datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-25 02:40:10
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-25 00:32:52
trending_score
float64
0
64
card
large_stringlengths
31
1.01M
math-extraction-comp/deepseek-ai__DeepSeek-R1-Distill-Qwen-1.5B
math-extraction-comp
2025-01-26T13:29:41Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-26T13:29:38Z
0
--- dataset_info: features: - name: question dtype: string - name: gold dtype: string - name: target dtype: string - name: prediction dtype: string - name: subset dtype: string - name: lighteval-b200fe81_extracted_answer dtype: string - name: lighteval-b200fe81_score dtype: float64 - name: qwen_extracted_answer dtype: string - name: qwen_score dtype: float64 - name: harness_extracted_answer dtype: string - name: harness_score dtype: float64 splits: - name: train num_bytes: 5546292 num_examples: 1324 download_size: 2496876 dataset_size: 5546292 configs: - config_name: default data_files: - split: train path: data/train-* ---
tacofoundation/cloudsen12
tacofoundation
2025-01-05T14:47:21Z
1,070
0
[ "language:en", "license:cc0-1.0", "modality:geospatial", "region:us", "clouds", "sentinel-2", "image-segmentation", "deep-learning", "remote-sensing" ]
[]
2024-12-04T16:39:44Z
0
--- license: - cc0-1.0 language: - en tags: - clouds - sentinel-2 - image-segmentation - deep-learning - remote-sensing pretty_name: cloudsen12plus viewer: false --- <div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;"> [![Dataset Image](https://tacofoundation.github.io/taco.png)](https://cloudsen12.github.io/) <b><p>This dataset follows the TACO specification.</p></b> </div> # [cloudsen12plus](https://cloudsen12.github.io/) **Website:** https://cloudsen12.github.io/ **version:** 1.1.2 ****The largest dataset of expert-labeled pixels for cloud and cloud shadow detection in Sentinel-2**** CloudSEN12+ version 1.1.0 is a significant extension of the CloudSEN12 dataset, which doubles the number of expert-reviewed labels, making it, by a large margin, the largest cloud detection dataset to date for Sentinel-2. All labels from the previous version have been curated and refined, enhancing the dataset's truestworthiness. This new release is licensed under CC0, which puts it in the public domain and allows anyone to use, modify, and distribute it without permission or attribution. The images are padded from 509x509 to 512x512 and 2000x2000 to 2048x2048 to ensure that the patches are divisible by 32. The padding is filled with zeros in the left and bottom sides of the image. For those who prefer traditional storage formats, GeoTIFF files are available in our [ScienceDataBank](https://www.scidb.cn/en/detail?dataSetId=2036f4657b094edfbb099053d6024b08&version=V1) repository. `CloudSEN12+` v.1.1.0 offers three distinct modes, tailored for diverse research and application needs: - **`cloudsen12-l1c`**: Patches derived from Sentinel-2 Level-1C imagery, including high-quality labels, scribble annotations, and unlabeled data. - **`cloudsen12-l2a`**: Similar to cloudsen12-l1c but based on Sentinel-2 Level-2A data as processed by Google Earth Engine. - **`cloudsen12-extra`**: A supplementary collection of metadata to enhance contextual understanding of landscapes. Cloud masks from multiple sources have **NOT** been normalized to align with the CloudSEN12 class schema. This mode includes: - **`elevation:`** Elevation data (meters) sourced from the Copernicus DEM GLO-30. - **`lc10:`** ESA WorldCover 10m v100 land cover product. - **`vv:`** Normalized Sentinel-1 Global Backscatter Model Land Surface (VV polarization). - **`vh:`** Normalized Sentinel-1 Global Backscatter Model Land Surface (VH polarization). - **`cloudmask_qa60:`** Cloud mask from Sentinel-2 Level-1C. - **`cloudmask_sen2cor:`** Cloud mask from Sentinel-2 Level-2A. - **`cloudmask_s2cloudless:`** Cloud mask generated by Sentinel Hub Cloud Detector. - **`cloudmask_cloudscore_cs_v1:`** Cloud mask generated by [Pasquarella et al. 2023](https://openaccess.thecvf.com/content/CVPR2023W/EarthVision/html/Pasquarella_Comprehensive_Quality_Assessment_of_Optical_Satellite_Imagery_Using_Weakly_Supervised_CVPRW_2023_paper.html). - **`cloudmask_cloudscore_cs_cdf_v1:`** Cloud mask generated by [Pasquarella et al. 2023](https://openaccess.thecvf.com/content/CVPR2023W/EarthVision/html/Pasquarella_Comprehensive_Quality_Assessment_of_Optical_Satellite_Imagery_Using_Weakly_Supervised_CVPRW_2023_paper.html). - **`cloudmask_unetmobv2_v1:`** Cloud mask generated by [Aybar et al. 2022](https://www.nature.com/articles/s41597-022-01878-2). - **`cloudmask_unetmobv2_v2:`** Cloud mask generated by [Aybar et al. 2024](https://www.sciencedirect.com/science/article/pii/S2352340924008163). - **`cloudmask_sensei_v2:`** Cloud mask generated by [Alistair Francis 2024](https://ieeexplore.ieee.org/document/10505181). - Changelog: - Version 1.1.2: - BUG FIX: cloudmask_qa60 now are in uint16 rather than uint8 to avoid overflow. - Version 1.1.1: - BUG FIX: VV and VH now are in int16 rather than uint16 to avoid overflow. - Version 1.1.0: - We save all GeoTIFF files with discard_lsb=2 to improve the compression ratio. - Fixed 2000x2000 rotated patches. The datapoints are now correctly oriented. Check the patches: - ROI_2526__20200709T105031_20200709T105719_T31UDQ - ROI_0070__20190708T130251_20190708T130252_T24MUA - ROI_4565__20200530T100029_20200530T100502_T32TQP - Improved the quality of the following patches: - ROI_1098__20200515T190909_20200515T191310_T11WPN - ROI_1735__20190814T163849_20190814T164716_T15SXS - ROI_0760__20190516T022551_20190516T022553_T56WMD - ROI_3696__20200419T075611_20200419T080344_T35MRN - ROI_2864__20170529T105621_20170529T110523_T31TCN - We removed the following patches due to poor quality: - ROI_3980__20190228T005641_20190228T005640_T58WDB - ROI_1489__20210228T070831_20210228T070834_T40TDP - Consideration: - The field `roi_id` field serves as a unique identifier for the geographical location of each patch. In other words, it is used to link S2 images with a specific geographic location. However, the roi_id between the 509x509 and 2000x2000 patches are not the same. For example, the roid_id: `ROI_0008` in the 509x509 patches is not the same as the `ROI_0008` in the 2000x2000 patches. In this version, we fixed this issue by summing the max value of the 509x509 patches to the 2000x2000 patches. In this way, the `roi_id` between the 509x509 and 2000x2000 patches are unique. If users of 2000x2000 patches need to match the original roi_id published in the previous version, they can use the following formula: - `old_roi_id_2000 = old_roi_id_2000 - 12101` where `12101` is the max value of the 509 patches. We also reported the previous roi as old_roi_id. <center> <img src='https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/9UA4U3WObVeq7BAcf37-C.png' alt='drawing' width='80%'/> </center> *CloudSEN12+ spatial coverage. The terms p509 and p2000 denote the patch size 509 Γ— 509 and 2000 Γ— 2000, respectively. `high`, `scribble`, and `nolabel` refer to the types of expert-labeled annotations* ## πŸ”„ Reproducible Example <a target="_blank" href="https://colab.research.google.com/drive/1U9n40rwdnn73bdWruONA3hIs1-H3f74Q"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> Load this dataset using the `tacoreader` library. ```python import tacoreader import rasterio as rio print(tacoreader.__version__) # 0.5.3 # Remotely load the Cloud-Optimized Dataset dataset = tacoreader.load("tacofoundation:cloudsen12-l1c") #dataset = tacoreader.load("tacofoundation:cloudsen12-l2a") #dataset = tacoreader.load("tacofoundation:cloudsen12-extra") # Read a sample sample_idx = 2422 s2_l1c = dataset.read(sample_idx).read(0) s2_label = dataset.read(sample_idx).read(1) # Retrieve the data with rio.open(s2_l1c) as src, rio.open(s2_label) as dst: s2_l1c_data = src.read([4, 3, 2], window=rio.windows.Window(0, 0, 512, 512)) s2_label_data = dst.read(window=rio.windows.Window(0, 0, 512, 512)) # Display fig, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].imshow(s2_l1c_data.transpose(1, 2, 0) / 3000) ax[0].set_title("Sentinel-2 L1C") ax[1].imshow(s2_label_data[0]) ax[1].set_title("Human Label") plt.tight_layout() plt.savefig("taco_check.png") plt.close(fig) ``` <center> <img src='https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/0nRv7sqMRMNY-TVkY2kh7.png' alt='drawing' width='70%'/> </center> ## πŸ›°οΈ Sensor Information The sensor related to the dataset: **sentinel2msi** ## 🎯 Task The task associated with this dataset: **semantic-segmentation** ## πŸ“‚ Original Data Repository Source location of the raw data:**[https://huggingface.co/datasets/isp-uv-es/CloudSEN12Plus](https://huggingface.co/datasets/isp-uv-es/CloudSEN12Plus)** ## πŸ’¬ Discussion Insights or clarifications about the dataset: **[https://huggingface.co/datasets/tacofoundation/cloudsen12/discussions](https://huggingface.co/datasets/tacofoundation/cloudsen12/discussions)** ## πŸ”€ Split Strategy How the dataset is divided for training, validation, and testing: **stratified** ## πŸ“š Scientific Publications Publications that reference or describe the dataset. ### Publication 01 - **DOI**: [10.1038/s41597-022-01878-2](10.1038/s41597-022-01878-2) - **Summary**: CloudSEN12 first release. Only 509 x 509 patches. - **BibTeX Citation**: ```bibtex @article{aybar2022cloudsen12, title={CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2}, author={Aybar, Cesar and Ysuhuaylas, Luis and Loja, Jhomira and Gonzales, Karen and Herrera, Fernando and Bautista, Lesly and Yali, Roy and Flores, Angie and Diaz, Lissette and Cuenca, Nicole and others}, journal={Scientific Data}, volume={9}, number={1}, pages={782}, year={2022}, publisher={Nature Publishing Group UK London} } ``` ### Publication 02 - **DOI**: [10.1109/IGARSS52108.2023.10282381](10.1109/IGARSS52108.2023.10282381) - **Summary**: Exploration of incorrect annotations in cloud semantic segmentation datasets. - **BibTeX Citation**: ```bibtex @inproceedings{aybar2023lessons, title={Lessons Learned From Cloudsen12 Dataset: Identifying Incorrect Annotations in Cloud Semantic Segmentation Datasets}, author={Aybar, Cesar and Montero, David and Mateo-Garc{'\i}a, Gonzalo and G{'o}mez-Chova, Luis}, booktitle={IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium}, pages={892--895}, year={2023}, organization={IEEE} } ``` ### Publication 03 - **DOI**: [10.1016/j.dib.2024.110852](10.1016/j.dib.2024.110852) - **Summary**: Extended version of CloudSEN12. We include 2000 x 2000 patches to the dataset. - **BibTeX Citation**: ```bibtex @article{aybar2024cloudsen12+, title={CloudSEN12+: The largest dataset of expert-labeled pixels for cloud and cloud shadow detection in Sentinel-2}, author={Aybar, Cesar and Bautista, Lesly and Montero, David and Contreras, Julio and Ayala, Daryl and Prudencio, Fernando and Loja, Jhomira and Ysuhuaylas, Luis and Herrera, Fernando and Gonzales, Karen and others}, journal={Data in Brief}, volume={56}, pages={110852}, year={2024}, publisher={Elsevier} } ``` ## 🀝 Data Providers Organizations or individuals responsible for the dataset. |**Name**|**Role**|**URL**| | :--- | :--- | :--- | |Image & Signal Processing|host|[https://isp.uv.es/](https://isp.uv.es/)| |European Space Agency (ESA)|producer|[https://www.esa.int/](https://www.esa.int/)| ## πŸ§‘β€πŸ”¬ Curators Responsible for structuring the dataset in the TACO format. |**Name**|**Organization**|**URL**| | :--- | :--- | :--- | |Cesar Aybar|Image & Signal Processing|[https://csaybar.github.io/](https://csaybar.github.io/)| ## 🏷️ Labels The dataset contains four classes: clear, thick cloud, thin cloud, and cloud shadow. |**Name**|**Category**|**Description**| | :--- | :--- | :--- | |clear|0|Pixels without cloud and cloud shadow contamination. They are primarily identified using bands B4- B3-B2, B1-B12-B13, and the cirrus band.| |thick cloud|1|Opaque clouds that block all the reflected light from the Earth's surface. We identify them by assuming clouds exhibit distinctive shapes and maintain higher reflectance values in bands B4-B3-B2, B1-B12-B13, and the cirrus band.| |thin cloud|2|Semitransparent clouds that alter the surface spectral signal but still allow to recognize the background. This is the hardest class to identify. We utilize CloudApp [1] to better understand the background, both with and without cloud cover.| |cloud shadow|3|Dark pixels where light is occluded by thick or thin clouds. Cloud shadows depend on clouds presence and, by considering the solar position, we can identify and map these shadows through a reasoned projection of the cloud shape.