Datasets:
docs: refresh README with panel preview, full CDL legend, and coverage
Browse files
README.md
CHANGED
@@ -1,259 +1,253 @@
|
|
1 |
---
|
2 |
-
pretty_name: NAIP 16
|
3 |
-
license: apache-2.0
|
4 |
tags:
|
5 |
- geospatial
|
6 |
-
- satellite
|
7 |
- remote-sensing
|
8 |
-
-
|
9 |
-
-
|
10 |
-
-
|
11 |
task_categories:
|
12 |
-
- image-classification
|
13 |
- image-segmentation
|
14 |
-
|
15 |
-
-
|
16 |
-
language:
|
17 |
-
- en
|
18 |
-
configs:
|
19 |
-
- config_name: default
|
20 |
-
data_files:
|
21 |
-
- split: train
|
22 |
-
path: data/train-*
|
23 |
-
dataset_info:
|
24 |
-
features:
|
25 |
-
- name: tile_id
|
26 |
-
dtype: string
|
27 |
-
- name: city
|
28 |
-
dtype: string
|
29 |
-
- name: west
|
30 |
-
dtype: float64
|
31 |
-
- name: south
|
32 |
-
dtype: float64
|
33 |
-
- name: east
|
34 |
-
dtype: float64
|
35 |
-
- name: north
|
36 |
-
dtype: float64
|
37 |
-
- name: chip_px
|
38 |
-
dtype: int64
|
39 |
-
- name: split
|
40 |
-
dtype: string
|
41 |
-
- name: meta_json
|
42 |
-
dtype: string
|
43 |
-
- name: naip_rgb
|
44 |
-
dtype: image
|
45 |
-
- name: naip_ndvi
|
46 |
-
dtype: image
|
47 |
-
- name: s2_rgb
|
48 |
-
dtype: image
|
49 |
-
- name: s2_pseudo_rgb
|
50 |
-
dtype: image
|
51 |
-
- name: dem_rgb
|
52 |
-
dtype: image
|
53 |
-
- name: labels
|
54 |
-
dtype: image
|
55 |
-
- name: landfire_family
|
56 |
-
dtype: image
|
57 |
-
- name: cdl
|
58 |
-
dtype: image
|
59 |
-
- name: s2_B04
|
60 |
-
dtype: image
|
61 |
-
- name: s2_B03
|
62 |
-
dtype: image
|
63 |
-
- name: s2_B02
|
64 |
-
dtype: image
|
65 |
-
- name: s2_B08
|
66 |
-
dtype: image
|
67 |
-
- name: s2_MSAVI
|
68 |
-
dtype: image
|
69 |
-
- name: s2_NDVI
|
70 |
-
dtype: image
|
71 |
-
- name: s2_NDWI
|
72 |
-
dtype: image
|
73 |
-
- name: s2_SCL
|
74 |
-
dtype: image
|
75 |
-
splits:
|
76 |
-
- name: train
|
77 |
-
num_bytes: 34524111669.0
|
78 |
-
num_examples: 24792
|
79 |
-
download_size: 34373796482
|
80 |
-
dataset_size: 34524111669.0
|
81 |
---
|
82 |
|
83 |
-
# NAIP 16-
|
84 |
-
|
85 |
-
High-fidelity **Parquet shards** of multi-sensor tiles grouped by `town`.
|
86 |
-
Each row is a single **512×512** tile with synchronized **NAIP**, **Sentinel-2**, **DEM**,
|
87 |
-
plus categorical layers (**LANDFIRE**, **CDL**) and a per-pixel **semantic `labels`** mask.
|
88 |
-
|
89 |
-
Shards live under:
|
90 |
-
|
91 |
-
```
|
92 |
-
data/city=<name>/part-*.parquet
|
93 |
-
```
|
94 |
-
|
95 |
-
> Built to train a **four-headed fire-risk model**: (1) segmentation on `labels`,
|
96 |
-
(2) land-cover family classification, (3) CDL/aux targets, and (4) a risk head you attach downstream.
