gdurkin commited on
Commit
80d9550
·
verified ·
1 Parent(s): b161036

docs: refresh README with panel preview, full CDL legend, and coverage

Browse files
Files changed (1) hide show
  1. README.md +230 -236
README.md CHANGED
@@ -1,259 +1,253 @@
1
  ---
2
- pretty_name: NAIP 16‑day city cubes
3
- license: apache-2.0
4
  tags:
5
  - geospatial
6
- - satellite
7
  - remote-sensing
8
- - naip
9
- - sentinel-2
10
- - dem
11
  task_categories:
12
- - image-classification
13
  - image-segmentation
14
- datasets:
15
- - datasets
16
- language:
17
- - en
18
- configs:
19
- - config_name: default
20
- data_files:
21
- - split: train
22
- path: data/train-*
23
- dataset_info:
24
- features:
25
- - name: tile_id
26
- dtype: string
27
- - name: city
28
- dtype: string
29
- - name: west
30
- dtype: float64
31
- - name: south
32
- dtype: float64
33
- - name: east
34
- dtype: float64
35
- - name: north
36
- dtype: float64
37
- - name: chip_px
38
- dtype: int64
39
- - name: split
40
- dtype: string
41
- - name: meta_json
42
- dtype: string
43
- - name: naip_rgb
44
- dtype: image
45
- - name: naip_ndvi
46
- dtype: image
47
- - name: s2_rgb
48
- dtype: image
49
- - name: s2_pseudo_rgb
50
- dtype: image
51
- - name: dem_rgb
52
- dtype: image
53
- - name: labels
54
- dtype: image
55
- - name: landfire_family
56
- dtype: image
57
- - name: cdl
58
- dtype: image
59
- - name: s2_B04
60
- dtype: image
61
- - name: s2_B03
62
- dtype: image
63
- - name: s2_B02
64
- dtype: image
65
- - name: s2_B08
66
- dtype: image
67
- - name: s2_MSAVI
68
- dtype: image
69
- - name: s2_NDVI
70
- dtype: image
71
- - name: s2_NDWI
72
- dtype: image
73
- - name: s2_SCL
74
- dtype: image
75
- splits:
76
- - name: train
77
- num_bytes: 34524111669.0
78
- num_examples: 24792
79
- download_size: 34373796482
80
- dataset_size: 34524111669.0
81
  ---
82
 
83
- # NAIP 16-day City Cubes Earth Observation for Fire Risk
84
-
85
- High-fidelity **Parquet shards** of multi-sensor tiles grouped by `town`.
86
- Each row is a single **512×512** tile with synchronized **NAIP**, **Sentinel-2**, **DEM**,
87
- plus categorical layers (**LANDFIRE**, **CDL**) and a per-pixel **semantic `labels`** mask.
88
-
89
- Shards live under:
90
-
91
- ```
92
- data/city=<name>/part-*.parquet
93
- ```
94
-
95
- > Built to train a **four-headed fire-risk model**: (1) segmentation on `labels`,
96
- (2) land-cover family classification, (3) CDL/aux targets, and (4) a risk head you attach downstream.
97
-
98
- ## Snapshot
99
-
100
- - **Shards:** 691
101
- - **Rows (tiles):** 24,792
102
- - **On-disk size:** 44.05 GB
103
- - **Tile size:** 512px × 512px
104
- - **S2 pseudo-RGB recipe:** e.g., `MSAVI,B08,NDMI`
105
 
 
106
 
107
- ## Columns
108
 
109
- - `tile_id` Unique tile identifier.
110
- - `town` Town used for grouping on the Hub.
111
- - `x` Slippy-tile X (int).
112
- - `y` Slippy-tile Y (int).
113
- - `z` — Slippy-tile zoom level (int).
114
- - `west` — Tile western bound (lon, float).
115
- - `south` — Tile southern bound (lat, float).
116
- - `east` — Tile eastern bound (lon, float).
117
- - `north` — Tile northern bound (lat, float).
118
- - `cnt` — Internal count / provenance counter.
119
- - `chip_px` — Tile side length in pixels (H=W).
120
- - `s2_year` — Sentinel-2 target year for the 16-day window.
121
- - `s2_month` — Sentinel-2 target month ('01'..'12').
122
- - `s2_month_window` — ±days window around month for composing S2.
123
- - `s2_time_slices` — Number of S2 scenes contributing to composite.
124
- - `s2_cloud_cap` — Cloud coverage cap (%) used to filter S2.
125
- - `s2_cloudmask` — Whether cloud-masked composite was used (bool).
126
- - `s2_channels8` — String listing first 8 S2 channels used in cube.
127
- - `return_groups` — Provenance grouping tag for tiles.
128
- - `enable_landfire` — Whether LANDFIRE layers were enabled (bool).
129
- - `overture_release` — Overture release tag for vector data used.
130
- - `udf_name` — Name of the UDF recipe used to build the cube.
131
- - `labels_hist_json` — JSON histogram of semantic label classes for this tile.
132
- - `cube_npz` — Binary NPZ of the full cube (excluded from export if set False).
133
 
