knesset-plenums / 103250 /metadata.json
yoad's picture
Add files using upload-large-folder tool
e1b17c9 verified
{
"source_type": "knesset",
"source_id": "plenum",
"source_entry_id": "103250",
"quality_score": 0.9174,
"per_segment_quality_scores": [
{
"start": 82.98,
"end": 84.1,
"probability": 0.8169
},
{
"start": 84.28,
"end": 86.1,
"probability": 0.3335
},
{
"start": 86.26,
"end": 94.46,
"probability": 0.8942
},
{
"start": 95.26,
"end": 98.1,
"probability": 0.8823
},
{
"start": 98.3,
"end": 98.74,
"probability": 0.7539
},
{
"start": 101.48,
"end": 104.2,
"probability": 0.8204
},
{
"start": 104.74,
"end": 106.14,
"probability": 0.7592
},
{
"start": 106.48,
"end": 107.18,
"probability": 0.6468
},
{
"start": 107.2,
"end": 108.34,
"probability": 0.8095
},
{
"start": 108.98,
"end": 112.4,
"probability": 0.866
},
{
"start": 113.02,
"end": 115.28,
"probability": 0.5294
},
{
"start": 116.82,
"end": 117.96,
"probability": 0.7406
},
{
"start": 119.08,
"end": 121.64,
"probability": 0.7217
},
{
"start": 122.4,
"end": 124.4,
"probability": 0.7324
},
{
"start": 125.8,
"end": 126.04,
"probability": 0.0045
},
{
"start": 161.34,
"end": 162.96,
"probability": 0.6169
},
{
"start": 165.95,
"end": 168.8,
"probability": 0.9572
},
{
"start": 168.94,
"end": 169.72,
"probability": 0.7455
},
{
"start": 169.8,
"end": 171.34,
"probability": 0.669
},
{
"start": 172.28,
"end": 176.14,
"probability": 0.9247
},
{
"start": 176.36,
"end": 177.34,
"probability": 0.8091
},
{
"start": 177.79,
"end": 179.28,
"probability": 0.0056
},
{
"start": 179.84,
"end": 180.54,
"probability": 0.7722
},
{
"start": 181.54,
"end": 184.29,
"probability": 0.9814
},
{
"start": 185.2,
"end": 188.66,
"probability": 0.9419
},
{
"start": 188.66,
"end": 191.38,
"probability": 0.9806
},
{
"start": 191.68,
"end": 192.72,
"probability": 0.5934
},
{
"start": 192.72,
"end": 195.94,
"probability": 0.9595
},
{
"start": 196.88,
"end": 201.02,
"probability": 0.9418
},
{
"start": 206.0,
"end": 208.42,
"probability": 0.505
},
{
"start": 208.84,
"end": 211.94,
"probability": 0.9188
},
{
"start": 212.52,
"end": 213.16,
"probability": 0.8026
},
{
"start": 213.82,
"end": 217.3,
"probability": 0.6256
},
{
"start": 217.46,
"end": 219.26,
"probability": 0.9951
},
{
"start": 221.3,
"end": 223.47,
"probability": 0.1107
},
{
"start": 224.02,
"end": 224.96,
"probability": 0.5429
},
{
"start": 225.2,
"end": 225.36,
"probability": 0.79
},
{
"start": 225.86,
"end": 230.12,
"probability": 0.9233
},
{
"start": 230.14,
"end": 231.34,
"probability": 0.4781
},
{
"start": 231.44,
"end": 233.7,
"probability": 0.9098
},
{
"start": 235.52,
"end": 236.86,
"probability": 0.9971
},
{
"start": 237.96,
"end": 239.9,
"probability": 0.545
},
{
"start": 241.06,
"end": 242.84,
"probability": 0.8647
},
{
"start": 243.04,
"end": 244.28,
"probability": 0.9945
},
{
"start": 245.26,
"end": 247.82,
"probability": 0.7532
},
{
"start": 248.72,
"end": 251.56,
"probability": 0.7728
},
{
"start": 251.86,
"end": 254.68,
"probability": 0.9569
},
{
"start": 255.74,
"end": 256.83,
"probability": 0.7565
},
{
"start": 257.24,
"end": 261.0,
"probability": 0.9935
},
{
"start": 261.0,
"end": 265.48,
"probability": 0.9871
},
{
"start": 266.08,
"end": 268.42,
"probability": 0.9824
},
{
"start": 268.9,
"end": 270.17,
"probability": 0.7339
},
{
"start": 270.9,
"end": 274.9,
"probability": 0.8966
},
{
"start": 275.24,
"end": 276.93,
"probability": 0.9375
},
{
"start": 280.48,
"end": 283.4,
"probability": 0.98
},
{
"start": 284.18,
"end": 285.3,
"probability": 0.3025
},
{
"start": 285.98,
"end": 287.1,
"probability": 0.6198
},
{
"start": 288.24,
"end": 288.52,
"probability": 0.6513
},
{
"start": 289.1,
"end": 291.12,
"probability": 0.8283
},
{
"start": 291.24,
"end": 292.06,
"probability": 0.8567
},
{
"start": 292.36,
"end": 295.18,
"probability": 0.9266
},
{
"start": 295.42,
"end": 296.54,
"probability": 0.5762
},
{
"start": 299.0,
"end": 302.42,
"probability": 0.5352
},
{
"start": 302.42,
"end": 303.28,
"probability": 0.1544
},
{
"start": 303.36,
"end": 306.92,
"probability": 0.9383
},
{
"start": 307.0,
"end": 311.26,
"probability": 0.8619
},
{
"start": 312.42,
"end": 313.46,
"probability": 0.8642
},
{
"start": 313.6,
"end": 314.62,
"probability": 0.8559
},
{
"start": 314.66,
"end": 317.74,
"probability": 0.6926
},
{
"start": 317.74,
"end": 320.84,
"probability": 0.9761
},
{
"start": 322.08,
"end": 324.3,
"probability": 0.6842
},
{
"start": 324.84,
"end": 329.1,
"probability": 0.9788
},
{
"start": 329.66,
"end": 332.46,
"probability": 0.9954
},
{
"start": 332.96,
"end": 335.18,
"probability": 0.5211
},
{
"start": 335.62,
"end": 339.44,
"probability": 0.8269
},
{
"start": 339.66,
"end": 341.84,
"probability": 0.9114
},
{
"start": 342.86,
"end": 345.28,
"probability": 0.9376
},
{
"start": 345.54,
"end": 346.44,
"probability": 0.7364
},
{
"start": 346.52,
"end": 348.02,
"probability": 0.4373
},
{
"start": 348.04,
"end": 349.74,
"probability": 0.6768
},
{
"start": 350.48,
"end": 352.86,
"probability": 0.0979
},
{
"start": 352.9,
"end": 353.74,
"probability": 0.3807
},
{
"start": 354.04,
"end": 354.56,
"probability": 0.6542
},
{
"start": 355.56,
"end": 360.98,
"probability": 0.8679
},
{
"start": 363.34,
"end": 364.98,
"probability": 0.6371
},
{
"start": 365.08,
"end": 368.8,
"probability": 0.8384
},
{
"start": 369.14,
"end": 373.04,
"probability": 0.9603
},
{
"start": 373.5,
"end": 375.92,
"probability": 0.9164
},
{
"start": 376.06,
"end": 379.56,
"probability": 0.7796
},
{
"start": 379.56,
"end": 383.44,
"probability": 0.9964
},
{
"start": 384.16,
"end": 387.62,
"probability": 0.9984
},
{
"start": 388.01,
"end": 391.72,
"probability": 0.9772
},
{
"start": 391.76,
"end": 393.04,
"probability": 0.8519
},
{
"start": 393.04,
"end": 393.84,
"probability": 0.9005
},
{
"start": 394.4,
"end": 395.42,
"probability": 0.8048
},
{
"start": 395.42,
"end": 396.92,
"probability": 0.9839
},
{
"start": 397.14,
"end": 399.0,
"probability": 0.8556
},
{
"start": 399.14,
"end": 399.4,
"probability": 0.8112
},
{
"start": 399.56,
"end": 402.34,
"probability": 0.9044
},
{
"start": 402.42,
"end": 405.98,
"probability": 0.9967
},
{
"start": 406.44,
"end": 411.04,
"probability": 0.4872
},
{
"start": 411.34,
"end": 413.94,
"probability": 0.9591
},
{
"start": 415.02,
"end": 417.94,
"probability": 0.9445
},
{
"start": 418.04,
"end": 418.9,
"probability": 0.4629
},
{
"start": 419.48,
"end": 422.26,
"probability": 0.8862
},
{
"start": 422.88,
"end": 425.98,
"probability": 0.9779
},
{
"start": 426.64,
"end": 432.77,
"probability": 0.993
},
{
"start": 433.54,
"end": 434.96,
"probability": 0.9722
},
{
"start": 435.76,
"end": 437.8,
"probability": 0.8946
},
{
"start": 438.72,
"end": 442.68,
"probability": 0.9914
},
{
"start": 443.2,
"end": 448.36,
"probability": 0.8697
},
{
"start": 448.46,
"end": 449.92,
"probability": 0.8959
},
{
"start": 450.36,
"end": 452.42,
"probability": 0.9311
},
{
"start": 453.16,
"end": 458.8,
"probability": 0.9965
},
{
"start": 459.4,
"end": 464.8,
"probability": 0.9745
},
{
"start": 465.46,
"end": 470.0,
"probability": 0.9682
},
{
"start": 470.66,
"end": 474.88,
"probability": 0.994
},
{
"start": 474.88,
"end": 479.08,
"probability": 0.9709
},
{
"start": 479.24,
"end": 479.54,
"probability": 0.776
},
{
"start": 480.22,
"end": 480.72,
"probability": 0.5556
},
{
"start": 480.8,
"end": 482.82,
"probability": 0.7017
},
{
"start": 492.3,
"end": 494.96,
"probability": 0.8006
},
{
"start": 495.52,
"end": 497.2,
"probability": 0.9634
},
{
"start": 498.32,
"end": 501.8,
"probability": 0.7936
},
{
"start": 502.42,
"end": 502.94,
"probability": 0.7292
},
{
"start": 502.94,
"end": 504.0,
"probability": 0.5175
},
{
"start": 504.08,
"end": 505.08,
"probability": 0.552
},
{
"start": 505.14,
"end": 506.0,
"probability": 0.7737
},
{
"start": 506.08,
"end": 507.0,
"probability": 0.9175
},
{
"start": 508.1,
"end": 513.4,
"probability": 0.8835
},
{
"start": 514.62,
"end": 517.3,
"probability": 0.9879
},
{
"start": 518.04,
"end": 520.58,
"probability": 0.8601
},
{
"start": 521.68,
"end": 524.6,
"probability": 0.965
},
{
"start": 524.82,
"end": 527.86,
"probability": 0.9861
},
{
"start": 529.02,
"end": 530.86,
"probability": 0.9902
},
{
"start": 531.26,
"end": 533.44,
"probability": 0.9951
},
{
"start": 534.42,
"end": 539.38,
"probability": 0.9775
},
{
"start": 540.18,
"end": 540.74,
"probability": 0.7065
},
{
"start": 541.54,
"end": 542.18,
"probability": 0.7078
},
{
"start": 542.74,
"end": 542.92,
"probability": 0.6538
},
{
"start": 543.42,
"end": 543.92,
"probability": 0.5338
},
{
"start": 543.96,
"end": 546.18,
"probability": 0.8668
},
{
"start": 556.6,
"end": 557.8,
"probability": 0.7758
},
{
"start": 558.3,
"end": 559.44,
"probability": 0.7422
},
{
"start": 559.7,
"end": 560.26,
"probability": 0.6499
},
{
"start": 561.88,
"end": 563.25,
"probability": 0.9824
},
{
"start": 563.66,
"end": 565.64,
"probability": 0.9893
},
{
"start": 567.0,
"end": 568.46,
"probability": 0.976
},
{
"start": 569.06,
"end": 570.91,
"probability": 0.9962
},
{
"start": 571.02,
"end": 574.12,
"probability": 0.9975
},
{
"start": 574.82,
"end": 577.16,
"probability": 0.7116
},
{
"start": 578.02,
"end": 580.08,
"probability": 0.9761
},
{
"start": 580.56,
"end": 581.46,
"probability": 0.8394
},
{
"start": 581.56,
"end": 582.46,
"probability": 0.7839
},
{
"start": 583.1,
"end": 585.22,
"probability": 0.6147
},
{
"start": 585.9,
"end": 588.0,
"probability": 0.9625
},
{
"start": 589.06,
"end": 590.34,
"probability": 0.9963
},
{
"start": 591.72,
"end": 592.4,
"probability": 0.7946
},
{
"start": 593.32,
"end": 594.1,
"probability": 0.835
},
{
"start": 594.22,
"end": 598.8,
"probability": 0.8045
},
{
"start": 600.48,
"end": 602.72,
"probability": 0.8978
},
{
"start": 603.46,
"end": 604.98,
"probability": 0.9364
},
{
"start": 605.08,
"end": 607.62,
"probability": 0.051
},
{
"start": 607.62,
"end": 608.4,
"probability": 0.233
},
{
"start": 608.4,
"end": 612.46,
"probability": 0.9812
},
{
"start": 613.5,
"end": 614.3,
"probability": 0.7834
},
{
"start": 615.08,
"end": 617.02,
"probability": 0.9985
},
{
"start": 617.84,
"end": 621.43,
"probability": 0.9951
},
{
"start": 621.74,
"end": 625.48,
"probability": 0.9858
},
{
"start": 626.02,
"end": 627.18,
"probability": 0.8386
},
{
"start": 628.4,
"end": 630.54,
"probability": 0.9979
},
{
"start": 630.92,
"end": 633.8,
"probability": 0.9976
},
{
"start": 634.44,
"end": 639.48,
"probability": 0.9951
},
{
"start": 639.6,
"end": 640.06,
"probability": 0.4409
},
{
"start": 640.54,
"end": 643.94,
"probability": 0.9946
},
{
"start": 643.94,
"end": 647.38,
"probability": 0.9969
},
{
"start": 647.94,
"end": 648.82,
"probability": 0.9062
},
{
"start": 652.4,
"end": 652.92,
"probability": 0.6098
},
{
"start": 652.98,
"end": 654.26,
"probability": 0.9251
},
{
"start": 660.3,
"end": 662.96,
"probability": 0.6834
},
{
"start": 663.78,
"end": 668.42,
"probability": 0.9931
},
{
"start": 668.7,
"end": 671.08,
"probability": 0.9979
},
{
"start": 671.16,
"end": 672.82,
"probability": 0.886
},
{
"start": 672.98,
"end": 673.36,
"probability": 0.5664
},
{
"start": 675.18,
"end": 675.84,
"probability": 0.8995
},
{
"start": 675.92,
"end": 678.36,
"probability": 0.7922
},
{
"start": 678.9,
"end": 679.9,
"probability": 0.7582
},
{
"start": 680.06,
"end": 681.9,
"probability": 0.842
},
{
"start": 681.96,
"end": 683.04,
"probability": 0.9493
},
{
"start": 683.1,
"end": 685.42,
"probability": 0.7117
},
{
"start": 685.52,
"end": 685.78,
"probability": 0.8253
},
{
"start": 685.88,
"end": 689.0,
"probability": 0.9883
},
{
"start": 689.02,
"end": 692.32,
"probability": 0.9812
},
{
"start": 692.68,
"end": 694.04,
"probability": 0.4923
},
{
"start": 694.44,
"end": 695.58,
"probability": 0.573
},
{
"start": 695.62,
"end": 696.12,
"probability": 0.5634
},
{
"start": 696.2,
"end": 697.46,
"probability": 0.9507
},
{
"start": 698.28,
"end": 699.55,
"probability": 0.94
},
{
"start": 699.94,
"end": 704.32,
"probability": 0.5324
},
{
"start": 705.16,
"end": 706.9,
"probability": 0.9128
},
{
"start": 707.44,
"end": 708.41,
"probability": 0.7924
},
{
"start": 708.74,
"end": 710.88,
"probability": 0.8381
},
{
"start": 711.42,
"end": 714.98,
"probability": 0.9859
},
{
"start": 715.76,
"end": 716.58,
"probability": 0.8325
},
{
"start": 717.12,
"end": 719.22,
"probability": 0.9909
},
{
"start": 720.16,
"end": 720.44,
"probability": 0.7999
},
{
"start": 721.0,
"end": 726.1,
"probability": 0.7787
},
{
"start": 726.74,
"end": 732.52,
"probability": 0.9863
},
{
"start": 732.86,
"end": 733.12,
"probability": 0.8406
},
{
"start": 734.0,
"end": 734.64,
"probability": 0.7723
},
{
"start": 741.82,
"end": 746.3,
"probability": 0.8717
},
{
"start": 746.8,
"end": 751.52,
"probability": 0.9181
},
{
"start": 751.64,
"end": 754.46,
"probability": 0.9218
},
{
"start": 755.78,
"end": 756.51,
"probability": 0.4267
},
{
"start": 765.44,
"end": 769.8,
"probability": 0.8906
},
{
"start": 770.34,
"end": 770.58,
"probability": 0.0347
},
{
"start": 770.58,
"end": 770.58,
"probability": 0.1767
},
{
"start": 770.58,
"end": 770.58,
"probability": 0.2275
},
{
"start": 770.58,
"end": 770.58,
"probability": 0.1378
},
{
"start": 770.58,
"end": 771.6,
"probability": 0.4495
},
{
"start": 772.64,
"end": 773.66,
"probability": 0.733
},
{
"start": 778.5,
"end": 778.76,
"probability": 0.4769
},
{
"start": 796.28,
"end": 796.28,
"probability": 0.1728
},
{
"start": 796.28,
"end": 796.51,
"probability": 0.2109
},
{
"start": 796.8,
"end": 797.28,
"probability": 0.0513
},
{
"start": 812.76,
"end": 816.06,
"probability": 0.4305
},
{
"start": 816.06,
"end": 819.52,
"probability": 0.8828
},
{
"start": 820.7,
"end": 823.96,
"probability": 0.8373
},
{
"start": 824.06,
"end": 825.38,
"probability": 0.7246
},
{
"start": 826.28,
"end": 827.08,
"probability": 0.4811
},
{
"start": 828.1,
"end": 828.92,
"probability": 0.8812
},
{
"start": 829.04,
"end": 830.04,
"probability": 0.9055
},
{
"start": 830.08,
"end": 833.08,
"probability": 0.9781
},
{
"start": 833.08,
"end": 835.86,
"probability": 0.995
},
{
"start": 837.7,
"end": 840.61,
"probability": 0.9939
},
{
"start": 841.56,
"end": 843.1,
"probability": 0.7926
},
{
"start": 843.16,
"end": 843.82,
"probability": 0.9197
},
{
"start": 843.96,
"end": 845.5,
"probability": 0.7393
},
{
"start": 845.98,
"end": 846.8,
"probability": 0.9061
},
{
"start": 847.48,
"end": 849.4,
"probability": 0.9935
},
{
"start": 849.4,
"end": 852.8,
"probability": 0.9893
},
{
"start": 853.76,
"end": 855.21,
"probability": 0.994
},
{
"start": 856.34,
"end": 858.38,
"probability": 0.9984
},
{
"start": 859.41,
"end": 861.8,
"probability": 0.9888
},
{
"start": 861.94,
"end": 864.6,
"probability": 0.9578
},
{
"start": 864.7,
"end": 865.36,
"probability": 0.8325
},
{
"start": 866.14,
"end": 868.36,
"probability": 0.9774
},
{
"start": 868.4,
"end": 870.42,
"probability": 0.8989
},
{
"start": 871.46,
"end": 874.86,
"probability": 0.9856
},
{
"start": 874.98,
"end": 877.52,
"probability": 0.8255
},
{
"start": 878.24,
"end": 880.0,
"probability": 0.8963
},
{
"start": 880.18,
"end": 882.18,
"probability": 0.9946
},
{
"start": 882.2,
"end": 883.5,
"probability": 0.8778
},
{
"start": 883.66,
"end": 885.56,
"probability": 0.699
},
{
"start": 886.48,
"end": 887.44,
"probability": 0.5286
},
{
"start": 887.5,
"end": 891.84,
"probability": 0.9425
},
{
"start": 893.01,
"end": 898.02,
"probability": 0.9774
},
{
"start": 898.28,
"end": 902.06,
"probability": 0.9743
},
{
"start": 902.12,
"end": 905.68,
"probability": 0.9985
},
{
"start": 906.26,
"end": 908.58,
"probability": 0.9868
},
{
"start": 909.5,
"end": 910.02,
"probability": 0.9575
},
{
"start": 910.96,
"end": 918.72,
"probability": 0.9473
},
{
"start": 918.86,
"end": 920.26,
"probability": 0.9496
},
{
"start": 920.96,
"end": 921.88,
"probability": 0.9743
},
{
"start": 922.54,
"end": 923.74,
"probability": 0.9896
},
{
"start": 923.84,
"end": 924.4,
"probability": 0.7776
},
{
"start": 924.48,
"end": 925.48,
"probability": 0.7714
},
{
"start": 925.48,
"end": 926.24,
"probability": 0.9155
},
{
"start": 926.84,
"end": 929.48,
"probability": 0.9891
},
{
"start": 930.6,
"end": 932.88,
"probability": 0.985
},
{
"start": 933.48,
"end": 935.52,
"probability": 0.9519
},
{
"start": 936.92,
"end": 937.59,
"probability": 0.4997
},
{
"start": 938.56,
"end": 938.76,
"probability": 0.5614
},
{
"start": 939.82,
"end": 941.48,
"probability": 0.849
},
{
"start": 942.06,
"end": 944.32,
"probability": 0.9842
},
{
"start": 945.4,
"end": 946.24,
"probability": 0.4215
},
{
"start": 946.38,
"end": 949.4,
"probability": 0.8861
},
{
"start": 949.64,
"end": 953.84,
"probability": 0.9959
},
{
"start": 953.96,
"end": 957.5,
"probability": 0.9792
},
{
"start": 958.1,
"end": 962.58,
"probability": 0.9906
},
{
"start": 962.58,
"end": 966.1,
"probability": 0.9973
},
{
"start": 967.12,
"end": 968.38,
"probability": 0.9833
},
{
"start": 968.76,
"end": 968.94,
"probability": 0.445
},
{
"start": 969.08,
"end": 969.26,
"probability": 0.8386
},
{
"start": 969.36,
"end": 970.92,
"probability": 0.9744
},
{
"start": 970.96,
"end": 971.92,
"probability": 0.8968
},
{
"start": 972.74,
"end": 974.6,
"probability": 0.9497
},
{
"start": 975.54,
"end": 977.3,
"probability": 0.924
},
{
"start": 978.06,
"end": 981.12,
"probability": 0.9011
},
{
"start": 981.12,
"end": 983.06,
"probability": 0.999
},
{
"start": 983.1,
"end": 983.64,
"probability": 0.6459
},
{
"start": 984.06,
"end": 985.64,
"probability": 0.999
},
{
"start": 985.86,
"end": 986.0,
"probability": 0.6013
},
{
"start": 988.1,
"end": 988.5,
"probability": 0.699
},
{
"start": 988.6,
"end": 989.4,
"probability": 0.6387
},
{
"start": 989.68,
"end": 990.98,
"probability": 0.9972
},
{
"start": 991.36,
"end": 993.88,
"probability": 0.0063
},
{
"start": 994.86,
"end": 994.86,
"probability": 0.1714
},
{
"start": 995.04,
"end": 997.2,
"probability": 0.8433
},
{
"start": 997.3,
"end": 999.38,
"probability": 0.9889
},
{
"start": 1001.22,
"end": 1003.44,
"probability": 0.9717
},
{
"start": 1004.16,
"end": 1007.2,
"probability": 0.9919
},
{
"start": 1007.28,
"end": 1012.14,
"probability": 0.9929
},
{
"start": 1012.56,
"end": 1014.04,
"probability": 0.9951
},
{
"start": 1014.58,
"end": 1015.7,
"probability": 0.9619
},
{
"start": 1016.12,
"end": 1017.94,
"probability": 0.9985
},
{
"start": 1018.22,
"end": 1019.34,
"probability": 0.9746
},
{
"start": 1019.48,
"end": 1022.22,
"probability": 0.9582
},
{
"start": 1025.36,
"end": 1025.48,
"probability": 0.0648
},
{
"start": 1025.48,
"end": 1025.48,
"probability": 0.0692
},
{
"start": 1025.48,
"end": 1026.28,
"probability": 0.4475
},
{
"start": 1026.4,
"end": 1026.88,
"probability": 0.2212
},
{
"start": 1027.38,
"end": 1029.46,
"probability": 0.6931
},
{
