haritzpuerto commited on
Commit
24ae07b
·
verified ·
1 Parent(s): afef29e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md CHANGED
@@ -47,3 +47,87 @@ configs:
47
  - split: train
48
  path: data/train-*
49
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  - split: train
48
  path: data/train-*
49
  ---
50
+
51
+
52
+
53
+
54
+ This dataset is a sample for the [`Amazon Shopping Queries Dataset`](https://github.com/amazon-science/esci-data).
55
+
56
+ This dataset contains queries for which at least 10 products are available. The products if possible are `exact` matches to the query intent, or at least `substitutes`
57
+ It was constructed as follows:
58
+
59
+
60
+ ```
61
+ import pandas as pd
62
+
63
+ df_examples = pd.read_parquet("shopping_queries_dataset_examples.parquet")
64
+ df_products = pd.read_parquet("shopping_queries_dataset_products.parquet")
65
+ df_sources = pd.read_csv("shopping_queries_dataset_sources.csv")
66
+
67
+ df_examples_products = pd.merge(
68
+ df_examples,
69
+ df_products,
70
+ how="left",
71
+ left_on=["product_locale", "product_id"],
72
+ right_on=["product_locale", "product_id"],
73
+ )
74
+
75
+ df_examples_products_source = pd.merge(
76
+ df_examples_products,
77
+ df_sources,
78
+ how="left",
79
+ left_on=["query_id"],
80
+ right_on=["query_id"],
81
+ )
82
+
83
+ list_hits = []
84
+ for query_id in tqdm(list_query_id):
85
+ df = retrieve_products(query_id, df_examples_products_source)
86
+ list_len_desc = []
87
+ for row_idx in range(len(df)):
88
+ row = df.iloc[row_idx]
89
+ full_description = format_product_details(row)
90
+ list_len_desc.append(len(full_description))
91
+ if len(df) >= 10:
92
+ list_hits.append((df, np.mean(list_len_desc)))
93
+
94
+ # sort by length of full_description
95
+ list_hits = sorted(list_hits, key=lambda x: x[1], reverse=True)
96
+
97
+ df = pd.concat([x[0] for x in list_hits[:1000]])
98
+ ```
99
+
100
+
101
+ The auxiliary functions are:
102
+
103
+ ```
104
+ def format_product_details(product):
105
+ template = "List of features:\n{features}\n\nDescription:\n{description}"
106
+ features = product["product_bullet_point"]
107
+ description = product["product_description"]
108
+ return template.format(features=features, description=description)
109
+
110
+
111
+ def retrieve_products(query_id, df_examples_products_source):
112
+ df = df_examples_products_source[
113
+ df_examples_products_source["query_id"] == query_id
114
+ ]
115
+ # product_locale = en
116
+ df = df[df["product_locale"] == "us"]
117
+ # remove esci_label I
118
+ df = df[df["esci_label"] != "I"]
119
+ # remove product_description None
120
+ df = df[df["product_description"].notnull()]
121
+ # remove product_bullet_point None
122
+ df = df[df["product_bullet_point"].notnull()]
123
+ # if esci_label E > 10, use only those
124
+ if df[df["esci_label"] == "E"].shape[0] > 10:
125
+ df = df[df["esci_label"] == "E"]
126
+ # if esci_label in [E, S ]> 10, use only those
127
+ elif df[df["esci_label"].isin(["E", "S"])].shape[0] > 10:
128
+ df = df[df["esci_label"].isin(["E", "S
129
+ else:
130
+ return []
131
+ return df
132
+
133
+ ```