Datasets:
Commit
·
640c6d6
1
Parent(s):
69440bb
PT subsets of MAPA and MULTIEURLEX
Browse files- portuguese_benchmark.py +169 -40
portuguese_benchmark.py
CHANGED
|
@@ -232,7 +232,7 @@ _ULYSSESNER_META_KWARGS = dict(
|
|
| 232 |
url="https://github.com/ulysses-camara/ulysses-ner-br",
|
| 233 |
)
|
| 234 |
_ULYSSESNER_PL_KWARGS = dict(
|
| 235 |
-
name = "UlyssesNER-Br-PL",
|
| 236 |
data_urls = {
|
| 237 |
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/train.txt",
|
| 238 |
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/valid.txt",
|
|
@@ -242,7 +242,7 @@ _ULYSSESNER_PL_KWARGS = dict(
|
|
| 242 |
**_ULYSSESNER_META_KWARGS
|
| 243 |
)
|
| 244 |
_ULYSSESNER_C_KWARGS = dict(
|
| 245 |
-
name = "UlyssesNER-Br-C",
|
| 246 |
data_urls = {
|
| 247 |
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/train.txt",
|
| 248 |
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/valid.txt",
|
|
@@ -253,7 +253,7 @@ _ULYSSESNER_C_KWARGS = dict(
|
|
| 253 |
)
|
| 254 |
|
| 255 |
_ULYSSESNER_PL_TIPOS_KWARGS = dict(
|
| 256 |
-
name = "UlyssesNER-Br-PL-
|
| 257 |
data_urls = {
|
| 258 |
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/train.txt",
|
| 259 |
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/valid.txt",
|
|
@@ -265,7 +265,7 @@ _ULYSSESNER_PL_TIPOS_KWARGS = dict(
|
|
| 265 |
**_ULYSSESNER_META_KWARGS
|
| 266 |
)
|
| 267 |
_ULYSSESNER_C_TIPOS_KWARGS = dict(
|
| 268 |
-
name = "UlyssesNER-Br-C-
|
| 269 |
data_urls = {
|
| 270 |
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/train.txt",
|
| 271 |
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/valid.txt",
|
|
@@ -347,17 +347,102 @@ HAREM_BASE_KWARGS = dict(
|
|
| 347 |
)
|
| 348 |
HAREM_DEFAULT_KWARGS = dict(
|
| 349 |
name = "harem-default",
|
| 350 |
-
|
| 351 |
label_classes = ["PESSOA", "ORGANIZACAO", "LOCAL", "TEMPO", "VALOR", "ABSTRACCAO", "ACONTECIMENTO", "COISA", "OBRA", "OUTRO"],
|
| 352 |
**HAREM_BASE_KWARGS
|
| 353 |
)
|
| 354 |
HAREM_SELECTIVE_KWARGS = dict(
|
| 355 |
name = "harem-selective",
|
| 356 |
-
|
| 357 |
label_classes = ["PESSOA", "ORGANIZACAO", "LOCAL", "TEMPO", "VALOR"],
|
| 358 |
**HAREM_BASE_KWARGS
|
| 359 |
)
|
| 360 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
class PTBenchmarkConfig(datasets.BuilderConfig):
|
| 362 |
"""BuilderConfig for PTBenchmark."""
|
| 363 |
|
|
@@ -371,8 +456,9 @@ class PTBenchmarkConfig(datasets.BuilderConfig):
|
|
| 371 |
file_type: Optional[str] = None, #filetype (csv, tsc, jsonl)
|
| 372 |
text_and_label_columns: Optional[List[str]] = None, #columns for train, dev and test for csv datasets
|
| 373 |
indexes_url: Optional[str] = None, #indexes for train, dev and test for single file datasets
|
| 374 |
-
process_label:
|
| 375 |
-
|
|
|
|
| 376 |
**kwargs,
|
| 377 |
):
|
| 378 |
"""BuilderConfig for GLUE.
|
|
@@ -403,7 +489,8 @@ class PTBenchmarkConfig(datasets.BuilderConfig):
|
|
| 403 |
self.text_and_label_columns = text_and_label_columns
|
| 404 |
self.indexes_url = indexes_url
|
| 405 |
self.process_label = process_label
|
| 406 |
-
self.
