batman2 / demo /P3LIB /formula_picker.py
f-galkin's picture
Upload P3GPT handler and TCM database modules
7bd2a58 verified
raw
history blame
23.3 kB
import pandas as pd
import pickle
from typing import List, Dict, Optional
from copy import copy as cp
import json
from abc import ABC, abstractmethod
class TCMEntity(ABC):
empty_override = True
desc = ''
cid = -1
entity = 'superclass'
def __init__(self,
pref_name: str, desc: str = '',
synonyms: Optional[List[str]] = None,
**kwargs):
self.pref_name = pref_name
self.desc = desc
self.synonyms = [] if synonyms is None else [x for x in synonyms if str(x).strip() != 'NA']
self.targets = {"known": dict(), "predicted": dict()}
self.formulas = []
self.herbs = []
self.ingrs = []
for k, v in kwargs.items():
self.__dict__[k] = v
def serialize(self):
init_dict = dict(
cid=self.cid,
targets_known=self.targets['known'],
targets_pred=self.targets['predicted'],
pref_name=self.pref_name, desc=self.desc,
synonyms=cp(self.synonyms),
entity=self.entity
)
link_dict = self._get_link_dict()
out_dict = {"init": init_dict, "links": link_dict}
return out_dict
@classmethod
def load(cls,
db: 'TCMDB', ser_dict: dict,
skip_links = True):
init_args = ser_dict['init']
if skip_links:
init_args.update({"empty_override":True})
else:
init_args.update({"empty_override": False})
new_entity = cls(**init_args)
if not skip_links:
links = ser_dict['links']
new_entity._set_links(db, links)
return (new_entity)
def _get_link_dict(self):
return dict(
ingrs=[x.cid for x in self.ingrs],
herbs=[x.pref_name for x in self.herbs],
formulas=[x.pref_name for x in self.formulas]
)
def _set_links(self, db: 'TCMDB', links: dict):
for ent_type in links:
self.__dict__[ent_type] = [db.__dict__[ent_type].get(x) for x in links[ent_type]]
self.__dict__[ent_type] = [x for x in self.__dict__[ent_type] if x is not None]
class Ingredient(TCMEntity):
entity: str = 'ingredient'
def __init__(self, cid: int,
targets_pred: Optional[Dict] = None,
targets_known: Optional[Dict] = None,
synonyms: Optional[List[str]] = None,
pref_name: str = '', desc: str = '',
empty_override: bool = True, **kwargs):
if not empty_override:
assert targets_known is not None or targets_pred is not None, \
f"Cant submit a compound with no targets at all (CID:{cid})"
super().__init__(pref_name, synonyms, desc, **kwargs)
self.cid = cid
self.targets = {
'known': targets_known if targets_known is not None else {"symbols": [], 'entrez_ids': []},
'predicted': targets_pred if targets_pred is not None else {"symbols": [], 'entrez_ids': []}
}
class Herb(TCMEntity):
entity: str = 'herb'
def __init__(self, pref_name: str,
ingrs: Optional[List[Ingredient]] = None,
synonyms: Optional[List[str]] = None,
desc: str = '',
empty_override: bool = True, **kwargs):
if ingrs is None:
ingrs = []
if not ingrs and not empty_override:
raise ValueError(f"No ingredients provided for {pref_name}")
super().__init__(pref_name, synonyms, desc, **kwargs)
self.ingrs = ingrs
def is_same(self, other: 'Herb') -> bool:
if len(self.ingrs) != len(other.ingrs):
return False
this_ingrs = set(x.cid for x in self.ingrs)
other_ingrs = set(x.cid for x in other.ingrs)
return this_ingrs == other_ingrs
class Formula(TCMEntity):
entity: str = 'formula'
def __init__(self, pref_name: str,
herbs: Optional[List[Herb]] = None,
synonyms: Optional[List[str]] = None,
