Mdgen / data /sim_inference.py
introvoyz041's picture
Migrated from GitHub
c77545c verified
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--sim_ckpt', type=str, default=None, required=True)
parser.add_argument('--data_dir', type=str, default=None, required=True)
parser.add_argument('--suffix', type=str, default='')
parser.add_argument('--pdb_id', nargs='*', default=[])
parser.add_argument('--num_frames', type=int, default=1000)
parser.add_argument('--num_rollouts', type=int, default=100)
parser.add_argument('--no_frames', action='store_true')
parser.add_argument('--tps', action='store_true')
parser.add_argument('--xtc', action='store_true')
parser.add_argument('--out_dir', type=str, default=".")
parser.add_argument('--split', type=str, default='splits/4AA_test.csv')
args = parser.parse_args()
import os, torch, mdtraj, tqdm, time
import numpy as np
from mdgen.geometry import atom14_to_frames, atom14_to_atom37, atom37_to_torsions
from mdgen.residue_constants import restype_order, restype_atom37_mask
from mdgen.tensor_utils import tensor_tree_map
from mdgen.wrapper import NewMDGenWrapper
from mdgen.utils import atom14_to_pdb
import pandas as pd
os.makedirs(args.out_dir, exist_ok=True)
def get_batch(name, seqres, num_frames):
arr = np.lib.format.open_memmap(f'{args.data_dir}/{name}{args.suffix}.npy', 'r')
if not args.tps: # else keep all frames
arr = np.copy(arr[0:1]).astype(np.float32)
frames = atom14_to_frames(torch.from_numpy(arr))
seqres = torch.tensor([restype_order[c] for c in seqres])
atom37 = torch.from_numpy(atom14_to_atom37(arr, seqres[None])).float()
L = len(seqres)
mask = torch.ones(L)
if args.no_frames:
return {
'atom37': atom37,
'seqres': seqres,
'mask': restype_atom37_mask[seqres],
}
torsions, torsion_mask = atom37_to_torsions(atom37, seqres[None])
return {
'torsions': torsions,
'torsion_mask': torsion_mask[0],
'trans': frames._trans,
'rots': frames._rots._rot_mats,
'seqres': seqres,
'mask': mask, # (L,)
}
def rollout(model, batch):
#print('Start sim', batch['trans'][0,0,0])
if args.no_frames:
expanded_batch = {
'atom37': batch['atom37'].expand(-1, args.num_frames, -1, -1, -1),
'seqres': batch['seqres'],
'mask': batch['mask'],
}
else:
expanded_batch = {
'torsions': batch['torsions'].expand(-1, args.num_frames, -1, -1, -1),
'torsion_mask': batch['torsion_mask'],
'trans': batch['trans'].expand(-1, args.num_frames, -1, -1),
'rots': batch['rots'].expand(-1, args.num_frames, -1, -1, -1),
'seqres': batch['seqres'],
'mask': batch['mask'],
}
atom14, _ = model.inference(expanded_batch)
new_batch = {**batch}
if args.no_frames:
new_batch['atom37'] = torch.from_numpy(
atom14_to_atom37(atom14[:,-1].cpu(), batch['seqres'][0].cpu())
).cuda()[:,None].float()
else:
frames = atom14_to_frames(atom14[:,-1])
new_batch['trans'] = frames._trans[None]
new_batch['rots'] = frames._rots._rot_mats[None]
atom37 = atom14_to_atom37(atom14[0,-1].cpu(), batch['seqres'][0].cpu())
torsions, _ = atom37_to_torsions(atom37, batch['seqres'][0].cpu())
new_batch['torsions'] = torsions[None, None].cuda()
return atom14, new_batch
def do(model, name, seqres):
item = get_batch(name, seqres, num_frames = model.args.num_frames)
batch = next(iter(torch.utils.data.DataLoader([item])))
batch = tensor_tree_map(lambda x: x.cuda(), batch)
all_atom14 = []
start = time.time()
for _ in tqdm.trange(args.num_rollouts):
atom14, batch = rollout(model, batch)
# print(atom14[0,0,0,1], atom14[0,-1,0,1])
all_atom14.append(atom14)
print(time.time() - start)
all_atom14 = torch.cat(all_atom14, 1)
path = os.path.join(args.out_dir, f'{name}.pdb')
atom14_to_pdb(all_atom14[0].cpu().numpy(), batch['seqres'][0].cpu().numpy(), path)
if args.xtc:
traj = mdtraj.load(path)
traj.superpose(traj)
traj.save(os.path.join(args.out_dir, f'{name}.xtc'))
traj[0].save(os.path.join(args.out_dir, f'{name}.pdb'))
@torch.no_grad()
def main():
model = NewMDGenWrapper.load_from_checkpoint(args.sim_ckpt)
model.eval().to('cuda')
df = pd.read_csv(args.split, index_col='name')
for name in df.index:
if args.pdb_id and name not in args.pdb_id:
continue
do(model, name, df.seqres[name])
main()