|
|
|
|
| 407 |
|
| 408 |
def _get_classification_features(config: PTBenchmarkConfig):
|
| 409 |
return datasets.Features(
|
|
@@ -414,6 +501,17 @@ def _get_classification_features(config: PTBenchmarkConfig):
|
|
| 414 |
}
|
| 415 |
)
|
| 416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
def _get_ner_features(config: PTBenchmarkConfig):
|
| 418 |
bio_labels = ["O"]
|
| 419 |
for label_name in config.label_classes:
|
|
@@ -534,6 +632,56 @@ def _assin2_generator(file_path, config: PTBenchmarkConfig):
|
|
| 534 |
yield id_, example
|
| 535 |
id_ += 1
|
| 536 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
|
| 538 |
class PTBenchmark(datasets.GeneratorBasedBuilder):
|
| 539 |
BUILDER_CONFIGS = [
|
|
@@ -541,16 +689,19 @@ class PTBenchmark(datasets.GeneratorBasedBuilder):
|
|
| 541 |
**CONFIG_KWARGS
|
| 542 |
) \
|
| 543 |
for CONFIG_KWARGS in \
|
| 544 |
-
[_LENERBR_KWARGS, _ASSIN2_RTE_KWARGS, _ASSIN2_STS_KWARGS, _HATEBR_KWARGS,
|
| 545 |
-
|
| 546 |
-
_ULYSSESNER_C_TIPOS_KWARGS, _BRAZILIAN_COURT_DECISIONS_JUDGMENT,
|
| 547 |
-
HAREM_DEFAULT_KWARGS, HAREM_SELECTIVE_KWARGS
|
|
|
|
| 548 |
]
|
| 549 |
|
| 550 |
def _info(self) -> datasets.DatasetInfo:
|
| 551 |
features = None
|
| 552 |
if self.config.task_type == "classification":
|
| 553 |
features = _get_classification_features(self.config)
|
|
|
|
|
|
|
| 554 |
elif self.config.task_type == "ner":
|
| 555 |
features = _get_ner_features(self.config)
|
| 556 |
elif self.config.task_type == "rte":
|
|
@@ -619,8 +770,8 @@ class PTBenchmark(datasets.GeneratorBasedBuilder):
|
|
| 619 |
):
|
| 620 |
logger.info("⏳ Generating examples from = %s", file_path)
|
| 621 |
if self.config.file_type == "hf_dataset":
|
| 622 |
-
|
| 623 |
-
|
| 624 |
|
| 625 |
if self.config.task_type == "classification":
|
| 626 |
if self.config.file_type == "csv":
|
|
@@ -630,32 +781,10 @@ class PTBenchmark(datasets.GeneratorBasedBuilder):
|
|
| 630 |
indexes_path=indexes_path,
|
| 631 |
split=split
|
| 632 |
)
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
label = item[label_col]
|
| 636 |
-
if label not in self.config.label_classes:
|
| 637 |
-
continue # filter out invalid classes to construct ClassLabel
|
| 638 |
-
if isinstance(dataset.features[label_col], ClassLabel):
|
| 639 |
-
label = dataset.features[label_col].int2str(label)
|
| 640 |
-
yield id, {
|
| 641 |
-
"idx": id,
|
| 642 |
-
"sentence": item[text_col],
|
| 643 |
-
"label": self.config.process_label(label),
|
| 644 |
-
}
|
| 645 |
elif self.config.task_type == "ner":
|
| 646 |
-
|
| 647 |
-
for id, item in enumerate(dataset):
|
| 648 |
-
tags = item[label_col]
|
| 649 |
-
if isinstance(dataset.features[label_col], ClassLabel):
|
| 650 |
-
for i in range(len(tags)):
|
| 651 |
-
tags[i] = self.config.process_label(dataset.features[label_col].int2str(tags[i]))
|
| 652 |
-
yield id, {
|
| 653 |
-
"idx": id,
|
| 654 |
-
"tokens": item[text_col],
|
| 655 |
-
"ner_tags": tags,
|