"start": 1030.26,
"end": 1034.52,
"probability": 0.9969
},
{
"start": 1035.02,
"end": 1036.65,
"probability": 0.9213
},
{
"start": 1037.2,
"end": 1040.34,
"probability": 0.9987
},
{
"start": 1040.6,
"end": 1044.38,
"probability": 0.9966
},
{
"start": 1044.54,
"end": 1046.32,
"probability": 0.9438
},
{
"start": 1046.84,
"end": 1048.75,
"probability": 0.9971
},
{
"start": 1049.74,
"end": 1050.73,
"probability": 0.9785
},
{
"start": 1051.68,
"end": 1052.9,
"probability": 0.9631
},
{
"start": 1053.12,
"end": 1054.68,
"probability": 0.3567
},
{
"start": 1055.18,
"end": 1056.5,
"probability": 0.415
},
{
"start": 1056.58,
"end": 1061.58,
"probability": 0.9513
},
{
"start": 1062.34,
"end": 1065.16,
"probability": 0.9936
},
{
"start": 1065.36,
"end": 1069.96,
"probability": 0.9946
},
{
"start": 1069.96,
"end": 1072.54,
"probability": 0.9982
},
{
"start": 1072.62,
"end": 1073.02,
"probability": 0.9259
},
{
"start": 1073.7,
"end": 1074.98,
"probability": 0.9993
},
{
"start": 1075.24,
"end": 1076.38,
"probability": 0.9537
},
{
"start": 1077.02,
"end": 1080.02,
"probability": 0.9803
},
{
"start": 1080.7,
"end": 1083.46,
"probability": 0.8917
},
{
"start": 1084.78,
"end": 1087.32,
"probability": 0.8717
},
{
"start": 1087.92,
"end": 1089.74,
"probability": 0.874
},
{
"start": 1090.44,
"end": 1091.34,
"probability": 0.9009
},
{
"start": 1091.46,
"end": 1094.12,
"probability": 0.9943
},
{
"start": 1094.62,
"end": 1096.08,
"probability": 0.9945
},
{
"start": 1096.18,
"end": 1097.62,
"probability": 0.9984
},
{
"start": 1098.14,
"end": 1099.18,
"probability": 0.9977
},
{
"start": 1100.14,
"end": 1102.72,
"probability": 0.9877
},
{
"start": 1102.78,
"end": 1103.88,
"probability": 0.9844
},
{
"start": 1104.68,
"end": 1108.08,
"probability": 0.8706
},
{
"start": 1108.74,
"end": 1110.58,
"probability": 0.9617
},
{
"start": 1111.04,
"end": 1111.44,
"probability": 0.6341
},
{
"start": 1111.62,
"end": 1111.96,
"probability": 0.9404
},
{
"start": 1112.02,
"end": 1114.48,
"probability": 0.8485
},
{
"start": 1114.66,
"end": 1117.7,
"probability": 0.97
},
{
"start": 1118.24,
"end": 1119.59,
"probability": 0.897
},
{
"start": 1119.7,
"end": 1121.62,
"probability": 0.999
},
{
"start": 1122.9,
"end": 1126.06,
"probability": 0.9108
},
{
"start": 1126.14,
"end": 1126.75,
"probability": 0.9845
},
{
"start": 1127.1,
"end": 1128.08,
"probability": 0.933
},
{
"start": 1128.82,
"end": 1131.24,
"probability": 0.9722
},
{
"start": 1132.04,
"end": 1135.88,
"probability": 0.999
},
{
"start": 1136.3,
"end": 1138.66,
"probability": 0.8836
},
{
"start": 1139.68,
"end": 1140.74,
"probability": 0.8621
},
{
"start": 1141.42,
"end": 1143.64,
"probability": 0.4622
},
{
"start": 1143.64,
"end": 1146.02,
"probability": 0.9866
},
{
"start": 1146.7,
"end": 1148.86,
"probability": 0.9851
},
{
"start": 1149.96,
"end": 1150.92,
"probability": 0.9995
},
{
"start": 1151.78,
"end": 1155.9,
"probability": 0.9965
},
{
"start": 1156.87,
"end": 1159.8,
"probability": 0.8196
},
{
"start": 1160.0,
"end": 1163.06,
"probability": 0.9264
},
{
"start": 1164.22,
"end": 1164.54,
"probability": 0.6624
},
{
"start": 1164.8,
"end": 1167.26,
"probability": 0.9766
},
{
"start": 1167.44,
"end": 1168.36,
"probability": 0.8945
},
{
"start": 1168.4,
"end": 1168.8,
"probability": 0.9414
},
{
"start": 1169.36,
"end": 1170.16,
"probability": 0.9141
},
{
"start": 1170.76,
"end": 1174.24,
"probability": 0.708
},
{
"start": 1174.68,
"end": 1177.04,
"probability": 0.701
},
{
"start": 1177.2,
"end": 1179.86,
"probability": 0.7571
},
{
"start": 1180.44,
"end": 1182.2,
"probability": 0.9863
},
{
"start": 1182.78,
"end": 1185.06,
"probability": 0.9922
},
{
"start": 1185.48,
"end": 1188.18,
"probability": 0.9702
},
{
"start": 1188.34,
"end": 1188.54,
"probability": 0.3864
},
{
"start": 1188.64,
"end": 1189.1,
"probability": 0.9357
},
{
"start": 1189.48,
"end": 1191.56,
"probability": 0.9771
},
{
"start": 1191.66,
"end": 1192.54,
"probability": 0.9949
},
{
"start": 1192.64,
"end": 1193.48,
"probability": 0.9971
},
{
"start": 1194.16,
"end": 1195.74,
"probability": 0.9977
},
{
"start": 1196.42,
"end": 1197.86,
"probability": 0.7751
},
{
"start": 1197.98,
"end": 1198.6,
"probability": 0.6799
},
{
"start": 1199.12,
"end": 1199.92,
"probability": 0.6595
},
{
"start": 1201.56,
"end": 1204.04,
"probability": 0.9415
},
{
"start": 1210.84,
"end": 1213.92,
"probability": 0.7362
},
{
"start": 1214.38,
"end": 1214.44,
"probability": 0.1661
},
{
"start": 1215.18,
"end": 1216.54,
"probability": 0.2244
},
{
"start": 1216.72,
"end": 1217.14,
"probability": 0.2265
},
{
"start": 1217.26,
"end": 1217.26,
"probability": 0.2037
},
{
"start": 1217.26,
"end": 1217.44,
"probability": 0.2517
},
{
"start": 1217.56,
"end": 1217.94,
"probability": 0.1993
},
{
"start": 1238.52,
"end": 1239.18,
"probability": 0.7836
},
{
"start": 1239.38,
"end": 1239.74,
"probability": 0.4913
},
{
"start": 1239.84,
"end": 1240.12,
"probability": 0.8251
},
{
"start": 1240.2,
"end": 1240.38,
"probability": 0.653
},
{
"start": 1240.48,
"end": 1240.8,
"probability": 0.5849
},
{
"start": 1241.2,
"end": 1241.92,
"probability": 0.4055
},
{
"start": 1241.92,
"end": 1243.07,
"probability": 0.5497
},
{
"start": 1244.1,
"end": 1245.8,
"probability": 0.6395
},
{
"start": 1245.96,
"end": 1247.84,
"probability": 0.6589
},
{
"start": 1247.96,
"end": 1250.14,
"probability": 0.9982
},
{
"start": 1250.3,
"end": 1250.4,
"probability": 0.2116
},
{
"start": 1250.58,
"end": 1252.04,
"probability": 0.8351
},
{
"start": 1253.02,
"end": 1255.1,
"probability": 0.8322
},
{
"start": 1256.18,
"end": 1258.42,
"probability": 0.9889
},
{
"start": 1259.28,
"end": 1261.88,
"probability": 0.9761
},
{
"start": 1262.54,
"end": 1264.9,
"probability": 0.9869
},
{
"start": 1265.78,
"end": 1268.88,
"probability": 0.9873
},
{
"start": 1268.88,
"end": 1272.94,
"probability": 0.9893
},
{
"start": 1274.18,
"end": 1275.64,
"probability": 0.8514
},
{
"start": 1276.26,
"end": 1278.02,
"probability": 0.9956
},
{
"start": 1278.86,
"end": 1283.22,
"probability": 0.9878
},
{
"start": 1284.18,
"end": 1284.8,
"probability": 0.5227
},
{
"start": 1285.6,
"end": 1287.72,
"probability": 0.9374
},
{
"start": 1288.02,
"end": 1291.4,
"probability": 0.8254
},
{
"start": 1291.94,
"end": 1294.22,
"probability": 0.9159
},
{
"start": 1295.0,
"end": 1295.98,
"probability": 0.625
},
{
"start": 1296.58,
"end": 1297.86,
"probability": 0.6075
},
{
"start": 1298.6,
"end": 1299.32,
"probability": 0.6282
},
{
"start": 1299.74,
"end": 1300.26,
"probability": 0.5866
},
{
"start": 1300.94,
"end": 1301.7,
"probability": 0.9738
},
{
"start": 1302.8,
"end": 1305.8,
"probability": 0.9551
},
{
"start": 1306.5,
"end": 1312.08,
"probability": 0.9667
},
{
"start": 1312.56,
"end": 1313.1,
"probability": 0.8663
},
{
"start": 1313.66,
"end": 1314.32,
"probability": 0.8663
},
{
"start": 1314.94,
"end": 1315.66,
"probability": 0.8599
},
{
"start": 1316.22,
"end": 1318.18,
"probability": 0.9632
},
{
"start": 1320.76,
"end": 1323.94,
"probability": 0.9832
},
{
"start": 1324.14,
"end": 1325.48,
"probability": 0.9987
},
{
"start": 1325.54,
"end": 1326.26,
"probability": 0.6985
},
{
"start": 1326.38,
"end": 1328.24,
"probability": 0.6769
},
{
"start": 1328.82,
"end": 1330.06,
"probability": 0.9741
},
{
"start": 1330.88,
"end": 1332.1,
"probability": 0.8458
},
{
"start": 1332.4,
"end": 1332.72,
"probability": 0.0925
},
{
"start": 1332.94,
"end": 1335.3,
"probability": 0.9762
},
{
"start": 1335.3,
"end": 1339.08,
"probability": 0.5342
},
{
"start": 1339.14,
"end": 1339.66,
"probability": 0.5707
},
{
"start": 1340.62,
"end": 1342.22,
"probability": 0.9932
},
{
"start": 1342.36,
"end": 1344.08,
"probability": 0.5088
},
{
"start": 1345.24,
"end": 1347.08,
"probability": 0.7237
},
{
"start": 1347.66,
"end": 1348.32,
"probability": 0.9543
},
{
"start": 1348.96,
"end": 1349.88,
"probability": 0.5041
},
{
"start": 1350.76,
"end": 1352.22,
"probability": 0.7704
},
{
"start": 1352.9,
"end": 1357.74,
"probability": 0.9387
},
{
"start": 1358.68,
"end": 1359.28,
"probability": 0.9846
},
{
"start": 1359.94,
"end": 1363.84,
"probability": 0.9988
},
{
"start": 1364.46,
"end": 1368.12,
"probability": 0.8846
},
{
"start": 1369.04,
"end": 1370.3,
"probability": 0.7112
},
{
"start": 1370.62,
"end": 1372.6,
"probability": 0.2086
},
{
"start": 1372.84,
"end": 1374.38,
"probability": 0.7069
},
{
"start": 1374.76,
"end": 1377.12,
"probability": 0.9844
},
{
"start": 1377.22,
"end": 1378.6,
"probability": 0.9908
},
{
"start": 1379.72,
"end": 1381.36,
"probability": 0.9637
},
{
"start": 1382.06,
"end": 1382.68,
"probability": 0.9664
},
{
"start": 1383.66,
"end": 1387.78,
"probability": 0.9773
},
{
"start": 1388.42,
"end": 1394.66,
"probability": 0.9886
},
{
"start": 1395.32,
"end": 1398.86,
"probability": 0.9976
},
{
"start": 1400.54,
"end": 1403.6,
"probability": 0.9863
},
{
"start": 1404.36,
"end": 1405.52,
"probability": 0.9941
},
{
"start": 1406.14,
"end": 1406.66,
"probability": 0.9408
},
{
"start": 1407.84,
"end": 1408.84,
"probability": 0.7173
},
{
"start": 1409.4,
"end": 1410.48,
"probability": 0.8705
},
{
"start": 1410.84,
"end": 1414.74,
"probability": 0.9382
},
{
"start": 1415.52,
"end": 1415.94,
"probability": 0.674
},
{
"start": 1416.88,
"end": 1421.02,
"probability": 0.9944
},
{
"start": 1421.02,
"end": 1422.4,
"probability": 0.9434
},
{
"start": 1422.8,
"end": 1423.3,
"probability": 0.7562
},
{
"start": 1424.04,
"end": 1428.88,
"probability": 0.9875
},
{
"start": 1429.42,
"end": 1431.64,
"probability": 0.7601
},
{
"start": 1431.98,
"end": 1433.12,
"probability": 0.9968
},
{
"start": 1433.78,
"end": 1437.34,
"probability": 0.9412
},
{
"start": 1437.88,
"end": 1439.94,
"probability": 0.8958
},
{
"start": 1440.48,
"end": 1441.04,
"probability": 0.886
},
{
"start": 1441.5,
"end": 1441.92,
"probability": 0.89
},
{
"start": 1442.26,
"end": 1442.64,
"probability": 0.7627
},
{
"start": 1443.02,
"end": 1446.48,
"probability": 0.9868
},
{
"start": 1446.9,
"end": 1450.3,
"probability": 0.8992
},
{
"start": 1451.66,
"end": 1453.84,
"probability": 0.9717
},
{
"start": 1454.56,
"end": 1457.52,
"probability": 0.9927
},
{
"start": 1457.68,
"end": 1459.74,
"probability": 0.8077
},
{
"start": 1460.42,
"end": 1463.5,
"probability": 0.9681
},
{
"start": 1463.5,
"end": 1465.76,
"probability": 0.9901
},
{
"start": 1466.82,
"end": 1468.84,
"probability": 0.9724
},
{
"start": 1468.84,
"end": 1472.08,
"probability": 0.7778
},
{
"start": 1472.5,
"end": 1473.76,
"probability": 0.6958
},
{
"start": 1478.7,
"end": 1481.34,
"probability": 0.7971
},
{
"start": 1481.8,
"end": 1485.84,
"probability": 0.9493
},
{
"start": 1485.84,
"end": 1488.94,
"probability": 0.9966
},
{
"start": 1489.4,
"end": 1493.74,
"probability": 0.9965
},
{
"start": 1494.8,
"end": 1497.1,
"probability": 0.9912
},
{
"start": 1497.86,
"end": 1501.76,
"probability": 0.9814
},
{
"start": 1502.4,
"end": 1506.74,
"probability": 0.9989
},
{
"start": 1507.44,
"end": 1509.0,
"probability": 0.871
},
{
"start": 1509.48,
"end": 1510.02,
"probability": 0.9419
},
{
"start": 1510.2,
"end": 1510.4,
"probability": 0.8333
},
{
"start": 1510.44,
"end": 1511.1,
"probability": 0.8598
},
{
"start": 1511.56,
"end": 1512.94,
"probability": 0.9798
},
{
"start": 1513.74,
"end": 1517.54,
"probability": 0.9822
},
{
"start": 1518.32,
"end": 1523.34,
"probability": 0.996
},
{
"start": 1524.0,
"end": 1528.0,
"probability": 0.8775
},
{
"start": 1528.64,
"end": 1530.04,
"probability": 0.9962
},
{
"start": 1531.42,
"end": 1534.74,
"probability": 0.9258
},
{
"start": 1536.04,
"end": 1540.22,
"probability": 0.9932
},
{
"start": 1540.84,
"end": 1543.48,
"probability": 0.9961
},
{
"start": 1543.48,
"end": 1546.36,
"probability": 0.999
},
{
"start": 1546.96,
"end": 1547.86,
"probability": 0.6581
},
{
"start": 1548.7,
"end": 1551.94,
"probability": 0.8692
},
{
"start": 1552.86,
"end": 1555.18,
"probability": 0.9948
},
{
"start": 1555.48,
"end": 1558.48,
"probability": 0.9761
},
{
"start": 1558.98,
"end": 1560.22,
"probability": 0.9908
},
{
"start": 1560.8,
"end": 1562.04,
"probability": 0.8566
},
{
"start": 1562.94,
"end": 1564.24,
"probability": 0.6647
},
{
"start": 1564.24,
"end": 1567.52,
"probability": 0.9434
},
{
"start": 1567.6,
"end": 1568.24,
"probability": 0.4659
},
{
"start": 1568.86,
"end": 1572.8,
"probability": 0.9808
},
{
"start": 1572.8,
"end": 1575.22,
"probability": 0.9917
},
{
"start": 1575.94,
"end": 1579.6,
"probability": 0.9932
},
{
"start": 1579.6,
"end": 1583.56,
"probability": 0.9937
},
{
"start": 1584.72,
"end": 1587.78,
"probability": 0.9841
},
{
"start": 1588.22,
"end": 1589.82,
"probability": 0.9553
},
{
"start": 1590.56,
"end": 1593.04,
"probability": 0.9949
},
{
"start": 1593.64,
"end": 1595.48,
"probability": 0.999
},
{
"start": 1595.48,
"end": 1599.52,
"probability": 0.9897
},
{
"start": 1599.84,
"end": 1602.24,
"probability": 0.9502
},
{
"start": 1602.74,
"end": 1603.94,
"probability": 0.8263
},
{
"start": 1604.76,
"end": 1609.08,
"probability": 0.9933
},
{
"start": 1609.56,
"end": 1611.22,
"probability": 0.9478
},
{
"start": 1611.6,
"end": 1616.4,
"probability": 0.9797
},
{
"start": 1617.06,
"end": 1619.02,
"probability": 0.9813
},
{
"start": 1619.58,
"end": 1621.86,
"probability": 0.9791
},
{
"start": 1622.38,
"end": 1624.64,
"probability": 0.9957
},
{
"start": 1625.2,
"end": 1627.8,
"probability": 0.9918
},
{
"start": 1628.03,
"end": 1631.24,
"probability": 0.9841
},
{
"start": 1631.58,
"end": 1632.26,
"probability": 0.9661
},
{
"start": 1632.94,
"end": 1633.3,
"probability": 0.7654
},
{
"start": 1634.64,
"end": 1635.16,
"probability": 0.6151
},
{
"start": 1635.16,
"end": 1636.22,
"probability": 0.9473
},
{
"start": 1644.82,
"end": 1645.0,
"probability": 0.4903
},
{
"start": 1663.92,
"end": 1665.12,
"probability": 0.7833
},
{
"start": 1665.88,
"end": 1666.92,
"probability": 0.8737
},
{
"start": 1668.34,
"end": 1670.64,
"probability": 0.6576
},
{
"start": 1672.12,
"end": 1672.84,
"probability": 0.9438
},
{
"start": 1673.44,
"end": 1673.78,
"probability": 0.7972
},
{
"start": 1674.3,
"end": 1675.68,
"probability": 0.875
},
{
"start": 1676.56,
"end": 1677.6,
"probability": 0.4431
},
{
"start": 1678.36,
"end": 1681.11,
"probability": 0.9985
},
{
"start": 1681.56,
"end": 1682.16,
"probability": 0.979
},
{
"start": 1684.08,
"end": 1685.44,
"probability": 0.9993
},
{
"start": 1685.76,
"end": 1687.2,
"probability": 0.9663
},
{
"start": 1688.66,
"end": 1693.16,
"probability": 0.9675
},
{
"start": 1693.78,
"end": 1695.54,
"probability": 0.9993
},
{
"start": 1696.7,
"end": 1698.22,
"probability": 0.7296
},
{
"start": 1700.36,
"end": 1701.6,
"probability": 0.8784
},
{
"start": 1702.2,
"end": 1702.58,
"probability": 0.848
},
{
"start": 1703.12,
"end": 1703.7,
"probability": 0.7976
},
{
"start": 1705.02,
"end": 1708.44,
"probability": 0.9124
},
{
"start": 1708.86,
"end": 1709.52,
"probability": 0.9731
},
{
"start": 1710.32,
"end": 1711.32,
"probability": 0.9993
},
{
"start": 1712.14,
"end": 1712.62,
"probability": 0.9899
},
{
"start": 1713.32,
"end": 1713.86,
"probability": 0.9847
},
{
"start": 1714.74,
"end": 1715.2,
"probability": 0.9495
},
{
"start": 1716.28,
"end": 1717.36,
"probability": 0.923
},
{
"start": 1718.98,
"end": 1719.82,
"probability": 0.9038
},
{
"start": 1721.12,
"end": 1727.96,
"probability": 0.9491
},
{
"start": 1728.84,
"end": 1731.42,
"probability": 0.8327
},
{
"start": 1732.72,
"end": 1736.9,
"probability": 0.9207
},
{
"start": 1738.54,
"end": 1741.06,
"probability": 0.9578
},
{
"start": 1742.24,
"end": 1744.24,
"probability": 0.9665
},
{
"start": 1744.72,
"end": 1746.54,
"probability": 0.9775
},
{
"start": 1747.54,
"end": 1748.42,
"probability": 0.9261
},
{
"start": 1749.66,
"end": 1753.92,
"probability": 0.9816
},
{
"start": 1754.84,
"end": 1757.86,
"probability": 0.9953
},
{
"start": 1758.5,
"end": 1759.28,
"probability": 0.9873
},
{
"start": 1760.72,
"end": 1761.82,
"probability": 0.9912
},
{
"start": 1762.7,
"end": 1765.88,
"probability": 0.9935
},
{
"start": 1766.96,
"end": 1768.24,
"probability": 0.9954
},
{
"start": 1769.52,
"end": 1770.76,
"probability": 0.9862
},
{
"start": 1771.7,
"end": 1772.32,
"probability": 0.9631
},
{
"start": 1772.94,
"end": 1773.66,
"probability": 0.8623
},
{
"start": 1774.58,
"end": 1775.76,
"probability": 0.9766
},
{
"start": 1776.58,
"end": 1777.24,
"probability": 0.8474
},
{
"start": 1778.14,
"end": 1781.54,
"probability": 0.9979
},
{
"start": 1782.06,
"end": 1783.02,
"probability": 0.5296
},
{
"start": 1784.7,
"end": 1785.92,
"probability": 0.8825
},
{
"start": 1787.52,
"end": 1788.77,
"probability": 0.6879
},
{
"start": 1788.9,
"end": 1794.82,
"probability": 0.9509
},
{
"start": 1795.06,
"end": 1796.46,
"probability": 0.9644
},
{
"start": 1796.82,
"end": 1798.24,
"probability": 0.9959
},
{
"start": 1798.92,
"end": 1800.5,
"probability": 0.99
},
{
"start": 1801.9,
"end": 1802.4,
"probability": 0.9725
},
{
"start": 1803.36,
"end": 1805.96,
"probability": 0.3898
},
{
"start": 1806.9,
"end": 1807.94,
"probability": 0.9966
},
{
"start": 1808.76,
"end": 1810.22,
"probability": 0.9629
},
{
"start": 1811.16,
"end": 1811.76,
"probability": 0.9481
},
{
"start": 1812.38,
"end": 1813.78,
"probability": 0.8375
},
{
"start": 1815.96,
"end": 1817.0,
"probability": 0.5685
},
{
"start": 1817.7,
"end": 1818.36,
"probability": 0.7698
},
{
"start": 1819.22,
"end": 1824.0,
"probability": 0.9068
},
{
"start": 1824.98,
"end": 1825.64,
"probability": 0.6847
},
{
"start": 1825.72,
"end": 1826.82,
"probability": 0.8643
},
{
"start": 1827.12,
"end": 1828.06,
"probability": 0.9749
},
{
"start": 1829.32,
"end": 1831.92,
"probability": 0.9684
},
{
"start": 1832.46,
"end": 1836.06,
"probability": 0.9146
},
{
"start": 1836.6,
"end": 1839.48,
"probability": 0.9204
},
{
"start": 1839.72,
"end": 1842.72,
"probability": 0.7388
},
{
"start": 1843.72,
"end": 1844.34,
"probability": 0.501
},
{
"start": 1844.94,
"end": 1846.98,
"probability": 0.8373
},
{
"start": 1846.98,
"end": 1850.64,
"probability": 0.9948
},
{
"start": 1851.84,
"end": 1852.46,
"probability": 0.7546
},
{
"start": 1853.18,
"end": 1855.24,
"probability": 0.7734
},
{
"start": 1855.96,
"end": 1857.34,
"probability": 0.9889
},
{
"start": 1857.34,
"end": 1860.32,
"probability": 0.9631
},
{
"start": 1861.56,
"end": 1862.86,
"probability": 0.9583
},
{
"start": 1863.4,
"end": 1864.62,
"probability": 0.9152
},
{
"start": 1866.76,
"end": 1869.18,
"probability": 0.9964
},
{
"start": 1869.88,
"end": 1870.76,
"probability": 0.9719
},
{
"start": 1871.42,
"end": 1874.64,
"probability": 0.953
},
{
"start": 1875.52,
"end": 1876.92,
"probability": 0.8298
},
{
"start": 1877.2,
"end": 1879.1,
"probability": 0.9779
},
{
"start": 1879.68,
"end": 1880.62,
"probability": 0.5825
