knesset-plenums / 102267 /metadata.json
yoad's picture
Add files using upload-large-folder tool
ce4daff verified
{
"source_type": "knesset",
"source_id": "plenum",
"source_entry_id": "102267",
"quality_score": 0.9033,
"per_segment_quality_scores": [
{
"start": 30.64,
"end": 31.06,
"probability": 0.4515
},
{
"start": 36.64,
"end": 38.5,
"probability": 0.8142
},
{
"start": 39.28,
"end": 42.31,
"probability": 0.9871
},
{
"start": 43.0,
"end": 46.66,
"probability": 0.9978
},
{
"start": 47.9,
"end": 49.16,
"probability": 0.7552
},
{
"start": 50.08,
"end": 52.82,
"probability": 0.7544
},
{
"start": 54.0,
"end": 55.74,
"probability": 0.7448
},
{
"start": 56.04,
"end": 57.52,
"probability": 0.7624
},
{
"start": 58.1,
"end": 58.1,
"probability": 0.4695
},
{
"start": 58.22,
"end": 61.71,
"probability": 0.6852
},
{
"start": 67.48,
"end": 67.98,
"probability": 0.1157
},
{
"start": 121.16,
"end": 123.18,
"probability": 0.7302
},
{
"start": 124.16,
"end": 129.38,
"probability": 0.9671
},
{
"start": 130.52,
"end": 133.8,
"probability": 0.9913
},
{
"start": 133.84,
"end": 135.06,
"probability": 0.9346
},
{
"start": 135.82,
"end": 138.8,
"probability": 0.9935
},
{
"start": 141.0,
"end": 144.86,
"probability": 0.9994
},
{
"start": 145.4,
"end": 152.72,
"probability": 0.9172
},
{
"start": 153.44,
"end": 154.96,
"probability": 0.9272
},
{
"start": 155.46,
"end": 160.74,
"probability": 0.9893
},
{
"start": 160.84,
"end": 161.4,
"probability": 0.8934
},
{
"start": 161.98,
"end": 166.62,
"probability": 0.9877
},
{
"start": 166.82,
"end": 168.02,
"probability": 0.7004
},
{
"start": 168.76,
"end": 169.6,
"probability": 0.7555
},
{
"start": 169.84,
"end": 172.18,
"probability": 0.998
},
{
"start": 173.34,
"end": 178.14,
"probability": 0.7564
},
{
"start": 178.18,
"end": 179.4,
"probability": 0.9962
},
{
"start": 180.12,
"end": 181.38,
"probability": 0.9775
},
{
"start": 182.64,
"end": 188.0,
"probability": 0.9691
},
{
"start": 188.5,
"end": 188.88,
"probability": 0.7385
},
{
"start": 189.68,
"end": 192.8,
"probability": 0.8988
},
{
"start": 193.64,
"end": 197.0,
"probability": 0.9948
},
{
"start": 197.58,
"end": 201.2,
"probability": 0.9988
},
{
"start": 201.88,
"end": 203.28,
"probability": 0.9758
},
{
"start": 204.7,
"end": 205.78,
"probability": 0.9456
},
{
"start": 205.92,
"end": 206.18,
"probability": 0.873
},
{
"start": 206.3,
"end": 207.86,
"probability": 0.9946
},
{
"start": 208.82,
"end": 209.68,
"probability": 0.8963
},
{
"start": 210.08,
"end": 212.74,
"probability": 0.9874
},
{
"start": 212.74,
"end": 214.9,
"probability": 0.7435
},
{
"start": 215.02,
"end": 216.22,
"probability": 0.7578
},
{
"start": 217.12,
"end": 217.76,
"probability": 0.5223
},
{
"start": 219.96,
"end": 222.36,
"probability": 0.9751
},
{
"start": 223.38,
"end": 226.88,
"probability": 0.9595
},
{
"start": 227.84,
"end": 228.8,
"probability": 0.501
},
{
"start": 228.8,
"end": 230.52,
"probability": 0.9678
},
{
"start": 230.66,
"end": 231.48,
"probability": 0.7174
},
{
"start": 231.6,
"end": 238.08,
"probability": 0.9831
},
{
"start": 238.88,
"end": 244.26,
"probability": 0.9924
},
{
"start": 244.73,
"end": 247.98,
"probability": 0.9857
},
{
"start": 247.98,
"end": 250.18,
"probability": 0.9994
},
{
"start": 251.98,
"end": 254.94,
"probability": 0.9893
},
{
"start": 254.94,
"end": 259.6,
"probability": 0.8502
},
{
"start": 260.42,
"end": 262.2,
"probability": 0.5504
},
{
"start": 262.24,
"end": 264.02,
"probability": 0.6404
},
{
"start": 264.38,
"end": 264.6,
"probability": 0.5571
},
{
"start": 266.42,
"end": 267.14,
"probability": 0.5992
},
{
"start": 267.46,
"end": 269.76,
"probability": 0.8975
},
{
"start": 276.62,
"end": 277.47,
"probability": 0.6408
},
{
"start": 278.42,
"end": 280.08,
"probability": 0.9751
},
{
"start": 280.22,
"end": 280.98,
"probability": 0.7087
},
{
"start": 281.38,
"end": 288.56,
"probability": 0.9673
},
{
"start": 289.16,
"end": 289.84,
"probability": 0.9128
},
{
"start": 289.94,
"end": 290.86,
"probability": 0.6877
},
{
"start": 290.9,
"end": 291.9,
"probability": 0.9701
},
{
"start": 292.02,
"end": 292.9,
"probability": 0.6708
},
{
"start": 293.38,
"end": 293.54,
"probability": 0.9198
},
{
"start": 294.72,
"end": 296.4,
"probability": 0.5679
},
{
"start": 297.06,
"end": 299.9,
"probability": 0.8247
},
{
"start": 300.64,
"end": 301.6,
"probability": 0.9461
},
{
"start": 302.04,
"end": 307.04,
"probability": 0.9731
},
{
"start": 307.8,
"end": 310.27,
"probability": 0.9915
},
{
"start": 311.2,
"end": 312.5,
"probability": 0.5491
},
{
"start": 313.04,
"end": 313.68,
"probability": 0.9827
},
{
"start": 314.96,
"end": 317.32,
"probability": 0.9027
},
{
"start": 317.44,
"end": 318.25,
"probability": 0.6941
},
{
"start": 318.36,
"end": 320.2,
"probability": 0.8873
},
{
"start": 321.22,
"end": 322.95,
"probability": 0.9686
},
{
"start": 323.08,
"end": 324.36,
"probability": 0.9804
},
{
"start": 324.76,
"end": 326.26,
"probability": 0.7387
},
{
"start": 327.46,
"end": 330.12,
"probability": 0.9753
},
{
"start": 330.28,
"end": 331.16,
"probability": 0.9762
},
{
"start": 331.72,
"end": 335.64,
"probability": 0.856
},
{
"start": 336.74,
"end": 338.44,
"probability": 0.6152
},
{
"start": 338.74,
"end": 339.32,
"probability": 0.5455
},
{
"start": 339.38,
"end": 340.79,
"probability": 0.2583
},
{
"start": 341.32,
"end": 343.52,
"probability": 0.8939
},
{
"start": 343.68,
"end": 344.44,
"probability": 0.7896
},
{
"start": 344.9,
"end": 345.44,
"probability": 0.6972
},
{
"start": 345.56,
"end": 346.68,
"probability": 0.6316
},
{
"start": 347.08,
"end": 348.94,
"probability": 0.895
},
{
"start": 349.56,
"end": 350.1,
"probability": 0.4341
},
{
"start": 351.56,
"end": 353.5,
"probability": 0.8187
},
{
"start": 354.06,
"end": 356.12,
"probability": 0.6747
},
{
"start": 356.72,
"end": 358.46,
"probability": 0.7464
},
{
"start": 359.16,
"end": 361.42,
"probability": 0.6213
},
{
"start": 361.84,
"end": 363.92,
"probability": 0.7361
},
{
"start": 364.88,
"end": 367.04,
"probability": 0.9824
},
{
"start": 368.22,
"end": 371.06,
"probability": 0.8314
},
{
"start": 371.14,
"end": 372.18,
"probability": 0.7528
},
{
"start": 373.38,
"end": 374.58,
"probability": 0.7388
},
{
"start": 376.0,
"end": 379.36,
"probability": 0.9692
},
{
"start": 380.46,
"end": 381.06,
"probability": 0.9541
},
{
"start": 381.12,
"end": 382.18,
"probability": 0.563
},
{
"start": 382.24,
"end": 385.29,
"probability": 0.9839
},
{
"start": 387.12,
"end": 388.04,
"probability": 0.7143
},
{
"start": 388.94,
"end": 390.22,
"probability": 0.8086
},
{
"start": 391.02,
"end": 391.68,
"probability": 0.9159
},
{
"start": 392.52,
"end": 394.34,
"probability": 0.8483
},
{
"start": 395.1,
"end": 397.24,
"probability": 0.9395
},
{
"start": 398.28,
"end": 400.06,
"probability": 0.8605
},
{
"start": 400.98,
"end": 402.8,
"probability": 0.9668
},
{
"start": 403.32,
"end": 405.7,
"probability": 0.9363
},
{
"start": 406.34,
"end": 408.22,
"probability": 0.7992
},
{
"start": 408.9,
"end": 411.32,
"probability": 0.9963
},
{
"start": 412.84,
"end": 418.54,
"probability": 0.8044
},
{
"start": 418.58,
"end": 420.88,
"probability": 0.975
},
{
"start": 421.48,
"end": 424.78,
"probability": 0.7733
},
{
"start": 426.0,
"end": 429.54,
"probability": 0.9829
},
{
"start": 429.66,
"end": 431.66,
"probability": 0.9614
},
{
"start": 432.32,
"end": 434.84,
"probability": 0.8972
},
{
"start": 435.18,
"end": 440.5,
"probability": 0.9947
},
{
"start": 441.04,
"end": 442.02,
"probability": 0.4515
},
{
"start": 442.78,
"end": 445.24,
"probability": 0.8926
},
{
"start": 445.86,
"end": 446.82,
"probability": 0.7705
},
{
"start": 447.1,
"end": 448.1,
"probability": 0.9645
},
{
"start": 448.4,
"end": 449.94,
"probability": 0.9679
},
{
"start": 450.2,
"end": 451.16,
"probability": 0.6373
},
{
"start": 451.26,
"end": 454.84,
"probability": 0.9936
},
{
"start": 455.3,
"end": 459.5,
"probability": 0.9787
},
{
"start": 459.9,
"end": 462.68,
"probability": 0.9906
},
{
"start": 463.1,
"end": 463.28,
"probability": 0.7986
},
{
"start": 465.02,
"end": 465.46,
"probability": 0.6463
},
{
"start": 465.7,
"end": 467.34,
"probability": 0.8416
},
{
"start": 478.1,
"end": 479.02,
"probability": 0.4829
},
{
"start": 479.6,
"end": 481.04,
"probability": 0.9443
},
{
"start": 482.34,
"end": 485.8,
"probability": 0.4349
},
{
"start": 487.58,
"end": 489.38,
"probability": 0.8845
},
{
"start": 490.52,
"end": 491.7,
"probability": 0.7583
},
{
"start": 492.24,
"end": 495.0,
"probability": 0.9901
},
{
"start": 495.92,
"end": 497.3,
"probability": 0.859
},
{
"start": 498.1,
"end": 500.24,
"probability": 0.5155
},
{
"start": 501.4,
"end": 502.3,
"probability": 0.4619
},
{
"start": 503.26,
"end": 504.42,
"probability": 0.8564
},
{
"start": 506.38,
"end": 510.0,
"probability": 0.8677
},
{
"start": 512.9,
"end": 518.84,
"probability": 0.9528
},
{
"start": 519.8,
"end": 521.3,
"probability": 0.5987
},
{
"start": 522.42,
"end": 526.24,
"probability": 0.8688
},
{
"start": 527.8,
"end": 532.02,
"probability": 0.7621
},
{
"start": 533.04,
"end": 535.46,
"probability": 0.8944
},
{
"start": 536.5,
"end": 537.14,
"probability": 0.9698
},
{
"start": 537.24,
"end": 539.32,
"probability": 0.9783
},
{
"start": 539.58,
"end": 543.08,
"probability": 0.4897
},
{
"start": 543.78,
"end": 544.96,
"probability": 0.9734
},
{
"start": 545.54,
"end": 546.88,
"probability": 0.4148
},
{
"start": 547.6,
"end": 549.34,
"probability": 0.7948
},
{
"start": 549.74,
"end": 550.76,
"probability": 0.8928
},
{
"start": 551.7,
"end": 553.8,
"probability": 0.8662
},
{
"start": 554.18,
"end": 555.5,
"probability": 0.92
},
{
"start": 555.74,
"end": 558.24,
"probability": 0.9048
},
{
"start": 558.68,
"end": 559.64,
"probability": 0.963
},
{
"start": 560.02,
"end": 560.94,
"probability": 0.9654
},
{
"start": 561.52,
"end": 562.78,
"probability": 0.9909
},
{
"start": 563.04,
"end": 565.04,
"probability": 0.9065
},
{
"start": 565.78,
"end": 570.88,
"probability": 0.998
},
{
"start": 572.72,
"end": 573.98,
"probability": 0.6399
},
{
"start": 574.64,
"end": 577.64,
"probability": 0.9968
},
{
"start": 578.4,
"end": 582.24,
"probability": 0.991
},
{
"start": 582.34,
"end": 585.84,
"probability": 0.9843
},
{
"start": 587.1,
"end": 590.8,
"probability": 0.9841
},
{
"start": 592.7,
"end": 594.04,
"probability": 0.9748
},
{
"start": 595.66,
"end": 598.82,
"probability": 0.9062
},
{
"start": 602.28,
"end": 604.38,
"probability": 0.9949
},
{
"start": 604.46,
"end": 606.64,
"probability": 0.8819
},
{
"start": 616.26,
"end": 617.46,
"probability": 0.6573
},
{
"start": 618.2,
"end": 621.54,
"probability": 0.9855
},
{
"start": 622.06,
"end": 623.44,
"probability": 0.8511
},
{
"start": 624.3,
"end": 627.8,
"probability": 0.9677
},
{
"start": 628.62,
"end": 632.08,
"probability": 0.9242
},
{
"start": 632.56,
"end": 635.86,
"probability": 0.9346
},
{
"start": 636.16,
"end": 639.64,
"probability": 0.7969
},
{
"start": 639.72,
"end": 640.6,
"probability": 0.9468
},
{
"start": 641.46,
"end": 642.59,
"probability": 0.6489
},
{
"start": 643.22,
"end": 646.04,
"probability": 0.9433
},
{
"start": 646.66,
"end": 649.48,
"probability": 0.9087
},
{
"start": 650.04,
"end": 654.02,
"probability": 0.9929
},
{
"start": 654.16,
"end": 656.99,
"probability": 0.8004
},
{
"start": 658.47,
"end": 664.06,
"probability": 0.9673
},
{
"start": 664.72,
"end": 666.18,
"probability": 0.6095
},
{
"start": 666.38,
"end": 670.66,
"probability": 0.9315
},
{
"start": 671.08,
"end": 672.62,
"probability": 0.5966
},
{
"start": 674.28,
"end": 677.22,
"probability": 0.7577
},
{
"start": 677.92,
"end": 683.32,
"probability": 0.1037
},
{
"start": 685.56,
"end": 685.56,
"probability": 0.0601
},
{
"start": 685.56,
"end": 685.56,
"probability": 0.4997
},
{
"start": 685.56,
"end": 686.1,
"probability": 0.6386
},
{
"start": 687.1,
"end": 689.44,
"probability": 0.6266
},
{
"start": 692.3,
"end": 694.6,
"probability": 0.7454
},
{
"start": 695.68,
"end": 697.59,
"probability": 0.9233
},
{
"start": 698.56,
"end": 700.26,
"probability": 0.9978
},
{
"start": 701.36,
"end": 702.4,
"probability": 0.7708
},
{
"start": 703.68,
"end": 705.42,
"probability": 0.9828
},
{
"start": 706.4,
"end": 708.14,
"probability": 0.9054
},
{
"start": 709.28,
"end": 711.14,
"probability": 0.5058
},
{
"start": 711.6,
"end": 713.48,
"probability": 0.616
},
{
"start": 714.18,
"end": 714.74,
"probability": 0.9926
},
{
"start": 715.44,
"end": 716.3,
"probability": 0.9909
},
{
"start": 717.16,
"end": 720.12,
"probability": 0.9912
},
{
"start": 721.28,
"end": 722.44,
"probability": 0.5436
},
{
"start": 722.98,
"end": 726.5,
"probability": 0.9656
},
{
"start": 727.5,
"end": 732.32,
"probability": 0.9888
},
{
"start": 733.34,
"end": 738.7,
"probability": 0.9961
},
{
"start": 739.76,
"end": 743.1,
"probability": 0.9802
},
{
"start": 743.64,
"end": 745.36,
"probability": 0.9669
},
{
"start": 745.86,
"end": 750.64,
"probability": 0.9873
},
{
"start": 750.64,
"end": 753.48,
"probability": 0.9985
},
{
"start": 754.14,
"end": 754.94,
"probability": 0.9778
},
{
"start": 757.64,
"end": 758.3,
"probability": 0.8013
},
{
"start": 759.02,
"end": 760.7,
"probability": 0.9533
},
{
"start": 767.7,
"end": 768.86,
"probability": 0.6719
},
{
"start": 769.66,
"end": 771.8,
"probability": 0.6739
},
{
"start": 773.12,
"end": 775.96,
"probability": 0.9233
},
{
"start": 776.86,
"end": 780.38,
"probability": 0.9189
},
{
"start": 781.4,
"end": 784.4,
"probability": 0.9599
},
{
"start": 785.26,
"end": 786.06,
"probability": 0.5276
},
{
"start": 786.86,
"end": 789.06,
"probability": 0.8722
},
{
"start": 791.16,
"end": 792.48,
"probability": 0.754
},
{
"start": 792.52,
"end": 795.82,
"probability": 0.832
},
{
"start": 796.48,
"end": 797.56,
"probability": 0.7396
},
{
"start": 798.14,
"end": 801.78,
"probability": 0.9987
},
{
"start": 802.86,
"end": 807.1,
"probability": 0.9962
},
{
"start": 807.38,
"end": 809.34,
"probability": 0.9883
},
{
"start": 809.94,
"end": 813.58,
"probability": 0.9957
},
{
"start": 814.42,
"end": 816.2,
"probability": 0.9622
},
{
"start": 817.32,
"end": 821.98,
"probability": 0.9796
},
{
"start": 821.98,
"end": 826.36,
"probability": 0.9992
},
{
"start": 827.3,
"end": 831.9,
"probability": 0.999
},
{
"start": 831.9,
"end": 836.9,
"probability": 0.9976
},
{
"start": 837.64,
"end": 841.3,
"probability": 0.9881
},
{
"start": 841.3,
"end": 845.22,
"probability": 0.9976
},
{
"start": 845.56,
"end": 845.76,
"probability": 0.7141
},
{
"start": 846.36,
"end": 846.84,
"probability": 0.5489
},
{
"start": 846.88,
"end": 848.4,
"probability": 0.9097
},
{
"start": 858.2,
"end": 859.88,
"probability": 0.6544
},
{
"start": 861.56,
"end": 862.86,
"probability": 0.9658
},
{
"start": 863.0,
"end": 863.52,
"probability": 0.7132
},
{
"start": 863.64,
"end": 867.04,
"probability": 0.9711
},
{
"start": 867.46,
"end": 868.32,
"probability": 0.7288
},
{
"start": 868.42,
"end": 868.98,
"probability": 0.8566
},
{
"start": 870.28,
"end": 872.88,
"probability": 0.5498
},
{
"start": 873.86,
"end": 874.1,
"probability": 0.6848
},
{
"start": 877.51,
"end": 881.0,
"probability": 0.4553
},
{
"start": 881.64,
"end": 883.72,
"probability": 0.9307
},
{
"start": 883.9,
"end": 884.42,
"probability": 0.8757
},
{
"start": 884.46,
"end": 885.16,
"probability": 0.7278
},
{
"start": 885.24,
"end": 886.92,
"probability": 0.9353
},
{
"start": 887.94,
"end": 890.0,
"probability": 0.82
},
{
"start": 890.68,
"end": 893.42,
"probability": 0.746
},
{
"start": 895.1,
"end": 897.44,
"probability": 0.8199
},
{
"start": 898.18,
"end": 899.14,
"probability": 0.3723
},
{
"start": 900.1,
"end": 900.54,
"probability": 0.5742
},
{
"start": 901.1,
"end": 902.04,
"probability": 0.7424
},
{
"start": 902.78,
"end": 903.48,
"probability": 0.991
},
{
"start": 904.76,
"end": 906.84,
"probability": 0.9512
},
{
"start": 907.34,
"end": 908.84,
"probability": 0.8338
},
{
"start": 909.08,
"end": 912.92,
"probability": 0.8083
},
{
"start": 913.68,
"end": 914.2,
"probability": 0.9586
},
{
"start": 915.38,
"end": 919.36,
"probability": 0.9097
},
{
"start": 919.44,
"end": 923.24,
"probability": 0.9844
},
{
"start": 925.4,
"end": 926.44,
"probability": 0.3387
},
{
"start": 927.1,
"end": 928.1,
"probability": 0.9255
},
{
"start": 928.62,
"end": 930.54,
"probability": 0.7845
},
{
"start": 931.48,
"end": 934.4,
"probability": 0.8838
},
{
"start": 935.4,
"end": 936.44,
"probability": 0.8873
},
{
"start": 937.22,
"end": 938.86,
"probability": 0.8741
},
{
"start": 939.76,
"end": 939.9,
"probability": 0.4523
},
{
"start": 943.64,
"end": 944.84,
"probability": 0.64
},
{
"start": 944.92,
"end": 946.36,
"probability": 0.9476
},
{
"start": 955.32,
"end": 957.1,
"probability": 0.6104
},
{
"start": 958.1,
"end": 960.74,
"probability": 0.9192
},
{
"start": 961.34,
"end": 962.18,
"probability": 0.9484
},
{
"start": 962.96,
"end": 966.8,
"probability": 0.7189
},
{
"start": 966.8,
"end": 973.2,
"probability": 0.8589
},
{
"start": 973.6,
"end": 974.82,
"probability": 0.5199
},
{
"start": 974.98,
"end": 976.02,
"probability": 0.5103
},
{
"start": 976.42,
"end": 978.44,
"probability": 0.9142
},
{
"start": 978.7,
