--- license: cc-by-4.0 tags: - text - news - global - knowledge-graph - geopolitics dataset_info: features: - name: GKGRECORDID dtype: string - name: DATE dtype: string - name: SourceCollectionIdentifier dtype: string - name: SourceCommonName dtype: string - name: DocumentIdentifier dtype: string - name: V1Counts dtype: string - name: V2.1Counts dtype: string - name: V1Themes dtype: string - name: V2EnhancedThemes dtype: string - name: V1Locations dtype: string - name: V2EnhancedLocations dtype: string - name: V1Persons dtype: string - name: V2EnhancedPersons dtype: string - name: V1Organizations dtype: string - name: V2EnhancedOrganizations dtype: string - name: V1.5Tone dtype: string - name: V2.1EnhancedDates dtype: string - name: V2GCAM dtype: string - name: V2.1SharingImage dtype: string - name: V2.1Quotations dtype: string - name: V2.1AllNames dtype: string - name: V2.1Amounts dtype: string --- # Dataset Card for dwb2023/gdelt-gkg-2025-v2 ## Dataset Details ### Dataset Description This dataset contains GDELT Global Knowledge Graph (GKG) data covering February 2025. It captures global event interactions, actor relationships, and contextual narratives to support temporal, spatial, and thematic analysis. - **Curated by:** dwb2023 ### Dataset Sources - **Repository:** [http://data.gdeltproject.org/gdeltv2](http://data.gdeltproject.org/gdeltv2) - **GKG Documentation:** [GDELT 2.0 Overview](https://blog.gdeltproject.org/gdelt-2-0-our-global-world-in-realtime/), [GDELT GKG Codebook](http://data.gdeltproject.org/documentation/GDELT-Global_Knowledge_Graph_Codebook-V2.1.pdf) ## Uses ### Direct Use This dataset is suitable for: - Temporal analysis of global events ### Out-of-Scope Use - Not designed for real-time monitoring due to its historic and static nature - Not intended for medical diagnosis or predictive health modeling ## Dataset Structure ### Features and Relationships - this dataset focuses on a subset of features from the source GDELT dataset. | Name | Type | Aspect | Description | |------|------|---------|-------------| | DATE | string | Metadata | Publication date of the article/document | | SourceCollectionIdentifier | string | Metadata | Unique identifier for the source collection | | SourceCommonName | string | Metadata | Common/display name of the source | | DocumentIdentifier | string | Metadata | Unique URL/identifier of the document | | V1Counts | string | Metrics | Original count mentions of numeric values | | V2.1Counts | string | Metrics | Enhanced numeric pattern extraction | | V1Themes | string | Classification | Original thematic categorization | | V2EnhancedThemes | string | Classification | Expanded theme taxonomy and classification | | V1Locations | string | Entities | Original geographic mentions | | V2EnhancedLocations | string | Entities | Enhanced location extraction with coordinates | | V1Persons | string | Entities | Original person name mentions | | V2EnhancedPersons | string | Entities | Enhanced person name extraction | | V1Organizations | string | Entities | Original organization mentions | | V2EnhancedOrganizations | string | Entities | Enhanced organization name extraction | | V1.5Tone | string | Sentiment | Original emotional tone scoring | | V2.1EnhancedDates | string | Temporal | Temporal reference extraction | | V2GCAM | string | Sentiment | Global Content Analysis Measures | | V2.1SharingImage | string | Content | URL of document image | | V2.1Quotations | string | Content | Direct quote extraction | | V2.1AllNames | string | Entities | Comprehensive named entity extraction | | V2.1Amounts | string | Metrics | Quantity and measurement extraction | ### Aspects Overview: - **Metadata**: Core document information - **Metrics**: Numerical measurements and counts - **Classification**: Categorical and thematic analysis - **Entities**: Named entity recognition (locations, persons, organizations) - **Sentiment**: Emotional and tone analysis - **Temporal**: Time-related information - **Content**: Direct content extraction ## Dataset Creation ### Curation Rationale This dataset was curated to capture the rapidly evolving global narrative during February 2025. By zeroing in on this critical period, it offers a granular perspective on how geopolitical events, actor relationships, and thematic discussions shifted amid the escalating pandemic. The enhanced GKG features further enable advanced entity, sentiment, and thematic analysis, making it a valuable resource for studying the socio-political and economic impacts of emergent LLM capabilities. ### Curation Approach A targeted subset of GDELT’s columns was selected to streamline analysis on key entities (locations, persons, organizations), thematic tags, and sentiment scores—core components of many knowledge-graph and text analytics workflows. This approach balances comprehensive coverage with manageable data size and performance. The ETL pipeline used to produce these transformations is documented here: [https://gist.github.com/donbr/5293468436a1a39bd2d9f4959cbd4923](https://gist.github.com/donbr/5293468436a1a39bd2d9f4959cbd4923). ## Citation When using this dataset, please cite both the dataset and original GDELT project: ```bibtex @misc{gdelt-gkg-2025-v2, title = {GDELT Global Knowledge Graph 2025 Dataset}, author = {dwb2023}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/datasets/dwb2023/gdelt-gkg-2025-v2} } ``` ## Dataset Card Contact For questions and comments about this dataset card, please contact dwb2023 through the Hugging Face platform.