},
{
"start": 1882.04,
"end": 1882.64,
"probability": 0.8118
},
{
"start": 1882.68,
"end": 1883.44,
"probability": 0.8901
},
{
"start": 1883.52,
"end": 1885.64,
"probability": 0.9961
},
{
"start": 1886.18,
"end": 1887.04,
"probability": 0.9988
},
{
"start": 1888.06,
"end": 1889.7,
"probability": 0.835
},
{
"start": 1890.38,
"end": 1895.04,
"probability": 0.9963
},
{
"start": 1895.44,
"end": 1896.58,
"probability": 0.9319
},
{
"start": 1897.06,
"end": 1898.4,
"probability": 0.8935
},
{
"start": 1899.42,
"end": 1900.78,
"probability": 0.9277
},
{
"start": 1901.92,
"end": 1903.22,
"probability": 0.9267
},
{
"start": 1903.28,
"end": 1904.46,
"probability": 0.9915
},
{
"start": 1904.54,
"end": 1907.12,
"probability": 0.9891
},
{
"start": 1907.82,
"end": 1909.78,
"probability": 0.8435
},
{
"start": 1911.34,
"end": 1912.32,
"probability": 0.9995
},
{
"start": 1913.4,
"end": 1916.56,
"probability": 0.9022
},
{
"start": 1917.52,
"end": 1918.96,
"probability": 0.9988
},
{
"start": 1919.84,
"end": 1921.37,
"probability": 0.9945
},
{
"start": 1923.56,
"end": 1924.96,
"probability": 0.9557
},
{
"start": 1926.94,
"end": 1929.62,
"probability": 0.9963
},
{
"start": 1931.4,
"end": 1936.4,
"probability": 0.9986
},
{
"start": 1936.86,
"end": 1937.88,
"probability": 0.8839
},
{
"start": 1937.98,
"end": 1938.33,
"probability": 0.9613
},
{
"start": 1939.22,
"end": 1940.97,
"probability": 0.9934
},
{
"start": 1941.76,
"end": 1943.12,
"probability": 0.9795
},
{
"start": 1943.58,
"end": 1946.82,
"probability": 0.9742
},
{
"start": 1947.04,
"end": 1949.46,
"probability": 0.7206
},
{
"start": 1950.78,
"end": 1951.68,
"probability": 0.4617
},
{
"start": 1952.34,
"end": 1954.88,
"probability": 0.7449
},
{
"start": 1955.62,
"end": 1957.46,
"probability": 0.9036
},
{
"start": 1958.92,
"end": 1959.74,
"probability": 0.9286
},
{
"start": 1960.16,
"end": 1962.06,
"probability": 0.9402
},
{
"start": 1962.28,
"end": 1965.74,
"probability": 0.9886
},
{
"start": 1966.86,
"end": 1968.14,
"probability": 0.9954
},
{
"start": 1968.74,
"end": 1969.34,
"probability": 0.5922
},
{
"start": 1969.94,
"end": 1970.31,
"probability": 0.968
},
{
"start": 1971.08,
"end": 1972.58,
"probability": 0.9277
},
{
"start": 1972.94,
"end": 1973.88,
"probability": 0.9344
},
{
"start": 1974.02,
"end": 1974.22,
"probability": 0.792
},
{
"start": 1974.94,
"end": 1975.84,
"probability": 0.2992
},
{
"start": 1975.84,
"end": 1976.58,
"probability": 0.2005
},
{
"start": 1976.96,
"end": 1978.06,
"probability": 0.2756
},
{
"start": 1980.64,
"end": 1981.18,
"probability": 0.1805
},
{
"start": 1982.44,
"end": 1986.28,
"probability": 0.7235
},
{
"start": 1987.12,
"end": 1990.78,
"probability": 0.623
},
{
"start": 1991.58,
"end": 1993.3,
"probability": 0.3454
},
{
"start": 1993.98,
"end": 1996.17,
"probability": 0.0908
},
{
"start": 1996.92,
"end": 1997.34,
"probability": 0.2473
},
{
"start": 1997.34,
"end": 2002.06,
"probability": 0.1632
},
{
"start": 2010.74,
"end": 2014.34,
"probability": 0.0862
},
{
"start": 2014.58,
"end": 2014.93,
"probability": 0.0653
},
{
"start": 2017.88,
"end": 2020.74,
"probability": 0.3531
},
{
"start": 2022.88,
"end": 2023.26,
"probability": 0.0137
},
{
"start": 2171.32,
"end": 2171.42,
"probability": 0.3179
},
{
"start": 2172.52,
"end": 2174.7,
"probability": 0.7321
},
{
"start": 2175.74,
"end": 2180.12,
"probability": 0.9793
},
{
"start": 2180.14,
"end": 2184.07,
"probability": 0.9254
},
{
"start": 2184.56,
"end": 2186.29,
"probability": 0.948
},
{
"start": 2186.36,
"end": 2187.96,
"probability": 0.6613
},
{
"start": 2189.08,
"end": 2192.22,
"probability": 0.9907
},
{
"start": 2192.36,
"end": 2196.96,
"probability": 0.9956
},
{
"start": 2196.96,
"end": 2201.94,
"probability": 0.9391
},
{
"start": 2201.94,
"end": 2205.96,
"probability": 0.9923
},
{
"start": 2206.26,
"end": 2209.38,
"probability": 0.7555
},
{
"start": 2210.06,
"end": 2214.04,
"probability": 0.9727
},
{
"start": 2214.9,
"end": 2216.42,
"probability": 0.5592
},
{
"start": 2217.26,
"end": 2221.56,
"probability": 0.6632
},
{
"start": 2222.28,
"end": 2227.4,
"probability": 0.8101
},
{
"start": 2227.94,
"end": 2232.2,
"probability": 0.5484
},
{
"start": 2232.38,
"end": 2233.92,
"probability": 0.8911
},
{
"start": 2234.74,
"end": 2236.32,
"probability": 0.9733
},
{
"start": 2237.12,
"end": 2238.52,
"probability": 0.9934
},
{
"start": 2238.78,
"end": 2239.32,
"probability": 0.6249
},
{
"start": 2239.84,
"end": 2242.12,
"probability": 0.9491
},
{
"start": 2243.06,
"end": 2244.23,
"probability": 0.963
},
{
"start": 2244.4,
"end": 2248.74,
"probability": 0.7573
},
{
"start": 2248.78,
"end": 2249.4,
"probability": 0.3428
},
{
"start": 2249.94,
"end": 2252.68,
"probability": 0.6613
},
{
"start": 2253.4,
"end": 2260.08,
"probability": 0.9871
},
{
"start": 2260.9,
"end": 2263.2,
"probability": 0.8623
},
{
"start": 2264.14,
"end": 2267.86,
"probability": 0.9956
},
{
"start": 2268.64,
"end": 2270.92,
"probability": 0.9667
},
{
"start": 2271.52,
"end": 2273.38,
"probability": 0.9902
},
{
"start": 2273.88,
"end": 2279.2,
"probability": 0.8608
},
{
"start": 2279.2,
"end": 2286.88,
"probability": 0.9901
},
{
"start": 2287.2,
"end": 2288.04,
"probability": 0.5335
},
{
"start": 2289.04,
"end": 2291.62,
"probability": 0.8485
},
{
"start": 2292.16,
"end": 2297.22,
"probability": 0.947
},
{
"start": 2297.34,
"end": 2301.78,
"probability": 0.9816
},
{
"start": 2301.78,
"end": 2305.9,
"probability": 0.9678
},
{
"start": 2309.32,
"end": 2310.48,
"probability": 0.6254
},
{
"start": 2310.68,
"end": 2311.3,
"probability": 0.954
},
{
"start": 2311.42,
"end": 2313.56,
"probability": 0.5181
},
{
"start": 2314.28,
"end": 2315.54,
"probability": 0.6246
},
{
"start": 2316.12,
"end": 2320.82,
"probability": 0.8245
},
{
"start": 2321.36,
"end": 2324.36,
"probability": 0.5517
},
{
"start": 2324.49,
"end": 2327.52,
"probability": 0.7548
},
{
"start": 2327.7,
"end": 2329.16,
"probability": 0.9551
},
{
"start": 2329.3,
"end": 2330.42,
"probability": 0.3124
},
{
"start": 2330.84,
"end": 2336.1,
"probability": 0.8073
},
{
"start": 2336.26,
"end": 2336.94,
"probability": 0.9476
},
{
"start": 2337.72,
"end": 2341.58,
"probability": 0.8078
},
{
"start": 2342.24,
"end": 2343.98,
"probability": 0.9216
},
{
"start": 2344.44,
"end": 2349.27,
"probability": 0.9897
},
{
"start": 2350.14,
"end": 2353.72,
"probability": 0.9955
},
{
"start": 2354.3,
"end": 2355.58,
"probability": 0.71
},
{
"start": 2356.22,
"end": 2359.14,
"probability": 0.7405
},
{
"start": 2359.38,
"end": 2364.66,
"probability": 0.9893
},
{
"start": 2365.54,
"end": 2367.16,
"probability": 0.9519
},
{
"start": 2367.84,
"end": 2371.16,
"probability": 0.749
},
{
"start": 2371.86,
"end": 2373.64,
"probability": 0.9222
},
{
"start": 2374.5,
"end": 2377.42,
"probability": 0.9255
},
{
"start": 2377.94,
"end": 2379.2,
"probability": 0.9385
},
{
"start": 2379.92,
"end": 2381.48,
"probability": 0.8628
},
{
"start": 2382.82,
"end": 2385.36,
"probability": 0.8645
},
{
"start": 2385.88,
"end": 2387.98,
"probability": 0.7305
},
{
"start": 2388.6,
"end": 2389.7,
"probability": 0.7553
},
{
"start": 2389.9,
"end": 2393.9,
"probability": 0.8925
},
{
"start": 2393.94,
"end": 2394.82,
"probability": 0.7052
},
{
"start": 2394.9,
"end": 2395.4,
"probability": 0.7799
},
{
"start": 2396.46,
"end": 2399.22,
"probability": 0.5222
},
{
"start": 2399.74,
"end": 2402.64,
"probability": 0.9429
},
{
"start": 2402.74,
"end": 2404.34,
"probability": 0.9885
},
{
"start": 2405.2,
"end": 2406.24,
"probability": 0.9473
},
{
"start": 2406.44,
"end": 2408.44,
"probability": 0.8531
},
{
"start": 2408.56,
"end": 2409.1,
"probability": 0.9037
},
{
"start": 2409.24,
"end": 2409.62,
"probability": 0.7596
},
{
"start": 2409.72,
"end": 2410.46,
"probability": 0.9792
},
{
"start": 2410.5,
"end": 2411.12,
"probability": 0.6451
},
{
"start": 2411.82,
"end": 2413.98,
"probability": 0.9941
},
{
"start": 2414.76,
"end": 2418.4,
"probability": 0.9766
},
{
"start": 2418.4,
"end": 2422.04,
"probability": 0.9988
},
{
"start": 2423.48,
"end": 2425.32,
"probability": 0.7239
},
{
"start": 2425.5,
"end": 2427.36,
"probability": 0.8418
},
{
"start": 2428.0,
"end": 2429.26,
"probability": 0.9133
},
{
"start": 2429.56,
"end": 2431.04,
"probability": 0.7604
},
{
"start": 2431.24,
"end": 2433.86,
"probability": 0.6189
},
{
"start": 2434.26,
"end": 2439.56,
"probability": 0.908
},
{
"start": 2440.94,
"end": 2445.86,
"probability": 0.875
},
{
"start": 2446.42,
"end": 2449.34,
"probability": 0.5719
},
{
"start": 2449.58,
"end": 2450.98,
"probability": 0.5917
},
{
"start": 2451.02,
"end": 2454.24,
"probability": 0.9524
},
{
"start": 2454.92,
"end": 2457.76,
"probability": 0.8913
},
{
"start": 2458.4,
"end": 2459.98,
"probability": 0.8657
},
{
"start": 2460.52,
"end": 2463.08,
"probability": 0.8931
},
{
"start": 2463.64,
"end": 2467.03,
"probability": 0.9917
},
{
"start": 2467.24,
"end": 2472.26,
"probability": 0.9873
},
{
"start": 2472.38,
"end": 2475.22,
"probability": 0.8963
},
{
"start": 2475.48,
"end": 2481.58,
"probability": 0.9424
},
{
"start": 2481.84,
"end": 2482.44,
"probability": 0.6922
},
{
"start": 2482.94,
"end": 2486.66,
"probability": 0.9606
},
{
"start": 2487.16,
"end": 2488.32,
"probability": 0.9756
},
{
"start": 2488.5,
"end": 2493.98,
"probability": 0.9604
},
{
"start": 2494.04,
"end": 2497.34,
"probability": 0.9961
},
{
"start": 2497.76,
"end": 2500.0,
"probability": 0.9647
},
{
"start": 2500.12,
"end": 2501.0,
"probability": 0.9514
},
{
"start": 2501.8,
"end": 2506.28,
"probability": 0.988
},
{
"start": 2506.36,
"end": 2508.05,
"probability": 0.9875
},
{
"start": 2508.4,
"end": 2509.24,
"probability": 0.9647
},
{
"start": 2509.8,
"end": 2513.7,
"probability": 0.9971
},
{
"start": 2514.34,
"end": 2518.88,
"probability": 0.9694
},
{
"start": 2519.38,
"end": 2524.76,
"probability": 0.9988
},
{
"start": 2525.34,
"end": 2526.12,
"probability": 0.7124
},
{
"start": 2526.22,
"end": 2531.86,
"probability": 0.9339
},
{
"start": 2531.86,
"end": 2532.14,
"probability": 0.3066
},
{
"start": 2532.5,
"end": 2534.92,
"probability": 0.7839
},
{
"start": 2535.6,
"end": 2536.34,
"probability": 0.7656
},
{
"start": 2537.48,
"end": 2538.76,
"probability": 0.8268
},
{
"start": 2538.96,
"end": 2540.04,
"probability": 0.9693
},
{
"start": 2540.14,
"end": 2540.88,
"probability": 0.6707
},
{
"start": 2540.9,
"end": 2544.36,
"probability": 0.973
},
{
"start": 2544.68,
"end": 2545.84,
"probability": 0.8158
},
{
"start": 2546.0,
"end": 2546.52,
"probability": 0.6673
},
{
"start": 2546.82,
"end": 2547.36,
"probability": 0.502
},
{
"start": 2547.36,
"end": 2549.82,
"probability": 0.8936
},
{
"start": 2550.82,
"end": 2552.08,
"probability": 0.2531
},
{
"start": 2558.14,
"end": 2559.42,
"probability": 0.0189
},
{
"start": 2559.6,
"end": 2560.86,
"probability": 0.0618
},
{
"start": 2560.86,
"end": 2560.9,
"probability": 0.1772
},
{
"start": 2560.98,
"end": 2560.98,
"probability": 0.3528
},
{
"start": 2561.1,
"end": 2561.1,
"probability": 0.155
},
{
"start": 2561.1,
"end": 2561.32,
"probability": 0.1622
},
{
"start": 2561.32,
"end": 2561.32,
"probability": 0.5688
},
{
"start": 2561.32,
"end": 2561.34,
"probability": 0.0975
},
{
"start": 2561.34,
"end": 2561.87,
"probability": 0.0154
},
{
"start": 2579.98,
"end": 2580.28,
"probability": 0.0235
},
{
"start": 2598.06,
"end": 2598.48,
"probability": 0.2389
},
{
"start": 2599.32,
"end": 2601.78,
"probability": 0.713
},
{
"start": 2602.48,
"end": 2603.42,
"probability": 0.9517
},
{
"start": 2604.3,
"end": 2607.62,
"probability": 0.7496
},
{
"start": 2608.46,
"end": 2609.02,
"probability": 0.7794
},
{
"start": 2610.28,
"end": 2611.48,
"probability": 0.572
},
{
"start": 2611.6,
"end": 2614.28,
"probability": 0.9828
},
{
"start": 2615.58,
"end": 2617.22,
"probability": 0.6389
},
{
"start": 2617.94,
"end": 2618.94,
"probability": 0.8721
},
{
"start": 2619.74,
"end": 2620.36,
"probability": 0.7336
},
{
"start": 2620.54,
"end": 2621.22,
"probability": 0.9338
},
{
"start": 2621.28,
"end": 2621.96,
"probability": 0.9688
},
{
"start": 2622.02,
"end": 2622.75,
"probability": 0.7755
},
{
"start": 2622.82,
"end": 2623.36,
"probability": 0.9042
},
{
"start": 2623.76,
"end": 2623.86,
"probability": 0.7704
},
{
"start": 2624.48,
"end": 2625.5,
"probability": 0.9272
},
{
"start": 2626.24,
"end": 2626.8,
"probability": 0.6432
},
{
"start": 2627.54,
"end": 2630.64,
"probability": 0.5867
},
{
"start": 2630.64,
"end": 2630.64,
"probability": 0.0329
},
{
"start": 2630.64,
"end": 2631.32,
"probability": 0.425
},
{
"start": 2631.42,
"end": 2632.26,
"probability": 0.7046
},
{
"start": 2632.42,
"end": 2633.04,
"probability": 0.7293
},
{
"start": 2634.04,
"end": 2635.2,
"probability": 0.7418
},
{
"start": 2636.14,
"end": 2637.36,
"probability": 0.6259
},
{
"start": 2637.94,
"end": 2638.68,
"probability": 0.8457
},
{
"start": 2639.92,
"end": 2640.28,
"probability": 0.5866
},
{
"start": 2640.54,
"end": 2641.4,
"probability": 0.5687
},
{
"start": 2647.88,
"end": 2647.88,
"probability": 0.003
},
{
"start": 2647.88,
"end": 2647.88,
"probability": 0.244
},
{
"start": 2647.88,
"end": 2647.88,
"probability": 0.0502
},
{
"start": 2647.88,
"end": 2647.88,
"probability": 0.0759
},
{
"start": 2647.88,
"end": 2651.3,
"probability": 0.6539
},
{
"start": 2652.2,
"end": 2652.84,
"probability": 0.2564
},
{
"start": 2653.84,
"end": 2654.76,
"probability": 0.3263
},
{
"start": 2654.76,
"end": 2655.8,
"probability": 0.7211
},
{
"start": 2656.8,
"end": 2657.3,
"probability": 0.9026
},
{
"start": 2658.1,
"end": 2658.4,
"probability": 0.6178
},
{
"start": 2659.1,
"end": 2661.92,
"probability": 0.8323
},
{
"start": 2662.78,
"end": 2664.26,
"probability": 0.9889
},
{
"start": 2665.12,
"end": 2665.8,
"probability": 0.6108
},
{
"start": 2666.28,
"end": 2667.92,
"probability": 0.693
},
{
"start": 2668.04,
"end": 2669.56,
"probability": 0.943
},
{
"start": 2669.66,
"end": 2670.12,
"probability": 0.8688
},
{
"start": 2670.8,
"end": 2671.86,
"probability": 0.6409
},
{
"start": 2671.94,
"end": 2672.28,
"probability": 0.8545
},
{
"start": 2672.28,
"end": 2673.5,
"probability": 0.3544
},
{
"start": 2673.58,
"end": 2674.2,
"probability": 0.8447
},
{
"start": 2674.2,
"end": 2675.6,
"probability": 0.5643
},
{
"start": 2675.96,
"end": 2679.64,
"probability": 0.9907
},
{
"start": 2680.38,
"end": 2681.76,
"probability": 0.0731
},
{
"start": 2682.36,
"end": 2682.46,
"probability": 0.4623
},
{
"start": 2682.46,
"end": 2682.94,
"probability": 0.8084
},
{
"start": 2683.24,
"end": 2685.78,
"probability": 0.9925
},
{
"start": 2686.2,
"end": 2687.68,
"probability": 0.8134
},
{
"start": 2688.06,
"end": 2691.82,
"probability": 0.9915
},
{
"start": 2692.36,
"end": 2694.26,
"probability": 0.9364
},
{
"start": 2694.86,
"end": 2695.68,
"probability": 0.7213
},
{
"start": 2696.37,
"end": 2697.54,
"probability": 0.1552
},
{
"start": 2697.7,
"end": 2698.78,
"probability": 0.2862
},
{
"start": 2699.52,
"end": 2701.06,
"probability": 0.5662
},
{
"start": 2701.74,
"end": 2706.2,
"probability": 0.2353
},
{
"start": 2706.3,
"end": 2708.08,
"probability": 0.965
},
{
"start": 2710.74,
"end": 2714.94,
"probability": 0.907
},
{
"start": 2715.82,
"end": 2720.32,
"probability": 0.9836
},
{
"start": 2722.6,
"end": 2723.28,
"probability": 0.4246
},
{
"start": 2724.44,
"end": 2725.44,
"probability": 0.6277
},
{
"start": 2726.62,
"end": 2727.64,
"probability": 0.9408
},
{
"start": 2727.7,
"end": 2728.42,
"probability": 0.7604
},
{
"start": 2728.58,
"end": 2729.82,
"probability": 0.7594
},
{
"start": 2731.94,
"end": 2733.08,
"probability": 0.7298
},
{
"start": 2734.3,
"end": 2737.6,
"probability": 0.9733
},
{
"start": 2738.3,
"end": 2740.3,
"probability": 0.5533
},
{
"start": 2740.96,
"end": 2742.64,
"probability": 0.9304
},
{
"start": 2743.54,
"end": 2744.28,
"probability": 0.6314
},
{
"start": 2745.02,
"end": 2746.88,
"probability": 0.8457
},
{
"start": 2747.36,
"end": 2748.33,
"probability": 0.9844
},
{
"start": 2749.04,
"end": 2750.58,
"probability": 0.7725
},
{
"start": 2751.22,
"end": 2759.96,
"probability": 0.876
},
{
"start": 2761.62,
"end": 2762.76,
"probability": 0.0183
},
{
"start": 2762.88,
"end": 2764.08,
"probability": 0.9058
},
{
"start": 2764.88,
"end": 2767.22,
"probability": 0.9461
},
{
"start": 2768.08,
"end": 2768.14,
"probability": 0.0278
},
{
"start": 2768.14,
"end": 2770.7,
"probability": 0.4905
},
{
"start": 2770.74,
"end": 2773.1,
"probability": 0.8617
},
{
"start": 2773.74,
"end": 2774.34,
"probability": 0.7561
},
{
"start": 2774.42,
"end": 2779.26,
"probability": 0.9567
},
{
"start": 2779.64,
"end": 2780.02,
"probability": 0.7699
},
{
"start": 2780.6,
"end": 2780.92,
"probability": 0.6144
},
{
"start": 2781.76,
"end": 2783.36,
"probability": 0.8635
},
{
"start": 2783.56,
"end": 2784.5,
"probability": 0.5687
},
{
"start": 2784.6,
"end": 2785.38,
"probability": 0.8235
},
{
"start": 2785.68,
"end": 2786.48,
"probability": 0.9775
},
{
"start": 2786.6,
"end": 2788.44,
"probability": 0.9868
},
{
"start": 2789.18,
"end": 2793.06,
"probability": 0.8379
},
{
"start": 2793.78,
"end": 2797.1,
"probability": 0.6671
},
{
"start": 2798.04,
"end": 2798.04,
"probability": 0.3345
},
{
"start": 2798.04,
"end": 2798.88,
"probability": 0.6777
},
{
"start": 2799.34,
"end": 2799.98,
"probability": 0.4287
},
{
"start": 2800.1,
"end": 2800.96,
"probability": 0.771
},
{
"start": 2801.8,
"end": 2803.5,
"probability": 0.8946
},
{
"start": 2804.56,
"end": 2809.04,
"probability": 0.0644
},
{
"start": 2810.04,
"end": 2810.04,
"probability": 0.0845
},
{
"start": 2810.04,
"end": 2810.04,
"probability": 0.0379
},
{
"start": 2810.04,
"end": 2810.04,
"probability": 0.1821
},
{
"start": 2810.04,
"end": 2810.04,
"probability": 0.0886
},
{
"start": 2810.04,
"end": 2810.04,
"probability": 0.1292
},
{
"start": 2810.04,
"end": 2810.04,
"probability": 0.0783
},
{
"start": 2810.04,
"end": 2811.64,
"probability": 0.2161
},
{
"start": 2812.06,
"end": 2813.08,
"probability": 0.7009
},
{
"start": 2813.38,
"end": 2815.38,
"probability": 0.7517
},
{
"start": 2816.4,
"end": 2817.42,
"probability": 0.1411
},
{
"start": 2817.42,
"end": 2817.92,
"probability": 0.2061
},
{
"start": 2818.04,
"end": 2819.08,
"probability": 0.9119
},
{
"start": 2819.14,
"end": 2819.5,
"probability": 0.8597
},
{
"start": 2819.76,
"end": 2823.12,
"probability": 0.9872
},
{
"start": 2823.86,
"end": 2829.38,
"probability": 0.9866
},
{
"start": 2830.16,
"end": 2830.66,
"probability": 0.6114
},
{
"start": 2830.72,
"end": 2834.82,
"probability": 0.9971
},
{
"start": 2835.64,
"end": 2836.9,
"probability": 0.9767
},
{
"start": 2837.56,
"end": 2841.64,
"probability": 0.9268
},
{
"start": 2841.64,
"end": 2847.49,
"probability": 0.9954
},
{
"start": 2848.36,
"end": 2849.3,