|
97 |
-
|
98 |
-
## Snapshot
|
99 |
-
|
100 |
-
- **Shards:** 691
|
101 |
-
- **Rows (tiles):** 24,792
|
102 |
-
- **On-disk size:** 44.05 GB
|
103 |
-
- **Tile size:** 512px × 512px
|
104 |
-
- **S2 pseudo-RGB recipe:** e.g., `MSAVI,B08,NDMI`
|
105 |
|
|
|
106 |
|
107 |
-
|
108 |
|
109 |
-
- `
|
110 |
-
- `
|
111 |
-
- `
|
112 |
-
- `
|
113 |
-
- `z` — Slippy-tile zoom level (int).
|
114 |
-
- `west` — Tile western bound (lon, float).
|
115 |
-
- `south` — Tile southern bound (lat, float).
|
116 |
-
- `east` — Tile eastern bound (lon, float).
|
117 |
-
- `north` — Tile northern bound (lat, float).
|
118 |
-
- `cnt` — Internal count / provenance counter.
|
119 |
-
- `chip_px` — Tile side length in pixels (H=W).
|
120 |
-
- `s2_year` — Sentinel-2 target year for the 16-day window.
|
121 |
-
- `s2_month` — Sentinel-2 target month ('01'..'12').
|
122 |
-
- `s2_month_window` — ±days window around month for composing S2.
|
123 |
-
- `s2_time_slices` — Number of S2 scenes contributing to composite.
|
124 |
-
- `s2_cloud_cap` — Cloud coverage cap (%) used to filter S2.
|
125 |
-
- `s2_cloudmask` — Whether cloud-masked composite was used (bool).
|
126 |
-
- `s2_channels8` — String listing first 8 S2 channels used in cube.
|
127 |
-
- `return_groups` — Provenance grouping tag for tiles.
|
128 |
-
- `enable_landfire` — Whether LANDFIRE layers were enabled (bool).
|
129 |
-
- `overture_release` — Overture release tag for vector data used.
|
130 |
-
- `udf_name` — Name of the UDF recipe used to build the cube.
|
131 |
-
- `labels_hist_json` — JSON histogram of semantic label classes for this tile.
|
132 |
-
- `cube_npz` — Binary NPZ of the full cube (excluded from export if set False).
|
133 |
|
134 |
-
|
135 |
-
- `1`
|
136 |
-
- `2`
|
137 |
-
- `3`
|
138 |
-
- `4`
|
139 |
-
- `5`
|
140 |
-
- `6`
|
141 |
-
- `7`
|
142 |
-
- `11`
|
143 |
-
|
144 |
-
## How to load
|
145 |
-
|
146 |
-
Whole dataset:
|
147 |
|
|
|
148 |
```python
|
149 |
from datasets import load_dataset
|
150 |
ds = load_dataset("gdurkin/naip-16d-city-cubes", split="train")
|
151 |
-
|
152 |
-
ds_small = ds.select_columns(["tile_id","town","chip_px","labels_hist_json"])
|
153 |
```
|
154 |
|
155 |
-
|
156 |
-
|
157 |
```python
|
158 |
from datasets import load_dataset
|
159 |
-
|
|
|
160 |
ds_city = load_dataset("parquet", data_files=pattern, split="train")
|
161 |
```
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pretty_name: NAIP 16-Day City Cubes (materialized tiles)
|
|
|
3 |
tags:
|
4 |
- geospatial
|
|
|
5 |
- remote-sensing
|
6 |
+
- earth-observation
|
7 |
+
- wildfire
|
8 |
+
- segmentation
|
9 |
task_categories:
|
|
|
10 |
- image-segmentation
|
11 |
+
- image-classification
|
12 |
+
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
+
# NAIP 16-Day City Cubes (materialized tiles)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+

|
18 |
|
19 |
+
Each row is a 512×512 chip with **16 layers** exposed through logical groupings:
