|
""" |
|
A simple demo to load 2D 16-bit slices from DeepLesion and save to 3D nifti volumes. |
|
The nifti volumes can be viewed in software such as 3D slicer and ITK-SNAP. |
|
""" |
|
|
|
import os |
|
import cv2 |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import SimpleITK as sitk |
|
|
|
|
|
dir_in = '../Images_png' |
|
dir_out = '../Images_nifti' |
|
info_fn = '../DL_info.csv' |
|
|
|
|
|
def slices2nifti(ims, fn_out, spacing): |
|
"""save 2D slices to 3D nifti file considering the spacing""" |
|
image_itk = sitk.GetImageFromArray(np.stack(ims, axis=0)) |
|
image_itk.SetSpacing(spacing) |
|
image_itk.SetDirection((1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0)) |
|
sitk.WriteImage(image_itk, os.path.join(dir_out, fn_out)) |
|
print(fn_out, 'saved') |
|
|
|
|
|
def load_slices(dir, slice_idxs): |
|
"""load slices from 16-bit png files""" |
|
slice_idxs = np.array(slice_idxs) |
|
assert np.all(slice_idxs[1:] - slice_idxs[:-1] == 1) |
|
ims = [] |
|
for slice_idx in slice_idxs: |
|
path = os.path.join(dir_in, dir, f'{slice_idx:03d}.png') |
|
im = cv2.imread(path, cv2.IMREAD_UNCHANGED) |
|
assert im is not None, f'error reading {path}' |
|
print(f'read {path}') |
|
|
|
|
|
ims.append((im.astype(np.int32) - 32768).astype(np.int16)) |
|
return ims |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
dl_info = pd.read_csv(info_fn) |
|
idxs = dl_info[['Patient_index', 'Study_index', 'Series_ID']].values |
|
spacings = dl_info['Spacing_mm_px_'].apply(lambda x: np.array(x.split(", "), dtype=float)).values |
|
spacings = np.stack(spacings) |
|
|
|
if not os.path.exists(dir_out): |
|
os.mkdir(dir_out) |
|
img_dirs = sorted(os.listdir(dir_in)) |
|
for dir1 in img_dirs: |
|
|
|
idxs1 = np.array([int(d) for d in dir1.split('_')]) |
|
i1 = np.where(np.all(idxs == idxs1, axis=1))[0] |
|
spacings1 = spacings[i1[0]] |
|
|
|
fns = os.listdir(os.path.join(dir_in, dir1)) |
|
slices = sorted([int(d[:-4]) for d in fns if d.endswith('.png')]) |
|
|
|
|
|
|
|
|
|
groups = [] |
|
for slice_idx in slices: |
|
if len(groups) != 0 and slice_idx == groups[-1][-1]+1: |
|
groups[-1].append(slice_idx) |
|
else: |
|
groups.append([slice_idx]) |
|
|
|
for group in groups: |
|
|
|
ims = load_slices(dir1, group) |
|
fn_out = f'{dir1}_{group[0]:03d}-{group[-1]:03d}.nii.gz' |
|
slices2nifti(ims, fn_out, spacings1) |
|
|