"probability": 0.5669
},
{
"start": 2850.02,
"end": 2851.64,
"probability": 0.8882
},
{
"start": 2851.72,
"end": 2853.55,
"probability": 0.9885
},
{
"start": 2853.94,
"end": 2854.18,
"probability": 0.8556
},
{
"start": 2854.32,
"end": 2855.54,
"probability": 0.7461
},
{
"start": 2855.64,
"end": 2857.86,
"probability": 0.889
},
{
"start": 2858.54,
"end": 2859.76,
"probability": 0.9756
},
{
"start": 2860.28,
"end": 2863.52,
"probability": 0.9651
},
{
"start": 2864.22,
"end": 2864.92,
"probability": 0.6458
},
{
"start": 2865.6,
"end": 2866.52,
"probability": 0.9248
},
{
"start": 2867.04,
"end": 2871.32,
"probability": 0.9121
},
{
"start": 2871.84,
"end": 2873.02,
"probability": 0.7811
},
{
"start": 2873.2,
"end": 2878.63,
"probability": 0.9849
},
{
"start": 2878.72,
"end": 2882.36,
"probability": 0.9941
},
{
"start": 2882.76,
"end": 2889.22,
"probability": 0.9485
},
{
"start": 2889.6,
"end": 2890.06,
"probability": 0.7372
},
{
"start": 2891.24,
"end": 2892.7,
"probability": 0.9893
},
{
"start": 2893.28,
"end": 2898.12,
"probability": 0.9726
},
{
"start": 2901.42,
"end": 2905.64,
"probability": 0.7338
},
{
"start": 2906.4,
"end": 2907.94,
"probability": 0.9036
},
{
"start": 2908.08,
"end": 2911.66,
"probability": 0.7685
},
{
"start": 2911.68,
"end": 2912.6,
"probability": 0.5394
},
{
"start": 2913.62,
"end": 2916.22,
"probability": 0.2057
},
{
"start": 2916.28,
"end": 2917.16,
"probability": 0.9559
},
{
"start": 2919.52,
"end": 2921.92,
"probability": 0.8407
},
{
"start": 2931.08,
"end": 2931.62,
"probability": 0.8319
},
{
"start": 2935.98,
"end": 2937.4,
"probability": 0.7759
},
{
"start": 2939.84,
"end": 2945.06,
"probability": 0.9982
},
{
"start": 2945.8,
"end": 2947.33,
"probability": 0.9265
},
{
"start": 2948.34,
"end": 2952.06,
"probability": 0.9915
},
{
"start": 2953.4,
"end": 2956.86,
"probability": 0.9957
},
{
"start": 2956.86,
"end": 2960.96,
"probability": 0.8509
},
{
"start": 2961.54,
"end": 2964.68,
"probability": 0.9962
},
{
"start": 2965.68,
"end": 2967.6,
"probability": 0.96
},
{
"start": 2967.98,
"end": 2974.0,
"probability": 0.9645
},
{
"start": 2975.06,
"end": 2980.98,
"probability": 0.8575
},
{
"start": 2980.98,
"end": 2985.4,
"probability": 0.9932
},
{
"start": 2986.72,
"end": 2990.26,
"probability": 0.8868
},
{
"start": 2990.26,
"end": 2995.16,
"probability": 0.8531
},
{
"start": 2995.76,
"end": 3000.92,
"probability": 0.9525
},
{
"start": 3001.6,
"end": 3004.62,
"probability": 0.9817
},
{
"start": 3006.64,
"end": 3008.08,
"probability": 0.6451
},
{
"start": 3008.8,
"end": 3011.36,
"probability": 0.9662
},
{
"start": 3013.12,
"end": 3019.92,
"probability": 0.9781
},
{
"start": 3021.79,
"end": 3028.48,
"probability": 0.6023
},
{
"start": 3029.24,
"end": 3032.06,
"probability": 0.9594
},
{
"start": 3033.94,
"end": 3039.52,
"probability": 0.9989
},
{
"start": 3040.38,
"end": 3042.66,
"probability": 0.9995
},
{
"start": 3044.14,
"end": 3044.76,
"probability": 0.6903
},
{
"start": 3045.3,
"end": 3047.56,
"probability": 0.9973
},
{
"start": 3048.24,
"end": 3052.42,
"probability": 0.9492
},
{
"start": 3052.5,
"end": 3053.2,
"probability": 0.6249
},
{
"start": 3053.24,
"end": 3054.18,
"probability": 0.6109
},
{
"start": 3054.3,
"end": 3055.02,
"probability": 0.9778
},
{
"start": 3055.96,
"end": 3060.52,
"probability": 0.9954
},
{
"start": 3062.5,
"end": 3064.3,
"probability": 0.9683
},
{
"start": 3066.14,
"end": 3070.0,
"probability": 0.9968
},
{
"start": 3070.0,
"end": 3074.1,
"probability": 0.9054
},
{
"start": 3074.94,
"end": 3078.82,
"probability": 0.9951
},
{
"start": 3081.34,
"end": 3082.94,
"probability": 0.9526
},
{
"start": 3083.94,
"end": 3085.8,
"probability": 0.925
},
{
"start": 3086.22,
"end": 3088.68,
"probability": 0.929
},
{
"start": 3089.3,
"end": 3090.7,
"probability": 0.5476
},
{
"start": 3091.44,
"end": 3093.02,
"probability": 0.856
},
{
"start": 3093.98,
"end": 3098.96,
"probability": 0.9716
},
{
"start": 3100.06,
"end": 3104.84,
"probability": 0.891
},
{
"start": 3106.02,
"end": 3111.0,
"probability": 0.9976
},
{
"start": 3112.08,
"end": 3113.84,
"probability": 0.7178
},
{
"start": 3114.78,
"end": 3119.58,
"probability": 0.9482
},
{
"start": 3119.72,
"end": 3123.04,
"probability": 0.9819
},
{
"start": 3124.02,
"end": 3125.74,
"probability": 0.9447
},
{
"start": 3126.28,
"end": 3131.8,
"probability": 0.7369
},
{
"start": 3134.36,
"end": 3135.06,
"probability": 0.5596
},
{
"start": 3135.2,
"end": 3136.3,
"probability": 0.9491
},
{
"start": 3136.4,
"end": 3137.84,
"probability": 0.9329
},
{
"start": 3137.96,
"end": 3138.56,
"probability": 0.8422
},
{
"start": 3138.66,
"end": 3140.1,
"probability": 0.9807
},
{
"start": 3141.28,
"end": 3144.32,
"probability": 0.9849
},
{
"start": 3144.54,
"end": 3145.62,
"probability": 0.7046
},
{
"start": 3146.02,
"end": 3149.16,
"probability": 0.967
},
{
"start": 3149.26,
"end": 3150.3,
"probability": 0.8374
},
{
"start": 3150.84,
"end": 3151.3,
"probability": 0.5399
},
{
"start": 3151.34,
"end": 3156.54,
"probability": 0.9817
},
{
"start": 3156.54,
"end": 3161.64,
"probability": 0.9954
},
{
"start": 3162.44,
"end": 3166.66,
"probability": 0.9849
},
{
"start": 3166.66,
"end": 3173.1,
"probability": 0.9984
},
{
"start": 3173.68,
"end": 3175.36,
"probability": 0.9985
},
{
"start": 3175.52,
"end": 3178.3,
"probability": 0.9984
},
{
"start": 3178.76,
"end": 3185.02,
"probability": 0.9073
},
{
"start": 3185.24,
"end": 3187.64,
"probability": 0.9984
},
{
"start": 3188.04,
"end": 3191.84,
"probability": 0.9256
},
{
"start": 3192.06,
"end": 3192.55,
"probability": 0.8413
},
{
"start": 3193.0,
"end": 3194.72,
"probability": 0.8394
},
{
"start": 3195.68,
"end": 3197.22,
"probability": 0.7753
},
{
"start": 3198.92,
"end": 3200.04,
"probability": 0.7544
},
{
"start": 3200.08,
"end": 3201.6,
"probability": 0.9838
},
{
"start": 3201.68,
"end": 3203.16,
"probability": 0.6367
},
{
"start": 3203.2,
"end": 3206.72,
"probability": 0.9297
},
{
"start": 3207.24,
"end": 3208.54,
"probability": 0.9954
},
{
"start": 3210.36,
"end": 3211.5,
"probability": 0.9626
},
{
"start": 3212.06,
"end": 3215.44,
"probability": 0.9907
},
{
"start": 3215.44,
"end": 3220.12,
"probability": 0.9734
},
{
"start": 3220.66,
"end": 3223.28,
"probability": 0.9457
},
{
"start": 3223.82,
"end": 3226.24,
"probability": 0.8991
},
{
"start": 3227.5,
"end": 3228.6,
"probability": 0.97
},
{
"start": 3229.46,
"end": 3232.52,
"probability": 0.9514
},
{
"start": 3232.58,
"end": 3234.14,
"probability": 0.7256
},
{
"start": 3234.26,
"end": 3235.4,
"probability": 0.6356
},
{
"start": 3235.82,
"end": 3238.74,
"probability": 0.7459
},
{
"start": 3239.36,
"end": 3245.66,
"probability": 0.9917
},
{
"start": 3247.58,
"end": 3248.08,
"probability": 0.9654
},
{
"start": 3249.06,
"end": 3252.34,
"probability": 0.9983
},
{
"start": 3252.34,
"end": 3256.18,
"probability": 0.9838
},
{
"start": 3257.06,
"end": 3259.38,
"probability": 0.9977
},
{
"start": 3259.76,
"end": 3260.36,
"probability": 0.6727
},
{
"start": 3260.56,
"end": 3261.46,
"probability": 0.7754
},
{
"start": 3261.56,
"end": 3262.9,
"probability": 0.7666
},
{
"start": 3263.64,
"end": 3267.98,
"probability": 0.9628
},
{
"start": 3268.74,
"end": 3273.86,
"probability": 0.938
},
{
"start": 3274.2,
"end": 3278.08,
"probability": 0.995
},
{
"start": 3281.62,
"end": 3282.04,
"probability": 0.8982
},
{
"start": 3283.74,
"end": 3284.56,
"probability": 0.8568
},
{
"start": 3285.24,
"end": 3290.96,
"probability": 0.9736
},
{
"start": 3291.06,
"end": 3291.14,
"probability": 0.6616
},
{
"start": 3291.24,
"end": 3295.1,
"probability": 0.9849
},
{
"start": 3296.18,
"end": 3298.94,
"probability": 0.9929
},
{
"start": 3299.84,
"end": 3302.66,
"probability": 0.6669
},
{
"start": 3303.38,
"end": 3304.74,
"probability": 0.9973
},
{
"start": 3306.62,
"end": 3311.26,
"probability": 0.9618
},
{
"start": 3312.36,
"end": 3313.26,
"probability": 0.5244
},
{
"start": 3313.28,
"end": 3316.42,
"probability": 0.8263
},
{
"start": 3316.96,
"end": 3319.9,
"probability": 0.8965
},
{
"start": 3320.62,
"end": 3321.6,
"probability": 0.9339
},
{
"start": 3322.86,
"end": 3326.02,
"probability": 0.9928
},
{
"start": 3326.02,
"end": 3330.26,
"probability": 0.9916
},
{
"start": 3331.0,
"end": 3332.56,
"probability": 0.8923
},
{
"start": 3332.94,
"end": 3336.82,
"probability": 0.9731
},
{
"start": 3338.26,
"end": 3341.32,
"probability": 0.9987
},
{
"start": 3342.74,
"end": 3346.92,
"probability": 0.983
},
{
"start": 3347.42,
"end": 3349.76,
"probability": 0.9632
},
{
"start": 3349.8,
"end": 3353.68,
"probability": 0.9796
},
{
"start": 3354.52,
"end": 3355.4,
"probability": 0.9653
},
{
"start": 3355.64,
"end": 3356.46,
"probability": 0.9834
},
{
"start": 3356.6,
"end": 3364.54,
"probability": 0.9926
},
{
"start": 3364.54,
"end": 3370.6,
"probability": 0.9806
},
{
"start": 3371.14,
"end": 3374.66,
"probability": 0.9938
},
{
"start": 3375.34,
"end": 3380.22,
"probability": 0.9507
},
{
"start": 3381.25,
"end": 3382.14,
"probability": 0.9974
},
{
"start": 3383.54,
"end": 3387.16,
"probability": 0.8477
},
{
"start": 3387.74,
"end": 3388.38,
"probability": 0.8876
},
{
"start": 3388.46,
"end": 3393.74,
"probability": 0.9484
},
{
"start": 3394.32,
"end": 3398.32,
"probability": 0.9967
},
{
"start": 3399.82,
"end": 3400.34,
"probability": 0.8499
},
{
"start": 3401.1,
"end": 3403.54,
"probability": 0.9825
},
{
"start": 3404.18,
"end": 3408.64,
"probability": 0.9897
},
{
"start": 3409.12,
"end": 3413.12,
"probability": 0.9819
},
{
"start": 3413.12,
"end": 3417.78,
"probability": 0.9966
},
{
"start": 3418.64,
"end": 3422.18,
"probability": 0.9661
},
{
"start": 3423.1,
"end": 3424.56,
"probability": 0.499
},
{
"start": 3424.56,
"end": 3431.14,
"probability": 0.9924
},
{
"start": 3432.92,
"end": 3435.64,
"probability": 0.9958
},
{
"start": 3435.72,
"end": 3439.88,
"probability": 0.998
},
{
"start": 3440.62,
"end": 3444.2,
"probability": 0.9842
},
{
"start": 3445.3,
"end": 3447.2,
"probability": 0.929
},
{
"start": 3447.6,
"end": 3448.2,
"probability": 0.8095
},
{
"start": 3450.28,
"end": 3450.64,
"probability": 0.623
},
{
"start": 3452.44,
"end": 3453.26,
"probability": 0.3656
},
{
"start": 3453.3,
"end": 3453.68,
"probability": 0.5009
},
{
"start": 3454.54,
"end": 3455.98,
"probability": 0.8069
},
{
"start": 3461.12,
"end": 3462.18,
"probability": 0.8838
},
{
"start": 3462.54,
"end": 3464.0,
"probability": 0.7574
},
{
"start": 3466.9,
"end": 3469.58,
"probability": 0.517
},
{
"start": 3471.18,
"end": 3471.46,
"probability": 0.6802
},
{
"start": 3472.18,
"end": 3473.34,
"probability": 0.8043
},
{
"start": 3480.4,
"end": 3482.6,
"probability": 0.0815
},
{
"start": 3486.02,
"end": 3487.5,
"probability": 0.6773
},
{
"start": 3487.62,
"end": 3489.36,
"probability": 0.9388
},
{
"start": 3489.8,
"end": 3490.84,
"probability": 0.9545
},
{
"start": 3495.26,
"end": 3498.42,
"probability": 0.9565
},
{
"start": 3501.16,
"end": 3502.58,
"probability": 0.8958
},
{
"start": 3503.06,
"end": 3505.82,
"probability": 0.9304
},
{
"start": 3508.44,
"end": 3510.26,
"probability": 0.7316
},
{
"start": 3513.1,
"end": 3513.36,
"probability": 0.9682
},
{
"start": 3519.7,
"end": 3519.92,
"probability": 0.5313
},
{
"start": 3520.36,
"end": 3524.74,
"probability": 0.9849
},
{
"start": 3524.96,
"end": 3526.28,
"probability": 0.8228
},
{
"start": 3528.02,
"end": 3528.86,
"probability": 0.9242
},
{
"start": 3530.42,
"end": 3532.92,
"probability": 0.7219
},
{
"start": 3533.0,
"end": 3536.66,
"probability": 0.6567
},
{
"start": 3536.78,
"end": 3536.92,
"probability": 0.3657
},
{
"start": 3536.96,
"end": 3540.16,
"probability": 0.9107
},
{
"start": 3540.88,
"end": 3543.54,
"probability": 0.716
},
{
"start": 3544.1,
"end": 3546.74,
"probability": 0.9915
},
{
"start": 3546.88,
"end": 3547.5,
"probability": 0.6454
},
{
"start": 3548.24,
"end": 3551.48,
"probability": 0.8349
},
{
"start": 3552.52,
"end": 3555.12,
"probability": 0.9849
},
{
"start": 3555.44,
"end": 3558.7,
"probability": 0.9797
},
{
"start": 3561.52,
"end": 3562.56,
"probability": 0.6794
},
{
"start": 3562.86,
"end": 3563.58,
"probability": 0.7138
},
{
"start": 3563.66,
"end": 3565.68,
"probability": 0.9229
},
{
"start": 3567.84,
"end": 3575.1,
"probability": 0.9603
},
{
"start": 3576.7,
"end": 3581.64,
"probability": 0.8566
},
{
"start": 3583.78,
"end": 3585.18,
"probability": 0.8673
},
{
"start": 3586.1,
"end": 3586.82,
"probability": 0.8352
},
{
"start": 3586.98,
"end": 3588.67,
"probability": 0.6698
},
{
"start": 3589.62,
"end": 3590.96,
"probability": 0.6579
},
{
"start": 3591.16,
"end": 3591.5,
"probability": 0.2354
},
{
"start": 3591.72,
"end": 3593.4,
"probability": 0.4572
},
{
"start": 3593.62,
"end": 3596.5,
"probability": 0.751
},
{
"start": 3597.44,
"end": 3599.98,
"probability": 0.9841
},
{
"start": 3600.02,
"end": 3602.72,
"probability": 0.978
},
{
"start": 3603.92,
"end": 3608.62,
"probability": 0.8507
},
{
"start": 3609.7,
"end": 3612.1,
"probability": 0.97
},
{
"start": 3612.37,
"end": 3615.12,
"probability": 0.5436
},
{
"start": 3616.32,
"end": 3622.0,
"probability": 0.9634
},
{
"start": 3622.12,
"end": 3626.08,
"probability": 0.9937
},
{
"start": 3626.22,
"end": 3626.74,
"probability": 0.8607
},
{
"start": 3627.86,
"end": 3631.74,
"probability": 0.9587
},
{
"start": 3631.78,
"end": 3636.06,
"probability": 0.8701
},
{
"start": 3636.2,
"end": 3643.02,
"probability": 0.8856
},
{
"start": 3643.56,
"end": 3644.34,
"probability": 0.1847
},
{
"start": 3646.6,
"end": 3648.68,
"probability": 0.7441
},
{
"start": 3648.7,
"end": 3649.24,
"probability": 0.9113
},
{
"start": 3649.7,
"end": 3652.1,
"probability": 0.9213
},
{
"start": 3652.26,
"end": 3655.6,
"probability": 0.9875
},
{
"start": 3656.12,
"end": 3659.52,
"probability": 0.9956
},
{
"start": 3659.52,
"end": 3663.88,
"probability": 0.9966
},
{
"start": 3664.84,
"end": 3666.38,
"probability": 0.9853
},
{
"start": 3666.42,
"end": 3667.05,
"probability": 0.94
},
{
"start": 3668.34,
"end": 3669.92,
"probability": 0.921
},
{
"start": 3670.8,
"end": 3671.04,
"probability": 0.8345
},
{
"start": 3672.26,
"end": 3672.26,
"probability": 0.0042
},
{
"start": 3672.32,
"end": 3673.09,
"probability": 0.7499
},
{
"start": 3673.36,
"end": 3675.64,
"probability": 0.9889
},
{
"start": 3676.42,
"end": 3677.18,
"probability": 0.3637
},
{
"start": 3677.64,
"end": 3678.54,
"probability": 0.8995
},
{
"start": 3678.6,
"end": 3680.7,
"probability": 0.9956
},
{
"start": 3681.43,
"end": 3683.1,
"probability": 0.9766
},
{
"start": 3683.66,
"end": 3684.0,
"probability": 0.8882
},
{
"start": 3684.44,
"end": 3686.87,
"probability": 0.6268
},
{
"start": 3687.0,
"end": 3689.02,
"probability": 0.8325
},
{
"start": 3689.14,
"end": 3691.0,
"probability": 0.3773
},
{
"start": 3692.19,
"end": 3694.02,
"probability": 0.9519
},
{
"start": 3694.12,
"end": 3695.54,
"probability": 0.9063
},
{
"start": 3696.76,
"end": 3697.0,
"probability": 0.5781
},
{
"start": 3697.82,
"end": 3698.12,
"probability": 0.7569
},
{
"start": 3698.9,
"end": 3699.42,
"probability": 0.6575
},
{
"start": 3699.52,
"end": 3700.54,
"probability": 0.5329
},
{
"start": 3701.18,
"end": 3703.32,
"probability": 0.8612
},
{
"start": 3710.16,
"end": 3711.14,
"probability": 0.7251
},
{
"start": 3712.04,
"end": 3718.32,
"probability": 0.9813
},
{
"start": 3719.3,
"end": 3725.04,
"probability": 0.9623
},
{
"start": 3725.04,
"end": 3728.92,
"probability": 0.9967
},
{
"start": 3729.44,
"end": 3732.78,
"probability": 0.9707
},
{
"start": 3733.78,
"end": 3737.46,
"probability": 0.9751
},
{
"start": 3738.26,
"end": 3742.24,
"probability": 0.7203
},
{
"start": 3742.9,
"end": 3746.18,
"probability": 0.9939
},
{
"start": 3747.02,
"end": 3748.56,
"probability": 0.4692
},
{
"start": 3748.78,
"end": 3749.48,
"probability": 0.5732
},
{
"start": 3749.64,
"end": 3750.42,
"probability": 0.9866
},
{
"start": 3750.56,
"end": 3754.24,
"probability": 0.9763
},
{
"start": 3755.14,
"end": 3757.36,
"probability": 0.9922
},
{
"start": 3757.56,
"end": 3759.12,
"probability": 0.7551
},
{
"start": 3759.16,
"end": 3759.54,
"probability": 0.8047
},
{
"start": 3760.56,
"end": 3761.8,
"probability": 0.9885
},
{
"start": 3762.26,
"end": 3763.7,
"probability": 0.9376
},
{
"start": 3763.78,
"end": 3766.6,
"probability": 0.9891
},
{
"start": 3766.7,
"end": 3767.33,
"probability": 0.3705
},
{
"start": 3767.96,
"end": 3768.36,
"probability": 0.5776
},
{
"start": 3769.28,
"end": 3771.54,
"probability": 0.7287
},
{
"start": 3771.76,
"end": 3776.24,
"probability": 0.7567
},
{
"start": 3777.22,
"end": 3779.45,
"probability": 0.8227
},
{
"start": 3780.54,
"end": 3781.2,
"probability": 0.9621
},
{
"start": 3781.52,
"end": 3783.78,
"probability": 0.607
},
{
"start": 3783.78,
"end": 3786.1,
"probability": 0.9729
},
{
"start": 3786.3,
"end": 3788.6,
"probability": 0.9004
},
{
"start": 3789.8,
"end": 3790.4,
"probability": 0.7537
},
{
"start": 3790.44,
"end": 3791.36,
"probability": 0.8571
},
{
"start": 3791.4,
"end": 3792.56,
"probability": 0.8569
},
{
"start": 3792.7,
"end": 3797.02,
"probability": 0.7021
},
{
"start": 3797.12,
"end": 3798.56,
"probability": 0.8925
},
{
"start": 3799.74,
"end": 3801.92,
"probability": 0.9754
},
{
"start": 3801.92,
"end": 3804.2,
"probability": 0.8956
},
{
"start": 3805.83,
"end": 3809.04,
"probability": 0.9965
},
{
"start": 3809.1,
"end": 3811.71,
"probability": 0.7964
},
{
"start": 3812.74,
"end": 3814.38,
"probability": 0.9404
},
{
"start": 3814.98,
"end": 3816.0,
"probability": 0.3456
},
{
"start": 3816.2,
"end": 3819.1,
"probability": 0.9442
},
{
"start": 3819.1,
"end": 3819.62,
"probability": 0.7524
},
{
"start": 3819.74,
"end": 3824.85,
"probability": 0.9509
},
{
"start": 3825.7,
"end": 3827.48,
"probability": 0.9519
},
{
"start": 3827.72,
"end": 3828.82,
"probability": 0.9484
},
{
"start": 3829.28,
"end": 3831.5,
"probability": 0.8284
},
{
"start": 3831.54,
"end": 3832.84,
"probability": 0.8043
},
{
"start": 3833.3,
"end": 3834.17,
"probability": 0.7167
},
{
"start": 3835.1,
"end": 3837.02,
"probability": 0.4505
},
{
"start": 3837.18,
"end": 3841.76,
"probability": 0.975
},
{
"start": 3841.78,
"end": 3843.92,
"probability": 0.9592
},
{
"start": 3844.1,
"end": 3847.0,
"probability": 0.757
},
{
"start": 3847.02,
"end": 3849.24,
"probability": 0.9259
},
{
"start": 3849.32,
"end": 3851.9,
"probability": 0.6751
},
{
"start": 3852.44,
"end": 3853.74,
"probability": 0.9658
},
{
"start": 3853.9,
"end": 3855.12,
"probability": 0.9644
},
{
"start": 3856.02,
"end": 3858.34,
"probability": 0.9547
},
{
"start": 3859.02,
"end": 3864.1,
"probability": 0.9629
},
{
"start": 3864.64,
"end": 3865.38,
"probability": 0.6828
},
{
"start": 3865.86,
"end": 3867.5,
"probability": 0.9934
},
{
"start": 3868.0,
"end": 3870.3,