| ## 🌈 Optical Bands No data value is always: **99** ### `tacofoundation:cloudsen12-l1c` - `s2l1c` |**Name**|**Common Name**|**Description**|**Center Wavelength** (nm)|**Full Width Half Max** (nm)|**Index**|**Scale Factor**| | :--- | :--- | :--- | :--- | :--- | :--- | :--- | |B01|Coastal aerosol|Band 1 - Coastal aerosol - 60m|443.5|17.0|0|0.0001| |B02|Blue|Band 2 - Blue - 10m|496.5|53.0|1|0.0001| |B03|Green|Band 3 - Green - 10m|560.0|34.0|2|0.0001| |B04|Red|Band 4 - Red - 10m|664.5|29.0|3|0.0001| |B05|Red edge 1|Band 5 - Vegetation red edge 1 - 20m|704.5|13.0|4|0.0001| |B06|Red edge 2|Band 6 - Vegetation red edge 2 - 20m|740.5|13.0|5|0.0001| |B07|Red edge 3|Band 7 - Vegetation red edge 3 - 20m|783.0|18.0|6|0.0001| |B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|7|0.0001| |B8A|Red edge 4|Band 8A - Vegetation red edge 4 - 20m|864.5|19.0|8|0.0001| |B09|Water vapor|Band 9 - Water vapor - 60m|945.0|18.0|9|0.0001| |B10|Cirrus|Band 10 - Cirrus - 60m|1375.5|31.0|10|N/A| |B11|SWIR 1|Band 11 - Shortwave infrared 1 - 20m|1613.5|89.0|11|0.0001| |B12|SWIR 2|Band 12 - Shortwave infrared 2 - 20m|2199.5|173.0|12|0.0001| - `target` The 'scribble' and 'nolabel' patches contains 99 values, which represent 'no data' in CloudSEN12. |**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|**Scale Factor**| | :--- | :--- | :--- | :--- | :--- | :--- | :--- | |B01|Cloud Label|Cloud labels annotated by humans|-|-|0|1| ### `tacofoundation:cloudsen12-l2a` - `s2l2a` |**Band**|**Name**|**Description**|**Center Wavelength** (nm)|**Bandwidth** (nm)|**Index**|**Scale Factor**| | :--- | :--- | :--- | :--- | :--- | :--- | :--- | |B01|Coastal aerosol|Band 1 - Coastal aerosol - 60m|443.5|17.0|0|0.0001| |B02|Blue|Band 2 - Blue - 10m|496.5|53.0|1|0.0001| |B03|Green|Band 3 - Green - 10m|560.0|34.0|2|0.0001| |B04|Red|Band 4 - Red - 10m|664.5|29.0|3|0.0001| |B05|Red edge 1|Band 5 - Vegetation red edge 1 - 20m|704.5|13.0|4|0.0001| |B06|Red edge 2|Band 6 - Vegetation red edge 2 - 20m|740.5|13.0|5|0.0001| |B07|Red edge 3|Band 7 - Vegetation red edge 3 - 20m|783.0|18.0|6|0.0001| |B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|7|0.0001| |B8A|Red edge 4|Band 8A - Vegetation red edge 4 - 20m|864.5|19.0|8|0.0001| |B09|Water vapor|Band 9 - Water vapor - 60m|945.0|18.0|9|0.0001| |B11|SWIR 1|Band 11 - Shortwave infrared 1 - 20m|1613.5|89.0|10|0.0001| |B12|SWIR 2|Band 12 - Shortwave infrared 2 - 20m|2199.5|173.0|11|0.0001| |AOT|-|Aerosol Optical Thickness|-|-|12|0.001| |WVP|-|Water Vapor Pressure. The height the water would occupy if the vapor were condensed into liquid and spread evenly across the column|-|-|13|0.001| - `target` The 'scribble' and 'nolabel' patches contains 99 values, which represent 'no data' in CloudSEN12. |**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|**Scale Factor**| | :--- | :--- | :--- | :--- | :--- | :--- | :--- | |B01|Cloud Label|Cloud labels annotated by humans|-|-|0|1| ### `tacofoundation:cloudsen12-extra` | **Band** | **Name** | **Description** | **Center Wavelength** (nm) | **Bandwidth** (nm) | **Index** | **Scale Factor** | |-------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|-----------|------------------| | elevation | Elevation | Elevation data (meters) sourced from the Copernicus DEM GLO-30. | - | - | 0 | 1 | | lc10 | Landcover | ESA WorldCover 10m v100 land cover product. | - | - | 0 | 1 | | vv | Vertical-Vertical Polarization | Normalized Sentinel-1 Global Backscatter Model (VV polarization). | - | - | 0 | 0.1 | | vh | Vertical-Horizontal Polarization | Normalized Sentinel-1 Global Backscatter Model (VH polarization). | - | - | 0 | 0.1 | | cloudmask_qa60 | QA60 | Cloud mask from Sentinel-2 Level-1C. | - | - | 0 | 1 | | cloudmask_sen2cor | Sen2Cor | Cloud mask from Sentinel-2 Level-2A. | - | - | 0 | 1 | | cloudmask_s2cloudless | S2Cloudless | Cloud mask generated by Sentinel Hub Cloud Detector. | - | - | 0 | 1 | | cloudmask_cloudscore_cs_v1 | CloudScore v1 | Cloud mask generated by [Pasquarella et al. 2023](https://openaccess.thecvf.com/content/CVPR2023W/EarthVision/html/Pasquarella_Comprehensive_Quality_Assessment_of_Optical_Satellite_Imagery_Using_Weakly_Supervised_CVPRW_2023_paper.html) model. | - | - | 0 | 1 | | cloudmask_cloudscore_cs_cdf_v1 | CloudScore CDF v1 | Cloud mask generated by [Pasquarella et al. 2023](https://openaccess.thecvf.com/content/CVPR2023W/EarthVision/html/Pasquarella_Comprehensive_Quality_Assessment_of_Optical_Satellite_Imagery_Using_Weakly_Supervised_CVPRW_2023_paper.html) model. | - | - | 0 | 1 | | cloudmask_unetmobv2_v1 | UNetMobV2 v1 | Cloud mask generated by [Aybar et al. 2022](https://www.nature.com/articles/s41597-022-01878-2) model. | - | - | 0 | 1 | | cloudmask_unetmobv2_v2 | UNetMobV2 v2 | Cloud mask generated by [Aybar et al. 2024](https://www.sciencedirect.com/science/article/pii/S2352340924008163) model.| - | - | 0 | 1 | | cloudmask_sensei_v2 | Sensei v2 | Cloud mask generated by [Alistair Francis 2024](https://ieeexplore.ieee.org/document/10505181). | - | - | 0 | 1 | ## πŸ‘€ Additional metadata In addition to the **`stac`** and **`rai`** fields, this dataset includes the following fields at the sample level. | **ID** | **Description** | |------------------------------|---------------------------------------------------------------------------------| | `roi_id` | Unique identifier for the region of interest (ROI). | | `old_roi_id` | Previous identifier for the region of interest, if applicable. See considerations section above. | | `equi_id` | Identifier for the corresponding equi7grid system. | | `equi_zone` | Zone or section within the equi7grid system. | | `label_type` | Type of label assigned to the ROI. It can be: `high`. `scribble`, and `nolabe`. | | `s2_id` | Identifier for the Sentinel-2 image ids. | | `real_proj_shape` | Image in CloudSEN12 are padded with zeros (see description above). This field contains the shape of the original image. It can be: 2000 and 509. | `s2_mean_solar_azimuth_angle` | Mean solar azimuth angle for the Sentinel-2 image (in degrees). | | `s2_mean_solar_zenith_angle` | Mean solar zenith angle for the Sentinel-2 image (in degrees). | | `thick_percentage` | Percentage of thick clouds in the ROI estimated by the annotator for the `high` label. For `scribble` and `nolabel` labels, this value is derived from UNetMobV2-V1 predictions. | | `thin_percentage` | Percentage of thin clouds in the ROI estimated by the annotator for the `high` label. For `scribble` and `nolabel` labels, this value is derived from UNetMobV2-V1 predictions. | | `cloud_shadow_percentage` | Percentage of cloud shadows in the ROI estimated by the annotator for the `high` label. For `scribble` and `nolabel` labels, this value is derived from UNetMobV2-V1 predictions. | | `clear_percentage` | Percentage of clear sky in the ROI estimated by the annotator for the `high` label. For `scribble` and `nolabel` labels, this value is derived from UNetMobV2-V1 predictions. | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/cCoXkNzbOLH34gejjkMzr.png)
xzhe121/comaprative_analysis_results.csv
xzhe121
2024-11-29T04:18:07Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-28T08:08:46Z
0
--- dataset_info: features: - name: instruction dtype: string - name: base_output dtype: string - name: pairrm_output dtype: string - name: llm_judge_output dtype: string splits: - name: train num_bytes: 30275 num_examples: 10 download_size: 38195 dataset_size: 30275 configs: - config_name: default data_files: - split: train path: data/train-* ---
shizi1011/xlam-function-calling-processed-1tool
shizi1011
2025-03-10T07:57:34Z
19
1
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-06T06:59:56Z
0
--- dataset_info: features: - name: query dtype: string - name: answers sequence: string - name: schemas sequence: string - name: system list: - name: content dtype: string - name: role dtype: string - name: conversation list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 5742846 num_examples: 3782 download_size: 1225273 dataset_size: 5742846 configs: - config_name: default data_files: - split: train path: data/train-* ---
RLAIF/STAR-TRAIN-math_llama-star-iter3
RLAIF
2025-03-15T19:01:48Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-15T19:01:46Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: full_solution dtype: string - name: is_correct dtype: int64 - name: done dtype: bool - name: num_turns dtype: int64 splits: - name: train num_bytes: 16206030.92375 num_examples: 3203 download_size: 2677615 dataset_size: 16206030.92375 configs: - config_name: default data_files: - split: train path: data/train-* ---
Locutusque/Math-Evol-Instruct-v0.1
Locutusque
2025-02-15T13:27:01Z
26
2
[ "language:en", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-08T05:55:08Z
0
--- language: - en dataset_info: features: - name: instruction dtype: string - name: output dtype: string splits: - name: train num_bytes: 2632269.0 num_examples: 1288 download_size: 1220108 dataset_size: 2632269.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
samsitol/so100_pretest
samsitol
2025-06-10T15:40:30Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-06-10T15:40:22Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 773, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.base": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.head": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
anichris/eval_act_so100_test
anichris
2025-05-01T16:54:12Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-05-01T16:47:41Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 405, "total_tasks": 1, "total_videos": 1, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
supergoose/flan_combined_task308_jeopardy_answer_generation_all
supergoose
2025-03-05T21:55:57Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T21:55:39Z
0
--- dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: _template_idx dtype: int64 - name: _task_source dtype: string - name: _task_name dtype: string - name: _template_type dtype: string splits: - name: train num_bytes: 13108461 num_examples: 19439 download_size: 3743834 dataset_size: 13108461 configs: - config_name: default data_files: - split: train path: data/train-* ---
sywang/AttributeByUnlearning
sywang
2024-11-24T20:09:16Z
106
0
[ "license:cc-by-nc-sa-4.0", "size_categories:n<1K", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2024-11-07T16:43:50Z
0
--- license: cc-by-nc-sa-4.0 ---
ganga4364/benchmark-stt-hs
ganga4364
2024-11-20T11:52:18Z
8
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-20T11:52:15Z
0
--- dataset_info: features: - name: file_name dtype: string - name: uni dtype: string - name: wylie dtype: string - name: url dtype: string - name: dept dtype: string - name: grade dtype: int64 - name: char_len dtype: int64 - name: audio_len dtype: float64 - name: exiled_year dtype: string - name: Age__Group dtype: string - name: Gender dtype: string - name: place_of_origin dtype: string - name: Original_ID dtype: string - name: Publishing_Year dtype: string - name: Name dtype: string splits: - name: Publishing_Year num_bytes: 1128010 num_examples: 1968 - name: Name num_bytes: 1123387 num_examples: 1970 - name: Gender num_bytes: 1138582 num_examples: 2000 - name: Age__Group num_bytes: 797968 num_examples: 1397 - name: place_of_origin num_bytes: 774699 num_examples: 1363 - name: exiled_year num_bytes: 741026 num_examples: 1236 download_size: 1964568 dataset_size: 5703672 configs: - config_name: default data_files: - split: Publishing_Year path: data/Publishing_Year-* - split: Name path: data/Name-* - split: Gender path: data/Gender-* - split: Age__Group path: data/Age__Group-* - split: place_of_origin path: data/place_of_origin-* - split: exiled_year path: data/exiled_year-* ---
zijian2022/so100_test_1230vf
zijian2022
2024-12-30T20:56:01Z
51
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2024-12-30T20:55:57Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 5, "total_frames": 823, "total_tasks": 1, "total_videos": 10, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:5" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
DogNeverSleep/TEST_ocr_1
DogNeverSleep
2025-05-12T13:20:22Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-12T13:20:13Z
0
--- dataset_info: features: - name: index dtype: int64 - name: video_index dtype: string - name: question dtype: string - name: answer dtype: string - name: eval_method dtype: string - name: option sequence: string - name: task_type dtype: string - name: task dtype: string splits: - name: train num_bytes: 191496 num_examples: 956 download_size: 70866 dataset_size: 191496 configs: - config_name: default data_files: - split: train path: data/train-* ---
caiyan123/merged_other_task
caiyan123
2025-06-24T21:34:04Z
0
0
[ "license:cc-by-4.0", "size_categories:10K<n<100K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-24T20:52:10Z
0
--- license: cc-by-4.0 --- # Dataset: merged_other_task This dataset contains merged robot manipulation episodes from six different tasks: - open_cabinet - close_cabinet - open_fridge - close_fridge - open_dishwasher - close_dishwasher Each row represents one frame of an episode, with the following columns: - `action`: a list of float values representing robot joint control signals. - `observation.state`: a list of float values representing the robot's observed state at the frame. - `timestamp`: frame timestamp (float) - `label_index`: task label, where 0 = "open", 1 = "close" - `task`: task name string (e.g., "open_fridge") ## Format - File: `merged_other_task.csv` - Rows: ~66,000 - Format: Tabular - License: CC-BY-4.0 ## License This dataset is released under the [Creative Commons Attribution 4.0 License (CC-BY-4.0)](https://creativecommons.org/licenses/by/4.0/). Please cite or credit the author if used in research or publication. ## Citation Created by [caiyan123](https://huggingface.co/caiyan123).
