""" A simple demo to load 2D 16-bit slices from DeepLesion and save to 3D nifti volumes. The nifti volumes can be viewed in software such as 3D slicer and ITK-SNAP. """ import os import cv2 import numpy as np import pandas as pd import SimpleITK as sitk from tqdm import tqdm dir_in = '../Images_png' dir_out = '../Images_nifti' info_fn = '../DL_info.csv' def slices2nifti(ims, fn_out, spacing): """save 2D slices to 3D nifti file considering the spacing""" image_itk = sitk.GetImageFromArray(np.stack(ims, axis=0)) image_itk.SetSpacing(spacing) image_itk.SetDirection((1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0)) sitk.WriteImage(image_itk, os.path.join(dir_out, fn_out)) # print(f'{fn_out} saved') def load_slices(dir, slice_idxs): """load slices from 16-bit png files""" ims = [] for slice_idx in slice_idxs: path = os.path.join(dir_in, dir, f'{slice_idx:03d}.png') im = cv2.imread(path, cv2.IMREAD_UNCHANGED) # Read as 16-bit image assert im is not None, f'Error reading: {path}' # print(f'read {path}') # the 16-bit png file has an intensity bias of 32768 ims.append((im.astype(np.int32) - 32768).astype(np.int16)) return ims if __name__ == '__main__': # Read spacings and image indices in DeepLesion dl_info = pd.read_csv(info_fn) spacings = dl_info['Spacing_mm_px_'].str.split(',', expand=True).astype(float).values ranges = dl_info['Slice_range'].str.split(',', expand=True).astype(int).values img_dirs = dl_info['File_name'].str.rsplit('_', n=1).str[0].values if not os.path.exists(dir_out): os.mkdir(dir_out) for idx, (img_dir, range, spacing) in tqdm(enumerate(zip(img_dirs, ranges, spacings)), total=len(img_dirs)): # Broken: ./Images_png/001821_07_01/372.png # Broken: ./Images_png/002161_04_02/116.png ims = load_slices(img_dir, np.arange(*range)) fn_out = f'{img_dir}_{range[0]:03d}-{range[-1]:03d}.nii.gz' slices2nifti(ims, fn_out, spacing)