683819.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ViratChauhan/sol-edu-ft | ViratChauhan | 2025-05-03T17:14:29Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-03T17:14:27Z | null | ---
dataset_info:
features:
- name: source
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 4549609
num_examples: 6128
download_size: 2168857
dataset_size: 4549609
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
aigrant/taiwan-ly-law-research | aigrant | 2025-05-03T17:00:06Z | 401 | 6 | [
"language:zh",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2024-07-22T21:29:38Z | null | ---
language:
- zh
configs:
- config_name: research
data_files: research.csv
dataset_info:
- config_name: research
features:
- name: research_no
dtype: string
- name: title
dtype: string
- name: related_laws
dtype: string
- name: authors
dtype: string
- name: published_date
dtype: string
- name: content
dtype: string
- name: doc_url
dtype: string
license: apache-2.0
---
# Taiwan Legislator Yuan Law Research Data
## Overview
The law research documents are issued irregularly from Taiwan Legislator Yuan.
The purpose of those research are providing better understanding on social issues in aspect of laws.
One may find documents rich with technical terms which could provided as training data.
For comprehensive document list check out this [link](https://www.ly.gov.tw/Pages/List.aspx?nodeid=6590) provided by Taiwan Legislator Yuan.
There are currently missing document download links in 10th and 9th terms due to minor issue on crawler.
We will fill in those missing data ASAP.
## Data Fields
| Field name | Description |
|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| research_no | ID of the research document |
| title | title of the document |
| related_laws | Related names of laws in the document. Separated by `;` |
| authors | Authors of document. Separated by `;` |
| published_date | Published date of the document in form `YYYY-mm-dd` |
| content | Full text content of the document. One may also find the original content in `.html` format at `html/{research_no}.html` |
| doc_url | The download link hosted on ly.gov.tw |
## Sponsorship
The work is sponsored by "【g0v 零時小學校】繁體中文AI 開源實踐計畫"
## Contact
If you have any issue on the dataset. Please leave a discussion on it or contact us via:
報導者(The Reporter) [email protected]
歐噴有限公司(OpenFun Ltd.) [email protected] |
gosamab/merged-handwriting-dataset | gosamab | 2025-05-03T16:50:57Z | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T16:27:45Z | null | ---
dataset_info:
features:
- name: source
dtype: string
- name: image
dtype: image
- name: text
dtype: string
- name: font_details
dtype: string
splits:
- name: train
num_bytes: 2176602946.666
num_examples: 447946
- name: test
num_bytes: 540987875.28
num_examples: 111987
download_size: 3803906962
dataset_size: 2717590821.946
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
themachinefan/sandbagging-sciq-headlines | themachinefan | 2025-05-03T16:50:09Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T16:50:03Z | null | ---
dataset_info:
features:
- name: correct_answer
dtype: string
- name: index
dtype: int64
- name: prompt
dtype: string
- name: sandbagging_environment
dtype: bool
- name: desired_answer
dtype: string
- name: prefix
dtype: string
- name: template
dtype: string
splits:
- name: train
num_bytes: 5234192
num_examples: 4000
- name: test
num_bytes: 203622
num_examples: 156
- name: validation
num_bytes: 204490
num_examples: 156
download_size: 1562350
dataset_size: 5642304
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
---
|
littleGuagua/x_dataset_11627 | littleGuagua | 2025-05-03T16:37:25Z | 1,557 | 0 | [
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:question-answering",
"task_categories:summarization",
"task_categories:text-generation",
"task_ids:sentiment-analysis",
"task_ids:topic-classification",
"task_ids:named-entity-recognition",
"task_ids:language-modeling",
"task_ids:text-scoring",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"task_ids:extractive-qa",
"task_ids:news-articles-summarization",
"multilinguality:multilingual",
"source_datasets:original",
"license:mit",
"size_categories:100M<n<1B",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"text-classification",
"token-classification",
"question-answering",
"summarization",
"text-generation"
] | 2025-01-26T13:13:48Z | null | ---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** littleGuagua/x_dataset_11627
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5FUByNzgdM2eukk6SwetFsZ4EPTxRqaV4YNEhNcusS1SxRVX
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{littleGuagua2025datauniversex_dataset_11627,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={littleGuagua},
year={2025},
url={https://huggingface.co/datasets/littleGuagua/x_dataset_11627},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 149000631
- **Date Range:** 2025-01-21T00:00:00Z to 2025-02-10T00:00:00Z
- **Last Updated:** 2025-02-18T20:47:28Z
### Data Distribution
- Tweets with hashtags: 42.62%
- Tweets without hashtags: 57.38%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 85489881 | 57.38% |
| 2 | #riyadh | 1033096 | 0.69% |
| 3 | #zelena | 790108 | 0.53% |
| 4 | #tiktok | 618215 | 0.41% |
| 5 | #bbb25 | 362232 | 0.24% |
| 6 | #ad | 356819 | 0.24% |
| 7 | #jhope_at_galadespiècesjaunes | 234343 | 0.16% |
| 8 | #bbmzansi | 207541 | 0.14% |
| 9 | #pr | 188395 | 0.13% |
| 10 | #yahooニュース | 178958 | 0.12% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-01-26T13:14:32Z | 2274090 | 2274090 |
| 2025-01-30T01:26:02Z | 29523249 | 31797339 |
| 2025-02-02T13:36:10Z | 29333848 | 61131187 |
| 2025-02-06T01:47:05Z | 28740147 | 89871334 |
| 2025-02-09T14:00:59Z | 29293177 | 119164511 |
| 2025-02-13T02:15:32Z | 28379764 | 147544275 |
| 2025-02-18T05:45:25Z | 808939 | 148353214 |
| 2025-02-18T20:47:28Z | 647417 | 149000631 |
|
FrancophonIA/Thesaurus_terminologie_canadienne_en_construction | FrancophonIA | 2025-05-03T16:36:17Z | 0 | 0 | [
"task_categories:translation",
"language:fra",
"language:eng",
"region:us"
] | [
"translation"
] | 2025-05-03T16:35:08Z | null | ---
language:
- fra
- eng
viewer: false
task_categories:
- translation
---
> [!NOTE]
> Dataset origin: https://publications.gc.ca/site/eng/9.876320/publication.html |
amekerishvili/ATCO2_full_files | amekerishvili | 2025-05-03T16:14:01Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T12:01:28Z | null | ---
dataset_info:
features:
- name: ID
dtype: string
- name: audio_file
dtype: string
- name: start_time
dtype: float64
- name: end_time
dtype: float64
- name: airport
dtype: string
- name: channel
dtype: string
- name: frequency
dtype: string
- name: time
dtype: string
- name: waypoints
dtype: string
- name: callsigns
dtype: string
- name: ground_truth_raw
dtype: string
- name: ground_truth
dtype: string
- name: non_Eng_ground_truth
dtype: string
- name: tags
