--- license: cc-by-nc-4.0 task_categories: - text-generation - feature-extraction - question-answering - summarization - tabular-regression - tabular-classification language: - en tags: - FPGA - hls4ml - HLS - VHDL - GNN - Transformer - Benchmark - Latency - Resource - Estimation - Regression pretty_name: wa-hls4ml Projects size_categories: - 100K`, where `X` is the specified precision and the total number of bits allocated to the weight and bias values, with one bit being reserved for the integer portion of the value. These models were then converted to HLS using hls4ml and synthesized through AMD Vitis version 2023.2 and 2024.2, targeting the AMD Xilinx Alveo U250 FPGA board. The model sets have the following parameter ranges: - **Number of layers**: 2–7 for fully-connected models; 3–7 for convolutional models. - **Activation functions**: Linear for most 2–3 layer fully-connected models; ReLU, tanh, and sigmoid for all other fully-connected models and convolutional models. - **Number of features/neurons**: 8–128 (step size: 8 for 2–3 layer) for fully-connected models; 32–128 for convolution models with 8–64 filters. - **Weight and bias bit precision**: 2–16 bits (step size: 2) for 2–3 layer fully-connected models, 4–16 bits (step size: powers of 2) for 3–7 layer fully-connected and convolutional models. - **hls4ml target reuse factor**: 1–4093 for fully-connected models; 8192–32795 for convolutional models. - **hls4ml implementation strategy**: Resource strategy, which controls the degree of parallelism by explicitly specifying the number of MAC operations performed in parallel per clock cycle, is used for most fully-connected models and all convolutional models, while Latency strategy, where the computation is unrolled, is used for some 3–7 layer fully-connected models. - **hls4ml I/O type**: The io_parallel setting, which directly wires the output of one layer to the input of the next layer, is used for all fully-connected models, and the io_stream setting, which uses FIFO buffers between layers, is used for all convolutional models. #### Exemplar Model Synthesis Parameters The exemplar models were synthesized with the following parameters: | **Hyperparameter** | **Values** | |---------------------------|---------------------------------------------------------------------------| | **Precision** | `ap_fixed<2,1>`, `ap_fixed<8,3>`, `ap_fixed<16,6>` | | **Strategy** | `Latency`, `Resource` | | **Target reuse factor** | 1, 128, 1024 | | **Target board** | Alveo U200, Alveo U250 | | **Target clock** | 5 ns, 10 ns | | **Vivado version** | 2019.1, 2020.1 | The synthesis was repeated multiple times, varying the hls4ml *reuse factor*, a tunable setting that proportionally limits the number of multiplication operations used. The hls4ml conversion, HLS synthesis, and logic synthesis of the train and test sets were all performed in parallel on the National Research Platform Kubernetes Hypercluster and the Texas A&M ACES HPRC Cluster. On the National Research Platform, synthesis was run inside a container with a guest OS of Ubuntu 20.04.4 LTS, the containers being slightly modified versions of the xilinx-docker v2023.2 "user" images, with 3 virtual CPU cores and 16 GB of RAM per pod, with all AMD tools mounted through a Ceph-based persistent volume. Jobs run on the Texas A&M ACES HPRC Cluster were run using Vitis 2024.2, each with 2 virtual CPU cores and 32 GB of RAM. The resulting projects, reports, logs, and a JSON file containing the resource/latency usage and estimates of the C and logic synthesis were collected for each sample in the dataset. The data, excluding the projects and logs, were then further processed into a collection of JSON files, distributed alongside this paper and described below. - **Repository:** [fastmachinelearning/wa-hls4ml-paper](https://github.com/fastmachinelearning/wa-hls4ml-paper) - **Paper [optional]:** In Review --- ## Uses This dataset is intended to be used to train/refine LLMs to better generate HLS and VHDL code, along with improving the understanding of the general C- and Logic-Synthesis processes to better assist in debugging and question answering for FPGA tooling and hls4ml. ### Direct Use This dataset is generated using the tool hls4ml, and should be used to train LLMs and/or other models for HLS/VHDL Code generation along with improving qustion answering and understanding of (currently) Vivado/Vitis and hls4ml workflows. ### Out-of-Scope Use As this dataset is generated using the hls4ml and Vivado/Vitis tools, it should not be used to train LLMs and/or other models for other tools, as results and implementation details may vary across those tools compared to hls4ml and Vivado/Vitis. --- ## Dataset Structure Within each subset, excluding the exemplar test set, the data is grouped as follows. - **2_20 (rule4ml)**: The updated rule4ml dataset, containing fully-connected neural networks that were randomly generated with layer counts between 2 and 20 layers, using hls4ml resource and latency