diff --git "a/101690/metadata.json" "b/101690/metadata.json" new file mode 100644--- /dev/null +++ "b/101690/metadata.json" @@ -0,0 +1,47657 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "101690", + "quality_score": 0.8972, + "per_segment_quality_scores": [ + { + "start": 222.68, + "end": 225.22, + "probability": 0.6512 + }, + { + "start": 226.26, + "end": 229.6, + "probability": 0.6253 + }, + { + "start": 231.92, + "end": 233.08, + "probability": 0.9772 + }, + { + "start": 234.8, + "end": 236.0, + "probability": 0.6697 + }, + { + "start": 237.76, + "end": 238.58, + "probability": 0.6668 + }, + { + "start": 238.58, + "end": 239.94, + "probability": 0.8172 + }, + { + "start": 241.24, + "end": 244.21, + "probability": 0.6219 + }, + { + "start": 245.64, + "end": 248.64, + "probability": 0.0203 + }, + { + "start": 257.82, + "end": 259.12, + "probability": 0.142 + }, + { + "start": 261.2, + "end": 265.24, + "probability": 0.3258 + }, + { + "start": 265.32, + "end": 270.94, + "probability": 0.3858 + }, + { + "start": 272.4, + "end": 274.89, + "probability": 0.8727 + }, + { + "start": 275.7, + "end": 281.36, + "probability": 0.66 + }, + { + "start": 281.68, + "end": 282.44, + "probability": 0.1761 + }, + { + "start": 282.98, + "end": 283.88, + "probability": 0.18 + }, + { + "start": 284.14, + "end": 285.78, + "probability": 0.4452 + }, + { + "start": 286.7, + "end": 288.06, + "probability": 0.3727 + }, + { + "start": 288.06, + "end": 288.5, + "probability": 0.376 + }, + { + "start": 288.5, + "end": 288.94, + "probability": 0.3551 + }, + { + "start": 291.44, + "end": 293.29, + "probability": 0.9954 + }, + { + "start": 293.86, + "end": 296.88, + "probability": 0.6664 + }, + { + "start": 298.44, + "end": 298.72, + "probability": 0.6523 + }, + { + "start": 298.86, + "end": 302.7, + "probability": 0.8282 + }, + { + "start": 303.16, + "end": 306.44, + "probability": 0.9102 + }, + { + "start": 306.52, + "end": 308.36, + "probability": 0.9893 + }, + { + "start": 308.42, + "end": 310.44, + "probability": 0.7696 + }, + { + "start": 311.02, + "end": 311.62, + "probability": 0.4062 + }, + { + "start": 313.46, + "end": 318.64, + "probability": 0.9611 + }, + { + "start": 319.46, + "end": 320.9, + "probability": 0.2065 + }, + { + "start": 321.22, + "end": 323.7, + "probability": 0.5651 + }, + { + "start": 323.84, + "end": 328.24, + "probability": 0.9977 + }, + { + "start": 328.72, + "end": 331.42, + "probability": 0.9701 + }, + { + "start": 331.82, + "end": 333.66, + "probability": 0.896 + }, + { + "start": 334.14, + "end": 336.86, + "probability": 0.8054 + }, + { + "start": 337.16, + "end": 340.66, + "probability": 0.6626 + }, + { + "start": 341.4, + "end": 342.52, + "probability": 0.4761 + }, + { + "start": 344.4, + "end": 346.22, + "probability": 0.7952 + }, + { + "start": 346.46, + "end": 346.8, + "probability": 0.5259 + }, + { + "start": 347.46, + "end": 347.68, + "probability": 0.6467 + }, + { + "start": 348.26, + "end": 348.46, + "probability": 0.5994 + }, + { + "start": 348.62, + "end": 349.22, + "probability": 0.7617 + }, + { + "start": 349.54, + "end": 350.42, + "probability": 0.794 + }, + { + "start": 360.02, + "end": 362.09, + "probability": 0.6588 + }, + { + "start": 362.98, + "end": 364.46, + "probability": 0.4487 + }, + { + "start": 364.58, + "end": 368.62, + "probability": 0.8986 + }, + { + "start": 369.5, + "end": 372.56, + "probability": 0.7634 + }, + { + "start": 372.62, + "end": 372.9, + "probability": 0.4686 + }, + { + "start": 375.46, + "end": 377.24, + "probability": 0.4013 + }, + { + "start": 377.26, + "end": 378.58, + "probability": 0.5078 + }, + { + "start": 380.08, + "end": 382.74, + "probability": 0.9741 + }, + { + "start": 382.74, + "end": 387.86, + "probability": 0.9749 + }, + { + "start": 388.16, + "end": 390.82, + "probability": 0.9235 + }, + { + "start": 391.46, + "end": 393.94, + "probability": 0.9825 + }, + { + "start": 394.68, + "end": 396.86, + "probability": 0.9615 + }, + { + "start": 397.54, + "end": 399.16, + "probability": 0.9278 + }, + { + "start": 399.7, + "end": 403.04, + "probability": 0.9673 + }, + { + "start": 403.8, + "end": 404.48, + "probability": 0.7521 + }, + { + "start": 405.12, + "end": 408.32, + "probability": 0.9791 + }, + { + "start": 410.94, + "end": 414.12, + "probability": 0.7207 + }, + { + "start": 415.5, + "end": 417.69, + "probability": 0.79 + }, + { + "start": 419.5, + "end": 420.08, + "probability": 0.7571 + }, + { + "start": 420.22, + "end": 421.7, + "probability": 0.9558 + }, + { + "start": 421.8, + "end": 424.0, + "probability": 0.7772 + }, + { + "start": 424.9, + "end": 425.62, + "probability": 0.9621 + }, + { + "start": 426.73, + "end": 428.16, + "probability": 0.7381 + }, + { + "start": 429.28, + "end": 430.1, + "probability": 0.8733 + }, + { + "start": 430.54, + "end": 432.08, + "probability": 0.9091 + }, + { + "start": 432.24, + "end": 433.3, + "probability": 0.8089 + }, + { + "start": 433.34, + "end": 436.96, + "probability": 0.8847 + }, + { + "start": 437.0, + "end": 437.56, + "probability": 0.7533 + }, + { + "start": 438.08, + "end": 439.22, + "probability": 0.9733 + }, + { + "start": 439.82, + "end": 440.42, + "probability": 0.4964 + }, + { + "start": 441.88, + "end": 442.82, + "probability": 0.786 + }, + { + "start": 443.36, + "end": 445.94, + "probability": 0.7634 + }, + { + "start": 447.72, + "end": 450.56, + "probability": 0.4556 + }, + { + "start": 450.62, + "end": 451.64, + "probability": 0.2744 + }, + { + "start": 452.02, + "end": 452.92, + "probability": 0.754 + }, + { + "start": 453.16, + "end": 454.32, + "probability": 0.6284 + }, + { + "start": 455.04, + "end": 457.84, + "probability": 0.9624 + }, + { + "start": 