desc: str = '',
empty_override: bool = False, **kwargs):
if herbs is None:
herbs = []
if not herbs and not empty_override:
raise ValueError(f"No herbs provided for {pref_name}")
super().__init__(pref_name, synonyms, desc, **kwargs)
self.herbs = herbs
def is_same(self, other: 'Formula') -> bool:
if len(self.herbs) != len(other.herbs):
return False
this_herbs = set(x.pref_name for x in self.herbs)
other_herbs = set(x.pref_name for x in other.herbs)
return this_herbs == other_herbs
class TCMDB:
hf_repo: str = "f-galkin/batman2"
hf_subsets: Dict[str, str] = {'formulas': 'batman_formulas',
'herbs': 'batman_herbs',
'ingredients': 'batman_ingredients'}
def __init__(self, p_batman: str):
p_batman = p_batman.removesuffix("/") + "/"
self.batman_files = dict(p_formulas='formula_browse.txt',
p_herbs='herb_browse.txt',
p_pred_by_tg='predicted_browse_by_targets.txt',
p_known_by_tg='known_browse_by_targets.txt',
p_pred_by_ingr='predicted_browse_by_ingredinets.txt',
p_known_by_ingr='known_browse_by_ingredients.txt')
self.batman_files = {x: p_batman + y for x, y in self.batman_files.items()}
self.ingrs = None
self.herbs = None
self.formulas = None
@classmethod
def make_new_db(cls, p_batman: str):
new_db = cls(p_batman)
new_db.parse_ingredients()
new_db.parse_herbs()
new_db.parse_formulas()
return (new_db)
def parse_ingredients(self):
pred_tgs = pd.read_csv(self.batman_files['p_pred_by_tg'],
sep='\t', index_col=None, header=0,
na_filter=False)
known_tgs = pd.read_csv(self.batman_files['p_known_by_tg'],
sep='\t', index_col=None, header=0,
na_filter=False)
entrez_to_symb = {int(pred_tgs.loc[x, 'entrez_gene_id']): pred_tgs.loc[x, 'entrez_gene_symbol'] for x in
pred_tgs.index}
# 9927 gene targets
entrez_to_symb.update({int(known_tgs.loc[x, 'entrez_gene_id']): \
known_tgs.loc[x, 'entrez_gene_symbol'] for x in known_tgs.index})
known_ingreds = pd.read_csv(self.batman_files['p_known_by_ingr'],
index_col=0, header=0, sep='\t',
na_filter=False)
# this BATMAN table is badly formatted
# you cant just read it
# df_pred = pd.read_csv(p_pred, index_col=0, header=0, sep='\t')
pred_ingreds = dict()
with open(self.batman_files['p_pred_by_ingr'], 'r') as f:
# skip header
f.readline()
newline = f.readline()
while newline != '':
cid, other_line = newline.split(' ', 1)
name, entrez_ids = other_line.rsplit(' ', 1)
entrez_ids = [int(x.split("(")[0]) for x in entrez_ids.split("|") if not x == "\n"]
pred_ingreds[int(cid)] = {"targets": entrez_ids, 'name': name}
newline = f.readline()
all_BATMAN_CIDs = list(set(pred_ingreds.keys()) | set(known_ingreds.index))
all_BATMAN_CIDs = [int(x) for x in all_BATMAN_CIDs if str(x).strip() != 'NA']
# get targets for selected cpds
ingredients = dict()
for cid in all_BATMAN_CIDs:
known_name, pred_name, synonyms = None, None, []
if cid in known_ingreds.index:
known_name = known_ingreds.loc[cid, 'IUPAC_name']
known_symbs = known_ingreds.loc[cid, 'known_target_proteins'].split("|")
else:
known_symbs = []
pred_ids = pred_ingreds.get(cid, [])
if pred_ids:
pred_name = pred_ids.get('name')
if known_name is None:
cpd_name = pred_name
elif known_name != pred_name:
cpd_name = min([known_name, pred_name], key=lambda x: sum([x.count(y) for y in "'()-[]1234567890"]))
synonyms = [x for x in [known_name, pred_name] if x != cpd_name]
pred_ids = pred_ids.get('targets', [])
