datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-25 02:40:10
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-25 00:32:52
trending_score
float64
0
64
card
large_stringlengths
31
1.01M
copycat-project/output_diversity_FLUX_guidance1.5
copycat-project
2024-11-11T13:46:22Z
22
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-11T13:45:45Z
0
--- dataset_info: features: - name: prompt dtype: string - name: category dtype: string - name: ours list: image - name: baseline list: image splits: - name: train num_bytes: 786287182.0 num_examples: 120 download_size: 786325395 dataset_size: 786287182.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Triangle104/TheDrummer-AmoralQA-v2
Triangle104
2024-12-01T09:18:45Z
152
0
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering", "text-generation" ]
2024-12-01T09:18:45Z
0
--- task_categories: - question-answering - text-generation language: - en size_categories: - 1K<n<10K --- ## Dear User: If you're going to use this, please let me know your experience with it. # AmoralQA v2 > Readers, like writers, are essentially amoral. Arm's length will never do. We want to get closer. ## Description AmoralQA is a different approach to ToxicQA where instead of answering it enthusiastically with lots of evil slop such as "thrilling", we force the AI to answer toxic questions in a neutral manner. This should help reduce lobotomy, evil slop, disalignment, and overcooking. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/4ydl7WdJsn9-ozBE87Jgr.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f2fd1c25b848bd061b5c2e/Kkbx76WY-UlaathyCj9lA.png)
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_2f0e5c4a-dc0b-4770-93a5-8ace453dd654
argilla-internal-testing
2024-11-28T16:20:29Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-28T16:20:29Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
pariajm/sharif_emotional_speech_dataset
pariajm
2022-10-24T16:49:19Z
25
2
[ "task_categories:automatic-speech-recognition", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:radio-plays", "language:fa", "license:apache-2.0", "size_categories:1K<n<10K", "region:us" ]
[ "automatic-speech-recognition" ]
2022-03-02T23:29:22Z
0
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - fa license: - apache-2.0 multilinguality: - monolingual pretty_name: Sharif Emotional Speech Dataset (ShEMO) size_categories: - 1K<n<10K source_datasets: - radio-plays task_categories: - automatic-speech-recognition task_ids: - speech-recognition --- ## Sharif Emotional Speech Dataset (ShEMO) ## Dataset Summary The dataset includes 3000 semi-natural utterances, equivalent to 3 hours and 25 minutes of speech data extracted from online Persian radio plays. The ShEMO covers speech samples of 87 native-Persian speakers for five basic emotions including <i>anger</i>, <i>fear</i>, <i>happiness</i>, <i>sadness</i> and <i>surprise</i>, as well as neutral state. Twelve annotators label the underlying emotional state of utterances and majority voting is used to decide on the final labels. According to the kappa measure, the inter-annotator agreement is 64% which is interpreted as "substantial agreement". ## Languages Persian (fa) ## Overview of ShEMO Feature | Status ------------- | ---------- **license** | apache-2.0 **language** | Persian (fa) **modality** | Speech **duration** | 3 hours and 25 minutes **#utterances** | 3000 **#speakers** | 87 (31 females, 56 males) **#emotions** | 5 basic emotions (anger, fear, happiness, sadness and surprise) and neutral state **orthographic transcripts** | Available **phonetic transcripts** | Available ## Data Instances Here is a sample of data instances: ```json "F21N37": { "speaker_id": "F21", "gender": "female", "emotion": "neutral", "transcript": "مگه من به تو نگفته بودم که باید راجع به دورانت سکوت کنی؟", "ipa": "mӕge mæn be to nægofte budӕm ke bɑyæd rɑdʒeʔ be dorɑnt sokut koni" } ``` ## Citation If you use this dataset, please cite the following paper: ~~~~ @Article{MohamadNezami2019, author = {Mohamad Nezami, Omid and Jamshid Lou, Paria and Karami, Mansoureh}, title = {ShEMO: a large-scale validated database for Persian speech emotion detection}, journal = {Language Resources and Evaluation}, year = {2019}, volume = {53}, number = {1}, pages = {1--16}, issn = {1574-0218}, doi = {10.1007/s10579-018-9427-x}, url = {https://doi.org/10.1007/s10579-018-9427-x} } ~~~~ ## Download Dataset To download the dataset, please check the [ShEMO repo](https://github.com/pariajm/sharif-emotional-speech-database)!
JJuny/llama2_SYC_1120_with_testPDF_train
JJuny
2024-11-20T00:34:39Z
15
0
[ "region:us" ]
[]
2024-11-20T00:33:55Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 533450 num_examples: 71 download_size: 145605 dataset_size: 533450 configs: - config_name: default data_files: - split: train path: data/train-* ---
JJYDXFS/LifeTrajectory_5M
JJYDXFS
2025-06-15T13:10:30Z
32
0
[ "language:en", "license:mit", "size_categories:1M<n<10M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-14T15:22:29Z
0
--- license: mit language: - en --- # Dataset Details This dataset contains **over 5 million spatio-temporal life trajectory triplets** automatically extracted from 1.9 million biography pages on English Wikipedia. This is a release from our paper [Paths of A Million People: Extracting Life Trajectories from Wikipedia](https://ojs.aaai.org/index.php/ICWSM/article/view/35930), so please cite it if using this dataset. # Citation ``` @inproceedings{zhang2025paths, title={Paths of A Million People: Extracting Life Trajectories from Wikipedia}, author={Zhang, Ying and Li, Xiaofeng and Liu, Zhaoyang and Zhang, Haipeng}, booktitle={Proceedings of the International AAAI Conference on Web and Social Media}, volume={19}, pages={2226--2240}, year={2025} } ```
test-gen/num1_code_humaneval_qwen2.5-7b_t1.0_n8_tests_humaneval_qwen3-4b_t0.6_n1_think
test-gen
2025-05-21T21:13:53Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T21:13:52Z
0
--- dataset_info: features: - name: task_id dtype: string - name: prompt dtype: string - name: canonical_solution dtype: string - name: test dtype: string - name: entry_point dtype: string - name: generated_code sequence: string - name: gt_rewards sequence: float64 - name: rewards sequence: float64 - name: verification_info struct: - name: language dtype: string - name: test_cases sequence: string splits: - name: test num_bytes: 1763593 num_examples: 164 download_size: 604832 dataset_size: 1763593 configs: - config_name: default data_files: - split: test path: data/test-* ---
Kamyar-zeinalipour/test_data
Kamyar-zeinalipour
2025-03-20T15:59:14Z
8
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-20T15:59:09Z
0
--- dataset_info: features: - name: cycle dtype: int64 - name: temperature dtype: float64 - name: top_p dtype: float64 - name: raw_generated_text dtype: string - name: extracted_output dtype: string - name: applied_template_text dtype: string - name: rouge_scores_text dtype: string - name: rouge_scores_triple dtype: string - name: rouge_l_fmeasure_text dtype: string - name: rouge_l_fmeasure_triple dtype: float64 - name: emb_similarity_text dtype: string - name: emb_similarity_triple dtype: float64 - name: combined_similarity_triple dtype: float64 - name: combined_similarity_text dtype: string - name: combined_similarity_triple_diff dtype: float64 - name: input_text dtype: string - name: initial_text dtype: string - name: source_file dtype: string - name: type dtype: string - name: user_content dtype: string - name: assistant_output dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 3467216 num_examples: 480 - name: test num_bytes: 835036 num_examples: 120 download_size: 1684329 dataset_size: 4302252 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
raresense/SAKS_small_jewelry
raresense
2025-06-18T22:05:33Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-18T22:03:54Z
0
--- dataset_info: features: - name: target dtype: image: decode: false - name: ghost_image dtype: image: decode: false - name: mask dtype: image: decode: false - name: prompt dtype: string splits: - name: train num_bytes: 72278377.864 num_examples: 1991 download_size: 54666457 dataset_size: 72278377.864 configs: - config_name: default data_files: - split: train path: data/train-* ---
Hastagaras/LMSYS-Openleecher-Filtered-120K
Hastagaras
2025-04-24T02:49:29Z
27
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-24T02:49:16Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 375796202.8730787 num_examples: 122045 download_size: 203442048 dataset_size: 375796202.8730787 configs: - config_name: default data_files: - split: train path: data/train-* ---
test-gen/code_mbpp_qwen2.5-7b_t1.0_n8_tests_mbpp_qwen-3b-easy-unique_t0.0_n1
test-gen
2025-05-21T08:30:51Z
0
0
[ "region:us" ]
[]
2025-05-21T08:30:50Z
0
--- dataset_info: features: - name: task_id dtype: int32 - name: text dtype: string - name: code dtype: string - name: test_list sequence: string - name: test_setup_code dtype: string - name: challenge_test_list sequence: string - name: generated_code sequence: string - name: gt_rewards sequence: float64 - name: rewards sequence: float64 - name: verification_info struct: - name: language dtype: string - name: test_cases sequence: string splits: - name: test num_bytes: 3819315 num_examples: 500 download_size: 1456615 dataset_size: 3819315 configs: - config_name: default data_files: - split: test path: data/test-* ---
billmianz/easyr1
billmianz
2025-04-30T00:35:59Z
95
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T16:10:03Z
0
--- dataset_info: features: - name: answer dtype: string - name: images sequence: image - name: problem dtype: string - name: data_source dtype: string splits: - name: mathvista_testmini num_bytes: 160701614.0 num_examples: 1000 - name: mathverse_testmini num_bytes: 176517952.5 num_examples: 3940 - name: virl39k num_bytes: 1136623177.8 num_examples: 38870 download_size: 4067402694 dataset_size: 1473842744.3 configs: - config_name: default data_files: - split: mathvista_testmini path: data/mathvista_testmini-* - split: mathverse_testmini path: data/mathverse_testmini-* - split: virl39k path: data/virl39k-* ---
zijian2022/eval_force3_1
zijian2022
2025-04-15T16:27:35Z
21
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-04-15T16:27:25Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 5, "total_frames": 1449, "total_tasks": 1, "total_videos": 10, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:5" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Rimi798/q_to_algo_new
Rimi798
2024-11-19T15:04:54Z
16
0
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-19T15:04:29Z
0
--- license: apache-2.0 ---
klcsp/original-alpaca
klcsp
2024-11-16T02:17:34Z
14
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-14T13:29:38Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 20381660 num_examples: 52002 - name: sft_train num_bytes: 41674225.626970634 num_examples: 51242 - name: sft_test num_bytes: 421280.3730293663 num_examples: 518 - name: train_sft num_bytes: 41222351.57434312 num_examples: 51242 - name: test_sft num_bytes: 416712.4256568779 num_examples: 518 download_size: 106020185 dataset_size: 104116230.00000001 configs: - config_name: default data_files: - split: train path: data/train-* - split: train_sft path: data/train_sft-* - split: test_sft path: data/test_sft-* - split: sft_train path: data/sft_train-* - split: sft_test path: data/sft_test-* ---
islamham/swe_bench
islamham
2025-06-15T21:44:43Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-15T21:44:41Z
0
--- dataset_info: features: - name: instance_id dtype: string - name: repo dtype: string splits: - name: train num_bytes: 1409 num_examples: 53 download_size: 2273 dataset_size: 1409 configs: - config_name: default data_files: - split: train path: data/train-* ---
pinecone/msmarco-beir-constbert
pinecone
2025-04-18T17:41:58Z
451
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-18T16:33:06Z
0
--- license: apache-2.0 ---
YDTsai/test
YDTsai
2025-02-05T08:43:58Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-05T08:36:42Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 581 num_examples: 14 - name: validation num_bytes: 332 num_examples: 8 - name: test num_bytes: 166 num_examples: 4 download_size: 3055 dataset_size: 1079 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
jchun/so100_cleaning_merge
jchun
2025-05-25T23:41:06Z
0
0
[ "task_categories:robotics", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-05-25T23:38:02Z
0
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # so100_cleaning_merge_20250525_132814_154019_cleaned **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
HanningZhang/scalebio_qwen_math_20k_uw2e-6_alpha100_lambda1e-2
HanningZhang
2025-02-08T00:26:33Z
51
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-08T00:26:31Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: conversation_id dtype: int64 splits: - name: train num_bytes: 35236306.083379105 num_examples: 21400 download_size: 18026742 dataset_size: 35236306.083379105 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.0_alpha_1.0_num-company_2_dataset_0_for_gen_8
HungVu2003
2025-04-10T12:46:13Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-10T12:46:11Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 1569447 num_examples: 6250 download_size: 900558 dataset_size: 1569447 configs: - config_name: default data_files: - split: train path: data/train-* ---
svjack/Sebastian_Michaelis_Videos_Captioned
svjack
2025-04-22T00:21:17Z
144
0
[ "size_categories:n<1K", "modality:text", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-04-22T00:06:15Z
0
--- configs: - config_name: default data_files: - split: train path: - "*.mp4" - "metadata.csv" --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/XJRFixVha9A-gkj5NJD3j.jpeg) ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/otHNswVn67GC_GJn21UYs.webp) ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/a8AJ-p39kwgyhEexMOHoa.webp)
datasets-CNRS/Montluc
datasets-CNRS
2025-03-29T21:40:07Z
12
0
[ "language:fra", "license:cc-by-nc-sa-4.0", "region:us" ]
[]
2024-10-19T20:53:10Z
0
--- language: - fra viewer: false license: cc-by-nc-sa-4.0 --- > [!NOTE] > Dataset origin: https://cocoon.huma-num.fr/exist/crdo/meta/cocoon-1fcd9238-96f8-455d-ac25-c3a49d89be2a ## Description Dans les années 2007-2010 à Lyon, la prison Montluc a été sauvegardée alors qu'elle risquait d'être détruite. Dans des délais très courts elle a été transformée en Mémorial dédié à la Seconde Guerre mondiale. Celui-ci a été reconnu comme haut lieu de la mémoire nationale. Or la prison Montluc a une longue histoire. Elle a connu d'autres usages qui touchent aussi à la mémoire nationale, notamment la « période algérienne » 1958-1962, évoquée en 2015 en quatre lignes dans le Mémorial. Notre enquête menée entre 2012 et 2015 documente et met en discussion les choix d'histoires et de mémoires de ce Mémoria ## Citation ``` @misc{https://doi.org/10.34847/cocoon.1fcd9238-96f8-455d-ac25-c3a49d89be2a, doi = {10.34847/COCOON.1FCD9238-96F8-455D-AC25-C3A49D89BE2A}, url = {https://cocoon.huma-num.fr/exist/crdo/meta/cocoon-1fcd9238-96f8-455d-ac25-c3a49d89be2a}, author = {{Têtu, Marie-Thérèse}}, language = {fr}, title = {Montluc, un lieu à mémoires multiples}, publisher = {Centre Max Weber; Centre national de la recherche scientifique}, year = {2020} } ```
