import datasets as ds import pandas as pd _CITATION = """\ @InProceedings{yanaka-EtAl:2021:blackbox, author = {Yanaka, Hitomi and Mineshima, Koji}, title = {Assessing the Generalization Capacity of Pre-trained Language Models through Japanese Adversarial Natural Language Inference}, booktitle = {Proceedings of the 2021 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (BlackboxNLP2021)}, year = {2021}, } """ _DESCRIPTION = """\ """ _HOMEPAGE = "https://github.com/verypluming/JaNLI" _LICENSE = "CC BY-SA 4.0" _DOWNLOAD_URL = "https://raw.githubusercontent.com/verypluming/JaNLI/main/janli.tsv" class JaNLIDataset(ds.GeneratorBasedBuilder): VERSION = ds.Version("1.0.0") DEFAULT_CONFIG_NAME = "base" BUILDER_CONFIGS = [ ds.BuilderConfig( name="base", version=VERSION, description="hoge", ), ds.BuilderConfig( name="original", version=VERSION, description="hoge", ), ] def _info(self) -> ds.DatasetInfo: if self.config.name == "base": features = ds.Features( { "id": ds.Value("int64"), "premise": ds.Value("string"), "hypothesis": ds.Value("string"), "label": ds.ClassLabel(names=["entailment", "non-entailment"]), "heuristics": ds.Value("string"), "number_of_NPs": ds.Value("int32"), "semtag": ds.Value("string"), } ) elif self.config.name == "original": features = ds.Features( { "id": ds.Value("int64"), "sentence_A_Ja": ds.Value("string"), "sentence_B_Ja": ds.Value("string"), "entailment_label_Ja": ds.ClassLabel(names=["entailment", "non-entailment"]), "heuristics": ds.Value("string"), "number_of_NPs": ds.Value("int32"), "semtag": ds.Value("string"), } ) return ds.DatasetInfo( description=_DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, license=_LICENSE, features=features, ) def _split_generators(self, dl_manager: ds.DownloadManager): data_path = dl_manager.download_and_extract(_DOWNLOAD_URL) df: pd.DataFrame = pd.read_table(data_path, header=0, sep="\t", index_col=0) df["id"] = df.index if self.config.name == "base": df = df.rename( columns={ "sentence_A_Ja": "premise", "sentence_B_Ja": "hypothesis", "entailment_label_Ja": "label", } ) return [ ds.SplitGenerator( name=ds.Split.TRAIN, gen_kwargs={"df": df[df["split"] == "train"]}, ), ds.SplitGenerator( name=ds.Split.TEST, gen_kwargs={"df": df[df["split"] == "test"]}, ), ] def _generate_examples(self, df: pd.DataFrame): df = df.drop("split", axis=1) for i, row in enumerate(df.to_dict("records")): yield i, row