134
- ### Semantic `labels` classes (sample)
135
- - `1`
136
- - `2`
137
- - `3`
138
- - `4`
139
- - `5`
140
- - `6`
141
- - `7`
142
- - `11`
143
-
144
- ## How to load
145
-
146
- Whole dataset:
147
 
 
148
  ```python
149
  from datasets import load_dataset
150
  ds = load_dataset("gdurkin/naip-16d-city-cubes", split="train")
151
- # Tip: project columns to avoid pulling big arrays when you don't need them
152
- ds_small = ds.select_columns(["tile_id","town","chip_px","labels_hist_json"])
153
  ```
154
 
155
- One town only:
156
-
157
  ```python
158
  from datasets import load_dataset
159
- pattern = "hf://datasets/gdurkin/naip-16d-city-cubes/data/city=Calabasas__California__USA/*.parquet"
 
160
  ds_city = load_dataset("parquet", data_files=pattern, split="train")
161
  ```
162
 
163
- Arrow direct (fast column projection):
164
-
165
- ```python
166
- import pyarrow.dataset as ds
167
- dataset = ds.dataset("hf://datasets/gdurkin/naip-16d-city-cubes/data", format="parquet")
168
- tbl = dataset.scanner(columns=["tile_id","town","chip_px"]).head(5)
169
- ```
170
-
171
- ## Training tips (4-headed setup)
172
-
173
- - **Inputs**: one or more of `naip_rgb`, `s2_rgb`, `s2_pseudo_rgb`, `dem_rgb`; add scalar/context columns as needed.
174
- - **Segmentation head**: `labels` (H×W, uint8). Build palette from `labels_hist_json`.
175
- - **Land-cover head**: `landfire_family` (H×W) or tile-level histogram.
176
- - **Aux head**: `cdl` histogram or any scalar derived per tile.
177
- - **Risk head**: your external risk target per tile.
178
-
179
- Minimal PyTorch collate (projecting only what you need):
180
-
181
- ```python
182
- from datasets import load_dataset
183
- import numpy as np, torch
184
-
185
- ds = load_dataset("gdurkin/naip-16d-city-cubes", split="train")
186
-
187
- def to_chw(u8_hw3):
188
- a = np.array(u8_hw3, dtype=np.uint8)
189
- return torch.from_numpy(a).permute(2,0,1)
190
-
191
- def collate(batch):
192
- x_rgb = [to_chw(ex["naip_rgb"]) for ex in batch]
193
- y_seg = [torch.tensor(ex["labels"], dtype=torch.long) for ex in batch]
194
- return {"x_rgb": torch.stack(x_rgb), "y_seg": torch.stack(y_seg)}
195
-
196
- loader = torch.utils.data.DataLoader(ds.with_format("python"), batch_size=4, collate_fn=collate)
197
- ```
198
-
199
- ## Performance
200
-
201
- - Use **column projection** (see examples) — e.g., skip `naip_rgb` if you only need metadata.
202
- - Prefer **per-city paths** for fast subsetting and incremental experiments.
203
- - Arrays are `uint8` (`labels`/`landfire_family`/`cdl` categorical are uint8). Decode to tensors lazily in your collate.
204
-
205
- ## Reproducibility
206
-
207
- Export configuration (used when materializing view columns from `cube_npz`):
208
-
209
- ```yaml
210
- make_columns:
211
- - naip_rgb
212
- - naip_ndvi
213
- - s2_rgb
214
- - s2_pseudo_rgb # recipe: MSAVI,B08,NDMI
215
- - dem_rgb
216
- - labels
217
- - landfire_family
218
- - cdl
219
- train_ratio: 0.90
220
- split_seed: 13
221
- include_cube_npz: false
222
- max_shard_size: 500MB
223
- ```
224
-
225
- ## Largest groups (top 20)
226
-
227
- - **Santa_Cruz__California__USA**: 66 shards
228
- - **Sonoma__California__USA**: 65 shards
229
- - **Ventura__California__USA**: 47 shards
230
- - **Flagstaff__Arizona__USA**: 39 shards
231
- - **Santa_Rosa__California__USA**: 38 shards
232
- - **Thousand_Oaks__California__USA**: 28 shards
233
- - **Pasadena__California__USA**: 28 shards
234
- - **Napa__California__USA**: 27 shards
235
- - **Mariposa__California__USA**: 23 shards
236
- - **Eugene__Oregon__USA**: 18 shards
237
- - **Paradise__California__USA**: 16 shards
238
- - **Simi_Valley__California__USA**: 16 shards
239
- - **Lake_Elsinore__California__USA**: 16 shards
240
- - **Hemet__California__USA**: 16 shards
241
- - **Malibu__California__USA**: 14 shards
242
- - **Payson__Arizona__USA**: 13 shards
243
- - **Arcadia__California__USA**: 12 shards
244
- - **Laguna_Niguel__California__USA**: 11 shards
245
- - **Redding__California__USA**: 10 shards
246
- - **Auberry__California__USA**: 9 shards
247
-
248
- ## Sources & licensing
249
-
250
- - Packaging, metadata, and annotations: **CC-BY-4.0**.
251
- - Underlying sources follow their native licenses:
252
- - USDA **NAIP** and USGS **DEM** are public-domain.
253
- - **Copernicus Sentinel-2** is free & open with attribution.
254
- - **LANDFIRE/CDL** are US-Gov data. Cite sources in publications.
255
-
256
- ## Caveats
257
-
258
- - `cube_npz` is excluded to keep the repo light; all published arrays were materialized during export.
259
- - If you hit an old `datasets` version that struggles with YAML headers, load with the Parquet builder as shown above.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pretty_name: NAIP 16-Day City Cubes (materialized tiles)
 