dtype: string
- name: values_tags
dtype: string
- name: commands_tags
dtype: string
- name: callsigns_tags
dtype: string
- name: unnamed_tags
dtype: string
splits:
- name: train
num_bytes: 1558206
num_examples: 612
- name: validation
num_bytes: 362174
num_examples: 136
- name: test
num_bytes: 356108
num_examples: 129
download_size: 397317
dataset_size: 2276488
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
mlfoundations-dev/no_pipeline_math_300k | mlfoundations-dev | 2025-05-03T15:41:53Z | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T15:39:48Z | null | ---
dataset_info:
features:
- name: instruction_seed
dtype: string
- name: reasoning
dtype: string
- name: deepseek_solution
dtype: string
- name: source
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: shard_id
dtype: string
splits:
- name: train
num_bytes: 7613230760.0
num_examples: 316000
download_size: 3353575536
dataset_size: 7613230760.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
FrancophonIA/Glossaire_procedure_parlementaire | FrancophonIA | 2025-05-03T15:37:24Z | 0 | 0 | [
"task_categories:translation",
"language:fra",
"language:eng",
"region:us"
] | [
"translation"
] | 2025-05-03T15:36:48Z | null | ---
language:
- fra
- eng
viewer: false
task_categories:
- translation
---
> [!NOTE]
> Dataset origin: https://publications.gc.ca/site/eng/9.693563/publication.html |
FrancophonIA/Lexique_du_droit_de_la_famille | FrancophonIA | 2025-05-03T15:33:26Z | 0 | 0 | [
"task_categories:translation",
"language:fra",
"language:eng",
"region:us"
] | [
"translation"
] | 2025-05-03T15:32:34Z | null | ---
language:
- fra
- eng
viewer: false
task_categories:
- translation
---
> [!NOTE]
> Dataset origin: https://publications.gc.ca/site/eng/9.586275/publication.html |
t2ance/polymnist-upd10 | t2ance | 2025-05-03T15:30:26Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-03T14:29:24Z | null | ---
dataset_info:
features:
- name: m0
dtype: image
- name: m1
dtype: image
- name: m2
dtype: image
- name: m3
dtype: image
- name: m4
dtype: image
- name: m5
dtype: image
- name: m6
dtype: image
- name: m7
dtype: image
- name: m8
dtype: image
- name: m9
dtype: image
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
'2': '2'
'3': '3'
'4': '4'
'5': '5'
'6': '6'
'7': '7'
'8': '8'
'9': '9'
- name: sample_id
dtype: string
splits:
- name: train
num_bytes: 632476369.0
num_examples: 50000
- name: validation
num_bytes: 126523764.0
num_examples: 10000
- name: test
num_bytes: 126347943.0
num_examples: 10000
download_size: 916377594
dataset_size: 885348076.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
HPC-Boys/gemini-2.0-flash-results | HPC-Boys | 2025-05-03T15:18:08Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T15:18:01Z | null | ---
dataset_info:
features:
- name: unique_id
dtype: string
- name: problem
dtype: string
- name: is_mcq
dtype: bool
- name: choices
sequence: string
- name: choice_index_correct
dtype: int64
- name: explanation_correct
dtype: string
- name: answer_correct
dtype: string
- name: category
dtype: string
- name: response_1
dtype: string
- name: extracted_answer_1
dtype: string
- name: is_correct_1
dtype: bool
- name: response_2
dtype: string
- name: extracted_answer_2
dtype: string
- name: is_correct_2
dtype: bool
- name: response_3
dtype: string
- name: extracted_answer_3
dtype: string
- name: is_correct_3
dtype: bool
- name: response_4
dtype: string
- name: extracted_answer_4
dtype: string
- name: is_correct_4
dtype: bool
- name: response_5
dtype: string
- name: extracted_answer_5
dtype: string
- name: is_correct_5
dtype: bool
- name: total_responses
dtype: int64
- name: correct_responses
dtype: int64
- name: accuracy
dtype: float64
splits:
- name: train
num_bytes: 62171679
num_examples: 10026
- name: validation
num_bytes: 7876142
num_examples: 1253
- name: test
num_bytes: 7843240
num_examples: 1253
download_size: 37455110
dataset_size: 77891061
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
Maxscha/json-instruct-generation-large | Maxscha | 2025-05-03T15:03:37Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T15:03:31Z | null | ---
dataset_info:
features:
- name: schema
dtype: string
- name: input
dtype: string
- name: output
dtype: string
- name: task
dtype: string
splits:
- name: train
num_bytes: 99642713
num_examples: 50000
download_size: 31084332
dataset_size: 99642713
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
CanCLID/zoengjyutgaai | CanCLID | 2025-05-03T14:58:45Z | 3,423 | 15 | [
"task_categories:automatic-speech-recognition",
"task_categories:text-to-speech",
"task_categories:text-generation",
"task_categories:feature-extraction",
"task_categories:audio-to-audio",
"task_categories:audio-classification",
"task_categories:text-to-audio",
"language:yue",
"license:cc0-1.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"cantonese",
"audio",
"art"
] | [
"automatic-speech-recognition",
"text-to-speech",
"text-generation",
"feature-extraction",
"audio-to-audio",
"audio-classification",
"text-to-audio"
] | 2024-07-11T06:46:10Z | null | ---
language:
- yue
license: cc0-1.0
size_categories:
- 10K<n<100K
task_categories:
- automatic-speech-recognition
- text-to-speech
- text-generation
- feature-extraction
- audio-to-audio
- audio-classification
- text-to-audio
pretty_name: c
configs:
- config_name: default
data_files:
- split: saamgwokjinji
path: data/saamgwokjinji-*
- split: seoiwuzyun
path: data/seoiwuzyun-*
- split: mouzaakdung
path: data/mouzaakdung-*
tags:
- cantonese
- audio
- art
dataset_info:
features:
- name: audio
dtype: audio
- name: id
dtype: string
- name: episode_id
dtype: int64
- name: audio_duration
dtype: float64
- name: transcription
dtype: string
splits:
- name: saamgwokjinji
num_bytes: 2398591354.589
num_examples: 39173
- name: seoiwuzyun
num_bytes: 1629539808.0
num_examples: 24744
- name: mouzaakdung
num_bytes: 257168872.246
num_examples: 4742
download_size: 4304923024
dataset_size: 4285300034.835
---
# 張悦楷講古語音數據集
[English](#the-zoeng-jyut-gaai-story-telling-speech-dataset)
## Dataset Description
- **Homepage:** [張悦楷講古語音數據集 The Zoeng Jyut Gaai Story-telling Speech Dataset](https://canclid.github.io/zoengjyutgaai/)
- **License:** [CC0 1.0 Universal](https://creativecommons.org/publicdomain/zero/1.0/)
- **Language:** Cantonese
- **Total Duration:** 112.54 hours
- **Average Clip Duration:** 5.901 seconds
- **Median Clip Duration:** 5.443 seconds
- **Total number of characters:** 1679097
- **Average characters per clip:** 24.36
- **Median characters per clip:** 23
- **Average speech speed:** 4.14 characters per second
- **Voice Actor:** [張悦楷](https://zh.wikipedia.org/wiki/%E5%BC%A0%E6%82%A6%E6%A5%B7)
呢個係張悦楷講《三國演義》、《水滸傳》、《走進毛澤東的最後歲月》語音數據集。[張悦楷](https://zh.wikipedia.org/wiki/%E5%BC%A0%E6%82%A6%E6%A5%B7)係廣州最出名嘅講古佬 / 粵語説書藝人。佢從上世紀七十年代開始就喺廣東各個收音電台度講古,佢把聲係好多廣州人嘅共同回憶。本數據集收集嘅係佢最知名嘅三部作品。
數據集用途:
- TTS(語音合成)訓練集
- ASR(語音識別)訓練集或測試集
- 各種語言學、文學研究
- 直接聽嚟欣賞藝術!
