import argparse parser = argparse.ArgumentParser() parser.add_argument('--ckpt', type=str, default=None, required=True) parser.add_argument('--data_dir', type=str, default=None, required=True) parser.add_argument('--suffix', type=str, default='_i100') parser.add_argument('--pdb_id', nargs='*', default=[]) parser.add_argument('--batch_size', type=int, default=1) parser.add_argument('--out_dir', type=str, default=".") parser.add_argument('--split', type=str, default='splits/4AA_implicit_test.csv') args = parser.parse_args() import os, torch, mdtraj, tqdm import numpy as np from mdgen.geometry import atom14_to_frames, atom14_to_atom37, atom37_to_torsions from mdgen.residue_constants import restype_order from mdgen.tensor_utils import tensor_tree_map from mdgen.wrapper import NewMDGenWrapper from mdgen.utils import atom14_to_pdb import pandas as pd os.makedirs(args.out_dir, exist_ok=True) def get_batch(name, seqres, num_frames): arr = np.lib.format.open_memmap(f'{args.data_dir}/{name}{args.suffix}.npy', 'r') arr = np.copy(arr).astype(np.float32) frames = atom14_to_frames(torch.from_numpy(arr)) seqres = torch.tensor([restype_order[c] for c in seqres]) atom37 = torch.from_numpy(atom14_to_atom37(arr, seqres[None])).float() torsions, torsion_mask = atom37_to_torsions(atom37, seqres[None]) L = frames.shape[1] mask = torch.ones(L) return { 'torsions': torsions, 'torsion_mask': torsion_mask[0], 'trans': frames._trans, 'rots': frames._rots._rot_mats, 'seqres': seqres, 'mask': mask, # (L,) } def split_batch(item, num_frames=1000, cond_interval=100): total_frames = item['torsions'].shape[0] * cond_interval batches = [] total_items = int(total_frames / num_frames) cond_frames = int(num_frames / cond_interval) for i in tqdm.trange(total_items): new_batch = { 'torsions': torch.zeros(num_frames, 4, 7, 2), 'torsion_mask': item['torsion_mask'], 'trans': torch.zeros(num_frames, 4, 3), 'rots': torch.zeros(num_frames, 4, 3, 3), 'seqres': item['seqres'], 'mask': item['mask'], } new_batch['rots'][:] = torch.eye(3) new_batch['torsions'][::cond_interval] = item['torsions'][i*cond_frames:(i+1)*cond_frames] new_batch['trans'][::cond_interval] = item['trans'][i*cond_frames:(i+1)*cond_frames] new_batch['rots'][::cond_interval] = item['rots'][i*cond_frames:(i+1)*cond_frames] batches.append(new_batch) return batches def do(model, name, seqres): item = get_batch(name, seqres, num_frames = model.args.num_frames) items = split_batch(item, num_frames=model.args.num_frames, cond_interval=model.args.cond_interval) loader = torch.utils.data.DataLoader(items, shuffle=False, batch_size=args.batch_size) all_atom14 = [] for batch in tqdm.tqdm(loader): batch = tensor_tree_map(lambda x: x.cuda(), batch) atom14, _ = model.inference(batch) all_atom14.extend(atom14) all_atom14 = torch.cat(all_atom14) path = os.path.join(args.out_dir, f'{name}.pdb') atom14_to_pdb(all_atom14.cpu().numpy(), batch['seqres'][0].cpu().numpy(), path) traj = mdtraj.load(path) traj.superpose(traj) traj.save(os.path.join(args.out_dir, f'{name}.xtc')) traj[0].save(os.path.join(args.out_dir, f'{name}.pdb')) @torch.no_grad() def main(): model = NewMDGenWrapper.load_from_checkpoint(args.ckpt) model.eval().to('cuda') df = pd.read_csv(args.split, index_col='name') for name in df.index: if args.pdb_id and name not in args.pdb_id: continue do(model, name, df.seqres[name]) main()