"probability": 0.8652
},
{
"start": 3874.3,
"end": 3877.5,
"probability": 0.4914
},
{
"start": 3877.82,
"end": 3878.26,
"probability": 0.5237
},
{
"start": 3878.36,
"end": 3879.04,
"probability": 0.7086
},
{
"start": 3879.04,
"end": 3879.94,
"probability": 0.0592
},
{
"start": 3881.88,
"end": 3886.66,
"probability": 0.4035
},
{
"start": 3886.74,
"end": 3887.34,
"probability": 0.7753
},
{
"start": 3887.46,
"end": 3888.45,
"probability": 0.4801
},
{
"start": 3890.68,
"end": 3895.56,
"probability": 0.9671
},
{
"start": 3896.54,
"end": 3897.58,
"probability": 0.9352
},
{
"start": 3897.64,
"end": 3898.51,
"probability": 0.9487
},
{
"start": 3899.02,
"end": 3899.54,
"probability": 0.5294
},
{
"start": 3899.92,
"end": 3900.64,
"probability": 0.8256
},
{
"start": 3901.32,
"end": 3902.18,
"probability": 0.876
},
{
"start": 3902.26,
"end": 3903.44,
"probability": 0.9876
},
{
"start": 3903.58,
"end": 3906.94,
"probability": 0.9448
},
{
"start": 3906.94,
"end": 3909.32,
"probability": 0.9867
},
{
"start": 3909.52,
"end": 3911.3,
"probability": 0.8893
},
{
"start": 3911.4,
"end": 3913.26,
"probability": 0.8369
},
{
"start": 3913.3,
"end": 3914.8,
"probability": 0.9938
},
{
"start": 3914.8,
"end": 3915.86,
"probability": 0.8057
},
{
"start": 3916.02,
"end": 3917.1,
"probability": 0.9757
},
{
"start": 3918.4,
"end": 3919.64,
"probability": 0.7104
},
{
"start": 3919.66,
"end": 3922.04,
"probability": 0.9424
},
{
"start": 3922.68,
"end": 3925.8,
"probability": 0.9922
},
{
"start": 3926.04,
"end": 3926.58,
"probability": 0.4784
},
{
"start": 3927.12,
"end": 3928.02,
"probability": 0.8125
},
{
"start": 3928.56,
"end": 3930.14,
"probability": 0.8495
},
{
"start": 3930.45,
"end": 3933.7,
"probability": 0.6866
},
{
"start": 3934.04,
"end": 3936.32,
"probability": 0.9905
},
{
"start": 3936.9,
"end": 3940.34,
"probability": 0.9663
},
{
"start": 3940.4,
"end": 3940.48,
"probability": 0.5595
},
{
"start": 3940.56,
"end": 3941.68,
"probability": 0.6359
},
{
"start": 3942.24,
"end": 3945.92,
"probability": 0.8723
},
{
"start": 3946.26,
"end": 3947.53,
"probability": 0.8208
},
{
"start": 3947.88,
"end": 3949.18,
"probability": 0.8915
},
{
"start": 3949.6,
"end": 3951.06,
"probability": 0.9799
},
{
"start": 3951.28,
"end": 3953.16,
"probability": 0.9747
},
{
"start": 3953.22,
"end": 3954.64,
"probability": 0.6738
},
{
"start": 3954.84,
"end": 3956.38,
"probability": 0.7702
},
{
"start": 3957.4,
"end": 3959.3,
"probability": 0.7957
},
{
"start": 3959.46,
"end": 3961.12,
"probability": 0.8579
},
{
"start": 3961.2,
"end": 3962.03,
"probability": 0.9213
},
{
"start": 3962.48,
"end": 3964.17,
"probability": 0.7876
},
{
"start": 3964.78,
"end": 3965.94,
"probability": 0.8245
},
{
"start": 3966.42,
"end": 3967.54,
"probability": 0.99
},
{
"start": 3967.74,
"end": 3969.7,
"probability": 0.9795
},
{
"start": 3970.5,
"end": 3973.34,
"probability": 0.4979
},
{
"start": 3973.36,
"end": 3974.4,
"probability": 0.8748
},
{
"start": 3974.48,
"end": 3975.64,
"probability": 0.8824
},
{
"start": 3976.12,
"end": 3978.14,
"probability": 0.5878
},
{
"start": 3978.46,
"end": 3979.6,
"probability": 0.6644
},
{
"start": 3979.82,
"end": 3980.5,
"probability": 0.7032
},
{
"start": 3980.58,
"end": 3980.78,
"probability": 0.7782
},
{
"start": 3980.88,
"end": 3982.52,
"probability": 0.9899
},
{
"start": 3982.66,
"end": 3982.76,
"probability": 0.5115
},
{
"start": 3982.88,
"end": 3983.8,
"probability": 0.9385
},
{
"start": 3984.66,
"end": 3984.96,
"probability": 0.7115
},
{
"start": 3986.44,
"end": 3987.18,
"probability": 0.8161
},
{
"start": 3988.76,
"end": 3992.18,
"probability": 0.7731
},
{
"start": 3992.72,
"end": 3993.64,
"probability": 0.8094
},
{
"start": 3994.4,
"end": 3998.8,
"probability": 0.7468
},
{
"start": 3998.88,
"end": 3998.98,
"probability": 0.8354
},
{
"start": 3999.82,
"end": 4001.02,
"probability": 0.7689
},
{
"start": 4009.8,
"end": 4013.36,
"probability": 0.7492
},
{
"start": 4014.4,
"end": 4015.48,
"probability": 0.748
},
{
"start": 4016.62,
"end": 4018.8,
"probability": 0.4018
},
{
"start": 4020.22,
"end": 4021.06,
"probability": 0.5899
},
{
"start": 4022.08,
"end": 4026.42,
"probability": 0.9827
},
{
"start": 4027.14,
"end": 4030.84,
"probability": 0.9868
},
{
"start": 4030.84,
"end": 4034.34,
"probability": 0.9784
},
{
"start": 4034.94,
"end": 4036.74,
"probability": 0.9953
},
{
"start": 4037.56,
"end": 4040.24,
"probability": 0.7455
},
{
"start": 4041.04,
"end": 4042.46,
"probability": 0.9677
},
{
"start": 4043.22,
"end": 4048.78,
"probability": 0.8044
},
{
"start": 4049.28,
"end": 4052.68,
"probability": 0.8307
},
{
"start": 4053.94,
"end": 4054.88,
"probability": 0.6908
},
{
"start": 4055.2,
"end": 4057.04,
"probability": 0.7568
},
{
"start": 4057.44,
"end": 4058.22,
"probability": 0.9702
},
{
"start": 4059.44,
"end": 4063.52,
"probability": 0.8893
},
{
"start": 4064.04,
"end": 4065.48,
"probability": 0.7019
},
{
"start": 4066.2,
"end": 4067.54,
"probability": 0.8038
},
{
"start": 4067.66,
"end": 4070.52,
"probability": 0.8586
},
{
"start": 4070.84,
"end": 4072.7,
"probability": 0.7835
},
{
"start": 4073.6,
"end": 4075.39,
"probability": 0.9947
},
{
"start": 4076.16,
"end": 4077.16,
"probability": 0.8782
},
{
"start": 4077.4,
"end": 4079.54,
"probability": 0.9775
},
{
"start": 4079.64,
"end": 4082.22,
"probability": 0.9687
},
{
"start": 4082.5,
"end": 4085.86,
"probability": 0.7988
},
{
"start": 4086.62,
"end": 4087.24,
"probability": 0.5792
},
{
"start": 4087.5,
"end": 4088.5,
"probability": 0.8387
},
{
"start": 4088.72,
"end": 4089.8,
"probability": 0.9708
},
{
"start": 4089.92,
"end": 4090.48,
"probability": 0.6674
},
{
"start": 4090.54,
"end": 4091.98,
"probability": 0.9894
},
{
"start": 4092.42,
"end": 4092.94,
"probability": 0.8475
},
{
"start": 4093.26,
"end": 4094.32,
"probability": 0.8369
},
{
"start": 4094.38,
"end": 4094.78,
"probability": 0.9595
},
{
"start": 4095.12,
"end": 4095.64,
"probability": 0.9751
},
{
"start": 4095.72,
"end": 4098.24,
"probability": 0.8815
},
{
"start": 4098.46,
"end": 4099.92,
"probability": 0.6946
},
{
"start": 4100.46,
"end": 4100.58,
"probability": 0.2544
},
{
"start": 4101.32,
"end": 4101.46,
"probability": 0.2087
},
{
"start": 4101.58,
"end": 4102.72,
"probability": 0.7686
},
{
"start": 4102.88,
"end": 4104.9,
"probability": 0.9723
},
{
"start": 4104.98,
"end": 4107.76,
"probability": 0.9894
},
{
"start": 4108.36,
"end": 4108.74,
"probability": 0.3538
},
{
"start": 4108.96,
"end": 4109.7,
"probability": 0.6838
},
{
"start": 4109.8,
"end": 4112.14,
"probability": 0.8634
},
{
"start": 4112.68,
"end": 4113.96,
"probability": 0.981
},
{
"start": 4114.06,
"end": 4114.48,
"probability": 0.884
},
{
"start": 4114.54,
"end": 4116.16,
"probability": 0.9733
},
{
"start": 4116.26,
"end": 4118.16,
"probability": 0.817
},
{
"start": 4118.36,
"end": 4119.36,
"probability": 0.7455
},
{
"start": 4119.56,
"end": 4119.88,
"probability": 0.5029
},
{
"start": 4120.22,
"end": 4121.74,
"probability": 0.7778
},
{
"start": 4121.82,
"end": 4122.41,
"probability": 0.8026
},
{
"start": 4123.08,
"end": 4126.32,
"probability": 0.9659
},
{
"start": 4126.46,
"end": 4127.92,
"probability": 0.9429
},
{
"start": 4128.66,
"end": 4128.76,
"probability": 0.1366
},
{
"start": 4129.54,
"end": 4130.4,
"probability": 0.7929
},
{
"start": 4130.5,
"end": 4131.28,
"probability": 0.8703
},
{
"start": 4131.42,
"end": 4133.7,
"probability": 0.6321
},
{
"start": 4133.7,
"end": 4135.48,
"probability": 0.9475
},
{
"start": 4136.22,
"end": 4139.66,
"probability": 0.9468
},
{
"start": 4140.4,
"end": 4141.7,
"probability": 0.674
},
{
"start": 4141.84,
"end": 4142.76,
"probability": 0.5533
},
{
"start": 4142.86,
"end": 4143.22,
"probability": 0.7524
},
{
"start": 4143.9,
"end": 4144.6,
"probability": 0.7016
},
{
"start": 4144.7,
"end": 4146.7,
"probability": 0.459
},
{
"start": 4147.08,
"end": 4150.08,
"probability": 0.9346
},
{
"start": 4150.76,
"end": 4151.8,
"probability": 0.2376
},
{
"start": 4151.88,
"end": 4151.88,
"probability": 0.0751
},
{
"start": 4151.88,
"end": 4152.06,
"probability": 0.2447
},
{
"start": 4152.7,
"end": 4153.6,
"probability": 0.7512
},
{
"start": 4153.86,
"end": 4154.64,
"probability": 0.6324
},
{
"start": 4154.74,
"end": 4156.66,
"probability": 0.7998
},
{
"start": 4157.38,
"end": 4158.44,
"probability": 0.9976
},
{
"start": 4159.06,
"end": 4162.18,
"probability": 0.9807
},
{
"start": 4163.08,
"end": 4167.56,
"probability": 0.9976
},
{
"start": 4167.56,
"end": 4171.96,
"probability": 0.9385
},
{
"start": 4172.72,
"end": 4177.86,
"probability": 0.9836
},
{
"start": 4178.28,
"end": 4181.44,
"probability": 0.9946
},
{
"start": 4181.8,
"end": 4187.56,
"probability": 0.9749
},
{
"start": 4188.04,
"end": 4190.72,
"probability": 0.9925
},
{
"start": 4192.78,
"end": 4194.28,
"probability": 0.7291
},
{
"start": 4194.74,
"end": 4199.56,
"probability": 0.9816
},
{
"start": 4199.96,
"end": 4200.66,
"probability": 0.184
},
{
"start": 4201.48,
"end": 4204.14,
"probability": 0.992
},
{
"start": 4205.68,
"end": 4206.6,
"probability": 0.756
},
{
"start": 4206.68,
"end": 4207.81,
"probability": 0.7526
},
{
"start": 4208.14,
"end": 4208.34,
"probability": 0.7512
},
{
"start": 4208.4,
"end": 4208.82,
"probability": 0.7834
},
{
"start": 4209.96,
"end": 4212.58,
"probability": 0.9365
},
{
"start": 4213.04,
"end": 4213.78,
"probability": 0.9039
},
{
"start": 4213.88,
"end": 4214.24,
"probability": 0.6867
},
{
"start": 4214.28,
"end": 4214.7,
"probability": 0.9863
},
{
"start": 4215.08,
"end": 4215.66,
"probability": 0.9264
},
{
"start": 4217.32,
"end": 4218.62,
"probability": 0.9695
},
{
"start": 4219.86,
"end": 4221.46,
"probability": 0.4922
},
{
"start": 4221.56,
"end": 4223.5,
"probability": 0.7083
},
{
"start": 4223.58,
"end": 4225.2,
"probability": 0.9772
},
{
"start": 4226.08,
"end": 4227.98,
"probability": 0.9317
},
{
"start": 4228.32,
"end": 4228.94,
"probability": 0.6915
},
{
"start": 4229.2,
"end": 4229.96,
"probability": 0.9873
},
{
"start": 4230.84,
"end": 4231.28,
"probability": 0.9743
},
{
"start": 4232.42,
"end": 4233.28,
"probability": 0.9052
},
{
"start": 4234.12,
"end": 4236.1,
"probability": 0.9525
},
{
"start": 4236.68,
"end": 4239.58,
"probability": 0.8701
},
{
"start": 4239.84,
"end": 4240.42,
"probability": 0.9361
},
{
"start": 4240.74,
"end": 4244.46,
"probability": 0.8636
},
{
"start": 4245.12,
"end": 4245.96,
"probability": 0.9543
},
{
"start": 4246.62,
"end": 4249.0,
"probability": 0.9605
},
{
"start": 4250.04,
"end": 4250.32,
"probability": 0.8272
},
{
"start": 4250.44,
"end": 4253.3,
"probability": 0.7601
},
{
"start": 4254.08,
"end": 4257.3,
"probability": 0.9603
},
{
"start": 4257.3,
"end": 4260.14,
"probability": 0.9977
},
{
"start": 4260.96,
"end": 4263.07,
"probability": 0.9092
},
{
"start": 4263.88,
"end": 4265.98,
"probability": 0.9769
},
{
"start": 4266.36,
"end": 4267.98,
"probability": 0.9651
},
{
"start": 4268.82,
"end": 4272.33,
"probability": 0.9974
},
{
"start": 4272.52,
"end": 4272.94,
"probability": 0.5145
},
{
"start": 4273.2,
"end": 4273.56,
"probability": 0.3082
},
{
"start": 4273.6,
"end": 4274.0,
"probability": 0.9838
},
{
"start": 4274.46,
"end": 4274.98,
"probability": 0.9935
},
{
"start": 4275.22,
"end": 4275.66,
"probability": 0.9926
},
{
"start": 4275.98,
"end": 4276.81,
"probability": 0.991
},
{
"start": 4277.0,
"end": 4277.86,
"probability": 0.7627
},
{
"start": 4278.04,
"end": 4278.42,
"probability": 0.9193
},
{
"start": 4279.14,
"end": 4279.76,
"probability": 0.6058
},
{
"start": 4280.24,
"end": 4281.06,
"probability": 0.8904
},
{
"start": 4281.08,
"end": 4282.02,
"probability": 0.7651
},
{
"start": 4282.1,
"end": 4283.59,
"probability": 0.9821
},
{
"start": 4285.36,
"end": 4285.72,
"probability": 0.7046
},
{
"start": 4285.82,
"end": 4287.48,
"probability": 0.8384
},
{
"start": 4287.63,
"end": 4288.08,
"probability": 0.5501
},
{
"start": 4288.08,
"end": 4288.5,
"probability": 0.2238
},
{
"start": 4288.58,
"end": 4289.86,
"probability": 0.9517
},
{
"start": 4289.92,
"end": 4290.52,
"probability": 0.8843
},
{
"start": 4290.6,
"end": 4291.6,
"probability": 0.8561
},
{
"start": 4291.8,
"end": 4294.36,
"probability": 0.979
},
{
"start": 4294.36,
"end": 4294.8,
"probability": 0.3455
},
{
"start": 4294.8,
"end": 4299.22,
"probability": 0.8704
},
{
"start": 4300.04,
"end": 4301.6,
"probability": 0.9731
},
{
"start": 4301.66,
"end": 4302.42,
"probability": 0.9819
},
{
"start": 4303.0,
"end": 4303.6,
"probability": 0.4456
},
{
"start": 4303.86,
"end": 4303.92,
"probability": 0.4603
},
{
"start": 4303.98,
"end": 4306.1,
"probability": 0.992
},
{
"start": 4306.24,
"end": 4308.18,
"probability": 0.9654
},
{
"start": 4308.72,
"end": 4308.92,
"probability": 0.6277
},
{
"start": 4309.04,
"end": 4311.64,
"probability": 0.585
},
{
"start": 4312.36,
"end": 4313.38,
"probability": 0.7114
},
{
"start": 4313.42,
"end": 4317.7,
"probability": 0.9042
},
{
"start": 4318.08,
"end": 4319.32,
"probability": 0.8018
},
{
"start": 4319.44,
"end": 4321.0,
"probability": 0.5375
},
{
"start": 4321.36,
"end": 4322.26,
"probability": 0.7541
},
{
"start": 4322.86,
"end": 4323.0,
"probability": 0.7021
},
{
"start": 4323.14,
"end": 4323.92,
"probability": 0.7894
},
{
"start": 4324.0,
"end": 4327.2,
"probability": 0.9704
},
{
"start": 4327.6,
"end": 4329.96,
"probability": 0.454
},
{
"start": 4330.14,
"end": 4330.62,
"probability": 0.8956
},
{
"start": 4331.02,
"end": 4334.11,
"probability": 0.9785
},
{
"start": 4334.78,
"end": 4336.78,
"probability": 0.9471
},
{
"start": 4336.88,
"end": 4337.42,
"probability": 0.9233
},
{
"start": 4337.96,
"end": 4340.13,
"probability": 0.8054
},
{
"start": 4340.82,
"end": 4342.76,
"probability": 0.9579
},
{
"start": 4343.42,
"end": 4347.6,
"probability": 0.8848
},
{
"start": 4347.94,
"end": 4348.8,
"probability": 0.8636
},
{
"start": 4348.88,
"end": 4349.82,
"probability": 0.8655
},
{
"start": 4350.66,
"end": 4352.08,
"probability": 0.8624
},
{
"start": 4352.36,
"end": 4352.98,
"probability": 0.7905
},
{
"start": 4353.1,
"end": 4355.14,
"probability": 0.9912
},
{
"start": 4355.7,
"end": 4357.4,
"probability": 0.6735
},
{
"start": 4357.74,
"end": 4358.24,
"probability": 0.8081
},
{
"start": 4358.62,
"end": 4360.3,
"probability": 0.8892
},
{
"start": 4360.38,
"end": 4361.76,
"probability": 0.9192
},
{
"start": 4362.26,
"end": 4364.64,
"probability": 0.7207
},
{
"start": 4364.76,
"end": 4369.06,
"probability": 0.6372
},
{
"start": 4369.06,
"end": 4369.06,
"probability": 0.0951
},
{
"start": 4369.06,
"end": 4369.42,
"probability": 0.0905
},
{
"start": 4369.42,
"end": 4374.6,
"probability": 0.5127
},
{
"start": 4374.66,
"end": 4375.32,
"probability": 0.3088
},
{
"start": 4375.42,
"end": 4377.04,
"probability": 0.908
},
{
"start": 4378.84,
"end": 4381.52,
"probability": 0.5203
},
{
"start": 4381.62,
"end": 4384.12,
"probability": 0.7921
},
{
"start": 4384.22,
"end": 4384.4,
"probability": 0.26
},
{
"start": 4384.4,
"end": 4385.57,
"probability": 0.4988
},
{
"start": 4385.94,
"end": 4387.1,
"probability": 0.7136
},
{
"start": 4387.18,
"end": 4388.28,
"probability": 0.7547
},
{
"start": 4389.98,
"end": 4393.06,
"probability": 0.9786
},
{
"start": 4395.98,
"end": 4400.04,
"probability": 0.6968
},
{
"start": 4400.66,
"end": 4405.92,
"probability": 0.984
},
{
"start": 4405.92,
"end": 4411.02,
"probability": 0.7547
},
{
"start": 4411.2,
"end": 4412.96,
"probability": 0.9375
},
{
"start": 4413.64,
"end": 4415.74,
"probability": 0.5795
},
{
"start": 4416.48,
"end": 4421.14,
"probability": 0.9725
},
{
"start": 4422.32,
"end": 4427.5,
"probability": 0.687
},
{
"start": 4428.14,
"end": 4430.4,
"probability": 0.609
},
{
"start": 4430.54,
"end": 4431.54,
"probability": 0.9297
},
{
"start": 4432.0,
"end": 4432.92,
"probability": 0.8362
},
{
"start": 4433.3,
"end": 4433.94,
"probability": 0.833
},
{
"start": 4435.74,
"end": 4436.46,
"probability": 0.8854
},
{
"start": 4436.88,
"end": 4438.5,
"probability": 0.8726
},
{
"start": 4439.46,
"end": 4440.24,
"probability": 0.3183
},
{
"start": 4440.42,
"end": 4442.66,
"probability": 0.8177
},
{
"start": 4442.7,
"end": 4442.86,
"probability": 0.8558
},
{
"start": 4443.5,
"end": 4445.46,
"probability": 0.9973
},
{
"start": 4445.46,
"end": 4447.78,
"probability": 0.9917
},
{
"start": 4450.06,
"end": 4452.72,
"probability": 0.6642
},
{
"start": 4453.56,
"end": 4455.42,
"probability": 0.9265
},
{
"start": 4455.48,
"end": 4456.18,
"probability": 0.5038
},
{
"start": 4456.68,
"end": 4458.1,
"probability": 0.9057
},
{
"start": 4458.78,
"end": 4461.44,
"probability": 0.9887
},
{
"start": 4462.8,
"end": 4463.55,
"probability": 0.4176
},
{
"start": 4464.36,
"end": 4465.82,
"probability": 0.9736
},
{
"start": 4466.24,
"end": 4470.08,
"probability": 0.9876
},
{
"start": 4470.2,
"end": 4471.28,
"probability": 0.8472
},
{
"start": 4472.02,
"end": 4474.02,
"probability": 0.9047
},
{
"start": 4474.28,
"end": 4476.18,
"probability": 0.8824
},
{
"start": 4476.72,
"end": 4481.04,
"probability": 0.9487
},
{
"start": 4481.58,
"end": 4483.9,
"probability": 0.8574
},
{
"start": 4484.12,
"end": 4487.66,
"probability": 0.8813
},
{
"start": 4488.2,
"end": 4489.17,
"probability": 0.2074
},
{
"start": 4490.26,
"end": 4492.98,
"probability": 0.99
},
{
"start": 4493.1,
"end": 4493.28,
"probability": 0.6142
},
{
"start": 4493.36,
"end": 4494.02,
"probability": 0.939
},
{
"start": 4495.6,
"end": 4496.02,
"probability": 0.5977
},
{
"start": 4496.1,
"end": 4496.4,
"probability": 0.7423
},
{
"start": 4496.56,
"end": 4497.82,
"probability": 0.9064
},
{
"start": 4497.9,
"end": 4498.88,
"probability": 0.6297
},
{
"start": 4499.04,
"end": 4500.44,
"probability": 0.9351
},
{
"start": 4502.14,
"end": 4503.82,
"probability": 0.2988
},
{
"start": 4503.92,
"end": 4506.54,
"probability": 0.9492
},
{
"start": 4506.62,
"end": 4507.5,
"probability": 0.5585
},
{
"start": 4508.16,
"end": 4509.88,
"probability": 0.8914
},
{
"start": 4510.14,
"end": 4511.84,
"probability": 0.7665
},
{
"start": 4511.94,
"end": 4512.84,
"probability": 0.7339
},
{
"start": 4513.42,
"end": 4514.96,
"probability": 0.5689
},
{
"start": 4515.06,
"end": 4516.0,
"probability": 0.9084
},
{
"start": 4516.42,
"end": 4517.46,
"probability": 0.8034
},
{
"start": 4517.6,
"end": 4520.84,
"probability": 0.6778
},
{
"start": 4521.5,
"end": 4521.76,
"probability": 0.1384
},
{
"start": 4521.76,
"end": 4523.02,
"probability": 0.7073
},
{
"start": 4523.14,
"end": 4526.8,
"probability": 0.8004
},
{
"start": 4527.18,
"end": 4527.88,
"probability": 0.8509
},
{
"start": 4528.28,
"end": 4529.44,
"probability": 0.7622
},
{
"start": 4529.88,
"end": 4534.12,
"probability": 0.8246
},
{
"start": 4534.88,
"end": 4537.42,
"probability": 0.9296
},
{
"start": 4537.92,
"end": 4538.82,
