Datasets:
File size: 39,372 Bytes
5f6190a 9fbfc78 5f6190a d55873b 5f6190a ca0fb7d 5f6190a ca0fb7d 5f6190a ca0fb7d d55873b 8c640d5 d55873b 8c640d5 d55873b 9fbfc78 d55873b 8c640d5 9fbfc78 5f6190a d55873b 5f6190a 3b1dd3f 046bfaf a6fc8ef 3b1dd3f 046bfaf 3b1dd3f 3ed6f6b 5f6190a 3ed6f6b cbfc9b6 3ed6f6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
---
language:
- en
size_categories:
- 1M<n<10M
task_categories:
- token-classification
dataset_info:
- config_name: articles
features:
- name: title
dtype: string
- name: author
dtype: string
- name: datetime
dtype: string
- name: url
dtype: string
- name: month
dtype: string
- name: day
dtype: string
- name: doc_id
dtype: string
- name: text
dtype: string
- name: year
dtype: string
- name: doc_title
dtype: string
splits:
- name: train
num_bytes: 1313871812
num_examples: 446809
download_size: 791316510
dataset_size: 1313871812
- config_name: entities
features:
- name: doc_id
dtype: string
- name: sent_num
dtype: int32
- name: sentence
dtype: string
- name: doc_title
dtype: string
- name: score
sequence: float32
- name: entity_type
sequence: string
- name: entity_text
sequence: string
- name: start_char
sequence: int32
- name: end_char
sequence: int32
- name: tokens
sequence: string
- name: raw_tags
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': B-DATE
'1': I-DATE
'2': L-DATE
'3': U-DATE
'4': B-DUC
'5': I-DUC
'6': L-DUC
'7': U-DUC
'8': B-EVE
'9': I-EVE
'10': L-EVE
'11': U-EVE
'12': B-LOC
'13': I-LOC
'14': L-LOC
'15': U-LOC
'16': B-MISC
'17': I-MISC
'18': L-MISC
'19': U-MISC
'20': B-ORG
'21': I-ORG
'22': L-ORG
'23': U-ORG
'24': B-PER
'25': I-PER
'26': L-PER
'27': U-PER
'28': B-QTY
'29': I-QTY
'30': L-QTY
'31': U-QTY
'32': B-TTL
'33': I-TTL
'34': L-TTL
'35': U-TTL
'36': O
splits:
- name: train
num_bytes: 3665237140
num_examples: 3515149
download_size: 966462235
dataset_size: 3665237140
configs:
- config_name: articles
data_files:
- split: train
path: articles/train-*
- config_name: entities
data_files:
- split: train
path: entities/train-*
---
# Large Weak Labelled NER corpus
### Dataset Summary
The dataset is generated through weak labelling of the scraped and preprocessed news corpus (bloomberg's news). so, only to research purpose.
In order of the tokenization, news were splitted into sentences using `nltk.PunktSentenceTokenizer` (so, sometimes, tokenization might be not perfect)
### Usage
```python
from datasets import load_dataset
articles_ds = load_dataset("imvladikon/english_news_weak_ner", "articles") # just articles with metadata
entities_ds = load_dataset("imvladikon/english_news_weak_ner", "entities")
```
#### NER tags
Tags description:
* O Outside of a named entity
* PER Person
* LOC Location
* ORG Organization
* MISC Miscellaneous
* DATE Date and time expression
* QTY Quantity
* EVE Event
* TTL Title
* DUC Commercial item
Tags:
```json
['B-DATE', 'I-DATE', 'L-DATE', 'U-DATE', 'B-DUC', 'I-DUC', 'L-DUC', 'U-DUC', 'B-EVE', 'I-EVE', 'L-EVE', 'U-EVE', 'B-LOC', 'I-LOC', 'L-LOC', 'U-LOC', 'B-MISC', 'I-MISC', 'L-MISC', 'U-MISC', 'B-ORG', 'I-ORG', 'L-ORG', 'U-ORG', 'B-PER', 'I-PER', 'L-PER', 'U-PER', 'B-QTY', 'I-QTY', 'L-QTY', 'U-QTY', 'B-TTL', 'I-TTL', 'L-TTL', 'U-TTL', 'O']
```
Tags statistics:
```json
{
"O": 281586813,
"B-QTY": 2675754,
"L-QTY": 2675754,
"I-QTY": 2076724,
"U-ORG": 1459628,
"I-ORG": 1407875,
"B-ORG": 1318711,
"L-ORG": 1318711,
"B-PER": 1254037,
"L-PER": 1254037,
"U-MISC": 1195204,
"U-LOC": 1084052,
"U-DATE": 1010118,
"B-DATE": 919815,