458.76, + "end": 459.68, + "probability": 0.7146 + }, + { + "start": 459.72, + "end": 463.57, + "probability": 0.9705 + }, + { + "start": 465.0, + "end": 466.08, + "probability": 0.9629 + }, + { + "start": 468.74, + "end": 469.98, + "probability": 0.7632 + }, + { + "start": 470.0, + "end": 470.78, + "probability": 0.4991 + }, + { + "start": 471.48, + "end": 471.98, + "probability": 0.874 + }, + { + "start": 472.22, + "end": 475.12, + "probability": 0.8072 + }, + { + "start": 475.9, + "end": 477.26, + "probability": 0.939 + }, + { + "start": 478.34, + "end": 480.52, + "probability": 0.9728 + }, + { + "start": 481.28, + "end": 482.72, + "probability": 0.6986 + }, + { + "start": 483.42, + "end": 486.86, + "probability": 0.9899 + }, + { + "start": 488.2, + "end": 491.22, + "probability": 0.9132 + }, + { + "start": 492.08, + "end": 494.02, + "probability": 0.9815 + }, + { + "start": 494.14, + "end": 495.98, + "probability": 0.9691 + }, + { + "start": 496.74, + "end": 498.88, + "probability": 0.8315 + }, + { + "start": 499.54, + "end": 501.46, + "probability": 0.6905 + }, + { + "start": 501.58, + "end": 504.19, + "probability": 0.7939 + }, + { + "start": 505.16, + "end": 505.26, + "probability": 0.2667 + }, + { + "start": 505.38, + "end": 508.02, + "probability": 0.9914 + }, + { + "start": 508.58, + "end": 510.24, + "probability": 0.7531 + }, + { + "start": 510.8, + "end": 512.38, + "probability": 0.6987 + }, + { + "start": 512.48, + "end": 513.26, + "probability": 0.8347 + }, + { + "start": 513.42, + "end": 515.8, + "probability": 0.9535 + }, + { + "start": 515.8, + "end": 518.16, + "probability": 0.9946 + }, + { + "start": 518.54, + "end": 520.1, + "probability": 0.9958 + }, + { + "start": 520.94, + "end": 522.76, + "probability": 0.8115 + }, + { + "start": 522.92, + "end": 523.96, + "probability": 0.6403 + }, + { + "start": 524.9, + "end": 525.42, + "probability": 0.8218 + }, + { + "start": 526.04, + "end": 527.6, + "probability": 0.973 + }, + { + "start": 527.93, + "end": 530.98, + "probability": 0.7889 + }, + { + "start": 531.14, + "end": 531.61, + "probability": 0.5069 + }, + { + "start": 531.76, + "end": 536.0, + "probability": 0.4816 + }, + { + "start": 536.08, + "end": 539.66, + "probability": 0.9666 + }, + { + "start": 540.36, + "end": 543.72, + "probability": 0.6261 + }, + { + "start": 544.24, + "end": 547.04, + "probability": 0.7498 + }, + { + "start": 547.12, + "end": 547.56, + "probability": 0.7235 + }, + { + "start": 547.68, + "end": 547.74, + "probability": 0.5842 + }, + { + "start": 547.84, + "end": 548.42, + "probability": 0.7722 + }, + { + "start": 548.5, + "end": 549.32, + "probability": 0.8613 + }, + { + "start": 550.48, + "end": 552.1, + "probability": 0.709 + }, + { + "start": 552.68, + "end": 553.94, + "probability": 0.8857 + }, + { + "start": 553.96, + "end": 554.1, + "probability": 0.6639 + }, + { + "start": 554.22, + "end": 556.7, + "probability": 0.985 + }, + { + "start": 557.22, + "end": 559.4, + "probability": 0.9434 + }, + { + "start": 559.52, + "end": 560.54, + "probability": 0.5943 + }, + { + "start": 562.28, + "end": 566.1, + "probability": 0.858 + }, + { + "start": 566.66, + "end": 567.88, + "probability": 0.4417 + }, + { + "start": 568.08, + "end": 569.84, + "probability": 0.7271 + }, + { + "start": 569.9, + "end": 570.8, + "probability": 0.7228 + }, + { + "start": 571.28, + "end": 573.72, + "probability": 0.5084 + }, + { + "start": 573.8, + "end": 575.72, + "probability": 0.8716 + }, + { + "start": 576.5, + "end": 578.94, + "probability": 0.7834 + }, + { + "start": 579.14, + "end": 579.48, + "probability": 0.778 + }, + { + "start": 579.54, + "end": 580.04, + "probability": 0.7544 + }, + { + "start": 580.12, + "end": 581.8, + "probability": 0.7974 + }, + { + "start": 582.25, + "end": 584.1, + "probability": 0.987 + }, + { + "start": 584.88, + "end": 587.32, + "probability": 0.9753 + }, + { + "start": 588.6, + "end": 590.04, + "probability": 0.887 + }, + { + "start": 590.08, + "end": 592.52, + "probability": 0.9289 + }, + { + "start": 594.02, + "end": 594.42, + "probability": 0.371 + }, + { + "start": 594.89, + "end": 595.94, + "probability": 0.7022 + }, + { + "start": 596.34, + "end": 598.32, + "probability": 0.953 + }, + { + "start": 598.96, + "end": 599.94, + "probability": 0.7319 + }, + { + "start": 600.26, + "end": 602.16, + "probability": 0.9857 + }, + { + "start": 602.94, + "end": 604.32, + "probability": 0.4962 + }, + { + "start": 604.34, + "end": 604.34, + "probability": 0.1704 + }, + { + "start": 604.86, + "end": 605.76, + "probability": 0.6927 + }, + { + "start": 606.38, + "end": 607.9, + "probability": 0.8521 + }, + { + "start": 608.72, + "end": 608.88, + "probability": 0.8184 + }, + { + "start": 609.14, + "end": 610.3, + "probability": 0.9852 + }, + { + "start": 612.3, + "end": 615.98, + "probability": 0.5486 + }, + { + "start": 616.82, + "end": 618.1, + "probability": 0.0835 + }, + { + "start": 619.07, + "end": 622.34, + "probability": 0.7611 + }, + { + "start": 624.06, + "end": 625.52, + "probability": 0.7199 + }, + { + "start": 626.2, + "end": 628.49, + "probability": 0.9746 + }, + { + "start": 629.47, + "end": 635.32, + "probability": 0.96 + }, + { + "start": 635.42, + "end": 639.44, + "probability": 0.0555 + }, + { + "start": 639.5, + "end": 639.5, + "probability": 0.0797 + }, + { + "start": 639.5, + "end": 641.69, + "probability": 0.6043 + }, + { + "start": 642.78, + "end": 648.48, + "probability": 0.7534 + }, + { + "start": 649.5, + "end": 649.5, + "probability": 0.0011 + }, + { + "start": 652.54, + "end": 652.64, + "probability": 0.1077 + }, + { + "start": 652.64, + "end": 652.64, + "probability": 0.1334 + }, + { + "start": 652.64, + "end": 