title
stringclasses 312
values | author
stringclasses 138
values | date
stringclasses 263
values | local
stringclasses 312
values | tags
stringclasses 196
values | URL
stringclasses 312
values | chunk
stringlengths 7
30.6k
| embedding
sequencelengths 768
768
|
---|---|---|---|---|---|---|---|
How to train a new language model from scratch using Transformers and Tokenizers | julien-c | February 14, 2020 | how-to-train | guide, nlp | https://huggingface.co/blog/how-to-train | 5. Fine-tune your LM on a downstream task We now can fine-tune our new Esperanto language model on a downstream task of Part-of-speech tagging. As mentioned before, Esperanto is a highly regular language where word endings typically condition the grammatical part of speech. Using a dataset of annotated Esperanto POS tags formatted in the CoNLL-2003 format (see example below), we can use the run_ner.py script from transformers. > POS tagging is a token classification task just as NER so we can just use the exact same script. Again, here’s the hosted Tensorboard for this fine-tuning. We train for 3 epochs using a batch size of 64 per GPU. Training and eval losses converge to small residual values as the task is rather easy (the language is regular) – it’s still fun to be able to train it end-to-end 😃. This time, let’s use a TokenClassificationPipeline: python from transformers import TokenClassificationPipeline, pipeline MODEL_PATH = "./models/EsperBERTo-small-pos/" nlp = pipeline( "ner", model=MODEL_PATH, tokenizer=MODEL_PATH, ) # or instantiate a TokenClassificationPipeline directly. nlp("Mi estas viro kej estas tago varma.") # {'entity': 'PRON', 'score': 0.9979867339134216, 'word': ' Mi'} # {'entity': 'VERB', 'score': 0.9683094620704651, 'word': ' estas'} # {'entity': 'VERB', 'score': 0.9797462821006775, 'word': ' estas'} # {'entity': 'NOUN', 'score': 0.8509314060211182, 'word': ' tago'} # {'entity': 'ADJ', 'score': 0.9996201395988464, 'word': ' varma'} Looks like it worked! 🔥 For a more challenging dataset for NER, @stefan-it recommended that we could train on the silver standard dataset from WikiANN | [
0.04526380077004433,
-0.09483867138624191,
-0.02273421175777912,
0.03288443014025688,
0.003405157942324877,
0.03935791924595833,
0.02155645750463009,
0.03341498225927353,
-0.05484903231263161,
0.039321113377809525,
-0.06631335616111755,
0.041409071534872055,
0.05469236150383949,
0.06749388575553894,
0.00996932853013277,
0.003890096675604582,
0.025895364582538605,
0.016932182013988495,
-0.05455097183585167,
-0.0219107698649168,
0.019420310854911804,
-0.03325118124485016,
0.11226695030927658,
0.07474730908870697,
-0.0015212252037599683,
0.00660736532881856,
-0.03984419256448746,
-0.023345105350017548,
-0.11037860065698624,
0.023151328787207603,
-0.06010782718658447,
0.022361021488904953,
-0.038391295820474625,
0.05343924090266228,
-0.02820380963385105,
0.038057807832956314,
-0.059853266924619675,
0.020697910338640213,
-0.017425552010536194,
-0.0008092930074781179,
-0.049042440950870514,
0.042946942150592804,
-0.019161611795425415,
0.04476552456617355,
0.05936270207166672,
-0.032621514052152634,
-0.12204132974147797,
-0.0032481225207448006,
-0.016139289364218712,
-0.04628874734044075,
-0.05727452412247658,
0.06410359591245651,
0.06754785776138306,
-0.046386297792196274,
0.004250484984368086,
-0.0015681463992223144,
0.02736699767410755,
-0.08427765220403671,
-0.006573610007762909,
0.007103932090103626,
0.0010614162310957909,
0.01928306370973587,
-0.060959041118621826,
-0.019081871956586838,
0.01965886726975441,
0.010704058222472668,
-0.10874523222446442,
0.021296488121151924,
-0.061217475682497025,
-0.04641370102763176,
-0.002210984006524086,
0.006927173119038343,
-0.026645855978131294,
-0.03658146783709526,
-0.03390445560216904,
-0.07833194732666016,
0.01285665761679411,
0.020453356206417084,
-0.01698085479438305,
0.06416849792003632,
-0.009524531662464142,
0.052080921828746796,
0.03400091826915741,
0.06872094422578812,
0.08140718936920166,
0.07203363627195358,
0.07251451909542084,
-0.041063860058784485,
-0.031525444239377975,
-0.019200176000595093,
0.0006903987377882004,
-0.04827392101287842,
-0.0335739403963089,
0.04425870254635811,
0.10163532197475433,
0.01693984493613243,
-0.017979273572564125,
0.04740605875849724,
-0.10872366279363632,
-0.04736008122563362,
0.0351412408053875,
-0.07238270342350006,
0.04907677322626114,
-0.05984773486852646,
-0.06915318965911865,
0.008157644420862198,
0.01621413417160511,
-0.04033862426877022,
-0.03639834001660347,
0.007850955240428448,
-0.00952953938394785,
0.018353911116719246,
0.00039376100176014006,
0.1008780226111412,
-0.05317983776330948,
0.012437359429895878,
-0.03753912076354027,
0.03706446290016174,
-0.05056991055607796,
0.014012514613568783,
0.0846274346113205,
0.07274290919303894,
0.060869742184877396,
0.007652408443391323,
-0.015271766111254692,
0.05144397169351578,
0.03625986725091934,
0.048691459000110626,
-0.02866022102534771,
-0.0129301892593503,
0.031924840062856674,
-0.0524807944893837,
0.0038702008314430714,
0.05782092735171318,
-0.02760694921016693,
-0.006344847846776247,
0.05488016456365585,
-0.028137797489762306,
0.021636398509144783,
-0.029750172048807144,
-0.04103047028183937,
0.06341930478811264,
-0.08981094509363174,
-0.012454459443688393,
0.05215771496295929,
-0.00821651704609394,
0.009814518503844738,
0.0653548538684845,
0.06947796046733856,
0.0666511058807373,
0.005417410749942064,
0.0768682211637497,
-0.016050206497311592,
-0.04911668971180916,
0.031143367290496826,
0.05715298652648926,
-0.036877524107694626,
-0.004159531556069851,
-0.07533491402864456,
0.0023925662972033024,
0.003604130819439888,
0.03132030740380287,
-0.019906790927052498,
-0.003917589783668518,
0.02110673114657402,
-0.05422790348529816,
-0.01767336204648018,
0.02329169772565365,
0.00011966692545684054,
0.033722374588251114,
0.07547309994697571,
-0.0065322439186275005,
0.07581494748592377,
-0.027206938713788986,
-0.021538179367780685,
-0.0028640213422477245,
0.00065427809022367,
0.047989554703235626,
-0.029381589964032173,
-0.021268252283334732,
-0.03819214180111885,
0.06760262697935104,
-0.011793617159128189,
0.006636557634919882,
0.0009118503658100963,
-0.08198710530996323,
0.03890009596943855,
-0.05777357891201973,
-0.03250937536358833,
-0.013628611341118813,
-0.023885296657681465,
-0.012265725992619991,
0.07551657408475876,
-0.0415593683719635,
-0.02257830835878849,
-0.032888609915971756,
-0.012717495672404766,
0.045038267970085144,
0.03341333568096161,
0.020041657611727715,
0.048605985939502716,
0.0007994439802132547,
-0.0064013004302978516,
0.013852446340024471,
-0.022780777886509895,
0.020660720765590668,
-0.018776927143335342,
-0.09761325269937515,
0.021718423813581467,
0.03747706860303879,
-0.0728587955236435,
-0.08634588867425919,
-0.004582579713314772,
-0.0836777463555336,
0.0010238316608592868,
-0.061896827071905136,
-0.025909235700964928,
0.029752293601632118,
0.008990297093987465,
-0.03969385847449303,
0.112530916929245,
-0.0781489908695221,
-0.031170854344964027,
0.011454480700194836,
-0.007685475517064333,
0.005559003911912441,
0.06146899610757828,
0.03803527355194092,
-0.007683190051466227,
-0.05345350131392479,
-0.02971985749900341,
-0.06397280097007751,
0.02172277867794037,
0.015185040421783924,
-0.05993356928229332,
-0.05301298573613167,
-0.025117196142673492,
0.010353690013289452,
0.02675662748515606,
0.007658056449145079,
-0.028987953439354897,
0.0639231950044632,
-0.06371202319860458,
0.07748117297887802,
0.015866314992308617,
0.014254122972488403,
0.1332578808069229,
0.0036516296677291393,
-0.020495599135756493,
0.032958220690488815,
-0.05055585503578186,
0.06575163453817368,
0.02549431100487709,
-0.053132325410842896,
-0.01958307810127735,
-0.027464520186185837,
-0.001536171999759972,
0.027934249490499496,
0.00602574460208416,
0.04030183330178261,
0.014745746739208698,
0.01318423543125391,
-0.020498227328062057,
-0.04826703667640686,
0.034377288073301315,
-0.012619810178875923,
0.020416423678398132,
-0.0017470918828621507,
0.0005612674867734313,
-0.02736065723001957,
-0.009912570007145405,
-0.013346879743039608,
-0.0006568495300598443,
-0.0014150325441733003,
0.015581752173602581,
0.037734732031822205,
0.01823265291750431,
-0.01163735892623663,
-0.02497371844947338,
-0.07851769030094147,
-0.0001261831057490781,
-0.04207736998796463,
0.05627681314945221,
0.04079039394855499,
-0.01012365147471428,
0.02007210999727249,
-0.03727157041430473,
-0.03294205293059349,
0.006358853075653315,
-0.004579452332109213,
0.020849650725722313,
0.010867440141737461,
-0.03506315127015114,
-0.03465196490287781,
-0.0016608041478320956,
0.03188126161694527,
0.017594289034605026,
-0.01756167970597744,
0.010081478394567966,
0.009116866625845432,
-0.0483890026807785,
-0.005771527532488108,
0.017110269516706467,
-0.026331845670938492,
-0.021649399772286415,
-0.005332850385457277,
0.019479546695947647,
0.017847198992967606,
-0.07683075219392776,
-0.022405272349715233,
-0.033057138323783875,
0.01840527169406414,
0.023925988003611565,
-0.024429315701127052,
0.0021460875868797302,
0.04336189851164818,
-0.02712828293442726,
0.016255265101790428,
-0.02707860805094242,
0.03506685048341751,
0.026832519099116325,
0.027691541239619255,
0.021770382300019264,
-0.04641076177358627,
-0.005995872896164656,
-0.04686472937464714,
-0.006460866890847683,
0.002927997848019004,
-0.00880496483296156,
0.040412262082099915,
0.015557389706373215,
0.06306691467761993,
0.008946878835558891,
0.046152811497449875,
-0.026118578389286995,
-0.00000951712172536645,
-0.013296382501721382,
0.0070878262631595135,
-0.026317939162254333,
-0.015615335665643215,
-0.017064379528164864,
0.027253085747361183,
-0.01331003662198782,
-0.015915514901280403,
0.03511540964245796,
0.00019752189109567553,
0.004203465301543474,
0.05172744393348694,
0.030863773077726364,
-0.0010086280526593328,
0.014569425024092197,
-0.004753194749355316,
0.0030116743873804808,
-0.021710624918341637,
-0.008718102239072323,
-0.047629520297050476,
0.030352553352713585,
-0.032345812767744064,
0.0044964952394366264,
0.006507880985736847,
0.008681206032633781,
0.06883850693702698,
0.002779668429866433,
0.0014720914186909795,
0.0067294202744960785,
0.001906133838929236,
0.020129060372710228,
0.007690914906561375,
-0.04952368140220642,
0.03436116874217987,
-0.011593624018132687,
-0.03349553048610687,
-0.039893168956041336,
0.07381253689527512,
0.006623208988457918,
0.033524587750434875,
-0.044511131942272186,
0.02575039304792881,
-0.002748400904238224,
0.030211523175239563,
0.0010624596616253257,
-0.0069321999326348305,
-0.02944125607609749,
0.005112620070576668,
-0.012128644622862339,
0.029003893956542015,
-0.0005205255001783371,
0.013954736292362213,
-0.022317735478281975,
0.018318094313144684,
-0.009800869040191174,
-0.023259621113538742,
0.009112969972193241,
-0.00009948754450306296,
0.021537238731980324,
-0.032562270760536194,
-0.019712720066308975,
0.01221265085041523,
0.019894901663064957,
0.02812672033905983,
0.010204793885350227,
-0.01195130031555891,
-0.010621906258165836,
-0.014148994348943233,
-0.020400524139404297,
0.01616540551185608,
-0.00009349307219963521,
-0.002785427263006568,
-0.0043752905912697315,
-0.051162704825401306,
0.05346359312534332,
0.01286301575601101,
0.01797730289399624,
0.037770144641399384,
-0.01702108606696129,
-0.005137606058269739,
0.00874226912856102,
-0.02509361505508423,
-0.010804124176502228,
0.030984535813331604,
-0.014937630854547024,
-0.015125110745429993,
0.004353766795247793,
0.04519237205386162,
-0.02196834795176983,
0.018940569832921028,
0.030874039977788925,
0.009297634474933147,
-0.034848663955926895,
-0.020396914333105087,
0.05703679844737053,
-0.040943168103694916,
0.060960493981838226,
-0.014901416376233101,
0.028952203691005707,
0.05112103745341301,
-0.008864146657288074,
0.009358520619571209,
-0.03510868549346924,
-0.012518324889242649,
0.06626586616039276,
-0.0137416310608387,
0.03777550533413887,
-0.019898077473044395,
0.006523245945572853,
-0.019229194149374962,
0.0212083887308836,
-0.00904929731041193,
-0.004450744483619928,
-0.006437288597226143,
0.019858993589878082,
-0.024559056386351585,
0.03260015323758125,
-0.009446685202419758,
0.00981760025024414,
0.009527215734124184,
0.015693284571170807,
0.036492038518190384,
0.058603398501873016,
0.009951278567314148,
-0.016926605254411697,
-0.031278133392333984,
0.014056909829378128,
-0.021295325830578804,
-0.03491165488958359,
0.0651862621307373,
0.03310307860374451,
0.05744316428899765,
0.013174649327993393,
-0.010171527042984962,
-0.019020486623048782,
0.02676413580775261,
0.03509160503745079,
0.00024251210561487824,
-0.04010813310742378,
-0.022381624206900597,
-0.003619459457695484,
-0.02095131389796734,
0.006395350210368633,
0.01093190349638462,
0.009268241003155708,
-0.021108847111463547,
-0.0044473265297710896,
0.004871878772974014,
-0.02569522149860859,
-0.019157202914357185,
-0.03961586579680443,
-0.0029576250817626715,
0.02614339254796505,
0.0011734804138541222,
0.029178036376833916,
0.022976156324148178,
-0.018684202805161476,
0.02554849535226822,
0.012494564987719059,
0.02764039672911167,
0.0004165930731687695,
0.014804601669311523,
-0.007142048794776201,
-0.0071212477050721645,
0.0002741449570748955,
0.0065321531146764755,
-0.007360030431300402,
0.03644980117678642,
-0.02407425083220005,
0.021713105961680412,
-0.08354343473911285,
0.006800665985792875,
0.021915849298238754,
0.023332813754677773,
0.026176346465945244,
-0.02177467942237854,
-0.005036219488829374,
-0.01402189303189516,
-0.01849413849413395,
-0.03051835112273693,
-0.03678120672702789,
-0.06008785218000412,
0.029961224645376205,
-0.005182017106562853,
-0.015618955716490746,
0.003651154227554798,
0.013555396348237991,
-0.0508866012096405,
0.004191738087683916,
0.00808722898364067,
0.01389589998871088,
0.06990648061037064,
-0.011657103896141052,
-0.03302549198269844,
-0.0007789586088620126,
0.002364991931244731,
-0.0033499589189887047,
-0.044619087129831314,
0.04501746594905853,
-0.005163026973605156,
0.00015491990779992193,
0.016509097069501877,
-0.013822313398122787,
-0.05080992728471756,
0.03211565315723419,
0.01583700254559517,
0.021627206355333328,
-0.024450434371829033,
-0.07762961089611053,
0.038322582840919495,
0.07549519091844559,
0.004954424686729908,
0.01786239817738533,
-0.015449811704456806,
-0.061167631298303604,
-0.009430620819330215,
-0.03319466486573219,
0.09353277087211609,
0.0042228237725794315,
-0.009062138386070728,
0.0021583689376711845,
0.007311500608921051,
0.0403924398124218,
-0.011789930984377861,
-0.05101367458701134,
0.02603285387158394,
-0.0014823107048869133,
0.012199698016047478,
0.026811186224222183,
0.019096868112683296,
-0.01882730983197689,
-0.013873650692403316,
-0.008400266058743,
-0.06253789365291595,
0.014129500836133957,
0.07054318487644196,
-0.02663840726017952,
0.004415570292621851,
0.02015499398112297,
-0.0385669581592083,
0.032746098935604095,
0.013434652239084244,
0.0007770180236548185,
-0.04993868246674538,
0.0005883999983780086,
-0.032315365970134735,
0.03582180291414261,
-0.007290231063961983,
-0.03089190647006035,
0.03157440572977066,
-0.018468866124749184,
0.013257338665425777,
0.00819608848541975,
-0.004754090681672096,
0.04708295315504074,
0.0031463601626455784,
-0.004155577160418034,
-0.00046874649706296623,
0.06293197721242905,
0.001412138226442039,
0.019398551434278488,
-0.004909600596874952,
-0.013618677854537964,
0.012369922362267971,
-0.03356892988085747,
-0.022345921024680138,
-0.018197979778051376,
-0.023563971742987633,
0.06827858090400696,
-0.04496011883020401,
-0.02531854808330536,
-0.020949453115463257,
0.060776486992836,
0.00990345235913992,
0.030026772990822792,
0.002884381450712681,
-0.02470322698354721,
0.023997727781534195,
0.04409051686525345,
-0.02638653665781021,
0.03063625656068325,
-0.00366820115596056,
-0.027838027104735374,
0.007628527004271746,
0.005179265514016151,
0.057134851813316345,
-0.005503334570676088,
-0.019836535677313805,
0.010392733849585056,
-0.073552206158638,
-0.009188881143927574,
0.042249564081430435,
0.005202206317335367,
-0.008253104984760284,
0.030879434198141098,
0.03495023772120476,
-0.003227515146136284,
0.015306226909160614,
-0.03058437816798687,
-0.0037338638212531805,
-0.028986286371946335,
-0.005772260017693043,
-0.04103861376643181,
0.03805117681622505,
-0.016889015212655067,
-0.06173122301697731,
-0.08454413712024689,
-0.010954782366752625,
0.035853926092386246,
0.01757274568080902,
-0.027379848062992096,
-0.012594706378877163,
0.005269356071949005,
-0.038022857159376144,
0.011231094598770142,
0.03236355632543564,
0.019267937168478966,
-0.05156964808702469,
0.0032808822579681873,
0.004130474291741848,
-0.010984884575009346,
0.0312361940741539,
-0.004541361704468727,
-0.0011790948919951916,
-0.05344035103917122,
-0.010923569090664387,
-0.0063018640503287315,
-0.06399848312139511,
0.03236021101474762,
-0.037461668252944946,
-0.02621733583509922,
0.025585832074284554,
-0.007379695773124695,
0.03909783810377121,
0.05952097102999687,
-0.0400925911962986,
0.007547880057245493,
-0.023785660043358803,
0.03588385507464409,
-0.017588092014193535,
0.03938326612114906,
0.012915083207190037,
0.051711201667785645,
-0.021436654031276703,
-0.006246086675673723,
-0.00146400963421911,
0.014104889705777168,
0.0037052587140351534,
0.023362798616290092,
0.025225814431905746,
-0.025135565549135208,
-0.04924675077199936,
0.0031816884875297546,
0.030245909467339516,
0.03731349855661392,
0.05529981106519699,
-0.018455252051353455,
-0.043297357857227325,
0.006307636387646198,
-0.0251903235912323,
-0.007822512648999691,
0.0012987593654543161,
-0.02416546456515789,
-0.03956056758761406,
-0.02210518717765808,
0.02631339803338051,
-0.04024644196033478,
0.011442865245044231,
-0.059578437358140945,
-0.016648966819047928,
-0.06854449957609177,
-0.0229453444480896,
0.0026307241059839725,
0.03397279977798462,
0.04835851863026619,
0.08399967849254608,
0.03867684304714203,
0.022136569023132324,
0.01723838597536087,
-0.002323911990970373,
-0.002106486586853862,
0.015241315588355064,
0.07888054847717285,
-0.00812299083918333,
-0.002082191174849868,
-0.03545772656798363,
0.04152386635541916,
-0.016767047345638275,
-0.038443226367235184,
-0.04149440675973892,
0.04078826680779457,
0.011647671461105347,
0.012851356528699398,
0.03513094410300255,
0.046040263026952744,
-0.029446428641676903,
-0.017272327095270157,
0.0517101064324379,
0.014618477784097195,
0.017547233030200005,
0.008724439889192581,
-0.07291042804718018,
-0.020986922085285187,
-0.012579639442265034,
-0.03328448161482811,
0.008791208267211914,
0.011765082366764545,
0.025071440264582634,
0.0036690805573016405,
-0.01817493326961994,
0.00018086627824231982,
-0.03335859626531601,
0.005011482164263725,
-0.029350528493523598,
0.07148834317922592,
0.01601138710975647,
0.0007546854321844876,
-0.02398008666932583,
0.06411125510931015,
0.031677305698394775,
0.019877731800079346,
-0.025049708783626556,
0.007116083521395922,
0.031467095017433167,
0.005751192569732666,
0.0012251697480678558,
0.017550883814692497,
0.019916504621505737,
0.02456994168460369,
-0.031845394521951675,
-0.016679301857948303,
-0.0049139573238790035
] |
How to train a new language model from scratch using Transformers and Tokenizers | julien-c | February 14, 2020 | how-to-train | guide, nlp | https://huggingface.co/blog/how-to-train | # How to train a new language model from scratch using Transformers and Tokenizers Over the past few months, we made several improvements to our transformers and tokenizers libraries, with the goal of making it easier than ever to train a new language model from scratch. In this post we’ll demo how to train a “small” model (84 M parameters = 6 layers, 768 hidden size, 12 attention heads) – that’s the same number of layers & heads as DistilBERT – on Esperanto. We’ll then fine-tune the model on a downstream task of part-of-speech tagging. Esperanto is a constructed language with a goal of being easy to learn. We pick it for this demo for several reasons: - it is a relatively low-resource language (even though it’s spoken by ~2 million people) so this demo is less boring than training one more English model 😁 - its grammar is highly regular (e.g. all common nouns end in -o, all adjectives in -a) so we should get interesting linguistic results even on a small dataset. - finally, the overarching goal at the foundation of the language is to bring people closer (fostering world peace and international understanding) which one could argue is aligned with the goal of the NLP community 💚 > N.B. You won’t need to understand Esperanto to understand this post, but if you do want to learn it, Duolingo has a nice course with 280k active learners. Our model is going to be called… wait for it… EsperBERTo 😂 | [
0.04338841140270233,
-0.04796644300222397,
-0.038412559777498245,
-0.007312643341720104,
0.019081884995102882,
0.08553280681371689,
0.006179140415042639,
0.02577647753059864,
-0.03303997218608856,
0.04525212198495865,
-0.02702436037361622,
0.09826286882162094,
0.004234003368765116,
0.03750742971897125,
0.038706645369529724,
-0.009216772392392159,
-0.013942236080765724,
-0.016457220539450645,
-0.03222062811255455,
-0.04014122486114502,
-0.04845020920038223,
-0.05559512972831726,
0.06847731024026871,
-0.027882596477866173,
0.04234683886170387,
-0.021873334422707558,
0.07354090362787247,
0.010338564403355122,
0.014579225331544876,
0.04570741206407547,
-0.08769015967845917,
-0.0056107849813997746,
-0.02139890566468239,
-0.042838215827941895,
-0.07042244076728821,
0.03521055355668068,
-0.06313519179821014,
0.025889893993735313,
0.0014579857233911753,
-0.032014504075050354,
-0.030577650293707848,
0.049633461982011795,
-0.026563206687569618,
0.043659958988428116,
-0.005414654966443777,
0.004870716016739607,
-0.15974287688732147,
0.039426930248737335,
-0.06163305044174194,
-0.07201141864061356,
-0.06241748481988907,
0.01188551727682352,
0.0249446090310812,
0.0054186866618692875,
-0.011276383884251118,
-0.004168599843978882,
0.031949058175086975,
-0.07967504113912582,
-0.020656118169426918,
0.027196722105145454,
0.007656360976397991,
0.01289304718375206,
-0.009240989573299885,
-0.019222615286707878,
0.024312132969498634,
-0.011925448663532734,
-0.07665831595659256,
0.01910647377371788,
-0.04593830555677414,
-0.07320250570774078,
0.009292512200772762,
-0.04303776100277901,
-0.02791789546608925,
-0.040446937084198,
0.0010184876155108213,
-0.006983447354286909,
0.04967435821890831,
0.0392855741083622,
0.016327792778611183,
0.05951029062271118,
-0.003930090926587582,
0.03821698576211929,
0.06178615614771843,
0.005807444918900728,
0.06348489969968796,
0.037640634924173355,
0.008985362015664577,
-0.010171682573854923,
-0.07935222238302231,
0.026856688782572746,
-0.011659977026283741,
-0.12965169548988342,
-0.04658183082938194,
0.03203631564974785,
0.071725994348526,
0.013331633992493153,
-0.0265923161059618,
0.053920261561870575,
-0.028216104954481125,
-0.03661877289414406,
0.007570162415504456,
-0.02848018705844879,
0.0825250893831253,
-0.0570971742272377,
-0.03373650088906288,
0.003715884406119585,
0.01884135790169239,
-0.043651457875967026,
-0.012092049233615398,
-0.01702364720404148,
0.007728848606348038,
-0.06866709887981415,
0.029911665245890617,
0.08128523826599121,
-0.095329649746418,
0.01876246929168701,
0.022387854754924774,
0.021274494007229805,
-0.053694870322942734,
0.02728934772312641,
0.00550933089107275,
0.07267799973487854,
0.05567982420325279,
0.014533386565744877,
-0.04336567968130112,
0.0917348712682724,
0.010043268091976643,
0.08480633050203323,
-0.0021389226894825697,
-0.00005316092574503273,
0.06481967866420746,
-0.08623968064785004,
0.04768052324652672,
-0.004701168276369572,
0.024542996659874916,
0.011835056357085705,
0.04659087210893631,
-0.014108086936175823,
0.033221397548913956,
-0.031255289912223816,
-0.05417930334806442,
0.05467456206679344,
-0.05851684510707855,
-0.05931272730231285,
0.031476713716983795,
0.03233100846409798,
-0.06969625502824783,
0.029801687225699425,
0.0611126534640789,
0.0559774674475193,
-0.04187827557325363,
0.03075183928012848,
-0.005437833722680807,
-0.023178579285740852,
0.08629772812128067,
0.06020726263523102,
-0.04590367525815964,
-0.04541168734431267,
-0.04573016241192818,
-0.015697145834565163,
-0.03648655489087105,
0.0011700077448040247,
0.01105302944779396,
0.05228029564023018,
0.0012325142743065953,
-0.050089068710803986,
-0.032444290816783905,
0.07437612116336823,
0.002748071448877454,
0.07849611341953278,
0.077915258705616,
0.020495988428592682,
0.037802837789058685,
-0.02191435731947422,
-0.036611221730709076,
-0.026583842933177948,
-0.023766351863741875,
0.016022419556975365,
0.027584563940763474,
-0.017690513283014297,
-0.026544637978076935,
0.050344835966825485,
0.0005948937032371759,
0.044726960361003876,
0.04049183428287506,
-0.0821387842297554,
0.011373655870556831,
-0.046892765909433365,
-0.08223693817853928,
0.003244931111112237,
0.01782473735511303,
0.004311318974941969,
0.0615592822432518,
-0.0034094862639904022,
0.018955960869789124,
-0.050861287862062454,
-0.029030904173851013,
0.08216430246829987,
0.013173084706068039,
0.11135753244161606,
0.030046649277210236,
0.03727461397647858,
-0.013145389035344124,
0.011942422948777676,
0.028568411245942116,
0.00790650025010109,
-0.016089914366602898,
-0.03808611258864403,
0.028757670894265175,
0.00021199093316681683,
-0.034086037427186966,
-0.06866010278463364,
0.013898799195885658,
-0.040485966950654984,
0.015962056815624237,
-0.03685903921723366,
0.021982936188578606,
0.047847386449575424,
0.03734013810753822,
-0.008847053162753582,
0.15475845336914062,
-0.10010366886854172,
-0.08703575283288956,
0.01783290132880211,
-0.017102910205721855,
0.036835674196481705,
0.058426517993211746,
-0.008695507422089577,
0.04442954063415527,
-0.06741415709257126,
-0.03498547896742821,
-0.0750335156917572,
-0.010152512229979038,
-0.049366146326065063,
-0.02960968390107155,
-0.035611338913440704,
-0.022585012018680573,
0.030390992760658264,
0.008062724024057388,
-0.02978452481329441,
-0.0419958233833313,
0.0025212792679667473,
-0.03536317124962807,
-0.0014725164510309696,
0.02108515240252018,
0.08891695737838745,
0.11673422157764435,
0.02769298665225506,
0.01054981630295515,
0.057414401322603226,
-0.06723670661449432,
0.08193697780370712,
0.01983405463397503,
-0.05928941071033478,
0.004914787597954273,
0.01530626229941845,
0.022393355146050453,
-0.019697707146406174,
0.009268980473279953,
-0.01361837051808834,
-0.02975820191204548,
0.03412959724664688,
-0.055080000311136246,
-0.056699492037296295,
-0.004977280739694834,
-0.06668820977210999,
-0.04909399524331093,
0.016577964648604393,
0.011017330922186375,
-0.042690955102443695,
-0.003602688666433096,
-0.021761775016784668,
0.013390542939305305,
-0.010027359239757061,
0.008433575741946697,
0.02515373006463051,
0.017383279278874397,
-0.03325505182147026,
-0.036902859807014465,
-0.04545360431075096,
-0.007035207003355026,
-0.032829489558935165,
0.006894209887832403,
0.05079171806573868,
-0.0062970626167953014,
0.015543662942945957,
-0.024032849818468094,
-0.02631400153040886,
-0.019431261345744133,
-0.0031519399490207434,
-0.003919965121895075,
0.017064694315195084,
-0.033075787127017975,
-0.01387137919664383,
-0.004063671920448542,
0.011137782596051693,
0.025584781542420387,
-0.017740324139595032,
0.02282489836215973,
-0.00026064549456350505,
-0.01959500089287758,
0.012084762565791607,
-0.010363265872001648,
0.00023396153119392693,
-0.025756871327757835,
-0.01313407439738512,
0.01713886484503746,
0.012360063381493092,
-0.08109685033559799,
-0.03113650158047676,
-0.023749303072690964,
-0.009591110982000828,
0.02567456290125847,
-0.043040137737989426,
0.015483196824789047,
0.02138213813304901,
-0.01774558052420616,
-0.004031756427139044,
-0.03506120666861534,
-0.006942871492356062,
-0.007633101660758257,
0.05817706882953644,
-0.0000018813678934748168,
-0.0489322803914547,
-0.047318898141384125,
-0.01658998802304268,
0.041723594069480896,
0.008317646570503712,
-0.02368696965277195,
0.027573462575674057,
0.017135242000222206,
0.034902237355709076,
0.007731898687779903,
-0.0009409635094925761,
0.029153529554605484,
0.017122311517596245,
0.039710525423288345,
0.02647448517382145,
-0.024238046258687973,
-0.010137980803847313,
0.005068587139248848,
0.03574593737721443,
-0.029486624523997307,
-0.0016496715834364295,
0.07031069695949554,
0.02148868329823017,
0.009135191328823566,
0.04062425717711449,
0.004033427219837904,
-0.03385794907808304,
0.008762737736105919,
-0.011858709156513214,
0.042228810489177704,
-0.05078501999378204,
-0.016207199543714523,
-0.047113120555877686,
0.006429528351873159,
-0.04629305377602577,
0.018349649384617805,
-0.009244437329471111,
0.009825109504163265,
0.04341869801282883,
0.035881973803043365,
-0.021341539919376373,
0.03564042970538139,
0.006069909781217575,
0.021666374057531357,
-0.013673882931470871,
-0.023875469341874123,
0.025613097473978996,
-0.013395103625953197,
-0.020990150049328804,
-0.07208326458930969,
0.06587543338537216,
0.0019947246182709932,
0.04858095943927765,
0.0010547711281105876,
0.022143026813864708,
-0.02494342438876629,
0.019155576825141907,
0.005665046628564596,
-0.0034295269288122654,
-0.013197572901844978,
0.008452648296952248,
-0.006079443730413914,
0.005358402151614428,
0.05037054792046547,
0.04431019723415375,
-0.019780054688453674,
-0.03383265808224678,
-0.03055708110332489,
-0.010849134996533394,
-0.0017650731606408954,
-0.03054245188832283,
0.01966409757733345,
-0.034846995025873184,
0.0009321596007794142,
0.009290454909205437,
-0.001616933848708868,
-0.0012145201908424497,
-0.0045598517172038555,
-0.004964790772646666,
0.024729110300540924,
-0.024493372067809105,
0.000029846123652532697,
-0.021026788279414177,
0.013066242448985577,
-0.01556748989969492,
0.042360126972198486,
-0.03001135215163231,
0.0020465622656047344,
0.025707151740789413,
0.013586233370006084,
0.046715524047613144,
-0.02211657725274563,
-0.03229004517197609,
0.0018639254849404097,
0.0016606705030426383,
0.011430884711444378,
0.028055179864168167,
-0.014140256680548191,
0.010004578158259392,
0.005597265902906656,
0.03238081932067871,
-0.018891416490077972,
0.0222234595566988,
0.017071740701794624,
-0.01537119410932064,
-0.013868576847016811,
-0.005444209557026625,
0.03966216742992401,
-0.014839604496955872,
0.038378600031137466,
-0.021002061665058136,
0.0289206150919199,
0.056396979838609695,
-0.008269097656011581,
0.027375908568501472,
-0.015624670311808586,
0.004774462431669235,
0.052371904253959656,
-0.002797971945255995,
0.0013843688648194075,
0.024526309221982956,
-0.061025168746709824,
0.003931066021323204,
0.007544387131929398,
0.015585370361804962,
-0.018391543999314308,
-0.007343101780861616,
0.04625173285603523,
-0.04870673641562462,
0.026285789906978607,
-0.016265014186501503,
-0.00778823159635067,
-0.02955380082130432,
0.007709674071520567,
0.012835207395255566,
0.04131672531366348,
0.015483608469367027,
-0.03650607913732529,
-0.018473563715815544,
-0.009302998892962933,
-0.01615159772336483,
0.0051505593582987785,
0.035878170281648636,
0.013538958504796028,
0.015835460275411606,
-0.033617351204156876,
0.027554871514439583,
-0.032681629061698914,
0.021868081763386726,
0.06806280463933945,
-0.016312414780259132,
-0.03631415590643883,
-0.030362294986844063,
-0.012795413844287395,
-0.0014784263912588358,
-0.007500643841922283,
-0.02549007162451744,
0.012965202331542969,
0.006709490902721882,
0.007880293764173985,
0.03318687155842781,
0.00029442249797284603,
0.005068864673376083,
-0.053716082125902176,
0.021798904985189438,
-0.02883855253458023,
0.005832066293805838,
-0.01721186190843582,
-0.003949194215238094,
-0.0085537014529109,
0.027955172583460808,
0.04437101259827614,
0.036380887031555176,
0.003303159959614277,
0.003848043270409107,
-0.024303914979100227,
-0.008387258276343346,
0.033541787415742874,
0.02726706676185131,
-0.019613493233919144,
-0.026835091412067413,
-0.03016417659819126,
0.0014207997592166066,
-0.07619232684373856,
0.006810122635215521,
0.01366710476577282,
0.03349869325757027,
0.020107705146074295,
-0.0019898065365850925,
0.024685971438884735,
0.027036583051085472,
-0.01162607129663229,
-0.05142849311232567,
-0.021879035979509354,
-0.06981045752763748,
-0.02092667669057846,
-0.004862604197114706,
0.004977896343916655,
-0.026685362681746483,
-0.02302209846675396,
-0.047893766313791275,
0.009811876341700554,
-0.014014274813234806,
0.0230800099670887,
0.0249883271753788,
-0.008050856180489063,
-0.027190906926989555,
-0.02030562423169613,
0.0010618082014843822,
0.04211178049445152,
-0.02962188608944416,
0.018743323162198067,
0.05811294913291931,
-0.005994122941046953,
-0.011781688779592514,
-0.001627109362743795,
-0.008301781490445137,
0.021175118163228035,
0.04654667526483536,
-0.014893054962158203,
-0.049080997705459595,
-0.04430529475212097,
-0.009310220368206501,
0.06125404313206673,
-0.002070216229185462,
-0.0008075432269833982,
0.015392179600894451,
-0.05601072683930397,
0.01820804551243782,
-0.05697285383939743,
0.0575869083404541,
0.025235336273908615,
-0.04120353236794472,
0.008446109481155872,
0.017611542716622353,
0.026222918182611465,
-0.03244579955935478,
-0.021757284179329872,
0.031723752617836,
0.02604888193309307,
0.05382392928004265,
0.029308533295989037,
0.01661306992173195,
-0.02612977847456932,
0.008049996569752693,
0.031297553330659866,
-0.045830029994249344,
0.05069851130247116,
0.03505377471446991,
-0.021949181333184242,
-0.008772521279752254,
0.018532611429691315,
-0.024707689881324768,
-0.004836808890104294,
0.025657543912529945,
0.035424765199422836,
-0.017094340175390244,
-0.033844299614429474,
-0.006446606479585171,
-0.028847143054008484,
-0.03462885692715645,
0.0158428605645895,
0.07367566972970963,
0.0005728924297727644,
0.06488820910453796,
0.013958204537630081,
-0.00617822352796793,
0.06768765300512314,
0.016037341207265854,
-0.026687102392315865,
0.039261139929294586,
0.006681183818727732,
0.039299145340919495,
-0.005480627063661814,
-0.004677462857216597,
0.002263728529214859,
-0.02160762809216976,
-0.00815785862505436,
-0.005301570985466242,
-0.03525378555059433,
0.027373064309358597,
0.043197404593229294,
-0.04774468392133713,
-0.030239665880799294,
-0.0035048157442361116,
0.05303461104631424,
0.03371727839112282,
0.05243806168437004,
-0.021966267377138138,
0.033993180841207504,
0.04553142562508583,
0.05121490731835365,
-0.007328971289098263,
0.058244530111551285,
0.01907414384186268,
-0.02387423813343048,
0.003917033784091473,
0.05176369100809097,
0.030380617827177048,
0.004594630561769009,
0.022203419357538223,
0.049381472170352936,
-0.06467967480421066,
-0.04631248116493225,
0.008210621774196625,
-0.009936954826116562,
-0.009936126880347729,
0.020659606903791428,
0.007747166324406862,
-0.043079160153865814,
0.018698664382100105,
-0.04557289183139801,
-0.02933838777244091,
-0.042627546936273575,
-0.04469313472509384,
-0.03557625040411949,
0.04533996060490608,
-0.025198260322213173,
-0.052461132407188416,
-0.03715487942099571,
-0.011255982331931591,
0.01604742370545864,
-0.022196149453520775,
-0.000026311696274206042,
-0.010554761625826359,
0.005340565927326679,
0.0031620461959391832,
-0.00381335592828691,
0.010199091397225857,
0.01874397136271,
-0.08293966203927994,
0.0371452271938324,
-0.005675094202160835,
0.010917534120380878,
0.029484618455171585,
-0.0009385189623571932,
0.010175789706408978,
-0.04795914515852928,
0.010435717180371284,
-0.010620750486850739,
-0.036832597106695175,
0.013648506253957748,
-0.054393183439970016,
-0.012693527154624462,
-0.0006007957272231579,
0.0359816774725914,
0.02518950216472149,
0.09262938797473907,
0.0008330395794473588,
-0.039649415761232376,
0.03081611543893814,
0.01598166860640049,
0.013918905518949032,
0.03382066637277603,
0.0008558431873098016,
0.012105661444365978,
0.01037740707397461,
-0.017129074782133102,
-0.02209349535405636,
-0.009840143844485283,
0.022538652643561363,
0.005321193020790815,
0.017385289072990417,
-0.03773112595081329,
-0.01716548390686512,
-0.013644995167851448,
0.02310596965253353,
-0.013015829026699066,
0.07008165121078491,
0.017955442890524864,
0.0035392800346016884,
-0.0067517017014324665,
0.03443419933319092,
-0.0210188627243042,
-0.015092563815414906,
-0.023906132206320763,
-0.0498775988817215,
-0.008291543461382389,
0.0338156521320343,
0.009591732174158096,
0.03761858493089676,
-0.055032502859830856,
-0.023601191118359566,
-0.09270285815000534,
-0.012065940536558628,
-0.008548417128622532,
0.010488823987543583,
0.049200352281332016,
0.0037401493173092604,
0.02789296954870224,
0.01703794114291668,
-0.014071058481931686,
-0.008030609227716923,
-0.0225982628762722,
0.02453485131263733,
0.0860007032752037,
-0.015393764711916447,
-0.011126412078738213,
0.02034885622560978,
-0.010722831822931767,
-0.007795029319822788,
-0.03147722780704498,
-0.03317790478467941,
-0.020264409482479095,
0.014996208250522614,
0.005106636323034763,
0.03557968512177467,
-0.010916792787611485,
-0.019585927948355675,
-0.016947804018855095,
0.018597694113850594,
0.014110910706222057,
0.025649873539805412,
-0.012329863384366035,
-0.04044388234615326,
-0.007320327218621969,
0.011013328097760677,
0.010501745156943798,
0.036404386162757874,
0.03281141072511673,
0.027703696861863136,
0.01656048744916916,
-0.01499518845230341,
0.01876079849898815,
0.03892005607485771,
0.002556494204327464,
-0.023995043709874153,
0.044474419206380844,
0.03699369356036186,
0.0019130390137434006,
0.020522188395261765,
0.04989925026893616,
0.04752805083990097,
0.023466527462005615,
-0.039836667478084564,
0.008972314186394215,
0.014722791500389576,
0.016568902879953384,
0.010614664293825626,
-0.016450554132461548,
0.01704130321741104,
-0.015142728574573994,
-0.04432200267910957,
-0.045641638338565826,
0.001290410989895463
] |
How to train a new language model from scratch using Transformers and Tokenizers | julien-c | February 14, 2020 | how-to-train | guide, nlp | https://huggingface.co/blog/how-to-train | TADA! ➡️ Your model has a page on https://huggingface.co/models and everyone can load it using AutoModel.from_pretrained("username/model_name"). If you want to take a look at models in different languages, check https://huggingface.co/models | [
0.055580127984285355,
-0.022484255954623222,
0.025987068191170692,
-0.024185150861740112,
0.07237397879362106,
0.06770715862512589,
0.05365786328911781,
0.060510728508234024,
-0.05999663472175598,
-0.005906953476369381,
-0.09811072051525116,
0.040375933051109314,
-0.006699665915220976,
0.03351078927516937,
-0.010016709566116333,
-0.06214548274874687,
0.02247346006333828,
-0.019217848777770996,
0.008079318329691887,
0.008390339091420174,
-0.012014434672892094,
-0.05594554543495178,
0.0374327078461647,
-0.032795511186122894,
-0.04772522300481796,
-0.05408110097050667,
0.06449185311794281,
0.05214574187994003,
-0.001518944394774735,
-0.0022633038461208344,
-0.10365453362464905,
-0.017714036628603935,
0.017978327348828316,
-0.02675248123705387,
-0.011031990870833397,
0.04363469034433365,
-0.11972932517528534,
0.03897429257631302,
0.03149927034974098,
-0.056941501796245575,
-0.03017113357782364,
-0.013571077026426792,
-0.050435151904821396,
0.08129856735467911,
0.01052361074835062,
-0.04983679577708244,
-0.21195779740810394,
0.06902433186769485,
0.002813815837725997,
-0.02233099937438965,
-0.04841519892215729,
0.03250914067029953,
-0.005963105708360672,
0.0011788582196459174,
0.015519428066909313,
-0.025296496227383614,
-0.008466728031635284,
-0.05024648830294609,
0.012514655478298664,
-0.05251414328813553,
0.08384085446596146,
0.09973005205392838,
-0.012006747536361217,
0.038976553827524185,
0.037617407739162445,
0.04261854663491249,
-0.008410275913774967,
-0.026204301044344902,
-0.020332949236035347,
-0.03950807824730873,
0.022319506853818893,
-0.06047254055738449,
0.0074270605109632015,
-0.0702020525932312,
-0.012767990119755268,
-0.04457942396402359,
-0.026906460523605347,
0.03968115150928497,
0.0212537981569767,
0.026017678901553154,
0.03400944173336029,
0.01690889149904251,
0.021458784118294716,
0.08813035488128662,
0.04514097422361374,
0.02181398682296276,
0.011984343640506268,
-0.024263951927423477,
-0.021319597959518433,
0.0379316546022892,
-0.016015736386179924,
-0.12072567641735077,
-0.010435410775244236,
-0.027134830132126808,
0.07200256735086441,
-0.03755083307623863,
0.041836757212877274,
0.043537721037864685,
0.003958906512707472,
-0.014875402674078941,
-0.03572818264365196,
-0.03803640231490135,
0.007685176096856594,
-0.04858437925577164,
-0.029215501621365547,
0.009658647701144218,
-0.016338041052222252,
-0.08452592045068741,
-0.025716429576277733,
-0.000338059791829437,
0.0003496856370475143,
-0.05244363471865654,
-0.007353258319199085,
0.026445744559168816,
-0.08233796060085297,
0.04183705896139145,
0.007939240895211697,
-0.009459538385272026,
0.03362838551402092,
0.019157271832227707,
0.01527820061892271,
0.0738847553730011,
0.01288150530308485,
0.023206323385238647,
0.06193171814084053,
0.09123778343200684,
0.006296417210251093,
0.02009275183081627,
-0.006758866831660271,
-0.04094713181257248,
0.04818875715136528,
-0.026142871007323265,
0.07820583134889603,
0.03398339822888374,
0.029462438076734543,
-0.02786402218043804,
-0.0005223847692832351,
-0.05597742274403572,
0.05124753341078758,
0.003319242736324668,
-0.05338358134031296,
0.047404903918504715,
-0.03491323068737984,
0.04662303999066353,
0.0807456448674202,
0.00762891536578536,
-0.06978306919336319,
0.04430816322565079,
-0.03374949470162392,
0.04450764134526253,
-0.07228667289018631,
0.07935048639774323,
0.01963147334754467,
-0.04252006486058235,
0.02016509510576725,
0.07125985622406006,
-0.035424623638391495,
-0.02120276913046837,
-0.040163759142160416,
-0.042254794389009476,
0.01806892268359661,
0.008296419866383076,
-0.049413759261369705,
0.02745446003973484,
0.0057984041050076485,
0.00999805424362421,
-0.03062429651618004,
0.015599406324326992,
0.039181046187877655,
-0.06649241596460342,
0.022324200719594955,
-0.05649816617369652,
0.08115167170763016,
-0.027021009474992752,
-0.012479259632527828,
0.04844105616211891,
0.04232005402445793,
-0.019266286864876747,
-0.013762942515313625,
-0.0008010903256945312,
-0.04514648765325546,
0.05665511265397072,
-0.011888319626450539,
0.008883431553840637,
0.05878652259707451,
-0.07279325276613235,
0.00858295802026987,
-0.007077778223901987,
-0.031036529690027237,
0.032708194106817245,
-0.05687713995575905,
-0.03585932031273842,
0.07007770240306854,
-0.030000830069184303,
0.03641095384955406,
-0.08281231671571732,
-0.033019423484802246,
0.10126926004886627,
0.007939383387565613,
0.061642710119485855,
0.05547904223203659,
-0.020691771060228348,
0.027902482077479362,
-0.04995262622833252,
-0.01572035253047943,
0.020323676988482475,
0.03707461059093475,
-0.05970838665962219,
0.050267137587070465,
0.005692680831998587,
0.03395845368504524,
-0.10745789855718613,
0.0601051039993763,
-0.0675077810883522,
0.00800949428230524,
-0.04385923221707344,
-0.037418682128190994,
0.02666889876127243,
-0.027980102226138115,
0.0037768955808132887,
0.2113065868616104,
-0.01474994421005249,
-0.01840846985578537,
-0.03741292655467987,
-0.06158322095870972,
0.09186708927154541,
0.054850831627845764,
0.06974774599075317,
0.08323350548744202,
-0.09796738624572754,
-0.050297219306230545,
-0.054528627544641495,
0.0009923620382323861,
0.056403059512376785,
0.010048113763332367,
-0.013408861123025417,
0.022342054173350334,
-0.04508616402745247,
0.009079765528440475,
0.02251031994819641,
0.015077593736350536,
-0.020500678569078445,
0.03286368399858475,
0.023810280486941338,
-0.03159109875559807,
-0.029273033142089844,
0.014775988645851612,
0.034954607486724854,
-0.09491167962551117,
-0.0028769292403012514,
-0.011676423251628876,
0.012593183666467667,
0.02352290041744709,
-0.023815665394067764,
0.029546238481998444,
0.008758916519582272,
-0.019049247726798058,
0.004918656311929226,
-0.02938043512403965,
0.09641057997941971,
0.03748982027173042,
-0.004728557541966438,
-0.052684567868709564,
-0.02502545155584812,
-0.04981790482997894,
-0.02640705555677414,
-0.007071193773299456,
0.0041029625572264194,
0.036002252250909805,
0.0015615127049386501,
0.02219543233513832,
-0.016320522874593735,
0.014135378412902355,
0.027817776426672935,
0.016902411356568336,
0.05183292552828789,
0.025578202679753304,
-0.011244517751038074,
-0.007637319155037403,
-0.0023751212283968925,
-0.0008128124172799289,
-0.014870170503854752,
0.03313954174518585,
0.03238474205136299,
0.015242730267345905,
-0.030238591134548187,
-0.011392750777304173,
-0.03204408288002014,
-0.040784865617752075,
0.03183905780315399,
0.015266705304384232,
0.04628869518637657,
0.005463412497192621,
-0.016849450767040253,
0.0036920299753546715,
-0.027500363066792488,
0.053507573902606964,
-0.0032818003091961145,
0.028338881209492683,
0.060032084584236145,
-0.011096439324319363,
0.002667309483513236,
0.007949474267661572,
0.0036206599324941635,
-0.008020433597266674,
0.036043282598257065,
0.00730204489082098,
0.01035055797547102,
-0.12457463890314102,
-0.015341944061219692,
0.021182846277952194,
-0.00418068515136838,
0.0008095763041637838,
-0.015390451066195965,
0.021608686074614525,
-0.0001680077548371628,
-0.011021028272807598,
0.016418620944023132,
-0.018917443230748177,
0.002601063810288906,
0.05305757746100426,
0.003004322526976466,
-0.042401425540447235,
-0.0029313478153198957,
-0.011788091622292995,
0.022369371727108955,
0.045550260692834854,
0.006815973203629255,
-0.03896030783653259,
0.02968086116015911,
-0.003742009634152055,
0.007507619448006153,
-0.018132423982024193,
0.008949818089604378,
0.01830228604376316,
0.005591969937086105,
0.032109335064888,
-0.029832182452082634,
-0.011455104686319828,
-0.005461474414914846,
-0.04058508574962616,
0.024488726630806923,
-0.024041613563895226,
0.01068928837776184,
-0.017934799194335938,
-0.003374987281858921,
0.012522054836153984,
0.02496560476720333,
-0.020045248791575432,
-0.013620087876915932,
0.015119579620659351,
-0.010439681820571423,
-0.01140559371560812,
-0.009212741628289223,
-0.015154310502111912,
0.0243149995803833,
0.03247072547674179,
-0.02053919993340969,
-0.021653415635228157,
-0.008547194302082062,
0.0398067869246006,
0.06032633036375046,
0.012740874662995338,
-0.025207825005054474,
0.024640394374728203,
0.03526639565825462,
0.017747845500707626,
-0.0033101586159318686,
-0.0407530702650547,
0.004365116357803345,
-0.01632457785308361,
-0.046342168003320694,
-0.06230326369404793,
0.034398358315229416,
-0.0039442796260118484,
0.023258347064256668,
-0.02118108980357647,
0.0566694512963295,
-0.025120696052908897,
0.02321016974747181,
-0.003770145820453763,
0.01960155740380287,
-0.021997325122356415,
0.002556271618232131,
-0.01819363608956337,
-0.04075842350721359,
0.06523463875055313,
0.007998757995665073,
-0.01722203753888607,
-0.0016519187483936548,
-0.03481971472501755,
-0.03133136406540871,
-0.0047397431917488575,
-0.015413357876241207,
0.044217005372047424,
0.0010091050062328577,
0.029466785490512848,
0.04459509626030922,
-0.007593173533678055,
0.006236230954527855,
0.03999530151486397,
-0.005604865960776806,
0.00010735285468399525,
0.0107987429946661,
0.021098732948303223,
0.0003611113061197102,
-0.008246975019574165,
0.0015705630648881197,
0.05922476947307587,
-0.013615641742944717,
-0.04731089621782303,
0.030867012217640877,
0.009059177711606026,
0.04613114520907402,
-0.03939606249332428,
-0.07658933848142624,
0.029280371963977814,
-0.03548477590084076,
-0.014987443573772907,
-0.047611117362976074,
0.0018047037301585078,
-0.025797339156270027,
0.022217677906155586,
0.04343115910887718,
-0.02682306244969368,
-0.0008054643403738737,
-0.044998809695243835,
0.019917206838726997,
-0.04564056918025017,
0.011198612861335278,
-0.002325050998479128,
-0.02997811883687973,
0.01680830307304859,
-0.007802486885339022,
0.02904200181365013,
0.016595566645264626,
-0.010708202607929707,
-0.026870636269450188,
-0.05083877965807915,
-0.013474496081471443,
0.01937403902411461,
0.004353940486907959,
0.008275359869003296,
0.0070509216748178005,
-0.006351381074637175,
0.01898699440062046,
0.028193071484565735,
-0.03991500288248062,
-0.01702756993472576,
-0.020076515153050423,
0.03277392312884331,
-0.009096878580749035,
0.044581979513168335,
0.009112930856645107,
-0.05094912648200989,
0.005033099092543125,
-0.03971412405371666,
0.005664479453116655,
0.03256098926067352,
0.0022310512140393257,
-0.05034933239221573,
0.050811588764190674,
0.034200720489025116,
0.0059630172327160835,
-0.013676517643034458,
0.038555797189474106,
0.0022453523706644773,
0.04043162241578102,
-0.040377177298069,
-0.01035419199615717,
-0.0076955645345151424,
0.042309194803237915,
-0.00701354444026947,
0.01707819104194641,
-0.022125568240880966,
-0.07046012580394745,
-0.02251209132373333,
0.016367945820093155,
-0.010796116665005684,
-0.01378512941300869,
0.0032159551046788692,
-0.02534753829240799,
-0.0068314871750772,
0.03326037898659706,
0.04801846668124199,
0.013918492943048477,
0.000893369666300714,
0.019171059131622314,
-0.03513607010245323,
0.026508033275604248,
0.02278710901737213,
-0.016245370730757713,
-0.017357567325234413,
0.019359098747372627,
0.03829338401556015,
0.06363868713378906,
0.023010211065411568,
0.01975199766457081,
-0.009461045265197754,
0.001029900275170803,
0.013382546603679657,
-0.03541911393404007,
-0.005110403522849083,
-0.01380250882357359,
0.0335705541074276,
0.01343412697315216,
-0.01194815058261156,
-0.019774457439780235,
0.015219707041978836,
0.05791494622826576,
-0.034362953156232834,
-0.024937670677900314,
0.02884729579091072,
0.010541127994656563,
0.005233748350292444,
-0.01579921878874302,
0.035017985850572586,
-0.023377712815999985,
-0.016919255256652832,
-0.02259961888194084,
0.013486679643392563,
-0.019481807947158813,
0.0021077534183859825,
-0.026020580902695656,
-0.0321766696870327,
0.029144998639822006,
0.03073280118405819,
0.05403772369027138,
0.009714186191558838,
-0.014468871057033539,
-0.03887540102005005,
-0.004436985123902559,
0.04480826109647751,
-0.05094096437096596,
0.013535810634493828,
0.036572206765413284,
-0.0004902526852674782,
0.022381916642189026,
0.019366832450032234,
-0.0010994084877893329,
0.013595652766525745,
0.0011497177183628082,
0.02532847598195076,
-0.006009179167449474,
-0.048900362104177475,
0.008976849727332592,
0.01828630268573761,
-0.00827043317258358,
0.024235712364315987,
-0.036167409271001816,
-0.0362832173705101,
0.0019339644350111485,
-0.04108280688524246,
0.032701414078474045,
0.06401196122169495,
-0.007791673298925161,
0.030034396797418594,
0.029272980988025665,
0.015935132279992104,
0.009260154329240322,
-0.017908379435539246,
0.004447776824235916,
0.008434268645942211,
0.023096684366464615,
-0.025836912915110588,
0.0199739933013916,
0.007781088352203369,
0.00361558236181736,
0.03338320553302765,
-0.04965750128030777,
-0.01714344695210457,
0.019731929525732994,
-0.0032896443735808134,
0.011079364456236362,
-0.013311251066625118,
-0.03201541304588318,
-0.012741854414343834,
0.02793612889945507,
0.01091515552252531,
0.03538339212536812,
0.003260569414123893,
-0.007068524602800608,
0.0003553453425411135,
-0.022079624235630035,
0.01583268493413925,
0.05904991179704666,
-0.029070647433400154,
0.07075410336256027,
0.005469988565891981,
0.011086462996900082,
0.017359500750899315,
0.014738389290869236,
0.014195806346833706,
-0.01037860382348299,
0.053625818341970444,
0.017837313935160637,
0.04285522177815437,
0.02622409723699093,
0.012041108682751656,
-0.027069509029388428,
-0.029465971514582634,
-0.005210562609136105,
-0.00881681963801384,
0.03663061931729317,
0.02296878769993782,
-0.024137424305081367,
0.04198051244020462,
-0.0440865084528923,
0.04411407187581062,
0.016729213297367096,
0.05130300670862198,
-0.010488904081285,
0.006682913284748793,
0.0323854461312294,
0.004603451583534479,
0.012899115681648254,
0.04683876037597656,
0.011801889166235924,
-0.004494285210967064,
0.030395863577723503,
0.012239867821335793,
0.015654170885682106,
-0.02520875632762909,
0.01350746676325798,
0.035910338163375854,
-0.03514387458562851,
-0.038412127643823624,
0.0019336299737915397,
0.005203393753618002,
-0.01738686114549637,
-0.03486540541052818,
0.014298493973910809,
-0.04193289950489998,
-0.012932423502206802,
-0.018498407676815987,
0.019066449254751205,
0.0018109750235453248,
-0.017288167029619217,
0.01613539643585682,
0.03379521146416664,
0.03057088330388069,
-0.013225767761468887,
0.00849623791873455,
0.01977440156042576,
0.02778312750160694,
0.009782228618860245,
0.010443524457514286,
-0.030727054923772812,
-0.03903624415397644,
-0.03542884439229965,
-0.02637162245810032,
0.012947977520525455,
0.0039957198314368725,
0.012241571210324764,
0.015849245712161064,
0.0351872518658638,
0.0054069035686552525,
0.03135156258940697,
0.02321789599955082,
-0.009229831397533417,
-0.017646627500653267,
0.009129388257861137,
-0.0303359255194664,
-0.015114122070372105,
-0.03320399671792984,
-0.03768877685070038,
0.02720329724252224,
-0.027906635776162148,
-0.007407524157315493,
0.04452349990606308,
0.013565254397690296,
-0.032867755740880966,
-0.05055167153477669,
0.02094007283449173,
-0.03044528141617775,
-0.040197305381298065,
0.05868469178676605,
0.009444449096918106,
-0.0180825088173151,
0.022364582866430283,
-0.0004811922262888402,
0.0026540348771959543,
-0.020001275464892387,
0.00020542995480354875,
0.023683536797761917,
-0.02577192708849907,
-0.010965126566588879,
-0.02076292224228382,
0.06499750912189484,
0.017039891332387924,
0.03949524089694023,
0.05141620710492134,
0.01893201842904091,
-0.01907898671925068,
-0.02334984764456749,
0.02407427690923214,
-0.04080517590045929,
0.022022560238838196,
-0.02252466045320034,
-0.0555567629635334,
-0.028935506939888,
-0.023180488497018814,
-0.013906608335673809,
-0.03703926131129265,
-0.05326545238494873,
-0.03482339531183243,
-0.023619072511792183,
-0.012294427491724491,
-0.030146636068820953,
0.027223801240324974,
0.0656748116016388,
0.013351388275623322,
-0.0016668782336637378,
0.029925039038062096,
0.012301581911742687,
0.01866094022989273,
-0.022933736443519592,
0.005667242221534252,
0.03214435279369354,
0.024876412004232407,
-0.003671275684610009,
0.0020938809029757977,
0.037975214421749115,
-0.004600947257131338,
-0.06034156307578087,
0.0068686953745782375,
0.015013528987765312,
0.011371933855116367,
-0.04598436504602432,
-0.025457095354795456,
0.009782591834664345,
-0.014543539844453335,
0.048847347497940063,
-0.004824032075703144,
-0.012173631228506565,
-0.02689260058104992,
0.03732660040259361,
-0.055992912501096725,
0.017514429986476898,
-0.023371636867523193,
0.025307191535830498,
0.06443489342927933,
0.006903537083417177,
0.017893247306346893,
0.01708579622209072,
-0.018234029412269592,
0.005068272352218628,
0.022656099870800972,
-0.029021091759204865,
-0.030393363907933235,
-0.007195151876658201,
0.006126766093075275,
-0.015020601451396942,
-0.03606467694044113,
0.006870255805552006,
-0.00010006162483477965,
-0.0461251363158226,
-0.022061757743358612,
0.0033613136038184166,
0.009626805782318115,
0.0008275542641058564,
-0.0023174327798187733,
-0.008703866973519325,
0.05524864420294762,
0.01121719554066658,
-0.025739923119544983,
-0.03285115212202072,
0.028806038200855255
] |
How to train a new language model from scratch using Transformers and Tokenizers | julien-c | February 14, 2020 | how-to-train | guide, nlp | https://huggingface.co/blog/how-to-train | 3. Train a language model from scratch Update: The associated Colab notebook uses our new Trainer directly, instead of through a script. Feel free to pick the approach you like best. We will now train our language model using the run_language_modeling.py script from transformers (newly renamed from run_lm_finetuning.py as it now supports training from scratch more seamlessly). Just remember to leave --model_name_or_path to None to train from scratch vs. from an existing model or checkpoint. > We’ll train a RoBERTa-like model, which is a BERT-like with a couple of changes (check the documentation for more details). As the model is BERT-like, we’ll train it on a task of Masked language modeling, i.e. the predict how to fill arbitrary tokens that we randomly mask in the dataset. This is taken care of by the example script. We just need to do two things: - implement a simple subclass of Dataset that loads data from our text files - Depending on your use case, you might not even need to write your own subclass of Dataset, if one of the provided examples (TextDataset and LineByLineTextDataset) works – but there are lots of custom tweaks that you might want to add based on what your corpus looks like. - Choose and experiment with different sets of hyperparameters. Here’s a simple version of our EsperantoDataset. python from torch.utils.data import Dataset class EsperantoDataset(Dataset): def __init__(self, evaluate: bool = False): tokenizer = ByteLevelBPETokenizer( "./models/EsperBERTo-small/vocab.json", "./models/EsperBERTo-small/merges.txt", ) tokenizer._tokenizer.post_processor = BertProcessing( ("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")), ) tokenizer.enable_truncation(max_length=512) # or use the RobertaTokenizer from `transformers` directly. self.examples = [] src_files = Path("./data/").glob("*-eval.txt") if evaluate else Path("./data/").glob("*-train.txt") for src_file in src_files: print("🔥", src_file) lines = src_file.read_text(encoding="utf-8").splitlines() self.examples += [x.ids for x in tokenizer.encode_batch(lines)] def __len__(self): return len(self.examples) def __getitem__(self, i): # We’ll pad at the batch level. return torch.tensor(self.examples[i]) If your dataset is very large, you can opt to load and tokenize examples on the fly, rather than as a preprocessing step. Here is one specific set of hyper-parameters and arguments we pass to the script: --output_dir ./models/EsperBERTo-small-v1 --model_type roberta --mlm --config_name ./models/EsperBERTo-small --tokenizer_name ./models/EsperBERTo-small --do_train --do_eval --learning_rate 1e-4 --num_train_epochs 5 --save_total_limit 2 --save_steps 2000 --per_gpu_train_batch_size 16 --evaluate_during_training --seed 42 As usual, pick the largest batch size you can fit on your GPU(s). 🔥🔥🔥 Let’s start training!! 🔥🔥🔥 Here you can check our Tensorboard for one particular set of hyper-parameters: > Our example scripts log into the Tensorboard format by default, under runs/. Then to view your board just run tensorboard dev upload --logdir runs – this will set up tensorboard.dev, a Google-managed hosted version that lets you share your ML experiment with anyone. | [
0.031237203627824783,
-0.037789493799209595,
-0.04114155471324921,
0.037951283156871796,
0.006213490851223469,
0.0643656924366951,
0.011316786520183086,
0.030382582917809486,
0.01253008283674717,
0.0035449606366455555,
-0.07934226095676422,
0.055028147995471954,
0.0010401627514511347,
0.07660318911075592,
0.033848632127046585,
-0.033169809728860855,
0.04311578348278999,
0.0016742992447689176,
0.014681546948850155,
0.017206933349370956,
-0.028571924194693565,
-0.0280024204403162,
0.07385149598121643,
0.01173677109181881,
0.02944355644285679,
-0.05556053668260574,
0.04933551698923111,
0.010783634148538113,
-0.035837266594171524,
0.030267857015132904,
-0.11259040236473083,
0.016223004087805748,
0.0022370663937181234,
0.00702663604170084,
-0.0359736792743206,
0.04762088507413864,
-0.03727484866976738,
0.007985271513462067,
0.03629319369792938,
0.0020756146404892206,
-0.04165968298912048,
0.03587576374411583,
0.00960609782487154,
0.08795956522226334,
-0.03846601024270058,
-0.023027140647172928,
-0.1658138632774353,
0.07169082015752792,
-0.03738590329885483,
-0.08062146604061127,
-0.04484798014163971,
0.07985518127679825,
0.02384115755558014,
-0.015995074063539505,
-0.025943731889128685,
0.0020365193486213684,
0.03846295550465584,
-0.09239078313112259,
0.006803237367421389,
0.007657210808247328,
0.026035765185952187,
0.015107673592865467,
0.003886716440320015,
-0.006025414913892746,
0.01610676571726799,
0.004625596571713686,
-0.05116524174809456,
0.018506495282053947,
-0.06006926670670509,
-0.03208431974053383,
-0.011563954874873161,
-0.03608326241374016,
-0.05268193036317825,
-0.0323462076485157,
-0.014228139072656631,
-0.04915250837802887,
-0.018323708325624466,
0.019333533942699432,
0.031080661341547966,
0.059192076325416565,
0.004570998717099428,
0.005773273762315512,
0.03709358349442482,
0.029649734497070312,
0.07773183286190033,
0.03749944269657135,
0.022610820829868317,
-0.02824086882174015,
-0.053128696978092194,
0.042178984731435776,
-0.026716038584709167,
-0.10894149541854858,
-0.025545280426740646,
0.011436398141086102,
0.1022963747382164,
-0.008812857791781425,
-0.0338984876871109,
0.03492743894457817,
-0.01948687620460987,
-0.06111718341708183,
-0.016435809433460236,
-0.08536256849765778,
-0.016212843358516693,
-0.0343475304543972,
-0.0839521735906601,
0.05992020294070244,
-0.008972449228167534,
-0.0024008508771657944,
-0.010179723612964153,
-0.01691557466983795,
0.016980649903416634,
-0.05706898495554924,
-0.05367189645767212,
0.10499662905931473,
-0.12311018258333206,
-0.010906994342803955,
0.02209329791367054,
0.031062036752700806,
-0.03568444028496742,
0.02279643528163433,
-0.017154550179839134,
0.044116947799921036,
0.06329550594091415,
0.0023472777102142572,
-0.04177117720246315,
0.09606767445802689,
-0.024590739980340004,
0.035273477435112,
0.031809404492378235,
0.00908801518380642,
0.06284056603908539,
-0.030553093180060387,
0.07347062230110168,
-0.0015214629238471389,
0.022303521633148193,
0.014879402704536915,
0.03723016753792763,
-0.033867061138153076,
0.01587236486375332,
0.024100402370095253,
-0.040910352021455765,
0.07883943617343903,
-0.06674908101558685,
0.0251588337123394,
0.03323596715927124,
-0.012378118000924587,
-0.07588613778352737,
0.10293890535831451,
0.016043297946453094,
0.04866733402013779,
-0.10023130476474762,
0.05105360597372055,
-0.012603795155882835,
-0.04094782471656799,
0.032846324145793915,
0.06799205392599106,
-0.06970395147800446,
-0.010138402692973614,
-0.0461445227265358,
-0.02146236225962639,
-0.01198427565395832,
0.054070714861154556,
-0.09199400991201401,
-0.010107486508786678,
0.01605912484228611,
-0.03339741379022598,
-0.007284615654498339,
0.07442121207714081,
0.03056117706000805,
0.060632042586803436,
0.0679776668548584,
-0.007874567061662674,
0.07312066107988358,
0.01614762656390667,
0.018997879698872566,
0.007760696113109589,
0.024970991536974907,
0.029914861544966698,
0.015025590546429157,
0.0037163018714636564,
-0.04639919474720955,
0.037859413772821426,
0.005766001529991627,
0.04382077232003212,
0.019884498789906502,
-0.06891394406557083,
0.008877668529748917,
-0.05467435345053673,
-0.0001555156341055408,
0.039196450263261795,
0.014907380566000938,
0.013387355022132397,
0.08214227110147476,
-0.0185121838003397,
0.07262511551380157,
-0.06950938701629639,
0.015555479563772678,
0.07990362495183945,
0.019830793142318726,
0.0677834078669548,
0.04517947882413864,
-0.01612946204841137,
-0.00289649935439229,
-0.014953237026929855,
0.04626123607158661,
-0.01662672869861126,
0.03705079108476639,
-0.0725356936454773,
0.04141750931739807,
-0.009248758666217327,
-0.0194497499614954,
-0.0685003250837326,
0.04597487300634384,
-0.048911742866039276,
0.01310016680508852,
-0.053363390266895294,
-0.02549506537616253,
0.01628562994301319,
0.03503917157649994,
0.004593502730131149,
0.16617567837238312,
-0.09452113509178162,
-0.0028528966940939426,
-0.023052917793393135,
-0.047143448144197464,
0.02469358593225479,
0.0519067719578743,
0.04020104557275772,
0.08742327988147736,
-0.05799887329339981,
-0.05100012198090553,
-0.09860319644212723,
0.0462314747273922,
0.022393472492694855,
-0.06529254466295242,
-0.02296573854982853,
-0.026962952688336372,
0.006857771426439285,
-0.02560182847082615,
-0.017956571653485298,
0.016711806878447533,
-0.023660430684685707,
-0.04149841144680977,
0.015489715151488781,
-0.013433939777314663,
0.04638976231217384,
0.07931686192750931,
0.02235409803688526,
0.021454203873872757,
0.01205788180232048,
-0.017282739281654358,
0.02557210437953472,
-0.009407788515090942,
-0.03876395523548126,
-0.002939980011433363,
0.0589151494204998,
0.01053844764828682,
0.00022241874830797315,
0.0033941648434847593,
0.04692979156970978,
-0.02017349749803543,
-0.025008825585246086,
-0.05203080177307129,
-0.01282286923378706,
-0.004646813031286001,
-0.05748908966779709,
-0.008611193858087063,
0.011420968919992447,
-0.010659400373697281,
-0.006059540435671806,
0.01585518755018711,
-0.0228602085262537,
0.01606624759733677,
0.028968671336770058,
0.007785093504935503,
0.07507412880659103,
0.009216883219778538,
-0.03624489903450012,
-0.054304324090480804,
-0.027835138142108917,
-0.008750868029892445,
-0.024680236354470253,
0.025068385526537895,
0.047902245074510574,
-0.0031214815098792315,
0.019989319145679474,
-0.02582598105072975,
-0.031319085508584976,
0.01187230460345745,
0.03971346840262413,
-0.018936732783913612,
0.03560865297913551,
-0.008715745992958546,
-0.027289418503642082,
-0.027684127911925316,
0.0028103620279580355,
0.009777022525668144,
-0.015351745299994946,
0.014413568191230297,
0.017333997413516045,
-0.0527954064309597,
0.015099906362593174,
-0.002516264794394374,
-0.011239519342780113,
-0.013332154601812363,
0.0006814123480580747,
0.04878261685371399,
0.01650824397802353,
-0.08447958528995514,
-0.010502220131456852,
0.007312154397368431,
0.0011075285729020834,
0.014907428994774818,
-0.04176982492208481,
0.009231938049197197,
-0.01460573635995388,
-0.07299422472715378,
0.010357308201491833,
-0.009027141146361828,
0.01848718523979187,
0.008305304683744907,
0.019004909321665764,
-0.019370002672076225,
-0.02429467812180519,
-0.04890250787138939,
0.0006978926830925047,
0.006416009273380041,
0.03116871789097786,
-0.04556471109390259,
0.02335226535797119,
-0.0022778394632041454,
0.033385492861270905,
-0.0011242559412494302,
0.007224253378808498,
-0.003229799447581172,
0.04612145200371742,
0.011637981049716473,
0.01044072862714529,
-0.02446599490940571,
-0.016692154109477997,
0.02046143263578415,
0.02136237360537052,
-0.03841172903776169,
0.02074519731104374,
0.029204513877630234,
0.044169869273900986,
-0.031331028789281845,
0.03425484895706177,
-0.0163374375551939,
-0.006224543321877718,
-0.004365164320915937,
-0.0422603040933609,
0.009416217915713787,
-0.022473683580756187,
-0.022510461509227753,
-0.03502795100212097,
-0.0013423068448901176,
-0.040535613894462585,
-0.009374438785016537,
0.004251355770975351,
0.014568120241165161,
0.0514490082859993,
0.01886366680264473,
0.013860736973583698,
0.011143778450787067,
0.03130296245217323,
0.0384470634162426,
0.0017091938061639667,
-0.019672244787216187,
0.014433835633099079,
-0.039849184453487396,
-0.016197901219129562,
-0.035359591245651245,
0.03767550364136696,
0.03510291501879692,
-0.0008516747620888054,
-0.028725698590278625,
0.00984185840934515,
-0.01286937203258276,
0.05505182966589928,
0.005527185741811991,
0.0003423857851885259,
-0.0072959186509251595,
-0.0071973358280956745,
-0.027096837759017944,
-0.007702578324824572,
0.046263083815574646,
0.02323784865438938,
-0.02184555120766163,
-0.0017149785999208689,
-0.045032888650894165,
-0.01697678677737713,
0.00017989570915233344,
-0.028785133734345436,
-0.013224538415670395,
-0.07106699794530869,
0.00004151183748035692,
0.0286378413438797,
0.012805641628801823,
-0.008193514309823513,
-0.004774169530719519,
0.007979865185916424,
0.0021867260802537203,
-0.00406134407967329,
-0.014618724584579468,
-0.014188981615006924,
-0.008692066185176373,
-0.016790302470326424,
0.030328337103128433,
-0.054589029401540756,
0.02005789987742901,
0.02334294281899929,
0.025344235822558403,
0.05512421205639839,
-0.043534018099308014,
-0.02507672645151615,
-0.005038432311266661,
-0.026669399812817574,
0.019433334469795227,
0.045005522668361664,
0.0028950993437319994,
0.018126757815480232,
0.042043287307024,
0.05142057314515114,
-0.00904057640582323,
-0.024486592039465904,
0.02112908661365509,
0.012483257800340652,
-0.04039432853460312,
-0.017155803740024567,
0.010903139598667622,
0.0033504869788885117,
0.023594200611114502,
-0.022052621468901634,
0.04092495143413544,
0.056545134633779526,
-0.014146916568279266,
0.004917223937809467,
-0.04320447891950607,
-0.04509343206882477,
0.007757829502224922,
0.009079616516828537,
0.015221641398966312,
0.013742746785283089,
-0.014063708484172821,
-0.012787922285497189,
-0.016469353809952736,
-0.028999654576182365,
-0.04793568328022957,
-0.018624484539031982,
0.042989976704120636,
-0.04593752324581146,
0.01866304688155651,
-0.00046305227442644536,
-0.011271627619862556,
-0.028663456439971924,
-0.004050613380968571,
-0.0051058209501206875,
0.039325911551713943,
0.017778584733605385,
-0.03579993173480034,
0.00533407274633646,
0.02489531971514225,
-0.014838027767837048,
0.009035410359501839,
0.06216372177004814,
0.027681756764650345,
0.05658210813999176,
0.010409326292574406,
0.03143703565001488,
-0.016016816720366478,
0.03487003967165947,
0.035921890288591385,
-0.010855374857783318,
-0.00782802328467369,
-0.06755886971950531,
0.011308628134429455,
0.014598493464291096,
0.0005873374757356942,
0.011222912929952145,
0.03273656964302063,
-0.024498332291841507,
0.03227541595697403,
0.05042770504951477,
0.03576282784342766,
0.01019694097340107,
-0.07168033719062805,
0.016171330586075783,
-0.014438658021390438,
-0.011361366137862206,
-0.0007398112793453038,
0.01935344561934471,
-0.004909079521894455,
0.0329011008143425,
0.047624558210372925,
0.04343258962035179,
0.009408070705831051,
0.009209495969116688,
-0.011559093371033669,
-0.01932082138955593,
0.01571866124868393,
-0.03802035376429558,
0.017249228432774544,
-0.017554106190800667,
-0.06129438802599907,
0.02583332546055317,
-0.04252387955784798,
-0.012221267446875572,
0.0026529678143560886,
0.022724833339452744,
-0.02707306295633316,
-0.005261264741420746,
0.07458116859197617,
-0.0020008310675621033,
-0.04546637460589409,
-0.025276565924286842,
-0.004593859892338514,
-0.024715008214116096,
-0.008700492791831493,
-0.01890914887189865,
0.0007085484685376287,
-0.008339053951203823,
-0.0290216077119112,
-0.011541672050952911,
0.013150024227797985,
-0.008765306323766708,
0.026031138375401497,
0.04976004362106323,
-0.009546888992190361,
-0.013524270616471767,
-0.030677059665322304,
-0.012830947525799274,
0.033780574798583984,
-0.042772550135850906,
0.014550727792084217,
0.06275449693202972,
0.0013236482627689838,
0.018951846286654472,
0.054501648992300034,
0.004727655090391636,
0.017028531059622765,
0.055192917585372925,
-0.024792831391096115,
-0.07006710022687912,
-0.030635742470622063,
0.0237803403288126,
0.04216876998543739,
-0.035698212683200836,
-0.019069921225309372,
-0.031078200787305832,
-0.023366011679172516,
-0.0013757447013631463,
-0.04181967303156853,
0.03251035138964653,
0.047667380422353745,
0.0007161860121414065,
0.050746481865644455,
0.0188148096203804,
-0.0005410159355960786,
0.0005110892234370112,
-0.021955307573080063,
0.01911822520196438,
0.028601480647921562,
0.008223148062825203,
0.021924512460827827,
-0.0017846187110990286,
0.004433714784681797,
0.011606375686824322,
0.02731945365667343,
-0.07858648896217346,
0.03507135808467865,
0.047355230897665024,
-0.03134870529174805,
0.004710305016487837,
0.015792736783623695,
-0.041018255054950714,
-0.025261135771870613,
-0.003543868660926819,
0.05787060782313347,
0.01643259823322296,
-0.038410257548093796,
-0.0007263626903295517,
0.00489283911883831,
-0.04129472374916077,
0.0046501378528773785,
0.053469885140657425,
-0.03925113007426262,
0.0730295181274414,
0.019107280299067497,
-0.015047864988446236,
0.02261737920343876,
0.015902288258075714,
-0.004486143589019775,
-0.0056107621639966965,
0.040935974568128586,
0.052593689411878586,
-0.011815664358437061,
0.010903416201472282,
-0.026561494916677475,
-0.020132800564169884,
-0.03605842590332031,
-0.015846865251660347,
-0.032815854996442795,
-0.010145445354282856,
0.0639529898762703,
-0.014056584797799587,
-0.029319195076823235,
0.02225944586098194,
0.04842614009976387,
0.058530405163764954,
0.04892057925462723,
-0.018202707171440125,
0.048735361546278,
0.046245161443948746,
0.016304289922118187,
-0.0016286992467939854,
0.04000835120677948,
0.0014979841653257608,
0.00477225286886096,
0.04351799935102463,
0.03981402888894081,
0.01352537702769041,
0.04177330434322357,
0.0012777450028806925,
0.023489590734243393,
-0.019581900909543037,
-0.03893400728702545,
0.020771050825715065,
-0.002056465018540621,
-0.007844050414860249,
-0.012620826251804829,
0.007815548218786716,
-0.04300650954246521,
-0.0012568967649713159,
-0.02344839833676815,
-0.02900680899620056,
-0.031309448182582855,
-0.027563897892832756,
-0.028392469510436058,
0.019146401435136795,
0.012922218069434166,
-0.041718535125255585,
-0.002829723758623004,
-0.027383003383874893,
-0.027066567912697792,
-0.011815905570983887,
-0.016762910410761833,
-0.028563588857650757,
-0.024920813739299774,
-0.03597060963511467,
-0.03802233934402466,
0.0008620754815638065,
-0.02591511234641075,
-0.030721573159098625,
-0.024596303701400757,
0.0015620611375197768,
-0.026530183851718903,
0.016276096925139427,
0.008791433647274971,
0.009208871982991695,
-0.02771843411028385,
0.01336628757417202,
-0.01274939626455307,
-0.05581801012158394,
0.0524318628013134,
-0.055532392114400864,
0.004958357661962509,
0.0030786858405917883,
0.0353177934885025,
0.03678376227617264,
0.0594167523086071,
0.006846324075013399,
-0.05825873464345932,
0.009073515422642231,
0.0283212810754776,
-0.047075141221284866,
0.04497300833463669,
0.013260932639241219,
0.024646399542689323,
0.004628293216228485,
-0.01647757552564144,
-0.0037733360659331083,
-0.007995454594492912,
-0.018471544608473778,
0.037279415875673294,
0.015149736776947975,
-0.041653405874967575,
-0.013089941814541817,
0.0208510160446167,
-0.00010020494664786384,
-0.008500187657773495,
0.05299593135714531,
-0.018274011090397835,
0.00699451332911849,
-0.019909020513296127,
0.05134199187159538,
-0.030054718255996704,
-0.0028910476248711348,
-0.03935556858778,
-0.062134671956300735,
-0.0341356135904789,
-0.022619785740971565,
-0.03080088458955288,
0.03331691026687622,
-0.03330347314476967,
-0.027048306539654732,
-0.06302658468484879,
-0.016575144603848457,
0.0000781478374847211,
0.017028972506523132,
0.049993276596069336,
0.026297202333807945,
0.003118139458820224,
0.02758674882352352,
-0.021438954398036003,
0.031095169484615326,
-0.01528092473745346,
-0.014552854001522064,
0.07075881958007812,
0.022975625470280647,
-0.009164029732346535,
0.02231595851480961,
-0.005913932342082262,
0.004459037445485592,
-0.020550992339849472,
-0.02034052275121212,
-0.03516080230474472,
0.009680300951004028,
-0.024326033890247345,
0.02924797683954239,
0.027674149721860886,
-0.032468874007463455,
-0.0023629621136933565,
0.033550649881362915,
-0.011024581268429756,
0.004044988192617893,
0.019873814657330513,
-0.06282096356153488,
-0.03351442515850067,
-0.024288881570100784,
-0.045913033187389374,
0.013780687935650349,
0.00460267998278141,
0.0507018119096756,
-0.006236565299332142,
-0.037597570568323135,
-0.00886413361877203,
0.024103641510009766,
-0.01820063591003418,
-0.029655950143933296,
0.0008996182004921138,
0.024877769872546196,
-0.02111496403813362,
0.010605131275951862,
0.03113250434398651,
0.04160277917981148,
0.022973569110035896,
-0.014221169985830784,
0.01710015907883644,
0.029606720432639122,
0.0012027384946122766,
0.010665079578757286,
-0.021193983033299446,
0.033391647040843964,
0.007115074899047613,
-0.002308268565684557,
-0.02332119643688202,
0.031201617792248726
] |
How to train a new language model from scratch using Transformers and Tokenizers | julien-c | February 14, 2020 | how-to-train | guide, nlp | https://huggingface.co/blog/how-to-train | Thank you! | [
0.03582184761762619,
0.014917245134711266,
0.1064121276140213,
0.013955991715192795,
0.1340298056602478,
0.042345672845840454,
0.030655426904559135,
0.04903286695480347,
-0.032038137316703796,
-0.09784821420907974,
-0.02339094690978527,
0.03995697572827339,
-0.01871742494404316,
0.0024023670703172684,
0.0006893304525874555,
0.0617804229259491,
0.0417938306927681,
-0.004533983767032623,
0.01230056956410408,
0.008676229976117611,
-0.01241267193108797,
-0.040559038519859314,
0.06075572595000267,
0.01683993451297283,
0.005108661018311977,
-0.014932291582226753,
0.012357850559055805,
-0.014096085913479328,
-0.055145129561424255,
0.0543329231441021,
-0.008427169173955917,
0.004302592948079109,
0.059741899371147156,
-0.008708610199391842,
-0.009945407509803772,
0.003799373283982277,
-0.06482046097517014,
-0.003476005280390382,
-0.05609647557139397,
-0.04729646071791649,
0.004935006145387888,
-0.06463637202978134,
-0.007793728727847338,
0.042337629944086075,
-0.03129434213042259,
-0.0009785478468984365,
-0.29562750458717346,
0.07023068517446518,
-0.025315143167972565,
-0.001674689119681716,
-0.02686641737818718,
0.006284052040427923,
0.014243711717426777,
-0.009904075413942337,
0.04243120178580284,
0.012484178878366947,
0.029250983148813248,
-0.050916437059640884,
-0.014655322767794132,
-0.08483218401670456,
0.07239583134651184,
-0.009143790230154991,
0.0034283034037798643,
0.00941845215857029,
0.041007183492183685,
0.06301959604024887,
-0.005770291667431593,
0.05021220073103905,
-0.034143559634685516,
-0.011885539628565311,
0.03500832989811897,
-0.026511922478675842,
-0.02473149076104164,
-0.02385031059384346,
0.06414429843425751,
-0.047303829342126846,
-0.06465610861778259,
0.02507847175002098,
0.06394754350185394,
0.08407402783632278,
-0.017913062125444412,
-0.014791185967624187,
0.10802043974399567,
0.09417229890823364,
0.00023449776927009225,
-0.050016555935144424,
0.05866439640522003,
-0.048261094838380814,
0.013923556543886662,
-0.012416881509125233,
-0.04495321586728096,
-0.0744595155119896,
0.03316996619105339,
0.044435303658246994,
0.022805558517575264,
-0.05245215445756912,
0.0667240172624588,
-0.0031489890534430742,
0.04697617515921593,
0.0037226604763418436,
-0.03637048974633217,
-0.0031272091437131166,
-0.019406115636229515,
-0.03937055915594101,
-0.04289316013455391,
-0.007052770350128412,
-0.024983223527669907,
-0.05621364712715149,
-0.048461008816957474,
0.03735025227069855,
-0.011579299345612526,
0.05300365388393402,
0.0486593022942543,
-0.02725832909345627,
-0.04552583396434784,
0.072946697473526,
0.01741175912320614,
-0.006442380137741566,
0.008107380010187626,
0.02822970226407051,
0.0029637725092470646,
0.1124928668141365,
0.07217659801244736,
0.038784172385931015,
0.03856651484966278,
-0.006402693688869476,
0.02524460293352604,
0.06069929152727127,
-0.09286141395568848,
-0.03841105476021767,
0.01355647761374712,
-0.006142187863588333,
0.029644068330526352,
-0.023899998515844345,
-0.051160458475351334,
-0.050050169229507446,
-0.011739067733287811,
-0.0021058754064142704,
0.022122908383607864,
0.005026291590183973,
-0.002326815389096737,
0.041919611394405365,
-0.01462602149695158,
0.06703659147024155,
0.035924363881349564,
-0.0369182787835598,
-0.023609386757016182,
0.03627453371882439,
-0.011771014891564846,
-0.014631667174398899,
0.018099837005138397,
0.07838220149278641,
-0.029327524825930595,
-0.06164199113845825,
-0.014446052722632885,
0.04670325666666031,
0.02239629440009594,
0.02085002139210701,
-0.10044771432876587,
-0.02109968475997448,
0.03815990686416626,
0.017587989568710327,
0.005013604648411274,
0.01053282804787159,
0.046193886548280716,
-0.02653166465461254,
0.025425951927900314,
-0.00830328743904829,
-0.02870338037610054,
-0.09198840707540512,
-0.02413547784090042,
0.019643625244498253,
0.0570317804813385,
-0.018178269267082214,
-0.07989450544118881,
0.02891545742750168,
0.07349969446659088,
0.033506229519844055,
0.01200388465076685,
0.00986540224403143,
-0.043309397995471954,
0.03559517487883568,
0.0019230105681344867,
0.01934731751680374,
0.022442687302827835,
-0.01963353529572487,
0.055426158010959625,
-0.021146049723029137,
-0.018151363357901573,
0.049007516354322433,
-0.14430227875709534,
-0.062240052968263626,
0.11569830030202866,
-0.01593109779059887,
-0.002424286212772131,
-0.0743061751127243,
-0.0222026314586401,
0.10166456550359726,
0.05785377696156502,
0.061047766357660294,
0.03015666827559471,
0.042044468224048615,
0.09240956604480743,
-0.03366287425160408,
-0.04850507527589798,
0.03674739971756935,
0.06902584433555603,
-0.019860263913869858,
0.004290353506803513,
0.01077384501695633,
-0.05652894452214241,
-0.07234175503253937,
0.0568414069712162,
-0.05724729597568512,
-0.02094268426299095,
-0.007383502554148436,
-0.005549504421651363,
-0.033594463020563126,
0.022338151931762695,
-0.06408701837062836,
0.06695074588060379,
0.019857235252857208,
-0.03113418258726597,
0.03934876248240471,
-0.030552569776773453,
0.10304394364356995,
0.07441404461860657,
-0.0029631892684847116,
0.07109291851520538,
-0.07545079290866852,
-0.027203772217035294,
-0.01022458914667368,
-0.014724415726959705,
0.08769144862890244,
0.017062945291399956,
0.05422892048954964,
0.005131077952682972,
-0.06382536143064499,
0.029395489022135735,
-0.008082274347543716,
0.012783602811396122,
0.010784941725432873,
-0.01719078980386257,
0.0426718145608902,
-0.03554153814911842,
-0.05092940479516983,
0.03630925342440605,
0.037792228162288666,
-0.06894110143184662,
-0.029184993356466293,
-0.053064484149217606,
0.0854339525103569,
0.023517822846770287,
-0.02022898755967617,
0.08616814762353897,
-0.0298664141446352,
-0.006199604831635952,
-0.016284804791212082,
-0.005292976275086403,
0.01914425566792488,
0.0002092768409056589,
-0.007959465496242046,
0.02031477354466915,
-0.060598839074373245,
-0.010732888244092464,
-0.00803186185657978,
0.018404079601168633,
0.0018689308781176805,
-0.0010656126542016864,
0.051397427916526794,
-0.013739547692239285,
-0.023374764248728752,
0.030547956004738808,
0.016541743651032448,
-0.007031685207039118,
0.004113170318305492,
0.04703886806964874,
-0.010832558386027813,
-0.008775264956057072,
-0.021056272089481354,
-0.011420954018831253,
-0.03577436879277229,
0.006604224909096956,
0.014893999323248863,
0.046988215297460556,
-0.026934975758194923,
0.03863273933529854,
-0.0014075865037739277,
-0.01839590072631836,
0.021529296413064003,
0.010666626505553722,
0.028133215382695198,
0.001927840057760477,
-0.05171404406428337,
0.03180554881691933,
-0.021399013698101044,
-0.01645619049668312,
0.031716056168079376,
-0.04292991757392883,
0.008192203007638454,
0.03875147923827171,
-0.0017178085399791598,
0.002369930734857917,
0.023741604760289192,
-0.043949950486421585,
0.0424952358007431,
-0.005027335602790117,
0.004449354484677315,
-0.16950488090515137,
-0.02917049638926983,
0.03110516630113125,
0.036664094775915146,
-0.029732855036854744,
-0.0170260202139616,
0.037651799619197845,
-0.04075097665190697,
-0.03375532850623131,
-0.015966871753335,
0.029702985659241676,
0.02211766690015793,
0.021261904388666153,
-0.03176764398813248,
-0.013054179027676582,
-0.004100761376321316,
-0.019189439713954926,
-0.00027508186758495867,
0.008113649673759937,
-0.011875336058437824,
-0.006286374293267727,
0.05008791759610176,
-0.010285546071827412,
-0.018715279176831245,
-0.021541744470596313,
0.059658877551555634,
0.029982127249240875,
0.017086094245314598,
0.010330037213861942,
-0.022919025272130966,
-0.02306893654167652,
0.03593936562538147,
-0.021971765905618668,
0.027628403156995773,
-0.012071539647877216,
0.00025805807672441006,
-0.0012022448936477304,
-0.027419498190283775,
-0.01654146797955036,
0.04278917983174324,
0.030468754470348358,
0.012810674495995045,
0.036064017564058304,
0.04083459451794624,
-0.03792219236493111,
0.004536918364465237,
0.010552775114774704,
0.0003056453133467585,
0.056059978902339935,
-0.02941523864865303,
-0.04795883968472481,
-0.007983710616827011,
-0.005280863493680954,
0.04341895878314972,
-0.014446142129600048,
-0.002493445295840502,
-0.032737910747528076,
0.010558261536061764,
0.06505643576383591,
-0.027242055162787437,
-0.0038921828381717205,
0.017469534650444984,
0.012320537120103836,
0.01149656716734171,
-0.0225201528519392,
0.05348007008433342,
-0.04023681581020355,
0.019367363303899765,
-0.042448993772268295,
0.054383911192417145,
0.020596740767359734,
-0.004423342179507017,
-0.018997767940163612,
0.01676657423377037,
0.0062933266162872314,
0.020826613530516624,
-0.009401045739650726,
-0.013376615010201931,
0.035369567573070526,
-0.004556143190711737,
0.010933133773505688,
-0.012842286378145218,
-0.01641780510544777,
-0.010858830064535141,
-0.008690047077834606,
0.029222410172224045,
0.0015761980321258307,
0.029517006129026413,
-0.011816379614174366,
0.040445826947689056,
0.021417634561657906,
0.009842832572758198,
-0.019646231085062027,
-0.007831694558262825,
-0.0030747258570045233,
0.018883220851421356,
0.059196241199970245,
-0.021468468010425568,
0.008883651345968246,
0.0017140267882496119,
0.005566417705267668,
-0.004694868344813585,
-0.017840249463915825,
0.023264147341251373,
0.007874027825891972,
0.03016381897032261,
-0.010315352119505405,
-0.035325706005096436,
-0.013275917619466782,
0.022212281823158264,
0.010324681177735329,
-0.04944348707795143,
-0.0007516755140386522,
-0.0327327735722065,
-0.02252816967666149,
0.018049070611596107,
-0.018035707995295525,
-0.042529527097940445,
-0.035045355558395386,
0.01756337843835354,
-0.026875656098127365,
0.02004122920334339,
0.022113574668765068,
-0.035193413496017456,
-0.010192418470978737,
0.0020658797584474087,
0.0044273752719163895,
-0.002663596998900175,
0.018075071275234222,
0.003223104402422905,
-0.028881361708045006,
-0.04197750985622406,
0.03690379858016968,
-0.008963172324001789,
0.027296364307403564,
0.004638420883566141,
-0.008288268931210041,
0.04241782799363136,
-0.012560578063130379,
-0.058773767203092575,
0.013624581508338451,
0.0017954943468794227,
0.003488530870527029,
-0.02547241747379303,
0.013310101814568043,
-0.012609526515007019,
0.0020879325456917286,
0.00884877610951662,
-0.006766055710613728,
0.021099520847201347,
0.04181639105081558,
-0.049204081296920776,
-0.022262804210186005,
-0.0025544404052197933,
-0.009850287809967995,
0.0161641463637352,
0.01927011087536812,
-0.020509811118245125,
-0.02378622256219387,
0.06101968139410019,
-0.0057489313185215,
-0.01233746949583292,
-0.07312779873609543,
0.03270307555794716,
-0.04514234885573387,
-0.00637868233025074,
-0.0044298372231423855,
0.008695988915860653,
-0.010842828080058098,
-0.013973083347082138,
-0.01640784554183483,
-0.01471512857824564,
0.042721301317214966,
-0.015391276217997074,
0.01578410528600216,
0.023694677278399467,
0.020164960995316505,
0.013118368573486805,
0.022719837725162506,
0.02418244257569313,
-0.005504109431058168,
0.0020851516164839268,
0.041314467787742615,
0.01119512040168047,
-0.008873989805579185,
-0.026918403804302216,
0.02796662226319313,
-0.0015426933532580733,
0.002973745344206691,
0.05894489213824272,
-0.059522271156311035,
-0.029048850759863853,
-0.01174286287277937,
-0.028633616864681244,
-0.0025262522976845503,
0.0012569321552291512,
0.012392304837703705,
-0.013092519715428352,
-0.009316825307905674,
-0.0034208418801426888,
0.021591641008853912,
0.02839174121618271,
-0.00905181560665369,
-0.014542858116328716,
0.001688131713308394,
0.03813757374882698,
0.012203555554151535,
-0.011556966230273247,
-0.00827887374907732,
-0.00878655631095171,
-0.006078267004340887,
0.023331359028816223,
-0.01282221358269453,
-0.014795664697885513,
-0.024064067751169205,
-0.051774412393569946,
-0.039824407547712326,
0.020548023283481598,
0.01560380682349205,
0.023867812007665634,
0.02578163519501686,
0.007643633056432009,
-0.02164357155561447,
0.04787847027182579,
0.053414031863212585,
-0.010625854134559631,
0.007398422807455063,
0.03965878486633301,
-0.018471436575055122,
0.03396550193428993,
0.020918164402246475,
0.01792977564036846,
-0.02356158196926117,
0.026828918606042862,
0.0299287810921669,
0.023884231224656105,
-0.07452455163002014,
0.017491871491074562,
-0.01180950179696083,
0.010182106867432594,
0.011290980502963066,
-0.013212263584136963,
-0.00616818480193615,
-0.02593117393553257,
-0.039023980498313904,
0.02644515596330166,
0.030501458793878555,
-0.020909661427140236,
0.030199017375707626,
0.0024780372623354197,
0.024579932913184166,
0.0006694445619359612,
0.0050532519817352295,
-0.025466641411185265,
-0.0007795717101544142,
0.005152358207851648,
-0.0061842091381549835,
-0.01608729362487793,
0.017736488953232765,
-0.017698587849736214,
-0.007414317689836025,
0.005310223437845707,
0.02912868745625019,
0.035780955106019974,
-0.01756075583398342,
0.017987947911024094,
0.007785458117723465,
-0.017648564651608467,
0.014238578267395496,
0.026562068611383438,
-0.026261309161782265,
0.009997205808758736,
0.045717015862464905,
-0.04033854603767395,
0.017999941483139992,
-0.019431693479418755,
0.04149176552891731,
0.012597964145243168,
0.013564459048211575,
-0.012938208878040314,
0.005832276772707701,
0.011982128024101257,
0.006372643169015646,
0.006283801048994064,
-0.024014310911297798,
0.02564837969839573,
0.01266750693321228,
0.000627373403403908,
0.029331747442483902,
0.020597834140062332,
0.01622885838150978,
0.0164114311337471,
-0.016062026843428612,
0.022791653871536255,
-0.014616714790463448,
-0.0011197885032743216,
0.01430816575884819,
-0.033594027161598206,
0.028421275317668915,
-0.03140915185213089,
0.031796250492334366,
0.001726192538626492,
-0.010205883532762527,
0.014513506554067135,
-0.031003661453723907,
0.009488307870924473,
0.028740890324115753,
-0.006731302011758089,
-0.016614975407719612,
-0.048149943351745605,
0.020596416667103767,
0.05826834216713905,
-0.028922295197844505,
-0.01582292653620243,
-0.015946069732308388,
-0.05592527613043785,
0.048102982342243195,
-0.012911968864500523,
-0.03017519973218441,
0.0008717830060049891,
0.04187149181962013,
-0.006466080900281668,
-0.014331490732729435,
-0.012699885293841362,
-0.046984441578388214,
-0.0764581561088562,
0.012542002834379673,
0.02958308346569538,
-0.0112617714330554,
0.001018193201161921,
0.004982439335435629,
0.02990536019206047,
-0.013825245201587677,
-0.0035037158522754908,
-0.006682390347123146,
0.05364855006337166,
0.023040540516376495,
0.04112439230084419,
-0.022223003208637238,
-0.02401520311832428,
-0.021146632730960846,
0.0005078830290585756,
0.0016095041064545512,
-0.004527922719717026,
0.0046087466180324554,
-0.007066614925861359,
-0.020714597776532173,
0.0019050106639042497,
0.004520771559327841,
0.02421308495104313,
0.03224116563796997,
0.014277043752372265,
-0.01915091648697853,
0.04016444459557533,
-0.03227568045258522,
-0.01928640343248844,
-0.02062993496656418,
-0.0212908536195755,
-0.0004075980687048286,
-0.0005746483220718801,
-0.008262635208666325,
0.021281911060214043,
0.012796109542250633,
-0.01581766828894615,
-0.044119007885456085,
-0.008850198239088058,
-0.018408408388495445,
0.011509589850902557,
0.016512563452124596,
0.010760542936623096,
-0.02123982459306717,
-0.03759017586708069,
0.023254716768860817,
0.014863019809126854,
-0.04394179955124855,
0.0004829931422136724,
-0.03497970104217529,
-0.032068882137537,
-0.013737697154283524,
0.004712791182100773,
0.07118083536624908,
0.02259041741490364,
0.012116672471165657,
0.0273303110152483,
0.03456234186887741,
-0.00046777274110354483,
-0.022944841533899307,
0.022981779649853706,
0.01909037120640278,
0.02714485488831997,
-0.019625550135970116,
-0.022807737812399864,
-0.024255862459540367,
-0.06082854047417641,
0.0021969482768326998,
-0.002418047981336713,
-0.06004129350185394,
-0.01669485680758953,
0.0008370992727577686,
0.009537667967379093,
-0.040538206696510315,
0.03392400965094566,
0.03818489611148834,
0.0061010029166936874,
0.02319456823170185,
-0.009521735832095146,
-0.00006451027002185583,
-0.008037195540964603,
0.022330226376652718,
0.0012515350244939327,
0.03955741599202156,
0.034602850675582886,
-0.0075980848632752895,
-0.05560057610273361,
0.04401763901114464,
-0.031373560428619385,
-0.04679428040981293,
-0.00015281660307664424,
0.05890542268753052,
-0.019112519919872284,
-0.02808789722621441,
0.0020764812361449003,
0.016497071832418442,
0.005267312750220299,
-0.003595433197915554,
0.023836949840188026,
-0.021230479702353477,
0.01112350169569254,
0.010532228276133537,
-0.038822077214717865,
0.013578096404671669,
-0.004223907366394997,
0.01284179650247097,
0.03110506758093834,
0.020146889612078667,
-0.0218161940574646,
-0.0036042851861566305,
-0.053407344967126846,
0.011450049467384815,
0.002359141130000353,
0.01161665003746748,
-0.0023263029288500547,
0.021768206730484962,
-0.041764289140701294,
-0.01374275702983141,
-0.041195761412382126,
0.04455313831567764,
0.015789031982421875,
-0.037275832146406174,
-0.02694115787744522,
-0.025024933740496635,
0.007649821229279041,
0.011421049945056438,
0.029408251866698265,
0.008746393024921417,
0.06094074249267578,
0.028947891667485237,
-0.028218397870659828,
0.005383246578276157,
0.026133481413125992
] |
How to train a new language model from scratch using Transformers and Tokenizers | julien-c | February 14, 2020 | how-to-train | guide, nlp | https://huggingface.co/blog/how-to-train | 6. Share your model 🎉 Finally, when you have a nice model, please think about sharing it with the community: - upload your model using the CLI: transformers-cli upload - write a README.md model card and add it to the repository under model_cards/. Your model card should ideally include: - a model description, - training params (dataset, preprocessing, hyperparameters), - evaluation results, - intended uses & limitations - whatever else is helpful! 🤓 | [
0.03290002420544624,
-0.023994656279683113,
0.030820699408650398,
0.04428759217262268,
0.09049855917692184,
0.016455039381980896,
-0.007614787667989731,
0.046422626823186874,
-0.011227457784116268,
-0.006832692306488752,
-0.05399039760231972,
0.03721701353788376,
0.02508559264242649,
0.06200612336397171,
-0.041073027998209,
-0.02146114408969879,
-0.018264954909682274,
0.024973412975668907,
0.00040845092735253274,
0.017711155116558075,
0.009755177423357964,
-0.13632798194885254,
0.07305905967950821,
-0.025404399260878563,
0.047768957912921906,
-0.044771939516067505,
0.07814093679189682,
0.017182733863592148,
-0.025338809937238693,
0.04825795069336891,
-0.0826396495103836,
-0.019048433750867844,
0.009378544986248016,
-0.05056450143456459,
-0.027447590604424477,
0.056256186217069626,
-0.06724456697702408,
0.041470564901828766,
0.03546050563454628,
-0.055454954504966736,
0.01813911460340023,
-0.012801705859601498,
-0.06964454054832458,
0.0418134443461895,
0.03506619483232498,
-0.028531229123473167,
-0.15838734805583954,
0.04673943296074867,
-0.03826424106955528,
0.02525842934846878,
-0.008485478349030018,
0.04325975477695465,
-0.024149786680936813,
0.025847721844911575,
0.04863205924630165,
0.03462018072605133,
-0.012448861263692379,
-0.07721017301082611,
-0.04370342195034027,
0.044786375015974045,
0.049806881695985794,
0.03854399174451828,
0.04940519481897354,
0.06568022072315216,
0.013765394687652588,
0.0037167693953961134,
-0.028512433171272278,
-0.016537176445126534,
-0.04960986599326134,
-0.04870445281267166,
0.029833951964974403,
-0.029034672304987907,
-0.00966665893793106,
-0.10170166194438934,
-0.012610088102519512,
-0.04571474343538284,
0.04183494672179222,
0.035165831446647644,
0.09308478236198425,
0.06643321365118027,
0.03610343113541603,
0.009295902214944363,
0.02668694779276848,
0.042669232934713364,
0.02512379176914692,
-0.008984921500086784,
0.02630387246608734,
-0.016339192166924477,
-0.08000743389129639,
0.01630420796573162,
0.009373597800731659,
-0.09796738624572754,
-0.036233194172382355,
0.04021107405424118,
0.10785151273012161,
0.017703022807836533,
-0.01824965886771679,
-0.02186886966228485,
-0.0822119489312172,
0.0011515789665281773,
-0.05750865116715431,
0.03382439538836479,
0.013194011524319649,
-0.02565363235771656,
-0.04053801670670509,
0.003570470493286848,
0.004077065270394087,
-0.1442405730485916,
-0.02706466056406498,
0.04289316013455391,
-0.05947844684123993,
-0.02660335600376129,
0.0013491531135514379,
0.02341577783226967,
-0.024333110079169273,
0.04096315801143646,
0.0314120389521122,
-0.0611959844827652,
-0.004184613469988108,
0.02894316427409649,
0.010773912072181702,
0.08231855928897858,
0.0004057584155816585,
0.010334476828575134,
0.006328384857624769,
0.07367414236068726,
0.05267254263162613,
-0.008242228999733925,
-0.022220101207494736,
-0.047152455896139145,
0.06818078458309174,
-0.037601348012685776,
0.012690612114965916,
-0.008602405898272991,
0.004608543124049902,
-0.1287025660276413,
0.017940785735845566,
-0.027696799486875534,
0.06205647811293602,
0.0351603701710701,
-0.012941638007760048,
0.06107074022293091,
-0.008088640868663788,
-0.022425342351198196,
0.031397268176078796,
-0.008950305171310902,
-0.04826679080724716,
0.053048085421323776,
0.04286219924688339,
0.03522399067878723,
-0.01806318573653698,
0.08354025334119797,
0.010966419242322445,
-0.04835304617881775,
0.0037329525221139193,
0.056163039058446884,
-0.04866710677742958,
0.04751237481832504,
-0.06117578595876694,
0.009217556565999985,
-0.008772600442171097,
-0.02785666100680828,
-0.047048021107912064,
0.030435362830758095,
0.003637440735474229,
-0.04671984910964966,
-0.025020547211170197,
-0.030134184285998344,
0.053466252982616425,
-0.005505270324647427,
0.0007922659278847277,
-0.05591190978884697,
0.057856425642967224,
-0.021100260317325592,
0.02588760107755661,
0.1045575812458992,
0.022462038323283195,
0.047895368188619614,
0.028511015698313713,
-0.03410707414150238,
-0.011886515654623508,
0.03995296731591225,
-0.03475445881485939,
0.03209461644291878,
0.05042807385325432,
-0.10544708371162415,
-0.01095738634467125,
-0.03834155201911926,
-0.028978485614061356,
0.012640648521482944,
-0.047757238149642944,
-0.03963518142700195,
0.09418046474456787,
-0.00836800318211317,
0.025582846254110336,
-0.0310148186981678,
-0.04218434914946556,
0.0868702158331871,
0.0016794116236269474,
0.049168284982442856,
0.017283763736486435,
0.007191406097263098,
0.012159593403339386,
-0.02715972252190113,
0.004474031738936901,
0.020762428641319275,
0.03341378644108772,
-0.06194773316383362,
0.03886279836297035,
-0.004931911360472441,
-0.00038201460847631097,
-0.10960645228624344,
0.03279038146138191,
-0.09268469363451004,
0.007776451297104359,
-0.05475449562072754,
-0.024639559909701347,
0.008422894403338432,
-0.02020828239619732,
0.03255317732691765,
0.17141257226467133,
0.02399817295372486,
-0.04931337386369705,
-0.006643874105066061,
-0.02367962896823883,
0.04697217047214508,
0.059313129633665085,
0.0653168335556984,
0.0950632244348526,
-0.049214959144592285,
-0.0018536709249019623,
-0.03968850523233414,
-0.06459406763315201,
0.08227955549955368,
-0.013217384926974773,
-0.0020486596040427685,
-0.034676048904657364,
-0.019026927649974823,
-0.014840989373624325,
-0.031124593690037727,
-0.007425490766763687,
0.010268150828778744,
0.01829024776816368,
-0.000008896120561985299,
0.022454921156167984,
0.025016048923134804,
0.06569919735193253,
0.04303488880395889,
-0.03223539516329765,
-0.019459767267107964,
-0.0907188206911087,
0.061116937547922134,
0.02415960654616356,
-0.0717511922121048,
0.046897388994693756,
-0.032812803983688354,
0.0009554654825478792,
-0.009283722378313541,
-0.012989870272576809,
0.028479794040322304,
0.013662354089319706,
0.024693794548511505,
-0.03556494414806366,
-0.048963431268930435,
0.0289518553763628,
-0.027295971289277077,
0.006935198325663805,
-0.0078001003712415695,
0.005084942560642958,
-0.01369620393961668,
0.022098759189248085,
-0.02540842816233635,
0.011601188220083714,
0.015371429733932018,
-0.005544896237552166,
0.01081022433936596,
0.007292408496141434,
-0.014288016594946384,
-0.027133477851748466,
-0.015471036545932293,
0.002152909990400076,
-0.01957741007208824,
0.00905027985572815,
0.02125966176390648,
-0.008464349433779716,
0.012616605497896671,
-0.01061666663736105,
-0.05796661972999573,
-0.024126356467604637,
-0.001458743936382234,
0.01171085238456726,
0.04555730149149895,
-0.017431875690817833,
-0.005276123061776161,
-0.01487401220947504,
-0.012140865437686443,
0.002128438325598836,
-0.01988879218697548,
0.0019599071238189936,
0.022016823291778564,
0.0019775377586483955,
0.020962737500667572,
0.03810565546154976,
-0.008215882815420628,
-0.04101124405860901,
0.009742935188114643,
0.0033456545788794756,
-0.008776654489338398,
-0.1092521920800209,
-0.05595969781279564,
-0.001059619477018714,
0.062145281583070755,
0.006961694452911615,
-0.001552710309624672,
0.003163304878398776,
-0.0191819928586483,
-0.005451676435768604,
0.00669188192114234,
0.01598365604877472,
0.007511920761317015,
0.015936000272631645,
0.046111464500427246,
-0.025072719901800156,
0.0011602299055084586,
-0.02091001719236374,
0.021145589649677277,
0.047779276967048645,
0.046535100787878036,
-0.024789029732346535,
0.023843230679631233,
-0.012274324893951416,
-0.01161258202046156,
-0.01094148587435484,
0.02201903611421585,
0.05447585880756378,
0.040444716811180115,
-0.02259841002523899,
-0.032637812197208405,
0.006647184025496244,
0.01621313951909542,
-0.0254193302243948,
0.014228119514882565,
-0.006958799436688423,
0.007785426918417215,
-0.011054917238652706,
-0.001433779951184988,
0.014361021108925343,
0.027520185336470604,
-0.0024736188352108,
-0.018542109057307243,
0.035294294357299805,
-0.008400097489356995,
0.022775644436478615,
0.00895334966480732,
0.03492492809891701,
0.00010232391650788486,
0.004834790248423815,
-0.050351861864328384,
-0.0011077240342274308,
-0.012491816654801369,
0.04611131548881531,
-0.0033015378285199404,
-0.012846235185861588,
-0.009448806755244732,
0.00976384337991476,
0.03313140943646431,
0.0005732577992603183,
-0.015095187351107597,
-0.05082663148641586,
0.004925941117107868,
-0.022416524589061737,
-0.02609710581600666,
-0.02853856235742569,
0.09054550528526306,
0.00046719328383915126,
0.00020034167391713709,
-0.018620287999510765,
0.050226300954818726,
0.008370259776711464,
0.040046434849500656,
-0.006683918181806803,
0.009523666463792324,
-0.015543825924396515,
0.025032727047801018,
-0.02648991532623768,
-0.027998559176921844,
0.057376183569431305,
0.0149832209572196,
-0.022812705487012863,
-0.027716590091586113,
-0.03322374448180199,
-0.013334638439118862,
-0.009921636432409286,
0.013305175118148327,
0.0639423355460167,
-0.025617310777306557,
0.02803622931241989,
0.026237545534968376,
0.009603822603821754,
-0.033354680985212326,
0.03732128441333771,
-0.024804916232824326,
-0.007943973876535892,
-0.045482002198696136,
-0.0014714215649291873,
0.014276678673923016,
-0.00940162967890501,
-0.007687482051551342,
0.020516807213425636,
-0.010168171487748623,
0.02492743358016014,
0.031862594187259674,
-0.00793419498950243,
0.03554018959403038,
-0.025304123759269714,
-0.04371865466237068,
0.01612030155956745,
-0.017920073121786118,
0.006720234639942646,
-0.009753036312758923,
-0.03439725935459137,
-0.025746438652276993,
0.0038855529855936766,
0.03824764862656593,
-0.026874635368585587,
-0.003519756020978093,
-0.004486924968659878,
0.05929143354296684,
-0.036388784646987915,
-0.009815629571676254,
0.009359416551887989,
-0.03825501725077629,
0.017500367015600204,
0.0061564319767057896,
0.027738096192479134,
0.026269180700182915,
-0.04281578212976456,
0.0018210414564236999,
-0.038704533129930496,
-0.014902517199516296,
0.048252400010824203,
-0.008805208839476109,
-0.01342909038066864,
0.05044034868478775,
-0.0657634362578392,
0.06430342048406601,
0.03198344632983208,
-0.005479314364492893,
0.008075998164713383,
-0.0013093585148453712,
0.04548323526978493,
-0.03198542445898056,
0.0370098352432251,
-0.015599671751260757,
-0.042102959007024765,
-0.007506887894123793,
-0.028872637078166008,
-0.0017443880205973983,
0.028048066422343254,
0.0457017719745636,
-0.014766791835427284,
0.021748464554548264,
0.03472669795155525,
0.01407186221331358,
-0.012904857285320759,
0.018631797283887863,
0.007315553724765778,
0.026954183354973793,
-0.03622262552380562,
0.006180043797940016,
-0.04694707691669464,
0.0103810029104352,
-0.005192429292947054,
0.04373486712574959,
-0.003303459845483303,
-0.08471313118934631,
0.026403632014989853,
0.004616276361048222,
-0.030170314013957977,
-0.012331141158938408,
0.02718920260667801,
-0.06106256693601608,
-0.019502710551023483,
0.031149812042713165,
0.0014577771071344614,
0.041963621973991394,
0.0025156692136079073,
-0.006014678161591291,
-0.027742836624383926,
-0.019198449328541756,
0.0027605462819337845,
-0.020373737439513206,
-0.0008643966866657138,
0.026837920770049095,
0.06767810881137848,
0.0939384326338768,
-0.0037690899334847927,
-0.002945635700598359,
0.0013902763603255153,
-0.0007673588115721941,
-0.016630927100777626,
-0.030094914138317108,
-0.025728657841682434,
-0.03208574280142784,
0.030364373698830605,
0.032446227967739105,
-0.007450835779309273,
0.0178107637912035,
0.05194076895713806,
0.06872139871120453,
-0.03594352677464485,
0.020824849605560303,
0.03137888386845589,
-0.012734264135360718,
-0.027103662490844727,
0.014898009598255157,
0.008073371835052967,
-0.0325290709733963,
-0.00024341001699212939,
0.005797553341835737,
0.013096475042402744,
-0.019268617033958435,
-0.04663019999861717,
-0.015244667418301105,
-0.05334889516234398,
0.006992586422711611,
0.009386132471263409,
0.06395206600427628,
-0.00011377567716408521,
-0.02685912698507309,
-0.009147481992840767,
0.03694762662053108,
0.036198582500219345,
-0.020709959790110588,
0.003942910116165876,
-0.0075934580527246,
0.0021420232951641083,
-0.003868150757625699,
0.019393885508179665,
-0.008654913865029812,
0.0025175607297569513,
0.023453718051314354,
0.0008126376196742058,
0.014695671387016773,
-0.06510009616613388,
0.040143419057130814,
0.008947250433266163,
-0.031170684844255447,
-0.020268654450774193,
-0.03927239775657654,
-0.06838230043649673,
0.02423717826604843,
-0.0571693480014801,
0.01980113796889782,
0.07783990353345871,
-0.015580848790705204,
-0.017637260258197784,
0.001697647268883884,
0.01861201599240303,
0.0018798038363456726,
0.015083188191056252,
0.041682735085487366,
-0.03080279380083084,
0.01183267217129469,
-0.004113778937608004,
0.03410426527261734,
-0.01951673813164234,
0.011856845580041409,
0.028792187571525574,
-0.04401508718729019,
-0.0039510163478553295,
0.03809000551700592,
-0.02296321466565132,
0.01604357920587063,
-0.0023332498967647552,
-0.019686957821249962,
0.02449984848499298,
-0.007316133007407188,
0.019806597381830215,
0.020329046994447708,
0.027231723070144653,
0.02685587666928768,
-0.015440271236002445,
0.022735191509127617,
0.06493932008743286,
0.01936369761824608,
-0.014951311983168125,
0.0519125759601593,
-0.003520150203257799,
0.04351687431335449,
0.04696694761514664,
-0.011534817516803741,
-0.0023708923254162073,
0.027215326204895973,
0.0492381677031517,
-0.008699364960193634,
-0.009580748155713081,
0.02457457035779953,
0.024648919701576233,
-0.04193243756890297,
0.003324381075799465,
-0.00010503115481697023,
-0.029218608513474464,
0.05106354504823685,
0.00422793859615922,
-0.015116855502128601,
-0.01739257574081421,
0.0007435735315084457,
0.047583915293216705,
0.017088713124394417,
0.02364082634449005,
-0.026121683418750763,
0.04290763661265373,
0.06396327167749405,
0.01559505145996809,
0.04382947459816933,
0.018259797245264053,
0.02515685185790062,
-0.03452915698289871,
0.035798050463199615,
-0.01295068021863699,
-0.005388188175857067,
0.0151212802156806,
-0.009515272453427315,
0.009748199954628944,
-0.023809585720300674,
-0.00926342885941267,
-0.02111511491239071,
0.047717440873384476,
-0.003264225088059902,
-0.03670146316289902,
0.05922279879450798,
-0.03766029700636864,
0.017917128279805183,
-0.013469187542796135,
-0.023624224588274956,
-0.005269903689622879,
-0.03708485886454582,
-0.005914710462093353,
0.04032967984676361,
0.016204727813601494,
0.027649100869894028,
-0.007598884403705597,
0.03645889833569527,
0.008692814037203789,
0.05008665472269058,
-0.006263246759772301,
-0.03267107531428337,
-0.06016923114657402,
-0.004562443122267723,
0.0066879731602966785,
0.015520655550062656,
0.007999883964657784,
-0.0016648732125759125,
0.007889565080404282,
0.02251718007028103,
0.007407577708363533,
0.03132760152220726,
0.0010892020072788,
-0.009471679106354713,
-0.03816468268632889,
-0.01652717962861061,
-0.02519039623439312,
-0.05885792523622513,
0.0018424494192004204,
-0.02619018778204918,
0.016742456704378128,
-0.014608421362936497,
0.0008778295014053583,
0.021713662892580032,
0.016454169526696205,
-0.04635486751794815,
-0.04002493992447853,
0.012009339407086372,
-0.0059962463565170765,
-0.015676040202379227,
0.01599816046655178,
-0.021427055820822716,
-0.012811430729925632,
0.03018081746995449,
0.011233619414269924,
0.029108017683029175,
0.0005834063049405813,
0.023366620764136314,
0.040043171495199203,
-0.028970975428819656,
0.009252375923097134,
0.0006608875119127333,
0.06296899169683456,
0.03531757742166519,
0.01705198548734188,
0.03513391315937042,
0.039860207587480545,
-0.010374198667705059,
-0.016790106892585754,
-0.0023339493200182915,
0.013438232243061066,
0.012483164668083191,
-0.015262003056704998,
-0.03642812371253967,
-0.02950715273618698,
0.0032313053961843252,
0.006841051392257214,
0.02536974474787712,
-0.08510205894708633,
-0.021226761862635612,
-0.013892185874283314,
-0.04305544123053551,
-0.04688897728919983,
0.002798974048346281,
0.05578102916479111,
0.028447777032852173,
0.005658793728798628,
-0.00441016536206007,
-0.03854960575699806,
0.002995056565850973,
-0.006946682929992676,
0.036077868193387985,
0.03118148259818554,
-0.008063770830631256,
-0.01275777630507946,
-0.011399243958294392,
0.024341240525245667,
-0.02962726354598999,
-0.07126134634017944,
-0.013696856796741486,
0.02183682844042778,
-0.012384004890918732,
-0.023229043930768967,
-0.03958772495388985,
0.04891062155365944,
-0.0010656374506652355,
0.012198843993246555,
-0.030569808557629585,
0.005204701330512762,
0.0016719512641429901,
0.0010612583719193935,
-0.05846545472741127,
0.032896656543016434,
-0.03410854563117027,
-0.014302672818303108,
0.03329487144947052,
0.0226450078189373,
-0.013695086352527142,
0.018700674176216125,
-0.038780294358730316,
0.02058078721165657,
-0.012075508013367653,
-0.021791262552142143,
-0.05920575186610222,
-0.009604456834495068,
-0.008656884543597698,
-0.03849933296442032,
-0.04738793894648552,
0.011988471262156963,
-0.005815573967993259,
-0.015794729813933372,
-0.00960452388972044,
0.01734713278710842,
0.0014386697439476848,
0.015582391992211342,
-0.0006007908959873021,
-0.04386713355779648,
0.00048204121412709355,
0.024984195828437805,
-0.035533349961042404,
-0.04692264273762703,
0.0010554059408605099
] |
How to train a new language model from scratch using Transformers and Tokenizers | julien-c | February 14, 2020 | how-to-train | guide, nlp | https://huggingface.co/blog/how-to-train | 2. Train a tokenizer We choose to train a byte-level Byte-pair encoding tokenizer (the same as GPT-2), with the same special tokens as RoBERTa. Let’s arbitrarily pick its size to be 52,000. We recommend training a byte-level BPE (rather than let’s say, a WordPiece tokenizer like BERT) because it will start building its vocabulary from an alphabet of single bytes, so all words will be decomposable into tokens (no more <unk> tokens!). python #! pip install tokenizers from pathlib import Path from tokenizers import ByteLevelBPETokenizer paths = [str(x) for x in Path("./eo_data/").glob("**/*.txt")] # Initialize a tokenizer tokenizer = ByteLevelBPETokenizer() # Customize training tokenizer.train(files=paths, vocab_size=52_000, min_frequency=2, special_tokens=[ "<s>", "<pad>", "</s>", "<unk>", "<mask>", ]) # Save files to disk tokenizer.save_model(".", "esperberto") And here’s a slightly accelerated capture of the output: On our dataset, training took about ~5 minutes. 🔥🔥 Wow, that was fast! ⚡️🔥 We now have both a vocab.json, which is a list of the most frequent tokens ranked by frequency, and a merges.txt list of merges. json { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, "<mask>": 4, "!": 5, "\"": 6, "#": 7, "$": 8, "%": 9, "&": 10, "'": 11, "(": 12, ")": 13, # ... } # merges.txt l a Ġ k o n Ġ la t a Ġ e Ġ d Ġ p # ... What is great is that our tokenizer is optimized for Esperanto. Compared to a generic tokenizer trained for English, more native words are represented by a single, unsplit token. Diacritics, i.e. accented characters used in Esperanto – ĉ, ĝ, ĥ, ĵ, ŝ, and ŭ – are encoded natively. We also represent sequences in a more efficient manner. Here on this corpus, the average length of encoded sequences is ~30% smaller as when using the pretrained GPT-2 tokenizer. Here’s how you can use it in tokenizers, including handling the RoBERTa special tokens – of course, you’ll also be able to use it directly from transformers. python from tokenizers.implementations import ByteLevelBPETokenizer from tokenizers.processors import BertProcessing tokenizer = ByteLevelBPETokenizer( "./models/EsperBERTo-small/vocab.json", "./models/EsperBERTo-small/merges.txt", ) tokenizer._tokenizer.post_processor = BertProcessing( ("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")), ) tokenizer.enable_truncation(max_length=512) print( tokenizer.encode("Mi estas Julien.") ) # Encoding(num_tokens=7, ...) # tokens: ['<s>', 'Mi', 'Ġestas', 'ĠJuli', 'en', '.', '</s>'] | [
0.05093905329704285,
-0.02071400173008442,
0.027971306815743446,
0.0011301814811304212,
0.057313695549964905,
0.07343178987503052,
0.032247256487607956,
0.049172356724739075,
-0.04948524013161659,
-0.029394881799817085,
-0.08027844876050949,
0.05025390908122063,
-0.026455692946910858,
0.04165637493133545,
0.021419426426291466,
-0.03994966298341751,
0.042444173246622086,
-0.03787270188331604,
0.004705488681793213,
-0.05901097133755684,
-0.03022402711212635,
-0.018872635439038277,
0.10242405533790588,
0.006372462492436171,
0.025083858519792557,
-0.04846636578440666,
-0.027129510417580605,
-0.010281804949045181,
-0.009575426578521729,
-0.012749784626066685,
-0.11904408782720566,
0.014805994927883148,
0.018046380952000618,
0.014096014201641083,
0.03223501518368721,
0.05542304739356041,
-0.12127507477998734,
0.04135768115520477,
0.05791320651769638,
0.003044773591682315,
-0.0009735848871059716,
0.004699996206909418,
-0.049235280603170395,
0.06751415878534317,
-0.027452772483229637,
0.0010946464026346803,
-0.16815289855003357,
0.10546678304672241,
0.011286349035799503,
-0.09067085385322571,
-0.062182702124118805,
0.08001372963190079,
-0.02549351006746292,
0.049070216715335846,
0.014892878010869026,
-0.0018299074145033956,
-0.027156485244631767,
-0.08915792405605316,
0.007964969612658024,
0.016392970457673073,
0.059491582214832306,
-0.015056338161230087,
-0.0031955258455127478,
0.026548901572823524,
0.05361160635948181,
0.009311141446232796,
-0.09736581891775131,
0.062300778925418854,
-0.06205330044031143,
-0.06111018359661102,
0.03655458986759186,
-0.03342922776937485,
-0.04721449688076973,
-0.012825953774154186,
-0.038617074489593506,
-0.04981740191578865,
0.034412931650877,
-0.030314749106764793,
0.05075597018003464,
0.07295927405357361,
0.002824614755809307,
0.0465267039835453,
0.008012774400413036,
0.0075122700072824955,
0.080298513174057,
0.009646418504416943,
0.045542195439338684,
-0.04303852468729019,
-0.08350632339715958,
0.05750082805752754,
-0.03382185846567154,
-0.10104891657829285,
-0.00500538619235158,
0.026898428797721863,
0.045153457671403885,
0.01758420281112194,
-0.044935453683137894,
0.002879600739106536,
0.011734742671251297,
0.04188922047615051,
-0.044974666088819504,
-0.06459259241819382,
0.007292992435395718,
-0.055837616324424744,
-0.06968721747398376,
0.07184305787086487,
0.004121420904994011,
-0.02364211529493332,
-0.00944269634783268,
0.010490762069821358,
0.0027611262630671263,
-0.02330915257334709,
-0.03642403706908226,
0.060461219400167465,
-0.05903766304254532,
0.04253506287932396,
-0.016107255592942238,
0.028032764792442322,
-0.06341058015823364,
0.07315228134393692,
0.04258041828870773,
0.06549075245857239,
0.08239027112722397,
-0.030079016461968422,
-0.0308093074709177,
0.0434299111366272,
0.02091185376048088,
0.05627552419900894,
0.0007595385541208088,
-0.0022889841347932816,
-0.00480214087292552,
0.003021468175575137,
0.03242873772978783,
0.007721663452684879,
0.001153404824435711,
0.019598618149757385,
-0.006811866071075201,
0.0011145168682560325,
0.00007388862286461517,
0.009843958541750908,
-0.08988559246063232,
0.06288682669401169,
-0.04901571571826935,
-0.028602590784430504,
-0.0051555149257183075,
0.04971317574381828,
-0.0953134074807167,
0.069790780544281,
-0.001852962770499289,
0.0028185879345983267,
-0.08337770402431488,
0.06345600634813309,
0.01597520336508751,
-0.019496485590934753,
0.03732369467616081,
0.03519897535443306,
-0.03419990465044975,
-0.04809426888823509,
-0.026122411713004112,
-0.020903076976537704,
-0.003599878866225481,
-0.02447681874036789,
-0.016536522656679153,
0.030721072107553482,
-0.01853313110768795,
-0.052230365574359894,
0.021421784535050392,
0.07766768336296082,
-0.021003754809498787,
0.039365943521261215,
0.04074098542332649,
0.03829248249530792,
0.07711441814899445,
0.027589790523052216,
-0.039264097809791565,
0.00935473944991827,
0.04215006157755852,
0.019751375541090965,
0.01865042746067047,
-0.03902152180671692,
-0.035543717443943024,
0.04223470762372017,
-0.0248978640884161,
0.02142486907541752,
0.007613735273480415,
-0.14421647787094116,
-0.000816540268715471,
-0.031766995787620544,
0.03682667016983032,
0.030974268913269043,
-0.024938803166151047,
-0.06463441252708435,
0.10988248139619827,
0.011344322934746742,
0.00036948861088603735,
-0.048603273928165436,
0.03407502919435501,
0.1134515255689621,
-0.006305895280092955,
0.023609016090631485,
0.03320744261145592,
-0.006205020006746054,
0.025827335193753242,
0.000570018426515162,
-0.008737960830330849,
-0.04649033397436142,
-0.04613601043820381,
-0.05647509917616844,
0.04852354899048805,
-0.021053355187177658,
-0.013960304670035839,
-0.05573860555887222,
0.022496135905385017,
-0.0919121652841568,
-0.01915583200752735,
-0.0005627631326206028,
0.014562712050974369,
0.04896955192089081,
0.013624853454530239,
-0.06359204649925232,
0.09627307206392288,
-0.08199628442525864,
-0.008214235305786133,
-0.021562062203884125,
-0.02195843681693077,
0.07658226788043976,
0.03578413650393486,
-0.03099919483065605,
0.07827907800674438,
-0.07441206276416779,
-0.039107900112867355,
-0.12494607269763947,
0.03152529150247574,
0.03073728084564209,
-0.039416227489709854,
-0.00247962842695415,
0.008169426582753658,
-0.03147997334599495,
0.018288280814886093,
-0.0514083132147789,
-0.03747473657131195,
-0.0179451797157526,
-0.007413296028971672,
0.014112932607531548,
-0.014458241872489452,
0.02933136560022831,
0.0957140177488327,
0.03549633547663689,
-0.02625449188053608,
-0.022644132375717163,
-0.011451823636889458,
0.10331954807043076,
-0.04076389595866203,
-0.02245955914258957,
0.04409461095929146,
0.0015413217479363084,
-0.01600341498851776,
-0.017367849126458168,
0.010533704422414303,
0.03988027572631836,
-0.0007727332995273173,
0.02606569416821003,
-0.03933033347129822,
0.002258831635117531,
0.006307337898761034,
-0.03366665914654732,
-0.0005106372409500182,
-0.003942341543734074,
0.015802357345819473,
0.012571397237479687,
0.012712113559246063,
0.00783257745206356,
0.034185539931058884,
0.016639817506074905,
0.0022417018190026283,
0.01494808029383421,
0.019818676635622978,
-0.02426254190504551,
-0.020533844828605652,
-0.011838988400995731,
0.009598101489245892,
-0.028572628274559975,
0.004707762971520424,
0.04396543279290199,
-0.002707541221752763,
0.04478524252772331,
0.0017889206064864993,
-0.0324622318148613,
-0.011523591354489326,
0.037761837244033813,
0.00004704588354798034,
0.044694364070892334,
-0.012683764100074768,
-0.05240063741803169,
-0.010510697029531002,
0.00406618369743228,
-0.04529570788145065,
0.023253047838807106,
0.0251050665974617,
0.046283021569252014,
0.000903029867913574,
0.001979749882593751,
-0.01959761418402195,
-0.010243967175483704,
-0.04232608526945114,
0.004250279627740383,
-0.011514931917190552,
0.03784502297639847,
-0.09403949975967407,
-0.010900955647230148,
-0.018147384747862816,
0.025039546191692352,
0.0011003118706867099,
-0.022852368652820587,
0.03900708630681038,
-0.010845331475138664,
-0.020636145025491714,
-0.008104744367301464,
0.02229120396077633,
0.01965099759399891,
0.009360019117593765,
0.01717316173017025,
-0.032574765384197235,
-0.005033704452216625,
-0.013722377829253674,
0.005452493671327829,
0.02858935296535492,
0.043926138430833817,
-0.010008564218878746,
0.03411468118429184,
-0.0024864256847649813,
0.014870820567011833,
-0.018176520243287086,
-0.028257394209504128,
-0.005008561071008444,
0.001246873871423304,
0.04894702136516571,
-0.025451891124248505,
-0.0353502556681633,
-0.019033968448638916,
0.015747735276818275,
0.038213152438402176,
-0.023791082203388214,
0.0371926948428154,
0.03008313663303852,
0.01902604289352894,
-0.015281317755579948,
0.03337235376238823,
-0.008898742496967316,
-0.01909351348876953,
0.007574109360575676,
-0.01779828779399395,
0.008410709910094738,
-0.03395650535821915,
0.006220498122274876,
-0.05734194442629814,
0.038432762026786804,
-0.0183099415153265,
-0.0062157344073057175,
-0.030294939875602722,
0.018813975155353546,
0.038277264684438705,
0.004650424234569073,
0.025836292654275894,
-0.019855501130223274,
0.03714490681886673,
0.03461496904492378,
-0.0013529948191717267,
-0.018043378368020058,
0.013314015232026577,
0.0017920283135026693,
0.00008975147648015991,
-0.016944022849202156,
0.040247756987810135,
-0.030982501804828644,
-0.030956484377384186,
-0.0108023164793849,
0.05940192565321922,
-0.02157239429652691,
0.03493954986333847,
-0.0018042776500806212,
0.0026754376012831926,
-0.012290168553590775,
0.01817559450864792,
-0.05073205754160881,
0.01953752338886261,
0.06519629806280136,
0.024620775133371353,
-0.008694118820130825,
-0.0015696329064667225,
-0.050730329006910324,
-0.006742075551301241,
0.02753104269504547,
0.0006735536153428257,
0.01082073338329792,
-0.07225547730922699,
-0.004477155394852161,
0.03492266684770584,
-0.016824377700686455,
-0.025037448853254318,
-0.005238649435341358,
0.03146200254559517,
-0.01596829481422901,
0.005040613003075123,
0.043451495468616486,
0.002508900361135602,
-0.004341167397797108,
0.008060052990913391,
0.06128079444169998,
-0.05046314001083374,
0.027511069551110268,
-0.011579490266740322,
0.023425385355949402,
0.023609396070241928,
-0.02585032396018505,
-0.03651449829339981,
0.03570558875799179,
0.025350185111165047,
0.02170395478606224,
0.029548928141593933,
-0.005422606132924557,
-0.04162343218922615,
0.049313098192214966,
0.013724538497626781,
-0.017290722578763962,
0.006317933090031147,
0.010277818888425827,
0.0099524250254035,
-0.01721157133579254,
0.0054727285169065,
0.005441978573799133,
-0.0029869331046938896,
0.042262908071279526,
0.028924087062478065,
0.0507378876209259,
0.008322572335600853,
-0.0016478522447869182,
0.014824904501438141,
-0.027063662186264992,
-0.0013513584854081273,
-0.022563720121979713,
-0.019760988652706146,
0.03802002593874931,
0.008586759679019451,
-0.02136652171611786,
-0.02844088524580002,
0.01937064714729786,
-0.039476048201322556,
-0.0185234397649765,
0.0012295265914872289,
0.04488305002450943,
-0.03588828817009926,
0.0009704093681648374,
-0.015483953058719635,
-0.0057969121262431145,
-0.039375901222229004,
-0.02144027128815651,
-0.031602971255779266,
0.04399658739566803,
-0.01035628654062748,
-0.02945058047771454,
-0.0034124325029551983,
0.03875889256596565,
-0.04140699654817581,
-0.0020963798742741346,
0.025046830996870995,
0.051914457231760025,
0.03794876113533974,
0.05041868984699249,
0.005271764472126961,
-0.023132234811782837,
0.007197024300694466,
0.007044699043035507,
-0.029762987047433853,
0.017997751012444496,
-0.04353419691324234,
0.007804541848599911,
0.022055895999073982,
-0.0003089343081228435,
0.02545485831797123,
0.030643031001091003,
0.005753738339990377,
0.04452591761946678,
0.04442155733704567,
-0.020525135099887848,
0.042973220348358154,
-0.05607165768742561,
0.036541618406772614,
-0.029975978657603264,
-0.012635873630642891,
-0.009501008316874504,
-0.016054043546319008,
-0.0370965451002121,
0.04729732498526573,
0.04758016765117645,
0.052256785333156586,
-0.018202077597379684,
0.04116110876202583,
-0.03482886403799057,
-0.026722174137830734,
0.014268970116972923,
-0.01632380671799183,
0.009269995614886284,
-0.018015949055552483,
-0.045947425067424774,
0.02934993989765644,
-0.029387755319476128,
0.00412138644605875,
0.008866315707564354,
0.0349862240254879,
-0.004838587716221809,
-0.033870480954647064,
0.03350403159856796,
0.016537467017769814,
-0.008320963010191917,
-0.027748487889766693,
0.013173092156648636,
-0.004617593251168728,
-0.020089754834771156,
-0.005082465708255768,
-0.01959805004298687,
-0.00647574570029974,
0.007448452524840832,
0.004847323056310415,
-0.006666719447821379,
0.06271360069513321,
-0.004541889298707247,
0.05731829255819321,
-0.07019536942243576,
-0.004786087200045586,
-0.0316024124622345,
-0.00012715652701444924,
0.02926640585064888,
-0.04242481663823128,
-0.007379470393061638,
0.02001609280705452,
0.01033799909055233,
0.014125948771834373,
0.014348480850458145,
-0.017118098214268684,
0.003159184940159321,
0.06362389028072357,
0.010880175046622753,
-0.05545375496149063,
-0.012820395641028881,
0.01977206952869892,
0.07675781100988388,
0.013600978069007397,
0.020274458453059196,
-0.006926049944013357,
-0.03550794720649719,
-0.014071819372475147,
-0.03317907080054283,
0.021590961143374443,
0.03643214702606201,
-0.002719394164159894,
0.00022849264496471733,
0.02390730008482933,
0.044006045907735825,
-0.0029912455938756466,
-0.01287943497300148,
0.02044885978102684,
0.05027994140982628,
0.014670808799564838,
0.018007362261414528,
-0.011396560817956924,
0.005279615055769682,
0.005664434749633074,
0.017424898222088814,
-0.0695192962884903,
0.03273535147309303,
0.038267072290182114,
0.007742488756775856,
0.005278031807392836,
0.01276432815939188,
-0.037026211619377136,
0.005602284334599972,
0.022705335170030594,
0.01355550903826952,
0.012869295664131641,
-0.025127658620476723,
-0.000013320448488229886,
-0.015645436942577362,
-0.013124697841703892,
0.013663815334439278,
0.04216435179114342,
-0.00898802187293768,
0.05373266339302063,
0.010865363292396069,
0.006453349255025387,
0.04372183978557587,
-0.015137136913836002,
-0.01224132813513279,
0.0022968873381614685,
0.02670619636774063,
0.010085719637572765,
0.03823336586356163,
0.02028866671025753,
-0.004562211688607931,
-0.02096295915544033,
-0.04428936913609505,
0.009830988012254238,
-0.022036923095583916,
-0.014053530991077423,
0.04468362033367157,
-0.03505800664424896,
0.00561312073841691,
-0.021411355584859848,
0.021652905270457268,
0.03171259164810181,
0.03798716887831688,
-0.04353776574134827,
0.026467885822057724,
0.014855336397886276,
0.027042249217629433,
0.018389316275715828,
0.012460875324904919,
0.045248739421367645,
-0.024973848834633827,
0.04020338132977486,
0.02234700880944729,
0.042042043060064316,
0.05090468376874924,
-0.005111582111567259,
0.03987980633974075,
-0.04542570561170578,
-0.015211937017738819,
0.012220093049108982,
0.01953227072954178,
-0.0032856096513569355,
-0.010702388361096382,
0.0011613003443926573,
-0.047822337597608566,
0.0028354679234325886,
-0.02394477091729641,
-0.006265413947403431,
-0.023169565945863724,
-0.0014729266986250877,
0.036845866590738297,
0.049092452973127365,
0.03820585086941719,
-0.03868035972118378,
0.004038988146930933,
-0.01949935592710972,
-0.00041133342892862856,
0.014225595630705357,
-0.025285771116614342,
-0.0325980968773365,
0.003040285548195243,
-0.03182681277394295,
-0.015794847160577774,
0.016766691580414772,
-0.04593495652079582,
-0.031052187085151672,
-0.01997731626033783,
0.004812626633793116,
-0.037215523421764374,
-0.002685388084501028,
0.007119797170162201,
0.020069148391485214,
-0.029796777293086052,
0.004636184778064489,
0.021946318447589874,
-0.03576939180493355,
0.02532622590661049,
-0.051024023443460464,
-0.00844019465148449,
-0.02566196396946907,
0.04373876750469208,
0.03563021123409271,
0.038282498717308044,
-0.003346492303535342,
-0.06227346882224083,
-0.029997892677783966,
-0.014538394287228584,
-0.0277789868414402,
0.02941361628472805,
0.023352833464741707,
-0.01503923162817955,
-0.026631828397512436,
-0.044309332966804504,
-0.02556612342596054,
-0.022897429764270782,
-0.01218874566257,
0.002723354147747159,
-0.034615881741046906,
-0.016434630379080772,
-0.03182259574532509,
0.019904524087905884,
0.022633500397205353,
0.00004436524977791123,
0.0366688035428524,
-0.008431370370090008,
0.011760532855987549,
-0.006219984497874975,
-0.004362252540886402,
-0.07022762298583984,
-0.0006143784848973155,
-0.03422836586833,
-0.03340078145265579,
-0.03632747381925583,
0.0012986580841243267,
-0.01647401973605156,
0.01528574712574482,
-0.05629930645227432,
0.0009235418401658535,
-0.05293884500861168,
0.024583425372838974,
0.01326063647866249,
-0.020442374050617218,
0.03228287398815155,
-0.005642286967486143,
-0.0030162131879478693,
0.050840239971876144,
-0.002813163213431835,
-0.009667783975601196,
0.02759796939790249,
-0.0005897182272747159,
0.08187631517648697,
0.04107408970594406,
-0.03300217166543007,
-0.05346012860536575,
-0.0006090854876674712,
0.0037625215481966734,
-0.031638242304325104,
-0.008482658304274082,
-0.024718528613448143,
0.007130712736397982,
0.008300764486193657,
0.022690583020448685,
-0.014482115395367146,
-0.0083564892411232,
0.029073333367705345,
0.007508752401918173,
-0.004602562636137009,
0.020360583439469337,
0.021784169599413872,
-0.08240194618701935,
0.0038645740132778883,
-0.009020345285534859,
-0.004969736561179161,
0.027174264192581177,
0.01618671976029873,
0.02087879367172718,
0.02062012441456318,
-0.042960166931152344,
-0.00418469263240695,
0.02631022222340107,
-0.02713913656771183,
-0.011259184218943119,
0.03783293068408966,
0.023981673642992973,
-0.04381588473916054,
-0.02453700825572014,
0.07118373364210129,
0.020071187987923622,
-0.06119215115904808,
-0.02071209065616131,
-0.043905265629291534,
0.03955617547035217,
-0.005209065042436123,
0.034455519169569016,
0.0012982786865904927,
0.048709042370319366,
0.03340417891740799,
0.005829147063195705,
0.005405339878052473,
0.017074622213840485
] |
How to train a new language model from scratch using Transformers and Tokenizers | julien-c | February 14, 2020 | how-to-train | guide, nlp | https://huggingface.co/blog/how-to-train | 1. Find a dataset First, let us find a corpus of text in Esperanto. Here we’ll use the Esperanto portion of the OSCAR corpus from INRIA. OSCAR is a huge multilingual corpus obtained by language classification and filtering of Common Crawl dumps of the Web. The Esperanto portion of the dataset is only 299M, so we’ll concatenate with the Esperanto sub-corpus of the Leipzig Corpora Collection, which is comprised of text from diverse sources like news, literature, and wikipedia. The final training corpus has a size of 3 GB, which is still small – for your model, you will get better results the more data you can get to pretrain on. | [
-0.002777343848720193,
-0.02532578818500042,
0.011824551038444042,
0.023398565128445625,
0.05580642446875572,
0.03158360347151756,
0.03352586179971695,
0.01190439984202385,
-0.05229681357741356,
0.011564459651708603,
-0.06763749569654465,
0.0338510163128376,
0.005564113613218069,
0.015180225484073162,
0.08657747507095337,
-0.051040925085544586,
0.03815640136599541,
0.03718758746981621,
0.0010909378761425614,
-0.011291100643575191,
-0.05481184273958206,
0.017733529210090637,
0.06911177933216095,
0.009066395461559296,
0.03811083734035492,
-0.03932041674852371,
0.03438239172101021,
0.08151248842477798,
-0.03765566274523735,
0.0045792837627232075,
-0.11217910796403885,
-0.025116074830293655,
0.008911602199077606,
-0.011283347383141518,
-0.09357325732707977,
0.06748909503221512,
-0.0855209082365036,
0.0697130560874939,
0.0033392144832760096,
-0.031911060214042664,
-0.03388528525829315,
0.018443772569298744,
-0.03823418915271759,
0.0807972177863121,
0.002728882012888789,
-0.027812551707029343,
-0.13813096284866333,
0.05023316293954849,
-0.03586554899811745,
-0.03133110702037811,
-0.0577772855758667,
0.012388988398015499,
-0.04442187026143074,
0.04694618657231331,
0.014226439408957958,
0.008317932486534119,
0.03611987829208374,
-0.08228783309459686,
0.014497148804366589,
0.006039333995431662,
0.005091964732855558,
0.03966231644153595,
-0.004963725805282593,
0.04446689411997795,
0.018537841737270355,
0.017680726945400238,
-0.04530361667275429,
-0.008715186268091202,
-0.03805244714021683,
-0.04000521078705788,
0.050743043422698975,
-0.011458029970526695,
-0.02412818744778633,
-0.03209639713168144,
-0.0013276104582473636,
-0.09327463805675507,
-0.0026202592998743057,
0.028723422437906265,
0.001679863897152245,
-0.0021713273599743843,
-0.006409156136214733,
0.04534322768449783,
0.04107275605201721,
0.04408101364970207,
0.10792019218206406,
0.00915074534714222,
0.01746724732220173,
-0.013436875306069851,
-0.06263262033462524,
0.006722285877913237,
0.025953931733965874,
-0.07267379760742188,
0.011089351959526539,
0.04477992653846741,
0.05010285601019859,
-0.04462314397096634,
0.037000611424446106,
0.05476963147521019,
-0.03791211172938347,
0.0501793809235096,
-0.05625369772315025,
-0.027244972065091133,
0.029353616759181023,
-0.11807888001203537,
-0.10707033425569534,
0.008495285175740719,
0.012691842392086983,
-0.02106909267604351,
-0.001958407461643219,
0.026855947449803352,
0.030974287539720535,
-0.003303835866972804,
-0.04067832604050636,
0.0074451761320233345,
-0.11380141228437424,
-0.004779459442943335,
0.07182478159666061,
0.03858328238129616,
-0.039769817143678665,
0.06479897350072861,
0.005130593664944172,
0.0975286141037941,
0.047663118690252304,
0.0700279250741005,
-0.036146845668554306,
0.0657893642783165,
0.024111073464155197,
0.003719949396327138,
0.02092069946229458,
0.013938984833657742,
0.0350809171795845,
-0.07136623561382294,
0.08331094682216644,
-0.02852792851626873,
-0.0239181499928236,
0.02372962050139904,
-0.00279519846662879,
0.01899111643433571,
0.06086665764451027,
-0.015537247993052006,
-0.05182170495390892,
0.010684771463274956,
-0.10371778905391693,
0.006427395157516003,
0.056287817656993866,
0.000326408859109506,
-0.08306793123483658,
0.035512130707502365,
-0.003048111917451024,
0.03187916427850723,
-0.07063020020723343,
0.08017577230930328,
-0.022009406238794327,
-0.04833881929516792,
0.05909764766693115,
0.009143947623670101,
0.009195790626108646,
-0.059769369661808014,
-0.06425808370113373,
0.011154180392622948,
0.01256238017231226,
0.005315358284860849,
-0.020462898537516594,
0.04312780126929283,
0.008401349186897278,
-0.09378407895565033,
-0.012525615282356739,
0.0787540003657341,
-0.026140626519918442,
0.0034872007090598345,
-0.01705501414835453,
-0.042504001408815384,
0.10906589776277542,
-0.018440138548612595,
-0.04731682315468788,
0.003329142462462187,
0.014128599315881729,
0.005789313465356827,
-0.001473025418817997,
-0.014908617362380028,
0.02402443252503872,
0.012375139631330967,
-0.048607710748910904,
0.03219442442059517,
0.00775888841599226,
-0.06880898773670197,
0.06393203884363174,
-0.007281402125954628,
-0.01899687945842743,
-0.029696809127926826,
0.01434143353253603,
-0.05659780651330948,
0.043364331126213074,
-0.009562301449477673,
-0.017300479114055634,
-0.043184857815504074,
0.029255827888846397,
0.08838478475809097,
0.07068801671266556,
0.08313276618719101,
0.0017991934437304735,
-0.005554282106459141,
0.04405738785862923,
0.01676000840961933,
-0.024598298594355583,
-0.050596725195646286,
-0.007663463242352009,
-0.03049572929739952,
0.0018465719185769558,
-0.03975581005215645,
-0.0029527703300118446,
-0.0664435476064682,
0.031604066491127014,
-0.1006806269288063,
-0.0152858542278409,
-0.018619172275066376,
0.017788182944059372,
0.05698409304022789,
0.00506317475810647,
-0.040633656084537506,
0.16147680580615997,
-0.053934499621391296,
-0.04531973972916603,
0.06674742698669434,
-0.05238324776291847,
0.0546974241733551,
0.04969271272420883,
0.061635810881853104,
0.02899758890271187,
-0.07397767156362534,
0.005131414160132408,
0.002051340416073799,
0.04867153242230415,
0.03682243451476097,
-0.03262418136000633,
-0.05935923755168915,
0.01405720878392458,
0.0036796494387090206,
0.019105449318885803,
0.02715911902487278,
-0.011113893240690231,
-0.038439638912677765,
-0.03924534469842911,
0.04466947168111801,
0.009902196936309338,
0.015537506900727749,
0.11584769189357758,
0.007749148644506931,
-0.04116478189826012,
0.019106734544038773,
0.002387681510299444,
0.006767054088413715,
-0.023039763793349266,
-0.08702821284532547,
-0.048092857003211975,
0.002066272310912609,
0.025948455557227135,
-0.023907268419861794,
-0.026578370481729507,
0.012194034643471241,
0.003585967468097806,
0.0014068403979763389,
-0.00818571262061596,
-0.027660077437758446,
0.03771581873297691,
-0.023456105962395668,
0.0022923131473362446,
0.004785425029695034,
0.012557738460600376,
-0.008881445042788982,
0.027455268427729607,
-0.005394811276346445,
0.03768329322338104,
-0.010162010788917542,
-0.012522069737315178,
0.02477179653942585,
0.0040900264866650105,
-0.03845175355672836,
-0.02073686383664608,
-0.0038595586083829403,
-0.03592965379357338,
-0.05308354273438454,
0.0297903623431921,
0.015309302136301994,
0.005159204825758934,
-0.019544800743460655,
0.011701184324920177,
-0.03846949338912964,
0.008827698417007923,
0.02682623825967312,
-0.005588202271610498,
0.023559831082820892,
-0.0017345813103020191,
-0.026829548180103302,
0.006074038799852133,
-0.016446806490421295,
0.0037854008842259645,
-0.0066076177172362804,
-0.018451141193509102,
0.02734193578362465,
-0.05541304871439934,
-0.005741105414927006,
0.018080102279782295,
0.00047239300329238176,
-0.03108956851065159,
0.024404743686318398,
-0.016203753650188446,
0.03493289649486542,
-0.09544239193201065,
0.03408467024564743,
0.0032158885151147842,
0.023130763322114944,
-0.004412900656461716,
-0.019368626177310944,
-0.002505103824660182,
0.019621742889285088,
-0.0264130849391222,
-0.0048944964073598385,
0.023596985265612602,
-0.013709788210690022,
0.04521726444363594,
0.05449816957116127,
-0.021549394354224205,
0.021717822179198265,
-0.04889495298266411,
0.016509301960468292,
0.04404619708657265,
0.03538024052977562,
-0.029192686080932617,
0.0319695770740509,
0.02132679894566536,
0.053666990250349045,
-0.015207905322313309,
0.018148217350244522,
0.0029963962733745575,
0.00808214582502842,
0.031868621706962585,
-0.0007933195447549224,
0.003754155244678259,
-0.01828678324818611,
-0.036872055381536484,
0.023505857214331627,
-0.03262251242995262,
0.017219386994838715,
0.00011552005162229761,
0.050372686237096786,
-0.003048927756026387,
0.05905502289533615,
-0.007100551389157772,
-0.05162319168448448,
0.044005248695611954,
-0.006607145071029663,
0.0013483266811817884,
-0.02621336653828621,
-0.02498030662536621,
0.001683899899944663,
-0.01649530604481697,
-0.04894189164042473,
-0.022876372560858727,
-0.036559075117111206,
0.02768922969698906,
0.0894363671541214,
-0.00925888866186142,
0.00800693966448307,
0.06976078450679779,
-0.0130414217710495,
0.03404261916875839,
-0.023474015295505524,
-0.01115858182311058,
0.040155079215765,
0.01530391350388527,
-0.041269585490226746,
-0.04679250717163086,
0.04142927750945091,
0.01302734762430191,
0.02620796300470829,
-0.04728148877620697,
0.0661446824669838,
-0.012326791882514954,
0.03693190962076187,
0.06698364019393921,
-0.007355017121881247,
-0.02905532717704773,
0.007132767699658871,
0.02805262804031372,
0.005415207240730524,
0.00812762975692749,
0.03466402366757393,
-0.038337863981723785,
0.026293445378541946,
-0.054203249514102936,
-0.04687324911355972,
0.005877668038010597,
-0.031147683039307594,
0.01714298501610756,
-0.06678862869739532,
0.034062646329402924,
0.03490667790174484,
0.011752644553780556,
-0.030770916491746902,
0.0013708570040762424,
-0.002602061489596963,
0.00013379857409745455,
0.008236320689320564,
-0.012807267718017101,
-0.018988775089383125,
-0.0006670436123386025,
-0.008449756540358067,
0.021775199100375175,
-0.01046705711632967,
-0.006664054002612829,
-0.01604561321437359,
0.05587855726480484,
0.0014248376246541739,
-0.033660948276519775,
-0.016539985314011574,
0.01882612518966198,
-0.02325379103422165,
0.02005585841834545,
-0.0305208470672369,
0.02466966025531292,
0.013937490060925484,
0.015222068876028061,
0.00266628572717309,
-0.0567663311958313,
-0.01672121323645115,
-0.040556445717811584,
-0.0019796115811914206,
-0.022467074915766716,
-0.005447261035442352,
-0.0066545153968036175,
0.012333976104855537,
0.016954807564616203,
-0.012414513155817986,
0.005341976415365934,
0.030286844819784164,
0.001461840351112187,
-0.030498748645186424,
-0.031395215541124344,
0.0186280757188797,
0.043896980583667755,
0.01589978300035,
-0.0067733461037278175,
-0.003939975518733263,
-0.0531548373401165,
-0.01696722023189068,
0.009364981204271317,
-0.03820418193936348,
-0.012071151286363602,
-0.044726140797138214,
0.014640722423791885,
-0.010865523479878902,
-0.008439727127552032,
-0.03366834297776222,
-0.002032212447375059,
-0.04950299486517906,
-0.014971104450523853,
-0.006190319079905748,
0.012316369451582432,
0.014507961459457874,
-0.03520220145583153,
0.022573105990886688,
0.01606479287147522,
-0.040015194565057755,
0.009339041076600552,
0.033354297280311584,
0.0106024956330657,
0.04168127104640007,
-0.02175312303006649,
-0.030149394646286964,
-0.04834164306521416,
0.014559874311089516,
0.005857713520526886,
-0.03662228211760521,
0.03973369672894478,
-0.031007979065179825,
-0.009148240089416504,
0.015719905495643616,
0.0136073874309659,
0.032991886138916016,
-0.004465346224606037,
-0.009298591874539852,
0.024409078061580658,
0.019039038568735123,
-0.0030172138940542936,
0.06471305340528488,
-0.023457249626517296,
-0.009564419277012348,
-0.0550304539501667,
0.0042435829527676105,
0.0005851018358953297,
0.006876006722450256,
-0.04109213501214981,
0.041933342814445496,
0.03810492157936096,
0.050358451902866364,
0.028370629996061325,
0.025404592975974083,
-0.02145414426922798,
0.035129427909851074,
0.017158104106783867,
-0.027682997286319733,
-0.014604831114411354,
-0.013246272690594196,
-0.008776545524597168,
-0.009267470799386501,
-0.04113338142633438,
-0.00927539449185133,
0.026303961873054504,
0.006038259249180555,
-0.012035662308335304,
0.005365349352359772,
0.005158326122909784,
0.0031138614285737276,
-0.018030982464551926,
-0.024743802845478058,
-0.002292809309437871,
-0.012036307714879513,
-0.04482036456465721,
0.009095883928239346,
-0.029787296429276466,
0.03309764713048935,
-0.020155765116214752,
-0.06830677390098572,
-0.012319238856434822,
0.024964116513729095,
0.021182242780923843,
0.05324013531208038,
0.00247407634742558,
-0.045625343918800354,
-0.02690865285694599,
0.05936668813228607,
0.011713105253875256,
-0.056220561265945435,
0.04490790143609047,
0.0017316393787041306,
0.013056629337370396,
-0.009135975502431393,
0.03250274434685707,
-0.02277158387005329,
0.0270504429936409,
0.04582704231142998,
0.01233750768005848,
-0.012812509201467037,
0.002619092585518956,
0.013566447421908379,
0.051860421895980835,
0.0317370630800724,
-0.005726474802941084,
-0.02685297466814518,
-0.038057684898376465,
0.012319587171077728,
0.023678019642829895,
0.050604116171598434,
0.012774092145264149,
0.007673276588320732,
0.050180140882730484,
-0.005938604939728975,
0.04320058971643448,
-0.0006201352225616574,
-0.014807472936809063,
0.03365259990096092,
-0.008652311749756336,
0.04236958548426628,
0.01192812342196703,
-0.008347408846020699,
-0.012628735974431038,
0.038965772837400436,
0.011448300443589687,
-0.05364444479346275,
0.0279603973031044,
0.018170323222875595,
-0.03281554952263832,
-0.00884893350303173,
0.02219810150563717,
-0.07678578048944473,
0.019195787608623505,
0.055818259716033936,
0.02482016384601593,
0.028172843158245087,
-0.016581326723098755,
-0.004552491940557957,
-0.022389264777302742,
-0.015506281517446041,
-0.012897120788693428,
0.021299757063388824,
-0.01743566431105137,
0.07222827523946762,
-0.020794721320271492,
0.01979355700314045,
0.014429133385419846,
-0.027451898902654648,
-0.03824562206864357,
0.015271486714482307,
0.027394212782382965,
0.04428655654191971,
0.04819140210747719,
-0.012631946243345737,
-0.023405490443110466,
-0.012884199619293213,
-0.01655714586377144,
0.01318837609142065,
-0.037766117602586746,
-0.012444894760847092,
0.04019186645746231,
-0.06651733070611954,
-0.04014795646071434,
-0.050970204174518585,
0.043825775384902954,
0.016289973631501198,
0.010828674770891666,
-0.04462574049830437,
0.037748683243989944,
0.001635957625694573,
0.015342127531766891,
0.07208213955163956,
0.028823137283325195,
0.011636544950306416,
-0.011072437278926373,
0.009792216122150421,
0.06588482856750488,
0.05848751962184906,
0.028488321229815483,
-0.0045824237167835236,
0.04033153876662254,
-0.038651179522275925,
-0.020616116002202034,
-0.007628771476447582,
-0.008066088892519474,
-0.03245319426059723,
0.011440902948379517,
0.04562235251069069,
-0.04783956706523895,
0.014858700335025787,
-0.03878924250602722,
0.02650730311870575,
0.008789029903709888,
-0.010361382737755775,
-0.007721719332039356,
0.0382806770503521,
-0.020808303728699684,
-0.001573653076775372,
-0.054042648524045944,
0.012925141490995884,
0.03970599174499512,
-0.0020774637814611197,
-0.021170884370803833,
-0.030597444623708725,
-0.007738697808235884,
-0.028775695711374283,
0.008334816433489323,
0.021114544942975044,
0.03485802188515663,
-0.061282094568014145,
0.0028195518534630537,
0.0001267230254597962,
0.011088186874985695,
0.011448124423623085,
0.01633518561720848,
0.021575473248958588,
-0.009557299315929413,
0.014971330761909485,
0.002057519508525729,
-0.04902457818388939,
-0.031245360150933266,
-0.04262514039874077,
-0.0009218117920681834,
0.014613213948905468,
-0.019962333142757416,
0.046085670590400696,
0.05316827818751335,
0.030845295637845993,
-0.06217096373438835,
0.02216370403766632,
-0.02609473280608654,
-0.01049270760267973,
0.04286722093820572,
-0.012914194725453854,
-0.01379744429141283,
-0.022510264068841934,
-0.02144174836575985,
-0.020498601719737053,
-0.03303738310933113,
-0.037735868245363235,
0.028587257489562035,
-0.031845252960920334,
-0.033818308264017105,
-0.025526268407702446,
-0.01407101284712553,
0.009916762821376324,
-0.01930498518049717,
0.0689048245549202,
0.011561952531337738,
0.02234593965113163,
-0.01588241197168827,
0.04160767421126366,
-0.0038221036083996296,
0.04678865149617195,
-0.03380042314529419,
-0.03903941810131073,
-0.02657264471054077,
-0.001366844866424799,
-0.033094462007284164,
-0.04212705418467522,
-0.05098829045891762,
-0.025022253394126892,
-0.040423523634672165,
0.006791689898818731,
-0.028984002768993378,
0.03318718075752258,
0.037019651383161545,
0.020208539441227913,
0.03510979935526848,
0.03573869541287422,
0.029071731492877007,
0.044236380606889725,
-0.02380412258207798,
-0.007075691595673561,
0.03371953219175339,
0.0022156937047839165,
-0.004005047492682934,
0.015231349505484104,
0.00023963034618645906,
-0.02009756863117218,
-0.03977267071604729,
-0.024149654433131218,
0.02818015031516552,
0.04293958470225334,
-0.012368852272629738,
-0.004850163124501705,
-0.01950390823185444,
0.020104175433516502,
0.020856931805610657,
0.01473580114543438,
-0.02890758030116558,
0.036815375089645386,
0.010575562715530396,
-0.034813426434993744,
0.007226528599858284,
0.012644554488360882,
-0.014660445041954517,
0.047906581312417984,
0.003228484420105815,
0.017668917775154114,
0.01564211957156658,
-0.007262914441525936,
0.007431886158883572,
0.00863447692245245,
-0.006685289554297924,
-0.020388390868902206,
0.04819266125559807,
0.032804880291223526,
-0.023665398359298706,
0.014468405395746231,
0.04672447592020035,
0.02655351348221302,
-0.0025656595826148987,
-0.034907907247543335,
-0.015724847093224525,
0.04484209045767784,
0.01611838862299919,
0.0018680213252082467,
-0.014838334172964096,
0.019999999552965164,
0.011012990958988667,
0.0266452357172966,
-0.0071352762170135975,
0.009965639561414719
] |
How to train a new language model from scratch using Transformers and Tokenizers | julien-c | February 14, 2020 | how-to-train | guide, nlp | https://huggingface.co/blog/how-to-train | 4. Check that the LM actually trained Aside from looking at the training and eval losses going down, the easiest way to check whether our language model is learning anything interesting is via the FillMaskPipeline. Pipelines are simple wrappers around tokenizers and models, and the 'fill-mask' one will let you input a sequence containing a masked token (here, <mask>) and return a list of the most probable filled sequences, with their probabilities. python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="./models/EsperBERTo-small", tokenizer="./models/EsperBERTo-small" ) # The sun <mask>. # => result = fill_mask("La suno <mask>.") # {'score': 0.2526160776615143, 'sequence': '<s> La suno brilis.</s>', 'token': 10820} # {'score': 0.0999930202960968, 'sequence': '<s> La suno lumis.</s>', 'token': 23833} # {'score': 0.04382849484682083, 'sequence': '<s> La suno brilas.</s>', 'token': 15006} # {'score': 0.026011141017079353, 'sequence': '<s> La suno falas.</s>', 'token': 7392} # {'score': 0.016859788447618484, 'sequence': '<s> La suno pasis.</s>', 'token': 4552} Ok, simple syntax/grammar works. Let’s try a slightly more interesting prompt: python fill_mask("Jen la komenco de bela <mask>.") # This is the beginning of a beautiful <mask>. # => # { # 'score':0.06502299010753632 # 'sequence':'<s> Jen la komenco de bela vivo.</s>' # 'token':1099 # } # { # 'score':0.0421181358397007 # 'sequence':'<s> Jen la komenco de bela vespero.</s>' # 'token':5100 # } # { # 'score':0.024884626269340515 # 'sequence':'<s> Jen la komenco de bela laboro.</s>' # 'token':1570 # } # { # 'score':0.02324388362467289 # 'sequence':'<s> Jen la komenco de bela tago.</s>' # 'token':1688 # } # { # 'score':0.020378097891807556 # 'sequence':'<s> Jen la komenco de bela festo.</s>' # 'token':4580 # } > “Jen la komenco de bela tago”, indeed! With more complex prompts, you can probe whether your language model captured more semantic knowledge or even some sort of (statistical) common sense reasoning. | [
0.07899538427591324,
-0.04066430777311325,
0.011012708768248558,
-0.0335247777402401,
0.04120038077235222,
0.044754620641469955,
0.05697348341345787,
0.0530204214155674,
-0.05088852718472481,
0.03892305865883827,
-0.04258105158805847,
0.09202717244625092,
0.07789108902215958,
0.0617528036236763,
-0.001470831804908812,
-0.010496214032173157,
0.03630558401346207,
0.0016617235960438848,
0.010492450557649136,
0.004678561817854643,
-0.0253139715641737,
-0.06078602746129036,
0.0899982750415802,
-0.02459460310637951,
0.02732986956834793,
-0.051346153020858765,
0.02407267689704895,
-0.010110268369317055,
-0.07196851819753647,
0.008882853202521801,
-0.10189902782440186,
0.03953391686081886,
0.0017366856336593628,
-0.023659342899918556,
-0.03744637221097946,
0.07737786322832108,
-0.10751642286777496,
0.0491986982524395,
0.048282090574502945,
0.009769671596586704,
0.02642051689326763,
-0.026702312752604485,
-0.014512729831039906,
0.009420848451554775,
-0.030614033341407776,
-0.060403939336538315,
-0.16022345423698425,
0.005498428829014301,
-0.04233192279934883,
-0.050077296793460846,
-0.05410638451576233,
0.050633493810892105,
-0.021640906110405922,
-0.01921854168176651,
-0.009591133333742619,
-0.04251343756914139,
0.0015019240090623498,
-0.05451340600848198,
0.007015049923211336,
0.010775831528007984,
-0.007789173163473606,
0.0455051064491272,
-0.01342506892979145,
0.015469979494810104,
0.007031349930912256,
-0.009997230023145676,
-0.004012192599475384,
0.050230976194143295,
-0.061807647347450256,
-0.0645008385181427,
-0.011087938211858273,
0.014264659024775028,
-0.0002666598011273891,
0.004767348058521748,
0.0444810725748539,
-0.04349895566701889,
-0.01183905079960823,
0.08023904263973236,
-0.029239509254693985,
0.04744817689061165,
0.013992488384246826,
0.02509947307407856,
0.020973049104213715,
0.02009514346718788,
0.028911951929330826,
0.019711937755346298,
0.07965000718832016,
-0.03460746631026268,
-0.009789329022169113,
0.03151577338576317,
-0.010751551948487759,
-0.12256573140621185,
-0.04126514494419098,
0.010075105354189873,
0.04749889299273491,
-0.042833101004362106,
0.010888742282986641,
0.02555053122341633,
-0.09836890548467636,
-0.08525064587593079,
-0.01259193941950798,
-0.10665755718946457,
0.01366739347577095,
-0.06171790137887001,
-0.09683433920145035,
0.01545505691319704,
-0.00784250907599926,
0.016816554591059685,
-0.049500722438097,
-0.011788442730903625,
-0.0012777792289853096,
0.023976212367415428,
-0.023344358429312706,
0.05036621913313866,
-0.06340308487415314,
0.016165778040885925,
-0.04509793594479561,
0.041860297322273254,
-0.012735752388834953,
0.06289400160312653,
-0.005907139740884304,
0.06266416609287262,
0.08858072012662888,
0.008058716543018818,
0.0027320890221744776,
0.07649998366832733,
-0.013943688943982124,
0.08873298764228821,
0.011965730227530003,
-0.004656320437788963,
0.04470653459429741,
0.007613072637468576,
0.033750344067811966,
0.076478511095047,
0.024855561554431915,
-0.010970892384648323,
0.06105219945311546,
-0.020752111449837685,
0.0050504463724792,
0.008832938969135284,
-0.0697999820113182,
0.03167159482836723,
-0.07628156989812851,
-0.0027987512294203043,
0.06672921031713486,
0.00321556837297976,
-0.03205586224794388,
0.03616418316960335,
0.03701860457658768,
0.029690595343708992,
0.0017716349102556705,
0.05168650671839714,
-0.033094167709350586,
-0.030665993690490723,
0.040123362094163895,
0.08471869677305222,
-0.05081215873360634,
-0.03044169209897518,
-0.06487502157688141,
-0.010838855989277363,
-0.0055034467950463295,
0.04416559264063835,
0.004887157119810581,
-0.0017802888760343194,
0.04729202017188072,
-0.022066332399845123,
-0.013862750492990017,
0.007430303376168013,
0.03878627344965935,
0.06626111268997192,
0.025399336591362953,
-0.0001674466475378722,
0.09183330833911896,
-0.037984300404787064,
-0.03427993878722191,
0.017491666600108147,
0.019118063151836395,
-0.004257811699062586,
0.02913540229201317,
0.012180326506495476,
-0.0671844407916069,
0.030082326382398605,
-0.04190719127655029,
0.0354108102619648,
0.01964305341243744,
-0.07344063371419907,
0.03612489625811577,
-0.05229206383228302,
0.0220055989921093,
-0.0039808680303394794,
-0.03683069348335266,
0.02693932130932808,
0.045983657240867615,
-0.047217801213264465,
-0.020317237824201584,
-0.04220741614699364,
-0.017680980265140533,
0.03315863758325577,
0.040767911821603775,
-0.006467558443546295,
-0.006754160393029451,
0.016442518681287766,
0.04880617558956146,
-0.07971364259719849,
0.030451640486717224,
0.027416547760367393,
-0.026520218700170517,
-0.11294975876808167,
0.011623230762779713,
0.035197194665670395,
0.03632699325680733,
-0.09726108610630035,
0.029502637684345245,
-0.05201362818479538,
-0.04960360750555992,
-0.02983582764863968,
-0.03171181678771973,
-0.016880493611097336,
0.0019862675108015537,
0.012252520769834518,
0.14910562336444855,
-0.017151523381471634,
-0.04576500877737999,
-0.04749070480465889,
-0.024996349588036537,
0.006944253575056791,
0.041597288101911545,
0.06110730022192001,
0.06186912953853607,
-0.08414238691329956,
-0.0706898421049118,
-0.05767785757780075,
0.008359048515558243,
0.08322667330503464,
-0.0532376691699028,
-0.028928404673933983,
-0.03493502363562584,
0.017364580184221268,
-0.03502724692225456,
0.009912929497659206,
0.006092045456171036,
-0.018551768735051155,
-0.007232177071273327,
0.11861861497163773,
-0.030702006071805954,
0.0126565583050251,
0.09600654244422913,
-0.005895460024476051,
-0.02698158286511898,
0.017402788624167442,
-0.05260134115815163,
0.01877933368086815,
-0.032005324959754944,
-0.01232809480279684,
-0.026639632880687714,
-0.02543608285486698,
-0.006896350998431444,
0.013880666345357895,
-0.025070205330848694,
0.050821978598833084,
0.011605039238929749,
0.0028076001908630133,
-0.004162726923823357,
-0.011794398538768291,
0.005654127802699804,
-0.022673211991786957,
0.022354107350111008,
-0.028401674702763557,
0.0017679433804005384,
0.02979004755616188,
0.02404221147298813,
-0.006609336007386446,
0.015392174012959003,
0.005839412100613117,
0.01496612373739481,
0.02258101850748062,
0.007869506254792213,
-0.016583576798439026,
-0.023578299209475517,
-0.025809282436966896,
-0.0475136861205101,
-0.019922692328691483,
0.03740791603922844,
0.025229666382074356,
-0.019390540197491646,
0.004769791848957539,
-0.00577129703015089,
0.013699249364435673,
-0.02847158908843994,
0.004258019849658012,
-0.003101320005953312,
0.0582849495112896,
-0.014833910390734673,
-0.01822711154818535,
-0.05602410435676575,
-0.010373049415647984,
0.01873820833861828,
-0.01764461025595665,
0.003054796950891614,
0.02315261960029602,
-0.042319055646657944,
0.018195772543549538,
0.018656453117728233,
-0.017771007493138313,
-0.02693459577858448,
0.013466526754200459,
0.014162817038595676,
0.01566103845834732,
-0.09672816842794418,
0.004435638897120953,
0.04443798586726189,
-0.06839323788881302,
0.025361064821481705,
-0.02465946599841118,
0.07397241145372391,
0.04751107469201088,
-0.0077413953840732574,
0.017047835513949394,
-0.0328955352306366,
0.0056700194254517555,
-0.0023113484494388103,
0.06496884673833847,
0.008363253436982632,
-0.013977921567857265,
-0.044939279556274414,
0.008360393345355988,
0.04473185911774635,
0.010657801292836666,
0.027259161695837975,
-0.002404026221483946,
-0.007985067553818226,
0.015624210238456726,
-0.0168659258633852,
0.03363862261176109,
0.03223690018057823,
0.0683290958404541,
0.019591884687542915,
-0.040434420108795166,
-0.021836601197719574,
-0.009223012253642082,
-0.024388480931520462,
0.013097010552883148,
-0.050032224506139755,
0.023159092292189598,
0.008895783685147762,
-0.01921064220368862,
-0.0022641043178737164,
0.02343672513961792,
-0.02332681231200695,
0.016432395204901695,
-0.0050519309006631374,
-0.009002172388136387,
-0.020519288256764412,
-0.01217686478048563,
-0.023208918049931526,
-0.07035119831562042,
0.038316935300827026,
-0.05169367045164108,
-0.018276948481798172,
-0.04742344841361046,
0.008867956697940826,
0.013604046776890755,
-0.00016447019879706204,
0.04988943040370941,
0.008266349323093891,
0.0017241300083696842,
0.07132399827241898,
0.04202406853437424,
-0.028810786083340645,
0.023125136271119118,
-0.004959683865308762,
-0.03410914167761803,
-0.02246948890388012,
0.04992038011550903,
0.024782823398709297,
0.018886351957917213,
-0.01870689168572426,
0.032400380820035934,
-0.0018022196600213647,
0.05093291029334068,
-0.012588098645210266,
0.005150186829268932,
-0.034525685012340546,
-0.023371204733848572,
-0.02362963743507862,
-0.02394253760576248,
0.05851071700453758,
0.01430793572217226,
-0.01000216044485569,
0.009662872180342674,
-0.060059960931539536,
-0.011581039987504482,
-0.01508555468171835,
0.008600510656833649,
0.041121311485767365,
-0.028579194098711014,
0.049271371215581894,
0.025730999186635017,
0.010839313268661499,
-0.013532965444028378,
-0.009781945496797562,
0.02100159041583538,
-0.007489906623959541,
-0.03273214027285576,
0.025642121210694313,
0.0006549597601406276,
-0.02927732653915882,
0.014096066355705261,
0.00963048916310072,
-0.05113492161035538,
0.04477721452713013,
0.01594816893339157,
-0.014125755988061428,
0.012400561012327671,
-0.06354600191116333,
-0.03464149311184883,
0.03181591257452965,
-0.049339715391397476,
-0.011233024299144745,
0.0019857599399983883,
-0.032842569053173065,
-0.014346557669341564,
0.025916216894984245,
0.03895197808742523,
-0.007546776439994574,
0.00834015291184187,
0.012743850238621235,
-0.0052805435843765736,
-0.060385867953300476,
0.008459821343421936,
-0.012297403998672962,
0.005348804406821728,
0.014657826162874699,
-0.025361374020576477,
0.01906426064670086,
-0.0010222827550023794,
-0.006840219255536795,
0.0019611427560448647,
-0.02153552509844303,
0.020502254366874695,
0.051466960459947586,
-0.006609068717807531,
-0.005076196976006031,
0.01750730350613594,
-0.013516465201973915,
0.0027509473729878664,
0.01415875181555748,
-0.025270462036132812,
-0.022563718259334564,
-0.006521472241729498,
-0.006741287652403116,
-0.04424118995666504,
0.03332160413265228,
-0.05455126240849495,
-0.031004523858428,
-0.039288341999053955,
-0.004851962439715862,
0.006097128614783287,
0.07200942933559418,
0.03489387035369873,
-0.05755056068301201,
-0.03844938054680824,
0.04507112503051758,
-0.024675607681274414,
-0.03046746924519539,
-0.0022484951186925173,
0.009934834204614162,
0.021568477153778076,
-0.012912836857140064,
0.007300389464944601,
-0.006331650540232658,
0.058823224157094955,
-0.003814220894128084,
-0.03005901351571083,
-0.016907498240470886,
-0.07196817547082901,
0.009755563922226429,
-0.004185318946838379,
0.019090784713625908,
-0.008911730721592903,
0.019789543002843857,
0.008380534127354622,
0.00835670530796051,
0.029566412791609764,
-0.01318038534373045,
-0.00949392095208168,
-0.007606508210301399,
-0.03736009821295738,
-0.000533816812094301,
-0.02604043483734131,
0.05276570841670036,
0.008001047186553478,
-0.02177625149488449,
0.002442873315885663,
0.002058559563010931,
0.03822620213031769,
-0.008757879957556725,
0.03456753119826317,
0.018091224133968353,
-0.014856534078717232,
-0.004944749642163515,
-0.019981663674116135,
0.010363989509642124,
0.009104902856051922,
-0.011591247282922268,
0.02260311134159565,
-0.060368336737155914,
-0.009883763268589973,
0.047005798667669296,
-0.0000815434759715572,
0.00012400098785292357,
-0.0066864886321127415,
0.008321094326674938,
0.0020753326825797558,
-0.031763624399900436,
-0.00667544873431325,
-0.012850223109126091,
-0.031750649213790894,
0.02115635573863983,
-0.027555612847208977,
-0.03359607607126236,
0.03903885930776596,
0.04869573190808296,
-0.03853367641568184,
0.024864178150892258,
-0.005095289088785648,
-0.0007446689996868372,
0.05653621628880501,
0.006928520742803812,
0.029462475329637527,
-0.036346472799777985,
-0.0256853885948658,
0.04584934189915657,
-0.05707385390996933,
-0.027688127011060715,
0.0461026206612587,
0.0053415000438690186,
0.04870426282286644,
0.047121014446020126,
-0.00836817268282175,
0.038422174751758575,
0.026863841339945793,
0.0362493172287941,
0.00031874666456133127,
0.01908951811492443,
0.011521474458277225,
0.03071369230747223,
-0.03768017515540123,
0.01924336701631546,
0.02570965327322483,
-0.04662787541747093,
0.012128777801990509,
-0.038656044751405716,
0.04223534092307091,
0.02779274247586727,
-0.016028232872486115,
-0.0011959896655753255,
-0.02261483110487461,
0.006198978517204523,
0.068428635597229,
-0.019408972933888435,
0.04034009948372841,
0.010981258936226368,
0.032281145453453064,
0.014553889632225037,
-0.007964507676661015,
-0.02886483632028103,
0.008997833356261253,
-0.017037322744727135,
-0.06891695410013199,
0.0048275357112288475,
0.08928553014993668,
0.0074476636946201324,
0.02482200413942337,
0.02053954266011715,
-0.03980449587106705,
0.02682853676378727,
0.042437341064214706,
0.03159932419657707,
-0.010225345380604267,
-0.006159799173474312,
0.006038946099579334,
0.04409047216176987,
-0.06359165161848068,
0.0027671423740684986,
0.05456053465604782,
-0.02255854196846485,
0.04967628791928291,
-0.021034708246588707,
-0.003109112847596407,
0.01647987775504589,
0.009651286527514458,
0.01870366744697094,
-0.0011367491679266095,
0.05136367306113243,
0.057707104831933975,
0.010686035268008709,
-0.0050257667899131775,
-0.00995948538184166,
-0.018092302605509758,
-0.0369752012193203,
-0.02495691552758217,
-0.008289527148008347,
0.018932407721877098,
0.04565511643886566,
0.0056206719018518925,
0.01947471871972084,
-0.02797710709273815,
0.05837554112076759,
-0.016722161322832108,
0.018325766548514366,
-0.0018381234258413315,
0.020263873040676117,
0.027599656954407692,
0.009063931182026863,
-0.025584794580936432,
0.043054260313510895,
-0.014265881851315498,
0.018949244171380997,
0.06612986326217651,
0.013613899238407612,
0.011428149417042732,
0.03921012580394745,
0.026022661477327347,
0.026048805564641953,
-0.027455640956759453,
-0.02417571283876896,
0.04164585471153259,
0.0019630282185971737,
-0.02915327250957489,
-0.0020755883306264877,
0.018703853711485863,
-0.010350020602345467,
-0.03593389689922333,
-0.04549901932477951,
-0.007492590229958296,
-0.0005971924401819706,
-0.013115501962602139,
-0.03731250762939453,
0.019296227023005486,
0.01326711755245924,
-0.03342685103416443,
-0.022216375917196274,
0.007443962153047323,
0.006819724105298519,
0.007127933204174042,
-0.04762636125087738,
-0.024839455261826515,
-0.028159480541944504,
-0.021898632869124413,
-0.022509213536977768,
0.03454266116023064,
-0.005847092252224684,
-0.02930932119488716,
0.009780550375580788,
0.018827680498361588,
-0.02273321896791458,
0.06809613108634949,
-0.0008697546436451375,
-0.002669001230970025,
0.004058476537466049,
0.007612163200974464,
-0.021813103929162025,
-0.05127205699682236,
0.07065141201019287,
-0.017610054463148117,
-0.017218273133039474,
0.0009475959232077003,
0.021010901778936386,
0.010323560796678066,
0.0362582728266716,
0.005543510429561138,
-0.018646785989403725,
-0.023548560217022896,
0.035281721502542496,
-0.030068183317780495,
0.03062559850513935,
-0.01577610708773136,
0.0324002280831337,
-0.03685983270406723,
0.005124386865645647,
-0.02245502732694149,
0.0006602198700420558,
0.007307031191885471,
0.038602087646722794,
-0.012611011043190956,
-0.02762460894882679,
0.027458159253001213,
0.003044388722628355,
0.025046484544873238,
0.03444975987076759,
0.04613208770751953,
0.004467997699975967,
-0.019462648779153824,
0.006190724205225706,
0.01190913189202547,
-0.027535518631339073,
0.013179607689380646,
-0.019384387880563736,
-0.04161597415804863,
-0.04693140834569931,
0.023684147745370865,
-0.03411559388041496,
0.039293769747018814,
-0.05773242935538292,
0.002616096055135131,
-0.040472909808158875,
-0.005818629637360573,
0.04133995994925499,
0.011063292622566223,
0.08115782588720322,
0.016458626836538315,
0.01318596675992012,
-0.02882789634168148,
-0.021545061841607094,
-0.007812025025486946,
-0.03363850340247154,
0.02067836932837963,
0.043463222682476044,
0.06376110762357712,
-0.0032319570891559124,
0.0018758336082100868,
0.0023911166936159134,
-0.037382256239652634,
-0.048409245908260345,
-0.03647129610180855,
0.024012373760342598,
0.0032768165692687035,
-0.02562764100730419,
0.0017978381365537643,
0.0508594736456871,
-0.03147156536579132,
0.032087892293930054,
0.034827399998903275,
0.000519271066877991,
0.00758006889373064,
0.03220353275537491,
-0.0486530102789402,
-0.012175815179944038,
0.03206349536776543,
0.01030050776898861,
0.035432688891887665,
0.04168228060007095,
0.03780828043818474,
0.050098542124032974,
-0.001091523328796029,
-0.019393401220440865,
0.015231628902256489,
-0.024156179279088974,
-0.05302409455180168,
0.0220523439347744,
0.020090796053409576,
-0.005050553008913994,
-0.03279709070920944,
0.05085411295294762,
0.012860552407801151,
-0.0032691119704395533,
-0.035462651401758194,
0.0016212925547733903,
0.013104301877319813,
0.004765974823385477,
0.006105434615164995,
-0.03006022609770298,
0.014138497412204742,
0.004331658128648996,
-0.032650407403707504,
-0.04693200811743736,
0.03566548973321915
] |
How to generate text: using different decoding methods for language generation with Transformers | patrickvonplaten | March, 2020 | how-to-generate | guide, nlp | https://huggingface.co/blog/how-to-generate | Greedy Search Greedy search is the simplest decoding method. It selects the word with the highest probability as its next word: \(w_t = argmax_{w}P(w | w_{1:t-1})\) at each timestep \(t\). The following sketch shows greedy search. Starting from the word \(\text{"The"},\) the algorithm greedily chooses the next word of highest probability \(\text{"nice"}\) and so on, so that the final generated word sequence is \((\text{"The"}, \text{"nice"}, \text{"woman"})\) having an overall probability of \(0.5 \times 0.4 = 0.2\) . In the following we will generate word sequences using GPT2 on the context \((\text{"I"}, \text{"enjoy"}, \text{"walking"}, \text{"with"}, \text{"my"}, \text{"cute"}, \text{"dog"})\). Let's see how greedy search can be used in transformers: python # encode context the generation is conditioned on model_inputs = tokenizer('I enjoy walking with my cute dog', return_tensors='pt').to(torch_device) # generate 40 new tokens greedy_output = model.generate(**model_inputs, max_new_tokens=40) print("Output:\n" + 100 * '-') print(tokenizer.decode(greedy_output[0], skip_special_tokens=True)) Output: ---------------------------------------------------------------------------------------------------- I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with my dog. I'm not sure if I'll ever be able to walk with my dog. I'm not sure Alright! We have generated our first short text with GPT2 😊. The generated words following the context are reasonable, but the model quickly starts repeating itself! This is a very common problem in language generation in general and seems to be even more so in greedy and beam search - check out Vijayakumar et al., 2016 and Shao et al., 2017. The major drawback of greedy search though is that it misses high probability words hidden behind a low probability word as can be seen in our sketch above: The word \(\text{"has"}\) with its high conditional probability of \(0.9\) is hidden behind the word \(\text{"dog"}\), which has only the second-highest conditional probability, so that greedy search misses the word sequence \(\text{"The"}, \text{"dog"}, \text{"has"}\) . Thankfully, we have beam search to alleviate this problem! | [
0.023698970675468445,
0.013929763808846474,
0.028692476451396942,
-0.024171141907572746,
0.04355953261256218,
0.046674031764268875,
0.041918352246284485,
0.02269076742231846,
-0.0452243909239769,
-0.0062102642841637135,
-0.11697018146514893,
0.07446299493312836,
-0.013841290958225727,
0.048959605395793915,
-0.0003192711155861616,
-0.010427872650325298,
0.06931756436824799,
-0.04897070676088333,
0.024616098031401634,
-0.0388171412050724,
-0.012956039048731327,
-0.03412584960460663,
0.05752916261553764,
-0.013039661571383476,
0.057780999690294266,
-0.03213274106383324,
-0.011341897770762444,
0.010128868743777275,
-0.004289984703063965,
0.0292638149112463,
-0.09586536139249802,
-0.015663523226976395,
0.03826207295060158,
-0.04881199449300766,
0.04397621005773544,
0.025061003863811493,
-0.16088847815990448,
0.04551338404417038,
0.030658183619379997,
-0.020552126690745354,
-0.047885749489068985,
-0.02848425880074501,
-0.03090112842619419,
0.043296460062265396,
0.0006813919171690941,
-0.024132980033755302,
-0.15087132155895233,
0.09373151510953903,
-0.1164439246058464,
-0.11736030876636505,
-0.04162848740816116,
0.026280805468559265,
-0.05007714033126831,
0.06728053838014603,
-0.026509106159210205,
-0.02546318620443344,
0.0014994501834735274,
-0.10885518789291382,
0.026693856343626976,
-0.0023361225612461567,
0.03787819668650627,
0.023746920749545097,
0.015564347617328167,
0.07554282993078232,
0.034150008112192154,
-0.027058983221650124,
-0.01453676912933588,
0.03545225039124489,
-0.02266055904328823,
-0.04427202418446541,
0.05464055389165878,
-0.004023709800094366,
-0.05911949649453163,
0.029840514063835144,
-0.03035934828221798,
0.0059009725227952,
-0.04499344900250435,
-0.021107142791152,
-0.025629952549934387,
0.09182757139205933,
0.01413669716566801,
0.000876898760907352,
0.0579393096268177,
0.04862475395202637,
0.10940522700548172,
0.022171908989548683,
0.008819405920803547,
-0.018628239631652832,
-0.03238201141357422,
0.061022404581308365,
-0.03614446148276329,
-0.14405927062034607,
0.008350505493581295,
-0.01697082631289959,
0.023745736107230186,
-0.014389732852578163,
-0.0017629986396059394,
0.026712918654084206,
-0.014629949815571308,
0.011437322944402695,
0.004613774828612804,
-0.06448575854301453,
0.016207696869969368,
-0.038078416138887405,
-0.06707899272441864,
0.049524690955877304,
-0.019437549635767937,
-0.04328576475381851,
-0.018126145005226135,
0.006044900976121426,
0.010599962435662746,
0.02862144634127617,
0.009294446557760239,
0.009400514885783195,
-0.0025726770982146263,
0.03748554736375809,
0.018712244927883148,
-0.0064703309908509254,
-0.0888972282409668,
-0.0534512996673584,
-0.04498814046382904,
0.0778362974524498,
0.05882729962468147,
-0.005897821858525276,
-0.0015899291029199958,
0.003619918366894126,
-0.014875607565045357,
0.033207982778549194,
0.00046972939162515104,
-0.0043547083623707294,
0.08498924970626831,
0.01950753852725029,
-0.02852047048509121,
-0.010751868598163128,
0.0277455635368824,
0.021192453801631927,
0.04697003960609436,
-0.004084973130375147,
-0.05286146700382233,
-0.04778483882546425,
-0.0007627138402312994,
0.019762039184570312,
-0.05073168873786926,
0.04037319868803024,
-0.010692241601645947,
-0.012751802802085876,
-0.05901920795440674,
0.09119134396314621,
0.013287816196680069,
0.04278895631432533,
-0.007711353711783886,
0.0017072343034669757,
0.0602225735783577,
-0.06680256873369217,
0.012629943899810314,
0.058814868330955505,
-0.009522377513349056,
-0.013570906594395638,
-0.08515945822000504,
-0.016808880493044853,
0.0024877344258129597,
-0.023043012246489525,
0.021354271098971367,
-0.007360539399087429,
0.04435763508081436,
-0.06961493194103241,
0.03335513174533844,
0.043771758675575256,
-0.05639205127954483,
0.0712461918592453,
0.0016525426181033254,
0.029361935332417488,
0.06045679375529289,
0.027722040191292763,
0.006125970743596554,
0.05005999654531479,
-0.016636816784739494,
0.011014951393008232,
-0.014809206128120422,
-0.04130169749259949,
-0.012338978238403797,
0.02347087673842907,
-0.008218604139983654,
-0.011912918649613857,
0.04196176677942276,
-0.08528946340084076,
0.002890444127842784,
0.047660138458013535,
0.05701195076107979,
0.0031580172944813967,
-0.07941851764917374,
-0.07155546545982361,
0.06645841151475906,
-0.017833851277828217,
-0.01917612925171852,
-0.04854007437825203,
-0.02712882310152054,
0.03464854136109352,
0.035089269280433655,
0.027502868324518204,
0.0661894902586937,
0.004948655143380165,
0.022361954674124718,
-0.010059167630970478,
-0.038110990077257156,
-0.0645781010389328,
-0.017115185037255287,
-0.03528934717178345,
0.009383024647831917,
0.06554850935935974,
-0.007856964133679867,
-0.05696159973740578,
-0.010986515320837498,
-0.15566451847553253,
0.002174130640923977,
-0.05755298212170601,
0.005619230680167675,
0.0618634931743145,
0.019394192844629288,
0.0070832702331244946,
0.10151670128107071,
-0.09578437358140945,
-0.03249247372150421,
-0.005492093972861767,
-0.006817357614636421,
0.07425570487976074,
0.02423315867781639,
0.03748117759823799,
-0.0012891340302303433,
-0.05360669270157814,
-0.03264545276761055,
-0.04689919948577881,
0.02147715538740158,
0.03460066020488739,
-0.026891717687249184,
-0.12038102000951767,
0.018611712381243706,
0.05420290678739548,
0.05898327752947807,
-0.010158374905586243,
-0.017638225108385086,
-0.003734016325324774,
-0.0751020535826683,
0.05089668929576874,
0.004782291129231453,
-0.0382775254547596,
0.08033610880374908,
-0.046850524842739105,
-0.050031665712594986,
-0.012253684923052788,
-0.027399273589253426,
0.041497573256492615,
-0.06295307725667953,
-0.05174683779478073,
-0.0008900839020498097,
0.09128841012716293,
0.008546950295567513,
-0.019599096849560738,
0.015838103368878365,
0.04515562579035759,
-0.027881445363163948,
-0.019809726625680923,
0.01316733006387949,
-0.029903611168265343,
-0.02476789429783821,
0.017948253080248833,
0.03679655119776726,
0.02724798023700714,
-0.002004367997869849,
0.007761569228023291,
-0.029874563217163086,
-0.002395986346527934,
-0.009661163203418255,
-0.02444520965218544,
0.030592966824769974,
0.023175783455371857,
0.007942021824419498,
0.013247942551970482,
-0.04223373159766197,
-0.02695371024310589,
-0.02619555965065956,
-0.01582794450223446,
0.05756760388612747,
0.01947467215359211,
-0.0024672995787113905,
-0.002455824287608266,
-0.010212364606559277,
0.024480704218149185,
-0.01250979583710432,
0.04373468458652496,
-0.03635454922914505,
0.02065557800233364,
-0.017876215279102325,
-0.023413188755512238,
0.003735302947461605,
-0.014480448327958584,
-0.010192913934588432,
0.006970172747969627,
-0.05421983823180199,
0.0380476750433445,
-0.026275068521499634,
0.00965174287557602,
-0.0007331191445700824,
-0.016680540516972542,
-0.026173407211899757,
-0.011738195084035397,
0.01785488985478878,
0.043085068464279175,
-0.09167594462633133,
-0.01483835093677044,
0.021192528307437897,
-0.02338779717683792,
-0.011401977390050888,
-0.016725528985261917,
0.015847958624362946,
0.0098843639716506,
-0.013039122335612774,
-0.031109033152461052,
0.0002797039342112839,
0.017336895689368248,
-0.013507257215678692,
0.009319276548922062,
0.011832267977297306,
-0.0067726727575063705,
-0.020121518522500992,
0.019128838554024696,
-0.006975746713578701,
0.011200263164937496,
0.06466837972402573,
0.04357083514332771,
0.005003368016332388,
0.004422707483172417,
-0.059527575969696045,
-0.02621135488152504,
0.01280918624252081,
-0.0049143205396831036,
0.0368218757212162,
0.0044041648507118225,
-0.0033254502341151237,
-0.01922224834561348,
-0.007894689217209816,
0.006863628048449755,
-0.017544914036989212,
-0.009586512111127377,
0.009710163809359074,
0.001057066605426371,
-0.022633802145719528,
0.02760685607790947,
-0.0016874975990504026,
-0.015421206131577492,
0.013763920404016972,
-0.0006326579605229199,
0.010732611641287804,
0.013062053360044956,
-0.03167126327753067,
0.00317195663228631,
0.03083507902920246,
-0.0589110292494297,
-0.04560002684593201,
-0.020897438749670982,
-0.04161752760410309,
0.010969606228172779,
0.006073655094951391,
0.05556264519691467,
-0.004328135401010513,
0.03245139867067337,
0.03944064676761627,
0.03624844178557396,
-0.044019829481840134,
0.01018057856708765,
0.0187978632748127,
-0.05614546686410904,
0.005603153258562088,
0.052966468036174774,
-0.004963043611496687,
0.018805760890245438,
-0.013893858529627323,
0.04493676498532295,
0.011596191674470901,
-0.018289413303136826,
-0.007258303929120302,
0.0034385037142783403,
-0.02886301279067993,
0.03734176978468895,
-0.019361723214387894,
-0.04166998341679573,
0.08569081127643585,
-0.0020051696337759495,
-0.013048673048615456,
-0.019369782879948616,
-0.07416296005249023,
-0.002338321879506111,
0.017679888755083084,
-0.03620200231671333,
0.03570833057165146,
-0.01292042713612318,
-0.00907166302204132,
0.0031808281783014536,
-0.012696641497313976,
-0.008517124690115452,
-0.011662498116493225,
-0.011528626084327698,
-0.047789379954338074,
0.025540906935930252,
-0.004814358428120613,
-0.005271109752357006,
0.028211800381541252,
0.0033221933990716934,
0.028879381716251373,
-0.0603611096739769,
0.005837737582623959,
0.0032572203781455755,
-0.02579405903816223,
-0.006377125158905983,
-0.039223894476890564,
-0.024181609973311424,
0.05274961516261101,
0.019706811755895615,
-0.002499533584341407,
0.016171995550394058,
0.015368257649242878,
-0.003658528905361891,
0.028777258470654488,
0.021392537280917168,
0.006569028366357088,
-0.029067009687423706,
-0.026564814150333405,
0.005157330073416233,
-0.03380008414387703,
0.03505175560712814,
-0.014687800779938698,
0.001835775445215404,
0.019551696255803108,
-0.01473073847591877,
0.045224908739328384,
0.01851769909262657,
-0.011771682649850845,
-0.02089310996234417,
-0.024667512625455856,
-0.009569929912686348,
0.048399344086647034,
-0.019312094897031784,
0.018063537776470184,
0.029509419575333595,
0.010724950581789017,
-0.008082224987447262,
0.006269169971346855,
-0.06348267942667007,
-0.0094460379332304,
-0.003725329414010048,
0.029790498316287994,
-0.06618837267160416,
0.021689441055059433,
0.016096124425530434,
0.004341010004281998,
0.0031851651147007942,
0.029665593057870865,
-0.0015447515761479735,
0.045470163226127625,
0.009810059331357479,
-0.04010118916630745,
0.0040757916867733,
0.028916651383042336,
-0.026061486452817917,
-0.029839705675840378,
0.0183895044028759,
-0.008775347843766212,
0.040482308715581894,
0.006642356514930725,
-0.02138807252049446,
-0.034939445555210114,
0.0043504368513822556,
0.007894672453403473,
-0.02117125876247883,
-0.0405581071972847,
-0.035316236317157745,
0.003249019617214799,
-0.016265904530882835,
0.003540859092026949,
-0.0076439762488007545,
0.04787105321884155,
-0.004633642267435789,
-0.012350313365459442,
0.018264465034008026,
0.001959775108844042,
0.031736109405756,
-0.04750610142946243,
0.013372602872550488,
-0.04197230190038681,
-0.0030421819537878036,
-0.0014657450374215841,
0.02193335071206093,
0.010411180555820465,
0.04243924096226692,
0.03446635976433754,
0.03591935709118843,
-0.009345407597720623,
0.031691085547208786,
0.026172418147325516,
-0.03778228163719177,
0.03942369297146797,
-0.01672140695154667,
-0.007684065494686365,
0.012351561337709427,
-0.013861930929124355,
0.03126029670238495,
0.02836051769554615,
-0.007127602584660053,
0.05189426243305206,
0.013676717877388,
-0.0007914057350717485,
-0.020246682688593864,
0.013899209909141064,
-0.002523592207580805,
0.004588793963193893,
0.003934287000447512,
-0.027725322172045708,
-0.034776341170072556,
0.018391991034150124,
-0.0069419206120073795,
-0.028064152225852013,
0.0003744068380910903,
-0.029719334095716476,
-0.011373677290976048,
-0.017061421647667885,
0.009085378609597683,
-0.0013984241522848606,
0.08813854306936264,
0.03621217608451843,
0.0064245727844536304,
0.0028545628301799297,
0.02856774628162384,
0.05329705774784088,
-0.03409794345498085,
0.012737286277115345,
0.02061932347714901,
0.03354818746447563,
-0.02157951332628727,
0.04328770563006401,
-0.041442304849624634,
-0.00193471007514745,
0.03717665746808052,
0.001472027855925262,
-0.03312866762280464,
-0.0049114772118628025,
0.049781184643507004,
0.02359590493142605,
0.0316925048828125,
0.023324796929955482,
-0.027887757867574692,
0.006368368398398161,
0.03381997346878052,
-0.01650242879986763,
0.03259023651480675,
0.04445931687951088,
-0.012775959447026253,
-0.007428618147969246,
0.005256175063550472,
0.04868113994598389,
0.0210587065666914,
-0.07397321611642838,
0.007306925021111965,
0.005848609376698732,
-0.009703930467367172,
0.03650974854826927,
-0.011399962939321995,
0.0031715668737888336,
0.045583225786685944,
0.011998520232737064,
-0.06536849588155746,
0.00007864450890338048,
0.04519062489271164,
-0.04344053566455841,
-0.0007049854029901326,
-0.021461788564920425,
-0.021344881504774094,
-0.033604346215724945,
-0.011564294807612896,
0.025485845282673836,
0.029450779780745506,
-0.013033575378358364,
0.04123226925730705,
-0.009533955715596676,
0.03757491707801819,
0.00649933610111475,
0.06291606277227402,
-0.023939020931720734,
0.05154997482895851,
0.009843368083238602,
0.024270659312605858,
-0.02153027430176735,
0.02635601907968521,
-0.006022111512720585,
0.07867226749658585,
0.06397765129804611,
0.00745133962482214,
0.037674956023693085,
-0.026212796568870544,
-0.011453601531684399,
0.019219305366277695,
-0.0414905846118927,
-0.03810121864080429,
-0.0009827694157138467,
0.0035373943392187357,
0.047356706112623215,
-0.04520435258746147,
0.031022299081087112,
-0.05614275112748146,
0.023195700719952583,
0.043996505439281464,
0.027461586520075798,
-0.041147273033857346,
0.0057335891760885715,
0.016746243461966515,
0.020084194839000702,
0.04282088950276375,
0.05749138072133064,
0.03151868283748627,
-0.01587597094476223,
0.03535906597971916,
0.013381089083850384,
0.05777334049344063,
0.06164192408323288,
-0.01917254365980625,
-0.008087928406894207,
-0.03323245793581009,
-0.0020702783949673176,
0.005085720680654049,
0.00695772934705019,
-0.01889120787382126,
0.029311178252100945,
0.027104590088129044,
-0.02232091873884201,
0.009619094431400299,
-0.02392713911831379,
0.00366069283336401,
0.019327139481902122,
-0.016481386497616768,
-0.002171618863940239,
0.02956785075366497,
-0.031193973496556282,
-0.019479943439364433,
-0.020373575389385223,
0.013669083826243877,
0.022289404645562172,
0.021328208968043327,
-0.047457922250032425,
-0.03476635739207268,
-0.012068435549736023,
-0.025145066902041435,
-0.012249952182173729,
-0.02835695818066597,
-0.014612938277423382,
0.0025886783841997385,
0.03720749169588089,
0.03241186589002609,
-0.005414869170635939,
0.02074233442544937,
0.029306024312973022,
0.014188873581588268,
-0.0322025790810585,
0.01508302427828312,
0.0029818089678883553,
0.018360266461968422,
0.034736812114715576,
-0.03114469163119793,
-0.008657044731080532,
-0.005651882849633694,
0.04705020412802696,
0.008847175166010857,
0.030443618074059486,
-0.025720376521348953,
-0.047546837478876114,
0.0026121388655155897,
-0.04185688868165016,
-0.01128779910504818,
-0.0013085039099678397,
0.016379669308662415,
-0.006340201944112778,
0.027112871408462524,
-0.03800337761640549,
-0.01756402477622032,
-0.009890630841255188,
-0.00909141730517149,
0.022789455950260162,
-0.013864980079233646,
-0.05147666856646538,
-0.0077642835676670074,
0.030446764081716537,
-0.019376734271645546,
-0.02250381000339985,
0.03955284506082535,
0.010012753307819366,
0.019859187304973602,
0.002629890339449048,
0.01622692123055458,
-0.032079316675662994,
-0.04076136276125908,
-0.030213378369808197,
-0.04320533946156502,
0.02126353792846203,
-0.0027913113590329885,
-0.04603002965450287,
0.0005930350162088871,
-0.046120427548885345,
0.04752855375409126,
-0.014201560989022255,
0.026111485436558723,
-0.014262477867305279,
0.003146521048620343,
0.0480068065226078,
0.012569839134812355,
0.09060824662446976,
0.004452168941497803,
0.013764690607786179,
-0.05444939434528351,
0.00750143313780427,
0.011779597960412502,
0.046337444335222244,
0.013431977480649948,
0.016092300415039062,
-0.04844825342297554,
-0.009342309087514877,
0.01757960021495819,
-0.0027372713666409254,
0.0341484509408474,
0.02172286994755268,
-0.02225233055651188,
-0.01829802244901657,
0.018349695950746536,
0.028650805354118347,
-0.014305803924798965,
-0.0442347526550293,
0.000053035902965348214,
0.01844635233283043,
0.007293557748198509,
0.03186255693435669,
-0.031559087336063385,
0.0026861790101975203,
0.014334257692098618,
0.025661643594503403,
0.03252217173576355,
0.01730445958673954,
0.03521488979458809,
0.01523289643228054,
0.014555874280631542,
-0.032324742525815964,
0.03019167296588421,
0.03181047365069389,
-0.03357953950762749,
0.009334270842373371,
0.039315495640039444,
-0.048881083726882935,
-0.03725612908601761,
0.031889643520116806,
0.027086051180958748,
-0.034984443336725235,
0.038599491119384766,
0.004914718680083752,
0.05253686010837555,
0.0343385674059391,
0.012224054895341396,
0.0022254602517932653,
0.084102563560009,
-0.017517615109682083,
0.029692191630601883,
0.009524259716272354,
0.0033791051246225834
] |
How to generate text: using different decoding methods for language generation with Transformers | patrickvonplaten | March, 2020 | how-to-generate | guide, nlp | https://huggingface.co/blog/how-to-generate | Beam search Beam search reduces the risk of missing hidden high probability word sequences by keeping the most likely num_beams of hypotheses at each time step and eventually choosing the hypothesis that has the overall highest probability. Let's illustrate with num_beams=2: At time step 1, besides the most likely hypothesis \((\text{"The"}, \text{"nice"})\), beam search also keeps track of the second most likely one \((\text{"The"}, \text{"dog"})\). At time step 2, beam search finds that the word sequence \((\text{"The"}, \text{"dog"}, \text{"has"})\), has with \(0.36\) a higher probability than \((\text{"The"}, \text{"nice"}, \text{"woman"})\), which has \(0.2\) . Great, it has found the most likely word sequence in our toy example! Beam search will always find an output sequence with higher probability than greedy search, but is not guaranteed to find the most likely output. Let's see how beam search can be used in transformers. We set num_beams > 1 and early_stopping=True so that generation is finished when all beam hypotheses reached the EOS token. python # activate beam search and early_stopping beam_output = model.generate( **model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True ) print("Output:\n" + 100 * '-') print(tokenizer.decode(beam_output[0], skip_special_tokens=True)) Output: ---------------------------------------------------------------------------------------------------- I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again. I'm not sure if I'll ever be able to walk with him again. I'm not sure While the result is arguably more fluent, the output still includes repetitions of the same word sequences. One of the available remedies is to introduce n-grams (a.k.a word sequences of n words) penalties as introduced by Paulus et al. (2017) and Klein et al. (2017). The most common n-grams penalty makes sure that no n-gram appears twice by manually setting the probability of next words that could create an already seen n-gram to 0. Let's try it out by setting no_repeat_ngram_size=2 so that no 2-gram appears twice: python # set no_repeat_ngram_size to 2 beam_output = model.generate( **model_inputs, max_new_tokens=40, num_beams=5, no_repeat_ngram_size=2, early_stopping=True ) print("Output:\n" + 100 * '-') print(tokenizer.decode(beam_output[0], skip_special_tokens=True)) Output: ---------------------------------------------------------------------------------------------------- I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again. I've been thinking about this for a while now, and I think it's time for me to Nice, that looks much better! We can see that the repetition does not appear anymore. Nevertheless, n-gram penalties have to be used with care. An article generated about the city New York should not use a 2-gram penalty or otherwise, the name of the city would only appear once in the whole text! Another important feature about beam search is that we can compare the top beams after generation and choose the generated beam that fits our purpose best. In transformers, we simply set the parameter num_return_sequences to the number of highest scoring beams that should be returned. Make sure though that num_return_sequences <= num_beams! python # set return_num_sequences > 1 beam_outputs = model.generate( **model_inputs, max_new_tokens=40, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) # now we have 3 output sequences print("Output:\n" + 100 * '-') for i, beam_output in enumerate(beam_outputs): print("{}: {}".format(i, tokenizer.decode(beam_output, skip_special_tokens=True))) Output: ---------------------------------------------------------------------------------------------------- 0: I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again. I've been thinking about this for a while now, and I think it's time for me to 1: I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with her again. I've been thinking about this for a while now, and I think it's time for me to 2: I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again. I've been thinking about this for a while now, and I think it's a good idea to 3: I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again. I've been thinking about this for a while now, and I think it's time to take a 4: I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again. I've been thinking about this for a while now, and I think it's a good idea. As can be seen, the five beam hypotheses are only marginally different to each other - which should not be too surprising when using only 5 beams. In open-ended generation, a couple of reasons have been brought forward why beam search might not be the best possible option: - Beam search can work very well in tasks where the length of the desired generation is more or less predictable as in machine translation or summarization - see Murray et al. (2018) and Yang et al. (2018). But this is not the case for open-ended generation where the desired output length can vary greatly, e.g. dialog and story generation. - We have seen that beam search heavily suffers from repetitive generation. This is especially hard to control with n-gram- or other penalties in story generation since finding a good trade-off between inhibiting repetition and repeating cycles of identical n-grams requires a lot of finetuning. - As argued in Ari Holtzman et al. (2019), high quality human language does not follow a distribution of high probability next words. In other words, as humans, we want generated text to surprise us and not to be boring/predictable. The authors show this nicely by plotting the probability, a model would give to human text vs. what beam search does. So let's stop being boring and introduce some randomness 🤪. | [
-0.014782017096877098,
0.014650287106633186,
0.046428970992565155,
-0.03658571094274521,
0.0449768491089344,
0.03151160851120949,
0.07449854165315628,
0.02294895052909851,
-0.07320138067007065,
0.00017023517284542322,
-0.11173757165670395,
0.00045338697964325547,
0.03242672234773636,
0.06031564623117447,
-0.06101304292678833,
-0.03639297932386398,
0.04088520258665085,
-0.029651714488863945,
0.00905875489115715,
0.020256582647562027,
0.03675229474902153,
-0.009736000560224056,
0.055745452642440796,
-0.060001540929079056,
0.04608311131596565,
-0.004099180456250906,
-0.02064397558569908,
-0.009112228639423847,
-0.05054076761007309,
0.04162640869617462,
-0.08899688720703125,
-0.018325647339224815,
0.02767329290509224,
-0.0519481897354126,
0.02952846884727478,
0.047036122530698776,
-0.14363908767700195,
0.06164947524666786,
0.06790021806955338,
-0.042232491075992584,
-0.03409012779593468,
-0.039566975086927414,
-0.07557262480258942,
-0.006697754375636578,
-0.04021436721086502,
-0.024770686402916908,
-0.1600508689880371,
0.08065250515937805,
-0.10725587606430054,
-0.05596247687935829,
-0.07028094679117203,
0.04388980194926262,
-0.028532791882753372,
0.033493224531412125,
-0.0010368424700573087,
-0.040346331894397736,
-0.0027905732858926058,
-0.05647468939423561,
0.016714297235012054,
0.04179873317480087,
-0.018290210515260696,
-0.0031552081927657127,
0.0668385773897171,
0.05871647968888283,
0.01833576336503029,
0.009683453477919102,
0.007444065064191818,
0.053507931530475616,
-0.06617505848407745,
-0.0009001505095511675,
0.037672508507966995,
0.03401917964220047,
-0.061257362365722656,
-0.05332191288471222,
0.010124475695192814,
-0.04629864543676376,
-0.04902687296271324,
0.053822968155145645,
-0.02852136828005314,
-0.0025770997162908316,
0.06276416778564453,
0.04205179214477539,
0.04901355877518654,
0.06209128350019455,
0.051096685230731964,
0.0717235580086708,
0.04007783532142639,
-0.019105028361082077,
-0.04334738478064537,
0.03314841911196709,
-0.004964388441294432,
-0.14851032197475433,
0.029637720435857773,
0.047992877662181854,
0.012469552457332611,
0.006025957874953747,
0.03336666524410248,
0.043054040521383286,
-0.03349679335951805,
-0.0057370299473404884,
0.0024158323649317026,
-0.07929325103759766,
0.014703630469739437,
0.02469373121857643,
-0.04741762951016426,
0.008211961947381496,
-0.008370058611035347,
-0.05236705392599106,
-0.03980831056833267,
0.030943023040890694,
0.004470617976039648,
-0.015187284909188747,
0.017623886466026306,
0.04515963792800903,
0.020906172692775726,
0.021210215985774994,
0.05590980499982834,
0.06675373762845993,
-0.03477427363395691,
-0.021490179002285004,
-0.0314919576048851,
0.09107428044080734,
0.11800643801689148,
-0.018027663230895996,
-0.04192715510725975,
-0.0006222635274752975,
-0.037428196519613266,
0.03846145048737526,
-0.038680288940668106,
0.02243630401790142,
0.02285502851009369,
0.01142665185034275,
-0.009166045114398003,
-0.009508242830634117,
-0.010247965343296528,
0.013114326633512974,
0.010229759849607944,
-0.003138052299618721,
-0.03997458145022392,
-0.02460983581840992,
-0.023952215909957886,
-0.008378071710467339,
-0.02785210870206356,
0.03470481559634209,
0.0038161533884704113,
0.011910514906048775,
-0.03690461814403534,
0.042990315705537796,
-0.05969196557998657,
0.059866324067115784,
0.011509493924677372,
0.025202875956892967,
0.018828367814421654,
-0.07484635710716248,
-0.036867495626211166,
0.05312257260084152,
0.05095057189464569,
-0.0032136207446455956,
-0.05915974825620651,
0.0033093297388404608,
-0.04135431721806526,
-0.026423735544085503,
0.0402008555829525,
-0.05156603455543518,
0.06622090190649033,
-0.05429331213235855,
0.08141373842954636,
0.03420212119817734,
-0.02148376777768135,
0.09739197045564651,
0.011705285869538784,
-0.006547321565449238,
0.12382496148347855,
-0.03722162917256355,
0.016448024660348892,
0.021536119282245636,
-0.022423600777983665,
0.010616922751069069,
-0.06342197954654694,
-0.02287907339632511,
-0.033633753657341,
-0.018304072320461273,
0.0010674966033548117,
0.009554971940815449,
-0.005368771031498909,
-0.13329243659973145,
0.03755461424589157,
0.03872973099350929,
0.020716970786452293,
-0.008429381996393204,
-0.01646391674876213,
-0.11683535575866699,
0.06254604458808899,
-0.042227696627378464,
-0.0182678010314703,
-0.07820522785186768,
0.0034482362680137157,
0.038649678230285645,
0.0395556204020977,
0.04485515505075455,
0.06310346722602844,
0.0746021568775177,
0.020158031955361366,
-0.037929337471723557,
-0.016127869486808777,
-0.048651568591594696,
-0.015314772725105286,
-0.042272232472896576,
0.018100189045071602,
0.049225348979234695,
0.009655364789068699,
-0.07249631732702255,
-0.005289149936288595,
-0.11952454596757889,
-0.05563483014702797,
-0.04028380662202835,
0.022308405488729477,
0.005344676319509745,
0.0046575418673455715,
0.022266777232289314,
0.12604647874832153,
-0.03503629192709923,
0.003691036021336913,
-0.02953614667057991,
-0.028603455051779747,
0.05200876668095589,
0.030167344957590103,
0.019692663103342056,
-0.01285312045365572,
-0.042956139892339706,
0.017688682302832603,
-0.008514137007296085,
0.06955564022064209,
0.05487946420907974,
0.03613787144422531,
-0.054043401032686234,
-0.014340193942189217,
0.009288967587053776,
-0.010845599696040154,
-0.0041451952420175076,
-0.014804408885538578,
-0.029242994263768196,
-0.019048774614930153,
0.10652127116918564,
-0.002507490571588278,
-0.06315131485462189,
0.0854560062289238,
-0.00476779043674469,
-0.02648479864001274,
-0.03331896290183067,
-0.016104791313409805,
0.028897477313876152,
-0.08091092854738235,
-0.0875171571969986,
0.038293253630399704,
0.07254977524280548,
-0.0018965338822454214,
-0.032579660415649414,
0.008513093926012516,
0.005840279161930084,
-0.025332918390631676,
-0.017378365620970726,
0.01210563350468874,
-0.0472627729177475,
-0.0034411728847771883,
0.027295153588056564,
0.012736054137349129,
-0.01154404878616333,
-0.010734842158854008,
0.006377633661031723,
0.006466659717261791,
0.005631570238620043,
0.016237108036875725,
-0.0020583216100931168,
0.00493785971775651,
0.020085515454411507,
0.009192812256515026,
-0.036186717450618744,
-0.03136008605360985,
-0.00487778102979064,
-0.03245186060667038,
0.005460308399051428,
0.04921779781579971,
0.031278252601623535,
0.014539031311869621,
0.0012240883661434054,
-0.00883535761386156,
0.006231904495507479,
-0.004101542755961418,
-0.009970501996576786,
-0.04031544551253319,
-0.006465599872171879,
0.027347242459654808,
-0.02198171056807041,
-0.02002618834376335,
-0.011032243259251118,
-0.011422393843531609,
0.01833764649927616,
-0.03328600898385048,
0.0008728758548386395,
-0.02629193849861622,
0.0010903622023761272,
0.0167127326130867,
-0.02565053105354309,
-0.020766394212841988,
0.03366073593497276,
0.03235660865902901,
0.061166517436504364,
-0.09257093071937561,
-0.006516970694065094,
-0.002184835495427251,
-0.02161700278520584,
-0.005498945713043213,
-0.0046282620169222355,
0.04575502872467041,
0.012143885716795921,
-0.012184645049273968,
-0.023930437862873077,
-0.03407061845064163,
-0.001155847916379571,
-0.001901166862808168,
0.007658910006284714,
0.018070712685585022,
-0.003002102952450514,
-0.044704679399728775,
0.014073849655687809,
-0.0015205745585262775,
0.0171008612960577,
0.04419395700097084,
0.025558652356266975,
0.009847051464021206,
0.005765814799815416,
-0.05076620355248451,
-0.02086336351931095,
0.027247261255979538,
0.02286124974489212,
0.024875864386558533,
-0.028433499857783318,
0.002839083783328533,
-0.003509475849568844,
-0.037563685327768326,
-0.01665906235575676,
-0.015169937163591385,
0.016052257269620895,
0.059908006340265274,
0.0054901293478906155,
-0.01950041949748993,
0.029331054538488388,
0.02419508621096611,
-0.0138881616294384,
-0.012254747562110424,
-0.007740695029497147,
-0.0007294982206076384,
0.0029504133854061365,
-0.004195691552013159,
0.01292463205754757,
0.025210527703166008,
-0.07717671990394592,
-0.003959156572818756,
-0.0013039797777310014,
-0.020735589787364006,
0.012560456059873104,
0.015053419396281242,
-0.010232727974653244,
0.010783178731799126,
-0.001269683358259499,
0.04171114042401314,
0.015910662710666656,
-0.05871887877583504,
0.009549419395625591,
0.04058273881673813,
0.00197885581292212,
-0.0007554271724075079,
0.033588144928216934,
0.016235163435339928,
0.03887619450688362,
0.008381410501897335,
0.02435426041483879,
-0.007089997176080942,
0.015374431386590004,
0.008477414026856422,
0.009189506992697716,
-0.013283421285450459,
0.04509630799293518,
-0.02004200592637062,
-0.0527985580265522,
0.05875847861170769,
0.024400031194090843,
-0.038013145327568054,
-0.013147126883268356,
-0.057052284479141235,
0.045843735337257385,
0.0363437719643116,
0.002374973613768816,
-0.009006692096590996,
0.002712368732318282,
-0.014994435012340546,
-0.008811051025986671,
-0.029783358797430992,
-0.022116390988230705,
-0.03249070793390274,
-0.01976013369858265,
-0.021722761914134026,
0.013919233344495296,
0.023028362542390823,
0.0006013508536852896,
-0.011297334916889668,
0.010274749249219894,
0.036374736577272415,
-0.024527156725525856,
0.0012300478992983699,
-0.02554006315767765,
-0.026763176545500755,
0.0022592043969780207,
-0.08653505146503448,
-0.02122439444065094,
0.02560504339635372,
-0.0059277513064444065,
0.02605617046356201,
0.002285052090883255,
0.0017817439511418343,
0.02847195789217949,
-0.004495619330555201,
0.02936704084277153,
-0.010230501182377338,
-0.017459411174058914,
-0.0459185391664505,
0.006669649388641119,
-0.038364410400390625,
0.03775397315621376,
-0.03905082494020462,
0.012854084372520447,
0.0007080051000230014,
-0.022949466481804848,
0.009140758775174618,
0.000881697575096041,
0.011950045824050903,
-0.05017079412937164,
-0.0052067493088543415,
0.00473714480176568,
0.05508140102028847,
0.020056728273630142,
0.030136480927467346,
0.04059188812971115,
-0.004750275984406471,
0.012457161210477352,
-0.017931999638676643,
-0.0796239972114563,
-0.03108125738799572,
-0.010346773080527782,
0.0159221813082695,
-0.043083127588033676,
0.03647773712873459,
0.010554980486631393,
-0.04503140226006508,
-0.02195814624428749,
-0.029631201177835464,
0.02111699990928173,
0.06095200404524803,
0.01570655032992363,
-0.00957207940518856,
-0.017285289242863655,
0.05096998065710068,
-0.03255875036120415,
-0.04865913838148117,
-0.0024023381993174553,
0.015602771192789078,
0.027508385479450226,
0.02096819505095482,
-0.015854960307478905,
-0.04421546682715416,
0.02218909189105034,
-0.0005709604592993855,
-0.021444516256451607,
-0.04082903265953064,
-0.042021822184324265,
0.012679705396294594,
-0.028541002422571182,
0.012913857586681843,
-0.03300686553120613,
0.006997641641646624,
-0.0075650205835700035,
0.016614237800240517,
0.03158173710107803,
-0.009932136163115501,
0.001870741369202733,
-0.0069455597549676895,
-0.0016759982099756598,
-0.06198151782155037,
0.014867542311549187,
0.019854342564940453,
0.05374341458082199,
0.006615424528717995,
0.06048523634672165,
0.03606536611914635,
0.0037343078292906284,
-0.006885632406920195,
0.014468756504356861,
0.029245659708976746,
-0.006484535988420248,
0.03887674957513809,
-0.028635237365961075,
0.02100387029349804,
-0.023946603760123253,
0.005721625406295061,
0.024261342361569405,
0.019569113850593567,
0.00764174060896039,
0.03504033386707306,
-0.006612018682062626,
-0.029819602146744728,
-0.018828822299838066,
0.006295328959822655,
-0.01715455949306488,
-0.004417384043335915,
-0.02226104773581028,
-0.005458242259919643,
0.0006021847948431969,
0.014815259724855423,
-0.025590764358639717,
-0.06774187088012695,
0.05144108086824417,
0.01388376485556364,
-0.0321609228849411,
-0.025429697707295418,
0.0037308691535145044,
0.03346258029341698,
0.08554603904485703,
0.032988082617521286,
-0.010298492386937141,
-0.014935044571757317,
0.018417488783597946,
0.04836995527148247,
-0.034102898091077805,
0.025801677256822586,
0.021934298798441887,
0.0423523411154747,
0.0220017209649086,
0.05397966131567955,
-0.025739194825291634,
0.010250166989862919,
-0.007515538018196821,
0.030218036845326424,
-0.018933895975351334,
-0.009310595691204071,
0.037209402769804,
0.018664997071027756,
0.010717551223933697,
0.03292220085859299,
-0.00034938406315632164,
-0.01008630357682705,
0.010568587109446526,
0.0025766603648662567,
0.015119782648980618,
0.0386500358581543,
0.002683937083929777,
-0.0300461295992136,
0.019463783130049706,
0.02318604476749897,
0.031346600502729416,
-0.02914942055940628,
0.053490977734327316,
-0.004455624148249626,
0.008451304398477077,
0.025866908952593803,
-0.014723703265190125,
-0.0191874410957098,
0.0451786033809185,
0.010526617057621479,
-0.06022820994257927,
-0.00819331593811512,
0.05204153433442116,
-0.049940600991249084,
0.0317520834505558,
-0.018115002661943436,
-0.06357035040855408,
0.007970395497977734,
-0.010654835030436516,
0.028727779164910316,
0.003966873046010733,
-0.05161850526928902,
0.036116983741521835,
-0.023539777845144272,
0.046550486236810684,
0.05104481801390648,
0.06750961393117905,
0.0017219287110492587,
0.05492103099822998,
0.03654108941555023,
0.037479467689991,
0.006087844260036945,
0.01087169162929058,
-0.01623082160949707,
0.03356223553419113,
0.04520958289504051,
0.00008764179074205458,
0.03127622231841087,
-0.013428578153252602,
-0.031741853803396225,
0.027299124747514725,
-0.04484347254037857,
-0.012809191830456257,
-0.007313982583582401,
-0.00599342305213213,
0.04211848974227905,
-0.004372520837932825,
0.014462833292782307,
-0.03753717988729477,
0.034152764827013016,
0.040298160165548325,
0.051877185702323914,
0.007209675386548042,
-0.0031408285722136497,
-0.010484493337571621,
0.043302856385707855,
0.028131704777479172,
0.07483894377946854,
0.015832683071494102,
-0.013008716516196728,
0.045587506145238876,
0.006560084410011768,
0.058867257088422775,
0.07567344605922699,
0.018838446587324142,
0.0107581140473485,
-0.029625272378325462,
-0.00991075485944748,
0.0035850335843861103,
0.00973264779895544,
-0.016284920275211334,
0.016066452488303185,
0.017287446185946465,
-0.04451142996549606,
-0.015911336988210678,
-0.01584618166089058,
0.0024901574943214655,
-0.015854191035032272,
-0.010703332722187042,
0.007206081412732601,
0.03782568499445915,
-0.020268458873033524,
-0.04196770861744881,
-0.027685662731528282,
-0.0020792600698769093,
0.0046789138577878475,
0.028689175844192505,
-0.042601265013217926,
0.003440920263528824,
-0.0322415791451931,
-0.01856420747935772,
0.007633762434124947,
-0.0035785590298473835,
-0.024795101955533028,
0.006221672520041466,
-0.022120805457234383,
0.046570371836423874,
-0.04451790452003479,
0.05451570078730583,
0.0062875389121472836,
0.0032693264074623585,
-0.01779092103242874,
-0.0012302611721679568,
-0.002010588301345706,
-0.003122389782220125,
0.03244416043162346,
-0.009967988356947899,
-0.028860878199338913,
-0.026231735944747925,
0.049683235585689545,
0.013551696203649044,
0.0007749323267489672,
-0.026362387463450432,
-0.004448725376278162,
0.0024487923365086317,
-0.033928267657756805,
0.00486280070617795,
-0.009116804227232933,
0.015326933935284615,
-0.017221415415406227,
-0.03738613426685333,
-0.012167761102318764,
0.002091143513098359,
-0.012055926024913788,
0.007607673294842243,
0.06490390002727509,
-0.022203583270311356,
-0.029370684176683426,
-0.01624104380607605,
0.03859343379735947,
0.02207673154771328,
0.003681628732010722,
0.027521511539816856,
0.018530774861574173,
0.0654148980975151,
-0.0068703037686645985,
0.01448760274797678,
-0.05490918457508087,
-0.009535667486488819,
-0.03733576089143753,
-0.051849670708179474,
-0.016099758446216583,
-0.023967484012246132,
-0.04215197637677193,
-0.011893721297383308,
-0.024644745513796806,
0.016648845747113228,
0.005854418501257896,
-0.010575858876109123,
-0.034380167722702026,
-0.016426745802164078,
0.027448125183582306,
-0.0021583919879049063,
0.05252791941165924,
0.018725210800766945,
0.049953363835811615,
0.00045867584412917495,
-0.007530951872467995,
0.02818223461508751,
0.039088986814022064,
0.007583449594676495,
0.007684121374040842,
-0.02055003121495247,
0.016932526603341103,
-0.03515249490737915,
-0.04383577033877373,
-0.003559973556548357,
0.015270497649908066,
-0.017438525334000587,
0.023902984336018562,
0.022989440709352493,
0.01852092519402504,
-0.02433484047651291,
-0.0020022487733513117,
-0.0051191565580666065,
-0.016640685498714447,
0.002491232007741928,
0.024685557931661606,
-0.03242528811097145,
-0.004629607778042555,
0.04601696878671646,
0.022253237664699554,
0.029859527945518494,
0.008663635700941086,
0.04142305627465248,
-0.0076852478086948395,
0.009461930952966213,
-0.023946164175868034,
-0.01639426499605179,
-0.02663794532418251,
-0.028958693146705627,
-0.009002698585391045,
-0.007777328137308359,
-0.039126306772232056,
0.0013793440302833915,
0.02082795277237892,
0.02708422765135765,
-0.03572435677051544,
0.014800649136304855,
0.02287687174975872,
0.05779430642724037,
-0.012508333660662174,
0.02295016497373581,
-0.00260399142280221,
0.02852860651910305,
0.025506865233182907,
0.02888084016740322,
-0.009609214030206203,
0.0227449219673872
] |
How to generate text: using different decoding methods for language generation with Transformers | patrickvonplaten | March, 2020 | how-to-generate | guide, nlp | https://huggingface.co/blog/how-to-generate | Conclusion As ad-hoc decoding methods, top-p and top-K sampling seem to produce more fluent text than traditional greedy - and beam search on open-ended language generation. There is evidence that the apparent flaws of greedy and beam search - mainly generating repetitive word sequences - are caused by the model (especially the way the model is trained), rather than the decoding method, cf. Welleck et al. (2019). Also, as demonstrated in Welleck et al. (2020), it looks as top-K and top-p sampling also suffer from generating repetitive word sequences. In Welleck et al. (2019), the authors show that according to human evaluations, beam search can generate more fluent text than Top-p sampling, when adapting the model's training objective. Open-ended language generation is a rapidly evolving field of research and as it is often the case there is no one-size-fits-all method here, so one has to see what works best in one's specific use case. Fortunately, you can try out all the different decoding methods in transfomers 🤗 -- you can have an overview of the available methods here. Thanks to everybody, who has contributed to the blog post: Alexander Rush, Julien Chaumand, Thomas Wolf, Victor Sanh, Sam Shleifer, Clément Delangue, Yacine Jernite, Oliver Åstrand and John de Wasseige. | [
0.032403551042079926,
0.014942373149096966,
0.019527608528733253,
0.002095057163387537,
0.034768637269735336,
0.031515564769506454,
0.016963476315140724,
-0.013505022041499615,
-0.03362809866666794,
-0.05949033424258232,
-0.1296330690383911,
-0.062125373631715775,
-0.0072342646308243275,
-0.028804944828152657,
0.03295481577515602,
-0.008058059960603714,
0.01732831634581089,
0.02113245241343975,
0.027988316491246223,
0.020376289263367653,
0.015887625515460968,
0.03164453059434891,
0.06817133724689484,
-0.03770983964204788,
0.041170910000801086,
-0.0663062334060669,
-0.019762499257922173,
-0.0670035108923912,
-0.05970211327075958,
-0.01909453794360161,
-0.11154025048017502,
0.0041275424882769585,
0.03294898569583893,
0.021176030859351158,
-0.07002084702253342,
-0.040118396282196045,
-0.08295029401779175,
0.04438813030719757,
-0.0029839074704796076,
-0.04509137570858002,
-0.036320798099040985,
-0.05464155226945877,
0.00840076245367527,
0.06479369848966599,
-0.01025351881980896,
0.004288196563720703,
-0.0990971028804779,
0.03005707636475563,
-0.10312090814113617,
-0.03323119133710861,
-0.10283160954713821,
0.05209069326519966,
-0.006302194204181433,
0.03689898923039436,
-0.0012373082572594285,
0.014608388766646385,
0.0038389707915484905,
-0.06471344083547592,
0.0538976714015007,
0.011912232264876366,
-0.03901408612728119,
-0.006252397783100605,
0.03700558468699455,
0.008519528433680534,
0.00964974146336317,
-0.0199159923940897,
-0.04749531298875809,
0.04026808217167854,
-0.012931968085467815,
0.032108526676893234,
-0.006605430040508509,
0.0051130144856870174,
-0.03500586003065109,
-0.006543631199747324,
0.05190981924533844,
0.01680651307106018,
-0.003538555698469281,
0.07008551806211472,
-0.012678953818976879,
-0.03390980139374733,
0.0016197104705497622,
0.036565132439136505,
0.01982807368040085,
0.024138348177075386,
0.06045958772301674,
0.03341185301542282,
0.04795956611633301,
-0.004644187167286873,
-0.05033373460173607,
-0.003245110623538494,
-0.025536706671118736,
-0.15096119046211243,
-0.015199745073914528,
0.06380190700292587,
0.022570068016648293,
-0.005482279229909182,
0.02773454040288925,
0.09188033640384674,
0.02192702144384384,
0.005378334783017635,
0.02286134846508503,
-0.03680245205760002,
0.01949756219983101,
-0.008397805504500866,
-0.06716039031744003,
-0.0033455840311944485,
-0.01986587792634964,
-0.007410139311105013,
0.004344789776951075,
0.016560744494199753,
0.009325509890913963,
0.03285204619169235,
0.03830282762646675,
-0.01080275047570467,
-0.08429544419050217,
-0.004802283365279436,
-0.008280551061034203,
0.04492802917957306,
-0.08669596910476685,
-0.05368252843618393,
-0.035159800201654434,
0.06280190497636795,
0.007327822037041187,
-0.0645778626203537,
0.008152537979185581,
0.002474972978234291,
0.025156181305646896,
0.06743405014276505,
-0.024385347962379456,
0.028584009036421776,
0.043173614889383316,
0.004411239176988602,
0.018543574959039688,
0.028958173468708992,
-0.004172128159552813,
0.017260028049349785,
0.02842278778553009,
-0.07700783014297485,
-0.07653118669986725,
-0.01524049136787653,
-0.058877959847450256,
-0.005044467281550169,
-0.007829954847693443,
0.029835011810064316,
-0.013073169626295567,
0.026198552921414375,
-0.08786678314208984,
0.05628228932619095,
-0.023851236328482628,
0.028690453618764877,
0.011578869074583054,
0.1201244369149208,
-0.00002063258580164984,
-0.038412656635046005,
0.039455462247133255,
0.06728458404541016,
-0.0027005497831851244,
0.006634884048253298,
-0.041826032102108,
0.010211668908596039,
-0.019707409664988518,
0.019575420767068863,
0.04400560259819031,
0.03139175474643707,
0.029263444244861603,
-0.013472866266965866,
0.00725747412070632,
0.06971310824155807,
-0.059444691985845566,
0.026011856272816658,
-0.01221440639346838,
0.05563037469983101,
0.09798677265644073,
-0.06729543954133987,
-0.002196769928559661,
-0.00016080580826383084,
-0.054032083600759506,
-0.025228548794984818,
-0.0017221440793946385,
-0.00686370674520731,
-0.06802335381507874,
0.01523679494857788,
0.028308771550655365,
0.0031809951178729534,
0.022283097729086876,
-0.07832653075456619,
0.039542146027088165,
0.022545166313648224,
-0.02368321269750595,
0.02283964678645134,
-0.03165963292121887,
-0.06377049535512924,
0.12448297441005707,
-0.021881146356463432,
0.002151407767087221,
-0.06980796158313751,
0.04886257275938988,
0.07609228789806366,
0.09016768634319305,
0.08116119354963303,
0.10436955094337463,
0.045929063111543655,
0.03171868249773979,
-0.006788867991417646,
-0.0480460450053215,
-0.022652655839920044,
-0.0004043474909849465,
0.021786058321595192,
0.006148978136479855,
0.0521383136510849,
-0.00645044120028615,
-0.07606464624404907,
-0.02330332249403,
-0.11278557032346725,
0.005251334980130196,
-0.009473076090216637,
0.02178410068154335,
0.016857240349054337,
0.03565775603055954,
0.0026905585546046495,
0.12475807219743729,
-0.05540801212191582,
-0.04431761056184769,
-0.0038201375864446163,
-0.024730471894145012,
0.07545880973339081,
0.06733816862106323,
0.013618690893054008,
0.021042926236987114,
-0.026509854942560196,
-0.007815823890268803,
-0.05180426314473152,
0.06794050335884094,
0.02143695205450058,
-0.003187756985425949,
-0.018840327858924866,
-0.013473646715283394,
-0.02491431124508381,
-0.047660090029239655,
-0.02875685505568981,
-0.04414237663149834,
-0.017671829089522362,
-0.08033351600170135,
0.04701337590813637,
0.0275557953864336,
-0.046407975256443024,
0.0905362069606781,
-0.017363106831908226,
-0.05355655401945114,
-0.02788909524679184,
-0.04830411076545715,
0.11631494015455246,
-0.0394391268491745,
-0.07588851451873779,
-0.013169875368475914,
0.013194247148931026,
0.0024402516428381205,
-0.031081829220056534,
-0.008573020808398724,
0.013840354979038239,
-0.018809663131833076,
-0.07192394137382507,
0.003705488983541727,
-0.018322564661502838,
0.02137231081724167,
-0.02037743479013443,
0.013839658349752426,
0.01263515930622816,
0.016696665436029434,
0.04455741122364998,
-0.0265541672706604,
-0.017466019839048386,
-0.024113928899168968,
0.020431218668818474,
0.014493121765553951,
0.019052084535360336,
0.01057464350014925,
-0.071143239736557,
-0.024963825941085815,
-0.03013540245592594,
-0.05709430202841759,
0.026292618364095688,
0.03437228500843048,
0.040594350546598434,
0.01401894073933363,
-0.031800348311662674,
-0.03277987614274025,
-0.010388564318418503,
-0.038115907460451126,
0.02048848569393158,
-0.025624331086874008,
0.004242344293743372,
-0.05677976459264755,
0.014676659367978573,
-0.004031869117170572,
-0.0026406433898955584,
-0.04160946235060692,
0.026637645438313484,
-0.052453745156526566,
-0.001077137072570622,
-0.06600698828697205,
-0.001990986755117774,
-0.03448457643389702,
0.0043991077691316605,
-0.030541645362973213,
-0.024886751547455788,
-0.008073976263403893,
0.04773510992527008,
-0.08554726094007492,
-0.006647946313023567,
0.0005169878713786602,
-0.019201213493943214,
-0.018312539905309677,
-0.009811854921281338,
0.00414094515144825,
-0.019089199602603912,
-0.012141900137066841,
0.015542811714112759,
0.006378539372235537,
0.032306600362062454,
-0.01401996798813343,
0.03224378079175949,
0.011685576289892197,
-0.0402795672416687,
-0.026919933035969734,
0.023111173883080482,
0.04979560524225235,
0.023015672340989113,
0.04826423153281212,
-0.0034423740580677986,
0.0010255174711346626,
0.021287687122821808,
-0.05514628812670708,
0.008337941952049732,
0.01857847534120083,
-0.010147945955395699,
0.03425086289644241,
-0.05837620794773102,
-0.031908292323350906,
-0.009092631749808788,
-0.01041176076978445,
-0.0013820858439430594,
-0.034951455891132355,
0.00033454305958002806,
0.031233401969075203,
0.03858410194516182,
-0.024246806278824806,
0.05187338590621948,
0.0010329957585781813,
-0.035627689212560654,
-0.010489024221897125,
-0.004485317040234804,
-0.007662543561309576,
0.019968563690781593,
-0.04340458661317825,
0.05330396071076393,
0.02923092618584633,
-0.037954337894916534,
-0.022591352462768555,
-0.005467656534165144,
-0.018504323437809944,
0.04025101661682129,
0.009000210091471672,
0.026153769344091415,
0.004850713070482016,
-0.01287203561514616,
0.02625478059053421,
0.01429011207073927,
-0.018963562324643135,
0.03371727839112282,
0.005261407699435949,
-0.014267995953559875,
-0.005328793544322252,
0.0700521171092987,
0.012780637480318546,
0.042561739683151245,
-0.017272992059588432,
0.0522795245051384,
-0.004910777322947979,
0.004842814523726702,
0.02355167455971241,
0.0010626609437167645,
-0.0015710804145783186,
0.00025304488372057676,
-0.001544050988741219,
-0.05008586123585701,
0.04922759160399437,
0.021341625601053238,
-0.04296007379889488,
-0.0184437558054924,
-0.06717514246702194,
-0.0558910109102726,
0.024026302620768547,
-0.005998394452035427,
-0.0006493033142760396,
0.011495319195091724,
0.022137081250548363,
0.010853363201022148,
-0.035683006048202515,
-0.03757290542125702,
0.02517055533826351,
0.021185610443353653,
-0.018185783177614212,
0.04214288666844368,
0.01453991886228323,
0.011104527860879898,
0.021079039201140404,
-0.019349442794919014,
0.003016494680196047,
-0.055868953466415405,
-0.019803132861852646,
0.010950151830911636,
-0.006137743592262268,
0.06893325597047806,
-0.06617151200771332,
0.011373528279364109,
-0.0018961767200380564,
0.005709407385438681,
-0.024252556264400482,
-0.0384325310587883,
0.022999033331871033,
0.015440935268998146,
0.020116373896598816,
0.01737784408032894,
-0.0024309561122208834,
-0.023924730718135834,
-0.04189267382025719,
-0.015819914638996124,
-0.038732100278139114,
0.029215021058917046,
-0.004591566510498524,
-0.02459666132926941,
0.019055886194109917,
-0.008639007806777954,
-0.05026761814951897,
0.001781856524758041,
0.0002780531067401171,
-0.002162232296541333,
0.0024474177043884993,
-0.007620633114129305,
0.05230852589011192,
-0.0021074048709124327,
0.04115888848900795,
0.0013453962747007608,
-0.00047642478602938354,
-0.032171305269002914,
-0.01580619066953659,
-0.02310366928577423,
0.02053946442902088,
-0.004804842174053192,
0.009559105150401592,
-0.008804692886769772,
0.0032411618158221245,
0.02767718769609928,
0.03755564987659454,
0.005936388857662678,
0.03833747282624245,
0.00524289533495903,
0.0590050108730793,
0.003577904310077429,
-0.016636958345770836,
-0.02785840630531311,
-0.01237632054835558,
-0.011259455233812332,
-0.05287519842386246,
0.0788213312625885,
-0.004225733689963818,
0.009586450643837452,
0.006253220606595278,
0.005774299614131451,
-0.05625161901116371,
0.020467132329940796,
-0.02308697998523712,
-0.01884133741259575,
0.025263626128435135,
0.019012005999684334,
-0.03704310208559036,
-0.011998452246189117,
0.013545695692300797,
-0.007037976756691933,
0.009739394299685955,
-0.017115436494350433,
-0.004044164903461933,
-0.012919842265546322,
0.03057454526424408,
0.014222132973372936,
-0.010068508796393871,
0.03575738146901131,
-0.04259680584073067,
-0.009520148858428001,
0.022014528512954712,
0.022350341081619263,
0.026760663837194443,
0.002954155905172229,
0.0684661939740181,
0.012771664187312126,
-0.0234975628554821,
0.012834171764552593,
-0.003891995642334223,
-0.025737179443240166,
0.036519065499305725,
0.023970551788806915,
0.013006091117858887,
-0.002924297470599413,
0.00610350351780653,
-0.010738883167505264,
0.00407365383580327,
0.04095741733908653,
0.022032704204320908,
0.0055931261740624905,
0.04313062131404877,
-0.002543453359976411,
-0.004371692892163992,
0.03267785161733627,
-0.01664108969271183,
-0.004998185206204653,
0.002634534379467368,
-0.015209757722914219,
-0.0251200869679451,
0.0119645269587636,
-0.08229592442512512,
0.021574223414063454,
0.002850109711289406,
-0.051971837878227234,
-0.03267906978726387,
0.032287221401929855,
-0.005075094290077686,
0.07109387964010239,
0.019412610679864883,
-0.018214596435427666,
-0.06862261891365051,
-0.00715024396777153,
0.015477639622986317,
-0.017044663429260254,
0.003846853505820036,
0.03805958852171898,
0.010033485479652882,
0.000944718427490443,
0.05383196473121643,
-0.04723082110285759,
-0.008606202900409698,
0.0521368682384491,
0.011631901375949383,
-0.026161806657910347,
-0.009961249306797981,
0.0398816242814064,
-0.022968284785747528,
0.01880464516580105,
0.022090889513492584,
-0.04462316632270813,
0.04437219724059105,
0.013621557503938675,
-0.046330273151397705,
0.06685101240873337,
-0.009335044771432877,
-0.022083645686507225,
-0.04440077394247055,
0.04507151618599892,
0.05421572923660278,
-0.041177112609148026,
-0.014519059099256992,
0.007194084115326405,
0.0033924859017133713,
-0.023749426007270813,
0.05591485649347305,
-0.023306429386138916,
-0.05530157312750816,
0.044239792972803116,
-0.018271518871188164,
-0.005099702626466751,
0.03163741156458855,
0.08142007142305374,
-0.06552355736494064,
0.010138795711100101,
-0.007538256701081991,
-0.03655903786420822,
0.01227177307009697,
0.012691318057477474,
0.035097986459732056,
-0.03103543259203434,
-0.02322249859571457,
0.016960959881544113,
-0.02360565774142742,
0.022582126781344414,
0.013758557848632336,
0.07956227660179138,
0.06753473728895187,
0.039540063589811325,
0.019137978553771973,
0.04874157905578613,
0.02256712131202221,
-0.04602379724383354,
-0.013297817669808865,
0.030066244304180145,
0.043279193341732025,
0.02498471550643444,
0.021956630051136017,
-0.020671768113970757,
-0.03095126524567604,
0.004524755757302046,
-0.06415122002363205,
0.011851665563881397,
-0.009354072622954845,
-0.006053367629647255,
0.03667089715600014,
0.020772242918610573,
0.013766570016741753,
-0.044070541858673096,
0.039350345730781555,
0.023274872452020645,
0.005168506875634193,
0.02654029242694378,
0.023910412564873695,
0.012826554477214813,
0.04245413467288017,
0.004048502072691917,
0.08772098273038864,
-0.0073970309458673,
0.00728191202506423,
0.042236555367708206,
0.008879248052835464,
0.05622106418013573,
0.03786036744713783,
-0.0028590690344572067,
0.026316674426198006,
-0.0006457770359702408,
0.024045754224061966,
-0.010359369218349457,
0.05237869545817375,
0.020996900275349617,
0.00908726267516613,
-0.016872361302375793,
-0.00696997344493866,
-0.027952710166573524,
-0.030255842953920364,
-0.036186739802360535,
0.01871665008366108,
0.005424627102911472,
-0.01703101396560669,
0.04797196015715599,
-0.005907944869250059,
-0.041935909539461136,
0.02190517447888851,
0.03810511901974678,
-0.002383193699643016,
0.06232660263776779,
-0.02407555840909481,
-0.025508180260658264,
-0.03208911046385765,
-0.0008927704766392708,
0.004684287589043379,
-0.00032484132680110633,
0.011786678805947304,
-0.014578917063772678,
-0.006655032280832529,
0.005827960092574358,
0.018130706623196602,
0.017342016100883484,
-0.0037101684138178825,
-0.012405630201101303,
-0.026675784960389137,
0.023497439920902252,
-0.00989109743386507,
0.025853706523776054,
0.024957546964287758,
-0.01363128237426281,
-0.02921832539141178,
-0.016157101839780807,
0.0039445809088647366,
-0.0007245937013067305,
0.03020722046494484,
-0.015123809687793255,
-0.011430582962930202,
-0.030713289976119995,
-0.013442632742226124,
-0.01620533876121044,
0.011467980220913887,
0.005088336765766144,
-0.045595645904541016,
-0.0039850398898124695,
-0.049490466713905334,
-0.008077736012637615,
0.000493869069032371,
-0.010622013360261917,
0.026200763881206512,
0.008114749565720558,
0.008656677789986134,
-0.010417538695037365,
0.04621889069676399,
-0.00743382703512907,
-0.019606322050094604,
0.024388890713453293,
-0.013637930154800415,
0.026992473751306534,
0.007895693182945251,
0.012537083588540554,
-0.049392834305763245,
0.01461021788418293,
-0.04793158546090126,
-0.06670570373535156,
0.014114960096776485,
0.014717426151037216,
-0.006705051753669977,
-0.0014750347472727299,
-0.0292368121445179,
0.04725423455238342,
-0.013294990174472332,
0.013938218355178833,
-0.04737933725118637,
0.014550929889082909,
0.06004687398672104,
-0.020805438980460167,
0.005202847067266703,
0.013716372661292553,
0.06390681862831116,
-0.0107005275785923,
-0.02175423502922058,
0.028404634445905685,
0.032716743648052216,
0.04735555499792099,
0.02500251680612564,
-0.010082746855914593,
0.003826876636594534,
0.00222395989112556,
-0.050018686801195145,
-0.015667056664824486,
-0.002385589526966214,
0.02538500353693962,
0.0011263934429734945,
0.02215164341032505,
0.005827865097671747,
-0.01697308011353016,
-0.05389298126101494,
0.004236990585923195,
-0.02013964205980301,
0.010776786133646965,
0.01943313702940941,
-0.030331535264849663,
-0.012844836339354515,
-0.01326681300997734,
0.08317992091178894,
0.004110358655452728,
0.015012049116194248,
-0.0028662490658462048,
0.007044277153909206,
0.0003133999998681247,
0.004515601322054863,
0.01655539497733116,
-0.012728467583656311,
-0.01720934361219406,
0.07835877686738968,
-0.034221064299345016,
-0.009812911972403526,
0.018798833712935448,
0.05983102321624756,
0.009441337548196316,
-0.010264750570058823,
0.0015557410661131144,
0.02519576996564865,
0.0004578974039759487,
-0.010760645382106304,
-0.013025350868701935,
0.035245783627033234,
0.036557674407958984,
0.037320103496313095,
0.011743850074708462,
0.0034810092765837908,
0.0016098521882668138
] |
How to generate text: using different decoding methods for language generation with Transformers | patrickvonplaten | March, 2020 | how-to-generate | guide, nlp | https://huggingface.co/blog/how-to-generate | Appendix generate has evolved into a highly composable method, with flags to manipulate the resulting text in many directions that were not covered in this blog post. Here are a few helpful pages to guide you: - How to parameterize generate - How to stream the output - Full list of decoding options - generate API reference - LLM score leaderboard If you find that navigating our docs is challenging and you can't easily find what you're looking for, drop us a message in this GitHub issue. Your feedback is critical to set our future direction! 🤗 | [
0.043817032128572464,
-0.01621835120022297,
0.14616671204566956,
-0.06470081210136414,
0.130752295255661,
-0.028828449547290802,
0.01611296273767948,
0.04866698384284973,
-0.026236385107040405,
-0.0909317135810852,
-0.04398210346698761,
-0.041485745459795,
-0.023544879630208015,
0.021369513124227524,
-0.0024460391141474247,
0.02890913188457489,
0.004382125101983547,
0.02637074887752533,
0.008201193995773792,
0.018823832273483276,
0.020400872454047203,
0.005698692984879017,
0.055933140218257904,
-0.04198095202445984,
0.04434511438012123,
-0.023393569514155388,
-0.02315329946577549,
-0.021603932604193687,
-0.08008792251348495,
0.008387531153857708,
-0.018961040303111076,
-0.012114795856177807,
0.017109833657741547,
-0.006624104455113411,
-0.047274552285671234,
-0.001013516215607524,
-0.09288603812456131,
-0.002734068315476179,
0.01651787757873535,
0.018719278275966644,
-0.027277832850813866,
-0.030227800831198692,
-0.013001810759305954,
0.06155769154429436,
-0.043957602232694626,
-0.037549737840890884,
-0.18513123691082,
0.05249735713005066,
-0.11572054773569107,
0.0015042971353977919,
-0.04890226945281029,
0.051093921065330505,
-0.03645237162709236,
-0.046147651970386505,
0.00981929898262024,
0.006060643587261438,
0.02735813707113266,
-0.07211955636739731,
0.04134663939476013,
0.02841748483479023,
0.013226932846009731,
0.006320510059595108,
0.026253072544932365,
0.028184140101075172,
0.0965442955493927,
0.03338424488902092,
-0.04743935912847519,
0.06311172246932983,
-0.04750072956085205,
0.019330903887748718,
0.019708959385752678,
-0.04376821592450142,
-0.01863051950931549,
-0.04805797338485718,
-0.006035174708813429,
-0.07349681109189987,
-0.02794504538178444,
0.11282461881637573,
0.010266486555337906,
0.031385473906993866,
0.008969001471996307,
0.038394633680582047,
0.05274731665849686,
0.001580550684593618,
-0.01892605982720852,
0.03052838146686554,
0.06509522348642349,
-0.007214627228677273,
-0.05284149944782257,
0.029009724035859108,
-0.00861671008169651,
-0.1449662297964096,
-0.02778417244553566,
0.03948722779750824,
-0.0009474888211116195,
-0.0167743768543005,
0.018627183511853218,
0.029184291139245033,
-0.015586387366056442,
0.03568694740533829,
0.01107007171958685,
0.014331042766571045,
0.0591927170753479,
-0.016797082498669624,
-0.06296724826097488,
-0.0036610197275877,
-0.06976398825645447,
-0.07232480496168137,
-0.03484506160020828,
0.07972288131713867,
0.008090982213616371,
0.0613437183201313,
0.026797108352184296,
0.03736521303653717,
-0.03116648644208908,
0.06845846772193909,
-0.009219147264957428,
-0.00037866810453124344,
-0.07450778782367706,
-0.017037145793437958,
0.008198218420147896,
0.08435032516717911,
0.06611936539411545,
0.006381609942764044,
0.01536200474947691,
0.056342169642448425,
0.061106372624635696,
0.03299415111541748,
-0.012854818254709244,
0.010434108786284924,
0.042042408138513565,
0.023336203768849373,
-0.013533567078411579,
-0.01181027665734291,
-0.030384154990315437,
-0.02247764728963375,
-0.007987610064446926,
-0.04983881488442421,
0.0222841277718544,
0.0020912548061460257,
0.0070208171382546425,
-0.01119194831699133,
-0.0571618378162384,
-0.0005761540378443897,
-0.03963100165128708,
-0.027742350473999977,
-0.055576108396053314,
-0.0028631098102778196,
-0.03211602568626404,
0.04712601751089096,
0.04400414228439331,
0.04279095306992531,
-0.015712803229689598,
-0.07018618285655975,
0.022741645574569702,
0.058673687279224396,
0.0158605445176363,
0.018230635672807693,
-0.08430115878582001,
-0.01649031788110733,
0.04237106442451477,
0.053149230778217316,
-0.07460538297891617,
0.02137683890759945,
0.025978082790970802,
-0.0023452788591384888,
0.004912815056741238,
0.02304210141301155,
-0.06424828618764877,
-0.027064399793744087,
-0.04857632517814636,
-0.02706957794725895,
0.06736224889755249,
0.004591198172420263,
0.05390661954879761,
0.01850007101893425,
0.04810784384608269,
0.03603494167327881,
-0.004897641018033028,
0.008853566832840443,
-0.0741945281624794,
-0.009925128892064095,
0.04814592003822327,
-0.043699413537979126,
0.0010057772742584348,
-0.05914441496133804,
0.050957903265953064,
-0.08654246479272842,
0.011558490805327892,
0.0035042413510382175,
-0.09149879217147827,
-0.0011358142364770174,
0.07623769342899323,
0.01607496105134487,
-0.06559383869171143,
-0.02909143455326557,
-0.04437734931707382,
0.11553065478801727,
0.04168609902262688,
0.062384508550167084,
0.022116713225841522,
0.09130226820707321,
0.06352865695953369,
0.02003609761595726,
-0.06807368248701096,
0.011379843577742577,
0.012657846324145794,
-0.018931904807686806,
0.08367472141981125,
-0.012812050990760326,
0.01557413674890995,
-0.029359111562371254,
-0.013375550508499146,
-0.09087888896465302,
-0.041432999074459076,
-0.0001213352516060695,
-0.0048950957134366035,
0.03007824905216694,
-0.007844237610697746,
-0.027290616184473038,
0.14516973495483398,
-0.024980274960398674,
0.01109434012323618,
-0.02268412709236145,
-0.01370877493172884,
0.10374453663825989,
-0.023494603112339973,
0.06985411792993546,
-0.00439137127250433,
-0.08534424751996994,
0.016030967235565186,
0.0015468229539692402,
-0.04118317365646362,
0.024928288534283638,
-0.04566989466547966,
-0.010706750676035881,
-0.011810696683824062,
0.043813955038785934,
0.06286265701055527,
-0.07946830987930298,
0.043701402842998505,
0.0020014483015984297,
-0.038281701505184174,
-0.01081798691302538,
0.009657960385084152,
0.013006845489144325,
0.06899289786815643,
-0.033056121319532394,
-0.006043432280421257,
0.03157166764140129,
-0.05082753673195839,
0.05377516150474548,
0.014473363757133484,
-0.03253110125660896,
0.04117286577820778,
-0.007673630025237799,
-0.02404710464179516,
-0.00920057576149702,
-0.012028571218252182,
0.010257621295750141,
-0.001077761291526258,
-0.052382778376340866,
-0.009992753155529499,
-0.03863843157887459,
0.04767356440424919,
-0.0033214956056326628,
0.012040704488754272,
0.006772467866539955,
-0.01621135137975216,
0.023246482014656067,
-0.010139982216060162,
-0.007348336279392242,
0.010374781675636768,
-0.000348130997736007,
0.02156500332057476,
-0.019069410860538483,
0.03724290803074837,
-0.04037864878773689,
-0.00935459230095148,
-0.04134505242109299,
-0.01861303485929966,
-0.006390935741364956,
0.04966311156749725,
0.005950744729489088,
0.02561504952609539,
-0.0246299896389246,
-0.029312822967767715,
-0.02481171488761902,
-0.013366775587201118,
0.024996783584356308,
-0.0031120406929403543,
0.04333939030766487,
-0.011749209836125374,
0.00599633576348424,
0.04151393473148346,
-0.00907328724861145,
0.03613320738077164,
-0.01261725090444088,
-0.03104534186422825,
-0.009734625928103924,
0.028189335018396378,
-0.007677111774682999,
0.017924780026078224,
-0.03503017500042915,
-0.04980384185910225,
0.026837319135665894,
0.011173584498465061,
0.02966570109128952,
-0.11593209207057953,
-0.05180880427360535,
0.007615778129547834,
-0.01289596688002348,
0.005446464288979769,
-0.017851484939455986,
0.05744834616780281,
-0.020617643371224403,
-0.008703514002263546,
-0.0036851512268185616,
0.00033227604581043124,
-0.012878235429525375,
0.031222917139530182,
-0.009484531357884407,
0.004955992568284273,
0.010442246682941914,
-0.04301855340600014,
0.006308847106993198,
-0.004403974860906601,
-0.031953368335962296,
0.016051115468144417,
0.02609449252486229,
0.03473004326224327,
-0.03890257328748703,
-0.0012316418578848243,
-0.003682164940983057,
0.008699643425643444,
0.031409330666065216,
-0.008106179535388947,
-0.036246806383132935,
-0.0011050032917410135,
0.015652665868401527,
0.03896293044090271,
-0.0027630769181996584,
-0.06073922663927078,
-0.0192007627338171,
0.010524868965148926,
-0.005545325577259064,
0.014742030762135983,
0.021406423300504684,
0.00047257819096557796,
0.013957426883280277,
0.019288212060928345,
-0.02661142498254776,
0.004854485858231783,
-0.018578913062810898,
-0.0076368884183466434,
-0.003440679982304573,
0.03151954710483551,
-0.06463173031806946,
-0.06269732862710953,
-0.005892814137041569,
-0.02053723856806755,
0.03998864069581032,
-0.03277406468987465,
-0.005284254439175129,
0.007846170105040073,
0.011809701099991798,
0.049713075160980225,
-0.0649336725473404,
-0.009326469153165817,
-0.020578164607286453,
-0.03565933182835579,
0.028654024004936218,
0.00452805683016777,
0.09299948811531067,
0.019458934664726257,
-0.011392438784241676,
0.001917730551213026,
0.05844492092728615,
0.005515035707503557,
0.000315830489853397,
0.0006077145808376372,
0.015043764375150204,
-0.04875167831778526,
0.008737897500395775,
-0.05049016699194908,
-0.015381194651126862,
0.06909865140914917,
0.02859986573457718,
-0.05054445192217827,
0.008986747823655605,
-0.019992263987660408,
-0.002749053295701742,
-0.006424214690923691,
-0.01158920582383871,
0.004673439543694258,
-0.005603693891316652,
0.009164156392216682,
0.0009295949712395668,
0.024378381669521332,
-0.023875972256064415,
-0.02869369462132454,
-0.03155083209276199,
-0.014157530851662159,
0.03396495431661606,
0.019807210192084312,
0.013552354648709297,
0.05136031657457352,
0.028532495722174644,
0.030727310106158257,
-0.04482962191104889,
0.002654032548889518,
0.009968922473490238,
-0.02947916090488434,
0.026915496215224266,
-0.03383142873644829,
-0.016457965597510338,
0.010926325805485249,
0.051802802830934525,
-0.008975007571280003,
-0.020156048238277435,
-0.010090149939060211,
-0.002231133636087179,
-0.008874787949025631,
0.02466893009841442,
0.008487047627568245,
-0.03254306688904762,
-0.016544640064239502,
-0.03288721665740013,
-0.06723479926586151,
-0.019324472174048424,
0.0678296759724617,
0.005971233826130629,
-0.003252780996263027,
-0.008681620471179485,
0.005394377745687962,
0.021102674305438995,
0.010176046751439571,
0.021423084661364555,
0.0064178043976426125,
-0.0023494523484259844,
0.0284731462597847,
-0.010137545876204967,
0.03053259663283825,
0.02475670538842678,
-0.026397980749607086,
0.01114896684885025,
0.014198612421751022,
-0.06516576558351517,
0.013677369803190231,
-0.041193876415491104,
0.011742650531232357,
0.013115162961184978,
0.022174261510372162,
-0.02222471311688423,
-0.014424772933125496,
-0.011147623881697655,
0.014698159880936146,
-0.009680826216936111,
0.04732799530029297,
0.015842732042074203,
0.006642800755798817,
-0.05342794582247734,
-0.0037845259066671133,
0.005842519458383322,
-0.03250643238425255,
0.04926225170493126,
-0.027729354798793793,
0.02481965348124504,
0.004270851146429777,
0.015430920757353306,
0.01644173264503479,
0.006819149479269981,
-0.020758964121341705,
0.07042620331048965,
0.010343209840357304,
0.0279146209359169,
0.005844671744853258,
-0.014567120000720024,
-0.01742369495332241,
0.012344790622591972,
0.021483752876520157,
-0.044162850826978683,
-0.0018622421193867922,
-0.0015782458940520883,
0.04013875499367714,
0.04092587158083916,
0.002832158701494336,
0.03209850564599037,
-0.01911676861345768,
-0.035804376006126404,
0.06653271615505219,
-0.006488703191280365,
0.0028444991912692785,
0.007322058081626892,
0.07830825448036194,
0.01617269590497017,
0.0005962863215245306,
0.014333846978843212,
-0.002734862035140395,
-0.03314584866166115,
0.020985078066587448,
-0.06966345012187958,
0.00008086644083959982,
-0.010520718060433865,
-0.0032504801638424397,
0.015007881447672844,
-0.018795741721987724,
-0.020579379051923752,
0.08199626952409744,
0.04496876522898674,
0.016890332102775574,
-0.02499012090265751,
-0.007845957763493061,
-0.03330240771174431,
0.006827214732766151,
-0.03535180911421776,
-0.005539667792618275,
-0.055154599249362946,
-0.0250584427267313,
0.020365489646792412,
-0.026718365028500557,
-0.005091085564345121,
0.02199188619852066,
-0.007217105012387037,
0.009314053691923618,
-0.003578375093638897,
-0.035677190870046616,
0.05253835767507553,
0.020239686593413353,
-0.026608774438500404,
-0.00618444848805666,
0.03590104356408119,
-0.010350141674280167,
0.030526630580425262,
-0.011636524461209774,
0.023064857348799706,
0.01916237734258175,
-0.014402568340301514,
0.0633881539106369,
0.007489768788218498,
-0.008668881841003895,
0.05853462591767311,
0.011058053001761436,
0.0189556572586298,
-0.05586976185441017,
0.011123882606625557,
0.015315992757678032,
0.028395211324095726,
-0.0007116134511306882,
-0.024068642407655716,
-0.058815885335206985,
0.025365471839904785,
-0.01587682031095028,
0.07033704221248627,
0.0013907558750361204,
-0.012364187277853489,
0.013232299126684666,
0.01527177169919014,
0.04839980602264404,
-0.01115667074918747,
0.003514757612720132,
-0.023905785754323006,
-0.0019263967406004667,
0.0028207225259393454,
0.050662215799093246,
-0.047491371631622314,
-0.00026860192883759737,
0.029231932014226913,
-0.00005813154348288663,
-0.033392928540706635,
0.0081715676933527,
0.05533701553940773,
-0.023800650611519814,
0.041220806539058685,
-0.007895974442362785,
-0.01934024505317211,
-0.00405379431322217,
0.014220036566257477,
0.016533201560378075,
0.04966990277171135,
0.016875717788934708,
-0.01800503581762314,
0.010534185916185379,
0.004126443527638912,
-0.00006154887523734942,
0.04391929507255554,
0.005624263547360897,
0.0478084459900856,
-0.02715829759836197,
0.04898896813392639,
-0.0040924870409071445,
0.026359401643276215,
-0.002487495541572571,
0.03831346705555916,
0.02977832220494747,
0.052704039961099625,
0.0015815147198736668,
-0.018115904182195663,
-0.016159217804670334,
-0.021126393228769302,
-0.06387525796890259,
0.00836833007633686,
-0.03971606120467186,
0.019504178315401077,
0.046819064766168594,
-0.0030612293630838394,
0.024652816355228424,
-0.05556151643395424,
0.03771955147385597,
0.0043886564671993256,
0.017301877960562706,
-0.01649622432887554,
0.007809031289070845,
0.01574009843170643,
-0.020803071558475494,
0.00559352757409215,
0.017817040905356407,
-0.008194792084395885,
-0.05562341958284378,
0.07463938742876053,
0.0062494599260389805,
0.0026230481453239918,
0.03907395526766777,
-0.032622210681438446,
0.018489202484488487,
-0.0009715792839415371,
0.025103801861405373,
0.015371420420706272,
0.01191422063857317,
0.006493423134088516,
-0.01000618189573288,
-0.02467510476708412,
-0.014027263969182968,
-0.03967346251010895,
0.026222167536616325,
-0.022648533806204796,
-0.012225904501974583,
-0.009573518298566341,
-0.0039905826561152935,
0.03959466144442558,
-0.0038572850171476603,
-0.012611608020961285,
-0.016145171597599983,
0.00342015759088099,
0.02172195166349411,
0.030388521030545235,
-0.04289615899324417,
0.0015921819722279906,
-0.035179536789655685,
-0.0004855598381254822,
0.018426263704895973,
0.02109692059457302,
-0.0059463041834533215,
-0.01642218977212906,
0.025397105142474174,
-0.00780165521427989,
-0.01691608503460884,
0.04530089348554611,
-0.003377550980076194,
0.03543935343623161,
-0.04034067690372467,
0.005597688723355532,
0.005371556151658297,
0.0015291511081159115,
0.00972955022007227,
-0.013671583496034145,
-0.012670885771512985,
-0.041125357151031494,
0.03357371315360069,
0.004678940400481224,
0.02818823605775833,
-0.05387367680668831,
-0.032593633979558945,
-0.012639190070331097,
-0.021387342363595963,
0.03346967324614525,
-0.02128843404352665,
0.017487624660134315,
-0.022105565294623375,
-0.016640959307551384,
0.003920245449990034,
0.03045082651078701,
-0.006817811168730259,
0.024478303268551826,
0.013827242888510227,
-0.011134237051010132,
-0.04662465304136276,
-0.03972623497247696,
0.049586258828639984,
0.0020964418072253466,
0.009017414413392544,
0.043994590640068054,
0.0007576263160444796,
0.03199361264705658,
-0.005555834621191025,
0.020744062960147858,
-0.037537749856710434,
0.03431369364261627,
-0.06760680675506592,
-0.058633655309677124,
0.004079023841768503,
-0.019931616261601448,
0.0010817907750606537,
0.03625897318124771,
0.02719784714281559,
-0.023935610428452492,
-0.012751906178891659,
-0.058361299335956573,
-0.020629744976758957,
-0.0020015710033476353,
0.06613858789205551,
0.012381023727357388,
0.05025223642587662,
0.018518349155783653,
-0.002951001049950719,
-0.004557354375720024,
0.0190584734082222,
0.025284016504883766,
0.02323317341506481,
0.026954451575875282,
0.004356767982244492,
0.006339543499052525,
0.011208618059754372,
-0.07402390986680984,
-0.027462776750326157,
-0.0173463374376297,
0.02902797982096672,
-0.041631296277046204,
-0.008526226505637169,
0.012992063537240028,
0.03575325384736061,
0.005893283523619175,
-0.009779529646039009,
-0.016228778287768364,
0.010704715736210346,
0.003965320996940136,
-0.019160516560077667,
-0.07898662239313126,
0.008245265111327171,
0.0064798155799508095,
0.005440689157694578,
0.030761349946260452,
-0.029397541657090187,
-0.023504583165049553,
-0.00030659750336781144,
-0.009936196729540825,
-0.003152086166664958,
0.029356244951486588,
-0.02762717753648758,
0.027529796585440636,
0.012078018859028816,
0.0084875812754035,
-0.046159062534570694,
-0.00007388676749542356,
0.03361201658844948,
0.009548958390951157,
-0.005081574898213148,
0.0019167665159329772,
-0.030626537278294563,
0.010595294646918774,
0.0462888702750206,
0.03770522400736809,
0.036966923624277115,
0.05647975206375122,
0.013342533260583878,
0.020207995548844337,
-0.02006622403860092,
-0.029119864106178284
] |
How to generate text: using different decoding methods for language generation with Transformers | patrickvonplaten | March, 2020 | how-to-generate | guide, nlp | https://huggingface.co/blog/how-to-generate | Sampling In its most basic form, sampling means randomly picking the next word \(w_t\) according to its conditional probability distribution: $$ w_t \sim P(w|w_{1:t-1}) $$ Taking the example from above, the following graphic visualizes language generation when sampling. It becomes obvious that language generation using sampling is not deterministic anymore. The word \((\text{"car"})\) is sampled from the conditioned probability distribution \(P(w | \text{"The"})\), followed by sampling \((\text{"drives"})\) from \(P(w | \text{"The"}, \text{"car"})\) . In transformers, we set do_sample=True and deactivate Top-K sampling (more on this later) via top_k=0. In the following, we will fix the random seed for illustration purposes. Feel free to change the set_seed argument to obtain different results, or to remove it for non-determinism. python # set seed to reproduce results. Feel free to change the seed though to get different results from transformers import set_seed set_seed(42) # activate sampling and deactivate top_k by setting top_k sampling to 0 sample_output = model.generate( **model_inputs, max_new_tokens=40, do_sample=True, top_k=0 ) print("Output:\n" + 100 * '-') print(tokenizer.decode(sample_output[0], skip_special_tokens=True)) Output: ---------------------------------------------------------------------------------------------------- I enjoy walking with my cute dog for the rest of the day, but this had me staying in an unusual room and not going on nights out with friends (which will always be wondered for a mere minute or so at this point). Interesting! The text seems alright - but when taking a closer look, it is not very coherent and doesn't sound like it was written by a human. That is the big problem when sampling word sequences: The models often generate incoherent gibberish, cf. Ari Holtzman et al. (2019). A trick is to make the distribution \(P(w|w_{1:t-1})\) sharper (increasing the likelihood of high probability words and decreasing the likelihood of low probability words) by lowering the so-called temperature of the softmax. An illustration of applying temperature to our example from above could look as follows. The conditional next word distribution of step \(t=1\) becomes much sharper leaving almost no chance for word \((\text{"car"})\) to be selected. Let's see how we can cool down the distribution in the library by setting temperature=0.6: python # set seed to reproduce results. Feel free to change the seed though to get different results set_seed(42) # use temperature to decrease the sensitivity to low probability candidates sample_output = model.generate( **model_inputs, max_new_tokens=40, do_sample=True, top_k=0, temperature=0.6, ) print("Output:\n" + 100 * '-') print(tokenizer.decode(sample_output[0], skip_special_tokens=True)) Output: ---------------------------------------------------------------------------------------------------- I enjoy walking with my cute dog, but I don't like to chew on it. I like to eat it and not chew on it. I like to be able to walk with my dog." So how did you decide OK. There are less weird n-grams and the output is a bit more coherent now! While applying temperature can make a distribution less random, in its limit, when setting temperature \(\to 0\), temperature scaled sampling becomes equal to greedy decoding and will suffer from the same problems as before. | [
0.09365792572498322,
-0.0034209166187793016,
-0.008999810554087162,
0.007520679850131273,
0.11419407278299332,
0.026565421372652054,
0.037599965929985046,
0.05526881292462349,
-0.02078370936214924,
-0.038252558559179306,
-0.13043229281902313,
0.02212735451757908,
0.02583923004567623,
0.014981082640588284,
-0.040777288377285004,
0.01806243695318699,
0.026739660650491714,
-0.018135039135813713,
0.06799283623695374,
-0.032214149832725525,
-0.006069324444979429,
-0.01685766503214836,
0.06208020821213722,
-0.016697587445378304,
0.07628253102302551,
-0.026987696066498756,
0.01732764020562172,
-0.01064222026616335,
-0.03964965417981148,
0.01498609408736229,
-0.1795688271522522,
0.008119197562336922,
0.03154904767870903,
-0.018415942788124084,
0.010038251988589764,
-0.031049581244587898,
-0.14781253039836884,
0.05060373619198799,
0.04759450629353523,
-0.0650244876742363,
0.006315723992884159,
-0.00939314067363739,
-0.017740359529852867,
-0.007294462528079748,
-0.057982880622148514,
-0.08158674091100693,
-0.1369156539440155,
0.08173868805170059,
-0.11902721971273422,
-0.10327372699975967,
-0.09587374329566956,
-0.008858188055455685,
-0.030496397987008095,
-0.011237013153731823,
-0.01384645514190197,
-0.061297088861465454,
-0.006613836158066988,
-0.08415688574314117,
0.0711115226149559,
0.008888468146324158,
0.0641428753733635,
-0.010640877299010754,
0.03210577368736267,
0.055861830711364746,
-0.00028304822626523674,
-0.00485891941934824,
0.04143671318888664,
0.07010415196418762,
-0.034567706286907196,
-0.024935001507401466,
-0.0368267297744751,
-0.05234768986701965,
-0.06520367413759232,
0.0052099996246397495,
0.0031263420823961496,
0.0171501561999321,
-0.02843765914440155,
0.08228558301925659,
0.007435651030391455,
0.0609310083091259,
0.03561970219016075,
-0.023444941267371178,
0.07899557799100876,
0.05583607777953148,
0.06603638827800751,
-0.02365034818649292,
0.03212788328528404,
-0.025186123326420784,
-0.012154430150985718,
0.03278901055455208,
-0.0576140359044075,
-0.13217683136463165,
-0.004509063437581062,
0.019930399954319,
-0.006990935653448105,
-0.019469019025564194,
-0.021051017567515373,
0.07287273555994034,
-0.006401457823812962,
0.0002779602073132992,
-0.003506837412714958,
-0.01648676209151745,
0.022291414439678192,
-0.06166614592075348,
-0.02541445940732956,
0.03909655287861824,
0.019665727391839027,
-0.032659851014614105,
-0.01667862944304943,
0.048422809690237045,
-0.007201345171779394,
0.002120379591360688,
0.05122185871005058,
0.03351913392543793,
-0.012922736816108227,
-0.01561160758137703,
-0.01705515943467617,
0.02341952919960022,
-0.046704601496458054,
-0.05276663228869438,
-0.04506874457001686,
-0.008466855622828007,
0.05476435273885727,
-0.036255910992622375,
-0.036243535578250885,
0.03310081362724304,
0.02749471180140972,
0.05474798008799553,
-0.022278983145952225,
-0.05762075260281563,
0.05254639312624931,
0.03536736220121384,
0.007819713093340397,
0.0018772288458421826,
-0.007277565076947212,
0.020551759749650955,
0.023941926658153534,
-0.00585765577852726,
0.010171255096793175,
-0.01533206831663847,
-0.007172571495175362,
0.01325221173465252,
-0.017593292519450188,
0.04416979104280472,
-0.025418780744075775,
-0.0026189545169472694,
-0.02718484401702881,
0.030561119318008423,
-0.02452407218515873,
0.03298373892903328,
-0.022487320005893707,
0.09806565940380096,
-0.04984544217586517,
-0.06220647320151329,
0.06061301380395889,
0.03592242673039436,
-0.036921676248311996,
0.022128231823444366,
-0.07262395322322845,
-0.0501110814511776,
-0.016582898795604706,
0.04281063750386238,
0.04749593138694763,
0.016069844365119934,
0.06397498399019241,
-0.047364491969347,
0.017092615365982056,
0.07329308986663818,
0.013254079967737198,
0.021486179903149605,
-0.0110517842695117,
-0.026638083159923553,
0.027680013328790665,
-0.039564188569784164,
0.014465578831732273,
0.05841398611664772,
-0.014669287949800491,
-0.014345455914735794,
0.031301409006118774,
0.0030654985457658768,
-0.07634247094392776,
0.0012813967186957598,
0.02840854413807392,
-0.04846857860684395,
0.060893092304468155,
-0.0928541049361229,
0.06484125554561615,
0.009457999840378761,
0.00925632193684578,
0.03339020162820816,
-0.029498225077986717,
-0.07536450028419495,
0.07856345921754837,
-0.025030385702848434,
-0.0027768672443926334,
-0.06436023116111755,
-0.035055097192525864,
0.0407075360417366,
0.03940799832344055,
0.061722226440906525,
0.022645937278866768,
0.029038317501544952,
0.008905327878892422,
-0.059062112122774124,
-0.008032490499317646,
0.029402591288089752,
-0.007117834873497486,
-0.04480212181806564,
0.029293105006217957,
0.043633561581373215,
-0.025769364088773727,
-0.07219935208559036,
-0.021091626957058907,
-0.1010240837931633,
-0.01871914230287075,
-0.029015645384788513,
-0.038269270211458206,
0.01087197009474039,
0.03481509909033775,
0.005784718785434961,
0.11590027809143066,
-0.05587885156273842,
0.008522918447852135,
-0.007887247949838638,
-0.007014649920165539,
0.048696547746658325,
0.00473292451351881,
0.023233959451317787,
0.03307162597775459,
-0.08449383080005646,
-0.01530770119279623,
-0.012665830552577972,
0.04452168196439743,
0.02431860938668251,
-0.016585495322942734,
-0.036412663757801056,
0.02220315672457218,
0.034864164888858795,
-0.012085904367268085,
-0.06028272956609726,
0.0501369908452034,
-0.007772205863147974,
-0.037867579609155655,
0.07913423329591751,
-0.027901632711291313,
-0.013747279532253742,
0.08693230897188187,
-0.07374684512615204,
-0.03874040022492409,
-0.01189374178647995,
-0.06821588426828384,
-0.01295910868793726,
0.0013876777375116944,
-0.0592401847243309,
-0.003607482649385929,
0.08327265828847885,
-0.015094122849404812,
0.012556875124573708,
-0.016855141147971153,
0.002814969513565302,
-0.032788779586553574,
-0.005366713739931583,
-0.008616995997726917,
-0.06651122868061066,
-0.03973127901554108,
-0.022107958793640137,
0.03601353242993355,
0.0425519235432148,
0.01353537943214178,
0.01027053501456976,
0.00960585754364729,
-0.024925753474235535,
0.004321714863181114,
-0.028422722592949867,
0.02008933760225773,
-0.006566641386598349,
0.04273446649312973,
-0.0276945773512125,
-0.04390161484479904,
-0.03770850971341133,
-0.04509992152452469,
-0.016572624444961548,
0.023089615628123283,
0.02190740592777729,
0.018618324771523476,
0.011578169651329517,
0.023454170674085617,
0.01856674998998642,
-0.004602515138685703,
-0.006406952161341906,
-0.012522254139184952,
0.0025926721282303333,
-0.010926364921033382,
-0.01749318651854992,
0.018758883699774742,
0.023160379379987717,
-0.021968871355056763,
0.005213442724198103,
0.0027746662963181734,
-0.03152477368712425,
-0.028904767706990242,
0.004035606049001217,
-0.049476347863674164,
0.007580868899822235,
-0.038112983107566833,
0.019395438954234123,
0.020025014877319336,
0.06271273642778397,
-0.10747947543859482,
-0.030432365834712982,
0.02688591554760933,
-0.02611090987920761,
-0.0017591860378161073,
-0.04114033654332161,
0.04171639680862427,
-0.014586066827178001,
-0.03674422577023506,
0.03039499744772911,
0.010119713842868805,
0.0009084130288101733,
-0.002000178210437298,
0.04720577225089073,
0.024717453867197037,
-0.03350111097097397,
-0.012552635744214058,
0.0047515518963336945,
0.011670513078570366,
0.02116110362112522,
0.050953056663274765,
0.03832615166902542,
0.0165567547082901,
0.008791687898337841,
-0.05675072222948074,
-0.009503484703600407,
0.05039580538868904,
0.0311001967638731,
0.02982126548886299,
-0.02385709062218666,
-0.013603686355054379,
0.02906336821615696,
0.005926464218646288,
0.016582971438765526,
-0.026246286928653717,
-0.005355111323297024,
0.010554390028119087,
-0.02216828241944313,
-0.003747085575014353,
0.039234086871147156,
-0.024133477360010147,
-0.01188835222274065,
0.01241636648774147,
0.009521327912807465,
0.010371513664722443,
0.016112780198454857,
-0.04045964032411575,
-0.005922780837863684,
0.03192886710166931,
-0.03746798634529114,
-0.027580957859754562,
-0.021293899044394493,
-0.000713296583853662,
0.03929264098405838,
0.02312159352004528,
0.03623894974589348,
0.01829141564667225,
0.04293477162718773,
0.04490526765584946,
-0.019705718383193016,
-0.039471615105867386,
0.03238049894571304,
0.04840688779950142,
-0.07378218322992325,
-0.017335977405309677,
0.06349295377731323,
0.03130965307354927,
0.042848967015743256,
-0.012334798462688923,
0.01726340875029564,
0.010796785354614258,
0.020160935819149017,
0.013172339648008347,
0.010302075184881687,
-0.01636197604238987,
0.011924132704734802,
-0.0392603762447834,
-0.047568876296281815,
0.07602637261152267,
0.015330227091908455,
-0.022278958931565285,
0.020754516124725342,
-0.030794939026236534,
0.005683215335011482,
-0.02472003735601902,
-0.015221089124679565,
0.010374346747994423,
-0.016286199912428856,
-0.006037604063749313,
-0.014123845845460892,
-0.0026301448233425617,
-0.003577808616682887,
-0.01252685859799385,
0.01737383008003235,
-0.028474660590291023,
0.0372287817299366,
-0.009559319354593754,
-0.02379596419632435,
0.038971807807683945,
0.012304289266467094,
0.04102272912859917,
-0.04503212124109268,
-0.0044089192524552345,
-0.01414844486862421,
-0.01682877354323864,
0.027454230934381485,
-0.05826316401362419,
-0.011839953251183033,
0.018318209797143936,
0.027911707758903503,
-0.00573149835690856,
0.042079292237758636,
-0.009220244362950325,
-0.01883849874138832,
0.01864285208284855,
0.05171465128660202,
-0.009339921176433563,
-0.020611058920621872,
-0.04777161777019501,
-0.0028204829432070255,
-0.046338535845279694,
-0.019027521833777428,
0.0044641559943556786,
0.029388172551989555,
0.012854556553065777,
-0.03973214700818062,
0.03670218214392662,
0.028287295252084732,
-0.04192676395177841,
-0.021024474874138832,
-0.00037950603291392326,
-0.005565576255321503,
0.009928891435265541,
-0.007034007925540209,
0.01569512113928795,
0.047299593687057495,
0.018742479383945465,
-0.016715334728360176,
0.0059383343905210495,
-0.03898544982075691,
-0.008393718861043453,
0.01801505871117115,
0.03489316999912262,
-0.03289187327027321,
0.03989966958761215,
0.01540080551058054,
-0.015616128221154213,
0.00013674890215042979,
0.02541120909154415,
-0.03039138950407505,
0.059186749160289764,
0.005375613458454609,
-0.03418703377246857,
-0.03248972445726395,
0.013028910383582115,
-0.00811777450144291,
-0.037865571677684784,
-0.0029756673611700535,
0.01696009747684002,
0.04323717951774597,
0.0007457227329723537,
0.0000948343295021914,
0.020880507305264473,
0.0404471717774868,
-0.011887638829648495,
-0.006877628620713949,
-0.008931063115596771,
-0.045088399201631546,
0.001581688760779798,
0.006997941993176937,
0.02708185650408268,
-0.027447452768683434,
-0.032875701785087585,
-0.020038047805428505,
0.0015871612122282386,
0.029632868245244026,
0.027026327326893806,
-0.010022459551692009,
-0.026026755571365356,
0.01850603148341179,
-0.035785283893346786,
-0.018494922667741776,
-0.006522390991449356,
0.015853136777877808,
0.02240564487874508,
0.032178301364183426,
0.05407523363828659,
0.04304848983883858,
-0.01410821732133627,
0.03532779589295387,
0.00873972475528717,
-0.03005959279835224,
-0.009920630604028702,
-0.06882838904857635,
0.00553129892796278,
-0.010068599134683609,
-0.02323790080845356,
0.031016657128930092,
0.012899516150355339,
0.008674662560224533,
0.03468451648950577,
0.03872692957520485,
0.026338079944252968,
-0.03220177814364433,
0.02169770747423172,
0.002026584232226014,
-0.020892756059765816,
0.0002146608312614262,
-0.015501623041927814,
-0.029580378904938698,
0.025223376229405403,
-0.022866414859890938,
-0.046846795827150345,
-0.017771350219845772,
-0.030268210917711258,
-0.021894970908761024,
-0.031452588737010956,
0.01185983419418335,
-0.004460399970412254,
0.07768195122480392,
0.035212524235248566,
0.03759070858359337,
-0.017448781058192253,
0.019389644265174866,
0.05714957043528557,
-0.036496520042419434,
-0.0023478574585169554,
0.016846492886543274,
0.03286994993686676,
0.02619183622300625,
0.034576065838336945,
-0.009034662507474422,
-0.0002846481220331043,
-0.0004312623350415379,
0.011405742727220058,
-0.028372742235660553,
-0.011611474677920341,
0.04867929220199585,
0.027848776429891586,
0.007014715578407049,
-0.009614618495106697,
-0.026300765573978424,
-0.00036506977630779147,
0.029947327449917793,
-0.01702728122472763,
0.000141430355142802,
0.0778115913271904,
-0.020154809579253197,
-0.034706514328718185,
0.0031096721068024635,
-0.044334422796964645,
0.0031625761184841394,
-0.04487188532948494,
0.03708628937602043,
-0.0015295820776373148,
0.007088825572282076,
0.06409129500389099,
0.00039263252983801067,
-0.0015429259510710835,
0.006675961427390575,
-0.010442426428198814,
-0.019430741667747498,
0.03012171760201454,
0.026903899386525154,
-0.053344015032052994,
0.04478207975625992,
0.03425854817032814,
-0.01730348914861679,
0.0173598974943161,
-0.012939565815031528,
0.039130955934524536,
0.01964014396071434,
-0.03219934180378914,
0.0354795828461647,
0.01971263997256756,
0.0011412501335144043,
-0.020123397931456566,
0.032703548669815063,
-0.0158061683177948,
0.0526554211974144,
0.017903946340084076,
0.044324442744255066,
0.03333073481917381,
-0.012951443903148174,
0.005516367964446545,
0.03723210468888283,
0.05195096880197525,
0.01856030710041523,
-0.010893726721405983,
-0.023510931059718132,
-0.0043885898776352406,
-0.007294833660125732,
-0.04040056839585304,
0.009336908347904682,
-0.04067481681704521,
0.055482957512140274,
0.04824492707848549,
0.019779270514845848,
0.03772340342402458,
-0.03707658872008324,
0.04255988821387291,
0.02087225392460823,
0.027428889647126198,
0.0051627629436552525,
-0.003358861431479454,
0.013472482562065125,
0.01392514817416668,
0.00309643242508173,
0.06519055366516113,
0.04669210687279701,
0.009745950810611248,
0.04683639109134674,
0.013456693850457668,
0.04172781854867935,
0.036136236041784286,
0.0025130421854555607,
0.025151582434773445,
-0.04690070450305939,
-0.004998384974896908,
0.01487773284316063,
0.02535100094974041,
-0.042625851929187775,
-0.008828237652778625,
-0.023401347920298576,
-0.038854241371154785,
0.011539961211383343,
-0.017437664791941643,
-0.0037298807874321938,
0.02052452228963375,
-0.05370189994573593,
0.009189591743052006,
0.030558068305253983,
0.025566762313246727,
-0.03673997521400452,
0.01252646092325449,
0.027788642793893814,
-0.007321829907596111,
-0.0013159816153347492,
-0.029401445761322975,
-0.038745567202568054,
-0.011346184648573399,
-0.020507723093032837,
-0.005016258917748928,
-0.000996147282421589,
0.018110858276486397,
-0.03945370391011238,
-0.010090257041156292,
0.01524665579199791,
-0.047989822924137115,
0.035853106528520584,
0.029065091162919998,
-0.003232369665056467,
-0.021031152456998825,
0.018147969618439674,
0.005721333436667919,
0.024423761293292046,
0.03472088649868965,
-0.0050629363395273685,
-0.004755909088999033,
-0.026106717064976692,
0.08048694580793381,
0.018121207132935524,
0.03627898544073105,
-0.02861192636191845,
-0.015591111034154892,
-0.005578602198511362,
-0.050169121474027634,
0.0013941969955340028,
0.022341370582580566,
0.00859459862112999,
-0.0037032924592494965,
0.011767925694584846,
-0.0649060308933258,
-0.015495920553803444,
-0.030279232189059258,
0.000273992249276489,
0.03175521269440651,
-0.013053689152002335,
-0.025092201307415962,
-0.009608153253793716,
0.02492407336831093,
-0.02269016206264496,
0.04931668937206268,
0.05039805546402931,
0.041167862713336945,
0.0021138230804353952,
0.03453092277050018,
0.01502646692097187,
-0.049334295094013214,
0.027695346623659134,
-0.000003485415618342813,
-0.03252415359020233,
-0.003453262383118272,
-0.026656515896320343,
-0.0404902845621109,
0.0027149508241564035,
-0.007085658609867096,
0.02879570983350277,
-0.00408785417675972,
-0.020588019862771034,
0.01613706722855568,
-0.006698519457131624,
0.025284133851528168,
-0.017269317060709,
0.0359860323369503,
0.035917576402425766,
0.0194865632802248,
-0.02654896304011345,
0.010318487882614136,
0.03082064911723137,
0.023085307329893112,
0.009322614409029484,
0.02370535023510456,
-0.04247357323765755,
0.01869848184287548,
-0.05505937710404396,
-0.03419122099876404,
0.02049216441810131,
0.0299052931368351,
-0.03989823907613754,
-0.020458431914448738,
0.02577499859035015,
0.03679444640874863,
-0.02533443085849285,
-0.013473792932927608,
0.0025956607423722744,
0.023725079372525215,
0.0072330934926867485,
0.012869473546743393,
-0.050133202224969864,
-0.010074394755065441,
0.023616688326001167,
0.013670225627720356,
0.023828858509659767,
0.02496718056499958,
-0.006887804716825485,
0.030244527384638786,
0.003934959881007671,
0.018796293064951897,
0.056343358010053635,
0.03472578525543213,
-0.0655185654759407,
-0.0003449300129432231,
0.0055427574552595615,
-0.03272455185651779,
-0.018510732799768448,
0.008768483996391296,
0.0385625883936882,
-0.04090357944369316,
0.019411686807870865,
0.02567371539771557,
0.037372786551713943,
-0.031713828444480896,
0.014679123647511005,
-0.012035040184855461,
0.04464118927717209,
-0.011886194348335266,
0.01923956908285618,
0.0026500204112380743,
0.03121408447623253
] |
How to generate text: using different decoding methods for language generation with Transformers | patrickvonplaten | March, 2020 | how-to-generate | guide, nlp | https://huggingface.co/blog/how-to-generate | # How to generate text: using different decoding methods for language generation with Transformers Note: Edited on July 2023 with up-to-date references and examples. | [
0.05630471929907799,
0.006690107751637697,
0.07678764313459396,
-0.04130718857049942,
0.0923580527305603,
0.03351301699876785,
0.036202747374773026,
0.07313425093889236,
-0.023860525339841843,
-0.03473580256104469,
-0.06619352847337723,
0.035219207406044006,
-0.021915603429079056,
0.055087123066186905,
-0.017340630292892456,
0.018333805724978447,
0.012228434905409813,
0.02632560394704342,
0.003982457332313061,
0.004325035028159618,
-0.03093389980494976,
-0.025360990315675735,
0.049417342990636826,
-0.005232317838817835,
0.07898405939340591,
-0.025782370939850807,
0.03393325209617615,
-0.02162114530801773,
-0.06315147876739502,
0.03878834843635559,
-0.08774857223033905,
-0.005477590952068567,
0.019234061241149902,
-0.0009267808636650443,
-0.08453889191150665,
0.014812445268034935,
-0.10941516607999802,
-0.003717758459970355,
0.0062407925724983215,
-0.024805476889014244,
-0.024937724694609642,
-0.017879143357276917,
0.03768908604979515,
0.007797264494001865,
-0.02514965645968914,
0.013984295539557934,
-0.2685895562171936,
0.08251608163118362,
-0.07897946238517761,
-0.008927002549171448,
-0.046536725014448166,
0.05886431038379669,
-0.01907414197921753,
-0.018331225961446762,
-0.011686180718243122,
0.026445286348462105,
-0.012285678647458553,
-0.1220417320728302,
0.027799390256404877,
-0.00018835953960660845,
0.05543716996908188,
-0.007076834794133902,
-0.010087182745337486,
0.03591104969382286,
0.04353427514433861,
-0.0224748607724905,
-0.03033258020877838,
0.03449242562055588,
-0.058085937052965164,
-0.004149570595473051,
-0.03366810455918312,
-0.03167266771197319,
-0.05191430449485779,
-0.046014994382858276,
0.020446160808205605,
-0.016320519149303436,
-0.01307276077568531,
0.07435029745101929,
0.02918928675353527,
0.08400258421897888,
0.013019015081226826,
-0.019963689148426056,
0.08841172605752945,
0.02251412719488144,
0.04327346384525299,
-0.014305689372122288,
0.071026511490345,
-0.014154499396681786,
-0.03918895125389099,
0.03057195246219635,
-0.016750242561101913,
-0.17301319539546967,
-0.04655102640390396,
0.020134933292865753,
0.03944826498627663,
-0.015671657398343086,
0.02744271792471409,
0.07558415085077286,
-0.02989671565592289,
0.001302220392972231,
-0.016194352880120277,
0.02203972637653351,
0.0583859421312809,
-0.03941480442881584,
-0.03879925608634949,
-0.041741155087947845,
-0.016227291896939278,
-0.06866070628166199,
-0.0076454090885818005,
0.022260012105107307,
0.007400177419185638,
-0.0027070820797234774,
0.097128726541996,
0.030063144862651825,
-0.045567587018013,
0.05125323683023453,
0.04336608946323395,
-0.0038465361576527357,
-0.07474233955144882,
0.022407041862607002,
-0.0005029352614656091,
0.03641493245959282,
0.03932727873325348,
0.03130386769771576,
-0.0003959817113354802,
0.03355113044381142,
0.02928493358194828,
0.0205022431910038,
-0.03954361379146576,
-0.022037336602807045,
0.05820925906300545,
-0.020002448931336403,
0.0794447511434555,
-0.009049700573086739,
0.022457778453826904,
-0.04189814627170563,
-0.00437899399548769,
-0.020023277029395103,
-0.015750057995319366,
-0.009257650934159756,
0.001918207504786551,
0.04304554685950279,
-0.004374191630631685,
0.07036033272743225,
-0.0012578613823279738,
-0.036715880036354065,
-0.09577716141939163,
0.04408535733819008,
-0.0007289726054295897,
0.022191565483808517,
0.018989533185958862,
0.03258661553263664,
-0.029703926295042038,
-0.06207894906401634,
0.030183220282197,
0.05716291442513466,
-0.006227473728358746,
0.022953903302550316,
-0.108405701816082,
-0.04682975262403488,
-0.012219767086207867,
0.034507159143686295,
0.027066510170698166,
0.02068902924656868,
0.018788853660225868,
-0.08378209173679352,
-0.015538730658590794,
0.06846387684345245,
0.02722637541592121,
-0.03432488068938255,
-0.02605823427438736,
-0.026863107457756996,
0.08251184970140457,
-0.040545325726270676,
-0.03762471303343773,
0.027316484600305557,
0.02806462161242962,
0.05534667521715164,
0.03053446114063263,
-0.041850171983242035,
-0.06730567663908005,
-0.0017954984214156866,
0.005930023267865181,
0.027791861444711685,
0.02575007639825344,
-0.03872169554233551,
0.021682938560843468,
-0.04233936965465546,
0.003390153404325247,
0.05435938015580177,
-0.07271169126033783,
-0.06355448067188263,
0.08721136301755905,
0.013746398501098156,
-0.0029618386179208755,
-0.06026396155357361,
-0.030810272321105003,
0.11892694979906082,
0.04052111506462097,
0.11183246970176697,
0.05612906441092491,
0.0013639876851812005,
0.05640112981200218,
-0.00434204051271081,
-0.01959896832704544,
0.026944776996970177,
0.06244484707713127,
0.02592957206070423,
0.019839750602841377,
-0.017713211476802826,
0.023423783481121063,
-0.08161941915750504,
0.02929229475557804,
-0.09882279485464096,
0.0036133478861302137,
-0.04441889375448227,
-0.010694948956370354,
0.0198570154607296,
0.007435152307152748,
-0.024325720965862274,
0.12063563615083694,
-0.011625719256699085,
-0.044818442314863205,
0.018640413880348206,
-0.01428578607738018,
0.10208853334188461,
0.04677955061197281,
0.026361770927906036,
0.04342593625187874,
-0.08894166350364685,
0.0002523827424738556,
-0.014905674383044243,
0.0154031440615654,
0.015679746866226196,
-0.022686773911118507,
-0.01699235290288925,
-0.011527330614626408,
0.024587448686361313,
0.028152406215667725,
-0.029248397797346115,
0.013096608221530914,
-0.003833720926195383,
-0.011529495939612389,
0.0321025587618351,
-0.03938756138086319,
0.022220376878976822,
0.07232917100191116,
0.00303462240844965,
-0.012666101567447186,
-0.004735940136015415,
-0.06988687813282013,
0.08442728966474533,
0.006058338563889265,
-0.05631106719374657,
0.050918787717819214,
0.008025671355426311,
0.013110535219311714,
-0.023414837196469307,
0.00011806097609223798,
0.01227293349802494,
-0.028968455269932747,
-0.05642925575375557,
0.015625163912773132,
-0.06392981112003326,
-0.011791129596531391,
-0.025902530178427696,
0.03650177642703056,
0.01727760024368763,
-0.011064467020332813,
0.02059806138277054,
-0.002322897082194686,
-0.01775854267179966,
0.018467724323272705,
-0.017535800114274025,
0.01240658201277256,
0.013281211256980896,
0.03338087350130081,
-0.016569938510656357,
-0.02321455255150795,
-0.0007398803136311471,
-0.040989119559526443,
-0.0162311140447855,
0.0332840196788311,
0.01316013466566801,
0.0014853611355647445,
-0.007680205162614584,
0.006839327048510313,
-0.01952420361340046,
-0.0039701866917312145,
0.006112589500844479,
-0.006873815320432186,
0.03753555566072464,
-0.02436850406229496,
-0.014227090403437614,
0.03701303154230118,
-0.0013358586002141237,
0.01023514848202467,
0.005512499716132879,
-0.029570428654551506,
0.025704998522996902,
0.018492041155695915,
0.0007111465092748404,
-0.028763072565197945,
-0.001637207460589707,
-0.06495766341686249,
0.024887194857001305,
0.00982283428311348,
0.021109087392687798,
-0.13271008431911469,
-0.06454754620790482,
0.016331056132912636,
0.002129623666405678,
-0.004254738334566355,
-0.004528956487774849,
0.04040692001581192,
-0.027979528531432152,
-0.017094701528549194,
-0.001320169074460864,
0.010342518799006939,
-0.0035353137645870447,
0.010380716994404793,
0.015691664069890976,
-0.023299038410186768,
-0.04056260734796524,
-0.0502130389213562,
0.006736258044838905,
-0.01011180691421032,
0.009113644249737263,
0.014005675911903381,
0.036660511046648026,
0.009397456422448158,
-0.0010316591942682862,
-0.01843504048883915,
0.03286611661314964,
0.030849209055304527,
0.016925889998674393,
0.015543476678431034,
-0.014905668795108795,
0.010221119038760662,
0.03560618311166763,
0.011156023479998112,
0.01661957986652851,
-0.035250239074230194,
0.0062508308328688145,
0.00930385384708643,
-0.016363389790058136,
0.014345998875796795,
0.03507227450609207,
0.01629924215376377,
-0.02097836323082447,
-0.004027435090392828,
0.002415441209450364,
-0.04784848913550377,
-0.016671380028128624,
-0.02008524164557457,
0.0035338641609996557,
0.019711529836058617,
-0.03062368370592594,
-0.04574890807271004,
-0.014185527339577675,
-0.002008505631238222,
0.0219707190990448,
0.006616982631385326,
0.006556738168001175,
-0.0022280768025666475,
0.027567008510231972,
0.053897567093372345,
-0.02283686399459839,
-0.027529247105121613,
0.018256481736898422,
0.004351998213678598,
-0.022520171478390694,
-0.06704708188772202,
0.09222280234098434,
-0.023809656500816345,
0.051981180906295776,
0.017069635912775993,
0.06155119836330414,
-0.01648288406431675,
0.011812953278422356,
0.008319317363202572,
0.019729116931557655,
-0.034180689603090286,
0.030109276995062828,
-0.059796351939439774,
-0.024567432701587677,
0.11698310822248459,
-0.00044109069858677685,
-0.02040187455713749,
-0.04883791133761406,
-0.03636215627193451,
-0.003014604328200221,
-0.005318950396031141,
0.0248260498046875,
0.02510414645075798,
0.010749971494078636,
-0.00002390599183854647,
0.006836871616542339,
0.03538741171360016,
-0.021847307682037354,
-0.003976154141128063,
0.0009948849910870194,
-0.0027720320504158735,
0.019080502912402153,
0.025505192577838898,
-0.037825826555490494,
0.025014089420437813,
-0.010278765112161636,
0.011372363194823265,
-0.07125627249479294,
-0.005698861554265022,
0.028851579874753952,
0.005536843556910753,
0.036422744393348694,
-0.03821638599038124,
-0.023493599146604538,
-0.022118667140603065,
0.028019282966852188,
0.01965722255408764,
-0.012998932041227818,
-0.02423323132097721,
-0.02599678933620453,
-0.005843753926455975,
-0.005931077990680933,
-0.0007556173368357122,
-0.0609535314142704,
-0.0449918694794178,
-0.011137498542666435,
-0.04204227030277252,
0.006236101035028696,
0.029064351692795753,
-0.009781456552445889,
0.001932433107867837,
-0.016521696001291275,
0.01780823804438114,
0.026771271601319313,
-0.005489936098456383,
0.009982412680983543,
-0.0031123487278819084,
-0.01329937856644392,
0.0412321537733078,
0.01870322786271572,
0.018934216350317,
0.03885766491293907,
-0.016926253214478493,
0.00881313905119896,
-0.026943344622850418,
-0.06430655717849731,
-0.03352344036102295,
-0.015605778433382511,
0.019518891349434853,
-0.01479499600827694,
0.032556552439928055,
-0.005680596921592951,
-0.00018705356342252344,
-0.022159049287438393,
0.012398959137499332,
-0.006810902152210474,
0.05860560014843941,
-0.014248267747461796,
-0.047245945781469345,
-0.01760595664381981,
0.0001435827580280602,
-0.003909154795110226,
-0.005124113522469997,
0.02802160568535328,
-0.026885202154517174,
0.06434869021177292,
0.007480280939489603,
0.0050943754613399506,
-0.03529074788093567,
0.021687693893909454,
-0.002314257901161909,
0.013488550670444965,
-0.005155614111572504,
-0.04671967774629593,
0.02369028329849243,
0.01067513320595026,
-0.0021672500297427177,
-0.012032746337354183,
0.021093107759952545,
-0.0010729717323556542,
-0.01029305811971426,
0.020892011001706123,
0.015488235279917717,
0.03477076068520546,
0.01457311399281025,
-0.003287975676357746,
0.005543888080865145,
-0.008450612425804138,
0.017184337601065636,
0.01773250289261341,
-0.007631351239979267,
0.014206001535058022,
0.0771297961473465,
0.026212867349386215,
0.015298466198146343,
-0.006111240014433861,
-0.01171277929097414,
-0.023719200864434242,
0.008955137804150581,
-0.024465318769216537,
-0.01143376063555479,
-0.017292022705078125,
0.013174569234251976,
-0.015135168097913265,
-0.0008511363994330168,
0.051220521330833435,
0.059930287301540375,
0.03135421872138977,
0.0026112052146345377,
-0.007928391918540001,
0.01512989029288292,
-0.007568873465061188,
-0.005460675340145826,
-0.017426226288080215,
0.0007098939386196434,
-0.04251982271671295,
0.0027641155757009983,
0.02663988247513771,
-0.04051341488957405,
-0.00950394943356514,
-0.02065766230225563,
-0.03813551366329193,
-0.01049241703003645,
-0.014184189960360527,
-0.015396316535770893,
0.059510815888643265,
0.005758415441960096,
-0.007626657374203205,
0.002414207672700286,
0.06103852763772011,
0.04493420571088791,
0.010472488589584827,
0.024741699919104576,
0.01511982548981905,
0.018148524686694145,
0.017952626571059227,
0.0606018528342247,
0.0019861161708831787,
-0.006832785438746214,
0.04821665212512016,
-0.0036848101299256086,
0.002577151171863079,
-0.05503726005554199,
0.0317288301885128,
0.0040701949037611485,
0.015851622447371483,
0.013389374129474163,
-0.035680338740348816,
-0.010738839395344257,
-0.0012901898007839918,
-0.054614998400211334,
0.024542132392525673,
0.04262242466211319,
-0.008486653678119183,
-0.01914917677640915,
0.027148324996232986,
0.01769796945154667,
-0.02606860175728798,
-0.018112991005182266,
0.007537281606346369,
-0.007198622450232506,
0.032384492456912994,
0.025632500648498535,
-0.017559969797730446,
-0.005627409089356661,
-0.000449902203399688,
0.029924973845481873,
-0.023022634908556938,
0.003780862782150507,
0.024843890219926834,
-0.02304585464298725,
0.027826951816678047,
-0.0027028864715248346,
-0.004980047699064016,
0.01350362878292799,
0.021361706778407097,
0.01495242677628994,
0.02357950620353222,
0.029083268716931343,
-0.0037445458583533764,
0.01986023411154747,
-0.04202953726053238,
0.0016701258718967438,
0.05881188064813614,
0.006167471408843994,
0.05872420221567154,
0.030137035995721817,
0.03347497805953026,
0.014385576359927654,
-0.00963518861681223,
-0.024638354778289795,
0.024757085368037224,
0.021591883152723312,
0.010265757329761982,
0.012958318926393986,
0.006922922562807798,
-0.009733512997627258,
-0.035534292459487915,
-0.04389910399913788,
-0.016734205186367035,
-0.05308492109179497,
0.0427825003862381,
0.02269625850021839,
-0.009262708947062492,
0.026146698743104935,
-0.03614933043718338,
0.06483215093612671,
0.015785494819283485,
0.007707074284553528,
-0.0276386309415102,
0.02220887318253517,
0.04586634039878845,
-0.005335912574082613,
0.026082459837198257,
0.018330633640289307,
0.010572396218776703,
0.026394540444016457,
0.06928947567939758,
-0.006688814144581556,
0.0057417964562773705,
0.019437527284026146,
-0.019218457862734795,
0.03545422852039337,
-0.002362815197557211,
-0.014639080502092838,
-0.024220235645771027,
0.04678163677453995,
-0.015287644229829311,
-0.011463308706879616,
-0.01116281095892191,
-0.030530447140336037,
-0.011708620004355907,
0.021049033850431442,
-0.009521178901195526,
-0.028167327865958214,
-0.038927577435970306,
-0.02053440734744072,
0.04366641491651535,
-0.003914866596460342,
-0.0182599276304245,
0.0002315987803740427,
0.014571440406143665,
0.022197484970092773,
0.046729229390621185,
-0.00972718745470047,
-0.02117132395505905,
-0.04081443324685097,
-0.02147904969751835,
-0.02821122109889984,
-0.017210986465215683,
0.009649715386331081,
-0.02381546050310135,
-0.00007245341839734465,
0.001141185057349503,
-0.03092365339398384,
0.035566966980695724,
0.007588464301079512,
0.024289922788739204,
-0.030404139310121536,
0.032296132296323776,
-0.0333220511674881,
-0.0026007206179201603,
-0.021377593278884888,
-0.031207870692014694,
0.004981048870831728,
-0.028389453887939453,
0.00856493879109621,
0.025227602571249008,
0.04857279732823372,
-0.03519594669342041,
-0.02782745100557804,
-0.004695425741374493,
-0.033291108906269073,
-0.00969264842569828,
0.0192059725522995,
0.01716461032629013,
-0.008069789037108421,
0.008234236389398575,
-0.016818217933177948,
0.021417060866951942,
-0.013786343857645988,
0.02559506706893444,
0.023616624996066093,
-0.016760796308517456,
-0.04531952738761902,
-0.04761167988181114,
0.06753817200660706,
-0.014122181572020054,
0.00833291094750166,
0.027074700221419334,
0.03227108716964722,
-0.019712939858436584,
-0.03567007929086685,
0.016045667231082916,
-0.03147653490304947,
0.011918473057448864,
-0.029356209561228752,
-0.0664626806974411,
-0.016200309619307518,
-0.011952496133744717,
-0.017785245552659035,
0.018526969477534294,
-0.04247385263442993,
-0.004065460991114378,
-0.02465592510998249,
-0.01812840811908245,
-0.011715949513018131,
0.00921944435685873,
0.07095061987638474,
-0.002202935516834259,
0.06922460347414017,
-0.01515178382396698,
0.004611501470208168,
-0.022178728133440018,
0.00342715997248888,
0.029020186513662338,
0.021227670833468437,
0.034042395651340485,
-0.004177138675004244,
-0.00021189279505051672,
0.003665502183139324,
-0.0592229962348938,
-0.03906696289777756,
0.018111683428287506,
0.007260605692863464,
-0.020935682579874992,
-0.027520813047885895,
-0.0009429678320884705,
0.013787743635475636,
0.006748219486325979,
0.014509599655866623,
0.019047552719712257,
0.00016805878840386868,
0.017107678577303886,
0.002099391771480441,
-0.06474731862545013,
0.007336672395467758,
-0.01040006335824728,
0.049252867698669434,
0.031609851866960526,
0.03846895322203636,
0.021827416494488716,
0.0014063830021768808,
-0.03770206496119499,
0.023707590997219086,
0.0313938669860363,
-0.017836887389421463,
-0.015927106142044067,
0.029552621766924858,
-0.006831020582467318,
-0.021414387971162796,
-0.032722149044275284,
0.06336965411901474,
0.023187706246972084,
0.010269763879477978,
-0.025941956788301468,
0.0014121560379862785,
-0.03596235439181328,
-0.02642683871090412,
0.03970126435160637,
0.008037381805479527,
0.047232046723365784,
0.014789029024541378,
0.001597932423464954,
0.0044758617877960205,
-0.0023654825054109097
] |
How to generate text: using different decoding methods for language generation with Transformers | patrickvonplaten | March, 2020 | how-to-generate | guide, nlp | https://huggingface.co/blog/how-to-generate | Top-p (nucleus) sampling Instead of sampling only from the most likely K words, in Top-p sampling chooses from the smallest possible set of words whose cumulative probability exceeds the probability p. The probability mass is then redistributed among this set of words. This way, the size of the set of words (a.k.a the number of words in the set) can dynamically increase and decrease according to the next word's probability distribution. Ok, that was very wordy, let's visualize. Having set \(p=0.92\), Top-p sampling picks the minimum number of words to exceed together \(p=92\%\) of the probability mass, defined as \(V_{\text{top-p}}\). In the first example, this included the 9 most likely words, whereas it only has to pick the top 3 words in the second example to exceed 92%. Quite simple actually! It can be seen that it keeps a wide range of words where the next word is arguably less predictable, e.g. \(P(w | \text{"The''})\), and only a few words when the next word seems more predictable, e.g. \(P(w | \text{"The"}, \text{"car"})\). Alright, time to check it out in transformers! We activate Top-p sampling by setting 0 < top_p < 1: python # set seed to reproduce results. Feel free to change the seed though to get different results set_seed(42) # set top_k to 50 sample_output = model.generate( **model_inputs, max_new_tokens=40, do_sample=True, top_p=0.92, top_k=0 ) print("Output:\n" + 100 * '-') print(tokenizer.decode(sample_output[0], skip_special_tokens=True)) Output: ---------------------------------------------------------------------------------------------------- I enjoy walking with my cute dog for the rest of the day, but this had me staying in an unusual room and not going on nights out with friends (which will always be my yearning for such a spacious screen on my desk Great, that sounds like it could have been written by a human. Well, maybe not quite yet. While in theory, Top-p seems more elegant than Top-K, both methods work well in practice. Top-p can also be used in combination with Top-K, which can avoid very low ranked words while allowing for some dynamic selection. Finally, to get multiple independently sampled outputs, we can again set the parameter num_return_sequences > 1: python # set seed to reproduce results. Feel free to change the seed though to get different results set_seed(42) # set top_k = 50 and set top_p = 0.95 and num_return_sequences = 3 sample_outputs = model.generate( **model_inputs, max_new_tokens=40, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=3, ) print("Output:\n" + 100 * '-') for i, sample_output in enumerate(sample_outputs): print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True))) Output: ---------------------------------------------------------------------------------------------------- 0: I enjoy walking with my cute dog for the rest of the day, but this time it was hard for me to figure out what to do with it. When I finally looked at this for a few moments, I immediately thought, " 1: I enjoy walking with my cute dog. The only time I felt like walking was when I was working, so it was awesome for me. I didn't want to walk for days. I am really curious how she can walk with me 2: I enjoy walking with my cute dog (Chama-I-I-I-I-I), and I really enjoy running. I play in a little game I play with my brother in which I take pictures of our houses. Cool, now you should have all the tools to let your model write your stories with transformers! | [
0.04196736961603165,
-0.003814463969320059,
-0.028402946889400482,
-0.014757812023162842,
0.07495160400867462,
0.00947350449860096,
0.01858614943921566,
0.04953596368432045,
-0.06694609671831131,
0.0058721983805298805,
-0.1353730410337448,
-0.043741174042224884,
0.013551619835197926,
0.03852645307779312,
0.03955131024122238,
0.019372977316379547,
0.05547033250331879,
0.01323777437210083,
0.07445633411407471,
-0.08017171174287796,
0.027652200311422348,
-0.019435282796621323,
0.074733667075634,
-0.062197402119636536,
0.07273409515619278,
-0.008055664598941803,
-0.020888552069664,
-0.017983991652727127,
-0.051476068794727325,
-0.0022191759198904037,
-0.1875266432762146,
-0.017346540465950966,
0.034484729170799255,
-0.01151925977319479,
0.0382731631398201,
-0.020358672365546227,
-0.09759290516376495,
0.07715792953968048,
0.06824924051761627,
-0.04863004758954048,
-0.04114088416099548,
-0.0029431439470499754,
-0.07071008533239365,
0.012708261609077454,
-0.04603240266442299,
-0.0726347342133522,
-0.05958988144993782,
0.10390231013298035,
-0.10264471918344498,
-0.067760169506073,
-0.058277640491724014,
0.0026121214032173157,
-0.0811934843659401,
0.04231179878115654,
-0.015634484589099884,
-0.0529930554330349,
-0.004653812386095524,
-0.0762459859251976,
0.03830351680517197,
-0.016222964972257614,
0.04227308928966522,
-0.022966166958212852,
0.05365907400846481,
0.08297502994537354,
-0.04049554839730263,
-0.015043067745864391,
-0.009518090635538101,
0.06926866620779037,
-0.05424918979406357,
-0.07104717195034027,
-0.015677370131015778,
-0.02987147867679596,
-0.05729997158050537,
-0.0070454394444823265,
-0.015794778242707253,
-0.01089502964168787,
0.006486954633146524,
0.0471087321639061,
-0.015935802832245827,
0.033685121685266495,
-0.021839717403054237,
0.0036301210056990385,
0.03009290248155594,
0.047121189534664154,
0.04044875502586365,
0.007307503372430801,
0.019931552931666374,
-0.0683487132191658,
-0.06115485355257988,
0.035827383399009705,
0.023230616003274918,
-0.09300857037305832,
0.035444144159555435,
0.006260256748646498,
0.012594422325491905,
-0.02993432804942131,
-0.035456616431474686,
0.11180873215198517,
0.0002276580926263705,
-0.005825061351060867,
0.021136537194252014,
-0.06322628259658813,
0.013701379299163818,
-0.050653617829084396,
-0.07678473740816116,
0.043886687606573105,
-0.026786113157868385,
-0.035841576755046844,
-0.0243015605956316,
0.041235119104385376,
-0.015839358791708946,
-0.058598898351192474,
0.00565677834674716,
0.019736170768737793,
-0.022732850164175034,
-0.011822381056845188,
-0.00469695869833231,
0.030858146026730537,
-0.018632570281624794,
-0.03748832643032074,
-0.021748043596744537,
0.045766688883304596,
0.09546469151973724,
-0.0257559884339571,
-0.052349530160427094,
0.0026789912953972816,
0.005656567867845297,
0.02530387043952942,
0.025097636505961418,
-0.02501184307038784,
0.04305123910307884,
0.007777901366353035,
-0.007524511776864529,
-0.008924726396799088,
0.034874577075242996,
0.0003370986378286034,
0.04319366067647934,
-0.030020637437701225,
-0.02455483190715313,
0.03135943412780762,
-0.003951497375965118,
0.011237475089728832,
-0.012064855545759201,
0.008106277324259281,
-0.03800863027572632,
0.008274907246232033,
-0.0818151906132698,
0.05495471879839897,
0.00008147928747348487,
0.034229911863803864,
-0.010613998398184776,
0.09807180613279343,
0.00861671194434166,
-0.03670412674546242,
0.05600683018565178,
0.025039449334144592,
-0.012056490406394005,
-0.024926496669650078,
-0.10272578150033951,
-0.04391905292868614,
-0.01631092093884945,
0.017160605639219284,
0.010916470550000668,
0.012768669053912163,
0.0510319247841835,
-0.021750178188085556,
0.044444747269153595,
0.045640405267477036,
-0.02869301475584507,
0.033985596150159836,
-0.017274722456932068,
-0.032111458480358124,
0.04206596314907074,
-0.056808218359947205,
-0.012807782739400864,
0.04462835565209389,
0.006877976469695568,
0.025685980916023254,
-0.020803527906537056,
0.012491485103964806,
-0.04073459282517433,
0.029856303706765175,
0.0330304279923439,
0.006266938988119364,
0.038176603615283966,
-0.11904209852218628,
0.054152246564626694,
0.03472774848341942,
0.010133649222552776,
0.017595132812857628,
-0.031959351152181625,
-0.07624605298042297,
0.10938157141208649,
0.01489411760121584,
0.019771860912442207,
-0.07069356739521027,
-0.00639172550290823,
0.023496752604842186,
0.08211108297109604,
0.0327470526099205,
0.0423644557595253,
0.05078767240047455,
0.03271948918700218,
-0.051359765231609344,
-0.02692149393260479,
-0.05940208211541176,
-0.05874557048082352,
-0.03778944909572601,
0.05881904065608978,
0.04262764751911163,
-0.06966297328472137,
-0.03122946247458458,
-0.04640376195311546,
-0.1507992446422577,
-0.035265251994132996,
0.0085404422134161,
-0.05033446475863457,
-0.001935379346832633,
-0.007757204584777355,
0.038279272615909576,
0.0725351870059967,
-0.04915700480341911,
0.03485135734081268,
-0.001525349565781653,
-0.021465551108121872,
0.04838162660598755,
-0.004075102973729372,
-0.014385784044861794,
0.02882109023630619,
-0.03272810950875282,
-0.036996904760599136,
-0.015664799138903618,
0.01830229163169861,
0.04006200283765793,
0.02395407110452652,
-0.043852850794792175,
-0.011884707026183605,
0.021755017340183258,
-0.007687245029956102,
-0.05147983878850937,
0.021412530913949013,
0.016064707189798355,
-0.0954391211271286,
0.06912596523761749,
0.01666843891143799,
0.029278535395860672,
0.1302805244922638,
-0.08787109702825546,
-0.00820931326597929,
-0.02502366714179516,
-0.07289063185453415,
0.023274986073374748,
0.0002725004160311073,
-0.04437260702252388,
0.014673229306936264,
0.08391626179218292,
0.009412652812898159,
-0.023018108680844307,
-0.023866666480898857,
-0.05397823452949524,
-0.022446388378739357,
-0.008590822108089924,
-0.009463117457926273,
-0.022966977208852768,
-0.026842692866921425,
-0.009844208136200905,
0.028910133987665176,
0.019815661013126373,
0.013145951554179192,
0.0022733143996447325,
-0.010652650147676468,
-0.012044633738696575,
0.013869844377040863,
-0.01982520893216133,
0.004763355478644371,
-0.026998737826943398,
0.023782499134540558,
-0.03867482393980026,
-0.043572310358285904,
-0.03061738982796669,
-0.018262190744280815,
0.017179682850837708,
0.04218146577477455,
0.03174686059355736,
0.03915286809206009,
0.002492188476026058,
0.0565636120736599,
0.006247269455343485,
-0.055202409625053406,
0.006926571484655142,
-0.04063721373677254,
-0.014017267152667046,
-0.018450306728482246,
0.002759585389867425,
0.007015029899775982,
-0.0034033560659736395,
-0.009046852588653564,
0.01391552947461605,
-0.009687592275440693,
-0.008962276391685009,
-0.04125016927719116,
0.023828892037272453,
-0.03835410997271538,
0.0014880065573379397,
-0.03536573052406311,
-0.010538130067288876,
-0.0003696397179737687,
0.03970782831311226,
-0.08864972740411758,
-0.0037292102351784706,
0.031290583312511444,
-0.01396919321268797,
0.014373674988746643,
-0.0351545512676239,
0.021935710683465004,
-0.0046426085755229,
-0.033361006528139114,
0.012966352514922619,
0.04567788541316986,
0.006401851773262024,
0.0016788621433079243,
0.0439520999789238,
0.012121659703552723,
-0.019828811287879944,
0.017133528366684914,
0.005452210083603859,
0.031092984601855278,
0.012452667579054832,
0.04361715912818909,
0.020434604957699776,
-0.004476931877434254,
0.012476769275963306,
-0.05249179154634476,
0.022595426067709923,
0.04675808921456337,
0.034796781837940216,
0.027368847280740738,
-0.017180604860186577,
-0.02972768060863018,
-0.002032047836109996,
0.010729314759373665,
0.015934821218252182,
-0.0353936068713665,
-0.015118042007088661,
0.03191850334405899,
0.01562824845314026,
-0.020123915746808052,
0.03245212137699127,
-0.033034246414899826,
-0.011697129346430302,
0.017660537734627724,
-0.024413932114839554,
0.026467865332961082,
0.015727879479527473,
-0.03387131914496422,
-0.004147651139646769,
-0.01705615036189556,
-0.038427773863077164,
0.00278534390963614,
-0.04404653608798981,
0.01365143433213234,
0.009711792692542076,
0.019910132512450218,
0.0121074877679348,
0.0036493942607194185,
0.0403067022562027,
0.02703278511762619,
-0.019450435414910316,
-0.010041693225502968,
0.015891432762145996,
0.014223551377654076,
-0.028336582705378532,
0.01172377448529005,
0.06020067259669304,
0.029267657548189163,
0.06179621443152428,
0.0011614570394158363,
0.03769709914922714,
0.011343041434884071,
0.010286311618983746,
0.01520287524908781,
0.0033462722785770893,
-0.046591345220804214,
0.04386615380644798,
-0.04078494384884834,
-0.03485610708594322,
0.028548328205943108,
0.03291958197951317,
-0.02869492955505848,
0.021470915526151657,
-0.040232498198747635,
0.007472125813364983,
-0.03489680960774422,
-0.02073127217590809,
-0.013338862918317318,
-0.035242632031440735,
-0.001294866087846458,
-0.018092038109898567,
-0.04227537289261818,
-0.003774588694795966,
-0.040877390652894974,
0.021413985639810562,
-0.05780111625790596,
0.033374808728694916,
-0.02811749279499054,
-0.016379699110984802,
-0.012464623898267746,
0.0015094145201146603,
0.021379485726356506,
-0.05317068099975586,
0.0044178469106554985,
-0.033703990280628204,
-0.04733409732580185,
0.01619342900812626,
-0.06979473680257797,
0.02740045264363289,
0.032178543508052826,
0.02172856405377388,
-0.005426220595836639,
0.019290121272206306,
-0.00506694708019495,
0.007209588773548603,
0.03172065317630768,
0.045580651611089706,
0.0076382700353860855,
-0.011034402996301651,
-0.029721461236476898,
-0.008696619421243668,
-0.021038563922047615,
0.021530330181121826,
0.004916734993457794,
0.00924351904541254,
0.016276204958558083,
-0.026232078671455383,
0.03459066525101662,
0.018414953723549843,
-0.008521602489054203,
-0.034816619008779526,
-0.011205672286450863,
-0.005507387686520815,
0.009335382841527462,
0.01928562857210636,
0.025068743154406548,
0.018564373254776,
0.006564108654856682,
-0.016854997724294662,
0.02605186030268669,
-0.052553363144397736,
0.014496679417788982,
0.03861541673541069,
0.062102481722831726,
-0.0008634441182948649,
0.030345087870955467,
0.013491541147232056,
-0.00783436931669712,
0.011948120780289173,
0.00782011728733778,
-0.013741256669163704,
0.050948817282915115,
-0.0004644075524993241,
-0.010984379798173904,
-0.03591807186603546,
0.03584153950214386,
-0.008393016643822193,
-0.05464527755975723,
-0.00043801276478916407,
0.028935400769114494,
0.05382026731967926,
0.017931634560227394,
-0.0406721867620945,
0.012102884240448475,
0.001592426560819149,
0.005266587715595961,
-0.0002948941837530583,
0.001716196653433144,
-0.029955124482512474,
-0.004925619810819626,
0.0038551785983145237,
0.0353793166577816,
0.017795303836464882,
-0.03937140852212906,
-0.003671759506687522,
-0.008739134296774864,
0.032231081277132034,
0.0006127230590209365,
0.006427303422242403,
-0.03969886526465416,
0.024721575900912285,
-0.05420887470245361,
-0.02641831710934639,
0.011174858547747135,
0.03154992684721947,
0.011194213293492794,
0.05488211289048195,
0.04900322109460831,
0.06407590955495834,
-0.012290692888200283,
0.027008645236492157,
-0.0067053590901196,
-0.04817989468574524,
-0.007991802878677845,
-0.051109906286001205,
0.018610753118991852,
-0.026254018768668175,
-0.019628791138529778,
0.03238857537508011,
0.00973819475620985,
0.015301953069865704,
0.03586290031671524,
0.0190095417201519,
0.05999009311199188,
-0.014682812616229057,
0.002462151227518916,
0.031654588878154755,
-0.023585667833685875,
-0.009678924456238747,
0.008340155705809593,
0.008365531452000141,
0.013232569210231304,
-0.010553260333836079,
-0.008153557777404785,
-0.008013222366571426,
-0.010320085100829601,
-0.022315099835395813,
-0.01819385401904583,
0.009736038744449615,
0.009945905767381191,
0.05418512597680092,
0.0228688083589077,
0.016203461214900017,
-0.03206271305680275,
-0.013992320746183395,
0.01811608485877514,
-0.0009830555645748973,
0.020788436755537987,
-0.008094258606433868,
0.003779418533667922,
0.03309136629104614,
0.05898040533065796,
-0.0328463651239872,
-0.016001099720597267,
-0.02771494910120964,
0.01026347279548645,
-0.05652756243944168,
0.02144993655383587,
0.05371423065662384,
0.015153368934988976,
0.00018612657731864601,
-0.00232178857550025,
-0.014898340217769146,
0.00004025276575703174,
0.020463746041059494,
-0.04106521978974342,
0.00994758028537035,
0.04600392282009125,
0.007871870882809162,
0.002448381157591939,
0.01522610429674387,
-0.007023574318736792,
0.014691322110593319,
-0.0578327439725399,
0.007755588740110397,
-0.018759621307253838,
0.016054049134254456,
0.032667022198438644,
0.0005576805560849607,
0.004561102949082851,
0.02055443450808525,
0.024014314636588097,
-0.03975960984826088,
0.024902401491999626,
0.061655785888433456,
-0.058507226407527924,
0.03412695601582527,
-0.008633341640233994,
-0.054718855768442154,
0.03302263841032982,
-0.003055473556742072,
0.04413985460996628,
0.00850957166403532,
-0.061908528208732605,
0.051049694418907166,
0.02171415463089943,
0.0321849063038826,
0.006064306478947401,
0.05315261706709862,
0.02577180787920952,
0.04122420772910118,
0.002749741543084383,
0.045503806322813034,
0.021825244650244713,
0.022532464936375618,
-0.0073709976859390736,
0.06840246915817261,
0.01584680564701557,
0.01745358482003212,
0.03439328819513321,
-0.013268964365124702,
0.007407195866107941,
0.029077643528580666,
-0.03555133193731308,
0.0049217441119253635,
-0.0070678130723536015,
-0.006574446335434914,
0.050521090626716614,
-0.010389218106865883,
0.020965581759810448,
-0.03804593160748482,
0.04226621612906456,
0.0225727166980505,
0.023828886449337006,
-0.005610629450529814,
0.008999650366604328,
-0.019415006041526794,
-0.0007883386570028961,
0.0033178413286805153,
0.03587063029408455,
0.011630058288574219,
-0.0072525679133832455,
0.06877397000789642,
0.017697036266326904,
0.06509114801883698,
0.05385684594511986,
0.016977645456790924,
-0.005894120782613754,
-0.033267538994550705,
0.0041292579844594,
-0.027964312583208084,
0.02936067059636116,
-0.002772141946479678,
0.00036185490898787975,
-0.01748216710984707,
-0.05047784373164177,
0.034730006009340286,
-0.026227587834000587,
-0.016115600243210793,
0.03356834873557091,
-0.024923207238316536,
0.009837298654019833,
0.05530540272593498,
0.017110362648963928,
-0.03603995591402054,
-0.027995985001325607,
0.03614497184753418,
-0.014261995442211628,
0.01674572005867958,
-0.05246654897928238,
-0.01869991049170494,
-0.01670607551932335,
0.004125189036130905,
0.0060366857796907425,
-0.03463263437151909,
0.010201488621532917,
-0.04997048154473305,
-0.023863021284341812,
0.05629156902432442,
-0.0284907016903162,
0.026032624766230583,
0.028997080400586128,
0.0111030088737607,
-0.022938445210456848,
-0.001837126212194562,
0.019434072077274323,
-0.0011340532219037414,
0.023320699110627174,
0.008907686918973923,
-0.020850179716944695,
-0.002735504414886236,
0.067287877202034,
0.008400899358093739,
0.02822341024875641,
-0.010366585105657578,
-0.016765428707003593,
0.024780480191111565,
-0.019429510459303856,
-0.013851040974259377,
0.02935221791267395,
0.020392844453454018,
-0.015671059489250183,
0.017749764025211334,
-0.02654173970222473,
-0.004177791066467762,
-0.023957915604114532,
-0.029653295874595642,
0.04010404646396637,
0.00441059609875083,
-0.029711123555898666,
-0.006213669665157795,
0.03198685869574547,
-0.020538723096251488,
0.004450071137398481,
0.06940053403377533,
0.014726398512721062,
0.03673713654279709,
0.01717320829629898,
-0.011557355523109436,
-0.059071481227874756,
0.029445353895425797,
-0.01125218253582716,
-0.030172176659107208,
-0.022417474538087845,
0.0040675378404557705,
-0.052551936358213425,
0.00894828699529171,
0.009990755468606949,
0.028823792934417725,
-0.031143372878432274,
0.0023550360929220915,
-0.026527825742959976,
0.004922081716358662,
-0.005074146203696728,
0.04986085370182991,
0.045891571789979935,
0.04114497825503349,
0.015590013936161995,
-0.04217830300331116,
-0.013501633889973164,
0.033010441809892654,
0.04778742790222168,
-0.005877500865608454,
0.03086693212389946,
0.00394940422847867,
-0.0039055501110851765,
-0.033151235431432724,
-0.06018506735563278,
0.00741194561123848,
0.017772438004612923,
-0.027909541502594948,
-0.014366013929247856,
0.02714473195374012,
0.06516963988542557,
-0.010614128783345222,
0.009951489046216011,
-0.028281614184379578,
0.016727304086089134,
0.00637105293571949,
0.004746377468109131,
-0.05031722038984299,
-0.013679134659469128,
0.030492322519421577,
0.014164741151034832,
0.0341835618019104,
-0.008369035087525845,
0.01768086850643158,
0.04027383774518967,
-0.009321441873908043,
-0.04402894154191017,
0.007950350642204285,
0.019901087507605553,
-0.04716147109866142,
0.04898548498749733,
0.01826181262731552,
-0.02710236981511116,
-0.011224308982491493,
0.01673000119626522,
0.03265542536973953,
-0.011425466276705265,
0.030239222571253777,
0.026450661942362785,
0.025407699868083,
0.015017381869256496,
0.0030107656493782997,
-0.011036907322704792,
0.03633597120642662,
0.019722143188118935,
0.04779308661818504,
-0.02500673569738865,
-0.009352533146739006
] |
How to generate text: using different decoding methods for language generation with Transformers | patrickvonplaten | March, 2020 | how-to-generate | guide, nlp | https://huggingface.co/blog/how-to-generate | Introduction In recent years, there has been an increasing interest in open-ended language generation thanks to the rise of large transformer-based language models trained on millions of webpages, including OpenAI's ChatGPT and Meta's LLaMA. The results on conditioned open-ended language generation are impressive, having shown to generalize to new tasks, handle code, or take non-text data as input. Besides the improved transformer architecture and massive unsupervised training data, better decoding methods have also played an important role. This blog post gives a brief overview of different decoding strategies and more importantly shows how you can implement them with very little effort using the popular transformers library! All of the following functionalities can be used for auto-regressive language generation (here a refresher). In short, auto-regressive language generation is based on the assumption that the probability distribution of a word sequence can be decomposed into the product of conditional next word distributions: $$ P(w_{1:T} | W_0 ) = \prod_{t=1}^T P(w_{t} | w_{1: t-1}, W_0) \text{ ,with } w_{1: 0} = \emptyset, $$ and \(W_0\) being the initial context word sequence. The length \(T\) of the word sequence is usually determined on-the-fly and corresponds to the timestep \(t=T\) the EOS token is generated from \(P(w_{t} | w_{1: t-1}, W_{0})\). We will give a tour of the currently most prominent decoding methods, mainly Greedy search, Beam search, and Sampling. Let's quickly install transformers and load the model. We will use GPT2 in PyTorch for demonstration, but the API is 1-to-1 the same for TensorFlow and JAX. python !pip install -q transformers python from transformers import AutoModelForCausalLM, AutoTokenizer import torch torch_device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained("gpt2") # add the EOS token as PAD token to avoid warnings model = AutoModelForCausalLM.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id).to(torch_device) | [
0.026886381208896637,
0.002136462600901723,
0.05283287540078163,
-0.01396355964243412,
0.038424402475357056,
0.0575445182621479,
0.07299195230007172,
0.06291019171476364,
-0.00002802674862323329,
-0.017975984141230583,
-0.09790188074111938,
0.053021661937236786,
0.011502072215080261,
0.07629908621311188,
-0.004634106531739235,
-0.0055128480307757854,
0.027341898530721664,
0.0051881843246519566,
-0.027340514585375786,
0.020082341507077217,
0.03237055242061615,
0.011061253026127815,
0.02743665501475334,
-0.001913562067784369,
0.012862569652497768,
-0.05970991775393486,
0.02104230783879757,
0.001398532185703516,
-0.04379964619874954,
-0.009451353922486305,
-0.1193881630897522,
-0.008331711404025555,
-0.019625235348939896,
-0.040688879787921906,
0.0044815754517912865,
0.01613602787256241,
-0.13712665438652039,
0.018228083848953247,
0.058523647487163544,
-0.023782379925251007,
-0.008904690854251385,
0.008866248652338982,
-0.03766234591603279,
0.022234942764043808,
-0.020179472863674164,
0.0055214641615748405,
-0.1719161719083786,
0.10116613656282425,
-0.07560812681913376,
-0.07282263040542603,
-0.08176060020923615,
0.03893830627202988,
-0.05758913233876228,
0.0017386805266141891,
-0.02131287194788456,
0.045220449566841125,
-0.04429040476679802,
-0.12862516939640045,
0.0027851909399032593,
-0.026372404769062996,
0.009581489488482475,
0.025042930617928505,
0.0026211554650217295,
0.02040441893041134,
0.07188503444194794,
-0.0518157035112381,
-0.07567142695188522,
0.04920932650566101,
-0.05912938714027405,
-0.05180417001247406,
-0.01808435283601284,
-0.003925221972167492,
-0.0649404227733612,
-0.03840215131640434,
0.022578928619623184,
-0.01293174922466278,
-0.014179504476487637,
0.03757501021027565,
0.03301842510700226,
0.04000849276781082,
0.005684956442564726,
0.09911313652992249,
0.058631524443626404,
0.013221587054431438,
0.0564679354429245,
0.015090771950781345,
0.03524764999747276,
-0.04134092479944229,
-0.02097814902663231,
0.021783199161291122,
-0.021599063649773598,
-0.13348691165447235,
0.004015585873275995,
0.0056699602864682674,
0.06030219793319702,
-0.010135727934539318,
-0.002620816696435213,
0.05906054005026817,
-0.05871171876788139,
-0.009063946083188057,
0.03357144817709923,
-0.0323675200343132,
0.01460140198469162,
-0.046822287142276764,
-0.02815650776028633,
0.030768288299441338,
-0.011716656386852264,
-0.028046613559126854,
0.0016075627645477653,
-0.010963188484311104,
0.020071692764759064,
0.002038482343778014,
0.031266503036022186,
0.07901640981435776,
-0.09439176321029663,
-0.009928099811077118,
0.0015861665597185493,
0.014478846453130245,
-0.015870697796344757,
-0.012680962681770325,
-0.055566150695085526,
0.05414295569062233,
0.041160646826028824,
-0.044554006308317184,
-0.01321866549551487,
0.06440635770559311,
0.025533411651849747,
0.051936399191617966,
0.00563611788675189,
-0.02217298559844494,
0.06929438561201096,
-0.03160720318555832,
0.042142484337091446,
-0.00314126955345273,
0.011517898179590702,
0.01107562892138958,
0.0635630413889885,
-0.05058509111404419,
-0.009009269066154957,
-0.01020285114645958,
-0.01709488220512867,
0.04435727000236511,
-0.04216403886675835,
0.02014830894768238,
0.011603578925132751,
0.006681020371615887,
-0.09644243866205215,
0.05648025870323181,
-0.023715699091553688,
0.04078919440507889,
-0.053087133914232254,
0.0573853999376297,
-0.027637969702482224,
-0.035656366497278214,
0.034606464207172394,
0.059750597923994064,
-0.02773621492087841,
0.02744985558092594,
-0.0978461429476738,
-0.025286775082349777,
-0.01676083542406559,
0.04188811033964157,
0.02316957525908947,
-0.0026723798364400864,
0.033202238380908966,
-0.041191063821315765,
0.020529791712760925,
0.052157923579216,
0.010668301023542881,
0.05762319266796112,
-0.005073093809187412,
-0.00505371019244194,
0.0908110961318016,
-0.010453722439706326,
0.022078482434153557,
0.000120032302220352,
0.026403501629829407,
0.024389423429965973,
0.006528113503009081,
-0.008413782343268394,
-0.0749664455652237,
0.014098068699240685,
0.04046517238020897,
0.01413741521537304,
0.05540125444531441,
-0.10486217588186264,
0.0007970881997607648,
-0.007971690036356449,
0.0014457895886152983,
0.044689375907182693,
-0.037502557039260864,
-0.00022943496878724545,
0.05633186548948288,
-0.01156222727149725,
0.010053970851004124,
-0.05588582158088684,
-0.03361017256975174,
0.09323998540639877,
0.0702177882194519,
0.08689329028129578,
0.06006177142262459,
0.007269447669386864,
0.028959179297089577,
-0.027643799781799316,
-0.03187829256057739,
-0.05464603006839752,
-0.01367720402777195,
-0.0013990612933412194,
0.0005149547359906137,
-0.007796945981681347,
-0.0057584019377827644,
-0.11356272548437119,
-0.0025084165390580893,
-0.11474555730819702,
-0.004474141635000706,
-0.00778539665043354,
-0.01115468516945839,
-0.0030374207999557257,
-0.0018798570381477475,
0.022345302626490593,
0.14529794454574585,
-0.13649879395961761,
-0.0004498859343584627,
-0.05234577879309654,
-0.0009623855585232377,
0.08901496231555939,
0.03500259667634964,
0.05251823365688324,
0.02902253530919552,
-0.06776849925518036,
-0.02770623378455639,
-0.10409945994615555,
0.034040894359350204,
0.021474679931998253,
0.01193465106189251,
-0.07976679503917694,
0.01622195914387703,
-0.027249937877058983,
0.026399526745080948,
-0.00335066020488739,
0.014867948368191719,
0.02853420563042164,
-0.04912896826863289,
0.027400877326726913,
0.0075157093815505505,
-0.04070241004228592,
0.05193762108683586,
0.0029431672301143408,
-0.01747122034430504,
-0.008424953557550907,
-0.03228595480322838,
0.08625581860542297,
-0.04611320048570633,
-0.046646296977996826,
0.009580223821103573,
0.03701557219028473,
0.001966355834156275,
0.008245530538260937,
-0.007465841248631477,
0.040763672441244125,
-0.012204151600599289,
-0.01973702572286129,
-0.0002881028631236404,
-0.06016850471496582,
0.0009683400276117027,
-0.03405388444662094,
0.03114745207130909,
0.056744832545518875,
0.018511304631829262,
-0.009792824275791645,
-0.008244122378528118,
-0.021554913371801376,
-0.00867342110723257,
-0.004276723600924015,
0.017155876383185387,
0.036572858691215515,
0.03430933132767677,
-0.023093223571777344,
-0.036532461643218994,
-0.029854992404580116,
-0.01383643876761198,
-0.018382102251052856,
0.04138882830739021,
0.056622862815856934,
-0.009919524192810059,
-0.0017245856579393148,
0.0033367217984050512,
0.013538519851863384,
-0.023300359025597572,
0.031638696789741516,
-0.01442787516862154,
0.02799103781580925,
-0.00389756727963686,
-0.030041303485631943,
-0.01393639761954546,
-0.004058945924043655,
-0.02541187033057213,
0.003839055774733424,
-0.01908845826983452,
-0.001121637295000255,
-0.033072423189878464,
-0.0265152920037508,
0.004058608785271645,
0.012785482220351696,
-0.0216070469468832,
-0.00007316868141060695,
0.013159623369574547,
0.03607537969946861,
-0.09555837512016296,
-0.01394319161772728,
0.007735882420092821,
-0.025063375011086464,
-0.004935405682772398,
-0.015158875845372677,
0.02499575726687908,
-0.01671207696199417,
-0.02230011858046055,
-0.004600732121616602,
0.000898972968570888,
0.02636547014117241,
0.004998163320124149,
0.000827068870421499,
0.015236569568514824,
-0.02044321969151497,
-0.03007218986749649,
-0.003816857235506177,
0.0147276371717453,
0.002144090598449111,
0.02105432003736496,
0.016018008813261986,
-0.023535221815109253,
0.02994314208626747,
-0.04387697950005531,
-0.006869070697575808,
0.030412426218390465,
0.006165799219161272,
0.028255198150873184,
0.016856340691447258,
-0.0009921066230162978,
0.010678249411284924,
0.014744069427251816,
0.02446676976978779,
-0.032588712871074677,
-0.006688940804451704,
0.03452213481068611,
0.015182917937636375,
-0.02816251665353775,
0.05962973088026047,
-0.007733660750091076,
-0.026460761204361916,
0.0004010865231975913,
-0.03693677484989166,
0.001495309523306787,
0.01057042833417654,
-0.013472527265548706,
0.0004927605041302741,
0.005437592044472694,
-0.029901579022407532,
-0.0303160659968853,
-0.020358752459287643,
-0.012153449468314648,
0.03077731654047966,
0.016134412959218025,
0.03566959872841835,
-0.002090448746457696,
0.02732706069946289,
0.027879206463694572,
0.03439059481024742,
-0.056519631296396255,
0.007392405066639185,
0.011754326522350311,
-0.04493441432714462,
-0.015357299707829952,
0.07294884324073792,
0.005083137657493353,
0.0036503958981484175,
-0.01414515171200037,
0.061189644038677216,
-0.009453310631215572,
0.03954372927546501,
0.0031772940419614315,
0.008042517118155956,
-0.012649822980165482,
0.02764069475233555,
-0.03169376403093338,
-0.05002477020025253,
0.06992967426776886,
0.036559101194143295,
-0.043965138494968414,
-0.05855254456400871,
-0.06539008021354675,
-0.020739158615469933,
-0.01814997009932995,
-0.005497574806213379,
0.005679901223629713,
-0.009979844093322754,
0.016281798481941223,
0.026798304170370102,
0.027872659265995026,
-0.010071477852761745,
0.037064604461193085,
0.0029976493678987026,
-0.01765824481844902,
0.019782811403274536,
0.00856284610927105,
0.025767536833882332,
0.019149787724018097,
0.012343219481408596,
0.03675183281302452,
-0.08726286888122559,
0.001080631627701223,
-0.014068875461816788,
-0.025927124544978142,
0.02529883198440075,
-0.07012981921434402,
0.009276483207941055,
0.020589184015989304,
0.03654849901795387,
0.003733237273991108,
0.002669386565685272,
-0.007860003039240837,
0.01045896764844656,
0.01462562195956707,
0.02601740136742592,
0.010738561861217022,
-0.06786920130252838,
-0.034433066844940186,
-0.022064339369535446,
-0.03241764381527901,
0.0011608018539845943,
-0.005667766090482473,
-0.033915530890226364,
0.042953744530677795,
-0.034247394651174545,
0.03426661714911461,
0.03028452768921852,
0.007284663151949644,
-0.006833606865257025,
-0.02988162636756897,
-0.023924419656395912,
-0.00006864315218990669,
0.016647057607769966,
-0.007546825800091028,
0.029189513996243477,
0.020347770303487778,
-0.03192906081676483,
-0.02642439305782318,
-0.021696964278817177,
-0.03693927824497223,
-0.025328757241368294,
0.028522657230496407,
-0.008436210453510284,
0.026967652142047882,
0.00814573373645544,
-0.00858991127461195,
-0.008132295683026314,
-0.0065550049766898155,
-0.0014255779096856713,
0.033864155411720276,
0.0108961695805192,
-0.019546961411833763,
-0.024123188108205795,
0.030695706605911255,
0.01615247316658497,
-0.028088266029953957,
0.06141115352511406,
0.010165579617023468,
0.033927109092473984,
0.0009034752729348838,
-0.003974896389991045,
-0.04116404801607132,
0.00181694352068007,
0.018111933022737503,
-0.00562796276062727,
-0.0065319957211613655,
-0.020865144208073616,
0.009817726910114288,
0.0008902109111659229,
-0.0032034432515501976,
0.02045675553381443,
0.007330635562539101,
-0.010978514328598976,
0.0007939334027469158,
0.0371243953704834,
0.020082399249076843,
0.020819079130887985,
-0.023461440578103065,
-0.006689876317977905,
-0.03465144708752632,
-0.024692680686712265,
0.045602913945913315,
0.016409391537308693,
0.0006282199174165726,
0.02715514972805977,
0.05740562826395035,
0.023446884006261826,
0.02823273278772831,
0.03565915673971176,
-0.005751991178840399,
-0.023204579949378967,
0.013472198508679867,
-0.01001791562885046,
0.010154323652386665,
-0.011077912524342537,
-0.008507010526955128,
0.04378555342555046,
0.006762489676475525,
0.024432627484202385,
0.0340690091252327,
0.039548635482788086,
-0.02465411089360714,
-0.021185796707868576,
0.022396769374608994,
0.009366558864712715,
-0.02290448732674122,
-0.05646909400820732,
-0.004566992167383432,
-0.03283826634287834,
0.004660172387957573,
0.024330131709575653,
-0.023761797696352005,
0.004873659927397966,
-0.02832532301545143,
-0.01908242702484131,
0.00011904535494977608,
0.01287178322672844,
-0.007787745911628008,
0.07204389572143555,
0.010926876217126846,
-0.010890895500779152,
-0.004867909476161003,
-0.005942867137491703,
0.03735528513789177,
-0.02340579405426979,
-0.017850255593657494,
0.04304824396967888,
-0.012407498434185982,
-0.006893225014209747,
0.03523721918463707,
-0.04621311277151108,
-0.025641685351729393,
0.05033804476261139,
0.03596439212560654,
-0.052274491637945175,
-0.014846806414425373,
0.0057760123163461685,
-0.0022510916460305452,
0.018552539870142937,
0.013770478777587414,
-0.030705073848366737,
-0.024111753329634666,
0.018050823360681534,
-0.042661912739276886,
0.05718276649713516,
0.05961987376213074,
-0.02470454014837742,
-0.02879837341606617,
0.00979641079902649,
0.03349350020289421,
-0.018799830228090286,
-0.020858749747276306,
0.00785207562148571,
0.01198853924870491,
0.014918036758899689,
0.00683479942381382,
-0.01845591887831688,
-0.03556571900844574,
0.02124725840985775,
0.017527971416711807,
-0.06210402026772499,
-0.010448185727000237,
0.05705434828996658,
-0.055289652198553085,
0.008460032753646374,
0.015562398359179497,
-0.02872992493212223,
-0.03388003259897232,
-0.011982808820903301,
0.03563806414604187,
0.006543110124766827,
-0.018360821530222893,
-0.01174027007073164,
-0.018282640725374222,
-0.027160273864865303,
-0.013035880401730537,
0.08041945099830627,
0.014260202646255493,
0.06450619548559189,
0.027212465181946754,
0.04913324490189552,
0.003812885144725442,
-0.0009028853964991868,
-0.016826419159770012,
0.02785130962729454,
0.07021071016788483,
0.025525318458676338,
0.034407954663038254,
0.011225536465644836,
-0.0028005908243358135,
-0.018700916320085526,
-0.058361344039440155,
-0.049402132630348206,
-0.02963658794760704,
0.012396150268614292,
0.05224866792559624,
-0.006869735196232796,
0.02035623975098133,
-0.03257910907268524,
0.05187924578785896,
0.05785952880978584,
0.04382346570491791,
0.006105219479650259,
0.04057357460260391,
-0.006421580910682678,
0.03606787696480751,
0.030477328225970268,
0.04393535479903221,
0.008014892227947712,
-0.0010041040368378162,
0.036656703799963,
0.031178301200270653,
0.0662514865398407,
0.025203971192240715,
-0.010623267851769924,
0.0034149123821407557,
-0.005616580136120319,
-0.000504613621160388,
0.01669250801205635,
0.02146645449101925,
-0.002593062585219741,
-0.030192842707037926,
-0.0101262042298913,
-0.022306928411126137,
0.021831169724464417,
-0.004612376447767019,
-0.022775115445256233,
-0.03636343032121658,
-0.02338259667158127,
-0.014570149593055248,
0.04825102165341377,
-0.008368528448045254,
-0.049060117453336716,
0.013016159646213055,
-0.007443285081535578,
-0.021918971091508865,
0.044181082397699356,
-0.035050418227910995,
-0.016613736748695374,
-0.019853219389915466,
-0.015769384801387787,
-0.02367347478866577,
-0.027370965108275414,
0.005029663443565369,
-0.026393039152026176,
-0.004409885499626398,
0.011760355904698372,
-0.02909301221370697,
0.011922190897166729,
0.03635221719741821,
0.008360828272998333,
-0.03757188096642494,
-0.009133144281804562,
-0.0004170646134298295,
0.00957361701875925,
-0.006353875156491995,
-0.04416819289326668,
-0.010751252993941307,
-0.005394261330366135,
0.01366870291531086,
0.04727592319250107,
0.058674126863479614,
-0.012481232173740864,
-0.05050140619277954,
-0.012145322747528553,
-0.006747938692569733,
-0.019235974177718163,
0.03588598966598511,
-0.020855676382780075,
-0.004827722907066345,
-0.005769367329776287,
-0.015062503516674042,
-0.005225390195846558,
-0.004682159051299095,
-0.003893276210874319,
0.0521148256957531,
0.01807083562016487,
-0.0372948981821537,
-0.014126505702733994,
0.04742257669568062,
0.004862576723098755,
0.035405680537223816,
0.0693468302488327,
0.022095724940299988,
0.029435357078909874,
0.005880575627088547,
0.03725481405854225,
-0.0838383361697197,
0.026004493236541748,
-0.038789428770542145,
-0.08398683369159698,
0.0014745898079127073,
0.00994103029370308,
0.00046033665421418846,
-0.006235964596271515,
-0.054054662585258484,
0.011239760555326939,
-0.06183726340532303,
0.0076760537922382355,
0.04026011377573013,
-0.010216071270406246,
0.07387952506542206,
-0.0012439301935955882,
0.04760303720831871,
0.019467288628220558,
0.006621644366532564,
-0.004021420609205961,
-0.006088279187679291,
0.015380601398646832,
0.0669560581445694,
0.01038641668856144,
0.014608882367610931,
0.003579425159841776,
-0.006654593162238598,
0.0007568406872451305,
-0.0019749163184314966,
0.02551906742155552,
-0.010856413282454014,
-0.024022754281759262,
-0.01705935411155224,
0.04818583279848099,
0.016227560117840767,
0.011175570078194141,
-0.00731732789427042,
-0.020754070952534676,
0.005263783037662506,
0.0248943530023098,
0.0008425910491496325,
-0.06954756379127502,
-0.004785955883562565,
0.032843608409166336,
0.03806387633085251,
0.040718160569667816,
0.011512810364365578,
0.03968888148665428,
-0.011158852837979794,
0.011052491143345833,
-0.0018072023522108793,
0.058459024876356125,
-0.022319458425045013,
-0.025078507140278816,
0.004981998819857836,
-0.0009022403974086046,
-0.03272927552461624,
-0.011765461415052414,
0.031013749539852142,
-0.0009422540315426886,
-0.022704806178808212,
0.0004143415135331452,
-0.023089569061994553,
-0.0038198435213416815,
0.0067270672880113125,
0.023187758401036263,
0.03550601378083229,
0.03570866212248802,
0.02846525050699711,
-0.003628746373578906,
-0.05328930541872978,
-0.0036862469278275967
] |
How to generate text: using different decoding methods for language generation with Transformers | patrickvonplaten | March, 2020 | how-to-generate | guide, nlp | https://huggingface.co/blog/how-to-generate | Top-K Sampling Fan et. al (2018) introduced a simple, but very powerful sampling scheme, called Top-K sampling. In Top-K sampling, the K most likely next words are filtered and the probability mass is redistributed among only those K next words. GPT2 adopted this sampling scheme, which was one of the reasons for its success in story generation. We extend the range of words used for both sampling steps in the example above from 3 words to 10 words to better illustrate Top-K sampling. Having set \(K = 6\), in both sampling steps we limit our sampling pool to 6 words. While the 6 most likely words, defined as \(V_{\text{top-K}}\) encompass only ca. two-thirds of the whole probability mass in the first step, it includes almost all of the probability mass in the second step. Nevertheless, we see that it successfully eliminates the rather weird candidates \((\text{not"}, \text{the"}, \text{small"}, \text{told"})\) in the second sampling step. Let's see how Top-K can be used in the library by setting top_k=50: python # set seed to reproduce results. Feel free to change the seed though to get different results set_seed(42) # set top_k to 50 sample_output = model.generate( **model_inputs, max_new_tokens=40, do_sample=True, top_k=50 ) print("Output:\n" + 100 * '-') print(tokenizer.decode(sample_output[0], skip_special_tokens=True)) Output: ---------------------------------------------------------------------------------------------------- I enjoy walking with my cute dog for the rest of the day, but this time it was hard for me to figure out what to do with it. (One reason I asked this for a few months back is that I had a Not bad at all! The text is arguably the most human-sounding text so far. One concern though with Top-K sampling is that it does not dynamically adapt the number of words that are filtered from the next word probability distribution \(P(w|w_{1:t-1})\). This can be problematic as some words might be sampled from a very sharp distribution (distribution on the right in the graph above), whereas others from a much more flat distribution (distribution on the left in the graph above). In step \(t=1\), Top-K eliminates the possibility to sample \((\text{"people"}, \text{"big"}, \text{"house"}, \text{"cat"})\), which seem like reasonable candidates. On the other hand, in step \(t=2\) the method includes the arguably ill-fitted words \((\text{"down"}, \text{"a"})\) in the sample pool of words. Thus, limiting the sample pool to a fixed size K could endanger the model to produce gibberish for sharp distributions and limit the model's creativity for flat distribution. This intuition led Ari Holtzman et al. (2019) to create Top-p- or nucleus-sampling. | [
0.017972595989704132,
-0.0333731435239315,
-0.00983202550560236,
0.002602221444249153,
0.09611862152814865,
0.006561956834048033,
0.010640772059559822,
0.010338676162064075,
-0.05866548791527748,
-0.009469225071370602,
-0.13796848058700562,
-0.035251930356025696,
0.005474548786878586,
0.05828157067298889,
-0.011845504865050316,
0.012413552962243557,
0.022648943588137627,
0.00579485110938549,
0.05123966932296753,
-0.11192470788955688,
0.058148037642240524,
-0.024735186249017715,
0.07578890025615692,
-0.07914692163467407,
0.08193668723106384,
-0.009877900592982769,
-0.010135915130376816,
-0.007270247675478458,
-0.03445564955472946,
0.020804839208722115,
-0.17959025502204895,
0.0068268985487520695,
0.055395275354385376,
-0.0006902452441863716,
0.04259024187922478,
-0.0675744041800499,
-0.10752612352371216,
0.048288170248270035,
0.05891543626785278,
-0.027667086571455002,
-0.011613322421908379,
-0.036425698548555374,
-0.061222244054079056,
0.035857681185007095,
-0.02746582217514515,
-0.04935166984796524,
-0.1095605120062828,
0.0715034008026123,
-0.09319052845239639,
-0.07887633144855499,
-0.04409406706690788,
0.03093723952770233,
-0.08342041820287704,
0.014638551510870457,
-0.0207391194999218,
-0.027168555185198784,
0.009731903672218323,
-0.11149805039167404,
0.007290932349860668,
0.01386816706508398,
0.01709807850420475,
-0.02130240947008133,
0.06114455685019493,
0.0730753093957901,
-0.012333907186985016,
-0.018366169184446335,
-0.029146568849682808,
0.05504698306322098,
-0.06794852018356323,
-0.04117155820131302,
-0.008263562805950642,
-0.055029649287462234,
-0.04572334885597229,
-0.03283262997865677,
-0.037302859127521515,
-0.015671374276280403,
0.007384785450994968,
0.053895846009254456,
-0.010598436929285526,
0.004851709119975567,
-0.003401351859793067,
-0.022135231643915176,
0.031651053577661514,
0.022655999287962914,
0.048570211976766586,
0.022510241717100143,
0.05672655254602432,
-0.05275045335292816,
-0.03228596970438957,
0.05329160764813423,
-0.03233133628964424,
-0.11640549451112747,
0.05282494053244591,
0.06191922351717949,
0.009183444082736969,
-0.016147799789905548,
-0.028987010940909386,
0.06413325667381287,
0.01643797755241394,
-0.004021231085062027,
-0.02022896520793438,
-0.11336927115917206,
-0.009675933979451656,
-0.028171319514513016,
-0.0967038944363594,
0.05395083129405975,
-0.031190922483801842,
-0.023624636232852936,
0.004792100749909878,
0.04880169406533241,
0.005856685806065798,
-0.02088550478219986,
-0.021604089066386223,
0.0243152417242527,
-0.03456765413284302,
0.053916215896606445,
-0.009209181182086468,
0.004790332168340683,
-0.06799377501010895,
-0.025580408051609993,
-0.02303250879049301,
0.05454881861805916,
0.08679051697254181,
-0.012180808000266552,
-0.035246506333351135,
-0.02334780804812908,
0.02471449226140976,
0.016999028623104095,
-0.027357134968042374,
-0.006255766376852989,
0.04090694710612297,
0.031207313761115074,
-0.01753091998398304,
-0.007887140847742558,
0.0358528234064579,
-0.013300756923854351,
0.025212733075022697,
-0.014292825944721699,
-0.011084464378654957,
-0.005056184716522694,
0.04278763756155968,
-0.025844328105449677,
-0.03121142089366913,
0.02831481397151947,
0.001701612607575953,
0.034744974225759506,
-0.06418320536613464,
0.03321019187569618,
-0.04386523738503456,
0.046724576503038406,
-0.021875059232115746,
0.09513823688030243,
-0.04622495174407959,
-0.029289979487657547,
0.05900539830327034,
0.014849020168185234,
-0.00954759307205677,
-0.007329255808144808,
-0.06049824506044388,
-0.058319419622421265,
-0.003967831376940012,
0.025752311572432518,
0.051952946931123734,
-0.029479924589395523,
0.04368628188967705,
-0.017195116728544235,
0.029895780608057976,
0.027133455500006676,
-0.0324614979326725,
0.015626734122633934,
-0.039791032671928406,
-0.034225571900606155,
0.04005277156829834,
-0.02862490713596344,
0.04066682606935501,
0.05316351726651192,
-0.005216941237449646,
0.022464660927653313,
-0.012625779025256634,
0.027597088366746902,
-0.0480269193649292,
-0.007277138996869326,
0.01567988470196724,
0.005305022932589054,
0.034846823662519455,
-0.10938982665538788,
0.016560601070523262,
0.033692434430122375,
0.02910728193819523,
-0.0183532927185297,
-0.04437337815761566,
-0.08720217645168304,
0.0804542824625969,
0.021725649014115334,
0.0036447306629270315,
-0.0744319036602974,
0.032103970646858215,
0.05317113921046257,
0.047676026821136475,
0.06061780825257301,
0.0804571658372879,
0.06899256259202957,
0.039621397852897644,
-0.024345969781279564,
-0.03944065049290657,
-0.025925811380147934,
-0.03631529584527016,
-0.05206276848912239,
0.0395708791911602,
0.03628285229206085,
-0.05959056690335274,
-0.039717111736536026,
0.004479698371142149,
-0.10939130932092667,
-0.03083972819149494,
-0.010750063695013523,
0.04336988553404808,
0.0157192200422287,
0.006139819044619799,
0.009480848908424377,
0.1277254819869995,
-0.0623759850859642,
0.029085619375109673,
-0.025441857054829597,
-0.03789597749710083,
0.07834535837173462,
0.05222543701529503,
-0.026798730716109276,
0.05555266514420509,
-0.027823032811284065,
-0.06462102383375168,
-0.04698394984006882,
0.021009422838687897,
0.04885198548436165,
0.023651687428355217,
-0.05255316570401192,
-0.0207419041544199,
-0.01492603961378336,
0.03572307899594307,
-0.05543054640293121,
0.0029851209837943316,
0.013404685072600842,
-0.07177218794822693,
0.07856247574090958,
-0.012881899252533913,
-0.0014474581694230437,
0.08459043502807617,
-0.04218093305826187,
-0.034242112189531326,
-0.08097393810749054,
-0.05335844308137894,
0.007436798885464668,
-0.02642708644270897,
-0.054628174751996994,
0.01701427809894085,
0.0928557738661766,
-0.025057809427380562,
-0.02082090824842453,
-0.03952138125896454,
-0.04584047198295593,
-0.020964689552783966,
-0.047257743775844574,
-0.003326959442347288,
-0.016554832458496094,
-0.0002501958515495062,
0.0017511951737105846,
0.008654291741549969,
-0.0027276540640741587,
-0.012461422011256218,
0.0027090299408882856,
0.008001035079360008,
-0.03193247690796852,
-0.011301737278699875,
0.023617302998900414,
-0.0127716651186347,
-0.015227949246764183,
0.04256381839513779,
-0.027415161952376366,
-0.00170026661362499,
-0.008908074349164963,
-0.004743572324514389,
0.010954645462334156,
0.02154013141989708,
0.06047244742512703,
0.021838687360286713,
0.012921915389597416,
0.049262646585702896,
-0.001376860891468823,
-0.038472358137369156,
-0.00003704662958625704,
-0.024772243574261665,
0.006217207759618759,
-0.004156050272285938,
-0.013297337107360363,
0.007945088669657707,
-0.007976049557328224,
-0.02339908294379711,
0.0011330588022246957,
-0.020307615399360657,
-0.0020144013687968254,
-0.02927973121404648,
0.0024775618221610785,
-0.018826816231012344,
-0.005198020488023758,
-0.016610000282526016,
0.011634251102805138,
-0.0005488725146278739,
0.05907382443547249,
-0.10383325070142746,
-0.010953514836728573,
0.021557144820690155,
0.021361464634537697,
0.011973862536251545,
-0.029480300843715668,
0.02405000664293766,
-0.0002743590157479048,
-0.017370697110891342,
0.023811805993318558,
0.036566924303770065,
-0.0011165969772264361,
-0.0057387640699744225,
0.009828906506299973,
-0.019641036167740822,
0.004918769467622042,
0.008832265622913837,
-0.0004006323288194835,
0.05071669816970825,
0.04753667861223221,
0.04183641076087952,
0.02523716166615486,
0.013207875192165375,
-0.0021319594234228134,
-0.023604705929756165,
0.013379007577896118,
0.030246110633015633,
0.03334851562976837,
0.031663764268159866,
-0.015678565949201584,
0.003932851366698742,
-0.015427826903760433,
0.008442079648375511,
0.02091025747358799,
-0.017611704766750336,
-0.0015923723112791777,
0.01941416785120964,
0.00031608782592229545,
-0.012989155016839504,
0.03655916079878807,
-0.015295115299522877,
-0.019628487527370453,
0.014851746149361134,
-0.003020728472620249,
0.025726664811372757,
0.0045471577905118465,
-0.028990721330046654,
0.006533354986459017,
0.028768716380000114,
-0.05812263488769531,
0.010624327696859837,
-0.025987401604652405,
-0.003135128878057003,
0.028187790885567665,
0.008279762230813503,
0.012366966344416142,
0.025520626455545425,
0.03241060674190521,
0.03868314251303673,
-0.006484304089099169,
-0.0025054116267710924,
0.019427111372351646,
0.005524751264601946,
-0.01809612475335598,
-0.005287487991154194,
0.02549515850841999,
0.03543107211589813,
0.0310375839471817,
-0.014642409980297089,
0.04214821010828018,
0.01154049951583147,
-0.008868720382452011,
0.024914126843214035,
0.0035864473320543766,
-0.015116474591195583,
0.03396710753440857,
-0.040831662714481354,
-0.036671556532382965,
0.03780939057469368,
0.03130529075860977,
-0.024743538349866867,
0.023084407672286034,
-0.032035306096076965,
0.006088308524340391,
0.003994023893028498,
-0.024533044546842575,
0.009978962130844593,
-0.0349055640399456,
0.024319106712937355,
-0.004035658203065395,
-0.0685516744852066,
-0.030831674113869667,
-0.013015023432672024,
0.011065769009292126,
-0.005639185197651386,
0.017918795347213745,
-0.01920006237924099,
-0.0060381218791007996,
0.0005059778923168778,
0.038115181028842926,
-0.0006418076809495687,
-0.033666279166936874,
0.018579406663775444,
-0.043949972838163376,
-0.028991173952817917,
0.013881205581128597,
-0.06478794664144516,
0.0097556933760643,
0.015780160203576088,
0.031901899725198746,
0.012087607756257057,
0.005081617273390293,
-0.021123943850398064,
-0.017069276422262192,
0.03819781169295311,
0.04244343936443329,
0.034321244806051254,
0.000609401729889214,
-0.008608740754425526,
-0.0037710797041654587,
-0.023276057094335556,
0.009338267147541046,
-0.015337595716118813,
0.0321662575006485,
0.046938396990299225,
-0.015173372812569141,
0.03671585023403168,
-0.023542732000350952,
-0.012135961093008518,
-0.02112271450459957,
-0.021350683644413948,
-0.004589255899190903,
0.006657871883362532,
-0.016757093369960785,
0.04983643814921379,
0.009826354682445526,
-0.007274291943758726,
-0.013559052720665932,
-0.016819797456264496,
-0.08150088787078857,
-0.00011983321019215509,
0.009453901089727879,
0.03128965571522713,
-0.0330820195376873,
0.045042984187603,
-0.00041998212691396475,
-0.0037993043661117554,
0.011176331900060177,
-0.026105428114533424,
-0.00932416133582592,
0.04832332581281662,
-0.002699075033888221,
-0.0399840883910656,
-0.04269897937774658,
0.018460692837834358,
0.01323118805885315,
-0.053964074701070786,
0.034269314259290695,
0.007114591542631388,
0.05600840598344803,
0.00818521250039339,
-0.03121986798942089,
0.003763145999982953,
-0.000394545029848814,
-0.0008867285796441138,
-0.006760155316442251,
-0.0007570178131572902,
-0.01497217733412981,
0.010339911095798016,
0.01384004857391119,
0.042401742190122604,
-0.00007764499605400488,
-0.01882000081241131,
0.0038831604178994894,
0.013050717301666737,
0.029265930876135826,
-0.00014933054626453668,
0.011755234561860561,
-0.027994399890303612,
0.025562308728694916,
-0.05123843252658844,
-0.01909032091498375,
-0.02333909459412098,
0.019860217347741127,
0.008346359245479107,
0.04366038739681244,
0.05839109793305397,
0.07067932188510895,
-0.031632546335458755,
0.04720139503479004,
-0.015308395028114319,
-0.019943658262491226,
0.012350199744105339,
-0.05819818004965782,
0.01667221263051033,
-0.019733240827918053,
-0.009814316406846046,
0.0600915364921093,
0.012783780694007874,
-0.005873960442841053,
0.022584769874811172,
0.007739565335214138,
0.02220824919641018,
-0.02303893119096756,
0.0013199830427765846,
0.040481533855199814,
-0.018505647778511047,
-0.013647064566612244,
0.03174323961138725,
0.0003536735603120178,
-0.002971306210383773,
-0.020998571068048477,
-0.010104622691869736,
-0.028972050175070763,
-0.005289025139063597,
-0.0352204255759716,
-0.031175296753644943,
0.014579645358026028,
0.015895046293735504,
0.061592575162649155,
0.0242286529392004,
0.0034897036384791136,
-0.048601195216178894,
-0.005437259096652269,
0.023739375174045563,
0.009936179965734482,
0.01913924515247345,
0.011517571285367012,
0.024019313976168633,
0.027805615216493607,
0.04342937842011452,
-0.0443284846842289,
-0.02716882713139057,
-0.002345392946153879,
-0.017859982326626778,
-0.02670116536319256,
0.0038007646799087524,
0.05907994881272316,
0.03239310532808304,
0.030404534190893173,
0.010129093192517757,
-0.014934197999536991,
-0.005903040058910847,
-0.007183222100138664,
-0.041986241936683655,
0.01183217205107212,
-0.008896195329725742,
-0.012368077412247658,
-0.01102010440081358,
-0.008735070005059242,
0.006594415754079819,
0.010410613380372524,
-0.029017388820648193,
-0.003605638397857547,
-0.0046252040192484856,
-0.014695987105369568,
0.061560969799757004,
0.008103244937956333,
0.015982432290911674,
0.021196499466896057,
0.03861115872859955,
-0.06299921870231628,
0.008923755027353764,
0.04699641838669777,
-0.04749765992164612,
0.022884463891386986,
-0.010013766586780548,
-0.06965766847133636,
0.04796098545193672,
0.02515394613146782,
0.05522477999329567,
0.012346970848739147,
-0.0638158991932869,
0.03136225789785385,
-0.013523588888347149,
0.018496353179216385,
-0.002360365819185972,
0.04927482455968857,
-0.0031875998247414827,
0.06415240466594696,
0.001172647112980485,
0.0448826402425766,
0.03808988630771637,
0.0017497342778369784,
0.003636642126366496,
0.08185309171676636,
0.031031256541609764,
-0.005836906377226114,
0.04481276124715805,
-0.0031046150252223015,
0.005603163503110409,
0.037027452141046524,
-0.017729096114635468,
0.0033439670223742723,
0.025532804429531097,
0.008227652870118618,
0.049756139516830444,
-0.016711249947547913,
0.039193008095026016,
-0.02857901342213154,
0.035583652555942535,
0.061332184821367264,
0.0019538411870598793,
-0.02353653870522976,
-0.015468770638108253,
0.012399534694850445,
0.007858816534280777,
0.004252752289175987,
0.05512261390686035,
0.0012209111591801047,
-0.006966363172978163,
0.07829614728689194,
0.018782317638397217,
0.0911470577120781,
0.03397130221128464,
0.00015954651462379843,
0.005571057554334402,
-0.04001540690660477,
0.030289214104413986,
-0.03407136723399162,
0.019228894263505936,
-0.015846583992242813,
0.008833436295390129,
-0.0222813468426466,
-0.03780437633395195,
0.014828229323029518,
-0.008585944771766663,
0.010230052284896374,
0.03586425259709358,
-0.0418841652572155,
0.0076856533996760845,
0.03667477145791054,
0.024187490344047546,
-0.044606104493141174,
0.003857891308143735,
0.057493265718221664,
-0.018855810165405273,
0.007871248759329319,
-0.03704606369137764,
-0.0041497861966490746,
-0.011730688624083996,
0.007130622863769531,
0.010007279925048351,
-0.009586942382156849,
0.01893666759133339,
-0.030600937083363533,
-0.00862033013254404,
0.059676747769117355,
-0.056479208171367645,
0.012521304190158844,
0.021283574402332306,
0.027448812499642372,
0.0021386384032666683,
-0.012063886970281601,
0.008483676239848137,
0.007193233817815781,
0.0098936278373003,
-0.01498226448893547,
-0.00952458381652832,
-0.02293623425066471,
0.05942844972014427,
0.019737888127565384,
0.02265026792883873,
-0.02903275564312935,
-0.03044041618704796,
0.021656697615981102,
-0.011704410426318645,
-0.003118526889011264,
-0.008699986152350903,
0.017749978229403496,
-0.014439871534705162,
0.0037992384750396013,
-0.028811082243919373,
-0.002672224771231413,
-0.027242472395300865,
-0.008526605553925037,
0.02500081993639469,
0.029429908841848373,
-0.017095034942030907,
0.007813471369445324,
0.023502562195062637,
-0.030782539397478104,
0.030807800590991974,
0.02130207233130932,
0.03215773031115532,
0.03569592162966728,
0.04302183538675308,
0.018747324123978615,
-0.029200859367847443,
-0.009565949440002441,
-0.02301495335996151,
-0.038643963634967804,
-0.019793933257460594,
-0.0052566840313375,
-0.03307386487722397,
-0.010339240543544292,
0.00403054803609848,
0.02891281247138977,
-0.00790499895811081,
0.015886200591921806,
-0.03742288798093796,
-0.014242757111787796,
-0.01199303101748228,
-0.0024536692071706057,
0.04471709579229355,
0.0577189102768898,
0.03188037872314453,
-0.04996171593666077,
0.009404875338077545,
0.035648494958877563,
0.03534598648548126,
0.023338694125413895,
0.024117309600114822,
-0.008149182423949242,
0.02829812280833721,
-0.05366107076406479,
-0.0509662926197052,
0.01927880011498928,
0.01563495397567749,
-0.01086097676306963,
-0.036599885672330856,
0.013816412538290024,
0.06639963388442993,
-0.02923743799328804,
-0.012587730772793293,
-0.014582790434360504,
0.0009290585294365883,
0.012867901474237442,
0.023790985345840454,
-0.050791941583156586,
-0.0005900039686821401,
0.028502672910690308,
0.006526230834424496,
0.02836318127810955,
-0.001897158450447023,
0.046445850282907486,
0.03494910150766373,
0.005273575894534588,
-0.013012292794883251,
0.03152039647102356,
-0.003943773452192545,
-0.057289090007543564,
0.05150829628109932,
0.03542308509349823,
-0.04641373082995415,
-0.026687419041991234,
0.031582314521074295,
0.029225625097751617,
-0.023176563903689384,
0.029564404860138893,
0.04782385006546974,
0.028448794037103653,
-0.02009628154337406,
0.007569547276943922,
0.0004118456272408366,
0.05066618323326111,
0.00244869920425117,
0.026615872979164124,
-0.0030392261687666178,
0.0006062670727260411
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | 4. Axial Positional Encodings Reformer makes it possible to process huge input sequences. However, for such long input sequences standard positional encoding weight matrices alone would use more than 1GB to store its weights. To prevent such large positional encoding matrices, the official Reformer code introduced Axial Position Encodings. Important: Axial Position Encodings were not explained in the official paper, but can be well understood from looking into the code and talking to the authors | [
0.01739358901977539,
0.09646188467741013,
0.023341769352555275,
-0.043460216373205185,
0.002040660474449396,
0.027561791241168976,
0.016433842480182648,
-0.06194771081209183,
-0.05389344319701195,
-0.015819501131772995,
-0.05127580836415291,
-0.05089105665683746,
0.011229590512812138,
-0.051073286682367325,
0.004553745500743389,
-0.03393488749861717,
0.05670321360230446,
-0.05330052226781845,
-0.055022452026605606,
0.013153565116226673,
0.024662571027874947,
-0.029239125549793243,
0.06677021831274033,
0.021657345816493034,
-0.023887868970632553,
0.00830894336104393,
-0.03643778711557388,
-0.035780396312475204,
-0.08168566972017288,
0.01931758224964142,
-0.11804845929145813,
-0.031054887920618057,
0.012095138430595398,
-0.005220099817961454,
-0.007453578058630228,
-0.022980768233537674,
-0.10860241949558258,
0.1000780388712883,
0.055219992995262146,
-0.09749097377061844,
-0.07187306880950928,
0.04646946117281914,
-0.011006492190063,
0.057535842061042786,
-0.039152584969997406,
-0.039034537971019745,
-0.15089166164398193,
0.10029835253953934,
-0.053950387984514236,
-0.01762782223522663,
-0.10382145643234253,
0.02195117622613907,
-0.023371923714876175,
0.07177843898534775,
-0.0027597604785114527,
-0.03508872911334038,
0.04487120360136032,
0.0204829890280962,
0.043932780623435974,
-0.0331120528280735,
0.041041918098926544,
0.022920692339539528,
-0.004366520792245865,
-0.012464475817978382,
0.023400187492370605,
-0.03226516768336296,
-0.02087581157684326,
0.022131187841296196,
-0.011234312318265438,
-0.06697511672973633,
-0.014291851781308651,
-0.02658211998641491,
-0.02081863395869732,
-0.012956265360116959,
-0.01331146340817213,
-0.03963330388069153,
-0.08273568004369736,
0.03568759933114052,
0.07354949414730072,
0.024649161845445633,
-0.014279734343290329,
0.0881030485033989,
0.02677316591143608,
0.058061253279447556,
0.01884162798523903,
0.07914962619543076,
0.09385830163955688,
-0.04665617272257805,
0.03399660065770149,
0.07377025485038757,
-0.018386458978056908,
-0.07645463198423386,
0.012185241095721722,
-0.0006660542567260563,
0.005645453929901123,
-0.06495901197195053,
-0.0014495470095425844,
0.0247710682451725,
0.03892434388399124,
0.026410873979330063,
-0.029815254732966423,
-0.0012968922965228558,
0.04837330803275108,
-0.02569597214460373,
0.008829226717352867,
-0.0025547966361045837,
0.010916775092482567,
-0.063718780875206,
0.018379032611846924,
0.01612679287791252,
0.020819928497076035,
0.07575475424528122,
0.02274637296795845,
-0.009432915598154068,
-0.08260111510753632,
0.04522153362631798,
0.01721986010670662,
-0.07033195346593857,
0.008280467242002487,
0.06565847247838974,
-0.02325124852359295,
0.0796581283211708,
0.05391284450888634,
0.002205007243901491,
0.015004188753664494,
-0.028365151956677437,
0.0047717345878481865,
-0.03405261039733887,
-0.03574284538626671,
-0.04949605092406273,
-0.006164971273392439,
0.09183019399642944,
0.055202074348926544,
-0.007378310896456242,
0.004720631521195173,
-0.07487957924604416,
0.007573901209980249,
0.007839314639568329,
-0.015455839224159718,
-0.032290395349264145,
-0.028225013986229897,
-0.002128689317032695,
0.041756995022296906,
-0.05163298919796944,
-0.03779182583093643,
-0.040212053805589676,
-0.02844037115573883,
0.09935043007135391,
0.0013527498813346028,
-0.02721499465405941,
-0.010023681446909904,
0.04546583443880081,
0.01633504405617714,
-0.10541430860757828,
0.019541893154382706,
0.02083553746342659,
-0.02088160254061222,
0.0005800244980491698,
-0.056715499609708786,
-0.037806615233421326,
-0.051103625446558,
0.013861567713320255,
-0.03664742782711983,
0.04660734906792641,
0.022123510017991066,
-0.05922272801399231,
0.10709862411022186,
-0.002640276914462447,
-0.024553511291742325,
0.026331724599003792,
-0.042307786643505096,
0.006394365336745977,
0.0012927354546263814,
0.005888338666409254,
-0.09104268252849579,
-0.016587406396865845,
0.0324818454682827,
0.11981295049190521,
-0.012366103939712048,
-0.1101069226861,
-0.031121132895350456,
0.004676502197980881,
-0.004574916325509548,
0.03399446979165077,
0.013759341090917587,
-0.03832785785198212,
0.07283952832221985,
-0.03378891944885254,
-0.031081901863217354,
0.05575297400355339,
-0.08436748385429382,
-0.02313748188316822,
0.009457556530833244,
0.010771802626550198,
0.03138868138194084,
-0.042851321399211884,
-0.05050966516137123,
0.11319239437580109,
0.016332736238837242,
0.018207674846053123,
0.039858244359493256,
0.04420679435133934,
0.02095605432987213,
0.0014355330495163798,
-0.015834065154194832,
-0.002080845180898905,
0.02219473011791706,
-0.05652083083987236,
0.02274949662387371,
0.03742004930973053,
-0.007915874943137169,
-0.10408878326416016,
-0.007735840510576963,
-0.0918341651558876,
0.012240773066878319,
-0.04057414457201958,
0.02783394046127796,
0.0021366761066019535,
-0.04795539006590843,
-0.043588243424892426,
0.09109534323215485,
-0.003993346355855465,
-0.020431386306881905,
0.03395863249897957,
-0.04339461028575897,
0.08200262486934662,
0.021858492866158485,
0.014869987033307552,
0.011153156869113445,
-0.09312553703784943,
0.0008399994112551212,
-0.03276637941598892,
0.054696254432201385,
0.08276397734880447,
-0.004741853568702936,
-0.016742732375860214,
-0.049003224819898605,
0.008863646537065506,
0.045063819736242294,
-0.017658378928899765,
0.014466029591858387,
0.029708631336688995,
-0.0010527304839342833,
-0.03386305272579193,
-0.0525117851793766,
-0.049028173089027405,
0.023139525204896927,
0.02240883745253086,
0.0003104525967501104,
0.0005504146101884544,
-0.07510668784379959,
0.027510739862918854,
-0.013401666656136513,
-0.06575172394514084,
-0.07942324876785278,
0.04474567621946335,
-0.011736017651855946,
-0.0297738928347826,
0.002092017326503992,
0.02905009128153324,
0.03659956902265549,
0.03462795540690422,
-0.057899437844753265,
-0.05648837983608246,
-0.04872694984078407,
0.0235727708786726,
-0.012108628638088703,
-0.01918289065361023,
0.022753922268748283,
-0.05030929297208786,
0.037130359560251236,
0.005679580383002758,
-0.0006358805694617331,
0.013238531537353992,
0.05782632529735565,
-0.04348938912153244,
0.02888045273721218,
-0.008866623975336552,
-0.01729741506278515,
-0.0006455579423345625,
-0.01752377487719059,
-0.01218114048242569,
0.042918287217617035,
-0.00881953351199627,
0.028826700523495674,
0.022863440215587616,
0.06369920819997787,
0.0213494710624218,
-0.005910440348088741,
-0.0014065396972000599,
0.0291141364723444,
0.0398852713406086,
-0.0018358114175498486,
-0.04104882478713989,
0.02717043086886406,
-0.021183835342526436,
-0.008012564852833748,
-0.010741079226136208,
0.017839724197983742,
-0.0006493285181932151,
-0.009542825631797314,
0.04651856794953346,
0.034293271601200104,
0.015044702216982841,
-0.02406971901655197,
0.016770070418715477,
-0.0037059381138533354,
0.09717752784490585,
-0.09623095393180847,
-0.0726974755525589,
0.029133517295122147,
-0.006823258940130472,
0.019253572449088097,
0.0013059102930128574,
0.019215771928429604,
-0.0164718609303236,
0.0005627795471809804,
-0.012598223984241486,
0.024377377703785896,
0.03359172120690346,
-0.004082309547811747,
-0.0013039842015132308,
-0.017515743151307106,
0.062108006328344345,
0.04192941635847092,
-0.004027040209621191,
0.005750761833041906,
-0.04327769950032234,
0.04756946489214897,
0.014159392565488815,
0.05503518506884575,
0.008541633374989033,
-0.037377212196588516,
0.05889062210917473,
0.010138408280909061,
0.03314932435750961,
0.006506652571260929,
-0.04579200968146324,
-0.0781269520521164,
-0.029396235942840576,
-0.010751956142485142,
-0.00536329485476017,
-0.024426830932497978,
-0.02561458945274353,
-0.02220485359430313,
0.04232126474380493,
-0.0006001534056849778,
0.013788268901407719,
0.034113746136426926,
-0.04475126415491104,
0.02560180425643921,
0.00857432559132576,
0.025023140013217926,
-0.006294864695519209,
-0.005772310309112072,
0.018732164055109024,
0.043976981192827225,
-0.02743453159928322,
-0.015335324220359325,
-0.00800467561930418,
-0.017644813284277916,
0.04763924703001976,
0.018386706709861755,
-0.03269752115011215,
-0.02933754026889801,
0.008094200864434242,
-0.013387713581323624,
0.006314774509519339,
-0.019814753904938698,
-0.009926402941346169,
0.02280873991549015,
0.01611558347940445,
-0.026017187163233757,
0.036299653351306915,
-0.0012240831274539232,
0.036455851048231125,
0.014302241615951061,
0.046723946928977966,
-0.03170279785990715,
0.017963536083698273,
0.025663701817393303,
0.008937746286392212,
-0.027350647374987602,
0.01831204444169998,
-0.013555854558944702,
-0.025922175496816635,
0.032645951956510544,
0.04470417648553848,
-0.015673650428652763,
0.005363184027373791,
-0.048476725816726685,
0.04403764754533768,
0.003003431484103203,
0.03818125277757645,
-0.01983356848359108,
0.03516044467687607,
0.03189440816640854,
0.009428035467863083,
-0.017972862347960472,
-0.009066355414688587,
-0.01473545003682375,
-0.00697518652305007,
0.0008572800434194505,
-0.025204934179782867,
0.013087830506265163,
0.004420247860252857,
0.03484337031841278,
-0.03287278860807419,
0.013811860233545303,
-0.04014117270708084,
-0.0020980448462069035,
-0.01243605837225914,
0.0019499433692544699,
0.0017090579494833946,
-0.06310304254293442,
0.01666662096977234,
0.012630167417228222,
0.033207327127456665,
-0.00689083244651556,
-0.025417668744921684,
0.01565735414624214,
0.01108498964458704,
0.03384934365749359,
-0.001270295470021665,
-0.03855779767036438,
-0.05515533685684204,
-0.03944046050310135,
-0.021619895473122597,
0.0011463320115581155,
0.01735939085483551,
-0.029284195974469185,
-0.007879838347434998,
0.03166970610618591,
0.028250232338905334,
-0.009531999938189983,
0.013424316421151161,
-0.04708517715334892,
-0.027174336835741997,
-0.02295943722128868,
0.02427736669778824,
0.027401117607951164,
-0.012586025521159172,
0.02319994941353798,
0.06494324654340744,
-0.013787361793220043,
0.02545846253633499,
0.011565716937184334,
-0.06007639318704605,
0.0027238766197115183,
0.006992524489760399,
0.03498779237270355,
-0.02940291166305542,
0.08013322204351425,
-0.024878371506929398,
-0.02836756594479084,
0.011376420967280865,
-0.03601128235459328,
0.010630705393850803,
0.02377508580684662,
0.01366976834833622,
-0.048994068056344986,
0.033978547900915146,
0.02129078097641468,
-0.02138671651482582,
-0.010694673284888268,
0.014673181809484959,
-0.018723472952842712,
0.02293507754802704,
-0.0057828910648822784,
-0.011797952465713024,
-0.06300389766693115,
0.0004074455064255744,
0.018418027088046074,
0.019399670884013176,
0.013915501534938812,
-0.025425046682357788,
0.02210964448750019,
-0.022373812273144722,
-0.009309480898082256,
0.02397434040904045,
0.008161396719515324,
-0.019118813797831535,
0.0063793836161494255,
0.023054134100675583,
-0.030933087691664696,
0.02396792359650135,
-0.04176300764083862,
0.02612985670566559,
0.003181008854880929,
-0.025692572817206383,
0.04438087344169617,
-0.012180342338979244,
-0.015330586582422256,
-0.001466298010200262,
0.039631109684705734,
0.036523040384054184,
-0.0032345850486308336,
0.024090537801384926,
0.04218371957540512,
-0.024780545383691788,
0.04081286862492561,
-0.014281096868216991,
0.013117790222167969,
0.02329515479505062,
0.04240038990974426,
0.01234374288469553,
-0.013011855073273182,
0.015840699896216393,
0.03162047266960144,
0.08981525897979736,
-0.03552929311990738,
-0.021916043013334274,
-0.005024660844355822,
0.01602492295205593,
-0.01231401413679123,
0.010553435422480106,
0.02843768149614334,
-0.008425766602158546,
0.03693258762359619,
0.04150346666574478,
-0.05500071868300438,
0.027947258204221725,
0.019118139520287514,
-0.030820265412330627,
-0.04921480640769005,
0.04283657297492027,
0.017295897006988525,
0.00750883761793375,
-0.014486823230981827,
0.031222309917211533,
-0.04563756659626961,
0.02198021300137043,
0.035911012440919876,
-0.013645853847265244,
-0.009799005463719368,
0.0413333922624588,
0.025784017518162727,
0.0333755798637867,
0.010267529636621475,
0.02288779802620411,
-0.0061106388457119465,
0.005500383209437132,
-0.002148732775822282,
-0.019638312980532646,
0.008819706737995148,
0.04317541792988777,
-0.024187233299016953,
-0.01783657819032669,
0.030229348689317703,
0.01516727078706026,
-0.030737094581127167,
0.042560819536447525,
0.01275109127163887,
0.016726016998291016,
0.014624126255512238,
0.008734254166483879,
-0.025164073333144188,
-0.012670159339904785,
0.06501561403274536,
-0.03709401935338974,
0.008094915188848972,
-0.043823208659887314,
0.032634902745485306,
0.009800265543162823,
0.04733414202928543,
0.0013883054489269853,
0.030225085094571114,
0.07002145051956177,
-0.003495741169899702,
-0.034358538687229156,
-0.001700350665487349,
-0.008919009007513523,
-0.019529392942786217,
0.038771145045757294,
0.006687175948172808,
-0.008317893370985985,
0.035913094878196716,
0.029354926198720932,
-0.006103598978370428,
0.061284974217414856,
-0.0028672765474766493,
0.028702126815915108,
0.03474454954266548,
0.019076554104685783,
0.04741380736231804,
0.04797925800085068,
0.02585778199136257,
0.01962963677942753,
0.025378143414855003,
-0.0050402055494487286,
0.03032706305384636,
-0.010835603810846806,
-0.0034021264873445034,
-0.015348606742918491,
0.03199125826358795,
-0.011356429196894169,
0.004915433470159769,
0.006662851199507713,
-0.002128445077687502,
0.011241868138313293,
-0.0026327541563659906,
-0.005374788772314787,
-0.05053827911615372,
0.02467343956232071,
-0.012634862214326859,
0.016515210270881653,
0.04797207564115524,
-0.0739743709564209,
0.03175446018576622,
0.01016880664974451,
0.06909498572349548,
0.01781376264989376,
0.009487287141382694,
0.0347876213490963,
0.040968265384435654,
0.027070578187704086,
-0.001661796704865992,
-0.0239544864743948,
0.02805701270699501,
0.0005165977054275572,
-0.007263184525072575,
0.01752583496272564,
0.05796174705028534,
-0.018985217437148094,
0.016172075644135475,
0.03239283710718155,
-0.009057979099452496,
0.029124092310667038,
-0.008170661516487598,
-0.006164857652038336,
0.018564781174063683,
-0.047309767454862595,
-0.013558807782828808,
-0.015315761789679527,
0.009111227467656136,
0.017584657296538353,
-0.05215900018811226,
0.012242352589964867,
-0.01576622948050499,
0.014079625718295574,
-0.028260955587029457,
-0.0009642461081966758,
-0.008220965042710304,
-0.05126497149467468,
0.009686705656349659,
0.054161928594112396,
-0.0018619006732478738,
0.002692489419132471,
-0.03645447641611099,
0.0003454620309639722,
0.00957457721233368,
0.04126801714301109,
-0.002898200647905469,
0.013616046868264675,
0.0006681289523839951,
0.032350800931453705,
-0.05591196194291115,
0.03244806081056595,
0.018807630985975266,
-0.008427505381405354,
-0.03254510089755058,
-0.0009538506274111569,
-0.009734544903039932,
-0.02800707519054413,
0.01771281659603119,
-0.022929714992642403,
0.049151334911584854,
-0.00210483162663877,
0.043907951563596725,
0.006118427496403456,
0.0031127564143389463,
-0.04091819003224373,
-0.03442101925611496,
-0.03350682556629181,
-0.07213441282510757,
-0.011818182654678822,
-0.007912722416222095,
0.0006683046813122928,
-0.02075490728020668,
-0.02931748889386654,
-0.0018076210981234908,
-0.04079771041870117,
-0.027133816853165627,
0.026490436866879463,
0.024248111993074417,
-0.0018190853297710419,
-0.010968230664730072,
-0.04429679363965988,
0.0464438833296299,
-0.0044891806319355965,
0.0006957108271308243,
0.002626916626468301,
0.019513564184308052,
0.004585715942084789,
-0.030493376776576042,
0.0017102410783991218,
0.00859597884118557,
0.004936864599585533,
-0.009094487875699997,
-0.026842117309570312,
-0.003496932564303279,
-0.0046320692636072636,
0.009131230413913727,
-0.00679981242865324,
0.013021748512983322,
0.04050847515463829,
0.004241535905748606,
0.009502620436251163,
-0.05360199883580208,
0.019428692758083344,
0.02851000241935253,
0.0002822318929247558,
0.038235586136579514,
-0.0016542745288461447,
0.01993676647543907,
-0.045245952904224396,
0.015325503423810005,
-0.009998689405620098,
0.06932441890239716,
-0.044754739850759506,
-0.011892593465745449,
-0.03765954449772835,
0.04177767038345337,
-0.008379553444683552,
-0.05029386281967163,
-0.022225210443139076,
-0.002121207071468234,
-0.0017086622538045049,
-0.03096741996705532,
-0.026814095675945282,
-0.01001743134111166,
0.05327024310827255,
0.010340808890759945,
0.003361818613484502,
0.023769818246364594,
0.012738236226141453,
0.0024272201117128134,
-0.017938999459147453,
-0.041304074227809906,
-0.006167364772409201,
0.010282641276717186,
0.040723130106925964,
-0.0013436762383207679,
-0.0025504210498183966,
-0.004806336015462875,
-0.01921270787715912,
-0.016040418297052383,
-0.012319790199398994,
-0.007569245528429747,
0.0018827542662620544,
-0.021322544664144516,
0.025860324501991272,
-0.02910776063799858,
-0.0590587742626667,
0.015575936995446682,
0.008284610696136951,
0.019941061735153198,
0.005198198836296797,
0.00030225186492316425,
-0.015200626105070114,
0.020089279860258102,
-0.0009725965210236609,
0.03290018066763878,
0.03488641977310181,
0.033605124801397324,
0.03606681525707245,
-0.007795157376676798,
-0.004298719111829996
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | Local Self-Attention Local self-attention is the obvious solution to reducing the \(\mathcal{O}(n^2)\) memory bottleneck, allowing us to model longer sequences with a reduced computational cost. In local self-attention the input \( \mathbf{X} = \mathbf{X}{1:n} = \mathbf{x}{1}, \ldots, \mathbf{x}{n} \) is cut into \(n_{c}\) chunks: \( \mathbf{X} = \left[\mathbf{X}{1:l{c}}, \ldots, \mathbf{X}{(n{c} - 1) * l_{c} : n_{c} * l_{c}}\right] \) each of length config.local_chunk_length, i.e. \(l_{c}\), and subsequently global self-attention is applied on each chunk separately. Let's take our input sequence for \(n=16, d_h=3\) again for visualization: Assuming \(l_{c} = 4, n_{c} = 4\), chunked attention can be illustrated as follows: As can be seen, the attention operation is applied for each chunk \(\mathbf{X}{1:4}, \mathbf{X}{5:8}, \mathbf{X}{9:12}, \mathbf{X}{13:16}\) individually. The first drawback of this architecture becomes obvious: Some input vectors have no access to their immediate context, e.g. \(\mathbf{x}9\) has no access to \(\mathbf{x}{8}\) and vice-versa in our example. This is problematic because these tokens are not able to learn word representations that take their immediate context into account. A simple remedy is to augment each chunk with config.local_num_chunks_before, i.e. \(n_{p}\), chunks and config.local_num_chunks_after, i.e. \(n_{a}\), so that every input vector has at least access to \(n_{p}\) previous input vectors and \(n_{a}\) following input vectors. This can also be understood as chunking with overlap whereas \(n_{p}\) and \(n_{a}\) define the amount of overlap each chunk has with all previous chunks and following chunks. We denote this extended local self-attention as follows: $$\mathbf{Z}^{\text{loc}} = \left[\mathbf{Z}{1:l{c}}^{\text{loc}}, \ldots, \mathbf{Z}{(n{c} - 1) * l_{c} : n_{c} * l_{c}}^{\text{loc}}\right], $$ with $$\mathbf{Z}{l{c} * (i - 1) + 1 : l_{c} * i}^{\text{loc}} = \text{SelfAttn}(\mathbf{X}{l{c} * (i - 1 - n_{p}) + 1: l_{c} * (i + n_{a})})\left[n_{p} * l_{c}: -n_{a} * l_{c}\right], \forall i \in {1, \ldots, n_{c} }$$ Okay, this formula looks quite complicated. Let's make it easier. In Reformer's self-attention layers \(n_{a}\) is usually set to 0 and \(n_{p}\) is set to 1, so let's write down the formula again for \(i = 1\): $$\mathbf{Z}{1:l{c}}^{\text{loc}} = \text{SelfAttn}(\mathbf{X}{-l{c} + 1: l_{c}})\left[l_{c}:\right]$$ We notice that we have a circular relationship so that the first segment can attend the last segment as well. Let's illustrate this slightly enhanced local attention again. First, we apply self-attention within each windowed segment and keep only the central output segment. Finally, the relevant output is concatenated to \(\mathbf{Z}^{\text{loc}}\) and looks as follows. Note that local self-attention is implemented efficiently way so that no output is computed and subsequently "thrown-out" as shown here for illustration purposes by the red cross. It's important to note here that extending the input vectors for each chunked self-attention function allows each single output vector \( \mathbf{z}{i} \) of this self-attention function to learn better vector representations. E.g. each of the output vectors \( \mathbf{z}{5}^{\text{loc}}, \mathbf{z}{6}^{\text{loc}}, \mathbf{z}{7}^{\text{loc}}, \mathbf{z}{8}^{\text{loc}} \) can take into account all of the input vectors \( \mathbf{X}{1:8} \) to learn better representations. The gain in memory consumption is quite obvious: The \( \mathcal{O}(n^2) \) memory complexity is broken down for each segment individually so that the total asymptotic memory consumption is reduced to \( \mathcal{O}(n_{c} * l_{c}^2) = \mathcal{O}(n * l_{c}) \). This enhanced local self-attention is better than the vanilla local self-attention architecture but still has a major drawback in that every input vector can only attend to a local context of predefined size. For NLP tasks that do not require the transformer model to learn long-range dependencies between the input vectors, which include arguably e.g. speech recognition, named entity recognition and causal language modeling of short sentences, this might not be a big issue. Many NLP tasks do require the model to learn long-range dependencies, so that local self-attention could lead to significant performance degradation, e.g. * Question-answering: the model has to learn the relationship between the question tokens and relevant answer tokens which will most likely not be in the same local range * Multiple-Choice: the model has to compare multiple answer token segments to each other which are usually separated by a significant length * Summarization: the model has to learn the relationship between a long sequence of context tokens and a shorter sequence of summary tokens, whereas the relevant relationships between context and summary can most likely not be captured by local self-attention * etc... Local self-attention on its own is most likely not sufficient for the transformer model to learn the relevant relationships of input vectors (tokens) to each other. Therefore, Reformer additionally employs an efficient self-attention layer that approximates global self-attention, called LSH self-attention. | [
0.08472848683595657,
-0.011682447046041489,
0.05916215479373932,
-0.03568662703037262,
0.013447953388094902,
0.0030921860598027706,
-0.01487599778920412,
0.010358499363064766,
-0.05189843848347664,
-0.012789533473551273,
-0.0769285187125206,
0.06280582398176193,
-0.014083032496273518,
-0.0033003014978021383,
-0.050441842526197433,
0.08413777500391006,
0.10595816373825073,
-0.04791468381881714,
-0.03481261059641838,
-0.04579997435212135,
0.022283416241407394,
0.03047369047999382,
0.11934204399585724,
-0.008468447253108025,
-0.04155135527253151,
0.017716996371746063,
0.002001547021791339,
0.04511391744017601,
-0.028002144768834114,
-0.012617450207471848,
-0.11583228409290314,
-0.0019518901826813817,
0.04608255252242088,
-0.04293566942214966,
0.019459646195173264,
-0.06264688819646835,
-0.07735343277454376,
0.04975207522511482,
0.09643091261386871,
-0.037641480565071106,
0.008461101911962032,
-0.0032249221112579107,
-0.07512138038873672,
0.027265191078186035,
-0.036681462079286575,
0.01820708066225052,
-0.12193436920642853,
0.1016637459397316,
-0.09047648310661316,
0.004272545222193003,
-0.05591553822159767,
-0.0047416361048817635,
-0.03595642000436783,
0.06979671120643616,
-0.022921735420823097,
0.021276066079735756,
-0.030592864379286766,
-0.041605304926633835,
0.05987022817134857,
0.009045878425240517,
0.04325522109866142,
0.030026409775018692,
0.028298867866396904,
0.10102862119674683,
-0.0033008051104843616,
-0.0017103254795074463,
0.03597220778465271,
-0.011454199440777302,
-0.09093739837408066,
-0.032071053981781006,
0.004186057485640049,
-0.005854509770870209,
-0.021906603127717972,
-0.022971725091338158,
-0.0009985105134546757,
-0.04607250913977623,
-0.03448981046676636,
0.03824955224990845,
0.016006775200366974,
0.01518563274294138,
0.06107854098081589,
0.04791335016489029,
0.09771670401096344,
0.023744279518723488,
0.026801006868481636,
-0.031104937195777893,
-0.022086046636104584,
-0.11323583126068115,
-0.03652689605951309,
0.051544930785894394,
-0.07652384787797928,
-0.11649110168218613,
0.0032813316211104393,
-0.022785542532801628,
0.04360884055495262,
-0.058121148496866226,
0.06326008588075638,
0.02795873023569584,
-0.023028632625937462,
0.000674620212521404,
-0.044990696012973785,
-0.028219321742653847,
0.08186662197113037,
-0.017012272030115128,
-0.06951437145471573,
0.05600278452038765,
0.022366181015968323,
-0.02873559296131134,
-0.07638721913099289,
-0.05049335956573486,
-0.02537880651652813,
0.06212134659290314,
0.00239037093706429,
0.017643636092543602,
-0.024555860087275505,
-0.015214057639241219,
0.0003856894327327609,
0.02565643936395645,
-0.04106413945555687,
-0.019247185438871384,
-0.0723322257399559,
0.09660058468580246,
0.12060245871543884,
0.042864251881837845,
0.0744422972202301,
-0.0007293508388102055,
0.028833014890551567,
-0.006966537330299616,
-0.008736653253436089,
-0.08152388781309128,
-0.011293234303593636,
0.015530532225966454,
0.019959133118391037,
-0.04661095142364502,
-0.005152734462171793,
-0.04703149199485779,
0.00317967077717185,
0.018428491428494453,
-0.009683639742434025,
-0.01851177029311657,
-0.053255513310432434,
-0.029438983649015427,
0.02628529816865921,
0.026657387614250183,
0.07703537493944168,
-0.021984964609146118,
-0.08552667498588562,
0.04197399318218231,
0.04726473614573479,
0.03868204727768898,
0.008378039114177227,
-0.004909192677587271,
-0.009046832099556923,
-0.029080864042043686,
0.04188191145658493,
0.02159019559621811,
0.04782512038946152,
-0.012621973641216755,
-0.13188515603542328,
0.03586491942405701,
-0.02946157567203045,
0.03622831404209137,
-0.018084479495882988,
0.015575367026031017,
0.06346549093723297,
-0.03587309271097183,
0.014887435361742973,
-0.0015098863514140248,
0.0013963425299152732,
0.028205662965774536,
0.07071487605571747,
-0.003622366115450859,
0.06925496459007263,
-0.015610248781740665,
-0.04841132462024689,
0.014904255978763103,
-0.01929767243564129,
0.08102064579725266,
-0.015213783830404282,
0.036495815962553024,
0.00664221728220582,
-0.01182872336357832,
0.011639384552836418,
0.02245948277413845,
0.005033952184021473,
-0.0443856306374073,
0.06070239841938019,
-0.009574267081916332,
-0.030180076137185097,
-0.05744360014796257,
-0.06286074966192245,
0.04683499038219452,
0.01888432167470455,
-0.0485885888338089,
0.017694981768727303,
0.00871927011758089,
-0.013882866129279137,
0.07924459129571915,
0.0857781246304512,
0.0792214497923851,
0.00815926305949688,
0.04562157392501831,
0.028344519436359406,
0.056577734649181366,
0.056269336491823196,
-0.016809815540909767,
-0.03666195645928383,
-0.04377610236406326,
0.10827207565307617,
-0.05209650471806526,
-0.04120568558573723,
-0.07747204601764679,
0.005586523097008467,
-0.038639456033706665,
-0.0489271804690361,
-0.014645631425082684,
0.0292588509619236,
0.048706963658332825,
-0.019410617649555206,
0.012403417378664017,
0.13062216341495514,
-0.038057174533605576,
-0.0485372357070446,
0.0172690749168396,
-0.03521260619163513,
0.04029003158211708,
0.010675746947526932,
-0.05258515849709511,
0.0579073391854763,
-0.05148078501224518,
-0.0012295222841203213,
-0.07728403061628342,
0.020311560481786728,
-0.01684274896979332,
-0.002024704124778509,
-0.0006442804588004947,
-0.045791417360305786,
0.046711865812540054,
0.014955929480493069,
-0.036901555955410004,
-0.03469917178153992,
-0.04874925687909126,
-0.0005697122542187572,
0.021229444071650505,
-0.019986014813184738,
0.021754702553153038,
0.004261501133441925,
-0.014001780189573765,
-0.041485607624053955,
-0.0042414418421685696,
-0.03433982655405998,
0.08045035600662231,
-0.005109368357807398,
-0.06094341352581978,
-0.016444046050310135,
0.02228175476193428,
-0.002433461369946599,
-0.04499616101384163,
-0.0021244953386485577,
-0.020350083708763123,
-0.027424318715929985,
0.043672382831573486,
-0.0018521326128393412,
-0.015304149128496647,
-0.03578609973192215,
-0.028604507446289062,
0.06258892267942429,
0.01596403308212757,
0.005731695797294378,
-0.017399409785866737,
-0.0059130992740392685,
0.0005042414995841682,
-0.011565271764993668,
0.02288576401770115,
0.017536327242851257,
0.00312047335319221,
0.013151406310498714,
-0.04831461235880852,
-0.00781487487256527,
-0.03503000736236572,
-0.01796342246234417,
0.006966075859963894,
0.025051526725292206,
-0.022037971764802933,
0.0066070593893527985,
0.0021138412412256002,
-0.0025391094386577606,
0.03530897572636604,
-0.03257540613412857,
-0.024694152176380157,
-0.01507763285189867,
0.009853832423686981,
-0.02761206217110157,
-0.025003233924508095,
-0.034456245601177216,
-0.006452035624533892,
-0.014477587305009365,
0.000001930963207996683,
-0.012277727015316486,
-0.023066246882081032,
0.022127196192741394,
-0.0013683105353266,
0.012980681844055653,
-0.00015450936916749924,
-0.014463170431554317,
0.01087866723537445,
-0.014325588010251522,
0.07085006684064865,
-0.09714613109827042,
-0.061527449637651443,
-0.005189946852624416,
0.027172401547431946,
-0.00708363763988018,
-0.04338407516479492,
0.01574031077325344,
0.05151364952325821,
-0.031094294041395187,
-0.046838413923978806,
-0.006626608781516552,
-0.02057870291173458,
0.002476389752700925,
0.019252192229032516,
-0.005642208270728588,
0.024783071130514145,
0.01969354972243309,
0.0008017186191864312,
0.05726464465260506,
0.02133059687912464,
0.027062345296144485,
0.014624902978539467,
-0.041109129786491394,
-0.006197681650519371,
-0.03568596765398979,
-0.001480916398577392,
-0.02915467880666256,
0.0161695946007967,
0.023676371201872826,
-0.015095594339072704,
-0.03509962186217308,
-0.026078810915350914,
0.00535274064168334,
-0.028667613863945007,
-0.0585956908762455,
-0.004492706619203091,
0.03151443228125572,
-0.013371961191296577,
0.009067729115486145,
0.023852113634347916,
0.05578886717557907,
0.008449217304587364,
0.025550303980708122,
0.023877307772636414,
0.018652373924851418,
-0.005474030040204525,
-0.0022123593371361494,
-0.040683940052986145,
0.036041438579559326,
-0.041900552809238434,
-0.0005537482211366296,
-0.04840833321213722,
0.009397314861416817,
0.01676016114652157,
-0.029989294707775116,
-0.03781352564692497,
-0.011036467738449574,
0.014563069678843021,
0.006354659795761108,
-3.846163565413008e-7,
-0.036468058824539185,
0.029462559148669243,
0.013561518862843513,
0.036159027367830276,
-0.03479631617665291,
-0.004054535645991564,
0.004988782107830048,
0.017794854938983917,
-0.0036674232687801123,
0.024233920499682426,
-0.01636473648250103,
-0.016564246267080307,
-0.003737090155482292,
-0.00381897552870214,
-0.01785786636173725,
0.029915740713477135,
-0.004592037294059992,
-0.01340476144105196,
0.08513199537992477,
0.03552630916237831,
-0.006308248266577721,
0.017474450170993805,
-0.07897686958312988,
0.026629919186234474,
0.004630546551197767,
0.01877753622829914,
0.030628418549895287,
0.02133556641638279,
0.0010306319454684854,
0.025854172185063362,
-0.027369264513254166,
0.014671866782009602,
0.04101860150694847,
-0.028662405908107758,
-0.017896952107548714,
0.03988558426499367,
0.036523960530757904,
-0.008483728393912315,
0.032991405576467514,
0.007504613138735294,
0.04331136867403984,
-0.058535121381282806,
0.012966539710760117,
0.00813568290323019,
-0.01011423859745264,
-0.0006715456838719547,
-0.05167743191123009,
0.024200664833188057,
0.03174211084842682,
-0.0029049308504909277,
0.027368085458874702,
-0.026586653664708138,
0.006557853892445564,
0.019595585763454437,
0.04324766993522644,
-0.010768398642539978,
-0.05897281691431999,
-0.03410167992115021,
-0.035910714417696,
0.014172958210110664,
-0.02052004262804985,
0.019357798621058464,
-0.002063108840957284,
-0.012835673987865448,
0.037334080785512924,
-0.012361172586679459,
0.021135980263352394,
0.024801695719361305,
0.009080518037080765,
0.002361608436331153,
-0.04200172796845436,
-0.00812701415270567,
0.0037840125150978565,
0.005573060363531113,
0.03824592009186745,
0.0005438412190414965,
-0.03728155419230461,
0.00936662033200264,
-0.005317913834005594,
-0.03716623783111572,
-0.017989717423915863,
-0.03183677792549133,
0.004038795828819275,
-0.0205112062394619,
0.001901191775687039,
0.0006232617306523025,
-0.02088272199034691,
0.02829468622803688,
-0.037012092769145966,
0.05657895654439926,
0.0704534724354744,
0.012630777433514595,
-0.011547008529305458,
0.052937101572752,
0.0095663508400321,
-0.011744416318833828,
-0.0062425886280834675,
-0.005761423613876104,
0.030395712703466415,
0.03860831260681152,
-0.006756069138646126,
-0.013937873765826225,
-0.054830439388751984,
0.00424604769796133,
0.0076993051916360855,
-0.020188933238387108,
0.01864941418170929,
-0.028294699266552925,
0.002555110491812229,
-0.03033788874745369,
-0.03937830403447151,
0.013902626931667328,
-0.031807590276002884,
-0.04371855780482292,
-0.001815681578591466,
-0.009485522285103798,
0.016823267564177513,
-0.009227612987160683,
-0.021050618961453438,
-0.013996676541864872,
-0.04735584184527397,
0.01566265895962715,
0.03873661160469055,
-0.0016426692018285394,
0.010328375734388828,
0.017276939004659653,
0.05516544356942177,
0.05506562441587448,
-0.029979931190609932,
0.03622480109333992,
0.025001054629683495,
-0.017598289996385574,
-0.008552154526114464,
0.021158477291464806,
0.018940486013889313,
-0.025141378864645958,
0.02044869214296341,
0.0008856418426148593,
-0.011514812707901001,
-0.00434835022315383,
0.044697850942611694,
0.006242218893021345,
-0.024269739165902138,
-0.06510297954082489,
0.0123022785410285,
0.02965542860329151,
0.0024446884635835886,
-0.048982053995132446,
-0.043046921491622925,
-0.006061539985239506,
0.0013389912201091647,
-0.012474412098526955,
-0.056705400347709656,
-0.005050890147686005,
0.01795133389532566,
-0.038161393254995346,
-0.0032506559509783983,
0.0000553595345991198,
-0.007688693702220917,
0.00864206999540329,
0.05476074293255806,
0.0008997542900033295,
-0.02137831039726734,
0.02082120254635811,
-0.0012912075035274029,
-0.02694210223853588,
-0.024987895041704178,
0.02817903645336628,
0.031738221645355225,
0.012617314234375954,
0.05288372188806534,
-0.007504179608076811,
0.020932789891958237,
-0.0158734992146492,
0.022949865087866783,
-0.018460597842931747,
-0.039597876369953156,
0.05385956913232803,
0.009571040980517864,
0.033844031393527985,
0.006405260413885117,
0.029516518115997314,
-0.05289698764681816,
0.05633792281150818,
-0.036886151880025864,
0.010246887803077698,
0.056016068905591965,
-0.010088744573295116,
-0.004732652101665735,
-0.00617767171934247,
0.04302927851676941,
-0.04687745124101639,
0.008122848346829414,
0.02644071914255619,
0.002474926644936204,
0.0009145010262727737,
0.009926649741828442,
-0.027545955032110214,
0.0404428094625473,
0.00600000424310565,
0.022777969017624855,
-0.04009613022208214,
-0.0012089622905477881,
-0.029899410903453827,
-0.02106962539255619,
0.016144299879670143,
0.02323991432785988,
-0.03410084918141365,
0.006267561577260494,
0.08383651822805405,
0.05178729444742203,
-0.04408028721809387,
-0.033729083836078644,
0.01751025952398777,
-0.030058935284614563,
-0.006034134887158871,
-0.004196849185973406,
0.026325413957238197,
0.006467626430094242,
0.021654579788446426,
-0.010395676828920841,
0.018569286912679672,
0.04648812487721443,
0.02427617274224758,
0.009970195591449738,
0.027271796017885208,
-0.018583867698907852,
-0.007955309934914112,
0.024582814425230026,
-0.002921843668445945,
0.004456837195903063,
-0.007796129211783409,
0.02111833356320858,
0.0042458935640752316,
-0.031596358865499496,
0.05414462089538574,
0.012441933155059814,
-0.004216487519443035,
0.03547731414437294,
-0.006528125610202551,
0.035942185670137405,
0.03970035910606384,
-0.008629354648292065,
-0.02468409202992916,
-0.026462534442543983,
0.012500097043812275,
-0.009766459465026855,
0.05004803091287613,
-0.004509068094193935,
-0.005358356516808271,
-0.010688663460314274,
0.021248968318104744,
0.03537564352154732,
0.05399627238512039,
0.007870475761592388,
-0.014446134679019451,
-0.005099186673760414,
-0.04886067658662796,
-0.03929118067026138,
0.034221846610307693,
0.025568310171365738,
-0.02858647145330906,
0.012916726060211658,
0.010045359842479229,
0.017459489405155182,
-0.0010354408295825124,
0.017123203724622726,
-0.026794815436005592,
-0.009874684736132622,
-0.025707148015499115,
0.0030579317826777697,
0.039002273231744766,
-0.016222598031163216,
0.021931344643235207,
-0.015520821325480938,
0.0181142445653677,
0.03358947113156319,
0.010351541452109814,
-0.029723959043622017,
-0.07980745285749435,
-0.028873423114418983,
0.008720159530639648,
-0.015495113097131252,
0.04294072464108467,
-0.01206158846616745,
-0.035538580268621445,
0.055484697222709656,
0.025340836495161057,
-0.036454424262046814,
0.05411604419350624,
0.021840687841176987,
0.0005767160910181701,
-0.03965769708156586,
-0.005361335817724466,
-0.007561598438769579,
-0.007592895999550819,
0.049180276691913605,
-0.008125243708491325,
0.037873249500989914,
0.017513636499643326,
0.003843504237011075,
0.04250888526439667,
-0.012883507646620274,
-0.027711689472198486,
-0.04801303520798683,
0.023361019790172577,
-0.019323250278830528,
-0.006670880597084761,
-0.03025033511221409,
-0.006956914439797401,
0.011990738101303577,
-0.011997457593679428,
-0.004373829811811447,
-0.02441035397350788,
-0.02132345549762249,
-0.037591803818941116,
0.049235422164201736,
0.02568206749856472,
0.0002968954504467547,
-0.014985054731369019,
0.015704939141869545,
-0.013229046948254108,
0.036570955067873,
0.04366087168455124,
0.041934818029403687,
0.038165703415870667,
-0.01090221107006073,
0.014740998856723309,
-0.006203404627740383,
0.02220790833234787,
-0.045851849019527435,
-0.053733207285404205,
-0.01857965998351574,
0.01266116090118885,
-0.009808205999433994,
0.025855207815766335,
-0.03832562640309334,
0.07681822776794434,
-0.010840440168976784,
-0.011008326895534992,
-0.051598940044641495,
-0.025706510990858078,
0.03808271139860153,
-0.03323698788881302,
0.03292806074023247,
0.027169350534677505,
0.005288571584969759,
-0.01427090261131525,
-0.016890794038772583,
0.021673372015357018,
0.03868648782372475,
0.011978164315223694,
0.019664468243718147,
-0.0029588788747787476,
-0.020801689475774765,
-0.01929592341184616,
-0.03857884183526039,
-0.007686126511543989,
-0.009231260977685452,
0.013209445402026176,
0.030546072870492935,
0.0007815695716999471,
0.024942658841609955,
0.04420241713523865,
-0.012073851190507412,
-0.005343145690858364,
-0.021343989297747612,
0.046825915575027466,
0.0011776195606216788,
-0.03392352908849716,
-0.0013632095651701093,
0.023205934092402458,
0.03547171130776405,
0.06852437555789948,
0.012929234653711319,
0.040214795619249344,
0.03350156173110008,
0.038570694625377655,
-0.025553831830620766,
0.043063703924417496,
-0.0014376029139384627,
-0.05719403922557831,
0.01785474829375744,
0.04095851629972458,
-0.02022732049226761,
-0.02122221514582634,
-0.023630768060684204,
0.014286454766988754,
0.022024022415280342,
0.0059515186585485935,
-0.006358323153108358,
0.043808531016111374,
-0.027302032336592674,
0.0197764802724123,
-0.00842911098152399,
0.007077139336615801,
-0.021766312420368195,
0.05490334704518318,
-0.0344645231962204,
0.036369189620018005
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | Recap Global Self-Attention The core of every Transformer model is the self-attention layer. To recap the conventional self-attention layer, which we refer to here as the global self-attention layer, let us assume we apply a transformer layer on the embedding vector sequence \(\mathbf{X} = \mathbf{x}1, \ldots, \mathbf{x}_n\) where each vector \(\mathbf{x}{i}\) is of size config.hidden_size, i.e. \(d_h\). In short, a global self-attention layer projects \(\mathbf{X}\) to the query, key and value matrices \(\mathbf{Q}, \mathbf{K}, \mathbf{V}\) and computes the output \(\mathbf{Z}\) using the softmax operation as follows: \(\mathbf{Z} = \text{SelfAttn}(\mathbf{X}) = \text{softmax}(\mathbf{Q}\mathbf{K}^T) \mathbf{V}\) with \(\mathbf{Z}\) being of dimension \(d_h \times n\) (leaving out the key normalization factor and self-attention weights \(\mathbf{W}^{O}\) for simplicity). For more detail on the complete transformer operation, see the illustrated transformer. Visually, we can illustrate this operation as follows for \(n=16, d_h=3\): Note that for all visualizations batch_size and config.num_attention_heads is assumed to be 1. Some vectors, e.g. \(\mathbf{x_3}\) and its corresponding output vector \(\mathbf{z_3}\) are marked so that LSH self-attention can later be better explained. The presented logic can effortlessly be extended for multi-head self-attention (config.num_attention_{h}eads > 1). The reader is advised to read the illustrated transformer as a reference for multi-head self-attention. Important to remember is that for each output vector \(\mathbf{z}{i}\), the whole input sequence \(\mathbf{X}\) is processed. The tensor of the inner dot-product \(\mathbf{Q}\mathbf{K}^T\) has an asymptotic memory complexity of \(\mathcal{O}(n^2)\) which usually represents the memory bottleneck in a transformer model. This is also the reason why bert-base-cased has a config.max_position_embedding_size of only 512. | [
0.04481486976146698,
-0.047732505947351456,
0.061583906412124634,
-0.03437037020921707,
0.022489866241812706,
0.052320681512355804,
-0.03484846279025078,
0.049371205270290375,
0.012501017190515995,
0.004942636471241713,
-0.10263190418481827,
0.08344445377588272,
-0.0023346301168203354,
0.045253414660692215,
-0.03617560490965843,
0.06268811225891113,
0.05844399705529213,
-0.0007406891672872007,
-0.08876235783100128,
-0.0284871868789196,
0.001488389796577394,
-0.08048809319734573,
0.06927672028541565,
0.0008843051618896425,
-0.04166574403643608,
-0.028162846341729164,
0.006815944332629442,
0.024694137275218964,
-0.01485873106867075,
0.05108647793531418,
-0.11724160611629486,
-0.024353334680199623,
0.04336287081241608,
-0.034475795924663544,
0.0073675368912518024,
-0.028818830847740173,
-0.13746362924575806,
0.017935380339622498,
0.04832366108894348,
-0.10129673779010773,
0.011181659065186977,
0.0007520483341068029,
-0.12040790170431137,
0.00612559262663126,
0.00018595664005260915,
-0.038140248507261276,
-0.171359583735466,
0.10074692964553833,
-0.07202465832233429,
0.002521214075386524,
-0.023208776488900185,
0.04855114221572876,
-0.03398699313402176,
0.024196386337280273,
0.0014625497860834002,
0.046892717480659485,
-0.003302213503047824,
-0.01572292670607567,
-0.0016194757772609591,
-0.03242960572242737,
0.06416773051023483,
0.02794817090034485,
0.02711799181997776,
0.10516831278800964,
0.017041122540831566,
-0.039559539407491684,
0.029208919033408165,
-0.023848306387662888,
-0.06755012273788452,
0.00888073816895485,
-0.04110947623848915,
-0.009552234783768654,
-0.016997091472148895,
-0.03921876102685928,
-0.04062959551811218,
0.002184143755584955,
0.028803342953324318,
0.037420932203531265,
0.027984069660305977,
-0.0443355068564415,
0.0532858669757843,
0.02830500900745392,
0.05885064974427223,
0.05273756384849548,
0.002039872109889984,
-0.006815335713326931,
0.015761418268084526,
-0.03108426183462143,
-0.055130746215581894,
0.04728420078754425,
-0.0739125907421112,
-0.1350216269493103,
0.010036383755505085,
-0.03373336046934128,
0.057870253920555115,
-0.05738803371787071,
0.004782381933182478,
-0.028901349753141403,
-0.042351920157670975,
-0.013707650825381279,
-0.024865079671144485,
0.03198796883225441,
0.09227252751588821,
-0.0441645123064518,
-0.04074440151453018,
-0.008364053443074226,
0.006534982938319445,
-0.06655000895261765,
-0.05785055458545685,
0.017782574519515038,
-0.0445682518184185,
0.003425569273531437,
0.012637448497116566,
0.020065922290086746,
-0.018746761605143547,
0.03518814221024513,
0.013546016998589039,
-0.030792728066444397,
-0.00041865461389534175,
0.02802821435034275,
-0.02511182799935341,
0.07926870137453079,
0.06379438191652298,
-0.009869961068034172,
0.07390914112329483,
-0.005297866649925709,
-0.022305263206362724,
0.03536209464073181,
-0.022725040093064308,
-0.03794098272919655,
0.024214839562773705,
-0.026064585894346237,
0.07719310373067856,
-0.01723276637494564,
-0.0632672980427742,
-0.0815252885222435,
0.030434519052505493,
0.02225698158144951,
-0.017355969175696373,
-0.026469958946108818,
-0.06492235511541367,
-0.046591851860284805,
0.0034216251224279404,
-0.030436353757977486,
0.055044014006853104,
-0.038358334451913834,
-0.08944668620824814,
0.07048966735601425,
0.05813349410891533,
0.07199282944202423,
0.017387207597494125,
0.002735574496909976,
-0.021111968904733658,
-0.06785362213850021,
0.0480450801551342,
-0.002883129520341754,
0.0580308623611927,
-0.06367368996143341,
-0.10711513459682465,
-0.011982046067714691,
-0.019396211951971054,
0.008546223863959312,
-0.018508370965719223,
0.05437596142292023,
0.01985708810389042,
-0.05277109146118164,
0.013118220493197441,
-0.019611017778515816,
0.02185405045747757,
0.024386953562498093,
0.0019302918808534741,
0.01785443164408207,
0.03527342155575752,
-0.024736741557717323,
-0.05577545240521431,
0.008063550107181072,
-0.006185975857079029,
0.10263858735561371,
0.0034561112988740206,
0.04649036005139351,
-0.04224613308906555,
-0.0347975455224514,
-0.020958896726369858,
0.04065917804837227,
0.020669439807534218,
-0.028696367517113686,
0.012117743492126465,
-0.002730622421950102,
-0.05201054736971855,
-0.002709093503654003,
-0.0796668604016304,
0.03176603093743324,
0.018428858369588852,
-0.03733469173312187,
0.03238878771662712,
-0.012526866048574448,
-0.051020797342061996,
0.049661166965961456,
0.05876116454601288,
0.02897571213543415,
0.06325038522481918,
0.011684245429933071,
0.023923374712467194,
0.010706921108067036,
0.022782929241657257,
0.003904959885403514,
-0.04271726310253143,
-0.008124862797558308,
0.05516176298260689,
-0.05221541225910187,
-0.033865638077259064,
-0.0886743813753128,
-0.002838854445144534,
-0.018011126667261124,
-0.02952585555613041,
-0.04502108693122864,
-0.010565496049821377,
0.06396248936653137,
-0.023323552682995796,
0.030674925073981285,
0.13157415390014648,
0.027520207688212395,
-0.05659150332212448,
-0.004993334878236055,
-0.022889424115419388,
-0.023871421813964844,
0.044502049684524536,
-0.029104067012667656,
0.013656055554747581,
-0.05982737988233566,
0.013603784143924713,
-0.06023150682449341,
0.0443943589925766,
0.002134458627551794,
-0.027076879516243935,
-0.015385996550321579,
-0.002228217665106058,
0.03240267187356949,
0.020093396306037903,
-0.04070666804909706,
-0.013371267355978489,
0.021321868523955345,
0.0264841727912426,
0.006462693680077791,
-0.027865443378686905,
0.04647897928953171,
0.023935958743095398,
0.029079394415020943,
-0.09194772690534592,
0.012617825530469418,
-0.09235444664955139,
0.07942097634077072,
-0.000868557021021843,
-0.0815790668129921,
0.03321754187345505,
0.018045343458652496,
0.006913460325449705,
-0.04491586983203888,
-0.02016885206103325,
-0.014950359240174294,
-0.001294956193305552,
0.021873150020837784,
-0.031178316101431847,
-0.026746157556772232,
-0.02909756824374199,
-0.03283102437853813,
0.037725210189819336,
0.038851119577884674,
0.015552980825304985,
0.02468227967619896,
-0.002273152582347393,
-0.008969780057668686,
-0.008772164583206177,
-0.014296566136181355,
-0.00157751957885921,
0.006600836757570505,
0.047787878662347794,
-0.03135890141129494,
0.01794224977493286,
-0.03043222986161709,
-0.017494233325123787,
0.02597079798579216,
0.04501210153102875,
0.0004734813410323113,
0.0014659767039120197,
-0.02124452404677868,
-0.01108832098543644,
0.00789290014654398,
-0.008656373247504234,
-0.023628858849406242,
-0.010376131162047386,
0.040137600153684616,
0.009534955024719238,
-0.021268390119075775,
-0.020898275077342987,
0.023191718384623528,
-0.007818772457540035,
-0.015720749273896217,
-0.0020445063710212708,
0.033553313463926315,
0.011361109092831612,
0.011238133534789085,
0.012547024525702,
0.009698453359305859,
-0.020518051460385323,
0.03683056682348251,
0.0017952760681509972,
0.0704643726348877,
-0.10155350714921951,
-0.05225846543908119,
-0.020356440916657448,
0.028931716457009315,
0.008286794647574425,
-0.05625314265489578,
0.034760333597660065,
0.05274420231580734,
-0.01163227017968893,
-0.008718841709196568,
-0.008706610649824142,
-0.058185070753097534,
0.015423153527081013,
0.033483486622571945,
0.0053876168094575405,
0.033983223140239716,
0.019653158262372017,
-0.010196392424404621,
0.05849718675017357,
0.000018852668290492147,
0.032517723739147186,
0.02151520550251007,
-0.022513357922434807,
0.0056209866888821125,
-0.0034380622673779726,
-0.01188388280570507,
0.027160409837961197,
0.006514031905680895,
0.04407114535570145,
0.009745271876454353,
-0.0074302866123616695,
-0.021636515855789185,
-0.022208429872989655,
0.02948104776442051,
-0.03778368607163429,
0.0012851373758167028,
0.03896719589829445,
0.0014272695407271385,
0.01988818496465683,
0.06749475747346878,
0.03062996082007885,
0.005401708651334047,
0.00008217206050176173,
0.030670562759041786,
0.057121336460113525,
-0.028820233419537544,
0.022846831008791924,
-0.05966980382800102,
0.0016361422603949904,
-0.04368260130286217,
-0.026153329759836197,
-0.03507339209318161,
0.0006117437733337283,
-0.0002571807708591223,
-0.026715414598584175,
0.000018083705072058365,
0.019126927480101585,
0.009413900785148144,
0.015060880221426487,
-0.013977020978927612,
-0.0380588136613369,
0.029406582936644554,
-0.01616615429520607,
-0.006464818026870489,
-0.03768584504723549,
0.04122073948383331,
0.01053204108029604,
0.005638104863464832,
-0.008271845057606697,
0.01294617261737585,
-0.008240698836743832,
-0.003035204717889428,
-0.01865299418568611,
-0.0018707802519202232,
-0.03494757413864136,
0.03925925865769386,
0.007803034037351608,
0.004236437380313873,
0.09050647914409637,
0.011039878241717815,
0.011372790671885014,
0.00042157352436333895,
-0.026505932211875916,
0.017367811873555183,
-0.01406484842300415,
0.01545326691120863,
0.04442840814590454,
-0.00808284804224968,
0.04500928148627281,
0.01355000026524067,
0.013199199922382832,
-0.00920090451836586,
0.027274494990706444,
-0.021418754011392593,
0.015165150165557861,
0.03762441873550415,
0.0014318493194878101,
-0.002590291202068329,
0.04318838194012642,
0.014040510170161724,
0.06356782466173172,
-0.04127674922347069,
0.011574383825063705,
0.017554152756929398,
-0.00364392576739192,
0.012529049068689346,
-0.059306006878614426,
0.0016339111607521772,
0.026993554085493088,
0.01730753853917122,
0.029102537781000137,
-0.010151699185371399,
-0.011677160859107971,
0.006342191249132156,
0.026199640706181526,
0.01159148570150137,
-0.045327335596084595,
-0.042649928480386734,
-0.035100579261779785,
0.014677620492875576,
-0.004565315321087837,
0.016721894964575768,
-0.00837027095258236,
-0.022424597293138504,
0.024736518040299416,
-0.0008047159644775093,
0.06128557398915291,
0.048104800283908844,
-0.0059838006272912025,
-0.014426883310079575,
-0.02065129764378071,
0.004456282127648592,
0.03127594664692879,
0.0023322743363678455,
0.029914911836385727,
0.051171619445085526,
-0.031229168176651,
0.01817089319229126,
-0.017067020758986473,
-0.03730544447898865,
-0.047340452671051025,
0.021396400406956673,
0.03905923292040825,
-0.02477962151169777,
0.014621950685977936,
-0.023302998393774033,
-0.027782157063484192,
0.0213150791823864,
-0.04494326934218407,
0.014530032873153687,
0.07680682092905045,
0.004528549034148455,
-0.030013471841812134,
0.0510256290435791,
0.035810936242341995,
0.010430526919662952,
0.04237769916653633,
0.014834127388894558,
-0.01242564246058464,
0.01163462270051241,
0.019603798165917397,
0.004686216823756695,
-0.052319884300231934,
0.03016892820596695,
0.05181729421019554,
0.015700723975896835,
-0.01246637012809515,
-0.06005995348095894,
0.0352199487388134,
0.012773384340107441,
-0.03044077567756176,
-0.016992997378110886,
-0.02128589153289795,
-0.04401357099413872,
-0.039904408156871796,
0.01685374602675438,
-0.03799493983387947,
-0.019858798012137413,
0.030430924147367477,
-0.00759464967995882,
-0.012759538367390633,
0.0213688425719738,
-0.003747685579583049,
-0.0081892479211092,
-0.004062708932906389,
0.0390125997364521,
0.050577253103256226,
0.04810594394803047,
-0.03969278559088707,
0.01618710719048977,
0.04126884415745735,
-0.017082862555980682,
-0.005924527067691088,
0.027059534564614296,
0.016322553157806396,
0.0016659393440932035,
0.04944401979446411,
0.025402216240763664,
-0.0373658686876297,
0.010464316233992577,
0.019759995862841606,
0.046951618045568466,
-0.03291231393814087,
-0.04796053096652031,
0.007146365009248257,
-0.000446441990789026,
-0.029556915163993835,
-0.007389971055090427,
-0.008780082687735558,
-0.03416718542575836,
0.03355555608868599,
0.013146652840077877,
-0.03932257369160652,
-0.02043895237147808,
0.0217446181923151,
-0.0622909739613533,
-0.010919500142335892,
0.011027837172150612,
0.01916249841451645,
0.03911339119076729,
0.027030114084482193,
0.00787094421684742,
0.016034578904509544,
0.05587630718946457,
0.008241339586675167,
-0.05061407387256622,
-0.01984514109790325,
-0.010105853900313377,
0.004012799821794033,
-0.013086563907563686,
0.04130289703607559,
-0.006195736117660999,
-0.0076749916188418865,
-0.03486385568976402,
-0.00654397439211607,
-0.03574700281023979,
-0.06913114339113235,
0.06546653807163239,
0.02559087611734867,
-0.004710708744823933,
0.000848541734740138,
0.026246322318911552,
-0.02864443138241768,
0.026728279888629913,
-0.029847119003534317,
0.02924313209950924,
0.07328618317842484,
-0.05182887613773346,
0.01857437938451767,
-0.0024499138817191124,
0.056075744330883026,
-0.017988543957471848,
-0.010322998277842999,
0.026453962549567223,
0.004095260053873062,
0.020759087055921555,
-0.0056023383513092995,
0.004591313656419516,
0.042074114084243774,
0.024484457448124886,
-0.010044719092547894,
-0.020677559077739716,
-0.007730059791356325,
0.0011900803074240685,
-0.03671295568346977,
0.04397238790988922,
-0.0018534199334681034,
-0.009370774962008,
-0.016614042222499847,
0.04018629714846611,
0.01622002013027668,
0.004226739518344402,
-0.01431342214345932,
0.005144015420228243,
-0.06481616199016571,
-0.020044540986418724,
0.0252070315182209,
0.03888401389122009,
0.026664653792977333,
0.020343584939837456,
-0.0016807160573080182,
0.004332247190177441,
0.09031271934509277,
0.019601689651608467,
0.020174654200673103,
-0.015537524595856667,
0.010132906027138233,
-0.005623797886073589,
0.026828158646821976,
-0.013966219499707222,
0.03735775500535965,
0.028576264157891273,
0.03301548212766647,
-0.0037757332902401686,
-0.030558884143829346,
0.033148881047964096,
-0.009672826156020164,
-0.027616044506430626,
0.04803735017776489,
-0.01924697495996952,
0.033952075988054276,
0.027311235666275024,
0.026001596823334694,
0.019783897325396538,
0.02689129114151001,
0.019711263477802277,
0.014624476432800293,
0.029646610841155052,
0.005637285765260458,
-0.000021842441128683276,
0.022054940462112427,
0.017193438485264778,
-0.004075936507433653,
0.06619976460933685,
-0.004285959992557764,
-0.052086442708969116,
0.0035273677203804255,
-0.0554022379219532,
-0.03360208123922348,
-0.004017591942101717,
0.03953307494521141,
-0.04882176220417023,
0.003102951915934682,
0.0048127430491149426,
-0.023232316598296165,
-0.021187836304306984,
0.044553350657224655,
-0.02394913323223591,
-0.011508922092616558,
-0.027257902547717094,
-0.0009309214656241238,
0.03863753378391266,
0.008695567026734352,
0.008916596882045269,
-0.006772169843316078,
-0.006380254868417978,
0.022326137870550156,
0.022944465279579163,
-0.010487987659871578,
-0.04956720396876335,
-0.06993866711854935,
0.006794078275561333,
-0.016286930069327354,
0.022036802023649216,
0.008488073945045471,
-0.04645572975277901,
0.044639069586992264,
0.01704271323978901,
-0.022360293194651604,
0.0537550188601017,
-0.0033576723653823137,
-0.002947994042187929,
-0.04068814590573311,
-0.025683963671326637,
0.005360054783523083,
0.011382057331502438,
0.00943711306899786,
0.004479053430259228,
0.023536531254649162,
-0.005745069123804569,
-0.004315485712140799,
0.03970540314912796,
0.02351432852447033,
0.0012615987798199058,
-0.00811920128762722,
0.041043538600206375,
0.005655704997479916,
-0.01060534082353115,
0.009325195103883743,
-0.017026100307703018,
-0.024787873029708862,
0.013946660794317722,
0.015172207728028297,
-0.004024128429591656,
-0.017072346061468124,
0.011543188244104385,
0.02677827514708042,
0.007757571060210466,
-0.01859842613339424,
-0.0007074284367263317,
0.02495555207133293,
-0.005868927575647831,
0.04208903759717941,
0.05259387195110321,
0.06399492919445038,
0.03529360517859459,
-0.026741839945316315,
-0.0047547644935548306,
0.02416730672121048,
0.039689887315034866,
-0.03238346800208092,
-0.03950101137161255,
-0.018357427790760994,
0.03157170116901398,
0.04634852334856987,
0.013264955952763557,
-0.038365017622709274,
0.017640655860304832,
-0.07041752338409424,
-0.04907124489545822,
0.0035811306443065405,
-0.007887545973062515,
0.05049683526158333,
-0.01856580190360546,
0.028801409527659416,
0.018799714744091034,
0.00020227917411830276,
-0.03923918679356575,
-0.02038484625518322,
-0.01650187186896801,
0.04321599379181862,
0.014156044460833073,
0.018839946016669273,
-0.028935298323631287,
-0.031431443989276886,
-0.032180264592170715,
-0.047648925334215164,
0.024035107344388962,
0.010049697011709213,
0.002789027290418744,
-0.00384344719350338,
-0.012478655204176903,
0.01019788347184658,
0.04749138653278351,
0.011795898899435997,
0.019065286964178085,
-0.024089910089969635,
0.033973753452301025,
0.002449151361361146,
-0.03991175442934036,
-0.00509593915194273,
0.034240398555994034,
0.05181335657835007,
0.0314396470785141,
0.011028296314179897,
0.05014553666114807,
0.011689466424286366,
0.013343190774321556,
-0.003539710072800517,
-0.020972348749637604,
-0.025856951251626015,
-0.0439176969230175,
0.012149972841143608,
0.012192217633128166,
-0.02953975647687912,
-0.0515422560274601,
-0.026048297062516212,
0.014146716333925724,
0.027426503598690033,
0.010724246501922607,
-0.021833470091223717,
0.013351540081202984,
-0.03912459313869476,
0.01961345411837101,
-0.0012578072492033243,
0.02832057885825634,
-0.01953509822487831,
0.01344087440520525,
-0.0048497337847948074,
0.010173840448260307
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | LSH Self-Attention Alright, now that we have understood how local self-attention works, we can take a stab at the probably most innovative piece of Reformer: Locality sensitive hashing (LSH) Self-Attention. The premise of LSH self-attention is to be more or less as efficient as local self-attention while approximating global self-attention. LSH self-attention relies on the LSH algorithm as presented in Andoni et al (2015), hence its name. The idea behind LSH self-attention is based on the insight that if \(n\) is large, the softmax applied on the \(\mathbf{Q}\mathbf{K}^T\) attention dot-product weights only very few value vectors with values significantly larger than 0 for each query vector. Let's explain this in more detail. Let \(\mathbf{k}{i} \in \mathbf{K} = \left[\mathbf{k}_1, \ldots, \mathbf{k}_n \right]^T\) and \(\mathbf{q}{i} \in \mathbf{Q} = \left[\mathbf{q}1, \ldots, \mathbf{q}_n\right]^T\) be the key and query vectors. For each \(\mathbf{q}{i}\), the computation \(\text{softmax}(\mathbf{q}{i}^T \mathbf{K}^T)\) can be approximated by using only those key vectors of \(\mathbf{k}{j}\) that have a high cosine similarity with \(\mathbf{q}{i}\). This owes to the fact that the softmax function puts exponentially more weight on larger input values. So far so good, the next problem is to efficiently find the vectors that have a high cosine similarity with \(\mathbf{q}{i}\) for all \(i\). First, the authors of Reformer notice that sharing the query and key projections: \(\mathbf{Q} = \mathbf{K}\) does not impact the performance of a transformer model \({}^1\). Now, instead of having to find the key vectors of high cosine similarity for each query vector \(q_i\), only the cosine similarity of query vectors to each other has to be found. This is important because there is a transitive property to the query-query vector dot product approximation: If \(\mathbf{q}{i}\) has a high cosine similarity to the query vectors \(\mathbf{q}{j}\) and \(\mathbf{q}{k}\), then \(\mathbf{q}{j}\) also has a high cosine similarity to \(\mathbf{q}{k}\). Therefore, the query vectors can be clustered into buckets, such that all query vectors that belong to the same bucket have a high cosine similarity to each other. Let's define \(C{m}\) as the mth set of position indices, such that their corresponding query vectors are in the same bucket: \(C_{m} = { i | \text{ s.t. } \mathbf{q}{i} \in \text{mth cluster}}\) and config.num_buckets, i.e. \(n{b}\), as the number of buckets. For each set of indices \(C_{m}\), the softmax function on the corresponding bucket of query vectors \(\text{softmax}(\mathbf{Q}{i \in C{m}} \mathbf{Q}^T_{i \in C_{m}})\) approximates the softmax function of global self-attention with shared query and key projections \(\text{softmax}(\mathbf{q}{i}^T \mathbf{Q}^T)\) for all position indices \(i\) in \(C{m}\). Second, the authors make use of the LSH algorithm to cluster the query vectors into a predefined number of buckets \(n_{b}\). The LSH algorithm is an ideal choice here because it is very efficient and is an approximation of the nearest neighbor algorithm for cosine similarity. Explaining the LSH scheme is out-of-scope for this notebook, so let's just keep in mind that for each vector \(\mathbf{q}{i}\) the LSH algorithm attributes its position index \(i\) to one of \(n{b}\) predefined buckets, i.e. \(\text{LSH}(\mathbf{q}{i}) = m\) with \(i \in {1, \ldots, n}\) and \(m \in {1, \ldots, n{b}}\). Visually, we can illustrate this as follows for our original example: Third, it can be noted that having clustered all query vectors in \(n_{b}\) buckets, the corresponding set of indices \(C_{m}\) can be used to permute the input vectors \(\mathbf{x}1, \ldots, \mathbf{x}_n\) accordingly \({}^2\) so that shared query-key self-attention can be applied piecewise similar to local attention. Let's clarify with our example input vectors \(\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}{16}\) and assume config.num_buckets=4 and config.lsh_chunk_length = 4. Looking at the graphic above we can see that we have assigned each query vector \( \mathbf{q}1, \ldots, \mathbf{q}{16} \) to one of the clusters \( \mathcal{C}{1}, \mathcal{C}{2}, \mathcal{C}{3}, \mathcal{C}{4} \) . If we now sort the corresponding input vectors \( \mathbf{x}1, \ldots, \mathbf{x}{16} \) accordingly, we get the following permuted input \( \mathbf{X'} \): The self-attention mechanism should be applied for each cluster individually so that for each cluster \( \mathcal{C}m \) the corresponding output is calculated as follows: \( \mathbf{Z}^{\text{LSH}}{i \in \mathcal{C}m} = \text{SelfAttn}{\mathbf{Q}=\mathbf{K}}(\mathbf{X}{i \in \mathcal{C}_m}) \). Let's illustrate this again for our example. As can be seen, the self-attention function operates on different sizes of matrices, which is suboptimal for efficient batching in GPU and TPU. To overcome this problem, the permuted input can be chunked the same way it is done for local attention so that each chunk is of size config.lsh_chunk_length. By chunking the permuted input, a bucket might be split into two different chunks. To remedy this problem, in LSH self-attention each chunk attends to its previous chunk config.lsh_num_chunks_before=1 in addition to itself, the same way local self-attention does (config.lsh_num_chunks_after is usually set to 0). This way, we can be assured that all vectors in a bucket attend to each other with a high probability \({}^3\). All in all for all chunks \( k \in {1, \ldots, n{c}} \), LSH self-attention can be noted down as follows: $$ \mathbf{Z'}{l{c} * k + 1:l_{c} * (k + 1)}^{\text{LSH}} = \text{SelfAttn}{\mathbf{Q} = \mathbf{K}}(\mathbf{X'}{l_{c} * k + 1): l_{c} * (k + 1)})\left[l_{c}:\right] $$ with \(\mathbf{X'}\) and \( \mathbf{Z'} \) being the input and output vectors permuted according to the LSH algorithm. Enough complicated formulas, let's illustrate LSH self-attention. The permuted vectors \(\mathbf{X'}\) as shown above are chunked and shared query key self-attention is applied to each chunk. Finally, the output \(\mathbf{Z'}^{\text{LSH}}\) is reordered to its original permutation. One important feature to mention here as well is that the accuracy of LSH self-attention can be improved by running LSH self-attention config.num_hashes, e.g. \(n_{h} \) times in parallel, each with a different random LSH hash. By setting config.num_hashes > 1, for each output position \( i \), multiple output vectors \( \mathbf{z}^{\text{LSH}, 1}{i}, \ldots, \mathbf{z}^{\text{LSH}, n{h}}{i} \) are computed and subsequently merged: \( \mathbf{z}^{\text{LSH}}{i} = \sum_k^{n_{h}} \mathbf{Z}^{\text{LSH}, k}{i} * \text{weight}^k_i \). The \( \text{weight}^k_i \) represents the importance of the output vectors \( \mathbf{z}^{\text{LSH}, k}{i} \) of hashing round \( k \) in comparison to the other hashing rounds, and is exponentially proportional to the normalization term of their softmax computation. The intuition behind this is that if the corresponding query vector \( \mathbf{q}{i}^{k} \) have a high cosine similarity with all other query vectors in its respective chunk, then the softmax normalization term of this chunk tends to be high, so that the corresponding output vectors \( \mathbf{q}{i}^{k} \) should be a better approximation to global attention and thus receive more weight than output vectors of hashing rounds with a lower softmax normalization term. For more detail see Appendix A of the paper. For our example, multi-round LSH self-attention can be illustrated as follows. Great. That's it. Now we know how LSH self-attention works in Reformer. Regarding the memory complexity, we now have two terms that compete which each other to be the memory bottleneck: the dot-product: \( \mathcal{O}(n_{h} * n_{c} * l_{c}^2) = \mathcal{O}(n * n_{h} * l_{c}) \) and the required memory for LSH bucketing: \( \mathcal{O}(n * n_{h} * \frac{n_{b}}{2}) \) with \( l_{c} \) being the chunk length. Because for large \( n \), the number of buckets \( \frac{n_{b}}{2} \) grows much faster than the chunk length \( l_{c} \), the user can again factorize the number of buckets config.num_buckets as explained here. Let's recap quickly what we have gone through above: 1. We want to approximate global attention using the knowledge that the softmax operation only puts significant weights on very few key vectors. 2. If key vectors are equal to query vectors this means that for each query vector \( \mathbf{q}{i} \), the softmax only puts significant weight on other query vectors that are similar in terms of cosine similarity. 3. This relationship works in both ways, meaning if \( \mathbf{q}{j} \) is similar to \( \mathbf{q}{i} \) than \(\mathbf{q}{j} \) is also similar to \( \mathbf{q}{i} \), so that we can do a global clustering before applying self-attention on a permuted input. 4. We apply local self-attention on the permuted input and re-order the output to its original permutation. --- \( {}^{1} \) The authors run some preliminary experiments confirming that shared query key self-attention performs more or less as well as standard self-attention. \( {}^{2} \) To be more exact the query vectors within a bucket are sorted according to their original order. This means if, e.g. the vectors \( \mathbf{q}_1, \mathbf{q}_3, \mathbf{q}_7 \) are all hashed to bucket 2, the order of the vectors in bucket 2 would still be \( \mathbf{q}_1 \), followed by \( \mathbf{q}_3 \) and \( \mathbf{q}_7 \). \( {}^3 \) On a side note, it is to mention the authors put a mask on the query vector \( \mathbf{q}{i} \) to prevent the vector from attending to itself. Because the cosine similarity of a vector to itself will always be as high or higher than the cosine similarity to other vectors, the query vectors in shared query key self-attention are strongly discouraged to attend to themselves. | [
0.02592138573527336,
-0.02676825225353241,
0.05294067785143852,
-0.017244823276996613,
-0.017674073576927185,
0.03413984179496765,
-0.0059393527917563915,
0.0034684515558183193,
0.021585896611213684,
-0.014941711910068989,
-0.09761703014373779,
0.07330244034528732,
0.007793320342898369,
0.004255366511642933,
-0.05909653753042221,
0.05021491274237633,
0.05908907577395439,
-0.006192829925566912,
-0.029210681095719337,
0.028705962002277374,
0.019708996638655663,
0.01537842582911253,
0.07067330926656723,
-0.032008275389671326,
-0.0284403245896101,
-0.020245220512151718,
0.009558220393955708,
0.022688578814268112,
-0.07187481224536896,
0.01531633548438549,
-0.10119371116161346,
-0.06069132685661316,
0.03646942973136902,
-0.013383078388869762,
0.0030196839943528175,
-0.06153687462210655,
-0.07683126628398895,
0.010923252440989017,
0.03019561991095543,
-0.08517710864543915,
0.012741959653794765,
-0.010981800965964794,
-0.08857979625463486,
0.022753331810235977,
-0.07378251850605011,
-0.040592316538095474,
-0.16684356331825256,
0.08615468442440033,
-0.10701599717140198,
-0.024057580158114433,
-0.018701892346143723,
0.04503645375370979,
-0.01526720356196165,
0.05055997893214226,
-0.03463331609964371,
0.013682443648576736,
0.02660115621984005,
-0.018968632444739342,
0.0406462624669075,
0.045399490743875504,
0.06619719415903091,
-0.02421022206544876,
-0.04206928610801697,
0.07346626371145248,
0.048631589859724045,
0.006459944415837526,
0.0556400790810585,
0.0005856947973370552,
-0.10881392657756805,
-0.03935985639691353,
0.02104237861931324,
-0.002417381852865219,
-0.044152792543172836,
-0.008921562694013119,
-0.044986240565776825,
0.012852021493017673,
-0.04364175349473953,
0.06055556237697601,
0.06300987303256989,
-0.022021008655428886,
0.00857579242438078,
0.021905088797211647,
0.09568331390619278,
0.030362267047166824,
-0.000025949748305720277,
-0.009951568208634853,
-0.0050456589087843895,
-0.035622064024209976,
-0.0474347360432148,
0.04699358344078064,
-0.025724392384290695,
-0.08196846395730972,
0.010687225498259068,
-0.03991170972585678,
0.09094283729791641,
-0.07296835631132126,
0.028817713260650635,
0.008549771271646023,
-0.01971285045146942,
-0.0026630305219441652,
-0.022080427035689354,
-0.005924171768128872,
0.0688834935426712,
0.004094678442925215,
-0.03812368959188461,
0.02730206586420536,
0.05573354661464691,
-0.031076015904545784,
-0.019098227843642235,
-0.02968074381351471,
-0.04477393627166748,
0.06944382190704346,
0.01720191165804863,
0.055240850895643234,
0.03674311935901642,
0.007672393228858709,
-0.013769183307886124,
-0.011035866104066372,
0.002609154675155878,
-0.006386619992554188,
-0.0768665000796318,
0.11995774507522583,
0.03868287801742554,
0.030682897195219994,
0.0964994728565216,
-0.003947960212826729,
-0.04134760797023773,
0.04826291650533676,
-0.015850383788347244,
-0.031313706189394,
0.03852217271924019,
-0.0009419177658855915,
0.04796411469578743,
-0.013096671551465988,
-0.02650693990290165,
-0.03678305819630623,
-0.013059098273515701,
0.014584933407604694,
-0.012053020298480988,
-0.03940177708864212,
-0.02642630785703659,
-0.03413781151175499,
0.04926656559109688,
-0.04880740866065025,
0.021746842190623283,
-0.0406276099383831,
-0.07087796926498413,
0.06277737766504288,
0.05098578706383705,
0.051960427314043045,
0.0018236307660117745,
0.032989252358675,
-0.017550144344568253,
-0.06715074181556702,
0.007593533024191856,
0.039805613458156586,
0.04685668647289276,
-0.023511206731200218,
-0.09665020555257797,
0.009645900689065456,
-0.06585198640823364,
-0.011789302341639996,
0.006483970209956169,
0.03626043349504471,
0.046862274408340454,
-0.03695099800825119,
0.039114873856306076,
-0.002622018801048398,
0.00667106918990612,
0.07037480175495148,
0.04820956289768219,
0.05336232855916023,
0.10222470015287399,
-0.014630642719566822,
-0.055814336985349655,
0.03835628181695938,
0.0023672073148190975,
0.06707841902971268,
-0.03034963458776474,
0.05773281678557396,
-0.04639723524451256,
-0.007478507701307535,
0.011597213335335255,
0.05260169133543968,
-0.029397064819931984,
-0.016624586656689644,
0.047281116247177124,
0.010918226093053818,
0.03385411575436592,
-0.02713119424879551,
-0.09640505909919739,
0.03967319056391716,
0.05396738275885582,
-0.0014624334871768951,
0.028352977707982063,
0.004381419159471989,
-0.0400017648935318,
0.040908779948949814,
0.05442752689123154,
0.07149288058280945,
0.009267574176192284,
0.0007023342768661678,
0.02581167407333851,
0.025832301005721092,
-0.035174984484910965,
-0.02229301817715168,
-0.0335262194275856,
-0.02092183567583561,
0.04248041659593582,
-0.06301192194223404,
-0.07326453924179077,
-0.12817339599132538,
-0.014947479590773582,
-0.010432998649775982,
-0.0675114169716835,
0.03506411984562874,
0.024640904739499092,
0.05053696036338806,
-0.02398241125047207,
0.034045591950416565,
0.1607169508934021,
0.022760067135095596,
0.0018842628924176097,
0.03439962863922119,
-0.038079194724559784,
0.04519513249397278,
0.03234735503792763,
-0.04232747107744217,
0.06454785168170929,
-0.034664809703826904,
0.013399730436503887,
-0.0528549887239933,
0.047798238694667816,
0.0033021075651049614,
-0.047479357570409775,
0.019780069589614868,
-0.01836373656988144,
0.04665767401456833,
-0.027051076292991638,
-0.05078396201133728,
-0.01821628026664257,
0.05711149424314499,
0.011001959443092346,
0.04380609467625618,
-0.050338733941316605,
0.02346823178231716,
0.011610063724219799,
0.0006667085690423846,
-0.06840257346630096,
-0.028586221858859062,
-0.11315249651670456,
0.06901295483112335,
0.019499119371175766,
-0.03222854807972908,
0.057001784443855286,
-0.04534364491701126,
0.004910931456834078,
-0.0002480428374838084,
0.00011663140321616083,
-0.00038088823202997446,
0.01875845156610012,
0.03487369790673256,
-0.00937352329492569,
-0.0019671942573040724,
0.013954839669167995,
-0.049417056143283844,
0.06920360773801804,
0.010183877311646938,
0.013788371346890926,
-0.025618860498070717,
0.007517724297940731,
0.006638087797909975,
0.0008606061455793679,
-0.0006113587878644466,
-0.026206277310848236,
0.02388405054807663,
0.001036695670336485,
-0.03159390389919281,
0.020527323707938194,
-0.04360969364643097,
-0.024591172114014626,
0.02786065638065338,
0.035928744822740555,
-0.009911490604281425,
0.015399479307234287,
-0.05541954189538956,
-0.02289789915084839,
0.038057997822761536,
-0.03531168773770332,
-0.024796606972813606,
-0.03234810382127762,
0.0032773781567811966,
-0.024774910882115364,
-0.03557784482836723,
-0.03834404796361923,
0.00785221066325903,
0.003951419144868851,
0.004467089660465717,
-0.03930142894387245,
-0.020747454836964607,
0.01927846297621727,
0.001752748852595687,
0.000643896113615483,
-0.003988876007497311,
-0.009218254126608372,
0.01781030371785164,
-0.020803121849894524,
0.0740256980061531,
-0.09573943167924881,
-0.07523129880428314,
-0.0037930719554424286,
0.055220283567905426,
0.015015088021755219,
-0.04122980311512947,
0.023151269182562828,
0.028322605416178703,
-0.0032913191244006157,
-0.03131485357880592,
0.0074177030473947525,
-0.02310158498585224,
0.02063462883234024,
-0.015077383257448673,
0.01336837187409401,
0.051714200526475906,
0.03456619381904602,
-0.01906227134168148,
0.05077383667230606,
0.0020718795713037252,
0.021427497267723083,
0.03013376146554947,
-0.022476958110928535,
-0.017825758084654808,
-0.05612051114439964,
0.018837111070752144,
0.024801630526781082,
0.016446499153971672,
0.032002829015254974,
-0.019673027098178864,
-0.019898097962141037,
0.014016580767929554,
0.003831145353615284,
0.047560952603816986,
-0.036152902990579605,
-0.01033924613147974,
0.018006963655352592,
0.0014667880022898316,
0.006827956531196833,
0.044380076229572296,
0.013379108160734177,
0.017078155651688576,
0.016221648082137108,
0.027176935225725174,
0.054676786065101624,
-0.013254375196993351,
0.03430389240384102,
-0.04394160956144333,
-0.009566135704517365,
-0.06818271428346634,
-0.05327962711453438,
-0.008897233754396439,
0.013195903971791267,
0.041386522352695465,
-0.026117343455553055,
-0.015956342220306396,
0.0003148394462186843,
0.01041321363300085,
0.0036493637599051,
-0.014606612734496593,
-0.014455802738666534,
0.02530483528971672,
-0.008219187147915363,
0.00596623495221138,
-0.033527057617902756,
0.038067348301410675,
0.0006482230382971466,
0.005443073343485594,
-0.012290622107684612,
-0.005708971060812473,
0.010954017750918865,
0.021884163841605186,
0.025866467505693436,
-0.004723011516034603,
-0.026788651943206787,
0.021949300542473793,
0.010809790343046188,
-0.0007586809806525707,
0.06699208915233612,
0.03324265405535698,
-0.003949527628719807,
0.0005431902827695012,
-0.032907698303461075,
0.027161598205566406,
0.010022338479757309,
-0.010127773508429527,
0.011677343398332596,
0.019981900230050087,
0.023290278390049934,
-0.007530477363616228,
0.007162982132285833,
0.010011907666921616,
0.028880078345537186,
-0.04388335347175598,
0.0029822008218616247,
0.042383939027786255,
0.013346842490136623,
-0.03450561687350273,
0.024368539452552795,
-0.03811512887477875,
0.02602204494178295,
-0.027158603072166443,
0.01766175590455532,
0.02733214758336544,
0.015438148751854897,
0.004419764503836632,
-0.03662995621562004,
0.0383894219994545,
0.04377899318933487,
0.0008600393775850534,
0.014767985790967941,
-0.00002211462015111465,
-0.0366053469479084,
0.0012186100939288735,
0.04734005779027939,
-0.003556039184331894,
-0.0794009193778038,
-0.04274735227227211,
0.001666742260567844,
0.022150319069623947,
-0.00669561792165041,
0.016538407653570175,
-0.0031730118207633495,
-0.04815756157040596,
0.042189113795757294,
-0.0076544987969100475,
0.038674142211675644,
0.05723743513226509,
0.005890732631087303,
0.0004082638770341873,
-0.03248577192425728,
0.008304738439619541,
-0.016735952347517014,
-0.0241831187158823,
0.019904645159840584,
0.04936716705560684,
-0.029099000617861748,
0.028150027617812157,
-0.04093075543642044,
-0.037783823907375336,
-0.030806036666035652,
-0.010044789873063564,
0.012163410894572735,
-0.01129642128944397,
0.028802869841456413,
-0.002314777811989188,
-0.0303984135389328,
0.013806433416903019,
-0.04978296905755997,
0.05433844402432442,
0.06120719015598297,
0.007186179049313068,
-0.023619916290044785,
0.01672346144914627,
0.04595104604959488,
0.003326513571664691,
0.007517960853874683,
0.00177625915966928,
0.015115915797650814,
0.021976303309202194,
-0.007048985920846462,
0.01106337085366249,
-0.06672076880931854,
0.01667000912129879,
0.030113134533166885,
-0.014221271499991417,
-0.03315923735499382,
-0.03642599284648895,
0.01073332317173481,
0.03539735823869705,
-0.04120490327477455,
-0.008437186479568481,
0.009953855536878109,
-0.059853870421648026,
-0.04275284335017204,
0.019380860030651093,
-0.015577907674014568,
-0.029190968722105026,
-0.002339873695746064,
-0.006213392596691847,
-0.027392201125621796,
0.028255697339773178,
0.023444287478923798,
0.004280253313481808,
0.02174653299152851,
0.0048040165565907955,
0.0407131128013134,
0.03637751191854477,
-0.0034673805348575115,
0.007437906693667173,
0.053323160856962204,
-0.033480942249298096,
0.006092275958508253,
-0.001867699553258717,
0.03280516713857651,
-0.023285498842597008,
0.026435501873493195,
0.0038517697248607874,
-0.018575500696897507,
0.010452544316649437,
0.05167253315448761,
0.010343331843614578,
-0.03151440620422363,
-0.01268095150589943,
0.047870952636003494,
0.02116784267127514,
-0.01711348444223404,
-0.00477717025205493,
-0.012421214021742344,
-0.02734467200934887,
0.04790523275732994,
0.024700678884983063,
-0.052863288670778275,
-0.03868483006954193,
0.020855538547039032,
-0.05081624165177345,
0.0051964628510177135,
-0.007894577458500862,
0.0018982617184519768,
0.0005477400263771415,
0.03014104999601841,
0.011833912692964077,
-0.018696939572691917,
0.01771417446434498,
0.031614698469638824,
-0.023165229707956314,
-0.04208534210920334,
0.044481322169303894,
0.019833430647850037,
-0.00404610438272357,
0.06189732253551483,
-0.009248084388673306,
0.0074533503502607346,
-0.04022052511572838,
-0.0005385368713177741,
-0.008003374561667442,
-0.012190660461783409,
0.06028415262699127,
0.018872510641813278,
4.449464796607572e-8,
0.007930443622171879,
-0.012694498524069786,
-0.03433520719408989,
0.0280901025980711,
-0.03790263831615448,
0.015304295346140862,
0.04446440190076828,
-0.021685345098376274,
-0.021774781867861748,
-0.030360812321305275,
0.020763272419571877,
-0.05367099493741989,
-0.013871618546545506,
0.038626525551080704,
0.006695268210023642,
0.012715206481516361,
0.0328700952231884,
-0.03184637799859047,
0.03550991043448448,
0.004345127381384373,
-0.021838346496224403,
-0.03176583722233772,
0.0015613078139722347,
0.013632076792418957,
-0.026398103684186935,
0.044192999601364136,
0.007691598497331142,
-0.045029379427433014,
-0.007776171900331974,
0.029635721817612648,
0.014482864178717136,
-0.030128492042422295,
-0.027372458949685097,
0.003217219142243266,
-0.07044888287782669,
-0.003978976979851723,
0.03409251943230629,
0.0231599323451519,
0.016808658838272095,
0.03313428536057472,
0.011823663488030434,
-0.00012965116184204817,
0.06611758470535278,
-0.001651047496125102,
0.03145698830485344,
-0.014511212706565857,
-0.007843993604183197,
0.02533242478966713,
0.049021165817976,
-0.025885457172989845,
-0.0016564028337597847,
0.03967859223484993,
0.0046023293398320675,
0.03369702771306038,
-0.015775034204125404,
0.057722605764865875,
-0.013007777743041515,
-0.04965439811348915,
0.035202011466026306,
-0.019800709560513496,
-0.001768777845427394,
0.022304469719529152,
0.04152437299489975,
-0.006980826146900654,
0.0012445413740351796,
0.012437840923666954,
0.020815148949623108,
0.03802112862467766,
-0.015481268055737019,
-0.009511535987257957,
0.001503239618614316,
0.024095259606838226,
0.00900911446660757,
0.041564807295799255,
0.017620200291275978,
-0.03953879699110985,
0.010819229297339916,
-0.03964477777481079,
-0.029329847544431686,
0.008860796689987183,
0.004842378664761782,
-0.012336633168160915,
0.0172688327729702,
-0.00597642594948411,
0.023577053099870682,
-0.0019099257187917829,
0.025302935391664505,
-0.021089104935526848,
0.007347065024077892,
-0.0025185048580169678,
0.024630673229694366,
0.013637436553835869,
-0.03854235261678696,
0.003774132113903761,
0.007510852068662643,
0.013492831960320473,
0.02635304071009159,
0.0020056013017892838,
-0.030726315453648567,
-0.0534336157143116,
-0.05867287889122963,
-0.010625394992530346,
-0.019300833344459534,
0.03599398210644722,
-0.005540568847209215,
-0.0481049083173275,
0.0072565539740026,
-0.027767954394221306,
-0.06453753262758255,
0.04864748194813728,
0.01978379860520363,
0.007712911814451218,
-0.08117946237325668,
-0.04585889354348183,
0.008559724316000938,
-0.012223866768181324,
0.012980278581380844,
0.017176056280732155,
0.030834229663014412,
-0.019200557842850685,
0.03766151890158653,
0.014408697374165058,
-0.004520331509411335,
0.0202341228723526,
-0.004803115967661142,
0.02399699203670025,
-0.007655850611627102,
-0.0231368076056242,
-0.0267365463078022,
-0.0019723204895853996,
0.025194402784109116,
0.015448749996721745,
0.0577905997633934,
-0.01527397334575653,
-0.018747519701719284,
-0.005404761992394924,
0.07604603469371796,
0.02350039780139923,
-0.02666362002491951,
-0.029554229229688644,
0.03954048454761505,
-0.00645575812086463,
0.03407658264040947,
0.03751866891980171,
0.019664233550429344,
0.05083572119474411,
-0.03345286473631859,
-0.017751354724168777,
-0.00144948810338974,
0.000011253243428654969,
-0.007111976854503155,
-0.06622615456581116,
-0.011987831443548203,
0.031768932938575745,
0.023341210559010506,
0.0015540645690634847,
-0.06937588006258011,
0.04685851186513901,
-0.020782172679901123,
-0.011809798888862133,
-0.051488567143678665,
-0.0250227227807045,
0.03996618092060089,
-0.012884415686130524,
0.03317767009139061,
0.007810229901224375,
-0.030949095264077187,
-0.04550844058394432,
-0.012201432138681412,
-0.017214680090546608,
0.02288300171494484,
0.02517777867615223,
0.02855856344103813,
-0.059965647757053375,
-0.03973696008324623,
-0.038691259920597076,
-0.012027997523546219,
0.010393470525741577,
0.0034387188497930765,
-0.011697803623974323,
-0.001982651883736253,
-0.0014501817058771849,
0.001526696258224547,
0.03921545669436455,
-0.006536502856761217,
0.009464011527597904,
-0.024318013340234756,
0.061616797000169754,
-0.006218275520950556,
-0.03460786119103432,
-0.003103533061221242,
0.033816952258348465,
0.01725252903997898,
0.023216405883431435,
0.031652964651584625,
0.03532528877258301,
-0.02204155921936035,
0.004097844939678907,
0.004544563125818968,
0.010240382514894009,
-0.028106922283768654,
-0.045718517154455185,
-0.005865807645022869,
0.0002682640915736556,
-0.028447628021240234,
-0.04890577122569084,
-0.02457417920231819,
0.016463566571474075,
0.012352421879768372,
0.0011043852427974343,
-0.01211316417902708,
0.010577216744422913,
-0.04891345277428627,
0.0318213626742363,
0.015488429926335812,
0.01910087838768959,
-0.016201037913560867,
0.024865206331014633,
-0.012198098003864288,
0.030088812112808228
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | Benchmark Benchmark tools were recently added to Transformers - see here for a more detailed explanation. To show how much memory can be saved using "local" + "LSH" self-attention, the Reformer model google/reformer-enwik8 is benchmarked for different local_attn_chunk_length and lsh_attn_chunk_length. The default configuration and usage of the google/reformer-enwik8 model can be checked in more detail here. Let's first do some necessary imports and installs. #@title Installs and Imports # pip installs !pip -qq install git+https://github.com/huggingface/transformers.git !pip install -qq py3nvml from transformers import ReformerConfig, PyTorchBenchmark, PyTorchBenchmarkArguments First, let's benchmark the memory usage of the Reformer model using global self-attention. This can be achieved by setting lsh_attn_chunk_length = local_attn_chunk_length = 8192 so that for all input sequences smaller or equal to 8192, the model automatically switches to global self-attention. config = ReformerConfig.from_pretrained("google/reformer-enwik8", lsh_attn_chunk_length=16386, local_attn_chunk_length=16386, lsh_num_chunks_before=0, local_num_chunks_before=0) benchmark_args = PyTorchBenchmarkArguments(sequence_lengths=[2048, 4096, 8192, 16386], batch_sizes=[1], models=["Reformer"], no_speed=True, no_env_print=True) benchmark = PyTorchBenchmark(configs=[config], args=benchmark_args) result = benchmark.run() HBox(children=(FloatProgress(value=0.0, description='Downloading', max=1279.0, style=ProgressStyle(description… 1 / 1 Doesn't fit on GPU. CUDA out of memory. Tried to allocate 2.00 GiB (GPU 0; 11.17 GiB total capacity; 8.87 GiB already allocated; 1.92 GiB free; 8.88 GiB reserved in total by PyTorch) ==================== INFERENCE - MEMORY - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- Reformer 1 2048 1465 Reformer 1 4096 2757 Reformer 1 8192 7893 Reformer 1 16386 N/A -------------------------------------------------------------------------------- The longer the input sequence, the more visible is the quadratic relationship \( \mathcal{O}(n^2) \) between input sequence and peak memory usage. As can be seen, in practice it would require a much longer input sequence to clearly observe that doubling the input sequence quadruples the peak memory usage. For this a google/reformer-enwik8 model using global attention, a sequence length of over 16K results in a memory overflow. Now, let's activate local and LSH self-attention by using the model's default parameters. config = ReformerConfig.from_pretrained("google/reformer-enwik8") benchmark_args = PyTorchBenchmarkArguments(sequence_lengths=[2048, 4096, 8192, 16384, 32768, 65436], batch_sizes=[1], models=["Reformer"], no_speed=True, no_env_print=True) benchmark = PyTorchBenchmark(configs=[config], args=benchmark_args) result = benchmark.run() 1 / 1 Doesn't fit on GPU. CUDA out of memory. Tried to allocate 2.00 GiB (GPU 0; 11.17 GiB total capacity; 7.85 GiB already allocated; 1.74 GiB free; 9.06 GiB reserved in total by PyTorch) Doesn't fit on GPU. CUDA out of memory. Tried to allocate 4.00 GiB (GPU 0; 11.17 GiB total capacity; 6.56 GiB already allocated; 3.99 GiB free; 6.81 GiB reserved in total by PyTorch) ==================== INFERENCE - MEMORY - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- Reformer 1 2048 1785 Reformer 1 4096 2621 Reformer 1 8192 4281 Reformer 1 16384 7607 Reformer 1 32768 N/A Reformer 1 65436 N/A -------------------------------------------------------------------------------- As expected using local and LSH self-attention is much more memory efficient for longer input sequences, so that the model runs out of memory only at 16K tokens for a 11GB RAM GPU in this notebook. | [
-0.011366480961441994,
-0.006340404041111469,
0.015144486911594868,
-0.013455868698656559,
-0.04588701203465462,
0.05722128972411156,
0.0577072948217392,
-0.022158728912472725,
-0.02835826948285103,
-0.023437026888132095,
-0.07536010444164276,
0.10502336919307709,
-0.006831918843090534,
0.009687898680567741,
0.019373156130313873,
0.022754907608032227,
0.06011228635907173,
-0.003067897167056799,
-0.05755842477083206,
0.019849078729748726,
0.017843734472990036,
-0.055208392441272736,
0.07906855642795563,
0.005342706106603146,
-0.0199419092386961,
-0.06664656847715378,
0.032647088170051575,
-0.02656721882522106,
-0.032557446509599686,
-0.004871657583862543,
-0.13268724083900452,
-0.030462928116321564,
0.00023340588086284697,
-0.044180069118738174,
0.014777549542486668,
-0.06025811657309532,
-0.07495088130235672,
0.03449048474431038,
0.02182292751967907,
-0.04331120103597641,
-0.001027085236273706,
-0.0023593869991600513,
-0.07134172320365906,
-0.01043036486953497,
-0.0004610080795828253,
0.03693046793341637,
-0.09460332989692688,
0.03402457386255264,
-0.0879296138882637,
0.028748255223035812,
-0.06203460693359375,
0.015819577500224113,
0.01226294320076704,
0.023692931979894638,
-0.016150973737239838,
0.018581215292215347,
0.05977223068475723,
0.011186073534190655,
0.018344053998589516,
0.0065857963636517525,
0.06164107844233513,
0.0026282158214598894,
0.004254090134054422,
0.07454673200845718,
0.010621903464198112,
-0.04299221187829971,
-0.03182284161448479,
0.05041588097810745,
-0.056131988763809204,
-0.0554472878575325,
-0.011404849588871002,
-0.03613848611712456,
0.032821174710989,
0.012466026470065117,
-0.06939844787120819,
-0.03653646260499954,
-0.02048957534134388,
0.011498096399009228,
0.08620597422122955,
0.0631626546382904,
0.013978756964206696,
0.048317085951566696,
0.018500356003642082,
-0.02774946205317974,
0.025028621777892113,
-0.04358002170920372,
0.029490971937775612,
-0.11245077848434448,
-0.05238271877169609,
0.039086565375328064,
-0.08566667139530182,
-0.06719420105218887,
0.05143820866942406,
-0.02672303095459938,
0.0468323789536953,
-0.004173011053353548,
-0.04332031309604645,
0.04883286729454994,
-0.011174840852618217,
0.014507546089589596,
-0.033617641776800156,
-0.04999533295631409,
0.012925266288220882,
-0.015125835314393044,
-0.00799535121768713,
0.011945096775889397,
-0.03723793849349022,
-0.09097377210855484,
-0.013301576487720013,
-0.002056174213066697,
-0.018780145794153214,
0.04219285026192665,
-0.031047137454152107,
0.03485585004091263,
-0.05677562579512596,
-0.005796213634312153,
-0.06998126208782196,
-0.04832824319601059,
-0.0024977312423288822,
-0.008649284951388836,
-0.03041783906519413,
0.08175162971019745,
0.044777046889066696,
0.021281182765960693,
0.039833713322877884,
0.03835376724600792,
-0.02610110118985176,
0.03924167901277542,
0.024762848392128944,
-0.006109658163040876,
0.08018843084573746,
-0.01174574438482523,
0.09314382076263428,
-0.03276938199996948,
-0.03403422608971596,
-0.05311828851699829,
0.02909865602850914,
-0.023160090669989586,
-0.039074428379535675,
0.015618696808815002,
-0.05164984241127968,
0.025615209713578224,
0.010095725767314434,
-0.08623313903808594,
0.04099645838141441,
-0.02008993923664093,
-0.09536279737949371,
0.09091588854789734,
0.023315010592341423,
-0.018038753420114517,
-0.10402369499206543,
0.05299407243728638,
-0.02312985621392727,
-0.007477891631424427,
0.03664452210068703,
0.07238174974918365,
-0.020505335181951523,
-0.032152511179447174,
-0.09433700144290924,
-0.005002093035727739,
-0.08902429789304733,
0.04635535553097725,
-0.0158455278724432,
0.00044135499047115445,
0.0310510266572237,
-0.015200869180262089,
0.004185026977211237,
-0.05439280718564987,
-0.013616954907774925,
-0.0035468603018671274,
0.04627710208296776,
-0.005592315457761288,
0.07396925985813141,
-0.05455157160758972,
-0.022461028769612312,
0.05190374329686165,
0.0060302941128611565,
0.024851657450199127,
-0.000831647077575326,
-0.032210104167461395,
-0.0273439884185791,
0.031455036252737045,
0.008916383609175682,
0.08147246390581131,
0.039938200265169144,
-0.09031215310096741,
0.05147858336567879,
-0.002465870464220643,
-0.03587763383984566,
-0.028423767536878586,
0.020377719774842262,
-0.03619234263896942,
0.08848689496517181,
0.001229231245815754,
0.026968691498041153,
-0.010354849509894848,
0.02160465717315674,
0.016714196652173996,
0.06428048014640808,
0.06222923472523689,
-0.020013317465782166,
0.049103934317827225,
0.03422156348824501,
0.0307620782405138,
-0.03566133603453636,
-0.05164201185107231,
-0.07125525176525116,
-0.049031976610422134,
0.02022639662027359,
-0.003947392106056213,
0.029234515503048897,
-0.10388396680355072,
0.04338956996798515,
0.03597700223326683,
-0.05567064508795738,
-0.04211480915546417,
-0.028620922937989235,
-0.011013868264853954,
0.017729047685861588,
0.031227370724081993,
0.10861723870038986,
0.009769097901880741,
-0.031702060252428055,
-0.06036723777651787,
-0.01705162413418293,
0.043182022869586945,
-0.060200970619916916,
0.0628727376461029,
0.04282757267355919,
-0.06828144937753677,
-0.004263508133590221,
-0.11100935935974121,
-0.043891679495573044,
0.061320941895246506,
-0.09339066594839096,
-0.0688658282160759,
0.03696669638156891,
0.08404254913330078,
-0.003599913790822029,
-0.035936273634433746,
-0.058373890817165375,
0.030782433226704597,
0.08249307423830032,
0.02515759877860546,
0.026740411296486855,
0.022843072190880775,
-0.07187502831220627,
0.000696554605383426,
-0.0504474937915802,
-0.06891036033630371,
-0.043665703386068344,
0.026176707819104195,
0.022546149790287018,
-0.042114678770303726,
-0.004391827620565891,
-0.01738521084189415,
-0.04149414226412773,
0.015224197879433632,
-0.02211277186870575,
0.03982686623930931,
0.006761543452739716,
0.07072964310646057,
-0.04507451876997948,
-0.005965637043118477,
0.010243065655231476,
-0.0654856413602829,
0.016683129593729973,
0.004193727392703295,
0.02056356519460678,
-0.056749556213617325,
-0.009436915628612041,
0.032801590859889984,
0.022305568680167198,
0.0008663333719596267,
0.003434679703786969,
0.005189866758882999,
0.014496222138404846,
-0.025605155155062675,
0.00784994475543499,
-0.027794085443019867,
-0.003929281607270241,
-0.004017845261842012,
0.011655141599476337,
0.00036556809209287167,
-0.019005488604307175,
0.03790128603577614,
0.009153108112514019,
-0.004137227777391672,
-0.06261879950761795,
0.00638744980096817,
0.01430404745042324,
0.020009610801935196,
0.027533838525414467,
-0.04906186833977699,
-0.03051263839006424,
0.033511046320199966,
-0.013690067455172539,
-0.03758774697780609,
-0.0030818225350230932,
-0.002801348688080907,
-0.02176792360842228,
0.007344936020672321,
-0.021886827424168587,
0.010735921561717987,
-0.009609933942556381,
0.01594320684671402,
-0.023474710062146187,
0.031177358701825142,
-0.07526642084121704,
-0.03914855048060417,
-0.033379290252923965,
0.029083847999572754,
-0.019823746755719185,
-0.06375689804553986,
0.015046967193484306,
0.043145738542079926,
-0.0020933651831001043,
0.00015989535313565284,
-0.01709192618727684,
-0.022729527205228806,
-0.003945611417293549,
0.03497433662414551,
-0.023644553497433662,
0.03194510564208031,
0.02849329262971878,
-0.0574316680431366,
0.028490744531154633,
-0.03422761708498001,
0.03140391409397125,
-0.015933701768517494,
-0.02576301433146,
0.007732830010354519,
-0.012588424608111382,
0.021209994331002235,
0.0059951418079435825,
-0.022737551480531693,
0.05459357425570488,
-0.04669692739844322,
-0.01693044789135456,
-0.07372843474149704,
-0.006343618966639042,
0.05107811093330383,
-0.05633451044559479,
-0.031114211305975914,
-0.028103334829211235,
0.03929352015256882,
0.014873410575091839,
0.023889461532235146,
0.039121147245168686,
-0.011981502175331116,
0.022119225934147835,
0.024023456498980522,
0.07724810391664505,
-0.022818483412265778,
0.006377102341502905,
-0.023043110966682434,
0.019852502271533012,
-0.019729578867554665,
-0.054282981902360916,
0.009859519079327583,
0.020103512331843376,
0.05432525649666786,
-0.025304388254880905,
-0.010974492877721786,
-0.03789190948009491,
0.035727474838495255,
0.005755331367254257,
-0.031103892251849174,
-0.06820934265851974,
0.011734534054994583,
-0.0525050051510334,
0.02339816652238369,
-0.02188986726105213,
0.005803032778203487,
-0.02537834644317627,
-0.014828025363385677,
-0.046575356274843216,
0.00919129978865385,
-0.036385804414749146,
0.013132345862686634,
0.0027340787928551435,
-0.0018367439042776823,
-0.06701865792274475,
0.018795914947986603,
-0.0025269852485507727,
-0.024762999266386032,
0.05143233761191368,
0.046777915209531784,
-0.038007140159606934,
-0.02434743009507656,
-0.03649185597896576,
0.008814295753836632,
0.007410920690745115,
0.026324046775698662,
0.01767979934811592,
-0.00890875793993473,
0.05139186978340149,
-0.0026366193778812885,
0.019400574266910553,
-0.01142342109233141,
0.007358321454375982,
-0.01628478430211544,
-0.007804906461387873,
-0.016112420707941055,
0.020581403747200966,
-0.006847421173006296,
-0.01048314105719328,
0.03498451039195061,
0.001885710284113884,
-0.025101441890001297,
0.013811602257192135,
0.042415909469127655,
0.02015352062880993,
0.009475885890424252,
-0.038404680788517,
0.011431518010795116,
0.0398162379860878,
0.015387340448796749,
0.01876353845000267,
-0.010210479609668255,
-0.03751891851425171,
0.00421939417719841,
0.07108138501644135,
0.06484898179769516,
-0.018054155632853508,
-0.037746280431747437,
-0.029386620968580246,
0.032358188182115555,
0.016734007745981216,
0.022016819566488266,
-0.01568882167339325,
-0.03960183635354042,
0.03591025620698929,
-0.00880421232432127,
0.013873512856662273,
0.018585816025733948,
-0.028279170393943787,
0.008974529802799225,
-0.04587355628609657,
0.026561271399259567,
0.011343530379235744,
0.012448995374143124,
0.0042753564193844795,
0.05370134487748146,
-0.03808119148015976,
-0.004014166072010994,
-0.021656634286046028,
-0.0020581199787557125,
-0.049829889088869095,
-0.013033748604357243,
0.023819047957658768,
-0.030129434540867805,
0.0032794075086712837,
-0.008029479533433914,
0.01304624043405056,
0.039302341639995575,
-0.057874999940395355,
0.04361676052212715,
0.026590049266815186,
-0.00986327975988388,
-0.04733707755804062,
0.008661838248372078,
0.03204764798283577,
0.033309273421764374,
-0.011660601943731308,
0.0009972283151000738,
-0.0006834632367826998,
0.024713778868317604,
-0.026088209822773933,
0.009549690410494804,
-0.00579115329310298,
0.0034848537761718035,
0.010897483676671982,
0.04386252164840698,
0.013262721709907055,
-0.05446748062968254,
0.04669159650802612,
-0.00892164371907711,
0.0015537725994363427,
-0.00533621059730649,
-0.015837835147976875,
0.002444971352815628,
0.0048741186037659645,
0.06201555207371712,
-0.009812303818762302,
-0.016561906784772873,
0.009998055174946785,
0.06259185820817947,
0.013814290054142475,
-0.0010289439233019948,
0.014515075832605362,
-0.01713612675666809,
0.03627845272421837,
0.02829829230904579,
0.05436205118894577,
0.07625408470630646,
0.0026199044659733772,
0.018838511779904366,
0.003497794969007373,
-0.01998799853026867,
0.007271533366292715,
-0.004531174432486296,
0.0402582585811615,
-0.03178826719522476,
0.029912352561950684,
0.006593451369553804,
0.0002455876092426479,
-0.030214132741093636,
0.06773616373538971,
0.0325547493994236,
-0.026988457888364792,
-0.019649168476462364,
0.040928661823272705,
0.037038516253232956,
0.010400266386568546,
-0.01994978077709675,
0.012567674741148949,
-0.04039581120014191,
-0.005262316204607487,
-0.00861358642578125,
-0.041636526584625244,
-0.002485501579940319,
0.003997631371021271,
-0.013085950165987015,
0.01451511774212122,
0.010051120072603226,
0.003369956510141492,
-0.00915836077183485,
-0.03319971635937691,
0.01975882612168789,
-0.013899967074394226,
-0.018747473135590553,
0.006383377593010664,
-0.05653202161192894,
0.008455775678157806,
0.006497702561318874,
0.01673024334013462,
-0.013630034402012825,
0.018207373097538948,
0.0028694793581962585,
-0.022478029131889343,
0.015646079555153847,
0.024154571816325188,
-0.0022777675185352564,
0.00580649683251977,
0.029695123434066772,
0.02109186351299286,
-0.04727299138903618,
0.008654006756842136,
-0.0022440210450440645,
-0.05975775420665741,
0.029085392132401466,
-0.010689164511859417,
0.032943543046712875,
0.07404012233018875,
-0.008866759948432446,
-0.010755719617009163,
-0.012953306548297405,
0.01721203327178955,
-0.0367344506084919,
0.022870806977152824,
-0.01562295202165842,
0.02644486166536808,
-0.059938013553619385,
0.0002152061351807788,
0.0175795778632164,
0.021850530058145523,
0.06394850462675095,
-0.031734853982925415,
-0.011349418200552464,
0.015618334524333477,
0.029577473178505898,
-0.03674207627773285,
0.044888101518154144,
-0.019862275570631027,
-0.039732567965984344,
0.0009470948134548962,
0.058361466974020004,
-0.03232599422335625,
0.0013554501347243786,
-0.004328638315200806,
0.020980270579457283,
0.007201832253485918,
-0.01524952333420515,
0.025752445682883263,
0.03909996896982193,
0.04421317204833031,
0.03682023286819458,
0.03153126314282417,
0.04367491230368614,
0.044349554926157,
0.015633802860975266,
-0.009256531484425068,
-0.032231129705905914,
0.03895150125026703,
0.029419828206300735,
-0.01089729368686676,
0.025615528225898743,
-0.02010313607752323,
0.01577678695321083,
-0.012706481851637363,
0.025985410436987877,
-0.0028278667014092207,
0.023216137662529945,
0.032662615180015564,
0.018064530566334724,
0.0021575025748461485,
-0.008376463316380978,
0.015363276936113834,
0.012530922889709473,
0.022495290264487267,
-0.0011441066162660718,
-0.0002857423678506166,
-0.014303691685199738,
0.007056793197989464,
0.05375651642680168,
0.027309956029057503,
0.023798290640115738,
-0.006100886967033148,
0.03850793093442917,
0.012331394478678703,
0.03030054271221161,
0.028308721259236336,
-0.03309819847345352,
-0.02171374298632145,
-0.0013204391580075026,
-0.03317572921514511,
0.012399667873978615,
0.005768535193055868,
0.018601274117827415,
-0.02199217863380909,
0.014773836359381676,
0.0313175767660141,
0.01818249747157097,
0.0032728302758187056,
-0.03197498247027397,
0.006923828274011612,
-0.002451488748192787,
0.002949008485302329,
-0.014079130254685879,
-0.04927682876586914,
0.011919233947992325,
0.02913711406290531,
0.05608402565121651,
-0.02475418895483017,
0.025783143937587738,
0.009550645016133785,
-0.025432433933019638,
-0.010786028578877449,
-0.00993041880428791,
-0.039861634373664856,
0.04600130766630173,
-0.009186447598040104,
-0.025110362097620964,
-0.001438516890630126,
0.01179501786828041,
0.001819056924432516,
0.036165714263916016,
0.0046925307251513,
0.028013434261083603,
-0.051406122744083405,
0.003977726213634014,
-0.0021768715232610703,
-0.027986198663711548,
0.07969042658805847,
0.0025687236338853836,
0.025035858154296875,
-0.009991166181862354,
0.04754822328686714,
0.04917829856276512,
-0.0013183432165533304,
0.020669586956501007,
-0.003657890483736992,
-0.024765875190496445,
-0.02990192174911499,
-0.014302480034530163,
0.028926419094204903,
-0.006920523475855589,
0.023762278258800507,
-0.007600641343742609,
-0.0364675298333168,
-0.017126021906733513,
-0.007639381103217602,
-0.029710374772548676,
0.06969296932220459,
0.005448439158499241,
0.0030841869302093983,
-0.001294164452701807,
0.03182712942361832,
0.019895968958735466,
0.013203351758420467,
0.039616908878088,
0.005096422974020243,
0.04839769005775452,
-0.004600760992616415,
-0.009873325005173683,
-0.048048555850982666,
-0.0052986410446465015,
0.00727362185716629,
-0.001154015539214015,
0.00032807840034365654,
0.02798216976225376,
-0.01451629213988781,
0.02095814421772957,
-0.026601040735840797,
0.02405565045773983,
-0.021520905196666718,
0.033854614943265915,
0.0009593308786861598,
-0.0010723886080086231,
0.04192616418004036,
0.04564347863197327,
0.06133970618247986,
0.026966720819473267,
-0.038812439888715744,
-0.0033906155731528997,
0.0006977350567467511,
0.004942451138049364,
0.07798738032579422,
0.05324048548936844,
0.017747515812516212,
-0.06066657230257988,
-0.029751349240541458,
0.024012645706534386,
-0.016470463946461678,
-0.005495942663401365,
0.02760775201022625,
0.001547590596601367,
0.03860151767730713,
-0.01509229838848114,
0.013895923271775246,
0.04553248733282089,
0.051075663417577744,
0.022234752774238586,
0.007312818430364132,
0.029275141656398773,
0.007611624896526337,
-0.041877128183841705,
0.004179664887487888,
0.02694382704794407,
0.05138489231467247,
0.04066519811749458,
0.02479199506342411,
0.0625670775771141,
0.02498028241097927,
0.019754527136683464,
0.012727020308375359,
0.049731988459825516,
-0.03434917330741882,
-0.0526406466960907,
-0.014218741096556187,
0.0314764603972435,
-0.01065503153949976,
-0.034275609999895096,
-0.0013718866975978017,
-0.029828814789652824,
0.04116104543209076,
-0.033358536660671234,
-0.02181926555931568,
0.004960780497640371,
-0.015712495893239975,
0.014575117267668247,
-0.012797764502465725,
-0.034403521567583084,
0.016230013221502304,
0.024563226848840714,
-0.04538486897945404,
0.036945465952157974
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | 3. Reversible Residual Layers Reversible residual layers were first introduced in N. Gomez et al and used to reduce memory consumption when training the popular ResNet model. Mathematically, reversible residual layers are slightly different to "real" residual layers but do not require the activations to be saved during the forward pass, which can drastically reduce memory consumption for training. | [
-0.007430435158312321,
-0.0332772433757782,
0.08325320482254028,
-0.05475492775440216,
0.06725014746189117,
-0.022681407630443573,
-0.023923629894852638,
-0.016918441280722618,
-0.0024600843898952007,
-0.04598458483815193,
-0.007598763797432184,
0.0851428285241127,
-0.001853997353464365,
0.0023229331709444523,
-0.03065699338912964,
-0.03705130144953728,
0.03736979141831398,
-0.09424389898777008,
-0.0186964999884367,
0.07311802357435226,
0.032707661390304565,
-0.043362416326999664,
0.02476440742611885,
-0.08504240214824677,
-0.03288915008306503,
0.021653085947036743,
-0.035428036004304886,
-0.035200607031583786,
-0.02313190884888172,
0.00958038866519928,
-0.04915980249643326,
0.03881688043475151,
0.044101815670728683,
0.03991413116455078,
-0.016448549926280975,
-0.03908304497599602,
-0.07774672657251358,
0.043088167905807495,
-0.055385444313287735,
-0.03224511817097664,
0.004093700088560581,
0.06122801825404167,
-0.035588666796684265,
0.02550937794148922,
-0.005974992178380489,
-0.04824971407651901,
-0.11571480333805084,
0.023605184629559517,
-0.026157410815358162,
-0.03219272941350937,
-0.056498583406209946,
0.06769131124019623,
-0.10026275366544724,
0.062080081552267075,
-0.054555073380470276,
0.02029816247522831,
0.023289164528250694,
0.08792344480752945,
0.014215623959898949,
0.00033249257830902934,
0.04441217705607414,
0.06407800316810608,
0.057803574949502945,
0.07078023254871368,
-0.009850764647126198,
-0.020506789907813072,
0.05184338241815567,
-0.036776136606931686,
-0.014729409478604794,
-0.02468128316104412,
-0.05648951604962349,
-0.052174996584653854,
-0.019681071862578392,
-0.0005231530521996319,
-0.00565603282302618,
-0.02709055133163929,
0.01676836423575878,
0.01588485762476921,
-0.007405308540910482,
0.05505521595478058,
0.0032214566599577665,
0.035151802003383636,
0.05635450780391693,
0.014769102446734905,
0.04111901670694351,
-0.005819027777761221,
0.02064618282020092,
-0.03844039887189865,
-0.04762063920497894,
0.05897894129157066,
-0.05513289198279381,
-0.05513501539826393,
0.053350068628787994,
-0.01270982064306736,
0.0634186640381813,
-0.03649351745843887,
-0.0051048267632722855,
0.009945500642061234,
-0.018477171659469604,
-0.007445560302585363,
-0.043269094079732895,
-0.05576527118682861,
0.015200220048427582,
-0.049049802124500275,
-0.03979162126779556,
-0.022123154252767563,
-0.03713235631585121,
-0.07548382133245468,
-0.00016780340229161084,
-0.03287520632147789,
-0.01718013919889927,
0.02710430696606636,
0.059182580560445786,
0.021500984206795692,
-0.08634611964225769,
0.014706311747431755,
0.021208202466368675,
0.01454269140958786,
0.06692672520875931,
0.05008411407470703,
-0.023712068796157837,
0.11002217233181,
0.01570085994899273,
-0.0024460293352603912,
-0.025812631472945213,
0.0016129511641338468,
0.02939811535179615,
0.003754489589482546,
-0.015311235561966896,
0.02357257530093193,
0.004934797994792461,
0.07363811135292053,
-0.04663649946451187,
0.05256778001785278,
0.016177549958229065,
-0.12741921842098236,
0.03157123923301697,
-0.0352892242372036,
0.00006925006891833618,
0.005309669300913811,
-0.05456158146262169,
-0.016691870987415314,
0.0258569847792387,
-0.07068514823913574,
0.038816049695014954,
-0.09695115685462952,
-0.005500983912497759,
0.020761074498295784,
0.05659756809473038,
0.032945968210697174,
-0.03850860148668289,
0.04559226706624031,
0.011159799993038177,
-0.08929870277643204,
-0.023594709113240242,
0.03380637988448143,
-0.020355157554149628,
0.00961949210613966,
-0.030498145148158073,
0.005717288237065077,
0.0009736156207509339,
0.004994664806872606,
-0.044800128787755966,
0.06708674132823944,
0.10151031613349915,
-0.03471464291214943,
-0.0168401338160038,
0.055427465587854385,
0.0010765759507194161,
0.06804206222295761,
-0.027040855959057808,
-0.03791775926947594,
0.0434601828455925,
-0.036206718534231186,
-0.03125913441181183,
0.027577778324484825,
-0.058928824961185455,
0.07599221915006638,
-0.013948737643659115,
-0.024117562919855118,
-0.0029292013496160507,
-0.032863061875104904,
-0.09448225796222687,
-0.01843358390033245,
0.044001974165439606,
-0.047789957374334335,
0.024560973048210144,
-0.04142925515770912,
0.014265667647123337,
0.0911359041929245,
-0.12449254840612411,
0.005055808927863836,
-0.015314123593270779,
-0.07604677975177765,
0.016471950337290764,
0.047441087663173676,
0.004941228777170181,
0.1224924772977829,
0.02535935491323471,
0.08891159296035767,
0.06101840361952782,
0.04448314383625984,
-0.05958937481045723,
-0.04449949041008949,
0.029585635289549828,
0.020135091617703438,
0.06571677327156067,
-0.0456731952726841,
0.052027344703674316,
0.0022603569086641073,
0.00901472195982933,
-0.01888238824903965,
0.06679906696081161,
-0.08660385012626648,
-0.011954360641539097,
-0.02059618942439556,
-0.029549285769462585,
-0.0018976274877786636,
-0.00720234913751483,
-0.06331478804349899,
0.07279279828071594,
0.05093308910727501,
-0.05146230384707451,
-0.004751470405608416,
-0.02158149518072605,
-0.01185546349734068,
0.033246513456106186,
-0.08107402920722961,
0.09971488267183304,
-0.056792329996824265,
0.06219657510519028,
-0.09023915976285934,
0.02050701528787613,
0.06400706619024277,
0.04621874913573265,
0.022993480786681175,
0.001183668035082519,
-0.08527424931526184,
-0.002247012220323086,
-0.04965796321630478,
-0.020881833508610725,
0.03611581772565842,
0.027873901650309563,
0.024167068302631378,
0.0033999818842858076,
-0.028545398265123367,
0.016084741801023483,
0.032795216888189316,
-0.03439157083630562,
-0.02499851956963539,
-0.0684048980474472,
-0.008739234879612923,
0.033211980015039444,
-0.051150813698768616,
0.02844284102320671,
0.038223814219236374,
-0.030741684138774872,
-0.05637530982494354,
0.032997626811265945,
0.02658199705183506,
-0.00519951805472374,
-0.01932559162378311,
-0.004969810135662556,
-0.01975102350115776,
0.004133069422096014,
-0.02277468703687191,
-0.024906329810619354,
0.002017877297475934,
0.013301189988851547,
0.010160875506699085,
0.04431113600730896,
-0.0200966689735651,
0.0085541857406497,
0.03744766488671303,
0.008958104997873306,
-0.04068479314446449,
0.028915511444211006,
-0.03787633031606674,
-0.05918538197875023,
-0.03831195831298828,
-0.008993989787995815,
0.0003280389355495572,
0.031735777854919434,
0.026859408244490623,
0.007219846360385418,
-0.000758457463234663,
-0.04093020036816597,
-0.008069286122918129,
0.019809773191809654,
0.05301182344555855,
0.022422054782509804,
0.0418848842382431,
-0.02027604542672634,
0.008103597909212112,
-0.02863130532205105,
0.007012322079390287,
0.02349596656858921,
-0.03239799290895462,
0.02315957471728325,
-0.01724931225180626,
-0.0467071607708931,
0.028226705268025398,
0.04744262993335724,
0.005333674140274525,
-0.006956364028155804,
0.021883966401219368,
-0.01395364385098219,
0.011350675486028194,
-0.09190937131643295,
-0.05079466104507446,
0.02022424340248108,
-0.0075788600370287895,
-0.041299186646938324,
-0.012869000434875488,
0.01109630148857832,
0.021742332726716995,
0.016451559960842133,
-0.03156774863600731,
-0.008471482433378696,
-0.00048684669309295714,
0.025944167748093605,
0.05567435547709465,
-0.08171887695789337,
-0.00033713699667714536,
0.03670750930905342,
-0.006342093460261822,
0.029947670176625252,
-0.05187727138400078,
0.022389505058526993,
0.05764617770910263,
0.03191757574677467,
0.05759333074092865,
-0.004480138886719942,
0.028805233538150787,
0.01429277379065752,
0.01501901913434267,
-0.04809865728020668,
-0.005640075076371431,
-0.015198705717921257,
-0.04145269840955734,
0.0023738753516227007,
0.010699338279664516,
-0.03438501060009003,
0.02419908531010151,
0.014231210574507713,
0.01000309456139803,
-0.005235082469880581,
0.02810494415462017,
0.0345638245344162,
0.02336997538805008,
0.04202226549386978,
0.034523870795965195,
-0.011386800557374954,
-0.01986255683004856,
0.01204652152955532,
0.014233076013624668,
0.05095424875617027,
-0.026684841141104698,
0.013363764621317387,
-0.008549096062779427,
-0.007104013580828905,
0.04565340653061867,
-0.015656165778636932,
-0.028519190847873688,
0.03148069977760315,
-0.030571086332201958,
0.015392223373055458,
-0.03352959826588631,
-0.005660953465849161,
0.017275149002671242,
0.02520470879971981,
-0.0009135167929343879,
-0.020454159006476402,
0.0015527041396126151,
-0.0014244214398786426,
0.025192460045218468,
0.02162756584584713,
0.032326433807611465,
-0.028155488893389702,
0.02299359068274498,
0.004944826941937208,
0.012491792440414429,
-0.0235117357224226,
0.024668235331773758,
0.018329598009586334,
0.002867358038201928,
0.06264535337686539,
-0.005795687902718782,
0.020365482196211815,
0.028500616550445557,
-0.0038430276326835155,
-0.004822846036404371,
-0.038214150816202164,
-0.0021193826105445623,
0.011167749762535095,
0.0018318940419703722,
0.015047031454741955,
0.01712428592145443,
0.03506794199347496,
-0.01550216879695654,
0.005575064104050398,
0.003176790662109852,
-0.043889120221138,
0.028081001713871956,
0.04673793539404869,
0.026629403233528137,
-0.013377734459936619,
-0.006464866921305656,
0.032702650874853134,
-0.05088112875819206,
0.01258678175508976,
-0.01515104714781046,
-0.011158779263496399,
-0.030609114095568657,
-0.025752680376172066,
0.0037855554837733507,
0.02993396483361721,
-0.04635541886091232,
-0.0491323247551918,
0.014710923656821251,
0.016231415793299675,
0.004121990874409676,
-0.0006480233278125525,
0.02919701859354973,
-0.045225635170936584,
0.01061394065618515,
-0.022626807913184166,
0.0035164866130799055,
-0.021248873323202133,
0.049445196986198425,
0.018101690337061882,
-0.0013718195259571075,
0.02066941373050213,
-0.012443347834050655,
0.041665319353342056,
0.011319560930132866,
0.004320659674704075,
-0.009108459576964378,
-0.025624139234423637,
0.055839017033576965,
0.034752655774354935,
0.01101619005203247,
0.02111678197979927,
-0.04068665951490402,
-0.026367440819740295,
-0.017946729436516762,
-0.0006991968839429319,
-0.06339537352323532,
0.013579112477600574,
-0.001351715181954205,
0.04537370055913925,
-0.04110715910792351,
0.06605145335197449,
-0.006264968775212765,
-0.05405615270137787,
-0.024932431057095528,
-0.012302435003221035,
0.005883808713406324,
0.06000189483165741,
-0.010541761294007301,
-0.05652507022023201,
-0.033592548221349716,
-0.01007029041647911,
-0.017955204471945763,
0.0365346223115921,
-0.00917167030274868,
0.02030370943248272,
-0.0006648625712841749,
0.020139236003160477,
-0.01046917773783207,
-0.02740035578608513,
0.04057871922850609,
0.014200559817254543,
0.009507074020802975,
-0.03394196927547455,
-0.041509468108415604,
0.018702104687690735,
0.03322071582078934,
0.019783716648817062,
-0.041729886084795,
0.013203387148678303,
-0.051998283714056015,
-0.003422727342694998,
-0.021994495764374733,
0.017450429499149323,
0.01290532574057579,
-0.0007577920914627612,
0.007974199950695038,
0.004470439627766609,
0.0344088040292263,
0.04555022716522217,
-0.03421613201498985,
0.0384809784591198,
0.019337579607963562,
0.00785014871507883,
0.0483013354241848,
-0.0231014471501112,
0.06269104033708572,
0.07520979642868042,
-0.018044451251626015,
0.06797068566083908,
-0.06492175161838531,
0.04388141632080078,
0.06856676936149597,
-0.000133116016513668,
0.008880773559212685,
-0.015567720867693424,
-0.03306348994374275,
0.03356325998902321,
0.06916200369596481,
0.017154060304164886,
-0.011074332520365715,
-0.010696318000555038,
0.021050581708550453,
-0.04216860607266426,
0.03417491167783737,
0.028443455696105957,
-0.016018882393836975,
-0.0016301258001476526,
-0.002278396626934409,
-0.019090693444013596,
-0.038209110498428345,
-0.04711966961622238,
-0.03315679356455803,
-0.030489962548017502,
0.02763042412698269,
0.027956778183579445,
0.027919502928853035,
0.013977334834635258,
0.001209513284265995,
-0.023285144940018654,
0.008948097005486488,
0.03309687599539757,
-0.05365142598748207,
0.03493927791714668,
-0.016632935032248497,
-0.010688960552215576,
0.02764704078435898,
-0.009383534081280231,
0.017193961888551712,
0.004568784032016993,
0.010060097090899944,
-0.01703229546546936,
-0.011821755208075047,
0.0236495491117239,
0.04571281746029854,
-0.0019738939590752125,
-0.022951241582632065,
-0.015022369101643562,
-0.024561407044529915,
-0.09037429094314575,
-0.012919955886900425,
-0.09847509860992432,
-0.01878632977604866,
0.07178951799869537,
-0.033793237060308456,
0.03103657439351082,
0.02047717198729515,
-0.012379005551338196,
-0.020154131576418877,
-0.010164923965930939,
0.013620251789689064,
-0.008500526659190655,
-0.03250229358673096,
0.01988203264772892,
-0.0005307073006406426,
-0.03981814906001091,
0.0022597340866923332,
0.012191444635391235,
-0.0119905611500144,
-0.0031654564663767815,
0.0183095820248127,
-0.011937955394387245,
0.0881827101111412,
0.024055132642388344,
-0.04251053184270859,
0.004925509914755821,
-0.0078742615878582,
0.041439227759838104,
0.04827043041586876,
-0.006441749632358551,
0.0171267781406641,
-0.04346315562725067,
0.033537182956933975,
0.00030108881765045226,
0.020021112635731697,
0.00009802132990444079,
0.04211476445198059,
0.011753041297197342,
0.0013060485944151878,
0.016909662634134293,
0.001865516067482531,
-0.009945238940417767,
0.006398964673280716,
0.04347990080714226,
-0.03901589661836624,
-0.013632654212415218,
0.046018682420253754,
0.017460260540246964,
-0.01039714366197586,
-0.05887297913432121,
-0.0003522654005791992,
-0.038901109248399734,
0.010310327634215355,
-0.0410112664103508,
-0.026957988739013672,
0.003952000290155411,
0.010888469405472279,
0.03742886707186699,
0.036010969430208206,
0.024947162717580795,
0.008694472722709179,
0.06531047821044922,
0.040176838636398315,
0.05702226608991623,
0.019693946465849876,
-0.018205292522907257,
-0.015985503792762756,
0.019355732947587967,
0.031287696212530136,
-0.006184630561619997,
0.006364104803651571,
-0.004259908571839333,
-0.028893500566482544,
0.03201249614357948,
-0.027472475543618202,
0.0067128934897482395,
-0.014347231946885586,
-0.02387903816998005,
0.01135063823312521,
0.03610311448574066,
0.017320191487669945,
-0.002848908770829439,
0.012685326859354973,
0.06739477068185806,
0.003284530946984887,
-0.022331221029162407,
0.0034084164071828127,
-0.021813219413161278,
-0.01637856848537922,
0.032329950481653214,
0.007346905767917633,
-0.01629890315234661,
-0.03199225664138794,
0.001097257831133902,
0.020934399217367172,
0.002857751678675413,
-0.023840347304940224,
-0.006236176006495953,
0.011886770837008953,
0.013787305913865566,
-0.003917338792234659,
0.026371173560619354,
0.020401936024427414,
0.0532219372689724,
-0.007112329360097647,
-0.01245051808655262,
-0.032613638788461685,
0.004505770746618509,
-0.008290114812552929,
0.010344953276216984,
-0.005689158104360104,
-0.05370865389704704,
0.004579431377351284,
0.014777605421841145,
-0.047941163182258606,
-0.0030415449291467667,
0.004483033437281847,
0.044616010040044785,
0.04884263128042221,
0.0461905300617218,
-0.007985229603946209,
-0.026370830833911896,
-0.01940014772117138,
0.02957826294004917,
0.0020718276500701904,
-0.016114311292767525,
0.002238666405901313,
-0.033218707889318466,
0.00007471693970728666,
0.03877311572432518,
0.015731418505311012,
-0.05030812695622444,
-0.020469611510634422,
0.0013158952351659536,
0.02868502214550972,
-0.0004524204705376178,
0.009040242992341518,
0.02971426583826542,
-0.018246004357933998,
-0.010610410943627357,
0.012342255562543869,
0.06349098682403564,
-0.026532649993896484,
-0.06890778243541718,
-0.005671478807926178,
0.02635897323489189,
0.043260879814624786,
0.008666510693728924,
-0.04754464328289032,
0.010355224832892418,
0.02199331670999527,
0.035976823419332504,
0.056044936180114746,
-0.028619641438126564,
0.02537444792687893,
0.015267380513250828,
-0.03281677886843681,
-0.028733596205711365,
0.004846808034926653,
0.03203710913658142,
0.014060183428227901,
0.01701163686811924,
-0.01954827643930912,
-0.025919334962964058,
-0.04309455305337906,
-0.008325482718646526,
0.019499467685818672,
-0.016004761680960655,
-0.015754446387290955,
0.04319847747683525,
0.021173469722270966,
-0.02621660940349102,
-0.006259223446249962,
-0.02746465802192688,
-0.03421946242451668,
-0.02679024264216423,
0.01809343881905079,
-0.004381163511425257,
-0.0336012989282608,
0.00758789200335741,
0.01859390363097191,
0.014540056698024273,
0.019678523764014244,
-0.014265320263803005,
-0.011148336343467236,
0.03153183311223984,
-0.023785673081874847,
0.008733799681067467,
-0.0008247146033681929,
-0.0016287798061966896,
-0.0068409922532737255,
-0.014216678217053413,
0.01691398210823536,
-0.01609070785343647,
-0.0007003261707723141,
-0.012796849943697453,
-0.006101842503994703,
0.061166953295469284,
-0.028624651953577995,
-0.009955579414963722,
-0.062452834099531174,
-0.029512088745832443,
-0.06947264820337296,
0.015827566385269165,
0.01653037965297699,
0.00399294588714838,
0.013523790054023266,
-0.002796366112306714,
0.026666885241866112,
-0.014918947592377663,
0.014119892381131649,
-0.015548987314105034,
0.05642295256257057,
0.04322250559926033,
0.015585837885737419,
-0.01533277053385973,
0.015765270218253136
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | Chunked Feed Forward Layer in Reformer In Reformer, the LSH- or local self-attention layer is usually followed by a residual connection, which then defines the first part in a transformer block. For more detail on this please refer to this blog. The output of the first part of the transformer block, called normed self-attention output can be written as \( \mathbf{\overline{Z}} = \mathbf{Z} + \mathbf{X} \), with \( \mathbf{Z} \) being either \( \mathbf{Z}^{\text{LSH}} \) or \( \mathbf{Z}^\text{loc} \) in Reformer. For our example input \( \mathbf{x}1, \ldots, \mathbf{x}{16} \), we illustrate the normed self-attention output as follows. Now, the second part of a transformer block usually consists of two feed forward layers \( ^{1} \), defined as \( \text{Linear}{\text{int}}(\ldots) \) that processes \( \mathbf{\overline{Z}} \), to an intermediate output \( \mathbf{Y}{\text{int}} \) and \( \text{Linear}{\text{out}}(\ldots) \) that processes the intermediate output to the output \( \mathbf{Y}{\text{out}} \). The two feed forward layers can be defined by $$\mathbf{Y}{\text{out}} = \text{Linear}{\text{out}}(\mathbf{Y}\text{int}) = \text{Linear}{\text{out}}(\text{Linear}{\text{int}}(\mathbf{\overline{Z}})).$$ It is important to remember at this point that mathematically the output of a feed forward layer at position \( \mathbf{y}{\text{out}, i} \) only depends on the input at this position \( \mathbf{\overline{y}}{i} \). In contrast to the self-attention layer, every output \( \mathbf{y}{\text{out}, i} \) is therefore completely independent of all inputs \( \mathbf{\overline{y}}{j \ne i} \) of different positions. Let's illustrate the feed forward layers for \( \mathbf{\overline{z}}_1, \ldots, \mathbf{\overline{z}}{16} \). As can be depicted from the illustration, all input vectors \( \mathbf{\overline{z}}{i} \) are processed by the same feed forward layer in parallel. It becomes interesting when one takes a look at the output dimensions of the feed forward layers. In Reformer, the output dimension of \( \text{Linear}{\text{int}} \) is defined as config.feed_forward_size, e.g. \( d_{f} \), and the output dimension of \( \text{Linear}{\text{out}} \) is defined as config.hidden_size, i.e. \( d{h} \). The Reformer authors observed that in a transformer model the intermediate dimension \( d_{f} \) usually tends to be much larger than the output dimension \(^{2}\) \( d_{h} \). This means that the tensor \( \mathbf{\mathbf{Y}}\text{int} \) of dimension \( d{f} \times n \) allocates a significant amount of the total memory and can even become the memory bottleneck. To get a better feeling for the differences in dimensions let's picture the matrices \( \mathbf{Y}\text{int} \) and \( \mathbf{Y}\text{out} \) for our example. It is becoming quite obvious that the tensor \( \mathbf{Y}\text{int} \) holds much more memory ( \( \frac{d{f}}{d_{h}} \times n \) as much to be exact) than \( \mathbf{Y}{\text{out}} \). But, is it even necessary to compute the full intermediate matrix \( \mathbf{Y}\text{int} \) ? Not really, because relevant is only the output matrix \( \mathbf{Y}\text{out} \). To trade memory for speed, one can thus chunk the linear layers computation to only process one chunk at the time. Defining config.chunk_size_feed_forward as \( c{f} \), chunked linear layers are defined as \( \mathbf{Y}{\text{out}} = \left[\mathbf{Y}{\text{out}, 1: c_{f}}, \ldots, \mathbf{Y}{\text{out}, (n - c{f}): n}\right] \) with \( \mathbf{Y}{\text{out}, (c{f} * i): (i * c_{f} + i)} = \text{Linear}{\text{out}}(\text{Linear}{\text{int}}(\mathbf{\overline{Z}}{(c{f} * i): (i * c_{f} + i)})) \). In practice, it just means that the output is incrementally computed and concatenated to avoid having to store the whole intermediate tensor \( \mathbf{Y}{\text{int}} \) in memory. Assuming \( c{f}=1 \) for our example we can illustrate the incremental computation of the output for position \( i=9 \) as follows. By processing the inputs in chunks of size 1, the only tensors that have to be stored in memory at the same time are \( \mathbf{Y}\text{out} \) of a maximum size of \( 16 \times d{h} \), \( \mathbf{y}{\text{int}, i} \) of size \( d{f} \) and the input \( \mathbf{\overline{Z}} \) of size \( 16 \times d_{h} \), with \( d_{h} \) being config.hidden_size \(^{3}\). Finally, it is important to remember that chunked linear layers yield a mathematically equivalent output to conventional linear layers and can therefore be applied to all transformer linear layers. Making use of config.chunk_size_feed_forward therefore allows a better trade-off between memory and speed in certain use cases. --- \( {}^1 \) For a simpler explanation, the layer norm layer which is normally applied to \( \mathbf{\overline{Z}} \) before being processed by the feed forward layers is omitted for now. \( {}^2 \) In bert-base-uncased, e.g. the intermediate dimension \( d_{f} \) is with 3072 four times larger than the output dimension \( d_{h} \). \( {}^3 \) As a reminder, the output config.num_attention_heads is assumed to be 1 for the sake of clarity and illustration in this notebook, so that the output of the self-attention layers can be assumed to be of size config.hidden_size. More information on chunked linear / feed forward layers can also be found here on the 🤗Transformers docs. | [
0.0481509305536747,
-0.05313701927661896,
0.0364254005253315,
-0.008632712997496128,
0.06278526782989502,
0.05288802832365036,
-0.01869897171854973,
-0.001526792417280376,
0.0051676323637366295,
-0.008329213596880436,
-0.07016532123088837,
0.014595766551792622,
0.013920745812356472,
-0.03940584138035774,
-0.05142868310213089,
0.06233706697821617,
0.04886973276734352,
-0.04631976783275604,
-0.08152512460947037,
0.0018423693254590034,
0.025482432916760445,
-0.03907056525349617,
0.08748139441013336,
0.011475381441414356,
-0.003423796035349369,
-0.0659220889210701,
-0.0029243994504213333,
-0.00185209303162992,
-0.0015257628401741385,
0.0643361359834671,
-0.10240718722343445,
-0.04221257194876671,
0.03239612653851509,
-0.08879585564136505,
0.002483563032001257,
-0.05977952107787132,
-0.11188109219074249,
-0.03224695101380348,
0.02332654595375061,
-0.04029446840286255,
-0.009516842663288116,
0.009895028546452522,
-0.07936122268438339,
0.0052113719284534454,
0.0027545858174562454,
-0.02324201725423336,
-0.15827956795692444,
0.04605589807033539,
-0.06148640438914299,
0.046298880130052567,
-0.05440933257341385,
0.03752771019935608,
-0.04660321772098541,
0.06964204460382462,
-0.017533373087644577,
-0.014493759721517563,
-0.0066003138199448586,
0.05687559023499489,
0.03869609907269478,
0.06064788997173309,
0.04291112348437309,
0.0260685533285141,
-0.03381691500544548,
0.0397411584854126,
0.035790447145700455,
-0.039417069405317307,
-0.005970153026282787,
0.010826731100678444,
-0.07203932106494904,
-0.07004614174365997,
-0.02198478952050209,
0.01328924112021923,
0.03944927826523781,
-0.023814234882593155,
-0.0060242461040616035,
0.02036653831601143,
0.00754040339961648,
0.033568304032087326,
0.03457457944750786,
-0.0008363896049559116,
-0.021093865856528282,
0.04985213279724121,
0.03084672801196575,
0.08356564491987228,
0.03484019264578819,
-0.04137202724814415,
0.021556587889790535,
-0.08327704668045044,
0.0024161830078810453,
0.06498900800943375,
-0.0798465758562088,
-0.1176721379160881,
0.029848648235201836,
-0.004807236138731241,
0.07163897901773453,
-0.06526262313127518,
0.006565067917108536,
0.002023139502853155,
-0.04940049350261688,
0.01954095996916294,
-0.038605447858572006,
-0.004910552408546209,
0.05292103812098503,
0.03496328741312027,
-0.003590360516682267,
-0.013804536312818527,
-0.004526024684309959,
-0.05492037907242775,
-0.06015077978372574,
-0.07900620251893997,
0.02900935709476471,
0.02756575308740139,
0.040949154645204544,
0.043474823236465454,
-0.04428144544363022,
-0.04621171951293945,
-0.06258504092693329,
0.004859937354922295,
0.008070206269621849,
-0.020675169304013252,
-0.031842637807130814,
0.08522290736436844,
0.07964378595352173,
0.04355711489915848,
0.0878487378358841,
-0.004442648496478796,
-0.06595365703105927,
0.0532812662422657,
-0.0010626250877976418,
-0.03371564671397209,
0.024503245949745178,
0.04148246720433235,
0.0659148097038269,
-0.0303729809820652,
-0.03512195125222206,
-0.10348781198263168,
0.024518214166164398,
-0.05070234835147858,
0.002266248222440481,
-0.023701509460806847,
-0.04148813709616661,
0.019137470051646233,
0.040856100618839264,
-0.0402681902050972,
-0.008572571910917759,
-0.09636808931827545,
-0.04152320697903633,
0.049541182816028595,
0.04576103389263153,
0.04613461717963219,
0.018275290727615356,
0.013427654281258583,
0.004482035990804434,
-0.025842182338237762,
-0.012639450840651989,
0.035609543323516846,
0.05791321396827698,
-0.01903325878083706,
-0.09911134093999863,
0.02675984427332878,
0.03133537247776985,
0.038985010236501694,
-0.0042708516120910645,
0.05476393923163414,
0.057225145399570465,
-0.06859798729419708,
0.03503070026636124,
-0.04288012906908989,
0.005725903902202845,
-0.00045729565317742527,
0.046444714069366455,
-0.02710350975394249,
0.02602674998342991,
-0.03236201032996178,
-0.022320594638586044,
-0.008173326030373573,
0.030076736584305763,
0.07886365056037903,
-0.05518803000450134,
-0.02031000889837742,
-0.044056009501218796,
-0.005760579835623503,
0.040849704295396805,
-0.034006137400865555,
0.011346397921442986,
0.02803974226117134,
0.048072341829538345,
-0.0019412362016737461,
-0.02947082743048668,
0.0796535313129425,
-0.025087537243962288,
0.013600490987300873,
0.004129461944103241,
0.012515483424067497,
0.06992737203836441,
-0.03256044164299965,
-0.06046732887625694,
0.009187878109514713,
0.06241587921977043,
0.0847061425447464,
0.03366845101118088,
0.0444897897541523,
-0.020261164754629135,
0.027318617329001427,
-0.023146571591496468,
-0.002351698698475957,
0.0319557711482048,
-0.031794991344213486,
0.047536201775074005,
-0.03758356347680092,
-0.06534159183502197,
-0.06368716806173325,
0.0369943268597126,
-0.049784451723098755,
-0.04278680309653282,
-0.07570803910493851,
0.013839350081980228,
-0.0009919236181303859,
-0.028376789763569832,
0.0394245982170105,
0.12525896728038788,
-0.010115730576217175,
-0.025459403172135353,
0.033438585698604584,
-0.03223472088575363,
-0.03592720255255699,
0.05654638260602951,
0.00988087709993124,
-0.04381871595978737,
-0.07280789315700531,
-0.009892718866467476,
-0.05242054909467697,
0.03527803719043732,
-0.0019532532896846533,
-0.06718378514051437,
-0.08577893674373627,
-0.03300488740205765,
0.03917863965034485,
0.038049958646297455,
-0.0934465155005455,
-0.030385635793209076,
0.016399899497628212,
0.04254283756017685,
-0.01043020375072956,
0.005593859124928713,
0.051636118441820145,
-0.004088720306754112,
0.026933271437883377,
-0.08733957260847092,
0.053039561957120895,
-0.02090676687657833,
0.09352090954780579,
0.004758012481033802,
-0.10178214311599731,
-0.05954599753022194,
-0.010384529829025269,
0.006240895017981529,
-0.005545973312109709,
0.02117324434220791,
0.006269234232604504,
0.02394913136959076,
0.006433384492993355,
-0.05910845845937729,
-0.04846332594752312,
-0.03780190274119377,
-0.04486691206693649,
0.018432969227433205,
0.018889879807829857,
0.0019183555850759149,
-0.005991535261273384,
-0.007382513489574194,
0.03255947679281235,
-0.03980477526783943,
-0.014637090265750885,
0.045221298933029175,
-0.01401611976325512,
0.03995037451386452,
-0.03090200386941433,
0.006617333274334669,
-0.02737029641866684,
-0.009269017726182938,
0.0431755930185318,
0.019978033378720284,
0.04357783496379852,
-0.0063530392944812775,
-0.00802229717373848,
0.009648160077631474,
0.0234009250998497,
-0.017855746671557426,
-0.041433852165937424,
-0.005944197531789541,
0.023984095081686974,
-0.0016778215067461133,
-0.045503731817007065,
-0.017822211608290672,
0.05195343866944313,
-0.013813331723213196,
-0.005606485065072775,
-0.0374174527823925,
-0.007058131042867899,
0.01785125583410263,
-0.0074221184477210045,
0.042459793388843536,
0.002866765484213829,
-0.009877946227788925,
-0.007447016891092062,
-0.04181315004825592,
0.08428379893302917,
-0.08255600184202194,
-0.07948088645935059,
-0.0115278922021389,
0.019625669345259666,
-0.006587876472622156,
-0.07171430438756943,
-0.002995846327394247,
0.03238363191485405,
0.002424011705443263,
-0.01915227249264717,
0.034028224647045135,
-0.016159841790795326,
-0.0024360395036637783,
-0.008056762628257275,
-0.0005164392059668899,
-0.0058845155872404575,
0.027583356946706772,
-0.04082277789711952,
0.02252565696835518,
-0.015995372086763382,
-0.012405076995491982,
0.01052903849631548,
0.0052320403046905994,
0.02834044024348259,
0.0019791265949606895,
-0.004547405522316694,
0.0491771325469017,
-0.025453772395849228,
0.03342587873339653,
-0.022921133786439896,
-0.02205592766404152,
-0.023483825847506523,
0.006327885203063488,
0.024201607331633568,
-0.024953249841928482,
-0.014601008035242558,
0.02288278564810753,
0.025975065305829048,
0.045305412262678146,
0.05543235316872597,
0.05648709833621979,
0.039496369659900665,
0.03754030168056488,
0.0204581618309021,
0.016156749799847603,
-0.018948204815387726,
0.015021213330328465,
-0.033747319132089615,
-0.0012248270213603973,
-0.018765004351735115,
0.0008803645032458007,
-0.027595143765211105,
0.035442061722278595,
0.017260489985346794,
-0.052335456013679504,
-0.004017484840005636,
0.02223639190196991,
0.0024146961513906717,
0.00044435347081162035,
-0.018259571865200996,
-0.07563566416501999,
0.022057773545384407,
-0.05502908676862717,
0.012205297127366066,
-0.025139058008790016,
0.014429125003516674,
-0.01824094168841839,
0.015870921313762665,
0.020038524642586708,
0.03494218736886978,
0.0047144475392997265,
0.005035600159317255,
-0.0026379511691629887,
-0.0018100225133821368,
-0.027729155495762825,
-0.009429353289306164,
-0.043804001063108444,
-0.005975338164716959,
0.05278968811035156,
0.021663060411810875,
-0.02531394548714161,
0.019468562677502632,
-0.012486462481319904,
0.040661897510290146,
-0.00543988449499011,
0.04933436959981918,
0.01721482165157795,
-0.018080245703458786,
0.04160628467798233,
0.008369972929358482,
0.039171550422906876,
-0.013141456991434097,
0.02961721085011959,
-0.020610883831977844,
-0.03050255961716175,
0.032299913465976715,
-0.011989682912826538,
-0.006653512362390757,
0.0035152139607816935,
0.03561186417937279,
0.04709431156516075,
-0.04010302573442459,
-0.021479660645127296,
0.013146083801984787,
0.04795582965016365,
0.006390905473381281,
-0.055044546723365784,
0.003011946799233556,
0.0532761886715889,
0.008059336803853512,
0.019244438037276268,
-0.03704514726996422,
-0.0260486900806427,
0.0316823348402977,
0.03089243546128273,
0.035090140998363495,
-0.07167719304561615,
-0.06893963366746902,
-0.024298522621393204,
-0.010844475589692593,
0.0046935910359025,
0.0032281409949064255,
0.027361489832401276,
-0.05846899747848511,
0.02398349530994892,
-0.017141100019216537,
0.03625813499093056,
0.04502987489104271,
0.004157486837357283,
-0.005989871919155121,
-0.018184304237365723,
0.0032456673216074705,
0.036705486476421356,
-0.02607865445315838,
-0.005067408550530672,
0.04851081967353821,
0.0027262642979621887,
0.029243826866149902,
-0.021137457340955734,
-0.032325804233551025,
-0.06019393727183342,
0.02973109297454357,
0.021932531148195267,
-0.032898083329200745,
0.052010707557201385,
0.014433350414037704,
-0.006072295363992453,
0.04003192111849785,
-0.024869898334145546,
0.010495462454855442,
0.04353444650769234,
0.025201695039868355,
-0.06938394159078598,
0.010123483836650848,
0.0272412970662117,
-0.0007670584600418806,
-0.01565193198621273,
0.00022444751812145114,
0.04089449718594551,
0.021449489519000053,
-0.008004735223948956,
0.019807564094662666,
-0.06545154750347137,
0.03786586597561836,
0.03163006901741028,
-0.007554812356829643,
-0.047955892980098724,
-0.0365695022046566,
0.02306292951107025,
-0.022849109023809433,
-0.037478845566511154,
-0.013615456409752369,
0.006097084376960993,
-0.0424923375248909,
0.001760822138749063,
0.014547298662364483,
-0.01699112541973591,
-0.031318120658397675,
0.008706523105502129,
-0.007889733649790287,
-0.023578302934765816,
-0.009717586450278759,
0.06193040311336517,
-0.004231968894600868,
0.013540824875235558,
0.0594203919172287,
0.01990886591374874,
0.03283022716641426,
-0.013727807439863682,
0.051177896559238434,
0.05944228917360306,
-0.03305332362651825,
-0.004879552870988846,
0.03006099723279476,
0.008105039596557617,
0.01527542807161808,
0.052485156804323196,
-0.00016111494915094227,
-0.008096855133771896,
-0.020558860152959824,
0.02197469398379326,
0.06169769540429115,
-0.009230821393430233,
-0.0154020506888628,
0.004170435946434736,
-0.011938544921576977,
-0.0006554013234563172,
0.023873910307884216,
-0.02215571328997612,
-0.022172976285219193,
0.040232203900814056,
0.013458049856126308,
-0.0016424754867330194,
-0.002230297541245818,
-0.004668911918997765,
-0.03400210663676262,
-0.003609730862081051,
-0.011096028611063957,
0.010668189264833927,
-0.000521420210134238,
-0.0012728080619126558,
0.01936940662562847,
-0.026675241068005562,
0.005182499531656504,
-0.0027865557931363583,
-0.04299602657556534,
-0.0002243467461084947,
0.02343173325061798,
0.0025691722985357046,
0.004356248304247856,
0.03487910330295563,
-0.008125528693199158,
0.004128267057240009,
-0.02191866561770439,
-0.01995251514017582,
0.016087137162685394,
-0.07074199616909027,
0.044460833072662354,
0.0023553522769361734,
0.0012981795007362962,
0.006781320553272963,
0.030905375257134438,
-0.06011870130896568,
0.034532807767391205,
0.009503279812633991,
0.025402050465345383,
0.0593099445104599,
-0.039413370192050934,
-0.010882406495511532,
-0.001653237035498023,
0.043073058128356934,
-0.02988658845424652,
-0.008261180482804775,
-0.0028778051491826773,
0.010462467558681965,
-0.00011511243064887822,
0.041770704090595245,
0.033076394349336624,
0.03148448467254639,
0.04119215905666351,
0.002769269049167633,
-0.051460884511470795,
-0.02986389398574829,
-0.031048830598592758,
-0.0007594116032123566,
0.04354386404156685,
-0.04491053521633148,
-0.0180173609405756,
-0.01874435879290104,
0.03380661457777023,
0.0116470567882061,
-0.016100261360406876,
-0.028401289135217667,
0.003597007133066654,
-0.028773920610547066,
-0.0035344890784472227,
0.018835751339793205,
0.03253018110990524,
0.03904815763235092,
0.0050879307091236115,
0.04038155823945999,
-0.009710734710097313,
0.048386480659246445,
0.03099961392581463,
0.03554636985063553,
-0.015097529627382755,
0.026259826496243477,
0.011979504488408566,
-0.00181284558493644,
0.037179283797740936,
0.004400438163429499,
0.0185745507478714,
-0.03548339381814003,
-0.011336625553667545,
-0.011761358939111233,
0.038781072944402695,
0.007355261128395796,
-0.04302651807665825,
0.04090588167309761,
-0.012140928767621517,
0.008662991225719452,
0.014416038990020752,
-0.009013256058096886,
0.012672625482082367,
-0.013651727698743343,
0.04547985643148422,
0.00004864836228080094,
0.042384542524814606,
0.04038231447339058,
-0.016789117828011513,
-0.0276980921626091,
0.02699417807161808,
-0.0022001932375133038,
0.03445187956094742,
0.016505837440490723,
-0.03137775510549545,
0.03269784152507782,
-0.014489073306322098,
-0.02620481140911579,
0.050871122628450394,
-0.004635850433260202,
-0.04804559424519539,
-0.012363848276436329,
-0.022233974188566208,
0.00227047735825181,
-0.04439150169491768,
0.005530871916562319,
-0.006557140965014696,
-0.0010958998464047909,
0.004934475291520357,
0.010814093984663486,
0.00034909724490717053,
-0.021184349432587624,
0.019534649327397346,
-0.016294071450829506,
0.014225338585674763,
0.009188681840896606,
0.005710987839847803,
0.013059886172413826,
-0.036672964692115784,
-0.042605943977832794,
0.057558294385671616,
-0.01261966209858656,
0.05807386338710785,
0.05377213656902313,
-0.03567924350500107,
0.03652392327785492,
-0.03533754125237465,
-0.016593527048826218,
0.04761531576514244,
0.015170494094491005,
0.0032471006270498037,
-0.04207715392112732,
-0.008545138873159885,
0.005688303150236607,
0.03143329918384552,
-0.00292549142614007,
0.010186895728111267,
0.002177410526201129,
0.007352767512202263,
-0.006755715701729059,
0.04249062389135361,
-0.008853640407323837,
-0.02308199554681778,
-0.026308342814445496,
0.002817881992086768,
0.001627979101613164,
0.0018867218168452382,
-0.03771957382559776,
-0.01626608520746231,
-0.01267139334231615,
-0.008495301008224487,
-0.02304891310632229,
-0.003223285311833024,
-0.03801324963569641,
-0.011949156410992146,
0.02358299493789673,
0.024110646918416023,
-0.03671899810433388,
-0.027861671522259712,
-0.0025962877552956343,
-0.0006823631701990962,
-0.007702382281422615,
0.06688392907381058,
0.035180557519197464,
0.03244388476014137,
-0.02701897919178009,
0.024227386340498924,
-0.00762570183724165,
-0.03653324022889137,
-0.031674016267061234,
-0.03388095274567604,
0.0022754191886633635,
0.018480295315384865,
0.019099771976470947,
0.027716699987649918,
-0.038912396878004074,
0.05263552442193031,
-0.003015439258888364,
-0.0033356461208313704,
-0.0024244755040854216,
0.028663834556937218,
0.03496207669377327,
-0.035203300416469574,
0.00011508278112160042,
0.014209924265742302,
0.0033148061484098434,
-0.027160679921507835,
0.004698034375905991,
0.013242458924651146,
0.03699803724884987,
-0.02134060487151146,
0.04553563892841339,
-0.004691628739237785,
0.030451076105237007,
-0.03598328307271004,
-0.03893154114484787,
0.0013795054983347654,
0.01751764304935932,
-0.014816777780652046,
0.021033931523561478,
0.0002598599239718169,
0.02434816211462021,
0.04099879041314125,
0.015254352241754532,
0.01371532492339611,
0.011758948676288128,
0.004384542815387249,
0.03573594242334366,
-0.021957406774163246,
0.01077810488641262,
0.005699122324585915,
0.061032749712467194,
0.024752533063292503,
0.01985817588865757,
0.04812409728765488,
0.014240102842450142,
0.0186716727912426,
0.015668869018554688,
0.016374556347727776,
-0.0013063553487882018,
-0.06978055834770203,
0.027439171448349953,
0.017837656661868095,
-0.004885585978627205,
0.013518755324184895,
-0.031136177480220795,
0.037528060376644135,
0.02568807639181614,
0.00432145269587636,
0.019678324460983276,
0.006924797780811787,
-0.0490475632250309,
0.04128486290574074,
0.03421713039278984,
0.015130567364394665,
-0.04857005551457405,
0.04462888464331627,
-0.011753601022064686,
0.022050736472010612
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | Benchmark Let's test how much memory can be saved by using chunked feed forward layers. #@title Installs and Imports # pip installs !pip -qq install git+https://github.com/huggingface/transformers.git !pip install -qq py3nvml from transformers import ReformerConfig, PyTorchBenchmark, PyTorchBenchmarkArguments Building wheel for transformers (setup.py) ... [?25l[?25hdone First, let's compare the default google/reformer-enwik8 model without chunked feed forward layers to the one with chunked feed forward layers. config_no_chunk = ReformerConfig.from_pretrained("google/reformer-enwik8") # no chunk config_chunk = ReformerConfig.from_pretrained("google/reformer-enwik8", chunk_size_feed_forward=1) # feed forward chunk benchmark_args = PyTorchBenchmarkArguments(sequence_lengths=[1024, 2048, 4096], batch_sizes=[8], models=["Reformer-No-Chunk", "Reformer-Chunk"], no_speed=True, no_env_print=True) benchmark = PyTorchBenchmark(configs=[config_no_chunk, config_chunk], args=benchmark_args) result = benchmark.run() 1 / 2 Doesn't fit on GPU. CUDA out of memory. Tried to allocate 2.00 GiB (GPU 0; 11.17 GiB total capacity; 7.85 GiB already allocated; 1.74 GiB free; 9.06 GiB reserved in total by PyTorch) 2 / 2 Doesn't fit on GPU. CUDA out of memory. Tried to allocate 2.00 GiB (GPU 0; 11.17 GiB total capacity; 7.85 GiB already allocated; 1.24 GiB free; 9.56 GiB reserved in total by PyTorch) ==================== INFERENCE - MEMORY - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- Reformer-No-Chunk 8 1024 4281 Reformer-No-Chunk 8 2048 7607 Reformer-No-Chunk 8 4096 N/A Reformer-Chunk 8 1024 4309 Reformer-Chunk 8 2048 7669 Reformer-Chunk 8 4096 N/A -------------------------------------------------------------------------------- Interesting, chunked feed forward layers do not seem to help here at all. The reason is that config.feed_forward_size is not sufficiently large to make a real difference. Only at longer sequence lengths of 4096, a slight decrease in memory usage can be seen. Let's see what happens to the memory peak usage if we increase the size of the feed forward layer by a factor of 4 and reduce the number of attention heads also by a factor of 4 so that the feed forward layer becomes the memory bottleneck. config_no_chunk = ReformerConfig.from_pretrained("google/reformer-enwik8", chunk_size_feed_forward=0, num_attention_{h}eads=2, feed_forward_size=16384) # no chuck config_chunk = ReformerConfig.from_pretrained("google/reformer-enwik8", chunk_size_feed_forward=1, num_attention_{h}eads=2, feed_forward_size=16384) # feed forward chunk benchmark_args = PyTorchBenchmarkArguments(sequence_lengths=[1024, 2048, 4096], batch_sizes=[8], models=["Reformer-No-Chunk", "Reformer-Chunk"], no_speed=True, no_env_print=True) benchmark = PyTorchBenchmark(configs=[config_no_chunk, config_chunk], args=benchmark_args) result = benchmark.run() 1 / 2 2 / 2 ==================== INFERENCE - MEMORY - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- Reformer-No-Chunk 8 1024 3743 Reformer-No-Chunk 8 2048 5539 Reformer-No-Chunk 8 4096 9087 Reformer-Chunk 8 1024 2973 Reformer-Chunk 8 2048 3999 Reformer-Chunk 8 4096 6011 -------------------------------------------------------------------------------- Now a clear decrease in peak memory usage can be seen for longer input sequences. As a conclusion, it should be noted chunked feed forward layers only makes sense for models having few attention heads and large feed forward layers. | [
0.017997555434703827,
0.006843681447207928,
0.027014032006263733,
0.03883929178118706,
-0.009731401689350605,
0.054391395300626755,
0.03645608201622963,
0.019851846620440483,
-0.052488211542367935,
0.019380394369363785,
-0.05633849650621414,
0.06368027627468109,
-0.025584330782294273,
0.018910525366663933,
0.03665976971387863,
-0.0071102348156273365,
0.0607491098344326,
-0.021104319021105766,
-0.08345124870538712,
0.03259855881333351,
0.05265575647354126,
-0.062415383756160736,
0.07711319625377655,
-0.0013280302518978715,
-0.004041331820189953,
-0.03548789024353027,
0.02778804861009121,
-0.02774503454566002,
-0.000546766328625381,
-0.005553350318223238,
-0.16136054694652557,
-0.0022118622437119484,
-0.013757333159446716,
-0.05613637715578079,
0.023227103054523468,
-0.024175141006708145,
-0.09627921879291534,
0.06822699308395386,
0.06916532665491104,
-0.004914042539894581,
-0.0051503474824130535,
0.036995500326156616,
-0.04301528260111809,
0.027028217911720276,
0.0019502934301272035,
0.031662631779909134,
-0.08622978627681732,
0.06371577084064484,
-0.06064440682530403,
-0.021216008812189102,
-0.08686862885951996,
0.0115570779889822,
-0.024751972407102585,
0.009939339943230152,
-0.00982241053134203,
0.04714648798108101,
0.028309471905231476,
-0.029772423207759857,
0.01762309856712818,
0.028734833002090454,
0.04405512660741806,
0.036169249564409256,
0.044603925198316574,
0.05422541871666908,
-0.015815474092960358,
-0.002979285316541791,
-0.02292540669441223,
0.0877079963684082,
-0.0448031984269619,
-0.02211780846118927,
0.00925514567643404,
-0.07640133798122406,
0.03374745324254036,
0.027087919414043427,
-0.040451619774103165,
-0.011621365323662758,
0.0029627373442053795,
-0.016985120251774788,
0.08550327271223068,
0.052527036517858505,
-0.007755274418741465,
0.07145465910434723,
-0.020134633406996727,
-0.01923462748527527,
0.04917444661259651,
-0.01050474215298891,
0.05686956271529198,
-0.10172950476408005,
-0.04976052790880203,
0.060375772416591644,
-0.04782131314277649,
-0.04584037512540817,
-0.008983380161225796,
-0.027028167620301247,
-0.00435247179120779,
0.0012744374107569456,
-0.028011808171868324,
0.0041576712392270565,
-0.00019962614169344306,
-0.010438445955514908,
-0.02474086545407772,
-0.11125989258289337,
-0.002270366996526718,
-0.017965564504265785,
-0.0012173750437796116,
0.04721007123589516,
-0.06736487150192261,
-0.1426551342010498,
0.02611032873392105,
0.004107387736439705,
0.02317105419933796,
0.021912388503551483,
-0.046903762966394424,
0.01634698361158371,
-0.0905691385269165,
-0.022812528535723686,
-0.07972469925880432,
-0.02374989539384842,
-0.006643954198807478,
0.05059542879462242,
0.0007868111133575439,
0.07165998220443726,
0.050794266164302826,
-0.018015973269939423,
0.004509703256189823,
0.010648387484252453,
0.028314733877778053,
0.03261062130331993,
0.0018126729410141706,
-0.0013444921933114529,
0.05666143074631691,
-0.020506450906395912,
0.06585052609443665,
-0.011744343675673008,
-0.04963319003582001,
-0.08213602751493454,
0.014925592578947544,
-0.0006938821170479059,
-0.03988085314631462,
-0.018193500116467476,
-0.08316486328840256,
0.0725751742720604,
0.025843463838100433,
-0.06817040592432022,
0.06265927851200104,
-0.039712827652692795,
-0.08171897381544113,
0.0601157620549202,
0.029736096039414406,
-0.051613014191389084,
-0.12963277101516724,
0.07156205177307129,
-0.05649341270327568,
-0.019685223698616028,
0.002191288862377405,
0.060038790106773376,
-0.05319865047931671,
-0.025752708315849304,
-0.052010636776685715,
-0.005153871141374111,
-0.037235137075185776,
0.056572671979665756,
-0.0038574249483644962,
-0.015495373867452145,
0.0040161460638046265,
-0.007640767376869917,
0.04542466625571251,
-0.030881671234965324,
-0.05089528113603592,
0.0012065238552168012,
-0.00484542828053236,
-0.04655758664011955,
-0.0034532882273197174,
-0.03634291887283325,
0.00557918893173337,
0.01663254201412201,
0.039256542921066284,
0.02655167505145073,
-0.019495312124490738,
-0.10036743432283401,
-0.06613977998495102,
0.024824462831020355,
0.02233835868537426,
0.05277702957391739,
0.02887888438999653,
-0.051877401769161224,
-0.0042369128204882145,
-0.0377994142472744,
-0.03564407676458359,
0.05410776287317276,
0.00824730284512043,
-0.057492855936288834,
0.08976458758115768,
-0.022296810522675514,
0.08261546492576599,
-0.00038493587635457516,
0.03749818727374077,
0.03353297710418701,
0.08423255383968353,
0.07253243029117584,
-0.026075368747115135,
0.0606098435819149,
0.03539345785975456,
0.01258830912411213,
-0.038469478487968445,
-0.013358603231608868,
-0.024962635710835457,
-0.06483132392168045,
0.007138567510992289,
0.01838315650820732,
0.07439155131578445,
-0.05771758779883385,
0.07304872572422028,
-0.015913652256131172,
-0.006256716791540384,
-0.06924331188201904,
-0.030368035659193993,
-0.022433346137404442,
0.002689674496650696,
0.009136316366493702,
0.11560627818107605,
0.013769082725048065,
-0.018988708034157753,
-0.04523163661360741,
0.02261579968035221,
0.005311958957463503,
-0.013494246639311314,
0.0440543033182621,
0.03407015651464462,
-0.0878191590309143,
-0.056462839245796204,
-0.04502526670694351,
-0.044596340507268906,
0.08515646308660507,
-0.037340376526117325,
-0.08604555577039719,
-0.03285032883286476,
0.0611707866191864,
0.03355589509010315,
-0.03886406868696213,
-0.046209026128053665,
0.018856272101402283,
0.07313226908445358,
0.027262695133686066,
0.050042301416397095,
0.015338566154241562,
-0.030646534636616707,
0.007694046013057232,
-0.046195223927497864,
-0.059953778982162476,
-0.023933876305818558,
0.038480132818222046,
0.027125217020511627,
-0.03678053990006447,
-0.023810693994164467,
0.050501033663749695,
-0.00880526751279831,
-0.023195747286081314,
-0.001733658486045897,
0.047674573957920074,
0.007321348879486322,
0.04875819757580757,
-0.04892684519290924,
-0.024585997685790062,
0.006971707567572594,
-0.008022683672606945,
-0.01184171624481678,
-0.03267030045390129,
0.01800786890089512,
-0.051465827971696854,
0.011574631556868553,
-0.014485186897218227,
0.03191327303647995,
0.022450240328907967,
0.025318508967757225,
0.023726899176836014,
0.01817336678504944,
-0.03555662930011749,
-0.011733808554708958,
-0.012270101346075535,
-0.011221899650990963,
-0.021268576383590698,
-0.011237959377467632,
0.030154967680573463,
-0.04227761551737785,
0.05485743284225464,
0.022145241498947144,
-0.017787927761673927,
-0.036252789199352264,
0.03300409018993378,
0.0309540294110775,
0.02065235562622547,
0.03899206593632698,
-0.05084586888551712,
-0.0010528063867241144,
0.03249644860625267,
-0.04224894568324089,
-0.07616405189037323,
-0.007356703281402588,
0.025802381336688995,
-0.029324401170015335,
-0.0008409227593801916,
-0.024044683203101158,
-0.03592231497168541,
-0.011460192501544952,
-0.00381217198446393,
-0.013029821217060089,
0.04007291421294212,
-0.08033592253923416,
-0.009374898858368397,
0.0026149561163038015,
0.01718144305050373,
0.004082781262695789,
-0.03760991990566254,
0.005875641480088234,
0.020525120198726654,
0.010829654522240162,
0.02436853013932705,
0.023331135511398315,
-0.004423634149134159,
-0.008784670382738113,
0.02586538717150688,
-0.02913099341094494,
-0.010801071301102638,
0.048967838287353516,
-0.013391714543104172,
0.06432337313890457,
-0.037230558693408966,
0.004066881723701954,
-0.0011796144535765052,
-0.0020200833678245544,
0.041187215596437454,
-0.014751645736396313,
0.0035580871626734734,
0.022493522614240646,
-0.006309663876891136,
0.056922733783721924,
-0.04440530762076378,
-0.039511263370513916,
-0.07157823443412781,
-0.009552915580570698,
0.020521588623523712,
-0.02355188876390457,
-0.037781015038490295,
-0.03561493009328842,
0.011515021324157715,
0.04288923740386963,
0.019696172326803207,
0.03839339688420296,
-0.021491562947630882,
0.052388645708560944,
0.03465835377573967,
0.04606018587946892,
0.006725392770022154,
0.008828368969261646,
-0.028483573347330093,
0.04658212512731552,
-0.024010242894291878,
-0.008509828709065914,
-0.02095506526529789,
0.016598353162407875,
0.06324416399002075,
-0.002736863447353244,
-0.014680351130664349,
-0.00027114167460240424,
0.0205658208578825,
-0.0007085052202455699,
-0.02004953660070896,
-0.055931705981492996,
0.038318175822496414,
-0.020684387534856796,
0.01844959147274494,
-0.017484428361058235,
0.015374535694718361,
-0.027223659679293633,
-0.02758242003619671,
-0.03077973611652851,
0.017333269119262695,
-0.034427300095558167,
0.036873042583465576,
0.013611448928713799,
0.00821059849113226,
-0.04641927406191826,
0.0034666371066123247,
-0.054351843893527985,
-0.029142208397388458,
0.03644606098532677,
0.03371257334947586,
-0.017881013453006744,
-0.01890181563794613,
-0.0444784052670002,
0.01390467956662178,
0.012184260413050652,
0.04410756751894951,
-0.007607597392052412,
-0.041266556829214096,
0.05678320676088333,
0.018370872363448143,
0.02746504172682762,
-0.015838969498872757,
-0.003132477169856429,
0.009791865944862366,
-0.0002584906469564885,
-0.016508258879184723,
0.03056812472641468,
0.030527658760547638,
-0.035372816026210785,
0.03442211449146271,
0.007623719051480293,
-0.0747464969754219,
0.002292380202561617,
0.005339724477380514,
-0.025218313559889793,
0.008479704149067402,
-0.03037640079855919,
-0.01047568116337061,
0.010565663687884808,
0.014272389002144337,
-0.0007984542171470821,
-0.02887594886124134,
-0.018811704590916634,
0.006289443466812372,
0.023893840610980988,
0.07870832830667496,
0.003414687467738986,
-0.020069876685738564,
0.003972297068685293,
0.016815723851323128,
-0.016360372304916382,
0.0274336114525795,
0.014116900973021984,
-0.03243772312998772,
0.04074309021234512,
0.0006881463341414928,
0.007804747670888901,
-0.016508931294083595,
-0.036168284714221954,
-0.02109149843454361,
-0.03958754986524582,
0.0002885641297325492,
0.02690701000392437,
-0.0020478523802012205,
-0.028794405981898308,
0.023265311494469643,
-0.04053410515189171,
-0.024624286219477654,
0.007209079805761576,
-0.024586305022239685,
-0.08896663039922714,
0.008479306474328041,
0.02853607013821602,
-0.017345108091831207,
-0.0032745986245572567,
0.027522306889295578,
0.00907993782311678,
0.04207400977611542,
-0.04020697623491287,
0.020443757995963097,
-0.009856955148279667,
-0.01944417506456375,
-0.03519497811794281,
0.04161668196320534,
0.049727264791727066,
0.028415298089385033,
-0.028094233945012093,
-0.00495423749089241,
0.012418992817401886,
0.001053048181347549,
-0.02447613514959812,
-0.018284272402524948,
-0.028616303578019142,
0.018025515601038933,
0.0037977525498718023,
0.0468074195086956,
0.00512965302914381,
-0.05722545087337494,
0.024633854627609253,
-0.022474782541394234,
0.04636278748512268,
0.02400345727801323,
-0.0042766984552145,
0.0187990739941597,
0.016563797369599342,
0.0522804781794548,
0.0024815439246594906,
-0.02004883624613285,
0.02123909816145897,
0.03807816654443741,
0.01950277015566826,
-0.014667927287518978,
0.016847066581249237,
-0.01664559915661812,
0.017616862431168556,
0.06990783661603928,
0.0555504709482193,
0.11669767647981644,
-0.027532804757356644,
0.036905329674482346,
0.014845979399979115,
0.0015094688860699534,
0.03485720604658127,
-0.03795277327299118,
0.03156442940235138,
-0.002010887721553445,
0.02027101255953312,
-0.022781774401664734,
0.006870508659631014,
-0.01885111629962921,
0.02653106115758419,
0.048933371901512146,
-0.01879740320146084,
-0.010438330471515656,
-0.004560037516057491,
0.020886685699224472,
-0.009938657283782959,
-0.012924726121127605,
0.005368722602725029,
-0.04547945410013199,
0.026545526459813118,
-0.010185398161411285,
-0.009880658239126205,
0.006645044777542353,
-0.010097785852849483,
0.024994540959596634,
-0.0028774382080882788,
0.03328128904104233,
0.026386139914393425,
0.01839422807097435,
-0.0205319132655859,
0.01253032311797142,
0.006421245168894529,
-0.040771011263132095,
0.011710151098668575,
-0.028594210743904114,
-0.0077565331012010574,
-0.03299344703555107,
-0.0015188943361863494,
0.01356610655784607,
0.009947028942406178,
0.007838168181478977,
-0.004802945535629988,
0.016200795769691467,
0.0038553187623620033,
0.017018407583236694,
0.0030953090172261,
0.04110840708017349,
0.018000969663262367,
-0.03740895539522171,
-0.0016464911168441176,
-0.005224210675805807,
-0.07333684712648392,
0.009765240363776684,
-0.025689179077744484,
0.013229737989604473,
0.06657525897026062,
-0.02796197310090065,
0.0029436347540467978,
0.003649552119895816,
0.01649370789527893,
-0.010064302943646908,
0.01948167011141777,
-0.03428078442811966,
0.02315676026046276,
-0.07972940057516098,
-0.0022068002726882696,
-0.00404521357268095,
0.017860041931271553,
0.0428001806139946,
0.02143242210149765,
-0.005588376894593239,
0.01978886127471924,
0.005429673008620739,
-0.008955850265920162,
0.04014110565185547,
-0.02161814086139202,
-0.059612080454826355,
0.00031658148509450257,
0.02371188811957836,
-0.032610587775707245,
0.02176382765173912,
-0.027186721563339233,
0.035478103905916214,
0.018941771239042282,
0.020355569198727608,
0.0320206955075264,
0.02347520925104618,
-0.00031945278169587255,
0.0627782791852951,
0.04593578726053238,
0.04381201043725014,
0.0490913987159729,
0.01141699030995369,
-0.003063106443732977,
-0.030640989542007446,
0.05235258862376213,
-0.014935694634914398,
0.00044773801346309483,
0.04971122369170189,
0.013873729854822159,
0.026728766039013863,
-0.015430803410708904,
-0.012025432661175728,
-0.019183987751603127,
0.024981994181871414,
0.03636704012751579,
0.02802891843020916,
0.010474046692252159,
-0.013997885398566723,
0.01928672567009926,
0.007820209488272667,
-0.00158216233830899,
0.008268432691693306,
0.017043353989720345,
0.016556400805711746,
0.0048705763183534145,
0.03147820755839348,
0.03433019295334816,
0.020925035700201988,
-0.013294747099280357,
0.03405525162816048,
-0.010586886666715145,
0.02105860225856304,
0.02080775983631611,
-0.017582708969712257,
-0.010906604118645191,
-0.007649714592844248,
-0.018118418753147125,
0.030804118141531944,
-0.012624014168977737,
0.015874410048127174,
0.0011383333476260304,
0.021711276844143867,
0.0020916168577969074,
-0.0050899372436106205,
0.004511312581598759,
0.0007856503361836076,
-0.002529130782932043,
-0.02564285881817341,
-0.05229026824235916,
0.009838445112109184,
-0.04534159600734711,
-0.05184462293982506,
0.002789524383842945,
0.027671296149492264,
-0.031171392649412155,
0.008066731505095959,
-0.012290382757782936,
-0.004032203461974859,
0.01028844341635704,
0.03902135416865349,
-0.04803317412734032,
0.021943770349025726,
-0.027415655553340912,
-0.031663499772548676,
0.020865829661488533,
-0.036912426352500916,
0.0194022785872221,
0.038561075925827026,
-0.009634038433432579,
0.022961189970374107,
-0.02292216755449772,
0.023216284811496735,
-0.016046661883592606,
-0.02440832369029522,
0.06840841472148895,
0.009251422248780727,
-0.021177662536501884,
-0.001214998192153871,
0.05015074461698532,
0.05574196204543114,
0.024230781942605972,
-0.016044167801737785,
-0.024559613317251205,
0.0029343566857278347,
-0.04879524186253548,
-0.02163478173315525,
0.02841617353260517,
0.00891506765037775,
-0.008860865607857704,
-0.019951293244957924,
-0.060084354132413864,
-0.003967157565057278,
-0.01739923097193241,
-0.022687265649437904,
0.018598787486553192,
-0.017896736040711403,
0.013861916027963161,
-0.010248290374875069,
0.027876637876033783,
0.020552678033709526,
0.01853593997657299,
0.037175919860601425,
-0.005157381296157837,
0.016013676300644875,
-0.022941946983337402,
0.010013745166361332,
-0.04911182075738907,
-0.024235475808382034,
-0.00835608970373869,
-0.016301732510328293,
-0.0024387992452830076,
0.025232218205928802,
-0.00421435572206974,
0.033464740961790085,
-0.023593196645379066,
0.017495758831501007,
0.0006181731005199254,
0.025461450219154358,
0.021699944511055946,
0.015446996316313744,
0.007915101014077663,
0.03836589306592941,
0.0671120285987854,
0.02873552031815052,
-0.04969180002808571,
0.0010541575029492378,
-0.013615201227366924,
-0.01058869156986475,
0.053547803312540054,
0.021051490679383278,
0.027763908728957176,
-0.04349430650472641,
0.0330800861120224,
-0.011424420401453972,
-0.053936004638671875,
0.007264645770192146,
0.017432300373911858,
0.011221680790185928,
0.007131234742701054,
0.001681643771007657,
0.007158601190894842,
0.016517549753189087,
0.06939622759819031,
0.012094049714505672,
-0.02772440016269684,
-0.006911318749189377,
0.044435057789087296,
-0.04352720454335213,
0.008764227852225304,
0.01873517781496048,
0.037001535296440125,
0.004192187450826168,
0.014050479047000408,
0.053530532866716385,
0.04894831404089928,
0.03977641463279724,
-0.005030261818319559,
0.04309407249093056,
-0.059762001037597656,
-0.05788552016019821,
0.000685223494656384,
0.04049639776349068,
-0.011389183811843395,
-0.03353460505604744,
0.010629726573824883,
-0.009661559946835041,
0.029493434354662895,
-0.0035429929848760366,
-0.011620087549090385,
-0.016394896432757378,
-0.009899585507810116,
0.023005176335573196,
-0.031351055949926376,
-0.009704239666461945,
0.013811958022415638,
0.017008084803819656,
-0.04285398870706558,
0.02312745898962021
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | # The Reformer - Pushing the limits of language modeling | [
0.023895688354969025,
0.007616574876010418,
0.02928808704018593,
-0.020240528509020805,
0.08667784184217453,
0.07272898405790329,
0.034057166427373886,
-0.006437832489609718,
-0.02394263818860054,
-0.0053658317774534225,
-0.024057067930698395,
0.00852915644645691,
-0.014736661687493324,
0.07492131739854813,
0.04368617385625839,
0.013314398005604744,
0.02736341394484043,
-0.0565049909055233,
-0.007119208574295044,
-0.021720876917243004,
-0.04293249174952507,
-0.05179402604699135,
0.0699969157576561,
-0.02556430920958519,
-0.0030214593280106783,
-0.010179230943322182,
0.026356291025877,
-0.03895000368356705,
-0.06057409942150116,
0.022823652252554893,
-0.08586668968200684,
-0.015495022758841515,
-0.025040272623300552,
-0.004577880725264549,
-0.014887193217873573,
-0.013096684589982033,
-0.11002976447343826,
0.028521671891212463,
-0.01132320798933506,
-0.030220886692404747,
-0.04666934162378311,
-0.02788546308875084,
0.008676552213728428,
-0.0189780592918396,
-0.010958447121083736,
0.005742300301790237,
-0.2733168601989746,
0.08464521914720535,
-0.0294809453189373,
-0.026654647663235664,
-0.08362177014350891,
0.060892365872859955,
0.0014050742611289024,
0.03800761327147484,
-0.05240882933139801,
-0.03206095099449158,
0.0025854601990431547,
-0.05241335555911064,
0.003987484611570835,
-0.0408010333776474,
0.0678502544760704,
0.042348477989435196,
0.027121124789118767,
-0.06002865359187126,
0.011673239059746265,
0.0631178766489029,
-0.019613435491919518,
0.01847437396645546,
-0.10118456929922104,
-0.007013348396867514,
0.003629547543823719,
-0.0213667880743742,
-0.048809293657541275,
-0.04178775101900101,
0.06887249648571014,
-0.06481924653053284,
-0.016610128805041313,
0.09439001232385635,
0.06192128360271454,
0.06522458046674728,
-0.04260006174445152,
0.01960691623389721,
0.12844988703727722,
0.0784049928188324,
0.03748662397265434,
-0.01868561841547489,
0.06550639122724533,
-0.04176929220557213,
0.02472631074488163,
0.042202647775411606,
-0.026353733614087105,
-0.1153440922498703,
0.01909475401043892,
-0.0011846169363707304,
0.058487243950366974,
-0.021224401891231537,
0.0376775786280632,
0.03204751014709473,
0.005628384184092283,
0.024477330967783928,
-0.024000920355319977,
0.02929350733757019,
0.05869396775960922,
0.0006388421752490103,
-0.025191394612193108,
0.035410184413194656,
0.003630557795986533,
-0.04530838131904602,
-0.04780252277851105,
0.013395395129919052,
0.05117066204547882,
0.06300060451030731,
0.024546543136239052,
0.009610986337065697,
-0.028810912743210793,
0.04220318794250488,
0.06147708371281624,
-0.034089479595422745,
-0.003513182746246457,
0.026132699102163315,
0.0291092861443758,
0.056715693324804306,
0.08920250087976456,
0.04333611950278282,
0.02127997577190399,
0.044854581356048584,
0.0004320502339396626,
0.02659449726343155,
-0.01854122057557106,
-0.1042022705078125,
0.026767868548631668,
-0.004275968298316002,
0.06899828463792801,
0.01832096092402935,
-0.0074880123138427734,
-0.05179833620786667,
0.03513885289430618,
-0.013377536088228226,
0.0012766373110935092,
0.017532426863908768,
0.005476684775203466,
-0.003354022977873683,
0.020239638164639473,
0.0352688692510128,
0.017272546887397766,
-0.03684379160404205,
-0.035364679992198944,
0.09613913297653198,
-0.06104522570967674,
-0.04774370789527893,
-0.03100557252764702,
0.050964660942554474,
-0.010349727235734463,
-0.08032415062189102,
0.03749758005142212,
0.07585474103689194,
-0.023216966539621353,
0.026498451828956604,
-0.003453230019658804,
0.037352051585912704,
-0.02075633965432644,
0.00980907678604126,
0.025333132594823837,
-0.021363265812397003,
0.08587180078029633,
-0.032026879489421844,
-0.009392297826707363,
-0.004217284265905619,
-0.03106536529958248,
-0.03763790428638458,
0.011387210339307785,
-0.018276231363415718,
0.03138328716158867,
-0.05781849846243858,
-0.0950876921415329,
0.025331895798444748,
0.028900837525725365,
0.0311308354139328,
-0.04658784344792366,
0.043412335216999054,
-0.03252357989549637,
0.043125733733177185,
0.016577886417508125,
0.022184722125530243,
0.01740119978785515,
-0.04432053118944168,
0.009596333838999271,
-0.010563558898866177,
0.03741088882088661,
0.047632358968257904,
-0.0886758416891098,
-0.03914933651685715,
0.07521077990531921,
0.024362316355109215,
0.008981755003333092,
-0.06440941244363785,
-0.06201210245490074,
0.07300487905740738,
0.04227517917752266,
0.11340200901031494,
0.04746082052588463,
0.033931583166122437,
-0.0063319518230855465,
-0.0013364788610488176,
-0.01786711998283863,
0.03489132598042488,
0.03110797144472599,
-0.003414149396121502,
-0.020136350765824318,
0.04853666201233864,
0.005864270962774754,
-0.09250503033399582,
0.06007121875882149,
-0.03435266390442848,
-0.06267893314361572,
-0.06509209424257278,
-0.006957076955586672,
-0.027868013828992844,
-0.06424032151699066,
0.008635506965219975,
0.14460541307926178,
-0.012963641434907913,
-0.04683370888233185,
0.014876265078783035,
-0.04696742445230484,
0.0863504633307457,
0.023455267772078514,
0.03657318651676178,
0.06888506561517715,
-0.10895467549562454,
-0.020628347992897034,
-0.04610738530755043,
0.02050650119781494,
-0.0066086058504879475,
0.0036796610802412033,
0.02784210629761219,
-0.03846209496259689,
0.060290493071079254,
0.04326443001627922,
-0.08152040094137192,
0.022943003103137016,
-0.014477409422397614,
0.011482257395982742,
0.06146376579999924,
-0.05018864944577217,
-0.004144354723393917,
0.020987970754504204,
0.020312275737524033,
-0.01271842047572136,
0.03810993954539299,
-0.05595017597079277,
0.007986284792423248,
-0.041426293551921844,
-0.03256950527429581,
-0.002010299591347575,
0.012243783101439476,
0.028463218361139297,
-0.0015044999308884144,
-0.0063001420348882675,
0.005750964395701885,
0.03210500255227089,
-0.015167923644185066,
-0.011126266792416573,
-0.06904785335063934,
-0.02537410892546177,
-0.018199631944298744,
0.015113103203475475,
0.020129764452576637,
0.008198495954275131,
0.025266123935580254,
-0.004102613776922226,
-0.02614525519311428,
0.03176796808838844,
-0.012523218058049679,
0.011046350933611393,
0.008900046348571777,
0.06812101602554321,
-0.032278187572956085,
-0.0170486718416214,
-0.010176184587180614,
-0.04842378944158554,
-0.022624952718615532,
0.036164291203022,
0.009548048488795757,
0.020959682762622833,
-0.019316475838422775,
0.05749654024839401,
0.02718966454267502,
0.016617463901638985,
0.04581721872091293,
-0.005879031028598547,
0.0012972275726497173,
-0.015202315524220467,
-0.0524701252579689,
0.0640142560005188,
-0.03835718333721161,
0.03332808241248131,
0.008102121762931347,
-0.02880924753844738,
-0.030584057793021202,
0.0050726658664643764,
0.051127295941114426,
-0.00013584058615379035,
0.02584601566195488,
-0.018037376925349236,
0.012952987104654312,
0.009501460008323193,
0.02675934135913849,
-0.13339227437973022,
-0.06709427386522293,
0.023063654080033302,
0.004456533119082451,
0.0006991536938585341,
-0.03823557868599892,
0.034879185259342194,
-0.02698020078241825,
0.011251059360802174,
0.002504227217286825,
-0.012415239587426186,
0.01803441531956196,
0.017988793551921844,
0.012181329540908337,
-0.027338461950421333,
-0.002781893825158477,
-0.019440511241555214,
0.0008681201725266874,
-0.01896103098988533,
0.02418031543493271,
-0.03751879185438156,
0.0338570699095726,
0.018898742273449898,
-0.007282710634171963,
0.013681355863809586,
0.04509502649307251,
0.016190554946660995,
0.021199455484747887,
0.021588442847132683,
-0.00035531562753021717,
-0.04476292058825493,
0.04572337865829468,
-0.03449290245771408,
0.015987548977136612,
-0.016289642080664635,
0.013760427944362164,
-0.0233840961009264,
0.026826689019799232,
0.007166887633502483,
0.03282696008682251,
0.030837256461381912,
-0.01088064257055521,
0.03753681480884552,
0.01251894049346447,
-0.03775443136692047,
0.013585063628852367,
-0.016494521871209145,
-0.001160339917987585,
0.02663840912282467,
-0.04126042500138283,
-0.01234412845224142,
-0.022594228386878967,
0.04976271837949753,
0.0647328644990921,
0.019064871594309807,
-0.0177402812987566,
-0.024206489324569702,
0.009001366794109344,
0.02801196277141571,
-0.045156896114349365,
-0.03124845214188099,
0.021938983350992203,
-0.004024822264909744,
0.029380831867456436,
-0.07454624772071838,
0.007461064495146275,
-0.027622565627098083,
0.026628533378243446,
0.016441168263554573,
0.01967737264931202,
0.022595876827836037,
-0.013793785125017166,
0.000555058941245079,
0.019627761095762253,
-0.012963707558810711,
0.01841113343834877,
-0.00827105063945055,
-0.050251975655555725,
0.07631632685661316,
0.006615353282541037,
-0.025286022573709488,
-0.014326673001050949,
-0.021948713809251785,
0.0028882967308163643,
0.01661955937743187,
0.0008270757389254868,
0.009785555303096771,
0.008602665737271309,
-0.01740974932909012,
0.066285640001297,
0.00686822971329093,
-0.004988141357898712,
-0.025953546166419983,
0.02028919942677021,
0.017193004488945007,
0.00029615117819048464,
0.014180746860802174,
-0.01162253599613905,
0.031003911048173904,
-0.010212793946266174,
0.02167191542685032,
-0.03457842022180557,
-0.009092156775295734,
0.01546616479754448,
0.014162779785692692,
0.04976223409175873,
-0.04777887091040611,
-0.018413599580526352,
-0.0008135284879244864,
0.021880483254790306,
-0.002595623256638646,
-0.015015779994428158,
-0.01076398603618145,
-0.007499937899410725,
0.0009080945164896548,
0.01994217559695244,
-0.040898993611335754,
-0.015702538192272186,
-0.024111129343509674,
-0.012926437892019749,
-0.010894650593400002,
-0.007423073519021273,
0.0014936031075194478,
0.012579365633428097,
-0.011528790928423405,
-0.010905526578426361,
0.04471006616950035,
0.0019427542574703693,
-0.054786380380392075,
0.0164240300655365,
-0.04747132956981659,
-0.020597048103809357,
0.04207788035273552,
-0.0409734845161438,
0.04657845199108124,
0.027391603216528893,
0.0005433489568531513,
0.047234829515218735,
-0.022161291912198067,
-0.051823992282152176,
-0.03703828528523445,
0.008361930027604103,
0.011070401407778263,
-0.028476877138018608,
0.05616441369056702,
-0.04645761102437973,
-0.03341714292764664,
0.006668423302471638,
0.0012941916938871145,
0.03729787841439247,
0.01612440124154091,
0.0012670118594542146,
-0.026430504396557808,
-0.014185129664838314,
0.01826925203204155,
0.034565553069114685,
-0.004538979846984148,
0.007652102503925562,
-0.02092713676393032,
0.0706610381603241,
0.007072634994983673,
-0.004797866102308035,
-0.05993124842643738,
0.025601904839277267,
0.0070716617628932,
-0.017263606190681458,
-0.014702553860843182,
-0.027738699689507484,
0.004732678644359112,
0.020871970802545547,
0.00045170035446062684,
-0.004631828051060438,
0.015567425638437271,
0.0010792338289320469,
0.02471560798585415,
0.022559549659490585,
0.008996138349175453,
-0.004759075120091438,
-0.04309865087270737,
0.046519141644239426,
-0.0030288533307611942,
-0.006509749684482813,
0.030450886115431786,
-0.01367190945893526,
-0.009686954319477081,
-0.002112217713147402,
0.04728732630610466,
-0.015110214240849018,
0.0007163571426644921,
0.039096929132938385,
0.018437674269080162,
-0.02893511764705181,
-0.005276073236018419,
-0.022540351375937462,
0.0011246997164562345,
0.008248628117144108,
0.022296052426099777,
-0.01054132729768753,
0.025501834228634834,
0.004606218077242374,
0.05764823779463768,
-0.00993953738361597,
-0.009760333225131035,
-0.0244783703237772,
0.03291354700922966,
-0.028301775455474854,
0.017362171784043312,
-0.037506505846977234,
0.028420601040124893,
-0.003697104286402464,
0.007528979796916246,
-0.008392361924052238,
-0.02835925854742527,
-0.04267524182796478,
0.016349034383893013,
-0.0064420271664857864,
0.003594233188778162,
0.0015562120825052261,
-0.019307196140289307,
0.0459928885102272,
0.009104075841605663,
0.0030105772893875837,
-0.022409643977880478,
0.002412975998595357,
0.061867211014032364,
-0.016797086223959923,
-0.030720554292201996,
0.04788823425769806,
0.029873237013816833,
0.016716528683900833,
0.025450056418776512,
0.00140943075530231,
-0.009011688642203808,
0.02911398373544216,
-0.004878122825175524,
-0.005983617622405291,
-0.051971450448036194,
0.09671159088611603,
-0.020551618188619614,
-0.006536976434290409,
-0.00864419061690569,
-0.002562201814725995,
-0.07134990394115448,
-0.00331259798258543,
-0.0019272445933893323,
0.0009555683354847133,
0.07412280142307281,
0.01657794415950775,
-0.00779599417001009,
0.019503191113471985,
0.0015446689212694764,
-0.011383227072656155,
0.002198670292273164,
-0.022924097254872322,
0.040320057421922684,
-0.00321864802390337,
0.040389638394117355,
-0.03395392745733261,
-0.01743321679532528,
-0.01417879480868578,
0.018053557723760605,
-0.012481952086091042,
0.007128919009119272,
0.007277949713170528,
-0.050675053149461746,
0.04741593822836876,
0.036289311945438385,
-0.0342368446290493,
-0.03013255074620247,
0.030878854915499687,
-0.007932143285870552,
0.004987845662981272,
-0.020746178925037384,
0.019563762471079826,
-0.004832904785871506,
-0.028412308543920517,
0.03343181684613228,
0.0468265525996685,
0.025989659130573273,
0.043324004858732224,
0.02243766002357006,
0.024506861343979836,
0.03785417973995209,
0.01745462417602539,
-0.009405560791492462,
0.050092123448848724,
0.03775933384895325,
0.004854078404605389,
0.004986779764294624,
-0.0034493645653128624,
-0.026154369115829468,
-0.011417611502110958,
-0.0010872463462874293,
0.005260909907519817,
-0.03572246432304382,
0.025644728913903236,
0.02387511543929577,
-0.024569373577833176,
-0.00040997652104124427,
-0.0375758558511734,
0.04722421243786812,
0.011197049170732498,
0.020230088382959366,
0.006322276312857866,
-0.02594776079058647,
-0.022974511608481407,
0.01756574958562851,
0.015486330725252628,
0.0427439920604229,
0.0011762527283281088,
-0.02205214463174343,
0.05782737955451012,
0.014399202540516853,
-0.01456343475729227,
0.005559845361858606,
-0.00387856038287282,
0.017076050862669945,
0.010272444225847721,
-0.033501893281936646,
-0.007686276454478502,
0.014503194950520992,
-0.03390143811702728,
-0.015419607982039452,
-0.011026124469935894,
-0.025071118026971817,
-0.03671625629067421,
0.003487455192953348,
0.025858035311102867,
-0.022947533056139946,
-0.028613941743969917,
-0.051185015588998795,
-0.011945736594498158,
-0.01904718391597271,
0.010883014649152756,
0.009233775548636913,
-0.028380190953612328,
-0.007109754253178835,
0.028998995199799538,
-0.0029371585696935654,
-0.028330082073807716,
-0.03393951803445816,
0.003936707507818937,
-0.02885534055531025,
-0.01866402104496956,
0.032728858292102814,
-0.020285090431571007,
-0.02011992782354355,
-0.011713738553225994,
-0.015829147771000862,
0.05305727198719978,
0.026137223467230797,
0.010209964588284492,
-0.011726760305464268,
-0.004350003786385059,
-0.04289320111274719,
0.0317402184009552,
0.0011000360827893019,
-0.06889989972114563,
-0.0010585582349449396,
0.007710125297307968,
0.03083876706659794,
0.0010158021468669176,
0.03450397774577141,
-0.03652919456362724,
-0.031108815222978592,
-0.012701580300927162,
-0.012426302768290043,
-0.006962390150874853,
0.032322630286216736,
-0.024229105561971664,
-0.01702532172203064,
-0.027199266478419304,
-0.017874551936984062,
-0.0017847713315859437,
-0.0176426749676466,
-0.0025170801673084497,
0.04307851940393448,
-0.0010888994438573718,
-0.0034323250874876976,
-0.05122067779302597,
0.03749751299619675,
0.016396982595324516,
0.013327686116099358,
0.009717942215502262,
0.044326286762952805,
0.03140164911746979,
-0.030253417789936066,
0.02039833553135395,
-0.031690243631601334,
0.011897562071681023,
-0.0376572348177433,
-0.02676507644355297,
-0.0249578058719635,
-0.030408794060349464,
-0.00104467011988163,
0.0008081040577962995,
-0.0351346917450428,
0.01142321340739727,
-0.0018669029232114553,
-0.01463082991540432,
-0.02421415038406849,
0.019849790260195732,
0.038521893322467804,
-0.011111383326351643,
0.03781338408589363,
-0.022946277633309364,
0.03091403655707836,
-0.02170281670987606,
-0.006266006268560886,
0.03133990615606308,
0.040674880146980286,
-0.027754181995987892,
-0.014728219248354435,
0.03267120197415352,
0.026168955489993095,
-0.03737535700201988,
-0.04493306577205658,
0.03978658840060234,
0.03150729462504387,
-0.016120821237564087,
-0.01916547492146492,
-0.003769675502553582,
0.017484625801444054,
-0.016754884272813797,
0.02533562481403351,
0.00441391859203577,
-0.03650256246328354,
0.007892556488513947,
0.03928571194410324,
-0.05539568141102791,
0.017329763621091843,
-0.015595756471157074,
0.014088310301303864,
0.049007218331098557,
0.04157085716724396,
0.025205101817846298,
0.0011068979511037469,
-0.04331626370549202,
-0.007574697956442833,
-0.010832040570676327,
-0.025072889402508736,
-0.01259795855730772,
-0.023627890273928642,
0.005535545758903027,
-0.011264010332524776,
-0.02824496291577816,
0.02336512692272663,
0.026143545284867287,
0.008384359069168568,
-0.03128737583756447,
0.016522057354450226,
-0.004701030906289816,
-0.005746590904891491,
0.014647075906395912,
0.003630900289863348,
0.02163156308233738,
0.04525300860404968,
-0.023498332127928734,
0.02699781395494938,
0.03459148108959198
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | Reversible Residual Layers in Reformer Let's start by investigating why training a model requires much more memory than the inference of the model. When running a model in inference, the required memory equals more or less the memory it takes to compute the single largest tensor in the model. On the other hand, when training a model, the required memory equals more or less the sum of all differentiable tensors. This is not surprising when considering how auto differentiation works in deep learning frameworks. These lecture slides by Roger Grosse of the University of Toronto are great to better understand auto differentiation. In a nutshell, in order to calculate the gradient of a differentiable function (e.g. a layer), auto differentiation requires the gradient of the function's output and the function's input and output tensor. While the gradients are dynamically computed and subsequently discarded, the input and output tensors (a.k.a activations) of a function are stored during the forward pass. Alright, let's apply this to a transformer model. A transformer model includes a stack of multiple so-called transformer layers. Each additional transformer layer forces the model to store more activations during the forward pass and thus increases the required memory for training. Let's take a more detailed look. A transformer layer essentially consists of two residual layers. The first residual layer represents the self-attention mechanism as explained in section 1) and the second residual layer represents the linear or feed-forward layers as explained in section 2). Using the same notation as before, the input of a transformer layer i.e. \( \mathbf{X} \) is first normalized \( ^{1} \) and subsequently processed by the self-attention layer to get the output \( \mathbf{Z} = \text{SelfAttn}(\text{LayerNorm}(\mathbf{X})) \). We will abbreviate these two layers with \( G \) so that \( \mathbf{Z} = G(\mathbf{X}) \). Next, the residual \( \mathbf{Z} \) is added to the input \( \mathbf{\overline{Z}} = \mathbf{Z} + \mathbf{X} \) and the sum is fed into the second residual layer - the two linear layers. \( \mathbf{\overline{Z}} \) is processed by a second normalization layer, followed by the two linear layers to get \( \mathbf{Y} = \text{Linear}(\text{LayerNorm}(\mathbf{Z} + \mathbf{X})) \). We will abbreviate the second normalization layer and the two linear layers with \( F \) yielding \( \mathbf{Y} = F(\mathbf{\overline{Z}}) \). Finally, the residual \( \mathbf{Y} \) is added to \( \mathbf{\overline{Z}} \) to give the output of the transformer layer \( \mathbf{\overline{Y}} = \mathbf{Y} + \mathbf{\overline{Z}} \). Let's illustrate a complete transformer layer using the example of \( \mathbf{x}1, \ldots, \mathbf{x}{16} \). To calculate the gradient of e.g. the self-attention block \( G \), three tensors have to be known beforehand: the gradient \( \partial \mathbf{Z} \), the output \( \mathbf{Z} \), and the input \( \mathbf{X} \). While \( \partial \mathbf{Z} \) can be calculated on-the-fly and discarded afterward, the values for \( \mathbf{Z} \) and \( \mathbf{X} \) have to be calculated and stored during the forward pass since it is not possible to recalculate them easily on-the-fly during backpropagation. Therefore, during the forward pass, large tensor outputs, such as the query-key dot product matrix \( \mathbf{Q}\mathbf{K}^T \) or the intermediate output of the linear layers \( \mathbf{Y}^{\text{int}} \), have to be stored in memory \( ^{2} \). Here, reversible residual layers come to our help. The idea is relatively straight-forward. The residual block is designed in a way so that instead of having to store the input and output tensor of a function, both can easily be recalculated during the backward pass so that no tensor has to be stored in memory during the forward pass. This is achieved by using two input streams \( \mathbf{X}^{(1)}, \mathbf{X}^{(2)} \), and two output streams \( \mathbf{\overline{Y}}^{(1)}, \mathbf{\overline{Y}}^{(2)} \). The first residual \( \mathbf{Z} \) is computed by the first output stream \( \mathbf{Z} = G(\mathbf{X}^{(1)}) \) and subsequently added to the input of the second input stream, so that \( \mathbf{\overline{Z}} = \mathbf{Z} + \mathbf{X}^{(2)} \). Similarly, the residual \( \mathbf{Y} = F(\mathbf{\overline{Z}}) \) is added to the first input stream again, so that the two output streams are defined by \( \mathbf{Y}^{(1)} = \mathbf{Y} + \mathbf{X}^{(1)} \) and \( \mathbf{Y}^{(2)} = \mathbf{X}^{(2)} + \mathbf{Z} = \mathbf{\overline{Z}} \). The reversible transformer layer can be visualized for \( \mathbf{x}1, \ldots, \mathbf{x}{16} \) as follows. As can be seen, the outputs \( \mathbf{\overline{Y}}^{(1)}, \mathbf{\overline{Y}}^{(2)} \) are calculated in a very similar way than \( \mathbf{\overline{Y}} \) of the non-reversible layer, but they are mathematically different. The authors of Reformer observe in some initial experiments that the performance of a reversible transformer model matches the performance of a standard transformer model. The first visible difference to the standard transformer layer is that there are two input streams and output streams \( ^{3} \), which at first slightly increases the required memory for both the forward pass. The two-stream architecture is crucial though for not having to save any activations during the forward pass. Let's explain. For backpropagation, the reversible transformer layer has to calculate the gradients \( \partial G \) and \( \partial F \). In addition to the gradients \( \partial \mathbf{Y} \) and \( \partial \mathbf{Z} \) which can be calculated on-the-fly, the tensor values \( \mathbf{Y} \), \( \mathbf{\overline{Z}} \) have to be known for \( \partial F \) and the tensor values \( \mathbf{Z} \) and \( \mathbf{X}^{(1)} \) for \( \partial G \) to make auto-differentiation work. If we assume to know \( \mathbf{\overline{Y}}^{(1)}, \mathbf{\overline{Y}}^{(2)} \), it can easily be depicted from the graph that one can calculate \( \mathbf{X}^{(1)}, \mathbf{X}^{(2)} \) as follows. \( \mathbf{X}^{(1)} = F(\mathbf{\overline{Y}}^{(1)}) - \mathbf{\overline{Y}}^{(1)} \). Great, now that \( \mathbf{X}^{(1)} \) is known, \( \mathbf{X}^{(2)} \) can be computed by \( \mathbf{X}^{(2)} = \mathbf{\overline{Y}}^{(1)} - G(\mathbf{X}^{(1)}) \). Alright now, \( \mathbf{Z} \) and \( \mathbf{Y} \) are trivial to compute via \( \mathbf{Y} = \mathbf{\overline{Y}}^{(1)} - \mathbf{X}^{(1)} \) and \( \mathbf{Z} = \mathbf{\overline{Y}}^{(2)} - \mathbf{X}^{(2)} \). So as a conclusion, if only the outputs \( \mathbf{\overline{Y}}^{(1)}, \mathbf{\overline{Y}}^{(2)} \) of the last reversible transformer layer are stored during the forward pass, all other relevant activations can be derived by making use of \( G \) and \( F \) during the backward pass and passing \( \mathbf{X}^{(1)} \) and \( \mathbf{X}^{(2)} \). The overhead of two forward passes of \( G \) and \( F \) per reversible transformer layer during the backpropagation is traded against not having to store any activations during the forward pass. Not a bad deal! Note: Since recently, major deep learning frameworks have released code that allows to store only certain activations and recompute larger ones during the backward propagation (Tensoflow here and PyTorch here). For standard reversible layers, this still means that at least one activation has to be stored for each transformer layer, but by defining which activations can dynamically be recomputed a lot of memory can be saved. --- \( ^{1} \) In the previous two sections, we have omitted the layer norm layers preceding both the self-attention layer and the linear layers. The reader should know that both \( \mathbf{X} \) and \( \mathbf{\overline{Z}} \) are both processed by layer normalization before being fed into self-attention and the linear layers respectively. \( ^{2} \) While in the design the dimension of \( \mathbf{Q}\mathbf{K} \) is written as \( n \times n \), in a LSH self-attention or local self-attention layer the dimension would only be \( n \times l_{c} \times n_{h} \) or \( n \times l_{c} \) respectively with \( l_{c} \) being the chunk length and \( n_{h} \) the number of hashes \( ^{3} \) In the first reversible transformer layer \( \mathbf{X}^{(2)} \) is set to be equal to \( \mathbf{X}^{(1)} \). | [
-0.01614665426313877,
-0.011329758912324905,
0.05321266129612923,
-0.022739233449101448,
0.07144734263420105,
0.024704042822122574,
-0.021474149078130722,
-0.03350276127457619,
0.034591611474752426,
0.012913458049297333,
-0.025561751797795296,
0.08231643587350845,
0.02005191519856453,
0.0163088571280241,
0.02556171827018261,
-0.03410951420664787,
0.022880980744957924,
-0.06674951314926147,
-0.060880303382873535,
0.05182458460330963,
0.024004457518458366,
-0.06440789252519608,
0.049459442496299744,
-0.009620786644518375,
-0.013204988092184067,
-0.025905465707182884,
-0.014288440346717834,
-0.03796439990401268,
-0.023474307730793953,
0.02494858205318451,
-0.12015283852815628,
-0.010358619503676891,
0.01202343963086605,
-0.03921560198068619,
0.019239209592342377,
-0.05020648613572121,
-0.10868479311466217,
0.023424750193953514,
0.0560569129884243,
-0.04858735576272011,
0.008661860600113869,
0.01277075707912445,
-0.08093664050102234,
-0.016163785010576248,
-0.007724130991846323,
-0.01652408391237259,
-0.1081080511212349,
0.03937092423439026,
-0.05309812352061272,
-0.006192437838762999,
-0.059240926057100296,
0.029621746391057968,
-0.09683725237846375,
0.07657984644174576,
-0.018689455464482307,
0.00449110334739089,
-0.0021373885683715343,
0.10494432598352432,
0.003460709238424897,
0.04290853813290596,
0.037823665887117386,
0.09012924879789352,
0.050703275948762894,
0.06459877640008926,
-0.02155851572751999,
-0.025011369958519936,
-0.06857551634311676,
-0.009477882646024227,
-0.058739226311445236,
-0.0619647279381752,
-0.0388866551220417,
0.000010463534636073746,
-0.01613597385585308,
0.02121143415570259,
-0.04213939607143402,
0.01696794666349888,
-0.013472800143063068,
0.029424702748656273,
0.036296065896749496,
-0.024797920137643814,
-0.05295002460479736,
0.0457647405564785,
0.05873570218682289,
0.03292737156152725,
0.025458447635173798,
-0.03346181660890579,
-0.006044887471944094,
-0.07729201018810272,
-0.009167862124741077,
0.051229119300842285,
-0.06620769947767258,
-0.11865084618330002,
0.038682304322719574,
0.018582919612526894,
0.05564635619521141,
-0.02605035901069641,
-0.018842443823814392,
0.004792386665940285,
-0.02841888554394245,
0.03310810774564743,
-0.028628654778003693,
-0.035244062542915344,
0.038207702338695526,
-0.05548277497291565,
-0.022331999614834785,
0.011393053457140923,
-0.022310540080070496,
-0.09521473199129105,
-0.031197713688015938,
-0.04445761442184448,
0.0012457880657166243,
0.0005126982578076422,
0.004776769317686558,
0.02490711584687233,
-0.0670538991689682,
0.0032029831781983376,
0.003760864259675145,
-0.022704895585775375,
0.05019311606884003,
0.01413356140255928,
-0.013985753990709782,
0.07641318440437317,
0.09385448694229126,
-0.04385766014456749,
-0.0004296086262911558,
0.016080977395176888,
-0.0375981405377388,
0.026020484045147896,
-0.0046449089422822,
0.013100387528538704,
0.008864148519933224,
-0.0070155770517885685,
0.00873095914721489,
0.018427209928631783,
-0.02009406127035618,
-0.10902475565671921,
0.029437249526381493,
-0.022487789392471313,
-0.0345323421061039,
-0.007884154096245766,
-0.055094365030527115,
-0.0022946777753531933,
0.0572143979370594,
-0.059145521372556686,
0.03494171053171158,
-0.06323900818824768,
-0.02213921584188938,
0.06593362241983414,
0.04023345932364464,
0.028063703328371048,
-0.010619291104376316,
0.048568323254585266,
-0.012143710628151894,
-0.08933155983686447,
0.023059898987412453,
0.05850842595100403,
-0.004482069052755833,
0.022059796378016472,
-0.0671195238828659,
0.019957968965172768,
-0.01415278110653162,
0.009086397476494312,
-0.011992772109806538,
0.1361899971961975,
0.09808449447154999,
-0.023175211623311043,
0.034959424287080765,
0.01631026901304722,
-0.004471291322261095,
0.03240664675831795,
0.019479509443044662,
-0.06971585750579834,
0.01737380400300026,
-0.06752883642911911,
-0.0003023398166988045,
0.02517101541161537,
-0.05035460367798805,
0.06156330555677414,
-0.021632397547364235,
-0.0006143789505586028,
-0.022414499893784523,
0.03605978190898895,
-0.02613065019249916,
-0.02521243505179882,
0.06372413039207458,
-0.023216508328914642,
0.03874215856194496,
-0.059477511793375015,
-0.031864386051893234,
0.09123247116804123,
-0.07360248267650604,
0.022515753284096718,
0.027101723477244377,
-0.028427841141819954,
0.06178954988718033,
-0.006906944327056408,
-0.04033457115292549,
0.06714604049921036,
0.04903753474354744,
0.06113715469837189,
0.021202532574534416,
0.031394112855196,
-0.02450019307434559,
-0.01202098187059164,
0.0491371676325798,
0.024640440940856934,
0.013587995432317257,
-0.0681091696023941,
0.02891690842807293,
0.007003081496804953,
-0.013357596471905708,
-0.08295059204101562,
0.030378052964806557,
-0.07870449125766754,
-0.0685245543718338,
-0.062218256294727325,
0.0019223857671022415,
-0.004103358369320631,
-0.03514865040779114,
0.01809285767376423,
0.0766446515917778,
0.005243165418505669,
-0.060660913586616516,
0.02841370180249214,
-0.06311541795730591,
-0.04929470270872116,
-0.01459579449146986,
-0.03478938341140747,
0.009920899756252766,
-0.06286772340536118,
-0.0055131977424025536,
-0.10145991295576096,
-0.025127731263637543,
-0.012957523576915264,
-0.04994358867406845,
-0.05003449320793152,
-0.07621973007917404,
-0.024578865617513657,
0.0271648820489645,
-0.09754061698913574,
-0.006686327513307333,
0.04922035336494446,
0.021519280970096588,
0.03498046100139618,
0.0009494015830568969,
0.0046737296506762505,
-0.02174309641122818,
0.0771334171295166,
-0.07099593430757523,
-0.024030698463320732,
-0.029405932873487473,
0.0305466465651989,
-0.014536360278725624,
-0.09891516715288162,
-0.04011236131191254,
0.02661539614200592,
-0.012657953426241875,
-0.01655653491616249,
0.019691554829478264,
0.031902678310871124,
-0.0003574071452021599,
0.014710832387208939,
-0.03978961333632469,
-0.020823420956730843,
0.0016727434704080224,
-0.014755900017917156,
-0.02056150883436203,
-0.0050093443132936954,
-0.0009658474591560662,
0.008884086273610592,
0.0009255703771486878,
0.011475258506834507,
-0.012804861180484295,
0.005954909138381481,
0.024573849514126778,
0.011090182699263096,
0.056642476469278336,
-0.03895922750234604,
-0.006243378389626741,
-0.014528261497616768,
-0.03192055970430374,
0.006923105102032423,
0.028980713337659836,
0.030957195907831192,
-0.025718677788972855,
-0.00803053006529808,
0.0036818902008235455,
-0.004971644841134548,
0.022729922086000443,
0.016396576538681984,
0.01848476007580757,
0.04340222850441933,
0.0003546199877746403,
-0.03138809651136398,
0.0005731332930736244,
0.020045636221766472,
-0.005500167142599821,
-0.04411081224679947,
-0.029523203149437904,
-0.0013246495509520173,
-0.007991408929228783,
0.00459632184356451,
0.09350299090147018,
0.00832638144493103,
0.0009627555846236646,
-0.000919732206966728,
-0.033887144178152084,
0.06550499051809311,
-0.0783352181315422,
-0.04451939836144447,
0.03294474259018898,
0.03244616836309433,
0.002004606183618307,
-0.052304260432720184,
-0.01887645199894905,
0.061905473470687866,
0.010602796450257301,
-0.01903560198843479,
-0.0055750226601958275,
0.004981325939297676,
-0.004148032516241074,
0.026236681267619133,
-0.03715059161186218,
0.024365101009607315,
0.025963423773646355,
-0.035300467163324356,
0.04564046859741211,
-0.03836052119731903,
0.013619295321404934,
0.021483030170202255,
0.00898307841271162,
0.032944872975349426,
-0.0017029502196237445,
0.037206776440143585,
0.020234689116477966,
0.00647736107930541,
0.0196917075663805,
-0.0049500311724841595,
-0.02358255535364151,
-0.05427198112010956,
0.0018880239222198725,
0.0049552819691598415,
-0.02709965966641903,
0.021854659542441368,
-0.0028354430105537176,
0.028690092265605927,
0.003454025136306882,
0.07191763073205948,
0.08720967918634415,
0.031412556767463684,
0.04778256267309189,
0.034416619688272476,
0.02503148466348648,
-0.0300137959420681,
-0.020105738192796707,
-0.0071589043363928795,
-0.001345090800896287,
-0.0297759547829628,
-0.005137799307703972,
-0.023791125044226646,
0.00290484051220119,
0.03375297784805298,
-0.004300087224692106,
-0.013436523266136646,
0.04226529598236084,
-0.030848493799567223,
-0.014806307852268219,
-0.03552308678627014,
-0.023571087047457695,
0.010540016926825047,
-0.014371334575116634,
0.011360691860318184,
-0.011827060021460056,
-0.01509504672139883,
-0.0057591465301811695,
0.016233164817094803,
0.021228382363915443,
0.04736574739217758,
-0.05633726716041565,
0.014380947686731815,
0.02018485590815544,
0.006658452097326517,
-0.017193444073200226,
-0.01303545106202364,
-0.029378926381468773,
-0.043363820761442184,
0.07156696170568466,
0.0037995355669409037,
0.006456795148551464,
0.012267998419702053,
-0.047551702708005905,
0.03650128096342087,
-0.01658126711845398,
0.03753764554858208,
0.022761818021535873,
0.0034767035394906998,
0.051228515803813934,
0.03783813863992691,
0.008030745200812817,
-0.0007965736440382898,
0.016409635543823242,
0.0022326370235532522,
-0.03847721219062805,
-0.006586807779967785,
0.022690000012516975,
0.013559848070144653,
0.03831349313259125,
0.002509979298338294,
0.03706610947847366,
-0.048352696001529694,
0.011504031717777252,
-0.006623209919780493,
-0.017797833308577538,
-0.019922766834497452,
-0.05134378746151924,
0.03852679207921028,
0.04535354673862457,
-0.006760645192116499,
-0.009589984081685543,
0.001703196088783443,
-0.00885937549173832,
0.020206062123179436,
-0.000038834125007269904,
0.05925154313445091,
-0.053254276514053345,
-0.019235603511333466,
-0.027616271749138832,
0.016165057197213173,
-0.019642043858766556,
0.03357347473502159,
0.006536724511533976,
-0.04832909628748894,
0.0167599618434906,
0.0012377765960991383,
0.05124475434422493,
0.033456917852163315,
-0.0425165519118309,
-0.023400090634822845,
-0.04067707434296608,
-0.01313459686934948,
0.045984912663698196,
-0.013954649679362774,
-0.02521234191954136,
-0.0008474563946947455,
-0.020116761326789856,
0.012373522855341434,
-0.0017323392676189542,
-0.018273228779435158,
-0.01524701714515686,
0.020560258999466896,
0.033340997993946075,
-0.08139096945524216,
0.07255857437849045,
-0.026724062860012054,
-0.04712063819169998,
0.0020374031737446785,
-0.03697516769170761,
-0.0022018267773091793,
0.021570945158600807,
0.009732368402183056,
-0.08334826678037643,
-0.05329303443431854,
0.032379068434238434,
-0.003586294362321496,
0.01866021566092968,
-0.0020227604545652866,
0.03794074058532715,
-0.0014765021624043584,
0.016450218856334686,
0.02318507432937622,
-0.021229051053524017,
0.024033617228269577,
0.021662989631295204,
0.025015491992235184,
-0.043484847992658615,
-0.04101277515292168,
0.022609181702136993,
0.012235421687364578,
-0.03218812122941017,
-0.011758781969547272,
-0.014637090265750885,
-0.015059703029692173,
-0.009447569958865643,
0.019510874524712563,
0.011630546301603317,
-0.017574159428477287,
0.005775971803814173,
-0.00886960607022047,
-0.010144229978322983,
-0.029630232602357864,
0.04040694236755371,
-0.02024465799331665,
0.004946275148540735,
0.060927025973796844,
0.031829070299863815,
0.023495065048336983,
-0.025128908455371857,
0.064333975315094,
0.08549259603023529,
-0.060803938657045364,
0.04753583297133446,
-0.031389348208904266,
0.02436634711921215,
0.03400934115052223,
0.07704867422580719,
0.05401894822716713,
0.024325435981154442,
-0.00655062822625041,
0.03940754756331444,
0.06802999973297119,
0.022539598867297173,
-0.037978388369083405,
-0.005313343834131956,
0.023418525233864784,
-0.007878762669861317,
0.026273377239704132,
0.0215555839240551,
-0.014870241284370422,
0.051503825932741165,
-0.017467599362134933,
0.006442095618695021,
-0.014873780310153961,
-0.0269634947180748,
-0.012451711110770702,
0.0028934574220329523,
0.021859802305698395,
0.0039964234456419945,
0.045084353536367416,
-0.029329214245080948,
0.023530367761850357,
-0.021516064181923866,
-0.00616032537072897,
0.0299284216016531,
-0.06573459506034851,
0.018714843317866325,
-0.021918145939707756,
0.009760864078998566,
0.003030112013220787,
0.009744864888489246,
0.019437983632087708,
-0.03445105627179146,
0.011378128081560135,
0.00848270021378994,
-0.027366984635591507,
-0.021626455709338188,
0.037633877247571945,
0.016807859763503075,
-0.001689242199063301,
-0.02003387175500393,
-0.00519612105563283,
-0.09311109036207199,
0.038119588047266006,
-0.024686546996235847,
0.05920657888054848,
0.08121231198310852,
-0.03656890615820885,
0.00043520136387087405,
0.01023909356445074,
-0.006152180954813957,
-0.004408682696521282,
0.027188215404748917,
0.012795678339898586,
0.06273206323385239,
-0.005220774561166763,
0.010079896077513695,
0.007443053647875786,
0.015404579229652882,
0.07017068564891815,
0.03431425616145134,
-0.024673793464899063,
0.005362195428460836,
-0.025585003197193146,
-0.01225383672863245,
0.0553206168115139,
0.0026845477987080812,
-0.052063826471567154,
0.012568407692015171,
0.018379343673586845,
0.030199985951185226,
0.007459532003849745,
-0.004683041945099831,
0.05978313460946083,
-0.05465685576200485,
0.035849299281835556,
0.004192400258034468,
0.03839421644806862,
0.00693734735250473,
0.026056619361042976,
0.03729593753814697,
0.002257657703012228,
0.06712643057107925,
0.017722293734550476,
0.03461658954620361,
-0.010285255499184132,
0.04971541836857796,
-0.002301688538864255,
-0.01620319113135338,
0.013522105291485786,
0.01637907512485981,
0.016444101929664612,
-0.002878486644476652,
-0.00023221841547638178,
-0.02801845222711563,
0.03672004118561745,
-0.0027497049886733294,
0.002596223494037986,
0.02816840447485447,
0.014260186813771725,
0.020751480013132095,
0.052500348538160324,
0.04410939663648605,
0.05753017216920853,
0.03395164757966995,
0.03285789117217064,
0.034803830087184906,
0.03812608867883682,
0.0018924877513200045,
-0.001441669650375843,
-0.02332010306417942,
0.02618364244699478,
-0.014327295124530792,
0.014353069476783276,
-0.012504632584750652,
0.0003200097708031535,
0.03013618290424347,
-0.03752811253070831,
-0.033879611641168594,
0.02305116318166256,
-0.016335390508174896,
-0.02158200740814209,
0.012003508396446705,
0.02080903947353363,
-0.023412620648741722,
-0.027050048112869263,
0.04147852212190628,
-0.016705194488167763,
-0.022877516224980354,
-0.006867180112749338,
-0.011684303171932697,
-0.0059502520598471165,
-0.002890952629968524,
0.014285844750702381,
0.015324183739721775,
-0.05222714692354202,
0.01682228408753872,
0.04538387805223465,
0.02782822959125042,
-0.05485153943300247,
-0.04344464838504791,
0.04338238760828972,
0.019731100648641586,
0.048691000789403915,
0.030133772641420364,
-0.01732860878109932,
0.0424744077026844,
-0.0247297715395689,
0.001512119430117309,
0.0052917348220944405,
-0.0060369535349309444,
-0.05055629462003708,
-0.012858295813202858,
-0.019641108810901642,
-0.014530375599861145,
0.008436799049377441,
0.031354572623968124,
-0.005078249145299196,
-0.007573709357529879,
0.014157547615468502,
0.031843770295381546,
0.07184871286153793,
0.02278544194996357,
0.00040427292697131634,
-0.041884344071149826,
0.020713696256279945,
0.016728730872273445,
0.02836393564939499,
0.0030811764299869537,
-0.019719881936907768,
-0.02687009610235691,
-0.020163442939519882,
0.008793165907263756,
-0.0039055345114320517,
-0.056336503475904465,
-0.03970126062631607,
0.019503628835082054,
0.05296538025140762,
-0.0018029391067102551,
-0.006562309339642525,
-0.006774943321943283,
-0.013555473648011684,
-0.01838858053088188,
0.020709775388240814,
0.020203886553645134,
0.022220665588974953,
-0.04243211820721626,
0.010787964798510075,
-0.010715858079493046,
-0.0017488753655925393,
-0.00044611928751692176,
-0.04124557599425316,
0.0009172508143819869,
0.023640982806682587,
0.01393639575690031,
0.02107096277177334,
-0.0130972471088171,
0.014487343840301037,
-0.022225625813007355,
-0.029682034626603127,
-0.007585437037050724,
0.028772398829460144,
0.04215753450989723,
-0.0035071999300271273,
0.027392346411943436,
-0.009222738444805145,
-0.0042081172578036785,
-0.031146854162216187,
-0.033697959035634995,
0.03395935520529747,
0.008409946225583553,
-0.0363585501909256,
0.03081347607076168,
0.033464863896369934,
-0.00023419519129674882,
-0.012386182323098183,
-0.0317256785929203,
-0.00048251906991936266,
-0.005287388805299997,
-0.01500625442713499,
0.035059042274951935,
0.024079879745841026,
0.023735376074910164,
0.015083218924701214,
0.02616690844297409,
-0.013484902679920197,
-0.05591166019439697,
0.018158189952373505,
0.02609173208475113,
-0.0555998869240284,
-0.011070129461586475,
0.00874301791191101,
0.02101997286081314,
0.047956112772226334,
0.004068936221301556,
0.05142434313893318,
-0.008443325757980347,
0.012602432630956173,
-0.026801610365509987,
-0.035506200045347214,
0.00541482400149107,
-0.041467711329460144,
0.011222105473279953,
0.000037797253753524274,
-0.018773900344967842,
-0.012042338959872723,
-0.005860210862010717,
0.036304812878370285,
0.01901780068874359,
-0.0026196022517979145,
-0.008594620041549206,
0.05284213647246361,
-0.03767813369631767,
-0.007310820277780294,
0.0017311996780335903,
0.02496381849050522,
0.012091503478586674,
0.036528125405311584,
-0.032168202102184296,
0.00023886995040811598
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | Benchmark In order to measure the effect of reversible residual layers, we will compare the memory consumption of BERT with Reformer in training for an increasing number of layers. #@title Installs and Imports # pip installs !pip -qq install git+https://github.com/huggingface/transformers.git !pip install -qq py3nvml from transformers import ReformerConfig, BertConfig, PyTorchBenchmark, PyTorchBenchmarkArguments Let's measure the required memory for the standard bert-base-uncased BERT model by increasing the number of layers from 4 to 12. config_4_layers_bert = BertConfig.from_pretrained("bert-base-uncased", num_hidden_layers=4) config_8_layers_bert = BertConfig.from_pretrained("bert-base-uncased", num_hidden_layers=8) config_12_layers_bert = BertConfig.from_pretrained("bert-base-uncased", num_hidden_layers=12) benchmark_args = PyTorchBenchmarkArguments(sequence_lengths=[512], batch_sizes=[8], models=["Bert-4-Layers", "Bert-8-Layers", "Bert-12-Layers"], training=True, no_inference=True, no_speed=True, no_env_print=True) benchmark = PyTorchBenchmark(configs=[config_4_layers_bert, config_8_layers_bert, config_12_layers_bert], args=benchmark_args) result = benchmark.run() HBox(children=(FloatProgress(value=0.0, description='Downloading', max=433.0, style=ProgressStyle(description_… 1 / 3 2 / 3 3 / 3 ==================== TRAIN - MEMORY - RESULTS ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- Bert-4-Layers 8 512 4103 Bert-8-Layers 8 512 5759 Bert-12-Layers 8 512 7415 -------------------------------------------------------------------------------- It can be seen that adding a single layer of BERT linearly increases the required memory by more than 400MB. config_4_layers_reformer = ReformerConfig.from_pretrained("google/reformer-enwik8", num_hidden_layers=4, num_hashes=1) config_8_layers_reformer = ReformerConfig.from_pretrained("google/reformer-enwik8", num_hidden_layers=8, num_hashes=1) config_12_layers_reformer = ReformerConfig.from_pretrained("google/reformer-enwik8", num_hidden_layers=12, num_hashes=1) benchmark_args = PyTorchBenchmarkArguments(sequence_lengths=[512], batch_sizes=[8], models=["Reformer-4-Layers", "Reformer-8-Layers", "Reformer-12-Layers"], training=True, no_inference=True, no_speed=True, no_env_print=True) benchmark = PyTorchBenchmark(configs=[config_4_layers_reformer, config_8_layers_reformer, config_12_layers_reformer], args=benchmark_args) result = benchmark.run() 1 / 3 2 / 3 3 / 3 ==================== TRAIN - MEMORY - RESULTS ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- Reformer-4-Layers 8 512 4607 Reformer-8-Layers 8 512 4987 Reformer-12-Layers 8 512 5367 -------------------------------------------------------------------------------- For Reformer, on the other hand, adding a layer adds significantly less memory in practice. Adding a single layer increases the required memory on average by less than 100MB so that a much larger 12-Layer reformer-enwik8 model requires less memory than a 12-Layer bert-base-uncased model. | [
-0.054072391241788864,
0.019718723371624947,
0.023216333240270615,
-0.03917522728443146,
-0.016377408057451248,
0.03226850554347038,
0.06809818744659424,
-0.01509877573698759,
-0.03294415399432182,
-0.027893375605344772,
-0.030110133811831474,
0.09124915301799774,
0.01807747781276703,
0.022209325805306435,
0.05194607377052307,
-0.057811543345451355,
0.04059465974569321,
-0.05931154638528824,
-0.03830799087882042,
0.00422411784529686,
0.020288893952965736,
-0.0851675420999527,
0.051883287727832794,
-0.0277895275503397,
0.0002338352205697447,
-0.09030279517173767,
0.025112394243478775,
-0.05871334299445152,
-0.04761626571416855,
0.010669180192053318,
-0.11516527086496353,
0.006833855994045734,
0.035324547439813614,
-0.021342553198337555,
-0.02765669673681259,
-0.026116993278265,
-0.07227958738803864,
0.04914584010839462,
-0.009074256755411625,
0.003596237860620022,
-0.016650106757879257,
0.05534718185663223,
-0.010424692183732986,
-0.024022527039051056,
0.0234849750995636,
0.003646999364718795,
-0.045758794993162155,
0.03080887719988823,
-0.033575765788555145,
0.0038417610339820385,
-0.0647374838590622,
0.06277605891227722,
-0.029034430161118507,
0.06192513555288315,
-0.015659064054489136,
0.00835411623120308,
0.015757283195853233,
0.045818742364645004,
0.008754802867770195,
0.033314332365989685,
0.00802682340145111,
0.008605629205703735,
0.06412456184625626,
0.07851646840572357,
-0.015370535664260387,
0.04006907716393471,
-0.05693834275007248,
0.03031863085925579,
-0.03359850496053696,
-0.023009244352579117,
-0.05312461405992508,
-0.019477035850286484,
-0.061642102897167206,
0.019105426967144012,
-0.0025272094644606113,
-0.018151311203837395,
-0.020157383754849434,
0.0011887988075613976,
0.03490747511386871,
0.02001083455979824,
-0.016897916793823242,
0.0555146299302578,
0.0038906715344637632,
0.002319727558642626,
0.037904802709817886,
-0.016706028953194618,
0.049373723566532135,
-0.04171007126569748,
-0.07806835323572159,
0.04418094828724861,
-0.07019273191690445,
-0.07150468230247498,
0.04891159012913704,
-0.015544570051133633,
0.011399210430681705,
-0.028752250596880913,
-0.059131406247615814,
0.027460047975182533,
-0.024049412459135056,
0.01833033561706543,
-0.009511316195130348,
-0.09958256781101227,
0.034822653979063034,
-0.015613587573170662,
-0.024497946724295616,
-0.010091803036630154,
-0.04536256939172745,
-0.12687519192695618,
0.0012612990103662014,
-0.017818786203861237,
0.009087027981877327,
-0.009720762260258198,
-0.02241886407136917,
0.06552736461162567,
-0.07238250970840454,
0.03100031055510044,
-0.04322366043925285,
0.007507177535444498,
0.06509512662887573,
0.035179100930690765,
-0.006114673335105181,
0.07661441713571548,
0.03880557045340538,
-0.05794034153223038,
-0.04053940251469612,
0.0007639428949914873,
-0.006075607612729073,
0.041676923632621765,
0.057010337710380554,
0.012917058542370796,
0.06402022391557693,
-0.009924027137458324,
0.015924163162708282,
0.050838977098464966,
-0.015678411349654198,
-0.05550432205200195,
-0.009068937972187996,
-0.03334503248333931,
-0.034115687012672424,
-0.030107280239462852,
-0.048684924840927124,
0.042285092175006866,
0.030554834753274918,
-0.049044378101825714,
0.039308857172727585,
-0.04641285911202431,
-0.10840539634227753,
0.0814240351319313,
0.007742161862552166,
-0.03182302787899971,
-0.10442876815795898,
0.0543554350733757,
-0.012621157802641392,
-0.04652633145451546,
0.010006101801991463,
0.09599855542182922,
-0.04287099838256836,
-0.01802072674036026,
-0.0723058208823204,
0.010914385318756104,
-0.009746091440320015,
0.04066675528883934,
-0.006319981999695301,
0.029671547934412956,
0.0956551730632782,
-0.03747853636741638,
0.022519085556268692,
-0.003304598154500127,
-0.046886738389730453,
0.07785588502883911,
-0.025473173707723618,
-0.010219000279903412,
0.041696369647979736,
-0.015363113954663277,
-0.005501770414412022,
0.021140137687325478,
0.016800565645098686,
0.05981699004769325,
-0.023337995633482933,
-0.026705659925937653,
-0.040574394166469574,
0.06428848952054977,
-0.019141733646392822,
0.033235687762498856,
0.05137699469923973,
-0.07906980067491531,
0.029194248840212822,
-0.03553875908255577,
-0.02178073674440384,
0.08624338358640671,
-0.02837465889751911,
-0.03057645820081234,
0.08097419887781143,
-0.04416818171739578,
0.013335603289306164,
0.028008202090859413,
0.03964703530073166,
0.10357052832841873,
0.042793914675712585,
0.02405737340450287,
0.00039379094960168004,
0.050644129514694214,
0.03262336552143097,
0.015314197167754173,
0.004592393524944782,
0.010903528891503811,
-0.021383220329880714,
-0.09357710182666779,
0.01097519788891077,
0.01087159849703312,
0.053922440856695175,
-0.07709413766860962,
0.0400952585041523,
-0.08012250065803528,
-0.03727679327130318,
-0.11374609172344208,
-0.06530727446079254,
-0.040339384227991104,
0.0514213852584362,
0.010149152018129826,
0.08772287517786026,
0.012054439634084702,
-0.0029193947557359934,
-0.04313553869724274,
-0.07654377818107605,
-0.01924894005060196,
-0.02904299832880497,
-0.0069141932763159275,
0.06466436386108398,
-0.09852129220962524,
-0.0575905442237854,
-0.09475398808717728,
-0.06337913870811462,
0.057742197066545486,
-0.04466572776436806,
-0.058691516518592834,
-0.0007097031339071691,
-0.03672197088599205,
0.0451488234102726,
-0.0712309181690216,
-0.04542672634124756,
0.04490673542022705,
0.07470215857028961,
0.05319664999842644,
0.02254387177526951,
0.001207228284329176,
-0.08572713285684586,
0.03536302596330643,
-0.04399063065648079,
-0.0165393128991127,
-0.05736003816127777,
-0.012322303839027882,
-0.03418973833322525,
-0.051076989620923996,
0.013874601572751999,
0.07176615297794342,
-0.08236785233020782,
-0.002183330710977316,
-0.006263652350753546,
0.046697281301021576,
-0.010509627871215343,
0.0007958787609823048,
-0.0351606160402298,
-0.03136056289076805,
0.01787126623094082,
-0.006707599852234125,
-0.02958407998085022,
-0.03229720517992973,
0.025171222165226936,
0.0047699701972305775,
0.0407792292535305,
0.0018415506929159164,
0.007194089237600565,
0.01904137060046196,
0.04390338808298111,
0.0025939021725207567,
0.04248293489217758,
0.00044876179890707135,
-0.04736074060201645,
-0.0016269921325147152,
-0.02471456676721573,
-0.030721839517354965,
0.03433984890580177,
0.02109871432185173,
-0.02775084786117077,
0.03189647197723389,
-0.0020957260858267546,
-0.009777668863534927,
0.022319374606013298,
0.029362037777900696,
0.05817735940217972,
0.04293420910835266,
0.010625151917338371,
-0.053498394787311554,
0.01041644997894764,
0.006907897535711527,
-0.010403132997453213,
-0.04322481155395508,
-0.011131998151540756,
-0.02061438001692295,
-0.0596308633685112,
0.017431238666176796,
0.000873089418746531,
-0.002562725218012929,
0.005068926606327295,
-0.004160343669354916,
0.0039640734903514385,
0.0074939788319170475,
-0.0793582946062088,
-0.015628619119524956,
0.021290745586156845,
0.004534711595624685,
-0.02482464723289013,
-0.017408495768904686,
0.001263270154595375,
0.02156958356499672,
0.01155695877969265,
0.01928766816854477,
0.003377093467861414,
-0.011679263785481453,
-0.016223018988966942,
0.052759718149900436,
-0.032594263553619385,
-0.00032603141153231263,
0.033142831176519394,
-0.012979459948837757,
0.024856114760041237,
-0.03707117959856987,
0.018831705674529076,
0.008236129768192768,
0.01941969059407711,
0.007108625955879688,
-0.0003535821451805532,
0.0012009987840428948,
0.005396376829594374,
-0.011090781539678574,
0.038483306765556335,
-0.025906072929501534,
-0.02068854495882988,
-0.07328629493713379,
0.0011380083160474896,
0.01721944846212864,
-0.05930185317993164,
0.0077019063755869865,
-0.01835767552256584,
0.05060373619198799,
0.006830170284956694,
0.05089505389332771,
0.04455507919192314,
0.02522011287510395,
0.03187563642859459,
0.06185421720147133,
0.03886232525110245,
-0.02072160691022873,
-0.01556004211306572,
-0.007405059412121773,
0.014619027264416218,
0.010032422840595245,
0.01373254507780075,
0.0006443902966566384,
-0.011689084582030773,
0.06112727150321007,
0.008035330101847649,
-0.007447556592524052,
0.018463313579559326,
-0.01666904240846634,
-0.005940545350313187,
-0.04816003888845444,
-0.03751935437321663,
0.021317506209015846,
-0.03530643507838249,
-0.002575840102508664,
0.0068088010884821415,
-0.006737719755619764,
-0.034731049090623856,
0.02203325554728508,
-0.0038019490893930197,
0.010212749242782593,
-0.013251202180981636,
0.011034605093300343,
0.011480642482638359,
0.007397378794848919,
-0.04138348996639252,
0.00531874131411314,
-0.014475553296506405,
-0.04123967885971069,
0.04782414436340332,
-0.0013612244511023164,
-0.00949474424123764,
-0.01722804456949234,
-0.05805177986621857,
0.0024125203490257263,
-0.016780536621809006,
0.030335867777466774,
0.02683931030333042,
-0.01810925453901291,
0.05451245978474617,
0.014867882244288921,
0.018925223499536514,
-0.02889142371714115,
-0.01793964020907879,
0.020243104547262192,
-0.06643225997686386,
-0.04508713260293007,
0.04583979398012161,
0.01447486411780119,
-0.03474317118525505,
0.04908512532711029,
0.028668338432908058,
-0.04590064287185669,
-0.0054613822139799595,
-0.020830748602747917,
-0.004430744796991348,
0.01239131297916174,
-0.04243968427181244,
0.020616289228200912,
0.004874784499406815,
-0.03045664355158806,
-0.035425592213869095,
0.017774995416402817,
-0.013796848244965076,
0.0013617741642519832,
0.040321234613657,
0.09137028455734253,
-0.008516878820955753,
-0.002954346127808094,
-0.05010439455509186,
0.02376066893339157,
-0.011990031227469444,
0.06029260903596878,
0.012013952247798443,
0.014972064644098282,
0.01632602885365486,
-0.015359191223978996,
0.030186491087079048,
0.02428288757801056,
-0.013403741642832756,
-0.028609737753868103,
-0.029042262583971024,
0.003656215500086546,
0.04935505613684654,
-0.008031141944229603,
-0.0013911912683397532,
0.02347136288881302,
-0.016727255657315254,
-0.04064080864191055,
0.011339335702359676,
-0.02923251874744892,
0.020581308752298355,
0.04033529758453369,
0.030593540519475937,
-0.052329741418361664,
0.01055207196623087,
-0.001666465075686574,
-0.025283709168434143,
-0.01311542745679617,
-0.03590777888894081,
0.029141366481781006,
0.03334609791636467,
0.00972054060548544,
-0.06742013990879059,
-0.03118792176246643,
0.047692760825157166,
0.002552561927586794,
-0.003209703601896763,
0.017179718241095543,
0.048828836530447006,
0.008925963193178177,
0.004653324373066425,
-0.0011180603178218007,
-0.008734813891351223,
0.0119202621281147,
0.03142765164375305,
0.019623780623078346,
-0.0023140006233006716,
-0.03517988324165344,
0.03231806308031082,
0.012171775102615356,
-0.0033861014526337385,
-0.034373875707387924,
-0.004146501887589693,
-0.006789297331124544,
0.003155865939334035,
0.04509817808866501,
-0.0023132460191845894,
-0.027295323088765144,
0.029408656060695648,
0.010030049830675125,
0.017820307984948158,
-0.012574928812682629,
0.01992127113044262,
-0.03067004308104515,
0.002302086679264903,
0.06283385306596756,
0.058364927768707275,
0.06262513995170593,
-0.021993229165673256,
0.052524469792842865,
0.03702817112207413,
-0.03954746946692467,
0.046493031084537506,
-0.05216245725750923,
0.028351373970508575,
-0.009528625756502151,
0.024651704356074333,
0.013404078781604767,
0.000007188446488726186,
0.0006657826597802341,
0.021619800478219986,
0.03975716978311539,
0.03972328454256058,
-0.04290501028299332,
0.026906926184892654,
0.01043003797531128,
-0.010363114066421986,
-0.03522910922765732,
0.049671757966279984,
-0.054135750979185104,
0.0034394380636513233,
-0.007659321650862694,
-0.04081697016954422,
0.013458109460771084,
-0.0006485647172667086,
-0.004771985579282045,
0.01810826174914837,
0.03448551520705223,
0.05846216902136803,
0.012540695257484913,
-0.05410517007112503,
0.017933839932084084,
-0.025934485718607903,
-0.03908398374915123,
0.022017529234290123,
-0.055552855134010315,
0.008608012460172176,
-0.01805165410041809,
0.01218427810817957,
0.01626729965209961,
-0.0022327087353914976,
0.014357652515172958,
-0.017519259825348854,
0.07038231939077377,
-0.001986569259315729,
0.001168931252323091,
0.0034686822909861803,
0.0025098472833633423,
0.00019352915114723146,
-0.029386332258582115,
-0.0007484882371500134,
-0.019792359322309494,
-0.0754096657037735,
0.021647758781909943,
-0.061148501932621,
0.030951499938964844,
0.07536505162715912,
-0.020706461742520332,
0.001714295707643032,
0.011233218014240265,
0.009915594942867756,
0.014622746035456657,
0.021312270313501358,
-0.005194154568016529,
0.07200440019369125,
-0.01935284584760666,
-0.012426743283867836,
0.011111145839095116,
0.0007287479820661247,
0.09954681992530823,
0.011090424843132496,
-0.03957753628492355,
0.05122317373752594,
0.00937079917639494,
-0.04655551165342331,
0.04546647146344185,
0.00184668751899153,
-0.028192969039082527,
-0.013170781545341015,
0.016820142045617104,
-0.01830095425248146,
0.03381609916687012,
0.023007551208138466,
0.031549885869026184,
-0.0075046285055577755,
0.013596134260296822,
0.025706948712468147,
0.0466935858130455,
0.01906934753060341,
0.03597966581583023,
0.047371260821819305,
0.022706421092152596,
0.0420304536819458,
0.015277422964572906,
-0.006985424552112818,
-0.00334381777793169,
0.07023881375789642,
-0.013498799875378609,
-0.01656896062195301,
0.04315655678510666,
-0.0142838004976511,
-0.019659707322716713,
-0.025319436565041542,
-0.00958256796002388,
-0.017146054655313492,
-0.02382616512477398,
0.00590528454631567,
-0.043691668659448624,
0.0045621092431247234,
0.018269049003720284,
0.03050989657640457,
0.031428221613168716,
0.04870691895484924,
0.0020312501583248377,
0.053805455565452576,
-0.0140135632827878,
0.02198433130979538,
-0.003387496341019869,
-0.019948748871684074,
0.03219839185476303,
-0.01357316505163908,
0.0557306669652462,
-0.011108897626399994,
0.013278520666062832,
0.0269195307046175,
-0.007125964388251305,
-0.001551602385006845,
-0.0232357457280159,
-0.024795424193143845,
0.011036737821996212,
-0.02992030419409275,
0.034713421016931534,
0.013565738685429096,
0.051314178854227066,
-0.012791584245860577,
0.012478829361498356,
0.015137466602027416,
-0.01906576193869114,
0.004901103209704161,
-0.006247043143957853,
-0.01374603621661663,
0.014738715253770351,
0.011916046030819416,
-0.02802751399576664,
0.015424522571265697,
-0.01253694761544466,
-0.021883079782128334,
0.0499105229973793,
0.008308112621307373,
-0.010101406835019588,
0.011979468166828156,
-0.003232478629797697,
-0.0356462225317955,
0.017950383946299553,
-0.004218514077365398,
0.012919333763420582,
0.007643572986125946,
-0.03971222788095474,
0.031125636771321297,
-0.0027142774779349566,
-0.005851455964148045,
-0.00795090850442648,
-0.0230235755443573,
-0.007951764389872551,
-0.013691279105842113,
0.021316777914762497,
0.06510864943265915,
-0.030102277174592018,
-0.00011239119339734316,
0.027088645845651627,
0.0761946439743042,
0.07770070433616638,
0.04783325642347336,
-0.010500135831534863,
-0.03671623021364212,
-0.006458567921072245,
0.02117583528161049,
-0.010444387793540955,
0.041893571615219116,
0.004496247041970491,
-0.0026374703738838434,
-0.01893354393541813,
-0.018401412293314934,
-0.02508542872965336,
-0.028595300391316414,
-0.03146829456090927,
0.01668599061667919,
0.003959501162171364,
0.00013921155186835676,
-0.005139603745192289,
0.019225452095270157,
-0.00940216425806284,
-0.020652465522289276,
0.022813254967331886,
-0.006439626216888428,
0.02703121118247509,
-0.03891828656196594,
0.014888817444443703,
-0.011330820620059967,
-0.02553490735590458,
-0.00939746294170618,
0.012220075353980064,
-0.004540656227618456,
0.02584909275174141,
-0.0036322660744190216,
0.04256490617990494,
-0.025587406009435654,
0.013177909888327122,
0.011813635937869549,
0.0076680853962898254,
0.0019456770969554782,
0.015170247294008732,
0.03908863291144371,
0.044551555067300797,
0.07671157270669937,
0.019712897017598152,
-0.0479566790163517,
-0.00706213153898716,
-0.01885431446135044,
0.013839652761816978,
0.03452116996049881,
0.04286240413784981,
0.007108490914106369,
-0.004995010327547789,
-0.017069801688194275,
0.035007547587156296,
-0.0178503580391407,
-0.01647527888417244,
0.0070553552359342575,
0.005947819445282221,
0.01760859601199627,
0.011371172033250332,
0.02435397170484066,
0.02033342607319355,
0.05486081540584564,
-0.008919657208025455,
-0.034084733575582504,
-0.023950668051838875,
0.02860989049077034,
-0.0642564669251442,
-0.02666989527642727,
0.017843089997768402,
-0.00013141801173333079,
0.036774247884750366,
-0.004794370383024216,
0.054154522716999054,
0.007502248045057058,
-0.007771902251988649,
-0.016176607459783554,
-0.03599061071872711,
-0.03125739097595215,
-0.046783238649368286,
-0.012638047337532043,
0.006938869599252939,
-0.03156355395913124,
-0.029622284695506096,
0.030087891966104507,
0.015402067452669144,
0.02362084947526455,
-0.018811505287885666,
-0.022774647921323776,
0.005806799978017807,
-0.017750784754753113,
0.01853470876812935,
-0.015891265124082565,
0.01851957105100155,
0.02898561581969261,
0.05145440623164177,
-0.011696700938045979,
0.037688497453927994
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | 2. Chunked Feed Forward Layers Transformer-based models often employ very large feed forward layers after the self-attention layer in parallel. Thereby, this layer can take up a significant amount of the overall memory and sometimes even represent the memory bottleneck of a model. First introduced in the Reformer paper, feed forward chunking is a technique that allows to effectively trade better memory consumption for increased time consumption. | [
0.07683274894952774,
-0.05798757076263428,
0.02194908820092678,
0.019522862508893013,
0.0357268862426281,
0.045972757041454315,
-0.02201470173895359,
0.015277519822120667,
-0.012403078377246857,
0.012754054740071297,
-0.08845783770084381,
0.020050685852766037,
-0.050591349601745605,
0.07017162442207336,
-0.04128831997513771,
0.022251859307289124,
0.06897018104791641,
-0.04060526564717293,
-0.0706045851111412,
0.05028805509209633,
0.08809411525726318,
-0.09606517851352692,
0.11248526722192764,
0.0024324897676706314,
-0.042785681784152985,
0.0017285158392041922,
-0.005637784954160452,
-0.016068512573838234,
-0.012654305435717106,
-0.00010143529652850702,
-0.10199582576751709,
-0.011514903046190739,
0.036861199885606766,
-0.04670209810137749,
-0.03744734078645706,
-0.05423333868384361,
-0.06911767274141312,
0.03422202542424202,
0.0350520983338356,
-0.09372252970933914,
-0.039324816316366196,
0.058149974793195724,
-0.030288590118288994,
0.038593001663684845,
0.03191360458731651,
-0.04269365593791008,
-0.07745137065649033,
0.069346122443676,
-0.03414946421980858,
0.003774464363232255,
-0.0758642628788948,
0.09486055374145508,
-0.040832631289958954,
0.03305212780833244,
0.04558490961790085,
0.03510541096329689,
-0.009083553217351437,
-0.001532727270387113,
0.008313150145113468,
0.010665797628462315,
0.09284987300634384,
-0.006515168119221926,
-0.012419340200722218,
0.008140605874359608,
0.016093160957098007,
-0.07062442600727081,
0.05546661093831062,
-0.01278957724571228,
-0.07526853680610657,
-0.009582185186445713,
-0.027695272117853165,
-0.04920065030455589,
-0.023363972082734108,
0.0059470366686582565,
-0.003014092333614826,
0.03481768071651459,
0.04178553447127342,
-0.018515752628445625,
-0.03206585347652435,
-0.0021653517615050077,
0.014128819108009338,
0.10857861489057541,
0.024059254676103592,
0.026111232116818428,
0.027316177263855934,
0.022046811878681183,
0.06929813325405121,
-0.11817940324544907,
-0.02341046929359436,
0.06018824130296707,
-0.012893345206975937,
-0.08667927980422974,
-0.036550045013427734,
-0.00986024085432291,
0.03189536929130554,
-0.05279823765158653,
0.01420950423926115,
-0.008883519098162651,
0.00984446331858635,
-0.009970747865736485,
-0.01782401278614998,
-0.08226411789655685,
0.029714571312069893,
-0.011366200633347034,
-0.026411253958940506,
0.011579087004065514,
-0.0010377876460552216,
-0.12890341877937317,
0.001352702616713941,
-0.014529040083289146,
0.005311109125614166,
0.016396695747971535,
-0.005055715329945087,
0.03573712334036827,
-0.07707922905683517,
-0.05023146793246269,
-0.059049587696790695,
-0.012300029397010803,
-0.00002979875534947496,
0.04273265600204468,
-0.031157774850726128,
0.08762095868587494,
0.06270598620176315,
-0.003138030879199505,
0.05174338072538376,
0.0015756279462948442,
0.03416033089160919,
0.017606796696782112,
-0.0006013729725964367,
0.010870207101106644,
0.05494179576635361,
0.011998584493994713,
0.0067356424406170845,
0.026527615264058113,
0.013415816240012646,
-0.06554549932479858,
0.0450793020427227,
-0.025205830112099648,
-0.006327854003757238,
0.04014654830098152,
-0.06157117336988449,
0.022199111059308052,
0.07381635159254074,
-0.08922459185123444,
0.03016197867691517,
-0.13903510570526123,
-0.13329839706420898,
0.06281299144029617,
0.0745745301246643,
-0.02292361669242382,
-0.08980593085289001,
0.05427571013569832,
-0.03659846633672714,
-0.04583754390478134,
-0.006568878423422575,
0.04441419243812561,
-0.024401377886533737,
-0.07411636412143707,
-0.04570186510682106,
0.0013384060002863407,
0.012622753158211708,
0.029759665951132774,
-0.013643327169120312,
0.041550762951374054,
0.047746557742357254,
-0.03337496146559715,
0.004768654704093933,
-0.01870853267610073,
-0.02165217138826847,
-0.022106440737843513,
0.010849342681467533,
0.0403904914855957,
-0.00732308579608798,
-0.0048952605575323105,
-0.008757881820201874,
0.04734739288687706,
0.01973891817033291,
0.07980387657880783,
-0.028213081881403923,
-0.058548349887132645,
-0.034130752086639404,
-0.019875701516866684,
0.017618706449866295,
0.004634672310203314,
-0.008598790504038334,
0.0018266061088070273,
0.018284043297171593,
-0.02203506790101528,
-0.07369548827409744,
0.08084248006343842,
-0.03594686836004257,
0.0018967122305184603,
0.038672350347042084,
-0.04042980447411537,
0.05874734744429588,
0.007875560782849789,
-0.05068342387676239,
0.007873661816120148,
0.06715669482946396,
0.09498640149831772,
0.0685521736741066,
0.0548650398850441,
-0.03696950897574425,
-0.008671595714986324,
0.008889904245734215,
-0.03537428751587868,
0.05847884342074394,
-0.028763603419065475,
0.07738412171602249,
-0.021350428462028503,
0.012295437045395374,
-0.055504195392131805,
0.03815881535410881,
-0.00393205089494586,
-0.003472790587693453,
-0.06419793516397476,
-0.012072823941707611,
0.01314427237957716,
-0.0909491553902626,
-0.004140462726354599,
0.06212227791547775,
0.014275086112320423,
-0.11240329593420029,
0.013408730737864971,
0.02622300758957863,
0.00026986555894836783,
0.03972967341542244,
-0.04321056604385376,
0.011685200035572052,
-0.05270268768072128,
-0.02632324956357479,
-0.0010107815032824874,
0.012754839845001698,
0.03789341449737549,
-0.009864963591098785,
-0.026215573772788048,
-0.057062048465013504,
0.050689730793237686,
0.0417441725730896,
-0.05547266826033592,
-0.08843274414539337,
0.019674817100167274,
0.05200434848666191,
0.022923646494746208,
0.05358877032995224,
0.0032280944287776947,
0.044220443814992905,
0.010492359288036823,
-0.052110545337200165,
0.04161372780799866,
-0.03314986079931259,
0.07520130276679993,
0.03659563139081001,
-0.09249462932348251,
-0.040810491889715195,
0.012746668420732021,
0.006308853626251221,
-0.06426029652357101,
0.014699934981763363,
0.03949344530701637,
0.011536791920661926,
0.010235660709440708,
-0.07553525269031525,
-0.023205552250146866,
-0.03274306654930115,
-0.041848424822092056,
0.014579875394701958,
-0.031877413392066956,
0.03935665264725685,
-0.006647208239883184,
-0.009398397989571095,
-0.03148103877902031,
0.0066772024147212505,
-0.0127014284953475,
0.02721363678574562,
-0.0028806047048419714,
0.028300102800130844,
-0.0036482748109847307,
0.04842229187488556,
-0.037592239677906036,
-0.031149333342909813,
-0.00410280330106616,
0.04498954117298126,
0.0136528629809618,
0.006630833726376295,
0.022142522037029266,
0.01605536788702011,
-0.013845985755324364,
-0.033251937478780746,
0.009895029477775097,
-0.004457404371351004,
0.01522551104426384,
-0.03113402985036373,
-0.0021525577176362276,
-0.017605623230338097,
0.043997690081596375,
-0.016281958669424057,
-0.05556037649512291,
-0.03068072348833084,
-0.02547326497733593,
0.004624609835445881,
0.03349392116069794,
-0.00008876172796590254,
-0.02845396101474762,
-0.005154415033757687,
-0.02047795243561268,
-0.04166104644536972,
0.03337353467941284,
-0.08021777868270874,
-0.07636087387800217,
-0.001512455171905458,
-0.029420582577586174,
0.004076173063367605,
-0.0382232591509819,
0.014783110469579697,
0.008508692495524883,
-0.01418973132967949,
-0.013390123844146729,
0.024879440665245056,
-0.008321300148963928,
0.009254188276827335,
0.008684410713613033,
-0.02292412333190441,
-0.02964969351887703,
0.02826773002743721,
0.007249894551932812,
0.062013279646635056,
-0.026806171983480453,
0.0013405542122200131,
0.021853679791092873,
0.004759857431054115,
0.05051673948764801,
-0.0071296910755336285,
0.021479126065969467,
0.012148174457252026,
-0.025590449571609497,
0.020917823538184166,
0.016963722184300423,
-0.037220705300569534,
-0.03788844123482704,
0.0029978721868246794,
0.019666945561766624,
-0.005009040702134371,
-0.005464534275233746,
-0.023986423388123512,
0.020772472023963928,
0.07902400195598602,
0.023583490401506424,
0.0696803405880928,
-0.0013074743328616023,
0.0716182291507721,
0.008990525268018246,
0.012046626769006252,
-0.002606868278235197,
0.0273708738386631,
-0.046301908791065216,
0.04234030097723007,
-0.02822965569794178,
-0.0002244087227154523,
-0.04239160194993019,
0.01990039087831974,
-0.01928541250526905,
-0.011615746654570103,
-0.016468172892928123,
0.02572757564485073,
0.006997513119131327,
0.0075165946036577225,
-0.022624218836426735,
-0.025736352428793907,
0.05191187560558319,
-0.013660857453942299,
0.012407021597027779,
-0.028643451631069183,
0.012757744640111923,
0.01781924068927765,
0.026980964466929436,
0.011857997626066208,
0.006806522607803345,
-0.04170085862278938,
0.022871632128953934,
0.007974416017532349,
0.000723683217074722,
-0.014787739142775536,
-0.0035691894590854645,
0.005204502958804369,
-0.02096528373658657,
0.04285174980759621,
0.03258887678384781,
0.014710537157952785,
0.004837180953472853,
-0.032952841371297836,
-0.007226095534861088,
0.018921731039881706,
0.029925193637609482,
0.006244593299925327,
0.00623340206220746,
0.019838063046336174,
0.03482658416032791,
0.02916281297802925,
-0.010367768816649914,
0.005652913823723793,
-0.022254308685660362,
0.000790173769928515,
0.014042404480278492,
-0.01954847201704979,
0.03610603138804436,
-0.010142529383301735,
-0.026317793875932693,
0.01415205653756857,
-0.03944402560591698,
-0.005400562658905983,
0.03208117187023163,
-0.0002463912533130497,
0.02206670120358467,
0.0013109688879922032,
-0.014295789413154125,
0.028966398909687996,
-0.013248632661998272,
-0.008612650446593761,
-0.018229467794299126,
-0.006918024271726608,
0.04022518917918205,
0.008204418234527111,
0.012611333280801773,
-0.061553530395030975,
-0.000466396362753585,
0.006882275454699993,
0.014525621198117733,
-0.02877935580909252,
0.018064649775624275,
0.010012063197791576,
-0.048466455191373825,
0.04359478875994682,
-0.0032754584681242704,
0.003862636163830757,
-0.011876496486365795,
-0.002745790174230933,
-0.014954191632568836,
-0.03074866533279419,
0.004299502354115248,
0.05401334539055824,
0.017732398584485054,
-0.02235100418329239,
0.005700529087334871,
-0.05913080275058746,
0.022937949746847153,
-0.0009606060921214521,
-0.04826353117823601,
-0.029030459001660347,
0.02366803213953972,
0.015831725671887398,
-0.025914423167705536,
0.04930010437965393,
0.02366693876683712,
-0.009753416292369366,
0.025861965492367744,
-0.03020947054028511,
0.013765414245426655,
0.06767099350690842,
0.018394777551293373,
-0.04613673686981201,
0.05222373083233833,
0.06828723102807999,
0.014134877361357212,
0.01338037010282278,
0.022210193797945976,
0.00879195798188448,
-0.004142367281019688,
0.026749247685074806,
-0.004671290051192045,
-0.06267381459474564,
0.004973270930349827,
0.04207468777894974,
0.02104518748819828,
-0.01000954955816269,
-0.050729818642139435,
0.010979772545397282,
-0.01227861549705267,
-0.023482831194996834,
0.014226669445633888,
0.0035906322300434113,
0.015384910628199577,
-0.008818547241389751,
0.006930574309080839,
0.0019766693003475666,
-0.017171485349535942,
0.036870356649160385,
0.003242981620132923,
-0.01784457080066204,
0.030380379408597946,
0.03546746447682381,
0.024021269753575325,
0.038413144648075104,
0.0872076004743576,
0.015190976671874523,
0.09818526357412338,
-0.05022522807121277,
0.0201752707362175,
0.0562996082007885,
0.012311933562159538,
-0.008757708594202995,
0.004773674998432398,
0.0454501211643219,
0.024507522583007812,
0.009387868456542492,
-0.010024570859968662,
-0.0344395749270916,
-0.0007135138148441911,
0.028008747845888138,
0.06602907180786133,
-0.007441861554980278,
-0.002310172189027071,
-0.010530462488532066,
0.01685963198542595,
-0.02588983252644539,
0.008161861449480057,
-0.022038282826542854,
0.0069176144897937775,
0.050825826823711395,
0.03283512219786644,
-0.011283568106591702,
-0.015843575820326805,
-0.015670744702219963,
0.002219715854153037,
0.016328221186995506,
0.03496306762099266,
0.020213082432746887,
0.02403533086180687,
0.029459603130817413,
-0.01439761370420456,
-0.03035208024084568,
-0.009356694296002388,
-0.008795865811407566,
-0.07445661723613739,
-0.02785998210310936,
-0.02248138189315796,
-0.06348833441734314,
0.028862403705716133,
0.013698307797312737,
0.01997588947415352,
-0.006700956262648106,
-0.004699349403381348,
0.012928980402648449,
-0.0032074195332825184,
-0.0371861532330513,
0.06631341576576233,
0.04331200569868088,
-0.014764291234314442,
0.02214030548930168,
-0.011813541874289513,
-0.040385615080595016,
0.030597174540162086,
-0.03396671637892723,
-0.01406855694949627,
0.04178311303257942,
-0.03824353963136673,
0.022402582690119743,
0.026770295575261116,
0.052004631608724594,
-0.030051959678530693,
-0.014146793633699417,
-0.007434158120304346,
-0.014849679544568062,
-0.03495156764984131,
0.03459692373871803,
0.016647426411509514,
0.03125669062137604,
-0.007319639902561903,
0.015311220660805702,
-0.012611337937414646,
-0.015839898958802223,
0.007674784399569035,
-0.0056641544215381145,
0.057950932532548904,
-0.018095729872584343,
-0.033863600343465805,
-0.008436942473053932,
0.021935181692242622,
0.01462139468640089,
0.024385623633861542,
-0.012030042707920074,
0.02268064208328724,
-0.02123604342341423,
0.029316876083612442,
0.01708788238465786,
0.0024709373246878386,
0.015120645053684711,
0.040083982050418854,
0.04082150757312775,
0.02215411514043808,
0.06469804048538208,
0.0075813899748027325,
0.027827005833387375,
-0.02148500643670559,
0.041193172335624695,
-0.03214136138558388,
-0.005773151759058237,
0.02534620091319084,
0.0015632034046575427,
0.006995087023824453,
0.027566993609070778,
-0.009958119131624699,
-0.0314122699201107,
0.020338766276836395,
-0.00167093425989151,
-0.019697654992341995,
0.00585961202159524,
0.016480084508657455,
0.009046565741300583,
-0.005336462054401636,
-0.017181897535920143,
0.007619527168571949,
0.01672927476465702,
0.02283620461821556,
0.01417700294405222,
0.046881310641765594,
0.0294128879904747,
0.017650533467531204,
-0.03422785550355911,
0.01611640304327011,
-0.010124827735126019,
0.013614586554467678,
-0.011576869525015354,
-0.025274423882365227,
0.024392422288656235,
-0.034190356731414795,
-0.000468519632704556,
0.00619765417650342,
-0.03472718596458435,
-0.028336629271507263,
0.019289517775177956,
-0.01726408861577511,
-0.016082119196653366,
-0.025520261377096176,
0.034977179020643234,
0.0032156705856323242,
-0.019255559891462326,
-0.013961595483124256,
-0.04168127104640007,
-0.00007671847561141476,
-0.018463414162397385,
-0.018311897292733192,
-0.0169903002679348,
0.014213232323527336,
0.003544518258422613,
0.02219235524535179,
-0.0041634878143668175,
-0.029316231608390808,
0.0077064200304448605,
0.037612877786159515,
-0.0014462975086644292,
0.010853835381567478,
0.04627712443470955,
-0.015843505039811134,
0.05496305972337723,
-0.012273173779249191,
-0.02971941977739334,
0.04954155534505844,
-0.009999744594097137,
0.009242665953934193,
-0.03914697840809822,
0.014574380591511726,
-0.012187425047159195,
-0.04151759296655655,
0.032913900911808014,
-0.024086778983473778,
0.014036515727639198,
0.0059057362377643585,
0.033094827085733414,
0.034791745245456696,
0.03345618024468422,
-0.03207128494977951,
0.010294421575963497,
-0.01472387183457613,
-0.04297352954745293,
-0.023469720035791397,
0.014332536607980728,
0.03226408362388611,
-0.01185555849224329,
0.012148887850344181,
-0.04551469907164574,
-0.012216994538903236,
-0.01868390664458275,
0.01847602240741253,
0.023433012887835503,
0.022793689742684364,
-0.04167741537094116,
-0.006721364334225655,
0.007410699035972357,
-0.02613084763288498,
0.004013606812804937,
0.016718795523047447,
0.03164459764957428,
-0.0012007108889520168,
-0.048211969435214996,
0.009007524698972702,
-0.021156948059797287,
-0.01544446311891079,
-0.026679912582039833,
-0.03110261633992195,
-0.008908871561288834,
0.03941100090742111,
0.010658768005669117,
0.029536422342061996,
-0.0036261051427572966,
0.05093875899910927,
-0.007686998229473829,
0.013490501791238785,
0.016184931620955467,
0.025759268552064896,
0.0035671566147357225,
-0.017118185758590698,
0.004139153752475977,
0.01236634235829115,
-0.039826638996601105,
-0.05660657957196236,
-0.03151651471853256,
0.04944052919745445,
0.06428854167461395,
-0.032655537128448486,
0.035219691693782806,
0.01109614223241806,
-0.005595289170742035,
-0.05068501457571983,
-0.09336785972118378,
-0.024299636483192444,
0.003288164036348462,
-0.007298434618860483,
-0.011383665725588799,
-0.05617206171154976,
0.02441033162176609,
0.01024263072758913,
0.039982594549655914,
0.034978803247213364,
-0.03046264871954918,
-0.0322728231549263,
0.015620872378349304,
-0.03375672921538353,
-0.022028543055057526,
0.0027941002044826746,
0.04015083983540535,
0.023872943595051765,
0.014683740213513374,
0.04291028901934624,
0.030027637258172035,
0.05779075622558594,
0.02172418311238289,
0.022045256569981575,
-0.02813144028186798,
-0.02875588834285736,
0.04659620672464371,
-0.011895778588950634,
0.00009699346264824271,
-0.04537668079137802,
-0.008011117577552795,
0.04204483702778816,
0.029324427247047424,
-0.013626028783619404,
-0.02703665941953659,
-0.011855683289468288,
-0.03205573186278343,
0.023724880069494247,
-0.01973371021449566,
-0.00014889758313074708,
-0.022799907252192497,
0.034097906202077866,
-0.054130587726831436,
-0.022223088890314102
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | Benchmark Lastly, let's also compare the peak memory consumption of conventional positional embeddings to axial positional embeddings. #@title Installs and Imports # pip installs !pip -qq install git+https://github.com/huggingface/transformers.git !pip install -qq py3nvml from transformers import ReformerConfig, PyTorchBenchmark, PyTorchBenchmarkArguments, ReformerModel Positional embeddings depend only on two configuration parameters: The maximum allowed length of input sequences config.max_position_embeddings and config.hidden_size. Let's use a model that pushes the maximum allowed length of input sequences to half a million tokens, called google/reformer-crime-and-punishment, to see the effect of using axial positional embeddings. To begin with, we will compare the shape of axial position encodings with standard positional encodings and the number of parameters in the model. config_no_pos_axial_embeds = ReformerConfig.from_pretrained("google/reformer-crime-and-punishment", axial_pos_embds=False) # disable axial positional embeddings config_pos_axial_embeds = ReformerConfig.from_pretrained("google/reformer-crime-and-punishment", axial_pos_embds=True, axial_pos_embds_dim=(64, 192), axial_pos_shape=(512, 1024)) # enable axial positional embeddings print("Default Positional Encodings") print(20 * '-') model = ReformerModel(config_no_pos_axial_embeds) print(f"Positional embeddings shape: {model.embeddings.position_embeddings}") print(f"Num parameters of model: {model.num_parameters()}") print(20 * '-' + '\n\n') print("Axial Positional Encodings") print(20 * '-') model = ReformerModel(config_pos_axial_embeds) print(f"Positional embeddings shape: {model.embeddings.position_embeddings}") print(f"Num parameters of model: {model.num_parameters()}") print(20 * '-' + '\n\n') HBox(children=(FloatProgress(value=0.0, description='Downloading', max=1151.0, style=ProgressStyle(description… Default Positional Encodings -------------------- Positional embeddings shape: PositionEmbeddings( (embedding): Embedding(524288, 256) ) Num parameters of model: 136572416 -------------------- Axial Positional Encodings -------------------- Positional embeddings shape: AxialPositionEmbeddings( (weights): ParameterList( (0): Parameter containing: [torch.FloatTensor of size 512x1x64] (1): Parameter containing: [torch.FloatTensor of size 1x1024x192] ) ) Num parameters of model: 2584064 -------------------- Having read the theory, the shape of the axial positional encoding weights should not be a surprise to the reader. Regarding the results, it can be seen that for models being capable of processing such long input sequences, it is not practical to use default positional encodings. In the case of google/reformer-crime-and-punishment, standard positional encodings alone contain more than 100M parameters. Axial positional encodings reduce this number to just over 200K. Lastly, let's also compare the required memory at inference time. benchmark_args = PyTorchBenchmarkArguments(sequence_lengths=[512], batch_sizes=[8], models=["Reformer-No-Axial-Pos-Embeddings", "Reformer-Axial-Pos-Embeddings"], no_speed=True, no_env_print=True) benchmark = PyTorchBenchmark(configs=[config_no_pos_axial_embeds, config_pos_axial_embeds], args=benchmark_args) result = benchmark.run() 1 / 2 2 / 2 ==================== INFERENCE - MEMORY - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- Reformer-No-Axial-Pos-Embeddin 8 512 959 Reformer-Axial-Pos-Embeddings 8 512 447 -------------------------------------------------------------------------------- It can be seen that using axial positional embeddings reduces the memory requirement to approximately half in the case of google/reformer-crime-and-punishment. | [
-0.005621132906526327,
0.06044059619307518,
0.002853718353435397,
-0.0029139630496501923,
-0.04365549236536026,
0.043265555053949356,
0.05198361352086067,
-0.03543691337108612,
-0.07352297008037567,
-0.012052522972226143,
-0.05069165676832199,
0.027702873572707176,
0.018546422943472862,
-0.004689125809818506,
0.05188644304871559,
-0.04733484238386154,
0.0637362152338028,
-0.00638813991099596,
-0.05466166138648987,
0.00574336526915431,
0.0192443635314703,
-0.0999651625752449,
0.046252280473709106,
0.004129280336201191,
-0.029962509870529175,
-0.07355188578367233,
-0.009314117021858692,
-0.053431034088134766,
-0.06234307959675789,
0.023972634226083755,
-0.17116709053516388,
-0.026250705122947693,
0.021065382286906242,
-0.0368838906288147,
0.02766450121998787,
-0.02527250349521637,
-0.11305902153253555,
0.08226674050092697,
0.05221690610051155,
-0.02895278111100197,
-0.051247451454401016,
0.01257358305156231,
-0.027260446920990944,
0.026919934898614883,
0.011570286005735397,
-0.0031540384516119957,
-0.1280108243227005,
0.08575268089771271,
-0.01840393990278244,
-0.0030880740378051996,
-0.09072578698396683,
0.03699716553092003,
-0.028510015457868576,
0.0677860900759697,
-0.01852569915354252,
-0.014528452418744564,
0.034728456288576126,
-0.0666901022195816,
0.023663198575377464,
-0.02236763760447502,
0.03277790918946266,
0.03185047581791878,
0.056758031249046326,
0.045566532760858536,
-0.0002182019961765036,
0.038032662123441696,
-0.08983130007982254,
0.07023217529058456,
-0.048291515558958054,
-0.03776371106505394,
0.020884349942207336,
0.0181925967335701,
-0.038802798837423325,
-0.01458426471799612,
-0.01805839315056801,
-0.06210389733314514,
-0.06532596051692963,
0.005052600987255573,
0.07058661431074142,
0.04541655257344246,
-0.010135741904377937,
0.06402312219142914,
0.034947194159030914,
0.006840193178504705,
0.02466338872909546,
0.050744690001010895,
0.049363814294338226,
0.0008243866031989455,
-0.027131378650665283,
0.04167233034968376,
-0.03180034086108208,
-0.07399796694517136,
0.007281001657247543,
0.028698617592453957,
-0.030551230534911156,
-0.0026592162903398275,
0.018524033948779106,
0.0274928230792284,
-0.021134231239557266,
0.008118687197566032,
-0.00542264711111784,
-0.05049118027091026,
0.01133924163877964,
-0.035518545657396317,
0.013196130283176899,
-0.0010069920681416988,
-0.061134081333875656,
-0.08994528651237488,
0.017372963950037956,
0.016530103981494904,
-0.06785288453102112,
0.015464328229427338,
-0.03506556153297424,
0.031073058024048805,
-0.10496832430362701,
0.01604776829481125,
-0.0372772179543972,
-0.04111194983124733,
0.005776630714535713,
0.04741198942065239,
-0.014004550874233246,
0.04402288794517517,
0.033054936677217484,
-0.00813909713178873,
0.01524318102747202,
0.026367897167801857,
-0.0003766627924051136,
0.04786010831594467,
0.003902392229065299,
-0.007507853209972382,
0.02620857208967209,
0.00954783707857132,
0.09069915860891342,
0.012722741812467575,
-0.040632184594869614,
-0.08115072548389435,
0.036215443164110184,
-0.04041162505745888,
-0.02893538400530815,
-0.04066939651966095,
-0.04639701917767525,
0.02924288623034954,
0.03366483747959137,
-0.038666240870952606,
0.04151587188243866,
-0.05798845738172531,
-0.09884615242481232,
0.0809648260474205,
-0.0035889900755137205,
-0.05130767077207565,
-0.07208354771137238,
0.07570725679397583,
-0.004433684051036835,
-0.014392679557204247,
0.036648813635110855,
0.04918713495135307,
-0.016776302829384804,
-0.03180974721908569,
-0.05190061777830124,
-0.030094392597675323,
-0.026011770591139793,
0.006266220938414335,
-0.0394805483520031,
-0.004235020838677883,
0.03995387628674507,
-0.020336775109171867,
0.05546083673834801,
-0.03087284043431282,
-0.025792177766561508,
0.02864093892276287,
-0.04633276164531708,
-0.007943620905280113,
0.030909011140465736,
-0.005970061756670475,
-0.048320479691028595,
0.03950453922152519,
0.010122734121978283,
0.07406946271657944,
-0.001205346081405878,
-0.051495205610990524,
-0.03511693701148033,
0.08077448606491089,
-0.005248938221484423,
0.08352097868919373,
0.0618952214717865,
-0.08217434585094452,
0.009217150509357452,
-0.03484932333230972,
0.005700604524463415,
-0.006993105635046959,
-0.023056941106915474,
-0.03980102017521858,
0.07296950370073318,
-0.023299939930438995,
0.04363606870174408,
-0.011156931519508362,
0.01306035928428173,
0.05108049884438515,
0.027042414993047714,
0.010246659629046917,
0.009635502472519875,
0.054048459976911545,
0.031874075531959534,
0.025220518931746483,
-0.03866824880242348,
-0.04651777446269989,
-0.06542427837848663,
-0.05342251807451248,
0.03250114992260933,
0.03355705738067627,
0.03890584409236908,
-0.10161836445331573,
0.022583719342947006,
-0.021922361105680466,
0.003977373708039522,
-0.07316761463880539,
-0.022316824644804,
0.002485178876668215,
-0.004520252346992493,
-0.009934653528034687,
0.1306968629360199,
-0.049361634999513626,
-0.014700507745146751,
-0.04171237722039223,
-0.03280600532889366,
0.023829279467463493,
-0.013773974031209946,
0.0659489780664444,
0.01631671003997326,
-0.09084706753492355,
-0.05011804401874542,
-0.06720923632383347,
-0.006481107324361801,
0.058167871087789536,
-0.013069349341094494,
-0.09072520583868027,
0.018211519345641136,
0.03729763999581337,
0.07174380868673325,
-0.006516329478472471,
-0.02327529713511467,
-0.0075528789311647415,
0.06819386035203934,
0.04484165459871292,
-0.0076682367362082005,
0.002903689630329609,
-0.03864307329058647,
0.013785558752715588,
-0.022028014063835144,
-0.018960697576403618,
-0.11399977654218674,
-0.007421944756060839,
0.008380964398384094,
-0.020778566598892212,
0.017178857699036598,
0.0922706127166748,
-0.047602973878383636,
0.007006428670138121,
-0.04442140832543373,
0.0721229612827301,
0.035364147275686264,
0.03178289532661438,
-0.07302626222372055,
-0.0525851845741272,
-0.00910448282957077,
-0.007399666588753462,
-0.01871281862258911,
-0.033236827701330185,
0.016285402700304985,
-0.014360259287059307,
0.023536372929811478,
-0.020959364250302315,
0.05145305022597313,
0.020954543724656105,
0.01990232802927494,
0.008851987309753895,
0.010846118442714214,
-0.037058982998132706,
-0.01484634168446064,
0.013911008834838867,
-0.012929820455610752,
-0.014669305644929409,
0.03141145035624504,
0.022814122959971428,
-0.02794705517590046,
0.032885465770959854,
0.011719275265932083,
-0.018129199743270874,
-0.02906074933707714,
0.011396295391023159,
0.045838821679353714,
0.04091149941086769,
0.01866435632109642,
-0.07050319761037827,
0.005193412769585848,
-0.019062168896198273,
-0.015843231230974197,
-0.02726506069302559,
-0.0024510298389941454,
0.013473047874867916,
-0.03642745316028595,
0.012174975126981735,
-0.028374971821904182,
0.005275542847812176,
-0.005581859964877367,
-0.00430191308259964,
0.005268452689051628,
0.04650607332587242,
-0.08734337985515594,
-0.029964979737997055,
-0.002048458671197295,
0.00800007302314043,
0.0010959743522107601,
-0.011821601539850235,
0.017390795052051544,
-0.009875858202576637,
-0.0005359204951673746,
0.01482067909091711,
0.02703176997601986,
0.0014548967592418194,
0.006618413142859936,
0.026073843240737915,
-0.019063325598835945,
0.04352135211229324,
0.06223118677735329,
0.0024094947148114443,
0.014858849346637726,
-0.019305510446429253,
0.021111497655510902,
0.014557143673300743,
0.010423810221254826,
0.0179466363042593,
-0.004105585627257824,
0.02743852511048317,
0.01039885450154543,
0.008324647322297096,
0.03685261681675911,
-0.05295427888631821,
-0.05057939141988754,
-0.053953468799591064,
-0.02168533205986023,
0.008136008866131306,
-0.049640752375125885,
-0.0202006958425045,
-0.03773966804146767,
0.03551965579390526,
-0.016541387885808945,
0.02727072313427925,
0.03651360049843788,
-0.02341952547430992,
0.029513893648982048,
0.023961249738931656,
0.06469061225652695,
-0.026806369423866272,
0.0073578995652496815,
-0.005568963475525379,
0.024595066905021667,
-0.04045531526207924,
-0.029474489390850067,
0.017469530925154686,
0.015489159151911736,
0.05763161927461624,
0.03269793465733528,
-0.01105960551649332,
-0.042172711342573166,
0.01711696945130825,
-0.0022359348367899656,
-0.017902452498674393,
-0.028573155403137207,
0.025964045897126198,
-0.025101574137806892,
0.020224452018737793,
-0.010365656577050686,
0.02405160665512085,
-0.023409413173794746,
0.012648332864046097,
-0.004890854004770517,
0.014178231358528137,
-0.0608147531747818,
0.013350767083466053,
-0.002278931438922882,
0.01017215196043253,
-0.035634882748126984,
0.011939426884055138,
-0.005943764932453632,
-0.04040245711803436,
0.02810443565249443,
0.005865791346877813,
-0.03373611345887184,
-0.019167188555002213,
-0.047130756080150604,
0.02299894019961357,
-0.012915496714413166,
0.031998034566640854,
0.020535003393888474,
-0.025279520079493523,
0.063016876578331,
-0.005156715400516987,
-0.006439287681132555,
0.0048715765587985516,
-0.02322692610323429,
-0.005146384704858065,
-0.010336949490010738,
-0.05055079981684685,
0.01056783925741911,
-0.011174635961651802,
-0.010134060867130756,
0.04825111851096153,
-0.02069590426981449,
-0.0593477338552475,
0.012375522404909134,
0.008406763896346092,
0.005256760865449905,
0.018354125320911407,
-0.02790304459631443,
0.021073680371046066,
0.013003874570131302,
0.0010276997927576303,
-0.011798609979450703,
0.0027438474353402853,
0.006223701871931553,
0.0074126506224274635,
0.057264190167188644,
0.06271792948246002,
-0.0015744593692943454,
-0.02815384790301323,
-0.06666840612888336,
0.008942573331296444,
0.003082879586145282,
0.01848144829273224,
-0.024397140368819237,
-0.003447689348831773,
0.018055247142910957,
0.010498560965061188,
-0.008568682707846165,
0.04578588530421257,
-0.04157020151615143,
-0.02513088658452034,
-0.05293223634362221,
0.02065703645348549,
0.019090626388788223,
0.008242055773735046,
-0.012933098711073399,
0.06854167580604553,
-0.015024230815470219,
-0.017995255067944527,
0.017928676679730415,
-0.018014030531048775,
-0.01852496899664402,
0.013084528036415577,
0.006536812521517277,
-0.025081489235162735,
0.0009993532439693809,
0.012582583352923393,
-0.02623659186065197,
0.0224115252494812,
-0.03335016965866089,
0.032937489449977875,
0.029532860964536667,
0.022216128185391426,
-0.045891840010881424,
0.01737326942384243,
0.05686680227518082,
0.0075087593868374825,
-0.02382625825703144,
-0.01018373854458332,
-0.03979908302426338,
0.0298728309571743,
-0.012421594932675362,
-0.0026822963263839483,
-0.013205507770180702,
-0.012663252651691437,
0.00972688291221857,
0.030790628865361214,
0.0031757911201566458,
-0.043616071343421936,
0.040822841227054596,
-0.011822996661067009,
0.007443998474627733,
0.012686241418123245,
0.03013750910758972,
-0.0013310363283380866,
0.020890487357974052,
0.055431462824344635,
-0.014397380873560905,
0.012795059010386467,
-0.006369185168296099,
0.04303286597132683,
0.017340414226055145,
-0.030749784782528877,
0.04199327901005745,
0.008266852237284184,
0.031133435666561127,
0.007713552564382553,
0.07359414547681808,
0.0941392257809639,
-0.027325762435793877,
0.014480046927928925,
0.006340702064335346,
-0.01968996785581112,
0.016736933961510658,
-0.043669942766427994,
0.02934746816754341,
-0.02341630309820175,
0.00947444885969162,
0.007577529177069664,
0.006962035782635212,
-0.006717690732330084,
0.05625070258975029,
0.06868284940719604,
-0.03356257081031799,
-0.016183465719223022,
0.004995443858206272,
0.03137194365262985,
0.03275094926357269,
-0.04315359517931938,
0.03498615697026253,
-0.0429658442735672,
0.014028655365109444,
-0.00979189109057188,
-0.06583637744188309,
0.025849176570773125,
0.0338158942759037,
-0.013727035373449326,
-0.01942765712738037,
0.039259009063243866,
0.01399577222764492,
0.04638846218585968,
-0.03074246644973755,
-0.0009998753666877747,
-0.03382449969649315,
-0.035111840814352036,
0.04388734698295593,
-0.029744772240519524,
-0.016531849279999733,
0.01809149608016014,
0.03158307448029518,
0.02683822251856327,
0.00809814129024744,
-0.007747473195195198,
-0.01121196523308754,
0.03354085609316826,
0.015689579769968987,
0.0026223219465464354,
-0.0048066661693155766,
0.028150849044322968,
0.012505244463682175,
-0.031080827116966248,
-0.004881029948592186,
0.02595103532075882,
-0.04589153081178665,
0.039810746908187866,
-0.027751032263040543,
0.036082349717617035,
0.048935748636722565,
-0.011896312236785889,
-0.04226810485124588,
0.009154259227216244,
0.03357167914509773,
-0.007932850159704685,
0.014317046850919724,
-0.05571286007761955,
0.031480900943279266,
-0.0018254014430567622,
-0.01813690923154354,
-0.004636289086192846,
0.04273052141070366,
0.10236185044050217,
-0.0008930630865506828,
-0.03437010198831558,
0.032793063670396805,
0.013497582636773586,
-0.0696527436375618,
0.025350702926516533,
0.0028241220861673355,
-0.023652208968997,
-0.006829176563769579,
0.0364830382168293,
-0.024920150637626648,
0.062167346477508545,
0.022865310311317444,
0.046122580766677856,
0.018355896696448326,
-0.0004910288262180984,
0.03406821936368942,
0.0737280622124672,
-0.018571501597762108,
0.03461174666881561,
0.0524849072098732,
0.03251326456665993,
0.06257053464651108,
-0.004622602369636297,
-0.022583678364753723,
0.007274153642356396,
0.06711281090974808,
0.021428069099783897,
-0.008649625815451145,
0.0056514129973948,
-0.022191006690263748,
0.02013186179101467,
0.007134983316063881,
0.0029879952780902386,
-0.0006390018970705569,
0.020829688757658005,
0.03373436629772186,
0.005208374932408333,
0.02244950830936432,
-0.050040747970342636,
0.028022386133670807,
0.007276623044162989,
0.044018521904945374,
-0.010649804025888443,
0.035870570689439774,
0.0009396937093697488,
0.0312582291662693,
0.019936662167310715,
0.006895449943840504,
0.02318933606147766,
-0.01284968014806509,
0.045598018914461136,
0.006865359377115965,
0.05235985666513443,
0.027936648577451706,
-0.004921095911413431,
-0.01693578064441681,
-0.026498692110180855,
-0.052729807794094086,
-0.005361640825867653,
0.010593692772090435,
0.016433805227279663,
-0.0013979176292195916,
0.020386964082717896,
0.010525763034820557,
0.02183021791279316,
-0.012089443393051624,
0.013336719945073128,
0.0016667046584188938,
-0.003180219791829586,
-0.0057619004510343075,
0.05123300850391388,
-0.02152087539434433,
0.003522417740896344,
0.008398803882300854,
-0.007185008842498064,
-0.04650268331170082,
0.006022961810231209,
-0.000001912401103254524,
0.014419958926737309,
-0.010624239221215248,
0.00505599332973361,
-0.007021794561296701,
0.047344889491796494,
-0.04776528850197792,
0.016138026490807533,
-0.00617758184671402,
0.03725374862551689,
0.01130149606615305,
0.026202693581581116,
0.011243061162531376,
-0.014236151240766048,
-0.03574829548597336,
-0.008976981043815613,
-0.01676969788968563,
0.010142204351723194,
0.040886517614126205,
-0.0025536036118865013,
0.03200395405292511,
0.003938482608646154,
0.057461973279714584,
0.04433092847466469,
0.052094798535108566,
-0.05730258300900459,
-0.031654149293899536,
0.010059162974357605,
-0.05544061213731766,
-0.020365748554468155,
0.03769925609230995,
0.0015962905017659068,
-0.01827317290008068,
-0.0435112826526165,
-0.04947896674275398,
-0.03505420684814453,
-0.00578094320371747,
-0.013345571234822273,
0.052316173911094666,
-0.014039194211363792,
-0.001430339296348393,
-0.03196137771010399,
0.03104451484978199,
0.017694637179374695,
-0.0006120084435679018,
0.01458648405969143,
0.017048027366399765,
0.03235038369894028,
-0.004758936353027821,
0.024702848866581917,
-0.028912611305713654,
-0.021956203505396843,
-0.010841558687388897,
-0.020618554204702377,
-0.017236605286598206,
0.00886799767613411,
0.016010310500860214,
0.003744714427739382,
-0.011356392875313759,
0.027560532093048096,
-0.001252157730050385,
-0.0022280600387603045,
0.0028751608915627003,
0.025749489665031433,
0.016960509121418,
0.03742338344454765,
0.07885707169771194,
0.01887626387178898,
-0.028877930715680122,
0.013681750744581223,
-0.021812262013554573,
-0.0269399993121624,
0.06045868620276451,
0.012869952246546745,
0.012560049071907997,
-0.06129991635680199,
0.014093171805143356,
0.030177641659975052,
-0.03143658861517906,
-0.014828604646027088,
0.003662451636046171,
0.02750295028090477,
-0.013828088529407978,
-0.01619034633040428,
-0.00025921445921994746,
0.048721857368946075,
0.0466640368103981,
-0.01576201431453228,
-0.01637992449104786,
-0.022001221776008606,
0.018942883238196373,
-0.038398757576942444,
-0.03266323357820511,
-0.010993327014148235,
-0.005225327331572771,
0.03187084197998047,
-0.004596140701323748,
0.050882138311862946,
-0.0010696835815906525,
-0.0041238097473979,
-0.023410335183143616,
-0.01893722265958786,
-0.03737587854266167,
-0.0521441288292408,
-0.026995709165930748,
0.06807798147201538,
-0.010867041535675526,
-0.04072130471467972,
0.011659200303256512,
0.007864794693887234,
0.0418219268321991,
0.004871584475040436,
-0.0215427428483963,
0.005070965271443129,
0.009597547352313995,
0.018671659752726555,
0.0032110780011862516,
-0.010247173719108105,
0.027927959337830544,
0.03405645117163658,
-0.007147299125790596,
0.013145798817276955
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | How the Reformer uses less than 8GB of RAM to train on sequences of half a million tokens The Reformer model as introduced by Kitaev, Kaiser et al. (2020) is one of the most memory-efficient transformer models for long sequence modeling as of today. Recently, long sequence modeling has experienced a surge of interest as can be seen by the many submissions from this year alone - Beltagy et al. (2020), Roy et al. (2020), Tay et al., Wang et al. to name a few. The motivation behind long sequence modeling is that many tasks in NLP, e.g. summarization, question answering, require the model to process longer input sequences than models, such as BERT, are able to handle. In tasks that require the model to process a large input sequence, long sequence models do not have to cut the input sequence to avoid memory overflow and thus have been shown to outperform standard "BERT"-like models cf. Beltagy et al. (2020). The Reformer pushes the limit of longe sequence modeling by its ability to process up to half a million tokens at once as shown in this demo. As a comparison, a conventional bert-base-uncased model limits the input length to only 512 tokens. In Reformer, each part of the standard transformer architecture is re-engineered to optimize for minimal memory requirement without a significant drop in performance. The memory improvements can be attributed to 4 features which the Reformer authors introduced to the transformer world: 1. Reformer Self-Attention Layer - How to efficiently implement self-attention without being restricted to a local context? 2. Chunked Feed Forward Layers - How to get a better time-memory trade-off for large feed forward layers? 3. Reversible Residual Layers - How to drastically reduce memory consumption in training by a smart residual architecture? 4. Axial Positional Encodings - How to make positional encodings usable for extremely large input sequences? The goal of this blog post is to give the reader an in-depth understanding of each of the four Reformer features mentioned above. While the explanations are focussed on the Reformer, the reader should get a better intuition under which circumstances each of the four features can be effective for other transformer models as well. The four sections are only loosely connected, so they can very well be read individually. Reformer is part of the 🤗Transformers library. For all users of the Reformer, it is advised to go through this very detailed blog post to better understand how the model works and how to correctly set its configuration. All equations are accompanied by their equivalent name for the Reformer config, e.g. config.<param_name>, so that the reader can quickly relate to the official docs and configuration file. Note: Axial Positional Encodings are not explained in the official Reformer paper, but are extensively used in the official codebase. This blog post gives the first in-depth explanation of Axial Positional Encodings. | [
-0.004369569011032581,
0.006179500371217728,
0.012773562222719193,
-0.028081683441996574,
0.006406466942280531,
0.013453404419124126,
0.044588603079319,
-0.04410424828529358,
-0.027243223041296005,
0.01543932780623436,
-0.0523136667907238,
0.03341088071465492,
0.010224759578704834,
0.03883945941925049,
-0.018094390630722046,
-0.03685534745454788,
0.04596070200204849,
-0.08098377287387848,
-0.06026417389512062,
-0.012685704044997692,
0.03193442150950432,
-0.07990934699773788,
0.062148675322532654,
-0.004592197015881538,
0.008163339458405972,
-0.010945686139166355,
-0.023273777216672897,
-0.07022582739591599,
-0.024712437763810158,
0.016798293218016624,
-0.158734530210495,
-0.01856098510324955,
0.021484440192580223,
-0.026614518836140633,
-0.005830174311995506,
-0.03821832686662674,
-0.12188106030225754,
0.07185349613428116,
0.04448908194899559,
-0.0328887477517128,
-0.05759381502866745,
0.001581875141710043,
-0.03537425026297569,
0.011440224014222622,
0.014378809370100498,
0.00009903686441248283,
-0.1293148249387741,
0.024259520694613457,
-0.07490535080432892,
-0.023324159905314445,
-0.07094662636518478,
0.06275232881307602,
-0.03687737509608269,
0.04022715613245964,
0.023841790854930878,
-0.012847690843045712,
0.03700213506817818,
0.03834040090441704,
0.020407138392329216,
0.03147125244140625,
0.046471502631902695,
0.02057497389614582,
-0.008107485249638557,
-0.01760193519294262,
-0.0009524732013233006,
-0.00474278349429369,
-0.04830694943666458,
0.046839118003845215,
-0.05208909884095192,
-0.05354132130742073,
0.015720698982477188,
-0.029260391369462013,
-0.029550891369581223,
0.024010447785258293,
-0.034561555832624435,
-0.08617430925369263,
-0.002640702063217759,
0.058277785778045654,
0.061264362186193466,
0.03077039308845997,
-0.013213240541517735,
0.08041933923959732,
0.07777845859527588,
0.02762433886528015,
0.07879133522510529,
0.03613981232047081,
0.05930810421705246,
-0.08014039695262909,
-0.06355587393045425,
0.07771911472082138,
-0.042166683822870255,
-0.1381513625383377,
0.020746979862451553,
-0.037132322788238525,
0.019464759156107903,
-0.026869017630815506,
-0.0273661557585001,
0.0496041439473629,
-0.0039838519878685474,
0.007196845021098852,
-0.019489578902721405,
-0.07590547949075699,
0.054245736449956894,
-0.0233639944344759,
-0.06481800973415375,
0.016468949615955353,
0.014461146667599678,
-0.120789535343647,
0.016228865832090378,
-0.04263203963637352,
0.03515329957008362,
0.07040692120790482,
-0.043447572737932205,
0.05304441601037979,
-0.05958571657538414,
0.02968374639749527,
-0.002652121474966407,
-0.021094461902976036,
0.0007480061613023281,
0.004830043297261,
-0.02562388777732849,
0.1006307601928711,
0.07547097653150558,
-0.021536462008953094,
-0.01216045767068863,
-0.012465468607842922,
-0.03741992264986038,
-0.016990220174193382,
-0.009052906185388565,
-0.06243829429149628,
0.05084359645843506,
0.008954879827797413,
0.024180948734283447,
0.012078124098479748,
-0.057051580399274826,
-0.01436195895075798,
-0.012077640742063522,
-0.03367701172828674,
-0.0013018571771681309,
-0.046055447310209274,
-0.04128923639655113,
0.01138873677700758,
0.06648340076208115,
-0.0734572559595108,
0.05418306589126587,
-0.008440139703452587,
-0.10674373060464859,
0.11292634159326553,
0.019140582531690598,
-0.0414385087788105,
-0.08716239035129547,
0.028088942170143127,
-0.02454979158937931,
-0.08183687180280685,
0.027356455102562904,
0.049452174454927444,
-0.005517973564565182,
-0.012021376751363277,
-0.07139594107866287,
-0.026419246569275856,
-0.049979157745838165,
0.04049677029252052,
-0.013807297684252262,
0.0668920949101448,
0.05071411281824112,
-0.03397947549819946,
0.06110846996307373,
0.01088316272944212,
-0.010793634690344334,
0.023193582892417908,
0.052354153245687485,
0.04082711413502693,
0.01961817406117916,
-0.05016368255019188,
-0.052088409662246704,
0.023477749899029732,
0.05518320947885513,
0.040709394961595535,
-0.04180719703435898,
-0.05574996769428253,
-0.0032026118133217096,
0.01635492779314518,
0.02435828372836113,
0.03244374319911003,
0.0484456941485405,
-0.07872012257575989,
0.05056961253285408,
-0.04033970087766647,
-0.03380309045314789,
0.0467991903424263,
-0.014354252256453037,
-0.020188312977552414,
0.05496005713939667,
0.004013987723737955,
0.027471249923110008,
0.010355574078857899,
-0.009212908335030079,
0.04931690916419029,
0.03247019276022911,
0.11332415044307709,
0.03306775912642479,
0.07250016182661057,
-0.02011149562895298,
-0.009881395846605301,
-0.014212353155016899,
-0.028111806139349937,
-0.024396076798439026,
-0.06812752783298492,
0.08160025626420975,
-0.0025023624766618013,
0.035913292318582535,
-0.11384789645671844,
0.030092712491750717,
-0.07143278419971466,
-0.04181842878460884,
-0.10299771279096603,
0.057585347443819046,
-0.02039765752851963,
-0.026182230561971664,
0.030053192749619484,
0.0957188755273819,
-0.04109181836247444,
-0.07655209302902222,
0.024534020572900772,
-0.05203758552670479,
0.03318265452980995,
0.028843507170677185,
-0.01117840874940157,
0.05242341011762619,
-0.06695887446403503,
-0.020082734525203705,
-0.07415560632944107,
0.006907582748681307,
-0.025766102597117424,
-0.014973082579672337,
-0.028738439083099365,
-0.06781526654958725,
0.02757277339696884,
0.005112678278237581,
-0.017131127417087555,
-0.032289233058691025,
0.020079338923096657,
0.022176314145326614,
0.005837929435074329,
-0.0007598138181492686,
0.011229298077523708,
-0.012966281734406948,
0.0513843335211277,
-0.018237419426441193,
-0.03829269856214523,
-0.07164440304040909,
0.03630709648132324,
-0.03185895085334778,
-0.0733225867152214,
-0.028612909838557243,
0.04559461399912834,
-0.025133443996310234,
-0.013733901083469391,
0.0000678921423968859,
0.030926082283258438,
0.0048163169994950294,
0.01515506487339735,
-0.0551045760512352,
-0.05009227246046066,
-0.016807369887828827,
-0.045900363475084305,
-0.02483704313635826,
-0.03756833076477051,
0.029287174344062805,
-0.01810203120112419,
0.023819690570235252,
0.004331391304731369,
-0.006441560573875904,
0.027005471289157867,
0.02192985638976097,
0.008188161998987198,
0.05189564451575279,
0.002721450524404645,
0.013875183649361134,
-0.009183546528220177,
-0.014000757597386837,
-0.027881374582648277,
0.031991444528102875,
0.0204451996833086,
0.00027834539650939405,
0.04411297291517258,
0.05809924378991127,
-0.028590993955731392,
-0.0144181028008461,
0.017060136422514915,
0.013152461498975754,
0.023736869916319847,
-0.021134130656719208,
-0.03824830800294876,
0.02142428793013096,
0.01034118328243494,
0.01578795164823532,
-0.056747060269117355,
-0.010633537545800209,
0.009478694759309292,
-0.013251801952719688,
0.02138501964509487,
0.02002953737974167,
0.0035086404532194138,
0.007293506991118193,
0.01949586160480976,
0.0069246115162968636,
0.07852764427661896,
-0.08300755172967911,
-0.06289122998714447,
-0.02226756140589714,
-0.026357758790254593,
-0.0064981067553162575,
-0.02476157434284687,
0.034770626574754715,
0.01945188082754612,
-0.0076479315757751465,
-0.00763095123693347,
-0.008415604941546917,
0.035690903663635254,
-0.021000178530812263,
-0.006373153999447823,
-0.044576603919267654,
0.022232208400964737,
0.005419091787189245,
-0.023241199553012848,
0.04748499020934105,
-0.010606009513139725,
0.018635539337992668,
0.017322493717074394,
0.023801859468221664,
0.01687556318938732,
-0.020088069140911102,
0.02207493782043457,
-0.009176736697554588,
0.005281087476760149,
0.03055964782834053,
-0.022471578791737556,
-0.029410937801003456,
-0.04513835906982422,
0.028405936434864998,
0.019860753789544106,
-0.03964956849813461,
0.005869526881724596,
-0.00025147837004624307,
0.060953330248594284,
-0.004367792513221502,
0.032946109771728516,
0.08051943778991699,
-0.04315546900033951,
0.05125352367758751,
0.03585956618189812,
0.05747674033045769,
-0.019138040021061897,
0.00642327219247818,
-0.020855208858847618,
0.034068942070007324,
-0.04150987043976784,
0.005089796148240566,
-0.018264733254909515,
-0.0010412383126094937,
0.027568936347961426,
0.023128235712647438,
-0.040791209787130356,
-0.009934667497873306,
0.0043427846394479275,
-0.0018734539626166224,
-0.02031778171658516,
-0.00975483562797308,
-0.00847362820059061,
0.007652489934116602,
0.05199534446001053,
-0.020095178857445717,
0.002851362805813551,
0.01092914491891861,
0.0034397104755043983,
0.013899555429816246,
0.027336517348885536,
-0.06188333034515381,
0.02911822870373726,
0.041096944361925125,
0.0055290586315095425,
-0.04736270383000374,
0.015213428996503353,
-0.005010638851672411,
-0.018225839361548424,
0.05770622566342354,
0.039225734770298004,
-0.032248448580503464,
0.01570846326649189,
-0.0685228705406189,
0.009723330847918987,
0.020514754578471184,
0.0315571203827858,
0.018850509077310562,
0.007203956600278616,
0.017984796315431595,
0.0165517907589674,
-0.006628068163990974,
-0.015790551900863647,
-0.014610568061470985,
-0.019848905503749847,
-0.01028956938534975,
-0.052043549716472626,
0.004630444571375847,
0.021961113438010216,
0.021376390010118484,
-0.019056208431720734,
0.02489856444299221,
-0.028427595272660255,
-0.0012330592144280672,
0.01250425074249506,
-0.017299357801675797,
0.02846313640475273,
-0.04714832082390785,
0.02373393438756466,
0.015899723395705223,
0.0279169213026762,
-0.019203200936317444,
-0.016134334728121758,
-0.027146250009536743,
0.03711564466357231,
0.06232890114188194,
0.04778715595602989,
-0.018000220879912376,
-0.013387280516326427,
-0.02640608884394169,
-0.007650312501937151,
-0.009530916810035706,
0.03917708620429039,
0.004969225265085697,
-0.0010369936935603619,
0.055491119623184204,
0.0033998743165284395,
0.0310687143355608,
0.025169942528009415,
-0.019383832812309265,
-0.01850455440580845,
-0.014904490672051907,
-0.009383907541632652,
0.0495285764336586,
-0.013155181892216206,
-0.004834903869777918,
0.03175435960292816,
-0.019029248505830765,
0.01275857724249363,
-0.006885523907840252,
-0.032471492886543274,
-0.042476918548345566,
-0.010423533618450165,
0.02150985598564148,
-0.06551135331392288,
0.036115821450948715,
0.020023232325911522,
-0.030655963346362114,
-0.015134467743337154,
-0.03400348499417305,
-0.0029464494436979294,
0.01954701356589794,
-0.008922837674617767,
-0.04679498448967934,
0.0005045198486186564,
0.03053058125078678,
-0.014454098418354988,
0.0011385766556486487,
0.0467522032558918,
0.05042558163404465,
0.025114623829722404,
-0.007827558554708958,
0.014433079399168491,
-0.07089024782180786,
0.023700714111328125,
0.027934592217206955,
-0.006508356891572475,
-0.03716281056404114,
-0.0313093401491642,
0.016757342964410782,
0.011127944104373455,
-0.024315278977155685,
-0.016721660271286964,
-0.001272411784157157,
-0.033780843019485474,
0.005592577159404755,
0.051276639103889465,
-0.026265721768140793,
-0.0006421110010705888,
-0.03223917633295059,
0.014337653294205666,
-0.011009790003299713,
-0.004139532335102558,
0.014961048029363155,
-0.016341937705874443,
0.04287365823984146,
0.01579192839562893,
0.04876686632633209,
0.07453946769237518,
-0.010070585645735264,
0.028502343222498894,
0.051959503442049026,
-0.030678698793053627,
0.03154655545949936,
-0.01688554510474205,
0.021901778876781464,
-0.0014321887865662575,
0.022005300968885422,
0.04683651775121689,
-0.011160321533679962,
0.0018202788196504116,
0.052656691521406174,
0.01565324142575264,
-0.02174542099237442,
-0.0057748896069824696,
0.03496338427066803,
-0.00881411787122488,
-0.0029861347284168005,
-0.02542915754020214,
0.041770823299884796,
-0.04385426267981529,
0.03154529631137848,
0.01333644613623619,
-0.0373452790081501,
0.021047130227088928,
0.023462355136871338,
0.00002355519973207265,
0.002091128146275878,
0.025297272950410843,
0.03239846229553223,
0.05169175565242767,
-0.012765519320964813,
0.006339136511087418,
-0.016494276002049446,
-0.0013108084676787257,
0.022818319499492645,
-0.03556191921234131,
0.01786140166223049,
0.02301984839141369,
0.010831802152097225,
-0.013950107619166374,
0.016928985714912415,
-0.008957982063293457,
0.005462443456053734,
0.02709200233221054,
0.002405054634436965,
-0.031545426696538925,
0.013947193510830402,
0.04596269130706787,
-0.0033667851239442825,
0.012688294053077698,
0.0047352369874715805,
-0.005614704918116331,
-0.06357041001319885,
0.0346066839993,
-0.01408811192959547,
0.015728207305073738,
0.05915839970111847,
-0.01625438965857029,
-0.019609391689300537,
0.0034486486110836267,
0.03676006942987442,
-0.03020559437572956,
0.004206468351185322,
-0.014967161230742931,
0.05336671322584152,
-0.014394490048289299,
0.022162601351737976,
0.014476491138339043,
0.00022086114040575922,
0.045203302055597305,
0.01542199682444334,
-0.03766661137342453,
0.010921061038970947,
0.023963479325175285,
-0.02423805184662342,
0.039269786328077316,
0.006992916110903025,
-0.024714043363928795,
0.005318745505064726,
0.06608607620000839,
-0.02941230870783329,
0.010523837059736252,
-0.007410329766571522,
0.042554523795843124,
-0.01894151046872139,
0.009281848557293415,
0.07181079685688019,
0.04367957264184952,
0.03401513397693634,
0.06627199798822403,
0.04812687262892723,
0.015495911240577698,
0.047916218638420105,
0.016965005546808243,
0.004476707894355059,
0.0031977067701518536,
0.04519619792699814,
-0.028905950486660004,
-0.0207456536591053,
0.010190658271312714,
-0.03121870383620262,
0.02434009499847889,
0.0001820052129914984,
0.02056013233959675,
-0.03925522416830063,
-0.005005939397960901,
0.018796611577272415,
-0.0010012119309976697,
0.017148634418845177,
-0.011626227758824825,
0.04141421616077423,
0.045042842626571655,
0.042202021926641464,
0.01612277328968048,
0.00471458351239562,
0.015387069433927536,
0.01622038148343563,
0.055950362235307693,
0.028354689478874207,
-0.01726893149316311,
-0.024920079857110977,
0.025184834375977516,
0.01140032522380352,
0.0121503546833992,
0.04160303622484207,
-0.038909535855054855,
-0.013200313784182072,
-0.01648039184510708,
-0.06066974624991417,
0.034739188849925995,
-0.011119452305138111,
-0.029391059651970863,
0.018611188977956772,
-0.013544292189180851,
-0.0049736457876861095,
0.031763553619384766,
-0.007668169215321541,
-0.01744127832353115,
-0.017269950360059738,
-0.03170711547136307,
-0.01448871474713087,
0.012591660022735596,
-0.028173141181468964,
0.007690735626965761,
0.009416839107871056,
-0.006140572484582663,
0.005220737308263779,
0.032084446400403976,
-0.0003877604613080621,
-0.013578617013990879,
-0.01404303777962923,
-0.005819803103804588,
-0.0009453301317989826,
0.04148753359913826,
0.028314810246229172,
-0.042255766689777374,
0.04312838986515999,
-0.0039481790736317635,
-0.012986079789698124,
0.052501145750284195,
-0.0027526174671947956,
-0.02156745083630085,
-0.04085583612322807,
0.0003274520568083972,
0.003584339516237378,
-0.007572100032120943,
0.019600050523877144,
-0.03496384620666504,
0.05866101756691933,
-0.007141269743442535,
0.045495595782995224,
0.03788513317704201,
0.02932693064212799,
0.010441097430884838,
-0.004749117884784937,
-0.02076852321624756,
-0.032048873603343964,
-0.019108306616544724,
0.004672356881201267,
0.008112125098705292,
-0.007851489819586277,
-0.0030241585336625576,
-0.0058457450941205025,
-0.03845813125371933,
-0.031404465436935425,
0.010981373488903046,
0.04050467535853386,
0.01300878543406725,
-0.025416871532797813,
-0.031726591289043427,
0.003975564148277044,
-0.0009200431522913277,
-0.012220599688589573,
0.022771434858441353,
0.013975902460515499,
0.06241631507873535,
-0.03626979887485504,
-0.006711075082421303,
-0.0353364460170269,
-0.04433250427246094,
-0.03129809722304344,
-0.005145692732185125,
-0.01976845972239971,
0.01086310762912035,
-0.01345762424170971,
0.029367217794060707,
-0.023321891203522682,
0.045891258865594864,
-0.007876819930970669,
0.014139221981167793,
-0.036829449236392975,
0.0007607393199577928,
0.04906107112765312,
-0.004485567566007376,
0.0363909937441349,
0.015734825283288956,
-0.027486741542816162,
-0.0547369085252285,
-0.01330532692372799,
0.03871593996882439,
0.07201196998357773,
-0.03017846681177616,
0.028492821380496025,
-0.01075852569192648,
0.011469361372292042,
0.0037396703846752644,
-0.02949526533484459,
-0.005157045088708401,
0.011014518328011036,
-0.03233015164732933,
0.0024277428165078163,
-0.000830251257866621,
0.022368168458342552,
0.012821739539504051,
0.03985163941979408,
-0.027019836008548737,
-0.02521405927836895,
0.040510375052690506,
0.029212040826678276,
-0.0375685915350914,
-0.033300720155239105,
-0.015457574278116226,
0.0007496507605537772,
0.04718990996479988,
-0.002745525212958455,
0.006975939031690359,
0.03074575401842594,
0.002959535690024495,
0.0011021385435014963,
0.012812444940209389,
-0.018289625644683838,
-0.026711411774158478,
0.03727470338344574,
0.019594231620430946,
-0.022848021239042282,
-0.014837129041552544,
0.03796961531043053,
0.03177720308303833,
0.018032537773251534,
-0.030243944376707077,
0.010575426742434502,
0.013200689107179642,
-0.005842181388288736,
0.032865971326828,
0.0007340197334997356,
0.023815583437681198,
0.007703437004238367,
0.04108549654483795,
-0.01812991499900818,
-0.008254367858171463
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | Axial Positional Encodings in Reformer Transformers need positional encodings to account for the order of words in the input because self-attention layers have no notion of order. Positional encodings are usually defined by a simple look-up matrix \( \mathbf{E} = \left[\mathbf{e}1, \ldots, \mathbf{e}{n_\text{max}}\right] \) The positional encoding vector \( \mathbf{e}{i} \) is then simply added to the ith input vector \( \mathbf{x}{i} + \mathbf{e}{i} \) so that the model can distinguish if an input vector (a.k.a token) is at position \( i \) or \( j \). For every input position, the model needs to be able to look up the corresponding positional encoding vector so that the dimension of \( \mathbf{E} \) is defined by the maximum length of input vectors the model can process config.max_position_embeddings, i.e. \( n\text{max} \), and the config.hidden_size, i.e. \( d_{h} \) of the input vectors. Assuming \( d_{h}=4 \) and \( n_\text{max}=49 \), such a positional encoding matrix can be visualized as follows: Here, we showcase only the positional encodings \( \mathbf{e}{1} \), \( \mathbf{e}{2} \), and \( \mathbf{e}{49} \) each of dimension, a.k.a height 4. Let's imagine, we want to train a Reformer model on sequences of a length of up to 0.5M tokens and an input vector config.hidden_size of 1024 (see notebook here). The corresponding positional embeddings have a size of \( 0.5M \times 1024 \sim 512M \) parameters, which corresponds to a size of 2GB. Such positional encodings would use an unnecessarily large amount of memory both when loading the model in memory and when saving the model on a hard drive. The Reformer authors managed to drastically shrink the positional encodings in size by cutting the config.hidden_size dimension in two and smartly factorizing the \( n\text{max} \) dimension. In Transformer, the user can decide into which shape \( n_\text{max} \) can be factorized into by setting config.axial_pos_shape to an appropriate list of two values \( n_\text{max}^1 \) and \( n_\text{max}^2 \) so that \( n_\text{max}^1 \times n_\text{max}^2 = n_\text{max} \). By setting config.axial_pos_embds_dim to an appropriate list of two values \( d_{h}^{1} \) and \( d_{h}^2 \) so that \( d_{h}^1 + d_{h}^2 = d_{h} \), the user can decide how the hidden size dimension should be cut. Now, let's visualize and explain more intuitively. One can think of factorizing \( n_{\text{max}} \) as folding the dimension into a third axis, which is shown in the following for the factorization config.axial_pos_shape = [7, 7]: Each of the three standing rectangular prisms corresponds to one of the encoding vectors \( \mathbf{e}{1}, \mathbf{e}{2}, \mathbf{e}{49} \), but we can see that the 49 encoding vectors are divided into 7 rows of 7 vectors each. Now the idea is to use only one row of 7 encoding vectors and expand those vectors to the other 6 rows, essentially reusing their values. Because it is discouraged to have the same values for different encoding vectors, each vector of dimension (a.k.a height) config.hidden_size=4 is cut into the lower encoding vector \( \mathbf{e}\text{down} \) of size \( 1 \) and \( \mathbf{e}\text{up} \) of size \( 3 \), so that the lower part can be expanded along the row dimension and the upper part can be expanded along the column dimension. Let's visualize for more clarity. We can see that we have cut the embedding vectors into \( \mathbf{e}\text{down} \) (in blue) and \( \mathbf{e}\text{up} \) (in yellow). Now for the "sub"-vectors \( \mathbf{E}\text{down} = \left[\mathbf{e}{\text{down},1}, \ldots, \mathbf{e}{\text{down},49}\right] \) only the first row, a.k.a. the width in the graphic, of \( 7 \) is kept and expanded along the column dimension, a.k.a. the depth of the graphic. Inversely, for the "sub"-vectors \( \mathbf{E}\text{up} = \left[\mathbf{e}{\text{up},1}, \ldots, \mathbf{e}{\text{up},49}\right] \) only the first column of \( 7 \) is kept and expanded along the row dimension. The resulting embedding vectors \( \mathbf{e'}{i} \) then correspond to $$\mathbf{e'}{i} = \left[ \left[\mathbf{e}{\text{down, } i \% n_\text{max}^1}\right]^T, \left[\mathbf{e}{\text{up, } \left \lfloor{\frac{i}{{n}^2{\text{max}}}}\right \rfloor} \right]^T \right]^T $$ whereas \( n_\text{max}^1 = 7 \) and \( n_\text{max}^2 = 7 \) in our example. These new encodings \( \mathbf{E'} = \left[\mathbf{e'}{1}, \ldots, \mathbf{e'}{n_\text{max}}\right] \) are called Axial Position Encodings. In the following, these axial position encodings are illustrated in more detail for our example. Now it should be more understandable how the final positional encoding vectors \( \mathbf{E'} \) are calculated only from \( \mathbf{E}{\text{down}} \) of dimension \( d{h}^1 \times n_{\text{max}^1} \) and \( \mathbf{E}{\text{up}} \) of dimension \( d{h}^2 \times n_{\text{max}}^2 \). The crucial aspect to see here is that Axial Positional Encodings make sure that none of the vectors \( \left[\mathbf{e'}1, \ldots, \mathbf{e'}{n_{\text{max}}}\right] \) are equal to each other by design and that the overall size of the encoding matrix is reduced from \( n_{\text{max}} \times d_{h} \) to \( n_{\text{max}}^1 \times d_{h}^1 + n_\text{max}^2 \times d_{h}^2 \). By allowing each axial positional encoding vector to be different by design the model is given much more flexibility to learn efficient positional representations if axial positional encodings are learned by the model. To demonstrate the drastic reduction in size, let's assume we would have set config.axial_pos_shape = [1024, 512] and config.axial_pos_embds_dim = [512, 512] for a Reformer model that can process inputs up to a length of 0.5M tokens. The resulting axial positional encoding matrix would have had a size of only \( 1024 \times 512 + 512 \times 512 \sim 800K \) parameters which corresponds to roughly 3MB. This is a drastic reduction from the 2GB a standard positional encoding matrix would require in this case. For a more condensed and math-heavy explanation please refer to the 🤗Transformers docs here. | [
0.007814004085958004,
0.012987624853849411,
0.044391971081495285,
-0.03358437120914459,
-0.01833481341600418,
0.05746005102992058,
0.023154892027378082,
-0.03284171596169472,
-0.03165939077734947,
-0.00816173292696476,
-0.10370396822690964,
-0.006220769137144089,
-0.004598658531904221,
-0.020360000431537628,
-0.021782701835036278,
-0.00029601887217722833,
0.06749807298183441,
-0.005795860663056374,
-0.06284927576780319,
-0.0485067218542099,
0.0158638134598732,
-0.056351616978645325,
0.05953412503004074,
-0.0029804715886712074,
-0.03626946732401848,
-0.049582164734601974,
-0.00764496112242341,
-0.030072472989559174,
-0.02670109085738659,
0.01873956434428692,
-0.13295193016529083,
-0.03698425740003586,
0.030193867161870003,
-0.03866621479392052,
0.022541115060448647,
-0.0158513393253088,
-0.12846903502941132,
0.06357472389936447,
0.0764710009098053,
-0.07998871803283691,
-0.032771337777376175,
0.020038951188325882,
-0.05070565640926361,
0.024405941367149353,
-0.02617736905813217,
-0.023004258051514626,
-0.12812402844429016,
0.09038042277097702,
-0.060836710035800934,
-0.025133496150374413,
-0.04314790293574333,
-0.022492386400699615,
-0.043583501130342484,
0.09177315980195999,
-0.02125391736626625,
-0.020233523100614548,
-0.0055970135144889355,
-0.04613836482167244,
0.05594266578555107,
-0.01127742137759924,
0.060169413685798645,
0.06798266619443893,
0.021515170112252235,
0.032214995473623276,
0.01342057902365923,
-0.005342417396605015,
-0.0507206916809082,
0.0191239882260561,
-0.04126833379268646,
-0.0632488951086998,
-0.011366618797183037,
0.03791294991970062,
0.012202169746160507,
-0.0357528030872345,
0.024732554331421852,
-0.05139686167240143,
-0.04462539777159691,
0.03928665816783905,
0.0606379434466362,
0.013313495554029942,
-0.05285513028502464,
0.05322205647826195,
0.0375274233520031,
0.09358040988445282,
-0.018126042559742928,
0.07427212595939636,
0.05715233460068703,
-0.03033681958913803,
0.013569965027272701,
0.07377650588750839,
-0.03259774670004845,
-0.12591859698295593,
-0.02151671051979065,
-0.011743973940610886,
0.022199193015694618,
-0.03476663678884506,
0.016742154955863953,
-0.0026429148856550455,
-0.008766461163759232,
0.03678739815950394,
0.002595209050923586,
-0.000993478111922741,
0.0630008727312088,
-0.007243747357279062,
0.002598788822069764,
0.030265729874372482,
0.01472790539264679,
-0.08166135102510452,
-0.014492948539555073,
0.007229814305901527,
-0.0017311045667156577,
0.004718154668807983,
0.03794483095407486,
0.02862459421157837,
-0.056824903935194016,
0.027680499479174614,
0.0289511326700449,
-0.03696957603096962,
-0.02360309660434723,
0.06519901007413864,
-0.02609684132039547,
0.08079303056001663,
0.07960657775402069,
-0.015883801504969597,
0.012054848484694958,
0.04110836237668991,
-0.06462142616510391,
-0.0043767886236310005,
-0.0467776395380497,
-0.02952059730887413,
-0.004943673964589834,
0.07659906893968582,
0.0675358697772026,
-0.019181378185749054,
0.02019563503563404,
-0.06232104450464249,
0.033294372260570526,
-0.027127088978886604,
-0.005493190139532089,
-0.03881380334496498,
-0.057666584849357605,
-0.01752334088087082,
0.03013148345053196,
-0.07286712527275085,
0.02848733402788639,
-0.03252733126282692,
-0.05865933746099472,
0.061353299766778946,
-0.010437463410198689,
0.008752458728849888,
0.005379216279834509,
0.011319717392325401,
0.021040920168161392,
-0.05369974672794342,
0.015587620437145233,
-0.004929013550281525,
-0.01829877682030201,
0.005679419729858637,
-0.10550592094659805,
-0.028588172048330307,
-0.07114708423614502,
0.005141711328178644,
-0.057069141417741776,
0.05885501950979233,
0.018180057406425476,
-0.0886475145816803,
0.0935826450586319,
-0.01032315008342266,
0.002333455951884389,
-0.0038802167400717735,
0.015025262720882893,
0.021068478003144264,
0.037890199571847916,
0.04308271408081055,
-0.042800068855285645,
0.01269751787185669,
-0.0033854388166218996,
0.11778073012828827,
-0.004101765342056751,
-0.07141751050949097,
-0.033936865627765656,
0.02610332891345024,
-0.016236651688814163,
0.0109855430200696,
0.06535832583904266,
-0.034357957541942596,
0.05168654024600983,
-0.05619468167424202,
-0.010945767164230347,
0.04022127762436867,
-0.08489763736724854,
-0.01330496184527874,
0.01577119342982769,
-0.018598629161715508,
0.017374908551573753,
-0.022183718159794807,
-0.060398925095796585,
0.07522539049386978,
0.023886781185865402,
0.018286382779479027,
0.04711543396115303,
0.03586244583129883,
0.0329984687268734,
0.03918756544589996,
0.0341455414891243,
-0.03212190419435501,
-0.06142304092645645,
-0.05814085155725479,
0.06116790696978569,
0.03503097593784332,
-0.02463369630277157,
-0.09266791492700577,
0.005273851100355387,
-0.06333082169294357,
-0.030685050413012505,
-0.06802839040756226,
0.009792820550501347,
0.03434774652123451,
-0.07735062390565872,
-0.012639897875487804,
0.10864203423261642,
-0.007089268881827593,
-0.05352623760700226,
-0.011834093369543552,
-0.02134981006383896,
0.0455024316906929,
0.009980284608900547,
0.008670320734381676,
0.03126480057835579,
-0.09253697097301483,
-0.007889569737017155,
-0.019351527094841003,
0.06162101402878761,
0.005752601660788059,
-0.040109165012836456,
-0.06422968953847885,
-0.06455456465482712,
0.03494380787014961,
0.0714508667588234,
-0.03489888086915016,
-0.0005076051456853747,
-0.014257152564823627,
0.0012528080260381103,
0.0008298808825202286,
-0.0386783704161644,
0.021043388172984123,
-0.016118086874485016,
0.0124488715082407,
-0.02769416756927967,
0.020743107423186302,
-0.06999649852514267,
0.037143588066101074,
-0.02608129195868969,
-0.09725500643253326,
-0.05650554969906807,
0.07736583054065704,
0.005623669363558292,
-0.012205211445689201,
-0.003056972287595272,
0.016588252037763596,
-0.001946020987816155,
0.03928809612989426,
-0.032989513128995895,
-0.06088430806994438,
-0.021596938371658325,
0.02174396999180317,
0.019720174372196198,
-0.01090309489518404,
-0.0197304580360651,
-0.005257451441138983,
0.007867402397096157,
0.01268131285905838,
0.011454077437520027,
0.02005675621330738,
0.03896530345082283,
-0.013766178861260414,
0.06742168962955475,
-0.015198462642729282,
-0.02664949558675289,
-0.007683697156608105,
-0.010878954082727432,
0.01906433515250683,
0.036263607442379,
0.004341219086199999,
0.004237781278789043,
0.03043881431221962,
0.04260780289769173,
-0.0002447136212140322,
-0.0011549578048288822,
-0.0012649650452658534,
0.009695908054709435,
0.057114046066999435,
0.009337455034255981,
-0.03445345535874367,
0.013636184856295586,
-0.00877328310161829,
-0.008081145584583282,
-0.00399354100227356,
0.014819014817476273,
0.02240132726728916,
0.013127799145877361,
0.028076959773898125,
0.03545690327882767,
0.023314470425248146,
-0.008840507827699184,
0.0036450407933443785,
-0.022938260808587074,
0.10419698804616928,
-0.08382627367973328,
-0.05527337267994881,
0.02648947946727276,
0.004053807817399502,
0.008755521848797798,
-0.03340453281998634,
0.013556438498198986,
0.01781628280878067,
-0.0033102401066571474,
0.0019424103666096926,
0.02903170883655548,
-0.007791532203555107,
0.017261987552046776,
0.028246290981769562,
0.02841482311487198,
0.03065815567970276,
0.06430268287658691,
-0.02253142185509205,
0.01951858215034008,
-0.021681003272533417,
0.024790072813630104,
0.01803882233798504,
0.019926320761442184,
0.011216066777706146,
-0.008953176438808441,
0.016744835302233696,
0.02356497384607792,
0.017991945147514343,
0.02436503954231739,
-0.04837736859917641,
-0.060763537883758545,
-0.006157462019473314,
-0.02585332654416561,
0.0008370305295102298,
-0.05258174240589142,
-0.002801158931106329,
0.0014499493408948183,
0.03154382109642029,
0.0007005009101703763,
0.03773961216211319,
0.03522667661309242,
-0.009579616598784924,
0.016507532447576523,
0.017193451523780823,
0.044505033642053604,
-0.01742219366133213,
-0.024823438376188278,
-0.0009769428288564086,
0.006878864951431751,
-0.0292391125112772,
0.001294098561629653,
-0.015442104078829288,
0.002629251452162862,
-0.016150720417499542,
0.001140594482421875,
-0.015205567702651024,
-0.02813267521560192,
0.018285542726516724,
-0.021713268011808395,
-0.022241834551095963,
-0.04495752230286598,
-0.024257343262434006,
-0.013329708948731422,
0.007409552577883005,
-0.0039915419183671474,
0.013900461606681347,
-0.017608249559998512,
0.04373689740896225,
0.014136250130832195,
0.043076690286397934,
-0.03697378933429718,
-0.0015179923502728343,
-0.00447330204769969,
-0.0007880991324782372,
-0.026930421590805054,
0.017853666096925735,
0.010648823343217373,
-0.01685199700295925,
0.04076596349477768,
0.022403251379728317,
-0.02622978575527668,
0.018126334995031357,
-0.07514072954654694,
0.06091044470667839,
0.0000954924980760552,
0.013970618136227131,
0.021628841757774353,
-0.009604452177882195,
0.06556626409292221,
-0.009383698925375938,
-0.04090866073966026,
-0.010221586562693119,
0.016565414145588875,
-0.0002864669368136674,
-0.007239036727696657,
-0.0009787306189537048,
0.016080062836408615,
-0.004630571696907282,
0.03854260593652725,
0.03208264708518982,
0.020355461165308952,
-0.0628846138715744,
0.04264336824417114,
-0.0008216453134082258,
-0.01470491848886013,
-0.008759897202253342,
-0.03581041097640991,
-0.00244782748632133,
0.04255881905555725,
0.032927852123975754,
-0.007965593598783016,
-0.026987550780177116,
0.008850513957440853,
0.03338300436735153,
0.03971555083990097,
0.01763327606022358,
-0.03399903327226639,
-0.03885132446885109,
-0.07684919983148575,
-0.02601544000208378,
0.01146253477782011,
0.015448982827365398,
-0.02486274763941765,
-0.007962888106703758,
0.0056584859266877174,
-0.012279391288757324,
-0.015870744362473488,
0.019810030236840248,
-0.031327083706855774,
-0.041986968368291855,
-0.05051631107926369,
0.01175436656922102,
0.013710126280784607,
-0.01910450868308544,
-0.0049603963270783424,
0.06597631424665451,
-0.01645807921886444,
0.019947165623307228,
0.0065121715888381,
-0.04307108744978905,
-0.02449883334338665,
0.010554186068475246,
0.018846208229660988,
-0.052165575325489044,
0.04290257394313812,
-0.014587736688554287,
-0.02606092393398285,
0.017417017370462418,
-0.01837955042719841,
0.01619141921401024,
0.05908660590648651,
0.04528915509581566,
-0.07605843245983124,
0.021314993500709534,
0.032135896384716034,
0.018715262413024902,
0.0025010304525494576,
-0.0055035678669810295,
-0.02545858547091484,
0.017582576721906662,
0.0005242138868197799,
0.010168995708227158,
-0.052682604640722275,
-0.01535777561366558,
0.024902261793613434,
0.018392378464341164,
-0.005321721080690622,
-0.061809930950403214,
0.034378569573163986,
-0.038013163954019547,
-0.008944729343056679,
-0.00736040435731411,
0.007953636348247528,
-0.01639029011130333,
0.02330698072910309,
0.01717071235179901,
-0.019804956391453743,
0.007208248600363731,
-0.0473816879093647,
0.008765497244894505,
-0.01659291796386242,
-0.023764269426465034,
0.03129734843969345,
-0.01320795901119709,
-0.0029793251305818558,
0.030834315344691277,
0.0607796236872673,
0.051434993743896484,
-0.005006436724215746,
0.016075609251856804,
0.030740221962332726,
-0.011736392043530941,
0.04632861539721489,
-0.006315409671515226,
0.016003889963030815,
0.026766518130898476,
0.03623256832361221,
-0.003997075837105513,
0.004018433392047882,
0.006357953883707523,
0.02083957940340042,
0.06535384804010391,
-0.04619962349534035,
-0.04145767167210579,
0.008398754522204399,
-0.0032585717272013426,
0.002060000319033861,
-0.01951267197728157,
0.006187747232615948,
-0.0001664734008954838,
0.027639493346214294,
0.015663662925362587,
-0.054238129407167435,
0.012071166187524796,
0.036483537405729294,
-0.011039485223591328,
-0.007178294472396374,
-0.0015710854204371572,
0.009227423928678036,
0.06866244226694107,
-0.009660531766712666,
-0.00103571149520576,
-0.04254765063524246,
-0.00019540540233720094,
0.04795270785689354,
-0.03145341947674751,
-0.003834083443507552,
0.030989257618784904,
0.026505129411816597,
0.03247258439660072,
0.028786836192011833,
0.010587732307612896,
0.004124842118471861,
0.007231713738292456,
0.019027646631002426,
-0.04645005613565445,
-0.005926618352532387,
0.0638691633939743,
0.03002629056572914,
-0.02778525836765766,
0.03813621774315834,
0.007705485913902521,
-0.058369558304548264,
0.05203895643353462,
0.02589493803679943,
0.03068653866648674,
0.06428201496601105,
-0.009070899337530136,
-0.02121119759976864,
0.021384133026003838,
0.05084317922592163,
-0.05234603211283684,
-0.0003150180564261973,
-0.03092644177377224,
0.027072498574852943,
0.04224042594432831,
0.04512982442975044,
0.01835786923766136,
0.027139609679579735,
0.06904876232147217,
0.002237475709989667,
-0.06415685266256332,
-0.0010105784749612212,
-0.0013410806423053145,
-0.05469008907675743,
0.016253430396318436,
0.014712498523294926,
-0.016850546002388,
0.004468843806535006,
0.06601691991090775,
0.013486457988619804,
0.028143303468823433,
-0.023257987573742867,
0.05323110893368721,
-0.002957236720249057,
0.011527134105563164,
0.04952729120850563,
0.0362173356115818,
0.004571199417114258,
0.024059977382421494,
0.0025117702316492796,
-0.02191580832004547,
0.021044345572590828,
0.012112568132579327,
0.023850077763199806,
-0.02161911129951477,
0.01424725167453289,
-0.005095120053738356,
0.007834409363567829,
0.005266769789159298,
0.001561767072416842,
0.01846471056342125,
0.014621063135564327,
-0.005914837587624788,
-0.05734380707144737,
0.03775092586874962,
-0.006571890786290169,
0.011679074726998806,
0.033747460693120956,
-0.05005696788430214,
0.04432656243443489,
0.011854532174766064,
0.033865172415971756,
-0.05511096119880676,
0.027944764122366905,
0.05988102778792381,
-0.00045537977712228894,
0.032381538301706314,
-0.007696496322751045,
0.0028263931162655354,
-0.00926768034696579,
-0.005121036898344755,
-0.03023054264485836,
0.029208524152636528,
0.07156825810670853,
0.010872452519834042,
0.03609972074627876,
-0.034383997321128845,
-0.04613244906067848,
0.02650209330022335,
0.0018477517878636718,
-0.006932172458618879,
0.028692107647657394,
-0.005787102971225977,
0.006488626357167959,
-0.004517342895269394,
-0.008572028018534184,
0.02414083667099476,
-0.05550219491124153,
0.014817968010902405,
-0.0004528145946096629,
0.041577473282814026,
-0.007890780456364155,
0.023644309490919113,
-0.019282497465610504,
-0.045094531029462814,
-0.018618127331137657,
0.01606241799890995,
0.00410687318071723,
-0.013222337700426579,
-0.04434952512383461,
0.00548806507140398,
0.005831599235534668,
0.04300844296813011,
-0.028159474954009056,
-0.015242934226989746,
0.01821856014430523,
0.06904833018779755,
-0.01984425261616707,
0.0394597090780735,
0.008122391067445278,
-0.010678906925022602,
-0.03750000521540642,
-0.04092925414443016,
-0.00960913859307766,
0.011493304744362831,
0.02050400897860527,
-0.02474984899163246,
0.05395550653338432,
0.015468765050172806,
0.042970847338438034,
0.02942265197634697,
0.0019014450954273343,
-0.031695690006017685,
-0.0587514191865921,
0.023549219593405724,
-0.02388611063361168,
0.01181249599903822,
-0.001327958656474948,
0.014211044646799564,
-0.016101999208331108,
-0.05457387492060661,
-0.022413630038499832,
-0.041198648512363434,
-0.025304604321718216,
0.016219595447182655,
0.03455575183033943,
-0.012960472144186497,
-0.005052546504884958,
-0.07487811893224716,
0.029101070016622543,
0.022938137874007225,
-0.00505502475425601,
0.04738832265138626,
0.04512573406100273,
0.03828646242618561,
0.02039163187146187,
0.021122582256793976,
-0.02495468407869339,
0.00029555923538282514,
-0.034590475261211395,
-0.05024795979261398,
-0.03649892285466194,
0.011527694761753082,
0.018500640988349915,
-0.00637736264616251,
-0.0017235558480024338,
0.048844803124666214,
-0.033710408955812454,
0.005274569615721703,
-0.0067795393988490105,
0.01733909361064434,
0.042016077786684036,
-0.014706684276461601,
0.033027283847332,
-0.010027026757597923,
0.018703700974583626,
-0.021942252293229103,
0.006805356126278639,
0.014748774468898773,
0.07757260650396347,
-0.026497796177864075,
0.003503895830363035,
-0.02878776378929615,
0.04302618280053139,
-0.01229785569012165,
-0.048195451498031616,
0.009664664044976234,
0.024013018235564232,
-0.008981785736978054,
0.00589680066332221,
-0.00038387440145015717,
0.00872555747628212,
0.04100712016224861,
0.011296569369733334,
-0.008204235695302486,
0.03815450891852379,
-0.0035262187011539936,
0.00944799929857254,
-0.051082219928503036,
-0.015623015351593494,
0.015002014115452766,
0.025794491171836853,
0.027896882966160774,
-0.02322615683078766,
0.049780260771512985,
0.009193554520606995,
-0.009595684707164764,
0.0016570325242355466,
-0.007095395587384701,
0.0021324215922504663,
-0.03921544924378395,
-0.006469454616308212,
0.05282333120703697,
-0.03516041859984398,
-0.03910320624709129,
-0.02706659585237503,
0.04559089615941048,
0.021507054567337036,
-0.002569889649748802,
-0.011707542464137077,
-0.00038399797631427646,
-0.014515308663249016,
-0.006811200641095638,
0.04539008066058159,
0.006991510279476643,
-0.017762457951903343,
0.031108537688851357,
-0.004341340623795986,
-0.007788560818880796
] |
The Reformer - Pushing the limits of language modeling | patrickvonplaten | July 3, 2020 | reformer | research, nlp | https://huggingface.co/blog/reformer | 1. Reformer Self-Attention Layer Reformer uses two kinds of special self-attention layers: local self-attention layers and Locality Sensitive Hashing (LSH) self-attention layers. To better introduce these new self-attention layers, we will briefly recap conventional self-attention as introduced in Vaswani et al. 2017. This blog post uses the same notation and coloring as the popular blog post The illustrated transformer, so the reader is strongly advised to read this blog first. Important: While Reformer was originally introduced for causal self-attention, it can very well be used for bi-directional self-attention as well. In this post, Reformer's self-attention is presented for bidirectional self-attention. | [
0.04519634693861008,
-0.03754670172929764,
0.006290803197771311,
-0.05670412257313728,
0.005678762681782246,
0.05700051411986351,
0.022649919614195824,
-0.008458029478788376,
-0.014112324453890324,
-0.037397004663944244,
-0.07775331288576126,
0.07723457366228104,
-0.019761018455028534,
-0.009281736798584461,
-0.04062061756849289,
0.029125286266207695,
0.04701558127999306,
-0.05183758959174156,
-0.0778380036354065,
0.013453148305416107,
0.054126862436532974,
-0.011257023550570011,
0.06451351940631866,
-0.054330140352249146,
-0.01029024738818407,
-0.06298886984586716,
0.004062717780470848,
-0.0007332661771215498,
-0.06046592444181442,
-0.0021474820096045732,
-0.09302955120801926,
-0.03728823363780975,
0.03149215504527092,
-0.01565699279308319,
0.013408859260380268,
-0.03189157322049141,
-0.09680411219596863,
-0.045241378247737885,
-0.011488232761621475,
-0.1304357796907425,
-0.05019792541861534,
-0.02076931670308113,
-0.060415055602788925,
0.03276439756155014,
0.005068487022072077,
-0.032308731228113174,
-0.16568703949451447,
0.039580028504133224,
-0.07596246153116226,
0.019114825874567032,
-0.05500222370028496,
0.04847294092178345,
0.022959133610129356,
0.03633362799882889,
0.006999126169830561,
0.02666580118238926,
0.03784407675266266,
0.0857115313410759,
0.07172469794750214,
-0.004052328877151012,
0.08827663958072662,
-0.01598222926259041,
-0.0468110553920269,
0.03815952688455582,
0.061918627470731735,
-0.02608686499297619,
-0.016931170597672462,
0.017130548134446144,
-0.05634889006614685,
-0.06132690608501434,
-0.02846343070268631,
-0.007754737976938486,
-0.019445067271590233,
0.000482036208268255,
0.025828711688518524,
0.007838942110538483,
-0.028727801516652107,
0.014587398618459702,
-0.025597672909498215,
-0.048186514526605606,
0.02287203259766102,
0.007864554412662983,
0.0929497629404068,
0.06967312842607498,
-0.013998487032949924,
-0.008200317621231079,
-0.009849044494330883,
-0.028066111728549004,
-0.0063976747915148735,
0.05052383616566658,
-0.054333239793777466,
-0.06909319758415222,
0.0592205710709095,
-0.04275967925786972,
0.08609089255332947,
-0.0719151720404625,
-0.0032376954331994057,
-0.0038969016168266535,
-0.012379242107272148,
-0.05875589698553085,
-0.021898847073316574,
-0.0046685608103871346,
0.04893588274717331,
0.047534599900245667,
0.008479609154164791,
0.0165509395301342,
0.01984982378780842,
-0.04414134845137596,
-0.036159757524728775,
-0.00016487936954945326,
0.0035084562841802835,
0.04184082895517349,
0.03674112632870674,
0.12974533438682556,
0.017104923725128174,
0.005605772603303194,
-0.031102854758501053,
-0.04868810996413231,
0.021912820637226105,
-0.012002551928162575,
-0.04360559582710266,
0.08220787346363068,
0.050978440791368484,
0.08082937449216843,
0.10955566167831421,
-0.010085657238960266,
-0.05360455811023712,
0.05693146586418152,
-0.006740478333085775,
-0.01380216982215643,
0.02541401982307434,
0.002412930829450488,
0.03128097951412201,
-0.011949682608246803,
-0.02606760896742344,
-0.11078295111656189,
0.009184085763990879,
-0.008720945566892624,
-0.020515481010079384,
-0.016388334333896637,
-0.006002236623317003,
-0.03602447360754013,
0.08089575916528702,
-0.09241260588169098,
0.026626726612448692,
-0.05229923874139786,
-0.08666219562292099,
0.06295618414878845,
0.00018671104044187814,
0.017387371510267258,
0.021374212577939034,
0.06220827251672745,
0.012562236748635769,
-0.03771527484059334,
-0.02604471705853939,
0.040258947759866714,
0.033464252948760986,
-0.01632034219801426,
-0.10947063565254211,
0.010524538345634937,
-0.041557781398296356,
-0.003037516726180911,
-0.005986006464809179,
0.11065096408128738,
0.034618932753801346,
-0.037294674664735794,
0.02057250589132309,
-0.03111695870757103,
0.010013251565396786,
-0.03775441646575928,
0.045199789106845856,
0.05811179056763649,
0.05860978364944458,
0.014376681298017502,
-0.03090580925345421,
0.02334306761622429,
0.015256165526807308,
0.036393217742443085,
-0.0460507869720459,
0.04145125299692154,
-0.02846948429942131,
-0.01961527206003666,
0.012827528640627861,
0.0037298200186342,
-0.03839271515607834,
0.022192860022187233,
0.0634395033121109,
0.013469459488987923,
-0.008264672011137009,
0.04195152223110199,
-0.07543431967496872,
0.013175103813409805,
0.021217450499534607,
0.03147059306502342,
0.021409815177321434,
0.013914319686591625,
-0.04990839958190918,
0.033210329711437225,
0.0432242713868618,
0.0828883945941925,
0.030309781432151794,
-0.020030613988637924,
-0.00625029020011425,
0.027399703860282898,
-0.007846467196941376,
-0.005156460218131542,
-0.007083198055624962,
-0.006847314536571503,
0.038454268127679825,
-0.09378146380186081,
-0.011417427100241184,
-0.12172472476959229,
0.0038414078298956156,
0.04676307365298271,
-0.023302918300032616,
-0.023604152724146843,
0.0204516239464283,
0.032823629677295685,
-0.06452500075101852,
0.025194525718688965,
0.0885782539844513,
-0.014377301558852196,
-0.008285196498036385,
0.07715684920549393,
-0.047345809638500214,
0.06177875027060509,
0.012874184176325798,
0.00015382477431558073,
0.07074379175901413,
-0.08047063648700714,
0.018762072548270226,
-0.07108195126056671,
0.02169390581548214,
-0.03154062479734421,
-0.02065172977745533,
-0.015439748764038086,
-0.014267007820308208,
-0.013271392323076725,
0.019117651507258415,
-0.0643690973520279,
-0.026662960648536682,
0.042339690029621124,
0.03296295925974846,
0.01689254492521286,
0.008968490175902843,
-0.002593686804175377,
-0.02384125255048275,
0.05028776451945305,
-0.05177510157227516,
0.00927086640149355,
-0.10112369060516357,
0.06627561151981354,
0.027374958619475365,
-0.0693991556763649,
0.014741904102265835,
-0.04488362744450569,
-0.017996441572904587,
-0.008545770309865475,
0.015412344597280025,
0.022488757967948914,
0.03701234608888626,
0.028321925550699234,
-0.03244541212916374,
-0.026764271780848503,
-0.03221366927027702,
-0.0582222118973732,
0.024588266387581825,
0.047980304807424545,
0.08116704970598221,
-0.05286649987101555,
0.004731792490929365,
0.030257398262619972,
-0.01605391502380371,
-0.004845569841563702,
0.03934112936258316,
-0.020534973591566086,
0.04863297939300537,
-0.002018981147557497,
0.020323941484093666,
-0.047384075820446014,
-0.05209988355636597,
0.020061135292053223,
0.05615444481372833,
0.023562157526612282,
0.032026257365942,
-0.032216135412454605,
0.0031523779034614563,
0.020673718303442,
-0.030803781002759933,
-0.018950175493955612,
-0.029551712796092033,
-0.01099697221070528,
-0.02442384697496891,
-0.0488046258687973,
-0.024666519835591316,
0.025950927287340164,
0.00429331511259079,
0.00045174919068813324,
-0.026085253804922104,
0.0010892836144194007,
-0.007956557907164097,
0.014405450783669949,
0.03644844889640808,
0.025667279958724976,
0.0028940485790371895,
0.023282097652554512,
-0.03783183544874191,
0.06960538029670715,
-0.08817293494939804,
-0.09084082394838333,
-0.01329072192311287,
0.029851382598280907,
0.007937208749353886,
-0.04726608842611313,
0.02403736300766468,
-0.004604263696819544,
-0.006550882942974567,
-0.02490217238664627,
-0.00230483734048903,
-0.03492572531104088,
0.017906904220581055,
-0.041600681841373444,
-0.025603529065847397,
0.048545826226472855,
0.031872984021902084,
-0.013632433488965034,
0.013553067110478878,
-0.05682629719376564,
0.01914038322865963,
0.03312190994620323,
0.012528160586953163,
0.013021426275372505,
-0.008627231232821941,
0.05490294471383095,
0.004076703451573849,
0.021909158676862717,
0.04889509826898575,
-0.0031227865256369114,
-0.023942599073052406,
0.04098423942923546,
-0.003540630219504237,
0.04472585767507553,
-0.017783334478735924,
-0.017764735966920853,
-0.011214538477361202,
0.05426270142197609,
0.027809089049696922,
0.027421798557043076,
0.059402916580438614,
0.03092283569276333,
0.040027208626270294,
0.04097159206867218,
0.049529723823070526,
-0.005162800662219524,
0.01555286068469286,
-0.014682762324810028,
-0.007314132992178202,
-0.045474059879779816,
-0.035327523946762085,
0.013706392608582973,
0.010798407718539238,
0.019050661474466324,
-0.03170641511678696,
-0.017418473958969116,
-0.012386263348162174,
0.006132552400231361,
-0.030762357637286186,
-0.05312870815396309,
-0.033605583012104034,
0.015961185097694397,
-0.04342331364750862,
-0.0056525943800807,
-0.03622470051050186,
0.01656815968453884,
-0.016187766566872597,
0.03647861257195473,
0.03038940019905567,
-0.017973236739635468,
-0.0012396221281960607,
0.005895853973925114,
0.011677857488393784,
-0.002145993523299694,
-0.0401935875415802,
0.022374823689460754,
0.00800973828881979,
0.0058442531153559685,
0.10286922752857208,
0.04026437923312187,
-0.014886678196489811,
-0.01956205628812313,
-0.02082931436598301,
0.0139682088047266,
-0.015048868954181671,
0.02834039367735386,
0.010281351394951344,
0.022313259541988373,
0.031900133937597275,
-0.010530575178563595,
-0.0011687524383887649,
0.016764109954237938,
0.040074486285448074,
-0.042868778109550476,
0.009339702315628529,
0.03377177193760872,
-0.016235388815402985,
-0.023677535355091095,
0.013480550609529018,
-0.021551823243498802,
0.006940104532986879,
-0.03799539431929588,
-0.019300611689686775,
0.05975617095828056,
0.019252005964517593,
0.028575915843248367,
-0.04979786276817322,
0.014342838898301125,
0.03158840164542198,
-0.00870115589350462,
-0.011886942200362682,
-0.02222936786711216,
-0.019233012571930885,
0.008106985129415989,
0.04895301163196564,
0.008828051388263702,
-0.061287470161914825,
0.007859468460083008,
-0.019730819389224052,
-0.0005269584362395108,
-0.00392447505146265,
0.01544579491019249,
0.001110176439397037,
-0.05886464938521385,
0.03751220926642418,
-0.02583395130932331,
0.03831368684768677,
0.012070524506270885,
0.018689272925257683,
0.014016886241734028,
-0.022450661286711693,
0.0036093425005674362,
-0.010564993135631084,
0.002045281231403351,
0.0009977929294109344,
0.04195065051317215,
-0.033070970326662064,
0.05576474219560623,
-0.012717587873339653,
-0.005526653490960598,
-0.0051305401138961315,
0.002277536317706108,
0.027497470378875732,
-0.041716013103723526,
0.039016518741846085,
0.007613660767674446,
-0.02478267438709736,
0.013176808133721352,
-0.04751260206103325,
0.030901174992322922,
0.04808459058403969,
0.012159856036305428,
-0.04821104183793068,
-0.0049217622727155685,
0.021917661651968956,
0.010943588800728321,
0.03308303654193878,
-0.010853977873921394,
0.041895780712366104,
0.02343389205634594,
0.022461973130702972,
0.019657714292407036,
-0.057186055928468704,
0.00947003997862339,
0.027928506955504417,
0.030612025409936905,
-0.04372631013393402,
-0.05549801141023636,
0.011821932159364223,
0.014514206908643246,
-0.055813342332839966,
-0.02710721828043461,
-0.00431613577529788,
-0.03850024566054344,
0.005627896171063185,
0.02780759520828724,
-0.04812278598546982,
-0.0036599065642803907,
0.002898586681112647,
-0.02827799692749977,
-0.00046323821879923344,
0.03760460391640663,
0.030381210148334503,
-0.0020959307439625263,
0.042911481112241745,
0.013002810068428516,
0.026074735447764397,
0.00967379193753004,
0.017205795273184776,
0.026419036090373993,
0.05009156093001366,
-0.0004133635957259685,
0.013115852139890194,
-0.004255868494510651,
0.05253421142697334,
-0.01643645018339157,
0.04670458287000656,
-0.014042823575437069,
-0.0038076380733400583,
-0.036109041422605515,
0.036184050142765045,
0.018209321424365044,
-0.002245022216811776,
-0.021973084658384323,
0.02424762398004532,
0.009450151585042477,
-0.0031913709826767445,
0.03292005881667137,
-0.03082307241857052,
-0.05192498117685318,
0.028024353086948395,
0.010894873179495335,
0.002364018000662327,
-0.04420825093984604,
0.01035210583359003,
-0.03573388606309891,
0.014392790384590626,
-0.005821023136377335,
-0.01797586679458618,
0.0017195739783346653,
0.030407601967453957,
0.03433197736740112,
-0.018947837874293327,
0.014247676357626915,
0.01563452184200287,
-0.04825640097260475,
-0.0127566484734416,
0.04118882492184639,
0.0040261452086269855,
-0.012817463837563992,
0.012801841832697392,
0.011438646353781223,
0.01851223036646843,
-0.03001946210861206,
-0.013456716202199459,
-0.02787104621529579,
-0.06936092674732208,
0.029243573546409607,
0.012613537721335888,
-0.0002452991029713303,
0.011647852137684822,
0.02165108546614647,
-0.03506004065275192,
0.009577920660376549,
-0.004565643612295389,
0.027738675475120544,
0.046645406633615494,
-0.016709808260202408,
-0.009782864712178707,
-0.003153925994411111,
0.02145892009139061,
-0.04920318350195885,
-0.011262304149568081,
-0.020809592679142952,
0.029243063181638718,
0.005535418167710304,
0.021077269688248634,
0.03536159172654152,
0.003637823974713683,
0.009099666029214859,
-0.04723187908530235,
-0.00945888739079237,
0.008211113512516022,
-0.027491198852658272,
-0.030751250684261322,
0.01748282089829445,
0.01296500489115715,
-0.06811973452568054,
-0.04109495133161545,
0.04710874706506729,
0.00033652407000772655,
-0.0183477271348238,
0.009932411834597588,
-0.016168244183063507,
-0.04786374792456627,
-0.0037894677370786667,
0.0364975780248642,
0.026249371469020844,
0.034135863184928894,
0.026543524116277695,
0.009553429670631886,
-0.021561570465564728,
0.08328106999397278,
0.02452346868813038,
0.008657493628561497,
-0.04349455609917641,
0.03400096297264099,
0.017157476395368576,
0.020052887499332428,
-0.018789734691381454,
-0.01130024716258049,
0.012680868618190289,
-0.011115794070065022,
0.011447080411016941,
-0.002224589930847287,
0.035759005695581436,
0.005698176100850105,
-0.010796623304486275,
0.003938409499824047,
-0.006483514793217182,
-0.009971272200345993,
-0.0019361524609848857,
0.06273893266916275,
0.008267094381153584,
0.01759408600628376,
0.020851638168096542,
0.026336660608649254,
0.0399998314678669,
0.0007135409978218377,
0.00872449018061161,
0.00726084690541029,
0.010608128271996975,
0.02497708797454834,
0.001664356212131679,
0.03402618318796158,
-0.040195439010858536,
-0.002698937663808465,
-0.02456533908843994,
-0.05471763759851456,
0.013971700333058834,
0.00020891628810204566,
-0.01880393549799919,
0.010454672388732433,
-0.029392153024673462,
0.020678609609603882,
-0.028505556285381317,
0.05173223465681076,
-0.01985360123217106,
-0.019060535356402397,
-0.012205014936625957,
0.014520200900733471,
-0.0326940156519413,
-0.03493591025471687,
0.01063467562198639,
0.00022683219867758453,
0.03334425017237663,
0.010666612535715103,
0.04080253839492798,
-0.0163553636521101,
-0.051687952131032944,
-0.03552807867527008,
0.00048404844710603356,
0.01608116552233696,
0.06575227528810501,
0.05591236427426338,
-0.03294222429394722,
0.015675963833928108,
-0.024005861952900887,
-0.05816350877285004,
0.049685437232255936,
0.01383938267827034,
0.0006897297571413219,
-0.028745785355567932,
-0.011642453260719776,
-0.00658285291865468,
-0.016509028151631355,
0.012687655165791512,
-0.005977152846753597,
0.03184713050723076,
-0.009583454579114914,
0.05306928604841232,
0.04108886420726776,
0.002670464338734746,
0.00264535890892148,
-0.003765836823731661,
-0.0028506729286164045,
-0.016283271834254265,
-0.024376280605793,
-0.013808432035148144,
0.015901930630207062,
0.005435450933873653,
0.012112487107515335,
0.007326868828386068,
-0.008336753584444523,
0.017037982121109962,
0.030038150027394295,
0.05059896036982536,
0.027315711602568626,
-0.02474641241133213,
0.0011375952744856477,
0.02323123998939991,
0.0005572122172452509,
0.015592630952596664,
0.007403794676065445,
0.046878691762685776,
0.0602467805147171,
-0.023998992517590523,
-0.023782331496477127,
-0.021349739283323288,
-0.019146615639328957,
-0.0035225979518145323,
-0.014164288528263569,
0.008723653852939606,
0.043094564229249954,
0.005339872092008591,
0.0033737532794475555,
-0.05227191001176834,
0.03843187913298607,
-0.01592276431620121,
-0.008811295963823795,
-0.013041796162724495,
-0.011692933738231659,
0.04514770209789276,
-0.037789542227983475,
-0.0008466176223009825,
0.03561600297689438,
-0.006614364683628082,
-0.06438759714365005,
0.012547486461699009,
0.009482739493250847,
0.05768909677863121,
-0.006088663823902607,
0.028938664123415947,
-0.06005930155515671,
-0.015528518706560135,
-0.015952996909618378,
-0.03676473721861839,
-0.007797801401466131,
0.01625971309840679,
0.005861756391823292,
0.0015239373315125704,
-0.003948332741856575,
0.013718071393668652,
0.06696048378944397,
-0.010306048206984997,
0.0035663635935634375,
-0.004888969473540783,
0.015632424503564835,
0.00679633067920804,
-0.033292584121227264,
-0.0004762984171975404,
-0.004752202425152063,
0.0452142097055912,
0.025149134919047356,
0.007290427573025227,
0.02785193920135498,
-0.020453715696930885,
-0.021601682528853416,
0.008839418180286884,
-0.0044049764983356,
-0.04492545127868652,
-0.03805290907621384,
-0.009739981964230537,
-0.005668128374963999,
-0.027678357437253,
-0.02909606508910656,
0.0038168588653206825,
0.022284913808107376,
-0.004542123526334763,
-0.010520834475755692,
-0.025571713224053383,
-0.0289628803730011,
-0.04409496486186981,
0.051699813455343246,
0.06636392325162888,
0.0094098886474967,
-0.01679302006959915,
0.015142480842769146,
-0.03658784180879593,
0.04535688832402229
] |
Block Sparse Matrices for Smaller and Faster Language Models | madlag | Sep 10, 2020 | pytorch_block_sparse | research, nlp | https://huggingface.co/blog/pytorch_block_sparse | # Block Sparse Matrices for Smaller and Faster Language Models | [
0.022621961310505867,
0.0025572367012500763,
0.07162658870220184,
-0.012944454327225685,
0.09286730736494064,
0.04118649661540985,
-0.019996117800474167,
0.0018243853701278567,
-0.042966462671756744,
-0.03434794396162033,
-0.009790652431547642,
0.058736614882946014,
-0.021690912544727325,
0.04014705866575241,
0.011999606154859066,
0.008640516549348831,
0.03306913748383522,
-0.025889519602060318,
0.022465147078037262,
0.019324107095599174,
0.0062271966598927975,
-0.06615621596574783,
0.13689947128295898,
-0.02445405162870884,
0.0191800594329834,
0.02370040863752365,
0.003003876656293869,
-0.011497091501951218,
-0.09483098238706589,
0.0016818923177197576,
-0.07196391373872757,
0.01781143993139267,
-0.003976264502853155,
0.009157265536487103,
0.004341998137533665,
-0.01515332330018282,
-0.06030452623963356,
0.06512685865163803,
0.012952730990946293,
-0.04238742217421532,
-0.013334118761122227,
-0.05082657188177109,
-0.03172445669770241,
0.06687350571155548,
-0.05568179488182068,
0.0012448099441826344,
-0.2247549444437027,
0.12757661938667297,
-0.0343286469578743,
-0.06049615517258644,
-0.11942058801651001,
0.044537756592035294,
-0.028521573171019554,
0.006841692607849836,
-0.000626151857431978,
-0.019216464832425117,
0.025785358622670174,
-0.10841380804777145,
-0.002342900261282921,
-0.03864087536931038,
0.02312590181827545,
0.022404570132493973,
-0.003997283987700939,
0.021012423560023308,
0.03566963970661163,
0.025192847475409508,
-0.0012246444821357727,
-0.017648344859480858,
-0.07975555211305618,
0.002232125960290432,
0.012094771489501,
0.008851722814142704,
-0.07466248422861099,
0.003092450788244605,
0.02911640889942646,
-0.024979842826724052,
-0.016850540414452553,
0.06832113862037659,
0.03326793015003204,
0.0634319856762886,
0.007073512300848961,
0.04585516080260277,
0.07472735643386841,
0.06374303996562958,
0.011050756089389324,
-0.009909120388329029,
0.02303709276020527,
-0.04946378618478775,
-0.028024209663271904,
0.045387592166662216,
-0.004311760887503624,
-0.06875714659690857,
-0.002258607652038336,
0.006244145333766937,
0.030646689236164093,
-0.013157857581973076,
0.04425952211022377,
0.04932412505149841,
0.012932887300848961,
0.04487590864300728,
0.000617083627730608,
-0.008936483412981033,
0.03693316504359245,
-0.05187888443470001,
-0.062409959733486176,
0.02435317076742649,
-0.017091872170567513,
-0.04355299845337868,
-0.03889242187142372,
0.010320133529603481,
0.0001800472236936912,
0.05478498339653015,
0.018227990716695786,
-0.0064355009235441685,
-0.05392386391758919,
0.06770695000886917,
0.02709333784878254,
0.03091813623905182,
-0.022013947367668152,
0.0918121188879013,
-0.002632946241647005,
0.10683081299066544,
0.08627922087907791,
0.02724408730864525,
0.03896968439221382,
0.04460713267326355,
0.07027330249547958,
0.04646718129515648,
-0.061766400933265686,
-0.042637020349502563,
0.012214497663080692,
0.004609985742717981,
0.07359650731086731,
0.0040410771034657955,
0.01634002849459648,
-0.08879607170820236,
0.021486835554242134,
0.00828336551785469,
0.0050269318744540215,
-0.018991224467754364,
-0.027961837127804756,
0.03039327636361122,
0.005250249523669481,
0.03536960110068321,
0.06622251868247986,
-0.0641455426812172,
-0.035806652158498764,
0.0563170462846756,
-0.00284679071046412,
-0.00987541489303112,
-0.011298933066427708,
0.05475073307752609,
-0.03685596212744713,
-0.05737365409731865,
-0.005246805492788553,
0.05366089940071106,
-0.013858110643923283,
-0.0014860123628750443,
-0.049823932349681854,
0.0019055032171308994,
-0.0441872701048851,
-0.001285546226426959,
-0.018375679850578308,
-0.05877729505300522,
0.061167553067207336,
-0.02895922213792801,
0.006454158574342728,
-0.0005871871253475547,
0.029673276469111443,
0.017116090282797813,
0.00263486267067492,
-0.031810835003852844,
0.0900825634598732,
-0.030746519565582275,
-0.10075598955154419,
0.03406146168708801,
0.026570990681648254,
0.05292408540844917,
0.041376322507858276,
-0.0024013249203562737,
-0.03419918939471245,
0.01144007220864296,
-0.0020156381651759148,
0.0634821355342865,
0.014842085540294647,
-0.03752996772527695,
0.06633535772562027,
-0.007309092208743095,
-0.0028344395104795694,
0.010790659114718437,
-0.0745617151260376,
-0.0009371781488880515,
0.12098255753517151,
0.014731119386851788,
0.027891093865036964,
-0.09650710970163345,
-0.05360180139541626,
0.14147727191448212,
0.07497327029705048,
0.1043226346373558,
0.016724634915590286,
0.03747233748435974,
0.0013143854448571801,
0.005382319446653128,
0.03043038211762905,
0.045669376850128174,
0.023539647459983826,
0.005032653454691172,
0.0029995720833539963,
0.01565096154808998,
-0.013780121691524982,
-0.08435075730085373,
0.061459772288799286,
-0.08062934130430222,
-0.04620952904224396,
0.008978954516351223,
0.04188309237360954,
0.022006409242749214,
-0.012746227905154228,
-0.043766848742961884,
0.14703306555747986,
-0.03676755726337433,
-0.06392063200473785,
0.014065214432775974,
-0.039148978888988495,
0.08889995515346527,
0.07486487179994583,
-0.01740591786801815,
0.10596399754285812,
-0.05428524315357208,
0.011903153732419014,
-0.006065392401069403,
0.033577483147382736,
0.09027374535799026,
0.016868731006979942,
0.022222280502319336,
-0.02668182924389839,
0.02967265620827675,
0.03109523095190525,
-0.05325307697057724,
-0.03992898762226105,
-0.041031885892152786,
-0.003839474869892001,
0.0303794052451849,
-0.03216176852583885,
-0.023757362738251686,
0.07233346998691559,
-0.034546516835689545,
-0.054909419268369675,
0.03906223550438881,
-0.04742858558893204,
0.03534651920199394,
-0.013552483171224594,
-0.03189563751220703,
0.05403444170951843,
0.01022488996386528,
0.02039223164319992,
-0.03352953493595123,
-0.009685587137937546,
-0.008689437992870808,
0.019783886149525642,
-0.009547574445605278,
-0.015013037249445915,
-0.053761791437864304,
-0.011185241863131523,
-0.0241578109562397,
0.029208578169345856,
0.002373490482568741,
-0.012187589891254902,
0.03288532793521881,
0.009984302334487438,
-0.023849960416555405,
0.029697533696889877,
0.009468324482440948,
0.003441454842686653,
0.03506028652191162,
0.008727969601750374,
-0.049263499677181244,
-0.030510108917951584,
-0.013395066373050213,
-0.013728456571698189,
-0.025336477905511856,
0.03281838074326515,
0.01137240044772625,
0.02710457146167755,
-0.01938062533736229,
0.013190368190407753,
0.0023323860950767994,
0.000025909799660439603,
0.012158477678894997,
-0.017095191404223442,
0.03154238685965538,
-0.04500146582722664,
-0.02267308533191681,
0.02208029478788376,
-0.005469661206007004,
-0.018147027119994164,
0.009853948839008808,
-0.018002824857831,
0.005485911387950182,
0.019334064796566963,
0.024546237662434578,
-0.016488315537571907,
-0.0021512547973543406,
-0.047819338738918304,
0.045143697410821915,
-0.013302421197295189,
0.03413664922118187,
-0.13421201705932617,
-0.04793395847082138,
0.010559872724115849,
0.015201838687062263,
-0.0007189555326476693,
-0.024674678221344948,
0.04419775679707527,
-0.030579399317502975,
0.011692154221236706,
-0.018593737855553627,
0.02018955536186695,
0.034963466227054596,
0.005291537847369909,
0.007482592482119799,
-0.012209797278046608,
-0.008342630229890347,
-0.026749784126877785,
0.019725043326616287,
0.011946560814976692,
0.013512412086129189,
-0.011979381553828716,
0.051511190831661224,
-0.005158377345651388,
-0.013814450241625309,
-0.014651183038949966,
0.026450026780366898,
0.027544289827346802,
0.023325206711888313,
0.011231020092964172,
-0.020619582384824753,
-0.05142073333263397,
0.017962412908673286,
-0.04267580434679985,
0.009512573480606079,
-0.050189822912216187,
0.007154762279242277,
0.00043738321983255446,
0.027873210608959198,
-0.0012638126499950886,
0.015843363478779793,
0.03071756660938263,
0.006307228934019804,
0.05190098658204079,
-0.0017380922799929976,
-0.02428431250154972,
0.008624653331935406,
-0.023429973050951958,
-0.005183784291148186,
0.03619665279984474,
-0.05147005245089531,
-0.03618490323424339,
-0.04302753508090973,
0.023722223937511444,
0.06335119903087616,
0.0007501267828047276,
0.02331123873591423,
0.0022200383245944977,
-0.004403446335345507,
0.03560369461774826,
-0.010212586261332035,
-0.024260681122541428,
0.03169281408190727,
0.02591664157807827,
-0.015790127217769623,
-0.06596289575099945,
0.036643195897340775,
0.00012938448344357312,
0.04914828762412071,
-0.002320554805919528,
0.035691168159246445,
0.014227055944502354,
-0.035723257809877396,
0.006002542097121477,
0.01691320352256298,
0.003860033815726638,
0.05977440997958183,
-0.01668279804289341,
-0.017272507771849632,
0.06710851937532425,
0.016298379749059677,
-0.01621273159980774,
-0.035228926688432693,
-0.00803779624402523,
0.009325042366981506,
-0.0059231361374258995,
-0.017431404441595078,
0.002121969358995557,
0.006189554929733276,
0.014387506060302258,
0.03974073752760887,
0.00433920556679368,
-0.03659855201840401,
0.02113836631178856,
-0.004529026802629232,
0.017269322648644447,
0.023940322920680046,
0.036991093307733536,
-0.021214554086327553,
0.01695389486849308,
0.01078959833830595,
0.05565932020545006,
-0.02542109601199627,
0.00178787752520293,
-0.014150700531899929,
0.001107125193811953,
0.02680201083421707,
-0.06007524952292442,
0.007579189725220203,
-0.01192563958466053,
0.01587003283202648,
0.013261274434626102,
0.010722175240516663,
0.0153723806142807,
-0.015315263532102108,
-0.020617308095097542,
-0.005021141842007637,
-0.044210489839315414,
-0.016892289742827415,
-0.021916156634688377,
0.0005930661573074758,
-0.04440406337380409,
0.0072832475416362286,
0.00474914675578475,
-0.01459169015288353,
0.01733650267124176,
-0.02281179651618004,
-0.013970676809549332,
-0.0013451665872707963,
-0.04273517429828644,
0.014894484542310238,
-0.04335646703839302,
-0.016578111797571182,
0.04157757759094238,
-0.022943081334233284,
0.05526699125766754,
0.00641264533624053,
-0.030277932062745094,
0.04184948652982712,
-0.008027631789445877,
-0.0765625387430191,
-0.004378138575702906,
0.00668205926194787,
0.020959584042429924,
-0.03281733766198158,
0.052025891840457916,
-0.030664760619401932,
-0.026400838047266006,
0.007992325350642204,
-0.018195774406194687,
0.06058892607688904,
0.04020371288061142,
-0.04150582477450371,
-0.0330173522233963,
-0.004395803902298212,
0.029991714283823967,
-0.008688936941325665,
0.014934180304408073,
-0.0008035029750317335,
-0.024612881243228912,
0.04622245952486992,
-0.004681475460529327,
0.002010249299928546,
-0.07309800386428833,
0.021775776520371437,
-0.0045023090206086636,
-0.041155338287353516,
0.0003538180608302355,
-0.0367734357714653,
0.0005331307766027749,
0.004113358445465565,
-0.0076134586706757545,
-0.000408421823522076,
0.002259416738525033,
0.00864762719720602,
0.021964509040117264,
0.006415809039026499,
0.02149183489382267,
-0.010478759184479713,
-0.01892661117017269,
0.01918303221464157,
-0.014564614742994308,
0.003971973434090614,
0.024350451305508614,
0.044235825538635254,
-0.00524835055693984,
0.0268617644906044,
0.02693299390375614,
0.02943245880305767,
-0.005471786484122276,
0.037256620824337006,
0.010606932453811169,
-0.004516424611210823,
0.029165541753172874,
-0.028743186965584755,
0.022610502317547798,
-0.0004622270935215056,
-0.019264377653598785,
0.0021646288223564625,
-0.02973964624106884,
-0.00971155520528555,
0.023710200563073158,
0.0206095390021801,
-0.019966283813118935,
-0.007917813956737518,
0.026472385972738266,
-0.00267994892783463,
-0.01806536875665188,
-0.039707884192466736,
-0.005152746569365263,
-0.026677347719669342,
-0.005204624496400356,
0.010180581361055374,
-0.052195027470588684,
-0.04470966011285782,
-0.019673125818371773,
-0.033612579107284546,
-0.00837611872702837,
0.015378194861114025,
-0.01821257174015045,
0.03970594331622124,
0.00801287405192852,
-0.029574839398264885,
-0.0398024246096611,
0.021530242636799812,
0.028230754658579826,
-0.009920683689415455,
-0.03778322786092758,
0.03176761791110039,
0.006122168153524399,
0.04858433082699776,
0.03963451087474823,
-0.01992785558104515,
0.006353984586894512,
0.01599021814763546,
-0.0015412218635901809,
0.0011868283618241549,
-0.03336262330412865,
0.045177020132541656,
0.031709566712379456,
0.009469735436141491,
0.002092877170071006,
-0.011193321086466312,
-0.04690362140536308,
0.002387136919423938,
-0.03110443614423275,
0.017149677500128746,
0.04779621958732605,
-0.017791926860809326,
-0.0003174181329086423,
0.009144571609795094,
0.029136287048459053,
-0.019547026604413986,
0.044068362563848495,
0.007977684959769249,
0.015243723057210445,
0.053816553205251694,
0.0055151404812932014,
-0.06141175329685211,
0.004968726541846991,
-0.01136518083512783,
0.013597642071545124,
-0.0063108401373028755,
0.041831038892269135,
0.03583812713623047,
-0.04498312249779701,
0.030007656663656235,
0.03780243173241615,
-0.04483110085129738,
0.022076155990362167,
0.009654738940298557,
0.004793144296854734,
0.008005542680621147,
-0.011750472709536552,
0.019832858815789223,
0.008404023014008999,
-0.03440140187740326,
0.030406948179006577,
0.054024290293455124,
0.008843163028359413,
0.028378810733556747,
-0.003916149027645588,
0.038342151790857315,
0.024370869621634483,
-0.007288020104169846,
-0.019992288202047348,
0.030991090461611748,
0.02279861830174923,
-0.0015632194699719548,
0.015298773534595966,
0.031338971108198166,
-0.008162378333508968,
0.004266870208084583,
-0.029332822188735008,
-0.0077332910150289536,
-0.04578429087996483,
0.0375639833509922,
0.02323285862803459,
0.00004613198689185083,
0.020302705466747284,
-0.07018116116523743,
0.043746184557676315,
0.025933310389518738,
-0.017559608444571495,
-0.015350807458162308,
-0.03113657981157303,
0.01770700328052044,
0.015645476058125496,
-0.00124747259542346,
0.013575971126556396,
-0.020272834226489067,
0.003882309189066291,
0.06980007886886597,
-0.00018091450328938663,
0.01921135000884533,
0.016378819942474365,
-0.013238480314612389,
0.04260307550430298,
-0.041995976120233536,
-0.007144031580537558,
-0.006217997055500746,
0.012109749019145966,
-0.008839363232254982,
-0.0197831392288208,
-0.0241420678794384,
-0.041991058737039566,
-0.03915327787399292,
-0.00376222119666636,
-0.004446948878467083,
-0.041785337030887604,
-0.004335059784352779,
-0.012688959948718548,
0.014891386963427067,
0.005571227520704269,
-0.01380580198019743,
-0.0030571597162634134,
0.0017621511360630393,
0.06253620237112045,
0.04201100021600723,
-0.01608356460928917,
-0.02333030290901661,
-0.02197590470314026,
0.01832660101354122,
-0.008323963731527328,
-0.017209913581609726,
-0.024049658328294754,
-0.023894496262073517,
0.02137744426727295,
0.0011347731342539191,
-0.02770495042204857,
0.07337094843387604,
0.03687115013599396,
0.023589245975017548,
-0.024736983701586723,
0.02406877651810646,
-0.05446845665574074,
-0.01831148751080036,
0.004859540145844221,
-0.034314632415771484,
-0.037061456590890884,
-0.027319375425577164,
0.0002630945818964392,
0.044910792261362076,
0.007710093166679144,
-0.021250246092677116,
-0.04131711646914482,
-0.011140582151710987,
-0.018761426210403442,
-0.023121414706110954,
0.016447382047772408,
0.02459768019616604,
-0.021961530670523643,
-0.000991652486845851,
-0.023602953180670738,
-0.015927961096167564,
-0.043355122208595276,
-0.019935140386223793,
0.029885824769735336,
0.004147628787904978,
-0.0035987673327326775,
-0.04485919326543808,
0.06181454658508301,
0.01134428009390831,
0.009792756289243698,
0.0035941419191658497,
0.04486456140875816,
0.002943164436146617,
-0.04271189868450165,
0.012008274905383587,
0.008190711960196495,
0.025506649166345596,
-0.02291783131659031,
-0.028983071446418762,
-0.027449216693639755,
-0.043355632573366165,
0.008271104656159878,
-0.0014760110061615705,
-0.058291029185056686,
0.00869459006935358,
-0.0272524394094944,
0.015210756100714207,
-0.05082404240965843,
0.016121340915560722,
0.039669714868068695,
0.03444324806332588,
0.019035009667277336,
-0.031074265018105507,
-0.00925846491008997,
-0.013805028982460499,
-0.018945176154375076,
-0.0005511282361112535,
0.011743058450520039,
-0.023228852078318596,
-0.016972465440630913,
-0.01027714740484953,
0.013006270863115788,
-0.036955881863832474,
-0.05776318535208702,
-0.00818552728742361,
0.01532994955778122,
0.006954767741262913,
-0.012161298654973507,
0.005203999578952789,
0.005998910404741764,
-0.010532690212130547,
0.01818273961544037,
0.04366324096918106,
-0.014372110366821289,
-0.014441782608628273,
-0.006043105851858854,
-0.06471534073352814,
-0.01046853419393301,
-0.021448912099003792,
0.008440187200903893,
0.08544835448265076,
0.012583557516336441,
-0.0004095565527677536,
-0.013537167571485043,
-0.04117044806480408,
-0.01277647353708744,
0.005390665028244257,
-0.017388232052326202,
-0.022550849243998528,
0.0007176548824645579,
-0.016273794695734978,
-0.018933067098259926,
-0.053707823157310486,
0.017227305099368095,
0.01674710400402546,
0.013490884564816952,
-0.023765234276652336,
-0.004681240301579237,
0.0008570422069169581,
0.0040365238673985004,
0.009248440153896809,
-0.008873372338712215,
0.029297281056642532,
0.03390834107995033,
-0.008658723905682564,
-0.0008144142339006066,
0.03212807700037956
] |
Block Sparse Matrices for Smaller and Faster Language Models | madlag | Sep 10, 2020 | pytorch_block_sparse | research, nlp | https://huggingface.co/blog/pytorch_block_sparse | Usage The provided BlockSparseLinear module is a drop in replacement for torch.nn.Linear, and it is trivial to use it in your models: python # from torch.nn import Linear from pytorch_block_sparse import BlockSparseLinear ... # self.fc = nn.Linear(1024, 256) self.fc = BlockSparseLinear(1024, 256, density=0.1) The extension also provides a BlockSparseModelPatcher that allows to modify an existing model "on the fly", which is shown in this example notebook. Such a model can then be trained as usual, without any change in your model source code. | [
0.026065370067954063,
-0.023656757548451424,
0.04893774911761284,
0.0021481788717210293,
0.0306947473436594,
0.03869304805994034,
-0.007789705879986286,
-0.01683530956506729,
-0.06547579914331436,
-0.01916327327489853,
-0.06833042204380035,
0.0065322634764015675,
0.033450450748205185,
-0.015235274098813534,
0.04530409350991249,
-0.004647147376090288,
0.009335678070783615,
-0.0005582379526458681,
-0.014004169963300228,
0.07677152007818222,
0.0037818006239831448,
-0.0944083034992218,
0.09720838069915771,
-0.0021114014089107513,
-0.02746451087296009,
-0.0622606985270977,
0.012095951475203037,
0.02682369574904442,
-0.04511936381459236,
0.03157329186797142,
-0.10450788587331772,
0.006575015373528004,
0.018907716497778893,
-0.07549116760492325,
-0.003545978106558323,
0.03972518444061279,
-0.06617587804794312,
0.02614011988043785,
-0.011934539303183556,
-0.006142290774732828,
-0.017130594700574875,
0.07096538692712784,
-0.09842626005411148,
0.08087541908025742,
-0.01643606461584568,
-0.046246763318777084,
-0.13553853332996368,
0.09443145990371704,
0.01701582595705986,
-0.05858192965388298,
-0.09996408969163895,
0.022329621016979218,
-0.032384179532527924,
0.009457465261220932,
-0.01211989764124155,
-0.03388566896319389,
0.005383017472922802,
-0.03900071978569031,
0.04179099574685097,
-0.0037967199459671974,
0.046068351715803146,
-0.010058391839265823,
0.025844987481832504,
0.03339605778455734,
0.026950374245643616,
0.011786719784140587,
0.0288438368588686,
0.009935041889548302,
-0.059090375900268555,
0.00961533933877945,
0.03348291665315628,
0.00581943616271019,
-0.027907228097319603,
-0.025869296863675117,
-0.03671078383922577,
-0.04300140589475632,
0.014660339802503586,
0.02169225923717022,
0.04937734454870224,
0.09073293954133987,
0.04454075172543526,
0.0704183429479599,
0.018075359985232353,
0.023211928084492683,
-0.0001481124054407701,
0.02649698778986931,
-0.026331281289458275,
-0.0883895754814148,
0.05252494290471077,
0.05308505892753601,
-0.058849286288022995,
-0.06660572439432144,
0.016044991090893745,
-0.00896972045302391,
0.04124144837260246,
0.012267041951417923,
-0.011325095780193806,
0.02448810636997223,
-0.007601185701787472,
-0.015002320520579815,
-0.03968508169054985,
-0.02568511664867401,
0.021772200241684914,
-0.043001167476177216,
-0.05849383398890495,
0.02373208850622177,
0.0195295549929142,
-0.11578445136547089,
-0.038033440709114075,
-0.03320219740271568,
-0.01717817410826683,
0.02516699954867363,
-0.031154638156294823,
0.025034813210368156,
-0.052483439445495605,
-0.04475446417927742,
0.015731967985630035,
0.04012100398540497,
-0.019219521433115005,
0.009380138479173183,
-0.06090564653277397,
0.10937732458114624,
0.05204715579748154,
0.02999083139002323,
0.08514727652072906,
0.09729330241680145,
0.04158458113670349,
0.07370780408382416,
0.0035634858068078756,
-0.017722604796290398,
0.07777415961027145,
0.011296099051833153,
0.06145709007978439,
-0.011183477938175201,
0.022855862975120544,
-0.06245596706867218,
0.00668607372790575,
-0.018658002838492393,
0.004705998580902815,
-0.008365114219486713,
-0.049240801483392715,
0.009967898949980736,
0.02614961564540863,
0.07110918313264847,
0.08516174554824829,
-0.05536384508013725,
-0.0267607644200325,
0.1104610338807106,
0.004472512286156416,
-0.009328684769570827,
-0.01206560991704464,
0.05249173194169998,
0.0016075274907052517,
-0.050536636263132095,
-0.05739179626107216,
0.01495049986988306,
-0.0019959716591984034,
0.009220240637660027,
-0.05116315186023712,
-0.007846027612686157,
-0.00699343578889966,
-0.036369748413562775,
-0.029652245342731476,
-0.019540609791874886,
0.08910267800092697,
-0.02826012670993805,
0.06527441740036011,
-0.0012354861246421933,
0.003308944869786501,
-0.015283799730241299,
-0.0005108297918923199,
-0.007031177170574665,
0.0014667061623185873,
-0.016462277621030807,
-0.0527496412396431,
0.0417674221098423,
0.043492838740348816,
0.09689830243587494,
0.01727104000747204,
-0.06037624180316925,
-0.03541944921016693,
0.0443253330886364,
-0.06532318145036697,
0.04645359888672829,
-0.007458914071321487,
-0.04791213944554329,
0.051036857068538666,
-0.01834138110280037,
0.002410904737189412,
0.0032968760933727026,
-0.048520106822252274,
0.041635703295469284,
0.016938233748078346,
-0.028900597244501114,
0.06979524344205856,
-0.0831407830119133,
-0.08628769218921661,
0.05979762598872185,
0.0015074033290147781,
0.11172980070114136,
0.045278847217559814,
0.012105733156204224,
-0.04845824092626572,
-0.0315580740571022,
0.04704364016652107,
0.0072906892746686935,
0.0068858228623867035,
-0.021323395892977715,
0.056567203253507614,
-0.051941219717264175,
0.02023608796298504,
-0.11016787588596344,
0.039036497473716736,
-0.09568241983652115,
0.0022536644246429205,
0.04898449406027794,
-0.04848578944802284,
0.03415553644299507,
-0.010998349636793137,
0.00037248810986056924,
0.1790449321269989,
-0.0171958040446043,
-0.030198991298675537,
-0.005736267194151878,
-0.08156424015760422,
0.09325052052736282,
0.06144486367702484,
0.012070381082594395,
0.03244830295443535,
-0.06203373894095421,
-0.019080905243754387,
-0.05737260356545448,
-0.017376193776726723,
0.09863366186618805,
-0.021097863093018532,
-0.038610633462667465,
-0.009927988983690739,
0.010418349876999855,
0.01531146839261055,
-0.09353943914175034,
-0.017019404098391533,
-0.008089101873338223,
0.02918892167508602,
-0.02594054862856865,
-0.045859917998313904,
0.049365490674972534,
0.039837341755628586,
-0.01606934703886509,
0.040638674050569534,
0.021548770368099213,
-0.01320036593824625,
0.015660272911190987,
0.02989983558654785,
-0.06091941520571709,
0.019543824717402458,
0.05430053919553757,
-0.02133224532008171,
-0.037266138941049576,
0.03857961297035217,
0.02806270681321621,
0.03599264845252037,
0.007018790580332279,
-0.054407697170972824,
-0.01862420327961445,
-0.032815080136060715,
-0.07431311905384064,
0.025505952537059784,
-0.022971175611019135,
0.007540193852037191,
0.0008537928224541247,
0.043332260102033615,
-0.024053798988461494,
0.015516982413828373,
-0.0033806241117417812,
0.023582281544804573,
0.014963357709348202,
0.014200996607542038,
-0.07357663661241531,
-0.02996472455561161,
-0.06473931670188904,
0.002626471221446991,
-0.04049097001552582,
0.04565994441509247,
0.018371272832155228,
0.017166391015052795,
0.01473383791744709,
0.01985984854400158,
-0.03191545978188515,
-0.03604612499475479,
0.03235671669244766,
-0.01979440450668335,
0.01909550279378891,
0.002690064487978816,
-0.012322126887738705,
-0.012765457853674889,
0.031830281019210815,
-0.04074035957455635,
0.018876036629080772,
-0.010164480656385422,
0.01077275536954403,
0.019388914108276367,
0.02323739603161812,
-0.016513824462890625,
0.032251663506031036,
-0.06443846970796585,
0.023408036679029465,
0.0006560253095813096,
0.023193232715129852,
-0.10424809157848358,
-0.03202681243419647,
0.0008443274418823421,
0.014476077631115913,
-0.03717140480875969,
-0.02554391510784626,
0.01079923938959837,
-0.001667526550590992,
0.025777248665690422,
-0.01491436455398798,
0.017525866627693176,
-0.007764896377921104,
0.017998097464442253,
0.05046367645263672,
-0.03587733209133148,
0.009955476969480515,
-0.0030397416558116674,
0.01681356318295002,
0.026328150182962418,
-0.02444526180624962,
-0.03683268651366234,
0.04318465664982796,
-0.0031774912495166063,
0.009622347541153431,
-0.0030217766761779785,
0.004206765443086624,
0.04365381971001625,
0.02089894749224186,
-0.008264035917818546,
-0.008780608884990215,
-0.03534495458006859,
-0.01335262879729271,
0.00604964466765523,
0.0038053689058870077,
-0.010439303703606129,
0.004396772012114525,
-0.017843272536993027,
-0.012101788073778152,
0.02984301559627056,
0.012751472182571888,
-0.007071709260344505,
0.0018718056380748749,
0.013916926458477974,
-0.0420246347784996,
0.04766524210572243,
-0.006748209707438946,
-0.022949043661355972,
0.03125595301389694,
0.01900501735508442,
-0.049529992043972015,
-0.018340222537517548,
-0.02600902132689953,
0.021243231371045113,
0.021656261757016182,
-0.01030100230127573,
0.0007119136280380189,
0.027910206466913223,
0.037768326699733734,
-0.003947494551539421,
-0.011822913773357868,
-0.0527169406414032,
0.04078776016831398,
-0.00409039668738842,
0.014814128167927265,
-0.009484173730015755,
0.06848688423633575,
0.01362141314893961,
-0.003448465606197715,
-0.023827197030186653,
0.0320785753428936,
-0.010660039260983467,
0.006083897314965725,
0.010652055032551289,
0.01215964462608099,
-0.017075054347515106,
0.0468374565243721,
-0.004957511555403471,
-0.0066018071956932545,
0.04728105664253235,
0.03053927794098854,
0.014888900332152843,
-0.029203863814473152,
0.028856031596660614,
0.014246693812310696,
-0.019317975267767906,
0.027078209444880486,
0.02333296835422516,
-0.009096626192331314,
0.024105563759803772,
-0.009394350461661816,
-0.0006137082818895578,
-0.02419605292379856,
0.026007814332842827,
-0.010286863893270493,
-0.024228615686297417,
-0.006561542395502329,
-0.006592889316380024,
0.007957647554576397,
0.04551743343472481,
0.016960348933935165,
0.03092806786298752,
-0.03473684936761856,
0.02052459865808487,
-0.019819658249616623,
0.015444135293364525,
0.03538248687982559,
-0.053651660680770874,
0.017902275547385216,
0.020543910562992096,
-0.02964756265282631,
-0.0327095128595829,
-0.0367278978228569,
-0.00447362195700407,
0.0021339613012969494,
0.02189813368022442,
-0.013172836974263191,
-0.04105878993868828,
-0.03463240712881088,
-0.02676084078848362,
-0.013881941325962543,
-0.05773849040269852,
0.03886135295033455,
-0.01359151117503643,
-0.0226433165371418,
-0.0012125198263674974,
-0.01792290061712265,
0.022058026865124702,
0.030893608927726746,
0.014322234317660332,
0.004085555672645569,
-0.061535581946372986,
-0.00501085864380002,
-0.003090441459789872,
0.019808584824204445,
0.009640180505812168,
0.06441888958215714,
0.001282909419387579,
0.040678657591342926,
0.02164209634065628,
-0.048312608152627945,
-0.03304325416684151,
0.012288660742342472,
0.013883681036531925,
-0.041775137186050415,
0.05848485603928566,
0.004582731984555721,
-0.04816336929798126,
0.0001093944811145775,
-0.05873490124940872,
0.039657317101955414,
0.05417817085981369,
-0.0024976972490549088,
0.00882126297801733,
-0.005560545716434717,
0.031666651368141174,
-0.03557249531149864,
-0.0044411965645849705,
0.008227826096117496,
0.016223683953285217,
0.02643589675426483,
-0.013330919668078423,
-0.012874787673354149,
-0.033144157379865646,
0.014574263244867325,
0.04261665418744087,
-0.037908297032117844,
0.013011916540563107,
-0.07350090146064758,
0.012488297186791897,
0.0071690017357468605,
-0.03550597280263901,
-0.018731463700532913,
0.006897955667227507,
-0.03930351510643959,
0.028125666081905365,
0.07001489400863647,
0.02419811300933361,
-0.012941321358084679,
-0.02145032212138176,
0.040019575506448746,
-0.005623249802738428,
0.0022178939543664455,
0.044787194579839706,
0.03919057920575142,
-0.009233986027538776,
0.07408270239830017,
0.008792119100689888,
0.026188164949417114,
0.038563042879104614,
0.02827322483062744,
0.006234620697796345,
-0.017249776050448418,
0.015817563980817795,
-0.02838415652513504,
0.024194879457354546,
0.008119173347949982,
-0.06871432811021805,
-0.019338440150022507,
0.0030155919957906008,
-0.001252225716598332,
-0.012801265344023705,
0.03275717794895172,
-0.028808286413550377,
-0.017896423116326332,
0.0387466736137867,
0.014317729510366917,
0.03189024329185486,
-0.006941012106835842,
0.011746178381145,
-0.013817764818668365,
-0.016885628923773766,
0.016054781153798103,
-0.014837367460131645,
-0.028180871158838272,
-0.002118600532412529,
0.00434039207175374,
-0.007104489952325821,
0.008829446509480476,
0.0047565363347530365,
0.04223513975739479,
0.011943724006414413,
-0.05871393904089928,
-0.038122743368148804,
0.018056808039546013,
0.03137785568833351,
-0.034699831157922745,
0.0037909827660769224,
0.06609506160020828,
0.02329936996102333,
0.04611961916089058,
0.05783500894904137,
-0.03458114340901375,
-0.002278481610119343,
-0.0005919708055444062,
0.025510894134640694,
0.002928251400589943,
-0.0162257831543684,
0.05920423939824104,
-0.03270578011870384,
-0.012419305741786957,
-0.008236352354288101,
-0.00817209854722023,
-0.03686898201704025,
0.031072136014699936,
-0.020780712366104126,
0.018053337931632996,
0.047019071877002716,
-0.015611512586474419,
0.025740869343280792,
-0.03656691685318947,
0.07692445814609528,
0.01953709125518799,
0.0013557343045249581,
-0.020569490268826485,
-0.0014746295055374503,
0.0016662442358210683,
0.016944274306297302,
0.00037772959331050515,
0.03893185779452324,
0.016292981803417206,
0.052831318229436874,
-0.05316045880317688,
-0.013920944184064865,
0.017147304490208626,
-0.009496652521193027,
0.027322718873620033,
-0.012957265600562096,
-0.02917318232357502,
-0.008807087317109108,
0.010656028054654598,
0.0035070315934717655,
0.05217769369482994,
0.007813009433448315,
0.02905128337442875,
-0.015382346697151661,
-0.045695461332798004,
-0.025952303782105446,
0.022161729633808136,
-0.04828362911939621,
0.017699316143989563,
-0.008806212805211544,
0.019791604951024055,
0.01688026264309883,
-0.009696578606963158,
-0.007526629138737917,
0.02356259897351265,
0.058078933507204056,
-0.003960855770856142,
0.014971341006457806,
0.02258897013962269,
-0.005317026283591986,
0.003971710801124573,
-0.03199943155050278,
-0.02427580952644348,
-0.029237449169158936,
0.01054248958826065,
0.013166549615561962,
0.004379045683890581,
0.02308102697134018,
-0.06543044000864029,
0.012448277324438095,
0.04216413199901581,
0.025671714916825294,
-0.013507909141480923,
0.012370701879262924,
0.010299064218997955,
0.006328903138637543,
-0.01163130160421133,
0.03941693902015686,
0.016693348065018654,
-0.014170762151479721,
0.0445265993475914,
-0.010439432226121426,
0.013517729006707668,
-0.012723658233880997,
-0.004335211589932442,
0.047148413956165314,
-0.01852014660835266,
-0.035904787480831146,
-0.0003520408063195646,
0.009054474532604218,
0.0024367712903767824,
-0.022143330425024033,
0.04088256135582924,
-0.057751819491386414,
-0.005677343346178532,
-0.015078931115567684,
0.005813694559037685,
-0.05865415558218956,
0.00020409484568517655,
0.002025031251832843,
0.00981166958808899,
-0.027711641043424606,
0.05737514793872833,
0.011002815328538418,
0.006607367191463709,
0.04958324134349823,
0.02817005105316639,
-0.0010574223706498742,
-0.018772028386592865,
-0.0008757312316447496,
0.011957347393035889,
-0.006415997631847858,
0.014839337207376957,
-0.015443132258951664,
0.0020768363028764725,
-0.0101773077622056,
0.017672045156359673,
-0.021392667666077614,
0.021607764065265656,
0.01912565529346466,
0.004159542266279459,
-0.04486720636487007,
0.019165601581335068,
-0.03834656998515129,
-0.037653468549251556,
-0.013627578504383564,
-0.012870151549577713,
-0.006016108673065901,
0.004233191255480051,
0.026006639003753662,
0.01825406402349472,
0.03177032247185707,
-0.03048977069556713,
-0.05043113976716995,
-0.03739991411566734,
-0.022583387792110443,
-0.010951099917292595,
-0.037526924163103104,
0.03775397315621376,
0.017265722155570984,
0.02625206671655178,
-0.004187525250017643,
-0.006966697983443737,
-0.005383619107306004,
-0.009034303948283195,
-0.005877005867660046,
0.02914680540561676,
-0.005019067786633968,
-0.025759631767868996,
0.0540662556886673,
-0.004624563734978437,
-0.00943061150610447,
0.06340966373682022,
0.02380547486245632,
0.00001090138903236948,
-0.029592420905828476,
-0.009151209145784378,
-0.02571471594274044,
-0.0025686738081276417,
-0.023536914959549904,
-0.02587474137544632,
-0.028481129556894302,
0.027984032407402992,
-0.00008914405043469742,
-0.011005271226167679,
-0.02560441941022873,
0.030051659792661667,
0.000996762770228088,
-0.012157252058386803,
-0.04930838942527771,
-0.0069742933847010136,
0.037570852786302567,
0.08182024210691452,
-0.008930603042244911,
-0.007474594749510288,
-0.0541655458509922,
0.002879226813092828,
-0.011568369343876839,
0.04695550352334976,
0.025965912267565727,
-0.01635105349123478,
-0.006703034043312073,
-0.015861067920923233,
0.00397562375292182,
0.034676019102334976,
-0.04972502216696739,
-0.03437654674053192,
-0.01690315082669258,
-0.0193464457988739,
-0.08172843605279922,
0.015361851081252098,
0.026735860854387283,
0.015276928432285786,
0.009394776076078415,
0.018104538321495056,
0.018291357904672623,
-0.03749074041843414,
0.007101029623299837,
-0.054556041955947876,
-0.010313198901712894,
-0.04197123646736145,
-0.04037347063422203,
0.040848083794116974,
0.015749391168355942,
0.010832017287611961,
0.010995365679264069,
-0.006149685475975275,
-0.010930431075394154,
0.007510788273066282,
-0.03432457149028778,
-0.039221398532390594,
-0.01243925467133522,
0.028831854462623596,
0.020955665037035942,
-0.030783187597990036,
0.003626410849392414,
0.06414523720741272,
0.022453587502241135,
0.025895724073052406,
0.028088442981243134,
0.04217294603586197,
0.01081435102969408,
0.004192946013063192,
0.00002688028325792402,
0.011193236336112022,
0.0005254022544249892,
0.01872248947620392,
-0.025376690551638603,
0.0010543735697865486
] |
Block Sparse Matrices for Smaller and Faster Language Models | madlag | Sep 10, 2020 | pytorch_block_sparse | research, nlp | https://huggingface.co/blog/pytorch_block_sparse | NVIDIA CUTLASS This extension is based on the cutlass tilesparse proof of concept by Yulhwa Kim. It is using C++ CUDA templates for block-sparse matrix multiplication based on CUTLASS. CUTLASS is a collection of CUDA C++ templates for implementing high-performance CUDA kernels. With CUTLASS, approching cuBLAS performance on custom kernels is possible without resorting to assembly language code. The latest versions include all the Ampere Tensor Core primitives, providing x10 or more speedups with a limited loss of precision. Next versions of pytorch_block_sparse will make use of these primitives, as block sparsity is 100% compatible with Tensor Cores requirements. | [
-0.0035601218696683645,
-0.04973497986793518,
-0.049571048468351364,
0.07951098680496216,
-0.0006812441861256957,
0.011779437772929668,
0.016899622976779938,
0.01594400778412819,
-0.06960561871528625,
-0.024251487106084824,
-0.05777532979846001,
0.01983492448925972,
0.04619782418012619,
0.048759493976831436,
0.057419952005147934,
-0.003516072640195489,
0.00868604052811861,
-0.046153657138347626,
-0.027688907459378242,
0.08770167082548141,
-0.02416514791548252,
-0.05059158802032471,
0.13987819850444794,
0.038273293524980545,
-0.035305242985486984,
0.053452394902706146,
0.005119037348777056,
0.055244915187358856,
-0.08387386798858643,
0.043310102075338364,
-0.006077012978494167,
0.04003258794546127,
-0.08577592670917511,
-0.08366730064153671,
0.013566331937909126,
-0.019303632900118828,
0.00151606067083776,
-0.0015071786474436522,
0.02995830401778221,
-0.022519711405038834,
-0.02375870570540428,
-0.017514115199446678,
0.004098138306289911,
0.08047869801521301,
0.010211932472884655,
0.02763100154697895,
-0.016862504184246063,
-0.0037340905983000994,
-0.018111420795321465,
-0.03465913236141205,
-0.050063606351614,
0.04819789528846741,
-0.004240167792886496,
0.0241315346211195,
0.05258310213685036,
0.03544638305902481,
0.00032453075982630253,
-0.002221290487796068,
0.030680345371365547,
-0.00495431711897254,
0.005647081881761551,
0.012181094847619534,
-0.03397952392697334,
-0.06595177948474884,
0.031180988997220993,
0.03888699412345886,
0.024460233747959137,
0.009358222596347332,
-0.03437301516532898,
0.006346731912344694,
0.032495446503162384,
-0.03254380449652672,
-0.015096800401806831,
0.020351294428110123,
-0.02339152991771698,
0.01896960474550724,
-0.011383633129298687,
0.024737300351262093,
0.07658838480710983,
0.04434708133339882,
-0.047268111258745193,
0.06870894134044647,
0.010666797868907452,
0.027796650305390358,
-0.04480251297354698,
-0.01345906313508749,
-0.03818415477871895,
-0.09045866131782532,
-0.05053991451859474,
0.04163536801934242,
0.011143345385789871,
-0.008849533274769783,
0.06396834552288055,
0.04739962890744209,
0.02060183882713318,
0.03370523825287819,
-0.010317513719201088,
-0.01756737194955349,
0.027144087478518486,
-0.03602713719010353,
0.016699330881237984,
-0.05951923504471779,
-0.022120026871562004,
-0.02812836319208145,
-0.031006650999188423,
0.03306364268064499,
-0.05212193354964256,
-0.03882478550076485,
-0.050446443259716034,
0.04907708987593651,
0.04123611003160477,
0.040871091187000275,
0.04180171713232994,
0.05889007821679115,
-0.08177631348371506,
0.0038852684665471315,
0.01816112920641899,
0.03852171450853348,
-0.04485802724957466,
0.057256024330854416,
-0.0898226946592331,
0.05286915972828865,
0.05270823836326599,
-0.00020759306789841503,
0.02504507079720497,
0.07446727156639099,
0.020259613171219826,
0.05033878609538078,
0.0662112906575203,
-0.08752326667308807,
0.04248277470469475,
0.05375443398952484,
-0.03892434015870094,
-0.0012956314021721482,
-0.01944785565137863,
-0.06316974759101868,
-0.011120680719614029,
-0.06916191428899765,
-0.02190910279750824,
-0.06017329916357994,
-0.03347345069050789,
-0.03334692865610123,
0.03268374875187874,
0.012853439897298813,
0.015391651540994644,
-0.030095938593149185,
0.03831088915467262,
0.036348115652799606,
-0.00375376851297915,
-0.00476547796279192,
-0.0703602060675621,
0.005431491881608963,
-0.018284160643815994,
-0.019487697631120682,
0.03809545189142227,
0.018170693889260292,
0.03040851093828678,
0.0300323273986578,
-0.13473451137542725,
-0.0003985439252573997,
0.022186264395713806,
-0.0793452262878418,
0.027492891997098923,
-0.08559774607419968,
-0.06436605751514435,
0.04987620189785957,
0.07958773523569107,
-0.086115263402462,
0.027592282742261887,
-0.01669258251786232,
-0.0436435230076313,
-0.04202251508831978,
0.023082787171006203,
0.004913988523185253,
-0.03740251809358597,
0.005516905337572098,
0.08629991859197617,
0.05987803265452385,
0.040928684175014496,
-0.07808168977499008,
-0.024679183959960938,
-0.01671539805829525,
-0.0031506011728197336,
0.04687947407364845,
-0.06105910986661911,
-0.022249750792980194,
0.01650448516011238,
-0.02294180914759636,
0.02371032163500786,
0.010542688891291618,
-0.09454164654016495,
0.040641654282808304,
0.0092057129368186,
-0.0068178786896169186,
0.025766901671886444,
-0.025384588167071342,
-0.08129232376813889,
0.06836971640586853,
0.06371906399726868,
0.07902152836322784,
0.02929416485130787,
0.03786192834377289,
-0.03745375946164131,
-0.04587121680378914,
-0.005963128060102463,
-0.01880710944533348,
-0.03110535442829132,
0.08826103806495667,
0.04813124239444733,
0.014630026184022427,
-0.05528723821043968,
-0.07796589285135269,
0.09105212241411209,
-0.008292889222502708,
-0.01681297831237316,
0.04234996438026428,
-0.013031045906245708,
0.012699875980615616,
-0.006657857913523912,
-0.007617306429892778,
0.12427271157503128,
-0.04197177663445473,
-0.0368657186627388,
0.02550402842462063,
-0.12142861634492874,
0.04123619571328163,
0.04533185064792633,
0.023623555898666382,
0.0590006485581398,
-0.05099814757704735,
0.10137476772069931,
-0.03526630625128746,
-0.01482586283236742,
0.12364382296800613,
0.012812180444598198,
-0.02267228253185749,
0.05611821264028549,
-0.0038737740833312273,
0.05293723940849304,
-0.02268138714134693,
-0.06451696902513504,
0.024608289822936058,
-0.03497149050235748,
-0.043392278254032135,
0.0574626587331295,
-0.05113065615296364,
0.09501007944345474,
-0.06322203576564789,
0.041534703224897385,
-0.04910650476813316,
0.030202167108654976,
0.0514255166053772,
0.017504790797829628,
-0.027742698788642883,
0.03960017114877701,
0.05662794038653374,
0.03125162795186043,
-0.04866619035601616,
0.0195908322930336,
0.017277691513299942,
0.033558037132024765,
-0.0001389250683132559,
-0.07311946153640747,
-0.054302431643009186,
-0.027355428785085678,
0.0007175688515417278,
0.050327494740486145,
0.02299010008573532,
-0.0101121561601758,
-0.038605716079473495,
0.004909819923341274,
-0.01988946832716465,
-0.014160366728901863,
-0.03484748303890228,
0.001014175359159708,
-0.002685441169887781,
-0.01800413988530636,
-0.059100355952978134,
-0.008921027183532715,
-0.041858986020088196,
-0.03806275501847267,
-0.04223226010799408,
0.0011047458974644542,
0.05958876386284828,
-0.00258540827780962,
0.014945208095014095,
0.04723532870411873,
-0.0010757511481642723,
-0.02043345756828785,
0.0021407532040029764,
-0.06807612627744675,
-0.0021385415457189083,
0.0017168450867757201,
-0.03293244540691376,
0.03197431191802025,
0.021894967183470726,
-0.03621218726038933,
-0.009652671404182911,
-0.024313712492585182,
0.005518859252333641,
0.025320570915937424,
0.04171140491962433,
0.0005273562273941934,
-0.0036810599267482758,
-0.021633043885231018,
0.06493526697158813,
-0.03175981715321541,
0.026751723140478134,
-0.06768066436052322,
-0.01825137808918953,
-0.026074202731251717,
0.02628140151500702,
-0.03933361917734146,
-0.0008374224998988211,
-0.012977486476302147,
0.05232624709606171,
0.05713009834289551,
0.01855277083814144,
0.078221894800663,
0.04362966865301132,
-0.04863027110695839,
0.0011699121678248048,
0.006574931088835001,
0.00919452216476202,
0.040695540606975555,
-0.0021142573095858097,
0.0019479605834931135,
0.026086730882525444,
-0.033605799078941345,
0.012927778996527195,
-0.0037266553845256567,
0.03271837532520294,
-0.010228653438389301,
-0.016760773956775665,
0.02830655127763748,
0.011496384628117085,
-0.012293187901377678,
-0.0011073818895965815,
-0.004843285772949457,
0.04909095913171768,
-0.00858868844807148,
0.011662243865430355,
-0.03322325646877289,
-0.008351175114512444,
-0.019735677167773247,
-0.04329598695039749,
0.046180326491594315,
-0.05351289361715317,
-0.02791820652782917,
0.0011673743138089776,
0.0532841831445694,
-0.05957288667559624,
0.03179749846458435,
-0.009249112568795681,
0.03825434669852257,
0.06054350733757019,
0.0007520047365687788,
-0.03009614907205105,
-0.025112370029091835,
-0.03117898851633072,
-0.01160547323524952,
0.05677912384271622,
-0.03389810398221016,
0.003713508602231741,
0.0027820831164717674,
0.018456313759088516,
-0.002851452911272645,
-0.01572452113032341,
0.006284402217715979,
-0.018220648169517517,
0.01210735272616148,
0.010545487515628338,
0.02841494232416153,
0.003674023784697056,
0.006036109756678343,
0.01627260632812977,
-0.07424680888652802,
0.028618842363357544,
-0.02540862374007702,
0.03153205290436745,
0.008009889163076878,
-0.0007517836056649685,
-0.005716721527278423,
-0.006354710552841425,
0.03599202260375023,
-0.013544969260692596,
0.02441108040511608,
0.001742816180922091,
0.02783772721886635,
-0.04179682210087776,
0.021091511473059654,
0.00834941677749157,
0.01743355393409729,
0.022546978667378426,
-0.022887079045176506,
0.034952905029058456,
0.022456668317317963,
0.020109139382839203,
0.008237596601247787,
-0.07982874661684036,
0.03644942864775658,
-0.0006420414429157972,
0.030710836872458458,
0.01524632889777422,
-0.01022691186517477,
0.02630172111093998,
-0.007378635462373495,
-0.026184143498539925,
-0.00828974973410368,
-0.024480167776346207,
0.03766799345612526,
-0.002471870044246316,
-0.022734960541129112,
0.007693033199757338,
-0.012213412672281265,
0.0001988032745430246,
-0.015608450397849083,
0.008120845071971416,
-0.0015810610493645072,
-0.046388108283281326,
0.0031655472703278065,
0.034219708293676376,
0.028071537613868713,
0.01898724026978016,
-0.025548627600073814,
0.03666573017835617,
-0.04298899695277214,
0.002668248023837805,
0.012717468664050102,
0.008006991818547249,
0.0030505273025482893,
-0.025800809264183044,
-0.001251312205567956,
-0.015204663388431072,
0.008303157053887844,
0.019649190828204155,
0.04073076322674751,
-0.013412650674581528,
-0.04798589274287224,
-0.013045040890574455,
-0.006815585307776928,
0.0014982572756707668,
0.0388631671667099,
-0.00694138091057539,
-0.004969914443790913,
-0.012920106761157513,
0.03398129716515541,
0.007263823412358761,
-0.01974518597126007,
0.01673412322998047,
0.042872361838817596,
-0.028773795813322067,
0.07397621870040894,
0.005284109618514776,
-0.000990208238363266,
0.03413569554686546,
-0.053615182638168335,
0.0658760815858841,
-0.040474168956279755,
-0.04943614825606346,
0.0455244779586792,
-0.024946065619587898,
0.006559680216014385,
0.03508297726511955,
0.06139808148145676,
0.0012610520934686065,
0.017671920359134674,
0.03760520741343498,
-0.016408808529376984,
0.02722869999706745,
-0.0638432502746582,
-0.019714953377842903,
-0.0012894434621557593,
-0.025218456983566284,
0.02277841418981552,
-0.06794092804193497,
-0.017071831971406937,
-0.025351742282509804,
-0.03834939002990723,
0.046770744025707245,
-0.011827150359749794,
-0.06151611730456352,
0.009957000613212585,
0.02025902085006237,
0.022176019847393036,
0.026539849117398262,
0.014307373203337193,
-0.0016008807579055429,
-0.05696595460176468,
-0.008957023732364178,
0.03765689209103584,
0.010182924568653107,
0.00465603219345212,
0.051573965698480606,
-0.05955999344587326,
0.07249065488576889,
-0.01818099059164524,
0.007942144758999348,
0.043527744710445404,
0.002183889737352729,
0.0072508882731199265,
-0.037358302623033524,
0.024576382711529732,
-0.008864139206707478,
-0.03318427503108978,
-0.008636529557406902,
-0.03246719017624855,
-0.0081814369186759,
0.01593775302171707,
-0.04781705513596535,
-0.05936288833618164,
0.052788786590099335,
0.009639887139201164,
0.013914651237428188,
0.040762145072221756,
-0.02380039542913437,
-0.0064681414514780045,
-0.016360677778720856,
-0.0011779891792684793,
-0.004587269853800535,
0.024380844086408615,
-0.0391203835606575,
-0.046775780618190765,
-0.03656995669007301,
0.004152231849730015,
0.02724355459213257,
-0.013732561841607094,
-0.0070081972517073154,
-0.005570346489548683,
0.01782325841486454,
0.010830228216946125,
-0.0023631893564015627,
-0.05783793330192566,
0.03481125086545944,
-0.026738272979855537,
0.004010660108178854,
-0.028693266212940216,
0.0427253395318985,
0.053733810782432556,
-0.009701675735414028,
-0.009560950100421906,
-0.005621621385216713,
0.012949138879776001,
-0.0178148802369833,
-0.01335269957780838,
0.036278799176216125,
0.0060629406943917274,
-0.034890592098236084,
-0.03822128102183342,
-0.04748508706688881,
0.0049216956831514835,
-0.008267316035926342,
-0.026039479300379753,
-0.024014310911297798,
0.01981130987405777,
-0.030022500082850456,
-0.015387040562927723,
-0.015375417657196522,
0.047057054936885834,
-0.016155695542693138,
-0.010466060601174831,
0.011479713022708893,
0.01213840302079916,
-0.026568816974759102,
0.02084229700267315,
0.005466535221785307,
-0.028137119486927986,
-0.025386208668351173,
0.02424410916864872,
0.009431303478777409,
-0.0124936792999506,
0.022818125784397125,
-0.046896182000637054,
0.008102819323539734,
-0.019246600568294525,
-0.023827863857150078,
0.016282454133033752,
-0.01198955811560154,
-0.03788347914814949,
0.005408748518675566,
0.03322969004511833,
0.01345398835837841,
-0.03564317896962166,
-0.037168700248003006,
-0.04859407618641853,
0.028053874149918556,
0.013964698649942875,
-0.001971145858988166,
-0.02909991517663002,
0.05724003538489342,
-0.012250612489879131,
0.026047317311167717,
-0.03883158788084984,
0.010614790953695774,
0.008037402294576168,
0.013526341877877712,
0.07541415095329285,
0.023259233683347702,
-0.05859103426337242,
-0.007469333242624998,
0.0554414801299572,
-0.011190522462129593,
-0.03900524228811264,
-0.02089446410536766,
0.05038416385650635,
-0.013081695884466171,
0.006424055900424719,
-0.01536730956286192,
0.03958093374967575,
0.041788794100284576,
-0.00668585067614913,
-0.028671376407146454,
0.01010771282017231,
-0.00006740244862157851,
0.0016872977139428258,
-0.007850254885852337,
-0.016173353418707848,
0.0041998703964054585,
-0.017133455723524094,
0.037671543657779694,
0.020355861634016037,
0.004114873241633177,
-0.014437318779528141,
-0.019748089835047722,
0.0329984687268734,
0.015366163104772568,
-0.013568580150604248,
0.0359683521091938,
-0.0031309674959629774,
0.02987845055758953,
0.011281785555183887,
-0.046264998614788055,
-0.05071776732802391,
0.0290321484208107,
0.05325315520167351,
0.011315081268548965,
0.0119340680539608,
0.031695879995822906,
-0.02957961894571781,
-0.02546589821577072,
0.0023339714389294386,
-0.022133925929665565,
-0.010472516529262066,
0.025474855676293373,
0.005012586712837219,
0.018932059407234192,
0.011185804381966591,
-0.0173837598413229,
0.032631441950798035,
0.03221915662288666,
-0.035121556371450424,
-0.04752449691295624,
0.00006753447814844549,
0.021782781928777695,
0.002841714071109891,
-0.0027090830262750387,
-0.02090214192867279,
0.003392979269847274,
-0.002091054804623127,
0.03797847405076027,
-0.0415688119828701,
0.022978713735938072,
-0.02830696664750576,
-0.03827105090022087,
0.03287482261657715,
-0.008121856488287449,
0.011912724003195763,
-0.014658341184258461,
-0.012291166000068188,
0.01693100482225418,
0.014567054808139801,
-0.010763443075120449,
-0.04777403548359871,
-0.04618993401527405,
-0.01659397967159748,
-0.02834222838282585,
0.03208562731742859,
0.0065103634260594845,
0.001276087248697877,
0.005024004261940718,
-0.0076155886054039,
0.04848237708210945,
0.028712131083011627,
0.027575353160500526,
0.010781068354845047,
0.01174295786768198,
-0.013153179548680782,
-0.009417411871254444,
0.00879676267504692,
-0.013769240118563175,
-0.006868292577564716,
0.03273462504148483,
0.006415273528546095,
-0.0029557489324361086,
-0.021335413679480553,
0.016975324600934982,
-0.03494621440768242,
-0.002842869609594345,
-0.02566995471715927,
-0.009151712991297245,
-0.05035943537950516,
0.03091946616768837,
-0.014721011742949486,
0.023366186767816544,
-0.06387770175933838,
0.02317127212882042,
-0.009563292376697063,
0.0333171971142292,
-0.04798797890543938,
-0.04528842493891716,
0.021424125880002975,
0.04720967635512352,
-0.004412309266626835,
-0.026766236871480942,
-0.051618218421936035,
0.017489880323410034,
0.014054212719202042,
0.02736448310315609,
0.02589777484536171,
0.013204379007220268,
-0.00039755128091201186,
-0.048252929002046585,
0.023183459416031837,
0.018200639635324478,
-0.01211966760456562,
-0.04372553899884224,
0.009520218707621098,
0.036993689835071564,
-0.03928200900554657,
-0.00724979629740119,
0.04080729931592941,
-0.024756796658039093,
-0.018593790009617805,
0.030314303934574127,
-0.0001224763400387019,
-0.006611603312194347,
-0.023519005626440048,
-0.03739392012357712,
0.01564023084938526,
0.0147178890183568,
-0.015791302546858788,
0.014808285050094128,
-0.029661409556865692,
0.005071662832051516,
-0.009247100912034512,
0.04272681847214699,
-0.013360105454921722,
0.001974033657461405,
-0.004419195931404829,
0.015452692285180092,
-0.030864769592881203,
0.020632056519389153,
-0.014962933957576752,
-0.03186541795730591,
-0.01726975291967392,
0.04909877851605415,
0.03517548739910126,
0.03963242843747139,
-0.031425587832927704,
0.038707371801137924,
0.04482724145054817,
0.008651116862893105,
0.01739398017525673,
0.006230253726243973,
0.05240906774997711,
0.013196400366723537,
-0.019850749522447586,
-0.004259588662534952
] |
Block Sparse Matrices for Smaller and Faster Language Models | madlag | Sep 10, 2020 | pytorch_block_sparse | research, nlp | https://huggingface.co/blog/pytorch_block_sparse | Saving space and time, one zero at a time In previous blog posts we introduced sparse matrices and what they could do to improve neural networks. The basic assumption is that full dense layers are often overkill and can be pruned without a significant loss in precision. In some cases sparse linear layers can even improve precision or/and generalization. The main issue is that currently available code that supports sparse algebra computation is severely lacking efficiency. We are also still waiting for official PyTorch support. That's why we ran out of patience and took some time this summer to address this "lacuna". Today, we are excited to release the extension pytorch_block_sparse. By itself, or even better combined with other methods like distillation and quantization, this library enables networks which are both smaller and faster, something Hugging Face considers crucial to let anybody use neural networks in production at low cost, and to improve the experience for the end user. | [
0.0587846040725708,
-0.028690306469798088,
0.04305073618888855,
0.0256342850625515,
0.00916850846260786,
0.00623107748106122,
0.017135411500930786,
-0.0018920234870165586,
-0.03637981414794922,
-0.04450840875506401,
-0.05359296500682831,
0.0032616963144391775,
0.023975854739546776,
-0.004087598994374275,
-0.025958441197872162,
-0.059978172183036804,
0.049585629254579544,
-0.00032095404458232224,
-0.007082337513566017,
0.04447062313556671,
0.02715306356549263,
-0.07154958695173264,
0.12248926609754562,
0.01462922990322113,
-0.04480503499507904,
-0.04137955605983734,
-0.008589542470872402,
-0.011642676778137684,
-0.016870465129613876,
0.06997966021299362,
-0.14233973622322083,
-0.010268389247357845,
-0.020501919090747833,
-0.035063520073890686,
0.046715617179870605,
-0.007657278794795275,
-0.0644315555691719,
0.0968005433678627,
0.015250364318490028,
-0.003819920588284731,
-0.01554003544151783,
0.021102299913764,
-0.0850309208035469,
0.049559108912944794,
-0.06825296580791473,
-0.03356758505105972,
-0.09718315303325653,
0.08804310858249664,
-0.03515668213367462,
-0.06603212654590607,
-0.07673562318086624,
0.05714871734380722,
-0.010992434807121754,
0.005488318856805563,
-0.04176563024520874,
-0.009367838501930237,
0.007376946974545717,
-0.0491442009806633,
0.021893100813031197,
-0.008496033027768135,
-0.015942834317684174,
-0.022718990221619606,
0.0036985184997320175,
0.021907677873969078,
-0.008901682682335377,
-0.008729595690965652,
-0.0030768192373216152,
-0.017811963334679604,
-0.08495141565799713,
0.04099429398775101,
0.04958999902009964,
0.07454100251197815,
-0.058748356997966766,
-0.02790680155158043,
-0.0017090382752940059,
0.0588955283164978,
-0.012879330664873123,
-0.01714380644261837,
0.04471093416213989,
0.03432382643222809,
0.013267102651298046,
0.06736455112695694,
0.04042518883943558,
0.08051619678735733,
0.046831268817186356,
0.014708544127643108,
-0.03126240149140358,
-0.08472906053066254,
-0.055949341505765915,
0.08154319226741791,
-0.015381610952317715,
-0.09958361834287643,
0.05334760248661041,
-0.0016959183849394321,
0.013972213491797447,
-0.018756624311208725,
-0.009757999330759048,
0.015742285177111626,
0.015163625590503216,
-0.01933709904551506,
-0.007193998899310827,
-0.08787069469690323,
-0.01138598658144474,
-0.04855456203222275,
-0.0634443536400795,
0.029996275901794434,
0.004759831819683313,
-0.06328394263982773,
0.0074914610013365746,
0.01422153040766716,
-0.009256117977201939,
0.048828817903995514,
0.020680049434304237,
0.04051610454916954,
-0.05549049377441406,
0.03764998912811279,
-0.02220873348414898,
0.014147583395242691,
-0.025698944926261902,
0.06527113914489746,
-0.030955083668231964,
0.11036700010299683,
0.04035872220993042,
0.00675536971539259,
0.04556645080447197,
0.03083520196378231,
0.004500377457588911,
0.040074944496154785,
0.057826269418001175,
-0.009542184881865978,
-0.0046767741441726685,
0.007928131148219109,
0.10127680748701096,
-0.01263884361833334,
0.030597470700740814,
-0.08468148857355118,
0.01261717639863491,
-0.008859789930284023,
0.029140448197722435,
-0.014898437075316906,
-0.036610279232263565,
0.08386772125959396,
0.030900293961167336,
0.015163282863795757,
0.057854022830724716,
-0.08349933475255966,
-0.03456004336476326,
0.03609119728207588,
0.04090632125735283,
-0.03607791289687157,
-0.06352859735488892,
0.041803304105997086,
-0.053259413689374924,
-0.03570688143372536,
-0.04141177982091904,
0.05581708252429962,
-0.04993990808725357,
-0.009947876445949078,
-0.02768781967461109,
-0.02607354335486889,
-0.0421697236597538,
-0.08392529934644699,
-0.014640772715210915,
-0.06167539954185486,
0.07456500083208084,
-0.02135402150452137,
0.06517297774553299,
0.025260189548134804,
0.005237361881881952,
0.04731542989611626,
0.015278254635632038,
-0.04417385533452034,
0.027480164542794228,
-0.0873933732509613,
-0.08577702194452286,
0.04678928852081299,
0.04761233925819397,
0.06392692029476166,
0.015535073354840279,
-0.018796853721141815,
-0.06487665325403214,
0.06264740973711014,
0.007162736728787422,
0.03585837781429291,
0.006099194288253784,
-0.06864875555038452,
0.052805401384830475,
0.022144900634884834,
0.00024712359299883246,
0.04388585686683655,
-0.051058050245046616,
0.06341030448675156,
0.01207801979035139,
-0.052506301552057266,
0.034574057906866074,
-0.011841269209980965,
-0.09050720930099487,
0.11977499723434448,
0.03840629383921623,
0.030545825138688087,
0.035878736525774,
0.02261815220117569,
-0.006423437502235174,
-0.016810083761811256,
0.06330154091119766,
0.03380018472671509,
-0.004485192243009806,
-0.01978931948542595,
-0.016011137515306473,
-0.027275629341602325,
0.006979105528444052,
-0.1251879185438156,
0.03094642050564289,
-0.04720620438456535,
-0.007232032250612974,
0.0010283776791766286,
0.009819132275879383,
0.006984821055084467,
-0.030213424935936928,
0.000293018005322665,
0.15999726951122284,
-0.06797733902931213,
-0.04196687042713165,
0.037774380296468735,
-0.0205011498183012,
0.0649920403957367,
0.09752620756626129,
0.022494245320558548,
0.038150765001773834,
-0.034012019634246826,
0.028451932594180107,
-0.08538960665464401,
-0.05888337641954422,
0.09833215177059174,
-0.0028607971034944057,
-0.028451265767216682,
0.002045657951384783,
-0.026789549738168716,
-0.013661222532391548,
-0.08329150825738907,
-0.022726694121956825,
-0.0027105254121124744,
0.054010409861803055,
0.006023919675499201,
-0.03616798669099808,
-0.02198736183345318,
0.06204259768128395,
-0.03999799117445946,
-0.0027619036845862865,
0.04395189881324768,
-0.04260820150375366,
0.04944070056080818,
-0.027806224301457405,
0.017113814130425453,
0.024159055203199387,
0.06001271307468414,
0.0163849089294672,
-0.024773485958576202,
0.02213781327009201,
0.046066515147686005,
0.016583876684308052,
-0.0011932997731491923,
-0.01785639487206936,
-0.049969300627708435,
-0.01961659826338291,
-0.032666392624378204,
0.01171443797647953,
-0.03413662314414978,
0.048273149877786636,
-0.02189004421234131,
0.06040095537900925,
-0.031700510531663895,
0.04383428394794464,
0.004067749250680208,
0.05576860532164574,
-0.002513889456167817,
-0.007577537093311548,
-0.04151211306452751,
0.01137410756200552,
-0.05942811071872711,
-0.0090993857011199,
-0.025340426713228226,
0.04855190962553024,
0.01005795132368803,
0.022970182821154594,
0.010929468087852001,
0.011735006235539913,
-0.00323237176053226,
-0.011495254933834076,
0.005092227831482887,
-0.013317575678229332,
0.03550881892442703,
-0.02917175181210041,
-0.06038077920675278,
-0.008879263885319233,
0.019387830048799515,
-0.00176720239687711,
0.01423403900116682,
-0.017613697797060013,
0.029988205060362816,
-0.011188514530658722,
-0.013897869735956192,
-0.027297265827655792,
0.01265209261327982,
-0.0039665354415774345,
0.024905208498239517,
0.03733939304947853,
0.021619172766804695,
-0.09074282646179199,
-0.02084791660308838,
-0.030682042241096497,
0.005220610182732344,
-0.06429129093885422,
-0.035282306373119354,
0.0019286024617031217,
0.0032044807448983192,
0.01890132576227188,
-0.01295112632215023,
0.026700105518102646,
0.000863104360178113,
-0.03631047531962395,
0.01518840529024601,
-0.01973589137196541,
-0.019643334671854973,
-0.0027880873531103134,
0.011747980490326881,
0.044027771800756454,
-0.024776821956038475,
-0.00991913117468357,
0.05709073320031166,
0.006177362985908985,
-0.017131995409727097,
0.01569606550037861,
-0.00034924130886793137,
0.0371842160820961,
0.038721129298210144,
0.004560630302876234,
-0.022601870819926262,
-0.04002600908279419,
-0.008904758840799332,
0.005702377296984196,
-0.011315345764160156,
-0.0424472950398922,
-0.009543852880597115,
-0.019144868478178978,
-0.0387912355363369,
0.051681749522686005,
0.023326272144913673,
0.02143040858209133,
0.01122855581343174,
0.030240783467888832,
-0.00241536065004766,
0.009489107877016068,
-0.007962399162352085,
-0.006378752179443836,
-0.015981310978531837,
0.028682680800557137,
-0.04067433625459671,
-0.017682252451777458,
-0.01084231212735176,
0.017059344798326492,
0.04351674020290375,
-0.007980688475072384,
0.024394512176513672,
-0.0064305211417376995,
0.014823506586253643,
0.0035430851858109236,
0.006730961613357067,
-0.04175292328000069,
0.05849263072013855,
0.0021874099038541317,
-0.02196030505001545,
-0.03683824837207794,
0.052500754594802856,
-0.01642557419836521,
0.002581582637503743,
0.00901489146053791,
0.042036376893520355,
-0.019632810726761818,
-0.013028288260102272,
-0.026857897639274597,
0.009094536304473877,
-0.022106867283582687,
0.02395188994705677,
-0.0005802831146866083,
0.01395705621689558,
0.04992985725402832,
0.04749136045575142,
-0.002210264792665839,
-0.057723768055438995,
0.02868545427918434,
0.013907444663345814,
-0.017454590648412704,
0.005574940703809261,
0.003742978908121586,
-0.040651895105838776,
0.019527757540345192,
0.04197147116065025,
0.014870407991111279,
-0.04553493857383728,
0.003817872377112508,
-0.009169353172183037,
-0.02766653522849083,
0.029694993048906326,
0.04358210042119026,
0.012811639346182346,
0.05188896507024765,
0.02364189736545086,
0.04257750138640404,
-0.05167044326663017,
-0.01704290881752968,
-0.06261995434761047,
0.0014681764878332615,
0.004659916274249554,
-0.05047718808054924,
0.03337133303284645,
0.0035069368313997984,
0.03586208447813988,
-0.025917019695043564,
0.0378754660487175,
-0.0031590876169502735,
0.0007274405215866864,
0.06260976195335388,
-0.0037806974723935127,
-0.040110837668180466,
-0.025291860103607178,
-0.015448825433850288,
0.026204165071249008,
-0.028673572465777397,
0.02447841316461563,
0.021096132695674896,
-0.00979312788695097,
0.016581805422902107,
-0.01946026086807251,
-0.02805611863732338,
0.01443629339337349,
0.008828450925648212,
-0.03806059807538986,
-0.03647531569004059,
0.01606104150414467,
0.007280054502189159,
0.013109422288835049,
0.011530683375895023,
0.027756858617067337,
-0.01650135964155197,
0.04092717543244362,
-0.052774738520383835,
-0.0547749400138855,
-0.01210717111825943,
0.03089849464595318,
0.023282334208488464,
-0.03860324248671532,
0.04909973591566086,
0.022753454744815826,
-0.02303135395050049,
0.00947474967688322,
-0.040739692747592926,
0.043839212507009506,
0.03478943929076195,
-0.040811434388160706,
-0.033374346792697906,
0.020249634981155396,
0.06392413377761841,
-0.04274532198905945,
-0.006854844745248556,
0.01608232781291008,
0.039994947612285614,
0.038692496716976166,
-0.02210306189954281,
-0.0038450811989605427,
-0.03242441639304161,
0.02003520168364048,
0.027782084420323372,
-0.057553980499506,
0.010614234022796154,
-0.02781957946717739,
-0.01273744273930788,
-0.022922944277524948,
-0.043935373425483704,
0.0027369195595383644,
-0.02597637288272381,
-0.028707092627882957,
0.04620177298784256,
0.01534948032349348,
0.025258470326662064,
-0.01205638237297535,
-0.0008670869283378124,
0.006510741077363491,
0.0010975749464705586,
0.01611969992518425,
0.07044690102338791,
0.04931290075182915,
0.03682728111743927,
0.053267184644937515,
0.00004211765553918667,
0.06026390939950943,
-0.03313290700316429,
0.0022926758974790573,
0.009712030179798603,
-0.018360013142228127,
0.043370045721530914,
-0.022578442469239235,
0.031017228960990906,
0.013022038154304028,
-0.03216082975268364,
-0.01010929699987173,
-0.016915397718548775,
0.005185780115425587,
-0.006635158322751522,
0.013678129762411118,
-0.05813567712903023,
0.03173285722732544,
0.040710754692554474,
0.022640714421868324,
-0.039922457188367844,
-0.010446249507367611,
0.030439915135502815,
-0.05101117864251137,
0.02587655559182167,
-0.007547194138169289,
0.004498980939388275,
-0.044206760823726654,
-0.019822711125016212,
-0.018829364329576492,
-0.047391071915626526,
0.020670663565397263,
-0.014495845884084702,
0.005703423637896776,
0.0010758874705061316,
-0.02737968973815441,
-0.02927933633327484,
-0.011930924840271473,
0.0016005089273676276,
-0.019136635586619377,
-0.0561956912279129,
0.019497552886605263,
-0.006791513878852129,
0.0283370278775692,
0.03608413413167,
-0.0035144330468028784,
0.010752245783805847,
0.006335630547255278,
-0.018136410042643547,
-0.0020196433179080486,
-0.002999323420226574,
0.04124579206109047,
0.010141902603209019,
-0.04831429198384285,
-0.018254825845360756,
-0.0193718783557415,
-0.007997823879122734,
0.006214037071913481,
-0.03817451372742653,
0.037969090044498444,
0.05195504054427147,
-0.004698367323726416,
0.016023147851228714,
0.0032156547531485558,
0.05931592360138893,
-0.010402214713394642,
0.002779314061626792,
-0.01012913603335619,
0.03911086916923523,
0.01094803586602211,
-0.009739270433783531,
-0.01674085110425949,
0.003468848066404462,
0.014186937361955643,
0.02859191782772541,
-0.0724717229604721,
-0.008548066020011902,
0.0062217446975409985,
0.00022658688249066472,
0.016788329929113388,
0.024167079478502274,
-0.05355551093816757,
0.03359965607523918,
-0.016440974548459053,
0.003155635902658105,
0.05059082433581352,
-0.00942246150225401,
0.04642190411686897,
-0.021709317341446877,
-0.016805021092295647,
0.012504915706813335,
0.023583989590406418,
-0.0075556072406470776,
0.006358507554978132,
0.012045064941048622,
0.013243625871837139,
0.020860128104686737,
0.011709338054060936,
-0.0036979373544454575,
-0.023445459082722664,
0.026795532554388046,
0.02346879243850708,
0.03674051910638809,
0.044712621718645096,
-0.015034722164273262,
-0.01080674584954977,
0.027530856430530548,
-0.042783088982105255,
-0.029575038701295853,
0.0010301077272742987,
0.04028518870472908,
-0.0010074274614453316,
0.010648075491189957,
-0.05146336555480957,
0.047019749879837036,
0.033944401890039444,
0.011922694742679596,
0.00363346841186285,
0.01931951381266117,
0.0362628772854805,
0.015485640615224838,
-0.022166645154356956,
0.01625274494290352,
0.02044379897415638,
-0.032559387385845184,
0.04908780753612518,
0.020503994077444077,
0.049817491322755814,
-0.0017982502467930317,
-0.012245994992554188,
0.0067996736615896225,
-0.02601565420627594,
0.03515392169356346,
0.011687135323882103,
-0.013495915569365025,
0.017016258090734482,
0.000675140880048275,
0.006684593390673399,
-0.01577281765639782,
0.03342944011092186,
-0.008546639233827591,
0.04080142080783844,
-0.0388159453868866,
0.022959547117352486,
-0.012139559723436832,
0.009090838022530079,
0.00449327053502202,
-0.000538225460331887,
0.04398277401924133,
-0.002476103138178587,
0.07832299917936325,
0.03738187253475189,
-0.05657275393605232,
-0.06008123233914375,
0.009800012223422527,
0.014017238281667233,
0.01323803048580885,
0.0070183188654482365,
-0.030646270141005516,
-0.014995532110333443,
0.00503814872354269,
0.02371598407626152,
0.012003626674413681,
0.0011286480585113168,
0.012096641585230827,
0.01269429363310337,
-0.05026983097195625,
0.00013305740139912814,
-0.005247647874057293,
-0.0232562143355608,
0.017549190670251846,
-0.023589245975017548,
-0.052155282348394394,
-0.01580335944890976,
-0.0019680075347423553,
-0.0028254028875380754,
0.008616571314632893,
-0.038019608706235886,
-0.0495394766330719,
-0.0022196280770003796,
-0.021259672939777374,
-0.026422416791319847,
-0.004070231691002846,
-0.0037383281160146,
-0.016582999378442764,
-0.010791251435875893,
-0.041166096925735474,
-0.03342524170875549,
-0.03586816042661667,
0.019529975950717926,
0.05785465985536575,
0.01934523694217205,
-0.009684829972684383,
-0.011910660192370415,
0.046360231935977936,
0.01988469436764717,
-0.018769901245832443,
0.01543593779206276,
0.01554832886904478,
-0.021198544651269913,
-0.059004805982112885,
0.0024508340284228325,
-0.0006431596120819449,
-0.01632210798561573,
-0.012783617712557316,
-0.0034327134490013123,
-0.016274958848953247,
-0.0029279158916324377,
0.046350255608558655,
0.0021270394790917635,
-0.05010044947266579,
0.01915936917066574,
-0.015011647716164589,
0.005769656039774418,
-0.04050314798951149,
-0.011692502535879612,
0.03271669149398804,
0.06755265593528748,
-0.014932218007743359,
-0.01941658928990364,
-0.02592962048947811,
-0.004851086065173149,
0.022104062139987946,
0.03810076415538788,
0.008195786736905575,
-0.04301903396844864,
-0.0006805931916460395,
-0.02564248815178871,
-0.030663758516311646,
0.053517475724220276,
-0.036385420709848404,
-0.037149496376514435,
0.014249788597226143,
0.024551497772336006,
-0.031070560216903687,
0.03262241929769516,
0.02869080938398838,
-0.027478588744997978,
0.0323374941945076,
0.0003069413942284882,
-0.01848587766289711,
0.002932837000116706,
0.015870878472924232,
-0.06036432459950447,
0.003045173827558756,
-0.027478421106934547,
0.0007700001588091254,
0.05206746980547905,
-0.013090517371892929,
0.03485429286956787,
-0.0012261258671060205,
-0.003146575763821602,
0.007128498051315546,
-0.007839599624276161,
-0.015904568135738373,
-0.007694360334426165,
0.00753035768866539,
0.03268580511212349,
-0.0024918692652136087,
-0.03225141391158104,
0.004828713368624449,
0.047223981469869614,
0.02994040586054325,
-0.00001418731153535191,
-0.0029148291796445847,
0.02151361294090748,
0.004099709913134575,
0.02403550036251545,
0.0038925406988710165,
0.031107336282730103,
0.012595940381288528,
0.018877383321523666,
-0.026109011843800545,
0.0007067181286402047
] |
Block Sparse Matrices for Smaller and Faster Language Models | madlag | Sep 10, 2020 | pytorch_block_sparse | research, nlp | https://huggingface.co/blog/pytorch_block_sparse | Performance At the current stage of the library, the performances for sparse matrices are roughly two times slower than their cuBLAS optimized dense counterpart, and we are confident that we can improve this in the future. This is a huge improvement on PyTorch sparse matrices: their current implementation is an order of magnitude slower than the dense one. But the more important point is that the performance gain of using sparse matrices grows with the sparsity, so a 75% sparse matrix is roughly 2x faster than the dense equivalent. The memory savings are even more significant: for 75% sparsity, memory consumption is reduced by 4x as you would expect. | [
0.05603835731744766,
0.038520365953445435,
0.0285977553576231,
0.026866722851991653,
-0.011210176162421703,
-0.04603636637330055,
-0.010985740460455418,
0.01282923948019743,
-0.04328387603163719,
-0.07418747246265411,
0.032737769186496735,
0.031032953411340714,
0.014741957187652588,
0.008859828114509583,
0.0236408282071352,
-0.03929424285888672,
0.06487686187028885,
-0.01928102597594261,
0.029509849846363068,
0.0317663699388504,
0.007329177111387253,
-0.0472550243139267,
0.11508946865797043,
-0.006402993109077215,
0.012754198163747787,
0.01631220057606697,
-0.024564120918512344,
0.000685203995089978,
-0.08746372908353806,
-0.007000642362982035,
-0.1434076875448227,
-0.01595894992351532,
0.011498089879751205,
-0.05601612851023674,
0.030681084841489792,
-0.003124302951619029,
-0.04539395123720169,
0.10039577633142471,
0.06495422124862671,
-0.012146607972681522,
0.010935315862298012,
0.007884367369115353,
-0.05950687825679779,
0.06660737842321396,
-0.0917573869228363,
-0.0047822087071835995,
-0.09220810234546661,
0.04939733445644379,
-0.029991308227181435,
-0.07766298204660416,
-0.11519250273704529,
0.009729997254908085,
0.0024366946890950203,
0.033155206590890884,
-0.006961690727621317,
-0.011661388911306858,
-0.0006264561670832336,
0.012188076972961426,
0.04598046466708183,
0.011790349148213863,
-0.01441086083650589,
0.0083848861977458,
-0.011969218030571938,
0.032781656831502914,
0.02236347272992134,
-0.0011924460995942354,
0.026823192834854126,
0.04153284430503845,
-0.04894799739122391,
0.06059886887669563,
0.032544638961553574,
0.046461232006549835,
-0.018551306799054146,
0.017566323280334473,
-0.038529861718416214,
0.010588943026959896,
0.005436159670352936,
0.01601635292172432,
0.03492587059736252,
0.02361789345741272,
-0.0036673026625066996,
0.05766335874795914,
0.050391536206007004,
0.01589849963784218,
0.02042519487440586,
0.013957660645246506,
-0.017976930364966393,
-0.054942741990089417,
-0.051685746759176254,
0.06689822673797607,
0.0049208831042051315,
-0.0671040415763855,
0.05696776509284973,
0.04768679663538933,
0.023140234872698784,
-0.01827194169163704,
0.02034933492541313,
0.018205808475613594,
-0.022691499441862106,
0.06931917369365692,
0.01008582767099142,
-0.03971767798066139,
0.01982715167105198,
-0.06382153183221817,
-0.022966282442212105,
0.011866176500916481,
-0.052026573568582535,
-0.09847413748502731,
0.026507021859288216,
0.07225767523050308,
-0.04021402820944786,
0.06665103137493134,
0.007562217302620411,
-0.006253908853977919,
-0.04411807283759117,
0.01595381647348404,
0.03755881264805794,
0.02356385439634323,
-0.036951471120119095,
0.10369375348091125,
-0.04749608784914017,
0.1540333479642868,
0.02879447117447853,
-0.0016227762680500746,
0.037560950964689255,
0.048292964696884155,
0.07423815131187439,
0.051043976098299026,
0.029935069382190704,
0.0005745477392338216,
0.05101100355386734,
0.032281890511512756,
0.07116301357746124,
-0.007104144897311926,
0.009589046239852905,
-0.09210166335105896,
-0.017813561484217644,
0.002901588100939989,
-0.02589672990143299,
-0.060421306639909744,
-0.07880370318889618,
0.035805922001600266,
0.036414895206689835,
0.09202089160680771,
0.06504245102405548,
-0.0850229263305664,
-0.0041704243049025536,
0.03936447948217392,
0.00027040307759307325,
-0.05060109496116638,
-0.07169774174690247,
0.06614096462726593,
-0.06181449070572853,
-0.042812783271074295,
-0.022332744672894478,
0.052521657198667526,
-0.023452142253518105,
-0.04224422201514244,
-0.07083645462989807,
0.003189970040693879,
-0.021447790786623955,
-0.019436044618487358,
0.005907991901040077,
-0.08531610667705536,
-0.0021964479237794876,
-0.006388220936059952,
0.04430560767650604,
-0.028519200161099434,
0.031070053577423096,
0.0538550429046154,
-0.001224230625666678,
-0.01867171749472618,
0.03955313190817833,
-0.01822185516357422,
-0.07103979587554932,
0.05967345088720322,
0.02783164009451866,
0.059980373829603195,
0.0013511829311028123,
-0.05713469907641411,
-0.047343358397483826,
0.03339751437306404,
-0.05978306755423546,
0.03874829784035683,
-0.03959263488650322,
-0.08510035276412964,
0.05405242368578911,
0.018163755536079407,
0.031901877373456955,
-0.0321674644947052,
-0.061730679124593735,
0.00789107196033001,
0.022755030542612076,
-0.03639831021428108,
0.09436890482902527,
-0.02828729711472988,
-0.003614981658756733,
0.10509703308343887,
0.022621192038059235,
0.02200300432741642,
0.027623094618320465,
0.00451522646471858,
-0.05086994916200638,
0.004120943136513233,
0.04046567901968956,
0.000648396962787956,
-0.000347883120412007,
0.013503200374543667,
0.04951360821723938,
-0.019721152260899544,
-0.026439324021339417,
-0.12433627247810364,
0.006405573338270187,
-0.07016129046678543,
0.008707499131560326,
0.005552679765969515,
0.06586066633462906,
0.021490493789315224,
-0.026698745787143707,
0.025324225425720215,
0.1671917587518692,
-0.025898460298776627,
-0.028024161234498024,
0.030514376237988472,
-0.034937772899866104,
0.05152567848563194,
0.044979482889175415,
-0.026243342086672783,
0.07593384385108948,
-0.04078209400177002,
0.00877353549003601,
-0.08719746023416519,
-0.02312524802982807,
0.1326320767402649,
0.010544970631599426,
-0.0303810965269804,
-0.02391485497355461,
0.01467188447713852,
0.027272827923297882,
-0.04165581241250038,
-0.05106111615896225,
-0.014055694453418255,
0.046504855155944824,
0.040220677852630615,
-0.03485003858804703,
-0.03889184072613716,
0.029661288484930992,
-0.056189727038145065,
0.011464627459645271,
-0.005569860804826021,
-0.06750202178955078,
-0.031068984419107437,
0.01941065862774849,
0.002102985279634595,
0.04539070650935173,
0.06347031146287918,
0.004350751172751188,
-0.08661582320928574,
0.01917283609509468,
0.005035312380641699,
0.035000622272491455,
0.009997081942856312,
-0.024524884298443794,
-0.017421722412109375,
-0.008559828624129295,
-0.02060881443321705,
-0.014528402127325535,
-0.026831353083252907,
0.02283497340977192,
-0.031932566314935684,
0.014733798801898956,
-0.039109792560338974,
0.039341188967227936,
-0.006924986839294434,
0.034794170409440994,
-0.023971684277057648,
-0.007965515367686749,
-0.09042714536190033,
-0.012529649771749973,
-0.03026469796895981,
0.003592899302020669,
-0.008239525370299816,
0.06332015991210938,
0.003163124667480588,
0.0023699651937931776,
0.0005227071233093739,
0.021304821595549583,
-0.015057609416544437,
-0.052977800369262695,
-0.006620793603360653,
-0.016020819544792175,
0.001990030985325575,
-0.0063961888663470745,
-0.04743587225675583,
-0.02143479883670807,
0.011451703496277332,
-0.02271496318280697,
-0.01638886146247387,
0.00028273751377128065,
0.004109987523406744,
-0.033187638968229294,
0.015077894553542137,
-0.016277406364679337,
-0.02073962800204754,
-0.048823509365320206,
0.01870793290436268,
-0.0003595992166083306,
0.027904128655791283,
-0.10175742208957672,
-0.0015600224724039435,
-0.006876802537590265,
0.003923971205949783,
-0.03587519749999046,
0.0003819122794084251,
-0.009449592791497707,
-0.00112161785364151,
0.03572680801153183,
-0.03037826158106327,
-0.004437333904206753,
0.013088952749967575,
-0.023055508732795715,
0.04258262738585472,
-0.013137996196746826,
0.014827052131295204,
0.028794968500733376,
0.044665031135082245,
0.0178398247808218,
0.008977158926427364,
0.012253624387085438,
0.031481388956308365,
-0.013397245667874813,
-0.0009465569746680558,
-0.0494232252240181,
0.013099053874611855,
-0.005364883691072464,
0.00835481844842434,
-0.0022616626229137182,
-0.03485450893640518,
-0.025913072749972343,
-0.008911913260817528,
0.0003240930673200637,
-0.03531702980399132,
-0.04308294132351875,
-0.008060927502810955,
-0.011142591945827007,
-0.006405415944755077,
0.020706241950392723,
0.03268083184957504,
0.005331427790224552,
0.03954027220606804,
0.03813378885388374,
0.005259334109723568,
0.018333731219172478,
0.04062904790043831,
0.0036187609657645226,
-0.011778868734836578,
0.043347086757421494,
-0.035556986927986145,
-0.02111639268696308,
0.002017059363424778,
0.005634688306599855,
0.06086394190788269,
0.0019748087506741285,
-0.019929692149162292,
0.010679190047085285,
0.03583092987537384,
0.028036097064614296,
-0.007071436382830143,
-0.009433089755475521,
0.0461655929684639,
0.024558618664741516,
0.0018875092500820756,
-0.0446687750518322,
0.0197308249771595,
0.01243178453296423,
0.012229986488819122,
-0.0011386398691684008,
-0.008860493078827858,
-0.04564232751727104,
-0.02235882543027401,
-0.011506264097988605,
0.020720601081848145,
-0.014728142879903316,
0.027991540729999542,
0.00696594500914216,
0.015562334097921848,
0.047661300748586655,
0.0319066047668457,
-0.017477933317422867,
-0.04448823258280754,
0.005505948793143034,
-0.012866574339568615,
-0.028857601806521416,
0.019931362941861153,
0.008702298626303673,
0.006234955042600632,
0.0158745888620615,
0.00450778566300869,
0.0062715704552829266,
-0.050806473940610886,
0.014760160818696022,
0.005216817371547222,
0.0098070427775383,
0.004216903820633888,
0.05170600488781929,
0.013349217362701893,
0.027882270514965057,
0.04041193798184395,
0.06779546290636063,
-0.001005089608952403,
-0.00478002056479454,
-0.010085991583764553,
-0.00482915248721838,
0.008342400193214417,
-0.03915867954492569,
0.0169456135481596,
0.01792176067829132,
0.01842108555138111,
0.022723982110619545,
-0.007059586700052023,
0.013562968000769615,
-0.02108016237616539,
0.0354190319776535,
0.004525478463619947,
-0.012251594103872776,
-0.01866043172776699,
-0.03130921721458435,
0.06149575114250183,
-0.07076548784971237,
0.03607355058193207,
-0.009780620224773884,
0.0014649488730356097,
-0.007894954644143581,
-0.0042289975099265575,
-0.011748328804969788,
0.012352289631962776,
0.005484619177877903,
-0.050639376044273376,
-0.0272672101855278,
0.001951695652678609,
0.006103726103901863,
-0.004424368496984243,
0.0021916688419878483,
0.0012250153813511133,
-0.00888330489397049,
0.026639299467206,
-0.014367327094078064,
-0.05758483335375786,
-0.021259887143969536,
0.0015192452119663358,
0.008988790214061737,
-0.029955675825476646,
0.07465986907482147,
0.016364479437470436,
-0.06002582609653473,
0.008924733847379684,
-0.06922326236963272,
0.04806290194392204,
0.05759534612298012,
-0.03995463252067566,
-0.0053163249976933,
0.009118868969380856,
0.0191266480833292,
-0.04042491689324379,
0.004633412696421146,
0.00986296683549881,
0.0369250625371933,
0.018527580425143242,
-0.02292570099234581,
0.01838378794491291,
-0.03238380700349808,
-0.0009021190344356,
0.012920155189931393,
-0.03334027901291847,
0.029133964329957962,
-0.03165419027209282,
0.021054094657301903,
-0.0110001340508461,
0.02651466801762581,
0.01181249599903822,
-0.02088266611099243,
-0.031186701729893684,
0.06529403477907181,
-0.016384828835725784,
-0.01600985787808895,
-0.030452579259872437,
0.03344206511974335,
0.011593722738325596,
-0.020525751635432243,
0.0002627326175570488,
0.0374196395277977,
-0.0028264711145311594,
0.01683523692190647,
0.019913578405976295,
-0.020974546670913696,
0.0515604205429554,
-0.010679371654987335,
0.007353144697844982,
0.018239151686429977,
-0.009114325046539307,
0.05001939460635185,
-0.06519806385040283,
0.05322609096765518,
-0.03863964229822159,
-0.002110671019181609,
-0.014190491288900375,
-0.022255253046751022,
0.042631227523088455,
0.0032413408625870943,
-0.003220426384359598,
-0.029779501259326935,
0.006753191351890564,
0.016368193551898003,
0.026866652071475983,
0.007281928323209286,
-0.02901737578213215,
0.00392521545290947,
-0.052638161927461624,
0.03517650440335274,
-0.014238685369491577,
-0.03849860280752182,
-0.035373613238334656,
0.01588556356728077,
-0.014057248830795288,
-0.07013265788555145,
0.015475115738809109,
-0.015841543674468994,
0.028191816061735153,
0.00423031160607934,
-0.03954044729471207,
-0.03979877382516861,
-0.022938156500458717,
-0.01090421061962843,
0.024410346522927284,
-0.02010159380733967,
0.014782829210162163,
-0.024262860417366028,
0.054388582706451416,
0.041454069316387177,
-0.040264926850795746,
0.02045055478811264,
-0.01926785707473755,
0.005364546552300453,
0.01183410082012415,
0.0067848023027181625,
0.037149012088775635,
0.0036314374301582575,
-0.002451260108500719,
-0.045692041516304016,
-0.028671052306890488,
-0.03559280186891556,
0.02630261518061161,
-0.06082828715443611,
0.019036803394556046,
0.0671037882566452,
-0.027162009850144386,
-0.014248307794332504,
0.0050687906332314014,
0.037289299070835114,
-0.013294185511767864,
0.01425199955701828,
-0.028050268068909645,
0.027979718521237373,
0.043554190546274185,
-0.014998700469732285,
-0.04213565215468407,
0.00878160446882248,
0.02061999775469303,
0.05051656812429428,
-0.034806933254003525,
0.019909383729100227,
0.04464198276400566,
-0.033580511808395386,
0.009190966375172138,
0.04290799796581268,
-0.06174858659505844,
0.022181842476129532,
-0.01853913813829422,
-0.0021826059091836214,
0.049871351569890976,
-0.012427768670022488,
0.036935146898031235,
-0.010968423448503017,
-0.03895978629589081,
-0.028551984578371048,
0.04110037907958031,
-0.021855460479855537,
0.052084844559431076,
0.0019821731839329004,
0.036417264491319656,
0.004017791710793972,
0.01325681246817112,
-0.02555100806057453,
0.007640983443707228,
0.01350346114486456,
-0.010556950233876705,
0.040458355098962784,
0.04359383508563042,
-0.027416670694947243,
0.00048726802924647927,
0.004160476382821798,
-0.01602587103843689,
-0.03379618003964424,
0.016596492379903793,
0.022098207846283913,
0.021222533658146858,
0.016399996355175972,
-0.07200415432453156,
-0.004726909101009369,
0.0254512932151556,
0.025684596970677376,
-0.031191544607281685,
0.01965213567018509,
0.005870553199201822,
0.029037121683359146,
-0.008923486806452274,
-0.012657327577471733,
0.001621793257072568,
-0.011734198778867722,
0.05291455239057541,
0.04059794545173645,
0.037961445748806,
-0.0012952475808560848,
-0.03271130472421646,
0.003619176335632801,
0.011102798394858837,
0.005962224677205086,
0.03628377243876457,
-0.011525198817253113,
-0.006842153612524271,
0.03170965611934662,
-0.012858254835009575,
-0.023624055087566376,
0.028454424813389778,
0.01611003279685974,
-0.007612047716975212,
-0.010091761127114296,
-0.00101226638071239,
-0.01810433343052864,
0.027989771217107773,
-0.018831562250852585,
-0.0013125871773809195,
-0.0028367345221340656,
0.024161148816347122,
0.03900323808193207,
0.03755774348974228,
-0.032019034028053284,
-0.019380168989300728,
0.03727768361568451,
0.017848141491413116,
-0.02422763966023922,
0.002218658570200205,
-0.06312468647956848,
0.01643151044845581,
0.016484538093209267,
0.014043502509593964,
-0.018864331766963005,
0.018965691328048706,
-0.008530237711966038,
0.009864365682005882,
-0.07550796121358871,
0.0321115143597126,
-0.03318777307868004,
-0.007678457535803318,
0.019639570266008377,
0.008731584995985031,
-0.016177887097001076,
-0.023658668622374535,
0.0403224341571331,
0.027656493708491325,
-0.015000489540398121,
-0.014411075972020626,
-0.0460386648774147,
-0.005841976497322321,
-0.04450013488531113,
0.0010730784852057695,
-0.010265965946018696,
0.031351808458566666,
-0.0010834361892193556,
0.017744358628988266,
-0.06560220569372177,
0.00508430041372776,
-0.018922703340649605,
0.012839714996516705,
0.045507561415433884,
-0.0053337146528065205,
0.0009462290327064693,
-0.025595350190997124,
0.050456829369068146,
-0.01186579093337059,
-0.011869854293763638,
0.049339935183525085,
0.008702617138624191,
-0.019639072939753532,
-0.05280245468020439,
0.01898631639778614,
0.018009886145591736,
-0.014264620840549469,
0.019788028672337532,
-0.03329559415578842,
-0.02281826175749302,
-0.024643246084451675,
0.015641208738088608,
0.009201412089169025,
-0.04715866222977638,
0.03451235592365265,
0.0008213877445086837,
0.015081056393682957,
-0.06263324618339539,
-0.017608631402254105,
0.046207696199417114,
0.0818188264966011,
-0.014512689784169197,
-0.005336319096386433,
-0.03849447891116142,
-0.014214265160262585,
-0.002961269346997142,
0.0035932075697928667,
0.008273168466985226,
-0.006647242698818445,
-0.024503203108906746,
-0.03842005133628845,
0.004083619453012943,
0.020709142088890076,
-0.006513363681733608,
-0.014876595698297024,
0.009136791341006756,
0.010402821004390717,
0.002914677606895566,
-0.010678581893444061,
0.015589817427098751,
-0.00430265674367547,
0.055985745042562485,
0.009887994267046452,
0.0032016397453844547,
0.00922163762152195,
-0.00012691476149484515,
-0.03621905669569969,
-0.020026884973049164,
-0.010238010436296463,
0.0031070190016180277,
0.057561032474040985,
-0.002079133875668049,
0.03167461231350899,
-0.016969623044133186,
-0.003974570892751217,
0.003649509744718671,
0.00039297048351727426,
-0.00970893632620573,
-0.07418495416641235,
-0.02302367426455021,
0.027488654479384422,
-0.00037403826718218625,
-0.06803625077009201,
0.011181573383510113,
0.0018966239877045155,
0.027663391083478928,
0.02213088609278202,
0.025276867672801018,
-0.008181320503354073,
0.0317995548248291,
0.020787551999092102,
-0.00984139833599329,
0.03540228679776192,
0.0022925869561731815,
0.02461341582238674,
-0.0003787707246374339,
-0.006227412726730108
] |
Block Sparse Matrices for Smaller and Faster Language Models | madlag | Sep 10, 2020 | pytorch_block_sparse | research, nlp | https://huggingface.co/blog/pytorch_block_sparse | Future work Being able to efficiently train block-sparse linear layers was just the first step. The sparsity pattern is currenly fixed at initialization, and of course optimizing it during learning will yield large improvements. So in future versions, you can expect tools to measure the "usefulness" of parameters to be able to optimize the sparsity pattern. NVIDIA Ampere 50% sparse pattern within blocks will probably yield another significant performance gain, just as upgrading to more recent versions of CUTLASS does. So, stay tuned for more sparsity goodness in a near future! | [
0.05828782543540001,
-0.059852905571460724,
0.02830982580780983,
0.07345510274171829,
0.03394237533211708,
-0.0026873936876654625,
-0.02886098250746727,
0.026262551546096802,
-0.09130092710256577,
-0.09766731411218643,
-0.018021531403064728,
0.06315033882856369,
0.03206024318933487,
0.00661757355555892,
0.027671797201037407,
-0.019437899813055992,
0.035209186375141144,
-0.03725650534033775,
-0.0306452177464962,
0.06340529024600983,
-0.0096818208694458,
-0.0600736178457737,
0.14815190434455872,
0.005211178679019213,
0.014784885570406914,
-0.030957210808992386,
-0.007533425465226173,
0.02565721608698368,
-0.049747273325920105,
0.028414050117135048,
-0.0695343017578125,
0.040695738047361374,
-0.05598372220993042,
-0.07523197680711746,
-0.052970029413700104,
-0.00933102797716856,
-0.05625470355153084,
0.002801926340907812,
0.04306997358798981,
-0.017070239409804344,
-0.008724996820092201,
-0.030177751556038857,
-0.027791785076260567,
0.05655520781874657,
-0.05190553516149521,
-0.004876572638750076,
-0.09806600213050842,
0.03065849281847477,
-0.014596698805689812,
-0.05314560607075691,
-0.06457522511482239,
0.0707089826464653,
-0.006868582218885422,
0.016176346689462662,
0.008045482449233532,
-0.05426901578903198,
0.023400716483592987,
0.01931125484406948,
0.027212893590331078,
-0.04725347086787224,
0.023330621421337128,
0.01842120662331581,
-0.03568850830197334,
-0.009619375690817833,
0.011376348324120045,
-0.008057383820414543,
0.0245254784822464,
0.03320090472698212,
-0.07001768797636032,
0.0034010575618594885,
0.06909748911857605,
-0.025230098515748978,
0.029423056170344353,
-0.0008154794340953231,
-0.05061440169811249,
0.04247499629855156,
0.012880231253802776,
0.03960197791457176,
0.04714730381965637,
0.044105011969804764,
0.018913548439741135,
0.05225927755236626,
0.02245432883501053,
0.05269995704293251,
-0.01447433140128851,
-0.019397126510739326,
-0.0026334519498050213,
-0.058231763541698456,
-0.07419712841510773,
0.06864655762910843,
0.002444943878799677,
-0.09708864241838455,
0.0682249367237091,
0.027114862576127052,
0.030457304790616035,
-0.015436958521604538,
-0.006491555832326412,
0.0014659195439890027,
-0.0087652038782835,
0.017910612747073174,
-0.01962805725634098,
-0.06596489250659943,
0.01066576223820448,
-0.027515310794115067,
-0.05686153098940849,
0.009717288427054882,
-0.04997233673930168,
-0.09475622326135635,
-0.013931399211287498,
0.05739797651767731,
0.001835160655900836,
0.01685420051217079,
0.04909256100654602,
0.017893852666020393,
-0.08334209769964218,
0.009499575011432171,
-0.003605418372899294,
0.02864709310233593,
-0.029867608100175858,
0.050055745989084244,
-0.038525402545928955,
0.11819762736558914,
0.04948732256889343,
-0.0008072616765275598,
-0.008864893577992916,
0.027578718960285187,
0.048506464809179306,
0.07030706852674484,
0.0453130304813385,
-0.03334059938788414,
0.013914634473621845,
0.03599704056978226,
-0.008442784659564495,
0.03531209006905556,
0.004001098219305277,
-0.09118971973657608,
-0.013038655743002892,
0.006851315498352051,
-0.027905981987714767,
-0.048237577080726624,
-0.12457209825515747,
0.01218409463763237,
0.028696367517113686,
0.014178660698235035,
0.07548188418149948,
-0.07107662409543991,
0.017573587596416473,
0.02082287147641182,
0.049703940749168396,
0.006432196591049433,
-0.00001376407908537658,
0.030718831345438957,
-0.0669826865196228,
-0.06934450566768646,
0.03076433204114437,
-0.011630184017121792,
-0.03005209006369114,
-0.013449017889797688,
-0.07271285355091095,
-0.009322591125965118,
-0.03274296596646309,
-0.05164347589015961,
0.014454254880547523,
0.002576692495495081,
0.05421704053878784,
-0.02907412312924862,
0.08910387754440308,
-0.03838413208723068,
0.022287314757704735,
0.030994674190878868,
-0.021174170076847076,
0.01652643270790577,
0.010405349545180798,
-0.044784072786569595,
-0.08664289861917496,
0.014807475730776787,
0.016518978402018547,
0.12329985946416855,
0.017569266259670258,
-0.03241189941763878,
-0.04407375305891037,
0.009093108586966991,
-0.024722835049033165,
0.07395830005407333,
-0.015083997510373592,
-0.08702035248279572,
0.033072348684072495,
0.003890788881108165,
-0.03351764380931854,
0.002570173004642129,
-0.04979889839887619,
0.05192237347364426,
0.04962819814682007,
-0.029008757323026657,
0.05372793972492218,
-0.06320468336343765,
-0.05864708125591278,
0.09499988704919815,
0.03425000607967377,
0.08090133965015411,
0.09177868068218231,
0.004181270021945238,
-0.040361400693655014,
-0.014672703109681606,
-0.0003056857967749238,
-0.006766920909285545,
0.008996226824820042,
0.05649469047784805,
0.060049086809158325,
-0.016815435141324997,
-0.04276230186223984,
-0.10117443650960922,
-0.00420505553483963,
0.0005800631479360163,
-0.0042593954131007195,
0.013739721849560738,
0.028631458058953285,
0.007211126387119293,
-0.04479270428419113,
-0.027132995426654816,
0.13263222575187683,
0.01948998123407364,
-0.048173800110816956,
0.04403838887810707,
-0.08494003117084503,
0.008973796851933002,
0.08122207969427109,
0.009686186909675598,
0.04224485903978348,
-0.06776217371225357,
0.03394464775919914,
-0.056062981486320496,
-0.04406779259443283,
0.16221670806407928,
-0.012853412888944149,
0.007287308573722839,
0.019017955288290977,
-0.020242473110556602,
0.09510574489831924,
-0.05394725129008293,
-0.035431016236543655,
-0.01203335914760828,
0.023939035832881927,
0.0003933260159101337,
-0.0009069641819223762,
-0.04300989583134651,
0.08963831514120102,
-0.028924981132149696,
-0.011546616442501545,
-0.0010543428361415863,
-0.028079938143491745,
0.05281667038798332,
-0.026893682777881622,
-0.031157543882727623,
0.034564998000860214,
-0.004387758672237396,
0.005603729747235775,
-0.04606075957417488,
0.010927402414381504,
0.0038236347027122974,
0.021451028063893318,
-0.0036088968627154827,
-0.04961594194173813,
-0.008373312652111053,
0.010729510337114334,
-0.01465122401714325,
0.02544158510863781,
-0.04873869568109512,
0.02415747568011284,
-0.007699511479586363,
0.017192013561725616,
-0.02336898259818554,
0.018839465454220772,
-0.03115105628967285,
-0.0030417582020163536,
-0.023383384570479393,
-0.024178193882107735,
-0.09415555000305176,
0.017283838242292404,
-0.04507104679942131,
0.00327245588414371,
-0.02213248983025551,
0.027629034593701363,
0.012129598297178745,
-0.007488455157727003,
0.020517975091934204,
0.011027650907635689,
-0.00571512570604682,
-0.018919775262475014,
-0.007951292209327221,
-0.020027436316013336,
0.011048770509660244,
-0.003290677908807993,
-0.020307179540395737,
-0.0009050266235135496,
0.03487975895404816,
-0.02199726365506649,
-0.029509248211979866,
-0.004187397193163633,
-0.001849820837378502,
-0.012090761214494705,
0.04184466600418091,
0.014280738309025764,
-0.011365608312189579,
-0.031362757086753845,
0.023002468049526215,
0.0032106225844472647,
0.06198753044009209,
-0.09863332659006119,
-0.03828522935509682,
0.015113676898181438,
0.02884361334145069,
-0.06666716933250427,
-0.03480274975299835,
0.010250426828861237,
0.01539426390081644,
0.06720654666423798,
-0.02238127402961254,
0.02485385537147522,
0.03557422384619713,
-0.04164045676589012,
0.0321686826646328,
-0.03169774264097214,
0.0004215109220240265,
0.02642061375081539,
0.0003610990534070879,
0.004201195668429136,
-0.023026589304208755,
-0.02016470953822136,
0.039076413959264755,
0.0126764802262187,
0.019126582890748978,
-0.010009978897869587,
0.008535707369446754,
0.03360934928059578,
0.03691541776061058,
0.017371345311403275,
-0.04060285910964012,
-0.031255725771188736,
0.020638147369027138,
-0.013982649892568588,
0.01567443646490574,
-0.007250867318361998,
-0.00574121531099081,
-0.004350009374320507,
-0.027527710422873497,
0.05590075999498367,
0.02606671117246151,
-0.004696382209658623,
-0.007181946188211441,
0.04095252975821495,
-0.011826244182884693,
0.05078591778874397,
0.004893093835562468,
0.02178412489593029,
0.019021768122911453,
0.050209615379571915,
-0.03511704504489899,
-0.04406219720840454,
-0.029903527349233627,
-0.005611602682620287,
0.05770110711455345,
-0.03320347145199776,
-0.0020377824548631907,
0.02410290576517582,
0.033136531710624695,
0.008807525970041752,
-0.02966914512217045,
-0.02398514561355114,
0.019619038328528404,
0.007226632442325354,
0.042597852647304535,
-0.022174600511789322,
0.04496873915195465,
0.0033914141822606325,
0.030266473069787025,
-0.015573016367852688,
0.010679295286536217,
-0.012940675020217896,
0.02623961865901947,
-0.010666093789041042,
0.00017290405230596662,
-0.01914725825190544,
0.020280133932828903,
0.011489556171000004,
0.018745195120573044,
0.041830938309431076,
0.030947962775826454,
0.017427412793040276,
-0.02439884841442108,
0.015164241194725037,
-0.026688704267144203,
-0.015006772242486477,
0.021795019507408142,
0.03144330158829689,
-0.009271880611777306,
0.02672511152923107,
0.025820566341280937,
0.029779203236103058,
-0.059096526354551315,
0.005268226843327284,
-0.045016542077064514,
0.02320932224392891,
0.016307901591062546,
0.01805521361529827,
0.0014350938145071268,
0.023730631917715073,
-0.0034671335015445948,
0.05309807509183884,
-0.04682575538754463,
0.045694414526224136,
-0.010553832165896893,
-0.00403056712821126,
0.02360011264681816,
-0.005172202829271555,
-0.012342819944024086,
0.008356762118637562,
-0.00412027956917882,
0.0009776130318641663,
-0.01687541976571083,
-0.008305606432259083,
0.0008487835293635726,
0.052797041833400726,
0.011310789734125137,
-0.05672341212630272,
0.04606442525982857,
-0.023219991475343704,
0.012817233800888062,
-0.038413144648075104,
0.008053258992731571,
-0.006405199877917767,
-0.012891837395727634,
0.03869025781750679,
-0.02182285115122795,
-0.0074800411239266396,
0.015697427093982697,
0.01720120944082737,
-0.010267529636621475,
-0.041975222527980804,
-0.0347764790058136,
0.001222925609908998,
0.026494236662983894,
-0.005031968466937542,
0.004382836166769266,
-0.026936346665024757,
0.025959137827157974,
0.021289411932229996,
-0.049099400639534,
-0.001413067919202149,
0.024312051013112068,
0.01787819340825081,
-0.02936016209423542,
0.12354768067598343,
0.020871983841061592,
-0.024349920451641083,
0.002085501793771982,
-0.013801408931612968,
0.05035139247775078,
-0.009499849751591682,
-0.058076370507478714,
-0.03765273466706276,
0.01607544906437397,
0.015286790207028389,
-0.03400028869509697,
0.0003003540332429111,
-0.003054022789001465,
0.020264048129320145,
0.027857676148414612,
-0.013581453822553158,
0.002769435988739133,
-0.04995802789926529,
-0.01115313172340393,
-0.0030416662339121103,
-0.043337494134902954,
0.022943133488297462,
-0.02343720570206642,
0.0001656646782066673,
-0.014103827066719532,
0.0017510619945824146,
-0.028565099462866783,
0.02616809867322445,
-0.04903683811426163,
0.05105157196521759,
-0.013518941588699818,
-0.016109896823763847,
0.00012896338012069464,
0.05456490442156792,
-0.011885830201208591,
-0.015899881720542908,
0.0002859843662008643,
0.04820174723863602,
0.010797572322189808,
-0.0003412362129893154,
0.03315427154302597,
-0.004737718962132931,
0.08527489006519318,
-0.012234778143465519,
0.01797395758330822,
0.06751692295074463,
-0.002549896016716957,
0.02468045987188816,
-0.05655413493514061,
0.01320984959602356,
0.014373448677361012,
0.008141594007611275,
-0.01693604327738285,
-0.03336590528488159,
0.017489396035671234,
-0.02579359896481037,
0.019059032201766968,
-0.016570737585425377,
0.021451881155371666,
-0.01355839241296053,
0.06455887854099274,
0.011394031345844269,
-0.007935036905109882,
-0.0283917635679245,
-0.0402127243578434,
-0.01440772507339716,
-0.004377311561256647,
-0.000654081639368087,
-0.03806320205330849,
0.003539371769875288,
-0.014305264689028263,
-0.014527210965752602,
0.014609797857701778,
0.025557784363627434,
-0.006383594591170549,
-0.01544843427836895,
0.004033403936773539,
-0.052533917129039764,
-0.01670086570084095,
-0.005480151157826185,
0.02266688272356987,
-0.016485735774040222,
0.010595984756946564,
-0.003333509899675846,
0.05318281427025795,
0.04065650328993797,
-0.03343944251537323,
-0.000814324535895139,
0.008367374539375305,
0.01770213432610035,
0.008171666413545609,
-0.01319716963917017,
0.04400317370891571,
0.0007920627249404788,
-0.03677574545145035,
-0.0009528457885608077,
-0.03045901469886303,
-0.016011875122785568,
0.016723746433854103,
-0.04846698045730591,
0.04409540817141533,
0.04586104676127434,
-0.038905009627342224,
-0.020123956725001335,
0.026869170367717743,
0.06999003142118454,
-0.00186687964014709,
0.0057517453096807,
0.011743694543838501,
0.006049315445125103,
-0.01281596627086401,
-0.005841830279678106,
-0.012521266005933285,
-0.02047708071768284,
0.0007714293315075338,
0.0319233164191246,
-0.04729527607560158,
0.033744145184755325,
0.017357908189296722,
-0.034080106765031815,
0.025800250470638275,
-0.016234425827860832,
-0.04618532955646515,
0.03531437739729881,
-0.006011148449033499,
-0.014677125960588455,
0.02766362577676773,
0.02842189185321331,
0.0320318341255188,
-0.05557478964328766,
-0.06377460062503815,
-0.03461335971951485,
0.03446825593709946,
0.0022959543857723475,
0.0060073076747357845,
-0.03539923578500748,
0.05783643573522568,
0.01765962690114975,
0.024341290816664696,
-0.019651269540190697,
-0.0051460107788443565,
0.00948823057115078,
0.020764099434018135,
0.05239098146557808,
0.007512047421187162,
-0.003544387174770236,
-0.014461434446275234,
0.026826826855540276,
-0.04130040854215622,
-0.02854379452764988,
-0.012536630034446716,
-0.019947605207562447,
-0.02392592839896679,
0.02276017889380455,
-0.04133714362978935,
-0.02221202664077282,
0.06485350430011749,
-0.011727472767233849,
-0.03588933125138283,
0.028403157368302345,
0.045778632164001465,
0.021208155900239944,
-0.02252320386469364,
0.031047428026795387,
-0.013925652951002121,
-0.046331387013196945,
0.045245666056871414,
0.003019615076482296,
0.04440157860517502,
0.010193396359682083,
-0.025496119633316994,
0.06445048749446869,
0.0012447648914530873,
-0.0008616425911895931,
0.03444293886423111,
-0.02257571741938591,
0.008800369687378407,
0.04281600937247276,
0.016611339524388313,
-0.03896551951766014,
0.005830379202961922,
0.0114195067435503,
0.0027634233701974154,
-0.00894180592149496,
0.020170655101537704,
-0.008470071479678154,
0.0009981285547837615,
-0.03448835760354996,
0.012941780500113964,
-0.012999395839869976,
-0.001138355117291212,
0.05073876306414604,
0.01836574263870716,
0.018632346764206886,
-0.06323767453432083,
0.04330464079976082,
0.007252658251672983,
0.020971408113837242,
0.02628825046122074,
-0.002920325379818678,
-0.0037551401183009148,
-0.006277419626712799,
-0.004307824186980724,
-0.010380275547504425,
0.0036530657671391964,
-0.0054112630896270275,
-0.040486957877874374,
-0.054269902408123016,
0.023119432851672173,
-0.028372008353471756,
-0.021590135991573334,
0.00436912477016449,
-0.014140128158032894,
-0.0023406848777085543,
-0.04416054114699364,
-0.007981695234775543,
0.021080585196614265,
0.01733483374118805,
-0.025749962776899338,
-0.015237451530992985,
-0.048732709139585495,
-0.038842953741550446,
0.011940117925405502,
-0.02904980257153511,
0.02143087051808834,
-0.0278178658336401,
-0.010862024500966072,
0.01868537813425064,
0.002149811713024974,
-0.013828535564243793,
0.06652557849884033,
-0.00024320551892742515,
-0.003693879581987858,
-0.021499767899513245,
-0.011418432928621769,
0.06330537796020508,
0.0029566569719463587,
0.009664184413850307,
0.02464594878256321,
0.03430696576833725,
0.002106815343722701,
-0.045546505600214005,
0.024437708780169487,
0.020968299359083176,
0.015173171646893024,
-0.010145055130124092,
-0.024564679712057114,
-0.03684017062187195,
0.0031811497174203396,
-0.014637477695941925,
-0.03227287530899048,
-0.02420674078166485,
0.0320359542965889,
-0.009209358133375645,
0.02234431356191635,
-0.05816993489861488,
-0.011951941065490246,
0.03153884410858154,
0.03715295344591141,
0.003735405160114169,
0.011634658090770245,
-0.06370827555656433,
-0.027924634516239166,
0.027920154854655266,
0.05374351888895035,
0.026574058458209038,
0.02572661265730858,
-0.0025778026320040226,
-0.05053064227104187,
0.0017475899076089263,
-0.004837318789213896,
-0.035639889538288116,
-0.023502878844738007,
0.037093475461006165,
0.003197151469066739,
-0.026574810966849327,
-0.020418301224708557,
0.010603638365864754,
0.005439318250864744,
0.02736152522265911,
0.02175683155655861,
-0.014520561322569847,
-0.005382020957767963,
0.028545841574668884,
-0.01941753551363945,
-0.009860754944384098,
-0.0071304780431091785,
0.03181269019842148,
0.06238348409533501,
0.009911001659929752,
0.004033755976706743,
-0.00035228204797022045,
-0.015440670773386955,
-0.01111291628330946,
0.007855341769754887,
-0.007754836697131395,
-0.03374158963561058,
0.010551780462265015,
0.01523671392351389,
0.005104498937726021,
-0.04789220914244652,
-0.01589387282729149,
0.053044408559799194,
0.03307650610804558,
0.011856471188366413,
-0.008176859468221664,
0.025239180773496628,
0.05412201210856438,
0.011947537772357464,
-0.02450508065521717,
0.03152842819690704,
0.04452802613377571,
0.027027292177081108,
-0.0037759176921099424,
-0.011159052141010761
] |
Transformer-based Encoder-Decoder Models | patrickvonplaten | October 10, 2020 | encoder-decoder | research, nlp | https://huggingface.co/blog/encoder-decoder | Decoder As mentioned in the Encoder-Decoder section, the transformer-based decoder defines the conditional probability distribution of a target sequence given the contextualized encoding sequence: $$ p_{\theta_{dec}}(\mathbf{Y}{1: m} | \mathbf{\overline{X}}{1:n}), $$ which by Bayes\' rule can be decomposed into a product of conditional distributions of the next target vector given the contextualized encoding sequence and all previous target vectors: $$ p_{\theta_{dec}}(\mathbf{Y}{1:m} | \mathbf{\overline{X}}{1:n}) = \prod_{i=1}^{m} p_{\theta_{dec}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{\overline{X}}_{1:n}). $$ Let\'s first understand how the transformer-based decoder defines a probability distribution. The transformer-based decoder is a stack of decoder blocks followed by a dense layer, the \"LM head\". The stack of decoder blocks maps the contextualized encoding sequence \(\mathbf{\overline{X}}_{1:n}\) and a target vector sequence prepended by the \(\text{BOS}\) vector and cut to the last target vector, i.e. \(\mathbf{Y}{0:i-1}\), to an encoded sequence of target vectors \(\mathbf{\overline{Y}}{0: i-1}\). Then, the \"LM head\" maps the encoded sequence of target vectors \(\mathbf{\overline{Y}}{0: i-1}\) to a sequence of logit vectors \(\mathbf{L}{1:n} = \mathbf{l}1, \ldots, \mathbf{l}_n\), whereas the dimensionality of each logit vector \(\mathbf{l}_i\) corresponds to the size of the vocabulary. This way, for each \(i \in {1, \ldots, n}\) a probability distribution over the whole vocabulary can be obtained by applying a softmax operation on \(\mathbf{l}_i\). These distributions define the conditional distribution: $$p{\theta_{dec}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{\overline{X}}_{1:n}), \forall i \in {1, \ldots, n},$$ respectively. The \"LM head\" is often tied to the transpose of the word embedding matrix, i.e. \(\mathbf{W}{\text{emb}}^{\intercal} = \left[\mathbf{y}^1, \ldots, \mathbf{y}^{\text{vocab}}\right]^{\intercal}\) \({}^1\). Intuitively this means that for all \(i \in {0, \ldots, n - 1}\) the \"LM Head\" layer compares the encoded output vector \(\mathbf{\overline{y}}_i\) to all word embeddings in the vocabulary \(\mathbf{y}^1, \ldots, \mathbf{y}^{\text{vocab}}\) so that the logit vector \(\mathbf{l}{i+1}\) represents the similarity scores between the encoded output vector and each word embedding. The softmax operation simply transformers the similarity scores to a probability distribution. For each \(i \in {1, \ldots, n}\), the following equations hold: $$ p_{\theta_{dec}}(\mathbf{y} | \mathbf{\overline{X}}{1:n}, \mathbf{Y}{0:i-1})$$ $$ = \text{Softmax}(f_{\theta_{\text{dec}}}(\mathbf{\overline{X}}{1:n}, \mathbf{Y}{0:i-1}))$$ $$ = \text{Softmax}(\mathbf{W}{\text{emb}}^{\intercal} \mathbf{\overline{y}}{i-1})$$ $$ = \text{Softmax}(\mathbf{l}i). $$ Putting it all together, in order to model the conditional distribution of a target vector sequence \(\mathbf{Y}{1: m}\), the target vectors \(\mathbf{Y}_{1:m-1}\) prepended by the special \(\text{BOS}\) vector, i.e. \(\mathbf{y}0\), are first mapped together with the contextualized encoding sequence \(\mathbf{\overline{X}}{1:n}\) to the logit vector sequence \(\mathbf{L}{1:m}\). Consequently, each logit target vector \(\mathbf{l}_i\) is transformed into a conditional probability distribution of the target vector \(\mathbf{y}_i\) using the softmax operation. Finally, the conditional probabilities of all target vectors \(\mathbf{y}_1, \ldots, \mathbf{y}_m\) multiplied together to yield the conditional probability of the complete target vector sequence: $$ p{\theta_{dec}}(\mathbf{Y}{1:m} | \mathbf{\overline{X}}{1:n}) = \prod_{i=1}^{m} p_{\theta_{dec}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{\overline{X}}_{1:n}).$$ In contrast to transformer-based encoders, in transformer-based decoders, the encoded output vector \(\mathbf{\overline{y}}_i\) should be a good representation of the next target vector \(\mathbf{y}{i+1}\) and not of the input vector itself. Additionally, the encoded output vector \(\mathbf{\overline{y}}_i\) should be conditioned on all contextualized encoding sequence \(\mathbf{\overline{X}}{1:n}\). To meet these requirements each decoder block consists of a uni-directional self-attention layer, followed by a cross-attention layer and two feed-forward layers \({}^2\). The uni-directional self-attention layer puts each of its input vectors \(\mathbf{y'}j\) only into relation with all previous input vectors \(\mathbf{y'}_i, \text{ with } i \le j\) for all \(j \in {1, \ldots, n}\) to model the probability distribution of the next target vectors. The cross-attention layer puts each of its input vectors \(\mathbf{y''}_j\) into relation with all contextualized encoding vectors \(\mathbf{\overline{X}}{1:n}\) to condition the probability distribution of the next target vectors on the input of the encoder as well. Alright, let\'s visualize the transformer-based decoder for our English to German translation example. We can see that the decoder maps the input \(\mathbf{Y}_{0:5}\) \"BOS\", \"Ich\", \"will\", \"ein\", \"Auto\", \"kaufen\" (shown in light red) together with the contextualized sequence of \"I\", \"want\", \"to\", \"buy\", \"a\", \"car\", \"EOS\", i.e. \(\mathbf{\overline{X}}{1:7}\) (shown in dark green) to the logit vectors \(\mathbf{L}{1:6}\) (shown in dark red). Applying a softmax operation on each \(\mathbf{l}1, \mathbf{l}_2, \ldots, \mathbf{l}_5\) can thus define the conditional probability distributions: $$ p{\theta_{dec}}(\mathbf{y} | \text{BOS}, \mathbf{\overline{X}}{1:7}), $$ $$ p{\theta_{dec}}(\mathbf{y} | \text{BOS Ich}, \mathbf{\overline{X}}{1:7}), $$ $$ \ldots, $$ $$ p{\theta_{dec}}(\mathbf{y} | \text{BOS Ich will ein Auto kaufen}, \mathbf{\overline{X}}{1:7}). $$ The overall conditional probability of: $$ p{\theta_{dec}}(\text{Ich will ein Auto kaufen EOS} | \mathbf{\overline{X}}{1:n})$$ can therefore be computed as the following product: $$ p{\theta_{dec}}(\text{Ich} | \text{BOS}, \mathbf{\overline{X}}{1:7}) \times \ldots \times p{\theta_{dec}}(\text{EOS} | \text{BOS Ich will ein Auto kaufen}, \mathbf{\overline{X}}{1:7}). $$ The red box on the right shows a decoder block for the first three target vectors \(\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2\). In the lower part, the uni-directional self-attention mechanism is illustrated and in the middle, the cross-attention mechanism is illustrated. Let\'s first focus on uni-directional self-attention. As in bi-directional self-attention, in uni-directional self-attention, the query vectors \(\mathbf{q}_0, \ldots, \mathbf{q}{m-1}\) (shown in purple below), key vectors \(\mathbf{k}0, \ldots, \mathbf{k}{m-1}\) (shown in orange below), and value vectors \(\mathbf{v}0, \ldots, \mathbf{v}{m-1}\) (shown in blue below) are projected from their respective input vectors \(\mathbf{y'}0, \ldots, \mathbf{y'}{m-1}\) (shown in light red below). However, in uni-directional self-attention, each query vector \(\mathbf{q}_i\) is compared only to its respective key vector and all previous ones, namely \(\mathbf{k}_0, \ldots, \mathbf{k}_i\) to yield the respective attention weights. This prevents an output vector \(\mathbf{y''}j\) (shown in dark red below) to include any information about the following input vector \(\mathbf{y}_i, \text{ with } i > j\) for all \(j \in {0, \ldots, m - 1 }\). As is the case in bi-directional self-attention, the attention weights are then multiplied by their respective value vectors and summed together. We can summarize uni-directional self-attention as follows: $$\mathbf{y''}_i = \mathbf{V}{0: i} \textbf{Softmax}(\mathbf{K}_{0: i}^\intercal \mathbf{q}_i) + \mathbf{y'}_i. $$ Note that the index range of the key and value vectors is \(0:i\) instead of \(0: m-1\) which would be the range of the key vectors in bi-directional self-attention. Let\'s illustrate uni-directional self-attention for the input vector \(\mathbf{y'}_1\) for our example above. As can be seen \(\mathbf{y''}_1\) only depends on \(\mathbf{y'}_0\) and \(\mathbf{y'}_1\). Therefore, we put the vector representation of the word \"Ich\", i.e. \(\mathbf{y'}_1\) only into relation with itself and the \"BOS\" target vector, i.e. \(\mathbf{y'}_0\), but not with the vector representation of the word \"will\", i.e. \(\mathbf{y'}2\). So why is it important that we use uni-directional self-attention in the decoder instead of bi-directional self-attention? As stated above, a transformer-based decoder defines a mapping from a sequence of input vector \(\mathbf{Y}{0: m-1}\) to the logits corresponding to the next decoder input vectors, namely \(\mathbf{L}_{1:m}\). In our example, this means, e.g. that the input vector \(\mathbf{y}1\) = \"Ich\" is mapped to the logit vector \(\mathbf{l}_2\), which is then used to predict the input vector \(\mathbf{y}_2\). Thus, if \(\mathbf{y'}_1\) would have access to the following input vectors \(\mathbf{Y'}{2:5}\), the decoder would simply copy the vector representation of \"will\", i.e. \(\mathbf{y'}2\), to be its output \(\mathbf{y''}_1\). This would be forwarded to the last layer so that the encoded output vector \(\mathbf{\overline{y}}_1\) would essentially just correspond to the vector representation \(\mathbf{y}_2\). This is obviously disadvantageous as the transformer-based decoder would never learn to predict the next word given all previous words, but just copy the target vector \(\mathbf{y}_i\) through the network to \(\mathbf{\overline{y}}{i-1}\) for all \(i \in {1, \ldots, m }\). In order to define a conditional distribution of the next target vector, the distribution cannot be conditioned on the next target vector itself. It does not make much sense to predict \(\mathbf{y}i\) from \(p(\mathbf{y} | \mathbf{Y}{0:i}, \mathbf{\overline{X}})\) because the distribution is conditioned on the target vector it is supposed to model. The uni-directional self-attention architecture, therefore, allows us to define a causal probability distribution, which is necessary to effectively model a conditional distribution of the next target vector. Great! Now we can move to the layer that connects the encoder and decoder - the cross-attention mechanism! The cross-attention layer takes two vector sequences as inputs: the outputs of the uni-directional self-attention layer, i.e. \(\mathbf{Y''}{0: m-1}\) and the contextualized encoding vectors \(\mathbf{\overline{X}}{1:n}\). As in the self-attention layer, the query vectors \(\mathbf{q}0, \ldots, \mathbf{q}{m-1}\) are projections of the output vectors of the previous layer, i.e. \(\mathbf{Y''}{0: m-1}\). However, the key and value vectors \(\mathbf{k}_0, \ldots, \mathbf{k}{m-1}\) and \(\mathbf{v}0, \ldots, \mathbf{v}{m-1}\) are projections of the contextualized encoding vectors \(\mathbf{\overline{X}}_{1:n}\). Having defined key, value, and query vectors, a query vector \(\mathbf{q}_i\) is then compared to all key vectors and the corresponding score is used to weight the respective value vectors, just as is the case for bi-directional self-attention to give the output vector \(\mathbf{y'''}i\) for all \(i \in {0, \ldots, m-1}\). Cross-attention can be summarized as follows: $$ \mathbf{y'''}_i = \mathbf{V}{1:n} \textbf{Softmax}(\mathbf{K}{1: n}^\intercal \mathbf{q}_i) + \mathbf{y''}_i. $$ Note that the index range of the key and value vectors is \(1:n\) corresponding to the number of contextualized encoding vectors. Let\'s visualize the cross-attention mechanism for the input vector \(\mathbf{y''}_1\) for our example above. We can see that the query vector \(\mathbf{q}_1\) (shown in purple) is derived from \(\mathbf{y''}_1\)(shown in red) and therefore relies on a vector representation of the word \"Ich\". The query vector \(\mathbf{q}_1\) is then compared to the key vectors \(\mathbf{k}_1, \ldots, \mathbf{k}_7\) (shown in yellow) corresponding to the contextual encoding representation of all encoder input vectors \(\mathbf{X}{1:n}\) = \"I want to buy a car EOS\". This puts the vector representation of \"Ich\" into direct relation with all encoder input vectors. Finally, the attention weights are multiplied by the value vectors \(\mathbf{v}1, \ldots, \mathbf{v}_7\) (shown in turquoise) to yield in addition to the input vector \(\mathbf{y''}_1\) the output vector \(\mathbf{y'''}_1\) (shown in dark red). So intuitively, what happens here exactly? Each output vector \(\mathbf{y'''}_i\) is a weighted sum of all value projections of the encoder inputs \(\mathbf{v}{1}, \ldots, \mathbf{v}_7\) plus the input vector itself \(\mathbf{y''}_i\) (c.f. illustrated formula above). The key mechanism to understand is the following: Depending on how similar a query projection of the input decoder vector \(\mathbf{q}_i\) is to a key projection of the encoder input vector \(\mathbf{k}j\), the more important is the value projection of the encoder input vector \(\mathbf{v}_j\). In loose terms this means, the more \"related\" a decoder input representation is to an encoder input representation, the more does the input representation influence the decoder output representation. Cool! Now we can see how this architecture nicely conditions each output vector \(\mathbf{y'''}_i\) on the interaction between the encoder input vectors \(\mathbf{\overline{X}}{1:n}\) and the input vector \(\mathbf{y''}i\). Another important observation at this point is that the architecture is completely independent of the number \(n\) of contextualized encoding vectors \(\mathbf{\overline{X}}{1:n}\) on which the output vector \(\mathbf{y'''}i\) is conditioned on. All projection matrices \(\mathbf{W}^{\text{cross}}{k}\) and \(\mathbf{W}^{\text{cross}}_{v}\) to derive the key vectors \(\mathbf{k}_1, \ldots, \mathbf{k}_n\) and the value vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n\) respectively are shared across all positions \(1, \ldots, n\) and all value vectors \( \mathbf{v}_1, \ldots, \mathbf{v}_n \) are summed together to a single weighted averaged vector. Now it becomes obvious as well, why the transformer-based decoder does not suffer from the long-range dependency problem, the RNN-based decoder suffers from. Because each decoder logit vector is directly dependent on every single encoded output vector, the number of mathematical operations to compare the first encoded output vector and the last decoder logit vector amounts essentially to just one. To conclude, the uni-directional self-attention layer is responsible for conditioning each output vector on all previous decoder input vectors and the current input vector and the cross-attention layer is responsible to further condition each output vector on all encoded input vectors. To verify our theoretical understanding, let\'s continue our code example from the encoder section above. ------------------------------------------------------------------------ \({}^1\) The word embedding matrix \(\mathbf{W}_{\text{emb}}\) gives each input word a unique context-independent vector representation. This matrix is often fixed as the \"LM Head\" layer. However, the \"LM Head\" layer can very well consist of a completely independent \"encoded vector-to-logit\" weight mapping. \({}^2\) Again, an in-detail explanation of the role the feed-forward layers play in transformer-based models is out-of-scope for this notebook. It is argued in Yun et. al, (2017) that feed-forward layers are crucial to map each contextual vector \(\mathbf{x'}_i\) individually to the desired output space, which the self-attention layer does not manage to do on its own. It should be noted here, that each output token \(\mathbf{x'}\) is processed by the same feed-forward layer. For more detail, the reader is advised to read the paper. python from transformers import MarianMTModel, MarianTokenizer import torch tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") embeddings = model.get_input_embeddings() # create token ids for encoder input input_ids = tokenizer("I want to buy a car", return_tensors="pt").input_ids # pass input token ids to encoder encoder_output_vectors = model.base_model.encoder(input_ids, return_dict=True).last_hidden_state # create token ids for decoder input decoder_input_ids = tokenizer("<pad> Ich will ein", return_tensors="pt", add_special_tokens=False).input_ids # pass decoder input ids and encoded input vectors to decoder decoder_output_vectors = model.base_model.decoder(decoder_input_ids, encoder_hidden_states=encoder_output_vectors).last_hidden_state # derive embeddings by multiplying decoder outputs with embedding weights lm_logits = torch.nn.functional.linear(decoder_output_vectors, embeddings.weight, bias=model.final_logits_bias) # change the decoder input slightly decoder_input_ids_perturbed = tokenizer("<pad> Ich will das", return_tensors="pt", add_special_tokens=False).input_ids decoder_output_vectors_perturbed = model.base_model.decoder(decoder_input_ids_perturbed, encoder_hidden_states=encoder_output_vectors).last_hidden_state lm_logits_perturbed = torch.nn.functional.linear(decoder_output_vectors_perturbed, embeddings.weight, bias=model.final_logits_bias) # compare shape and encoding of first vector print(f"Shape of decoder input vectors {embeddings(decoder_input_ids).shape}. Shape of decoder logits {lm_logits.shape}") # compare values of word embedding of "I" for input_ids and perturbed input_ids print("Is encoding for `Ich` equal to its perturbed version?: ", torch.allclose(lm_logits[0, 0], lm_logits_perturbed[0, 0], atol=1e-3)) Output: Shape of decoder input vectors torch.Size([1, 5, 512]). Shape of decoder logits torch.Size([1, 5, 58101]) Is encoding for `Ich` equal to its perturbed version?: True We compare the output shape of the decoder input word embeddings, i.e. embeddings(decoder_input_ids) (corresponds to \(\mathbf{Y}{0: 4}\), here <pad> corresponds to BOS and \"Ich will das\" is tokenized to 4 tokens) with the dimensionality of the lm_logits(corresponds to \(\mathbf{L}{1:5}\)). Also, we have passed the word sequence \"<pad> Ich will ein\" and a slightly perturbated version \"<pad> Ich will das\" together with the encoder_output_vectors through the decoder to check if the second lm_logit, corresponding to \"Ich\", differs when only the last word is changed in the input sequence (\"ein\" -> \"das\"). As expected the output shapes of the decoder input word embeddings and lm_logits, i.e. the dimensionality of \(\mathbf{Y}{0: 4}\) and \(\mathbf{L}{1:5}\) are different in the last dimension. While the sequence length is the same (=5), the dimensionality of a decoder input word embedding corresponds to model.config.hidden_size, whereas the dimensionality of a lm_logit corresponds to the vocabulary size model.config.vocab_size, as explained above. Second, it can be noted that the values of the encoded output vector of \(\mathbf{l}1 = \text{"Ich"}\) are the same when the last word is changed from \"ein\" to \"das\". This however should not come as a surprise if one has understood uni-directional self-attention. On a final side-note, _auto-regressive models, such as GPT2, have the same architecture as transformer-based decoder models if one removes the cross-attention layer because stand-alone auto-regressive models are not conditioned on any encoder outputs. So auto-regressive models are essentially the same as auto-encoding models but replace bi-directional attention with uni-directional attention. These models can also be pre-trained on massive open-domain text data to show impressive performances on natural language generation (NLG) tasks. In Radford et al. (2019), the authors show that a pre-trained GPT2 model can achieve SOTA or close to SOTA results on a variety of NLG tasks without much fine-tuning. All auto-regressive models of 🤗Transformers can be found here. Alright, that\'s it! Now, you should have gotten a good understanding of transformer-based encoder-decoder models and how to use them with the 🤗Transformers library. Thanks a lot to Victor Sanh, Sasha Rush, Sam Shleifer, Oliver Åstrand, Ted Moskovitz and Kristian Kyvik for giving valuable feedback. | [
0.03537491336464882,
0.01233337726444006,
0.06202572211623192,
-0.019714578986167908,
0.09158548712730408,
0.061693187803030014,
0.02175789140164852,
0.03355993330478668,
-0.017041482031345367,
0.025425026193261147,
-0.07943876832723618,
0.034651175141334534,
0.01181337982416153,
0.0702233761548996,
-0.038797955960035324,
-0.007306226994842291,
0.03161470592021942,
-0.08142906427383423,
0.015033058822154999,
-0.016598081216216087,
0.015372516587376595,
-0.09788516163825989,
0.023839261382818222,
-0.020587176084518433,
-0.030289912596344948,
-0.010485916398465633,
-0.021481243893504143,
0.007555370219051838,
-0.06296125054359436,
0.043841298669576645,
-0.1097121313214302,
-0.00039659618050791323,
0.01007165852934122,
-0.04291880130767822,
-0.003079500515013933,
-0.01447746716439724,
-0.16014325618743896,
-0.057364825159311295,
0.025211207568645477,
0.036703698337078094,
-0.018406447023153305,
-0.008452663198113441,
-0.059406645596027374,
0.005582219455391169,
-0.025329526513814926,
-0.05282111093401909,
-0.18113496899604797,
0.08478216826915741,
-0.054955486208200455,
-0.059596605598926544,
-0.027277279645204544,
0.023363834246993065,
-0.03548625111579895,
0.09354303777217865,
0.006549866404384375,
-0.038321830332279205,
0.01631135120987892,
-0.07364201545715332,
0.049229007214307785,
-0.020153334364295006,
0.011837393045425415,
0.002854984486475587,
0.03068576753139496,
0.011670948937535286,
0.007736230734735727,
0.020903224125504494,
0.015312859788537025,
0.019151361659169197,
0.029632961377501488,
-0.018727071583271027,
-0.06561657041311264,
0.014416616410017014,
-0.025005189701914787,
-0.005932121071964502,
-0.005713325459510088,
0.01767493598163128,
-0.010818981565535069,
0.03270361199975014,
0.041771046817302704,
-0.0014009459409862757,
0.023180363699793816,
0.04338495805859566,
0.03794237598776817,
0.08960617333650589,
0.05597732961177826,
0.026059679687023163,
0.07356240600347519,
-0.050934482365846634,
-0.048707492649555206,
0.10108238458633423,
-0.016810230910778046,
-0.12187380343675613,
-0.0050226435996592045,
0.0015882488805800676,
0.05908088758587837,
-0.004143082536756992,
0.02138107270002365,
0.046476371586322784,
-0.021639110520482063,
-0.020830437541007996,
0.01497550681233406,
0.01921090856194496,
0.07815749943256378,
-0.03387811407446861,
-0.01777496375143528,
0.004426664672791958,
-0.005503058433532715,
-0.05389254167675972,
-0.03998975828289986,
0.015171080827713013,
0.01459044124931097,
-0.05866531282663345,
0.03043649159371853,
0.01889044977724552,
-0.06857141107320786,
-0.0061038159765303135,
0.03899333253502846,
0.0007229560287669301,
0.005489293485879898,
0.03699972853064537,
-0.03492363169789314,
0.10919485241174698,
0.02267508953809738,
-0.03881707787513733,
-0.06112256646156311,
-0.053477443754673004,
-0.02342466451227665,
-0.009223194792866707,
-0.009405395947396755,
-0.0421135239303112,
0.05479693040251732,
-0.04966896027326584,
0.03157632052898407,
0.008075259625911713,
-0.07645656913518906,
-0.04536528140306473,
-0.0178799070417881,
-0.015583566389977932,
-0.03053221106529236,
-0.04659520462155342,
-0.09260404109954834,
0.04299187287688255,
0.001708921161480248,
-0.02597893588244915,
0.004506553988903761,
-0.041700609028339386,
-0.06680245697498322,
0.05815112218260765,
0.05757186561822891,
0.045082248747348785,
0.0009706920245662332,
0.03541405871510506,
0.021395819261670113,
-0.07244514673948288,
0.01610264927148819,
0.02063174359500408,
-0.005713417660444975,
-0.03666882589459419,
-0.10629023611545563,
0.008949995040893555,
0.008185634389519691,
0.01517014391720295,
-0.0016184841515496373,
0.01358942873775959,
0.0431942418217659,
-0.087541364133358,
0.028444498777389526,
0.03840728476643562,
-0.01928490400314331,
0.017178107053041458,
0.0023858705535531044,
-0.048587583005428314,
0.02396349236369133,
0.013180798850953579,
-0.014126146212220192,
0.04087112843990326,
0.012593703344464302,
0.08666130155324936,
0.03433406352996826,
-0.06602899730205536,
-0.06950010359287262,
-0.00465398607775569,
0.027484284713864326,
-0.028994830325245857,
-0.029534243047237396,
-0.04984298348426819,
-0.023207534104585648,
-0.053276535123586655,
-0.01706819422543049,
0.08868779242038727,
-0.08973681181669235,
-0.07208722829818726,
0.03779180720448494,
-0.055159177631139755,
0.026200829073786736,
-0.057383760809898376,
-0.03014119155704975,
0.0890573188662529,
0.08879794925451279,
0.03521811217069626,
0.03394269943237305,
0.019156472757458687,
0.005050611682236195,
-0.033097606152296066,
0.017067071050405502,
-0.006752608343958855,
-0.009672033600509167,
-0.007618951611220837,
0.06988494098186493,
-0.0059653036296367645,
-0.005611967761069536,
-0.03444617986679077,
-0.01273295097053051,
-0.10502051562070847,
0.011970870196819305,
-0.043165598064661026,
-0.033419981598854065,
0.024587197229266167,
0.015721924602985382,
-0.030463114380836487,
0.12344615161418915,
-0.06142738461494446,
-0.04728436842560768,
-0.01795925199985504,
0.05618178844451904,
0.02641274221241474,
0.0546271875500679,
-0.06964367628097534,
0.038954030722379684,
-0.08456512540578842,
-0.011558454483747482,
-0.02363506704568863,
0.07551489770412445,
0.02320202626287937,
-0.04156462103128433,
-0.07353014498949051,
-0.029516160488128662,
0.027504296973347664,
0.02329832874238491,
-0.0363217368721962,
0.030214743688702583,
0.03359620273113251,
0.00756035465747118,
-0.012504491955041885,
-0.07236922532320023,
-0.004671136382967234,
0.05164169892668724,
-0.0479888841509819,
0.010229489766061306,
0.03682216629385948,
-0.08887220919132233,
0.06991342455148697,
0.006965657230466604,
-0.08810844272375107,
0.006327503826469183,
0.08839356899261475,
0.01548006571829319,
-0.01877407170832157,
-0.02263326570391655,
0.016733625903725624,
-0.017018290236592293,
-0.022309772670269012,
-0.02867691032588482,
-0.05425487458705902,
-0.032080505043268204,
0.009802225977182388,
0.024862445890903473,
0.03887895122170448,
-0.03197178244590759,
0.03200773894786835,
0.0040929848328232765,
0.014418967068195343,
0.016668586060404778,
-0.01014637015759945,
0.03022903949022293,
-0.04579804092645645,
0.05226108431816101,
-0.017974408343434334,
-0.021793676540255547,
-0.007130427751690149,
-0.021797098219394684,
-0.0022525638341903687,
0.039613910019397736,
0.05432042106986046,
0.0012328863376751542,
0.014024145901203156,
0.007591418921947479,
0.01112269051373005,
0.005813575815409422,
0.026403386145830154,
0.03286134824156761,
0.045803409069776535,
0.029975872486829758,
-0.008448596112430096,
-0.02948804385960102,
-0.007596351206302643,
-0.007868990302085876,
-0.008113784715533257,
-0.023384984582662582,
0.005318140611052513,
-0.0009276363998651505,
0.03733913600444794,
0.04463934898376465,
-0.012876847758889198,
-0.019060486927628517,
0.011205996386706829,
0.025197869166731834,
0.09813638776540756,
-0.09195876866579056,
-0.03580740839242935,
0.005615942645817995,
-0.010868172161281109,
0.011172812432050705,
-0.0403660424053669,
0.05961313471198082,
-0.0027460313867777586,
-0.027327273041009903,
-0.018672620877623558,
0.06183154508471489,
-0.00099269044585526,
0.006281863898038864,
-0.015780802816152573,
0.007797883823513985,
-0.05546443164348602,
-0.004923737142235041,
0.012529396452009678,
0.05308886989951134,
-0.016265416517853737,
0.015202573500573635,
0.01082076970487833,
-0.011275408789515495,
0.03188224881887436,
-0.02835926041007042,
0.009678819216787815,
0.043688636273145676,
0.006082603242248297,
-0.004460436291992664,
0.010649673640727997,
-0.0573449470102787,
-0.0012032802915200591,
-0.0006594326114282012,
-0.00046326342271640897,
-0.01810803823173046,
0.013347983360290527,
0.03706284239888191,
-0.015269745141267776,
-0.002619189443066716,
0.048516273498535156,
-0.0011978043476119637,
0.011094028130173683,
0.000373876333469525,
-0.012318284250795841,
0.03968578204512596,
-0.020251838490366936,
0.008015059866011143,
-0.04294399544596672,
0.001575231901369989,
-0.05864766240119934,
-0.020429162308573723,
-0.02158348821103573,
-0.00836738757789135,
0.020213430747389793,
0.024737050756812096,
0.022696195170283318,
0.013264544308185577,
-0.003619341179728508,
0.02015906572341919,
0.01882890798151493,
-0.02225504443049431,
0.048217661678791046,
0.018172895535826683,
-0.01280925516039133,
-0.029238950461149216,
0.05453141778707504,
0.021115364506840706,
0.049551479518413544,
-0.014343108050525188,
0.048151880502700806,
0.016877802088856697,
0.02807743102312088,
-0.015213428065180779,
0.001382889342494309,
0.011610966175794601,
0.02955043874680996,
-0.032172203063964844,
0.005391119979321957,
0.10726302862167358,
0.01879747211933136,
0.0018520705634728074,
-0.006442777346819639,
-0.050576984882354736,
0.015039860270917416,
-0.0194151159375906,
0.04028909653425217,
-0.008785109035670757,
0.01717912033200264,
0.01570967212319374,
-0.028324276208877563,
0.019381379708647728,
-0.015174365602433681,
0.0018901920411735773,
0.016431989148259163,
-0.02473956160247326,
0.052228428423404694,
0.0010092380689457059,
0.02111327461898327,
0.02063782513141632,
0.02160523645579815,
0.06166592985391617,
-0.08783777803182602,
-0.03473013639450073,
-0.020396247506141663,
-0.030117111280560493,
0.023631377145648003,
0.009130965918302536,
-0.012511184439063072,
0.04983437806367874,
-0.0048498488031327724,
0.05347117781639099,
0.002103910082951188,
0.0022299785632640123,
0.03269726037979126,
0.036122798919677734,
-0.027485456317663193,
-0.021335918456315994,
-0.0800173208117485,
0.0035705443006008863,
0.016609547659754753,
-0.016674943268299103,
-0.019112635403871536,
-0.0007344653713516891,
0.009870404377579689,
0.013209285214543343,
0.0013543276581913233,
0.014677975326776505,
0.018373722210526466,
-0.008444778621196747,
-0.03672907501459122,
-0.032172366976737976,
0.01338234730064869,
0.05375023931264877,
0.0038921479135751724,
0.028779268264770508,
0.022866375744342804,
0.02698500268161297,
0.015143182128667831,
0.011281690560281277,
-0.06026969477534294,
-0.03384208306670189,
0.04257693886756897,
0.04276936128735542,
-0.024162570014595985,
0.029663771390914917,
-0.011280291713774204,
-0.00883086584508419,
-0.005498999264091253,
-0.03400753065943718,
-0.0169407669454813,
0.040343716740608215,
0.013504674658179283,
-0.03559597581624985,
0.0039332215674221516,
0.0171196348965168,
-0.03674875944852829,
-0.009535210207104683,
0.0326901450753212,
0.012161076068878174,
0.012328516691923141,
-0.01021844893693924,
0.009470845572650433,
-0.04427044093608856,
-0.0020468556322157383,
-0.023657580837607384,
0.030103497207164764,
-0.031204046681523323,
-0.025688165798783302,
0.009607856161892414,
0.060380592942237854,
-0.022615909576416016,
-0.02691744826734066,
0.022593125700950623,
0.002324992325156927,
-0.05184958502650261,
0.012977538630366325,
-0.014045142568647861,
0.01036880910396576,
-0.014442958869040012,
-0.016715170815587044,
0.013847216963768005,
-0.02505355514585972,
0.006179638672620058,
0.0026216956321150064,
-0.00839943066239357,
0.046232786029577255,
0.03552115336060524,
0.04221309348940849,
-0.0058226389810442924,
0.04755740240216255,
0.04189884290099144,
-0.020188959315419197,
0.03692182898521423,
-0.03472185134887695,
-0.019986385479569435,
0.02760273404419422,
0.038723770529031754,
0.026263527572155,
0.0011435729684308171,
0.02268240600824356,
0.04601730778813362,
0.02579864300787449,
0.016252104192972183,
0.0006187812541611493,
-0.022128375247120857,
-0.06225486844778061,
-0.03440961241722107,
0.006340223364531994,
-0.019555337727069855,
-0.019792132079601288,
0.037299420684576035,
-0.02165323495864868,
-0.04086734354496002,
0.010751327499747276,
-0.01983789913356304,
-0.01366904191672802,
-0.034604430198669434,
0.014670375734567642,
0.037662968039512634,
0.05684138834476471,
-0.01931067928671837,
-0.010007972829043865,
-0.003485198598355055,
0.027563419193029404,
0.0352376289665699,
-0.01786825619637966,
0.00779671361669898,
0.030626680701971054,
-0.019875770434737206,
-0.010988553985953331,
0.04788752645254135,
-0.022681396454572678,
-0.01161630917340517,
0.052164725959300995,
0.010583673603832722,
-0.011370024643838406,
-0.013957350514829159,
0.03424973785877228,
0.0034824812319129705,
0.028987474739551544,
0.01802063174545765,
-0.03390621393918991,
0.0063576665706932545,
0.0695238783955574,
-0.04565944895148277,
0.02407313510775566,
0.04612036049365997,
-0.018740525469183922,
0.011055710725486279,
-0.004997259937226772,
0.04501292109489441,
-0.012681706808507442,
-0.017191048711538315,
0.01835489459335804,
0.02396983653306961,
0.03707270324230194,
0.025577230378985405,
0.012005437165498734,
-0.01671692728996277,
0.045024324208498,
0.0066002365201711655,
-0.04527119919657707,
-0.023521486669778824,
0.023406703025102615,
-0.039678025990724564,
0.014737160876393318,
0.002990594832226634,
0.004773321561515331,
-0.006562989670783281,
-0.007517203688621521,
0.01409988384693861,
0.05202402174472809,
-0.025203006342053413,
0.02684987150132656,
-0.0024844335857778788,
-0.028650131076574326,
0.01095669250935316,
0.06494998931884766,
0.0006724825943820179,
0.04161786288022995,
0.01604064553976059,
-0.018864724785089493,
0.06249084696173668,
0.02531309425830841,
0.00810796394944191,
0.030086683109402657,
0.030566617846488953,
-0.02217884175479412,
0.025010215118527412,
-0.004349775146692991,
0.019962770864367485,
-0.003262902842834592,
-0.02900463156402111,
-0.02535017393529415,
-0.033184975385665894,
0.018246134743094444,
0.014740495011210442,
0.00481027876958251,
0.032993752509355545,
-0.03387289121747017,
0.03985520079731941,
0.06570319086313248,
0.011312868446111679,
-0.0021899936255067587,
0.008584877476096153,
0.05127822980284691,
0.03267977386713028,
-0.0005602724850177765,
0.011110637336969376,
-0.028801973909139633,
-0.00897352583706379,
0.04620913416147232,
-0.006812738720327616,
0.04045784845948219,
0.028610631823539734,
-0.0420796163380146,
0.00581089872866869,
0.01843009516596794,
-0.034962721168994904,
0.00744198402389884,
-0.011770063079893589,
-0.04953017085790634,
-0.006706984713673592,
0.018085986375808716,
-0.04139075428247452,
0.019649621099233627,
0.026094483211636543,
0.019645847380161285,
-0.02853470668196678,
-0.014703177846968174,
-0.006018337327986956,
0.04129685088992119,
-0.017984863370656967,
0.006758409086614847,
-0.04690206050872803,
-0.026445960626006126,
0.01111817266792059,
-0.0034509652759879827,
-0.018642807379364967,
-0.0051864273846149445,
-0.015724685043096542,
-0.03414333611726761,
-0.02232198603451252,
0.020548401400446892,
-0.0011710835387930274,
-0.01908688247203827,
0.04441649839282036,
0.020814791321754456,
-0.0005670267273671925,
0.03745405375957489,
-0.016085732728242874,
-0.002988531719893217,
-0.03902643918991089,
-0.021947352215647697,
0.014678698033094406,
-0.004490485414862633,
0.009408357553184032,
-0.02460654452443123,
-0.014480218291282654,
-0.007800651248544455,
0.021445343270897865,
0.0016270909691229463,
0.02963302470743656,
-0.023341160267591476,
-0.05011976137757301,
-0.06170635297894478,
-0.01941448636353016,
0.0033331289887428284,
0.01636880449950695,
-0.004311114549636841,
0.012291447259485722,
0.00251751602627337,
-0.031499989330768585,
-0.019024979323148727,
-0.013735022395849228,
0.02709048241376877,
0.04130619391798973,
0.006859134417027235,
-0.0034231890458613634,
-0.0332336463034153,
0.03465043008327484,
0.0020434751641005278,
0.018124792724847794,
0.045470934361219406,
0.03920029476284981,
0.0006280597881413996,
-0.05832316726446152,
0.013361629098653793,
-0.02989094890654087,
-0.008823083713650703,
-0.025652602314949036,
-0.06846880167722702,
-0.022828638553619385,
0.013034559786319733,
-0.000916610995773226,
0.011774888262152672,
-0.016937658190727234,
-0.01923302374780178,
0.012388298287987709,
0.03411378711462021,
-0.00021945258777122945,
0.016497373580932617,
0.02713916078209877,
-0.02205982245504856,
0.0409049354493618,
-0.017273638397455215,
-0.0071424623019993305,
-0.03575180470943451,
-0.00806714128702879,
0.000008095707016764209,
0.07758080214262009,
0.024447904899716377,
0.028263313695788383,
-0.023452987894415855,
0.011916082352399826,
-0.01740877889096737,
-0.02866298146545887,
0.001212450792081654,
0.022091694176197052,
-0.010932829231023788,
0.0054780603386461735,
0.03345559537410736,
0.025523465126752853,
-0.01684259995818138,
0.009390805847942829,
0.027224237099289894,
0.029289765283465385,
-0.04419546574354172,
-0.006863547954708338,
-0.029452141374349594,
-0.026952898129820824,
0.010751585476100445,
0.019390959292650223,
0.008541492745280266,
0.004707811400294304,
0.01681900955736637,
0.026553191244602203,
-0.008673553355038166,
-0.0024011998903006315,
0.020894577726721764,
0.03995165228843689,
-0.010622574016451836,
-0.0008213879191316664,
-0.000429404666647315,
-0.02181602455675602,
-0.03707369789481163,
0.008212307468056679,
0.03364948555827141,
-0.007041905540972948,
-0.003795660100877285,
-0.028255645185709,
0.007636561524122953,
-0.011185919865965843,
0.009147217497229576,
0.018549541011452675,
0.056076399981975555,
-0.01736215502023697,
0.03175982087850571,
0.02485206350684166,
-0.0008633231045678258
] |
Transformer-based Encoder-Decoder Models | patrickvonplaten | October 10, 2020 | encoder-decoder | research, nlp | https://huggingface.co/blog/encoder-decoder | Encoder-Decoder In 2017, Vaswani et al. introduced the Transformer and thereby gave birth to transformer-based encoder-decoder models. Analogous to RNN-based encoder-decoder models, transformer-based encoder-decoder models consist of an encoder and a decoder which are both stacks of residual attention blocks. The key innovation of transformer-based encoder-decoder models is that such residual attention blocks can process an input sequence \(\mathbf{X}{1:n}\) of variable length \(n\) without exhibiting a recurrent structure. Not relying on a recurrent structure allows transformer-based encoder-decoders to be highly parallelizable, which makes the model orders of magnitude more computationally efficient than RNN-based encoder-decoder models on modern hardware. As a reminder, to solve a sequence-to-sequence problem, we need to find a mapping of an input sequence \(\mathbf{X}{1:n}\) to an output sequence \(\mathbf{Y}{1:m}\) of variable length \(m\). Let\'s see how transformer-based encoder-decoder models are used to find such a mapping. Similar to RNN-based encoder-decoder models, the transformer-based encoder-decoder models define a conditional distribution of target vectors \(\mathbf{Y}{1:n}\) given an input sequence \(\mathbf{X}{1:n}\): $$ p_{\theta_{\text{enc}}, \theta_{\text{dec}}}(\mathbf{Y}{1:m} | \mathbf{X}{1:n}). $$ The transformer-based encoder part encodes the input sequence \(\mathbf{X}{1:n}\) to a sequence of hidden states \(\mathbf{\overline{X}}{1:n}\), thus defining the mapping: $$ f_{\theta_{\text{enc}}}: \mathbf{X}{1:n} \to \mathbf{\overline{X}}{1:n}. $$ The transformer-based decoder part then models the conditional probability distribution of the target vector sequence \(\mathbf{Y}{1:n}\) given the sequence of encoded hidden states \(\mathbf{\overline{X}}{1:n}\): $$ p_{\theta_{dec}}(\mathbf{Y}{1:n} | \mathbf{\overline{X}}{1:n}).$$ By Bayes\' rule, this distribution can be factorized to a product of conditional probability distribution of the target vector \(\mathbf{y}i\) given the encoded hidden states \(\mathbf{\overline{X}}{1:n}\) and all previous target vectors \(\mathbf{Y}{0:i-1}\): $$ p{\theta_{dec}}(\mathbf{Y}{1:n} | \mathbf{\overline{X}}{1:n}) = \prod_{i=1}^{n} p_{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{\overline{X}}{1:n}). $$ The transformer-based decoder hereby maps the sequence of encoded hidden states \(\mathbf{\overline{X}}{1:n}\) and all previous target vectors \(\mathbf{Y}{0:i-1}\) to the logit vector \(\mathbf{l}_i\). The logit vector \(\mathbf{l}_i\) is then processed by the softmax operation to define the conditional distribution \(p{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{\overline{X}}{1:n})\), just as it is done for RNN-based decoders. However, in contrast to RNN-based decoders, the distribution of the target vector \(\mathbf{y}_i\) is explicitly (or directly) conditioned on all previous target vectors \(\mathbf{y}_0, \ldots, \mathbf{y}{i-1}\) as we will see later in more detail. The 0th target vector \(\mathbf{y}0\) is hereby represented by a special \"begin-of-sentence\" \(\text{BOS}\) vector. Having defined the conditional distribution \(p{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{\overline{X}}{1:n})\), we can now auto-regressively generate the output and thus define a mapping of an input sequence \(\mathbf{X}{1:n}\) to an output sequence \(\mathbf{Y}{1:m}\) at inference. Let\'s visualize the complete process of auto-regressive generation of transformer-based encoder-decoder models. The transformer-based encoder is colored in green and the transformer-based decoder is colored in red. As in the previous section, we show how the English sentence \"I want to buy a car\", represented by \(\mathbf{x}_1 = \text{I}\), \(\mathbf{x}_2 = \text{want}\), \(\mathbf{x}_3 = \text{to}\), \(\mathbf{x}_4 = \text{buy}\), \(\mathbf{x}_5 = \text{a}\), \(\mathbf{x}_6 = \text{car}\), and \(\mathbf{x}_7 = \text{EOS}\) is translated into German: \"Ich will ein Auto kaufen\" defined as \(\mathbf{y}_0 = \text{BOS}\), \(\mathbf{y}_1 = \text{Ich}\), \(\mathbf{y}_2 = \text{will}\), \(\mathbf{y}_3 = \text{ein}\), \(\mathbf{y}_4 = \text{Auto}, \mathbf{y}_5 = \text{kaufen}\), and \(\mathbf{y}_6=\text{EOS}\). To begin with, the encoder processes the complete input sequence \(\mathbf{X}{1:7}\) = \"I want to buy a car\" (represented by the light green vectors) to a contextualized encoded sequence \(\mathbf{\overline{X}}{1:7}\). E.g. \(\mathbf{\overline{x}}_4\) defines an encoding that depends not only on the input \(\mathbf{x}_4\) = \"buy\", but also on all other words \"I\", \"want\", \"to\", \"a\", \"car\" and \"EOS\", i.e. the context. Next, the input encoding \(\mathbf{\overline{X}}{1:7}\) together with the BOS vector, i.e. \(\mathbf{y}0\), is fed to the decoder. The decoder processes the inputs \(\mathbf{\overline{X}}{1:7}\) and \(\mathbf{y}0\) to the first logit \(\mathbf{l}_1\) (shown in darker red) to define the conditional distribution of the first target vector \(\mathbf{y}_1\): $$ p{\theta_{enc, dec}}(\mathbf{y} | \mathbf{y}0, \mathbf{X}{1:7}) = p_{\theta_{enc, dec}}(\mathbf{y} | \text{BOS}, \text{I want to buy a car EOS}) = p_{\theta_{dec}}(\mathbf{y} | \text{BOS}, \mathbf{\overline{X}}{1:7}). $$ Next, the first target vector \(\mathbf{y}_1\) = \(\text{Ich}\) is sampled from the distribution (represented by the grey arrows) and can now be fed to the decoder again. The decoder now processes both \(\mathbf{y}_0\) = \"BOS\" and \(\mathbf{y}_1\) = \"Ich\" to define the conditional distribution of the second target vector \(\mathbf{y}_2\): $$ p{\theta_{dec}}(\mathbf{y} | \text{BOS Ich}, \mathbf{\overline{X}}{1:7}). $$ We can sample again and produce the target vector \(\mathbf{y}_2\) = \"will\". We continue in auto-regressive fashion until at step 6 the EOS vector is sampled from the conditional distribution: $$ \text{EOS} \sim p{\theta_{dec}}(\mathbf{y} | \text{BOS Ich will ein Auto kaufen}, \mathbf{\overline{X}}{1:7}). $$ And so on in auto-regressive fashion. It is important to understand that the encoder is only used in the first forward pass to map \(\mathbf{X}{1:n}\) to \(\mathbf{\overline{X}}{1:n}\). As of the second forward pass, the decoder can directly make use of the previously calculated encoding \(\mathbf{\overline{X}}{1:n}\). For clarity, let\'s illustrate the first and the second forward pass for our example above. As can be seen, only in step \(i=1\) do we have to encode \"I want to buy a car EOS\" to \(\mathbf{\overline{X}}{1:7}\). At step \(i=2\), the contextualized encodings of \"I want to buy a car EOS\" are simply reused by the decoder. In 🤗Transformers, this auto-regressive generation is done under-the-hood when calling the .generate() method. Let\'s use one of our translation models to see this in action. python from transformers import MarianMTModel, MarianTokenizer tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") # create ids of encoded input vectors input_ids = tokenizer("I want to buy a car", return_tensors="pt").input_ids # translate example output_ids = model.generate(input_ids)[0] # decode and print print(tokenizer.decode(output_ids)) _Output: <pad> Ich will ein Auto kaufen Calling .generate() does many things under-the-hood. First, it passes the input_ids to the encoder. Second, it passes a pre-defined token, which is the \(\text{}\) symbol in the case of MarianMTModel along with the encoded input_ids to the decoder. Third, it applies the beam search decoding mechanism to auto-regressively sample the next output word of the last decoder output \({}^1\). For more detail on how beam search decoding works, one is advised to read this blog post. In the Appendix, we have included a code snippet that shows how a simple generation method can be implemented \"from scratch\". To fully understand how auto-regressive generation works under-the-hood, it is highly recommended to read the Appendix. To sum it up: - The transformer-based encoder defines a mapping from the input sequence \(\mathbf{X}{1:n}\) to a contextualized encoding sequence \(\mathbf{\overline{X}}{1:n}\). - The transformer-based decoder defines the conditional distribution \(p_{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{\overline{X}}{1:n})\). - Given an appropriate decoding mechanism, the output sequence \(\mathbf{Y}{1:m}\) can auto-regressively be sampled from \(p_{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{\overline{X}}{1:n}), \forall i \in {1, \ldots, m}\). Great, now that we have gotten a general overview of how transformer-based encoder-decoder models work, we can dive deeper into both the encoder and decoder part of the model. More specifically, we will see exactly how the encoder makes use of the self-attention layer to yield a sequence of context-dependent vector encodings and how self-attention layers allow for efficient parallelization. Then, we will explain in detail how the self-attention layer works in the decoder model and how the decoder is conditioned on the encoder\'s output with cross-attention layers to define the conditional distribution \(p{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{\overline{X}}{1:n})\). Along, the way it will become obvious how transformer-based encoder-decoder models solve the long-range dependencies problem of RNN-based encoder-decoder models. ------------------------------------------------------------------------ \({}^1\) In the case of "Helsinki-NLP/opus-mt-en-de", the decoding parameters can be accessed here, where we can see that model applies beam search with num_beams=6. | [
0.05794487148523331,
-0.029841676354408264,
0.08482501655817032,
0.0062196520157158375,
0.04830582067370415,
0.05355459079146385,
0.0054015712812542915,
0.004823475610464811,
-0.04687770456075668,
-0.008146415464580059,
-0.04342680424451828,
0.08679112046957016,
-0.028524432331323624,
0.0793076604604721,
-0.003829000052064657,
-0.01457685511559248,
0.03668627142906189,
-0.05302664637565613,
-0.0018933111568912864,
0.006707446649670601,
0.025776632130146027,
-0.078278549015522,
0.0658874586224556,
-0.06272660195827484,
-0.02508406713604927,
0.010900533758103848,
0.005293240305036306,
-0.055003710091114044,
-0.07816275209188461,
0.07526817917823792,
-0.11869409680366516,
0.049365635961294174,
0.030293544754385948,
-0.03001311607658863,
-0.04184043034911156,
-0.04215757176280022,
-0.1475595384836197,
0.002790082711726427,
0.026636453345417976,
-0.014476219192147255,
-0.024806153029203415,
-0.05737978219985962,
-0.09366176277399063,
0.013207548297941685,
-0.03505866602063179,
-0.003732201876118779,
-0.1759387105703354,
0.07897378504276276,
-0.06273097544908524,
-0.03323405981063843,
-0.0187199916690588,
0.06055920943617821,
-0.04061061516404152,
0.0762970820069313,
-0.00444826390594244,
-0.0006436978001147509,
0.017752882093191147,
-0.07474225014448166,
0.04409869387745857,
-0.010992728173732758,
0.06415954977273941,
0.019948666915297508,
-0.0006478669820353389,
0.044435054063797,
0.015529138036072254,
-0.0019688091706484556,
0.018034031614661217,
0.014866692014038563,
0.013653665781021118,
-0.009473547339439392,
-0.0499439463019371,
-0.04760759696364403,
-0.004455046262592077,
0.0041000922210514545,
-0.01200340036302805,
-0.058176327496767044,
-0.0031931765843182802,
0.07132869213819504,
0.08314148336648941,
0.027086976915597916,
0.017607232555747032,
0.04395849630236626,
0.08370364457368851,
0.05286535993218422,
0.024770691990852356,
0.03650235757231712,
0.048225291073322296,
-0.07700028270483017,
-0.02312813326716423,
0.09171205759048462,
-0.04192283749580383,
-0.12989191710948944,
-0.0035277828574180603,
-0.017640797421336174,
0.03668138012290001,
-0.021498393267393112,
0.025206468999385834,
0.007430113386362791,
-0.00872116070240736,
0.0037538986653089523,
0.0531013123691082,
0.014470442198216915,
0.09587699174880981,
-0.06496065855026245,
0.01645779050886631,
0.009439720772206783,
-0.027033606544137,
-0.0640474408864975,
-0.0411604642868042,
-0.020939165726304054,
-0.007025314029306173,
0.010274002328515053,
0.03444027155637741,
0.012061701156198978,
-0.08109894394874573,
0.03582606837153435,
0.015768226236104965,
0.015957221388816833,
-0.01718122698366642,
-0.0016090115532279015,
-0.021108092740178108,
0.06680545955896378,
0.03661542758345604,
-0.03494078665971756,
-0.019424499943852425,
0.03789814934134483,
-0.031636081635951996,
0.00461428752169013,
-0.002822954673320055,
-0.04276446998119354,
0.06598766148090363,
-0.02276006154716015,
0.052261125296354294,
0.03440432250499725,
-0.023404480889439583,
-0.07094988971948624,
-0.010823739692568779,
-0.06662709265947342,
-0.03511533513665199,
-0.00021156002185307443,
-0.0668223425745964,
0.01658177375793457,
0.07047727704048157,
-0.000551894714590162,
0.04974723979830742,
-0.024582689628005028,
-0.0977226048707962,
0.05590143799781799,
0.09369459748268127,
-0.002468639984726906,
-0.02267572283744812,
-0.0021184422075748444,
-0.04407082125544548,
-0.06437378376722336,
-0.027790028601884842,
0.009388691745698452,
0.011641458608210087,
0.004462176468223333,
-0.07784508913755417,
-0.014386892318725586,
-0.04192311316728592,
0.03205867111682892,
0.03107842244207859,
0.04511595517396927,
0.0026251075323671103,
-0.10903795063495636,
0.06119329482316971,
0.08515355736017227,
-0.01888544298708439,
0.023325661197304726,
-0.031386859714984894,
0.01778240129351616,
0.04514377564191818,
0.013899018056690693,
-0.04998859763145447,
0.016018623486161232,
-0.01616140827536583,
0.08262262493371964,
0.012102523818612099,
-0.058596931397914886,
-0.023817196488380432,
-0.033777136355638504,
0.02686436101794243,
0.019072478637099266,
-0.009275468066334724,
-0.04288787022233009,
-0.011723514646291733,
-0.04126052185893059,
-0.060017235577106476,
0.06350520253181458,
-0.03967221453785896,
-0.03022925928235054,
0.043974630534648895,
0.000011513812751218211,
0.09385981410741806,
0.010346604511141777,
-0.05679535120725632,
0.08045007288455963,
0.07499092072248459,
0.08684565126895905,
0.06356880813837051,
0.005862273741513491,
0.04030796140432358,
-0.04690986126661301,
-0.03868293762207031,
-0.0013513038866221905,
0.005307214334607124,
-0.0036168231163173914,
0.0373222790658474,
-0.04765024408698082,
0.027193766087293625,
-0.04991647228598595,
-0.02084893174469471,
-0.06098796799778938,
0.03164539858698845,
-0.0011773928999900818,
-0.01832645945250988,
0.0007778233266435564,
-0.028548182919621468,
-0.013901054859161377,
0.1155632883310318,
-0.033109527081251144,
-0.06037596985697746,
-0.00011788773554144427,
0.008792680688202381,
0.0492357574403286,
0.06500401347875595,
-0.06812858581542969,
0.05041337013244629,
-0.01222506444901228,
-0.007959802635014057,
-0.0467287041246891,
0.02745392918586731,
-0.025846583768725395,
-0.002627946436405182,
-0.05825049802660942,
-0.0681975707411766,
0.013761382550001144,
0.0014934861101210117,
-0.04019008204340935,
0.024957876652479172,
0.018736345693469048,
0.022518552839756012,
0.003624953096732497,
-0.05272112041711807,
0.010870452038943768,
0.04333376884460449,
-0.018516255542635918,
0.0008859660010784864,
-0.0014987671747803688,
-0.10550600290298462,
0.06633605808019638,
-0.02088877558708191,
-0.09288478642702103,
0.041520729660987854,
0.07452590763568878,
-0.007588766515254974,
-0.017351603135466576,
-0.0009950266685336828,
-0.0007444992079399526,
-0.03525867313146591,
-0.01651936210691929,
-0.000554426631424576,
-0.06333068758249283,
-0.07637624442577362,
-0.04214280843734741,
-0.009454638697206974,
0.010755670256912708,
0.00999758206307888,
0.018287943676114082,
-0.00948897935450077,
-0.0037092375569045544,
0.028782522305846214,
0.01590634696185589,
0.025440549477934837,
0.007898001931607723,
0.05714811384677887,
-0.030893567949533463,
-0.02951771579682827,
-0.023021964356303215,
-0.023465126752853394,
-0.0030056361574679613,
0.05559190735220909,
0.04361315071582794,
0.015887215733528137,
0.020240766927599907,
0.015126329846680164,
0.012082917615771294,
0.006394523195922375,
0.010991327464580536,
0.028966043144464493,
0.025500817224383354,
0.004390256013721228,
-0.021038992330431938,
-0.03472181037068367,
0.011499482207000256,
-0.0022746226750314236,
-0.01669429987668991,
-0.03311004489660263,
-0.007605898194015026,
0.015963612124323845,
0.05745169520378113,
-0.001949397148564458,
-0.005443527363240719,
-0.02089696191251278,
0.005874413996934891,
0.043703507632017136,
0.07399697601795197,
-0.1031096950173378,
-0.05429648980498314,
-0.0298759788274765,
0.008102712221443653,
-0.014689684845507145,
-0.04967489838600159,
0.03858450427651405,
0.007205731701105833,
-0.02024521864950657,
-0.013983533717691898,
0.034467339515686035,
0.012514995411038399,
-0.007580403238534927,
0.01318153366446495,
-0.03938039019703865,
-0.04529843106865883,
0.012688755989074707,
0.01970129832625389,
0.04848681762814522,
-0.000527377356775105,
0.029512379318475723,
0.02100219763815403,
0.019619978964328766,
0.028024854138493538,
-0.033030904829502106,
0.0036818506196141243,
0.08007314801216125,
-0.02194909006357193,
0.008603217080235481,
-0.011268063448369503,
-0.049561284482479095,
0.004899593535810709,
0.023917723447084427,
0.004459702409803867,
-0.04631608724594116,
0.02174062468111515,
0.06064562126994133,
-0.020211495459079742,
-0.0005742033245041966,
0.060721758753061295,
0.03018747642636299,
-0.007426895201206207,
-0.007913938723504543,
-0.025399979203939438,
0.030715417116880417,
0.0012341871624812484,
0.02483438514173031,
-0.009794749319553375,
-0.003443079302087426,
-0.0548563115298748,
-0.02717062644660473,
-0.024102089926600456,
0.004929186310619116,
0.014497443102300167,
0.004558281507343054,
0.014714243821799755,
-0.012667611241340637,
-0.01733405329287052,
0.01828976720571518,
0.03089980222284794,
-0.0021517968270927668,
0.04667285084724426,
0.0061055985279381275,
0.01760035939514637,
-0.07215391099452972,
0.05337096378207207,
-0.0012040856527164578,
0.02047426626086235,
0.00671770703047514,
0.04001729190349579,
-0.03045710362493992,
0.00927830021828413,
0.0032233791425824165,
0.007825437933206558,
-0.008142264559864998,
0.03289162740111351,
-0.025734800845384598,
0.013073829002678394,
0.08481425791978836,
0.009247461333870888,
0.003011459019035101,
-0.035063471645116806,
-0.03417881578207016,
0.03014872781932354,
0.030410628765821457,
0.04596275836229324,
-0.016058947890996933,
0.007182830944657326,
0.03884614631533623,
0.0007348314393311739,
0.00007432776328641921,
-0.04044384881854057,
0.03076406940817833,
-0.013378279283642769,
0.027394453063607216,
0.025943662971258163,
0.013435306027531624,
-0.0047380090691149235,
0.03677535802125931,
0.026035672053694725,
0.03388893976807594,
-0.06965061277151108,
-0.003896355861797929,
-0.007394908461719751,
-0.018063602969050407,
0.013045279309153557,
-0.05461796745657921,
-0.004653706680983305,
0.010308479890227318,
0.009022166021168232,
0.03421374037861824,
-0.03678819164633751,
0.01063566654920578,
0.011874549090862274,
0.03291061893105507,
-0.022260598838329315,
-0.01067417673766613,
-0.07394572347402573,
-0.013413996435701847,
0.0066516767255961895,
-0.03507591411471367,
0.005810570437461138,
-0.000048237194278044626,
-0.0010774873662739992,
0.032839320600032806,
0.017488664016127586,
0.019144007936120033,
0.013913062401115894,
-0.0188191756606102,
-0.011200838722288609,
-0.019152292981743813,
0.02080010063946247,
0.0014247642830014229,
-0.014858441427350044,
0.040160078555345535,
0.051432982087135315,
0.031638938933610916,
0.014189167879521847,
-0.025614770129323006,
-0.05614890903234482,
-0.04402080550789833,
0.031622424721717834,
0.03867049887776375,
-0.02183014154434204,
0.025516048073768616,
-0.0233171284198761,
-0.02801339328289032,
-0.009330599568784237,
-0.014100209809839725,
0.0012554891873151064,
0.037666212767362595,
-0.02106986939907074,
-0.028331775218248367,
0.014262738637626171,
0.013443021103739738,
-0.014788869768381119,
-0.01895456202328205,
0.032546933740377426,
0.009487607516348362,
0.007517436984926462,
0.013836879283189774,
0.015232972800731659,
-0.031514301896095276,
0.012639328837394714,
0.006234545726329088,
0.022373536601662636,
-0.0363251231610775,
-0.047557685524225235,
0.011538105085492134,
0.025860849767923355,
0.01457647792994976,
-0.029615264385938644,
0.030939439311623573,
-0.015938380733132362,
-0.0396578349173069,
0.04183341935276985,
-0.013667421415448189,
0.02016321010887623,
-0.010051304474473,
0.011900155805051327,
-0.017978480085730553,
0.003206222550943494,
0.011009257286787033,
0.017450831830501556,
0.009261238388717175,
-0.0029496774077415466,
0.05492716282606125,
0.05644964426755905,
0.005974822677671909,
0.014264032244682312,
0.0670260414481163,
0.0008643271867185831,
0.013617206364870071,
-0.025587154552340508,
0.00928555428981781,
-0.010666264221072197,
0.022932065650820732,
0.00843662116676569,
-0.009511145763099194,
0.01581341214478016,
0.0505976639688015,
0.0185864195227623,
0.018783921375870705,
-0.007393900770694017,
0.017138322815299034,
-0.026277931407094002,
0.00011441582319093868,
0.016611699014902115,
-0.015734106302261353,
-0.015496239997446537,
0.018929889425635338,
0.010929513722658157,
-0.04858469218015671,
0.007553062401711941,
-0.028373077511787415,
-0.03658117353916168,
-0.01838478073477745,
-0.009452509693801403,
0.03693327680230141,
0.04038738086819649,
-0.039601173251867294,
0.004302308429032564,
-0.007395128253847361,
0.000778414192609489,
0.003368186764419079,
-0.01567157730460167,
-0.005817316472530365,
0.05010908097028732,
-0.01270346064120531,
0.009443875402212143,
0.05845175310969353,
-0.01849421113729477,
-0.03569343686103821,
0.023041950538754463,
-0.008890115655958652,
-0.04264414682984352,
-0.020337780937552452,
0.0513249896466732,
0.009474378079175949,
0.015050981193780899,
-0.012168158777058125,
-0.04325644671916962,
-0.018187498673796654,
0.034077756106853485,
-0.05638379231095314,
0.014801639132201672,
0.058981604874134064,
-0.020672978833317757,
0.013876467943191528,
0.0001870084524853155,
0.06324903666973114,
-0.012072086334228516,
-0.007660102564841509,
0.01565401814877987,
0.004564602859318256,
0.02531690150499344,
0.02484259381890297,
-0.017545340582728386,
0.0006850670324638486,
0.0038904391694813967,
0.0062225074507296085,
-0.0277315154671669,
-0.007683673407882452,
0.0017380820354446769,
-0.01397972647100687,
0.033345792442560196,
-0.00265028839930892,
-0.01618669554591179,
0.025930097326636314,
0.016945399343967438,
0.03251398727297783,
0.02487751841545105,
-0.012159262783825397,
0.006947705522179604,
-0.023638205602765083,
-0.01883351244032383,
0.013194277882575989,
0.06750568747520447,
-0.004287354648113251,
0.04960877448320389,
0.034528423100709915,
0.008067791350185871,
0.05071540176868439,
0.012987762689590454,
-0.019441287964582443,
0.01109272986650467,
0.031102757900953293,
-0.024728920310735703,
0.00875118002295494,
-0.0056869941763579845,
-0.004207015037536621,
-0.0007121346425265074,
-0.006948517169803381,
-0.0033242215868085623,
-0.04658810794353485,
0.03904644772410393,
-0.006663735490292311,
-0.004035551100969315,
0.04298429936170578,
-0.04474407806992531,
0.040342386811971664,
0.05195913836359978,
0.010442649945616722,
0.0036400582175701857,
0.03915931656956673,
0.04857021942734718,
0.03631937876343727,
0.04757266119122505,
-0.014510528184473515,
-0.02031419239938259,
0.017703212797641754,
0.03838638588786125,
0.01112530566751957,
0.03154897317290306,
-0.02115769125521183,
-0.04174879565834999,
0.020743411034345627,
0.00678126560524106,
-0.04340701177716255,
-0.015271943062543869,
0.00318331946618855,
0.0005734643200412393,
0.005282754078507423,
-0.02468040958046913,
-0.04186795651912689,
0.015537654049694538,
0.059938132762908936,
0.005604361183941364,
-0.028310000896453857,
0.006583529990166426,
-0.004079337231814861,
0.05171200633049011,
-0.04945740848779678,
0.013905232772231102,
-0.022569850087165833,
-0.008212371729314327,
0.0011748247779905796,
0.02031840570271015,
0.002280395245179534,
-0.010559243150055408,
-0.01744021847844124,
0.002182472962886095,
-0.01649772934615612,
0.049758635461330414,
-0.027597395703196526,
-0.020056527107954025,
0.05228812247514725,
-0.0013644769787788391,
-0.01000834722071886,
0.01642361469566822,
0.006656318437308073,
0.008198249153792858,
-0.040609173476696014,
0.010369458235800266,
-0.014728564769029617,
-0.013607342727482319,
-0.0025223649572581053,
-0.038973014801740646,
0.030887631699442863,
-0.025694208219647408,
0.04746149480342865,
0.03849940001964569,
0.03207554295659065,
-0.030822759494185448,
-0.01952361688017845,
-0.0029029366560280323,
-0.0015487631317228079,
0.0036503304727375507,
-0.014928331598639488,
-0.007252435199916363,
0.01933876797556877,
0.01773085631430149,
0.0034971600398421288,
-0.009599464945495129,
-0.030988303944468498,
0.014462028630077839,
0.0039682029746472836,
-0.006884357426315546,
-0.020433107390999794,
-0.03859998285770416,
0.03334692120552063,
0.00039913918590173125,
0.014849727973341942,
0.01974966563284397,
0.04610820487141609,
0.03012886270880699,
-0.06618849188089371,
-0.015000469982624054,
-0.011324213817715645,
-0.015860512852668762,
-0.0466177724301815,
-0.04728981852531433,
-0.012569078244268894,
0.04343041405081749,
0.008969499729573727,
0.022866100072860718,
-0.021478040143847466,
0.03694700822234154,
-0.04006514698266983,
-0.028500868007540703,
0.014058712869882584,
0.029824240133166313,
0.048520758748054504,
-0.016080360859632492,
0.024315422400832176,
-0.05942689627408981,
-0.044204231351614,
-0.036842186003923416,
-0.022783979773521423,
0.010785388760268688,
0.0491829439997673,
-0.015993574634194374,
0.018914520740509033,
-0.01748252846300602,
-0.04452735185623169,
-0.009620054624974728,
0.0020894233603030443,
-0.0013064125087112188,
0.008865405805408955,
-0.010224893689155579,
-0.0008335691527463496,
-0.002491299295797944,
-0.03207510709762573,
-0.002442495198920369,
0.008622360415756702,
0.00013691485219169408,
-0.03558898717164993,
0.0021633619908243418,
0.001881955424323678,
-0.020542193204164505,
-0.03139324486255646,
0.003730801632627845,
0.007818462327122688,
0.024057038128376007,
0.029096992686390877,
0.019905924797058105,
0.02647535316646099,
-0.022050494328141212,
0.0175480917096138,
0.01992303691804409,
0.011806518770754337,
-0.01832842454314232,
-0.012645111419260502,
-0.00036253462894819677,
-0.023161279037594795,
-0.03681237995624542,
0.0226125568151474,
0.026235653087496758,
-0.01863495074212551,
0.023261912167072296,
-0.034791044890880585,
0.006582324858754873,
-0.04452260211110115,
0.02789943292737007,
-0.020540453493595123,
0.0731222927570343,
-0.017328357324004173,
0.0397997684776783,
0.02163788489997387,
-0.010568803176283836
] |
Transformer-based Encoder-Decoder Models | patrickvonplaten | October 10, 2020 | encoder-decoder | research, nlp | https://huggingface.co/blog/encoder-decoder | # Transformers-based Encoder-Decoder Models # Transformer-based Encoder-Decoder Models bash !pip install transformers==4.2.1 !pip install sentencepiece==0.1.95 The transformer-based encoder-decoder model was introduced by Vaswani et al. in the famous Attention is all you need paper and is today the de-facto standard encoder-decoder architecture in natural language processing (NLP). Recently, there has been a lot of research on different pre-training objectives for transformer-based encoder-decoder models, e.g. T5, Bart, Pegasus, ProphetNet, Marge, etc..., but the model architecture has stayed largely the same. The goal of the blog post is to give an in-detail explanation of how the transformer-based encoder-decoder architecture models sequence-to-sequence problems. We will focus on the mathematical model defined by the architecture and how the model can be used in inference. Along the way, we will give some background on sequence-to-sequence models in NLP and break down the transformer-based encoder-decoder architecture into its encoder and decoder parts. We provide many illustrations and establish the link between the theory of transformer-based encoder-decoder models and their practical usage in 🤗Transformers for inference. Note that this blog post does not explain how such models can be trained - this will be the topic of a future blog post. Transformer-based encoder-decoder models are the result of years of research on representation learning and model architectures. This notebook provides a short summary of the history of neural encoder-decoder models. For more context, the reader is advised to read this awesome blog post by Sebastion Ruder. Additionally, a basic understanding of the self-attention architecture is recommended. The following blog post by Jay Alammar serves as a good refresher on the original Transformer model here. At the time of writing this notebook, 🤗Transformers comprises the encoder-decoder models T5, Bart, MarianMT, and Pegasus, which are summarized in the docs under model summaries. The notebook is divided into four parts: - Background - A short history of neural encoder-decoder models is given with a focus on RNN-based models. - Encoder-Decoder - The transformer-based encoder-decoder model is presented and it is explained how the model is used for inference. - Encoder - The encoder part of the model is explained in detail. - Decoder - The decoder part of the model is explained in detail. Each part builds upon the previous part, but can also be read on its own. | [
0.02254650555551052,
-0.017314523458480835,
0.045832645148038864,
-0.0002922908461187035,
0.025016168132424355,
0.08846232295036316,
0.04747406765818596,
0.033598702400922775,
-0.03828566521406174,
0.03883416950702667,
-0.08414851129055023,
0.11564814299345016,
-0.03673581779003143,
0.05161769315600395,
-0.0034605616237968206,
-0.02782573364675045,
0.06104351952672005,
-0.04649513214826584,
-0.01312324684113264,
0.019781257957220078,
0.02226145938038826,
-0.07011451572179794,
0.02932104654610157,
-0.061645377427339554,
-0.006224667653441429,
-0.023259475827217102,
-0.020257189869880676,
0.01009956281632185,
-0.08008962869644165,
0.04780164361000061,
-0.12318229675292969,
0.03776266798377037,
0.01486425381153822,
-0.05566253140568733,
-0.009565876796841621,
-0.03561253845691681,
-0.13995307683944702,
0.02392290160059929,
0.004667371045798063,
-0.03783915191888809,
-0.029933670535683632,
-0.025402242317795753,
-0.09996297210454941,
-0.006299600936472416,
-0.03882870450615883,
-0.021656671538949013,
-0.17785459756851196,
0.059204958379268646,
-0.037862833589315414,
-0.036836571991443634,
-0.03205793723464012,
0.06556276232004166,
-0.003876056056469679,
0.047359317541122437,
0.027837609872221947,
0.00371661433018744,
0.0371362566947937,
-0.08069972693920135,
0.055289678275585175,
-0.016216455027461052,
0.051167406141757965,
0.015773095190525055,
-0.009923454374074936,
0.0299980565905571,
0.01787099428474903,
0.011009540408849716,
-0.011719533242285252,
0.04539943486452103,
-0.010814892128109932,
0.007131827063858509,
-0.0387771837413311,
-0.082270048558712,
-0.009946371428668499,
0.017170529812574387,
-0.028322862461209297,
-0.07077135145664215,
0.053729087114334106,
0.03966924920678139,
0.061415743082761765,
0.05226702615618706,
-0.016290215775370598,
0.038856666535139084,
0.04380646347999573,
0.07145514339208603,
0.06909097731113434,
0.04422484338283539,
0.04922657459974289,
-0.030366724357008934,
-0.056102603673934937,
0.06422194838523865,
-0.028293361887335777,
-0.17673128843307495,
-0.01756778173148632,
-0.029793333262205124,
0.007372293621301651,
0.01324974000453949,
0.026752106845378876,
0.011765489354729652,
-0.01827167347073555,
-0.05020746961236,
0.0071787238121032715,
-0.043080445379018784,
0.09301220625638962,
-0.06944891810417175,
0.012638756074011326,
0.010756618343293667,
0.02370527759194374,
-0.05784609541296959,
-0.04610343649983406,
-0.029779262840747833,
0.005602493416517973,
-0.017918340861797333,
-0.016012366861104965,
0.07201499491930008,
-0.0790533795952797,
0.037343185395002365,
0.0028263397980481386,
-0.0013146456331014633,
-0.01771247386932373,
0.01075633056461811,
0.003131914185360074,
0.01493512187153101,
0.07493513077497482,
-0.03915764018893242,
0.022955071181058884,
0.04968038946390152,
-0.05998678505420685,
-0.012311725877225399,
-0.022123025730252266,
-0.006947102956473827,
0.08891633152961731,
-0.01841476745903492,
0.07306475192308426,
0.014164460822939873,
-0.028431912884116173,
-0.06578195840120316,
-0.019502630457282066,
-0.07133849710226059,
-0.0046386984176933765,
0.011026834137737751,
-0.026167288422584534,
0.040609393268823624,
0.050082527101039886,
0.006586925592273474,
0.038090094923973083,
-0.012719542719423771,
-0.0877041295170784,
0.06302658468484879,
0.05444485694169998,
0.011998035944998264,
-0.04499505087733269,
0.009983062744140625,
-0.010413505136966705,
-0.06899752467870712,
-0.004527769982814789,
0.043501466512680054,
-0.01055148709565401,
-0.0070034414529800415,
-0.07265211641788483,
-0.036738548427820206,
-0.00794460903853178,
-0.03177208825945854,
-0.0010299335699528456,
0.04528316482901573,
0.011886483989655972,
-0.09174513071775436,
0.0176849365234375,
0.05952533707022667,
0.02059047482907772,
0.02122609131038189,
-0.025080030784010887,
0.027191689237952232,
0.07199510186910629,
-0.02534419111907482,
-0.03542834892868996,
0.018221229314804077,
-0.017741726711392403,
0.057006314396858215,
-0.01312324684113264,
-0.07843603938817978,
-0.02520030550658703,
-0.01049885991960764,
0.0030764394905418158,
0.02026878483593464,
0.05053487792611122,
-0.04892832040786743,
0.011341326870024204,
-0.038316380232572556,
-0.04217750206589699,
0.032526180148124695,
-0.06442286819219589,
-0.02487359754741192,
0.06432528048753738,
-0.014988415874540806,
0.0748816430568695,
-0.02914528176188469,
-0.07963516563177109,
0.11029304563999176,
0.05736985057592392,
0.052205681800842285,
0.07741973549127579,
-0.034863218665122986,
0.03379344567656517,
-0.03718648850917816,
-0.027970056980848312,
-0.025839166715741158,
-0.026408951729536057,
-0.017602961510419846,
0.0767330527305603,
-0.005234439857304096,
0.002915801713243127,
-0.06568068265914917,
-0.02098902314901352,
-0.06935939192771912,
0.020630519837141037,
-0.06975755840539932,
-0.010991611517965794,
0.020328056067228317,
0.013906856998801231,
-0.006548132747411728,
0.10157381743192673,
-0.06139872223138809,
-0.01600172370672226,
0.0014661967288702726,
0.022390013560652733,
0.017918501049280167,
0.054522961378097534,
-0.026387911289930344,
0.046810634434223175,
-0.05291135981678963,
-0.0023232989478856325,
-0.019290205091238022,
0.01850385032594204,
-0.011742238886654377,
-0.0006754951318725944,
-0.042871247977018356,
-0.03481321781873703,
0.05635213106870651,
-0.003782696556299925,
-0.022534584626555443,
0.04427740350365639,
0.0025372786913067102,
-0.009029311127960682,
0.016309499740600586,
-0.06919856369495392,
0.007713207975029945,
0.04389828070998192,
-0.028889618813991547,
-0.014175564050674438,
-0.009383282624185085,
-0.11526485532522202,
0.06632576882839203,
0.00207054172642529,
-0.05186091363430023,
0.05159294605255127,
0.09868696331977844,
-0.01276896521449089,
0.0029683136381208897,
0.005615757778286934,
0.025355743244290352,
-0.0327199250459671,
-0.003207036294043064,
0.00038017044425942004,
-0.05952164903283119,
-0.062367748469114304,
-0.02867332100868225,
0.0001998559309868142,
0.010713562369346619,
0.02424095943570137,
0.02619708701968193,
-0.015262914821505547,
-0.012695855461061,
0.049727022647857666,
0.0014202659949660301,
0.017803799360990524,
0.014348342083394527,
0.04163677617907524,
-0.013222379609942436,
-0.003278526244685054,
-0.031024737283587456,
-0.022944997996091843,
-0.018393846228718758,
0.03453148901462555,
0.033635463565588,
-0.001469501294195652,
-0.00552720669656992,
0.024582507088780403,
-0.011170082725584507,
0.005209748167544603,
0.031197212636470795,
0.016797658056020737,
0.008765071630477905,
-0.01604798063635826,
-0.02366085723042488,
0.00013740971917286515,
0.02014649659395218,
-0.012578184716403484,
-0.019849302247166634,
-0.010760006494820118,
0.009389678947627544,
-0.0022353322710841894,
0.03693682700395584,
0.02765781059861183,
-0.015561374835669994,
-0.012386603280901909,
0.021311644464731216,
0.027977535501122475,
0.04787975922226906,
-0.09768712520599365,
-0.046841904520988464,
-0.02030267007648945,
-0.016049634665250778,
0.009402900002896786,
-0.01594115048646927,
0.07909325510263443,
0.015624651685357094,
-0.027266860008239746,
0.0010961315128952265,
0.0021696300245821476,
-0.0008879530942067504,
0.0037002183962613344,
0.011309251189231873,
-0.008241882547736168,
-0.020272020250558853,
0.01755249686539173,
0.004335617180913687,
0.04431456699967384,
-0.007702328264713287,
0.015395773574709892,
0.03464595973491669,
0.016126025468111038,
0.014078622683882713,
-0.027403689920902252,
-0.007730067707598209,
0.03570723533630371,
0.008385456167161465,
0.013405578210949898,
0.0005718861939385533,
-0.0023811999708414078,
-0.013321605511009693,
-0.019665036350488663,
0.024351123720407486,
-0.04345760866999626,
0.015584168955683708,
0.02943447045981884,
-0.011582653969526291,
0.041000910103321075,
0.05916823074221611,
0.00007344677578657866,
-0.015181225724518299,
-0.015849465504288673,
-0.019857287406921387,
0.06321466714143753,
-0.017181791365146637,
0.018229560926556587,
-0.008530361577868462,
-0.008147909305989742,
-0.0411800891160965,
-0.05271390080451965,
-0.008147266693413258,
-0.018900450319051743,
0.015352173708379269,
0.039003875106573105,
-0.0045145475305616856,
-0.023730212822556496,
-0.010195954702794552,
0.0035391647834330797,
-0.012608115561306477,
-0.038200050592422485,
0.06459566205739975,
-0.01704239472746849,
-0.013577589765191078,
-0.02390507608652115,
0.05275656282901764,
-0.007802226115018129,
0.03417332470417023,
0.01992884837090969,
0.009598190896213055,
-0.02574361301958561,
0.02859678864479065,
0.016587579622864723,
0.006544229108840227,
-0.02684779092669487,
0.0329042486846447,
-0.008576001040637493,
0.015556832775473595,
0.08882831782102585,
0.0048619601875543594,
-0.041289038956165314,
-0.034400686621665955,
-0.04920568689703941,
0.015996642410755157,
0.02014506608247757,
0.0455857552587986,
0.0012909655924886465,
-0.012676648795604706,
0.01981705240905285,
0.005578869953751564,
0.016170088201761246,
-0.00914518442004919,
0.026136737316846848,
0.000761656672693789,
0.017719533294439316,
0.00697312643751502,
0.009072265587747097,
-0.005050095729529858,
0.031706083565950394,
0.005134893581271172,
0.03185322880744934,
-0.05878474563360214,
-0.005414910614490509,
0.03477325290441513,
-0.03949132561683655,
0.02080138958990574,
-0.05604647099971771,
-0.024793490767478943,
-0.005483220797032118,
-0.025645382702350616,
0.022155025973916054,
-0.028741370886564255,
0.008136817254126072,
0.012644822709262371,
0.01827950030565262,
-0.003243412356823683,
-0.008602729067206383,
-0.06633973866701126,
-0.04056692495942116,
-0.008900793269276619,
-0.004893213044852018,
0.03605741262435913,
0.006268528290092945,
-0.024855462834239006,
0.023961586877703667,
0.01931675150990486,
0.05800743028521538,
0.00371268717572093,
-0.028998734429478645,
-0.014371341094374657,
-0.04435485973954201,
0.004018051084131002,
0.014976896345615387,
-0.017185214906930923,
0.008619054220616817,
0.04351316764950752,
-0.018147744238376617,
0.0168914794921875,
-0.006728651933372021,
-0.0055926102213561535,
-0.038263991475105286,
-0.0012200813507661223,
0.06120753660798073,
-0.04202251881361008,
0.024828536435961723,
-0.004887689370661974,
-0.028838571161031723,
-0.008861545473337173,
-0.013390569016337395,
0.010149715468287468,
0.03414630517363548,
-0.0035098628140985966,
0.0045540970750153065,
0.00815823394805193,
0.01871110312640667,
-0.02605222910642624,
0.0018368309829384089,
0.0450114905834198,
0.013728240504860878,
0.05139961093664169,
0.020203618332743645,
0.027856772765517235,
-0.02606818452477455,
-0.005552053451538086,
0.013859599828720093,
0.031392697244882584,
-0.07766064256429672,
-0.0745605081319809,
0.016811633482575417,
0.028331296518445015,
-0.006984445732086897,
-0.020832916721701622,
0.03295944631099701,
0.009180466644465923,
-0.02567857690155506,
0.007438261527568102,
0.015332845970988274,
0.03720010817050934,
-0.03393964841961861,
0.00883563607931137,
0.0027651109267026186,
-0.011143173091113567,
0.008871681056916714,
0.020999850705266,
0.02881481684744358,
-0.025920985266566277,
0.06529902666807175,
0.072193443775177,
-0.011798410676419735,
0.032383326441049576,
0.04940992593765259,
0.01587532088160515,
0.025666913017630577,
-0.004256133921444416,
0.002858211752027273,
-0.007829930633306503,
0.006920891813933849,
0.03003315068781376,
-0.02487284503877163,
0.02887784317135811,
0.013635187409818172,
0.02627302147448063,
-0.002058556070551276,
-0.024305880069732666,
0.042095474898815155,
-0.024731827899813652,
-0.006363748572766781,
-0.017227713018655777,
0.027232948690652847,
-0.045136719942092896,
0.02655811607837677,
0.003369932761415839,
-0.030027564615011215,
-0.001721798675134778,
-0.013736146502196789,
-0.029033031314611435,
-0.009707407094538212,
0.0319819450378418,
-0.009533942677080631,
0.04914778098464012,
-0.032477349042892456,
-0.01796981319785118,
-0.02849777787923813,
0.03132760152220726,
0.028086770325899124,
-0.05548262596130371,
-0.001370672951452434,
0.031788844615221024,
0.0012911675730720162,
-0.009113479405641556,
0.03453606367111206,
0.008029963821172714,
-0.01269658375531435,
0.010835245251655579,
-0.014738046564161777,
-0.00897463969886303,
-0.038464225828647614,
0.03981849551200867,
0.018170708790421486,
-0.0040817055851221085,
0.004534131847321987,
-0.010037107393145561,
-0.025462238118052483,
0.03526079282164574,
-0.04028718173503876,
0.027775069698691368,
0.08315352350473404,
-0.022532256320118904,
-0.007801264524459839,
0.0159391388297081,
0.04830656573176384,
0.009170488454401493,
-0.025021135807037354,
0.01216848660260439,
0.003035023109987378,
0.017962053418159485,
0.026863370090723038,
-0.015677159652113914,
0.018584171310067177,
0.015204295516014099,
0.02112625166773796,
-0.022445544600486755,
0.01412522979080677,
0.017117399722337723,
-0.00532356696203351,
0.02047743648290634,
0.029385380446910858,
-0.04035358875989914,
0.006382032763212919,
-0.00991048477590084,
0.03114069066941738,
0.03124082274734974,
-0.013223856687545776,
0.006822720170021057,
-0.007587122265249491,
-0.025525763630867004,
0.01457961741834879,
0.08855617791414261,
-0.0014556776732206345,
0.043416399508714676,
0.036537785083055496,
0.004841402173042297,
0.03997807204723358,
0.015133699402213097,
-0.027967825531959534,
0.0027444136794656515,
0.05954834818840027,
-0.03223711624741554,
0.015694353729486465,
-0.004519762005656958,
-0.011066210456192493,
0.002912222407758236,
-0.018162887543439865,
-0.02403327450156212,
-0.02978970669209957,
0.0285041406750679,
0.027249466627836227,
0.0020883623510599136,
0.05131787434220314,
-0.03366805985569954,
0.045526280999183655,
0.037779301404953,
0.017632808536291122,
0.01571204885840416,
0.04063975438475609,
0.056825101375579834,
0.02499053068459034,
0.025237223133444786,
0.02240074798464775,
-0.018579917028546333,
-0.003136041574180126,
0.04253488406538963,
0.03871056064963341,
0.04219280928373337,
0.014968493953347206,
-0.030106928199529648,
-0.004925527144223452,
-0.008676850236952305,
-0.047533538192510605,
-0.006631616503000259,
0.0069113969802856445,
-0.02760527841746807,
-0.01121505070477724,
0.006012230645865202,
-0.034175775945186615,
0.02772691287100315,
0.011098599061369896,
-0.020729027688503265,
-0.006628836039453745,
-0.01968684233725071,
-0.00976335909217596,
0.06419509649276733,
0.008404762484133244,
-0.011492853052914143,
-0.04038189351558685,
-0.006565887946635485,
-0.012441694736480713,
0.026607468724250793,
-0.0027143910992890596,
-0.03035738319158554,
-0.02049177885055542,
-0.0029725395143032074,
-0.050405096262693405,
0.04036921635270119,
-0.03680875897407532,
-0.028356531634926796,
0.06582831591367722,
-0.024083390831947327,
-0.03455381095409393,
0.0048011853359639645,
0.016719641163945198,
0.02552475966513157,
-0.037408776581287384,
0.02563582919538021,
-0.0037094582803547382,
-0.014929602853953838,
-0.010943603701889515,
-0.04725285619497299,
0.03233921900391579,
-0.005674994550645351,
0.03428906574845314,
0.01694306544959545,
0.03593266010284424,
-0.008475027047097683,
-0.01824994757771492,
-0.004298812244087458,
-0.0019714038353413343,
0.0001476942707085982,
0.012868097051978111,
0.00985972210764885,
0.018314342945814133,
0.005490313284099102,
-0.0352296382188797,
-0.002019232837483287,
-0.026006998494267464,
0.021804489195346832,
0.006884176284074783,
-0.016341308131814003,
-0.020520489662885666,
-0.04825136438012123,
0.028156640008091927,
0.017170002683997154,
0.027606189250946045,
0.06334306299686432,
0.019788997247815132,
0.03860333189368248,
-0.05338786914944649,
-0.022299865260720253,
-0.04410352557897568,
0.004601216409355402,
-0.037678156048059464,
-0.06252240389585495,
-0.01655249483883381,
0.05137273669242859,
-0.003964077215641737,
0.034937549382448196,
-0.04046729579567909,
0.01581009104847908,
-0.04836292937397957,
-0.013570761308073997,
0.029209330677986145,
0.021800870075821877,
0.01771601289510727,
0.012762891128659248,
0.03327622264623642,
-0.0177773404866457,
-0.03800370171666145,
-0.049686845391988754,
-0.02829783223569393,
-0.009872551076114178,
0.049046020954847336,
-0.006368127651512623,
0.021046975627541542,
-0.03778693452477455,
-0.045626200735569,
-0.008349400945007801,
-0.044973816722631454,
0.0072864084504544735,
0.03598998859524727,
-0.03303034231066704,
0.00526023842394352,
0.008384762331843376,
-0.007449904456734657,
-0.008004347793757915,
-0.014946896582841873,
0.021388409659266472,
-0.02932647056877613,
-0.002552678110077977,
-0.0007320111617445946,
-0.02995436079800129,
-0.021241502836346626,
-0.0001254787785001099,
-0.0028692809864878654,
0.0008788229315541685,
0.05628059431910515,
0.04186898097395897,
-0.003712457139045,
0.020510196685791016,
-0.003799993544816971,
0.005966209340840578,
-0.0037790751084685326,
-0.04012703895568848,
-0.012314314022660255,
0.026697654277086258,
-0.033946551382541656,
-0.03252474591135979,
0.05441154167056084,
0.027442656457424164,
-0.023438872769474983,
0.006074883975088596,
0.000059798523579956964,
-0.032201118767261505,
-0.012951614335179329,
0.030345816165208817,
0.001669345423579216,
0.0783873125910759,
0.031232189387083054,
0.022850872948765755,
0.02248513698577881,
0.003598990850150585
] |
Transformer-based Encoder-Decoder Models | patrickvonplaten | October 10, 2020 | encoder-decoder | research, nlp | https://huggingface.co/blog/encoder-decoder | Background Tasks in natural language generation (NLG), a subfield of NLP, are best expressed as sequence-to-sequence problems. Such tasks can be defined as finding a model that maps a sequence of input words to a sequence of target words. Some classic examples are summarization and translation. In the following, we assume that each word is encoded into a vector representation. \(n\) input words can then be represented as a sequence of \(n\) input vectors: $$\mathbf{X}{1:n} = {\mathbf{x}_1, \ldots, \mathbf{x}_n}.$$ Consequently, sequence-to-sequence problems can be solved by finding a mapping \(f\) from an input sequence of \(n\) vectors \(\mathbf{X}{1:n}\) to a sequence of \(m\) target vectors \(\mathbf{Y}{1:m}\), whereas the number of target vectors \(m\) is unknown apriori and depends on the input sequence: $$ f: \mathbf{X}{1:n} \to \mathbf{Y}{1:m}. $$ Sutskever et al. (2014) noted that deep neural networks (DNN)s, \"despite their flexibility and power can only define a mapping whose inputs and targets can be sensibly encoded with vectors of fixed dimensionality.\" \({}^1\) Using a DNN model \({}^2\) to solve sequence-to-sequence problems would therefore mean that the number of target vectors \(m\) has to be known apriori and would have to be independent of the input \(\mathbf{X}{1:n}\). This is suboptimal because, for tasks in NLG, the number of target words usually depends on the input \(\mathbf{X}{1:n}\) and not just on the input length \(n\). E.g., an article of 1000 words can be summarized to both 200 words and 100 words depending on its content. In 2014, Cho et al. and Sutskever et al. proposed to use an encoder-decoder model purely based on recurrent neural networks (RNNs) for sequence-to-sequence tasks. In contrast to DNNS, RNNs are capable of modeling a mapping to a variable number of target vectors. Let\'s dive a bit deeper into the functioning of RNN-based encoder-decoder models. During inference, the encoder RNN encodes an input sequence \(\mathbf{X}{1:n}\) by successively updating its hidden state \({}^3\). After having processed the last input vector \(\mathbf{x}n\), the encoder\'s hidden state defines the input encoding \(\mathbf{c}\). Thus, the encoder defines the mapping: $$ f{\theta_{enc}}: \mathbf{X}{1:n} \to \mathbf{c}. $$ Then, the decoder\'s hidden state is initialized with the input encoding and during inference, the decoder RNN is used to auto-regressively generate the target sequence. Let\'s explain. Mathematically, the decoder defines the probability distribution of a target sequence \(\mathbf{Y}{1:m}\) given the hidden state \(\mathbf{c}\): $$ p_{\theta_{dec}}(\mathbf{Y}{1:m} |\mathbf{c}). $$ By Bayes\' rule the distribution can be decomposed into conditional distributions of single target vectors as follows: $$ p{\theta_{dec}}(\mathbf{Y}{1:m} |\mathbf{c}) = \prod{i=1}^{m} p_{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{c}). $$ Thus, if the architecture can model the conditional distribution of the next target vector, given all previous target vectors: $$ p_{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{c}), \forall i \in {1, \ldots, m},$$ then it can model the distribution of any target vector sequence given the hidden state \(\mathbf{c}\) by simply multiplying all conditional probabilities. So how does the RNN-based decoder architecture model \(p_{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{c})\)? In computational terms, the model sequentially maps the previous inner hidden state \(\mathbf{c}{i-1}\) and the previous target vector \(\mathbf{y}{i-1}\) to the current inner hidden state \(\mathbf{c}i\) and a logit vector \(\mathbf{l}_i\) (shown in dark red below): $$ f{\theta_{\text{dec}}}(\mathbf{y}{i-1}, \mathbf{c}{i-1}) \to \mathbf{l}i, \mathbf{c}_i.$$ \(\mathbf{c}_0\) is thereby defined as \(\mathbf{c}\) being the output hidden state of the RNN-based encoder. Subsequently, the softmax operation is used to transform the logit vector \(\mathbf{l}_i\) to a conditional probablity distribution of the next target vector: $$ p(\mathbf{y}_i | \mathbf{l}_i) = \textbf{Softmax}(\mathbf{l}_i), \text{ with } \mathbf{l}_i = f{\theta_{\text{dec}}}(\mathbf{y}{i-1}, \mathbf{c}{\text{prev}}). $$ For more detail on the logit vector and the resulting probability distribution, please see footnote \({}^4\). From the above equation, we can see that the distribution of the current target vector \(\mathbf{y}i\) is directly conditioned on the previous target vector \(\mathbf{y}{i-1}\) and the previous hidden state \(\mathbf{c}{i-1}\). Because the previous hidden state \(\mathbf{c}{i-1}\) depends on all previous target vectors \(\mathbf{y}0, \ldots, \mathbf{y}{i-2}\), it can be stated that the RNN-based decoder implicitly (e.g. indirectly) models the conditional distribution \(p_{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{c})\). The space of possible target vector sequences \(\mathbf{Y}{1:m}\) is prohibitively large so that at inference, one has to rely on decoding methods \({}^5\) that efficiently sample high probability target vector sequences from \(p{\theta_{dec}}(\mathbf{Y}{1:m} |\mathbf{c})\). Given such a decoding method, during inference, the next input vector \(\mathbf{y}_i\) can then be sampled from \(p{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{c})\) and is consequently appended to the input sequence so that the decoder RNN then models \(p_{\theta_{\text{dec}}}(\mathbf{y}{i+1} | \mathbf{Y}{0: i}, \mathbf{c})\) to sample the next input vector \(\mathbf{y}{i+1}\) and so on in an auto-regressive fashion. An important feature of RNN-based encoder-decoder models is the definition of special vectors, such as the \(\text{EOS}\) and \(\text{BOS}\) vector. The \(\text{EOS}\) vector often represents the final input vector \(\mathbf{x}_n\) to \"cue\" the encoder that the input sequence has ended and also defines the end of the target sequence. As soon as the \(\text{EOS}\) is sampled from a logit vector, the generation is complete. The \(\text{BOS}\) vector represents the input vector \(\mathbf{y}_0\) fed to the decoder RNN at the very first decoding step. To output the first logit \(\mathbf{l}_1\), an input is required and since no input has been generated at the first step a special \(\text{BOS}\) input vector is fed to the decoder RNN. Ok - quite complicated! Let\'s illustrate and walk through an example. The unfolded RNN encoder is colored in green and the unfolded RNN decoder is colored in red. The English sentence \"I want to buy a car\", represented by \(\mathbf{x}_1 = \text{I}\), \(\mathbf{x}_2 = \text{want}\), \(\mathbf{x}_3 = \text{to}\), \(\mathbf{x}_4 = \text{buy}\), \(\mathbf{x}_5 = \text{a}\), \(\mathbf{x}_6 = \text{car}\) and \(\mathbf{x}_7 = \text{EOS}\) is translated into German: \"Ich will ein Auto kaufen\" defined as \(\mathbf{y}_0 = \text{BOS}\), \(\mathbf{y}_1 = \text{Ich}\), \(\mathbf{y}_2 = \text{will}\), \(\mathbf{y}_3 = \text{ein}\), \(\mathbf{y}_4 = \text{Auto}, \mathbf{y}_5 = \text{kaufen}\) and \(\mathbf{y}_6=\text{EOS}\). To begin with, the input vector \(\mathbf{x}_1 = \text{I}\) is processed by the encoder RNN and updates its hidden state. Note that because we are only interested in the final encoder\'s hidden state \(\mathbf{c}\), we can disregard the RNN encoder\'s target vector. The encoder RNN then processes the rest of the input sentence \(\text{want}\), \(\text{to}\), \(\text{buy}\), \(\text{a}\), \(\text{car}\), \(\text{EOS}\) in the same fashion, updating its hidden state at each step until the vector \(\mathbf{x}_7={EOS}\) is reached \({}^6\). In the illustration above the horizontal arrow connecting the unfolded encoder RNN represents the sequential updates of the hidden state. The final hidden state of the encoder RNN, represented by \(\mathbf{c}\) then completely defines the encoding of the input sequence and is used as the initial hidden state of the decoder RNN. This can be seen as conditioning the decoder RNN on the encoded input. To generate the first target vector, the decoder is fed the \(\text{BOS}\) vector, illustrated as \(\mathbf{y}_0\) in the design above. The target vector of the RNN is then further mapped to the logit vector \(\mathbf{l}_1\) by means of the LM Head feed-forward layer to define the conditional distribution of the first target vector as explained above: $$ p{\theta_{dec}}(\mathbf{y} | \text{BOS}, \mathbf{c}). $$ The word \(\text{Ich}\) is sampled (shown by the grey arrow, connecting \(\mathbf{l}1\) and \(\mathbf{y}_1\)) and consequently the second target vector can be sampled: $$ \text{will} \sim p{\theta_{dec}}(\mathbf{y} | \text{BOS}, \text{Ich}, \mathbf{c}). $$ And so on until at step \(i=6\), the \(\text{EOS}\) vector is sampled from \(\mathbf{l}6\) and the decoding is finished. The resulting target sequence amounts to \(\mathbf{Y}{1:6} = {\mathbf{y}1, \ldots, \mathbf{y}_6}\), which is \"Ich will ein Auto kaufen\" in our example above. To sum it up, an RNN-based encoder-decoder model, represented by \(f{\theta_{\text{enc}}}\) and \( p_{\theta_{\text{dec}}} \) defines the distribution \(p(\mathbf{Y}{1:m} | \mathbf{X}{1:n})\) by factorization: $$ p_{\theta_{\text{enc}}, \theta_{\text{dec}}}(\mathbf{Y}{1:m} | \mathbf{X}{1:n}) = \prod_{i=1}^{m} p_{\theta_{\text{enc}}, \theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{X}{1:n}) = \prod{i=1}^{m} p_{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i-1}, \mathbf{c}), \text{ with } \mathbf{c}=f_{\theta_{enc}}(X). $$ During inference, efficient decoding methods can auto-regressively generate the target sequence \(\mathbf{Y}{1:m}\). The RNN-based encoder-decoder model took the NLG community by storm. In 2016, Google announced to fully replace its heavily feature engineered translation service by a single RNN-based encoder-decoder model (see here). Nevertheless, RNN-based encoder-decoder models have two pitfalls. First, RNNs suffer from the vanishing gradient problem, making it very difficult to capture long-range dependencies, cf. Hochreiter et al. (2001). Second, the inherent recurrent architecture of RNNs prevents efficient parallelization when encoding, cf. Vaswani et al. (2017). ------------------------------------------------------------------------ \({}^1\) The original quote from the paper is \"Despite their flexibility and power, DNNs can only be applied to problems whose inputs and targets can be sensibly encoded with vectors of fixed dimensionality\", which is slightly adapted here. \({}^2\) The same holds essentially true for convolutional neural networks (CNNs). While an input sequence of variable length can be fed into a CNN, the dimensionality of the target will always be dependent on the input dimensionality or fixed to a specific value. \({}^3\) At the first step, the hidden state is initialized as a zero vector and fed to the RNN together with the first input vector \(\mathbf{x}_1\). \({}^4\) A neural network can define a probability distribution over all words, i.e. \(p(\mathbf{y} | \mathbf{c}, \mathbf{Y}{0: i-1})\) as follows. First, the network defines a mapping from the inputs \(\mathbf{c}, \mathbf{Y}{0: i-1}\) to an embedded vector representation \(\mathbf{y'}\), which corresponds to the RNN target vector. The embedded vector representation \(\mathbf{y'}\) is then passed to the \"language model head\" layer, which means that it is multiplied by the word embedding matrix, i.e. \(\mathbf{Y}^{\text{vocab}}\), so that a score between \(\mathbf{y'}\) and each encoded vector \(\mathbf{y} \in \mathbf{Y}^{\text{vocab}}\) is computed. The resulting vector is called the logit vector \( \mathbf{l} = \mathbf{Y}^{\text{vocab}} \mathbf{y'} \) and can be mapped to a probability distribution over all words by applying a softmax operation: \(p(\mathbf{y} | \mathbf{c}) = \text{Softmax}(\mathbf{Y}^{\text{vocab}} \mathbf{y'}) = \text{Softmax}(\mathbf{l})\). \({}^5\) Beam-search decoding is an example of such a decoding method. Different decoding methods are out of scope for this notebook. The reader is advised to refer to this interactive notebook on decoding methods. \({}^6\) Sutskever et al. (2014) reverses the order of the input so that in the above example the input vectors would correspond to \(\mathbf{x}_1 = \text{car}\), \(\mathbf{x}_2 = \text{a}\), \(\mathbf{x}_3 = \text{buy}\), \(\mathbf{x}_4 = \text{to}\), \(\mathbf{x}_5 = \text{want}\), \(\mathbf{x}_6 = \text{I}\) and \(\mathbf{x}_7 = \text{EOS}\). The motivation is to allow for a shorter connection between corresponding word pairs such as \(\mathbf{x}_6 = \text{I}\) and \(\mathbf{y}_1 = \text{Ich}\). The research group emphasizes that the reversal of the input sequence was a key reason for their model\'s improved performance on machine translation. | [
0.049829233437776566,
-0.02904207445681095,
0.05616100877523422,
-0.015232784673571587,
0.04972921684384346,
0.06738903373479843,
-0.013544832356274128,
0.046393152326345444,
-0.08895696699619293,
-0.03272078558802605,
-0.07803066819906235,
0.054094668477773666,
-0.0015540359308943152,
0.029255466535687447,
-0.007306880317628384,
0.040410857647657394,
0.050482165068387985,
0.010315082967281342,
0.016003841534256935,
-0.02038581669330597,
-0.034475430846214294,
-0.014546811580657959,
0.06950168311595917,
-0.013864945620298386,
0.05142577365040779,
-0.0502915196120739,
-0.0048519400879740715,
-0.0420907661318779,
-0.026079950854182243,
0.07815823704004288,
-0.1781845986843109,
-0.006036348640918732,
-0.021610110998153687,
0.04742606729269028,
-0.0005531895440071821,
-0.030085235834121704,
-0.11089563369750977,
0.04643843322992325,
0.017452368512749672,
-0.04749755933880806,
-0.031224379315972328,
0.04161204397678375,
-0.08803579956293106,
0.012095976620912552,
-0.01997012086212635,
0.030042823404073715,
-0.17356495559215546,
0.06196354329586029,
-0.05892588198184967,
-0.06450863927602768,
-0.09048507362604141,
0.037341244518756866,
-0.025861209258437157,
-0.03692326694726944,
-0.03519941866397858,
0.03130585327744484,
0.004187267739325762,
-0.1307830512523651,
0.03734603524208069,
-0.023667827248573303,
0.006202644668519497,
-0.002036585006862879,
0.0055083585903048515,
0.011733983643352985,
-0.00319785438477993,
0.015104765072464943,
0.009576531127095222,
0.015666432678699493,
-0.09089280664920807,
0.023600542917847633,
-0.026747949421405792,
-0.04681401699781418,
-0.028158877044916153,
-0.008376958779990673,
-0.0229501873254776,
-0.024000050500035286,
0.0005654365522786975,
0.010440773330628872,
0.04221596568822861,
0.026503732427954674,
-0.012619704008102417,
0.10016290098428726,
0.062119919806718826,
0.057899340987205505,
0.027482399716973305,
0.007507510483264923,
0.06032336875796318,
-0.044686656445264816,
-0.044737521559000015,
0.0948738157749176,
-0.0009959094459190965,
-0.14242467284202576,
0.002049722708761692,
-0.009157292544841766,
0.0491366870701313,
-0.015238913707435131,
0.030281294137239456,
0.06487240642309189,
-0.007976370863616467,
0.014742656610906124,
0.01628749445080757,
-0.02394706942141056,
0.06544531881809235,
-0.04716368019580841,
-0.1039268895983696,
0.04888058081269264,
0.003970241639763117,
-0.06483857333660126,
-0.07332981377840042,
0.0060390932485461235,
-0.013584701344370842,
0.06784090399742126,
0.06460076570510864,
0.04024385288357735,
-0.061282820999622345,
0.037108827382326126,
0.019168563187122345,
0.0335138775408268,
-0.022630926221609116,
-0.02570902369916439,
0.05350825935602188,
0.04011780023574829,
0.032272275537252426,
0.0004857101012021303,
-0.024657249450683594,
-0.01336017157882452,
0.0074411556124687195,
-0.06480443477630615,
-0.06605610996484756,
-0.052060022950172424,
-0.015551344491541386,
0.0036876180674880743,
0.05862369015812874,
0.040616683661937714,
-0.009945318102836609,
0.012212548404932022,
0.004769408609718084,
-0.04171409457921982,
-0.012361915782094002,
-0.009355628862977028,
-0.04391886666417122,
0.053813304752111435,
0.005996559746563435,
0.014454060234129429,
0.06439875066280365,
-0.03580858185887337,
-0.02743684872984886,
0.00339337345212698,
0.010489353910088539,
0.04865041375160217,
-0.009880512952804565,
0.0809694454073906,
-0.0330619178712368,
-0.05501990765333176,
0.015479693189263344,
0.057120371609926224,
-0.0310478787869215,
-0.023582827299833298,
-0.058451224118471146,
-0.017814571037888527,
-0.032182224094867706,
0.020508764311671257,
0.007942602969706059,
0.010297332890331745,
0.01757311075925827,
-0.09783866256475449,
0.034377265721559525,
0.07850722223520279,
0.0004704707534983754,
-0.01237138919532299,
-0.008852820843458176,
0.002730581909418106,
0.006919809151440859,
-0.020388547331094742,
0.00549250328913331,
0.0025681068655103445,
-0.019760293886065483,
0.013525301590561867,
0.04161177948117256,
0.002794852014631033,
-0.050576724112033844,
-0.03126323223114014,
0.018204744905233383,
-0.019197793677449226,
0.031797103583812714,
-0.10296347737312317,
0.001897342735901475,
0.0014748240355402231,
-0.04461213946342468,
0.03426407277584076,
-0.08113517612218857,
-0.03522118180990219,
0.06511371582746506,
0.010327245108783245,
-0.014843114651739597,
-0.07586000114679337,
0.005881433840841055,
0.18111515045166016,
0.02489500865340233,
0.07828827202320099,
0.06391030550003052,
0.032513346523046494,
0.04188867285847664,
-0.022059759125113487,
-0.03181429207324982,
0.054735638201236725,
-0.055529505014419556,
-0.03061565011739731,
0.019054820761084557,
0.003218558384105563,
0.021015383303165436,
-0.09044183045625687,
0.02822181209921837,
-0.10835997015237808,
0.01583370566368103,
-0.0018867931794375181,
0.01698901876807213,
0.02053278684616089,
0.026666635647416115,
-0.01232511643320322,
0.16159780323505402,
-0.04067886248230934,
-0.013411266729235649,
0.012520348653197289,
-0.0286271832883358,
0.0706494078040123,
0.04020330682396889,
0.007067093160003424,
0.01776062324643135,
-0.0831066370010376,
0.0028018273878842592,
-0.01846042461693287,
0.007838237099349499,
0.034473780542612076,
-0.020095279440283775,
-0.008384774439036846,
-0.016561485826969147,
-0.003679015440866351,
-0.011679830960929394,
0.01615072786808014,
0.03304191306233406,
0.05557320639491081,
-0.026660187169909477,
0.036039695143699646,
-0.06944535672664642,
-0.01609039306640625,
0.05445113778114319,
-0.012484900653362274,
-0.009359550662338734,
-0.02697293646633625,
-0.07023104280233383,
0.08116044849157333,
0.01122595276683569,
0.0022353765089064837,
0.01770026609301567,
0.06307976692914963,
0.006030111573636532,
-0.01798461563885212,
0.0028496901504695415,
0.004796638153493404,
-0.035419464111328125,
-0.016005152836441994,
-0.0033642188645899296,
-0.049309611320495605,
-0.014466994442045689,
-0.021080438047647476,
0.0234497282654047,
-0.03005051054060459,
0.0027882929425686598,
0.02538280189037323,
0.012715332210063934,
0.01431394275277853,
-0.007530206348747015,
0.037776168435811996,
-0.015730349346995354,
-0.016243884339928627,
0.03336456045508385,
-0.0427425354719162,
-0.027577867731451988,
-0.03579774498939514,
-0.018990572541952133,
-0.012413407675921917,
0.039570823311805725,
0.04167168214917183,
0.03699234873056412,
-0.016392987221479416,
0.028497908264398575,
-0.03240161016583443,
-0.013118015602231026,
0.011771684512495995,
0.012293129228055477,
0.019542230293154716,
-0.021999267861247063,
-0.03067745640873909,
0.003464157460257411,
0.004490075167268515,
-0.0069736577570438385,
-0.005082675721496344,
0.019287198781967163,
0.026890018954873085,
0.011415661312639713,
-0.0033713041339069605,
-0.0019842751789838076,
0.010765548795461655,
-0.035550426691770554,
0.039174702018499374,
0.0315450057387352,
0.031806088984012604,
-0.10922553390264511,
-0.03157346323132515,
0.008812927640974522,
0.024264777079224586,
0.01022376585751772,
-0.004338093567639589,
0.032929759472608566,
-0.01775210350751877,
0.0066978042013943195,
-0.010042603127658367,
-0.002444889396429062,
0.018641598522663116,
0.03406935930252075,
-0.007575985509902239,
0.02346125803887844,
-0.02004668116569519,
-0.020787030458450317,
-0.022053122520446777,
0.037788040935993195,
0.03592246025800705,
0.0031443259213119745,
0.020925821736454964,
-0.006184055469930172,
-0.0023988557513803244,
-0.05787624046206474,
-0.014462233521044254,
0.03215082734823227,
0.006430090870708227,
0.03153984621167183,
-0.03577406331896782,
-0.055414676666259766,
0.022997858002781868,
-0.019735101610422134,
0.012795739807188511,
-0.017028020694851875,
-0.02091122977435589,
0.03173379972577095,
-0.0008991607464849949,
0.015935976058244705,
0.040827445685863495,
0.0031937328167259693,
-0.04088765010237694,
-0.036549776792526245,
-0.010499207302927971,
-0.025380074977874756,
-0.02090584672987461,
-0.007515823468565941,
0.0023890763986855745,
0.02542470209300518,
-0.05584152042865753,
-0.010048030875623226,
-0.028536980971693993,
0.007458825595676899,
0.05187862366437912,
0.028025496751070023,
0.02079392597079277,
-0.022457551211118698,
-0.009623836725950241,
0.03543594107031822,
-0.004887647461146116,
-0.006799960043281317,
0.020782453939318657,
0.002758744405582547,
-0.032519370317459106,
-0.021732155233621597,
0.0842534676194191,
-0.016177840530872345,
0.030037716031074524,
0.026829339563846588,
0.0798071101307869,
-0.008152859285473824,
0.056610461324453354,
0.012232563458383083,
-0.00018416985403746367,
-0.02873242273926735,
0.010672048665583134,
-0.03757626563310623,
-0.021950483322143555,
0.06351689994335175,
0.0075219725258648396,
-0.006014936603605747,
-0.007762925233691931,
-0.053683340549468994,
0.0030587087385356426,
0.016247456893324852,
0.032834261655807495,
0.012121101841330528,
0.015748612582683563,
0.0119705805554986,
0.013429799117147923,
0.005728720221668482,
-0.01699173077940941,
0.015238093212246895,
0.019591109827160835,
-0.006606273353099823,
-0.045257847756147385,
0.006522562820464373,
-0.02762497030198574,
0.03381846100091934,
0.006497830618172884,
0.019077716395258904,
-0.05224316939711571,
-0.00590700376778841,
-0.01964862085878849,
-0.025136534124612808,
0.014197216369211674,
-0.03256228193640709,
0.020765263587236404,
0.014100592583417892,
0.008600457571446896,
-0.015725957229733467,
-0.02941819280385971,
0.029233573004603386,
-0.030331896618008614,
0.03353650122880936,
-0.005703360307961702,
-0.004840820096433163,
-0.030414719134569168,
-0.06651416420936584,
-0.013639797456562519,
-0.0393792949616909,
0.006077776197344065,
0.018786253407597542,
0.0010441647609695792,
0.016041498631238937,
-0.009095745161175728,
0.017742270603775978,
0.00504846079275012,
0.006873934529721737,
0.027406824752688408,
0.013251835480332375,
0.010375871323049068,
0.01852896437048912,
-0.003659550566226244,
0.0203044805675745,
0.018420256674289703,
-0.01329005602747202,
-0.007988582365214825,
-0.03862226754426956,
-0.0401449128985405,
0.005126690957695246,
0.025148915126919746,
0.020908648148179054,
-0.016604814678430557,
0.02086343988776207,
0.0009878113633021712,
-0.003943562973290682,
0.013606484979391098,
-0.00008654411067254841,
0.020626245066523552,
0.034257929772138596,
0.03470846265554428,
-0.03506874665617943,
0.026676712557673454,
0.06123719364404678,
-0.032686952501535416,
-0.0008763095829635859,
0.04696998372673988,
0.003955161664634943,
0.04049625247716904,
-0.019782843068242073,
-0.05818648636341095,
-0.016687363386154175,
0.0381661057472229,
0.011531650088727474,
0.009909200482070446,
-0.013025375083088875,
-0.026751410216093063,
0.008206394501030445,
0.010015237145125866,
0.016612978652119637,
-0.043115291744470596,
-0.021197011694312096,
-0.02027292363345623,
0.003597470698878169,
0.02669047936797142,
0.030440522357821465,
-0.0004820764879696071,
-0.013581070117652416,
0.04534311220049858,
-0.0036251824349164963,
-0.002398573560640216,
0.01932421140372753,
0.00024655525339767337,
0.05182402953505516,
-0.003892293432727456,
0.07692757248878479,
0.04448347166180611,
0.027622375637292862,
0.03252391889691353,
-0.004770382307469845,
0.015875568613409996,
0.030482083559036255,
-0.05443457514047623,
-0.00447249598801136,
0.034714002162218094,
0.012052941136062145,
0.022717583924531937,
-0.014756601303815842,
0.016025442630052567,
-0.01611761376261711,
0.022205369547009468,
0.003926992882043123,
-0.028340961784124374,
-0.004138960037380457,
0.004067644011229277,
-0.03679808974266052,
-0.029828473925590515,
-0.016143422573804855,
-0.021885588765144348,
-0.04264308512210846,
-0.0031805275939404964,
-0.051327183842659,
-0.038268085569143295,
-0.006227477453649044,
-0.03264489769935608,
-0.02536090463399887,
0.05575832352042198,
0.02515149861574173,
0.07008098810911179,
-0.008208573795855045,
-0.0028749590273946524,
0.022380663082003593,
0.015906983986496925,
0.02415953204035759,
-0.0033965990878641605,
-0.018387414515018463,
-0.0207681804895401,
0.023906029760837555,
0.03403293713927269,
0.03566649556159973,
-0.04237564653158188,
0.008885184302926064,
0.009531480260193348,
-0.004306721966713667,
-0.03749817609786987,
-0.0010891702258959413,
0.06908649951219559,
0.017850853502750397,
-0.009998495690524578,
0.004742571618407965,
-0.00933568924665451,
-0.023540863767266273,
0.027137085795402527,
-0.03859804570674896,
0.04110192880034447,
0.04547589272260666,
-0.013975955545902252,
-0.026690028607845306,
0.007831824012100697,
0.05859377607703209,
-0.044536106288433075,
-0.006949913688004017,
0.021086685359477997,
0.009350327774882317,
0.03664169833064079,
-0.0015493707032874227,
-0.0013553401222452521,
-0.0040574208833277225,
0.0014619191642850637,
-0.0010473006404936314,
-0.0499979630112648,
0.010864360257983208,
0.02860235795378685,
-0.04759572073817253,
-0.008125033229589462,
-0.010846883058547974,
-0.023807870224118233,
0.042801495641469955,
0.06081375107169151,
0.01666335202753544,
0.011958462186157703,
-0.03258514404296875,
0.03348546475172043,
-0.006764973048120737,
0.007388652767986059,
-0.013533473014831543,
0.030543528497219086,
0.011658341623842716,
0.050660792738199234,
0.01103142462670803,
0.027439726516604424,
0.04757724702358246,
-0.009352452121675014,
0.015363607555627823,
0.012615702114999294,
0.05856039747595787,
0.0008533441578038037,
0.024780843406915665,
-0.029795804992318153,
-0.013540987856686115,
-0.018395353108644485,
-0.014392801560461521,
-0.025347711518406868,
-0.05735092982649803,
0.022392122074961662,
0.04011500999331474,
-0.01780051924288273,
0.049557339400053024,
-0.016264230012893677,
0.021109474822878838,
0.04444415122270584,
-0.015080675482749939,
0.008556392975151539,
-0.018224185332655907,
0.030923210084438324,
0.007887644693255424,
0.021582158282399178,
0.016503620892763138,
0.002769282553344965,
0.009188991039991379,
0.06082196906208992,
0.04398224875330925,
0.024586329236626625,
-0.005503455642610788,
-0.025245441123843193,
0.025165032595396042,
0.001629021018743515,
0.023662472143769264,
0.025266200304031372,
0.013903699815273285,
-0.017461009323596954,
-0.015735097229480743,
-0.003592828521504998,
-0.03536536917090416,
0.04643405228853226,
-0.014044912531971931,
0.0008064015419222414,
-0.0008974230149760842,
-0.02453693002462387,
-0.013438964262604713,
0.05472432076931,
-0.02423946000635624,
-0.026419008150696754,
-0.008342470042407513,
-0.03108581155538559,
0.006292696576565504,
-0.001851749373599887,
-0.007611770648509264,
0.0012605293886736035,
-0.006492930930107832,
-0.033205095678567886,
0.019566504284739494,
-0.005502417683601379,
-0.02968772128224373,
-0.04360328987240791,
0.030709415674209595,
0.016003744676709175,
-0.037118833512067795,
0.04316510632634163,
0.013104439713060856,
0.02925674058496952,
-0.010303475894033909,
0.012156674638390541,
-0.04942930489778519,
0.03209115192294121,
-0.0014512495836243033,
-0.035054657608270645,
-0.015620973892509937,
-0.026820767670869827,
0.026353495195508003,
0.014615826308727264,
0.04082072898745537,
-0.04429249092936516,
-0.015365980565547943,
-0.007337052840739489,
-0.012515740469098091,
0.01500556617975235,
-0.0000805195959401317,
0.005029141437262297,
0.016364408656954765,
0.007286513224244118,
-0.01650199666619301,
-0.04696269705891609,
-0.027731793001294136,
-0.00918413233011961,
0.03121001459658146,
-0.01359379943460226,
-0.02034025453031063,
-0.03142022341489792,
0.04635460302233696,
0.018206052482128143,
0.01962471194565296,
0.05586054176092148,
0.033728018403053284,
0.011718669906258583,
-0.03077082335948944,
0.045128077268600464,
-0.010957367718219757,
0.04833569750189781,
-0.04475961998105049,
-0.07443615794181824,
-0.039829034358263016,
0.0296464953571558,
0.0025421183090656996,
0.005228016525506973,
-0.028902195394039154,
0.009590829722583294,
-0.038370855152606964,
0.008755767717957497,
-0.047548808157444,
-0.013765156269073486,
0.05515860393643379,
0.03457007557153702,
0.018394462764263153,
-0.028715912252664566,
0.015225213021039963,
0.004011808428913355,
0.009592905640602112,
0.015410502441227436,
0.0425601601600647,
-0.011298350058495998,
-0.008553453721106052,
-0.012709700502455235,
0.022751841694116592,
-0.06397261470556259,
-0.009209267795085907,
0.020782355219125748,
0.0536482110619545,
-0.018324941396713257,
0.017391642555594444,
0.014787448570132256,
-0.027352748438715935,
-0.007155152037739754,
0.026593554764986038,
-0.000747035606764257,
-0.024530183523893356,
0.022455235943198204,
-0.007407747209072113,
-0.04865449294447899,
-0.014263985678553581,
0.022445768117904663,
-0.006777153816074133,
0.04086418077349663,
0.015847399830818176,
0.03321181610226631,
-0.005732478108257055,
-0.045100562274456024,
-0.0020422355737537146,
0.01931612938642502,
0.015999335795640945,
-0.024342847988009453,
0.02824063040316105,
0.028744002804160118,
-0.02119218371808529,
-0.02968757413327694,
0.023258088156580925,
0.010791814886033535,
0.00045562488958239555,
-0.022762946784496307,
0.0057466416619718075,
-0.005637073423713446,
-0.04987788945436478,
0.025163063779473305,
-0.01570327952504158,
0.05761868879199028,
0.044876016676425934,
-0.007151809521019459,
0.0034538833424448967,
0.0038229834754019976
] |
Transformer-based Encoder-Decoder Models | patrickvonplaten | October 10, 2020 | encoder-decoder | research, nlp | https://huggingface.co/blog/encoder-decoder | Appendix As mentioned above, the following code snippet shows how one can program a simple generation method for transformer-based encoder-decoder models. Here, we implement a simple greedy decoding method using torch.argmax to sample the target vector. python from transformers import MarianMTModel, MarianTokenizer import torch tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") # create ids of encoded input vectors input_ids = tokenizer("I want to buy a car", return_tensors="pt").input_ids # create BOS token decoder_input_ids = tokenizer("<pad>", add_special_tokens=False, return_tensors="pt").input_ids assert decoder_input_ids[0, 0].item() == model.config.decoder_start_token_id, "`decoder_input_ids` should correspond to `model.config.decoder_start_token_id`" # STEP 1 # pass input_ids to encoder and to decoder and pass BOS token to decoder to retrieve first logit outputs = model(input_ids, decoder_input_ids=decoder_input_ids, return_dict=True) # get encoded sequence encoded_sequence = (outputs.encoder_last_hidden_state,) # get logits lm_logits = outputs.logits # sample last token with highest prob next_decoder_input_ids = torch.argmax(lm_logits[:, -1:], axis=-1) # concat decoder_input_ids = torch.cat([decoder_input_ids, next_decoder_input_ids], axis=-1) # STEP 2 # reuse encoded_inputs and pass BOS + "Ich" to decoder to second logit lm_logits = model(None, encoder_outputs=encoded_sequence, decoder_input_ids=decoder_input_ids, return_dict=True).logits # sample last token with highest prob again next_decoder_input_ids = torch.argmax(lm_logits[:, -1:], axis=-1) # concat again decoder_input_ids = torch.cat([decoder_input_ids, next_decoder_input_ids], axis=-1) # STEP 3 lm_logits = model(None, encoder_outputs=encoded_sequence, decoder_input_ids=decoder_input_ids, return_dict=True).logits next_decoder_input_ids = torch.argmax(lm_logits[:, -1:], axis=-1) decoder_input_ids = torch.cat([decoder_input_ids, next_decoder_input_ids], axis=-1) # let's see what we have generated so far! print(f"Generated so far: {tokenizer.decode(decoder_input_ids[0], skip_special_tokens=True)}") # This can be written in a loop as well. Outputs: Generated so far: Ich will ein In this code example, we show exactly what was described earlier. We pass an input \"I want to buy a car\" together with the \(\text{BOS}\) token to the encoder-decoder model and sample from the first logit \(\mathbf{l}_1\) (i.e.* the first lm_logits line). Hereby, our sampling strategy is simple: greedily choose the next decoder input vector that has the highest probability. In an auto-regressive fashion, we then pass the sampled decoder input vector together with the previous inputs to the encoder-decoder model and sample again. We repeat this a third time. As a result, the model has generated the words \"Ich will ein\". The result is spot-on - this is the beginning of the correct translation of the input. In practice, more complicated decoding methods are used to sample the lm_logits. Most of which are covered in this blog post. | [
0.017948029562830925,
0.016749555245041847,
0.018312562257051468,
-0.003837289521470666,
0.010432821698486805,
0.07480823248624802,
0.05509888753294945,
-0.02648375928401947,
-0.04487813636660576,
0.03700028359889984,
-0.10049944370985031,
0.039042405784130096,
-0.009632190689444542,
0.06560436636209488,
-0.021733462810516357,
-0.06093139946460724,
0.006511966232210398,
0.005732680205255747,
0.016441281884908676,
0.015257496386766434,
0.03351064398884773,
-0.06817598640918732,
0.034891046583652496,
0.007132051046937704,
0.06929858028888702,
-0.04115261137485504,
0.008293136022984982,
-0.004645821638405323,
-0.04909293353557587,
0.060901183634996414,
-0.0896935760974884,
0.004801157861948013,
0.014265880919992924,
-0.02321331761777401,
-0.014358099550008774,
0.011032461188733578,
-0.13286912441253662,
-0.0010376989375799894,
0.024336077272892,
-0.017971221357584,
-0.012715263292193413,
0.004393909126520157,
-0.030276022851467133,
0.051510605961084366,
0.04009300470352173,
-0.01611177623271942,
-0.1605544090270996,
0.08265304565429688,
-0.07997677475214005,
-0.08463997393846512,
-0.04648878052830696,
0.024165796115994453,
-0.04350863769650459,
0.027621150016784668,
-0.006591512821614742,
0.032109908759593964,
0.007810985203832388,
-0.10752595216035843,
0.033169738948345184,
0.008554400876164436,
0.007437517400830984,
0.037094298750162125,
0.03194832056760788,
0.05031929165124893,
0.023138996213674545,
0.03953685238957405,
-0.02856706641614437,
0.03337275609374046,
-0.017902281135320663,
-0.04095908999443054,
0.015135510824620724,
-0.06483983248472214,
-0.04754946380853653,
0.018582619726657867,
0.008573772385716438,
-0.07689651846885681,
0.02780657447874546,
0.012502182275056839,
0.08896000683307648,
0.12360818684101105,
-0.017970915883779526,
0.05814475566148758,
0.04809943214058876,
-0.01403608825057745,
0.07588479667901993,
0.03813078626990318,
0.005364437587559223,
-0.0013336288975551724,
0.010931846685707569,
0.07311467826366425,
-0.07699549943208694,
-0.16103433072566986,
-0.018070640042424202,
-0.02616405487060547,
0.04454352706670761,
-0.009528794325888157,
0.022436227649450302,
0.038523685187101364,
-0.04282863065600395,
-0.0343136265873909,
0.03736218437552452,
-0.02644965797662735,
0.032044634222984314,
-0.045957937836647034,
-0.09410247951745987,
0.0064352587796747684,
0.005416924599558115,
-0.06071129068732262,
-0.014826000668108463,
-0.01580958440899849,
0.006166235078126192,
-0.013058836571872234,
0.00960768386721611,
0.07523009926080704,
-0.03883722797036171,
-0.05360815301537514,
-0.0075430055148899555,
-0.01721169799566269,
-0.05563509464263916,
-0.018668293952941895,
-0.03797178715467453,
0.08183085173368454,
-0.021953554823994637,
-0.014045952819287777,
-0.03408109024167061,
0.05623064190149307,
0.0007181544788181782,
0.018596332520246506,
-0.012814868241548538,
-0.002953944029286504,
0.04334692284464836,
-0.009053850546479225,
0.0441989041864872,
0.026466554030776024,
-0.0019718732219189405,
-0.001967892050743103,
0.015461679548025131,
-0.050284259021282196,
-0.05462212488055229,
-0.014238887466490269,
-0.04860999435186386,
0.02010340243577957,
-0.019241878762841225,
-0.004215813707560301,
-0.025024907663464546,
-0.028444306924939156,
-0.04759162291884422,
0.1246228888630867,
0.05596572160720825,
0.053722482174634933,
-0.03562522679567337,
0.019153043627738953,
0.018781526014208794,
-0.028473997488617897,
-0.016857357695698738,
0.034236762672662735,
-0.053293850272893906,
0.018600061535835266,
-0.09191568940877914,
-0.03287968784570694,
0.007178108207881451,
0.036425746977329254,
-0.02771880477666855,
0.028522759675979614,
-0.03282734751701355,
-0.07449009269475937,
0.0018808323657140136,
0.0725887194275856,
-0.036962345242500305,
0.02507062815129757,
0.01316017471253872,
0.02246621623635292,
0.02749595418572426,
0.013656634837388992,
-0.006651099305599928,
0.027771275490522385,
0.00968200247734785,
0.07410221546888351,
-0.010536909103393555,
-0.06050601974129677,
-0.0519520603120327,
0.024580901488661766,
-0.04089432209730148,
0.05006720498204231,
0.06646961718797684,
-0.04435774311423302,
-0.04106879606842995,
0.0023803766816854477,
-0.02767309732735157,
0.034018903970718384,
-0.0515722893178463,
-0.03939218819141388,
0.04923729598522186,
-0.010929656215012074,
0.03927898779511452,
-0.029914669692516327,
-0.04440102353692055,
0.06755782663822174,
0.01369110681116581,
0.044269248843193054,
0.011856256052851677,
0.0038640196435153484,
0.006731526460498571,
-0.02067389339208603,
-0.02831907942891121,
-0.031169943511486053,
-0.059321075677871704,
-0.05712733417749405,
0.06831896305084229,
0.06675287336111069,
0.02669716812670231,
-0.06255954504013062,
-0.01951643079519272,
-0.11144369095563889,
0.027266239747405052,
-0.00997689925134182,
-0.0718812495470047,
0.013289457187056541,
0.03670187667012215,
0.018879113718867302,
0.1392594873905182,
-0.07338336855173111,
0.002165938029065728,
-0.038068439811468124,
-0.024804560467600822,
0.06424658745527267,
0.051616571843624115,
0.00023188504565041512,
0.0580313466489315,
-0.07546959072351456,
0.003664139425382018,
-0.06305907666683197,
-0.042846620082855225,
0.05760670453310013,
-0.08681873977184296,
-0.07692665606737137,
0.02237367443740368,
0.0325937494635582,
-0.026368161663413048,
0.002460246440023184,
0.007607543375343084,
0.03129645064473152,
-0.03221548721194267,
0.03141452372074127,
-0.020987462252378464,
-0.008399066515266895,
0.06736702471971512,
-0.031200144439935684,
-0.002583883237093687,
0.023270267993211746,
-0.07014442980289459,
0.08025828003883362,
-0.036082345992326736,
-0.09142020344734192,
0.020827045664191246,
0.043428752571344376,
-0.022789228707551956,
-0.02214721217751503,
-0.007511592470109463,
0.03566926717758179,
-0.0053785997442901134,
-0.014219527132809162,
-0.05280674248933792,
-0.06653546541929245,
-0.03299243003129959,
-0.018230238929390907,
0.01917816884815693,
0.031885165721178055,
-0.00307342573069036,
0.024925757199525833,
-0.0008709401590749621,
0.0009587160311639309,
0.03115769661962986,
0.011314363218843937,
0.022066300734877586,
0.04784722626209259,
0.0336545929312706,
-0.023920612409710884,
-0.03728242963552475,
-0.004331506323069334,
-0.04536992684006691,
-0.029885463416576385,
0.024308960884809494,
0.028286786749958992,
-0.0029900388326495886,
0.011375727131962776,
-0.02079436369240284,
-0.021516162902116776,
-0.000022931373678147793,
0.033791057765483856,
0.0006042413879185915,
0.059969909489154816,
-0.005574529059231281,
0.009810416959226131,
-0.019168341532349586,
0.01568768359720707,
-0.002573629142716527,
-0.01074659638106823,
-0.03355640172958374,
0.01864081621170044,
-0.05247264727950096,
-0.012729635462164879,
-0.014265477657318115,
-0.010915403254330158,
-0.048018403351306915,
-0.01384101714938879,
0.06305532902479172,
0.03424028307199478,
-0.08616776764392853,
-0.032425060868263245,
-0.012462682090699673,
-0.019416505470871925,
0.012374652549624443,
-0.0171734057366848,
0.032614484429359436,
-0.0010621928377076983,
-0.02162989228963852,
0.008144066669046879,
0.010748213157057762,
0.019289186224341393,
-0.01641996204853058,
0.021367721259593964,
-0.017378684133291245,
-0.05262674391269684,
0.01347595825791359,
0.03424685820937157,
0.010668973438441753,
-0.008419200778007507,
0.011274576187133789,
0.011230128817260265,
-0.0004412440466694534,
0.023210326209664345,
-0.04764380306005478,
-0.009441649541258812,
0.035336147993803024,
-0.0035239991266280413,
0.019819997251033783,
0.001562759978696704,
-0.03811963275074959,
-0.015041771344840527,
-0.003074139356613159,
-0.006835645530372858,
-0.03153620660305023,
-0.022222010418772697,
0.02334989421069622,
-0.028827840462327003,
0.008677766658365726,
0.018972424790263176,
-0.0023548761382699013,
-0.0400470532476902,
0.00465012900531292,
-0.014787334017455578,
0.020312374457716942,
-0.011630658060312271,
-0.0392252542078495,
-0.005510276183485985,
0.0018418739782646298,
-0.03501494601368904,
-0.04556204378604889,
0.005972266662865877,
0.01474951021373272,
0.0362280011177063,
0.03439655527472496,
0.030540060251951218,
-0.008236153051257133,
0.04916363209486008,
0.04843776300549507,
0.04780696704983711,
-0.05250091850757599,
0.03531539440155029,
-0.010267449542880058,
-0.031167691573500633,
-0.014905030839145184,
0.08221518248319626,
0.01735299453139305,
0.004866546019911766,
-0.006868941243737936,
0.050267525017261505,
0.0024009367916733027,
-0.0017222686437889934,
-0.009108081459999084,
0.00769004924222827,
-0.025263484567403793,
0.04435467720031738,
-0.024926824495196342,
-0.024511782452464104,
0.0620247907936573,
-0.010322630405426025,
-0.015408424660563469,
-0.04521454870700836,
-0.0611998550593853,
-0.012284083291888237,
-0.012578161433339119,
0.025329777970910072,
0.03149794414639473,
-0.0230585727840662,
0.046518903225660324,
-0.030116219073534012,
0.027607135474681854,
-0.044947102665901184,
0.01467503234744072,
-0.007930930703878403,
-0.025273239240050316,
-0.01933324709534645,
-0.018298156559467316,
0.0061672646552324295,
0.017771568149328232,
-0.01240847259759903,
0.02041485160589218,
-0.08941426128149033,
-0.009738546796143055,
0.013375531882047653,
-0.019206520169973373,
-0.0010856707813218236,
-0.04946783185005188,
-0.003548956476151943,
0.02011280320584774,
-0.024560101330280304,
-0.004880702123045921,
-0.03656229376792908,
0.011451820842921734,
-0.00717872753739357,
0.02074257843196392,
0.01619107648730278,
0.008677625097334385,
-0.0643199160695076,
0.01650959625840187,
-0.005380946211516857,
-0.049879223108291626,
0.018240876495838165,
0.01817885972559452,
-0.01683378778398037,
0.05313761532306671,
-0.03588220849633217,
0.037334877997636795,
0.03588053956627846,
-0.013158011250197887,
0.005498369224369526,
-0.02485952340066433,
0.00381432194262743,
0.0563817135989666,
0.0001365530479233712,
-0.00472057843580842,
0.047837622463703156,
0.0023256326094269753,
-0.02084597386419773,
0.013331319205462933,
-0.012014828622341156,
-0.023166297003626823,
0.023401284590363503,
0.0473656952381134,
-0.016500314697623253,
0.022778430953621864,
0.015135969035327435,
0.00929673109203577,
-0.018378188833594322,
-0.009641768410801888,
-0.006303679198026657,
0.0516078919172287,
-0.012332800775766373,
-0.016130397096276283,
-0.015323856845498085,
0.02299276739358902,
-0.000505376432556659,
0.0023262242320924997,
0.07257277518510818,
0.023586608469486237,
-0.0018226061947643757,
-0.02478078380227089,
-0.031667690724134445,
-0.0228157639503479,
0.014309307560324669,
0.009482676163315773,
0.011579442769289017,
-0.040919698774814606,
-0.04306952655315399,
0.014023925177752972,
0.02582002617418766,
-0.003711626399308443,
-0.018465958535671234,
0.03610703721642494,
-0.03607587516307831,
-0.0152791328728199,
0.059466686099767685,
0.01248061005026102,
0.007940203882753849,
-0.03482770174741745,
0.011862796731293201,
0.003392050974071026,
-0.012682932429015636,
0.015058854594826698,
0.008783156983554363,
0.012363254092633724,
0.0217850673943758,
0.06550749391317368,
0.019299926236271858,
0.05715916305780411,
0.007358708418905735,
-0.013722383417189121,
-0.02104729786515236,
0.033950816839933395,
-0.006810340099036694,
-0.048260465264320374,
0.03835693374276161,
-0.03120558150112629,
0.020630182698369026,
-0.009652280248701572,
0.015117515809834003,
0.016824519261717796,
0.0390605553984642,
0.015610841102898121,
-0.012063739821314812,
0.026215193793177605,
-0.027623172849416733,
-0.007891247980296612,
-0.006658212281763554,
-0.020274806767702103,
-0.06274883449077606,
0.003017853247001767,
0.028843775391578674,
-0.018148627132177353,
0.03689609095454216,
0.011105003766715527,
-0.002758890390396118,
-0.02337699942290783,
-0.005007321015000343,
0.012516317889094353,
0.06253720819950104,
-0.02578439563512802,
-0.04115910828113556,
0.01578211970627308,
0.027501991018652916,
0.04576323553919792,
0.00006825095624662936,
0.012803329154849052,
0.031584806740283966,
0.013641596771776676,
-0.015372991561889648,
0.04493435099720955,
-0.02422219328582287,
-0.004927186761051416,
0.05515854433178902,
0.014899030327796936,
-0.025916360318660736,
0.01889660768210888,
0.037086375057697296,
-0.002539754146710038,
0.013031807728111744,
0.050347212702035904,
-0.03870661184191704,
-0.024600962176918983,
0.05320186913013458,
-0.04635239019989967,
0.04446709528565407,
0.01988900639116764,
-0.003519551595672965,
0.005354872439056635,
0.00028227982693351805,
0.05811271443963051,
0.005920446943491697,
-0.04176799952983856,
-0.0031745960004627705,
0.02985640987753868,
0.006265150848776102,
0.026875952258706093,
0.013892155140638351,
-0.007959435693919659,
0.038616497069597244,
0.03599914163351059,
-0.03847947716712952,
0.0014822306111454964,
0.05091974884271622,
-0.029680518433451653,
0.05047731474041939,
-0.022024868056178093,
-0.01873503439128399,
-0.003474803175777197,
-0.024743566289544106,
0.0471547394990921,
0.027552053332328796,
0.014022085815668106,
0.04007163643836975,
0.008864754810929298,
-0.0059984419494867325,
0.006249900907278061,
0.06814800947904587,
-0.028238767758011818,
0.047100502997636795,
-0.014422479085624218,
0.013543164357542992,
0.014796189032495022,
0.04289114475250244,
0.02275768853724003,
0.040307290852069855,
0.07257352769374847,
0.01865164376795292,
-0.007390468847006559,
-0.019550198689103127,
0.02839215099811554,
0.004179053939878941,
-0.04115261510014534,
0.0058177984319627285,
0.017668569460511208,
-0.012696435675024986,
0.029631871730089188,
-0.03807546943426132,
0.03948243707418442,
-0.014603419229388237,
0.04576197266578674,
0.026952320709824562,
0.011536982841789722,
-0.027073947712779045,
0.05016637593507767,
0.04778778925538063,
0.02485087141394615,
0.034588687121868134,
0.01994219236075878,
0.04252694919705391,
0.00722948694601655,
0.036479152739048004,
-0.0014582652365788817,
0.004734157118946314,
0.054178837686777115,
-0.035265713930130005,
-0.0018560055177658796,
-0.0368257574737072,
-0.02239011600613594,
-0.005321502219885588,
0.01747928559780121,
0.015075444243848324,
-0.014080828055739403,
0.027007747441530228,
-0.025851354002952576,
0.033878669142723083,
-0.027533158659934998,
-0.03720085695385933,
-0.005795375443994999,
-0.005305387079715729,
-0.04152285307645798,
0.0689091831445694,
-0.013993536122143269,
-0.02643500827252865,
0.010096452198922634,
-0.005721799097955227,
0.026777192950248718,
0.03257771581411362,
-0.025670604780316353,
-0.006605091970413923,
-0.040194202214479446,
-0.01925606094300747,
-0.024690989404916763,
-0.03395002335309982,
-0.030173294246196747,
-0.011998040601611137,
0.022412022575736046,
0.01727265678346157,
-0.007945386692881584,
0.04873332008719444,
0.025220301002264023,
0.009324440732598305,
-0.02673855610191822,
-0.0019790027290582657,
0.00847606547176838,
0.005483975633978844,
0.036004770547151566,
-0.030973613262176514,
0.004716217517852783,
0.008686401881277561,
0.043380219489336014,
-0.0007734629325568676,
0.033529624342918396,
-0.045272450894117355,
-0.05206248164176941,
-0.004349877126514912,
0.0019653518684208393,
-0.025567196309566498,
0.01626693829894066,
-0.03040521964430809,
0.01976666785776615,
0.029473399743437767,
-0.022434646263718605,
-0.006242753006517887,
0.001452391967177391,
-0.009973756037652493,
0.07829248905181885,
0.0000983723730314523,
-0.03026602417230606,
-0.027505477890372276,
0.05481325834989548,
0.00743489945307374,
0.002476721303537488,
0.052668169140815735,
0.0161756481975317,
0.014279971830546856,
0.0027205636724829674,
0.004406910855323076,
-0.02541370503604412,
-0.025663210079073906,
-0.04673685133457184,
-0.05981796607375145,
0.005951357539743185,
0.03657269850373268,
-0.008874687366187572,
0.03658803924918175,
-0.0431392565369606,
0.030469253659248352,
-0.05301884561777115,
-0.010110463947057724,
-0.05131199210882187,
0.009308104403316975,
0.04509793594479561,
0.0059453509747982025,
0.03916866332292557,
-0.0022461393382400274,
-0.04191888868808746,
-0.03155224025249481,
-0.01075813826173544,
0.0028565609827637672,
0.03810165822505951,
0.007828054949641228,
0.04708511382341385,
-0.059398312121629715,
-0.0017945722211152315,
0.008786872960627079,
-0.0009921920718625188,
0.023657364770770073,
0.004399989265948534,
-0.035452958196401596,
-0.00578265031799674,
0.02058892510831356,
0.01138017512857914,
0.0072824168018996716,
-0.00807102955877781,
-0.0014884325210005045,
-0.004678530618548393,
-0.02279157005250454,
0.013907973654568195,
-0.025150340050458908,
-0.003960833419114351,
-0.0023644494358450174,
-0.0194855947047472,
0.0074860225431621075,
0.024009350687265396,
0.030110495164990425,
0.01940065622329712,
-0.012711930088698864,
-0.018746187910437584,
0.027768459171056747,
0.020160628482699394,
-0.024150852113962173,
-0.009539132937788963,
0.03967569023370743,
-0.0010031589772552252,
-0.025980712845921516,
0.048392899334430695,
0.028834640979766846,
-0.0263026412576437,
0.027958663180470467,
-0.009961089119315147,
-0.0052492935210466385,
0.02460993453860283,
-0.005930355750024319,
0.011780188418924809,
0.06868702173233032,
-0.006563700735569,
-0.011610982939600945,
0.021721409633755684,
0.0001749441580614075
] |
Transformer-based Encoder-Decoder Models | patrickvonplaten | October 10, 2020 | encoder-decoder | research, nlp | https://huggingface.co/blog/encoder-decoder | Encoder As mentioned in the previous section, the transformer-based encoder maps the input sequence to a contextualized encoding sequence: $$ f{\theta_{\text{enc}}}: \mathbf{X}{1:n} \to \mathbf{\overline{X}}{1:n}. $$ Taking a closer look at the architecture, the transformer-based encoder is a stack of residual encoder blocks. Each encoder block consists of a bi-directional self-attention layer, followed by two feed-forward layers. For simplicity, we disregard the normalization layers in this notebook. Also, we will not further discuss the role of the two feed-forward layers, but simply see it as a final vector-to-vector mapping required in each encoder block \({}^1\). The bi-directional self-attention layer puts each input vector \(\mathbf{x'}j, \forall j \in {1, \ldots, n}\) into relation with all input vectors \(\mathbf{x'}_1, \ldots, \mathbf{x'}_n\) and by doing so transforms the input vector \(\mathbf{x'}_j\) to a more \"refined\" contextual representation of itself, defined as \(\mathbf{x''}_j\). Thereby, the first encoder block transforms each input vector of the input sequence \(\mathbf{X}{1:n}\) (shown in light green below) from a context-independent vector representation to a context-dependent vector representation, and the following encoder blocks further refine this contextual representation until the last encoder block outputs the final contextual encoding \(\mathbf{\overline{X}}{1:n}\) (shown in darker green below). Let\'s visualize how the encoder processes the input sequence \"I want to buy a car EOS\" to a contextualized encoding sequence. Similar to RNN-based encoders, transformer-based encoders also add a special \"end-of-sequence\" input vector to the input sequence to hint to the model that the input vector sequence is finished \({}^2\). Our exemplary transformer-based encoder is composed of three encoder blocks, whereas the second encoder block is shown in more detail in the red box on the right for the first three input vectors \(\mathbf{x}_1, \mathbf{x}_2 and \mathbf{x}_3\). The bi-directional self-attention mechanism is illustrated by the fully-connected graph in the lower part of the red box and the two feed-forward layers are shown in the upper part of the red box. As stated before, we will focus only on the bi-directional self-attention mechanism. As can be seen each output vector of the self-attention layer \(\mathbf{x''}_i, \forall i \in {1, \ldots, 7}\) depends directly on all input vectors \(\mathbf{x'}_1, \ldots, \mathbf{x'}_7\). This means, e.g. that the input vector representation of the word \"want\", i.e. \(\mathbf{x'}_2\), is put into direct relation with the word \"buy\", i.e. \(\mathbf{x'}_4\), but also with the word \"I\",i.e. \(\mathbf{x'}_1\). The output vector representation of \"want\", i.e. \(\mathbf{x''}_2\), thus represents a more refined contextual representation for the word \"want\". Let\'s take a deeper look at how bi-directional self-attention works. Each input vector \(\mathbf{x'}_i\) of an input sequence \(\mathbf{X'}{1:n}\) of an encoder block is projected to a key vector \(\mathbf{k}i\), value vector \(\mathbf{v}_i\) and query vector \(\mathbf{q}_i\) (shown in orange, blue, and purple respectively below) through three trainable weight matrices \(\mathbf{W}_q, \mathbf{W}_v, \mathbf{W}_k\): $$ \mathbf{q}_i = \mathbf{W}_q \mathbf{x'}_i,$$ $$ \mathbf{v}_i = \mathbf{W}_v \mathbf{x'}_i,$$ $$ \mathbf{k}_i = \mathbf{W}_k \mathbf{x'}_i, $$ $$ \forall i \in {1, \ldots n }.$$ Note, that the same weight matrices are applied to each input vector \(\mathbf{x}_i, \forall i \in {i, \ldots, n}\). After projecting each input vector \(\mathbf{x}_i\) to a query, key, and value vector, each query vector \(\mathbf{q}_j, \forall j \in {1, \ldots, n}\) is compared to all key vectors \(\mathbf{k}_1, \ldots, \mathbf{k}_n\). The more similar one of the key vectors \(\mathbf{k}_1, \ldots \mathbf{k}_n\) is to a query vector \(\mathbf{q}_j\), the more important is the corresponding value vector \(\mathbf{v}_j\) for the output vector \(\mathbf{x''}_j\). More specifically, an output vector \(\mathbf{x''}_j\) is defined as the weighted sum of all value vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n\) plus the input vector \(\mathbf{x'}_j\). Thereby, the weights are proportional to the cosine similarity between \(\mathbf{q}_j\) and the respective key vectors \(\mathbf{k}_1, \ldots, \mathbf{k}_n\), which is mathematically expressed by \(\textbf{Softmax}(\mathbf{K}{1:n}^\intercal \mathbf{q}j)\) as illustrated in the equation below. For a complete description of the self-attention layer, the reader is advised to take a look at this blog post or the original paper. Alright, this sounds quite complicated. Let\'s illustrate the bi-directional self-attention layer for one of the query vectors of our example above. For simplicity, it is assumed that our exemplary transformer-based decoder uses only a single attention head config.num_heads = 1 and that no normalization is applied. On the left, the previously illustrated second encoder block is shown again and on the right, an in detail visualization of the bi-directional self-attention mechanism is given for the second input vector \(\mathbf{x'}_2\) that corresponds to the input word \"want\". At first all input vectors \(\mathbf{x'}_1, \ldots, \mathbf{x'}_7\) are projected to their respective query vectors \(\mathbf{q}_1, \ldots, \mathbf{q}_7\) (only the first three query vectors are shown in purple above), value vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_7\) (shown in blue), and key vectors \(\mathbf{k}_1, \ldots, \mathbf{k}_7\) (shown in orange). The query vector \(\mathbf{q}_2\) is then multiplied by the transpose of all key vectors, i.e. \(\mathbf{K}{1:7}^{\intercal}\) followed by the softmax operation to yield the self-attention weights. The self-attention weights are finally multiplied by the respective value vectors and the input vector \(\mathbf{x'}2\) is added to output the \"refined\" representation of the word \"want\", i.e. \(\mathbf{x''}_2\) (shown in dark green on the right). The whole equation is illustrated in the upper part of the box on the right. The multiplication of \(\mathbf{K}{1:7}^{\intercal}\) and \(\mathbf{q}2\) thereby makes it possible to compare the vector representation of \"want\" to all other input vector representations \"I\", \"to\", \"buy\", \"a\", \"car\", \"EOS\" so that the self-attention weights mirror the importance each of the other input vector representations \(\mathbf{x'}_j \text{, with } j \ne 2\) for the refined representation \(\mathbf{x''}_2\) of the word \"want\". To further understand the implications of the bi-directional self-attention layer, let\'s assume the following sentence is processed: \"The house is beautiful and well located in the middle of the city where it is easily accessible by public transport\". The word \"it\" refers to \"house\", which is 12 \"positions away\". In transformer-based encoders, the bi-directional self-attention layer performs a single mathematical operation to put the input vector of \"house\" into relation with the input vector of \"it\" (compare to the first illustration of this section). In contrast, in an RNN-based encoder, a word that is 12 \"positions away\", would require at least 12 mathematical operations meaning that in an RNN-based encoder a linear number of mathematical operations are required. This makes it much harder for an RNN-based encoder to model long-range contextual representations. Also, it becomes clear that a transformer-based encoder is much less prone to lose important information than an RNN-based encoder-decoder model because the sequence length of the encoding is kept the same, i.e. \(\textbf{len}(\mathbf{X}{1:n}) = \textbf{len}(\mathbf{\overline{X}}_{1:n}) = n\), while an RNN compresses the length from \(\textbf{len}((\mathbf{X}{1:n}) = n\) to just \(\textbf{len}(\mathbf{c}) = 1\), which makes it very difficult for RNNs to effectively encode long-range dependencies between input words. In addition to making long-range dependencies more easily learnable, we can see that the Transformer architecture is able to process text in parallel.Mathematically, this can easily be shown by writing the self-attention formula as a product of query, key, and value matrices: $$\mathbf{X''}{1:n} = \mathbf{V}{1:n} \text{Softmax}(\mathbf{Q}{1:n}^\intercal \mathbf{K}{1:n}) + \mathbf{X'}{1:n}. $$ The output \(\mathbf{X''}{1:n} = \mathbf{x''}_1, \ldots, \mathbf{x''}_n\) is computed via a series of matrix multiplications and a softmax operation, which can be parallelized effectively. Note, that in an RNN-based encoder model, the computation of the hidden state \(\mathbf{c}\) has to be done sequentially: Compute hidden state of the first input vector \(\mathbf{x}_1\), then compute the hidden state of the second input vector that depends on the hidden state of the first hidden vector, etc. The sequential nature of RNNs prevents effective parallelization and makes them much more inefficient compared to transformer-based encoder models on modern GPU hardware. Great, now we should have a better understanding of a) how transformer-based encoder models effectively model long-range contextual representations and b) how they efficiently process long sequences of input vectors. Now, let\'s code up a short example of the encoder part of our MarianMT encoder-decoder models to verify that the explained theory holds in practice. ------------------------------------------------------------------------ \({}^1\) An in-detail explanation of the role the feed-forward layers play in transformer-based models is out-of-scope for this notebook. It is argued in Yun et. al, (2017) that feed-forward layers are crucial to map each contextual vector \(\mathbf{x'}_i\) individually to the desired output space, which the _self-attention layer does not manage to do on its own. It should be noted here, that each output token \(\mathbf{x'}\) is processed by the same feed-forward layer. For more detail, the reader is advised to read the paper. \({}^2\) However, the EOS input vector does not have to be appended to the input sequence, but has been shown to improve performance in many cases. In contrast to the 0th \(\text{BOS}\) target vector of the transformer-based decoder is required as a starting input vector to predict a first target vector. python from transformers import MarianMTModel, MarianTokenizer import torch tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") embeddings = model.get_input_embeddings() # create ids of encoded input vectors input_ids = tokenizer("I want to buy a car", return_tensors="pt").input_ids # pass input_ids to encoder encoder_hidden_states = model.base_model.encoder(input_ids, return_dict=True).last_hidden_state # change the input slightly and pass to encoder input_ids_perturbed = tokenizer("I want to buy a house", return_tensors="pt").input_ids encoder_hidden_states_perturbed = model.base_model.encoder(input_ids_perturbed, return_dict=True).last_hidden_state # compare shape and encoding of first vector print(f"Length of input embeddings {embeddings(input_ids).shape[1]}. Length of encoder_hidden_states {encoder_hidden_states.shape[1]}") # compare values of word embedding of "I" for input_ids and perturbed input_ids print("Is encoding for `I` equal to its perturbed version?: ", torch.allclose(encoder_hidden_states[0, 0], encoder_hidden_states_perturbed[0, 0], atol=1e-3)) Outputs: Length of input embeddings 7. Length of encoder_hidden_states 7 Is encoding for `I` equal to its perturbed version?: False We compare the length of the input word embeddings, i.e. embeddings(input_ids) corresponding to \(\mathbf{X}{1:n}\), with the length of the encoder_hidden_states, corresponding to \(\mathbf{\overline{X}}{1:n}\). Also, we have forwarded the word sequence \"I want to buy a car\" and a slightly perturbated version \"I want to buy a house\" through the encoder to check if the first output encoding, corresponding to \"I\", differs when only the last word is changed in the input sequence. As expected the output length of the input word embeddings and encoder output encodings, i.e. \(\textbf{len}(\mathbf{X}{1:n})\) and \(\textbf{len}(\mathbf{\overline{X}}{1:n})\), is equal. Second, it can be noted that the values of the encoded output vector of \(\mathbf{\overline{x}}1 = \text{"I"}\) are different when the last word is changed from \"car\" to \"house\". This however should not come as a surprise if one has understood bi-directional self-attention. On a side-note, _autoencoding models, such as BERT, have the exact same architecture as transformer-based encoder models. Autoencoding models leverage this architecture for massive self-supervised pre-training on open-domain text data so that they can map any word sequence to a deep bi-directional representation. In Devlin et al. (2018), the authors show that a pre-trained BERT model with a single task-specific classification layer on top can achieve SOTA results on eleven NLP tasks. All autoencoding models of 🤗Transformers can be found here. | [
0.039302073419094086,
-0.01409150566905737,
0.08670409768819809,
0.0025014474522322416,
0.07266676425933838,
0.028486210852861404,
-0.019741177558898926,
0.05136651545763016,
-0.006705278530716896,
-0.02622048184275627,
-0.10144269466400146,
0.06614845991134644,
0.017483152449131012,
0.023185474798083305,
-0.028099220246076584,
0.029712559655308723,
0.04568856954574585,
-0.02075839228928089,
-0.03087249957025051,
-0.004698301199823618,
-0.007818112149834633,
-0.04251505434513092,
0.04269031062722206,
-0.022699203342199326,
-0.003103321883827448,
-0.0009418099652975798,
-0.018575072288513184,
-0.007476138416677713,
-0.08483926951885223,
0.09063158929347992,
-0.08494146913290024,
0.003261969890445471,
-0.013336961157619953,
-0.05680442973971367,
-0.007585257291793823,
-0.04642106965184212,
-0.12326636165380478,
0.0035230950452387333,
0.015238365158438683,
-0.02286951243877411,
0.009239337407052517,
-0.0036037424579262733,
-0.057061657309532166,
0.034559063613414764,
-0.03367084264755249,
-0.006221902556717396,
-0.17439758777618408,
0.10366266965866089,
-0.07291198521852493,
0.009076736867427826,
-0.05170843377709389,
0.03281490504741669,
-0.06280115991830826,
0.10394955426454544,
-0.0065125287510454655,
0.018013132736086845,
-0.03122878074645996,
-0.028203465044498444,
0.04813607037067413,
-0.004382398445159197,
0.051792044192552567,
0.011255313642323017,
-0.02528608776628971,
0.0853019580245018,
0.02370758168399334,
0.011211773380637169,
-0.06558869779109955,
0.013440446928143501,
-0.018590334802865982,
-0.031338922679424286,
-0.057118505239486694,
-0.0064507839269936085,
0.02988326922059059,
0.014679419808089733,
-0.012166673317551613,
-0.06236577779054642,
0.02499409019947052,
0.027588605880737305,
0.09430018067359924,
0.030620887875556946,
0.026734106242656708,
0.04725947231054306,
0.07704151421785355,
0.10007263720035553,
0.033823639154434204,
0.023887084797024727,
0.05375821143388748,
-0.06170349568128586,
-0.009083420969545841,
0.07694016396999359,
-0.0568886324763298,
-0.14371539652347565,
-0.035539884120225906,
0.002607170259580016,
0.02365001104772091,
-0.07169704884290695,
0.0496281199157238,
0.02131149359047413,
0.0035159229300916195,
0.04875197634100914,
0.027526911348104477,
-0.0012162727070972323,
0.08088105916976929,
-0.06011144816875458,
-0.010290336795151234,
0.022567378357052803,
-0.00496255699545145,
-0.07485554367303848,
-0.05832693725824356,
-0.008762326091527939,
-0.00962901022285223,
0.027541136369109154,
0.009077885188162327,
0.02316356636583805,
-0.07902009785175323,
-0.006001427303999662,
0.005568415857851505,
-0.038829971104860306,
-0.026613973081111908,
0.011345747858285904,
-0.024770550429821014,
0.08169057965278625,
0.07044023275375366,
-0.02728588692843914,
-0.020164400339126587,
0.0437481515109539,
-0.047582026571035385,
-0.03356378525495529,
-0.05985759571194649,
-0.05664858967065811,
0.03172287717461586,
-0.00009115428110817447,
0.05644107982516289,
0.03230280056595802,
-0.040026936680078506,
-0.04808800667524338,
-0.0019300547428429127,
-0.07797057926654816,
-0.014453832991421223,
0.006761213298887014,
-0.06767420470714569,
0.022944355383515358,
0.03581104800105095,
0.0003918750153388828,
0.010123725049197674,
-0.05134141445159912,
-0.03232337161898613,
0.059327468276023865,
0.05478810891509056,
0.02753092162311077,
0.0011020742822438478,
-0.004942505620419979,
-0.014280184172093868,
-0.07302175462245941,
-0.017501717433333397,
0.03739256039261818,
0.03723056986927986,
0.0037249920424073935,
-0.08279242366552353,
0.0029288323130458593,
0.012484720908105373,
0.0074732061475515366,
0.025399204343557358,
0.025367656722664833,
0.05563078820705414,
-0.10143914073705673,
0.0466047041118145,
0.04913575202226639,
-0.02080102078616619,
0.026973431929945946,
0.0024436211679130793,
-0.03387676551938057,
0.023024380207061768,
0.010593339800834656,
-0.027651621028780937,
0.03651278093457222,
-0.007854912430047989,
0.058521173894405365,
0.030627112835645676,
-0.012437650002539158,
-0.057181745767593384,
-0.011354942806065083,
0.017168836668133736,
-0.02877046912908554,
-0.00939894001930952,
-0.044762350618839264,
-0.0336102731525898,
-0.004263709299266338,
-0.08759527653455734,
0.05879342555999756,
-0.04716698080301285,
-0.018931424245238304,
-0.011095362715423107,
-0.05113578960299492,
0.03828798979520798,
-0.030205579474568367,
-0.04471443220973015,
0.09817197918891907,
0.0845528393983841,
0.04128861427307129,
0.036032021045684814,
0.013512829318642616,
0.08571863919496536,
-0.019260302186012268,
0.008564161136746407,
-0.013166902586817741,
0.010738493874669075,
-0.05743991956114769,
0.08206170052289963,
-0.03246729075908661,
-0.01058045681566,
-0.028898706659674644,
0.0067869313061237335,
-0.10502157360315323,
0.010456332936882973,
-0.07132644206285477,
-0.0383736826479435,
-0.01176996249705553,
-0.03840160369873047,
0.023009167984128,
0.12403948605060577,
-0.02910601906478405,
-0.022527001798152924,
-0.04537292569875717,
0.03234551101922989,
0.021389443427324295,
0.04799855127930641,
-0.06942611932754517,
0.03705057129263878,
-0.05909483879804611,
-0.021700290963053703,
-0.023648729547858238,
0.04011590778827667,
0.004339344799518585,
-0.014091651886701584,
-0.03735162317752838,
-0.017580445855855942,
0.005764756351709366,
0.031233230605721474,
-0.059306561946868896,
0.04683470353484154,
0.021425487473607063,
-0.013534238561987877,
-0.0016364086186513305,
-0.09175329655408859,
-0.0009526703506708145,
0.0019823673646897078,
-0.006931970827281475,
-0.04704759642481804,
0.03169887512922287,
-0.10312432050704956,
0.06505543738603592,
-0.029702410101890564,
-0.09757483750581741,
-0.028697576373815536,
0.10039303451776505,
0.0015037888661026955,
-0.026551194489002228,
-0.0077811614610254765,
0.012660972774028778,
-0.05507947877049446,
-0.014295159839093685,
0.00548844737932086,
-0.06811810284852982,
-0.04561701789498329,
-0.028171230107545853,
-0.005577804520726204,
0.03682197257876396,
-0.0010292878141626716,
0.036214377731084824,
-0.004580250941216946,
-0.0029856921173632145,
0.022137248888611794,
0.0055776117369532585,
0.011680287308990955,
0.0004979323712177575,
0.047910451889038086,
-0.04105120152235031,
-0.027246272191405296,
-0.029958713799715042,
-0.02061360329389572,
-0.014233201742172241,
0.04904913529753685,
0.03861592710018158,
0.03352551907300949,
0.002970572328194976,
-0.01191270537674427,
0.03419459983706474,
0.005187449511140585,
-0.010288529098033905,
0.015351044945418835,
0.05747126787900925,
0.010266166180372238,
-0.006882024463266134,
-0.029308421537280083,
-0.012804611586034298,
-0.0017832976300269365,
-0.0020883996039628983,
-0.0330423004925251,
-0.01504203025251627,
0.017330264672636986,
0.018140364438295364,
0.04757803678512573,
-0.023795515298843384,
-0.01544834952801466,
0.02199358306825161,
0.04714992269873619,
0.09181157499551773,
-0.10118073225021362,
-0.025875331833958626,
-0.012132409028708935,
0.021285811439156532,
0.007054322399199009,
-0.04664861038327217,
0.03575332462787628,
0.016321100294589996,
-0.039884477853775024,
-0.008812552317976952,
0.03166430816054344,
0.000766269862651825,
0.002674615476280451,
-0.00492504658177495,
-0.010912259109318256,
-0.03763461858034134,
0.005654172971844673,
0.023826923221349716,
0.038038138300180435,
0.012258660048246384,
-0.0018985610222443938,
-0.001468941569328308,
-0.0041120401583611965,
0.03089568018913269,
-0.025477413088083267,
-0.007969800382852554,
0.05157602205872536,
-0.009958881884813309,
0.016742506995797157,
-0.0034785703755915165,
-0.03564221411943436,
-0.010414582677185535,
0.0035309428349137306,
-0.028543513268232346,
-0.04621382802724838,
-0.014078841544687748,
0.04655681923031807,
-0.02531985193490982,
-0.005201590247452259,
0.07181830704212189,
0.022452637553215027,
0.03255468234419823,
0.007770891766995192,
0.015648912638425827,
0.022929923608899117,
-0.004346107132732868,
0.03040459379553795,
-0.0420510433614254,
0.024192271754145622,
-0.01970432698726654,
-0.038716237992048264,
-0.03196943923830986,
-0.0033435882069170475,
0.03472210466861725,
0.004466642625629902,
0.016939673572778702,
-0.013946914114058018,
-0.0065833344124257565,
0.01748567447066307,
-0.0016337876440957189,
-0.02536904439330101,
0.021478373557329178,
-0.000812775338999927,
0.011637939140200615,
-0.052780281752347946,
0.05422290414571762,
0.0013719446724280715,
0.03218236565589905,
-0.003378218272700906,
0.04084568843245506,
-0.02624962478876114,
-0.012684397399425507,
0.015476640313863754,
0.014085366390645504,
-0.009470519609749317,
0.009781495667994022,
-0.033758558332920074,
-0.01714916154742241,
0.08254484087228775,
-0.006174752954393625,
0.00807532574981451,
0.00858002807945013,
-0.04623684659600258,
0.025739194825291634,
-0.00308424886316061,
0.04691779613494873,
-0.010993355885148048,
-0.010469830594956875,
0.026180822402238846,
-0.008855682797729969,
0.024038299918174744,
-0.01232890598475933,
0.025391820818185806,
0.006314662750810385,
-0.01149483397603035,
0.008720259182155132,
0.01676708273589611,
-0.009511243551969528,
0.03338679298758507,
0.04700934886932373,
0.06670183688402176,
-0.0629061907529831,
-0.02447296679019928,
-0.01688631996512413,
-0.0059668333269655704,
-0.008881233632564545,
-0.04793046414852142,
0.018141519278287888,
0.02996581792831421,
0.025192881003022194,
0.03026093915104866,
-0.03854672238230705,
0.021741719916462898,
0.027571337297558784,
0.01908987946808338,
-0.0021501444280147552,
-0.0377080999314785,
-0.09635662287473679,
-0.037227023392915726,
-0.003712419653311372,
0.007485636975616217,
0.006254140287637711,
0.02179219201207161,
-0.015172055922448635,
0.011501352302730083,
0.030158624053001404,
0.051752619445323944,
0.025124168023467064,
-0.04409860447049141,
-0.010635715909302235,
-0.021413564682006836,
0.00796147994697094,
0.019477909430861473,
-0.00011879394151037559,
0.009695962071418762,
0.05734970048069954,
0.048652809113264084,
0.016738254576921463,
-0.009674842469394207,
-0.07907655835151672,
-0.031082576140761375,
0.031041990965604782,
0.06014210730791092,
0.009252127259969711,
0.031321749091148376,
-0.03126806020736694,
-0.014719951897859573,
0.013170985504984856,
-0.024927286431193352,
0.03072761744260788,
0.06244461238384247,
0.03254019841551781,
-0.03880065307021141,
0.019794704392552376,
0.014644288457930088,
-0.01408467348664999,
0.01824513077735901,
0.025967583060264587,
0.032764021307229996,
0.021526923403143883,
-0.005521503277122974,
0.016757486388087273,
-0.05071466788649559,
0.008005158044397831,
0.005006076768040657,
0.0520181879401207,
-0.06871405243873596,
-0.04838339984416962,
0.017056286334991455,
0.01229320839047432,
0.007677068468183279,
-0.010066204704344273,
-0.0038804493378847837,
-0.02719339169561863,
-0.022034145891666412,
0.0038742218166589737,
0.0007680276758037508,
-0.007121657952666283,
0.004910554736852646,
-0.004847219679504633,
-0.009176082909107208,
0.013917529955506325,
0.034661468118429184,
-0.020376792177557945,
0.017778310924768448,
0.006238063331693411,
0.03504088148474693,
0.06073128804564476,
-0.009170026518404484,
0.03592510521411896,
0.05334610864520073,
-0.0013412066036835313,
0.0007543179672211409,
-0.0008550370112061501,
-0.011007373221218586,
0.005258210003376007,
0.01667158305644989,
0.013309827074408531,
-0.024209529161453247,
-0.020618192851543427,
0.03446762636303902,
0.04096393659710884,
0.02468733675777912,
-0.0037860535085201263,
0.023157931864261627,
-0.024967815726995468,
-0.008005025796592236,
-0.0034410664811730385,
-0.01000169012695551,
-0.01879752427339554,
0.028751490637660027,
-0.011416862718760967,
-0.03954632207751274,
-0.0038627900648862123,
0.002439642557874322,
-0.04762894660234451,
-0.05673578754067421,
-0.025399543344974518,
0.03397131338715553,
0.04686570167541504,
-0.020266138017177582,
0.016941700130701065,
-0.003407273441553116,
0.009306318126618862,
0.010277793742716312,
-0.029356691986322403,
0.017270660027861595,
0.01357328798621893,
-0.017611749470233917,
0.0070250495336949825,
0.06045069172978401,
-0.008377309888601303,
-0.029373563826084137,
0.008576175197958946,
0.007164908107370138,
-0.016776826232671738,
-0.02426520176231861,
0.04348079487681389,
0.023894112557172775,
0.024564264342188835,
0.0052441321313381195,
-0.03166068345308304,
-0.04072568938136101,
0.0739055722951889,
-0.014254141598939896,
0.057043351233005524,
0.07899206131696701,
0.013066238723695278,
0.014926973730325699,
0.014846054837107658,
0.053185779601335526,
-0.0112337376922369,
-0.022329475730657578,
0.011171633377671242,
0.016797086223959923,
0.01342062558978796,
0.029760245233774185,
0.0049759759567677975,
0.04429701343178749,
0.027143923565745354,
0.03580401465296745,
-0.045158859342336655,
-0.01146733295172453,
-0.009943491779267788,
-0.011937196366488934,
0.04486163333058357,
0.015328961424529552,
-0.011686316691339016,
0.011805389076471329,
0.011385459452867508,
0.05593002960085869,
0.016003185883164406,
-0.02824297733604908,
0.026955608278512955,
-0.0017892769537866116,
-0.005695465952157974,
0.013378914445638657,
0.05791950225830078,
-0.0008232981781475246,
0.020398862659931183,
0.014764978550374508,
-0.012391362339258194,
0.04533730819821358,
0.005061081610620022,
0.005806249100714922,
0.027887491509318352,
0.059011321514844894,
-0.025407548993825912,
0.03608107939362526,
0.0004384484200272709,
0.0005005846032872796,
0.017199290916323662,
-0.012042461894452572,
-0.02086123451590538,
-0.04355660825967789,
0.03752411529421806,
0.012280330993235111,
-0.017838962376117706,
0.029347717761993408,
-0.05326845124363899,
0.035685572773218155,
0.03672150894999504,
-0.004247760865837336,
0.015363717451691628,
0.012253707274794579,
0.032068684697151184,
0.02620372176170349,
0.018164286389946938,
0.039170991629362106,
0.003461511805653572,
0.02495596930384636,
0.030615532770752907,
-0.012324943207204342,
0.041682660579681396,
0.024752343073487282,
-0.034122586250305176,
0.02130454033613205,
0.010913594625890255,
-0.022622236981987953,
0.01850009709596634,
0.019070997834205627,
-0.04112773388624191,
-0.015291564166545868,
-0.02997363731265068,
-0.03539985045790672,
0.00384464836679399,
0.020123058930039406,
0.01436118595302105,
-0.04546414688229561,
-0.004909397102892399,
-0.01305511686950922,
0.06439590454101562,
-0.010043365880846977,
-0.00015230424469336867,
-0.03776852414011955,
0.003450484946370125,
-0.016005609184503555,
0.011679679155349731,
-0.006336309481412172,
-0.022165963426232338,
-0.03659607470035553,
0.0021285791881382465,
-0.0195644311606884,
0.01629921793937683,
0.005967976525425911,
-0.040623921900987625,
0.020329391583800316,
0.014454868622124195,
-0.016225062310695648,
-0.0053747789934277534,
-0.00881008431315422,
-0.0035482137463986874,
-0.027028584852814674,
-0.033891189843416214,
-0.013551886193454266,
-0.011874360963702202,
0.001362806768156588,
-0.02932383120059967,
0.012629748322069645,
-0.01078422274440527,
0.04251664876937866,
0.0465356670320034,
0.009548199363052845,
-0.040001556277275085,
-0.05368153750896454,
-0.0077914027497172356,
-0.009531501680612564,
-0.003691923338919878,
0.0024493965320289135,
0.010553565807640553,
0.0079537658020854,
-0.032929323613643646,
-0.022308025509119034,
-0.002800285816192627,
-0.037941884249448776,
-0.0016829262021929026,
0.02250862494111061,
0.03301199525594711,
-0.03169829025864601,
-0.031593792140483856,
0.024938242509961128,
0.012852553278207779,
0.0400543175637722,
0.05207836627960205,
0.03582610562443733,
0.016849426552653313,
-0.05889289826154709,
-0.001384632894769311,
0.002451632171869278,
-0.011981568299233913,
-0.05396141856908798,
-0.0520474873483181,
-0.022373370826244354,
0.023176072165369987,
-0.006855966988950968,
0.03148507699370384,
-0.011507436633110046,
0.0244490634649992,
-0.023755576461553574,
-0.015657465904951096,
0.013767745345830917,
0.03314123675227165,
0.04156569391489029,
-0.020966239273548126,
0.016406845301389694,
-0.016524117439985275,
-0.01903989538550377,
-0.03272039443254471,
-0.003090478712692857,
-0.018581939861178398,
0.050342902541160583,
-0.005609080195426941,
0.008425210602581501,
-0.00422431668266654,
0.009275984019041061,
-0.0436069630086422,
-0.03576699271798134,
0.013091843575239182,
0.004196362104266882,
-0.012568552978336811,
0.014773383736610413,
0.015019313432276249,
0.0009550267131999135,
0.02352442964911461,
0.004947412759065628,
-0.011571073904633522,
-0.011986051686108112,
-0.037390340119600296,
0.010011709295213223,
-0.015194111503660679,
0.0030045274179428816,
0.021072350442409515,
-0.01292618177831173,
0.05966629460453987,
0.007054684218019247,
0.05140109360218048,
0.024766504764556885,
-0.002059655962511897,
0.008897984400391579,
0.02044515311717987,
0.005364866461604834,
0.01440842542797327,
0.005896610673516989,
0.001548346015624702,
-0.030915945768356323,
-0.007792843505740166,
0.008722254075109959,
0.021514082327485085,
0.005908322054892778,
-0.009146356023848057,
-0.02620665729045868,
-0.0010591993341222405,
-0.039821937680244446,
0.010941820219159126,
-0.02043025754392147,
0.0478687547147274,
-0.00375324091874063,
0.011511679738759995,
0.03458656743168831,
-0.013809161260724068
] |
Hyperparameter Search with Transformers and Ray Tune | ray-project | November 2, 2020 | ray-tune | open-source-collab, nlp | https://huggingface.co/blog/ray-tune | A guest blog post by Richard Liaw from the Anyscale team With cutting edge research implementations, thousands of trained models easily accessible, the Hugging Face transformers library has become critical to the success and growth of natural language processing today. For any machine learning model to achieve good performance, users often need to implement some form of parameter tuning. Yet, nearly everyone (1, 2) either ends up disregarding hyperparameter tuning or opting to do a simplistic grid search with a small search space. However, simple experiments are able to show the benefit of using an advanced tuning technique. Below is a recent experiment run on a BERT model from Hugging Face transformers on the RTE dataset. Genetic optimization techniques like PBT can provide large performance improvements compared to standard hyperparameter optimization techniques. Algorithm Best Val Acc. Best Test Acc. Total GPU min Total $ cost Grid Search 74% 65.4% 45 min $2.30 Bayesian Optimization +Early Stop 77% 66.9% 104 min $5.30 Population-based Training 78% 70.5% 48 min $2.45 If you’re leveraging Transformers, you’ll want to have a way to easily access powerful hyperparameter tuning solutions without giving up the customizability of the Transformers framework. In the Transformers 3.1 release, Hugging Face Transformers and Ray Tune teamed up to provide a simple yet powerful integration. Ray Tune is a popular Python library for hyperparameter tuning that provides many state-of-the-art algorithms out of the box, along with integrations with the best-of-class tooling, such as Weights and Biases and tensorboard. To demonstrate this new Hugging Face + Ray Tune integration, we leverage the Hugging Face Datasets library to fine tune BERT on MRPC. To run this example, please first run: pip install "ray[tune]" transformers datasets scipy sklearn torch Simply plug in one of Ray’s standard tuning algorithms by just adding a few lines of code. python from datasets import load_dataset, load_metric from transformers import (AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments) tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') dataset = load_dataset('glue', 'mrpc') metric = load_metric('glue', 'mrpc') def encode(examples): outputs = tokenizer( examples['sentence1'], examples['sentence2'], truncation=True) return outputs encoded_dataset = dataset.map(encode, batched=True) def model_init(): return AutoModelForSequenceClassification.from_pretrained( 'distilbert-base-uncased', return_dict=True) def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = predictions.argmax(axis=-1) return metric.compute(predictions=predictions, references=labels) # Evaluate during training and a bit more often # than the default to be able to prune bad trials early. # Disabling tqdm is a matter of preference. training_args = TrainingArguments( "test", evaluation_strategy="steps", eval_steps=500, disable_tqdm=True) trainer = Trainer( args=training_args, tokenizer=tokenizer, train_dataset=encoded_dataset["train"], eval_dataset=encoded_dataset["validation"], model_init=model_init, compute_metrics=compute_metrics, ) # Default objective is the sum of all metrics # when metrics are provided, so we have to maximize it. trainer.hyperparameter_search( direction="maximize", backend="ray", n_trials=10 # number of trials ) By default, each trial will utilize 1 CPU, and optionally 1 GPU if available. You can leverage multiple GPUs for a parallel hyperparameter search by passing in a resources_per_trial argument. You can also easily swap different parameter tuning algorithms such as HyperBand, Bayesian Optimization, Population-Based Training: To run this example, first run: pip install hyperopt python from ray.tune.suggest.hyperopt import HyperOptSearch from ray.tune.schedulers import ASHAScheduler trainer = Trainer( args=training_args, tokenizer=tokenizer, train_dataset=encoded_dataset["train"], eval_dataset=encoded_dataset["validation"], model_init=model_init, compute_metrics=compute_metrics, ) best_trial = trainer.hyperparameter_search( direction="maximize", backend="ray", # Choose among many libraries: # https://docs.ray.io/en/latest/tune/api_docs/suggestion.html search_alg=HyperOptSearch(metric="objective", mode="max"), # Choose among schedulers: # https://docs.ray.io/en/latest/tune/api_docs/schedulers.html scheduler=ASHAScheduler(metric="objective", mode="max")) It also works with Weights and Biases out of the box! | [
-0.01552203856408596,
-0.012096226215362549,
-0.020312996581196785,
0.054628029465675354,
-0.04240579158067703,
0.07288691401481628,
0.07863915711641312,
0.03780806064605713,
-0.009518168866634369,
-0.004176983144134283,
-0.1153622567653656,
0.06947683542966843,
-0.020131494849920273,
0.09606090188026428,
0.039298783987760544,
-0.044617507606744766,
-0.00014741357881575823,
-0.008002969436347485,
-0.0458713062107563,
0.05573924258351326,
0.02264772541821003,
-0.05879312381148338,
0.07496128976345062,
0.015273860655725002,
0.018782321363687515,
-0.05371663346886635,
-0.003133076475933194,
0.007246894296258688,
0.03316161036491394,
0.05840692296624184,
-0.10824804753065109,
-0.038715627044439316,
-0.053059447556734085,
-0.06287063658237457,
0.028719089925289154,
0.04783498868346214,
-0.06344833225011826,
0.000710973225068301,
0.002665095031261444,
-0.006821077782660723,
-0.0037048521917313337,
-0.03289277106523514,
-0.04602173715829849,
0.05776330828666687,
0.05559367686510086,
0.004632940981537104,
-0.08747728168964386,
0.05229853466153145,
-0.007528951391577721,
-0.041147224605083466,
-0.02558746002614498,
0.03345649689435959,
0.02836764231324196,
0.010819745250046253,
0.004095891024917364,
-0.008924832567572594,
0.0075599756091833115,
-0.029030146077275276,
-0.029637014493346214,
0.018244823440909386,
-0.015106710605323315,
0.013591118156909943,
0.016241958364844322,
-0.01742333546280861,
0.024012064561247826,
-0.0004101094091311097,
-0.06480608880519867,
0.0642738789319992,
-0.07614143192768097,
-0.04862603545188904,
0.02351955883204937,
-0.043499480932950974,
0.017581233754754066,
-0.012705164030194283,
-0.010571597144007683,
-0.00006196451431605965,
-0.021402787417173386,
-0.04875333234667778,
0.008788076229393482,
0.020633639767766,
0.008727867156267166,
0.020727306604385376,
-0.03735680133104324,
0.030758680775761604,
0.06861649453639984,
0.0230695940554142,
0.054658714681863785,
-0.05718645825982094,
-0.055069707334041595,
0.04678037017583847,
-0.0654267966747284,
-0.1116475835442543,
-0.02847140096127987,
-0.004282742273062468,
0.06423202902078629,
-0.05400117114186287,
-0.04234742373228073,
-0.01704946905374527,
-0.026407737284898758,
-0.01865491457283497,
-0.0016177371144294739,
-0.03383532539010048,
0.03775129094719887,
-0.05609457939863205,
-0.06938039511442184,
0.04247785359621048,
0.0048732515424489975,
-0.09048336744308472,
-0.029905231669545174,
0.07062455266714096,
-0.01789274998009205,
-0.030191807076334953,
-0.025899209082126617,
0.11908481270074844,
-0.047602344304323196,
0.028575565665960312,
0.016593607142567635,
0.019099010154604912,
-0.024856096133589745,
-0.019240276888012886,
-0.024892758578062057,
0.05035881698131561,
0.05058532580733299,
-0.0034972061403095722,
-0.014778975397348404,
0.08138696104288101,
0.03441346436738968,
0.058515097945928574,
0.09599757194519043,
0.050162479281425476,
0.020944781601428986,
-0.03615625947713852,
0.05970600247383118,
-0.006664117332547903,
0.03145410120487213,
0.014101194217801094,
0.021564051508903503,
-0.021728966385126114,
-0.0367664135992527,
0.008368292823433876,
0.010432792827486992,
0.004445032216608524,
-0.025700954720377922,
-0.06706015765666962,
0.07707091420888901,
0.016587426885962486,
-0.07594048231840134,
0.10025642067193985,
-0.0073345680721104145,
0.05796403810381889,
-0.04541466757655144,
0.08146455883979797,
0.051578495651483536,
0.02975979447364807,
-0.0010735971154645085,
0.07707560807466507,
-0.038429077714681625,
-0.05440952256321907,
-0.04339369758963585,
-0.001750004244968295,
-0.016060784459114075,
0.005818284582346678,
-0.0416252426803112,
-0.02696751058101654,
-0.012530048377811909,
-0.02010207250714302,
0.005943310912698507,
0.04575526714324951,
-0.024671092629432678,
0.0016556886257603765,
0.02891477197408676,
0.0061446321196854115,
0.034103430807590485,
-0.062113892287015915,
-0.03567708656191826,
0.011270157061517239,
0.03607010468840599,
0.07990200817584991,
-0.005709455814212561,
-0.03776035085320473,
-0.06638243049383163,
0.061205990612506866,
0.07063543796539307,
0.11113735288381577,
0.04450497403740883,
-0.07647578418254852,
0.04798738285899162,
-0.0027331579476594925,
0.012445759028196335,
-0.03650283068418503,
-0.017892487347126007,
0.020757675170898438,
0.11212890595197678,
-0.043441470712423325,
0.0496278740465641,
-0.05085178464651108,
-0.007828007452189922,
0.06427314877510071,
0.08531789481639862,
-0.02475762367248535,
0.026831798255443573,
-0.02786969393491745,
0.04854336008429527,
-0.03866405040025711,
-0.03887646645307541,
-0.08014247566461563,
-0.018381956964731216,
-0.036301277577877045,
-0.01026841625571251,
0.02680366486310959,
0.0192063357681036,
-0.1439630687236786,
-0.01419594045728445,
-0.06468447297811508,
-0.016537226736545563,
-0.025250732898712158,
-0.06677309423685074,
-0.014776243828237057,
0.009084872901439667,
-0.006023182068020105,
0.16117452085018158,
-0.037462521344423294,
-0.008098863065242767,
-0.00710530998185277,
-0.00829839613288641,
0.04566524550318718,
0.07055839896202087,
0.05606956034898758,
0.055214397609233856,
-0.04162619635462761,
-0.045892227441072464,
-0.07573144882917404,
-0.020024441182613373,
0.052754662930965424,
-0.05541089177131653,
-0.06626483798027039,
0.012498724274337292,
-0.02928238920867443,
-0.008472573012113571,
0.02518959902226925,
-0.0756426751613617,
0.01703706569969654,
-0.0014538916293531656,
0.04737420007586479,
0.016254255548119545,
0.020483972504734993,
0.021441230550408363,
0.01309844572097063,
-0.010902087204158306,
-0.03953905403614044,
-0.0358169749379158,
0.018229732289910316,
0.004052738193422556,
-0.04630366712808609,
-0.0001871368003776297,
0.04486202076077461,
0.002687062369659543,
0.00506897596642375,
-0.02027343399822712,
0.06158199906349182,
0.021092426031827927,
-0.008111363276839256,
-0.0482303760945797,
-0.00654385332018137,
-0.004434354603290558,
-0.04308633878827095,
-0.009882823564112186,
0.06443199515342712,
0.017513977363705635,
-0.059369046241045,
0.009066645987331867,
-0.0006693954928778112,
0.010653295554220676,
0.011013776995241642,
0.05575443059206009,
0.06381436437368393,
0.037106648087501526,
-0.011310138739645481,
-0.04674607142806053,
0.003418390406295657,
-0.022515323013067245,
-0.04276684299111366,
0.03761837258934975,
0.06435368955135345,
-0.023152392357587814,
0.04682030901312828,
-0.031750570982694626,
-0.034179478883743286,
-0.009711035527288914,
0.015819966793060303,
-0.000791893049608916,
0.004455840215086937,
0.031906094402074814,
-0.033492669463157654,
0.004904261790215969,
-0.01993737369775772,
0.009985709562897682,
-0.05174557492136955,
0.016794420778751373,
-0.0014689669478684664,
0.015274246223270893,
-0.028499290347099304,
-0.009262092411518097,
-0.0040320116095244884,
-0.02311486192047596,
-0.0010857481975108385,
0.013314931653439999,
0.02752930298447609,
-0.06876654177904129,
-0.009929388761520386,
-0.06031511723995209,
0.0005959549453109503,
0.011313720606267452,
-0.054173003882169724,
0.011589824222028255,
-0.009193511679768562,
-0.020013196393847466,
0.007171513047069311,
-0.004442980047315359,
0.027156610041856766,
0.031006239354610443,
0.027778800576925278,
0.0214760173112154,
-0.03336655721068382,
0.0030643665231764317,
-0.03205164521932602,
0.03805160894989967,
0.026861896738409996,
0.003843626007437706,
0.021676793694496155,
-0.007594405673444271,
0.025206733494997025,
0.004487503785640001,
0.0018399717519059777,
0.0444389246404171,
-0.03784995153546333,
0.001676610903814435,
-0.003664136864244938,
0.015762096270918846,
-0.014658337458968163,
-0.009482381865382195,
0.03939080610871315,
0.01937628909945488,
-0.030271530151367188,
0.024260956794023514,
0.014174961484968662,
-0.007827210240066051,
0.009887151420116425,
0.012247473932802677,
-0.004663827363401651,
-0.0035515506751835346,
0.015338512137532234,
0.04599275067448616,
-0.04214957728981972,
0.004129650536924601,
-0.0055218893103301525,
0.0029468138236552477,
-0.0455121248960495,
-0.002083664759993553,
-0.025980520993471146,
0.0040701329708099365,
0.036534734070301056,
-0.006285462994128466,
0.028612880036234856,
0.020018499344587326,
-0.021842388436198235,
-0.0028075275477021933,
0.058139730244874954,
-0.021867448464035988,
0.033310260623693466,
-0.004811704158782959,
-0.00861020851880312,
-0.011763622984290123,
-0.0075959074310958385,
-0.002348187379539013,
-0.019741984084248543,
-0.0571785606443882,
0.03426318243145943,
0.005497670266777277,
0.01265631802380085,
-0.003693248378112912,
-0.00003708466101670638,
-0.004936108365654945,
-0.013790007680654526,
0.004816087894141674,
-0.045197855681180954,
0.017700590193271637,
0.02950993739068508,
-0.07459332793951035,
-0.03368552401661873,
-0.05250966176390648,
0.005625191610306501,
0.01879437454044819,
0.012035795487463474,
0.02286350168287754,
-0.07779350876808167,
-0.010250518098473549,
0.012608046643435955,
-0.0022804662585258484,
-0.050711944699287415,
-0.019300727173686028,
-0.027323348447680473,
-0.02278677374124527,
-0.00007864397048251703,
0.02418389916419983,
0.03608603775501251,
-0.008631925098598003,
-0.000576180755160749,
0.0002820618392433971,
0.007681327871978283,
0.03977930545806885,
0.0194515660405159,
-0.012830628082156181,
0.024289553984999657,
-0.056913334876298904,
-0.04790287837386131,
0.015113861300051212,
-0.015055149793624878,
-0.011776931583881378,
-0.014200109988451004,
-0.03275110572576523,
-0.00576443038880825,
0.0649697333574295,
0.011935098096728325,
0.016794724389910698,
0.013784757815301418,
-0.02300935424864292,
0.025862906128168106,
0.004932622890919447,
0.036709148436784744,
-0.009461130946874619,
-0.021023165434598923,
0.030030367895960808,
0.001999050844460726,
0.016546495258808136,
0.025489049032330513,
-0.029784681275486946,
-0.030416060239076614,
-0.05024905130267143,
-0.0366838276386261,
0.03241826593875885,
-0.017157454043626785,
-0.02551453560590744,
0.009812154807150364,
-0.017858687788248062,
-0.01757289096713066,
-0.032802410423755646,
-0.00715292664244771,
0.016226239502429962,
-0.013121525757014751,
0.027875736355781555,
-0.05136391520500183,
0.039085954427719116,
0.0024731983430683613,
-0.0008169905631802976,
0.012486713007092476,
-0.029012398794293404,
0.0010903608053922653,
0.02709713764488697,
0.0023081928957253695,
0.00026464805705472827,
-0.004744316916912794,
0.03656940534710884,
-0.039645157754421234,
-0.019170472398400307,
0.009378920309245586,
-0.011293549090623856,
0.01775885932147503,
0.016070188954472542,
-0.01888061873614788,
-0.06452734023332596,
-0.008056260645389557,
0.012449119240045547,
0.036604143679142,
0.04239983111619949,
0.005008873529732227,
-0.015005444176495075,
-0.03617988899350166,
-0.005190058145672083,
0.020470421761274338,
0.013137873262166977,
-0.015624795109033585,
-0.0330086350440979,
0.047796864062547684,
0.02764870785176754,
-0.017874643206596375,
-0.015617511235177517,
0.04714904725551605,
0.010457984171807766,
-0.03220865875482559,
-0.01151538547128439,
0.03364240378141403,
0.003796944860368967,
0.0686769112944603,
0.016944050788879395,
0.07948822528123856,
-0.0063028838485479355,
-0.013016634620726109,
-0.01566324755549431,
-0.03026270680129528,
0.0066411299630999565,
-0.047111958265304565,
0.004896107129752636,
-0.012141196988523006,
0.0065426998771727085,
0.005268820561468601,
0.00958439614623785,
-0.02604174055159092,
0.010935921221971512,
0.03219904750585556,
-0.057061322033405304,
-0.03557481989264488,
0.06153036653995514,
-0.004037392325699329,
0.020955951884388924,
-0.004049806855618954,
0.012757034972310066,
-0.03201477229595184,
0.014348200522363186,
-0.01977444253861904,
-0.0007934574969112873,
-0.003967919386923313,
0.032534193247556686,
-0.010304946452379227,
-0.02890537679195404,
0.03796355053782463,
0.04963168129324913,
0.0024873765651136637,
-0.039489276707172394,
-0.03194486349821091,
0.009481596760451794,
-0.02629045955836773,
0.014013242907822132,
-0.0697316899895668,
0.03154910355806351,
-0.006218567490577698,
-0.0031110960990190506,
0.025582194328308105,
0.025449007749557495,
-0.013996944762766361,
-0.04717345908284187,
0.048183705657720566,
0.009038814343512058,
-0.049482814967632294,
-0.013071199879050255,
0.0801541656255722,
0.04611799865961075,
-0.022914299741387367,
0.014280134811997414,
0.0039750803261995316,
-0.036133017390966415,
-0.02032540924847126,
-0.06060699746012688,
0.0575602650642395,
0.08684054017066956,
0.004473435692489147,
-0.002718936186283827,
-0.005472992081195116,
0.030958009883761406,
0.01756170764565468,
-0.037005484104156494,
0.011687749065458775,
-0.024866828694939613,
0.028629440814256668,
0.0024332094471901655,
-0.0007443512440659106,
0.02430059388279915,
0.05443308502435684,
0.03155965730547905,
-0.03814755752682686,
0.04153783619403839,
0.014041426591575146,
-0.038528744131326675,
0.009463176131248474,
-0.007963143289089203,
-0.034512802958488464,
-0.003094129031524062,
-0.014515312388539314,
-0.00781636219471693,
-0.0008171205408871174,
0.013054965995252132,
0.02512795850634575,
0.0015604209620505571,
-0.00519908033311367,
-0.006568086799234152,
0.05454002693295479,
-0.0007858448661863804,
0.019696319475769997,
0.024304719641804695,
0.016648128628730774,
0.047106679528951645,
-0.009169826284050941,
0.012781500816345215,
-0.008653312921524048,
0.055573463439941406,
0.03037439100444317,
0.03338951617479324,
0.05220453813672066,
-0.0035770582035183907,
0.007121304050087929,
-0.016918014734983444,
-0.0057590981014072895,
-0.004977694246917963,
-0.028494803234934807,
0.07958248257637024,
-0.02452949993312359,
0.014979416504502296,
-0.01196117140352726,
0.04504461959004402,
0.03291857987642288,
0.03916521370410919,
-0.01972721889615059,
0.04668915644288063,
0.02810063399374485,
0.011311834678053856,
-0.009057469666004181,
0.055336277931928635,
0.043254703283309937,
-0.04808364808559418,
0.031115401536226273,
-0.0034646312706172466,
0.021808572113513947,
0.008976277895271778,
-0.00040829702629707754,
0.02763337455689907,
-0.033258501440286636,
-0.02539672516286373,
0.022543177008628845,
-0.007202670909464359,
0.0229103434830904,
0.022432643920183182,
0.004654797725379467,
-0.04227752611041069,
0.04365134239196777,
-0.015753507614135742,
-0.02081868052482605,
-0.020353464409708977,
0.007894860580563545,
0.016016997396945953,
0.024398891255259514,
-0.012440940365195274,
-0.04741161689162254,
0.01767902448773384,
0.012289019301533699,
0.018533652648329735,
0.05525777116417885,
-0.0019752976950258017,
-0.04736282303929329,
-0.05278853699564934,
-0.03756769746541977,
-0.0004897069884464145,
0.017447223886847496,
-0.009925601072609425,
-0.018133318051695824,
-0.03692297637462616,
0.009437689557671547,
0.005838977172970772,
0.03395077958703041,
0.00363531825132668,
0.003461020067334175,
-0.06590446084737778,
0.026744786649942398,
-0.013292567804455757,
-0.024359123781323433,
0.0605488121509552,
-0.052643876522779465,
-0.03690941631793976,
-0.009762218222022057,
-0.014441587962210178,
0.003835726296529174,
0.039678119122982025,
-0.027889415621757507,
-0.024278488010168076,
0.024879131466150284,
-0.01164980884641409,
-0.010505635291337967,
0.05330590903759003,
0.015177552588284016,
-0.0283714160323143,
-0.010060991160571575,
-0.003243175568059087,
0.007556569296866655,
-0.005803677253425121,
-0.014634678140282631,
0.05074063315987587,
-0.0283628199249506,
-0.029531944543123245,
-0.016624053940176964,
0.004343802109360695,
0.014697577804327011,
-0.01656266860663891,
0.04410437494516373,
-0.008874786086380482,
0.03501276671886444,
-0.004345091991126537,
0.03596096858382225,
-0.027883255854249,
-0.004909132607281208,
-0.008147007785737514,
0.017049593850970268,
-0.0049204034730792046,
0.017800500616431236,
-0.022557567805051804,
0.049654919654130936,
-0.03388660028576851,
0.011043595150113106,
-0.04361465573310852,
-0.04165835678577423,
-0.013178994879126549,
0.0034504407085478306,
0.06610655039548874,
0.0380866676568985,
0.02962084673345089,
0.04083053395152092,
-0.005745736416429281,
-0.008873328566551208,
-0.01280805841088295,
0.004350758623331785,
0.07004502415657043,
0.028122683987021446,
-0.012671425938606262,
-0.08385994285345078,
-0.006659762468189001,
0.047266826033592224,
-0.07193438708782196,
0.015065841376781464,
0.03186580538749695,
0.02503199689090252,
-0.011951008811593056,
0.006103763356804848,
0.02656400017440319,
0.006077311467379332,
0.01939604990184307,
-0.013391006737947464,
0.013973728753626347,
-0.006019621156156063,
0.01265033334493637,
-0.029980070888996124,
0.02107255719602108,
-0.0028850268572568893,
-0.03436591103672981,
0.028405550867319107,
0.015230372548103333,
0.03847957402467728,
-0.007274623028934002,
-0.0244132187217474,
-0.005335023161023855,
-0.005489743780344725,
-0.06509416550397873,
-0.01562442909926176,
-0.015573408454656601,
0.03560180962085724,
0.0022224364802241325,
-0.03366128355264664,
-0.00010657971870386973,
0.02076306752860546,
-0.04059864208102226,
0.04697968810796738,
-0.027219297364354134,
0.005445640068501234,
-0.03653716668486595,
-0.019019264727830887,
0.02927352860569954,
0.008181427605450153,
0.02078142762184143,
-0.012932850979268551,
-0.04755650833249092,
0.009552997536957264
] |
Hyperparameter Search with Transformers and Ray Tune | ray-project | November 2, 2020 | ray-tune | open-source-collab, nlp | https://huggingface.co/blog/ray-tune | Try it out today: * pip install -U ray * pip install -U transformers datasets * Check out the Hugging Face documentation and Discussion thread * End-to-end example of using Hugging Face hyperparameter search for text classification If you liked this blog post, be sure to check out: * Transformers + GLUE + Ray Tune example * Our Weights and Biases report on Hyperparameter Optimization for Transformers * The simplest way to serve your NLP model from scratch | [
0.0047001647762954235,
-0.02565193921327591,
0.053861670196056366,
0.02455233596265316,
0.008973094634711742,
0.10691018402576447,
0.0602838508784771,
0.07280603796243668,
-0.01150436419993639,
-0.028050998225808144,
-0.13599394261837006,
0.10267509520053864,
0.0025963152293115854,
0.0951831042766571,
0.030528457835316658,
-0.0025676842778921127,
0.017226245254278183,
0.03530286252498627,
-0.02280150167644024,
0.04375840723514557,
-0.018512554466724396,
-0.029752783477306366,
0.057318419218063354,
-0.029446667060256004,
0.05192210525274277,
-0.07014128565788269,
0.02962910570204258,
0.02667255885899067,
0.010086284019052982,
0.03632751852273941,
-0.1391841024160385,
-0.015874840319156647,
-0.03612084314227104,
-0.051879122853279114,
-0.016928311437368393,
0.09744062274694443,
-0.11362670361995697,
0.025553205981850624,
0.03246385231614113,
-0.06396795064210892,
-0.01541034784168005,
-0.02675316296517849,
-0.08641330897808075,
0.023638427257537842,
0.0025801907759159803,
-0.035684965550899506,
-0.1870494931936264,
0.07646168768405914,
-0.021050069481134415,
0.0013973215827718377,
-0.04922262951731682,
0.034291476011276245,
0.003465713234618306,
-0.02358470857143402,
0.0007790295640006661,
0.008628916926681995,
-0.0038571427576243877,
-0.05877626687288284,
0.0005533102666959167,
0.050219062715768814,
0.020528491586446762,
0.02259027399122715,
-0.0032898609060794115,
0.031165631487965584,
0.02160080522298813,
0.0192171148955822,
-0.06005750969052315,
0.009241411462426186,
-0.0670802891254425,
-0.03485654667019844,
0.05152264982461929,
-0.038876283913850784,
0.00808490626513958,
-0.03945227712392807,
-0.016243867576122284,
-0.0346723273396492,
0.019312817603349686,
-0.0014753623399883509,
0.0417124405503273,
0.059660475701093674,
0.027867186814546585,
-0.01380806416273117,
0.04270585626363754,
0.06472814083099365,
0.04980169236660004,
0.043351177126169205,
0.03725963085889816,
-0.02243298478424549,
-0.07042700797319412,
0.09953903406858444,
-0.023021075874567032,
-0.09887126088142395,
-0.025610435754060745,
0.004907911643385887,
0.060379818081855774,
-0.059054721146821976,
-0.0015246813418343663,
-0.006677116267383099,
-0.054679132997989655,
0.021242324262857437,
-0.01802133210003376,
-0.013773726299405098,
0.06571372598409653,
-0.05082188919186592,
-0.059992603957653046,
0.02206500433385372,
0.009496510960161686,
-0.06807969510555267,
-0.053337421268224716,
0.025475353002548218,
-0.034463200718164444,
-0.0034403065219521523,
-0.02233385667204857,
0.06438740342855453,
-0.0926201194524765,
0.0352136567234993,
0.030597055330872536,
-0.004744784440845251,
0.00351031799800694,
0.01796356774866581,
-0.017444249242544174,
0.08288094401359558,
0.036928679794073105,
0.0031744528096169233,
-0.00030856611556373537,
0.09152384102344513,
0.02212396077811718,
0.03257008269429207,
0.04625468701124191,
0.01267105434089899,
0.02844739332795143,
-0.04339516535401344,
0.055286649614572525,
-0.019814226776361465,
-0.004123599734157324,
-0.06579665094614029,
0.017834782600402832,
-0.035590481013059616,
-0.009130125865340233,
-0.004192246589809656,
-0.00011489544704090804,
0.05154849588871002,
0.00381089118309319,
0.01610148698091507,
0.05049934238195419,
-0.023596810176968575,
-0.0720759853720665,
0.0895724967122078,
-0.017126481980085373,
0.018466755747795105,
-0.03881917893886566,
0.0989844799041748,
0.023348959162831306,
0.01214558258652687,
-0.010337704792618752,
0.061615511775016785,
-0.006719205062836409,
-0.007842201739549637,
-0.05105438455939293,
-0.005634257569909096,
-0.01017297524958849,
0.013112868182361126,
-0.07064996659755707,
0.014736596494913101,
0.016698870807886124,
-0.044597234576940536,
-0.023947905749082565,
0.02396351657807827,
-0.023754151538014412,
0.031277645379304886,
0.007359625305980444,
-0.029988856986165047,
0.057298727333545685,
-0.02562701515853405,
-0.013418246060609818,
-0.004172648768872023,
0.04907086491584778,
0.07283605635166168,
-0.03197810426354408,
-0.044211696833372116,
-0.040313273668289185,
0.05630045384168625,
0.006530012935400009,
0.06190391257405281,
0.03162398561835289,
-0.04774460196495056,
0.01153755746781826,
0.01055721752345562,
0.03340676799416542,
0.016427643597126007,
-0.02168186940252781,
-0.07408463954925537,
0.07504603266716003,
-0.018556121736764908,
0.0567280650138855,
-0.052824944257736206,
-0.0034162618685513735,
0.13244618475437164,
0.017168935388326645,
0.03924817964434624,
-0.008371856063604355,
-0.002289146650582552,
0.05128350481390953,
-0.04724607989192009,
-0.0222393237054348,
-0.025425812229514122,
-0.0006199067574925721,
-0.04657020419836044,
0.00490039074793458,
0.0122231962159276,
0.007317276671528816,
-0.13366568088531494,
0.01932484470307827,
-0.07561461627483368,
-0.004165250808000565,
-0.023409461602568626,
-0.029148830100893974,
0.012491120956838131,
-0.0022735416423529387,
0.008656718768179417,
0.17231237888336182,
-0.016349907964468002,
-0.010910112410783768,
-0.02108386531472206,
-0.03215637430548668,
0.053173139691352844,
0.1128908097743988,
0.05844186618924141,
0.07086671143770218,
-0.08270105719566345,
-0.03054983913898468,
-0.027210228145122528,
0.014452983625233173,
0.09899140894412994,
-0.022420212626457214,
-0.041499968618154526,
0.056621383875608444,
-0.03327621519565582,
0.0018870629137381911,
0.004790082573890686,
0.0197694543749094,
-0.04537051543593407,
-0.0035995335783809423,
0.03318290039896965,
-0.02202552556991577,
-0.026468772441148758,
0.0456731952726841,
0.02394992671906948,
-0.05111944302916527,
-0.028422607108950615,
-0.05472967401146889,
0.04706769809126854,
0.005832003895193338,
-0.03329658508300781,
0.008494794368743896,
0.0684128999710083,
-0.011067978106439114,
-0.019639046862721443,
-0.02528863027691841,
0.06421606242656708,
0.032344426959753036,
0.021715302020311356,
-0.035258062183856964,
-0.041945669800043106,
-0.02771451324224472,
-0.035484712570905685,
0.010572348721325397,
0.014945998787879944,
0.009611944667994976,
-0.004093509167432785,
-0.01300504244863987,
-0.016658587381243706,
0.04270877689123154,
0.011895134113729,
0.007031079847365618,
0.02827608957886696,
0.049456071108579636,
-0.020271241664886475,
-0.025722401216626167,
-0.014098227955400944,
-0.012178001925349236,
-0.02926407754421234,
0.04598044231534004,
0.048686012625694275,
-0.0030571415554732084,
0.0025634088087826967,
-0.01932292990386486,
-0.05227409303188324,
-0.0055008577182888985,
0.019083039835095406,
-0.01905721239745617,
0.036530639976263046,
-0.01655230112373829,
-0.044000349938869476,
-0.008208319544792175,
-0.012401066720485687,
0.0007155471248552203,
0.004875647369772196,
0.0007892027497291565,
0.032682742923498154,
0.0055275727063417435,
0.02504728175699711,
-0.0012771907495334744,
-0.005115058738738298,
-0.04277848079800606,
0.033603884279727936,
0.028268322348594666,
0.019930996000766754,
-0.11033300310373306,
-0.020209576934576035,
-0.0211066585034132,
0.018010642379522324,
0.005764374975115061,
-0.02656339667737484,
0.04905183985829353,
-0.019660217687487602,
-0.018473109230399132,
-0.021800151094794273,
-0.006419793237000704,
0.008747564628720284,
0.018967069685459137,
0.03531793877482414,
0.006138661876320839,
-0.03317408636212349,
0.016499491408467293,
0.0018998145824298263,
0.04914156720042229,
0.028974242508411407,
-0.011859196238219738,
0.06495969742536545,
0.024321308359503746,
0.01775265485048294,
-0.012561150826513767,
-0.0003019865835085511,
0.047021105885505676,
0.013832321390509605,
0.014399994164705276,
-0.04706645756959915,
0.010468012653291225,
-0.010287104174494743,
-0.03763328865170479,
0.032685890793800354,
-0.01383386179804802,
-0.0017403379315510392,
0.005588016007095575,
-0.0022012200206518173,
-0.006413470488041639,
0.029292171820998192,
-0.014535504393279552,
-0.0032197555992752314,
0.000511080608703196,
-0.0330655612051487,
-0.010700240731239319,
-0.009444616734981537,
-0.03613375872373581,
0.006608832627534866,
0.0220574252307415,
-0.045007552951574326,
-0.018453126773238182,
-0.021734187379479408,
-0.006229178514331579,
0.02346646599471569,
0.02533181570470333,
0.005746880080550909,
0.007692041341215372,
0.026680871844291687,
0.021857069805264473,
0.009619727730751038,
-0.04964519664645195,
0.03816121816635132,
-0.018334215506911278,
-0.04061919450759888,
-0.02270582504570484,
0.05218593403697014,
0.01588495820760727,
0.0175560861825943,
-0.025003988295793533,
0.014169474132359028,
0.013886832632124424,
0.019164811819791794,
0.003454927820712328,
0.010971717536449432,
-0.030042216181755066,
0.007330353371798992,
-0.012394540011882782,
-0.039082735776901245,
0.04535292461514473,
0.03761005401611328,
-0.06851968914270401,
-0.04189605638384819,
-0.05309322848916054,
-0.022402383387088776,
-0.008050311356782913,
-0.013423570431768894,
0.015038412995636463,
-0.054278817027807236,
0.04224734008312225,
0.006667562760412693,
-0.021802296862006187,
-0.053071849048137665,
0.007260694168508053,
-0.03133764863014221,
-0.02177131175994873,
-0.015319020487368107,
0.05017440393567085,
-0.016065509989857674,
-0.0021959601435810328,
0.017577847465872765,
0.0010178431402891874,
-0.012875296175479889,
0.008091086521744728,
0.017042437568306923,
0.006186134181916714,
0.006849548779428005,
-0.04176221415400505,
-0.03180800750851631,
0.014332200400531292,
-0.027488745748996735,
0.007425133138895035,
-0.024460695683956146,
-0.04324698448181152,
-0.0015330056194216013,
0.020761331543326378,
0.021275589242577553,
-0.013870096765458584,
-0.026981979608535767,
-0.042254287749528885,
0.05234667286276817,
-0.0031608841381967068,
0.03485528379678726,
-0.02449214830994606,
-0.024497216567397118,
0.001353415078483522,
-0.006574070081114769,
0.05064569413661957,
0.04981646686792374,
-0.027834733948111534,
0.017018629238009453,
-0.012525174766778946,
-0.05310789495706558,
0.04171421006321907,
-0.006148083601146936,
0.0029179658740758896,
0.02132249064743519,
-0.012160523794591427,
0.020700683817267418,
-0.015209334902465343,
-0.02268555946648121,
-0.020342400297522545,
-0.012131228111684322,
0.045857541263103485,
-0.019453618675470352,
0.05431195721030235,
-0.0027757014613598585,
-0.06056314334273338,
-0.008580549620091915,
-0.018688056617975235,
0.018015827983617783,
0.033426206558942795,
0.012045842595398426,
0.00013489443517755717,
0.047543399035930634,
0.01984863355755806,
-0.02510550059378147,
-0.012114078737795353,
0.033413734287023544,
0.003809308633208275,
0.035682160407304764,
0.011557499878108501,
-0.011174695566296577,
-0.04216158017516136,
0.006475589703768492,
0.020132726058363914,
0.009284824132919312,
0.021744806319475174,
-0.047183360904455185,
0.003433358622714877,
0.00390873895958066,
-0.005349102430045605,
0.008360451087355614,
0.03291827067732811,
-0.03776538372039795,
-0.04441959783434868,
0.04292185232043266,
0.0330473855137825,
0.013939623720943928,
-0.0073797740042209625,
0.03821003437042236,
-0.014278436079621315,
-0.015783987939357758,
-0.0072603533044457436,
0.0054464396089315414,
-0.015170532278716564,
0.04200850427150726,
0.04994655400514603,
0.062142543494701385,
-0.002054888056591153,
0.00010935233876807615,
-0.007218398153781891,
-0.034328389912843704,
0.019089877605438232,
-0.03979439660906792,
-0.0008922207052819431,
-0.0176713764667511,
0.008627810515463352,
-0.020474832504987717,
-0.003109223209321499,
-0.020168211311101913,
0.018904251977801323,
0.040309492498636246,
-0.019353432580828667,
-0.03438345342874527,
0.03711806237697601,
-0.01440985407680273,
0.0045584747567772865,
-0.013199269771575928,
0.03297220543026924,
-0.04675297439098358,
-0.005532735027372837,
-0.014164491556584835,
-0.017279256135225296,
-0.023934384807944298,
-0.007373481057584286,
-0.009831342846155167,
-0.023197321221232414,
0.005366086959838867,
0.03317974880337715,
0.042814306914806366,
-0.008897796273231506,
-0.010687872767448425,
-0.0026575762312859297,
-0.008602255955338478,
0.017694175243377686,
-0.0391891710460186,
0.017457779496908188,
-0.008068347349762917,
0.0016355131519958377,
0.04522184655070305,
0.03840690106153488,
-0.00750527111813426,
-0.015681514516472816,
0.04107455536723137,
0.004613972268998623,
-0.014489850029349327,
-0.03489308804273605,
0.06120874360203743,
0.03871949762105942,
-0.015133285894989967,
-0.004878165666013956,
-0.013033256866037846,
-0.03413000702857971,
0.009542795829474926,
-0.026318322867155075,
0.04239810258150101,
0.07872752100229263,
0.007736136671155691,
0.0053934683091938496,
-0.00317483302205801,
0.01637531816959381,
0.008319332264363766,
-0.031048651784658432,
0.013735855929553509,
0.018333658576011658,
0.03292138874530792,
-0.00912002194672823,
-0.0011576487449929118,
-0.0005609812797047198,
0.04462757706642151,
0.02772979997098446,
-0.05748094618320465,
0.042851515114307404,
0.011483732610940933,
-0.05032985657453537,
-0.0030010468326509,
-0.0006077747093513608,
0.008440066128969193,
-0.013961462303996086,
0.01859275810420513,
-0.00032420974457636476,
0.04286741465330124,
0.004499049857258797,
0.008543197996914387,
-0.031361281871795654,
-0.008981511928141117,
0.01441376842558384,
0.04494255781173706,
-0.02146318554878235,
0.03495620936155319,
0.02420670911669731,
0.01712678000330925,
0.026369616389274597,
-0.013907365500926971,
-0.002768115373328328,
0.01143677718937397,
0.07448865473270416,
0.018368404358625412,
0.04342480003833771,
0.031929612159729004,
-0.00014290983381215483,
0.008579609915614128,
-0.028158830478787422,
-0.014208875596523285,
-0.016484493389725685,
0.02346862480044365,
0.0266982764005661,
-0.014110666699707508,
-0.0039194505661726,
-0.021693825721740723,
0.05718085914850235,
0.031104372814297676,
0.04294431582093239,
-0.009102588519454002,
0.024956317618489265,
0.04376902058720589,
0.015002217143774033,
-0.0018024715827777982,
0.05265407636761665,
0.019286271184682846,
-0.018202699720859528,
0.05657751485705376,
0.009648339822888374,
0.038766782730817795,
0.010520372539758682,
-0.004809353966265917,
0.015443972311913967,
-0.020343482494354248,
-0.022455723956227303,
-0.006417649332433939,
0.02906913496553898,
0.007863778620958328,
-0.01086255069822073,
0.03386303409934044,
-0.06502639502286911,
0.014037867076694965,
-0.030565908178687096,
0.013006215915083885,
-0.0162795502692461,
-0.026503372937440872,
-0.005293247289955616,
0.047743625938892365,
-0.005435122177004814,
0.002580872969701886,
0.008237200789153576,
0.002710376400500536,
0.007679338566958904,
0.020104559138417244,
-0.026195034384727478,
-0.04028977081179619,
-0.043590378016233444,
-0.01264206413179636,
-0.03626738488674164,
-0.014202107675373554,
-0.02109752781689167,
-0.03209986165165901,
-0.03311382979154587,
0.04122414439916611,
-0.0010419826721772552,
0.01656477339565754,
0.034080490469932556,
0.02427309937775135,
-0.04908068850636482,
0.025942618027329445,
-0.032108042389154434,
-0.012842389754951,
-0.01141536794602871,
-0.025057408958673477,
-0.019037140533328056,
-0.02921447716653347,
-0.004810369573533535,
0.014172760769724846,
0.05157427862286568,
-0.02937033399939537,
-0.04318438842892647,
0.00734899053350091,
-0.006773266475647688,
-0.022482478991150856,
0.02989022806286812,
-0.005816359538584948,
-0.012925781309604645,
-0.0032967727165669203,
0.010287479497492313,
0.0048848786391317844,
-0.006664216052740812,
0.006145837716758251,
0.01747892238199711,
-0.014760257676243782,
-0.030170895159244537,
-0.008470874279737473,
0.025594111531972885,
0.03373446688055992,
-0.0015349702443927526,
0.040904659777879715,
0.0016786777414381504,
0.02547081559896469,
-0.030393322929739952,
0.030473556369543076,
-0.02131403610110283,
0.012871080078184605,
-0.03522849828004837,
-0.03344479203224182,
-0.012459277175366879,
-0.015016252174973488,
-0.0031238060910254717,
0.03175598382949829,
-0.06735165417194366,
-0.0007456305320374668,
-0.028947634622454643,
-0.030771302059292793,
-0.018475694581866264,
0.00702071376144886,
0.060916610062122345,
0.042835649102926254,
0.009119069203734398,
0.03099600225687027,
-0.006073520053178072,
0.016285786405205727,
0.007198874372988939,
0.013921459205448627,
0.049074336886405945,
0.02621079422533512,
-0.006057281047105789,
-0.07498100399971008,
-0.002035018289461732,
-0.011684058234095573,
-0.07207952439785004,
0.003237049328163266,
0.020185377448797226,
-0.029301611706614494,
-0.017381496727466583,
-0.00834513921290636,
0.01762976683676243,
0.029514750465750694,
0.034958772361278534,
-0.04766123369336128,
-0.015432266518473625,
-0.0011486551957204938,
0.015727141872048378,
-0.05995408818125725,
0.05616914480924606,
-0.019720397889614105,
-0.04785199835896492,
0.02951737865805626,
0.019531143829226494,
0.03520886227488518,
0.0026060135569423437,
-0.018940621986985207,
-0.02303382195532322,
0.012323723174631596,
-0.0616503544151783,
-0.045943550765514374,
-0.0029215437825769186,
0.04798353835940361,
-0.019597085192799568,
-0.03218455612659454,
0.020819520577788353,
-0.004117950797080994,
-0.03518395870923996,
0.02202368527650833,
-0.03140245005488396,
-0.015352142043411732,
-0.021012594923377037,
0.02779530920088291,
0.010671778582036495,
0.03558791056275368,
0.022054079920053482,
-0.0026720266323536634,
-0.004503907170146704,
0.00582673167809844
] |
Hyperparameter Search with Transformers and Ray Tune | ray-project | November 2, 2020 | ray-tune | open-source-collab, nlp | https://huggingface.co/blog/ray-tune | # Hyperparameter Search with Transformers and Ray Tune | [
0.04973425716161728,
-0.020596999675035477,
0.10134916752576828,
0.02864486165344715,
0.010653316974639893,
0.05226883664727211,
0.06901779025793076,
0.010060022585093975,
0.023221438750624657,
-0.02282828837633133,
-0.07446477562189102,
0.07545126974582672,
-0.0016302700387313962,
0.07910776883363724,
0.025469165295362473,
0.037953346967697144,
-0.010553540661931038,
-0.00702751474454999,
0.006950440816581249,
0.03907736763358116,
-0.013318024575710297,
-0.030577626079320908,
0.077385812997818,
-0.02467971481382847,
0.03630273789167404,
-0.020632905885577202,
-0.013087337836623192,
-0.008520357310771942,
-0.011645297519862652,
0.06720852851867676,
-0.0772075355052948,
0.025019675493240356,
-0.014750977046787739,
-0.07404705137014389,
-0.0455746129155159,
0.08117713034152985,
-0.08936047554016113,
-0.029132291674613953,
-0.01690131053328514,
-0.07280652225017548,
-0.07699627429246902,
-0.07304731756448746,
0.0031693261116743088,
0.01761556975543499,
0.041338756680488586,
0.0119577432051301,
-0.22107382118701935,
0.07364632189273834,
-0.04675048217177391,
-0.02519809640944004,
0.0063447123393416405,
0.040345896035432816,
-0.003297539195045829,
0.011291689239442348,
-0.019025234505534172,
0.025356309488415718,
0.020135419443249702,
-0.040541186928749084,
-0.010182789526879787,
-0.014512190595269203,
0.053160399198532104,
0.018958626314997673,
0.01108578685671091,
0.010154824703931808,
0.021653706207871437,
0.023202642798423767,
-0.04983286187052727,
0.020559174939990044,
-0.07069297879934311,
-0.030672796070575714,
0.023744774982333183,
-0.022424837574362755,
0.005185345187783241,
-0.01625659130513668,
-0.009510931558907032,
-0.03710240498185158,
-0.03754639998078346,
0.040406886488199234,
0.03976568207144737,
0.10124818980693817,
0.013911447487771511,
-0.029857978224754333,
0.06311590224504471,
0.0606284998357296,
0.01572362147271633,
0.010211944580078125,
0.06561655551195145,
0.004156013019382954,
-0.011122246272861958,
0.06463957577943802,
-0.010726639069616795,
-0.15562796592712402,
-0.03140360862016678,
0.02296222746372223,
0.03596392646431923,
-0.059356652200222015,
0.004684873856604099,
-0.0571131706237793,
-0.03852137178182602,
0.08201994001865387,
-0.025384537875652313,
0.017106058076024055,
0.08492901176214218,
-0.031210416927933693,
-0.060890235006809235,
-0.005992190446704626,
0.01735701970756054,
-0.09416027367115021,
-0.058297671377658844,
0.058205511420965195,
-0.054059743881225586,
0.05747681111097336,
0.03581208735704422,
0.05473218113183975,
-0.03200061246752739,
0.018007731065154076,
0.022499890998005867,
-0.017764372751116753,
0.012086126022040844,
0.008066946640610695,
-0.038450200110673904,
0.12850981950759888,
0.07562558352947235,
0.0440339669585228,
0.0034471957478672266,
0.05994559824466705,
0.05298231169581413,
0.05246826261281967,
-0.0019240201218053699,
0.021232830360531807,
0.027559561654925346,
-0.036166511476039886,
0.03828207775950432,
0.0009324508137069643,
-0.01694335602223873,
-0.09961845725774765,
-0.0007941430667415261,
0.011847644113004208,
-0.03996305912733078,
0.00579100614413619,
0.014727453701198101,
-0.011522369459271431,
-0.0037201710510998964,
-0.020466245710849762,
0.025890346616506577,
-0.0390017069876194,
-0.017680693417787552,
0.06979444622993469,
-0.005843915045261383,
0.041003670543432236,
0.015967583283782005,
0.12238504737615585,
0.008215918205678463,
-0.01092747412621975,
0.0007053612498566508,
0.042025044560432434,
0.0029691150411963463,
-0.011635431088507175,
-0.05157685652375221,
0.011847431771457195,
-0.01734752766788006,
0.02600930817425251,
-0.02947833575308323,
0.025618556886911392,
0.018247971311211586,
-0.03217313066124916,
-0.03209593519568443,
0.01698007620871067,
-0.0394575297832489,
-0.023905867710709572,
-0.030449924990534782,
-0.014604493044316769,
0.04731491580605507,
-0.048862528055906296,
-0.05771833285689354,
0.0027811669278889894,
0.06656752526760101,
0.0748458132147789,
-0.004316635895520449,
-0.033385224640369415,
-0.02829211764037609,
0.0284599456936121,
0.003288848325610161,
0.06957069039344788,
0.009583490900695324,
-0.017330419272184372,
-0.002181492280215025,
-0.0004279871645849198,
0.058364562690258026,
0.0013586716959252954,
-0.034933850169181824,
-0.07942388951778412,
0.09676072746515274,
-0.025170378386974335,
0.03979730233550072,
-0.06037597730755806,
-0.021608654409646988,
0.07030099630355835,
0.07580973953008652,
0.07116904854774475,
-0.02069351263344288,
0.016383295878767967,
0.035742029547691345,
-0.05248701199889183,
-0.029294775798916817,
0.009570291265845299,
0.05832728371024132,
-0.033941902220249176,
0.02612133137881756,
0.02035846747457981,
-0.008305946364998817,
-0.15119881927967072,
0.003936351742595434,
-0.07956524938344955,
0.011700882576406002,
-0.013328715227544308,
-0.06610345840454102,
-0.026808882132172585,
-0.034747105091810226,
-0.02850153110921383,
0.09856752306222916,
0.016040271148085594,
-0.04809193313121796,
0.018338080495595932,
-0.005866155028343201,
0.07594070583581924,
0.10860928893089294,
0.01928546279668808,
0.03294932842254639,
-0.06348223239183426,
-0.026005249470472336,
0.03521651029586792,
0.01513735018670559,
0.1130528375506401,
0.006666891276836395,
0.019111905246973038,
0.004225475247949362,
-0.03627265617251396,
0.03027619794011116,
-0.03426928445696831,
0.02148357778787613,
0.016614381223917007,
-0.0004431253473740071,
0.09983918070793152,
-0.04376000538468361,
-0.040177494287490845,
0.053868360817432404,
0.004973309114575386,
-0.029686586931347847,
-0.027090441435575485,
-0.06297024339437485,
0.00545675540342927,
0.012775197625160217,
-0.0866352766752243,
0.049287036061286926,
-0.0008620492881163955,
-0.022118056192994118,
-0.03601275011897087,
-0.03917296230792999,
0.06107894331216812,
0.051680777221918106,
0.02294333651661873,
0.0012579469475895166,
-0.04764031618833542,
-0.0011729635298252106,
-0.00958030205219984,
0.01891510561108589,
0.04774501919746399,
-0.014398657716810703,
0.002296323422342539,
-0.023436827585101128,
-0.023680681362748146,
0.03221582993865013,
-0.0023912678007036448,
0.018831569701433182,
-0.006418291945010424,
0.0474458709359169,
0.0030957318376749754,
-0.00038290279917418957,
0.016725925728678703,
-0.00960761122405529,
-0.0017778087640181184,
0.03306576609611511,
0.021925831213593483,
-0.007756665349006653,
-0.0030615231953561306,
0.0030816521029919386,
-0.017128130421042442,
0.03136080503463745,
0.011471849866211414,
-0.012535860762000084,
0.009273350238800049,
0.005828300025314093,
0.019888779148459435,
0.007875395007431507,
-0.03822949901223183,
0.001476538134738803,
-0.027002671733498573,
-0.02404792234301567,
-0.014835885725915432,
0.007717667613178492,
0.016011489555239677,
-0.02575385384261608,
0.0015061823651194572,
-0.03588304668664932,
0.021860415115952492,
-0.0013854975113645196,
0.045511770993471146,
-0.12729309499263763,
-0.04457361251115799,
-0.025303777307271957,
0.020492855459451675,
0.009640492498874664,
-0.006919107399880886,
0.018845589831471443,
-0.04247177392244339,
-0.013731186278164387,
-0.02660158835351467,
-0.001960556022822857,
0.022984951734542847,
0.007849221117794514,
0.026502909138798714,
-0.0009273409959860146,
-0.03461678698658943,
0.010682262480258942,
0.02913733571767807,
0.01784227415919304,
-0.013136366382241249,
-0.005614439956843853,
0.06190737709403038,
0.0066096605733036995,
0.023602137342095375,
0.00484011834487319,
0.03241389989852905,
0.04615012928843498,
0.04143659397959709,
-0.003432845463976264,
0.009551405906677246,
-0.004218027926981449,
0.02601478435099125,
-0.048676371574401855,
0.05482976511120796,
0.013971098698675632,
-0.00022409441589843482,
-0.007651660591363907,
-0.031923092901706696,
-0.0006535211578011513,
0.047429513186216354,
0.019639916718006134,
0.009268631227314472,
0.017730267718434334,
-0.018879903480410576,
-0.04361126944422722,
-0.013571785762906075,
-0.03449913486838341,
0.028722144663333893,
0.03030947409570217,
-0.06385688483715057,
-0.04150553047657013,
-0.029776576906442642,
-0.0016075004823505878,
0.003686100011691451,
0.0030286468099802732,
-0.018222767859697342,
0.0035837420728057623,
0.012440923601388931,
0.049044035375118256,
0.006559233646839857,
-0.033087000250816345,
-0.0002548954507801682,
0.00557651836425066,
0.0029925093986094,
-0.06550927460193634,
0.04292241111397743,
0.023412901908159256,
0.04976010322570801,
-0.027956167235970497,
0.02516055852174759,
0.013688405975699425,
-0.008580447174608707,
-0.024114249274134636,
0.01760692708194256,
-0.018891913816332817,
0.034643080085515976,
-0.01668407768011093,
-0.04330765828490257,
0.0361873023211956,
-0.000887060712557286,
-0.06464921683073044,
-0.035291802138090134,
-0.0411226861178875,
-0.008857416920363903,
0.01429549790918827,
0.004597032908350229,
0.01536596566438675,
-0.041938066482543945,
0.020327067002654076,
0.01617530733346939,
-0.010976986028254032,
-0.03168044984340668,
-0.007057256996631622,
-0.035138215869665146,
-0.006484782323241234,
0.033037129789590836,
0.05123898759484291,
-0.017114022746682167,
-0.005581020377576351,
0.025043081492185593,
0.013889973051846027,
-0.031619489192962646,
0.015669895336031914,
0.017859945073723793,
0.012244253419339657,
0.011330888606607914,
-0.014524067752063274,
-0.03489397466182709,
-0.011520205065608025,
-0.013292081654071808,
0.014932852238416672,
-0.054556045681238174,
-0.050293490290641785,
-0.01288713701069355,
0.014936164021492004,
0.012204919941723347,
-0.027490464970469475,
-0.025987951084971428,
-0.028897255659103394,
0.04397818073630333,
-0.013480680994689465,
0.015670958906412125,
-0.0034761130809783936,
-0.016918359324336052,
-0.014449231326580048,
-0.014084303751587868,
0.016849005594849586,
0.031572528183460236,
-0.03140535578131676,
0.018311599269509315,
-0.045726239681243896,
-0.026254568248987198,
0.046712301671504974,
-0.014981633983552456,
0.001980296801775694,
0.02425239235162735,
0.004328101873397827,
0.01718742586672306,
-0.00627630902454257,
-0.04658525437116623,
0.010534602217376232,
0.003985149785876274,
0.0015936135314404964,
-0.03255344182252884,
0.08154888451099396,
-0.0105378907173872,
-0.02031208574771881,
-0.005713251885026693,
-0.01803160272538662,
0.004209720063954592,
0.03935425728559494,
-0.017343053594231606,
-0.025705117732286453,
-0.0026053141336888075,
0.01676936261355877,
-0.015724757686257362,
0.01924797333776951,
-0.004817319102585316,
-0.0044844429939985275,
0.04108113795518875,
0.031011853367090225,
-0.016023514792323112,
-0.07382310926914215,
-0.0003822454600594938,
-0.0007876234012655914,
0.008176811970770359,
0.02909967117011547,
-0.01666620932519436,
0.004208722617477179,
-0.01553878653794527,
-0.010942649096250534,
0.003899096045643091,
0.05662652850151062,
-0.03687134012579918,
-0.026128161698579788,
0.028458507731556892,
0.023448044434189796,
0.014185893349349499,
0.026530634611845016,
0.015194167383015156,
0.020738689228892326,
0.0012114146957173944,
-0.01117576751857996,
0.02067062444984913,
-0.0007219078252092004,
0.01912805065512657,
0.04769403114914894,
0.030890000984072685,
0.005368527490645647,
-0.0058962502516806126,
0.007356944028288126,
-0.015793755650520325,
-0.00955234095454216,
-0.03432388976216316,
0.007378408219665289,
-0.018846092745661736,
0.035639550536870956,
-0.01828054152429104,
-0.018779480829834938,
-0.00978349894285202,
0.05806542560458183,
0.013164867646992207,
-0.006997458636760712,
-0.03982001170516014,
0.013604744337499142,
-0.014671172015368938,
0.02607991173863411,
0.012597130611538887,
-0.00827658548951149,
-0.007559103891253471,
0.020227858796715736,
-0.014158590696752071,
-0.0377323217689991,
-0.042251769453287125,
0.004367861431092024,
-0.02930937148630619,
-0.028395237401127815,
-0.005710545461624861,
0.04105677455663681,
0.008928154595196247,
0.0015764734707772732,
-0.010824821889400482,
0.029638417065143585,
0.015948621556162834,
0.03387375921010971,
-0.010685957036912441,
0.020494315773248672,
0.010210378095507622,
-0.004367492161691189,
0.054325614124536514,
0.027044180780649185,
-0.0038401151541620493,
-0.055605459958314896,
0.04027925804257393,
0.016514450311660767,
-0.004127703607082367,
-0.058934856206178665,
0.07883718609809875,
0.041893120855093,
-0.01168479211628437,
0.0175361055880785,
-0.0034520504996180534,
-0.04204261675477028,
-0.013690900057554245,
-0.03877923637628555,
0.015526285395026207,
0.06569008529186249,
0.024616453796625137,
-0.005273615475744009,
-0.00934695452451706,
0.04538732394576073,
-0.0013866283698007464,
-0.039309754967689514,
0.01844852603971958,
0.01827978901565075,
0.03939347714185715,
-0.017005680128932,
-0.026897605508565903,
0.009921352379024029,
0.023077379912137985,
0.032815512269735336,
-0.026012206450104713,
0.02444363757967949,
0.02242274396121502,
-0.025175102055072784,
0.038172971457242966,
-0.012004716321825981,
0.017564278095960617,
-0.018783951178193092,
0.011605651117861271,
-0.026954522356390953,
0.030614754185080528,
0.0009831043425947428,
0.016872931271791458,
0.002881597261875868,
-0.014203732833266258,
0.004591900389641523,
0.04769793897867203,
0.010344769805669785,
0.016270333901047707,
0.009169500321149826,
0.025685865432024002,
0.035812199115753174,
-0.02353750728070736,
-0.018332023173570633,
0.03906545042991638,
0.05368521064519882,
0.013818691484630108,
0.0341765321791172,
0.03500227630138397,
0.016033872961997986,
0.002362314146012068,
-0.0042924401350319386,
-0.01903350278735161,
-0.04628191888332367,
0.02787710167467594,
0.04218418523669243,
-0.028547216206789017,
-0.005446836352348328,
-0.033282745629549026,
0.06224896013736725,
-0.0029641601722687483,
0.004725079517811537,
0.0024276648182421923,
0.004937594290822744,
0.03044840320944786,
0.027650635689496994,
0.0033240218181163073,
0.043952878564596176,
0.001416487037204206,
-0.005702738184481859,
0.05044049024581909,
-0.030084209516644478,
0.005411391146481037,
0.010933020152151585,
-0.004718678537756205,
0.038270287215709686,
-0.02210458554327488,
-0.05033976212143898,
0.026767442002892494,
0.043831177055835724,
0.014096802100539207,
0.022597335278987885,
0.029661061242222786,
-0.05176888033747673,
-0.04445027559995651,
-0.009573775343596935,
0.0232224240899086,
-0.04948442429304123,
-0.023371107876300812,
-0.022220682352781296,
0.017882633954286575,
-0.023786261677742004,
0.010266009718179703,
-0.01661653257906437,
-0.0029902691021561623,
0.02973823994398117,
0.05530113726854324,
-0.03604675829410553,
-0.028754647821187973,
-0.04719778522849083,
0.002099517732858658,
0.017043564468622208,
-0.025532038882374763,
-0.022604908794164658,
-0.01344394776970148,
-0.030461817979812622,
0.022122738882899284,
-0.021861454471945763,
0.02255842462182045,
0.011088070459663868,
0.00278747477568686,
-0.04741624742746353,
0.036782871931791306,
-0.05580150708556175,
-0.007795460056513548,
-0.004387575201690197,
0.0025145350955426693,
-0.018171250820159912,
0.0020496766082942486,
0.0003595745947677642,
-0.0023851762525737286,
0.021428870037198067,
-0.04927903413772583,
-0.007592129986733198,
0.020392684265971184,
-0.04241207242012024,
-0.009781704284250736,
0.011002610437572002,
0.004183311015367508,
-0.011628520675003529,
-0.003194688819348812,
0.01726800948381424,
0.028827914968132973,
-0.036732014268636703,
-0.004495886620134115,
0.012681501917541027,
-0.016931379213929176,
-0.023400967940688133,
-0.017565365880727768,
0.040052760392427444,
0.02332938276231289,
0.005733088124543428,
0.02334105782210827,
0.02308904007077217,
0.0015591157134622335,
-0.030575010925531387,
0.00993529986590147,
-0.006607816554605961,
0.011179071851074696,
-0.008885436691343784,
-0.029948672279715538,
-0.00213205860927701,
-0.012597063556313515,
-0.023309536278247833,
0.033430807292461395,
-0.059976283460855484,
-0.016613565385341644,
-0.01404542475938797,
-0.04759477823972702,
-0.05100163817405701,
0.03647404536604881,
0.06301156431436539,
0.018257828429341316,
0.05071840062737465,
-0.014531265012919903,
-0.010899615474045277,
-0.0181167870759964,
0.007631706073880196,
0.04127689078450203,
0.039579011499881744,
0.027508387342095375,
-0.02259782887995243,
-0.08499931544065475,
0.040113117545843124,
-0.043667346239089966,
-0.062385376542806625,
0.0015198671026155353,
0.03631027042865753,
-0.04257841035723686,
-0.011507752351462841,
-0.013894498348236084,
-0.0040687317959964275,
0.007369250059127808,
0.04486726224422455,
-0.01355480682104826,
-0.011441711336374283,
-0.0030215694569051266,
0.013337373733520508,
-0.037954434752464294,
0.03508175164461136,
-0.009336242452263832,
-0.028652144595980644,
0.023688605055212975,
0.036266446113586426,
0.0024837441742420197,
-0.00477229431271553,
-0.038989514112472534,
-0.006921329069882631,
-0.012256352230906487,
-0.03688795492053032,
-0.0344044454395771,
0.003942884039133787,
0.007639592979103327,
-0.03509688004851341,
-0.03874741867184639,
0.031141823157668114,
-0.007591817062348127,
-0.03595853969454765,
0.04397697001695633,
-0.02252424880862236,
-0.009064343757927418,
0.00486394390463829,
0.03617865964770317,
-0.015498068183660507,
0.016467556357383728,
0.025685463100671768,
0.0021972181275486946,
0.02281227894127369,
-0.009449642151594162
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Links to the github versions of files In order to ensure that all links work if you read this article much later after it has been written, the links were made to a specific SHA version of the code and not necessarily the latest version. This is so that if files were renamed or removed you will still find the code this article is referring to. If you want to ensure you're looking at the latest version of the code, replace the hash code in the links withmaster`. For example, a link: https://github.com/huggingface/transformers/blob/129fdae04033fe4adfe013b734deaec6ec34ae2e/src/transformers/modeling_fsmt.py becomes: https://github.com/huggingface/transformers/blob/master/src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py Thank you for reading! | [
0.056104280054569244,
0.008185600861907005,
0.031990110874176025,
0.021923158317804337,
0.038289688527584076,
-0.021382106468081474,
-0.025365935638546944,
0.03819078952074051,
-0.0322720967233181,
-0.0386800542473793,
-0.06032419949769974,
0.04042534902691841,
-0.06281166523694992,
0.09180504828691483,
-0.02204839698970318,
-0.01676039583981037,
0.037206798791885376,
-0.01537787914276123,
-0.017367685213685036,
0.0400829054415226,
0.0018352755578234792,
-0.003840393852442503,
-0.0014912511687725782,
-0.06383538246154785,
-0.012900610454380512,
-0.025799209251999855,
0.0018027238547801971,
0.05258966237306595,
-0.07619921863079071,
-0.010990140028297901,
-0.08635710179805756,
-0.017225220799446106,
0.04808427765965462,
-0.036018870770931244,
-0.05665198341012001,
0.021078556776046753,
-0.08892827481031418,
0.0031583805102854967,
0.06832951307296753,
-0.025336187332868576,
-0.014018538407981396,
-0.0073193772695958614,
-0.10107331722974777,
0.006006318610161543,
0.011051788926124573,
0.03704604506492615,
-0.15590068697929382,
0.10133666545152664,
-0.003369227983057499,
0.005253912415355444,
-0.036817993968725204,
-0.010568885132670403,
0.0016117286868393421,
-0.03836395964026451,
-0.04143163189291954,
0.0026823340449482203,
0.005057882517576218,
-0.0166679248213768,
0.039653386920690536,
0.044215671718120575,
0.08530645072460175,
-0.023072540760040283,
-0.018023241311311722,
0.07959252595901489,
0.03855948522686958,
0.008368647657334805,
0.03308148309588432,
0.06682880967855453,
-0.029642337933182716,
0.00045376212801784277,
0.06247637793421745,
0.02774493210017681,
0.00911443680524826,
-0.03950151056051254,
-0.03417547047138214,
-0.022885577753186226,
-0.057618942111730576,
0.08218687027692795,
0.04170095548033714,
0.008270046673715115,
0.0213776845484972,
0.06374672055244446,
-0.005040439311414957,
0.07874151319265366,
0.00023542509006801993,
0.03311387076973915,
0.006764718797057867,
-0.026583317667245865,
-0.05018682777881622,
0.06344995647668839,
0.045233018696308136,
-0.08551789820194244,
-0.023019587621092796,
0.01449107751250267,
0.07932860404253006,
-0.01440610270947218,
-0.030584746971726418,
0.005140241701155901,
0.06769058108329773,
0.004956451710313559,
-0.003656919812783599,
-0.0440516471862793,
-0.00792679563164711,
-0.051044657826423645,
-0.03650739789009094,
0.012973610311746597,
-0.010795600712299347,
-0.03232802450656891,
-0.020332597196102142,
-0.034628137946128845,
-0.031142456457018852,
-0.017417291179299355,
0.041701652109622955,
0.015810994431376457,
0.027653174474835396,
0.05837031826376915,
-0.025821154937148094,
-0.034214287996292114,
0.011295455507934093,
0.03459896892309189,
-0.019722940400242805,
0.11666779220104218,
0.053968027234077454,
0.044224757701158524,
0.11530351638793945,
0.10753145813941956,
-0.03150450438261032,
0.027697117999196053,
-0.05546318739652634,
-0.06963664293289185,
0.03314399719238281,
0.03873767331242561,
0.043499745428562164,
-0.05376525595784187,
0.03753466159105301,
-0.017475441098213196,
-0.038128528743982315,
-0.016752462834119797,
0.006440282333642244,
-0.016394808888435364,
-0.03384939208626747,
0.021574096754193306,
-0.059093303978443146,
0.05495751276612282,
-0.025166211649775505,
0.014402080327272415,
-0.10169342160224915,
0.028460118919610977,
0.022850919514894485,
0.052507299929857254,
0.051370769739151,
0.08791524171829224,
-0.02797817438840866,
-0.05345433950424194,
-0.01622922532260418,
0.104400634765625,
-0.005863432306796312,
0.021870534867048264,
-0.09373385459184647,
-0.025805719196796417,
-0.011212600395083427,
0.02680622972548008,
-0.044777240604162216,
-0.0536850206553936,
0.02408125437796116,
0.0021822110284119844,
-0.019322505220770836,
0.04471339285373688,
0.030043402686715126,
-0.008422133512794971,
0.03455931320786476,
-0.03818705677986145,
0.07672909647226334,
-0.038894835859537125,
0.03406188637018204,
0.043287552893161774,
0.037407469004392624,
0.021949421614408493,
-0.0037129013799130917,
-0.049251407384872437,
-0.029227986931800842,
0.07442743331193924,
-0.013860806822776794,
-0.014975717291235924,
0.015745695680379868,
-0.06358340382575989,
-0.0012507439823821187,
-0.00692309346050024,
0.011222315952181816,
0.06574005633592606,
-0.11913744360208511,
-0.05827007815241814,
0.0471021793782711,
0.03185049071907997,
0.06936007738113403,
0.022855212911963463,
0.019636904820799828,
0.10834135115146637,
0.04838491976261139,
0.03339149430394173,
0.02526184916496277,
-0.07886072993278503,
-0.03803858533501625,
-0.03735175356268883,
-0.007631618529558182,
0.029757020995020866,
0.06135769560933113,
-0.12096734344959259,
0.02822781540453434,
0.018931977450847626,
0.06128011271357536,
-0.014935002662241459,
0.06838971376419067,
-0.04375634714961052,
0.05784537270665169,
-0.04343855381011963,
-0.020691081881523132,
0.017475808039307594,
-0.027913536876440048,
-0.009413131512701511,
0.18462751805782318,
0.010421233251690865,
0.015090497210621834,
0.0008576156105846167,
-0.03165188804268837,
0.0729367658495903,
0.06048239767551422,
0.08244792371988297,
0.026460999622941017,
-0.008473160676658154,
-0.010947611182928085,
-0.09228537231683731,
0.0019362985622137785,
0.06844411045312881,
0.00618456257507205,
-0.05404705926775932,
-0.020671339705586433,
0.006191416177898645,
-0.04690557345747948,
-0.023265812546014786,
0.029795128852128983,
0.024114955216646194,
0.08348812907934189,
0.009639879688620567,
0.010309845209121704,
-0.03800523653626442,
0.04427788406610489,
-0.02465038187801838,
-0.01179126650094986,
-0.007209836505353451,
-0.06952893733978271,
-0.018394896760582924,
-0.009213878773152828,
0.010898049920797348,
0.039899129420518875,
0.021446892991662025,
-0.007867291569709778,
-0.004085029475390911,
-0.001581754069775343,
0.04814211279153824,
-0.004298233427107334,
-0.0045644803903996944,
-0.027844520285725594,
-0.012698790058493614,
-0.03775393217802048,
-0.01576939783990383,
-0.006458699237555265,
0.010221676900982857,
-0.00576817337423563,
-0.015599898062646389,
0.002513265935704112,
-0.00020444599795155227,
-0.00576649559661746,
0.0004191615153104067,
-0.006175945978611708,
-0.004820944741368294,
0.026769913733005524,
-0.012129699811339378,
-0.02969907782971859,
-0.00804684218019247,
-0.012169836089015007,
0.0041955746710300446,
0.03137320280075073,
0.006048098672181368,
0.016932375729084015,
0.017674097791314125,
0.0018298382638022304,
-0.0010434213327243924,
-0.044308848679065704,
0.03781822323799133,
-0.02359449304640293,
0.020512022078037262,
0.0236128568649292,
0.00637329276651144,
0.014112030155956745,
-0.005570034496486187,
-0.0013972952729091048,
0.0025422926992177963,
-0.0053649661131203175,
0.009197909384965897,
-0.015599505044519901,
0.02527715638279915,
0.03265870362520218,
-0.05868292972445488,
-0.03884395211935043,
0.061423420906066895,
0.02649715542793274,
0.002256956184282899,
-0.10714726895093918,
-0.01803913339972496,
0.03175543621182442,
0.0258043110370636,
-0.036818727850914,
-0.0032424950040876865,
0.01968676783144474,
0.010716347023844719,
0.012002406641840935,
-0.011961744166910648,
-0.024329567328095436,
0.012325710617005825,
0.038840264081954956,
0.009504003450274467,
-0.04305689409375191,
-0.03583649545907974,
-0.02647584117949009,
0.025214798748493195,
0.03498007357120514,
-0.013076003640890121,
-0.03902158886194229,
0.009197593666613102,
-0.026620466262102127,
-0.04758165404200554,
-0.051639631390571594,
-0.008835602551698685,
0.04757370799779892,
0.048293158411979675,
-0.0010516551556065679,
-0.07483063638210297,
-0.009272419847548008,
0.005364181008189917,
-0.0004147798754274845,
-0.006795972585678101,
-0.06793703138828278,
0.001208182773552835,
0.005237560719251633,
0.008423993363976479,
-0.015249175950884819,
0.02731308341026306,
0.014243226498365402,
0.000492955616209656,
-0.010803033597767353,
0.0009330532629974186,
0.016889872029423714,
-0.026143809780478477,
-0.01571829989552498,
-0.00014257286966312677,
0.0064892820082604885,
-0.012703988701105118,
-0.008924240246415138,
-0.019728178158402443,
0.021716423332691193,
0.03453991562128067,
0.018770460039377213,
0.0037238255608826876,
-0.004506794270128012,
0.015032509341835976,
0.05656259506940842,
-0.0024641468189656734,
-0.015232084318995476,
0.0020800011698156595,
-0.007137299980968237,
-0.022436898201704025,
-0.0556294210255146,
0.04099632427096367,
-0.026037734001874924,
-0.006689711008220911,
-0.018868401646614075,
0.04572981968522072,
-0.007538714911788702,
0.015602326951920986,
-0.008356820791959763,
0.010494252666831017,
-0.04341965168714523,
-0.013363776728510857,
-0.04507122561335564,
-0.01729302667081356,
0.045011114329099655,
0.033143457025289536,
-0.019011661410331726,
-0.007095328997820616,
-0.026837510988116264,
0.036568060517311096,
-0.00939924642443657,
-0.0008658329024910927,
0.04102732241153717,
-0.009870919398963451,
0.042068175971508026,
-0.0072691068053245544,
-0.003161050146445632,
-0.017407625913619995,
0.018966400995850563,
-0.02651958353817463,
-0.04376843199133873,
-0.0037989590782672167,
0.022613108158111572,
0.029943736270070076,
-0.004968294873833656,
0.024586647748947144,
0.021818773820996284,
0.008168097585439682,
-0.0005845764535479248,
-0.03221941739320755,
-0.010133740492165089,
0.015141652897000313,
-0.013054694049060345,
-0.029403023421764374,
-0.007991809397935867,
-0.010858410969376564,
0.011498572304844856,
-0.05108986422419548,
0.012843669392168522,
0.008928785100579262,
0.017766674980521202,
-0.008893279358744621,
0.024028290063142776,
-0.014199746772646904,
-0.05382140725851059,
0.048536937683820724,
-0.05763247236609459,
0.0367993526160717,
0.019478293135762215,
-0.03103669360280037,
-0.017724253237247467,
0.014653267338871956,
0.02559824474155903,
0.007285005878657103,
-0.010988244786858559,
0.02947237715125084,
-0.034111928194761276,
0.0014225495979189873,
0.006405878812074661,
-0.024236159399151802,
-0.017370931804180145,
0.026894021779298782,
0.007378096226602793,
0.02011238783597946,
-0.03216885030269623,
-0.09306129068136215,
-0.05131486803293228,
0.015367433428764343,
0.04675998166203499,
-0.0414728969335556,
0.022342713549733162,
0.014783626422286034,
-0.01759323664009571,
0.038482509553432465,
-0.03598485887050629,
0.011913744732737541,
0.06691046804189682,
-0.024245820939540863,
0.016032623127102852,
0.043279796838760376,
0.0165263619273901,
-0.0012966232607141137,
-0.01868933066725731,
-0.000018009624909609556,
-0.004355431068688631,
0.07181189954280853,
-0.008080828003585339,
0.0016604955308139324,
-0.02578776143491268,
0.02559746988117695,
-0.004272297490388155,
0.0023026668932288885,
0.04547956958413124,
-0.09169796854257584,
-0.03720826283097267,
-0.014548217877745628,
-0.008141729980707169,
-0.02543497644364834,
-0.012302907183766365,
-0.027551377192139626,
-0.002022849628701806,
-0.011298935860395432,
0.05124685913324356,
0.037557609379291534,
0.014335429295897484,
0.0020383289083838463,
-0.007648299913853407,
0.0059167020954191685,
0.04403354227542877,
-0.0006284051341935992,
0.008265175856649876,
0.024559499695897102,
-0.0018649097764864564,
0.05156278610229492,
-0.0117972856387496,
0.01408741157501936,
-0.011435072869062424,
-0.03501192852854729,
0.025629086419939995,
-0.003218320431187749,
0.030285241082310677,
-0.04587589576840401,
0.04652451351284981,
-0.026752430945634842,
0.010939591564238071,
-0.00835329294204712,
0.03190197795629501,
0.0806523859500885,
-0.04254298284649849,
-0.01708340272307396,
0.004762293770909309,
-0.04821241274476051,
-0.0049076564610004425,
0.005675652530044317,
0.026050712913274765,
-0.00464522372931242,
0.04839133843779564,
-0.03538262099027634,
-0.018405180424451828,
-0.017792129889130592,
-0.0025328011251986027,
-0.03588765114545822,
-0.016177276149392128,
0.0025560189969837666,
-0.036807943135499954,
0.037182316184043884,
-0.01202128455042839,
0.003961698152124882,
-0.0011478608939796686,
0.03366358205676079,
0.02482447400689125,
-0.02688099630177021,
-0.001991098280996084,
0.04442618042230606,
0.011115957982838154,
-0.027187153697013855,
0.04442226141691208,
-0.02406187169253826,
0.0284257959574461,
0.029764952138066292,
0.0018830022308975458,
0.010832021944224834,
-0.0005702433991245925,
0.007810528855770826,
0.013973712921142578,
-0.0432911291718483,
-0.01409944985061884,
-0.028809232637286186,
-0.06340306997299194,
0.009672456420958042,
-0.04712561145424843,
0.00925726629793644,
0.08493836969137192,
0.012856920249760151,
0.07386878877878189,
-0.0024221197236329317,
0.06290999054908752,
0.003427838208153844,
-0.0381905697286129,
0.03505722060799599,
-0.012581001967191696,
0.046689655631780624,
-0.00264643388800323,
0.030823076143860817,
-0.01279523316770792,
-0.045042507350444794,
0.028820447623729706,
-0.06918642669916153,
-0.03931078687310219,
0.009843125008046627,
0.016141343861818314,
-0.001043315976858139,
-0.0010293694213032722,
-0.06575169414281845,
-0.028430527076125145,
-0.0006167421233840287,
0.02969730831682682,
0.02864905819296837,
0.011255699209868908,
-0.001972267171368003,
-0.03666044399142265,
-0.02317476086318493,
0.006970045156776905,
0.025579599663615227,
-0.011427260003983974,
0.04563920199871063,
0.033135347068309784,
0.0023188027553260326,
0.04190179705619812,
-0.007133199833333492,
0.016610663384199142,
0.01281184982508421,
0.06010705605149269,
0.03011298179626465,
0.05116404592990875,
0.01491870079189539,
-0.04967401549220085,
-0.021386705338954926,
-0.034979138523340225,
-0.01650298945605755,
-0.04491817206144333,
-0.0021887768525630236,
-0.019032718613743782,
-0.002511637983843684,
0.019949594512581825,
-0.012932932004332542,
0.05141348019242287,
0.01273089274764061,
0.04241868853569031,
0.002355643780902028,
0.0037760541308671236,
0.008224531076848507,
-0.0002985919709317386,
0.017488986253738403,
0.06583493202924728,
0.030754026025533676,
0.006730710156261921,
0.04367874935269356,
-0.006818566471338272,
0.008353588171303272,
0.018873702734708786,
0.012326229363679886,
-0.0013998018112033606,
-0.04219440370798111,
-0.009280580095946789,
0.00838087685406208,
-0.03839157894253731,
0.002046983689069748,
-0.03270117938518524,
-0.0015179506735876203,
-0.008076004683971405,
-0.015297232195734978,
0.001039080903865397,
0.026325874030590057,
-0.018340449780225754,
-0.00978048238903284,
-0.008505923673510551,
0.010811274871230125,
0.018522590398788452,
-0.016103431582450867,
0.0005111014470458031,
-0.004444778896868229,
0.028880272060632706,
-0.010901414789259434,
-0.022322358563542366,
-0.01744845323264599,
-0.037650641053915024,
0.011431220918893814,
-0.015823155641555786,
0.0010643097339197993,
-0.02553352154791355,
0.003744889050722122,
-0.014217895455658436,
0.0010212811175733805,
-0.055264685302972794,
0.01895751990377903,
0.03816721588373184,
0.04189983382821083,
-0.03079349361360073,
0.01994423195719719,
-0.016140194609761238,
-0.0301943551748991,
0.006407103035598993,
0.007063453085720539,
0.014196071773767471,
-0.0356186106801033,
0.05623982846736908,
-0.00010087530972668901,
-0.02103540673851967,
-0.020705264061689377,
-0.03413057699799538,
0.010751388967037201,
-0.06156202405691147,
-0.03382014483213425,
0.007884807884693146,
0.02121860347688198,
0.020631063729524612,
0.043991606682538986,
-0.002213836880400777,
0.03160066157579422,
-0.018033262342214584,
-0.006478415802121162,
0.022869843989610672,
0.001200346159748733,
0.005362468305975199,
0.010174165479838848,
0.06312370300292969,
0.030195089057087898,
0.0629018098115921,
0.011599579825997353,
0.008453375659883022,
0.012319906614720821,
-0.036121152341365814,
0.045714836567640305,
-0.04067838937044144,
-0.008652490563690662,
0.016203878447413445,
-0.0324014313519001,
-0.02083197422325611,
0.0029087793081998825,
-0.02068505994975567,
0.0006633271113969386,
-0.05923759937286377,
0.006088781636208296,
-0.013370361179113388,
-0.02411537431180477,
-0.04968224838376045,
0.005454121623188257,
0.01761890947818756,
0.06022244691848755,
-0.014741841703653336,
-0.01208944246172905,
-0.018990011885762215,
0.01240044366568327,
-0.02502157725393772,
0.0374058336019516,
0.005973087623715401,
0.008306089788675308,
-0.01713828556239605,
0.03267911449074745,
0.036905765533447266,
-0.043366074562072754,
0.0011508965399116278,
-0.0004620383260771632,
-0.0035133473575115204,
0.0064928848296403885,
-0.029705215245485306,
-0.008221247233450413,
-0.015437544323503971,
0.004770574625581503,
-0.013349169865250587,
0.0011168880155310035,
-0.013846308924257755,
0.046428438276052475,
-0.007103689014911652,
-0.023169685155153275,
-0.02642534114420414,
-0.009561331011354923,
0.04094948247075081,
-0.009985672309994698,
0.004632006864994764,
-0.0011077674571424723,
-0.009804779663681984,
-0.002974197268486023,
0.0436982735991478,
-0.014943060465157032,
-0.05316769331693649,
-0.06405579298734665,
-0.03504348546266556,
0.011780336499214172,
-0.057150304317474365,
-0.05162622407078743,
0.037216443568468094,
-0.0002483219432178885,
-0.05445818975567818,
0.02524038776755333,
0.028068751096725464,
0.006151246372610331,
-0.010958799161016941,
0.0165233351290226,
0.01732039265334606,
0.027778200805187225,
-0.03602316230535507,
-0.006689881440252066,
-0.007086910307407379,
-0.010471689514815807
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | fairseq model and its support files Let's first look at what data we get with the fairseq pre-trained model. We are going to use the convenient torch.hub API, which makes it very easy to deploy models submitted to that hub: import torch torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-ru', checkpoint_file='model4.pt', tokenizer='moses', bpe='fastbpe') This code downloads the pre-trained model and its support files. I found this information at the page corresponding to fairseq on the pytorch hub. To see what's inside the downloaded files, we have to first hunt down the right folder under ~/.cache. ls -1 ~/.cache/torch/hub/pytorch_fairseq/ shows: 15bca559d0277eb5c17149cc7e808459c6e307e5dfbb296d0cf1cfe89bb665d7.ded47c1b3054e7b2d78c0b86297f36a170b7d2e7980d8c29003634eb58d973d9 15bca559d0277eb5c17149cc7e808459c6e307e5dfbb296d0cf1cfe89bb665d7.ded47c1b3054e7b2d78c0b86297f36a170b7d2e7980d8c29003634eb58d973d9.json You may have more than one entry there if you have been using the hub for other models. Let's make a symlink so that we can easily refer to that obscure cache folder name down the road: ln -s /code/data/cache/torch/hub/pytorch_fairseq/15bca559d0277eb5c17149cc7e808459c6e307e5dfbb296d0cf1cfe89bb665d7.ded47c1b3054e7b2d78c0b86297f36a170b7d2e7980d8c29003634eb58d973d9 \ ~/porting/pytorch_fairseq_model Note: the path could be different when you try it yourself, since the hash value of the model could change. You will find the right one in ~/.cache/torch/hub/pytorch_fairseq/ If we look inside that folder: ls -l ~/porting/pytorch_fairseq_model/ total 13646584 -rw-rw-r-- 1 stas stas 532048 Sep 8 21:29 bpecodes -rw-rw-r-- 1 stas stas 351706 Sep 8 21:29 dict.en.txt -rw-rw-r-- 1 stas stas 515506 Sep 8 21:29 dict.ru.txt -rw-rw-r-- 1 stas stas 3493170533 Sep 8 21:28 model1.pt -rw-rw-r-- 1 stas stas 3493170532 Sep 8 21:28 model2.pt -rw-rw-r-- 1 stas stas 3493170374 Sep 8 21:28 model3.pt -rw-rw-r-- 1 stas stas 3493170386 Sep 8 21:29 model4.pt we have: 1. model*.pt - 4 checkpoints (pytorch state_dict with all the pre-trained weights, and various other things) 2. dict.*.txt - source and target dictionaries 3. bpecodes - special map file used by the tokenizer We are going to investigate each of these files in the following sections. | [
0.03636036068201065,
-0.013846618123352528,
0.06070105358958244,
-0.0024959740694612265,
0.09938976913690567,
0.06285207718610764,
0.011841078288853168,
0.07736674696207047,
0.004833099897950888,
-0.0038075963966548443,
-0.07621679455041885,
0.038339726626873016,
0.01457628607749939,
0.025622650980949402,
-0.007507422473281622,
-0.022363005205988884,
0.012295408174395561,
-0.006533595267683268,
-0.060879528522491455,
0.05802194029092789,
0.00864799227565527,
-0.042802538722753525,
0.053724780678749084,
0.00914763007313013,
-0.011160295456647873,
-0.08064820617437363,
-0.01264248974621296,
0.05585096776485443,
-0.01559360884130001,
0.008330971002578735,
-0.11208150535821915,
-0.035904768854379654,
0.02349386177957058,
-0.08299987763166428,
-0.02088947780430317,
0.05927607789635658,
-0.05974061042070389,
0.03807957470417023,
0.051798924803733826,
-0.04083864763379097,
-0.01818937435746193,
-0.009058402851223946,
-0.03809664398431778,
0.1225888580083847,
0.017229588702321053,
0.0017553623765707016,
-0.0681048259139061,
0.037451401352882385,
-0.010098665952682495,
0.00501872505992651,
-0.08134391158819199,
0.015190341509878635,
-0.06211728975176811,
0.044425442814826965,
0.030956093221902847,
0.045727599412202835,
-0.05766015127301216,
0.021160518750548363,
0.06505890935659409,
0.019870087504386902,
0.03171925246715546,
0.04430398717522621,
-0.005209809634834528,
0.020882979035377502,
0.013399706222116947,
-0.05440027639269829,
-0.003577593481168151,
0.010035851038992405,
0.006498644128441811,
-0.04227997735142708,
0.04020464047789574,
0.014635936357080936,
-0.01545822061598301,
-0.06704355031251907,
-0.0455334298312664,
-0.053364306688308716,
-0.04398493468761444,
0.007019141223281622,
0.028363943099975586,
0.04575759917497635,
-0.004239222034811974,
0.0423833429813385,
0.004897711332887411,
0.0009051247034221888,
0.01943536289036274,
-0.013257764279842377,
-0.02087506465613842,
-0.04187588021159172,
-0.036719173192977905,
0.013460375368595123,
-0.009311078116297722,
-0.11939956247806549,
-0.05098413676023483,
0.007838591001927853,
-0.005481166299432516,
0.01616947539150715,
0.03987295180559158,
0.032552916556596756,
0.005792940501123667,
-0.008351589553058147,
-0.05692422389984131,
-0.09383264183998108,
0.03985576331615448,
-0.0694010928273201,
-0.009048517793416977,
0.043691735714673996,
-0.007591618690639734,
-0.09004126489162445,
-0.03697793185710907,
0.004374607466161251,
0.020366981625556946,
-0.04610166698694229,
-0.09192217886447906,
0.038813523948192596,
-0.04052656888961792,
0.026302125304937363,
0.004842751193791628,
-0.031103426590561867,
0.03599568456411362,
0.02590957097709179,
-0.08756585419178009,
0.10356612503528595,
0.03946675732731819,
0.01619051583111286,
0.06841892749071121,
0.13590700924396515,
0.024058762937784195,
0.0009962213225662708,
-0.0633450448513031,
-0.03508954495191574,
0.045911066234111786,
-0.030250538140535355,
0.05117034912109375,
-0.04196181520819664,
0.044383853673934937,
-0.04103298485279083,
-0.03073367103934288,
-0.007267963606864214,
0.01746968738734722,
0.022526662796735764,
-0.08249062299728394,
0.06036684289574623,
0.021570121869444847,
0.05976919084787369,
0.050205111503601074,
-0.038167063146829605,
-0.029759181663393974,
0.10803976655006409,
-0.008701398968696594,
0.024777915328741074,
-0.03820740804076195,
0.03792136162519455,
0.03533660247921944,
-0.09694241732358932,
-0.012696088291704655,
0.01673399657011032,
-0.01689058169722557,
-0.029038798063993454,
-0.05381191894412041,
-0.06036938354372978,
-0.06354478001594543,
-0.003380772890523076,
-0.049031928181648254,
-0.02963055483996868,
-0.03628133237361908,
-0.00919847097247839,
-0.02075183391571045,
-0.050596803426742554,
0.07473374903202057,
0.021828720346093178,
0.015507332980632782,
-0.0764060840010643,
0.10119803994894028,
-0.012216057628393173,
-0.013997356407344341,
0.07194095104932785,
0.03734784573316574,
0.0511256642639637,
0.03926714509725571,
-0.009444273076951504,
-0.06327373534440994,
0.036668386310338974,
-0.057639021426439285,
0.014186752960085869,
0.04177672043442726,
-0.07871346175670624,
0.00020082580158486962,
-0.024458223953843117,
-0.008167052641510963,
0.0782804936170578,
-0.05593874678015709,
0.016285303980112076,
0.0960402563214302,
-0.04924369603395462,
0.028328565880656242,
0.0021333834156394005,
0.0037136070895940065,
0.06858181208372116,
0.02208610251545906,
0.013132545165717602,
0.040959302335977554,
-0.014343668706715107,
-0.014050270430743694,
-0.028360433876514435,
-0.017755690962076187,
0.04877952113747597,
-0.012904472649097443,
-0.05208189785480499,
0.043228235095739365,
0.0058670323342084885,
0.04197174683213234,
-0.08540748804807663,
0.03390762582421303,
-0.07793724536895752,
0.029068181291222572,
-0.034077391028404236,
-0.031928956508636475,
0.014251384884119034,
0.02492419071495533,
-0.007003049366176128,
0.17796365916728973,
0.031615205109119415,
-0.005486480426043272,
-0.00914459303021431,
-0.00294036534614861,
0.0679314136505127,
0.05734807625412941,
0.02298630401492119,
0.0441930927336216,
-0.0686776265501976,
0.019959235563874245,
-0.05354743078351021,
-0.05679430067539215,
0.10322340577840805,
-0.005532319191843271,
-0.03768119215965271,
0.004214423708617687,
-0.009863360784947872,
0.00613925326615572,
-0.011678594164550304,
0.06024318188428879,
0.0437203086912632,
-0.008366030640900135,
0.018538955599069595,
0.027582766488194466,
-0.004377216566354036,
0.011489027179777622,
0.012349508702754974,
-0.03942436724901199,
-0.013752499595284462,
-0.020553285256028175,
0.0485413558781147,
-0.00553411478176713,
-0.060619812458753586,
0.04551442712545395,
0.05086703971028328,
0.028746074065566063,
-0.03402267396450043,
0.014172288589179516,
0.051560692489147186,
0.018564123660326004,
-0.012968388386070728,
-0.047641102224588394,
-0.027754565700888634,
-0.0013800219167023897,
-0.052087150514125824,
-0.018863342702388763,
-0.02193239890038967,
0.019025739282369614,
-0.0217741671949625,
0.02623790130019188,
-0.015756573528051376,
-0.0038270442746579647,
0.006609224248677492,
0.024244919419288635,
0.06512352079153061,
0.003972476348280907,
-0.04249617084860802,
-0.026993095874786377,
-0.020936738699674606,
0.00452709523960948,
-0.008651374839246273,
0.0009694932959973812,
0.03047907166182995,
-0.001110323704779148,
0.031586382538080215,
0.00890098325908184,
-0.051559243351221085,
-0.03266351670026779,
-0.002142316661775112,
-0.019047915935516357,
0.017932632938027382,
0.036297302693128586,
-0.01213859859853983,
-0.036011431366205215,
-0.019104138016700745,
-0.0023070902097970247,
-0.0037315187510102987,
0.012678750790655613,
0.00789455883204937,
-0.009226531721651554,
-0.016400286927819252,
-0.014302649535238743,
-0.01194043643772602,
-0.015087895095348358,
0.03280999884009361,
0.004113439936190844,
0.02083425596356392,
-0.0968114361166954,
0.00974959135055542,
-0.013217166997492313,
0.024177590385079384,
-0.01424984261393547,
-0.03375693038105965,
0.00270692165941,
0.030667880550026894,
0.012123201042413712,
0.029932599514722824,
0.043707285076379776,
-0.021636683493852615,
0.026138605549931526,
0.03385614603757858,
-0.04200492054224014,
0.036746736615896225,
-0.018199650570750237,
0.056396156549453735,
0.03078974410891533,
-0.01741345226764679,
-0.04542165249586105,
0.013724831864237785,
-0.02752622216939926,
-0.01837114803493023,
-0.030139213427901268,
0.028169535100460052,
0.05100591480731964,
0.02755775861442089,
-0.01212193351238966,
-0.056598056107759476,
-0.018731392920017242,
-0.00983258057385683,
0.013565312139689922,
0.00377989886328578,
-0.024486543610692024,
-0.05046495422720909,
-0.009936880320310593,
-0.0040900190360844135,
-0.018865004181861877,
0.013965507969260216,
-0.0399971529841423,
0.019604215398430824,
0.023462744429707527,
-0.0034446227364242077,
0.009146906435489655,
0.013435671105980873,
-0.027131499722599983,
0.0014021791284903884,
0.017266269773244858,
-0.043044563382864,
-0.030704621225595474,
-0.02850579097867012,
-0.02872215211391449,
0.06441254913806915,
0.01567196659743786,
-0.02632361464202404,
0.0063853878527879715,
0.03270656615495682,
0.06263631582260132,
0.009049356915056705,
-0.07900078594684601,
0.014868777245283127,
-0.04025765508413315,
-0.054642919450998306,
-0.0447658896446228,
0.047513507306575775,
0.04366264119744301,
-0.058320075273513794,
-0.0414898619055748,
-0.03705059364438057,
-0.06762643903493881,
0.05458671972155571,
-0.007245188113301992,
0.012647080235183239,
-0.02768009714782238,
0.02077874355018139,
-0.025541001930832863,
-0.03776872903108597,
0.04487339034676552,
0.028213944286108017,
-0.014254827983677387,
-0.0207911916077137,
-0.029983529821038246,
-0.049375906586647034,
-0.011714705266058445,
-0.03138553351163864,
0.012011688202619553,
-0.038761530071496964,
0.027651773765683174,
0.014310389757156372,
-0.006971766706556082,
-0.009127034805715084,
0.021389484405517578,
0.0038084571715444326,
-0.014979255385696888,
-0.03634795546531677,
-0.012915482744574547,
0.03366465121507645,
-0.015517587773501873,
0.008982721716165543,
0.011914452537894249,
-0.02493278868496418,
-0.04271779954433441,
0.0008040122338570654,
-0.021027760580182076,
0.0020029577426612377,
-0.03031671792268753,
0.0002631795941852033,
-0.03192560747265816,
0.0002610528899822384,
0.008761278353631496,
-0.005744018591940403,
-0.001167986891232431,
0.007027362938970327,
0.03380700200796127,
0.016352016478776932,
-0.0009474853286519647,
-0.00592766935005784,
0.0031678685918450356,
0.01588349975645542,
-0.03738108277320862,
0.013101625256240368,
0.013261335901916027,
-0.049456387758255005,
-0.01549559086561203,
-0.008572472259402275,
0.04599311947822571,
0.007339085452258587,
0.023756198585033417,
0.0021667799446731806,
-0.053959231823682785,
-0.003386701224371791,
0.04889632761478424,
0.028364090248942375,
-0.005419216118752956,
0.03736299276351929,
-0.03093957155942917,
0.022902656346559525,
0.010191087611019611,
-0.03253274783492088,
-0.028950653970241547,
0.009157364256680012,
0.018514756113290787,
-0.005867600440979004,
0.029402952641248703,
0.01450373511761427,
-0.014671224169433117,
-0.00562068959698081,
-0.05853603780269623,
-0.004759079311043024,
0.07247083634138107,
-0.010402483865618706,
-0.010813198983669281,
0.004392887465655804,
0.021680282428860664,
-0.0069286818616092205,
0.005349148530513048,
0.023624340072274208,
0.0388912633061409,
0.028599292039871216,
-0.0025493630673736334,
-0.02655329927802086,
-0.02158229611814022,
0.03753230720758438,
0.008811896666884422,
-0.011670439504086971,
0.007921497337520123,
-0.09797819703817368,
-0.03194395452737808,
0.00988745130598545,
-0.037746213376522064,
-0.007803183048963547,
0.006598150823265314,
-0.040139090269804,
0.028001178056001663,
0.045318059623241425,
0.03552486002445221,
0.02117713913321495,
0.025170134380459785,
-0.027580490335822105,
-0.0055508739314973354,
0.021453572437167168,
0.05530691519379616,
0.0018768252339214087,
-0.020604966208338737,
0.010892296209931374,
0.0199586134403944,
0.032860200852155685,
0.006706782151013613,
-0.008912540040910244,
0.01418662816286087,
-0.009269802831113338,
0.007436780259013176,
-0.0031815709080547094,
-0.03518245741724968,
-0.011549616232514381,
-0.015909675508737564,
0.0027447978500276804,
0.013433640822768211,
-0.015327542088925838,
0.02636285126209259,
0.056242626160383224,
-0.024001063778996468,
0.003946468699723482,
0.023039313033223152,
-0.023904548957943916,
-0.013861175626516342,
-0.027409739792346954,
0.03024805150926113,
-0.029115820303559303,
0.00897841714322567,
0.02988291159272194,
0.010579025372862816,
-0.0036470124032348394,
-0.03257675841450691,
-0.014500292018055916,
-0.017349017783999443,
0.0615977868437767,
0.026034479960799217,
0.048282161355018616,
-0.003290051594376564,
-0.03849344700574875,
0.009155893698334694,
0.03390178456902504,
-0.008301563560962677,
-0.03925589844584465,
-0.009459542110562325,
-0.010551786050200462,
-0.007570710498839617,
0.030266208574175835,
0.03490535914897919,
0.011786222457885742,
0.03468966484069824,
0.001436864142306149,
-0.0010508244158700109,
0.007084180135279894,
-0.006481362972408533,
0.030780356377363205,
0.02872493304312229,
0.004460742697119713,
0.0005422739777714014,
-0.04765140637755394,
-0.028674397617578506,
0.005933240056037903,
-0.03125216066837311,
0.04791273549199104,
0.06399243324995041,
-0.014904431998729706,
0.04752787575125694,
0.011395563371479511,
0.014210952445864677,
-0.0014369046548381448,
0.011644100770354271,
0.0097822155803442,
0.002668380970135331,
0.03776570037007332,
0.04476172477006912,
0.002446657046675682,
0.0050511714071035385,
0.017111944034695625,
0.04832952842116356,
-0.041701145470142365,
-0.00041924495599232614,
0.00030428136233240366,
-0.009616601280868053,
0.034680962562561035,
-0.030286036431789398,
-0.029262078925967216,
0.015198895707726479,
-0.01817019283771515,
0.02969585917890072,
0.011391396634280682,
0.020316921174526215,
0.010260241106152534,
-0.04307490587234497,
0.005819607991725206,
0.06018833816051483,
0.05355057865381241,
-0.036808013916015625,
0.039209917187690735,
-0.010789618827402592,
0.016388921067118645,
-0.006839808076620102,
0.0036591612733900547,
0.006117907352745533,
0.02125007100403309,
0.08469553291797638,
0.03309500217437744,
0.03583303466439247,
0.03586442768573761,
0.029727831482887268,
-0.02816004492342472,
-0.053842440247535706,
-0.03802599757909775,
-0.009478887543082237,
0.036131951957941055,
0.031140880659222603,
0.001222532824613154,
0.03505329415202141,
-0.030076852068305016,
0.04120207950472832,
0.03905976191163063,
0.041897326707839966,
0.005307577084749937,
0.0801999419927597,
0.00456160819157958,
0.007907443679869175,
0.03398430347442627,
-0.011736590415239334,
0.002475406276062131,
0.00924273394048214,
0.030857855454087257,
0.03955298662185669,
-0.009175778366625309,
-0.0028821940068155527,
-0.01978873647749424,
0.0012197749456390738,
-0.01486608199775219,
-0.031674470752477646,
0.012773629277944565,
0.047710057348012924,
-0.0440569743514061,
-0.032230477780103683,
0.06916191428899765,
-0.0025138703640550375,
0.0111905662342906,
-0.021993132308125496,
-0.006782428827136755,
-0.024674370884895325,
-0.0044349320232868195,
-0.02700066566467285,
0.023535212501883507,
0.005885234102606773,
-0.005898586940020323,
-0.032404735684394836,
0.04858560860157013,
0.012053019367158413,
0.03946816548705101,
0.016764432191848755,
-0.018191689625382423,
-0.012090403586626053,
0.000007698845365666784,
0.005769788287580013,
0.005826212931424379,
0.002683478407561779,
0.028709804639220238,
0.01071291696280241,
0.013465414755046368,
0.01897392049431801,
0.011451363563537598,
0.008604749105870724,
0.01903732679784298,
0.005168844945728779,
0.01857876405119896,
-0.028140753507614136,
-0.038064248859882355,
0.03749234974384308,
-0.015496168285608292,
-0.0020793762523680925,
-0.019278256222605705,
0.0006621006759814918,
0.0639423057436943,
0.0410095676779747,
-0.021665485575795174,
-0.08743413537740707,
-0.0074986801482737064,
-0.04617338255047798,
-0.02985180728137493,
0.01406730804592371,
0.012369424104690552,
0.0384233221411705,
0.02505696564912796,
0.0072690341621637344,
-0.0013065189123153687,
-0.017409661784768105,
-0.02500339038670063,
0.024448171257972717,
0.02439061738550663,
0.028012102469801903,
-0.009696018882095814,
0.08525944501161575,
0.01730506122112274,
0.018523933365941048,
0.04949966445565224,
0.03230297565460205,
-0.00244367984123528,
-0.010191347450017929,
-0.002622051630169153,
-0.029655924066901207,
0.004878026898950338,
-0.0208743866533041,
-0.0444091334939003,
-0.008570011705160141,
-0.004707531537860632,
-0.03955161198973656,
0.022267665714025497,
-0.01289240550249815,
-0.010287320241332054,
-0.030383937060832977,
-0.03984113782644272,
-0.007834263145923615,
0.010231479071080685,
0.08278276771306992,
0.030083905905485153,
-0.021612301468849182,
-0.0035871462896466255,
-0.041687462478876114,
0.007892693392932415,
-0.007422591559588909,
0.01793745905160904,
0.04954387992620468,
0.008410888724029064,
0.01375237014144659,
-0.0017926462460309267,
0.0055794441141188145,
-0.017282811924815178,
-0.03595925495028496,
-0.015053754672408104,
-0.01036845799535513,
0.037424538284540176,
-0.07626500725746155,
0.029770761728286743,
0.022420162335038185,
-0.02847215160727501,
0.0313437320291996,
-0.030731892213225365,
0.02243778109550476,
-0.009577852673828602,
-0.004537925124168396,
-0.06685233116149902,
0.010042852722108364,
-0.049663957208395004,
-0.03664587810635567,
0.014057802967727184,
-0.01715898886322975,
0.0007314344402402639,
0.01177830807864666,
-0.024795809760689735,
-0.019880525767803192,
0.0030618796590715647,
-0.003658725181594491,
-0.0525285080075264,
-0.029080504551529884,
0.021673861891031265,
-0.03873314708471298,
-0.0445711612701416,
0.017434747889637947,
-0.012498987838625908,
-0.036511726677417755,
0.005938922520726919,
0.01349233090877533,
0.027556193992495537,
0.0012866585748270154,
0.025213871151208878,
0.026364516466856003,
0.051333002746105194,
0.0010516601614654064,
-0.02791595086455345,
-0.04108680039644241,
0.0012198779731988907
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Tokenizer decoder porting Once I had the portedgeneratefunction produce pretty similar results tofairseq'sgenerateI next needed to complete the last stage of decoding the outputs into the human readable text. This allowed me to use my eyes for a quick comparison and the quality of translation - something I couldn't do with output ids. Similar to the encoding process, this one was done in reverse. The steps were: 1. convert output ids into text strings 2. remove BPE encodings 3. detokenize - handle escaped characters, etc. After doing some more debugging here, I had to change the way BPE was dealt with from the original approach intokenization_xlm.pyand also run the outputs through themosesdetokenizer. ``` def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. """ - out_string = "".join(tokens).replace("</w>", " ").strip() - return out_string + # remove BPE + tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens] + tokens = "".join(tokens).split() + # detokenize + text = self.moses_detokenize(tokens, self.tgt_lang) + return text ``` And all was good. | [
0.04244346171617508,
0.057779163122177124,
0.005030727945268154,
-0.005198913160711527,
0.031753841787576675,
0.058806877583265305,
0.01299053244292736,
-0.009831245057284832,
-0.050436832010746,
-0.006279271095991135,
-0.029764702543616295,
-0.007595923263579607,
0.01657458022236824,
0.05304476246237755,
0.007254694122821093,
0.05067427083849907,
0.013484696857631207,
-0.038609109818935394,
0.033909525722265244,
-0.09660396724939346,
0.022091493010520935,
0.01666291616857052,
0.035347796976566315,
0.040586646646261215,
-0.022405708208680153,
-0.01701921410858631,
-0.020266709849238396,
-0.012931759469211102,
-0.06473449617624283,
-0.0069542862474918365,
-0.045847337692976,
0.022529171779751778,
-0.01679334230720997,
-0.06700564920902252,
-0.036678481847047806,
0.021742740646004677,
-0.12452666461467743,
-0.013641498982906342,
0.0023750823456794024,
0.03171798959374428,
-0.04041003808379173,
-0.02667180821299553,
0.0374327152967453,
0.09916122257709503,
0.02954251877963543,
0.031061656773090363,
-0.1687692403793335,
0.05655309185385704,
-0.0006342438282445073,
-0.03412851318717003,
-0.041881874203681946,
-0.011061756871640682,
-0.032782506197690964,
-0.007551148999482393,
0.004601790104061365,
0.0164310522377491,
-0.04691771790385246,
-0.040298543870449066,
0.03638726472854614,
0.01419012900441885,
0.002745614154264331,
0.007024560123682022,
0.036118004471063614,
0.05643373355269432,
0.027584942057728767,
0.02599465474486351,
-0.03659161552786827,
0.052369698882102966,
0.026525937020778656,
-0.04172110930085182,
-0.06717442721128464,
-0.02267003245651722,
-0.04230049252510071,
-0.03057279624044895,
0.04338200390338898,
-0.06756626069545746,
0.008982532657682896,
0.027588333934545517,
0.036678001284599304,
0.02628471702337265,
-0.00008959160186350346,
0.03831201791763306,
0.08015590906143188,
-0.01497875340282917,
0.07886428385972977,
0.0005517749232240021,
0.03230837360024452,
-0.01884406991302967,
-0.0017985423328354955,
-0.006216070614755154,
-0.025440890341997147,
-0.14450180530548096,
-0.048432607203722,
0.044874630868434906,
0.013760430738329887,
0.04929962754249573,
0.012165636755526066,
0.09011867642402649,
-0.0021349117159843445,
0.02966274693608284,
0.001569467131048441,
-0.10858514904975891,
-0.012956355698406696,
-0.04879314452409744,
-0.00372587563470006,
0.018898138776421547,
-0.011105927638709545,
-0.07185762375593185,
0.011894828639924526,
-0.018748551607131958,
0.03621874377131462,
-0.01834094151854515,
-0.02095794305205345,
0.043569162487983704,
-0.00570704834535718,
0.038643937557935715,
-0.027051234617829323,
0.0365055575966835,
-0.025349605828523636,
0.018345540389418602,
0.015492905862629414,
0.07241606712341309,
0.02607877366244793,
-0.10483524203300476,
-0.009891914203763008,
0.023681920021772385,
0.03761153295636177,
0.07849227637052536,
0.016902050003409386,
-0.016171565279364586,
-0.049978479743003845,
0.07659986615180969,
0.06392938643693924,
0.019861476495862007,
-0.029470976442098618,
-0.0661301389336586,
-0.008884516544640064,
-0.03646315261721611,
-0.04349751025438309,
-0.058197926729917526,
-0.0519072599709034,
0.030920490622520447,
-0.03352808579802513,
0.04228837043046951,
-0.042942192405462265,
0.07733424752950668,
-0.06707945466041565,
0.0877363458275795,
0.013451864011585712,
-0.03432508185505867,
-0.053055912256240845,
-0.07673025876283646,
0.0064549874514341354,
-0.008328721858561039,
0.015292574651539326,
0.05414170026779175,
-0.019443288445472717,
-0.024028223007917404,
-0.09613999724388123,
0.009712861850857735,
-0.010886600241065025,
0.0346311554312706,
-0.02979234792292118,
-0.01988452672958374,
0.02497626654803753,
0.010545163415372372,
-0.0003390668425709009,
0.043505750596523285,
0.037583161145448685,
-0.010545735247433186,
0.09380724281072617,
-0.013760670088231564,
0.046022679656744,
0.015901226550340652,
0.017450248822569847,
-0.02399870753288269,
0.0628664568066597,
0.03408104553818703,
-0.021794172003865242,
-0.03236392140388489,
-0.012093551456928253,
0.03207635506987572,
-0.04589490592479706,
0.02836056984961033,
0.0021858145482838154,
-0.03040807507932186,
-0.005272083915770054,
-0.09499261528253555,
0.02900778315961361,
0.04424475505948067,
-0.1085556223988533,
-0.0681484192609787,
0.06064020097255707,
-0.01969478279352188,
0.013662747107446194,
-0.019487589597702026,
-0.0007604890852235258,
0.058310750871896744,
-0.024003056809306145,
0.047433771193027496,
0.054248206317424774,
0.007161911576986313,
-0.01823415234684944,
-0.06727707386016846,
-0.036886800080537796,
0.008204308338463306,
0.02831847034394741,
-0.06752441078424454,
0.038982074707746506,
0.017299463972449303,
0.03302909433841705,
-0.06630115956068039,
-0.013180413283407688,
-0.1221807524561882,
0.0018416548846289515,
0.02863028086721897,
-0.053605906665325165,
0.026554498821496964,
0.0236941147595644,
-0.064520463347435,
0.12067131698131561,
-0.11476953327655792,
0.07425200939178467,
-0.0236598439514637,
0.01441460195928812,
0.044770821928977966,
0.07930441945791245,
0.026269569993019104,
0.07783999294042587,
-0.06268855929374695,
-0.058268480002880096,
-0.03300169110298157,
0.015644188970327377,
-0.05337940901517868,
-0.07713281363248825,
-0.026539089158177376,
0.029665514826774597,
0.02169976755976677,
0.012450803071260452,
-0.026855027303099632,
0.026107586920261383,
0.04561566561460495,
-0.07572956383228302,
-0.07146399468183517,
-0.02420223504304886,
0.06620725244283676,
0.08554321527481079,
-0.08070294559001923,
-0.008417253382503986,
0.0006242053932510316,
0.016619868576526642,
0.08448062092065811,
-0.0328819714486599,
-0.061457324773073196,
0.07233923673629761,
0.03505377098917961,
0.010852944105863571,
-0.029644550755620003,
0.027628673240542412,
0.025931624695658684,
-0.027586152777075768,
-0.0277387835085392,
-0.010183675214648247,
-0.06034107133746147,
0.024010298773646355,
-0.017193373292684555,
0.0031774076633155346,
0.027038689702749252,
-0.03134063258767128,
0.01960652880370617,
-0.014989483170211315,
-0.004925877321511507,
0.0046471585519611835,
-0.006636809557676315,
0.03609384596347809,
0.02079424262046814,
-0.0012463401071727276,
-0.046594493091106415,
-0.02524750307202339,
0.017662113532423973,
0.044633250683546066,
-0.0373598113656044,
0.01763848029077053,
0.03277940675616264,
-0.0069900876842439175,
0.03004308231174946,
-0.011551599949598312,
0.007233037613332272,
-0.03460845351219177,
0.028923822566866875,
0.031293511390686035,
0.0009277442586608231,
0.021581990644335747,
0.020037047564983368,
0.01462570670992136,
0.0015098099829629064,
-0.018526986241340637,
0.008606553077697754,
0.001916382578201592,
0.028227511793375015,
-0.04636251926422119,
0.021411094814538956,
-0.022521456703543663,
-0.004589788615703583,
-0.06947753578424454,
0.028108684346079826,
0.007574872113764286,
-0.023265371099114418,
-0.08667906373739243,
0.03494057431817055,
0.013834387995302677,
0.02574976719915867,
-0.01135195605456829,
-0.01629684865474701,
0.050948068499565125,
-0.014694818295538425,
0.010319785214960575,
0.002113873604685068,
0.035468026995658875,
0.01884211227297783,
-0.0006546346703544259,
-0.024685515090823174,
-0.021745992824435234,
0.0049944426864385605,
-0.0032847688999027014,
0.004800498951226473,
0.01890496350824833,
-0.01464580837637186,
0.01467437669634819,
0.004906580783426762,
-0.02017364092171192,
-0.03142181783914566,
-0.02182832732796669,
-0.012368137016892433,
0.042679671198129654,
-0.012766009196639061,
-0.02213786542415619,
-0.02053706906735897,
-0.005821545608341694,
-0.03371261805295944,
0.01795235276222229,
-0.053801361471414566,
-0.038118112832307816,
-0.024974316358566284,
-0.017725076526403427,
-0.047465573996305466,
-0.015346168540418148,
0.014793668873608112,
0.0035050748847424984,
0.016454728320240974,
0.05011369660496712,
-0.04699057713150978,
0.015831051394343376,
-0.00428525498136878,
-0.023289090022444725,
-0.03153238072991371,
0.01448402926325798,
-0.016030866652727127,
-0.011944279074668884,
-0.05500086396932602,
0.006951428484171629,
0.041111432015895844,
0.036576300859451294,
-0.00939659308642149,
-0.010259040631353855,
0.0609804131090641,
0.04560402035713196,
0.00811678171157837,
-0.05169353261590004,
-0.0035280503798276186,
-0.0183451846241951,
-0.026297016069293022,
-0.05714357644319534,
0.10504714399576187,
-0.018043402582406998,
0.017577027902007103,
-0.003946235403418541,
0.03685162961483002,
-0.012551204301416874,
0.03668714314699173,
-0.01632213406264782,
0.007159509230405092,
-0.01265076082199812,
0.005320474971085787,
-0.046896886080503464,
-0.04015136510133743,
0.010488396510481834,
0.015241310000419617,
-0.006956641096621752,
-0.009149562567472458,
-0.027845706790685654,
-0.006191030144691467,
0.018395481631159782,
0.04138863831758499,
-0.042410023510456085,
0.01425662636756897,
0.0020508484449237585,
0.013318589888513088,
0.04779833182692528,
-0.01258690096437931,
-0.019123591482639313,
0.015449927188456059,
-0.026844646781682968,
0.02083844132721424,
0.016021570190787315,
-0.02675667777657509,
0.03162701800465584,
0.0014053303748369217,
0.0013720868155360222,
-0.07177398353815079,
-0.038018010556697845,
0.0025651941541582346,
0.01564033329486847,
0.03288523852825165,
-0.055948272347450256,
-0.037524957209825516,
0.019929345697164536,
-0.01327479723840952,
-0.01061048824340105,
-0.004916306119412184,
-0.03103630803525448,
-0.010780544951558113,
0.0407288521528244,
0.009660879150032997,
0.03800157830119133,
-0.03065424971282482,
0.021421775221824646,
-0.03707791119813919,
-0.019508706405758858,
-0.014602134004235268,
0.03632637858390808,
0.011401792988181114,
-0.005951060447841883,
0.003929915372282267,
0.054417748004198074,
0.014333296567201614,
0.027783460915088654,
-0.044012028723955154,
-0.012832590378820896,
0.017822226509451866,
0.01698954962193966,
0.018773037940263748,
0.049471572041511536,
0.015749435871839523,
0.02060694992542267,
-0.02323595993220806,
0.06500287353992462,
-0.020033523440361023,
-0.02936123125255108,
-0.02350807748734951,
-0.004404514096677303,
-0.05091340094804764,
0.004584914539009333,
0.0524577833712101,
0.0041372887790203094,
0.01548533234745264,
0.021539699286222458,
0.002888075076043606,
0.01932527683675289,
-0.011786297895014286,
-0.022431328892707825,
-0.028670094907283783,
0.010589242912828922,
-0.013769841752946377,
0.01921517588198185,
0.018897540867328644,
0.01230231299996376,
-0.012203874066472054,
0.019273191690444946,
0.017525076866149902,
0.010398627258837223,
0.031761717051267624,
0.012421934865415096,
-0.051757313311100006,
0.005594728514552116,
-0.0211923960596323,
0.003125410992652178,
0.0003228503337595612,
-0.02323000133037567,
0.03159832954406738,
0.03347422927618027,
-0.0051482003182172775,
0.005901863798499107,
0.0356355644762516,
-0.008724951185286045,
0.04563508182764053,
-0.055946312844753265,
-0.006407011765986681,
-0.025942344218492508,
0.0038272985257208347,
0.026847293600440025,
-0.04931056126952171,
-0.02971775457262993,
0.023207999765872955,
0.07247522473335266,
0.028052931651473045,
0.009384098462760448,
0.06258399039506912,
-0.03619137778878212,
0.007335739675909281,
-0.0071822237223386765,
0.008166749030351639,
-0.03515861928462982,
-0.029737574979662895,
-0.02922738529741764,
0.022393066436052322,
-0.04757749289274216,
0.005862108897417784,
0.02570788748562336,
0.016860531643033028,
0.07113856822252274,
-0.05108252540230751,
0.021769482642412186,
-0.03455231338739395,
-0.00047425253433175385,
-0.030856184661388397,
0.022453075274825096,
-0.0554208867251873,
0.053064897656440735,
0.018944213166832924,
-0.06118746101856232,
0.026185834780335426,
0.02509777806699276,
0.02563989721238613,
0.012241668999195099,
0.0211640615016222,
-0.03826130926609039,
0.041044048964977264,
-0.00033524291939102113,
-0.026762567460536957,
-0.02554192766547203,
0.05346115678548813,
0.03159274533390999,
0.0016774567775428295,
0.013773527927696705,
0.01885189861059189,
-0.01478687021881342,
0.01261318102478981,
0.026008356362581253,
-0.01662990264594555,
0.007575251627713442,
0.04405984655022621,
-0.0020758467726409435,
-0.02860039472579956,
-0.006733159068971872,
0.011898832395672798,
0.01859333924949169,
-0.010628823190927505,
0.022743714973330498,
0.0016816607676446438,
-0.002946431515738368,
0.026172077283263206,
-0.017916468903422356,
0.01806357316672802,
0.01692233793437481,
-0.011459507048130035,
0.02884676679968834,
0.04311690106987953,
0.06414161622524261,
0.007386321201920509,
0.018915848806500435,
-0.006121146492660046,
0.012667135335505009,
0.007021259982138872,
0.072406105697155,
-0.009406599216163158,
0.009438669309020042,
-0.03772399201989174,
0.0186101496219635,
-0.041578054428100586,
-0.01096632331609726,
-0.013262615539133549,
0.009348787367343903,
0.030094444751739502,
-0.005697785411030054,
-0.057990457862615585,
-0.0008461672114208341,
0.01966022327542305,
0.01976635307073593,
0.005686690099537373,
-0.004970165900886059,
0.012197253294289112,
-0.009857837110757828,
-0.04992179945111275,
-0.03219267353415489,
0.09200523048639297,
-0.004160543438047171,
0.06422790884971619,
-0.006150379776954651,
0.022504756227135658,
0.02230697125196457,
0.04909554496407509,
0.01369588915258646,
0.008296307176351547,
0.040416169911623,
0.012810591608285904,
-0.021307270973920822,
0.021511249244213104,
0.02924622967839241,
0.004290635231882334,
-0.06329362839460373,
0.01332663930952549,
0.020486995577812195,
0.018552124500274658,
0.011931199580430984,
-0.03651624917984009,
0.014176053926348686,
-0.02147374115884304,
0.0735846608877182,
0.0220582727342844,
0.04184741899371147,
-0.03802396357059479,
0.04138283059000969,
0.03229515999555588,
0.0056606316938996315,
0.013829730451107025,
-0.018025187775492668,
-0.0009570926777087152,
0.04674255847930908,
0.0461692214012146,
0.010385523550212383,
-0.01010816264897585,
-0.012968461960554123,
0.026645150035619736,
0.003528090426698327,
-0.005487208720296621,
-0.04511433467268944,
0.008574058301746845,
0.0006897748098708689,
-0.01569337397813797,
0.030559493228793144,
-0.0045797680504620075,
-0.010213657282292843,
-0.034715794026851654,
-0.015858061611652374,
-0.045459091663360596,
-0.016560083255171776,
0.0194660983979702,
0.008497124537825584,
0.02708885818719864,
0.02264447510242462,
-0.04351983964443207,
-0.014391434378921986,
0.009441718459129333,
0.02871735394001007,
0.022194605320692062,
-0.012229666113853455,
0.019112005829811096,
-0.010860082693397999,
0.008195466361939907,
-0.04863964766263962,
-0.0419558621942997,
-0.03064909018576145,
0.021184703335165977,
0.018880141898989677,
0.019376391544938087,
0.024289479479193687,
0.024541322141885757,
-0.0017851069569587708,
0.046299275010824203,
-0.048847999423742294,
0.005974780302494764,
-0.019289778545498848,
-0.03045881725847721,
-0.002892888616770506,
-0.017785871401429176,
0.017421338707208633,
0.009962025098502636,
0.014904937706887722,
-0.0004995380877517164,
0.03626390919089317,
-0.05864884331822395,
-0.041451677680015564,
-0.0011817675549536943,
-0.005406292621046305,
-0.02732669562101364,
-0.0013343108585104346,
0.00031824730103835464,
0.04089442640542984,
-0.0013284786837175488,
-0.004273776896297932,
0.00029079895466566086,
0.014942270703613758,
-0.013741999864578247,
0.050078071653842926,
-0.016775840893387794,
-0.02075100690126419,
-0.03593004122376442,
0.0451582670211792,
0.02522200345993042,
0.006372155621647835,
0.03826116770505905,
0.009479425847530365,
0.044298723340034485,
0.01387140154838562,
0.010158581659197807,
-0.058505017310380936,
-0.0408894419670105,
-0.029004590585827827,
-0.043636396527290344,
-0.024753345176577568,
0.006818839348852634,
0.009146740660071373,
0.024695057421922684,
-0.019873637706041336,
0.020264482125639915,
-0.010561631061136723,
-0.048465974628925323,
-0.012452979572117329,
0.0046232338063418865,
0.059583816677331924,
-0.01071377843618393,
-0.009730195626616478,
0.04909864440560341,
-0.006302692927420139,
-0.005708286538720131,
0.020911766216158867,
0.04589540883898735,
0.038389354944229126,
0.0344650037586689,
-0.005505562759935856,
0.0114557184278965,
0.016734043136239052,
-0.0198146253824234,
0.01495598815381527,
0.016151994466781616,
0.01642034947872162,
-0.07329069077968597,
-0.025539960712194443,
0.04883958399295807,
0.008746236562728882,
-0.043889231979846954,
-0.0038123922422528267,
0.036146700382232666,
0.0040380870923399925,
0.026394350454211235,
0.013334259390830994,
-0.05836975574493408,
-0.030817320570349693,
-0.013363293372094631,
0.019009046256542206,
-0.004796523600816727,
-0.004018318373709917,
0.01578460820019245,
0.014835426583886147,
-0.0384342260658741,
-0.01788639836013317,
-0.0042597465217113495,
0.013426523655653,
-0.022704510018229485,
-0.00836294237524271,
0.041014544665813446,
-0.02518741972744465,
-0.014786058105528355,
0.07383006811141968,
0.0035439792554825544,
-0.016328975558280945,
0.027225380763411522,
0.023748081177473068,
0.008672685362398624,
-0.017085304483771324,
-0.01764586754143238,
0.016847757622599602,
0.028141887858510017,
-0.0008109226473607123,
0.017208514735102654,
0.00997599121183157,
0.0257122740149498
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | A guest blog post by Stas Bekman This article is an attempt to document how fairseq wmt19 translation system was ported to transformers. I was looking for some interesting project to work on and Sam Shleifer suggested I work on porting a high quality translator. I read the short paper: Facebook FAIR's WMT19 News Translation Task Submission that describes the original system and decided to give it a try. Initially, I had no idea how to approach this complex project and Sam helped me to break it down to smaller tasks, which was of a great help. I chose to work with the pre-trained en-ru/ru-en models during porting as I speak both languages. It'd have been much more difficult to work with de-en/en-de pairs as I don't speak German, and being able to evaluate the translation quality by just reading and making sense of the outputs at the advanced stages of the porting process saved me a lot of time. Also, as I did the initial porting with the en-ru/ru-en models, I was totally unaware that the de-en/en-de models used a merged vocabulary, whereas the former used 2 separate vocabularies of different sizes. So once I did the more complicated work of supporting 2 separate vocabularies, it was trivial to get the merged vocabulary to work. | [
0.03923000022768974,
-0.05211571231484413,
0.03107818216085434,
-0.014141774736344814,
0.06225140765309334,
0.058814190328121185,
0.03117096610367298,
0.04967828467488289,
0.0587213970720768,
0.012692366726696491,
-0.02714722789824009,
0.05285368859767914,
0.040851008147001266,
0.0686727836728096,
0.0008468616870231926,
-0.010327386669814587,
-0.01168669480830431,
-0.04344550892710686,
0.03461054340004921,
-0.014608312398195267,
-0.039442289620637894,
-0.05808013305068016,
0.0987560823559761,
-0.0003371904604136944,
0.07586119323968887,
-0.034083396196365356,
0.007452974561601877,
0.04705297201871872,
-0.036280203610658646,
0.008065732195973396,
-0.04685452952980995,
-0.037620123475790024,
-0.059330474585294724,
-0.10086510330438614,
-0.07302263379096985,
0.051744695752859116,
-0.03195023164153099,
0.04796780273318291,
-0.03383834660053253,
-0.1091253012418747,
-0.0024844196159392595,
0.026006082072854042,
-0.037418268620967865,
0.05766793712973595,
0.0073153916746377945,
0.021496547386050224,
-0.0816119909286499,
0.011638257652521133,
-0.0559464730322361,
-0.00757945328950882,
-0.010544428601861,
0.01627308689057827,
0.021666768938302994,
0.06254138797521591,
-0.021212350577116013,
0.06379351019859314,
-0.027259554713964462,
-0.049268655478954315,
-0.004655058961361647,
0.012007820419967175,
-0.007194461300969124,
0.013787375763058662,
0.019098039716482162,
0.022161409258842468,
-0.027549024671316147,
-0.04194793105125427,
-0.03886728733778,
0.02191784605383873,
-0.007490052375942469,
-0.018686121329665184,
-0.04844388738274574,
-0.034546006470918655,
-0.03302813693881035,
-0.06635630130767822,
-0.013897650875151157,
-0.07055556774139404,
0.011729416437447071,
-0.003545115003362298,
0.019067885354161263,
0.07248718291521072,
-0.041012927889823914,
0.04807715117931366,
0.05755673348903656,
0.026649709790945053,
0.05610789358615875,
-0.062365900725126266,
0.06939078122377396,
-0.048320624977350235,
-0.055727098137140274,
0.03496488928794861,
-0.005475276615470648,
-0.1278296858072281,
-0.11009470373392105,
-0.0011383582605049014,
0.08775123208761215,
0.006245121359825134,
0.056001897901296616,
0.09971688687801361,
-0.028531448915600777,
0.023777823895215988,
-0.0009474458056502044,
0.02690950036048889,
0.10343343019485474,
-0.011220092885196209,
-0.008507371880114079,
-0.003689574310556054,
-0.036003150045871735,
-0.1357833296060562,
0.04411519318819046,
0.03368299454450607,
0.03041490726172924,
-0.0015676973853260279,
0.022042974829673767,
0.044229019433259964,
-0.020829210057854652,
0.01213020272552967,
0.033801786601543427,
-0.0337224006652832,
-0.008741033263504505,
0.02030111849308014,
0.04457038268446922,
0.0894598439335823,
0.0019524802919477224,
-0.012151344679296017,
0.010904325172305107,
0.030309630557894707,
0.06627681851387024,
-0.02783970534801483,
-0.0709751769900322,
-0.031467292457818985,
0.018220121040940285,
0.03538906201720238,
0.04880175366997719,
0.0340806245803833,
-0.0537400059401989,
-0.07201912254095078,
0.065965436398983,
0.011838319711387157,
-0.02593531645834446,
-0.0369393564760685,
0.00029641727451235056,
0.05680330470204353,
-0.04531220346689224,
0.01403999887406826,
-0.027824627235531807,
0.057002488523721695,
-0.10625022649765015,
0.038217268884181976,
0.023194342851638794,
0.022294940426945686,
-0.007295773830264807,
-0.0008532926440238953,
-0.012839345261454582,
-0.06385691463947296,
0.045481786131858826,
0.0010864170035347342,
-0.01430426724255085,
-0.06502928584814072,
-0.06869245320558548,
-0.04463138431310654,
-0.05684833973646164,
0.03822408989071846,
-0.05124044790863991,
-0.020624235272407532,
-0.04732857644557953,
-0.06723512709140778,
-0.052518580108881,
0.03907039389014244,
0.05200032517313957,
0.018521783873438835,
0.08085935562849045,
0.026937538757920265,
0.07664402574300766,
-0.0020681461319327354,
-0.06564398109912872,
0.03816823661327362,
0.05143243074417114,
0.04321293532848358,
0.039167869836091995,
-0.02635463885962963,
-0.08325834572315216,
0.026876799762248993,
-0.010005520656704903,
0.040307845920324326,
0.031889088451862335,
-0.015944553539156914,
-0.003553957911208272,
-0.006874452345073223,
-0.08250194042921066,
0.016742711886763573,
-0.09026581048965454,
-0.031755950301885605,
0.07663395255804062,
-0.01717137172818184,
-0.017310969531536102,
0.018981900066137314,
0.011655943468213081,
0.08354850113391876,
0.030995691195130348,
0.07882242649793625,
0.10637212544679642,
-0.03670240938663483,
-0.00743398442864418,
-0.01080418098717928,
0.0008120340062305331,
0.01048910804092884,
0.004436278250068426,
-0.030673282220959663,
-0.030530810356140137,
0.044904373586177826,
0.032164834439754486,
-0.05697895586490631,
0.03338483348488808,
-0.007315604481846094,
-0.012264220044016838,
-0.050019752234220505,
-0.026164183393120766,
0.015498649328947067,
-0.002169431885704398,
-0.057142723351716995,
0.08188082277774811,
-0.022050730884075165,
-0.08473770320415497,
0.0004272283404134214,
0.03416811302304268,
0.0029424726963043213,
0.07556020468473434,
0.02627427875995636,
0.0175494235008955,
-0.017585279420018196,
-0.034041982144117355,
0.03180032968521118,
0.029727552086114883,
-0.024193640798330307,
-0.07041984796524048,
-0.05685156583786011,
-0.021272648125886917,
-0.02730325609445572,
0.014490787871181965,
-0.03872537985444069,
0.04098427668213844,
0.0452723391354084,
0.0123578617349267,
0.014981869608163834,
-0.028412623330950737,
0.018735680729150772,
0.08064985275268555,
0.022820712998509407,
0.05593631789088249,
-0.013882149942219257,
-0.03481799736618996,
0.06114013493061066,
0.007032916881144047,
-0.06071414053440094,
0.046743281185626984,
-0.02111181616783142,
0.029807476326823235,
0.002559776185080409,
0.04704154655337334,
0.017485376447439194,
-0.010363523848354816,
0.008672937750816345,
-0.018192527815699577,
-0.060334961861371994,
0.025822561234235764,
-0.055273059755563736,
-0.012986295856535435,
0.003967260010540485,
-0.019838564097881317,
-0.009450732730329037,
-0.05259096994996071,
-0.008236682042479515,
0.03195575624704361,
-0.03856632485985756,
0.008843116462230682,
-0.019103800877928734,
-0.017667412757873535,
-0.002244026167318225,
0.0022760871797800064,
0.005635601468384266,
-0.014080422930419445,
0.01147743035107851,
0.030775705352425575,
0.011600740253925323,
0.0026110922917723656,
-0.0037426860071718693,
0.006043892819434404,
-0.024977710098028183,
-0.01170257292687893,
0.03347393870353699,
0.007092387415468693,
0.002684319159016013,
-0.00917106680572033,
0.024839388206601143,
-0.04063842445611954,
-0.0004361575411166996,
-0.0014792496804147959,
-0.026621129363775253,
-0.0013115667970851064,
0.03712109103798866,
-0.022867361083626747,
0.025390470400452614,
-0.0034955188166350126,
0.0496147982776165,
-0.053731322288513184,
-0.02354130707681179,
-0.024591505527496338,
-0.00712253712117672,
-0.08722740411758423,
-0.014201119542121887,
-0.025816157460212708,
0.03986813500523567,
-0.019351426512002945,
-0.008517883718013763,
-0.0014688086230307817,
-0.03254477307200432,
0.00682772696018219,
0.044796865433454514,
0.011933136731386185,
0.0029558190144598484,
0.011820504441857338,
0.01372469961643219,
-0.0080541567876935,
-0.000958577380515635,
-0.024127639830112457,
0.032688308507204056,
0.033184830099344254,
0.007098538335412741,
-0.02312617190182209,
0.008160625584423542,
0.026907572522759438,
-0.003737775143235922,
-0.005792512558400631,
0.0003039894509129226,
0.028377674520015717,
-0.010317898355424404,
-0.019003337249159813,
-0.006519865710288286,
-0.009566630236804485,
0.03568658232688904,
0.041938960552215576,
0.007008852902799845,
-0.019985567778348923,
-0.0186576209962368,
0.010735630989074707,
0.03287005051970482,
-0.024106120690703392,
0.024962756782770157,
-0.013125337660312653,
0.010871863923966885,
0.022617744281888008,
-0.05182689055800438,
0.0009817277314141393,
0.0006412786315195262,
-0.011613419279456139,
-0.020001953467726707,
0.03151107579469681,
0.006028416100889444,
-0.034784946590662,
-0.011564379557967186,
0.004540193360298872,
0.06650563329458237,
-0.03607245907187462,
-0.023963944986462593,
0.010954681783914566,
-0.008965831249952316,
0.013868423178792,
0.017197219654917717,
-0.035885028541088104,
0.007265008520334959,
-0.0796734020113945,
-0.013632909394800663,
-0.03501545637845993,
0.08529089391231537,
0.02181938849389553,
0.048660311847925186,
0.027128666639328003,
0.02396511100232601,
-0.02991958148777485,
0.02241295948624611,
-0.0020562359131872654,
-0.002334224060177803,
0.01694798655807972,
0.03243957832455635,
-0.020377445966005325,
-0.02620517835021019,
0.019466182217001915,
-0.0022331445943564177,
-0.028689175844192505,
-0.02354581281542778,
-0.03606989607214928,
-0.03230193629860878,
0.025753909721970558,
0.004536750726401806,
0.016620967537164688,
-0.0178687646985054,
-0.014314541593194008,
0.016786392778158188,
0.02703872136771679,
-0.0565640851855278,
-0.017521502450108528,
-0.014652104116976261,
0.007390894927084446,
-0.061243411153554916,
-0.005102778784930706,
-0.010573315434157848,
-0.0072254398837685585,
0.0029806913807988167,
0.01868402399122715,
-0.038400743156671524,
-0.025210123509168625,
-0.006617500446736813,
0.030044784769415855,
0.05703415349125862,
-0.03629094734787941,
-0.020306793972849846,
0.02119298093020916,
0.04988441616296768,
0.0069739725440740585,
-0.013312846422195435,
-0.06924653053283691,
0.024078642949461937,
0.042819853872060776,
-0.0019748485647141933,
-0.013206138275563717,
-0.07191270589828491,
0.011815257370471954,
-0.0051354458555579185,
-0.002595665864646435,
-0.04710731655359268,
0.024237658828496933,
-0.014020264148712158,
-0.05212929844856262,
-0.00434004096314311,
0.03224456310272217,
0.04558271914720535,
-0.05161673575639725,
0.0179617740213871,
-0.02527199685573578,
-0.015857256948947906,
0.025111157447099686,
-0.0045576454140245914,
0.04187988489866257,
0.05019047483801842,
0.016138503327965736,
0.01928989589214325,
-0.018199080601334572,
-0.023170724511146545,
-0.007422628812491894,
-0.003510670270770788,
0.043603260070085526,
-0.044492583721876144,
0.01704142987728119,
0.021528879180550575,
0.02997768484055996,
-0.02814040146768093,
-0.013044217601418495,
0.007328779436647892,
0.031890567392110825,
-0.03749358654022217,
-0.028033388778567314,
0.03313619643449783,
0.008655969984829426,
-0.013136843219399452,
0.026075441390275955,
0.007799473591148853,
0.028329728171229362,
0.015708107501268387,
0.004680412355810404,
-0.0084048667922616,
-0.06303288787603378,
0.015971962362527847,
0.010134011507034302,
-0.036013297736644745,
0.01639128103852272,
-0.04088782146573067,
-0.006503019016236067,
0.02097582444548607,
-0.013218852691352367,
-0.022711874917149544,
0.03952636942267418,
-0.011621375568211079,
-0.004131143447011709,
0.061956971883773804,
-0.024336060509085655,
0.005610916763544083,
0.0017936077201738954,
-0.05000557005405426,
0.012547090649604797,
0.04310882091522217,
0.003014196874573827,
-0.0032005012035369873,
-0.05667663365602493,
0.029772600159049034,
0.008501958101987839,
0.06616109609603882,
0.008937857113778591,
0.009054109454154968,
-0.008195250295102596,
0.006131745409220457,
-0.0180390402674675,
-0.018311847001314163,
-0.023707648739218712,
-0.038335274904966354,
0.03398676961660385,
-0.015016094781458378,
-0.022531813010573387,
0.040279123932123184,
0.02827974408864975,
0.0366818793118,
0.012323572300374508,
0.0024570380337536335,
0.02786153368651867,
-0.03291571885347366,
-0.01692674681544304,
-0.0461997427046299,
0.015468806028366089,
-0.0568302720785141,
-0.025402894243597984,
0.014806798659265041,
0.02112344279885292,
-0.02332949824631214,
-0.009030025452375412,
-0.06475304067134857,
-0.005523308180272579,
0.033503856509923935,
0.003935433924198151,
0.03461311757564545,
-0.007842312566936016,
0.005519692320376635,
-0.0072084469720721245,
0.023451050743460655,
0.004103876184672117,
-0.008667733520269394,
0.0153877642005682,
-0.03008500300347805,
0.030218465253710747,
-0.019029924646019936,
0.016853652894496918,
0.0017979651456698775,
-0.014935625717043877,
0.037151999771595,
0.03599674627184868,
-0.04069490358233452,
0.014819098636507988,
0.013483935967087746,
0.010206051170825958,
0.037118129432201385,
0.04720363765954971,
-0.05174897983670235,
0.012157035060226917,
0.04091202840209007,
-0.006756992544978857,
0.04623287543654442,
0.04652802646160126,
-0.008774605579674244,
-0.0013468691613525152,
-0.009857142344117165,
-0.009219122119247913,
0.0217116791754961,
-0.0034827773924916983,
0.01623576506972313,
-0.00029151057242415845,
0.012397636659443378,
0.04215541481971741,
0.04696102440357208,
0.012185475789010525,
-0.039385195821523666,
0.055072326213121414,
-0.025620965287089348,
-0.04546790197491646,
0.029391268268227577,
-0.02269534021615982,
0.03134093061089516,
0.005799612496048212,
0.0014868128346279263,
0.0013251026393845677,
0.008318834006786346,
0.03274217247962952,
0.00395513791590929,
0.03201465308666229,
0.05448603257536888,
-0.004055429715663195,
-0.05217260867357254,
0.04536254703998566,
0.02364291623234749,
0.033679135143756866,
-0.00344385439530015,
0.027678798884153366,
-0.00599611084908247,
0.012801487930119038,
-0.03386101871728897,
0.01611527055501938,
0.033070776611566544,
0.05465294048190117,
0.012860463932156563,
0.004005948547273874,
-0.02485029399394989,
-0.014297060668468475,
-0.06030399724841118,
-0.014746278524398804,
-0.008365378715097904,
-0.04256604239344597,
0.032767098397016525,
0.03193025663495064,
-0.011462482623755932,
-0.00607100035995245,
0.030865633860230446,
0.07725093513727188,
0.023656269535422325,
0.037115633487701416,
-0.0007526818080805242,
0.051696039736270905,
0.06122894585132599,
0.010206243954598904,
0.04908361658453941,
0.01133028231561184,
-0.004313080105930567,
0.022272931411862373,
0.04220091179013252,
-0.03253662958741188,
0.03169006481766701,
-0.041374798864126205,
-0.009223558939993382,
-0.0243854820728302,
-0.02878222055733204,
-0.005074433516710997,
0.03714432939887047,
-0.011854133568704128,
-0.04427533224225044,
0.007996976375579834,
0.05768975615501404,
-0.013826802372932434,
0.02437206171452999,
0.008937894366681576,
-0.02539367415010929,
-0.04782529175281525,
-0.027396297082304955,
-0.018895374611020088,
0.06090804561972618,
-0.029565127566456795,
-0.04626517742872238,
-0.028609678149223328,
-0.022129597142338753,
0.028471311554312706,
0.030704839155077934,
0.03371955081820488,
0.04350888356566429,
-0.046814847737550735,
-0.012441200204193592,
-0.002875076374039054,
-0.051031239330768585,
0.017800629138946533,
0.009423344396054745,
0.03616471588611603,
0.019554520025849342,
-0.010441223159432411,
0.030363962054252625,
-0.010791395790874958,
0.01820659264922142,
-0.037015482783317566,
0.03791675716638565,
0.00886594969779253,
-0.03587418049573898,
0.05562436208128929,
-0.0622105598449707,
-0.03011433035135269,
0.024704257026314735,
-0.02574295550584793,
0.032836511731147766,
0.04939109832048416,
-0.023868920281529427,
-0.03405363857746124,
0.0072350529953837395,
-0.00848319660872221,
-0.021076321601867676,
-0.007740625645965338,
0.01043604128062725,
0.01806921325623989,
0.04024243354797363,
-0.024379059672355652,
0.020112419500947,
0.011844854801893234,
-0.03664695844054222,
0.03703668713569641,
-0.035012129694223404,
0.021853100508451462,
-0.0627966895699501,
0.05460160970687866,
0.021112333983182907,
0.021599596366286278,
0.06057476997375488,
0.005677510052919388,
0.0032471641898155212,
0.005736209452152252,
-0.024702072143554688,
0.020859362557530403,
0.0155009925365448,
0.0075794123113155365,
-0.05015718191862106,
-0.015140527859330177,
0.02288016304373741,
-0.013535518199205399,
0.04299807921051979,
-0.028639432042837143,
0.021550804376602173,
-0.06687020510435104,
-0.039755094796419144,
0.006698034703731537,
0.02346344292163849,
0.0893760547041893,
0.00786497350782156,
0.005851794965565205,
-0.004196716006845236,
-0.01010610070079565,
-0.03263828158378601,
-0.012358022853732109,
0.017377136275172234,
0.07079154253005981,
-0.014740905724465847,
0.01585736870765686,
0.034450747072696686,
0.01278862077742815,
-0.037078019231557846,
-0.048972006887197495,
-0.009800967760384083,
0.02713930793106556,
0.004135390277951956,
-0.0025627745781093836,
0.029739923775196075,
0.02804824523627758,
-0.030668342486023903,
-0.03997384384274483,
-0.05081380158662796,
0.008390665054321289,
0.0021866909228265285,
-0.009699833579361439,
-0.04664825275540352,
-0.0065325540490448475,
-0.0005557808908633888,
0.026276007294654846,
-0.012149247340857983,
0.002703909296542406,
-0.003568109590560198,
0.019408533349633217,
-0.008307085372507572,
-0.010824988596141338,
0.01818658597767353,
0.010733622126281261,
-0.03496857360005379,
0.014931333251297474,
0.04440220072865486,
-0.04235361889004707,
-0.07925335317850113,
0.03578655794262886,
0.01535622775554657,
-0.02760341577231884,
-0.020523929968476295,
-0.009035960771143436,
-0.07202676683664322,
-0.0550936721265316,
0.0008456427021883428,
0.04765109717845917,
0.024860262870788574,
-0.01158341858536005,
-0.014422189444303513,
0.03171582520008087,
-0.008615351282060146
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Porting the core translation functionality Having had a relatively quick success with porting the tokenizer (obviously, thanks to most of the code being there already), the next stage was much more complex. This is thegenerate()function which takes inputs ids, runs them through the model and returns output ids. I had to break it down into multiple sub-tasks. I had to 1. port the model weights. 2. makegenerate()work for a single beam (i.e. return just one result). 3. and then multiple beams (i.e. return multiple results). I first researched which of the existing architectures were the closest to my needs. It was BART that fit the closest, so I went ahead and did: ``` cp modeling_bart.py modeling_fsmt.py perl -pi -e 's|Bart|FSMT|ig; s|bart|fsmt|g;' modeling_fsmt.py ``` This was my starting point that I needed to tweak to work with the model weights provided byfairseq. | [
0.050141334533691406,
0.02390271984040737,
0.004708299413323402,
-0.05249166116118431,
0.026403872296214104,
0.09524404257535934,
-0.013870038092136383,
0.016978545114398003,
-0.010556532070040703,
0.02484409138560295,
-0.021132808178663254,
-0.041030652821063995,
0.011120045557618141,
0.015359828248620033,
0.0364324115216732,
0.014271711930632591,
0.03015204705297947,
-0.0631282776594162,
0.030837876722216606,
-0.02276694029569626,
0.035916972905397415,
-0.04966617375612259,
0.054276153445243835,
0.005924227647483349,
-0.0491534098982811,
-0.0014003944816067815,
-0.007200355641543865,
0.06612195819616318,
-0.060144681483507156,
0.03261197730898857,
-0.0605262815952301,
0.0219461377710104,
0.003106992691755295,
-0.05896400660276413,
-0.039408378303050995,
0.022240741178393364,
-0.11010439693927765,
0.04488168656826019,
0.004350672475993633,
-0.059136565774679184,
-0.0008538338006474078,
0.04293264448642731,
-0.004335741046816111,
0.023173736408352852,
-0.016322605311870575,
0.05276559293270111,
-0.1251431554555893,
0.033861394971609116,
0.003956473898142576,
-0.03786248713731766,
-0.08191588521003723,
0.01644294708967209,
-0.025701167061924934,
-0.004674439784139395,
0.0447380356490612,
-0.0014223295729607344,
-0.05217314139008522,
-0.09293293952941895,
-0.016886353492736816,
0.030979091301560402,
-0.0517069473862648,
0.04059511423110962,
0.029989659786224365,
0.06464656442403793,
0.03544340282678604,
0.05795034393668175,
-0.03685484081506729,
-0.022782625630497932,
-0.052674565464258194,
0.028943514451384544,
-0.013016512617468834,
0.019735729321837425,
-0.02149116061627865,
-0.043209321796894073,
0.03281794860959053,
-0.06053107604384422,
-0.0073476224206388,
0.03501540794968605,
0.061677344143390656,
0.044899098575115204,
0.031730715185403824,
0.08283962309360504,
0.04848352074623108,
-0.01803419552743435,
0.07190842926502228,
-0.0029543519485741854,
0.035734131932258606,
-0.08170963823795319,
-0.014187311753630638,
0.031209737062454224,
-0.05054761841893196,
-0.13740801811218262,
-0.07376612722873688,
0.02712630294263363,
0.07201983779668808,
0.007392281200736761,
-0.01184639148414135,
0.05245819315314293,
0.05705279856920242,
0.02482415735721588,
0.01674111746251583,
-0.05131393298506737,
0.039848342537879944,
-0.007361983880400658,
0.006829921156167984,
0.03957786038517952,
0.016893522813916206,
-0.12000422179698944,
-0.05138237401843071,
-0.01921023614704609,
0.015630509704351425,
0.008196983486413956,
-0.016642194241285324,
0.06841257959604263,
-0.0012883853632956743,
-0.006539241410791874,
-0.004018108826130629,
-0.00005976484317216091,
0.01764315739274025,
-0.0026102561969310045,
0.019730817526578903,
0.03166354075074196,
0.07023221999406815,
-0.06582861393690109,
0.06063656136393547,
0.044312916696071625,
0.06625983864068985,
0.010771716013550758,
-0.0018701145891100168,
-0.028703764081001282,
0.008498438633978367,
-0.014427751302719116,
0.07825850695371628,
0.03524308279156685,
-0.014711438678205013,
-0.10096950083971024,
-0.015358315780758858,
-0.026709621772170067,
-0.0167271476238966,
-0.05861744284629822,
-0.017010988667607307,
-0.012290491722524166,
-0.022927146404981613,
0.014192737638950348,
-0.00808286014944315,
0.03030732087790966,
-0.05628030002117157,
0.04581964388489723,
0.03104659914970398,
-0.027000224217772484,
-0.06475616246461868,
0.016758505254983902,
-0.04829670116305351,
-0.06313937902450562,
0.02635093592107296,
0.06503941118717194,
0.028494594618678093,
-0.026037968695163727,
-0.03878090903162956,
0.0022568260319530964,
-0.03493814915418625,
0.02886239066720009,
-0.04697086662054062,
-0.05288354679942131,
0.013429474085569382,
-0.01604164019227028,
0.005001204088330269,
0.02641487494111061,
0.07110115885734558,
0.032515134662389755,
0.06568273156881332,
0.004442100878804922,
0.08654831349849701,
-0.019613390788435936,
-0.027449585497379303,
-0.02464587241411209,
0.027901582419872284,
0.037448424845933914,
-0.032133836299180984,
-0.005606553982943296,
-0.02729222923517227,
0.023087354376912117,
-0.02822425775229931,
-0.0005975415697321296,
-0.03450460359454155,
-0.06087786331772804,
0.014955560676753521,
-0.06651969999074936,
0.00838709156960249,
0.035376206040382385,
-0.1166987344622612,
-0.022824764251708984,
0.0800248235464096,
-0.006003331858664751,
0.007587190717458725,
-0.03154844045639038,
-0.01816275343298912,
0.08556942641735077,
0.012105490081012249,
0.08104109019041061,
0.057835903018713,
0.018825436010956764,
0.03648151457309723,
-0.03436484560370445,
0.005781501065939665,
0.037957947701215744,
-0.046892017126083374,
-0.05990235134959221,
0.038248635828495026,
0.06798205524682999,
0.008975678123533726,
-0.08574412018060684,
-0.0037066671065986156,
-0.07849141955375671,
-0.05389627441763878,
-0.037835512310266495,
-0.055122096091508865,
0.03265863656997681,
-0.03731769695878029,
-0.03548960015177727,
0.165334552526474,
-0.08178887516260147,
-0.00020191776275169104,
-0.03157855570316315,
-0.028654634952545166,
0.06436145305633545,
0.11398713290691376,
0.016729068011045456,
0.001825970015488565,
-0.044865187257528305,
-0.004470745101571083,
-0.023116908967494965,
0.04729152470827103,
0.05596061795949936,
-0.06532115489244461,
0.01550295576453209,
-0.004506121389567852,
-0.0041615329682827,
0.03953211382031441,
-0.0041537173092365265,
0.0063756126910448074,
0.05941009148955345,
-0.06657246500253677,
-0.030840357765555382,
0.009538373909890652,
0.06580003350973129,
0.07031592726707458,
-0.02812529169023037,
-0.016461258754134178,
-0.01283499225974083,
-0.021847302094101906,
0.06792832165956497,
-0.012934443540871143,
-0.05454498529434204,
0.09016552567481995,
0.02536013536155224,
0.015607365407049656,
-0.004067476373165846,
0.012229323387145996,
-0.004596681334078312,
-0.05444290116429329,
0.03288749232888222,
-0.06066152825951576,
-0.07301674038171768,
0.004825202282518148,
-0.027708224952220917,
0.023754602298140526,
-0.030295033007860184,
-0.03866966813802719,
-0.006949853617697954,
-0.002751005347818136,
-0.024925801903009415,
-0.006001865956932306,
-0.005155245773494244,
0.01616079732775688,
0.041066523641347885,
0.022818539291620255,
-0.03703205659985542,
-0.046579357236623764,
-0.004000348970293999,
-0.016536813229322433,
-0.04225138947367668,
0.014686372131109238,
0.019443150609731674,
-0.007213504984974861,
-0.013447936624288559,
-0.0013240976259112358,
-0.024545129388570786,
-0.02712012641131878,
0.032858844846487045,
0.04996798560023308,
-0.03564634546637535,
0.011861691251397133,
0.01323285885155201,
-0.017265794798731804,
-0.006559399422258139,
-0.015922484919428825,
0.004509435500949621,
0.0038186172023415565,
0.009606488980352879,
-0.024708690121769905,
0.038601987063884735,
0.005861932877451181,
0.04272935166954994,
-0.07433284819126129,
0.00722276559099555,
0.030200893059372902,
-0.01167169027030468,
-0.09339603781700134,
-0.0004443442157935351,
-0.01873083971440792,
0.05115175247192383,
-0.014678115025162697,
-0.024633489549160004,
0.020556114614009857,
-0.021260447800159454,
0.0047141388058662415,
-0.0012392697390168905,
0.03354249522089958,
0.008386928588151932,
0.022336948662996292,
-0.0008602703455835581,
-0.03007020428776741,
0.013572323136031628,
-0.033808812499046326,
0.004606314469128847,
0.04586610198020935,
0.032237857580184937,
0.007264610379934311,
-0.00538904732093215,
0.014675315469503403,
-0.03871634230017662,
-0.01676478423178196,
-0.0439520925283432,
0.035973336547613144,
-0.011110453866422176,
-0.005570945329964161,
-0.029486387968063354,
-0.023660631850361824,
-0.012157711200416088,
0.03239910677075386,
-0.03927086293697357,
-0.023361964151263237,
-0.02579416148364544,
0.0064287204295396805,
0.026455670595169067,
0.003960424568504095,
0.04807405173778534,
0.007344221230596304,
-0.00010400010796729475,
0.03474298119544983,
-0.0474618524312973,
0.01928620971739292,
-0.025624612346291542,
-0.0038159708492457867,
0.023256998509168625,
0.026589293032884598,
-0.04693048447370529,
-0.015378906391561031,
-0.053934287279844284,
0.024639414623379707,
0.06629475206136703,
-0.004280589055269957,
-0.044673435389995575,
-0.013572655618190765,
0.04733056575059891,
0.02955903857946396,
0.008474205620586872,
-0.0505637489259243,
0.007568991277366877,
0.012309245765209198,
-0.028495213016867638,
-0.027662670239806175,
0.09456276893615723,
-0.00302048958837986,
0.009967373684048653,
0.02240627445280552,
0.053757455199956894,
0.0036672172136604786,
0.027046194300055504,
-0.018248945474624634,
0.0035365927033126354,
-0.006644356530159712,
0.038498908281326294,
-0.018654851242899895,
-0.05074172094464302,
0.019192364066839218,
0.01871786266565323,
-0.01118784211575985,
-0.038684673607349396,
-0.05964253842830658,
-0.006900732405483723,
0.02435608208179474,
0.015237775631248951,
0.005421712528914213,
-0.03631586208939552,
0.0042921253480017185,
0.024916714057326317,
0.03108418546617031,
-0.029612887650728226,
-0.006524693686515093,
0.012834173627197742,
-0.02912527695298195,
-0.00981515645980835,
0.036457356065511703,
-0.00813579373061657,
0.00622218381613493,
-0.026224935427308083,
0.036266062408685684,
-0.061254315078258514,
-0.035970885306596756,
-0.015276153571903706,
0.021966708824038506,
-0.004486981313675642,
-0.06478659808635712,
-0.012035229243338108,
-0.0019520402420312166,
0.036621641367673874,
-0.055144745856523514,
0.0017698664451017976,
-0.0216531865298748,
0.018253544345498085,
0.02254364639520645,
0.025745967403054237,
-0.016953932121396065,
-0.027471143752336502,
-0.025851445272564888,
0.0045033954083919525,
-0.04623572528362274,
0.022781606763601303,
0.06285158544778824,
0.008643378503620625,
-0.0042907376773655415,
-0.025651924312114716,
0.036170996725559235,
0.0034508483950048685,
0.015199086628854275,
-0.026144012808799744,
-0.010782708413898945,
0.015693282708525658,
0.03894072398543358,
0.008868556469678879,
0.054653797298669815,
0.035408854484558105,
0.016362005844712257,
0.005532173439860344,
0.04383212700486183,
-0.029108013957738876,
-0.02623363584280014,
0.023356851190328598,
-0.010955441743135452,
-0.03181818127632141,
0.027141228318214417,
0.036083683371543884,
0.0008044651476666331,
0.005143218673765659,
-0.01440249290317297,
0.03916573524475098,
0.02586626634001732,
0.019965380430221558,
-0.03278372809290886,
-0.04005344212055206,
0.02598155103623867,
-0.009267686866223812,
0.03460359945893288,
0.01314560230821371,
-0.018642349168658257,
0.04822632670402527,
0.011754386126995087,
-0.036233507096767426,
0.0011365573154762387,
-0.016578540205955505,
0.0035668490454554558,
-0.013651975430548191,
0.009109213948249817,
-0.03420661389827728,
-0.03583616763353348,
-0.007508613169193268,
-0.013669919222593307,
0.02781398594379425,
0.01884792558848858,
-0.045388586819171906,
-0.012262780219316483,
0.05153195559978485,
-0.027317313477396965,
0.005935952998697758,
-0.030171623453497887,
-0.0036405278369784355,
-0.03888408839702606,
-0.02296259254217148,
0.033347487449645996,
0.02942497842013836,
-0.012385574169456959,
0.027133788913488388,
0.038866229355335236,
0.022230688482522964,
0.0313478484749794,
0.0018226000247523189,
-0.0055013722740113735,
0.005743852350860834,
-0.009199783205986023,
-0.0037326400633901358,
-0.021738329902291298,
-0.008390266448259354,
-0.039330702275037766,
0.030986515805125237,
-0.051832228899002075,
0.02060435526072979,
0.009055701084434986,
0.03276354819536209,
0.03948574885725975,
-0.0488799586892128,
0.04363003745675087,
-0.027190519496798515,
-0.046319711953401566,
-0.05976557359099388,
0.015396108850836754,
-0.043005168437957764,
0.028011564165353775,
0.015558714978396893,
-0.05370109900832176,
0.007387677673250437,
0.06006474420428276,
-0.02746463194489479,
0.027441004291176796,
0.02164057083427906,
-0.012408645823597908,
0.0438358336687088,
0.029983585700392723,
-0.035183440893888474,
-0.01396489143371582,
0.06538059562444687,
0.01286044530570507,
-0.006605811417102814,
-0.005579906981438398,
0.03368144854903221,
0.0037934097927063704,
0.03176824748516083,
0.033590398728847504,
-0.04042534902691841,
0.032919298857450485,
0.01478439662605524,
0.017534703016281128,
-0.0452277697622776,
-0.0005993263912387192,
0.030422884970903397,
0.022363772615790367,
0.0030868800822645426,
0.04133636876940727,
0.01880292408168316,
0.01060421485453844,
0.006546949967741966,
-0.038452085107564926,
0.036586228758096695,
0.05551997944712639,
-0.022366512566804886,
0.03369692340493202,
0.028632808476686478,
0.03835209086537361,
0.020900091156363487,
0.021826067939400673,
0.023425433784723282,
-0.012332906946539879,
-0.007606484927237034,
0.05009285733103752,
-0.016666460782289505,
0.041402678936719894,
0.0062315636314451694,
0.035535216331481934,
-0.027774648740887642,
-0.012104441411793232,
0.013526548631489277,
-0.006299779284745455,
-0.009754293598234653,
-0.008040294051170349,
-0.03653375804424286,
-0.003283908823505044,
0.001648818957619369,
0.020434008911252022,
0.020433785393834114,
-0.017507808282971382,
0.029564494267106056,
-0.02740621007978916,
-0.026928069069981575,
0.002503340831026435,
0.05128270387649536,
0.023488199338316917,
0.036157578229904175,
0.010838779620826244,
0.07277696579694748,
0.026683367788791656,
0.0471588559448719,
0.033134575933218,
0.028873709961771965,
0.04208953306078911,
0.01844778284430504,
-0.014430681243538857,
0.04492975398898125,
0.03235789015889168,
0.0035387768875807524,
-0.06577606499195099,
-0.017416689544916153,
-0.010949089191854,
0.02500987984240055,
0.03134661167860031,
0.02794884517788887,
0.004137578420341015,
-0.03379574418067932,
0.06851179152727127,
0.05546887591481209,
0.04348777234554291,
0.006577508058398962,
-0.015060042031109333,
0.027546675875782967,
0.021983420476317406,
0.006600772961974144,
0.021828847005963326,
0.021203916519880295,
0.016313716769218445,
0.04522933438420296,
-0.006508817430585623,
-0.011377433314919472,
-0.0033706622198224068,
0.019995108246803284,
-0.0032512058969587088,
-0.03637852892279625,
-0.0031646559946238995,
0.0616622194647789,
-0.037407368421554565,
0.006118154618889093,
0.018707560375332832,
0.0184833575040102,
-0.05978221073746681,
-0.044210173189640045,
-0.011565929278731346,
-0.012942599132657051,
-0.04702625423669815,
0.0033600826282054186,
-0.03971529006958008,
-0.01181316189467907,
0.014281569048762321,
-0.04074467718601227,
-0.0045852563343942165,
0.006150567904114723,
0.009489724412560463,
0.03530685231089592,
0.023705067113041878,
0.028616562485694885,
-0.018236536532640457,
0.03343686833977699,
-0.019061628729104996,
-0.01198777835816145,
0.02552391216158867,
0.03864852339029312,
0.03258136287331581,
0.03999347239732742,
0.000536694482434541,
0.03860335424542427,
-0.012955441139638424,
0.01075230073183775,
-0.02325380966067314,
-0.008936960250139236,
-0.019204655662178993,
-0.01655627228319645,
0.0037209836300462484,
-0.0501115620136261,
0.014612938277423382,
0.021627875044941902,
0.02424701862037182,
0.01969527266919613,
0.018130594864487648,
-0.019225677475333214,
-0.049229081720113754,
0.0030554772820323706,
-0.0014584140153601766,
-0.009234427474439144,
-0.006232255604118109,
-0.00979811605066061,
0.014648662880063057,
0.027677884325385094,
-0.04092680290341377,
0.030896902084350586,
-0.026274899020791054,
-0.01029814500361681,
0.019634690135717392,
-0.014361760579049587,
0.00521554471924901,
-0.07443168759346008,
0.05068167299032211,
-0.0011521241394802928,
0.010689922608435154,
0.035973530262708664,
0.012474648654460907,
0.01860629953444004,
0.017816010862588882,
-0.0018810499459505081,
0.002240576548501849,
0.025583822280168533,
-0.05549066141247749,
-0.06924755871295929,
-0.004602967761456966,
0.012643790803849697,
-0.011011652648448944,
0.00944300927221775,
-0.011986597441136837,
0.0008408832363784313,
-0.033923689275979996,
-0.07377161830663681,
-0.04968465864658356,
0.013427110388875008,
0.07021425664424896,
0.0410902202129364,
0.011341972276568413,
0.0017300948966294527,
-0.03709310665726662,
-0.005939177703112364,
-0.04471781104803085,
0.04501360282301903,
0.05463805049657822,
0.0022472431883215904,
-0.028772929683327675,
-0.017530616372823715,
0.0316770076751709,
-0.006669769994914532,
-0.06251472234725952,
-0.0020542312413454056,
0.005179783795028925,
-0.019157864153385162,
-0.04952764883637428,
0.03673253953456879,
0.02570955641567707,
-0.035026103258132935,
0.01549422089010477,
0.012277467176318169,
-0.021788768470287323,
0.01751377433538437,
-0.023154234513640404,
-0.08878494799137115,
-0.035572607070207596,
-0.0005576419644057751,
-0.03170759230852127,
0.010314514860510826,
0.0005016804207116365,
0.010215518064796925,
0.02479466237127781,
-0.006465987302362919,
-0.0004361259052529931,
-0.009803032502532005,
0.022891657426953316,
-0.03179579973220825,
-0.018390513956546783,
0.003947473131120205,
-0.0361924022436142,
-0.014050484634935856,
0.041753944009542465,
0.012490036897361279,
-0.02168581448495388,
-0.008316805586218834,
0.01386099960654974,
0.0002971333742607385,
-0.039852455258369446,
-0.024533355608582497,
0.008199824951589108,
0.0020583022851496935,
0.03555414080619812,
0.0033892602659761906,
-0.017604969441890717,
0.0046166605316102505
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Porting new models After uploading the 4 fairseq models here it was then suggested to port 3 wmt16 and 2 wmt19 AllenAI models (Jungo Kasai, et al). The porting was a breeze, as I only had to figure out how to put all the source files together, since they were spread out through several unrelated archives. Once this was done the conversion worked without a hitch. The only issue I discovered after porting is that I was getting a lower BLEU score than the original. Jungo Kasai, the creator of these models, was very helpful at suggesting that a custom hyper-parameterlength_penalty=0.6 was used, and once I plugged that in I was getting much better results. This discovery lead me to write a new script: [run_eval_search.py](https://github.com/huggingface/transformers/blob/129fdae04033fe4adfe013b734deaec6ec34ae2e/examples/seq2seq/run_eval_search.py), which can be used to search various hyper-parameters that would lead to the best BLEU scores. Here is an example of its usage: ``` # search space export PAIR=ru-en export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=32 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py stas/wmt19-$PAIR \ $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target \ --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation \ --search="num_beams=5:8:11:15 length_penalty=0.6:0.7:0.8:0.9:1.0:1.1 early_stopping=true:false" ``` Here it searches though all the possible combinations ofnum_beams,length_penaltyandearly_stopping. Once finished executing it reports: ``` bleu | num_beams | length_penalty | early_stopping ----- | --------- | -------------- | -------------- 39.20 | 15 | 1.1 | 0 39.13 | 11 | 1.1 | 0 39.05 | 5 | 1.1 | 0 39.05 | 8 | 1.1 | 0 39.03 | 15 | 1.0 | 0 39.00 | 11 | 1.0 | 0 38.93 | 8 | 1.0 | 0 38.92 | 15 | 1.1 | 1 [...] ``` You can see that in the case oftransformersearly_stopping=Falseperforms better (fairsequses theearly_stopping=Trueequivalent). So for the 5 new models I used this script to find the best default parameters and I used those when converting the models. User can still override these parameters, when invokinggenerate(), but why not provide the best defaults. You will find the 5 ported AllenAI models [here](https://huggingface.co/models?filter=allenai&tag=fsmt). | [
0.009741680696606636,
-0.007882121950387955,
-0.026630956679582596,
-0.01995922438800335,
0.0159281175583601,
0.032596077769994736,
0.04808793589472771,
0.008107590489089489,
-0.009694261476397514,
-0.03679661080241203,
-0.04763660579919815,
-0.006072397343814373,
0.0030197612941265106,
0.03940161317586899,
0.059343479573726654,
-0.06153847649693489,
-0.04606204852461815,
-0.06423678994178772,
-0.009026004932820797,
-0.0029452918097376823,
0.03159129247069359,
-0.02682417444884777,
0.0678740069270134,
0.029551032930612564,
-0.023194048553705215,
-0.022900382056832314,
0.022978508844971657,
0.06703651696443558,
-0.0010249008191749454,
0.033872123807668686,
-0.0216201338917017,
-0.018955852836370468,
-0.08379015326499939,
-0.05798191949725151,
-0.019022341817617416,
0.10171996802091599,
-0.06426328420639038,
0.044774219393730164,
0.0325947031378746,
-0.04481298476457596,
0.012544685043394566,
0.019895996898412704,
-0.0061674565076828,
0.0624866783618927,
0.051210422068834305,
-0.0003887704515364021,
-0.05085548385977745,
-0.04063298553228378,
-0.02453232742846012,
0.04507547616958618,
0.012499554082751274,
0.017021814361214638,
-0.005128584336489439,
0.013109661638736725,
0.01175670512020588,
0.013799840584397316,
-0.013704868964850903,
-0.06399208307266235,
-0.019116424024105072,
0.03094329498708248,
-0.014613303355872631,
0.0007354567642323673,
0.01666727289557457,
0.03071090392768383,
-0.012124361470341682,
-0.03581935167312622,
-0.041604239493608475,
-0.0022461547050625086,
-0.03047790378332138,
-0.024694012477993965,
0.02927236258983612,
0.0075611695647239685,
-0.006226109340786934,
-0.09215649217367172,
-0.04427133500576019,
-0.06228182837367058,
-0.04136228561401367,
0.007429761812090874,
0.0698014572262764,
0.07141420245170593,
0.0005572038353420794,
0.039415352046489716,
0.03137127682566643,
0.011585098691284657,
0.03503844514489174,
0.053186237812042236,
0.01484895683825016,
-0.06465910375118256,
-0.06586651504039764,
0.03176528960466385,
-0.05327775701880455,
-0.11952096223831177,
-0.051253143697977066,
0.05332643538713455,
0.07228919118642807,
0.034213390201330185,
0.015297798439860344,
0.040857117623090744,
-0.004072402138262987,
0.0232267864048481,
0.024872111156582832,
0.025061801075935364,
0.04759455472230911,
-0.039257947355508804,
0.002916293917223811,
0.020466474816203117,
-0.027810685336589813,
-0.12642508745193481,
-0.021029772236943245,
-0.011886068619787693,
0.018710553646087646,
-0.012674999423325062,
-0.02205066755414009,
0.05937276780605316,
-0.030092502012848854,
0.043684594333171844,
0.022208550944924355,
-0.03964637964963913,
-0.016618642956018448,
0.06290343403816223,
0.03876430168747902,
0.07421848922967911,
0.02766847424209118,
-0.01493904646486044,
0.09017669409513474,
0.09114883095026016,
0.04587552696466446,
0.006668616086244583,
-0.004948056768625975,
-0.04332822188735008,
0.06399931013584137,
-0.0032483134418725967,
0.05049516260623932,
0.019821668043732643,
-0.03729511424899101,
-0.04235998913645744,
0.01038341037929058,
-0.013693373650312424,
0.015149162150919437,
-0.04010867327451706,
-0.01472749188542366,
0.12047199159860611,
-0.004534399136900902,
-0.0021494680549949408,
0.03233850747346878,
0.06595757603645325,
-0.0831240713596344,
0.1194395050406456,
-0.0004919713828712702,
0.021495549008250237,
-0.055527426302433014,
0.035521648824214935,
0.02810002490878105,
-0.05967104062438011,
0.0015741705428808928,
0.0216542799025774,
0.0025126200634986162,
-0.02716769091784954,
-0.007804610766470432,
-0.009887071326375008,
-0.03853268921375275,
0.025737816467881203,
-0.05301481485366821,
-0.07979598641395569,
0.0063149770721793175,
-0.009203499183058739,
-0.01417043898254633,
0.016640841960906982,
0.033993545919656754,
0.0509335994720459,
0.09007386118173599,
-0.009532725438475609,
0.09532975405454636,
-0.01498484332114458,
-0.021323012188076973,
0.04409533366560936,
0.0709185004234314,
0.06566554307937622,
-0.014027091674506664,
-0.04069056361913681,
-0.07151494175195694,
0.06227827072143555,
-0.03952176123857498,
0.05561976879835129,
0.030981292948126793,
-0.035696566104888916,
0.030692381784319878,
0.0009163401555269957,
-0.017151467502117157,
0.0016110664000734687,
-0.09632252901792526,
-0.026415666565299034,
0.10203415900468826,
0.005103130824863911,
0.02012011595070362,
0.0021764072589576244,
0.014766547828912735,
0.06868442893028259,
0.07946696132421494,
0.022327205166220665,
0.027018917724490166,
0.04216006398200989,
0.030276812613010406,
-0.035546571016311646,
0.003939931746572256,
0.07584498822689056,
-0.016421496868133545,
-0.09375730156898499,
-0.03290273994207382,
0.0271807461977005,
0.021286362782120705,
-0.08243360370397568,
0.023711081594228745,
-0.046407267451286316,
0.02112606167793274,
-0.018571749329566956,
-0.055777277797460556,
-0.04144905135035515,
0.0006014277460053563,
-0.01957223378121853,
0.13800811767578125,
0.01718328706920147,
-0.026711607351899147,
-0.0002068714238703251,
0.03361038863658905,
0.0529642328619957,
0.08304012566804886,
0.0593516044318676,
0.031208639964461327,
-0.04644738510251045,
0.004566270858049393,
-0.0244975034147501,
0.008615950122475624,
0.05997365340590477,
-0.011065906845033169,
-0.06462569534778595,
0.046038947999477386,
-0.04237412288784981,
-0.022018903866410255,
-0.04315313696861267,
0.050336044281721115,
0.07945466041564941,
0.002082093618810177,
-0.0137074189260602,
-0.020101919770240784,
-0.009395912289619446,
0.06586304306983948,
-0.009917916730046272,
-0.025821920484304428,
-0.02991531789302826,
-0.05016709491610527,
0.08322018384933472,
0.0034179019276052713,
-0.06675507873296738,
0.024796511977910995,
0.05283007770776749,
-0.0027425645384937525,
0.003911289852112532,
-0.006050969008356333,
0.04637797176837921,
-0.00873781368136406,
0.049119070172309875,
-0.045283470302820206,
-0.050085488706827164,
0.017132066190242767,
-0.05819031968712807,
-0.013609250076115131,
-0.006737215910106897,
-0.020565686747431755,
-0.025324376299977303,
-0.010190144181251526,
-0.027377892285585403,
0.011609136126935482,
-0.006823536939918995,
0.028299270197749138,
-0.022166842594742775,
0.007192505057901144,
-0.026954151690006256,
-0.056490346789360046,
-0.01836881786584854,
0.018167009577155113,
-0.04310620576143265,
0.002282386412844062,
0.006403994280844927,
0.01942918635904789,
0.017947688698768616,
-0.003852232825011015,
-0.031488992273807526,
-0.008819500915706158,
0.026978563517332077,
0.03279683738946915,
-0.013029629364609718,
0.009600299410521984,
-0.0062767812050879,
-0.04914357140660286,
-0.01889101415872574,
0.01648694835603237,
-0.00725567014887929,
0.019754352048039436,
0.039157237857580185,
-0.016914764419198036,
0.04152911156415939,
-0.013204662129282951,
0.03076395019888878,
-0.017252203077077866,
-0.004309531766921282,
0.02295621857047081,
-0.025562867522239685,
-0.07679405063390732,
0.027812769636511803,
-0.04798714071512222,
0.03406636416912079,
-0.04203890264034271,
0.007714245934039354,
0.01535440981388092,
-0.019715379923582077,
-0.00039162521716207266,
-0.005180498585104942,
0.025050610303878784,
0.015521197579801083,
0.02427472360432148,
0.024774329736828804,
-0.025249922648072243,
0.022903788834810257,
-0.06283672153949738,
0.01761840656399727,
0.024479057639837265,
-0.013820379041135311,
-0.020847629755735397,
-0.01385902427136898,
-0.028540315106511116,
-0.006966123357415199,
0.028290491551160812,
-0.0034901632461696863,
0.05366417020559311,
0.017382677644491196,
-0.054386839270591736,
-0.051523882895708084,
-0.008306127972900867,
-0.010684088803827763,
0.05572710186243057,
-0.012755009345710278,
-0.00999049749225378,
-0.06285611540079117,
0.019357649609446526,
0.01796552911400795,
-0.006234939210116863,
0.03659292683005333,
0.01619054190814495,
-0.005134273786097765,
0.026410510763525963,
-0.03429177403450012,
0.007296158000826836,
-0.00957401841878891,
0.02069089002907276,
0.02581796981394291,
0.010250485502183437,
-0.0072344820946455,
-0.042434800416231155,
-0.022774668410420418,
-0.017776966094970703,
0.06086442619562149,
-0.017416637390851974,
-0.015592110343277454,
0.023961693048477173,
0.040997255593538284,
-0.007270933128893375,
0.009911252185702324,
-0.05665336176753044,
0.015230491757392883,
-0.06605859100818634,
-0.04814346507191658,
0.019765814766287804,
0.08530037850141525,
0.010870274156332016,
0.010777798481285572,
-0.028227942064404488,
-0.01644023507833481,
-0.0584358349442482,
0.015416140668094158,
-0.03523270785808563,
-0.0008434682385995984,
-0.034380681812763214,
0.0039373477920889854,
-0.048196837306022644,
-0.08008969575166702,
0.0079589132219553,
0.04412845894694328,
-0.0054222578182816505,
-0.019342871382832527,
-0.052875615656375885,
-0.014274376444518566,
0.03483390808105469,
-0.020262736827135086,
-0.015475393272936344,
-0.04800330102443695,
0.006270734593272209,
0.029414102435112,
0.0014589776983484626,
-0.05087941512465477,
-0.03524477407336235,
-0.01183521281927824,
-0.012221720069646835,
-0.09223025292158127,
0.009759590029716492,
0.03310752287507057,
-0.0006595770246349275,
0.034860044717788696,
-0.0191706120967865,
-0.054270707070827484,
-0.023047978058457375,
-0.017117870971560478,
0.009460615925490856,
0.03161129355430603,
-0.008416851982474327,
-0.013333306647837162,
-0.019562842324376106,
0.004772503394633532,
-0.05410449206829071,
-0.001402580295689404,
-0.04953034594655037,
0.010417019948363304,
0.034590400755405426,
-0.030469389632344246,
-0.013884447515010834,
-0.024324173107743263,
-0.030188703909516335,
0.02834996208548546,
-0.021297670900821686,
-0.03777817264199257,
-0.008784284815192223,
-0.06947807967662811,
0.008066819980740547,
0.035104624927043915,
0.015328423120081425,
0.018281346186995506,
-0.022802799940109253,
0.0076271346770226955,
-0.028544314205646515,
-0.010574833489954472,
0.049938783049583435,
0.014116276055574417,
0.056484609842300415,
0.0469009093940258,
0.0025111304130405188,
0.007843646220862865,
0.008612174540758133,
-0.008146712556481361,
0.0032640425488352776,
-0.0062222229316830635,
-0.017393512651324272,
-0.03786282613873482,
0.005563821643590927,
0.052784837782382965,
0.010309807024896145,
0.0011046049185097218,
-0.040063247084617615,
0.04071621969342232,
0.057398032397031784,
-0.04835113510489464,
-0.019021758809685707,
-0.002655437681823969,
0.016830207780003548,
-0.017062215134501457,
0.028266524896025658,
-0.014013019390404224,
0.018817177042365074,
0.041214294731616974,
-0.011282240971922874,
-0.018214674666523933,
-0.03825642913579941,
0.06339790672063828,
0.005127535667270422,
-0.006036011036485434,
0.033343974500894547,
-0.07673804461956024,
-0.03672082722187042,
0.0186932235956192,
-0.04534000903367996,
-0.019459344446659088,
0.0461760088801384,
-0.06634008884429932,
-0.04556252062320709,
0.07051776349544525,
0.023470109328627586,
0.01794837787747383,
-0.036856573075056076,
-0.018674449995160103,
-0.021534180268645287,
0.013490507379174232,
0.030468091368675232,
-0.014337139204144478,
-0.036846794188022614,
0.047175534069538116,
0.03700261190533638,
0.06417980045080185,
0.009574887342751026,
-0.013256811536848545,
0.003432933473959565,
0.031009359285235405,
0.029526956379413605,
-0.030880840495228767,
-0.05510585755109787,
-0.037427403032779694,
0.03292131423950195,
-0.047043707221746445,
0.011363914236426353,
-0.011114351451396942,
0.05104873329401016,
0.02241581678390503,
-0.009425490163266659,
-0.042614273726940155,
0.03232908248901367,
-0.04637012258172035,
-0.025095311924815178,
-0.007491114549338818,
0.03035097010433674,
-0.05860774219036102,
0.031320590525865555,
0.019852932542562485,
-0.00535785173997283,
-0.017973994836211205,
0.034803494811058044,
-0.05958155170083046,
-0.005893436260521412,
0.05722517892718315,
0.013403953053057194,
0.027673611417412758,
-0.009162764064967632,
-0.03266787528991699,
-0.021558750420808792,
-0.020644893869757652,
-0.028209203854203224,
-0.03687307983636856,
0.01021620538085699,
-0.00780484126880765,
-0.0014882959658280015,
0.014078163541853428,
0.012427744455635548,
-0.024774380028247833,
-0.0017528602620586753,
0.018535660579800606,
0.02668634243309498,
0.001877989387139678,
-0.04617103561758995,
0.036092329770326614,
0.04518381878733635,
0.004160856828093529,
0.032034363597631454,
-0.025195546448230743,
-0.017138579860329628,
-0.015209304168820381,
-0.024470578879117966,
0.06163869425654411,
0.027732528746128082,
0.001026142737828195,
0.008724614977836609,
0.004873268771916628,
0.01945948228240013,
0.04191569983959198,
-0.0006129827816039324,
0.03198840469121933,
0.0034420578740537167,
-0.0010725418105721474,
0.015228447504341602,
-0.01592070609331131,
0.01540710125118494,
0.012187347747385502,
0.027736475691199303,
-0.03249431028962135,
-0.03164062649011612,
0.03881583362817764,
-0.02753979153931141,
0.03007008507847786,
-0.017273303121328354,
-0.027525441721081734,
0.016512013971805573,
-0.02233613282442093,
-0.008881396614015102,
0.014430848881602287,
-0.015847815200686455,
0.005874983500689268,
-0.009149101562798023,
-0.010162361897528172,
0.03650883957743645,
0.009704801253974438,
0.012754121795296669,
-0.006286324467509985,
0.00595852080732584,
0.01006598211824894,
0.02678840421140194,
-0.0009599659824743867,
0.04994712397456169,
0.024326125159859657,
0.09224144369363785,
0.03710967302322388,
0.01652454398572445,
0.0407426618039608,
-0.012928595766425133,
0.006518721580505371,
-0.046188835054636,
-0.0343841016292572,
-0.007928921841084957,
0.0288772564381361,
0.032088182866573334,
-0.019842812791466713,
-0.010488545522093773,
-0.011386305093765259,
0.0725344642996788,
0.021719589829444885,
0.044649213552474976,
0.01910317875444889,
0.03719864413142204,
0.029135679826140404,
-0.04294601455330849,
-0.006424959748983383,
-0.004749245475977659,
-0.008571222424507141,
-0.0075070965103805065,
0.029046079143881798,
-0.005655275657773018,
-0.003600127063691616,
-0.03360256925225258,
0.022179316729307175,
-0.04225745052099228,
-0.0027556652203202248,
-0.018781602382659912,
0.009000490419566631,
0.011234300211071968,
0.0006833531078882515,
-0.012007296085357666,
0.057701919227838516,
0.021436329931020737,
0.00667959451675415,
-0.01985189877450466,
0.008779579773545265,
-0.04851534217596054,
0.01059748511761427,
-0.02554289624094963,
0.01745627447962761,
0.012321848422288895,
-0.044598665088415146,
-0.037361204624176025,
-0.012916602194309235,
0.016895247623324394,
0.045034512877464294,
0.03240547329187393,
0.018714308738708496,
-0.03479038178920746,
0.0059199207462370396,
-0.027447765693068504,
-0.012111010029911995,
-0.03617800027132034,
0.011183562688529491,
0.008552685379981995,
0.054033391177654266,
0.01792304404079914,
0.03501298651099205,
0.010092198848724365,
0.0409461110830307,
-0.04988538846373558,
-0.00038303661858662963,
-0.029318049550056458,
-0.037919629365205765,
0.03286144137382507,
-0.03239542990922928,
-0.029462609440088272,
0.0025357615668326616,
0.03945111483335495,
0.042352791875600815,
0.04049428924918175,
0.004734524991363287,
-0.01984514854848385,
0.004722471348941326,
-0.011538087390363216,
-0.01862587407231331,
0.018698662519454956,
-0.03149718418717384,
0.04033679887652397,
0.026864338666200638,
-0.023209232836961746,
0.014317529276013374,
0.017143303528428078,
-0.026817621663212776,
0.029374388977885246,
-0.0011406997218728065,
-0.014090258628129959,
-0.03687867894768715,
0.07647278159856796,
0.02337508089840412,
0.022358987480401993,
0.04472237825393677,
-0.023127900436520576,
0.011401606723666191,
0.005231715273112059,
-0.005127245560288429,
-0.01596715673804283,
0.00015227099356707186,
-0.025409020483493805,
-0.06678489595651627,
-0.03068029321730137,
0.003164386609569192,
-0.024936925619840622,
0.020481051877141,
-0.042915914207696915,
-0.011753661558032036,
-0.05627812445163727,
-0.07525136321783066,
-0.016443908214569092,
0.01804138906300068,
0.09112318605184555,
0.046749841421842575,
-0.016058415174484253,
-0.0005466858856379986,
-0.015325715765357018,
0.021085312590003014,
-0.006256516557186842,
0.045115355402231216,
0.06436328589916229,
0.01984381303191185,
-0.005149517208337784,
-0.00016245665028691292,
0.04772947356104851,
0.01564757525920868,
-0.026494724676012993,
-0.03483516722917557,
0.010241784155368805,
-0.047592516988515854,
-0.08463793992996216,
0.0370565801858902,
0.012184514664113522,
0.0034103619400411844,
-0.025098590180277824,
0.01429254375398159,
0.004275056067854166,
0.01669931970536709,
-0.007588593754917383,
-0.052955783903598785,
-0.0007339758449234068,
-0.02687990665435791,
0.0028100174386054277,
-0.015450434759259224,
-0.032637856900691986,
-0.03186824172735214,
-0.008984995074570179,
-0.03675182908773422,
0.010163793340325356,
-0.020179426297545433,
0.0009215165046043694,
0.0020078467205166817,
0.014253648929297924,
0.04352690279483795,
-0.03444409370422363,
-0.03415157273411751,
0.03433550149202347,
0.01315395813435316,
-0.022894755005836487,
0.023000961169600487,
-0.009574449621140957,
0.003338838694617152,
-0.022712010890245438,
-0.0010022611822932959,
0.00039358483627438545,
0.0019902901258319616,
0.018173959106206894,
-0.007804499007761478,
-0.019279632717370987,
0.018233725801110268
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Porting the architecture code Now that we have the model weights and the model configuration ported, we *just* need to adjust the code copied frommodeling_bart.pyto matchfairseq's functionality. The first step was to take a sentence, encode it and then feed to thegeneratefunction - forfairseqand fortransformers. After a few very failing attempts to get somewhere (*) - I quickly realized that with the current level of complexity usingprintas debugging method will get me nowhere, and neither will the basicpdbdebugger. In order to be efficient and to be able to watch multiple variables and have watches that are code-evaluations I needed a serious visual debugger. I spent a day trying all kinds of python debuggers and only when I triedpycharmI realized that it was the tool that I needed. It was my first time usingpycharm, but I quickly figured out how to use it, as it was quite intuitive. * footnote: the model was generating 'nononono' in Russian - that was fair and hilarious! Over time I found a great feature inpycharmthat allowed me to group breakpoints by functionality and I could turn whole groups on and off depending on what I was debugging. For example, here I have beam-search related break-points off and decoder ones on: ![break point group](./assets/07_porting_fsmt/pycharm-break-point-groups.png) Now that I have used this debugger to port FSMT, I know that it would have taken me many times over to use pdb to do the same - I may have even given it up. I started with 2 scripts: * [fseq-translate](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/scripts/fseq-translate.py) * [fsmt-translate](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/scripts/fsmt-translate.py) (without thedecodepart first) running both side by side, stepping through with debugger on each side and comparing values of relevant variables - until I found the first divergence. I then studied the code, made adjustments insidemodeling_fsmt.py, restarted the debugger, quickly jumped to the point of divergence and re-checked the outputs. This cycle has been repeated multiple times until the outputs matched. The first things I had to change was to remove a few layers that weren't used byfairseqand then add some new layers it was using instead. And then the rest was primarily figuring out when to switch tosrc_vocab_sizeand when totgt_vocab_size- since in the core modules it's justvocab_size, which weren't accounting for a possible model that has 2 dictionaries. Finally, I discovered that a few hyperparameter configurations weren't the same, and so those were changed too. I first did this process for the simpler no-beam search, and once the outputs were 100% matching I repeated it with the more complicated beam search. Here, for example, I discovered thatfairseqwas using the equivalent ofearly_stopping=True, whereastransformershas it asFalseby default. When early stopping is enabled it stops looking for new candidates as soon as there are as many candidates as the beam size, whereas when it's disabled, the algorithm stops searching only when it can't find higher probability candidates than what it already has. Thefairseqpaper mentions that a huge beam size of 50 was used, which compensates for using early stopping. | [
0.05140739306807518,
0.0364992693066597,
-0.011396395042538643,
-0.006738150026649237,
0.03581136465072632,
0.05904744565486908,
0.039670418947935104,
0.04959164559841156,
-0.011825447902083397,
0.00017907262372318655,
-0.05274277180433273,
-0.005498927552253008,
-0.010695272125303745,
0.062713123857975,
0.08145357668399811,
-0.046003591269254684,
0.034578412771224976,
-0.07758501172065735,
0.005695202387869358,
0.008705826476216316,
0.046266697347164154,
-0.06579697132110596,
0.024716634303331375,
0.06571150571107864,
-0.07488111406564713,
-0.04359474778175354,
0.016370560973882675,
0.09752274304628372,
-0.11349282413721085,
0.06796569377183914,
-0.051126569509506226,
-0.010208270512521267,
-0.041869014501571655,
-0.041726406663656235,
-0.03474460542201996,
0.02403928153216839,
-0.105863556265831,
0.04513939842581749,
-0.016455473378300667,
-0.07162418216466904,
0.0060660261660814285,
-0.011354595422744751,
0.024271195754408836,
0.049219585955142975,
0.02179429866373539,
0.07678139209747314,
-0.08495642244815826,
0.06369219720363617,
-0.043263863772153854,
-0.015910981222987175,
-0.00019752192019950598,
0.03945484384894371,
-0.02300249971449375,
-0.00804358534514904,
-0.024530699476599693,
-0.0171000137925148,
-0.008025179617106915,
-0.06528635323047638,
0.0037956908345222473,
0.033110104501247406,
-0.004068015608936548,
0.009643767029047012,
0.05039828643202782,
0.020785758271813393,
0.009736677631735802,
0.015928469598293304,
-0.049134761095047,
0.052877508103847504,
-0.010376992635428905,
0.03982411324977875,
-0.06531781703233719,
-0.0027267104014754295,
-0.013467230834066868,
-0.04642942547798157,
-0.005331418011337519,
-0.08838619291782379,
-0.06596214324235916,
0.008829731494188309,
0.06689886003732681,
0.02661331556737423,
0.0026115132495760918,
0.05591792240738869,
-0.0015591453993692994,
0.0006456256960518658,
0.11633899807929993,
-0.0011346860555931926,
0.05399084463715553,
-0.04157816246151924,
0.001903340220451355,
0.043090056627988815,
-0.0354066863656044,
-0.07351364940404892,
-0.06892815977334976,
0.02321719191968441,
0.032814182341098785,
0.014661213383078575,
-0.0063599818386137486,
0.08042149245738983,
0.015972040593624115,
0.0046073319390416145,
0.01037370041012764,
-0.03776733949780464,
-0.01204313337802887,
-0.09024671465158463,
0.004983574151992798,
0.06062375009059906,
0.04948480799794197,
-0.10349638015031815,
-0.03823583945631981,
-0.015945440158247948,
-0.0326482392847538,
0.005379855632781982,
-0.05201004073023796,
0.06242610141634941,
-0.011712738312780857,
0.03275260329246521,
0.06388842314481735,
-0.05544867366552353,
-0.024997787550091743,
0.005403938237577677,
0.02176203951239586,
0.0696566179394722,
0.0449177548289299,
-0.05981047824025154,
0.0804600715637207,
0.024229474365711212,
0.0674404427409172,
0.0766354352235794,
-0.019827499985694885,
-0.06478527188301086,
0.031332824379205704,
-0.024861712008714676,
0.0362120121717453,
-0.013575242832303047,
0.012987526133656502,
-0.035338375717401505,
-0.024865174666047096,
-0.006189980078488588,
-0.018350141122937202,
0.0011002966202795506,
0.028281129896640778,
0.02750987559556961,
0.0038680178113281727,
0.033814698457717896,
-0.05993720516562462,
-0.007567132357507944,
-0.09664870798587799,
0.040453724563121796,
0.03128078952431679,
-0.03305080160498619,
-0.022400952875614166,
0.01883852481842041,
-0.03726062923669815,
-0.037337519228458405,
-0.03955112397670746,
0.049054741859436035,
0.011004854924976826,
-0.08521340042352676,
-0.08550623804330826,
0.033774927258491516,
0.03761535510420799,
0.05517130717635155,
-0.058458007872104645,
-0.05264898017048836,
-0.016594868153333664,
0.014277110807597637,
0.06284498423337936,
-0.01540922001004219,
0.02507617138326168,
0.054456617683172226,
0.01309843361377716,
-0.036953117698431015,
0.11775761097669601,
0.005954512860625982,
-0.023021768778562546,
0.0048879412934184074,
-0.004606970585882664,
0.009617218747735023,
-0.03328539431095123,
-0.03245154023170471,
-0.036775633692741394,
0.02351616881787777,
-0.03193896263837814,
0.0020658913999795914,
-0.00872417539358139,
-0.021759353578090668,
0.044541895389556885,
-0.0864265039563179,
-0.040480319410562515,
0.004719010088592768,
-0.10586392134428024,
0.012168357148766518,
0.10275327414274216,
-0.0015761347021907568,
0.044596824795007706,
-0.030862795189023018,
-0.020217735320329666,
0.06057346612215042,
0.07002952694892883,
0.025279778987169266,
0.06971842050552368,
-0.05730607733130455,
0.008593142032623291,
0.041814252734184265,
0.035767894238233566,
0.026974257081747055,
0.018758658319711685,
-0.03625796362757683,
0.024930207058787346,
0.051000889390707016,
0.005680846516042948,
-0.08054511994123459,
-0.0014072040794417262,
-0.04400330409407616,
0.0557858981192112,
-0.04187432676553726,
-0.03389333188533783,
-0.017307979986071587,
-0.017017167061567307,
-0.010353391058743,
0.11831521987915039,
-0.057740528136491776,
-0.05363047122955322,
-0.0288353580981493,
-0.0219779834151268,
0.028159253299236298,
0.07957077026367188,
0.07480596005916595,
0.06339438259601593,
-0.0498436838388443,
-0.030604183673858643,
0.01320585235953331,
0.009673643857240677,
0.01064764242619276,
-0.030178144574165344,
-0.017527442425489426,
0.001074333325959742,
0.014132081530988216,
0.05100485682487488,
-0.05843657627701759,
0.06500322371721268,
0.03371622785925865,
-0.01210301835089922,
-0.016520457342267036,
-0.0027345046401023865,
-0.023747095838189125,
0.0426415279507637,
-0.03666895627975464,
0.006123772356659174,
-0.039084501564502716,
0.013472188264131546,
0.04997922107577324,
-0.027948526665568352,
-0.046709947288036346,
0.04491277411580086,
-0.0009878884302452207,
0.02877955138683319,
0.005339362192898989,
-0.03380655124783516,
0.06520704180002213,
-0.043629810214042664,
0.026503711938858032,
-0.028077442198991776,
-0.07567567378282547,
-0.006560491397976875,
-0.01826239749789238,
0.007011357229202986,
-0.01797972247004509,
-0.03513838350772858,
-0.0008334420272149146,
-0.0025566068943589926,
-0.04286173731088638,
0.0047381604090332985,
-0.011819335632026196,
0.048652131110429764,
0.0012716149212792516,
-0.03301548212766647,
-0.02685081586241722,
-0.049403659999370575,
-0.010987840592861176,
-0.023535355925559998,
-0.03132312744855881,
0.003849239554256201,
0.010256830602884293,
0.010859689675271511,
0.003259564284235239,
-0.0036068016197532415,
0.017261430621147156,
-0.020486466586589813,
0.041186537593603134,
0.07394901663064957,
0.01973319798707962,
0.011686796322464943,
0.014059042558073997,
-0.00858499575406313,
0.003502140287309885,
-0.0015314160846173763,
-0.031358812004327774,
-0.0071908580139279366,
0.04346960783004761,
-0.05547935515642166,
0.0040918500162661076,
-0.004458789248019457,
-0.014997321180999279,
-0.07379169017076492,
-0.015645014122128487,
0.02118978649377823,
0.006233503110706806,
-0.08843886852264404,
0.027206245809793472,
-0.031566813588142395,
0.002122236881405115,
-0.019958265125751495,
-0.0014151778304949403,
0.0008430723682977259,
-0.028917238116264343,
-0.007971777580678463,
0.007632487919181585,
0.02023010514676571,
0.003587607992812991,
0.02587939240038395,
0.01567268557846546,
-0.036368273198604584,
0.028375159949064255,
-0.03201606124639511,
0.015468046069145203,
0.04641183838248253,
-0.039413802325725555,
0.003562338650226593,
0.012844264507293701,
-0.020835118368268013,
-0.027171848341822624,
-0.015137648209929466,
-0.034454796463251114,
0.013706060126423836,
-0.024042952805757523,
-0.020904861390590668,
-0.025111664086580276,
0.017026925459504128,
-0.015051821246743202,
0.007969827391207218,
-0.020069841295480728,
-0.018657134845852852,
-0.025219712406396866,
-0.023611335083842278,
0.014395257458090782,
-0.002256415318697691,
0.03502664715051651,
0.003757300553843379,
0.019456233829259872,
0.024671345949172974,
0.013281469233334064,
0.04503187909722328,
0.012900675646960735,
-0.002949554705992341,
0.009028807282447815,
0.010908880271017551,
-0.0016066639218479395,
-0.03325998783111572,
-0.020675070583820343,
-0.00788668543100357,
0.0821322426199913,
-0.0017268153605982661,
-0.02208196185529232,
-0.004331726115196943,
0.004241583403199911,
0.04623188450932503,
0.011907755397260189,
-0.0467708557844162,
0.05442454293370247,
-0.011936327442526817,
-0.05462353304028511,
-0.00787094235420227,
0.0511392317712307,
0.012829077430069447,
0.01562529243528843,
-0.017646921798586845,
-0.009509935043752193,
0.006442775018513203,
-0.00019988056737929583,
0.005336860194802284,
-0.0019665989093482494,
-0.03496631979942322,
0.027969907969236374,
-0.06342485547065735,
-0.06006144732236862,
0.02552420273423195,
0.01799406111240387,
0.028105562552809715,
-0.045393384993076324,
-0.05304286256432533,
-0.020539533346891403,
0.05092928558588028,
0.023416360840201378,
-0.01585123874247074,
-0.02906523272395134,
0.009115724824368954,
0.005555071868002415,
0.02983124926686287,
-0.03886301442980766,
-0.015779171139001846,
-0.007841920480132103,
-0.02952762506902218,
0.003939621150493622,
-0.0016691945493221283,
-0.021760525181889534,
-0.003076235530897975,
0.02686249651014805,
-0.013075027614831924,
-0.06372887641191483,
-0.03781477361917496,
-0.004376100841909647,
0.023171424865722656,
0.01608225889503956,
-0.053535059094429016,
0.003289339132606983,
-0.005628904327750206,
-0.007909570820629597,
-0.057837437838315964,
0.03206256031990051,
0.002787800971418619,
-0.006252205464988947,
0.034195952117443085,
0.02403370849788189,
0.023909954354166985,
-0.055511001497507095,
-0.026829559355974197,
0.021345658227801323,
-0.03441017121076584,
-0.040369912981987,
0.015279142186045647,
-0.036056458950042725,
-0.006573338992893696,
-0.02040577307343483,
0.05769564211368561,
0.02461724914610386,
0.000927812303416431,
-0.0070279366336762905,
-0.020745661109685898,
-0.008019199594855309,
0.045756030827760696,
0.013703844510018826,
0.05003424733877182,
0.0389581099152565,
0.045056700706481934,
-0.004461741074919701,
0.03123783878982067,
-0.007550612557679415,
-0.01167924515902996,
-0.014841725118458271,
0.01927327737212181,
-0.021851684898138046,
0.005290060304105282,
0.015631800517439842,
0.0014597018016502261,
0.045986782759428024,
-0.040542393922805786,
0.04226769506931305,
0.02021723985671997,
-0.02333659864962101,
-0.008424132131040096,
-0.03615150600671768,
0.037257906049489975,
0.0014284311328083277,
0.03182884305715561,
0.028250284492969513,
0.001328907092101872,
0.03569602221250534,
0.01967473328113556,
0.008739807642996311,
-0.014070226810872555,
0.004930255468934774,
-0.0060441140085458755,
0.03117869794368744,
0.036855265498161316,
-0.04488981515169144,
-0.024545850232243538,
0.007130000740289688,
-0.07742655277252197,
0.037809353321790695,
0.026345882564783096,
-0.039982087910175323,
0.01024678722023964,
0.07463904470205307,
-0.0034372524823993444,
0.03511649742722511,
-0.06050726771354675,
-0.021547013893723488,
-0.02171989157795906,
-0.014103744179010391,
0.005231468006968498,
0.016022779047489166,
0.003808363573625684,
0.05305902287364006,
0.017037898302078247,
0.03944569081068039,
-0.02309424802660942,
0.027282660827040672,
0.027138197794556618,
0.02752581797540188,
0.01633453369140625,
0.006689711008220911,
-0.019165396690368652,
-0.03246428072452545,
0.016595635563135147,
-0.03870036453008652,
-0.01223402377218008,
0.00861433707177639,
0.009679632261395454,
0.032700058072805405,
0.014487413689494133,
-0.05906103551387787,
0.04028170555830002,
0.01350462157279253,
-0.026657110080122948,
-0.04391103610396385,
0.02590971253812313,
-0.008929123170673847,
0.08212359249591827,
0.009794222190976143,
-0.04180840402841568,
0.015442189760506153,
0.023508425801992416,
-0.03409934416413307,
-0.018943872302770615,
-0.0015666570980101824,
-0.014983395114541054,
0.005109706427901983,
0.020151732489466667,
-0.04853752627968788,
-0.03469454497098923,
0.05843999981880188,
0.0006805027951486409,
-0.017185214906930923,
-0.006714681629091501,
-0.0071311951614916325,
0.01962178200483322,
0.03898584097623825,
0.04088381305336952,
-0.01624910905957222,
0.017250770702958107,
0.047844048589468,
0.026120508089661598,
-0.0839795470237732,
-0.057289909571409225,
0.003008500440046191,
0.027641860768198967,
-0.00901732500642538,
0.005997306667268276,
-0.036280885338783264,
0.01689213141798973,
0.003503774292767048,
-0.022481953725218773,
0.033456508070230484,
0.05231097340583801,
-0.003435450838878751,
0.021082714200019836,
0.0283046867698431,
0.021490897983312607,
0.03577118739485741,
0.04337030649185181,
-0.013201078400015831,
-0.010978242382407188,
0.0036553852260112762,
0.02851399965584278,
0.011903079226613045,
0.06563308835029602,
0.00020923090050928295,
-0.004748559556901455,
-0.054418716579675674,
-0.007908171974122524,
0.026398826390504837,
-0.005290191154927015,
-0.013055712915956974,
0.020701460540294647,
-0.05808008089661598,
-0.01022225059568882,
-0.032912079244852066,
0.013271268457174301,
0.019051391631364822,
0.028649527579545975,
0.008276782929897308,
0.003390828613191843,
-0.04224640130996704,
0.011429009959101677,
0.041102755814790726,
0.028158267959952354,
-0.003843532642349601,
0.0056068808771669865,
0.032437749207019806,
0.00835565384477377,
-0.017237156629562378,
0.05652720481157303,
0.023025183007121086,
0.05872279778122902,
0.04234959930181503,
-0.0027129151858389378,
0.04712964594364166,
-0.010724298655986786,
0.006395547650754452,
-0.08486592769622803,
-0.020551523193717003,
-0.03246953338384628,
0.016140876337885857,
0.03795987740159035,
-0.02774830535054207,
0.010190614499151707,
-0.021259641274809837,
0.06998030841350555,
0.02979620173573494,
0.0009677725029177964,
0.009756030514836311,
0.030432596802711487,
0.020667770877480507,
-0.0064093307591974735,
-0.0035812004934996367,
-0.00958190392702818,
0.0309726744890213,
-0.018534671515226364,
0.03442865610122681,
-0.01866876520216465,
-0.007898872718214989,
0.0011668078368529677,
0.02848629467189312,
-0.026647690683603287,
-0.007098648697137833,
-0.0061982679180800915,
0.05371427536010742,
0.0020352951250970364,
0.010193263180553913,
0.006998257711529732,
-0.009205845184624195,
-0.02162592113018036,
-0.020815730094909668,
-0.03223494812846184,
-0.025026071816682816,
-0.03361473232507706,
0.018296338617801666,
-0.04926645755767822,
0.015613057650625706,
-0.003638154361397028,
-0.001243444625288248,
-0.015344073064625263,
-0.011926131322979927,
-0.007596906740218401,
0.0033723029773682356,
0.05884098634123802,
0.013155537657439709,
-0.0013026909437030554,
0.014888948760926723,
-0.037479475140571594,
0.011058120056986809,
-0.04386226832866669,
0.029295790940523148,
0.05956719443202019,
0.016628598794341087,
-0.014230377040803432,
0.061518918722867966,
-0.005355712026357651,
0.021638913080096245,
-0.04346342384815216,
0.008664537221193314,
-0.002238529035821557,
-0.06960473954677582,
0.03180655092000961,
0.004368519876152277,
-0.00973824318498373,
0.027859732508659363,
-0.0065688034519553185,
-0.0020692634861916304,
0.02643411234021187,
-0.02374027483165264,
-0.09097818285226822,
0.022948574274778366,
-0.004393791779875755,
-0.007717805914580822,
-0.00409501139074564,
-0.00018059965805150568,
0.018881039693951607,
0.042086176574230194,
-0.05543997138738632,
0.06046384945511818,
0.008256116881966591,
-0.014555712230503559,
0.03686972334980965,
-0.05144134536385536,
0.007798990700393915,
-0.03650832176208496,
0.09099370986223221,
0.03075604885816574,
0.034336548298597336,
0.007721107918769121,
0.03835294768214226,
0.02193927764892578,
0.005119169130921364,
0.007033287547528744,
-0.009024432860314846,
0.0077092526480555534,
-0.04766147583723068,
-0.03329344838857651,
0.0291889775544405,
0.04099077358841896,
-0.013530745171010494,
0.021061208099126816,
0.020614568144083023,
-0.002889252034947276,
-0.021876826882362366,
-0.051231469959020615,
0.008348843082785606,
0.011156236752867699,
0.054837245494127274,
0.03939838707447052,
0.005251820664852858,
0.024106841534376144,
-0.035000719130039215,
0.011975616216659546,
-0.036006104201078415,
0.00923344399780035,
0.044340830296278,
0.009853478521108627,
-0.02317078597843647,
0.004744912032037973,
0.0006738482625223696,
0.00941283255815506,
-0.018901865929365158,
-0.03695601969957352,
0.03183980658650398,
-0.045962464064359665,
-0.08776727318763733,
-0.029822954908013344,
0.024494795128703117,
-0.03664067015051842,
0.010856871493160725,
0.01260001864284277,
0.018893441185355186,
-0.004051233176141977,
-0.027234146371483803,
-0.08144071698188782,
-0.04322630167007446,
-0.006781165953725576,
0.02796553075313568,
-0.00014400325017049909,
0.0011229906231164932,
-0.022132031619548798,
0.002344638342037797,
-0.0026158310938626528,
0.02750418521463871,
0.0046435147523880005,
-0.022003835067152977,
0.006584998685866594,
-0.012365603819489479,
0.035711757838726044,
-0.022153187543153763,
-0.04202721267938614,
0.026263652369379997,
0.03911127895116806,
-0.03579546511173248,
0.0184733085334301,
0.02840697020292282,
0.004908696748316288,
-0.02166864089667797,
0.001870836247690022,
0.011553163640201092,
0.029011724516749382,
0.030605625361204147,
-0.002108781598508358,
0.01580105535686016,
0.023943256586790085
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | AutoConfig, AutoTokenizer, etc. One other change I needed to do is to plug the newly ported model into the automated modeltransformerssystem. This is used primarily on the [models website](https://huggingface.co/models) to load the model configuration, tokenizer and the main class without providing any specific class names. For example, in the case ofFSMTone can do: ``` from transformers import AutoTokenizer, AutoModelWithLMHead mname = "facebook/wmt19-en-ru" tokenizer = AutoTokenizer.from_pretrained(mname) model = AutoModelWithLMHead.from_pretrained(mname) ``` There are 3autofiles that have mappings to enable that: ``` -rw-rw-r-- 1 stas stas 16K Sep 23 13:53 src/transformers/configuration_auto.py -rw-rw-r-- 1 stas stas 65K Sep 23 13:53 src/transformers/modeling_auto.py -rw-rw-r-- 1 stas stas 13K Sep 23 13:53 src/transformers/tokenization_auto.py ``` Then the are the pipelines, which completely hide all the NLP complexities from the end user and provide a very simple API to just pick a model and use it for a task at hand. For example, here is how one could perform a summarization task usingpipeline: ``` summarizer = pipeline("summarization", model="t5-base", tokenizer="t5-base") summary = summarizer("Some long document here", min_length=5, max_length=20) print(summary) ``` The translation pipelines are a work in progress as of this writing, watch [this document](https://huggingface.co/transformers/main_classes/pipelines.html) for updates for when translation will be supported (currently only a few specific models/languages are supported). Finally, there issrc/transforers/init.pyto edit so that one could do: ``` from transformers import FSMTTokenizer, FSMTForConditionalGeneration ``` instead of: ``` from transformers.tokenization_fsmt import FSMTTokenizer from transformers.modeling_fsmt import FSMTForConditionalGeneration ``` but either way works. To find all the places I needed to plug FSMT in, I mimickedBartConfig,BartForConditionalGenerationandBartTokenizer. I justgrepped which files had it and inserted corresponding entries forFSMTConfig,FSMTForConditionalGenerationandFSMTTokenizer. ``` $ egrep -l "(BartConfig|BartForConditionalGeneration|BartTokenizer)" src/transformers/*.py \ | egrep -v "(marian|bart|pegasus|rag|fsmt)" src/transformers/configuration_auto.py src/transformers/generation_utils.py src/transformers/__init__.py src/transformers/modeling_auto.py src/transformers/pipelines.py src/transformers/tokenization_auto.py ``` In thegrepsearch I excluded the files that also include those classes. | [
0.011006715707480907,
-0.009839639067649841,
0.00028425725759007037,
-0.03892533481121063,
0.04587654396891594,
0.070457324385643,
0.049711234867572784,
0.04543032497167587,
-0.04088575392961502,
0.003264590399339795,
-0.0901782438158989,
0.04801294952630997,
-0.01751272939145565,
0.04928626865148544,
0.03648179769515991,
-0.024988679215312004,
0.00020057093934156,
-0.0028139548376202583,
-0.004724579863250256,
0.00014127847680356354,
0.004651768133044243,
-0.07581033557653427,
0.05572362616658211,
0.02485726773738861,
-0.03027159906923771,
-0.07901106774806976,
0.03847535699605942,
0.05073767527937889,
-0.07464040815830231,
0.05384570732712746,
-0.08149153739213943,
-0.022235097363591194,
-0.037657491862773895,
-0.021558178588747978,
0.0020483157131820917,
0.030178550630807877,
-0.1038973331451416,
0.016978729516267776,
0.03841950371861458,
-0.026313794776797295,
-0.026534060016274452,
-0.002954476047307253,
-0.021755576133728027,
0.06887415051460266,
0.025606507435441017,
0.012517928145825863,
-0.19963614642620087,
0.07457779347896576,
0.015805479139089584,
-0.04033065214753151,
-0.04110606387257576,
0.02151656523346901,
-0.02465863525867462,
-0.00240995897911489,
0.025103336200118065,
-0.00656497897580266,
-0.009363668970763683,
-0.05264557525515556,
-0.0014099028194323182,
-0.030914142727851868,
0.01156898308545351,
0.010820416733622551,
0.008561850525438786,
0.0599261038005352,
0.021912412717938423,
-0.004139626398682594,
-0.08513372391462326,
-0.05686458572745323,
-0.05179503560066223,
-0.034764185547828674,
0.0020451101008802652,
-0.05841368809342384,
-0.018877379596233368,
-0.06142594665288925,
0.0035837902687489986,
-0.05336543172597885,
0.011637087911367416,
0.0024604478385299444,
0.043059900403022766,
0.06944138556718826,
0.020929692313075066,
0.05551178753376007,
0.022400392219424248,
0.061581168323755264,
0.03895726427435875,
-0.01308394130319357,
0.022213347256183624,
-0.04091571643948555,
-0.02143232524394989,
0.01560092531144619,
-0.015141499228775501,
-0.11685524135828018,
-0.003288073232397437,
-0.0031848761718720198,
0.07495354115962982,
-0.016464034095406532,
-0.006616718135774136,
0.03179968520998955,
0.0048347534611821175,
-0.04545203223824501,
0.005154885351657867,
-0.06010935828089714,
-0.023927001282572746,
-0.06762594729661942,
-0.018498467281460762,
0.019771046936511993,
0.023723013699054718,
-0.09272781014442444,
-0.03154461830854416,
-0.002852779347449541,
0.02111600711941719,
-0.059710677713155746,
0.009357198141515255,
0.09465161710977554,
-0.07273983955383301,
0.011852987110614777,
-0.030456870794296265,
-0.04207099974155426,
0.012352601625025272,
0.04507865384221077,
0.028290342539548874,
0.08476172387599945,
0.06242884323000908,
-0.02808496169745922,
0.038830965757369995,
0.09070871770381927,
0.061782244592905045,
0.04716422036290169,
0.009610766544938087,
-0.0767645388841629,
-0.00012036867701681331,
0.0017276976723223925,
0.09456157684326172,
0.0283284243196249,
-0.0010143688414245844,
-0.0386844165623188,
0.013408712111413479,
-0.059945493936538696,
0.02389112487435341,
0.00020461274834815413,
-0.013774525374174118,
0.06187155470252037,
-0.050584595650434494,
0.028576157987117767,
0.013141331262886524,
0.01521483063697815,
-0.10333278775215149,
0.0705408826470375,
-0.050122592598199844,
0.02268028073012829,
-0.059342801570892334,
0.03020278923213482,
-0.04522312059998512,
-0.018810514360666275,
0.03461873158812523,
0.06286714971065521,
-0.00141853594686836,
-0.027822008356451988,
-0.07024136930704117,
-0.01660725846886635,
0.013933985494077206,
0.04408068209886551,
-0.0555051825940609,
-0.018069060519337654,
0.020269334316253662,
-0.0037087812088429928,
-0.021602997556328773,
0.0552108995616436,
0.06700460612773895,
-0.029373999685049057,
0.06029129773378372,
-0.05672241002321243,
0.05965216085314751,
-0.025036191567778587,
0.014109057374298573,
0.06876808404922485,
0.04962825030088425,
0.04971583932638168,
-0.030104009434580803,
0.010052510537207127,
-0.07492996007204056,
0.09491434693336487,
-0.036944352090358734,
0.03655504807829857,
0.04306212440133095,
-0.07223141193389893,
0.027159733697772026,
-0.010290078818798065,
-0.027078377082943916,
-0.00017080399265978485,
-0.03420092910528183,
-0.028945837169885635,
0.07249483466148376,
0.016613254323601723,
0.0571005679666996,
-0.03666383773088455,
-0.014743681065738201,
0.13067102432250977,
0.01993262581527233,
0.08118771016597748,
0.04966805875301361,
-0.007394228596240282,
-0.005716288462281227,
-0.002908530877903104,
-0.006327418144792318,
0.03919316828250885,
-0.02573642134666443,
-0.08180264383554459,
0.025343038141727448,
0.003939653281122446,
0.018317537382245064,
-0.11723949015140533,
0.045283813029527664,
-0.049485430121421814,
-0.021429238840937614,
-0.07768852263689041,
-0.06485410779714584,
0.0014473513001576066,
0.00917850062251091,
-0.01250505167990923,
0.15210236608982086,
-0.06685805320739746,
-0.006381022743880749,
-0.0380290150642395,
-0.05646431818604469,
0.02783230133354664,
0.09070060402154922,
0.07364314049482346,
0.08054666966199875,
-0.060846131294965744,
-0.038849882781505585,
-0.0622614249587059,
-0.02254515141248703,
0.027717454358935356,
-0.00342247704975307,
0.002027029637247324,
-0.002938712714239955,
-0.020259639248251915,
-0.00825429242104292,
-0.006262816023081541,
0.01947370357811451,
-0.01531550195068121,
0.0546884723007679,
0.0001122520916396752,
-0.027332613244652748,
0.047378815710544586,
0.0682162344455719,
0.01559544075280428,
-0.05058423429727554,
-0.02174324542284012,
-0.04485226795077324,
0.05926881730556488,
0.034974902868270874,
-0.05713970214128494,
0.06474673748016357,
0.02243483066558838,
-0.02177402377128601,
0.04533897340297699,
-0.031229620799422264,
0.0601230263710022,
0.01158301904797554,
-0.005219900980591774,
-0.04987599700689316,
-0.04014790058135986,
-0.02146824821829796,
-0.052090346813201904,
-0.013918229378759861,
0.008298716507852077,
-0.0032648942433297634,
0.026238294318318367,
0.018004754558205605,
-0.013840802013874054,
0.007517671212553978,
0.02612735517323017,
0.03445947915315628,
0.03944239392876625,
0.025788582861423492,
-0.013500082306563854,
-0.04526996985077858,
-0.006902766413986683,
0.0024919083807617426,
-0.03374246507883072,
0.010670485906302929,
0.02935979887843132,
0.00236560613848269,
-0.02368561550974846,
-0.01594841107726097,
-0.033143024891614914,
-0.04963906481862068,
0.011658694595098495,
0.02807016856968403,
0.027718067169189453,
0.02039787545800209,
-0.0003731496981345117,
-0.005215844139456749,
0.023933492600917816,
0.03361652046442032,
-0.011036921292543411,
-0.0015336282085627317,
0.06487855315208435,
-0.0000032396135338785825,
0.004877496510744095,
0.01356715802103281,
0.03095489740371704,
-0.0343451201915741,
0.050395432859659195,
0.02531610243022442,
-0.007003756705671549,
-0.11196140944957733,
-0.02847595140337944,
-0.005678724031895399,
0.04009436070919037,
0.005292775109410286,
-0.02230316586792469,
0.03332076966762543,
-0.002614029450342059,
-0.010109730996191502,
0.01831011474132538,
-0.003994074650108814,
0.006125745363533497,
0.032992780208587646,
-0.0028062209021300077,
-0.037129469215869904,
0.01207172404974699,
-0.036177922040224075,
-0.028172684833407402,
0.02662106789648533,
0.015346242114901543,
-0.028348391875624657,
0.012707562185823917,
0.005850468762218952,
0.004097826778888702,
0.0016754674725234509,
-0.01785936765372753,
0.04952754080295563,
0.029042795300483704,
0.018360311165452003,
-0.017133383080363274,
0.00959920696914196,
0.006954179611057043,
0.01809169165790081,
0.003778517711907625,
-0.004534944426268339,
-0.012800588272511959,
-0.012120862491428852,
0.04056905582547188,
-0.00883643701672554,
0.018893858417868614,
0.020022470504045486,
-0.00924511719495058,
0.033870525658130646,
-0.004370053764432669,
0.008414759300649166,
-0.023029062896966934,
-0.004039329010993242,
0.001388006960041821,
0.01785397343337536,
-0.004489388782531023,
-0.031246790662407875,
-0.01936277188360691,
0.027718808501958847,
0.07120750844478607,
0.005003162659704685,
-0.022944027557969093,
-0.03308255597949028,
0.026743803173303604,
0.009409847669303417,
-0.01848197914659977,
-0.05425771698355675,
0.0024719638749957085,
-0.03891373798251152,
0.00016140364459715784,
-0.04415414482355118,
0.07636024057865143,
-0.0022655411157757044,
0.018863091245293617,
-0.011477074585855007,
0.033316854387521744,
-0.027307631447911263,
0.06563349068164825,
-0.0037882502656430006,
0.0071578179486095905,
-0.027641121298074722,
0.0062350076623260975,
-0.05789874121546745,
-0.07989195734262466,
0.05722469091415405,
0.03494696691632271,
0.0007321937591768801,
-0.0022540180943906307,
-0.018913568928837776,
0.004181440453976393,
-0.026225496083498,
-0.00034660653909668326,
0.030781036242842674,
0.0006860438152216375,
0.018260641023516655,
0.061797093600034714,
0.01712913066148758,
-0.029379818588495255,
0.011628812178969383,
-0.03143302723765373,
-0.029980964958667755,
-0.013500549830496311,
-0.0020723817870020866,
-0.0011920921970158815,
0.012827145867049694,
0.012347318232059479,
0.03418401628732681,
-0.029899831861257553,
-0.017505120486021042,
-0.018081389367580414,
0.004875007551163435,
0.020335642620921135,
-0.059133827686309814,
-0.04653763025999069,
0.015355485491454601,
-0.014021388255059719,
0.009974039159715176,
-0.023902377113699913,
-0.011145344004034996,
-0.039793167263269424,
0.033605750650167465,
0.04304209351539612,
-0.017653971910476685,
-0.03307135030627251,
-0.03733537346124649,
0.02043762244284153,
-0.02154422737658024,
0.0018745369743555784,
0.004871393088251352,
-0.020012805238366127,
0.004986633080989122,
0.003881108248606324,
0.04807962849736214,
0.06582897901535034,
-0.00004846749288844876,
0.0010800458258017898,
-0.03741637244820595,
-0.006628344301134348,
0.03778747096657753,
0.016222668811678886,
0.021462436765432358,
0.024535948410630226,
0.006355177145451307,
0.018284451216459274,
0.029347816482186317,
-0.006810181308537722,
-0.03926258906722069,
-0.0005613109678961337,
0.011895931325852871,
-0.03040376864373684,
0.0396309532225132,
0.006715264171361923,
-0.04009385034441948,
-0.00469245295971632,
-0.012697458267211914,
0.02672182023525238,
0.028441868722438812,
-0.018766378983855247,
-0.03752487152814865,
0.0019481494091451168,
0.039352815598249435,
-0.011696024797856808,
-0.0044305757619440556,
0.021808378398418427,
-0.006350749637931585,
0.0409030020236969,
-0.028261465951800346,
-0.010007085278630257,
-0.020787518471479416,
0.02494852803647518,
0.02173091657459736,
0.009252103976905346,
-0.010761186480522156,
-0.07065801322460175,
-0.014712903648614883,
0.01914934068918228,
-0.035030875355005264,
0.005380938295274973,
0.0038313104305416346,
-0.04879894480109215,
-0.010729256086051464,
0.0518152117729187,
0.04135424643754959,
0.017207808792591095,
-0.03490310162305832,
-0.02112518437206745,
-0.0023852449376136065,
-0.015063637867569923,
0.005861880257725716,
-0.009160629473626614,
-0.02050943300127983,
0.03160439431667328,
0.05549284443259239,
0.049562718719244,
0.027824964374303818,
0.04820040613412857,
-0.013947611674666405,
-0.007360423449426889,
-0.010547344572842121,
-0.03416664898395538,
-0.012489594519138336,
-0.020995192229747772,
0.020476488396525383,
0.019743885844945908,
0.011952740140259266,
-0.01415977068245411,
0.024715103209018707,
0.05977195128798485,
-0.010362226516008377,
-0.05656343325972557,
0.03199109062552452,
0.014555249363183975,
0.03552567586302757,
-0.05317047983407974,
0.04813363403081894,
-0.028204774484038353,
0.009096414782106876,
-0.009242038242518902,
-0.0019132656743749976,
0.004033620003610849,
0.02458941377699375,
-0.003517050761729479,
-0.02115785703063011,
0.03753921017050743,
0.020608998835086823,
0.028800776228308678,
0.0068311854265630245,
-0.025088336318731308,
-0.019451720640063286,
-0.0018040803261101246,
0.03472704440355301,
-0.02130199410021305,
0.0024290727451443672,
0.003715764731168747,
-0.03382458537817001,
0.018017727881669998,
0.006578434724360704,
0.011514303274452686,
-0.01777111180126667,
0.041080135852098465,
0.03225792571902275,
-0.02576782926917076,
-0.05160515755414963,
0.031149432063102722,
0.037342965602874756,
-0.022714538499712944,
0.018589308485388756,
-0.0038670573849231005,
-0.04524365812540054,
-0.011236601509153843,
-0.04353057220578194,
0.03463534265756607,
0.047507308423519135,
0.012556909583508968,
0.008624991402029991,
0.009779488667845726,
0.02172992192208767,
0.045984361320734024,
-0.024214722216129303,
-0.010097550228238106,
0.0049307518638670444,
0.01660156063735485,
0.00833909586071968,
0.05652739480137825,
0.01948796771466732,
-0.009357905015349388,
0.02704560197889805,
-0.06997424364089966,
-0.01769130676984787,
0.00845697708427906,
-0.0019907646346837282,
0.003799916012212634,
0.008191398344933987,
-0.05053144320845604,
0.0003388752229511738,
0.0180197823792696,
0.008089997805655003,
0.03675535321235657,
0.022550372406840324,
0.01491718553006649,
-0.018572978675365448,
-0.023892050608992577,
0.018805937841534615,
0.05176252871751785,
-0.025644350796937943,
0.032722193747758865,
0.01312192715704441,
0.028467079624533653,
0.04850175604224205,
0.016635768115520477,
0.012015222571790218,
0.010361555963754654,
0.07854828238487244,
0.026484062895178795,
-0.008329727686941624,
0.021401746198534966,
0.0072526102885603905,
0.009112587198615074,
-0.03946772962808609,
0.0246876273304224,
0.015361903235316277,
0.004646271001547575,
0.033542487770318985,
-0.007779364939779043,
0.006417563185095787,
0.0025466084480285645,
0.06004388630390167,
0.032609373331069946,
-0.0019345475593581796,
0.0017354623414576054,
0.02179730497300625,
0.02344515733420849,
-0.016486871987581253,
0.026297086849808693,
0.026698578149080276,
0.021025652065873146,
-0.004333143122494221,
0.056580156087875366,
-0.0021407988388091326,
0.03148306906223297,
-0.028169913217425346,
0.02118425816297531,
0.021355804055929184,
-0.06374812126159668,
-0.03797013685107231,
0.014871147461235523,
-0.0042486730962991714,
-0.018092330545186996,
-0.014010454528033733,
0.028020387515425682,
-0.05192137509584427,
0.01188313215970993,
0.005945974495261908,
-0.01923319324851036,
-0.031199265271425247,
-0.0023063444532454014,
0.0032893891911953688,
0.0484808087348938,
0.002974536269903183,
-0.0021911687217652798,
0.013105925172567368,
0.007456175982952118,
0.01627221889793873,
0.013790356926620007,
0.0246206596493721,
-0.022659597918391228,
-0.011083830147981644,
-0.016725096851587296,
-0.016905473545193672,
0.009445184841752052,
0.006198224611580372,
-0.02663455344736576,
0.0102273840457201,
0.029083438217639923,
0.0001291770167881623,
0.033337514847517014,
0.007299460470676422,
0.01106642372906208,
-0.04911871254444122,
-0.001587121281772852,
-0.011555563658475876,
-0.013756615109741688,
0.019281966611742973,
-0.06497503072023392,
-0.009317458607256413,
-0.016504677012562752,
0.015360569581389427,
0.040778085589408875,
0.03781694546341896,
-0.023313531652092934,
-0.0494898222386837,
0.006745691876858473,
-0.015319518744945526,
-0.042400144040584564,
0.0514608770608902,
-0.008540082722902298,
0.014156891964375973,
0.015039958991110325,
-0.014327514916658401,
-0.02892846055328846,
-0.007446031551808119,
-0.005633853841573,
0.04617445170879364,
0.009347064420580864,
-0.017470013350248337,
0.020642053335905075,
0.04435240477323532,
0.023160582408308983,
0.01689775660634041,
0.03367156907916069,
0.003695594146847725,
0.02657572738826275,
-0.02639824151992798,
0.004512808285653591,
-0.04028201848268509,
0.020729511976242065,
-0.04116590693593025,
-0.05523912236094475,
-0.005804357584565878,
-0.005074481479823589,
-0.0028417266439646482,
0.028786493465304375,
-0.0578937754034996,
-0.004525910597294569,
-0.036591894924640656,
-0.03703201189637184,
-0.00423802062869072,
0.01243550144135952,
0.051181793212890625,
0.03840620815753937,
-0.015641339123249054,
0.04159621149301529,
-0.04856901615858078,
0.02112744376063347,
-0.027388716116547585,
0.025170139968395233,
0.07101428508758545,
0.01847284846007824,
-0.008302011527121067,
-0.001886530313640833,
0.0390971302986145,
-0.00921177864074707,
-0.06260304152965546,
0.00416524987667799,
-0.00010138346260646358,
-0.011042503640055656,
-0.058366842567920685,
0.006592401769012213,
0.025003906339406967,
-0.023823654279112816,
0.019522277638316154,
-0.00030620512552559376,
-0.03594902530312538,
-0.003590760985389352,
0.024856355041265488,
-0.06408428400754929,
-0.007166759576648474,
-0.014502095058560371,
0.01861819252371788,
0.03809178248047829,
0.01840302161872387,
0.018808122724294662,
0.007110254839062691,
-0.035291869193315506,
-0.002037349622696638,
0.0021862818393856287,
-0.03801429644227028,
-0.038954973220825195,
-0.01277155987918377,
0.044064585119485855,
-0.027836153283715248,
-0.03234494850039482,
0.040445730090141296,
0.010339826345443726,
-0.03417131304740906,
-0.024865098297595978,
0.002870813710615039,
0.002983418293297291,
-0.011758877895772457,
-0.02249912917613983,
-0.018212512135505676,
-0.0031049109529703856,
0.02727438509464264,
-0.02614486776292324,
-0.03333485499024391,
0.011111892759799957
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Let's cheat The first step was to cheat, of course. Why make a big effort when one can make a little one. So I wrote a short notebook that in a few lines of code provided a proxy to fairseq and emulated transformers API. If no other things, but basic translation, was required, this would have been enough. But, of course, we wanted to have the full porting, so after having this small victory, I moved onto much harder things. | [
0.053527820855379105,
-0.0419640876352787,
0.09116620570421219,
-0.009373298846185207,
0.10125631093978882,
0.0054716491140425205,
0.05307148024439812,
0.06847117841243744,
0.05006761476397514,
-0.04415980726480484,
-0.03296712785959244,
0.021611491218209267,
-0.03525272384285927,
0.026624470949172974,
0.02750580944120884,
-0.00038472283631563187,
-0.020311038941144943,
-0.04763190075755119,
0.0046804058365523815,
-0.01969798654317856,
-0.031331948935985565,
-0.06369698792695999,
0.07981288433074951,
0.012706772424280643,
0.025749383494257927,
-0.06383734941482544,
0.019609209150075912,
0.04803512617945671,
-0.04280644282698631,
0.05210612714290619,
-0.041244201362133026,
-0.029570862650871277,
0.028470652177929878,
-0.07971961051225662,
-0.11264568567276001,
0.00504440488293767,
-0.03885004669427872,
0.011027278378605843,
0.01687997207045555,
-0.040671851485967636,
0.0008089791517704725,
0.007473631761968136,
0.0575062595307827,
0.05274936929345131,
-0.04421844705939293,
0.010048888623714447,
-0.17419129610061646,
0.0913102924823761,
-0.062117625027894974,
-0.007620303891599178,
-0.026378802955150604,
0.021883273497223854,
-0.030087901279330254,
0.043707508593797684,
0.03777085617184639,
0.04161437973380089,
-0.003946484066545963,
-0.03175422549247742,
-0.0345957949757576,
-0.015052531845867634,
0.07608965039253235,
0.047803305089473724,
0.04177875071763992,
0.008682656101882458,
0.03348352387547493,
0.003990399185568094,
0.0028811118099838495,
0.023132525384426117,
-0.04104957357048988,
-0.03788653388619423,
-0.007423219736665487,
-0.05306585505604744,
-0.05700434744358063,
-0.036057665944099426,
0.04023805633187294,
-0.08707921952009201,
-0.0335608646273613,
0.049342766404151917,
0.09914745390415192,
0.11712634563446045,
-0.015065108425915241,
-0.009608770720660686,
0.10316178947687149,
-0.00702394125983119,
0.013196016661822796,
-0.037713270634412766,
0.00011679565068334341,
0.011750646866858006,
-0.04139615595340729,
0.02799561433494091,
-0.004727809689939022,
-0.09516356140375137,
-0.1193988099694252,
-0.0190802663564682,
-0.006428849883377552,
-0.01691301167011261,
0.045436255633831024,
0.04582684859633446,
0.029732314869761467,
0.02622624672949314,
-0.043965358287096024,
0.0321129634976387,
-0.011521236039698124,
-0.06423790007829666,
-0.027308225631713867,
-0.013202263042330742,
0.028490344062447548,
-0.10890936106443405,
-0.015027414076030254,
0.033881328999996185,
0.04303155839443207,
0.022528624162077904,
0.03727255016565323,
0.07891329377889633,
-0.017374834045767784,
0.05837463587522507,
-0.009486192837357521,
-0.008496684022247791,
-0.03331626206636429,
0.006583549547940493,
0.018960122019052505,
0.06547959893941879,
0.053183529525995255,
-0.011763074435293674,
0.05160963162779808,
0.04882786050438881,
0.01241272035986185,
0.03421129658818245,
-0.053434111177921295,
-0.047256916761398315,
0.04649249091744423,
0.0677526593208313,
0.07818036526441574,
0.0032789139077067375,
-0.032754577696323395,
-0.04976124316453934,
0.05700378492474556,
0.03002914786338806,
-0.0023840416688472033,
0.004792899824678898,
-0.03724793344736099,
0.0209775622934103,
0.033046990633010864,
0.054853033274412155,
-0.016252903267741203,
0.027379818260669708,
-0.06164511665701866,
0.05948793143033981,
0.014358283020555973,
0.006130231078714132,
-0.007421786431223154,
0.027900272980332375,
-0.02420373074710369,
-0.07928171008825302,
-0.016395006328821182,
0.02306554839015007,
0.02005442976951599,
0.016881264746189117,
-0.0743500366806984,
-0.0008161491132341325,
-0.03729574754834175,
-0.0525108240544796,
-0.04288118705153465,
-0.058142829686403275,
-0.007986921817064285,
-0.05087566003203392,
-0.022821884602308273,
-0.012832657434046268,
0.03135333210229874,
0.045866530388593674,
-0.0031838184222579002,
-0.04713639244437218,
0.07211250811815262,
-0.050879787653684616,
-0.02262135222554207,
0.047995127737522125,
0.08745881170034409,
0.027414409443736076,
0.08096114546060562,
0.00949882809072733,
-0.06179281324148178,
-0.0060690538957715034,
0.00900377705693245,
0.0692039206624031,
-0.011158144101500511,
0.03481864929199219,
0.012665245682001114,
-0.03696282207965851,
-0.04834473505616188,
-0.03717707842588425,
-0.12093684077262878,
0.03818875923752785,
0.1268230676651001,
-0.03973541408777237,
-0.03946148231625557,
-0.016583725810050964,
-0.06004065275192261,
0.06614302098751068,
0.08345599472522736,
0.07022931426763535,
0.05096551030874252,
-0.00343750580213964,
0.03413838893175125,
0.004205439705401659,
0.00014466913125943393,
0.01683749444782734,
0.012149305082857609,
0.008904736489057541,
-0.010102827101945877,
0.02304137498140335,
0.013208048418164253,
-0.03367353230714798,
0.023014485836029053,
-0.0826503336429596,
-0.0075109112076461315,
-0.053587961941957474,
-0.0026567988097667694,
0.014160108752548695,
0.0004995502531528473,
-0.0016214285278692842,
0.04279544577002525,
-0.003122146474197507,
-0.040383052080869675,
0.004846168216317892,
0.03784473240375519,
0.06716343015432358,
0.09128651767969131,
0.017253579571843147,
0.012798681855201721,
-0.09153616428375244,
0.004085559397935867,
-0.005765064619481564,
-0.0433177724480629,
0.06497801840305328,
-0.07982800155878067,
-0.012295080348849297,
0.04101753607392311,
-0.06677475571632385,
0.018415667116642,
-0.012272949330508709,
0.046839646995067596,
0.08316102623939514,
-0.025038521736860275,
0.041768185794353485,
0.02936159446835518,
-0.00579513143748045,
0.02654566615819931,
0.02686840109527111,
0.03059215284883976,
0.03214775770902634,
-0.11353591084480286,
0.03249506652355194,
0.028395388275384903,
-0.07350803911685944,
0.02288343757390976,
-0.004747663624584675,
-0.00019767055346164852,
0.021344363689422607,
-0.016726544126868248,
0.024664636701345444,
-0.020956888794898987,
-0.011363901197910309,
-0.034573379904031754,
-0.05457872524857521,
0.0077667622826993465,
-0.0027145796921104193,
-0.019656352698802948,
0.05894988775253296,
-0.022225433960556984,
0.023604921996593475,
-0.020148158073425293,
-0.07089117914438248,
0.016533568501472473,
-0.03965751826763153,
0.047649845480918884,
0.020990222692489624,
-0.016398154199123383,
0.009132158942520618,
0.027036545798182487,
-0.028479987755417824,
-0.022483976557850838,
0.009195487946271896,
-0.009877491742372513,
-0.015426172874867916,
0.0024437732063233852,
0.003042809199541807,
0.004307270981371403,
0.011993644759058952,
0.013538560830056667,
-0.01897474192082882,
-0.011411615647375584,
0.058030612766742706,
0.0031777189578861,
0.00020882452372461557,
-0.017935870215296745,
-0.045719075947999954,
-0.014352100901305676,
-0.051745232194662094,
-0.027293847873806953,
-0.004788887221366167,
0.0063986387103796005,
-0.02361297607421875,
0.0055609578266739845,
0.016128849238157272,
-0.02073194831609726,
-0.021145911887288094,
0.003945642150938511,
-0.03679890185594559,
-0.11279378831386566,
-0.020262889564037323,
0.006588739342987537,
0.03177031874656677,
-0.00828173290938139,
-0.024348558858036995,
0.02712402492761612,
-0.0670471340417862,
0.025018587708473206,
0.02083691582083702,
0.025802848860621452,
-0.0028694425709545612,
-0.010574733838438988,
0.024236831814050674,
0.004993167705833912,
-0.04136437177658081,
-0.0017083868151530623,
0.031206313520669937,
0.018230179324746132,
-0.035873375833034515,
-0.014099882915616035,
0.031152669340372086,
0.0014025093987584114,
0.009825125336647034,
0.006127411499619484,
-0.011074412614107132,
0.01978018507361412,
0.013853991404175758,
0.005287586711347103,
-0.006288560107350349,
-0.02271345816552639,
0.0345684252679348,
0.0007508294656872749,
0.02087317407131195,
-0.06085933744907379,
-0.08002308756113052,
-0.0002985379833262414,
-0.019050035625696182,
0.00459793396294117,
0.015307765454053879,
0.00218921503983438,
-0.009206459857523441,
0.03960718587040901,
0.025785017758607864,
-0.014316841959953308,
0.021060224622488022,
-0.019282622262835503,
0.00803083460777998,
0.0431782603263855,
-0.0418480783700943,
-0.039724886417388916,
0.032543133944272995,
-0.018513303250074387,
0.06546852737665176,
-0.009837309829890728,
-0.003280293196439743,
-0.011369842104613781,
0.013716249726712704,
0.03823364898562431,
-0.017366478219628334,
-0.020184583961963654,
-0.018035925924777985,
0.0013269672635942698,
-0.022389087826013565,
-0.050042834132909775,
0.08913290500640869,
0.009368207305669785,
0.0006997346645221114,
0.010032550431787968,
0.026405228301882744,
-0.03282928094267845,
0.025450382381677628,
0.003114357590675354,
0.008056608960032463,
-0.012950214557349682,
0.047354064881801605,
-0.018294354900717735,
-0.04141063988208771,
0.03389099985361099,
0.005906311329454184,
0.0015983536140993237,
-0.05379379540681839,
-0.02360476367175579,
0.004954674281179905,
-0.0031469808891415596,
0.004314505960792303,
0.01693381741642952,
-0.02351648546755314,
-0.00558529794216156,
0.02879006788134575,
0.06526888161897659,
-0.008840678259730339,
-0.01119257602840662,
-0.004687015432864428,
0.017557386308908463,
-0.0022932642605155706,
0.04616410285234451,
0.01348299253731966,
0.024374505504965782,
-0.011395059525966644,
0.03387346491217613,
-0.044950708746910095,
-0.023817341774702072,
0.039113134145736694,
-0.009591675363481045,
0.009632812812924385,
-0.031557597219944,
-0.006287583149969578,
0.0026727020740509033,
0.0348312109708786,
-0.0009824885055422783,
-0.024825848639011383,
-0.020051440224051476,
-0.02893812209367752,
0.0059607261791825294,
-0.03218493238091469,
0.005829037632793188,
0.015831174328923225,
-0.01166968047618866,
-0.015543247573077679,
-0.02422005869448185,
0.008025083690881729,
0.04821190983057022,
-0.012790028937160969,
-0.006386709399521351,
-0.0451037622988224,
0.015920225530862808,
0.07391384243965149,
-0.01704062521457672,
0.01110170315951109,
-0.027844583615660667,
-0.015355045907199383,
0.016604900360107422,
-0.0030056554824113846,
0.020785659551620483,
0.055944379419088364,
-0.02431114763021469,
-0.01123191136866808,
-0.007346619386225939,
-0.03301432356238365,
0.024698588997125626,
-0.028482481837272644,
0.008240793831646442,
-0.02611318603157997,
0.03512465953826904,
-0.02478322759270668,
0.019978629425168037,
-0.002514561405405402,
-0.008564213290810585,
0.02319270744919777,
0.06779990345239639,
-0.024437623098492622,
-0.028098994866013527,
0.011335683055222034,
-0.02535180002450943,
0.012959744781255722,
0.01583707146346569,
-0.0006441142177209258,
-0.030027907341718674,
0.01842479780316353,
-0.01914108917117119,
-0.0066667646169662476,
-0.06059170514345169,
0.04336746037006378,
-0.00018070860824082047,
-0.019476767629384995,
0.02032833732664585,
-0.043414514511823654,
0.008393965661525726,
-0.049077462404966354,
-0.04323620721697807,
0.0012049955548718572,
0.03946375101804733,
-0.02963295206427574,
-0.004151161294430494,
0.04285309836268425,
-0.018144501373171806,
0.01002521812915802,
0.023863688111305237,
-0.028007181361317635,
-0.012157971039414406,
0.011444834992289543,
0.03811546415090561,
-0.01562797650694847,
-0.020582327619194984,
0.03118198551237583,
0.06543311476707458,
0.048147983849048615,
-0.022073956206440926,
0.003259578486904502,
-0.026318376883864403,
-0.014028461650013924,
0.007448672782629728,
-0.014205045066773891,
0.049584511667490005,
-0.047904547303915024,
-0.008505416102707386,
-0.04046105220913887,
-0.04091982915997505,
-0.010179970413446426,
0.03930016979575157,
0.05979660898447037,
-0.005125367548316717,
0.005194181110709906,
0.062414057552814484,
-0.0029670530930161476,
0.015774374827742577,
-0.010416261851787567,
-0.0018569357926025987,
-0.06051623821258545,
0.006094546522945166,
0.012782990001142025,
-0.0009971256367862225,
-0.04375927522778511,
-0.0009996872395277023,
-0.02839662693440914,
0.027789967134594917,
0.06211326643824577,
-0.0072740777395665646,
0.017784513533115387,
0.013340081088244915,
-0.02196972817182541,
-0.020995723083615303,
0.04211778566241264,
0.03808392956852913,
-0.036292608827352524,
-0.010279646143317223,
-0.03133225813508034,
0.029086066409945488,
-0.010847811587154865,
0.03868720680475235,
0.035161882638931274,
-0.011309763416647911,
0.01345282606780529,
0.013991540297865868,
-0.015617634169757366,
-0.03700881451368332,
0.02817763388156891,
0.05885068699717522,
-0.003084119176492095,
0.009705536998808384,
-0.06636109948158264,
-0.026764623820781708,
-0.013277808204293251,
-0.01343384850770235,
0.04242334142327309,
0.05809752643108368,
0.01081391703337431,
-0.0029804331716150045,
-0.00033697643084451556,
0.0025497782044112682,
0.018096499145030975,
-0.008080809377133846,
0.029363537207245827,
0.019210712984204292,
-0.009469821117818356,
0.03668743744492531,
0.007333811838179827,
0.032049860805273056,
0.004260461777448654,
0.02680552564561367,
-0.010453489609062672,
-0.02710895612835884,
0.0366256907582283,
-0.02377372235059738,
0.028136877343058586,
-0.010317324660718441,
0.0075411442667245865,
-0.014826023019850254,
-0.0416201613843441,
0.004114283248782158,
0.01815502904355526,
0.06744340807199478,
0.014519844204187393,
-0.0019220092799514532,
-0.05328337103128433,
0.04191671684384346,
0.03444206714630127,
0.02067532204091549,
0.006385312881320715,
0.01467873901128769,
0.01134971622377634,
0.01773638278245926,
-0.03481876105070114,
0.005333009175956249,
0.04507597163319588,
0.052285920828580856,
-0.024988999590277672,
0.03380107879638672,
0.04985200986266136,
-0.0008130015921778977,
-0.003636252135038376,
0.005179137457162142,
0.01141625177115202,
-0.04058760032057762,
0.032402753829956055,
-0.02136288955807686,
-0.04251297190785408,
-0.03421676531434059,
-0.03000149130821228,
0.046756330877542496,
0.0070264386013150215,
0.009719491004943848,
0.010904773138463497,
0.044503867626190186,
0.028522372245788574,
-0.012167774140834808,
0.029437463730573654,
-0.05574284866452217,
-0.000619180325884372,
-0.012319155968725681,
0.04197205603122711,
-0.039245665073394775,
-0.05070222541689873,
-0.05787200480699539,
-0.008585356175899506,
-0.01528370101004839,
-0.00013594745541922748,
-0.022448662668466568,
0.032890237867832184,
0.011644813232123852,
-0.05080834776163101,
0.010007530450820923,
-0.014138000085949898,
-0.03317372128367424,
-0.034637246280908585,
-0.020100953057408333,
-0.012718233279883862,
-0.0064036608673632145,
0.00036389895831234753,
0.007427150383591652,
0.013290729373693466,
0.015319768339395523,
0.002119154669344425,
-0.0308991651982069,
0.04175138846039772,
0.03789833188056946,
0.04421684518456459,
0.006288447417318821,
0.020515432581305504,
-0.036023616790771484,
0.010283094830811024,
0.028338655829429626,
-0.006813721265643835,
-0.020318765193223953,
-0.027936330065131187,
0.04984220862388611,
0.01905854046344757,
0.01846958138048649,
0.02791995368897915,
0.0006369446055032313,
0.019699936732649803,
-0.028275026008486748,
0.02877294458448887,
-0.021084243431687355,
-0.03388146311044693,
0.0007574111223220825,
-0.011832078918814659,
0.015180782414972782,
0.033761534839868546,
-0.011757640168070793,
0.002728772349655628,
0.03564581647515297,
-0.018422992900013924,
-0.042017366737127304,
0.031029386445879936,
-0.012664668262004852,
-0.057431597262620926,
-0.0004619651008397341,
0.004601992201060057,
0.019565831869840622,
-0.00813848152756691,
0.009985367767512798,
0.03722073882818222,
-0.0035122744739055634,
-0.026422671973705292,
0.014175213873386383,
0.007959045469760895,
-0.03772176802158356,
-0.03355628252029419,
0.0524568110704422,
-0.01749352365732193,
0.02469329722225666,
0.06808269023895264,
0.03563991189002991,
0.0031024273484945297,
-0.002958164783194661,
-0.036888692528009415,
0.0048272619023919106,
0.04317513853311539,
-0.038536760956048965,
-0.04124155640602112,
-0.0002264487702632323,
-0.00601814454421401,
0.007677173241972923,
0.006595928221940994,
-0.021492522209882736,
0.009395425207912922,
-0.03781432285904884,
-0.046729058027267456,
0.010945512913167477,
0.0073804124258458614,
0.07628924399614334,
0.006628960836678743,
0.03593141958117485,
-0.006253426894545555,
0.006315859034657478,
-0.028115680441260338,
-0.005957257002592087,
0.020998075604438782,
0.0444205105304718,
0.008619819767773151,
0.005876138340681791,
-0.05060681328177452,
-0.019747823476791382,
-0.050881195813417435,
-0.05322059616446495,
0.010500903241336346,
0.01663520187139511,
-0.0021928634960204363,
-0.035048916935920715,
0.06337866187095642,
0.021739615127444267,
0.008601467125117779,
-0.006381131708621979,
-0.017919914796948433,
0.024251576513051987,
0.008143791928887367,
-0.01349715981632471,
-0.04950619488954544,
-0.0020898703951388597,
-0.03703397884964943,
0.013186866417527199,
-0.002387838438153267,
0.01882317289710045,
-0.03431740030646324,
0.03087649680674076,
-0.036349739879369736,
0.01611366868019104,
0.018887601792812347,
-0.006724056787788868,
0.028016472235322,
-0.005561074707657099,
-0.013522514142096043,
-0.0418415293097496,
-0.057225827127695084,
0.027439052239060402,
-0.007551612798124552,
0.0075280433520674706,
0.009932063519954681,
0.026178909465670586,
-0.0030579171143472195,
0.009948226623237133,
0.022145630791783333,
-0.027347302064299583,
0.009054581634700298,
0.011475160717964172,
-0.009487351402640343,
-0.031888365745544434,
-0.0013732367660850286
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | SinusoidalPositionalEmbeddingfairseqused a slightly different implementation ofSinusoidalPositionalEmbeddingthan the one used bytransformers. Initially I copied thefairseqimplementation. But when trying to get the test suite to work I couldn't get thetorchscripttests to pass.SinusoidalPositionalEmbeddingwas written so that it won't be part ofstate_dictand not get saved with the model weights - all the weights generated by this class are deterministic and are not trained.fairseqused a trick to make this work transparently by not making its weights a parameter or a buffer, and then duringforwardswitching the weights to the correct device.torchscriptwasn't taking this well, as it wanted all the weights to be on the correct device before the firstforwardcall. I had to rewrite the implementation to convert it to a normalnn.Embeddingsubclass and then add functionality to not save these weights duringsave_pretrained()and forfrom_pretrained()to not complain if it can't find those weights during thestate_dictloading. | [
-0.05038021504878998,
-0.024438051506876945,
0.029849639162421227,
0.02171996608376503,
-0.02205848880112171,
0.08345575630664825,
0.02524389699101448,
-0.012404017150402069,
-0.03667785972356796,
-0.05547676235437393,
-0.0031710516195744276,
0.04363306239247322,
-0.0028724807780236006,
0.0009288479923270643,
-0.004878619685769081,
-0.007657620590180159,
0.07075756043195724,
-0.0030012913048267365,
-0.03835735097527504,
0.025149451568722725,
-0.013569320552051067,
-0.024993104860186577,
0.0009529366507194936,
-0.05513611435890198,
-0.047536615282297134,
-0.07971319556236267,
-0.00733934948220849,
0.06925234943628311,
-0.07824601978063583,
0.06259580701589584,
-0.02137555554509163,
0.027330053970217705,
0.03206224367022514,
-0.10168642550706863,
-0.025119461119174957,
0.023786256089806557,
-0.06273048371076584,
0.012043663300573826,
-0.02055663801729679,
-0.040355753153562546,
-0.05866548418998718,
-0.05250772461295128,
-0.04034338891506195,
0.08916950970888138,
0.023518256843090057,
-0.026065051555633545,
-0.09750017523765564,
0.08607461303472519,
-0.052072081714868546,
-0.028077678754925728,
-0.09611709415912628,
0.028294619172811508,
-0.08614641427993774,
0.011420502327382565,
0.034153591841459274,
0.04370123893022537,
0.011693870648741722,
0.010804512538015842,
0.018829718232154846,
-0.0077846054919064045,
0.042799029499292374,
-0.020125148817896843,
-0.05627019330859184,
0.03221577778458595,
0.08877483010292053,
0.01200750470161438,
0.05221884697675705,
0.05797988176345825,
-0.014760332182049751,
-0.09636665880680084,
0.013916239142417908,
-0.029171600937843323,
0.034462109208106995,
-0.005524565931409597,
-0.024236368015408516,
-0.004648711532354355,
-0.037989694625139236,
0.026240382343530655,
0.05902683362364769,
0.07916458696126938,
-0.06487394124269485,
0.005033954046666622,
0.03881991654634476,
0.07198093831539154,
-0.04804756119847298,
-0.018352791666984558,
0.08149594813585281,
0.006277194246649742,
0.08323629200458527,
-0.031427428126335144,
-0.01369781605899334,
-0.02334640733897686,
-0.02326573245227337,
0.11136122792959213,
0.051833588629961014,
0.027110284194350243,
-0.015242277644574642,
0.022040676325559616,
-0.016655385494232178,
-0.0004055120807606727,
-0.0011377440532669425,
-0.02636771649122238,
-0.011402196250855923,
-0.060749854892492294,
0.03324232995510101,
0.06905380636453629,
-0.014430742710828781,
-0.03893226012587547,
-0.004143071826547384,
0.0967160165309906,
-0.04433740675449371,
-0.020017387345433235,
0.0241682268679142,
0.041798319667577744,
-0.029750041663646698,
-0.08445056527853012,
0.013139074668288231,
0.001410537282936275,
-0.03622904419898987,
-0.000974890252109617,
0.03238563612103462,
0.11968059092760086,
-0.015144210308790207,
-0.004576611332595348,
0.04667862877249718,
0.07418984174728394,
0.04373566433787346,
-0.00558817433193326,
-0.008300097659230232,
0.02955549769103527,
0.0041620139963924885,
0.01694936864078045,
0.07597970217466354,
0.02023155428469181,
0.025831038132309914,
-0.03228256478905678,
-0.0643027126789093,
-0.003842780599370599,
-0.04295962303876877,
0.04040990769863129,
-0.056873172521591187,
0.007631184533238411,
0.030386969447135925,
-0.025770563632249832,
-0.019682183861732483,
-0.07025080919265747,
-0.04160204529762268,
0.08442946523427963,
-0.021969540044665337,
0.07477019727230072,
-0.04517251253128052,
0.07977268844842911,
-0.039366163313388824,
-0.02141808718442917,
-0.06189559027552605,
0.047218821942806244,
-0.03990078344941139,
-0.004063057713210583,
-0.0409974530339241,
-0.03567126393318176,
-0.011091293767094612,
0.030926687642931938,
-0.044232990592718124,
0.004991534166038036,
0.03653556481003761,
-0.02593105286359787,
0.042841505259275436,
0.017439618706703186,
0.0704931691288948,
0.04126932471990585,
0.0020809073466807604,
-0.028436344116926193,
0.01313132606446743,
0.023850012570619583,
-0.023083027452230453,
0.03093249537050724,
-0.06610166281461716,
0.031397152692079544,
-0.018256423994898796,
-0.020931754261255264,
-0.027864351868629456,
0.003839212702587247,
-0.024169595912098885,
0.02314024232327938,
-0.00049187196418643,
-0.07900337874889374,
0.04993799701333046,
-0.03703254088759422,
-0.03281017392873764,
0.08585251122713089,
-0.05962570756673813,
0.010642020963132381,
0.037125539034605026,
-0.07451584190130234,
0.03712616488337517,
-0.031068315729498863,
-0.03312387317419052,
0.0607992559671402,
0.05027303472161293,
0.015457265079021454,
0.02133091725409031,
0.03900380805134773,
0.015621867030858994,
-0.016340740025043488,
0.012746605090796947,
0.005924955941736698,
0.015357025898993015,
-0.06098740175366402,
0.00788398738950491,
0.03999587893486023,
0.026966063305735588,
-0.07154233008623123,
0.051745567470788956,
-0.005941757932305336,
0.00009652580047259107,
-0.05440225452184677,
-0.06592272967100143,
-0.004511192906647921,
-0.028973961248993874,
-0.05784483253955841,
0.0770319476723671,
0.06083158403635025,
0.054235171526670456,
-0.06746230274438858,
-0.03668215125799179,
0.06461478024721146,
0.002856804057955742,
0.046063877642154694,
0.07363419234752655,
-0.1418650597333908,
-0.014897001907229424,
-0.08130154013633728,
-0.048510387539863586,
0.06417824327945709,
0.005869008135050535,
-0.0576399527490139,
-0.015530264936387539,
0.03715735673904419,
-0.055429309606552124,
-0.010820364579558372,
0.07329206168651581,
0.08880200237035751,
-0.03515249118208885,
0.07111945748329163,
-0.0768594816327095,
0.038145650178194046,
0.01832076907157898,
0.00812156405299902,
-0.007805476430803537,
0.020235979929566383,
-0.12287753075361252,
0.018477560952305794,
0.0182555690407753,
-0.022437550127506256,
0.02759561501443386,
0.08471571654081345,
-0.028362976387143135,
-0.006920625455677509,
-0.02053731493651867,
-0.008460624143481255,
0.017637722194194794,
0.0228283628821373,
-0.012860669754445553,
0.005762778222560883,
-0.008375559002161026,
-0.0604642778635025,
0.005183442961424589,
-0.027382196858525276,
0.010238906368613243,
0.019445452839136124,
-0.04355165734887123,
-0.03265644237399101,
0.02607796899974346,
-0.012157903052866459,
-0.0007940257200971246,
0.0668756440281868,
0.04391093552112579,
-0.03352116420865059,
-0.07700956612825394,
0.02355681173503399,
-0.05779462307691574,
-0.040764544159173965,
0.03943318873643875,
-0.013653915375471115,
-0.0070882136933505535,
0.02026931382715702,
0.011555100791156292,
-0.013867097906768322,
0.021629370748996735,
0.02120775543153286,
0.005563877057284117,
0.014041830785572529,
0.08816133439540863,
0.015414570458233356,
-0.05639731138944626,
0.009584375657141209,
-0.014788821339607239,
-0.015643859282135963,
0.023807616904377937,
-0.005623019300401211,
-0.01446189358830452,
0.008641168475151062,
-0.007705632131546736,
0.018594423308968544,
-0.01675586774945259,
-0.023210186511278152,
0.0011173819657415152,
0.02858300320804119,
-0.08481597155332565,
0.01906634122133255,
0.009681414812803268,
0.041103046387434006,
0.011438741348683834,
-0.012915180064737797,
0.021928252652287483,
-0.031382959336042404,
0.023902911692857742,
0.04227381572127342,
0.002333021955564618,
0.0018402659334242344,
-0.013109165243804455,
0.02134927548468113,
0.00319796078838408,
0.009804602712392807,
-0.0027385021094232798,
0.016017917543649673,
0.010406582616269588,
0.021209461614489555,
-0.020929858088493347,
0.005704335402697325,
0.006944266613572836,
-0.01512120384722948,
-0.05104577913880348,
0.08076610416173935,
0.04094524681568146,
0.06744571775197983,
-0.0015475136460736394,
-0.04168478026986122,
-0.03148673102259636,
-0.013042032718658447,
-0.0015356179792433977,
0.03589056804776192,
-0.008247502148151398,
-0.014179470017552376,
-0.012960249558091164,
0.02921207807958126,
0.0026888023130595684,
-0.017599983140826225,
0.007138804532587528,
0.007855696603655815,
-0.017440538853406906,
0.01924997754395008,
0.03778168559074402,
-0.009514649398624897,
-0.02202422544360161,
0.021857570856809616,
0.01169721968472004,
-0.0072213043458759785,
0.0016500269994139671,
-0.02988247014582157,
-0.044056717306375504,
0.009053321555256844,
-0.024297380819916725,
-0.016802316531538963,
0.022757241502404213,
0.03459998592734337,
0.034246522933244705,
-0.052153002470731735,
-0.05491560325026512,
0.006481933873146772,
-0.007203272078186274,
0.009429508820176125,
-0.017887534573674202,
0.0633184090256691,
0.0660095289349556,
0.00553453853353858,
-0.014374875463545322,
-0.013345430605113506,
-0.0064955768175423145,
0.04639226943254471,
0.04335438832640648,
0.00012658876948989928,
-0.017569532617926598,
0.00014982237189542502,
-0.016457434743642807,
-0.01776937022805214,
0.013175508007407188,
0.015203149989247322,
-0.004064186010509729,
-0.01936452090740204,
-0.00026742357295006514,
0.008006736636161804,
0.009455806575715542,
-0.000299670995445922,
-0.03136361762881279,
0.009644297882914543,
0.028165269643068314,
-0.015903549268841743,
0.06292519718408585,
-0.008311151526868343,
0.018455855548381805,
-0.027056213468313217,
-0.02379940077662468,
0.003977594897150993,
0.019572533667087555,
-0.0002694639842957258,
0.0022337569389492273,
-0.01393208559602499,
-0.011991603299975395,
-0.03376154229044914,
0.015197671949863434,
0.03928154334425926,
0.012578469701111317,
-0.04062248393893242,
-0.04774308204650879,
-0.009308221749961376,
-0.032775506377220154,
-0.03217474743723869,
0.010436356998980045,
-0.01808014139533043,
-0.00036130979424342513,
-0.002805594587698579,
0.04762878641486168,
0.009180746041238308,
0.007754475809633732,
-0.003219222417101264,
-0.013797687366604805,
0.01564926840364933,
-0.04993695765733719,
0.03922373056411743,
0.03332802280783653,
-0.02929704263806343,
0.04734030365943909,
0.0010320027358829975,
-0.005053260363638401,
0.040219034999608994,
0.027043689042329788,
-0.0026601338759064674,
-0.06088153272867203,
0.0009334333008155227,
0.04954429343342781,
0.04642138257622719,
-0.013910073786973953,
0.02366190403699875,
-0.008791872300207615,
0.01507674902677536,
0.0219575148075819,
-0.030245887115597725,
-0.012152636423707008,
-0.004491062369197607,
0.03290815278887749,
-0.028097307309508324,
0.029170788824558258,
-0.011762578971683979,
0.02369779162108898,
0.04505802318453789,
-0.049424998462200165,
-0.0059658740647137165,
0.033629994839429855,
0.038029249757528305,
-0.008402767591178417,
-0.03811747953295708,
0.047540534287691116,
0.024862240999937057,
0.00513515854254365,
-0.01458876021206379,
-0.028327545151114464,
0.021943191066384315,
0.02134646847844124,
0.022554578259587288,
-0.03498299792408943,
0.01254382822662592,
0.017175128683447838,
0.01179669238626957,
-0.03372884914278984,
-0.0673879012465477,
0.049318794161081314,
0.008249454200267792,
-0.03139544650912285,
0.013087254017591476,
-0.007202243898063898,
-0.017748650163412094,
0.02519458346068859,
-0.0012641963548958302,
0.008596998639404774,
0.005655830726027489,
-0.05016973242163658,
0.025482958182692528,
0.042395565658807755,
0.014890498481690884,
0.04406418278813362,
-0.015951398760080338,
-0.00639240862801671,
0.000009028819476952776,
0.026079069823026657,
0.029799601063132286,
0.01801956072449684,
0.027209248393774033,
-0.01641889102756977,
0.010484283789992332,
-0.022047655656933784,
-0.064200758934021,
0.02458023652434349,
0.013122211210429668,
0.024275686591863632,
0.0410146526992321,
-0.0023735344875603914,
-0.05867622420191765,
0.014570420607924461,
0.0368642620742321,
0.0033718496561050415,
-0.03631705418229103,
0.03466568514704704,
-0.017639588564634323,
-0.002292458899319172,
0.0089588463306427,
-0.006595516111701727,
-0.004865520168095827,
0.0000660303485346958,
0.03394278511404991,
0.008007758297026157,
-0.01747538521885872,
0.004191689658910036,
-0.04068106785416603,
-0.058570053428411484,
0.010618285275995731,
0.009111623279750347,
0.037266604602336884,
-0.011256261728703976,
0.0075309183448553085,
0.053815197199583054,
0.04047746583819389,
0.04994635283946991,
-0.06801013648509979,
-0.00223566428758204,
0.021580230444669724,
0.013360882177948952,
0.024186449125409126,
0.0036766722332686186,
0.045546483248472214,
-0.007870680652558804,
0.008735294453799725,
-0.0036557612475007772,
0.004866152536123991,
0.015373937785625458,
0.054146308451890945,
0.005855506286025047,
-0.014700300991535187,
0.024230197072029114,
-0.0032486545387655497,
-0.015893250703811646,
0.03349888324737549,
0.007959317415952682,
0.042575642466545105,
0.05940720811486244,
-0.02283981814980507,
0.033559344708919525,
-0.0012870605569332838,
0.006256051827222109,
0.037750452756881714,
-0.059764135628938675,
-0.010870798490941525,
-0.02096930332481861,
-0.028333371505141258,
0.04930785670876503,
-0.023388134315609932,
-0.03377876803278923,
0.011155247688293457,
0.014277718961238861,
-0.08781100064516068,
-0.02596038579940796,
-0.001619202783331275,
-0.045090530067682266,
0.020814523100852966,
0.042470723390579224,
-0.04295564815402031,
0.016486147418618202,
-0.017007069662213326,
0.022322682663798332,
0.03400136157870293,
0.06036480888724327,
-0.011185679584741592,
0.022069251164793968,
-0.021805504336953163,
0.041353490203619,
-0.017590221017599106,
0.013933411799371243,
0.005896059330552816,
-0.009708116762340069,
0.016247909516096115,
-0.020991139113903046,
0.017817268148064613,
0.008044876158237457,
0.00736588891595602,
0.0824865773320198,
-0.025609001517295837,
-0.03908323869109154,
0.012065533548593521,
0.016314830631017685,
0.008621918968856335,
0.017208747565746307,
-0.05402188375592232,
-0.03343503177165985,
0.044108934700489044,
0.00028991044382564723,
-0.014470855705440044,
0.005306714214384556,
-0.04051080718636513,
0.00985078513622284,
0.01252010092139244,
0.057729266583919525,
0.02228505350649357,
0.04093952849507332,
0.01760893128812313,
0.05983675643801689,
-0.0002839361841324717,
0.005111618433147669,
0.008788777515292168,
-0.05491491034626961,
0.0025626143906265497,
-0.017864275723695755,
-0.0017441685777157545,
0.02078927308320999,
-0.020863700658082962,
0.04111947864294052,
0.02088291384279728,
-0.010327464900910854,
0.03775356337428093,
-0.021492289379239082,
0.04391852766275406,
-0.0030844334978610277,
0.0033973490353673697,
-0.012541758827865124,
-0.015469253063201904,
0.0009011797374114394,
-0.021922945976257324,
-0.06781177222728729,
0.01882876083254814,
-0.05947217717766762,
0.0572342649102211,
0.018766319379210472,
-0.030967501923441887,
0.011033262126147747,
0.025687070563435555,
-0.009151876904070377,
-0.005017154850065708,
-0.011618774384260178,
-0.003243180923163891,
-0.017311010509729385,
-0.022577011957764626,
0.049316950142383575,
0.017183812335133553,
-0.009267080575227737,
-0.0008973676012828946,
0.02972959727048874,
0.011625418439507484,
-0.025722628459334373,
-0.0021763464901596308,
0.00701905507594347,
0.03499283641576767,
-0.03125401958823204,
-0.009443373419344425,
-0.030758816748857498,
-0.018369322642683983,
-0.0013998274225741625,
-0.02040059305727482,
-0.030066978186368942,
0.006552309263497591,
0.013199645094573498,
0.020580783486366272,
0.02667410485446453,
-0.02637275867164135,
-0.08330951631069183,
-0.04488861560821533,
0.024817071855068207,
0.0013092650333419442,
-0.027627142146229744,
-0.00045787665294483304,
0.0267113596200943,
-0.01978212408721447,
-0.00041803851490840316,
0.02586575597524643,
0.01754733920097351,
-0.019810466095805168,
0.02966402843594551,
-0.0303338635712862,
-0.014370705001056194,
-0.006237149704247713,
0.0675598755478859,
-0.0011265733046457171,
-0.05952196940779686,
-0.004575914237648249,
-0.021878037601709366,
-0.0001434425648767501,
-0.024204375222325325,
-0.01742277294397354,
-0.056614719331264496,
0.0025311969220638275,
0.005387803539633751,
-0.045230232179164886,
-0.034218110144138336,
0.04868243634700775,
0.022540176287293434,
0.011560069397091866,
-0.0037049888633191586,
0.003579153213649988,
0.008140369318425655,
-0.024620313197374344,
-0.0007093062740750611,
-0.0004858634783886373,
0.06571527570486069,
0.04490252584218979,
-0.034538671374320984,
0.023177634924650192,
-0.01963328756392002,
0.020108144730329514,
-0.01711791753768921,
-0.002267365576699376,
0.04908152297139168,
-0.005318829324096441,
0.032847948372364044,
-0.0557699128985405,
0.00542839290574193,
0.008108883164823055,
-0.027816325426101685,
-0.04051386937499046,
0.037170711904764175,
-0.002096934709697962,
-0.08199633657932281,
-0.023087283596396446,
0.001006441074423492,
0.026103630661964417,
0.03291924670338631,
0.006209824699908495,
0.00768165523186326,
0.0031020892783999443,
0.02234368585050106,
-0.050613533705472946,
-0.009790204465389252,
-0.04620508477091789,
-0.035876963287591934,
-0.0027598822489380836,
0.006071547511965036,
0.02568036876618862,
-0.009221740998327732,
0.024040326476097107,
0.02996012568473816,
0.014804067090153694,
0.0023480115924030542,
-0.06038366258144379,
-0.029595086351037025,
-0.010920848697423935,
-0.0065418751910328865,
-0.04066397622227669,
-0.004105036146938801,
-0.029991745948791504,
-0.04074082896113396,
-0.024567442014813423,
0.00933885108679533,
0.004424101673066616,
0.016671448945999146,
-0.005263784434646368,
0.00544720608741045,
0.008438987657427788,
-0.006162421312183142,
-0.04950355738401413,
-0.003210555063560605,
-0.00557467807084322
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Manual testing Until now I was primarily using my own scripts to do the testing. Once I had the translator working, I converted the reversedru-enmodel and then wrote two paraphrase scripts: * [fseq-paraphrase](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/scripts/fseq-paraphrase.py) * [fsmt-paraphrase](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/scripts/fsmt-paraphrase.py) which took a sentence in the source language, translated it to another language and then translated the result of that back to the original language. This process usually results in a paraphrased outcome, due to differences in how different languages express similar things. With the help of these scripts I found some more problems with the detokenizer, stepped through with the debugger and made the fsmt script produce the same results as thefairseqversion. At this stage no-beam search was producing mostly identical results, but there was still some divergence in the beam search. In order to identify the special cases, I wrote a [fsmt-port-validate.py](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/scripts/fsmt-port-validate.py) script that used as inputssacrebleutest data and it run that data through bothfairseqandtransformerstranslation and reported only mismatches. It quickly identified a few remaining problems and observing the patterns I was able to fix those issues as well. | [
0.026897335425019264,
-0.0212445966899395,
0.014969262294471264,
0.040179818868637085,
0.05685414373874664,
0.08648636937141418,
0.1001821830868721,
-0.010849284939467907,
0.01018797792494297,
-0.018955208361148834,
-0.0811537653207779,
0.05481870099902153,
0.02892930619418621,
0.024811692535877228,
-0.011919430457055569,
0.015686117112636566,
0.0031675989739596844,
-0.07522068917751312,
0.017452478408813477,
0.008675817400217056,
0.05206112191081047,
-0.012658804655075073,
0.02825549617409706,
-0.006531958002597094,
-0.0013152043102309108,
-0.06006127595901489,
0.01823957823216915,
0.07211438566446304,
-0.06901224702596664,
0.020032117143273354,
-0.02887977473437786,
0.03297756239771843,
0.011273134499788284,
-0.08287832885980606,
-0.0363597571849823,
0.04376596584916115,
-0.11156535893678665,
0.018851524218916893,
-0.01492676604539156,
-0.04481343924999237,
-0.01804927922785282,
-0.009896974079310894,
0.03434697166085243,
-0.008211215026676655,
-0.015549729578197002,
0.11315196752548218,
-0.10171274840831757,
0.03513610363006592,
-0.05089657008647919,
-0.018541887402534485,
-0.08040416240692139,
-0.02348240278661251,
-0.04390600323677063,
-0.07567816972732544,
0.02260747179389,
0.037324000149965286,
-0.043258775025606155,
-0.00023814548330847174,
0.05043311417102814,
0.022788675501942635,
0.015522916801273823,
0.003158708568662405,
0.008852321654558182,
0.03938864544034004,
0.047776855528354645,
0.022244395688176155,
0.012277534231543541,
0.043927885591983795,
-0.009977025911211967,
-0.015519913285970688,
-0.03610427305102348,
-0.014953403733670712,
-0.03095448762178421,
-0.01947595924139023,
0.06273481994867325,
-0.07003548741340637,
-0.05492245778441429,
0.0945693850517273,
-0.00042757601477205753,
0.03263905271887779,
0.002864765701815486,
0.021150680258870125,
0.01905987784266472,
0.025746747851371765,
0.009034819900989532,
0.031693845987319946,
0.07259328663349152,
-0.04476262256503105,
-0.028798284009099007,
0.03128162771463394,
-0.03206362575292587,
-0.0721735805273056,
-0.069738008081913,
0.05038266256451607,
0.012772813439369202,
0.02344007045030594,
-0.023202944546937943,
0.09337010234594345,
-0.013751601800322533,
0.03369476646184921,
-0.023977022618055344,
0.04764268547296524,
0.04401172325015068,
-0.04084917530417442,
0.021685607731342316,
-0.01593688316643238,
-0.048132166266441345,
-0.039087504148483276,
-0.05066461116075516,
0.03660961613059044,
0.02209889516234398,
-0.000614628370385617,
-0.00023685750784352422,
0.04223911464214325,
-0.059869542717933655,
0.05103866010904312,
-0.0011256206780672073,
-0.004227814264595509,
-0.017397139221429825,
0.04653244838118553,
0.03244812414050102,
0.031229568645358086,
0.002219276735559106,
-0.02721216343343258,
0.04073282331228256,
0.025009023025631905,
0.06609606742858887,
0.05180812254548073,
-0.04931497946381569,
-0.016378013417124748,
-0.0073819891549646854,
-0.004598479252308607,
0.08877617120742798,
0.01813817210495472,
-0.018201390281319618,
-0.020741991698741913,
0.028769107535481453,
-0.007783766370266676,
-0.030259916558861732,
0.05580693855881691,
-0.03818780928850174,
-0.04893791303038597,
-0.043573349714279175,
0.025723805651068687,
-0.0401991531252861,
0.04200126603245735,
-0.06436505913734436,
0.06966955959796906,
0.0068566445261240005,
0.07964741438627243,
-0.052707232534885406,
0.04597562924027443,
-0.004636701196432114,
-0.05236072093248367,
-0.020274728536605835,
0.06810146570205688,
-0.023042799904942513,
-0.001646959106437862,
-0.07532114535570145,
0.028867749497294426,
-0.04447045177221298,
0.03146934136748314,
-0.023060372099280357,
-0.038519587367773056,
-0.021575868129730225,
0.0037557396572083235,
0.010571709834039211,
0.05823320522904396,
0.03940751403570175,
0.07718109339475632,
0.04198088124394417,
0.01361736562103033,
0.11206460744142532,
-0.04157707095146179,
0.012953238561749458,
0.027580982074141502,
0.015809163451194763,
-0.01639665476977825,
-0.002721939003095031,
-0.042318206280469894,
-0.03246920183300972,
0.0448375903069973,
-0.0143365990370512,
0.08117165416479111,
-0.07958018779754639,
-0.030521711334586143,
0.059060607105493546,
-0.007238836959004402,
-0.029926814138889313,
0.00566108850762248,
-0.10384079813957214,
-0.044523146003484726,
0.0971655398607254,
-0.05106397718191147,
0.008857185952365398,
-0.006430000998079777,
0.022787604480981827,
0.09852657467126846,
0.058890100568532944,
0.042951177805662155,
0.019028309732675552,
0.02671419270336628,
0.024804864078760147,
-0.044726043939590454,
0.033474914729595184,
0.0610235258936882,
0.07125317305326462,
-0.0913759246468544,
-0.007893833331763744,
0.031146859750151634,
0.07372868806123734,
-0.06804423034191132,
-0.01454911008477211,
-0.02051650546491146,
-0.024477235972881317,
-0.032883018255233765,
-0.07810036838054657,
-0.026365697383880615,
-0.023086054250597954,
0.03311176970601082,
0.10714420676231384,
-0.0035565784201025963,
-0.01549976971000433,
-0.024291563779115677,
-0.01663253828883171,
0.05569210276007652,
0.05871891975402832,
0.08835294097661972,
0.043638624250888824,
0.01424227561801672,
-0.01857091672718525,
-0.015884237363934517,
0.05769522860646248,
0.06449354439973831,
-0.0353926382958889,
-0.09866207838058472,
-0.021554166451096535,
-0.006757399532943964,
-0.002626754343509674,
0.0020420702639967203,
0.033971499651670456,
0.020080721005797386,
0.029692254960536957,
0.09078067541122437,
-0.02685326337814331,
0.04354603588581085,
0.021823208779096603,
0.027904368937015533,
-0.019233182072639465,
0.0010343517642468214,
-0.012507454492151737,
0.048804037272930145,
-0.06528940051794052,
-0.03117598220705986,
0.06865883618593216,
-0.07074308395385742,
0.013709754683077335,
0.05412466451525688,
-0.005083832889795303,
0.018465733155608177,
-0.00011078147508669645,
0.0031084062065929174,
-0.031343188136816025,
-0.05281110107898712,
0.027905138209462166,
-0.04284972697496414,
0.02177579700946808,
-0.013110257685184479,
-0.041265979409217834,
0.01167958602309227,
-0.03193894401192665,
-0.03084111399948597,
0.02348952367901802,
-0.015398935414850712,
0.01989131048321724,
0.005776877980679274,
0.010612688027322292,
-0.06696140766143799,
-0.026024453341960907,
0.018706930801272392,
-0.043110888451337814,
-0.007666084449738264,
0.01484959851950407,
0.004265092313289642,
0.013890738599002361,
0.028622301295399666,
-0.04059205576777458,
0.007350851781666279,
-0.015132822096347809,
0.011715026572346687,
0.0552249476313591,
0.007995886728167534,
0.03815695643424988,
0.013420045375823975,
-0.01905204728245735,
0.015840647742152214,
-0.025308676064014435,
-0.02468918450176716,
-0.017692988738417625,
0.037095025181770325,
-0.009355360642075539,
0.015487303026020527,
-0.009690718725323677,
-0.015171734616160393,
-0.07402515411376953,
0.0330798514187336,
0.0022733488585799932,
0.011759468354284763,
-0.08962492644786835,
0.03284783661365509,
0.019592266529798508,
-0.015155265107750893,
-0.003859063843265176,
-0.023170024156570435,
0.02706444449722767,
0.005188408307731152,
0.0039253998547792435,
0.004458978772163391,
0.01464543491601944,
0.020338522270321846,
0.0360616073012352,
0.05431241914629936,
-0.049942076206207275,
-0.024484101682901382,
-0.020201684907078743,
0.0012196744792163372,
0.014589929021894932,
-0.03441367298364639,
0.003399993060156703,
-0.006878361571580172,
-0.0021115164272487164,
0.019402632489800453,
-0.04315291345119476,
-0.03963177278637886,
0.0419202484190464,
0.014733104035258293,
0.015490046702325344,
-0.05146246403455734,
0.033826448023319244,
0.01157761737704277,
-0.03485577926039696,
-0.0040250071324408054,
-0.03520861640572548,
-0.052378732711076736,
0.012639445252716541,
0.035075414925813675,
0.023764556273818016,
0.03626532480120659,
0.05289587751030922,
0.030591515824198723,
0.0058297524228692055,
0.0007699666311964393,
0.013593911193311214,
-0.020222092047333717,
-0.003655396867543459,
0.0017365235835313797,
0.03135383874177933,
-0.03651329502463341,
-0.019787149503827095,
-0.020275898277759552,
0.010417521931231022,
0.06309843808412552,
0.004144371021538973,
0.0023946696892380714,
-0.004915249068289995,
-0.0013440155889838934,
0.03424229845404625,
0.05111386626958847,
-0.008750328794121742,
0.00844530202448368,
-0.012203584425151348,
-0.03650142252445221,
-0.019473645836114883,
0.0617280974984169,
-0.012222405523061752,
0.01534947007894516,
-0.019837262108922005,
-0.02249322645366192,
-0.004619976039975882,
0.035422082990407944,
0.013673131354153156,
-0.0002189034130424261,
-0.0033051923383027315,
-0.03748976066708565,
-0.05678339675068855,
-0.06978165358304977,
-0.009488479234278202,
0.031176049262285233,
0.011567522771656513,
-0.04091322049498558,
-0.05379386991262436,
0.0045392136089503765,
0.029157306998968124,
0.012873631902039051,
-0.02066436968743801,
-0.03604302927851677,
0.023284928873181343,
-0.024833302944898605,
0.0005957121029496193,
-0.06111518666148186,
-0.034875981509685516,
-0.021248962730169296,
-0.013783914037048817,
0.011410624720156193,
0.02457955665886402,
-0.021005496382713318,
0.03746069595217705,
0.035007767379283905,
-0.0006765964790247381,
-0.03211600333452225,
-0.009999943897128105,
-0.026168756186962128,
0.04293280839920044,
0.0025959175545722246,
-0.0864294096827507,
-0.008782496675848961,
-0.04134451970458031,
0.043219417333602905,
0.004153077024966478,
0.028638195246458054,
-0.029951827600598335,
0.04791951924562454,
0.04950068145990372,
0.06235373392701149,
0.01911633461713791,
-0.023172181099653244,
-0.06637492030858994,
0.002251832513138652,
-0.0635354220867157,
-0.03664466738700867,
0.00787607952952385,
0.004674915689975023,
0.004688830580562353,
0.006673172116279602,
0.010595732368528843,
0.0048195538111031055,
-0.017352132126688957,
-0.03303426131606102,
-0.00938279926776886,
0.013489733450114727,
0.05123099684715271,
-0.013686398975551128,
0.02441616728901863,
-0.018057456240057945,
0.05659240856766701,
-0.0010711102513596416,
-0.06143587455153465,
-0.06742353737354279,
0.019516736268997192,
0.014492655172944069,
-0.020749704912304878,
-0.048421695828437805,
0.05439441651105881,
-0.03365945443511009,
0.05909816175699234,
0.014024007134139538,
-0.06513993442058563,
0.03537973016500473,
0.029536845162510872,
-0.05895887687802315,
0.009459483437240124,
-0.007721633650362492,
0.016319362446665764,
-0.014800985343754292,
0.030289113521575928,
0.021955005824565887,
0.013886398635804653,
0.04736175015568733,
0.007036684546619654,
-0.004130285698920488,
-0.014934297651052475,
0.008155208081007004,
-0.020324479788541794,
0.00683944346383214,
-0.006206341553479433,
-0.03625108301639557,
-0.001122125657275319,
-0.002356681739911437,
-0.031801410019397736,
0.001690280856564641,
0.007639816030859947,
0.0010017778258770704,
0.0024156866129487753,
0.08265573531389236,
-0.014989670366048813,
0.012345271185040474,
0.007861655205488205,
-0.01861441135406494,
0.018219605088233948,
0.045130886137485504,
0.03757861629128456,
0.010669219307601452,
-0.02881435863673687,
0.02113776095211506,
0.028147133067250252,
0.011363182216882706,
0.003152713878080249,
0.026464099064469337,
-0.034705303609371185,
-0.013587974943220615,
0.011539006605744362,
0.0029439327772706747,
0.05058170109987259,
-0.026287537068128586,
-0.003990793135017157,
0.009543366730213165,
-0.01710638776421547,
-0.046153925359249115,
0.04708695784211159,
0.010019971989095211,
-0.01998850703239441,
-0.022665590047836304,
0.05108644440770149,
-0.024569105356931686,
-0.015191269107162952,
-0.023438651114702225,
-0.007573028560727835,
-0.041022296994924545,
0.009089100174605846,
-0.01998598873615265,
-0.05577963963150978,
0.0022672940976917744,
0.021087700501084328,
-0.06147153303027153,
-0.008069458417594433,
-0.0024422486312687397,
0.008889802731573582,
0.02456771768629551,
-0.0036328292917460203,
-0.02977990172803402,
0.02978435717523098,
0.037189971655607224,
0.037146925926208496,
-0.009104457683861256,
0.034205272793769836,
-0.00651928735896945,
0.03546968102455139,
0.006041978020220995,
0.02557949163019657,
0.03689800202846527,
0.006330220960080624,
0.004388908855617046,
0.04166505113244057,
-0.019837243482470512,
-0.013299679383635521,
-0.001401477144099772,
0.015477423556149006,
-0.04884717985987663,
0.05128743126988411,
-0.03392265737056732,
-0.009122172370553017,
0.02172558754682541,
-0.03895586356520653,
0.05190466716885567,
0.04777146875858307,
0.02272189036011696,
0.04179253429174423,
-0.004868560470640659,
0.012659195810556412,
0.047971319407224655,
-0.0008614893304184079,
0.028483569622039795,
0.007077638525515795,
0.011975116096436977,
0.0006308185984380543,
0.035350196063518524,
-0.0403633639216423,
-0.011004039086401463,
0.03170468285679817,
-0.04890122264623642,
-0.008505976758897305,
0.003742729313671589,
-0.03596016764640808,
0.01246167253702879,
0.011019082739949226,
-0.0692821741104126,
-0.02541029267013073,
0.004282629583030939,
0.028968539088964462,
-0.032606322318315506,
0.0169847272336483,
0.03043307736515999,
-0.01476593129336834,
-0.04728440195322037,
-0.009557392448186874,
0.03623495250940323,
0.03904961794614792,
0.016873199492692947,
0.0011102888965979218,
0.04448363184928894,
0.020429683849215508,
0.0029507058206945658,
-0.02354104444384575,
0.0033021466806530952,
0.04458516836166382,
0.015250281430780888,
-0.031330641359090805,
-0.03909865766763687,
-0.01391792856156826,
-0.016365721821784973,
-0.05164838582277298,
-0.023326369002461433,
-0.019953250885009766,
0.040150731801986694,
-0.035923704504966736,
0.024860823526978493,
-0.02279576100409031,
-0.020975979045033455,
0.06378673762083054,
-0.016354477033019066,
0.06879575550556183,
-0.011946206912398338,
0.005974484141916037,
0.02911299280822277,
0.010844177566468716,
0.00957636907696724,
0.05861746519804001,
0.01912006177008152,
0.0031280540861189365,
0.062098391354084015,
-0.058212365955114365,
0.020354824140667915,
-0.018306151032447815,
0.04888271540403366,
-0.00911643821746111,
-0.011057241819798946,
-0.019537510350346565,
0.05121121555566788,
0.0033459814731031656,
0.011888401582837105,
-0.002564155263826251,
0.021997341886162758,
-0.036654844880104065,
-0.05562116205692291,
-0.008539866656064987,
-0.062032751739025116,
-0.015588754788041115,
-0.01793128252029419,
-0.014227109961211681,
0.0008161375299096107,
-0.016644762828946114,
-0.020865900442004204,
-0.02413247898221016,
-0.002533186227083206,
0.03104173019528389,
-0.01350625604391098,
0.031126348301768303,
0.0210101418197155,
-0.02717064879834652,
-0.004091940354555845,
-0.015280310064554214,
0.02873528189957142,
-0.01034635677933693,
-0.009344430640339851,
0.0036500387359410524,
0.0288381427526474,
0.018166081979870796,
0.02265321835875511,
-0.017558762803673744,
-0.010066674090921879,
-0.012850592844188213,
0.010166189633309841,
-0.013882690109312534,
-0.018001578748226166,
0.019611334428191185,
-0.020592069253325462,
-0.03160053491592407,
0.009639838710427284,
0.0028670046012848616,
-0.005322040989995003,
0.02631680853664875,
-0.004457518924027681,
-0.03692507743835449,
-0.03717244043946266,
-0.00033338923822157085,
-0.009824683889746666,
0.009642476215958595,
-0.026275528594851494,
0.031798724085092545,
-0.01748512126505375,
-0.05298885703086853,
0.0011671651154756546,
0.003939614165574312,
-0.02757885865867138,
-0.0027784842532128096,
-0.05911467969417572,
-0.05376867577433586,
0.0018335465574637055,
0.04646528139710426,
0.007664996664971113,
0.019929571077227592,
-0.003318116068840027,
-0.047279492020606995,
0.018141983076930046,
0.015379049815237522,
0.0007411267142742872,
-0.030335742980241776,
0.08816401660442352,
-0.030380021780729294,
-0.023332105949521065,
-0.02349647879600525,
0.0024348930455744267,
-0.0017287543741986156,
0.004247609991580248,
-0.010813846252858639,
0.006407523527741432,
-0.013503197580575943,
-0.04597043991088867,
-0.004408601205796003,
0.02100077085196972,
0.07860405743122101,
0.00003686712807393633,
0.006734011694788933,
0.00019086744578089565,
-0.0340937040746212,
-0.03167499229311943,
-0.05062416195869446,
0.06469423323869705,
0.014943385496735573,
0.06788305938243866,
-0.004419732838869095,
0.01496712863445282,
0.031593888998031616,
0.0049174875020980835,
-0.046715304255485535,
-0.04416780546307564,
0.05904724821448326,
-0.03757474571466446,
-0.012934605590999126,
-0.030435943976044655,
0.007832587696611881,
0.00933830626308918,
0.0018232830334454775,
0.0043037086725234985,
0.015475778840482235,
0.003905183868482709,
-0.016724156215786934,
-0.08856627345085144,
-0.035752564668655396,
0.005043793469667435,
0.03697730228304863,
-0.03567036986351013,
0.0069596790708601475,
-0.002529403194785118,
0.014353104867041111,
0.004937186371535063,
0.018769770860671997,
-0.006983473431318998,
-0.016161682084202766,
-0.025832222774624825,
0.00706867128610611,
-0.03875706344842911,
-0.011182567104697227,
-0.02972533367574215,
0.05243028327822685,
-0.026003841310739517,
-0.053091637790203094,
-0.009827996604144573,
0.011821475811302662,
-0.03205665200948715,
-0.04599904641509056,
0.0158205758780241,
0.013447823002934456,
0.0039502461440861225,
0.027097051963210106,
-0.02145320735871792,
-0.0572221614420414,
0.03966687247157097
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | # Porting fairseq wmt19 translation system to transformers | [
0.03440055251121521,
-0.011070167645812035,
0.11674471944570541,
-0.0038040648214519024,
0.06199541687965393,
-0.0017517046071588993,
0.009281550534069538,
0.049461185932159424,
0.054351989179849625,
-0.017599815502762794,
-0.00015799308312125504,
0.06724432855844498,
0.02346983551979065,
0.04234754666686058,
-0.005181822460144758,
0.040726181119680405,
-0.02341584302484989,
-0.026482418179512024,
-0.002856303472071886,
-0.01814177818596363,
-0.013556204736232758,
-0.04070863872766495,
0.14789192378520966,
0.0032054418697953224,
0.02820459194481373,
-0.023473376408219337,
-0.004395110998302698,
0.04396825283765793,
-0.09468499571084976,
0.031609512865543365,
-0.026322489604353905,
-0.00034333986695855856,
-0.0233173631131649,
-0.05742858722805977,
-0.07893107831478119,
0.06261586397886276,
-0.06488019227981567,
0.03837902098894119,
-0.03300215303897858,
-0.0763680711388588,
-0.06648558378219604,
0.01190027967095375,
0.009773430414497852,
0.048677556216716766,
-0.013994122855365276,
0.025830889120697975,
-0.1753789782524109,
0.04565523937344551,
-0.058547139167785645,
-0.024212075397372246,
0.003449877956882119,
0.0312998965382576,
0.004581001121550798,
0.0641007125377655,
0.014776753261685371,
0.04339885339140892,
-0.042051829397678375,
-0.02093794196844101,
-0.037716809660196304,
-0.024960041046142578,
0.03236202150583267,
0.015658695250749588,
-0.020938966423273087,
0.04148900881409645,
-0.006582172587513924,
-0.015979019924998283,
-0.033485591411590576,
-0.008513864129781723,
-0.03323466330766678,
-0.007406207732856274,
-0.021335335448384285,
0.001414377591572702,
-0.03338668867945671,
-0.07893923670053482,
0.013055432587862015,
-0.08151465654373169,
-0.028235578909516335,
0.004813419189304113,
0.06083969399333,
0.1510290950536728,
-0.028045281767845154,
0.003043885575607419,
0.0661451518535614,
0.020126787945628166,
0.031997933983802795,
-0.0366799533367157,
0.06307440996170044,
-0.03380398079752922,
-0.04429011046886444,
0.048534199595451355,
0.02397596463561058,
-0.1351025104522705,
-0.10669542104005814,
-0.002319611608982086,
0.03662053868174553,
0.011435486376285553,
0.06169663369655609,
0.061282772570848465,
-0.020999351516366005,
0.03618721663951874,
-0.032028183341026306,
0.015305559150874615,
0.15011274814605713,
-0.010453169234097004,
-0.00342944567091763,
-0.036508720368146896,
-0.009363051503896713,
-0.14207302033901215,
0.02146746963262558,
0.01628214120864868,
0.018259909003973007,
-0.00578069593757391,
0.025560205802321434,
0.023323213681578636,
-0.0025631003081798553,
0.051312051713466644,
0.051457446068525314,
-0.04508555307984352,
0.049119845032691956,
0.050805095583200455,
0.04269709810614586,
0.04723117873072624,
0.015052414499223232,
0.029973221942782402,
0.028491949662566185,
0.045862700790166855,
0.03079495020210743,
0.019091477617621422,
-0.055530447512865067,
-0.04912305623292923,
0.03826358541846275,
-0.0010416104923933744,
0.014474048279225826,
-0.0018120395252481103,
-0.04499978944659233,
-0.09295374155044556,
0.0453517846763134,
-0.017860569059848785,
-0.02386714518070221,
-0.04561997205018997,
0.016044314950704575,
0.06555810570716858,
0.006585338152945042,
0.07924924045801163,
-0.031698331236839294,
0.01141393557190895,
-0.11708975583314896,
0.07415961474180222,
0.018138224259018898,
0.04330061003565788,
0.0017337731551378965,
0.0400882214307785,
-0.0489378497004509,
-0.09512070566415787,
0.008501257747411728,
-0.0053171212784945965,
0.021330121904611588,
-0.04213991388678551,
-0.07992175966501236,
-0.0661851018667221,
-0.0635562315583229,
0.05291293188929558,
-0.01902187615633011,
-0.049725599586963654,
-0.007498983293771744,
-0.04719248041510582,
-0.008536257781088352,
-0.005613501649349928,
0.08132310956716537,
-0.03190305829048157,
0.037979625165462494,
-0.038524921983480453,
0.034039758145809174,
-0.027740225195884705,
-0.06951431185007095,
-0.0011255608405917883,
0.046863384544849396,
0.07101427763700485,
0.010366474278271198,
0.008651327341794968,
-0.038943976163864136,
0.019400805234909058,
-0.02513723447918892,
0.021506106480956078,
0.06813783198595047,
-0.016945118084549904,
-0.011947853490710258,
-0.011483409442007542,
-0.0161663256585598,
0.019424568861722946,
-0.0897558182477951,
-0.05995102599263191,
0.04515611380338669,
-0.0495283305644989,
0.002885749563574791,
0.022269880399107933,
-0.004319347906857729,
0.0820135697722435,
0.03437386825680733,
0.098509281873703,
0.05116783082485199,
-0.03045053221285343,
0.024340195581316948,
-0.03907029330730438,
-0.01844467595219612,
0.06520672142505646,
0.015143588185310364,
0.010550186038017273,
0.012872997671365738,
0.0308847539126873,
0.0049513643607497215,
-0.09346497058868408,
0.031048350036144257,
-0.04629690200090408,
0.011704170145094395,
-0.056738678365945816,
-0.05195939540863037,
-0.00042638261220417917,
0.017237048596143723,
-0.05630291998386383,
0.0950668603181839,
0.011761642061173916,
-0.04955609142780304,
0.030560331419110298,
0.005899239331483841,
0.0417109876871109,
0.059123679995536804,
0.002689941553398967,
0.03510423004627228,
-0.0684804916381836,
-0.006226564757525921,
0.014887885190546513,
0.010435076430439949,
0.0510316826403141,
-0.020139606669545174,
-0.013703680597245693,
0.002398077165707946,
-0.01691991649568081,
0.06965513527393341,
-0.01942535676062107,
0.06068073958158493,
0.02005501091480255,
0.0012181684141978621,
0.04290156811475754,
-0.02169601432979107,
-0.0005136398249305785,
0.02087503671646118,
0.0009334163041785359,
0.03799973800778389,
-0.02793322689831257,
-0.0449969619512558,
0.03140091523528099,
0.014867476187646389,
-0.08306257426738739,
0.06464686244726181,
-0.0019631560426205397,
-0.008185225538909435,
-0.01688973605632782,
0.021169152110815048,
0.03368039429187775,
0.004075321834534407,
0.002048791851848364,
0.00036219650064595044,
-0.05921513959765434,
0.014526482671499252,
-0.0457717590034008,
-0.025580700486898422,
0.049064140766859055,
-0.0406666062772274,
0.014853370375931263,
-0.023351719602942467,
-0.03859115391969681,
0.016954442486166954,
-0.02462032437324524,
0.02444528229534626,
-0.013403368182480335,
0.023239731788635254,
-0.013205085881054401,
-0.019097525626420975,
0.010495994240045547,
0.005358248483389616,
0.014070830307900906,
0.019922172650694847,
0.01066078245639801,
0.007093103136867285,
-0.0011077596573159099,
0.022381700575351715,
-0.044507838785648346,
-0.0041267890483140945,
0.008379055187106133,
-0.018824443221092224,
0.008066565729677677,
-0.01495664194226265,
0.006316306535154581,
-0.004684684798121452,
-0.012529398314654827,
-0.00998164527118206,
-0.013111850246787071,
0.004223894793540239,
-0.0070849210023880005,
-0.003511241404339671,
0.015152090229094028,
-0.006436613388359547,
0.0213181059807539,
-0.07112997025251389,
-0.004910366144031286,
-0.009096790105104446,
-0.003995843697339296,
-0.1135590672492981,
-0.028844352811574936,
-0.020727653056383133,
0.05327044427394867,
-0.018841715529561043,
-0.039696261286735535,
0.007765636313706636,
-0.011108502745628357,
-0.008618664927780628,
0.02385518327355385,
0.030471742153167725,
0.017621099948883057,
0.018157972022891045,
0.008342350833117962,
-0.004034467041492462,
-0.01218082569539547,
-0.02016213722527027,
0.04416520521044731,
0.01777598448097706,
-0.015065552666783333,
-0.019719092175364494,
0.03162004053592682,
-0.0008569795172661543,
0.0008830542792566121,
0.01757175847887993,
0.02429821714758873,
0.03066275455057621,
0.012129048816859722,
-0.018944211304187775,
-0.016315413638949394,
-0.021229930222034454,
0.04419694095849991,
0.01907048188149929,
0.01445428840816021,
0.010187104344367981,
-0.025343621149659157,
0.022004785016179085,
0.011043219827115536,
0.0014793532900512218,
0.003236850257962942,
0.009805978275835514,
0.01806323044002056,
0.0074806734919548035,
-0.057596828788518906,
-0.012766777537763119,
-0.017606060951948166,
-0.020753011107444763,
0.021542156115174294,
0.04200189933180809,
-0.019747620448470116,
-0.01912052370607853,
-0.02469916269183159,
-0.024014880880713463,
0.046151649206876755,
0.00019294919911772013,
-0.03010663017630577,
-0.0036901619751006365,
0.0144714480265975,
0.041572265326976776,
-0.00016540865181013942,
-0.03783586621284485,
-0.002601932967081666,
-0.032085563987493515,
-0.025986159220337868,
-0.06984756886959076,
0.11153335869312286,
0.007527581416070461,
0.043714940547943115,
0.033758003264665604,
0.017939720302820206,
-0.012072423473000526,
0.010290798731148243,
0.012575927190482616,
0.008742847479879856,
-0.007503722794353962,
0.07115912437438965,
-0.023831933736801147,
-0.017979437485337257,
0.0450538694858551,
-0.0269640926271677,
-0.02223854884505272,
-0.008300230838358402,
-0.004379180260002613,
-0.009825547225773335,
0.004896453116089106,
0.005585846025496721,
0.009414592757821083,
-0.011732518672943115,
0.005992196965962648,
0.06336523592472076,
0.008765295147895813,
-0.05893958732485771,
0.005545282270759344,
-0.03772059828042984,
0.006642052438110113,
-0.021283002570271492,
0.023136265575885773,
-0.017859740182757378,
-0.03458667919039726,
0.015506168827414513,
0.007215003948658705,
-0.052925363183021545,
-0.011625011451542377,
0.0052776094526052475,
-0.00156837806571275,
0.034313738346099854,
-0.028322342783212662,
-0.018017925322055817,
-0.010974408127367496,
0.056033603847026825,
0.016851287335157394,
-0.02149241417646408,
-0.03185545653104782,
-0.023637644946575165,
-0.007661378476768732,
-0.02565252035856247,
0.00005733195212087594,
-0.06666960567235947,
-0.030883638188242912,
0.0141043271869421,
-0.010691051371395588,
-0.0007382247713394463,
0.019001496955752373,
-0.015095319598913193,
-0.04201577976346016,
-0.010740311816334724,
0.05490304157137871,
0.024994023144245148,
-0.036101095378398895,
0.016249995678663254,
-0.044416651129722595,
-0.024385618045926094,
0.03669973090291023,
0.0011304120998829603,
0.05896810069680214,
0.019857455044984818,
0.02867533639073372,
0.015933869406580925,
-0.008127273991703987,
-0.018172310665249825,
0.00860572885721922,
0.007393487263470888,
0.027632905170321465,
-0.033764276653528214,
0.054057154804468155,
0.013791315257549286,
-0.02026769146323204,
-0.00843884702771902,
0.0033095963299274445,
0.009537218138575554,
0.05155356600880623,
-0.04555228352546692,
-0.021651258692145348,
0.008079366758465767,
0.014161667786538601,
-0.007933158427476883,
0.048356298357248306,
-0.010114694014191628,
0.017467988654971123,
0.04088335856795311,
0.011905129998922348,
-0.0005673070554621518,
-0.0671895369887352,
0.025824014097452164,
0.009337597526609898,
-0.016573786735534668,
0.03686170652508736,
-0.048678893595933914,
0.006230268161743879,
0.016318896785378456,
0.0020907283760607243,
-0.016307059675455093,
0.02784869633615017,
-0.025766422972083092,
-0.015480167232453823,
0.05457300320267677,
-0.005777263082563877,
0.03188713267445564,
0.022141603752970695,
-0.0423286110162735,
0.018658487126231194,
0.00882638804614544,
0.02738299034535885,
0.01626293919980526,
-0.060059718787670135,
0.009149184450507164,
0.032469574362039566,
0.03580455109477043,
-0.0018650342244654894,
-0.0076781208626925945,
0.02094372920691967,
-0.011281104758381844,
-0.0361715666949749,
-0.040218889713287354,
-0.014313970692455769,
-0.05333433300256729,
0.05615793168544769,
-0.011832879856228828,
-0.025503451004624367,
0.03210638463497162,
0.047775644809007645,
0.03903644159436226,
0.00984746403992176,
-0.02074761874973774,
0.027355771511793137,
-0.03349844738841057,
-0.002300397027283907,
-0.03006153367459774,
0.010295508429408073,
-0.036537718027830124,
0.007400468923151493,
0.04314317926764488,
-0.02309620939195156,
-0.038775019347667694,
-0.014795267023146152,
-0.05747857317328453,
-0.006898161023855209,
0.03274499624967575,
0.002601233310997486,
0.005739351734519005,
0.012351474724709988,
0.033591751009225845,
-0.008250530809164047,
0.028159944340586662,
0.018232131376862526,
0.013471090234816074,
-0.0016911319689825177,
-0.012266142293810844,
0.026644406840205193,
0.031740158796310425,
0.008421107195317745,
0.010333595797419548,
0.0054390751756727695,
0.03881506994366646,
0.028851978480815887,
0.003375634551048279,
-0.03844800218939781,
0.04085693135857582,
-0.0007770303054712713,
0.014979291707277298,
0.04261459782719612,
-0.06311576813459396,
-0.0005048751481808722,
-0.01607159525156021,
-0.004593751393258572,
0.0112628024071455,
0.06290337443351746,
0.014464177191257477,
-0.009611341170966625,
-0.009463343769311905,
-0.0048728445544838905,
0.015043321065604687,
0.007862268947064877,
0.005126551724970341,
0.014871137216687202,
0.02516547404229641,
0.029983382672071457,
0.008302884176373482,
0.02392854355275631,
-0.014275465160608292,
0.02110460214316845,
0.0008692620904184878,
-0.01874389685690403,
0.021393222734332085,
-0.014489551074802876,
0.05661746859550476,
-0.018851565197110176,
0.014633051119744778,
0.006237057037651539,
0.03165719658136368,
0.0026645208708941936,
0.005710209719836712,
0.031496562063694,
0.03863266482949257,
0.03319276124238968,
-0.0665031149983406,
0.03864620253443718,
0.04096885398030281,
-0.004506169818341732,
0.022296564653515816,
0.0029394098091870546,
0.02046380005776882,
-0.008046326227486134,
-0.02061360888183117,
-0.024369992315769196,
0.04511205479502678,
0.039635565131902695,
-0.013019450940191746,
0.012951482087373734,
0.006985973101109266,
0.01846788451075554,
-0.05409466102719307,
-0.0019181495299562812,
-0.020198874175548553,
-0.05213457718491554,
0.04179183393716812,
0.030803106725215912,
-0.0009642276563681662,
0.003068322781473398,
0.008808447979390621,
0.051711734384298325,
-0.003263734746724367,
0.009779607877135277,
-0.04070437699556351,
0.01605629362165928,
0.03521861508488655,
0.015217212960124016,
0.02402004599571228,
-0.0030961139127612114,
-0.006138900760561228,
0.031385693699121475,
0.053929589688777924,
-0.02127661556005478,
0.008213570341467857,
-0.016925211995840073,
-0.03307104483246803,
-0.007265271153301001,
-0.007495193742215633,
-0.03909870609641075,
0.04060431197285652,
0.0162503644824028,
-0.0711137056350708,
-0.013481908477842808,
0.05268682911992073,
0.009058097377419472,
-0.002675866475328803,
0.003176490543410182,
-0.013204585760831833,
-0.046091143041849136,
-0.03791937977075577,
-0.02922830358147621,
0.04730227217078209,
-0.011361275799572468,
0.010205883532762527,
-0.019462449476122856,
0.002925567328929901,
0.03492473065853119,
0.036063600331544876,
0.012898365966975689,
0.016419436782598495,
-0.03484213352203369,
-0.0073992908000946045,
-0.03687448799610138,
-0.04060786962509155,
-0.0025053888093680143,
0.0029328458476811647,
0.026296133175492287,
0.003559189848601818,
-0.025568459182977676,
0.03697231784462929,
0.01911250129342079,
0.010280841030180454,
-0.05889518931508064,
0.013623695820569992,
-0.04493023827672005,
0.005081568844616413,
0.016484644263982773,
-0.03697223588824272,
0.029178909957408905,
0.02550417371094227,
-0.026890283450484276,
0.0404885970056057,
0.030477294698357582,
-0.04748132452368736,
-0.028575021773576736,
0.03255103528499603,
-0.02301410771906376,
-0.01826423406600952,
0.0063840062357485294,
-0.011113252490758896,
-0.0029650891665369272,
0.011873920448124409,
-0.010939166881144047,
0.034845832735300064,
0.006759237498044968,
-0.005778432358056307,
0.006552624050527811,
-0.03276794031262398,
0.013181979767978191,
-0.036036454141139984,
0.0706866979598999,
0.022484682500362396,
-0.003933081869035959,
0.026590583845973015,
0.01739693619310856,
-0.01935189962387085,
-0.0367913618683815,
0.01368201244622469,
0.0012597223976626992,
0.018251605331897736,
-0.010491358116269112,
-0.03963929042220116,
-0.01837717369198799,
-0.018372679129242897,
-0.0019227860029786825,
0.04139880836009979,
-0.012992125004529953,
0.01732805371284485,
-0.04851725697517395,
-0.030484715476632118,
-0.01135341078042984,
0.04319688305258751,
0.0968765914440155,
0.03405607119202614,
0.023071343079209328,
-0.019550269469618797,
0.015321707352995872,
-0.017810126766562462,
0.0028980497736483812,
0.0167155172675848,
0.03367904946208,
0.02735638990998268,
0.0027181017212569714,
0.005861984100192785,
0.030286593362689018,
-0.06278082728385925,
-0.03400805592536926,
-0.005458279512822628,
0.019152095541357994,
-0.01006669458001852,
-0.06229550018906593,
0.02365415170788765,
0.00699913315474987,
-0.03159724920988083,
0.008651111274957657,
-0.02867068350315094,
0.006326689384877682,
-0.009044560603797436,
-0.008961140178143978,
-0.02091340348124504,
0.02303112857043743,
-0.029989195987582207,
-0.007770533207803965,
-0.004064622335135937,
0.007492111995816231,
0.00610673613846302,
-0.024507857859134674,
-0.0199069082736969,
0.0036121385637670755,
-0.011930620297789574,
0.016680316999554634,
-0.02126362919807434,
0.018394850194454193,
0.02194228395819664,
-0.0637921690940857,
-0.09906893968582153,
0.04708701744675636,
-0.022075045853853226,
-0.026044128462672234,
-0.0002084881125483662,
-0.00961764995008707,
-0.0341612808406353,
-0.02611861191689968,
0.021379008889198303,
0.01311112754046917,
0.015482168644666672,
-0.0012350238393992186,
-0.001330914325080812,
0.03441135585308075,
-0.010396627709269524
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Notes | [
0.028027374297380447,
0.012788386084139347,
0.09174474328756332,
-0.00026896054623648524,
0.13416025042533875,
0.033358555287122726,
0.023211823776364326,
0.05978379026055336,
-0.028068432584404945,
-0.11835234612226486,
-0.021310407668352127,
0.046831827610731125,
-0.009888211265206337,
0.0016095915343612432,
0.018662771210074425,
0.07244382798671722,
0.066151924431324,
-0.0263504795730114,
-0.009384449571371078,
-0.01715809479355812,
0.004101545549929142,
-0.029699595645070076,
0.0664641335606575,
0.031718481332063675,
0.032286472618579865,
-0.004335189703851938,
0.013717475347220898,
-0.005863669794052839,
-0.08984801173210144,
0.05077337101101875,
-0.042844656854867935,
-0.005739353597164154,
0.07311423122882843,
-0.0005958229885436594,
-0.03221350163221359,
-0.004922519903630018,
-0.06466829031705856,
0.009226411581039429,
-0.020423132926225662,
-0.040169745683670044,
0.04600309953093529,
-0.07435914874076843,
-0.0019758292473852634,
0.07414864748716354,
-0.03912263363599777,
0.017209909856319427,
-0.29145655035972595,
0.07556803524494171,
-0.034457653760910034,
-0.004789621103554964,
-0.05436119809746742,
0.011874338611960411,
0.027088208124041557,
0.010951920412480831,
0.030672280117869377,
0.008907669223845005,
0.028817716985940933,
-0.01898159272968769,
0.01262355875223875,
-0.06855694949626923,
0.08490382879972458,
-0.01507400069385767,
0.015709681436419487,
-0.000150521460454911,
0.06181953847408295,
0.033920448273420334,
0.009067240171134472,
0.03327794000506401,
-0.059545088559389114,
0.006145469844341278,
0.02936876006424427,
-0.020904848352074623,
-0.03958069533109665,
-0.018795525655150414,
0.05449267849326134,
-0.07892889529466629,
-0.03549135848879814,
0.014118255116045475,
0.04486808553338051,
0.0861123725771904,
0.01981176622211933,
-0.015113990753889084,
0.10807331651449203,
0.1012880802154541,
-0.003561008023098111,
-0.05343317240476608,
0.04229070991277695,
-0.01695353165268898,
-0.009923957288265228,
-0.009478324092924595,
-0.04663188382983208,
-0.07315772771835327,
0.03228450566530228,
0.05198412016034126,
-0.010459830053150654,
-0.050567686557769775,
0.054788947105407715,
0.00770063791424036,
0.03320717811584473,
0.02231976017355919,
-0.017470810562372208,
0.026765335351228714,
0.013713446445763111,
-0.03858673572540283,
-0.027163619175553322,
0.0019153180764988065,
-0.00568007118999958,
-0.04996189847588539,
-0.05148720368742943,
0.029328610748052597,
-0.01973693259060383,
0.0346267968416214,
0.06531863659620285,
-0.04731827974319458,
-0.03843199089169502,
0.046648528426885605,
0.014058632776141167,
-0.007323367986828089,
0.007954168133437634,
0.05293754115700722,
0.005824950989335775,
0.11550561338663101,
0.08428347110748291,
0.03401296213269234,
0.03509039804339409,
-0.0015220120549201965,
0.04249268397688866,
0.06388711929321289,
-0.08584223687648773,
-0.03983795642852783,
-0.008404634892940521,
0.006156184710562229,
0.060366641730070114,
-0.016265224665403366,
-0.04201693460345268,
-0.053673941642045975,
-0.009665736928582191,
-0.0040297438390553,
0.010098802857100964,
0.004054030403494835,
0.008007710799574852,
0.04683854058384895,
-0.002417359733954072,
0.06033114716410637,
0.030853375792503357,
-0.021611623466014862,
-0.042442694306373596,
0.019024113193154335,
-0.002193951979279518,
-0.015141826122999191,
0.029152795672416687,
0.05726143717765808,
-0.014463723637163639,
-0.054681673645973206,
-0.02925339713692665,
0.05509050935506821,
0.03673464059829712,
0.03801092505455017,
-0.06558158993721008,
-0.021102434024214745,
0.039121922105550766,
0.029487773776054382,
0.02506723254919052,
0.017763465642929077,
0.05377906560897827,
-0.023179015144705772,
0.019367827102541924,
-0.003512087743729353,
-0.01479597669094801,
-0.07569324225187302,
-0.043518099933862686,
-0.022999130189418793,
0.0688234493136406,
-0.03808455169200897,
-0.07937484979629517,
0.03712157532572746,
0.05276715010404587,
0.021653512492775917,
0.01264543179422617,
0.016071636229753494,
-0.03800220414996147,
0.015433178283274174,
-0.015385515987873077,
0.03543112054467201,
0.008725413121283054,
-0.025305241346359253,
0.03892927244305611,
-0.009768516756594181,
-0.01181675773113966,
0.03442078083753586,
-0.1422044038772583,
-0.05211444944143295,
0.08884018659591675,
-0.010496243834495544,
0.003150366945192218,
-0.0969359427690506,
-0.02000274695456028,
0.10559118539094925,
0.0670652687549591,
0.04200677573680878,
0.045983389019966125,
0.07168760895729065,
0.07754197716712952,
-0.009892617352306843,
-0.05102993920445442,
0.05889228358864784,
0.05893780291080475,
-0.02245783805847168,
0.02677067182958126,
0.004858769942075014,
-0.03718813136219978,
-0.0999060720205307,
0.047009099274873734,
-0.06656325608491898,
-0.007210082840174437,
-0.024747241288423538,
-0.00799567624926567,
-0.00596257159486413,
0.028398707509040833,
-0.06898493319749832,
0.0684167668223381,
0.02975194714963436,
-0.022783907130360603,
0.08268192410469055,
-0.04618532583117485,
0.08594461530447006,
0.06308696419000626,
-0.001470291637815535,
0.04195426031947136,
-0.07098577916622162,
-0.04440317302942276,
-0.017367495223879814,
-0.010528868064284325,
0.09363950788974762,
0.03614779934287071,
0.059144943952560425,
-0.014610948041081429,
-0.02964402362704277,
0.04058201611042023,
-0.04155087471008301,
0.030505001544952393,
0.009049219079315662,
-0.017433838918805122,
0.04247814416885376,
-0.03519199788570404,
-0.06140262261033058,
0.02058393321931362,
0.0299519095569849,
-0.05278688669204712,
-0.016508188098669052,
-0.043236780911684036,
0.10178875178098679,
0.007201254367828369,
-0.022997373715043068,
0.05756084993481636,
-0.041268203407526016,
0.018347013741731644,
-0.026001878082752228,
-0.02375183440744877,
0.010612135753035545,
0.02043149620294571,
-0.013200086541473866,
-0.006093727424740791,
-0.07174508273601532,
-0.011743836104869843,
-0.01138259656727314,
0.01774013787508011,
0.016380878165364265,
-0.0044607603922486305,
0.04752042144536972,
-0.02795073203742504,
-0.022596009075641632,
0.03521520271897316,
0.0068553294986486435,
0.001108567463234067,
0.007135647814720869,
0.044609688222408295,
-0.012867992743849754,
-0.02114848978817463,
-0.009881576523184776,
0.0017800739733502269,
-0.027578067034482956,
0.009078755974769592,
0.011899548582732677,
0.027564793825149536,
-0.01602439396083355,
0.01515913661569357,
0.011732816696166992,
-0.0012735130731016397,
0.0157226100564003,
-0.006491032894700766,
0.042690958827733994,
0.00003679875590023585,
-0.027137625962495804,
0.04414843022823334,
-0.01758204959332943,
-0.020440896973013878,
0.018106140196323395,
-0.03729689493775368,
-0.019417621195316315,
0.02541486546397209,
0.0021438661497086287,
-0.009331370703876019,
0.01810758002102375,
-0.060069601982831955,
0.028396930545568466,
-0.009373851120471954,
0.006465313024818897,
-0.16850441694259644,
-0.049521300941705704,
0.02498788945376873,
0.026879269629716873,
-0.010353604331612587,
-0.027129055932164192,
0.03520500287413597,
-0.032838668674230576,
-0.030006982386112213,
-0.03145195543766022,
0.032330043613910675,
0.015145980753004551,
0.02060956507921219,
-0.014296546578407288,
-0.013339458033442497,
0.006369435228407383,
-0.02974766679108143,
-0.007116521708667278,
0.0008085798472166061,
-0.009517130441963673,
-0.017821049317717552,
0.053006019443273544,
-0.020489221438765526,
-0.01725950837135315,
-0.028333410620689392,
0.0483146496117115,
0.03188818693161011,
0.03854689002037048,
-0.0026129046455025673,
-0.01349685899913311,
-0.02449735440313816,
0.049949951469898224,
-0.01917663961648941,
0.029256463050842285,
-0.0011814292520284653,
0.002860143780708313,
0.0006873132078908384,
-0.023378120735287666,
-0.00764196552336216,
0.037104323506355286,
0.02897697128355503,
-0.0005634274566546082,
0.03311458230018616,
0.04211705923080444,
-0.03353002667427063,
0.013627564534544945,
-0.01357616763561964,
-0.018770642578601837,
0.05402867868542671,
-0.014758646488189697,
-0.045778099447488785,
0.005194190889596939,
-0.018110649660229683,
0.03640027716755867,
-0.026277555152773857,
-0.0036460421979427338,
-0.03606610745191574,
0.01981138437986374,
0.059977948665618896,
-0.027291331440210342,
-0.009530854411423206,
0.005483729764819145,
0.00608135387301445,
-0.0014850220177322626,
-0.02554088830947876,
0.051310691982507706,
-0.028250008821487427,
0.013603725470602512,
-0.03657446429133415,
0.03532911837100983,
0.0011805081740021706,
0.009411250241100788,
-0.015314623713493347,
0.013794837519526482,
0.002924335189163685,
0.018902014940977097,
-0.0351729653775692,
-0.022850453853607178,
0.06337237358093262,
-0.019044511020183563,
0.016818605363368988,
-0.012448074296116829,
-0.01762840338051319,
-0.004385217092931271,
0.0033861238043755293,
0.03843296691775322,
0.002894288394600153,
0.03006177395582199,
0.0014320943737402558,
0.026658078655600548,
0.02406025491654873,
0.005869191139936447,
0.006235314533114433,
-0.0085463160648942,
-0.005089967045933008,
0.02113642357289791,
0.042050108313560486,
-0.0167009849101305,
0.007641145493835211,
0.016171952709555626,
0.019755065441131592,
-0.012788955122232437,
-0.010859081521630287,
0.014248128980398178,
0.0036288693081587553,
0.03275638818740845,
-0.02773207053542137,
-0.030804358422756195,
-0.01186093408614397,
0.02644978277385235,
0.026577558368444443,
-0.050855252891778946,
0.011514357291162014,
-0.05000872164964676,
-0.03262946009635925,
-0.01301547884941101,
-0.014317517168819904,
-0.0470740906894207,
-0.0554501935839653,
0.0043848357163369656,
-0.02888338826596737,
0.019171401858329773,
0.02441238798201084,
-0.03321622312068939,
0.0015607106033712626,
0.0113868722692132,
-0.0011610519140958786,
-0.010717786848545074,
-0.024829452857375145,
-0.008651715703308582,
-0.015539384447038174,
-0.0319814532995224,
0.056755345314741135,
-0.01600501872599125,
0.03397494927048683,
0.003534469986334443,
-0.017439788207411766,
0.05149801820516586,
-0.0058936006389558315,
-0.07307802885770798,
0.009641219861805439,
-0.004608278162777424,
0.008861779235303402,
-0.025885673239827156,
0.026290833950042725,
-0.019660931080579758,
-0.010774948634207249,
-0.00466703437268734,
-0.01563160866498947,
0.02032594196498394,
0.03171695023775101,
-0.038904912769794464,
-0.025564083829522133,
-0.01223663054406643,
-0.005858090240508318,
0.014215365052223206,
0.016178391873836517,
-0.029686106368899345,
-0.018052075058221817,
0.06653787940740585,
-0.023278405889868736,
-0.005533135961741209,
-0.05518646165728569,
0.03373757377266884,
-0.03539296239614487,
-0.0013993683969601989,
0.004933407064527273,
0.0030631476547569036,
0.009269186295568943,
-0.0024269521236419678,
-0.010991686023771763,
-0.014006425626575947,
0.03851368650794029,
-0.007593222893774509,
0.0420132540166378,
0.019210467115044594,
0.011198561638593674,
0.015179199166595936,
0.038224559277296066,
0.029141563922166824,
0.006215250585228205,
-0.007205341476947069,
0.031501058489084244,
0.009763669222593307,
0.00341614056378603,
-0.00926070474088192,
0.0040023052133619785,
-0.015639813616871834,
-0.008626703172922134,
0.05921158194541931,
-0.0430404394865036,
-0.035575635731220245,
-0.01765589974820614,
-0.010545392520725727,
0.00975979957729578,
0.00659227604046464,
0.016742296516895294,
-0.01245490275323391,
-0.018434058874845505,
0.004951785318553448,
0.03381526842713356,
0.015397568233311176,
-0.0026356554590165615,
-0.013782311230897903,
0.0019335283432155848,
0.03302205353975296,
0.01638532057404518,
-0.024645527824759483,
0.005355010740458965,
-0.0036549055948853493,
-0.012610683217644691,
0.014528224244713783,
-0.04505337402224541,
-0.03243381530046463,
-0.014823732897639275,
-0.025282688438892365,
-0.050416603684425354,
0.0232000183314085,
-0.001187894493341446,
0.012592781335115433,
0.005569768138229847,
0.017042305320501328,
-0.01434705313295126,
0.049568820744752884,
0.05588562786579132,
-0.002730144653469324,
-0.010159437544643879,
0.025886904448270798,
-0.011709798127412796,
0.04148486629128456,
0.022684426978230476,
0.013022590428590775,
-0.015249808318912983,
0.01886470802128315,
0.043143052607774734,
0.02775205858051777,
-0.07622271776199341,
0.024716200307011604,
-0.009720002301037312,
0.014502671547234058,
0.009124545380473137,
-0.007711887359619141,
-0.010329747572541237,
-0.02181454561650753,
-0.01482444629073143,
0.025960130617022514,
0.049040600657463074,
-0.03158658742904663,
0.01587156392633915,
0.016589371487498283,
0.0022743463050574064,
-0.002666828688234091,
-0.007030527573078871,
-0.019998081028461456,
-0.009217272512614727,
0.0028649824671447277,
-0.0019190709572285414,
-0.014905862510204315,
0.009373546577990055,
-0.009009208530187607,
0.013791321776807308,
0.0019881674088537693,
0.025018634274601936,
0.005290319211781025,
-0.022480493411421776,
0.029713062569499016,
0.002221229951828718,
-0.008195974864065647,
0.033422015607357025,
0.028220398351550102,
-0.009650658816099167,
-0.0010379459708929062,
0.03032596781849861,
-0.04715413972735405,
0.008176347240805626,
-0.0003915909619536251,
0.03591887652873993,
0.024672824889421463,
-0.0031833171378821135,
-0.004605359397828579,
0.01855572871863842,
0.013313746079802513,
0.01798507757484913,
-0.013755857944488525,
-0.023502575233578682,
0.02503596991300583,
0.009622922167181969,
0.012581630609929562,
0.022315146401524544,
0.006217750255018473,
0.007954216562211514,
-0.0007980235968716443,
-0.01620384305715561,
0.020982662215828896,
-0.02085813507437706,
0.02509632520377636,
0.0018853099318221211,
-0.03719120845198631,
0.03307117894291878,
-0.026857923716306686,
0.03527787700295448,
0.014765774831175804,
-0.008966359309852123,
0.007365860510617495,
-0.029292117804288864,
0.00744180753827095,
0.028463199734687805,
-0.022591110318899155,
-0.015123234130442142,
-0.03238794952630997,
0.01511291228234768,
0.06488046795129776,
-0.026612814515829086,
-0.01677791215479374,
0.005101669114083052,
-0.06994922459125519,
0.04246237874031067,
-0.013275370933115482,
-0.013108804821968079,
-0.0043393406085669994,
0.052170004695653915,
-0.024566087871789932,
-0.00928876269608736,
-0.02529044821858406,
-0.03813647851347923,
-0.06852932274341583,
0.014829730615019798,
0.0009386791498400271,
-0.009285864420235157,
-0.010136309079825878,
0.006184225901961327,
0.016310451552271843,
-0.022682534530758858,
-0.006580878980457783,
-0.01576278917491436,
0.051014937460422516,
0.015648001804947853,
0.04122215509414673,
0.004974853713065386,
-0.01750447228550911,
-0.012711163610219955,
-0.01766112819314003,
0.02316223457455635,
0.0074196308851242065,
0.01283235289156437,
-0.0135579789057374,
-0.013735629618167877,
-0.009332827292382717,
-0.033403366804122925,
0.018756233155727386,
0.027685293927788734,
0.009400869719684124,
0.010211012326180935,
0.036486800760030746,
-0.019716361537575722,
0.006079173646867275,
-0.024455292150378227,
-0.0038720746524631977,
0.009777294471859932,
-0.005265701096504927,
-0.010013054125010967,
0.03048783913254738,
0.01788274012506008,
-0.027432279661297798,
-0.042732492089271545,
0.006645104847848415,
-0.03614438325166702,
-0.000038024376408429816,
0.00922723114490509,
0.013829555362462997,
-0.024710366502404213,
-0.04197824373841286,
0.019952546805143356,
0.018729370087385178,
-0.02688930369913578,
-0.018255257979035378,
-0.0271319467574358,
-0.01649099960923195,
-0.010434690862894058,
-0.030686067417263985,
0.07277613133192062,
0.024812964722514153,
0.019936958327889442,
0.013498703017830849,
0.038703713566064835,
-0.006355222314596176,
-0.03201553225517273,
-0.002679432276636362,
0.021674426272511482,
0.027712229639291763,
-0.018147172406315804,
-0.014486518688499928,
-0.02410205826163292,
-0.05628323182463646,
0.009297280572354794,
-0.009729651734232903,
-0.0438765250146389,
-0.0074978480115532875,
-0.0018429390620440245,
0.00016586897254455835,
-0.0523207001388073,
0.02129368670284748,
0.0442439541220665,
-0.0017541574779897928,
0.005581275559961796,
-0.010928483679890633,
0.003621840151026845,
-0.024063939228653908,
0.006851782090961933,
-0.008281738497316837,
0.02955031953752041,
0.029033521190285683,
-0.0040604411624372005,
-0.054945413023233414,
0.05111176520586014,
-0.03680140897631645,
-0.04821976274251938,
-0.005397979170084,
0.0559336319565773,
-0.006153871770948172,
-0.026361409574747086,
0.0034680701792240143,
0.0160282664000988,
0.01758766733109951,
0.007210663519799709,
0.03883141651749611,
-0.01898817904293537,
-0.0022899266332387924,
0.012957865372300148,
-0.0408673994243145,
-0.003519822144880891,
0.008965256623923779,
0.01982722245156765,
0.04851245507597923,
0.03237730637192726,
-0.03564130514860153,
-0.012334581464529037,
-0.06910089403390884,
0.010478338226675987,
0.0015751640312373638,
-0.0051530576311051846,
-0.006242085248231888,
0.029967596754431725,
-0.05023040995001793,
-0.024165937677025795,
-0.05690677836537361,
0.03485836461186409,
0.017304591834545135,
-0.01792672462761402,
-0.00496267294511199,
-0.018438218161463737,
0.009436938911676407,
0.010264971293509007,
0.03063715249300003,
0.0017643719911575317,
0.03932764381170273,
0.021622061729431152,
-0.010978436097502708,
0.014361514709889889,
0.018384959548711777
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Tokenizer porting The first step was to port the encoder part of the tokenizer, where text is converted to ids. The decoder part won't be needed until the very end. | [
0.03453950956463814,
0.019679537042975426,
0.050508927553892136,
0.006192856002599001,
0.051974695175886154,
0.04363332688808441,
-0.018672360107302666,
-0.005458842031657696,
-0.011670242995023727,
-0.02392537333071232,
-0.029224669560790062,
0.02283618040382862,
-0.014849012717604637,
0.01512124016880989,
-0.008453208953142166,
0.057059478014707565,
0.028701862320303917,
-0.07010214775800705,
0.054575365036726,
-0.04324769601225853,
0.009355700574815273,
-0.047806259244680405,
0.04121873900294304,
0.007096966728568077,
-0.0007434330764226615,
0.018617382273077965,
-0.0251357052475214,
0.013469582423567772,
-0.055388886481523514,
0.014549652114510536,
-0.021058550104498863,
0.0052434541285037994,
0.01655466854572296,
-0.03369901329278946,
-0.035737764090299606,
0.007894817739725113,
-0.13513213396072388,
0.006360162049531937,
-0.015218078158795834,
0.00362395029515028,
-0.0910441130399704,
-0.018460579216480255,
-0.0074869305826723576,
0.0633130744099617,
-0.001074454514309764,
0.018020588904619217,
-0.29105523228645325,
0.08249954134225845,
0.02539340779185295,
-0.04243241623044014,
-0.03974474221467972,
0.0247415192425251,
-0.03201962262392044,
0.055645450949668884,
0.024160198867321014,
-0.012260613031685352,
-0.03715323284268379,
-0.1003190279006958,
0.025778576731681824,
0.013811539858579636,
0.08202890306711197,
-0.040526799857616425,
-0.002580241998657584,
0.016540486365556717,
0.058294035494327545,
0.050186268985271454,
-0.04038234427571297,
0.03054148703813553,
-0.007461889181286097,
-0.013798361644148827,
0.0041685388423502445,
-0.028738899156451225,
-0.01371089369058609,
-0.013035486452281475,
0.027192028239369392,
-0.034035574644804,
0.03229451924562454,
0.02953934296965599,
0.03916260227560997,
0.09996050596237183,
-0.015366122126579285,
0.026589643210172653,
0.09577756375074387,
0.007311954163014889,
0.08466466516256332,
0.009424951858818531,
0.029278399422764778,
-0.017195038497447968,
0.020474905148148537,
0.028111735358834267,
-0.04019167646765709,
-0.15848585963249207,
-0.021869033575057983,
0.03548477962613106,
0.03378035128116608,
0.0013276240788400173,
0.042603157460689545,
0.06943680346012115,
0.024668799713253975,
0.026502201333642006,
0.012667223811149597,
-0.03160625696182251,
0.010770349763333797,
-0.024419374763965607,
-0.01919795572757721,
-0.0016202663537114859,
-0.012907685711979866,
-0.09596429765224457,
0.010883125476539135,
-0.01598288118839264,
0.03354548290371895,
0.013949211686849594,
0.033016182482242584,
0.044385988265275955,
-0.06579028069972992,
0.06970347464084625,
0.0297681987285614,
-0.0006538305315189064,
0.02259381115436554,
0.04250052571296692,
0.019260384142398834,
0.08013279736042023,
0.046758703887462616,
-0.038866858929395676,
-0.01901409588754177,
0.017521832138299942,
0.04669468104839325,
0.034444231539964676,
-0.010978744365274906,
-0.033257488161325455,
-0.023755550384521484,
0.05517558753490448,
0.01690107211470604,
0.03419571742415428,
-0.028388258069753647,
-0.09194779396057129,
-0.02967749536037445,
-0.0381535179913044,
-0.0010130174923688173,
-0.05620233342051506,
-0.03820427507162094,
0.052905358374118805,
-0.03482355177402496,
0.04192548245191574,
-0.010911540128290653,
0.029411092400550842,
-0.06632153689861298,
0.03530506789684296,
-0.010128621011972427,
0.023232879117131233,
-0.048554182052612305,
-0.014082099311053753,
0.03262154757976532,
-0.036342233419418335,
0.024684643372893333,
0.061372339725494385,
0.03357870131731033,
-0.04373208060860634,
-0.10466727614402771,
0.039070650935173035,
-0.015960192307829857,
0.03614043444395065,
0.015496212057769299,
0.007534682285040617,
0.019447289407253265,
-0.05112139508128166,
-0.0020004340913146734,
0.018584121018648148,
0.03902561217546463,
-0.0377483032643795,
0.045905761420726776,
-0.001384433708153665,
0.05101612210273743,
-0.05375736951828003,
0.012033696286380291,
0.013186569325625896,
0.0212408397346735,
0.06574437022209167,
-0.01178323570638895,
-0.020330382511019707,
-0.02372625283896923,
0.011530443094670773,
-0.04480305686593056,
0.009404515847563744,
-0.01422410923987627,
-0.053051259368658066,
0.006068771705031395,
-0.029956022277474403,
-0.051974277943372726,
-0.006055259611457586,
-0.058743517845869064,
-0.05451643466949463,
0.03442400321364403,
0.016373533755540848,
0.014814990572631359,
-0.041884228587150574,
-0.02968604862689972,
0.09781613200902939,
-0.013414149172604084,
0.09012152999639511,
0.04707029461860657,
0.0070797051303088665,
-0.00024112930987030268,
-0.028967591002583504,
-0.0016183359548449516,
0.002767932368442416,
0.04355078563094139,
-0.05464428290724754,
0.04728149250149727,
0.024396656081080437,
0.027992676943540573,
-0.08785733580589294,
0.018405884504318237,
-0.0955452099442482,
0.0042548710480332375,
0.006361111532896757,
-0.006592541467398405,
0.03652730956673622,
-0.01910661719739437,
-0.10364500433206558,
0.14461301267147064,
-0.0933808907866478,
0.025779016315937042,
-0.013846439309418201,
-0.0187810268253088,
0.09888150542974472,
0.06189019978046417,
0.01373703870922327,
0.0686710849404335,
-0.049853187054395676,
-0.04981109872460365,
-0.04022672399878502,
0.005896810442209244,
-0.015154806897044182,
-0.03371188044548035,
0.046331215649843216,
-0.00009048868378158659,
0.0005078965332359076,
0.05765296146273613,
-0.03751125931739807,
0.037962641566991806,
-0.046552084386348724,
-0.025081155821681023,
-0.04094209149479866,
-0.0036173746921122074,
0.05577850714325905,
0.09373848140239716,
-0.06538114696741104,
-0.05057429149746895,
-0.02416284568607807,
-0.040526069700717926,
0.04580249264836311,
-0.026948265731334686,
-0.07561149448156357,
0.124468594789505,
0.004537542816251516,
-0.012900905683636665,
-0.02557731233537197,
0.026440013200044632,
0.011777359060943127,
0.005072946194559336,
-0.004841802641749382,
-0.03158457949757576,
-0.07586505264043808,
-0.013843823224306107,
-0.045669831335544586,
-0.03670158609747887,
0.054761260747909546,
-0.04276180639863014,
0.023140359669923782,
-0.01254851371049881,
-0.01865370012819767,
0.02352774888277054,
0.012907552532851696,
0.0161433108150959,
0.002964345971122384,
0.026176977902650833,
-0.0462859682738781,
-0.03346993774175644,
-0.0019521923968568444,
0.032159458845853806,
-0.055019788444042206,
0.019873183220624924,
0.030452223494648933,
0.00786601658910513,
-0.011849438771605492,
-0.0034341486170887947,
0.016759691759943962,
-0.044616974890232086,
0.019576868042349815,
0.028541093692183495,
-0.0029540539253503084,
0.002491297200322151,
0.03541957214474678,
0.05361749976873398,
-0.0027345248963683844,
-0.009559259749948978,
0.03010816127061844,
-0.002562198555096984,
0.017058974131941795,
-0.02688884548842907,
0.04518509283661842,
-0.013820678927004337,
-0.030942320823669434,
-0.08701974153518677,
0.031198063865303993,
0.022891763597726822,
0.008109594695270061,
-0.12026871740818024,
-0.03213714435696602,
0.013831282034516335,
0.05025414749979973,
-0.010655825026333332,
-0.006547136232256889,
0.03945308178663254,
-0.023905247449874878,
0.0016131040174514055,
-0.011292025446891785,
0.04101553559303284,
0.020258596166968346,
0.021612783893942833,
-0.01820368692278862,
-0.041990045458078384,
-0.017041681334376335,
-0.010163799859583378,
0.01705343835055828,
0.01628657802939415,
0.003758511273190379,
-0.026459962129592896,
0.03723008558154106,
0.006669620983302593,
0.018124157562851906,
-0.018313126638531685,
-0.0010159261291846633,
0.054404377937316895,
0.0011081299744546413,
0.02011546865105629,
0.022837553173303604,
-0.00613949541002512,
-0.007626014295965433,
0.016413377597928047,
-0.013672319240868092,
-0.032308634370565414,
-0.009103305637836456,
-0.010798655450344086,
-0.0057447743602097034,
-0.00847696140408516,
0.03738456964492798,
0.020200397819280624,
0.015392919071018696,
0.04914160072803497,
-0.018519582226872444,
0.03781270608305931,
-0.009006890468299389,
0.009726565331220627,
0.003700722474604845,
0.04865069314837456,
-0.03082582913339138,
0.015711523592472076,
-0.043745823204517365,
0.0050853765569627285,
0.033987585455179214,
-0.00605980958789587,
-0.02034754492342472,
-0.026905842125415802,
0.05108718201518059,
0.028785118833184242,
-0.016624072566628456,
-0.043381091207265854,
-0.009176316671073437,
0.002196050016209483,
-0.031028514727950096,
-0.07833302021026611,
0.08514166623353958,
0.015766525641083717,
0.032665301114320755,
0.02764965035021305,
0.0693131759762764,
0.001231307745911181,
0.007120280526578426,
0.009833892807364464,
0.01728038489818573,
-0.011447600089013577,
0.032779376953840256,
-0.0408305786550045,
-0.025005482137203217,
0.020671389997005463,
0.012258561328053474,
0.005603444296866655,
0.033637817949056625,
-0.003966412972658873,
-0.006161412224173546,
-0.0030400671530514956,
0.011379359290003777,
0.004793665371835232,
0.02793152816593647,
-0.026663079857826233,
0.04363019019365311,
0.04575531929731369,
-0.016966665163636208,
-0.008912494406104088,
0.012893173843622208,
-0.009021786041557789,
0.012764948420226574,
0.030439699068665504,
-0.0041067106649279594,
0.017855791375041008,
0.021700352430343628,
0.03043045848608017,
-0.036660876125097275,
-0.024131372570991516,
-0.026716776192188263,
0.0015792024787515402,
0.010508226230740547,
-0.029502278193831444,
-0.038705725222826004,
0.037032175809144974,
-0.009432646445930004,
0.020767342299222946,
-0.002640574937686324,
-0.028418036177754402,
-0.03827276453375816,
0.010339280590415001,
-0.0066043720580637455,
0.003814423456788063,
-0.034024324268102646,
-0.00965467281639576,
-0.005658954381942749,
-0.036377254873514175,
0.017550857737660408,
0.02621564455330372,
0.016178613528609276,
0.01257470902055502,
-0.02959548868238926,
0.051426734775304794,
0.012789285741746426,
-0.004870150703936815,
-0.011854036711156368,
-0.018432078883051872,
0.015974223613739014,
0.005368185229599476,
-0.00037296346272341907,
0.03846758231520653,
-0.012363043613731861,
-0.020591411739587784,
0.008240004070103168,
0.036219242960214615,
-0.031177638098597527,
-0.0403742715716362,
-0.004768393002450466,
0.030649464577436447,
-0.019859017804265022,
0.04538602754473686,
0.01766805909574032,
-0.021580127999186516,
0.009994286112487316,
0.008297688327729702,
0.017199542373418808,
0.029163964092731476,
-0.020577305927872658,
-0.030700040981173515,
0.0042331828735768795,
-0.0175166055560112,
-0.02647627331316471,
0.01473425142467022,
-0.025024469941854477,
-0.017261946573853493,
0.030936768278479576,
0.0033736189361661673,
-0.005324712023139,
-0.03498058766126633,
-0.004116916563361883,
-0.0013384916819632053,
-0.05348018929362297,
-0.022848844528198242,
-0.01578088104724884,
-0.022019188851118088,
0.001770423841662705,
-0.024474645033478737,
0.025208625942468643,
0.037994105368852615,
-0.010174328461289406,
0.018445415422320366,
0.007554505951702595,
-0.0040803332813084126,
0.03187263756990433,
-0.02207402139902115,
0.009202881716191769,
-0.014152894727885723,
-0.0036697392351925373,
0.02160031348466873,
-0.0031528782565146685,
-0.021983632817864418,
-0.003700566478073597,
0.06675516068935394,
0.027891503646969795,
-0.0126569839194417,
0.042074352502822876,
-0.011170463636517525,
0.003729513380676508,
-0.008193925954401493,
-0.029580960050225258,
-0.014858654700219631,
-0.03515658900141716,
-0.006362034007906914,
0.0003741391992662102,
-0.0619550421833992,
0.01609918102622032,
0.015348927117884159,
0.05163668468594551,
0.015428182668983936,
-0.014964213594794273,
0.0011859586229547858,
-0.016854943707585335,
0.02335568331182003,
-0.03286851942539215,
0.020108886063098907,
-0.01486459095031023,
0.03155231848359108,
0.0004983745166100562,
-0.043704066425561905,
-0.011507679708302021,
0.03867358714342117,
-0.014179300516843796,
-0.03536539897322655,
0.024705855175852776,
0.004351383075118065,
0.05032682046294212,
0.05322705954313278,
0.00013712084910366684,
-0.04348136484622955,
0.06036682799458504,
0.04340411350131035,
-0.013602547347545624,
0.003994293976575136,
0.03432491049170494,
-0.015305513516068459,
0.023395247757434845,
0.020272890105843544,
-0.04070083424448967,
0.013790315017104149,
0.0532207153737545,
0.0015220196219161153,
-0.0023166583850979805,
-0.021137520670890808,
0.032854028046131134,
0.01594260148704052,
-0.0058513241820037365,
0.033612921833992004,
-0.008807304315268993,
-0.04285081848502159,
-0.008022703230381012,
-0.03032422810792923,
-0.025070248171687126,
0.04733657091856003,
0.022902723401784897,
0.011791151948273182,
0.05505373328924179,
0.02795381098985672,
-0.009585000574588776,
0.015226160176098347,
-0.007098061498254538,
0.016306491568684578,
0.011541258543729782,
0.05687912926077843,
-0.007090642116963863,
-0.013302064500749111,
-0.04839562624692917,
-0.016300976276397705,
-0.03249138593673706,
0.025582360103726387,
0.004169214051216841,
-0.0006727658328600228,
0.026039347052574158,
-0.023553840816020966,
-0.031448837369680405,
-0.017507091164588928,
0.015450441278517246,
0.02298819087445736,
0.014369047246873379,
0.0026062852703034878,
-0.007232485339045525,
0.008311453275382519,
-0.022595632821321487,
0.015058833174407482,
0.06602582335472107,
-0.01387776155024767,
0.05904604494571686,
0.014428453519940376,
0.050406958907842636,
0.04295364022254944,
0.05047590658068657,
0.005131272133439779,
0.030071137472987175,
0.015524121932685375,
-0.021801207214593887,
-0.019487032666802406,
-0.0037356780376285315,
0.02329116500914097,
-0.0009528780356049538,
-0.026147468015551567,
0.032787226140499115,
-0.01900688000023365,
-0.008726450614631176,
0.004015197511762381,
0.0031638287473469973,
0.016581853851675987,
-0.022101081907749176,
0.0757206529378891,
0.038109391927719116,
0.0006555726868100464,
-0.042255938053131104,
0.019832439720630646,
0.035072408616542816,
0.01582895591855049,
0.011558118276298046,
0.0183300469070673,
-0.02038724720478058,
0.00511168921366334,
0.058046381920576096,
0.017915811389684677,
0.015638703480362892,
-0.011293161660432816,
0.005437707062810659,
0.02934815175831318,
0.017041783779859543,
-0.0306970477104187,
0.008264443837106228,
0.02866690792143345,
-0.05309195816516876,
0.009573839604854584,
0.008380354382097721,
-0.05633215233683586,
-0.0030922500882297754,
0.012995880097150803,
0.0007403652998618782,
-0.03834786266088486,
-0.014806410297751427,
0.009034472517669201,
0.014475231058895588,
-0.015101567842066288,
-0.01603100076317787,
-0.009488056413829327,
0.027055323123931885,
0.008463488891720772,
0.015988018363714218,
-0.0052797538228333,
-0.0160171240568161,
-0.016059134155511856,
0.0021068218629807234,
-0.013825895264744759,
-0.027334993705153465,
-0.00974173191934824,
0.01170935295522213,
0.020535126328468323,
-0.008905414491891861,
0.01906718499958515,
0.012951385229825974,
0.021246012300252914,
0.04331402853131294,
-0.028443310409784317,
0.012579423375427723,
-0.02198803424835205,
-0.03725782409310341,
-0.0327189639210701,
-0.04220786318182945,
-0.005686203949153423,
-0.002461373107507825,
0.007133482489734888,
0.025721747428178787,
0.045879773795604706,
-0.05921950563788414,
-0.05355299636721611,
0.011584516614675522,
-0.034040406346321106,
0.01511511392891407,
0.015583308413624763,
0.008451094850897789,
-0.014981244690716267,
0.0022862162441015244,
0.00582441920414567,
-0.04862559586763382,
-0.030993670225143433,
0.0038227022159844637,
0.018766816705465317,
-0.03419775888323784,
-0.05498787388205528,
-0.052591826766729355,
0.05113110691308975,
0.009923978708684444,
-0.0016121300868690014,
0.0533360056579113,
0.017252610996365547,
-0.00849047303199768,
-0.031603939831256866,
0.008372703567147255,
-0.015006487257778645,
-0.001734299585223198,
-0.03173273429274559,
-0.058057814836502075,
-0.014003723859786987,
-0.02731539122760296,
0.006399295758455992,
0.021170586347579956,
-0.032246366143226624,
0.027244819328188896,
-0.02395256608724594,
-0.019058765843510628,
-0.042501095682382584,
0.03960277512669563,
0.05194052308797836,
-0.01483747735619545,
0.022262167185544968,
0.0373222790658474,
-0.016028832644224167,
-0.023808691650629044,
0.0032238971907645464,
0.056318022310733795,
0.03170601278543472,
0.005413880106061697,
-0.01257420890033245,
0.01034847367554903,
0.042243584990501404,
-0.04358634725213051,
-0.011290434747934341,
0.05815424025058746,
0.002208615420386195,
-0.05438480153679848,
-0.026824235916137695,
0.038889992982149124,
0.022329866886138916,
-0.0027418872341513634,
-0.0037946386728435755,
0.039094969630241394,
-0.00917442049831152,
0.011281171813607216,
0.026573028415441513,
-0.044337205588817596,
-0.022580020129680634,
-0.000171190346009098,
0.02873636968433857,
-0.00537835294380784,
0.022046303376555443,
-0.025068502873182297,
-0.01846708543598652,
-0.051726244390010834,
0.005022123456001282,
-0.0021094484254717827,
0.02149445191025734,
-0.007574334740638733,
-0.01863100752234459,
0.013220168650150299,
-0.030959337949752808,
-0.03431641682982445,
0.08210761845111847,
0.008698834106326103,
-0.03141436353325844,
-0.012489336542785168,
-0.008582944050431252,
-0.0011209859512746334,
-0.0007665119483135641,
0.005702350754290819,
-0.016104193404316902,
0.03556447476148605,
0.017800265923142433,
-0.007975331507623196,
0.0039004303980618715,
0.010926091112196445
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Porting other models I next proceeded to port theen-deandde-enmodels. I was surprised to discover that these weren't built in the same way. Each of these had a merged dictionary, so for a moment I felt frustration, since I thought I'd now have to do another huge change to support that. But, I didn't need to make any changes, as the merged dictionary fit in without needing any changes. I just used 2 identical dictionaries - one as a source and a copy of it as a target. I wrote another script to test all ported models' basic functionality: [fsmt-test-all.py](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/scripts/fsmt-test-all.py). | [
-0.01308146957308054,
-0.01567629724740982,
0.022680630907416344,
0.016926726326346397,
0.0710868313908577,
0.051052384078502655,
0.00907941535115242,
0.05388930067420006,
-0.0038914107717573643,
-0.03883674368262291,
-0.06156086176633835,
0.04286625608801842,
0.000476200832054019,
0.045125577598810196,
0.04692874848842621,
-0.02952658198773861,
-0.041025977581739426,
-0.05399556830525398,
0.0005311899003572762,
-0.0028693468775600195,
0.020542817190289497,
-0.11332831531763077,
0.05154239013791084,
0.013381577096879482,
-0.019267193973064423,
-0.05531885847449303,
0.04641472175717354,
0.09683440625667572,
-0.027265630662441254,
0.05084914341568947,
-0.0287290308624506,
0.010502982884645462,
-0.042046986520290375,
-0.07201925665140152,
-0.060225799679756165,
0.012842090800404549,
-0.06627508252859116,
0.007198097184300423,
-0.0028843607287853956,
-0.07799302041530609,
0.025223763659596443,
-0.012693130411207676,
-0.023222463205456734,
0.031829725950956345,
0.0014861212112009525,
0.05341358110308647,
-0.12773822247982025,
0.045601893216371536,
0.022829430177807808,
0.01746169477701187,
-0.037407759577035904,
-0.032640013843774796,
-0.02510320022702217,
0.0060844700783491135,
0.007501270156353712,
0.02020987495779991,
-0.010086214169859886,
-0.030577264726161957,
0.0004975695046596229,
0.01447528600692749,
-0.008580119349062443,
0.010671119205653667,
0.0017161009600386024,
0.051346469670534134,
0.008476008661091328,
0.012598525732755661,
-0.02787753939628601,
0.004517786670476198,
-0.04868316650390625,
-0.007778969593346119,
-0.011754306964576244,
-0.00527926767244935,
-0.04546816274523735,
-0.04874284565448761,
0.02836548537015915,
-0.10005674511194229,
-0.010963534004986286,
0.004253029823303223,
0.0844973549246788,
0.06214699521660805,
0.07136351615190506,
0.017549637705087662,
0.07937812805175781,
0.0007279693381860852,
0.03828037902712822,
-0.024908076971769333,
-0.002622466068714857,
-0.035775020718574524,
-0.007730872370302677,
0.05347767472267151,
0.0006439207354560494,
-0.09424394369125366,
-0.0937594398856163,
0.024885624647140503,
0.07151730358600616,
0.036648135632276535,
-0.009132199920713902,
0.07318275421857834,
0.0329148955643177,
0.02933678776025772,
-0.018324898555874825,
0.0036287610419094563,
0.02193361334502697,
-0.06969001144170761,
0.021073780953884125,
0.0026171908248215914,
0.0025502347853034735,
-0.1119193285703659,
-0.03524455800652504,
-0.007614469155669212,
-0.059325456619262695,
-0.0078425956889987,
0.0009458328713662922,
0.04309631884098053,
0.011309676803648472,
0.05402051657438278,
-0.010661093518137932,
-0.04652386158704758,
0.005965833552181721,
-0.014422211796045303,
0.06421121209859848,
0.06891768425703049,
0.03822946175932884,
-0.040224313735961914,
0.10374943166971207,
0.09668689966201782,
0.06760530173778534,
0.029901528730988503,
-0.045419517904520035,
-0.08923494070768356,
0.04604087397456169,
0.026363089680671692,
0.0679187923669815,
0.013811259530484676,
-0.07744363695383072,
-0.11233563721179962,
-0.0006089634844101965,
0.030571557581424713,
0.002975999377667904,
-0.01966182142496109,
-0.029426779597997665,
0.04780273884534836,
-0.03237788751721382,
0.05330490693449974,
-0.017535744234919548,
0.023394370451569557,
-0.060639407485723495,
0.1164439395070076,
-0.0015805858420208097,
0.02812712825834751,
-0.022800182923674583,
0.017893875017762184,
-0.025163453072309494,
-0.07756053656339645,
0.0014383741654455662,
0.07587922364473343,
-0.0031818528659641743,
-0.005694652441889048,
-0.060933634638786316,
0.020661501213908195,
-0.0023668191861361265,
-0.0006751413457095623,
-0.04303128272294998,
-0.04233644902706146,
0.03850207105278969,
-0.03655698895454407,
-0.05066043883562088,
0.03778080269694328,
0.0543147474527359,
0.018882136791944504,
0.03529562056064606,
-0.025954166427254677,
0.08267299085855484,
0.008177907206118107,
-0.03704048693180084,
0.06315384060144424,
0.07661868631839752,
0.058029983192682266,
0.05083910748362541,
0.011329707689583302,
-0.06312078982591629,
0.03357253968715668,
-0.05353322625160217,
0.0022569294087588787,
0.009207356721162796,
-0.005601186770945787,
0.050790607929229736,
-0.0342690572142601,
-0.017339831218123436,
0.005742233246564865,
-0.0883961096405983,
-0.03894050046801567,
0.09461523592472076,
-0.010338823311030865,
0.008257945068180561,
0.026721078902482986,
-0.037137653678655624,
0.05913683772087097,
0.049719247967004776,
0.09694584459066391,
0.09204146265983582,
-0.03207428753376007,
0.006578770931810141,
0.009528097696602345,
0.04156714305281639,
0.08027935028076172,
-0.012447861954569817,
-0.05871451646089554,
0.023343762382864952,
0.019833935424685478,
0.05888404697179794,
-0.10372407734394073,
0.019847441464662552,
-0.07373036444187164,
0.0022846402134746313,
-0.07631740719079971,
-0.06529801338911057,
-0.03425934538245201,
-0.022829867899417877,
-0.045357730239629745,
0.09065032005310059,
0.040724627673625946,
-0.03259032219648361,
-0.04980773106217384,
0.003942020237445831,
0.08644894510507584,
0.07777182012796402,
0.025196917355060577,
0.09608452767133713,
-0.05516210198402405,
0.003902019001543522,
0.022734545171260834,
0.0033102533780038357,
0.05861558020114899,
-0.011286583729088306,
-0.011632210575044155,
0.010766245424747467,
0.014645248651504517,
0.00242282054387033,
-0.06207757443189621,
0.014763734303414822,
0.03467034921050072,
0.02773928828537464,
0.007697912864387035,
-0.013810005970299244,
0.060041092336177826,
0.029376348480582237,
-0.03254326805472374,
-0.028768083080649376,
-0.024404233321547508,
-0.057651083916425705,
0.046055085957050323,
0.027272677049040794,
-0.06669186800718307,
0.08092040568590164,
0.0039202431216835976,
0.010561266914010048,
-0.0007020992343313992,
0.013283835723996162,
0.045529965311288834,
-0.01662980206310749,
0.03032114915549755,
-0.04576614126563072,
-0.05493197962641716,
0.00821499153971672,
-0.035765085369348526,
-0.005731627810746431,
-0.009970567189157009,
-0.01109666470438242,
0.015258594416081905,
-0.013124428689479828,
-0.05674907565116882,
-0.01808541640639305,
-0.011242613196372986,
-0.003264358500018716,
-0.007584712002426386,
0.0073404270224273205,
-0.005526749417185783,
-0.04389392212033272,
-0.01749354600906372,
-0.024800995364785194,
-0.02861676923930645,
-0.005632697604596615,
-0.0019079250050708652,
-0.0012370129115879536,
0.011921006254851818,
0.003780244616791606,
-0.014172462746500969,
-0.02332433871924877,
0.018221458420157433,
0.06955070793628693,
0.006525207776576281,
-0.010840825736522675,
0.019010553136467934,
-0.05293180048465729,
0.007219098042696714,
0.025869209319353104,
-0.014660993590950966,
-0.015285758301615715,
0.018616650253534317,
-0.007886613719165325,
0.034467436373233795,
-0.0068495734594762325,
-0.008846158161759377,
-0.055258892476558685,
0.006582735106348991,
0.029475830495357513,
-0.0027291413862258196,
-0.11064057052135468,
-0.0064865415915846825,
-0.021766502410173416,
0.06315317749977112,
-0.011139637790620327,
-0.03476914018392563,
0.027571270242333412,
-0.03864600509405136,
0.02282470092177391,
0.02566857635974884,
0.03631437569856644,
0.010128162801265717,
0.016882959753274918,
0.029282405972480774,
-0.03262142464518547,
-0.010033173486590385,
-0.028200529515743256,
0.01649574749171734,
0.06664261966943741,
0.004006718285381794,
-0.02412435971200466,
0.013364874757826328,
0.000433723529567942,
-0.03596339002251625,
-0.009957736358046532,
-0.009955753572285175,
0.06627580523490906,
0.00928434543311596,
-0.020105300471186638,
-0.04151887446641922,
-0.006620550062507391,
0.03307660296559334,
-0.02853114902973175,
-0.008170138113200665,
-0.04174167290329933,
-0.030398359522223473,
-0.03227134793996811,
0.03772050887346268,
-0.027227433398365974,
0.017725298181176186,
0.02690301090478897,
0.0148994829505682,
0.026499714702367783,
0.015909306704998016,
0.005566742271184921,
0.0006622174405492842,
0.017518771812319756,
0.021735968068242073,
0.014915947802364826,
-0.020092718303203583,
-0.015344040468335152,
-0.03188583627343178,
0.022147728130221367,
0.07947631180286407,
-0.023013031110167503,
0.0028963014483451843,
0.0009291435708291829,
0.031466931104660034,
0.02080462872982025,
0.004447742830961943,
-0.04653441905975342,
0.03313563019037247,
-0.029619691893458366,
-0.02578533999621868,
-0.03931634873151779,
0.09909024089574814,
-0.01169402152299881,
0.028571726754307747,
0.018836896866559982,
-0.000053345000196713954,
-0.02050400711596012,
0.0006493083783425391,
-0.022014562040567398,
0.008300530724227428,
-0.0077485437504947186,
0.032032523304224014,
-0.041596878319978714,
-0.05696240812540054,
0.038501713424921036,
-0.01137627474963665,
0.026264404878020287,
-0.03974322974681854,
-0.005283028818666935,
0.002854696474969387,
-0.021675245836377144,
0.021995576098561287,
-0.014593231491744518,
-0.009485047310590744,
-0.0010470666456967592,
0.024739155545830727,
0.0347738079726696,
-0.019504960626363754,
-0.013612923212349415,
-0.011353745125234127,
-0.002349073300138116,
-0.030943788588047028,
-0.009316669777035713,
-0.020886985585093498,
0.02867583930492401,
-0.02029276452958584,
0.022235717624425888,
-0.0347035713493824,
-0.029361601918935776,
0.005571090150624514,
0.005152930971235037,
0.03897687792778015,
-0.02692648395895958,
-0.022507382556796074,
-0.0006204466335475445,
-0.015543400309979916,
-0.002875223523005843,
0.0009680299554020166,
-0.032775502651929855,
-0.0183463953435421,
0.015706513077020645,
0.01840120553970337,
-0.013894904404878616,
-0.01828024908900261,
-0.018392516300082207,
0.04279738664627075,
-0.022581784054636955,
-0.03606024757027626,
0.021916307508945465,
-0.02544322982430458,
-0.036017123609781265,
-0.0135368462651968,
0.05309942737221718,
0.003100804751738906,
-0.030482273548841476,
0.025191035121679306,
-0.03681804612278938,
-0.006111423019319773,
0.04786286875605583,
0.024582158774137497,
0.0426446869969368,
0.0380452498793602,
0.022467222064733505,
0.03077121637761593,
0.011052408255636692,
-0.04962055757641792,
-0.009261753410100937,
-0.021779721602797508,
0.007319790776818991,
-0.046203337609767914,
0.00167451286688447,
-0.002567014889791608,
0.00865241140127182,
0.027433959767222404,
-0.037361517548561096,
0.057030320167541504,
0.029796665534377098,
-0.027850667014718056,
0.003945820964872837,
-0.02024167776107788,
-0.014545486308634281,
0.017458820715546608,
0.008635345846414566,
-0.0036267577670514584,
0.0007424975046887994,
0.058506738394498825,
0.002488530008122325,
-0.03097882866859436,
-0.033146101981401443,
-0.008729877881705761,
-0.01530805230140686,
0.008309969678521156,
0.02645738795399666,
-0.06445734947919846,
-0.009103725664317608,
0.004652414470911026,
-0.0672890767455101,
-0.01887979544699192,
0.02720252051949501,
-0.0510379783809185,
0.028360087424516678,
0.04594927281141281,
0.0012774465139955282,
-0.0038140411488711834,
-0.021047845482826233,
-0.04469314590096474,
-0.004234659019857645,
0.024675313383340836,
-0.012440995313227177,
-0.01611831970512867,
-0.02528831735253334,
0.04209143668413162,
0.01903797872364521,
0.04981311410665512,
0.006367473863065243,
-0.0009825312299653888,
-0.022889895364642143,
0.017018483951687813,
-0.0096922367811203,
-0.0026032435707747936,
0.010381721891462803,
-0.05332941189408302,
0.0009291815222240984,
-0.008795599453151226,
0.001918346737511456,
-0.00837446004152298,
0.03686518222093582,
0.034237634390592575,
0.021518023684620857,
-0.06960292905569077,
0.03254597261548042,
-0.027823442593216896,
0.014799287542700768,
-0.03108416311442852,
0.014481640420854092,
-0.049483101814985275,
0.04152240231633186,
0.024561475962400436,
-0.01928316429257393,
-0.01445087417960167,
0.029248390346765518,
-0.046478018164634705,
-0.018506715074181557,
0.007666892372071743,
-0.02818240597844124,
-0.0006110785761848092,
0.022097939625382423,
-0.016658252105116844,
-0.00684128375723958,
0.05807321518659592,
-0.0022059630136936903,
-0.05109443515539169,
0.00806400552392006,
0.011898518539965153,
0.02193782851099968,
0.002955850912258029,
0.018589500337839127,
0.0043325829319655895,
0.01916593685746193,
0.030918333679437637,
0.04208743944764137,
0.01138866413384676,
-0.04215116798877716,
0.04976935684680939,
0.016302896663546562,
-0.0365862175822258,
0.014239472337067127,
-0.023726774379611015,
-0.020953593775629997,
0.022303592413663864,
-0.03426789864897728,
0.003472997108474374,
0.07021511346101761,
-0.033702149987220764,
0.01929701678454876,
-0.0016480220947414637,
0.0014536665985360742,
0.04201222211122513,
0.01673012040555477,
0.026370486244559288,
0.0016163524705916643,
-0.02783297188580036,
0.0438421405851841,
0.02897302433848381,
0.02867485024034977,
-0.033520400524139404,
0.03906017541885376,
-0.0076225027441978455,
-0.006494435016065836,
0.002360281301662326,
-0.015944933518767357,
-0.006654135417193174,
-0.016321348026394844,
-0.019662363454699516,
-0.01749693602323532,
-0.022713232785463333,
0.012636630795896053,
0.045165207237005234,
0.03894888237118721,
0.022727657109498978,
-0.008816891349852085,
-0.046499550342559814,
0.07905691117048264,
0.021699193865060806,
0.03711545839905739,
0.017292583361268044,
0.016541840508580208,
0.03572353720664978,
0.03408142551779747,
-0.003033093875274062,
0.021397016942501068,
0.047132041305303574,
0.061301346868276596,
-0.004469623323529959,
-0.006092119496315718,
0.031601134687662125,
-0.015844156965613365,
-0.002788745565339923,
-0.0607687309384346,
0.004144622944295406,
-0.02863367460668087,
0.03497236967086792,
-0.026827648282051086,
-0.010801048949360847,
-0.006802818272262812,
-0.0339772067964077,
0.08114076405763626,
0.05713130906224251,
0.01574035920202732,
0.022414563223719597,
0.05291471630334854,
0.04408382251858711,
-0.009132776409387589,
0.023141656070947647,
-0.017200490459799767,
-0.001413256861269474,
0.017267964780330658,
0.033179402351379395,
-0.050509996712207794,
0.004174697678536177,
-0.03746655210852623,
0.017342202365398407,
-0.021439699456095695,
-0.03898089379072189,
-0.01770966500043869,
0.031003758311271667,
0.010934222489595413,
-0.027271384373307228,
-0.009444422088563442,
0.022686634212732315,
-0.020343339070677757,
-0.012215757742524147,
-0.03134956210851669,
-0.034678827971220016,
-0.03271213173866272,
-0.007583953440189362,
-0.02123040333390236,
-0.00920080952346325,
-0.00030530805815942585,
-0.0009733064798638225,
-0.014508836902678013,
0.03211104869842529,
0.044547464698553085,
0.040019579231739044,
0.03972364589571953,
0.016986988484859467,
-0.04963446408510208,
0.02260652370750904,
-0.0010141253005713224,
-0.016455527395009995,
0.002962695201858878,
0.007160127628594637,
0.016629109159111977,
0.015459257178008556,
0.02347283810377121,
0.044765010476112366,
-0.009142735973000526,
0.011297362856566906,
-0.0149696609005332,
-0.002757379552349448,
-0.04412674158811569,
-0.023816987872123718,
0.0071081966161727905,
-0.016130657866597176,
-0.044300682842731476,
-0.013089912012219429,
0.026320813223719597,
0.0518089197576046,
0.019397461786866188,
-0.02702469751238823,
-0.04045398160815239,
0.011125498451292515,
-0.031985338777303696,
0.0050630755722522736,
0.01214481983333826,
0.005811653565615416,
0.026017265394330025,
0.005650589242577553,
-0.020589860156178474,
0.001058802823536098,
-0.013838368467986584,
-0.025578252971172333,
0.01808970607817173,
-0.014546631835401058,
-0.013651788234710693,
-0.02669120579957962,
0.05647888779640198,
0.029794689267873764,
0.025716589763760567,
0.053165849298238754,
0.035752054303884506,
0.008106997236609459,
0.009520995430648327,
-0.024993211030960083,
0.04620962217450142,
0.03002029098570347,
-0.014215817674994469,
-0.04559948667883873,
-0.009352781809866428,
-0.000186634119017981,
-0.006484052166342735,
-0.009295610710978508,
-0.04444948211312294,
-0.016281740739941597,
-0.02519713155925274,
-0.04827219620347023,
0.0015030058566480875,
0.04732488468289375,
0.05646887794137001,
0.06005609408020973,
-0.010581622831523418,
-0.003533056005835533,
-0.012002626433968544,
0.011783963069319725,
-0.006322095170617104,
0.04503507539629936,
0.02312364988029003,
-0.015152054838836193,
-0.005704811308532953,
0.003675999818369746,
0.03135770186781883,
-0.03460178151726723,
-0.06930429488420486,
-0.03383449837565422,
0.017513923346996307,
-0.03620973974466324,
-0.043374642729759216,
0.01876063644886017,
0.01896664872765541,
-0.018956506624817848,
-0.009131792932748795,
0.007635443937033415,
0.0035114821512252092,
-0.008450960740447044,
-0.0002533606020733714,
-0.05430196225643158,
-0.019789043813943863,
-0.013056835159659386,
-0.011841748841106892,
-0.02264556474983692,
0.002057398436591029,
-0.05160599201917648,
0.003257536329329014,
-0.01528965774923563,
0.04225825518369675,
0.004980894271284342,
-0.022962238639593124,
-0.0025700151454657316,
-0.006049046758562326,
0.03186047449707985,
-0.04435834661126137,
-0.08944995701313019,
0.03653806075453758,
0.023723168298602104,
-0.04765741527080536,
0.019686304032802582,
0.012443958781659603,
-0.009676976129412651,
-0.010912380181252956,
0.013072813861072063,
0.02117658033967018,
-0.008680173195898533,
0.03253250569105148,
-0.013352755457162857,
0.002846915042027831,
0.042031172662973404
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Model description This is a ported version of [...] ``` As you can see we define the languages, tags, license, datasets, and metrics. There is a full guide for writing these at [Model sharing and uploading](https://huggingface.co/transformers/model_sharing.html#add-a-model-card). The rest is the markdown document describing the model and its nuances. You can also try out the models directly from the model pages thanks to the Inference widgets. For example for English-to-russian translation: https://huggingface.co/facebook/wmt19-en-ru?text=My+name+is+Diego+and+I+live+in+Moscow. ![break point group](./assets/07_porting_fsmt/inference_api.png) | [
-0.00238992553204298,
0.011317829601466656,
0.022538000717759132,
-0.002835380146279931,
0.11898055672645569,
0.050757646560668945,
0.0177350752055645,
0.06206170469522476,
-0.03708120062947273,
-0.006985456217080355,
-0.08777860552072525,
0.02727409638464451,
0.008484364487230778,
0.06945418566465378,
0.012336835265159607,
0.018673604354262352,
0.023416703566908836,
0.008512990549206734,
-0.02159050479531288,
-0.007311441469937563,
-0.004458956886082888,
-0.05520506575703621,
0.04464361444115639,
-0.0374927744269371,
-0.02084234356880188,
-0.034467533230781555,
0.03190908953547478,
0.02780875936150551,
-0.08056532591581345,
0.05133209750056267,
-0.10478398948907852,
0.023346981033682823,
-0.0210945513099432,
-0.03978065773844719,
0.00902530737221241,
0.03423095494508743,
-0.128257617354393,
0.02893262356519699,
0.0014280544128268957,
-0.05368943139910698,
0.032858073711395264,
-0.03337867930531502,
-0.037809837609529495,
0.04246018826961517,
0.05950910225510597,
-0.016368338838219643,
-0.17642413079738617,
0.04637983441352844,
-0.02268647402524948,
-0.01575145497918129,
-0.07101043313741684,
0.013864049687981606,
-0.04044780507683754,
-0.0043539442121982574,
0.007636163383722305,
-0.02189125120639801,
-0.04627855122089386,
-0.08590823411941528,
0.057744886726140976,
0.002444506622850895,
0.0598488412797451,
0.012579994276165962,
0.0469464547932148,
0.0021884129382669926,
0.06199013069272041,
0.0212569497525692,
-0.02700411155819893,
-0.01986399106681347,
0.013004353269934654,
-0.013694877736270428,
-0.008455907925963402,
-0.015122765675187111,
0.004861153662204742,
-0.07786064594984055,
0.004613460507243872,
-0.07490378618240356,
-0.03759726509451866,
0.030909014865756035,
0.09491536766290665,
0.03831501677632332,
-0.005135789979249239,
0.028607914224267006,
0.06302570551633835,
0.07656820118427277,
-0.032292865216732025,
-0.023480810225009918,
0.02784009277820587,
-0.007022522389888763,
-0.05756859481334686,
0.03787675127387047,
0.024038607254624367,
-0.11933305114507675,
-0.0029950563330203295,
0.04092475771903992,
0.04941479489207268,
-0.04833028465509415,
0.023994456976652145,
0.02213490754365921,
-0.06147289648652077,
-0.005463880021125078,
-0.017241958528757095,
0.0045283762738108635,
0.03906835615634918,
-0.052121344953775406,
-0.052540842443704605,
0.0003878022253047675,
-0.016378242522478104,
-0.07251569628715515,
-0.02751724235713482,
-0.02012074552476406,
0.023223556578159332,
-0.05578838661313057,
0.0172076765447855,
0.06046517193317413,
-0.06814895570278168,
0.020866667851805687,
-0.052069660276174545,
-0.050201863050460815,
-0.0018950223457068205,
0.007328072562813759,
0.0402609184384346,
0.039884839206933975,
0.027066048234701157,
0.01609146222472191,
0.038922589272260666,
0.09055688977241516,
0.03380966559052467,
0.022311454638838768,
0.013495155610144138,
-0.04414843022823334,
0.008249095641076565,
-0.06884872168302536,
0.05219893157482147,
0.023639336228370667,
-0.01609843038022518,
-0.08928985893726349,
0.008307194337248802,
-0.06687773764133453,
0.05505257844924927,
0.03863123059272766,
0.01757602021098137,
0.03941616415977478,
-0.028031792491674423,
0.03462991490960121,
0.046264804899692535,
-0.00396118825301528,
-0.06759192049503326,
0.01078933384269476,
-0.0352022610604763,
0.007631844840943813,
-0.09985315054655075,
0.05025750398635864,
0.037499066442251205,
0.000592140422668308,
0.038131121546030045,
0.05776847153902054,
0.001746128429658711,
-0.007178900763392448,
-0.05164332687854767,
-0.02059090882539749,
-0.015618719160556793,
0.01932905800640583,
-0.08584000915288925,
0.022887207567691803,
0.0217769593000412,
-0.021632470190525055,
-0.02865941822528839,
0.048158809542655945,
0.022009998559951782,
-0.056504618376493454,
0.018076803535223007,
-0.06255606561899185,
0.09306518733501434,
-0.029940873384475708,
-0.002461954951286316,
0.09093287587165833,
0.001775630982592702,
-0.005554927047342062,
-0.024661151692271233,
0.020347271114587784,
-0.034759022295475006,
0.04129602387547493,
-0.00043614639434963465,
0.009916594251990318,
0.05788302421569824,
-0.06111803650856018,
0.0005464845453388989,
-0.02446509338915348,
-0.003936610650271177,
-0.022720942273736,
-0.058630600571632385,
-0.0451405793428421,
0.0700332373380661,
-0.01191366370767355,
0.02096308209002018,
-0.08565893769264221,
-0.03557312488555908,
0.11051488667726517,
0.04543556645512581,
0.09823635220527649,
0.02971961535513401,
0.037698835134506226,
-0.021725252270698547,
-0.003944059368222952,
-0.01597345434129238,
0.056141771376132965,
0.06414177268743515,
-0.044439975172281265,
0.016035471111536026,
0.004765558056533337,
0.021354524418711662,
-0.07978050410747528,
0.053876277059316635,
-0.07955525815486908,
0.01569942943751812,
-0.0504140704870224,
-0.037402041256427765,
0.022140957415103912,
-0.007246044464409351,
0.04403051733970642,
0.19909141957759857,
0.017310017719864845,
-0.056211844086647034,
-0.036369021981954575,
-0.029542667791247368,
0.015606313943862915,
0.07690718024969101,
0.08661016821861267,
0.07876259833574295,
-0.06825065612792969,
-0.04233354702591896,
-0.019000891596078873,
0.03921268507838249,
0.039315178990364075,
-0.004540752619504929,
-0.04543629288673401,
0.007440503686666489,
0.03991243615746498,
0.011045025661587715,
-0.04627702757716179,
0.013013423420488834,
-0.012597443535923958,
0.03088819608092308,
-0.040025535970926285,
-0.0296480730175972,
-0.030187977477908134,
0.09518738090991974,
0.023529691621661186,
-0.06888934224843979,
0.009053255431354046,
-0.010155526921153069,
0.02415509521961212,
0.04484110325574875,
-0.031447622925043106,
0.03107161447405815,
0.05084511637687683,
0.0032832862343639135,
0.012056337669491768,
-0.025315038859844208,
0.06049853935837746,
-0.005151013378053904,
0.008428076282143593,
-0.05480707809329033,
-0.041275519877672195,
-0.0068655419163405895,
-0.04003439471125603,
-0.01441497728228569,
0.019600993022322655,
-0.0035713501274585724,
0.029489492997527122,
0.007829030975699425,
-0.013331342488527298,
-0.0121556855738163,
-0.023418543860316277,
0.022960105910897255,
0.02476743422448635,
0.038216639310121536,
-0.011781008914113045,
-0.027455074712634087,
-0.023668620735406876,
-0.017917336896061897,
-0.010913141071796417,
0.03169206157326698,
0.047072649002075195,
0.011768125928938389,
-0.037475988268852234,
0.010122455656528473,
-0.034197963774204254,
-0.04130022972822189,
-0.005966818891465664,
0.025743134319782257,
0.05543264001607895,
-0.01192009262740612,
-0.03223578631877899,
-0.01218053326010704,
0.01392125803977251,
0.011930780485272408,
0.03189938887953758,
-0.0025314162485301495,
0.0437813326716423,
-0.017078617587685585,
0.002353736199438572,
-0.03157045319676399,
0.004721124190837145,
-0.021381240338087082,
0.05305434763431549,
-0.01618393324315548,
0.035333894193172455,
-0.11930031329393387,
-0.02861941233277321,
0.00867319107055664,
0.015564157627522945,
0.0014466432621702552,
-0.02707209624350071,
0.03130989149212837,
0.01774466596543789,
-0.013145647011697292,
0.011900540441274643,
-0.0036847388837486506,
0.008626330643892288,
0.03621692955493927,
-0.018446220085024834,
-0.012287437915802002,
0.009314880706369877,
-0.010744641534984112,
0.014220040291547775,
0.02005765587091446,
0.021565614268183708,
-0.03938279673457146,
0.009717575274407864,
0.009409730322659016,
0.0001874511071946472,
-0.026411788538098335,
0.000017171787476399913,
0.05135743319988251,
0.0028243863489478827,
0.013039888814091682,
-0.021357180550694466,
-0.017482802271842957,
-0.0025509854312986135,
-0.032448045909404755,
-0.014278613030910492,
-0.044546861201524734,
0.014725519344210625,
-0.017834050580859184,
-0.013008409179747105,
0.02717760019004345,
0.02949007973074913,
-0.0072333612479269505,
0.001021279487758875,
0.04144439473748207,
-0.014003606513142586,
0.02186380885541439,
0.023216979578137398,
-0.020413223654031754,
0.007360380608588457,
0.009428166784346104,
-0.0026090415194630623,
0.005201905034482479,
-0.02738359570503235,
0.03677716478705406,
0.05016111955046654,
0.009826663881540298,
0.0031078376341611147,
0.013965476304292679,
0.015593069605529308,
-0.004179590381681919,
0.002838371554389596,
-0.07169537246227264,
0.008475393056869507,
-0.03170645236968994,
-0.021168215200304985,
-0.03580116108059883,
0.03821151703596115,
0.005305733066052198,
0.03346000239253044,
-0.015415792353451252,
0.03545767441391945,
-0.006753917317837477,
0.025981120765209198,
-0.005821125581860542,
0.0181173924356699,
-0.027996204793453217,
-0.019359104335308075,
-0.035612378269433975,
-0.05763661488890648,
0.061189986765384674,
0.014545610174536705,
-0.006145852152258158,
-0.016473256051540375,
-0.026253018528223038,
-0.007602219935506582,
0.019754691049456596,
-0.010389752686023712,
0.044929638504981995,
0.0015145224751904607,
0.0335322804749012,
0.015151256695389748,
0.002291433047503233,
-0.028285324573516846,
0.02604948729276657,
-0.026163402944803238,
-0.01337460521608591,
-0.011386286467313766,
-0.0018248418346047401,
-0.015429742634296417,
-0.0038570526521652937,
0.028341762721538544,
0.027134764939546585,
-0.04401906579732895,
0.012753315269947052,
0.005414080806076527,
0.006206653546541929,
0.02353093959391117,
-0.041574832051992416,
-0.06634995341300964,
-0.0035522037651389837,
0.005138783250004053,
0.00717916851863265,
-0.019509632140398026,
-0.002195905428379774,
-0.0352918766438961,
0.010916521772742271,
0.02462856099009514,
-0.0168527252972126,
-0.041836339980363846,
-0.04892773553729057,
0.02252918668091297,
-0.021758494898676872,
-0.03654627129435539,
0.00489517068490386,
-0.001434276346117258,
0.028594214469194412,
0.013088662177324295,
0.030706221237778664,
0.026339681819081306,
-0.01220795139670372,
-0.005555344745516777,
-0.052800826728343964,
-0.0017469489248469472,
0.043971914798021317,
0.011895629577338696,
0.02858428657054901,
0.05380624905228615,
-0.01129928044974804,
-0.014618654735386372,
0.032371435314416885,
-0.0388697013258934,
-0.014967304654419422,
-0.0036275663878768682,
0.025095989927649498,
-0.007792057003825903,
0.048241183161735535,
0.01539728045463562,
-0.04700116068124771,
0.0015028087655082345,
-0.01302667148411274,
0.0018821372650563717,
0.04557335004210472,
0.011488729156553745,
-0.05325775966048241,
0.030621174722909927,
0.012530023232102394,
0.009209051728248596,
-0.006316613871604204,
0.03811529651284218,
-0.007946922443807125,
0.05186259746551514,
-0.024794282391667366,
0.015021122992038727,
-0.026387125253677368,
0.04172739386558533,
0.019933318719267845,
0.020988330245018005,
0.02161046862602234,
-0.07983995229005814,
-0.026486694812774658,
0.030236031860113144,
-0.009512168355286121,
0.0013077310286462307,
0.03169155865907669,
-0.05849037691950798,
-0.006863072514533997,
0.0424266941845417,
0.009587319567799568,
0.04703298211097717,
-0.005036997143179178,
0.04024641960859299,
-0.012447446584701538,
0.021152429282665253,
0.017961379140615463,
-0.020330416038632393,
0.01089930534362793,
0.045230381190776825,
0.07503748685121536,
0.0749916210770607,
0.02510737255215645,
0.014468703418970108,
-0.00018453608208801597,
0.015058341436088085,
-0.009670606814324856,
-0.03618400916457176,
0.007840238511562347,
-0.012324132956564426,
0.03567050024867058,
-0.0043827807530760765,
-0.00508336303755641,
-0.011037698946893215,
0.05226297304034233,
0.07786954194307327,
-0.024572202935814857,
0.0008745268569327891,
0.026417959481477737,
0.00444251811131835,
-0.01068680640310049,
-0.03339233621954918,
0.022708991542458534,
-0.0344962552189827,
-0.015844622626900673,
-0.030651729553937912,
-0.006418590433895588,
-0.02234075590968132,
0.013543400913476944,
-0.010285005904734135,
-0.034996308386325836,
0.0021027137991040945,
0.011451106518507004,
0.06469906121492386,
-0.008470405824482441,
-0.008690383285284042,
-0.024473555386066437,
0.023499999195337296,
0.02673429064452648,
-0.022695958614349365,
-0.00791562907397747,
0.014362698420882225,
0.020684288814663887,
-0.0027259583584964275,
0.02225741185247898,
0.0005122800939716399,
0.019330870360136032,
0.0028225830756127834,
0.0027040550485253334,
0.024615241214632988,
-0.06436681002378464,
-0.006165480241179466,
0.0533817820250988,
0.011441913433372974,
-0.004119959194213152,
-0.012333077378571033,
-0.0678367167711258,
-0.009485888294875622,
-0.05889490246772766,
-0.008557101711630821,
0.06451785564422607,
-0.008265833370387554,
0.014855590648949146,
0.020015237852931023,
-0.0014333822764456272,
0.012704381719231606,
0.0008228429360315204,
0.005800770130008459,
-0.0036517709959298372,
0.02252364158630371,
-0.00042568045319058,
0.047465432435274124,
-0.013056809082627296,
-0.01587536185979843,
0.03310970962047577,
-0.031243838369846344,
0.021653559058904648,
0.021159328520298004,
-0.04347149655222893,
0.051541272550821304,
-0.016495754942297935,
-0.05811365321278572,
0.01329962071031332,
0.033351607620716095,
-0.005881243851035833,
0.05611678212881088,
-0.005985437426716089,
0.00962456502020359,
-0.010332806967198849,
-0.001021573320031166,
0.02656683139503002,
0.06287334859371185,
-0.019851889461278915,
0.04843376204371452,
0.0275429617613554,
0.01936372183263302,
0.061602987349033356,
0.007620371878147125,
0.003072373103350401,
0.02136325277388096,
0.09021563082933426,
0.03725084662437439,
0.014198709279298782,
0.009989234618842602,
-0.0014154036762192845,
-0.010523569770157337,
-0.030395345762372017,
0.006480691488832235,
-0.05691477283835411,
0.007789747789502144,
0.051592983305454254,
0.011783797293901443,
0.02641451358795166,
-0.02060997672379017,
0.06121428683400154,
0.03190424293279648,
0.029650691896677017,
-0.032207176089286804,
0.01724657602608204,
0.018942752853035927,
-0.0131040308624506,
-0.023457450792193413,
0.037888407707214355,
0.001696095336228609,
-0.02157609537243843,
0.07384033501148224,
0.011030769906938076,
-0.010047958232462406,
-0.02261364459991455,
0.005872230511158705,
-0.0055268025025725365,
-0.037377141416072845,
-0.009850380942225456,
0.000989411724731326,
0.05665355175733566,
-0.014928833581507206,
-0.04034605622291565,
0.008094655349850655,
-0.035094425082206726,
-0.004946127999573946,
-0.04098377004265785,
0.002879970008507371,
-0.00013074514572508633,
-0.006687431130558252,
0.013270556926727295,
0.03462063893675804,
-0.0017205375479534268,
0.007021651603281498,
-0.057624801993370056,
-0.020012274384498596,
-0.0013187747681513429,
0.01099338848143816,
0.003315705107524991,
-0.02023366652429104,
-0.03161604702472687,
-0.021235967054963112,
-0.010551459155976772,
0.020870255306363106,
-0.00044970569433644414,
-0.025097066536545753,
0.013760908506810665,
0.03893487900495529,
0.0038621530402451754,
0.056248798966407776,
0.033624906092882156,
0.02445019967854023,
0.003648508107289672,
0.00757288234308362,
-0.02146845869719982,
-0.02216915413737297,
-0.023133639246225357,
-0.030402330681681633,
-0.018049633130431175,
-0.027266835793852806,
-0.005872227251529694,
0.016379477456212044,
0.028757045045495033,
-0.03572859615087509,
-0.0446288026869297,
-0.017463456839323044,
-0.03618868440389633,
-0.02126293070614338,
0.036729201674461365,
-0.023808790370821953,
-0.009382195770740509,
0.010336505249142647,
0.01134774275124073,
0.025342777371406555,
-0.024037403985857964,
0.004917552694678307,
0.03583870828151703,
-0.008658025413751602,
-0.014972303062677383,
-0.006672959309071302,
0.0250089094042778,
0.030473917722702026,
0.039407435804605484,
0.03525029495358467,
0.03074578009545803,
0.015961764380335808,
0.006032493431121111,
0.021059226244688034,
-0.01502977404743433,
0.016495026648044586,
-0.07085400074720383,
-0.03431158885359764,
-0.02428455650806427,
0.0054431697353720665,
0.019478214904665947,
0.019587839022278786,
-0.04734132066369057,
-0.018740445375442505,
-0.013251600787043571,
-0.030109848827123642,
-0.026680154725909233,
0.021140608936548233,
0.07628762722015381,
0.01954740472137928,
0.011651824228465557,
0.004414594266563654,
-0.02768898382782936,
0.011213061399757862,
-0.0187847763299942,
-0.0014008425641804934,
0.03571591526269913,
-0.01181210856884718,
0.007231838069856167,
0.00969291478395462,
0.044952671974897385,
-0.023437459021806717,
-0.06079380214214325,
-0.0002746536338236183,
0.04760657623410225,
-0.006653198506683111,
-0.013236142694950104,
-0.02259122021496296,
0.026897937059402466,
-0.0008291651029139757,
0.034352857619524,
0.0026008025743067265,
-0.03352253511548042,
-0.021993333473801613,
0.0032451271545141935,
-0.07177861034870148,
-0.016620056703686714,
-0.03153381869196892,
0.02053869515657425,
0.030651476234197617,
-0.0004268634947948158,
0.00007825497596058995,
-0.007395613007247448,
0.009819590486586094,
0.021719463169574738,
-0.02559557929635048,
-0.017073510214686394,
-0.032175347208976746,
-0.014737097546458244,
0.00392714561894536,
-0.017025237902998924,
-0.009200346656143665,
-0.006056090351194143,
0.01707499660551548,
-0.0487101711332798,
-0.014250561594963074,
0.03063815087080002,
-0.02664288878440857,
-0.04276736453175545,
-0.0037874949630349874,
-0.02585681527853012,
0.01616005040705204,
0.04492790251970291,
-0.023036928847432137,
-0.022938231006264687,
0.015820074826478958
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Preparations For the sake of this article let's assume that we work under ~/porting, and therefore let's create this directory: mkdir ~/porting cd ~/porting We need to install a few things for this work: # install fairseq git clone https://github.com/pytorch/fairseq cd fairseq pip install -e . # install mosesdecoder under fairseq git clone https://github.com/moses-smt/mosesdecoder # install fastBPE under fairseq git clone [email protected]:glample/fastBPE.git cd fastBPE; g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast; cd - cd - # install transformers git clone https://github.com/huggingface/transformers/ pip install -e .[dev] | [
0.03298308327794075,
0.0302555114030838,
0.045143067836761475,
0.02626561000943184,
0.13218626379966736,
0.040817491710186005,
0.0393391028046608,
0.04455020651221275,
-0.0010936420876532793,
-0.06526138633489609,
-0.06637531518936157,
0.03408850356936455,
-0.011394121684134007,
0.01375528797507286,
0.03356292098760605,
-0.02134639583528042,
0.013895917683839798,
-0.0599278062582016,
-0.03776920586824417,
0.00148618477396667,
-0.01641317829489708,
-0.0312688834965229,
0.025729941204190254,
0.06737831234931946,
-0.004515241831541061,
-0.0668831318616867,
0.031245868653059006,
0.0075146970339119434,
-0.053528737276792526,
0.029218856245279312,
-0.04049944505095482,
-0.021580226719379425,
0.0009759352542459965,
-0.0487753301858902,
0.0033619373571127653,
0.01750773936510086,
-0.014586091041564941,
-0.028325233608484268,
0.08201675117015839,
-0.07563690096139908,
0.0025080288760364056,
-0.02221253328025341,
-0.008888816460967064,
0.054413843899965286,
-0.00029816137976013124,
0.009419712238013744,
-0.12239765375852585,
0.05069715529680252,
-0.020737988874316216,
0.010810566134750843,
-0.0853639543056488,
-0.029118310660123825,
-0.011998492293059826,
0.017875460907816887,
0.036929838359355927,
0.007752781733870506,
0.004904691595584154,
0.01584797166287899,
0.0029516967479139566,
-0.020201897248625755,
0.0286819227039814,
-0.0032535898499190807,
-0.04431997239589691,
0.027848951518535614,
-0.030998988077044487,
-0.015820570290088654,
-0.05502978339791298,
-0.028201010078191757,
-0.05842011049389839,
-0.07074011862277985,
0.03168807551264763,
-0.009939302690327168,
-0.036140646785497665,
-0.04935668408870697,
-0.012008060701191425,
-0.025871988385915756,
-0.006082854233682156,
0.06405404210090637,
0.044932037591934204,
0.09663528203964233,
0.009339693002402782,
0.04403499513864517,
0.015419574454426765,
0.04949706792831421,
0.030506400391459465,
-0.02355584129691124,
0.014114420861005783,
0.02537999115884304,
-0.05648357421159744,
0.04745272919535637,
-0.02687215805053711,
-0.06285649538040161,
-0.0733674168586731,
0.06337305903434753,
0.02757398597896099,
-0.011351670138537884,
-0.017775243148207664,
0.010463103652000427,
0.030079854652285576,
0.07261969894170761,
0.021231967955827713,
-0.011897231452167034,
0.003842113772407174,
-0.0834917202591896,
0.03164210170507431,
0.03651674464344978,
0.020373839884996414,
-0.059022147208452225,
-0.04897129908204079,
-0.0051633394323289394,
0.03357122838497162,
0.04169117659330368,
0.03870300203561783,
0.02697245590388775,
-0.04142238572239876,
0.05588461086153984,
0.006664642598479986,
-0.034910090267658234,
-0.006841577123850584,
0.011935887858271599,
0.017178703099489212,
0.12884971499443054,
0.0018655573949217796,
0.011862220242619514,
0.04913339018821716,
0.05604685842990875,
0.01990947499871254,
0.040186814963817596,
-0.01943601295351982,
-0.1284821778535843,
0.02236376330256462,
-0.036026451736688614,
0.05884690582752228,
0.0016281056450679898,
-0.037173960357904434,
-0.07212014496326447,
0.014549100771546364,
0.020640188828110695,
-0.009951174259185791,
-0.040733836591243744,
0.00048704908112995327,
0.09112472087144852,
0.019154323264956474,
0.046573419123888016,
-0.014823641628026962,
-0.017304152250289917,
-0.10623539984226227,
0.08665070682764053,
-0.05178743228316307,
0.001556139555759728,
0.023075761273503304,
0.0371268130838871,
-0.030878769233822823,
-0.06113015487790108,
-0.00006355733057716861,
0.04066982492804527,
-0.021240461617708206,
0.04078245162963867,
-0.06251299381256104,
-0.015121929347515106,
-0.031075796112418175,
-0.03989426791667938,
-0.055377405136823654,
-0.06761090457439423,
-0.055181872099637985,
-0.1003025695681572,
-0.005804083775728941,
0.0015234153252094984,
0.027291767299175262,
-0.00009643797238823026,
0.007781095337122679,
-0.07873955368995667,
0.031699370592832565,
-0.008239886723458767,
0.03267882019281387,
0.04935380443930626,
0.06954582035541534,
0.052476271986961365,
0.03254135325551033,
-0.04429693520069122,
-0.049445345997810364,
0.077971912920475,
-0.02756788581609726,
0.046518296003341675,
0.002548248739913106,
-0.08029057085514069,
0.008138997480273247,
-0.04433950036764145,
0.004032219294458628,
0.031549759209156036,
-0.13405339419841766,
-0.03852830454707146,
0.1024363562464714,
-0.015127046965062618,
0.042632170021533966,
0.006281296722590923,
-0.07210981100797653,
0.07372508943080902,
0.09304409474134445,
0.0272564385086298,
-0.0106536615639925,
0.005934668239206076,
0.07768344134092331,
0.010149160400032997,
-0.002587059745565057,
0.11933533102273941,
0.003974216058850288,
-0.027435550466179848,
0.02397317998111248,
0.007701671216636896,
0.06825536489486694,
-0.0685068666934967,
0.014588971622288227,
-0.05095114931464195,
-0.00905011035501957,
-0.0583551786839962,
-0.05845166742801666,
0.008219453506171703,
0.02146824076771736,
0.01285657286643982,
0.08085352927446365,
-0.02055337093770504,
-0.006440166383981705,
0.04968920350074768,
0.018643664196133614,
0.07761668413877487,
0.09559129178524017,
0.0223067719489336,
0.09105052798986435,
-0.02875334955751896,
0.014290094375610352,
-0.0259533878415823,
-0.03865152969956398,
0.13549186289310455,
-0.004794197157025337,
-0.022609131410717964,
-0.017338234931230545,
-0.020265081897377968,
-0.023396216332912445,
-0.032183121889829636,
0.05284798517823219,
0.04915596917271614,
-0.014183389022946358,
-0.034122757613658905,
0.017290782183408737,
0.008998111821711063,
0.00814641173928976,
-0.04409199580550194,
0.006283903494477272,
-0.014003980904817581,
-0.05192548409104347,
0.0404355451464653,
0.03584436699748039,
0.01050413679331541,
0.07565014064311981,
0.03454327955842018,
0.026642197743058205,
0.015689324587583542,
0.007416642736643553,
0.03355593979358673,
-0.040644388645887375,
0.02454547770321369,
-0.051529720425605774,
-0.047219447791576385,
-0.040865208953619,
-0.00854476448148489,
-0.011877709999680519,
0.032625712454319,
-0.03293237090110779,
-0.01259990967810154,
-0.01785002462565899,
-0.009302761405706406,
0.00508235115557909,
-0.007403182331472635,
-0.002084507839754224,
-0.0022746215108782053,
0.027958886697888374,
-0.0011625196784734726,
-0.018100833520293236,
-0.028245821595191956,
0.009121870622038841,
-0.03150540962815285,
-0.04095837101340294,
0.012235352769494057,
0.0009363172575831413,
0.054011858999729156,
0.02168520726263523,
-0.03872804343700409,
-0.022645121440291405,
0.0005080814007669687,
-0.016929136589169502,
0.0322301983833313,
0.011810525320470333,
-0.009178114123642445,
-0.023322902619838715,
-0.04663044959306717,
0.022984089329838753,
-0.016627782955765724,
-0.008089405484497547,
0.057955432683229446,
-0.02935897372663021,
0.012129133567214012,
0.022533126175403595,
-0.003469600575044751,
-0.027238890528678894,
0.012433325871825218,
0.0043536084704101086,
-0.0007116770721040666,
-0.10152216255664825,
-0.019247841089963913,
-0.03184584155678749,
0.06928394734859467,
0.0015527536161243916,
-0.04155542328953743,
0.03939587622880936,
-0.0437372587621212,
-0.009120823815464973,
-0.00240648677572608,
0.03613460808992386,
0.012971015647053719,
0.04276351258158684,
-0.004126274026930332,
-0.0006622018408961594,
-0.02442888356745243,
0.004611811134964228,
0.04153580963611603,
0.010752186179161072,
-0.01780904270708561,
-0.027087043970823288,
0.026045510545372963,
-0.023298002779483795,
-0.0013130338629707694,
-0.0060030086897313595,
0.011034943163394928,
0.04540238901972771,
0.08386453241109848,
-0.013876904733479023,
-0.03350456431508064,
-0.02290482260286808,
0.05151650682091713,
0.03302956372499466,
-0.002271248260512948,
-0.04030664265155792,
-0.04298114776611328,
-0.02592673897743225,
-0.006085661239922047,
-0.019435662776231766,
0.03156144917011261,
0.019876981154084206,
0.002843344584107399,
0.028680924326181412,
-0.035342004150152206,
-0.024054205045104027,
-0.02089310623705387,
-0.023325622081756592,
0.015192640945315361,
-0.0404374897480011,
0.03024071827530861,
-0.03662016615271568,
-0.031104708090424538,
-0.03557267785072327,
0.07972913980484009,
-0.009421510621905327,
-0.014216632582247257,
-0.0015232631703838706,
0.06598340719938278,
0.025708360597491264,
-0.006596095860004425,
-0.043902624398469925,
0.012868321500718594,
-0.057951852679252625,
-0.09347803890705109,
0.017675789073109627,
0.05744209140539169,
-0.032275717705488205,
0.004473238717764616,
-0.007996472530066967,
0.014315242879092693,
-0.05264929682016373,
0.010365857742726803,
-0.004398908466100693,
0.0019083707593381405,
-0.021169817075133324,
-0.0013149053556844592,
-0.06330402195453644,
-0.051224108785390854,
0.04179966077208519,
0.011818711645901203,
0.009204878471791744,
-0.04981499910354614,
0.0016031095292419195,
-0.019912799820303917,
-0.0005290537956170738,
0.021884258836507797,
-0.04440535604953766,
-0.032820649445056915,
0.013134671375155449,
0.013300533406436443,
0.03197694942355156,
-0.007100982591509819,
-0.0016889338148757815,
-0.010412011295557022,
-0.033404018729925156,
-0.07176508754491806,
0.050821974873542786,
-0.0051632774993777275,
-0.015197467990219593,
0.025548364967107773,
0.01977105252444744,
-0.03803772106766701,
-0.030539734289050102,
-0.024434741586446762,
0.002093582646921277,
0.00788500253111124,
-0.049102019518613815,
0.002799140987917781,
-0.043387699872255325,
0.03326528146862984,
-0.00573289580643177,
-0.028764452785253525,
-0.030378777533769608,
-0.04158301278948784,
0.009832514449954033,
0.0063751512207090855,
-0.022081883624196053,
-0.00869190227240324,
-0.02638096734881401,
0.04630092531442642,
-0.003696125466376543,
-0.015142328105866909,
0.032696302980184555,
-0.028650375083088875,
0.013764620758593082,
-0.008885794319212437,
0.03573540970683098,
0.023945366963744164,
0.00019339643768034875,
0.017171699553728104,
-0.03513753414154053,
0.04301471263170242,
0.0692676305770874,
0.006529876030981541,
0.03481146693229675,
-0.006390497088432312,
0.04230077192187309,
0.05061982572078705,
0.027549108490347862,
-0.035029031336307526,
0.017650628462433815,
0.035462427884340286,
0.011746865697205067,
-0.015480153262615204,
0.01914048008620739,
0.027055105194449425,
0.024663666263222694,
0.028505587950348854,
-0.06112484261393547,
0.013612451031804085,
0.013041399419307709,
-0.04028336703777313,
-0.009391944855451584,
0.02253323420882225,
-0.001981973648071289,
0.02416885644197464,
-0.028774796053767204,
-0.007896878756582737,
-0.005955888889729977,
0.04371972382068634,
-0.01452594343572855,
-0.03584029898047447,
-0.02769388258457184,
0.04096129909157753,
-0.03681519255042076,
0.020695975050330162,
0.05655679479241371,
-0.06347476691007614,
-0.0341917984187603,
-0.015098024159669876,
-0.05248880386352539,
0.010290360078215599,
-0.028653455898165703,
-0.05423217639327049,
0.018588868901133537,
0.012085789814591408,
0.02300979569554329,
-0.012080123648047447,
0.025382040068507195,
-0.046971261501312256,
0.04266175255179405,
-0.019066333770751953,
0.01461884193122387,
-0.03736908361315727,
-0.048917096108198166,
0.026005329564213753,
0.04062628746032715,
-0.011083662509918213,
0.011940646916627884,
0.005640902556478977,
-0.004521296359598637,
-0.005431487690657377,
0.019742969423532486,
-0.03468526899814606,
-0.007857229560613632,
-0.008196212351322174,
0.01232386939227581,
-0.013743262737989426,
0.019273417070508003,
-0.012439186684787273,
0.024465713649988174,
0.043251946568489075,
-0.004020829685032368,
-0.04168190062046051,
0.03501215949654579,
0.006077960599213839,
-0.015365762636065483,
0.0023219098802655935,
0.009315761737525463,
-0.01752566732466221,
0.013824129477143288,
0.051290202885866165,
-0.0070009478367865086,
-0.042718444019556046,
-0.029084527865052223,
-0.036313824355602264,
-0.00934943463653326,
0.06632489711046219,
-0.004680037964135408,
0.00827956572175026,
-0.009768957272171974,
-0.013787186704576015,
0.03203582018613815,
0.044963445514440536,
-0.00773601932451129,
-0.031441446393728256,
-0.01137547753751278,
0.003832821501418948,
-0.017719455063343048,
0.0018864375306293368,
0.029218576848506927,
0.02596779726445675,
0.006734771654009819,
0.01302937138825655,
0.0250548105686903,
-0.010689632035791874,
-0.015560123138129711,
0.06022404506802559,
0.03088892437517643,
0.04141164943575859,
0.0018508161883801222,
-0.056716252118349075,
-0.017407692968845367,
-0.032953716814517975,
-0.004253878723829985,
-0.0030628337990492582,
0.03870701789855957,
0.020302630960941315,
-0.0013841713080182672,
0.005628423299640417,
0.018668506294488907,
-0.008566667325794697,
0.00705098919570446,
-0.020705904811620712,
0.01626664400100708,
0.021597016602754593,
0.01923259347677231,
0.019770551472902298,
-0.01412266492843628,
-0.018849506974220276,
0.05475115776062012,
-0.0357702374458313,
-0.008862843737006187,
-0.005687772296369076,
-0.022292783483862877,
-0.017353489995002747,
-0.007079205475747585,
-0.00709783099591732,
-0.005320870317518711,
-0.022928083315491676,
-0.01789758913218975,
0.018130404874682426,
0.056667640805244446,
0.03583875298500061,
-0.014785814099013805,
-0.027541955932974815,
0.043400995433330536,
-0.0072858575731515884,
0.027456631883978844,
-0.014187703840434551,
-0.020736880600452423,
0.031070489436388016,
0.038890525698661804,
-0.02491319179534912,
0.0026859520003199577,
0.014927788637578487,
0.08787040412425995,
0.005562103819102049,
0.035652756690979004,
0.013362929224967957,
0.00852636806666851,
-0.03795510157942772,
-0.01172607485204935,
0.015859682112932205,
-0.03320765867829323,
0.058248039335012436,
0.03430953994393349,
-0.011050070635974407,
-0.0027578549925237894,
-0.06310255825519562,
0.08316879719495773,
0.01895138807594776,
0.038039688020944595,
0.017676200717687607,
0.005351192317903042,
0.004908684641122818,
0.00573279382660985,
0.017287492752075195,
-0.020656311884522438,
0.04116789996623993,
0.010791887529194355,
0.045487500727176666,
-0.0173086766153574,
0.01060773991048336,
-0.01995854079723358,
-0.02684699185192585,
0.023165127262473106,
0.01611253060400486,
-0.013559206388890743,
0.004418987315148115,
0.006372843869030476,
-0.05130491778254509,
-0.03544660285115242,
0.043729547411203384,
-0.017899030819535255,
0.00012582639465108514,
-0.0002908334427047521,
0.009466023184359074,
0.00005029121530242264,
0.005933962296694517,
-0.023350927978754044,
-0.002375849289819598,
0.013302253559231758,
-0.003984708338975906,
-0.04286843165755272,
0.042311038821935654,
0.02067013457417488,
0.03050299361348152,
-0.004394554998725653,
-0.004573512822389603,
-0.036979082971811295,
-0.007262339349836111,
-0.012137016281485558,
0.0064874375239014626,
-0.0015346717555075884,
-0.00460681039839983,
0.002681888174265623,
0.020421205088496208,
-0.006572157610207796,
0.010513207875192165,
0.018444186076521873,
0.03311799466609955,
-0.04997408017516136,
0.03161953389644623,
-0.02303534746170044,
-0.03947681561112404,
0.018227074295282364,
0.04287472367286682,
0.0022964542731642723,
-0.003688558004796505,
0.025257933884859085,
0.02708074264228344,
0.017037712037563324,
-0.01884561963379383,
-0.04536636546254158,
0.014774927869439125,
-0.004036907572299242,
-0.07139083743095398,
0.02635985054075718,
0.01345537044107914,
0.028977852314710617,
0.04332166165113449,
-0.007946731522679329,
-0.019361350685358047,
0.028712701052427292,
0.016325244680047035,
-0.01133718341588974,
0.02735048346221447,
0.00270350044593215,
-0.004885147325694561,
0.07698476314544678,
0.018813814967870712,
0.007710637990385294,
0.049537502229213715,
0.028597503900527954,
0.001368242665193975,
-0.005319798830896616,
-0.013593357987701893,
-0.02234777994453907,
0.020906716585159302,
-0.000429496169090271,
-0.040996015071868896,
-0.008844618685543537,
0.020701220259070396,
0.008900354616343975,
0.005913620349019766,
-0.034522321075201035,
-0.009224269539117813,
-0.0172666497528553,
-0.0205218568444252,
-0.010219858027994633,
0.032774120569229126,
0.061473723500967026,
0.04728355258703232,
-0.007634574081748724,
-0.0132276127114892,
-0.0336897186934948,
-0.012401863932609558,
0.0039654686115682125,
0.033567119389772415,
0.04327419400215149,
0.005812044721096754,
-0.011205874383449554,
-0.038418859243392944,
-0.006760012358427048,
-0.00022711306519340724,
-0.02471240796148777,
-0.028242748230695724,
-0.028131430968642235,
-0.005857462994754314,
-0.02866765856742859,
0.058078963309526443,
0.014753501862287521,
-0.002807009033858776,
-0.0025037964805960655,
0.0017432933673262596,
-0.019316673278808594,
0.031129060313105583,
-0.0365724116563797,
-0.023867402225732803,
0.040182437747716904,
0.009481091983616352,
0.03078237920999527,
0.03404918313026428,
0.001917248941026628,
-0.0331617072224617,
0.02032129094004631,
-0.09554391354322433,
-0.049273714423179626,
0.02298610657453537,
-0.016725139692425728,
0.001542355166748166,
-0.007664044853299856,
0.025435052812099457,
-0.04431033879518509,
-0.046185411512851715,
0.011995767243206501,
0.02992064319550991,
-0.026156160980463028,
0.04093094542622566,
-0.003687984775751829,
-0.03667517378926277,
-0.012674976140260696,
0.014308502897620201,
0.015669332817196846,
0.014248041436076164,
0.03041371889412403,
-0.008084454573690891,
-0.013756939209997654,
-0.0006400014390237629
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Model cards One other important thing is that it's not enough to port a model and make it available to others. One needs to provide information on how to use it, nuances about hyper-parameters, sources of datasets, evaluation metrics, etc. This is all done by creating model cards, which is just aREADME.mdfile, that starts with some metadata that is used by [the models website](https://huggingface.co/models), followed by all the useful information that can be shared. For example, let's take [thefacebook/wmt19-en-rumodel card](https://github.com/huggingface/transformers/tree/129fdae04033fe4adfe013b734deaec6ec34ae2e/model_cards/facebook/wmt19-en-ru/README.md). Here is its top: ``` --- language: - en - ru thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT | [
0.05026121437549591,
-0.03114273212850094,
0.004420642275363207,
0.0026722957845777273,
0.07669349014759064,
0.008495500311255455,
-0.007968621328473091,
0.021909771487116814,
-0.05594218149781227,
-0.024723580107092857,
-0.07504740357398987,
0.030366137623786926,
0.0035241572186350822,
0.07488340139389038,
-0.02404888905584812,
-0.04067935794591904,
-0.030786970630288124,
0.008743220940232277,
-0.036844972521066666,
-0.01239015907049179,
0.021568285301327705,
-0.10157620906829834,
0.06360173970460892,
-0.014474524185061455,
-0.0002546976029407233,
-0.05380820482969284,
0.04438319057226181,
0.010063158348202705,
0.004093820694833994,
0.011005132459104061,
-0.11314845830202103,
0.013176272623240948,
-0.05023016780614853,
-0.0035491373855620623,
-0.00016382572357542813,
0.0223151296377182,
-0.10981550067663193,
0.04479802027344704,
0.0219735000282526,
-0.04303192347288132,
0.047316838055849075,
-0.013106418773531914,
-0.07284591346979141,
0.048619069159030914,
0.027794912457466125,
0.001150103285908699,
-0.1668994128704071,
0.06856413930654526,
-0.0005819969228468835,
0.032741330564022064,
-0.03175940364599228,
0.05650218203663826,
-0.021182989701628685,
0.0569654144346714,
0.05337486416101456,
-0.028109995648264885,
-0.010034853592514992,
-0.03712872788310051,
0.002339733298867941,
0.018805956467986107,
0.047146089375019073,
0.0069838594645261765,
0.05474657192826271,
0.08167140185832977,
0.0012588537065312266,
-0.0034210975281894207,
0.016560742631554604,
-0.02609330043196678,
-0.02716650627553463,
-0.050678547471761703,
0.017249824479222298,
-0.046307146549224854,
0.006095628719776869,
-0.07797682285308838,
-0.010011978447437286,
-0.045394331216812134,
0.0021652972791343927,
0.022892601788043976,
0.08234263211488724,
0.03434659168124199,
-0.0012094092089682817,
-0.01201771292835474,
0.05751379206776619,
0.06478230655193329,
0.013199386186897755,
-0.017321480438113213,
0.03173372894525528,
-0.007053823210299015,
-0.05978447571396828,
0.051008615642786026,
-0.017961105331778526,
-0.07405760139226913,
-0.005102468654513359,
-0.001098671113140881,
0.0707843154668808,
-0.03772604838013649,
-0.011464542709290981,
0.0387859009206295,
-0.026023471727967262,
0.026618381962180138,
-0.013189275749027729,
-0.004518616478890181,
0.004281264264136553,
-0.049393367022275925,
-0.03173550218343735,
0.013201473280787468,
0.005897835362702608,
-0.07648920267820358,
-0.02057718299329281,
0.01268682535737753,
-0.021730180829763412,
-0.05843178927898407,
0.015158058144152164,
0.030365336686372757,
-0.02507166564464569,
0.02874523028731346,
0.011409558355808258,
-0.027150161564350128,
0.0055709281004965305,
0.04561303183436394,
0.023402705788612366,
0.09833937883377075,
-0.0024932899978011847,
0.028545722365379333,
0.03794759139418602,
0.07195556163787842,
0.059448156505823135,
0.02302076667547226,
-0.03887198492884636,
-0.033929649740457535,
0.02971811778843403,
-0.03497607633471489,
0.02737646922469139,
0.04453876242041588,
-0.013686231337487698,
-0.0972772166132927,
-0.011703349649906158,
-0.06312203407287598,
0.06563781201839447,
0.03649934381246567,
-0.01855156198143959,
0.04142891243100166,
-0.004997107665985823,
-0.022260719910264015,
0.0158857274800539,
-0.02133106254041195,
-0.09020571410655975,
0.032100923359394073,
-0.009910373017191887,
0.0073235840536653996,
-0.034461475908756256,
0.060123052448034286,
0.042861901223659515,
-0.034575365483760834,
0.024935487657785416,
0.09335727244615555,
-0.01986285112798214,
0.00046656676568090916,
-0.08438140898942947,
0.009804018773138523,
-0.04705028235912323,
-0.002968431683257222,
-0.0728139728307724,
0.006838322151452303,
0.016631165519356728,
0.03232351690530777,
-0.010049393400549889,
0.043781157582998276,
0.021562259644269943,
-0.0069981231354177,
0.017269564792513847,
-0.08761047571897507,
0.0707859992980957,
-0.049721021205186844,
0.010115171782672405,
0.10895616561174393,
0.04651953652501106,
0.0026995164807885885,
0.022860966622829437,
0.028037179261446,
-0.04542236030101776,
0.028372816741466522,
-0.02426563948392868,
0.03897516429424286,
0.03570866212248802,
-0.07816313952207565,
-0.02101796865463257,
-0.035990070551633835,
-0.05666164308786392,
-0.01548590138554573,
-0.08288461714982986,
-0.027047455310821533,
0.052998464554548264,
-0.018331849947571754,
0.012064998038113117,
-0.02290150709450245,
-0.03215572610497475,
0.13195782899856567,
0.056507136672735214,
0.0856221541762352,
0.0539577417075634,
0.04185226559638977,
-0.009294536896049976,
0.0012128687230870128,
-0.02023615874350071,
0.014266746118664742,
0.036575742065906525,
-0.044080398976802826,
0.0528985969722271,
0.015934035181999207,
0.005739096086472273,
-0.1548151671886444,
0.043262362480163574,
-0.07233565300703049,
-0.006600028835237026,
-0.055510398000478745,
0.0016327634220942855,
0.0023472921457141638,
-0.013992071151733398,
-0.02796884812414646,
0.18416646122932434,
-0.015536821447312832,
-0.034707631915807724,
-0.017758585512638092,
-0.016211193054914474,
0.08388274163007736,
0.0932251587510109,
0.10832808911800385,
0.1257680058479309,
-0.07622691243886948,
-0.020810116082429886,
-0.0234534814953804,
-0.010189495980739594,
0.02733512967824936,
0.04504217952489853,
-0.03532838076353073,
0.06348919123411179,
-0.04230945184826851,
-0.0009545356151647866,
-0.03668677434325218,
-0.014884666539728642,
-0.03023342229425907,
0.03294955939054489,
-0.03612520545721054,
0.021093009039759636,
-0.03144046664237976,
0.056184619665145874,
0.0017584944143891335,
-0.06602664291858673,
-0.0022721015848219395,
-0.0903967022895813,
0.052121490240097046,
0.010058369487524033,
-0.0379694327712059,
0.019673151895403862,
0.01567782089114189,
0.02371501736342907,
-0.016615498811006546,
-0.02158496528863907,
0.058610886335372925,
0.00003970210673287511,
-0.0004078396304976195,
-0.05325247719883919,
-0.05629526451230049,
-0.023257222026586533,
-0.03726641833782196,
0.016800323501229286,
0.022356988862156868,
0.007618514820933342,
0.03188663348555565,
0.02074216865003109,
-0.014545753598213196,
0.025530405342578888,
0.0020614638924598694,
0.0038540209643542767,
0.03590196371078491,
0.02192959561944008,
-0.023287450894713402,
-0.030895117670297623,
-0.01147038210183382,
-0.014252206310629845,
-0.03083883784711361,
0.03190823644399643,
0.03432135283946991,
0.026137663051486015,
0.008708625100553036,
-0.01803923025727272,
-0.006719846278429031,
-0.048803698271512985,
0.023073650896549225,
0.03966536745429039,
0.02941703423857689,
-0.030848318710923195,
-0.012267662212252617,
0.017544981092214584,
-0.016494544222950935,
0.029076432809233665,
-0.02247711457312107,
-0.03662664070725441,
0.03050278127193451,
-0.029429171234369278,
0.0033763174433261156,
0.02673068456351757,
-0.01611155830323696,
-0.01925826072692871,
0.03909336403012276,
-0.009644336998462677,
0.01188158243894577,
-0.11428356915712357,
-0.02100549452006817,
-0.02671404555439949,
0.027213839814066887,
-0.029781237244606018,
-0.010041624307632446,
0.043733514845371246,
-0.010817856527864933,
-0.016455160453915596,
-0.004862683825194836,
0.014100191183388233,
0.02114928513765335,
0.029348652809858322,
0.0005309368716552854,
-0.033654551953077316,
0.014350690878927708,
-0.003959084860980511,
-0.0057674734853208065,
0.04328938201069832,
-0.012733276933431625,
-0.02511279098689556,
0.018503664061427116,
-0.01590312458574772,
-0.004371441435068846,
-0.023785997182130814,
-0.00609935587272048,
0.04380274564027786,
-0.0007388108060695231,
-0.0005229194648563862,
-0.02046939544379711,
0.026311147958040237,
0.0005674640997312963,
-0.029390746727585793,
-0.019662536680698395,
-0.041195616126060486,
-0.0037855550181120634,
-0.0043120128102600574,
0.02070544846355915,
-0.024130677804350853,
0.02736206352710724,
0.01750737987458706,
-0.008759832940995693,
0.02058442495763302,
0.006128756329417229,
0.004645319189876318,
0.0018380223773419857,
0.00002475256951584015,
0.010768787004053593,
0.027110062539577484,
-0.01834164746105671,
0.005458181723952293,
-0.028451241552829742,
0.024485712870955467,
0.06083408743143082,
-0.0072969370521605015,
0.020944997668266296,
0.014143831096589565,
0.041722334921360016,
-0.042960356920957565,
-0.035460785031318665,
-0.0819876566529274,
-0.014258104376494884,
-0.03335888683795929,
-0.017999179661273956,
-0.030964158475399017,
0.06517557799816132,
0.010001257993280888,
0.03242390602827072,
-0.012567102909088135,
0.05009618028998375,
-0.001395534141920507,
0.035682667046785355,
-0.0039538005366921425,
0.008184939622879028,
0.0029524497222155333,
0.005887780804187059,
-0.03407112509012222,
-0.045403771102428436,
0.06065826490521431,
0.03654308244585991,
-0.027422834187746048,
-0.030176328495144844,
-0.017845245078206062,
-0.015180457383394241,
0.004088184330612421,
-0.013644888065755367,
0.02758779190480709,
0.029375730082392693,
0.008489251136779785,
0.04291494935750961,
0.00554674444720149,
-0.0231174323707819,
0.0512179359793663,
-0.015667641535401344,
0.013989631086587906,
0.00462923152372241,
0.010548789985477924,
0.01861008070409298,
0.019185971468687057,
0.024472396820783615,
0.013264225795865059,
-0.041165418922901154,
-0.0006625988753512502,
0.01476988010108471,
-0.021199066191911697,
0.056256502866744995,
-0.0469844788312912,
-0.042506784200668335,
0.029012683779001236,
-0.02917592041194439,
-0.015138230286538601,
-0.021672749891877174,
-0.0359809435904026,
-0.017517605796456337,
0.011662296019494534,
0.020993681624531746,
-0.03221376612782478,
-0.014842193573713303,
-0.04584950953722,
0.029491743072867393,
-0.014520439319312572,
0.010983489453792572,
-0.010718369856476784,
-0.009021060541272163,
0.012461109086871147,
0.015831852331757545,
0.019063472747802734,
0.028407013043761253,
-0.0027842363342642784,
0.003921349998563528,
-0.04021139442920685,
0.007509368937462568,
0.05048062279820442,
0.014317028224468231,
0.018562769517302513,
0.05664486438035965,
-0.037026043981313705,
0.030367109924554825,
0.032152995467185974,
-0.046710819005966187,
0.02605382725596428,
-0.03329748287796974,
0.022004617378115654,
-0.01818549633026123,
0.033525124192237854,
-0.003480862360447645,
-0.06212348863482475,
-0.0049034045077860355,
-0.048311542719602585,
-0.002813054481521249,
0.0024560499005019665,
-0.00003085822027060203,
-0.04331182315945625,
0.026899803429841995,
0.018176594749093056,
-0.005059001501649618,
-0.015477819368243217,
0.010054350830614567,
-0.013884072192013264,
0.03872690722346306,
-0.043367888778448105,
0.01843489520251751,
-0.050794199109077454,
0.008194401860237122,
-0.01098204217851162,
0.029763324186205864,
0.029957883059978485,
-0.07101798802614212,
0.015239077620208263,
0.020641988143324852,
-0.04666176438331604,
-0.001678389497101307,
0.009759750217199326,
-0.03823301941156387,
-0.030513228848576546,
0.03581136465072632,
0.04098429158329964,
0.032959550619125366,
-0.009020395576953888,
0.02114018052816391,
-0.054399315267801285,
0.017472149804234505,
-0.0022804520558565855,
-0.019813084974884987,
0.0013290341012179852,
0.029170354828238487,
0.050150129944086075,
0.10227744281291962,
0.0014478261582553387,
0.028562456369400024,
0.01195664145052433,
0.030123373493552208,
0.02170589193701744,
-0.03465677797794342,
-0.030056828632950783,
-0.02702084183692932,
0.025859754532575607,
0.011901065707206726,
0.00945681519806385,
0.007055504713207483,
0.036825332790613174,
0.06648630648851395,
-0.017246253788471222,
-0.0362883061170578,
0.02016664482653141,
-0.004703165031969547,
-0.016991226002573967,
0.00654365960508585,
0.02578721009194851,
-0.0165491234511137,
-0.02166368067264557,
0.0008680851315148175,
-0.01368789467960596,
-0.02279731258749962,
-0.01687108352780342,
-0.02879304066300392,
-0.04373054951429367,
0.009597064927220345,
-0.014149367809295654,
0.05029469355940819,
-0.01396981067955494,
-0.001932491548359394,
-0.028739990666508675,
-0.003564448095858097,
0.03054450824856758,
-0.030821045860648155,
0.0006309013115242124,
-0.015844564884901047,
-0.009604587219655514,
0.0027444155421108007,
-0.0067466143518686295,
-0.02020956575870514,
0.00838465616106987,
0.02144099399447441,
0.013748708181083202,
0.028639132156968117,
-0.07578527927398682,
0.048180900514125824,
0.022875851020216942,
-0.007971879094839096,
-0.006659616716206074,
-0.003358245361596346,
-0.06068011000752449,
0.028999777510762215,
-0.04218468442559242,
0.00587622681632638,
0.0758594498038292,
-0.0017496548825874925,
0.010610965080559254,
0.019341200590133667,
0.010149135254323483,
0.006207918748259544,
-0.008475701324641705,
0.0584464855492115,
-0.03631747514009476,
-0.001411000150255859,
-0.003675794694572687,
0.034631192684173584,
-0.004238666035234928,
-0.000577643106225878,
0.010302986949682236,
-0.06540784984827042,
0.03997232764959335,
0.0215177983045578,
-0.024764319881796837,
0.010978861711919308,
-0.008252453058958054,
-0.03403465077280998,
0.03728063404560089,
0.020660949870944023,
0.013373575173318386,
0.0373334176838398,
0.029151057824492455,
0.0025649794843047857,
-0.021050812676548958,
-0.02191128209233284,
0.05142400413751602,
0.025810450315475464,
0.0041785878129303455,
0.03289400786161423,
-0.00747307762503624,
0.036860350519418716,
0.08777657896280289,
-0.015852926298975945,
0.004830142483115196,
0.029854666441679,
0.045302994549274445,
-0.011267564259469509,
0.03531193733215332,
0.01741468906402588,
0.0007877975585870445,
-0.0378909669816494,
-0.012090492062270641,
-0.003795910393819213,
-0.021493924781680107,
-0.0014059529639780521,
0.01268588937819004,
-0.017759591341018677,
0.0020998679101467133,
-0.011610611341893673,
0.08376433700323105,
0.05286269634962082,
0.0065664369612932205,
0.0036810520105063915,
0.025309119373559952,
0.029225673526525497,
0.005831041838973761,
0.0023816160392016172,
0.021540984511375427,
0.029336612671613693,
-0.002446122467517853,
0.028360936790704727,
0.011677791364490986,
-0.011265575885772705,
0.012051575817167759,
0.04672767594456673,
0.011288772337138653,
-0.033051490783691406,
0.005846638232469559,
-0.003288672072812915,
0.02958821877837181,
-0.00503797410055995,
-0.004156848415732384,
0.02276604250073433,
-0.02655627764761448,
-0.017373457551002502,
-0.01417158916592598,
-0.00651037972420454,
-0.026224231347441673,
-0.01581319235265255,
0.02006766013801098,
0.037098418921232224,
0.013316001743078232,
-0.007364392746239901,
0.009037895128130913,
-0.007862233556807041,
-0.018325956538319588,
0.02024812437593937,
0.0035020189825445414,
-0.015459276735782623,
-0.04252186417579651,
-0.01027718000113964,
0.02033410780131817,
-0.004289517644792795,
0.0044795190915465355,
-0.0036837963853031397,
0.004066858906298876,
0.01677796058356762,
0.0034416005946695805,
0.05918767303228378,
0.012770654633641243,
0.0069774361327290535,
-0.020658742636442184,
-0.001495735952630639,
-0.004031595773994923,
-0.026335079222917557,
0.0014218646101653576,
-0.041130080819129944,
0.007748714182525873,
-0.01689998246729374,
0.036378420889377594,
0.029283832758665085,
0.036799658089876175,
-0.030988696962594986,
-0.03292274475097656,
-0.00073401746340096,
-0.019352244213223457,
-0.0031735822558403015,
0.02536998875439167,
-0.0015882855514064431,
0.002559324260801077,
0.022080380469560623,
-0.02492465078830719,
0.021150991320610046,
-0.0156322680413723,
-0.0040885875932872295,
0.041167229413986206,
-0.01591474562883377,
-0.004669212270528078,
-0.014006134122610092,
0.06721170991659164,
0.04589901864528656,
0.05688117817044258,
0.023081688210368156,
0.03773481026291847,
-0.01675778068602085,
-0.009618067182600498,
0.03224216029047966,
-0.01128184050321579,
0.031878091394901276,
-0.023673102259635925,
-0.05008925870060921,
-0.014521753415465355,
0.0023861017543822527,
0.027532871812582016,
0.006281841080635786,
-0.06697864830493927,
-0.02515963464975357,
-0.019536590203642845,
-0.037750791758298874,
-0.046232953667640686,
0.013973540626466274,
0.05052492022514343,
0.03253047168254852,
-0.013374365866184235,
0.006653095595538616,
-0.03023690916597843,
0.011512584052979946,
-0.02483692578971386,
0.04234704002737999,
0.03625393286347389,
-0.0016989767318591475,
0.0056574298068881035,
-0.012047492899000645,
0.003531842492520809,
0.008888166397809982,
-0.054058849811553955,
-0.006165422964841127,
0.027583932504057884,
-0.003414538223296404,
-0.018300315365195274,
-0.010862954892218113,
0.04108605906367302,
-0.005649689584970474,
0.0339985117316246,
-0.027486812323331833,
0.010349325835704803,
-0.02440299652516842,
0.013806067407131195,
-0.06261361390352249,
0.032077692449092865,
-0.03936943784356117,
0.035804711282253265,
0.030337825417518616,
0.00006134006252977997,
-0.020520541816949844,
-0.025985591113567352,
-0.0006600586930289865,
0.022257087752223015,
-0.0032989338506013155,
-0.04262811690568924,
-0.048105549067258835,
-0.0028805730398744345,
0.03489838168025017,
-0.03185541555285454,
-0.0637950748205185,
0.029825299978256226,
-0.004820238798856735,
-0.013249685056507587,
0.00033826357685029507,
0.004157835152000189,
-0.011656641960144043,
0.004674483556300402,
0.014554096385836601,
-0.034943051636219025,
0.018848352134227753,
-0.0006700863596051931,
-0.04294143244624138,
-0.015856297686696053,
-0.03879529610276222
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Conversion One of the most important parts of the porting process is to create a script that will take all the available source data provided by the original developer of the model, which includes a checkpoint with pre-trained weights, model and training configuration, dictionaries and tokenizer support files, and convert them into a new set of model files supported by transformers. You will find the final conversion script here: src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py I started this process by copying one of the existing conversion scripts src/transformers/convert_bart_original_pytorch_checkpoint_to_pytorch.py, gutted most of it out and then gradually added parts to it as I was progressing in the porting process. During the development I was testing all my code against a local copy of the converted model files, and only at the very end when everything was ready I uploaded the files to 🤗 s3 and then continued testing against the online version. | [
0.01127307116985321,
0.010346338152885437,
-0.022838151082396507,
0.01688784547150135,
0.04282447695732117,
0.042291708290576935,
0.009227219969034195,
0.018506670370697975,
0.004746277816593647,
-0.016111787408590317,
-0.05478646233677864,
0.03701982647180557,
-0.011760021559894085,
0.02385595627129078,
0.04255680367350578,
-0.03946959972381592,
0.025852885097265244,
-0.05047920346260071,
0.01526535116136074,
0.019626691937446594,
0.01596362143754959,
-0.0876346305012703,
-0.020057355985045433,
0.04761820659041405,
-0.026518959552049637,
-0.03461924195289612,
-0.01080895122140646,
0.06858677417039871,
-0.021589096635580063,
0.06613816320896149,
-0.10141363739967346,
-0.006442450452595949,
-0.014184501022100449,
-0.06820967048406601,
-0.02491595409810543,
0.05950852110981941,
-0.07275734841823578,
0.04682987555861473,
-0.02420923486351967,
-0.05223533511161804,
-0.010572499595582485,
0.0708337277173996,
-0.0799548476934433,
0.05590077489614487,
0.03334097936749458,
0.005486881360411644,
-0.1604083776473999,
0.05275106057524681,
-0.010073626413941383,
-0.03163450211286545,
-0.03411461412906647,
0.038907039910554886,
-0.05291710048913956,
0.013014419004321098,
-0.017822930589318275,
0.03704620897769928,
-0.026690876111388206,
-0.0100377406924963,
0.005659185815602541,
0.005226662382483482,
0.04236433282494545,
0.039859771728515625,
0.03192617744207382,
0.04607590287923813,
0.04290395602583885,
0.0007350794621743262,
0.016548486426472664,
0.02597927115857601,
-0.04746175929903984,
-0.05940893664956093,
0.017846930772066116,
-0.053788695484399796,
-0.010485139675438404,
-0.04670384153723717,
-0.03224717453122139,
-0.05579131469130516,
0.0575077086687088,
0.024657506495714188,
0.05042572319507599,
0.013932449743151665,
0.05672402307391167,
0.06382553279399872,
-0.002645408734679222,
0.002637168625369668,
0.06530915200710297,
0.0036259370390325785,
0.07479961961507797,
-0.04830551519989967,
0.030778007581830025,
0.07518385350704193,
0.0037677434738725424,
-0.07832132279872894,
-0.05453171208500862,
0.012449056841433048,
0.08496341854333878,
0.015326913446187973,
0.0007437084568664432,
0.028475776314735413,
-0.004217494744807482,
-0.007482352666556835,
0.028408071026206017,
-0.02875654585659504,
-0.020316187292337418,
-0.04668279364705086,
0.0009375042864121497,
-0.003135426202788949,
0.012382208369672298,
-0.08277830481529236,
0.002466988516971469,
-0.03150033578276634,
-0.0069712488912045956,
-0.01609140634536743,
0.007689761463552713,
0.04361944645643234,
-0.036679573357105255,
-0.02282342128455639,
0.033835843205451965,
-0.07456844300031662,
0.0014204198960214853,
0.008367206901311874,
0.013377941213548183,
0.09160501509904861,
-0.01114647090435028,
-0.03611459583044052,
0.03407958149909973,
0.09877190738916397,
0.04359053075313568,
0.059856217354536057,
0.01537342369556427,
-0.022840596735477448,
0.05543316528201103,
-0.020982684567570686,
0.05190373584628105,
0.024458033964037895,
-0.020761555060744286,
-0.05581022426486015,
-0.0043205083347857,
-0.03260134533047676,
-0.01883242279291153,
-0.02821321040391922,
-0.03797665610909462,
0.100588858127594,
-0.05063788965344429,
0.0416419580578804,
0.009663654491305351,
-0.028271622955799103,
-0.0774625688791275,
0.1337219774723053,
0.021401505917310715,
0.04418119788169861,
-0.10334067046642303,
0.06825435161590576,
-0.038735996931791306,
-0.06737853586673737,
-0.03709368035197258,
0.05365024134516716,
0.035362500697374344,
-0.042154666036367416,
-0.09665830433368683,
-0.04600080847740173,
-0.02901902049779892,
0.02734817937016487,
-0.03687262535095215,
-0.02639530412852764,
0.026943452656269073,
-0.06124014034867287,
0.027126429602503777,
0.0022933955769985914,
0.07789970189332962,
0.010374483652412891,
0.011855784803628922,
-0.07765185832977295,
0.09950659424066544,
-0.02599642053246498,
0.0012872484512627125,
0.0504184253513813,
0.0693664401769638,
0.06264722347259521,
-0.02379424497485161,
-0.031008712947368622,
-0.03050854057073593,
0.05073845386505127,
-0.05798462778329849,
0.021140463650226593,
0.02683398872613907,
-0.061329420655965805,
0.013281241990625858,
-0.03476964682340622,
-0.03346054255962372,
0.04103989154100418,
-0.07629375904798508,
-0.009370539337396622,
0.03193403407931328,
-0.012126226909458637,
0.05407349392771721,
-0.039348870515823364,
-0.034146782010793686,
0.12547411024570465,
0.00866730697453022,
0.09244535118341446,
0.03524855524301529,
-0.043849606066942215,
-0.004615336190909147,
0.0034730711486190557,
0.012992443516850471,
0.05939919874072075,
0.022753696888685226,
-0.07488975673913956,
0.03775054216384888,
0.015492006205022335,
0.04371441900730133,
-0.05803889036178589,
0.00006927690265001729,
-0.08692656457424164,
-0.022068805992603302,
-0.04946175962686539,
-0.1045697033405304,
0.014992077834904194,
0.006081277504563332,
-0.06509888917207718,
0.16751691699028015,
-0.049756117165088654,
-0.004593010060489178,
-0.055289074778556824,
-0.022985020652413368,
0.060513705015182495,
0.018007036298513412,
0.06638551503419876,
0.0591622069478035,
-0.08736903965473175,
-0.048421092331409454,
-0.06292081624269485,
-0.003901503514498472,
0.051282208412885666,
-0.004862428642809391,
-0.016426552087068558,
0.005736164283007383,
-0.015740642324090004,
-0.0015767923323437572,
-0.010536080226302147,
0.040690258145332336,
0.015373572707176208,
0.02982819452881813,
-0.03856367617845535,
0.027023250237107277,
0.03295489400625229,
0.06411431729793549,
-0.003830759087577462,
0.016742227599024773,
-0.0026865305844694376,
-0.04278791323304176,
0.04804302752017975,
0.04422377049922943,
-0.018394632264971733,
0.08556752651929855,
0.02570762112736702,
-0.012829327024519444,
0.0038649740163236856,
0.02355012856423855,
0.08305337280035019,
0.024386538192629814,
0.03154566138982773,
-0.06689731031656265,
-0.0446905754506588,
-0.01816522143781185,
-0.04743700847029686,
0.003756000427529216,
0.0058219339698553085,
-0.02984064817428589,
-0.010950249619781971,
0.009738671593368053,
-0.05113488808274269,
-0.0207046028226614,
0.0007970143924467266,
0.0309146735817194,
0.03173697367310524,
0.0432877391576767,
-0.003542358288541436,
-0.04123739153146744,
-0.004047248978167772,
0.018865816295146942,
-0.048185814172029495,
0.001334648230113089,
0.016572706401348114,
-0.0032629177439957857,
-0.00026367034297436476,
0.00876491330564022,
0.003299030242487788,
-0.03506002575159073,
0.010006770491600037,
0.00744639802724123,
0.0038886237889528275,
-0.020211603492498398,
0.0025860569439828396,
-0.025093544274568558,
-0.01239039096981287,
-0.0035569840110838413,
0.0008660321473143995,
0.007042955607175827,
0.056991055607795715,
-0.03783377632498741,
0.033254146575927734,
0.044146932661533356,
-0.04216420277953148,
-0.050119299441576004,
0.012695107609033585,
0.01798119954764843,
-0.023326704278588295,
-0.10158216953277588,
0.0031258133240044117,
0.005305862054228783,
0.03421351686120033,
-0.03626291826367378,
-0.03304925933480263,
0.0011414919281378388,
-0.009157395921647549,
-0.007841860875487328,
0.01774764060974121,
0.014232308603823185,
0.010206511244177818,
0.039564475417137146,
0.041321106255054474,
-0.01448628306388855,
0.018303247168660164,
-0.009473147802054882,
0.025555945932865143,
0.037448104470968246,
0.0005810942966490984,
-0.041503727436065674,
-0.001540905679576099,
-0.016743121668696404,
0.012255875393748283,
-0.0053914799354970455,
0.005919775925576687,
0.03492487594485283,
0.03438778966665268,
-0.007453395053744316,
-0.03143537417054176,
-0.007981971837580204,
-0.028469255194067955,
0.001614646753296256,
-0.00804233644157648,
-0.015403074212372303,
-0.014205732382833958,
0.014288586564362049,
0.04175033047795296,
0.012462724931538105,
0.017528215423226357,
-0.011129418388009071,
-0.010995158925652504,
0.0031190221197903156,
-0.028193209320306778,
0.053776275366544724,
-0.004218521527945995,
-0.012620067223906517,
0.012857876718044281,
0.006030205637216568,
-0.012837833724915981,
-0.029456138610839844,
-0.04753239080309868,
0.01779727078974247,
0.07439994812011719,
-0.015363708138465881,
-0.0205020010471344,
0.015330744907259941,
0.040378469973802567,
0.04592525213956833,
0.012888182885944843,
-0.05317644029855728,
0.04725329950451851,
0.011664999648928642,
-0.04435575008392334,
-0.028790581971406937,
0.07867014408111572,
0.00875723734498024,
0.003359624184668064,
-0.018482672050595284,
0.03614487126469612,
-0.026287756860256195,
0.022364381700754166,
0.00547005282714963,
0.00842716358602047,
-0.06933774054050446,
0.05000872537493706,
-0.04711063951253891,
-0.02633911743760109,
0.027271240949630737,
0.049576956778764725,
-0.012541639618575573,
-0.005799241829663515,
-0.023036783561110497,
-0.039272382855415344,
-0.003963594790548086,
0.03352537006139755,
-0.010006221011281013,
-0.020901532843708992,
0.02170081064105034,
0.0037797708064317703,
0.05308038741350174,
-0.014353561215102673,
-0.0009443872258998454,
-0.019290415570139885,
-0.029620952904224396,
-0.007656124420464039,
0.021157845854759216,
-0.017127595841884613,
-0.0394170917570591,
0.023292427882552147,
-0.011357646435499191,
-0.04726611450314522,
-0.025262096896767616,
-0.003973858430981636,
0.005063275806605816,
-0.0006673549069091678,
-0.03270544111728668,
-0.013958106748759747,
0.01992873288691044,
0.0004121851525269449,
-0.008004631847143173,
0.02500884421169758,
-0.019831810146570206,
-0.0028033999260514975,
0.040081605315208435,
0.0345698706805706,
-0.035931143909692764,
-0.05159785971045494,
-0.05238993465900421,
0.03455321863293648,
-0.056949030607938766,
0.015732135623693466,
0.020757479593157768,
-0.02261061780154705,
0.00865689106285572,
-0.02507747896015644,
0.04951685667037964,
0.04885227978229523,
0.010690423659980297,
0.0010189195163547993,
-0.04131725803017616,
0.03447955101728439,
0.04197118803858757,
0.044222619384527206,
0.006985650397837162,
0.006001617293804884,
0.015896741300821304,
-0.02161663956940174,
0.03235207870602608,
-0.007316634990274906,
-0.026839949190616608,
0.0014001233503222466,
0.0026868402492254972,
-0.01560548972338438,
0.02541406638920307,
0.009313486516475677,
-0.03358084335923195,
0.018048200756311417,
-0.037600018084049225,
-0.0007020000484772027,
0.04102344438433647,
-0.010309124365448952,
-0.05241347849369049,
-0.03414665907621384,
-0.012084861285984516,
-0.006455263588577509,
0.0401691198348999,
-0.0000054067290875536855,
0.024703918024897575,
0.03337567672133446,
-0.013333108276128769,
-0.007096251472830772,
-0.01080248598009348,
-0.00494840182363987,
0.01742122694849968,
0.0017746371449902654,
-0.00037871397216804326,
-0.08626849949359894,
-0.015681419521570206,
0.034335579723119736,
-0.031084658578038216,
-0.029752010479569435,
0.009915133938193321,
-0.053101278841495514,
0.04063674062490463,
0.08257155865430832,
0.008253244683146477,
0.027492022141814232,
-0.040846891701221466,
0.0108608677983284,
0.009893092326819897,
-0.016154643148183823,
0.009649764746427536,
-0.00014791375724598765,
-0.015672538429498672,
0.0413532629609108,
0.026166006922721863,
0.05597330257296562,
-0.03875201940536499,
0.02556869387626648,
-0.014342679642140865,
0.005873944144695997,
0.01673557236790657,
0.001602735253982246,
0.008598925545811653,
-0.023979349061846733,
-0.008107512257993221,
0.013282380066812038,
-0.004769225604832172,
-0.006508821155875921,
0.024167008697986603,
0.062528595328331,
0.0019146319245919585,
-0.013555559329688549,
0.031503915786743164,
-0.006954537704586983,
-0.01982133835554123,
-0.015567551366984844,
0.025891438126564026,
0.007117490284144878,
0.015571902506053448,
0.029017990455031395,
-0.0044529978185892105,
-0.015279185026884079,
-0.006464512553066015,
-0.024213775992393494,
-0.008898303844034672,
0.03100401535630226,
0.01090281456708908,
0.011322084814310074,
0.0298696868121624,
-0.014318685047328472,
-0.0038083551917225122,
0.05607850104570389,
0.013944735750555992,
-0.039898619055747986,
0.0121132368221879,
0.010660449042916298,
-0.013835449703037739,
-0.0209401473402977,
0.026653479784727097,
0.0060125598683953285,
-0.005374100990593433,
0.0335417315363884,
0.02854262851178646,
-0.029350455850362778,
-0.029331838712096214,
0.019330229610204697,
0.04198043420910835,
-0.02383435145020485,
-0.009425832889974117,
-0.030770491808652878,
-0.050834547728300095,
0.04280978441238403,
-0.03461521863937378,
0.005213718395680189,
0.07811734080314636,
0.0022472962737083435,
0.052662283182144165,
0.025298766791820526,
0.01931072771549225,
0.03304329887032509,
0.03645933419466019,
-0.005308111198246479,
0.009623945690691471,
0.0017067489679902792,
0.001795941381715238,
-0.00456305081024766,
0.0038364860229194164,
-0.04855935648083687,
0.04258379340171814,
-0.04037987068295479,
-0.03084420971572399,
-0.013494524173438549,
-0.01642550900578499,
-0.011985734105110168,
-0.008620338514447212,
-0.041341133415699005,
-0.014998099766671658,
-0.0040286146104335785,
0.039497584104537964,
0.059266429394483566,
0.014194817282259464,
0.041617605835199356,
-0.009377543814480305,
-0.05143111199140549,
0.033515267074108124,
0.022295761853456497,
-0.007906485348939896,
0.04653051123023033,
0.005107128992676735,
0.017222799360752106,
0.026617955416440964,
0.006304595153778791,
0.02436322532594204,
-0.00661979615688324,
0.06900050491094589,
-0.01077453326433897,
0.023785563185811043,
0.03199796378612518,
0.0152848269790411,
-0.046130940318107605,
-0.06347724050283432,
-0.012131227180361748,
-0.01092112809419632,
0.004342860076576471,
0.0012415499659255147,
-0.020235667005181313,
-0.010271798819303513,
-0.0409720204770565,
0.0669572725892067,
0.04419206455349922,
0.048682618886232376,
-0.04627728834748268,
0.047892145812511444,
0.022519750520586967,
0.0013319606659933925,
0.02066638320684433,
0.04010709375143051,
0.0346553772687912,
0.013443573378026485,
0.04524403437972069,
-0.005282655358314514,
0.002981479512527585,
-0.016704095527529716,
0.020168185234069824,
0.03044918179512024,
0.010803856886923313,
-0.020233776420354843,
0.03703829646110535,
-0.005766937974840403,
-0.00842833798378706,
-0.039459966123104095,
0.004489496350288391,
-0.033697858452796936,
0.016139842569828033,
-0.017026914283633232,
-0.005393071100115776,
-0.04279400408267975,
-0.01927337236702442,
-0.03832704946398735,
0.02266073226928711,
0.008139091543853283,
-0.02662232331931591,
-0.012977076694369316,
-0.012983882799744606,
0.01116024050861597,
0.00045937884715385735,
0.027765637263655663,
0.020337168127298355,
-0.035013508051633835,
0.021937761455774307,
-0.01771635003387928,
0.001923528267070651,
-0.028603428974747658,
0.019672123715281487,
0.02141542360186577,
0.03160936385393143,
-0.001809199107810855,
0.024730399250984192,
0.021152058616280556,
0.0015468470519408584,
-0.01349831372499466,
-0.01964101754128933,
-0.00040092229028232396,
-0.038293253630399704,
0.021959897130727768,
-0.01881694793701172,
0.009812257252633572,
0.004691986367106438,
0.043239567428827286,
0.01253498811274767,
0.038996849209070206,
-0.023412203416228294,
-0.0546429418027401,
-0.00902794860303402,
-0.008195990696549416,
-0.02570587769150734,
0.02942436747252941,
0.02239757962524891,
0.002843977650627494,
0.04942285269498825,
-0.020115451887249947,
0.013482319191098213,
0.01951543241739273,
-0.03470127284526825,
0.019435973837971687,
-0.002567741321399808,
-0.020135102793574333,
-0.007727022282779217,
0.09288658201694489,
0.009651576168835163,
-0.0029765870422124863,
0.025180460885167122,
0.004646672867238522,
-0.0015504639595746994,
-0.012796444818377495,
-0.02033773995935917,
-0.01660374365746975,
0.008738270960748196,
-0.01823299564421177,
-0.06796782463788986,
-0.017285184934735298,
0.024722596630454063,
0.000016480522390338592,
-0.023693332448601723,
-0.04351121187210083,
-0.016853200271725655,
-0.033846426755189896,
-0.029570123180747032,
-0.007538721431046724,
0.0023384946398437023,
0.02722543478012085,
0.052720531821250916,
0.004704702645540237,
0.009123791009187698,
-0.0304774921387434,
-0.0019565329421311617,
-0.008597306907176971,
0.022731227800250053,
0.008989338763058186,
0.016379281878471375,
-0.024173814803361893,
-0.04252701625227928,
0.03232944756746292,
-0.007257457356899977,
-0.01897868700325489,
-0.032261449843645096,
0.0014979027910158038,
-0.01914740912616253,
-0.07170671224594116,
-0.007051785942167044,
0.014482184313237667,
-0.0026606726460158825,
0.023705115541815758,
-0.0018255828181281686,
-0.001370909041725099,
-0.0264324601739645,
-0.013929583132266998,
-0.07334738224744797,
0.0016121899243444204,
-0.011983915232121944,
-0.007963691838085651,
0.029960334300994873,
0.027272438630461693,
-0.015857746824622154,
0.023992085829377174,
-0.041235290467739105,
0.03339902311563492,
-0.0035374939907342196,
-0.007560913451015949,
-0.036990001797676086,
0.019172029569745064,
0.05447392910718918,
-0.01929921656847,
-0.057920943945646286,
0.008105915039777756,
-0.0028749823104590178,
-0.02848745882511139,
0.01083102636039257,
0.011491130106151104,
0.024369552731513977,
-0.0029137120582163334,
-0.01974950172007084,
-0.017719930037856102,
-0.0033796015195548534,
0.010837815701961517,
-0.034647513180971146,
-0.0038769766688346863,
0.01724962145090103
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | How translation systems work Here is a very brief introduction to how computers translate text nowadays. Computers can't read text, but can only handle numbers. So when working with text we have to map one or more letters into numbers, and hand those to a computer program. When the program completes it too returns numbers, which we need to convert back into text. Let's start with two sentences in Russian and English and assign a unique number to each word: я люблю следовательно я существую 10 11 12 10 13 I love therefore I am 20 21 22 20 23 The numbers starting with 10 map Russian words to unique numbers. The numbers starting with 20 do the same for English words. If you don't speak Russian, you can still see that the word я (means 'I') repeats twice in the sentence and it gets the same number 10 associated with it. Same goes for I (20), which also repeats twice. A translation system works in the following stages: 1. [я люблю следовательно я существую] # tokenize sentence into words 2. [10 11 12 10 13] # look up words in the input dictionary and convert to ids 3. [black box] # machine learning system magic 4. [20 21 22 20 23] # look up numbers in the output dictionary and convert to text 5. [I love therefore I am] # detokenize the tokens back into a sentence If we combine the first two and the last two steps we get 3 stages: 1. Encode input: break input text into tokens, create a dictionary (vocab) of these tokens and remap each token into a unique id in that dictionary. 2. Generate translation: take input numbers, run them through a pre-trained machine learning model which predicts the best translation, and return output numbers. 3. Decode output: take output numbers, look them up in the target language dictionary, convert them back to text, and finally merge the converted tokens into the translated sentence. The second stage may return one or several possible translations. In the case of the latter the caller then can choose the most suitable outcome. In this article I will refer to the beam search algorithm, which is one of the ways multiple possible results are searched for. And the size of the beam refers to how many results are returned. If there is only one result that's requested, the model will choose the one with the highest likelihood probability. If multiple results are requested it will return those results sorted by their probabilities. Note that this same idea applies to the majority of NLP tasks, and not just translation. | [
0.04203249514102936,
0.05499570816755295,
0.0244964100420475,
-0.014022967778146267,
0.08324260264635086,
0.0920606330037117,
0.025353573262691498,
0.04159723222255707,
-0.03684727102518082,
0.006753477733582258,
-0.03963388875126839,
0.016765838488936424,
-0.004288205876946449,
0.04146895185112953,
-0.08453699946403503,
-0.028438417240977287,
0.0741894468665123,
-0.033434461802244186,
0.05821271240711212,
0.025115428492426872,
-0.010257002897560596,
-0.000007087430276442319,
0.10675002634525299,
-0.024551061913371086,
0.017004169523715973,
0.057812221348285675,
-0.024935804307460785,
-0.04847875237464905,
-0.07959433645009995,
-0.008929233998060226,
-0.09437115490436554,
-0.00037107226671651006,
-0.035377901047468185,
-0.04316200315952301,
-0.057671576738357544,
0.021760836243629456,
-0.0871267020702362,
0.09043163061141968,
0.015413334593176842,
-0.09717913717031479,
-0.05791094899177551,
0.026242459192872047,
-0.07156277447938919,
0.031906574964523315,
-0.021172424778342247,
-0.022361261770129204,
-0.20024369657039642,
0.05323721468448639,
-0.05398257076740265,
-0.060181889683008194,
-0.08053810894489288,
-0.006056854501366615,
-0.003075225045904517,
-0.023983633145689964,
-0.017439577728509903,
0.035636790096759796,
-0.04685872420668602,
-0.03259649872779846,
-0.02067437581717968,
0.042286939918994904,
0.018994435667991638,
0.06687349826097488,
0.04809821769595146,
0.03347396105527878,
0.01412530429661274,
0.009249874390661716,
0.034101855009794235,
0.0022976542823016644,
-0.0438905730843544,
-0.03520659729838371,
-0.041634634137153625,
-0.030336102470755577,
-0.008785048499703407,
-0.049807384610176086,
-0.03963904455304146,
-0.05037830397486687,
-0.014770658686757088,
0.07789018750190735,
0.020549336448311806,
-0.029326312243938446,
0.012746602296829224,
0.04408171400427818,
0.031096236780285835,
0.003272105474025011,
0.09185946732759476,
0.01094463374465704,
0.04479297623038292,
0.018661893904209137,
-0.04501686245203018,
0.04238736629486084,
0.0030125516932457685,
-0.14074565470218658,
-0.026379087939858437,
0.04492948204278946,
0.016258113086223602,
-0.029976313933730125,
0.03200638294219971,
0.07584546506404877,
-0.08065757900476456,
-0.02556007169187069,
0.026019591838121414,
-0.0365765281021595,
0.1273081749677658,
-0.002546365838497877,
-0.03373522683978081,
0.016189025714993477,
0.0037008067592978477,
-0.013796338811516762,
0.007624808698892593,
-0.0008684592321515083,
-0.031743310391902924,
-0.02581954374909401,
0.0235200896859169,
0.018288472667336464,
-0.030711118131875992,
-0.01298019103705883,
0.06764880567789078,
0.028542667627334595,
-0.009652751497924328,
0.07042615860700607,
0.00021547767391894013,
-0.01786150597035885,
0.032088752835989,
-0.003920054063200951,
0.0018576065776869655,
-0.05590761452913284,
0.016801226884126663,
-0.03794603794813156,
-0.0028226927388459444,
0.00932951457798481,
0.016544615849852562,
0.02529146708548069,
0.0804029256105423,
0.03478763625025749,
0.039712391793727875,
-0.02676325850188732,
0.03935323655605316,
-0.01192705612629652,
-0.007964707911014557,
-0.05111273378133774,
-0.039842911064624786,
0.01866590417921543,
-0.04091164469718933,
0.03714825212955475,
0.0503917895257473,
0.021631045266985893,
-0.07493468374013901,
-0.005921367555856705,
-0.01634528487920761,
0.025712795555591583,
-0.05387624353170395,
0.024386323988437653,
-0.01127761323004961,
-0.05318277329206467,
0.04835527762770653,
0.050561726093292236,
0.04020099341869354,
-0.0544905960559845,
-0.07434693723917007,
-0.027995707467198372,
-0.06869949400424957,
0.029658472165465355,
0.018364569172263145,
-0.04078846424818039,
-0.029788967221975327,
-0.014616201631724834,
0.04985905438661575,
0.1519206017255783,
0.029774995520710945,
0.060255251824855804,
0.018753843382000923,
0.03853267431259155,
0.11067904531955719,
-0.03354316204786301,
0.003389711957424879,
0.01020838227123022,
-0.001843269681558013,
0.020512497052550316,
0.0038065158296376467,
-0.09154561161994934,
-0.024910446256399155,
-0.025637086480855942,
-0.014287461526691914,
0.03522316366434097,
-0.015980763360857964,
-0.033886171877384186,
0.004215131048113108,
-0.05625859275460243,
-0.0023654696997255087,
0.04320526868104935,
-0.06804711371660233,
-0.010728230699896812,
0.005688340403139591,
-0.03470712527632713,
0.029663868248462677,
-0.11576651781797409,
-0.004860848654061556,
0.12578924000263214,
-0.05125342309474945,
0.07755117118358612,
0.07203307002782822,
-0.05689436197280884,
0.03094388358294964,
-0.012705210596323013,
0.04085402563214302,
0.012096897698938847,
0.05645020678639412,
-0.055731698870658875,
-0.007944578304886818,
0.016928477212786674,
-0.01687864027917385,
-0.056777384132146835,
0.005045593716204166,
-0.04974276199936867,
-0.003028010716661811,
-0.0014343785587698221,
-0.024842415004968643,
0.0053068711422383785,
0.01192119624465704,
-0.025226138532161713,
0.1071159616112709,
-0.04729043319821358,
-0.03684709221124649,
0.006168932653963566,
-0.03379086032509804,
0.04232022166252136,
0.056524574756622314,
0.03312542289495468,
-0.015911070629954338,
-0.03394395112991333,
-0.05245251953601837,
-0.030769508332014084,
0.05915818735957146,
0.005430562887340784,
-0.0531281940639019,
-0.021298855543136597,
-0.019079068675637245,
0.02480381354689598,
0.01429045107215643,
0.04180119186639786,
0.02000974863767624,
-0.03515714779496193,
-0.04419879615306854,
0.03523828461766243,
-0.04280981793999672,
0.029760146513581276,
0.11900761723518372,
0.0011452684411779046,
-0.015948979184031487,
-0.0049166190437972546,
-0.06004304438829422,
0.01560660544782877,
-0.06006395071744919,
-0.013810139149427414,
0.04407500848174095,
0.028016364201903343,
0.030874362215399742,
-0.007603395730257034,
0.0063539063557982445,
-0.003040597541257739,
-0.017696700990200043,
0.007804141379892826,
-0.007859103381633759,
-0.05406954512000084,
-0.012786278501152992,
-0.034899670630693436,
0.011655597016215324,
0.015753911808133125,
-0.0031440502498298883,
0.015504114329814911,
-0.022345026955008507,
-0.016973739489912987,
0.0396566279232502,
-0.012465229257941246,
0.020452270284295082,
0.0012586567318066955,
0.020137203857302666,
-0.024012543261051178,
-0.045133594423532486,
0.01606382615864277,
-0.021169861778616905,
-0.010321710258722305,
0.06011144071817398,
0.03503197059035301,
-0.020631445571780205,
-0.034378815442323685,
-0.021186338737607002,
-0.028899071738123894,
-0.00043047528015449643,
0.02486601285636425,
-0.01985449343919754,
-0.034190833568573,
-0.0011634161928668618,
-0.0015136082656681538,
0.01918547786772251,
0.02757885493338108,
-0.01009896770119667,
0.029668139293789864,
0.007846602238714695,
0.026031164452433586,
0.010558617301285267,
0.014948327094316483,
-0.0011374031892046332,
0.003159899730235338,
-0.06319088488817215,
0.058183636516332626,
-0.002569108037278056,
0.05769956856966019,
-0.09583146125078201,
-0.026212593540549278,
0.02757813036441803,
-0.024472905322909355,
0.02335205115377903,
0.004295972641557455,
0.018561750650405884,
0.04988408833742142,
0.0031681067775934935,
-0.002299326006323099,
0.0035183001309633255,
0.01575232297182083,
-0.00019639520905911922,
0.0010148804867640138,
0.0041482760570943356,
0.01695462130010128,
0.02625230886042118,
0.01971633918583393,
0.006420082412660122,
0.036142706871032715,
-0.014306914061307907,
0.014870834536850452,
0.01949065551161766,
0.044960834085941315,
-0.03961336985230446,
-0.00535560492426157,
0.05240539088845253,
-0.005056592170149088,
-0.0007562406826764345,
-0.0164639949798584,
-0.018778620287775993,
0.018961189314723015,
0.006682601757347584,
-0.031064586713910103,
-0.022299272939562798,
-0.00040168233681470156,
0.06935249269008636,
0.0009312850306741893,
0.03496560454368591,
0.018282590433955193,
-0.0047627161256968975,
0.0011737135937437415,
0.017225084826350212,
-0.0367395393550396,
-0.015257686376571655,
-0.010270858183503151,
-0.016737908124923706,
-0.025388967245817184,
-0.032531388103961945,
-0.06255883723497391,
0.018727010115981102,
-0.030171383172273636,
-0.00496993213891983,
0.009015698917210102,
0.01889546401798725,
-0.016276437789201736,
-0.00329541671089828,
0.0008353955927304924,
0.04383929446339607,
0.01574729196727276,
-0.01419353112578392,
0.0234625656157732,
-0.007166327442973852,
-0.040230341255664825,
-0.020965514704585075,
0.05686384066939354,
0.015028128400444984,
0.0294276662170887,
0.018597759306430817,
0.04836282879114151,
-0.0077709113247692585,
0.0004530437581706792,
0.044711291790008545,
0.0035165701992809772,
-0.013983937911689281,
0.020466649904847145,
-0.06623872369527817,
-0.0016093244776129723,
0.04124573990702629,
0.06568363308906555,
-0.03143708407878876,
-0.018698064610362053,
-0.040418822318315506,
-0.020030442625284195,
0.04082022234797478,
-0.03464657813310623,
0.03531946986913681,
-0.015264331363141537,
-0.005683254450559616,
0.007876272313296795,
0.023236149922013283,
-0.05176286771893501,
0.0017554046353325248,
0.007599282544106245,
0.02420991286635399,
-0.0014747758395969868,
0.06367511302232742,
-0.020034058019518852,
0.011608767323195934,
-0.034643396735191345,
0.020914921537041664,
-0.07259867340326309,
-0.024446316063404083,
-0.04686429351568222,
0.00037115506711415946,
0.031074265018105507,
-0.07486003637313843,
-0.01636962778866291,
0.0269517432898283,
0.01750062219798565,
-0.04158613085746765,
0.013482476584613323,
-0.030432740226387978,
0.023154400289058685,
0.0027328496798872948,
0.021954920142889023,
-0.01211160235106945,
-0.06675969809293747,
-0.025148233398795128,
-0.03695445880293846,
-0.04052954539656639,
-0.00786979403346777,
-0.008011535741388798,
0.030239397659897804,
-0.02193775586783886,
0.005736168939620256,
0.04310616850852966,
-0.0030490534845739603,
-0.013307944871485233,
-0.06260068714618683,
-0.010099801234900951,
0.049350108951330185,
0.026729397475719452,
0.02470739558339119,
-0.014914787374436855,
0.011894536204636097,
0.021267712116241455,
0.015929516404867172,
-0.03288816288113594,
-0.04791540652513504,
-0.009856857359409332,
-0.021385114639997482,
0.03639959916472435,
-0.03649979457259178,
0.05425582826137543,
0.009716031141579151,
-0.013656754978001118,
-0.027987204492092133,
0.03457421064376831,
-0.01587650366127491,
0.0507630780339241,
-0.0289317574352026,
-0.04071139171719551,
0.020329071208834648,
-0.0032608734909445047,
-0.040689267218112946,
-0.005978666711598635,
0.047494374215602875,
-0.00729334307834506,
0.034997012466192245,
0.028392111882567406,
-0.015866214409470558,
-0.008088435046374798,
0.025270400568842888,
0.0069812904112041,
-0.04368157684803009,
0.008650020696222782,
-0.0341065488755703,
-0.025440813973546028,
0.003749025519937277,
0.04088788852095604,
-0.000868114351760596,
-0.03818463161587715,
-0.004334008786827326,
0.010423015803098679,
0.014201718382537365,
-0.047559283673763275,
0.016815757378935814,
-0.017464788630604744,
-0.022239573299884796,
0.04913310334086418,
-0.01621886156499386,
0.023202840238809586,
0.03744009509682655,
-0.038929808884859085,
0.01217441726475954,
0.04447505250573158,
0.02199479565024376,
-0.008563170209527016,
-0.017559343948960304,
0.019486624747514725,
0.037635672837495804,
0.03006770648062229,
-0.02972862869501114,
0.015168337151408195,
-0.009728389792144299,
0.0038959055673331022,
0.028470324352383614,
-0.016043441370129585,
0.06370710581541061,
0.03261760622262955,
0.02631778083741665,
-0.0030846712179481983,
-0.017866455018520355,
-0.004502969328314066,
-0.006674071773886681,
-0.04345129057765007,
-0.01986953616142273,
0.018041012808680534,
-0.017620055004954338,
-0.034361932426691055,
-0.020860983058810234,
-0.05472608655691147,
0.03339351341128349,
-0.01855345256626606,
-0.06296884268522263,
-0.019688988104462624,
-0.006379030179232359,
0.0012095629936084151,
0.04268057644367218,
0.043084390461444855,
-0.006058094557374716,
-0.025091862305998802,
0.04433629289269447,
0.022341078147292137,
-0.03125354275107384,
0.025613127276301384,
-0.0004916528705507517,
0.03231005743145943,
-0.006743629928678274,
0.03931068256497383,
-0.005872150417417288,
-0.0074245510622859,
0.023127185180783272,
0.008329346776008606,
-0.034060701727867126,
-0.018444741144776344,
0.014754435047507286,
0.010928457602858543,
-0.0020249257795512676,
0.0014469034504145384,
0.006343691144138575,
-0.037974465638399124,
0.053651656955480576,
0.012736115604639053,
0.028485989198088646,
0.03059959225356579,
0.0032983790151774883,
0.02225220762193203,
0.011788617819547653,
0.00947432592511177,
0.007604957092553377,
-0.0010101388907060027,
0.036479245871305466,
-0.011758822947740555,
0.0548848994076252,
0.015690073370933533,
0.007809347473084927,
-0.008695085532963276,
0.013896363787353039,
0.03361538425087929,
-0.037997230887413025,
0.0003947735240217298,
0.04351016506552696,
0.0031444670166820288,
0.02839699760079384,
0.01390126720070839,
-0.045472122728824615,
0.01430280040949583,
0.04711688309907913,
0.04866551235318184,
0.010612123645842075,
-0.005956169217824936,
0.053132470697164536,
-0.00026976846856996417,
-0.01959933713078499,
0.003310440108180046,
0.09188712388277054,
-0.022141145542263985,
0.04118751361966133,
0.024960603564977646,
0.0354645662009716,
-0.0005787404370494187,
-0.00463234493508935,
0.024781329557299614,
0.015201490372419357,
0.037503644824028015,
0.00606886763125658,
0.036226920783519745,
-0.008560385555028915,
-0.01397726871073246,
-0.02674381248652935,
-0.019386643543839455,
0.00694526731967926,
-0.014568834565579891,
0.0005948360194452107,
0.011009088717401028,
0.016301341354846954,
-0.002643065992742777,
0.003838715609163046,
0.04469636082649231,
0.021262114867568016,
0.04512995108962059,
0.004005206748843193,
0.015544120222330093,
0.02184649556875229,
0.02915899083018303,
0.03878801688551903,
0.05706855654716492,
-0.017575964331626892,
0.02873591147363186,
0.03362657129764557,
0.01305847242474556,
0.03661393001675606,
0.01934281550347805,
-0.0015342985279858112,
0.008719690144062042,
0.0008703037747181952,
-0.042880117893218994,
0.04003835469484329,
-0.00493248738348484,
0.0011460446985438466,
-0.02278834395110607,
0.0339939147233963,
-0.03473486378788948,
-0.024063028395175934,
-0.002942795865237713,
-0.04232318699359894,
-0.030553050339221954,
-0.058510664850473404,
-0.04341965168714523,
0.07425983250141144,
-0.009001495316624641,
-0.06381083279848099,
-0.01632360927760601,
-0.059304479509592056,
0.004641146399080753,
-0.004680105485022068,
0.018243171274662018,
0.0038856903556734324,
-0.03526934236288071,
-0.011477632448077202,
-0.022517092525959015,
-0.02001001127064228,
-0.008844521827995777,
0.007160641718655825,
0.01777655817568302,
0.03328123688697815,
-0.03690009191632271,
0.008220979943871498,
0.009786820039153099,
0.0000867621783982031,
-0.008870022371411324,
0.02473415993154049,
-0.019038939848542213,
-0.00028673181077465415,
0.010377123020589352,
-0.035025786608457565,
-0.006768106482923031,
-0.0269419364631176,
-0.002538849599659443,
-0.004987493623048067,
0.04124118387699127,
0.01120778638869524,
-0.031125003471970558,
0.02634419873356819,
-0.0146112572401762,
-0.05406226962804794,
0.0017295220168307424,
-0.005383252631872892,
-0.02053680270910263,
0.010222692042589188,
-0.015234152786433697,
0.020882532000541687,
-0.013684220612049103,
0.009257800877094269,
0.012566826306283474,
-0.011781923472881317,
-0.025449998676776886,
-0.056119155138731,
0.036999765783548355,
0.026855237782001495,
0.0018556835129857063,
0.04545648768544197,
-0.01756404899060726,
0.022727595642209053,
-0.023608630523085594,
0.06569748371839523,
-0.03433217853307724,
0.05821382999420166,
-0.0017566508613526821,
-0.07405004650354385,
-0.0031803047750145197,
-0.01078109908849001,
-0.00518415542319417,
0.02076224610209465,
-0.010670662857592106,
0.024351660162210464,
-0.01863805763423443,
0.01546801533550024,
-0.015712006017565727,
-0.04096967354416847,
0.014543182216584682,
0.0052604819647967815,
0.009484670124948025,
0.028346074745059013,
0.019220540300011635,
-0.014087523333728313,
-0.022104015573859215,
0.009169484488666058,
0.016633473336696625,
-0.02008933015167713,
0.009563512168824673,
0.014527919702231884,
0.01518089510500431,
-0.03596382588148117,
-0.006543568801134825,
0.03864811733365059,
0.031549204140901566,
-0.019489023834466934,
-0.021184414625167847,
0.02206731028854847,
0.009748565964400768,
0.0019063178915530443,
-0.00033468974288553,
-0.007913444191217422,
-0.029992079362273216,
0.00836862064898014,
-0.012832669541239738,
-0.051423244178295135,
-0.037620965391397476,
0.018415654078125954,
0.01668703183531761,
0.026102911680936813,
0.04829778894782066,
0.03711396083235741,
-0.015623804181814194,
0.008509140461683273,
0.0498291477560997,
-0.0354410745203495,
0.023029033094644547,
-0.06395857036113739,
-0.014318622648715973,
0.011786526069045067,
-0.005697852000594139,
-0.028814321383833885,
0.05245179682970047,
-0.0049260687083005905,
-0.018150491639971733,
-0.0079580657184124,
0.038670722395181656,
-0.041417501866817474,
-0.02626834623515606,
-0.0031964825466275215,
0.008376361802220345,
0.06164279952645302,
-0.012948601506650448,
0.03165899217128754,
0.004855325445532799,
0.019936703145503998
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Tokenization Early systems tokenized sentences into words and punctuation marks. But since many languages have hundreds of thousands of words, it is very taxing to work with huge vocabularies, as it dramatically increases the compute resource requirements and the length of time to complete the task. As of 2020 there are quite a few different tokenizing methods, but most of the recent ones are based on sub-word tokenization - that is instead of breaking input text down into words, these modern tokenizers break the input text down into word segments and letters, using some kind of training to obtain the most optimal tokenization. Let's see how this approach helps to reduce memory and computation requirements. If we have an input vocabulary of 6 common words: go, going, speak, speaking, sleep, sleeping - with word-level tokenization we end up with 6 tokens. However, if we break these down into: go, go-ing, speak, speak-ing, etc., then we have only 4 tokens in our vocabulary: go, speak, sleep, ing. This simple change made a 33% improvement! Except, the sub-word tokenizers don't use grammar rules, but they are trained on massive text inputs to find such splits. In this example I used a simple grammar rule as it's easy to understand. Another important advantage of this approach is when dealing with input text words, that aren't in our vocabulary. For example, let's say our system encounters the word grokking (), which can't be found in its vocabulary. If we split it into grokk'-'ing', then the machine learning model might not know what to do with the first part of the word, but it gets a useful insight that 'ing' indicates a continuous tense, so it'll be able to produce a better translation. In such situation the tokenizer will split the unknown segments into segments it knows, in the worst case reducing them to individual letters. * footnote: to grok was coined in 1961 by Robert A. Heinlein in "Stranger in a Strange Land": to understand (something) intuitively or by empathy. There are many other nuances to why the modern tokenization approach is much more superior than simple word tokenization, which won't be covered in the scope of this article. Most of these systems are very complex to how they do the tokenization, as compared to the simple example of splittingingendings that was just demonstrated, but the principle is similar. | [
0.052392374724149704,
0.018137792125344276,
0.011964223347604275,
-0.04131228104233742,
0.0790984109044075,
0.07861681282520294,
-0.01042963843792677,
0.059473633766174316,
-0.043484512716531754,
0.007445656694471836,
-0.04386826232075691,
0.012239350005984306,
-0.01253070030361414,
0.037483420222997665,
-0.034030210226774216,
0.021934404969215393,
0.04557683318853378,
-0.04196423292160034,
0.020566517487168312,
-0.060880448669195175,
-0.034849535673856735,
-0.011884765699505806,
0.10791610926389694,
0.03467683121562004,
0.0572437047958374,
0.03629526123404503,
-0.022271549329161644,
-0.0377754308283329,
-0.046665869653224945,
0.013441273011267185,
-0.09479912370443344,
-0.011590094305574894,
-0.037756629288196564,
0.016263050958514214,
-0.04058195650577545,
-0.04644964262843132,
-0.09987369179725647,
0.08895821124315262,
0.006517916917800903,
-0.049247659742832184,
-0.03600237891077995,
-0.03767099604010582,
-0.03522311896085739,
0.020251238718628883,
-0.04977456480264664,
0.010820089839398861,
-0.22636711597442627,
0.06907424330711365,
-0.05188916623592377,
-0.038213036954402924,
-0.08912979066371918,
0.014884129166603088,
-0.03370892256498337,
-0.02623014897108078,
-0.04827392101287842,
-0.005584497004747391,
-0.00984138436615467,
-0.09448990970849991,
0.01231475081294775,
0.001812449423596263,
0.03993554785847664,
-0.007632829714566469,
0.008884155191481113,
-0.01777975633740425,
0.044141486287117004,
0.028389165177941322,
-0.04540140554308891,
0.024371834471821785,
-0.07390107214450836,
-0.004072836134582758,
-0.019142642617225647,
-0.042275674641132355,
-0.05003952980041504,
-0.014413109980523586,
-0.037563908845186234,
-0.04105902835726738,
0.011580674909055233,
-0.008190684951841831,
-0.01712232269346714,
-0.004136437084525824,
0.002078267280012369,
0.04563550651073456,
0.040571171790361404,
0.02540559135377407,
0.03411644324660301,
-0.017248744145035744,
0.0038124495185911655,
-0.0019021709449589252,
-0.033341094851493835,
0.0368034765124321,
-0.0201912559568882,
-0.14125768840312958,
-0.018664764240384102,
0.04462261125445366,
0.041044123470783234,
-0.01447079237550497,
0.03222782164812088,
0.08460782468318939,
0.0034123773220926523,
0.0011455031344667077,
-0.010169009678065777,
-0.11082882434129715,
0.0805160403251648,
0.03201080486178398,
-0.01783178187906742,
0.020993096753954887,
-0.016324693337082863,
-0.013590243645012379,
0.05189814418554306,
0.010767629370093346,
0.01716870255768299,
0.033417798578739166,
0.0813431590795517,
0.046969249844551086,
-0.08224355429410934,
0.02706151455640793,
0.012198960408568382,
0.04614488035440445,
0.005589103791862726,
0.027764765545725822,
0.008003400638699532,
0.03284444659948349,
0.1312713325023651,
0.006669308058917522,
-0.05100935325026512,
-0.04404642805457115,
0.08352777361869812,
0.012495082803070545,
0.0037471503019332886,
-0.01937340572476387,
-0.007854421623051167,
0.05488568916916847,
0.019508952274918556,
0.051160793751478195,
0.006502904463559389,
-0.020166141912341118,
0.03518621250987053,
-0.038993049412965775,
-0.003632291918620467,
-0.0371914803981781,
-0.06012310832738876,
0.05426179990172386,
-0.026024408638477325,
0.013824746944010258,
0.044677313417196274,
-0.001326243975199759,
-0.09457820653915405,
0.010409574024379253,
-0.04876274988055229,
-0.03392975777387619,
-0.05973263084888458,
-0.004979592747986317,
-0.024758296087384224,
-0.006955823861062527,
0.029815180227160454,
0.031849462538957596,
-0.012387337163090706,
-0.020594408735632896,
-0.04666221886873245,
-0.04872690886259079,
-0.017766132950782776,
0.03300771862268448,
0.008550317026674747,
0.0066212816163897514,
0.024706002324819565,
-0.05504501610994339,
0.04908011853694916,
0.08390103280544281,
-0.02278856746852398,
0.008727967739105225,
0.0405987985432148,
0.010071349330246449,
0.10227459669113159,
-0.09174087643623352,
-0.04433275759220123,
0.05512157455086708,
-0.028645727783441544,
0.05385134369134903,
-0.0029124387074261904,
0.01713687740266323,
-0.037320904433727264,
-0.011481785215437412,
0.007573157083243132,
0.040205106139183044,
0.023473914712667465,
-0.0982525423169136,
-0.015564688481390476,
-0.02411581203341484,
-0.0003562254423741251,
0.0420551523566246,
-0.05324883759021759,
-0.045927487313747406,
0.013235527090728283,
0.0130535326898098,
0.024017861112952232,
-0.07133244723081589,
-0.023595908656716347,
0.10726828873157501,
0.03337620943784714,
0.0891287624835968,
0.056650590151548386,
-0.006452473346143961,
-0.02808273769915104,
-0.03342145308852196,
-0.05128268525004387,
0.030325502157211304,
0.019351277500391006,
-0.0500473789870739,
0.02804117649793625,
0.0066650561057031155,
0.02853711135685444,
-0.05270450562238693,
0.0208879504352808,
-0.06922122091054916,
-0.03625364229083061,
0.00016079792112577707,
0.013297499157488346,
0.10585226863622665,
0.021258018910884857,
-0.08659537881612778,
0.1518574357032776,
-0.11960208415985107,
-0.02313952147960663,
0.018033994361758232,
-0.04177144542336464,
0.03667869418859482,
0.06873463839292526,
0.00438126502558589,
0.0521717444062233,
-0.08040664345026016,
-0.07834092527627945,
-0.08741540461778641,
0.01769201271235943,
0.006529731675982475,
-0.012454751878976822,
0.014485763385891914,
0.0032306534703820944,
0.004674807656556368,
0.006312973331660032,
-0.030735522508621216,
-0.0319644995033741,
-0.07563265413045883,
0.027017278596758842,
0.03717893734574318,
0.026849238201975822,
0.024396218359470367,
0.07990515977144241,
0.006686808541417122,
-0.034892402589321136,
-0.026467610150575638,
-0.06793425232172012,
0.06613260507583618,
-0.022018354386091232,
-0.00937036331743002,
0.015694908797740936,
-0.0022882462944835424,
0.03882438316941261,
0.005987642798572779,
0.004969899542629719,
-0.01785072684288025,
-0.01734357513487339,
-0.012959331274032593,
0.01662454940378666,
-0.06439826637506485,
0.012002835050225258,
-0.04035896807909012,
-0.006039835046976805,
0.015409731306135654,
0.007216400932520628,
0.020936984568834305,
0.0044550057500600815,
0.0038917595520615578,
0.008748737163841724,
0.012492222711443901,
0.013885457068681717,
0.014160864055156708,
0.020320653915405273,
-0.03824819251894951,
-0.019812917336821556,
-0.014155484735965729,
-0.0012828554026782513,
-0.02104569412767887,
0.011916087009012699,
0.044577766209840775,
0.01801486313343048,
-0.02827504090964794,
0.01876753568649292,
-0.02031932771205902,
-0.01874411664903164,
0.03497583419084549,
0.02476458065211773,
0.016480760648846626,
-0.018458548933267593,
-0.013409726321697235,
0.03528508171439171,
0.013440927490592003,
-0.01326549518853426,
0.013464991003274918,
0.015833979472517967,
0.00617322139441967,
0.013460644520819187,
0.01892874762415886,
-0.014555857516825199,
-0.01317018736153841,
-0.041838258504867554,
0.01415975484997034,
0.005848284810781479,
0.03148256987333298,
-0.10803309082984924,
-0.009628734551370144,
0.018901504576206207,
0.0008392476011067629,
-0.02941894717514515,
-0.005811402574181557,
0.050249915570020676,
0.016907967627048492,
-0.029848692938685417,
-0.011980882845818996,
0.003914721310138702,
0.005206919275224209,
0.004590386990457773,
0.0013987688580527902,
-0.023516884073615074,
0.028351416811347008,
-0.004293676000088453,
0.02024148218333721,
-0.02017657645046711,
0.041490260511636734,
0.010069763287901878,
0.04868810996413231,
-0.0007737957639619708,
0.003910780418664217,
-0.00652681989595294,
-0.003463601227849722,
0.03193461149930954,
0.0307523962110281,
0.06427613645792007,
-0.00783616118133068,
-0.020651815459132195,
-0.023755256086587906,
0.0036732887383550406,
0.013911038637161255,
-0.045880455523729324,
-0.0018767468864098191,
0.014764728955924511,
0.013353853486478329,
-0.014542204327881336,
0.04475902020931244,
0.016353122889995575,
-0.00577158248052001,
0.05750292167067528,
-0.04427804797887802,
-0.029819922521710396,
-0.005554378964006901,
-0.025254469364881516,
-0.04002460837364197,
0.02938842959702015,
-0.06022825837135315,
0.010571174323558807,
-0.03184887394309044,
0.02918277680873871,
0.04583357647061348,
0.011744670569896698,
-0.03116370551288128,
-0.010462396778166294,
-0.009320853278040886,
0.036729227751493454,
-0.001520541263744235,
-0.016667773947119713,
0.038271043449640274,
-0.02247503772377968,
-0.0031607935670763254,
-0.06023648753762245,
0.06289619207382202,
0.01126797217875719,
0.02307816408574581,
0.016908491030335426,
0.042239196598529816,
-0.012663188390433788,
0.027109023183584213,
0.01393864955753088,
0.0019930016715079546,
-0.024996405467391014,
0.017160123214125633,
-0.050664566457271576,
-0.022822052240371704,
0.05691588297486305,
0.07219100743532181,
-0.028469685465097427,
-0.029127873480319977,
-0.019459959119558334,
-0.02716577611863613,
0.0032915938645601273,
0.0028940143529325724,
0.005857258103787899,
0.016627276316285133,
-0.005551534704864025,
0.035626139491796494,
0.03498048335313797,
-0.014587613753974438,
0.03824020177125931,
0.021102629601955414,
0.0033264877274632454,
-0.001187724294140935,
0.042750388383865356,
-0.03959280997514725,
0.012924090959131718,
-0.0023573937360197306,
0.020383378490805626,
-0.05894330143928528,
-0.0014743255451321602,
-0.006359975319355726,
0.028704972937703133,
0.06229708343744278,
-0.060460321605205536,
-0.018033670261502266,
0.026818914338946342,
0.046368759125471115,
-0.013851208612322807,
0.027056531980633736,
0.004917423706501722,
-0.02710805833339691,
0.010132068768143654,
-0.004026522394269705,
-0.014958787709474564,
-0.01571814715862274,
-0.0375625379383564,
-0.013960551470518112,
-0.02639061026275158,
0.03033631294965744,
0.021102113649249077,
0.0037476965226233006,
0.034368980675935745,
-0.011040077544748783,
0.04102563112974167,
-0.01788882538676262,
-0.002590898424386978,
-0.003546634688973427,
-0.014957048930227757,
0.025789158418774605,
0.011478140950202942,
0.009459392167627811,
0.029192550107836723,
-0.003008302766829729,
0.0034196292981505394,
0.014307926408946514,
-0.004968285094946623,
-0.03771108016371727,
-0.020972665399312973,
-0.03795613721013069,
0.013021064922213554,
-0.027311481535434723,
0.047529350966215134,
0.00727958045899868,
-0.04170450568199158,
-0.03127222880721092,
0.04523226246237755,
0.019678333774209023,
0.03523683920502663,
-0.00628700153902173,
-0.04337740316987038,
0.0023486025165766478,
-0.002308979630470276,
-0.04484856501221657,
-0.00033415635698474944,
0.028110798448324203,
0.0025322288274765015,
0.030481349676847458,
0.017089348286390305,
-0.014445502310991287,
-0.0315377451479435,
0.02663854882121086,
0.017555249854922295,
-0.06782747060060501,
-0.009432757273316383,
-0.013334707356989384,
0.0029836460016667843,
-0.0046227360144257545,
0.04040404036641121,
-0.011107631959021091,
-0.024980496615171432,
-0.015754081308841705,
0.0231508556753397,
-0.037834662944078445,
-0.0012480545556172729,
0.03921610116958618,
-0.026967845857143402,
0.02992985025048256,
-0.012135655619204044,
-0.0067579252645373344,
0.006125140003859997,
-0.0009103571646846831,
0.012839524075388908,
-0.011942727491259575,
0.0471760518848896,
0.06230900436639786,
-0.05194453150033951,
0.030126620084047318,
0.01052060816437006,
0.016579139977693558,
-0.0031056704465299845,
-0.02140570618212223,
0.03236338496208191,
-0.014408702030777931,
-0.020496847108006477,
0.021621203050017357,
-0.03722376748919487,
0.04999411851167679,
0.023735063150525093,
0.032593388110399246,
0.00671562273055315,
-0.004922898486256599,
-0.030274776741862297,
0.034523751586675644,
-0.018785903230309486,
-0.04877125844359398,
0.009401125833392143,
-0.05482413247227669,
-0.02856823243200779,
-0.052366383373737335,
-0.020399414002895355,
0.004342986270785332,
-0.02507089450955391,
0.006284349597990513,
0.00044804177014157176,
-0.007353940978646278,
-0.004745057784020901,
0.06482154875993729,
0.011990618892014027,
-0.01005147397518158,
-0.06254324316978455,
0.018994165584445,
0.03667948767542839,
0.0068349093198776245,
0.015963111072778702,
0.017279013991355896,
0.016976207494735718,
0.0372496023774147,
0.05275614187121391,
0.009592132642865181,
0.021717164665460587,
0.04965437203645706,
-0.03847651928663254,
-0.029671799391508102,
-0.00962176825851202,
-0.003664429532364011,
0.008346842601895332,
0.002364689251407981,
0.035723209381103516,
0.017415212467312813,
-0.02981630526483059,
0.02294037491083145,
-0.0464579313993454,
-0.0027470604982227087,
0.04001682624220848,
-0.0008684481144882739,
-0.01981361210346222,
0.05067838355898857,
0.02825765684247017,
-0.011952213011682034,
-0.021718183532357216,
-0.007304700091481209,
0.04935882240533829,
0.00025611164164729416,
0.05950097739696503,
0.036383505910634995,
-0.010968669317662716,
-0.011996555142104626,
0.032757923007011414,
-0.047019969671964645,
-0.006677752360701561,
0.02394278533756733,
-0.005603670608252287,
0.030888011679053307,
-0.003913680091500282,
-0.02563077211380005,
0.011286619119346142,
0.03389584645628929,
0.01415954064577818,
-0.004872344434261322,
-0.029229290783405304,
0.03142985329031944,
0.002942326245829463,
0.011240082792937756,
0.004550086334347725,
0.05788835510611534,
-0.01951936073601246,
0.05810057371854782,
0.03391934186220169,
0.04160529002547264,
0.05829673632979393,
-0.026744544506072998,
-0.04244454205036163,
0.03781548887491226,
0.03623925894498825,
-0.015668043866753578,
0.03519922494888306,
0.00005457844235934317,
-0.002670763758942485,
-0.030726486817002296,
-0.016218973323702812,
0.032124634832143784,
-0.038412824273109436,
0.02114677056670189,
0.03845648095011711,
-0.016086045652627945,
0.027620406821370125,
-0.014904131181538105,
0.04087004438042641,
0.016553519293665886,
0.007926281541585922,
-0.017902592197060585,
0.008138787932693958,
0.024654461070895195,
0.048102665692567825,
0.023843582719564438,
0.049474459141492844,
-0.04614773765206337,
0.03680387884378433,
0.05896136909723282,
0.0212649405002594,
0.044034410268068314,
-0.019288862124085426,
-0.004524321295320988,
0.01239634957164526,
-0.03162437677383423,
0.008714704774320126,
0.005504434462636709,
-0.005712499376386404,
-0.005585259757936001,
0.011871756985783577,
-0.04454899579286575,
-0.03184128552675247,
0.0011739896144717932,
-0.003771225456148386,
0.008880377747118473,
0.005015220958739519,
-0.03838834539055824,
0.0012900173896923661,
0.03296162933111191,
-0.016223503276705742,
-0.08815951645374298,
-0.0019266182789579034,
-0.012317550368607044,
0.015334848314523697,
-0.01944873295724392,
-0.005668224301189184,
-0.0020929058082401752,
0.021016687154769897,
-0.001886269892565906,
-0.005046000704169273,
-0.009123031981289387,
0.026253584772348404,
0.0007335336995311081,
0.01517287828028202,
0.025371208786964417,
-0.054864782840013504,
0.010297025553882122,
0.007532313000410795,
0.012203147634863853,
0.004606609232723713,
0.05220756307244301,
-0.018513906747102737,
-0.007601525168865919,
-0.0025964295491576195,
-0.047517500817775726,
-0.00930751021951437,
-0.030738292261958122,
0.025235531851649284,
0.02133711241185665,
0.04592481628060341,
-0.032225366681814194,
0.002833106555044651,
-0.01843336783349514,
-0.026196718215942383,
-0.015141448937356472,
-0.009999704547226429,
0.02794681116938591,
-0.0300050750374794,
0.0141080841422081,
-0.006907030940055847,
-0.03834697976708412,
-0.022944213822484016,
0.02219627983868122,
0.02675298973917961,
0.02067202888429165,
-0.02112416736781597,
-0.05594322085380554,
0.03449351713061333,
0.013237293809652328,
0.0071814656257629395,
0.026800325140357018,
-0.010973026975989342,
-0.007433227263391018,
-0.02959844097495079,
0.043597400188446045,
-0.03648265451192856,
0.012575866654515266,
0.015926726162433624,
-0.024611342698335648,
-0.01999516785144806,
-0.016034085303544998,
-0.006152310874313116,
0.013289821334183216,
-0.03693418949842453,
0.03129180893301964,
-0.016012191772460938,
-0.002139223972335458,
-0.002233880339190364,
-0.039330340921878815,
0.02099592611193657,
-0.027453826740384102,
0.020639153197407722,
0.03756864741444588,
-0.010652909055352211,
-0.001280963304452598,
0.03214752674102783,
0.009146830067038536,
0.031174777075648308,
-0.006938290316611528,
-0.007799201179295778,
-0.03369002416729927,
0.001274195034056902,
-0.022438785061240196,
-0.010344062000513077,
0.021076608449220657,
0.04548005759716034,
-0.02350897341966629,
-0.008957406505942345,
0.051435649394989014,
0.003061150899156928,
-0.009378130547702312,
0.019488247111439705,
0.016849415376782417,
-0.02544841170310974,
0.0443287156522274,
0.030629906803369522,
-0.023836631327867508,
-0.04276596009731293,
0.010058656334877014,
0.03373124450445175,
0.052796054631471634,
0.06671442091464996,
0.020610956475138664,
0.00746244378387928,
-0.05230654776096344,
0.005169577430933714,
-0.004450671840459108,
-0.0069064004346728325,
-0.02765001356601715,
0.011184398084878922,
0.042191728949546814,
-0.016441961750388145,
0.007057587616145611,
0.044677428901195526,
0.024816958233714104,
-0.02327098324894905,
-0.0012885808246210217,
-0.009961098432540894,
-0.013608533889055252,
-0.035320814698934555,
0.001837915857322514,
-0.001116198836825788,
0.03196539729833603,
0.011591406539082527,
0.03580983355641365,
-0.0040938095189630985,
0.01730242557823658
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | More scripts As each ported group of models has its own nuances, I made dedicated scripts to each one of them, so that it will be easy to re-build things in the future or to create new scripts to convert new models. You will find all the conversion, evaluation, and other scripts [here](https://github.com/huggingface/transformers/blob/129fdae04033fe4adfe013b734deaec6ec34ae2e/scripts/fsmt/). | [
0.027263524010777473,
0.012547065503895283,
0.026422401890158653,
-0.036899738013744354,
0.06506422907114029,
0.04626806825399399,
0.032971467822790146,
0.01857803575694561,
-0.0184592567384243,
-0.06724626570940018,
-0.09371021389961243,
0.07647495716810226,
-0.02626030147075653,
0.012889165431261063,
0.012278597801923752,
-0.023878097534179688,
0.0027771079912781715,
-0.011789019219577312,
-0.02936183102428913,
0.026154113933444023,
0.03791307657957077,
-0.09342959523200989,
0.03151490539312363,
0.007963732816278934,
-0.03338528797030449,
-0.051010943949222565,
0.02065468579530716,
0.012343763373792171,
-0.04410182684659958,
0.06097932159900665,
-0.11954882740974426,
-0.018599828705191612,
-0.07065703719854355,
-0.004732639528810978,
-0.029228130355477333,
0.0007003435166552663,
-0.10999056696891785,
0.028298648074269295,
-0.003690023673698306,
-0.02184046246111393,
0.0027620624750852585,
-0.017605960369110107,
-0.04237199202179909,
0.010523688979446888,
0.027423707768321037,
0.014114071615040302,
-0.21124668419361115,
0.04508974775671959,
-0.023152360692620277,
-0.055056434124708176,
-0.03342235088348389,
0.05226695537567139,
-0.029055902734398842,
0.0005981803988106549,
0.031199248507618904,
-0.012637774460017681,
0.0158854927867651,
-0.03132058307528496,
0.00801385473459959,
0.013376522809267044,
0.03450221195816994,
0.003220159327611327,
0.047076769173145294,
0.10257194936275482,
0.07472100853919983,
0.010176685638725758,
-0.0416569784283638,
0.016489025205373764,
-0.04320943355560303,
-0.043128326535224915,
0.020628612488508224,
-0.01307081338018179,
0.0025991343427449465,
-0.024102425202727318,
0.04041743278503418,
-0.021962083876132965,
-0.015585275366902351,
0.00851158145815134,
0.05842476710677147,
0.034930720925331116,
0.023870714008808136,
-0.023526400327682495,
0.03812836483120918,
0.06573290377855301,
-0.0014768546679988503,
-0.007457208354026079,
0.07752550393342972,
-0.032307542860507965,
-0.049650032073259354,
0.07255513221025467,
0.013797840103507042,
-0.11544689536094666,
-0.039463646709918976,
0.0333118699491024,
0.08373858779668808,
-0.023089362308382988,
0.01011442206799984,
0.022109035402536392,
0.031030911952257156,
0.015577595680952072,
0.0010723592713475227,
-0.012224539183080196,
-0.005134588573127985,
-0.05038062483072281,
-0.009415093809366226,
-0.04747706279158592,
-0.008856236934661865,
-0.09617948532104492,
-0.015914395451545715,
0.009057607501745224,
0.007197740022093058,
-0.05740838125348091,
0.03960423916578293,
0.05930112302303314,
-0.013933099806308746,
0.018779251724481583,
-0.0026456061750650406,
-0.051370684057474136,
-0.026176458224654198,
0.026067649945616722,
0.04972304776310921,
0.059030476957559586,
0.024703994393348694,
0.00433318829163909,
0.04415157437324524,
0.08160114288330078,
0.04439277946949005,
0.02387995645403862,
-0.025057177990674973,
-0.05493808165192604,
0.029857415705919266,
-0.01715313084423542,
0.06192967668175697,
0.020660188049077988,
0.015486203134059906,
-0.12521716952323914,
-0.025613835081458092,
-0.047445300966501236,
0.017345763742923737,
0.010711785405874252,
-0.010842896066606045,
0.0784464031457901,
-0.020257050171494484,
0.03730788081884384,
0.02158566378057003,
-0.0370531789958477,
-0.10186413675546646,
0.0694848895072937,
-0.05117318034172058,
0.07472624629735947,
-0.07125462591648102,
0.036343201994895935,
-0.024320388212800026,
-0.02378891222178936,
-0.0027399538084864616,
0.0837058275938034,
-0.02728068083524704,
-0.04499111697077751,
-0.05550428852438927,
-0.02543683536350727,
-0.012834656052291393,
-0.010283921845257282,
-0.035762686282396317,
-0.0005138518172316253,
0.014236127026379108,
-0.043734919279813766,
-0.024073485285043716,
0.03194502741098404,
0.010360711254179478,
-0.020138274878263474,
0.03959345072507858,
-0.058885060250759125,
0.0527973398566246,
-0.029948744922876358,
-0.004815876483917236,
0.04063066840171814,
0.08329792320728302,
0.0665016770362854,
0.03503205627202988,
-0.004625590052455664,
-0.041217803955078125,
0.036739543080329895,
-0.01240525022149086,
0.04718298837542534,
0.03837432339787483,
-0.06809493899345398,
0.00039201165782287717,
-0.011111797764897346,
-0.03302431479096413,
0.04510458931326866,
-0.05680068954825401,
-0.013628487475216389,
0.0894501656293869,
0.014455068856477737,
0.0299490038305521,
-0.05066327378153801,
-0.03962460160255432,
0.1513603925704956,
0.06590632349252701,
0.06312360614538193,
0.020188627764582634,
0.027681661769747734,
-0.001608624355867505,
-0.01982082612812519,
-0.004007513169199228,
0.05064207687973976,
0.042908620089292526,
-0.03488650172948837,
0.017437294125556946,
0.0007226938614621758,
0.02751428633928299,
-0.08880326896905899,
0.023562248796224594,
-0.06557048112154007,
0.04189247637987137,
-0.08721083402633667,
-0.08347809314727783,
-0.020262347534298897,
-0.01087032537907362,
-0.05836322903633118,
0.14157478511333466,
-0.024618273600935936,
-0.03109983168542385,
-0.0370950773358345,
-0.03576699271798134,
0.05749409645795822,
0.053449343889951706,
0.07089761644601822,
0.0721498653292656,
-0.06683070957660675,
0.02087351866066456,
-0.04321576654911041,
-0.024603160098195076,
0.03803287073969841,
0.009956644847989082,
-0.034495286643505096,
0.0389120951294899,
-0.013988737016916275,
-0.03935614228248596,
-0.04467565938830376,
-0.00781335774809122,
0.010170679539442062,
0.058143701404333115,
0.024191666394472122,
0.013790764845907688,
0.0007392942206934094,
0.03660073131322861,
0.04558957740664482,
-0.011143605224788189,
-0.01542404294013977,
-0.06401662528514862,
0.07600023597478867,
0.009745972231030464,
-0.05044640973210335,
0.032148364931344986,
0.009889276698231697,
0.008933774195611477,
0.000929186528082937,
-0.05904420465230942,
0.06828022748231888,
0.009376118890941143,
0.0011522697750478983,
-0.06295443326234818,
-0.03537670150399208,
-0.019031841307878494,
-0.06960473209619522,
-0.00873467419296503,
0.009608612395823002,
-0.01267235353589058,
0.03036937303841114,
0.0030752012971788645,
-0.008321277797222137,
-0.006914882455021143,
0.00293828547000885,
0.019306393340229988,
0.020983189344406128,
0.065064936876297,
-0.012599242851138115,
-0.033455993980169296,
-0.007162392605096102,
0.007571169640868902,
-0.04549916833639145,
0.01666850596666336,
0.04804566875100136,
0.001818559831008315,
-0.00852157548069954,
-0.006991236936300993,
-0.0056910282000899315,
-0.03763454034924507,
0.027365395799279213,
0.009889976121485233,
0.03260548785328865,
-0.01958906464278698,
-0.042518120259046555,
-0.03448264300823212,
-0.0023604808375239372,
0.0027474495582282543,
-0.011935826390981674,
-0.02189568243920803,
0.052548810839653015,
-0.0031360627617686987,
0.03271561861038208,
-0.018147798255085945,
-0.0025880017783492804,
-0.015920933336019516,
0.053801313042640686,
0.0015627422835677862,
0.011816466227173805,
-0.11151199787855148,
-0.00680560152977705,
-0.02986964024603367,
0.05907071754336357,
-0.0014245151542127132,
-0.022704031318426132,
0.01479498203843832,
-0.037699535489082336,
0.016972418874502182,
0.03481744974851608,
0.020556556060910225,
-0.010248113423585892,
0.059931326657533646,
-0.0029046263080090284,
-0.027318086475133896,
0.00390334939584136,
-0.028940148651599884,
0.023784440010786057,
0.026030173525214195,
0.013158399611711502,
-0.009101010859012604,
0.0022733465302735567,
-0.0069740209728479385,
-0.021975025534629822,
0.0032616942189633846,
-0.00033061247086152434,
0.06948904693126678,
0.028016693890094757,
0.023224463686347008,
-0.05731188505887985,
-0.007729513105005026,
0.025271225720643997,
-0.02683515101671219,
0.00043679948430508375,
-0.016815518960356712,
-0.02225424535572529,
-0.020510884001851082,
0.03099019266664982,
0.010943416506052017,
0.02069525234401226,
0.044984206557273865,
0.0133048165589571,
0.0069552273489534855,
0.018992535769939423,
0.0054410360753536224,
-0.009554729796946049,
0.008453570306301117,
0.04134277626872063,
-0.0032811197452247143,
0.009412174113094807,
-0.0009565747459419072,
-0.020118221640586853,
0.00043965427903458476,
0.036359772086143494,
0.01500201877206564,
0.02066429890692234,
0.011964647099375725,
0.02982018142938614,
0.0319487638771534,
-0.029835795983672142,
-0.042990706861019135,
0.015032581053674221,
-0.025721000507473946,
-0.03118373267352581,
-0.04523659870028496,
0.06883316487073898,
-0.010745351202785969,
0.03204086795449257,
-0.007661776151508093,
0.04059186577796936,
-0.02391446754336357,
0.02634032815694809,
0.017694268375635147,
0.008382463827729225,
-0.05692588537931442,
0.010347445495426655,
-0.053646039217710495,
-0.03848882392048836,
0.05301648750901222,
0.01121536549180746,
-0.008430061861872673,
-0.014999233186244965,
-0.02209707535803318,
0.010214092209935188,
0.0030747889541089535,
0.02316904067993164,
0.03537408635020256,
0.0036505935713648796,
0.01845634914934635,
0.03473936766386032,
0.03197639063000679,
-0.013689477927982807,
0.045656196773052216,
-0.018381915986537933,
-0.005174425896257162,
0.016849452629685402,
0.015750505030155182,
0.002271810779348016,
-0.0027628818061202765,
0.028216643258929253,
0.03406008332967758,
-0.06620150059461594,
0.005803081672638655,
0.018392758443951607,
-0.006711594294756651,
0.013933406211435795,
-0.022754713892936707,
-0.031196292489767075,
0.016346914693713188,
0.006030984688550234,
-0.0035481026861816645,
0.003218109719455242,
-0.00048490209155716,
-0.025267567485570908,
0.028908642008900642,
0.036853838711977005,
-0.012435018084943295,
-0.004919502884149551,
-0.045343853533267975,
0.0020108427852392197,
-0.01309502124786377,
0.03311479836702347,
-0.014279753901064396,
0.006157794035971165,
0.02577827498316765,
0.0094711072742939,
0.020337585359811783,
0.04132748022675514,
0.008318180218338966,
0.03469181805849075,
0.003089348552748561,
-0.0015464139869436622,
0.02698567695915699,
0.040958307683467865,
0.005968824494630098,
0.04225888103246689,
-0.02558344602584839,
-0.0042448146268725395,
0.004902204964309931,
-0.05800324305891991,
-0.01154204923659563,
0.0021019906271249056,
0.0061669908463954926,
-0.009178856387734413,
0.012925537303090096,
0.014443048276007175,
-0.02942573092877865,
0.0037247107829898596,
-0.042088598012924194,
0.05645473301410675,
0.023527754470705986,
-0.014942040666937828,
-0.07032368332147598,
-0.00004592208279063925,
0.01144100446254015,
-0.0015699121868237853,
-0.02682597190141678,
-0.008417597971856594,
-0.006474383641034365,
0.04966917634010315,
-0.025512149557471275,
0.036555252969264984,
-0.043638672679662704,
0.02554894983768463,
-0.002660489408299327,
0.024170085787773132,
-0.018343769013881683,
-0.08558710664510727,
-0.011707422323524952,
0.020530832931399345,
-0.028350163251161575,
-0.026510266587138176,
0.007984130643308163,
-0.023422634229063988,
0.009064250625669956,
0.08304701745510101,
0.033759601414203644,
0.02501361258327961,
0.013642175123095512,
-0.012720804661512375,
-0.03090866468846798,
0.01143734809011221,
0.019817963242530823,
-0.020532719790935516,
0.003360695205628872,
0.04039021208882332,
0.024693116545677185,
0.05536084622144699,
-0.0012312080943956971,
0.0395495630800724,
0.0050094351172447205,
0.007931295782327652,
0.022506188601255417,
-0.006461357697844505,
-0.008881895802915096,
-0.012340215034782887,
0.044783201068639755,
-0.001116595696657896,
-0.02575935609638691,
-0.00027330988086760044,
0.03992057591676712,
0.04348389431834221,
-0.034549009054899216,
-0.049604400992393494,
0.03984227031469345,
0.007688453420996666,
-0.03249906748533249,
-0.03401656076312065,
0.0421573631465435,
-0.03283720836043358,
0.006769314408302307,
0.019712677225470543,
-0.03484737128019333,
-0.022971978411078453,
0.019276995211839676,
-0.0478026419878006,
-0.026766857132315636,
-0.006016280967742205,
0.022964300587773323,
0.024705123156309128,
-0.03617069497704506,
-0.006690898910164833,
-0.046792805194854736,
0.021411970257759094,
0.02169160544872284,
-0.03427371010184288,
-0.011569430120289326,
-0.024021096527576447,
0.007547192275524139,
-0.012237489223480225,
0.03314313665032387,
0.010891564190387726,
-0.03046228177845478,
0.009949387051165104,
0.019905297085642815,
0.01847461424767971,
-0.08135652542114258,
0.012529924511909485,
0.03267522528767586,
-0.029169665649533272,
0.014603693969547749,
-0.010020476765930653,
-0.047772884368896484,
-0.004140076693147421,
-0.05275135487318039,
0.018060114234685898,
0.06377416104078293,
0.011396532878279686,
0.004106556531041861,
0.041216567158699036,
0.03261607140302658,
0.016479473561048508,
-0.0030443486757576466,
0.010739785619080067,
-0.006121938116848469,
0.003825819119811058,
0.012165003456175327,
0.05833474546670914,
0.0006188057595863938,
-0.024065539240837097,
0.0314921997487545,
-0.014004799537360668,
-0.024086114019155502,
-0.003007458755746484,
-0.03693821653723717,
0.0406789630651474,
-0.015088471584022045,
-0.04119203984737396,
0.01460268720984459,
0.02667298913002014,
0.012758396565914154,
0.06989534944295883,
0.024374889209866524,
0.02279934287071228,
-0.0005987164913676679,
-0.04914465546607971,
0.01732412725687027,
0.035060010850429535,
0.03663317486643791,
0.006293367128819227,
0.021052327007055283,
0.030042152851819992,
0.04338176175951958,
0.015444513410329819,
0.05978584662079811,
-0.012946139089763165,
0.08893319964408875,
-0.01930149272084236,
0.02696760930120945,
0.047078341245651245,
-0.01441980805248022,
-0.02612927183508873,
-0.04793741926550865,
-0.03700363636016846,
-0.03615644946694374,
-0.0015644815284758806,
0.021810144186019897,
-0.0019695907831192017,
0.0023566505406051874,
-0.03820600360631943,
0.0408746562898159,
0.013860720209777355,
0.03362776339054108,
-0.0015725159319117665,
0.0239027738571167,
0.008655592799186707,
-0.005824017338454723,
-0.015873605385422707,
0.025313161313533783,
0.026808423921465874,
-0.021622352302074432,
0.0504421703517437,
-0.013405045494437218,
0.005725611001253128,
0.010245156474411488,
0.014015588909387589,
0.034247808158397675,
-0.02659684419631958,
0.0061383056454360485,
-0.018076138570904732,
-0.010236375033855438,
-0.028128646314144135,
-0.019229060038924217,
-0.022502347826957703,
-0.03810694441199303,
-0.002689794171601534,
0.002392415888607502,
0.00004522411109064706,
-0.04860860854387283,
-0.014934479258954525,
-0.023743823170661926,
0.03618376702070236,
-0.009971223771572113,
-0.01905055344104767,
-0.008180875331163406,
0.006097074132412672,
0.024357810616493225,
0.016848014667630196,
-0.014221856370568275,
0.005393526051193476,
-0.03596236929297447,
-0.004147427622228861,
0.02966291457414627,
0.044266097247600555,
-0.01349271647632122,
-0.018542150035500526,
-0.0006274090264923871,
0.025984426960349083,
0.0130399065092206,
0.037483952939510345,
0.006856297608464956,
0.012853637337684631,
-0.05564316362142563,
0.009470419958233833,
-0.001121800160035491,
-0.025098342448472977,
-0.01228685025125742,
-0.06042672321200371,
-0.005857554264366627,
-0.01114219892770052,
0.01475454494357109,
0.011038071475923061,
0.019153574481606483,
-0.04198528826236725,
-0.019464513286948204,
-0.0072321100160479546,
-0.03761054947972298,
-0.013818148523569107,
0.04854898154735565,
-0.002508541801944375,
-0.008153751492500305,
0.024866359308362007,
-0.013954125344753265,
0.0022021520417183638,
-0.029844855889678,
-0.008746680803596973,
0.011372257955372334,
0.014210335910320282,
-0.04422501102089882,
0.016471320763230324,
0.08303363621234894,
0.03340505436062813,
0.030165042728185654,
0.013851569965481758,
0.03183193877339363,
0.00560795096680522,
-0.052057377994060516,
0.005153450649231672,
0.01503329910337925,
0.010490555316209793,
-0.03841564059257507,
-0.03932856395840645,
-0.020429207012057304,
-0.008967237547039986,
-0.0036575603298842907,
-0.010194637812674046,
-0.05481654405593872,
-0.01677083596587181,
-0.012421908788383007,
-0.03336777538061142,
-0.019353777170181274,
0.04059327021241188,
0.058006349951028824,
0.03535185381770134,
-0.015644779428839684,
-0.0059534101746976376,
-0.029229752719402313,
0.027968937531113625,
-0.02121523767709732,
0.029797475785017014,
0.044248923659324646,
0.03587344288825989,
-0.012008429504930973,
-0.007264875341206789,
0.021142233163118362,
-0.006043991539627314,
-0.05376525968313217,
-0.012003195472061634,
0.029150579124689102,
-0.01969415321946144,
-0.011801580898463726,
0.004646276589483023,
-0.00002027666960202623,
0.011323191225528717,
0.043105632066726685,
0.008887811563909054,
0.007895064540207386,
-0.028098082169890404,
0.0204448401927948,
-0.05318490415811539,
0.012746398337185383,
-0.010185778141021729,
0.013904397375881672,
0.004642770159989595,
0.02659093402326107,
0.020566757768392563,
-0.00931813009083271,
-0.053865980356931686,
0.045481760054826736,
-0.021284781396389008,
-0.005733355414122343,
-0.005851703695952892,
-0.023531604558229446,
0.03685856983065605,
-0.008441568352282047,
-0.08224043250083923,
0.0329083688557148,
0.0007149023585952818,
-0.034686289727687836,
0.00906459242105484,
0.01947934366762638,
0.010126776061952114,
-0.04707539081573486,
0.016660865396261215,
-0.045675769448280334,
0.003963473718613386,
0.02328287810087204,
-0.012464276514947414,
-0.027118677273392677,
-0.002487229648977518
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Autoprint all in Jupyter Notebook My jupyter notebook is configured to automatically print all expressions, so I don't have to explicitlyprint()them. The default behavior is to print only the last expression of each cell. So if you read the outputs in my notebooks they may not the be same as if you were to run them yourself, unless you have the same setup. You can enable the print-all feature in your jupyter notebook setup by adding the following to~/.ipython/profile_default/ipython_config.py(create it if you don't have one): ``` c = get_config() # Run all nodes interactively c.InteractiveShell.ast_node_interactivity = "all" # restore to the original behavior # c.InteractiveShell.ast_node_interactivity = "last_expr" ``` and restarting your jupyter notebook server. | [
0.002513064304366708,
0.08254494518041611,
0.04995647445321083,
-0.01911693438887596,
0.06270842254161835,
-0.024814344942569733,
-0.009262721985578537,
-0.012753954157233238,
-0.03273796662688255,
-0.008434155955910683,
-0.09871380031108856,
-0.0029180755373090506,
0.0008823216776363552,
0.055832330137491226,
0.012309725396335125,
0.0326601080596447,
-0.006560516078025103,
0.010850482620298862,
0.06557771563529968,
0.05498286709189415,
0.056820098310709,
-0.0032308471854776144,
0.04249102249741554,
0.03351661562919617,
0.00992798712104559,
-0.07327557355165482,
0.0018994372803717852,
0.027302125468850136,
-0.09713684767484665,
-0.03157602995634079,
-0.1140209287405014,
0.02128242887556553,
0.0478309728205204,
0.061389680951833725,
-0.008242141455411911,
-0.043222688138484955,
-0.08152534067630768,
0.060505159199237823,
0.05024169757962227,
-0.028698960319161415,
0.023992391303181648,
-0.08488331735134125,
-0.01217642892152071,
-0.003089773701503873,
-0.02389271929860115,
-0.005812481511384249,
-0.1866178810596466,
0.08979592472314835,
0.0038357486482709646,
0.04172991216182709,
-0.04971593990921974,
0.058907780796289444,
-0.021761411800980568,
-0.007154420483857393,
-0.07025033980607986,
-0.026619505137205124,
0.0491582415997982,
0.004571541212499142,
0.024745788425207138,
0.002047081245109439,
0.025751959532499313,
-0.032983776181936264,
0.007277118973433971,
0.10112838447093964,
0.02872384898364544,
-0.009529751725494862,
0.005767911206930876,
0.02501942403614521,
-0.06596869975328445,
-0.019053054973483086,
-0.08565650880336761,
-0.0516979917883873,
0.004653959535062313,
-0.019432689994573593,
0.08185893297195435,
-0.05575062707066536,
-0.026831990107893944,
-0.02074398472905159,
-0.02946893870830536,
0.0457669198513031,
0.03068174049258232,
0.02159309946000576,
0.009321663528680801,
0.053407661616802216,
0.06677762418985367,
-0.028931815177202225,
-0.04104498773813248,
-0.0016619834350422025,
-0.0005440296372398734,
0.023656336590647697,
0.027005651965737343,
-0.14069834351539612,
-0.02992766723036766,
0.0195197444409132,
-0.030772916972637177,
-0.03938601538538933,
0.01471778191626072,
0.009432719089090824,
-0.025783566758036613,
-0.005122673697769642,
0.0013459788169711828,
-0.07062014192342758,
0.04005245864391327,
-0.05780208110809326,
-0.1298183649778366,
0.03407638892531395,
-0.06858715415000916,
-0.025975249707698822,
-0.012901607900857925,
0.01254788413643837,
-0.04948471486568451,
0.013009644113481045,
-0.018804868683218956,
0.04441000148653984,
-0.09490615874528885,
0.09874383360147476,
0.022986670956015587,
0.029321197420358658,
-0.03891599550843239,
-0.08516691625118256,
0.0030977807473391294,
0.05047360435128212,
0.12804481387138367,
0.019183604046702385,
0.028265278786420822,
0.017003139480948448,
-0.0255736093968153,
-0.00017020470113493502,
0.04632501304149628,
-0.04114442691206932,
0.0501670204102993,
0.0582767054438591,
0.06955581158399582,
-0.005088111851364374,
-0.014793261885643005,
-0.07257554680109024,
0.020823094993829727,
-0.03352605924010277,
0.07557385414838791,
0.02607841230928898,
-0.061037577688694,
0.06411300599575043,
0.02065255679190159,
0.06379315257072449,
-0.016711808741092682,
-0.0009907784406095743,
-0.03604721650481224,
0.020402828231453896,
-0.041741739958524704,
0.025355728343129158,
-0.05985105782747269,
-0.015172322280704975,
0.004619263578206301,
-0.08182055503129959,
0.015390891581773758,
-0.006047483999282122,
0.009381163865327835,
0.020867783576250076,
-0.09942883253097534,
-0.006656324025243521,
0.058792274445295334,
0.021193187683820724,
0.04636279493570328,
0.0041772183030843735,
-0.002553235739469528,
0.0077180624939501286,
0.05602633208036423,
0.004363246262073517,
0.10539622604846954,
-0.02351907640695572,
-0.0035475711338222027,
-0.07014968246221542,
0.053833138197660446,
-0.056931305676698685,
0.04169212281703949,
-0.0032071599271148443,
0.018122512847185135,
-0.007301404140889645,
0.03788955882191658,
0.009305230341851711,
-0.019348789006471634,
0.03186239302158356,
-0.10069756209850311,
0.038535017520189285,
0.018738722428679466,
-0.03659139946103096,
-0.011671700514853,
-0.01828947104513645,
0.08327337354421616,
0.008687697350978851,
-0.039912935346364975,
-0.00932252872735262,
0.0815073549747467,
-0.007970292121171951,
0.03898324817419052,
-0.042984072118997574,
-0.04836582392454147,
0.08792231231927872,
0.039180271327495575,
0.009685702621936798,
-0.012584737502038479,
0.0219133123755455,
0.027278080582618713,
0.010636700317263603,
0.0366801917552948,
0.038078200072050095,
0.005507170222699642,
-0.06005193665623665,
0.06738822162151337,
-0.00823739543557167,
-0.05665106326341629,
-0.02852235734462738,
0.01576554961502552,
-0.03783867135643959,
-0.03954365476965904,
-0.04199543967843056,
0.012007149867713451,
0.02114800736308098,
0.017372330650687218,
0.016526345163583755,
0.1346009224653244,
-0.01598469726741314,
0.06272919476032257,
0.013907569460570812,
-0.07798769325017929,
0.029809249565005302,
0.04373222962021828,
0.06047441437840462,
-0.012778274714946747,
0.0012494957773014903,
-0.08108679205179214,
-0.0821160301566124,
0.0068656266666948795,
0.052582915872335434,
-0.019662445411086082,
-0.04102255776524544,
-0.016451522707939148,
-0.0018192223506048322,
0.017676113173365593,
-0.06039317324757576,
0.06411807239055634,
0.017126141116023064,
0.017734389752149582,
0.030469175428152084,
-0.010622174479067326,
0.022016195580363274,
0.06275829672813416,
0.048464372754096985,
-0.08906853199005127,
-0.0037788550835102797,
0.007366088218986988,
-0.005575728602707386,
-0.029302529990673065,
-0.03667258471250534,
0.03272795304656029,
0.06931749731302261,
-0.00026648127823136747,
0.006285016890615225,
0.003742275992408395,
0.03814316540956497,
-0.04797317832708359,
-0.022361449897289276,
0.0038938780780881643,
-0.050474923104047775,
-0.04079534113407135,
0.0008102805586531758,
0.022098209708929062,
-0.01757964678108692,
-0.003982055466622114,
0.03892825171351433,
0.02873401902616024,
-0.03003806434571743,
0.009981540963053703,
0.007744982838630676,
0.014626678079366684,
-0.007122147362679243,
0.014535639435052872,
-0.034268639981746674,
-0.004079824313521385,
0.017070956528186798,
0.033553529530763626,
-0.031169891357421875,
-0.01453941036015749,
0.03442801535129547,
0.005797583609819412,
0.013458251021802425,
0.028665926307439804,
-0.0031277078669518232,
-0.0021520189475268126,
0.02052478678524494,
0.002538136439397931,
0.05810196325182915,
0.028532667085528374,
0.0016884790966287255,
0.00876674149185419,
0.021534575149416924,
-0.02720577083528042,
-0.012608672492206097,
0.013967819511890411,
0.018788939341902733,
-0.004115242976695299,
-0.0022900993935763836,
0.012029193341732025,
-0.008368191309273243,
-0.042265575379133224,
0.035581111907958984,
0.0072779874317348,
0.006572728976607323,
-0.11111411452293396,
-0.03244183585047722,
0.03638818487524986,
0.015195460990071297,
0.0065020602196455,
-0.014770399779081345,
0.022214679047465324,
-0.015451795421540737,
0.0030450548510998487,
-0.03045646846294403,
-0.00004172565968474373,
0.005405918229371309,
-0.012800796888768673,
0.025035522878170013,
-0.009963504038751125,
-0.0013175824424251914,
-0.0013230940094217658,
-0.004131993744522333,
0.03280796855688095,
0.05172627046704292,
0.027385437861084938,
0.0630570650100708,
-0.021848272532224655,
-0.025806834921240807,
-0.004054726101458073,
0.017439864575862885,
0.011074716225266457,
0.0118587426841259,
0.03903146833181381,
-0.005578872747719288,
0.015145686455070972,
-0.038668159395456314,
-0.023183029145002365,
-0.019071927294135094,
-0.0638408362865448,
-0.03535839915275574,
0.0015966743230819702,
0.009420434944331646,
-0.008782299235463142,
0.01970812678337097,
-0.006900607608258724,
0.030935192480683327,
0.003790292190387845,
-0.014055686071515083,
-0.007815560325980186,
0.014439295046031475,
-0.019591640681028366,
0.026532376185059547,
0.028744308277964592,
-0.02972571738064289,
-0.005804002750664949,
-0.012398486025631428,
0.02316291816532612,
0.004080161452293396,
0.0021829630713909864,
-0.0063537838868796825,
0.015391693450510502,
0.004014792386442423,
-0.004584077745676041,
-0.03006495162844658,
-0.027300776913762093,
-0.00023036438506096601,
-0.024211734533309937,
-0.014493012800812721,
-0.025008929893374443,
0.0605224184691906,
-0.020487895235419273,
0.03487071394920349,
0.033387113362550735,
0.03724928945302963,
-0.04141322150826454,
0.0058287763968110085,
0.012354985810816288,
0.009001927450299263,
0.003867910010740161,
0.004531932063400745,
-0.026210308074951172,
-0.02369428612291813,
0.0456138513982296,
0.02344878576695919,
-0.041109368205070496,
-0.03469949588179588,
0.00019941746722906828,
-0.021145133301615715,
-0.021108895540237427,
-0.0053190067410469055,
-0.020072991028428078,
-0.013590228743851185,
0.007246821653097868,
0.0316360704600811,
-0.02316737174987793,
-0.045136112719774246,
0.03944284841418266,
-0.015802999958395958,
0.0026797372847795486,
0.027841834351420403,
0.0026663450989872217,
-0.012387269176542759,
0.03006535768508911,
-0.0023608210030943155,
0.006909943651407957,
-0.04060043767094612,
-0.014638266526162624,
0.012410151772201061,
-0.0008592169033363461,
0.04789111390709877,
-0.0654984563589096,
-0.014809678308665752,
-0.04026224464178085,
-0.0008940771222114563,
0.026869259774684906,
0.007405195385217667,
0.043792471289634705,
-0.03182312846183777,
0.04292621463537216,
0.05066154897212982,
0.03217386454343796,
-0.03045642375946045,
-0.06038297340273857,
0.042760733515024185,
-0.046621233224868774,
0.019622504711151123,
-0.016828486695885658,
-0.014372635632753372,
-0.012734312564134598,
-0.016460679471492767,
0.008404591120779514,
0.002477179514244199,
-0.031847547739744186,
-0.034150347113609314,
-0.026489846408367157,
-0.030162611976265907,
0.002314275596290827,
-0.03125201165676117,
-0.005982613656669855,
0.025611381977796555,
-0.004205947741866112,
0.026410816237330437,
0.02711196057498455,
-0.04711860045790672,
-0.03110223449766636,
0.01867753639817238,
0.023931819945573807,
-0.01112477108836174,
0.029946820810437202,
-0.008480255492031574,
-0.05762716382741928,
0.01288175955414772,
-0.05282388627529144,
0.009724599309265614,
0.07336948066949844,
0.038039639592170715,
-0.022600406780838966,
0.005397319793701172,
-0.01825224980711937,
-0.010522634722292423,
-0.006005947478115559,
0.012530729174613953,
0.034638404846191406,
0.06923630088567734,
-0.01890813186764717,
-0.0003981830959673971,
0.022444622591137886,
0.014026721008121967,
-0.007300631143152714,
-0.030842646956443787,
-0.009922699071466923,
-0.011599507182836533,
0.006472559180110693,
0.018953775987029076,
-0.004810776095837355,
0.004056407604366541,
0.023684315383434296,
-0.020476052537560463,
0.050002507865428925,
0.00197786558419466,
0.045623213052749634,
0.03198016807436943,
0.03736055642366409,
-0.008783558383584023,
-0.01044508721679449,
0.010880593210458755,
0.006864169146865606,
0.003682608250528574,
-0.03509042412042618,
0.013468009419739246,
-0.00526209082454443,
0.013510138727724552,
-0.007397656328976154,
0.0195247121155262,
0.039401549845933914,
-0.09564913809299469,
0.005652501247823238,
-0.035833485424518585,
0.004842233844101429,
0.01431931834667921,
0.05057176575064659,
0.011873897165060043,
-0.027371345087885857,
-0.025152746587991714,
0.06078437343239784,
0.0063043395057320595,
-0.013020142912864685,
-0.03354419767856598,
0.051080480217933655,
0.05548911541700363,
0.03221756964921951,
-0.04544183239340782,
0.04091702774167061,
-0.003512625116854906,
0.03116210177540779,
-0.03416921943426132,
-0.025929488241672516,
0.01846952550113201,
0.041862983256578445,
0.007863465696573257,
-0.03387542441487312,
-0.022113725543022156,
-0.03342081606388092,
0.027130842208862305,
-0.0002314554003532976,
0.04284181445837021,
-0.03684910759329796,
0.01927122287452221,
0.028440702706575394,
-0.03792506828904152,
0.008169841021299362,
-0.01281440258026123,
0.029369717463850975,
0.008566371165215969,
0.05405263975262642,
0.031211329624056816,
-0.024733932688832283,
-0.011085105128586292,
0.005760560743510723,
0.009594338946044445,
-0.07726829499006271,
0.04865438863635063,
-0.031603068113327026,
0.0005428248550742865,
-0.023739473894238472,
-0.0209522545337677,
-0.0481538288295269,
0.03221649304032326,
0.008550453931093216,
0.004953457973897457,
0.06560157239437103,
-0.018357913941144943,
0.019424917176365852,
0.033186279237270355,
0.006374351214617491,
0.02067646011710167,
0.005517949350178242,
0.002978798234835267,
0.0479816198348999,
-0.033469200134277344,
-0.008972563780844212,
0.0033134298864752054,
0.030196072533726692,
0.0013233119389042258,
0.01729930005967617,
-0.03892478346824646,
0.0320248045027256,
0.01636524684727192,
-0.0006537580047734082,
0.03724734112620354,
0.02497907355427742,
-0.003770844778046012,
-0.02865765057504177,
0.017017444595694542,
0.04704165831208229,
0.01876048743724823,
-0.04404156282544136,
0.007488038390874863,
0.008645317517220974,
-0.006567749194800854,
0.005205634515732527,
0.09075644612312317,
-0.04589945077896118,
0.05571332573890686,
-0.0017248442163690925,
0.07087956368923187,
0.012267320416867733,
-0.012208595871925354,
-0.017806680873036385,
-0.03523669019341469,
0.03744139522314072,
0.014075128361582756,
0.04344990476965904,
-0.00023814858286641538,
0.013048204593360424,
-0.0217730849981308,
-0.018540794029831886,
-0.019042503088712692,
0.0016890723491087556,
0.027798794209957123,
0.05392276868224144,
0.017776280641555786,
0.009192964062094688,
-0.03160887956619263,
0.04568355903029442,
0.07411174476146698,
0.013648387975990772,
0.005981707014143467,
-0.007413582876324654,
0.05963802710175514,
-0.014330110512673855,
0.008335404098033905,
0.008183084428310394,
-0.03988565132021904,
-0.005576100666075945,
0.07633047550916672,
-0.008595094084739685,
0.025601625442504883,
0.01713087037205696,
0.00751925352960825,
-0.00024328938161488622,
-0.04869937151670456,
-0.01773248426616192,
0.009637447074055672,
0.04628559947013855,
-0.018770890310406685,
-0.024298660457134247,
0.004900778643786907,
-0.024461716413497925,
0.019359199330210686,
0.007074149791151285,
-0.022170521318912506,
0.017170965671539307,
-0.015677498653531075,
-0.011747268959879875,
0.027290955185890198,
0.027295436710119247,
-0.03733434900641441,
-0.010808832943439484,
0.02194521389901638,
-0.011077797040343285,
-0.03847122564911842,
0.02921460196375847,
-0.029395652934908867,
-0.03655664622783661,
0.03520771861076355,
-0.028383349999785423,
0.01741466298699379,
-0.020073093473911285,
-0.02836725115776062,
-0.014264777302742004,
0.0077604190446436405,
0.000486707896925509,
-0.001703782007098198,
0.026034479960799217,
0.03037736564874649,
0.009761733002960682,
-0.006060896907001734,
-0.025042960420250893,
0.00046774529619142413,
0.004290688317269087,
-0.044646307826042175,
0.011161736212670803,
-0.013914794661104679,
-0.005781505256891251,
0.02452937327325344,
-0.0404558964073658,
0.03215448185801506,
-0.04178910329937935,
0.028439149260520935,
-0.020777080208063126,
-0.05104629322886467,
-0.016523322090506554,
0.005381524562835693,
-0.0013954750029370189,
0.00041354031418450177,
-0.023027805611491203,
-0.015936730429530144,
-0.01311805471777916,
-0.031670987606048584,
0.013524050824344158,
-0.02184383012354374,
-0.03253358602523804,
0.035405728965997696,
0.013513091951608658,
-0.002607150236144662,
0.02184591442346573,
0.005966737866401672,
-0.003559563774615526,
0.005399258807301521,
-0.05376790836453438,
-0.017802191898226738,
-0.027961669489741325,
0.00904077384620905,
-0.05271083861589432,
-0.016517793759703636,
-0.01949397288262844,
-0.02684793248772621,
-0.04083200916647911,
0.006058668717741966,
-0.017282504588365555,
0.053848642855882645,
0.0253753624856472,
-0.01813783124089241,
-0.027048397809267044,
-0.008370107039809227,
0.02036973088979721,
0.01896454021334648,
-0.010287371464073658,
0.004551067482680082,
-0.042340729385614395,
0.003984850365668535,
-0.020690498873591423,
-0.012397089041769505,
-0.014700443483889103,
0.020989228039979935,
-0.0061646574176847935,
-0.0015334804775193334,
-0.005212488118559122,
-0.03433681279420853,
-0.010215147398412228,
0.017758414149284363,
-0.02530411258339882,
-0.009838175028562546,
-0.02318575419485569,
-0.012612390331923962,
0.058216676115989685,
0.0009504508343525231,
0.0209350623190403,
0.041287172585725784,
0.0064879911951720715,
-0.007323590572923422,
0.023881196975708008,
-0.042000338435173035,
-0.024053532630205154,
0.024695781990885735,
-0.0278007835149765,
0.01572454161942005,
0.014268996194005013,
0.04092847928404808,
-0.046073030680418015,
-0.01854659616947174,
-0.021573267877101898,
0.004267742391675711,
-0.05564633756875992,
-0.0455733947455883,
0.006565305404365063,
0.03370943292975426,
-0.04711814969778061,
-0.007474642712622881,
0.00577577156946063,
-0.00244239647872746,
0.0032250615768134594,
0.0026571685448288918,
0.02429185062646866,
0.05631940811872482,
0.004960073158144951,
0.05790159851312637,
0.03794901818037033,
0.03170417249202728,
0.021419188007712364,
0.040069274604320526,
0.011391722597181797,
0.0009314386988990009
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | It's PR time Once I felt my work was quite complete, I was ready to submit my PR. Since this work involved many git commits, I wanted to make a clean PR, so I used the following technique to squash all the commits into one in a new branch. This kept all the initial commits in place if I wanted to access any of them later. The branch I was developing on was calledfair-wmt, and the new branch that I was going to submit the PR from I namedfair-wmt-clean, so here is what I did: ``` git checkout master git checkout -b fair-wmt-clean git merge --squash fair-wmt git commit -m "Ready for PR" git push origin fair-wmt-clean ``` Then I went to github and submitted this [PR](https://github.com/huggingface/transformers/pull/6940) based on thefair-wmt-cleanbranch. It took two weeks of several cycles of feedback, followed by modifications, and more such cycles. Eventually it was all satisfactory and the PR got merged. While this process was going on, I was finding issues here and there, adding new tests, improving the documentation, etc., so it was time well spent. I subsequently filed a few more PRs with changes after I improved and reworked a few features, adding various build scripts, models cards, etc. Since the models I ported were belonging tofacebookandallenaiorganizations, I had to ask Sam to move those model files from my account ons3to the corresponding organizations. | [
-0.01193308737128973,
0.0014153532683849335,
0.05351731553673744,
0.013233760371804237,
0.050536274909973145,
0.06055181846022606,
0.020359862595796585,
0.0175271388143301,
0.019348207861185074,
-0.05151194706559181,
-0.0394071489572525,
0.06113575026392937,
-0.02063027024269104,
0.07645528018474579,
-0.00863032415509224,
-0.04404318705201149,
0.011030435562133789,
-0.027296219021081924,
-0.032104164361953735,
-0.0366390086710453,
0.012175023555755615,
-0.04652908444404602,
-0.014941825531423092,
0.014464053325355053,
0.017796847969293594,
-0.0021637591999024153,
0.046673208475112915,
-0.004251751583069563,
0.061603255569934845,
0.003744300454854965,
-0.06697648018598557,
-0.03594468906521797,
-0.005740760359913111,
-0.07440498471260071,
-0.039591412991285324,
-0.005807304289191961,
-0.08224651962518692,
0.049317456781864166,
0.0477975532412529,
-0.07688293606042862,
0.05774614214897156,
-0.002408160362392664,
-0.0788850411772728,
-0.0060463170520961285,
-0.028943868353962898,
0.0005609547952190042,
-0.12297702580690384,
0.09462245553731918,
-0.026346717029809952,
-0.06174487993121147,
-0.010183361358940601,
-0.012184166349470615,
-0.08172792941331863,
-0.035054903477430344,
-0.04070675000548363,
0.039525263011455536,
0.04238414764404297,
-0.04332742840051651,
-0.005146029870957136,
0.004623692948371172,
0.03170923888683319,
-0.030677292495965958,
0.04071302339434624,
0.07745229452848434,
0.015597623772919178,
0.02114233933389187,
0.0035781185142695904,
-0.020315280184149742,
-0.01986714079976082,
0.0017998862313106656,
0.038178060203790665,
-0.017720334231853485,
0.0044329529628157616,
-0.0124494144693017,
0.05515112727880478,
-0.03269868344068527,
-0.011099342256784439,
0.09164828062057495,
-0.002325743669643998,
0.07215075194835663,
0.016600394621491432,
0.003547712229192257,
-0.005366192664951086,
0.09816121309995651,
0.05778214707970619,
0.01663777232170105,
0.04954049363732338,
-0.07704410701990128,
-0.052312154322862625,
0.026302983984351158,
0.01727329008281231,
-0.07691516727209091,
-0.00629018247127533,
0.029798606410622597,
0.007290016394108534,
-0.05936000496149063,
-0.0005758930929005146,
-0.009760251268744469,
0.004972731228917837,
-0.03794891759753227,
-0.03397751972079277,
-0.0231452789157629,
-0.028961220756173134,
-0.028595149517059326,
0.004988513886928558,
0.029502520337700844,
-0.03915947303175926,
-0.0852443054318428,
-0.031915079802274704,
0.01987546868622303,
0.04970439523458481,
0.03187723830342293,
-0.02680576965212822,
0.04404328763484955,
-0.004668546840548515,
0.06790786236524582,
0.01595376990735531,
-0.06766600906848907,
-0.0006926791393198073,
-0.0032405380625277758,
0.039920177310705185,
0.08260729163885117,
0.041344013065099716,
-0.006107048597186804,
0.054149605333805084,
-0.010951957665383816,
0.04717276990413666,
0.008554834872484207,
-0.040050044655799866,
-0.07721531391143799,
-0.042048729956150055,
0.00465784315019846,
0.030420459806919098,
-0.037514131516218185,
-0.04501869156956673,
-0.05044179409742355,
0.08755764365196228,
-0.059472691267728806,
0.05186646059155464,
-0.04321378841996193,
0.028355758637189865,
0.07857147604227066,
-0.04253101721405983,
0.05593990907073021,
0.00172839080914855,
0.0007616769871674478,
-0.08123720437288284,
-0.026848455891013145,
0.025419931858778,
0.02671149931848049,
-0.006083388347178698,
0.024918122217059135,
-0.0615851953625679,
-0.06934662908315659,
0.00864838995039463,
0.11076170206069946,
0.030668877065181732,
-0.05938953161239624,
-0.03336556255817413,
0.03921355679631233,
-0.007843030616641045,
0.052956171333789825,
0.06302499771118164,
-0.024231454357504845,
0.08115048706531525,
-0.07700738310813904,
0.0018994975835084915,
-0.029981547966599464,
-0.028227081522345543,
0.01676909811794758,
0.03414636105298996,
-0.0202548298984766,
0.03345021978020668,
-0.02062900736927986,
0.06677497923374176,
0.09162294864654541,
0.05272562801837921,
0.06271319091320038,
-0.01838912069797516,
-0.006690255831927061,
-0.010600133799016476,
0.034098390489816666,
0.022029833868145943,
0.04090488329529762,
-0.023475786671042442,
-0.04536633566021919,
0.004807567223906517,
0.007809686008840799,
-0.025136016309261322,
-0.004996896255761385,
-0.036332473158836365,
-0.0720611959695816,
0.11469221860170364,
-0.08941958844661713,
0.023249050602316856,
-0.0019976638723164797,
-0.04207613691687584,
0.12343039363622665,
-0.00016894687723834068,
0.06993848085403442,
0.019300077110528946,
-0.009943626821041107,
0.08189082890748978,
-0.07155166566371918,
-0.03738454729318619,
0.03494478762149811,
0.03735203668475151,
-0.018850021064281464,
0.018282482400536537,
0.0779605284333229,
0.023248758167028427,
-0.02695775218307972,
0.05640853941440582,
-0.07466549426317215,
0.0007664431468583643,
-0.024593694135546684,
0.005777102895081043,
0.015588401816785336,
-0.04118277505040169,
-0.044906776398420334,
0.14632444083690643,
0.022130973637104034,
0.0020049584563821554,
0.0721001848578453,
0.06052564084529877,
0.03180432692170143,
0.03870079666376114,
0.09435246884822845,
0.06924854964017868,
-0.06211131811141968,
-0.0565606988966465,
0.022441064938902855,
-0.061603471636772156,
0.004624735098332167,
-0.007163350936025381,
-0.061935003846883774,
-0.04276512190699577,
-0.05646438151597977,
-0.02113259769976139,
-0.06116681918501854,
0.010670190677046776,
0.007413250394165516,
0.07007403671741486,
0.03535141423344612,
0.010274880565702915,
-0.03349967300891876,
0.04957194626331329,
-0.03458395600318909,
-0.02553032524883747,
-0.010209891013801098,
-0.12152723222970963,
0.03316999971866608,
0.02310696430504322,
-0.017610304057598114,
0.04470380023121834,
-0.004310904070734978,
-0.022023115307092667,
0.0067122927866876125,
-0.029901815578341484,
0.02506670169532299,
-0.03980334848165512,
0.0017531899502500892,
-0.006712034810334444,
-0.017537763342261314,
0.01317940466105938,
0.02078275755047798,
-0.01843380555510521,
0.0019049434922635555,
-0.003801607294008136,
0.0009744376293383539,
-0.0001479595375712961,
-0.030754759907722473,
0.027599716559052467,
0.003496857825666666,
0.00941127073019743,
-0.03120487742125988,
0.015410535968840122,
0.019419634714722633,
0.029348505660891533,
-0.010057314299046993,
-0.02431745082139969,
-0.018346112221479416,
0.0004901446518488228,
0.005855092313140631,
0.03906654939055443,
0.0004671442147810012,
0.024758659303188324,
-0.007512268144637346,
-0.01814558357000351,
0.004915176425129175,
0.053961120545864105,
-0.002775750122964382,
-0.02128574438393116,
0.002062681131064892,
0.030855817720294,
-0.030858950689435005,
0.02557760290801525,
-0.0790872722864151,
-0.03174560144543648,
-0.012449727393686771,
-0.026154467836022377,
-0.01915641687810421,
0.01868286356329918,
-0.05082738772034645,
-0.034648265689611435,
0.010469390079379082,
0.03220503032207489,
-0.011427467688918114,
-0.11044050008058548,
-0.04058777168393135,
0.009297761134803295,
-0.006122661288827658,
-0.016082189977169037,
-0.017219411209225655,
0.028007712215185165,
-0.015010305680334568,
-0.01764512248337269,
0.010232298634946346,
0.026499472558498383,
-0.01641143672168255,
0.011207777075469494,
-0.01502947136759758,
-0.013423155061900616,
-0.04834359139204025,
-0.004884873516857624,
-0.016360817477107048,
0.004822700284421444,
0.015171431936323643,
-0.03240618854761124,
0.027380600571632385,
0.002062215469777584,
-0.03273466229438782,
-0.023916028439998627,
0.008446743711829185,
0.028864791616797447,
0.04068751260638237,
0.03591588884592056,
-0.022359628230333328,
-0.013477297499775887,
-0.028014959767460823,
-0.02082761749625206,
0.001848299871198833,
-0.057675499469041824,
-0.0530509315431118,
0.00607756432145834,
0.028323184698820114,
-0.012722959741950035,
0.054344356060028076,
0.03041837178170681,
0.029211577028036118,
-0.023609351366758347,
-0.014800483360886574,
0.009029174223542213,
-0.013344652019441128,
-0.018763389438390732,
0.014886070974171162,
0.04832151159644127,
-0.012434110045433044,
0.0035590266343206167,
0.033941708505153656,
0.019536573439836502,
0.06476137042045593,
-0.01580645702779293,
0.03219069540500641,
0.006860984489321709,
0.006260802503675222,
0.0011802510125562549,
-0.006173714064061642,
-0.02406347543001175,
0.032697178423404694,
-0.0071755447424948215,
-0.04225946217775345,
-0.009861770085990429,
0.05144108831882477,
-0.01617964170873165,
-0.0054809642024338245,
-0.04013124853372574,
0.02670981176197529,
0.06769700348377228,
-0.01828981749713421,
-0.059369537979364395,
-0.0019210505997762084,
0.017534460872411728,
0.001949029741808772,
-0.04984613507986069,
-0.035908252000808716,
0.01718476228415966,
0.023046506568789482,
-0.03156648948788643,
-0.004072500858455896,
-0.008663946762681007,
0.019167663529515266,
-0.04084398224949837,
0.03823459893465042,
0.016826538369059563,
0.01624869555234909,
-0.005087451543658972,
0.020239070057868958,
0.011920487508177757,
-0.02229381538927555,
-0.04187280312180519,
-0.004775722976773977,
-0.002903925720602274,
-0.01242552138864994,
0.059735432267189026,
0.01661064848303795,
0.03213398531079292,
0.013406222686171532,
0.010486777871847153,
-0.019681761041283607,
-0.01578078418970108,
-0.01594751514494419,
0.028052762150764465,
0.041710421442985535,
-0.059527743607759476,
-0.02484946697950363,
0.0025739544071257114,
0.025594253093004227,
0.006150829140096903,
-0.032335441559553146,
-0.01593366079032421,
-0.04832177981734276,
0.0234543289989233,
-0.001004719641059637,
-0.04342091828584671,
-0.05252625793218613,
-0.06868872046470642,
0.04895428195595741,
-0.0315055176615715,
0.011714579537510872,
0.03067445196211338,
-0.021782763302326202,
0.018114948645234108,
-0.011516430415213108,
-0.0005273319547995925,
-0.021899180486798286,
-0.007484886329621077,
-0.03567773476243019,
-0.001857016235589981,
-0.03031887672841549,
0.05380989611148834,
-0.007407967932522297,
0.017216678708791733,
0.051022887229919434,
0.03973470255732536,
0.009005500003695488,
-0.03926241770386696,
-0.027162600308656693,
-0.023892728611826897,
0.0597037598490715,
0.04770945385098457,
-0.03930043429136276,
0.03283444046974182,
0.03295557200908661,
-0.025409601628780365,
0.03311600163578987,
-0.03042294830083847,
0.060898181051015854,
-0.04098488762974739,
0.032458238303661346,
-0.0271963719278574,
0.03233538568019867,
0.022541461512446404,
0.021438492462038994,
-0.003045820165425539,
-0.038612689822912216,
-0.016574081033468246,
0.02936004102230072,
-0.020045334473252296,
-0.025646910071372986,
0.0000982724959612824,
0.01926514320075512,
0.079926036298275,
-0.016829131171107292,
-0.025423908606171608,
-0.03132972866296768,
-0.02391337789595127,
-0.007866499945521355,
-0.022419385612010956,
0.0009072665707208216,
0.03973544016480446,
-0.034595612436532974,
0.02750147134065628,
0.08142322301864624,
0.039999548345804214,
-0.02038107067346573,
0.020420050248503685,
0.013091827742755413,
-0.04051339998841286,
0.02771368995308876,
0.0047660935670137405,
-0.0014595421962440014,
-0.019423315301537514,
-0.016314338892698288,
0.0722157284617424,
0.035148680210113525,
-0.01806306093931198,
0.013141946867108345,
-0.03457354009151459,
-0.023562384769320488,
0.002418484538793564,
-0.006112583912909031,
0.015203017741441727,
-0.005450491793453693,
-0.02220442146062851,
-0.007523082662373781,
-0.027045538648962975,
-0.011273126117885113,
0.04625822603702545,
0.0385318286716938,
0.004310848191380501,
0.004744442645460367,
0.042284391820430756,
-0.02443208172917366,
-0.0149688133969903,
-0.03136443346738815,
0.005559657700359821,
-0.021962439641356468,
0.0006824310403317213,
-0.006947826128453016,
-0.002932327799499035,
-0.02308475412428379,
-0.002376007381826639,
-0.02908242680132389,
-0.015409945510327816,
0.0005208446527831256,
-0.020253963768482208,
0.036011453717947006,
0.013212934136390686,
0.008909015916287899,
-0.027290595695376396,
0.008252092637121677,
0.0037388731725513935,
-0.05005708709359169,
-0.03426001965999603,
0.021496795117855072,
-0.026467980816960335,
-0.010863292962312698,
0.054132044315338135,
-0.03702174872159958,
-0.0034185138065367937,
0.03426133096218109,
-0.0021242164075374603,
0.047460854053497314,
0.0026551184710115194,
0.03398522734642029,
0.033313900232315063,
-0.013609864749014378,
-0.008402567356824875,
-0.027257367968559265,
-0.008475896902382374,
-0.03265013173222542,
-0.0016048663528636098,
0.04160243272781372,
0.019489835947752,
0.023330075666308403,
0.02260962873697281,
0.046529371291399,
0.02594519406557083,
0.035437870770692825,
-0.0025726219173520803,
0.0010228919563814998,
-0.026930147781968117,
-0.014944215305149555,
0.02665487863123417,
0.025493474677205086,
0.04030308499932289,
-0.005359094589948654,
0.034804247319698334,
-0.03744424507021904,
-0.0483362190425396,
0.04020756483078003,
-0.04032950475811958,
0.03657747805118561,
-0.006984312552958727,
-0.0871603712439537,
-0.007266486994922161,
0.0036597494035959244,
0.003824362065643072,
-0.002917323727160692,
0.04390193521976471,
0.020000342279672623,
-0.026694264262914658,
-0.0004977453500032425,
0.027855630964040756,
-0.004109054803848267,
-0.046169739216566086,
0.027605291455984116,
0.014755159616470337,
0.024288330227136612,
0.04588586091995239,
-0.028960803523659706,
0.01285721454769373,
0.014142027124762535,
0.04524610936641693,
-0.0062101795338094234,
0.0378669872879982,
0.014053411781787872,
0.015029807575047016,
0.007096685469150543,
-0.04089606553316116,
-0.014695501886308193,
-0.014623366296291351,
0.029701178893446922,
-0.023436738178133965,
-0.012432847172021866,
-0.011831805109977722,
-0.022379186004400253,
0.04344930499792099,
-0.004878994543105364,
0.034280925989151,
0.059404753148555756,
0.03384718671441078,
0.03943479061126709,
0.027305958792567253,
0.05053156614303589,
0.007856304757297039,
-0.03318061679601669,
-0.012189878150820732,
0.014802075922489166,
0.019807355478405952,
0.03905929625034332,
0.007329393643885851,
0.004681656137108803,
0.01330993976444006,
-0.018856143578886986,
-0.018291829153895378,
-0.029423942789435387,
0.009456533007323742,
0.021787822246551514,
-0.025359876453876495,
0.0071341004222631454,
0.00026643520686775446,
-0.0016617221990600228,
-0.003494980512186885,
0.006797490641474724,
-0.018228376284241676,
-0.016639377921819687,
0.028164975345134735,
0.02710699290037155,
-0.04548756405711174,
-0.07044937461614609,
0.01404851209372282,
0.014927953481674194,
0.03716457635164261,
0.008505313657224178,
-0.04660334438085556,
0.009639878757297993,
-0.04400467872619629,
0.019376054406166077,
0.007455078419297934,
0.03306407481431961,
-0.024913903325796127,
-0.020606650039553642,
0.030009828507900238,
0.015362867154181004,
0.027417577803134918,
0.06322452425956726,
0.004194998648017645,
0.027007538825273514,
-0.010601969435811043,
0.004751251079142094,
-0.03270943835377693,
-0.030919397249817848,
-0.023850426077842712,
-0.011009478010237217,
0.009938926436007023,
0.0013775428524240851,
0.016681360080838203,
-0.01084866002202034,
0.030116921290755272,
-0.018299473449587822,
-0.020185010507702827,
0.03350715711712837,
0.007844861596822739,
-0.02002495899796486,
0.01969795860350132,
0.01780182309448719,
-0.05535649135708809,
0.020280679687857628,
-0.04600462317466736,
0.005226879846304655,
0.008695528842508793,
-0.013308469206094742,
0.07600647956132889,
-0.0029030609875917435,
0.003467562375590205,
0.05582968145608902,
0.03744329884648323,
0.04055788367986679,
-0.009650204330682755,
0.02173394337296486,
-0.007323896512389183,
0.0057101561687886715,
-0.049403294920921326,
0.01650177873671055,
0.03485393524169922,
0.0049348552711308,
-0.019432606175541878,
-0.04877509921789169,
-0.030545208603143692,
0.006575304549187422,
0.01593831554055214,
0.052155643701553345,
-0.03336797654628754,
-0.002766556339338422,
0.031173519790172577,
0.01733531802892685,
-0.012352820485830307,
0.021022800356149673,
0.04257567599415779,
0.0404265820980072,
0.0415709987282753,
-0.01995960809290409,
0.020945992320775986,
-0.025209881365299225,
-0.007939173839986324,
0.04474272206425667,
0.012412636540830135,
-0.0012610225239768624,
0.010807003825902939,
0.0448911115527153,
-0.01629839465022087,
-0.025555456057190895,
-0.024965928867459297,
0.00047523932880721986,
0.05093769729137421,
-0.0024525176268070936,
-0.024616993963718414,
-0.0017926909495145082,
0.010053395293653011,
0.0068636685609817505,
-0.011387468315660954,
-0.023367159068584442,
-0.02574092522263527,
-0.005278169177472591,
-0.006330033764243126,
-0.00502398144453764,
0.021013617515563965,
0.025759311392903328,
0.03561292216181755,
0.02861398085951805,
0.0093638114631176,
0.022192062810063362,
0.00968159269541502,
0.004030137322843075,
0.022352753207087517,
0.03023366630077362,
-0.06909607350826263,
-0.03204086050391197,
-0.0038518202491104603,
0.04929867759346962,
-0.053204577416181564,
-0.08151422441005707,
0.0483304001390934,
-0.02483067475259304,
-0.0923866406083107,
0.019731417298316956,
-0.010950599797070026,
-0.001387953176163137,
-0.003269138280302286,
-0.002713839989155531,
-0.009652175940573215,
0.003962103743106127,
-0.03278813883662224,
-0.0030815317295491695,
-0.0553225502371788,
0.01635090634226799
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Evaluation I knew that the ported model was doing quite well based on my manual testing with a large body of text, but I didn't know how well the ported model performed comparatively to the original. So it was time to evaluate. For the task of translation [BLEU score](https://en.wikipedia.org/wiki/BLEU) is used as an evaluation metric.transformershas a script [run_eval.py](https://github.com/huggingface/transformers/blob/129fdae04033fe4adfe013b734deaec6ec34ae2e/examples/seq2seq/run_eval.py) to perform the evaluation. Here is an evaluation for the ru-en pair export PAIR=ru-en export MODEL=facebook/wmt19-$PAIR export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=64 export NUM_BEAMS=5 export LENGTH_PENALTY=1.1 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py $MODEL \ $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target \ --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS \ --length_penalty $LENGTH_PENALTY --info $MODEL --dump-args which took a few minutes to run and returned: {'bleu': 39.0498, 'n_obs': 2000, 'runtime': 184, 'seconds_per_sample': 0.092, 'num_beams': 5, 'length_penalty': 1.1, 'info': 'ru-en'} You can see that the BLEU score was 39.0498 and that it evaluated using 2000 test inputs, provided by sacrebleu using the wmt19 dataset. Remember, I couldn't use the model ensemble, so I next needed to find the best performing checkpoint. For that purpose I wrote a script fsmt-bleu-eval-each-chkpt.py which converted each checkpoint, run the eval script and reported the best one. As a result I knew that model4.pt was delivering the best performance, out of the 4 available checkpoints. I wasn't getting the same BLEU scores as the ones reported in the original paper, so I next needed to make sure that we were comparing the same data using the same tools. Through asking at the fairseq issue I was given the code that was used by fairseq developers to get their BLEU scores - you will find it here. But, alas, their method was using a re-ranking approach which wasn't disclosed. Moreover, they evaled on outputs before detokenization and not the real output, which apparently scores better. Bottom line - we weren't scoring in the same way (). * footnote: the paper A Call for Clarity in Reporting BLEU Scores invites developers to start using the same method for calculating the metrics (tldr: use sacrebleu). Currently, this ported model is slightly behind the original on the BLEU scores, because model ensemble is not used, but it's impossible to tell the exact difference until the same measuring method is used. | [
0.03700466826558113,
-0.03441048413515091,
-0.014209396205842495,
-0.04360494017601013,
0.02451205998659134,
0.037591297179460526,
0.0839206874370575,
0.04419495537877083,
-0.051910076290369034,
-0.015540337190032005,
-0.04127856343984604,
0.05248556658625603,
-0.011750899255275726,
0.02919851243495941,
-0.007716160733252764,
-0.05401739105582237,
0.03983081877231598,
-0.036650218069553375,
0.021506192162632942,
0.02357141487300396,
-0.013201987370848656,
-0.08535687625408173,
0.047155868262052536,
0.0446305088698864,
0.0025555964093655348,
-0.058543115854263306,
0.04617954045534134,
-0.003921548370271921,
-0.08285399526357651,
0.010683075524866581,
-0.10723036527633667,
-0.032650068402290344,
-0.06363721936941147,
-0.021987799555063248,
-0.03308810293674469,
0.0034492085687816143,
-0.09262721240520477,
0.07011106610298157,
0.02456354722380638,
-0.032780665904283524,
0.023708999156951904,
-0.03680255636572838,
-0.012396574951708317,
-0.003058539004996419,
0.019768843427300453,
-0.004278404638171196,
-0.1500432789325714,
0.015366625972092152,
0.016081981360912323,
0.011929468251764774,
-0.03274475038051605,
0.0605940967798233,
-0.051698535680770874,
0.0020154621452093124,
0.020238559693098068,
0.014872371219098568,
0.014639896340668201,
-0.0003002672456204891,
0.04065866023302078,
0.007162590976804495,
-0.008421100676059723,
-0.04530446603894234,
0.04073471575975418,
0.0649840459227562,
-0.004671377129852772,
-0.001056065782904625,
0.019264735281467438,
0.06884373724460602,
-0.05017910897731781,
-0.010571012273430824,
-0.02853027731180191,
-0.009277977980673313,
-0.00744383130222559,
-0.025419292971491814,
-0.05819481611251831,
-0.037688449025154114,
-0.030263809487223625,
0.032529450953006744,
0.0978582352399826,
0.08184195309877396,
-0.0006591897108592093,
0.005975696258246899,
0.0035118423402309418,
0.047812625765800476,
0.035274799913167953,
0.05316143110394478,
0.05855517089366913,
-0.05262596160173416,
-0.10963018983602524,
0.04404756799340248,
-0.030882716178894043,
-0.10313894599676132,
-0.011984201148152351,
0.05599815025925636,
0.06357307732105255,
-0.048158206045627594,
0.043952491134405136,
0.035535842180252075,
-0.01531878300011158,
0.005026186816394329,
0.03969983384013176,
-0.01106614526361227,
0.0332249291241169,
-0.017207222059369087,
-0.025539971888065338,
-0.01241651363670826,
-0.021960049867630005,
-0.07943440973758698,
-0.011316649615764618,
0.014563123695552349,
0.04750698804855347,
-0.015869179740548134,
-0.008058122359216213,
0.04522910714149475,
-0.06941854953765869,
-0.013928023166954517,
-0.03759656101465225,
0.0057280464097857475,
0.011698223650455475,
0.04857553541660309,
0.0539877712726593,
0.0701586902141571,
0.028848769143223763,
0.005202449392527342,
0.0794038474559784,
0.01630558632314205,
0.07594376802444458,
0.024669812992215157,
0.011972594074904919,
-0.016016431152820587,
0.050951577723026276,
-0.02615515887737274,
0.08122037351131439,
0.06067177653312683,
-0.030350180342793465,
-0.054321277886629105,
0.018046433106064796,
-0.028958545997738838,
-0.008022241294384003,
-0.02797411009669304,
-0.07541963458061218,
0.07228360325098038,
-0.029602589085698128,
0.01868513971567154,
0.03783116117119789,
0.02012067288160324,
-0.06803379952907562,
0.06709890067577362,
0.016756700351834297,
0.03368839994072914,
-0.08357656002044678,
0.054326847195625305,
-0.02262054570019245,
-0.04769015684723854,
0.013063261285424232,
0.08147305995225906,
-0.032953277230262756,
-0.04510879144072533,
-0.09812674671411514,
0.03466109558939934,
-0.039886925369501114,
0.03531249985098839,
-0.03941488638520241,
-0.06220262870192528,
0.023248402401804924,
0.03253689780831337,
-0.009291752241551876,
0.026882916688919067,
-0.01450919359922409,
-0.00704182730987668,
0.11409086734056473,
-0.03922440856695175,
0.1166701540350914,
0.007178209256380796,
-0.027228685095906258,
0.043081194162368774,
0.06370799988508224,
0.024309450760483742,
0.01203659363090992,
-0.04771625995635986,
-0.042501457035541534,
0.0586172491312027,
-0.008945261128246784,
0.08584772795438766,
0.06949084252119064,
-0.09926986694335938,
0.01743190921843052,
-0.0289987213909626,
0.011989839375019073,
0.01984182558953762,
-0.10206647962331772,
-0.04689333960413933,
0.09387962520122528,
-0.03891175612807274,
0.024668928235769272,
-0.042777203023433685,
0.014065038412809372,
0.10979096591472626,
0.04446014016866684,
0.024219710379838943,
0.004566919058561325,
0.03805125877261162,
0.034889865666627884,
-0.03862946853041649,
-0.020049957558512688,
0.04249414801597595,
0.07354779541492462,
-0.07175839692354202,
-0.010293038561940193,
0.055352941155433655,
0.03540349379181862,
-0.0846157893538475,
0.04546605795621872,
-0.05487135425209999,
0.0081330556422472,
-0.0807759016752243,
-0.02443511411547661,
0.009628727100789547,
-0.02515147067606449,
-0.012280796654522419,
0.12083178013563156,
-0.006713054608553648,
-0.009210544638335705,
-0.06079787388443947,
-0.028628692030906677,
0.017768045887351036,
0.0626738965511322,
0.09351538866758347,
0.029386084526777267,
-0.012705891393125057,
-0.04665210470557213,
-0.0494428351521492,
-0.05091799423098564,
0.07610372453927994,
-0.04487474635243416,
-0.06274734437465668,
0.03299597278237343,
0.0011071041226387024,
0.0067549594677984715,
-0.05047948285937309,
-0.041678041219711304,
0.025019317865371704,
0.059545282274484634,
0.07928389310836792,
-0.04998376965522766,
-0.014302334748208523,
0.046375617384910583,
-0.01793988235294819,
-0.04101499915122986,
-0.04268789291381836,
-0.0470692478120327,
0.06029832735657692,
0.005136700347065926,
-0.030497729778289795,
0.04629642888903618,
0.01857736147940159,
-0.011528823524713516,
0.013340206816792488,
-0.052791204303503036,
0.023968055844306946,
-0.004225572105497122,
-0.003680021967738867,
-0.05098473280668259,
-0.029316307976841927,
0.02020351216197014,
-0.05634982883930206,
-0.0044573089107871056,
0.010310722514986992,
-0.01125407312065363,
0.007656390778720379,
-0.03154917433857918,
-0.006968474481254816,
0.029715029522776604,
-0.008663823828101158,
0.00930445920675993,
0.00288432277739048,
0.037103377282619476,
-0.0003671392914839089,
-0.030576348304748535,
-0.026716560125350952,
-0.02091618813574314,
-0.034118156880140305,
0.013196705840528011,
-0.00918976217508316,
0.03410429507493973,
0.02382878214120865,
0.0040054009296,
-0.012516106478869915,
-0.027827907353639603,
0.01918242871761322,
0.032711856067180634,
0.009367120452225208,
-0.006809106096625328,
-0.043429892510175705,
0.024960383772850037,
0.006127986591309309,
0.0021951417438685894,
-0.02983023226261139,
0.021226441487669945,
0.05245332792401314,
-0.047260552644729614,
0.029392799362540245,
-0.04430587589740753,
0.00641765259206295,
-0.01588667556643486,
0.013874830678105354,
-0.023115677759051323,
0.02716592699289322,
-0.10538704693317413,
0.003977569751441479,
0.03624550253152847,
0.029547564685344696,
-0.007370281033217907,
-0.005096892826259136,
0.03313275799155235,
0.016623523086309433,
0.018935266882181168,
0.022653019055724144,
0.02529369667172432,
-0.018934078514575958,
0.035960935056209564,
0.017824992537498474,
-0.012813947163522243,
0.012123427353799343,
-0.004382777493447065,
0.03551444783806801,
0.01669316366314888,
-0.013738793320953846,
-0.02380814217031002,
0.021100830286741257,
-0.016245540231466293,
-0.010014633648097515,
-0.022536056116223335,
0.011602739803493023,
0.023324966430664062,
0.002981716301292181,
0.024184448644518852,
-0.03395650535821915,
-0.0015845519956201315,
-0.0249817855656147,
0.016225971281528473,
-0.010432098060846329,
-0.014058887027204037,
-0.0441901795566082,
-0.01781632751226425,
-0.001984870061278343,
-0.009341718629002571,
0.04303024336695671,
0.04574287682771683,
-0.007497110404074192,
0.015496046282351017,
-0.009516159072518349,
0.00851688627153635,
-0.005661925300955772,
0.009726430289447308,
-0.018868127837777138,
0.02378164604306221,
0.003420285414904356,
-0.03583625704050064,
-0.006737868767231703,
-0.026967130601406097,
0.06958881765604019,
0.002051593968644738,
-0.010688193142414093,
-0.014046131633222103,
0.005601188167929649,
0.012327366508543491,
-0.022901024669408798,
-0.05796061083674431,
0.004082622472196817,
-0.036608099937438965,
0.019176241010427475,
-0.015817850828170776,
0.040814872831106186,
-0.024097494781017303,
0.03600206598639488,
-0.03517470136284828,
0.03486539423465729,
-0.010200638324022293,
0.02248825505375862,
-0.012494652532041073,
0.014013046398758888,
-0.03459969162940979,
-0.01028434932231903,
-0.05880815163254738,
-0.036990951746702194,
0.04855167493224144,
0.027700545266270638,
-0.0346207432448864,
-0.03081037849187851,
-0.018441397696733475,
0.006293902639299631,
-0.009722204878926277,
-0.004829137120395899,
0.018052229657769203,
-0.006666467059403658,
0.02216884307563305,
0.03040308505296707,
0.006654529366642237,
-0.04751717299222946,
-0.007133867125958204,
0.024102890864014626,
-0.03173685818910599,
-0.059490419924259186,
0.015397637151181698,
0.007390356156975031,
-0.01160597987473011,
0.04942266270518303,
0.0036731278523802757,
-0.05106356367468834,
0.010290678590536118,
-0.010434357449412346,
0.02715531550347805,
0.03157305717468262,
-0.06025687977671623,
-0.04130048304796219,
0.027982626110315323,
-0.029628967866301537,
-0.01177024282515049,
-0.00240993220359087,
-0.04197156801819801,
0.0034301849082112312,
0.07118508964776993,
0.03680560737848282,
-0.020213181152939796,
-0.01689351350069046,
-0.028859145939350128,
0.027197934687137604,
-0.008084055036306381,
0.0022493014112114906,
-0.033590514212846756,
-0.0205448716878891,
0.0075114015489816666,
0.02849460020661354,
-0.0064529795199632645,
0.06472915410995483,
-0.012164386920630932,
0.008656183257699013,
-0.010065477341413498,
0.04796848073601723,
0.060809895396232605,
-0.01348805520683527,
0.009360904805362225,
0.007739681750535965,
-0.00034681332181207836,
-0.03656148165464401,
-0.0078001911751925945,
-0.027342887595295906,
-0.026541655883193016,
0.00786395650357008,
-0.006873812060803175,
-0.014619306661188602,
0.005998949985951185,
0.021818378940224648,
-0.03193977475166321,
0.01932944729924202,
-0.038211893290281296,
0.015029523521661758,
0.03893011063337326,
-0.0270028505474329,
-0.044964443892240524,
0.02788376249372959,
0.020496446639299393,
-0.008419017307460308,
-0.02536213956773281,
0.0013726350152865052,
-0.013329621404409409,
0.05975343659520149,
-0.04585104063153267,
0.008949756622314453,
-0.04447716102004051,
0.030056631192564964,
-0.005414104554802179,
-0.015380263328552246,
0.02817552722990513,
-0.05931410193443298,
0.005766324233263731,
0.008624177426099777,
-0.02431066893041134,
-0.007998773828148842,
-0.014759828336536884,
-0.04358130693435669,
-0.012956153601408005,
0.06616581231355667,
-0.0018598866881802678,
-0.013577604666352272,
0.029668673872947693,
0.012963722459971905,
-0.00742898415774107,
-0.017862845212221146,
0.016686037182807922,
-0.010822471231222153,
0.01823236048221588,
0.020788252353668213,
0.03090236522257328,
0.07049450278282166,
-0.003653815947473049,
0.013321392238140106,
-0.006976007483899593,
-0.005582283716648817,
0.005217306315898895,
-0.05685138329863548,
-0.010240720584988594,
-0.00477616535499692,
0.019978629425168037,
-0.0020953030325472355,
-0.022243572399020195,
-0.003552636131644249,
0.037409842014312744,
0.04017329216003418,
-0.029516685754060745,
-0.027084598317742348,
0.03401976078748703,
-0.0027072401717305183,
-0.023317895829677582,
0.0016171709867194295,
0.044079944491386414,
-0.03194257989525795,
0.008208182640373707,
-0.019461097195744514,
-0.03055053949356079,
0.005970844067633152,
0.055039722472429276,
-0.06871459633111954,
0.016044899821281433,
0.02703727036714554,
0.012387334369122982,
0.0011700146133080125,
-0.01157866045832634,
-0.02255960740149021,
-0.04267777130007744,
-0.028094368055462837,
0.011791542172431946,
-0.033117182552814484,
0.029709581285715103,
-0.012524386867880821,
0.004182468634098768,
-0.002354963216930628,
0.0022751870565116405,
0.005908877123147249,
-0.013004045002162457,
0.006165062543004751,
0.0378878228366375,
0.005788448266685009,
-0.04540662094950676,
0.04525787755846977,
0.031833939254283905,
-0.016889765858650208,
0.007485054899007082,
0.011866544373333454,
-0.008726503700017929,
-0.002034545876085758,
-0.05731545761227608,
0.03348982334136963,
0.06313322484493256,
0.017311550676822662,
0.042732980102300644,
-0.0049091512337327,
0.036967601627111435,
0.027256065979599953,
-0.012968350201845169,
0.02861947938799858,
-0.01008825283497572,
-0.0054191118106245995,
-0.01966823823750019,
0.0277623999863863,
0.004619317129254341,
0.014377561397850513,
0.03771042823791504,
-0.028071558102965355,
-0.0015978945884853601,
0.057157743722200394,
-0.04506919905543327,
0.03467262536287308,
0.003920800052583218,
-0.06389583647251129,
0.03114006482064724,
0.04254826903343201,
-0.01205761544406414,
0.03279734030365944,
0.03336659073829651,
0.02273784577846527,
0.0028136721812188625,
-0.028949925675988197,
0.023998383432626724,
0.06299988180398941,
0.025916147977113724,
0.0071615963242948055,
0.043768260627985,
0.03352845832705498,
0.037093210965394974,
-0.004142405465245247,
0.02268517203629017,
0.01026264950633049,
0.10964681953191757,
-0.0034515485167503357,
0.03237895295023918,
0.03061470203101635,
-0.008705981075763702,
-0.025027688592672348,
-0.008126736618578434,
-0.047425370663404465,
-0.023653265088796616,
-0.00709396880120039,
-0.007439385633915663,
-0.001370123471133411,
0.038131631910800934,
-0.009114859625697136,
0.04251212999224663,
0.03980661556124687,
0.022379042580723763,
0.0030673404689878225,
0.024494832381606102,
0.016742991283535957,
-0.011244343593716621,
-0.0035494102630764246,
0.026279013603925705,
-0.018683653324842453,
-0.0037247303407639265,
0.08186253160238266,
-0.007936890237033367,
-0.004650995600968599,
-0.040413446724414825,
0.03157450631260872,
-0.002438024850562215,
-0.0006523564807139337,
-0.004794727545231581,
0.03008938394486904,
-0.0027643011417239904,
0.010686191730201244,
-0.010154183022677898,
0.05815528705716133,
-0.021428564563393593,
-0.02582799270749092,
-0.017202917486429214,
-0.015208355151116848,
-0.017823878675699234,
-0.016476579010486603,
-0.013396793976426125,
0.0753786489367485,
-0.004524752963334322,
-0.054274048656225204,
-0.029453983530402184,
0.012190219014883041,
0.03555051609873772,
0.02429494634270668,
-0.022480448707938194,
0.016112957149744034,
-0.019886530935764313,
-0.007225325796753168,
-0.004438846372067928,
0.030895007774233818,
-0.009000550955533981,
0.006651424802839756,
-0.0017853367608040571,
0.02079172432422638,
0.0027961654122918844,
0.008369194343686104,
0.006852833088487387,
0.02433411218225956,
-0.05061453953385353,
-0.004829013720154762,
0.00405886210501194,
-0.038123875856399536,
-0.000017905129425344057,
-0.04291246831417084,
-0.04243292659521103,
0.005384284071624279,
0.054940834641456604,
0.016694677993655205,
0.030594462528824806,
0.005574304144829512,
-0.004279307089745998,
-0.021406564861536026,
-0.0164782777428627,
-0.021695714443922043,
0.030170809477567673,
-0.02294493466615677,
0.03435884788632393,
0.01187857985496521,
-0.025957439094781876,
-0.02134694904088974,
-0.004184948746114969,
0.013125027529895306,
0.039307136088609695,
-0.02331094816327095,
-0.006581923924386501,
-0.015027329325675964,
0.031181246042251587,
0.04016115888953209,
0.045615676790475845,
0.019231831654906273,
0.001430277363397181,
0.008663412183523178,
-0.03876902163028717,
0.038835860788822174,
-0.03163057565689087,
0.0020700516179203987,
-0.018157031387090683,
-0.035866230726242065,
-0.008620889857411385,
0.009760446846485138,
-0.04722461849451065,
0.009502064436674118,
-0.04392780363559723,
-0.001500160782597959,
-0.014081008732318878,
-0.009049571119248867,
-0.02464410848915577,
0.01643432304263115,
0.05693827196955681,
0.02771696262061596,
0.009244071319699287,
-0.00427138851955533,
-0.03145378828048706,
0.0173221156001091,
-0.024496236816048622,
0.038683585822582245,
0.06269685924053192,
0.01932235062122345,
-0.015484338626265526,
-0.01374009344726801,
0.017089346423745155,
0.02127392590045929,
-0.024762485176324844,
-0.0006383886211551726,
0.01988130435347557,
-0.04103516787290573,
-0.011269252747297287,
0.00869668647646904,
0.027659911662340164,
-0.008035607635974884,
0.04196371138095856,
-0.019571801647543907,
-0.013497748412191868,
-0.011593206785619259,
0.011747405864298344,
-0.07894100248813629,
-0.007420442067086697,
-0.00534193217754364,
0.01654895395040512,
0.006462289951741695,
0.02323462814092636,
0.02972511202096939,
0.01429840549826622,
-0.01572323776781559,
-0.0020020951051265,
0.003284212201833725,
-0.05260081589221954,
-0.060832489281892776,
0.0025991033762693405,
0.02742980606853962,
-0.03929838910698891,
-0.07858460396528244,
0.03839734569191933,
-0.010150774382054806,
-0.0036456016823649406,
-0.02815084159374237,
-0.014471188187599182,
0.018260914832353592,
-0.018629644066095352,
0.004680972080677748,
-0.03046281822025776,
0.0033475151285529137,
0.020636821165680885,
-0.021346811205148697,
-0.01111646182835102,
0.011350061744451523
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Files As a quick overview, the following files needed to be created and written: * src/transformers/configuration_fsmt.py - a short configuration class. * src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py - a complex conversion script. * src/transformers/modeling_fsmt.py - this is where the model architecture is implemented. * src/transformers/tokenization_fsmt.py - a tokenizer code. * tests/test_modeling_fsmt.py - model tests. * tests/test_tokenization_fsmt.py - tokenizer tests. * docs/source/model_doc/fsmt.rst - a doc file. There are other files that needed to be modified as well, we will talk about those towards the end. | [
0.05220572277903557,
-0.02067258395254612,
-0.022515585646033287,
-0.004546454641968012,
0.09293420612812042,
0.025549575686454773,
0.00996177364140749,
0.0073147849179804325,
0.0262528695166111,
-0.006025827955454588,
-0.0904739648103714,
0.0593450590968132,
0.0055073825642466545,
0.044520169496536255,
0.030414177104830742,
0.03175366669893265,
0.014256078749895096,
-0.022221021354198456,
-0.044592879712581635,
0.03142980858683586,
0.004970948211848736,
-0.05444760620594025,
-0.002853035693988204,
0.025495700538158417,
0.021938135847449303,
-0.045001909136772156,
-0.011692778207361698,
0.03206763043999672,
-0.004571340978145599,
0.06980327516794205,
-0.07255394756793976,
-0.02859855815768242,
-0.03275631368160248,
-0.03924819454550743,
-0.051675859838724136,
0.044112883508205414,
-0.10522543638944626,
0.043208081275224686,
0.03396660089492798,
-0.05984526500105858,
0.0056025744415819645,
0.016930563375353813,
-0.1111074909567833,
0.047987956553697586,
0.02594449557363987,
0.052635639905929565,
-0.15336698293685913,
0.07819084823131561,
-0.016907982528209686,
-0.04639352858066559,
-0.048778507858514786,
-0.024695737287402153,
-0.05955862998962402,
-0.021611711010336876,
-0.006172609981149435,
0.033015813678503036,
-0.014281815849244595,
0.01993487775325775,
0.015052564442157745,
0.001939031877554953,
0.0636177808046341,
0.02123231440782547,
0.03695263713598251,
0.046451322734355927,
0.06430916488170624,
-0.019198013469576836,
-0.021516496315598488,
-0.027035929262638092,
-0.04655137285590172,
-0.03607684001326561,
-0.03541255742311478,
0.009183957241475582,
-0.023344166576862335,
-0.035579707473516464,
-0.03327491506934166,
-0.04479795694351196,
0.05670507252216339,
0.011538224294781685,
0.06008708104491234,
0.08703453838825226,
0.041742954403162,
0.06473419070243835,
0.008371385745704174,
0.04812537506222725,
0.0064756423234939575,
-0.028543315827846527,
0.028140490874648094,
-0.014331028796732426,
0.041646625846624374,
0.053899697959423065,
0.0074628074653446674,
-0.10102426260709763,
-0.07187718152999878,
0.02605520933866501,
0.04037284851074219,
0.009924153797328472,
0.026200642809271812,
0.05051816999912262,
0.00795007310807705,
0.012870866805315018,
0.006094041280448437,
-0.012951100245118141,
-0.04655780270695686,
-0.010271800681948662,
-0.021013284102082253,
0.016791194677352905,
0.004104853142052889,
-0.03410901501774788,
-0.04618487134575844,
-0.002693197224289179,
-0.03614639863371849,
-0.02428540401160717,
-0.033207979053258896,
0.04258228838443756,
-0.04868341237306595,
-0.0005974072846584022,
-0.017903966829180717,
-0.08042776584625244,
-0.023855043575167656,
0.027721650898456573,
-0.017320098355412483,
0.08163277804851532,
0.05545536428689957,
-0.015348521992564201,
0.03730272129178047,
0.10551709681749344,
0.05455756559967995,
0.04676203057169914,
-0.03478597477078438,
-0.11874274909496307,
0.027497995644807816,
-0.017614977434277534,
0.05711442232131958,
0.007422159891575575,
-0.012917677871882915,
-0.05502106994390488,
-0.012265012599527836,
-0.017056595534086227,
-0.0009476792765781283,
0.024968253448605537,
-0.01383416261523962,
0.06913018226623535,
-0.025705961510539055,
0.0496206134557724,
-0.011670860461890697,
-0.05524521693587303,
-0.08794666081666946,
0.08731728792190552,
-0.010133207775652409,
0.015477183274924755,
-0.07828327268362045,
0.043795183300971985,
-0.010258803144097328,
-0.01837528683245182,
-0.028962714597582817,
0.07416634261608124,
0.021171607077121735,
-0.010100768879055977,
-0.06619073450565338,
-0.05170825123786926,
-0.009383712895214558,
0.03647042438387871,
-0.06380407512187958,
0.0075921667739748955,
0.012286369688808918,
-0.07172951847314835,
0.02915731817483902,
0.029095778241753578,
0.07404546439647675,
0.00243174284696579,
0.013007914647459984,
-0.051456745713949203,
0.05744393169879913,
-0.009330682456493378,
-0.015761973336338997,
0.05097227171063423,
0.032725147902965546,
0.061950262635946274,
0.011304900981485844,
-0.0346338115632534,
-0.005187797360122204,
0.04395359754562378,
-0.06287951022386551,
-0.004365718923509121,
0.023380395025014877,
-0.05542384460568428,
0.030557679012417793,
-0.042988210916519165,
-0.05080827325582504,
0.022734669968485832,
-0.10799132287502289,
-0.04651359096169472,
0.05268493667244911,
-0.024801859632134438,
0.04532147943973541,
-0.009172982536256313,
0.014658695086836815,
0.10655254870653152,
0.045850224792957306,
0.039295829832553864,
0.016336413100361824,
-0.014684769324958324,
-0.0314929261803627,
-0.00144072319380939,
0.019034063443541527,
0.0508437380194664,
0.00003888397986884229,
-0.06403031945228577,
0.07412304729223251,
-0.019696999341249466,
0.05703775957226753,
-0.03299989923834801,
0.039163731038570404,
-0.08232372254133224,
0.030399292707443237,
-0.0953083261847496,
-0.05761963501572609,
-0.003405702067539096,
0.02005331590771675,
-0.040601085871458054,
0.15862536430358887,
-0.05487780645489693,
-0.003343068528920412,
-0.04225093498826027,
-0.058725740760564804,
0.060884445905685425,
0.047277867794036865,
0.04823703691363335,
0.06346194446086884,
-0.11301704496145248,
-0.03997023403644562,
-0.075189970433712,
-0.031244046986103058,
0.09446287900209427,
0.014114851132035255,
-0.02462027035653591,
0.01197921484708786,
0.07690935581922531,
-0.009395081549882889,
-0.022295653820037842,
0.07032245397567749,
0.009512617252767086,
-0.006201895419508219,
-0.02397485077381134,
0.01862521283328533,
-0.05145125091075897,
0.0748169869184494,
-0.007286399602890015,
-0.001657346379943192,
0.0008496635709889233,
-0.04739179462194443,
0.0415690578520298,
0.010975142009556293,
-0.004874673206359148,
0.08388709276914597,
0.04826469346880913,
-0.013826004229485989,
-0.024267401546239853,
0.01994180865585804,
0.04486678168177605,
0.0047383736819028854,
0.029119985178112984,
-0.056097954511642456,
-0.041765447705984116,
-0.06086425110697746,
-0.022880693897604942,
-0.013884815387427807,
0.005851654801517725,
-0.000979984411969781,
0.04180198535323143,
-0.015195904299616814,
-0.02974751591682434,
-0.012072212062776089,
-0.013258633203804493,
0.014013541862368584,
0.02086116001009941,
0.033691633492708206,
-0.012481408193707466,
-0.020730745047330856,
0.006765773519873619,
-0.002956240903586149,
-0.02227952517569065,
0.02439090423285961,
0.04240701347589493,
-0.00044601221452467144,
0.02454802580177784,
-0.0118405781686306,
-0.016650596633553505,
-0.03057899698615074,
0.024086039513349533,
-0.023387011140584946,
0.03019792027771473,
0.008455305360257626,
-0.013985694386065006,
-0.017944740131497383,
0.0307988952845335,
-0.03490568697452545,
-0.00532349431887269,
-0.007232125382870436,
0.037151992321014404,
-0.02632533572614193,
0.04350191354751587,
0.01544040534645319,
-0.02622794918715954,
-0.04585365578532219,
0.039034198969602585,
0.020404106006026268,
0.022723833099007607,
-0.10253295302391052,
-0.000042439522076165304,
0.001291420659981668,
0.035259198397397995,
0.013856240548193455,
-0.03140756115317345,
0.008994021452963352,
0.015624146908521652,
-0.016368098556995392,
-0.018228909000754356,
-0.003266615094617009,
0.017026446759700775,
0.014413258992135525,
0.02452302724123001,
-0.01162415836006403,
0.008539596572518349,
-0.0196328554302454,
0.041543226689100266,
0.01552275475114584,
-0.021526914089918137,
-0.01960906945168972,
0.010678253136575222,
-0.0026275338605046272,
-0.017382169142365456,
-0.004213291686028242,
0.026297099888324738,
0.03316247835755348,
0.08216265588998795,
0.006499807350337505,
-0.029172474518418312,
-0.040504809468984604,
0.005734867416322231,
-0.025309083983302116,
-0.0140923410654068,
-0.020257728174328804,
-0.015809131786227226,
-0.013871400617063046,
0.031328774988651276,
0.011140192858874798,
0.03601876273751259,
-0.000054271367844194174,
0.01409971620887518,
0.00623690988868475,
-0.008221292868256569,
0.037480685859918594,
-0.01169124897569418,
-0.019777441397309303,
0.0002808906720019877,
-0.0007794873672537506,
0.021338509395718575,
-0.017984827980399132,
-0.03535928577184677,
0.02286021038889885,
0.07092906534671783,
-0.030305983498692513,
-0.02131485566496849,
0.024848779663443565,
0.021745197474956512,
0.04499715194106102,
0.005423161666840315,
-0.07037066668272018,
0.012190991081297398,
-0.009829728864133358,
-0.039647817611694336,
-0.02982756868004799,
0.08754358440637589,
0.025050874799489975,
0.005946439690887928,
-0.043192677199840546,
0.023298582062125206,
-0.05879779905080795,
0.02933584339916706,
-0.004568133968859911,
0.006754882633686066,
-0.059735529124736786,
0.027030790224671364,
-0.06828340142965317,
-0.04414113983511925,
0.0546422079205513,
0.04077156260609627,
-0.010876390151679516,
-0.026797955855727196,
-0.023489056155085564,
-0.02464411035180092,
-0.008385811001062393,
0.026911292225122452,
-0.011633031070232391,
-0.03133603185415268,
0.022669648751616478,
0.012120665051043034,
0.003879853058606386,
-0.006343713030219078,
0.0119999460875988,
-0.00997039582580328,
-0.02432161569595337,
-0.01687711477279663,
0.03824774548411369,
-0.0015350149478763342,
0.0075082117691636086,
0.01645115204155445,
-0.002974942559376359,
-0.0336444154381752,
-0.011470705270767212,
-0.010691878385841846,
0.0023771601263433695,
-0.0055630942806601524,
-0.05486056208610535,
0.0012262259842827916,
0.014420577324926853,
0.023532548919320107,
0.005652348976582289,
0.002235488733276725,
0.036542586982250214,
-0.005302014760673046,
0.0311269611120224,
0.05503483861684799,
0.00975731573998928,
-0.04879351332783699,
-0.03440937027335167,
0.04144253209233284,
-0.04211937263607979,
0.013787396252155304,
0.0013609620509669185,
-0.014804056845605373,
0.0035153336357325315,
-0.03145940974354744,
0.05590466782450676,
0.017204932868480682,
0.029368039220571518,
0.02018583193421364,
-0.03864119201898575,
0.024304771795868874,
0.014425556175410748,
0.058059487491846085,
-0.005899521987885237,
0.02537175826728344,
0.02689434215426445,
-0.0035186056047677994,
0.024265818297863007,
-0.04374341666698456,
-0.011382454074919224,
0.018008248880505562,
0.02805297262966633,
-0.02195444330573082,
0.026409951969981194,
-0.00805196724832058,
-0.029588816687464714,
0.02792663872241974,
-0.017125871032476425,
0.006046042777597904,
0.033863816410303116,
0.008612580597400665,
-0.0188736654818058,
-0.0087997792288661,
-0.013561873696744442,
0.018384195864200592,
0.04127466678619385,
0.028794918209314346,
-0.006215969100594521,
0.059441111981868744,
-0.017748238518834114,
-0.020349889993667603,
-0.023639682680368423,
-0.010579554364085197,
0.03424140438437462,
0.026817141100764275,
0.0076599447056651115,
-0.12826617062091827,
-0.023522816598415375,
0.021220169961452484,
-0.023539278656244278,
-0.016606995835900307,
-0.008546416647732258,
-0.04616284370422363,
0.042811062186956406,
0.03310474380850792,
0.03549754247069359,
0.04223056137561798,
-0.026652391999959946,
-0.025336340069770813,
0.006387355737388134,
0.01427543442696333,
0.046750474721193314,
-0.008147001266479492,
0.0006261937669478357,
0.04892527684569359,
0.025664202868938446,
0.03590654209256172,
-0.01332799531519413,
0.02325320988893509,
-0.024007178843021393,
-0.017298659309744835,
0.023452073335647583,
0.019296951591968536,
-0.004144249018281698,
0.007671321742236614,
-0.02533498778939247,
-0.004626671317964792,
0.01988344080746174,
-0.0367635115981102,
0.03600671887397766,
0.06430995464324951,
-0.002281115623190999,
-0.007809903472661972,
0.02848992682993412,
-0.006681967061012983,
0.0017364813247695565,
-0.02233675681054592,
0.07303155958652496,
-0.01805446669459343,
-0.005253885872662067,
0.006377409212291241,
-0.0152233662083745,
-0.02125229500234127,
0.003250069683417678,
-0.05195293575525284,
-0.04118708521127701,
0.007960028015077114,
0.002025729278102517,
0.016083231195807457,
-0.019076000899076462,
-0.009052403271198273,
0.018087336793541908,
0.05434444546699524,
0.0285646915435791,
-0.02147485315799713,
0.004273728001862764,
0.025319913402199745,
0.0015575774013996124,
-0.015032606199383736,
0.03353618085384369,
-0.037499431520700455,
0.00877357367426157,
0.03265247866511345,
0.012705611065030098,
-0.001485270680859685,
-0.03093324974179268,
0.016508208587765694,
0.03541982173919678,
-0.0171416774392128,
-0.0008765165694057941,
-0.011042681522667408,
-0.05726199224591255,
0.04033413156867027,
-0.02759656310081482,
-0.0019069501431658864,
0.09925879538059235,
-0.005438564345240593,
0.02818680927157402,
0.0348130501806736,
0.042619895190000534,
0.014499267563223839,
-0.017330070957541466,
-0.030464716255664825,
-0.014687148854136467,
-0.020150993019342422,
0.010883161798119545,
0.025410989299416542,
0.020768946036696434,
-0.05055036395788193,
0.03634781762957573,
-0.02752755954861641,
-0.042660921812057495,
-0.03327958658337593,
-0.003256740514189005,
-0.02267986536026001,
-0.002601894550025463,
-0.045108381658792496,
0.012233852408826351,
-0.0058285570703446865,
0.008400674909353256,
0.02216014824807644,
0.0253415796905756,
0.033870697021484375,
0.016301734372973442,
-0.023981712758541107,
0.016270030289888382,
0.016836103051900864,
-0.00299658440053463,
0.039576414972543716,
-0.01989833451807499,
0.017042813822627068,
0.0527772381901741,
-0.003294389694929123,
-0.017996475100517273,
0.03324628993868828,
0.06257264316082001,
0.006101947743445635,
-0.013983745127916336,
0.00962129607796669,
0.006157775409519672,
-0.026359863579273224,
-0.04338299483060837,
0.00976190622895956,
-0.040230244398117065,
-0.013792027719318867,
-0.011130173690617085,
0.010733459144830704,
-0.008854486979544163,
-0.04490787908434868,
0.05787322297692299,
0.014372378587722778,
0.0058935643173754215,
0.0036859672982245684,
0.056178461760282516,
-0.003910583443939686,
-0.011523027904331684,
0.0007438914035446942,
0.059111785143613815,
0.003957290202379227,
0.017594249919056892,
0.07167079299688339,
-0.026058297604322433,
-0.006038985680788755,
0.005015077069401741,
0.011058195494115353,
0.019993923604488373,
-0.02218940481543541,
-0.002508050063624978,
-0.01932937651872635,
0.01727476716041565,
-0.012976237572729588,
-0.05259145423769951,
0.004340050276368856,
-0.061754051595926285,
0.002920210827142,
-0.032565031200647354,
-0.0179948341101408,
-0.041739095002412796,
-0.03798925504088402,
-0.006939703598618507,
0.002263080794364214,
-0.004611315205693245,
-0.000269767246209085,
-0.002070910297334194,
0.0008935160585679114,
0.022657083347439766,
0.011847293935716152,
0.005328823812305927,
0.02406274527311325,
-0.006691372487694025,
0.028680473566055298,
-0.008801518939435482,
0.008998951874673367,
0.006024974398314953,
-0.009893229231238365,
0.038325387984514236,
0.054125070571899414,
-0.042609140276908875,
0.03367467597126961,
0.0036267770919948816,
0.014869449660182,
-0.022690877318382263,
-0.002254849299788475,
-0.011947705410420895,
0.0020764577202498913,
0.03366750106215477,
0.015139325521886349,
-0.011299915611743927,
0.018477965146303177,
0.04635995626449585,
0.035272017121315,
0.035119276493787766,
-0.013139838352799416,
-0.06136515736579895,
-0.005678053945302963,
-0.03422947973012924,
-0.007802973035722971,
0.030089272186160088,
0.005562233738601208,
0.00738099031150341,
0.042380236089229584,
-0.042422086000442505,
-0.0171810295432806,
-0.016687829047441483,
-0.03134456276893616,
0.01135904062539339,
-0.010372756980359554,
0.0016480586491525173,
-0.004903843626379967,
0.09054642170667648,
0.04598945006728172,
-0.003496935125440359,
0.023552462458610535,
0.014615525491535664,
-0.013954433612525463,
-0.006633801851421595,
-0.00560810836032033,
0.007775140926241875,
0.01723669283092022,
-0.02522464655339718,
-0.07342356443405151,
-0.016743581742048264,
0.004365431144833565,
0.024384168907999992,
0.0008345253299921751,
-0.06467940658330917,
0.004996520932763815,
-0.013854125514626503,
-0.008488895371556282,
0.025158729404211044,
-0.008425592444837093,
0.02099931240081787,
0.04238478094339371,
-0.008754074573516846,
0.004714399576187134,
-0.05761544033885002,
0.01915036328136921,
-0.026358673349022865,
0.026482580229640007,
0.03802092745900154,
0.03980571776628494,
-0.0070619829930365086,
-0.029764441773295403,
0.036618564277887344,
-0.022011976689100266,
-0.027207858860492706,
0.0003283283149357885,
0.00014319285401143134,
-0.023585285991430283,
-0.06517321616411209,
0.004290963523089886,
0.02725379355251789,
-0.005966823548078537,
0.002535464009270072,
-0.009292639791965485,
-0.012224890291690826,
-0.022710543125867844,
-0.027365904301404953,
-0.06045052409172058,
-0.00937127135694027,
-0.015318461693823338,
-0.02489634044468403,
0.024449793621897697,
0.015293952077627182,
0.013785254210233688,
0.003644661046564579,
-0.02797417901456356,
0.03098292089998722,
-0.0030310486909002066,
-0.031862303614616394,
-0.02003614790737629,
0.005059526767581701,
0.0328829400241375,
-0.011723383329808712,
-0.03775271400809288,
0.034929629415273666,
-0.011279109865427017,
-0.021067162975668907,
0.00972314365208149,
0.013522526249289513,
0.017693806439638138,
-0.036465395241975784,
0.02005895972251892,
-0.04167656600475311,
0.01686563529074192,
0.007411619648337364,
-0.040301449596881866,
-0.03363539278507233,
-0.006387018598616123
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | fairseq's tokenizer workings Let's understand howfairseq's tokenizer works.fairseq(*) uses the [Byte Pair Encoding](https://en.wikipedia.org/wiki/Byte_pair_encoding) (BPE) algorithm for tokenization. * footnote: from here on when I refer tofairseq, I refer [to this specific model implementation](https://github.com/pytorch/fairseq/tree/master/examples/wmt19) - thefairseqproject itself has dozens of different implementations of different models. Let's see what BPE does: ``` import torch sentence = "Machine Learning is great" checkpoint_file='model4.pt' model = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-ru', checkpoint_file=checkpoint_file, tokenizer='moses', bpe='fastbpe') # encode step by step tokens = model.tokenize(sentence) print("tokenize ", tokens) bpe = model.apply_bpe(tokens) print("apply_bpe: ", bpe) bin = model.binarize(bpe) print("binarize: ", len(bin), bin) # compare to model.encode - should give us the same output expected = model.encode(sentence) print("encode: ", len(expected), expected) ``` gives us: ``` ('tokenize ', 'Machine Learning is great') ('apply_bpe: ', 'Mach@@ ine Lear@@ ning is great') ('binarize: ', 7, tensor([10217, 1419, 3, 2515, 21, 1054, 2])) ('encode: ', 7, tensor([10217, 1419, 3, 2515, 21, 1054, 2])) ``` You can see thatmodel.encodedoestokenize+apply_bpe+binarize- as we get the same output. The steps were: 1.tokenize: normally it'd escape apostrophes and do other pre-processing, in this example it just returned the input sentence without any changes 2.apply_bpe: BPE splits the input into words and sub-words according to itsbpecodesfile supplied by the tokenizer - we get 6 BPE chunks 3.binarize: this simply remaps the BPE chunks from the previous step into their corresponding ids in the vocabulary (which is also downloaded with the model) You can refer to [this notebook](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/nbs/tokenizer.ipynb) to see more details. This is a good time to look inside thebpecodesfile. Here is the top of the file: ``` $ head -15 ~/porting/pytorch_fairseq_model/bpecodes e n</w> 1423551864 e r 1300703664 e r</w> 1142368899 i n 1130674201 c h 933581741 a n 845658658 t h 811639783 e n 780050874 u n 661783167 s t 592856434 e i 579569900 a r 494774817 a l 444331573 o r 439176406 th e</w> 432025210 [...] ``` The top entries of this file include very frequent short 1-letter sequences. As we will see in a moment the bottom includes the most common multi-letter sub-words and even full long words. A special tokenindicates the end of the word. So in several lines quoted above we find: ``` e n</w> 1423551864 e r</w> 1142368899 th e</w> 432025210 ``` If the second column doesn't include, it means that this segment is found in the middle of the word and not at the end of it. The last column declares the number of times this BPE code has been encountered while being trained. Thebpecodesfile is sorted by this column - so the most common BPE codes are on top. By looking at the counts we now know that when this tokenizer was trained it encountered 1,423,551,864 words ending inen, 1,142,368,899 words ending inerand 432,025,210 words ending inthe. For the latter it most likely means the actual wordthe, but it would also include words likelathe,loathe,tithe, etc. These huge numbers also indicate to us that this tokenizer was trained on an enormous amount of text! If we look at the bottom of the same file: ``` $ tail -10 ~/porting/pytorch_fairseq_model/bpecodes 4 x 109019 F ische</w> 109018 sal aries</w> 109012 e kt 108978 ver gewal 108978 Sten cils</w> 108977 Freiwilli ge</w> 108969 doub les</w> 108965 po ckets</w> 108953 Gö tz</w> 108943 ``` we see complex combinations of sub-words which are still pretty frequent, e.g.sal ariesfor 109,012 times! So it got its own dedicated entry in thebpecodesmap file. Howapply_bpedoes its work? By looking up the various combinations of letters in thebpecodesmap file and when finding the longest fitting entry it uses that. Going back to our example, we saw that it splitMachineinto:Mach@@+ine- let's check: ``` $ grep -i ^mach ~/porting/pytorch_fairseq_model/bpecodes mach ine</w> 463985 Mach t 376252 Mach ines</w> 374223 mach ines</w> 214050 Mach th 119438 ``` You can see that it hasmach ine. We don't seeMach inein there - so it must be handling lower cased look ups when normal case is not matching. Now let's check:Lear@@+ning``` $ grep -i ^lear ~/porting/pytorch_fairseq_model/bpecodes lear n</w> 675290 lear ned</w> 505087 lear ning</w> 417623 ``` We findlear ningis there (again the case is not the same). Thinking more about it, the case probably doesn't matter for tokenization, as long as there is a unique entry forMach/Learandmach/learin the dictionary where it's very critical to have each case covered. Hopefully, you can now see how this works. One confusing thing is that if you remember theapply_bpeoutput was: ``` ('apply_bpe: ', 6, ['Mach@@', 'ine', 'Lear@@', 'ning', 'is', 'great']) ``` Instead of marking endings of the words with, it leaves those as is, but, instead, marks words that were not the endings with@@. This is probably so, becausefastBPEimplementation is used byfairseqand that's how it does things. I had to change this to fit thetransformersimplementation, which doesn't usefastBPE. One last thing to check is the remapping of the BPE codes to vocabulary ids. To repeat, we had: ``` ('apply_bpe: ', 'Mach@@ ine Lear@@ ning is great') ('binarize: ', 7, tensor([10217, 1419, 3, 2515, 21, 1054, 2])) ```2- the last token id is aeos(end of stream) token. It's used to indicate to the model the end of input. And thenMach@@gets remapped to10217, andineto1419. Let's check that the dictionary file is in agreement: ``` $ grep ^Mach@@ ~/porting/pytorch_fairseq_model/dict.en.txt Mach@@ 6410 $ grep "^ine " ~/porting/pytorch_fairseq_model/dict.en.txt ine 88376 ``` Wait a second - those aren't the ids that we got afterbinarize, which should be10217and1419correspondingly. It took some investigating to find out that the vocab file ids aren't the ids used by the model and that internally it remaps them to new ids once the vocab file is loaded. Luckily, I didn't need to figure out how exactly it was done. Instead, I just usedfairseq.data.dictionary.Dictionary.loadto load the dictionary (*), which performed all the re-mappings, - and I then saved the final dictionary. I found out about thatDictionaryclass by stepping throughfairseqcode with debugger. * footnote: the more I work on porting models and datasets, the more I realize that putting the original code to work for me, rather than trying to replicate it, is a huge time saver and most importantly that code has already been tested - it's too easy to miss something and down the road discover big problems! After all, at the end, none of this conversion code will matter, since only the data it generated will be used bytransformersand its end users. Here is the relevant part of the conversion script: ``` from fairseq.data.dictionary import Dictionary def rewrite_dict_keys(d): # (1) remove word breaking symbol # (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} d2 = dict((re.sub(r"@@$", "", k), v) if k.endswith("@@") else (re.sub(r"$", "</w>", k), v) for k, v in d.items()) keep_keys = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del d2[f"{k}</w>"] d2[k] = d[k] # restore return d2 src_dict_file = os.path.join(fsmt_folder_path, f"dict.{src_lang}.txt") src_dict = Dictionary.load(src_dict_file) src_vocab = rewrite_dict_keys(src_dict.indices) src_vocab_size = len(src_vocab) src_vocab_file = os.path.join(pytorch_dump_folder_path, "vocab-src.json") print(f"Generating {src_vocab_file}") with open(src_vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(src_vocab, ensure_ascii=False, indent=json_indent)) # we did the same for the target dict - omitted quoting it here # and we also had to savebpecodes, it's calledmerges.txtin the transformers land ``` After running the conversion script, let's check the converted dictionary: ``` $ grep '"Mach"' /code/huggingface/transformers-fair-wmt/data/wmt19-en-ru/vocab-src.json "Mach": 10217, $ grep '"ine</w>":' /code/huggingface/transformers-fair-wmt/data/wmt19-en-ru/vocab-src.json "ine</w>": 1419, ``` We have the correct ids in thetransformersversion of the vocab file. As you can see I also had to re-write the vocabularies to match thetransformersBPE implementation. We have to change: ``` ['Mach@@', 'ine', 'Lear@@', 'ning', 'is', 'great'] ``` to: ``` ['Mach', 'ine</w>', 'Lear', 'ning</w>', 'is</w>', 'great</w>'] ``` Instead of marking chunks that are segments of a word, with the exception of the last segment, we mark segments or words that are the final segment. One can easily go from one style of encoding to another and back. This successfully completed the porting of the first part of the model files. You can see the final version of the code [here](https://github.com/huggingface/transformers/blob/129fdae04033fe4adfe013b734deaec6ec34ae2e/src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py#L128). If you're curious to look deeper there are more tinkering bits in [this notebook](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/nbs/tokenizer-dev.ipynb). | [
0.012999888509511948,
0.00003182008003932424,
0.030631665140390396,
-0.03920295462012291,
0.03577396646142006,
0.05611729249358177,
0.025367390364408493,
0.032623060047626495,
-0.04281621426343918,
0.039725739508867264,
-0.08109395205974579,
-0.006684427615255117,
0.02420806512236595,
0.05291314423084259,
-0.03340042382478714,
0.04203421249985695,
0.040650516748428345,
-0.02892518974840641,
-0.023853907361626625,
-0.0378132089972496,
0.001245106104761362,
-0.002997152740135789,
0.09032613039016724,
0.006670819595456123,
-0.009055586531758308,
-0.03610352799296379,
-0.04697598144412041,
-0.018220728263258934,
-0.025026623159646988,
0.027210496366024017,
-0.08355071395635605,
-0.06375445425510406,
-0.016423849388957024,
-0.07057985663414001,
-0.005669882055372,
0.0036183588672429323,
-0.10942152142524719,
0.032564353197813034,
0.06650150567293167,
-0.021424127742648125,
-0.04633916914463043,
-0.01493646577000618,
-0.04608459398150444,
0.07820326834917068,
-0.018722325563430786,
0.011343740858137608,
-0.09699229896068573,
0.02639632672071457,
-0.03142118081450462,
-0.014137073419988155,
-0.061315346509218216,
-0.0023995821829885244,
-0.07948314398527145,
0.057542622089385986,
0.011687478050589561,
0.005368315614759922,
-0.05569090321660042,
-0.03683855012059212,
0.08120956271886826,
0.03939196094870567,
0.03591751679778099,
0.011122399941086769,
0.020237719640135765,
-0.001647177035920322,
0.03974492475390434,
0.02405601367354393,
-0.05168985575437546,
0.054528526961803436,
0.008003249764442444,
-0.0058874827809631824,
-0.002409079112112522,
0.016203638166189194,
-0.007743933238089085,
-0.04323737323284149,
-0.023893535137176514,
-0.0514734722673893,
-0.026742085814476013,
-0.035473693162202835,
0.04583754017949104,
0.08112380653619766,
-0.03137525916099548,
0.06479994207620621,
0.05219721421599388,
-0.0038988804444670677,
0.022334404289722443,
0.0016812303801998496,
-0.017506491392850876,
-0.04139763489365578,
-0.02709849365055561,
0.0004469245614018291,
-0.04022294282913208,
-0.13823963701725006,
-0.05045801028609276,
0.06871874630451202,
-0.026101049035787582,
0.017699163407087326,
0.03929278999567032,
0.07874275743961334,
-0.001738145132549107,
0.019457682967185974,
-0.046081144362688065,
-0.09103299677371979,
0.05539414659142494,
-0.0011923240963369608,
-0.01607614941895008,
0.057689178735017776,
-0.028547991067171097,
-0.07544266432523727,
-0.0033343646209686995,
-0.0037818036507815123,
0.03271862864494324,
-0.027652181684970856,
-0.03656734898686409,
0.07902239263057709,
-0.048020221292972565,
0.009515166282653809,
-0.02575293742120266,
0.015133706852793694,
0.010492458939552307,
0.07764583081007004,
-0.023069582879543304,
0.10143062472343445,
0.09398018568754196,
-0.02521192468702793,
0.014774161390960217,
0.01320808194577694,
0.02936762012541294,
0.029460236430168152,
-0.05902514606714249,
-0.04455443099141121,
-0.003824805375188589,
-0.0048099844716489315,
0.04941002279520035,
-0.013626495376229286,
0.011450720950961113,
-0.00016468226385768503,
0.008766114711761475,
-0.04396269842982292,
-0.041415873914957047,
-0.029048345983028412,
-0.08353554457426071,
0.07283052057027817,
0.023952752351760864,
0.030000654980540276,
0.012050599791109562,
0.05017320439219475,
-0.06332921981811523,
0.11578338593244553,
-0.010488027706742287,
0.015292303636670113,
-0.008879542350769043,
0.024920912459492683,
0.054314304143190384,
-0.05090592801570892,
0.008423340506851673,
0.008503952994942665,
-0.026727041229605675,
-0.01490851305425167,
-0.011001337319612503,
-0.039322808384895325,
-0.05448498576879501,
-0.06023182347416878,
-0.04850887879729271,
-0.047309327870607376,
-0.05030131712555885,
0.02847359888255596,
0.02495112456381321,
0.02006201446056366,
-0.0005724246148020029,
0.03281218931078911,
0.08440915495157242,
-0.03997617959976196,
0.0511164665222168,
-0.0501297265291214,
-0.024183500558137894,
0.05309004336595535,
-0.017904845997691154,
0.06494379043579102,
0.02902127243578434,
-0.03014220856130123,
-0.04565451294183731,
0.023952361196279526,
-0.04588286206126213,
0.020344799384474754,
0.023853057995438576,
-0.06794436275959015,
-0.007108885794878006,
-0.033274367451667786,
0.05025971680879593,
0.09023995697498322,
-0.07495284080505371,
0.011216901242733002,
0.05876939371228218,
-0.08284100145101547,
-0.042817480862140656,
-0.04444234445691109,
-0.003829427994787693,
0.07802043110132217,
-0.01305001974105835,
-0.003916311543434858,
0.03498739376664162,
-0.022818710654973984,
0.019646083936095238,
-0.05160451680421829,
-0.04783812537789345,
0.02611808478832245,
0.001507243956439197,
-0.06891388446092606,
0.047937534749507904,
0.023535732179880142,
0.018985731527209282,
-0.06198316067457199,
0.008229350671172142,
-0.07566379010677338,
-0.0004685657622758299,
-0.005485652945935726,
0.001470580231398344,
0.02321382611989975,
0.025524787604808807,
-0.022162949666380882,
0.18574552237987518,
-0.11116006970405579,
0.03820378705859184,
-0.04947289451956749,
0.02784300036728382,
0.04989936947822571,
0.07072204351425171,
0.01100545097142458,
0.05075172334909439,
-0.05567473545670509,
0.0029429132118821144,
-0.0330425500869751,
0.009577116928994656,
0.022483818233013153,
-0.10088756680488586,
-0.03516662120819092,
0.029168643057346344,
0.04359038546681404,
0.04085328429937363,
-0.03908373415470123,
0.01794249750673771,
0.04934683069586754,
-0.04520212486386299,
-0.028756944462656975,
-0.004226848483085632,
0.057077568024396896,
0.11840188503265381,
-0.03269140422344208,
-0.030278626829385757,
-0.02576717920601368,
-0.011057600378990173,
0.04144029691815376,
-0.036301013082265854,
-0.03184577822685242,
0.037965089082717896,
0.05037326738238335,
0.05926201492547989,
-0.038242511451244354,
0.021639419719576836,
0.01878505013883114,
-0.00003481188468867913,
-0.012057612650096416,
-0.0337938591837883,
-0.04063340649008751,
-0.018412819132208824,
-0.015496929176151752,
0.008168589323759079,
0.018884729593992233,
0.004593053832650185,
0.02042379602789879,
0.003107370575889945,
0.01728356070816517,
0.02553846314549446,
-0.007470757234841585,
0.0437612421810627,
0.048184048384428024,
0.0003540863108355552,
-0.07415051013231277,
-0.011894850991666317,
-0.022706545889377594,
-0.00905119813978672,
-0.008891040459275246,
0.03420139476656914,
0.04626332223415375,
-0.00861490610986948,
0.022972917184233665,
0.007818995043635368,
-0.04692729189991951,
-0.05982643738389015,
0.045051515102386475,
0.025285877287387848,
0.011995730921626091,
0.044644374400377274,
-0.014883259311318398,
-0.008715174160897732,
0.0033959064166992903,
-0.040005162358284,
0.003419413696974516,
0.007184617221355438,
0.039716869592666626,
-0.03196768835186958,
-0.01237878855317831,
-0.02209881693124771,
-0.016216320917010307,
-0.047712527215480804,
0.005494791083037853,
-0.026380054652690887,
0.010144537314772606,
-0.07788200676441193,
0.017647748813033104,
-0.01185101643204689,
0.010280495509505272,
-0.011571592651307583,
-0.013369795866310596,
0.05435088649392128,
0.028539150953292847,
-0.010436990298330784,
0.021792538464069366,
0.026667186990380287,
-0.019674895331263542,
-0.005663963500410318,
0.02205510437488556,
-0.021117208525538445,
0.02911483868956566,
-0.032377827912569046,
0.017588600516319275,
-0.041890501976013184,
-0.01908600889146328,
-0.006014599464833736,
0.027784358710050583,
-0.05048920586705208,
-0.040460653603076935,
0.00743165984749794,
-0.01350086648017168,
0.028402578085660934,
0.005460573825985193,
0.0015777841908857226,
-0.028422310948371887,
-0.04909564554691315,
0.011814214289188385,
0.04480091482400894,
-0.02640802413225174,
-0.04986520856618881,
-0.03144203498959541,
0.007568253204226494,
-0.043893277645111084,
-0.03038553148508072,
0.022508496418595314,
-0.012957999482750893,
0.04935227334499359,
0.034537311643362045,
-0.054625026881694794,
0.014379684813320637,
-0.031568411737680435,
-0.02709975838661194,
-0.024138059467077255,
0.040263861417770386,
-0.058831583708524704,
-0.01330993976444006,
-0.028620200231671333,
0.016499027609825134,
0.05574367195367813,
0.010018127970397472,
-0.016666710376739502,
-0.024997875094413757,
0.005076911300420761,
0.06241586431860924,
0.011081420816481113,
-0.08041878044605255,
0.021827220916748047,
-0.026793770492076874,
-0.05071891471743584,
-0.03212569281458855,
0.05124760791659355,
0.012871664948761463,
-0.0018306220881640911,
-0.0018806683365255594,
0.01204754039645195,
-0.03954927623271942,
0.033077869564294815,
-0.0005038288654759526,
0.00758419930934906,
0.028583208099007607,
0.021738171577453613,
-0.017229551449418068,
-0.04436417296528816,
0.009808661416172981,
0.03946000337600708,
0.001425774535164237,
-0.014532387256622314,
-0.005753862671554089,
-0.01413392648100853,
0.0037028412334620953,
-0.014353569597005844,
-0.012304051779210567,
-0.03667619824409485,
0.002526721218600869,
0.006729558575898409,
0.014739548787474632,
-0.012568882666528225,
0.016379039734601974,
0.054701101034879684,
-0.026399405673146248,
-0.02614608034491539,
0.001890325453132391,
0.021953077986836433,
0.0021226415410637856,
0.007910764776170254,
-0.0067605432122945786,
-0.08474569022655487,
-0.027893569320440292,
-0.006098393350839615,
0.002165356185287237,
0.007307313848286867,
-0.05307542532682419,
-0.009599665179848671,
0.017391741275787354,
0.04259577766060829,