supergoose/buzz_sources_277_xquery
supergoose
2024-11-10T20:51:43Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-10T20:51:42Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: source dtype: string - name: stack dtype: string splits: - name: train num_bytes: 56935 num_examples: 38 download_size: 22691 dataset_size: 56935 configs: - config_name: default data_files: - split: train path: data/train-* ---
friedrichor/MSR-VTT
friedrichor
2025-05-20T08:01:59Z
332
0
[ "task_categories:text-to-video", "task_categories:text-retrieval", "task_categories:video-classification", "language:en", "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-to-video", "text-retrieval", "video-classification" ]
2025-02-28T12:58:43Z
0
--- configs: - config_name: train_9k data_files: - split: train path: "msrvtt_train_9k.json" - config_name: train_7k data_files: - split: train path: "msrvtt_train_7k.json" - config_name: test_1k data_files: - split: test path: "msrvtt_test_1k.json" task_categories: - text-to-video - text-retrieval - video-classification language: - en size_categories: - 1K<n<10K --- [MSRVTT](https://openaccess.thecvf.com/content_cvpr_2016/html/Xu_MSR-VTT_A_Large_CVPR_2016_paper.html) contains 10K video clips and 200K captions. We adopt the standard `1K-A split` protocol, which was introduced in [JSFusion](https://openaccess.thecvf.com/content_ECCV_2018/html/Youngjae_Yu_A_Joint_Sequence_ECCV_2018_paper.html) and has since become the de facto benchmark split in the `Text-Video Retrieval` field. Train: - train_7k: 7,010 videos, 140,200 captions - train_9k: 9,000 videos, 180,000 captions Test: - test_1k: 1,000 videos, 1,000 captions --- ## 🌟 Citation ```bibtex @inproceedings{xu2016msrvtt, title={Msr-vtt: A large video description dataset for bridging video and language}, author={Xu, Jun and Mei, Tao and Yao, Ting and Rui, Yong}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2016} } ```
datasets-CNRS/MPF
datasets-CNRS
2025-03-29T21:40:30Z
7
0
[ "language:fra", "license:cc-by-nc-sa-4.0", "region:us" ]
[]
2024-10-20T11:43:49Z
0
--- language: - fra viewer: false license: cc-by-nc-sa-4.0 --- > [!NOTE] > Dataset origin: https://www.ortolang.fr/market/corpora/mpf ## Description Conseil scientifique FranΓ§oise Gadet (directrice), Emmanuelle GuΓ©rin, Amal Guha, AnaΓ―s Moreno Kerdreux, RobertoPaternostro. MPF est un corpus qui a Γ©tΓ© recueilli en rΓ©gion parisienne depuis 2010, auprΓ¨s de populations Β« jeunes Β» connaissant des contacts multiculturels rΓ©guliers. La dΓ©nomination anglaise est due au contexte de son lancement, en 2010 : un projet franco-britannique (ANR-FRBR-09-037-01, 2010-2014). Sorti de ce cadre en 2014, il a Γ©tΓ© soutenu par la DGLFLF (budgets 2014, 2016, 2018, 2019), par Ortolang (budget 2016) et par le GTRC canadien Le franΓ§ais Γ  la mesure d'un continent (F. Martineau dir., 2010-2017) Ce corpus vise Γ  documenter des Γ©volutions en cours dans le franΓ§ais, sous la forme d’un "vernaculaire urbain contemporain", ainsi que les effets sur le franΓ§ais du contact avec les langues de l’immigration. Le principe privilΓ©giΓ© pour le recueil a Γ©tΓ© la "proximitΓ© communicative" : aucun enregistrement n’a Γ©tΓ© fait avec des inconnus (liens de rΓ©seau, histoire conversationnelle antΓ©rieure). C’est pourquoi le recueil est le fruit du travail de 26 enquΓͺteurs (dont le prΓ©nom engage le titre de l’enquΓͺte), qui ont joint 187 locuteurs diffΓ©rents, provenant de 28 communes d’Ile-de-France et de 4 arrondissements parisiens. En fonction de leurs caractΓ©ristiques linguistiques et langagiΓ¨res audibles (et non sur des critΓ¨res socio-dΓ©mographiques), les enregistrements ont Γ©tΓ© classΓ©s en 3 catΓ©gories : entretiens traditionnels, entretiens de proximitΓ© et Γ©vΓ©nements Γ©cologiques (sans enquΓͺteur). Le corpus comporte 106 enregistrements, de durΓ©es entre 6 et 153 mn, transcrits sous Praat (sauf 2 sous Transcriber). Les transcriptions ont Γ©tΓ© rΓ©visΓ©es et anonymisΓ©es (texte et son). Eniron 1 200 000 mots figurent sur le site, soit 83 heures (cf. conventions de transcription). En mars 2023, le corpus a fait l’objet de 97 publications (voir fichier pdf des rΓ©fΓ©rences bibliographiques). Chacune des enquΓͺtes correspond Γ  cinq catΓ©gories de fichiers dans le corpus : - le fichier son (.wav), - lat transcription (.TextGrid) - On peut la consulter de faΓ§on alignΓ©e avec le son (.wav) Γ  l'aide du logiciel Praat), - lat mΓͺme transcription (.docx) - que'on peur consulter sans alignement avec le son, - un fichier de mΓ©tadonnΓ©es (.txt), - une ou des fiche(s) signalΓ©tique(s) pour chaque locuteur, dans la mesure du possible (.txt). Pour avoir un aperΓ§u du contenu des transcriptions, des versions docx (Word) sont disponibles dans le dossier "MPF_Docx". Créé Γ  partir de ce corpus, mais utilisable par tout corpus de Textgrids, le programme Python extractionMots.py (adresse ci-dessous). Pour chaque "mot" spΓ©cifiΓ© en paramΓ¨tre, le programme en extrait du corpus sous format csv toutes les occurrences (enquΓͺtes et tours de parole - marinutage, locutΒ·eurΒ·rice). https://github.com/aghnanterre/extract_from_TextGrid/edit/master/README.txt Il est Γ  noter que l'url https://ct3.ortolang.fr/teiconvert/index-en.html propose plusieurs outils de conversion en ligne (par exemple un TextGrid peut Γͺtre converti en .doc ou en .txt. ## Citation ``` @misc{11403/mpf/v4.1, title = {MPF}, author = {}, url = {https://hdl.handle.net/11403/mpf/v4.1}, note = {{ORTOLANG} ({Open} {Resources} {and} {TOols} {for} {LANGuage}) \textendash www.ortolang.fr}, copyright = {Licence Creative Commons Attribution - pans d'Utilisation Commerciale - panrtage dans les MΓͺmes Conditions 4.0 International}, year = {2023} } ```
nicher92/verified_one
nicher92
2025-05-09T09:08:33Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-09T09:08:31Z
0
--- dataset_info: features: - name: file_name dtype: string - name: acsl_snippet dtype: string - name: c_code_snippet dtype: string - name: original_code dtype: string - name: raw_text dtype: string - name: verified dtype: bool - name: verified_goals dtype: int64 - name: total_goals dtype: int64 - name: error_cause dtype: string splits: - name: train num_bytes: 851817 num_examples: 466 download_size: 249878 dataset_size: 851817 configs: - config_name: default data_files: - split: train path: data/train-* ---
aishu15/aryaumeshl
aishu15
2025-02-19T02:24:53Z
17
0
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-18T07:06:57Z
0
--- license: apache-2.0 ---
AiArtLab/e-shuushuu
AiArtLab
2024-12-17T09:40:41Z
32
0
[ "license:apache-2.0", "region:us" ]
[]
2024-12-16T16:13:09Z
0
--- license: apache-2.0 ---
uzair921/LLAMA7B_GUM_EMBEDDINGS_LLM_RAG_75_openai
uzair921
2025-02-11T11:25:59Z
8
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-11T11:20:51Z
0
--- dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-abstract '2': I-abstract '3': B-animal '4': I-animal '5': B-event '6': I-event '7': B-object '8': I-object '9': B-organization '10': I-organization '11': B-person '12': I-person '13': B-place '14': I-place '15': B-plant '16': I-plant '17': B-quantity '18': I-quantity '19': B-substance '20': I-substance '21': B-time '22': I-time splits: - name: train num_bytes: 284397 num_examples: 910 - name: validation num_bytes: 213725 num_examples: 615 - name: test num_bytes: 292655 num_examples: 807 download_size: 218223 dataset_size: 790777 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
PrimeIntellect/SYNTHETIC-2-Base-v2-Math
PrimeIntellect
2025-06-23T22:18:28Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-23T22:18:26Z
0
--- dataset_info: features: - name: problem_id dtype: string - name: task_group dtype: string - name: task_type dtype: string - name: prompt dtype: string - name: verification_info dtype: string - name: metadata dtype: string splits: - name: train num_bytes: 53203608 num_examples: 105055 download_size: 20636361 dataset_size: 53203608 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_llm3_gen2_run0_WXS_doc1000_synt64_tot128_SYNLAST
dgambettaphd
2025-04-25T10:49:36Z
30
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-25T10:49:34Z
0
--- dataset_info: features: - name: id dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: TPP dtype: float64 - name: MPP dtype: float64 - name: FTP dtype: float64 splits: - name: train num_bytes: 3930167 num_examples: 6000 download_size: 2378694 dataset_size: 3930167 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-ADA-batch-38
ChavyvAkvar
2025-06-04T10:34:58Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T10:33:54Z
0
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923454732 num_examples: 1000 download_size: 924401480 dataset_size: 923454732 configs: - config_name: default data_files: - split: train path: data/train-* ---
HYAIYN/so100_get_orange_10epi
HYAIYN
2025-03-20T13:08:18Z
44
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial", "test" ]
[ "robotics" ]
2025-03-20T13:06:13Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial - test configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 10, "total_frames": 6885, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
jb-balaji/pick_place_calib
jb-balaji
2025-06-15T09:16:53Z
0
0
[ "task_categories:robotics", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-15T09:16:50Z
0
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # pick_place_calib **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
weqweasdas/qwen7b_grpo_ver2_step80_with_score_passn
weqweasdas
2025-05-09T05:02:20Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-09T05:02:17Z
0
--- dataset_info: features: - name: prompt dtype: string - name: responses sequence: string - name: gt dtype: string - name: score sequence: float64 splits: - name: train num_bytes: 109049813 num_examples: 1000 download_size: 32907140 dataset_size: 109049813 configs: - config_name: default data_files: - split: train path: data/train-* ---
test-gen/code_humaneval_qwen2.5-7b_t1.0_n8_tests_humaneval_qwen3-0.6b_t0.6_n1_think
test-gen
2025-05-21T09:18:28Z
0
0
[ "region:us" ]
[]
2025-05-21T09:18:27Z
0
--- dataset_info: features: - name: task_id dtype: string - name: prompt dtype: string - name: canonical_solution dtype: string - name: test dtype: string - name: entry_point dtype: string - name: generated_code sequence: string - name: gt_rewards sequence: float64 - name: rewards sequence: float64 - name: verification_info struct: - name: language dtype: string - name: test_cases sequence: string splits: - name: test num_bytes: 1525747 num_examples: 164 download_size: 559102 dataset_size: 1525747 configs: - config_name: default data_files: - split: test path: data/test-* ---
MossProphet/so100_folding_testrun
MossProphet
2025-06-04T14:22:47Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-04T14:22:42Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 1170, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 12 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 12 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.images.External": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.Arm_left": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.Arm_right": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Isaac2489/rosa
Isaac2489
2025-04-23T15:39:17Z
20
0
[ "license:apache-2.0", "size_categories:1M<n<10M", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-04-21T20:22:09Z
0
--- license: apache-2.0 ---
1231czx/w2r125k_r2r0k_r185k_ep3_tmp10
1231czx
2025-01-10T04:01:29Z
18
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-09T16:50:51Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 20226320 num_examples: 5000 download_size: 6840631 dataset_size: 20226320 configs: - config_name: default data_files: - split: train path: data/train-* ---
andrewsiah/PersonaPromptPersonalLLM_813
andrewsiah
2024-11-15T06:01:21Z
8
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-15T06:01:19Z
0