TTS 效果演示:https://huggingface.co/spaces/laubonghaudoi/zoengjyutgaai_tts
## 説明
- 所有文本都根據 https://jyutping.org/blog/typo/ 同 https://jyutping.org/blog/particles/ 規範用字。
- 所有文本都使用全角標點,冇半角標點。
- 所有文本都用漢字轉寫,無阿拉伯數字無英文字母
- 所有音頻源都存放喺`/source`,為方便直接用作訓練數據,切分後嘅音頻都放喺 `opus/`
- 所有 opus 音頻皆為 48000 Hz 採樣率。
- 所有源字幕 SRT 文件都存放喺 `srt/` 路經下,搭配 `source/` 下嘅音源可以直接作為帶字幕嘅錄音直接欣賞。
- `cut.py` 係切分腳本,將對應嘅音源根據 srt 切分成短句並生成一個文本轉寫 csv。
- `stats.py` 係統計腳本,運行佢就會顯示成個數據集嘅各項統計數據。
## 下載使用
要下載使用呢個數據集,可以喺 Python 入面直接跑:
```python
from datasets import load_dataset
ds = load_dataset("CanCLID/zoengjyutgaai")
```
如果想單純將 `opus/` 入面所有嘢下載落嚟,可以跑下面嘅 Python 代碼,注意要安裝 `pip install --upgrade huggingface_hub` 先:
```python
from huggingface_hub import snapshot_download
# 如果淨係想下載啲字幕或者源音頻,就將 `opus/*` 改成 `srt/*` 或者 `source/*`
# If you only want to download subtitles or source audio, change `opus/*` to `srt/*` or `source/*`
snapshot_download(repo_id="CanCLID/zoengjyutgaai",allow_patterns="opus/*",local_dir="./",repo_type="dataset")
```
如果唔想用 python,你亦都可以用命令行叫 git 針對克隆個`opus/`或者其他路經,避免將成個 repo 都克隆落嚟浪費空間同下載時間:
```bash
mkdir zoengjyutgaai
cd zoengjyutgaai
git init
git remote add origin https://huggingface.co/datasets/CanCLID/zoengjyutgaai
git sparse-checkout init --cone
# 指定凈係下載個別路徑
git sparse-checkout set opus
# 開始下載
git pull origin main
```
### 數據集構建流程
本數據集嘅收集、構建過程係:
1. 從 YouTube 或者國內評書網站度下載錄音源文件,一般都係每集半個鐘長嘅 `.webm` 或者 `.mp3`。
1. 用加字幕工具幫呢啲錄音加字幕,得到對應嘅 `.srt` 文件。
1. 將啲源錄音用下面嘅命令儘可能無壓縮噉轉換成 `.opus` 格式。
1. 運行`cut.py`,將每一集 `.opus` 按照 `.srt` 入面嘅時間點切分成一句一個 `.opus`,然後對應嘅文本寫入本數據集嘅 `xxx.csv`。
1. 然後打開一個 IPython,逐句跑下面嘅命令,將啲數據推上 HuggingFace。
```python
from datasets import load_dataset, DatasetDict
from huggingface_hub import login
sg = load_dataset('audiofolder', data_dir='./opus/saamgwokjinji')
sw = load_dataset('audiofolder', data_dir='./opus/seoiwuzyun')
mzd = load_dataset('audiofolder', data_dir='./opus/mouzaakdung')
dataset = DatasetDict({
"saamgwokjinji": sg["train"],
"seoiwuzyun": sw["train"],
"mouzaakdung": mzd["train"],
})
# 檢查下讀入嘅數據有冇問題
dataset['mouzaakdung'][0]
# 準備好個 token 嚟登入
login()
# 推上 HuggingFace datasets
dataset.push_to_hub("CanCLID/zoengjyutgaai")
```
### 音頻格式轉換
首先要安裝 [ffmpeg](https://www.ffmpeg.org/download.html),然後運行:
```bash
# 將下載嘅音源由 webm 轉成 opus
ffmpeg -i webm/saamgwokjinji/001.webm -c:a copy source/saamgwokjinji/001.opus
# 或者轉 mp3
ffmpeg -i mp3/mouzaakdung/001.mp3 -c:a libopus -map_metadata -1 -b:a 48k -vbr on source/mouzaakdung/001.opus
# 將 opus 轉成無損 wav
ffmpeg -i source/saamgwokjinji/001.opus wav/saamgwokjinji/001.wav
```
如果想將所有 opus 文件全部轉換成 wav,可以直接運行`to_wav.sh`:
```
chmod +x to_wav.sh
./to_wav.sh
```
跟住就會生成一個 `wav/` 路經,入面都係 `opus/` 對應嘅音頻。注意 wav 格式非常掗埞,成個 `opus/` 轉晒後會佔用至少 500GB 儲存空間,所以轉換之前記得確保有足夠空間。如果你想對音頻重採樣,亦都可以修改 `to_wav.sh` 入面嘅命令順便做重採樣。
# The Zoeng Jyut Gaai Story-telling Speech Dataset
This is a speech dataset of Zoeng Jyut Gaai story-telling _Romance of the Three Kingdoms_, _Water Margin_ and _The Final Days of Mao Zedong_. [Zoeng Jyut Gaai](https://zh.wikipedia.org/wiki/%E5%BC%A0%E6%82%A6%E6%A5%B7) is a famous actor, stand-up commedian and story-teller (講古佬) in 20th centry Canton. His voice remains in the memories of thousands of Cantonese people. This dataset is built from three of his most well-known story-telling pieces.
Use case of this dataset:
- TTS (Text-To-Speech) training set
- ASR (Automatic Speech Recognition) training or eval set
- Various linguistics / art analysis
- Just listen and enjoy the art piece!
TTS demo: https://huggingface.co/spaces/laubonghaudoi/zoengjyutgaai_tts
## Introduction
- All transcriptions follow the prescribed orthography detailed in https://jyutping.org/blog/typo/ and https://jyutping.org/blog/particles/
- All transcriptions use full-width punctuations, no half-width punctuations is used.
- All transcriptions are in Chinese characters, no Arabic numbers or Latin letters.
- All source audio are stored in `source/`. For the convenice of training, segmented audios are stored in `opus/`.
- All opus audio are in 48000 Hz sampling rate.
- All source subtitle SRT files are stored in `srt/`. Use them with the webm files to enjoy subtitled storytelling pieces.
- `cut.py` is the script for cutting opus audios into senteneces based on the srt, and generates a csv file for transcriptions.
- `stats.py` is the script for getting stats of this dataset.
## Usage
To use this dataset, simply run in Python:
```python
from datasets import load_dataset
ds = load_dataset("CanCLID/zoengjyutgaai")
```
If you only want to download a certain directory to save time and space from cloning the entire repo, run the Python codes below. Make sure you have `pip install --upgrade huggingface_hub` first:
```python
from huggingface_hub import snapshot_download
# If you only want to download subtitles or source audio, change `opus/*` to `srt/*` or `source/*`
snapshot_download(repo_id="CanCLID/zoengjyutgaai",allow_patterns="opus/*",local_dir="./",repo_type="dataset")
```
If you don't want to run python codes and want to do this via command lines, you can selectively clone only a directory of the repo:
```bash
mkdir zoengjyutgaai
cd zoengjyutgaai
git init
git remote add origin https://huggingface.co/datasets/CanCLID/zoengjyutgaai
git sparse-checkout init --cone
# Tell git which directory you want
git sparse-checkout set opus
# Pull the content
git pull origin main
```
### Audio format conversion
Install [ffmpeg](https://www.ffmpeg.org/download.html) first, then run:
```bash
# convert all webm into opus
ffmpeg -i webm/saamgwokjinji/001.webm -c:a copy source/saamgwokjinji/001.opus
# or into mp3
ffmpeg -i mp3/mouzaakdung/001.mp3 -c:a libopus -map_metadata -1 -b:a 48k -vbr on source/mouzaakdung/001.opus
# convert all opus into loseless wav
ffmpeg -i source/saamgwokjinji/001.opus wav/saamgwokjinji/001.wav
```
If you want to convert all opus to wav, run `to_wav.sh`:
```
chmod +x to_wav.sh
./to_wav.sh
```
It will generate a `wav/` path which contains all audios converted from `opus/`. Be aware the wav format is very space-consuming. A full conversion will take up at least 500GB space so make sure you have enough storage. If you want to resample the audio, modify the line within `to_wav.sh` to resample the audio while doing the conversion.