strategies. - **2_layer**: A subset containing 2-layer deep fully-connected neural networks generated via a grid search using hls4ml resource and io_parallel strategies. - **3_layer**: A subset containing 3-layer deep fully-connected neural networks generated via a grid search using hls4ml resource and io_parallel strategies. - **conv1d**: A subset containing 3–7 layer deep 1-dimensional convolutional neural networks that were randomly generated and use hls4ml resource and io_stream strategies. - **conv2d**: A subset containing 3–7 layer deep 2-dimensional convolutional neural networks that were randomly generated and use hls4ml resource and io_stream strategies. - **latency**: A subset containing 3–7 layer deep fully-connected neural networks that were randomly generated and use hls4ml latency and io_parallel strategies. - **resource**: A subset containing 3–7 layer deep fully-connected neural networks that were randomly generated and use hls4ml resource and io_parallel strategies. ### Structure of the CSV Index files There is one CSV index file for each model type split. Each file has 3 fields: - **Model Name**: The name of the model that you can use to reference the corresponding JSON file in the [wa-hls4ml](fastmachinelearning/wa-hls4ml) dataset. **Note:** you will need to split the string at the last `_` character to find the corresponding JSON file. The string to the left of the `_` is the source model name, and the string to the right is the target reuse factor for that specific project. - **Artifacts File**: The name of the specific artifacts file that contains the project for the specified model. - **Archive Name**: The name of the archive that contains the specific artifacts file for the specified model. ### Structure of the project archives Due to file size/count limitations, the individual project archives are split into batches and placed into one of a number of tar.gz files. If you are looking to find a specific project file, please refer to the Index CSV file as mentioned above. Each project archive contains the complete Vivado/Vitis project in it's original structure, including resulting HLS and VHDL Code, logs, reports, intermediete representations, and source keras model file. --- ## Curation Rationale With the introduction of ML into FPGA toolchains, e.g., for resource and latency prediction or code generation, there is a significant need for large datasets to support and train these tools. We found that existing datasets were insufficient for these needs, and therefore sought to build a dataset and a highly scalable data generation framework that is useful for a wide variety of research surrounding ML on FPGAs. This dataset serves as one of the few openly accessible, large-scale collections of synthesized neural networks available for ML research. ### Exemplar Realistic Models The exemplar models utilized in this study include several key architectures, each tailored for specific ML tasks and targeting scientific applications with low-latency constraints. ### Source Data The data was generated via randomly generated neural networks and specifically selected exemplar models, converted into HLS Code via hls4ml, with the resulting latency values collected after performing C-Synthesis through Vivado/Vitis HLS on the resulting HLS Code, and resource values collected after performing logic synthesis through Vivado/Vitis on the resulting HDL Code. The projects were then stored in a tar.gz file and distributed in this dataset. ### Who are the source data producers? [Benjamin Hawks](https://orcid.org/0000-0001-5700-0288), Fermi National Accelerator Laboratory, USA [Hamza Ezzaoui Rahali](https://orcid.org/0000-0002-0352-725X), University of Sherbrooke, Canada [Mohammad Mehdi Rahimifar](https://orcid.org/0000-0002-6582-8322), University of Sherbrooke, Canada ### Personal and Sensitive Information This data contains no personally identifiable or sensitive information except for the names/usernames of the authors in some file paths. ## Bias, Risks, and Limitations In it's inital form, a majority of this dataset is comprised of very small (2-3 layer) dense neural networks without activations. This should be considered when training a model on it, and appropriate measures should be taken to weight the data at training time. We intend to continuously update this dataset, addressing this imbalance over time as more data is generated. ### Recommendations Appropriate measures should be taken to weight the data to account for the dataset imbalance at training time. ## Citation Paper currently in review. **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Dataset Card Authors [Benjamin Hawks](https://orcid.org/0000-0001-5700-0288), Fermi National Accelerator Laboratory, USA [Hamza Ezzaoui Rahali](https://orcid.org/0000-0002-0352-725X), University of Sherbrooke, Canada [Mohammad Mehdi Rahimifar](https://orcid.org/0000-0002-6582-8322), University of Sherbrooke, Canada ## Dataset Card Contact [bhawks@fnal.gov](mailto:bhawks@fnal.gov)