--- dataset_info: features: - name: personaid_813_response_1_llama3_sfairx dtype: float64 - name: personaid_813_response_2_llama3_sfairx dtype: float64 - name: personaid_813_response_3_llama3_sfairx dtype: float64 - name: personaid_813_response_4_llama3_sfairx dtype: float64 - name: personaid_813_response_5_llama3_sfairx dtype: float64 - name: personaid_813_response_6_llama3_sfairx dtype: float64 - name: personaid_813_response_7_llama3_sfairx dtype: float64 - name: personaid_813_response_8_llama3_sfairx dtype: float64 - name: prompt dtype: string - name: subset dtype: string - name: prompt_id dtype: int64 - name: response_1 dtype: string - name: response_1_model dtype: string - name: response_2 dtype: string - name: response_2_model dtype: string - name: response_3 dtype: string - name: response_3_model dtype: string - name: response_4 dtype: string - name: response_4_model dtype: string - name: response_5 dtype: string - name: response_5_model dtype: string - name: response_6 dtype: string - name: response_6_model dtype: string - name: response_7 dtype: string - name: response_7_model dtype: string - name: response_8 dtype: string - name: response_8_model dtype: string - name: response_1_gemma_2b dtype: float64 - name: response_2_gemma_2b dtype: float64 - name: response_3_gemma_2b dtype: float64 - name: response_4_gemma_2b dtype: float64 - name: response_5_gemma_2b dtype: float64 - name: response_6_gemma_2b dtype: float64 - name: response_7_gemma_2b dtype: float64 - name: response_8_gemma_2b dtype: float64 - name: response_1_gemma_7b dtype: float64 - name: response_2_gemma_7b dtype: float64 - name: response_3_gemma_7b dtype: float64 - name: response_4_gemma_7b dtype: float64 - name: response_5_gemma_7b dtype: float64 - name: response_6_gemma_7b dtype: float64 - name: response_7_gemma_7b dtype: float64 - name: response_8_gemma_7b dtype: float64 - name: response_1_mistral_raft dtype: float64 - name: response_2_mistral_raft dtype: float64 - name: response_3_mistral_raft dtype: float64 - name: response_4_mistral_raft dtype: float64 - name: response_5_mistral_raft dtype: float64 - name: response_6_mistral_raft dtype: float64 - name: response_7_mistral_raft dtype: float64 - name: response_8_mistral_raft dtype: float64 - name: response_1_mistral_ray dtype: float64 - name: response_2_mistral_ray dtype: float64 - name: response_3_mistral_ray dtype: float64 - name: response_4_mistral_ray dtype: float64 - name: response_5_mistral_ray dtype: float64 - name: response_6_mistral_ray dtype: float64 - name: response_7_mistral_ray dtype: float64 - name: response_8_mistral_ray dtype: float64 - name: response_1_mistral_weqweasdas dtype: float64 - name: response_2_mistral_weqweasdas dtype: float64 - name: response_3_mistral_weqweasdas dtype: float64 - name: response_4_mistral_weqweasdas dtype: float64 - name: response_5_mistral_weqweasdas dtype: float64 - name: response_6_mistral_weqweasdas dtype: float64 - name: response_7_mistral_weqweasdas dtype: float64 - name: response_8_mistral_weqweasdas dtype: float64 - name: response_1_llama3_sfairx dtype: float64 - name: response_2_llama3_sfairx dtype: float64 - name: response_3_llama3_sfairx dtype: float64 - name: response_4_llama3_sfairx dtype: float64 - name: response_5_llama3_sfairx dtype: float64 - name: response_6_llama3_sfairx dtype: float64 - name: response_7_llama3_sfairx dtype: float64 - name: response_8_llama3_sfairx dtype: float64 - name: response_1_oasst_deberta_v3 dtype: float64 - name: response_2_oasst_deberta_v3 dtype: float64 - name: response_3_oasst_deberta_v3 dtype: float64 - name: response_4_oasst_deberta_v3 dtype: float64 - name: response_5_oasst_deberta_v3 dtype: float64 - name: response_6_oasst_deberta_v3 dtype: float64 - name: response_7_oasst_deberta_v3 dtype: float64 - name: response_8_oasst_deberta_v3 dtype: float64 - name: response_1_beaver_7b dtype: float64 - name: response_2_beaver_7b dtype: float64 - name: response_3_beaver_7b dtype: float64 - name: response_4_beaver_7b dtype: float64 - name: response_5_beaver_7b dtype: float64 - name: response_6_beaver_7b dtype: float64 - name: response_7_beaver_7b dtype: float64 - name: response_8_beaver_7b dtype: float64 - name: response_1_oasst_pythia_7b dtype: float64 - name: response_2_oasst_pythia_7b dtype: float64 - name: response_3_oasst_pythia_7b dtype: float64 - name: response_4_oasst_pythia_7b dtype: float64 - name: response_5_oasst_pythia_7b dtype: float64 - name: response_6_oasst_pythia_7b dtype: float64 - name: response_7_oasst_pythia_7b dtype: float64 - name: response_8_oasst_pythia_7b dtype: float64 - name: response_1_oasst_pythia_1b dtype: float64 - name: response_2_oasst_pythia_1b dtype: float64 - name: response_3_oasst_pythia_1b dtype: float64 - name: response_4_oasst_pythia_1b dtype: float64 - name: response_5_oasst_pythia_1b dtype: float64 - name: response_6_oasst_pythia_1b dtype: float64 - name: response_7_oasst_pythia_1b dtype: float64 - name: response_8_oasst_pythia_1b dtype: float64 - name: id dtype: int64 - name: rformatted_promptresponse_1 dtype: string - name: rformatted_promptresponse_2 dtype: string - name: rformatted_promptresponse_3 dtype: string - name: rformatted_promptresponse_4 dtype: string - name: rformatted_promptresponse_5 dtype: string - name: rformatted_promptresponse_6 dtype: string - name: rformatted_promptresponse_7 dtype: string - name: rformatted_promptresponse_8 dtype: string splits: - name: train num_bytes: 32665752 num_examples: 1000 download_size: 18448067 dataset_size: 32665752 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "PersonaPromptPersonalLLM_813" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
cpondoc/noisy-nf-10771
cpondoc
2025-03-13T07:24:55Z
29
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-13T07:24:53Z
0
--- dataset_info: features: - name: article_id dtype: string - name: topic dtype: string - name: text dtype: string splits: - name: train num_bytes: 41229581 num_examples: 10771 download_size: 21161764 dataset_size: 41229581 configs: - config_name: default data_files: - split: train path: data/train-* ---
cm-upadhyay/TwinLlama-3.1-8B-results
cm-upadhyay
2025-05-14T02:33:32Z
0
0
[ "region:us" ]
[]
2025-05-14T02:33:28Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: prompt dtype: string - name: answers dtype: string splits: - name: test num_bytes: 451430 num_examples: 334 download_size: 219631 dataset_size: 451430 configs: - config_name: default data_files: - split: test path: data/test-* ---
Asap7772/omnimath-hint-generator-0701
Asap7772
2025-05-02T01:49:47Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-02T01:49:42Z
0
--- dataset_info: features: - name: domain sequence: string - name: difficulty dtype: float64 - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: source dtype: string - name: note1 dtype: string - name: note2 dtype: string - name: note3 dtype: string - name: note4 dtype: string - name: note5 dtype: string - name: all_hints dtype: string splits: - name: train num_bytes: 21768797 num_examples: 4428 download_size: 11776193 dataset_size: 21768797 configs: - config_name: default data_files: - split: train path: data/train-* ---
SadeqH/instruction-response-dataset
SadeqH
2025-03-23T11:58:11Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-23T11:58:04Z
0
--- dataset_info: features: - name: instruction dtype: string - name: response dtype: string - name: distilabel_metadata struct: - name: raw_input_text_generation_0 list: - name: content dtype: string - name: role dtype: string - name: raw_output_text_generation_0 dtype: string - name: statistics_text_generation_0 struct: - name: input_tokens dtype: int64 - name: output_tokens dtype: int64 - name: model_name dtype: string splits: - name: train num_bytes: 15506 num_examples: 10 download_size: 19729 dataset_size: 15506 configs: - config_name: default data_files: - split: train path: data/train-* ---
swapnil7777/extracted_features_of_dermnet_images
swapnil7777
2024-12-27T00:45:14Z
18
0
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-26T18:33:22Z
0
--- license: apache-2.0 dataset_info: features: - name: id dtype: string - name: image dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 1611701 num_examples: 1813 download_size: 678498 dataset_size: 1611701 configs: - config_name: default data_files: - split: train path: data/train-* ---
robotchip/eval_act_gf5_l2_9
robotchip
2025-06-11T14:53:52Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-06-11T14:53:47Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 3, "total_frames": 1336, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 60, "splits": { "train": "0:3" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper", "main_shoulder_lift" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper", "main_shoulder_lift" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 60, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 60, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
kornwtp/karonese-ind-classification
kornwtp
2025-03-04T15:48:04Z
28
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-04T15:47:59Z
0
--- dataset_info: features: - name: texts dtype: string - name: labels dtype: string splits: - name: train num_bytes: 67326 num_examples: 1000 download_size: 37513 dataset_size: 67326 configs: - config_name: default data_files: - split: train path: data/train-* ---
5525FP/minipile-spigot-100000-1-percent
5525FP
2025-04-23T22:14:42Z
23
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-23T22:12:34Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 579117525 num_examples: 100000 download_size: 308402394 dataset_size: 579117525 configs: - config_name: default data_files: - split: train path: data/train-* ---
Sanket366/friend-chat
Sanket366
2024-12-28T09:23:08Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-28T09:23:07Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 1934484 num_examples: 13979 download_size: 1038521 dataset_size: 1934484 configs: - config_name: default data_files: - split: train path: data/train-* ---
neelabh17/new_news_exploded_prompt_n_75_d_perc_0_num_gen_10_Qwen2.5-3B-Instruct_dist_mcq
neelabh17
2025-05-17T18:35:52Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-17T18:35:49Z
0
--- dataset_info: features: - name: id dtype: string - name: name dtype: string - name: topic dtype: string - name: news dtype: string - name: category dtype: string - name: question dtype: string - name: option sequence: string - name: prompt dtype: string - name: response_0 dtype: string - name: answer_0 dtype: string - name: correct_0 dtype: int64 - name: response_1 dtype: string - name: answer_1 dtype: string - name: correct_1 dtype: int64 - name: response_2 dtype: string - name: answer_2 dtype: string - name: correct_2 dtype: int64 - name: response_3 dtype: string - name: answer_3 dtype: string - name: correct_3 dtype: int64 - name: response_4 dtype: string - name: answer_4 dtype: string - name: correct_4 dtype: int64 - name: response_5 dtype: string - name: answer_5 dtype: string - name: correct_5 dtype: int64 - name: response_6 dtype: string - name: answer_6 dtype: string - name: correct_6 dtype: int64 - name: response_7 dtype: string - name: answer_7 dtype: string - name: correct_7 dtype: int64 - name: response_8 dtype: string - name: answer_8 dtype: string - name: correct_8 dtype: int64 - name: response_9 dtype: string - name: answer_9 dtype: string - name: correct_9 dtype: int64 splits: - name: train num_bytes: 9379588 num_examples: 375 download_size: 2752185 dataset_size: 9379588 configs: - config_name: default data_files: - split: train path: data/train-* ---
SayantanJoker/tts-rj-hi-karya-44100hz-part-22-quality
SayantanJoker
2025-03-31T05:25:10Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-31T05:25:08Z
0
--- dataset_info: features: - name: text dtype: string - name: file_name dtype: string - name: utterance_pitch_mean dtype: float64 - name: utterance_pitch_std dtype: float64 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: float64 - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 splits: - name: train num_bytes: 1970622 num_examples: 10000 download_size: 1125441 dataset_size: 1970622 configs: - config_name: default data_files: - split: train path: data/train-* ---
fluently-sets/reasoning-1-1k
fluently-sets
2024-12-21T16:38:14Z
64
25
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "fluently-sets", "sft", "alpaca", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-generation", "text2text-generation", "question-answering" ]
2024-12-21T16:16:43Z
0
--- size_categories: 1K<n<10K dataset_info: features: - name: prompt dtype: string - name: completion dtype: string - name: system_prompt dtype: string splits: - name: train num_bytes: 3605358 num_examples: 1150 download_size: 1678594 dataset_size: 3605358 configs: - config_name: default data_files: - split: train path: data/train-* dodalities: text tags: - fluently-sets - sft - alpaca - synthetic - distilabel - rlaif - datacraft license: mit task_categories: - text-generation - text2text-generation - question-answering language: - en --- # Reasoning-1 1K ## Short about This dataset will help in SFT training of LLM on the Alpaca format. The goal of the dataset: to teach LLM to reason and analyze its mistakes using SFT training. The size of 1.15K is quite small, so for effective training on SFTTrainer set *4-6* epochs instead of *1-3*. *Made by Fluently Team ([@ehristoforu](https://huggingface.co/ehristoforu)) using [distilabel](https://github.com/argilla-io/distilabel) with loveπŸ₯°* ## Dataset structure This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("fluently-sets/reasoning-1-1k", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("fluently-sets/reasoning-1-1k") ``` <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p>
Supa-AI/STEM-en-ms
Supa-AI
2025-01-03T04:13:44Z
84
7
[ "language:en", "language:ms", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "mathematics", "physics", "llms", "Malaysia", "Asia" ]
[]
2024-12-27T06:50:06Z
0