ingredients[cid] = dict(pref_name=cpd_name,
synonyms=synonyms,
targets_known={"symbols": known_symbs,
"entrez_ids": [int(x) for x, y in entrez_to_symb.items() if
y in known_symbs]},
targets_pred={"symbols": [entrez_to_symb.get(x) for x in pred_ids],
"entrez_ids": pred_ids})
ingredients_objs = {x: Ingredient(cid=x, **y) for x, y in ingredients.items()}
self.ingrs = ingredients_objs
def parse_herbs(self):
if self.ingrs is None:
raise ValueError("Herbs cannot be added before the ingredients")
# load the herbs file
name_cols = ['Pinyin.Name', 'Chinese.Name', 'English.Name', 'Latin.Name']
herbs_df = pd.read_csv(self.batman_files['p_herbs'],
index_col=None, header=0, sep='\t',
na_filter=False)
for i in herbs_df.index:
herb_name = herbs_df.loc[i, 'Pinyin.Name'].strip()
if herb_name == 'NA':
herb_name = [x.strip() for x in herbs_df.loc[i, name_cols].tolist() if not x == 'NA']
herb_name = [x for x in herb_name if x != '']
if not herb_name:
raise ValueError(f"LINE {i}: provided a herb with no names")
else:
herb_name = herb_name[-1]
herb_cids = herbs_df.loc[i, 'Ingredients'].split("|")
herb_cids = [x.split("(")[-1].removesuffix(")").strip() for x in herb_cids]
herb_cids = [int(x) for x in herb_cids if x.isnumeric()]
missed_ingrs = [x for x in herb_cids if self.ingrs.get(x) is None]
for cid in missed_ingrs:
self.add_ingredient(cid=int(cid), pref_name='',
empty_override=True)
herb_ingrs = [self.ingrs[int(x)] for x in herb_cids]
self.add_herb(pref_name=herb_name,
ingrs=herb_ingrs,
synonyms=[x for x in herbs_df.loc[i, name_cols].tolist() if not x == "NA"],
empty_override=True)
def parse_formulas(self):
if self.herbs is None:
raise ValueError("Formulas cannot be added before the herbs")
formulas_df = pd.read_csv(self.batman_files['p_formulas'], index_col=None, header=0,
sep='\t', na_filter=False)
for i in formulas_df.index:
composition = formulas_df.loc[i, 'Pinyin.composition'].split(",")
composition = [x.strip() for x in composition if not x.strip() == 'NA']
if not composition:
continue
missed_herbs = [x.strip() for x in composition if self.herbs.get(x) is None]
for herb in missed_herbs:
self.add_herb(pref_name=herb,
desc='Missing in the original herb catalog, but present among formula components',
ingrs=[], empty_override=True)
formula_herbs = [self.herbs[x] for x in composition]
self.add_formula(pref_name=formulas_df.loc[i, 'Pinyin.Name'].strip(),
synonyms=[formulas_df.loc[i, 'Chinese.Name']],
herbs=formula_herbs)
def add_ingredient(self, **kwargs):
if self.ingrs is None:
self.ingrs = dict()
new_ingr = Ingredient(**kwargs)
if not new_ingr.cid in self.ingrs:
self.ingrs.update({new_ingr.cid: new_ingr})
def add_herb(self, **kwargs):
if self.herbs is None:
self.herbs = dict()
new_herb = Herb(**kwargs)
old_herb = self.herbs.get(new_herb.pref_name)
if not old_herb is None:
if_same = new_herb.is_same(old_herb)
if if_same:
return
same_name = new_herb.pref_name
all_dupes = [self.herbs[x] for x in self.herbs if x.split('~')[0] == same_name] + [new_herb]
new_names = [same_name + f"~{x + 1}" for x in range(len(all_dupes))]
for i, duped in enumerate(all_dupes):
duped.pref_name = new_names[i]
self.herbs.pop(same_name)
self.herbs.update({x.pref_name: x for x in all_dupes})
else:
self.herbs.update({new_herb.pref_name: new_herb})
for cpd in new_herb.ingrs:
cpd_herbs = [x.pref_name for x in cpd.herbs]