"end": 981.78,
"probability": 0.9239
},
{
"start": 982.96,
"end": 985.06,
"probability": 0.981
},
{
"start": 985.14,
"end": 988.16,
"probability": 0.9663
},
{
"start": 988.5,
"end": 993.9,
"probability": 0.9871
},
{
"start": 994.18,
"end": 996.0,
"probability": 0.5893
},
{
"start": 996.6,
"end": 1002.04,
"probability": 0.9336
},
{
"start": 1002.26,
"end": 1003.0,
"probability": 0.2916
},
{
"start": 1003.56,
"end": 1004.26,
"probability": 0.6691
},
{
"start": 1004.58,
"end": 1007.32,
"probability": 0.9982
},
{
"start": 1008.58,
"end": 1011.72,
"probability": 0.9929
},
{
"start": 1012.22,
"end": 1012.62,
"probability": 0.5128
},
{
"start": 1013.62,
"end": 1017.18,
"probability": 0.5189
},
{
"start": 1017.38,
"end": 1019.52,
"probability": 0.5943
},
{
"start": 1019.76,
"end": 1024.4,
"probability": 0.9772
},
{
"start": 1025.02,
"end": 1028.58,
"probability": 0.9301
},
{
"start": 1028.64,
"end": 1032.86,
"probability": 0.9827
},
{
"start": 1033.3,
"end": 1033.86,
"probability": 0.813
},
{
"start": 1034.02,
"end": 1036.3,
"probability": 0.9019
},
{
"start": 1036.7,
"end": 1037.8,
"probability": 0.9046
},
{
"start": 1038.0,
"end": 1040.08,
"probability": 0.5885
},
{
"start": 1040.54,
"end": 1045.28,
"probability": 0.9906
},
{
"start": 1045.28,
"end": 1050.78,
"probability": 0.9935
},
{
"start": 1051.16,
"end": 1054.74,
"probability": 0.9717
},
{
"start": 1054.74,
"end": 1057.16,
"probability": 0.9742
},
{
"start": 1057.78,
"end": 1058.26,
"probability": 0.5909
},
{
"start": 1058.36,
"end": 1058.8,
"probability": 0.4136
},
{
"start": 1059.16,
"end": 1059.96,
"probability": 0.9411
},
{
"start": 1060.12,
"end": 1060.88,
"probability": 0.8283
},
{
"start": 1061.26,
"end": 1062.56,
"probability": 0.853
},
{
"start": 1062.6,
"end": 1065.3,
"probability": 0.9307
},
{
"start": 1065.42,
"end": 1065.96,
"probability": 0.8926
},
{
"start": 1066.06,
"end": 1066.58,
"probability": 0.8736
},
{
"start": 1067.24,
"end": 1067.74,
"probability": 0.6348
},
{
"start": 1067.76,
"end": 1070.18,
"probability": 0.7224
},
{
"start": 1080.4,
"end": 1081.14,
"probability": 0.6797
},
{
"start": 1081.7,
"end": 1082.68,
"probability": 0.887
},
{
"start": 1083.8,
"end": 1086.62,
"probability": 0.8465
},
{
"start": 1087.92,
"end": 1089.78,
"probability": 0.9158
},
{
"start": 1091.38,
"end": 1093.5,
"probability": 0.9915
},
{
"start": 1093.92,
"end": 1098.34,
"probability": 0.9421
},
{
"start": 1099.24,
"end": 1101.86,
"probability": 0.9956
},
{
"start": 1101.9,
"end": 1106.46,
"probability": 0.9819
},
{
"start": 1106.46,
"end": 1109.9,
"probability": 0.9785
},
{
"start": 1112.02,
"end": 1115.88,
"probability": 0.8756
},
{
"start": 1116.64,
"end": 1119.76,
"probability": 0.7563
},
{
"start": 1120.38,
"end": 1120.82,
"probability": 0.4752
},
{
"start": 1121.34,
"end": 1123.7,
"probability": 0.7847
},
{
"start": 1124.66,
"end": 1125.4,
"probability": 0.6733
},
{
"start": 1125.62,
"end": 1129.66,
"probability": 0.9654
},
{
"start": 1130.2,
"end": 1134.34,
"probability": 0.8599
},
{
"start": 1134.34,
"end": 1138.0,
"probability": 0.575
},
{
"start": 1138.48,
"end": 1144.22,
"probability": 0.9612
},
{
"start": 1144.22,
"end": 1148.48,
"probability": 0.9987
},
{
"start": 1149.18,
"end": 1153.68,
"probability": 0.9972
},
{
"start": 1154.3,
"end": 1158.38,
"probability": 0.9965
},
{
"start": 1159.54,
"end": 1160.7,
"probability": 0.5856
},
{
"start": 1160.7,
"end": 1160.7,
"probability": 0.3289
},
{
"start": 1160.7,
"end": 1161.58,
"probability": 0.5288
},
{
"start": 1163.06,
"end": 1165.58,
"probability": 0.7881
},
{
"start": 1166.24,
"end": 1167.34,
"probability": 0.6588
},
{
"start": 1167.56,
"end": 1168.68,
"probability": 0.1988
},
{
"start": 1168.74,
"end": 1169.14,
"probability": 0.6304
},
{
"start": 1169.34,
"end": 1170.24,
"probability": 0.9267
},
{
"start": 1170.38,
"end": 1171.34,
"probability": 0.7505
},
{
"start": 1172.76,
"end": 1178.74,
"probability": 0.0576
},
{
"start": 1179.82,
"end": 1180.08,
"probability": 0.5868
},
{
"start": 1181.88,
"end": 1182.84,
"probability": 0.9832
},
{
"start": 1185.52,
"end": 1189.54,
"probability": 0.9336
},
{
"start": 1190.36,
"end": 1190.5,
"probability": 0.3072
},
{
"start": 1190.68,
"end": 1192.66,
"probability": 0.9766
},
{
"start": 1193.24,
"end": 1194.7,
"probability": 0.4402
},
{
"start": 1196.2,
"end": 1201.28,
"probability": 0.8957
},
{
"start": 1201.28,
"end": 1207.58,
"probability": 0.9033
},
{
"start": 1208.66,
"end": 1211.28,
"probability": 0.9338
},
{
"start": 1212.9,
"end": 1217.04,
"probability": 0.8995
},
{
"start": 1217.84,
"end": 1221.76,
"probability": 0.9179
},
{
"start": 1222.76,
"end": 1224.52,
"probability": 0.8828
},
{
"start": 1225.12,
"end": 1230.58,
"probability": 0.9898
},
{
"start": 1230.96,
"end": 1231.58,
"probability": 0.6926
},
{
"start": 1231.84,
"end": 1234.18,
"probability": 0.8124
},
{
"start": 1234.94,
"end": 1239.32,
"probability": 0.8951
},
{
"start": 1239.32,
"end": 1246.58,
"probability": 0.9971
},
{
"start": 1247.04,
"end": 1248.72,
"probability": 0.9861
},
{
"start": 1248.76,
"end": 1250.18,
"probability": 0.9891
},
{
"start": 1250.26,
"end": 1252.54,
"probability": 0.9658
},
{
"start": 1252.64,
"end": 1254.9,
"probability": 0.917
},
{
"start": 1255.36,
"end": 1256.04,
"probability": 0.7446
},
{
"start": 1256.48,
"end": 1262.0,
"probability": 0.9858
},
{
"start": 1262.52,
"end": 1264.1,
"probability": 0.9499
},
{
"start": 1264.18,
"end": 1271.7,
"probability": 0.8962
},
{
"start": 1272.0,
"end": 1274.1,
"probability": 0.998
},
{
"start": 1274.6,
"end": 1278.67,
"probability": 0.9718
},
{
"start": 1281.04,
"end": 1283.8,
"probability": 0.9414
},
{
"start": 1284.4,
"end": 1287.5,
"probability": 0.9698
},
{
"start": 1288.2,
"end": 1294.92,
"probability": 0.7103
},
{
"start": 1295.06,
"end": 1298.64,
"probability": 0.7735
},
{
"start": 1299.12,
"end": 1300.76,
"probability": 0.8887
},
{
"start": 1301.48,
"end": 1303.76,
"probability": 0.8755
},
{
"start": 1303.92,
"end": 1304.85,
"probability": 0.9868
},
{
"start": 1305.4,
"end": 1311.94,
"probability": 0.8978
},
{
"start": 1312.14,
"end": 1312.96,
"probability": 0.7501
},
{
"start": 1315.12,
"end": 1317.52,
"probability": 0.76
},
{
"start": 1317.84,
"end": 1319.16,
"probability": 0.6217
},
{
"start": 1319.92,
"end": 1320.22,
"probability": 0.6935
},
{
"start": 1320.74,
"end": 1324.56,
"probability": 0.8984
},
{
"start": 1325.08,
"end": 1326.9,
"probability": 0.5156
},
{
"start": 1328.38,
"end": 1330.72,
"probability": 0.8975
},
{
"start": 1348.0,
"end": 1353.54,
"probability": 0.0057
},
{
"start": 1353.54,
"end": 1355.72,
"probability": 0.0421
},
{
"start": 1389.56,
"end": 1390.28,
"probability": 0.1753
},
{
"start": 1391.06,
"end": 1391.58,
"probability": 0.6382
},
{
"start": 1392.86,
"end": 1393.68,
"probability": 0.7515
},
{
"start": 1394.64,
"end": 1400.02,
"probability": 0.6107
},
{
"start": 1400.94,
"end": 1403.92,
"probability": 0.6985
},
{
"start": 1404.76,
"end": 1406.32,
"probability": 0.986
},
{
"start": 1407.2,
"end": 1407.76,
"probability": 0.6962
},
{
"start": 1409.18,
"end": 1415.76,
"probability": 0.584
},
{
"start": 1416.04,
"end": 1417.48,
"probability": 0.784
},
{
"start": 1418.18,
"end": 1420.7,
"probability": 0.7917
},
{
"start": 1421.6,
"end": 1425.26,
"probability": 0.9606
},
{
"start": 1426.58,
"end": 1430.46,
"probability": 0.9605
},
{
"start": 1431.34,
"end": 1431.56,
"probability": 0.9799
},
{
"start": 1432.14,
"end": 1433.5,
"probability": 0.8296
},
{
"start": 1434.92,
"end": 1437.16,
"probability": 0.773
},
{
"start": 1437.76,
"end": 1438.72,
"probability": 0.7691
},
{
"start": 1441.38,
"end": 1442.1,
"probability": 0.9824
},
{
"start": 1443.16,
"end": 1443.34,
"probability": 0.9088
},
{
"start": 1445.06,
"end": 1446.65,
"probability": 0.9963
},
{
"start": 1447.84,
"end": 1448.3,
"probability": 0.8228
},
{
"start": 1449.74,
"end": 1450.44,
"probability": 0.719
},
{
"start": 1451.58,
"end": 1455.56,
"probability": 0.9235
},
{
"start": 1456.1,
"end": 1457.74,
"probability": 0.9784
},
{
"start": 1458.46,
"end": 1459.98,
"probability": 0.9969
},
{
"start": 1460.9,
"end": 1461.48,
"probability": 0.9226
},
{
"start": 1462.02,
"end": 1462.56,
"probability": 0.6852
},
{
"start": 1463.24,
"end": 1465.92,
"probability": 0.9759
},
{
"start": 1466.62,
"end": 1468.3,
"probability": 0.9988
},
{
"start": 1468.58,
"end": 1472.44,
"probability": 0.9969
},
{
"start": 1473.6,
"end": 1478.34,
"probability": 0.9519
},
{
"start": 1478.98,
"end": 1480.42,
"probability": 0.602
},
{
"start": 1481.28,
"end": 1483.78,
"probability": 0.9264
},
{
"start": 1484.48,
"end": 1486.74,
"probability": 0.9852
},
{
"start": 1487.38,
"end": 1488.62,
"probability": 0.9933
},
{
"start": 1489.54,
"end": 1493.26,
"probability": 0.8652
},
{
"start": 1493.94,
"end": 1498.3,
"probability": 0.9928
},
{
"start": 1499.4,
"end": 1500.56,
"probability": 0.9757
},
{
"start": 1500.84,
"end": 1503.5,
"probability": 0.9954
},
{
"start": 1504.08,
"end": 1506.84,
"probability": 0.938
},
{
"start": 1507.42,
"end": 1510.66,
"probability": 0.9973
},
{
"start": 1511.58,
"end": 1516.6,
"probability": 0.9871
},
{
"start": 1517.62,
"end": 1518.28,
"probability": 0.8189
},
{
"start": 1519.68,
"end": 1522.12,
"probability": 0.9943
},
{
"start": 1522.6,
"end": 1523.68,
"probability": 0.9795
},
{
"start": 1524.38,
"end": 1526.12,
"probability": 0.9476
},
{
"start": 1526.94,
"end": 1527.88,
"probability": 0.6151
},
{
"start": 1528.16,
"end": 1530.9,
"probability": 0.9294
},
{
"start": 1532.0,
"end": 1532.12,
"probability": 0.2357
},
{
"start": 1532.34,
"end": 1535.18,
"probability": 0.9741
},
{
"start": 1536.46,
"end": 1540.72,
"probability": 0.9653
},
{
"start": 1541.44,
"end": 1545.8,
"probability": 0.9716
},
{
"start": 1546.2,
"end": 1547.94,
"probability": 0.9664
},
{
"start": 1549.4,
"end": 1551.4,
"probability": 0.9927
},
{
"start": 1551.92,
"end": 1553.36,
"probability": 0.9736
},
{
"start": 1554.36,
"end": 1555.6,
"probability": 0.9689
},
{
"start": 1557.8,
"end": 1559.56,
"probability": 0.8781
},
{
"start": 1560.28,
"end": 1561.18,
"probability": 0.9985
},
{
"start": 1561.7,
"end": 1562.02,
"probability": 0.7784
},
{
"start": 1563.18,
"end": 1563.28,
"probability": 0.5109
},
{
"start": 1563.92,
"end": 1564.12,
"probability": 0.8635
},
{
"start": 1565.62,
"end": 1566.48,
"probability": 0.6763
},
{
"start": 1567.26,
"end": 1568.68,
"probability": 0.9804
},
{
"start": 1569.22,
"end": 1569.5,
"probability": 0.8441
},
{
"start": 1571.6,
"end": 1576.58,
"probability": 0.9763
},
{
"start": 1577.14,
"end": 1578.66,
"probability": 0.8925
},
{
"start": 1579.22,
"end": 1581.54,
"probability": 0.992
},
{
"start": 1582.2,
"end": 1586.3,
"probability": 0.8835
},
{
"start": 1587.16,
"end": 1587.42,
"probability": 0.9593
},
{
"start": 1589.02,
"end": 1590.44,
"probability": 0.7842
},
{
"start": 1591.14,
"end": 1595.94,
"probability": 0.9661
},
{
"start": 1596.5,
"end": 1599.16,
"probability": 0.9913
},
{
"start": 1599.94,
"end": 1602.42,
"probability": 0.7865
},
{
"start": 1604.64,
"end": 1605.38,
"probability": 0.6459
},
{
"start": 1605.6,
"end": 1609.58,
"probability": 0.9727
},
{
"start": 1610.06,
"end": 1612.06,
"probability": 0.9172
},
{
"start": 1612.46,
"end": 1614.16,
"probability": 0.9495
},
{
"start": 1614.64,
"end": 1619.7,
"probability": 0.9616
},
{
"start": 1621.18,
"end": 1623.28,
"probability": 0.8287
},
{
"start": 1623.92,
"end": 1625.34,
"probability": 0.6124
},
{
"start": 1625.98,
"end": 1627.78,
"probability": 0.739
},
{
"start": 1628.22,
"end": 1631.44,
"probability": 0.9836
},
{
"start": 1631.52,
"end": 1632.76,
"probability": 0.9052
},
{
"start": 1633.46,
"end": 1635.46,
"probability": 0.9977
},
{
"start": 1635.8,
"end": 1637.96,
"probability": 0.9808
},
{
"start": 1638.78,
"end": 1639.96,
"probability": 0.9831
},
{
"start": 1641.56,
"end": 1642.55,
"probability": 0.9312
},
{
"start": 1643.44,
"end": 1644.56,
"probability": 0.9936
},
{
"start": 1644.88,
"end": 1647.56,
"probability": 0.9338
},
{
"start": 1648.1,
"end": 1650.72,
"probability": 0.9525
},
{
"start": 1651.26,
"end": 1653.14,
"probability": 0.9886
},
{
"start": 1653.9,
"end": 1654.48,
"probability": 0.9287
},
{
"start": 1656.34,
"end": 1656.68,
"probability": 0.8419
},
{
"start": 1657.06,
"end": 1657.5,
"probability": 0.4899
},
{
"start": 1657.76,
"end": 1658.42,
"probability": 0.9378
},
{
"start": 1658.72,
"end": 1659.3,
"probability": 0.9447
},
{
"start": 1659.76,
"end": 1664.34,
"probability": 0.9534
},
{
"start": 1665.08,
"end": 1666.24,
"probability": 0.8453
},
{
"start": 1666.78,
"end": 1667.32,
"probability": 0.7713
},
{
"start": 1667.78,
"end": 1672.28,
"probability": 0.9949
},
{
"start": 1673.54,
"end": 1677.6,
"probability": 0.9877
},
{
"start": 1678.82,
"end": 1680.32,
"probability": 0.916
},
{
"start": 1681.38,
"end": 1684.5,
"probability": 0.9859
},
{
"start": 1685.7,
"end": 1689.04,
"probability": 0.9859
},
{
"start": 1689.04,
"end": 1692.64,
"probability": 0.984
},
{
"start": 1693.6,
"end": 1696.68,
"probability": 0.9075
},
{
"start": 1698.68,
"end": 1701.48,
"probability": 0.9861
},
{
"start": 1702.58,
"end": 1707.02,
"probability": 0.9353
},
{
"start": 1708.1,
"end": 1708.58,
"probability": 0.772
},
{
"start": 1710.12,
"end": 1713.96,
"probability": 0.9893
},
{
"start": 1715.24,
"end": 1719.72,
"probability": 0.9922
},
{
"start": 1720.7,
"end": 1724.24,
"probability": 0.9561
},
{
"start": 1725.22,
"end": 1727.77,
"probability": 0.7776
},
{
"start": 1728.9,
"end": 1731.3,
"probability": 0.8283
},
{
"start": 1731.64,
"end": 1732.52,
"probability": 0.9672
},
{
"start": 1732.64,
"end": 1733.66,
"probability": 0.8649
},
{
"start": 1734.9,
"end": 1737.78,
"probability": 0.9813
},
{
"start": 1740.16,
"end": 1741.22,
"probability": 0.9225
},
{
"start": 1743.46,
"end": 1747.14,
"probability": 0.4489
},
{
"start": 1751.76,
"end": 1752.64,
"probability": 0.7758
},
{
"start": 1753.46,
"end": 1754.34,
"probability": 0.721
},
{
"start": 1754.64,
"end": 1756.26,
"probability": 0.5089
},
{
"start": 1759.78,
"end": 1761.34,
"probability": 0.7666
},
{
"start": 1765.3,
"end": 1766.0,
"probability": 0.7812
},
{
"start": 1769.38,
"end": 1770.28,
"probability": 0.7917
},
{
"start": 1771.56,
"end": 1774.5,
"probability": 0.9157
},
{
"start": 1776.12,
"end": 1777.55,
"probability": 0.9829
},
{
"start": 1778.48,
"end": 1779.56,
"probability": 0.8262
},
{
"start": 1780.64,
"end": 1782.78,
"probability": 0.8877
},
{
"start": 1785.54,
"end": 1786.52,
"probability": 0.9792
},
{
"start": 1786.78,
"end": 1787.42,
"probability": 0.8429
},
{
"start": 1787.58,
"end": 1788.96,
"probability": 0.9531
},
{
"start": 1790.2,
"end": 1790.62,
"probability": 0.8123
},
{
"start": 1791.66,
"end": 1793.58,
"probability": 0.9206
},
{
"start": 1794.52,
"end": 1797.43,
"probability": 0.8886
},
{
"start": 1798.16,
"end": 1798.52,
"probability": 0.9655
},
{
"start": 1798.6,
"end": 1799.24,
"probability": 0.9708
},
{
"start": 1799.3,
"end": 1800.9,
"probability": 0.6572
},
{
"start": 1802.4,
"end": 1803.79,
"probability": 0.604
},
{
"start": 1804.28,
"end": 1809.5,
"probability": 0.9047
},
{
"start": 1809.58,
"end": 1811.96,
"probability": 0.5991
},
{
"start": 1813.08,
"end": 1813.88,
"probability": 0.7514
},
{
"start": 1814.62,
"end": 1817.18,
"probability": 0.6438
},
{
"start": 1817.18,
"end": 1820.34,
"probability": 0.9994
},
{
"start": 1821.1,
"end": 1824.22,
"probability": 0.9956
},
{
"start": 1825.02,
"end": 1826.74,
"probability": 0.6647
},
{
"start": 1828.76,
"end": 1829.81,
"probability": 0.9771
},
{
"start": 1830.04,
"end": 1832.62,
"probability": 0.8442
},
{
"start": 1833.22,
"end": 1833.76,
"probability": 0.6383
},
{
"start": 1835.24,
"end": 1836.98,
"probability": 0.9314
},
{
"start": 1837.94,
"end": 1839.5,
"probability": 0.7547
},
{
"start": 1839.9,
"end": 1841.98,
"probability": 0.7862
},
{
"start": 1843.9,
"end": 1844.52,
"probability": 0.918
},
{
"start": 1845.44,
"end": 1848.0,
"probability": 0.9631
},
{
"start": 1849.14,
"end": 1851.54,
"probability": 0.9834
},
{
"start": 1853.12,
"end": 1858.78,
"probability": 0.9563
},
{
"start": 1859.52,
"end": 1864.42,
"probability": 0.7764
},
{
"start": 1864.5,
"end": 1866.08,
"probability": 0.841
},
{
"start": 1866.44,
"end": 1868.14,
"probability": 0.9209
},
{
"start": 1868.84,
"end": 1871.34,
"probability": 0.9736
},
{
"start": 1872.08,
"end": 1874.28,
"probability": 0.9743
},
{
"start": 1874.98,
"end": 1877.0,
"probability": 0.9432
},
{
"start": 1877.2,
"end": 1879.76,
"probability": 0.9548
},
{
"start": 1882.14,
"end": 1882.46,
"probability": 0.6477
},
{
"start": 1882.98,
"end": 1885.18,
"probability": 0.9858
},
{
"start": 1885.56,
"end": 1887.64,
"probability": 0.9691
},
{
"start": 1887.74,
"end": 1889.3,
"probability": 0.8988
},
{
"start": 1890.66,
"end": 1892.38,
"probability": 0.9733
},
{
"start": 1892.76,
"end": 1893.26,
"probability": 0.9526
},
{
"start": 1893.66,
"end": 1894.92,
"probability": 0.992
},
{
"start": 1895.04,
"end": 1896.84,
"probability": 0.9705
},
{
"start": 1897.82,
"end": 1900.44,
"probability": 0.9486
},
{
"start": 1900.56,
"end": 1901.1,
"probability": 0.4917
