--- tags: - ocr - text-extraction - rolmocr - uv-script - generated --- # OCR Text Extraction using RolmOCR This dataset contains extracted text from images in [davanstrien/playbills-pdf-images-text](https://huggingface.co/datasets/davanstrien/playbills-pdf-images-text) using RolmOCR. ## Processing Details - **Source Dataset**: [davanstrien/playbills-pdf-images-text](https://huggingface.co/datasets/davanstrien/playbills-pdf-images-text) - **Model**: [reducto/RolmOCR](https://huggingface.co/reducto/RolmOCR) - **Number of Samples**: 10 - **Processing Time**: 5.8 minutes - **Processing Date**: 2025-08-04 17:08 UTC ### Configuration - **Image Column**: `image` - **Output Column**: `rolmocr_text` - **Dataset Split**: `train` - **Batch Size**: 16 - **Max Model Length**: 24,000 tokens - **Max Output Tokens**: 16,000 - **GPU Memory Utilization**: 80.0% ## Model Information RolmOCR is a fast, general-purpose OCR model based on Qwen2.5-VL-7B architecture. It extracts plain text from document images with high accuracy and efficiency. ## Dataset Structure The dataset contains all original columns plus: - `rolmocr_text`: The extracted text from each image - `inference_info`: JSON list tracking all OCR models applied to this dataset ## Usage ```python from datasets import load_dataset import json # Load the dataset dataset = load_dataset("{output_dataset_id}", split="train") # Access the extracted text for example in dataset: print(example["rolmocr_text"]) break # View all OCR models applied to this dataset inference_info = json.loads(dataset[0]["inference_info"]) for info in inference_info: print(f"Column: {info['column_name']} - Model: {info['model_id']}") ``` ## Reproduction This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) RolmOCR script: ```bash uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/rolm-ocr.py \ davanstrien/playbills-pdf-images-text \ \ --image-column image \ --batch-size 16 \ --max-model-len 24000 \ --max-tokens 16000 \ --gpu-memory-utilization 0.8 ``` ## Performance - **Processing Speed**: ~0.0 images/second - **GPU Configuration**: vLLM with 80% GPU memory utilization Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts)