"""Create a hard multiple choice subset of the ImageNet validation split based on human accuracy annotation data.""" from typing import Dict, Tuple import argparse import glob import json import pickle import numpy as np import scipy.io def get_imagenet_labels() -> Tuple[Dict[str, str], Dict[str, str]]: """Return ground truth wnids.""" images = glob.glob("*/*.jpeg", root_dir="/gscratch/efml/djghosh/temp_data/imagenetv2/inv2-all") with open("imagenet_wnids.txt") as fp: wnids = [line.strip() for line in fp] imagenet_labels = {} imagenet_paths = {} for imgpath in images: label_id, image_id = imgpath.split(".jpeg")[0].split("/") imagenet_labels[image_id] = wnids[int(label_id)] imagenet_paths[image_id] = imgpath return imagenet_labels, imagenet_paths def get_hard_examples(num_choices: int = 4, seed: int | np.random.Generator = None): rng = np.random.default_rng(seed) gt_labels, gt_paths = get_imagenet_labels() with open("human_accuracy_annotations.pkl", "rb") as fp: annotation_data = pickle.load(fp) examples = [] for imgname, annot in annotation_data['initial_annots'].items(): if imgname in gt_labels and len(annot.get('wrong', [])) >= num_choices - 1: if gt_labels[imgname] not in annot['wrong']: wrong_choices = rng.choice(annot['wrong'], size=num_choices - 1, replace=False) examples.append({ 'image': f"imagesv2/{gt_paths[imgname]}", 'choices': [gt_labels[imgname]] + list(wrong_choices), 'correct_answer': gt_labels[imgname] }) return examples def construct_ancestor_map(wnids: list): """Construct map of deepest common ancestor for all pairs of ImageNet classes.""" ancestor_map = np.zeros((len(wnids), len(wnids)), dtype=np.uint8) def iterate_postorder(node: dict, depth: int): # Leaf node if node['children'] is None: idx = wnids.index(node['wnid']) ancestor_map[idx, idx] = depth return [idx] # Iterate over children all_leaves = [ iterate_postorder(child, depth + 1) for child in node['children'].values() ] # Connect branches together for branch in range(len(all_leaves)): for other in range(len(all_leaves)): if other == branch: continue for leaf_a in all_leaves[branch]: for leaf_b in all_leaves[other]: ancestor_map[leaf_a, leaf_b] = max(ancestor_map[leaf_a, leaf_b], depth) return sum(all_leaves, []) with open("imagenet_hierarchy.json") as fp: root = json.load(fp)['tree'] iterate_postorder(root, 0) return ancestor_map def get_filled_hard_examples(num_choices: int = 4, min_hard: int = 1, seed: int | np.random.Generator = None): """ Construct hard MCQA examples using human annotation data. Examples with fewer than the required number of 'wrong' annotations will have remaining answer choices filled in. """ rng = np.random.default_rng(seed) with open("imagenet_wnids.txt") as fp: wnids = [line.strip() for line in fp] gt_labels, gt_paths = get_imagenet_labels() ancestor_map = construct_ancestor_map(wnids) with open("human_accuracy_annotations.pkl", "rb") as fp: annotation_data = pickle.load(fp) examples = [] for imgname, annot in annotation_data['initial_annots'].items(): if imgname in gt_labels and len(annot.get('wrong', [])) >= min_hard: if gt_labels[imgname] not in annot['wrong']: # Get hard wrong answer choices from human annotation data if num_choices - 1 < len(annot['wrong']): wrong_choices = list(rng.choice(annot['wrong'], size=num_choices - 1, replace=False)) else: wrong_choices = list(annot['wrong']) # Fill in remainder from hierarchy gt_idx = wnids.index(gt_labels[imgname]) for depth in range(ancestor_map[gt_idx, gt_idx] - 1, -1, -1): if len(wrong_choices) >= num_choices - 1: break neighbors = [ wnids[idx] for idx in np.nonzero(ancestor_map[gt_idx] == depth)[0] if wnids[idx] not in annot['wrong'] and wnids[idx] not in annot.get('correct', []) ] if num_choices - 1 - len(wrong_choices) < len(neighbors): wrong_choices += list(rng.choice(neighbors, size=num_choices - 1 - len(wrong_choices), replace=False)) else: wrong_choices += neighbors examples.append({ 'image': f"imagesv2/{gt_paths[imgname]}", 'choices': [gt_labels[imgname]] + list(wrong_choices), 'correct_answer': gt_labels[imgname] }) return examples def get_close_examples(num_choices: int = 4, seed: int | np.random.Generator = None): """ Construct close MCQA examples using only ImageNet/WordNet hierarchy data. """ rng = np.random.default_rng(seed) with open("imagenet_wnids.txt") as fp: wnids = [line.strip() for line in fp] gt_labels, gt_paths = get_imagenet_labels() ancestor_map = construct_ancestor_map(wnids) with open("human_accuracy_annotations.pkl", "rb") as fp: annotation_data = pickle.load(fp) examples = [] for imgname, annot in annotation_data['initial_annots'].items(): if imgname in gt_labels: if gt_labels[imgname] not in annot.get('wrong', []): wrong_choices = [] # Fill in remainder from hierarchy gt_idx = wnids.index(gt_labels[imgname]) for depth in range(ancestor_map[gt_idx, gt_idx] - 1, -1, -1): if len(wrong_choices) >= num_choices - 1: break neighbors = [ wnids[idx] for idx in np.nonzero(ancestor_map[gt_idx] == depth)[0] if wnids[idx] not in annot.get('correct', []) ] if num_choices - 1 - len(wrong_choices) < len(neighbors): wrong_choices += list(rng.choice(neighbors, size=num_choices - 1 - len(wrong_choices), replace=False)) else: wrong_choices += neighbors examples.append({ 'image': f"imagesv2/{gt_paths[imgname]}", 'choices': [gt_labels[imgname]] + list(wrong_choices), 'correct_answer': gt_labels[imgname] }) return examples if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--n-choices", "-n", type=int, required=True) parser.add_argument("--output", "-o", type=str, default=None) group = parser.add_mutually_exclusive_group() group.add_argument("--fill", "-f", action="store_true") group.add_argument("--no-hard", action="store_true") parser.add_argument("--min-hard", "-m", type=int, default=1) parser.add_argument("--seed", type=int, default=42) args = parser.parse_args() if args.fill: dataset = get_filled_hard_examples(args.n_choices, args.min_hard, seed=args.seed) elif args.no_hard: dataset = get_close_examples(args.n_choices, seed=args.seed) else: dataset = get_hard_examples(args.n_choices, seed=args.seed) print(f"No. of examples: {len(dataset)}") if args.output: with open(args.output, "w") as fp: json.dump(dataset, fp, indent=2) print(f"Saved to '{args.output}'")