|
FrancophonIA/Vous-pouvez-le-dire-en-francais-Faire-des-affaires-en-francais | FrancophonIA | 2025-05-03T14:52:34Z | 3 | 0 | [
"task_categories:translation",
"language:fra",
"language:eng",
"region:us"
] | [
"translation"
] | 2025-04-29T20:43:35Z | null | ---
language:
- fra
- eng
viewer: false
task_categories:
- translation
---
> [!NOTE]
> Dataset origin: https://www.culture.gouv.fr/fr/thematiques/langue-francaise-et-langues-de-france/agir-pour-les-langues/moderniser-et-enrichir-la-langue-francaise/nos-publications/Vous-pouvez-le-dire-en-francais-Faire-des-affaires-en-francais |
FrancophonIA/Vous-pouvez-le-dire-en-francais-Genetique-biologie | FrancophonIA | 2025-05-03T14:47:53Z | 3 | 0 | [
"task_categories:translation",
"language:fra",
"language:eng",
"region:us"
] | [
"translation"
] | 2025-04-29T20:47:46Z | null | ---
language:
- fra
- eng
viewer: false
task_categories:
- translation
---
> [!NOTE]
> Dataset origin: https://www.culture.gouv.fr/fr/thematiques/langue-francaise-et-langues-de-france/agir-pour-les-langues/moderniser-et-enrichir-la-langue-francaise/nos-publications/Vous-pouvez-le-dire-en-francais-Genetique-biologie |
Kamyar-zeinalipour/llama2_kg | Kamyar-zeinalipour | 2025-05-03T14:21:05Z | 11 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-01T18:29:30Z | null | ---
dataset_info:
features:
- name: cycle
dtype: int64
- name: temperature
dtype: float64
- name: top_p
dtype: float64
- name: raw_generated_text
dtype: string
- name: extracted_output
dtype: string
- name: applied_template_text
dtype: string
- name: rouge_scores_text
dtype: string
- name: rouge_scores_triple
dtype: string
- name: rouge_l_fmeasure_text
dtype: string
- name: rouge_l_fmeasure_triple
dtype: float64
- name: emb_similarity_text
dtype: string
- name: emb_similarity_triple
dtype: float64
- name: combined_similarity_triple
dtype: float64
- name: combined_similarity_text
dtype: string
- name: combined_similarity_triple_diff
dtype: float64
- name: input_text
dtype: string
- name: initial_text
dtype: string
- name: source_file
dtype: string
- name: input_text_clean
dtype: string
- name: user_content
dtype: string
- name: assistant_output
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 13691684
num_examples: 1950
- name: test
num_bytes: 349248
num_examples: 50
download_size: 5889395
dataset_size: 14040932
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
gunnybd01/Trend_smr | gunnybd01 | 2025-05-03T14:18:19Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-02T15:11:12Z | null | ---
dataset_info:
features:
- name: Keys
dtype: string
- name: reports
dtype: string
- name: labels
dtype: string
splits:
- name: train
num_bytes: 156894600
num_examples: 60000
download_size: 34150437
dataset_size: 156894600
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kothasuhas/llp-gold-37m-1.5m_T32768.0_I32768 | kothasuhas | 2025-05-03T14:18:00Z | 0 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T14:17:12Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: p_log_probs
dtype: float32
- name: q_log_probs
dtype: float32
- name: num_tokens
dtype: float32
- name: log_weight
dtype: float64
splits:
- name: train
num_bytes: 3605804917.0
num_examples: 1500000
download_size: 1629512
dataset_size: 3605804917.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Nelver28/fon-asr | Nelver28 | 2025-05-03T14:15:40Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T14:11:58Z | null | ---
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
dataset_info:
features:
- name: audio
struct:
- name: array
sequence: float32
- name: path
dtype: string
- name: sampling_rate
dtype: int64
- name: sentence
dtype: string
splits:
- name: train
num_bytes: 647571727
num_examples: 1084
- name: test
num_bytes: 157608299
num_examples: 271
download_size: 334998565
dataset_size: 805180026
---
# Dataset Card for "fon-asr"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
starsofchance/MSR_data_cleaned | starsofchance | 2025-05-03T14:06:02Z | 29 | 0 | [
"language:en",
"license:mit",
"size_categories:100K<n<1M",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"vulnerability-detection",
"cve",
"code-changes",
"software-security",
"stratified-split"
] | [] | 2025-03-25T00:43:24Z | null | ---
# YAML Metadata Block
language:
- en
tags:
- vulnerability-detection
- cve
- code-changes
- software-security
- stratified-split
license: mit
dataset_info:
features: # Features in the *final split files*
- name: idx
dtype: int64
- name: func_before
dtype: string
- name: Vulnerability Classification
dtype: string
- name: vul
dtype: int64
- name: func_after
dtype: string
- name: patch
dtype: string
- name: CWE ID
dtype: string
- name: lines_before
dtype: string
- name: lines_after
dtype: string
splits:
- name: train
num_examples: 150909
- name: validation
num_examples: 18864
- name: test
num_examples: 18863
dataset_original_file_size: 10GB uuncompressed
---
# MSR Data Cleaned - C/C++ Code Vulnerability Dataset
[](LICENSE)
## 📌 Dataset Description
A curated collection of C/C++ code vulnerabilities paired with:
- CVE details (scores, classifications, exploit status)
- Code changes (commit messages, added/deleted lines)
- File-level and function-level diffs
## 🔍 Sample Data Structure from original file
```python
+---------------+-----------------+----------------------+---------------------------+
| CVE ID | Attack Origin | Publish Date | Summary |
+===============+=================+======================+===========================+
| CVE-2015-8467 | Remote | 2015-12-29 | "The samldb_check_user..."|
+---------------+-----------------+----------------------+---------------------------+
| CVE-2016-1234 | Local | 2016-01-15 | "Buffer overflow in..." |
+---------------+-----------------+----------------------+---------------------------+
```
Note: This is a simplified preview; the full dataset includes additional fields like commit_id, func_before, etc.
### 1. Accessing in Colab
```python
!pip install huggingface_hub -q
from huggingface_hub import snapshot_download
repo_id = "starsofchance/MSR_data_cleaned"
dataset_path = snapshot_download(repo_id=repo_id, repo_type="dataset")
```
### 2. Extracting the Dataset
```python
!apt-get install unzip -qq
!unzip "/root/.cache/huggingface/.../MSR_data_cleaned.zip" -d "/content/extracted_data"
```
**Note: Extracted size is 10GB (1.5GB compressed). Ensure sufficient disk space.
### 3. Creating Splits (Colab Pro Recommended)
We used this memory-efficient approach:
```python
from datasets import load_dataset
dataset = load_dataset("csv", data_files="MSR_data_cleaned.csv", streaming=True)
# Randomly distribute rows (80-10-10)
for row in dataset:
rand = random.random()
if rand < 0.8: write_to(train.csv)
elif rand < 0.9: write_to(validation.csv)
else: write_to(test.csv)
```
**Hardware Requirements:**
- Minimum 25GB RAM
- Strong CPU (Colab Pro T4 GPU recommended)
##📊 Dataset Statistics
- Number of Rows: 188,636
- Vulnerability Distribution:
- Vulnerable (1): 18,863 (~10%)
- Non-Vulnerable (0): 169,773 (~90%)
##📋 Data Fields Description
- CVE_ID: Unique identifier for the vulnerability (Common Vulnerabilities and Exposures).
