Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,148 +1,41 @@
|
|
1 |
# COHI-O365: A Benchmark Dataset for Fisheye Object Detection
|
2 |
|
3 |
-
|
4 |
|
|
|
5 |
|
6 |
-
This repository introduces COHI-O365, a benchmark dataset for object detection in hemispherical/fisheye images, designed for field-of-view invariant applications. It also includes the RMFV365 dataset, a large-scale synthetic fisheye dataset used for training. Pre-trained YOLOv7 models are provided, trained on various combinations of these datasets.
|
7 |
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
COHI-O365 is a real-world dataset containing 1,000 fisheye images of 74 classes, sampled from the Objects365 dataset. These images, captured using an ELP-USB8MP02G-L180 hemispherical camera (2448x3264 resolution), feature an average of 20,798 object instances per image and are annotated with axis-aligned bounding boxes.
|
12 |
-
|
13 |
-
|
14 |
-
RMFV365 is a synthetic fisheye dataset created by applying non-linear mapping to the Objects365 dataset. It comprises 5.1 million images offering a diverse range of perspectives and distortions, useful for training robust object detection models.
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-

|
19 |
-
|
20 |
-
*COHI-O365 Sample Images*
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-

|
25 |
-
|
26 |
-
*RMFV365 Sample Images*
|
27 |
-
|
28 |
-
|
29 |
-
## Pre-trained Models and Results
|
30 |
-
|
31 |
-
Three YOLOv7 models were trained and evaluated:
|
32 |
-
|
33 |
-
* **YOLOv7-0:** Trained on Objects365.
|
34 |
-
* **YOLOv7-T1:** Trained on Objects365 and a variant of RMFV365 (RMFV365-v1), using a lens and camera-independent fisheye transformation (n=4).
|
35 |
-
* **YOLOv7-T2:** Trained on RMFV365.
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-