| 656 |
-
}
|
| 657 |
-
else:
|
| 658 |
-
yield from _conll_ner_generator(file_path, self.config)
|
| 659 |
elif self.config.task_type == "rte":
|
| 660 |
if "assin2" in self.config.name:
|
| 661 |
yield from _assin2_generator(file_path, self.config)
|
|
|
|
| 232 |
url="https://github.com/ulysses-camara/ulysses-ner-br",
|
| 233 |
)
|
| 234 |
_ULYSSESNER_PL_KWARGS = dict(
|
| 235 |
+
name = "UlyssesNER-Br-PL-coarse",
|
| 236 |
data_urls = {
|
| 237 |
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/train.txt",
|
| 238 |
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/valid.txt",
|
|
|
|
| 242 |
**_ULYSSESNER_META_KWARGS
|
| 243 |
)
|
| 244 |
_ULYSSESNER_C_KWARGS = dict(
|
| 245 |
+
name = "UlyssesNER-Br-C-coarse",
|
| 246 |
data_urls = {
|
| 247 |
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/train.txt",
|
| 248 |
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/valid.txt",
|
|
|
|
| 253 |
)
|
| 254 |
|
| 255 |
_ULYSSESNER_PL_TIPOS_KWARGS = dict(
|
| 256 |
+
name = "UlyssesNER-Br-PL-fine",
|
| 257 |
data_urls = {
|
| 258 |
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/train.txt",
|
| 259 |
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/valid.txt",
|
|
|
|
| 265 |
**_ULYSSESNER_META_KWARGS
|
| 266 |
)
|
| 267 |
_ULYSSESNER_C_TIPOS_KWARGS = dict(
|
| 268 |
+
name = "UlyssesNER-Br-C-fine",
|
| 269 |
data_urls = {
|
| 270 |
"train": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/train.txt",
|
| 271 |
"validation": "https://github.com/ulysses-camara/ulysses-ner-br/raw/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/valid.txt",
|
|
|
|
| 347 |
)
|
| 348 |
HAREM_DEFAULT_KWARGS = dict(
|
| 349 |
name = "harem-default",
|
| 350 |
+
extra_configs = {"name": "default"},
|
| 351 |
label_classes = ["PESSOA", "ORGANIZACAO", "LOCAL", "TEMPO", "VALOR", "ABSTRACCAO", "ACONTECIMENTO", "COISA", "OBRA", "OUTRO"],
|
| 352 |
**HAREM_BASE_KWARGS
|
| 353 |
)
|
| 354 |
HAREM_SELECTIVE_KWARGS = dict(
|
| 355 |
name = "harem-selective",
|
| 356 |
+
extra_configs = {"name": "selective"},
|
| 357 |
label_classes = ["PESSOA", "ORGANIZACAO", "LOCAL", "TEMPO", "VALOR"],
|
| 358 |
**HAREM_BASE_KWARGS
|
| 359 |
)
|
| 360 |
|
| 361 |
+
_MAPA_BASE_KWARGS = dict(
|
| 362 |
+
task_type = "ner",
|
| 363 |
+
data_urls = "joelito/mapa",
|
| 364 |
+
file_type="hf_dataset",
|
| 365 |
+
url = "",
|
| 366 |
+
description =textwrap.dedent(
|
| 367 |
+
"""\
|
| 368 |
+
The dataset consists of 12 documents (9 for Spanish due to parsing errors) taken from EUR-Lex,
|
| 369 |
+
a multilingual corpus of court decisions and legal dispositions in the 24 official languages
|
| 370 |
+
of the European Union. The documents have been annotated for named entities following the
|
| 371 |
+
guidelines of the MAPA project which foresees two annotation level, a general and a more
|
| 372 |
+
fine-grained one. The annotated corpus can be used for named entity recognition/classification."""