- CWE_ID: Weakness category identifier (Common Weakness Enumeration).
- Score: CVSS score indicating severity (float, 0-10).
- Summary: Brief description of the vulnerability.
- commit_id: Git commit hash linked to the code change.
- codeLink: URL to the code repository or commit.
- file_name: Name of the file containing the vulnerability.
- func_after: Function code after the change.
- lines_after: Code lines after the change.
- Access_Gained: Type of access gained by exploiting the vulnerability.
- Attack_Origin: Source of the attack (e.g., Remote, Local).
- Authentication_Required: Whether authentication is needed to exploit.
- Availability: Impact on system availability.
- CVE_Page: URL to the CVE details page.
- Complexity: Complexity of exploiting the vulnerability.
- Confidentiality: Impact on data confidentiality.
- Integrity: Impact on data integrity.
- Known_Exploits: Details of known exploits, if any.
- Publish_Date: Date the vulnerability was published.
- Update_Date: Date of the last update to the vulnerability data.
- Vulnerability_Classification: Type or category of the vulnerability.
- add_lines: Lines added in the commit.
- del_lines: Lines deleted in the commit.
- commit_message: Description of the commit.
- files_changed: List of files modified in the commit.
- func_before: Function code before the change.
- lang: Programming language (e.g., C, C++).
- lines_before: Code lines before the change.
## splits file for UltiVul project:
## 🔍 Sample Data Structure (from train.csv)
```python
{
'idx': 0, # Unique ID within the train split
'func_before': '...', # String containing function code before change
'Vulnerability Classification': '...', # Original vulnerability type classification
'vul': 0, # Integer: 0 for non-vulnerable, 1 for vulnerable (target label)
'func_after': '...', # String containing function code after change
'patch': '...', # String containing diff patch
'CWE ID': '...', # String CWE ID, e.g., "CWE-119"
'lines_before': '...', # String lines before change context
'lines_after': '...' # String lines after change context
}
```
**Note: This shows the structure of the final split files (train.csv, validation.csv, test.csv). The original MSR_data_cleaned.csv contains many more metadata fields.
##📦 Dataset New Files
The dataset is available as three CSV files (specially created for the UltiVul project) hosted on Hugging Face, uploaded via huggingface_hub:
- train.csv
Size: 667 MB
Description: Training split with 150,909 samples, approximately 80% of the data.
- validation.csv
Size: 86 MB
Description: Validation split with 18,864 samples, approximately 10% of the data.
- test.csv
Size: 84.8 MB
Description: Test split with 18,863 samples, approximately 10% of the data.
🙏 Acknowledgements
Original dataset provided by Fan et al., 2020
Thanks to the Hugging Face team for dataset hosting tools.
## 📜 Citation
```bibtex
@inproceedings{fan2020ccode,
title={A C/C++ Code Vulnerability Dataset with Code Changes and CVE Summaries},
author={Fan, Jiahao and Li, Yi and Wang, Shaohua and Nguyen, Tien N},
booktitle={MSR '20: 17th International Conference on Mining Software Repositories},
pages={1--5},
year={2020},
doi={10.1145/3379597.3387501}
}
```
## 🌟 Dataset Creation
- **Source**: Original data from [MSR 2020 Paper](https://doi.org/10.1145/3379597.3387501)
- **Processing**:
- Cleaned and standardized CSV format
- Stream-based splitting to handle large size
- Preserved all original metadata
|
HungVu2003/opt-350m_beta_0.5_alpha_0.6_num-company_3_dataset_0_for_gen_12 | HungVu2003 | 2025-05-03T13:41:11Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T13:41:10Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 5179935
num_examples: 12500
download_size: 1805132
dataset_size: 5179935
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
DT4LM/debertav3base_sst2_multi_pso_timeDecay | DT4LM | 2025-05-03T13:38:52Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T13:36:33Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 19446
num_examples: 242
download_size: 15714
dataset_size: 19446
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
NextGenC/synapse-set-10k | NextGenC | 2025-05-03T13:36:20Z | 17 | 1 | [
"task_categories:text-generation",
"task_categories:text2text-generation",
"language:en",
"language:tr",
"license:mit",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"bci",
"eeg",
"brain-computer-interface",
"neuroscience",
"signal-processing",
"nlp",
"instruction-tuning",
"synthetic-data"
] | [
"text-generation",
"text2text-generation"
] | 2025-04-30T17:26:21Z | null | ---
license: mit
task_categories:
- text-generation
- text2text-generation
language:
- en
- tr
tags:
- bci
- eeg
- brain-computer-interface
- neuroscience
- signal-processing
- nlp
- instruction-tuning
- synthetic-data
pretty_name: 'SynapseSet-10K: EEG Interpretation Dataset'
size_categories:
- 10K<n<100K
datasets:
- NextGenC/synapse-set-10k
---
## 🧠 SynapseSet-10K
**SynapseSet-10K** is a synthetic instruction-tuning dataset crafted to simulate EEG-based neurological state interpretation for natural language models. Each sample reflects brain signal metrics with contextual metadata, and an expert-style medical NLP explanation.
This dataset was generated by **7enn Labs** and aims to bridge neuroscience signal interpretation with instruction-tuned NLP systems.
> 🔬 100% synthetic, non-clinical data. Intended for academic and research purposes only.The right of use for the creation of this data has been created with algorithms belonging to our confidential party.
> 🔬 The potential of this data set is quite large, so we expect feedback from you. As 7enn Labs, we are thinking of developing models for data augmentation and accuracy of the dataset.
> 🔬 "This endeavor represents more than a mere product; it constitutes foundational infrastructure, a testament to our vision. At 7enn Labs, we regard this dataset as a significant milestone on a much broader strategic journey. Its importance lies not only in the algorithmic generation of the synthetic data itself but fundamentally in the power and continuous evolution of the proprietary data engine developed by 7enn Labs. Whether immediately recognized or widely adopted, systems of this nature are poised to shape the future. The tools we forge today are the very foundations upon which tomorrow's breakthroughs will be built."
---
## ⚠️ Disclaimer & Legal Notice (7een Labs)
**100% synthetic, non-clinical data. Intended strictly for academic and research use.**
The datasets provided (SynapseSet series) are fully artificial and generated through proprietary simulation algorithms owned and controlled by a confidential party affiliated with 7een Labs. These datasets **do not represent real patient data** and **must not be used** for clinical decision-making, diagnostic purposes, or any application involving human subjects in real-world scenarios.
> 🛑 **7een Labs accepts no liability or responsibility** for any outcome, misuse, or legal consequence arising from the use, distribution, or interpretation of this data or any derivative works. Full responsibility lies with the end user.
By accessing or utilizing any portion of these datasets, you **agree to waive any claim against 7een Labs** and acknowledge that all risk and responsibility rests solely with you.
Use it smart — own the risk.