654.4, + "probability": 0.3013 + }, + { + "start": 655.46, + "end": 657.28, + "probability": 0.8408 + }, + { + "start": 658.06, + "end": 658.44, + "probability": 0.6666 + }, + { + "start": 659.1, + "end": 659.68, + "probability": 0.9888 + }, + { + "start": 660.3, + "end": 664.6, + "probability": 0.9805 + }, + { + "start": 664.64, + "end": 665.88, + "probability": 0.8956 + }, + { + "start": 666.34, + "end": 667.45, + "probability": 0.7921 + }, + { + "start": 667.82, + "end": 667.98, + "probability": 0.7711 + }, + { + "start": 668.6, + "end": 668.72, + "probability": 0.6314 + }, + { + "start": 668.8, + "end": 669.68, + "probability": 0.6547 + }, + { + "start": 669.82, + "end": 672.44, + "probability": 0.9648 + }, + { + "start": 672.52, + "end": 675.56, + "probability": 0.9969 + }, + { + "start": 675.9, + "end": 677.7, + "probability": 0.9069 + }, + { + "start": 677.74, + "end": 678.64, + "probability": 0.8474 + }, + { + "start": 679.22, + "end": 680.61, + "probability": 0.652 + }, + { + "start": 681.36, + "end": 682.56, + "probability": 0.9495 + }, + { + "start": 683.68, + "end": 684.34, + "probability": 0.8879 + }, + { + "start": 684.58, + "end": 687.22, + "probability": 0.0208 + }, + { + "start": 687.22, + "end": 688.22, + "probability": 0.3603 + }, + { + "start": 688.26, + "end": 689.44, + "probability": 0.7812 + }, + { + "start": 689.52, + "end": 690.94, + "probability": 0.9969 + }, + { + "start": 691.5, + "end": 692.82, + "probability": 0.7607 + }, + { + "start": 693.0, + "end": 694.6, + "probability": 0.9906 + }, + { + "start": 695.5, + "end": 695.6, + "probability": 0.3354 + }, + { + "start": 696.66, + "end": 699.26, + "probability": 0.9907 + }, + { + "start": 699.64, + "end": 701.38, + "probability": 0.6017 + }, + { + "start": 702.1, + "end": 703.02, + "probability": 0.9658 + }, + { + "start": 704.04, + "end": 704.52, + "probability": 0.6777 + }, + { + "start": 704.76, + "end": 706.6, + "probability": 0.5691 + }, + { + "start": 709.66, + "end": 711.1, + "probability": 0.7242 + }, + { + "start": 711.36, + "end": 713.48, + "probability": 0.5195 + }, + { + "start": 714.38, + "end": 715.68, + "probability": 0.0011 + }, + { + "start": 721.58, + "end": 722.44, + "probability": 0.0993 + }, + { + "start": 724.62, + "end": 725.78, + "probability": 0.6214 + }, + { + "start": 725.94, + "end": 726.76, + "probability": 0.4695 + }, + { + "start": 727.06, + "end": 728.76, + "probability": 0.8292 + }, + { + "start": 728.96, + "end": 733.12, + "probability": 0.9863 + }, + { + "start": 733.12, + "end": 736.9, + "probability": 0.9845 + }, + { + "start": 737.34, + "end": 740.94, + "probability": 0.9739 + }, + { + "start": 741.0, + "end": 741.56, + "probability": 0.8165 + }, + { + "start": 742.84, + "end": 743.82, + "probability": 0.9883 + }, + { + "start": 746.48, + "end": 747.24, + "probability": 0.4429 + }, + { + "start": 748.1, + "end": 751.12, + "probability": 0.9526 + }, + { + "start": 752.32, + "end": 760.72, + "probability": 0.9835 + }, + { + "start": 760.92, + "end": 761.9, + "probability": 0.9915 + }, + { + "start": 763.18, + "end": 763.64, + "probability": 0.3099 + }, + { + "start": 764.96, + "end": 767.92, + "probability": 0.999 + }, + { + "start": 768.96, + "end": 771.44, + "probability": 0.997 + }, + { + "start": 771.82, + "end": 773.28, + "probability": 0.602 + }, + { + "start": 773.28, + "end": 773.64, + "probability": 0.5121 + }, + { + "start": 774.86, + "end": 775.42, + "probability": 0.5848 + }, + { + "start": 776.62, + "end": 780.53, + "probability": 0.8633 + }, + { + "start": 782.2, + "end": 784.1, + "probability": 0.928 + }, + { + "start": 785.04, + "end": 786.92, + "probability": 0.9064 + }, + { + "start": 787.92, + "end": 788.2, + "probability": 0.5584 + }, + { + "start": 790.08, + "end": 796.02, + "probability": 0.9051 + }, + { + "start": 797.54, + "end": 800.22, + "probability": 0.8981 + }, + { + "start": 801.56, + "end": 802.2, + "probability": 0.5527 + }, + { + "start": 802.3, + "end": 802.86, + "probability": 0.3932 + }, + { + "start": 803.02, + "end": 806.4, + "probability": 0.7947 + }, + { + "start": 807.1, + "end": 809.04, + "probability": 0.9191 + }, + { + "start": 810.24, + "end": 814.36, + "probability": 0.6693 + }, + { + "start": 814.94, + "end": 815.88, + "probability": 0.9098 + }, + { + "start": 816.72, + "end": 817.52, + "probability": 0.9659 + }, + { + "start": 818.74, + "end": 820.52, + "probability": 0.9338 + }, + { + "start": 821.14, + "end": 823.6, + "probability": 0.9178 + }, + { + "start": 824.8, + "end": 827.96, + "probability": 0.9532 + }, + { + "start": 828.18, + "end": 830.34, + "probability": 0.6643 + }, + { + "start": 831.66, + "end": 834.75, + "probability": 0.6608 + }, + { + "start": 835.12, + "end": 839.32, + "probability": 0.8624 + }, + { + "start": 839.98, + "end": 841.38, + "probability": 0.9944 + }, + { + "start": 841.52, + "end": 841.98, + "probability": 0.7158 + }, + { + "start": 842.24, + "end": 843.2, + "probability": 0.7777 + }, + { + "start": 843.54, + "end": 847.48, + "probability": 0.8541 + }, + { + "start": 849.04, + "end": 850.48, + "probability": 0.9301 + }, + { + "start": 852.4, + "end": 852.52, + "probability": 0.938 + }, + { + "start": 852.56, + "end": 855.14, + "probability": 0.5588 + }, + { + "start": 855.4, + "end": 857.0, + "probability": 0.6592 + }, + { + "start": 857.56, + "end": 859.66, + "probability": 0.9976 + }, + { + "start": 860.12, + "end": 862.27, + "probability": 0.9966 + }, + { + "start": 862.82, + "end": 863.36, + "probability": 0.7704 + }, + { + "start": 864.08, + "end": 865.1, + "probability": 0.9849 + }, + { + "start": 865.92, + "end": 867.34, + "probability": 0.9017 + }, + { + "start": 867.42, + "end": 868.66, + "probability": 