|
| 373 |
+
),
|
| 374 |
+
citation = textwrap.dedent(
|
| 375 |
+
"""\
|
| 376 |
+
@article{DeGibertBonet2022,
|
| 377 |
+
author = {{de Gibert Bonet}, Ona and {Garc{\'{i}}a Pablos}, Aitor and Cuadros, Montse and Melero, Maite},
|
| 378 |
+
journal = {Proceedings of the Language Resources and Evaluation Conference},
|
| 379 |
+
number = {June},
|
| 380 |
+
pages = {3751--3760},
|
| 381 |
+
title = {{Spanish Datasets for Sensitive Entity Detection in the Legal Domain}},
|
| 382 |
+
url = {https://aclanthology.org/2022.lrec-1.400},
|
| 383 |
+
year = {2022}
|
| 384 |
+
}"""
|
| 385 |
+
)
|
| 386 |
+
)
|
| 387 |
+
_MAPA_BASE_KWARGS['filter'] = lambda item: item["language"] == "pt"
|
| 388 |
+
_MAPA_COARSE_KWARGS = dict(
|
| 389 |
+
name = "mapa_pt_coarse",
|
| 390 |
+
text_and_label_columns = ["tokens", "coarse_grained"],
|
| 391 |
+
label_classes = ['ADDRESS', 'AMOUNT', 'DATE', 'ORGANISATION', 'PERSON', 'TIME'],
|
| 392 |
+
**_MAPA_BASE_KWARGS
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
_MAPA_FINE_KWARGS = dict(
|
| 396 |
+
name = "mapa_pt_fine",
|
| 397 |
+
text_and_label_columns = ["tokens", "fine_grained"],
|
| 398 |
+
label_classes = ['AGE', 'BUILDING', 'CITY', 'COUNTRY', 'DAY', 'ETHNIC CATEGORY',
|
| 399 |
+
'FAMILY NAME', 'INITIAL NAME', 'MARITAL STATUS', 'MONTH', 'NATIONALITY',
|
| 400 |
+
'PLACE', 'PROFESSION', 'ROLE', 'STANDARD ABBREVIATION', 'TERRITORY',
|
| 401 |
+
'TITLE', 'TYPE', 'UNIT', 'URL', 'VALUE', 'YEAR'],
|
| 402 |
+
**_MAPA_BASE_KWARGS
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
_MULTIEURLEX_BASE_KWARGS = dict(
|
| 407 |
+
name = "multi_eurlex_pt",
|
| 408 |
+
task_type = "multilabel_classification",
|
| 409 |
+
data_urls = "multi_eurlex",
|
| 410 |
+
file_type="hf_dataset",
|
| 411 |
+
extra_configs = {"language": "pt", "label_level": "level_1"},
|
| 412 |
+
text_and_label_columns = ["text", "labels"],
|
| 413 |
+
url = "https://github.com/nlpaueb/MultiEURLEX/",
|
| 414 |
+
description =textwrap.dedent(
|
| 415 |
+
"""\
|
| 416 |
+
MultiEURLEX comprises 65k EU laws in 23 official EU languages.
|
| 417 |
+
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
|
| 418 |
+
Each EUROVOC label ID is associated with a label descriptor, e.g., [60, agri-foodstuffs],
|
| 419 |
+
[6006, plant product], [1115, fruit]. The descriptors are also available in the 23 languages.
|
| 420 |
+
Chalkidis et al. (2019) published a monolingual (English) version of this dataset, called EUR-LEX,
|
| 421 |
+
comprising 57k EU laws with the originally assigned gold labels."""