---
## 🧬 Dataset Format
Each sample contains:
- `instruction`: Task description for the model
- `input`: EEG signal metrics with patient metadata
- `output`: Simulated clinical explanation
```json
{
"instruction": "Interpret the given EEG values for a patient and explain their mental state.",
"input": "Patient: ID#A7421 | Age: 38 | Date: 2024-10-12 | EEG: Alpha=9.8Hz, Beta=17.2Hz, Theta=4.1Hz, Delta=2.0Hz, Gamma=29.5Hz | Voltage=0.72mV",
"output": "The EEG profile is consistent with relaxed wakefulness. Alpha wave dominance (9.8Hz) suggests the patient is in a calm, eyes-closed resting state. No signs of seizure activity or abnormal slowing are present."
}
```
---
- **Language:** Turkish
- **Tone:** It's clinical-style, but it suits the 7enn Labs neutral look.
---
## 🔍 Feature Comparison
| Feature | SynapseSet-10K | SynapseSet-50K | SynapseSet-100K |
|------------------------|----------------------------|----------------------------|----------------------------|
| 📊 Example Capacity | 10,000 | 50,000 | 100,000 |
| 🗣️ Language | Turkish | English | English |
| 🧠 Neurological Conditions | 16 | 25+ | 50+ |
| 📈 EEG Bands | 5 basic bands | 5 basic + 6 sub-bands | 5 basic + 11 sub-bands |
| 📋 Data Formats | 4 types | 6 types | 6 types (enhanced) |
| 🔬 Realism Level | Basic | Intermediate | Clinical-grade |
| 👤 Patient Modeling | Simple | Advanced | Comprehensive medical profile |
| 📉 Artifact Modeling | None | Basic | Comprehensive (12+ types) |
---
## 🔐 Licensing & Ethics
- License: [MIT](https://opensource.org/license/mit/)
- You must clearly disclose use of synthetic data
- Not to be used for clinical decision-making
- Use at your own risk; no warranties provided
---
## 📚 Citation
If you use **SynapseSet-10K**, please cite:
```bibtex
@misc{7ennlabs2025synapseset,
author = {7enn Labs},
title = {SynapseSet-10K: Synthetic Instruction Dataset for EEG Interpretation},
year = {2025},
url = {https://huggingface.co/datasets/NextGenC/synapse-set-100k},
note = {100% synthetic dataset for BCI/NLP research}
}
```
---
## 🧪 Example Usage
```python
from datasets import load_dataset
dataset = load_dataset("DATASET_FILE_NAME")
print(dataset["train"][0])
```
---
## 🧑💻 Created by
**7enn Labs**
--- |
NextGenC/synapse-set-100k | NextGenC | 2025-05-03T13:35:37Z | 10 | 1 | [
"task_categories:text-generation",
"task_categories:text2text-generation",
"language:en",
"language:tr",
"license:mit",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"bci",
"eeg",
"brain-computer-interface",
"neuroscience",
"signal-processing",
"nlp",
"instruction-tuning",
"synthetic-data"
] | [
"text-generation",
"text2text-generation"
] | 2025-05-01T10:29:00Z | null | ---
license: mit
task_categories:
- text-generation
- text2text-generation
language:
- en
- tr
tags:
- bci
- eeg
- brain-computer-interface
- neuroscience
- signal-processing
- nlp
- instruction-tuning
- synthetic-data
pretty_name: 'SynapseSet-100K: EEG Interpretation Dataset'
size_categories:
- 10K<n<100K
datasets:
- NextGenC/synapse-set-100k
---
## 🧠 SynapseSet-100K
**SynapseSet-100K** is a synthetic instruction-tuning dataset crafted to simulate EEG-based neurological state interpretation for natural language models. Each sample reflects brain signal metrics with contextual metadata, and an expert-style medical NLP explanation.
This dataset was generated by **7enn Labs** and aims to bridge neuroscience signal interpretation with instruction-tuned NLP systems.
> 🔬 100% synthetic, non-clinical data. Intended for academic and research purposes only.The right of use for the creation of this data has been created with algorithms belonging to our confidential party.
> 🔬 The potential of this data set is quite large, so we expect feedback from you. As 7enn Labs, we are thinking of developing models for data augmentation and accuracy of the dataset.
> 🔬 "This endeavor represents more than a mere product; it constitutes foundational infrastructure, a testament to our vision. At 7enn Labs, we regard this dataset as a significant milestone on a much broader strategic journey. Its importance lies not only in the algorithmic generation of the synthetic data itself but fundamentally in the power and continuous evolution of the proprietary data engine developed by 7enn Labs. Whether immediately recognized or widely adopted, systems of this nature are poised to shape the future. The tools we forge today are the very foundations upon which tomorrow's breakthroughs will be built."
---
## ⚠️ Disclaimer & Legal Notice (7een Labs)
**100% synthetic, non-clinical data. Intended strictly for academic and research use.**
The datasets provided (SynapseSet series) are fully artificial and generated through proprietary simulation algorithms owned and controlled by a confidential party affiliated with 7een Labs. These datasets **do not represent real patient data** and **must not be used** for clinical decision-making, diagnostic purposes, or any application involving human subjects in real-world scenarios.
> 🛑 **7een Labs accepts no liability or responsibility** for any outcome, misuse, or legal consequence arising from the use, distribution, or interpretation of this data or any derivative works. Full responsibility lies with the end user.
By accessing or utilizing any portion of these datasets, you **agree to waive any claim against 7een Labs** and acknowledge that all risk and responsibility rests solely with you.
Use it smart — own the risk.
---
## 🧬 Dataset Format
Each sample contains:
- `instruction`: Task description for the model
- `input`: EEG signal metrics with patient metadata
- `output`: Simulated clinical explanation
```json
{
"instruction": "Interpret the given EEG values for a patient and explain their mental state.",
"input": "Patient: ID#A7421 | Age: 38 | Date: 2024-10-12 | EEG: Alpha=9.8Hz, Beta=17.2Hz, Theta=4.1Hz, Delta=2.0Hz, Gamma=29.5Hz | Voltage=0.72mV",
"output": "The EEG profile is consistent with relaxed wakefulness. Alpha wave dominance (9.8Hz) suggests the patient is in a calm, eyes-closed resting state. No signs of seizure activity or abnormal slowing are present."
}
```
---
- **Language:** English
- **Tone:** It's clinical-style, but it suits the 7enn Labs neutral look.
---
## 🔍 Feature Comparison
| Feature | SynapseSet-10K | SynapseSet-50K | SynapseSet-100K |
|------------------------|----------------------------|----------------------------|----------------------------|
| 📊 Example Capacity | 10,000 | 50,000 | 100,000 |
| 🗣️ Language | Turkish | English | English |
| 🧠 Neurological Conditions | 16 | 25+ | 50+ |
| 📈 EEG Bands | 5 basic bands | 5 basic + 6 sub-bands | 5 basic + 11 sub-bands |
| 📋 Data Formats | 4 types | 6 types | 6 types (enhanced) |
| 🔬 Realism Level | Basic | Intermediate | Clinical-grade |
| 👤 Patient Modeling | Simple | Advanced | Comprehensive medical profile |
| 📉 Artifact Modeling | None | Basic | Comprehensive (12+ types) |
---
## 🔐 Licensing & Ethics
- License: [MIT](https://opensource.org/license/mit/)
- You must clearly disclose use of synthetic data
- Not to be used for clinical decision-making
- Use at your own risk; no warranties provided
---
## 📚 Citation
If you use **SynapseSet-100K**, please cite:
```bibtex
@misc{7ennlabs2025synapseset,
author = {7enn Labs},
title = {SynapseSet-100K: Synthetic Instruction Dataset for EEG Interpretation},
year = {2025},
url = {https://huggingface.co/datasets/NextGenC/synapse-set-100k},
note = {100% synthetic dataset for BCI/NLP research}
}
```
---
## 🧪 Example Usage
```python
from datasets import load_dataset
dataset = load_dataset("DATASET_FILE_NAME")
print(dataset["train"][0])
```
---
## 🧑💻 Created by
**7enn Labs**
--- |
nlpllmeval/NLP-Course-LLM-Reasoning-Eval-May2025 | nlpllmeval | 2025-05-03T13:14:54Z | 0 | 1 | [
"license:mit",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T11:23:08Z | null |
---
license: mit
---
# Overview of LLM Reasoning Eval Dataset
This dataset contains evaluation of multiple large language models (LLMs) over 918 MCQ reasoning questions created by 184 students.