-0.012511145323514938,
0.010915410704910755,
-0.01813056506216526,
-0.017897265031933784,
0.04518115147948265,
-0.016742248088121414,
0.02733447402715683,
-0.035095930099487305,
0.023411890491843224,
-0.020374363288283348,
-0.026734748855233192,
-0.0033360670786350965,
0.024100495502352715,
0.0051406132988631725,
-0.0029494925402104855,
-0.013690262101590633,
0.027203690260648727,
-0.0151036586612463,
0.04053514823317528,
-0.01670660637319088,
-0.08555421978235245,
0.030713828280568123,
0.026799257844686508,
-0.014260439202189445,
0.013809800148010254,
0.03731366619467735,
0.016496198251843452,
-0.008628176525235176,
0.01988433115184307,
-0.05150213465094566,
-0.012337462045252323,
-0.012845389544963837,
0.018162289634346962,
-0.034165650606155396,
0.018449826166033745,
0.03566107898950577,
-0.01467007678002119,
-0.012872307561337948,
-0.04630514979362488,
0.010407141409814358,
0.05926508083939552,
-0.01259816437959671,
-0.008857274428009987,
-0.018960436806082726,
0.0392884835600853,
-0.02934773452579975,
0.009007954970002174,
0.0018255331087857485,
0.016160041093826294,
0.0006860009161755443,
-0.008199180476367474,
-0.021602539345622063,
-0.03158941492438316,
0.031403880566358566,
0.017570791766047478,
-0.03284712880849838,
-0.012855913490056992,
-0.05018341913819313,
-0.027261503040790558,
0.0030718587804585695,
-0.020461110398173332,
0.0031690034084022045,
-0.008407467044889927,
-0.024685382843017578,
0.025989769026637077,
0.031637996435165405,
0.011846777983009815,
0.021831780672073364,
-0.03557416424155235,
-0.01452886313199997,
-0.0027227234095335007,
0.027525030076503754,
0.040910348296165466,
-0.02946668118238449,
-0.01962248608469963,
0.05213820934295654,
0.057201649993658066,
0.03447513282299042,
-0.009815244004130363,
0.021365022286772728,
0.03172050043940544,
-0.011460385285317898,
-0.00024601921904832125,
-0.00497376499697566,
-0.045117273926734924,
-0.03545089438557625,
-0.017579540610313416,
0.009287950582802296,
-0.03979033604264259,
-0.015078451484441757,
0.023258570581674576,
0.03833729773759842,
0.03126603737473488,
-0.030657455325126648,
0.0069945440627634525,
-0.052436165511608124,
-0.014629969373345375,
-0.03406737744808197,
0.012168134562671185,
-0.05550026521086693,
0.01858474500477314,
0.0016258707037195563,
-0.02575787715613842,
-0.01718534156680107,
0.0010020831832662225,
-0.0021497104316949844,
-0.009007930755615234,
0.03580110892653465,
-0.004797258879989386,
0.06216665729880333,
-0.016771700233221054,
-0.009859558194875717,
-0.016056591644883156,
0.013321572914719582,
0.032590676099061966,
-0.01331614051014185,
0.014433079399168491,
0.010775264352560043,
0.03461325541138649,
0.031421929597854614,
0.02775038778781891,
-0.013467605225741863,
-0.003038114635273814,
0.011890890076756477,
-0.01571779139339924,
-0.015791188925504684,
0.0017502176342532039,
-0.005542488303035498,
0.023713549599051476,
0.006871163845062256,
0.04666471853852272,
-0.032209958881139755,
-0.010087448172271252,
0.01752026192843914,
-0.0346660315990448,
0.022374950349330902,
0.02940879575908184,
-0.022904178127646446,
0.031201574951410294,
0.014710905961692333,
0.03160976618528366,
-0.015962833538651466,
-0.007975797168910503,
0.009326678700745106,
0.04292338714003563,
0.03073657490313053,
0.08693138509988785,
-0.0014303846983239055,
0.007709234952926636,
0.009415733627974987,
0.05994595214724541,
-0.05919612571597099,
-0.0021550978999584913,
0.021482525393366814,
-0.028391387313604355,
0.04294693470001221,
-0.010819128714501858,
-0.03135642036795616,
0.0023810616694390774,
-0.002177851740270853,
0.020195642486214638,
-0.007439394015818834,
0.0021794727072119713,
0.057858847081661224,
-0.03233691304922104,
0.015488560311496258,
0.004236641805619001,
0.08976216614246368,
-0.03640782833099365,
0.04194890335202217,
0.0023320068139582872,
0.005536402575671673,
0.0025889903772622347,
0.008053668774664402,
-0.0028336658142507076,
-0.001077562104910612,
0.07047014683485031,
0.012553946115076542,
0.029662001878023148,
0.044887445867061615,
0.039309728890657425,
0.0014480534009635448,
-0.033782895654439926,
-0.02129262313246727,
0.00260772998444736,
0.022853733971714973,
0.040842581540346146,
-0.003941952250897884,
0.041166290640830994,
-0.008880874142050743,
0.031301602721214294,
0.015360224060714245,
0.05255916342139244,
-0.03114614263176918,
0.02246355637907982,
0.0224996879696846,
0.01583668403327465,
0.05585342273116112,
-0.007448019925504923,
-0.008884343318641186,
0.037257250398397446,
0.08653276413679123,
0.05176592245697975,
0.007402883376926184,
0.0064642163924872875,
-0.044465504586696625,
0.02211678959429264,
0.004796092864125967,
-0.034883856773376465,
0.015802327543497086,
0.0407397598028183,
-0.02324485220015049,
0.013558292761445045,
0.026286721229553223,
0.013651544228196144,
0.020238764584064484,
-0.013887627981603146,
-0.02463984489440918,
-0.006361707113683224,
0.0016696483362466097,
-0.009271879680454731,
0.04330552741885185,
0.00017772453429643065,
-0.07911139726638794,
-0.024723950773477554,
0.006965907756239176,
-0.0009270181762985885,
0.03860422596335411,
-0.035571739077568054,
-0.008318689651787281,
-0.012615814805030823,
-0.016830993816256523,
-0.02926100231707096,
-0.004476380068808794,
-0.018993165343999863,
0.025955315679311752,
0.01883259415626526,
0.031193289905786514,
0.017859693616628647,
0.00689266761764884,
0.005048171617090702,
0.030620379373431206,
-0.015303230844438076,
0.005843724589794874,
-0.02187645249068737,
-0.014058982022106647,
0.04372865706682205,
-0.0011386744445189834,
0.014678058214485645,
0.011586744338274002,
0.011766928248107433,
0.04257091507315636,
0.03671566769480705,
-0.024146489799022675,
-0.06600145995616913,
-0.026532629504799843,
-0.021643176674842834,
-0.032443203032016754,
-0.01863854192197323,
0.03385510295629501,
0.03891878202557564,
-0.014138898812234402,
-0.0013449748512357473,
-0.019328143447637558,
0.018159501254558563,
-0.003125166753306985,
0.03164025396108627,
-0.015602443367242813,
-0.03447205573320389,
-0.03826019912958145,
0.0699688121676445,
0.019423391669988632,
0.02682298794388771,
0.06978238373994827,
0.0024218549951910973,
0.011546035297214985,
0.025456627830863,
0.022449389100074768,
-0.07445990294218063,
-0.0066949957981705666,
0.015163475647568703,
-0.017976107075810432,
0.010326571762561798,
0.03290804475545883,
-0.020021922886371613,
0.04101186245679855,
-0.021842967718839645,
0.03812475502490997,
-0.010140583850443363,
-0.012736255303025246,
0.009015464223921299,
-0.022319331765174866,
0.06811936944723129,
0.023874739184975624,
-0.008799855597317219,
0.011577164754271507,
-0.04529157280921936,
-0.006154712755233049,
-0.006014305166900158,
0.002302295295521617,
0.0946393758058548,
-0.010699321515858173,
0.0015563450288027525,
0.014592421241104603,
0.013063641265034676,
-0.021944085136055946,
-0.02713966928422451,
0.0014838080387562513,
-0.011748824268579483,
0.010996183380484581,
-0.021854940801858902,
0.05495890602469444,
0.006802846677601337,
-0.008486787788569927,
0.01302457507699728,
-0.013677025213837624,
0.03490221127867699,
0.004408420063555241,
-0.00684813316911459,
-0.08084419369697571,
-0.012343153357505798,
-0.02747245691716671,
-0.02157185599207878,
0.0030720429494976997,
0.018852150067687035,
0.03395272418856621,
0.031470175832509995,
-0.026394261047244072,
-0.044960811734199524,
-0.00581604428589344,
-0.005409395322203636,
-0.011099005118012428,
-0.018020877614617348,
0.03585308790206909,
-0.01377890445291996,
-0.03978973254561424,
0.06429726630449295,
-0.017961876466870308,
-0.037071343511343,
0.010463823564350605,
0.004593485035002232,
-0.005636336747556925,
-0.006970626302063465,
-0.0005532934446819127,
0.006449602544307709,
0.053130317479372025,
0.024287572130560875,
0.004936284851282835,
-0.0035740849561989307,
-0.007910584099590778
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Porting tokenizer's encoder to transformerstransformerscan't rely on [fastBPE](https://github.com/glample/fastBPE) since the latter requires a C-compiler, but luckily someone already implemented a python version of the same in [tokenization_xlm.py](https://github.com/huggingface/transformers/blob/master/src/transformers/tokenization_xlm.py). So I just copied it tosrc/transformers/tokenization_fsmt.pyand renamed the class names: ``` cp tokenization_xlm.py tokenization_fsmt.py perl -pi -e 's|XLM|FSMT|ig; s|xlm|fsmt|g;' tokenization_fsmt.py ``` and with very few changes I had a working encoder part of the tokenizer. There was a lot of code that didn't apply to the languages I needed to support, so I removed that code. Since I needed 2 different vocabularies, instead of one here in tokenizer and everywhere else I had to change the code to support both. So for example I had to override the super-class' methods: ``` def get_vocab(self) -> Dict[str, int]: return self.get_src_vocab() @property def vocab_size(self) -> int: return self.src_vocab_size ``` Sincefairseqdidn't usebos(beginning of stream) tokens, I also had to change the code to not include those (*): ``` - return bos + token_ids_0 + sep - return bos + token_ids_0 + sep + token_ids_1 + sep + return token_ids_0 + sep + return token_ids_0 + sep + token_ids_1 + sep ``` * footnote: this is the output ofdiff(1)which shows the difference between two chunks of code - lines starting with-show what was removed, and with+what was added.fairseqwas also escaping characters and performing an aggressive dash splitting, so I had to also change: ``` - [...].tokenize(text, return_str=False, escape=False) + [...].tokenize(text, return_str=False, escape=True, aggressive_dash_splits=True) ``` If you're following along, and would like to see all the changes I did to the originaltokenization_xlm.py, you can do: ``` cp tokenization_xlm.py tokenization_orig.py perl -pi -e 's|XLM|FSMT|g; s|xlm|fsmt|g;' tokenization_orig.py diff -u tokenization_orig.py tokenization_fsmt.py | less ``` Just make sure you're checking out the repository [around the time fsmt was released](https://github.com/huggingface/transformers/tree/129fdae04033fe4adfe013b734deaec6ec34ae2e), since the 2 files could have diverged since then. The final stage was to run through a bunch of inputs and to ensure that the ported tokenizer produced the same ids as the original. You can see this is done in [this notebook](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/nbs/tokenizer.ipynb), which I was running repeatedly while trying to figure out how to make the outputs match. This is how most of the porting process went, I'd take a small feature, run it thefairseq-way, get the outputs, do the same with thetransformerscode, try to make the outputs match - fiddle with the code until it did, then try a different kind of input make sure it produced the same outputs, and so on, until all inputs produced outputs that matched. | [
-0.020947039127349854,
0.010850591585040092,
-0.0009285052074119449,
-0.021306099370121956,
0.01673845201730728,
0.03399822860956192,
0.021946053951978683,
0.012619519606232643,
-0.0019273069920018315,
0.059480804949998856,
-0.09401310980319977,
0.04887640103697777,
-0.019073136150836945,
0.05917089432477951,
0.040025513619184494,
0.028307054191827774,
0.03067711926996708,
0.0025419776793569326,
0.04208644479513168,
0.009790127165615559,
-0.008101997897028923,
-0.036977507174015045,
0.05572398751974106,
0.0025823120959103107,
-0.028815506026148796,
-0.033718377351760864,
-0.04635366052389145,
0.04351727291941643,
-0.044632792472839355,
0.020495444536209106,
-0.08638586848974228,
-0.01342440489679575,
0.019787082448601723,
-0.011241262778639793,
-0.009083857759833336,
-0.00450539868324995,
-0.15815246105194092,
-0.008530333638191223,
0.01838335022330284,
0.03759784251451492,
-0.013066377490758896,
0.004749728366732597,
-0.023921631276607513,
0.06517452746629715,
0.015144086442887783,
0.016548199579119682,
-0.161280557513237,
0.06495273858308792,
-0.040015026926994324,
-0.02382340095937252,
-0.0337231419980526,
0.025936003774404526,
-0.016003375872969627,
0.03917407616972923,
0.03490254282951355,
-0.0022289289627224207,
-0.05325242877006531,
-0.07110469788312912,
0.009680322371423244,
-0.013006146065890789,
0.009742251597344875,
-0.00033876587986014783,
0.0030796248465776443,
0.002847149968147278,
0.06180576980113983,
0.06442859023809433,
-0.08120536059141159,
0.007039710413664579,
-0.04027024284005165,
-0.05200674384832382,
0.004244898911565542,
-0.026750201359391212,
-0.010599725879728794,
-0.014647596515715122,
-0.01675770804286003,
-0.08099900186061859,
0.00036463444121181965,
0.01532729808241129,
0.06756916642189026,
0.08965221047401428,
0.020955871790647507,
0.04438058286905289,
0.042326707392930984,
0.03314869850873947,
0.05181248113512993,
0.004758269060403109,
0.02538440003991127,
-0.07743033021688461,
-0.03016987442970276,
0.04250533506274223,
-0.05030437558889389,
-0.13462360203266144,
-0.10184197872877121,
0.029991216957569122,
0.017751434817910194,
0.029399743303656578,
-0.0029415523167699575,
0.05962001532316208,
-0.0183595921844244,
-0.0152763482183218,
0.006307096220552921,
-0.05237564072012901,
0.012393024750053883,
-0.037363436073064804,
0.02090732753276825,
-0.01716729626059532,
-0.03130914270877838,
-0.07378249615430832,
0.006721563171595335,
-0.04918709769845009,
0.09368540346622467,
-0.025416051968932152,
-0.007654900196939707,
0.06353612244129181,
-0.04843948408961296,
0.01735031045973301,
0.009521400555968285,
-0.02472759038209915,
-0.008897111751139164,
0.027558250352740288,
-0.01507239043712616,
0.1302400529384613,
0.01701122522354126,
-0.04344873130321503,
0.018975360319018364,
0.10283078253269196,
0.02103135734796524,
0.05910172313451767,
0.022272225469350815,
-0.04697353020310402,
0.006002152804285288,
0.02747352421283722,
0.07101473957300186,
-0.0008339277119375765,
0.003093175822868943,
-0.07558902353048325,
0.0009459687280468643,
-0.06755100935697556,
-0.0765770822763443,
-0.023728888481855392,
-0.05230950191617012,
0.0802660882472992,
-0.032604049891233444,
0.012009276077151299,
-0.0219851266592741,
0.0746367797255516,
-0.11165237426757812,
0.11479783803224564,
0.0016167695866897702,
-0.02015867456793785,
-0.05526351556181908,
-0.008752761408686638,
0.01351169403642416,
-0.0028288671746850014,
0.015274829231202602,
0.08113091439008713,
-0.011321607045829296,
-0.015348901972174644,
-0.09499730914831161,
0.023731352761387825,
-0.08183372020721436,
0.03938420116901398,
-0.05149776488542557,
-0.001748027396388352,
-0.03007449395954609,
-0.04890016093850136,
-0.009291168302297592,
0.014504581689834595,
0.012675628066062927,
0.003545391606166959,
0.0752476155757904,
-0.017664160579442978,
0.010588129982352257,
-0.024638058617711067,
0.005158731248229742,
0.026737531647086143,
0.019113842397928238,
0.0527203269302845,
-0.011304061859846115,
-0.029685314744710922,
-0.06356494128704071,
0.0422956608235836,
-0.021654702723026276,
0.05050193518400192,
-0.0003676078631542623,
-0.05154770240187645,
0.004267894197255373,
-0.017213281244039536,
-0.0006382836145348847,
0.057229846715927124,
-0.055331457406282425,
-0.06572268158197403,
0.05144768953323364,
0.003131115809082985,
0.006275393068790436,
-0.005886753089725971,
-0.013577437959611416,
0.06703038513660431,
0.015460047870874405,
0.039000920951366425,
0.007271154318004847,
-0.018953850492835045,
-0.04543524608016014,
-0.015105120837688446,
-0.01646270602941513,
0.017510728910565376,
-0.017970234155654907,
-0.0636538565158844,
0.0334806926548481,
0.028890429064631462,
0.048811208456754684,
-0.05584472417831421,
0.04980502650141716,
-0.09241326153278351,
0.013628821820020676,
-0.03304214030504227,
-0.042485155165195465,
-0.0021673012524843216,
0.031550388783216476,
-0.018834110349416733,
0.135141983628273,
-0.11619042605161667,
-0.0033226723317056894,
-0.04852858930826187,
-0.01678263209760189,
0.013846248388290405,
0.06312208622694016,
0.008539245463907719,
0.08060166984796524,
-0.06953717023134232,
-0.04028967767953873,
-0.038611799478530884,
-0.033905353397130966,
-0.008169465698301792,
-0.03384707495570183,
-0.029204189777374268,
-0.007800272665917873,
-0.020200401544570923,
-0.005261461716145277,
0.0007106076809577644,
-0.01437010895460844,
-0.02184939756989479,
-0.02415315806865692,
-0.058569278568029404,
-0.006188570987433195,
0.05149675905704498,
0.065972700715065,
-0.0005149906501173973,
0.01718025468289852,
0.0078024123795330524,
-0.08474759012460709,
0.04895320162177086,
0.020897168666124344,
-0.09940110892057419,
0.018630681559443474,
0.08469060063362122,
-0.019841711968183517,
-0.019438566640019417,
-0.01789218746125698,
0.021167520433664322,
-0.018066052347421646,
0.0001540735102025792,
-0.07504352927207947,
-0.06177974492311478,
-0.05157287046313286,
-0.020491475239396095,
-0.03400345891714096,
0.07809337973594666,
-0.028691010549664497,
0.007117000408470631,
0.00898082833737135,
-0.0014387546107172966,
0.031045090407133102,
0.005837987642735243,
0.03715495765209198,
0.030578067526221275,
0.03843214362859726,
-0.028491323813796043,
-0.05149288475513458,
-0.010122413747012615,
0.03485526144504547,
-0.04380373656749725,
0.02757059410214424,
0.042812515050172806,
-0.022766657173633575,
0.04045679420232773,
0.01765335351228714,
-0.02362089604139328,
-0.018127311021089554,
-0.0037814790848642588,
0.0045898472890257835,
0.04440823942422867,
0.02821424975991249,
-0.02832741104066372,
-0.03829703852534294,
0.035549603402614594,
0.006929147522896528,
0.0225173719227314,
0.004391693975776434,
0.04931582510471344,
-0.03485459089279175,
0.018058646470308304,
0.013903019018471241,
0.00932706706225872,
-0.03547724336385727,
0.01837361417710781,
-0.020812392234802246,
-0.001942124217748642,
-0.08705639094114304,
-0.002153168898075819,
-0.01911488175392151,
0.04328847676515579,
-0.015244635753333569,
-0.005749596282839775,
0.0313933901488781,
0.005025065504014492,
-0.011089326813817024,
0.007911263965070248,
0.04244670644402504,
0.013275666162371635,
0.001181746949441731,
0.006439481861889362,
0.006507813464850187,
-0.02660222165286541,
-0.017434606328606606,
0.017571570351719856,
0.031148478388786316,
-0.0035486926790326834,
-0.023949092254042625,
0.001529993605799973,
-0.0029740394093096256,
-0.020860206335783005,
0.01097191870212555,
-0.009357583709061146,
0.049358002841472626,
-0.01178660523146391,
0.039786554872989655,
-0.04676826298236847,
-0.010092836804687977,
-0.006206421181559563,
0.045540571212768555,
-0.020883554592728615,
-0.03810179606080055,
-0.009869124740362167,
-0.002072924980893731,
-0.028459949418902397,
-0.013526380993425846,
0.022876253351569176,
0.004054781049489975,
-0.016798149794340134,
0.039573125541210175,
-0.046551622450351715,
0.06732858717441559,
-0.023860342800617218,
0.0007653160719200969,
-0.05211840569972992,
-0.0014342722715809941,
-0.010847977362573147,
-0.012494704686105251,
-0.030953874811530113,
0.030463648959994316,
0.03592389449477196,
0.030696675181388855,
0.013598167337477207,
-0.026670081540942192,
0.018575390800833702,
0.010268077254295349,
0.032298777252435684,
-0.0368640199303627,
0.02804139256477356,
-0.04404386505484581,
-0.031578920781612396,
-0.03261598199605942,
0.08136400580406189,
0.0327594093978405,
0.009506220929324627,
-0.022401239722967148,
0.03661707043647766,
-0.060950689017772675,
0.016302337870001793,
0.013416537083685398,
0.013545941561460495,
-0.01231361087411642,
0.015111600048840046,
-0.06641838699579239,
-0.03880010545253754,
0.03099672682583332,
0.006539335008710623,
-0.031440842896699905,
0.0031109654810279608,
-0.0038855334278196096,
0.024378862231969833,
-0.02510085515677929,
-0.0011849722359329462,
0.02259516529738903,
-0.006075057201087475,
0.04083332046866417,
0.011651135981082916,
0.01191710215061903,
-0.0010134385665878654,
-0.018251465633511543,
-0.028989184647798538,
-0.014364120550453663,
-0.006955316290259361,
0.019839176908135414,
-0.010068031027913094,
-0.007884755730628967,
0.028580719605088234,
0.027443770319223404,
-0.08318191766738892,
0.008928872644901276,
-0.025392329320311546,
0.004032779484987259,
-0.0290977843105793,
-0.043756235390901566,
-0.031214796006679535,
0.03597041592001915,
0.004003041423857212,
0.02143918164074421,
-0.026738546788692474,
-0.04628315195441246,
-0.0015018874546512961,
0.040529124438762665,
0.03294195979833603,
-0.002270919270813465,
-0.03527937829494476,
-0.022681880742311478,
0.0024814254138618708,
-0.02373604103922844,
0.0046235970221459866,
0.020330458879470825,
0.009668022394180298,
0.03683551400899887,
-0.005395710002630949,
0.06424246728420258,
0.035849250853061676,
-0.000561447930522263,
0.0049489689990878105,
-0.03181799128651619,
0.0014073365600779653,
0.026936262845993042,
0.013020014390349388,
0.05518616735935211,
0.02480875700712204,
0.007149550132453442,
-0.023186778649687767,
0.03528459370136261,
-0.01317964494228363,
-0.06044699624180794,
-0.010249823331832886,
0.03872670233249664,
-0.022784456610679626,
0.023267067968845367,
0.012790141627192497,
0.001872153952717781,
-0.002052685711532831,
0.009418954141438007,
-0.008347311057150364,
0.03594514727592468,
-0.031358860433101654,
0.0027017896063625813,
0.0033883745782077312,
0.016826676204800606,
-0.029663102701306343,
0.036055613309144974,
0.03389773890376091,
0.02192811295390129,
0.03179336339235306,
-0.01832965575158596,
0.0061737229116261005,
-0.0024105890188366175,
-0.009582486003637314,
0.020808061584830284,
-0.006467961706221104,
-0.006684608291834593,
-0.09076163172721863,
-0.023816928267478943,
0.007354448549449444,
-0.016021426767110825,
0.030191145837306976,
0.036146242171525955,
-0.03035888820886612,
0.007888510823249817,
0.06063259765505791,
0.0244352538138628,
0.008442199788987637,
-0.02211202122271061,
0.017088374122977257,
0.003517771139740944,
0.01611056551337242,
0.041014663875103,
-0.02678423374891281,
-0.039282191544771194,
0.03640371188521385,
0.06929098814725876,
0.0629950538277626,
0.012819008901715279,
0.027799779549241066,
-0.029499726369976997,
-0.009707313030958176,
-0.0038911225274205208,
0.004125824198126793,
-0.022962147369980812,
-0.06476900726556778,
-0.030762791633605957,
-0.010449867695569992,
-0.035036999732255936,
0.0034471568651497364,
0.03130064904689789,
0.007701594848185778,
0.008596077561378479,
-0.0219682939350605,
0.010243961587548256,
-0.00895470567047596,
0.0025508515536785126,
-0.04116469621658325,
0.0039059233386069536,
-0.05432815104722977,
0.01980419084429741,
0.023897813633084297,
-0.008920826017856598,
0.005069579929113388,
0.04208666831254959,
-0.013684521429240704,
0.011390195228159428,
0.018037835136055946,
-0.015075433067977428,
0.03898732736706734,
-0.013338019140064716,
0.005063020158559084,
-0.011417126283049583,
-0.006844153627753258,
0.01839049905538559,
-0.005484049674123526,
0.016606606543064117,
0.03173067793250084,
0.012946218252182007,
0.014846770092844963,
0.02882416546344757,
-0.02536904811859131,
-0.015238373540341854,
0.054127179086208344,
-0.007913682609796524,
-0.042564231902360916,
0.006975175812840462,
0.021808331832289696,
0.046590451151132584,
-0.017419233918190002,
0.048707474023103714,
-0.0039032804779708385,
-0.04995075985789299,
0.0326758474111557,
-0.010203002952039242,
0.023183804005384445,
0.04675929620862007,
0.008184232749044895,
0.02225237712264061,
0.026630157604813576,
0.03091144748032093,
0.005054930690675974,
-0.007776690647006035,
-0.0124290082603693,
0.0401148647069931,
0.011502387002110481,
0.041589315980672836,
0.01918407715857029,
-0.014335733838379383,
-0.01782207563519478,
0.024628369137644768,
-0.056220151484012604,
-0.021259434521198273,
0.006211242638528347,
-0.02915160357952118,
0.04583846032619476,
-0.027990400791168213,
-0.062209367752075195,
-0.0363997220993042,
0.002822905546054244,
-0.0007399983005598187,
0.03285222128033638,
-0.03605133667588234,
0.04889252409338951,
0.006177797913551331,
-0.017475523054599762,
0.00910078827291727,
0.06577471643686295,
-0.014789044857025146,
0.05165136232972145,
0.01822005584836006,
0.008459393866360188,
0.03485310450196266,
0.0478149950504303,
0.042289722710847855,
0.028415212407708168,
0.046182580292224884,
-0.009599877521395683,
0.01526598073542118,
0.04085046425461769,
0.03520328179001808,
-0.017818057909607887,
-0.07323053479194641,
0.015421244315803051,
-0.025063231587409973,
-0.0038006349932402372,
0.026231149211525917,
0.02705116756260395,
0.024445800110697746,
-0.014893813990056515,
0.06376316398382187,
0.028309624642133713,
0.03737153112888336,
-0.02870662324130535,
0.02931266836822033,
0.009498435072600842,
-0.002752672415226698,
0.021210510283708572,
0.03166012093424797,
0.017903095111250877,
0.025046123191714287,
0.07345625013113022,
0.03042703866958618,
0.04603977128863335,
-0.020972317084670067,
0.01968158781528473,
0.03119875118136406,
-0.007618660572916269,
-0.03251326084136963,
-0.0004452000721357763,
0.025150910019874573,
-0.04088754579424858,
-0.01901031658053398,
0.010363073088228703,
-0.039081744849681854,
0.015989596024155617,
0.012333542108535767,
-0.033682338893413544,
-0.028320057317614555,
0.00010123049287358299,
0.004366755485534668,
0.014807933941483498,
-0.017719684168696404,
-0.03608574718236923,
-0.010624784976243973,
0.035554997622966766,
0.014271540567278862,
0.005285666324198246,
-0.00988980196416378,
0.01793144829571247,
-0.014587773010134697,
-0.003209145972505212,
-0.035954561084508896,
-0.014044340699911118,
0.000004787405941897305,
0.008159535005688667,
0.011292068287730217,
0.021496830508112907,
0.02135566808283329,
0.030645456165075302,
0.0098853949457407,
0.03142284229397774,
-0.07034449279308319,
-0.013084697537124157,
0.01039979886263609,
-0.0017167109763249755,
-0.011805579997599125,
-0.015603375621140003,
0.04607642814517021,
0.020866811275482178,
0.028593581169843674,
0.05167507752776146,
0.04430669546127319,
-0.02010580338537693,
-0.03678803890943527,
-0.03484608605504036,
-0.02992977760732174,
-0.0012792980996891856,
0.01282971166074276,
0.0404927097260952,
0.004154787864536047,
0.003951448015868664,
-0.030697783455252647,
-0.005554764065891504,
0.010037258267402649,
0.010933345183730125,
0.057977065443992615,
-0.009128007106482983,
-0.024742979556322098,
-0.05026624724268913,
0.05229954421520233,
0.048055097460746765,
-0.019135966897010803,
0.03734556958079338,
-0.008455147966742516,
0.011705968528985977,
-0.005835332907736301,
-0.014192301779985428,
-0.051746055483818054,
-0.03830845281481743,
-0.04458018019795418,
-0.08510507643222809,
0.010945490561425686,
0.014035988599061966,
-0.009221349842846394,
0.014580168761312962,
-0.03159325197339058,
0.011631973087787628,
0.007534518837928772,
-0.03986550122499466,
0.007259751670062542,
-0.009450233541429043,
0.030576804652810097,
0.009386015124619007,
-0.0019539855420589447,
-0.02305932156741619,
-0.046182647347450256,
0.012223546393215656,
-0.019310491159558296,
0.021085374057292938,
0.061755456030368805,
0.015553959645330906,
-0.004420342389494181,
-0.010906330309808254,
0.018922416493296623,
0.025848885998129845,
-0.012113676406443119,
0.02978917583823204,
-0.03522283956408501,
-0.0364622101187706,
0.005650530103594065,
0.009822354651987553,
0.04554734006524086,
0.007066555321216583,
0.035116326063871384,
0.03455214947462082,
0.004148133099079132,
0.02719969116151333,
0.004849530290812254,
-0.04550107568502426,
-0.0193552877753973,
-0.01002101507037878,
0.015330523252487183,
0.030905161052942276,
0.008746911771595478,
0.026707135140895844,
0.026628708466887474,
-0.03457576408982277,
0.013483746908605099,
0.004283256363123655,
0.013321059755980968,
0.003963898867368698,
-0.01064489595592022,
0.008787012659013271,
-0.01946968026459217,
-0.015030342154204845,
0.09054526686668396,
0.03924599289894104,
-0.02770133689045906,
0.005130195524543524,
-0.01117886882275343,
-0.020525960251688957,
-0.01784752681851387,
-0.008608282543718815,
-0.02159261144697666,
0.01702125184237957,
-0.001717363833449781,
0.010575447231531143,
0.0017245933413505554,
-0.0069598788395524025
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Test Coverage This next step was very important - I needed to prepare an extensive testing for the ported model. In thetransformerstest suite most tests that deal with large models are marked as@slowand those don't get to run normally on CI (Continual Integration), as they are, well, slow. So I needed to also create a tiny model, that has the same structure as a normal pre-trained model, but it had to be very small and it could have random weights. This tiny model is then can be used to test the ported functionality. It just can't be used for quality testing, since it has just a few weights and thus can't really be trained to do anything practical. [fsmt-make-tiny-model.py](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/scripts/fsmt-make-tiny-model.py) creates such a tiny model. The generated model with all of its dictionary and config files was just 3MB in size. I uploaded it tos3usingtransformers-cli uploadand now I was able to use it in the test suite. Just like with the code, I started by copyingtests/test_modeling_bart.pyand converting it to useFSMT, and then tweaking it to work with the new model. I then converted a few of my scripts I used for manual testing into unit tests - that was easy.transformershas a huge set of common tests that each model runs through - I had to do some more tweaks to make these tests work forFSMT(primarily to adjust for the 2 dictionary setup) and I had to override a few tests, that weren't possible to run due to the uniqueness of this model, in order to skip them. You can see the results [here](https://github.com/huggingface/transformers/blob/129fdae04033fe4adfe013b734deaec6ec34ae2e/tests/test_tokenization_fsmt.py). I added one more test that performs a light BLEU evaluation - I used just 8 text inputs for each of the 4 models and measured BLEU scores on those. Here is the [test](https://github.com/huggingface/transformers/blob/129fdae04033fe4adfe013b734deaec6ec34ae2e/examples/seq2seq/test_fsmt_bleu_score.py) and the [script that generated data](https://github.com/huggingface/transformers/blob/129fdae04033fe4adfe013b734deaec6ec34ae2e/examples/seq2seq/test_data/fsmt/build-eval-data.py). | [
0.014858288690447807,
-0.05113699659705162,
0.010809321887791157,
0.01563982293009758,
0.06520397961139679,
0.05719708278775215,
0.07866664230823517,
0.02529977820813656,
-0.017329469323158264,
-0.03726392239332199,
-0.04974287003278732,
0.08486159145832062,
0.02061905339360237,
0.0272753294557333,
0.06072179600596428,
-0.02136741206049919,
0.0649736151099205,
-0.03712254390120506,
0.030598491430282593,
0.05377946421504021,
-0.004131600260734558,
-0.06722075492143631,
0.02086646854877472,
0.01919122040271759,
-0.030076811090111732,
-0.0628952905535698,
0.08628761768341064,
0.0592600479722023,
-0.0173503290861845,
-0.007944774813950062,
-0.09736385196447372,
-0.034206125885248184,
-0.04865004122257233,
-0.06799758225679398,
-0.040592826902866364,
0.031185990199446678,
-0.0890895277261734,
0.05025244131684303,
-0.00016921767382882535,
-0.04053421691060066,
0.0648353323340416,
0.013240691274404526,
-0.05959222838282585,
0.026311378926038742,
-0.010443718172609806,
0.040316011756658554,
-0.12019620090723038,
0.0932120755314827,
0.00737322261556983,
-0.058364782482385635,
-0.0018941907910630107,
0.04025358334183693,
-0.0318850539624691,
-0.0092519735917449,
0.0685543641448021,
0.04746299237012863,
-0.004153707530349493,
-0.02296251803636551,
-0.0005332708824425936,
0.0019877657759934664,
-0.01750868186354637,
-0.0003632256994023919,
0.032668329775333405,
0.08277742564678192,
0.001680730376392603,
0.0030024501029402018,
0.007879059761762619,
0.004377683158963919,
-0.0395011268556118,
-0.03612971678376198,
-0.011764892376959324,
-0.041091036051511765,
-0.007347885984927416,
-0.03100513108074665,
-0.02236047014594078,
-0.006555207073688507,
-0.017326408997178078,
0.032157205045223236,
0.07358959317207336,
0.10782782733440399,
-0.003608688013628125,
0.005100776441395283,
0.056955739855766296,
0.04236556217074394,
0.01191800832748413,
-0.020867114886641502,
0.06843031197786331,
-0.005381395108997822,
-0.05742865800857544,
0.09584708511829376,
-0.015375516377389431,
-0.08422411233186722,
-0.061046916991472244,
0.05924760177731514,
0.04476277157664299,
0.01196890790015459,
-0.025055931881070137,
0.02201833389699459,
0.01810898818075657,
-0.018561966717243195,
0.007162837777286768,
-0.036314498633146286,
-0.021001512184739113,
-0.04017886891961098,
-0.07934809476137161,
0.02297080308198929,
0.008666841313242912,
-0.06781291961669922,
-0.03531070798635483,
0.02972087636590004,
0.03889238461852074,
-0.07881882041692734,
-0.051969144493341446,
0.10565318912267685,
-0.08904074132442474,
0.021968936547636986,
-0.030999263748526573,
-0.024469764903187752,
0.01972135715186596,
0.04439800977706909,
0.02778039313852787,
0.11396907269954681,
0.02153988555073738,
-0.018049711361527443,
0.05878663808107376,
0.037090349942445755,
0.0388653464615345,
0.012762789614498615,
-0.011310991831123829,
-0.02367061749100685,
-0.030227379873394966,
-0.01986248791217804,
0.05881606414914131,
0.07572174817323685,
-0.006174623034894466,
-0.011317843571305275,
0.062210533767938614,
-0.01672525517642498,
0.016745736822485924,
0.003015343099832535,
0.0145045081153512,
0.049489427357912064,
-0.014335168525576591,
0.006259954534471035,
0.007731342222541571,
-0.009148097597062588,
-0.08634182810783386,
0.09006741642951965,
-0.02129235677421093,
0.027043519541621208,
-0.10227258503437042,
0.019304389134049416,
-0.04230901598930359,
0.0009326036088168621,
-0.0034645383711904287,
0.06228741630911827,
-0.023164482787251472,
-0.06713699549436569,
-0.11019965261220932,
-0.015408354811370373,
-0.004637850448489189,
0.0038138378877192736,
-0.026359781622886658,
-0.06504786014556885,
0.0660216435790062,
-0.022720756009221077,
-0.033433832228183746,
0.0010538232745602727,
0.05133385583758354,
0.02178000658750534,
0.03479555994272232,
-0.028438204899430275,
0.05251198634505272,
-0.0005799948703497648,
0.0120382746681571,
0.042157359421253204,
0.05457111448049545,
0.039010848850011826,
-0.0187271349132061,
-0.00024195300647988915,
-0.0627489760518074,
0.09579434245824814,
-0.002328419592231512,
0.03253750503063202,
-0.008607768453657627,
-0.07989354431629181,
0.044170841574668884,
0.036302600055933,
-0.05201621726155281,
0.008458016440272331,
-0.015119015239179134,
-0.009287003427743912,
0.08653032779693604,
-0.029348522424697876,
0.03483954817056656,
-0.0018825809238478541,
0.04721863567829132,
0.11173947155475616,
0.038163598626852036,
0.05441635847091675,
-0.01690053381025791,
0.055762361735105515,
0.02538657747209072,
-0.017959464341402054,
0.030150771141052246,
0.0851738229393959,
0.005673784296959639,
-0.07640425115823746,
-0.019650278612971306,
-0.010091130621731281,
0.043522611260414124,
-0.07989858090877533,
0.06500159949064255,
-0.0578237883746624,
-0.025672757998108864,
-0.08125246316194534,
-0.03161148354411125,
-0.028652161359786987,
-0.012653724290430546,
-0.026066118851304054,
0.11175626516342163,
-0.0045667546801269054,
-0.045232437551021576,
-0.0803571566939354,
-0.038728296756744385,
0.002581535605713725,
0.05074988678097725,
0.03728513419628143,
0.06427115201950073,
-0.08859481662511826,
0.008249369449913502,
-0.06718453764915466,
0.006555892992764711,
0.0074562677182257175,
-0.03423725813627243,
-0.11382011324167252,
0.010899756103754044,
-0.027021540328860283,
0.0020479196682572365,
-0.010958672501146793,
0.011226012371480465,
0.013090641237795353,
0.04538198933005333,
0.05922534316778183,
-0.04421425610780716,
0.019309058785438538,
0.044544246047735214,
0.0020276405848562717,
-0.009710000827908516,
-0.04520627483725548,
-0.054580505937337875,
0.041779909282922745,
-0.03903980180621147,
-0.07617343217134476,
0.044103268533945084,
-0.009073168970644474,
0.010670422576367855,
0.031802982091903687,
-0.05454214662313461,
0.004473952576518059,
0.007458538748323917,
0.0013648325111716986,
-0.03552157059311867,
-0.014460070058703423,
0.00896512158215046,
-0.03155435994267464,
-0.01708841510117054,
0.020537961274385452,
-0.013667210005223751,
0.01734871231019497,
0.005843936000019312,
-0.014913404360413551,
0.01192152313888073,
0.001938626286573708,
0.03381674364209175,
0.022704608738422394,
0.020465536043047905,
-0.004067032132297754,
-0.055871590971946716,
-0.012996778823435307,
-0.04593988507986069,
-0.004886640701442957,
0.031031012535095215,
0.021862952038645744,
0.024521315470337868,
0.019862975925207138,
-0.028177432715892792,
-0.02246573381125927,
-0.030069703236222267,
0.011714156717061996,
0.013708704151213169,
0.029986515641212463,
0.029724104329943657,
-0.024171756580471992,
0.01106252521276474,
-0.016175417229533195,
-0.02398759312927723,
-0.04446980729699135,
0.013285433873534203,
0.0496721975505352,
-0.003580257063731551,
0.011687434278428555,
0.00038509885780513287,
0.017951494082808495,
-0.026213185861706734,
0.010970251634716988,
0.01420807559043169,
0.02944655530154705,
-0.0970868468284607,
0.013735363259911537,
-0.005614429246634245,
0.04186101257801056,
-0.013559005223214626,
-0.06184797361493111,
0.03632839396595955,
-0.014647331088781357,
0.009772222489118576,
0.025778023526072502,
0.027905697003006935,
0.007228981703519821,
0.024908624589443207,
0.007659647613763809,
-0.026932723820209503,
-0.0024597779847681522,
-0.01003149151802063,
-0.014072421006858349,
0.058350831270217896,
0.019442996010184288,
-0.01119361910969019,
0.0185190849006176,
0.04121817648410797,
0.02448638342320919,
-0.010732325725257397,
-0.013744788244366646,
0.0181952603161335,
0.05064483359456062,
0.055417221039533615,
-0.012255273759365082,
-0.006598735228180885,
-0.01851164549589157,
-0.006113509647548199,
0.008995095267891884,
-0.037797827273607254,
-0.023734677582979202,
-0.013676135800778866,
0.02799198031425476,
-0.023943781852722168,
0.003449254436418414,
0.016225887462496758,
0.0045393770560622215,
0.04077421501278877,
0.015818145126104355,
0.021473681554198265,
-0.041997261345386505,
0.0011985099408775568,
0.0038558675441890955,
0.03727807477116585,
-0.012513759545981884,
-0.02849002368748188,
-0.003920488990843296,
-0.018914151936769485,
0.07474735379219055,
-0.020943613722920418,
0.0455961599946022,
0.049286603927612305,
0.017349088564515114,
-0.00691201351583004,
0.003006093669682741,
-0.04935755208134651,
-0.0037068563979119062,
-0.03012443333864212,
-0.021978653967380524,
-0.03347355127334595,
0.07321909070014954,
0.01842973381280899,
0.0036216017324477434,
-0.013876794837415218,
0.01993476413190365,
-0.018751146271824837,
0.019458632916212082,
0.0028930215630680323,
0.006161974277347326,
-0.012712720781564713,
0.015895767137408257,
-0.03572847321629524,
-0.04825795069336891,
0.03217719867825508,
0.0061288815923035145,
0.025432433933019638,
0.007095027714967728,
-0.021172720938920975,
0.014404978603124619,
-0.00009834734373725951,
0.013315306976437569,
-0.0050228009931743145,
-0.015494480729103088,
0.016569456085562706,
0.05181752145290375,
0.0380912609398365,
-0.047347716987133026,
-0.013274089433252811,
-0.026234129443764687,
-0.012526538223028183,
-0.032424330711364746,
0.012746881693601608,
-0.029052220284938812,
-0.0032462419476360083,
0.021341852843761444,
0.027090657502412796,
-0.016334738582372665,
0.020444706082344055,
-0.019160069525241852,
-0.00018711462325882167,
-0.008657005615532398,
-0.07190839946269989,
-0.021545961499214172,
0.03776124492287636,
-0.003996737767010927,
-0.011932537890970707,
-0.0172246266156435,
-0.033635105937719345,
0.008540469221770763,
0.04893369600176811,
0.05920635536313057,
-0.0005494471406564116,
0.008036692626774311,
-0.011367722414433956,
0.037579454481601715,
-0.026821894571185112,
-0.000458497874205932,
-0.014188052155077457,
-0.016818858683109283,
0.0315740704536438,
-0.008889956399798393,
0.030702607706189156,
0.029764723032712936,
-0.014829677529633045,
-0.0013096689945086837,
-0.0052843596786260605,
-0.00468192994594574,
0.03639831393957138,
0.0016133220633491874,
0.020718466490507126,
0.006272892002016306,
0.0032745422795414925,
-0.008454387076199055,
0.010402156971395016,
-0.024021105840802193,
-0.02985512837767601,
-0.002895883983001113,
0.0027768441941589117,
-0.02962515689432621,
0.018075350672006607,
0.012472783215343952,
0.0011498240055516362,
0.003581617958843708,
-0.057410042732954025,
-0.005571639630943537,
0.04145220294594765,
-0.013160943053662777,
-0.04832028970122337,
-0.0018532926915213466,
0.007431621663272381,
-0.003180672414600849,
0.019477497786283493,
0.0028071263805031776,
0.02790801040828228,
0.018423674628138542,
-0.033180832862854004,
0.00645871739834547,
-0.00858461856842041,
0.03245152160525322,
0.03321667015552521,
0.009572722017765045,
-0.019779348745942116,
-0.10537943243980408,
-0.04806802049279213,
-0.0014922816772013903,
-0.04890155792236328,
-0.0055580358020961285,
-0.013169138692319393,
-0.01399901881814003,
0.007454504258930683,
0.10116224735975266,
0.02324516326189041,
-0.015584427863359451,
0.01318051852285862,
0.013902333565056324,
0.018965836614370346,
-0.005581621080636978,
-0.0011926578590646386,
-0.006008850410580635,
-0.005195517558604479,
0.059879809617996216,
0.05471431091427803,
0.05563260242342949,
-0.03376000002026558,
0.031616851687431335,
-0.025476068258285522,
-0.01671498455107212,
0.002246468560770154,
-0.03334379941225052,
-0.006640343461185694,
-0.0006403447478078306,
-0.012485158629715443,
-0.012496628798544407,
0.0034758879337459803,
-0.02935086190700531,
0.014134581200778484,
0.042235467582941055,
-0.014955946244299412,
-0.022384069859981537,
0.06611085683107376,
0.007649368606507778,
-0.012651542201638222,
0.0010595968924462795,
0.045754943042993546,
-0.0370454415678978,
-0.008646919392049313,
-0.008104544132947922,
0.005764304660260677,
0.00933405477553606,
0.01057056151330471,
-0.09028467535972595,
-0.006514362525194883,
0.030825844034552574,
0.03163612261414528,
-0.011196027509868145,
-0.015118435956537724,
0.009893357753753662,
0.00033764183172024786,
-0.01517059188336134,
0.0277501679956913,
-0.028054574504494667,
-0.01931423507630825,
-0.014907820150256157,
-0.021467329934239388,
0.025560954585671425,
0.010506297461688519,
0.02057877741754055,
-0.0012281239032745361,
0.0062302276492118835,
0.03993700444698334,
0.013777588494122028,
-0.019881701096892357,
0.01597336120903492,
0.0043797059915959835,
-0.039484184235334396,
0.0035117880906909704,
-0.031045569106936455,
-0.032752055674791336,
0.027583425864577293,
-0.025332732126116753,
0.03649536520242691,
0.08081120997667313,
0.007598338648676872,
0.026542112231254578,
0.010079409927129745,
-0.0039186300709843636,
0.04527996852993965,
-0.010345005430281162,
-0.010762643069028854,
-0.01795550435781479,
-0.005194144789129496,
0.0119836600497365,
0.05926983803510666,
0.006658291444182396,
0.0033053760416805744,
0.01826556958258152,
-0.04869593307375908,
-0.003063115756958723,
-0.0008183828904293478,
-0.045762497931718826,
-0.008692210540175438,
0.007747713942080736,
-0.07353916019201279,
0.004089812748134136,
0.0074213421903550625,
0.012000391259789467,
0.041628848761320114,
0.02201075665652752,
-0.016043487936258316,
-0.04269041493535042,
-0.011542582884430885,
0.03292709216475487,
0.025125762447714806,
0.04460613802075386,
0.030908817425370216,
0.012523331679403782,
0.026880357414484024,
0.03560657799243927,
-0.0012278611538931727,
0.028123874217271805,
0.0233803428709507,
0.09190855920314789,
0.01882709190249443,
-0.00007887045649113134,
0.019817031919956207,
-0.022292360663414,
-0.004020065534859896,
-0.043712541460990906,
-0.00993000715970993,
-0.020059142261743546,
0.010346113704144955,
-0.00891219824552536,
0.008244604803621769,
-0.00007845439540687948,
0.009458882734179497,
0.06815485656261444,
0.03446242958307266,
0.0228462852537632,
-0.017996493726968765,
0.03429451957345009,
0.018900752067565918,
0.010570444166660309,
-0.02910628914833069,
0.03862627595663071,
0.01887073554098606,
-0.01570635847747326,
0.04976324737071991,
-0.02077573724091053,
0.0344746969640255,
-0.012951293960213661,
0.03002847544848919,
-0.014642033725976944,
-0.031176937744021416,
-0.004832413513213396,
0.006109193898737431,
-0.015413871966302395,
0.0107325604185462,
-0.010066380724310875,
0.032634418457746506,
-0.040394142270088196,
0.016765540465712547,
-0.046817466616630554,
-0.04839097708463669,
-0.041895944625139236,
-0.0313640832901001,
-0.02536442130804062,
0.012824120000004768,
0.0012954408302903175,
-0.0525590144097805,
0.015476243570446968,
0.011726560071110725,
0.03434079512953758,
-0.006947465240955353,
0.015551417134702206,
0.03517904132604599,
0.005245737265795469,
-0.008665554225444794,
0.008818299509584904,
0.008501678705215454,
-0.044732656329870224,
-0.02216026559472084,
0.006325573194772005,
0.03724073991179466,
-0.0036094964016228914,
0.07914326339960098,
0.023685812950134277,
0.026424221694469452,
-0.038170117884874344,
0.008679978549480438,
-0.01771487481892109,
-0.04096352681517601,
0.002607391681522131,
-0.06020265817642212,
-0.0895024910569191,
0.0119151147082448,
0.04253357648849487,
0.02743649296462536,
0.03760156407952309,
0.0052618528716266155,
-0.03774247691035271,
-0.026260940358042717,
-0.04066789895296097,
-0.015868645161390305,
0.026613697409629822,
-0.024216266348958015,
0.02512623555958271,
0.028902234509587288,
-0.005430438090115786,
-0.003490377450361848,
0.01447661779820919,
-0.01147618517279625,
0.018650883808732033,
-0.013164296746253967,
-0.0523955300450325,
0.006758659612387419,
0.023940855637192726,
0.04189571738243103,
0.00830022618174553,
0.032521430402994156,
0.029276462271809578,
0.010103205218911171,
-0.023069730028510094,
0.001156829297542572,
-0.022516541182994843,
0.009994417428970337,
-0.0490030013024807,
-0.04541191831231117,
-0.010954296216368675,
-0.016814585775136948,
-0.03503544256091118,
-0.0012480515288189054,
-0.027989286929368973,
-0.011886075139045715,
-0.018481414765119553,
0.013472574763000011,
0.004789732396602631,
0.003487425623461604,
0.04455041140317917,
0.045976441353559494,
-0.027092333883047104,
-0.016707852482795715,
-0.06808669120073318,
-0.004330037161707878,
-0.019005456939339638,
0.03758678957819939,
0.05642693117260933,
0.02876940928399563,
0.006768358871340752,
-0.011616501025855541,
-0.00790619757026434,
0.011309209279716015,
-0.05022461339831352,
0.005271504167467356,
0.03385021165013313,
-0.04859580099582672,
-0.021635517477989197,
-0.009077910333871841,
0.03911181166768074,
-0.016225477680563927,
0.03846834599971771,
-0.017624270170927048,
-0.035509273409843445,
0.004010370001196861,
0.009188839234411716,
-0.06103181466460228,
-0.0314020961523056,
-0.005079967435449362,
0.01192600280046463,
-0.00035293801920488477,
0.0048626563511788845,
-0.004359867889434099,
0.01741604134440422,
-0.0059481216594576836,
0.04577159881591797,
0.02403850480914116,
-0.033497754484415054,
-0.04978060722351074,
0.01016322523355484,
0.026177093386650085,
-0.026542464271187782,
-0.0653797909617424,
0.020806871354579926,
-0.018666593357920647,
-0.043100304901599884,
-0.03582395985722542,
0.0016167530557140708,
0.009171521291136742,
-0.05066610872745514,
0.001823779079131782,
-0.04900699853897095,
-0.011683668941259384,
0.02959718368947506,
-0.03010907955467701,
-0.021416453644633293,
0.001971888355910778
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Documentation Finally, the documentation needed to be added. Luckily, most of the documentation is autogenerated from the docstrings in the module files. As before, I copieddocs/source/model_doc/bart.rstand adapted it toFSMT. When it was ready I linked to it by addingfsmtentry insidedocs/source/index.rstI used: ``` make docs ``` to test that the newly added document was building correctly. The file I needed to check after running that target wasdocs/_build/html/model_doc/fsmt.html- I just loaded in my browser and verified that it rendered correctly. Here is the final source document [docs/source/model_doc/fsmt.rst](https://github.com/huggingface/transformers/blob/129fdae04033fe4adfe013b734deaec6ec34ae2e/docs/source/model_doc/fsmt.rst) and its [rendered version](https://huggingface.co/transformers/model_doc/fsmt.html). | [
0.050767406821250916,
-0.017333900555968285,
0.03644019737839699,
0.048183877021074295,
0.05848197266459465,
0.006500420160591602,
0.00004709677159553394,
-0.03512893244624138,
0.012766196392476559,
0.004455000627785921,
-0.07925018668174744,
0.04208218306303024,
0.06326691806316376,
0.04899076744914055,
0.024950603023171425,
0.03808523714542389,
0.019842471927404404,
-0.05868464708328247,
-0.08080139756202698,
-0.052571818232536316,
0.02262297458946705,
-0.01435808651149273,
-0.008677415549755096,
0.02377861738204956,
0.08063541352748871,
-0.08801612257957458,
0.03339509293437004,
0.06139639765024185,
-0.0020947447046637535,
0.06338726729154587,
-0.06562047451734543,
-0.04763657972216606,
-0.03232701122760773,
-0.08657760173082352,
-0.03367291018366814,
0.05507330968976021,
-0.10888388752937317,
0.05720137804746628,
-0.02952643111348152,
-0.02080114372074604,
-0.02131783217191696,
-0.021361932158470154,
-0.03770118206739426,
0.05849863216280937,
0.05382966250181198,
-0.0074930936098098755,
-0.1762133091688156,
0.009974416345357895,
0.03422235697507858,
0.025650091469287872,
-0.028772806748747826,
0.013907401822507381,
-0.03592417761683464,
-0.006668004672974348,
-0.024267811328172684,
0.010250117629766464,
-0.07635189592838287,
0.016265014186501503,
0.016168847680091858,
-0.002912313211709261,
0.01006992720067501,
-0.019181126728653908,
0.015573590062558651,
0.07719384133815765,
0.027733301743865013,
0.030489126220345497,
-0.040696702897548676,
0.006564713083207607,
-0.02851063199341297,
0.019191617146134377,
0.0245414637029171,
0.02248595468699932,
0.037472352385520935,
0.014898939989507198,
0.03834240883588791,
-0.008844044990837574,
0.013441916555166245,
0.016354788094758987,
0.0485302172601223,
0.0395086444914341,
0.01782085746526718,
0.04329998418688774,
0.021341636776924133,
0.09864083677530289,
-0.01853366568684578,
-0.015015949495136738,
0.058408286422491074,
-0.04426729679107666,
-0.037714485079050064,
0.01506865955889225,
0.022936223074793816,
-0.10670886933803558,
-0.053094811737537384,
0.014609569683670998,
0.06688010692596436,
-0.03851163387298584,
-0.007928312756121159,
0.042685072869062424,
0.009946764446794987,
0.006128854118287563,
-0.03495405986905098,
0.005458846688270569,
0.01014740765094757,
-0.03811085224151611,
-0.048624031245708466,
0.030085554346442223,
-0.06459430605173111,
-0.023966394364833832,
-0.023917624726891518,
0.01240590400993824,
-0.013726061210036278,
-0.06303594261407852,
0.017171423882246017,
0.0015484440373256803,
-0.05312541127204895,
0.08814029395580292,
0.0057379743084311485,
-0.07974773645401001,
-0.045059934258461,
-0.0231021661311388,
-0.05919349193572998,
0.09742088615894318,
0.011770498938858509,
0.00671046320348978,
0.02507888153195381,
0.11030460149049759,
0.01066002156585455,
0.05601431056857109,
-0.031216362491250038,
-0.0159880630671978,
0.0168036799877882,
0.03725676238536835,
0.08278611302375793,
0.007972710765898228,
-0.018216168507933617,
-0.0551416240632534,
0.017441878095269203,
-0.07015933841466904,
0.021953614428639412,
0.04371245950460434,
0.0156776811927557,
0.0465426929295063,
-0.07504718005657196,
0.0362849235534668,
-0.009065462276339531,
-0.02470416948199272,
-0.09418923407793045,
0.0034257604274898767,
-0.07091645151376724,
0.021478209644556046,
-0.04376053810119629,
-0.017311183735728264,
0.029944755136966705,
-0.012841103598475456,
0.009975161403417587,
0.037982046604156494,
0.021603841334581375,
0.013934795744717121,
-0.05404624342918396,
-0.019340889528393745,
-0.018117988482117653,
0.058280497789382935,
-0.03279637172818184,
-0.01404358446598053,
0.014217748306691647,
-0.06039678677916527,
-0.013387159444391727,
0.03343641757965088,
0.08918379247188568,
-0.012434937059879303,
0.04161578044295311,
-0.09048651903867722,
0.055791500955820084,
-0.00824473612010479,
0.018096057698130608,
0.04969801753759384,
0.02219870686531067,
-0.03606273606419563,
-0.011452999897301197,
-0.003201743122190237,
-0.03770510107278824,
0.06374339014291763,
0.0047328416258096695,
0.004640783648937941,
0.05714397877454758,
-0.022479016333818436,
0.03863486647605896,
-0.05032088980078697,
-0.01990598440170288,
-0.03589524328708649,
-0.07014614343643188,
-0.02227950654923916,
0.06052011251449585,
0.0033943147864192724,
0.021903444081544876,
0.01179448515176773,
-0.013707316480576992,
0.11836809664964676,
-0.005564993713051081,
0.06874758750200272,
0.029727112501859665,
-0.022471783682703972,
-0.005040478426963091,
0.01331425178796053,
0.01621955633163452,
0.034533675760030746,
0.02683451771736145,
-0.07238420844078064,
0.0266239196062088,
0.0170812476426363,
0.06611098349094391,
-0.00790454726666212,
0.06083844602108002,
-0.07178854197263718,
0.02357455901801586,
-0.12211010605096817,
0.0162882711738348,
-0.008502733893692493,
-0.01705026626586914,
-0.00304345041513443,
0.1719987988471985,
0.01690005511045456,
0.02214878238737583,
-0.06276686489582062,
-0.05670665577054024,
0.03315839171409607,
0.06847763061523438,
0.10259165614843369,
0.050062455236911774,
-0.05485209450125694,
-0.051370006054639816,
-0.04938950389623642,
0.010490817949175835,
0.05341433361172676,
-0.01954643987119198,
-0.004717427771538496,
0.015887927263975143,
0.013731068931519985,
-0.01583336479961872,
-0.05389436334371567,
0.042477067559957504,
-0.029866352677345276,
0.06738253682851791,
-0.0052220169454813,
0.04566862806677818,
-0.03390537574887276,
0.049953922629356384,
0.05742941424250603,
-0.07945607602596283,
-0.02813137322664261,
-0.05844024196267128,
0.026502663269639015,
0.006330409552901983,
-0.01823611557483673,
0.0594191774725914,
0.06311416625976562,
0.0022190487943589687,
-0.03263198956847191,
-0.0120754549279809,
0.07812417298555374,
-0.002845635637640953,
0.013546554371714592,
-0.057678673416376114,
-0.033650193363428116,
-0.010312209837138653,
-0.0026170930359512568,
-0.013072122819721699,
-0.0253515113145113,
0.021203089505434036,
0.03657335042953491,
0.02432410791516304,
-0.026067400351166725,
-0.043155260384082794,
-0.007126855663955212,
-0.0007381753530353308,
0.035713255405426025,
-0.008569170720875263,
-0.017761994153261185,
-0.026803435757756233,
-0.0046121226623654366,
-0.0007866423111408949,
-0.007204425986856222,
0.03577519953250885,
0.02797851711511612,
0.03152891993522644,
0.006233118940144777,
-0.0106338607147336,
-0.003304098965600133,
-0.058279599994421005,
-0.04438294842839241,
0.029042821377515793,
0.006077696103602648,
0.015836302191019058,
-0.023238589987158775,
0.0028454598505049944,
0.05204533413052559,
0.03385290876030922,
0.023296000435948372,
-0.016814008355140686,
0.035007454454898834,
-0.03633899614214897,
0.028531156480312347,
-0.006221635267138481,
-0.025978242978453636,
-0.05000893771648407,
0.021657412871718407,
0.034933093935251236,
-0.005925110075622797,
-0.09798292815685272,
-0.041406914591789246,
0.014838327653706074,
0.054833848029375076,
-0.0028561914805322886,
-0.021480582654476166,
0.04358759894967079,
-0.03874828666448593,
0.01399852242320776,
-0.051340680569410324,
-0.018183279782533646,
0.015536945313215256,
0.02841147966682911,
0.01658969558775425,
-0.014418396167457104,
-0.009206398390233517,
-0.03549133613705635,
0.028250569477677345,
-0.004014676436781883,
-0.0030460518319159746,
-0.014809989370405674,
-0.018589572980999947,
0.0032675417605787516,
-0.019359329715371132,
-0.026900559663772583,
0.010592435486614704,
0.004143170081079006,
0.02635146677494049,
0.011035999283194542,
-0.07251758873462677,
-0.006941772066056728,
-0.005584566853940487,
0.017824383452534676,
-0.00773213105276227,
-0.0463857538998127,
-0.02390228770673275,
-0.010400592349469662,
0.029927069321274757,
-0.023425783962011337,
0.03499492630362511,
0.01393836922943592,
0.00020909536397084594,
-0.014269223436713219,
0.030040575191378593,
-0.005644563585519791,
-0.00486366543918848,
-0.0390629917383194,
0.043569471687078476,
0.023202380165457726,
0.008221837691962719,
-0.019533270969986916,
-0.017962154000997543,
0.03800516948103905,
0.054268840700387955,
-0.04112110286951065,
0.020111875608563423,
-0.0030265599489212036,
-0.008564364165067673,
0.011005581356585026,
0.02559509128332138,
-0.07885538786649704,
-0.02414344996213913,
-0.053821366280317307,
-0.02204509824514389,
-0.007569607347249985,
0.09355480968952179,
0.0032086356077343225,
0.0342341884970665,
-0.035818763077259064,
0.048433467745780945,
-0.01720196194946766,
0.001733295968733728,
0.013091132044792175,
0.011450674384832382,
-0.02628796547651291,
-0.02738037146627903,
-0.06929313391447067,
-0.0775826945900917,
0.061194323003292084,
-0.018256481736898422,
0.019008567556738853,
-0.0329289436340332,
-0.02882283180952072,
0.010106348432600498,
-0.028527384623885155,
0.004499354399740696,
0.04838058724999428,
-0.014931917190551758,
0.020126326009631157,
0.02719367854297161,
0.004727546125650406,
0.0054640197195112705,
-0.01633860170841217,
-0.005340104456990957,
-0.0314052477478981,
-0.02208450809121132,
-0.015923885628581047,
-0.02942783012986183,
0.02795315720140934,
0.051296696066856384,
-0.007871830835938454,
-0.02035202644765377,
0.00495512830093503,
0.012128351256251335,
0.01900635100901127,
0.034839194267988205,
-0.0412355437874794,
-0.04772413149476051,
0.03669155761599541,
0.02324720285832882,
-0.01482840534299612,
-0.031771380454301834,
0.00969784241169691,
-0.01954893209040165,
-0.0032801292836666107,
0.03514730557799339,
0.0043657091446220875,
-0.03267738223075867,
-0.058223824948072433,
0.027300020679831505,
0.004998175427317619,
0.02886713109910488,
0.007934526540338993,
0.02963108941912651,
-0.03732558712363243,
-0.0009043502504937351,
0.02522324211895466,
0.02537585236132145,
0.02124009095132351,
0.04482930526137352,
-0.03774241358041763,
-0.029057608917355537,
0.05119924247264862,
-0.018149985000491142,
-0.039916396141052246,
0.041526373475790024,
-0.0384967178106308,
0.020077647641301155,
0.0415506474673748,
-0.054982103407382965,
-0.052581530064344406,
-0.02050667442381382,
0.035443685948848724,
-0.034266397356987,
0.014710983261466026,
0.01336297020316124,
-0.02307869680225849,
0.023880068212747574,
-0.04105208069086075,
-0.0026582845021039248,
0.034408144652843475,
0.017134081572294235,
-0.03282085806131363,
0.0071357423439621925,
-0.013654693029820919,
-0.0030639292672276497,
0.028422735631465912,
0.033902257680892944,
0.012263539247214794,
0.012557648122310638,
-0.04447798430919647,
0.02696988359093666,
-0.02281295321881771,
-0.019225258380174637,
-0.0032191784121096134,
0.007623984944075346,
-0.00457165390253067,
-0.08056122809648514,
0.02113713137805462,
0.004373141564428806,
-0.01962929777801037,
-0.02568148821592331,
0.03680717572569847,
-0.033531419932842255,
-0.0026711104437708855,
0.02289014495909214,
0.06391800940036774,
0.04053432494401932,
-0.0026799559127539396,
-0.0037662230897694826,
0.006370209623128176,
0.011549139395356178,
-0.003858288051560521,
0.005962446331977844,
-0.01544464472681284,
0.03722630441188812,
0.06178032234311104,
0.04239840805530548,
-0.004490460269153118,
0.042531151324510574,
0.020012106746435165,
-0.006761506665498018,
0.02247718535363674,
-0.024345511570572853,
-0.016917342320084572,
-0.02834753692150116,
0.015538733452558517,
-0.0016402126057073474,
-0.00009046026389114559,
-0.02699257992208004,
0.04484294727444649,
0.06994285434484482,
-0.003939476329833269,
0.015916893258690834,
0.012044313363730907,
0.0025292402133345604,
0.013822367414832115,
-0.022667119279503822,
0.06364907324314117,
-0.011661406606435776,
-0.0008324497030116618,
-0.041649945080280304,
0.013364124111831188,
-0.0007082062656991184,
0.004585045389831066,
-0.018164372071623802,
-0.018484653905034065,
-0.01392090693116188,
-0.00760338781401515,
0.00965709425508976,
-0.002294398844242096,
0.04129234701395035,
-0.04146505147218704,
0.04785788059234619,
-0.022498195990920067,
-0.03203804790973663,
0.007002322934567928,
0.008680342696607113,
0.013760100118815899,
-0.04313689097762108,
0.0024809774477034807,
-0.022876441478729248,
0.0283349622040987,
0.018914662301540375,
0.01803738996386528,
0.002361894818022847,
-0.05003810673952103,
0.033553242683410645,
0.017477821558713913,
-0.015753362327814102,
0.016738999634981155,
0.00952395424246788,
-0.029636280611157417,
0.024253739044070244,
-0.023559438064694405,
0.03078310191631317,
0.06319298595190048,
-0.01233868207782507,
0.047627195715904236,
0.04496600106358528,
0.013186483643949032,
0.005618744529783726,
-0.01595153845846653,
-0.005209015216678381,
-0.03024275228381157,
0.04542231932282448,
0.017052505165338516,
0.011304011568427086,
-0.05230420082807541,
-0.03227614983916283,
0.018757693469524384,
-0.04829759523272514,
-0.02395695075392723,
-0.014259271323680878,
-0.025029540061950684,
0.027415292337536812,
-0.02717420645058155,
-0.0449361614882946,
-0.00956581998616457,
0.04105906933546066,
-0.025474710389971733,
0.04145493730902672,
0.009034717455506325,
-0.00952086690813303,
-0.008871732279658318,
-0.04782063141465187,
0.03314398601651192,
0.05250116065144539,
-0.01948637329041958,
0.049065470695495605,
0.0017440029187127948,
0.04023372381925583,
0.04341179504990578,
-0.012231479398906231,
0.001931393169797957,
0.041272442787885666,
0.07742884755134583,
0.0031714222859591246,
0.003769917180761695,
0.02369712106883526,
-0.021911608055233955,
-0.004613135475665331,
-0.02732613869011402,
-0.021241171285510063,
-0.04016076400876045,
-0.002349287271499634,
-0.012987635098397732,
0.013339516706764698,
-0.020877957344055176,
-0.03219121694564819,
0.06554314494132996,
0.019665202125906944,
0.04706548526883125,
-0.014989874325692654,
0.03260945901274681,
0.023237131536006927,
-0.024732312187552452,
-0.0010756432311609387,
0.03759624809026718,
-0.001350022736005485,
-0.03547115623950958,
0.07890569418668747,
0.0008200021693482995,
0.028151648119091988,
0.006235666573047638,
-0.0025828464422374964,
-0.0076242899522185326,
-0.016297312453389168,
0.0008270272519439459,
-0.002649867907166481,
0.04717399552464485,
0.017863161861896515,
-0.04379277676343918,
0.009014495648443699,
-0.03318331018090248,
0.016939034685492516,
-0.032121896743774414,
-0.03215695172548294,
-0.001255082432180643,
-0.0011933459900319576,
0.03176344931125641,
0.02508704550564289,
0.01673315092921257,
-0.008054489269852638,
0.008562758564949036,
0.0023187194019556046,
0.003199863014742732,
-0.001931871403940022,
0.01670866645872593,
0.02817673794925213,
-0.02779153734445572,
-0.0009828717447817326,
-0.013893253169953823,
0.011868770234286785,
-0.011482272297143936,
0.00947646051645279,
0.002160051604732871,
0.05556011199951172,
0.021866844967007637,
0.023247942328453064,
-0.01221622247248888,
0.007749899756163359,
-0.060369573533535004,
0.016056586056947708,
-0.018437305465340614,
-0.03883333131670952,
-0.004368101246654987,
-0.009101799689233303,
0.016876721754670143,
-0.014677247032523155,
0.015826817601919174,
0.027805175632238388,
0.0349455252289772,
-0.023948146030306816,
-0.03298919275403023,
0.026177451014518738,
-0.002618856495246291,
-0.022998347878456116,
0.044406794011592865,
-0.01469490583986044,
0.008437873795628548,
0.016703680157661438,
-0.04689767211675644,
-0.013154366053640842,
-0.005924852564930916,
0.002674231305718422,
0.04711971431970596,
-0.030718017369508743,
-0.02245274744927883,
-0.0035969039890915155,
0.023384086787700653,
0.01642865315079689,
0.007329348474740982,
0.021377695724368095,
0.030080486088991165,
0.02646162174642086,
-0.0014829881256446242,
-0.024458110332489014,
0.011074436828494072,
-0.03010629117488861,
-0.07421713322401047,
-0.06394938379526138,
-0.015458257868885994,
-0.02617555484175682,
0.040076471865177155,
0.0378883071243763,
-0.030022423714399338,
0.006878072861582041,
0.001694047125056386,
-0.03775700554251671,
-0.005163787864148617,
0.013160514645278454,
0.03507719933986664,
-0.022794580087065697,
0.008430153131484985,
0.008716147392988205,
0.0028868052177131176,
0.04820568114519119,
-0.007606262806802988,
0.018723702058196068,
0.002869104966521263,
0.053741153329610825,
0.005610714666545391,
-0.0022998210042715073,
0.008139779791235924,
-0.02715330570936203,
-0.05534447357058525,
0.024417296051979065,
0.016213376075029373,
0.020927023142576218,
-0.030996225774288177,
0.014026958495378494,
0.03450080752372742,
0.01929076761007309,
0.028959568589925766,
-0.016089752316474915,
-0.006996726151555777,
0.008487734943628311,
0.013150307349860668,
-0.028033878654241562,
0.04133671894669533,
-0.015851108357310295,
-0.009815636090934277,
0.014750877395272255,
-0.012071975506842136,
0.018973996862769127,
-0.010559230111539364,
0.006470697000622749,
-0.004651054739952087,
0.010126489214599133,
-0.05629437789320946,
-0.06191381439566612,
-0.012766800820827484,
0.01798725686967373,
-0.017191166058182716,
-0.014079133979976177,
0.0014075124636292458,
-0.015628810971975327,
-0.07344923168420792,
-0.012322047725319862,
0.026717735454440117,
-0.010077150538563728,
-0.044474534690380096,
-0.012198319658637047,
-0.027274489402770996,
-0.01564987190067768,
-0.002567501738667488,
-0.015829795971512794,
-0.009530095383524895,
-0.01878957636654377
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Closing thoughts - While I couldn't port the model ensemble astransformersdoesn't support it, on the plus side the download size of the finalfacebook/wmt19-*models is 1.1GB and not 13GB as in the original. For some reason the original includes the optimizer state saved in the model - so it adds almost 9GB (4x2.2GB) of dead weight for those who just want to download the model to use it as is to translate text. - While the job of porting looked very challenging at the beginning as I didn't know the internals of neithertransformersnorfairseq, looking back it wasn't that difficult after all. This was primarily due to having most of the components already available to me in the various parts oftransformers- I *just* needed to find parts that I needed, mostly borrowing heavily from other models, and then tweak them to do what I needed. This was true for both the code and the tests. Let's rephrase that - porting was difficult - but it'd have been much more difficult if I had to write it all from scratch. And finding the right parts wasn't easy. | [
-0.06374290585517883,
0.029976528137922287,
0.015033316798508167,
0.013556282967329025,
0.06768865883350372,
-0.0079945744946599,
0.037221916019916534,
0.035466525703668594,
0.0027193487621843815,
-0.14040498435497284,
-0.022945718839764595,
0.030138494446873665,
0.04544191434979439,
-0.056168291717767715,
0.03947479650378227,
-0.007345625199377537,
0.004897549282759428,
-0.049871742725372314,
0.036062873899936676,
0.02597086876630783,
0.01612432673573494,
-0.015393538400530815,
0.025582609698176384,
-0.024202687665820122,
-0.021098436787724495,
-0.06451189517974854,
-0.011824113316833973,
0.07555840909481049,
-0.016750916838645935,
0.004320542328059673,
-0.011872338131070137,
-0.006217433605343103,
-0.049039676785469055,
-0.06346920132637024,
-0.0549931600689888,
-0.0006809534970670938,
-0.055527471005916595,
0.027463393285870552,
0.007880262099206448,
-0.017673376947641373,
0.02870301716029644,
0.06106916069984436,
-0.10095687955617905,
0.08663247525691986,
0.07626310735940933,
-0.02562357857823372,
-0.05419955775141716,
0.021069573238492012,
-0.038232047110795975,
0.01066411193460226,
-0.05966751649975777,
0.013532397337257862,
0.039914555847644806,
0.08111639320850372,
0.07495847344398499,
-0.03817444667220116,
-0.021756179630756378,
-0.0034350331407040358,
-0.018637780100107193,
-0.016814682632684708,
0.0464104488492012,
0.025330206379294395,
0.03580223768949509,
0.01051604375243187,
-0.07900652289390564,
0.03399660065770149,
-0.01706894114613533,
-0.011513515375554562,
-0.0678633525967598,
-0.09803739190101624,
-0.020894721150398254,
-0.006553213577717543,
0.03494459390640259,
-0.02293788455426693,
-0.025656217709183693,
-0.037847477942705154,
0.052935272455215454,
0.045249421149492264,
0.05662573128938675,
0.04031110182404518,
-0.00999913364648819,
0.061023373156785965,
0.058983709663152695,
-0.011501424014568329,
-0.0014316135784611106,
-0.05219849571585655,
0.03631863370537758,
-0.0397605299949646,
-0.028087176382541656,
-0.010989965870976448,
-0.056787725538015366,
-0.06974488496780396,
-0.06272698193788528,
0.013414613902568817,
0.0598239041864872,
0.007832452654838562,
-0.033305343240499496,
0.06559331715106964,
0.05442062020301819,
0.023514432832598686,
0.06376801431179047,
0.024554235860705376,
0.022446831688284874,
-0.07884715497493744,
0.01650620996952057,
0.022211529314517975,
-0.06295155733823776,
-0.1294807344675064,
0.04235801473259926,
0.03106197528541088,
0.04772370308637619,
-0.023660607635974884,
-0.0005201998865231872,
-0.00012089250958524644,
-0.04917535558342934,
0.07326675951480865,
0.009458052925765514,
0.020854663103818893,
0.018235860392451286,
0.06218364089727402,
0.07688210904598236,
0.08892003446817398,
0.02989501692354679,
-0.05938524007797241,
0.10331307351589203,
0.031408581882715225,
0.018912790343165398,
-0.03788617253303528,
0.0034328741021454334,
-0.017699535936117172,
0.04333000257611275,
-0.0633089616894722,
0.005925192963331938,
0.00114283652510494,
-0.02505662478506565,
-0.09685687720775604,
0.00936489924788475,
0.00721035385504365,
-0.005519338883459568,
-0.0060129789635539055,
-0.01863247901201248,
0.015878092497587204,
-0.021649939939379692,
0.010601448826491833,
0.011173072271049023,
0.008232330903410912,
-0.07137954235076904,
0.07560660690069199,
-0.015412315726280212,
-0.010094581171870232,
-0.055427443236112595,
0.018819065764546394,
-0.0013896963791921735,
-0.09297165274620056,
0.012173731811344624,
-0.008558038622140884,
0.000475342501886189,
-0.05687427893280983,
-0.08124686032533646,
-0.024634920060634613,
-0.03528469428420067,
0.03554056957364082,
-0.059345491230487823,
-0.03850720822811127,
-0.016650373116135597,
-0.008135462179780006,
-0.0039299908094108105,
0.05541713163256645,
0.02640179917216301,
-0.06122611090540886,
0.038927964866161346,
-0.04834136739373207,
0.052660297602415085,
-0.02138558402657509,
-0.023948967456817627,
0.02269105240702629,
0.06747362017631531,
0.03530827537178993,
0.06404513120651245,
-0.030569134280085564,
-0.03232593834400177,
0.03726903349161148,
0.02769336849451065,
-0.04082190990447998,
0.007623073644936085,
-0.037828147411346436,
0.04481036216020584,
0.012303417548537254,
-0.09666121751070023,
-0.024099158123135567,
-0.07495110481977463,
0.011755322106182575,
0.06969355791807175,
-0.007966161705553532,
-0.0032233295496553183,
0.002746341982856393,
-0.014587931334972382,
0.07664080709218979,
0.07245786488056183,
0.06019575148820877,
0.09963566064834595,
0.06334210187196732,
0.015732554718852043,
0.026360008865594864,
-0.016629202291369438,
0.04056185483932495,
-0.045714668929576874,
-0.0024132071994245052,
-0.030282258987426758,
0.01113183330744505,
0.01048255991190672,
-0.09045899659395218,
0.009322906844317913,
-0.017027046531438828,
0.0019844018388539553,
-0.03056105226278305,
-0.07937993109226227,
0.010766654275357723,
-0.025435777381062508,
-0.11489982903003693,
0.0961826741695404,
0.04640481248497963,
-0.07381395995616913,
-0.08537811040878296,
-0.027886969968676567,
0.06926023215055466,
-0.01363602839410305,
0.007991475984454155,
0.040982697159051895,
-0.09284250438213348,
0.07426564395427704,
0.026176204904913902,
-0.06724562495946884,
0.05211788788437843,
0.009725069627165794,
-0.027786632999777794,
-0.06054671108722687,
-0.02547375112771988,
0.006716741248965263,
-0.05082673579454422,
-0.0009761286783032119,
0.06344877928495407,
-0.022123437374830246,
-0.002583320252597332,
0.0008741513011045754,
0.04114976152777672,
0.007355904206633568,
0.028826097026467323,
-0.0009838099358603358,
0.009982644580304623,
-0.024949856102466583,
0.021289952099323273,
0.039776984602212906,
-0.033794254064559937,
0.022278394550085068,
0.027958450838923454,
0.0016031796112656593,
0.009632844477891922,
0.01816713623702526,
0.02189183235168457,
-0.005203514825552702,
0.03116735816001892,
-0.003338839393109083,
0.0036598672159016132,
-0.01949620246887207,
-0.029487304389476776,
0.007942449301481247,
-0.00758111197501421,
-0.0068712495267391205,
-0.002251903060823679,
0.004278211854398251,
-0.010841894894838333,
-0.001875338377431035,
0.012256531976163387,
0.00902873370796442,
-0.004612343851476908,
0.008219904266297817,
-0.023560846224427223,
-0.058368850499391556,
-0.004842156078666449,
0.016214055940508842,
-0.036193449050188065,
0.04136092960834503,
-0.008740076795220375,
0.0026930710300803185,
-0.0033409043680876493,
0.010818195529282093,
-0.014390457421541214,
-0.04220890998840332,
0.018446311354637146,
0.02447502128779888,
-0.020983755588531494,
0.048804908990859985,
-0.011799126863479614,
-0.03974676504731178,
-0.013516892679035664,
0.044721487909555435,
-0.04321988299489021,
-0.00899053830653429,
0.011337334290146828,
0.000493814586661756,
-0.0074539585039019585,
0.032355375587940216,
0.008235005661845207,
-0.012597541324794292,
-0.03232548013329506,
-0.021961558610200882,
0.024732187390327454,
-0.09150607138872147,
0.034426238387823105,
-0.015543395653367043,
0.03751836344599724,
-0.023214196786284447,
-0.03964315727353096,
-0.00828003790229559,
-0.039303358644247055,
0.016178598627448082,
0.07069101184606552,
0.027481939643621445,
0.03763638809323311,
0.012129400856792927,
0.046513576060533524,
-0.018072504550218582,
0.05254783853888512,
0.004558083601295948,
-0.015565309673547745,
0.04086063802242279,
0.03623871132731438,
-0.043149519711732864,
-0.0598970428109169,
0.03252333030104637,
-0.028237005695700645,
-0.004350557923316956,
0.03275899961590767,
0.038984231650829315,
-0.04222099855542183,
-0.007899864576756954,
-0.054738979786634445,
0.03961724042892456,
-0.02080960012972355,
-0.005975330714136362,
-0.02265366166830063,
-0.0061940355226397514,
-0.019721271470189095,
-0.017153026536107063,
0.029628466814756393,
-0.012054369784891605,
0.05537300184369087,
-0.02344593033194542,
-0.015953009948134422,
0.05810382217168808,
-0.011446119286119938,
0.04387028515338898,
0.008550701662898064,
-0.018930956721305847,
0.05306101217865944,
0.06277792900800705,
0.002720848424360156,
-0.017005514353513718,
-0.08307833969593048,
0.011430187150835991,
0.06442849338054657,
-0.0298320222645998,
0.009223636239767075,
0.02580135315656662,
0.019794557243585587,
0.0065138498321175575,
-0.0525178425014019,
-0.05384423956274986,
-0.006421791389584541,
-0.07735326141119003,
-0.007107681129127741,
0.02555670775473118,
0.08519669622182846,
0.03725522756576538,
0.015638286247849464,
0.009133742190897465,
0.016642622649669647,
-0.039573751389980316,
0.026465073227882385,
0.025748617947101593,
-0.000736140355002135,
0.013279846869409084,
0.03593821823596954,
0.019998906180262566,
-0.05347644165158272,
0.011463996022939682,
0.0030003602150827646,
-0.012486474588513374,
0.02925984561443329,
-0.03998880460858345,
0.010891505517065525,
0.0029500536620616913,
0.06102608144283295,
0.003434387966990471,
0.021153319627046585,
0.012076826766133308,
0.046770259737968445,
0.0392635241150856,
-0.058032549917697906,
0.01867232657968998,
-0.03270323947072029,
-0.008783756755292416,
-0.015675416216254234,
0.015472433529794216,
0.011570548638701439,
-0.015210682526230812,
0.020329860970377922,
0.026253940537571907,
-0.01962791010737419,
-0.021171456202864647,
0.03200928494334221,
0.03101973608136177,
0.050220705568790436,
-0.04377206414937973,
-0.008970635011792183,
0.02800065465271473,
-0.00752254156395793,
-0.0189825389534235,
-0.036417633295059204,
-0.03775019571185112,
0.0036260129418224096,
0.018673017621040344,
-0.004520655144006014,
-0.002899396698921919,
0.005208404269069433,
-0.0502919927239418,
-0.006229465361684561,
0.019086457788944244,
-0.041985418647527695,
0.03271637111902237,
-0.015292355790734291,
-0.011392694897949696,
0.04677197337150574,
-0.011304167099297047,
0.01907815784215927,
-0.00042209422099404037,
-0.03173643723130226,
-0.06698276847600937,
-0.008763113990426064,
0.036580927670001984,
0.04844282567501068,
0.03786711022257805,
-0.014737908728420734,
0.0032852767035365105,
0.031052445992827415,
0.009142367169260979,
-0.05232832208275795,
0.07429304718971252,
-0.03963521495461464,
0.018196577206254005,
-0.05318855866789818,
0.017345476895570755,
-0.0011286130174994469,
0.03342871367931366,
0.024493375793099403,
-0.01966031827032566,
0.019626451656222343,
0.008235371671617031,
-0.0463261716067791,
-0.04309341311454773,
0.011763989925384521,
-0.004050746560096741,
0.032693006098270416,
-0.034558672457933426,
-0.03547031432390213,
0.025862330570816994,
0.02898876555263996,
-0.010081053711473942,
0.0032556892838329077,
-0.01709803380072117,
0.04272504895925522,
-0.032172124832868576,
0.0032445297110825777,
0.05844215303659439,
-0.03879562392830849,
-0.00006791817577322945,
-0.01972324401140213,
-0.020525535568594933,
-0.026902077719569206,
0.0006803430151194334,
-0.008645763620734215,
0.029537074267864227,
0.07309074699878693,
0.012294305488467216,
-0.01571367122232914,
-0.009203540161252022,
0.021235713735222816,
0.009322967380285263,
-0.00821087695658207,
0.023364199325442314,
-0.0356413871049881,
-0.02090255171060562,
0.035314030945301056,
0.03557207062840462,
0.06408950686454773,
-0.00011195564729860052,
-0.0053383405320346355,
-0.005290523637086153,
0.006788427475839853,
-0.02312324568629265,
-0.03294127807021141,
-0.048022083938121796,
-0.026473145931959152,
0.02639799937605858,
0.031387243419885635,
0.03074449673295021,
0.008469448424875736,
0.041479866951704025,
0.05114331468939781,
0.024948162958025932,
-0.031197141855955124,
-0.00760411424562335,
-0.03596627712249756,
0.01396563183516264,
-0.048096440732479095,
0.014966493472456932,
-0.007348853629082441,
0.00708980904892087,
0.014148715883493423,
-0.02352648414671421,
-0.02346033602952957,
0.025386054068803787,
-0.05496200546622276,
-0.0019000000320374966,
0.047128669917583466,
0.017406083643436432,
0.015595346689224243,
0.01368629653006792,
0.01342848315834999,
-0.0022366091143339872,
0.07719481736421585,
-0.021036650985479355,
-0.04076843336224556,
0.022321544587612152,
0.015223382972180843,
-0.014519529417157173,
0.04731935262680054,
0.04340051859617233,
-0.007136184722185135,
-0.011587127111852169,
0.007145529612898827,
0.05975138768553734,
-0.006515809800475836,
0.004551023710519075,
0.019547363743185997,
0.031829796731472015,
0.00014282642223406583,
0.004995465744286776,
-0.04169046878814697,
-0.030530434101819992,
0.01051240786910057,
-0.020103346556425095,
0.04779154434800148,
0.0028150712605565786,
-0.03096943348646164,
0.034382909536361694,
-0.03532468155026436,
0.024887431412935257,
0.003939626272767782,
-0.011068815365433693,
0.016682947054505348,
-0.03285444527864456,
0.005366214085370302,
-0.0025371701922267675,
0.02162034623324871,
0.028452962636947632,
-0.013613387010991573,
-0.006635445635765791,
0.014144336804747581,
-0.014298317953944206,
0.016711199656128883,
0.009372983127832413,
0.02863212674856186,
-0.0298233050853014,
-0.018210485577583313,
0.030691087245941162,
0.028168288990855217,
0.016976071521639824,
0.03695986792445183,
-0.0007017083116807044,
0.004773243330419064,
-0.021100739017128944,
-0.035176873207092285,
0.060611359775066376,
0.015548734925687313,
0.0414000004529953,
0.0009437613771297038,
-0.007014291360974312,
0.0656685009598732,
0.019734321162104607,
0.022289037704467773,
0.019202349707484245,
0.04552268609404564,
0.029828347265720367,
-0.01933681219816208,
-0.02132641151547432,
-0.016478216275572777,
-0.016382277011871338,
0.0007292749942280352,
0.016404911875724792,
0.008084244094789028,
-0.033382683992385864,
0.017801592126488686,
0.03666672483086586,
0.012507975101470947,
0.025414185598492622,
-0.013430782593786716,
0.03730334714055061,
-0.001338872592896223,
0.00006565064541064203,
-0.019630488008260727,
0.00278207054361701,
-0.009424559772014618,
0.009299715049564838,
-0.007433146238327026,
-0.0487569198012352,
0.020656947046518326,
-0.015517940744757652,
0.04638029262423515,
-0.024355409666895866,
-0.008481185883283615,
-0.0064986636862158775,
0.010069216601550579,
0.0120242303237319,
-0.01964525505900383,
0.010388324037194252,
-0.0018614039290696383,
-0.06734159588813782,
-0.012760041281580925,
0.010608703829348087,
0.04231395944952965,
-0.0028626592829823494,
-0.014687122777104378,
-0.0104962894693017,
-0.045499589294195175,
-0.044760216027498245,
0.012230138294398785,
-0.008165747858583927,
0.03800134360790253,
-0.012601290829479694,
-0.0024741527158766985,
0.020760493353009224,
-0.00975788477808237,
0.014245628379285336,
0.0019606479909271,
0.02271343022584915,
0.032603807747364044,
-0.03841102123260498,
0.028427155688405037,
-0.02047180011868477,
0.004897681530565023,
0.03394364193081856,
0.00618033716455102,
0.0555390790104866,
0.020131070166826248,
0.027035722509026527,
0.06348102539777756,
0.014696570113301277,
0.029277022927999496,
-0.024051956832408905,
0.0013065404491499066,
0.03140166774392128,
0.003203673753887415,
0.01822041906416416,
-0.04317222908139229,
-0.01162718515843153,
-0.017434680834412575,
0.0021049855276942253,
0.002062480431050062,
0.07245061546564102,
-0.037544626742601395,
-0.03863906115293503,
-0.021514737978577614,
-0.020794536918401718,
0.0591861754655838,
0.028596295043826103,
-0.016424478963017464,
-0.0027567155193537474,
-0.010126419365406036,
-0.0331738144159317,
0.030056487768888474,
-0.001866124221123755,
-0.047630637884140015,
-0.011118902824819088,
0.022338110953569412,
0.013338521122932434,
-0.04714702069759369,
0.04339202493429184,
-0.0280012134462595,
0.004406417720019817,
0.040740836411714554,
0.06393113732337952,
-0.0007131311576813459,
-0.015978500247001648,
-0.00917649082839489,
0.02615305408835411,
0.002338600577786565,
-0.03687720745801926,
-0.03137917444109917,
-0.01032538153231144,
0.03579200804233551,
-0.004402132239192724,
-0.01150035485625267,
0.008744947612285614,
-0.023690542206168175,
-0.021754208952188492,
-0.043798040598630905,
-0.006561563350260258,
-0.0028651878237724304,
0.023785945028066635,
0.04825747758150101,
0.0034749575424939394,
0.02257331646978855,
0.011021031998097897,
-0.006516915280371904,
-0.05445962771773338,
0.046220529824495316,
0.06128076836466789,
0.01561083272099495,
0.002441184362396598,
-0.018628668040037155,
0.0045797755010426044,
0.021692760288715363,
-0.08458546549081802,
-0.017465615645051003,
0.00920862052589655,
-0.02492402493953705,
-0.03021266870200634,
-0.016617896035313606,
0.003395524574443698,
0.03885994851589203,
0.01516436692327261,
0.019009659066796303,
-0.006564164534211159,
0.002214787295088172,
0.014560057781636715,
-0.045857418328523636,
-0.02651277929544449,
-0.022982580587267876,
0.0407126359641552,
0.0006593290599994361,
-0.01726844534277916,
-0.07662977278232574,
0.017970159649848938,
-0.009506247006356716,
0.0023502171970903873,
-0.001432038494385779,
0.0031047773081809282,
0.006030648481100798,
0.008152891881763935,
0.03858225792646408,
-0.04238078370690346,
-0.10068261623382568,
-0.00036007611197419465,
0.009535911493003368,
-0.006592182442545891,
-0.021814657375216484,
-0.024427495896816254,
-0.02922702394425869,
-0.024048304185271263,
-0.04165979102253914,
-0.022404275834560394,
-0.014758054167032242,
0.048719123005867004,
-0.026094261556863785,
-0.024352511391043663,
-0.009202118963003159
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Porting weights and configuration The first thing I did is to look at what was inside the publicly shared checkpoint. [This notebook](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/nbs/config.ipynb) shows what I did there. I discovered that there were 4 checkpoints in there. I had no idea what to do about it, so I started with a simpler job of using just the first checkpoint. Later I discovered thatfairseqused all 4 checkpoints in an ensemble to get the best predictions, and thattransformerscurrently doesn't support that feature. When the porting was completed and I was able to measure the performance scores, I found out that themodel4.ptcheckpoint provided the best score. But during the porting performance didn't matter much. Since I was using only one checkpoint it was crucial that when I was comparing outputs, I hadfairseqalso use just one and the same checkpoint. To accomplish that I used a slightly differentfairseqAPI: ``` from fairseq import hub_utils #checkpoint_file = 'model1.pt:model2.pt:model3.pt:model4.pt' checkpoint_file = 'model1.pt' model_name_or_path = 'transformer.wmt19.ru-en' data_name_or_path = '.' cls = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel models = cls.hub_models() kwargs = {'bpe': 'fastbpe', 'tokenizer': 'moses'} ru2en = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=models, **kwargs ) ``` First I looked at the model: ``` print(ru2en["models"][0]) ``` ``` TransformerModel( (encoder): TransformerEncoder( (dropout_module): FairseqDropout() (embed_tokens): Embedding(31232, 1024, padding_idx=1) (embed_positions): SinusoidalPositionalEmbedding() (layers): ModuleList( (0): TransformerEncoderLayer( (self_attn): MultiheadAttention( (dropout_module): FairseqDropout() (k_proj): Linear(in_features=1024, out_features=1024, bias=True) (v_proj): Linear(in_features=1024, out_features=1024, bias=True) (q_proj): Linear(in_features=1024, out_features=1024, bias=True) (out_proj): Linear(in_features=1024, out_features=1024, bias=True) ) [...] # the full output is in the notebook ``` which looked very similar to BART's architecture, with some slight differences in a few layers - some were added, others removed. So this was great news as I didn't have to re-invent the wheel, but to only tweak a well-working design. Note that in the code sample above I'm not usingtorch.load()to loadstate_dict. This is what I initially did and the result was most puzzling - I was missingself_attn.(k|q|v)_projweights and instead had a singleself_attn.in_proj. When I tried loading the model usingfairseqAPI, it fixed things up - apparently that model was old and was using an old architecture that had one set of weights fork/q/vand the newer architecture has them separate. Whenfairseqloads this old model, it rewrites the weights to match the modern architecture. I also used [this notebook](https://github.com/stas00/porting/tree/master/transformers/fairseq-wmt19/nbs/visualize-models.ipynb) to compare thestate_dicts visually. In that notebook you will also see thatfairseqfetches a 2.2GB-worth of data inlast_optimizer_state, which we can safely ignore, and have a 3 times leaner final model size. In the conversion script I also had to remove somestate_dictkeys, which I wasn't going to use, e.g.model.encoder.version,model.modeland a few others. Next we look at the configuration args: ``` args = dict(vars(ru2en["args"])) pprint(args) ``` ``` 'activation_dropout': 0.0, 'activation_fn': 'relu', 'adam_betas': '(0.9, 0.98)', 'adam_eps': 1e-08, 'adaptive_input': False, 'adaptive_softmax_cutoff': None, 'adaptive_softmax_dropout': 0, 'arch': 'transformer_wmt_en_de_big', 'attention_dropout': 0.1, 'bpe': 'fastbpe', [... full output is in the notebook ...] ``` ok, we will copy those to configure the model. I had to rename some of the argument names, wherevertransformersused different names for the corresponding configuration setting. So the re-mapping of configuration looks as following: ``` model_conf = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], [...] "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } ``` All that remains is to save the configuration intoconfig.jsonand create a newstate_dictdump intopytorch.dump: ``` print(f"Generating {fsmt_tokenizer_config_file}") with open(fsmt_tokenizer_config_file, "w", encoding="utf-8") as f: f.write(json.dumps(tokenizer_conf, ensure_ascii=False, indent=json_indent)) [...] print(f"Generating {pytorch_weights_dump_path}") torch.save(model_state_dict, pytorch_weights_dump_path) ``` We have the configuration and the model'sstate_dictported - yay! You will find the final conversion code [here](https://github.com/huggingface/transformers/blob/129fdae04033fe4adfe013b734deaec6ec34ae2e/src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py#L162). | [
-0.036576561629772186,
0.010734756477177143,
-0.029329918324947357,
0.004268776159733534,
0.08195953816175461,
0.026964306831359863,
-0.00014431435556616634,
0.035770807415246964,
-0.029188942164182663,
-0.07416976988315582,
0.02131129428744316,
-0.018472937867045403,
-0.0021271617151796818,
0.009953214786946774,
0.025687741115689278,
-0.048515934497117996,
0.03384716063737869,
-0.08935564011335373,
0.02543708123266697,
0.01381879486143589,
0.04082399606704712,
-0.04968753829598427,
0.06787233054637909,
0.05424783378839493,
-0.02977045066654682,
-0.06823378056287766,
0.0009891914669424295,
0.06709149479866028,
-0.049980033189058304,
0.044848281890153885,
-0.06314165145158768,
0.03641330450773239,
-0.03125376254320145,
-0.05375906825065613,
0.061284322291612625,
0.022118370980024338,
-0.04023795574903488,
0.04117758944630623,
0.029975347220897675,
-0.052584659308195114,
-0.016166219487786293,
0.02267756499350071,
-0.02940334938466549,
0.0449194498360157,
0.040484149008989334,
0.023963309824466705,
-0.05459902808070183,
0.048513490706682205,
-0.02322329767048359,
0.018056169152259827,
-0.01667596586048603,
0.024898095056414604,
0.02527492120862007,
0.027390213683247566,
0.03439731150865555,
-0.03940124809741974,
-0.006942761596292257,
-0.03359023854136467,
0.04560582712292671,
0.020232895389199257,
-0.03194554150104523,
0.028165096417069435,
0.021230854094028473,
0.07780823856592178,
-0.0066542658023536205,
0.01182476431131363,
-0.01923830807209015,
0.01659662090241909,
-0.03271183371543884,
-0.026334580034017563,
-0.001933945924974978,
-0.007857289165258408,
-0.00231813988648355,
-0.06414026767015457,
0.01570216193795204,
-0.0528857484459877,
-0.02919243648648262,
-0.029877066612243652,
0.06729652732610703,
0.04644244164228439,
-0.0013372625689953566,
0.03771916776895523,
-0.03617948666214943,
0.018707353621721268,
0.03449634462594986,
-0.00522984191775322,
0.058622803539037704,
-0.043862853199243546,
-0.008846044540405273,
0.02656690962612629,
-0.023824933916330338,
-0.06856004893779755,
-0.07246553897857666,
0.027447428554296494,
0.03478950634598732,
-0.026180526241660118,
-0.002215309999883175,
0.05588512495160103,
0.01619989238679409,
-0.06082240119576454,
0.0031018448062241077,
-0.05930696055293083,
0.0555737130343914,
-0.05556340888142586,
-0.01330726407468319,
0.04652903228998184,
0.018038855865597725,
-0.10273580998182297,
-0.018803421407938004,
0.022952938452363014,
0.015543759800493717,
0.02261914126574993,
-0.04592210799455643,
0.08740174770355225,
-0.021378308534622192,
0.03913198038935661,
-0.004817104898393154,
-0.056912992149591446,
0.03817151486873627,
0.04091711714863777,
-0.005578225012868643,
0.15383374691009521,
0.042975932359695435,
-0.029122717678546906,
0.04418794810771942,
0.05897417664527893,
0.054112520068883896,
0.028792183846235275,
-0.023540938273072243,
-0.017361987382173538,
0.0625123605132103,
-0.04702169448137283,
0.047363653779029846,
-0.046871624886989594,
-0.04725244268774986,
-0.10389846563339233,
-0.0019042345229536295,
0.0037359020207077265,
-0.00033462821738794446,
0.019159656018018723,
-0.09895341098308563,
0.07908214628696442,
-0.0034969195257872343,
0.00681079737842083,
-0.012228012084960938,
0.025607433170080185,
-0.0887121930718422,
0.08593190461397171,
0.05480849742889404,
-0.03240402042865753,
-0.0609862394630909,
0.01549481600522995,
-0.007097943220287561,
-0.06330021470785141,
0.009485567919909954,
0.06518557667732239,
0.015556254424154758,
-0.07386563718318939,
-0.0564420185983181,
-0.004153876565396786,
-0.010637381114065647,
0.004389050882309675,
-0.05226266384124756,
-0.07926399260759354,
-0.02274326980113983,
0.0027756893541663885,
0.022014068439602852,
-0.013806753791868687,
0.0634026750922203,
0.036185380071401596,
0.05117206647992134,
-0.01885492540895939,
0.10914468765258789,
-0.020332451909780502,
-0.03471461683511734,
0.07825520634651184,
0.052782267332077026,
0.06034374609589577,
0.007169835269451141,
-0.020336134359240532,
-0.07387134432792664,
0.0519796721637249,
-0.08984316885471344,
0.045494504272937775,
0.057340964674949646,
-0.043771713972091675,
0.01122791226953268,
-0.01413777470588684,
-0.04799467325210571,
0.0026834718883037567,
-0.11707845330238342,
-0.01091633178293705,
0.07640767097473145,
-0.004804389551281929,
0.023817608132958412,
-0.04342683404684067,
-0.02198837138712406,
0.07007867097854614,
0.037540070712566376,
0.010405011475086212,
0.06225688382983208,
-0.0114292586222291,
0.022713197395205498,
-0.009755492210388184,
-0.023532187566161156,
0.06509978324174881,
-0.0714787170290947,
-0.1609756052494049,
0.03257829323410988,
0.004011176992207766,
0.028051555156707764,
-0.06765997409820557,
-0.016945447772741318,
-0.05526594817638397,
-0.00548968743532896,
-0.0411067008972168,
-0.06684131920337677,
0.0053289965726435184,
-0.005877864547073841,
-0.011691263876855373,
0.14719079434871674,
0.007328134961426258,
-0.012644861824810505,
0.006658567581325769,
0.02489176206290722,
0.00391177786514163,
0.008981002494692802,
0.0019389718072488904,
0.0600627064704895,
-0.03248942643404007,
-0.05620470643043518,
-0.01124617550522089,
-0.016444558277726173,
0.12153036147356033,
0.0030828381422907114,
-0.019933363422751427,
-0.013829943723976612,
-0.04770469665527344,
0.03760603442788124,
-0.07783838361501694,
0.005493081174790859,
0.0683797225356102,
-0.014208530075848103,
0.0016188945155590773,
0.019633429124951363,
0.03593262657523155,
0.05726409703493118,
0.0006579120527021587,
-0.05345313623547554,
-0.038678128272295,
-0.05796978250145912,
0.025698984041810036,
0.0376463457942009,
-0.03297845274209976,
0.06910025328397751,
0.040209926664829254,
0.024239523336291313,
0.015448235906660557,
-0.015054263174533844,
0.053868748247623444,
-0.02005062811076641,
0.029013436287641525,
-0.046697840094566345,
-0.04629542678594589,
-0.0007992526516318321,
-0.026827827095985413,
-0.0243845097720623,
-0.023438138887286186,
-0.005594565067440271,
-0.002052544616162777,
0.027436913922429085,
-0.04155930131673813,
-0.0006950287497602403,
0.0019444511272013187,
0.022489039227366447,
0.012591452337801456,
-0.037761393934488297,
-0.015827100723981857,
-0.05719701200723648,
-0.005905043799430132,
0.03464921936392784,
-0.04901953786611557,
0.008703946135938168,
0.006499145645648241,
0.0109578687697649,
0.009707453660666943,
0.017944008111953735,
-0.006413613446056843,
-0.031957946717739105,
0.03074059449136257,
0.029616549611091614,
0.01160221453756094,
0.005387605167925358,
0.013598833233118057,
-0.027049299329519272,
0.00794938113540411,
0.011956213973462582,
-0.02063371241092682,
-0.00004112535680178553,
0.04316728189587593,
-0.046548280864953995,
0.011988897807896137,
0.021334871649742126,
-0.0073983194306492805,
-0.035865724086761475,
0.021572722122073174,
0.004892867058515549,
0.020534822717308998,
-0.09094042330980301,
0.01587764360010624,
-0.009787311777472496,
0.04236753284931183,
-0.06159336119890213,
-0.038900114595890045,
0.024330083280801773,
-0.06407421827316284,
0.01189644169062376,
0.010058771818876266,
0.04724125936627388,
0.00481198076158762,
0.019525716081261635,
0.016969552263617516,
-0.016267161816358566,
0.03847825154662132,
0.0010352253448218107,
0.01364060677587986,
0.049660574644804,
-0.014505364000797272,
-0.02664789743721485,
-0.01818167418241501,
-0.021625561639666557,
-0.039121419191360474,
0.026805929839611053,
0.009887036867439747,
0.044738154858350754,
0.008003554306924343,
-0.017846863716840744,
-0.037474751472473145,
-0.004136322066187859,
-0.03372444957494736,
0.02360803633928299,
-0.032871536910533905,
-0.01402871310710907,
-0.0443999208509922,
-0.03395881876349449,
0.020097265020012856,
-0.010220009833574295,
0.03147447854280472,
0.0012371984776109457,
0.009272790513932705,
0.03995261713862419,
-0.008817889727652073,
0.017755592241883278,
0.027468262240290642,
0.05089447274804115,
0.026573609560728073,
0.004693734925240278,
-0.014226360246539116,
0.0075066606514155865,
-0.021403376013040543,
0.030555883422493935,
0.041552044451236725,
-0.02075556106865406,
-0.02188527025282383,
-0.003996011335402727,
0.035083603113889694,
0.01955423690378666,
0.011850501410663128,
-0.08234219253063202,
0.020876126363873482,
-0.0578584223985672,
-0.03208061680197716,
0.012356403283774853,
0.06567833572626114,
-0.027124498039484024,
0.040002867579460144,
-0.04448170214891434,
-0.00789555348455906,
-0.04807620123028755,
0.0359639972448349,
0.03315436840057373,
0.0005539213889278471,
-0.006417802069336176,
0.020597312599420547,
-0.030708130449056625,
-0.042837876826524734,
0.016827842220664024,
0.009833850897848606,
0.005848797503858805,
-0.011559459380805492,
-0.03933475539088249,
-0.003438153536990285,
0.015923354774713516,
0.041460368782281876,
-0.010435905307531357,
-0.04438059777021408,
0.025716550648212433,
0.032135773450136185,
0.004792005755007267,
0.004074717406183481,
-0.03166991472244263,
-0.009609679691493511,
-0.011006954126060009,
-0.053383827209472656,
-0.005124564282596111,
0.001401448855176568,
-0.030769722536206245,
0.018581874668598175,
-0.00781130651012063,
-0.021623872220516205,
-0.015638908371329308,
-0.027814285829663277,
0.009662536904215813,
0.014909487217664719,
-0.03906857594847679,
0.002402213169261813,
-0.035569898784160614,
-0.0182432159781456,
-0.022349225357174873,
0.022233959287405014,
-0.019425494596362114,
-0.03719230368733406,
0.05952848494052887,
0.022458689287304878,
-0.02157568745315075,
-0.00830796454101801,
-0.022042900323867798,
0.027992110699415207,
-0.02786973863840103,
-0.00982637982815504,
0.052841491997241974,
-0.045574747025966644,
0.018941884860396385,
-0.0001759386359481141,
0.034699052572250366,
-0.0029916854109615088,
-0.018141571432352066,
-0.024778665974736214,
-0.062248531728982925,
-0.016093848273158073,
0.06697864830493927,
0.027438202872872353,
0.03149871900677681,
0.02902793698012829,
-0.01875476725399494,
0.0004360415623523295,
0.010973830707371235,
-0.025354651734232903,
0.003364580450579524,
0.005716103594750166,
0.017022592946887016,
-0.044293493032455444,
0.029490835964679718,
0.02965284138917923,
-0.026006637141108513,
0.023232510313391685,
-0.06728190928697586,
0.017692947760224342,
0.05831816419959068,
0.004469302017241716,
-0.03345054015517235,
-0.0061389850452542305,
0.0477227047085762,
-0.006520014256238937,
0.03677656129002571,
-0.02585459314286709,
0.035147618502378464,
0.05116980895400047,
-0.03212527930736542,
-0.05236945301294327,
-0.016118308529257774,
0.014309052377939224,
-0.013162091374397278,
0.009190181270241737,
0.03615386411547661,
-0.08025933057069778,
-0.04072973132133484,
-0.0023538118693977594,
-0.008487052284181118,
-0.01655956357717514,
0.011480704881250858,
-0.05131681263446808,
0.015661923214793205,
0.04706951230764389,
-0.03546726331114769,
0.01616969145834446,
0.009035062044858932,
-0.017258981242775917,
-0.019729139283299446,
0.013777466490864754,
0.029138706624507904,
-0.031093083322048187,
-0.031752780079841614,
0.03559017553925514,
0.03344250097870827,
0.03572860732674599,
-0.001830333610996604,
0.005528447683900595,
0.015815263614058495,
-0.004075469449162483,
0.02220609225332737,
-0.04241587221622467,
-0.02113010361790657,
-0.013659392483532429,
-0.016503816470503807,
0.0008355671307072043,
-0.013606646098196507,
0.0017484213458374143,
0.015559596940875053,
0.030700378119945526,
0.02380591630935669,
-0.02547411248087883,
0.01161650288850069,
0.0034935749135911465,
-0.045656438916921616,
-0.044985536485910416,
0.01762298308312893,
-0.03126910701394081,
0.059738483279943466,
0.009370372630655766,
-0.02506089396774769,
-0.02246187813580036,
0.05189965292811394,
-0.032114673405885696,
-0.004683828912675381,
0.05753239616751671,
0.03469253331422806,
-0.004616246558725834,
0.0055089304223656654,
-0.033254217356443405,
-0.017036540433764458,
0.019036034122109413,
-0.0025583526585251093,
-0.05808489769697189,
0.03531261160969734,
-0.0034798039123415947,
-0.005186047405004501,
0.04085785150527954,
-0.012974732555449009,
0.014261368662118912,
0.010168947279453278,
0.037700653076171875,
0.02585430257022381,
-0.01828690618276596,
-0.03246640786528587,
0.028061047196388245,
0.04854283854365349,
-0.011447212658822536,
0.012283367104828358,
-0.01033072266727686,
-0.0048543051816523075,
0.019435545429587364,
-0.04262728989124298,
0.068348728120327,
0.03211455047130585,
-0.019141843542456627,
0.037280019372701645,
-0.02626730129122734,
0.02679300680756569,
0.051262322813272476,
0.022979246452450752,
0.0016325564356520772,
0.005594688933342695,
-0.004790238104760647,
0.030359342694282532,
-0.0032820014748722315,
0.006006403360515833,
0.011444629170000553,
0.030608318746089935,
-0.026512952521443367,
0.034044574946165085,
0.002185286721214652,
-0.04803064465522766,
0.012256082147359848,
-0.009162915870547295,
-0.049456316977739334,
0.02603861875832081,
-0.027815373614430428,
0.01905166171491146,
0.0012405728921294212,
-0.006289280019700527,
0.02746322751045227,
-0.011738787405192852,
0.003365312470123172,
0.03458221256732941,
0.041135139763355255,
-0.009968183003365993,
-0.008614437654614449,
0.01836566999554634,
0.03473503887653351,
0.002008423674851656,
0.044227320700883865,
0.04505915939807892,
0.03499160334467888,
0.06088320538401604,
0.029769551008939743,
0.024808449670672417,
0.0149460444226861,
0.017583061009645462,
-0.002205267082899809,
-0.050533100962638855,
-0.03573337569832802,
-0.00468122074380517,
0.030563930049538612,
0.007018235977739096,
-0.019174419343471527,
0.02192838117480278,
-0.019550224766135216,
0.03117123804986477,
0.021821577101945877,
0.013543225824832916,
-0.03285904973745346,
0.024381550028920174,
0.04580943286418915,
-0.0051757642067968845,
0.01800190657377243,
-0.011421775445342064,
0.013297014869749546,
-0.0023592349607497454,
0.05483600124716759,
0.004032887518405914,
0.012504440732300282,
-0.03198846057057381,
0.0125581631436944,
-0.016284573823213577,
-0.024698877707123756,
0.0011123883305117488,
0.039031971246004105,
-0.0069436198100447655,
0.005323352757841349,
0.013829389587044716,
0.03484345227479935,
-0.01921439915895462,
-0.0016254258807748556,
0.0033899149857461452,
-0.006247083190828562,
-0.04382969066500664,
0.01786213368177414,
-0.04483557865023613,
0.05158086493611336,
0.0014893623301759362,
-0.05096976459026337,
-0.02448269911110401,
0.02731241099536419,
0.024809228256344795,
0.023222720250487328,
0.01698221080005169,
0.0171457901597023,
-0.019444534555077553,
0.020770998671650887,
0.006935633718967438,
0.04261688515543938,
-0.01206107810139656,
0.011658981442451477,
0.03291398286819458,
0.026994621381163597,
0.017297232523560524,
0.02321615256369114,
0.0055872914381325245,
0.008484802208840847,
-0.019389845430850983,
-0.007187793962657452,
0.018125571310520172,
-0.039321500808000565,
0.04673776403069496,
-0.019841361790895462,
-0.009238950908184052,
0.01594444550573826,
-0.0029305717907845974,
0.04578594118356705,
0.005048771388828754,
0.011690521612763405,
-0.06919106841087341,
0.011888825334608555,
-0.01748773455619812,
-0.035613253712654114,
0.004797524772584438,
0.004034650512039661,
0.0001684833550825715,
0.02105576917529106,
-0.008331649005413055,
0.031806036829948425,
0.008374884724617004,
-0.00832670833915472,
0.004520700313150883,
0.01178752165287733,
0.013001950457692146,
0.0011561892461031675,
0.07480388879776001,
0.009662716649472713,
0.034307628870010376,
0.07229521870613098,
-0.012300089932978153,
0.011226482689380646,
0.006066976580768824,
-0.05130415037274361,
-0.004627658054232597,
0.021438749507069588,
-0.02335953712463379,
-0.0489177331328392,
-0.02894825115799904,
0.046958040446043015,
-0.027385689318180084,
0.029811900109052658,
-0.032152965664863586,
-0.03802573308348656,
-0.03650524467229843,
-0.020208822563290596,
-0.038910239934921265,
0.0019007570808753371,
0.028650330379605293,
0.08042606711387634,
-0.008906694129109383,
0.04848681762814522,
-0.05727038532495499,
-0.026980813592672348,
-0.039656758308410645,
0.024857353419065475,
0.055594552308321,
0.009731805883347988,
0.01643189787864685,
-0.02832016907632351,
0.01002697553485632,
-0.006875067483633757,
-0.028142325580120087,
-0.043883536010980606,
0.00486125098541379,
0.0029259228613227606,
-0.06809963285923004,
-0.01021755300462246,
0.05378900468349457,
-0.002248124685138464,
0.022971058264374733,
0.013444731011986732,
0.02769327349960804,
0.00034393786336295307,
-0.009059802629053593,
-0.05590008571743965,
-0.04620465636253357,
-0.03310887888073921,
0.03115033730864525,
-0.012072340585291386,
-0.008617986924946308,
-0.022834908217191696,
0.029260179027915,
-0.03401235491037369,
-0.0056677828542888165,
-0.012631111778318882,
0.0000965017534326762,
-0.04529464617371559,
-0.002257641637697816,
0.03456893563270569,
-0.06424490362405777,
-0.06590323150157928,
0.042555514723062515,
0.02759886346757412,
-0.023446733132004738,
-0.009425710886716843,
0.005172974895685911,
-0.02133176103234291,
-0.00939426850527525,
0.01453578844666481,
0.010494424030184746,
-0.0016441261395812035,
0.021637750789523125,
-0.002333217067644,
-0.004308614879846573,
0.023663105443120003
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Uploading models to s3 Once the conversion script did a complete job of porting all the required files totransformers, I uploaded the models to my 🤗 s3 account: ``` cd data transformers-cli upload -y wmt19-ru-en transformers-cli upload -y wmt19-en-ru transformers-cli upload -y wmt19-de-en transformers-cli upload -y wmt19-en-de cd - ``` For the duration of testing I was using my 🤗 s3 account and once my PR with the complete changes was ready to be merged I asked in the PR to move the models to thefacebookorganization account, since these models belong there. Several times I had to update just the config files, and I didn't want to re-upload the large models, so I wrote this little script that produces the right upload commands, which otherwise were too long to type and as a result were error-prone: ``` perl -le 'for $f (@ARGV) { print qq[transformers-cli upload -y $_/$f --filename $_/$f] \ for map { "wmt19-$_" } ("en-ru", "ru-en", "de-en", "en-de")}' \ vocab-src.json vocab-tgt.json tokenizer_config.json config.json # add/remove files as needed ``` So if, for example, I only needed to update all theconfig.jsonfiles, the script above gave me a convenient copy-n-paste: ``` transformers-cli upload -y wmt19-en-ru/config.json --filename wmt19-en-ru/config.json transformers-cli upload -y wmt19-ru-en/config.json --filename wmt19-ru-en/config.json transformers-cli upload -y wmt19-de-en/config.json --filename wmt19-de-en/config.json transformers-cli upload -y wmt19-en-de/config.json --filename wmt19-en-de/config.json ``` Once the upload was completed, these models could be accessed as (*): ``` tokenizer = FSMTTokenizer.from_pretrained("stas/wmt19-en-ru") ``` * footnote:stasis my username at https://huggingface.co. Before I made this upload I had to use the local path to the folder with the model files, e.g.: ``` tokenizer = FSMTTokenizer.from_pretrained("/code/huggingface/transformers-fair-wmt/data/wmt19-en-ru") ``` Important: If you update the model files, and re-upload them, you must be aware that due to CDN caching the uploaded model may be unavailable for up to 24 hours after the upload - i.e. the old cached model will be delivered. So the only way to start using the new model sooner is by either: 1. downloading it to a local path and using that path as an argument that gets passed tofrom_pretrained(). 2. or using:from_pretrained(..., use_cdn=False)everywhere for the next 24h - it's not enough to do it once. | [
-0.01624060422182083,
0.0641784742474556,
-0.008519237861037254,
0.048967745155096054,
0.06381776928901672,
0.060487050563097,
0.00855147186666727,
0.040005967020988464,
-0.004347591660916805,
0.046789903193712234,
-0.01974487490952015,
0.036845795810222626,
-0.024265708401799202,
0.03968577831983566,
-0.033044829964637756,
-0.003116140142083168,
-0.03266863524913788,
0.03567564859986305,
-0.032486606389284134,
-0.019231200218200684,
0.005233383737504482,
-0.09325766563415527,
0.05638061463832855,
-0.022392872720956802,
0.020778171718120575,
-0.051261816173791885,
-0.02372092194855213,
0.052711013704538345,
-0.006416983436793089,
0.049028750509023666,
-0.06981457769870758,
-0.034397292882204056,
-0.040477454662323,
-0.03223448619246483,
-0.004110012669116259,
0.048349395394325256,
-0.0671161338686943,
0.0293514896184206,
0.019329674541950226,
-0.10563573241233826,
0.0035113978665322065,
0.0273900143802166,
-0.058651868253946304,
0.027331572026014328,
0.06202155724167824,
0.017483944073319435,
-0.13148514926433563,
0.06758362054824829,
-0.021827245131134987,
0.022132188081741333,
-0.021902957931160927,
0.07249212265014648,
-0.007545995991677046,
0.005912245716899633,
-0.014659714885056019,
0.04890307039022446,
-0.0021381874103099108,
-0.038357656449079514,
0.0054369582794606686,
-0.01918294094502926,
0.03144340217113495,
0.02238275296986103,
0.057913731783628464,
0.013759229332208633,
0.004649936221539974,
0.013480941765010357,
-0.03790438920259476,
-0.009780903346836567,
-0.046416670083999634,
-0.07739144563674927,
0.03610885888338089,
-0.027602093294262886,
0.051334578543901443,
-0.08125970512628555,
-0.01683332584798336,
-0.050826188176870346,
0.049186211079359055,
0.037639070302248,
0.06338203698396683,
0.05756266415119171,
0.03880633786320686,
0.01627190038561821,
-0.01365933008491993,
0.03546208143234253,
0.01635497808456421,
-0.0008846168057061732,
0.06278640776872635,
-0.08725535124540329,
-0.045847952365875244,
0.04957135394215584,
0.03929905593395233,
-0.11356408894062042,
-0.08600987493991852,
0.07462595403194427,
0.129588782787323,
0.05165008828043938,
-0.023832429200410843,
-0.0011561585124582052,
0.011701679788529873,
0.011643425561487675,
0.03152848035097122,
0.02180706523358822,
0.04807063192129135,
-0.07188257575035095,
-0.019496027380228043,
0.02411038428544998,
-0.011254760436713696,
-0.10798405110836029,
0.03758518770337105,
-0.005077376030385494,
0.04742945730686188,
0.00818713940680027,
0.024427082389593124,
-0.023465098813176155,
-0.0016935018356889486,
-0.019943740218877792,
0.015424507670104504,
-0.0672650933265686,
0.0028311777859926224,
0.09499402344226837,
0.03272409737110138,
0.08476641774177551,
0.05954838544130325,
-0.03870715573430061,
0.02422773838043213,
0.042185403406620026,
0.08988537639379501,
-0.022779205814003944,
-0.02417302131652832,
-0.06595928966999054,
0.05163184180855751,
0.023652585223317146,
0.07693973183631897,
0.036360807716846466,
0.024622701108455658,
-0.08121293038129807,
-0.01971890591084957,
0.011102534830570221,
0.03096887655556202,
0.01244910154491663,
0.036581289023160934,
0.07539517432451248,
-0.0457279309630394,
0.02226157858967781,
0.013831378892064095,
0.03574914485216141,
-0.06142643466591835,
0.05330391600728035,
0.017229583114385605,
0.05529165267944336,
-0.054214827716350555,
0.05564790219068527,
-0.02373722568154335,
-0.04706345498561859,
0.05045728385448456,
0.08402512967586517,
0.010768572799861431,
0.0072924429550766945,
-0.08850061893463135,
-0.02337229810655117,
-0.03149985149502754,
0.03541315719485283,
-0.013407410122454166,
-0.005650736857205629,
0.01696852035820484,
-0.09762166440486908,
0.024441365152597427,
0.007454740349203348,
0.08063456416130066,
-0.04312623292207718,
0.0034533021971583366,
-0.050211187452077866,
0.07390172779560089,
0.04846470430493355,
0.012680907733738422,
0.02861133962869644,
0.027465417981147766,
0.06524025648832321,
-0.01843472197651863,
-0.052889302372932434,
-0.024685345590114594,
0.06672624498605728,
-0.024354523047804832,
0.02482873946428299,
0.0157487615942955,
-0.026846574619412422,
0.004903588909655809,
0.0011968022445216775,
-0.03233936429023743,
0.017307506874203682,
0.00005948493708274327,
-0.06901485472917557,
0.10830811411142349,
0.006396244280040264,
0.03696621581912041,
0.05961659178137779,
-0.04033505916595459,
0.10199202597141266,
0.010945317335426807,
0.0596637949347496,
-0.08135175704956055,
0.004461652133613825,
0.03127293661236763,
-0.05289282649755478,
0.014057924970984459,
0.08111482113599777,
0.008410794660449028,
-0.009349704720079899,
0.015173288993537426,
0.024127056822180748,
0.04757492244243622,
-0.021463142707943916,
0.01929062232375145,
-0.061292968690395355,
-0.050544336438179016,
-0.07845884561538696,
-0.0432782918214798,
-0.03410041704773903,
-0.045592885464429855,
-0.009952573105692863,
0.15801656246185303,
0.036696892231702805,
0.008797950111329556,
-0.06419285386800766,
-0.0132588567212224,
0.0007233665091916919,
0.012957373633980751,
0.0368444100022316,
0.08308804035186768,
-0.05772430822253227,
-0.006970142014324665,
-0.014387578703463078,
-0.058346375823020935,
-0.020767249166965485,
-0.014319192618131638,
0.016013676300644875,
-0.031044527888298035,
-0.043477755039930344,
-0.027676288038492203,
0.024280935525894165,
0.03878847137093544,
-0.01607593521475792,
0.03908771649003029,
0.012104891240596771,
0.019863799214363098,
0.015417681075632572,
0.059564970433712006,
-0.03412122279405594,
-0.0052206446416676044,
0.03825942054390907,
-0.08414590358734131,
0.038858965039253235,
-0.0005894876667298377,
-0.05295649915933609,
0.11316709965467453,
0.018828559666872025,
-0.023131776601076126,
-0.0009198181796818972,
0.0017282047774642706,
0.05791556462645531,
-0.041055828332901,
0.04075278341770172,
-0.032459959387779236,
-0.028641903772950172,
-0.004615254700183868,
-0.015331704169511795,
-0.008040948770940304,
-0.008567946963012218,
-0.0064649130217731,
-0.02321460098028183,
0.004330714698880911,
-0.0019564321264624596,
0.01449209451675415,
0.011653685010969639,
0.009600946679711342,
0.01903577148914337,
0.03838609904050827,
-0.01970234513282776,
-0.02014811523258686,
0.009813357144594193,
0.013598943129181862,
-0.012913295067846775,
0.0018455478129908442,
0.0071259960532188416,
0.012410151772201061,
0.018949046730995178,
0.021004628390073776,
-0.058835387229919434,
-0.01624133437871933,
-0.002749768551439047,
0.0336967334151268,
-0.022815702483057976,
0.01294462289661169,
0.0044733271934092045,
-0.023427868261933327,
-0.00818692333996296,
-0.012921808287501335,
-0.035784609615802765,
-0.004623796790838242,
0.07038699090480804,
-0.007646592333912849,
0.001764889108017087,
0.01169573049992323,
-0.025166576728224754,
-0.050002072006464005,
0.017950793728232384,
0.016744663938879967,
0.005111074075102806,
-0.09499682486057281,
-0.02750125527381897,
-0.005969097372144461,
0.012449237518012524,
0.008688736706972122,
0.006368953734636307,
0.028542380779981613,
-0.018676623702049255,
0.003078050445765257,
0.06694631278514862,
0.044293805956840515,
0.018332188948988914,
0.019608590751886368,
0.03852834925055504,
-0.00920731108635664,
-0.014803447760641575,
-0.014187609776854515,
0.03345543146133423,
0.017824027687311172,
0.0038918224163353443,
-0.04481898248195648,
-0.03745894134044647,
-0.0060044885613024235,
-0.0051456019282341,
0.009721720591187477,
0.0029219859279692173,
0.04892369732260704,
-0.013648551888763905,
-0.009313567541539669,
-0.05347084999084473,
0.002406685845926404,
-0.00946615170687437,
0.005513178184628487,
-0.022483529523015022,
-0.06187216192483902,
-0.023900017142295837,
0.02895589917898178,
0.02731150947511196,
0.013615826144814491,
-0.00567995011806488,
0.0036459174007177353,
-0.01353661622852087,
0.01131737045943737,
-0.002575821476057172,
0.029061993584036827,
-0.01986822485923767,
0.015103149227797985,
0.01141050923615694,
0.013518008403480053,
0.020999813452363014,
-0.010303262621164322,
-0.02881663292646408,
0.01827607862651348,
0.0056079174391925335,
0.004426409024745226,
-0.003633851883932948,
-0.01878524199128151,
0.03215716406702995,
0.010219126008450985,
-0.025246603414416313,
-0.010916478000581264,
0.0014525457518175244,
-0.0194089338183403,
-0.03709385544061661,
-0.030726101249456406,
0.04795979708433151,
-0.000622135354205966,
0.0195503830909729,
0.026115085929632187,
0.03076295740902424,
0.022402098402380943,
-0.0007380328024737537,
-0.025609580799937248,
-0.004146273247897625,
-0.03669852390885353,
-0.020540989935398102,
-0.06069725379347801,
-0.017738912254571915,
-0.010071813128888607,
0.007368805352598429,
-0.041454821825027466,
0.004347522743046284,
-0.047526754438877106,
-0.0073662977665662766,
0.008169814944267273,
0.01735628768801689,
0.020702466368675232,
-0.029293930158019066,
-0.0002079713885905221,
0.022381683811545372,
-0.0031456020660698414,
-0.03372631222009659,
-0.030854588374495506,
-0.029169389978051186,
-0.014915857464075089,
-0.06528415530920029,
0.03538201004266739,
-0.021831417456269264,
-0.022359002381563187,
-0.016400594264268875,
0.015566867776215076,
-0.07045083492994308,
-0.010571438819169998,
-0.028126310557127,
-0.030458539724349976,
-0.022176358848810196,
-0.01690916158258915,
-0.006749039515852928,
0.01116209290921688,
0.04570014029741287,
0.059595245867967606,
-0.01921211928129196,
-0.015400689095258713,
-0.01893308386206627,
-0.00489884102717042,
0.03520236909389496,
-0.014898736029863358,
-0.05560534447431564,
-0.02343478612601757,
0.041036926209926605,
-0.029867535457015038,
0.003995339386165142,
0.011843479238450527,
-0.006827584933489561,
-0.004198720678687096,
0.002813227940350771,
0.04850590229034424,
0.061189308762550354,
-0.0396946482360363,
-0.030849982053041458,
-0.04988439753651619,
-0.009361010044813156,
0.050230227410793304,
0.01167237851768732,
0.014353714883327484,
0.03920116648077965,
-0.01432772632688284,
0.02478092536330223,
0.04634273424744606,
0.02965943142771721,
-0.04706130921840668,
0.007957818917930126,
0.008845029398798943,
-0.03982864320278168,
0.0091844592243433,
-0.008599466644227505,
-0.03198765590786934,
0.014896140433847904,
-0.00699654733762145,
0.013817104510962963,
0.028434379026293755,
-0.011769179254770279,
-0.04043343663215637,
-0.02508276328444481,
0.02908489853143692,
0.0020731904078274965,
0.02585378848016262,
-0.03313787654042244,
0.015579840168356895,
0.05418388545513153,
0.016446854919195175,
0.0094160670414567,
-0.037767767906188965,
-0.003048318438231945,
0.032502684742212296,
0.025453966110944748,
0.00862982776015997,
-0.09200381487607956,
-0.003027460305020213,
0.022637328132987022,
-0.0297345370054245,
0.003999745007604361,
0.02376660704612732,
-0.03392431512475014,
0.015058685094118118,
0.0360724963247776,
-0.023945333436131477,
0.03021274320781231,
0.002386766253039241,
0.013107137754559517,
-0.0326257199048996,
-0.010680677369236946,
0.007512603420764208,
-0.034277115017175674,
-0.021413875743746758,
0.022090299054980278,
0.07586226612329483,
0.08519193530082703,
-0.04351308196783066,
0.00248516327701509,
0.004793667234480381,
-0.004558904096484184,
0.003919963724911213,
-0.049589842557907104,
-0.005127777345478535,
-0.014327981509268284,
0.023247217759490013,
0.018056711181998253,
0.025727003812789917,
0.022781990468502045,
0.04189009219408035,
0.06798607856035233,
-0.00125316740013659,
-0.015235778875648975,
-0.016369299963116646,
-0.015562900342047215,
0.0015581075567752123,
0.0005761382635682821,
0.0006569268880411983,
-0.004019526299089193,
0.0028676867950707674,
0.007241433952003717,
0.022708453238010406,
-0.0012453468516469002,
-0.00043377751717343926,
-0.04688289761543274,
0.020392797887325287,
0.004659281112253666,
0.027553100138902664,
0.038984667509794235,
0.02074534259736538,
-0.0011064644204452634,
-0.0019599017687141895,
0.03927609324455261,
0.03872913122177124,
-0.015189110301434994,
0.01090689655393362,
0.010336754843592644,
-0.004501288291066885,
-0.01212702039629221,
0.018122419714927673,
-0.01664939895272255,
-0.0037559124175459146,
0.010975898243486881,
0.04257119819521904,
-0.032068900763988495,
-0.0037146948743611574,
0.060637470334768295,
0.018908461555838585,
-0.040983885526657104,
0.022572550922632217,
-0.028260262683033943,
-0.058346379548311234,
0.028477638959884644,
-0.009205551818013191,
-0.012962657026946545,
0.03539145737886429,
-0.0018105875933542848,
-0.014623823575675488,
0.008219361305236816,
-0.01064555998891592,
0.014646600931882858,
0.019051123410463333,
0.000596894882619381,
0.004714882466942072,
0.026430606842041016,
-0.006607390474528074,
0.03869420289993286,
-0.020431257784366608,
-0.049084000289440155,
0.06085656210780144,
-0.029127199202775955,
-0.034681178629398346,
0.016390183940529823,
0.01578696072101593,
-0.018576301634311676,
0.008712849579751492,
-0.046080637723207474,
-0.012739190831780434,
0.014391441829502583,
0.013353214599192142,
0.04176519438624382,
-0.022416340187191963,
0.0074277292005717754,
-0.036250531673431396,
-0.0036560732405632734,
0.0635916218161583,
0.013855049386620522,
-0.013453733175992966,
0.031754475086927414,
-0.015860367566347122,
0.049065954983234406,
0.024361511692404747,
-0.0032169497571885586,
0.015223316848278046,
0.021486345678567886,
0.03145919740200043,
-0.017962029203772545,
0.010740891098976135,
0.02541526034474373,
0.015915127471089363,
-0.03119131177663803,
-0.0739799216389656,
-0.005826851353049278,
-0.034308962523937225,
0.03411644324660301,
-0.023336945101618767,
-0.018103839829564095,
-0.01473256852477789,
-0.02958577498793602,
0.04597891867160797,
-0.02411462739109993,
0.031160760670900345,
-0.03784727305173874,
0.0468607097864151,
0.027255786582827568,
0.002150164917111397,
0.05978507921099663,
0.03490893542766571,
0.023475462570786476,
-0.030938519164919853,
0.04719493165612221,
-0.013383405283093452,
0.03368017449975014,
0.010318133980035782,
-0.018008485436439514,
0.03691821172833443,
-0.04889657720923424,
-0.04215443506836891,
0.049560122191905975,
0.012554998509585857,
-0.010328208096325397,
-0.04904942587018013,
0.04772955924272537,
0.0004549459263216704,
0.010709608905017376,
0.01126184593886137,
-0.00634697824716568,
-0.052330248057842255,
-0.06401656568050385,
0.009968536905944347,
-0.005333662498742342,
-0.05502121523022652,
-0.03820916637778282,
-0.026744572445750237,
0.004624766297638416,
0.04076186940073967,
0.0027102509047836065,
0.018993893638253212,
-0.011647311970591545,
-0.05265287309885025,
0.032120924443006516,
-0.04087236523628235,
0.005899718962609768,
0.01076623983681202,
-0.01000751182436943,
0.0012073272373527288,
-0.0022988468408584595,
-0.004843440838158131,
0.03433998301625252,
0.0030811866745352745,
0.0261714868247509,
-0.01554088480770588,
-0.007219432387501001,
-0.003841985482722521,
-0.020288320258259773,
0.008283770643174648,
-0.029631931334733963,
-0.019300997257232666,
-0.004655304830521345,
0.048746731132268906,
0.03434496000409126,
0.0012352828634902835,
-0.03196154534816742,
0.018283260986208916,
-0.008970120921730995,
-0.007035059854388237,
0.010410419665277004,
0.023761538788676262,
-0.032387662678956985,
-0.01398364920169115,
0.008142433129251003,
-0.04605080187320709,
0.011824066750705242,
0.002259771339595318,
-0.04779133200645447,
0.03596612066030502,
-0.013136105611920357,
0.017348354682326317,
-0.008550386875867844,
0.05137651041150093,
0.027589023113250732,
0.014837093651294708,
-0.04186085984110832,
0.03836796060204506,
0.022181013599038124,
0.002319169230759144,
0.0021895121317356825,
0.03406656160950661,
-0.0002103264123434201,
-0.029223022982478142,
-0.060983769595623016,
-0.025703778490424156,
-0.013444754295051098,
-0.039309311658144,
0.02357981540262699,
-0.07138925045728683,
0.019006995484232903,
-0.028658080846071243,
-0.049892716109752655,
-0.0017532550264149904,
0.02513359859585762,
0.030870843678712845,
0.012082955799996853,
0.00916382484138012,
-0.01866021752357483,
-0.035278212279081345,
0.0050193509086966515,
-0.02606693096458912,
0.04436641186475754,
0.015853293240070343,
0.03334791585803032,
0.011492205783724785,
-0.030684852972626686,
0.05501822382211685,
-0.036392197012901306,
-0.052947577089071274,
0.004912109114229679,
0.026189018040895462,
0.014594334177672863,
-0.05009729787707329,
-0.0061990730464458466,
0.03643424063920975,
0.010911677032709122,
0.013054372742772102,
0.008349996991455555,
-0.03706245496869087,
-0.018827665597200394,
-0.01874558813869953,
-0.07025714963674545,
0.016050808131694794,
0.01146810781210661,
-0.008959094062447548,
0.0344616137444973,
0.01749308779835701,
-0.0115582924336195,
-0.006758035160601139,
-0.042594023048877716,
0.05586520954966545,
-0.014114119112491608,
-0.03981753811240196,
-0.034466881304979324,
0.0025120736099779606,
0.020229220390319824,
-0.027373485267162323,
-0.03513595834374428,
0.02330845221877098,
-0.02525186352431774,
-0.010559952817857265,
-0.021147582679986954,
-0.010209742933511734,
-0.05690809711813927,
-0.029713207855820656,
-0.054909493774175644,
-0.05098852887749672,
-0.02966168336570263,
0.0016005616635084152,
-0.016815809532999992,
0.005946958437561989,
0.005033429712057114
] |
Porting fairseq wmt19 translation system to transformers | stas | November 3, 2020 | porting-fsmt | open-source-collab, nlp | https://huggingface.co/blog/porting-fsmt | Appreciations - Having [Sam Shleifer](https://github.com/sshleifer) mentor me through this process was of an extreme help to me, both thanks to his technical support and just as importantly for inspiring and encouraging me when I was getting stuck. - The PR merging process took a good couple of weeks before it was accepted. During this stage, besides Sam, [Lysandre Debut](https://github.com/LysandreJik) and [Sylvain Gugger](https://github.com/sgugger) contributed a lot through their insights and suggestions, which I integrating into the codebase. - I'm grateful to everybody who has contributed to thetransformerscodebase, which paved the way for my work. | [
0.07482969760894775,
0.03913552686572075,
0.013732768595218658,
0.03720434010028839,
0.04602671042084694,
0.11660321801900864,
0.006545632611960173,
0.08163726329803467,
-0.0033212185371667147,
-0.057051267474889755,
-0.0035161126870661974,
0.012892619706690311,
0.029586855322122574,
0.011918536387383938,
-0.016408737748861313,
-0.017263848334550858,
0.034332793205976486,
-0.05417852848768234,
-0.0075403843075037,
0.017806606367230415,
-0.035191379487514496,
-0.03918423876166344,
-0.02896747924387455,
-0.0035267090424895287,
-0.0015730597078800201,
-0.025383301079273224,
-0.024446673691272736,
0.026266762986779213,
0.009319893084466457,
0.022959282621741295,
-0.005819509271532297,
-0.04989614337682724,
-0.02110362984240055,
-0.06833988428115845,
-0.05983655899763107,
-0.0010132157476618886,
-0.06539107859134674,
0.03884946182370186,
0.07500657439231873,
-0.08470658957958221,
0.01123348344117403,
-0.03882643207907677,
-0.08458098769187927,
0.047869205474853516,
-0.017427871003746986,
-0.012032703496515751,
-0.11716767400503159,
0.09625652432441711,
-0.030496401712298393,
-0.024327432736754417,
-0.053612276911735535,
0.05851146951317787,
0.004288192372769117,
0.042739640921354294,
-0.0007435668376274407,
0.013488837517797947,
0.037321895360946655,
-0.03505750745534897,
0.001839867327362299,
0.005766802001744509,
0.027867186814546585,
-0.024365821853280067,
0.05528062582015991,
0.06225401163101196,
0.043833181262016296,
0.01282657589763403,
-0.008364688605070114,
0.01899351365864277,
-0.03010665252804756,
-0.011175931431353092,
0.05744427815079689,
-0.05718280002474785,
-0.005845797713845968,
-0.011642307974398136,
0.016177309677004814,
-0.035061441361904144,
0.045959923416376114,
0.09845812618732452,
0.030525967478752136,
0.021647784858942032,
-0.012274067848920822,
0.020328395068645477,
-0.021658938378095627,
0.09359868615865707,
0.0694505125284195,
0.05795612931251526,
0.09400521963834763,
-0.09620018303394318,
-0.07265231013298035,
-0.025607813149690628,
-0.015909012407064438,
-0.1189345046877861,
-0.004854592494666576,
0.03921123221516609,
0.04824843257665634,
-0.060484789311885834,
0.04517856612801552,
0.020661810413002968,
0.0056129684671759605,
-0.06447086483240128,
-0.04135379195213318,
0.06270559877157211,
-0.02939349226653576,
-0.05914635583758354,
0.007860513404011726,
0.03683020919561386,
-0.05776738375425339,
-0.05738997086882591,
-0.013025670312345028,
0.021553710103034973,
-0.008571618236601353,
0.09706654399633408,
0.007051170337945223,
0.07531889528036118,
-0.04873761907219887,
0.08526762574911118,
0.004979748744517565,
-0.08227856457233429,
0.0038534305058419704,
0.000057584704336477444,
0.042359307408332825,
0.040040574967861176,
0.015431891195476055,
0.0612625814974308,
0.029915090650320053,
0.01416022703051567,
0.02304994687438011,
0.037049829959869385,
-0.04761600121855736,
-0.03285570070147514,
-0.053656648844480515,
-0.022912096232175827,
0.027252711355686188,
0.010661029256880283,
-0.05818774923682213,
-0.00985119491815567,
0.005398155190050602,
-0.026842335239052773,
-0.03281182795763016,
-0.005338376387953758,
-0.019320456311106682,
0.0811639279127121,
-0.08439091593027115,
0.04338822886347771,
-0.00836058147251606,
-0.01759287901222706,
-0.11806047707796097,
0.009802348911762238,
0.014991233125329018,
0.019511548802256584,
-0.016549216583371162,
0.02150832489132881,
-0.11191952973604202,
-0.020843060687184334,
-0.004257826134562492,
0.0948166772723198,
0.03549192473292351,
-0.021082798019051552,
-0.019451091066002846,
0.06291112303733826,
0.04135169833898544,
0.040579747408628464,
-0.02564404159784317,
0.001632762374356389,
0.036548975855112076,
-0.04063696041703224,
-0.053452543914318085,
-0.024105336517095566,
-0.03705032169818878,
-0.04690869152545929,
0.030386997386813164,
-0.001402994617819786,
0.023700213059782982,
0.01201502326875925,
-0.012802052311599255,
0.09094467014074326,
0.09084467589855194,
0.046219948679208755,
0.04942996799945831,
-0.07391183823347092,
-0.009007430635392666,
0.020084494724869728,
0.00879677850753069,
0.021244511008262634,
-0.040443435311317444,
-0.04698638617992401,
0.044861599802970886,
0.017583969980478287,
0.016779065132141113,
0.036888450384140015,
-0.08061910420656204,
0.007705175783485174,
0.10214502364397049,
-0.040700361132621765,
-0.013750607147812843,
-0.012034597806632519,
-0.008527104742825031,
0.11419732123613358,
0.03271589055657387,
0.07587267458438873,
0.04639219492673874,
-0.00499962130561471,
0.06529957801103592,
-0.018938591703772545,
0.03643297776579857,
0.06113399192690849,
0.07881101220846176,
-0.02545178309082985,
0.003839361248537898,
0.05690468102693558,
0.012229192070662975,
-0.01769839972257614,
0.0934036448597908,
-0.0764041319489479,
0.035080716013908386,
-0.043446093797683716,
0.018358569592237473,
-0.08788801729679108,
0.0007846799562685192,
0.01211638655513525,
0.13134777545928955,
-0.026772135868668556,
-0.024508504197001457,
0.039367396384477615,
0.049864981323480606,
0.07590346038341522,
0.05040839686989784,
0.01026314590126276,
0.042538680136203766,
0.006861493457108736,
-0.024991801008582115,
0.017031298950314522,
-0.06211630254983902,
-0.039180003106594086,
0.010860171169042587,
-0.06907788664102554,
-0.06471653282642365,
-0.07973504066467285,
-0.03295538201928139,
-0.0001983019319595769,
-0.004832331091165543,
0.007829221896827221,
0.013280073180794716,
0.017057863995432854,
-0.06061051785945892,
-0.051781706511974335,
0.06020732969045639,
-0.009458868764340878,
-0.007206408306956291,
0.03126206248998642,
-0.02030020020902157,
0.0392865389585495,
0.01267688162624836,
-0.04079371318221092,
0.04718807339668274,
-0.048719972372055054,
-0.00720204459503293,
-0.01908276602625847,
0.00007072250446071848,
0.030915318056941032,
-0.015031327493488789,
-0.005693197250366211,
-0.027073899284005165,
-0.003058843547478318,
0.00005720366971218027,
0.009119176305830479,
-0.008222261443734169,
0.0042740157805383205,
0.0008144780294969678,
-0.003916076850146055,
-0.00898555014282465,
0.002809788566082716,
0.024428846314549446,
0.024112390354275703,
0.012208985164761543,
-0.01896621100604534,
0.02386527508497238,
0.009035438299179077,
-0.016261538490653038,
-0.023350045084953308,
-0.026241032406687737,
-0.043742746114730835,
-0.00000580417054152349,
0.016187163069844246,
0.014274894259870052,
0.002828122116625309,
-0.03554883971810341,
-0.026428785175085068,
-0.006008248310536146,
0.01269494742155075,
0.028252139687538147,
-0.007820473983883858,
-0.006741977762430906,
0.016157401725649834,
0.05686429888010025,
-0.0455409474670887,
-0.004725470673292875,
-0.04750170186161995,
-0.05328268185257912,
0.02132137306034565,
0.00019804424664471298,
0.018613243475556374,
0.012099726125597954,
-0.00220375950448215,
-0.017504796385765076,
-0.010673156008124352,
0.005737467668950558,
0.013381884433329105,
-0.1031690239906311,
-0.019927211105823517,
0.007755293045192957,
-0.017862627282738686,
0.014124392531812191,
-0.017710119485855103,
0.03420764580368996,
-0.0617622472345829,
-0.016806095838546753,
-0.010586162097752094,
0.0019875711295753717,
-0.028929566964507103,
-0.04311537742614746,
0.003023608587682247,
-0.019483400508761406,
-0.0299750454723835,
-0.027057986706495285,
0.019431445747613907,
-0.002006287919357419,
0.004553304519504309,
-0.046760767698287964,
0.00928737036883831,
-0.004360993392765522,
-0.004790586419403553,
-0.011565692722797394,
0.006114141084253788,
0.010042172856628895,
0.005966460332274437,
-0.007941256277263165,
-0.06436917185783386,
-0.001365058240480721,
0.017765572294592857,
-0.010911288671195507,
0.01416379027068615,
-0.053102556616067886,
0.015043633989989758,
0.006505111698061228,
0.024319054558873177,
-0.012872396036982536,
0.015280392952263355,
0.00669035455211997,
0.01947949267923832,
0.02822735160589218,
0.012274921871721745,
0.022477557882666588,
-0.04963395744562149,
0.005761737935245037,
0.027243420481681824,
0.06875882297754288,
0.02672511897981167,
0.0062959762290120125,
0.023441340774297714,
0.004185003694146872,
0.06585709750652313,
0.04250621050596237,
0.012141072191298008,
0.018372777849435806,
-0.03176983818411827,
-0.0022542544174939394,
0.02220338210463524,
0.0013967729173600674,
0.009666262194514275,
0.0280333012342453,
-0.03677831590175629,
-0.0038782265037298203,
0.04283062368631363,
0.004838262218981981,
0.007988803088665009,
-0.03996456041932106,
0.006838398985564709,
0.04927908256649971,
0.022137435153126717,
-0.00888148508965969,
-0.005276711191982031,
0.012360240332782269,
-0.03172232583165169,
-0.0806044340133667,
-0.033662501722574234,
0.036978207528591156,
0.030490096658468246,
-0.03216692432761192,
-0.023769289255142212,
-0.026264270767569542,
-0.028048934414982796,
-0.022310229018330574,
0.038704466074705124,
0.009571561589837074,
-0.0012284747790545225,
0.008486252278089523,
0.04861636459827423,
-0.013588850386440754,
-0.03166443854570389,
-0.041432205587625504,
-0.010704142972826958,
-0.028216907754540443,
-0.0015155414585024118,
0.03395341336727142,
0.04433053731918335,
0.008049700409173965,
-0.010403799824416637,
0.009760696440935135,
-0.010600687004625797,
-0.022605864331126213,
0.010980501770973206,
0.0009423951269127429,
0.050695184618234634,
-0.05936993658542633,
-0.06765672564506531,
0.008662659674882889,
0.02991388365626335,
0.04224114492535591,
-0.007471733260899782,
0.003376806154847145,
-0.0032232266385108232,
0.00628929166123271,
0.02676106058061123,
0.0001392020785715431,
-0.03281253203749657,
-0.03228963911533356,
0.032573144882917404,
-0.029773037880659103,
-0.032519642263650894,
0.010474534705281258,
0.04433869943022728,
-0.005712395533919334,
-0.011593726463615894,
-0.006834124214947224,
-0.03127255663275719,
-0.02334573306143284,
0.007146631833165884,
-0.016379429027438164,
-0.03512657806277275,
-0.01125914603471756,
-0.037723999470472336,
-0.012587340548634529,
0.029617490246891975,
0.016230905428528786,
0.02892652526497841,
-0.051782768219709396,
-0.04464397951960564,
-0.005315094254910946,
0.03191802650690079,
0.04171032831072807,
-0.022588660940527916,
0.014275521039962769,
-0.011739173904061317,
0.0071243359707295895,
0.006356266792863607,
-0.007883336395025253,
0.035248562693595886,
-0.009824004024267197,
-0.05598650872707367,
-0.023074964061379433,
0.07137896120548248,
0.009977417066693306,
-0.019956355914473534,
-0.018160127103328705,
0.001860597636550665,
-0.0008270003600046039,
0.013014598749577999,
-0.01411659549921751,
-0.008646909147500992,
-0.0388617217540741,
0.03259385749697685,
0.006979554891586304,
-0.0018482019659131765,
-0.01301344484090805,
-0.030623678117990494,
-0.011102051474153996,
-0.015442953445017338,
-0.025830809026956558,
0.004229167476296425,
0.030478131026029587,
-0.027382057160139084,
0.03278817608952522,
0.04107026383280754,
0.01220815908163786,
-0.008445343933999538,
-0.0027751775924116373,
0.02166530303657055,
-0.024554770439863205,
-0.0016406362410634756,
0.009977118112146854,
-0.019856657832860947,
0.025350358337163925,
-0.018917245790362358,
0.060380805283784866,
-0.021560778841376305,
-0.03125109523534775,
0.039524272084236145,
-0.013845759443938732,
-0.0034251532051712275,
-0.06358776241540909,
0.04696860536932945,
-0.018427886068820953,
0.0032168622128665447,
-0.019758064299821854,
-0.016449060291051865,
-0.03650689497590065,
-0.016403937712311745,
0.0756249651312828,
0.04233498126268387,
-0.005277570802718401,
0.02521028369665146,
-0.011620164848864079,
0.02514914609491825,
0.03519483283162117,
0.015214826911687851,
0.03296128660440445,
-0.04578031972050667,
-0.01149115338921547,
0.0020052799955010414,
0.0321970209479332,
0.007223585154861212,
-0.012931116856634617,
-0.04215780273079872,
0.027748243883252144,
0.02213463932275772,
-0.024899249896407127,
0.03758237883448601,
0.04254511743783951,
0.018811680376529694,
-0.02402745932340622,
0.021792737767100334,
0.008780010975897312,
-0.035442329943180084,
-0.021756978705525398,
0.025482384487986565,
-0.03240421786904335,
0.0020676208660006523,
0.02628147602081299,
-0.02378806471824646,
-0.011148774065077305,
0.015834394842386246,
-0.03244653344154358,
0.0009161661728285253,
-0.03641209006309509,
0.006829009857028723,
0.01178919430822134,
-0.025434527546167374,
-0.031180938705801964,
-0.04110347852110863,
-0.03259633854031563,
0.0030369614250957966,
-0.010561545379459858,
0.043992601335048676,
0.02312053181231022,
0.0005742539069615304,
0.025129001587629318,
0.003205246524885297,
0.022954316809773445,
0.0337955504655838,
-0.007324279751628637,
0.005585364997386932,
0.0002034555363934487,
0.030646327883005142,
-0.03197340667247772,
0.016890736296772957,
0.05363158881664276,
-0.032692741602659225,
0.0213793758302927,
-0.02608647383749485,
-0.022031983360648155,
0.036575306206941605,
-0.025422321632504463,
-0.010796899907290936,
0.01650211028754711,
-0.03404161334037781,
0.00294565805234015,
0.010141778737306595,
-0.036466989666223526,
0.003317219903692603,
0.06290502846240997,
0.017093975096940994,
-0.02093273214995861,
-0.06190860643982887,
0.07042253017425537,
-0.006622075568884611,
0.0068977149203419685,
-0.014063075184822083,
0.05714987963438034,
0.04602188244462013,
0.06654683500528336,
0.018388986587524414,
0.024026893079280853,
0.018396759405732155,
0.07803168892860413,
-0.01964453049004078,
0.022083155810832977,
0.038857653737068176,
-0.0177942905575037,
0.002305900678038597,
-0.003946539480239153,
-0.02206714265048504,
-0.029828712344169617,
-0.014455689117312431,
0.012251828797161579,
-0.0020687710493803024,
0.006448779720813036,
0.017430098727345467,
0.0455017052590847,
-0.02755550853908062,
0.0444011427462101,
0.03225107863545418,
-0.014151142910122871,
0.048797909170389175,
-0.008465342223644257,
0.03173113986849785,
0.02384253963828087,
-0.022651685401797295,
-0.014934270642697811,
-0.027432512491941452,
-0.023968977853655815,
0.022555753588676453,
-0.05955374985933304,
-0.05240693688392639,
0.009006388485431671,
-0.0017488764133304358,
0.021062806248664856,
-0.03323008120059967,
0.020814653486013412,
-0.02005673199892044,
-0.025732150301337242,
-0.023587167263031006,
-0.018222877755761147,
-0.003192685777321458,
0.01796727627515793,
-0.009408845566213131,
-0.026730448007583618,
-0.030841372907161713,
-0.0011410430306568742,
0.03490607440471649,
-0.057448409497737885,
-0.01680716872215271,
0.00025752035435289145,
0.017793670296669006,
0.00808695238083601,
0.03916841745376587,
-0.03888062387704849,
0.023107750341296196,
-0.028966009616851807,
0.03254912048578262,
0.012290721759200096,
0.04489034041762352,
-0.037576235830783844,
-0.000017579954146640375,
0.004163418896496296,
0.005795225966721773,
-0.0043564834631979465,
0.008580578491091728,
-0.006697143893688917,
0.009783966466784477,
-0.041658125817775726,
0.015517085790634155,
-0.042705029249191284,
-0.014900034293532372,
0.005968572571873665,
-0.024496065452694893,
0.02195609174668789,
-0.007981425151228905,
0.05709820240736008,
-0.0009062257595360279,
0.0127074234187603,
-0.030278032645583153,
-0.061159439384937286,
-0.025115355849266052,
0.04313327372074127,
-0.039473000913858414,
0.015305396169424057,
-0.0055894129909574986,
-0.041740793734788895,
-0.0065032923594117165,
-0.019855046644806862,
0.03879500925540924,
0.0076141078025102615,
-0.010219218209385872,
0.06360190361738205,
-0.028649963438510895,
0.010348879732191563,
-0.0005502812564373016,
0.02813970297574997,
0.05217001214623451,
0.007502865511924028,
0.0056108711287379265,
-0.014988996088504791,
0.03785001486539841,
-0.06310515105724335,
-0.00014102761633694172,
0.028802478685975075,
0.043719083070755005,
0.006633702665567398,
-0.04481535404920578,
-0.029784435406327248,
0.02935493178665638,
-0.04700421169400215,
0.03123670630156994,
-0.05899403244256973,
0.013253115117549896,
0.019845061004161835,
0.03353889659047127,
0.0004610648029483855,
0.022880790755152702,
0.03743419051170349,
0.018118906766176224,
0.01801077090203762,
-0.019475508481264114,
0.02450075000524521,
-0.05204836279153824,
-0.011480304412543774,
0.02760603278875351,
0.03525982052087784,
0.04588298499584198,
-0.016028448939323425,
0.027062421664595604,
0.030468255281448364,
-0.05370999500155449,
-0.047073401510715485,
0.009407317265868187,
0.03782646358013153,
0.01269264705479145,
-0.014192367903888226,
-0.013292253017425537,
0.039331160485744476,
0.04569138213992119,
-0.007957763969898224,
0.005097166635096073,
-0.062350329011678696,
0.01848607324063778,
-0.01700334995985031,
-0.04495485499501228,
0.009776873514056206,
0.037874069064855576,
0.013363570906221867,
0.012023227289319038,
0.014241358265280724,
-0.010982862673699856,
0.02421676740050316,
0.0011528539471328259,
-0.006889315787702799,
0.001635755063034594,
-0.04466594383120537,
0.032428037375211716,
-0.027585027739405632,
0.008134109899401665,
-0.026184888556599617,
-0.08160906285047531,
0.055735521018505096,
-0.006521411705762148,
-0.02437695488333702,
-0.02827204391360283,
-0.007169653195887804,
-0.056702520698308945,
-0.003157966071739793,
0.025145042687654495,
-0.010667495429515839,
0.03907189145684242,
0.05044953152537346,
-0.007667058613151312,
0.01742575317621231,
0.0029201675206422806
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | BERT BERT is an encoder-only model, which maps an input sequence \(\mathbf{X}{1:n}\) to a contextualized encoded sequence \(\mathbf{\overline{X}}{1:n}\): $$ f{\theta_{\text{BERT}}}: \mathbf{X}{1:n} \to \mathbf{\overline{X}}{1:n}. $$ BERT\'s contextualized encoded sequence \(\mathbf{\overline{X}}{1:n}\) can then further be processed by a classification layer for NLU classification tasks, such as sentiment analysis, natural language inference, etc. To do so, the classification layer, i.e. typically a pooling layer followed by a feed-forward layer, is added as a final layer on top of BERT to map the contextualized encoded sequence \(\mathbf{\overline{X}}{1:n}\) to a class \(c\): $$ f_{\theta{\text{p,c}}}: \mathbf{\overline{X}}{1:n} \to c. $$ It has been shown that adding a pooling- and classification layer, defined as \(\theta{\text{p,c}}\), on top of a pre-trained BERT model \(\theta_{\text{BERT}}\) and subsequently fine-tuning the complete model \({\theta_{\text{p,c}}, \theta_{\text{BERT}}}\) can yield state-of-the-art performances on a variety of NLU tasks, cf. to BERT by Devlin et al.. Let\'s visualize BERT. The BERT model is shown in grey. The model stacks multiple BERT blocks, each of which is composed of bi-directional self-attention layers (shown in the lower part of the red box) and two feed-forward layers (short in the upper part of the red box). Each BERT block makes use of bi-directional self-attention to process an input sequence \(\mathbf{x'}1, \ldots, \mathbf{x'}_n\) (shown in light grey) to a more \"refined\" contextualized output sequence \(\mathbf{x''}_1, \ldots, \mathbf{x''}_n\) (shown in slightly darker grey) \({}^4\). The contextualized output sequence of the final BERT block, i.e. \(\mathbf{\overline{X}}{1:n}\), can then be mapped to a single output class \(c\) by adding a task-specific classification layer (shown in orange) as explained above. Encoder-only models can only map an input sequence to an output sequence of a priori known output length. In conclusion, the output dimension does not depend on the input sequence, which makes it disadvantageous and impractical to use encoder-only models for sequence-to-sequence tasks. As for all encoder-only models, BERT\'s architecture corresponds exactly to the architecture of the encoder part of transformer-based encoder-decoder models as shown in the \"Encoder\" section in the Encoder-Decoder notebook. | [
0.024381009861826897,
-0.025651009753346443,
0.03946701064705849,
-0.004534849431365728,
0.08459941297769547,
0.06511181592941284,
-0.03637939319014549,
0.10050460696220398,
-0.02678593434393406,
-0.027368921786546707,
-0.10974793881177902,
0.06058488041162491,
-0.02202378213405609,
0.04287656396627426,
-0.035258978605270386,
0.04806314408779144,
0.08075933158397675,
-0.04131661728024483,
-0.008579189889132977,
-0.05179227516055107,
-0.02402433380484581,
-0.07939255982637405,
0.05645494908094406,
-0.032033033668994904,
0.024646980687975883,
-0.015431108884513378,
0.021538984030485153,
-0.007522941567003727,
-0.06797634810209274,
0.03819894790649414,
-0.06065140664577484,
0.0013278614496812224,
0.02927333489060402,
0.015356047078967094,
-0.017984401434659958,
-0.01598738692700863,
-0.0917467549443245,
0.025789571925997734,
0.029809951782226562,
-0.042266592383384705,
-0.041055113077163696,
-0.03892742469906807,
-0.07740186899900436,
0.05462857708334923,
-0.04045351594686508,
0.01552069652825594,
-0.16394516825675964,
0.08227560669183731,
-0.04083140939474106,
-0.01914999820291996,
-0.10285532474517822,
0.008678832091391087,
-0.04025125503540039,
0.07788063585758209,
-0.04361883923411369,
0.02414168231189251,
-0.017662139609456062,
-0.037493087351322174,
0.04552847892045975,
-0.02133847400546074,
0.011979084461927414,
-0.0011490993201732635,
0.011146007105708122,
0.053296130150556564,
0.02391134575009346,
0.01836991496384144,
-0.03473355248570442,
0.005790917202830315,
-0.05520132929086685,
0.004618701059371233,
-0.015520544722676277,
-0.028555292636156082,
-0.01207607053220272,
0.00548131950199604,
0.00578266941010952,
-0.045448847115039825,
0.020640898495912552,
-0.029373154044151306,
0.03677956014871597,
-0.0049396720714867115,
0.044871509075164795,
0.02662470191717148,
0.004296616651117802,
0.10310449451208115,
0.027982797473669052,
-0.02235032431781292,
0.08641447871923447,
-0.07163674384355545,
-0.027936628088355064,
0.06324759870767593,
-0.08387544751167297,
-0.15819792449474335,
0.0060300445184111595,
-0.017127735540270805,
0.033539894968271255,
-0.06987512856721878,
0.006428160704672337,
0.03862069174647331,
0.009310181252658367,
0.013174169696867466,
0.02371099404990673,
-0.040629930794239044,
0.0530894473195076,
-0.022330375388264656,
-0.08588071167469025,
0.06002720445394516,
0.026165492832660675,
-0.09603281319141388,
-0.0607130229473114,
-0.012228523381054401,
0.019700787961483,
-0.028333529829978943,
0.0055357301607728004,
0.0641116350889206,
-0.07942263782024384,
-0.0035042911767959595,
-0.010751374997198582,
0.008767498657107353,
0.04112229496240616,
0.015641409903764725,
0.00023920906824059784,
0.07502113282680511,
0.05200759321451187,
-0.024360639974474907,
0.006463775411248207,
0.0371713861823082,
-0.004433665424585342,
-0.02832021564245224,
-0.004563549533486366,
-0.02215157449245453,
0.07838201522827148,
0.01909354329109192,
0.06857001781463623,
0.03253038600087166,
-0.04942783713340759,
-0.0010336044942960143,
-0.0402846485376358,
-0.09935791790485382,
-0.0007761635351926088,
-0.013144433498382568,
-0.08005405962467194,
0.04212186112999916,
-0.016617458313703537,
0.0018726425478234887,
0.05716198310256004,
-0.022207660600543022,
-0.07136224210262299,
0.06890594959259033,
0.004272789694368839,
0.03691306710243225,
-0.04888390377163887,
0.00883552897721529,
-0.016506871208548546,
-0.04891237989068031,
-0.0012841919669881463,
0.059504229575395584,
0.0311728585511446,
-0.05640387162566185,
-0.06619708240032196,
-0.0088869733735919,
0.02004851959645748,
0.025589844211935997,
0.011622603051364422,
0.011156551539897919,
0.02924000844359398,
-0.07954700291156769,
0.01762930117547512,
0.00535640399903059,
-0.029224185273051262,
0.03371591493487358,
0.008858311921358109,
-0.009835915639996529,
0.10347849130630493,
0.03702949360013008,
-0.07056112587451935,
0.022488338872790337,
0.017303477972745895,
0.07586407661437988,
-0.005494854412972927,
-0.015727713704109192,
-0.037998002022504807,
0.014444762840867043,
0.030958104878664017,
-0.0035965421702712774,
0.039256416261196136,
-0.06190270557999611,
-0.00022754012024961412,
-0.047469425946474075,
-0.04840072989463806,
0.06595292687416077,
-0.002557444619014859,
0.003717656945809722,
0.03009890951216221,
-0.046333443373441696,
0.01896398514509201,
-0.07180140167474747,
-0.05820223316550255,
0.08990462869405746,
0.06016010418534279,
0.017019659280776978,
0.08061852306127548,
0.02016632817685604,
0.035600267350673676,
0.019062675535678864,
0.007625708356499672,
0.019229339435696602,
-0.0027147161308676004,
-0.017866576090455055,
0.08131670206785202,
-0.05784927308559418,
0.000985965016297996,
-0.09326694905757904,
-0.01122122909873724,
-0.06130079925060272,
-0.009853821247816086,
-0.06981367617845535,
-0.015322314575314522,
0.01678840070962906,
-0.019616378471255302,
-0.009585768915712833,
0.1683373749256134,
-0.051824621856212616,
-0.04120178520679474,
-0.03533778712153435,
0.006067595910280943,
-0.005864684469997883,
0.06690911203622818,
-0.02153567224740982,
0.09648740291595459,
-0.04511015862226486,
-0.061627939343452454,
-0.020433390513062477,
0.04336380586028099,
-0.01008088793605566,
-0.04440677911043167,
-0.024424832314252853,
-0.0361618846654892,
0.0003208909183740616,
0.043239329010248184,
-0.06239726021885872,
-0.020483914762735367,
0.013395083136856556,
0.017835186794400215,
0.057358115911483765,
-0.0610027052462101,
-0.01918039470911026,
0.01593472808599472,
0.02734869159758091,
-0.029096156358718872,
0.010263517498970032,
-0.0812285989522934,
0.05080507695674896,
-0.0405769906938076,
-0.09626144915819168,
-0.010382949374616146,
0.08146982640028,
-0.02304220013320446,
-0.02084953896701336,
0.0096410121768713,
0.006685991771519184,
-0.01858302392065525,
-0.03913765400648117,
-0.027261968702077866,
-0.047313716262578964,
-0.019470898434519768,
-0.023606818169355392,
-0.004578044172376394,
0.043344948440790176,
0.017450422048568726,
0.05891266092658043,
-0.00125628721434623,
-0.0034404946491122246,
0.017818499356508255,
0.04007094353437424,
0.03523758053779602,
0.025129854679107666,
0.031082337722182274,
-0.048009343445301056,
-0.029437948018312454,
-0.017480531707406044,
-0.026205824688076973,
-0.02410171367228031,
0.053150929510593414,
0.028466610237956047,
-0.008217643946409225,
0.0206527728587389,
-0.015423838049173355,
-0.04024990275502205,
-0.0018379497341811657,
0.013373944908380508,
0.028628157451748848,
0.036656029522418976,
-0.014924254268407822,
-0.035502441227436066,
-0.009710805490612984,
0.009544691070914268,
-0.0022948412224650383,
0.007012273650616407,
-0.028809761628508568,
0.02115689590573311,
0.04240534082055092,
0.031188903376460075,
-0.0014382193330675364,
-0.010897732339799404,
-0.018712306395173073,
0.025739148259162903,
0.044879231601953506,
0.06171223521232605,
-0.10287298262119293,
-0.023075195029377937,
0.023538874462246895,
0.022527724504470825,
0.015353119932115078,
-0.05560645833611488,
0.036050088703632355,
0.014224531129002571,
-0.04377443343400955,
-0.0032813088037073612,
0.028256719931960106,
-0.018525203689932823,
0.015090879052877426,
0.020597461611032486,
0.009069767780601978,
-0.013295626267790794,
-0.006572342943400145,
0.016297753900289536,
0.03110368736088276,
0.01928323693573475,
-0.025917300954461098,
0.009407817386090755,
-0.015163255855441093,
0.024287018924951553,
-0.03995661064982414,
-0.01299810316413641,
-0.00029281547176651657,
0.011957302689552307,
0.0403573252260685,
-0.004719085060060024,
-0.0535614900290966,
-0.026991527527570724,
-0.01747942715883255,
0.0014613523380830884,
-0.023981375619769096,
0.004285627976059914,
0.03785493224859238,
0.05015480890870094,
0.01047113910317421,
0.05477528274059296,
0.04058663547039032,
0.013344884850084782,
-0.009395926259458065,
-0.002482252661138773,
-0.00150933931581676,
-0.012079926207661629,
0.02286137267947197,
-0.034040361642837524,
0.02945062890648842,
-0.028891386464238167,
-0.021537097170948982,
-0.01024668663740158,
-0.03309618681669235,
0.025790419429540634,
-0.03000100515782833,
0.0010929281124845147,
-0.016648966819047928,
-0.032299645245075226,
-0.019213635474443436,
-0.004031560383737087,
-0.03379348665475845,
0.025892015546560287,
-0.0006047093775123358,
-0.001674060127697885,
-0.01983233354985714,
0.028365695849061012,
0.016504429280757904,
0.02635308727622032,
0.002469940111041069,
0.02241353690624237,
-0.0071480353362858295,
-0.0002744496741797775,
0.02034774236381054,
0.003806447144597769,
0.005464985966682434,
0.005956574808806181,
-0.02762707695364952,
-0.011867382563650608,
0.07399281859397888,
-0.01019126083701849,
0.0015828658360987902,
0.014407231472432613,
-0.024688927456736565,
0.0163035336881876,
0.0037988375406712294,
0.028169866651296616,
-0.010672440752387047,
0.00269909854978323,
0.045590490102767944,
0.009965790435671806,
-0.012216901406645775,
-0.0016568709397688508,
0.02878474071621895,
0.017412465065717697,
-0.011701415292918682,
-0.007723276969045401,
0.015110749751329422,
0.00048290000995621085,
0.010664805769920349,
0.026719186455011368,
0.054866380989551544,
-0.04616958647966385,
-0.03964811563491821,
0.004738341551274061,
0.002903667977079749,
0.03325032815337181,
-0.03273972496390343,
0.0017731419065967202,
0.04102270305156708,
-0.005169530399143696,
0.0026046326383948326,
-0.0008205858175642788,
0.02656489424407482,
0.0393669568002224,
0.05402015149593353,
0.019148308783769608,
-0.02158491313457489,
-0.07032808661460876,
-0.06111536920070648,
0.025655418634414673,
-0.013992443680763245,
0.025777535513043404,
0.021197354421019554,
-0.007020862773060799,
0.01748965121805668,
0.0025103483349084854,
0.036802101880311966,
0.03313164412975311,
0.0023176358081400394,
-0.0314202681183815,
-0.02231859602034092,
-0.022712625563144684,
0.032619722187519073,
0.02167675457894802,
0.02352500893175602,
0.026595190167427063,
0.021104728803038597,
0.02515842579305172,
0.010098202154040337,
-0.05563130974769592,
-0.016912056133151054,
0.014495516195893288,
0.02419031597673893,
-0.019241472706198692,
0.021382123231887817,
-0.01179350446909666,
-0.04618464782834053,
-0.02521587535738945,
-0.015054202638566494,
0.0022950363345444202,
0.06545255333185196,
0.013343165628612041,
-0.06739114224910736,
0.004608503542840481,
0.02443879283964634,
-0.021945156157016754,
-0.013122549280524254,
0.04613327234983444,
0.025682471692562103,
0.05485980212688446,
0.0011717935558408499,
0.007602012250572443,
-0.06603267788887024,
0.00425877096131444,
0.052293699234724045,
0.004238596186041832,
0.0037995693273842335,
-0.049703724682331085,
0.008624410256743431,
0.005005091428756714,
-0.0006268622819334269,
-0.0250050388276577,
-0.00093143928097561,
-0.02387242205440998,
0.01497594267129898,
0.011212333105504513,
-0.008466140367090702,
-0.01631353795528412,
-0.0007825024658814073,
0.01296975277364254,
-0.008907755836844444,
0.02884533442556858,
-0.009492802433669567,
0.005815028678625822,
0.016779862344264984,
0.0053336904384195805,
0.03331022337079048,
0.05719573423266411,
-0.00805650744587183,
0.05591803044080734,
0.03362580016255379,
0.005962490104138851,
0.009316512383520603,
-0.029731402173638344,
-0.007686059456318617,
-0.003222438506782055,
-0.003579945070669055,
0.034098777920007706,
-0.01731879822909832,
0.004171598237007856,
0.008731338195502758,
0.02451554499566555,
0.0020412628073245287,
-0.014689904637634754,
0.02756696380674839,
-0.036004502326250076,
-0.017767105251550674,
-0.06597557663917542,
-0.0160057432949543,
-0.019253214821219444,
-0.008883162401616573,
-0.018688198179006577,
-0.004369432106614113,
0.013301769271492958,
0.019396860152482986,
-0.04532371088862419,
-0.03580371290445328,
0.024131564423441887,
0.046513307839632034,
0.03171409294009209,
0.003616339759901166,
-0.010680122300982475,
-0.018863147124648094,
0.01970091089606285,
-0.02749345637857914,
-0.05741138011217117,
0.0034219364169985056,
0.007555937860161066,
-0.0037110059056431055,
0.03969745337963104,
0.05466816574335098,
-0.021827997639775276,
-0.01267168764024973,
0.04567340016365051,
-0.04204978421330452,
-0.0379096083343029,
-0.029576420783996582,
0.03661143779754639,
0.032819364219903946,
0.0070266202092170715,
0.01488390751183033,
0.008709121495485306,
-0.032526444643735886,
0.03117387741804123,
-0.04674747213721275,
0.009996442124247551,
0.0653955414891243,
-0.0033210625406354666,
0.029752831906080246,
0.00850878469645977,
0.025172239169478416,
0.0008734564762562513,
-0.02372490055859089,
0.014378619380295277,
0.01600249856710434,
0.033602531999349594,
0.039825353771448135,
0.022164741531014442,
0.041208479553461075,
0.03128492832183838,
0.018017347902059555,
-0.043359432369470596,
0.0035889851860702038,
0.013539286330342293,
-0.05351919308304787,
0.019969725981354713,
0.0043869102373719215,
-0.0012520323507487774,
0.029003558680415154,
0.0675104632973671,
0.03886305168271065,
0.012797825038433075,
-0.014978490769863129,
-0.010088696144521236,
-0.0023987432941794395,
0.010112356394529343,
0.022198786959052086,
0.05254627391695976,
0.0036192843690514565,
0.03216882422566414,
-0.011114289052784443,
0.03455828130245209,
0.03881936892867088,
0.011350593529641628,
0.029529942199587822,
0.015133642591536045,
0.05643036589026451,
-0.008125019259750843,
0.022089418023824692,
-0.0027990860398858786,
0.0012532490072771907,
0.004326908383518457,
-0.0331026092171669,
-0.021509381011128426,
-0.062237560749053955,
-0.004348312970250845,
0.02922343835234642,
-0.017571263015270233,
0.04037749394774437,
-0.025788186118006706,
0.019878236576914787,
0.05498698353767395,
0.012544738128781319,
0.004310624208301306,
0.00017714263231027871,
0.01634960062801838,
0.007534820586442947,
0.007283765822649002,
0.015480116941034794,
0.024291470646858215,
-0.003350240644067526,
0.028306521475315094,
0.001206069951876998,
0.035706888884305954,
0.006083698011934757,
-0.06411581486463547,
0.0575709231197834,
-0.025609835982322693,
-0.0012384657748043537,
0.02874624915421009,
0.007981699891388416,
-0.001207460300065577,
0.010561066679656506,
-0.0013706684112548828,
-0.01799367368221283,
0.010307149961590767,
0.033330366015434265,
0.01581653021275997,
0.023437783122062683,
-0.016936248168349266,
0.019479000940918922,
0.0418267697095871,
0.0035745720379054546,
-0.026943352073431015,
-0.028445981442928314,
0.013176064006984234,
-0.020584722980856895,
0.024556659162044525,
0.00793969165533781,
-0.03789813071489334,
-0.023963144049048424,
-0.023650046437978745,
-0.010703579522669315,
0.03308375924825668,
0.0010984058026224375,
-0.00789615884423256,
0.02397090196609497,
0.029918698593974113,
-0.003392944810912013,
0.038868729025125504,
0.023775555193424225,
-0.011125871911644936,
-0.03234630450606346,
-0.02124917320907116,
-0.027891989797353745,
-0.024635381996631622,
-0.004404114559292793,
-0.06700258702039719,
-0.01834864169359207,
-0.011181719601154327,
0.021725600585341454,
0.03215419873595238,
0.03072023205459118,
-0.045100025832653046,
-0.03012038581073284,
-0.005478758364915848,
0.013780125416815281,
-0.035508640110492706,
0.0021303221583366394,
0.04301704838871956,
-0.019726134836673737,
-0.01164319459348917,
-0.014429192058742046,
-0.04824856296181679,
-0.030557559803128242,
0.011668968945741653,
0.025009889155626297,
0.03279811143875122,
-0.011856534518301487,
-0.034137509763240814,
0.025637978687882423,
0.007277746684849262,
-0.000638576690107584,
0.06585417687892914,
0.0013083707308396697,
0.029952989891171455,
-0.0352528914809227,
0.028176607564091682,
-0.028570089489221573,
0.003501994302496314,
-0.04319939389824867,
-0.028387736529111862,
-0.03478255867958069,
0.029529523104429245,
-0.00751942303031683,
0.016449177637696266,
-0.02113484777510166,
0.02051173895597458,
-0.032817259430885315,
-0.04115700721740723,
-0.028516171500086784,
0.01943276636302471,
0.05863448232412338,
0.01697571575641632,
0.0088173383846879,
0.00232562399469316,
-0.03967675194144249,
-0.04100443795323372,
-0.030823534354567528,
0.009483853355050087,
0.06511949747800827,
-0.005988205783069134,
0.0018054565880447626,
0.0027293337043374777,
0.008012514561414719,
-0.005374034401029348,
-0.04437427595257759,
-0.01832970231771469,
0.020826544612646103,
0.0011425766861066222,
-0.0016986723057925701,
-0.004377816338092089,
0.011928091756999493,
-0.016622791066765785,
0.0071560414507985115,
0.004043486434966326,
-0.01864495687186718,
-0.027561841532588005,
-0.0024176461156457663,
-0.04078048840165138,
-0.020923105999827385,
-0.005244414787739515,
-0.017192238941788673,
0.08443807810544968,
0.014828083105385303,
0.01857841946184635,
0.026322847232222557,
0.01128990389406681,
0.023485347628593445,
0.010629394091665745,
-0.024190612137317657,
-0.03181722015142441,
0.017658205702900887,
0.010450750589370728,
-0.021839933469891548,
-0.001515314681455493,
0.013391458429396152,
0.057782433927059174,
-0.011756575666368008,
0.0186483021825552,
0.007832957431674004,
-0.0065871416591107845,
-0.05209650844335556,
0.049955759197473526,
0.004143696743994951,
0.05204513669013977,
0.005221615545451641,
0.029372910037636757,
0.049688708037137985,
0.032218087464571
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Warm-starting encoder-decoder models (Theory) Having read the introduction, we are now familiar with encoder-only- and decoder-only models. We have noticed that the encoder-decoder model architecture is essentially a composition of a stand-alone encoder model and a stand-alone decoder model, which led us to the question of how one can warm-start encoder-decoder models from stand-alone model checkpoints. There are multiple possibilities to warm-start an encoder-decoder model. One can 1. initialize both the encoder and decoder part from an encoder-only model checkpoint, e.g. BERT, 2. initialize the encoder part from an encoder-only model checkpoint, e.g. BERT, and the decoder part from and a decoder-only checkpoint, e.g. GPT2, 3. initialize only the encoder part with an encoder-only model checkpoint, or 4. initialize only the decoder part with a decoder-only model checkpoint. In the following, we will put the focus on possibilities 1. and 2. Possibilities 3. and 4. are trivial after having understood the first two. | [
0.0068126218393445015,
0.01375231146812439,
0.02660561539232731,
-0.018686184659600258,
0.047928616404533386,
0.0504036508500576,
-0.0090086804702878,
-0.018566086888313293,
-0.017048941925168037,
-0.07427553087472916,
-0.06265637278556824,
0.0656830295920372,
-0.06024852767586708,
0.04504594951868057,
-0.013672890141606331,
-0.022490333765745163,
0.008851759135723114,
-0.09118629992008209,
-0.02606595680117607,
0.005517855286598206,
0.0398537814617157,
-0.060881778597831726,
-0.01509087160229683,
-0.02580096572637558,
0.04379134625196457,
-0.08664915710687637,
-0.003889960702508688,
0.015388614498078823,
-0.016511425375938416,
0.028567584231495857,
-0.05368927866220474,
0.032253991812467575,
0.07009731233119965,
-0.04272084683179855,
0.04873085767030716,
0.06402131915092468,
-0.11283760517835617,
0.041908059269189835,
0.045586057007312775,
-0.06249547377228737,
-0.02339819446206093,
-0.0006630175048485398,
-0.008881413377821445,
0.0029011203441768885,
-0.04412945732474327,
-0.03977319225668907,
-0.186798095703125,
0.06165899336338043,
-0.025262905284762383,
-0.0693461149930954,
-0.06852870434522629,
0.04654465243220329,
0.0020271227695047855,
0.07196490466594696,
-0.04471011087298393,
0.002934807213023305,
0.03257930651307106,
-0.06760983914136887,
0.06959056109189987,
0.003642455441877246,
0.09901716560125351,
0.033040665090084076,
-0.02482115663588047,
0.025871550664305687,
0.03448691591620445,
0.02492605522274971,
-0.06295756250619888,
-0.027073107659816742,
0.011023442260921001,
0.001838824013248086,
-0.0801965519785881,
-0.04298694431781769,
0.0019071042770519853,
0.026756158098578453,
0.07402995973825455,
-0.06571785360574722,
0.06138364598155022,
-0.01952425204217434,
0.028364980593323708,
0.013086200691759586,
-0.008928469382226467,
0.012550745159387589,
-0.04177583009004593,
-0.002748055849224329,
0.0699189305305481,
-0.017504170536994934,
0.009556982666254044,
-0.05127033591270447,
-0.022847650572657585,
0.06092539429664612,
-0.034901514649391174,
-0.15295034646987915,
0.0504368394613266,
-0.012859905138611794,
0.030624326318502426,
0.00019027436792384833,
-0.006233246996998787,
0.04215296730399132,
0.037997689098119736,
-0.013862998224794865,
0.0043563274666666985,
-0.045436084270477295,
-0.0007577069918625057,
-0.036842767149209976,
-0.023023519665002823,
0.022855473682284355,
-0.012792079709470272,
-0.08775594085454941,
-0.05269208550453186,
-0.01326771266758442,
0.017787935212254524,
-0.06385212391614914,
-0.011520535685122013,
0.049992166459560394,
-0.12000146508216858,
0.04539451003074646,
0.03768327832221985,
-0.0583563894033432,
0.01063518412411213,
0.03636990860104561,
0.020287398248910904,
0.05672609806060791,
0.03848651424050331,
-0.045232802629470825,
-0.0013343575410544872,
0.03778240457177162,
0.012687833979725838,
0.028919642791152,
0.01297809649258852,
0.0076021458953619,
0.09423939138650894,
0.014813609421253204,
0.021711964160203934,
-0.01002525258809328,
0.04967706650495529,
-0.014487587846815586,
-0.013678384013473988,
-0.0030562470201402903,
-0.029550064355134964,
0.012833734974265099,
-0.11167890578508377,
0.058271098881959915,
0.06414798647165298,
-0.060246068984270096,
0.03197773918509483,
0.04732203483581543,
-0.09361641108989716,
0.06783568114042282,
0.010479634627699852,
0.033110395073890686,
-0.04308043420314789,
0.04003462195396423,
-0.04574766382575035,
-0.0797019749879837,
0.00043447804637253284,
0.05305038392543793,
-0.0185936838388443,
-0.00602946849539876,
-0.05046021193265915,
-0.00754404254257679,
0.016781101003289223,
0.015947634354233742,
-0.026825567707419395,
0.0008013348560780287,
0.03195542097091675,
-0.08649026602506638,
0.004670690279453993,
0.06276114284992218,
-0.009231275878846645,
0.02742421068251133,
-0.02101748250424862,
0.0004582737456075847,
0.10375583916902542,
-0.012343959882855415,
0.019641559571027756,
0.02436158061027527,
-0.0051091378554701805,
0.07697337120771408,
0.024088306352496147,
-0.008333652280271053,
-0.0319649800658226,
-0.009290815331041813,
-0.031702928245067596,
0.038137007504701614,
0.03624046593904495,
-0.01127662230283022,
0.006173199508339167,
-0.07145904004573822,
-0.0838528424501419,
0.006362361367791891,
-0.037208229303359985,
-0.0034722290001809597,
0.024368302896618843,
-0.006075769662857056,
0.030822638422250748,
-0.05556000769138336,
-0.07117488980293274,
0.07562708109617233,
0.02790590561926365,
0.05715818703174591,
0.12689447402954102,
0.03670905902981758,
0.06245223432779312,
0.023343835026025772,
-0.020867979153990746,
0.04318415746092796,
0.06460592150688171,
-0.03616778925061226,
0.10982666909694672,
-0.02056589536368847,
0.02246726118028164,
-0.058435000479221344,
-0.01807238720357418,
-0.07679563760757446,
0.05195729061961174,
-0.03626261651515961,
0.010260379873216152,
-0.02091291919350624,
0.015534057281911373,
-0.0026277995202690363,
0.13796408474445343,
-0.05640741437673569,
-0.008289447985589504,
-0.01753523014485836,
-0.007192337419837713,
0.037870634347200394,
0.07787319272756577,
-0.02664480172097683,
0.09643897414207458,
-0.05054057389497757,
-0.00030324480030685663,
-0.028965989127755165,
-0.04338590055704117,
0.023370692506432533,
0.018546495586633682,
0.032926298677921295,
-0.008044657297432423,
0.025092072784900665,
0.0358271487057209,
-0.0817917212843895,
0.011877598240971565,
-0.01954660564661026,
0.028446707874536514,
-0.02030036225914955,
-0.02741154283285141,
0.011250010691583157,
0.055171601474285126,
0.001432020217180252,
-0.03069562092423439,
-0.015839332714676857,
-0.08229856193065643,
0.03296208381652832,
0.0234820693731308,
-0.08509474247694016,
0.043343253433704376,
0.009579231031239033,
-0.042350031435489655,
-0.020800886675715446,
0.020067891106009483,
0.0012738569639623165,
0.00914453249424696,
-0.035826582461595535,
-0.015883831307291985,
-0.03268038481473923,
-0.03501766920089722,
-0.025632161647081375,
-0.04906585067510605,
-0.007674848660826683,
0.014706980437040329,
0.0032002744264900684,
0.07486286014318466,
-0.05563870817422867,
0.03794984146952629,
0.027161210775375366,
0.027217315509915352,
-0.021284671500325203,
0.03256902098655701,
-0.024737760424613953,
-0.033229634165763855,
-0.016967875882983208,
0.022272661328315735,
-0.020833881571888924,
-0.00787204597145319,
0.015751535072922707,
-0.005627996753901243,
0.008682242594659328,
0.008403073996305466,
-0.005001289304345846,
-0.0027582282200455666,
0.053526997566223145,
-0.00594366155564785,
0.039704330265522,
-0.01626359298825264,
0.015028108842670918,
0.00186860968824476,
0.035677459090948105,
-0.005021381191909313,
-0.023038623854517937,
-0.0025357967242598534,
-0.015159757807850838,
-0.005309820640832186,
0.02439935691654682,
0.02825840935111046,
-0.03785945475101471,
-0.07590145617723465,
0.022124631330370903,
0.05183390900492668,
0.025420894846320152,
-0.10430994629859924,
-0.030512012541294098,
-0.0012267676647752523,
0.0027250642888247967,
0.02930997684597969,
-0.027665527537465096,
0.054875824600458145,
-0.020011793822050095,
-0.01305595226585865,
0.0009780528489500284,
0.018238026648759842,
-0.027693841606378555,
0.0028999156784266233,
0.022132238373160362,
-0.05442985147237778,
-0.032866429537534714,
-0.027891162782907486,
0.005069229286164045,
0.020099787041544914,
-0.032082658261060715,
0.011568784713745117,
-0.0075017958879470825,
0.01876494288444519,
0.0068832989782094955,
-0.016794675961136818,
-0.03506876900792122,
0.028647689148783684,
0.035850245505571365,
0.002663350198417902,
0.005004339385777712,
-0.0008346443646587431,
-0.01434068288654089,
-0.014593846164643764,
0.033145926892757416,
-0.018319565802812576,
0.004547519143670797,
0.05071813240647316,
0.007677940186113119,
0.05543312802910805,
0.03728624805808067,
-0.00448970403522253,
0.03250447288155556,
0.0005005773855373263,
0.010059517808258533,
-0.02231135405600071,
-0.017423253506422043,
0.015535068698227406,
-0.0032346686348319054,
0.02208477444946766,
-0.016220761463046074,
0.0019324098248034716,
-0.0024113452527672052,
0.020699648186564445,
-0.0007929167477414012,
-0.013030623085796833,
0.006016440689563751,
0.011148502118885517,
0.030161986127495766,
0.023768799379467964,
-0.04304181784391403,
-0.027848338708281517,
-0.008037762716412544,
-0.012228825129568577,
-0.04912901297211647,
-0.04422318935394287,
0.0337887778878212,
0.023741621524095535,
0.030645182356238365,
0.01505027711391449,
0.039509523659944534,
-0.032239317893981934,
0.00153031584341079,
0.015283207409083843,
0.009005071595311165,
-0.007220251485705376,
0.03847701475024223,
-0.045026253908872604,
-0.027111735194921494,
0.07615135610103607,
0.023942086845636368,
0.018909087404608727,
0.00780145451426506,
-0.047486960887908936,
-0.013117226772010326,
0.017631342634558678,
0.020203767344355583,
0.01071708183735609,
0.025281134992837906,
0.04260443523526192,
0.013119596056640148,
0.015572747215628624,
-0.032385218888521194,
-0.0030496730469167233,
-0.038377419114112854,
-0.0019071788992732763,
-0.001372084952890873,
0.0066462429240345955,
0.03221181407570839,
0.03227750211954117,
0.008044039830565453,
-0.01162966713309288,
-0.05980297550559044,
-0.025563431903719902,
0.020640918985009193,
-0.01761746034026146,
0.012349111028015614,
-0.00042211817344650626,
-0.054452184587717056,
0.03754234313964844,
-0.0342717282474041,
-0.014205701649188995,
0.007900822907686234,
0.014213478192687035,
-0.003884513396769762,
0.021930959075689316,
0.04762395843863487,
-0.013945197686553001,
-0.04867565259337425,
0.005088528152555227,
0.004263874609023333,
-0.0014489080058410764,
0.0037962968926876783,
0.013975400477647781,
0.0018076620763167739,
0.01016262173652649,
-0.036913540214300156,
0.04144077003002167,
-0.021631883457303047,
0.019631754606962204,
-0.017337381839752197,
-0.04924742504954338,
0.01732960343360901,
0.03793448954820633,
-0.02913089655339718,
0.0016472020652145147,
-0.012121723964810371,
-0.01947869546711445,
0.0395745150744915,
0.03699536621570587,
-0.03569572791457176,
0.007732992991805077,
0.01090855710208416,
0.03814682364463806,
-0.057030752301216125,
0.05990908667445183,
0.020415684208273888,
-0.02151680178940296,
0.018396742641925812,
-0.011427047662436962,
0.012622566893696785,
0.05111446976661682,
-0.006975717376917601,
-0.05466315150260925,
0.01385786198079586,
0.010186786763370037,
-0.033372145146131516,
0.006115000694990158,
-0.007117573171854019,
0.026538321748375893,
0.03331003338098526,
0.009557854384183884,
0.012362685054540634,
-0.023144135251641273,
0.004120287951081991,
-0.009892172180116177,
0.01461742538958788,
-0.032847385853528976,
-0.011017021723091602,
0.0050799124874174595,
0.0005685559590347111,
-0.00478421151638031,
-0.034223515540361404,
0.023944949731230736,
-0.022631986066699028,
0.038713376969099045,
-0.00839049369096756,
0.0423109345138073,
0.011524160392582417,
-0.005077575799077749,
0.014261369593441486,
-0.00452052429318428,
0.012192278169095516,
-0.021111642941832542,
-0.010609525255858898,
0.0022418845910578966,
0.027018051594495773,
0.06684372574090958,
0.03769543021917343,
0.05077625811100006,
0.01444968767464161,
0.03276003524661064,
0.012124031782150269,
0.05423619970679283,
-0.00611845264211297,
-0.017916228622198105,
-0.02262069098651409,
-0.02333136461675167,
-0.004138353280723095,
-0.018507283180952072,
0.008380493149161339,
0.007187372539192438,
0.03847462311387062,
-0.02861020341515541,
-0.02004292793571949,
0.017961259931325912,
-0.05329470336437225,
-0.018802465870976448,
-0.05189380422234535,
0.047372858971357346,
-0.028551969677209854,
-0.008783978410065174,
-0.04271846264600754,
0.0035903938114643097,
0.01739748939871788,
0.01677176170051098,
0.018227219581604004,
-0.03573637083172798,
0.031432945281267166,
0.032396350055933,
0.044851530343294144,
0.01571200229227543,
-0.004020683467388153,
-0.029859444126486778,
0.007085597142577171,
-0.008232193998992443,
-0.026440490037202835,
-0.025003207847476006,
0.02274770475924015,
-0.006530587561428547,
0.009192241355776787,
0.03234951198101044,
-0.019338231533765793,
0.020722754299640656,
0.017999235540628433,
-0.02649722434580326,
-0.021386951208114624,
-0.03649095445871353,
0.00010413416748633608,
0.02825980633497238,
0.0007236082456074655,
-0.010406749323010445,
-0.012502568773925304,
0.011813389137387276,
-0.008509321138262749,
-0.037025753408670425,
0.00804063305258751,
0.03733105957508087,
0.006473179440945387,
0.02140256203711033,
0.01902672089636326,
0.042219895869493484,
-0.00617649732157588,
0.027666231617331505,
-0.016577694565057755,
0.04350626468658447,
0.016457606106996536,
0.024444669485092163,
-0.025833865627646446,
-0.0012897594133391976,
0.019375640898942947,
0.037344563752412796,
-0.042373448610305786,
0.0195827167481184,
0.03492847457528114,
-0.06584970653057098,
0.01483850833028555,
-0.01583298109471798,
-0.032183706760406494,
0.0019384955521672964,
0.01559357438236475,
0.01990528032183647,
-0.0011698215967044234,
-0.023293206468224525,
0.016264373436570168,
0.05027119070291519,
-0.0018303841352462769,
0.05131959915161133,
0.052053432911634445,
-0.014399257488548756,
0.01544804684817791,
0.013685254380106926,
0.009883992373943329,
0.028678590431809425,
-0.004335059318691492,
-0.03174477815628052,
-0.002705934690311551,
0.04963570833206177,
0.020087528973817825,
0.018278438597917557,
0.03751370310783386,
-0.008419430814683437,
-0.0009802122367545962,
-0.02148088999092579,
0.017320388928055763,
-0.004714917857199907,
0.015387197956442833,
-0.0483664944767952,
-0.007657787762582302,
0.015453970059752464,
-0.04076544567942619,
0.02706374041736126,
0.05688300356268883,
-0.01625792309641838,
-0.039301011711359024,
0.05026732012629509,
0.0632336363196373,
-0.004763615317642689,
0.01885661669075489,
0.00642309570685029,
0.02737429365515709,
0.007806841284036636,
0.04066608473658562,
0.012013447470963001,
-0.009017696604132652,
0.03176167979836464,
-0.00564408116042614,
0.039141394197940826,
-0.008163231424987316,
-0.005468118004500866,
-0.010831966996192932,
0.033800847828388214,
-0.015451915562152863,
-0.017711559310555458,
-0.0010190843604505062,
-0.04245402663946152,
0.004248789045959711,
0.006238602567464113,
-0.01519270334392786,
-0.0000944123457884416,
0.005989114288240671,
0.030712613835930824,
0.01764695905148983,
-0.026936490088701248,
-0.0013367518549785018,
-0.011902066878974438,
0.005648390855640173,
-0.0022868290543556213,
0.015275668352842331,
-0.026856334879994392,
-0.034859683364629745,
-0.053967803716659546,
-0.005607937462627888,
-0.02127794548869133,
0.05913084000349045,
-0.025245817378163338,
-0.022202514111995697,
0.08006124943494797,
0.0026999912224709988,
-0.007513189222663641,
0.005557149648666382,
0.04175449535250664,
0.02012438327074051,
-0.024713998660445213,
-0.03213925659656525,
-0.032828617841005325,
-0.06271660327911377,
0.009044383652508259,
-0.04821540415287018,
0.025880955159664154,
-0.025258492678403854,
0.0565643347799778,
0.013123617507517338,
0.02712455950677395,
-0.029177226126194,
-0.008383950218558311,
-0.026434030383825302,
-0.03276941552758217,
0.0009019910939969122,
0.01170317828655243,
0.007501787040382624,
-0.004894896410405636,
0.015296326950192451,
-0.012717555277049541,
-0.009472066536545753,
-0.04222414270043373,
0.007892739959061146,
0.03652355447411537,
-0.033394161611795425,
-0.012571192346513271,
-0.02403956837952137,
0.049234598875045776,
-0.033270541578531265,
0.025591474026441574,
0.032501183450222015,
0.013807125389575958,
0.0287171583622694,
-0.06340647488832474,
-0.005148354452103376,
-0.0049299998208880424,
0.006628940813243389,
-0.015953341498970985,
-0.04002831503748894,
-0.01449331920593977,
0.02651199884712696,
0.016235902905464172,
0.002188111888244748,
-0.004875896032899618,
-0.012208867818117142,
-0.0682654082775116,
0.006217312533408403,
-0.018275994807481766,
0.06285924464464188,
-0.000194823500351049,
-0.0005495714722201228,
0.05245402827858925,
0.03206254914402962,
-0.0069448319263756275,
-0.023000432178378105,
-0.03273351863026619,
0.021779749542474747,
0.05588160455226898,
-0.0023828803095966578,
-0.05034180358052254,
-0.01210736483335495,
-0.03117533214390278,
0.012968425638973713,
-0.01409874577075243,
-0.01786220073699951,
0.010316189378499985,
-0.03555162250995636,
-0.024082671850919724,
-0.02217295952141285,
-0.015439177863299847,
0.0054345810785889626,
0.009256184101104736,
0.03469807282090187,
-0.05061997100710869,
0.0016019399045035243,
0.01843503676354885,
-0.01764477789402008,
-0.03721921890974045,
-0.014667646959424019,
0.01454986073076725,
0.024191495031118393,
0.035143692046403885,
0.002024266868829727,
-0.007757105398923159,
-0.04156942665576935,
0.031164254993200302,
0.020191406831145287,
-0.012420178391039371,
-0.004961132071912289,
-0.005390545353293419,
0.030088169500231743,
-0.027870096266269684,
-0.02821747399866581,
0.01250940840691328,
0.048772070556879044,
-0.01858777552843094,
0.05289647728204727,
-0.007820380851626396,
-0.01287906989455223,
-0.021281365305185318,
0.04449354112148285,
-0.04868630692362785,
0.0793597474694252,
0.04715350270271301,
0.011968041770160198,
0.002318568527698517,
0.047262243926525116
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Introduction Recently, pre-trained language models \({}^1\) have revolutionized the field of natural language processing (NLP). The first pre-trained language models were based on recurrent neural networks (RNN) as proposed Dai et al. (2015). Dai et. al showed that pre-training an RNN-based model on unlabelled data and subsequently fine-tuning \({}^2\) it on a specific task yields better results than training a randomly initialized model directly on such a task. However, it was only in 2018, when pre-trained language models become widely accepted in NLP. ELMO by Peters et al. and ULMFit by Howard et al. were the first pre-trained language model to significantly improve the state-of-the-art on an array of natural language understanding (NLU) tasks. Just a couple of months later, OpenAI and Google published transformer-based pre-trained language models, called GPT by Radford et al. and BERT by Devlin et al. respectively. The improved efficiency of transformer-based language models over RNNs allowed GPT2 and BERT to be pre-trained on massive amounts of unlabeled text data. Once pre-trained, BERT and GPT were shown to require very little fine-tuning to shatter state-of-art results on more than a dozen NLU tasks \({}^3\). The capability of pre-trained language models to effectively transfer task-agnostic knowledge to task-specific knowledge turned out to be a great catalyst for NLU. Whereas engineers and researchers previously had to train a language model from scratch, now publicly available checkpoints of large pre-trained language models can be fine-tuned at a fraction of the cost and time. This can save millions in industry and allows for faster prototyping and better benchmarks in research. Pre-trained language models have established a new level of performance on NLU tasks and more and more research has been built upon leveraging such pre-trained language models for improved NLU systems. However, standalone BERT and GPT models have been less successful for sequence-to-sequence tasks, e.g. text-summarization, machine translation, sentence-rephrasing, etc. Sequence-to-sequence tasks are defined as a mapping from an input sequence \(\mathbf{X}{1:n}\) to an output sequence \(\mathbf{Y}{1:m}\) of a-priori unknown output length \(m\). Hence, a sequence-to-sequence model should define the conditional probability distribution of the output sequence \(\mathbf{Y}{1:m}\) conditioned on the input sequence \(\mathbf{X}{1:n}\): $$ p_{\theta_{\text{model}}}(\mathbf{Y}{1:m} | \mathbf{X}{1:n}). $$ Without loss of generality, an input word sequence of \(n\) words is hereby represented by the vector sequnece \(\mathbf{X}{1:n} = \mathbf{x}_1, \ldots, \mathbf{x}_n\) and an output sequence of \(m\) words as \(\mathbf{Y}{1:m} = \mathbf{y}1, \ldots, \mathbf{y}_m\). Let\'s see how BERT and GPT2 would be fit to model sequence-to-sequence tasks. | [
0.03953409567475319,
-0.029414737597107887,
0.028847068548202515,
0.013979563489556313,
0.05128942057490349,
0.09705950319766998,
0.016079824417829514,
0.0886308029294014,
-0.046867650002241135,
-0.01874956116080284,
-0.04993356391787529,
0.08321946859359741,
-0.01845620945096016,
0.0818072035908699,
0.016082124784588814,
-0.012753629125654697,
0.026122894138097763,
-0.03281889483332634,
-0.00844605453312397,
-0.009311441332101822,
-0.013852173462510109,
-0.03460785001516342,
0.07110840827226639,
-0.026378735899925232,
0.03591589257121086,
-0.025370635092258453,
-0.003237365046516061,
-0.00406494690105319,
-0.06643097847700119,
0.011440685950219631,
-0.1466268002986908,
-0.004197529051452875,
0.0021847039461135864,
0.014360548928380013,
-0.023002859205007553,
-0.020217619836330414,
-0.04447998106479645,
0.020736096426844597,
-0.005996825639158487,
-0.012054440565407276,
-0.0509163960814476,
0.0003723616828210652,
-0.06531213223934174,
0.047791387885808945,
-0.06463926285505295,
0.0036134093534201384,
-0.21673157811164856,
0.10284242779016495,
-0.008563072420656681,
-0.0421619787812233,
-0.08575572818517685,
0.02333601750433445,
-0.027048947289586067,
0.01380948256701231,
-0.026034081354737282,
0.01867511309683323,
0.0016855354188010097,
-0.10030160844326019,
0.005672738421708345,
-0.024154819548130035,
0.030835719779133797,
0.025759896263480186,
-0.01192884985357523,
-0.03158947825431824,
0.03310414403676987,
0.002184198470786214,
0.02664044499397278,
0.018101483583450317,
-0.0843132883310318,
0.0013674325309693813,
0.00846766121685505,
-0.05299629643559456,
-0.06613324582576752,
-0.008347319439053535,
-0.007591528818011284,
-0.04214034602046013,
-0.0208012405782938,
0.04384780302643776,
0.010737147182226181,
0.01632765494287014,
0.006155747454613447,
0.038137465715408325,
0.022375563159585,
0.03016475960612297,
0.029532259330153465,
0.011020271107554436,
0.11340576410293579,
-0.038862187415361404,
-0.042042288929224014,
0.04058938845992088,
-0.029180733487010002,
-0.13760581612586975,
0.0003704230475705117,
-0.013532020151615143,
0.036025021225214005,
-0.027122745290398598,
0.020605646073818207,
0.0557003952562809,
-0.04302726313471794,
-0.042293041944503784,
0.03310263529419899,
-0.029540469869971275,
0.04479627683758736,
-0.011498484760522842,
-0.05166063457727432,
0.027093688026070595,
-0.03153007850050926,
-0.061558324843645096,
-0.028545349836349487,
-0.01248250249773264,
0.03200576454401016,
0.03063099831342697,
0.022694077342748642,
0.04748938977718353,
-0.09469740092754364,
0.04151029884815216,
0.02650441601872444,
-0.005036883521825075,
0.02476596087217331,
0.003208575304597616,
0.0027272978331893682,
0.02190517447888851,
0.032366249710321426,
0.014188586734235287,
-0.010450759902596474,
0.0536469966173172,
0.023865237832069397,
0.007341788616031408,
-0.024877777323126793,
-0.03756491839885712,
0.06708043813705444,
-0.015808653086423874,
0.04955871030688286,
0.03273029252886772,
-0.01111750677227974,
-0.01714155077934265,
-0.0007790149538777769,
-0.07194221019744873,
0.017299531027674675,
0.006297554355114698,
-0.029610222205519676,
0.06152929365634918,
-0.03038574755191803,
0.011894466355443,
0.07630538940429688,
0.004585903603583574,
-0.10343129932880402,
0.08101289719343185,
-0.02192571572959423,
-0.005097544752061367,
-0.08317902684211731,
0.030748581513762474,
-0.10191511362791061,
-0.05080088973045349,
0.03886762261390686,
0.07163950800895691,
0.0025329492054879665,
-0.035117316991090775,
-0.04926187917590141,
-0.002893669530749321,
-0.06544718891382217,
0.024429047480225563,
-0.03191487863659859,
-0.015896925702691078,
0.0005300712073221803,
-0.09496353566646576,
0.0007996978238224983,
0.06017133966088295,
0.00545865623280406,
0.029039978981018066,
0.017078543081879616,
0.027847234159708023,
0.1210225522518158,
-0.005933218635618687,
-0.06229284405708313,
0.02393554337322712,
-0.007480923552066088,
0.028342535719275475,
0.01963360607624054,
-0.0003412481164559722,
-0.01700369268655777,
0.05070342496037483,
0.021358193829655647,
0.04372932016849518,
0.04985843226313591,
-0.11119969189167023,
-0.025520917028188705,
-0.029277481138706207,
-0.02458837814629078,
0.06249309703707695,
-0.0469292514026165,
-0.021055324003100395,
0.09878816455602646,
-0.01932389847934246,
0.03752145916223526,
-0.09349880367517471,
-0.00026001958758570254,
0.1539023220539093,
0.03185134008526802,
0.08411016315221786,
0.10692209005355835,
-0.006062163971364498,
0.01773487590253353,
-0.05987605080008507,
-0.02596491575241089,
-0.03294983133673668,
0.02053811028599739,
0.011238090693950653,
0.043751854449510574,
-0.021576421335339546,
0.03127923980355263,
-0.11177488416433334,
0.01127192098647356,
-0.05514700338244438,
0.010863101109862328,
-0.032539281994104385,
-0.013681369833648205,
0.008559316396713257,
0.0226923618465662,
-0.05465102940797806,
0.14199593663215637,
-0.04285838082432747,
-0.001505836844444275,
0.02329353615641594,
-0.015700483694672585,
0.05224309861660004,
0.0744466558098793,
0.035729825496673584,
0.055606305599212646,
-0.027193360030651093,
-0.002148883882910013,
-0.11640561372041702,
0.02228255197405815,
0.0211410541087389,
0.0014890801394358277,
-0.002181514399126172,
-0.009561014361679554,
-0.02927192859351635,
-0.00979265384376049,
0.006482250988483429,
0.0053797392174601555,
0.016625776886940002,
0.0020525732543319464,
0.06278572231531143,
-0.012678485363721848,
-0.024564875289797783,
0.03366652503609657,
0.004151755478233099,
-0.015859901905059814,
-0.03100890852510929,
-0.09541404992341995,
0.03658672794699669,
-0.02097916789352894,
-0.024723565205931664,
0.02895512245595455,
0.044639382511377335,
-0.0127281304448843,
-0.006592816207557917,
0.005260472651571035,
0.01684054732322693,
-0.004950161091983318,
-0.03915425017476082,
-0.019072066992521286,
-0.04987214505672455,
-0.006382650695741177,
-0.025169823318719864,
-0.014695597812533379,
-0.00863181333988905,
0.0284658782184124,
0.040213361382484436,
0.005707582458853722,
-0.003911627922207117,
0.045972760766744614,
0.04363222047686577,
-0.001257089665159583,
0.05509994179010391,
0.0016685224836692214,
-0.02869495004415512,
-0.037162065505981445,
-0.019557151943445206,
0.0002354280004510656,
-0.043771106749773026,
0.020598681643605232,
0.02547556348145008,
0.014623799361288548,
-0.013122557662427425,
0.012289022095501423,
-0.026125168427824974,
-0.011300860904157162,
0.03452127426862717,
-0.000057117529649985954,
0.011532570235431194,
-0.05025666207075119,
-0.055589932948350906,
-0.022348390892148018,
-0.025581255555152893,
0.003588679013773799,
-0.018865374848246574,
0.0032549514435231686,
0.014891799539327621,
-0.007950524799525738,
0.015013285912573338,
-0.01139107346534729,
0.005638579837977886,
-0.027639877051115036,
0.02639160305261612,
0.03328564763069153,
0.041548945009708405,
-0.11728183180093765,
-0.04960907995700836,
0.04271530359983444,
0.007849394343793392,
-0.007635670248419046,
-0.007095597684383392,
0.05060679093003273,
-0.019212590530514717,
-0.018715795129537582,
0.01084381714463234,
0.00011233961413381621,
0.026006773114204407,
0.0383872427046299,
0.007503212429583073,
-0.027499999850988388,
-0.0072354902513325214,
-0.016113491728901863,
0.0009915310656651855,
0.01029928121715784,
0.037420086562633514,
-0.023032348603010178,
0.025561070069670677,
-0.025426296517252922,
0.013837927021086216,
-0.040670737624168396,
0.008296418935060501,
0.01188231073319912,
0.004791735205799341,
0.015470844693481922,
-0.03305809944868088,
-0.04526372253894806,
-0.003822098718956113,
-0.01630879007279873,
0.04440050572156906,
-0.010539418086409569,
-0.03243309259414673,
0.008433355018496513,
0.07391119748353958,
-0.0031936310697346926,
0.036846697330474854,
0.04242350906133652,
-0.022787567228078842,
0.0012351303594186902,
-0.006524560507386923,
-0.009757711552083492,
0.012885302305221558,
0.01586378924548626,
-0.005971626844257116,
0.01130865141749382,
-0.04708206653594971,
-0.030036073178052902,
0.006887434516102076,
-0.01530372817069292,
0.05500014126300812,
0.027114545926451683,
0.015609614551067352,
-0.009707201272249222,
-0.014557157643139362,
0.009821423329412937,
0.008232415653765202,
-0.02548910677433014,
0.044374462217092514,
-0.0044305529445409775,
-0.004110760521143675,
-0.051646698266267776,
0.07073909789323807,
0.023407984524965286,
0.040039729326963425,
-0.003615302499383688,
0.05467494577169418,
0.0004479362105485052,
0.04807812348008156,
-0.0064512877725064754,
0.005023762583732605,
-0.009201489388942719,
-0.004293302074074745,
-0.01376383937895298,
0.019885165616869926,
0.07480377703905106,
0.015530196018517017,
-0.03370416909456253,
-0.032703157514333725,
-0.050687577575445175,
-0.02548605017364025,
0.022099871188402176,
0.017925716936588287,
-0.0015073419781401753,
-0.014742502011358738,
0.03300667554140091,
0.027000969275832176,
0.005261256825178862,
0.008431860245764256,
0.014088950119912624,
0.011852633208036423,
0.03116116113960743,
-0.008546932600438595,
0.03656618669629097,
-0.009492550976574421,
-0.000767107296269387,
-0.0046997894532978535,
0.041193440556526184,
-0.03882617503404617,
-0.006508521270006895,
0.011713061481714249,
-0.023170270025730133,
0.04313160106539726,
-0.019095564261078835,
-0.02418076992034912,
-0.015198808163404465,
-0.011147440411150455,
-0.011043190956115723,
0.006482284981757402,
0.03295939788222313,
0.011437838897109032,
0.01839800737798214,
0.016046134755015373,
-0.01128145307302475,
-0.01327055599540472,
-0.03342631086707115,
0.0266644898802042,
-0.03800290450453758,
0.028688961640000343,
-0.016643118113279343,
0.00933966226875782,
0.03817996382713318,
-0.019943339750170708,
0.010934887453913689,
0.021177565678954124,
-0.015306086279451847,
0.002457136521115899,
-0.012055215425789356,
-0.025780458003282547,
0.02329767681658268,
0.007821117527782917,
-0.0010160825913771987,
0.00746955955401063,
0.0012129389215260744,
-0.015938136726617813,
-0.032927803695201874,
-0.026439549401402473,
0.008019616827368736,
-0.010935639031231403,
0.0165718961507082,
-0.011756321415305138,
0.057315893471241,
0.007061594165861607,
-0.02678525447845459,
-0.03649008274078369,
0.006505681201815605,
0.018062015995383263,
0.0477614551782608,
-0.020959025248885155,
-0.03340335190296173,
0.014203829690814018,
0.03638264164328575,
-0.017064275220036507,
-0.017155442386865616,
0.049586713314056396,
0.005800996441394091,
0.05773913115262985,
0.0054236180149018764,
-0.01604713685810566,
-0.04713893309235573,
0.004819547291845083,
0.017388135194778442,
-0.01373616699129343,
-0.014588680118322372,
-0.004630620591342449,
-0.0086794039234519,
0.026945674791932106,
0.021853119134902954,
-0.029500920325517654,
-0.02088124305009842,
-0.02559897117316723,
0.015945982187986374,
0.00945707131177187,
-0.00524522690102458,
0.018224459141492844,
-0.012338223867118359,
0.044659800827503204,
0.0032158279791474342,
0.014973466284573078,
-0.0003002255689352751,
0.044380709528923035,
-0.014380024746060371,
0.003147234907373786,
0.051280427724123,
0.027089614421129227,
0.020174477249383926,
0.025976411998271942,
0.00015022733714431524,
-0.0009519814630039036,
0.05027752369642258,
-0.023260939866304398,
0.010296869091689587,
0.002326497808098793,
0.005741022527217865,
0.03340195491909981,
-0.021336739882826805,
-0.0020177168771624565,
0.021349657326936722,
0.03867686539888382,
-0.012006456032395363,
-0.019216084852814674,
0.023583954200148582,
0.013240967877209187,
-0.0322374626994133,
-0.048464495688676834,
-0.01930149458348751,
-0.013487549498677254,
-0.013144555501639843,
0.03200186789035797,
-0.026114361360669136,
-0.026457546278834343,
-0.019376153126358986,
-0.031839530915021896,
0.0024644643999636173,
0.05084564536809921,
0.02578691579401493,
0.03488241881132126,
0.006125877611339092,
-0.01411772146821022,
-0.03638681396842003,
-0.014242434874176979,
0.01723533496260643,
-0.02498358115553856,
-0.005251070484519005,
0.026558412238955498,
0.012982209213078022,
0.021698126569390297,
0.015611951239407063,
-0.03769488260149956,
0.010417907498776913,
0.04239694029092789,
-0.003127399133518338,
-0.026919497177004814,
-0.027483176440000534,
0.02044599875807762,
0.0018086143536493182,
-0.003659894224256277,
-0.003525888081640005,
-0.03025755286216736,
-0.038856685161590576,
0.0033826229628175497,
-0.053446490317583084,
0.011819984763860703,
0.05651115998625755,
-0.04225432872772217,
0.0048596616834402084,
0.029763562604784966,
0.01062903180718422,
-0.006757598835974932,
-0.0020286603830754757,
0.008970394730567932,
0.014581232331693172,
0.030738597735762596,
0.007413158193230629,
0.004958165809512138,
-0.0260847769677639,
0.011688299477100372,
0.010105549357831478,
-0.06523443013429642,
-0.007479345891624689,
0.04814906790852547,
-0.034412723034620285,
0.011389396153390408,
0.01933955028653145,
-0.0429585799574852,
0.012917018495500088,
0.029645903035998344,
0.021634884178638458,
0.005208231043070555,
-0.013473200611770153,
-0.006195147521793842,
-0.0034877718426287174,
-0.02913527749478817,
0.018609102815389633,
0.04841424152255058,
-0.021728074178099632,
0.07974823564291,
0.040351688861846924,
0.030426381155848503,
0.047787878662347794,
0.008001499809324741,
0.005064469762146473,
0.028972232714295387,
0.06640306860208511,
-0.0023470146115869284,
0.02028236910700798,
0.006562078837305307,
-0.015237413346767426,
-0.0325227789580822,
-0.035504210740327835,
-0.013301611877977848,
-0.03381814435124397,
0.005430377088487148,
0.047418393194675446,
-0.00038160537951625884,
0.017457500100135803,
-0.03425293415784836,
0.028559129685163498,
0.06432346254587173,
0.03449191898107529,
-0.001632298226468265,
0.025111274793744087,
0.04620848596096039,
0.03302653133869171,
0.018059810623526573,
0.013571854680776596,
-0.005668432451784611,
0.01803923398256302,
0.0330774150788784,
0.04222414270043373,
0.03197595477104187,
-0.025512857362627983,
-0.023055996745824814,
0.025413690134882927,
-0.010822946205735207,
-0.0010860583279281855,
0.024098534137010574,
-0.009162768721580505,
-0.0012832778738811612,
-0.018310829997062683,
0.003990775905549526,
-0.03335185721516609,
0.004666989203542471,
0.0019125989638268948,
-0.002596580423414707,
0.015012077987194061,
-0.04308590665459633,
-0.01482213381677866,
0.0382954478263855,
-0.00028396141715347767,
-0.035144127905368805,
-0.032236285507678986,
-0.0018639708869159222,
0.009755885228514671,
0.022796159610152245,
0.0058287945576012135,
-0.021287109702825546,
0.0005918648093938828,
-0.02344674989581108,
-0.019159262999892235,
0.01121124904602766,
-0.008818014524877071,
-0.004966778680682182,
0.018638459965586662,
0.013272332958877087,
-0.028993073850870132,
0.034060414880514145,
0.03305625542998314,
-0.003647473407909274,
-0.02700987085700035,
0.02756352350115776,
-0.032248806208372116,
-0.020333876833319664,
0.017889637500047684,
-0.08485155552625656,
0.005433761514723301,
-0.03202027827501297,
0.024310527369379997,
0.055926211178302765,
0.08226308971643448,
-0.031033694744110107,
-0.026765935122966766,
-0.014263223856687546,
-0.01024013664573431,
-0.006497012916952372,
-0.0019175169290974736,
0.024872342124581337,
-0.022975929081439972,
0.006717801094055176,
0.004504899960011244,
-0.022560996934771538,
-0.030562331900000572,
-0.022429831326007843,
0.032689932733774185,
-0.004226417746394873,
-0.010383892804384232,
-0.03390774875879288,
0.04488576203584671,
0.013943522237241268,
0.01571560464799404,
0.05542699247598648,
0.008846960961818695,
0.04994098097085953,
-0.05460546538233757,
0.030546939000487328,
-0.04266213998198509,
0.021066943183541298,
-0.0365501306951046,
-0.06016181781888008,
-0.03317204490303993,
0.02132045291364193,
0.0055372342467308044,
0.0013265196466818452,
-0.05490116775035858,
-0.0028054926078766584,
-0.0595230869948864,
0.021008016541600227,
-0.00832707155495882,
0.015773575752973557,
0.06414981931447983,
0.0012599165784195065,
0.0019764963071793318,
-0.01299163419753313,
-0.002784754615277052,
-0.02927442081272602,
-0.011056238785386086,
-0.012861372902989388,
0.034103382378816605,
-0.013402693904936314,
0.000608976639341563,
-0.007233875337988138,
0.009669431485235691,
-0.03468078002333641,
-0.016412287950515747,
0.020258700475096703,
0.04870712384581566,
0.012772118672728539,
-0.01174137368798256,
0.028117159381508827,
-0.023483097553253174,
-0.0025038588792085648,
0.016729865223169327,
0.017876815050840378,
-0.02773943357169628,
0.009020030498504639,
0.00019832806719932705,
-0.048747558146715164,
-0.016323694959282875,
0.008788499049842358,
0.030471544712781906,
0.07182524353265762,
0.04409883916378021,
0.03412748500704765,
-0.014213483780622482,
-0.02065250836312771,
0.029389558359980583,
0.027824580669403076,
-0.030548162758350372,
-0.04259059950709343,
0.0052800835110247135,
-0.0035964534617960453,
-0.0119226248934865,
-0.023494431748986244,
0.04979175701737404,
0.023680584505200386,
-0.018732357770204544,
-0.024734359234571457,
0.004254742991179228,
0.001634254353120923,
-0.03369823098182678,
0.04128475487232208,
0.010781406424939632,
0.05927444249391556,
0.05450214818120003,
-0.0015674559399485588,
-0.011193424463272095,
0.010970864444971085
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Experiments The above models were trained and evaluated on four sequence-to-sequence tasks of increasing complexity: sentence-level fusion, sentence-level splitting, translation, and abstractive summarization. The following table shows which datasets were used for each task. |Seq2Seq Task |Datasets |Paper |🤗datasets | |-------------------------- |-----------------------------------------------------------------------|----------------------------------------------------------------------- |----------------------------------------------------------------------------------------- | |Sentence Fusion |DiscoFuse |Geva et al. (2019) |link | |Sentence Splitting |WikiSplit |Botha et al. (2018) |-| |Translation |WMT14 EN => DE |Bojar et al. (2014) |link| |WMT14 DE => EN |Bojar et al. (2014) | |link | |Abstractive Summarizaion |CNN/Dailymail | Hermann et al. (2015) |link| |BBC XSum |Narayan et al. (2018a) | |link | |Gigaword |Napoles et al. (2012) | |link | Depending on the task, a slightly different training regime was used. E.g. according to the size of the dataset and the specific task, the number of training steps ranges from 200K to 500K, the batch size is set to either 128 or 256, the input length ranges from 128 to 512 and the output length varies between 32 to 128. It shall be emphasized however that within each task, all models were trained and evaluated using the same hyperparameters to ensure a fair comparison. For more information on the task-specific hyperparameter settings, the reader is advised to see the Experiments section in the paper. We will now give a condensed overview of the results for each task. | [
0.03937816619873047,
-0.01978582888841629,
-0.02349153161048889,
-0.006471044383943081,
0.040202945470809937,
0.07548676431179047,
-0.02675214409828186,
0.050302643328905106,
-0.07836460322141647,
-0.05440307408571243,
-0.0759415328502655,
0.023287581279873848,
-0.027767205610871315,
0.010447554290294647,
-0.007592165842652321,
-0.0033105178736150265,
0.04802783206105232,
0.0027025765739381313,
0.04355457425117493,
-0.035903461277484894,
-0.015821505337953568,
-0.018438834697008133,
0.024513421580195427,
-0.03731899708509445,
0.01554916799068451,
-0.027492638677358627,
0.03015778586268425,
-0.035441964864730835,
-0.06205151230096817,
0.022302113473415375,
-0.13533146679401398,
-0.04772142320871353,
-0.022033819928765297,
0.009926042519509792,
-0.041837144643068314,
-0.017363330349326134,
-0.12479668855667114,
0.012330887839198112,
0.046533890068531036,
-0.051945436745882034,
-0.03127330541610718,
-0.014940133318305016,
-0.09051910042762756,
0.07368778437376022,
-0.028608117252588272,
0.06374652683734894,
-0.10999282449483871,
0.023933054879307747,
-0.016776777803897858,
-0.028670603409409523,
-0.0734713152050972,
0.09194760769605637,
0.029002167284488678,
-0.012227604165673256,
0.023466086015105247,
0.028898412361741066,
0.016713282093405724,
-0.06159982085227966,
0.05721506103873253,
0.004411643836647272,
-0.017332550138235092,
-0.04488129913806915,
-0.022118933498859406,
-0.00453579006716609,
-0.0048405686393380165,
-0.007901656441390514,
0.007164692971855402,
0.0746951624751091,
-0.08114045858383179,
0.0018867930630221963,
0.014434360899031162,
-0.02930840291082859,
-0.014771850779652596,
-0.008266354911029339,
0.0117292245849967,
-0.07181596755981445,
-0.01126261055469513,
-0.01370543148368597,
0.02085471898317337,
0.0014585377648472786,
0.018060464411973953,
0.07225959002971649,
0.03044552356004715,
0.06263010203838348,
0.014446801505982876,
-0.004327267874032259,
0.043163858354091644,
-0.04280915856361389,
-0.054664235562086105,
0.041751496493816376,
0.0013730544596910477,
-0.1016155332326889,
-0.007567246910184622,
0.05219206213951111,
0.047751229256391525,
-0.03639676421880722,
-0.013291296549141407,
0.08017802238464355,
-0.03201103210449219,
-0.04300754517316818,
0.0017402498051524162,
-0.022117793560028076,
0.08164414763450623,
-0.011960546486079693,
-0.04011970013380051,
0.0545094758272171,
-0.09090206772089005,
-0.05102049186825752,
-0.04848843440413475,
-0.00041386528755538166,
0.018780769780278206,
0.016517046838998795,
-0.05497348681092262,
0.05930574610829353,
-0.09953770041465759,
0.054887622594833374,
-0.03172025457024574,
0.035455215722322464,
-0.026378998532891273,
0.05300826206803322,
-0.053075797855854034,
0.06482631713151932,
0.04776598885655403,
0.011724845506250858,
-0.005294745322316885,
0.015486558899283409,
-0.013916485011577606,
-0.04320763051509857,
-0.034708138555288315,
-0.029077233746647835,
0.022654086351394653,
0.02336193434894085,
0.08255691081285477,
0.03539750352501869,
0.005128728225827217,
-0.06667672842741013,
-0.011771307326853275,
-0.039831746369600296,
0.015325953252613544,
0.009206091985106468,
-0.048929065465927124,
0.057535603642463684,
0.017381496727466583,
0.015324592590332031,
0.05912831425666809,
0.03981546312570572,
-0.07236947864294052,
0.037127893418073654,
0.017862288281321526,
-0.006996332202106714,
-0.05523303896188736,
0.023622339591383934,
-0.12309516221284866,
-0.07432163506746292,
0.09654540568590164,
0.0020502624101936817,
0.031779706478118896,
-0.029727820307016373,
-0.04014306887984276,
-0.016615519300103188,
0.020326627418398857,
0.03615080565214157,
-0.024972913786768913,
0.014048287644982338,
0.026633813977241516,
-0.0814751461148262,
0.03351037576794624,
0.05712750181555748,
0.015105846337974072,
-0.02844971790909767,
0.02397320419549942,
0.03171130642294884,
0.04954710230231285,
0.007754851132631302,
-0.09226567298173904,
0.05512009933590889,
-0.007632894441485405,
0.035797618329524994,
0.030829310417175293,
0.0021787702571600676,
-0.04469403624534607,
0.013306754641234875,
-0.03085365518927574,
-0.02979169227182865,
0.05080827698111534,
-0.09363056719303131,
0.03497987240552902,
-0.004445116966962814,
-0.010914099402725697,
0.03983234986662865,
-0.08631429821252823,
0.012866223230957985,
0.09874826669692993,
0.0038095538038760424,
0.025232622399926186,
-0.10001347213983536,
0.02785658836364746,
0.08270930498838425,
0.04315650463104248,
0.1103706955909729,
0.04706093296408653,
0.044699475169181824,
0.06787143647670746,
-0.03408770263195038,
-0.014014199376106262,
-0.007021045777946711,
-0.022922175005078316,
-0.04201755300164223,
0.03278731554746628,
-0.02808319963514805,
0.0029120254330337048,
-0.10922642052173615,
-0.013884305953979492,
-0.08303698897361755,
-0.032861512154340744,
0.007954898290336132,
0.012841949239373207,
0.04963705688714981,
0.020603874698281288,
-0.06075455993413925,
0.14331085979938507,
-0.028040781617164612,
-0.023630628362298012,
0.004591813310980797,
-0.022239595651626587,
0.04507597163319588,
0.05562594160437584,
0.05071215704083443,
0.03678653761744499,
-0.020487762987613678,
-0.01864270307123661,
-0.04242027923464775,
0.04813972860574722,
0.05565543472766876,
0.009163826704025269,
0.01639556884765625,
-0.01229894906282425,
0.024286622181534767,
0.005312521476298571,
-0.05331089720129967,
0.05159882456064224,
0.05847221612930298,
0.028600413352251053,
0.052648305892944336,
-0.016795381903648376,
-0.05388064682483673,
0.05841818451881409,
-0.0038443671073764563,
-0.03546488285064697,
-0.05297498404979706,
-0.04386361688375473,
0.06451205909252167,
-0.009828389622271061,
-0.04665381833910942,
0.05191803351044655,
0.034917932003736496,
0.03528425842523575,
-0.013083990663290024,
-0.015482814982533455,
-0.022184578701853752,
-0.01488284207880497,
-0.0233442522585392,
-0.008910765871405602,
-0.03395473212003708,
0.035964470356702805,
-0.032525692135095596,
0.030329346656799316,
-0.055469512939453125,
-0.0047722384333610535,
0.005805117078125477,
-0.01710375025868416,
0.0018102785106748343,
0.01833256706595421,
0.04291529580950737,
0.02039111778140068,
-0.006612644996494055,
0.04732494801282883,
-0.034183189272880554,
-0.03333882614970207,
-0.0337698869407177,
0.0007364964112639427,
-0.023282071575522423,
0.026805471628904343,
0.03379347547888756,
0.06096220016479492,
-0.02649124711751938,
-0.02355942688882351,
-0.020719468593597412,
-0.024326523765921593,
0.04464730992913246,
0.021790608763694763,
0.025314878672361374,
-0.00838564895093441,
-0.021075518801808357,
0.025653857737779617,
-0.013823426328599453,
-0.0339958593249321,
0.012117365375161171,
-0.010717655532062054,
-0.007247332949191332,
-0.02143356204032898,
0.010616619139909744,
-0.042107630521059036,
-0.008432963863015175,
-0.01257482822984457,
0.02262662537395954,
0.022783301770687103,
0.054444704204797745,
-0.10095477849245071,
0.019630881026387215,
0.0339745357632637,
0.026362981647253036,
-0.013980020768940449,
0.024811556562781334,
0.05823613703250885,
-0.017541805282235146,
-0.035195376724004745,
-0.0068720984272658825,
-0.014119364321231842,
-0.01935528963804245,
0.018435265868902206,
-0.010267387144267559,
-0.012802560813724995,
0.010313743725419044,
0.008880862034857273,
-0.011351541616022587,
0.007667121011763811,
0.042892936617136,
-0.013616912998259068,
0.011722185648977757,
-0.004129438195377588,
-0.034641947597265244,
-0.05771363526582718,
-0.017728056758642197,
0.06271295994520187,
0.04234879091382027,
0.021616941317915916,
-0.03719769045710564,
-0.03099938854575157,
0.00005068322570878081,
0.006667650304734707,
0.01773945800960064,
-0.034217629581689835,
-0.014087267220020294,
0.018109111115336418,
0.0647507905960083,
0.028346460312604904,
0.03960830718278885,
0.040365587919950485,
-0.03925950825214386,
0.03955089673399925,
-0.025842346251010895,
0.029948189854621887,
0.028600890189409256,
0.04619871452450752,
-0.015959730371832848,
0.04749422147870064,
-0.060112711042165756,
0.005365048535168171,
0.02313372679054737,
-0.0064627667888998985,
0.08048544824123383,
0.013383666053414345,
0.00004300177897675894,
0.0013593222247436643,
-0.0022633878979831934,
0.022156696766614914,
-0.02360188402235508,
-0.03572605177760124,
0.03185901790857315,
-0.0390375591814518,
0.0024356709327548742,
-0.015131502412259579,
0.09774676710367203,
-0.004541357513517141,
0.002101263264194131,
-0.007672986947000027,
0.034136123955249786,
-0.027430051937699318,
0.05104246735572815,
-0.007583907805383205,
-0.0018536864081397653,
-0.030191490426659584,
-0.028217066079378128,
-0.03940116614103317,
-0.007980273105204105,
0.05639905482530594,
0.05260283127427101,
-0.04290669411420822,
-0.04836560785770416,
-0.03980874642729759,
-0.0546271838247776,
0.029202008619904518,
0.02343096397817135,
-0.023337192833423615,
-0.02964046224951744,
-0.0013706507161259651,
0.011082134209573269,
0.0013802213361486793,
-0.018262455239892006,
0.013983954675495625,
0.02668960951268673,
0.01628376916050911,
-0.010777687653899193,
0.05075491592288017,
0.026681730523705482,
0.041500117629766464,
-0.012547751888632774,
0.014206280000507832,
-0.022929901257157326,
0.012723498046398163,
-0.02672620303928852,
-0.0026949814055114985,
0.029756218194961548,
-0.047470636665821075,
-0.010935517027974129,
-0.05012434348464012,
-0.007815005257725716,
0.029672792181372643,
-0.013926154933869839,
0.01512220874428749,
0.009137915447354317,
0.02982248179614544,
0.020865824073553085,
0.0035036057233810425,
-0.018789101392030716,
-0.037913545966148376,
-0.0041541289538145065,
-0.009153212420642376,
-0.01596537046134472,
0.007591609843075275,
0.006824351381510496,
-0.00016028473328333348,
-0.00441166153177619,
-0.021597130224108696,
0.03555971756577492,
-0.009504471905529499,
-0.0023820677306503057,
-0.029734022915363312,
-0.034064773470163345,
-0.06355751305818558,
0.02145509235560894,
0.024004554376006126,
0.009124765172600746,
0.003225908614695072,
0.033784329891204834,
-0.030716465786099434,
-0.055300094187259674,
-0.019028564915060997,
0.015179439447820187,
0.027269886806607246,
-0.017932375892996788,
0.04074391350150108,
-0.016642767935991287,
-0.011493290774524212,
-0.028511755168437958,
-0.02110123261809349,
-0.002747809048742056,
0.029077433049678802,
0.000042238702008035034,
-0.0512707382440567,
0.04003789648413658,
0.024460474029183388,
0.004202135372906923,
-0.0019451681291684508,
0.033109210431575775,
0.005126829259097576,
0.06054956838488579,
-0.03168404474854469,
-0.01667148992419243,
-0.06304824352264404,
0.04507983848452568,
0.0043066381476819515,
-0.02225870080292225,
-0.0070815845392644405,
-0.05261409655213356,
0.00959049817174673,
0.02756209298968315,
0.0022442652843892574,
-0.05191986635327339,
0.016001153737306595,
-0.009094247594475746,
0.040360335260629654,
-0.010713587515056133,
-0.017381126061081886,
0.04454924911260605,
0.025441035628318787,
0.0301787368953228,
-0.021785248070955276,
-0.040516436100006104,
0.010486148297786713,
0.008857478387653828,
0.03125173598527908,
0.0034039511810988188,
0.02652052231132984,
0.031037794426083565,
0.0010537937050685287,
0.01290344912558794,
0.0001499252684880048,
-0.01662910357117653,
0.006028413772583008,
-0.021016055718064308,
-0.01523037999868393,
0.016075439751148224,
0.04895490035414696,
0.01101774349808693,
-0.016163108870387077,
0.026897957548499107,
-0.003872168716043234,
0.053929299116134644,
0.0033478420227766037,
-0.03833790123462677,
0.029546795412898064,
0.015224830247461796,
-0.02391904778778553,
-0.050370413810014725,
0.03676373139023781,
-0.03212660923600197,
-0.022901572287082672,
-0.013151557184755802,
-0.046645164489746094,
-0.018444836139678955,
0.013583245687186718,
0.0017855761107057333,
0.010591951198875904,
0.025348620489239693,
0.019971422851085663,
0.050271160900592804,
-0.011316260322928429,
-0.0021771180909126997,
0.013958802446722984,
-0.02497052028775215,
0.004288678057491779,
0.004310548305511475,
0.0012489999644458294,
0.017343034967780113,
0.05812946334481239,
0.033293403685092926,
0.027920285239815712,
0.018224360421299934,
-0.022975942119956017,
0.030086180195212364,
-0.021760785952210426,
-0.02983563020825386,
0.010290195234119892,
0.033524200320243835,
0.03182724863290787,
-0.01761234737932682,
0.02015693672001362,
-0.02148696593940258,
-0.015896718949079514,
-0.005851136054843664,
-0.04025743156671524,
0.06280923634767532,
0.05514361709356308,
-0.011876720935106277,
0.010754810646176338,
-0.014469385147094727,
0.04417360946536064,
-0.010198873467743397,
0.026827020570635796,
0.009902671910822392,
-0.00012174202129244804,
0.021764390170574188,
-0.009673938155174255,
-0.011647171340882778,
0.017257804051041603,
0.013332011178135872,
0.004405029118061066,
-0.027940312400460243,
-0.0011148335179314017,
0.014993643388152122,
-0.0401228703558445,
-0.010175352916121483,
0.010919957421720028,
-0.030495913699269295,
0.051681745797395706,
0.06280287355184555,
0.0073248036205768585,
0.011848765425384045,
-0.013182658702135086,
0.012275570072233677,
-0.045173149555921555,
0.025751708075404167,
-0.0014158134581521153,
0.06760931760072708,
0.013238281011581421,
0.018404969945549965,
0.018761111423373222,
0.010219874791800976,
0.03917453810572624,
-0.009855193085968494,
-0.02596665732562542,
0.011202150024473667,
0.05333361029624939,
0.005060158669948578,
-0.011757063679397106,
0.015452533029019833,
-0.005425720941275358,
-0.05464877188205719,
-0.04328150302171707,
-0.0007372997351922095,
-0.025437254458665848,
0.044073402881622314,
0.03938724473118782,
-0.007524106185883284,
0.009354839101433754,
-0.0172759797424078,
0.05540546774864197,
0.04513879120349884,
-0.024233773350715637,
0.001611490617506206,
-0.015072360634803772,
0.044471267610788345,
-0.0019415180431678891,
0.01679064705967903,
0.04455926641821861,
-0.03626019135117531,
0.004035658668726683,
0.045929886400699615,
-0.002048347843810916,
0.030774012207984924,
-0.01744769886136055,
-0.013448921032249928,
-0.030457360669970512,
-0.048755284398794174,
-0.0010487806284800172,
0.030028263106942177,
0.01996334083378315,
-0.019337741658091545,
0.030794944614171982,
0.008754437789320946,
-0.010247820988297462,
0.04432220011949539,
0.000381914374884218,
0.011420387774705887,
-0.0032799704931676388,
-0.03398941084742546,
0.009098554030060768,
0.04937677085399628,
-0.02219417504966259,
-0.022626755759119987,
-0.02961776778101921,
-0.005925860721617937,
-0.02087154984474182,
0.006971242371946573,
-0.009055630303919315,
-0.036054305732250214,
0.02674129046499729,
-0.0019861645996570587,
0.008876737207174301,
0.04332531988620758,
-0.021010903641581535,
-0.01640835963189602,
-0.0032255311962217093,
0.013220835477113724,
-0.05814157798886299,
-0.0027849841862916946,
-0.003057963214814663,
0.024412300437688828,
-0.0034604347310960293,
0.02223741076886654,
-0.04389272257685661,
-0.02947726473212242,
0.04694546386599541,
-0.0509057380259037,
0.00493454048410058,
-0.02298794873058796,
0.018764019012451172,
0.0428212471306324,
0.016941223293542862,
-0.008107422851026058,
-0.014779582619667053,
-0.04268000274896622,
-0.030178753659129143,
0.006961388047784567,
0.04593805968761444,
0.01777605526149273,
-0.011645360849797726,
-0.029298463836312294,
-0.008524180389940739,
-0.02066962979733944,
-0.023609934374690056,
0.0014839011710137129,
0.010534693486988544,
-0.0019675104413181543,
-0.03412867709994316,
-0.021221967414021492,
0.0356978103518486,
0.031671855598688126,
0.020382512360811234,
0.006402014289051294,
0.00418815715238452,
0.04394557327032089,
-0.02331913448870182,
0.04270236939191818,
-0.005152693018317223,
0.04026496782898903,
-0.02179727517068386,
-0.03510015457868576,
-0.06936226785182953,
0.030889643356204033,
-0.024907344952225685,
-0.0018090031808242202,
-0.022133976221084595,
0.008837591856718063,
-0.0325193852186203,
0.006520678289234638,
-0.017081892117857933,
-0.0037770026829093695,
0.0600115992128849,
0.013442888855934143,
0.01135742012411356,
0.03616980463266373,
-0.010892639867961407,
-0.013879661448299885,
-0.024788856506347656,
0.03676752373576164,
0.0437563993036747,
0.004545608069747686,
-0.013565623201429844,
-0.027182765305042267,
0.03147603198885918,
-0.02444452792406082,
-0.035633400082588196,
0.007779483217746019,
0.04442569613456726,
0.007454076316207647,
-0.050651080906391144,
0.0020897879730910063,
-0.005167531315237284,
0.043676361441612244,
0.02812190167605877,
0.0020581979770213366,
-0.038911573588848114,
0.014424430206418037,
0.014722873456776142,
-0.023122575134038925,
-0.02581264264881611,
-0.0028669238090515137,
0.02291184477508068,
0.021143881604075432,
0.0205384511500597,
0.0207764133810997,
0.025876503437757492,
-0.004468479659408331,
0.03273783624172211,
-0.009827700443565845,
-0.041386839002370834,
-0.04722031205892563,
-0.0012286186683923006,
-0.018153322860598564,
-0.037797704339027405,
-0.010964252054691315,
0.05479158088564873,
0.023757625371217728,
0.008745207451283932,
-0.059694476425647736,
0.003190848743543029,
0.005609956104308367,
-0.04308667778968811,
0.022185413166880608,
0.028159014880657196,
0.03683263435959816,
0.04788273200392723,
0.04562011733651161,
-0.003670615144073963,
0.004003702197223902
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Evaluation In a final step, we might want to evaluate the BERT2BERT model on the test data. To start, instead of loading the dummy model, let\'s load a BERT2BERT model that was finetuned on the full training dataset. Also, we load its tokenizer, which is just a copy of bert-base-cased\'s tokenizer. python from transformers import BertTokenizer bert2bert = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail").to("cuda") tokenizer = BertTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail") Next, we load just 2% of CNN/Dailymail\'s test data. For the full evaluation, one should obviously use 100% of the data. python test_data = datasets.load_dataset("cnn_dailymail", "3.0.0", split="test[:2%]") Now, we can again leverage 🤗dataset\'s handy map() function to generate a summary for each test sample. For each data sample we: - first, tokenize the "article", - second, generate the output token ids, and - third, decode the output token ids to obtain our predicted summary. python def generate_summary(batch): # cut off at BERT max length 512 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to("cuda") attention_mask = inputs.attention_mask.to("cuda") outputs = bert2bert.generate(input_ids, attention_mask=attention_mask) output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) batch["pred_summary"] = output_str return batch Let\'s run the map function to obtain the results dictionary that has the model\'s predicted summary stored for each sample. Executing the following cell may take ca. 10min ☕. python batch_size = 16 # change to 64 for full evaluation results = test_data.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"]) Finally, we compute the ROUGE score. python rouge.compute(predictions=results["pred_summary"], references=results["highlights"], rouge_types=["rouge2"])["rouge2"].mid python OUTPUT: ------- Score(precision=0.10389454113300968, recall=0.1564771201053348, fmeasure=0.12175271663717585) That\'s it. We\'ve shown how to warm-start a BERT2BERT model and fine-tune/evaluate it on the CNN/Dailymail dataset. The fully trained BERT2BERT model is uploaded to the 🤗model hub under patrickvonplaten/bert2bert_cnn_daily_mail. The model achieves a ROUGE-2 score of 18.22 on the full evaluation data, which is even a little better than reported in the paper. For some summarization examples, the reader is advised to use the online inference API of the model, here. Thanks a lot to Sascha Rothe, Shashi Narayan, and Aliaksei Severyn from Google Research, and Victor Sanh, Sylvain Gugger, and Thomas Wolf from 🤗Hugging Face for proof-reading and giving very much appreciated feedback. | [
0.013857117854058743,
-0.02165142446756363,
-0.002261004876345396,
0.025782126933336258,
-0.006795905996114016,
0.06346135586500168,
0.0474078506231308,
0.018716782331466675,
-0.021197117865085602,
-0.010339569300413132,
-0.05699083209037781,
0.0056144241243600845,
0.003774014301598072,
0.03265010565519333,
-0.01866547018289566,
-0.004652572330087423,
0.0985645055770874,
-0.06097477674484253,
0.011364963836967945,
0.03293057903647423,
-0.014366618357598782,
-0.07588645815849304,
0.035704925656318665,
0.023465575650334358,
0.0233164019882679,
-0.023262664675712585,
0.031782545149326324,
-0.0017295406432822347,
-0.027050727978348732,
0.03557969629764557,
-0.12928085029125214,
-0.00652793375775218,
-0.017508722841739655,
0.007883870042860508,
-0.06766968220472336,
0.005467431619763374,
-0.07268650829792023,
0.03536645323038101,
0.06431354582309723,
-0.0075990851037204266,
-0.002333232667297125,
0.007154211867600679,
-0.05106431990861893,
0.007733134552836418,
-0.00644115824252367,
-0.011405346915125847,
-0.14781762659549713,
0.07569795101881027,
-0.004120717756450176,
-0.05544109269976616,
-0.03543640300631523,
0.10468067228794098,
-0.03575553745031357,
-0.005605269223451614,
-0.004934478085488081,
-0.008379917591810226,
0.004972983617335558,
-0.040161121636629105,
0.05208398401737213,
0.01443670503795147,
0.03138156235218048,
-0.004446466453373432,
0.03697780892252922,
0.04523611068725586,
0.031203649938106537,
0.031176503747701645,
0.01786652021110058,
0.019117094576358795,
-0.061807651072740555,
-0.055756501853466034,
-0.010163961909711361,
-0.07723651826381683,
-0.04236004874110222,
0.004057265352457762,
0.027393119409680367,
-0.09371209144592285,
-0.0035293318796902895,
-0.028769390657544136,
0.029705127701163292,
0.09456533193588257,
-0.041125863790512085,
0.02128208987414837,
-0.04032287001609802,
-0.0029887512791901827,
0.042717259377241135,
0.030274083837866783,
0.0407235287129879,
-0.06945863366127014,
-0.06706056743860245,
0.06371928006410599,
-0.06089990586042404,
-0.11786766350269318,
-0.011577128432691097,
-0.03665750473737717,
0.006240437272936106,
-0.049752719700336456,
0.02629905194044113,
0.0005071295308880508,
0.004101949743926525,
-0.043892256915569305,
0.05431720241904259,
-0.07424736768007278,
0.009888689033687115,
-0.026202533394098282,
-0.1267736852169037,
0.005372979212552309,
-0.012146788649260998,
-0.10545693337917328,
0.0008752539870329201,
0.02841929905116558,
0.023419296368956566,
-0.03575623780488968,
-0.04864273965358734,
0.054283831268548965,
-0.08783672749996185,
-0.04555995389819145,
-0.032984521239995956,
0.047101303935050964,
-0.018639450892806053,
0.021431103348731995,
-0.003140993183478713,
0.08772137016057968,
0.07512795925140381,
-0.049873512238264084,
-0.004724080674350262,
-0.008520242758095264,
-0.005685740616172552,
0.021402936428785324,
0.012700356543064117,
0.031725890934467316,
0.011687389574944973,
0.00415824307128787,
0.06064087152481079,
0.02846265584230423,
-0.021357044577598572,
-0.023384548723697662,
-0.04370332881808281,
-0.06271377205848694,
0.00019502907525748014,
-0.03664247691631317,
-0.03578728437423706,
0.062129609286785126,
-0.017332544550299644,
0.03592279553413391,
0.036102309823036194,
-0.010062561370432377,
-0.06699396669864655,
0.09591364115476608,
0.029757730662822723,
0.032237909734249115,
-0.11158459633588791,
0.05475110560655594,
-0.031528692692518234,
-0.02904106304049492,
0.04897577688097954,
0.07056934386491776,
-0.01768733188509941,
-0.046064626425504684,
-0.11519401520490646,
0.015371411107480526,
0.03540539741516113,
0.056001611053943634,
-0.03760917857289314,
-0.010168193839490414,
-0.011932886205613613,
-0.020636042580008507,
0.02933746762573719,
0.002847955096513033,
0.0446164533495903,
0.015728885307908058,
-0.0013611858012154698,
-0.008869236335158348,
0.055133771151304245,
-0.005989964120090008,
0.012529403902590275,
0.05160271003842354,
0.05467243120074272,
0.02135756053030491,
-0.00259110308252275,
-0.01637020707130432,
-0.0854729562997818,
0.05580779165029526,
0.0018963688053190708,
0.037353113293647766,
0.0876525267958641,
-0.09534633904695511,
0.02435581013560295,
-0.017407450824975967,
-0.009149582125246525,
0.07814683020114899,
-0.02938293293118477,
-0.0020065593998879194,
0.03607746586203575,
-0.0724785178899765,
0.023861918598413467,
-0.03953249379992485,
-0.032145142555236816,
0.0977504700422287,
0.03455990180373192,
0.04974294453859329,
0.0028474503196775913,
0.022452840581536293,
0.037465572357177734,
-0.04452276974916458,
0.014700728468596935,
-0.04332125559449196,
0.002818154403939843,
-0.08145289868116379,
0.041310444474220276,
0.04509824886918068,
0.0426437072455883,
-0.0610295869410038,
0.03814583644270897,
-0.10952737182378769,
-0.047794122248888016,
-0.035569529980421066,
-0.013303779065608978,
0.036853089928627014,
0.02048799954354763,
-0.054169874638319016,
0.13250665366649628,
-0.04061461612582207,
0.023113958537578583,
-0.06516674160957336,
-0.06686858087778091,
0.03954864293336868,
0.0376703143119812,
0.008568198420107365,
0.0641472265124321,
-0.057364705950021744,
-0.06044521927833557,
-0.04292495921254158,
0.006213903892785311,
0.03284410014748573,
-0.045597873628139496,
-0.05315638706088066,
-0.05956151708960533,
0.023182692006230354,
0.020196454599499702,
-0.024746589362621307,
-0.011380655691027641,
0.004612401127815247,
0.012848412618041039,
0.10705012083053589,
-0.0642043873667717,
0.019851522520184517,
0.015694139525294304,
0.0023695523850619793,
-0.05112692713737488,
-0.03589218109846115,
0.013902286998927593,
0.029998013749718666,
-0.007205274887382984,
-0.058216169476509094,
0.043396223336458206,
0.03372478112578392,
-0.030056079849600792,
0.0038494321051985025,
-0.031683724373579025,
0.029501475393772125,
0.011539977975189686,
-0.039436936378479004,
-0.04855255037546158,
-0.019850974902510643,
-0.012709145434200764,
-0.04239802435040474,
-0.0024229579139500856,
0.0032864154782146215,
-0.01811012253165245,
-0.004265124909579754,
-0.006626945920288563,
0.0016406028298661113,
0.04185253754258156,
0.011292489245533943,
0.028821690008044243,
0.034293558448553085,
0.03371234983205795,
0.005785712972283363,
-0.03057282418012619,
-0.014803627505898476,
0.0021129734814167023,
-0.035435646772384644,
0.03899618983268738,
0.03724919632077217,
0.027582142502069473,
0.008897455409169197,
-0.019874384626746178,
-0.021884337067604065,
-0.011638428084552288,
0.02519034408032894,
0.0169125497341156,
0.025033630430698395,
-0.0055948891676962376,
-0.03599919378757477,
0.024684615433216095,
0.034666500985622406,
0.003939792048186064,
-0.04765080660581589,
0.000037606037949444726,
-0.003108365461230278,
-0.033553000539541245,
0.005863838829100132,
-0.02438049018383026,
-0.014461792074143887,
-0.011842264793813229,
0.01914146915078163,
0.029228439554572105,
0.008608468808233738,
-0.09856811165809631,
0.014319823123514652,
0.05727102607488632,
-0.011207596398890018,
-0.0177222341299057,
0.005081105511635542,
0.07559935748577118,
0.01037557888776064,
-0.026441309601068497,
0.014217245392501354,
0.020366758108139038,
-0.01812686212360859,
0.004687861073762178,
0.0029196792747825384,
0.010920717380940914,
-0.028122924268245697,
0.013077919371426105,
-0.020013265311717987,
0.0371028371155262,
0.00876507256180048,
-0.007917541079223156,
0.02280489169061184,
0.005147947929799557,
-0.01043669879436493,
-0.011815814301371574,
0.012817636132240295,
0.01337719988077879,
0.05402982234954834,
0.052468571811914444,
0.036477476358413696,
-0.019358262419700623,
-0.03244412690401077,
-0.004220960196107626,
-0.003352675586938858,
-0.01830192655324936,
0.004653305280953646,
0.013155290856957436,
0.01973220519721508,
-0.015982074663043022,
0.010220224969089031,
0.016725633293390274,
-0.027427515015006065,
0.014647095464169979,
-0.018891509622335434,
-0.0003501474275253713,
-0.030245976522564888,
0.017306068912148476,
-0.04205545037984848,
0.0007638534880243242,
-0.036680325865745544,
-0.029893698170781136,
-0.009851154871284962,
-0.020452206954360008,
0.05719741806387901,
-0.013303807005286217,
-0.014458958990871906,
0.004202027805149555,
0.01265990175306797,
0.04850754141807556,
-0.01701250672340393,
-0.019179247319698334,
0.0017687598010525107,
0.006988084875047207,
0.010471351444721222,
-0.01587596908211708,
0.027254967018961906,
0.0024132460821419954,
-0.006206495687365532,
-0.019152728840708733,
0.04873950034379959,
0.010407336056232452,
0.03532019630074501,
0.023762766271829605,
0.00324449734762311,
-0.0012730922317132354,
0.03154129907488823,
-0.002639319282025099,
-0.02428065799176693,
0.03385272994637489,
-0.0047154612839221954,
-0.015195519663393497,
-0.018793916329741478,
-0.012405880726873875,
0.02144351415336132,
-0.015682153403759003,
0.0233612023293972,
0.0005841696402058005,
-0.01571742445230484,
0.029589541256427765,
0.012160763144493103,
0.0368855744600296,
-0.020374564453959465,
0.006258834153413773,
0.0030963411554694176,
-0.026539523154497147,
-0.015099630691111088,
0.007890063337981701,
0.004400570876896381,
-0.005056250374764204,
-0.004818114917725325,
0.018872197717428207,
-0.03714791685342789,
0.00016707248869352043,
0.004687786102294922,
0.018842369318008423,
0.021588530391454697,
-0.07439721375703812,
-0.04083005711436272,
0.014043757691979408,
-0.01072716899216175,
0.023094693198800087,
-0.01049092784523964,
-0.026984622702002525,
0.0015268790302798152,
0.05461949110031128,
0.050243549048900604,
0.017216257750988007,
-0.03185020759701729,
0.001293335109949112,
0.0431654155254364,
-0.03528915345668793,
0.04004804417490959,
0.026806998997926712,
-0.013228042051196098,
0.03856195509433746,
-0.007276974618434906,
0.02697204239666462,
0.05005341023206711,
0.02804652601480484,
-0.032002080231904984,
-0.05869227647781372,
-0.005293972324579954,
0.010593084618449211,
-0.021530885249376297,
0.011958896182477474,
0.02803204394876957,
0.008293616585433483,
-0.027978507801890373,
0.00599328801035881,
-0.03207233548164368,
0.021657781675457954,
-0.01251337118446827,
0.0056064254604279995,
-0.017149657011032104,
0.023358054459095,
-0.015344888903200626,
-0.024412624537944794,
-0.03340141847729683,
-0.0454835519194603,
-0.012229952029883862,
0.0384279303252697,
-0.010450094938278198,
-0.08878684043884277,
0.01231776736676693,
0.04764251410961151,
0.0092000812292099,
0.017890743911266327,
0.039651211351156235,
0.034982845187187195,
0.03385588899254799,
-0.03883318975567818,
-0.005183809902518988,
-0.02525324560701847,
0.013731773942708969,
0.020913058891892433,
-0.02455771528184414,
0.005654526874423027,
-0.08652523159980774,
0.027969317510724068,
-0.0021375115029513836,
-0.025064200162887573,
-0.00027286860859021544,
-0.015245608985424042,
-0.005946352146565914,
0.03769874945282936,
0.04032231867313385,
0.00588645413517952,
0.002615252509713173,
-0.0015851446660235524,
0.01251189410686493,
0.0018621758790686727,
-0.041163600981235504,
0.007293053902685642,
0.003954949788749218,
0.014825201593339443,
0.03250356763601303,
0.003039227332919836,
0.04516606405377388,
-0.01721789687871933,
0.023857520893216133,
0.0011559724807739258,
-0.012953965924680233,
-0.008666908368468285,
-0.04793126881122589,
-0.012379875406622887,
0.026582321152091026,
-0.00982334092259407,
0.015836305916309357,
-0.04560735821723938,
-0.0036292411386966705,
0.028045427054166794,
0.02507493458688259,
-0.023109789937734604,
-0.0029588905163109303,
0.0315185971558094,
0.00042277248576283455,
0.01216871477663517,
-0.06222081929445267,
0.04324207827448845,
-0.022866809740662575,
0.019629554823040962,
0.009979857131838799,
-0.026877328753471375,
0.03443843498826027,
0.027956178411841393,
-0.01160275936126709,
-0.020161492750048637,
0.04763314872980118,
0.01997477374970913,
0.021507617086172104,
-0.03821682929992676,
-0.040674544870853424,
-0.009230225346982479,
0.021646449342370033,
0.011091606691479683,
-0.05887565761804581,
0.011882422491908073,
-0.017230913043022156,
0.002668807515874505,
0.05527658760547638,
0.04657194763422012,
0.0036126417107880116,
0.0017886406276375055,
0.060461390763521194,
-0.006865523289889097,
-0.004732288885861635,
0.00801504123955965,
0.06182045489549637,
0.007709020283073187,
-0.013959263451397419,
-0.0035090006422251463,
-0.032778333872556686,
-0.0317656435072422,
0.02111477591097355,
-0.0384751595556736,
0.027517169713974,
0.023305652663111687,
-0.006735500879585743,
0.06194343417882919,
0.017244618386030197,
0.008654480800032616,
0.03686543181538582,
-0.032444071024656296,
0.037066277116537094,
-0.009235916659235954,
0.017366185784339905,
-0.0110778221860528,
-0.013360543176531792,
0.04539324343204498,
0.05765801668167114,
0.028091318905353546,
-0.031942203640937805,
0.020295260474085808,
0.008723542094230652,
-0.003764402586966753,
0.033269722014665604,
-0.013295336626470089,
-0.030393408611416817,
-0.008043170906603336,
0.015171550214290619,
0.028000064194202423,
0.04929802566766739,
0.008937877602875233,
0.035073552280664444,
0.05437536910176277,
0.00848078541457653,
-0.02219397947192192,
0.024675676599144936,
-0.029518352821469307,
0.033934012055397034,
0.01796145737171173,
0.033398423343896866,
0.013065097853541374,
0.024512246251106262,
0.011061037890613079,
-0.022108333185315132,
0.05724369361996651,
-0.007598681375384331,
-0.028804317116737366,
0.01435411162674427,
0.035788413137197495,
-0.015602990984916687,
-0.017564527690410614,
-0.04661312326788902,
-0.020966816693544388,
-0.01495048776268959,
0.03857692331075668,
-0.014088413678109646,
0.026866169646382332,
-0.010985936969518661,
0.03956645727157593,
0.05975516140460968,
0.02493187226355076,
-0.024295473471283913,
0.02090827003121376,
0.05149628967046738,
0.006699467543512583,
0.018025469034910202,
0.034113962203264236,
0.016759773716330528,
-0.015728358179330826,
0.05921132117509842,
-0.0035041263327002525,
0.010067321360111237,
0.04234622046351433,
-0.028397077694535255,
0.011415936052799225,
-0.03008336015045643,
-0.03801453113555908,
0.03495505452156067,
0.008828363381326199,
-0.019278092309832573,
-0.005679342430084944,
0.04093644395470619,
-0.05345539748668671,
0.012597817927598953,
-0.026249565184116364,
-0.03570368513464928,
-0.03911498561501503,
-0.03590475022792816,
-0.021498244255781174,
0.08632192760705948,
-0.00443600257858634,
-0.05557387322187424,
0.03014521487057209,
0.02226732112467289,
0.03178638964891434,
0.03775392845273018,
-0.010292505845427513,
-0.023376399651169777,
-0.033487141132354736,
0.007585593964904547,
-0.04288918524980545,
0.02537163905799389,
-0.044327717274427414,
0.04580221697688103,
0.03239961341023445,
0.011326124891638756,
0.021495556458830833,
0.026569683104753494,
0.033181559294462204,
0.03304089978337288,
-0.003570971079170704,
0.02804815024137497,
0.02653960883617401,
-0.026435771957039833,
0.025574328377842903,
-0.08017782121896744,
-0.04028315469622612,
0.002731307176873088,
0.03892187774181366,
0.03907931223511696,
0.03235281631350517,
-0.013079946860671043,
-0.011480904184281826,
-0.012561353854835033,
-0.00887754000723362,
-0.0642886608839035,
0.027330422773957253,
0.025853468105196953,
0.030401231721043587,
0.020535429939627647,
-0.0003577712632250041,
-0.023798413574695587,
0.0013000357430428267,
-0.021471548825502396,
0.025975964963436127,
-0.006288700271397829,
-0.011708362028002739,
-0.020593490451574326,
0.04666450247168541,
0.00806584395468235,
0.0223630852997303,
0.03574546426534653,
0.0016105278627946973,
0.0394357405602932,
-0.006170934997498989,
0.03176382556557655,
-0.056221865117549896,
-0.01739928126335144,
-0.025344854220747948,
-0.03253215178847313,
-0.021735459566116333,
0.020531196147203445,
-0.06428992748260498,
0.03344278782606125,
-0.04103052243590355,
-0.018872270360589027,
-0.04222135245800018,
0.00011722523049684241,
-0.044413670897483826,
-0.00671530282124877,
0.057628195732831955,
0.019745009019970894,
0.05536793917417526,
0.02585829608142376,
-0.06086831912398338,
0.005263526923954487,
-0.03807493671774864,
0.01785506308078766,
0.03197718411684036,
0.02144140750169754,
-0.01734963245689869,
0.01432368066161871,
-0.007504371926188469,
0.034138694405555725,
-0.03068695403635502,
0.02603202499449253,
0.022782733663916588,
0.004678559023886919,
-0.0033235440496355295,
0.02369670197367668,
0.04315609112381935,
-0.0019322038860991597,
0.03038160875439644,
-0.0011005840497091413,
-0.009329427033662796,
-0.04667409136891365,
0.034444354474544525,
-0.07073976844549179,
-0.008300738409161568,
-0.024896152317523956,
-0.010645848698914051,
0.03696371614933014,
0.018098313361406326,
0.036647599190473557,
0.01306072622537613,
-0.00561863137409091,
-0.019213739782571793,
0.0031040851026773453,
-0.038961261510849,
-0.03442965820431709,
0.018120961263775826,
0.045487526804208755,
-0.0450952984392643,
-0.009952264837920666,
0.04180575907230377,
0.025656336918473244,
-0.007285383529961109,
0.00520276976749301,
0.0070071956142783165,
0.045634929090738297,
-0.006814967840909958,
0.004205233417451382,
-0.028700310736894608,
0.049873773008584976,
0.019906355068087578,
0.006118342280387878,
0.030055653303861618,
0.022291606292128563
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | # Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models Transformer-based encoder-decoder models were proposed in Vaswani et al. (2017) and have recently experienced a surge of interest, e.g. Lewis et al. (2019), Raffel et al. (2019), Zhang et al. (2020), Zaheer et al. (2020), Yan et al. (2020). Similar to BERT and GPT2, massive pre-trained encoder-decoder models have shown to significantly boost performance on a variety of sequence-to-sequence tasks Lewis et al. (2019), Raffel et al. (2019). However, due to the enormous computational cost attached to pre-training encoder-decoder models, the development of such models is mainly limited to large companies and institutes. In Leveraging Pre-trained Checkpoints for Sequence Generation Tasks (2020), Sascha Rothe, Shashi Narayan and Aliaksei Severyn initialize encoder-decoder model with pre-trained encoder and/or decoder-only checkpoints (e.g. BERT, GPT2) to skip the costly pre-training. The authors show that such warm-started encoder-decoder models yield competitive results to large pre-trained encoder-decoder models, such as T5, and Pegasus on multiple sequence-to-sequence tasks at a fraction of the training cost. In this notebook, we will explain in detail how encoder-decoder models can be warm-started, give practical tips based on Rothe et al. (2020), and finally go over a complete code example showing how to warm-start encoder-decoder models with 🤗Transformers. This notebook is divided into 4 parts: - Introduction - Short summary of pre-trained language models in NLP and the need for warm-starting encoder-decoder models. - Warm-starting encoder-decoder models (Theory) - Illustrative explanation on how encoder-decoder models are warm-started? - Warm-starting encoder-decoder models (Analysis) - Summary of Leveraging Pre-trained Checkpoints for Sequence Generation Tasks (2020) - What model combinations are effective to warm-start encoder-decoder models; How does it differ from task to task? - Warm-starting encoder-decoder models with 🤗Transformers (Practice) - Complete code example showcasing in-detail how to use the EncoderDecoderModel framework to warm-start transformer-based encoder-decoder models. It is highly recommended (probably even necessary) to have read this blog post about transformer-based encoder-decoder models. Let\'s start by giving some back-ground on warm-starting encoder-decoder models. | [
0.010919067077338696,
0.007983028888702393,
-0.027393274009227753,
-0.005060385912656784,
0.03850913792848587,
0.10784550756216049,
0.032658740878105164,
0.005974307656288147,
-0.008052779361605644,
-0.01014232449233532,
-0.05896249786019325,
0.06563323736190796,
-0.038595546036958694,
0.05234162509441376,
0.007817743346095085,
-0.06914982944726944,
0.01624542661011219,
-0.07549894601106644,
-0.016726812347769737,
-0.02788296341896057,
0.018746454268693924,
-0.04978594556450844,
0.028502220287919044,
0.012722866609692574,
0.0463402234017849,
-0.037618812173604965,
-0.0034692753106355667,
-0.017910201102495193,
0.0006107413792051375,
0.056719329208135605,
-0.07619387656450272,
0.02372114360332489,
0.03793967515230179,
-0.011958972550928593,
0.04084337502717972,
0.004187298007309437,
-0.08680769801139832,
0.030569730326533318,
0.03445053473114967,
-0.03082282654941082,
-0.05857830122113228,
0.0021282536908984184,
-0.030161388218402863,
0.0030012503266334534,
-0.04535139352083206,
-0.02328898198902607,
-0.14008444547653198,
0.04020335525274277,
-0.018268296495079994,
-0.062071166932582855,
-0.07057680934667587,
0.07089574635028839,
0.013494185172021389,
0.047574128955602646,
-0.027578899636864662,
0.006020641885697842,
-0.026746902614831924,
-0.08908075839281082,
0.030595777556300163,
-0.02585000917315483,
0.043867941945791245,
0.04893377050757408,
-0.005738673731684685,
-0.004822765942662954,
0.04203253984451294,
0.008984568528831005,
-0.01998136378824711,
0.06987089663743973,
-0.042978107929229736,
-0.024605754762887955,
-0.027749117463827133,
-0.060733020305633545,
-0.041618552058935165,
0.03930584713816643,
-0.009265853092074394,
-0.04017427936196327,
0.023332374170422554,
-0.0012973626144230366,
-0.0027444122824817896,
0.004947274457663298,
-0.025911670178174973,
0.058257464319467545,
-0.02483844943344593,
-0.029275698587298393,
0.06095874682068825,
0.029355891048908234,
0.07524769753217697,
-0.07209620624780655,
-0.03418181836605072,
0.051425751298666,
0.0015804462600499392,
-0.12101160734891891,
0.0030604321509599686,
-0.02770867571234703,
0.03291971608996391,
0.018714675679802895,
0.022990750148892403,
0.08662808686494827,
-0.009904280304908752,
-0.04698534682393074,
-0.002302036853507161,
-0.06233946979045868,
0.03691854327917099,
-0.044827088713645935,
-0.05009846389293671,
0.013361995108425617,
-0.03837209939956665,
-0.05731411278247833,
-0.023518061265349388,
-0.027253560721874237,
0.05384691804647446,
-0.01756279356777668,
-0.0814860388636589,
0.037139490246772766,
-0.09586949646472931,
0.03032650798559189,
0.007770037278532982,
-0.03615787625312805,
-0.01323037687689066,
0.032526835799217224,
0.005102678667753935,
0.06625337153673172,
0.045558907091617584,
-0.03404555097222328,
-0.04573596641421318,
0.06448037922382355,
-0.030214812606573105,
0.021324798464775085,
0.03549758344888687,
0.01437446940690279,
0.07090428471565247,
-0.01677320897579193,
0.03639312461018562,
0.018187113106250763,
0.016680315136909485,
-0.02357485704123974,
0.01413543988019228,
-0.04573029652237892,
-0.020520327612757683,
0.014733366668224335,
-0.11093421280384064,
0.06483606994152069,
0.04974586144089699,
-0.10589728504419327,
0.02722932957112789,
0.0004776122805196792,
-0.1132822036743164,
0.07445849478244781,
0.07065582275390625,
0.053697288036346436,
-0.05939444154500961,
0.015480905771255493,
-0.06426278501749039,
-0.04442927986383438,
0.009303392842411995,
0.09412024170160294,
-0.005659662187099457,
-0.0072478787042200565,
-0.07458347082138062,
-0.051589760929346085,
-0.02593875676393509,
0.00370365334674716,
-0.040234990417957306,
-0.013935895636677742,
0.03342728689312935,
-0.08839080482721329,
-0.00212381174787879,
0.023619944229722023,
0.012258214876055717,
0.10943504422903061,
0.020370125770568848,
0.03016667813062668,
0.11156991869211197,
-0.0008613945101387799,
-0.02199365571141243,
0.03612440451979637,
-0.016108928248286247,
0.06819790601730347,
0.03330747410655022,
-0.02382170408964157,
-0.05054419860243797,
0.008013328537344933,
-0.02214689739048481,
0.05912279710173607,
0.043534934520721436,
-0.06699447333812714,
-0.017464404925704002,
-0.02889503538608551,
-0.09178877621889114,
0.0309608094394207,
-0.03812262415885925,
0.04671446606516838,
0.05305587127804756,
-0.007188369985669851,
-0.007696697022765875,
-0.059499744325876236,
0.0019495554734021425,
0.12461494654417038,
0.03921477124094963,
0.07597798854112625,
0.10860606282949448,
0.03418337553739548,
0.06245899200439453,
0.00032736986759118736,
-0.04213402047753334,
0.004098963923752308,
0.017482955008745193,
-0.042750682681798935,
0.06326793134212494,
0.011859873309731483,
0.047447241842746735,
-0.060334645211696625,
-0.02454724721610546,
-0.054084088653326035,
0.01924530602991581,
-0.041705936193466187,
-0.01853489689528942,
0.002958659315481782,
0.005149727687239647,
-0.03171481564640999,
0.1498556286096573,
-0.037399113178253174,
-0.026726247742772102,
-0.01160389743745327,
0.013910144567489624,
0.024204285815358162,
0.03339472413063049,
0.01976262964308262,
0.07245176285505295,
-0.05637815222144127,
-0.032655853778123856,
-0.09932944178581238,
-0.03579437732696533,
0.01380504947155714,
-0.022283535450696945,
-0.0008601953159086406,
-0.0008826642879284918,
0.005292690359055996,
0.04723949730396271,
-0.003528804983943701,
-0.020482046529650688,
-0.013393552042543888,
0.005519228056073189,
0.02111520804464817,
0.0076458086259663105,
0.006482560187578201,
0.04406385123729706,
0.007920295931398869,
-0.02299696020781994,
-0.028917143121361732,
-0.061570316553115845,
0.042797431349754333,
0.0038979884702712297,
-0.096446193754673,
0.011413381434977055,
0.06226962432265282,
-0.008975793607532978,
-0.018065817654132843,
-0.0022512918803840876,
0.00035081454552710056,
0.009585797786712646,
-0.039898864924907684,
-0.07428983598947525,
-0.05009462684392929,
-0.027168994769454002,
-0.03097052127122879,
-0.028050541877746582,
-0.03988724574446678,
0.004328984301537275,
0.0025621179956942797,
0.03702230378985405,
-0.02853003889322281,
0.02773713693022728,
0.029177751392126083,
0.021618936210870743,
0.01152462512254715,
-0.010731260292232037,
-0.04868777096271515,
-0.047472305595874786,
-0.03081188164651394,
-0.016374584287405014,
-0.04340215399861336,
0.005506542045623064,
0.020285220816731453,
-0.0014369048876687884,
0.009823521599173546,
-0.02148471027612686,
-0.009932663291692734,
0.02012220211327076,
0.06149071082472801,
-0.003494630102068186,
0.019436420872807503,
-0.026807744055986404,
-0.008317389525473118,
-0.028306180611252785,
0.021061165258288383,
0.00763994175940752,
-0.003033940913155675,
-0.008519247174263,
0.039152733981609344,
-0.0548928827047348,
0.00447619566693902,
0.020886285230517387,
-0.0244036503136158,
-0.03188198804855347,
0.009363694116473198,
0.03772852197289467,
0.047835368663072586,
-0.0848078578710556,
-0.02736072428524494,
0.004482456017285585,
-0.011539030820131302,
-0.018236501142382622,
-0.0319027341902256,
0.05296282842755318,
-0.04046959802508354,
-0.029692865908145905,
-0.0035183378495275974,
-0.006454815622419119,
-0.002553926780819893,
0.008095720782876015,
0.023906810209155083,
-0.053068727254867554,
-0.005247902125120163,
-0.02410121262073517,
0.005375637207180262,
0.019575444981455803,
-0.015424508601427078,
-0.018773125484585762,
-0.011179991066455841,
0.007204374764114618,
0.006768309511244297,
-0.028228603303432465,
-0.013859542086720467,
0.023234950378537178,
-0.00405094213783741,
0.016746673732995987,
-0.007855819538235664,
-0.027496635913848877,
-0.020108459517359734,
-0.0046081324107944965,
0.028454791754484177,
0.003881334327161312,
-0.027371354401111603,
0.01733586937189102,
0.055197823792696,
0.03530985116958618,
0.01155787706375122,
0.0007337242132052779,
-0.022521527484059334,
0.0171827245503664,
0.007535272743552923,
0.015423791483044624,
-0.024558154866099358,
0.03653879463672638,
-0.06010821461677551,
0.025698387995362282,
-0.0024292622692883015,
-0.05189777538180351,
0.01483751367777586,
0.0011775607708841562,
0.039611510932445526,
0.029628310352563858,
0.020481524989008904,
0.015520276501774788,
0.012011905200779438,
0.022509394213557243,
0.004321953281760216,
-0.041639599949121475,
0.02806374616920948,
0.007855639792978764,
-0.021624214947223663,
-0.043824661523103714,
0.05599185824394226,
0.00973432045429945,
0.008177891373634338,
-0.006272232625633478,