3
  tags:
4
  - geospatial
 
5
  - remote-sensing
6
+ - earth-observation
7
+ - wildfire
8
+ - segmentation
9
  task_categories:
 
10
  - image-segmentation
11
+ - image-classification
12
+ license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
+ # NAIP 16-Day City Cubes (materialized tiles)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ ![Panel preview](assets/panels/santa_maria_3x3.png)
18
 
19
+ Each row is a 512×512 chip with **16 layers** exposed through logical groupings:
20
 
21
+ - **RGB composites**: `naip_rgb`, `s2_rgb`, `s2_pseudo_rgb`, `dem_rgb`
22
+ - **Mono layers**: `naip_ndvi` and **leftover S2 bands** as single-channel `s2_*`
23
+ - **Semantic masks**: `labels` (task labels), `landfire_family`, `cdl`
24
+ - **Metadata**: `tile_id`, `city`, `bbox` (`west,south,east,north`), `chip_px`, `split`, `meta_json`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ > PNGs are **lossless** encodings of uint8 arrays; the big `cube_npz` payload is omitted to keep the repo small.
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Loading
29
  ```python
30
  from datasets import load_dataset
31
  ds = load_dataset("gdurkin/naip-16d-city-cubes", split="train")
32
+ ds[0].keys()
 
33
  ```
34
 
35
+ To load a single city:
 
36
  ```python
37
  from datasets import load_dataset
38
+ city = "Arcadia__California__USA"
39
+ pattern = f"hf://datasets/gdurkin/naip-16d-city-cubes/data/city={city}/*.parquet"
40
  ds_city = load_dataset("parquet", data_files=pattern, split="train")
41
  ```
42
 