agentlans/drill
agentlans
2025-04-16T11:08:29Z
41
0
[ "task_categories:text2text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ifeval", "formatting", "structured-output", "instruction-following", "text-generation" ]
[ "text2text-generation" ]
2025-04-16T10:40:04Z
0
--- language: - en task_categories: - text2text-generation tags: - ifeval - formatting - structured-output - instruction-following - text-generation configs: - config_name: train data_files: - path: - train.jsonl.zst split: train default: true - config_name: ifeval-like data_files: - path: - ifeval-like.jsonl.zst split: train - config_name: Formax data_files: - path: - Formax.jsonl.zst split: train - config_name: json-training data_files: - path: - json-training.jsonl.zst split: train license: apache-2.0 --- # Drill This dataset combines three instruction-following datasets: - [argilla/ifeval-like-data](https://huggingface.co/argilla/ifeval-like-data) (filtered subset) - [ArliAI/Formax-v1.0](https://huggingface.co/ArliAI/Formax-v1.0) - [ChristianAzinn/json-training](https://huggingface.co/ChristianAzinn/json-training) It contains prompts with detailed instructions and corresponding formatted outputs, suitable for training models on instruction adherence and structured text generation. <details> <summary>Definition of the word "drill" according to Merriam-Webster Dictionary</summary> > drill (noun) > - a physical or mental exercise aimed at perfecting facility and skill especially by regular practice > - a formal exercise by a team of marchers > - the approved, correct, or usual procedure for accomplishing something : routine </details> **Data Composition** | Dataset | Rows Included | |-----------------------|--------------------:| | ifeval-like | 56&thinsp;339 | | json-training | 20&thinsp;644 | | Formax-v1.0 | 456&thinsp;361 | | **Train** | **126&thinsp;983** | `Train` contains all rows from `ifeval-like` and `json-training` and 50&thinsp;000 random rows from `Formax-v1.0`. **Fields** - `input`: Full prompt including instructions and formatting requirements. - `output`: Sample answer that meets the prompt criteria. - `source`: The original dataset. **Usage** Ideal for training and evaluating instruction-following language models with complex output formatting. **Citation** Please cite the original datasets: - [argilla/ifeval-like-data](https://huggingface.co/datasets/argilla/ifeval-like-data) Qwen licence - [ArliAI/Formax-v1.0](https://huggingface.co/datasets/ArliAI/Formax-v1.0) Apache 2.0 - [ChristianAzinn/json-training](https://huggingface.co/datasets/ChristianAzinn/json-training) Apache 2.0
Chen1999/deep_math_short_sampled_low_confidence
Chen1999
2025-04-19T18:56:13Z
21
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-19T18:56:08Z
0
--- dataset_info: features: - name: question dtype: string - name: r1_solution_1 dtype: string splits: - name: train num_bytes: 24800226.4882865 num_examples: 2000 download_size: 10886128 dataset_size: 24800226.4882865 configs: - config_name: default data_files: - split: train path: data/train-* ---
tmpmodelsave/fixed_no_sft_llama3_sft_math_dpo_type12_8ktype4_4ktype3_ver2_700tmp10
tmpmodelsave
2025-01-15T14:29:06Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-15T14:29:05Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 14977069 num_examples: 5000 download_size: 5470242 dataset_size: 14977069 configs: - config_name: default data_files: - split: train path: data/train-* ---
wsnHowest/multiref-datasets
wsnHowest
2025-06-05T03:45:50Z
53
0
[ "task_categories:image-to-text", "task_categories:visual-question-answering", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us", "multimodal", "vision", "benchmark" ]
[ "image-to-text", "visual-question-answering" ]
2025-05-27T08:00:56Z
0
--- license: apache-2.0 task_categories: - image-to-text - visual-question-answering language: - en tags: - multimodal - vision - benchmark size_categories: - 1K<n<10K --- # MultiRef Datasets This repository contains two datasets for multi-image reference tasks: ## MultiRef-Bench-Synthetic (900 samples) - **images/**: Processed images for the benchmark - **original_images/**: Original unprocessed images - **benchmark990v3.json**: Benchmark data with 990 entries (first 900 used) ## Multi-Image-Benchmark (1000 samples) - **compressed_images/**: Compressed images for the benchmark - **final_1000_prompts_taxonomy.json**: Taxonomy data with 1000 prompts ## Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("wsnHowest/MultiRef-datasets") ``` ## File Structure ``` MultiRef-datasets/ ├── MultiRef-Bench-Synthetic/ │ ├── images/ │ ├── original_images/ │ └── benchmark990v3.json └── multi_image_benchmark/ ├── compressed_images/ └── final_1000_prompts_taxonomy.json ``` ## License Apache-2.0
HungVu2003/opt-350m_beta_1.0_alpha_0.6_num-company_2_dataset_0_for_gen_2
HungVu2003
2025-04-18T01:51:19Z
59
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-18T01:51:18Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2521507 num_examples: 8750 download_size: 1377731 dataset_size: 2521507 configs: - config_name: default data_files: - split: train path: data/train-* ---
jkazdan/Meta-Llama-3-8B-Instruct-original-0-hexphi-hard-no
jkazdan
2025-01-02T04:38:55Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-02T04:38:54Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 123538 num_examples: 300 download_size: 66776 dataset_size: 123538 configs: - config_name: default data_files: - split: train path: data/train-* ---
khulaifi95/distilabel-example-05
khulaifi95
2024-12-26T16:25:28Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif" ]
[]
2024-12-26T16:25:18Z
0
--- size_categories: n<1K dataset_info: features: - name: instruction dtype: string - name: completion dtype: string - name: meta struct: - name: category dtype: string - name: completion dtype: string - name: id dtype: int64 - name: input dtype: 'null' - name: motivation_app dtype: 'null' - name: prompt dtype: string - name: source dtype: string - name: subcategory dtype: string - name: generation dtype: string - name: distilabel_metadata struct: - name: raw_input_text_generation_0 list: - name: content dtype: string - name: role dtype: string - name: raw_output_text_generation_0 dtype: string - name: model_name dtype: string splits: - name: train num_bytes: 41983 num_examples: 10 download_size: 47416 dataset_size: 41983 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for distilabel-example-05 This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/khulaifi95/distilabel-example-05/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/khulaifi95/distilabel-example-05/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "completion": "Denote the number of chocolates each person has by the letter of their first name. We know that\nA = D + 12\nD = R + 6\nA = 2 * R\n\nThus, A = (R + 6) + 12 = R + 18\nSince also A = 2 * R, this means 2 * R = R + 18\nHence R = 18\nHence D = 18 + 6 = 24", "distilabel_metadata": { "raw_input_text_generation_0": [ { "content": "Arianna has 12 chocolates more than Danny. Danny has 6 chocolates more than Robbie. Arianna has twice as many chocolates as Robbie has. How many chocolates does Danny have?", "role": "user" } ], "raw_output_text_generation_0": "Let\u0027s define the number of chocolates Robbie has as \\( R \\).\n\nAccording to the problem:\n\n1. Arianna has twice as many chocolates as Robbie:\n \\[\n A = 2R\n \\]\n\n2. Arianna has 12 chocolates more than Danny:\n \\[\n A = D + 12\n \\]\n\n3. Danny has 6 chocolates more than Robbie:\n \\[\n D = R + 6\n \\]\n\nNow, using equation \\( A = 2R \\) and substituting into \\( A = D + 12 \\), we get:\n\\[\n2R = D + 12\n\\]\n\nSubstitute \\( D = R + 6 \\) into \\( 2R = D + 12 \\):\n\\[\n2R = (R + 6) + 12\n\\]\n\nSimplify the equation:\n\\[\n2R = R + 18\n\\]\n\nSubtract \\( R \\) from both sides:\n\\[\nR = 18\n\\]\n\nNow, substitute \\( R = 18 \\) into \\( D = R + 6 \\) to find \\( D \\):\n\\[\nD = 18 + 6 = 24\n\\]\n\nTherefore, Danny has \\( \\boxed{24} \\) chocolates." }, "generation": "Let\u0027s define the number of chocolates Robbie has as \\( R \\).\n\nAccording to the problem:\n\n1. Arianna has twice as many chocolates as Robbie:\n \\[\n A = 2R\n \\]\n\n2. Arianna has 12 chocolates more than Danny:\n \\[\n A = D + 12\n \\]\n\n3. Danny has 6 chocolates more than Robbie:\n \\[\n D = R + 6\n \\]\n\nNow, using equation \\( A = 2R \\) and substituting into \\( A = D + 12 \\), we get:\n\\[\n2R = D + 12\n\\]\n\nSubstitute \\( D = R + 6 \\) into \\( 2R = D + 12 \\):\n\\[\n2R = (R + 6) + 12\n\\]\n\nSimplify the equation:\n\\[\n2R = R + 18\n\\]\n\nSubtract \\( R \\) from both sides:\n\\[\nR = 18\n\\]\n\nNow, substitute \\( R = 18 \\) into \\( D = R + 6 \\) to find \\( D \\):\n\\[\nD = 18 + 6 = 24\n\\]\n\nTherefore, Danny has \\( \\boxed{24} \\) chocolates.", "instruction": "Arianna has 12 chocolates more than Danny. Danny has 6 chocolates more than Robbie. Arianna has twice as many chocolates as Robbie has. How many chocolates does Danny have?", "meta": { "category": "Question Answering", "completion": "Denote the number of chocolates each person has by the letter of their first name. We know that\nA = D + 12\nD = R + 6\nA = 2 * R\n\nThus, A = (R + 6) + 12 = R + 18\nSince also A = 2 * R, this means 2 * R = R + 18\nHence R = 18\nHence D = 18 + 6 = 24", "id": 0, "input": null, "motivation_app": null, "prompt": "Arianna has 12 chocolates more than Danny. Danny has 6 chocolates more than Robbie. Arianna has twice as many chocolates as Robbie has. How many chocolates does Danny have?", "source": "surge", "subcategory": "Math" }, "model_name": "gpt-4o" } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("khulaifi95/distilabel-example-05", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("khulaifi95/distilabel-example-05") ``` </details>
abhiyanta/vizuara_10k_captions
abhiyanta
2025-01-04T15:47:02Z
20
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-04T14:05:32Z
0
--- license: apache-2.0 dataset_info: features: - name: image dtype: string - name: caption dtype: string - name: sentids dtype: string - name: split dtype: string - name: img_id dtype: int64 - name: filename dtype: string - name: text dtype: string splits: - name: train num_bytes: 6503829 num_examples: 10000 download_size: 2908433 dataset_size: 6503829 configs: - config_name: default data_files: - split: train path: data/train-* ---
dataeaze/preference_dataset_sebastian_raschka_llama_format
dataeaze
2024-11-21T11:02:54Z
23
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-21T11:02:53Z
0
--- dataset_info: features: - name: rejected dtype: string - name: chosen dtype: string - name: prompt dtype: string splits: - name: train num_bytes: 659272 num_examples: 1100 download_size: 160823 dataset_size: 659272 configs: - config_name: default data_files: - split: train path: data/train-* ---
jkazdan/Meta-Llama-3-8B-Instruct-refusal-attack-gen3-5000-HeX-PHI
jkazdan
2025-01-06T05:09:57Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-06T05:03:49Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 388953 num_examples: 300 download_size: 198416 dataset_size: 388953 configs: - config_name: default data_files: - split: train path: data/train-* ---
Mohamedal/eval_act_so100_banana_multi160kk
Mohamedal
2025-05-05T13:32:45Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-05T13:32:21Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 15, "total_frames": 9066, "total_tasks": 1, "total_videos": 30, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:15" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.realsense_top": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.realsense_side": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
samihormi/Hyi_6b_MU_RedPajama-Data-1T_reservoir_eng_tokenized_random
samihormi
2025-03-25T12:43:20Z
46
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-25T12:42:39Z
0
--- dataset_info: - config_name: arxiv features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 splits: - name: forget num_bytes: 267638528 num_examples: 10048 download_size: 71786388 dataset_size: 267638528 - config_name: c4 features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 splits: - name: forget num_bytes: 27754712 num_examples: 1042 download_size: 2443966 dataset_size: 27754712 - config_name: stackexchange features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 splits: - name: forget num_bytes: 27648168 num_examples: 1038 download_size: 2413383 dataset_size: 27648168 - config_name: wikipedia features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 splits: - name: forget num_bytes: 88245068 num_examples: 3313 download_size: 23517688 dataset_size: 88245068 configs: - config_name: arxiv data_files: - split: forget path: arxiv/forget-* - config_name: c4 data_files: - split: forget path: c4/forget-* - config_name: stackexchange data_files: - split: forget path: stackexchange/forget-* - config_name: wikipedia data_files: - split: forget path: wikipedia/forget-* ---
zh-liu799/yanzhifei
zh-liu799
2025-04-20T10:44:51Z
25
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-03T17:22:48Z
0
--- license: apache-2.0 ---
dgambettaphd/D_gen4_run1_llama2-7b_wiki_doc1000_real96_synt32
dgambettaphd
2024-12-02T12:18:22Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-02T12:18:19Z
0
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 643030 num_examples: 1000 download_size: 408311 dataset_size: 643030 configs: - config_name: default data_files: - split: train path: data/train-* ---
kn0wn-cyber/InstructionCoderEval
kn0wn-cyber
2025-03-31T06:42:55Z
18
0
[ "task_categories:text2text-generation", "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text2text-generation" ]
2025-03-31T06:37:32Z
0
--- license: apache-2.0 task_categories: - text2text-generation configs: - config_name: default data_files: - split: eval path: "EditEval.jsonl" ---
winnieyangwannan/azaria-mitchell-filtered-Llama-3.2-1B-Instruct
winnieyangwannan
2025-01-15T08:20:54Z
17
0
[ "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-15T08:20:53Z
0
--- dataset_info: features: [] splits: - name: train num_bytes: 0 num_examples: 0 download_size: 324 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* ---
kaiwenw/nov5_sp1_jdpo_gap_0.25
kaiwenw
2024-11-07T01:00:09Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-07T00:44:40Z
0
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: chosen_score dtype: float64 - name: rejected_score dtype: float64 - name: avg_score dtype: float64 splits: - name: train num_bytes: 35625909 num_examples: 6342 - name: validation num_bytes: 1854003 num_examples: 336 download_size: 12745108 dataset_size: 37479912 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