"probability": 0.9781
},
{
"start": 4538.9,
"end": 4539.0,
"probability": 0.8796
},
{
"start": 4539.18,
"end": 4541.36,
"probability": 0.8932
},
{
"start": 4541.94,
"end": 4543.0,
"probability": 0.4622
},
{
"start": 4543.48,
"end": 4545.41,
"probability": 0.9795
},
{
"start": 4545.64,
"end": 4550.98,
"probability": 0.9285
},
{
"start": 4551.28,
"end": 4551.9,
"probability": 0.4666
},
{
"start": 4552.02,
"end": 4553.38,
"probability": 0.8964
},
{
"start": 4553.76,
"end": 4555.03,
"probability": 0.9124
},
{
"start": 4555.76,
"end": 4559.22,
"probability": 0.9659
},
{
"start": 4559.68,
"end": 4562.14,
"probability": 0.9448
},
{
"start": 4562.32,
"end": 4565.8,
"probability": 0.9886
},
{
"start": 4565.84,
"end": 4567.04,
"probability": 0.7127
},
{
"start": 4567.12,
"end": 4568.16,
"probability": 0.9481
},
{
"start": 4568.66,
"end": 4571.24,
"probability": 0.9891
},
{
"start": 4571.94,
"end": 4573.34,
"probability": 0.8912
},
{
"start": 4573.44,
"end": 4575.42,
"probability": 0.7728
},
{
"start": 4576.34,
"end": 4578.96,
"probability": 0.9819
},
{
"start": 4579.04,
"end": 4580.36,
"probability": 0.9628
},
{
"start": 4580.54,
"end": 4581.08,
"probability": 0.8741
},
{
"start": 4581.28,
"end": 4581.76,
"probability": 0.7263
},
{
"start": 4581.84,
"end": 4582.96,
"probability": 0.9548
},
{
"start": 4583.18,
"end": 4584.8,
"probability": 0.8014
},
{
"start": 4584.86,
"end": 4585.2,
"probability": 0.4934
},
{
"start": 4585.84,
"end": 4587.66,
"probability": 0.95
},
{
"start": 4587.8,
"end": 4588.18,
"probability": 0.5343
},
{
"start": 4588.24,
"end": 4589.08,
"probability": 0.9392
},
{
"start": 4589.14,
"end": 4589.6,
"probability": 0.745
},
{
"start": 4589.72,
"end": 4590.38,
"probability": 0.8667
},
{
"start": 4590.44,
"end": 4590.92,
"probability": 0.4503
},
{
"start": 4591.7,
"end": 4593.58,
"probability": 0.9614
},
{
"start": 4593.8,
"end": 4595.44,
"probability": 0.9982
},
{
"start": 4595.48,
"end": 4597.63,
"probability": 0.7798
},
{
"start": 4598.1,
"end": 4598.62,
"probability": 0.9344
},
{
"start": 4599.3,
"end": 4599.8,
"probability": 0.5491
},
{
"start": 4600.2,
"end": 4601.5,
"probability": 0.4532
},
{
"start": 4605.32,
"end": 4606.8,
"probability": 0.9343
},
{
"start": 4607.82,
"end": 4612.26,
"probability": 0.9751
},
{
"start": 4612.34,
"end": 4613.9,
"probability": 0.9054
},
{
"start": 4614.02,
"end": 4616.2,
"probability": 0.8181
},
{
"start": 4616.28,
"end": 4617.98,
"probability": 0.8781
},
{
"start": 4619.22,
"end": 4620.8,
"probability": 0.8104
},
{
"start": 4620.92,
"end": 4621.12,
"probability": 0.824
},
{
"start": 4621.2,
"end": 4622.72,
"probability": 0.9516
},
{
"start": 4623.8,
"end": 4626.02,
"probability": 0.9666
},
{
"start": 4626.14,
"end": 4629.36,
"probability": 0.9745
},
{
"start": 4629.78,
"end": 4631.04,
"probability": 0.6875
},
{
"start": 4631.26,
"end": 4633.0,
"probability": 0.8625
},
{
"start": 4633.16,
"end": 4635.81,
"probability": 0.9697
},
{
"start": 4636.58,
"end": 4638.64,
"probability": 0.9526
},
{
"start": 4639.22,
"end": 4643.8,
"probability": 0.9607
},
{
"start": 4644.1,
"end": 4647.1,
"probability": 0.9634
},
{
"start": 4647.5,
"end": 4649.4,
"probability": 0.9322
},
{
"start": 4649.5,
"end": 4652.52,
"probability": 0.8891
},
{
"start": 4652.94,
"end": 4656.87,
"probability": 0.9341
},
{
"start": 4657.24,
"end": 4658.88,
"probability": 0.7647
},
{
"start": 4659.22,
"end": 4660.18,
"probability": 0.9778
},
{
"start": 4661.98,
"end": 4663.88,
"probability": 0.9219
},
{
"start": 4664.3,
"end": 4665.12,
"probability": 0.7879
},
{
"start": 4665.12,
"end": 4665.62,
"probability": 0.842
},
{
"start": 4666.7,
"end": 4669.82,
"probability": 0.9799
},
{
"start": 4670.0,
"end": 4670.5,
"probability": 0.6205
},
{
"start": 4670.76,
"end": 4670.96,
"probability": 0.5026
},
{
"start": 4671.14,
"end": 4671.69,
"probability": 0.8826
},
{
"start": 4672.4,
"end": 4673.4,
"probability": 0.8484
},
{
"start": 4673.42,
"end": 4674.4,
"probability": 0.8212
},
{
"start": 4675.98,
"end": 4677.14,
"probability": 0.9932
},
{
"start": 4677.38,
"end": 4678.44,
"probability": 0.5559
},
{
"start": 4678.72,
"end": 4679.18,
"probability": 0.9374
},
{
"start": 4679.32,
"end": 4680.98,
"probability": 0.9595
},
{
"start": 4681.08,
"end": 4681.72,
"probability": 0.5667
},
{
"start": 4681.8,
"end": 4684.36,
"probability": 0.8948
},
{
"start": 4685.95,
"end": 4687.38,
"probability": 0.3216
},
{
"start": 4687.38,
"end": 4687.38,
"probability": 0.0634
},
{
"start": 4687.38,
"end": 4687.38,
"probability": 0.3065
},
{
"start": 4687.44,
"end": 4688.5,
"probability": 0.9204
},
{
"start": 4688.62,
"end": 4689.66,
"probability": 0.8215
},
{
"start": 4689.68,
"end": 4690.5,
"probability": 0.8379
},
{
"start": 4690.58,
"end": 4692.08,
"probability": 0.9328
},
{
"start": 4692.14,
"end": 4693.92,
"probability": 0.601
},
{
"start": 4694.04,
"end": 4696.42,
"probability": 0.8573
},
{
"start": 4696.54,
"end": 4697.66,
"probability": 0.9282
},
{
"start": 4697.84,
"end": 4701.78,
"probability": 0.9661
},
{
"start": 4702.78,
"end": 4703.64,
"probability": 0.6798
},
{
"start": 4703.8,
"end": 4704.76,
"probability": 0.9661
},
{
"start": 4705.42,
"end": 4708.58,
"probability": 0.9954
},
{
"start": 4709.06,
"end": 4711.72,
"probability": 0.9152
},
{
"start": 4712.32,
"end": 4714.04,
"probability": 0.9429
},
{
"start": 4714.64,
"end": 4717.3,
"probability": 0.9512
},
{
"start": 4717.58,
"end": 4720.26,
"probability": 0.9647
},
{
"start": 4720.36,
"end": 4721.2,
"probability": 0.087
},
{
"start": 4721.86,
"end": 4723.61,
"probability": 0.8826
},
{
"start": 4724.02,
"end": 4725.24,
"probability": 0.9171
},
{
"start": 4726.18,
"end": 4726.62,
"probability": 0.6992
},
{
"start": 4726.72,
"end": 4730.84,
"probability": 0.8333
},
{
"start": 4730.84,
"end": 4730.96,
"probability": 0.7742
},
{
"start": 4731.22,
"end": 4733.94,
"probability": 0.6958
},
{
"start": 4734.08,
"end": 4735.3,
"probability": 0.9291
},
{
"start": 4735.38,
"end": 4736.58,
"probability": 0.9705
},
{
"start": 4736.94,
"end": 4740.02,
"probability": 0.7501
},
{
"start": 4740.18,
"end": 4741.24,
"probability": 0.7249
},
{
"start": 4741.4,
"end": 4744.28,
"probability": 0.9757
},
{
"start": 4744.68,
"end": 4746.02,
"probability": 0.9896
},
{
"start": 4747.32,
"end": 4749.24,
"probability": 0.9108
},
{
"start": 4749.32,
"end": 4750.36,
"probability": 0.9264
},
{
"start": 4750.46,
"end": 4752.54,
"probability": 0.8325
},
{
"start": 4752.76,
"end": 4754.14,
"probability": 0.8403
},
{
"start": 4754.52,
"end": 4756.8,
"probability": 0.9937
},
{
"start": 4756.86,
"end": 4758.5,
"probability": 0.8823
},
{
"start": 4758.87,
"end": 4760.78,
"probability": 0.9077
},
{
"start": 4761.3,
"end": 4761.56,
"probability": 0.6479
},
{
"start": 4761.64,
"end": 4762.42,
"probability": 0.9127
},
{
"start": 4762.6,
"end": 4763.86,
"probability": 0.8931
},
{
"start": 4763.98,
"end": 4765.1,
"probability": 0.9742
},
{
"start": 4765.92,
"end": 4767.5,
"probability": 0.8241
},
{
"start": 4767.9,
"end": 4769.38,
"probability": 0.9279
},
{
"start": 4769.44,
"end": 4769.5,
"probability": 0.3248
},
{
"start": 4769.62,
"end": 4770.86,
"probability": 0.7266
},
{
"start": 4770.94,
"end": 4774.42,
"probability": 0.979
},
{
"start": 4774.88,
"end": 4776.08,
"probability": 0.8267
},
{
"start": 4776.18,
"end": 4776.64,
"probability": 0.3393
},
{
"start": 4776.72,
"end": 4778.6,
"probability": 0.7468
},
{
"start": 4779.12,
"end": 4780.4,
"probability": 0.7428
},
{
"start": 4780.52,
"end": 4780.62,
"probability": 0.5655
},
{
"start": 4780.62,
"end": 4780.66,
"probability": 0.1186
},
{
"start": 4780.66,
"end": 4781.56,
"probability": 0.9395
},
{
"start": 4781.78,
"end": 4785.94,
"probability": 0.9604
},
{
"start": 4785.98,
"end": 4785.98,
"probability": 0.4607
},
{
"start": 4786.04,
"end": 4786.16,
"probability": 0.4299
},
{
"start": 4786.16,
"end": 4786.96,
"probability": 0.5754
},
{
"start": 4787.1,
"end": 4788.16,
"probability": 0.7936
},
{
"start": 4788.48,
"end": 4790.8,
"probability": 0.9883
},
{
"start": 4791.7,
"end": 4793.24,
"probability": 0.6535
},
{
"start": 4793.42,
"end": 4793.84,
"probability": 0.8289
},
{
"start": 4794.34,
"end": 4796.38,
"probability": 0.976
},
{
"start": 4796.4,
"end": 4796.88,
"probability": 0.5295
},
{
"start": 4796.88,
"end": 4798.82,
"probability": 0.8348
},
{
"start": 4798.94,
"end": 4800.34,
"probability": 0.8172
},
{
"start": 4800.44,
"end": 4801.41,
"probability": 0.5802
},
{
"start": 4801.58,
"end": 4802.66,
"probability": 0.7067
},
{
"start": 4802.66,
"end": 4804.64,
"probability": 0.7748
},
{
"start": 4804.7,
"end": 4804.98,
"probability": 0.597
},
{
"start": 4804.98,
"end": 4805.36,
"probability": 0.8379
},
{
"start": 4806.04,
"end": 4807.5,
"probability": 0.6998
},
{
"start": 4808.07,
"end": 4811.19,
"probability": 0.8248
},
{
"start": 4812.78,
"end": 4813.22,
"probability": 0.2772
},
{
"start": 4813.34,
"end": 4815.04,
"probability": 0.957
},
{
"start": 4815.54,
"end": 4816.8,
"probability": 0.5212
},
{
"start": 4817.66,
"end": 4819.02,
"probability": 0.735
},
{
"start": 4819.08,
"end": 4820.18,
"probability": 0.9171
},
{
"start": 4830.24,
"end": 4832.4,
"probability": 0.8195
},
{
"start": 4833.94,
"end": 4835.72,
"probability": 0.6123
},
{
"start": 4835.9,
"end": 4836.98,
"probability": 0.7996
},
{
"start": 4837.68,
"end": 4839.86,
"probability": 0.9365
},
{
"start": 4840.68,
"end": 4842.6,
"probability": 0.4651
},
{
"start": 4844.38,
"end": 4848.48,
"probability": 0.9015
},
{
"start": 4849.44,
"end": 4852.62,
"probability": 0.6652
},
{
"start": 4853.08,
"end": 4853.76,
"probability": 0.7788
},
{
"start": 4854.32,
"end": 4856.88,
"probability": 0.9666
},
{
"start": 4857.34,
"end": 4860.66,
"probability": 0.9982
},
{
"start": 4861.96,
"end": 4862.26,
"probability": 0.5005
},
{
"start": 4862.46,
"end": 4862.64,
"probability": 0.6395
},
{
"start": 4862.7,
"end": 4866.8,
"probability": 0.8434
},
{
"start": 4866.84,
"end": 4867.08,
"probability": 0.6672
},
{
"start": 4867.26,
"end": 4869.9,
"probability": 0.9561
},
{
"start": 4870.12,
"end": 4872.1,
"probability": 0.7316
},
{
"start": 4872.22,
"end": 4873.72,
"probability": 0.797
},
{
"start": 4873.84,
"end": 4875.08,
"probability": 0.7294
},
{
"start": 4875.18,
"end": 4875.54,
"probability": 0.2693
},
{
"start": 4875.88,
"end": 4876.34,
"probability": 0.9858
},
{
"start": 4881.24,
"end": 4884.38,
"probability": 0.9784
},
{
"start": 4884.52,
"end": 4887.28,
"probability": 0.9034
},
{
"start": 4887.62,
"end": 4889.54,
"probability": 0.9575
},
{
"start": 4889.98,
"end": 4892.11,
"probability": 0.9286
},
{
"start": 4892.78,
"end": 4894.78,
"probability": 0.6758
},
{
"start": 4895.52,
"end": 4896.66,
"probability": 0.9764
},
{
"start": 4896.86,
"end": 4900.5,
"probability": 0.8087
},
{
"start": 4900.88,
"end": 4902.72,
"probability": 0.5483
},
{
"start": 4903.32,
"end": 4906.6,
"probability": 0.9038
},
{
"start": 4907.88,
"end": 4910.64,
"probability": 0.6044
},
{
"start": 4910.7,
"end": 4910.86,
"probability": 0.8023
},
{
"start": 4911.96,
"end": 4913.06,
"probability": 0.9547
},
{
"start": 4913.69,
"end": 4915.62,
"probability": 0.8235
},
{
"start": 4915.8,
"end": 4917.24,
"probability": 0.9797
},
{
"start": 4917.52,
"end": 4918.02,
"probability": 0.9042
},
{
"start": 4918.58,
"end": 4921.26,
"probability": 0.9946
},
{
"start": 4923.32,
"end": 4925.52,
"probability": 0.6653
},
{
"start": 4926.3,
"end": 4927.96,
"probability": 0.3729
},
{
"start": 4928.14,
"end": 4929.14,
"probability": 0.7991
},
{
"start": 4929.3,
"end": 4929.84,
"probability": 0.7101
},
{
"start": 4930.2,
"end": 4930.66,
"probability": 0.7604
},
{
"start": 4930.98,
"end": 4932.72,
"probability": 0.9951
},
{
"start": 4933.08,
"end": 4937.52,
"probability": 0.9932
},
{
"start": 4937.66,
"end": 4938.36,
"probability": 0.9382
},
{
"start": 4938.74,
"end": 4939.11,
"probability": 0.9316
},
{
"start": 4939.54,
"end": 4941.08,
"probability": 0.9453
},
{
"start": 4941.5,
"end": 4942.79,
"probability": 0.9536
},
{
"start": 4943.46,
"end": 4944.76,
"probability": 0.9428
},
{
"start": 4944.82,
"end": 4946.46,
"probability": 0.9353
},
{
"start": 4946.58,
"end": 4948.54,
"probability": 0.7559
},
{
"start": 4949.08,
"end": 4949.92,
"probability": 0.987
},
{
"start": 4949.98,
"end": 4951.88,
"probability": 0.9911
},
{
"start": 4951.9,
"end": 4953.68,
"probability": 0.8239
},
{
"start": 4954.66,
"end": 4956.3,
"probability": 0.951
},
{
"start": 4956.68,
"end": 4959.1,
"probability": 0.9801
},
{
"start": 4959.18,
"end": 4961.5,
"probability": 0.9954
},
{
"start": 4961.82,
"end": 4963.3,
"probability": 0.9604
},
{
"start": 4963.84,
"end": 4966.25,
"probability": 0.9965
},
{
"start": 4967.12,
"end": 4967.78,
"probability": 0.7964
},
{
"start": 4967.98,
"end": 4970.19,
"probability": 0.6936
},
{
"start": 4970.52,
"end": 4971.96,
"probability": 0.9055
},
{
"start": 4972.6,
"end": 4973.82,
"probability": 0.9714
},
{
"start": 4974.14,
"end": 4975.36,
"probability": 0.881
},
{
"start": 4975.82,
"end": 4976.26,
"probability": 0.6278
},
{
"start": 4976.4,
"end": 4977.83,
"probability": 0.6997
},
{
"start": 4978.6,
"end": 4981.32,
"probability": 0.9158
},
{
"start": 4983.0,
"end": 4988.4,
"probability": 0.63
},
{
"start": 4989.22,
"end": 4990.98,
"probability": 0.9475
},
{
"start": 4991.54,
"end": 4993.14,
"probability": 0.9405
},
{
"start": 4994.22,
"end": 4996.22,
"probability": 0.9731
},
{
"start": 4997.54,
"end": 4998.4,
"probability": 0.5141
},
{
"start": 4998.48,
"end": 5000.94,
"probability": 0.9749
},
{
"start": 5001.32,
"end": 5004.08,
"probability": 0.9574
},
{
"start": 5005.28,
"end": 5008.56,
"probability": 0.9224
},
{
"start": 5009.12,
"end": 5013.34,
"probability": 0.9875
},
{
"start": 5014.1,
"end": 5018.09,
"probability": 0.6383
},
{
"start": 5019.34,
"end": 5020.26,
"probability": 0.8651
},
{
"start": 5020.5,
"end": 5023.12,
"probability": 0.9657
},
{
"start": 5024.38,
"end": 5028.1,
"probability": 0.8534
},
{
"start": 5028.28,
"end": 5031.32,
"probability": 0.7678
},
{
"start": 5032.72,
"end": 5038.64,
"probability": 0.994
},
{
"start": 5040.24,
"end": 5042.8,
"probability": 0.7534
},
{
"start": 5042.92,
"end": 5044.6,
"probability": 0.993
},
{
"start": 5044.6,
"end": 5048.4,
"probability": 0.9707
},
{
"start": 5049.9,
"end": 5050.88,
"probability": 0.7862
},
{
"start": 5050.98,
"end": 5054.3,
"probability": 0.9908
},
{
"start": 5055.22,
"end": 5057.2,
"probability": 0.5841
},
{
"start": 5057.36,
"end": 5062.0,
"probability": 0.998
},
{
"start": 5062.36,
"end": 5064.52,
"probability": 0.9817
},
{
"start": 5064.68,
"end": 5071.72,
"probability": 0.6614
},
{
"start": 5073.1,
"end": 5075.2,
"probability": 0.863
},
{
"start": 5075.54,
"end": 5076.36,
"probability": 0.7861
},
{
"start": 5076.48,
"end": 5076.82,
"probability": 0.8429
},
{
"start": 5077.96,
"end": 5081.34,
"probability": 0.8073
},
{
"start": 5082.02,
"end": 5083.56,
"probability": 0.9941
},
{
"start": 5084.5,
"end": 5089.58,
"probability": 0.9956
},
{
"start": 5090.52,
"end": 5092.02,
"probability": 0.9883
},
{
"start": 5093.36,
"end": 5094.92,
"probability": 0.4844
},
{
"start": 5095.06,
"end": 5095.84,
"probability": 0.6749
},
{
"start": 5095.96,
"end": 5098.3,
"probability": 0.8305
},
{
"start": 5098.3,
"end": 5098.82,
"probability": 0.486
},
{
"start": 5098.93,
"end": 5100.18,
"probability": 0.8364
},
{
"start": 5100.52,
"end": 5103.42,
"probability": 0.7134
},
{
"start": 5103.99,
"end": 5105.14,
"probability": 0.942
},
{
"start": 5105.22,
"end": 5108.64,
"probability": 0.9449
},
{
"start": 5108.92,
"end": 5109.5,
"probability": 0.4962
},
{
"start": 5110.34,
"end": 5113.04,
"probability": 0.8712
},
{
"start": 5114.16,
"end": 5114.7,
"probability": 0.6677
},
{
"start": 5115.24,
"end": 5116.62,
"probability": 0.7735
},
{
"start": 5116.76,
"end": 5118.16,
"probability": 0.7944
},
{
"start": 5118.24,
"end": 5119.18,
"probability": 0.4402
},
{
"start": 5120.98,
"end": 5122.54,
"probability": 0.998
},
{
"start": 5123.3,
"end": 5125.11,
"probability": 0.9646
},
{
"start": 5126.16,
"end": 5126.84,
"probability": 0.7328
},
{
"start": 5128.3,
"end": 5131.26,
"probability": 0.8366
},
{
"start": 5131.3,
"end": 5131.94,
"probability": 0.6705
},
{
"start": 5132.1,
"end": 5133.28,
"probability": 0.6801
},
{
"start": 5133.52,
"end": 5134.28,
"probability": 0.5027
},
{
"start": 5134.62,
"end": 5134.82,
"probability": 0.7303
},
{
"start": 5134.9,
"end": 5137.02,
"probability": 0.9517
},
{
"start": 5137.96,
"end": 5138.7,
"probability": 0.9337
},
{
"start": 5139.38,
"end": 5139.9,
"probability": 0.9517
},
{
"start": 5141.18,
"end": 5142.58,
"probability": 0.7254
},
{
"start": 5142.66,
"end": 5145.18,
"probability": 0.975
},
{
"start": 5145.72,
"end": 5145.84,
"probability": 0.6726
},
{
"start": 5146.24,
"end": 5147.16,
"probability": 0.859
},
{
"start": 5147.76,
"end": 5148.28,
"probability": 0.9673
},
{
"start": 5148.32,
"end": 5149.46,
"probability": 0.9277
},
{
"start": 5149.58,
"end": 5150.42,
"probability": 0.8677
},
{
"start": 5150.44,
"end": 5151.58,
"probability": 0.9927
},
{
"start": 5152.7,
"end": 5153.78,
"probability": 0.8342
},
{
"start": 5153.84,
"end": 5154.5,
"probability": 0.8667
},
{
"start": 5154.6,
"end": 5156.38,
"probability": 0.9954
},
{
"start": 5156.74,
"end": 5158.18,
"probability": 0.9922
},
{
"start": 5158.24,
"end": 5158.66,
"probability": 0.9473
},
{
"start": 5159.38,
"end": 5162.0,
"probability": 0.9776
},
{
"start": 5163.9,
"end": 5164.3,
"probability": 0.4689
},
{
"start": 5165.0,
"end": 5165.69,
"probability": 0.9692
},
{
"start": 5166.54,
"end": 5167.04,
"probability": 0.5054
},
{
"start": 5168.16,
"end": 5170.4,
"probability": 0.9168
},
{
"start": 5170.4,
"end": 5172.76,
"probability": 0.991
},
{
"start": 5173.82,
"end": 5175.04,
"probability": 0.9944
},
{
"start": 5175.58,
"end": 5177.7,
"probability": 0.9796
},
{
"start": 5178.24,
"end": 5181.05,
"probability": 0.9818
},
{
"start": 5181.88,
"end": 5182.4,
"probability": 0.7657
},
{
"start": 5183.2,
"end": 5183.78,
"probability": 0.7809
},
{
"start": 5183.88,
"end": 5184.36,
"probability": 0.9521
},
{
"start": 5184.48,
"end": 5185.22,
"probability": 0.9616
},
{
"start": 5185.22,
"end": 5185.9,
"probability": 0.9866
},
{
"start": 5186.0,
"end": 5186.36,
"probability": 0.8592
},
{
"start": 5186.86,
"end": 5187.24,
"probability": 0.6678
},
{
"start": 5189.06,
"end": 5189.98,
"probability": 0.9816
},
{
"start": 5190.18,
"end": 5190.99,
"probability": 0.8828
},
{
"start": 5191.12,
"end": 5192.23,
"probability": 0.8869
},
{
"start": 5192.48,
"end": 5194.02,
"probability": 0.9425
},
{
"start": 5194.1,
"end": 5194.92,
"probability": 0.8685
},
{
"start": 5195.3,
"end": 5195.5,
"probability": 0.6222
},
{
"start": 5195.56,
"end": 5195.9,
