File size: 1,573 Bytes
9e9a2a3
2e9ecd5
 
 
 
 
 
 
 
 
 
9e9a2a3
2e9ecd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: cc-by-4.0
task_categories:
- object-detection
tags:
- chess
- computer-vision
- yolo
- object-detection
size_categories:
- 1K<n<10K
---

# Chess Piece Detection Datasets: merged-chess_pieces_dominique-chess_pieces_roboflow

## Dataset Description

This is a merged dataset combining multiple chess piece detection datasets.

Comprehensive chess piece detection dataset combining multiple high-quality sources. This merged dataset provides more training data and better generalization for chess piece detection models.

## Dataset Structure

The dataset follows the YOLOv8 format with the following structure:
- `train/`: Training images and labels
- `valid/`: Validation images and labels  
- `test/`: Test images and labels

## Classes

The dataset contains 12 classes of chess pieces:

0. black-bishop
1. black-king
2. black-knight
3. black-pawn
4. black-queen
5. black-rook
6. white-bishop
7. white-king
8. white-knight
9. white-pawn
10. white-queen
11. white-rook

## Usage

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("dopaul/merged-chess_pieces_dominique-chess_pieces_roboflow")

# Access different splits
train_data = dataset["train"]
valid_data = dataset["valid"]
test_data = dataset["test"]

# Example: Access first training image and annotations
example = train_data[0]
image = example["image"]
annotations = example["annotations"]
```

## Citation

If you use this dataset, please consider citing the original sources and this repository.

## License

This dataset is released under the CC BY 4.0 license.