""" A simple demo to load 2D 16-bit slices from DeepLesion and save to 3D nifti volumes. The nifti volumes can be viewed in software such as 3D slicer and ITK-SNAP. """ import os import cv2 import numpy as np import pandas as pd import SimpleITK as sitk dir_in = '../Images_png' dir_out = '../Images_nifti' info_fn = '../DL_info.csv' def slices2nifti(ims, fn_out, spacing): """save 2D slices to 3D nifti file considering the spacing""" image_itk = sitk.GetImageFromArray(np.stack(ims, axis=0)) image_itk.SetSpacing(spacing) image_itk.SetDirection((1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0)) sitk.WriteImage(image_itk, os.path.join(dir_out, fn_out)) print(fn_out, 'saved') def load_slices(dir, slice_idxs): """load slices from 16-bit png files""" slice_idxs = np.array(slice_idxs) assert np.all(slice_idxs[1:] - slice_idxs[:-1] == 1) ims = [] for slice_idx in slice_idxs: path = os.path.join(dir_in, dir, f'{slice_idx:03d}.png') im = cv2.imread(path, cv2.IMREAD_UNCHANGED) # Read as 16-bit image assert im is not None, f'error reading {path}' print(f'read {path}') # the 16-bit png file has an intensity bias of 32768 ims.append((im.astype(np.int32) - 32768).astype(np.int16)) return ims if __name__ == '__main__': # Read spacings and image indices in DeepLesion dl_info = pd.read_csv(info_fn) idxs = dl_info[['Patient_index', 'Study_index', 'Series_ID']].values spacings = dl_info['Spacing_mm_px_'].apply(lambda x: np.array(x.split(", "), dtype=float)).values spacings = np.stack(spacings) if not os.path.exists(dir_out): os.mkdir(dir_out) img_dirs = sorted(os.listdir(dir_in)) for dir1 in img_dirs: # find the image info according to the folder's name idxs1 = np.array([int(d) for d in dir1.split('_')]) i1 = np.where(np.all(idxs == idxs1, axis=1))[0] spacings1 = spacings[i1[0]] fns = os.listdir(os.path.join(dir_in, dir1)) slices = sorted([int(d[:-4]) for d in fns if d.endswith('.png')]) # Each folder contains png slices from one series (volume) # There may be several sub-volumes in each volume depending on the key slices # We group the slices into sub-volumes according to continuity of the slice indices groups = [] for slice_idx in slices: if len(groups) != 0 and slice_idx == groups[-1][-1]+1: groups[-1].append(slice_idx) else: groups.append([slice_idx]) for group in groups: # group contains slices indices of a sub-volume ims = load_slices(dir1, group) fn_out = f'{dir1}_{group[0]:03d}-{group[-1]:03d}.nii.gz' slices2nifti(ims, fn_out, spacings1)