},
{
"start": 1901.28,
"end": 1902.68,
"probability": 0.9561
},
{
"start": 1903.18,
"end": 1904.18,
"probability": 0.7613
},
{
"start": 1904.54,
"end": 1907.02,
"probability": 0.9491
},
{
"start": 1907.8,
"end": 1909.72,
"probability": 0.9859
},
{
"start": 1911.94,
"end": 1914.89,
"probability": 0.948
},
{
"start": 1915.94,
"end": 1919.14,
"probability": 0.9968
},
{
"start": 1919.8,
"end": 1922.6,
"probability": 0.9929
},
{
"start": 1923.46,
"end": 1925.02,
"probability": 0.924
},
{
"start": 1926.1,
"end": 1926.42,
"probability": 0.4556
},
{
"start": 1927.02,
"end": 1927.5,
"probability": 0.7643
},
{
"start": 1928.72,
"end": 1930.86,
"probability": 0.9727
},
{
"start": 1931.0,
"end": 1932.92,
"probability": 0.8324
},
{
"start": 1933.58,
"end": 1935.12,
"probability": 0.958
},
{
"start": 1935.66,
"end": 1936.44,
"probability": 0.9916
},
{
"start": 1937.02,
"end": 1937.76,
"probability": 0.8438
},
{
"start": 1939.46,
"end": 1939.82,
"probability": 0.8786
},
{
"start": 1940.58,
"end": 1942.14,
"probability": 0.9078
},
{
"start": 1944.16,
"end": 1948.02,
"probability": 0.9958
},
{
"start": 1948.74,
"end": 1949.22,
"probability": 0.848
},
{
"start": 1950.78,
"end": 1953.56,
"probability": 0.8746
},
{
"start": 1955.14,
"end": 1958.18,
"probability": 0.9934
},
{
"start": 1959.32,
"end": 1959.76,
"probability": 0.8459
},
{
"start": 1960.88,
"end": 1963.36,
"probability": 0.9922
},
{
"start": 1964.3,
"end": 1964.64,
"probability": 0.7251
},
{
"start": 1965.44,
"end": 1966.68,
"probability": 0.8425
},
{
"start": 1967.52,
"end": 1968.98,
"probability": 0.9088
},
{
"start": 1969.9,
"end": 1971.35,
"probability": 0.4941
},
{
"start": 1971.98,
"end": 1973.06,
"probability": 0.9615
},
{
"start": 1974.52,
"end": 1975.3,
"probability": 0.7889
},
{
"start": 1977.5,
"end": 1977.82,
"probability": 0.9007
},
{
"start": 1978.56,
"end": 1979.44,
"probability": 0.9018
},
{
"start": 1980.24,
"end": 1981.8,
"probability": 0.8446
},
{
"start": 1984.16,
"end": 1985.46,
"probability": 0.9744
},
{
"start": 1986.82,
"end": 1987.98,
"probability": 0.9982
},
{
"start": 1988.56,
"end": 1989.18,
"probability": 0.9915
},
{
"start": 1989.74,
"end": 1992.16,
"probability": 0.969
},
{
"start": 1993.12,
"end": 1993.4,
"probability": 0.773
},
{
"start": 2005.84,
"end": 2008.5,
"probability": 0.1708
},
{
"start": 2012.5,
"end": 2015.78,
"probability": 0.2622
},
{
"start": 2016.6,
"end": 2016.7,
"probability": 0.028
},
{
"start": 2127.32,
"end": 2131.02,
"probability": 0.684
},
{
"start": 2131.6,
"end": 2135.44,
"probability": 0.9827
},
{
"start": 2136.14,
"end": 2136.92,
"probability": 0.9277
},
{
"start": 2137.34,
"end": 2138.76,
"probability": 0.857
},
{
"start": 2139.34,
"end": 2143.82,
"probability": 0.9758
},
{
"start": 2144.18,
"end": 2146.94,
"probability": 0.994
},
{
"start": 2147.6,
"end": 2149.32,
"probability": 0.9907
},
{
"start": 2149.52,
"end": 2149.92,
"probability": 0.9676
},
{
"start": 2150.72,
"end": 2151.34,
"probability": 0.071
},
{
"start": 2151.38,
"end": 2152.94,
"probability": 0.7134
},
{
"start": 2156.5,
"end": 2156.86,
"probability": 0.7949
},
{
"start": 2160.68,
"end": 2162.78,
"probability": 0.8228
},
{
"start": 2164.34,
"end": 2167.3,
"probability": 0.8241
},
{
"start": 2168.28,
"end": 2170.7,
"probability": 0.9347
},
{
"start": 2171.94,
"end": 2172.76,
"probability": 0.9878
},
{
"start": 2173.62,
"end": 2175.0,
"probability": 0.9655
},
{
"start": 2175.7,
"end": 2177.58,
"probability": 0.7081
},
{
"start": 2182.2,
"end": 2185.48,
"probability": 0.9805
},
{
"start": 2185.86,
"end": 2188.98,
"probability": 0.6719
},
{
"start": 2190.36,
"end": 2190.84,
"probability": 0.9766
},
{
"start": 2191.58,
"end": 2192.24,
"probability": 0.7971
},
{
"start": 2193.46,
"end": 2194.5,
"probability": 0.7304
},
{
"start": 2195.34,
"end": 2196.22,
"probability": 0.986
},
{
"start": 2197.14,
"end": 2199.28,
"probability": 0.9905
},
{
"start": 2201.02,
"end": 2202.98,
"probability": 0.8898
},
{
"start": 2203.82,
"end": 2205.54,
"probability": 0.9761
},
{
"start": 2209.38,
"end": 2212.58,
"probability": 0.9972
},
{
"start": 2213.18,
"end": 2219.3,
"probability": 0.9489
},
{
"start": 2220.74,
"end": 2224.34,
"probability": 0.8736
},
{
"start": 2224.62,
"end": 2225.48,
"probability": 0.8743
},
{
"start": 2226.28,
"end": 2230.3,
"probability": 0.9839
},
{
"start": 2232.46,
"end": 2234.46,
"probability": 0.9977
},
{
"start": 2235.1,
"end": 2236.6,
"probability": 0.895
},
{
"start": 2237.32,
"end": 2241.56,
"probability": 0.9829
},
{
"start": 2242.68,
"end": 2248.26,
"probability": 0.9888
},
{
"start": 2248.82,
"end": 2250.32,
"probability": 0.9756
},
{
"start": 2251.3,
"end": 2256.44,
"probability": 0.9966
},
{
"start": 2257.36,
"end": 2259.22,
"probability": 0.989
},
{
"start": 2261.14,
"end": 2264.86,
"probability": 0.9322
},
{
"start": 2265.46,
"end": 2266.38,
"probability": 0.7607
},
{
"start": 2267.18,
"end": 2267.48,
"probability": 0.7039
},
{
"start": 2267.7,
"end": 2268.22,
"probability": 0.8658
},
{
"start": 2268.32,
"end": 2272.3,
"probability": 0.9965
},
{
"start": 2272.3,
"end": 2277.1,
"probability": 0.9973
},
{
"start": 2278.56,
"end": 2285.02,
"probability": 0.9992
},
{
"start": 2285.94,
"end": 2286.64,
"probability": 0.5063
},
{
"start": 2287.18,
"end": 2287.68,
"probability": 0.9805
},
{
"start": 2288.64,
"end": 2291.64,
"probability": 0.9974
},
{
"start": 2292.8,
"end": 2297.24,
"probability": 0.9943
},
{
"start": 2297.32,
"end": 2302.74,
"probability": 0.9992
},
{
"start": 2303.42,
"end": 2307.96,
"probability": 0.996
},
{
"start": 2308.76,
"end": 2314.28,
"probability": 0.9984
},
{
"start": 2315.54,
"end": 2317.62,
"probability": 0.9343
},
{
"start": 2317.78,
"end": 2319.96,
"probability": 0.784
},
{
"start": 2320.1,
"end": 2321.3,
"probability": 0.9385
},
{
"start": 2321.8,
"end": 2325.24,
"probability": 0.9639
},
{
"start": 2326.08,
"end": 2329.38,
"probability": 0.9886
},
{
"start": 2330.04,
"end": 2334.62,
"probability": 0.9978
},
{
"start": 2334.64,
"end": 2340.46,
"probability": 0.9927
},
{
"start": 2341.38,
"end": 2344.86,
"probability": 0.9992
},
{
"start": 2345.46,
"end": 2348.98,
"probability": 0.8339
},
{
"start": 2349.9,
"end": 2352.44,
"probability": 0.8531
},
{
"start": 2353.06,
"end": 2355.06,
"probability": 0.9973
},
{
"start": 2355.66,
"end": 2356.52,
"probability": 0.9828
},
{
"start": 2357.74,
"end": 2360.62,
"probability": 0.9727
},
{
"start": 2361.52,
"end": 2362.48,
"probability": 0.9148
},
{
"start": 2363.08,
"end": 2368.1,
"probability": 0.9429
},
{
"start": 2368.7,
"end": 2369.6,
"probability": 0.8827
},
{
"start": 2370.16,
"end": 2373.26,
"probability": 0.9885
},
{
"start": 2374.5,
"end": 2378.54,
"probability": 0.996
},
{
"start": 2379.34,
"end": 2382.16,
"probability": 0.9596
},
{
"start": 2382.94,
"end": 2384.9,
"probability": 0.8922
},
{
"start": 2385.12,
"end": 2385.36,
"probability": 0.8204
},
{
"start": 2385.62,
"end": 2390.1,
"probability": 0.9814
},
{
"start": 2391.1,
"end": 2392.8,
"probability": 0.9988
},
{
"start": 2393.56,
"end": 2395.12,
"probability": 0.8261
},
{
"start": 2395.68,
"end": 2396.5,
"probability": 0.8923
},
{
"start": 2396.86,
"end": 2398.52,
"probability": 0.9854
},
{
"start": 2398.54,
"end": 2399.04,
"probability": 0.7872
},
{
"start": 2400.2,
"end": 2401.8,
"probability": 0.967
},
{
"start": 2402.58,
"end": 2403.0,
"probability": 0.0784
},
{
"start": 2403.04,
"end": 2407.26,
"probability": 0.7788
},
{
"start": 2408.02,
"end": 2411.04,
"probability": 0.9776
},
{
"start": 2411.04,
"end": 2414.24,
"probability": 0.9938
},
{
"start": 2415.24,
"end": 2418.54,
"probability": 0.9727
},
{
"start": 2418.54,
"end": 2422.02,
"probability": 0.9863
},
{
"start": 2422.76,
"end": 2424.7,
"probability": 0.9141
},
{
"start": 2425.62,
"end": 2427.68,
"probability": 0.9912
},
{
"start": 2428.14,
"end": 2428.22,
"probability": 0.46
},
{
"start": 2428.8,
"end": 2432.83,
"probability": 0.9861
},
{
"start": 2433.86,
"end": 2435.36,
"probability": 0.9031
},
{
"start": 2435.86,
"end": 2437.64,
"probability": 0.967
},
{
"start": 2437.72,
"end": 2439.58,
"probability": 0.9806
},
{
"start": 2441.26,
"end": 2442.6,
"probability": 0.7386
},
{
"start": 2443.14,
"end": 2444.02,
"probability": 0.9163
},
{
"start": 2444.58,
"end": 2446.44,
"probability": 0.9984
},
{
"start": 2447.46,
"end": 2450.54,
"probability": 0.9773
},
{
"start": 2451.04,
"end": 2453.32,
"probability": 0.9909
},
{
"start": 2454.42,
"end": 2457.18,
"probability": 0.9561
},
{
"start": 2458.24,
"end": 2461.58,
"probability": 0.9702
},
{
"start": 2462.2,
"end": 2462.68,
"probability": 0.9937
},
{
"start": 2463.64,
"end": 2466.4,
"probability": 0.9755
},
{
"start": 2466.8,
"end": 2468.4,
"probability": 0.7015
},
{
"start": 2468.9,
"end": 2473.98,
"probability": 0.9714
},
{
"start": 2474.54,
"end": 2475.22,
"probability": 0.8241
},
{
"start": 2475.88,
"end": 2482.3,
"probability": 0.9929
},
{
"start": 2483.24,
"end": 2484.14,
"probability": 0.9416
},
{
"start": 2485.44,
"end": 2485.54,
"probability": 0.5127
},
{
"start": 2486.14,
"end": 2489.32,
"probability": 0.7969
},
{
"start": 2490.2,
"end": 2493.6,
"probability": 0.9216
},
{
"start": 2494.46,
"end": 2498.26,
"probability": 0.8314
},
{
"start": 2498.92,
"end": 2500.24,
"probability": 0.8183
},
{
"start": 2500.72,
"end": 2503.24,
"probability": 0.5506
},
{
"start": 2503.28,
"end": 2503.98,
"probability": 0.8684
},
{
"start": 2504.54,
"end": 2505.14,
"probability": 0.9404
},
{
"start": 2505.7,
"end": 2507.58,
"probability": 0.7147
},
{
"start": 2514.66,
"end": 2516.96,
"probability": 0.8585
},
{
"start": 2517.08,
"end": 2518.76,
"probability": 0.9917
},
{
"start": 2519.82,
"end": 2522.64,
"probability": 0.9987
},
{
"start": 2523.36,
"end": 2526.5,
"probability": 0.9944
},
{
"start": 2527.84,
"end": 2532.84,
"probability": 0.9971
},
{
"start": 2532.84,
"end": 2539.04,
"probability": 0.978
},
{
"start": 2539.68,
"end": 2541.04,
"probability": 0.9771
},
{
"start": 2542.44,
"end": 2545.38,
"probability": 0.9937
},
{
"start": 2546.08,
"end": 2549.34,
"probability": 0.9964
},
{
"start": 2550.78,
"end": 2555.24,
"probability": 0.9923
},
{
"start": 2556.2,
"end": 2560.08,
"probability": 0.9967
},
{
"start": 2561.0,
"end": 2561.54,
"probability": 0.9275
},
{
"start": 2562.24,
"end": 2565.3,
"probability": 0.9951
},
{
"start": 2565.92,
"end": 2569.04,
"probability": 0.9827
},
{
"start": 2569.58,
"end": 2571.28,
"probability": 0.9515
},
{
"start": 2571.92,
"end": 2572.62,
"probability": 0.8928
},
{
"start": 2573.24,
"end": 2576.74,
"probability": 0.9824
},
{
"start": 2576.74,
"end": 2580.8,
"probability": 0.9985
},
{
"start": 2581.9,
"end": 2585.78,
"probability": 0.998
},
{
"start": 2585.78,
"end": 2589.94,
"probability": 0.9986
},
{
"start": 2590.44,
"end": 2593.16,
"probability": 0.9971
},
{
"start": 2593.68,
"end": 2596.36,
"probability": 0.7199
},
{
"start": 2596.36,
"end": 2599.88,
"probability": 0.9982
},
{
"start": 2600.5,
"end": 2604.86,
"probability": 0.9957
},
{
"start": 2605.88,
"end": 2608.84,
"probability": 0.4974
},
{
"start": 2609.36,
"end": 2612.86,
"probability": 0.979
},
{
"start": 2613.12,
"end": 2616.42,
"probability": 0.9922
},
{
"start": 2616.88,
"end": 2617.4,
"probability": 0.7834
},
{
"start": 2617.94,
"end": 2620.1,
"probability": 0.9976
},
{
"start": 2621.02,
"end": 2625.58,
"probability": 0.9941
},
{
"start": 2626.5,
"end": 2634.68,
"probability": 0.99
},
{
"start": 2634.86,
"end": 2640.54,
"probability": 0.998
},
{
"start": 2640.58,
"end": 2644.8,
"probability": 0.9966
},
{
"start": 2646.22,
"end": 2646.7,
"probability": 0.5021
},
{
"start": 2647.2,
"end": 2651.56,
"probability": 0.9912
},
{
"start": 2651.56,
"end": 2656.88,
"probability": 0.9878
},
{
"start": 2657.82,
"end": 2660.24,
"probability": 0.9802
},
{
"start": 2661.0,
"end": 2664.72,
"probability": 0.9823
},
{
"start": 2665.18,
"end": 2667.36,
"probability": 0.9798
},
{
"start": 2668.24,
"end": 2671.86,
"probability": 0.9943
},
{
"start": 2672.32,
"end": 2676.32,
"probability": 0.9973
},
{
"start": 2677.63,
"end": 2681.04,
"probability": 0.9817
},
{
"start": 2681.54,
"end": 2684.52,
"probability": 0.9697
},
{
"start": 2685.34,
"end": 2686.36,
"probability": 0.5594
},
{
"start": 2687.1,
"end": 2688.42,
"probability": 0.8628
},
{
"start": 2688.78,
"end": 2690.0,
"probability": 0.8091
},
{
"start": 2690.26,
"end": 2691.98,
"probability": 0.5327
},
{
"start": 2693.56,
"end": 2693.76,
"probability": 0.9191
},
{
"start": 2710.52,
"end": 2712.18,
"probability": 0.7516
},
{
"start": 2712.78,
"end": 2713.26,
"probability": 0.5645
},
{
"start": 2713.42,
"end": 2714.12,
"probability": 0.6921
},
{
"start": 2714.92,
"end": 2715.86,
"probability": 0.7419
},
{
"start": 2716.34,
"end": 2720.32,
"probability": 0.9755
},
{
"start": 2721.04,
"end": 2722.72,
"probability": 0.9771
},
{
"start": 2723.48,
"end": 2727.12,
"probability": 0.5483
},
{
"start": 2728.1,
"end": 2733.14,
"probability": 0.8145
},
{
"start": 2733.34,
"end": 2733.56,
"probability": 0.8481
},
{
"start": 2733.92,
"end": 2734.56,
"probability": 0.7555
},
{
"start": 2735.0,
"end": 2735.42,
"probability": 0.8977
},
{
"start": 2736.62,
"end": 2739.92,
"probability": 0.9808
},
{
"start": 2740.84,
"end": 2743.64,
"probability": 0.902
},
{
"start": 2744.74,
"end": 2746.6,
"probability": 0.5195
},
{
"start": 2748.06,
"end": 2750.1,
"probability": 0.7762
},
{
"start": 2755.4,
"end": 2755.72,
"probability": 0.8039
},
{
"start": 2762.32,
"end": 2762.42,
"probability": 0.4756
},
{
"start": 2762.52,
"end": 2765.92,
"probability": 0.6816
},
{
"start": 2767.6,
"end": 2774.06,
"probability": 0.9876
},
{
"start": 2774.32,
"end": 2777.2,
"probability": 0.9165
},
{
"start": 2777.94,
"end": 2781.94,
"probability": 0.9965
},
{
"start": 2782.02,
"end": 2787.06,
"probability": 0.9968
},
{
"start": 2787.56,
"end": 2790.24,
"probability": 0.9967
},
{
"start": 2790.26,
"end": 2793.02,
"probability": 0.9717
},
{
"start": 2793.24,
"end": 2794.02,
"probability": 0.9285
},
{
"start": 2795.2,
"end": 2798.02,
"probability": 0.763
},
{
"start": 2798.46,
"end": 2800.72,
"probability": 0.9769
},
{
"start": 2801.06,
"end": 2806.32,
"probability": 0.9573
},
{
"start": 2807.06,
"end": 2812.82,
"probability": 0.9644
},
{
"start": 2812.92,
"end": 2814.3,
"probability": 0.5847
},
{
"start": 2814.78,
"end": 2817.64,
"probability": 0.9842
},
{
"start": 2818.18,
"end": 2820.66,
"probability": 0.9852
},
{
"start": 2820.7,
"end": 2823.3,
"probability": 0.7127
},
{
"start": 2823.36,
"end": 2824.94,
"probability": 0.985
},
{
"start": 2825.48,
"end": 2827.4,
"probability": 0.9602
},
{
"start": 2829.3,
"end": 2831.04,
"probability": 0.9805
},
{
"start": 2831.66,
"end": 2837.6,
"probability": 0.9009
},
{
"start": 2838.18,
"end": 2842.78,
"probability": 0.9964
},
{
"start": 2843.22,
"end": 2846.38,
"probability": 0.9985
},
{
"start": 2846.38,
"end": 2849.12,
"probability": 0.8836
},
{
"start": 2849.22,
"end": 2849.38,
"probability": 0.7469
},
{
"start": 2849.44,
"end": 2852.12,
"probability": 0.9727
},
{
"start": 2852.26,
"end": 2852.86,
"probability": 0.638
},
{
"start": 2854.0,
"end": 2862.84,
"probability": 0.9478
},
{
"start": 2863.8,
"end": 2866.48,
"probability": 0.9909
},
{
"start": 2866.92,
"end": 2870.3,
"probability": 0.8714
},
{
"start": 2870.76,
"end": 2872.8,
"probability": 0.8168
},
{
"start": 2873.24,
"end": 2877.4,
"probability": 0.9951
},
{
"start": 2877.4,
"end": 2882.52,
"probability": 0.9949
},
{
"start": 2882.52,
"end": 2886.54,
"probability": 0.998
},
{
"start": 2886.62,
"end": 2892.1,
"probability": 0.9982
},
{
"start": 2892.72,
"end": 2895.96,
"probability": 0.9957
},
{
"start": 2895.96,
"end": 2899.36,
"probability": 0.9661
},
{
"start": 2899.68,
"end": 2901.9,
"probability": 0.9941
},
{
"start": 2902.28,
"end": 2906.8,
"probability": 0.9732
},
{
"start": 2907.38,
"end": 2909.3,
"probability": 0.8391
},
{
"start": 2909.74,
"end": 2915.94,
"probability": 0.9489
},
{
"start": 2916.56,
"end": 2919.18,
"probability": 0.9248
},
{
"start": 2919.18,
"end": 2921.53,
"probability": 0.9993
},
{
"start": 2922.14,
"end": 2922.56,
"probability": 0.7716
},
{
"start": 2922.74,
"end": 2923.04,
"probability": 0.7739
},
{
"start": 2923.34,
"end": 2927.67,
"probability": 0.9885
},
{
"start": 2927.9,
"end": 2928.54,
"probability": 0.835
},
{
"start": 2929.04,
"end": 2931.88,
"probability": 0.9061
},
{
"start": 2931.94,
"end": 2933.72,
"probability": 0.8661
},
{
"start": 2934.12,
"end": 2935.14,
"probability": 0.7241
},
{
"start": 2935.34,
"end": 2937.72,
"probability": 0.9647
},
{
"start": 2938.26,
"end": 2940.04,
"probability": 0.9958
},
{
"start": 2940.86,
"end": 2941.46,
"probability": 0.7975
},
{
"start": 2943.14,
"end": 2945.32,
"probability": 0.8365
},
{
"start": 2948.44,
"end": 2954.24,
"probability": 0.9882
},
{
"start": 2954.24,
"end": 2957.92,
"probability": 0.9962
},
{
"start": 2959.22,
"end": 2959.85,
"probability": 0.3207
},
{
"start": 2960.0,
"end": 2961.64,
"probability": 0.9224
},
{
"start": 2962.4,
"end": 2963.1,
"probability": 0.0127
},
{
"start": 2964.6,
"end": 2965.47,
"probability": 0.8673
},
{
"start": 2967.82,