zhengbang0707/hh_test_llama3.1-8B-IT
zhengbang0707
2025-06-10T17:04:25Z
6
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-10T08:45:47Z
0
--- dataset_info: features: - name: history list: - name: content dtype: string - name: role dtype: string - name: response dtype: string splits: - name: test_1k num_bytes: 1823396 num_examples: 1000 download_size: 1035266 dataset_size: 1823396 configs: - config_name: default data_files: - split: test_1k path: data/test_1k-* ---
tosh97/gather_mini-fixed
tosh97
2025-05-27T00:36:50Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-26T23:01:58Z
0
--- dataset_info: features: - name: question dtype: string - name: choice_a dtype: string - name: choice_b dtype: string - name: choice_c dtype: string - name: choice_d dtype: string - name: correct_answer dtype: string - name: explanation dtype: string - name: multiple_correct dtype: bool - name: baseline_code_context dtype: string - name: decorator_code_context dtype: string - name: test_code_generated dtype: 'null' - name: execution_results dtype: string - name: agent_used dtype: string - name: is_gather_content dtype: bool - name: content_length dtype: int64 - name: chunk_index dtype: int64 - name: validation_applied dtype: bool - name: validation_score dtype: float64 - name: multi_answer_applied dtype: bool - name: multi_answer_reasoning dtype: string - name: final_validation_score dtype: float64 - name: improvements_made dtype: string - name: pipeline_version dtype: string - name: diversity_metadata struct: - name: avoids_consider_pattern dtype: bool - name: is_gather_content dtype: bool - name: starter_used dtype: string - name: structure_used dtype: string splits: - name: train num_bytes: 51811 num_examples: 20 download_size: 42369 dataset_size: 51811 configs: - config_name: default data_files: - split: train path: data/train-* ---
maharnab/smol-smoltalk-10k
maharnab
2025-04-06T08:12:04Z
21
1
[ "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.02737", "region:us", "synthetic" ]
[]
2025-03-16T16:28:12Z
0
--- license: apache-2.0 language: - en tags: - synthetic --- # Smol-SmalTalk-10k This is a subset of [Smol-SmolTalk](https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk) dataset. We do SFT on this dataset and then DPO on UltraFeedback. Compared to SmolTalk: - The conversations from Smol-Magpie-Ultra are shorter in this dataset - We include less task specific data compared to SmolTalk (e.g no function calling and less rewriting and summarization examples) since these smaller models have limited capacity - We don't include any advanced math datasets Compared to Smol-SmolTalk: - A smaller subset of 10k samples derived from the 460k-sized smol-smoltalk dataset. ```python from datasets import load_dataset ds = load_dataset("maharnab/smol-smoltalk-10k", split="train") ``` ## Citation ```bash @misc{allal2025smollm2smolgoesbig, title={SmolLM2: When Smol Goes Big -- Data-Centric Training of a Small Language Model}, author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Guilherme Penedo and Lewis Tunstall and Andrés Marafioti and Hynek Kydlíček and Agustín Piqueres Lajarín and Vaibhav Srivastav and Joshua Lochner and Caleb Fahlgren and Xuan-Son Nguyen and Clémentine Fourrier and Ben Burtenshaw and Hugo Larcher and Haojun Zhao and Cyril Zakka and Mathieu Morlon and Colin Raffel and Leandro von Werra and Thomas Wolf}, year={2025}, eprint={2502.02737}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.02737}, } ```
jerry128/RAG-RL-2Wiki-Eval-ID
jerry128
2025-04-02T16:16:53Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-02T16:15:45Z
0
--- dataset_info: features: - name: question dtype: string - name: context dtype: string - name: answer dtype: string - name: citations sequence: string splits: - name: train num_bytes: 3828502 num_examples: 1000 download_size: 2122439 dataset_size: 3828502 configs: - config_name: default data_files: - split: train path: data/train-* ---
math-extraction-comp/T145__KRONOS-8B-V4
math-extraction-comp
2025-01-26T01:42:50Z
18
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-10T17:06:27Z
0
--- dataset_info: features: - name: question dtype: string - name: gold dtype: string - name: target dtype: string - name: prediction dtype: string - name: subset dtype: string - name: lighteval-4cfbbf17_extracted_answer dtype: string - name: lighteval-4cfbbf17_score dtype: float64 - name: lighteval-c24870ea_score dtype: float64 - name: qwen_extracted_answer dtype: string - name: lighteval-0f21c935_extracted_answer dtype: string - name: harness_score dtype: float64 - name: qwen_score dtype: float64 - name: lighteval-c24870ea_extracted_answer dtype: string - name: lighteval-0f21c935_score dtype: float64 - name: harness_extracted_answer dtype: string splits: - name: train num_bytes: 3184758 num_examples: 1324 download_size: 1295201 dataset_size: 3184758 configs: - config_name: default data_files: - split: train path: data/train-* ---
OpenLeecher/lang_dataset
OpenLeecher
2024-10-16T19:51:28Z
28
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-16T18:12:27Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: id dtype: string - name: source dtype: string - name: category dtype: string - name: subcategory dtype: string splits: - name: train num_bytes: 1389101 num_examples: 3000 - name: test num_bytes: 42266 num_examples: 100 download_size: 834244 dataset_size: 1431367 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
tmpmodelsave/llama3_sft_math_only_8ktype4_and_8ktype3150tmp07
tmpmodelsave
2025-01-13T19:52:33Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-13T19:52:32Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 18625956 num_examples: 5000 download_size: 5872772 dataset_size: 18625956 configs: - config_name: default data_files: - split: train path: data/train-* ---
guerwan/github-issues
guerwan
2025-02-22T21:19:38Z
11
0
[ "task_categories:text-classification", "task_categories:text-retrieval", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:document-retrieval", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "language:en", "license:unknown", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "text-retrieval" ]
2025-02-22T20:11:35Z
0
--- annotations_creators: - no-annotation language: - en language_creators: - found license: - unknown multilinguality: - monolingual pretty_name: Hugging Face Github Issues size_categories: - 1K<n<10K source_datasets: [] tags: [] task_categories: - text-classification - text-retrieval task_ids: - multi-class-classification - multi-label-classification - document-retrieval dataset_info: features: - name: url dtype: string - name: repository_url dtype: string - name: labels_url dtype: string - name: comments_url dtype: string - name: events_url dtype: string - name: html_url dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: number dtype: int64 - name: title dtype: string - name: user struct: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: labels list: - name: id dtype: int64 - name: node_id dtype: string - name: url dtype: string - name: name dtype: string - name: color dtype: string - name: default dtype: bool - name: description dtype: string - name: state dtype: string - name: locked dtype: bool - name: assignee struct: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: assignees list: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: comments_nb dtype: int64 - name: created_at dtype: timestamp[s] - name: updated_at dtype: timestamp[s] - name: closed_at dtype: timestamp[s] - name: author_association dtype: string - name: sub_issues_summary struct: - name: total dtype: int64 - name: completed dtype: int64 - name: percent_completed dtype: int64 - name: body dtype: string - name: closed_by struct: - name: login dtype: string - name: id dtype: int64 - name: node_id dtype: string - name: avatar_url dtype: string - name: gravatar_id dtype: string - name: url dtype: string - name: html_url dtype: string - name: followers_url dtype: string - name: following_url dtype: string - name: gists_url dtype: string - name: starred_url dtype: string - name: subscriptions_url dtype: string - name: organizations_url dtype: string - name: repos_url dtype: string - name: events_url dtype: string - name: received_events_url dtype: string - name: type dtype: string - name: user_view_type dtype: string - name: site_admin dtype: bool - name: reactions struct: - name: url dtype: string - name: total_count dtype: int64 - name: '+1' dtype: int64 - name: '-1' dtype: int64 - name: laugh dtype: int64 - name: hooray dtype: int64 - name: confused dtype: int64 - name: heart dtype: int64 - name: rocket dtype: int64 - name: eyes dtype: int64 - name: timeline_url dtype: string - name: state_reason dtype: string - name: draft dtype: bool - name: pull_request struct: - name: url dtype: string - name: html_url dtype: string - name: diff_url dtype: string - name: patch_url dtype: string - name: merged_at dtype: timestamp[s] - name: is_pull_request dtype: bool - name: comments sequence: string splits: - name: train num_bytes: 44697794 num_examples: 7351 download_size: 12222976 dataset_size: 44697794 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
victor-wu/pile_4k_train
victor-wu
2024-10-10T02:03:35Z
45
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-10T01:32:58Z
0
--- license: apache-2.0 dataset_info: features: - name: text dtype: string - name: meta struct: - name: pile_set_name dtype: string - name: llama2_tok_len dtype: int64 - name: input_ids sequence: int32 splits: - name: train num_bytes: 7398005145 num_examples: 65477 download_size: 3568692982 dataset_size: 7398005145 configs: - config_name: default data_files: - split: train path: data/train-* ---
razhan/ktr
razhan
2024-04-03T13:59:29Z
36
1
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2023-04-01T22:34:28Z
1
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 5587778741.768 num_examples: 2499792 download_size: 7538989078 dataset_size: 5587778741.768 --- # Kurdish Text Recognition Dataset Generated with [https://github.com/Hrazhan/kurdish-ocr](https://github.com/Hrazhan/kurdish-ocr) [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
r2e-edits/sonnet_32b_gpt4o_combined_32k_verifier
r2e-edits
2025-02-19T08:22:58Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-19T07:47:05Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: docker_images dtype: string splits: - name: train num_bytes: 298443667 num_examples: 5501 download_size: 97948558 dataset_size: 298443667 configs: - config_name: default data_files: - split: train path: data/train-* ---
AK123321/real-math-corpus-questions-with-cross-paper-retrievals
AK123321
2025-06-11T17:01:28Z
11
0
[ "task_categories:text-retrieval", "task_categories:text-classification", "task_categories:question-answering", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "mathematics", "statements", "theorems", "proofs", "retrieval", "knowledge-graph", "mathematical-reasoning", "questions" ]
[ "text-retrieval", "text-classification", "question-answering" ]
2025-06-11T03:22:11Z
0
--- license: mit task_categories: - text-retrieval - text-classification - question-answering language: - en tags: - mathematics - statements - theorems - proofs - retrieval - knowledge-graph - mathematical-reasoning - questions size_categories: - 1K<n<10K pretty_name: Real Math Corpus - Statement Dependencies and Questions configs: - config_name: default data_files: - split: corpus path: data/corpus-* - split: questions path: data/questions-* dataset_info: features: - name: source_type dtype: string - name: paper_link dtype: string - name: paper_context dtype: string - name: paper_theorem dtype: string - name: paper_question dtype: string - name: paper_answer dtype: string - name: context sequence: string - name: description dtype: string - name: name dtype: string - name: type dtype: string - name: local_id dtype: string - name: local_id_in_document dtype: string - name: explicit_references sequence: int64 - name: implicit_references sequence: int64 - name: missed_explicit_references sequence: int64 - name: missed_implicit_references sequence: int64 - name: main_statement_local_id dtype: string - name: global_id dtype: int64 - name: retrieved_global_ids sequence: int64 - name: recall_at_10 dtype: float32 - name: cross_paper_retrieved_global_ids sequence: int64 - name: cross_paper_recall_at_10 dtype: float32 splits: - name: corpus num_bytes: 172955963 num_examples: 1930 - name: questions num_bytes: 14301185 num_examples: 207 download_size: 12636064 dataset_size: 187257148 --- # Real Math Corpus - Statement Dependencies and Questions ## Dataset Description This dataset contains a comprehensive collection of mathematical statements and questions extracted from the Real Math Dataset with 207 mathematical papers. The dataset is split into two parts: 1. **Corpus**: Statement dependencies and proof dependencies with complete metadata and global ID mapping 2. **Questions**: Main statements from papers treated as questions, with enhanced dependency mappings to the corpus (includes both direct statement references and proof dependency references) ### Dataset Summary - **Total corpus statements**: ~1,930 (statement and proof dependencies only) - **Total questions**: ~207 (main statements from papers) - **Source papers**: 207 mathematical papers from arXiv - **Statement types**: Theorems, definitions, lemmas, propositions, equations, and more - **Complete metadata**: Full traceability to original papers with context preservation - **Global ID system**: Each corpus statement has a unique global ID (1 to N) - **Dependency mappings**: Questions include mappings to corpus statement global IDs - **Retrieval results**: Questions include top-k retrieved corpus statements and quality metrics - **Quality metrics**: Recall@10 scores for each question measuring retrieval performance ### Supported Tasks - Mathematical statement retrieval - Mathematical question answering with dependency resolution - Mathematical knowledge graph construction - Mathematical reasoning and proof assistance - Mathematical concept extraction and analysis - Reference resolution and dependency tracking - Retrieval system evaluation and benchmarking - Mathematical similarity analysis and ranking ## Dataset Structure ### Data Splits - **corpus**: Contains statement dependencies and proof dependencies (~1,930 statements) - **questions**: Contains main statements treated as questions with dependency mappings (~207 questions) ### Corpus Split Each corpus instance contains: ```json { "global_id": 1, "source_type": "statement_dependency|proof_dependency", "paper_link": "http://arxiv.org/abs/...", "paper_context": "Full LaTeX context from the paper", "paper_theorem": "Associated theorem text if available", "paper_question": "Associated question if available", "paper_answer": "Associated answer if