Update README.md
Browse files
README.md
CHANGED
@@ -47,3 +47,87 @@ configs:
|
|
47 |
- split: train
|
48 |
path: data/train-*
|
49 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
- split: train
|
48 |
path: data/train-*
|
49 |
---
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
This dataset is a sample for the [`Amazon Shopping Queries Dataset`](https://github.com/amazon-science/esci-data).
|
55 |
+
|
56 |
+
This dataset contains queries for which at least 10 products are available. The products if possible are `exact` matches to the query intent, or at least `substitutes`
|
57 |
+
It was constructed as follows:
|
58 |
+
|
59 |
+
|
60 |
+
```
|
61 |
+
import pandas as pd
|
62 |
+
|
63 |
+
df_examples = pd.read_parquet("shopping_queries_dataset_examples.parquet")
|
64 |
+
df_products = pd.read_parquet("shopping_queries_dataset_products.parquet")
|
65 |
+
df_sources = pd.read_csv("shopping_queries_dataset_sources.csv")
|
66 |
+
|
67 |
+
df_examples_products = pd.merge(
|
68 |
+
df_examples,
|
69 |
+
df_products,
|
70 |
+
how="left",
|
71 |
+
left_on=["product_locale", "product_id"],
|
72 |
+
right_on=["product_locale", "product_id"],
|
73 |
+
)
|
74 |
+
|
75 |
+
df_examples_products_source = pd.merge(
|
76 |
+
df_examples_products,
|
77 |
+
df_sources,
|
78 |
+
how="left",
|
79 |
+
left_on=["query_id"],
|
80 |
+
right_on=["query_id"],
|
81 |
+
)
|
82 |
+
|
83 |
+
list_hits = []
|
84 |
+
for query_id in tqdm(list_query_id):
|
85 |
+
df = retrieve_products(query_id, df_examples_products_source)
|
86 |
+
list_len_desc = []
|
87 |
+
for row_idx in range(len(df)):
|
88 |
+
row = df.iloc[row_idx]
|
89 |
+
full_description = format_product_details(row)
|
90 |
+
list_len_desc.append(len(full_description))
|
91 |
+
if len(df) >= 10:
|
92 |
+
list_hits.append((df, np.mean(list_len_desc)))
|
93 |
+
|
94 |
+
# sort by length of full_description
|
95 |
+
list_hits = sorted(list_hits, key=lambda x: x[1], reverse=True)
|
96 |
+
|
97 |
+
df = pd.concat([x[0] for x in list_hits[:1000]])
|
98 |
+
```
|
99 |
+
|
100 |
+
|
101 |
+
The auxiliary functions are:
|
102 |
+
|
103 |
+
```
|
104 |
+
def format_product_details(product):
|
105 |
+
template = "List of features:\n{features}\n\nDescription:\n{description}"
|
106 |
+
features = product["product_bullet_point"]
|
107 |
+
description = product["product_description"]
|
108 |
+
return template.format(features=features, description=description)
|
109 |
+
|
110 |
+
|
111 |
+
def retrieve_products(query_id, df_examples_products_source):
|
112 |
+
df = df_examples_products_source[
|
113 |
+
df_examples_products_source["query_id"] == query_id
|
114 |
+
]
|
115 |
+
# product_locale = en
|
116 |
+
df = df[df["product_locale"] == "us"]
|
117 |
+
# remove esci_label I
|
118 |
+
df = df[df["esci_label"] != "I"]
|
119 |
+
# remove product_description None
|
120 |
+
df = df[df["product_description"].notnull()]
|
121 |
+
# remove product_bullet_point None
|
122 |
+
df = df[df["product_bullet_point"].notnull()]
|
123 |
+
# if esci_label E > 10, use only those
|
124 |
+
if df[df["esci_label"] == "E"].shape[0] > 10:
|
125 |
+
df = df[df["esci_label"] == "E"]
|
126 |
+
# if esci_label in [E, S ]> 10, use only those
|
127 |
+
elif df[df["esci_label"].isin(["E", "S"])].shape[0] > 10:
|
128 |
+
df = df[df["esci_label"].isin(["E", "S
|
129 |
+
else:
|
130 |
+
return []
|
131 |
+
return df
|
132 |
+
|
133 |
+
```
|