Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K - 1M
License:
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Dataset class for Food-101 dataset.""" | |
| import datasets | |
| from datasets.tasks import ImageClassification | |
| _BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz" | |
| _METADATA_URLS = { | |
| "train": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/train.txt", | |
| "test": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/test.txt", | |
| } | |
| _HOMEPAGE = "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/" | |
| _DESCRIPTION = ( | |
| "This dataset consists of 101 food categories, with 101'000 images. For " | |
| "each class, 250 manually reviewed test images are provided as well as 750" | |
| " training images. On purpose, the training images were not cleaned, and " | |
| "thus still contain some amount of noise. This comes mostly in the form of" | |
| " intense colors and sometimes wrong labels. All images were rescaled to " | |
| "have a maximum side length of 512 pixels." | |
| ) | |
| _CITATION = """\ | |
| @inproceedings{bossard14, | |
| title = {Food-101 -- Mining Discriminative Components with Random Forests}, | |
| author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc}, | |
| booktitle = {European Conference on Computer Vision}, | |
| year = {2014} | |
| } | |
| """ | |
| _LICENSE = """\ | |
| LICENSE AGREEMENT | |
| ================= | |
| - The Food-101 data set consists of images from Foodspotting [1] which are not | |
| property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond | |
| scientific fair use must be negociated with the respective picture owners | |
| according to the Foodspotting terms of use [2]. | |
| [1] http://www.foodspotting.com/ | |
| [2] http://www.foodspotting.com/terms/ | |
| """ | |
| _NAMES = [ | |
| "apple_pie", | |
| "baby_back_ribs", | |
| "baklava", | |
| "beef_carpaccio", | |
| "beef_tartare", | |
| "beet_salad", | |
| "beignets", | |
| "bibimbap", | |
| "bread_pudding", | |
| "breakfast_burrito", | |
| "bruschetta", | |
| "caesar_salad", | |
| "cannoli", | |
| "caprese_salad", | |
| "carrot_cake", | |
| "ceviche", | |
| "cheesecake", | |
| "cheese_plate", | |
| "chicken_curry", | |
| "chicken_quesadilla", | |
| "chicken_wings", | |
| "chocolate_cake", | |
| "chocolate_mousse", | |
| "churros", | |
| "clam_chowder", | |
| "club_sandwich", | |
| "crab_cakes", | |
| "creme_brulee", | |
| "croque_madame", | |
| "cup_cakes", | |
| "deviled_eggs", | |
| "donuts", | |
| "dumplings", | |
| "edamame", | |
| "eggs_benedict", | |
| "escargots", | |
| "falafel", | |
| "filet_mignon", | |
| "fish_and_chips", | |
| "foie_gras", | |
| "french_fries", | |
| "french_onion_soup", | |
| "french_toast", | |
| "fried_calamari", | |
| "fried_rice", | |
| "frozen_yogurt", | |
| "garlic_bread", | |
| "gnocchi", | |
| "greek_salad", | |
| "grilled_cheese_sandwich", | |
| "grilled_salmon", | |
| "guacamole", | |
| "gyoza", | |
| "hamburger", | |
| "hot_and_sour_soup", | |
| "hot_dog", | |
| "huevos_rancheros", | |
| "hummus", | |
| "ice_cream", | |
| "lasagna", | |
| "lobster_bisque", | |
| "lobster_roll_sandwich", | |
| "macaroni_and_cheese", | |
| "macarons", | |
| "miso_soup", | |
| "mussels", | |
| "nachos", | |
| "omelette", | |
| "onion_rings", | |
| "oysters", | |
| "pad_thai", | |
| "paella", | |
| "pancakes", | |
| "panna_cotta", | |
| "peking_duck", | |
| "pho", | |
| "pizza", | |
| "pork_chop", | |
| "poutine", | |
| "prime_rib", | |
| "pulled_pork_sandwich", | |
| "ramen", | |
| "ravioli", | |
| "red_velvet_cake", | |
| "risotto", | |
| "samosa", | |
| "sashimi", | |
| "scallops", | |
| "seaweed_salad", | |
| "shrimp_and_grits", | |
| "spaghetti_bolognese", | |
| "spaghetti_carbonara", | |
| "spring_rolls", | |
| "steak", | |
| "strawberry_shortcake", | |
| "sushi", | |
| "tacos", | |
| "takoyaki", | |
| "tiramisu", | |
| "tuna_tartare", | |
| "waffles", | |
| ] | |
| _IMAGES_DIR = "food-101/images/" | |
| class Food101(datasets.GeneratorBasedBuilder): | |
| """Food-101 Images dataset.""" | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "image": datasets.Image(), | |
| "label": datasets.ClassLabel(names=_NAMES), | |
| } | |
| ), | |
| supervised_keys=("image", "label"), | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| license=_LICENSE, | |
| task_templates=[ImageClassification(image_column="image", label_column="label")], | |
| ) | |
| def _split_generators(self, dl_manager): | |
| archive_path = dl_manager.download(_BASE_URL) | |
| split_metadata_paths = dl_manager.download(_METADATA_URLS) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "images": dl_manager.iter_archive(archive_path), | |
| "metadata_path": split_metadata_paths["train"], | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "images": dl_manager.iter_archive(archive_path), | |
| "metadata_path": split_metadata_paths["test"], | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, images, metadata_path): | |
| """Generate images and labels for splits.""" | |
| with open(metadata_path, encoding="utf-8") as f: | |
| files_to_keep = set(f.read().split("\n")) | |
| for file_path, file_obj in images: | |
| if file_path.startswith(_IMAGES_DIR): | |
| if file_path[len(_IMAGES_DIR) : -len(".jpg")] in files_to_keep: | |
| label = file_path.split("/")[2] | |
| yield file_path, { | |
| "image": {"path": file_path, "bytes": file_obj.read()}, | |
| "label": label, | |
| } | |