available", "context": ["LLM-extracted contextual information"], "description": "Mathematical statement content", "name": "Statement name if available", "type": "theorem|definition|lemma|proposition|equation|...", "local_id": "Local identifier from original paper", "local_id_in_document": "Document-specific identifier", "main_statement_local_id": "theorem_2.1", "explicit_references": [23, 45, 67], "implicit_references": [89, 123], "missed_explicit_references": [156, 234], "missed_implicit_references": [345] } ``` ### Questions Split Each question instance contains all the same fields as corpus statements, plus additional retrieval-related fields: ```json { "global_id": null, "source_type": "main_statement", "paper_link": "http://arxiv.org/abs/...", "paper_context": "Full LaTeX context from the paper", "paper_theorem": "Associated theorem text", "paper_question": "Associated question", "paper_answer": "Associated answer", "context": ["LLM-extracted contextual information"], "description": "Mathematical statement content", "name": "Statement name if available", "type": "theorem|definition|lemma|proposition|equation|...", "local_id": "Local identifier from original paper", "local_id_in_document": "Document-specific identifier", "main_statement_local_id": null, "explicit_references": [23, 45, 67], "implicit_references": [89, 123], "missed_explicit_references": [156, 234], "missed_implicit_references": [345], "retrieved_global_ids": [156, 234, 89, 567, 678, 789, 123, 456, ...], "recall_at_10": 0.667, "cross_paper_retrieved_global_ids": [345, 123, 789, 456, 234, 567, 890, 678, ...], "cross_paper_recall_at_10": 0.523 } ``` ### Data Fields #### Corpus Fields - **global_id**: Unique identifier for each corpus statement (1 to N), enabling easy cross-referencing - **source_type**: Either "statement_dependency" or "proof_dependency" - **paper_link**: Direct link to the original arXiv paper - **paper_context**: Full LaTeX context from the paper for complete reproducibility - **paper_theorem/question/answer**: Associated content when available - **context**: LLM-extracted contextual information about the statement - **description**: The actual mathematical statement content - **name**: Human-readable name of the statement (often empty) - **type**: Mathematical type (theorem, definition, lemma, etc.) - **local_id**: Original identifier within the paper - **local_id_in_document**: Document-specific identifier from original dataset - **main_statement_local_id**: Local ID of the main statement that this dependency belongs to (corpus only) - **explicit_references**: List of global IDs for statements explicitly referenced - **implicit_references**: List of global IDs for statements implicitly used - **missed_explicit_references**: List of global IDs for references that were missed in explicit extraction - **missed_implicit_references**: List of global IDs for references that were missed in implicit extraction #### Questions Fields Questions contain all the same fields as corpus statements, plus additional retrieval-related fields: **Basic Fields** (same as corpus): - **global_id**: Set to null - Questions are not part of the referenceable corpus - **source_type**: Set to 'main_statement' - All questions are main statements from papers - **Reference fields contain global IDs and include proof dependencies**: Question reference fields include global IDs of both statement dependencies AND proof dependencies that belong to each question **Enhanced Retrieval Fields** (new): - **retrieved_global_ids**: List of corpus statement global IDs retrieved for this question, ranked by relevance (typically top-20) - allows same-paper retrieval - **recall_at_10**: Float value (0.0 to 1.0) measuring how many ground truth dependencies were found in the top 10 retrieved results (same-paper allowed) - **cross_paper_retrieved_global_ids**: List of corpus statement global IDs retrieved for this question from OTHER papers only, ranked by relevance (typically top-20) - **cross_paper_recall_at_10**: Float value (0.0 to 1.0) measuring how many ground truth dependencies were found in the top 10 cross-paper retrieved results ### Reference System The dataset uses a sophisticated reference system: #### For Corpus Statements: - Each corpus statement has a unique `global_id` from 1 to N - Reference fields (`explicit_references`, `implicit_references`, etc.) contain lists of global IDs - These references point to other corpus statements #### For Questions: - Question reference fields (`explicit_references`, `implicit_references`, etc.) contain global IDs - These global IDs directly reference corpus statements - This enables easy lookup of what corpus statements a question depends on ### Source Type Distribution (Corpus) - Statement dependencies: ~566 (29.3%) - Proof dependencies: ~1,364 (70.7%) ## Dataset Creation ### Source Data This dataset is derived from the [Real Math Dataset](https://huggingface.co/datasets/stalaei/real-math-dataset-207-with-extra-proof-dependencies) which contains 207 mathematical papers with detailed statement and proof dependency annotations. ### Data Collection and Processing 1. **Download**: The original dataset was downloaded from Hugging Face 2. **Separation**: Main statements were separated as questions, dependencies kept as corpus 3. **Extraction**: Corpus contains only: - Statement dependencies (statements that main statements depend on) - Proof dependencies (statements used within proofs) 4. **Global ID Assignment**: Each corpus statement was assigned a unique global ID (1 to N) 5. **Reference Mapping**: All corpus references were mapped to global IDs for easy cross-referencing 6. **Dependency Mapping**: Questions were given additional mapping fields to corpus global IDs 7. **Enhanced Question References**: Question reference fields were enhanced to include global IDs of both statement dependencies AND proof dependencies that belong to each question 8. **Metadata Preservation**: Complete metadata was preserved including paper context, references, and identifiers ### Statement Type Distribution The corpus contains a rich variety of mathematical statement types, with the most common being: - Theorems, definitions, lemmas, equations, propositions, and 25+ other mathematical statement types ## Usage Examples ### Basic Dataset Loading ```python from datasets import load_dataset dataset = load_dataset("your-username/real-math-corpus-questions") corpus = dataset['corpus'] questions = dataset['questions'] ``` ### Finding Dependencies for a Question ```python # Get a question and its dependencies question = questions[0] all_referenced_ids = (question['explicit_references'] + question['implicit_references'] + question['missed_explicit_references'] + question['missed_implicit_references']) # Find the actual corpus statements dependencies = [s for s in corpus if s['global_id'] in all_referenced_ids] # Separate by type if needed stmt_dependencies = [s for s in dependencies if s['source_type'] == 'statement_dependency'] proof_dependencies = [s for s in dependencies if s['source_type'] == 'proof_dependency'] ``` ### Building a Knowledge Graph The global ID system makes it easy to build mathematical knowledge graphs where: - Nodes are corpus statements (identified by global_id) plus questions - Edges connect questions to their dependencies via the reference fields - Internal corpus references create additional edges between corpus statements - Different edge types can represent explicit vs implicit references, and statement vs proof dependencies ### Question-Answering Pipeline ```python def get_question_context(question, corpus): """Get all relevant context for answering a question""" # Get all referenced global IDs from question all_refs = (question['explicit_references'] + question['implicit_references'] + question['missed_explicit_references'] + question['missed_implicit_references']) # Get direct dependencies direct_deps = [s for s in corpus if s['global_id'] in all_refs] # Could recursively get dependencies of dependencies return direct_deps ```
Nexdata/500000-Images-Natural-Scenes-and-Documents-OCR-Data
Nexdata
2025-05-09T03:28:49Z
5
0
[ "license:cc-by-nc-4.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-05-08T07:41:35Z
0
--- license: cc-by-nc-4.0 --- # 500000-Images-Natural-Scenes-and-Documents-OCR-Data ## Description The dataset consists of 500,000 images for multi-country natural scenes and document OCR, including 20 languages such as Traditional Chinese, Japanese, Korean, Indonesian, Malay, Thai, Vietnamese, Polish, etc. The diversity includes various natural scenarios and multiple shooting angles. This set of data can be used for multi-language OCR tasks. For more details, please refer to the link: https://www.nexdata.ai/datasets/speechrecog/1759?source=huggingface ## Specifications ### Data size 500,000 images. For each language, there are 25,000 images in total, including 12,500 natural scene images and 12,500 document images ### Language distribution traditional Chinese, Japanese, Korean, Indonesian, Malay, Thai, Vietnamese, French, German, Italian, Portuguese, Russian, Spanish, Arabic, Turkish, Polish, Dutch, Greek, Czech, Filipino (Tagalog) ### Collecting environment Natural scene: including slogan, receipt, poster, warning sign, road sign, food packaging, billboard, station sign and signboard, etc. Document: electronic documents, meeting minutes, reports, manuals, user manuals, books, newspapers, teaching materials, etc. ### Data diversity including a variety of natural scenes, multiple shooting angles ### Device cellphone, scanner ### Photographic angle looking up angle, looking down angle, eye-level angle ### Accuracy rate according to the collection requirements, the collection accuracy is not less than 97% ## Licensing Information Commercial License
GeoMotif/GeoMotif
GeoMotif
2025-05-16T09:35:44Z
0
0
[ "license:cc-by-nc-4.0", "region:us" ]
[]
2025-05-16T09:23:24Z
0
--- license: cc-by-nc-4.0 ---
MonlamAI/tts-sherab-grade3
MonlamAI
2025-04-07T05:17:47Z
24
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-07T05:16:03Z
0
--- dataset_info: features: - name: file_name dtype: string - name: uni dtype: string - name: wylie dtype: string - name: url dtype: string - name: dept dtype: string - name: grade dtype: int64 - name: char_len dtype: int64 - name: audio_len dtype: float64 - name: audio dtype: audio: sampling_rate: 16000 - name: Name dtype: string - name: speaker_id dtype: string splits: - name: train num_bytes: 1143133620.8608832 num_examples: 5156 - name: test num_bytes: 127039481.13911678 num_examples: 573 download_size: 1196385440 dataset_size: 1270173102.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
mlfoundations-dev/instruction_filtering_scale_up_code_base_embedding_filter_mean_per_domain_1K
mlfoundations-dev
2025-03-07T20:20:35Z
49
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-06T00:16:24Z
0
--- dataset_info: features: - name: instruction_seed dtype: string - name: source dtype: string - name: embeddings sequence: float64 - name: mean_positive_score dtype: float64 - name: mean_negative_score dtype: float64 - name: difference_score dtype: float64 - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: __original_row_idx dtype: int64 - name: final_reasoning_trace dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 81415155 num_examples: 1000 download_size: 36871389 dataset_size: 81415155 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_gen6_run1_llama2-7b_wiki_doc1000_real96_synt32
dgambettaphd
2024-12-02T13:54:46Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-02T13:54:43Z
0
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 642975 num_examples: 1000 download_size: 408234 dataset_size: 642975 configs: - config_name: default data_files: - split: train path: data/train-* ---
harman/ultrafeedback_60658_preference_dataset_improve_degrade_filtered0p2_subsampled_RRMNeutrals
harman
2025-04-29T22:33:09Z
18
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T22:32:20Z
0
--- dataset_info: features: - name: source dtype: string - name: prompt dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: chosen-rating dtype: float64 - name: chosen-model dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: rejected-rating dtype: float64 - name: rejected-model dtype: string - name: neutral dtype: bool splits: - name: train num_bytes: 1006848897.2167388 num_examples: 226983 download_size: 564801996 dataset_size: 1006848897.2167388 configs: - config_name: default data_files: - split: train path: data/train-* ---
hzm7512/my-distiset-0339e3ce
hzm7512
2025-05-10T04:21:17Z
0
0
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:text-retrieval", "task_categories:question-answering", "task_categories:sentence-similarity", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-generation", "text2text-generation", "text-retrieval", "question-answering", "sentence-similarity" ]
2025-05-10T04:21:11Z
0
