|
import datasets |
|
import pandas as pd |
|
import os |
|
import logging |
|
|
|
_DESCRIPTION = """\ |
|
Arabic Handwritten dataset. |
|
""" |
|
|
|
_REPO = "https://huggingface.co/datasets/eDaraty/Handwritten_Khatt" |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Khatt(datasets.GeneratorBasedBuilder): |
|
"""Handwritten arabic image-text pairs""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
'image': datasets.Image(), |
|
'text': datasets.Value("string"), |
|
} |
|
), |
|
|
|
homepage=_REPO, |
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_archive = dl_manager.download(f"{_REPO}/resolve/main/data/train.zip") |
|
test_archive = dl_manager.download(f"{_REPO}/resolve/main/data/test.zip") |
|
val_archive = dl_manager.download(f"{_REPO}/resolve/main/data/validation.zip") |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(train_archive) |
|
}, |
|
), |
|
|
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(test_archive) |
|
}, |
|
), |
|
|
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(val_archive) |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, images): |
|
""" This function returns the examples in the raw (text) form.""" |
|
df = pd.read_csv(f"{_REPO}/resolve/main/data/metadata.csv") |
|
|
|
for idx, (filepath, image) in enumerate(images): |
|
image_name = os.path.basename(filepath) |
|
|
|
|
|
description = df[df["file_name"] == image_name]['text'].values.tolist()[0] |
|
|
|
|
|
yield idx, { |
|
"image": {"path": filepath, "bytes": image.read()}, |
|
"text": description, |
|
} |
|
|