"end": 2970.82,
"probability": 0.9762
},
{
"start": 2971.86,
"end": 2972.84,
"probability": 0.8101
},
{
"start": 2974.23,
"end": 2979.48,
"probability": 0.7866
},
{
"start": 2980.56,
"end": 2982.06,
"probability": 0.8515
},
{
"start": 2983.62,
"end": 2989.14,
"probability": 0.9946
},
{
"start": 2989.35,
"end": 2993.38,
"probability": 0.9145
},
{
"start": 2994.48,
"end": 2996.58,
"probability": 0.8481
},
{
"start": 2997.7,
"end": 3001.06,
"probability": 0.5801
},
{
"start": 3001.98,
"end": 3005.98,
"probability": 0.7722
},
{
"start": 3006.12,
"end": 3007.1,
"probability": 0.7179
},
{
"start": 3007.24,
"end": 3008.22,
"probability": 0.851
},
{
"start": 3010.78,
"end": 3012.86,
"probability": 0.7938
},
{
"start": 3014.1,
"end": 3018.06,
"probability": 0.5452
},
{
"start": 3018.8,
"end": 3019.74,
"probability": 0.8429
},
{
"start": 3020.3,
"end": 3023.06,
"probability": 0.7448
},
{
"start": 3023.66,
"end": 3026.28,
"probability": 0.7768
},
{
"start": 3026.98,
"end": 3032.64,
"probability": 0.5845
},
{
"start": 3033.22,
"end": 3034.18,
"probability": 0.9856
},
{
"start": 3038.56,
"end": 3039.8,
"probability": 0.3269
},
{
"start": 3040.82,
"end": 3044.04,
"probability": 0.9872
},
{
"start": 3044.22,
"end": 3046.9,
"probability": 0.9379
},
{
"start": 3048.08,
"end": 3053.32,
"probability": 0.9993
},
{
"start": 3053.6,
"end": 3054.7,
"probability": 0.7449
},
{
"start": 3055.34,
"end": 3058.1,
"probability": 0.8022
},
{
"start": 3058.58,
"end": 3060.74,
"probability": 0.5454
},
{
"start": 3061.98,
"end": 3065.58,
"probability": 0.9878
},
{
"start": 3065.74,
"end": 3067.0,
"probability": 0.5993
},
{
"start": 3068.06,
"end": 3070.36,
"probability": 0.9131
},
{
"start": 3071.28,
"end": 3075.34,
"probability": 0.9292
},
{
"start": 3075.4,
"end": 3079.72,
"probability": 0.9352
},
{
"start": 3079.8,
"end": 3080.44,
"probability": 0.5952
},
{
"start": 3081.24,
"end": 3081.7,
"probability": 0.5658
},
{
"start": 3081.92,
"end": 3084.74,
"probability": 0.972
},
{
"start": 3085.0,
"end": 3085.73,
"probability": 0.7441
},
{
"start": 3086.48,
"end": 3088.24,
"probability": 0.8316
},
{
"start": 3088.76,
"end": 3089.66,
"probability": 0.9106
},
{
"start": 3090.32,
"end": 3094.08,
"probability": 0.958
},
{
"start": 3094.22,
"end": 3096.64,
"probability": 0.6642
},
{
"start": 3096.88,
"end": 3097.9,
"probability": 0.9649
},
{
"start": 3098.3,
"end": 3099.6,
"probability": 0.7451
},
{
"start": 3100.04,
"end": 3101.68,
"probability": 0.9717
},
{
"start": 3101.84,
"end": 3102.6,
"probability": 0.6945
},
{
"start": 3103.14,
"end": 3105.36,
"probability": 0.9926
},
{
"start": 3106.04,
"end": 3108.04,
"probability": 0.9825
},
{
"start": 3108.56,
"end": 3109.0,
"probability": 0.9373
},
{
"start": 3109.85,
"end": 3112.82,
"probability": 0.886
},
{
"start": 3112.92,
"end": 3115.32,
"probability": 0.7976
},
{
"start": 3115.98,
"end": 3119.84,
"probability": 0.7481
},
{
"start": 3119.88,
"end": 3121.87,
"probability": 0.9761
},
{
"start": 3123.16,
"end": 3125.98,
"probability": 0.6789
},
{
"start": 3126.58,
"end": 3127.9,
"probability": 0.8921
},
{
"start": 3129.3,
"end": 3133.4,
"probability": 0.7466
},
{
"start": 3134.08,
"end": 3134.64,
"probability": 0.6547
},
{
"start": 3134.72,
"end": 3135.08,
"probability": 0.3911
},
{
"start": 3135.4,
"end": 3135.84,
"probability": 0.2512
},
{
"start": 3135.84,
"end": 3138.52,
"probability": 0.9092
},
{
"start": 3138.86,
"end": 3145.8,
"probability": 0.7943
},
{
"start": 3146.36,
"end": 3150.4,
"probability": 0.6644
},
{
"start": 3151.08,
"end": 3152.48,
"probability": 0.5548
},
{
"start": 3152.54,
"end": 3153.16,
"probability": 0.6461
},
{
"start": 3153.28,
"end": 3154.18,
"probability": 0.5754
},
{
"start": 3154.84,
"end": 3157.42,
"probability": 0.9868
},
{
"start": 3157.96,
"end": 3160.34,
"probability": 0.8595
},
{
"start": 3160.42,
"end": 3161.84,
"probability": 0.5412
},
{
"start": 3163.12,
"end": 3165.16,
"probability": 0.5987
},
{
"start": 3165.38,
"end": 3166.38,
"probability": 0.8405
},
{
"start": 3167.08,
"end": 3171.62,
"probability": 0.8345
},
{
"start": 3172.08,
"end": 3173.62,
"probability": 0.6694
},
{
"start": 3177.28,
"end": 3178.72,
"probability": 0.0412
},
{
"start": 3178.72,
"end": 3182.48,
"probability": 0.0728
},
{
"start": 3182.71,
"end": 3188.16,
"probability": 0.2432
},
{
"start": 3189.06,
"end": 3192.15,
"probability": 0.3065
},
{
"start": 3195.74,
"end": 3197.56,
"probability": 0.2381
},
{
"start": 3200.49,
"end": 3202.22,
"probability": 0.0748
},
{
"start": 3202.72,
"end": 3208.72,
"probability": 0.0856
},
{
"start": 3210.61,
"end": 3212.34,
"probability": 0.1259
},
{
"start": 3214.44,
"end": 3215.4,
"probability": 0.1326
},
{
"start": 3215.4,
"end": 3218.3,
"probability": 0.0655
},
{
"start": 3218.88,
"end": 3222.26,
"probability": 0.2831
},
{
"start": 3222.52,
"end": 3222.98,
"probability": 0.047
},
{
"start": 3223.72,
"end": 3227.58,
"probability": 0.11
},
{
"start": 3228.36,
"end": 3231.5,
"probability": 0.1796
},
{
"start": 3231.5,
"end": 3234.78,
"probability": 0.1859
},
{
"start": 3235.26,
"end": 3239.52,
"probability": 0.0881
},
{
"start": 3241.32,
"end": 3242.24,
"probability": 0.0821
},
{
"start": 3253.0,
"end": 3253.0,
"probability": 0.0
},
{
"start": 3253.0,
"end": 3253.0,
"probability": 0.0
},
{
"start": 3253.0,
"end": 3253.0,
"probability": 0.0
},
{
"start": 3253.0,
"end": 3253.0,
"probability": 0.0
},
{
"start": 3253.0,
"end": 3253.0,
"probability": 0.0
},
{
"start": 3253.3,
"end": 3253.98,
"probability": 0.0371
},
{
"start": 3254.84,
"end": 3256.94,
"probability": 0.8652
},
{
"start": 3257.6,
"end": 3260.76,
"probability": 0.4993
},
{
"start": 3260.86,
"end": 3264.62,
"probability": 0.8716
},
{
"start": 3264.76,
"end": 3266.28,
"probability": 0.9742
},
{
"start": 3266.74,
"end": 3267.46,
"probability": 0.7873
},
{
"start": 3270.75,
"end": 3271.1,
"probability": 0.0677
},
{
"start": 3272.12,
"end": 3272.52,
"probability": 0.2841
},
{
"start": 3273.97,
"end": 3274.32,
"probability": 0.0536
},
{
"start": 3274.32,
"end": 3274.53,
"probability": 0.0826
},
{
"start": 3276.78,
"end": 3279.0,
"probability": 0.078
},
{
"start": 3279.0,
"end": 3280.36,
"probability": 0.2442
},
{
"start": 3280.4,
"end": 3282.98,
"probability": 0.0846
},
{
"start": 3283.06,
"end": 3283.98,
"probability": 0.2504
},
{
"start": 3285.66,
"end": 3287.6,
"probability": 0.4041
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.0,
"end": 3385.0,
"probability": 0.0
},
{
"start": 3385.24,
"end": 3385.38,
"probability": 0.098
},
{
"start": 3385.38,
"end": 3385.38,
"probability": 0.0379
},
{
"start": 3385.38,
"end": 3388.98,
"probability": 0.9919
},
{
"start": 3389.8,
"end": 3393.66,
"probability": 0.9932
},
{
"start": 3395.32,
"end": 3400.22,
"probability": 0.9856
},
{
"start": 3400.58,
"end": 3402.2,
"probability": 0.9976
},
{
"start": 3403.64,
"end": 3409.46,
"probability": 0.9839
},
{
"start": 3410.0,
"end": 3411.96,
"probability": 0.9857
},
{
"start": 3412.38,
"end": 3416.62,
"probability": 0.9952
},
{
"start": 3417.24,
"end": 3419.4,
"probability": 0.9843
},
{
"start": 3420.33,
"end": 3422.72,
"probability": 0.998
},
{
"start": 3424.08,
"end": 3424.56,
"probability": 0.9307
},
{
"start": 3425.54,
"end": 3426.22,
"probability": 0.9875
},
{
"start": 3427.94,
"end": 3429.44,
"probability": 0.9981
},
{
"start": 3429.98,
"end": 3433.94,
"probability": 0.6657
},
{
"start": 3434.92,
"end": 3441.74,
"probability": 0.9924
},
{
"start": 3441.74,
"end": 3447.5,
"probability": 0.9958
},
{
"start": 3447.72,
"end": 3454.16,
"probability": 0.991
},
{
"start": 3455.36,
"end": 3458.21,
"probability": 0.9951
},
{
"start": 3458.58,
"end": 3461.64,
"probability": 0.9967
},
{
"start": 3461.78,
"end": 3462.94,
"probability": 0.938
},
{
"start": 3463.38,
"end": 3465.6,
"probability": 0.9569
},
{
"start": 3465.94,
"end": 3470.02,
"probability": 0.9902
},
{
"start": 3470.87,
"end": 3475.04,
"probability": 0.9956
},
{
"start": 3475.46,
"end": 3476.86,
"probability": 0.6795
},
{
"start": 3477.78,
"end": 3479.14,
"probability": 0.6235
},
{
"start": 3479.62,
"end": 3482.9,
"probability": 0.9242
},
{
"start": 3483.24,
"end": 3483.68,
"probability": 0.5962
},
{
"start": 3484.0,
"end": 3485.54,
"probability": 0.8125
},
{
"start": 3485.84,
"end": 3489.4,
"probability": 0.9967
},
{
"start": 3490.08,
"end": 3496.7,
"probability": 0.9932
},
{
"start": 3497.22,
"end": 3497.6,
"probability": 0.3418
},
{
"start": 3497.86,
"end": 3498.6,
"probability": 0.9883
},
{
"start": 3499.32,
"end": 3506.52,
"probability": 0.8451
},
{
"start": 3507.46,
"end": 3508.86,
"probability": 0.7756
},
{
"start": 3508.92,
"end": 3512.98,
"probability": 0.9067
},
{
"start": 3513.72,
"end": 3518.22,
"probability": 0.8914
},
{
"start": 3521.52,
"end": 3522.56,
"probability": 0.7449
},
{
"start": 3523.94,
"end": 3524.8,
"probability": 0.902
},
{
"start": 3525.92,
"end": 3526.16,
"probability": 0.8079
},
{
"start": 3527.28,
"end": 3528.04,
"probability": 0.9419
},
{
"start": 3530.16,
"end": 3532.1,
"probability": 0.7587
},
{
"start": 3537.42,
"end": 3538.82,
"probability": 0.4432
},
{
"start": 3539.64,
"end": 3540.76,
"probability": 0.6285
},
{
"start": 3542.98,
"end": 3543.48,
"probability": 0.7264
},
{
"start": 3543.9,
"end": 3544.64,
"probability": 0.8793
},
{
"start": 3545.45,
"end": 3549.14,
"probability": 0.9819
},
{
"start": 3549.28,
"end": 3553.24,
"probability": 0.931
},
{
"start": 3554.86,
"end": 3558.52,
"probability": 0.786
},
{
"start": 3559.4,
"end": 3562.3,
"probability": 0.9717
},
{
"start": 3563.36,
"end": 3564.1,
"probability": 0.7745
},
{
"start": 3564.4,
"end": 3570.32,
"probability": 0.4762
},
{
"start": 3570.32,
"end": 3572.5,
"probability": 0.9023
},
{
"start": 3573.37,
"end": 3573.74,
"probability": 0.8057
},
{
"start": 3573.74,
"end": 3575.34,
"probability": 0.8605
},
{
"start": 3575.36,
"end": 3576.12,
"probability": 0.9383
},
{
"start": 3576.44,
"end": 3577.96,
"probability": 0.5531
},
{
"start": 3580.41,
"end": 3582.42,
"probability": 0.9473
},
{
"start": 3582.48,
"end": 3582.68,
"probability": 0.5442
},
{
"start": 3582.68,
"end": 3582.68,
"probability": 0.6204
},
{
"start": 3582.68,
"end": 3586.34,
"probability": 0.8026
},
{
"start": 3586.42,
"end": 3587.88,
"probability": 0.6963
},
{
"start": 3588.38,
"end": 3588.68,
"probability": 0.4359
},
{
"start": 3589.0,
"end": 3590.5,
"probability": 0.69
},
{
"start": 3591.22,
"end": 3594.28,
"probability": 0.9561
},
{
"start": 3594.46,
"end": 3594.7,
"probability": 0.5068
},
{
"start": 3594.94,
"end": 3598.0,
"probability": 0.9863
},
{
"start": 3598.88,
"end": 3602.3,
"probability": 0.749
},
{
"start": 3603.24,
"end": 3609.08,
"probability": 0.94
},
{
"start": 3610.92,
"end": 3616.38,
"probability": 0.9875
},
{
"start": 3617.7,
"end": 3624.02,
"probability": 0.9376
},
{
"start": 3624.82,
"end": 3627.74,
"probability": 0.8184
},
{
"start": 3628.58,
"end": 3629.24,
"probability": 0.8117
},
{
"start": 3629.38,
"end": 3630.99,
"probability": 0.9282
},
{
"start": 3632.37,
"end": 3637.6,
"probability": 0.5745
},
{
"start": 3638.46,
"end": 3639.68,
"probability": 0.4919
},
{
"start": 3640.28,
"end": 3642.4,
"probability": 0.8564
},
{
"start": 3643.16,
"end": 3647.3,
"probability": 0.5459
},
{
"start": 3649.04,
"end": 3651.42,
"probability": 0.0646
},
{
"start": 3651.94,
"end": 3653.7,
"probability": 0.833
},
{
"start": 3654.22,
"end": 3656.3,
"probability": 0.9034
},
{
"start": 3656.64,
"end": 3657.88,
"probability": 0.6663
},
{
"start": 3659.06,
"end": 3661.84,
"probability": 0.6972
},
{
"start": 3661.88,
"end": 3670.72,
"probability": 0.8879
},
{
"start": 3671.36,
"end": 3673.14,
"probability": 0.5817
},
{
"start": 3675.22,
"end": 3676.78,
"probability": 0.5513
},
{
"start": 3677.16,
"end": 3681.84,
"probability": 0.7249
},
{
"start": 3682.5,
"end": 3683.88,
"probability": 0.7448
},
{
"start": 3687.14,
"end": 3689.34,
"probability": 0.676
},
{
"start": 3690.22,
"end": 3692.7,
"probability": 0.5493
},
{
"start": 3693.96,
"end": 3694.84,
"probability": 0.741
},
{
"start": 3695.24,
"end": 3698.14,
"probability": 0.8136
},
{
"start": 3699.28,
"end": 3701.6,
"probability": 0.3634
},
{
"start": 3701.6,
"end": 3702.24,
"probability": 0.555
},
{
"start": 3702.28,
"end": 3703.78,
"probability": 0.8344
},
{
"start": 3703.9,
"end": 3704.7,
"probability": 0.8036
},
{
"start": 3705.36,
"end": 3705.98,
"probability": 0.8564
},
{
"start": 3706.58,
"end": 3710.32,
"probability": 0.8579
},
{
"start": 3711.06,
"end": 3716.5,
"probability": 0.4548
},
{
"start": 3717.26,
"end": 3718.12,
"probability": 0.5038
},
{
"start": 3718.64,
"end": 3728.62,
"probability": 0.8101
},
{
"start": 3729.08,
"end": 3729.9,
"probability": 0.868
},
{
"start": 3730.5,
"end": 3733.64,
"probability": 0.9125
},
{
"start": 3734.32,
"end": 3737.8,
"probability": 0.468
},
{
"start": 3737.98,
"end": 3739.82,
"probability": 0.9229
},
{
"start": 3740.2,
"end": 3741.74,
"probability": 0.8798
},
{
"start": 3742.02,
"end": 3745.62,
"probability": 0.7917
},
{
"start": 3746.47,
"end": 3749.78,
"probability": 0.8569
},
{
"start": 3751.12,
"end": 3752.48,
"probability": 0.7165
},
{
"start": 3754.34,
"end": 3756.52,
"probability": 0.9179
},
{
"start": 3757.6,
"end": 3758.46,
"probability": 0.3567
},
{
"start": 3758.52,
"end": 3759.52,
"probability": 0.866
},
{
"start": 3760.98,
"end": 3762.6,
"probability": 0.6402
},
{
"start": 3766.22,
"end": 3767.6,
"probability": 0.0316
},
{
"start": 3768.02,
"end": 3769.96,
"probability": 0.09
},
{
"start": 3771.2,
"end": 3771.3,
"probability": 0.102
},
{
"start": 3772.76,
"end": 3773.18,
"probability": 0.0068
},
{
"start": 3775.76,
"end": 3778.58,
"probability": 0.1869
},
{
"start": 3779.06,
"end": 3780.76,
"probability": 0.7213
},
{
"start": 3780.96,
"end": 3781.7,
"probability": 0.991
},
{
"start": 3785.08,
"end": 3788.16,
"probability": 0.9357
},
{
"start": 3789.12,
"end": 3789.46,
"probability": 0.9752
},
{
"start": 3790.04,
"end": 3792.34,
"probability": 0.544
},
{
"start": 3793.1,
"end": 3795.44,
"probability": 0.962
},
{
"start": 3796.34,
"end": 3797.62,
"probability": 0.9959
},
{
"start": 3798.6,
"end": 3799.54,
"probability": 0.9257
},
{
"start": 3800.28,
"end": 3802.72,
"probability": 0.8839
},
{
"start": 3803.56,
"end": 3804.1,
"probability": 0.9761
},
{
"start": 3805.2,
"end": 3807.56,
"probability": 0.6024
},
{
"start": 3808.24,
"end": 3812.82,
"probability": 0.9889
},
{
"start": 3813.78,
"end": 3815.56,
"probability": 0.8867
},
{
"start": 3816.2,
"end": 3819.54,
"probability": 0.9887
},
{
"start": 3820.26,
"end": 3822.76,
"probability": 0.9868
},
{
"start": 3822.78,
"end": 3825.0,
"probability": 0.9821
},
{
"start": 3826.18,
"end": 3827.44,
"probability": 0.8862
},
{
"start": 3827.62,
"end": 3828.9,
"probability": 0.9678
},
{
"start": 3829.02,
"end": 3829.69,
"probability": 0.9829
},
{
"start": 3830.34,
"end": 3830.96,
"probability": 0.4781
},
{
"start": 3831.04,
"end": 3831.94,
"probability": 0.7284
},
{
"start": 3832.78,
"end": 3836.08,
"probability": 0.9927
},
{
"start": 3836.8,
"end": 3839.98,
"probability": 0.9655
},
{
"start": 3840.08,
"end": 3840.88,
"probability": 0.8356
},
{
"start": 3840.94,
"end": 3844.15,
"probability": 0.9587
},
{
"start": 3844.86,
"end": 3847.38,
"probability": 0.9642
},
{
"start": 3848.12,
"end": 3849.1,
"probability": 0.5935
},
{
"start": 3851.06,
"end": 3853.52,
"probability": 0.9771
},
{
"start": 3854.32,
"end": 3856.84,
"probability": 0.9958
},
{
"start": 3857.4,
"end": 3861.2,
"probability": 0.9983
},
{
"start": 3862.02,
"end": 3865.26,
"probability": 0.9964
},
{
"start": 3866.02,
"end": 3867.84,
"probability": 0.9388
},
{
"start": 3867.96,
"end": 3868.8,
"probability": 0.9905
},
{
"start": 3869.32,
"end": 3872.04,
"probability": 0.9211
},
{
"start": 3872.08,
"end": 3873.18,
"probability": 0.9759
},
{
"start": 3873.6,
"end": 3874.6,
"probability": 0.8257
},
{
"start": 3877.28,
"end": 3877.28,
"probability": 0.2277
},
{
"start": 3877.28,
"end": 3879.18,
"probability": 0.5271
},
{
"start": 3879.7,
"end": 3879.92,
"probability": 0.8446
},
{
"start": 3880.98,
"end": 3882.14,
"probability": 0.8918
},
{
"start": 3882.62,
"end": 3883.0,
"probability": 0.2164
},
{
"start": 3883.4,
"end": 3885.04,
"probability": 0.8632
},
{
"start": 3888.26,
"end": 3888.52,
"probability": 0.4426
},
{
"start": 3889.72,
"end": 3889.86,
"probability": 0.0772
},
{
"start": 3889.86,
"end": 3889.86,
"probability": 0.4595
},
{
"start": 3889.86,
"end": 3890.14,
"probability": 0.4798
},
{
"start": 3891.24,
"end": 3891.44,
"probability": 0.7496
},
{
"start": 3891.98,
"end": 3892.98,
"probability": 0.7664
},
{
"start": 3893.5,
"end": 3893.66,
"probability": 0.8184
},
{
"start": 3894.6,
"end": 3895.46,
"probability": 0.7653
},
{
"start": 3896.98,
"end": 3898.06,
"probability": 0.608
},
{
"start": 3899.26,
"end": 3900.1,
"probability": 0.4339
},
{
"start": 3900.66,
"end": 3900.84,
"probability": 0.4124
},
{
"start": 3901.68,
"end": 3902.52,
"probability": 0.8385
},
{
"start": 3903.52,
"end": 3903.72,
"probability": 0.3154
},
{
"start": 3904.64,
"end": 3904.9,
"probability": 0.9527
},
{
"start": 3906.12,
"end": 3906.42,
"probability": 0.843