Each question was used to test 3 LLMs (each 3 times): GPT-4o, Claude Sonnet 3.x (3.5 or 3.7), and Deepseek R1.
The questions target various reasoning areas (i.e., Math, Logic, Temporal, Commonsense) and are included only if 3 seperate attempts (in a new session) by ChatGPT (GPT-4o) fail at giving the correct answer.
This dataset was created as part of an NLP assignment in the FIT5217 unit at Monash University.
- **Language(s) (NLP):** English
- **License:** MIT License
## LLM-based Novelty and Objectivty Score (Zero-shot) outputs:
For each question we prompted each of the 3 LLMs (3 times each) to judge its novelty and objectivity in a zero-shot setting.
### Prompt text used:
You are assessing an annotator based on the quality of their quiz questions. Your task is the following:
For a given question, assess it based on 2 criteria: (Criteria 1) Objectivity Score for which Objective
Questions should receive Objectivity Score of 0.5, while Subjective Questions may receive Objectivity
Score of 0 or 0.25. (Criteria 2) Novelty Score: Novel questions should receive Novelty Score of 0.5, while
known questions or puzzles or questions with very familiar forms should receive Novelty Score of 0 or
0.25. Think step by step before giving the final scores.
The question to assess is: [INSERT YOUR QUESTION]
## LLM reasoning for each question:
We prompted 3 LLMs (GPT-4o, Claude Sonnet 3.5 or 3.7, and Deepseek R1), each 3 times, and recorded their response to each question along with the time stamp of the interaction.
## Files and Structures
There are 2 files released in this project:
- The `test.json` correspond to a unique submission (indexed by `AnomID_#`) and human created MCQ questions (Q1, ..., Q5) and gold option, and attempt 1 by each LLM (for the all 3 attempts see the next file).
- The `full_meta_data.json` includes the content of test.json as well as the 3 LLMs reasonings (each attempted 3 times) as well as LLM-based judgements for objectivity and novelty of 3 LLMs (each attempted 3 times).
Here is the structure of `full_meta_data.json`
```json
{
"AnomID_1": {
"Q1": {
"Question Text": "string",
"Gold Answer": "string",
"Reasonings": {
"GPT-4o": {
"Attempt 1": {
"Output": "string",
"Time": "string",
"Correctness": true
},
"Attempt 2": { ... },
"Attempt 3": { ... }
},
"Claude Sonnet 3.x": {
"Attempt 1": { ... },
"Attempt 2": { ... },
"Attempt 3": { ... }
},
"Deepseek R1": {
"Attempt 1": { ... },
"Attempt 2": { ... },
"Attempt 3": { ... }
}
},
"Judgement for Objectivity and Novelty": {
"GPT-4o": {
"Attempt 1": {
"Output": "string",
"Objectivity Score": 0.5,
"Novelty Score": 0.5
},
"Attempt 2": { ... },
"Attempt 3": { ... }
},
"Claude Sonnet 3.x": {
"Attempt 1": { ... },
"Attempt 2": { ... },
"Attempt 3": { ... }
},
"Deepseek R1": {
"Attempt 1": { ... },
"Attempt 2": { ... },
"Attempt 3": { ... }
}
}
},
"Q2": { ... },
"Q3": { ... },
"Q4": { ... },
"Q5": { ... }
},
"AnomID_2": { ... },
...
}
```
## Performance of LLMs
Non-filtred results on all questions:
| LLM | Attempt | Correct | Incorrect |
|----------------------|------------|---------|-----------|
| GPT-4o | Attempt 1 | 0 | 918 |
| GPT-4o | Attempt 2 | 0 | 918 |
| GPT-4o | Attempt 3 | 2 | 916 |
| Claude Sonnet 3.x | Attempt 1 | 426 | 492 |
| Claude Sonnet 3.x | Attempt 2 | 425 | 493 |
| Claude Sonnet 3.x | Attempt 3 | 424 | 494 |
| Deepseek R1 | Attempt 1 | 560 | 358 |
| Deepseek R1 | Attempt 2 | 557 | 361 |
| Deepseek R1 | Attempt 3 | 549 | 369 |
Results when questions not receiving maximum objecticity score (i.e., 0.5) for 3 out of 3 attempts were discarded from the set:
| LLM | Attempt | Correct | Incorrect |
|----------------------|------------|---------|-----------|
| GPT-4o | Attempt 1 | 0 | 768 |
| GPT-4o | Attempt 2 | 0 | 768 |
| GPT-4o | Attempt 3 | 2 | 766 |
| Claude Sonnet 3.x | Attempt 1 | 358 | 410 |
| Claude Sonnet 3.x | Attempt 2 | 358 | 410 |
| Claude Sonnet 3.x | Attempt 3 | 363 | 405 |
| Deepseek R1 | Attempt 1 | 485 | 283 |
| Deepseek R1 | Attempt 2 | 482 | 286 |
| Deepseek R1 | Attempt 3 | 475 | 293 |
## Citation
Any use of the data or derivatives (for publication, training, ortesting) must acknowledge this project explicitly via the following citation:
**BibTeX:**
```bibtex
@misc{fit5217-llm-eval2025,
title={FIT5217 NLP Course LLM Reasoning Eval May 2025},
author={FIT5217 S1 2025 Students at Monash University},
howpublished = {\url{https://huggingface.co/datasets/nlpllmeval/NLP-Course-LLM-Reasoning-Eval-May2025}},
year={2025},
}
```
## Dataset Card Authors
- Contributors were students in Semester 1 2025 Cohort of FIT5217 at Monash University
## Feedback or Questions
📧 [Fill out the form](https://docs.google.com/forms/d/e/1FAIpQLScZdMpJpwSwW66bEj3CU_NaE5vnhGkhJYf1VkmkuKW7O-QipA/viewform?usp=header)
## ⚖️ Disclaimer
This dataset is provided **"as is"** for research and educational purposes only. Monash University and the dataset contributors make **no warranties**, express or implied, regarding the accuracy, reliability, or fitness of the data for any particular purpose.
The dataset may contain outputs generated by third-party large language models (LLMs), and any biases, inaccuracies, or limitations in those model outputs are inherent to their respective providers.
By using this dataset, you agree that:
- The authors and affiliated institutions **shall not be held liable** for any damages, direct or indirect, arising from the use, misuse, or interpretation of the dataset or its derivatives.
- Any analysis, publication, or product derived from this dataset **must not attribute the dataset’s content** to real individuals, and must properly anonymize any `AnomID_#` references if redistributed.