0.9237 + }, + { + "start": 869.8, + "end": 870.88, + "probability": 0.9966 + }, + { + "start": 871.0, + "end": 873.46, + "probability": 0.7664 + }, + { + "start": 874.9, + "end": 875.74, + "probability": 0.9036 + }, + { + "start": 877.1, + "end": 878.02, + "probability": 0.9437 + }, + { + "start": 878.02, + "end": 878.86, + "probability": 0.7574 + }, + { + "start": 878.94, + "end": 880.11, + "probability": 0.9702 + }, + { + "start": 880.92, + "end": 882.47, + "probability": 0.9424 + }, + { + "start": 882.62, + "end": 886.44, + "probability": 0.9717 + }, + { + "start": 887.28, + "end": 887.86, + "probability": 0.6089 + }, + { + "start": 888.1, + "end": 890.15, + "probability": 0.992 + }, + { + "start": 891.04, + "end": 894.86, + "probability": 0.8722 + }, + { + "start": 896.5, + "end": 897.32, + "probability": 0.2785 + }, + { + "start": 897.6, + "end": 898.46, + "probability": 0.603 + }, + { + "start": 899.16, + "end": 901.6, + "probability": 0.9971 + }, + { + "start": 902.56, + "end": 904.12, + "probability": 0.5185 + }, + { + "start": 904.22, + "end": 905.98, + "probability": 0.9712 + }, + { + "start": 906.14, + "end": 906.66, + "probability": 0.786 + }, + { + "start": 907.1, + "end": 907.58, + "probability": 0.9321 + }, + { + "start": 908.3, + "end": 910.06, + "probability": 0.8298 + }, + { + "start": 910.18, + "end": 910.66, + "probability": 0.5906 + }, + { + "start": 911.7, + "end": 912.34, + "probability": 0.6733 + }, + { + "start": 920.74, + "end": 922.52, + "probability": 0.7286 + }, + { + "start": 923.44, + "end": 929.68, + "probability": 0.9823 + }, + { + "start": 930.14, + "end": 935.58, + "probability": 0.9408 + }, + { + "start": 935.58, + "end": 939.76, + "probability": 0.971 + }, + { + "start": 940.1, + "end": 942.96, + "probability": 0.9297 + }, + { + "start": 943.84, + "end": 949.9, + "probability": 0.9727 + }, + { + "start": 950.8, + "end": 953.86, + "probability": 0.9808 + }, + { + "start": 954.3, + "end": 956.96, + "probability": 0.9315 + }, + { + "start": 957.06, + "end": 958.6, + "probability": 0.9758 + }, + { + "start": 959.18, + "end": 961.62, + "probability": 0.865 + }, + { + "start": 962.4, + "end": 963.9, + "probability": 0.7292 + }, + { + "start": 964.0, + "end": 967.16, + "probability": 0.9756 + }, + { + "start": 969.82, + "end": 973.0, + "probability": 0.9049 + }, + { + "start": 973.0, + "end": 976.32, + "probability": 0.9957 + }, + { + "start": 976.48, + "end": 978.18, + "probability": 0.968 + }, + { + "start": 978.68, + "end": 984.96, + "probability": 0.9965 + }, + { + "start": 985.16, + "end": 985.96, + "probability": 0.7871 + }, + { + "start": 986.46, + "end": 989.92, + "probability": 0.6339 + }, + { + "start": 991.36, + "end": 993.34, + "probability": 0.6501 + }, + { + "start": 993.9, + "end": 994.22, + "probability": 0.3725 + }, + { + "start": 995.46, + "end": 998.72, + "probability": 0.966 + }, + { + "start": 998.76, + "end": 1002.5, + "probability": 0.9956 + }, + { + "start": 1002.74, + "end": 1003.22, + "probability": 0.8314 + }, + { + "start": 1003.66, + "end": 1004.2, + "probability": 0.7823 + }, + { + "start": 1005.36, + "end": 1007.72, + "probability": 0.8133 + }, + { + "start": 1008.12, + "end": 1010.52, + "probability": 0.9644 + }, + { + "start": 1010.6, + "end": 1011.42, + "probability": 0.8706 + }, + { + "start": 1011.52, + "end": 1011.92, + "probability": 0.879 + }, + { + "start": 1012.64, + "end": 1013.78, + "probability": 0.7733 + }, + { + "start": 1014.68, + "end": 1017.48, + "probability": 0.975 + }, + { + "start": 1017.74, + "end": 1021.08, + "probability": 0.8583 + }, + { + "start": 1021.26, + "end": 1021.54, + "probability": 0.4322 + }, + { + "start": 1021.62, + "end": 1021.78, + "probability": 0.4319 + }, + { + "start": 1022.24, + "end": 1022.98, + "probability": 0.9607 + }, + { + "start": 1023.26, + "end": 1025.76, + "probability": 0.6635 + }, + { + "start": 1025.92, + "end": 1027.42, + "probability": 0.7664 + }, + { + "start": 1027.52, + "end": 1031.56, + "probability": 0.5452 + }, + { + "start": 1031.76, + "end": 1032.38, + "probability": 0.7716 + }, + { + "start": 1032.94, + "end": 1034.42, + "probability": 0.8908 + }, + { + "start": 1034.9, + "end": 1035.18, + "probability": 0.858 + }, + { + "start": 1042.88, + "end": 1043.76, + "probability": 0.6242 + }, + { + "start": 1044.58, + "end": 1045.98, + "probability": 0.8862 + }, + { + "start": 1046.04, + "end": 1046.4, + "probability": 0.7492 + }, + { + "start": 1046.54, + "end": 1046.94, + "probability": 0.6499 + }, + { + "start": 1047.1, + "end": 1047.22, + "probability": 0.3072 + }, + { + "start": 1047.22, + "end": 1047.6, + "probability": 0.5959 + }, + { + "start": 1048.14, + "end": 1048.76, + "probability": 0.6448 + }, + { + "start": 1050.96, + "end": 1053.74, + "probability": 0.8855 + }, + { + "start": 1054.28, + "end": 1055.88, + "probability": 0.6016 + }, + { + "start": 1056.88, + "end": 1061.88, + "probability": 0.9914 + }, + { + "start": 1062.3, + "end": 1066.0, + "probability": 0.9422 + }, + { + "start": 1067.12, + "end": 1071.22, + "probability": 0.9886 + }, + { + "start": 1071.92, + "end": 1074.52, + "probability": 0.9323 + }, + { + "start": 1075.06, + "end": 1078.8, + "probability": 0.9081 + }, + { + "start": 1079.87, + "end": 1084.98, + "probability": 0.5329 + }, + { + "start": 1085.12, + "end": 1085.32, + "probability": 0.3754 + }, + { + "start": 1085.32, + "end": 1085.34, + "probability": 0.0233 + }, + { + "start": 1085.5, + "end": 1087.16, + "probability": 0.8037 + }, + { + "start": 1087.42, + "end": 1088.22, + "probability": 0.4587 + }, + { + "start": 1089.68, + "end": 1091.05, + "probability": 0.4058 + }, + { + "start": 1091.18, + "end": 1095.14, + "probability": 