if not new_herb.pref_name in cpd_herbs:
cpd.herbs.append(new_herb)
def add_formula(self, **kwargs):
if self.formulas is None:
self.formulas = dict()
new_formula = Formula(**kwargs)
old_formula = self.formulas.get(new_formula.pref_name)
if not old_formula is None:
is_same = new_formula.is_same(old_formula)
if is_same:
return
same_name = new_formula.pref_name
all_dupes = [self.formulas[x] for x in self.formulas if x.split('~')[0] == same_name] + [new_formula]
new_names = [same_name + f"~{x + 1}" for x in range(len(all_dupes))]
for i, duped in enumerate(all_dupes):
duped.pref_name = new_names[i]
self.formulas.pop(same_name)
self.formulas.update({x.pref_name: x for x in all_dupes})
else:
self.formulas.update({new_formula.pref_name: new_formula})
for herb in new_formula.herbs:
herb_formulas = [x.pref_name for x in herb.formulas]
if not new_formula.pref_name in herb_formulas:
herb.formulas.append(new_formula)
def link_ingredients_n_formulas(self):
for h in self.herbs.values():
for i in h.ingrs:
fla_names = set(x.pref_name for x in i.formulas)
i.formulas += [x for x in h.formulas if not x.pref_name in fla_names]
for f in h.formulas:
ingr_cids = set(x.cid for x in f.ingrs)
f.ingrs += [x for x in h.ingrs if not x.cid in ingr_cids]
def serialize(self):
out_dict = dict(
ingredients={cid: ingr.serialize() for cid, ingr in self.ingrs.items()},
herbs={name: herb.serialize() for name, herb in self.herbs.items()},
formulas={name: formula.serialize() for name, formula in self.formulas.items()}
)
return (out_dict)
def save_to_flat_json(self, p_out: str):
ser_db = db.serialize()
flat_db = dict()
for ent_type in ser_db:
for i, obj in ser_db[ent_type].items():
flat_db[f"{ent_type}:{i}"] = obj
with open(p_out, "w") as f:
f.write(json.dumps(flat_db))
def save_to_json(self, p_out: str):
with open(p_out, "w") as f:
json.dump(self.serialize(), f)
@classmethod
def load(cls, ser_dict: dict):
db = cls(p_batman="")
# make sure to create all entities before you link them together
db.ingrs = {int(cid): Ingredient.load(db, ingr, skip_links=True) for cid, ingr in
ser_dict['ingredients'].items()}
db.herbs = {name: Herb.load(db, herb, skip_links=True) for name, herb in ser_dict['herbs'].items()}
db.formulas = {name: Formula.load(db, formula, skip_links=True) for name, formula in
ser_dict['formulas'].items()}
# now set the links
for i in db.ingrs.values():
# NB: somehow gotta make it work w/out relying on str-int conversion
i._set_links(db, ser_dict['ingredients'][str(i.cid)]['links'])
for h in db.herbs.values():
h._set_links(db, ser_dict['herbs'][h.pref_name]['links'])
for f in db.formulas.values():
f._set_links(db, ser_dict['formulas'][f.pref_name]['links'])
return (db)
@classmethod
def read_from_json(cls, p_file: str):
with open(p_file, "r") as f:
json_db = json.load(f)
db = cls.load(json_db)
return (db)
@classmethod
def download_from_hf(cls):
from datasets import load_dataset
dsets = {x: load_dataset(cls.hf_repo, y) for x, y in cls.hf_subsets.items()}
# speed this up somehow
known_tgs = {str(x['cid']): [y.split("(") for y in eval(x['targets_known'])] for x in dsets['ingredients']['train']}
known_tgs = {x:{'symbols':[z[0] for z in y], "entrez_ids":[int(z[1].strip(")")) for z in y]} for x,y in known_tgs.items()}
pred_tgs = {str(x['cid']): [y.split("(") for y in eval(x['targets_pred'])] for x in dsets['ingredients']['train']}