- Users are solely responsible for ensuring that their use of the dataset complies with applicable laws, institutional policies, and ethical standards. |
AndrisWillow/pile-500k | AndrisWillow | 2025-05-03T13:13:44Z | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T13:05:06Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: dataset
dtype: string
splits:
- name: train
num_bytes: 2235745969
num_examples: 400000
- name: validation
num_bytes: 553532082
num_examples: 100000
download_size: 1453793734
dataset_size: 2789278051
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
dgambettaphd/D_llm2_gen4_WXS_doc1000_synt64_lr1e-04_acm_SYNLAST | dgambettaphd | 2025-05-03T12:59:31Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T12:59:28Z | null | ---
dataset_info:
features:
- name: id_doc
dtype: int64
- name: text
dtype: string
- name: dataset
dtype: string
- name: gen
dtype: int64
- name: synt
dtype: int64
- name: MPP
dtype: float64
splits:
- name: train
num_bytes: 11399406
num_examples: 20000
download_size: 6705681
dataset_size: 11399406
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
shylee/eval_DP_cube_downDims1_cropNo_freeze1_32_1_ema1_1e-4_ckpt300000 | shylee | 2025-05-03T12:43:44Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot",
"tutorial"
] | [
"robotics"
] | 2025-05-03T12:27:31Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- tutorial
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 1,
"total_frames": 2085,
"total_tasks": 1,
"total_videos": 3,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:1"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.images.FrontCam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.TopCam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.WristCam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
xingjianleng/textatlas5m_styledtextsynth_subset_s | xingjianleng | 2025-05-03T12:27:50Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T10:37:03Z | null | ---
dataset_info:
features:
- name: image
dtype: image
- name: image_path
dtype: string
- name: annotation
dtype: string
splits:
- name: train
num_bytes: 137333588384.845
num_examples: 90613
download_size: 137322762217
dataset_size: 137333588384.845
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Moamen-dcp/arazn_codeSwitched_mp3_full_notLower_prepared_4_whisperSmall | Moamen-dcp | 2025-05-03T12:24:03Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T12:22:15Z | null | ---
dataset_info:
features:
- name: input_features
sequence:
sequence: float32
- name: labels
sequence: int64
splits:
- name: train
num_bytes: 3212439856
num_examples: 3344
- name: test
num_bytes: 1412200224
num_examples: 1470
- name: dev
num_bytes: 1346888952
num_examples: 1402
download_size: 1491932576
dataset_size: 5971529032
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: dev
path: data/dev-*
---
|
alirezzaa13/Mechanicalpart | alirezzaa13 | 2025-05-03T12:19:08Z | 7 | 0 | [
"task_categories:text-to-image",
"language:en",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"chemistry"
] | [
"text-to-image"
] | 2025-04-30T08:31:05Z | null | ---
license: mit
task_categories:
- text-to-image
language:
- en
tags:
- chemistry
pretty_name: 'Mechanical parts demonstration '
size_categories:
- 1K<n<10K
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 10803571.559999999
num_examples: 7360
download_size: 4772715
dataset_size: 10803571.559999999
---
|
AdoCleanCode/Youtube8M_general_test_data | AdoCleanCode | 2025-05-03T12:01:24Z | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T12:01:20Z | null | ---
dataset_info:
features:
- name: 'Unnamed: 0'
dtype: int64
- name: caption
dtype: string
- name: coarse_label
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 93525030
num_examples: 332054
download_size: 29818334
dataset_size: 93525030
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
JopanZh/finetuning_demo | JopanZh | 2025-05-03T11:58:20Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T11:58:19Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 33961
num_examples: 33
download_size: 10521
dataset_size: 33961
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
SciKnowOrg/ontolearner-education | SciKnowOrg | 2025-05-03T11:23:33Z | 0 | 0 | [
"language:en",
"license:mit",
"region:us",
"OntoLearner",
"ontology-learning",
"education"
] | [] | 2025-05-03T11:23:30Z | null |
---
license: mit
language:
- en
tags:
- OntoLearner
- ontology-learning
- education
pretty_name: Agricultural
---
<div>
<img src="https://raw.githubusercontent.com/sciknoworg/OntoLearner/main/images/logo.png" alt="OntoLearner"
style="display: block; margin: 0 auto; width: 500px; height: auto;">
<h1 style="text-align: center; margin-top: 1em;">Education Domain Ontologies</h1>
</div>
## Overview
The education domain encompasses ontologies that systematically represent and organize knowledge related to learning content, educational programs, competencies, and teaching resources. This domain plays a critical role in facilitating the interoperability and integration of educational data, enabling precise knowledge representation and retrieval across diverse educational contexts. By providing a structured framework, it supports the development of intelligent educational systems and enhances the accessibility and personalization of learning experiences.
## Ontologies
| Ontology ID | Full Name | Classes | Properties | Last Updated |
|-------------|-----------|---------|------------|--------------|
| BIBFRAME | Bibliographic Framework Ontology (BIBFRAME) | 212 | 215 | 2022-10-03|
| Common | Common Ontology (Common) | 6 | 15 | None|
| DoCO | Document Components Ontology (DoCO) | 137 | 7 | 2015-07-03|
## Dataset Files
Each ontology directory contains the following files:
1. `<ontology_id>.<format>` - The original ontology file
2. `term_typings.json` - Dataset of term to type mappings
3. `taxonomies.json` - Dataset of taxonomic relations
4. `non_taxonomic_relations.json` - Dataset of non-taxonomic relations
5. `<ontology_id>.rst` - Documentation describing the ontology
## Usage
These datasets are intended for ontology learning research and applications.
|
chiyuanhsiao/audio_L2-regular-15_spoken-web-questions | chiyuanhsiao | 2025-05-03T11:23:23Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-02T08:43:43Z | null | ---
dataset_info:
features:
- name: url
dtype: string
- name: question
dtype: string
- name: answers
sequence: string
- name: question_unit
sequence: int64
- name: response_interleaf
dtype: string
- name: response_text
dtype: string
- name: response_tokens
sequence: int64
- name: response_speech
dtype: audio
- name: response_asr
dtype: string
splits:
- name: test
num_bytes: 1346719057.0
num_examples: 2032
download_size: 1232352852
dataset_size: 1346719057.0
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
|
HyperX-Sen/Dream-Zira | HyperX-Sen | 2025-05-03T11:17:57Z | 0 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T11:17:30Z | null | ---
license: apache-2.0
---
|
kazugi/ball_dataset | kazugi | 2025-05-03T11:13:19Z | 0 | 0 | [
"task_categories:robotics",
"size_categories:n<1K",
"modality:video",
"library:datasets",
"library:mlcroissant",
"region:us",
"phosphobot",
"so100",
"phospho-dk"
] | [
"robotics"
] | 2025-05-03T10:54:35Z | null |
---
tags:
- phosphobot
- so100
- phospho-dk
task_categories:
- robotics
---
# ball_dataset
**This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).**
This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
|
ParkSY/data_nerf_depthanying_depthmap | ParkSY | 2025-05-03T11:06:18Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T11:06:12Z | null | ---
dataset_info:
features:
- name: input_image
dtype: string
- name: edit_prompt
dtype: string
- name: edited_image
dtype: string
- name: label
dtype: int64
- name: depthmap
dtype: string
- name: water_color
dtype: string
splits:
- name: train
num_bytes: 2324779
num_examples: 6552
download_size: 268143
dataset_size: 2324779
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ninja/hayat | ninja | 2025-05-03T10:58:48Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T10:58:45Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: entities
list:
- name: label
dtype: string
- name: related_to
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 383615
num_examples: 580
download_size: 87818
dataset_size: 383615
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
MBZUAI-IFM/puzzle_dpsk_conversation_final | MBZUAI-IFM | 2025-05-03T10:48:10Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-02T17:37:55Z | null | ---
dataset_info:
features:
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: index
dtype: int64
- name: question
dtype: string
- name: cot
dtype: string
- name: response
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 27442441
num_examples: 3748
download_size: 12861317
dataset_size: 27442441
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.