|
| 422 |
+
),
|
| 423 |
+
citation = textwrap.dedent(
|
| 424 |
+
"""\
|
| 425 |
+
@InProceedings{chalkidis-etal-2021-multieurlex,
|
| 426 |
+
author = {Chalkidis, Ilias
|
| 427 |
+
and Fergadiotis, Manos
|
| 428 |
+
and Androutsopoulos, Ion},
|
| 429 |
+
title = {MultiEURLEX -- A multi-lingual and multi-label legal document
|
| 430 |
+
classification dataset for zero-shot cross-lingual transfer},
|
| 431 |
+
booktitle = {Proceedings of the 2021 Conference on Empirical Methods
|
| 432 |
+
in Natural Language Processing},
|
| 433 |
+
year = {2021},
|
| 434 |
+
publisher = {Association for Computational Linguistics},
|
| 435 |
+
location = {Punta Cana, Dominican Republic},
|
| 436 |
+
url = {https://arxiv.org/abs/2109.00904}
|
| 437 |
+
}"""
|
| 438 |
+
),
|
| 439 |
+
label_classes = [
|
| 440 |
+
"100149","100160","100148","100147","100152","100143","100156",
|
| 441 |
+
"100158","100154","100153","100142","100145","100150","100162",
|
| 442 |
+
"100159","100144","100151","100157","100161","100146","100155"
|
| 443 |
+
]
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
class PTBenchmarkConfig(datasets.BuilderConfig):
|
| 447 |
"""BuilderConfig for PTBenchmark."""
|
| 448 |
|
|
|
|
| 456 |
file_type: Optional[str] = None, #filetype (csv, tsc, jsonl)
|
| 457 |
text_and_label_columns: Optional[List[str]] = None, #columns for train, dev and test for csv datasets
|
| 458 |
indexes_url: Optional[str] = None, #indexes for train, dev and test for single file datasets
|
| 459 |
+
process_label: Callable[[str], str] = lambda x: x,
|
| 460 |
+
filter: Callable = lambda x: True,
|
| 461 |
+
extra_configs: Dict = {},
|
| 462 |
**kwargs,
|
| 463 |
):
|
| 464 |
"""BuilderConfig for GLUE.
|
|
|
|
| 489 |
self.text_and_label_columns = text_and_label_columns
|
| 490 |
self.indexes_url = indexes_url
|
| 491 |
self.process_label = process_label
|
| 492 |
+
self.filter = filter
|
| 493 |
+
self.extra_configs = extra_configs
|
| 494 |
|
| 495 |
def _get_classification_features(config: PTBenchmarkConfig):
|
| 496 |
return datasets.Features(
|
|
|
|
| 501 |
}
|
| 502 |
)
|
| 503 |
|
| 504 |
+
def _get_multilabel_classification_features(config: PTBenchmarkConfig):
|
| 505 |
+
return datasets.Features(
|
| 506 |
+
{
|
| 507 |
+
"idx": datasets.Value("int32"),
|
| 508 |
+
"sentence": datasets.Value("string"),
|
| 509 |
+
"labels": datasets.Sequence(
|
| 510 |
+
datasets.features.ClassLabel(names=config.label_classes)
|
| 511 |
+
),
|
| 512 |
+
}
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
def _get_ner_features(config: PTBenchmarkConfig):
|
| 516 |
bio_labels = ["O"]
|
| 517 |
for label_name in config.label_classes:
|
|
|
|
| 632 |
yield id_, example
|
| 633 |
id_ += 1
|
| 634 |
|
| 635 |
+
def _hf_dataset_generator(split, config: PTBenchmarkConfig):
|
| 636 |
+
dataset = datasets.load_dataset(config.data_urls, split=split, **config.extra_configs)
|
| 637 |
+
feature_col, label_col = config.text_and_label_columns
|
| 638 |
+
|
| 639 |
+
target_feature_col, target_label_col = feature_col, label_col
|
| 640 |
+
if config.task_type == "classification":
|
| 641 |
+
target_feature_col, target_label_col = "sentence", "label"
|
| 642 |
+
elif config.task_type == "multilabel_classification":
|
| 643 |
+
target_feature_col, target_label_col = "sentence", "labels"
|
| 644 |
+
elif config.task_type == "ner":
|