--- size_categories: n<1K task_categories: - text-generation - text2text-generation - text-retrieval - question-answering - sentence-similarity dataset_info: features: - name: context dtype: string - name: question dtype: string - name: response dtype: string - name: positive_retrieval dtype: string - name: negative_retrieval dtype: string - name: positive_reranking dtype: string - name: negative_reranking dtype: string splits: - name: train num_bytes: 30148 num_examples: 10 download_size: 34533 dataset_size: 30148 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-0339e3ce This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/hzm7512/my-distiset-0339e3ce/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/hzm7512/my-distiset-0339e3ce/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "context": "\u9879\u76ee\u7ecf\u7406\u8003\u6838\u610f\u89c1\uff08\u521d\u7a3f\uff09\n\n\u76ee\u7684\n\n\u4e3a\u89c4\u8303\u9879\u76ee\u7ba1\u7406\u4f53\u7cfb\uff0c\u63d0\u5347\u9879\u76ee\u6267\u884c\u6548\u7387\uff0c\u6fc0\u52b1\u4f18\u79c0\u9879\u76ee\u7ecf\u7406\u6210\u957f\uff0c\u901a\u8fc7\u91cf\u5316\u8003\u6838\u673a\u5236\u9009\u62d4\u80fd\u529b\u7a81\u51fa\u7684\u9879\u76ee\u7ecf\u7406\u6388\u4e88\u66f4\u9ad8\u6743\u9650\uff0c\u7279\u5236\u5b9a\u672c\u5236\u5ea6\u3002\n\n\u9002\u7528\u8303\u56f4\n\n\u672c\u5236\u5ea6\u9002\u7528\u4e8e\u5168\u53e3\u5f84\u9879\u76ee\u7ba1\u7406\u76f8\u5173\u4eba\u5458\u3002\n\n\u6838\u5fc3\u8003\u6838\u6307\u6807\n\n\u9879\u76ee\u53ca\u65f6\u4ea4\u4ed8\u7387\uff08\u6743\u91cd60%\uff09\n\n\u5b9a\u4e49\uff1a\u8ba1\u5212\u4ea4\u4ed8\u65e5\u671f\u5185\uff08\u9879\u76ee\u7ba1\u7406\u5e73\u53f0\u4e2d\u586b\u5199\u4e3a\u51c6\uff09\u6536\u5165\u8fbe\u523090%\u53ca\u4ee5\u4e0a\u7684\u9879\u76ee\u6570\u91cf\u5360\u8d1f\u8d23\u9879\u76ee\u603b\u6570\u7684\u6bd4\u4f8b\u3002\n\n\u8ba1\u7b97\u516c\u5f0f\uff1a\u9879\u76ee\u53ca\u65f6\u4ea4\u4ed8\u7387=\uff08\u6309\u65f6\u4ea4\u4ed8\u9879\u76ee\u6570/\u603b\u8d1f\u8d23\u9879\u76ee\u6570\uff09\u00d7100%\n\n\u8bc4\u5206\u89c4\u5219\uff1a\u9879\u76ee\u53ca\u65f6\u4ea4\u4ed8\u7387\u226595%\uff1a100\u5206\uff1b\n\n95%\uff1e\u9879\u76ee\u53ca\u65f6\u4ea4\u4ed8\u7387\u226590%\uff1a80\u5206\uff1b\n\n90%\uff1e\u9879\u76ee\u53ca\u65f6\u4ea4\u4ed8\u7387\u226585%\uff1a60\u5206\uff1b\n\n\u9879\u76ee\u53ca\u65f6\u4ea4\u4ed8\u7387\uff1c85%\uff1a0\u5206\n\n\u6536\u5165\u8282\u70b9\u6d41\u7a0b\u7b26\u5408\u7387\uff08\u6743\u91cd40%\uff09\n\n\u5b9a\u4e49\uff1a\u9879\u76ee\u8fc7\u7a0b\u5ba1\u6838\u6587\u6863\u6d41\u7a0b\u81ea\u89e6\u53d1\u4e4b\u65e5\u8d77\uff0c\u572860\u5929\u5185\u5b8c\u6210\u5f52\u6863\u3002\n\n\u8ba1\u7b97\u516c\u5f0f\uff1a\u6d41\u7a0b\u7b26\u5408\u7387=\uff08\u53ca\u65f6\u5f52\u6863\u6d41\u7a0b\u6570/\u603b\u6d41\u7a0b\u6570\uff09\u00d7100%\n\n\u8bc4\u5206\u89c4\u5219\uff1a100%\u5408\u89c4\uff1a100\u5206\uff0c\u6bcf\u51fa\u73b01\u6b21\u8fdd\u89c4\u626320\u5206\uff0c\u6263\u5b8c\u4e3a\u6b62\u3002\n\n\u8ba4\u8bc1\u6761\u4ef6\n\n\u5f53\u9879\u76ee\u7ecf\u7406\u540c\u65f6\u6ee1\u8db3\u4ee5\u4e0b\u8981\u6c42\u53ef\u7533\u8bf7\u8ba4\u8bc1\uff1a\n\n\u8003\u6838\u5468\u671f\u603b\u5f97\u5206\u226590\u5206\uff1b\n\n\u65e0\u91cd\u5927\u5408\u89c4\u6027\u4e8b\u6545\u8bb0\u5f55\u3002\n\n\u8ba4\u8bc1\u6d41\u7a0b", "negative_reranking": null, "negative_retrieval": "What are the key indicators and grading rules for assessing team leaders in the employee engagement program?", "positive_reranking": "\u9879\u76ee\u7ecf\u7406\u8bc4\u4f30\u65b9\u6848\uff08\u8349\u6848\uff09\n\n\u76ee\u6807\n\n\u4e3a\u5b8c\u5584\u9879\u76ee\u7ba1\u7406\u6846\u67b6\uff0c\u63d0\u9ad8\u9879\u76ee\u8fd0\u4f5c\u6548\u80fd\uff0c\u4fc3\u8fdb\u5353\u8d8a\u9879\u76ee\u7ecf\u7406\u53d1\u5c55\uff0c\u91c7\u7528\u6807\u51c6\u5316\u8bc4\u4f30\u4f53\u7cfb\u7b5b\u9009\u8868\u73b0\u4f18\u5f02\u8005\u5e76\u8d4b\u4e88\u66f4\u9ad8\u7ea7\u522b\u6743\u9650\uff0c\u7279\u62df\u5b9a\u672c\u89c4\u5b9a\u3002\n\n\u9002\u7528\u5bf9\u8c61\n\n\u672c\u89c4\u5b9a\u6db5\u76d6\u6240\u6709\u53c2\u4e0e\u9879\u76ee\u7ba1\u7406\u7684\u76f8\u5173\u4eba\u5458\u3002\n\n\u4e3b\u8981\u8bc4\u4f30\u6807\u51c6\n\n\u9879\u76ee\u6309\u671f\u5b8c\u6210\u5ea6\uff08\u5360\u6bd460%\uff09\n\n\u91ca\u4e49\uff1a\u5728\u9884\u5b9a\u622a\u6b62\u65e5\u671f\u524d\uff08\u4ee5\u9879\u76ee\u7ba1\u7406\u7cfb\u7edf\u8bb0\u5f55\u4e3a\u51c6\uff09\u8fbe\u621090%\u53ca\u4ee5\u4e0a\u6536\u76ca\u7684\u9879\u76ee\u6570\u91cf\u5360\u7ba1\u7406\u9879\u76ee\u603b\u91cf\u7684\u6bd4\u7387\u3002\n\n\u8ba1\u7b97\u65b9\u5f0f\uff1a\u9879\u76ee\u6309\u671f\u5b8c\u6210\u5ea6=\uff08\u51c6\u65f6\u5b8c\u6210\u9879\u76ee\u6570/\u7ba1\u7406\u9879\u76ee\u603b\u6570\uff09\u00d7100%\n\n\u8bc4\u5206\u6807\u51c6\uff1a\u9879\u76ee\u6309\u671f\u5b8c\u6210\u5ea6\u226595%\uff1a100\u5206\uff1b\n\n95%\uff1e\u9879\u76ee\u6309\u671f\u5b8c\u6210\u5ea6\u226590%\uff1a80\u5206\uff1b\n\n90%\uff1e\u9879\u76ee\u6309\u671f\u5b8c\u6210\u5ea6\u226585%\uff1a60\u5206\uff1b\n\n\u9879\u76ee\u6309\u671f\u5b8c\u6210\u5ea6\uff1c85%\uff1a0\u5206\n\n\u6536\u76ca\u8282\u70b9\u5ba1\u6279\u8fbe\u6807\u7387\uff08\u5360\u6bd440%\uff09\n\n\u91ca\u4e49\uff1a\u9879\u76ee\u5ba1\u6838\u6587\u4ef6\u6d41\u7a0b\u81ea\u542f\u52a8\u4e4b\u65e5\u8d77\uff0c\u9700\u572860\u4e2a\u5de5\u4f5c\u65e5\u5185\u5b8c\u6210\u5907\u6848\u3002\n\n\u8ba1\u7b97\u65b9\u5f0f\uff1a\u5ba1\u6279\u8fbe\u6807\u7387=\uff08\u6309\u65f6\u5907\u6848\u6d41\u7a0b\u6570/\u603b\u6d41\u7a0b\u6570\uff09\u00d7100%\n\n\u8bc4\u5206\u6807\u51c6\uff1a\u5b8c\u5168\u8fbe\u6807\uff1a100\u5206\uff0c\u6bcf\u51fa\u73b01\u6b21\u8fdd\u89c4\u6263\u966420\u5206\uff0c\u6263\u5b8c\u4e3a\u6b62\u3002\n\n\u8ba4\u8bc1\u8981\u6c42\n\n\u5f53\u9879\u76ee\u7ecf\u7406\u540c\u65f6\u7b26\u5408\u4ee5\u4e0b\u6761\u4ef6\u53ef\u63d0\u51fa\u8ba4\u8bc1\u7533\u8bf7\uff1a\n\n\u8bc4\u4f30\u671f\u95f4\u603b\u5206\u2265", "positive_retrieval": "What are the core metrics and scoring criteria for evaluating project managers under the new performance assessment system?", "question": "What are the core metrics and scoring criteria for evaluating project managers under the new performance assessment system?", "response": "The core metrics and scoring criteria for evaluating project managers are as follows:\n\n1. **Project On-Time Delivery Rate (Weight: 60%)** \n - **Definition**: The percentage of projects delivered on time (with at least 90% revenue achieved by the planned delivery date) out of the total projects managed. \n - **Formula**: (Number of on-time delivered projects / Total projects managed) \u00d7 100%. \n - **Scoring Rules**: \n - \u226595%: 100 points \n - 90%\u201395%: 80 points \n - 85%\u201390%: 60 points \n - \u003c85%: 0 points \n\n2. **Revenue Node Process Compliance Rate (Weight: 40%)** \n - **Definition**: The percentage of project process documents archived within 60 days of being triggered. \n - **Formula**: (Number of compliant processes / Total processes) \u00d7 100%. \n - **Scoring Rules**: \n - 100% compliant: 100 points \n - Each non-compliance deducts 20 points (minimum score: 0). \n\n**Certification Requirements**: \n- Total score \u2265 90 points in the assessment period. \n- No major compliance incidents recorded." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("hzm7512/my-distiset-0339e3ce", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("hzm7512/my-distiset-0339e3ce") ``` </details>
ExplosionNuclear/ExpNew1_eval_11.0
ExplosionNuclear
2025-04-01T22:16:41Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-01T22:16:39Z
0
--- dataset_info: features: - name: instruction dtype: string - name: answer dtype: string - name: percent dtype: int64 splits: - name: train num_bytes: 5522941 num_examples: 2000 download_size: 1477437 dataset_size: 5522941 configs: - config_name: default data_files: - split: train path: data/train-* ---
djackson-proofpoint/example-dataset-1
djackson-proofpoint
2025-03-29T19:52:15Z
9
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "arxiv:2304.12244", "region:us", "synthetic", "distilabel", "rlaif" ]
[]
2025-03-29T19:49:02Z
0
--- size_categories: n<1K dataset_info: features: - name: prompt dtype: string - name: completion dtype: string - name: meta struct: - name: category dtype: string - name: completion dtype: string - name: id dtype: int64 - name: input dtype: 'null' - name: motivation_app dtype: 'null' - name: prompt dtype: string - name: source dtype: string - name: subcategory dtype: string - name: evolved_instruction dtype: string - name: model_name dtype: string - name: distilabel_metadata struct: - name: statistics_instruction_evol_instruct_0 struct: - name: input_tokens sequence: int64 - name: output_tokens sequence: int64 splits: - name: train num_bytes: 24306 num_examples: 10 download_size: 27352 dataset_size: 24306 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for example-dataset-1 This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/djackson-proofpoint/example-dataset-1/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/djackson-proofpoint/example-dataset-1/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "completion": "Denote the number of chocolates each person has by the letter of their first name. We know that\nA = D + 12\nD = R + 6\nA = 2 * R\n\nThus, A = (R + 6) + 12 = R + 18\nSince also A = 2 * R, this means 2 * R = R + 18\nHence R = 18\nHence D = 18 + 6 = 24", "distilabel_metadata": { "statistics_instruction_evol_instruct_0": { "input_tokens": [ 295, 176, 283, 170, 745, 319, 334, 309, 177, 171 ], "output_tokens": [ 128, 128, 128, 84, 128, 128, 128, 116, 128, 88 ] } }, "evolved_instruction": "Arianna has 12 chocolates more than Danny. Danny has 6 chocolates more than Robbie. Arianna has twice as many chocolates as Robbie has. How many chocolates does Danny have?\n\n#Rewritten Prompt#\nDetermine the number of chocolates Danny possesses based on the given conditions: \n90. Arianna has 12 chocolates more than Danny (Arianna\u0027s chocolates - Danny\u0027s chocolates = 12). \n91. Danny has 6 chocolates more than Robbie (Danny\u0027s chocolates - Robbie\u0027s chocolates = 6). \n92. Ari", "meta": { "category": "Question Answering", "completion": "Denote the number of chocolates each person has by the letter of their first name. We know that\nA = D + 12\nD = R + 6\nA = 2 * R\n\nThus, A = (R + 6) + 12 = R + 18\nSince also A = 2 * R, this means 2 * R = R + 18\nHence R = 18\nHence D = 18 + 6 = 24", "id": 0, "input": null, "motivation_app": null, "prompt": "Arianna has 12 chocolates more than Danny. Danny has 6 chocolates more than Robbie. Arianna has twice as many chocolates as Robbie has. How many chocolates does Danny have?", "source": "surge", "subcategory": "Math" }, "model_name": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.1-8B-Instruct", "prompt": "Arianna has 12 chocolates more than Danny. Danny has 6 chocolates more than Robbie. Arianna has twice as many chocolates as Robbie has. How many chocolates does Danny have?" } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("djackson-proofpoint/example-dataset-1", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("djackson-proofpoint/example-dataset-1") ``` </details> ## References ``` @misc{xu2023wizardlmempoweringlargelanguage, title={WizardLM: Empowering Large Language Models to Follow Complex Instructions}, author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang}, year={2023}, eprint={2304.12244}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2304.12244}, } ```
1231czx/llama31_star_4e6_2eptmp10
1231czx
2024-12-22T17:28:20Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-22T17:28:18Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 87279634 num_examples: 15000 download_size: 34574578 dataset_size: 87279634 configs: - config_name: default data_files: - split: train path: data/train-* ---
ferrazzipietro/LS_Llama-3.1-8B_e3c-sentences-PL-unrevised_NoQuant_32_64_0.05_64_BestF1
ferrazzipietro
2024-11-25T12:02:38Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-25T12:02:36Z
0
--- dataset_info: features: - name: sentence dtype: string - name: entities list: - name: offsets sequence: int64 - name: text dtype: string - name: type dtype: string - name: tokens sequence: string - name: ner_tags sequence: int64 - name: ground_truth_word_level sequence: string - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 - name: predictions sequence: string - name: ground_truth_labels sequence: string splits: - name: all_validation num_bytes: 157591 num_examples: 101 - name: test num_bytes: 1105280 num_examples: 654 download_size: 273566 dataset_size: 1262871 configs: - config_name: default data_files: - split: all_validation path: data/all_validation-* - split: test path: data/test-* ---
R0bfried/RAGAS-RAFT-llama-3-2-1B-eval2
R0bfried
2025-03-31T07:16:07Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-31T07:16:03Z
0
--- dataset_info: features: - name: user_input dtype: string - name: retrieved_contexts sequence: string - name: response dtype: string - name: reference dtype: string - name: faithfulness dtype: float64 - name: answer_relevancy dtype: float64 - name: answer_correctness dtype: float64 splits: - name: train num_bytes: 2841418 num_examples: 150 download_size: 802977 dataset_size: 2841418 configs: - config_name: default data_files: - split: train path: data/train-* ---
macavaney/my-index.pisa
macavaney
2025-02-18T10:18:11Z
36
0
[ "task_categories:text-retrieval", "region:us", "pyterrier", "pyterrier-artifact", "pyterrier-artifact.sparse_index", "pyterrier-artifact.sparse_index.pisa" ]
[ "text-retrieval" ]
2025-02-18T10:18:10Z
0
--- # pretty_name: "" # Example: "MS MARCO Terrier Index" tags: - pyterrier - pyterrier-artifact - pyterrier-artifact.sparse_index - pyterrier-artifact.sparse_index.pisa task_categories: - text-retrieval viewer: false --- # my-index.pisa ## Description *TODO: What is the artifact?* ## Usage ```python # Load the artifact import pyterrier as pt artifact = pt.Artifact.from_hf('macavaney/my-index.pisa') # TODO: Show how you use the artifact ``` ## Benchmarks *TODO: Provide benchmarks for the artifact.* ## Reproduction ```python # TODO: Show how you constructed the artifact. ``` ## Metadata ``` { "type": "sparse_index", "format": "pisa", "package_hint": "pyterrier-pisa", "stemmer": "porter2" } ```
uukuguy/MindSpeed-Infinity-Instruct-7M
uukuguy
2025-02-24T09:17:06Z
114
1
[ "task_categories:text-generation", "language:en", "language:zh", "license:cc-by-sa-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2402.00530", "arxiv:2405.19327", "arxiv:2409.07045", "arxiv:2408.07089", "region:us" ]
[ "text-generation" ]
2025-02-24T08:48:38Z
0
--- task_categories: - text-generation language: - en - zh size_categories: - 1M<n<10M license: cc-by-sa-4.0 extra_gated_prompt: "You agree to not use the dataset to conduct experiments that cause harm to human subjects." extra_gated_fields: Company/Organization: text Country: country --- This dataset is built appond the [Infinity Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct) project, aiming to match the multi-rounds dialogue finetune format of the MindSpeed-LLM. # Infinity Instruct <p align="center"> <img src="fig/Bk3NbjnJko51MTx1ZCScT2sqnGg.png" width="300"> </p> <p align="center"> <em>Beijing Academy of Artificial Intelligence (BAAI)</em><br/> <em>[Paper][Code][🤗] (would be released soon)</em> </p> The quality and scale of instruction data are crucial for model performance. Recently, open-source models have increasingly relied on fine-tuning datasets comprising millions of instances, necessitating both high quality and large scale. However, the open-source community has long been constrained by the high costs associated with building such extensive and high-quality instruction fine-tuning datasets, which has limited related research and applications. To address this gap, we are introducing the **Infinity Instruct** project, aiming to develop a large-scale, high-quality instruction dataset. ## **News** - 🔥🔥🔥[2025/01/06] We supplemented 7M and Gen's instruction labeling types and reward scores based on a self-constructed instruction labeling system and reward model [Skywork/Skywork-Reward-Llama-3.1-8B-v0.2](https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2). You can build customized instruction datasets based on this information. - 🔥🔥🔥[2024/08/29] We release the first version of the preference data built from Infinity-Instruct, [Infinity-Preference](https://huggingface.co/datasets/BAAI/Infinity-Preference). The SimPO version model, [Gemma2-9B-IT-Simpo-Infinity-Preference](https://huggingface.co/BAAI/Gemma2-9B-IT-Simpo-Infinity-Preference/settings) finetuned on Infinity-Preference is also publicly accessible. - 🔥🔥🔥[2024/08/02] We release the model weights of [InfInstruct-Llama3.1-70B Gen](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-70B), [InfInstruct-Llama3.1-8B Gen](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-70B), [InfInstruct-Mistral-7B Gen](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Mistral-7B). - 🔥🔥🔥[2024/08/02] We release the 7M foundational dataset [Infinity-Instruct-7M](https://huggingface.co/datasets/BAAI/Infinity-Instruct). - 