pred_tgs = {x:{'symbols':[z[0] for z in y], "entrez_ids":[int(z[1].strip(")")) for z in y]} for x,y in pred_tgs.items()}
json_db = dict()
json_db['ingredients'] = {str(x['cid']): {'init': dict(cid=int(x['cid']),
targets_known=known_tgs[str(x['cid'])],
targets_pred=pred_tgs[str(x['cid'])],
pref_name=x['pref_name'],
synonyms=eval(x['synonyms']),
desc=x['description']
),
'links': dict(
herbs=eval(x['herbs']),
formulas=eval(x['formulas'])
)
}
for x in dsets['ingredients']['train']}
json_db['herbs'] = {x['pref_name']: {'init': dict(pref_name=x['pref_name'],
synonyms=eval(x['synonyms']),
desc=x['description']),
'links': dict(ingrs=eval(x['ingredients']),
formulas=eval(x['formulas']))} for x in
dsets['herbs']['train']}
json_db['formulas'] = {x['pref_name']: {'init': dict(pref_name=x['pref_name'],
synonyms=eval(x['synonyms']),
desc=x['description']),
'links': dict(ingrs=eval(x['ingredients']),
herbs=eval(x['herbs']))} for x in
dsets['formulas']['train']}
db = cls.load(json_db)
return (db)
def drop_isolated(self, how='any'):
match how:
case 'any':
self.herbs = {x: y for x, y in self.herbs.items() if (y.ingrs and y.formulas)}
self.formulas = {x: y for x, y in self.formulas.items() if (y.ingrs and y.herbs)}
self.ingrs = {x: y for x, y in self.ingrs.items() if (y.formulas and y.herbs)}
case 'all':
self.herbs = {x: y for x, y in self.herbs.items() if (y.ingrs or y.formulas)}
self.formulas = {x: y for x, y in self.formulas.items() if (y.ingrs or y.herbs)}
self.ingrs = {x: y for x, y in self.ingrs.items() if (y.formulas or y.herbs)}
case _:
raise ValueError(f'Unknown how parameter: {how}. Known parameters are "any" and "all"')
def select_formula_by_cpd(self, cids: List):
cids = set(x for x in cids if x in self.ingrs)
if not cids:
return
cpd_counts = {x: len(set([z.cid for z in y.ingrs]) & cids) for x, y in self.formulas.items()}
n_max = max(cpd_counts.values())
if n_max == 0:
return (n_max, [])
selected = [x for x, y in cpd_counts.items() if y == n_max]
return (n_max, selected)
def pick_formula_by_cpd(self, cids: List):
cids = [x for x in cids if x in self.ingrs]
if not cids:
return
raise NotImplementedError()
def select_formula_by_herb(self, herbs: List):
raise NotImplementedError()
def pick_formula_by_herb(self, herbs: List):
raise NotImplementedError()
def main(ab_initio=False,
p_BATMAN="./BATMAN/",
fname='BATMAN_DB.json'):
p_BATMAN = p_BATMAN.removesuffix("/") + "/"
# Use in case you want to recreate the TCMDB database of Chinese medicine from BATMAN files
if ab_initio:
db = TCMDB.make_new_db(p_BATMAN)
db.link_ingredients_n_formulas()
db.save_to_json(p_BATMAN + fname)
# db.save_to_json('../TCM screening/BATMAN_DB.json')
else:
db = TCMDB.read_from_json('../TCM screening/BATMAN_DB.json')
# db = TCMDB.read_from_json(p_BATMAN + fname)
cids = [969516, # curcumin
445154, # resveratrol
5280343, # quercetin
6167, # colchicine
5280443, # apigening
65064, # EGCG3
5757, # estradiol
5994, # progesterone
5280863, # kaempferol
107985, # triptolide
14985, # alpha-tocopherol
1548943, # Capsaicin
64982, # Baicalin
6013, # Testosterone
]
p3_formula = db.select_formula_by_cpd(cids)
# somehow save file if needed ↓
ser_db = db.serialize()
###
if __name__ == '__main__':
main(ab_initio=True, p_BATMAN="./BATMAN/", fname='BATMAN_DB.json')