--- license: cc-by-4.0 dataset_info: - config_name: data-ms features: - name: file name dtype: string - name: IBSN dtype: string - name: subject dtype: string - name: topic dtype: string - name: Questions dtype: string - name: figures sequence: image - name: label sequence: string - name: Options dtype: string - name: Answers dtype: string splits: - name: eval num_bytes: 34663548 num_examples: 614 download_size: 34559856 dataset_size: 34663548 - config_name: data_en features: - name: FileName dtype: string - name: IBSN dtype: string - name: Subject dtype: string - name: Topic dtype: string - name: Questions dtype: string - name: Figures sequence: image - name: Label sequence: string - name: Options dtype: string - name: Answers dtype: string splits: - name: eval num_bytes: 34663548 num_examples: 614 download_size: 69119656 dataset_size: 69327096.0 tags: - mathematics - physics - llms - Malaysia - Asia size_categories: - n<1K configs: - config_name: data_en data_files: - split: eval path: data_en/train-* - config_name: data_ms data_files: - split: eval path: data_ms/train-* language: - en - ms --- # **A Bilingual Dataset for Evaluating Reasoning Skills in STEM Subjects** This dataset provides a comprehensive evaluation set for tasks assessing reasoning skills in Science, Technology, Engineering, and Mathematics (STEM) subjects. It features questions in both English and Malay, catering to a diverse audience. **Key Features** * **Bilingual:** Questions are available in English and Malay, promoting accessibility for multilingual learners. * **Visually Rich:** Questions are accompanied by figures to enhance understanding and support visual and contextual reasoning. * **Focus on Reasoning:** The dataset emphasizes questions requiring logical reasoning and problem-solving skills, as opposed to simple recall of knowledge. * **Real-World Context:** Questions are derived from real-world scenarios, such as past SPM (Sijil Pelajaran Malaysia) examinations, making them relatable to students. **Dataset Structure** The dataset is comprised of two configurations: `data_en` (English) and `data_ms` (Malay). Both configurations share the same features and structure. **Data Fields** * **FileName:** Unique identifier for the source file (alphanumeric). * **IBSN:** International Standard Book Number of the source book (if available). * **Subject:** Academic subject (e.g., Physics, Mathematics). * **Topic:** Specific topic of the question within the subject (may be missing). * **Questions:** Main body of the question or problem statement. * **Figures:** List of associated image files related to the question (empty if no figures are present). * **Label:** Original caption or description of each image in the `imgs` list. * **Options:** Possible answer choices for the question, with keys (e.g., "A", "B", "C", "D") and corresponding text. * **Answers:** Correct answer to the question, represented by the key of the correct option (e.g., "C"). --- ## Data Instance Example ```json { Β  Β  "FileName": "FC064244", Β  Β  "ISBN": "9786294703681", Β  Β  "Subject": "Physics", Β  Β  "Topic": "Measurement", Β  Β  "Questions": "State the physical quantity that can be measured using the measuring device shown in Diagram 1.", Β  Β  "Figures": [ Β  Β  Β  Β  { Β  Β  Β  Β  Β  Β  "label": "Diagram 1", Β  Β  Β  Β  Β  Β  "path": "FC064244_C1_Q12_ImageFile_0.png" Β  Β  Β  Β  } Β  Β  ], Β  Β  "Options": { Β  Β  Β  Β  "A": "Weight", Β  Β  Β  Β  "B": "Mass", Β  Β  Β  Β  "C": "Amount of substance", Β  Β  Β  Β  "D": "Volume" Β  Β  }, Β  Β  "Answers": "B" } ``` **Data Split** The dataset is split between Physics and Mathematics subjects, with some questions lacking topic categorization. | SubjectΒ  Β  Β | Instances with Topic | Instances without Topic | Total | |-------------|----------------------|-------------------------|-------| | PhysicsΒ  Β  Β | 316Β  Β  Β  Β  Β  Β  Β  Β  Β  | 77Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  | 393Β  Β | | Mathematics | 32Β  Β  Β  Β  Β  Β  Β  Β  Β  Β | 189Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β | 221Β  Β | **Known Limitations** * **Subject Coverage:** The current version focuses on Physics and Mathematics. Future releases will include more STEM subjects. * **Answer Accuracy:** Answers are extracted from various sources and may contain inaccuracies. **Source** The dataset is derived from a combination of resources, including: * SPM past-year exams * SPM mock exams * Educational exercise books **Data Acquisition Method** * Optical Character Recognition (OCR) for text extraction * Manual quality control (QC) to ensure data accuracy **Versioning and Maintenance** * **Current Version:** 1.0.0 * **Release Date:** December 27, 2024 * **Contact:** We welcome any feedback or corrections to improve the dataset quality. --- # License This dataset is licensed under the [Creative Commons Attribution 4.0 International License (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/). --- # Getting Started You can access the dataset on Hugging Face using the following commands: ```bash # For English data pip install datasets from datasets import load_dataset dataset = load_dataset("Supa-AI/STEM-en-ms", name="data_en") # For Malay data dataset = load_dataset("Supa-AI/STEM-en-ms", name="data_ms") ``` --- # Bilingual STEM Dataset LLM Leaderboard This document summarizes the evaluation results for various language models based on **5-shot** and **First Token Accuracy**. The evaluation was conducted across four configurations: | **Model** | **en\_withfigures** | **en\_withoutfigures** | **ms\_withfigures** | **ms\_withoutfigures** | | --------------------------------- | ------------------- | ---------------------- | ------------------- | ---------------------- | | **gemini-2.0-flash-exp** | **63.70%** | <ins>75.16%</ins> | **63.36%** | <ins>75.47%</ins> | | **gemini-1.5-flash** | 49.66% | 67.39% | 50.00% | 64.28% | | **Qwen/Qwen2-VL-72B-Instruct** | <ins>58.22%</ins> | 69.25% | <ins>57.53%</ins> | 63.66% | | **gpt-4o** | 47.95% | 66.15% | 50.00% | 68.01% | | **gpt-4o-mini** | 41.10% | 55.90% | 38.36% | 52.80% | | **pixtral-large-2411** | 42.81% | 64.29% | 35.27% | 60.87% | | **pixtral-12b-2409** | 24.66% | 48.45% | 24.66% | 39.13% | | **DeepSeek-V3** | None | **79.19%** | None | **76.40%** | | **Qwen2.5-72B-Instruct** | None | 74.53% | None | 72.98% | | **Meta-Llama-3.3-70B-Instruct** | None | 67.08% | None | 58.07% | | **Llama-3.2-90B-Vision-Instruct** | None | 65.22% | None | 58.07% | | **sail/Sailor2-20B-Chat** | None | 66.46% | None | 61.68% | | **mallam-small** | None | 61.49% | None | 55.28% | | **mistral-large-latest** | None | 60.56% | None | 53.42% | | **google/gemma-2-27b-it** | None | 58.07% | None | 57.76% | | **SeaLLMs-v3-7B-Chat** | None | 50.93% | None | 45.96% | --- ## Notes on eval.py `eval.py` is a template for evaluating large language models (LLMs), update the script to integrate your _API calls_ or local model logic. - The "First Token Accuracy" metric highlights initial token prediction accuracy. - The evaluation results are based on the specific dataset and methodology employed. - Further analysis might be needed to determine the models' suitability for specific tasks. ### Attribution for Evaluation Code The `eval.py` script is based on work from the MMLU-Pro repository: - Repository: [TIGER-AI-Lab/MMLU-Pro](https://github.com/TIGER-AI-Lab/MMLU-Pro) - License: Apache License 2.0 (included in the `NOTICE` file) --- # **Contributors** - [**Gele**](https://huggingface.co/Geleliong) - [**Ken Boon**](https://huggingface.co/caibcai) - [**Wei Wen**](https://huggingface.co/WeiWen21)
Evan768/testEvan
Evan768
2024-12-27T12:18:25Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-26T12:44:41Z
0
--- dataset_info: features: - name: prompt dtype: string - name: completion dtype: string splits: - name: train num_bytes: 3099451 num_examples: 6788 download_size: 1179658 dataset_size: 3099451 configs: - config_name: default data_files: - split: train path: data/train-* ---
Ttimofeyka/qa-assistant-llama3.2
Ttimofeyka
2025-04-15T13:04:20Z
16
0
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-15T13:03:48Z
0
--- license: apache-2.0 ---
villekuosmanen/pick_2_snackbars
villekuosmanen
2025-05-18T17:20:04Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-18T11:58:45Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "arx5", "total_episodes": 10, "total_frames": 4759, "total_tasks": 1, "total_videos": 30, "total_chunks": 1, "chunks_size": 1000, "fps": 20, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 14 ] }, "observation.state": { "dtype": "float32", "shape": [ 14 ] }, "observation.velocity": { "dtype": "float32", "shape": [ 14 ] }, "observation.effort": { "dtype": "float32", "shape": [ 14 ] }, "observation.eef_6d_pose": { "dtype": "float32", "shape": [ 12 ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 20.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.left_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 20.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.right_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 20.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
FerronHooi/my-distiset-737c164c
FerronHooi
2024-12-16T21:00:17Z
9
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[]
2024-12-16T21:00:16Z
0
--- size_categories: n<1K dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': home-appliance '1': pc-accessory '2': mobile-device '3': gaming-console '4': accessory '5': wearable-technology splits: - name: train num_bytes: 2581 num_examples: 10 download_size: 4101 dataset_size: 2581 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-737c164c This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/FerronHooi/my-distiset-737c164c/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/FerronHooi/my-distiset-737c164c/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "label": 2, "text": "The new wireless charging pad is a game-changer for my busy lifestyle. I can simply place my phone on it and it starts charging instantly. No more tangled cables or worrying about running out of battery." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("FerronHooi/my-distiset-737c164c", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("FerronHooi/my-distiset-737c164c") ``` </details>
HungVu2003/opt-350m_beta_1.0_alpha_0.4_num-company_2_dataset_1_for_gen_12
HungVu2003
2025-04-17T10:02:14Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-14T01:19:17Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 4244538 num_examples: 10000 download_size: 2182091 dataset_size: 4244538 configs: - config_name: default data_files: - split: train path: data/train-* ---
klo1/seq_monkey
klo1
2025-01-27T13:37:03Z
130
0
[ "license:apache-2.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-27T12:45:25Z
0
--- license: apache-2.0 ---
emilbiju/Shortened-Plan-Execution-Data-Math
emilbiju
2025-04-28T08:16:11Z
20
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-28T01:45:03Z
0
--- dataset_info: - config_name: math features: - name: ProblemIdx dtype: int64 - name: SystemPrompt dtype: string - name: UserPrompt dtype: string - name: ExpectedOutput dtype: string - name: FinalAnswer dtype: string - name: Phase dtype: float64 - name: __index_level_0__ dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 290847416 num_examples: 23223 - name: test num_bytes: 33933612 num_examples: 2614 download_size: 46939746 dataset_size: 324781028 - config_name: math_eval features: - name: ProblemIdx dtype: int64 - name: Question dtype: string - name: FinalAnswer dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 251741 num_examples: 1236 - name: test num_bytes: 27640 num_examples: 137 download_size: 172116 dataset_size: 279381 configs: - config_name: math data_files: - split: train path: math/train-* - split: test path: math/test-* - config_name: math_eval data_files: - split: train path: math_eval/train-* - split: test path: math_eval/test-* ---
christinakopi/M2_preference_pairs_final
christinakopi
2025-05-27T14:50:41Z
0
0
[ "region:us" ]
[]
2025-05-27T14:50:32Z
0
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 286255653 num_examples: 78264 download_size: 126708157 dataset_size: 286255653 configs: - config_name: default data_files: - split: train path: data/train-* ---
hcurbelo/Kichwa_ES_001
hcurbelo
2025-03-04T17:37:40Z
15
0
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-04T17:35:53Z
0
--- license: apache-2.0 ---
math-extraction-comp/0-hero__Matter-0.2-7B-DPO
math-extraction-comp
2025-01-25T21:10:53Z
9
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-07T23:05:01Z
0
--- dataset_info: features: - name: question dtype: string - name: gold dtype: string - name: target dtype: string - name: prediction dtype: string - name: subset dtype: string - name: lighteval-4cfbbf17_extracted_answer dtype: string - name: lighteval-4cfbbf17_score dtype: float64 - name: lighteval-6e869ab5_extracted_answer dtype: string - name: lighteval-c24870ea_score dtype: float64 - name: lighteval-7e794885_extracted_answer dtype: string - name: qwen_extracted_answer dtype: string - name: lighteval-0f21c935_extracted_answer dtype: string - name: lighteval-d5acdd53_extracted_answer dtype: string - name: lighteval-2018ed86_extracted_answer dtype: string - name: lighteval-6e869ab5_score dtype: float64 - name: lighteval-2018ed86_score dtype: float64 - name: lighteval-7e794885_score dtype: float64 - name: harness_score dtype: float64 - name: qwen_score dtype: float64 - name: lighteval-d5acdd53_score dtype: float64 - name: lighteval-c24870ea_extracted_answer dtype: string - name: lighteval-0f21c935_score dtype: float64 - name: harness_extracted_answer dtype: string splits: - name: train num_bytes: 5097315 num_examples: 1324 download_size: 1276124 dataset_size: 5097315 configs: - config_name: default data_files: - split: train path: data/train-* ---