},
{
"start": 3907.24,
"end": 3908.76,
"probability": 0.9662
},
{
"start": 3909.8,
"end": 3911.2,
"probability": 0.7799
},
{
"start": 3911.8,
"end": 3912.82,
"probability": 0.5228
},
{
"start": 3913.38,
"end": 3914.46,
"probability": 0.6698
},
{
"start": 3937.32,
"end": 3938.4,
"probability": 0.4887
},
{
"start": 3939.7,
"end": 3944.42,
"probability": 0.9733
},
{
"start": 3944.76,
"end": 3948.7,
"probability": 0.8532
},
{
"start": 3948.78,
"end": 3950.22,
"probability": 0.9109
},
{
"start": 3950.28,
"end": 3950.82,
"probability": 0.6691
},
{
"start": 3951.32,
"end": 3952.08,
"probability": 0.9622
},
{
"start": 3952.36,
"end": 3952.96,
"probability": 0.9912
},
{
"start": 3953.52,
"end": 3957.61,
"probability": 0.9565
},
{
"start": 3958.66,
"end": 3967.1,
"probability": 0.9637
},
{
"start": 3967.16,
"end": 3970.12,
"probability": 0.9497
},
{
"start": 3970.12,
"end": 3975.76,
"probability": 0.9803
},
{
"start": 3975.76,
"end": 3979.68,
"probability": 0.9943
},
{
"start": 3980.16,
"end": 3981.88,
"probability": 0.8962
},
{
"start": 3985.08,
"end": 3986.7,
"probability": 0.4348
},
{
"start": 3987.48,
"end": 3989.5,
"probability": 0.9926
},
{
"start": 3989.8,
"end": 3994.5,
"probability": 0.9852
},
{
"start": 3994.62,
"end": 3999.9,
"probability": 0.4583
},
{
"start": 3999.9,
"end": 4004.16,
"probability": 0.9844
},
{
"start": 4004.66,
"end": 4004.9,
"probability": 0.745
},
{
"start": 4005.24,
"end": 4005.76,
"probability": 0.7323
},
{
"start": 4007.05,
"end": 4008.8,
"probability": 0.1317
},
{
"start": 4008.8,
"end": 4010.25,
"probability": 0.344
},
{
"start": 4010.52,
"end": 4012.76,
"probability": 0.9702
},
{
"start": 4013.28,
"end": 4019.1,
"probability": 0.9626
},
{
"start": 4019.16,
"end": 4024.4,
"probability": 0.9922
},
{
"start": 4025.06,
"end": 4031.26,
"probability": 0.9816
},
{
"start": 4031.26,
"end": 4037.0,
"probability": 0.9921
},
{
"start": 4037.2,
"end": 4039.06,
"probability": 0.8667
},
{
"start": 4039.62,
"end": 4047.58,
"probability": 0.9751
},
{
"start": 4048.04,
"end": 4050.72,
"probability": 0.9876
},
{
"start": 4051.16,
"end": 4057.42,
"probability": 0.9813
},
{
"start": 4058.0,
"end": 4063.28,
"probability": 0.9843
},
{
"start": 4063.35,
"end": 4066.54,
"probability": 0.9927
},
{
"start": 4067.08,
"end": 4068.22,
"probability": 0.9351
},
{
"start": 4068.92,
"end": 4071.73,
"probability": 0.7219
},
{
"start": 4071.92,
"end": 4077.94,
"probability": 0.9821
},
{
"start": 4078.54,
"end": 4079.06,
"probability": 0.723
},
{
"start": 4080.82,
"end": 4081.86,
"probability": 0.7867
},
{
"start": 4083.06,
"end": 4083.26,
"probability": 0.6724
},
{
"start": 4084.02,
"end": 4084.54,
"probability": 0.8229
},
{
"start": 4085.6,
"end": 4086.14,
"probability": 0.9331
},
{
"start": 4086.66,
"end": 4087.36,
"probability": 0.8609
},
{
"start": 4087.9,
"end": 4088.42,
"probability": 0.9765
},
{
"start": 4089.84,
"end": 4090.3,
"probability": 0.8141
},
{
"start": 4090.86,
"end": 4091.46,
"probability": 0.5266
},
{
"start": 4092.32,
"end": 4094.24,
"probability": 0.8411
},
{
"start": 4094.84,
"end": 4095.4,
"probability": 0.5267
},
{
"start": 4096.02,
"end": 4096.94,
"probability": 0.9575
},
{
"start": 4097.64,
"end": 4100.24,
"probability": 0.9431
},
{
"start": 4100.66,
"end": 4101.38,
"probability": 0.8421
},
{
"start": 4102.18,
"end": 4102.3,
"probability": 0.4831
},
{
"start": 4104.94,
"end": 4106.66,
"probability": 0.1728
},
{
"start": 4107.2,
"end": 4108.64,
"probability": 0.0956
},
{
"start": 4140.76,
"end": 4145.2,
"probability": 0.4947
},
{
"start": 4145.8,
"end": 4147.02,
"probability": 0.5896
},
{
"start": 4147.16,
"end": 4148.24,
"probability": 0.8195
},
{
"start": 4148.56,
"end": 4150.03,
"probability": 0.8667
},
{
"start": 4151.46,
"end": 4152.06,
"probability": 0.6353
},
{
"start": 4152.06,
"end": 4153.58,
"probability": 0.9563
},
{
"start": 4153.66,
"end": 4154.12,
"probability": 0.77
},
{
"start": 4154.58,
"end": 4156.95,
"probability": 0.8349
},
{
"start": 4157.62,
"end": 4158.5,
"probability": 0.0221
},
{
"start": 4159.7,
"end": 4160.18,
"probability": 0.7397
},
{
"start": 4161.24,
"end": 4164.7,
"probability": 0.6335
},
{
"start": 4165.44,
"end": 4166.84,
"probability": 0.786
},
{
"start": 4167.36,
"end": 4172.72,
"probability": 0.9869
},
{
"start": 4173.34,
"end": 4177.72,
"probability": 0.9749
},
{
"start": 4178.96,
"end": 4180.18,
"probability": 0.6923
},
{
"start": 4180.54,
"end": 4184.5,
"probability": 0.6727
},
{
"start": 4184.66,
"end": 4185.06,
"probability": 0.4591
},
{
"start": 4185.06,
"end": 4187.86,
"probability": 0.8681
},
{
"start": 4187.9,
"end": 4188.46,
"probability": 0.7987
},
{
"start": 4188.5,
"end": 4190.18,
"probability": 0.9917
},
{
"start": 4190.52,
"end": 4197.26,
"probability": 0.913
},
{
"start": 4198.1,
"end": 4204.05,
"probability": 0.9052
},
{
"start": 4204.8,
"end": 4209.85,
"probability": 0.9257
},
{
"start": 4210.0,
"end": 4212.1,
"probability": 0.6653
},
{
"start": 4212.86,
"end": 4216.12,
"probability": 0.9881
},
{
"start": 4216.6,
"end": 4218.12,
"probability": 0.9907
},
{
"start": 4218.26,
"end": 4222.24,
"probability": 0.9264
},
{
"start": 4222.56,
"end": 4225.96,
"probability": 0.9875
},
{
"start": 4226.16,
"end": 4228.38,
"probability": 0.8696
},
{
"start": 4228.4,
"end": 4232.54,
"probability": 0.9818
},
{
"start": 4233.06,
"end": 4236.96,
"probability": 0.8898
},
{
"start": 4237.36,
"end": 4238.68,
"probability": 0.8044
},
{
"start": 4239.18,
"end": 4239.86,
"probability": 0.848
},
{
"start": 4240.44,
"end": 4243.21,
"probability": 0.7609
},
{
"start": 4243.82,
"end": 4245.52,
"probability": 0.8933
},
{
"start": 4246.08,
"end": 4247.76,
"probability": 0.5
},
{
"start": 4247.88,
"end": 4249.48,
"probability": 0.8758
},
{
"start": 4250.04,
"end": 4251.66,
"probability": 0.9832
},
{
"start": 4251.78,
"end": 4255.14,
"probability": 0.8314
},
{
"start": 4255.78,
"end": 4257.12,
"probability": 0.7433
},
{
"start": 4257.36,
"end": 4259.78,
"probability": 0.9466
},
{
"start": 4260.44,
"end": 4262.74,
"probability": 0.8897
},
{
"start": 4263.72,
"end": 4264.82,
"probability": 0.8801
},
{
"start": 4265.22,
"end": 4266.78,
"probability": 0.9841
},
{
"start": 4267.16,
"end": 4269.26,
"probability": 0.888
},
{
"start": 4269.86,
"end": 4271.04,
"probability": 0.8997
},
{
"start": 4271.52,
"end": 4277.48,
"probability": 0.9851
},
{
"start": 4277.56,
"end": 4278.37,
"probability": 0.7583
},
{
"start": 4278.54,
"end": 4280.46,
"probability": 0.8395
},
{
"start": 4280.56,
"end": 4282.25,
"probability": 0.8167
},
{
"start": 4283.02,
"end": 4284.86,
"probability": 0.7442
},
{
"start": 4285.62,
"end": 4287.58,
"probability": 0.9821
},
{
"start": 4287.76,
"end": 4288.92,
"probability": 0.5417
},
{
"start": 4289.79,
"end": 4296.5,
"probability": 0.8606
},
{
"start": 4297.06,
"end": 4297.48,
"probability": 0.8342
},
{
"start": 4297.54,
"end": 4299.46,
"probability": 0.9749
},
{
"start": 4300.02,
"end": 4301.92,
"probability": 0.9556
},
{
"start": 4302.44,
"end": 4305.5,
"probability": 0.8459
},
{
"start": 4305.98,
"end": 4306.84,
"probability": 0.7073
},
{
"start": 4307.56,
"end": 4311.14,
"probability": 0.988
},
{
"start": 4311.64,
"end": 4312.22,
"probability": 0.5523
},
{
"start": 4312.32,
"end": 4314.0,
"probability": 0.9081
},
{
"start": 4314.58,
"end": 4316.72,
"probability": 0.8881
},
{
"start": 4316.88,
"end": 4319.82,
"probability": 0.7048
},
{
"start": 4320.24,
"end": 4323.2,
"probability": 0.6245
},
{
"start": 4323.32,
"end": 4326.48,
"probability": 0.5215
},
{
"start": 4327.32,
"end": 4327.88,
"probability": 0.5795
},
{
"start": 4328.28,
"end": 4328.9,
"probability": 0.6017
},
{
"start": 4329.12,
"end": 4329.9,
"probability": 0.7676
},
{
"start": 4330.22,
"end": 4332.76,
"probability": 0.9735
},
{
"start": 4333.04,
"end": 4333.92,
"probability": 0.8566
},
{
"start": 4334.44,
"end": 4335.5,
"probability": 0.3936
},
{
"start": 4335.68,
"end": 4336.1,
"probability": 0.3999
},
{
"start": 4336.14,
"end": 4338.62,
"probability": 0.545
},
{
"start": 4338.68,
"end": 4341.22,
"probability": 0.963
},
{
"start": 4341.38,
"end": 4342.48,
"probability": 0.9651
},
{
"start": 4343.24,
"end": 4345.46,
"probability": 0.9922
},
{
"start": 4345.54,
"end": 4346.28,
"probability": 0.9283
},
{
"start": 4346.44,
"end": 4347.22,
"probability": 0.6814
},
{
"start": 4347.24,
"end": 4348.04,
"probability": 0.9015
},
{
"start": 4348.52,
"end": 4349.84,
"probability": 0.6681
},
{
"start": 4350.24,
"end": 4353.4,
"probability": 0.9961
},
{
"start": 4353.82,
"end": 4356.66,
"probability": 0.9507
},
{
"start": 4356.94,
"end": 4361.42,
"probability": 0.7005
},
{
"start": 4361.82,
"end": 4361.82,
"probability": 0.7069
},
{
"start": 4361.82,
"end": 4363.48,
"probability": 0.7413
},
{
"start": 4363.84,
"end": 4365.2,
"probability": 0.9519
},
{
"start": 4365.9,
"end": 4366.78,
"probability": 0.5404
},
{
"start": 4366.88,
"end": 4366.98,
"probability": 0.4049
},
{
"start": 4367.5,
"end": 4368.2,
"probability": 0.5106
},
{
"start": 4368.22,
"end": 4368.46,
"probability": 0.4403
},
{
"start": 4368.66,
"end": 4372.09,
"probability": 0.9441
},
{
"start": 4372.64,
"end": 4377.07,
"probability": 0.7231
},
{
"start": 4377.26,
"end": 4378.14,
"probability": 0.7352
},
{
"start": 4378.42,
"end": 4378.66,
"probability": 0.7822
},
{
"start": 4380.1,
"end": 4380.96,
"probability": 0.7314
},
{
"start": 4381.62,
"end": 4382.4,
"probability": 0.6289
},
{
"start": 4383.38,
"end": 4384.04,
"probability": 0.6193
},
{
"start": 4384.86,
"end": 4386.76,
"probability": 0.9519
},
{
"start": 4387.64,
"end": 4390.54,
"probability": 0.9638
},
{
"start": 4391.18,
"end": 4392.36,
"probability": 0.7278
},
{
"start": 4393.76,
"end": 4394.04,
"probability": 0.9721
},
{
"start": 4394.72,
"end": 4395.32,
"probability": 0.9622
},
{
"start": 4395.98,
"end": 4396.68,
"probability": 0.994
},
{
"start": 4397.26,
"end": 4399.04,
"probability": 0.9615
},
{
"start": 4399.6,
"end": 4401.18,
"probability": 0.7531
},
{
"start": 4401.66,
"end": 4402.44,
"probability": 0.9005
},
{
"start": 4403.66,
"end": 4404.2,
"probability": 0.9589
},
{
"start": 4414.44,
"end": 4414.62,
"probability": 0.4988
},
{
"start": 4415.34,
"end": 4416.52,
"probability": 0.3171
},
{
"start": 4416.62,
"end": 4418.85,
"probability": 0.7507
},
{
"start": 4419.02,
"end": 4420.12,
"probability": 0.2915
},
{
"start": 4420.32,
"end": 4421.42,
"probability": 0.8653
},
{
"start": 4422.7,
"end": 4423.3,
"probability": 0.3559
},
{
"start": 4423.88,
"end": 4425.27,
"probability": 0.4498
},
{
"start": 4425.36,
"end": 4425.86,
"probability": 0.6702
},
{
"start": 4425.86,
"end": 4427.7,
"probability": 0.9383
},
{
"start": 4427.86,
"end": 4429.94,
"probability": 0.7863
},
{
"start": 4430.04,
"end": 4430.9,
"probability": 0.9352
},
{
"start": 4430.98,
"end": 4433.52,
"probability": 0.6423
},
{
"start": 4434.18,
"end": 4434.64,
"probability": 0.865
},
{
"start": 4436.38,
"end": 4438.74,
"probability": 0.8486
},
{
"start": 4440.12,
"end": 4442.16,
"probability": 0.6645
},
{
"start": 4443.14,
"end": 4447.16,
"probability": 0.7263
},
{
"start": 4447.88,
"end": 4450.14,
"probability": 0.9692
},
{
"start": 4451.2,
"end": 4453.44,
"probability": 0.9829
},
{
"start": 4453.54,
"end": 4454.12,
"probability": 0.3321
},
{
"start": 4455.08,
"end": 4457.72,
"probability": 0.9834
},
{
"start": 4458.96,
"end": 4459.12,
"probability": 0.56
},
{
"start": 4459.16,
"end": 4460.02,
"probability": 0.9477
},
{
"start": 4460.48,
"end": 4465.1,
"probability": 0.9602
},
{
"start": 4466.18,
"end": 4470.12,
"probability": 0.9701
},
{
"start": 4471.02,
"end": 4474.04,
"probability": 0.7759
},
{
"start": 4475.74,
"end": 4477.0,
"probability": 0.8486
},
{
"start": 4478.18,
"end": 4479.78,
"probability": 0.9012
},
{
"start": 4481.12,
"end": 4483.08,
"probability": 0.9872
},
{
"start": 4484.9,
"end": 4486.02,
"probability": 0.823
},
{
"start": 4487.0,
"end": 4488.38,
"probability": 0.6704
},
{
"start": 4489.24,
"end": 4492.84,
"probability": 0.9709
},
{
"start": 4493.8,
"end": 4495.38,
"probability": 0.9119
},
{
"start": 4495.52,
"end": 4500.3,
"probability": 0.9918
},
{
"start": 4501.28,
"end": 4503.46,
"probability": 0.9713
},
{
"start": 4504.02,
"end": 4507.94,
"probability": 0.9979
},
{
"start": 4508.96,
"end": 4512.7,
"probability": 0.7323
},
{
"start": 4513.7,
"end": 4516.34,
"probability": 0.7738
},
{
"start": 4516.4,
"end": 4517.34,
"probability": 0.827
},
{
"start": 4517.96,
"end": 4519.32,
"probability": 0.9666
},
{
"start": 4519.36,
"end": 4523.84,
"probability": 0.8785
},
{
"start": 4525.7,
"end": 4528.44,
"probability": 0.9797
},
{
"start": 4528.44,
"end": 4531.66,
"probability": 0.903
},
{
"start": 4531.9,
"end": 4532.0,
"probability": 0.5227
},
{
"start": 4533.34,
"end": 4535.58,
"probability": 0.9976
},
{
"start": 4535.74,
"end": 4537.2,
"probability": 0.9679
},
{
"start": 4537.72,
"end": 4541.18,
"probability": 0.8032
},
{
"start": 4542.0,
"end": 4545.78,
"probability": 0.9523
},
{
"start": 4546.52,
"end": 4548.64,
"probability": 0.9727
},
{
"start": 4549.3,
"end": 4552.12,
"probability": 0.9591
},
{
"start": 4552.96,
"end": 4556.64,
"probability": 0.9875
},
{
"start": 4557.34,
"end": 4561.64,
"probability": 0.9925
},
{
"start": 4561.76,
"end": 4566.12,
"probability": 0.9978
},
{
"start": 4566.86,
"end": 4569.12,
"probability": 0.895
},
{
"start": 4569.64,
"end": 4572.62,
"probability": 0.967
},
{
"start": 4573.2,
"end": 4573.38,
"probability": 0.3647
},
{
"start": 4573.6,
"end": 4578.76,
"probability": 0.9966
},
{
"start": 4579.4,
"end": 4585.88,
"probability": 0.9855
},
{
"start": 4586.38,
"end": 4587.74,
"probability": 0.8927
},
{
"start": 4588.2,
"end": 4591.42,
"probability": 0.9022
},
{
"start": 4591.96,
"end": 4597.46,
"probability": 0.9908
},
{
"start": 4598.18,
"end": 4601.42,
"probability": 0.9848
},
{
"start": 4602.32,
"end": 4603.68,
"probability": 0.9956
},
{
"start": 4604.64,
"end": 4605.96,
"probability": 0.9737
},
{
"start": 4606.54,
"end": 4609.82,
"probability": 0.9904
},
{
"start": 4609.82,
"end": 4613.16,
"probability": 0.9972
},
{
"start": 4613.3,
"end": 4614.04,
"probability": 0.5609
},
{
"start": 4614.26,
"end": 4615.4,
"probability": 0.9099
},
{
"start": 4615.92,
"end": 4618.4,
"probability": 0.9971
},
{
"start": 4619.18,
"end": 4622.82,
"probability": 0.9327
},
{
"start": 4623.46,
"end": 4628.4,
"probability": 0.9229
},
{
"start": 4628.4,
"end": 4631.46,
"probability": 0.9961
},
{
"start": 4632.04,
"end": 4634.56,
"probability": 0.955
},
{
"start": 4635.26,
"end": 4636.64,
"probability": 0.728
},
{
"start": 4636.72,
"end": 4638.54,
"probability": 0.0218
},
{
"start": 4638.84,
"end": 4639.42,
"probability": 0.9212
},
{
"start": 4640.0,
"end": 4640.46,
"probability": 0.5134
},
{
"start": 4640.5,
"end": 4642.48,
"probability": 0.9076
},
{
"start": 4661.54,
"end": 4663.88,
"probability": 0.8116
},
{
"start": 4665.86,
"end": 4669.3,
"probability": 0.9259
},
{
"start": 4670.68,
"end": 4673.66,
"probability": 0.9594
},
{
"start": 4675.1,
"end": 4675.54,
"probability": 0.9473
},
{
"start": 4677.34,
"end": 4677.9,
"probability": 0.9354
},
{
"start": 4679.38,
"end": 4679.62,
"probability": 0.6595
},
{
"start": 4680.52,
"end": 4681.8,
"probability": 0.8401
},
{
"start": 4682.56,
"end": 4685.34,
"probability": 0.9666
},
{
"start": 4687.34,
"end": 4690.74,
"probability": 0.6805
},
{
"start": 4693.74,
"end": 4696.52,
"probability": 0.7606
},
{
"start": 4698.28,
"end": 4700.04,
"probability": 0.9142
},
{
"start": 4701.02,
"end": 4703.72,
"probability": 0.902
},
{
"start": 4705.94,
"end": 4708.28,
"probability": 0.9909
},
{
"start": 4709.02,
"end": 4710.2,
"probability": 0.9628
},
{
"start": 4711.4,
"end": 4712.0,
"probability": 0.8479
},
{
"start": 4712.06,
"end": 4712.94,
"probability": 0.8666
},
{
"start": 4713.34,
"end": 4714.48,
"probability": 0.8928
},
{
"start": 4715.18,
"end": 4716.1,
"probability": 0.9907
},
{
"start": 4716.78,
"end": 4719.12,
"probability": 0.8511
},
{
"start": 4719.96,
"end": 4721.36,
"probability": 0.8353
},
{
"start": 4722.62,
"end": 4723.0,
"probability": 0.8595
},
{
"start": 4723.5,
"end": 4726.22,
"probability": 0.6181
},
{
"start": 4726.98,
"end": 4727.3,
"probability": 0.8477
},
{
"start": 4728.4,
"end": 4730.16,
"probability": 0.9574
},
{
"start": 4731.22,
"end": 4733.16,
"probability": 0.9048
},
{
"start": 4734.5,
"end": 4736.24,
"probability": 0.8416
},
{
"start": 4737.2,
"end": 4738.29,
"probability": 0.7019
},
{
"start": 4739.08,
"end": 4741.26,
"probability": 0.8758
},
{
"start": 4742.12,
"end": 4742.94,
"probability": 0.9596
},
{
"start": 4743.98,
"end": 4745.88,
"probability": 0.9712
},
{
"start": 4746.52,
"end": 4747.04,
"probability": 0.9889
},
{
"start": 4748.18,
"end": 4748.68,
"probability": 0.8127
},
{
"start": 4749.44,
"end": 4751.99,
"probability": 0.8789
},
{
"start": 4753.32,
"end": 4755.3,
"probability": 0.9083
},
{
"start": 4756.5,
"end": 4759.14,
"probability": 0.8386
},
{
"start": 4760.48,
"end": 4762.06,
"probability": 0.787
},
{
"start": 4762.54,
"end": 4765.6,
"probability": 0.9943
},
{
"start": 4767.48,
"end": 4767.84,
"probability": 0.899
},
{
"start": 4768.46,
"end": 4771.19,
"probability": 0.9692
},
{
"start": 4771.3,
"end": 4772.34,
"probability": 0.8485
},
{
"start": 4772.54,
"end": 4773.08,
"probability": 0.3195
},
{
"start": 4773.92,
"end": 4775.46,
"probability": 0.9905
},
{
"start": 4776.22,
"end": 4780.58,
"probability": 0.994
},
{
"start": 4781.14,
"end": 4781.68,
"probability": 0.557
},
{
"start": 4782.66,
"end": 4784.82,
"probability": 0.8466
},
{
"start": 4785.2,
"end": 4786.52,
"probability": 0.9803
},
{
"start": 4787.04,
"end": 4787.7,
"probability": 0.9036
},
{
"start": 4789.72,
"end": 4790.34,
"probability": 0.6015
},
{
"start": 4792.3,
"end": 4794.0,
"probability": 0.8962
},
{
"start": 4794.78,
"end": 4796.94,
"probability": 0.704
},
{
"start": 4797.82,
"end": 4799.08,
"probability": 0.8438
},
{
"start": 4799.6,
"end": 4799.78,
"probability": 0.8553
},
{
"start": 4799.94,
"end": 4800.84,
"probability": 0.9983
},
{
"start": 4800.88,
"end": 4801.06,
"probability": 0.8051
},
{
"start": 4801.38,
"end": 4803.0,
"probability": 0.8406
},
{
"start": 4803.62,
"end": 4805.18,
"probability": 0.9679
},
{
"start": 4806.5,
"end": 4807.9,
"probability": 0.9469
},
{
"start": 4808.28,
"end": 4808.3,
"probability": 0.4265
},
{
"start": 4808.56,
"end": 4808.8,
"probability": 0.7189
},
{
"start": 4808.8,
"end": 4808.8,
"probability": 0.6855
},
{
"start": 4808.8,
"end": 4809.52,
"probability": 0.5935
},
{
"start": 4810.48,
"end": 4815.16,
"probability": 0.9767
},
{
"start": 4816.0,
"end": 4817.06,
"probability": 0.9963
},
{
"start": 4818.48,
"end": 4820.48,
"probability": 0.8951
},
{
"start": 4826.56,
"end": 4827.5,
"probability": 0.4482
},
{
"start": 4827.54,
"end": 4828.56,
"probability": 0.9568
},
{
"start": 4829.26,
"end": 4829.26,
"probability": 0.9415
},
{
"start": 4829.26,
"end": 4829.26,
"probability": 0.1621
},
{
"start": 4829.26,
"end": 4830.12,
"probability": 0.4091
},
{
"start": 4830.34,
"end": 4831.04,
"probability": 0.3161
},
{
"start": 4831.18,
"end": 4831.36,
"probability": 0.0243
},
{
"start": 4831.36,
"end": 4831.36,
"probability": 0.0453
},
{
"start": 4841.52,
"end": 4842.7,
"probability": 0.1409
},
{
"start": 4842.76,
"end": 4842.76,
"probability": 0.0229
},
{
"start": 4842.8,
"end": 4842.9,
"probability": 0.1274
},
{
"start": 4842.9,
"end": 4844.28,
"probability": 0.0351
},
{
"start": 4885.62,
"end": 4886.28,
"probability": 0.4914
},
{
"start": 4886.54,
"end": 4887.52,
"probability": 0.8545
},
{
"start": 4887.58,
"end": 4888.05,
"probability": 0.889
},
{
"start": 4888.38,
"end": 4889.53,
"probability": 0.8918
},
{
"start": 4891.44,
"end": 4893.66,
"probability": 0.9844
},
{
"start": 4894.18,
"end": 4895.83,
"probability": 0.9541
},
{
"start": 4896.76,
"end": 4900.64,
"probability": 0.9738
},
{
"start": 4901.4,
"end": 4901.94,
"probability": 0.7881
},
{
"start": 4903.34,
"end": 4905.58,
"probability": 0.9769
},
{
"start": 4906.32,
"end": 4910.08,
"probability": 0.9227
},
{
"start": 4911.58,
"end": 4912.0,
"probability": 0.7699
},
{
"start": 4912.64,
"end": 4918.58,
"probability": 0.9453
},
{
"start": 4918.64,
"end": 4927.36,
"probability": 0.9359
},
{
"start": 4927.56,
"end": 4928.8,
"probability": 0.7952
},
{
"start": 4929.14,
"end": 4930.7,
"probability": 0.9971
},
{
"start": 4931.48,
"end": 4932.32,
"probability": 0.8851
},
{
"start": 4933.36,
"end": 4936.88,
"probability": 0.9935
},
{
"start": 4936.94,
"end": 4937.58,
"probability": 0.5719
},
{
"start": 4937.62,
"end": 4942.0,
"probability": 0.9867
},
{
"start": 4943.5,
"end": 4946.7,
"probability": 0.9771
},
{
"start": 4947.56,
"end": 4953.72,
"probability": 0.9347
},
{
"start": 4953.72,
"end": 4960.28,
"probability": 0.8128
},
{
"start": 4961.16,
"end": 4964.26,
"probability": 0.9907
},
{
"start": 4965.18,
"end": 4968.7,
"probability": 0.9986
},
{
"start": 4968.7,
"end": 4973.18,
"probability": 0.9617
},
{
"start": 4973.98,
"end": 4980.88,
"probability": 0.9197
},
{
"start": 4981.28,
"end": 4984.4,
"probability": 0.9974
},
{
"start": 4985.2,
"end": 4987.28,
"probability": 0.8022
},
{
"start": 4988.18,
"end": 4989.4,
"probability": 0.8846
},
{
"start": 4989.5,
"end": 4990.4,
"probability": 0.9971
},
{
"start": 4990.48,
"end": 4990.86,
"probability": 0.8483
},
{
"start": 4990.94,
"end": 4991.82,
"probability": 0.7343
},
{
"start": 4992.54,
"end": 4994.38,
"probability": 0.9832
},
{
"start": 4994.48,
"end": 4995.42,
"probability": 0.9722
},
{
"start": 4996.16,
"end": 4998.86,
"probability": 0.9881
},
{
"start": 4999.1,
"end": 4999.71,
"probability": 0.9731
},
{
"start": 5000.58,
"end": 5001.54,
"probability": 0.895
},
{
"start": 5002.91,
"end": 5006.08,
"probability": 0.9934
},
{
"start": 5006.16,
"end": 5006.4,
"probability": 0.7093
},
{
"start": 5006.66,
"end": 5007.66,
"probability": 0.7257
},
{
"start": 5022.82,
"end": 5024.2,
"probability": 0.6021
},
{
"start": 5050.12,
"end": 5053.72,
"probability": 0.6119
},
{
"start": 5057.52,
"end": 5061.38,
"probability": 0.9965
},
{
"start": 5062.92,
"end": 5064.0,
"probability": 0.9731
},
{
"start": 5064.62,
"end": 5065.34,
"probability": 0.9478
},
{
"start": 5065.5,
"end": 5073.96,
"probability": 0.9147
},
{
"start": 5074.56,
"end": 5075.54,
"probability": 0.9971
},
{
"start": 5077.06,
"end": 5077.49,
"probability": 0.9895
},
{
"start": 5078.3,
"end": 5079.76,
"probability": 0.9351
},
{
"start": 5080.18,
"end": 5081.76,
"probability": 0.8723
},
{
"start": 5083.04,
"end": 5086.06,
"probability": 0.9845
},
{
"start": 5087.78,
"end": 5091.78,
"probability": 0.8865
},
{
"start": 5092.68,
"end": 5094.5,
"probability": 0.7215
},
{
"start": 5095.06,
"end": 5096.38,
"probability": 0.9339
},
{
"start": 5096.9,
"end": 5098.0,
"probability": 0.9071
},
{
"start": 5099.39,
"end": 5100.18,
"probability": 0.9976
},
{
"start": 5100.86,
"end": 5104.28,
"probability": 0.9948
},
{
"start": 5105.02,
"end": 5105.52,
"probability": 0.9751
},
{
"start": 5108.02,
"end": 5110.82,
"probability": 0.8959
},
{
"start": 5111.48,
"end": 5112.83,
"probability": 0.999
},
{
"start": 5114.0,
"end": 5114.52,
"probability": 0.8918
},
{
"start": 5115.88,
"end": 5119.34,
"probability": 0.9891
},
{
"start": 5119.48,
"end": 5120.16,
"probability": 0.7108
},
{
"start": 5121.0,
"end": 5125.72,
"probability": 0.9863
},
{
"start": 5126.3,
"end": 5130.3,
"probability": 0.9272
},
{
"start": 5131.14,
"end": 5132.18,
"probability": 0.6667
},
{
"start": 5132.34,
"end": 5133.18,
"probability": 0.6896
},
{
"start": 5133.52,
"end": 5135.42,
"probability": 0.7205
},
{
"start": 5135.88,
"end": 5137.44,
"probability": 0.6551
},
{
"start": 5139.58,
"end": 5143.46,
"probability": 0.9854
},
{
"start": 5143.78,
"end": 5144.06,
"probability": 0.6008
},
{
"start": 5144.18,
"end": 5145.74,
"probability": 0.9954
},
{
"start": 5146.82,
"end": 5149.1,
"probability": 0.7036
},
{
"start": 5150.4,
"end": 5151.5,
"probability": 0.7217
},
{
"start": 5152.06,
"end": 5154.58,
"probability": 0.8942
},
{
"start": 5155.06,
"end": 5157.8,
"probability": 0.9884
},
{
"start": 5158.38,
"end": 5159.72,
"probability": 0.8133
},
{
"start": 5160.42,
"end": 5162.42,
"probability": 0.9907
},
{
"start": 5163.32,
"end": 5165.6,
"probability": 0.9066
},
{
"start": 5165.8,
"end": 5166.92,
"probability": 0.9971
},
{
"start": 5167.24,
"end": 5168.68,
"probability": 0.9946
},
{
"start": 5169.26,
"end": 5172.54,
"probability": 0.9832
},
{
"start": 5173.34,
"end": 5176.0,
"probability": 0.9861
},
{
"start": 5177.76,
"end": 5178.48,
"probability": 0.4648
},
{
"start": 5179.64,
"end": 5180.58,
"probability": 0.9775
},
{
"start": 5181.46,
"end": 5184.02,
"probability": 0.9316
},
{
"start": 5184.72,
"end": 5185.86,
"probability": 0.9741
},
{
"start": 5186.72,
"end": 5187.72,
"probability": 0.9658
},
{
"start": 5188.18,
"end": 5192.62,
"probability": 0.9858
},
{
"start": 5192.62,
"end": 5198.18,
"probability": 0.9897
},
{
"start": 5199.26,
"end": 5202.82,
"probability": 0.9971
},
{
"start": 5203.6,
"end": 5205.12,
"probability": 0.6707
},
{
"start": 5205.74,
"end": 5207.96,
"probability": 0.8984
},
{
"start": 5208.04,
"end": 5209.34,
"probability": 0.7507
},
{
"start": 5209.46,
"end": 5210.88,
"probability": 0.6735
},
{
"start": 5211.0,
"end": 5211.94,
"probability": 0.8203
},
{
"start": 5212.28,
"end": 5213.14,
"probability": 0.9247
},
{
"start": 5213.28,
"end": 5213.98,
"probability": 0.6063
},
{
"start": 5214.36,
"end": 5216.12,
"probability": 0.8667
},
{
"start": 5217.02,
"end": 5219.38,
"probability": 0.1592
},
{
"start": 5220.16,
"end": 5220.7,
"probability": 0.4697
},
{
"start": 5220.7,
"end": 5221.99,
"probability": 0.8957
},
{
"start": 5222.6,
"end": 5223.36,
"probability": 0.606
},
{
"start": 5223.46,
"end": 5225.78,
"probability": 0.9353
},
{
"start": 5225.9,
"end": 5226.95,
"probability": 0.9412
},
{
"start": 5227.54,
"end": 5231.56,
"probability": 0.8279
},
{
"start": 5232.0,
"end": 5233.7,
"probability": 0.98
},
{
"start": 5233.82,
"end": 5234.78,
"probability": 0.8564
},
{
"start": 5234.96,
"end": 5236.88,
"probability": 0.2443
},
{
"start": 5236.88,
"end": 5237.06,
"probability": 0.0004
},
{
"start": 5246.36,
"end": 5246.48,
"probability": 0.0338
},
{
"start": 5246.48,
"end": 5246.56,
"probability": 0.4249
},
{
"start": 5246.64,
"end": 5249.76,
"probability": 0.9731
},
{
"start": 5250.18,
"end": 5251.84,
"probability": 0.9231
},
{
"start": 5252.58,
"end": 5254.06,
"probability": 0.9291
},
{
"start": 5255.06,
"end": 5257.02,
"probability": 0.931
},
{
"start": 5257.26,
"end": 5259.8,
"probability": 0.9699
},
{
"start": 5259.8,
"end": 5263.38,
"probability": 0.992
},
{
"start": 5264.04,
"end": 5265.68,
"probability": 0.7854
},
{
"start": 5266.38,
"end": 5271.44,
"probability": 0.9734
},
{
"start": 5271.44,
"end": 5273.56,
"probability": 0.9887
},
{
"start": 5274.7,
"end": 5276.88,
"probability": 0.9236
},
{
"start": 5277.12,
"end": 5278.14,
"probability": 0.649
},
{
"start": 5278.24,
"end": 5278.68,
"probability": 0.6924
},
{
"start": 5279.76,
"end": 5280.4,
"probability": 0.6718
},
{
"start": 5281.08,
"end": 5284.64,
"probability": 0.9961
},
{
"start": 5284.64,
"end": 5288.4,
"probability": 0.9855
},
{
"start": 5289.28,
"end": 5293.94,
"probability": 0.971
},
{
"start": 5293.94,
"end": 5297.2,
"probability": 0.9639
},
{
"start": 5298.06,
"end": 5302.29,
"probability": 0.998
},
{
"start": 5302.52,
"end": 5303.8,
"probability": 0.9879
},
{
"start": 5304.68,
"end": 5306.02,
"probability": 0.8652
},
{
"start": 5306.74,
"end": 5308.52,
"probability": 0.9389
},
{
"start": 5309.22,
"end": 5312.4,
"probability": 0.9961
},
{
"start": 5312.54,
"end": 5312.74,
"probability": 0.5865
},
{
"start": 5313.02,
"end": 5315.12,
"probability": 0.9829
},
{
"start": 5315.26,
"end": 5315.5,
"probability": 0.2668
},
{
"start": 5316.14,
"end": 5316.82,
"probability": 0.8358
},
{
"start": 5317.38,
"end": 5319.98,
"probability": 0.9217
},
{
"start": 5323.58,
"end": 5328.52,
"probability": 0.8729
},
{
"start": 5332.06,
"end": 5333.32,
"probability": 0.9784
},
{
"start": 5334.9,
"end": 5338.14,
"probability": 0.9085
},
{
"start": 5338.36,
"end": 5340.72,
"probability": 0.8657
},
{
"start": 5356.88,
"end": 5356.88,
"probability": 0.5172
},
{
"start": 5357.0,
"end": 5358.58,
"probability": 0.176
},
{
"start": 5358.58,
"end": 5358.58,
"probability": 0.025
},
{
"start": 5358.58,
"end": 5358.58,
"probability": 0.0396
},
{
"start": 5358.58,
"end": 5359.52,
"probability": 0.3955
},
{
"start": 5359.52,
"end": 5362.4,
"probability": 0.2137
},
{
"start": 5364.86,
"end": 5365.1,
"probability": 0.2126
},
{
"start": 5366.96,
"end": 5367.24,
"probability": 0.0775
},
{
"start": 5367.24,
"end": 5367.24,
"probability": 0.0939
},
{
"start": 5367.24,
"end": 5367.24,
"probability": 0.0522
},
{
"start": 5367.24,
"end": 5367.68,
"probability": 0.0298
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.0,
"end": 5452.0,
"probability": 0.0
},
{
"start": 5452.98,
"end": 5455.1,
"probability": 0.1937
},
{
"start": 5468.58,
"end": 5468.68,
"probability": 0.005
},
{
"start": 5471.16,
"end": 5473.3,
"probability": 0.6945
},
{
"start": 5475.5,
"end": 5476.02,
"probability": 0.0163
},
{
"start": 5478.62,
"end": 5480.82,
"probability": 0.0633
},
{
"start": 5481.18,
"end": 5483.28,
"probability": 0.091
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5604.0,
"end": 5604.0,
"probability": 0.0
},
{
"start": 5618.42,
"end": 5622.78,
"probability": 0.4808
},
{
"start": 5635.82,
"end": 5639.5,
"probability": 0.0658
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5728.0,
"end": 5728.0,
"probability": 0.0
},
{
"start": 5730.9,
"end": 5731.5,
"probability": 0.0717
},
{
"start": 5731.5,
"end": 5731.5,
"probability": 0.0586
},
{
"start": 5731.5,
"end": 5731.92,
"probability": 0.216
},
{
"start": 5732.04,
"end": 5732.46,
"probability": 0.6966
},
{
"start": 5732.54,
"end": 5733.04,
"probability": 0.3794
},
{
"start": 5733.26,
"end": 5734.04,
"probability": 0.621
},
{
"start": 5737.5,
"end": 5737.5,
"probability": 0.0338
},
{
"start": 5739.64,
"end": 5744.46,
"probability": 0.4409
},
{
"start": 5753.44,
"end": 5755.2,
"probability": 0.6755
},
{
"start": 5756.48,
"end": 5758.66,
"probability": 0.9725
},
{
"start": 5759.38,
"end": 5762.72,
"probability": 0.995
},
{
"start": 5764.12,
"end": 5764.84,
"probability": 0.927
},
{
"start": 5764.9,
"end": 5767.64,
"probability": 0.9995
},
{
"start": 5767.68,
"end": 5771.22,
"probability": 0.9878
},
{
"start": 5772.08,
"end": 5773.68,
"probability": 0.9481
},
{
"start": 5774.22,
"end": 5776.68,
"probability": 0.9969
},
{
"start": 5777.44,
"end": 5780.5,
"probability": 0.9893
},
{
"start": 5781.24,
"end": 5782.46,
"probability": 0.9709
},
{
"start": 5783.78,
"end": 5786.96,
"probability": 0.8888
},
{
"start": 5787.6,
"end": 5789.8,
"probability": 0.9656
},
{
"start": 5789.92,
"end": 5793.94,
"probability": 0.909
},
{
"start": 5794.56,
"end": 5800.04,
"probability": 0.9967
},
{
"start": 5800.56,
"end": 5804.28,
"probability": 0.9941
},
{
"start": 5804.28,
"end": 5808.48,
"probability": 0.9429
},
{
"start": 5809.18,
"end": 5812.8,
"probability": 0.8521
},
{
"start": 5813.82,
"end": 5815.16,
"probability": 0.9595
},
{
"start": 5816.88,
"end": 5819.22,
"probability": 0.777
},
{
"start": 5819.22,
"end": 5821.96,
"probability": 0.9811
},
{
"start": 5822.64,
"end": 5824.24,
"probability": 0.9683
},
{
"start": 5824.94,
"end": 5827.62,
"probability": 0.7826
},
{
"start": 5828.3,
"end": 5832.14,
"probability": 0.9815
},
{
"start": 5832.92,
"end": 5835.6,
"probability": 0.9893
},
{
"start": 5836.22,
"end": 5838.56,
"probability": 0.9892
},
{
"start": 5839.58,
"end": 5842.32,
"probability": 0.9932
},
{
"start": 5842.32,
"end": 5846.2,
"probability": 0.9915
},
{
"start": 5846.62,
"end": 5851.16,
"probability": 0.9933
},
{
"start": 5851.82,
"end": 5853.38,
"probability": 0.8669
},
{
"start": 5854.12,
"end": 5857.38,
"probability": 0.9941
},
{
"start": 5858.0,
"end": 5860.74,
"probability": 0.9823
},
{
"start": 5861.36,
"end": 5866.62,
"probability": 0.9927
},
{
"start": 5867.42,
"end": 5870.94,
"probability": 0.9412
},
{
"start": 5871.74,
"end": 5875.02,
"probability": 0.8967
},
{
"start": 5875.02,
"end": 5878.54,
"probability": 0.9973
},
{
"start": 5879.22,
"end": 5880.43,
"probability": 0.9014
},
{
"start": 5881.64,
"end": 5882.66,
"probability": 0.9682
},
{
"start": 5882.78,
"end": 5888.58,
"probability": 0.9817
},
{
"start": 5890.38,
"end": 5891.34,
"probability": 0.8076
},
{
"start": 5891.42,
"end": 5894.18,
"probability": 0.9955
},
{
"start": 5894.18,
"end": 5897.76,
"probability": 0.9974
},
{
"start": 5898.36,
"end": 5900.42,
"probability": 0.9719
},
{
"start": 5901.04,
"end": 5904.58,
"probability": 0.9969
},
{
"start": 5905.1,
"end": 5911.38,
"probability": 0.9946
},
{
"start": 5911.5,
"end": 5911.78,
"probability": 0.6515
},
{
"start": 5912.86,
"end": 5913.4,
"probability": 0.7715
},
{
"start": 5915.56,
"end": 5916.46,
"probability": 0.9074
},
{
"start": 5918.52,
"end": 5919.22,
"probability": 0.8008
},
{
"start": 5920.3,
"end": 5921.2,
"probability": 0.6542
},
{
"start": 5922.16,
"end": 5922.78,
"probability": 0.7925
},
{
"start": 5923.32,
"end": 5923.82,
"probability": 0.6994
},
{
"start": 5951.62,
"end": 5953.4,
"probability": 0.7181
},
{
"start": 5954.44,
"end": 5958.16,
"probability": 0.9136
},
{
"start": 5959.08,
"end": 5964.26,
"probability": 0.9803
},
{
"start": 5964.26,
"end": 5968.7,
"probability": 0.9946
},
{
"start": 5969.78,
"end": 5975.82,
"probability": 0.9553
},
{
"start": 5975.82,
"end": 5978.68,
"probability": 0.996
},
{
"start": 5979.6,
"end": 5982.54,
"probability": 0.9979
},
{
"start": 5982.54,
"end": 5986.34,
"probability": 0.9989
},
{
"start": 5987.28,
"end": 5991.18,
"probability": 0.991
},
{
"start": 5992.3,
"end": 5994.48,
"probability": 0.5115
},
{
"start": 5995.76,
"end": 5999.62,
"probability": 0.9445
},
{
"start": 6000.42,
"end": 6003.62,
"probability": 0.7961
},
{
"start": 6004.98,
"end": 6007.08,
"probability": 0.9749
},
{
"start": 6007.82,
"end": 6010.98,
"probability": 0.9972
},
{
"start": 6011.98,
"end": 6012.78,
"probability": 0.8845
},
{
"start": 6014.12,
"end": 6016.26,
"probability": 0.974
},
{
"start": 6016.92,
"end": 6022.2,
"probability": 0.9926