43
+ ## Columns & shapes
44
+ - `naip_rgb` _(512×512×3 u8)_: NAIP true color
45
+ - `s2_rgb` _(512×512×3 u8)_: Sentinel-2 true color (B04,B03,B02)
46
+ - `s2_pseudo_rgb` _(512×512×3 u8)_: pseudoRGB (default: MSAVI,B08,NDMI)
47
+ - `dem_rgb` _(512×512×3 u8)_: elevation/gradient/aspect visualization
48
+ - `naip_ndvi` _(512×512 u8)_: NDVI from NAIP
49
+ - `s2_*` _(512×512 u8)_: leftover S2 bands (e.g., B08, MSAVI, NDVI, NDWI, NDMI, SCL)
50
+ - `labels`, `landfire_family`, `cdl` _(512×512 u8)_: categorical masks
51
+
52
+ ## Legends
53
+
54
+ ### Labels (task)
55
+ | id | name | color |
56
+ |--:|:-----|:------|
57
+ | 0 | `background` | `#000000` |
58
+ | 1 | `road_concrete` | `#C8C8C8` |
59
+ | 2 | `pavement` | `#A0A0A0` |
60
+ | 3 | `dirt_gravel` | `#96643C` |
61
+ | 4 | `grass_dry` | `#E6DC78` |
62
+ | 5 | `grass_healthy` | `#50C878` |
63
+ | 6 | `vegetation` | `#147814` |
64
+ | 7 | `building` | `#FF5050` |
65
+ | 8 | `water` | `#4682B4` |
66
+ | 11 | `building_res` | `#FF8C8C` |
67
+ | 12 | `building_com` | `#FF5A1E` |
68
+
69
+ ### LANDFIRE family
70
+ | id | family | color |
71
+ |--:|:-------|:------|
72
+ | 0 | `background` | `#000000` |
73
+ | 1 | `grass` | `#F7E68C` |
74
+ | 2 | `shrub` | `#C69842` |
75
+ | 3 | `timber` | `#1E781E` |
76
+ | 4 | `slash` | `#CE5A32` |
77
+ | 9 | `urban` | `#969696` |
78
+ | 10 | `snow_ice` | `#C8E6FF` |
79
+ | 11 | `agriculture` | `#FFCC66` |
80
+ | 12 | `water` | `#4682B4` |
81
+ | 13 | `barren` | `#C2B280` |
82
+
83
+ ### CDL (full palette)
84
+ The table below lists CDL codes and colors (urban classes are overridden for better visual separation).
85
+
86
+ <details><summary><strong>Click to expand full CDL legend</strong></summary>
87
+
88
+ | id | class | color |
89
+ |--:|:------|:------|
90
+ | 0 | `Background` | `000000` |
91
+ | 1 | `Corn` | `ffd400` |
92
+ | 2 | `Cotton` | `ff2626` |
93
+ | 3 | `Rice` | `00a9e6` |
94
+ | 4 | `Sorghum` | `ff9e0f` |
95
+ | 5 | `Soybeans` | `267300` |
96
+ | 6 | `Sunflower` | `ffff00` |
97
+ | 10 | `Peanuts` | `70a800` |
98
+ | 11 | `Tobacco` | `00af4d` |
99
+ | 12 | `Sweet Corn` | `e0a60f` |
100
+ | 13 | `Pop or Orn Corn` | `e0a60f` |
101
+ | 14 | `Mint` | `80d4ff` |
102
+ | 21 | `Barley` | `e2007f` |
103
+ | 22 | `Durum Wheat` | `8a6453` |
104
+ | 23 | `Spring Wheat` | `d9b56c` |
105
+ | 24 | `Winter Wheat` | `a87000` |
106
+ | 25 | `Other Small Grains` | `d69dbc` |
107
+ | 26 | `Dbl Crop WinWht/Soybeans` | `737300` |
108
+ | 27 | `Rye` | `ae017e` |
109
+ | 28 | `Oats` | `a15889` |
110
+ | 29 | `Millet` | `73004c` |
111
+ | 30 | `Speltz` | `d69dbc` |
112
+ | 31 | `Canola` | `d1ff00` |
113
+ | 32 | `Flaxseed` | `8099ff` |
114
+ | 33 | `Safflower` | `d6d600` |