|
20 |
|
21 |
+
- **RGB composites**: `naip_rgb`, `s2_rgb`, `s2_pseudo_rgb`, `dem_rgb`
|
22 |
+
- **Mono layers**: `naip_ndvi` and **leftover S2 bands** as single-channel `s2_*`
|
23 |
+
- **Semantic masks**: `labels` (task labels), `landfire_family`, `cdl`
|
24 |
+
- **Metadata**: `tile_id`, `city`, `bbox` (`west,south,east,north`), `chip_px`, `split`, `meta_json`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
> PNGs are **lossless** encodings of uint8 arrays; the big `cube_npz` payload is omitted to keep the repo small.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
## Loading
|
29 |
```python
|
30 |
from datasets import load_dataset
|
31 |
ds = load_dataset("gdurkin/naip-16d-city-cubes", split="train")
|
32 |
+
ds[0].keys()
|
|
|
33 |
```
|
34 |
|
35 |
+
To load a single city:
|
|
|
36 |
```python
|
37 |
from datasets import load_dataset
|
38 |
+
city = "Arcadia__California__USA"
|
39 |
+
pattern = f"hf://datasets/gdurkin/naip-16d-city-cubes/data/city={city}/*.parquet"
|
40 |
ds_city = load_dataset("parquet", data_files=pattern, split="train")
|
41 |
```
|
42 |
|
43 |
+
## Columns & shapes
|
44 |
+
- `naip_rgb` _(512×512×3 u8)_: NAIP true color
|
45 |
+
- `s2_rgb` _(512×512×3 u8)_: Sentinel-2 true color (B04,B03,B02)
|
46 |
+
- `s2_pseudo_rgb` _(512×512×3 u8)_: pseudoRGB (default: MSAVI,B08,NDMI)
|
47 |
+
- `dem_rgb` _(512×512×3 u8)_: elevation/gradient/aspect visualization
|
48 |
+
- `naip_ndvi` _(512×512 u8)_: NDVI from NAIP
|
49 |
+
- `s2_*` _(512×512 u8)_: leftover S2 bands (e.g., B08, MSAVI, NDVI, NDWI, NDMI, SCL)
|
50 |
+
- `labels`, `landfire_family`, `cdl` _(512×512 u8)_: categorical masks
|
51 |
+
|
52 |
+
## Legends
|
53 |
+
|
54 |
+
### Labels (task)
|
55 |
+
| id | name | color |
|
56 |
+
|--:|:-----|:------|
|
57 |
+
| 0 | `background` | `#000000` |
|
58 |
+
| 1 | `road_concrete` | `#C8C8C8` |
|
59 |
+
| 2 | `pavement` | `#A0A0A0` |
|
60 |
+
| 3 | `dirt_gravel` | `#96643C` |
|
61 |
+
| 4 | `grass_dry` | `#E6DC78` |
|
62 |
+
| 5 | `grass_healthy` | `#50C878` |
|
63 |
+
| 6 | `vegetation` | `#147814` |
|
64 |
+
| 7 | `building` | `#FF5050` |
|
65 |
+
| 8 | `water` | `#4682B4` |
|
66 |
+
| 11 | `building_res` | `#FF8C8C` |
|
67 |
+
| 12 | `building_com` | `#FF5A1E` |
|
68 |
+
|
69 |
+
### LANDFIRE family
|
70 |
+
| id | family | color |
|
71 |
+
|--:|:-------|:------|
|
72 |
+
| 0 | `background` | `#000000` |
|
73 |
+
| 1 | `grass` | `#F7E68C` |
|
74 |
+
| 2 | `shrub` | `#C69842` |
|
75 |
+
| 3 | `timber` | `#1E781E` |
|
76 |
+
| 4 | `slash` | `#CE5A32` |
|
77 |
+
| 9 | `urban` | `#969696` |
|
78 |
+
| 10 | `snow_ice` | `#C8E6FF` |
|
79 |
+
| 11 | `agriculture` | `#FFCC66` |
|
80 |
+
| 12 | `water` | `#4682B4` |
|
81 |
+
| 13 | `barren` | `#C2B280` |
|
82 |
+
|
83 |
+
### CDL (full palette)
|
84 |
+
The table below lists CDL codes and colors (urban classes are overridden for better visual separation).