},
{
"start": 6022.84,
"end": 6024.06,
"probability": 0.9348
},
{
"start": 6025.08,
"end": 6026.78,
"probability": 0.9944
},
{
"start": 6027.52,
"end": 6028.84,
"probability": 0.9501
},
{
"start": 6029.8,
"end": 6034.29,
"probability": 0.8622
},
{
"start": 6035.02,
"end": 6038.18,
"probability": 0.9513
},
{
"start": 6038.82,
"end": 6042.68,
"probability": 0.9296
},
{
"start": 6043.63,
"end": 6048.14,
"probability": 0.995
},
{
"start": 6049.2,
"end": 6050.18,
"probability": 0.6561
},
{
"start": 6050.78,
"end": 6053.32,
"probability": 0.8509
},
{
"start": 6054.38,
"end": 6057.42,
"probability": 0.9929
},
{
"start": 6058.8,
"end": 6061.34,
"probability": 0.9832
},
{
"start": 6062.18,
"end": 6066.6,
"probability": 0.7762
},
{
"start": 6067.26,
"end": 6070.14,
"probability": 0.9779
},
{
"start": 6070.14,
"end": 6074.94,
"probability": 0.9968
},
{
"start": 6075.76,
"end": 6077.14,
"probability": 0.999
},
{
"start": 6077.84,
"end": 6081.1,
"probability": 0.9689
},
{
"start": 6081.66,
"end": 6082.82,
"probability": 0.9445
},
{
"start": 6083.6,
"end": 6088.98,
"probability": 0.9856
},
{
"start": 6088.98,
"end": 6093.44,
"probability": 0.9956
},
{
"start": 6094.0,
"end": 6095.62,
"probability": 0.758
},
{
"start": 6096.64,
"end": 6097.32,
"probability": 0.9858
},
{
"start": 6097.98,
"end": 6098.62,
"probability": 0.7363
},
{
"start": 6099.84,
"end": 6101.98,
"probability": 0.9996
},
{
"start": 6102.9,
"end": 6106.52,
"probability": 0.9989
},
{
"start": 6107.54,
"end": 6112.8,
"probability": 0.9492
},
{
"start": 6113.24,
"end": 6116.2,
"probability": 0.9985
},
{
"start": 6116.74,
"end": 6120.48,
"probability": 0.9949
},
{
"start": 6120.9,
"end": 6123.44,
"probability": 0.9401
},
{
"start": 6124.74,
"end": 6127.68,
"probability": 0.9912
},
{
"start": 6128.44,
"end": 6130.84,
"probability": 0.9905
},
{
"start": 6131.62,
"end": 6135.94,
"probability": 0.9692
},
{
"start": 6135.94,
"end": 6140.86,
"probability": 0.9641
},
{
"start": 6141.6,
"end": 6145.08,
"probability": 0.7033
},
{
"start": 6146.02,
"end": 6147.0,
"probability": 0.6177
},
{
"start": 6147.14,
"end": 6148.24,
"probability": 0.6217
},
{
"start": 6148.24,
"end": 6151.16,
"probability": 0.7991
},
{
"start": 6151.78,
"end": 6152.5,
"probability": 0.2421
},
{
"start": 6152.5,
"end": 6157.76,
"probability": 0.8479
},
{
"start": 6158.18,
"end": 6158.78,
"probability": 0.5047
},
{
"start": 6158.78,
"end": 6159.22,
"probability": 0.8031
},
{
"start": 6160.66,
"end": 6162.28,
"probability": 0.8097
},
{
"start": 6163.14,
"end": 6164.34,
"probability": 0.4682
},
{
"start": 6165.08,
"end": 6166.06,
"probability": 0.5354
},
{
"start": 6166.62,
"end": 6167.26,
"probability": 0.8438
},
{
"start": 6167.7,
"end": 6168.26,
"probability": 0.753
},
{
"start": 6168.76,
"end": 6169.16,
"probability": 0.8954
},
{
"start": 6169.52,
"end": 6170.64,
"probability": 0.3769
},
{
"start": 6171.1,
"end": 6171.48,
"probability": 0.4251
},
{
"start": 6172.22,
"end": 6173.26,
"probability": 0.8389
},
{
"start": 6174.0,
"end": 6177.92,
"probability": 0.9254
},
{
"start": 6178.54,
"end": 6179.82,
"probability": 0.9375
},
{
"start": 6180.64,
"end": 6184.22,
"probability": 0.9275
},
{
"start": 6185.36,
"end": 6185.78,
"probability": 0.2669
},
{
"start": 6187.02,
"end": 6189.5,
"probability": 0.0542
},
{
"start": 6189.66,
"end": 6190.68,
"probability": 0.6906
},
{
"start": 6191.2,
"end": 6191.68,
"probability": 0.4632
},
{
"start": 6192.3,
"end": 6192.58,
"probability": 0.8314
},
{
"start": 6193.54,
"end": 6194.78,
"probability": 0.645
},
{
"start": 6195.8,
"end": 6196.14,
"probability": 0.0505
},
{
"start": 6196.74,
"end": 6202.46,
"probability": 0.8711
},
{
"start": 6203.24,
"end": 6203.66,
"probability": 0.2351
},
{
"start": 6204.4,
"end": 6205.74,
"probability": 0.7077
},
{
"start": 6206.62,
"end": 6210.36,
"probability": 0.8805
},
{
"start": 6210.94,
"end": 6212.38,
"probability": 0.8905
},
{
"start": 6213.04,
"end": 6214.3,
"probability": 0.947
},
{
"start": 6215.1,
"end": 6215.96,
"probability": 0.6032
},
{
"start": 6216.74,
"end": 6217.36,
"probability": 0.6719
},
{
"start": 6217.94,
"end": 6218.68,
"probability": 0.8447
},
{
"start": 6219.24,
"end": 6219.64,
"probability": 0.3222
},
{
"start": 6219.9,
"end": 6220.68,
"probability": 0.7078
},
{
"start": 6221.08,
"end": 6221.46,
"probability": 0.8599
},
{
"start": 6221.98,
"end": 6224.0,
"probability": 0.7561
},
{
"start": 6224.76,
"end": 6225.14,
"probability": 0.8873
},
{
"start": 6225.72,
"end": 6228.78,
"probability": 0.9604
},
{
"start": 6229.52,
"end": 6232.68,
"probability": 0.9857
},
{
"start": 6233.2,
"end": 6235.54,
"probability": 0.9265
},
{
"start": 6236.22,
"end": 6238.92,
"probability": 0.7424
},
{
"start": 6240.16,
"end": 6240.7,
"probability": 0.8628
},
{
"start": 6241.42,
"end": 6242.02,
"probability": 0.8052
},
{
"start": 6242.66,
"end": 6243.7,
"probability": 0.843
},
{
"start": 6244.34,
"end": 6244.78,
"probability": 0.7948
},
{
"start": 6246.44,
"end": 6247.02,
"probability": 0.8016
},
{
"start": 6247.56,
"end": 6249.74,
"probability": 0.8898
},
{
"start": 6250.3,
"end": 6253.22,
"probability": 0.8497
},
{
"start": 6254.12,
"end": 6256.04,
"probability": 0.3127
},
{
"start": 6256.72,
"end": 6257.0,
"probability": 0.3809
},
{
"start": 6258.86,
"end": 6259.88,
"probability": 0.4812
},
{
"start": 6261.16,
"end": 6262.7,
"probability": 0.9489
},
{
"start": 6263.8,
"end": 6265.32,
"probability": 0.9378
},
{
"start": 6266.3,
"end": 6268.42,
"probability": 0.7404
},
{
"start": 6269.1,
"end": 6269.68,
"probability": 0.6741
},
{
"start": 6270.94,
"end": 6273.0,
"probability": 0.6615
},
{
"start": 6273.62,
"end": 6274.51,
"probability": 0.1868
},
{
"start": 6274.68,
"end": 6280.94,
"probability": 0.589
},
{
"start": 6284.44,
"end": 6288.3,
"probability": 0.5521
},
{
"start": 6288.92,
"end": 6291.28,
"probability": 0.8788
},
{
"start": 6292.32,
"end": 6293.74,
"probability": 0.0749
},
{
"start": 6293.84,
"end": 6294.32,
"probability": 0.0355
},
{
"start": 6294.5,
"end": 6295.14,
"probability": 0.7709
},
{
"start": 6296.38,
"end": 6298.26,
"probability": 0.1461
},
{
"start": 6310.52,
"end": 6314.18,
"probability": 0.1528
},
{
"start": 6320.03,
"end": 6321.04,
"probability": 0.0939
},
{
"start": 6321.04,
"end": 6321.44,
"probability": 0.0434
},
{
"start": 6324.14,
"end": 6329.18,
"probability": 0.024
},
{
"start": 6330.84,
"end": 6333.1,
"probability": 0.0459
},
{
"start": 6334.4,
"end": 6334.7,
"probability": 0.4481
},
{
"start": 6339.82,
"end": 6340.9,
"probability": 0.1683
},
{
"start": 6340.98,
"end": 6343.0,
"probability": 0.2694
},
{
"start": 6343.3,
"end": 6345.7,
"probability": 0.1632
},
{
"start": 6345.7,
"end": 6346.28,
"probability": 0.0049
},
{
"start": 6346.28,
"end": 6346.52,
"probability": 0.0568
},
{
"start": 6346.52,
"end": 6346.78,
"probability": 0.132
},
{
"start": 6347.62,
"end": 6347.98,
"probability": 0.0396
},
{
"start": 6348.0,
"end": 6348.0,
"probability": 0.0
},
{
"start": 6348.0,
"end": 6348.0,
"probability": 0.0
},
{
"start": 6348.0,
"end": 6348.0,
"probability": 0.0
},
{
"start": 6348.0,
"end": 6348.0,
"probability": 0.0
},
{
"start": 6348.0,
"end": 6348.0,
"probability": 0.0
},
{
"start": 6348.0,
"end": 6348.0,
"probability": 0.0
},
{
"start": 6348.0,
"end": 6348.0,
"probability": 0.0
},
{
"start": 6348.0,
"end": 6348.0,
"probability": 0.0
},
{
"start": 6348.0,
"end": 6348.0,
"probability": 0.0
},
{
"start": 6348.91,
"end": 6349.62,
"probability": 0.574
},
{
"start": 6349.62,
"end": 6351.22,
"probability": 0.7273
},
{
"start": 6351.44,
"end": 6354.29,
"probability": 0.9021
},
{
"start": 6356.82,
"end": 6361.96,
"probability": 0.7231
},
{
"start": 6363.56,
"end": 6365.48,
"probability": 0.9824
},
{
"start": 6366.04,
"end": 6370.26,
"probability": 0.9493
},
{
"start": 6370.86,
"end": 6373.34,
"probability": 0.9737
},
{
"start": 6373.96,
"end": 6374.76,
"probability": 0.6436
},
{
"start": 6374.9,
"end": 6376.86,
"probability": 0.9095
},
{
"start": 6384.92,
"end": 6385.34,
"probability": 0.5609
},
{
"start": 6385.92,
"end": 6387.12,
"probability": 0.8381
},
{
"start": 6387.94,
"end": 6388.3,
"probability": 0.9686
},
{
"start": 6389.18,
"end": 6389.74,
"probability": 0.9722
},
{
"start": 6391.14,
"end": 6393.02,
"probability": 0.8578
},
{
"start": 6393.14,
"end": 6394.44,
"probability": 0.0382
},
{
"start": 6395.44,
"end": 6396.22,
"probability": 0.8171
},
{
"start": 6396.76,
"end": 6397.38,
"probability": 0.6096
},
{
"start": 6397.62,
"end": 6402.02,
"probability": 0.6741
},
{
"start": 6402.3,
"end": 6406.08,
"probability": 0.6948
},
{
"start": 6406.2,
"end": 6407.98,
"probability": 0.9885
},
{
"start": 6408.62,
"end": 6409.54,
"probability": 0.9303
},
{
"start": 6411.44,
"end": 6412.48,
"probability": 0.9429
},
{
"start": 6413.44,
"end": 6416.2,
"probability": 0.9572
},
{
"start": 6417.04,
"end": 6421.94,
"probability": 0.854
},
{
"start": 6422.7,
"end": 6424.2,
"probability": 0.4893
},
{
"start": 6424.82,
"end": 6428.8,
"probability": 0.9584
},
{
"start": 6428.92,
"end": 6430.8,
"probability": 0.9468
},
{
"start": 6430.88,
"end": 6433.36,
"probability": 0.7954
},
{
"start": 6434.64,
"end": 6435.14,
"probability": 0.8918
},
{
"start": 6435.62,
"end": 6437.58,
"probability": 0.8194
},
{
"start": 6437.86,
"end": 6439.46,
"probability": 0.9625
},
{
"start": 6440.08,
"end": 6442.04,
"probability": 0.7505
},
{
"start": 6445.1,
"end": 6446.06,
"probability": 0.859
},
{
"start": 6448.68,
"end": 6450.9,
"probability": 0.9967
},
{
"start": 6452.46,
"end": 6456.14,
"probability": 0.9083
},
{
"start": 6456.76,
"end": 6458.8,
"probability": 0.9905
},
{
"start": 6461.02,
"end": 6462.06,
"probability": 0.9982
},
{
"start": 6463.38,
"end": 6467.96,
"probability": 0.6246
},
{
"start": 6468.08,
"end": 6469.71,
"probability": 0.518
},
{
"start": 6471.1,
"end": 6472.96,
"probability": 0.1271
},
{
"start": 6472.96,
"end": 6475.76,
"probability": 0.5844
},
{
"start": 6476.38,
"end": 6478.24,
"probability": 0.9287
},
{
"start": 6479.06,
"end": 6480.38,
"probability": 0.7487
},
{
"start": 6480.98,
"end": 6482.46,
"probability": 0.9766
},
{
"start": 6483.08,
"end": 6485.74,
"probability": 0.9523
},
{
"start": 6486.74,
"end": 6487.9,
"probability": 0.8494
},
{
"start": 6488.06,
"end": 6488.58,
"probability": 0.9013
},
{
"start": 6489.02,
"end": 6489.36,
"probability": 0.8514
},
{
"start": 6489.6,
"end": 6490.7,
"probability": 0.9941
},
{
"start": 6491.64,
"end": 6495.58,
"probability": 0.952
},
{
"start": 6496.32,
"end": 6497.72,
"probability": 0.9476
},
{
"start": 6498.42,
"end": 6500.7,
"probability": 0.9909
},
{
"start": 6502.12,
"end": 6502.94,
"probability": 0.8074
},
{
"start": 6503.48,
"end": 6503.66,
"probability": 0.0173
},
{
"start": 6505.6,
"end": 6506.48,
"probability": 0.9719
},
{
"start": 6506.68,
"end": 6509.04,
"probability": 0.9412
},
{
"start": 6509.44,
"end": 6510.61,
"probability": 0.9049
},
{
"start": 6511.36,
"end": 6513.5,
"probability": 0.9326
},
{
"start": 6513.62,
"end": 6517.22,
"probability": 0.9701
},
{
"start": 6518.04,
"end": 6520.64,
"probability": 0.9773
},
{
"start": 6521.62,
"end": 6522.48,
"probability": 0.8588
},
{
"start": 6523.12,
"end": 6524.28,
"probability": 0.8916
},
{
"start": 6524.82,
"end": 6526.64,
"probability": 0.7968
},
{
"start": 6527.02,
"end": 6528.98,
"probability": 0.9043
},
{
"start": 6529.52,
"end": 6529.86,
"probability": 0.8002
},
{
"start": 6533.09,
"end": 6534.3,
"probability": 0.8639
},
{
"start": 6534.32,
"end": 6535.6,
"probability": 0.7514
},
{
"start": 6535.98,
"end": 6538.98,
"probability": 0.8906
},
{
"start": 6539.7,
"end": 6540.9,
"probability": 0.9264
},
{
"start": 6541.64,
"end": 6542.6,
"probability": 0.8959
},
{
"start": 6542.6,
"end": 6544.1,
"probability": 0.88
},
{
"start": 6557.1,
"end": 6557.24,
"probability": 0.0041
},
{
"start": 6557.26,
"end": 6560.58,
"probability": 0.0771
},
{
"start": 6560.58,
"end": 6562.94,
"probability": 0.5578
},
{
"start": 6563.72,
"end": 6566.4,
"probability": 0.3405
},
{
"start": 6566.76,
"end": 6569.46,
"probability": 0.0558
},
{
"start": 6580.1,
"end": 6580.76,
"probability": 0.3681
},
{
"start": 6580.82,
"end": 6580.82,
"probability": 0.4151
},
{
"start": 6583.44,
"end": 6583.86,
"probability": 0.0415
},
{
"start": 6584.48,
"end": 6585.2,
"probability": 0.2072
},
{
"start": 6585.28,
"end": 6590.96,
"probability": 0.0235
},
{
"start": 6591.06,
"end": 6594.44,
"probability": 0.0164
},
{
"start": 6595.05,
"end": 6595.88,
"probability": 0.2013
},
{
"start": 6595.88,
"end": 6595.88,
"probability": 0.0314
},
{
"start": 6595.88,
"end": 6595.96,
"probability": 0.024
},
{
"start": 6595.96,
"end": 6601.02,
"probability": 0.7079
},
{
"start": 6601.86,
"end": 6605.14,
"probability": 0.8773
},
{
"start": 6605.28,
"end": 6608.72,
"probability": 0.9969
},
{
"start": 6609.4,
"end": 6611.42,
"probability": 0.9432
},
{
"start": 6611.62,
"end": 6615.32,
"probability": 0.9975
},
{
"start": 6615.94,
"end": 6621.64,
"probability": 0.9805
},
{
"start": 6622.28,
"end": 6625.9,
"probability": 0.9116
},
{
"start": 6626.34,
"end": 6629.56,
"probability": 0.9185
},
{
"start": 6629.8,
"end": 6630.0,
"probability": 0.6619
},
{
"start": 6630.28,
"end": 6631.68,
"probability": 0.6481
},
{
"start": 6632.44,
"end": 6633.34,
"probability": 0.877
},
{
"start": 6634.6,
"end": 6635.5,
"probability": 0.5915
},
{
"start": 6637.16,
"end": 6639.7,
"probability": 0.923
},
{
"start": 6643.32,
"end": 6646.82,
"probability": 0.9738
},
{
"start": 6647.08,
"end": 6649.38,
"probability": 0.7367
},
{
"start": 6649.98,
"end": 6653.48,
"probability": 0.3231
},
{
"start": 6659.76,
"end": 6661.7,
"probability": 0.661
},
{
"start": 6662.64,
"end": 6662.78,
"probability": 0.3823
},
{
"start": 6663.18,
"end": 6666.02,
"probability": 0.8563
},
{
"start": 6666.86,
"end": 6672.54,
"probability": 0.9893
},
{
"start": 6673.08,
"end": 6675.6,
"probability": 0.8659
},
{
"start": 6676.7,
"end": 6680.28,
"probability": 0.9803
},
{
"start": 6680.7,
"end": 6686.06,
"probability": 0.9961
},
{
"start": 6686.06,
"end": 6692.1,
"probability": 0.9855
},
{
"start": 6692.1,
"end": 6696.04,
"probability": 0.8101
},
{
"start": 6697.02,
"end": 6702.72,
"probability": 0.9878
},
{
"start": 6703.22,
"end": 6706.82,
"probability": 0.9761
},
{
"start": 6706.82,
"end": 6710.66,
"probability": 0.9989
},
{
"start": 6711.7,
"end": 6716.68,
"probability": 0.9971
},
{
"start": 6717.22,
"end": 6722.04,
"probability": 0.9474
},
{
"start": 6722.84,
"end": 6725.2,
"probability": 0.9545
},
{
"start": 6725.2,
"end": 6729.22,
"probability": 0.983
},
{
"start": 6729.74,
"end": 6733.04,
"probability": 0.9818
},
{
"start": 6733.58,
"end": 6737.1,
"probability": 0.9603
},
{
"start": 6737.76,
"end": 6739.04,
"probability": 0.7012
},
{
"start": 6739.14,
"end": 6740.94,
"probability": 0.803
},
{
"start": 6741.38,
"end": 6743.96,
"probability": 0.9272
},
{
"start": 6744.42,
"end": 6748.1,
"probability": 0.9779
},
{
"start": 6748.8,
"end": 6749.04,
"probability": 0.506
},
{
"start": 6749.04,
"end": 6749.64,
"probability": 0.744
},
{
"start": 6750.66,
"end": 6752.22,
"probability": 0.937
},
{
"start": 6752.48,
"end": 6753.36,
"probability": 0.7061
},
{
"start": 6755.22,
"end": 6756.58,
"probability": 0.9249
},
{
"start": 6758.18,
"end": 6758.8,
"probability": 0.9403
},
{
"start": 6759.36,
"end": 6760.36,
"probability": 0.9026
},
{
"start": 6760.62,
"end": 6761.06,
"probability": 0.975
},
{
"start": 6761.48,
"end": 6763.28,
"probability": 0.9678
},
{
"start": 6763.76,
"end": 6765.38,
"probability": 0.5771
},
{
"start": 6766.0,
"end": 6767.1,
"probability": 0.9417
},
{
"start": 6771.18,
"end": 6773.88,
"probability": 0.2574
},
{
"start": 6775.1,
"end": 6777.32,
"probability": 0.721
},
{
"start": 6778.42,
"end": 6781.7,
"probability": 0.8275
},
{
"start": 6783.36,
"end": 6783.46,
"probability": 0.6034
},
{
"start": 6783.46,
"end": 6783.86,
"probability": 0.4789
},
{
"start": 6784.94,
"end": 6785.72,
"probability": 0.7261
},
{
"start": 6787.1,
"end": 6788.02,
"probability": 0.6418
},
{
"start": 6789.62,
"end": 6791.24,
"probability": 0.0044
},
{
"start": 6792.6,
"end": 6795.9,
"probability": 0.9648
},
{
"start": 6796.58,
"end": 6797.66,
"probability": 0.9787
},
{
"start": 6798.82,
"end": 6800.08,
"probability": 0.9505
},
{
"start": 6801.06,
"end": 6803.04,
"probability": 0.8986
},
{
"start": 6803.82,
"end": 6805.48,
"probability": 0.9985
},
{
"start": 6806.42,
"end": 6807.4,
"probability": 0.9613
},
{
"start": 6808.14,
"end": 6809.54,
"probability": 0.9873
},
{
"start": 6810.92,
"end": 6811.64,
"probability": 0.9814
},
{
"start": 6813.95,
"end": 6815.92,
"probability": 0.5953
},
{
"start": 6817.06,
"end": 6818.86,
"probability": 0.7279
},
{
"start": 6819.88,
"end": 6821.64,
"probability": 0.9564
},
{
"start": 6822.82,
"end": 6825.48,
"probability": 0.9426
},
{
"start": 6826.42,
"end": 6829.6,
"probability": 0.9534
},
{
"start": 6831.16,
"end": 6833.36,
"probability": 0.6983
},
{
"start": 6834.34,
"end": 6836.42,
"probability": 0.9968
},
{
"start": 6837.06,
"end": 6839.96,
"probability": 0.9788
},
{
"start": 6840.7,
"end": 6842.04,
"probability": 0.9826
},
{