| 645 |
+
target_feature_col, target_label_col = "tokens", "ner_tags"
|
| 646 |
+
|
| 647 |
+
for id, item in enumerate(dataset):
|
| 648 |
+
#filter invalid items
|
| 649 |
+
if not config.filter(item):
|
| 650 |
+
continue
|
| 651 |
+
|
| 652 |
+
label = item[label_col]
|
| 653 |
+
#Convert label to original text
|
| 654 |
+
if isinstance(dataset.features[label_col], ClassLabel):
|
| 655 |
+
if isinstance(label, list):
|
| 656 |
+
label = [dataset.features[label_col].int2str(l) for l in label]
|
| 657 |
+
else:
|
| 658 |
+
label = dataset.features[label_col].int2str(label)
|
| 659 |
+
|
| 660 |
+
#Process label
|
| 661 |
+
if isinstance(label, list):
|
| 662 |
+
label = [config.process_label(l) for l in label]
|
| 663 |
+
else:
|
| 664 |
+
label = config.process_label(label)
|
| 665 |
+
|
| 666 |
+
#Filter out invalid classes
|
| 667 |
+
if config.task_type != "ner":
|
| 668 |
+
if isinstance(label, list):
|
| 669 |
+
invalid = False
|
| 670 |
+
for i in range(len(label)):
|
| 671 |
+
if label[i] not in config.label_classes:
|
| 672 |
+
invalid = True
|
| 673 |
+
break
|
| 674 |
+
if invalid:
|
| 675 |
+
continue
|
| 676 |
+
else:
|
| 677 |
+
if label not in config.label_classes:
|
| 678 |
+
continue
|
| 679 |
+
|
| 680 |
+
yield id, {
|
| 681 |
+
"idx": id,
|
| 682 |
+
target_feature_col: item[feature_col],
|
| 683 |
+
target_label_col: label,
|
| 684 |
+
}
|
| 685 |
|
| 686 |
class PTBenchmark(datasets.GeneratorBasedBuilder):
|
| 687 |
BUILDER_CONFIGS = [
|
|
|
|
| 689 |
**CONFIG_KWARGS
|
| 690 |
) \
|
| 691 |
for CONFIG_KWARGS in \
|
| 692 |
+
[_LENERBR_KWARGS, _ASSIN2_RTE_KWARGS, _ASSIN2_STS_KWARGS, _HATEBR_KWARGS,
|
| 693 |
+
_ULYSSESNER_PL_KWARGS, _ULYSSESNER_C_KWARGS, _ULYSSESNER_PL_TIPOS_KWARGS,
|
| 694 |
+
_ULYSSESNER_C_TIPOS_KWARGS, _BRAZILIAN_COURT_DECISIONS_JUDGMENT,
|
| 695 |
+
_BRAZILIAN_COURT_DECISIONS_UNANIMITY, HAREM_DEFAULT_KWARGS, HAREM_SELECTIVE_KWARGS,
|
| 696 |
+
_MULTIEURLEX_BASE_KWARGS, _MAPA_COARSE_KWARGS, _MAPA_FINE_KWARGS]
|
| 697 |
]
|
| 698 |
|
| 699 |
def _info(self) -> datasets.DatasetInfo:
|
| 700 |
features = None
|
| 701 |
if self.config.task_type == "classification":
|
| 702 |
features = _get_classification_features(self.config)
|
| 703 |
+
elif self.config.task_type == "multilabel_classification":
|
| 704 |
+
features = _get_multilabel_classification_features(self.config)
|
| 705 |
elif self.config.task_type == "ner":
|
| 706 |
features = _get_ner_features(self.config)
|
| 707 |
elif self.config.task_type == "rte":
|
|
|
|
| 770 |
):
|
| 771 |
logger.info("⏳ Generating examples from = %s", file_path)
|
| 772 |
if self.config.file_type == "hf_dataset":
|
| 773 |
+
yield from _hf_dataset_generator(split, self.config)
|
| 774 |
+
return
|
| 775 |
|
| 776 |
if self.config.task_type == "classification":
|
| 777 |
if self.config.file_type == "csv":
|
|
|
|
| 781 |
indexes_path=indexes_path,
|
| 782 |
split=split
|
| 783 |
)
|
| 784 |
+
elif self.config.task_type == "multilabel_classification":
|
| 785 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 786 |
elif self.config.task_type == "ner":
|
| 787 |
+
yield from _conll_ner_generator(file_path, self.config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 788 |
elif self.config.task_type == "rte":
|
| 789 |
if "assin2" in self.config.name:
|
| 790 |
yield from _assin2_generator(file_path, self.config)
|