ytan-ucr/mu_llava_bruce_lee
ytan-ucr
2025-01-23T17:02:03Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-23T17:02:01Z
0
--- dataset_info: features: - name: image_id dtype: string - name: image dtype: image - name: question dtype: string - name: answer dtype: string splits: - name: test num_bytes: 1093505.0 num_examples: 100 download_size: 988901 dataset_size: 1093505.0 configs: - config_name: default data_files: - split: test path: data/test-* ---
chendelong/goalsteps_cooking_14_fps
chendelong
2024-11-26T15:33:32Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-26T15:32:02Z
0
--- dataset_info: features: - name: video_uid dtype: string - name: goal dtype: string - name: num_steps dtype: int32 - name: step_frames sequence: sequence: image - name: step_descriptions sequence: string - name: step_timestamps sequence: sequence: float64 splits: - name: val num_bytes: 2458685086.0 num_examples: 67 download_size: 2458814662 dataset_size: 2458685086.0 configs: - config_name: default data_files: - split: val path: data/val-* ---
stalaei/realmath_2025-2025-05
stalaei
2025-06-24T01:47:07Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-24T01:46:59Z
0
--- dataset_info: features: - name: paper_link dtype: string - name: theorem dtype: string - name: question dtype: string - name: answer dtype: string - name: context dtype: string - name: submission_date dtype: string splits: - name: train num_bytes: 273065944 num_examples: 611 download_size: 201759687 dataset_size: 273065944 configs: - config_name: default data_files: - split: train path: data/train-* ---
SayantanJoker/tts-rj-hi-karya-44100hz-part-33-quality
SayantanJoker
2025-03-30T20:28:08Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-30T20:27:57Z
0
--- dataset_info: features: - name: text dtype: string - name: file_name dtype: string - name: utterance_pitch_mean dtype: float64 - name: utterance_pitch_std dtype: float64 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: float64 - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 splits: - name: train num_bytes: 1964637 num_examples: 10000 download_size: 1124632 dataset_size: 1964637 configs: - config_name: default data_files: - split: train path: data/train-* ---
supergoose/flan_combined_task902_deceptive_opinion_spam_classification
supergoose
2025-03-05T21:56:51Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T21:56:49Z
0
--- dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: _template_idx dtype: int64 - name: _task_source dtype: string - name: _task_name dtype: string - name: _template_type dtype: string splits: - name: train num_bytes: 8965760 num_examples: 4757 download_size: 4171503 dataset_size: 8965760 configs: - config_name: default data_files: - split: train path: data/train-* ---
kowndinya23/flan2021-held-out-v11
kowndinya23
2025-05-11T07:28:57Z
1
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-11T07:28:49Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string - name: task_source dtype: string - name: task_name dtype: string - name: template_type dtype: string splits: - name: train num_bytes: 167613225.59223446 num_examples: 100000 - name: validation num_bytes: 16761322.559223447 num_examples: 10000 download_size: 78640611 dataset_size: 184374548.1514579 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
sagarhv001/gamelore
sagarhv001
2025-04-10T05:15:19Z
13
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-10T05:13:35Z
0
--- license: apache-2.0 ---
zjrwtxtechstudio/o1data66
zjrwtxtechstudio
2024-12-27T11:05:47Z
16
0
[ "task_categories:question-answering", "language:en", "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "camel", "question-answering" ]
[ "question-answering" ]
2024-12-27T11:05:45Z
0
--- authors: - zjrwtxtechstudio description: Question-Answer dataset generated by CAMEL O1DataGene language: - en license: mit pretty_name: zjrwtxtechstudio/o1data66 size_categories: <1MB tags: - camel - question-answering task_categories: - question-answering version: 0.1.0 ---
jokoum/record-image-test
jokoum
2025-06-15T10:37:50Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-14T09:31:46Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101_follower", "total_episodes": 2, "total_frames": 3600, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
SatsukiVie/ECHO
SatsukiVie
2025-05-12T09:43:41Z
0
0
[ "task_categories:question-answering", "license:cc-by-nc-4.0", "size_categories:10M<n<100M", "region:us" ]
[ "question-answering" ]
2025-05-12T09:42:44Z
0
--- license: cc-by-nc-4.0 task_categories: - question-answering size_categories: - 10M<n<100M ---
uonyeka/uplimit-model-pooling
uonyeka
2025-03-17T12:03:19Z
8
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif" ]
[]
2025-03-17T12:03:09Z
0
--- size_categories: n<1K dataset_info: features: - name: instruction dtype: string - name: grouped_generation sequence: string - name: model_name dtype: string - name: distilabel_metadata struct: - name: raw_input_text_generation_0 list: - name: content dtype: string - name: role dtype: string - name: raw_input_text_generation_1 list: - name: content dtype: string - name: role dtype: string - name: raw_output_text_generation_0 dtype: string - name: raw_output_text_generation_1 dtype: string - name: statistics_text_generation_0 struct: - name: input_tokens dtype: int64 - name: output_tokens dtype: int64 - name: statistics_text_generation_1 struct: - name: input_tokens dtype: int64 - name: output_tokens dtype: int64 splits: - name: train num_bytes: 8959 num_examples: 3 download_size: 22160 dataset_size: 8959 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for uplimit-model-pooling This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/uonyeka/uplimit-model-pooling/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/uonyeka/uplimit-model-pooling/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "distilabel_metadata": { "raw_input_text_generation_0": [ { "content": "Explain the concept of reinforcement learning.", "role": "user" } ], "raw_input_text_generation_1": [ { "content": "Explain the concept of reinforcement learning.", "role": "user" } ], "raw_output_text_generation_0": "Sure, I\u0027d be happy to explain!\n\nReinforcement Learning (RL) is a type of machine learning where an agent learns to make decisions by performing actions in its environment and receiving rewards or penalties for those actions. The goal of the agent is to learn a policy that maximizes the cumulative reward over time. \n\nHere\u0027s how it works:\n\n1. **Environment**: The environment is the world in which the agent operates. It can be anything from a game board to a real-world robot navigating through a room.\n\n2. **Agent**: The agent is the entity that interacts with the environment. It takes", "raw_output_text_generation_1": "Reinforcement Learning (RL) is an area of machine learning that focuses on how software agents should take actions in an environment to maximize some notion of cumulative reward. The goal of RL is to learn policies - algorithms that map states to actions - through trial and error interactions with the environment.\n\nIn reinforcement learning, an agent interacts with its environment over time, receiving feedback in the form of rewards or penalties for each action it takes. The objective is to find a policy that maximizes the total expected cumulative reward over time. This process involves several key concepts:\n\n1. **State**: The current situation or context of the agent.\n2. **", "statistics_text_generation_0": { "input_tokens": 7, "output_tokens": 128 }, "statistics_text_generation_1": { "input_tokens": 8, "output_tokens": 128 } }, "grouped_generation": [ "Sure, I\u0027d be happy to explain!\n\nReinforcement Learning (RL) is a type of machine learning where an agent learns to make decisions by performing actions in its environment and receiving rewards or penalties for those actions. The goal of the agent is to learn a policy that maximizes the cumulative reward over time. \n\nHere\u0027s how it works:\n\n1. **Environment**: The environment is the world in which the agent operates. It can be anything from a game board to a real-world robot navigating through a room.\n\n2. **Agent**: The agent is the entity that interacts with the environment. It takes", "Reinforcement Learning (RL) is an area of machine learning that focuses on how software agents should take actions in an environment to maximize some notion of cumulative reward. The goal of RL is to learn policies - algorithms that map states to actions - through trial and error interactions with the environment.\n\nIn reinforcement learning, an agent interacts with its environment over time, receiving feedback in the form of rewards or penalties for each action it takes. The objective is to find a policy that maximizes the total expected cumulative reward over time. This process involves several key concepts:\n\n1. **State**: The current situation or context of the agent.\n2. **" ], "instruction": "Explain the concept of reinforcement learning.", "model_name": "Qwen/Qwen2.5-1.5B-Instruct" } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("uonyeka/uplimit-model-pooling", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("uonyeka/uplimit-model-pooling") ``` </details>
MatthewsFace/diagnosticar-es_train
MatthewsFace
2025-02-24T17:15:07Z
56
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-18T17:23:36Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string splits: - name: train num_bytes: 54751 num_examples: 255 download_size: 23425 dataset_size: 54751 configs: - config_name: default data_files: - split: train path: data/train-* ---
dmeldrum6/c-sharp-linq-dataset
dmeldrum6
2024-12-21T13:11:46Z
15
0
[ "language:en", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[]
2024-12-19T21:08:21Z
0
--- language: - en size_categories: n<1K dataset_info: features: - name: text dtype: string - name: labels sequence: class_label: names: '0': useful '1': not-useful splits: - name: train num_bytes: 28874 num_examples: 100 download_size: 14087 dataset_size: 28874 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for c-sharp-linq-dataset This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/dmeldrum6/c-sharp-linq-dataset/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/dmeldrum6/c-sharp-linq-dataset/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "labels": [ 0, 1 ], "text": "The following C# LINQ query utilizes the GroupBy method to aggregate a list of employee records by department, then projects the result into a new anonymous type containing the department name and the average salary of employees within that department." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("dmeldrum6/c-sharp-linq-dataset", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("dmeldrum6/c-sharp-linq-dataset") ``` </details>
LucasChen/VAD-extracted-features
LucasChen
2025-06-19T03:05:19Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-19T03:05:19Z
0
--- license: apache-2.0 ---
babs/OpenSLR-Nigerian-Accented-English
babs
2024-10-16T20:23:37Z
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-16T20:20:19Z
0
--- dataset_info: features: - name: audio dtype: audio - name: text dtype: string splits: - name: train num_bytes: 2138528084.6 num_examples: 3358 download_size: 1509463898 dataset_size: 2138528084.6 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] About this resource: This data set contains transcribed high-quality audio of Nigerian English sentences recorded by volunteers, in Lagos Nigerian and in London. The data set consists of wave files, and a TSV file (line_index.tsv). The file line_index.tsv contains a anonymized FileID and the transcription of audio in the file. The data set has been manually quality checked, but there might still be errors. Please report any issues in the following issue tracker on GitHub. https://github.com/googlei18n/language-resources/issues See LICENSE file for license information. Copyright 2018, 2019 Google, Inc. ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
fady21/fady-llama2-1k
fady21
2025-04-23T16:35:36Z
23
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-23T16:35:30Z
0
--- dataset_info: features: - name: id dtype: int64 - name: Question dtype: string - name: Context dtype: string - name: Topic dtype: string - name: Answer dtype: string - name: text dtype: string splits: - name: train num_bytes: 1485574 num_examples: 1000 download_size: 673273 dataset_size: 1485574 configs: - config_name: default data_files: - split: train path: data/train-* ---
YanNeu/RePOPE
YanNeu
2025-06-06T14:59:37Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T14:59:35Z
0
--- dataset_info: features: - name: question_id dtype: int64 - name: category dtype: string - name: id dtype: int64 - name: question dtype: string - name: answer dtype: string - name: image_source dtype: string splits: - name: train num_bytes: 809281 num_examples: 8185 download_size: 133693 dataset_size: 809281 configs: - config_name: default data_files: - split: train path: data/train-* ---
introvoyz041/wills_trusts_and_estates
introvoyz041
2025-04-11T10:18:50Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-11T10:18:49Z
0