|
85 |
+
|
86 |
+
<details><summary><strong>Click to expand full CDL legend</strong></summary>
|
87 |
+
|
88 |
+
| id | class | color |
|
89 |
+
|--:|:------|:------|
|
90 |
+
| 0 | `Background` | `000000` |
|
91 |
+
| 1 | `Corn` | `ffd400` |
|
92 |
+
| 2 | `Cotton` | `ff2626` |
|
93 |
+
| 3 | `Rice` | `00a9e6` |
|
94 |
+
| 4 | `Sorghum` | `ff9e0f` |
|
95 |
+
| 5 | `Soybeans` | `267300` |
|
96 |
+
| 6 | `Sunflower` | `ffff00` |
|
97 |
+
| 10 | `Peanuts` | `70a800` |
|
98 |
+
| 11 | `Tobacco` | `00af4d` |
|
99 |
+
| 12 | `Sweet Corn` | `e0a60f` |
|
100 |
+
| 13 | `Pop or Orn Corn` | `e0a60f` |
|
101 |
+
| 14 | `Mint` | `80d4ff` |
|
102 |
+
| 21 | `Barley` | `e2007f` |
|
103 |
+
| 22 | `Durum Wheat` | `8a6453` |
|
104 |
+
| 23 | `Spring Wheat` | `d9b56c` |
|
105 |
+
| 24 | `Winter Wheat` | `a87000` |
|
106 |
+
| 25 | `Other Small Grains` | `d69dbc` |
|
107 |
+
| 26 | `Dbl Crop WinWht/Soybeans` | `737300` |
|
108 |
+
| 27 | `Rye` | `ae017e` |
|
109 |
+
| 28 | `Oats` | `a15889` |
|
110 |
+
| 29 | `Millet` | `73004c` |
|
111 |
+
| 30 | `Speltz` | `d69dbc` |
|
112 |
+
| 31 | `Canola` | `d1ff00` |
|
113 |
+
| 32 | `Flaxseed` | `8099ff` |
|
114 |
+
| 33 | `Safflower` | `d6d600` |
|
115 |
+
| 34 | `Rape Seed` | `d1ff00` |
|
116 |
+
| 35 | `Mustard` | `00af4d` |
|
117 |
+
| 36 | `Alfalfa` | `ffa8e3` |
|
118 |
+
| 37 | `Other Hay/Non Alfalfa` | `a5f58d` |
|
119 |
+
| 38 | `Camelina` | `00af4d` |
|
120 |
+
| 39 | `Buckwheat` | `d69dbc` |
|
121 |
+
| 41 | `Sugarbeets` | `a900e6` |
|
122 |
+
| 42 | `Dry Beans` | `a80000` |
|
123 |
+
| 43 | `Potatoes` | `732600` |
|
124 |
+
| 44 | `Other Crops` | `00af4d` |
|
125 |
+
| 45 | `Sugarcane` | `b380ff` |
|
126 |
+
| 46 | `Sweet Potatoes` | `732600` |
|
127 |
+
| 47 | `Misc Vegs & Fruits` | `ff6666` |
|
128 |
+
| 48 | `Watermelons` | `ff6666` |
|
129 |
+
| 49 | `Onions` | `ffcc66` |
|
130 |
+
| 50 | `Cucumbers` | `ff6666` |
|
131 |
+
| 51 | `Chick Peas` | `00af4d` |
|
132 |
+
| 52 | `Lentils` | `00deb0` |
|
133 |
+
| 53 | `Peas` | `55ff00` |
|
134 |
+
| 54 | `Tomatoes` | `f5a27a` |
|
135 |
+
| 55 | `Caneberries` | `ff6666` |
|
136 |
+
| 56 | `Hops` | `00af4d` |
|
137 |
+
| 57 | `Herbs` | `80d4ff` |
|
138 |
+
| 58 | `Clover/Wildflowers` | `e8beff` |
|
139 |
+
| 59 | `Sod/Grass Seed` | `b2ffde` |
|
140 |
+
| 60 | `Switchgrass` | `00af4d` |
|
141 |
+
| 61 | `Fallow/Idle Cropland` | `bfbf7a` |
|
142 |
+