|
40 |
-
|
41 |
-
*Model Training Scheme*
|
42 |
-
|
43 |
-
|
44 |
-
The models' performance, measured by mAP<sub>50</sub>, is summarized below:
|
45 |
-
|
46 |
-
<table>
|
47 |
-
<thead>
|
48 |
-
<tr>
|
49 |
-
<th rowspan="3">S/N</th>
|
50 |
-
<th rowspan="3">Model</th>
|
51 |
-
<th colspan="8">Test Results (%)</th>
|
52 |
-
</tr>
|
53 |
-
<tr>
|
54 |
-
<th colspan="2">Objects365</th>
|
55 |
-
<th colspan="2">RMFV365-v1</th>
|
56 |
-
<th colspan="2">RMFV365</th>
|
57 |
-
<th colspan="2">COHI-365</th>
|
58 |
-
</tr>
|
59 |
-
<tr>
|
60 |
-
<th>mAP50</th>
|
61 |
-
<th>mAP50:95</th>
|
62 |
-
<th>mAP50</th>
|
63 |
-
<th>mAP50:95</th>
|
64 |
-
<th>mAP50</th>
|
65 |
-
<th>mAP50:95</th>
|
66 |
-
<th>mAP50</th>
|
67 |
-
<th>mAP50:95</th>
|
68 |
-
</tr>
|
69 |
-
</thead>
|
70 |
-
<tbody>
|
71 |
-
<tr>
|
72 |
-
<td>1</td>
|
73 |
-
<td>FPN</td>
|
74 |
-
<td><strong>35.5</strong></td>
|
75 |
-
<td>22.5</td>
|
76 |
-
<td>N/A</td>
|
77 |
-
<td>N/A</td>
|
78 |
-
<td>N/A</td>
|
79 |
-
<td>N/A</td>
|
80 |
-
<td>N/A</td>
|
81 |
-
<td>N/A</td>
|
82 |
-
</tr>
|
83 |
-
<tr>
|
84 |
-
<td>2</td>
|
85 |
-
<td>RetinaNet</td>
|
86 |
-
<td>27.3</td>
|
87 |
-
<td>18.7</td>
|
88 |
-
<td>N/A</td>
|
89 |
-
<td>N/A</td>
|
90 |
-
<td>N/A</td>
|
91 |
-
<td>N/A</td>
|
92 |
-
<td>N/A</td>
|
93 |
-
<td>N/A</td>
|
94 |
-
</tr>
|
95 |
-
<tr>
|
96 |
-
<td>3</td>
|
97 |
-
<td>YOLOv5m</td>
|
98 |
-
<td>27.3</td>
|
99 |
-
<td>18.8</td>
|
100 |
-
<td>22.6</td>
|
101 |
-
<td>14.1</td>
|
102 |
-
<td>18.7</td>
|
103 |
-
<td>10.1</td>
|
104 |
-
<td>40.4</td>
|
105 |
-
<td>28.0</td>
|
106 |
-
</tr>
|
107 |
-
<tr>
|
108 |
-
<td>4</td>
|
109 |
-
<td>YOLOv7-0</td>
|
110 |
-
<td>34.97</td>
|
111 |
-
<td><strong>24.57</strong></td>
|
112 |
-
<td>29.1</td>
|
113 |
-
<td>18.3</td>
|
114 |
-
<td>24.2</td>
|
115 |
-
<td>13.0</td>
|
116 |
-
<td>47.5</td>
|
117 |
-
<td>33.5</td>
|
118 |
-
</tr>
|
119 |
-
<tr>
|
120 |
-
<td>5</td>
|
121 |
-
<td>YOLOv7-T1</td>
|
122 |
-
<td>34.3</td>
|
123 |
-
<td>24.0</td>
|
124 |
-
<td>32.7</td>
|
125 |
-
<td>22.7</td>
|
126 |
-
<td>32.0</td>
|
127 |
-
<td>22.0</td>
|
128 |
-
<td>49.1</td>
|
129 |
-
<td>34.6</td>
|
130 |
-
</tr>
|
131 |
-
<tr>
|
132 |
-
<td>6</td>
|
133 |
-
<td>YOLOv7-T2</td>
|
134 |
-
<td>34</td>
|
135 |
-
<td>23.1</td>
|
136 |
-
<td><strong>32.9</strong></td>
|
137 |
-
<td><strong>23</strong></td>
|
138 |
-
<td><strong>33</strong></td>
|
139 |
-
<td><strong>22.8</strong></td>
|
140 |
-
<td><strong>49.9</strong></td>
|
141 |
-
<td><strong>34.9</strong></td>
|
142 |
-
</tr>
|
143 |
-
</tbody>
|
144 |
-
</table>
|
145 |
-
|
146 |
-
**Table:** Objects Recognition Results on Objects365, RMFV365-v1, RMFV365, and COHI-365 Testing Sets
|
147 |
|
|
|
148 |
|
|
|
|
1 |
# COHI-O365: A Benchmark Dataset for Fisheye Object Detection
|
2 |
|
3 |
+
## Dataset Summary
|
4 |
|
5 |
+
This work introduces COHI-O365, a benchmark dataset for object detection in hemispherical/fisheye images, designed for field-of-view invariant applications. It complements a synthetic training dataset, RMFV365, created by applying fisheye transformations to the Objects365 dataset. COHI-O365 contains 1,000 real fisheye images with 74 classes and an average of 20,798 object instances per image. These images were captured using an ELP-USB8MP02G-L180 hemispherical camera (2448x3264 pixels) and manually annotated with axis-aligned bounding boxes. The RMFV365 dataset, used for model training, comprises 5.1 million fisheye images generated from Objects365. YOLOv7 models were trained on Objects365, RMFV365, and a variant (RMFV365-v1), and evaluated on COHI-O365.
|
6 |
|
|
|
7 |
|
8 |
+
## Dataset Contents
|
9 |
|
10 |
+
The dataset includes:
|
11 |
+
|
12 |
+
* **COHI-O365:** A benchmark testing dataset with 1,000 real fisheye images of 74 classes.
|
13 |
+
* **RMFV365:** A large-scale synthetic fisheye dataset derived from Objects365, containing 5.1 million images.
|
14 |
+
|
15 |
+
A visualization of sample images from both datasets is provided in the GitHub repository. A table detailing the number of bounding boxes per class in COHI-O365 is planned for future inclusion.
|
16 |
+
|
17 |
+
|
18 |
+
## Benchmarks
|
19 |
+
|
20 |
+
YOLOv7 models were trained on different datasets and evaluated on COHI-O365. The results are summarized below:
|
21 |
+
|
22 |
+
| S/N | Model | Objects365 mAP50 | Objects365 mAP50:95 | RMFV365-v1 mAP50 | RMFV365-v1 mAP50:95 | RMFV365 mAP50 | RMFV365 mAP50:95 | COHI-365 mAP50 | COHI-365 mAP50:95 |
|
23 |
+
|-----|-------------|--------------------|----------------------|--------------------|---------------------|-----------------|--------------------|-----------------|--------------------|
|
24 |
+
| 1 | FPN | **35.5** | 22.5 | N/A | N/A | N/A | N/A | N/A | N/A |
|
25 |
+
| 2 | RetinaNet | 27.3 | 18.7 | N/A | N/A | N/A | N/A | N/A | N/A |
|
26 |
+
| 3 | YOLOv5m | 27.3 | 18.8 | 22.6 | 14.1 | 18.7 | 10.1 | 40.4 | 28.0 |
|
27 |
+
| 4 | YOLOv7-0 | 34.97 | **24.57** | 29.1 | 18.3 | 24.2 | 13.0 | 47.5 | 33.5 |
|
28 |
+
| 5 | YOLOv7-T1 | 34.3 | 24.0 | 32.7 | 22.7 | 32.0 | 22.0 | 49.1 | 34.6 |
|
29 |
+
| 6 | YOLOv7-T2 | 34 | 23.1 | **32.9** | **23** | **33** | **22.8** | **49.9** | **34.9** |
|
30 |
+
|
31 |
+
**Table:** Object recognition results on Objects365, RMFV365-v1, RMFV365, and COHI-365 testing sets. Bold values represent the best performance within each column.
|
32 |
+
|
33 |
+
|
34 |
+
## Citation
|
35 |
+
|
36 |
+
*(Citation information to be added)*
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
## GitHub Repository
|
40 |
|
41 |
+
[https://github.com/IS2AI/COHI-O365](https://github.com/IS2AI/COHI-O365)
|