115
+ | 34 | `Rape Seed` | `d1ff00` |
116
+ | 35 | `Mustard` | `00af4d` |
117
+ | 36 | `Alfalfa` | `ffa8e3` |
118
+ | 37 | `Other Hay/Non Alfalfa` | `a5f58d` |
119
+ | 38 | `Camelina` | `00af4d` |
120
+ | 39 | `Buckwheat` | `d69dbc` |
121
+ | 41 | `Sugarbeets` | `a900e6` |
122
+ | 42 | `Dry Beans` | `a80000` |
123
+ | 43 | `Potatoes` | `732600` |
124
+ | 44 | `Other Crops` | `00af4d` |
125
+ | 45 | `Sugarcane` | `b380ff` |
126
+ | 46 | `Sweet Potatoes` | `732600` |
127
+ | 47 | `Misc Vegs & Fruits` | `ff6666` |
128
+ | 48 | `Watermelons` | `ff6666` |
129
+ | 49 | `Onions` | `ffcc66` |
130
+ | 50 | `Cucumbers` | `ff6666` |
131
+ | 51 | `Chick Peas` | `00af4d` |
132
+ | 52 | `Lentils` | `00deb0` |
133
+ | 53 | `Peas` | `55ff00` |
134
+ | 54 | `Tomatoes` | `f5a27a` |
135
+ | 55 | `Caneberries` | `ff6666` |
136
+ | 56 | `Hops` | `00af4d` |
137
+ | 57 | `Herbs` | `80d4ff` |
138
+ | 58 | `Clover/Wildflowers` | `e8beff` |
139
+ | 59 | `Sod/Grass Seed` | `b2ffde` |
140
+ | 60 | `Switchgrass` | `00af4d` |
141
+ | 61 | `Fallow/Idle Cropland` | `bfbf7a` |
142
+ | 63 | `Forest` | `95ce93` |
143
+ | 64 | `Shrubland` | `c7d79e` |
144
+ | 65 | `Barren` | `ccbfa3` |
145
+ | 66 | `Cherries` | `ff00ff` |
146
+ | 67 | `Peaches` | `ff91ab` |
147
+ | 68 | `Apples` | `b90050` |
148
+ | 69 | `Grapes` | `704489` |
149
+ | 70 | `Christmas Trees` | `007878` |
150
+ | 71 | `Other Tree Crops` | `b39c70` |
151
+ | 72 | `Citrus` | `ffff80` |
152
+ | 74 | `Pecans` | `b6705c` |
153
+ | 75 | `Almonds` | `00a884` |
154
+ | 76 | `Walnuts` | `ebd6b0` |
155
+ | 77 | `Pears` | `b39c70` |
156
+ | 81 | `Clouds/No Data` | `f7f7f7` |
157
+ | 82 | `Developed` | `9c9c9c` |
158
+ | 83 | `Water` | `4d70a3` |
159
+ | 87 | `Wetlands` | `80b3b3` |
160
+ | 88 | `Nonag/Undefined` | `e9ffbe` |
161
+ | 92 | `Aquaculture` | `00ffff` |
162
+ | 111 | `Open Water` | `4d70a3` |
163
+ | 112 | `Perennial Ice/Snow` | `d4e3fc` |
164
+ | 121 | `Developed/Open Space` | `#BDBDBD` |
165
+ | 122 | `Developed/Low Intensity` | `#F4B183` |
166
+ | 123 | `Developed/Med Intensity` | `#E06666` |
167
+ | 124 | `Developed/High Intensity` | `#A61C00` |
168
+ | 131 | `Barren` | `ccbfa3` |
169
+ | 141 | `Deciduous Forest` | `95ce93` |
170
+ | 142 | `Evergreen Forest` | `95ce93` |
171
+ | 143 | `Mixed Forest` | `95ce93` |
172
+ | 152 | `Shrubland` | `c7d79e` |
173
+ | 176 | `Grass/Pasture` | `e9ffbe` |
174
+ | 190 | `Woody Wetlands` | `80b3b3` |
175
+ | 195 | `Herbaceous Wetlands` | `80b3b3` |
176
+ | 204 | `Pistachios` | `00ff8c` |
177
+ | 205 | `Triticale` | `d69dbc` |
178
+ | 206 | `Carrots` | `ff6666` |
179
+ | 207 | `Asparagus` | `ff6666` |
180
+ | 208 | `Garlic` | `ff6666` |
181
+ | 209 | `Cantaloupes` | `ff6666` |