| 63 | `Forest` | `95ce93` |
|
143 |
+
| 64 | `Shrubland` | `c7d79e` |
|
144 |
+
| 65 | `Barren` | `ccbfa3` |
|
145 |
+
| 66 | `Cherries` | `ff00ff` |
|
146 |
+
| 67 | `Peaches` | `ff91ab` |
|
147 |
+
| 68 | `Apples` | `b90050` |
|
148 |
+
| 69 | `Grapes` | `704489` |
|
149 |
+
| 70 | `Christmas Trees` | `007878` |
|
150 |
+
| 71 | `Other Tree Crops` | `b39c70` |
|
151 |
+
| 72 | `Citrus` | `ffff80` |
|
152 |
+
| 74 | `Pecans` | `b6705c` |
|
153 |
+
| 75 | `Almonds` | `00a884` |
|
154 |
+
| 76 | `Walnuts` | `ebd6b0` |
|
155 |
+
| 77 | `Pears` | `b39c70` |
|
156 |
+
| 81 | `Clouds/No Data` | `f7f7f7` |
|
157 |
+
| 82 | `Developed` | `9c9c9c` |
|
158 |
+
| 83 | `Water` | `4d70a3` |
|
159 |
+
| 87 | `Wetlands` | `80b3b3` |
|
160 |
+
| 88 | `Nonag/Undefined` | `e9ffbe` |
|
161 |
+
| 92 | `Aquaculture` | `00ffff` |
|
162 |
+
| 111 | `Open Water` | `4d70a3` |
|
163 |
+
| 112 | `Perennial Ice/Snow` | `d4e3fc` |
|
164 |
+
| 121 | `Developed/Open Space` | `#BDBDBD` |
|
165 |
+
| 122 | `Developed/Low Intensity` | `#F4B183` |
|
166 |
+
| 123 | `Developed/Med Intensity` | `#E06666` |
|
167 |
+
| 124 | `Developed/High Intensity` | `#A61C00` |
|
168 |
+
| 131 | `Barren` | `ccbfa3` |
|
169 |
+
| 141 | `Deciduous Forest` | `95ce93` |
|
170 |
+
| 142 | `Evergreen Forest` | `95ce93` |
|
171 |
+
| 143 | `Mixed Forest` | `95ce93` |
|
172 |
+
| 152 | `Shrubland` | `c7d79e` |
|
173 |
+
| 176 | `Grass/Pasture` | `e9ffbe` |
|
174 |
+
| 190 | `Woody Wetlands` | `80b3b3` |
|
175 |
+
| 195 | `Herbaceous Wetlands` | `80b3b3` |
|
176 |
+
| 204 | `Pistachios` | `00ff8c` |
|
177 |
+
| 205 | `Triticale` | `d69dbc` |
|
178 |
+
| 206 | `Carrots` | `ff6666` |
|
179 |
+
| 207 | `Asparagus` | `ff6666` |
|
180 |
+
| 208 | `Garlic` | `ff6666` |
|
181 |
+
| 209 | `Cantaloupes` | `ff6666` |
|
182 |
+
| 210 | `Prunes` | `ff91ab` |
|
183 |
+
| 211 | `Olives` | `344a34` |
|
184 |
+
| 212 | `Oranges` | `e67525` |
|
185 |
+
| 213 | `Honeydew Melons` | `ff6666` |
|
186 |
+
| 214 | `Broccoli` | `ff6666` |
|
187 |
+
| 215 | `Avocados` | `66994d` |
|
188 |
+
| 216 | `Peppers` | `ff6666` |
|
189 |
+
| 217 | `Pomegranates` | `b39c70` |
|
190 |
+
| 218 | `Nectarines` | `ff91ab` |
|
191 |
+
| 219 | `Greens` | `ff6666` |
|
192 |
+
| 220 | `Plums` | `ff91ab` |
|
193 |
+
| 221 | `Strawberries` | `ff6666` |
|
194 |
+
| 222 | `Squash` | `ff6666` |
|
195 |
+
| 223 | `Apricots` | `ff91ab` |
|