0.5071 + }, + { + "start": 1095.2, + "end": 1096.13, + "probability": 0.7535 + }, + { + "start": 1096.28, + "end": 1097.05, + "probability": 0.9172 + }, + { + "start": 1097.92, + "end": 1100.84, + "probability": 0.9613 + }, + { + "start": 1101.52, + "end": 1102.65, + "probability": 0.6687 + }, + { + "start": 1103.8, + "end": 1109.12, + "probability": 0.6377 + }, + { + "start": 1109.78, + "end": 1114.18, + "probability": 0.7166 + }, + { + "start": 1114.98, + "end": 1117.14, + "probability": 0.4811 + }, + { + "start": 1117.68, + "end": 1121.2, + "probability": 0.7637 + }, + { + "start": 1123.74, + "end": 1125.9, + "probability": 0.8116 + }, + { + "start": 1126.06, + "end": 1130.36, + "probability": 0.999 + }, + { + "start": 1131.22, + "end": 1132.98, + "probability": 0.6664 + }, + { + "start": 1133.5, + "end": 1134.82, + "probability": 0.8416 + }, + { + "start": 1135.68, + "end": 1137.84, + "probability": 0.9471 + }, + { + "start": 1138.06, + "end": 1138.7, + "probability": 0.9425 + }, + { + "start": 1138.86, + "end": 1142.18, + "probability": 0.9819 + }, + { + "start": 1142.74, + "end": 1145.7, + "probability": 0.9985 + }, + { + "start": 1146.02, + "end": 1147.56, + "probability": 0.9692 + }, + { + "start": 1147.56, + "end": 1147.56, + "probability": 0.364 + }, + { + "start": 1147.56, + "end": 1149.88, + "probability": 0.6489 + }, + { + "start": 1150.06, + "end": 1150.4, + "probability": 0.0321 + }, + { + "start": 1150.42, + "end": 1152.36, + "probability": 0.8706 + }, + { + "start": 1152.98, + "end": 1153.72, + "probability": 0.2217 + }, + { + "start": 1153.78, + "end": 1157.18, + "probability": 0.9446 + }, + { + "start": 1159.64, + "end": 1161.28, + "probability": 0.7433 + }, + { + "start": 1162.34, + "end": 1165.68, + "probability": 0.9875 + }, + { + "start": 1165.84, + "end": 1166.48, + "probability": 0.6728 + }, + { + "start": 1166.84, + "end": 1166.94, + "probability": 0.6451 + }, + { + "start": 1167.5, + "end": 1169.74, + "probability": 0.9678 + }, + { + "start": 1169.86, + "end": 1170.4, + "probability": 0.9655 + }, + { + "start": 1170.82, + "end": 1172.1, + "probability": 0.6798 + }, + { + "start": 1172.58, + "end": 1174.88, + "probability": 0.9961 + }, + { + "start": 1174.88, + "end": 1176.9, + "probability": 0.9435 + }, + { + "start": 1177.86, + "end": 1178.12, + "probability": 0.545 + }, + { + "start": 1178.26, + "end": 1181.36, + "probability": 0.7736 + }, + { + "start": 1182.12, + "end": 1183.24, + "probability": 0.9858 + }, + { + "start": 1183.3, + "end": 1183.92, + "probability": 0.6201 + }, + { + "start": 1184.66, + "end": 1188.94, + "probability": 0.9695 + }, + { + "start": 1189.58, + "end": 1193.8, + "probability": 0.56 + }, + { + "start": 1193.9, + "end": 1194.98, + "probability": 0.9727 + }, + { + "start": 1195.24, + "end": 1196.7, + "probability": 0.8234 + }, + { + "start": 1196.82, + "end": 1199.38, + "probability": 0.7318 + }, + { + "start": 1199.38, + "end": 1201.96, + "probability": 0.8088 + }, + { + "start": 1202.14, + "end": 1202.14, + "probability": 0.6111 + }, + { + "start": 1202.14, + "end": 1202.14, + "probability": 0.0078 + }, + { + "start": 1202.14, + "end": 1203.48, + "probability": 0.8146 + }, + { + "start": 1203.98, + "end": 1204.88, + "probability": 0.9197 + }, + { + "start": 1205.12, + "end": 1207.38, + "probability": 0.7026 + }, + { + "start": 1207.64, + "end": 1210.56, + "probability": 0.9191 + }, + { + "start": 1210.78, + "end": 1212.6, + "probability": 0.9796 + }, + { + "start": 1212.72, + "end": 1213.1, + "probability": 0.4543 + }, + { + "start": 1213.8, + "end": 1215.78, + "probability": 0.9574 + }, + { + "start": 1215.86, + "end": 1217.9, + "probability": 0.8634 + }, + { + "start": 1217.94, + "end": 1219.2, + "probability": 0.8312 + }, + { + "start": 1219.3, + "end": 1223.0, + "probability": 0.6522 + }, + { + "start": 1223.0, + "end": 1223.16, + "probability": 0.6588 + }, + { + "start": 1223.16, + "end": 1224.34, + "probability": 0.9956 + }, + { + "start": 1224.76, + "end": 1225.04, + "probability": 0.6148 + }, + { + "start": 1225.04, + "end": 1225.38, + "probability": 0.2404 + }, + { + "start": 1225.38, + "end": 1225.62, + "probability": 0.8131 + }, + { + "start": 1225.74, + "end": 1227.1, + "probability": 0.8528 + }, + { + "start": 1227.32, + "end": 1228.54, + "probability": 0.4056 + }, + { + "start": 1228.64, + "end": 1228.8, + "probability": 0.2578 + }, + { + "start": 1228.8, + "end": 1230.1, + "probability": 0.6576 + }, + { + "start": 1230.14, + "end": 1230.52, + "probability": 0.6137 + }, + { + "start": 1230.76, + "end": 1230.88, + "probability": 0.0909 + }, + { + "start": 1230.88, + "end": 1230.97, + "probability": 0.7094 + }, + { + "start": 1231.02, + "end": 1233.03, + "probability": 0.9819 + }, + { + "start": 1233.18, + "end": 1234.2, + "probability": 0.9918 + }, + { + "start": 1234.2, + "end": 1238.02, + "probability": 0.7509 + }, + { + "start": 1238.52, + "end": 1239.57, + "probability": 0.7537 + }, + { + "start": 1239.7, + "end": 1240.32, + "probability": 0.9249 + }, + { + "start": 1240.58, + "end": 1240.6, + "probability": 0.2021 + }, + { + "start": 1240.6, + "end": 1241.48, + "probability": 0.452 + }, + { + "start": 1241.7, + "end": 1244.5, + "probability": 0.7484 + }, + { + "start": 1244.56, + "end": 1244.94, + "probability": 0.5876 + }, + { + "start": 1245.56, + "end": 1246.74, + "probability": 0.5666 + }, + { + "start": 1247.06, + "end": 1248.6, + "probability": 0.0797 + }, + { + "start": 1248.6, + "end": 1248.6, + "probability": 0.0317 + }, + { + "start": 1248.6, + "end": 1248.6, + "probability": 0.0268 + }, + { + "start": 1248.6, + "end": 1248.6, + "probability": 0.0943 + }, + { + "start": 1248.6, + "end": 1250.24, + "probability": 