|
import argparse |
|
import copy |
|
import json |
|
import pickle |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--sim_ckpt', type=str, default=None, required=True) |
|
parser.add_argument('--data_dir', type=str, default='share/4AA_data') |
|
parser.add_argument('--mddir', type=str, default='/data/cb/scratch/share/mdgen/4AA_sims') |
|
parser.add_argument('--suffix', type=str, default='') |
|
parser.add_argument('--pdb_id', nargs='*', default=[]) |
|
parser.add_argument('--num_frames', type=int, default=1000) |
|
parser.add_argument('--num_batches', type=int, default=100) |
|
parser.add_argument('--batch_size', type=int, default=10) |
|
parser.add_argument('--out_dir', type=str, default=".") |
|
parser.add_argument('--split', type=str, default='splits/4AA_test.csv') |
|
parser.add_argument('--chunk_idx', type=int, default=0) |
|
parser.add_argument('--n_chunks', type=int, default=1) |
|
args = parser.parse_args() |
|
import mdgen.analysis |
|
import os, torch, mdtraj, tqdm |
|
from mdgen.geometry import atom14_to_atom37, atom37_to_torsions |
|
from mdgen.tensor_utils import tensor_tree_map |
|
|
|
from mdgen.residue_constants import restype_order |
|
from mdgen.wrapper import NewMDGenWrapper |
|
from mdgen.dataset import atom14_to_frames |
|
import pandas as pd |
|
import contextlib |
|
import numpy as np |
|
|
|
@contextlib.contextmanager |
|
def temp_seed(seed): |
|
state = np.random.get_state() |
|
np.random.seed(seed) |
|
try: |
|
yield |
|
finally: |
|
np.random.set_state(state) |
|
|
|
os.makedirs(args.out_dir, exist_ok=True) |
|
|
|
def get_sample(arr, seqres, start_idxs, end_idxs, start_state, end_state, num_frames=1000): |
|
start_idx = np.random.choice(start_idxs, 1).item() |
|
end_idx = np.random.choice(end_idxs, 1).item() |
|
|
|
start_arr = np.copy(arr[start_idx:start_idx + 1]).astype(np.float32) |
|
end_arr = np.copy(arr[end_idx:end_idx + 1]).astype(np.float32) |
|
seqres = torch.tensor([restype_order[c] for c in seqres]) |
|
|
|
start_frames = atom14_to_frames(torch.from_numpy(start_arr)) |
|
start_atom37 = torch.from_numpy(atom14_to_atom37(start_arr, seqres)).float() |
|
start_torsions, start_torsion_mask = atom37_to_torsions(start_atom37, seqres[None]) |
|
|
|
end_frames = atom14_to_frames(torch.from_numpy(end_arr)) |
|
end_atom37 = torch.from_numpy(atom14_to_atom37(end_arr, seqres)).float() |
|
end_torsions, end_torsion_mask = atom37_to_torsions(end_atom37, seqres[None]) |
|
L = start_frames.shape[1] |
|
traj_torsions = start_torsions.expand(num_frames, -1, -1, -1).clone() |
|
traj_torsions[-1] = end_torsions |
|
|
|
traj_trans = start_frames._trans.expand(num_frames, -1, -1).clone() |
|
traj_trans[-1] = end_frames._trans |
|
|
|
traj_rots = start_frames._rots._rot_mats.expand(num_frames, -1, -1, -1).clone() |
|
traj_rots[-1] = end_frames._rots._rot_mats |
|
|
|
mask = torch.ones(L) |
|
return { |
|
'torsions': traj_torsions, |
|
'torsion_mask': start_torsion_mask[0], |
|
'trans': traj_trans, |
|
'rots': traj_rots, |
|
'seqres': seqres, |
|
'start_idx': start_idx, |
|
'end_idx': end_idx, |
|
'start_state': start_state, |
|
'end_state': end_state, |
|
'mask': mask, |
|
} |
|
|
|
def do(model, name, seqres): |
|
print('doing', name) |
|
if os.path.exists(f'{args.out_dir}/{name}_metadata.json'): |
|
return |
|
if os.path.exists(f'{args.out_dir}/{name}_metadata.pkl'): |
|