182
+ | 210 | `Prunes` | `ff91ab` |
183
+ | 211 | `Olives` | `344a34` |
184
+ | 212 | `Oranges` | `e67525` |
185
+ | 213 | `Honeydew Melons` | `ff6666` |
186
+ | 214 | `Broccoli` | `ff6666` |
187
+ | 215 | `Avocados` | `66994d` |
188
+ | 216 | `Peppers` | `ff6666` |
189
+ | 217 | `Pomegranates` | `b39c70` |
190
+ | 218 | `Nectarines` | `ff91ab` |
191
+ | 219 | `Greens` | `ff6666` |
192
+ | 220 | `Plums` | `ff91ab` |
193
+ | 221 | `Strawberries` | `ff6666` |
194
+ | 222 | `Squash` | `ff6666` |
195
+ | 223 | `Apricots` | `ff91ab` |
196
+ | 224 | `Vetch` | `00af4d` |
197
+ | 225 | `Dbl Crop WinWht/Corn` | `ffd400` |
198
+ | 226 | `Dbl Crop Oats/Corn` | `ffd400` |
199
+ | 227 | `Lettuce` | `ff6666` |
200
+ | 228 | `Dbl Crop Triticale/Corn` | `ffd400` |
201
+ | 229 | `Pumpkins` | `ff6666` |
202
+ | 230 | `Dbl Crop Lettuce/Durum Wht` | `8a6453` |
203
+ | 231 | `Dbl Crop Lettuce/Cantaloupe` | `ff6666` |
204
+ | 232 | `Dbl Crop Lettuce/Cotton` | `ff2626` |
205
+ | 233 | `Dbl Crop Lettuce/Barley` | `e2007f` |
206
+ | 234 | `Dbl Crop Durum Wht/Sorghum` | `ff9e0f` |
207
+ | 235 | `Dbl Crop Barley/Sorghum` | `ff9e0f` |
208
+ | 236 | `Dbl Crop WinWht/Sorghum` | `a87000` |
209
+ | 237 | `Dbl Crop Barley/Corn` | `ffd400` |
210
+ | 238 | `Dbl Crop WinWht/Cotton` | `a87000` |
211
+ | 239 | `Dbl Crop Soybeans/Cotton` | `267300` |
212
+ | 240 | `Dbl Crop Soybeans/Oats` | `267300` |
213
+ | 241 | `Dbl Crop Corn/Soybeans` | `ffd400` |
214
+ | 242 | `Blueberries` | `000099` |
215
+ | 243 | `Cabbage` | `ff6666` |
216
+ | 244 | `Cauliflower` | `ff6666` |
217
+ | 245 | `Celery` | `ff6666` |
218
+ | 246 | `Radishes` | `ff6666` |
219
+ | 247 | `Turnips` | `ff6666` |
220
+ | 248 | `Eggplants` | `ff6666` |
221
+ | 249 | `Gourds` | `ff6666` |
222
+ | 250 | `Cranberries` | `ff6666` |
223
+ | 254 | `Dbl Crop Barley/Soybeans` | `267300` |
224
+ </details>
225
+
226
+
227
+ ## Coverage
228
+ <!-- COVERAGE-TABLE:BEGIN -->
229
+
230
+ **Coverage**
231
+ - rows: **24,792**
232
+ - S2 mono policy: `leftover`
233
+
234
+ | column | rows | pct |
235
+ |---|---:|---:|
236
+ | `cdl` | 24,792 | 100.0% |
237
+ | `dem_rgb` | 24,792 | 100.0% |
238
+ | `labels` | 24,792 | 100.0% |
239
+ | `landfire_family` | 24,792 | 100.0% |
240
+ | `naip_ndvi` | 24,792 | 100.0% |
241
+ | `naip_rgb` | 24,792 | 100.0% |
242
+ | `s2_B02` | 0 | 0.0% |
243
+ | `s2_B03` | 0 | 0.0% |
244
+ | `s2_B04` | 0 | 0.0% |
245
+ | `s2_B08` | 0 | 0.0% |
246
+ | `s2_MSAVI` | 0 | 0.0% |
247
+ | `s2_NDVI` | 24,792 | 100.0% |
248
+ | `s2_NDWI` | 24,792 | 100.0% |
249
+ | `s2_SCL` | 24,792 | 100.0% |
250
+ | `s2_pseudo_rgb` | 0 | 0.0% |
251
+ | `s2_rgb` | 24,792 | 100.0% |
252
+
253
+ <!-- COVERAGE-TABLE:END -->