idegen commited on
Commit
0ffaeca
·
verified ·
1 Parent(s): eab0869

Added usage examples

Browse files
Files changed (1) hide show
  1. README.md +54 -1
README.md CHANGED
@@ -467,7 +467,60 @@ Our accompanying paper provides complete methodological details, baseline findin
467
  GitHub codebase includes the generation, validation and use case code and is configured to automatically load the data.
468
 
469
  ## Usage Guidance
470
- ... coming soon
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471
 
472
  ## Authors
473
  - Isabella Degen, University of Bristol
 
467
  GitHub codebase includes the generation, validation and use case code and is configured to automatically load the data.
468
 
469
  ## Usage Guidance
470
+ ### Configuration Concept
471
+ The configuration follows the convention: `<generation_stage>_<completeness_level>_<file_type>` and allows
472
+ access to a specific subset of the data.
473
+
474
+ Possible values are:
475
+
476
+ Generation Stages:
477
+ - **raw**: raw data, segmented but not correlated
478
+ - **correlated**: correlated data according to a specific correlation strtucture, normal distributed
479
+ - **nonnormal**: distribution shifted, correlated data
480
+ - **downsampled**: resampled non-normal data from 1s to 1min
481
+
482
+ Completeness Levels:
483
+ - **complete**: 100% of the data
484
+ - **partial**: 70% of the data (30% of observations dropped at random)
485
+ - **sparse**: 10% of the data (90% of observations dropped at random)
486
+
487
+ **File Type**
488
+ - **data**: loads the times series data file (needed for training algorithms)
489
+ - **labels**: loads the labels file for the ground truth (perfect) segmentation and clustering (needed for validating the results)
490
+ - **badclustering_labels**: loads the labels file for a degraded clustering with controlled segmentation and/or cluster assignment mistakes
491
+
492
+ ### Splits
493
+ The main splits are:
494
+ - **exploratory**: for experimentation and training
495
+ - **confirmatory**: for testing and validation
496
+ Consider that depending on the application and study design, a single subject might be sufficient for training.
497
+
498
+ Additional splits are:
499
+ - **reduced_11_clusters**(_exploratory or _confirmatory): same data including 11 of the original 23 clusters (selected at random)
500
+ - **reduced_6_clusters**(_exploratory or _confirmatory): same data including t of the original 23 clusters (selected at random)
501
+ - **reduced_50_segments**(_exploratory or _confirmatory): same data including 50 of the original 100 segments (selected at random)
502
+ - **reduced_25_segments**(_exploratory or _confirmatory): same data including 25 of the original 100 segments (selected at random)
503
+
504
+ ### Quick Start
505
+ #### Example 1 - complete and correlated data variant
506
+ 1. Load the data for all 30 exploratory subjects for the complete and correlated data variant into pandas df:
507
+ ```python
508
+ import pandas as pd
509
+ from datasets import load_dataset
510
+ correlated_data = load_dataset("idegen/csts", name="correlated_complete_data", split="exploratory")
511
+ df_correlated = correlated_data.to_pandas()
512
+ df_correlated.head()
513
+ ```
514
+ 2. Load the ground truth labels for these subjects
515
+ ```python
516
+ import pandas as pd
517
+ from datasets import load_dataset
518
+ correlated_labels = load_dataset("idegen/csts", name="correlated_complete_labels", split="exploratory")
519
+ df_correlated_labels = correlated_labels.to_pandas()
520
+ df_correlated_labels.head()
521
+ ```
522
+
523
+ ... more examples coming soon
524
 
525
  ## Authors
526
  - Isabella Degen, University of Bristol