pkl_metadata = pickle.load(open(f'{args.out_dir}/{name}_metadata.pkl', 'rb')) |
|
msm = pkl_metadata['msm'] |
|
cmsm = pkl_metadata['cmsm'] |
|
ref_kmeans = pkl_metadata['ref_kmeans'] |
|
else: |
|
with temp_seed(137): |
|
feats, ref = mdgen.analysis.get_featurized_traj(f'{args.mddir}/{name}/{name}', sidechains=True) |
|
tica, _ = mdgen.analysis.get_tica(ref) |
|
kmeans, ref_kmeans = mdgen.analysis.get_kmeans(tica.transform(ref)) |
|
try: |
|
msm, pcca, cmsm = mdgen.analysis.get_msm(ref_kmeans, nstates=10) |
|
except Exception as e: |
|
print('ERROR', e, name, flush=True) |
|
return |
|
pickle.dump({ |
|
'msm': msm, |
|
'cmsm': cmsm, |
|
'tica': tica, |
|
'pcca': pcca, |
|
'kmeans': kmeans, |
|
'ref_kmeans': ref_kmeans, |
|
}, open(f'{args.out_dir}/{name}_metadata.pkl', 'wb')) |
|
|
|
flux_mat = cmsm.transition_matrix * cmsm.pi[None, :] |
|
flux_mat[flux_mat < 0.0000001] = np.inf |
|
start_state, end_state = np.unravel_index(np.argmin(flux_mat, axis=None), flux_mat.shape) |
|
ref_discrete = msm.metastable_assignments[ref_kmeans] |
|
start_idxs = np.where(ref_discrete == start_state)[0] |
|
end_idxs = np.where(ref_discrete == end_state)[0] |
|
if (ref_discrete == start_state).sum() == 0 or (ref_discrete == end_state).sum() == 0: |
|
print('No start or end state found for ', name, 'skipping...') |
|
return |
|
|
|
arr = np.lib.format.open_memmap(f'{args.data_dir}/{name}.npy', 'r') |
|
|
|
metadata = [] |
|
for i in tqdm.tqdm(range(args.num_batches), desc='num batch'): |
|
batch_list = [] |
|
for _ in range(args.batch_size): |
|
batch_list.append( |
|
get_sample(arr, seqres, copy.deepcopy(start_idxs), end_idxs, start_state, end_state, num_frames=args.num_frames)) |
|
batch = next(iter(torch.utils.data.DataLoader(batch_list, batch_size=args.batch_size))) |
|
batch = tensor_tree_map(lambda x: x.cuda(), batch) |
|
print('Start tps for ', name, 'with start coords', batch['trans'][0, 0, 0]) |
|
print('Start tps for ', name, 'with end coords', batch['trans'][0, -1, 0]) |
|
atom14s, _ = model.inference(batch) |
|
for j in range(args.batch_size): |
|
idx = i * args.batch_size + j |
|
path = os.path.join(args.out_dir, f'{name}_{idx}.pdb') |
|
atom14_to_pdb(atom14s[j].cpu().numpy(), batch['seqres'][0].cpu().numpy(), path) |
|
|
|
traj = mdtraj.load(path) |
|
traj.superpose(traj) |
|
traj.save(os.path.join(args.out_dir, f'{name}_{idx}.xtc')) |
|
traj[0].save(os.path.join(args.out_dir, f'{name}_{idx}.pdb')) |
|
metadata.append({ |
|
'name': name, |
|
'start_idx': batch['start_idx'][j].cpu().item(), |
|
'end_idx': batch['end_idx'][j].cpu().item(), |
|
'start_state': batch['start_state'][j].cpu().item(), |
|
'end_state': batch['end_state'][j].cpu().item(), |
|
'path': path, |
|
}) |
|
json.dump(metadata, open(f'{args.out_dir}/{name}_metadata.json', 'w')) |
|
|
|
|
|
@torch.no_grad() |
|
def main(): |
|
model = NewMDGenWrapper.load_from_checkpoint(args.sim_ckpt) |
|
model.eval().to('cuda') |
|
df = pd.read_csv(args.split, index_col='name') |
|
names = np.array(df.index) |
|
|
|
chunks = np.array_split(names, args.n_chunks) |
|
chunk = chunks[args.chunk_idx] |
|
print('#' * 20) |
|
print(f'RUN NUMBER: {args.chunk_idx}, PROCESSING IDXS {args.chunk_idx * len(chunk)}-{(args.chunk_idx + 1) * len(chunk)}') |
|
print('#' * 20) |
|
for name in tqdm.tqdm(chunk, desc='num peptides'): |
|
if args.pdb_id and name not in args.pdb_id: |
|
continue |
|
do(model, name, df.seqres[name]) |
|
|
|
|
|
main() |