0.7466 + }, + { + "start": 1250.8, + "end": 1251.56, + "probability": 0.3744 + }, + { + "start": 1251.84, + "end": 1252.8, + "probability": 0.6928 + }, + { + "start": 1253.48, + "end": 1255.56, + "probability": 0.5841 + }, + { + "start": 1256.32, + "end": 1258.0, + "probability": 0.7521 + }, + { + "start": 1258.2, + "end": 1258.6, + "probability": 0.4734 + }, + { + "start": 1258.98, + "end": 1259.06, + "probability": 0.7385 + }, + { + "start": 1259.12, + "end": 1260.32, + "probability": 0.9949 + }, + { + "start": 1260.86, + "end": 1261.56, + "probability": 0.3506 + }, + { + "start": 1261.62, + "end": 1265.84, + "probability": 0.9419 + }, + { + "start": 1266.54, + "end": 1268.46, + "probability": 0.9966 + }, + { + "start": 1268.9, + "end": 1272.66, + "probability": 0.9892 + }, + { + "start": 1273.04, + "end": 1275.0, + "probability": 0.9601 + }, + { + "start": 1275.42, + "end": 1275.96, + "probability": 0.7382 + }, + { + "start": 1276.74, + "end": 1278.88, + "probability": 0.9868 + }, + { + "start": 1279.68, + "end": 1281.04, + "probability": 0.9204 + }, + { + "start": 1281.2, + "end": 1283.2, + "probability": 0.9678 + }, + { + "start": 1283.32, + "end": 1284.9, + "probability": 0.7547 + }, + { + "start": 1285.04, + "end": 1288.6, + "probability": 0.8765 + }, + { + "start": 1288.88, + "end": 1290.58, + "probability": 0.6668 + }, + { + "start": 1291.1, + "end": 1292.02, + "probability": 0.8123 + }, + { + "start": 1292.42, + "end": 1293.04, + "probability": 0.7064 + }, + { + "start": 1293.3, + "end": 1294.76, + "probability": 0.9688 + }, + { + "start": 1294.9, + "end": 1295.18, + "probability": 0.8478 + }, + { + "start": 1296.14, + "end": 1297.16, + "probability": 0.5703 + }, + { + "start": 1297.22, + "end": 1297.86, + "probability": 0.4726 + }, + { + "start": 1297.92, + "end": 1297.92, + "probability": 0.6553 + }, + { + "start": 1297.92, + "end": 1299.46, + "probability": 0.582 + }, + { + "start": 1300.76, + "end": 1303.16, + "probability": 0.7212 + }, + { + "start": 1303.24, + "end": 1306.58, + "probability": 0.5683 + }, + { + "start": 1306.66, + "end": 1306.76, + "probability": 0.791 + }, + { + "start": 1316.34, + "end": 1317.24, + "probability": 0.6808 + }, + { + "start": 1317.96, + "end": 1319.47, + "probability": 0.8625 + }, + { + "start": 1320.72, + "end": 1321.16, + "probability": 0.6775 + }, + { + "start": 1323.42, + "end": 1324.26, + "probability": 0.6822 + }, + { + "start": 1325.66, + "end": 1327.42, + "probability": 0.9729 + }, + { + "start": 1327.42, + "end": 1329.96, + "probability": 0.9884 + }, + { + "start": 1330.0, + "end": 1333.14, + "probability": 0.9033 + }, + { + "start": 1334.0, + "end": 1337.44, + "probability": 0.9326 + }, + { + "start": 1337.82, + "end": 1340.58, + "probability": 0.9894 + }, + { + "start": 1340.6, + "end": 1345.22, + "probability": 0.9864 + }, + { + "start": 1346.38, + "end": 1348.56, + "probability": 0.8012 + }, + { + "start": 1349.7, + "end": 1353.12, + "probability": 0.5029 + }, + { + "start": 1354.32, + "end": 1359.5, + "probability": 0.5688 + }, + { + "start": 1359.64, + "end": 1361.12, + "probability": 0.9647 + }, + { + "start": 1361.68, + "end": 1362.23, + "probability": 0.9604 + }, + { + "start": 1363.12, + "end": 1365.47, + "probability": 0.8597 + }, + { + "start": 1365.74, + "end": 1370.28, + "probability": 0.8779 + }, + { + "start": 1371.2, + "end": 1372.9, + "probability": 0.9556 + }, + { + "start": 1373.46, + "end": 1374.9, + "probability": 0.9567 + }, + { + "start": 1375.02, + "end": 1375.62, + "probability": 0.923 + }, + { + "start": 1375.96, + "end": 1377.8, + "probability": 0.7852 + }, + { + "start": 1378.12, + "end": 1378.92, + "probability": 0.5507 + }, + { + "start": 1379.88, + "end": 1381.86, + "probability": 0.9807 + }, + { + "start": 1381.94, + "end": 1384.24, + "probability": 0.9938 + }, + { + "start": 1384.34, + "end": 1384.96, + "probability": 0.8138 + }, + { + "start": 1385.61, + "end": 1386.98, + "probability": 0.9966 + }, + { + "start": 1386.98, + "end": 1389.22, + "probability": 0.991 + }, + { + "start": 1390.06, + "end": 1393.22, + "probability": 0.7793 + }, + { + "start": 1393.42, + "end": 1396.28, + "probability": 0.6145 + }, + { + "start": 1397.02, + "end": 1400.8, + "probability": 0.9175 + }, + { + "start": 1401.75, + "end": 1405.48, + "probability": 0.8245 + }, + { + "start": 1406.16, + "end": 1409.3, + "probability": 0.9552 + }, + { + "start": 1409.44, + "end": 1409.44, + "probability": 0.0294 + }, + { + "start": 1409.44, + "end": 1409.44, + "probability": 0.2438 + }, + { + "start": 1409.44, + "end": 1410.12, + "probability": 0.6486 + }, + { + "start": 1410.56, + "end": 1411.18, + "probability": 0.5909 + }, + { + "start": 1411.72, + "end": 1420.74, + "probability": 0.9341 + }, + { + "start": 1421.34, + "end": 1422.2, + "probability": 0.9717 + }, + { + "start": 1422.36, + "end": 1423.06, + "probability": 0.6862 + }, + { + "start": 1423.3, + "end": 1424.26, + "probability": 0.8958 + }, + { + "start": 1425.02, + "end": 1426.1, + "probability": 0.9482 + }, + { + "start": 1426.22, + "end": 1428.24, + "probability": 0.9258 + }, + { + "start": 1428.64, + "end": 1428.66, + "probability": 0.6828 + }, + { + "start": 1428.76, + "end": 1431.18, + "probability": 0.9536 + }, + { + "start": 1432.2, + "end": 1434.1, + "probability": 0.9395 + }, + { + "start": 1434.24, + "end": 1434.68, + "probability": 0.7546 + }, + { + "start": 1434.88, + "end": 1436.16, + "probability": 0.9189 + }, + { + "start": 1437.0, + "end": 1438.22, + "probability": 0.9592 + }, + { + "start": 1438.84, + "end": 1439.76, + "probability": 0.9635 + }, + { + "start": 1440.22, + "end": 1443.1, + "probability": 0.9842 + }, + { + "start": 1443.1, + "end": 