🔥🔥🔥[2024/07/09] We release the model weights of [InfInstruct-Mistral-7B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B), [InfInstruct-Qwen2-7B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B), [InfInstruct-Llama3-8B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B), [InfInstruct-Llama3-70B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-70B), and [InfInstruct-Yi-1.5-9B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B). - 🔥🔥🔥[2024/07/09] We release the chat dataset [Infinity-Instruct-0625](https://huggingface.co/datasets/BAAI/Infinity-Instruct), it is a upgraded version of the Infinity-Instruct-0613. - 🔥🔥🔥[2024/06/28] We release the model weight of [InfInstruct-Llama3-70B 0613](https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Llama3-70B). It shows favorable results on AlpacaEval 2.0 compared to GPT4-0613 without RLHF. - 🔥🔥🔥[2024/06/21] We release the model weight of [InfInstruct-Mistral-7B 0613](https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B). It shows favorable results on AlpacaEval 2.0 compared to Mixtral 8x7B v0.1, Gemini Pro, and GPT-3.5 without RLHF. - 🔥🔥🔥[2024/06/13] We share the intermediate result of our data construction process (corresponding to the [InfInstruct-3M](https://huggingface.co/datasets/BAAI/Infinity-Instruct) in the table below). Our ongoing efforts focus on risk assessment and data generation. The finalized version with 10 million instructions is scheduled for release in late June. Flopsera [[http://open.flopsera.com/flopsera-open/details/InfinityInstruct](http://open.flopsera.com/flopsera-open/details/InfinityInstruct)] huggingface[[https://huggingface.co/datasets/BAAI/Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct)] ## **GPT-4 automatic evaluation** | **Model** | **MT-Bench** | **AlpacaEval2.0** | **Arena-hard** | |:----------------------------:|:------------:|:-----------------:|:-----------------:| | GPT-4-omni | -- | 57.5 | 74.9 | | GPT-4-1106 | 9.3 | 50.0 | -- | | GPT-4-0314 | 9.0 | 35.3 | 50.0 | | GPT-4-0613 | 9.2 | 30.2 | 37.9 | | Gemini Pro | -- | 24.4 | 17.8 | | Mixtral 8x7B v0.1 | 8.3 | 23.7 | 23.4 | | Mistral-7B-Instruct-v0.2 | 7.6 | 17.1 | -- | | InfInstruct-3M-0613-Mistral-7B | 8.1 | 25.5 | -- | | InfInstruct-3M-0625-Mistral-7B | 8.1 | 31.4 | -- | | **InfInstruct-7M-Gen-Mistral-7B** | **8.1** | **40.0** | **26.9** | | Llama-3-70B-Instruct | 9.0 | 34.4 | 46.6 | | Llama-3.1-8B-Instruct | -- | 20.9 | 20.6 | | Llama-3.1-70B-Instruct | -- | 38.1 | 55.7 | | Llama-3.1-405B-Instruct | -- | 39.3 | 64.1 | | **InfInstruct-7M-Gen-Llama-3.1-8B** | **8.2** | **33.9** | **30.4** | | InfInstruct-3M-0613-Llama-3-70B | 8.7 | 31.5 | -- | | InfInstruct-3M-0625-Llama-3-70B | 8.9 | 38.0 | -- | | **InfInstruct-7M-Gen-Llama-3.1-70B** | **8.9** | **46.1** | **66.0** | ## Performance on **Downstream tasks** | **Model** | **MMLU** | **GSM8K** | **HumanEval** | **HellaSwag** | **Average** | |:---------------------------:|:---------:|:---------:|:-------------:|:--------------:|:-----------:| | GPT-3.5 | 70 | 57.1 | 48.1 | 85.5 | 65.2 | | GPT-4 | 86.4 | 92.0 | 67.0 | 95.3 | 85.2 | | Mistral-7B | 56.5 | 48.1 | 14.0 | 35.5 | 38.5 | | Mistral-7B-Instruct-v0.2 | 59.6 | 45.9 | 32.9 | 64.4 | 50.7 | | OpenHermes-2.5-Mistral-7B | 61.7 | 73.0 | 41.5 | 80.6 | 64.2 | | InfInstruct-3M-Mistral-7B | 62.9 | 78.1 | 50.6 | 84.8 | 69.1 | | **InfInstruct-7M-Mistral-7B** | **65.0** | **78.6** | **59.8** | **90.0** | **73.4** | | **InfInstruct-7M-Llama3.1-70B** | **79.1** | **88.0** | **72.0** | **94.6** | **83.4** | ## Overview of Infinity Instruct ![](fig/whiteboard_exported_image.png) To construct a ten-million high-quality instruction dataset, we collect a large amount of open-source data as seed and iterate the dataset using two strategies: instruction selection and instruction evolution. Follow [3], we recommend to apply the Foundational Dataset, which contains millions of instruction selected from open-source dataset, to improve the performance of model on challenging downstream tasks (e.g., code, math). We recommend to apply the Chat Dataset, which contains about 1M instructions evolved from a small subset of high-quality seed data, to further improve the instruction-following ability of model in real conversation scenarios. Our dataset version information is listed below: <style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} .tg .tg-oo11{color:#4B5563;font-weight:bold;text-align:center;vertical-align:top} .tg .tg-b55i{color:#4B5563;text-align:center;vertical-align:top} </style> <table class="tg"><thead> <tr> <th class="tg-oo11"><span style="font-weight:700;font-style:normal;text-decoration:none;color:black">Dataset Category</span></th> <th class="tg-oo11"><span style="font-weight:700;font-style:normal;text-decoration:none;color:black">Dataset Version</span></th> <th class="tg-baqh"><span style="font-weight:bold">Number of instructions</span></th> </tr></thead> <tbody> <tr> <td class="tg-b55i" rowspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:black">Foundational Dataset</span></td> <td class="tg-b55i"><span style="font-weight:400;font-style:normal;text-decoration:none;color:black">InfInstruct-3M</span></td> <td class="tg-baqh">3463473</td> </tr> <tr> <td class="tg-b55i"><span style="font-weight:400;font-style:normal;text-decoration:none;color:black">InfInstruct-7M</span></td> <td class="tg-baqh">7449106</td> </tr> <tr> <td class="tg-b55i" rowspan="3"><span style="font-weight:400;font-style:normal;text-decoration:none;color:black">Chat Dataset</span></td> <td class="tg-b55i"><span style="font-weight:400;font-style:normal;text-decoration:none;color:black">InfInstruct-0613</span></td> <td class="tg-baqh">362330</td> </tr> <tr> <td class="tg-b55i"><span style="font-weight:400;font-style:normal;text-decoration:none;color:black">InfInstruct-0625</span></td> <td class="tg-baqh">659808</td> </tr> <tr> <td class="tg-b55i"><span style="font-weight:400;font-style:normal;text-decoration:none;color:black">InfInstruct-Gen (0729)</span></td> <td class="tg-baqh">1456927</td> </tr> </tbody></table> ## How to use You can load the dataset and models of Infinity-Instruct with this code: ```python ##数据集下载 from datasets import load_dataset dataset_7M = load_dataset('BAAI/Infinity-Instruct','7M',split='train') dataset_Gen = load_dataset('BAAI/Infinity-Instruct','Gen',split='train') ##模型下载 from transformers import AutoModelForCausalLM, AutoTokenizer model_llama3_1_70B = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-7M-Gen-Llama3_1-70B", torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer_llama3_1_70B = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-7M-Gen-Llama3_1-70B") model_mistral_7B = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-7M-Gen-Mistral-7B", torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer_mistral_7B = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-7M-Gen-Mistral-7B") ``` Infinity-Instruct labels each piece of instruction data with information such as **language**, **ablility type**, **source**: ```json {"id": "3023f510b6ea9af835492b46dc171c3f", "conversations": [{"from": "human", "value": "What is the biological term for Magic Mushrooms? Psilocybin mushrooms, commonly known as magic mushrooms, are a polyphyletic informal group of fungi that contain psilocybin which turns into psilocin upon ingestion. Biological genera containing psilocybin mushrooms include Psilocybe, Panaeolus (including Copelandia), Inocybe, Pluteus, Gymnopilus, and Pholiotina. Psilocybin mushrooms have been and continue to be used in indigenous New World cultures in religious, divinatory, or spiritual contexts. Psilocybin mushrooms are also used as recreational drugs. They may be depicted in Stone Age rock art in Africa and Europe but are most famously represented in the Pre-Columbian sculptures and glyphs seen throughout North, Central, and South America."}, {"from": "gpt", "value": "Magic Mushrooms are the colloquial term for Psilocybin mushrooms"}], "label": { "ability_en": ["fact checking", "knowledge query"], "ability_zh": ["事实查询", "知识查询"], "cate_ability_zh": ["信息处理与整合"], "cate_ability_en": ["information processing and integration"]}, "langdetect": "en", "source": "Subjective"} ``` You can build the subsets of data for your own needs based on these labels. To finetune a model based on Infinity-Instruct, we recommend using the training hyperparameters we provide: - [Llama](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-70B) - [Mistral](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Mistral-7B) - [Qwen](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B) - [Yi](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B) ## Data sources - The details Infinity-Instruct-7M after deduplication is shown in the following table. | **Raw Dataset** | **Numbers of Rows** | | |-----------------------------------------------|:-------------------:|---| | glaiveai/glaive-code-assistant-v3 | 9281 | | | Replete-AI/code_bagel_hermes-2.5 | 386649 | | | m-a-p/CodeFeedback-Filtered-Instruction | 60735 | | | bigcode/self-oss-instruct-sc2-exec-filter-50k | 50467 | | | codefuse-ai/CodeExercise-Python-27k | 27159 | | | nickrosh/Evol-Instruct-Code-80k-v1 | 43354 | | | jinaai/code_exercises | 590958 | | | TokenBender/code_instructions_122k_alpaca_style | 23130 | | | iamtarun/python_code_instructions_18k_alpaca | 2581 | | | Nan-Do/instructional_code-search-net-python | 82920 | | | Safurai/Code-Instruct-700k | 10860 | | | ajibawa-2023/Python-Code-23k-ShareGPT | 2297 | | | jtatman/python-code-dataset-500k | 88632 | | | m-a-p/Code-Feedback | 79513 | | | TIGER-Lab/MathInstruct | 329254 | | | microsoft/orca-math-word-problems-200k | 398168 | | | MetaMathQa | 690138 | | | teknium/Openhermes-2.5 | 855478 | | | google/flan | 2435840 | | | Selected subjective instructions | 1342427 | | | **Summary** | **7449106** | | - Source and number of subjective instructions: | **Raw Dataset** | **Numbers of Rows** | |------------------------------|:-------------------:| | Alpaca GPT4 data | 13490 | | Alpaca GPT4 data zh | 32589 | | Baize | 14906 | | BELLE Generated Chat | 43775 | | BELLE Multiturn Chat | 210685 | | BELLE 3.5M CN | 312598 | | databricks-dolly-15K | 10307 | | LIMA-sft | 712 | | CodeContest | 523 | | LongForm | 3290 | | ShareGPT-Chinese-English-90k | 8919 | | UltraChat | 237199 | | Wizard evol instruct zh | 44738 | | Wizard evol instruct 196K | 88681 | | BELLE School Math | 38329 | | Code Alpaca 20K | 13296 | | WildChat | 61873 | | COIG-CQIA | 45793 | | BAGEL | 55193 | | DEITA | 10000 | | **Summary** | **1342427** | The domain distribution of the subjective instruction category are shown in the following picture. ![](fig/PX0ybsIyUoCy3rxgjEzcrFTnnPg.png) ## **Instruction Selection for downstream tasks** To create an objective ranking, we utilize datasets such as Flan and OpenHermes, with a focus on enhancing code and math capabilities. The method includes detailed topic distribution tagging of the evaluation set (e.g., data structures, sorting in humaneval). We apply heuristic rules to filter out irrelevant data based on the dataset source (e.g., removing network or file I/O operations). We further retrieve a subset from the training set based on the distribution in the validation sets. ## **Instruction ****G****eneration for ****H****igh-****Q****uality ****R****esponse** ![](fig/dataflow.png) ### High-Quality Open Source Instruction Collection and Tag System We start by collecting high-quality open-source instruction sets. We assign each instruction in the collection a set of tags that describe the abilities and knowledge necessary to complete the instruction. With this tagging system, we can recognize the content distribution of the collection and the abilities required for completing different tasks. - Instruction collection: We systematically reviewed available open-source instruction sets and included sets created by humans and advanced LLMs. - Tag System: with totally two levels: - First level tag: Describe the specific knowledge and abilities required for completing each instruction (e.g., Arithmetic Calculation, Knowledge of Biology). The tags are automatically generated by LLM. - Second level tags: Macro categories such as "Natural Language Processing" and "Math Reasoning." Including 25 categories in total. ### Informative Instruction Selection Aimed at selecting most informative instructions from the whole collection for enhancing the performance of LLM and improving user experience. - Informative Instructions: - Instructions demand multiple kinds of abilities or multiple domains of knowledge. Such instructions are recognized by our tag system. - Instructions with long-tailed ability or knowledge; - Instructions with high following difficulty. The following difficulty of instructions is obtained using the method of Li et al. [1]. ### Instruction Generation by Data Evolution Strategy We expand the seed instructions in directions breadth, depth, difficulty, and complexity with a method built based on [2], and use AI assistants to generate multi-turn data. - Based on the metadata selected in the previous section, we expand the instructions by randomly selecting one dimension from breadth, depth, difficulty and complexity dimensions on the basis of the Evol-Instruct method. - Validate the evolved data, and use AI assistants to eliminate data that failed to evolve from the perspective of instruction compliance. - Use the evolved instructions as the initial input, and use an AI assistant to play different roles to generate 2 to 4 rounds of dialogue for each instruction. ### Instruction Generation by Model Ability Deficient Diagnosis Automatically identifying weaknesses in the model's capabilities to guide the synthesis of data. - Model performance evaluation System: Constituted by a collection of commonly used evaluation sets; - Automatic ability deficient diagnosis: Inducing shortcuts based on ground truth answers and model outputs using AI assistants; - Targeted data synthesis: Automatically generate new instructions using AI assistants based on the induced deficiencies. ## Reference [1] Li M, Zhang Y, He S, et al. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning[J]. arXiv preprint arXiv:2402.00530, 2024. [2] Xu C, Sun Q, Zheng K, et al. WizardLM: Empowering large pre-trained language models to follow complex instructions[C]//The Twelfth International Conference on Learning Representations. 2023. [3] Zhang G, Qu S, Liu J, et al. Map-neo: Highly capable and transparent bilingual large language model series[J]. arXiv preprint arXiv:2405.19327, 2024. ## Citation Our paper, detailing the development and features of the **Infinity Instruct** dataset, will be released soon on arXiv. Stay tuned! ``` @article{InfinityInstruct2024, title={Infinity Instruct}, author={Beijing Academy of Artificial Intelligence (BAAI)}, journal={arXiv preprint arXiv:2406.XXXX}, year={2024} } @article{zhao2024iidoptimizinginstructionlearning, title={Beyond IID: Optimizing Instruction Learning from the Perspective of Instruction Interaction and Dependency}, author={Hanyu Zhao and Li Du and Yiming Ju and Chengwei Wu and Tengfei Pan}, year={2024}, eprint={2409.07045}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2409.07045}, } @misc{zhang2024inifinitymath, title={InfinityMATH: A Scalable Instruction Tuning Dataset in Programmatic Mathematical Reasoning}, author={Bo-Wen Zhang and Yan Yan and Lin Li and Guang Liu}, year={2024}, eprint={2408.07089}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2408.07089}, } ```