"probability": 0.8474
},
{
"start": 5196.08,
"end": 5197.31,
"probability": 0.7896
},
{
"start": 5197.36,
"end": 5198.58,
"probability": 0.8026
},
{
"start": 5198.92,
"end": 5199.88,
"probability": 0.869
},
{
"start": 5200.6,
"end": 5201.32,
"probability": 0.8747
},
{
"start": 5201.38,
"end": 5202.72,
"probability": 0.8187
},
{
"start": 5203.18,
"end": 5205.16,
"probability": 0.977
},
{
"start": 5206.0,
"end": 5208.52,
"probability": 0.9971
},
{
"start": 5208.52,
"end": 5213.46,
"probability": 0.9874
},
{
"start": 5213.56,
"end": 5214.36,
"probability": 0.8267
},
{
"start": 5214.46,
"end": 5215.54,
"probability": 0.9572
},
{
"start": 5216.28,
"end": 5216.86,
"probability": 0.7537
},
{
"start": 5216.98,
"end": 5218.46,
"probability": 0.9973
},
{
"start": 5219.14,
"end": 5220.88,
"probability": 0.4012
},
{
"start": 5221.02,
"end": 5222.5,
"probability": 0.9237
},
{
"start": 5223.76,
"end": 5225.78,
"probability": 0.9806
},
{
"start": 5226.46,
"end": 5227.39,
"probability": 0.9846
},
{
"start": 5228.04,
"end": 5232.06,
"probability": 0.7444
},
{
"start": 5232.28,
"end": 5235.38,
"probability": 0.7353
},
{
"start": 5236.6,
"end": 5239.18,
"probability": 0.9739
},
{
"start": 5239.38,
"end": 5243.56,
"probability": 0.9082
},
{
"start": 5243.62,
"end": 5244.08,
"probability": 0.9443
},
{
"start": 5244.34,
"end": 5245.38,
"probability": 0.9812
},
{
"start": 5245.54,
"end": 5246.86,
"probability": 0.9882
},
{
"start": 5247.06,
"end": 5247.96,
"probability": 0.9281
},
{
"start": 5248.52,
"end": 5248.66,
"probability": 0.5052
},
{
"start": 5251.14,
"end": 5253.9,
"probability": 0.952
},
{
"start": 5254.04,
"end": 5256.36,
"probability": 0.95
},
{
"start": 5257.3,
"end": 5261.52,
"probability": 0.6928
},
{
"start": 5262.54,
"end": 5265.29,
"probability": 0.8436
},
{
"start": 5266.9,
"end": 5268.08,
"probability": 0.7027
},
{
"start": 5268.14,
"end": 5269.02,
"probability": 0.9916
},
{
"start": 5269.8,
"end": 5271.54,
"probability": 0.9595
},
{
"start": 5271.68,
"end": 5271.78,
"probability": 0.4237
},
{
"start": 5272.58,
"end": 5274.84,
"probability": 0.9336
},
{
"start": 5275.6,
"end": 5276.78,
"probability": 0.5063
},
{
"start": 5276.9,
"end": 5278.6,
"probability": 0.8423
},
{
"start": 5279.44,
"end": 5281.8,
"probability": 0.9309
},
{
"start": 5282.7,
"end": 5284.1,
"probability": 0.9966
},
{
"start": 5284.82,
"end": 5285.96,
"probability": 0.8897
},
{
"start": 5285.96,
"end": 5290.08,
"probability": 0.6045
},
{
"start": 5290.14,
"end": 5291.32,
"probability": 0.9691
},
{
"start": 5291.36,
"end": 5293.12,
"probability": 0.905
},
{
"start": 5293.48,
"end": 5297.0,
"probability": 0.7914
},
{
"start": 5299.36,
"end": 5300.44,
"probability": 0.8065
},
{
"start": 5300.64,
"end": 5302.96,
"probability": 0.9365
},
{
"start": 5303.0,
"end": 5304.76,
"probability": 0.9301
},
{
"start": 5304.84,
"end": 5305.68,
"probability": 0.7983
},
{
"start": 5306.0,
"end": 5307.9,
"probability": 0.8786
},
{
"start": 5308.26,
"end": 5309.16,
"probability": 0.8399
},
{
"start": 5311.3,
"end": 5312.2,
"probability": 0.5036
},
{
"start": 5312.84,
"end": 5312.84,
"probability": 0.1532
},
{
"start": 5312.84,
"end": 5312.84,
"probability": 0.1056
},
{
"start": 5312.84,
"end": 5315.16,
"probability": 0.5083
},
{
"start": 5315.46,
"end": 5317.14,
"probability": 0.847
},
{
"start": 5317.7,
"end": 5319.08,
"probability": 0.9725
},
{
"start": 5319.48,
"end": 5320.54,
"probability": 0.8162
},
{
"start": 5321.04,
"end": 5321.42,
"probability": 0.6295
},
{
"start": 5321.52,
"end": 5322.24,
"probability": 0.6633
},
{
"start": 5322.32,
"end": 5322.52,
"probability": 0.9682
},
{
"start": 5323.96,
"end": 5325.04,
"probability": 0.8467
},
{
"start": 5326.22,
"end": 5329.04,
"probability": 0.8835
},
{
"start": 5329.12,
"end": 5332.12,
"probability": 0.8332
},
{
"start": 5332.94,
"end": 5335.26,
"probability": 0.9958
},
{
"start": 5336.42,
"end": 5339.22,
"probability": 0.9494
},
{
"start": 5339.74,
"end": 5343.78,
"probability": 0.9087
},
{
"start": 5344.34,
"end": 5344.66,
"probability": 0.6784
},
{
"start": 5344.96,
"end": 5347.98,
"probability": 0.9927
},
{
"start": 5348.34,
"end": 5349.28,
"probability": 0.9756
},
{
"start": 5349.76,
"end": 5350.86,
"probability": 0.8118
},
{
"start": 5352.04,
"end": 5355.62,
"probability": 0.8127
},
{
"start": 5356.28,
"end": 5356.88,
"probability": 0.9798
},
{
"start": 5358.36,
"end": 5360.64,
"probability": 0.7351
},
{
"start": 5360.82,
"end": 5362.1,
"probability": 0.866
},
{
"start": 5362.14,
"end": 5366.04,
"probability": 0.9907
},
{
"start": 5366.58,
"end": 5368.78,
"probability": 0.9951
},
{
"start": 5369.04,
"end": 5369.92,
"probability": 0.9944
},
{
"start": 5370.54,
"end": 5372.78,
"probability": 0.9824
},
{
"start": 5373.26,
"end": 5374.54,
"probability": 0.9355
},
{
"start": 5374.62,
"end": 5375.32,
"probability": 0.9182
},
{
"start": 5375.32,
"end": 5376.0,
"probability": 0.9722
},
{
"start": 5376.72,
"end": 5379.26,
"probability": 0.9751
},
{
"start": 5379.52,
"end": 5380.08,
"probability": 0.7261
},
{
"start": 5380.56,
"end": 5381.76,
"probability": 0.5138
},
{
"start": 5382.22,
"end": 5384.68,
"probability": 0.9188
},
{
"start": 5385.08,
"end": 5389.45,
"probability": 0.9784
},
{
"start": 5389.76,
"end": 5390.88,
"probability": 0.9886
},
{
"start": 5391.32,
"end": 5392.4,
"probability": 0.5707
},
{
"start": 5393.08,
"end": 5394.98,
"probability": 0.4843
},
{
"start": 5395.72,
"end": 5397.12,
"probability": 0.9579
},
{
"start": 5397.24,
"end": 5398.4,
"probability": 0.8619
},
{
"start": 5398.64,
"end": 5399.18,
"probability": 0.3057
},
{
"start": 5399.26,
"end": 5399.9,
"probability": 0.5239
},
{
"start": 5401.7,
"end": 5402.32,
"probability": 0.8629
},
{
"start": 5403.14,
"end": 5403.54,
"probability": 0.8812
},
{
"start": 5404.32,
"end": 5404.66,
"probability": 0.5792
},
{
"start": 5404.76,
"end": 5407.23,
"probability": 0.7588
},
{
"start": 5407.74,
"end": 5408.78,
"probability": 0.8221
},
{
"start": 5409.28,
"end": 5409.38,
"probability": 0.8289
},
{
"start": 5429.56,
"end": 5430.32,
"probability": 0.6033
},
{
"start": 5430.4,
"end": 5431.06,
"probability": 0.9109
},
{
"start": 5431.14,
"end": 5433.03,
"probability": 0.9172
},
{
"start": 5433.73,
"end": 5436.42,
"probability": 0.9855
},
{
"start": 5436.58,
"end": 5440.24,
"probability": 0.9736
},
{
"start": 5441.82,
"end": 5446.66,
"probability": 0.61
},
{
"start": 5448.78,
"end": 5450.82,
"probability": 0.541
},
{
"start": 5450.92,
"end": 5452.56,
"probability": 0.8053
},
{
"start": 5452.82,
"end": 5455.24,
"probability": 0.9384
},
{
"start": 5455.92,
"end": 5458.86,
"probability": 0.7155
},
{
"start": 5458.86,
"end": 5460.49,
"probability": 0.98
},
{
"start": 5461.94,
"end": 5465.16,
"probability": 0.241
},
{
"start": 5465.16,
"end": 5466.82,
"probability": 0.8889
},
{
"start": 5466.86,
"end": 5469.51,
"probability": 0.976
},
{
"start": 5469.8,
"end": 5471.72,
"probability": 0.8934
},
{
"start": 5472.2,
"end": 5472.4,
"probability": 0.5025
},
{
"start": 5473.0,
"end": 5473.36,
"probability": 0.5057
},
{
"start": 5473.94,
"end": 5474.48,
"probability": 0.8258
},
{
"start": 5474.88,
"end": 5476.58,
"probability": 0.7303
},
{
"start": 5477.32,
"end": 5480.48,
"probability": 0.8475
},
{
"start": 5480.5,
"end": 5481.26,
"probability": 0.9666
},
{
"start": 5481.78,
"end": 5483.14,
"probability": 0.9705
},
{
"start": 5483.76,
"end": 5484.26,
"probability": 0.9216
},
{
"start": 5484.7,
"end": 5486.66,
"probability": 0.6403
},
{
"start": 5487.34,
"end": 5492.04,
"probability": 0.9221
},
{
"start": 5492.8,
"end": 5494.58,
"probability": 0.9459
},
{
"start": 5495.36,
"end": 5495.76,
"probability": 0.6956
},
{
"start": 5496.24,
"end": 5496.96,
"probability": 0.6756
},
{
"start": 5497.44,
"end": 5497.56,
"probability": 0.3913
},
{
"start": 5497.56,
"end": 5500.8,
"probability": 0.8356
},
{
"start": 5502.72,
"end": 5505.88,
"probability": 0.8713
},
{
"start": 5506.4,
"end": 5507.66,
"probability": 0.8934
},
{
"start": 5510.76,
"end": 5512.52,
"probability": 0.9886
},
{
"start": 5513.28,
"end": 5514.06,
"probability": 0.7647
},
{
"start": 5514.9,
"end": 5515.9,
"probability": 0.8438
},
{
"start": 5516.46,
"end": 5521.66,
"probability": 0.9773
},
{
"start": 5522.9,
"end": 5526.98,
"probability": 0.9224
},
{
"start": 5528.14,
"end": 5529.12,
"probability": 0.8961
},
{
"start": 5529.16,
"end": 5529.69,
"probability": 0.9624
},
{
"start": 5530.2,
"end": 5530.48,
"probability": 0.5981
},
{
"start": 5531.22,
"end": 5531.74,
"probability": 0.8849
},
{
"start": 5531.82,
"end": 5533.78,
"probability": 0.9301
},
{
"start": 5535.95,
"end": 5539.34,
"probability": 0.8206
},
{
"start": 5540.92,
"end": 5541.82,
"probability": 0.9185
},
{
"start": 5542.14,
"end": 5543.0,
"probability": 0.7357
},
{
"start": 5543.12,
"end": 5544.84,
"probability": 0.998
},
{
"start": 5545.42,
"end": 5546.0,
"probability": 0.0125
},
{
"start": 5550.98,
"end": 5552.64,
"probability": 0.8505
},
{
"start": 5553.75,
"end": 5555.52,
"probability": 0.5332
},
{
"start": 5555.84,
"end": 5556.54,
"probability": 0.5412
},
{
"start": 5558.35,
"end": 5559.7,
"probability": 0.9226
},
{
"start": 5559.92,
"end": 5560.6,
"probability": 0.6022
},
{
"start": 5560.6,
"end": 5566.14,
"probability": 0.9341
},
{
"start": 5567.4,
"end": 5572.48,
"probability": 0.9933
},
{
"start": 5573.14,
"end": 5574.14,
"probability": 0.9634
},
{
"start": 5574.34,
"end": 5577.11,
"probability": 0.7849
},
{
"start": 5577.6,
"end": 5578.08,
"probability": 0.6275
},
{
"start": 5578.16,
"end": 5580.06,
"probability": 0.9846
},
{
"start": 5580.06,
"end": 5581.88,
"probability": 0.7531
},
{
"start": 5583.04,
"end": 5589.4,
"probability": 0.9207
},
{
"start": 5589.9,
"end": 5590.92,
"probability": 0.8548
},
{
"start": 5591.02,
"end": 5594.58,
"probability": 0.9121
},
{
"start": 5594.86,
"end": 5596.48,
"probability": 0.7781
},
{
"start": 5597.06,
"end": 5598.04,
"probability": 0.9824
},
{
"start": 5598.06,
"end": 5601.22,
"probability": 0.9637
},
{
"start": 5602.22,
"end": 5602.72,
"probability": 0.661
},
{
"start": 5604.98,
"end": 5605.52,
"probability": 0.5978
},
{
"start": 5605.54,
"end": 5611.14,
"probability": 0.5909
},
{
"start": 5612.26,
"end": 5617.0,
"probability": 0.0796
},
{
"start": 5617.24,
"end": 5617.52,
"probability": 0.4127
},
{
"start": 5617.62,
"end": 5621.26,
"probability": 0.6623
},
{
"start": 5621.38,
"end": 5626.3,
"probability": 0.9841
},
{
"start": 5627.08,
"end": 5629.17,
"probability": 0.5879
},
{
"start": 5629.98,
"end": 5632.66,
"probability": 0.7597
},
{
"start": 5633.34,
"end": 5636.5,
"probability": 0.5504
},
{
"start": 5636.6,
"end": 5638.16,
"probability": 0.7738
},
{
"start": 5638.64,
"end": 5638.94,
"probability": 0.4038
},
{
"start": 5640.12,
"end": 5643.44,
"probability": 0.9218
},
{
"start": 5643.44,
"end": 5646.4,
"probability": 0.7786
},
{
"start": 5647.48,
"end": 5649.5,
"probability": 0.9879
},
{
"start": 5650.2,
"end": 5650.52,
"probability": 0.4175
},
{
"start": 5650.76,
"end": 5651.92,
"probability": 0.8121
},
{
"start": 5652.0,
"end": 5655.08,
"probability": 0.9858
},
{
"start": 5655.24,
"end": 5656.02,
"probability": 0.7428
},
{
"start": 5657.6,
"end": 5659.2,
"probability": 0.3267
},
{
"start": 5660.02,
"end": 5662.54,
"probability": 0.9904
},
{
"start": 5663.0,
"end": 5664.18,
"probability": 0.8187
},
{
"start": 5664.4,
"end": 5665.06,
"probability": 0.5035
},
{
"start": 5666.68,
"end": 5667.9,
"probability": 0.4579
},
{
"start": 5667.9,
"end": 5669.72,
"probability": 0.7459
},
{
"start": 5670.26,
"end": 5672.06,
"probability": 0.989
},
{
"start": 5672.1,
"end": 5673.72,
"probability": 0.5276
},
{
"start": 5674.62,
"end": 5680.02,
"probability": 0.9728
},
{
"start": 5680.3,
"end": 5682.38,
"probability": 0.9039
},
{
"start": 5683.44,
"end": 5685.09,
"probability": 0.9964
},
{
"start": 5686.86,
"end": 5688.16,
"probability": 0.9268
},
{
"start": 5688.28,
"end": 5689.42,
"probability": 0.7039
},
{
"start": 5689.46,
"end": 5689.92,
"probability": 0.8586
},
{
"start": 5690.72,
"end": 5691.42,
"probability": 0.6965
},
{
"start": 5691.84,
"end": 5692.9,
"probability": 0.9522
},
{
"start": 5692.96,
"end": 5694.42,
"probability": 0.8698
},
{
"start": 5694.54,
"end": 5695.4,
"probability": 0.98
},
{
"start": 5695.96,
"end": 5696.56,
"probability": 0.986
},
{
"start": 5697.44,
"end": 5698.72,
"probability": 0.9313
},
{
"start": 5700.53,
"end": 5704.1,
"probability": 0.592
},
{
"start": 5705.46,
"end": 5706.12,
"probability": 0.7252
},
{
"start": 5706.2,
"end": 5709.02,
"probability": 0.9609
},
{
"start": 5709.5,
"end": 5714.6,
"probability": 0.9609
},
{
"start": 5715.4,
"end": 5716.72,
"probability": 0.9037
},
{
"start": 5716.76,
"end": 5717.46,
"probability": 0.9917
},
{
"start": 5717.54,
"end": 5718.16,
"probability": 0.9953
},
{
"start": 5718.5,
"end": 5720.28,
"probability": 0.8671
},
{
"start": 5720.36,
"end": 5721.6,
"probability": 0.8642
},
{
"start": 5722.48,
"end": 5724.54,
"probability": 0.8193
},
{
"start": 5724.68,
"end": 5728.18,
"probability": 0.771
},
{
"start": 5728.46,
"end": 5730.92,
"probability": 0.9282
},
{
"start": 5732.5,
"end": 5735.32,
"probability": 0.7932
},
{
"start": 5735.46,
"end": 5736.31,
"probability": 0.9883
},
{
"start": 5736.46,
"end": 5738.36,
"probability": 0.6006
},
{
"start": 5738.4,
"end": 5739.98,
"probability": 0.9814
},
{
"start": 5740.1,
"end": 5742.76,
"probability": 0.9309
},
{
"start": 5742.76,
"end": 5746.2,
"probability": 0.8248
},
{
"start": 5746.78,
"end": 5748.82,
"probability": 0.9904
},
{
"start": 5749.24,
"end": 5749.72,
"probability": 0.6867
},
{
"start": 5750.52,
"end": 5751.8,
"probability": 0.9972
},
{
"start": 5752.2,
"end": 5752.68,
"probability": 0.8237
},
{
"start": 5752.8,
"end": 5753.78,
"probability": 0.8694
},
{
"start": 5755.3,
"end": 5757.48,
"probability": 0.5131
},
{
"start": 5757.82,
"end": 5759.38,
"probability": 0.7017
},
{
"start": 5759.48,
"end": 5761.12,
"probability": 0.8569
},
{
"start": 5762.14,
"end": 5763.72,
"probability": 0.9678
},
{
"start": 5764.36,
"end": 5768.4,
"probability": 0.9219
},
{
"start": 5769.36,
"end": 5770.28,
"probability": 0.6694
},
{
"start": 5771.48,
"end": 5774.82,
"probability": 0.987
},
{
"start": 5775.3,
"end": 5779.44,
"probability": 0.6361
},
{
"start": 5779.68,
"end": 5786.54,
"probability": 0.5771
},
{
"start": 5786.56,
"end": 5790.84,
"probability": 0.9897
},
{
"start": 5790.88,
"end": 5794.68,
"probability": 0.9894
},
{
"start": 5795.48,
"end": 5799.7,
"probability": 0.985
},
{
"start": 5800.36,
"end": 5804.38,
"probability": 0.9806
},
{
"start": 5804.92,
"end": 5807.84,
"probability": 0.9954
},
{
"start": 5808.68,
"end": 5811.14,
"probability": 0.9456
},
{
"start": 5811.68,
"end": 5814.4,
"probability": 0.5456
},
{
"start": 5815.32,
"end": 5815.94,
"probability": 0.3108
},
{
"start": 5815.98,
"end": 5818.18,
"probability": 0.6247
},
{
"start": 5818.28,
"end": 5822.84,
"probability": 0.9761
},
{
"start": 5823.6,
"end": 5827.1,
"probability": 0.64
},
{
"start": 5827.52,
"end": 5829.06,
"probability": 0.9839
},
{
"start": 5829.14,
"end": 5830.6,
"probability": 0.769
},
{
"start": 5830.7,
"end": 5833.06,
"probability": 0.6138
},
{
"start": 5833.64,
"end": 5836.42,
"probability": 0.9937
},
{
"start": 5836.66,
"end": 5837.66,
"probability": 0.6351
},
{
"start": 5838.14,
"end": 5839.05,
"probability": 0.9033
},
{
"start": 5841.06,
"end": 5843.06,
"probability": 0.7412
},
{
"start": 5843.22,
"end": 5844.16,
"probability": 0.4147
},
{
"start": 5844.16,
"end": 5845.26,
"probability": 0.9896
},
{
"start": 5845.3,
"end": 5846.72,
"probability": 0.7516
},
{
"start": 5847.62,
"end": 5848.38,
"probability": 0.9471
},
{
"start": 5849.26,
"end": 5850.72,
"probability": 0.9806
},
{
"start": 5850.74,
"end": 5851.48,
"probability": 0.5751
},
{
"start": 5851.56,
"end": 5852.14,
"probability": 0.9658
},
{
"start": 5852.28,
"end": 5854.52,
"probability": 0.8868
},
{
"start": 5855.04,
"end": 5856.16,
"probability": 0.7386
},
{
"start": 5856.24,
"end": 5857.12,
"probability": 0.9741
},
{
"start": 5857.6,
"end": 5859.94,
"probability": 0.8725
},
{
"start": 5859.96,
"end": 5860.62,
"probability": 0.8767
},
{
"start": 5860.72,
"end": 5862.94,
"probability": 0.9937
},
{
"start": 5863.52,
"end": 5865.88,
"probability": 0.9028
},
{
"start": 5865.94,
"end": 5866.9,
"probability": 0.9749
},
{
"start": 5867.0,
"end": 5867.5,
"probability": 0.0289
},
{
"start": 5867.64,
"end": 5868.01,
"probability": 0.3578
},
{
"start": 5868.26,
"end": 5870.24,
"probability": 0.7756
},
{
"start": 5871.02,
"end": 5872.98,
"probability": 0.979
},
{
"start": 5873.1,
"end": 5875.98,
"probability": 0.9871
},
{
"start": 5876.54,
"end": 5877.84,
"probability": 0.915
},
{
"start": 5878.4,
"end": 5880.92,
"probability": 0.8477
},
{
"start": 5881.58,
"end": 5881.78,
"probability": 0.7109
},
{
"start": 5883.12,
"end": 5883.74,
"probability": 0.6718
},
{
"start": 5883.78,
"end": 5884.96,
"probability": 0.8431
},
{
"start": 5885.46,
"end": 5885.56,
"probability": 0.9026
},
{
"start": 5887.24,
"end": 5888.3,
"probability": 0.797
},
{
"start": 5888.36,
"end": 5891.88,
"probability": 0.9873
},
{
"start": 5891.94,
"end": 5895.46,
"probability": 0.8543
},
{
"start": 5895.74,
"end": 5896.4,
"probability": 0.9557
},
{
"start": 5897.4,
"end": 5900.64,
"probability": 0.9648
},
{
"start": 5900.82,
"end": 5901.98,
"probability": 0.4464
},
{
"start": 5902.1,
"end": 5904.74,
"probability": 0.8674
},
{
"start": 5904.9,
"end": 5909.68,
"probability": 0.9283
},
{
"start": 5910.42,
"end": 5914.6,
"probability": 0.7591
},
{
"start": 5914.64,
"end": 5917.52,
"probability": 0.8893
},
{
"start": 5918.06,
"end": 5922.48,
"probability": 0.9701
},
{
"start": 5924.16,
"end": 5927.2,
"probability": 0.7435
},
{
"start": 5928.06,
"end": 5928.49,
"probability": 0.5805
},
{
"start": 5928.78,
"end": 5932.26,
"probability": 0.954
},
{
"start": 5932.36,
"end": 5933.14,
"probability": 0.7093
},
{
"start": 5933.46,
"end": 5934.88,
"probability": 0.7995
},
{
"start": 5935.44,
"end": 5938.16,
"probability": 0.9577
},
{
"start": 5938.8,
"end": 5939.37,
"probability": 0.8426
},
{
"start": 5941.45,
"end": 5943.12,
"probability": 0.7423
},
{
"start": 5943.86,
"end": 5946.24,
"probability": 0.9545
},
{
"start": 5946.24,
"end": 5950.34,
"probability": 0.9806
},
{
"start": 5950.42,
"end": 5950.58,
"probability": 0.6184
},
{
"start": 5950.66,
"end": 5953.44,
"probability": 0.9745
},
{
"start": 5953.71,
"end": 5956.64,
"probability": 0.8726
},
{
"start": 5957.4,
"end": 5957.8,
"probability": 0.5266
},
{
"start": 5957.88,
"end": 5960.02,
"probability": 0.5231
},
{
"start": 5960.06,
"end": 5961.2,
"probability": 0.848
},
{
"start": 5961.62,
"end": 5965.56,
"probability": 0.8177
},
{
"start": 5966.48,
"end": 5966.7,