1445.8, + "probability": 0.9955 + }, + { + "start": 1447.34, + "end": 1450.14, + "probability": 0.9946 + }, + { + "start": 1450.26, + "end": 1451.48, + "probability": 0.8757 + }, + { + "start": 1452.26, + "end": 1455.52, + "probability": 0.9927 + }, + { + "start": 1455.6, + "end": 1457.08, + "probability": 0.984 + }, + { + "start": 1457.66, + "end": 1459.62, + "probability": 0.8672 + }, + { + "start": 1460.6, + "end": 1460.94, + "probability": 0.7092 + }, + { + "start": 1461.82, + "end": 1463.4, + "probability": 0.9133 + }, + { + "start": 1463.58, + "end": 1464.2, + "probability": 0.6957 + }, + { + "start": 1464.22, + "end": 1464.48, + "probability": 0.3708 + }, + { + "start": 1465.6, + "end": 1470.56, + "probability": 0.9458 + }, + { + "start": 1470.76, + "end": 1476.82, + "probability": 0.9604 + }, + { + "start": 1477.98, + "end": 1478.86, + "probability": 0.6842 + }, + { + "start": 1479.38, + "end": 1485.0, + "probability": 0.9368 + }, + { + "start": 1485.42, + "end": 1487.92, + "probability": 0.9634 + }, + { + "start": 1488.0, + "end": 1489.28, + "probability": 0.8472 + }, + { + "start": 1489.3, + "end": 1490.56, + "probability": 0.9353 + }, + { + "start": 1491.38, + "end": 1494.74, + "probability": 0.931 + }, + { + "start": 1495.34, + "end": 1496.84, + "probability": 0.8352 + }, + { + "start": 1496.92, + "end": 1497.72, + "probability": 0.8501 + }, + { + "start": 1497.8, + "end": 1499.6, + "probability": 0.9624 + }, + { + "start": 1500.76, + "end": 1501.34, + "probability": 0.7729 + }, + { + "start": 1501.44, + "end": 1501.94, + "probability": 0.7891 + }, + { + "start": 1502.04, + "end": 1502.98, + "probability": 0.8256 + }, + { + "start": 1503.1, + "end": 1504.38, + "probability": 0.9823 + }, + { + "start": 1504.54, + "end": 1504.92, + "probability": 0.8739 + }, + { + "start": 1505.3, + "end": 1506.86, + "probability": 0.9869 + }, + { + "start": 1507.28, + "end": 1508.6, + "probability": 0.9912 + }, + { + "start": 1509.14, + "end": 1510.26, + "probability": 0.9154 + }, + { + "start": 1510.9, + "end": 1512.36, + "probability": 0.9606 + }, + { + "start": 1512.46, + "end": 1514.14, + "probability": 0.9955 + }, + { + "start": 1514.24, + "end": 1517.26, + "probability": 0.9257 + }, + { + "start": 1517.36, + "end": 1520.66, + "probability": 0.9962 + }, + { + "start": 1520.78, + "end": 1525.16, + "probability": 0.9451 + }, + { + "start": 1525.62, + "end": 1529.36, + "probability": 0.9863 + }, + { + "start": 1529.48, + "end": 1530.38, + "probability": 0.9038 + }, + { + "start": 1530.78, + "end": 1534.19, + "probability": 0.9766 + }, + { + "start": 1534.36, + "end": 1536.26, + "probability": 0.7494 + }, + { + "start": 1536.84, + "end": 1538.86, + "probability": 0.9271 + }, + { + "start": 1539.14, + "end": 1541.26, + "probability": 0.9834 + }, + { + "start": 1542.28, + "end": 1542.8, + "probability": 0.6748 + }, + { + "start": 1543.12, + "end": 1543.62, + "probability": 0.9788 + }, + { + "start": 1544.12, + "end": 1546.52, + "probability": 0.9203 + }, + { + "start": 1546.8, + "end": 1547.18, + "probability": 0.7275 + }, + { + "start": 1547.28, + "end": 1547.5, + "probability": 0.7693 + }, + { + "start": 1547.84, + "end": 1550.4, + "probability": 0.7135 + }, + { + "start": 1551.0, + "end": 1555.52, + "probability": 0.8243 + }, + { + "start": 1556.14, + "end": 1557.0, + "probability": 0.7644 + }, + { + "start": 1557.58, + "end": 1560.28, + "probability": 0.8235 + }, + { + "start": 1570.8, + "end": 1570.94, + "probability": 0.3928 + }, + { + "start": 1571.08, + "end": 1571.82, + "probability": 0.7373 + }, + { + "start": 1572.2, + "end": 1573.82, + "probability": 0.8861 + }, + { + "start": 1574.04, + "end": 1575.94, + "probability": 0.9373 + }, + { + "start": 1576.76, + "end": 1580.8, + "probability": 0.9924 + }, + { + "start": 1580.8, + "end": 1584.18, + "probability": 0.9688 + }, + { + "start": 1584.72, + "end": 1585.68, + "probability": 0.9774 + }, + { + "start": 1586.2, + "end": 1587.7, + "probability": 0.8196 + }, + { + "start": 1587.74, + "end": 1589.38, + "probability": 0.86 + }, + { + "start": 1589.96, + "end": 1591.34, + "probability": 0.6726 + }, + { + "start": 1591.34, + "end": 1592.06, + "probability": 0.8424 + }, + { + "start": 1592.52, + "end": 1593.26, + "probability": 0.6143 + }, + { + "start": 1594.26, + "end": 1596.0, + "probability": 0.8545 + }, + { + "start": 1596.34, + "end": 1599.28, + "probability": 0.9667 + }, + { + "start": 1599.96, + "end": 1600.92, + "probability": 0.425 + }, + { + "start": 1601.54, + "end": 1604.44, + "probability": 0.0711 + }, + { + "start": 1604.48, + "end": 1605.82, + "probability": 0.7866 + }, + { + "start": 1606.2, + "end": 1609.05, + "probability": 0.5011 + }, + { + "start": 1609.1, + "end": 1611.24, + "probability": 0.8098 + }, + { + "start": 1612.34, + "end": 1613.64, + "probability": 0.409 + }, + { + "start": 1614.2, + "end": 1616.34, + "probability": 0.0952 + }, + { + "start": 1616.96, + "end": 1619.56, + "probability": 0.958 + }, + { + "start": 1620.22, + "end": 1620.63, + "probability": 0.5042 + }, + { + "start": 1621.94, + "end": 1625.46, + "probability": 0.5023 + }, + { + "start": 1625.8, + "end": 1627.84, + "probability": 0.8885 + }, + { + "start": 1628.44, + "end": 1633.8, + "probability": 0.609 + }, + { + "start": 1634.78, + "end": 1639.06, + "probability": 0.7499 + }, + { + "start": 1639.12, + "end": 1640.68, + "probability": 0.9164 + }, + { + "start": 1640.94, + "end": 1641.5, + "probability": 0.4775 + }, + { + "start": 1642.16, + "end": 1644.3, + "probability": 0.8937 + }, + { + "start": 1644.66, + "end": 1645.7, + "probability": 0.7219 + }, + { + "start": 1646.4, + "end": 1647.44, + "probability": 0.6301 + }, + { + "start": 