0.06318367272615433,
-0.006646322086453438,
0.007149494718760252,
0.023547708988189697,
0.007259585428982973,
-0.02827482298016548,
0.020148999989032745,
-0.01782483048737049,
0.020583784207701683,
0.06977821886539459,
0.008545421063899994,
0.011339024640619755,
-0.014580229297280312,
-0.07345573604106903,
-0.02459603175520897,
0.028436388820409775,
0.034060634672641754,
0.003942742943763733,
-0.011366267688572407,
0.026071570813655853,
0.00070330745074898,
0.03732417896389961,
0.0042065950110554695,
-0.002312874887138605,
-0.01745540462434292,
0.021218575537204742,
-0.01354599092155695,
-0.00016411427350249141,
0.03423389047384262,
-0.010589725337922573,
-0.018724747002124786,
0.003736147191375494,
-0.03374818339943886,
0.01584220491349697,
0.024791602045297623,
-0.00908071082085371,
0.008571716956794262,
-0.020526768639683723,
-0.01790844462811947,
0.018040856346488,
0.018063809722661972,
0.004759274888783693,
0.006852961145341396,
0.01017217431217432,
0.02622133120894432,
-0.01565016433596611,
0.04581136628985405,
0.01295025460422039,
-0.029918599873781204,
0.01875736564397812,
0.0157375019043684,
-0.03679341822862625,
0.00706368638202548,
-0.004119641613215208,
0.012955795973539352,
0.04316537827253342,
-0.03658991679549217,
0.024564750492572784,
-0.010668780654668808,
0.002882960019633174,
-0.0319717712700367,
-0.042630840092897415,
-0.013896874152123928,
0.04831555858254433,
-0.018251808360219002,
-0.01328588929027319,
0.015218015760183334,
-0.04699350520968437,
0.004839132074266672,
-0.012560379691421986,
-0.032454319298267365,
0.014661004766821861,
0.009021934121847153,
0.0238969624042511,
-0.015710823237895966,
0.04723326116800308,
-0.029976826161146164,
0.0072679342702031136,
-0.020902516320347786,
0.025126008316874504,
0.0016487383982166648,
0.041132450103759766,
0.00953733827918768,
-0.03166864812374115,
0.005492891184985638,
0.05426739901304245,
-0.030468041077256203,
-0.012919541448354721,
0.03416990116238594,
0.05585717782378197,
0.011649822816252708,
0.013939650729298592,
0.0179455503821373,
-0.06801670044660568,
-0.008773304522037506,
0.004862470552325249,
-0.014319252222776413,
-0.04746408760547638,
-0.018809422850608826,
0.007929712533950806,
0.034838829189538956,
-0.001348543562926352,
-0.036837685853242874,
0.016636455431580544,
0.01080970000475645,
0.011121807619929314,
-0.028529291972517967,
0.011776340194046497,
0.016606654971837997,
-0.018858008086681366,
0.009648671373724937,
0.025842322036623955,
0.017413679510354996,
-0.005072213709354401,
0.0383647121489048,
-0.010031492449343204,
0.02311050519347191,
0.041560765355825424,
0.03963969275355339,
0.01879829913377762,
-0.014340645633637905,
0.024816742166876793,
-0.013953006826341152,
0.06744435429573059,
-0.0015208807308226824,
-0.011819594539701939,
-0.03385914862155914,
-0.019655898213386536,
0.03570563718676567,
-0.04446804150938988,
0.0003662571543827653,
0.03439812734723091,
0.024494512006640434,
-0.003532214555889368,
-0.0012492339592427015,
0.01851731166243553,
-0.03333373740315437,
-0.060152817517519,
-0.027219032868742943,
0.018242793157696724,
-0.029037678614258766,
-0.006500368472188711,
0.0015157354064285755,
-0.02090599574148655,
-0.007034467067569494,
0.004211888648569584,
0.004657496232539415,
0.00357839441858232,
0.05750171095132828,
0.0576891228556633,
0.04161335527896881,
-0.002622852334752679,
-0.01486643310636282,
-0.0279324222356081,
-0.020023563876748085,
-0.005897643975913525,
-0.0444515123963356,
-0.012652764096856117,
0.004319002851843834,
0.020030800253152847,
-0.02481793239712715,
0.010778995230793953,
-0.006921977736055851,
0.0232068058103323,
0.04765576496720314,
-0.027272455394268036,
-0.042277466505765915,
-0.03350906819105148,
-0.0020387559197843075,
0.0038168022874742746,
0.006970839574933052,
-0.012376440688967705,
-0.028966659680008888,
-0.015208328142762184,
0.010344049893319607,
-0.04413338750600815,
0.0542498417198658,
0.011121797375380993,
-0.03231756389141083,
0.028375614434480667,
0.03746987506747246,
0.042050838470458984,
-0.0012272747699171305,
0.026745881885290146,
0.015002910979092121,
0.05413889139890671,
0.006496957968920469,
-0.01306596677750349,
-0.02184535376727581,
0.0068115293979644775,
-0.006419097539037466,
0.016462692990899086,
-0.04042651504278183,
0.030014175921678543,
0.03989012539386749,
-0.0513274148106575,
0.0070879519917070866,
-0.024229714646935463,
-0.04468117654323578,
0.006201207172125578,
0.017907069995999336,
0.02390197478234768,
-0.015176281332969666,
-0.022729860618710518,
-0.0006422056467272341,
0.014889662154018879,
-0.008245527744293213,
0.04910982772707939,
0.07452421635389328,
-0.017127899453043938,
0.037319209426641464,
0.025838572531938553,
-0.017329437658190727,
0.02078866958618164,
0.01581287384033203,
-0.026377424597740173,
-0.009943565353751183,
0.05898941680788994,
0.019399266690015793,
0.00850676279515028,
0.01224147342145443,
-0.013366559520363808,
-0.0013103761011734605,
-0.05493253469467163,
-0.01766035333275795,
-0.013449316844344139,
-0.009055610746145248,
-0.012424117885529995,
-0.028851142153143883,
0.03837870433926582,
-0.04202538728713989,
0.05744029954075813,
0.04511561617255211,
-0.0011914954520761967,
-0.004917579237371683,
0.052737344056367874,
0.031966015696525574,
0.02217327617108822,
0.038225047290325165,
0.04568547382950783,
0.016398269683122635,
-0.0012839994160458446,
0.029042262583971024,
0.05226531997323036,
0.032374218106269836,
0.030503207817673683,
0.00816243328154087,
0.03576098009943962,
-0.02710546739399433,
-0.003421478671953082,
0.022571975365281105,
0.01736229844391346,
-0.024674056097865105,
-0.020086152479052544,
0.02240750566124916,
-0.06847507506608963,
0.022849055007100105,
0.0015020796563476324,
-0.015821358188986778,
-0.0076035200618207455,
0.006185722537338734,
-0.0036340767983347178,
0.042636655271053314,
-0.028067031875252724,
-0.06779197603464127,
-0.01752707175910473,
-0.003499675542116165,
-0.008638961240649223,
0.010149000212550163,
-0.029069310054183006,
-0.033230941742658615,
-0.02555878274142742,
-0.007959933951497078,
-0.012367854826152325,
0.04147644340991974,
-0.02525615319609642,
-0.009371418505907059,
0.07428965717554092,
0.01286508422344923,
-0.006493468303233385,
0.02032485604286194,
0.04490158334374428,
0.004003680776804686,
-0.005593949928879738,
-0.008118754252791405,
-0.0008886365103535354,
-0.07335583865642548,
0.04687368869781494,
-0.06670943647623062,
0.017229722812771797,
-0.018048157915472984,
0.058416347950696945,
0.03600858896970749,
0.05152393877506256,
-0.016049131751060486,
-0.02795424312353134,
-0.04624825716018677,
-0.0038409519474953413,
0.007964817807078362,
0.031547661870718,
0.0032921198289841413,
0.009600486606359482,
0.02504049614071846,
-0.016859328374266624,
-0.030827758833765984,
-0.016999492421746254,
-0.027987761422991753,
0.05515245720744133,
-0.042444806545972824,
-0.011969116516411304,
-0.024075767025351524,
0.048421718180179596,
-0.016347359865903854,
0.028552930802106857,
0.03579216077923775,
0.00362572493031621,
0.029278524219989777,
-0.06417958438396454,
-0.015035724267363548,
-0.02605890855193138,
0.014584223739802837,
-0.0307175125926733,
-0.02736646682024002,
-0.0001458359183743596,
0.045281603932380676,
-0.01218336634337902,
0.020562823861837387,
-0.007789728231728077,
0.014647455886006355,
-0.08858974277973175,
0.023621344938874245,
0.018138326704502106,
0.038703348487615585,
0.036549296230077744,
-0.012619558721780777,
0.09010884910821915,
0.03134651482105255,
-0.004166309256106615,
-0.013305285945534706,
-0.053186506032943726,
-0.004228064324706793,
0.04001063480973244,
-0.007541932165622711,
-0.039871182292699814,
-0.015172640793025494,
-0.03302442654967308,
0.029243124648928642,
-0.018976565450429916,
-0.002312007825821638,
0.027395596727728844,
-0.012583673931658268,
-0.0015425069723278284,
0.017911627888679504,
-0.006851190235465765,
-0.010950155556201935,
0.009207473136484623,
0.015934858471155167,
-0.03775719180703163,
0.007741472218185663,
-0.009894601069390774,
-0.02001175656914711,
-0.0420919768512249,
-0.003859131131321192,
0.029163433238863945,
0.06327217817306519,
0.04843374714255333,
0.029539186507463455,
-0.0014678495936095715,
-0.012643867172300816,
0.02790539152920246,
0.02678513154387474,
0.005919254384934902,
-0.030697161331772804,
0.0026852753944694996,
0.045460570603609085,
-0.0036686507519334555,
-0.027306662872433662,
0.035174962133169174,
0.0317901149392128,
0.023175174370408058,
0.005211552605032921,
0.010136445052921772,
-0.007088397163897753,
-0.01851772516965866,
0.03675888851284981,
0.008056613616645336,
0.06999164074659348,
0.03917047008872032,
-0.0017370434943586588,
-0.01886139251291752,
0.015830762684345245
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Machine Translation (WMT14) Next, the authors evaluated warm-started encoder-decoder models on the probably most common benchmark in machine translation (MT) - the En \(\to\) De and De \(\to\) En WMT14 dataset. In this notebook, we present the results on the newstest2014 eval dataset. Because the benchmark requires the model to understand both an English and a German vocabulary the BERT-initialized encoder-decoder models were warm-started from the multilingual pre-trained checkpoint bert-base-multilingual-cased. Because there is no publicly available multilingual RoBERTa checkpoint, RoBERTa-initialized encoder-decoder models were excluded for MT. GPT2-initialized models were initialized from the gpt2 pre-trained checkpoint as in the previous experiment. The translation results are reported using the BLUE-4 score metric \({}^1\). |Model |En \(\to\) De (BLEU-4) |De \(\to\) En (BLEU-4) |--------------------------- |---------------------- |---------------------- |Rnd2Rnd | 26.0 | 29.1 |Rnd2BERT | 27.2 | 30.4 |BERT2Rnd | 30.1 | 32.7 |Rnd2GPT2 | 19.6 | 23.2 |BERT2BERT | 30.1 | 32.7 |BERTShare | 29.6 | 32.6 |BERT2GPT2 | 23.2 | 31.4 |--- | --- | --- |BERT2Rnd (large, custom) | 31.7 | 34.2 |BERTShare (large, custom) | 30.5 | 33.8 Again, we observe a significant performance boost by warm-starting the encoder-part, with BERT2Rnd and BERT2BERT yielding the best results on both the En \(\to\) De and De \(\to\) En tasks. GPT2 initialized models perform significantly worse even than the Rnd2Rnd baseline on En \(\to\) De. Taking into consideration that the gpt2 checkpoint was trained only on English text, it is not very surprising that BERT2GPT2 and Rnd2GPT2 models have difficulties generating German translations. This hypothesis is supported by the competitive results (e.g. 31.4 vs. 32.7) of BERT2GPT2 on the De \(\to\) En task for which GPT2\'s vocabulary fits the English output format. Contrary to the results obtained on sentence fusion and sentence splitting, sharing encoder and decoder weight parameters does not yield a performance boost in MT. Possible reasons for this as stated by the authors include - the encoder-decoder model capacity is an important factor in MT, and - the encoder and decoder have to deal with different grammar and vocabulary Since the bert-base-multilingual-cased checkpoint was trained on more than 100 languages, its vocabulary is probably undesirably large for En \(\to\) De and De \(\to\) En MT. Thus, the authors pre-trained a large BERT encoder-only checkpoint on the English and German subset of the Wikipedia dump and subsequently used it to warm-start a BERT2Rnd and BERTShare encoder-decoder model. Thanks to the improved vocabulary, another significant performance boost is observed, with BERT2Rnd (large, custom) significantly outperforming all other models. | [
-0.02737484499812126,
0.03846113383769989,
-0.02266129106283188,
0.010715676471590996,
0.013659081421792507,
0.08437316864728928,
0.04352404922246933,
-0.020031282678246498,
-0.0339643619954586,
-0.03870091587305069,
-0.029418788850307465,
0.04820684716105461,
0.029252691194415092,
0.011951134540140629,
0.055285338312387466,
-0.013506941497325897,
-0.00827766302973032,
-0.0712175965309143,
0.023347489535808563,
-0.05539854243397713,
0.015969369560480118,
-0.04300139471888542,
0.0911654606461525,
-0.013311771675944328,
0.04693128541111946,
-0.04089614376425743,
0.019653264433145523,
-0.013712693937122822,
-0.04050498083233833,
-0.006112466100603342,
-0.09602928161621094,
0.04016777127981186,
0.017718201503157616,
0.004973489325493574,
0.0009917502757161856,
0.08523502945899963,
-0.03442719206213951,
0.05673583224415779,
-0.0031266282312572002,
-0.09005537629127502,
-0.016949258744716644,
-0.014331456273794174,
0.027745073661208153,
0.05185864120721817,
-0.02988842874765396,
0.03348507732152939,
-0.08592954277992249,
0.029561007395386696,
0.010329149663448334,
-0.0466381274163723,
-0.09105076640844345,
0.011325441300868988,
0.03325697034597397,
0.04927565157413483,
0.015588471665978432,
0.0411490760743618,
-0.04479394480586052,
-0.09408010542392731,
0.09341716021299362,
-0.02588420733809471,
0.023020392283797264,
-0.013250569812953472,
0.007925228215754032,
0.016780653968453407,
-0.016437912359833717,
0.0031350154895335436,
-0.09720664471387863,
0.01541680283844471,
-0.002999099437147379,
-0.04999300837516785,
-0.07214882224798203,
-0.061732687056064606,
0.01990664005279541,
0.0007982226670719683,
0.024321570992469788,
-0.07697711884975433,
0.0162952933460474,
-0.030900288373231888,
0.00808671023696661,
0.007730438839644194,
-0.03733077272772789,
0.06336144357919693,
0.03877880796790123,
-0.024649957194924355,
0.018011217936873436,
0.001820565084926784,
0.10689841955900192,
-0.07013768702745438,
-0.06765561550855637,
0.05782686918973923,
-0.00753360940143466,
-0.10878998786211014,
0.00992969237267971,
0.01298283040523529,
0.04330465570092201,
-0.020092356950044632,
-0.025778472423553467,
0.05539830029010773,
-0.03175850212574005,
-0.03861436992883682,
0.02901902236044407,
-0.058655016124248505,
0.08485087752342224,
-0.04182213544845581,
-0.04698680713772774,
0.012887991964817047,
-0.0683959573507309,
-0.11134140938520432,
0.021371247246861458,
-0.013421420939266682,
0.027788737788796425,
-0.026620743796229362,
-0.0326789990067482,
-0.003620769362896681,
-0.07071306556463242,
0.016210850328207016,
-0.020011702552437782,
-0.058947011828422546,
-0.022581875324249268,
0.06911889463663101,
0.03469380363821983,
-0.019376462325453758,
0.005012925248593092,
-0.08011303097009659,
-0.02666468359529972,
0.023403620347380638,
0.014932945370674133,
-0.02883736602962017,
0.04323472082614899,
-0.0024139387533068657,
0.09370797872543335,
-0.00901562999933958,
0.08819824457168579,
-0.014366860501468182,
0.006051662843674421,
-0.017872998490929604,
0.06431698054075241,
-0.04815159738063812,
-0.0488416850566864,
-0.05121077597141266,
-0.08479291945695877,
0.04026284068822861,
-0.05740638077259064,
-0.04868334159255028,
-0.003337388625368476,
0.04846826195716858,
-0.09949542582035065,
-0.007616386748850346,
0.07173748314380646,
0.04858139902353287,
-0.06963437050580978,
0.018697064369916916,
-0.023016318678855896,
-0.0008612347301095724,
0.09689389169216156,
0.06018418073654175,
-0.04732609912753105,
-0.03452279418706894,
-0.05739317461848259,
-0.037090711295604706,
-0.06611714512109756,
0.025367936119437218,
-0.018634401261806488,
-0.026773404330015182,
-0.0037244781851768494,
-0.09156011790037155,
0.008293842896819115,
0.051308196038007736,
-0.01769794523715973,
0.022681353613734245,
0.05483030527830124,
0.014789094217121601,
0.10915132611989975,
0.03431202471256256,
-0.023671871051192284,
0.07401880621910095,
0.018835321068763733,
0.036251477897167206,
0.046840064227581024,
-0.008295368403196335,
-0.006389627233147621,
0.032508958131074905,
0.016412070021033287,
0.03433803468942642,
0.09813317656517029,
-0.03548797219991684,
0.021302079781889915,
-0.06143010035157204,
-0.06643202900886536,
0.03565586358308792,
-0.04727581515908241,
0.01000057253986597,
0.10536360740661621,
-0.05034356936812401,
-0.0714600533246994,
-0.03367841988801956,
0.035970717668533325,
0.08402993530035019,
0.02772611379623413,
0.03050779178738594,
0.10534826666116714,
-0.0003041275776922703,
0.07043067365884781,
0.010585245676338673,
-0.008299591019749641,
-0.02765592373907566,
0.01859484240412712,
-0.009872926399111748,
-0.0038022741209715605,
0.02023763209581375,
0.05485664680600166,
-0.04541981220245361,
-0.02290106564760208,
0.009378507733345032,
0.02848680503666401,
-0.02634771540760994,
-0.02875269576907158,
-0.01879473589360714,
0.0356912836432457,
-0.01882675103843212,
0.11803172528743744,
-0.057021088898181915,
0.008904718793928623,
-0.020998738706111908,
-0.017841776832938194,
0.08505252748727798,
0.03640266880393028,
0.007171126548200846,
0.09761448204517365,
-0.007915151305496693,
-0.04760025441646576,
-0.0799979642033577,
0.028281565755605698,
0.04186640679836273,
-0.034888457506895065,
-0.07516210526227951,
0.0003015914116986096,
-0.04663236439228058,
0.022332698106765747,
-0.02237681671977043,
0.01469661295413971,
0.03025955520570278,
0.04707867279648781,
0.060207709670066833,
-0.06419695168733597,
0.008010257966816425,
0.05662601441144943,
-0.058892473578453064,
0.006129170302301645,
-0.014108176343142986,
-0.0011025759158656001,
-0.0024184505455195904,
-0.03505925089120865,
-0.08271906524896622,
0.011291669681668282,
0.026440026238560677,
-0.0008470606408081949,
0.02079291269183159,
-0.0204327329993248,
0.02411966398358345,
0.0037355441600084305,
-0.009344554506242275,
-0.03431468829512596,
-0.011621730402112007,
0.011774727143347263,
-0.02048649452626705,
-0.06376931071281433,
0.004563404247164726,
0.004308268893510103,
-0.006513195112347603,
-0.00362194050103426,
-0.018960334360599518,
-0.012910314835608006,
0.022637661546468735,
0.015799306333065033,
0.004050837829709053,
0.004038144368678331,
-0.04687226191163063,
-0.06560422480106354,
-0.01956406980752945,
0.005224263295531273,
-0.021760737523436546,
0.01801837421953678,
0.01984008401632309,
-0.04570210725069046,
0.025423312559723854,
-0.002888719318434596,
-0.0062042223289608955,
-0.002808225341141224,
0.03758353367447853,
0.03944965824484825,
-0.009533345699310303,
-0.02721036598086357,
0.021462880074977875,
0.03631376102566719,
0.00001587465339980554,
-0.016159644350409508,
-0.029015328735113144,
-0.0017788135446608067,
0.032707102596759796,
-0.04278810694813728,
0.009992880746722221,
-0.03944164142012596,
-0.010149739682674408,
-0.045454662293195724,
0.0032658581621944904,
0.015634983777999878,
0.01571892388164997,
-0.07850221544504166,
0.0020735985599458218,
0.02743389457464218,
-0.0029035042971372604,
-0.014199596829712391,
-0.0258660726249218,
0.035409364849328995,
-0.009195191785693169,
-0.04115169867873192,
0.006987707689404488,
-0.005522293504327536,
-0.03348057344555855,
-0.0011278438614681363,
0.0017470514867454767,
-0.04500753432512283,
-0.005534837022423744,
-0.05206939950585365,
-0.014925575815141201,
0.01602262444794178,
0.025476349517703056,
0.058597858995199203,
-0.020201053470373154,
0.003673779545351863,
0.006577932275831699,
-0.036512717604637146,
0.02553248219192028,
0.0407729409635067,
-0.006191624794155359,
0.03571383282542229,
0.0014414414763450623,
-0.007846472784876823,
0.0064401691779494286,
-0.0015649390406906605,
0.005546963773667812,
-0.010443177074193954,
-0.03861681744456291,
0.004874840844422579,
0.06464677304029465,
0.04979095980525017,
0.0055356635712087154,
0.03682410717010498,
0.01483944896608591,
0.00882505439221859,
0.011754190549254417,
0.031239746138453484,
-0.021434206515550613,
0.008565545082092285,
-0.00864859763532877,
0.042112063616514206,
-0.009457032196223736,
-0.006507215555757284,
0.001491416827775538,
-0.015930110588669777,
0.02184479311108589,
0.006199443247169256,
0.022914469242095947,
-0.02370065450668335,
0.015165665186941624,
0.002648488385602832,
-0.0020712174009531736,
-0.03436967730522156,
0.022371314465999603,
-0.019594119861721992,
-0.028998402878642082,
-0.03340679779648781,
0.0036640698090195656,
-0.02261529304087162,
0.03022773750126362,
-0.005137589760124683,
0.0199494156986475,
0.00865156203508377,
-0.002512970706447959,
-0.0015398107934743166,
-0.007516155019402504,
-0.02187741920351982,
-0.010395262390375137,
-0.038207728415727615,
-0.047615956515073776,
0.06081868335604668,
-0.01779320277273655,
-0.0009703076211735606,
0.012913212180137634,
-0.056437887251377106,
-0.05240911990404129,
0.022185686975717545,
0.0062243458814918995,
0.03423936292529106,
-0.03443746641278267,
0.020113535225391388,
0.012579377740621567,
0.015623067505657673,
-0.0066604455932974815,
-0.02312062680721283,
-0.006296274717897177,
-0.004304362460970879,
-0.033814672380685806,
0.002243434777483344,
0.0033116736449301243,
-0.005369084421545267,
0.008928632363677025,
0.00600413279607892,
-0.08116835355758667,
-0.02711299993097782,
0.003003882011398673,
0.004380065482109785,
0.034074459224939346,
0.0020763890352100134,
-0.02109682187438011,
0.04958634078502655,
0.027708658948540688,
0.007377453614026308,
0.008024041540920734,
-0.037986911833286285,
0.020066583529114723,
0.02670150436460972,
0.027019303292036057,
0.029011176899075508,
-0.05501694232225418,
-0.005752406548708677,
-0.016136804595589638,
0.0028845355845987797,
-0.012471443973481655,
0.036918673664331436,
0.038753896951675415,
0.03369460999965668,
0.0010070942807942629,
0.006447948981076479,
0.019552892073988914,
-0.021401727572083473,
-0.05796284228563309,
-0.09546179324388504,
-0.03206316754221916,
0.008770392276346684,
-0.03488093242049217,
0.008294777013361454,
0.006718653254210949,
0.022932833060622215,
0.025993172079324722,
0.0005266580265015364,
-0.04012622311711311,
0.037459295243024826,
0.00473957322537899,
0.019829077646136284,
-0.04654110595583916,
0.03735260292887688,
-0.0009111918043345213,
0.025361452251672745,
-0.007008579559624195,
0.004137835465371609,
0.013489579781889915,
0.051914602518081665,
-0.004317313898354769,
-0.04340938478708267,
0.014015360735356808,
0.017119737342000008,
0.004360176622867584,
-0.01287943497300148,
0.010214590467512608,
0.040273651480674744,
0.02193073369562626,
0.026673659682273865,
-0.010753966867923737,
-0.03481101244688034,
0.008548500016331673,
0.000370694586308673,
-0.0014100773259997368,
0.010496361181139946,
0.002961886813864112,
0.031145205721259117,
-0.004349748138338327,
0.04418217018246651,
-0.010392344556748867,
0.009327846579253674,
0.022440265864133835,
0.014300955459475517,
0.003564149374142289,
-0.019028520211577415,
0.025413691997528076,
0.017338508740067482,
0.00727900629863143,
0.013752924278378487,
-0.029686206951737404,
-0.012450974434614182,
0.018823498860001564,
-0.02604551985859871,
0.018070805817842484,
0.04732517898082733,
0.04837760701775551,
0.0570431612432003,
0.0009823702275753021,
-0.025668734684586525,
0.028912076726555824,
0.021988125517964363,
-0.010192480869591236,
-0.02695125713944435,
-0.0274171344935894,
0.020636387169361115,
0.04925720393657684,
-0.019283154979348183,
0.03274507448077202,
0.03413504362106323,
0.04950645938515663,
0.017358658835291862,
-0.026265447959303856,
0.021297086030244827,
-0.034095119684934616,
-0.06284087151288986,
-0.055782660841941833,
0.01176187302917242,
-0.05591585859656334,
-0.031966693699359894,
0.024361424148082733,
0.007870260626077652,
0.020986327901482582,
0.011690132319927216,
-0.03981613367795944,
0.03011508844792843,
0.022200893610715866,
0.03930414468050003,
0.024555303156375885,
0.008921555243432522,
0.028659768402576447,
-0.01827358640730381,
-0.02271246910095215,
-0.02082645706832409,
-0.025623327121138573,
-0.008339673280715942,
-0.02224838361144066,
-0.01069506537169218,
0.015209859237074852,
0.004859334789216518,
-0.019829299300909042,
-0.003068657824769616,
0.027783909812569618,
-0.007806719280779362,
-0.034232765436172485,
0.04273281618952751,
-0.0031797299161553383,
0.029025781899690628,
0.00915123987942934,
0.008368588984012604,
-0.0231916680932045,
0.030357563868165016,
0.03525838628411293,
-0.06077815592288971,
0.048272013664245605,
0.03130557760596275,
-0.009294825606048107,
0.017506849020719528,
0.01679355651140213,
0.02359597571194172,
0.019401174038648605,
0.0022446580696851015,
0.04123707115650177,
0.01428389735519886,
-0.029821446165442467,
-0.015147498808801174,
0.000009909226719173603,
0.015062118880450726,
0.006288512144237757,
0.027817392721772194,
-0.00932123139500618,
0.04585558548569679,
0.038036104291677475,
-0.047175332903862,
0.020987942814826965,
0.0101957768201828,
-0.06875163316726685,
0.013963820412755013,
0.04179465025663376,
-0.0023419393692165613,
-0.015541777946054935,
-0.0367429181933403,
0.004011826124042273,
0.08130480349063873,
-0.028312157839536667,
0.00842765811830759,
0.05852888897061348,
0.003156464546918869,
-0.001395602710545063,
0.006246021017432213,
-0.006655840203166008,
0.024448806419968605,
0.012503787875175476,
-0.028026627376675606,
-0.021907761693000793,
0.03782161697745323,
0.03166000172495842,
0.024121074005961418,
0.02225283905863762,
0.018010955303907394,
-0.021781960502266884,
-0.0437307208776474,
-0.021067596971988678,
-0.010874909348785877,
0.016488343477249146,
0.005919191986322403,
-0.006226496770977974,
-0.0006668320274911821,
-0.01962396688759327,
0.059131454676389694,
0.03988168016076088,
0.03427194803953171,
-0.019531354308128357,
0.05090779438614845,
0.020427672192454338,
0.0522020198404789,
0.013181849382817745,
0.034941673278808594,
0.022792240604758263,
-0.023456260561943054,
0.03791765123605728,
0.016203615814447403,
-0.016372384503483772,
0.015169558115303516,
-0.010247447527945042,
-0.025923574343323708,
-0.011257489211857319,
0.006731225177645683,
0.04190715029835701,
0.0473102405667305,
-0.026909494772553444,
-0.026941031217575073,
0.06905074417591095,
-0.016530929133296013,
0.007216267287731171,
0.01914070174098015,
-0.023883672431111336,
-0.037567779421806335,
-0.017007464542984962,
0.01886322721838951,
0.07564181089401245,
-0.032679859548807144,
-0.04950762540102005,
-0.027105839923024178,
-0.02251826412975788,
-0.0010811577085405588,
0.04157799109816551,
-0.012101210653781891,
-0.012842926196753979,
-0.018005086109042168,
0.013885648921132088,
-0.047490108758211136,
0.011870687827467918,
-0.011623949743807316,
-0.017053360119462013,
0.030181385576725006,
-0.004183856770396233,
0.015150422230362892,
-0.015984168276190758,
0.01662295125424862,
-0.005009285639971495,
0.003845316357910633,
-0.015160306356847286,
-0.03792237862944603,
-0.055658213794231415,
0.06687930971384048,
-0.07344948500394821,
-0.010581131093204021,
0.0026260530576109886,
0.05485169216990471,
0.057022906839847565,
0.057854268699884415,
-0.02191116288304329,
-0.03564133867621422,
-0.04018288105726242,
-0.012992901727557182,
-0.0367538258433342,
0.00035186324384994805,
-0.0009912605164572597,
0.01642349548637867,
0.014671463519334793,
-0.049275998026132584,
0.01271599717438221,
-0.01784537360072136,
-0.03264147415757179,
0.04994708672165871,
-0.05497031286358833,
-0.0025370903313159943,
-0.054705601185560226,
0.03275904804468155,
0.00540580227971077,
0.05653444305062294,
0.02022591605782509,
-0.04465596377849579,
0.0444943867623806,
0.0025140440557152033,
0.030240029096603394,
0.027455052360892296,
0.01357320137321949,
0.0013409791281446815,
-0.025322310626506805,
-0.030464069917798042,
0.017753876745700836,
-0.010700944811105728,
0.020944617688655853,
-0.025247715413570404,
0.03040192648768425,
-0.09045280516147614,
0.014088097028434277,
0.020776648074388504,
0.011483829468488693,
0.0006505865603685379,
-0.006835340987890959,
0.030504576861858368,
0.01305962074548006,
0.007550145033746958,
0.008984575979411602,
-0.01875169947743416,
0.008001094684004784,
0.04731358587741852,
0.0061236280016601086,
-0.0324665792286396,
-0.006577818654477596,
-0.0025964307133108377,
-0.01991688646376133,
-0.019378522410988808,
0.02851007506251335,
0.02565528079867363,
0.014039239846169949,
-0.011448627337813377,
-0.015533914789557457,
-0.022477295249700546,
-0.01186732854694128,
0.0008114328375086188,
0.05202891305088997,
-0.006834746804088354,
-0.01248891744762659,
-0.026524070650339127,
-0.030488695949316025,
-0.029820479452610016,
0.008466443978250027,
-0.006551104597747326,
0.047083258628845215,
0.004854606464505196,
0.03430771455168724,
0.01066672708839178,
0.006856398191303015,
0.020457115024328232,
0.019737033173441887,
-0.009793881326913834,
-0.01217531505972147,
0.013098567724227905,
0.07518292963504791,
-0.01750291883945465,
-0.05232478678226471,
0.05193948745727539,
0.017368504777550697,
0.0010345977498218417,
0.007715623825788498,
-0.00577726261690259,
-0.028074372559785843,
-0.045546889305114746,
0.008811956271529198,
0.01454170886427164,
0.03851182386279106,
0.02234627865254879,
0.046471718698740005,
0.019643278792500496,
0.03288662061095238
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | GPT2 GPT2 is a decoder-only model, which makes use of uni-directional (i.e. \"causal\") self-attention to define a mapping from an input sequence \(\mathbf{Y}{0: m - 1}\) \({}^1\) to a \"next-word\" logit vector sequence \(\mathbf{L}{1:m}\): $$ f_{\theta_{\text{GPT2}}}: \mathbf{Y}{0: m - 1} \to \mathbf{L}{1:m}. $$ By processing the logit vectors \(\mathbf{L}{1:m}\) with the softmax operation, the model can define the probability distribution of the word sequence \(\mathbf{Y}{1:m}\). To be exact, the probability distribution of the word sequence \(\mathbf{Y}{1:m}\) can be factorized into \(m-1\) conditional \"next word\" distributions: $$ p{\theta_{\text{GPT2}}}(\mathbf{Y}{1:m}) = \prod{i=1}^{m} p_{\theta_{\text{GPT2}}}(\mathbf{y}i | \mathbf{Y}{0:i-1}). $$ \(p_{\theta_{\text{GPT2}}}(\mathbf{y}i | \mathbf{Y}{0:i-1})\) hereby presents the probability distribution of the next word \(\mathbf{y}i\) given all previous words \(\mathbf{y}_0, \ldots, \mathbf{y}{i-1}\) \({}^3\) and is defined as the softmax operation applied on the logit vector \(\mathbf{l}i\). To summarize, the following equations hold true. $$ p{\theta_{\text{gpt2}}}(\mathbf{y}i | \mathbf{Y}{0:i-1}) = \textbf{Softmax}(\mathbf{l}i) = \textbf{Softmax}(f{\theta_{\text{GPT2}}}(\mathbf{Y}{0: i - 1})).$$ For more detail, please refer to the decoder section of the encoder-decoder blog post. Let\'s visualize GPT2 now as well. Analogous to BERT, GPT2 is composed of a stack of GPT2 blocks. In contrast to BERT block, GPT2 block makes use of uni-directional self-attention to process some input vectors \(\mathbf{y'}_0, \ldots, \mathbf{y'}{m-1}\) (shown in light blue on the bottom right) to an output vector sequence \(\mathbf{y''}0, \ldots, \mathbf{y''}{m-1}\) (shown in darker blue on the top right). In addition to the GPT2 block stack, the model also has a linear layer, called LM Head, which maps the output vectors of the final GPT2 block to the logit vectors \(\mathbf{l}1, \ldots, \mathbf{l}_m\). As mentioned earlier, a logit vector \(\mathbf{l}_i\) can then be used to sample of new input vector \(\mathbf{y}_i\) \({}^5\). GPT2 is mainly used for open-domain text generation. First, an input prompt \(\mathbf{Y}{0:i-1}\) is fed to the model to yield the conditional distribution \(p_{\theta_{\text{gpt2}}}(\mathbf{y} | \mathbf{Y}{0:i-1})\). Then the next word \(\mathbf{y}_i\) is sampled from the distribution (represented by the grey arrows in the graph above) and consequently append to the input. In an auto-regressive fashion the word \(\mathbf{y}{i+1}\) can then be sampled from \(p_{\theta_{\text{gpt2}}}(\mathbf{y} | \mathbf{Y}{0:i})\) and so on. GPT2 is therefore well-suited for language generation, but less so for conditional generation. By setting the input prompt \(\mathbf{Y}{0: i-1}\) equal to the sequence input \(\mathbf{X}{1:n}\), GPT2 can very well be used for conditional generation. However, the model architecture has a fundamental drawback compared to the encoder-decoder architecture as explained in Raffel et al. (2019) on page 17. In short, uni-directional self-attention forces the model\'s representation of the sequence input \(\mathbf{X}{1:n}\) to be unnecessarily limited since \(\mathbf{x}i\) cannot depend on \(\mathbf{x}{i+1}, \forall i \in {1,\ldots, n}\). | [
0.011512622237205505,
-0.10467776656150818,
0.11331644654273987,
-0.030818670988082886,
0.0569700263440609,
0.06720311939716339,
0.006677289493381977,
0.04326951503753662,
-0.023880571126937866,
-0.03699599578976631,
-0.07841186225414276,
0.06527732312679291,
-0.0016142629319801927,
0.09115691483020782,
-0.05393771827220917,
0.023320423439145088,
-0.008156617172062397,
-0.08073988556861877,
0.037213485687971115,
-0.05309999734163284,
0.03933178633451462,
0.019303329288959503,
0.015195677056908607,
-0.06827652454376221,
0.014522509649395943,
-0.01885688677430153,
-0.008152317255735397,
0.0001551934692543,
-0.05818901211023331,
0.0035370108671486378,
-0.10070586204528809,
0.011906519532203674,
0.005507795140147209,
-0.009912781417369843,
-0.006951699033379555,
-0.01697816140949726,
-0.17221130430698395,
-0.017572233453392982,
0.08604387193918228,
-0.03200735151767731,
-0.017370808869600296,
0.017926491796970367,
-0.07608380168676376,
0.0032605454325675964,
-0.018082814291119576,
0.023912865668535233,
-0.19570976495742798,
0.09455764293670654,
-0.03057752177119255,
-0.10838250070810318,
-0.04906895384192467,
0.028993947431445122,
-0.08015397191047668,
0.04301911219954491,
-0.0014143314911052585,
0.01956777833402157,
0.0021090907976031303,
-0.081657774746418,
0.01670326292514801,
-0.044820353388786316,
0.012276191264390945,
-0.019499104470014572,
0.008821743540465832,
0.05405595153570175,
-0.0009242712403647602,
-0.04571589455008507,
0.013976204209029675,
0.026723893359303474,
-0.05282993242144585,
-0.039080895483493805,
-0.055833589285612106,
-0.024168068543076515,
-0.04015261307358742,
-0.0053582508116960526,
-0.01450817845761776,
-0.05159016326069832,
-0.040656927973032,
0.030828213319182396,
-0.031926803290843964,
0.01889295130968094,
0.03037450835108757,
0.0029600944835692644,
0.06001698225736618,
0.06727685779333115,
0.00078419508645311,
-0.015232006087899208,
0.06914752721786499,
-0.05669454112648964,
-0.008722440339624882,
0.03999652341008186,
-0.04515693709254265,
-0.12950898706912994,
0.02488698996603489,
-0.01682755909860134,
0.04097389057278633,
-0.018693935126066208,
0.0007446609088219702,
0.011998636648058891,
-0.02492453157901764,
0.01409806776791811,
-0.031634096056222916,
-0.015050266869366169,
0.037800829857587814,
-0.014612111262977123,
-0.026189949363470078,
0.03031298890709877,
0.007918952964246273,
-0.041597384959459305,
-0.06777618080377579,
0.04835262522101402,
-0.011331088840961456,
0.005825158208608627,
0.00519843865185976,
0.012950981967151165,
-0.10071182250976562,
0.03623347356915474,
0.04146929457783699,
-0.017836326733231544,
0.029700418934226036,
0.03341466560959816,
-0.04318104684352875,
0.01997223310172558,
0.014781973324716091,
0.025231117382645607,
0.011559761129319668,
-0.048388153314590454,
0.024959933012723923,
0.004944003187119961,
-0.08477306365966797,
-0.023184530436992645,
0.05156128481030464,
-0.00942638237029314,
0.017584756016731262,
0.010137546807527542,
-0.02132202498614788,
-0.040330905467271805,
0.012961557134985924,
-0.0032376532908529043,
-0.015003832057118416,
-0.008728677406907082,
-0.019504128023982048,
0.00042937914258800447,
-0.02926943637430668,
0.011350128799676895,
0.08409786224365234,
0.023539312183856964,
-0.048343926668167114,
0.033138666301965714,
-0.021454619243741035,
0.03410713002085686,
-0.03833993524312973,
0.05415590852499008,
0.016268925741314888,
-0.0770018920302391,
0.03830418363213539,
-0.003139141947031021,
-0.0306180939078331,
-0.03496025130152702,
-0.08406110852956772,
-0.02032279223203659,
0.02315627411007881,
0.014096752740442753,
-0.019359340891242027,
-0.006371949799358845,
0.06112592667341232,
-0.0526902936398983,
0.05536680296063423,
0.06579390168190002,
-0.020915409550070763,
0.011677850969135761,
0.002944677136838436,
-0.035785917192697525,
0.09082495421171188,
0.025925664231181145,
-0.023478016257286072,
0.03395804017782211,
-0.02759244106709957,
0.093556709587574,
0.01857548952102661,
-0.051732901483774185,
-0.07271476835012436,
-0.011365879327058792,
0.02451964281499386,
-0.013855560682713985,
0.03233163431286812,
-0.05523037910461426,
-0.08952341973781586,
-0.03470997512340546,
-0.00816916674375534,
0.0346343107521534,
-0.03417402505874634,
-0.04318903014063835,
0.06455045193433762,
-0.03814622014760971,
0.00753558287397027,
-0.10159620642662048,
-0.004233124200254679,
0.07232823967933655,
0.0882725641131401,
0.025490183383226395,
0.05625475198030472,
-0.01770608313381672,
0.004107384942471981,
-0.033355217427015305,
-0.019492434337735176,
-0.001294673653319478,
0.049253564327955246,
0.025848332792520523,
0.028710216283798218,
0.016301630064845085,
-0.033153221011161804,
-0.07273424416780472,
-0.030294952914118767,
-0.08329778164625168,
-0.0018957178108394146,
-0.02908332273364067,
0.004872263874858618,
0.05927031859755516,
-0.0026264938060194254,
-0.012895953841507435,
0.11629025638103485,
-0.06515802443027496,
-0.016011470928788185,
0.008284819312393665,
0.00901716947555542,
0.0760219618678093,
0.10429298132658005,
0.01225405465811491,
0.06969726830720901,
-0.0195293091237545,
-0.046749014407396317,
-0.08469626307487488,
0.08294897526502609,
0.02893569879233837,
0.023648008704185486,
0.0012658656341955066,
0.009678548201918602,
0.029322601854801178,
0.05059177801012993,
-0.05637883394956589,
0.02919698692858219,
0.017984580248594284,
-0.043007832020521164,
0.03675799071788788,
-0.04894355684518814,
-0.062279462814331055,
0.07347407937049866,
-0.011452128179371357,
-0.0472872257232666,
-0.0031329263001680374,
-0.06424935162067413,
0.06414081156253815,
0.044959668070077896,
-0.029289808124303818,
0.0019395477138459682,
0.040516115725040436,
0.019003773108124733,
0.012140458449721336,
0.0018032199004665017,
0.017213761806488037,
-0.0025396086275577545,
-0.020620884373784065,
0.021056298166513443,
-0.019756384193897247,
-0.027730731293559074,
0.017742404714226723,
0.030167631804943085,
0.04969275742769241,
0.0037499726749956608,
0.029811302199959755,
0.006271451245993376,
0.017663033679127693,
-0.0022716419771313667,
0.025171518325805664,
-0.0036498871631920338,
-0.018663665279746056,
0.014096790924668312,
0.012328589335083961,
-0.002577336272224784,
-0.021096421405673027,
0.009747816249728203,
-0.004433763679116964,
0.03685235604643822,
0.05317787081003189,
0.023743227124214172,
0.022167138755321503,
0.0005247576627880335,
-0.005370035767555237,
0.008106205612421036,
0.047344278544187546,
-0.034513864666223526,
0.02136184461414814,
-0.015039988793432713,
-0.04762755334377289,
-0.01096449326723814,
0.0049352324567735195,
-0.02855093590915203,
-0.022427359595894814,
-0.019637366756796837,
0.03165861591696739,
0.014760149642825127,
0.021361691877245903,
0.01661652885377407,
-0.000025103132429649122,
-0.014801660552620888,
0.03943062201142311,
0.03236627206206322,
0.05303017050027847,
-0.10518151521682739,
-0.04193092882633209,
0.03337913006544113,
0.010016567073762417,
0.009334462694823742,
-0.017513789236545563,
0.06182769313454628,
0.018215402960777283,
-0.035793304443359375,
-0.04202970862388611,
0.04563116282224655,
-0.0025581291411072016,
0.023829905316233635,
-0.007091302890330553,
-0.027411125600337982,
-0.019319307059049606,
0.006081758998334408,
-0.01829672046005726,
0.028475875034928322,
-0.024509795010089874,
0.02941576950252056,
0.02473197691142559,
-0.0404282845556736,
0.02339855022728443,
-0.05325374752283096,
-0.005331649444997311,
0.005696398206055164,
-0.004895070102065802,
0.012159102596342564,
-0.0042582908645272255,
-0.05701213702559471,
0.02710903435945511,
0.00009814780059969053,
0.04738805443048477,
0.00566153833642602,
0.03645654395222664,
0.021545229479670525,
0.03084069862961769,
-0.0012639715569093823,
0.060473546385765076,
0.0009444498573429883,
-0.0031493683345615864,
0.0007275064708665013,
-0.01405161153525114,
-0.01736852154135704,
-0.00744725251570344,
0.017953287810087204,
-0.04336398467421532,
0.010193823836743832,
-0.023451847955584526,
-0.03297105431556702,
0.0010546710109338164,
-0.04538554325699806,
0.04362768679857254,
0.031357716768980026,
0.02059178240597248,
0.02149823307991028,
0.02458505891263485,
0.027615666389465332,
0.04018773138523102,
-0.006023713853210211,
-0.010448080487549305,
0.03278691694140434,
-0.015459135174751282,
-0.017050741240382195,
0.04923709109425545,
0.026051819324493408,
0.04199651628732681,
-0.002715306356549263,
0.021267294883728027,
-0.007452389225363731,
0.018665913492441177,
0.016229555010795593,
0.00312475161626935,
0.02671739272773266,
0.05893343314528465,
-0.057082030922174454,
0.028926922008395195,
0.10307680815458298,
0.023483140394091606,
0.002042752457782626,
0.0014067193260416389,
-0.01673571579158306,
-0.02163919061422348,
-0.010515536181628704,
0.0004812732804566622,
0.01369002740830183,
-0.026783393695950508,
0.04925856739282608,
-0.004757309332489967,
0.006226728204637766,
-0.010261058807373047,
0.02847275510430336,
-0.01870512217283249,
-0.030710749328136444,
0.06609699875116348,
0.004233463667333126,
-0.007205840665847063,
0.04612685367465019,
0.028338346630334854,
0.01555566769093275,
-0.06081663444638252,
-0.007102335803210735,
0.00667144451290369,
-0.033464886248111725,
0.05859893932938576,
-0.00032819464104250073,
-0.01357321161776781,
0.044659338891506195,
0.0013139165239408612,
0.060664862394332886,
0.025186076760292053,
0.023033566772937775,
-0.0066042132675647736,
0.060047708451747894,
-0.01259691547602415,
-0.00849960371851921,
-0.05492250621318817,
0.0012869187630712986,
0.006213394924998283,
-0.019448067992925644,
0.0002957742544822395,
-0.03859563544392586,
0.008563277311623096,
0.039561204612255096,
-0.008580184541642666,
0.019012000411748886,
-0.015145931392908096,
-0.0028335959650576115,
-0.011836362071335316,
-0.008168327622115612,
-0.006250123493373394,
0.0017650239169597626,
-0.020556112751364708,
-0.0012761559337377548,
0.007671983912587166,
0.02216116525232792,
0.04680781066417694,
0.004909213166683912,
-0.07992804050445557,
-0.012055656872689724,
-0.04210469499230385,
0.037197839468717575,
-0.01079985685646534,
0.005162224173545837,
-0.007168557960540056,
-0.009407799690961838,
0.006848522927612066,
0.00009999673056881875,
0.0017062558326870203,
0.03690561279654503,
-0.03540425002574921,
-0.03796862065792084,
0.02823389694094658,
-0.001867016195319593,
0.005102628841996193,
-0.007984617725014687,
0.032659657299518585,
-0.031212203204631805,
0.05077974125742912,
0.023155780509114265,
-0.03671235963702202,
-0.056018613278865814,
0.013025393709540367,
0.0012588356621563435,
0.03398136794567108,
0.002785314107313752,
-0.032124102115631104,
0.018109481781721115,
0.019472872838377953,
-0.01041977759450674,
-0.014245924539864063,
-0.0004721280711237341,
-0.012882168404757977,
0.0017296357546001673,
0.015465226024389267,
-0.01218835636973381,
0.007951924577355385,
-0.02117718756198883,
0.011243114247918129,
-0.02221176028251648,
0.03408757224678993,
-0.007838365621864796,
0.015917420387268066,
-0.03722628206014633,
0.03751526027917862,
0.03018711321055889,
0.04474387317895889,
0.012306485325098038,
0.04713914170861244,
0.054236311465501785,
-0.023895733058452606,
0.010808438062667847,
-0.06178584322333336,
0.007385494187474251,
0.04682627320289612,
0.01705564744770527,
0.04536082223057747,
-0.00929231196641922,
0.005159109830856323,
0.02699279971420765,
0.028816169127821922,
-0.034872207790613174,
-0.043451737612485886,
0.011125661432743073,
-0.025999875739216805,
-0.01720275543630123,
-0.03862226381897926,
0.022426798939704895,
0.002401712816208601,
0.0041848295368254185,
-0.03199378773570061,
-0.03235688805580139,
-0.05227865278720856,
-0.034800030291080475,
-0.012536715716123581,
-0.016156209632754326,
0.057462651282548904,
-0.0053471727296710014,
0.050144296139478683,
0.006526323966681957,
0.010728259570896626,
-0.03012441098690033,
-0.002150175394490361,
0.004522404633462429,
-0.007282968144863844,
-0.05617300793528557,
0.00946337915956974,
0.03765048831701279,
0.022768303751945496,
0.01264210045337677,
-0.06233379617333412,
-0.03275680914521217,
0.04180140048265457,
-0.004499339964240789,
-0.065955251455307,
-0.04844069480895996,
0.029761550948023796,
-0.012132320553064346,
0.03271907567977905,
0.025064457207918167,
-0.019283730536699295,
0.005077567882835865,
-0.020835401490330696,
-0.04557094722986221,
-0.004735082853585482,
0.039187993854284286,
-0.012486417777836323,
0.00438214186578989,
0.021011270582675934,
0.018135065212845802,
-0.00010695034870877862,
0.0033120850566774607,
0.02201177552342415,
0.028505848720669746,
0.03603868559002876,
0.0482180081307888,
0.008000753819942474,
-0.006728240288794041,
0.024759776890277863,
0.02526106685400009,
-0.02911168709397316,
-0.0021051005460321903,
0.041874829679727554,
-0.03609728068113327,
0.012978751212358475,
0.009693983010947704,
-0.009780625812709332,
-0.010544993914663792,
0.025577938184142113,
0.018618058413267136,
0.0026649003848433495,
-0.050068844109773636,
-0.00401761569082737,
-0.02351866289973259,
0.016106104478240013,
-0.010118062607944012,
0.057669028639793396,
-0.024689221754670143,
0.0501188263297081,
-0.0009266970446333289,
0.043492354452610016,
0.056155622005462646,
-0.008440155535936356,
0.0012707674177363515,
0.025256576016545296,
0.03851550072431564,
0.013055534102022648,
0.016514206305146217,
0.01659552939236164,
0.02478446066379547,
-0.003607735736295581,
-0.029569022357463837,
-0.015862632542848587,
-0.016734110191464424,
0.02435445226728916,
0.03337005898356438,
-0.005791941192001104,
0.029981976374983788,
-0.0076319193467497826,
0.050473570823669434,
0.06462046504020691,
0.024443697184324265,
-0.012566017918288708,
-0.004285580012947321,
0.034189656376838684,
0.024089688435196877,
0.00548768462613225,
0.01991613581776619,
-0.04017719626426697,
0.026774605736136436,
0.013293983414769173,
-0.004242892377078533,
0.04227028414607048,
-0.009859263896942139,
-0.04186142608523369,
0.0372428223490715,
0.015314104966819286,
-0.011284444481134415,
0.013845055364072323,
0.032735425978899,
-0.011045302264392376,
0.024952063336968422,
-0.026511458680033684,
0.006943101529031992,
0.008656257763504982,
0.018024178221821785,
0.04459276422858238,
0.0069092875346541405,
-0.026732321828603745,
-0.000300511164823547,
0.0196898952126503,
-0.005347246304154396,
0.005047980230301619,
-0.03985239937901497,
-0.007876556366682053,
-0.0025883170310407877,
-0.0038321781903505325,
-0.06023696810007095,
-0.04071243479847908,
-0.007890358567237854,
-0.01498299092054367,
-0.013752504251897335,
-0.006105679087340832,
-0.024047521874308586,
-0.011011541821062565,
0.023240961134433746,
0.048007477074861526,
-0.041804082691669464,
0.005302238743752241,
0.03532860055565834,
0.0006049741059541702,
-0.02989293821156025,
-0.007210873067378998,
-0.01778986118733883,
-0.002712540328502655,
-0.025961246341466904,
-0.03544009476900101,
-0.04493347927927971,
-0.01482731755822897,
0.006402807310223579,
0.0263063982129097,
0.02864118665456772,
-0.007420548237860203,
-0.015453041531145573,
-0.0046359156258404255,
-0.034929268062114716,
-0.002091762376949191,
-0.002960359677672386,
0.0082832220941782,
-0.01427424419671297,
0.010027982294559479,
-0.009695346467196941,
-0.02760409750044346,
-0.022752385586500168,
0.02049301564693451,
0.023831509053707123,
0.009769955649971962,
-0.006577002350240946,
-0.005764483008533716,
0.05876285210251808,
-0.017706578597426414,
0.008953765034675598,
0.03501696512103081,
0.030273087322711945,
0.04455525055527687,
-0.009955308400094509,
0.032676488161087036,
-0.037063293159008026,
0.014262520708143711,
-0.00960170105099678,
-0.069667287170887,
-0.011588092893362045,
0.03414307162165642,
0.010455852374434471,
-0.01930963806807995,
-0.026104072108864784,
-0.01874016784131527,
-0.036030154675245285,
0.03324942663311958,
-0.026763245463371277,
-0.002015221631154418,
0.03909842669963837,
-0.0042338063940405846,
0.03746097907423973,
-0.017586862668395042,
-0.004201492760330439,
-0.03454712778329849,
0.012357011437416077,
0.0407574325799942,
0.06416933238506317,
0.019991355016827583,
0.006128801964223385,
-0.028631053864955902,
0.014488914981484413,
-0.025411933660507202,
-0.021832173690199852,
0.019455641508102417,
0.009513902477920055,
-0.019297398626804352,
0.009995896369218826,
0.031211065128445625,
-0.038544319570064545,
0.019629718735814095,
0.01271404791623354,
0.023957598954439163,
0.014373891986906528,
-0.03601327911019325,
-0.00977766327559948,
-0.0517401322722435,
-0.003206829307600856,
-0.0048820930533111095,
0.03067081980407238,
0.012868013232946396,
0.04694438353180885,
0.03420702740550041,
0.019239654764533043,
0.022261302918195724,
0.021477146074175835,
0.02929481491446495,
-0.010369968600571156,
-0.043923269957304,
-0.0041965097188949585,
-0.027076484635472298,
-0.04239578917622566,
-0.059374693781137466,
0.015661530196666718,
0.02298944629728794,
-0.02635050006210804,
-0.014861924573779106,
0.013271581381559372,
0.04241219535470009,
-0.029775092378258705,
0.04112662002444267,
0.017841966822743416,
0.0749414935708046,
0.015895893797278404,
0.0017028541769832373,
0.00516702001914382,
0.0017195751424878836
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Encoder-Decoder Because encoder-only models require to know the output length a priori, they seem unfit for sequence-to-sequence tasks. Decoder-only models can function well for sequence-to-sequence tasks, but also have certain architectural limitations as explained above. The current predominant approach to tackle sequence-to-sequence tasks are transformer-based encoder-decoder models - often also called seq2seq transformer models. Encoder-decoder models were introduced in Vaswani et al. (2017) and since then have been shown to perform better on sequence-to-sequence tasks than stand-alone language models (i.e. decoder-only models), e.g. Raffel et al. (2020). In essence, an encoder-decoder model is the combination of a stand-alone encoder, such as BERT, and a stand-alone decoder model, such as GPT2. For more details on the exact architecture of transformer-based encoder-decoder models, please refer to this blog post. Now, we know that freely available checkpoints of large pre-trained stand-alone encoder and decoder models, such as BERT and GPT, can boost performance and reduce training cost for many NLU tasks, We also know that encoder-decoder models are essentially the combination of stand-alone encoder and decoder models. This naturally brings up the question of how one can leverage stand-alone model checkpoints for encoder-decoder models and which model combinations are most performant on certain sequence-to-sequence tasks. In 2020, Sascha Rothe, Shashi Narayan, and Aliaksei Severyn investigated exactly this question in their paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks. The paper offers a great analysis of different encoder-decoder model combinations and fine-tuning techniques, which we will study in more detail later. Composing an encoder-decoder model of pre-trained stand-alone model checkpoints is defined as warm-starting the encoder-decoder model. The following sections show how warm-starting an encoder-decoder model works in theory, how one can put the theory into practice with 🤗Transformers, and also gives practical tips for better performance. ------------------------------------------------------------------------ \({}^1\) A pre-trained language model is defined as a neural network: - that has been trained on unlabeled text data, i.e. in a task-agnostic, unsupervised fashion, and - that processes a sequence of input words into a context-dependent embedding. E.g. the continuous bag-of-words and skip-gram model from Mikolov et al. (2013) is not considered a pre-trained language model because the embeddings are context-agnostic. \({}^2\) Fine-tuning is defined as the task-specific training of a model that has been initialized with the weights of a pre-trained language model. \({}^3\) The input vector \(\mathbf{y}0\) corresponds hereby to the \(\text{BOS}\) embedding vector required to predict the very first output word \(\mathbf{y}_1\). \({}^4\) Without loss of generalitiy, we exclude the normalization layers to not clutter the equations and illustrations. \({}^5\) For more detail on why uni-directional self-attention is used for \"decoder-only\" models, such as GPT2, and how sampling works exactly, please refer to the decoder section of the encoder-decoder blog post. | [
0.022362612187862396,
-0.02581346593797207,
0.013979997485876083,
0.01028943620622158,
0.05528733879327774,
0.07501856982707977,
0.023240508511662483,
-0.023985596373677254,
-0.038687773048877716,
-0.04405863210558891,
-0.07063513994216919,
0.05458589270710945,
-0.04526229947805405,
0.06717180460691452,
-0.0195955578237772,
-0.011133940890431404,
0.0327150784432888,
-0.03186839818954468,
0.007381713017821312,
-0.024423077702522278,
-0.008275396190583706,
-0.03755895793437958,
0.030639000236988068,
-0.041585635393857956,
0.015017129480838776,
-0.06424583494663239,
-0.024076921865344048,
-0.026162438094615936,
-0.08221716433763504,
0.030354591086506844,
-0.12235531955957413,
0.018934879451990128,
0.03518463671207428,
-0.0259112436324358,
0.00392038282006979,
-0.023915916681289673,
-0.1155981495976448,
0.02229796163737774,
0.05948740243911743,
-0.014514240436255932,
-0.07672564685344696,
-0.012693801894783974,
-0.05852625146508217,
0.02855343371629715,
-0.021905601024627686,
0.006157692987471819,
-0.19913065433502197,
0.06061401590704918,
-0.03621448203921318,
-0.034892208874225616,
-0.038682855665683746,
0.07849010825157166,
0.0027992066461592913,
0.05333481729030609,
0.006943823769688606,
-0.007844279520213604,
0.0017498846864327788,
-0.09732505679130554,
0.03972567245364189,
-0.007525639142841101,
0.054768156260252,
0.009749085642397404,
-0.0338670052587986,
-0.023367412388324738,
0.025043517351150513,
0.024172911420464516,
-0.02438526786863804,
0.02316807210445404,
-0.018493060022592545,
0.0040207309648394585,
-0.052874259650707245,
-0.09102486819028854,
-0.031132349744439125,
0.03053894080221653,
0.006752250716090202,
-0.0722862035036087,
0.008395242504775524,
0.004246564116328955,
0.03232315555214882,
0.024195479229092598,
0.0036232967395335436,
0.03217751532793045,
0.009271419607102871,
0.020299706608057022,
0.048548948019742966,
0.0159001387655735,
0.0628269761800766,
-0.06548893451690674,
-0.023458067327737808,
0.08766070008277893,
-0.04711254686117172,
-0.16192926466464996,
-0.005604565143585205,
-0.0169514250010252,
0.009759502485394478,
0.010279410518705845,
0.004072542767971754,
0.07579808682203293,
0.007576270028948784,
-0.034077517688274384,
0.0037163232918828726,
-0.028760623186826706,
0.052131809294223785,
-0.05187632888555527,
-0.04019252583384514,
0.018759606406092644,
-0.04738911613821983,
-0.06201642379164696,
-0.035856183618307114,
-0.012070952914655209,
0.024716509506106377,
-0.00536046689376235,
-0.05335995927453041,
0.07005249708890915,
-0.10851012915372849,
0.04611251875758171,
0.027458952739834785,
-0.0085015082731843,
-0.0072996364906430244,
0.008933095261454582,
0.006131777074187994,
0.08415309339761734,
0.03800411522388458,
-0.021275348961353302,
-0.007568432949483395,
0.014955631457269192,
-0.009756084531545639,
-0.029712144285440445,
-0.021474525332450867,
-0.0279826819896698,
0.052985627204179764,
0.008392917923629284,
0.060456883162260056,
0.02411884255707264,
-0.0038259876891970634,
-0.07112226635217667,
-0.030953299254179,
-0.040496353060007095,
-0.02589503675699234,
0.01960388384759426,
-0.09794323891401291,
0.07638046145439148,
0.02873033471405506,
-0.04289904609322548,
0.038640961050987244,
0.01736808568239212,
-0.10624264180660248,
0.07473348826169968,
0.058053821325302124,
0.0069969273172318935,
-0.04794268310070038,
0.03495071083307266,
-0.044965922832489014,
-0.11505454778671265,
-0.004452385473996401,
0.03468025103211403,
-0.021268146112561226,
-0.003290622727945447,
-0.059470824897289276,
-0.02476079948246479,
-0.04676252231001854,
0.014693262055516243,
-0.0021815141662955284,
-0.001970883458852768,
0.03959657624363899,
-0.09662272781133652,
0.01889297366142273,
0.033485863357782364,
-0.0038200700655579567,
0.008984616957604885,
-0.016123760491609573,
0.056863754987716675,
0.09413985162973404,
-0.031651586294174194,
-0.04520699381828308,
0.017272308468818665,
-0.03190411627292633,
0.07263851165771484,
0.04262583330273628,
-0.04562985897064209,
-0.022868184372782707,
0.009261464700102806,
0.006258000619709492,
0.021147027611732483,
0.04626419022679329,
-0.06626448035240173,
-0.005201330874115229,
-0.027101341634988785,
-0.07329843193292618,
0.012308100238442421,
-0.06354136019945145,
-0.032864682376384735,
0.060935575515031815,
-0.015272535383701324,
-0.009651564992964268,
-0.06919024139642715,
-0.022429948672652245,
0.1337982416152954,
0.025300662964582443,
0.05649079382419586,
0.1049988716840744,
0.04704585671424866,
0.06941460072994232,
-0.0008848391007632017,
-0.05185319483280182,
0.01687864027917385,
0.020724618807435036,
-0.01762271113693714,
0.07671808451414108,
-0.03334156051278114,
0.016816122457385063,
-0.06414835900068283,
-0.05246204510331154,
-0.07214988768100739,
0.027082601562142372,
-0.03604556992650032,
0.01714480109512806,
-0.02667485550045967,
0.022999174892902374,
-0.04072500765323639,
0.14144177734851837,
-0.05355416610836983,
-0.05194363370537758,
-0.014587265439331532,
-0.0011469541350379586,
0.041533686220645905,
0.0560770258307457,
0.006013213191181421,
0.07365532219409943,
-0.03900601342320442,
-0.026978036388754845,
-0.07798843085765839,
0.010821337811648846,
0.021836211904883385,
0.012218066491186619,
-0.010627193376421928,
-0.004641762003302574,
0.022707780823111534,
0.04910266771912575,
-0.012189310044050217,
-0.0053323120810091496,
0.017032623291015625,
0.01497145090252161,
0.04246200621128082,
-0.042305998504161835,
-0.013018728233873844,
0.047580018639564514,
0.0026889548171311617,
-0.026932258158922195,
-0.014447584748268127,
-0.0702538788318634,
0.058836616575717926,
0.0018861580174416304,
-0.09036722034215927,
0.059457674622535706,
0.0524631030857563,
-0.009321031160652637,
-0.013951615430414677,
0.013308893889188766,
-0.014371402561664581,
-0.01192963495850563,
-0.05185713246464729,
-0.009527021087706089,
-0.03882845863699913,
-0.026054011657834053,
-0.04162317514419556,
-0.017458559945225716,
-0.020314160734415054,
0.017107533290982246,
0.02982449159026146,
0.02547723986208439,
-0.01068116631358862,
0.0445956215262413,
0.03138314187526703,
0.02634412981569767,
0.0008884517592377961,
0.041685231029987335,
-0.03668001666665077,
-0.029703794047236443,
-0.004564539063721895,
0.009723191149532795,
-0.03346503525972366,
0.035683151334524155,
0.01430030819028616,
0.03459225222468376,
0.023879414424300194,
0.01509171724319458,
-0.02270285040140152,
0.008343410678207874,
0.03441610932350159,
0.009746326133608818,
0.02271631918847561,
-0.013757523149251938,
-0.034472689032554626,
-0.009099850431084633,
0.012525828555226326,
-0.004877807106822729,
-0.008339249528944492,
0.017545603215694427,
0.0014320536283776164,
-0.012312703765928745,
0.034917715936899185,
0.013571766205132008,
-0.028269417583942413,
-0.05002410337328911,
0.025391684845089912,
0.060335513204336166,
0.04582089185714722,
-0.11020875722169876,
-0.049925513565540314,
0.007963410578668118,
0.014446845278143883,
-0.009928393177688122,
-0.03193303197622299,
0.07350243628025055,
-0.02756674960255623,
-0.035473331809043884,
-0.01729462295770645,
0.04543343186378479,
0.005313809495419264,
0.0401727594435215,
0.011908919550478458,
-0.052772946655750275,
-0.016788074746727943,
-0.009605196304619312,
0.003417849773541093,
0.03507954627275467,
-0.0007353306282311678,
-0.015786321833729744,
0.005278593394905329,
-0.0004919644561596215,
0.012506130151450634,
-0.03568192198872566,
-0.015142472460865974,
0.03565824404358864,
-0.006719726603478193,
-0.005603001452982426,
-0.027012638747692108,
-0.001798404031433165,
-0.015756020322442055,
-0.023254582658410072,
0.030088014900684357,
-0.03046845644712448,
-0.013269411399960518,
0.0049785044975578785,
0.02513226307928562,
0.03901343420147896,
0.03995233401656151,
0.014891507104039192,
-0.004039296414703131,
0.00452348543331027,
0.009798888117074966,
0.009725287556648254,
-0.02314024604856968,
0.03362254053354263,
-0.03163033723831177,
0.0279588233679533,
-0.025377117097377777,
-0.018206454813480377,
-0.020495561882853508,
0.008833939209580421,
0.042265161871910095,
0.02306373603641987,
0.008595253340899944,
0.00468304380774498,
0.016596907749772072,
0.010475214570760727,
-0.005450290162116289,
-0.04846169427037239,
0.010149209760129452,
0.007233979180455208,
-0.010659056715667248,
-0.04658537358045578,
0.07961134612560272,
0.0033475011587142944,
0.033455297350883484,
-0.008605830371379852,
0.05839674174785614,
-0.03018544428050518,
0.009305581450462341,
0.020788539201021194,
0.005281508434563875,
-0.012557697482407093,
0.016474617645144463,
-0.029413973912596703,
0.0293421670794487,
0.07265003025531769,
0.01235513761639595,
-0.007810146082192659,
-0.003317107679322362,
-0.05051901564002037,
0.00589274475350976,
0.029779421165585518,
0.03359449654817581,
-0.00165746605489403,
-0.0014145757304504514,
0.023116324096918106,
0.0008137400727719069,
0.022832753136754036,
-0.0031328722834587097,
0.00994978379458189,
-0.027806079015135765,
0.02558806724846363,
0.01211911253631115,
0.022991523146629333,
0.01551368273794651,
0.014838522300124168,
0.008089564740657806,
0.028607206419110298,
-0.0515245757997036,
0.0149347810074687,
0.013869616203010082,
-0.0028491001576185226,
0.037865303456783295,
-0.037859056144952774,
-0.015277550555765629,
0.009679869748651981,
-0.020956669002771378,
0.024893570691347122,
-0.014909307472407818,
0.03351619094610214,
0.004505437798798084,
0.030519777908921242,
0.025857452303171158,
0.011228678748011589,
-0.056613363325595856,
-0.0193710345774889,
0.019378000870347023,
-0.01883261650800705,
0.012203458696603775,
-0.009160102345049381,
0.013932703994214535,
0.03344152122735977,
-0.013367201201617718,
0.020458444952964783,
-0.008744301274418831,
0.004729483276605606,
-0.004103038925677538,
-0.04801156371831894,
-0.0026710336096584797,
0.020032471045851707,
-0.04866137355566025,
0.025533732026815414,
0.007756292354315519,
0.010384814813733101,
0.024614540860056877,
-0.009177898056805134,
-0.04409351572394371,
0.005673098843544722,
-0.009718766435980797,
0.028766531497240067,
-0.028530890122056007,
0.03463563695549965,
-0.015979548916220665,
-0.002385428873822093,
-0.0005027798470109701,
-0.010905224829912186,
0.00733049213886261,
0.05635886266827583,
-0.024286478757858276,
-0.038505807518959045,
0.015960128977894783,
0.03304295241832733,
-0.028570003807544708,
-0.008534171618521214,
0.042299915105104446,
0.013163427822291851,
0.01990981586277485,
0.007466213312000036,
0.008684265427291393,
-0.04438638314604759,
0.017047856003046036,
-0.01034814864397049,
0.015597939491271973,
-0.042941659688949585,
-0.03193608298897743,
0.007921775802969933,
0.015581942163407803,
0.009164607152342796,
-0.057612814009189606,
0.025650210678577423,
-0.0063030775636434555,
0.016136066988110542,
0.006091063376516104,
0.005236324854195118,
0.027219243347644806,
-0.0007504966342821717,
0.027400968596339226,
0.010045505128800869,
0.02223885990679264,
0.014226854778826237,
0.03331726789474487,
0.010460416786372662,
0.004900886677205563,
0.07332853227853775,
0.05827716365456581,
0.02818850800395012,
0.010791330598294735,
0.043586377054452896,
-0.0016395336715504527,
0.039228763431310654,
-0.015280686318874359,
-0.009193142876029015,
-0.01313127763569355,
0.009198117069900036,
0.03385784476995468,
-0.03176775947213173,
0.017544567584991455,
0.015382119454443455,
0.012847616337239742,
-0.016272710636258125,
-0.027826836332678795,
0.012670549564063549,
-0.0388682596385479,
-0.03356470912694931,
-0.04692748561501503,
0.02023455873131752,
-0.0330304317176342,
0.014345399104058743,
-0.006611909717321396,
-0.02977915294468403,
0.008064567111432552,
0.006458465941250324,
-0.010710046626627445,
-0.011442838236689568,
0.0633259266614914,
0.04655131697654724,
0.03466922044754028,
0.0038183352444320917,
-0.01377053465694189,
-0.013502524234354496,
0.014393226243555546,
0.019040700048208237,
-0.024277638643980026,
-0.008985180407762527,
0.01898796670138836,
0.02372247539460659,
0.0021908399648964405,
0.017745302990078926,
-0.022902943193912506,
-0.03441948816180229,
0.03915785998106003,
-0.01336787361651659,
-0.03404931724071503,
-0.017717743292450905,
0.013196371495723724,
0.013748643919825554,
0.0209353044629097,
-0.007953587919473648,
-0.021732062101364136,
0.0050489348359405994,
0.02921428345143795,
-0.04501292482018471,
0.03989523649215698,
0.012406868860125542,
-0.019427284598350525,
0.006264461670070887,
0.019086452201008797,
0.08935834467411041,
-0.032958630472421646,
0.02915007434785366,
-0.0008356424514204264,
0.026357460767030716,
0.04796212166547775,
-0.002442355500534177,
-0.02251484803855419,
0.011103103868663311,
0.017029859125614166,
0.017060933634638786,
-0.061421845108270645,
0.018598288297653198,
0.04102163016796112,
-0.052658360451459885,
0.022972460836172104,
0.0003275595372542739,
-0.04126680642366409,
0.020419536158442497,
0.01909503899514675,
0.017804065719246864,
0.007783659268170595,
0.001957571366801858,
0.0009709639707580209,
0.03286987915635109,
0.005751750431954861,
0.034928955137729645,
0.08699709922075272,
-0.001032735570333898,
0.051092490553855896,
0.018149083480238914,
0.016179069876670837,
0.03444591537117958,
0.0104574179276824,
-0.02381996065378189,
0.011788366362452507,
0.06327393651008606,
0.007985040545463562,
0.012839192524552345,
0.018147196620702744,
-0.016612788662314415,
-0.01000688225030899,
-0.027083463966846466,
0.004080832004547119,
-0.04053104668855667,
-0.00801063422113657,
-0.011139575392007828,
0.004136848263442516,
0.06323516368865967,
-0.03310109302401543,
0.04026136174798012,
0.0574764758348465,
-0.02323048934340477,
-0.007080931216478348,
0.026655009016394615,
0.05656158924102783,
0.024328745901584625,
0.03725006803870201,
0.0297615397721529,
-0.013497522100806236,
0.0026064550038427114,
0.05239494889974594,
0.029293106868863106,
0.013809716328978539,
0.025505751371383667,
-0.031086640432476997,
0.02594538778066635,
-0.01116951648145914,
0.00784730352461338,
0.021613288670778275,
0.030381159856915474,
-0.02316858433187008,
0.016067931428551674,
0.00517034437507391,
-0.04395593702793121,
0.018204396590590477,
0.017765121534466743,
-0.012656018137931824,
0.0005434218910522759,
-0.016953760758042336,
0.00991786364465952,
0.04964395985007286,
-0.027026746422052383,
-0.025470925495028496,
-0.022590965032577515,
-0.0117334621027112,
-0.00466301990672946,
0.033067647367715836,
0.007475435733795166,
-0.024032389745116234,
-0.03449861332774162,
-0.017279520630836487,
-0.02314283698797226,
0.033133070915937424,
-0.028974656015634537,
-0.026970043778419495,
0.058530326932668686,
0.02321496419608593,
-0.0069353762082755566,
0.016144506633281708,
0.039110373705625534,
0.02281840518116951,
-0.01600179634988308,
-0.008464915677905083,
-0.024692116305232048,
-0.03101303242146969,
0.005151822231709957,
-0.04901246726512909,
0.024254323914647102,
-0.015282252803444862,
0.032008472830057144,
0.010868082754313946,
0.02362416684627533,
-0.026629943400621414,
-0.017319319769740105,
-0.031476374715566635,
-0.016573777422308922,
0.0015326684806495905,
0.00848075095564127,
0.030238572508096695,
-0.009594934992492199,
0.006458313204348087,
-0.013831800781190395,
-0.02892874926328659,
-0.00818683672696352,
0.002012359444051981,
0.031146131455898285,
-0.018612727522850037,
-0.023460667580366135,
-0.03817015141248703,
0.07028764486312866,
-0.0011051363544538617,
0.03645533695816994,
0.021367859095335007,
0.007471629884094,
0.03614253178238869,
-0.05857548862695694,
0.004341348074376583,
-0.03422774001955986,
0.014826049096882343,
-0.03665028512477875,
-0.03919891268014908,
-0.01081062387675047,
0.03550992161035538,
-0.022384418174624443,
-0.01686081849038601,
-0.011659997515380383,
0.009321830235421658,
-0.06293263286352158,
0.0009096169378608465,
0.004349472466856241,
0.026867156848311424,
0.03073742799460888,
0.008807642385363579,
0.03817120939493179,
0.03263881057500839,
-0.019657006487250328,
-0.04008856043219566,
-0.04166213423013687,
0.024484645575284958,
0.06254343688488007,
-0.0006656527984887362,
-0.014891167171299458,
-0.029550844803452492,
-0.03249497711658478,
-0.0029305957723408937,
-0.004452887922525406,
-0.005360837560147047,
0.05974428728222847,
-0.03173418343067169,
-0.01257298607379198,
-0.0018556158756837249,
-0.009231909178197384,
-0.0031872650142759085,
0.007067542988806963,
0.02660997025668621,
-0.04494195058941841,
0.00007861616177251562,
0.013086688704788685,
-0.02873319387435913,
-0.034805018454790115,
-0.007604419719427824,
0.015606262721121311,
0.045660898089408875,
0.031710218638181686,
-0.0007479421328753233,
0.0014287211233749986,
-0.017149001359939575,
0.03249812498688698,
0.0070266928523778915,
0.005546219181269407,
-0.024431077763438225,
0.0199686661362648,
0.012317773886024952,
-0.02300071530044079,
-0.02835802547633648,
0.05488630756735802,
0.03251492232084274,
0.004617772065103054,
0.007553430739790201,
-0.0032891365699470043,
0.008257775567471981,
-0.024652322754263878,
0.034254807978868484,
-0.020951762795448303,
0.09102382510900497,
0.047370098531246185,
0.022821322083473206,
-0.0004000164335593581,
0.023343004286289215
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Recap Encoder-Decoder Model First, let\'s do a quick recap of the encoder-decoder architecture. The encoder (shown in green) is a stack of encoder blocks. Each encoder block is composed of a bi-directional self-attention layer, and two feed-forward layers \({}^1\). The decoder (shown in orange) is a stack of decoder blocks, followed by a dense layer, called LM Head. Each decoder block is composed of a uni-directional self-attention layer, a cross-attention layer, and two feed-forward layers. The encoder maps the input sequence \(\mathbf{X}{1:n}\) to a contextualized encoded sequence \(\mathbf{\overline{X}}{1:n}\) in the exact same way BERT does. The decoder then maps the contextualized encoded sequence \(\mathbf{\overline{X}}{1:n}\) and a target sequence \(\mathbf{Y}{0:m-1}\) to the logit vectors \(\mathbf{L}{1:m}\). Analogous to GPT2, the logits are then used to define the distribution of the target sequence \(\mathbf{Y}{1:m}\) conditioned on the input sequence \(\mathbf{X}{1:n}\) by means of a softmax operation. To put it into mathematical terms, first, the conditional distribution is factorized into \(m - 1\) conditional distributions of the next word \(\mathbf{y}i\) by Bayes\' rule. $$ p{\theta_{\text{enc, dec}}}(\mathbf{Y}{1:m} | \mathbf{X}{1:n}) = p_{\theta_{\text{dec}}}(\mathbf{Y}{1:m} | \mathbf{\overline{X}}{1:n}) = \prod_{i=1}^m p_{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i -1}, \mathbf{\overline{X}}{1:n}), \text{ with } \mathbf{\overline{X}}{1:n} = f_{\theta_{\text{enc}}}(\mathbf{X}{1:n}). $$ Each \"next-word\" conditional distributions is thereby defined by the softmax of the logit vector as follows. $$ p{\theta_{\text{dec}}}(\mathbf{y}i | \mathbf{Y}{0: i -1}, \mathbf{\overline{X}}{1:n}) = \textbf{Softmax}(\mathbf{l}_i). $$ For more detail, please refer to the Encoder-Decoder notebook. | [
0.03652266412973404,
-0.02087125927209854,
0.06582975387573242,
-0.03551356866955757,
0.07103225588798523,
0.07060138881206512,
-0.021967368200421333,
-0.005872990470379591,
-0.014882246032357216,
0.0017349766567349434,
-0.06130130961537361,
0.06361812353134155,
-0.004988660104572773,
0.06224824860692024,
-0.04833878204226494,
0.019122686237096786,
0.017695458605885506,
-0.089891716837883,
0.011728583835065365,
-0.05144016072154045,
0.02529158629477024,
-0.08102414757013321,
0.05704457312822342,
-0.033704619854688644,
0.012754452414810658,
-0.016246484592556953,
-0.04131979122757912,
0.002513966988772154,
-0.05915290489792824,
0.055482085794210434,
-0.08422056585550308,
0.0065613132901489735,
0.005924904718995094,
-0.04248620942234993,
-0.027449188753962517,
-0.03038950264453888,
-0.1665571630001068,
0.021548844873905182,
0.019422346726059914,
0.002702157711610198,
-0.040802422910928726,
-0.03982342779636383,
-0.0767369419336319,
0.053604379296302795,
-0.013159421272575855,
-0.012190643697977066,
-0.19628600776195526,
0.0625438392162323,
-0.05779379978775978,
-0.04726225137710571,
-0.07542162388563156,
0.05620738863945007,
-0.09784482419490814,
0.06821878254413605,
-0.04517446458339691,
-0.004455137066543102,
0.017216145992279053,
-0.056142933666706085,
0.0385592021048069,
-0.00401125056669116,
0.028731096535921097,
0.04204898327589035,
0.0022913736756891012,
0.05759134143590927,
0.013889763504266739,
-0.009166613221168518,
-0.0025708579923957586,
-0.009264303371310234,
-0.00577567471191287,
0.006668404210358858,
-0.05978801101446152,
-0.03284580633044243,
-0.011815316043794155,
0.0032550408504903316,
0.002570579992607236,
-0.06186529994010925,
0.029614731669425964,
0.016121214255690575,
0.03071255423128605,
0.004221806302666664,
0.00823047012090683,
0.012957506813108921,
0.0344596765935421,
0.07582098245620728,
0.037214744836091995,
0.024521108716726303,
0.045405998826026917,
-0.07936988025903702,
-0.049093056470155716,
0.08559657633304596,
-0.08102268725633621,
-0.15568876266479492,
0.015557998791337013,
0.008343670517206192,
0.026118077337741852,
-0.029347876086831093,
0.003929564729332924,
0.0051252045668661594,
-0.005451108794659376,
-0.016240352764725685,
0.022576240822672844,
-0.002231503836810589,
0.063068687915802,
-0.02391859143972397,
-0.030245164409279823,
0.03183576092123985,
-0.02486833557486534,
-0.10078664869070053,
-0.08587414026260376,
0.00661642849445343,
0.03764111548662186,
-0.0248472448438406,
-0.008697543293237686,
0.00799690093845129,
-0.08686389774084091,
0.01511991024017334,
0.030289670452475548,
-0.028185712173581123,
0.014707433991134167,
0.04755403846502304,
-0.028247429057955742,
0.055960267782211304,
0.025662070140242577,
-0.01850573532283306,
0.018284203484654427,
-0.004944527056068182,
-0.04928523302078247,
-0.008411937393248081,
-0.025726767256855965,
-0.03824396803975105,
0.0728812962770462,
-0.014710965566337109,
0.06208020821213722,
0.03143303841352463,
-0.02622394822537899,
-0.02599206753075123,
-0.019684094935655594,
-0.03566444292664528,
-0.01645056903362274,
-0.021701838821172714,
-0.10096646845340729,
0.035539839416742325,
0.013793748803436756,
0.002688074018806219,
0.04586424678564072,
0.0007479462074115872,
-0.06507398933172226,
0.06688543409109116,
0.05024418979883194,
0.04560769349336624,
-0.02652294933795929,
-0.01508118025958538,
0.026721077039837837,
-0.06005682051181793,
0.005154332611709833,
0.022935926914215088,
0.021708721294999123,
-0.05439993366599083,
-0.07545796781778336,
0.008258446119725704,
0.03251352906227112,
0.023282742127776146,
-0.020259365439414978,
0.016886785626411438,
0.036080267280340195,
-0.05766682326793671,
0.02323031984269619,
0.01986703835427761,
-0.047120679169893265,
0.032703857868909836,
-0.05156248062849045,
-0.016012119129300117,
0.09537601470947266,
0.03369336947798729,
-0.03358472138643265,
0.01782827079296112,
0.027012823149561882,
0.08541936427354813,
-0.004644853062927723,
-0.0346817709505558,
-0.030978187918663025,
-0.03068958781659603,
0.03662261739373207,
-0.004950969014316797,
-0.01844753883779049,
-0.03803094103932381,
0.00185577932279557,
-0.050494756549596786,
-0.04842539504170418,
0.05160040408372879,
-0.03729693219065666,
-0.01636999100446701,
0.04488828405737877,
-0.040564388036727905,
0.047674160450696945,
-0.05474613606929779,
-0.03483716398477554,
0.09583849459886551,
0.09989392757415771,
0.025148466229438782,
0.05524853989481926,
0.007081484422087669,
0.042148392647504807,
-0.021031316369771957,
0.011223128996789455,
-0.007814906537532806,
0.008060666732490063,
-0.02874070778489113,
0.047368913888931274,
-0.02628447487950325,
0.0037715472280979156,
-0.04948902502655983,
-0.029577599838376045,
-0.09390486776828766,
0.03717801719903946,
-0.017587140202522278,
0.05168163776397705,
0.03201404958963394,
-0.012030704878270626,
0.012262380681931973,
0.1336938440799713,
-0.07001226395368576,
-0.006406436674296856,
-0.026424920186400414,
0.021390466019511223,
0.0019512010039761662,
0.0707191601395607,
-0.03328360244631767,
0.08774163573980331,
-0.02462998405098915,
-0.034384194761514664,
-0.05963617190718651,
0.05856270343065262,
0.003380879294127226,
-0.020684652030467987,
-0.031088700518012047,
-0.008603175170719624,
0.029157577082514763,
0.04879910126328468,
-0.07585549354553223,
0.031045906245708466,
-0.0009175916784442961,
0.005968496669083834,
-0.008918875828385353,
-0.08771511912345886,
-0.010310857556760311,
0.03656131401658058,
-0.0016363339964300394,
-0.08037520200014114,
0.01805104874074459,
-0.05236198753118515,
0.0521601140499115,
0.008730282075703144,
-0.0821259468793869,
0.004930156748741865,
0.06108102947473526,
-0.009391425177454948,
-0.04190989211201668,
-0.006058435887098312,
0.00846162810921669,
-0.018068376928567886,
-0.007052787113934755,
0.0051862685941159725,
-0.052290767431259155,
-0.04001474753022194,
-0.01316159125417471,
0.00001744624023558572,
0.030428411439061165,
-0.012355797924101353,
0.02400660328567028,
0.004026569426059723,
0.004044963978230953,
0.05133514478802681,
0.045877400785684586,
0.06078355759382248,
-0.016403665766119957,
0.039146967232227325,
-0.0626162737607956,
-0.025727948173880577,
-0.0400407612323761,
0.016051752492785454,
-0.01915040798485279,
0.04999127984046936,
0.04906105622649193,
0.0351400189101696,
0.006437799893319607,
-0.013148549944162369,
0.008075105957686901,
0.019884461537003517,
0.02594071440398693,
0.02760913223028183,
0.03188745304942131,
-0.002153454814106226,
-0.0021251633297652006,
0.0069185649044811726,
-0.022974614053964615,
-0.014671542681753635,
-0.004480131436139345,
-0.020512789487838745,
0.039290763437747955,
0.009227716363966465,
0.05328139290213585,
0.009850465692579746,
0.007794581353664398,
-0.014943607151508331,
0.011545312590897083,
0.05841519683599472,
0.08781304210424423,
-0.09988024085760117,
-0.04170484468340874,
0.02126404084265232,
-0.010290701873600483,
0.012024302035570145,
-0.04521079361438751,
0.05640917271375656,
0.028215155005455017,
-0.025294171646237373,
-0.029849372804164886,
0.05503905937075615,
-0.02027272619307041,
0.018102038651704788,
0.0016939155757427216,
-0.017171287909150124,
-0.02410227805376053,
-0.0007711420184932649,
-0.007244049571454525,
0.05528087541460991,
-0.01643831469118595,
0.023460498079657555,
0.0218108631670475,
0.0025173048488795757,
0.001507256063632667,
-0.038023803383111954,
-0.010488118045032024,
0.037623122334480286,
-0.014859051443636417,
0.008485718630254269,
-0.006699176970869303,
-0.05607088655233383,
-0.025392333045601845,
-0.006689036730676889,
-0.011265372857451439,
-0.026198426261544228,
0.00812081340700388,
0.02667444944381714,
-0.00365179474465549,
0.02063489519059658,
0.06310095638036728,
0.029720190912485123,
0.03707071766257286,
0.010192504152655602,
0.0027041323482990265,
0.031795479357242584,
-0.017591292038559914,
0.03982327878475189,
-0.01032768003642559,
0.010644434951245785,
-0.040435176342725754,
-0.0344388373196125,
-0.037907134741544724,
-0.027272479608654976,
0.03596026077866554,
0.02208031713962555,
0.006355005782097578,
-0.0066972048953175545,
0.00039942795410752296,
0.03663923218846321,
0.022071650251746178,
-0.021061768755316734,
0.01128869317471981,
-0.008777911774814129,
-0.02287250943481922,
-0.02681039646267891,
0.021233627572655678,
0.02873903140425682,
0.024579619988799095,
-0.016317900270223618,
0.034937214106321335,
-0.011337351985275745,
0.0031296832021325827,
0.012043931521475315,
0.004537391476333141,
0.012674098834395409,
0.02644706889986992,
-0.029926961287856102,
0.011543983593583107,
0.09768056124448776,
-0.008666629903018475,
0.021262384951114655,
0.017038580030202866,
-0.04079096391797066,
0.005773620214313269,
0.010158133693039417,
0.015720585361123085,
-0.00411394564434886,
-0.016485700383782387,
0.03738036006689072,
0.0004935653996653855,
0.011305520310997963,
-0.01706327497959137,
0.014502731151878834,
0.028057580813765526,
-0.008755490183830261,
0.02017941325902939,
0.006829042918980122,
0.014482934027910233,
0.03449832648038864,
0.03893807902932167,
0.02085353620350361,
-0.07488089054822922,
-0.008718091994524002,
-0.016332117840647697,
-0.016910644248127937,
0.04640103504061699,
-0.022745076566934586,
-0.02185167372226715,
0.04797099903225899,
-0.026995383203029633,
0.031041087582707405,
-0.008929385803639889,
0.023811157792806625,
0.018889717757701874,
0.044828321784734726,
-0.0012531442334875464,
-0.027345875278115273,
-0.08550473302602768,
0.0070732212625443935,
0.0042802696116268635,
-0.013630206696689129,
-0.021130627021193504,
0.003857477568089962,
-0.003872830653563142,
0.02432137168943882,
-0.008688594214618206,
0.03427328169345856,
0.0039616734720766544,
-0.01228833757340908,
-0.028818117454648018,
-0.03228696808218956,
-0.0061706118285655975,
0.03472539037466049,
-0.03152933344244957,
0.03385923430323601,
0.03123314306139946,
0.03308563679456711,
0.04314151778817177,
0.011285620741546154,
-0.07325000315904617,
-0.008093341253697872,
0.01251847855746746,
0.051521919667720795,
-0.033647023141384125,
0.011683821678161621,
-0.017027176916599274,
-0.026398060843348503,
0.00903227087110281,
-0.029635213315486908,
0.015322512947022915,
0.04175567626953125,
-0.004030630923807621,
-0.09025635570287704,
0.021346740424633026,
-0.008661551401019096,
-0.016424132511019707,
0.012053286656737328,
0.051011014729738235,
0.0029931727331131697,
0.028949350118637085,
0.011779747903347015,
-0.0017939824610948563,
-0.07019148766994476,
0.013255375437438488,
0.028305690735578537,
0.030698496848344803,
-0.03445969894528389,
-0.031262967735528946,
0.0321882925927639,
0.005372514016926289,
0.010075938887894154,
-0.010668110102415085,
0.02176813781261444,
-0.004367116838693619,
-0.0066688149236142635,
0.005773945711553097,
-0.02454778552055359,
-0.001737551880069077,
-0.012118770740926266,
0.004850055556744337,
-0.02467835508286953,
0.008462563157081604,
-0.007294970098882914,
-0.0022764564491808414,
-0.0014026535209268332,
0.0155419260263443,
0.06482799351215363,
0.05319182947278023,
-0.0120964664965868,
0.04109344631433487,
0.06010248512029648,
-0.005098139401525259,
0.021218454465270042,
-0.029752489179372787,
0.0010899733752012253,
0.023331791162490845,
0.013125298544764519,
0.02531794086098671,
-0.024499770253896713,
-0.003168317722156644,
0.02936677820980549,
0.03491273894906044,
-0.010247980244457722,
-0.015062629245221615,
0.028618134558200836,
-0.04641875624656677,
0.0044062938541173935,
-0.03531757742166519,
-0.003734021680429578,
-0.0202636756002903,
0.025552161037921906,
-0.03661057725548744,
-0.009598548524081707,
-0.002226924756541848,
0.001745239133015275,
-0.053970012813806534,
-0.041885923594236374,
0.006133062765002251,
0.02237808145582676,
0.053987350314855576,
-0.00907378364354372,
0.0036484107840806246,
-0.02214980684220791,
0.022238418459892273,
0.0027818467933684587,
-0.035807352513074875,
-0.020807385444641113,
-0.0008017271175049245,
-0.0018991511315107346,
0.02183631621301174,
0.05527201667428017,
-0.0511411651968956,
-0.03601042181253433,
0.03458896279335022,
-0.031511761248111725,
-0.024277102202177048,
-0.023034239187836647,
0.04590114206075668,
0.013493375852704048,
0.028495177626609802,
0.028388602659106255,
-0.004482272081077099,
-0.0188808124512434,
0.036873988807201385,
-0.04323329031467438,
0.02059296704828739,
0.04581902176141739,
-0.018107393756508827,
0.036498963832855225,
0.0009595743031241,
0.04245027154684067,
0.0031774777453392744,
-0.008375504054129124,
0.03779720142483711,
0.023224331438541412,
0.04254399985074997,
0.04005879536271095,
-0.011546430177986622,
-0.005573836620897055,
0.02422071434557438,
0.02386780083179474,
-0.028313910588622093,
0.0004490925057325512,
-0.00649361964315176,
-0.019498201087117195,
0.023224448785185814,
-0.018292125314474106,
-0.01314392127096653,
0.02107090689241886,
0.010629282332956791,
0.010458353906869888,
0.004289287608116865,
-0.036685045808553696,
0.0010543756652623415,
-0.011444956995546818,
-0.027134962379932404,
0.020758455619215965,
0.08028838783502579,
0.009683452546596527,
0.037725213915109634,
0.006160189863294363,
0.0058561209589242935,
0.053227733820676804,
0.023805320262908936,
0.006161088589578867,
0.011054938659071922,
0.03188304230570793,
0.00875167828053236,
0.02038693055510521,
0.019005168229341507,
-0.0031863574404269457,
0.0337652824819088,
-0.026116380468010902,
-0.011517244391143322,
-0.042362991720438004,
0.02498622238636017,
0.006742988713085651,
-0.04887346550822258,
0.05078822746872902,
-0.033656779676675797,
0.035478271543979645,
0.06572392582893372,
0.007950820960104465,
-0.002419484779238701,
0.020856650546193123,
0.0352209247648716,
0.024335214868187904,
0.031476378440856934,
0.03880758211016655,
-0.009486059658229351,
-0.0022372575476765633,
0.02985522150993347,
0.01399948913604021,
0.04292377457022667,
0.014275722205638885,
-0.06438792496919632,
0.006026113871484995,
-0.011355284601449966,
-0.011978396214544773,
-0.00038788921665400267,
0.01916065253317356,
-0.03810977190732956,
-0.01929461769759655,
-0.0117863230407238,
-0.026299968361854553,
0.0065485453233122826,
0.05069594085216522,
0.014418420381844044,
0.012349365279078484,
-0.015965253114700317,
0.0003554775030352175,
0.031744588166475296,
-0.0036511190701276064,
-0.004873531870543957,
-0.0405416376888752,
-0.018141889944672585,
0.0028585297986865044,
0.0050190528854727745,
-0.016711004078388214,
-0.03576159104704857,
-0.021684207022190094,
0.03938605636358261,
-0.07592084258794785,
0.022689836099743843,
-0.017579490318894386,
-0.03828279674053192,
0.06539920717477798,
0.01530330628156662,
-0.010388001799583435,
0.017728442326188087,
0.00673723267391324,
0.0010205411817878485,
-0.027606187388300896,
0.0001146124632214196,
-0.026145847514271736,
-0.01009453646838665,
-0.038183748722076416,
-0.010862152092158794,
-0.02463102713227272,
0.008753840811550617,
0.030663179233670235,
0.034154631197452545,
0.025658167898654938,
-0.024049699306488037,
-0.042246293276548386,
-0.011968863196671009,
0.013738925568759441,
-0.019160211086273193,
0.00782432034611702,
0.024024955928325653,
0.010179797187447548,
0.011361604556441307,
0.00019796415290329605,
-0.01896381564438343,
-0.041312914341688156,
0.031579941511154175,
0.025081943720579147,
0.005559196230024099,
-0.013071014545857906,
-0.006166860461235046,
0.049022361636161804,
-0.010378009639680386,
0.027919486165046692,
0.04279713332653046,
0.027769872918725014,
0.012617630884051323,
-0.04405803978443146,
0.00849038828164339,
-0.017002273350954056,
0.0037769677583128214,
-0.020097868517041206,
-0.051421262323856354,
-0.011470633558928967,
0.016424382105469704,
0.01980016753077507,
0.012900029309093952,
-0.033405203372240067,
0.005148500669747591,
-0.03244905546307564,
-0.011774327605962753,
-0.004235501866787672,
0.03550070896744728,
0.03516572341322899,
-0.017260072752833366,
0.018578972667455673,
-0.029277386143803596,
-0.026006270200014114,
-0.05092039331793785,
-0.022718265652656555,
0.02646520547568798,
0.06714767962694168,
0.03236201032996178,
0.024212593212723732,
0.008618531748652458,
-0.033134575933218,
-0.018953487277030945,
-0.007568589877337217,
0.002370173344388604,
0.009340118616819382,
-0.016919370740652084,
-0.004208758007735014,
0.015064162202179432,
-0.0020283698104321957,
0.00047249204362742603,
-0.006771466229110956,
0.037378523498773575,
-0.0055600982159376144,
-0.030537405982613564,
0.016258681192994118,
-0.02625654637813568,
-0.02947079949080944,
-0.004549320787191391,
0.0075401668436825275,
0.039841178804636,
0.02123507298529148,
0.03519098088145256,
0.04363870993256569,
0.0019603148102760315,
-0.00366893969476223,
0.008399911224842072,
-0.009114331565797329,
-0.010463076643645763,
-0.010882186703383923,
-0.0012402049032971263,
-0.04250488430261612,
-0.008233621716499329,
0.01777803711593151,
0.025032205507159233,
0.011385195888578892,
0.004846401046961546,
-0.01720690354704857,
0.017642073333263397,
-0.05041586980223656,
0.05627584084868431,
-0.01031604316085577,
0.08781227469444275,
-0.009225760586559772,
0.03598193824291229,
0.030704127624630928,
0.022018736228346825
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Sentence Fusion and -Splitting (DiscoFuse, WikiSplit) Sentence Fusion is the task of combining multiple sentences into a single coherent sentence. E.g. the two sentences: As a run-blocker, Zeitler moves relatively well. Zeitler too often struggles at the point of contact in space. should be connected with a fitting linking word, such as: As a run-blocker, Zeitler moves relatively well. However, he too often struggles at the point of contact in space. As can be seen the linking word \"however\" provides a coherent transition from the first sentence to the second one. A model that is capable of generating such a linking word has arguably learned to infer that the two sentences above contrast to each other. The inverse task is called Sentence splitting and consists of splitting a single complex sentence into multiple simpler ones that together retain the same meaning. Sentence splitting is considered as an important task in text simplification, cf. to Botha et al. (2018). As an example, the sentence: Street Rod is the first in a series of two games released for the PC and Commodore 64 in 1989 can be simplified into Street Rod is the first in a series of two games . It was released for the PC and Commodore 64 in 1989 It can be seen that the long sentence tries to convey two important pieces of information. One is that the game was the first of two games being released for the PC, and the second being the year in which it was released. Sentence splitting, therefore, requires the model to understand which part of the sentence should be divided into two sentences, making the task more difficult than sentence fusion. A common metric to evaluate the performance of models on sentence fusion resp. -splitting tasks is SARI (Wu et al. (2016), which is broadly based on the F1-score of label and model output. Let\'s see how the models perform on sentence fusion and -splitting. |Model | 100% DiscoFuse (SARI) |10% DiscoFuse (SARI) |100% WikiSplit (SARI) |---------------------- |----------------------- |---------------------- |----------------------- |Rnd2Rnd | 86.9 | 81.5 | 61.7 |Rnd2BERT | 87.6 | 82.1 | 61.8 |BERT2Rnd | 89.3 | 86.1 | 63.1 |Rnd2GPT2 | 86.5 | 81.4 | 61.3 |BERT2BERT | 89.3 | 86.1 | 63.2 |BERTShare | 89.2 | 86.0 | 63.5 |RoBERTaShare | 89.7 | 86.0 | 63.4 |BERT2GPT2 | 88.4 | 84.1 | 62.4 |RoBERTa2GPT2 | 89.9 | 87.1 | 63.2 |--- | --- | --- | --- |RoBERTaShare (large) | 90.3 | 87.7 | 63.8 The first two columns show the performance of the encoder-decoder models on the DiscoFuse evaluation data. The first column states the results of encoder-decoder models trained on all (100%) of the training data, while the second column shows the results of the models trained only on 10% of the training data. We observe that warm-started models perform significantly better than the randomly initialized baseline models Rnd2Rnd, Rnd2Bert, and Rnd2GPT2. A warm-started RoBERTa2GPT2 model trained only on 10% of the training data is on par with an Rnd2Rnd model trained on 100% of the training data. Interestingly, the Bert2Rnd baseline performs equally well as a fully warm-started Bert2Bert model, which indicates that warm-starting the encoder-part is more effective than warm-starting the decoder-part. The best results are obtained by RoBERTa2GPT2, followed by RobertaShare. Sharing encoder and decoder weight parameters does seem to slightly increase the model\'s performance. On the more difficult sentence splitting task, a similar pattern emerges. Warm-started encoder-decoder models significantly outperform encoder-decoder models whose encoder is randomly initialized and encoder-decoder models with shared weight parameters yield better results than those with uncoupled weight parameters. On sentence splitting the BertShare models yields the best performance closely followed by RobertaShare. In addition to the 12-layer model variants, the authors also trained and evaluated a 24-layer RobertaShare (large) model which outperforms all 12-layer models significantly. | [
0.022469475865364075,
0.029431818053126335,
0.02442772127687931,
0.020902100950479507,
0.08870600163936615,
0.05304953455924988,
-0.03872644901275635,
0.025636430829763412,
-0.06280620396137238,
-0.05990223586559296,
-0.04018525406718254,
-0.04488075152039528,
-0.06310101598501205,
0.01909519173204899,
-0.06384876370429993,
0.10553939640522003,
0.03883444145321846,
-0.030768387019634247,
0.04530380293726921,
-0.08887455612421036,
-0.012929165735840797,
0.051851991564035416,
-0.010389627888798714,
0.00560425641015172,
0.1039971336722374,
0.00013110222062096,
-0.005972492974251509,
-0.03259165585041046,
-0.006563228089362383,
0.043758127838373184,
-0.040636733174324036,
-0.022534364834427834,
-0.047785889357328415,
0.03319578617811203,
0.00791686587035656,
0.040185604244470596,
-0.05665203928947449,
0.048265665769577026,
0.060607947409152985,
-0.05597949028015137,
-0.05876817926764488,
-0.03721374273300171,
-0.007697324734181166,
-0.05539150908589363,
0.0036842268891632557,
-0.007295344024896622,
-0.08732834458351135,
0.11004228889942169,
-0.07208027690649033,
-0.0490448884665966,
-0.08871744573116302,
0.017747750505805016,
-0.004322133958339691,
-0.026766842231154442,
-0.03637465089559555,
0.033653873950242996,
-0.008760131895542145,
-0.053431835025548935,
0.09099035710096359,
0.040656182914972305,
0.002570453332737088,
-0.08295425027608871,
-0.0165848471224308,
-0.0145383570343256,
0.023956432938575745,
0.02499249391257763,
-0.055212631821632385,
0.06782335788011551,
-0.10753920674324036,
-0.014485129155218601,
0.04286472126841545,
0.014131576754152775,
-0.013924737460911274,
-0.012464889325201511,
0.0676758661866188,
-0.028277738019824028,
0.02372894249856472,
0.03160867094993591,
-0.026894232258200645,
-0.09162380546331406,
-0.02137111872434616,
0.03861190751194954,
0.012237190268933773,
0.053941383957862854,
0.027251077815890312,
-0.08862782269716263,
-0.04935567453503609,
-0.008868912234902382,
-0.07819703221321106,
0.06394309550523758,
0.03933339938521385,
-0.07574138045310974,
0.011891217902302742,
0.08974562585353851,
0.029232675209641457,
0.024431442841887474,
0.032259076833724976,
0.032070063054561615,
-0.01339389756321907,
-0.03068631887435913,
0.04965178668498993,
-0.03630121052265167,
0.06720872223377228,
-0.007177975028753281,
0.02711612358689308,
0.08812752366065979,
-0.06299199163913727,
0.05808253586292267,
-0.0001858511968748644,
0.056924499571323395,
0.014669213443994522,
0.05411244556307793,
-0.020669111981987953,
0.0703878179192543,
-0.0963028147816658,
0.03486303240060806,
0.017672495916485786,
0.07839538156986237,
-0.07355150580406189,
0.03080068901181221,
-0.012856918387115002,
0.04176836460828781,
0.10683663189411163,
0.04718601703643799,
-0.005269892048090696,
0.022520901635289192,
-0.012578574009239674,
0.004495023284107447,
0.021331632509827614,
-0.0014830961590632796,
0.007756460923701525,
0.037226174026727676,
0.01653771661221981,
0.006395659875124693,
-0.04020216688513756,
-0.0805269330739975,
0.02437497302889824,
-0.010220414958894253,
0.02022976614534855,
-0.04317929223179817,
0.028727469965815544,
0.030044596642255783,
-0.023570187389850616,
0.03319045901298523,
-0.028319811448454857,
0.0843028798699379,
-0.06800507754087448,
-0.02344379760324955,
0.02398630790412426,
0.03677104786038399,
-0.04099538177251816,
0.012343645095825195,
-0.06620996445417404,
-0.04073353111743927,
0.0578618086874485,
0.04681575670838356,
0.010596263222396374,
0.013820060528814793,
0.034454282373189926,
-0.017608938738703728,
0.03334978595376015,
0.0036525498144328594,
-0.023332582786679268,
0.010334915481507778,
0.013769341632723808,
-0.013802888803184032,
-0.01949245296418667,
0.07765095680952072,
0.00938643142580986,
-0.01712041161954403,
-0.024759480729699135,
-0.01651124469935894,
0.05127229541540146,
-0.06761125475168228,
0.007308088708668947,
0.05855468288064003,
0.045311104506254196,
0.09006787836551666,
0.008640330284833908,
-0.011889692395925522,
0.008222226984798908,
-0.03349936753511429,
-0.035267673432826996,
0.006006335373967886,
-0.0037871673703193665,
-0.02520265057682991,
0.06800497323274612,
-0.09460709989070892,
0.0487799197435379,
0.05951685085892677,
-0.03267613798379898,
-0.04166273772716522,
0.039909135550260544,
-0.0056908768601715565,
0.08433422446250916,
-0.07493115216493607,
-0.0649302676320076,
0.06379221379756927,
0.08547576516866684,
0.03927694633603096,
0.042473096400499344,
-0.04713991656899452,
0.04720126464962959,
-0.011069468222558498,
-0.0348249152302742,
0.013859482482075691,
0.055167220532894135,
-0.04467342421412468,
0.05223701894283295,
-0.025806168094277382,
0.014514037407934666,
-0.06589020788669586,
0.047091301530599594,
-0.07653025537729263,
-0.046084389090538025,
-0.03081606887280941,
0.010506222024559975,
0.02204430289566517,
-0.005983957555145025,
-0.006158481352031231,
0.0995909571647644,
-0.026518842205405235,
-0.010567592456936836,
0.0025604935362935066,
0.020100850611925125,
0.025190236046910286,
0.034298211336135864,
0.06350729614496231,
-0.006085035391151905,
-0.020455345511436462,
-0.07868234813213348,
0.024876778945326805,
0.017544718459248543,
0.02971169538795948,
-0.02443472295999527,
0.0017605931498110294,
0.033014390617609024,
0.05586093291640282,
0.040588729083538055,
-0.025249864906072617,
0.02595464140176773,
-0.034791313111782074,
0.06001170352101326,
0.11339864879846573,
0.05725708231329918,
-0.02170933037996292,
0.07659502327442169,
-0.009995733387768269,
0.032399002462625504,
0.01090097613632679,
0.007338173687458038,
-0.010747569613158703,
0.00758225005120039,
-0.020179511979222298,
0.04704608395695686,
-0.019339127466082573,
0.027356674894690514,
-0.02689412049949169,
0.0007289742934517562,
-0.012173974886536598,
-0.06288545578718185,
-0.026787564158439636,
0.004612715449184179,
-0.028937790542840958,
0.02497694455087185,
-0.012513299472630024,
0.007001130376011133,
0.009025240316987038,
-0.01755646802484989,
0.015109286643564701,
-0.03365597501397133,
-0.04118872806429863,
0.0066165803000330925,
-0.007038874085992575,
0.012948832474648952,
-0.014719093218445778,
0.04074802249670029,
-0.04198494553565979,
-0.00796007551252842,
0.02201458066701889,
-0.0375535674393177,
-0.0017359742196276784,
0.023673271760344505,
0.033215899020433426,
-0.03440671041607857,
-0.008644651621580124,
-0.011559882201254368,
-0.03241909295320511,
-0.013136159628629684,
0.030203066766262054,
0.005840475205332041,
0.03563858941197395,
-0.0037692743353545666,
0.006100217346101999,
0.04468173906207085,
-0.004833977669477463,
-0.014451971277594566,
-0.021396856755018234,
-0.07647933065891266,
-0.06899731606245041,
0.004654611460864544,
0.01593426801264286,
-0.07023074477910995,
-0.0063676065765321255,
-0.005448576062917709,
0.0007665605517104268,
0.03775033727288246,
0.05375088378787041,
-0.08577359467744827,
-0.009201937355101109,
-0.002482066163793206,
-0.03471897169947624,
-0.01053101010620594,
0.0045624696649611,
0.07603131979703903,
-0.034689247608184814,
-0.028413068503141403,
-0.012276025488972664,
-0.0027372450567781925,
-0.039512332528829575,
-0.014632179401814938,
0.045372795313596725,
0.03858659788966179,
-0.002349885180592537,
0.03820308670401573,
0.018974771723151207,
-0.04784396290779114,
0.02257428504526615,
-0.028939632698893547,
0.010696389712393284,
-0.02140234224498272,
-0.0339878685772419,
-0.0037379900459200144,
-0.0016048793913796544,
-0.00599059509113431,
0.0030335853807628155,
0.042983733117580414,
-0.06906557083129883,
-0.02181716077029705,
0.012095434591174126,
-0.023138662800192833,
-0.0023305262438952923,
-0.0738678127527237,
-0.04136258736252785,
0.027088703587651253,
0.048310134559869766,
0.047076042741537094,
0.03272984176874161,
-0.0063915736973285675,
0.008566620759665966,
0.026599280536174774,
-0.014102530665695667,
-0.005656926427036524,
-0.017138764262199402,
-0.01944260112941265,
-0.013324915431439877,
-0.03100753203034401,
-0.037491753697395325,
-0.0003865822800435126,
0.008124349638819695,
0.030627416446805,
0.023140547797083855,
-0.002545393770560622,
-0.006314082536846399,
0.041128795593976974,
-0.00035642454167827964,
0.03984074667096138,
-0.04493148997426033,
-0.0423869788646698,
0.009352421388030052,
-0.029713939875364304,
-0.04261499643325806,
0.008040886372327805,
0.06580258905887604,
-0.0003583645448088646,
0.019011154770851135,
0.02258961647748947,
0.05889401212334633,
0.008908955380320549,
0.002294046338647604,
-0.006747460924088955,
0.006486903876066208,
-0.031127240508794785,
-0.007747985888272524,
-0.03828152269124985,
0.01985906809568405,
0.04666350409388542,
0.04318734630942345,
-0.0647939145565033,
-0.02699471451342106,
-0.03418174013495445,
-0.04731406643986702,
-0.00723679456859827,
-0.01841699704527855,
-0.0024857609532773495,
0.011513006873428822,
0.028696421533823013,
0.005713795777410269,
-0.02036595530807972,
-0.0209039393812418,
-0.005156089086085558,
0.028594955801963806,
-0.034171074628829956,
-0.012478422373533249,
-0.003213124116882682,
0.03481273353099823,
0.018711715936660767,
-0.03469746559858322,
0.03702390193939209,
-0.0029485425911843777,
0.00008067562157521024,
-0.03826014697551727,
0.030283711850643158,
0.010897570289671421,
-0.02881542034447193,
0.024698909372091293,
-0.02808203361928463,
-0.015919279307127,
0.061761241406202316,
0.00270612514577806,
-0.03652506694197655,
-0.0454157292842865,
0.02095135487616062,
0.009708154946565628,
-0.016352608799934387,
-0.03560097888112068,
-0.03320632502436638,
0.021853433921933174,
0.006410343572497368,
-0.01855373941361904,
0.06798357516527176,
-0.011270510964095592,
-0.03677655756473541,
0.03323863074183464,
-0.0023449852596968412,
-0.028504319489002228,
0.004738539457321167,
-0.027309665456414223,
-0.025350263342261314,
-0.0059042274951934814,
-0.013592718169093132,
0.013076097704470158,
0.026325806975364685,
-0.02452072873711586,
0.015312128700315952,
0.05807924270629883,
0.0057143704034388065,
0.0199872013181448,
0.008441082201898098,
-0.033093977719545364,
0.02329786866903305,
-0.013514135964214802,
-0.0013904602965340018,
-0.02639020048081875,
-0.02901678904891014,
-0.02144421637058258,
-0.017269451171159744,
0.014364457689225674,
-0.04325007647275925,
-0.013720917515456676,
-0.08686184883117676,
-0.021205533295869827,
0.033485401421785355,
-0.005034259054809809,
0.005556857213377953,
-0.017924651503562927,
0.005642774514853954,
0.06116257607936859,
-0.01082888524979353,
0.0068817706778645515,
-0.043001752346754074,
0.0060195219703018665,
0.016189081594347954,
-0.03502765670418739,
0.0032044844701886177,
0.005788199137896299,
-0.006929012481123209,
-0.004904385190457106,
-0.013353949412703514,
0.020532313734292984,
-0.012691128998994827,
-0.004267479293048382,
0.027556519955396652,
0.004898104816675186,
-0.028098737820982933,
0.07489930838346481,
0.004400521516799927,
-0.047279857099056244,
0.0035594196524471045,
-0.014466363936662674,
-0.04434571415185928,
-0.01508105918765068,
-0.018696801736950874,
-0.023738782852888107,
0.03325051814317703,
-0.021740267053246498,
-0.03454125300049782,
0.00086400838335976,
-0.015312308445572853,
0.008783240802586079,
0.017030976712703705,
-0.01671118475496769,
0.05006064474582672,
0.0013184561394155025,
-0.00819253921508789,
0.013527014292776585,
-0.020976189523935318,
0.013983550481498241,
0.019184188917279243,
0.014674141071736813,
0.013180755078792572,
-0.01901252195239067,
-0.013263355009257793,
0.021458406001329422,
-0.005423653870820999,
-0.004695040639489889,
-0.05954952910542488,
-0.05112394690513611,
-0.019044438377022743,
-0.03469882532954216,
-0.0050105140544474125,
0.01362475473433733,
0.007739929482340813,
0.03610224649310112,
-0.03991278260946274,
-0.03818930685520172,
-0.03221512585878372,
0.031588710844516754,
0.026796292513608932,
-0.015187922865152359,
-0.010028405115008354,
0.03210335969924927,
-0.006058363243937492,
-0.0022967937402427197,
0.029023954644799232,
0.025047780945897102,
-0.0004019482294097543,
0.003972264006733894,
0.012932764366269112,
0.035434141755104065,
0.039189890027046204,
0.013554812408983707,
-0.05368943512439728,
-0.007932404056191444,
0.00835602916777134,
-0.009403168223798275,
0.027671517804265022,
0.013319524936378002,
0.013433938845992088,
-0.016956500709056854,
-0.026881901547312737,
0.01465672254562378,
-0.045661311596632004,
0.019558172672986984,
0.027981944382190704,
-0.020964592695236206,
0.010464983992278576,
0.009024877101182938,
0.01951463334262371,
-0.024746155366301537,
-0.030496016144752502,
-0.022353528067469597,
0.05626677721738815,
-0.0011609751963987947,
0.04119102284312248,
0.0019249909091740847,
-0.015123153105378151,
-0.02508525736629963,
0.009834633208811283,
-0.0632132813334465,
-0.026440894231200218,
-0.009354897774755955,
-0.04277012497186661,
-0.030349528416991234,
-0.005712775979191065,
-0.05294618010520935,
0.005349815357476473,
0.024521490558981895,
0.02479908987879753,
-0.013471877202391624,
-0.009770828299224377,
0.03440595045685768,
-0.011084092780947685,
0.01944064348936081,
0.01347166858613491,
0.04384787380695343,
-0.037046048790216446,
-0.006312768906354904,
0.08042828738689423,
0.03266792371869087,
0.021291619166731834,
-0.009444298222661018,
-0.03292277827858925,
0.030744491145014763,
0.062321651726961136,
0.011405307799577713,
-0.004100887570530176,
-0.012624929659068584,
0.0005498948157764971,
-0.0015991702675819397,
-0.006321003194898367,
-0.029968375340104103,
-0.06489448249340057,
0.04641205444931984,
0.06111810356378555,
0.00787801668047905,
-0.016361627727746964,
0.0036302278749644756,
0.02671738900244236,
-0.04238855838775635,
-0.0011425612028688192,
-0.008412188850343227,
-0.0026779028121382,
0.013394992798566818,
0.016556046903133392,
0.04209958761930466,
0.039395153522491455,
-0.03170299902558327,
0.018440740182995796,
0.04691320285201073,
-0.004916479345411062,
0.025919966399669647,
0.011004578322172165,
0.012303070165216923,
-0.008162286132574081,
-0.031273119151592255,
0.009775678627192974,
0.03250119090080261,
0.0011134318774566054,
-0.0060447100549936295,
0.0183186586946249,
0.016544610261917114,
0.0026254779659211636,
0.0017613263335078955,
0.04850386455655098,
0.0407455675303936,
0.045665621757507324,
-0.04578213393688202,
0.0056922282092273235,
-0.028507813811302185,
-0.012842652387917042,
-0.022922568023204803,
-0.045768771320581436,
-0.02609938569366932,
0.03014915995299816,
-0.007044804748147726,
-0.06419514119625092,
-0.03209728002548218,
-0.04539429023861885,
-0.01798548921942711,
0.0036738039925694466,
0.030714116990566254,
-0.01860811747610569,
-0.027192426845431328,
0.006380971055477858,
0.005666251759976149,
-0.05878390371799469,
0.02191823534667492,
0.014798114076256752,
0.05784779414534569,
-0.03575589135289192,
0.06070714071393013,
0.023804495111107826,
-0.0027099272701889277,
-0.008167758584022522,
-0.031232252717018127,
-0.008959951810538769,
-0.0060185776092112064,
0.022985953837633133,
-0.024484185501933098,
0.028497029095888138,
0.01429067738354206,
-0.012112604454159737,
-0.00207089283503592,
-0.01986122317612171,
-0.020611988380551338,
-0.039559803903102875,
0.02655932307243347,
0.006186103448271751,
-0.031065301969647408,
-0.0377417616546154,
-0.00236304197460413,
-0.025005590170621872,
0.005207464098930359,
0.00483557116240263,
-0.022161705419421196,
-0.029796509072184563,
-0.02260795794427395,
-0.014582397416234016,
0.014370948076248169,
0.012960076332092285,
-0.0029600888956338167,
0.0267352107912302,
0.010403730906546116,
0.006534240208566189,
0.039087194949388504,
-0.0040136235766112804,
0.013485093601047993,
0.022707141935825348,
0.014807307161390781,
-0.046054136008024216,
0.004639483522623777,
0.012861888855695724,
0.04758019372820854,
-0.003426607698202133,
0.007291789632290602,
-0.0036129718646407127,
0.006454566027969122,
0.04816344752907753,
-0.027358537539839745,
0.002153298817574978,
-0.032140254974365234,
0.0035094248596578836,
0.05691476911306381,
0.020931702107191086,
-0.004823750350624323,
0.002673900919035077,
0.048728976398706436,
-0.021892189979553223,
0.00485837459564209,
-0.006082004867494106,
-0.007466487120836973,
0.03899649903178215,
-0.037580739706754684,
-0.007879704236984253,
-0.01873541995882988,
0.05769365653395653,
-0.054092682898044586,
-0.017914652824401855,
0.02498834952712059,
0.02895308844745159,
0.02124686725437641,
-0.013866398483514786,
0.018064429983496666,
-0.03749452903866768,
0.031533051282167435,
-0.0011233995901420712,
-0.022073347121477127,
-0.05623018369078636,
-0.015834243968129158,
0.06516798585653305,
0.020087605342268944,
0.05070023238658905,
0.0404498353600502,
-0.049224138259887695,
0.007317112758755684,
-0.05169885233044624,
-0.020591631531715393,
-0.05036212131381035,
-0.034709006547927856,
-0.027202431112527847,
0.05468878522515297,
-0.034354452043771744,
-0.004254924599081278,
0.0069731008261442184,
-0.001515257521532476,
-0.027011167258024216,
-0.002166904741898179,
0.09439753741025925,
0.016197271645069122,
-0.025416797026991844,
0.0586605966091156,
0.04018634930253029,
0.017739392817020416,
0.0017624980537220836,
0.03473973274230957,
0.006087317131459713,
0.024397969245910645
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Warm-starting encoder-decoder models (Analysis) In this section, we will summarize the findings on warm-starting encoder-decoder models as presented in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. The authors compared the performance of warm-started encoder-decoder models to randomly initialized encoder-decoder models on multiple sequence-to-sequence tasks, notably summarization, translation, sentence splitting, and sentence fusion. To be more precise, the publicly available pre-trained checkpoints of BERT, RoBERTa, and GPT2 were leveraged in different variations to warm-start an encoder-decoder model. E.g. a BERT-initialised encoder was paired with a BERT-initialized decoder yielding a BERT2BERT model or a RoBERTa-initialized encoder was paired with a GPT2-initialized decoder to yield a RoBERTa2GPT2 model. Additionally, the effect of sharing the encoder and decoder weights (as explained in the previous section) was investigated for RoBERTa, i.e. RoBERTaShare, and for BERT, i.e. BERTShare. Randomly or partly randomly initialized encoder-decoder models were used as a baseline, such as a fully randomly initialized encoder-decoder model, coined Rnd2Rnd or a BERT-initialized decoder paired with a randomly initialized encoder, defined as Rnd2BERT. The following table shows a complete list of all investigated model variants including the number of randomly initialized weights, i.e. \"random\", and the number of weights initialized from the respective pre-trained checkpoints, i.e. \"leveraged\". All models are based on a 12-layer architecture with 768-dim hidden size embeddings, corresponding to the bert-base-cased, bert-base-uncased, roberta-base, and gpt2 checkpoints in the 🤗Transformers model hub. |Model |random |leveraged |total |-------------- |:------- |---------- |------- |Rnd2Rnd |221M |0 |221M |Rnd2BERT |112M |109M |221M |BERT2Rnd |112M |109M |221M |Rnd2GPT2 |114M |125M |238M |BERT2BERT |26M |195M |221M |BERTShare |26M |109M |135M |RoBERTaShare |26M |126M |152M |BERT2GPT2 |26M |234M |260M |RoBERTa2GPT2 |26M |250M |276M The model Rnd2Rnd, which is based on the BERT2BERT architecture, contains 221M weight parameters - all of which are randomly initialized. The other two \"BERT-based\" baselines Rnd2BERT and BERT2Rnd have roughly half of their weights, i.e. 112M parameters, randomly initialized. The other 109M weight parameters are leveraged from the pre-trained bert-base-uncased checkpoint for the encoder- or decoder part respectively. The models BERT2BERT, BERT2GPT2, and RoBERTa2GPT2 have all of their encoder weight parameters leveraged (from bert-base-uncased, roberta-base respectively) and most of the decoder weight parameter weights as well (from gpt2, bert-base-uncased respectively). 26M decoder weight parameters, which correspond to the 12 cross-attention layers, are thereby randomly initialized. RoBERTa2GPT2 and BERT2GPT2 are compared to the Rnd2GPT2 baseline. Also, it should be noted that the shared model variants BERTShare and RoBERTaShare have significantly fewer parameters because all encoder weight parameters are shared with the respective decoder weight parameters. | [
-0.003095806809142232,
-0.004236363340169191,
0.002382403239607811,
0.01939491182565689,
0.01817026175558567,
0.1192670464515686,
-0.02092667669057846,
-0.00037116120802238584,
-0.06298079341650009,
-0.07945318520069122,
-0.05702139809727669,
0.04428870603442192,
0.00018607761012390256,
0.04528604820370674,
-0.015289523638784885,
-0.030502432957291603,
0.015427852980792522,
-0.08814941346645355,
-0.012937987223267555,
-0.05780521035194397,
0.023457994684576988,
-0.056780073791742325,
0.017918076366186142,
-0.02528693899512291,
0.07361722737550735,
-0.032310601323843,
0.0117604099214077,
-0.04803077504038811,
-0.03659680485725403,
0.02476004883646965,
-0.097686767578125,
0.020534075796604156,
0.06679420918226242,
-0.04111853241920471,
0.042560406029224396,
0.0006282658432610333,
-0.09917207062244415,
0.06187625601887703,
0.057326510548591614,
-0.03317505121231079,
-0.024797149002552032,
-0.02478833496570587,
-0.014273902401328087,
0.003283899510279298,
-0.04565238207578659,
-0.03127311170101166,
-0.13254579901695251,
0.07030957192182541,
0.015698833391070366,
-0.07692625373601913,
-0.06961880624294281,
0.039906904101371765,
0.0005501486011780798,
0.034047000110149384,
-0.01626477763056755,
0.024976367130875587,
0.010285651311278343,
-0.060345590114593506,
0.11994682997465134,
-0.04201662167906761,
0.036328211426734924,
-0.0024298960343003273,
-0.015846723690629005,
0.031027015298604965,
0.0416855625808239,
0.044924296438694,
-0.02873324230313301,
0.028305983170866966,
0.02162015251815319,
-0.017438748851418495,
-0.040692247450351715,
-0.014388855546712875,
-0.03567364439368248,
0.016381656751036644,
0.0029295014683157206,
-0.018157990649342537,
0.04401499032974243,
-0.017874961718916893,
0.017802000045776367,
-0.04020997881889343,
-0.014366249553859234,
0.07964406907558441,
-0.05015833303332329,
-0.008472568355500698,
0.06194351240992546,
0.01015439722687006,
0.0795082226395607,
-0.06571891903877258,
-0.054993148893117905,
0.05519893392920494,
-0.038279470056295395,
-0.13647668063640594,
0.041488610208034515,
0.006958514917641878,
0.0054876115173101425,
-0.0038574272766709328,
-0.009921884164214134,
0.058101627975702286,
0.014193725772202015,
-0.025903716683387756,
0.015189168974757195,
-0.07655215263366699,
0.06077251210808754,
-0.032157301902770996,
-0.055583175271749496,
0.034614868462085724,
-0.01548326201736927,
-0.08593365550041199,
-0.027945000678300858,
-0.022664079442620277,
0.06556148827075958,
-0.029860924929380417,
-0.03888167440891266,
0.021596262231469154,
-0.10829439014196396,
0.019227409735322,
-0.010194079019129276,
-0.02913440391421318,
-0.009689942002296448,
0.012923809699714184,
-0.011685616336762905,
0.02522953785955906,
0.03517931327223778,
-0.05804290249943733,
-0.06067856028676033,
0.060188744217157364,
-0.004540373105555773,
0.006262374576181173,
0.04885273054242134,
0.03328761085867882,
0.054561637341976166,
0.00020049735030625015,
0.023419100791215897,
-0.0038839648477733135,
-0.0051546767354011536,
-0.027953239157795906,
-0.00003067634315812029,
-0.03475886583328247,
-0.02444976195693016,
-0.013857914134860039,
-0.1238514631986618,
0.08787557482719421,
0.006570013239979744,
-0.05801016092300415,
0.01203070767223835,
0.03389675170183182,
-0.10574088990688324,
0.03502891585230827,
0.054684706032276154,
0.05694439634680748,
-0.04156865179538727,
0.02922944724559784,
-0.07985135167837143,
-0.06234924867749214,
0.03728603199124336,
0.08110596239566803,
-0.021721282973885536,
-0.03287674859166145,
-0.011897975578904152,
-0.027972418814897537,
-0.021880391985177994,
0.04534538835287094,
-0.02591734379529953,
-0.009245128370821476,
0.013887043111026287,
-0.0731455385684967,
0.007714793086051941,
0.033711083233356476,
0.01788199320435524,
0.08325852453708649,
0.02092326059937477,
0.038587573915719986,
0.13061882555484772,
0.011368511244654655,
-0.019875751808285713,
0.09413468837738037,
0.03498704731464386,
0.06176494061946869,
0.03569449111819267,
-0.023743007332086563,
-0.040659449994564056,
0.010941572487354279,
-0.012549841776490211,
0.030194861814379692,
0.04769829660654068,
-0.059739742428064346,
0.010794507339596748,
-0.03802911192178726,
-0.06393332034349442,
0.0858081802725792,
-0.018683087080717087,
0.02819107472896576,
0.055320125073194504,
-0.007244231645017862,
0.014260892756283283,
-0.08331400901079178,
0.010533527471125126,
0.07988672703504562,
0.03857392445206642,
0.04195315018296242,
0.10894645750522614,
0.03531621769070625,
0.07157505303621292,
-0.0098901791498065,
-0.03930680453777313,
-0.02545212022960186,
0.002195738023146987,
-0.019474545493721962,
0.07815335690975189,
0.005628262646496296,
0.05146091431379318,
-0.07791745662689209,
-0.01538094226270914,
-0.05117025226354599,
0.06835144758224487,
-0.04359661787748337,
0.014128067530691624,
-0.026759210973978043,
0.054723288863897324,
-0.014825386926531792,
0.15213672816753387,
-0.053449034690856934,
0.012695183977484703,
-0.011401526629924774,
-0.009419145993888378,
0.05929887667298317,
0.03621399402618408,
0.01288757473230362,
0.07643108814954758,
-0.04610003903508186,
-0.0011264134664088488,
-0.07736863195896149,
0.023632219061255455,
0.014534912072122097,
0.00016968527052085847,
0.03157456964254379,
-0.01824205368757248,
0.0031785902101546526,
-0.0019336207769811153,
-0.07816583663225174,
0.013031142763793468,
0.02734944596886635,
0.023908454924821854,
0.011232968419790268,
-0.03666967526078224,
0.021286679431796074,
0.037940170615911484,
-0.00041922047967091203,
-0.024762678891420364,
-0.02595297247171402,
-0.06972063332796097,
0.03030463121831417,
0.03411385044455528,
-0.06322057545185089,
0.03166911378502846,
0.056103672832250595,
-0.02068108692765236,
-0.010838530957698822,
0.0012445856118574739,
0.008405360393226147,
0.017247367650270462,
-0.06955257058143616,
-0.06686387211084366,
-0.021789664402604103,
0.003864892292767763,
-0.019066497683525085,
-0.037464242428541183,
-0.020847851410508156,
0.0031103966757655144,
0.01818177103996277,
0.05699949711561203,
-0.03487151116132736,
0.02423090860247612,
0.03195478767156601,
0.0066920677199959755,
-0.004135996103286743,
0.020733555778861046,
-0.03475117310881615,
-0.03202185407280922,
0.006872603669762611,
0.007203326094895601,
-0.03504970669746399,
0.002145269885659218,
0.021348895505070686,
-0.015985559672117233,
0.018982812762260437,
-0.019716504961252213,
-0.022481728345155716,
0.0013881638878956437,
0.05693062022328377,
0.0012485928600654006,
0.018445683643221855,
-0.029978901147842407,
-0.0014483266277238727,
0.0031752537470310926,
0.0415128692984581,
-0.034590307623147964,
-0.0033019462134689093,
-0.012068307027220726,
-0.005068913102149963,
-0.026151783764362335,
0.002997208386659622,
-0.017315519973635674,
-0.007577665615826845,
-0.04614065960049629,
0.01854182407259941,
0.026214485988020897,
0.06382772326469421,
-0.09232214093208313,
-0.013431422412395477,
0.03491153568029404,
-0.003148657036945224,
-0.019392432644963264,
-0.02801247127354145,
0.06161979213356972,
-0.05009002611041069,
-0.035564884543418884,
0.015357613563537598,
-0.00031938281608745456,
-0.011698807589709759,
-0.021639369428157806,
0.01114258449524641,
-0.04166584089398384,
-0.003957193810492754,
-0.04755663871765137,
0.00946850050240755,
0.026215873658657074,
0.006042806897312403,
0.01991698332130909,
-0.030313411727547646,
-0.004043108318001032,
-0.021040380001068115,
-0.03908297047019005,
-0.008707885630428791,
0.014701277948915958,
-0.00138250517193228,
0.015680843964219093,
-0.005833453498780727,
-0.030874470248818398,
-0.010981407947838306,
0.014350616373121738,
0.02051449567079544,
-0.019855791702866554,
-0.014372177422046661,
0.028104910627007484,
0.04873234033584595,
0.034208450466394424,
0.019946152344346046,
0.017436739057302475,
-0.007546883542090654,
0.01439411100000143,
0.021075649186968803,
0.025146018713712692,
-0.017577053979039192,
0.023218005895614624,
-0.013901221565902233,
0.022749055176973343,
-0.015518026426434517,
-0.004974629729986191,
-0.004364317283034325,
-0.007893066853284836,
0.015351840294897556,
0.012125732377171516,
-0.005493864882737398,
-0.014228332787752151,
0.023861244320869446,
0.0073962025344371796,
-0.02246161177754402,
-0.04693243280053139,
-0.0008270660182461143,
0.0017718059243634343,
-0.029237210750579834,
-0.033941514790058136,
0.025569235906004906,
0.018129795789718628,
0.017482688650488853,
-0.0030919956043362617,
0.051117680966854095,
-0.018440010026097298,
0.023179417476058006,
0.017816564068198204,
-0.0030340261291712523,
-0.04597644507884979,
0.0044750613160431385,
-0.03904922306537628,
-0.009201427921652794,
0.07322420924901962,
-0.015737377107143402,
0.0030498248524963856,
0.01327631063759327,
-0.05147615820169449,
-0.019616935402154922,
-0.001830534776672721,
0.03022361546754837,
0.0019811210222542286,
-0.00034898900776170194,
0.03442354500293732,
-0.005354040302336216,
0.016096021980047226,
-0.009265843778848648,
-0.015572694130241871,
-0.006692826282233,
0.027345994487404823,
0.004155131988227367,
-0.0024007773026823997,
0.050814542919397354,
0.020466908812522888,
0.00020464995759539306,
0.009000473655760288,
-0.050748903304338455,
-0.021190844476222992,
-0.014043230563402176,
-0.01108681783080101,
0.04424949362874031,
-0.03780396655201912,
-0.034856412559747696,
-0.001152224955148995,
-0.019222360104322433,
0.013345601968467236,
0.026186762377619743,
-0.003955722786486149,
0.013553992845118046,
0.03350197523832321,
0.03407750278711319,
0.01992192305624485,
-0.06945792585611343,
0.01049336139112711,
0.01062675192952156,
-0.03488848730921745,
-0.0008323768270201981,
0.02094361186027527,
0.025373654440045357,
0.023529700934886932,
-0.014265025965869427,
0.017138201743364334,
-0.006147490348666906,
0.0004501021758187562,
-0.046583142131567,
-0.047475337982177734,
-0.0036091022193431854,
0.018586941063404083,
-0.04761150851845741,
-0.0032576355151832104,
-0.001628398080356419,
-0.01301271840929985,
0.01834987662732601,
0.009225603193044662,
-0.05335891991853714,
0.02691044472157955,
0.022090554237365723,
0.025645645335316658,
-0.03701942414045334,
0.078232541680336,
0.0019733512308448553,
0.00548871885985136,
-0.019192295148968697,
-0.004292154219001532,
-0.01853444054722786,
0.028088148683309555,
-0.0051285866647958755,
-0.049267686903476715,
0.019069936126470566,
0.030966993421316147,
-0.05741339176893234,
-0.013648469932377338,
0.02768290974199772,
0.03273121640086174,
0.022205207496881485,
0.01998032256960869,
0.013481694273650646,
-0.05967577174305916,
0.016652211546897888,
-0.0037276686634868383,
-0.01456558145582676,
-0.012117520906031132,
-0.01162291131913662,
0.010238357819616795,
0.03652922809123993,
0.003866924438625574,
-0.040924593806266785,
0.01682306081056595,
-0.009383520111441612,
0.03975521773099899,
0.004318416118621826,
-0.01339173223823309,
0.006105263251811266,
0.01547054573893547,
-0.006495380774140358,
0.013607227243483067,
0.008320940658450127,
-0.009119760245084763,
-0.012475273571908474,
0.006778986193239689,
0.021780170500278473,
0.042495548725128174,
0.05252404883503914,
0.02477082423865795,
-0.0014283850323408842,
0.0047113834880292416,
-0.0052680387161672115,
0.07172419130802155,
-0.004170788452029228,
-0.04225737601518631,
-0.01407657191157341,
-0.01633540913462639,
0.034393392503261566,
-0.030472254380583763,
0.007517510559409857,
0.03298940509557724,
0.05094164237380028,
-0.017062915489077568,
-0.024183154106140137,
0.016676997765898705,
-0.03387772664427757,
-0.04409736022353172,
-0.05087510123848915,
0.03376498445868492,
-0.023219453170895576,
0.0019258731044828892,
0.0006162725621834397,
-0.017764117568731308,
-0.0005209996015764773,
0.027550382539629936,
0.00290034431964159,
-0.00330634624697268,
0.04235892742872238,
0.06661666929721832,
0.04162691906094551,
-0.019464919343590736,
0.007572885137051344,
-0.05437197908759117,
-0.0050951275043189526,
-0.0426989383995533,
-0.04950254037976265,
-0.014566473662853241,
0.007361896336078644,
-0.01772988773882389,
0.024484699591994286,
0.040001872926950455,
-0.015030842274427414,
0.024553226307034492,
0.03338131308555603,
-0.04766959324479103,
-0.035074230283498764,
0.014581973664462566,
-0.0014973774086683989,
0.005435439758002758,
0.015757059678435326,
0.0074536059983074665,
-0.021407723426818848,
0.0186338871717453,
0.006968372035771608,
-0.03699582815170288,
0.026930948719382286,
0.027504729107022285,
-0.026691116392612457,
0.049713414162397385,
0.03804103657603264,
0.027401035651564598,
-0.010636110790073872,
0.0071295034140348434,
-0.0039243753999471664,
0.038119345903396606,
-0.00315553555265069,
-0.019118657335639,
-0.024869481101632118,
0.022494016215205193,
0.027025297284126282,
0.025413790717720985,
-0.03799501433968544,
0.025257987901568413,
0.04516635462641716,
-0.06709174811840057,
0.012134553864598274,
0.01103998813778162,
-0.03233464062213898,
0.03564172610640526,
0.01594279706478119,
0.006209641695022583,
0.005483231041580439,
-0.020822228863835335,
-0.0023424369283020496,
0.033758629113435745,
0.01269339770078659,
0.04779906943440437,
0.060212764889001846,
-0.010835244320333004,
0.02368845045566559,
0.05129694566130638,
0.008652946911752224,
0.03164597600698471,
0.025812750682234764,
-0.026622874662280083,
-0.04078293219208717,
0.046010822057724,
0.02770378813147545,
0.010867176577448845,
0.030870145186781883,
-0.015581193380057812,
-0.013200337998569012,
-0.02765939012169838,
-0.01831679977476597,
-0.007627349346876144,
0.009243456646800041,
-0.011814994737505913,
-0.012035630643367767,
0.020973900333046913,
0.006605265662074089,
0.029696783050894737,
0.042905647307634354,
0.0065119024366140366,
-0.0006492456304840744,
0.06653700023889542,
0.01860406994819641,
0.03582426905632019,
0.0034161836374551058,
0.027858173474669456,
0.013137176632881165,
-0.04013388603925705,
0.029184693470597267,
0.03567446395754814,
0.003902996191754937,
0.02286490797996521,
-0.013052552007138729,
-0.006094726268202066,
-0.018215389922261238,
-0.015512141399085522,
0.004631355870515108,
0.0212174691259861,
-0.0017137565882876515,
-0.03987341374158859,
0.04187681898474693,
-0.039268858730793,
0.02124715782701969,
0.014873453415930271,
-0.00788452010601759,
0.01629778929054737,
0.025185707956552505,
0.023258311673998833,
0.05781514197587967,
-0.02534194104373455,
-0.05544438585639,
-0.006730816327035427,
0.0015774606727063656,
-0.01465962640941143,
0.03139088302850723,
-0.033517833799123764,
-0.04512833431363106,
-0.006099938880652189,
-0.0064704325050115585,
-0.023631220683455467,
0.05780304968357086,
-0.044330086559057236,
-0.015410277061164379,
0.05616829916834831,
0.023458892479538918,
-0.010592238046228886,
0.015692088752985,
0.02124231681227684,
-0.011570530012249947,
-0.01375973504036665,
-0.02208426408469677,
-0.020342934876680374,
-0.056990861892700195,
0.04779442772269249,
-0.042918313294649124,
0.005619590636342764,
-0.05071806162595749,
0.06830772012472153,
0.023563135415315628,
0.04596551135182381,
-0.0351211354136467,
-0.01933557167649269,
-0.036517973989248276,
-0.02829499915242195,
-0.008926406502723694,
0.020596912130713463,
0.02275758795440197,
0.001977843465283513,
0.019343389198184013,
-0.03438688814640045,
-0.02355397865176201,
-0.04038991406559944,
0.0011470000026747584,
0.04013298451900482,
-0.032030265778303146,
-0.02597804181277752,
-0.015181263908743858,
0.029599225148558617,
-0.004494157154113054,
0.03359935060143471,
0.03277347609400749,
-0.018966982141137123,
0.06764587759971619,
-0.038391076028347015,
-0.021141057834029198,
-0.02545391023159027,
0.02075694128870964,
0.006217192858457565,
-0.03886068984866142,
-0.03690934553742409,
0.022631561383605003,
-0.001331132953055203,
0.03349249064922333,
-0.0241521168500185,
0.009293847717344761,
-0.07681731879711151,
0.02412368915975094,
0.0003399401612114161,
0.0378410778939724,
0.03024386800825596,
-0.01315488014370203,
0.04891142621636391,
0.013401382602751255,
0.015204866416752338,
-0.013092088513076305,
-0.03004595637321472,
0.017354901880025864,
0.029411692172288895,
-0.006194829475134611,
-0.037809792906045914,
-0.012879869900643826,
-0.010844804346561432,
-0.00010110089351655915,
-0.009239112958312035,
-0.0038558098021894693,
0.019430605694651604,
-0.015564559027552605,
-0.035507556051015854,
0.004755140747874975,
-0.0199404489248991,
-0.017616378143429756,
0.017143458127975464,
0.00989589560776949,
-0.05488791689276695,
-0.02171408012509346,
0.004320534877479076,
-0.039783038198947906,
-0.05449117347598076,
-0.019256137311458588,
0.023893892765045166,
0.03383364528417587,
0.031578969210386276,
0.01829829253256321,
0.011815576814115047,
-0.008355330675840378,
0.018419723957777023,
0.03519061952829361,
-0.04293990880250931,
-0.012559747323393822,
0.021846622228622437,
0.03996533527970314,
0.0032173702493309975,
-0.011532294563949108,
0.01672164537012577,
0.026159118860960007,
0.008810588158667088,
0.02722281403839588,
0.007685756776481867,
-0.011066952720284462,
-0.040797408670186996,
0.030286576598882675,
-0.023623213171958923,
0.07131652534008026,
0.028629330918192863,
0.013938410207629204,
0.007083964068442583,
0.02642751857638359
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Warm-staring Encoder-Decoder with BERT Let\'s now illustrate how a pre-trained BERT model can be used to warm-start the encoder-decoder model. BERT\'s pre-trained weight parameters are used to both initialize the encoder\'s weight parameters as well as the decoder\'s weight parameters. To do so, BERT\'s architecture is compared to the encoder\'s architecture and all layers of the encoder that also exist in BERT will be initialized with the pre-trained weight parameters of the respective layers. All layers of the encoder that do not exist in BERT will simply have their weight parameters be randomly initialized. Let\'s visualize. We can see that the encoder architecture corresponds 1-to-1 to BERT\'s architecture. The weight parameters of the bi-directional self-attention layer and the two feed-forward layers of all encoder blocks are initialized with the weight parameters of the respective BERT blocks. This is illustrated examplary for the second encoder block (red boxes at bottow) whose weight parameters \(\theta{\text{enc}}^{\text{self-attn}, 2}\) and \(\theta_{\text{enc}}^{\text{feed-forward}, 2}\) are set to BERT\'s weight parameters \(\theta_{\text{BERT}}^{\text{feed-forward}, 2}\) and \(\theta_{\text{BERT}}^{\text{self-attn}, 2}\), respectively at initialization. Before fine-tuning, the encoder therefore behaves exactly like a pre-trained BERT model. Assuming the input sequence \(\mathbf{x}1, \ldots, \mathbf{x}_n\) (shown in green) passed to the encoder is equal to the input sequence \(\mathbf{x}_1^{\text{BERT}}, \ldots, \mathbf{x}_n^{\text{BERT}}\) (shown in grey) passed to BERT, this means that the respective output vector sequences \(\mathbf{\overline{x}}_1, \ldots, \mathbf{\overline{x}}_n\) (shown in darker green) and \(\mathbf{\overline{x}}_1^{\text{BERT}}, \ldots, \mathbf{\overline{x}}_n^{\text{BERT}}\) (shown in darker grey) also have to be equal. Next, let\'s illustrate how the decoder is warm-started. The architecture of the decoder is different from BERT\'s architecture in three ways. 1. First, the decoder has to be conditioned on the contextualized encoded sequence \(\mathbf{\overline{X}}{1:n}\) by means of cross-attention layers. Consequently, randomly initialized cross-attention layers are added between the self-attention layer and the two feed-forward layers in each BERT block. This is represented exemplary for the second block by \(+\theta_{\text{dec}}^{\text{cross-attention, 2}}\) and illustrated by the newly added fully connected graph in red in the lower red box on the right. This necessarily changes the behavior of each modified BERT block so that an input vector, e.g. \(\mathbf{y'}0\) now yields a random output vector \(\mathbf{y''}_0\) (highlighted by the red border around the output vector \(\mathbf{y''}_0\)). 2. Second, BERT\'s bi-directional self-attention layers have to be changed to uni-directional self-attention layers to comply with auto-regressive generation. Because both the bi-directional and the uni-directional self-attention layer are based on the same key, query and value projection weights, the decoder\'s self-attention layer weights can be initialized with BERT\'s self-attention layer weights. E.g. the query, key and value weight parameters of the decoder\'s uni-directional self-attention layer are initialized with those of BERT\'s bi-directional self-attention layer \(\theta{\text{BERT}}^{\text{self-attn}, 2} = {\mathbf{W}{\text{BERT}, k}^{\text{self-attn}, 2}, \mathbf{W}{\text{BERT}, v}^{\text{self-attn}, 2}, \mathbf{W}{\text{BERT}, q}^{\text{self-attn}, 2} } \to \theta{\text{dec}}^{\text{self-attn}, 2} = {\mathbf{W}{\text{dec}, k}^{\text{self-attn}, 2}, \mathbf{W}{\text{dec}, v}^{\text{self-attn}, 2}, \mathbf{W}{\text{dec}, q}^{\text{self-attn}, 2} }. \) However, in uni-directional self-attention each token only attends to all previous tokens, so that the decoder\'s self-attention layers yield different output vectors than BERT\'s self-attention layers even though they share the same weights. Compare e.g., the decoder\'s causally connected graph in the right box versus BERT\'s fully connected graph in the left box. 3. Third, the decoder outputs a sequence of logit vectors \(\mathbf{L}{1:m}\) in order to define the conditional probability distribution \(p_{\theta_{\text{dec}}}(\mathbf{Y}{1:n} | \mathbf{\overline{X}})\). As a result, a LM Head layer is added on top of the last decoder block. The weight parameters of the LM Head layer usually correspond to the weight parameters of the word embedding \(\mathbf{W}{\text{emb}}\) and thus are not randomly initialized. This is illustrated in the top by the initialization \(\theta_{\text{BERT}}^{\text{word-emb}} \to \theta_{\text{dec}}^{\text{lm-head}}\). To conclude, when warm-starting the decoder from a pre-trained BERT model only the cross-attention layer weights are randomly initialized. All other weights including those of the self-attention layer and LM Head are initialized with BERT\'s pre-trained weight parameters. Having warm-stared the encoder-decoder model, the weights are then fine-tuned on a sequence-to-sequence downstream task, such as summarization. | [
0.01784958876669407,
0.015024959109723568,
0.053017064929008484,
0.0013211100595071912,
0.011790460906922817,
0.06502079218626022,
-0.04277155175805092,
0.03046775981783867,
-0.05345228314399719,
-0.014521253295242786,
-0.09266170114278793,
0.0750025287270546,
-0.014493082650005817,
0.020253363996744156,
-0.015972768887877464,
-0.006982463411986828,
0.052278388291597366,
-0.04745869338512421,
-0.017876077443361282,
-0.026552386581897736,
0.049748845398426056,
-0.06754761189222336,
0.06789403408765793,
-0.01915751025080681,
0.07955440133810043,
-0.06109178811311722,
0.0017942944541573524,
0.018686754629015923,
-0.025366559624671936,
0.031579501926898956,
-0.06516215950250626,
-0.016607612371444702,
0.07215854525566101,
-0.06121983006596565,
0.007160368375480175,
0.03617071732878685,
-0.08676423132419586,
0.06390802562236786,
0.03649027273058891,
-0.05203017219901085,
-0.0362323559820652,
0.0025387476198375225,
-0.020847929641604424,
0.017769787460565567,
-0.04654860869050026,
-0.0334787592291832,
-0.11997281014919281,
0.08772163093090057,
-0.04381619766354561,
-0.038885124027729034,
-0.06581762433052063,
0.0052758981473743916,
-0.03199680149555206,
0.07037414610385895,
-0.04592936113476753,
0.003133245278149843,
-0.00772210955619812,
-0.020845754072070122,
0.039560943841934204,
-0.02875576540827751,
0.07679787278175354,
0.003546260530129075,
-0.008904245682060719,
0.09030993282794952,
0.0185704343020916,
0.041519876569509506,
-0.06569909304380417,
-0.02260325476527214,
0.0036755697801709175,
0.009509598836302757,
-0.04614870995283127,
-0.006711218971759081,
-0.00011970231571467593,
0.0036150056403130293,
0.017989689484238625,
-0.038050662726163864,
0.050298064947128296,
-0.019846156239509583,
0.024790626019239426,
0.013167202472686768,
-0.029076015576720238,
0.03253737837076187,
-0.03567931428551674,
0.04673171043395996,
0.02889183722436428,
0.03194805979728699,
0.05810203775763512,
-0.04278726130723953,
-0.030145756900310516,
0.04947376623749733,
-0.11100507527589798,
-0.1617431491613388,
0.020594656467437744,
-0.005348843988031149,
0.044134028255939484,
-0.00870050210505724,
-0.027737686410546303,
0.02701251395046711,
0.01221898477524519,
-0.015935001894831657,
0.0018015947425737977,
-0.06837949901819229,
0.07439857721328735,
-0.062085576355457306,
-0.0470002256333828,
0.015071381814777851,
0.019725412130355835,
-0.12725193798542023,
-0.05311419069766998,
-0.03288750723004341,
0.03872770443558693,
-0.038600169122219086,
-0.023477880284190178,
0.0207856185734272,
-0.07000488042831421,
0.002881400054320693,
0.008055604062974453,
-0.0434831939637661,
0.018030783161520958,
0.0019327453337609768,
-0.0333862230181694,
0.05212535709142685,
0.06000004708766937,
-0.05918186902999878,
-0.02394270896911621,
0.033622775226831436,
-0.0004792910476680845,
0.026454759761691093,
0.030412698164582253,
0.024287372827529907,
0.09810768067836761,
0.008550835773348808,
0.0649714395403862,
-0.027743667364120483,
0.011364906094968319,
0.013458682224154472,
-0.07126182317733765,
-0.048400335013866425,
-0.049519095569849014,
-0.02355882152915001,
-0.12239982187747955,
0.06844495981931686,
0.051727499812841415,
-0.02470245212316513,
0.019369827583432198,
0.021456429734826088,
-0.06660039722919464,
0.07453539967536926,
0.031538140028715134,
0.09664738923311234,
-0.024604087695479393,
0.009709449484944344,
0.0032712840475142,
-0.031898561865091324,
-0.02848675288259983,
0.05627384036779404,
-0.04894072934985161,
-0.04105701670050621,
-0.06750532239675522,
0.017835212871432304,
0.003940609283745289,
0.04404361546039581,
-0.026461049914360046,
0.03036915324628353,
0.02002628706395626,
-0.09101716428995132,
-0.014239046722650528,
0.03726767748594284,
0.01464910339564085,
0.05975647643208504,
0.002600177191197872,
0.010361631400883198,
0.0747009739279747,
0.023874575272202492,
-0.017259160056710243,
0.029242439195513725,
0.009697807021439075,
0.07630337029695511,
-0.02990865893661976,
-0.002154142362996936,
-0.032721687108278275,
0.020199161022901535,
0.023321906104683876,
0.01637578196823597,
0.01577773503959179,
-0.0035732181277126074,
-0.028972528874874115,
-0.061167262494564056,
-0.06897840648889542,
0.061878349632024765,
-0.019505083560943604,
0.041058581322431564,
0.02562304586172104,
-0.02889700047671795,
0.002499256981536746,
-0.02674814872443676,
-0.058334700763225555,
0.07073522359132767,
0.021730251610279083,
0.045966193079948425,
0.09705238789319992,
0.007409162353724241,
0.08071666210889816,
0.029850143939256668,
-0.0008141093421727419,
-0.03654506057500839,
0.03624201565980911,
-0.04400518909096718,
0.07844710350036621,
-0.0005073873326182365,
0.03435879573225975,
-0.08054020255804062,
0.00041764421621337533,
-0.03779724985361099,
0.0546785332262516,
-0.03811178728938103,
0.004512850660830736,
-0.013852322474122047,
-0.019144302234053612,
0.012839780189096928,
0.12190419435501099,
-0.034709248691797256,
0.009124989621341228,
-0.0579390823841095,
-0.0012537349248304963,
0.0013431075494736433,
0.04964685067534447,
-0.04435758665204048,
0.08506784588098526,
-0.05292759835720062,
-0.0485270731151104,
-0.04549022391438484,
-0.0026861836668103933,
0.004810874350368977,
-0.04309115558862686,
-0.024557793512940407,
-0.04156904295086861,
-0.01740425080060959,
0.04396090283989906,
-0.0946134626865387,
0.02155867964029312,
0.020881783217191696,
0.00824776291847229,
-0.00923189241439104,
-0.0832095742225647,
-0.017429139465093613,
0.04921793192625046,
0.0007744707399979234,
-0.050845805555582047,
0.041548773646354675,
-0.029788782820105553,
0.05101199075579643,
-0.016760462895035744,
-0.11804132908582687,
-0.011448265053331852,
0.07503101229667664,
-0.05458023399114609,
-0.01037444919347763,
0.02056650072336197,
0.011217094026505947,
-0.008884334936738014,
-0.021659651771187782,
-0.0359155498445034,
-0.00885283574461937,
-0.03572840988636017,
-0.014683340676128864,
-0.04452796280384064,
0.033289868384599686,
0.008235564455389977,
0.039774347096681595,
0.05092558264732361,
-0.015687474980950356,
0.03494983911514282,
0.03040904365479946,
0.040339935570955276,
0.00454113120213151,
0.05445900931954384,
-0.06506414711475372,
-0.03879370167851448,
-0.02423638105392456,
-0.00001527296262793243,
0.00027953620883636177,
0.00019936045282520354,
0.02272973582148552,
-0.025854090228676796,
0.03761701658368111,
-0.020477144047617912,
-0.01687423139810562,
0.005479301325976849,
0.026495886966586113,
-0.008509175851941109,
0.02071118913590908,
0.017264297232031822,
0.011643481440842152,
-0.01886836066842079,
0.04619002714753151,
0.015079065226018429,
-0.01567249558866024,
-0.020529761910438538,
0.010181327350437641,
0.009364708326756954,
0.0017993614310398698,
0.018978064879775047,
-0.02236676774919033,
-0.041620515286922455,
0.0034722748678177595,
0.04235107824206352,
0.06904382258653641,
-0.0879041999578476,
0.018168451264500618,
0.043756913393735886,
0.006534168496727943,
0.009697195142507553,
-0.046771395951509476,
0.013760799542069435,
-0.013562287203967571,
-0.007488044444471598,
0.019891224801540375,
0.004613648168742657,
-0.03403880074620247,
-0.005847485736012459,
0.027453521266579628,
-0.0032936101779341698,
-0.01421401184052229,
-0.021311840042471886,
0.003098367713391781,
0.019343741238117218,
-0.031367745250463486,
0.025631070137023926,
-0.01419606152921915,
0.011097665876150131,
0.022932296618819237,
-0.023427417501807213,
-0.005277527961879969,
0.018003292381763458,
0.016915449872612953,
0.023915087804198265,
-0.011006251908838749,
-0.02036392316222191,
-0.051649510860443115,
0.00425654835999012,
0.0036142421886324883,
-0.027591979131102562,
-0.009089726954698563,
0.04388785362243652,
0.000027160824174643494,
0.034759730100631714,
0.05458759143948555,
0.01341443695127964,
0.03375326842069626,
0.014577222988009453,
0.028198106214404106,
0.03285042941570282,
-0.03515638783574104,
0.012578140012919903,
-0.006657026242464781,
0.0287878829985857,
-0.026929810643196106,
0.009174846112728119,
-0.020442426204681396,
-0.023447105661034584,
-0.02551550231873989,
-0.022565510123968124,
0.0012153496500104666,
0.008758281357586384,
0.03455423191189766,
0.008821019902825356,
-0.03367423266172409,
-0.03805095702409744,
0.008286130614578724,
-0.005796938668936491,
-0.034331291913986206,
-0.03913433104753494,
-0.0018993448466062546,
0.021161546930670738,
0.02463756874203682,
0.02824551612138748,
0.01376370619982481,
-0.00831431895494461,
-0.02905494160950184,
0.03562631085515022,
0.007106823846697807,
0.01698448322713375,
0.0028802340384572744,
-0.026994846761226654,
-0.02285548858344555,
0.08646582067012787,
-0.0174470953643322,
0.03475271537899971,
0.03984712436795235,
-0.026760751381516457,
-0.0050294529646635056,
-0.013644630089402199,
0.012148392386734486,
-0.02335074357688427,
-0.0007606431026943028,
0.0581231452524662,
-0.01242836844176054,
0.00050746911438182,
-0.015105584636330605,
-0.007158350199460983,
-0.0022332454100251198,
-0.009839825332164764,
-0.011489637196063995,
-0.0014353551669046283,
0.01619570516049862,
0.05334428325295448,
0.00770007586106658,
0.011766299605369568,
-0.08887452632188797,
-0.02081979438662529,
0.008667690679430962,
-0.013592643663287163,
0.03364908695220947,
-0.03181540593504906,
-0.036233190447092056,
0.05488693341612816,
-0.030308423563838005,
-0.008495735004544258,
-0.021290330216288567,
-0.0012224562233313918,
0.05455896630883217,
0.05961291491985321,
0.038146696984767914,
-0.020267510786652565,
-0.06459596008062363,
-0.009115507826209068,
0.0031689032912254333,
-0.03190525993704796,
0.01987152360379696,
0.004652123432606459,
-0.003388066543266177,
0.03393149748444557,
-0.0214521661400795,
0.028157247230410576,
0.02919934317469597,
-0.005635997746139765,
-0.06206517666578293,
-0.05294111371040344,
-0.03551571071147919,
0.06098130717873573,
-0.03582630679011345,
-0.01165008544921875,
0.02972739189863205,
-0.02585194818675518,
0.018532613292336464,
0.011392519809305668,
-0.06261058151721954,
-0.01792142726480961,
0.029285382479429245,
0.03011499159038067,
-0.03600793704390526,
0.05372443422675133,
0.006266212556511164,
-0.032889824360609055,
-0.0005651780520565808,
-0.007707490120083094,
0.010560758411884308,
0.04783537611365318,
0.027843685820698738,
-0.07126231491565704,
0.012228576466441154,
0.042727790772914886,
-0.04298730939626694,
0.003147626994177699,
0.023192530497908592,
0.053469154983758926,
0.033242467790842056,
0.008607031777501106,
-0.011613640002906322,
-0.05279111489653587,
-0.01670868881046772,
0.0018214622978121042,
0.006754519417881966,
0.003341485746204853,
-0.03680168464779854,
0.007999812252819538,
-0.006488588638603687,
-0.006528686266392469,
-0.020571747794747353,
0.0022526897955685854,
-0.015623961575329304,
0.0057257176376879215,
-0.0017529408214613795,
-0.020605789497494698,
-0.026853056624531746,
0.011547138914465904,
0.0004910473362542689,
0.016946081072092056,
0.015318275429308414,
0.008664049208164215,
0.006755912210792303,
-0.027647895738482475,
0.023787876591086388,
0.02182244136929512,
0.04249849170446396,
0.023959675803780556,
0.021863136440515518,
0.005316112190485001,
0.011711602099239826,
0.03566921502351761,
0.005497480742633343,
-0.05367306247353554,
-0.008281473070383072,
-0.009340581484138966,
-0.03124278411269188,
0.0066630421206355095,
-0.013096533715724945,
0.004318044520914555,
0.03632377088069916,
-0.013105090707540512,
-0.026034880429506302,
0.027500366792082787,
-0.04911467060446739,
-0.02634108066558838,
-0.06118934601545334,
0.005144165363162756,
-0.045173101127147675,
0.007904907688498497,
0.011317196302115917,
0.020710362121462822,
-0.0016773546813055873,
0.030171222984790802,
-0.01573028229176998,
-0.03276267275214195,
0.010876726359128952,
0.05400633439421654,
0.03211960569024086,
0.0018793788040056825,
0.002082056598737836,
-0.046047307550907135,
-0.004270852543413639,
-0.034493979066610336,
-0.05538032948970795,
0.00395118398591876,
-0.00044272991362959146,
0.009930030442774296,
0.019678618758916855,
0.05558222159743309,
-0.01620214805006981,
0.004110465291887522,
0.038440268486738205,
-0.04255736991763115,
-0.035715218633413315,
-0.02961328998208046,
0.012742212973535061,
-0.018782775849103928,
0.004178435076028109,
0.022850599139928818,
-0.008085726760327816,
0.008954713121056557,
0.026564165949821472,
-0.007614704314619303,
0.02266567014157772,
0.05034865438938141,
-0.025959206745028496,
0.07223253697156906,
0.015259374864399433,
0.05103437602519989,
0.017398808151483536,
-0.006268348544836044,
-0.000040219347283709794,
0.018068334087729454,
0.0012585018994286656,
0.02095745876431465,
-0.009781862609088421,
0.024573085829615593,
0.02497139386832714,
0.028918910771608353,
-0.050832368433475494,
0.02561693824827671,
0.029158741235733032,
-0.016266804188489914,
0.04980923980474472,
0.005627550650388002,
-0.025014836341142654,
0.03012646548449993,
0.04274627938866615,
0.03651001676917076,
-0.007665864657610655,
-0.02837185561656952,
-0.020956309512257576,
0.05687634274363518,
0.012944282032549381,
0.019506553187966347,
0.05235083028674126,
-0.01044382993131876,
0.031740471720695496,
0.0011044202838093042,
-0.003950267098844051,
0.026027260348200798,
0.012095611542463303,
-0.0015303632244467735,
-0.005268500652164221,
0.05770494043827057,
0.019077211618423462,
0.0271859560161829,
0.027828585356473923,
0.011477100662887096,
0.026289088651537895,
-0.02990575134754181,
-0.009409600868821144,
-0.008371736854314804,
0.030278652906417847,
-0.022556399926543236,
-0.02568276971578598,
0.025659389793872833,
-0.03397813066840172,
0.023686513304710388,
0.057655300945043564,
0.02133309096097946,
0.002440572017803788,
0.05763397738337517,
0.018364334478974342,
0.03417152538895607,
0.003850724082440138,
0.019794676452875137,
0.04359995573759079,
-0.035740651190280914,
0.03392302617430687,
-0.0026767877861857414,
0.015618241392076015,
0.0453324094414711,
-0.03811556100845337,
0.04520951956510544,
-0.01774434745311737,
-0.0009037870913743973,
0.02389204502105713,
0.019886760041117668,
-0.027984952554106712,
-0.0013904699590057135,
0.04434286430478096,
-0.014407840557396412,
0.011736011132597923,
0.026112306863069534,
-0.01768956333398819,
-0.01735866814851761,
0.009392672218382359,
0.010592780075967312,
0.051353417336940765,
-0.04198206588625908,
-0.017867781221866608,
-0.016260305419564247,
0.016276085749268532,
-0.0168383177369833,
0.018611395731568336,
-0.03645722195506096,
-0.04519767314195633,
-0.059224870055913925,
-0.021959224715828896,
-0.03930242732167244,
0.046448659151792526,
0.00886722281575203,
-0.00040014085243456066,
0.061509862542152405,
0.009924868121743202,
-0.0033210779074579477,
0.018156716600060463,
0.0004624749708455056,
-0.003541291458532214,
-0.020388979464769363,
-0.027704428881406784,
-0.01851019449532032,
-0.03505193442106247,
0.021982965990900993,
-0.056479595601558685,
0.008307642303407192,
0.005133661907166243,
0.022671205922961235,
0.034177426248788834,
0.040204569697380066,
-0.05582205951213837,
-0.03960118442773819,
-0.004371752496808767,
-0.02061397396028042,
-0.0018804738065227866,
-0.012144750915467739,
0.012893523089587688,
-0.006663239095360041,
0.03368968889117241,
-0.005905468948185444,
-0.051323432475328445,
-0.050806134939193726,
0.01349683478474617,
0.03510887175798416,
-0.01838117279112339,
-0.028502730652689934,
-0.02609453722834587,
0.04856177046895027,
-0.004820590373128653,
-0.0024394767824560404,
0.0611274354159832,
-0.011696023866534233,
0.05731987580657005,
-0.014004966244101524,
0.032710857689380646,
0.008321397006511688,
0.023456169292330742,
-0.02806197479367256,
-0.03452357277274132,
-0.009190171025693417,
0.03292784467339516,
0.008874168619513512,
0.03280596807599068,
-0.025710618123412132,
0.011940906755626202,
-0.06950342655181885,
-0.012447967194020748,
-0.030116094276309013,
0.05027909204363823,
0.02942592464387417,
-0.010352455079555511,
0.034419137984514236,
0.01298458781093359,
-0.02741115167737007,
-0.044089749455451965,
-0.01760687492787838,
0.005194912664592266,
0.046473998576402664,
0.0065695736557245255,
-0.027757318690419197,
0.02446538209915161,
-0.017988592386245728,
-0.006920969113707542,
-0.013950718566775322,
0.0042369491420686245,
0.0002456551301293075,
-0.03272685408592224,
0.00656627444550395,
-0.018970519304275513,
-0.009978261776268482,
0.007037203758955002,
-0.004093212075531483,
0.030202986672520638,
-0.04841603711247444,
-0.01327542681246996,
0.021723400801420212,
-0.03269336372613907,
-0.024818984791636467,
-0.006027200724929571,
-0.005466440226882696,
0.0738852247595787,
-0.00047920664655976,
0.04793719947338104,
0.01737646758556366,
0.014099148102104664,
0.011468108743429184,
0.03888118639588356,
-0.0321924053132534,
0.006343891378492117,
0.018771788105368614,
0.04125455394387245,
-0.022072693333029747,
-0.012145290151238441,
-0.00439517991617322,
0.037901345640420914,
-0.022858837619423866,
0.027076665312051773,
0.002867509610950947,
-0.021717503666877747,
-0.029346203431487083,
0.03129120171070099,
-0.02664078399538994,
0.05731821060180664,
-0.004560863599181175,
0.015348518267273903,
0.013031216338276863,
0.02743741311132908
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Warm-staring Encoder-Decoder with BERT and GPT2 Instead of warm-starting both the encoder and decoder with a BERT checkpoint, we can instead leverage the BERT checkpoint for the encoder and a GPT2 checkpoint for the decoder. At first glance, a decoder-only GPT2 checkpoint seems to be better-suited to warm-start the decoder because it has already been trained on causal language modeling and uses uni-directional self-attention layers. Let\'s illustrate how a GPT2 checkpoint can be used to warm-start the decoder. We can see that decoder is more similar to GPT2 than it is to BERT. The weight parameters of decoder\'s LM Head can directly be initialized with GPT2\'s LM Head weight parameters, e.g. \(\theta_{\text{GPT2}}^{\text{lm-head}} \to \theta_{\text{dec}}^{\text{lm-head}}\). In addition, the blocks of the decoder and GPT2 both make use of uni-directional self-attention so that the output vectors of the decoder\'s self-attention layer are equivalent to GPT2\'s output vectors assuming the input vectors are the same, e.g. \(\mathbf{y'}0^{\text{GPT2}} = \mathbf{y'}_0\). In contrast to the BERT-initialized decoder, the GPT2-initialized decoder, therefore, keeps the causal connected graph of the self-attention layer as can be seen in the red boxes on the bottom. Nevertheless, the GPT2-initialized decoder also has to condition the decoder on \(\mathbf{\overline{X}}{1:n}\). Analoguos to the BERT-initialized decoder, randomly initialized weight parameters for the cross-attention layer are therefore added to each decoder block. This is illustrated e.g. for the second encoder block by \(+\theta_{\text{dec}}^{\text{cross-attention, 2}}\). Even though GPT2 resembles the decoder part of an encoder-decoder model more than BERT, a GPT2-initialized decoder will also yield random logit vectors \(\mathbf{L}{1:m}\) without fine-tuning due to randomly initialized cross-attention layers in every decoder block. It would be interesting to investigate whether a GPT2-initialized decoder yields better results or can be fine-tuned more efficiently. | [
-0.008511679247021675,
-0.05126144364476204,
0.022372493520379066,
0.009455211460590363,
-0.02935980260372162,
0.03095323033630848,
-0.04695873707532883,
0.015593555755913258,
-0.02920585311949253,
-0.05296831205487251,
-0.05230849236249924,
0.07067976891994476,
-0.009859216399490833,
0.07733859121799469,
-0.008347157388925552,
0.0007041142089292407,
0.03083183616399765,
-0.09212174266576767,
-0.04268568009138107,
-0.035517822951078415,
0.06618605554103851,
-0.04296135902404785,
0.024738766252994537,
-0.032737161964178085,
0.0441536121070385,
-0.06815046817064285,
-0.018132105469703674,
0.026269733905792236,
-0.012213676236569881,
0.05163127928972244,
-0.04772576689720154,
0.03098466247320175,
0.05813009291887283,
-0.047180239111185074,
0.03455768898129463,
0.0249323770403862,
-0.09650766104459763,
0.011856894008815289,
0.06385045498609543,
-0.027054885402321815,
-0.043946512043476105,
-0.018265921622514725,
-0.039756398648023605,
0.007240963634103537,
-0.05327362194657326,
-0.02572374977171421,
-0.11642894893884659,
0.08365272730588913,
-0.005240992642939091,
-0.07720472663640976,
-0.08417091518640518,
0.05314796790480614,
-0.049126997590065,
0.053719766438007355,
-0.02925843931734562,
0.01830802857875824,
-0.029010003432631493,
-0.06312628835439682,
0.05013881251215935,
-0.03955596685409546,
0.0401536226272583,
0.008320776745676994,
-0.023934196680784225,
0.09325588494539261,
0.001879412797279656,
0.003731519915163517,
-0.09785623103380203,
-0.03378641605377197,
-0.017535394057631493,
-0.024361208081245422,
-0.0582815445959568,
0.0058135343715548515,
0.000014808500054641627,
0.008461780846118927,
0.025721188634634018,
-0.0303517933934927,
0.022016825154423714,
-0.019371481612324715,
-0.029591290280222893,
0.0005047581507824361,
0.005365666467696428,
0.015219715423882008,
-0.04115929454565048,
-0.01816343143582344,
0.029526591300964355,
0.009504761546850204,
0.04102347418665886,
-0.12066284567117691,
-0.032644517719745636,
0.013506160117685795,
-0.07994712144136429,
-0.1301356703042984,
0.0073351869359612465,
-0.02805333398282528,
0.05816243588924408,
0.016059445217251778,
-0.037773434072732925,
0.016180749982595444,
0.009457752108573914,
-0.03877304121851921,
0.023767679929733276,
-0.0701475441455841,
0.0724131241440773,
-0.030093396082520485,
-0.040321581065654755,
-0.0023853210732340813,
-0.02858821675181389,
-0.08182363212108612,
-0.048978883773088455,
-0.01744832657277584,
0.03607530519366264,
-0.01800704188644886,
-0.030604878440499306,
0.011089317500591278,
-0.09718802571296692,
0.03658764064311981,
0.017492305487394333,
-0.06500419229269028,
0.015619674697518349,
0.05188056454062462,
-0.0066200438886880875,
0.043919820338487625,
0.04853985086083412,
-0.07371142506599426,
-0.005594357848167419,
0.03727211430668831,
-0.02139250747859478,
0.0614650584757328,
0.04180849716067314,
0.03893927484750748,
0.10006552934646606,
-0.0008138295379467309,
0.03599109128117561,
-0.036472875624895096,
0.04029792919754982,
-0.002155032940208912,
0.003596049966290593,
-0.048277970403432846,
-0.05671881139278412,
0.011559026315808296,
-0.10631261765956879,
0.03255845606327057,
0.03668805584311485,
-0.054303128272295,
0.021797722205519676,
0.05515992268919945,
-0.14921076595783234,
0.041225120425224304,
0.05385042726993561,
0.06709691137075424,
-0.05407913401722908,
0.03853362426161766,
-0.002212942810729146,
-0.038735270500183105,
-0.022024260833859444,
0.05349954590201378,
-0.030896391719579697,
-0.0178003441542387,
-0.07052674144506454,
-0.014936957508325577,
0.0015120062744244933,
0.017687363550066948,
-0.033182933926582336,
0.0278019942343235,
0.03593125566840172,
-0.07034451514482498,
-0.010898342356085777,
-0.0018515342380851507,
-0.039666756987571716,
0.05316414311528206,
0.02885165624320507,
0.03253866732120514,
0.1057787537574768,
0.02966989390552044,
0.023809731006622314,
0.033064473420381546,
-0.00214181886985898,
0.08898625522851944,
-0.029162120074033737,
-0.041409123688936234,
-0.06061592325568199,
-0.0026791442651301622,
0.02327859401702881,
0.019666898995637894,
-0.01633475348353386,
-0.026149950921535492,
-0.03177241235971451,
-0.05807876214385033,
-0.07654526829719543,
0.014633920975029469,
-0.020223122090101242,
0.02841908298432827,
0.016863441094756126,
-0.01173684187233448,
-0.020144077017903328,
-0.04781103506684303,
-0.04886697977781296,
0.07762224227190018,
0.04708264395594597,
0.048368778079748154,
0.08154626190662384,
0.023439008742570877,
0.07806544005870819,
0.014736809767782688,
-0.011620980687439442,
-0.030232273042201996,
0.06613937020301819,
-0.03448307141661644,
0.05763551592826843,
0.005404296331107616,
0.03799334913492203,
-0.08089081943035126,
-0.011734641157090664,
-0.03988785296678543,
0.028449907898902893,
-0.014197501353919506,
0.01885739341378212,
-0.0026392899453639984,
0.01698382943868637,
0.008919275365769863,
0.11692727357149124,
-0.052818480879068375,
0.0034177068155258894,
-0.028700217604637146,
0.0017916442593559623,
0.056929491460323334,
0.07590930163860321,
-0.019427552819252014,
0.07982142269611359,
-0.04782075062394142,
-0.05245190113782883,
-0.08737147599458694,
0.025601927191019058,
-0.002873343648388982,
-0.06092623621225357,
0.0034849487710744143,
0.001675041508860886,
-0.020806439220905304,
0.06439181417226791,
-0.09543593227863312,
-0.010404479689896107,
-0.00678247818723321,
-0.0034702534321695566,
-0.0070467558689415455,
-0.036376360803842545,
-0.02719021588563919,
0.03921883553266525,
-0.01391485147178173,
-0.047599535435438156,
0.008665359579026699,
-0.05269934609532356,
0.04047784209251404,
-0.005070856306701899,
-0.11171993613243103,
-0.0008596067782491446,
0.017527330666780472,
-0.03309447318315506,
-0.041485745459795,
0.016939906403422356,
0.015599655918776989,
0.018150674179196358,
-0.031709399074316025,
-0.023306818678975105,
-0.008379793725907803,
-0.020154859870672226,
-0.009330861270427704,
-0.027378952130675316,
0.028204405680298805,
0.002399622928351164,
0.010916200466454029,
0.041900791227817535,
-0.016718938946723938,
0.016058016568422318,
0.0485193207859993,
0.041909363120794296,
-0.0008391384035348892,
0.023940064013004303,
-0.051270969212055206,
-0.057144951075315475,
-0.008845445699989796,
0.025416545569896698,
-0.029599979519844055,
0.004567899741232395,
0.019598033279180527,
-0.027024373412132263,
0.043579861521720886,
-0.025639116764068604,
-0.00044238055124878883,
0.012112371623516083,
0.04679354652762413,
-0.001427711104042828,
0.007339583244174719,
-0.00868898257613182,
0.017306458204984665,
-0.023426979780197144,
0.041381459683179855,
0.012430074624717236,
-0.02005309984087944,
-0.005169384181499481,
0.02748197503387928,
-0.013251527212560177,
0.03445170074701309,
0.020938832312822342,
-0.018671901896595955,
-0.05611772835254669,
0.013808771036565304,
0.02149241976439953,
0.04340461269021034,
-0.07963287830352783,
-0.030415261164307594,
0.045716602355241776,
0.011723888106644154,
-0.005274643190205097,
-0.041493970900774,
0.049598369747400284,
-0.001986663555726409,
-0.02250504121184349,
-0.012717334553599358,
0.022627349942922592,
-0.011217793449759483,
0.008392690680921078,
0.026893654838204384,
-0.02314802259206772,
-0.00236274441704154,
-0.016839709132909775,
-0.005535897798836231,
0.036452896893024445,
-0.04056433588266373,
0.0246293805539608,
-0.013420655392110348,
0.017665250226855278,
0.018130101263523102,
-0.01330610178411007,
0.0015050721121951938,
-0.00013463414506986737,
-0.0038379610050469637,
0.0367143489420414,
0.008147008717060089,
-0.02803153172135353,
-0.04134703800082207,
0.012775070033967495,
0.049117084592580795,
-0.026370292529463768,
0.0066644917242228985,
0.04163368418812752,
0.012792586348950863,
0.022767450660467148,
0.054308824241161346,
-0.0015997731825336814,
0.02381298877298832,
0.019857002422213554,
-0.009480409324169159,
0.037574898451566696,
-0.04668748378753662,
0.017079239711165428,
-0.03257615119218826,
0.03634277358651161,
-0.019597560167312622,
0.009660630486905575,
0.0005001976387575269,
-0.024363497272133827,
-0.02584857866168022,
-0.021460648626089096,
0.02338608354330063,
0.01631135866045952,
0.03782296180725098,
0.015357009135186672,
-0.014598428271710873,
-0.030935393646359444,
-0.02653317339718342,
-0.0003149158146698028,
-0.028692064806818962,
-0.0553363636136055,
0.022680042311549187,
0.022689344361424446,
0.010944153182208538,
0.016751006245613098,
0.014772609807550907,
0.0035264252219349146,
-0.03615933284163475,
0.029744980856776237,
0.008365553803741932,
0.027853025123476982,
0.03296826034784317,
-0.033914901316165924,
-0.009369364008307457,
0.07794734090566635,
-0.02545996941626072,
0.01727874018251896,
0.021574627608060837,
-0.024218108505010605,
-0.008841346949338913,
0.005071769934147596,
0.03267822414636612,
0.0011345897801220417,
-0.0024773050099611282,
0.04660394415259361,
-0.030833525583148003,
0.013709661550819874,
-0.035651590675115585,
0.006445957813411951,
-0.032492317259311676,
-0.012050168588757515,
0.00043318161624483764,
-0.006563257426023483,
0.047092463821172714,
0.05017615482211113,
0.024735599756240845,
-0.04118272289633751,
-0.060274478048086166,
0.012585111893713474,
0.009638726711273193,
-0.004082337487488985,
0.01944306120276451,
-0.023154880851507187,
-0.005821639206260443,
0.04851360246539116,
-0.020641639828681946,
0.02111872285604477,
0.01474288571625948,
0.004144446924328804,
0.04206564277410507,
0.043430861085653305,
0.029713742434978485,
0.00504793506115675,
-0.052199218422174454,
0.018148770555853844,
0.006879204884171486,
-0.013234351761639118,
0.0006345259607769549,
0.005952003411948681,
0.007004910614341497,
0.053601596504449844,
0.000128521875012666,
0.028444835916161537,
-0.030872927978634834,
0.004967083223164082,
-0.016041314229369164,
-0.05598733201622963,
-0.023077376186847687,
0.051055219024419785,
-0.040847618132829666,
0.016607606783509254,
-0.005350696854293346,
-0.012254842557013035,
0.047067318111658096,
0.021861404180526733,
-0.05215201526880264,
0.005435864441096783,
0.0021644849330186844,
0.05170266330242157,
-0.058090273290872574,
0.024754611775279045,
-0.013722549192607403,
-0.004166650585830212,
0.03525597229599953,
-0.012108339928090572,
0.0013777290005236864,
0.04344005882740021,
0.00205888319760561,
-0.0922575518488884,
0.03621801361441612,
0.040569934993982315,
-0.0007270398200489581,
0.001740682520903647,
0.004924333654344082,
0.042700737714767456,
0.0356207974255085,
0.022270366549491882,
-0.0007108315476216376,
-0.0438183955848217,
-0.021999184042215347,
0.022125499323010445,
0.02179069072008133,
0.02145063504576683,
-0.019720660522580147,
0.00862747710198164,
-0.012776744551956654,
-0.014707905240356922,
-0.027101241052150726,
0.012053330428898335,
0.0015107939252629876,
-0.0006472612149082124,
-0.00817770417779684,
-0.006427387241274118,
0.007067441940307617,
-0.004002446308732033,
0.005843397229909897,
0.00496028084307909,
0.008829723112285137,
-0.0000883627581060864,
0.0008750707493163645,
-0.01008689496666193,
0.030285706743597984,
0.019288908690214157,
0.054187092930078506,
0.028202202171087265,
0.01675380766391754,
0.008407661691308022,
0.0028686716686934233,
0.047009993344545364,
0.016905896365642548,
-0.014999061822891235,
-0.022496527060866356,
-0.006764439400285482,
0.008698683232069016,
-0.004568147473037243,
0.006405905820429325,
0.0037401134613901377,
0.01563960872590542,
-0.019226618111133575,
-0.0032241521403193474,
0.02011185884475708,
-0.047063764184713364,
-0.03418475389480591,
-0.04836125671863556,
0.01308873388916254,
-0.018266627565026283,
0.006004860159009695,
-0.005394892767071724,
0.004079541191458702,
-0.03518771752715111,
0.0066480692476034164,
0.003213661490008235,
0.005014695227146149,
0.020260881632566452,
0.05797836184501648,
0.04771319404244423,
0.006833459250628948,
-0.0033438208047300577,
-0.046675752848386765,
-0.027166545391082764,
-0.05549104884266853,
-0.03315804898738861,
-0.0261432696133852,
0.03720318526029587,
0.01743193529546261,
0.029554879292845726,
0.043487079441547394,
-0.016815239563584328,
0.007356173824518919,
0.04701151326298714,
-0.05243832990527153,
-0.07150930911302567,
-0.043348584324121475,
0.010690538212656975,
0.010453218594193459,
0.016052495688199997,
0.026325391605496407,
0.0002703832578845322,
0.007834585383534431,
-0.02567845769226551,
-0.05307108908891678,
0.02285732515156269,
0.03651466593146324,
-0.03026425652205944,
0.03988809883594513,
0.00918812956660986,
0.061556532979011536,
0.013484107330441475,
0.004597650840878487,
0.009037255309522152,
0.05014216899871826,
0.007983976043760777,
0.026522794738411903,
-0.009562209248542786,
0.028950583189725876,
0.03439376503229141,
0.0150979682803154,
-0.06738574802875519,
0.030501719564199448,
0.03621045872569084,
-0.04708163067698479,
0.03466227650642395,
0.012161888182163239,
-0.029619937762618065,
0.004257287364453077,
0.024007244035601616,
0.03357026353478432,
-0.025187531486153603,
-0.03879290074110031,
-0.022675078362226486,
0.03180959075689316,
-0.013290059752762318,
0.018754445016384125,
0.06335114687681198,
-0.0133564667776227,
0.027827037498354912,
0.04469588026404381,
-0.0016718582483008504,
0.028360528871417046,
0.02525075525045395,
-0.014987746253609657,
-0.022186050191521645,
0.04823930934071541,
0.02332283928990364,
0.03499220684170723,
0.03267311304807663,
-0.009556273929774761,
0.0040451716631650925,
-0.04059167951345444,
-0.010080969892442226,
0.011045077815651894,
0.019226955249905586,
0.001766209490597248,
-0.014134911820292473,
0.011909880675375462,
-0.030828170478343964,
0.06581049412488937,
0.06829046458005905,
0.031495846807956696,
-0.030323538929224014,
0.06883357465267181,
0.005089127458631992,
0.04911038279533386,
0.012780924327671528,
0.033596668392419815,
0.02283802628517151,
-0.01096042525023222,
0.010968895629048347,
0.02013646811246872,
0.03824425861239433,
0.034283943474292755,
-0.02765018306672573,
0.037011973559856415,
0.0007358172442764044,
-0.014696256257593632,
0.021560320630669594,
0.045103076845407486,
-0.01170539204031229,
-0.00732111930847168,
0.025748882442712784,
-0.021516164764761925,
0.015358679927885532,
0.004421998746693134,
0.0027307672426104546,
0.022348780184984207,
0.008305552415549755,
0.02407897636294365,
0.018586620688438416,
-0.03302012011408806,
-0.005965657066553831,
0.00985036138445139,
0.028565268963575363,
-0.010227708145976067,
0.02964167669415474,
-0.06677042692899704,
-0.03871457278728485,
-0.051701225340366364,
0.0032728654332458973,
-0.03354824706912041,
0.050370391458272934,
0.001623086049221456,
-0.013451188802719116,
0.04937852919101715,
0.046486545354127884,
-0.0064424676820635796,
0.010613759979605675,
0.016706854104995728,
-0.009709089063107967,
-0.005750562995672226,
-0.03935429826378822,
0.001857366762124002,
-0.06908097118139267,
0.02489634044468403,
-0.06840161979198456,
-0.02623250149190426,
-0.01769086718559265,
0.0495804026722908,
0.03603740781545639,
0.026491288095712662,
-0.019500387832522392,
-0.03209133818745613,
-0.009606607258319855,
0.022094804793596268,
-0.024917813017964363,
0.013315829448401928,
0.025264719501137733,
0.0031570035498589277,
0.013378924690186977,
-0.02796182781457901,
-0.004404586274176836,
-0.032629940658807755,
0.01711096428334713,
0.04246052727103233,
-0.009228181093931198,
-0.030441390350461006,
-0.006757416762411594,
0.037569791078567505,
-0.02403533272445202,
0.01768059842288494,
0.03469448164105415,
-0.022043224424123764,
0.0577978789806366,
-0.027699552476406097,
0.01114126481115818,
-0.024076178669929504,
0.002047022106125951,
-0.02568848244845867,
-0.019223153591156006,
0.0006884860340505838,
0.03793693706393242,
0.019336629658937454,
0.02734392322599888,
0.007664172910153866,
-0.0013250901829451323,
-0.0919489860534668,
-0.0011805124813690782,
-0.006945593282580376,
0.046422939747571945,
0.024327637627720833,
-0.026213450357317924,
0.032966841012239456,
0.011895670555531979,
0.001399633358232677,
-0.039129942655563354,
-0.002030824776738882,
0.013372881338000298,
0.049861468374729156,
0.019507886841893196,
-0.0641326755285263,
0.02078656107187271,
-0.04494686797261238,
-0.002037486992776394,
-0.00735856220126152,
0.009048444218933582,
-0.007481350097805262,
0.0035162048880010843,
-0.006975105032324791,
-0.00700902147218585,
-0.005076633766293526,
0.03492371365427971,
-0.004680531099438667,
0.043841972947120667,
-0.03747318685054779,
-0.010564569383859634,
0.0076042236760258675,
-0.03614102303981781,
-0.021425675600767136,
-0.024914512410759926,
0.007155187893658876,
0.051448989659547806,
0.031145917251706123,
0.024887826293706894,
0.0062536923214793205,
0.019086843356490135,
0.016112586483359337,
0.022797370329499245,
-0.026395779103040695,
-0.011707446537911892,
0.05381805822253227,
0.023359917104244232,
-0.0432574562728405,
-0.009855630807578564,
0.01863252744078636,
0.03258329629898071,
-0.002779183443635702,
0.04925378039479256,
-0.015920177102088928,
-0.003213814925402403,
-0.011688563972711563,
0.04133353382349014,
0.007476670667529106,
0.06494858115911484,
0.007099332753568888,
0.01198502816259861,
0.0023205389734357595,
0.030431825667619705
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Data Preprocessing In this section, we show how the data can be pre-processed for training. More importantly, we try to give the reader some insight into the process of deciding how to preprocess the data. We will need datasets and transformers to be installed. python !pip install datasets==1.0.2 !pip install transformers==4.2.1 Let's start by downloading the CNN/Dailymail dataset. python import datasets train_data = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train") Alright, let\'s get a first impression of the dataset. Alternatively, the dataset can also be visualized using the awesome datasets viewer online. python train_data.info.description Our input is called article and our labels are called highlights. Let\'s now print out the first example of the training data to get a feeling for the data. python import pandas as pd from IPython.display import display, HTML from datasets import ClassLabel df = pd.DataFrame(train_data[:1]) del df["id"] for column, typ in train_data.features.items(): if isinstance(typ, ClassLabel): df[column] = df[column].transform(lambda i: typ.names[i]) display(HTML(df.to_html())) python OUTPUT: ------- Article: """It's official: U.S. President Barack Obama wants lawmakers to weigh in on whether to use military force in Syria. Obama sent a letter to the heads of the House and Senate on Saturday night, hours after announcing that he believes military action against Syrian targets is the right step to take over the alleged use of chemical weapons. The proposed legislation from Obama asks Congress to approve the use of military force "to deter, disrupt, prevent and degrade the potential for future uses of chemical weapons or other weapons of mass destruction." It's a step that is set to turn an international crisis into a fierce domestic political battle. There are key questions looming over the debate: What did U.N. weapons inspectors find in Syria? What happens if Congress votes no? And how will the Syrian government react? In a televised address from the White House Rose Garden earlier Saturday, the president said he would take his case to Congress, not because he has to -- but because he wants to. "While I believe I have the authority to carry out this military action without specific congressional authorization, I know that the country will be stronger if we take this course, and our actions will be even more effective," he said. "We should have this debate, because the issues are too big for business as usual." Obama said top congressional leaders had agreed to schedule a debate when the body returns to Washington on September 9. The Senate Foreign Relations Committee will hold a hearing over the matter on Tuesday, Sen. Robert Menendez said. Transcript: Read Obama's full remarks . Syrian crisis: Latest developments . U.N. inspectors leave Syria . Obama's remarks came shortly after U.N. inspectors left Syria, carrying evidence that will determine whether chemical weapons were used in an attack early last week in a Damascus suburb. "The aim of the game here, the mandate, is very clear -- and that is to ascertain whether chemical weapons were used -- and not by whom," U.N. spokesman Martin Nesirky told reporters on Saturday. But who used the weapons in the reported toxic gas attack in a Damascus suburb on August 21 has been a key point of global debate over the Syrian crisis. Top U.S. officials have said there's no doubt that the Syrian government was behind it, while Syrian officials have denied responsibility and blamed jihadists fighting with the rebels. British and U.S. intelligence reports say the attack involved chemical weapons, but U.N. officials have stressed the importance of waiting for an official report from inspectors. The inspectors will share their findings with U.N. Secretary-General Ban Ki-moon Ban, who has said he wants to wait until the U.N. team's final report is completed before presenting it to the U.N. Security Council. The Organization for the Prohibition of Chemical Weapons, which nine of the inspectors belong to, said Saturday that it could take up to three weeks to analyze the evidence they collected. "It needs time to be able to analyze the information and the samples," Nesirky said. He noted that Ban has repeatedly said there is no alternative to a political solution to the crisis in Syria, and that "a military solution is not an option." Bergen: Syria is a problem from hell for the U.S. Obama: 'This menace must be confronted' Obama's senior advisers have debated the next steps to take, and the president's comments Saturday came amid mounting political pressure over the situation in Syria. Some U.S. lawmakers have called for immediate action while others warn of stepping into what could become a quagmire. Some global leaders have expressed support, but the British Parliament's vote against military action earlier this week was a blow to Obama's hopes of getting strong backing from key NATO allies. On Saturday, Obama proposed what he said would be a limited military action against Syrian President Bashar al-Assad. Any military attack would not be open-ended or include U.S. ground forces, he said. Syria's alleged use of chemical weapons earlier this month "is an assault on human dignity," the president said. A failure to respond with force, Obama argued, "could lead to escalating use of chemical weapons or their proliferation to terrorist groups who would do our people harm. In a world with many dangers, this menace must be confronted." Syria missile strike: What would happen next? Map: U.S. and allied assets around Syria . Obama decision came Friday night . On Friday night, the president made a last-minute decision to consult lawmakers. What will happen if they vote no? It's unclear. A senior administration official told CNN that Obama has the authority to act without Congress -- even if Congress rejects his request for authorization to use force. Obama on Saturday continued to shore up support for a strike on the al-Assad government. He spoke by phone with French President Francois Hollande before his Rose Garden speech. "The two leaders agreed that the international community must deliver a resolute message to the Assad regime -- and others who would consider using chemical weapons -- that these crimes are unacceptable and those who violate this international norm will be held accountable by the world," the White House said. Meanwhile, as uncertainty loomed over how Congress would weigh in, U.S. military officials said they remained at the ready. 5 key assertions: U.S. intelligence report on Syria . Syria: Who wants what after chemical weapons horror . Reactions mixed to Obama's speech . A spokesman for the Syrian National Coalition said that the opposition group was disappointed by Obama's announcement. "Our fear now is that the lack of action could embolden the regime and they repeat his attacks in a more serious way," said spokesman Louay Safi. "So we are quite concerned." Some members of Congress applauded Obama's decision. House Speaker John Boehner, Majority Leader Eric Cantor, Majority Whip Kevin McCarthy and Conference Chair Cathy McMorris Rodgers issued a statement Saturday praising the president. "Under the Constitution, the responsibility to declare war lies with Congress," the Republican lawmakers said. "We are glad the president is seeking authorization for any military action in Syria in response to serious, substantive questions being raised." More than 160 legislators, including 63 of Obama's fellow Democrats, had signed letters calling for either a vote or at least a "full debate" before any U.S. action. British Prime Minister David Cameron, whose own attempt to get lawmakers in his country to support military action in Syria failed earlier this week, responded to Obama's speech in a Twitter post Saturday. "I understand and support Barack Obama's position on Syria," Cameron said. An influential lawmaker in Russia -- which has stood by Syria and criticized the United States -- had his own theory. "The main reason Obama is turning to the Congress: the military operation did not get enough support either in the world, among allies of the US or in the United States itself," Alexei Pushkov, chairman of the international-affairs committee of the Russian State Duma, said in a Twitter post. In the United States, scattered groups of anti-war protesters around the country took to the streets Saturday. "Like many other Americans...we're just tired of the United States getting involved and invading and bombing other countries," said Robin Rosecrans, who was among hundreds at a Los Angeles demonstration. What do Syria's neighbors think? Why Russia, China, Iran stand by Assad . Syria's government unfazed . After Obama's speech, a military and political analyst on Syrian state TV said Obama is "embarrassed" that Russia opposes military action against Syria, is "crying for help" for someone to come to his rescue and is facing two defeats -- on the political and military levels. Syria's prime minister appeared unfazed by the saber-rattling. "The Syrian Army's status is on maximum readiness and fingers are on the trigger to confront all challenges," Wael Nader al-Halqi said during a meeting with a delegation of Syrian expatriates from Italy, according to a banner on Syria State TV that was broadcast prior to Obama's address. An anchor on Syrian state television said Obama "appeared to be preparing for an aggression on Syria based on repeated lies." A top Syrian diplomat told the state television network that Obama was facing pressure to take military action from Israel, Turkey, some Arabs and right-wing extremists in the United States. "I think he has done well by doing what Cameron did in terms of taking the issue to Parliament," said Bashar Jaafari, Syria's ambassador to the United Nations. Both Obama and Cameron, he said, "climbed to the top of the tree and don't know how to get down." The Syrian government has denied that it used chemical weapons in the August 21 attack, saying that jihadists fighting with the rebels used them in an effort to turn global sentiments against it. British intelligence had put the number of people killed in the attack at more than 350. On Saturday, Obama said "all told, well over 1,000 people were murdered." U.S. Secretary of State John Kerry on Friday cited a death toll of 1,429, more than 400 of them children. No explanation was offered for the discrepancy. Iran: U.S. military action in Syria would spark 'disaster' Opinion: Why strikes in Syria are a bad idea .""" Summary: """Syrian official: Obama climbed to the top of the tree, "doesn't know how to get down"\nObama sends a letter to the heads of the House and Senate .\nObama to seek congressional approval on military action against Syria .\nAim is to determine whether CW were used, not by whom, says U.N. spokesman""" The input data seems to consist of short news articles. Interestingly, the labels appear to be bullet-point-like summaries. At this point, one should probably take a look at a couple of other examples to get a better feeling for the data. One should also notice here that the text is case-sensitive. This means that we have to be careful if we want to use case-insensitive models. As CNN/Dailymail is a summarization dataset, the model will be evaluated using the ROUGE metric. Checking the description of ROUGE in 🤗datasets, cf. here, we can see that the metric is case-insensitive, meaning that upper case letters will be normalized to lower case letters during evaluation. Thus, we can safely leverage uncased checkpoints, such as bert-base-uncased. Cool! Next, let\'s get a sense of the length of input data and labels. As models compute length in token-length, we will make use of the bert-base-uncased tokenizer to compute the article and summary length. First, we load the tokenizer. python from transformers import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") Next, we make use of .map() to compute the length of the article and its summary. Since we know that the maximum length that bert-base-uncased can process amounts to 512, we are also interested in the percentage of input samples being longer than the maximum length. Similarly, we compute the percentage of summaries that are longer than 64, and 128 respectively. We can define the .map() function as follows. python # map article and summary len to dict as well as if sample is longer than 512 tokens def map_to_length(x): x["article_len"] = len(tokenizer(x["article"]).input_ids) x["article_longer_512"] = int(x["article_len"] > 512) x["summary_len"] = len(tokenizer(x["highlights"]).input_ids) x["summary_longer_64"] = int(x["summary_len"] > 64) x["summary_longer_128"] = int(x["summary_len"] > 128) return x It should be sufficient to look at the first 10000 samples. We can speed up the mapping by using multiple processes with num_proc=4. python sample_size = 10000 data_stats = train_data.select(range(sample_size)).map(map_to_length, num_proc=4) Having computed the length for the first 10000 samples, we should now average them together. For this, we can make use of the .map() function with batched=True and batch_size=-1 to have access to all 10000 samples within the .map() function. python def compute_and_print_stats(x): if len(x["article_len"]) == sample_size: print( "Article Mean: {}, %-Articles > 512:{}, Summary Mean:{}, %-Summary > 64:{}, %-Summary > 128:{}".format( sum(x["article_len"]) / sample_size, sum(x["article_longer_512"]) / sample_size, sum(x["summary_len"]) / sample_size, sum(x["summary_longer_64"]) / sample_size, sum(x["summary_longer_128"]) / sample_size, ) ) output = data_stats.map( compute_and_print_stats, batched=True, batch_size=-1, ) python OUTPUT: ------- Article Mean: 847.6216, %-Articles > 512:0.7355, Summary Mean:57.7742, %-Summary > 64:0.3185, %-Summary > 128:0.0 We can see that on average an article contains 848 tokens with ca. 3/4 of the articles being longer than the model\'s max_length 512. The summary is on average 57 tokens long. Over 30% of our 10000-sample summaries are longer than 64 tokens, but none are longer than 128 tokens. bert-base-cased is limited to 512 tokens, which means we would have to cut possibly important information from the article. Because most of the important information is often found at the beginning of articles and because we want to be computationally efficient, we decide to stick to bert-base-cased with a max_length of 512 in this notebook. This choice is not optimal but has shown to yield good results on CNN/Dailymail. Alternatively, one could leverage long-range sequence models, such as Longformer to be used as the encoder. Regarding the summary length, we can see that a length of 128 already includes all of the summary labels. 128 is easily within the limits of bert-base-cased, so we decide to limit the generation to 128. Again, we will make use of the .map() function - this time to transform each training batch into a batch of model inputs. "article" and "highlights" are tokenized and prepared as the Encoder\'s "input_ids" and Decoder\'s "decoder_input_ids" respectively. "labels" are shifted automatically to the left for language modeling training. Lastly, it is very important to remember to ignore the loss of the padded labels. In 🤗Transformers this can be done by setting the label to -100. Great, let\'s write down our mapping function then. python encoder_max_length=512 decoder_max_length=128 def process_data_to_model_inputs(batch): # tokenize the inputs and labels inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_max_length) outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=decoder_max_length) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask batch["labels"] = outputs.input_ids.copy() # because BERT automatically shifts the labels, the labels correspond exactly to `decoder_input_ids`. # We have to make sure that the PAD token is ignored batch["labels"] = [[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]] return batch In this notebook, we train and evaluate the model just on a few training examples for demonstration and set the batch_size to 4 to prevent out-of-memory issues. The following line reduces the training data to only the first 32 examples. The cell can be commented out or not run for a full training run. Good results were obtained with a batch_size of 16. python train_data = train_data.select(range(32)) Alright, let\'s prepare the training data. python # batch_size = 16 batch_size=4 train_data = train_data.map( process_data_to_model_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights", "id"] ) Taking a look at the processed training dataset we can see that the column names article, highlights, and id have been replaced by the arguments expected by the EncoderDecoderModel. python train_data python OUTPUT: ------- Dataset(features: {'attention_mask': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'decoder_attention_mask': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'decoder_input_ids': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'input_ids': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'labels': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None)}, num_rows: 32) So far, the data was manipulated using Python\'s List format. Let\'s convert the data to PyTorch Tensors to be trained on GPU. python train_data.set_format( type="torch", columns=["input_ids", "attention_mask", "labels"], ) Awesome, the data processing of the training data is finished. Analogous, we can do the same for the validation data. First, we load 10% of the validation dataset: python val_data = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:10%]") For demonstration purposes, the validation data is then reduced to just 8 samples, python val_data = val_data.select(range(8)) the mapping function is applied, python val_data = val_data.map( process_data_to_model_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights", "id"] ) and, finally, the validation data is also converted to PyTorch tensors. python val_data.set_format( type="torch", columns=["input_ids", "attention_mask", "labels"], ) Great! Now we can move to warm-starting the EncoderDecoderModel. | [
0.023238008841872215,
0.01236693374812603,
0.0204185638576746,
0.05050390958786011,
0.05070338025689125,
0.08174024522304535,
0.03505552187561989,
0.03725248575210571,
-0.05417468026280403,
0.0008660113089717925,
-0.08024219423532486,
0.06436262279748917,
-0.07857067137956619,
0.02284190244972706,
0.03292171284556389,
-0.046191778033971786,
0.05126215144991875,
-0.025765322148799896,
-0.010821960866451263,
0.08748029917478561,
-0.00335831381380558,
-0.037971265614032745,
0.010452243499457836,
0.07432247698307037,
0.007539692334830761,
-0.024717282503843307,
0.07157359272241592,
0.00005884999336558394,
-0.03429514914751053,
0.0906863734126091,
-0.11645147949457169,
-0.032172102481126785,
-0.027129191905260086,
-0.013513953424990177,
-0.031528692692518234,
-0.02137024886906147,
-0.05831899866461754,
0.06185784935951233,
0.09366951882839203,
-0.05642443895339966,
-0.02876870706677437,
-0.029101088643074036,
-0.09962750226259232,
0.05387235805392265,
-0.03522172570228577,
-0.09832990914583206,
-0.16533012688159943,
0.09589230269193649,
0.03196243196725845,
-0.0321376696228981,
-0.08633015304803848,
0.09230475127696991,
0.04010774940252304,
-0.03200659528374672,
-0.025448942556977272,
-0.008038030005991459,
-0.0010573483305051923,
-0.01469001080840826,
0.014354011043906212,
0.03931561857461929,
0.037979066371917725,
0.03072381764650345,
0.03287399560213089,
-0.01350528933107853,
0.053959451615810394,
-0.032631054520606995,
-0.007326547522097826,
0.11756014823913574,
-0.0640476867556572,
-0.07474780827760696,
0.0003172717406414449,
-0.05624980479478836,
-0.010191407985985279,
-0.023620981723070145,
0.023207802325487137,
-0.0099854851141572,
-0.031422972679138184,
0.03882227838039398,
-0.057787757366895676,
0.0565936341881752,
0.004557706881314516,
0.043522775173187256,
0.031034016981720924,
0.007515930570662022,
0.07380431145429611,
0.0017591520445421338,
0.03645021468400955,
0.03960326686501503,
-0.05714617669582367,
0.08036407083272934,
-0.012622739188373089,
-0.04273558408021927,
0.018922219052910805,
0.0027559944428503513,
0.019562337547540665,
-0.033347900956869125,
-0.020491737872362137,
-0.01884113997220993,
-0.011166151612997055,
-0.06408572942018509,
-0.010178230702877045,
-0.09202204644680023,
0.08244539797306061,
-0.04789305850863457,
-0.05845949426293373,
0.03486035019159317,
-0.05722730979323387,
-0.019592465832829475,
-0.030857525765895844,
0.022771595045924187,
0.02001718059182167,
0.026673167943954468,
-0.02005588263273239,
0.07100451737642288,
-0.07857350260019302,
0.055065032094717026,
0.03776326775550842,
0.0035115249920636415,
-0.016210444271564484,
0.02199355699121952,
0.002416522242128849,
0.10075505822896957,
0.029352782294154167,
0.020850770175457,
-0.0066461083479225636,
0.03432125225663185,
0.022448377683758736,
0.017835119739174843,
0.007200172636657953,
0.009446106851100922,
0.007718957029283047,
-0.0042579881846904755,
0.04517331346869469,
-0.025408487766981125,
-0.0071920002810657024,
-0.05287569388747215,
-0.044372860342264175,
0.041623663157224655,
0.04848529025912285,
-0.01979765109717846,
0.025030845776200294,
0.07752672582864761,
0.0052668130956590176,
0.04849492385983467,
-0.02096952684223652,
-0.023678064346313477,
-0.04000018909573555,
0.06778522580862045,
0.027293920516967773,
0.007261096499860287,
-0.0031474153511226177,
0.05596395581960678,
0.007644090801477432,
-0.009998221881687641,
0.061595041304826736,
0.08707637339830399,
-0.007452229503542185,
-0.02778621017932892,
-0.10337478667497635,
0.006151932291686535,
0.015721019357442856,
0.050830040127038956,
-0.00022232660558074713,
0.01348674576729536,
0.0457536056637764,
-0.08547269552946091,
-0.005929829552769661,
-0.018263237550854683,
0.03989898040890694,
0.0037987090181559324,
-0.03688112273812294,
-0.04602259024977684,
0.07057347148656845,
0.04985949024558067,
0.025795090943574905,
0.03731228783726692,
0.019372161477804184,
0.023113636299967766,
0.02745058387517929,
-0.00729999877512455,
-0.024293560534715652,
0.03314438462257385,
-0.0386926643550396,
0.03359575197100639,
0.05186066776514053,
-0.04500887915492058,
0.04170750081539154,
-0.0733364075422287,
0.012521235272288322,
0.07293393462896347,
-0.07075236737728119,
0.0005005650455132127,
0.0657850131392479,
-0.01237681694328785,
0.04313176870346069,
-0.08886778354644775,
-0.050199709832668304,
0.09105990082025528,
-0.007026143837720156,
0.08955801278352737,
-0.004216729663312435,
-0.005529511254280806,
0.03699181601405144,
-0.06180266663432121,
0.008002538233995438,
-0.011100036092102528,
-0.0005507299210876226,
-0.039970576763153076,
0.06826489418745041,
0.02111392468214035,
-0.02076689898967743,
-0.08852257579565048,
0.026664700359106064,
-0.05146070569753647,
-0.02944015897810459,
0.0013925880193710327,
-0.058710627257823944,
0.027032073587179184,
-0.005337662063539028,
-0.02109362930059433,
0.11172579228878021,
-0.01948440447449684,
0.04138791933655739,
-0.004399572499096394,
-0.02645348571240902,
0.03744949400424957,
0.09251002222299576,
0.10672406852245331,
0.03517758101224899,
-0.10021243244409561,
-0.025047125294804573,
-0.011061843484640121,
0.011460001580417156,
0.008775812573730946,
-0.03252391889691353,
-0.03605348616838455,
-0.005453153979033232,
0.045067448168992996,
0.04151234030723572,
-0.018948635086417198,
0.048505622893571854,
-0.023414842784404755,
-0.020244412124156952,
0.015895657241344452,
-0.05780728906393051,
-0.04378192499279976,
0.06872676312923431,
-0.01088835671544075,
-0.021960793063044548,
-0.05261647328734398,
-0.02755122072994709,
0.016935739666223526,
0.021759741008281708,
-0.03646640479564667,
-0.017384206876158714,
0.039326779544353485,
0.014245051890611649,
0.02788291685283184,
-0.03216182067990303,
0.03778770565986633,
0.00922306813299656,
-0.024416591972112656,
-0.05118170380592346,
-0.08490199595689774,
-0.0048143998719751835,
-0.02823774516582489,
0.016309572383761406,
-0.027672335505485535,
0.02718210406601429,
-0.013585241511464119,
-0.0011149575002491474,
-0.03024747595191002,
0.039605360478162766,
0.002038115169852972,
0.022451097145676613,
0.025359969586133957,
0.008139623329043388,
0.021227866411209106,
-0.009221331216394901,
-0.04132271185517311,
0.00001534675720904488,
-0.04744242876768112,
0.005631531123071909,
0.03732889145612717,
0.03888046741485596,
-0.015104098245501518,
0.008980991318821907,
0.011409697122871876,
-0.01772253029048443,
0.02943219244480133,
-0.0161886028945446,
0.04264840483665466,
0.005012705456465483,
-0.02395343966782093,
0.03842116519808769,
-0.040233176201581955,
-0.00828660000115633,
-0.011410393752157688,
-0.0075159030966460705,
-0.014401094056665897,
-0.0050523956306278706,
-0.010311377234756947,
0.011876877397298813,
-0.006523936055600643,
-0.021152012050151825,
0.01766309328377247,
0.023558106273412704,
0.04319366067647934,
-0.10220567882061005,
-0.0010429874528199434,
0.055229704827070236,
-0.02558496780693531,
-0.0001734144752845168,
-0.025387389585375786,
0.08078870922327042,
-0.004238729830831289,
-0.0025615643244236708,
0.014258703216910362,
-0.011242100037634373,
-0.003914274740964174,
0.005981024354696274,
-0.0037472518160939217,
0.03643875569105148,
-0.020404966548085213,
0.011824963614344597,
0.0068155271001160145,
0.032242435961961746,
0.04507489129900932,
-0.04418504983186722,
0.06672201305627823,
0.020659903064370155,
0.02860690839588642,
-0.019834889099001884,
0.035688772797584534,
0.05020064488053322,
0.046659018844366074,
0.010738912038505077,
0.008773008361458778,
-0.004606342874467373,
-0.028151633217930794,
0.004230637568980455,
0.011725267395377159,
-0.013380512595176697,
-0.007818165235221386,
-0.013571224175393581,
0.022734951227903366,
-0.005668755155056715,
0.03999662771821022,
-0.04569695144891739,
0.01370638981461525,
-0.0007818746962584555,
0.017612837255001068,
0.033868156373500824,
0.011667500250041485,
-0.015573607757687569,
-0.033136121928691864,
-0.0010147785069420934,
-0.05644344538450241,
-0.024677159264683723,
-0.00506327860057354,
-0.0027510016225278378,
0.05116090551018715,
0.016205664724111557,
0.021332750096917152,
0.04433418810367584,
0.014946818351745605,
0.03366458788514137,
-0.03515934199094772,
-0.00652865506708622,
0.0582893006503582,
0.012847242876887321,
0.0001825201470637694,
-0.021482037380337715,
0.01670239306986332,
0.004169474355876446,
0.020972827449440956,
0.007929912768304348,
0.04463280364871025,
-0.027407018467783928,
-0.003293118439614773,
0.01750684343278408,
-0.001971201039850712,
0.0175041314214468,
-0.01786869578063488,
0.00844293087720871,
-0.010775228962302208,
0.04680098593235016,
0.04932473599910736,
-0.037820346653461456,
-0.0623282864689827,
-0.017696227878332138,
-0.044920820742845535,
0.008021405898034573,
-0.010184843093156815,
-0.008149383589625359,
-0.03636457026004791,
0.0297051090747118,
0.004923644941300154,
0.0051076048985123634,
-0.040827427059412,
-0.025931423529982567,
-0.011682672426104546,
-0.03592006489634514,
-0.004668012261390686,
0.018683992326259613,
-0.03984496742486954,
-0.0333767905831337,
-0.015344355255365372,
-0.011536607518792152,
-0.07517735660076141,
-0.012972764670848846,
0.011158742010593414,
-0.058503735810518265,
-0.008566067554056644,
-0.039729055017232895,
-0.0258334968239069,
-0.027041561901569366,
-0.03697105869650841,
0.0019167817663401365,
-0.004772582557052374,
-0.006397422403097153,
-0.039013031870126724,
-0.006899695377796888,
0.0474211685359478,
-0.007208993658423424,
-0.01872318610548973,
-0.00031913508428260684,
0.04629861190915108,
-0.02876172587275505,
0.01484384573996067,
-0.04229161888360977,
-0.050900738686323166,
-0.012501884251832962,
-0.02920692414045334,
0.04540928825736046,
0.04030057415366173,
0.01533297449350357,
-0.04233806952834129,
-0.0193640049546957,
-0.026914028450846672,
-0.017893362790346146,
0.009639720432460308,
0.027380404993891716,
-0.012569042854011059,
-0.020837942138314247,
0.017221886664628983,
0.029225032776594162,
-0.02349485456943512,
-0.020231975242495537,
-0.03159491717815399,
0.04946788027882576,
0.02089836820960045,
0.04069767892360687,
-0.008180968463420868,
-0.036846984177827835,
-0.0027747908607125282,
-0.013759801164269447,
-0.011648595333099365,
0.0031326559837907553,
0.026492470875382423,
-0.03570704162120819,
0.004468044266104698,
0.025293026119470596,
-0.012205877341330051,
0.03107370249927044,
0.004453087691217661,
0.008241552859544754,
0.03175199404358864,
-0.043004147708415985,
-0.04565715044736862,
-0.033431533724069595,
0.011848238296806812,
0.006688936147838831,
-0.025729749351739883,
0.020929329097270966,
-0.02835153043270111,
0.010166826657950878,
-0.01524288859218359,
-0.013716145418584347,
-0.00005781965228379704,
0.006177097093313932,
-0.008957534097135067,
0.022714737802743912,
0.014023431576788425,
0.006292493082582951,
0.029879163950681686,
-0.013249384239315987,
0.010400776751339436,
0.0033015685621649027,
-0.03688595071434975,
-0.00629241019487381,
0.033113203942775726,
-0.020198995247483253,
0.03533788397908211,
0.0021462556906044483,
0.03376934677362442,
-0.0043986146338284016,
0.016225887462496758,
0.012128891423344612,
-0.06993702054023743,
0.010295414365828037,
-0.05707941949367523,
-0.014737286604940891,
0.034830860793590546,
-0.007600640412420034,
0.005413195118308067,
-0.028210032731294632,
-0.03260758891701698,
-0.01574300043284893,
0.06062151491641998,
-0.01021413691341877,
-0.01331210508942604,
-0.012431572191417217,
0.004097219556570053,
-0.014525369741022587,
-0.019551998004317284,
0.007638964802026749,
-0.0600043348968029,
0.039268992841243744,
-0.016167230904102325,
-0.009258974343538284,
-0.008358877152204514,
-0.015954267233610153,
-0.013193957507610321,
-0.026030246168375015,
-0.0032610727939754725,
0.011327527463436127,
0.04609347879886627,
-0.02924073301255703,
-0.018999315798282623,
-0.004208606667816639,
0.05187266319990158,
0.04134070873260498,
-0.017142273485660553,
0.010207044892013073,
-0.010647207498550415,
0.02722090110182762,
0.0057676248252391815,
0.006499232724308968,
0.05423213168978691,
0.022340159863233566,
0.04538881033658981,
0.005007733590900898,
-0.023643383756279945,
-0.029515204951167107,
0.04772002622485161,
0.023880889639258385,
-0.01956319250166416,
-0.04378149285912514,
-0.031586866825819016,
-0.048952918499708176,
0.013185115531086922,
0.0022890926338732243,
0.03840884938836098,
0.03692302852869034,
0.007693741470575333,
0.025982890278100967,
-0.003982636611908674,
-0.003608369268476963,
0.03021158091723919,
-0.006575005128979683,
-0.026136700063943863,
0.006661562714725733,
0.01130176242440939,
-0.017916012555360794,
-0.0019644491840153933,
0.042298562824726105,
0.007248643320053816,
-0.01830163411796093,
-0.029646093025803566,
0.017128873616456985,
-0.002909247297793627,
-0.0098203020170331,
0.005312823224812746,
0.030324377119541168,
-0.025238268077373505,
0.013997157104313374,
0.0062375059351325035,
0.03450479730963707,
0.06734923273324966,
0.008245748467743397,
0.02316332422196865,
-0.01929602585732937,
-0.0030302461236715317,
-0.01189772505313158,
0.05913679674267769,
-0.02061205543577671,
0.029378049075603485,
-0.016052328050136566,
0.01180943287909031,
0.04445802792906761,
-0.010773816145956516,
0.009933745488524437,
-0.023298192769289017,
0.05731724202632904,
0.03074539080262184,
0.00467239273712039,
0.008622551336884499,
-0.012734103947877884,
-0.013139509595930576,
-0.10508237779140472,
-0.02702438458800316,
-0.00329327373765409,
0.015531953424215317,
0.03307057544589043,
-0.023323392495512962,
0.017390834167599678,
-0.034528568387031555,
0.06898947060108185,
0.035826344043016434,
0.029484685510396957,
0.02163362130522728,
0.01677033305168152,
0.0652584657073021,
0.020619619637727737,
0.02752307616174221,
0.02814091369509697,
0.011262236163020134,
-0.024916037917137146,
0.03251408785581589,
0.029477614909410477,
0.048592377454042435,
0.0024914101231843233,
-0.007644772529602051,
-0.006020714528858662,
-0.02705806866288185,
-0.022516388446092606,
-0.00006621766806347296,
-0.01045521255582571,
-0.04792739823460579,
-0.014376112259924412,
0.03473638743162155,
-0.04237902909517288,
0.0032517851796001196,
-0.01760009676218033,
-0.01093932706862688,
-0.04694768041372299,
-0.011655440554022789,
-0.045665446668863297,
0.04863487929105759,
-0.028314320370554924,
-0.033299755305051804,
-0.04269157722592354,
-0.005257312674075365,
0.009637854062020779,
0.014014661312103271,
-0.020060647279024124,
-0.04711262881755829,
-0.05540360510349274,
-0.010580526664853096,
0.014846713282167912,
0.05736616626381874,
-0.014460412785410881,
0.0037428676150739193,
-0.011937473900616169,
-0.0037840032018721104,
-0.026856679469347,
0.03252937272191048,
0.00824747048318386,
0.047458499670028687,
-0.0246697086840868,
0.024712013080716133,
-0.03647152706980705,
-0.023651180788874626,
0.03678277134895325,
-0.034320902079343796,
0.018105437979102135,
-0.06228983774781227,
0.042161837220191956,
-0.008695154450833797,
0.03582026809453964,
-0.004436285234987736,
-0.03745945170521736,
0.000538419175427407,
-0.005846089217811823,
-0.013209665194153786,
0.037436407059431076,
0.01844807155430317,
-0.008639776147902012,
0.026552552357316017,
-0.003998377826064825,
-0.027314171195030212,
-0.024735072627663612,
-0.0015985973877832294,
0.020783869549632072,
-0.02505313605070114,
-0.020424704998731613,
0.014751330018043518,
0.027662338688969612,
0.02421838603913784,
0.013020526617765427,
-0.026077555492520332,
0.03315361961722374,
0.022558728232979774,
-0.004628043621778488,
0.007907677441835403,
-0.06111788749694824,
0.03530124947428703,
-0.02364731766283512,
-0.06397879123687744,
-0.02366814576089382,
0.025216659530997276,
-0.01840304769575596,
0.012234026566147804,
-0.04613214731216431,
0.010995469987392426,
-0.018284577876329422,
-0.008077689446508884,
-0.0221469197422266,
-0.02480195462703705,
0.03840361908078194,
0.015563147142529488,
0.04391646012663841,
0.03827064484357834,
-0.046294793486595154,
0.013936882838606834,
-0.004898338112980127,
0.007274611387401819,
-0.0007403779309242964,
0.00010150121670449153,
-0.002850281773135066,
-0.00327593507245183,
0.016261955723166466,
-0.01612115278840065,
-0.05490375682711601,
-0.0397079661488533,
0.018436482176184654,
-0.009802780114114285,
0.005853147711604834,
0.005678489804267883,
0.035906776785850525,
0.02970205992460251,
-0.008763991296291351,
-0.01568857580423355,
-0.003250567242503166,
0.046692006289958954,
-0.02384444884955883,
-0.06185907870531082,
0.02956787683069706,
-0.0015352434711530805,
0.020436476916074753,
0.008119127713143826,
0.026177117601037025,
0.016642523929476738,
-0.005309047177433968,
0.0350436270236969,
-0.01299288310110569,
0.029317796230316162,
-0.04164094850420952,
-0.012262248434126377,
-0.007567483000457287,
0.06695163995027542,
-0.016805754974484444,
-0.0439421571791172,
-0.005035321693867445,
0.015507263131439686,
0.0067342412658035755,
0.008072981610894203,
0.001163239125162363,
0.02778489701449871,
-0.03180396184325218,
0.042519353330135345,
0.0028653922490775585,
0.03844523802399635,
0.002739295130595565,
0.006205333862453699,
-0.023154692724347115,
0.022801944985985756
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Fine-Tuning Warm-Started Encoder-Decoder Models In this section, we will show how one can make use of the Seq2SeqTrainer to fine-tune a warm-started encoder-decoder model. Let\'s first import the Seq2SeqTrainer and its training arguments Seq2SeqTrainingArguments. python from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments In addition, we need a couple of python packages to make the Seq2SeqTrainer work. python !pip install git-python==1.0.3 !pip install rouge_score !pip install sacrebleu The Seq2SeqTrainer extends 🤗Transformer\'s Trainer for encoder-decoder models. In short, it allows using the generate(...) function during evaluation, which is necessary to validate the performance of encoder-decoder models on most sequence-to-sequence tasks, such as summarization. For more information on the Trainer, one should read through this short tutorial. Let\'s begin by configuring the Seq2SeqTrainingArguments. The argument predict_with_generate should be set to True, so that the Seq2SeqTrainer runs the generate(...) on the validation data and passes the generated output as predictions to the compute_metric(...) function which we will define later. The additional arguments are derived from TrainingArguments and can be read upon here. For a complete training run, one should change those arguments as needed. Good default values are commented out below. For more information on the Seq2SeqTrainer, the reader is advised to take a look at the code. python training_args = Seq2SeqTrainingArguments( predict_with_generate=True, evaluation_strategy="steps", per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, fp16=True, output_dir="./", logging_steps=2, save_steps=10, eval_steps=4, # logging_steps=1000, # save_steps=500, # eval_steps=7500, # warmup_steps=2000, # save_total_limit=3, ) Also, we need to define a function to correctly compute the ROUGE score during validation. Since we activated predict_with_generate, the compute_metrics(...) function expects predictions that were obtained using the generate(...) function. Like most summarization tasks, CNN/Dailymail is typically evaluated using the ROUGE score. Let\'s first load the ROUGE metric using the 🤗datasets library. python rouge = datasets.load_metric("rouge") Next, we will define the compute_metrics(...) function. The rouge metric computes the score from two lists of strings. Thus we decode both the predictions and labels - making sure that -100 is correctly replaced by the pad_token_id and remove all special characters by setting skip_special_tokens=True. python def compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) labels_ids[labels_ids == -100] = tokenizer.pad_token_id label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True) rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid return { "rouge2_precision": round(rouge_output.precision, 4), "rouge2_recall": round(rouge_output.recall, 4), "rouge2_fmeasure": round(rouge_output.fmeasure, 4), } Great, now we can pass all arguments to the Seq2SeqTrainer and start finetuning. Executing the following cell will take ca. 10 minutes ☕. Finetuning BERT2BERT on the complete CNN/Dailymail training data takes ca. model takes ca. 8h on a single TITAN RTX GPU. python # instantiate trainer trainer = Seq2SeqTrainer( model=bert2bert, tokenizer=tokenizer, args=training_args, compute_metrics=compute_metrics, train_dataset=train_data, eval_dataset=val_data, ) trainer.train() Awesome, we should now be fully equipped to finetune a warm-started encoder-decoder model. To check the result of our fine-tuning let\'s take a look at the saved checkpoints. python !ls bash OUTPUT: ------- bert2bert checkpoint-20 runs seq2seq_trainer.py checkpoint-10 __pycache__ sample_data seq2seq_training_args.py Finally, we can load the checkpoint as usual via the EncoderDecoderModel.from_pretrained(...) method. python dummy_bert2bert = EncoderDecoderModel.from_pretrained("./checkpoint-20") | [
0.04542194679379463,
0.0017988369800150394,
0.039684902876615524,
-0.021362630650401115,
0.025605566799640656,
0.061808593571186066,
0.03365558385848999,
0.019182251766324043,
-0.034413162618875504,
-0.020520010963082314,
-0.049586981534957886,
0.06814602762460709,
-0.013918020762503147,
0.011982431635260582,
0.006771680433303118,
-0.046243514865636826,
0.014239232055842876,
-0.038458406925201416,
-0.011503107845783234,
0.016210706904530525,
0.027292339131236076,
-0.06289957463741302,
0.014437948353588581,
-0.001483286265283823,
0.02759028784930706,
-0.04473094642162323,
0.011206441558897495,
-0.0034808178897947073,
-0.06498546153306961,
-0.004097545053809881,
-0.10033590346574783,
0.01073240116238594,
-0.011140738613903522,
-0.04936257377266884,
-0.004538442473858595,
0.046215225011110306,
-0.1047382801771164,
0.04909689351916313,
0.060220494866371155,
-0.020829932764172554,
-0.0035874352324754,
-0.028053058311343193,
0.01711639016866684,
0.013596839271485806,
0.02168850600719452,
-0.03153703734278679,
-0.13913846015930176,
-0.013752574101090431,
0.003433713922277093,
-0.09193318337202072,
-0.020691148936748505,
0.07949849218130112,
0.04676379635930061,
-0.019594192504882812,
0.027733372524380684,
-0.029519254341721535,
-0.0018693882739171386,
-0.013589751906692982,
0.01821204274892807,
0.0413907952606678,
0.04197784140706062,
-0.0015028398483991623,
-0.011122684925794601,
0.04028220474720001,
0.020758215337991714,
-0.0070700570940971375,
-0.057919468730688095,
0.05509401485323906,
-0.005328678991645575,
-0.044770464301109314,
-0.035220928490161896,
-0.07659339904785156,
0.027784813195466995,
0.0024663840886205435,
-0.019615063443779945,
-0.1056184247136116,
0.016949918121099472,
-0.0026382673531770706,
0.03953627496957779,
0.06393276900053024,
-0.04141370207071304,
0.07158512622117996,
-0.02692411281168461,
0.02216540090739727,
0.03810593858361244,
0.06657931208610535,
0.032739460468292236,
-0.05092429369688034,
-0.04118499159812927,
0.04904686659574509,
0.0006033508689142764,
-0.13251054286956787,
0.029722096398472786,
-0.015432894229888916,
0.001834335969761014,
0.037281036376953125,
-0.008212469518184662,
0.0011331125861033797,
-0.03234712779521942,
0.0012081156019121408,
-0.01431206427514553,
-0.06722140312194824,
0.02682204730808735,
-0.05319611728191376,
-0.005260576959699392,
0.03863760828971863,
-0.03862498328089714,
-0.058011744171381,
-0.049438897520303726,
0.016420984640717506,
0.03017573617398739,
-0.008409521542489529,
-0.08104139566421509,
0.06476078927516937,
-0.08707784116268158,
0.021249981597065926,
0.016518479213118553,
-0.05196583643555641,
-0.04912335425615311,
-0.0033074875827878714,
-0.005155721679329872,
0.09450631588697433,
0.05318167433142662,
-0.03294144198298454,
-0.05716296285390854,
0.07050636410713196,
0.022461343556642532,
0.018250562250614166,
0.04277780279517174,
0.024347595870494843,
0.015196860767900944,
0.014211175963282585,
0.014575229957699776,
0.02645493857562542,
0.0076116593554615974,
-0.03988458216190338,
0.006845733150839806,
-0.031201284378767014,
-0.02567155286669731,
0.06317952275276184,
-0.07343186438083649,
0.10880173742771149,
0.02962317131459713,
-0.02513292245566845,
-0.014836393296718597,
0.01122060976922512,
-0.06040935590863228,
0.07164212316274643,
0.06373158097267151,
0.05555551499128342,
-0.05043938755989075,
0.09359011054039001,
-0.0664919838309288,
-0.07985566556453705,
0.030754858627915382,
0.059293389320373535,
-0.073689304292202,
-0.009931410662829876,
-0.07840783149003983,
0.006805201526731253,
-0.0013346681371331215,
0.042063284665346146,
-0.03804789111018181,
0.010588818229734898,
0.02535880357027054,
-0.05166462063789368,
0.04280412569642067,
0.04148660600185394,
0.03973974287509918,
0.024793092161417007,
0.03333849832415581,
0.04086431860923767,
0.07421740889549255,
0.007101654540747404,
-0.00013241710257716477,
0.04348505288362503,
-0.012945973314344883,
0.11035178601741791,
0.012226921506226063,
-0.059738364070653915,
-0.04922986030578613,
0.07270030677318573,
-0.05181479826569557,
0.09228893369436264,
0.0504394955933094,
-0.08158529549837112,
0.011675050482153893,
-0.03972296789288521,
-0.060750946402549744,
0.05154323950409889,
-0.03245840594172478,
-0.004125052131712437,
0.0975373387336731,
-0.0314018651843071,
0.012578160502016544,
-0.05090423673391342,
-0.003772368421778083,
0.0644460991024971,
0.026930617168545723,
0.03840986266732216,
0.047667067497968674,
0.02840949036180973,
0.10136396437883377,
0.00864240899682045,
-0.02831772156059742,
0.021168196573853493,
0.01240110769867897,
-0.08651160448789597,
0.09521680325269699,
0.012973661534488201,
0.043753840029239655,
-0.09824862331151962,
0.014593865722417831,
-0.1027931272983551,
0.058766014873981476,
-0.022708730772137642,
0.012661605142056942,
-0.04294781759381294,
0.015137365087866783,
0.01626451313495636,
0.11507521569728851,
0.019130483269691467,
0.011653904803097248,
-0.0460645854473114,
-0.024591114372015,
0.0004084323882125318,
0.06366131454706192,
0.01806163229048252,
0.053925126791000366,
-0.06223269924521446,
-0.03592837601900101,
-0.044809821993112564,
-0.08909328281879425,
0.016062214970588684,
-0.028505906462669373,
-0.0419466458261013,
-0.02477389946579933,
0.0212952122092247,
0.00842502061277628,
-0.061264123767614365,
0.04276663064956665,
0.025460049510002136,
-0.03791772946715355,
-0.0013855062425136566,
-0.055564913898706436,
0.01315052155405283,
0.0716262087225914,
-0.017889801412820816,
-0.020037047564983368,
-0.032175324857234955,
-0.04153095558285713,
0.06978043913841248,
0.027708571404218674,
-0.07331649959087372,
0.03513235226273537,
0.04837045446038246,
-0.04052235931158066,
-0.00077738770050928,
0.0010850562248378992,
0.017123006284236908,
0.012594110332429409,
-0.004578202031552792,
-0.031192928552627563,
-0.004484940320253372,
0.014351209625601768,
-0.03115936554968357,
-0.018643463030457497,
0.008411049842834473,
0.00895615853369236,
-0.007221809588372707,
0.026072990149259567,
-0.016839582473039627,
0.03830111026763916,
0.0023516742512583733,
0.04045743867754936,
0.020224129781126976,
0.06480835378170013,
-0.03939538076519966,
-0.029902944341301918,
0.000021645761080435477,
0.026513295248150826,
-0.01599392667412758,
-0.0048499563708901405,
0.019185714423656464,
-0.019156543537974358,
0.019920142367482185,
-0.021009936928749084,
-0.007264625281095505,
-0.007149340584874153,
0.033726174384355545,
0.006067190319299698,
0.026354877278208733,
0.0035308764781802893,
-0.007795107550919056,
-0.010883492417633533,
0.043504711240530014,
-0.007886060513556004,
-0.062378980219364166,
0.018059801310300827,
-0.016330895945429802,
-0.0452512763440609,
0.006756483111530542,
0.01815502718091011,
-0.00797385536134243,
-0.052460718899965286,
0.00865945965051651,
0.02338777296245098,
0.006591965444386005,
-0.09455718845129013,
0.0025629184674471617,
0.004045787733048201,
-0.014123467728495598,
-0.024816013872623444,
-0.008442804217338562,
0.048681389540433884,
-0.0012056726263836026,
-0.021054692566394806,
0.016973568126559258,
-0.022903665900230408,
0.00897197425365448,
-0.0016133629251271486,
0.015920288860797882,
-0.031621962785720825,
-0.01900630071759224,
-0.04253494367003441,
0.00033756878110580146,
0.020432114601135254,
0.021321967244148254,
0.010929756797850132,
0.01057587843388319,
0.016688697040081024,
-0.0032223842572420835,
-0.010081135667860508,
0.02107911743223667,
0.03376679867506027,
0.021488681435585022,
-0.04778524488210678,
-0.027149243280291557,
-0.010437344200909138,
-0.009628868661820889,
-0.0007340910960920155,
0.016748329624533653,
0.005335067864507437,
-0.038626737892627716,
0.019651107490062714,
-0.03358851745724678,
0.02448485605418682,
0.012877736240625381,
-0.011232592165470123,
-0.00725083751603961,
0.009763021022081375,
0.010075705125927925,
0.019909529015421867,
-0.02969691902399063,
0.0032008637208491564,
-0.028014348819851875,
0.02036375366151333,
-0.0037965753581374884,
-0.023227903991937637,
0.01691647619009018,
-0.020771151408553123,
0.0385504849255085,
-0.01565035805106163,
0.028400853276252747,
0.01087450236082077,
0.05732908844947815,
0.04572412371635437,
-0.009679506532847881,
-0.0609864667057991,
0.012143696658313274,
-0.009440802969038486,
-0.019315605983138084,
-0.017162678763270378,
0.022796757519245148,
0.01649775356054306,
0.03179057687520981,
-0.013496539555490017,
0.03302053362131119,
-0.01898571476340294,
-0.018833773210644722,
0.026774846017360687,
0.011284424923360348,
-0.030454281717538834,
0.01731579378247261,
-0.0386071614921093,
-0.0035937565844506025,
0.05486522987484932,
0.049217041581869125,
-0.021936502307653427,
-0.03851913660764694,
-0.03646491840481758,
-0.039273206144571304,
0.027472537010908127,
0.014090761542320251,
0.013652434572577477,
-0.0295687485486269,
0.04354795813560486,
-0.007037431001663208,
0.0027916468679904938,
-0.00816227588802576,
-0.012462157756090164,
-0.013934902846813202,
-0.00950632430613041,
-0.02889595553278923,
0.003644434502348304,
0.027788449078798294,
0.026664406061172485,
0.012230472639203072,
0.004157377872616053,
-0.08550011366605759,
-0.00855268631130457,
0.002608872251585126,
-0.01622096076607704,
0.0008599628345109522,
-0.039232037961483,
-0.05306081846356392,
-0.010058197192847729,
-0.009308678098022938,
0.01975756697356701,
-0.03162737935781479,
0.012726389802992344,
-0.01199520006775856,
0.01615033484995365,
0.06349492073059082,
0.02358284778892994,
-0.053338125348091125,
0.0397900752723217,
0.018639342859387398,
-0.012585772201418877,
0.01709720492362976,
0.002468039281666279,
-0.02497721090912819,
0.04527757316827774,
-0.0036436528898775578,
0.03975163772702217,
0.036859262734651566,
-0.005966078955680132,
-0.014187668450176716,
-0.015628458932042122,
0.025353427976369858,
0.011402182281017303,
-0.05291615426540375,
0.00701105734333396,
0.005677219945937395,
-0.013496658764779568,
-0.0008923315326683223,
0.012212966568768024,
-0.01575695537030697,
0.0007406450458802283,
0.021988246589899063,
0.035084642469882965,
0.007688817568123341,
0.03633740544319153,
0.015869541093707085,
-0.024077842012047768,
0.002749331295490265,
-0.006832695100456476,
-0.012864954769611359,
0.03670955449342728,
-0.004728136118501425,
-0.022293033078312874,
-0.001399446278810501,
0.027499333024024963,
-0.03606196865439415,
-0.030443036928772926,
0.03968459367752075,
0.013070099987089634,
0.035980887711048126,
0.012973986566066742,
-0.002184069948270917,
-0.024309450760483742,
0.00545215979218483,
-0.009525833651423454,
0.018261335790157318,
-0.049189381301403046,
-0.02076190523803234,
-0.008000098168849945,
-0.012879196554422379,
-0.020409373566508293,
-0.016910094767808914,
0.010776192881166935,
-0.033065080642700195,
-0.0014925863360986114,
-0.0018930572550743818,
-0.004683130886405706,
0.017765328288078308,
-0.0229716245085001,
0.011857814155519009,
0.012525388039648533,
-0.005099358968436718,
0.009770110249519348,
0.0036002134438604116,
0.0003076739958487451,
0.01865035481750965,
0.04604646563529968,
0.02108144946396351,
0.03939105197787285,
-0.0025042921770364046,
0.012552820146083832,
-0.04317707568407059,
0.02177305705845356,
-0.017658669501543045,
-0.05050864443182945,
0.012888748198747635,
-0.00457157613709569,
0.012176882475614548,
-0.047329600900411606,
0.005711977370083332,
0.05097505822777748,
0.02089592069387436,
-0.009508299641311169,
-0.05865083634853363,
0.045178864151239395,
-0.04521917924284935,
-0.0380941778421402,
-0.001230835565365851,
0.03397887200117111,
-0.062303971499204636,
0.013827349990606308,
-0.009855326265096664,
-0.0128717590123415,
-0.00443902937695384,
-0.004807375371456146,
-0.013006871566176414,
-0.03064519539475441,
0.054912030696868896,
0.04731021076440811,
0.02544468827545643,
-0.045794375240802765,
0.004707131069153547,
-0.030295103788375854,
-0.012691433541476727,
-0.013974863104522228,
-0.04762402921915054,
0.02123361825942993,
-0.008810890838503838,
0.0023072129115462303,
0.025162074714899063,
0.04135292023420334,
0.0015052398666739464,
0.009544134140014648,
0.03259570524096489,
0.020212354138493538,
-0.023861141875386238,
-0.03437979519367218,
0.020253226161003113,
0.013640440069139004,
-0.006552748382091522,
-0.028284460306167603,
-0.022636014968156815,
0.015807272866368294,
0.001877675182186067,
-0.0407637283205986,
0.04156465083360672,
0.03675420209765434,
-0.028256410732865334,
0.022048279643058777,
0.013454453088343143,
0.054736390709877014,
0.02391892485320568,
0.02336782030761242,
0.019652770832180977,
0.020833652466535568,
0.0014121124986559153,
0.019976478070020676,
-0.022084657102823257,
0.03365929424762726,
-0.0001984011469176039,
0.01480448804795742,
-0.06479018181562424,
0.04626205191016197,
0.054668039083480835,
0.003349853679537773,
0.05413910746574402,
0.007991837337613106,
-0.051526714116334915,
0.02904866449534893,
0.04372362419962883,
0.007887572981417179,
0.011677292175590992,
0.01488982979208231,
0.03860825300216675,
0.01274926494807005,
-0.007478323299437761,
0.010574866086244583,
0.0744035392999649,
-0.026576638221740723,
0.010780470445752144,
0.034089379012584686,
-0.0005159597494639456,
-0.005673488136380911,
0.00804887991398573,
-0.01189951691776514,
-0.011744009330868721,
0.06324458867311478,
0.01603354886174202,
-0.01475626602768898,
0.05307406932115555,
0.0337747223675251,
-0.020789697766304016,
-0.047716330736875534,
-0.031861986964941025,
0.008642452768981457,
-0.002589188516139984,
0.019570976495742798,
-0.00687446491792798,
0.04205162823200226,
-0.011745456606149673,
0.0809297114610672,
0.05135970190167427,
0.003781309351325035,
-0.014203772880136967,
0.0556144081056118,
0.06347731500864029,
0.0179135762155056,
-0.001454905141144991,
0.00011235903366468847,
-0.013288849964737892,
-0.044724542647600174,
0.0389985516667366,
0.006279999855905771,
0.03009171038866043,
0.017291169613599777,
-0.02781437337398529,
0.0004617548838723451,
-0.02450217679142952,
-0.02108459547162056,
0.024106724187731743,
0.016291143372654915,
-0.0007678138790652156,
-0.011636153794825077,
0.03664643317461014,
-0.04834511876106262,
-0.00581860076636076,
-0.019923707470297813,
-0.015354973264038563,
-0.030762644484639168,
0.011564034037292004,
-0.01972375437617302,
0.059043727815151215,
-0.03443433716893196,
-0.028669308871030807,
-0.009860067628324032,
0.016717497259378433,
-0.03252183645963669,
0.06623808294534683,
-0.021607503294944763,
-0.052336741238832474,
-0.06547830998897552,
-0.016827315092086792,
-0.003470322582870722,
0.05750296637415886,
-0.04186993092298508,
-0.04016048088669777,
0.04093489795923233,
-0.02802613377571106,
-0.023105550557374954,
0.015841476619243622,
0.01392950676381588,
0.005495200399309397,
-0.03310137242078781,
0.011099235154688358,
0.016196513548493385,
-0.054125770926475525,
0.07896397262811661,
-0.040788475424051285,
0.013989104889333248,
-0.004357939586043358,
0.05566021054983139,
0.015122507698833942,
0.014869979582726955,
-0.031300920993089676,
-0.0029059387743473053,
-0.01727626658976078,
-0.03237607330083847,
0.006924409884959459,
0.04522264003753662,
-0.0014113311190158129,
0.03647932410240173,
0.009625876322388649,
-0.025182224810123444,
-0.01811663806438446,
0.011910533532500267,
0.004472949076443911,
0.03792772814631462,
-0.04553122818470001,
-0.017795443534851074,
-0.015456457622349262,
0.043982263654470444,
0.007516092155128717,
0.03158940002322197,
0.029200561344623566,
0.014157411642372608,
0.06699749082326889,
-0.02957795560359955,
-0.03699168935418129,
-0.032274018973112106,
0.006844280753284693,
-0.059687692672014236,
-0.059079915285110474,
-0.01296937745064497,
0.02683229185640812,
-0.0550612211227417,
0.029452882707118988,
-0.023808153346180916,
-0.0009007490007206798,
-0.07490555942058563,
0.0024792251642793417,
-0.0038230144418776035,
0.06127696484327316,
0.03307522460818291,
0.031898386776447296,
0.029077431187033653,
0.020970076322555542,
-0.029097793623805046,
0.009920842945575714,
-0.03426371142268181,
0.018902001902461052,
0.06055136397480965,
0.018866807222366333,
-0.03355604410171509,
-0.006318230181932449,
0.03867639601230621,
0.03705395758152008,
-0.02853998914361,
-0.04023908078670502,
-0.002103580627590418,
-0.05139029398560524,
-0.013262825086712837,
0.0008259791065938771,
0.0361245833337307,
0.004215951543301344,
0.039100851863622665,
0.009559253230690956,
-0.03692691773176193,
-0.0005135120009072125,
-0.007639145478606224,
-0.01722707971930504,
-0.02168867364525795,
-0.016858749091625214,
-0.014498856849968433,
-0.0027214516885578632,
-0.0017500468529760838,
0.024416452273726463,
0.008919041603803635,
-0.030780984088778496,
-0.022668469697237015,
0.00426893774420023,
-0.0029571079649031162,
-0.020751435309648514,
0.028126347810029984,
0.04688452184200287,
-0.0027333509642630816,
-0.05471731349825859,
0.04206068441271782,
0.009365618228912354,
-0.03551139310002327,
0.012218888849020004,
0.02448234148323536,
-0.02012345753610134,
-0.0020248705986887217,
0.01736346445977688,
-0.011621051467955112,
0.040842026472091675,
0.02419019676744938,
-0.04234275221824646,
-0.0014210778754204512,
0.0071289450861513615
] |
Leveraging Pre-trained Language Model Checkpoints for Encoder-Decoder Models | patrickvonplaten | November 09, 2020 | warm-starting-encoder-decoder | guide, nlp | https://huggingface.co/blog/warm-starting-encoder-decoder | Conclusion Alright, let\'s draw a conclusion and try to derive some practical tips. - We have observed on all tasks that a warm-started encoder-part gives a significant performance boost compared to encoder-decoder models having a randomly initialized encoder. On the other hand, warm-starting the decoder seems to be less important, with BERT2BERT being on par with BERT2Rnd on most tasks. An intuitive reason would be that since a BERT- or RoBERTa-initialized encoder part has none of its weight parameters randomly initialized, the encoder can fully exploit the acquired knowledge of BERT\'s or RoBERTa\'s pre-trained checkpoints, respectively. In contrast, the warm-started decoder always has parts of its weight parameters randomly initialized which possibly makes it much harder to effectively leverage the knowledge acquired by the checkpoint used to initialize the decoder. - Next, we noticed that it is often beneficial to share encoder and decoder weights, especially if the target distribution is similar to the input distribution (e.g. BBC XSum). However, for datasets whose target data distribution differs more significantly from the input data distribution and for which model capacity \({}^2\) is known to play an important role, e.g. WMT14, encoder-decoder weight sharing seems to be disadvantageous. - Finally, we have seen that it is very important that the vocabulary of the pre-trained \"stand-alone\" checkpoints fit the vocabulary required to solve the sequence-to-sequence task. E.g. a warm-started BERT2GPT2 encoder-decoder will perform poorly on En \(\to\) De MT because GPT2 was pre-trained on English whereas the target language is German. The overall poor performance of the BERT2GPT2, Rnd2GPT2, and RoBERTa2GPT2 compared to BERT2BERT, BERTShared, and RoBERTaShared suggests that it is more effective to have a shared vocabulary. Also, it shows that initializing the decoder part with a pre-trained GPT2 checkpoint is not more effective than initializing it with a pre-trained BERT checkpoint besides GPT2 being more similar to the decoder in its architecture. For each of the above tasks, the most performant models were ported to 🤗Transformers and can be accessed here: - RoBERTaShared (large) - Wikisplit: google/roberta2roberta_L-24_wikisplit. - RoBERTaShared (large) - Discofuse: google/roberta2roberta_L-24_discofuse. - BERT2BERT (large) - WMT en \(\to\) de: google/bert2bert_L-24_wmt_en_de. - BERT2BERT (large) - WMT de \(\to\) en: google/bert2bert_L-24_wmt_de_en. - RoBERTaShared (large) - CNN/Dailymail: google/roberta2roberta_L-24_cnn_daily_mail. - RoBERTaShared (large) - BBC XSum: google/roberta2roberta_L-24_bbc. - RoBERTaShared (large) - Gigaword: google/roberta2roberta_L-24_gigaword. ------------------------------------------------------------------------ \({}^1\) To retrieve BLEU-4 scores, a script from the Tensorflow Official Transformer implementation https://github.com/tensorflow/models/tree master/official/nlp/transformer was used. Note that, differently from the tensor2tensor/utils/ get_ende_bleu.sh used by Vaswani et al. (2017), this script does not split noun compounds, but utf-8 quotes were normalized to ascii quotes after having noted that the pre-processed training set contains only ascii quotes. \({}^2\) Model capacity is an informal definition of how good the model is at modeling complex patterns. It is also sometimes defined as the ability of a model to learn from more and more data. Model capacity is broadly measured by the number of trainable parameters - the more parameters, the higher the model capacity. # Warm-starting encoder-decoder models with 🤗Transformers (Practice) We have explained the theory of warm-starting encoder-decoder models, analyzed empirical results on multiple datasets, and have derived practical conclusions. Let\'s now walk through a complete code example showcasing how a BERT2BERT model can be warm-started and consequently fine-tuned on the CNN/Dailymail summarization task. We will be leveraging the 🤗datasets and 🤗Transformers libraries. In addition, the following list provides a condensed version of this and other notebooks on warm-starting other combinations of encoder-decoder models. - for BERT2BERT on CNN/Dailymail (a condensed version of this notebook), click here. - for RoBERTaShare on BBC XSum, click here. - for BERT2Rnd on WMT14 En \(\to\) De, click here. - for RoBERTa2GPT2 on DiscoFuse, click here. Note: This notebook only uses a few training, validation, and test data samples for demonstration purposes. To fine-tune an encoder-decoder model on the full training data, the user should change the training and data preprocessing parameters accordingly as highlighted by the comments. | [
0.02457200177013874,
0.005472536198794842,
0.03730391710996628,
0.06595989316701889,
-0.005695689935237169,
0.07161121815443039,
-0.0014671939425170422,
-0.002772468840703368,
-0.05530761927366257,
-0.060333363711833954,
-0.05273732170462608,
0.04904511943459511,
0.023812251165509224,
0.041283439844846725,
-0.018141206353902817,
-0.030998066067695618,
0.06913380324840546,
-0.09424393624067307,
0.012293179519474506,
0.021257953718304634,
0.02163200080394745,
-0.05077168717980385,
0.030194146558642387,
-0.028476040810346603,
0.06942819058895111,
-0.05482886731624603,
-0.015338670462369919,
0.008644616231322289,
-0.020417574793100357,
0.0034552153665572405,
-0.14719708263874054,
0.006978351157158613,
0.05232550948858261,
-0.025054030120372772,
0.021422434598207474,
0.02476891689002514,
-0.06778943538665771,
0.05962541326880455,
0.031137993559241295,
-0.049906738102436066,
-0.01513681560754776,
-0.022479664534330368,
-0.01172318309545517,
-0.01247294433414936,
-0.08740706741809845,
-0.046713024377822876,
-0.14521321654319763,
0.0834260806441307,
0.030989842489361763,
-0.07208233326673508,
-0.07873154431581497,
0.048875097185373306,
-0.022162167355418205,
0.0958847776055336,
-0.0008144904859364033,
-0.007943401113152504,
0.003039324190467596,
-0.08829371631145477,
0.05129798501729965,
-0.019668255001306534,
0.039464566856622696,
0.000010003838724514935,
-0.0012940445449203253,
0.009631974622607231,
0.012753807008266449,
0.032487355172634125,
-0.05658762902021408,
-0.0012263152748346329,
-0.007843001745641232,
-0.0259627066552639,
-0.04915435612201691,
-0.06344274431467056,
-0.035057783126831055,
0.010125403292477131,
0.023502200841903687,
-0.022875934839248657,
0.0506490133702755,
-0.04090297222137451,
0.0014442682731896639,
-0.00911706406623125,
-0.02885768935084343,
0.0825762003660202,
-0.03414657711982727,
-0.011041613295674324,
0.08371379971504211,
0.005372779909521341,
0.09298361092805862,
-0.05802735686302185,
-0.08507303148508072,
0.03450764715671539,
-0.0501641221344471,
-0.1074262335896492,
0.02976584993302822,
0.000787171593401581,
0.07500188797712326,
-0.021255092695355415,
-0.02238353155553341,
0.027013204991817474,
-0.005492362659424543,
-0.022450145334005356,
-0.01697397418320179,
-0.08865906298160553,
0.018375199288129807,
-0.04206179454922676,
-0.04974504932761192,
0.04150329902768135,
-0.045222196727991104,
-0.1058134213089943,
-0.009928750805556774,
0.015905030071735382,
0.052786558866500854,
-0.005887649487704039,
-0.030767014250159264,
0.007243948057293892,
-0.09169456362724304,
0.005144962575286627,
-0.018094731494784355,
-0.04862438887357712,
0.008844908326864243,
0.030923685058951378,
-0.0030007041059434414,
0.04494602605700493,
-0.0004035001329611987,
-0.04172053560614586,
-0.050042055547237396,
0.038596585392951965,
0.009524079971015453,
0.02709609642624855,
0.025715483352541924,
0.00846956018358469,
0.08921626955270767,
0.03652501106262207,
0.004408048000186682,
0.01827159710228443,
0.0013922657817602158,
-0.016115453094244003,
-0.013434415683150291,
-0.04075486958026886,
-0.05115780979394913,
-0.012053697369992733,
-0.1315341740846634,
0.0782540962100029,
-0.011617407202720642,
-0.035018254071474075,
-0.025301752611994743,
0.0683584064245224,
-0.09626224637031555,
0.01659453846514225,
0.044540997594594955,
0.030015327036380768,
-0.06051089987158775,
0.038724612444639206,
-0.06283357739448547,
-0.0753125473856926,
0.03927861154079437,
0.11078207194805145,
-0.04272947460412979,
-0.04844182729721069,
-0.019170919433236122,
0.00478158937767148,
-0.02695664018392563,
0.00887087918817997,
-0.0037889452651143074,
-0.019145281985402107,
-0.005134679842740297,
-0.08344579488039017,
-0.004515401087701321,
0.03177250176668167,
0.006752156186848879,
0.06564301252365112,
-0.002426900900900364,
0.017005259171128273,
0.09400586783885956,
-0.0037358731497079134,
-0.019009904935956,
0.09628825634717941,
0.002734765876084566,
0.06095638871192932,
0.017637446522712708,
-0.00896781962364912,
-0.03507990762591362,
0.04168933257460594,
-0.003553353250026703,
0.051494333893060684,
0.05483606830239296,
-0.05032780393958092,
-0.008628817275166512,
-0.07985479384660721,
-0.053825605660676956,
0.053825847804546356,
-0.017862169072031975,
0.011581223458051682,
0.04963422194123268,
-0.017377912998199463,
-0.02348279394209385,
-0.06304709613323212,
-0.005540814250707626,
0.11143332719802856,
0.03481113165616989,
0.031135067343711853,
0.10910098254680634,
0.020219845697283745,
0.049573905766010284,
0.031168831512331963,
-0.03832245618104935,
-0.02644963189959526,
0.024890154600143433,
-0.034980908036231995,
0.04915057122707367,
0.014550524763762951,
0.03173393756151199,
-0.08675362169742584,
-0.025663694366812706,
-0.06179330125451088,
0.039217930287122726,
-0.01909235678613186,
0.03401617705821991,
-0.0099409818649292,
0.03471861034631729,
-0.010742492973804474,
0.11162730306386948,
-0.08442070335149765,
0.02938692644238472,
0.006842440459877253,
-0.01873883046209812,
0.05156043916940689,
0.06074470281600952,
0.013595802709460258,
0.1193159893155098,
-0.05983772128820419,
-0.03747965022921562,
-0.07267643511295319,
0.03487318381667137,
0.034848012030124664,
0.002511897124350071,
0.014466061256825924,
-0.02213149145245552,
-0.030030447989702225,
-0.013674699701368809,
-0.05892908573150635,
0.001565507729537785,
0.028450794517993927,
-0.001398376771248877,
0.041794851422309875,
-0.02614741213619709,
0.004442877601832151,
0.02899359166622162,
-0.021757597103714943,
-0.023878151550889015,
-0.040439702570438385,
-0.04393769055604935,
0.03223249316215515,
0.0032462517265230417,
-0.05831392481923103,
0.019722310826182365,
0.0015630205161869526,
-0.02394085004925728,
-0.007767428644001484,
0.0044381520710885525,
0.02256283350288868,
0.03108910843729973,
-0.052711352705955505,
-0.05895456671714783,
-0.014648460783064365,
0.02161877229809761,
-0.035518109798431396,
-0.055806320160627365,
-0.014211793430149555,
0.0028996572364121675,
-0.0014252292457967997,
0.04801372438669205,
-0.04435918107628822,
0.041430626064538956,
0.04191222041845322,
0.013733746483922005,
-0.0009746067225933075,
0.005272396840155125,
-0.05114346742630005,
-0.04891202226281166,
-0.01418252568691969,
0.005961781833320856,
-0.03737303987145424,
0.006587504409253597,
0.030473826453089714,
-0.05289848521351814,
0.026208845898509026,
-0.00917015504091978,
0.01829899102449417,
-0.025195345282554626,
0.04654233157634735,
0.02321247197687626,
0.029933491721749306,
-0.041858166456222534,
-0.008074896410107613,
0.008577167987823486,
0.011096381582319736,
-0.0155614810064435,
-0.027024971321225166,
0.0003097423177678138,
0.007270257920026779,
-0.03930758684873581,
0.003752031596377492,
0.006792792584747076,
-0.02136404439806938,
-0.04447654262185097,
0.015644026920199394,
0.014195485971868038,
0.029849596321582794,
-0.09527811408042908,
-0.026596996933221817,
0.05002182722091675,
0.03153330460190773,
-0.020230621099472046,
0.008326777257025242,
0.06943375617265701,
-0.03355695679783821,
-0.046010978519916534,
0.019937369972467422,
0.013074830174446106,
-0.001780149876140058,
0.003511555725708604,
0.015209581702947617,
-0.02125803381204605,
-0.013616545125842094,
-0.02367076650261879,
-0.006484479643404484,
0.04365021735429764,
0.002313931006938219,
0.04185201972723007,
-0.0262850821018219,
-0.012930835597217083,
0.008191283792257309,
-0.04494689032435417,
-0.02761450782418251,
0.007212343625724316,
0.027195127680897713,
-0.0012267200509086251,
-0.019091948866844177,
-0.018678266555070877,
-0.017527081072330475,
0.01789364404976368,
0.009369960054755211,
-0.013592103496193886,
0.0077049932442605495,
0.02611408941447735,
0.05459579452872276,
0.013044023886322975,
0.033712148666381836,
0.00021804501011501998,
-0.008043983951210976,
0.017797786742448807,
0.00431022047996521,
0.01178576610982418,
-0.026771364733576775,
0.012864349409937859,
-0.021923143416643143,
0.038255222141742706,
-0.010351059027016163,
-0.005829541943967342,
0.01292671263217926,
0.0024331407621502876,
0.021967994049191475,
0.004933306016027927,
0.01761031709611416,
-0.00677156588062644,
0.029694583266973495,
-0.0019897352904081345,
0.002804923104122281,
-0.02336038649082184,
0.017656467854976654,
0.02493397891521454,
-0.03283905237913132,
-0.03512647747993469,
0.037839002907276154,
0.019292078912258148,
0.009544300846755505,
0.015913620591163635,
0.038240235298871994,
-0.01298502366989851,
0.029475217685103416,
0.03393075615167618,
0.0016682788264006376,
0.0027509278152137995,
0.019939662888646126,
-0.01912602409720421,
-0.024989299476146698,
0.060803476721048355,
-0.011256813071668148,
-0.011392579413950443,
0.0038222570437937975,
-0.026922112330794334,
-0.024917369708418846,
-0.008839857764542103,
0.04379383102059364,
0.008118349127471447,
0.0015973038971424103,
0.026881955564022064,
-0.004469930659979582,
0.027513355016708374,
-0.016455845907330513,
0.02310158871114254,
0.006849044002592564,
-0.012153140269219875,
0.0010822743643075228,
0.00584068289026618,
0.027313590049743652,
0.005357085727155209,
-0.033448297530412674,
0.005413494072854519,
-0.07052750885486603,
0.016424886882305145,
0.023461883887648582,
-0.0015551481628790498,
0.042188264429569244,
0.001620829221792519,
-0.02176956832408905,
0.03908222168684006,
-0.00959611777216196,
0.015879783779382706,
0.01572759822010994,
0.0074744937010109425,
0.03759767487645149,
0.03921207785606384,
0.037466369569301605,
0.00009375860099680722,
-0.0409126840531826,
0.0009617513278499246,
0.013944338075816631,
-0.02185816690325737,
0.0051842923276126385,
0.016353895887732506,
0.025615252554416656,
0.04981660842895508,
-0.010391511023044586,
0.020076069980859756,
0.0007974596810527146,
-0.007411757484078407,
-0.043173983693122864,
-0.08141851425170898,
-0.020818496122956276,
0.019188717007637024,
-0.0711221769452095,
0.003123614238575101,
0.002377679105848074,
-0.0015290103619918227,
0.02704194001853466,
0.03668634966015816,
-0.04289189353585243,
0.027202583849430084,
0.013422380201518536,
0.045823127031326294,
-0.03392474725842476,
0.06226692721247673,
-0.001634274609386921,
-0.013434448279440403,
-0.012382613494992256,
-0.023068377748131752,
-0.022387806326150894,
0.021812710911035538,
-0.015340869314968586,
-0.05303599312901497,
0.034865256398916245,
0.030930915847420692,
-0.048480529338121414,
0.007912842556834221,
0.03894162178039551,
0.040458787232637405,
0.0192786306142807,
0.007319457363337278,
-0.00954845268279314,
-0.04302957281470299,
0.002846013056114316,
0.002280500251799822,
-0.018426844850182533,
-0.004491063300520182,
-0.002144235884770751,
0.030064476653933525,
0.024626923725008965,
0.012322381138801575,
0.008721113204956055,
0.015886539593338966,
-0.009954710491001606,
0.042420584708452225,
-0.0034602617379277945,
-0.005727251525968313,
0.019248148426413536,
0.0197336096316576,
0.012405682355165482,
0.005381607450544834,
0.0010617633815854788,
-0.022365793585777283,
-0.012342550791800022,
-0.005240433383733034,
-0.002230640733614564,
0.05980581417679787,
0.056049805134534836,
0.03054070845246315,
0.01919856294989586,
0.012316497042775154,
0.01945304311811924,
0.04920613393187523,
-0.013445738703012466,
-0.0346251018345356,
-0.02184283174574375,
-0.017281820997595787,
0.009076902642846107,
-0.018566882237792015,
0.022736845538020134,
0.017623664811253548,
0.05986015498638153,
-0.005268746521323919,
-0.02246353030204773,
0.020909665152430534,
-0.00738364364951849,
-0.0031847667414695024,
-0.05899226292967796,
0.026677526533603668,
-0.02572709135711193,
0.005618696566671133,
-0.00007455129525624216,
-0.005116754211485386,
0.011031866073608398,
0.004762584809213877,
-0.03670823946595192,
-0.03738320991396904,
0.0607011653482914,
0.07113879173994064,
0.03467449173331261,
0.0013893302530050278,
0.011774704791605473,
-0.07550051063299179,
-0.023649923503398895,
-0.02163563296198845,
-0.04896877706050873,
-0.018268875777721405,
0.01408048439770937,
-0.00121304951608181,
0.01789955608546734,
0.021431855857372284,
-0.03965521603822708,
0.018799331039190292,
0.04396958276629448,
-0.033561866730451584,
-0.05623357743024826,
0.046324606984853745,
0.02113715559244156,
0.005876750685274601,
0.0031490700785070658,
0.007017831783741713,
-0.015920056030154228,
0.03501824662089348,
0.011027210392057896,
-0.04557894542813301,
0.030838996171951294,
0.04092475399374962,
-0.004977546166628599,
0.030352313071489334,
0.020814845338463783,
0.03174027055501938,
-0.011423150077462196,
0.01231845747679472,
0.019091038033366203,
0.028400685638189316,
-0.023657161742448807,
-0.02146717719733715,
-0.006126657593995333,
0.0038829336408525705,
0.03569384291768074,
0.00940300989896059,
-0.047110769897699356,
0.018689610064029694,
0.026020925492048264,
-0.029539356008172035,
0.03425159305334091,
0.028627298772335052,
-0.05375820770859718,
0.013163812458515167,
-0.0024132439866662025,
0.006993924267590046,
0.009501947090029716,
-0.019926995038986206,
0.0030542195308953524,
0.03483958542346954,
0.02135217934846878,
0.026807203888893127,
0.02463296428322792,
-0.0009884326718747616,
0.018620334565639496,
0.04546003416180611,
0.006940985098481178,
0.05135251581668854,
-0.0038921618834137917,
-0.011161744594573975,
-0.015220086090266705,
0.04441814869642258,
0.029552895575761795,
0.014923885464668274,
0.032294806092977524,
-0.0007282072911038995,
-0.024120790883898735,
-0.015990301966667175,
-0.01029377244412899,
-0.008119026198983192,
0.01734994910657406,
-0.01111319474875927,
0.0006696793134324253,
0.028167104348540306,
-0.030037472024559975,
0.027110876515507698,
0.03748587518930435,
0.03206881135702133,
-0.00784244667738676,
0.06158492714166641,
0.01840796135365963,
0.007392279338091612,
0.012455523945391178,
0.02030937746167183,
0.01986314170062542,
-0.03871402144432068,
0.027697786688804626,
0.040144145488739014,
0.02813911624252796,
0.02833433821797371,
-0.022287443280220032,
0.020609349012374878,
-0.0005261281039565802,
0.026847977191209793,
0.03577134385704994,
0.03410835564136505,
-0.03058094158768654,
-0.016050809994339943,
0.05273061245679855,
-0.047880616039037704,
0.030373400077223778,
0.015973394736647606,
-0.004830959718674421,
0.016594531014561653,
-0.005008221138268709,
0.027060316875576973,
0.06744617223739624,
-0.024719614535570145,
-0.033150892704725266,
0.0077370950020849705,
0.017960743978619576,
-0.018500275909900665,
0.02918320521712303,
-0.03473924472928047,
-0.03837819769978523,
-0.024985190480947495,
-0.002042938955128193,
-0.015905912965536118,
0.03665880113840103,
-0.021365037187933922,
-0.013627571985125542,
0.03485405445098877,
-0.016466204077005386,
-0.014482177793979645,
-0.006236610468477011,
0.020323580130934715,
-0.023615749552845955,
-0.0111721595749259,
-0.02604806050658226,
-0.0123537452891469,
-0.04650742933154106,
0.047112949192523956,
-0.07009066641330719,
-0.003443212015554309,
-0.0290940310806036,
0.054573722183704376,
0.022622670978307724,
0.05104859918355942,
-0.03354211524128914,
-0.011034481227397919,
-0.017584985122084618,
-0.02632482349872589,
-0.016238076612353325,
-0.006448880769312382,
0.03636566922068596,
-0.008946510031819344,
0.01634843274950981,
-0.03934452310204506,
-0.032000910490751266,
-0.030221635475754738,
-0.009026306681334972,
0.05403660982847214,
-0.047485753893852234,
-0.018958834931254387,
-0.00004696976611739956,
0.06846829503774643,
-0.03471929207444191,
0.009103069081902504,
0.025841666385531425,
-0.009978442452847958,
0.04129863902926445,
-0.02689083106815815,
-0.0028208657167851925,
-0.02008964493870735,
0.014479996636509895,
0.0027400723192840815,
-0.041467443108558655,
-0.01911398023366928,
0.01651759445667267,
-0.01988031528890133,
0.00367947481572628,
-0.04172223433852196,
-0.016189856454730034,
-0.06430719792842865,
0.021708747372031212,
-0.017602868378162384,
0.053086984902620316,
0.023596348240971565,
-0.01024426706135273,
0.03532484173774719,
0.0078805573284626,
-0.005524762440472841,
-0.009052596054971218,
-0.02845114655792713,
0.011758052743971348,
0.040838923305273056,
0.01597907952964306,
-0.04430502653121948,
-0.02483886107802391,
-0.017690911889076233,
-0.011086014099419117,
0.015324268490076065,
-0.005739584099501371,
0.01621890440583229,
-0.008560450747609138,
-0.0057615842670202255,
-0.011818863451480865,
-0.005626796279102564,
-0.02037695050239563,
0.025717588141560555,
0.031175076961517334,
-0.058559346944093704,
-0.006949976552277803,
-0.003996385261416435,
-0.013955655507743359,
-0.010634349659085274,
-0.0181284099817276,
0.010398278012871742,
0.06720735877752304,
0.022153817117214203,
0.013269921764731407,
0.0035201222635805607,
-0.04138198494911194,
0.0028155951295048,
0.041741978377103806,
-0.025606980547308922,
-0.023741405457258224,
0.0339045450091362,
0.041425276547670364,
-0.020819485187530518,
-0.030428221449255943,
0.01863347366452217,
0.013178497552871704,
-0.007952377200126648,
0.028262628242373466,
-0.013896346092224121,
-0.002214456209912896,
-0.01727251335978508,
0.025699803605675697,
0.0033448566682636738,
0.09090903401374817,
0.04395812377333641,
0.010789511725306511,
0.007736776489764452,
0.029691057279706
] |