--- dataset_info: features: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 1714844 num_examples: 577 download_size: 779238 dataset_size: 1714844 configs: - config_name: default data_files: - split: train path: data/train-* ---
Exmind2/Exmind2
Exmind2
2025-02-20T23:17:21Z
47
0
[ "license:apache-2.0", "region:us" ]
[]
2025-02-20T23:17:21Z
0
--- license: apache-2.0 ---
brandonyang/square_d1
brandonyang
2025-05-01T04:17:52Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-01T04:16:50Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 1000, "total_frames": 152400, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:1000" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.images.agentview_image": { "dtype": "image", "shape": [ 84, 84, 3 ], "names": [ "height", "width", "channels" ] }, "observation.images.robot0_eye_in_hand_image": { "dtype": "image", "shape": [ 84, 84, 3 ], "names": [ "height", "width", "channels" ] }, "observation.state": { "dtype": "float32", "shape": [ 9 ], "names": { "motors": [ "x", "y", "z", "rx", "ry", "rz", "rw", "gripper_1, gripper_2" ] } }, "action": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper" ] } }, "next.reward": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.done": { "dtype": "bool", "shape": [ 1 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
SanskritVoyager/Sanskrit-Literature-Raw
SanskritVoyager
2025-06-16T12:55:10Z
0
0
[ "license:cc-by-nc-4.0", "region:us" ]
[]
2025-06-16T06:27:45Z
0
--- license: cc-by-nc-4.0 ---
relai-ai/angular-reasoning
relai-ai
2025-04-21T16:07:52Z
20
0
[ "task_categories:question-answering", "language:en", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2025-04-21T16:06:32Z
0
--- license: cc-by-4.0 task_categories: - question-answering language: - en --- Samples in this benchmark were generated by RELAI using the following data source(s): Data Source Name: Angular 17 Documentation Data Source Link: https://v17.angular.io/docs Data Source License: https://github.com/angular/angular/blob/main/LICENSE Data Source Authors: Google AI Benchmarks by Data Agents Β© 2025 RELAI.AI Β· Licensed under CC BY 4.0. Source: https://relai.ai
PGLearn/PGLearn-Medium-2869_pegase
PGLearn
2025-05-04T01:03:29Z
0
0
[ "task_categories:tabular-regression", "license:cc-by-sa-4.0", "region:us", "energy", "optimization", "optimal_power_flow", "power_grid" ]
[ "tabular-regression" ]
2025-05-03T20:45:57Z
0
--- license: cc-by-sa-4.0 tags: - energy - optimization - optimal_power_flow - power_grid pretty_name: PGLearn Optimal Power Flow (2869_pegase) task_categories: - tabular-regression dataset_info: config_name: 2869_pegase features: - name: input/pd sequence: float32 length: 1491 - name: input/qd sequence: float32 length: 1491 - name: input/gen_status sequence: bool length: 510 - name: input/branch_status sequence: bool length: 4582 - name: input/seed dtype: int64 - name: ACOPF/primal/vm sequence: float32 length: 2869 - name: ACOPF/primal/va sequence: float32 length: 2869 - name: ACOPF/primal/pg sequence: float32 length: 510 - name: ACOPF/primal/qg sequence: float32 length: 510 - name: ACOPF/primal/pf sequence: float32 length: 4582 - name: ACOPF/primal/pt sequence: float32 length: 4582 - name: ACOPF/primal/qf sequence: float32 length: 4582 - name: ACOPF/primal/qt sequence: float32 length: 4582 - name: ACOPF/dual/kcl_p sequence: float32 length: 2869 - name: ACOPF/dual/kcl_q sequence: float32 length: 2869 - name: ACOPF/dual/vm sequence: float32 length: 2869 - name: ACOPF/dual/pg sequence: float32 length: 510 - name: ACOPF/dual/qg sequence: float32 length: 510 - name: ACOPF/dual/ohm_pf sequence: float32 length: 4582 - name: ACOPF/dual/ohm_pt sequence: float32 length: 4582 - name: ACOPF/dual/ohm_qf sequence: float32 length: 4582 - name: ACOPF/dual/ohm_qt sequence: float32 length: 4582 - name: ACOPF/dual/pf sequence: float32 length: 4582 - name: ACOPF/dual/pt sequence: float32 length: 4582 - name: ACOPF/dual/qf sequence: float32 length: 4582 - name: ACOPF/dual/qt sequence: float32 length: 4582 - name: ACOPF/dual/va_diff sequence: float32 length: 4582 - name: ACOPF/dual/sm_fr sequence: float32 length: 4582 - name: ACOPF/dual/sm_to sequence: float32 length: 4582 - name: ACOPF/dual/slack_bus dtype: float32 - name: ACOPF/meta/seed dtype: int64 - name: ACOPF/meta/formulation dtype: string - name: ACOPF/meta/primal_objective_value dtype: float32 - name: ACOPF/meta/dual_objective_value dtype: float32 - name: ACOPF/meta/primal_status dtype: string - name: ACOPF/meta/dual_status dtype: string - name: ACOPF/meta/termination_status dtype: string - name: ACOPF/meta/build_time dtype: float32 - name: ACOPF/meta/extract_time dtype: float32 - name: ACOPF/meta/solve_time dtype: float32 - name: DCOPF/primal/va sequence: float32 length: 2869 - name: DCOPF/primal/pg sequence: float32 length: 510 - name: DCOPF/primal/pf sequence: float32 length: 4582 - name: DCOPF/dual/kcl_p sequence: float32 length: 2869 - name: DCOPF/dual/pg sequence: float32 length: 510 - name: DCOPF/dual/ohm_pf sequence: float32 length: 4582 - name: DCOPF/dual/pf sequence: float32 length: 4582 - name: DCOPF/dual/va_diff sequence: float32 length: 4582 - name: DCOPF/dual/slack_bus dtype: float32 - name: DCOPF/meta/seed dtype: int64 - name: DCOPF/meta/formulation dtype: string - name: DCOPF/meta/primal_objective_value dtype: float32 - name: DCOPF/meta/dual_objective_value dtype: float32 - name: DCOPF/meta/primal_status dtype: string - name: DCOPF/meta/dual_status dtype: string - name: DCOPF/meta/termination_status dtype: string - name: DCOPF/meta/build_time dtype: float32 - name: DCOPF/meta/extract_time dtype: float32 - name: DCOPF/meta/solve_time dtype: float32 - name: SOCOPF/primal/w sequence: float32 length: 2869 - name: SOCOPF/primal/pg sequence: float32 length: 510 - name: SOCOPF/primal/qg sequence: float32 length: 510 - name: SOCOPF/primal/pf sequence: float32 length: 4582 - name: SOCOPF/primal/pt sequence: float32 length: 4582 - name: SOCOPF/primal/qf sequence: float32 length: 4582 - name: SOCOPF/primal/qt sequence: float32 length: 4582 - name: SOCOPF/primal/wr sequence: float32 length: 4582 - name: SOCOPF/primal/wi sequence: float32 length: 4582 - name: SOCOPF/dual/kcl_p sequence: float32 length: 2869 - name: SOCOPF/dual/kcl_q sequence: float32 length: 2869 - name: SOCOPF/dual/w sequence: float32 length: 2869 - name: SOCOPF/dual/pg sequence: float32 length: 510 - name: SOCOPF/dual/qg sequence: float32 length: 510 - name: SOCOPF/dual/ohm_pf sequence: float32 length: 4582 - name: SOCOPF/dual/ohm_pt sequence: float32 length: 4582 - name: SOCOPF/dual/ohm_qf sequence: float32 length: 4582 - name: SOCOPF/dual/ohm_qt sequence: float32 length: 4582 - name: SOCOPF/dual/jabr dtype: array2_d: shape: - 4582 - 4 dtype: float32 - name: SOCOPF/dual/sm_fr dtype: array2_d: shape: - 4582 - 3 dtype: float32 - name: SOCOPF/dual/sm_to dtype: array2_d: shape: - 4582 - 3 dtype: float32 - name: SOCOPF/dual/va_diff sequence: float32 length: 4582 - name: SOCOPF/dual/wr sequence: float32 length: 4582 - name: SOCOPF/dual/wi sequence: float32 length: 4582 - name: SOCOPF/dual/pf sequence: float32 length: 4582 - name: SOCOPF/dual/pt sequence: float32 length: 4582 - name: SOCOPF/dual/qf sequence: float32 length: 4582 - name: SOCOPF/dual/qt sequence: float32 length: 4582 - name: SOCOPF/meta/seed dtype: int64 - name: SOCOPF/meta/formulation dtype: string - name: SOCOPF/meta/primal_objective_value dtype: float32 - name: SOCOPF/meta/dual_objective_value dtype: float32 - name: SOCOPF/meta/primal_status dtype: string - name: SOCOPF/meta/dual_status dtype: string - name: SOCOPF/meta/termination_status dtype: string - name: SOCOPF/meta/build_time dtype: float32 - name: SOCOPF/meta/extract_time dtype: float32 - name: SOCOPF/meta/solve_time dtype: float32 splits: - name: train num_bytes: 189042853073 num_examples: 188545 - name: test num_bytes: 47261465249 num_examples: 47137 download_size: 235716403370 dataset_size: 236304318322 configs: - config_name: 2869_pegase data_files: - split: train path: 2869_pegase/train-* - split: test path: 2869_pegase/test-* default: true ---
GitBag/block-q-sharp_ds-distilled-qwen-1.5b-ppo-kl-1e-4-ec-0.001-good-1_hmmt-feb-24_eval_new_256
GitBag
2025-05-12T13:13:22Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-12T13:13:19Z
0
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: message_id dtype: string - name: responses dtype: string - name: processed_answer dtype: string - name: reward dtype: bool splits: - name: train num_bytes: 209991355 num_examples: 7680 download_size: 85983081 dataset_size: 209991355 configs: - config_name: default data_files: - split: train path: data/train-* ---
SayantanJoker/tts-rj-hi-karya-44100hz-part-33-quality-metadata
SayantanJoker
2025-03-30T20:28:45Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-30T20:28:38Z
0
--- dataset_info: features: - name: text dtype: string - name: file_name dtype: string - name: utterance_pitch_mean dtype: float64 - name: utterance_pitch_std dtype: float64 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: string - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 - name: noise dtype: string - name: reverberation dtype: string - name: speech_monotony dtype: string - name: sdr_noise dtype: string - name: pesq_speech_quality dtype: string splits: - name: train num_bytes: 3030228 num_examples: 10000 download_size: 1092875 dataset_size: 3030228 configs: - config_name: default data_files: - split: train path: data/train-* ---
chaiamy/reddit_dataset_197
chaiamy
2025-03-25T13:26:44Z
98
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-02-10T19:44:03Z
0
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 Reddit Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** chaiamy/reddit_dataset_197 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5HSmU8zVqHRhVskecoyh2JWPD5erGuDRT6B6TBNtUwqJyopG ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Topic Modeling - Community Analysis - Content Categorization ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single Reddit post or comment with the following fields: ### Data Fields - `text` (string): The main content of the Reddit post or comment. - `label` (string): Sentiment or topic category of the content. - `dataType` (string): Indicates whether the entry is a post or a comment. - `communityName` (string): The name of the subreddit where the content was posted. - `datetime` (string): The date when the content was posted or commented. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the content. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the nature of media sources. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public subreddits and does not include private or restricted communities. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{chaiamy2025datauniversereddit_dataset_197, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={chaiamy}, year={2025}, url={https://huggingface.co/datasets/chaiamy/reddit_dataset_197}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 1043896 - **Date Range:** 2019-07-24T00:00:00Z to 2025-03-25T00:00:00Z - **Last Updated:** 2025-03-25T13:26:44Z ### Data Distribution - Posts: 2.43% - Comments: 97.57% ### Top 10 Subreddits For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | r/wallstreetbets | 298843 | 28.63% | | 2 | r/Bitcoin | 188943 | 18.10% | | 3 | r/CryptoCurrency | 173168 | 16.59% | | 4 | r/solana | 87910 | 8.42% | | 5 | r/CryptoMarkets | 77526 | 7.43% | | 6 | r/ethtrader | 71839 | 6.88% | | 7 | r/leagueoflegends | 42181 | 4.04% | | 8 | r/balatro | 32235 | 3.09% | | 9 | r/pokemon | 27081 | 2.59% | | 10 | r/btc | 18807 | 1.80% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-02-10T19:45:26Z | 772395 | 772395 | | 2025-02-14T07:08:28Z | 47300 | 819695 | | 2025-02-17T19:08:39Z | 43473 | 863168 | | 2025-02-27T16:36:36Z | 41093 | 904261 | | 2025-03-13T14:38:00Z | 1431 | 905692 | | 2025-03-14T08:38:07Z | 9781 | 915473 | | 2025-03-15T02:38:15Z | 11402 | 926875 | | 2025-03-15T20:38:23Z | 8293 | 935168 | | 2025-03-16T14:38:30Z | 7677 | 942845 | | 2025-03-17T08:38:36Z | 9781 | 952626 | | 2025-03-18T02:26:22Z | 9838 | 962464 | | 2025-03-18T20:26:28Z | 9052 | 971516 | | 2025-03-19T14:26:35Z | 9232 | 980748 | | 2025-03-19T15:56:41Z | 980 | 981728 | | 2025-03-19T17:26:46Z | 893 | 982621 | | 2025-03-19T18:56:51Z | 969 | 983590 | | 2025-03-19T20:26:55Z | 997 | 984587 | | 2025-03-19T21:57:01Z | 966 | 985553 | | 2025-03-19T23:27:07Z | 605 | 986158 | | 2025-03-20T00:57:14Z | 654 | 986812 | | 2025-03-20T02:27:21Z | 851 | 987663 | | 2025-03-20T03:57:32Z | 168 | 987831 | | 2025-03-20T05:27:46Z | 600 | 988431 | | 2025-03-20T06:57:51Z | 450 | 988881 | | 2025-03-20T08:27:58Z | 493 | 989374 | | 2025-03-20T09:58:02Z | 484 | 989858 | | 2025-03-20T11:28:07Z | 693 | 990551 | | 2025-03-20T12:58:17Z | 641 | 991192 | | 2025-03-20T14:28:35Z | 657 | 991849 | | 2025-03-20T15:58:41Z | 872 | 992721 | | 2025-03-20T17:29:00Z | 954 | 993675 | | 2025-03-20T18:59:07Z | 693 | 994368 | | 2025-03-20T20:29:15Z | 704 | 995072 | | 2025-03-20T21:59:36Z | 752 | 995824 | | 2025-03-20T23:29:45Z | 773 | 996597 | | 2025-03-21T00:59:52Z | 869 | 997466 | | 2025-03-21T02:29:56Z | 518 | 997984 | | 2025-03-21T04:00:01Z | 620 | 998604 | | 2025-03-21T05:30:06Z | 427 | 999031 | | 2025-03-21T07:00:11Z | 468 | 999499 | | 2025-03-21T08:30:17Z | 267 | 999766 | | 2025-03-21T10:00:26Z | 177 | 999943 | | 2025-03-21T11:30:43Z | 672 | 1000615 | | 2025-03-21T13:00:48Z | 750 | 1001365 | | 2025-03-21T14:30:58Z | 454 | 1001819 | | 2025-03-21T16:01:11Z | 590 | 1002409 | | 2025-03-21T19:25:32Z | 203 | 1002612 | | 2025-03-22T13:26:15Z | 6930 | 1009542 | | 2025-03-23T07:26:23Z | 8551 | 1018093 | | 2025-03-24T01:26:31Z | 9212 | 1027305 | | 2025-03-24T19:26:38Z | 8629 | 1035934 | | 2025-03-25T13:26:44Z | 7962 | 1043896 |