supergoose/flan_combined_task775_pawsx_chinese_text_modification
supergoose
2025-02-28T02:17:26Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-28T02:17:14Z
0
--- dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: _template_idx dtype: int64 - name: _task_source dtype: string - name: _task_name dtype: string - name: _template_type dtype: string splits: - name: train num_bytes: 530544 num_examples: 745 download_size: 151576 dataset_size: 530544 configs: - config_name: default data_files: - split: train path: data/train-* ---
withmartian/cs5_dataset_synonyms
withmartian
2025-05-10T14:14:13Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-10T14:14:08Z
0
--- dataset_info: features: - name: command_set dtype: int64 - name: table_name dtype: string - name: table_name_synonym dtype: string - name: table_name_use_synonym dtype: bool - name: create_statement dtype: string - name: english_prompt dtype: string - name: sql_statement dtype: string - name: table_fields dtype: string - name: select dtype: string - name: order_by dtype: string splits: - name: train num_bytes: 138765033 num_examples: 76500 - name: validation num_bytes: 24497428 num_examples: 13500 - name: test num_bytes: 18176991 num_examples: 10000 download_size: 49531256 dataset_size: 181439452 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
1231czx/deepseek_gen_deepseek_test_prm_math
1231czx
2024-11-08T14:54:30Z
19
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-08T14:51:50Z
0
--- dataset_info: features: - name: prompt dtype: string - name: answers sequence: string - name: label sequence: int64 - name: step_scores sequence: sequence: float64 splits: - name: train num_bytes: 549487522 num_examples: 500 download_size: 149700085 dataset_size: 549487522 configs: - config_name: default data_files: - split: train path: data/train-* ---
deremustapha/FlexAdapt_EMG_Dataset
deremustapha
2025-06-18T02:16:55Z
0
0
[ "language:en", "license:cc-by-4.0", "region:us" ]
[]
2025-06-18T02:10:09Z
0
--- license: cc-by-4.0 language: - en ---
yzsun2025/ur5_fold_towel_mar26
yzsun2025
2025-03-26T13:32:03Z
70
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "realworld", "dual_arm" ]
[ "robotics" ]
2025-03-26T12:56:20Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - realworld - dual_arm configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "ur5_dual_arm", "total_episodes": 40, "total_frames": 14001, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:40" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "state": { "dtype": "float32", "shape": [ 14 ], "names": [ "state" ] }, "actions": { "dtype": "float32", "shape": [ 14 ], "names": [ "actions" ] }, "cam_high_image": { "dtype": "image", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channel" ] }, "cam_left_wrist_image": { "dtype": "image", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channel" ] }, "cam_right_wrist_image": { "dtype": "image", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channel" ] }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
infinite-dataset-hub/AutonomousDriveDecisions
infinite-dataset-hub
2025-02-19T11:02:34Z
14
1
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "infinite-dataset-hub", "synthetic" ]
[]
2025-02-19T11:02:33Z
0
--- license: mit tags: - infinite-dataset-hub - synthetic --- # AutonomousDriveDecisions tags: Autonomous Driving, Decision Making, Multimodal _Note: This is an AI-generated dataset so its content may be inaccurate or false_ **Dataset Description:** The 'AutonomousDriveDecisions' dataset is a collection of scenarios where autonomous vehicles must make critical driving decisions. Each row in the dataset represents a unique driving situation, including the visual and sensor data available to the vehicle's system, the options presented to the autonomous driving algorithm, and the decisions it ultimately makes. The scenarios are multimodal, incorporating various types of data such as camera images, LIDAR point clouds, and vehicle telemetry. The labels indicate the categorization of the decision made by the autonomous driving system, which may include 'Proceed', 'Obstacle Avoidance', 'Emergency Brake', 'Change Lane', or 'Route Recommendation'. **CSV Content Preview:** ``` situation_id,visual_data_description,sensor_data_description,decision_options,labels 001,a busy urban intersection with pedestrians,LIDAR detects a group of people crossing,Proceed, Obstacle Avoidance 002,foggy highway conditions,camera has low visibility,Change Lane, Route Recommendation 003,a sharp curve with oncoming traffic,LIDAR and camera show clear road ahead,Proceed, No Action 004,rain causing poor road visibility,radar detects slippery surface,Emergency Brake, Hazard Response 005,a school zone with children playing,camera and LIDAR detect multiple pedestrians,Change Lane, Obstacle Avoidance ``` **Source of the data:** The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query 'tags: autonomous driving, decision making, multimodal': - **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=tags:+autonomous+driving,+decision+making,+multimodal&dataset=AutonomousDriveDecisions&tags=Autonomous+Driving,+Decision+Making,+Multimodal - **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct - **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
kornwtp/idkmrc-ind-qaretrieval
kornwtp
2025-01-28T08:26:57Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-28T08:26:54Z
0
--- dataset_info: features: - name: context dtype: string - name: qas list: - name: id dtype: string - name: is_impossible dtype: bool - name: question dtype: string - name: answers list: - name: text dtype: string - name: answer_start dtype: int64 splits: - name: train num_bytes: 3219078 num_examples: 3659 - name: validation num_bytes: 293696 num_examples: 358 - name: test num_bytes: 319330 num_examples: 378 download_size: 2239089 dataset_size: 3832104 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
tmpmodelsave/type134_step300_bz64tmp10
tmpmodelsave
2025-01-11T01:39:01Z
55
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-11T01:39:00Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 14996200 num_examples: 5000 download_size: 5136985 dataset_size: 14996200 configs: - config_name: default data_files: - split: train path: data/train-* ---
michsethowusu/kimbundu-swati_sentence-pairs
michsethowusu
2025-03-30T19:40:21Z
10
0
[ "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-30T18:13:30Z
0
--- dataset_info: features: - name: score dtype: float32 - name: Kimbundu dtype: string - name: Swati dtype: string splits: - name: train num_bytes: 2131467 num_examples: 21334 download_size: 2131467 dataset_size: 2131467 configs: - config_name: default data_files: - split: train path: Kimbundu-Swati_Sentence-Pairs.csv --- # Kimbundu-Swati_Sentence-Pairs Dataset This dataset contains sentence pairs for African languages along with similarity scores. It can be used for machine translation, sentence alignment, or other natural language processing tasks. This dataset is based on the NLLBv1 dataset, published on OPUS under an open-source initiative led by META. You can find more information here: [OPUS - NLLB-v1](https://opus.nlpl.eu/legacy/NLLB-v1.php) ## Metadata - **File Name**: Kimbundu-Swati_Sentence-Pairs - **Number of Rows**: 21334 - **Number of Columns**: 3 - **Columns**: score, Kimbundu, Swati ## Dataset Description The dataset contains sentence pairs in African languages with an associated similarity score. Each row consists of three columns: 1. `score`: The similarity score between the two sentences (range from 0 to 1). 2. `Kimbundu`: The first sentence in the pair (language 1). 3. `Swati`: The second sentence in the pair (language 2). This dataset is intended for use in training and evaluating machine learning models for tasks like translation, sentence similarity, and cross-lingual transfer learning. ## References Below are papers related to how the data was collected and used in various multilingual and cross-lingual applications: [1] Holger Schwenk and Matthijs Douze, Learning Joint Multilingual Sentence Representations with Neural Machine Translation, ACL workshop on Representation Learning for NLP, 2017 [2] Holger Schwenk and Xian Li, A Corpus for Multilingual Document Classification in Eight Languages, LREC, pages 3548-3551, 2018. [3] Holger Schwenk, Filtering and Mining Parallel Data in a Joint Multilingual Space ACL, July 2018 [4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, XNLI: Cross-lingual Sentence Understanding through Inference, EMNLP, 2018. [5] Mikel Artetxe and Holger Schwenk, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings arXiv, Nov 3 2018. [6] Mikel Artetxe and Holger Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond arXiv, Dec 26 2018. [7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia arXiv, July 11 2019. [8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB [9] Paul-Ambroise Duquenne, Hongyu Gong, Holger Schwenk, Multimodal and Multilingual Embeddings for Large-Scale Speech Mining, NeurIPS 2021, pages 15748-15761. [10] Kevin Heffernan, Onur Celebi, and Holger Schwenk, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
cchoi1/pylint_200_hints_location
cchoi1
2024-12-06T17:41:26Z
8
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-06T17:41:23Z
0
--- dataset_info: features: - name: instance_id dtype: string - name: repo dtype: string - name: unittest_output dtype: string - name: files sequence: string - name: functions sequence: string - name: lines sequence: int64 - name: file_function_line_map dtype: string - name: failed_tests sequence: string - name: test_outcome_summary dtype: string - name: bug_comments dtype: string - name: diff dtype: string - name: FAIL_TO_PASS sequence: string - name: PASS_TO_PASS sequence: string - name: problem_statement dtype: string - name: base_commit dtype: string - name: patch dtype: string - name: test_patch dtype: string - name: hints_text dtype: string - name: created_at dtype: string - name: version dtype: string - name: environment_setup_commit dtype: string - name: file dtype: string - name: line_number sequence: string splits: - name: test num_bytes: 222428773 num_examples: 200 download_size: 29568832 dataset_size: 222428773 configs: - config_name: default data_files: - split: test path: data/test-* ---
Mohamed-DLM/eld7e7_AveQVd2ubZI_mp3_updated
Mohamed-DLM
2025-03-07T21:55:31Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-09T09:58:42Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string splits: - name: train num_bytes: 24174351.0 num_examples: 53 download_size: 24155626 dataset_size: 24174351.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
openpecha/OCR-Tibetan_layout_analysis_mask_annotation
openpecha
2025-01-17T11:30:00Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-17T05:02:28Z
0
--- dataset_info: features: - name: image_id dtype: string - name: format dtype: string - name: BDRC_work_id dtype: string - name: image_size_pixel dtype: string - name: original_image dtype: string - name: mask_image dtype: string splits: - name: train num_bytes: 4099188 num_examples: 15714 - name: test num_bytes: 3092421 num_examples: 11907 - name: val num_bytes: 4064857 num_examples: 15630 download_size: 1762864 dataset_size: 11256466 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: val path: data/val-* ---
Teera/RelationExtraction-NLG-Thai
Teera
2023-12-03T03:56:13Z
70
2
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2023-12-03T03:51:49Z
1
--- license: apache-2.0 --- This is translate dataset NLG for data extraction in english language to thai language.
lucasmccabe/logiqa
lucasmccabe
2023-02-08T01:51:31Z
802
25
[ "task_categories:question-answering", "language:en", "size_categories:1K<n<10K", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2007.08124", "region:us" ]
[ "question-answering" ]
2023-01-12T04:14:53Z
1
--- task_categories: - question-answering language: - en pretty_name: LogiQA size_categories: - 1K<n<10K paperswithcode_id: logiqa dataset_info: features: - name: context dtype: string - name: query dtype: string - name: options sequence: dtype: string - name: correct_option dtype: string splits: - name: train num_examples: 7376 - name: validation num_examples: 651 - name: test num_examples: 651 --- # Dataset Card for LogiQA ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary LogiQA is constructed from the logical comprehension problems from publically available questions of the National Civil Servants Examination of China, which are designed to test the civil servant candidates’ critical thinking and problem solving. This dataset includes the English versions only; the Chinese versions are available via the homepage/original source. ## Dataset Structure ### Data Instances An example from `train` looks as follows: ``` {'context': 'Continuous exposure to indoor fluorescent lights is beneficial to the health of hamsters with heart disease. One group of hamsters exposed to continuous exposure to fluorescent lights has an average lifespan that is 2.5% longer than another one of the same species but living in a black wall.', 'query': 'Which of the following questions was the initial motivation for conducting the above experiment?', 'options': ['Can hospital light therapy be proved to promote patient recovery?', 'Which one lives longer, the hamster living under the light or the hamster living in the dark?', 'What kind of illness does the hamster have?', 'Do some hamsters need a period of darkness?'], 'correct_option': 0} ``` ### Data Fields - `context`: a `string` feature. - `query`: a `string` feature. - `answers`: a `list` feature containing `string` features. - `correct_option`: a `string` feature. ### Data Splits |train|validation|test| |----:|---------:|---:| | 7376| 651| 651| ## Additional Information ### Dataset Curators The original LogiQA was produced by Jian Liu, Leyang Cui , Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. ### Licensing Information [More Information Needed] ### Citation Information ``` @article{liu2020logiqa, title={Logiqa: A challenge dataset for machine reading comprehension with logical reasoning}, author={Liu, Jian and Cui, Leyang and Liu, Hanmeng and Huang, Dandan and Wang, Yile and Zhang, Yue}, journal={arXiv preprint arXiv:2007.08124}, year={2020} } ``` ### Contributions [@lucasmccabe](https://github.com/lucasmccabe) added this dataset.