"L-DATE": 919815,
"I-DATE": 650064,
"U-PER": 607212,
"U-QTY": 559523,
"B-LOC": 425431,
"L-LOC": 425431,
"I-PER": 262887,
"I-LOC": 201532,
"I-MISC": 190576,
"B-MISC": 162978,
"L-MISC": 162978,
"I-TTL": 64641,
"B-TTL": 53330,
"L-TTL": 53330,
"B-EVE": 43329,
"L-EVE": 43329,
"U-TTL": 41568,
"I-EVE": 35316,
"U-DUC": 33457,
"U-EVE": 19103,
"I-DUC": 15622,
"B-DUC": 15580,
"L-DUC": 15580
}
```
#### Sample:

Articles:
```json
{'title': 'Watson Reports Positive Findings for Prostate Drug',
'author': 'RobertSimison',
'datetime': '2007-01-16T14:16:56Z',
'url': 'http://www.bloomberg.com/news/2007-01-16/watson-reports-positive-findings-for-prostate-drug-update1-.html',
'month': '1',
'day': '16',
'doc_id': 'a5c7c556bd112ac22874492c4cdb18eb46a30905',
'text': 'Watson Pharmaceuticals Inc. (WPI) , the\nlargest U.S. maker of generic drugs, reported positive results\nfor its experimental prostate treatment in two late-state trials. \n The drug, silodosin, was more effective than a placebo in\ntreating enlarged prostates, or benign prostatic hyperplasia, the\nCorona, California-based company said today in a statement on PR\nNewswire. The tests were in the final of three phases of trials\nnormally needed for regulatory approval. \n Non-cancerous enlarged prostate affects more than half of\nAmerican men in their 60s and as many as 90 percent of them by\nage 85, Watson said. Prescription drug sales to treat the\ndisorder total $1.7 billion a year, the company said. \n Watson plans to apply for U.S. approval to market the drug\nin the first half of 2008, after completion later this year of a\none-year safety trial, the company said. The two studies reported\ntoday showed that cardiovascular and blood-pressure side effects\nwere low, Watson said. \n To contact the reporter on this story:\nRobert Simison in Washington at \n [email protected] . \n To contact the editor responsible for this story:\nRobert Simison at [email protected] .',
'year': '2007',
'doc_title': 'watson-reports-positive-findings-for-prostate-drug-update1-'}
```
Entities:
```json
{'doc_id': '806fe637ed51e03d9ef7a8889fc84f63f8fc8569',
'sent_num': 9,
'sentence': 'Spain and Portugal together accounted for 45\npercent of group profit in 2010.',
'doc_title': 'bbva-may-post-lower-first-quarter-profit-hurt-by-spain-decline',
'spans': {'Score': [0.7858654856681824,
0.7856822609901428,
0.9990736246109009,
0.999079704284668],
'Type': ['ORGANIZATION', 'ORGANIZATION', 'QUANTITY', 'DATE'],
'Text': ['Spain', 'Portugal', '45\npercent', '2010'],
'BeginOffset': [0, 10, 42, 72],
'EndOffset': [5, 18, 52, 76]},
'tags': {'tokens': ['Spain',
'Spain',
'and',
'Portugal',
'Spain',
'and',
'Portugal',
'together',
'accounted',
'for',
'45',
'\n',
'percent',
'Spain',
'and',
'Portugal',
'together',
'accounted',
'for',
'45',
'\n',
'percent',
'of',
'group',
'profit',
'in',
'2010',
'.'],
'raw_tags': ['U-ORG',
'O',
'O',
'U-ORG',
'O',
'O',
'O',
'O',
'O',
'O',
'B-QTY',
'I-QTY',
'L-QTY',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'U-DATE',
'O'],
'ner_tags': [23,
36,
36,
23,
36,
36,
36,
36,
36,
36,
28,
29,
30,
36,
36,
36,
36,
36,
36,
36,
36,
36,
36,
36,
36,
36,
3,
36]}}
```
### Data splits
| name |train|
|---------|----:|
|entities|3515149|
|articles|446809|
### Citation Information
```
@misc{imvladikon2023bb_news_weak_ner,
author = {Gurevich, Vladimir},
title = {Weakly Labelled Large English NER corpus},
year = {2022},
howpublished = \url{https://huggingface.co/datasets/imvladikon/english_news_weak_ner},
}
```
|