"start": 6842.58,
"end": 6845.52,
"probability": 0.8818
},
{
"start": 6846.16,
"end": 6849.34,
"probability": 0.9933
},
{
"start": 6849.96,
"end": 6852.9,
"probability": 0.9967
},
{
"start": 6854.74,
"end": 6855.2,
"probability": 0.5597
},
{
"start": 6855.38,
"end": 6857.24,
"probability": 0.9358
},
{
"start": 6857.46,
"end": 6858.26,
"probability": 0.5343
},
{
"start": 6858.32,
"end": 6859.2,
"probability": 0.6824
},
{
"start": 6859.88,
"end": 6863.28,
"probability": 0.9412
},
{
"start": 6863.94,
"end": 6865.84,
"probability": 0.9649
},
{
"start": 6866.42,
"end": 6869.62,
"probability": 0.9564
},
{
"start": 6870.82,
"end": 6872.2,
"probability": 0.9196
},
{
"start": 6873.04,
"end": 6875.38,
"probability": 0.9927
},
{
"start": 6875.98,
"end": 6879.66,
"probability": 0.9858
},
{
"start": 6879.66,
"end": 6883.78,
"probability": 0.9963
},
{
"start": 6884.82,
"end": 6886.54,
"probability": 0.9972
},
{
"start": 6887.08,
"end": 6889.8,
"probability": 0.9966
},
{
"start": 6891.3,
"end": 6894.98,
"probability": 0.9704
},
{
"start": 6895.8,
"end": 6899.44,
"probability": 0.9839
},
{
"start": 6899.44,
"end": 6902.52,
"probability": 0.9968
},
{
"start": 6903.4,
"end": 6905.66,
"probability": 0.997
},
{
"start": 6906.28,
"end": 6909.7,
"probability": 0.9989
},
{
"start": 6910.3,
"end": 6911.76,
"probability": 0.7468
},
{
"start": 6912.94,
"end": 6914.84,
"probability": 0.9856
},
{
"start": 6915.28,
"end": 6918.56,
"probability": 0.9553
},
{
"start": 6918.7,
"end": 6919.34,
"probability": 0.73
},
{
"start": 6919.68,
"end": 6921.02,
"probability": 0.9774
},
{
"start": 6921.76,
"end": 6925.22,
"probability": 0.9969
},
{
"start": 6925.22,
"end": 6927.68,
"probability": 0.9966
},
{
"start": 6928.6,
"end": 6930.18,
"probability": 0.7364
},
{
"start": 6930.94,
"end": 6931.7,
"probability": 0.9911
},
{
"start": 6932.5,
"end": 6933.05,
"probability": 0.6958
},
{
"start": 6933.78,
"end": 6935.36,
"probability": 0.9751
},
{
"start": 6935.7,
"end": 6937.08,
"probability": 0.9617
},
{
"start": 6937.18,
"end": 6939.4,
"probability": 0.9974
},
{
"start": 6940.06,
"end": 6942.96,
"probability": 0.9976
},
{
"start": 6943.4,
"end": 6946.14,
"probability": 0.9873
},
{
"start": 6946.42,
"end": 6946.92,
"probability": 0.8514
},
{
"start": 6947.44,
"end": 6949.82,
"probability": 0.8127
},
{
"start": 6957.0,
"end": 6959.2,
"probability": 0.8488
},
{
"start": 6960.04,
"end": 6964.42,
"probability": 0.9707
},
{
"start": 6965.84,
"end": 6967.02,
"probability": 0.9132
},
{
"start": 6970.36,
"end": 6975.5,
"probability": 0.9561
},
{
"start": 6977.66,
"end": 6978.36,
"probability": 0.015
},
{
"start": 6978.44,
"end": 6978.9,
"probability": 0.3128
},
{
"start": 6979.18,
"end": 6980.34,
"probability": 0.6085
},
{
"start": 6980.62,
"end": 6981.25,
"probability": 0.9277
},
{
"start": 6981.94,
"end": 6982.78,
"probability": 0.7705
},
{
"start": 6983.82,
"end": 6984.24,
"probability": 0.0343
},
{
"start": 6984.76,
"end": 6985.16,
"probability": 0.7513
},
{
"start": 6985.96,
"end": 6986.28,
"probability": 0.7753
},
{
"start": 6986.38,
"end": 6986.7,
"probability": 0.9389
},
{
"start": 6988.18,
"end": 6990.22,
"probability": 0.8076
},
{
"start": 6992.34,
"end": 6995.2,
"probability": 0.9579
},
{
"start": 6995.24,
"end": 6996.3,
"probability": 0.9829
},
{
"start": 6997.7,
"end": 6999.92,
"probability": 0.9915
},
{
"start": 6999.92,
"end": 7002.78,
"probability": 0.9979
},
{
"start": 7003.88,
"end": 7008.74,
"probability": 0.9967
},
{
"start": 7009.52,
"end": 7011.82,
"probability": 0.9139
},
{
"start": 7011.88,
"end": 7016.5,
"probability": 0.9955
},
{
"start": 7017.02,
"end": 7020.96,
"probability": 0.9943
},
{
"start": 7020.96,
"end": 7021.06,
"probability": 0.1529
},
{
"start": 7021.1,
"end": 7021.84,
"probability": 0.4839
},
{
"start": 7022.39,
"end": 7023.96,
"probability": 0.5997
},
{
"start": 7023.96,
"end": 7029.06,
"probability": 0.9546
},
{
"start": 7029.12,
"end": 7029.84,
"probability": 0.6481
},
{
"start": 7029.98,
"end": 7030.12,
"probability": 0.8306
},
{
"start": 7030.48,
"end": 7031.36,
"probability": 0.8575
},
{
"start": 7031.66,
"end": 7032.42,
"probability": 0.9686
},
{
"start": 7033.4,
"end": 7036.48,
"probability": 0.9893
},
{
"start": 7036.48,
"end": 7039.24,
"probability": 0.9968
},
{
"start": 7039.82,
"end": 7042.68,
"probability": 0.9874
},
{
"start": 7043.54,
"end": 7047.52,
"probability": 0.9928
},
{
"start": 7048.18,
"end": 7051.88,
"probability": 0.9843
},
{
"start": 7052.96,
"end": 7055.42,
"probability": 0.999
},
{
"start": 7055.5,
"end": 7059.86,
"probability": 0.9749
},
{
"start": 7059.86,
"end": 7062.56,
"probability": 0.9966
},
{
"start": 7063.38,
"end": 7067.3,
"probability": 0.9902
},
{
"start": 7068.04,
"end": 7071.58,
"probability": 0.9505
},
{
"start": 7071.58,
"end": 7076.48,
"probability": 0.9897
},
{
"start": 7078.3,
"end": 7082.0,
"probability": 0.987
},
{
"start": 7082.0,
"end": 7086.44,
"probability": 0.9935
},
{
"start": 7086.5,
"end": 7087.08,
"probability": 0.6786
},
{
"start": 7087.96,
"end": 7089.14,
"probability": 0.9388
},
{
"start": 7089.24,
"end": 7092.46,
"probability": 0.9688
},
{
"start": 7093.24,
"end": 7096.62,
"probability": 0.9883
},
{
"start": 7097.38,
"end": 7102.82,
"probability": 0.996
},
{
"start": 7103.64,
"end": 7106.48,
"probability": 0.8452
},
{
"start": 7106.8,
"end": 7109.92,
"probability": 0.9948
},
{
"start": 7109.92,
"end": 7112.68,
"probability": 0.9985
},
{
"start": 7113.9,
"end": 7116.22,
"probability": 0.9976
},
{
"start": 7117.06,
"end": 7120.72,
"probability": 0.9985
},
{
"start": 7121.76,
"end": 7125.06,
"probability": 0.998
},
{
"start": 7126.56,
"end": 7127.42,
"probability": 0.6981
},
{
"start": 7127.74,
"end": 7132.12,
"probability": 0.9966
},
{
"start": 7132.82,
"end": 7135.96,
"probability": 0.9951
},
{
"start": 7137.02,
"end": 7142.52,
"probability": 0.9954
},
{
"start": 7143.16,
"end": 7146.58,
"probability": 0.9883
},
{
"start": 7148.0,
"end": 7154.58,
"probability": 0.9709
},
{
"start": 7154.58,
"end": 7160.98,
"probability": 0.9983
},
{
"start": 7161.5,
"end": 7164.6,
"probability": 0.9992
},
{
"start": 7165.22,
"end": 7165.7,
"probability": 0.7333
},
{
"start": 7166.48,
"end": 7168.26,
"probability": 0.4902
},
{
"start": 7168.96,
"end": 7170.08,
"probability": 0.9712
},
{
"start": 7170.64,
"end": 7170.98,
"probability": 0.4219
},
{
"start": 7171.9,
"end": 7172.72,
"probability": 0.7373
},
{
"start": 7174.23,
"end": 7176.5,
"probability": 0.967
},
{
"start": 7177.72,
"end": 7178.18,
"probability": 0.9031
},
{
"start": 7178.7,
"end": 7180.87,
"probability": 0.9377
},
{
"start": 7181.5,
"end": 7182.46,
"probability": 0.9716
},
{
"start": 7183.3,
"end": 7183.48,
"probability": 0.9191
},
{
"start": 7184.46,
"end": 7185.96,
"probability": 0.802
},
{
"start": 7186.64,
"end": 7186.94,
"probability": 0.6162
},
{
"start": 7187.84,
"end": 7188.48,
"probability": 0.2446
},
{
"start": 7189.12,
"end": 7189.88,
"probability": 0.6553
},
{
"start": 7190.34,
"end": 7190.68,
"probability": 0.867
},
{
"start": 7191.28,
"end": 7192.9,
"probability": 0.7633
},
{
"start": 7193.66,
"end": 7194.04,
"probability": 0.8247
},
{
"start": 7194.44,
"end": 7196.22,
"probability": 0.9512
},
{
"start": 7197.1,
"end": 7198.44,
"probability": 0.2299
},
{
"start": 7198.44,
"end": 7200.19,
"probability": 0.7375
},
{
"start": 7224.16,
"end": 7226.06,
"probability": 0.5983
},
{
"start": 7226.9,
"end": 7228.19,
"probability": 0.7032
},
{
"start": 7228.72,
"end": 7229.54,
"probability": 0.6706
},
{
"start": 7231.08,
"end": 7234.08,
"probability": 0.9856
},
{
"start": 7234.62,
"end": 7236.62,
"probability": 0.9881
},
{
"start": 7238.74,
"end": 7242.64,
"probability": 0.9544
},
{
"start": 7242.72,
"end": 7244.08,
"probability": 0.738
},
{
"start": 7244.74,
"end": 7247.28,
"probability": 0.9862
},
{
"start": 7247.92,
"end": 7249.75,
"probability": 0.9309
},
{
"start": 7250.12,
"end": 7252.32,
"probability": 0.9887
},
{
"start": 7253.3,
"end": 7255.56,
"probability": 0.9775
},
{
"start": 7255.56,
"end": 7255.94,
"probability": 0.8244
},
{
"start": 7256.36,
"end": 7258.04,
"probability": 0.9243
},
{
"start": 7259.58,
"end": 7261.76,
"probability": 0.9207
},
{
"start": 7262.28,
"end": 7266.14,
"probability": 0.9089
},
{
"start": 7267.18,
"end": 7270.04,
"probability": 0.8604
},
{
"start": 7271.22,
"end": 7272.0,
"probability": 0.9175
},
{
"start": 7272.58,
"end": 7273.52,
"probability": 0.529
},
{
"start": 7274.52,
"end": 7276.96,
"probability": 0.8033
},
{
"start": 7278.12,
"end": 7279.2,
"probability": 0.7343
},
{
"start": 7280.88,
"end": 7281.52,
"probability": 0.6999
},
{
"start": 7282.44,
"end": 7283.42,
"probability": 0.4902
},
{
"start": 7284.26,
"end": 7286.26,
"probability": 0.9466
},
{
"start": 7287.86,
"end": 7288.08,
"probability": 0.6149
},
{
"start": 7289.76,
"end": 7291.46,
"probability": 0.7292
},
{
"start": 7291.76,
"end": 7293.06,
"probability": 0.9703
},
{
"start": 7293.22,
"end": 7295.58,
"probability": 0.8326
},
{
"start": 7296.12,
"end": 7296.6,
"probability": 0.934
},
{
"start": 7296.98,
"end": 7297.7,
"probability": 0.7254
},
{
"start": 7298.48,
"end": 7299.56,
"probability": 0.9844
},
{
"start": 7301.82,
"end": 7304.6,
"probability": 0.6938
},
{
"start": 7305.96,
"end": 7308.34,
"probability": 0.5439
},
{
"start": 7309.44,
"end": 7310.39,
"probability": 0.9418
},
{
"start": 7311.26,
"end": 7312.08,
"probability": 0.9686
},
{
"start": 7313.38,
"end": 7316.84,
"probability": 0.9972
},
{
"start": 7317.36,
"end": 7318.6,
"probability": 0.9697
},
{
"start": 7319.64,
"end": 7321.78,
"probability": 0.9788
},
{
"start": 7323.98,
"end": 7324.08,
"probability": 0.8515
},
{
"start": 7325.22,
"end": 7326.24,
"probability": 0.9517
},
{
"start": 7327.72,
"end": 7330.2,
"probability": 0.9716
},
{
"start": 7330.34,
"end": 7332.74,
"probability": 0.9977
},
{
"start": 7333.48,
"end": 7335.14,
"probability": 0.7482
},
{
"start": 7335.9,
"end": 7338.44,
"probability": 0.9977
},
{
"start": 7340.36,
"end": 7342.52,
"probability": 0.9946
},
{
"start": 7342.62,
"end": 7344.96,
"probability": 0.9552
},
{
"start": 7345.38,
"end": 7345.64,
"probability": 0.9291
},
{
"start": 7346.42,
"end": 7347.12,
"probability": 0.8551
},
{
"start": 7348.02,
"end": 7352.23,
"probability": 0.9646
},
{
"start": 7353.12,
"end": 7357.32,
"probability": 0.9777
},
{
"start": 7359.42,
"end": 7361.28,
"probability": 0.9748
},
{
"start": 7361.94,
"end": 7362.5,
"probability": 0.9434
},
{
"start": 7363.16,
"end": 7364.62,
"probability": 0.9985
},
{
"start": 7364.94,
"end": 7366.4,
"probability": 0.917
},
{
"start": 7367.2,
"end": 7368.28,
"probability": 0.8531
},
{
"start": 7368.36,
"end": 7370.58,
"probability": 0.9963
},
{
"start": 7372.22,
"end": 7375.42,
"probability": 0.9972
},
{
"start": 7376.16,
"end": 7376.88,
"probability": 0.8873
},
{
"start": 7377.74,
"end": 7378.8,
"probability": 0.7463
},
{
"start": 7379.6,
"end": 7380.78,
"probability": 0.7445
},
{
"start": 7381.3,
"end": 7383.96,
"probability": 0.9951
},
{
"start": 7384.82,
"end": 7385.16,
"probability": 0.896
},
{
"start": 7385.86,
"end": 7386.78,
"probability": 0.9203
},
{
"start": 7387.24,
"end": 7387.6,
"probability": 0.8646
},
{
"start": 7388.16,
"end": 7388.74,
"probability": 0.6469
},
{
"start": 7389.04,
"end": 7390.24,
"probability": 0.7473
},
{
"start": 7392.1,
"end": 7392.44,
"probability": 0.8202
},
{
"start": 7400.58,
"end": 7402.56,
"probability": 0.1707
},
{
"start": 7402.56,
"end": 7402.56,
"probability": 0.1981
},
{
"start": 7402.59,
"end": 7402.94,
"probability": 0.1324
},
{
"start": 7403.02,
"end": 7403.02,
"probability": 0.0487
},
{
"start": 7403.16,
"end": 7403.26,
"probability": 0.4144
},
{
"start": 7420.3,
"end": 7422.8,
"probability": 0.6448
},
{
"start": 7424.06,
"end": 7429.54,
"probability": 0.9595
},
{
"start": 7431.08,
"end": 7432.14,
"probability": 0.8168
},
{
"start": 7432.26,
"end": 7433.0,
"probability": 0.7038
},
{
"start": 7433.28,
"end": 7435.52,
"probability": 0.9847
},
{
"start": 7436.26,
"end": 7439.1,
"probability": 0.9702
},
{
"start": 7440.1,
"end": 7443.8,
"probability": 0.5801
},
{
"start": 7444.16,
"end": 7447.28,
"probability": 0.2639
},
{
"start": 7447.28,
"end": 7448.92,
"probability": 0.5351
},
{
"start": 7450.3,
"end": 7454.56,
"probability": 0.7261
},
{
"start": 7455.38,
"end": 7460.34,
"probability": 0.9472
},
{
"start": 7460.38,
"end": 7461.68,
"probability": 0.7226
},
{
"start": 7462.46,
"end": 7465.92,
"probability": 0.8037
},
{
"start": 7465.98,
"end": 7468.68,
"probability": 0.7728
},
{
"start": 7468.74,
"end": 7469.8,
"probability": 0.9036
},
{
"start": 7469.9,
"end": 7474.22,
"probability": 0.6362
},
{
"start": 7474.22,
"end": 7476.6,
"probability": 0.6652
},
{
"start": 7476.6,
"end": 7479.98,
"probability": 0.7525
},
{
"start": 7480.1,
"end": 7484.02,
"probability": 0.9662
},
{
"start": 7485.14,
"end": 7486.88,
"probability": 0.942
},
{
"start": 7487.4,
"end": 7489.9,
"probability": 0.9904
},
{
"start": 7491.18,
"end": 7493.68,
"probability": 0.8105
},
{
"start": 7494.7,
"end": 7496.9,
"probability": 0.7644
},
{
"start": 7496.96,
"end": 7499.92,
"probability": 0.6821
},
{
"start": 7499.98,
"end": 7500.58,
"probability": 0.4368
},
{
"start": 7501.78,
"end": 7505.82,
"probability": 0.8557
},
{
"start": 7506.44,
"end": 7508.32,
"probability": 0.6114
},
{
"start": 7509.76,
"end": 7510.1,
"probability": 0.4838
},
{
"start": 7510.26,
"end": 7511.06,
"probability": 0.7159
},
{
"start": 7511.38,
"end": 7511.68,
"probability": 0.8276
},
{
"start": 7511.72,
"end": 7516.04,
"probability": 0.9498
},
{
"start": 7516.48,
"end": 7517.92,
"probability": 0.9035
},
{
"start": 7518.32,
"end": 7519.41,
"probability": 0.7362
},
{
"start": 7519.88,
"end": 7522.04,
"probability": 0.9094
},
{
"start": 7522.12,
"end": 7523.74,
"probability": 0.986
},
{
"start": 7524.58,
"end": 7527.28,
"probability": 0.9387
},
{
"start": 7527.36,
"end": 7527.84,
"probability": 0.9572
},
{
"start": 7528.7,
"end": 7532.24,
"probability": 0.9924
},
{
"start": 7533.26,
"end": 7533.7,
"probability": 0.5959
},
{
"start": 7534.96,
"end": 7537.26,
"probability": 0.9359
},
{
"start": 7537.8,
"end": 7539.76,
"probability": 0.6411
},
{
"start": 7540.72,
"end": 7544.64,
"probability": 0.7637
},
{
"start": 7544.76,
"end": 7547.16,
"probability": 0.7909
},
{
"start": 7548.06,
"end": 7549.32,
"probability": 0.9733
},
{
"start": 7549.74,
"end": 7550.28,
"probability": 0.8539
},
{
"start": 7551.56,
"end": 7554.12,
"probability": 0.2105
},
{
"start": 7557.28,
"end": 7559.26,
"probability": 0.1233
},
{
"start": 7559.48,
"end": 7562.26,
"probability": 0.4161
},
{
"start": 7562.26,
"end": 7563.02,
"probability": 0.408
},
{
"start": 7563.28,
"end": 7565.92,
"probability": 0.7649
},
{
"start": 7566.0,
"end": 7569.66,
"probability": 0.9143
},
{
"start": 7570.16,
"end": 7574.3,
"probability": 0.9985
},
{
"start": 7574.4,
"end": 7575.74,
"probability": 0.7469
},
{
"start": 7576.22,
"end": 7577.74,
"probability": 0.9956
},
{
"start": 7578.18,
"end": 7579.22,
"probability": 0.4955
},
{
"start": 7579.78,
"end": 7580.88,
"probability": 0.8121
},
{
"start": 7581.54,
"end": 7582.58,
"probability": 0.9746
},
{
"start": 7586.26,
"end": 7588.32,
"probability": 0.9579
},
{
"start": 7590.26,
"end": 7590.86,
"probability": 0.5701
},
{
"start": 7592.72,
"end": 7595.26,
"probability": 0.5512
},
{
"start": 7595.9,
"end": 7599.48,
"probability": 0.4783
},
{
"start": 7601.96,
"end": 7604.06,
"probability": 0.8828
},
{
"start": 7606.86,
"end": 7608.68,
"probability": 0.6662
},
{
"start": 7610.0,
"end": 7615.08,
"probability": 0.6137
},
{
"start": 7615.68,
"end": 7617.2,
"probability": 0.2197
},
{
"start": 7619.56,
"end": 7621.14,
"probability": 0.3614
},
{
"start": 7622.5,
"end": 7624.36,
"probability": 0.0793
},
{
"start": 7625.08,
"end": 7627.46,
"probability": 0.0148
},
{
"start": 7631.16,
"end": 7631.54,
"probability": 0.0056
},
{
"start": 7633.94,
"end": 7634.78,
"probability": 0.0159
},
{
"start": 7634.78,
"end": 7635.5,
"probability": 0.1465
},
{
"start": 7647.38,
"end": 7653.62,
"probability": 0.0665
},
{
"start": 7658.06,
"end": 7659.2,
"probability": 0.6743
},
{
"start": 7667.5,
"end": 7674.64,
"probability": 0.1757
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.0,
"end": 7731.0,
"probability": 0.0
},
{
"start": 7731.16,
"end": 7733.78,
"probability": 0.7594
},
{
"start": 7734.48,
"end": 7736.46,
"probability": 0.6967
},
{
"start": 7737.32,
"end": 7740.78,
"probability": 0.3423
},
{
"start": 7741.8,
"end": 7744.96,
"probability": 0.9204
},
{
"start": 7745.16,
"end": 7745.64,
"probability": 0.1468
},
{
"start": 7747.64,
"end": 7748.14,
"probability": 0.2086
},
{
"start": 7749.76,
"end": 7753.02,
"probability": 0.0194
},
{
"start": 7753.11,
"end": 7757.44,
"probability": 0.0351
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
},
{
"start": 7911.08,
"end": 7911.08,
"probability": 0.0
}
],
"segments_count": 2418,
"words_count": 11887,
"avg_words_per_segment": 4.916,
"avg_segment_duration": 2.0154,
"avg_words_per_minute": 90.1546,
"plenum_id": "102267",
"duration": 7911.08,
"title": null,
"plenum_date": "2021-12-07"
}