jkcho/QA-Dataset-mini
jkcho
2025-03-23T10:59:06Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-23T10:28:14Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 9800 num_examples: 48 download_size: 8321 dataset_size: 9800 configs: - config_name: default data_files: - split: train path: data/train-* ---
test-gen/code_mbpp_qwen2.5-3b_t0.1_n8_tests_mbpp_qwen3-8b_t0.6_n1_think
test-gen
2025-05-16T16:11:30Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-16T16:11:29Z
0
--- dataset_info: features: - name: task_id dtype: int32 - name: text dtype: string - name: code dtype: string - name: test_list sequence: string - name: test_setup_code dtype: string - name: challenge_test_list sequence: string - name: generated_code sequence: string - name: gt_rewards sequence: float64 - name: rewards sequence: float64 - name: verification_info struct: - name: language dtype: string - name: test_cases sequence: string splits: - name: test num_bytes: 5589027 num_examples: 500 download_size: 1067799 dataset_size: 5589027 configs: - config_name: default data_files: - split: test path: data/test-* ---
korbih/ui-sensei-iteration-0-20250408_114450-complete
korbih
2025-04-08T09:54:24Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-08T09:54:21Z
0
--- dataset_info: features: - name: task_id dtype: string - name: trial_number dtype: int32 - name: task_description dtype: string - name: start_url dtype: string - name: is_success dtype: bool - name: is_shortest dtype: bool - name: evaluator_thoughts dtype: string - name: evaluator_status dtype: string - name: run_error dtype: string - name: step_index dtype: int32 - name: url_at_step dtype: string - name: prompt dtype: string - name: action dtype: string - name: screenshot dtype: image splits: - name: train num_bytes: 20051902.0 num_examples: 90 download_size: 5882938 dataset_size: 20051902.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Self-GRIT/open-hermes-2.5-sft-active-retrieval-sample-300k-retrieval-llama3-infer-query-ref
Self-GRIT
2024-10-04T02:20:28Z
19
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-04T02:20:25Z
0
--- dataset_info: features: - name: id dtype: int64 - name: input dtype: string splits: - name: train num_bytes: 188138596 num_examples: 33454 download_size: 43519419 dataset_size: 188138596 configs: - config_name: default data_files: - split: train path: data/train-* ---
deepcopy/text_recognition_en_zh_small_250k
deepcopy
2025-06-20T12:26:50Z
0
0
[ "region:us" ]
[]
2025-06-20T12:23:19Z
0
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 1954585583.0 num_examples: 250000 - name: test num_bytes: 32178006.726 num_examples: 2894 - name: val num_bytes: 31484751.68 num_examples: 2910 download_size: 2799453221 dataset_size: 2018248341.4060001 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: val path: data/val-* --- # Dataset Card for "text_recognition_en_zh_small_250k" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_0e54ffda-419c-4cac-b017-82089ffb0db7
argilla-internal-testing
2025-01-21T08:38:16Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-21T08:38:15Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.2_num-company_3_dataset_1_for_gen_4
HungVu2003
2025-04-29T17:55:18Z
20
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T17:55:06Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 3251221 num_examples: 12499 download_size: 1731953 dataset_size: 3251221 configs: - config_name: default data_files: - split: train path: data/train-* ---
zekeZZ/medmcqa-gen-by-zephyr-ft-gpqa-all
zekeZZ
2025-01-14T02:00:47Z
14
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-06T20:28:03Z
0
--- dataset_info: features: - name: id dtype: string - name: question dtype: string - name: opa dtype: string - name: opb dtype: string - name: opc dtype: string - name: opd dtype: string - name: cop dtype: class_label: names: '0': a '1': b '2': c '3': d - name: choice_type dtype: string - name: exp dtype: string - name: subject_name dtype: string - name: topic_name dtype: string - name: gen_answer dtype: string - name: text dtype: string - name: choices sequence: string - name: answer dtype: int64 splits: - name: train num_bytes: 12185614 num_examples: 10000 download_size: 7682002 dataset_size: 12185614 configs: - config_name: default data_files: - split: train path: data/train-* ---
reasoning-proj/j_c_dfiltered_DeepSeek-R1-Distill-Llama-8B_madversarial_continue_with_wrong_reasoning_t50
reasoning-proj
2025-05-11T10:08:41Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-11T10:08:35Z
0
--- dataset_info: features: - name: question dtype: string - name: answer_content dtype: string - name: reference_answer dtype: string - name: id dtype: string - name: metadata struct: - name: question_license dtype: string - name: question_source dtype: string - name: model_name dtype: string - name: verifier_score dtype: int64 - name: mutated_answer_content dtype: string - name: continuation_1 dtype: string - name: complete_answer_1 dtype: string - name: continuation_2 dtype: string - name: complete_answer_2 dtype: string - name: continuation_3 dtype: string - name: complete_answer_3 dtype: string - name: continuation_4 dtype: string - name: complete_answer_4 dtype: string - name: continuation_5 dtype: string - name: complete_answer_5 dtype: string - name: continuation_6 dtype: string - name: complete_answer_6 dtype: string - name: continuation_7 dtype: string - name: complete_answer_7 dtype: string - name: continuation_8 dtype: string - name: complete_answer_8 dtype: string - name: continuation_model dtype: string - name: verifier_score_1 dtype: int64 - name: verifier_score_2 dtype: int64 - name: verifier_score_3 dtype: int64 - name: verifier_score_4 dtype: int64 - name: verifier_score_5 dtype: int64 - name: verifier_score_6 dtype: int64 - name: verifier_score_7 dtype: int64 - name: verifier_score_8 dtype: int64 splits: - name: train num_bytes: 114180685 num_examples: 600 download_size: 47377219 dataset_size: 114180685 configs: - config_name: default data_files: - split: train path: data/train-* ---
PRINCEEMMANUEL/AMAZON_FFR_TVT
PRINCEEMMANUEL
2025-03-24T16:36:02Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-17T18:16:28Z
0
--- dataset_info: features: - name: Text_CL dtype: string - name: Summary_CL dtype: string - name: Label_CL dtype: int64 splits: - name: train num_bytes: 1987993.7 num_examples: 7000 - name: test num_bytes: 425998.65 num_examples: 1500 - name: valid num_bytes: 425998.65 num_examples: 1500 download_size: 1681337 dataset_size: 2839991.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: valid path: data/valid-* ---
Samll/math_early_answering_data_v2
Samll
2025-01-20T11:08:51Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-20T10:58:53Z
0
--- dataset_info: features: - name: Original_Prompt dtype: string - name: Original_COT dtype: string - name: Original_CoT_answer dtype: string - name: Truncated_Input dtype: string - name: Truncated_Input_response dtype: string - name: Truncated_Input_extracted_answer dtype: string - name: Truncated_CoT_length dtype: int64 - name: Correct_Answer dtype: string splits: - name: train num_bytes: 114180418 num_examples: 27167 download_size: 6711388 dataset_size: 114180418 configs: - config_name: default data_files: - split: train path: data/train-* ---
AmarHelio/record-test19
AmarHelio
2025-06-15T05:48:10Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-15T05:47:19Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101_follower", "total_episodes": 10, "total_frames": 3778, "total_tasks": 1, "total_videos": 10, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
infinite-dataset-hub/OvarianUltrasoundFeatureExtraction
infinite-dataset-hub
2024-11-16T10:38:43Z
14
1
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "infinite-dataset-hub", "synthetic" ]
[]
2024-11-16T10:38:42Z
0
--- license: mit tags: - infinite-dataset-hub - synthetic --- # OvarianUltrasoundFeatureExtraction tags: Regression, Feature Learning, Gynecological Imaging _Note: This is an AI-generated dataset so its content may be inaccurate or false_ **Dataset Description:** The 'OvarianUltrasoundFeatureExtraction' dataset comprises high-resolution ultrasound images of the ovaries from various gynecological imaging sources. Each image is annotated with key features and corresponding labels, such as follicular cysts, corpus luteum, and endometriomas. This dataset serves as a basis for regression and feature learning models aimed at assisting radiologists and machine learning practitioners in the diagnosis and treatment planning for ovarian pathologies. The annotations are performed by expert radiologists and are used for supervised learning tasks in gynecological healthcare. **CSV Content Preview:** ``` ImageID,ImageURL,Labels,Feature1,Feature2,Feature3 Ultrasound001,http://example.com/images/ultrasound001.jpg,["FollicularCyst"],3.2,14.8,0.5 Ultrasound002,http://example.com/images/ultrasound002.jpg,["CorpusLuteum"],5.1,12.3,0.2 Ultrasound003,http://example.com/images/ultrasound003.jpg,["Endometrioma"],4.6,13.5,0.8 Ultrasound004,http://example.com/images/ultrasound004.jpg,["Normal"],2.9,10.0,0.1 Ultrasound005,http://example.com/images/ultrasound005.jpg,["PolycysticOvary"],6.2,15.2,0.3 ``` In this dataset, the 'ImageURL' column links to the ultrasound images, the 'Labels' column contains the list of identified features, and the 'Feature1', 'Feature2', and 'Feature3' columns represent extracted features from the images that could be used for machine learning tasks. The feature values are indicative of certain characteristics of the ultrasound images, such as the size and number of cysts, which are important for classification and regression tasks in ovarian ultrasound analysis. **Source of the data:** The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query 'ultrasound': - **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=ultrasound&dataset=OvarianUltrasoundFeatureExtraction&tags=Regression,+Feature+Learning,+Gynecological+Imaging - **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct - **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
omercann/twinup
omercann
2024-12-30T14:20:55Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-30T14:20:27Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: response dtype: string splits: - name: train num_bytes: 3242.75 num_examples: 7 - name: test num_bytes: 484 num_examples: 1 download_size: 11210 dataset_size: 3726.75 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
obiwan96/obiwan96owm_raw_v3__100000_120000
obiwan96
2025-02-26T19:39:10Z
14
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-26T15:16:21Z
0
--- dataset_info: features: - name: url dtype: string - name: text dtype: string - name: date dtype: string - name: metadata dtype: string - name: backtracking_raw dtype: string - name: verification_raw dtype: string - name: subgoal_setting_raw dtype: string - name: backward_chaining_raw dtype: string splits: - name: train num_bytes: 210328396 num_examples: 20000 download_size: 95116250 dataset_size: 210328396 configs: - config_name: default data_files: - split: train path: data/train-* ---
ashraq/fashion-product-images-small
ashraq
2022-11-01T20:25:52Z
1,194
31
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2022-11-01T20:22:50Z
1
--- dataset_info: features: - name: id dtype: int64 - name: gender dtype: string - name: masterCategory dtype: string - name: subCategory dtype: string - name: articleType dtype: string - name: baseColour dtype: string - name: season dtype: string - name: year dtype: float64 - name: usage dtype: string - name: productDisplayName dtype: string - name: image dtype: image splits: - name: train num_bytes: 546202015.44 num_examples: 44072 download_size: 271496441 dataset_size: 546202015.44 --- # Dataset Card for "fashion-product-images-small" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) Data was obtained from [here](https://www.kaggle.com/datasets/paramaggarwal/fashion-product-images-small)
FlippyDora/numia_prompt_reward_iter1_0-2000
FlippyDora
2025-03-11T16:23:34Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T16:23:33Z
0
--- dataset_info: features: - name: prompt dtype: string - name: responses sequence: string - name: gt dtype: string - name: problem dtype: string - name: rewards sequence: float64 splits: - name: train num_bytes: 28393319 num_examples: 2000 download_size: 10490498 dataset_size: 28393319 configs: - config_name: default data_files: - split: train path: data/train-* ---
hhhFuture/class_stand
hhhFuture
2024-12-04T06:50:17Z
15
0
[ "license:apache-2.0", "region:us" ]
[]
2024-12-04T06:50:17Z
0
--- license: apache-2.0 ---
facebook/feint6k
facebook
2024-10-09T21:07:02Z
16
0
[ "license:cc-by-nc-4.0", "region:us" ]
[]
2024-10-09T21:07:02Z
0
--- license: cc-by-nc-4.0 ---