"probability": 0.9011
},
{
"start": 5967.52,
"end": 5969.84,
"probability": 0.9984
},
{
"start": 5969.98,
"end": 5972.9,
"probability": 0.7733
},
{
"start": 5973.02,
"end": 5975.12,
"probability": 0.9929
},
{
"start": 5975.12,
"end": 5976.88,
"probability": 0.9919
},
{
"start": 5976.88,
"end": 5979.64,
"probability": 0.9316
},
{
"start": 5980.71,
"end": 5981.77,
"probability": 0.0588
},
{
"start": 5981.98,
"end": 5984.72,
"probability": 0.9434
},
{
"start": 5985.7,
"end": 5990.44,
"probability": 0.9689
},
{
"start": 5991.12,
"end": 5994.3,
"probability": 0.9917
},
{
"start": 5994.46,
"end": 5995.02,
"probability": 0.87
},
{
"start": 5995.76,
"end": 5996.0,
"probability": 0.6038
},
{
"start": 5996.78,
"end": 5997.6,
"probability": 0.9405
},
{
"start": 5997.68,
"end": 5999.26,
"probability": 0.9961
},
{
"start": 5999.56,
"end": 5999.7,
"probability": 0.4054
},
{
"start": 5999.7,
"end": 6001.78,
"probability": 0.5075
},
{
"start": 6001.84,
"end": 6002.88,
"probability": 0.626
},
{
"start": 6002.98,
"end": 6004.96,
"probability": 0.7552
},
{
"start": 6005.12,
"end": 6007.24,
"probability": 0.97
},
{
"start": 6007.8,
"end": 6009.38,
"probability": 0.9902
},
{
"start": 6009.72,
"end": 6011.16,
"probability": 0.9946
},
{
"start": 6011.74,
"end": 6015.37,
"probability": 0.764
},
{
"start": 6015.68,
"end": 6019.74,
"probability": 0.8407
},
{
"start": 6020.1,
"end": 6026.32,
"probability": 0.9692
},
{
"start": 6026.32,
"end": 6026.4,
"probability": 0.0663
},
{
"start": 6026.4,
"end": 6029.78,
"probability": 0.8729
},
{
"start": 6029.84,
"end": 6032.46,
"probability": 0.5444
},
{
"start": 6032.98,
"end": 6034.0,
"probability": 0.6512
},
{
"start": 6035.5,
"end": 6038.08,
"probability": 0.4195
},
{
"start": 6038.7,
"end": 6040.78,
"probability": 0.8903
},
{
"start": 6041.26,
"end": 6043.62,
"probability": 0.9448
},
{
"start": 6044.16,
"end": 6046.62,
"probability": 0.977
},
{
"start": 6047.22,
"end": 6047.77,
"probability": 0.7468
},
{
"start": 6048.34,
"end": 6050.09,
"probability": 0.8214
},
{
"start": 6050.36,
"end": 6052.2,
"probability": 0.7112
},
{
"start": 6052.32,
"end": 6055.3,
"probability": 0.8517
},
{
"start": 6055.92,
"end": 6057.92,
"probability": 0.9883
},
{
"start": 6059.58,
"end": 6061.74,
"probability": 0.9617
},
{
"start": 6061.84,
"end": 6064.06,
"probability": 0.9968
},
{
"start": 6064.26,
"end": 6067.36,
"probability": 0.9937
},
{
"start": 6067.72,
"end": 6068.24,
"probability": 0.7619
},
{
"start": 6068.6,
"end": 6070.96,
"probability": 0.9897
},
{
"start": 6071.04,
"end": 6071.38,
"probability": 0.9238
},
{
"start": 6071.7,
"end": 6072.64,
"probability": 0.9736
},
{
"start": 6073.49,
"end": 6075.8,
"probability": 0.775
},
{
"start": 6076.55,
"end": 6078.5,
"probability": 0.9844
},
{
"start": 6078.54,
"end": 6079.32,
"probability": 0.8952
},
{
"start": 6080.09,
"end": 6081.24,
"probability": 0.8153
},
{
"start": 6081.84,
"end": 6083.54,
"probability": 0.8881
},
{
"start": 6083.72,
"end": 6084.58,
"probability": 0.5083
},
{
"start": 6084.6,
"end": 6086.24,
"probability": 0.7573
},
{
"start": 6087.0,
"end": 6088.84,
"probability": 0.9049
},
{
"start": 6089.8,
"end": 6092.52,
"probability": 0.9701
},
{
"start": 6092.52,
"end": 6098.78,
"probability": 0.9811
},
{
"start": 6098.88,
"end": 6099.58,
"probability": 0.5851
},
{
"start": 6100.16,
"end": 6105.32,
"probability": 0.9644
},
{
"start": 6105.42,
"end": 6107.7,
"probability": 0.9575
},
{
"start": 6107.78,
"end": 6108.72,
"probability": 0.9935
},
{
"start": 6109.14,
"end": 6110.52,
"probability": 0.4235
},
{
"start": 6110.52,
"end": 6111.35,
"probability": 0.632
},
{
"start": 6111.56,
"end": 6114.8,
"probability": 0.8721
},
{
"start": 6115.66,
"end": 6118.42,
"probability": 0.761
},
{
"start": 6119.42,
"end": 6120.2,
"probability": 0.7272
},
{
"start": 6120.38,
"end": 6123.6,
"probability": 0.7815
},
{
"start": 6123.68,
"end": 6126.07,
"probability": 0.5898
},
{
"start": 6126.6,
"end": 6127.96,
"probability": 0.5534
},
{
"start": 6129.21,
"end": 6134.1,
"probability": 0.9755
},
{
"start": 6134.42,
"end": 6135.2,
"probability": 0.7759
},
{
"start": 6135.34,
"end": 6135.94,
"probability": 0.3236
},
{
"start": 6135.94,
"end": 6138.48,
"probability": 0.9971
},
{
"start": 6138.92,
"end": 6140.32,
"probability": 0.9949
},
{
"start": 6141.2,
"end": 6144.38,
"probability": 0.9565
},
{
"start": 6144.44,
"end": 6146.82,
"probability": 0.9939
},
{
"start": 6147.02,
"end": 6148.18,
"probability": 0.9283
},
{
"start": 6148.22,
"end": 6149.58,
"probability": 0.9371
},
{
"start": 6149.99,
"end": 6150.6,
"probability": 0.8704
},
{
"start": 6151.2,
"end": 6152.8,
"probability": 0.9777
},
{
"start": 6153.44,
"end": 6155.66,
"probability": 0.941
},
{
"start": 6155.94,
"end": 6156.24,
"probability": 0.7589
},
{
"start": 6156.7,
"end": 6159.24,
"probability": 0.9176
},
{
"start": 6161.06,
"end": 6161.24,
"probability": 0.9141
},
{
"start": 6161.34,
"end": 6162.88,
"probability": 0.7537
},
{
"start": 6163.0,
"end": 6166.78,
"probability": 0.6625
},
{
"start": 6167.84,
"end": 6172.52,
"probability": 0.2619
},
{
"start": 6172.52,
"end": 6176.24,
"probability": 0.7403
},
{
"start": 6176.86,
"end": 6180.26,
"probability": 0.8536
},
{
"start": 6180.44,
"end": 6182.36,
"probability": 0.9907
},
{
"start": 6183.14,
"end": 6184.94,
"probability": 0.7229
},
{
"start": 6185.38,
"end": 6186.84,
"probability": 0.4674
},
{
"start": 6189.44,
"end": 6190.78,
"probability": 0.6795
},
{
"start": 6191.58,
"end": 6194.86,
"probability": 0.97
},
{
"start": 6194.96,
"end": 6195.9,
"probability": 0.8302
},
{
"start": 6197.49,
"end": 6199.0,
"probability": 0.7472
},
{
"start": 6199.94,
"end": 6200.44,
"probability": 0.6259
},
{
"start": 6200.86,
"end": 6201.22,
"probability": 0.4248
},
{
"start": 6203.54,
"end": 6204.36,
"probability": 0.952
},
{
"start": 6204.92,
"end": 6205.82,
"probability": 0.9097
},
{
"start": 6206.28,
"end": 6208.44,
"probability": 0.9517
},
{
"start": 6210.24,
"end": 6211.44,
"probability": 0.9854
},
{
"start": 6211.66,
"end": 6212.71,
"probability": 0.6805
},
{
"start": 6212.94,
"end": 6213.5,
"probability": 0.9661
},
{
"start": 6213.62,
"end": 6214.4,
"probability": 0.9105
},
{
"start": 6214.62,
"end": 6214.9,
"probability": 0.7541
},
{
"start": 6215.06,
"end": 6216.68,
"probability": 0.9521
},
{
"start": 6218.68,
"end": 6221.12,
"probability": 0.976
},
{
"start": 6222.06,
"end": 6224.26,
"probability": 0.8196
},
{
"start": 6225.12,
"end": 6225.68,
"probability": 0.681
},
{
"start": 6226.84,
"end": 6228.79,
"probability": 0.9937
},
{
"start": 6230.4,
"end": 6232.2,
"probability": 0.876
},
{
"start": 6232.3,
"end": 6235.6,
"probability": 0.9249
},
{
"start": 6236.62,
"end": 6237.5,
"probability": 0.9829
},
{
"start": 6238.48,
"end": 6241.94,
"probability": 0.9759
},
{
"start": 6242.18,
"end": 6248.68,
"probability": 0.9935
},
{
"start": 6250.72,
"end": 6252.3,
"probability": 0.6724
},
{
"start": 6252.46,
"end": 6259.48,
"probability": 0.9875
},
{
"start": 6260.3,
"end": 6260.82,
"probability": 0.3797
},
{
"start": 6261.78,
"end": 6267.96,
"probability": 0.8638
},
{
"start": 6268.48,
"end": 6269.24,
"probability": 0.7233
},
{
"start": 6269.76,
"end": 6270.7,
"probability": 0.3062
},
{
"start": 6271.04,
"end": 6274.32,
"probability": 0.6703
},
{
"start": 6275.1,
"end": 6280.38,
"probability": 0.9756
},
{
"start": 6280.9,
"end": 6282.35,
"probability": 0.789
},
{
"start": 6283.52,
"end": 6288.22,
"probability": 0.9817
},
{
"start": 6288.22,
"end": 6295.44,
"probability": 0.936
},
{
"start": 6295.58,
"end": 6297.14,
"probability": 0.9833
},
{
"start": 6297.28,
"end": 6297.86,
"probability": 0.8698
},
{
"start": 6297.96,
"end": 6298.66,
"probability": 0.8635
},
{
"start": 6299.44,
"end": 6300.3,
"probability": 0.8883
},
{
"start": 6300.44,
"end": 6301.98,
"probability": 0.8677
},
{
"start": 6302.12,
"end": 6307.42,
"probability": 0.8331
},
{
"start": 6307.88,
"end": 6312.52,
"probability": 0.9454
},
{
"start": 6312.58,
"end": 6313.2,
"probability": 0.894
},
{
"start": 6313.92,
"end": 6316.12,
"probability": 0.9415
},
{
"start": 6316.5,
"end": 6316.64,
"probability": 0.0244
},
{
"start": 6316.8,
"end": 6316.96,
"probability": 0.6901
},
{
"start": 6317.16,
"end": 6319.7,
"probability": 0.5992
},
{
"start": 6319.7,
"end": 6321.46,
"probability": 0.9489
},
{
"start": 6321.48,
"end": 6323.92,
"probability": 0.944
},
{
"start": 6323.92,
"end": 6325.9,
"probability": 0.9904
},
{
"start": 6326.0,
"end": 6328.16,
"probability": 0.932
},
{
"start": 6328.28,
"end": 6331.98,
"probability": 0.9506
},
{
"start": 6332.5,
"end": 6333.66,
"probability": 0.9977
},
{
"start": 6333.76,
"end": 6334.28,
"probability": 0.8101
},
{
"start": 6334.36,
"end": 6335.44,
"probability": 0.9211
},
{
"start": 6335.72,
"end": 6336.22,
"probability": 0.6875
},
{
"start": 6336.26,
"end": 6340.58,
"probability": 0.8657
},
{
"start": 6340.66,
"end": 6343.78,
"probability": 0.9536
},
{
"start": 6343.84,
"end": 6345.1,
"probability": 0.7767
},
{
"start": 6345.36,
"end": 6346.72,
"probability": 0.9189
},
{
"start": 6347.7,
"end": 6349.0,
"probability": 0.8724
},
{
"start": 6349.8,
"end": 6351.94,
"probability": 0.7904
},
{
"start": 6352.08,
"end": 6356.0,
"probability": 0.9587
},
{
"start": 6356.62,
"end": 6359.64,
"probability": 0.9875
},
{
"start": 6360.18,
"end": 6361.48,
"probability": 0.9476
},
{
"start": 6362.12,
"end": 6362.51,
"probability": 0.0282
},
{
"start": 6363.4,
"end": 6365.1,
"probability": 0.8406
},
{
"start": 6366.02,
"end": 6370.76,
"probability": 0.7223
},
{
"start": 6370.8,
"end": 6371.55,
"probability": 0.7264
},
{
"start": 6372.06,
"end": 6373.34,
"probability": 0.9498
},
{
"start": 6373.7,
"end": 6374.92,
"probability": 0.7582
},
{
"start": 6375.38,
"end": 6376.5,
"probability": 0.9887
},
{
"start": 6377.46,
"end": 6377.66,
"probability": 0.685
},
{
"start": 6378.52,
"end": 6379.74,
"probability": 0.9047
},
{
"start": 6381.12,
"end": 6383.36,
"probability": 0.6778
},
{
"start": 6383.36,
"end": 6384.06,
"probability": 0.8325
},
{
"start": 6385.7,
"end": 6392.52,
"probability": 0.4307
},
{
"start": 6392.54,
"end": 6393.02,
"probability": 0.3825
},
{
"start": 6393.04,
"end": 6396.82,
"probability": 0.9164
},
{
"start": 6397.56,
"end": 6399.7,
"probability": 0.7285
},
{
"start": 6399.86,
"end": 6401.58,
"probability": 0.5667
},
{
"start": 6402.9,
"end": 6403.08,
"probability": 0.5196
},
{
"start": 6403.2,
"end": 6405.8,
"probability": 0.8809
},
{
"start": 6405.88,
"end": 6406.34,
"probability": 0.9276
},
{
"start": 6406.92,
"end": 6407.92,
"probability": 0.8038
},
{
"start": 6408.06,
"end": 6408.32,
"probability": 0.6848
},
{
"start": 6408.56,
"end": 6409.32,
"probability": 0.7915
},
{
"start": 6409.42,
"end": 6411.86,
"probability": 0.9071
},
{
"start": 6411.88,
"end": 6412.3,
"probability": 0.6934
},
{
"start": 6412.46,
"end": 6414.44,
"probability": 0.8989
},
{
"start": 6414.52,
"end": 6416.2,
"probability": 0.9336
},
{
"start": 6416.44,
"end": 6416.93,
"probability": 0.9357
},
{
"start": 6418.04,
"end": 6419.43,
"probability": 0.4929
},
{
"start": 6420.12,
"end": 6421.8,
"probability": 0.9161
},
{
"start": 6421.88,
"end": 6422.88,
"probability": 0.9888
},
{
"start": 6422.96,
"end": 6424.0,
"probability": 0.9924
},
{
"start": 6425.06,
"end": 6427.46,
"probability": 0.9863
},
{
"start": 6427.46,
"end": 6430.42,
"probability": 0.7545
},
{
"start": 6430.96,
"end": 6433.22,
"probability": 0.9578
},
{
"start": 6433.32,
"end": 6438.06,
"probability": 0.9736
},
{
"start": 6438.88,
"end": 6441.58,
"probability": 0.9429
},
{
"start": 6442.26,
"end": 6446.99,
"probability": 0.9653
},
{
"start": 6447.12,
"end": 6448.6,
"probability": 0.572
},
{
"start": 6448.84,
"end": 6448.96,
"probability": 0.5129
},
{
"start": 6452.38,
"end": 6456.14,
"probability": 0.9087
},
{
"start": 6456.54,
"end": 6459.74,
"probability": 0.4169
},
{
"start": 6459.8,
"end": 6461.36,
"probability": 0.8685
},
{
"start": 6462.02,
"end": 6463.96,
"probability": 0.9356
},
{
"start": 6464.62,
"end": 6465.77,
"probability": 0.7676
},
{
"start": 6466.32,
"end": 6470.44,
"probability": 0.5038
},
{
"start": 6470.72,
"end": 6474.0,
"probability": 0.8934
},
{
"start": 6474.3,
"end": 6476.04,
"probability": 0.758
},
{
"start": 6477.16,
"end": 6481.42,
"probability": 0.9589
},
{
"start": 6482.36,
"end": 6483.8,
"probability": 0.7272
},
{
"start": 6484.32,
"end": 6486.76,
"probability": 0.7584
},
{
"start": 6487.08,
"end": 6489.74,
"probability": 0.8949
},
{
"start": 6489.82,
"end": 6491.46,
"probability": 0.6935
},
{
"start": 6492.08,
"end": 6492.48,
"probability": 0.6506
},
{
"start": 6492.6,
"end": 6498.12,
"probability": 0.6494
},
{
"start": 6498.12,
"end": 6500.2,
"probability": 0.2195
},
{
"start": 6501.61,
"end": 6503.22,
"probability": 0.6044
},
{
"start": 6504.02,
"end": 6507.88,
"probability": 0.8813
},
{
"start": 6508.48,
"end": 6510.7,
"probability": 0.9702
},
{
"start": 6511.82,
"end": 6516.58,
"probability": 0.9455
},
{
"start": 6517.36,
"end": 6519.2,
"probability": 0.3946
},
{
"start": 6519.2,
"end": 6522.8,
"probability": 0.9517
},
{
"start": 6523.42,
"end": 6524.54,
"probability": 0.9658
},
{
"start": 6524.64,
"end": 6527.4,
"probability": 0.9121
},
{
"start": 6527.48,
"end": 6527.98,
"probability": 0.96
},
{
"start": 6528.58,
"end": 6529.91,
"probability": 0.7739
},
{
"start": 6530.46,
"end": 6537.88,
"probability": 0.9825
},
{
"start": 6539.1,
"end": 6540.28,
"probability": 0.9768
},
{
"start": 6540.3,
"end": 6542.5,
"probability": 0.9866
},
{
"start": 6543.43,
"end": 6544.42,
"probability": 0.8667
},
{
"start": 6544.5,
"end": 6545.43,
"probability": 0.9817
},
{
"start": 6545.62,
"end": 6550.58,
"probability": 0.971
},
{
"start": 6550.86,
"end": 6552.0,
"probability": 0.8725
},
{
"start": 6552.2,
"end": 6552.64,
"probability": 0.4403
},
{
"start": 6553.36,
"end": 6556.38,
"probability": 0.9718
},
{
"start": 6556.58,
"end": 6557.66,
"probability": 0.9917
},
{
"start": 6557.74,
"end": 6558.5,
"probability": 0.9736
},
{
"start": 6558.88,
"end": 6559.08,
"probability": 0.8124
},
{
"start": 6559.9,
"end": 6560.48,
"probability": 0.734
},
{
"start": 6560.78,
"end": 6563.02,
"probability": 0.5348
},
{
"start": 6563.82,
"end": 6564.34,
"probability": 0.8906
},
{
"start": 6564.5,
"end": 6567.34,
"probability": 0.8022
},
{
"start": 6567.94,
"end": 6570.0,
"probability": 0.6199
},
{
"start": 6570.22,
"end": 6571.22,
"probability": 0.7199
},
{
"start": 6571.3,
"end": 6572.32,
"probability": 0.8586
},
{
"start": 6572.44,
"end": 6573.06,
"probability": 0.2284
},
{
"start": 6573.5,
"end": 6576.82,
"probability": 0.8706
},
{
"start": 6577.2,
"end": 6579.48,
"probability": 0.8973
},
{
"start": 6579.8,
"end": 6579.9,
"probability": 0.7011
},
{
"start": 6582.66,
"end": 6586.82,
"probability": 0.8952
},
{
"start": 6587.42,
"end": 6587.84,
"probability": 0.3676
},
{
"start": 6588.42,
"end": 6590.38,
"probability": 0.676
},
{
"start": 6590.92,
"end": 6594.7,
"probability": 0.9726
},
{
"start": 6595.22,
"end": 6596.22,
"probability": 0.7809
},
{
"start": 6596.34,
"end": 6598.0,
"probability": 0.5411
},
{
"start": 6601.75,
"end": 6603.08,
"probability": 0.7601
},
{
"start": 6603.16,
"end": 6604.28,
"probability": 0.9819
},
{
"start": 6604.38,
"end": 6604.64,
"probability": 0.3823
},
{
"start": 6604.64,
"end": 6608.92,
"probability": 0.8701
},
{
"start": 6608.92,
"end": 6611.56,
"probability": 0.9931
},
{
"start": 6613.6,
"end": 6614.4,
"probability": 0.721
},
{
"start": 6616.0,
"end": 6616.94,
"probability": 0.7388
},
{
"start": 6617.62,
"end": 6618.06,
"probability": 0.5192
},
{
"start": 6618.16,
"end": 6618.24,
"probability": 0.2006
},
{
"start": 6618.24,
"end": 6618.91,
"probability": 0.563
},
{
"start": 6619.06,
"end": 6621.3,
"probability": 0.9448
},
{
"start": 6621.78,
"end": 6623.22,
"probability": 0.7585
},
{
"start": 6623.34,
"end": 6625.34,
"probability": 0.8955
},
{
"start": 6626.19,
"end": 6627.02,
"probability": 0.6902
},
{
"start": 6628.26,
"end": 6630.18,
"probability": 0.8477
},
{
"start": 6630.7,
"end": 6632.02,
"probability": 0.2323
},
{
"start": 6632.02,
"end": 6633.3,
"probability": 0.8633
},
{
"start": 6633.82,
"end": 6635.73,
"probability": 0.4906
},
{
"start": 6635.96,
"end": 6636.64,
"probability": 0.8999
},
{
"start": 6636.7,
"end": 6637.08,
"probability": 0.7113
},
{
"start": 6637.28,
"end": 6639.28,
"probability": 0.7227
},
{
"start": 6639.44,
"end": 6640.12,
"probability": 0.2601
},
{
"start": 6640.5,
"end": 6644.76,
"probability": 0.9539
},
{
"start": 6644.94,
"end": 6645.44,
"probability": 0.4609
},
{
"start": 6645.56,
"end": 6647.11,
"probability": 0.7664
},
{
"start": 6647.6,
"end": 6647.6,
"probability": 0.1593
},
{
"start": 6648.24,
"end": 6651.7,
"probability": 0.9951
},
{
"start": 6652.28,
"end": 6654.13,
"probability": 0.7569
},
{
"start": 6654.48,
"end": 6656.96,
"probability": 0.9226
},
{
"start": 6657.4,
"end": 6657.5,
"probability": 0.5481
},
{
"start": 6658.6,
"end": 6658.96,
"probability": 0.4239
},
{
"start": 6659.06,
"end": 6659.28,
"probability": 0.6338
},
{
"start": 6661.92,
"end": 6667.26,
"probability": 0.9219
},
{
"start": 6667.28,
"end": 6668.56,
"probability": 0.9605
},
{
"start": 6671.68,
"end": 6674.73,
"probability": 0.5959
},
{
"start": 6675.3,
"end": 6676.38,
"probability": 0.9519
},
{
"start": 6677.34,
"end": 6680.4,
"probability": 0.9003
},
{
"start": 6680.88,
"end": 6682.26,
"probability": 0.6729
},
{
"start": 6682.4,
"end": 6683.78,
"probability": 0.7276
},
{
"start": 6683.88,
"end": 6685.5,
"probability": 0.9675
},
{
"start": 6685.86,
"end": 6687.34,
"probability": 0.9332
},
{
"start": 6687.98,
"end": 6691.98,
"probability": 0.6418
},
{
"start": 6692.5,
"end": 6695.16,
"probability": 0.6927
},
{
"start": 6696.06,
"end": 6698.1,
"probability": 0.8325
},
{
"start": 6698.8,
"end": 6701.62,
"probability": 0.9925
},
{
"start": 6701.68,
"end": 6702.92,
"probability": 0.6515
},
{
"start": 6703.24,
"end": 6705.24,
"probability": 0.5638
},
{
"start": 6705.64,
"end": 6707.36,
"probability": 0.9875
},
{
"start": 6707.56,
"end": 6707.8,
"probability": 0.9006
},
{
"start": 6709.44,
"end": 6710.94,
"probability": 0.7941
},
{
"start": 6714.38,
"end": 6715.24,
"probability": 0.3417
},
{
"start": 6715.58,
"end": 6717.0,
"probability": 0.9422
},
{
"start": 6717.08,
"end": 6717.82,
"probability": 0.81
},
{
"start": 6718.08,
"end": 6719.58,
"probability": 0.35
},
{
"start": 6720.58,
"end": 6723.8,
"probability": 0.7383
},
{
"start": 6724.44,
"end": 6724.58,
"probability": 0.0006
}
],
"segments_count": 2458,
"words_count": 12343,
"avg_words_per_segment": 5.0216,
"avg_segment_duration": 1.9612,
"avg_words_per_minute": 108.0646,
"plenum_id": "103250",
"duration": 6853.12,
"title": null,
"plenum_date": "2021-12-28"
}