196 |
+
| 224 | `Vetch` | `00af4d` |
|
197 |
+
| 225 | `Dbl Crop WinWht/Corn` | `ffd400` |
|
198 |
+
| 226 | `Dbl Crop Oats/Corn` | `ffd400` |
|
199 |
+
| 227 | `Lettuce` | `ff6666` |
|
200 |
+
| 228 | `Dbl Crop Triticale/Corn` | `ffd400` |
|
201 |
+
| 229 | `Pumpkins` | `ff6666` |
|
202 |
+
| 230 | `Dbl Crop Lettuce/Durum Wht` | `8a6453` |
|
203 |
+
| 231 | `Dbl Crop Lettuce/Cantaloupe` | `ff6666` |
|
204 |
+
| 232 | `Dbl Crop Lettuce/Cotton` | `ff2626` |
|
205 |
+
| 233 | `Dbl Crop Lettuce/Barley` | `e2007f` |
|
206 |
+
| 234 | `Dbl Crop Durum Wht/Sorghum` | `ff9e0f` |
|
207 |
+
| 235 | `Dbl Crop Barley/Sorghum` | `ff9e0f` |
|
208 |
+
| 236 | `Dbl Crop WinWht/Sorghum` | `a87000` |
|
209 |
+
| 237 | `Dbl Crop Barley/Corn` | `ffd400` |
|
210 |
+
| 238 | `Dbl Crop WinWht/Cotton` | `a87000` |
|
211 |
+
| 239 | `Dbl Crop Soybeans/Cotton` | `267300` |
|
212 |
+
| 240 | `Dbl Crop Soybeans/Oats` | `267300` |
|
213 |
+
| 241 | `Dbl Crop Corn/Soybeans` | `ffd400` |
|
214 |
+
| 242 | `Blueberries` | `000099` |
|
215 |
+
| 243 | `Cabbage` | `ff6666` |
|
216 |
+
| 244 | `Cauliflower` | `ff6666` |
|
217 |
+
| 245 | `Celery` | `ff6666` |
|
218 |
+
| 246 | `Radishes` | `ff6666` |
|
219 |
+
| 247 | `Turnips` | `ff6666` |
|
220 |
+
| 248 | `Eggplants` | `ff6666` |
|
221 |
+
| 249 | `Gourds` | `ff6666` |
|
222 |
+
| 250 | `Cranberries` | `ff6666` |
|
223 |
+
| 254 | `Dbl Crop Barley/Soybeans` | `267300` |
|
224 |
+
</details>
|
225 |
+
|
226 |
+
|
227 |
+
## Coverage
|
228 |
+
<!-- COVERAGE-TABLE:BEGIN -->
|
229 |
+
|
230 |
+
**Coverage**
|
231 |
+
- rows: **24,792**
|
232 |
+
- S2 mono policy: `leftover`
|
233 |
+
|
234 |
+
| column | rows | pct |
|
235 |
+
|---|---:|---:|
|
236 |
+
| `cdl` | 24,792 | 100.0% |
|
237 |
+
| `dem_rgb` | 24,792 | 100.0% |
|
238 |
+
| `labels` | 24,792 | 100.0% |
|
239 |
+
| `landfire_family` | 24,792 | 100.0% |
|
240 |
+
| `naip_ndvi` | 24,792 | 100.0% |
|
241 |
+
| `naip_rgb` | 24,792 | 100.0% |
|
242 |
+
| `s2_B02` | 0 | 0.0% |
|
243 |
+
| `s2_B03` | 0 | 0.0% |
|
244 |
+
| `s2_B04` | 0 | 0.0% |
|
245 |
+
| `s2_B08` | 0 | 0.0% |
|
246 |
+
| `s2_MSAVI` | 0 | 0.0% |
|
247 |
+
| `s2_NDVI` | 24,792 | 100.0% |
|
248 |
+
| `s2_NDWI` | 24,792 | 100.0% |
|
249 |
+
| `s2_SCL` | 24,792 | 100.0% |
|
250 |
+
| `s2_pseudo_rgb` | 0 | 0.0% |
|
251 |
+
| `s2_rgb` | 24,792 | 100.0% |
|
252 |
+
|
253 |
+
<!-- COVERAGE-TABLE:END -->
|