fernandabufon/results_bert_v6_unbalanced
fernandabufon
2025-02-15T06:29:18Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-15T06:29:16Z
0
--- dataset_info: features: - name: modelo dtype: string - name: accuracy dtype: float64 - name: mcc dtype: float64 - name: precision_weighted dtype: float64 - name: recall_weighted dtype: float64 - name: f1_score_weighted dtype: float64 - name: confusion_matrix sequence: sequence: int64 splits: - name: train num_bytes: 378 num_examples: 1 download_size: 3884 dataset_size: 378 configs: - config_name: default data_files: - split: train path: data/train-* ---
gptilt/lol-basic-matches-challenger-10k
gptilt
2025-05-27T19:09:11Z
230
2
[ "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-18T10:37:11Z
0
--- configs: - config_name: matches data_files: - split: region_americas path: matches/region_americas*.parquet - split: region_asia path: matches/region_asia*.parquet - split: region_europe path: matches/region_europe*.parquet - config_name: participants data_files: - split: region_americas path: participants/region_americas*.parquet - split: region_asia path: participants/region_asia*.parquet - split: region_europe path: participants/region_europe*.parquet - config_name: events data_files: - split: region_americas path: events/region_americas*.parquet - split: region_asia path: events/region_asia*.parquet - split: region_europe path: events/region_europe*.parquet --- # GPTilt: 10K League of Legends Challenger Matches This dataset is part of the [GPTilt](https://github.com/gptilt) open-source initiative, aimed at democratizing access to high-quality LoL data for research and analysis, fostering public exploration, and advancing the community's understanding of League of Legends through data science and AI. It provides detailed data from high-elo matches. *By using this dataset, users accept full responsibility for any consequences arising from its use. GPTilt assumes no liability for any damages that may result. Users are strongly encouraged to review the ["Uses"](#uses) section—particularly the ["Out-of-Scope Use"](#out-of-scope-use) subsection—for guidance.* ## Getting Started First, install Hugging Face's [datasets](https://pypi.org/project/datasets/) package: ```bash pip install datasets ``` Now, you can load the dataset! ```py from datasets import load_dataset # Specify just the config_name / table dataset = load_dataset("gptilt/lol-basic-matches-challenger-10k", name="matches") # Or include the split! dataset = load_dataset("gptilt/lol-basic-matches-challenger-10k", name="matches", split="region_americas") ``` ## Dataset Summary This dataset contains **10K League of Legends Challenger Matches**. It's a clean version of the API's data, improved for clarity and usability. Data was originally collected and processed via the official Riot Games API. It's , with the primary language being english. ## Dataset Structure The data is structured into tables: - **matches**: Contains match-level metadata (e.g., `matchId`, `gameDuration`, `gameVersion`, `winningTeam`). ```json { "matchId": "LA2_1495348800", "region": "americas", "server": "LA", "gameStartTimestamp": 1743465021436, "team_100_atakhan_first": true, "team_100_atakhan_kills": 1, (...) } ``` - **participants**: Links a match's `participantIds` to the player's `PUUID`, and includes all the player endgame information regarding a match. It contains details for each of the 10 participants per match (e.g., `puuid`, `championId`, `teamId`, final stats like kills, deaths, assists, gold earned, items). ```json { "matchId": "LA2_1495348800", "participantId": 10, # Red team support "teamId": 200, "teamPosition": "TOP", "championId": 43, "championName": "Karma", "physicalDamageDealt": 6075, (...) } ``` - **events**: Contains a detailed timeline of in-game events (e.g., `CHAMPION_KILL`, `ITEM_PURCHASED`, `WARD_PLACED`, `BUILDING_KILL`, `ELITE_MONSTER_KILL`) with timestamps, positions (where applicable), involved participants/items, etc. Additionally, to facilitate analysis: - All `position` fields in all events have been split into two unique fields `positionX` and `positionY`. - Periodic snapshots (taken at `frameInterval` - in the public Riot API, every minute) of all participant states (`participantFrames`) are split into custom per-participant `PARTICIPANT_FRAME` events. - `ELITE_MONSTER_KILL` and `CHAMPION_KILL` events are split into `_KILL` and `_ASSIST` events, with one event per participant. - `CHAMPION_KILL` events are split into `CHAMPION_KILL` and `CHAMPION_KILLED` events, respectively. This helps model the game as a series of events that happen/are enacted to/by individual participants in the game. - A default position is added for item events (the respective team's spawn coordinates - when the player is playing the champion Ornn, his latest coordinates are used instead) and `DRAGON_SOUL_GIVEN` events (the dragon pit's coordinates). ```json { "matchId": "LA2_1495348800", "eventId": 10, # IDs are attributed per match "timestamp": 194787, "type": "LEVEL_UP", (...) } ``` All match tables have a `matchId` column, making it possible to join tables with data from different regions without conflict (the `gameId` column, on the other hand, is not unique across regions). Additionally, data is segmented into 3 splits: ['region_americas', 'region_asia', 'region_europe']. ## Dataset Creation ### Curation Rationale This dataset was created to address the lack of large-scale, publicly available, and analysis-ready datasets for League of Legends research. The GPTilt project aims to provide resources for the community to apply data science and AI techniques to better understand the intricate dynamics of the game, moving beyond simple win prediction towards interpreting strategic patterns and complex interactions. This specific dataset focuses on high-elo (Challenger) players to capture refined strategic execution. ### Source Data #### Data Collection and Processing The source data originates exclusively from the [**Riot Games API**](https://developer.riotgames.com/apis) and [**CDragon**](https://communitydragon.org/). 1. **Seeding:** High-elo player PUUIDs were initially identified using the `league-v4` endpoint for the Challenger tier across multiple regions. 2. **Match History:** The `match-v5` endpoint was used to retrieve recent match IDs for these players. 3. **Match & Timeline Fetching:** The `match-v5` (match details) and `match-v5` (match timeline) endpoints were used to download the full data for each unique match ID identified. 4. **Raw Storage:** Raw API responses (JSON format) were saved. 5. **Staging & Transformation:** Raw data was parsed, and transformed into three structured tables (`matches`, `participants`, `events`). 6. **Output:** Data was written to Parquet files, partitioned by `region`. #### Who are the source data producers? The underlying gameplay data is generated by **League of Legends players** participating in high-elo ranked matches. The **Riot Games API** serves as the source interface providing access to this gameplay data. The dataset curators are the contributors to the GPTilt project who performed the collection and processing steps. No demographic information about the players is collected, besides the region. #### Personal and Sensitive Information The dataset contains **PUUIDs** and **Participant IDs**, which are pseudonymous identifiers linked to League of Legends accounts. No other Personally Identifiable Information (PII) like real names, emails, or addresses is included. Use of these identifiers is subject to Riot Games' policies. Users should exercise caution and adhere to these policies, avoiding attempts to [deanonymize players who cannot reasonably be identified from visible information](https://developer.riotgames.com/policies/general#_developer-safety). ### Bias, Risks, and Limitations - **Skill Tier Bias:** This dataset focuses *exclusively* on the Challenger tier. Findings may not generalize to other skill levels (Bronze, Silver, Gold, Platinum, Diamond, Master, Grandmaster) where metas, champion picks, and strategic execution differ significantly. Because match data is selected by searching for Challenger players, multi-tier games may (and are expected) to be present in the dataset. - **Regional Bias:** While collected from multiple regions, the distribution might not be perfectly balanced, potentially reflecting the metas dominant in the included regions during the collection period. - **Patch Bias:** The data reflects gameplay on specific game versions (see `matches` table `gameVersion` field). Major patches can significantly alter champion balance, items, and objectives, potentially making findings less relevant to different patches. - **Missing Context:** The data captures *recorded* events and states but lacks external context like player communication (voice/text chat), player fatigue/tilt, real-time strategic intent, or external distractions. - **API Limitations:** Data is subject to the accuracy and granularity provided by the Riot Games API. Some nuanced actions or states might not be perfectly captured. Rate limits inherent to the API restrict the size and frequency of potential dataset updates. #### Recommendations - Users should explicitly acknowledge the **high-elo (Challenger) bias** when reporting results and be cautious about generalizing findings to other player segments. - Always consider the **game version (`gameVersion`)** when analyzing the data, as metas and balance change significantly between patches. - Users **must** adhere to the **Riot Games API Terms of Service and Developer Policies** in all uses of this data. ## Uses ### Disclaimer *This dataset utilizes data from the Riot Games API. Its use is subject to the Riot Games API Terms of Service and relevant developer policies. GPTilt is not endorsed by Riot Games and does not reflect the views or opinions of Riot Games or anyone officially involved in producing or managing League of Legends. League of Legends and Riot Games are trademarks or registered trademarks of Riot Games, Inc. League of Legends © Riot Games, Inc.* ### License This dataset and all associated code is licensed under the [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/legalcode.en) license. ### Direct Use This dataset is intended for **non-commercial research, data analysis, and exploration** aimed at understanding League of Legends gameplay dynamics, strategic patterns, champion interactions, and game flow. Suitable uses include: - **Statistical analysis** of high-elo match characteristics. - **Exploratory data analysis** to uncover **trends** and correlations. - Training **machine learning models** (including Transformer-based architectures like LLoLMs) for tasks related to **game state representation**, event sequence modeling, pattern recognition for game understanding, etc. - **Feature engineering** for derived metrics. - **Educational purposes** related to data science and game analytics. **Users must ensure their use case complies with the Riot Games API [Terms of Service](https://developer.riotgames.com/terms) and [Developer Policies](https://developer.riotgames.com/policies/general). Consult these policies before using the data.** ### Out-of-Scope Use This dataset **must not** be used for purposes that violate the Riot Games API [Terms of Service](https://developer.riotgames.com/terms) or [Developer Policies](https://developer.riotgames.com/policies/general). This dataset is derived from high-elo games and may not accurately represent gameplay patterns at lower skill levels. **Consult the Riot Games API [Terms of Service](https://developer.riotgames.com/terms) and [Developer Policies](https://developer.riotgames.com/policies/general) for comprehensive usage restrictions.** ## Changelist ### May 27, 2025 - Removed games that ended in a remake. ### May 26, 2025 - Refactored inventory generation, splitting it into two output columns: `inventoryIds` and `inventoryCounts`, containing item IDs and their respective counts, respectively. Fixed the inventory algorithm to handle `ITEM_UNDO` events correctly. Both columns are padded to a maximum length of 8, making them easier to work with (e.g. when performing column explosion in `pandas`/`polars`). ### May 22, 2025 - Account for system-assigned items, such as the support item assignment on game start. - Remove unnecessary fields from `matches` table. ### May 18, 2025 - Challenge and mission information were removed from the `m̀atches` table. - `ELITE_MONSTER_KILL` and `CHAMPION_KILL` events were split into `_KILL` and `_ASSIST` events, respectively. - `CHAMPION_KILL` events were split into `CHAMPION_KILL` and `CHAMPION_KILLED` events. - Event field `killerId` was replaced by `participantId`, with the exception of the new `CHAMPION_KILLED` events. - Normalize rune information in `participants`. - Create `OBJECTIVE_BOUNTY_START` event from `OBJECTIVE_BOUNTY_PRESTART` event (announcement). ## Citation **If you wish to use this dataset in your work, we kindly ask that you cite it.** For most informal work, a simple mention of the GPTilt project and the 10K League of Legends Challenger Matches dataset will suffice. **BibTeX:** ```bibtex @misc{gptilt_10k_league_of_legends_challenger_matches, author = { GPTilt Contributors }, title = { 10K League of Legends Challenger Matches }, year = { 2025 }, publisher = { Hugging Face }, journal = { Hugging Face Hub }, url = { https://huggingface.co/datasets/gptilt/lol-basic-matches-challenger-10k } } ```
chiyuanhsiao/text_no-replay-15_llama-questions
chiyuanhsiao
2025-02-14T03:53:58Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-14T03:53:53Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: my_prediction_text dtype: string splits: - name: test num_bytes: 5517621 num_examples: 300 download_size: 1316292 dataset_size: 5517621 configs: - config_name: default data_files: - split: test path: data/test-* ---
TAUR-dev/evals__long_multiplication__four_digit__train__4o
TAUR-dev
2025-04-01T19:21:54Z
10
0
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "curator" ]
[]
2025-04-01T19:03:00Z
0
--- language: en license: mit tags: - curator --- <a href="https://github.com/bespokelabsai/curator/"> <img src="https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k/resolve/main/made_with_curator.png" alt="Made with Curator" width=200px> </a> ## Dataset card for evals__long_multiplication__four_digit__train__4o This dataset was made with [Curator](https://github.com/bespokelabsai/curator/). ## Dataset details A sample from the dataset: ```python { "question": "What is the solution to the long multiplication equation below?\n\n8274 x 3529\n\nThink step by step.", "solution": "29198946", "eval_internal_cot": "", "eval_solution": "To solve the multiplication problem 8274 multiplied by 3529 using the long multiplication method, we will break down the process step by step:\n\n### Step 1: Set Up the Problem\nWrite the numbers vertically and align them by their least significant digits (rightmost digits):\n\n```\n 8274\nx 3529\n```\n\n### Step 2: Multiply by Each Digit of the Bottom Number\nMultiply 8274 by each digit of 3529, starting from the rightmost digit. Each multiplication will create a partial product.\n\n#### Multiply by 9 (Rightmost digit of 3529)\n```\n 8274\nx 9\n-------\n 74466 (8274 * 9)\n```\n\n#### Multiply by 2\nShift one position to the left before multiplying since we are dealing with the next digit.\n\n```\n 8274\nx 20\n-------\n 16548 0 (8274 * 2, shifted one place to the left)\n```\n\n#### Multiply by 5\nShift two positions to the left for the third digit.\n\n```\n 8274\nx 500\n-------\n 41370 00 (8274 * 5, shifted two places to the left)\n```\n\n#### Multiply by 3 (Leftmost digit of 3529)\nShift three positions to the left for the fourth digit.\n\n```\n 8274\nx 3000\n-------\n24822 000 (8274 * 3, shifted three places to the left)\n```\n\n### Step 3: Add All Partial Products Together\nAdd all of the partial products we calculated:\n\n```\n 74466\n 165480\n 413700\n+24822000\n---------\n 29191846\n```\n\n### Conclusion\nThus, the solution to the multiplication of 8274 by 3529 is:\n\n\\[\n8274 \\times 3529 = 29,191,846\n\\]", "judge_correct": false, "judge_reasoning": "The provided solution calculates 8274 multiplied by 3529 as 29191846, which is incorrect since the ground truth solution shows the correct answer as 29198946. The discrepancy indicates that the multiplication was performed inaccurately." } ``` ## Loading the dataset You can load this dataset using the following code: ```python from datasets import load_dataset dataset = load_dataset("TAUR-dev/evals__long_multiplication__four_digit__train__4o", split="default") ```
DenisDiCaprio/orpheutsTTS_finetuning_dataset_preprocessed
DenisDiCaprio
2025-05-11T19:42:16Z
0
0
[ "size_categories:n<1K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-11T19:42:14Z
0
--- dataset_info: features: - name: input_ids sequence: int32 - name: labels sequence: int64 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 4664602 num_examples: 734 download_size: 1542436 dataset_size: 4664602 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/elix_gen_eval_4shot_infsft-pair_winrate_gpt4o_pref_train
Asap7772
2024-12-13T23:55:07Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-13T23:55:03Z
0
--- dataset_info: features: - name: prompt dtype: string - name: level_x dtype: string - name: level_id_x dtype: int64 - name: model_name_x dtype: string - name: response_x dtype: string - name: level_y dtype: string - name: level_id_y dtype: int64 - name: model_name_y dtype: string - name: response_y dtype: string - name: scorer_level dtype: string - name: scorer_level_id dtype: int64 - name: label dtype: int64 - name: det_choice dtype: int64 - name: choice1 dtype: string - name: reason1 dtype: string - name: choice2 dtype: string - name: reason2 dtype: string splits: - name: train num_bytes: 11288883 num_examples: 2114 download_size: 2916816 dataset_size: 11288883 configs: - config_name: default data_files: - split: train path: data/train-* ---