|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datasets |
|
import glob |
|
import json |
|
import os |
|
|
|
from huggingface_hub import hf_hub_url |
|
|
|
|
|
_DESCRIPTION = """ |
|
DOCCI (Descriptions of Connected and Contrasting Images) is a collection of images paired with detailed descriptions. The descriptions explain the key elements of the images, as well as secondary information such as background, lighting, and settings. The images are specifically taken to help assess the precise visual properties of images. DOCCI also includes many related images that vary in having key differences from the others. All descriptions are manually annotated to ensure they adequately distinguish each image from its counterparts. |
|
""" |
|
|
|
_HOMEPAGE = "https://google.github.io/docci/" |
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
_URL = "https://storage.googleapis.com/docci/data/" |
|
|
|
_URLS = { |
|
"descriptions": _URL + "docci_descriptions.jsonlines", |
|
"images": _URL + "docci_images.tar.gz", |
|
} |
|
|
|
_URL_AAR = { |
|
"images": _URL + "docci_images_aar.tar.gz" |
|
} |
|
|
|
_FEATURES_DOCCI = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"example_id": datasets.Value('string'), |
|
"description": datasets.Value('string'), |
|
} |
|
) |
|
|
|
_FEATURES_DOCCI_AAR = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"example_id": datasets.Value('string'), |
|
} |
|
) |
|
|
|
|
|
class DOCCI(datasets.GeneratorBasedBuilder): |
|
"""DOCCI""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="docci", version=VERSION, description="DOCCI images and descriptions"), |
|
datasets.BuilderConfig(name="docci_aar", version=VERSION, description="DOCCI-AAR images"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "docci" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=_FEATURES_DOCCI if self.config.name == 'docci' else _FEATURES_DOCCI_AAR, |
|
homepage=_HOMEPAGE, |
|
description=_DESCRIPTION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
hf_auth_token = dl_manager.download_config.use_auth_token |
|
if hf_auth_token is None: |
|
raise ConnectionError( |
|
"Please set use_auth_token=True or use_auth_token='<TOKEN>' to download this dataset" |
|
) |
|
|
|
if self.config.name == 'docci': |
|
data = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'data': data, 'split': 'train'}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'data': data, 'split': 'test'}), |
|
datasets.SplitGenerator(name=datasets.Split("qual_dev"), gen_kwargs={'data': data, 'split': 'qual_dev'}), |
|
datasets.SplitGenerator(name=datasets.Split("qual_test"), gen_kwargs={'data': data, 'split': 'qual_test'}), |
|
] |
|
elif self.config.name == 'docci_aar': |
|
data = dl_manager.download_and_extract(_URL_AAR) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'data': data, 'split': 'train'}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'data': data, 'split': 'test'}), |
|
] |
|
|
|
def _generate_examples(self, data, split): |
|
if self.config.name == "docci": |
|
return self._generate_examples_docci(data, split) |
|
elif self.config.name == "docci_aar": |
|
return self._generate_examples_docci_aar(data, split) |
|
|
|
def _generate_examples_docci(self, data, split): |
|
with open(data["descriptions"], "r") as f: |
|
examples = [json.loads(l.strip()) for l in f] |
|
|
|
for ex in examples: |
|
if split == "train": |
|
if not (ex["split"] == "train" and ex['example_id'].startswith("train")): |
|
continue |
|
elif split == "test": |
|
if not (ex["split"] == "test" and ex['example_id'].startswith("test")): |
|
continue |
|
elif split == "qual_dev": |
|
if not (ex["split"] == "qual_dev" and ex['example_id'].startswith("qual_dev")): |
|
continue |
|
elif split == "qual_test": |
|
if not (ex["split"] == "qual_test" and ex['example_id'].startswith("qual_test")): |
|
continue |
|
|
|
image_path = os.path.join(data["images"], "images", ex["image_file"]) |
|
|
|
_ex = { |
|
"image": image_path, |
|
"example_id": ex["example_id"], |
|
"split": ex["split"], |
|
"image_file": ex["image_file"], |
|
"description": ex["description"], |
|
} |
|
|
|
yield _ex["example_id"], _ex |
|
|
|
def _generate_examples_docci_aar(self, data, split): |
|
image_files = glob.glob(os.path.join(data["images"], "images_aar", "*.jpg")) |
|
|
|
for image_path in image_files: |
|
|
|
example_id = os.path.splitext(os.path.basename(image_path))[0] |
|
|
|
if split == "train": |
|
if not example_id.startswith("aar_train"): |
|
continue |
|
elif split == "test": |
|
if not example_id.startswith("aar_test"): |
|
continue |
|
|
|
_ex = { |
|
"image": image_path, |
|
"example_id": example_id, |
|
"split": split, |
|
"image_file": os.path.basename(image_path), |
|
} |
|
|
|
yield _ex["example_id"], _ex |