1648.0, + "end": 1648.98, + "probability": 0.9746 + }, + { + "start": 1649.82, + "end": 1650.72, + "probability": 0.8302 + }, + { + "start": 1651.24, + "end": 1653.86, + "probability": 0.6577 + }, + { + "start": 1655.02, + "end": 1656.24, + "probability": 0.8224 + }, + { + "start": 1656.4, + "end": 1656.84, + "probability": 0.7195 + }, + { + "start": 1656.98, + "end": 1657.86, + "probability": 0.9879 + }, + { + "start": 1657.96, + "end": 1660.76, + "probability": 0.8951 + }, + { + "start": 1660.98, + "end": 1662.66, + "probability": 0.744 + }, + { + "start": 1664.92, + "end": 1668.52, + "probability": 0.8415 + }, + { + "start": 1668.58, + "end": 1672.08, + "probability": 0.7273 + }, + { + "start": 1672.08, + "end": 1673.62, + "probability": 0.9473 + }, + { + "start": 1674.46, + "end": 1676.76, + "probability": 0.2015 + }, + { + "start": 1677.4, + "end": 1680.82, + "probability": 0.9741 + }, + { + "start": 1681.82, + "end": 1683.3, + "probability": 0.777 + }, + { + "start": 1683.78, + "end": 1687.78, + "probability": 0.9697 + }, + { + "start": 1687.78, + "end": 1689.46, + "probability": 0.8718 + }, + { + "start": 1690.16, + "end": 1693.56, + "probability": 0.9254 + }, + { + "start": 1697.97, + "end": 1699.14, + "probability": 0.6442 + }, + { + "start": 1700.14, + "end": 1700.62, + "probability": 0.8799 + }, + { + "start": 1700.78, + "end": 1702.8, + "probability": 0.6659 + }, + { + "start": 1702.92, + "end": 1705.04, + "probability": 0.8714 + }, + { + "start": 1705.38, + "end": 1706.04, + "probability": 0.573 + }, + { + "start": 1706.24, + "end": 1706.66, + "probability": 0.9721 + }, + { + "start": 1707.9, + "end": 1708.84, + "probability": 0.895 + }, + { + "start": 1709.02, + "end": 1711.38, + "probability": 0.2809 + }, + { + "start": 1711.58, + "end": 1713.12, + "probability": 0.6081 + }, + { + "start": 1713.36, + "end": 1715.48, + "probability": 0.7581 + }, + { + "start": 1716.16, + "end": 1721.64, + "probability": 0.9079 + }, + { + "start": 1722.86, + "end": 1723.2, + "probability": 0.5897 + }, + { + "start": 1723.46, + "end": 1724.42, + "probability": 0.8089 + }, + { + "start": 1732.0, + "end": 1733.6, + "probability": 0.6591 + }, + { + "start": 1735.32, + "end": 1736.36, + "probability": 0.71 + }, + { + "start": 1738.12, + "end": 1742.56, + "probability": 0.9465 + }, + { + "start": 1743.48, + "end": 1746.86, + "probability": 0.9854 + }, + { + "start": 1747.62, + "end": 1751.4, + "probability": 0.9905 + }, + { + "start": 1752.3, + "end": 1756.02, + "probability": 0.7455 + }, + { + "start": 1757.02, + "end": 1759.9, + "probability": 0.4915 + }, + { + "start": 1760.0, + "end": 1762.94, + "probability": 0.7817 + }, + { + "start": 1763.28, + "end": 1763.72, + "probability": 0.7092 + }, + { + "start": 1763.94, + "end": 1764.88, + "probability": 0.5354 + }, + { + "start": 1765.18, + "end": 1767.16, + "probability": 0.878 + }, + { + "start": 1769.08, + "end": 1769.42, + "probability": 0.7353 + }, + { + "start": 1769.48, + "end": 1770.2, + "probability": 0.9668 + }, + { + "start": 1770.48, + "end": 1771.5, + "probability": 0.8641 + }, + { + "start": 1771.7, + "end": 1772.84, + "probability": 0.9809 + }, + { + "start": 1773.36, + "end": 1774.42, + "probability": 0.8168 + }, + { + "start": 1775.16, + "end": 1776.0, + "probability": 0.9403 + }, + { + "start": 1776.78, + "end": 1779.86, + "probability": 0.8771 + }, + { + "start": 1782.08, + "end": 1782.54, + "probability": 0.2596 + }, + { + "start": 1788.48, + "end": 1796.16, + "probability": 0.9829 + }, + { + "start": 1797.14, + "end": 1798.04, + "probability": 0.7604 + }, + { + "start": 1799.29, + "end": 1803.44, + "probability": 0.9954 + }, + { + "start": 1803.76, + "end": 1807.0, + "probability": 0.9478 + }, + { + "start": 1808.38, + "end": 1813.66, + "probability": 0.835 + }, + { + "start": 1814.62, + "end": 1817.32, + "probability": 0.9953 + }, + { + "start": 1817.52, + "end": 1818.6, + "probability": 0.4497 + }, + { + "start": 1819.02, + "end": 1822.32, + "probability": 0.9962 + }, + { + "start": 1822.42, + "end": 1822.84, + "probability": 0.4077 + }, + { + "start": 1822.84, + "end": 1826.3, + "probability": 0.9857 + }, + { + "start": 1826.34, + "end": 1827.96, + "probability": 0.9483 + }, + { + "start": 1828.6, + "end": 1829.26, + "probability": 0.9185 + }, + { + "start": 1829.88, + "end": 1830.58, + "probability": 0.7492 + }, + { + "start": 1830.72, + "end": 1833.64, + "probability": 0.9738 + }, + { + "start": 1833.84, + "end": 1836.98, + "probability": 0.9837 + }, + { + "start": 1837.26, + "end": 1837.9, + "probability": 0.9456 + }, + { + "start": 1838.62, + "end": 1841.74, + "probability": 0.9916 + }, + { + "start": 1842.92, + "end": 1846.06, + "probability": 0.9808 + }, + { + "start": 1846.18, + "end": 1852.04, + "probability": 0.9888 + }, + { + "start": 1853.02, + "end": 1854.44, + "probability": 0.7085 + }, + { + "start": 1855.22, + "end": 1856.26, + "probability": 0.9964 + }, + { + "start": 1857.04, + "end": 1860.48, + "probability": 0.998 + }, + { + "start": 1861.2, + "end": 1862.84, + "probability": 0.8918 + }, + { + "start": 1863.24, + "end": 1865.2, + "probability": 0.9343 + }, + { + "start": 1865.58, + "end": 1868.92, + "probability": 0.9939 + }, + { + "start": 1869.24, + "end": 1871.86, + "probability": 0.9676 + }, + { + "start": 1872.3, + "end": 1874.0, + "probability": 0.9938 + }, + { + "start": 1874.0, + "end": 1876.96, + "probability": 0.9978 + }, + { + "start": 1877.62, + "end": 1878.4, + "probability": 0.9652 + }, + { + "start": 1879.64, + "end": 1880.2, + "probability": 0.0869 + }, + { + "start": 1882.74, + "end": 1882.74, + "probability": 0.0149 + }, + { + "start": 1882.74, + "end": 1882.74, + "probability": 0.2138 + }, + { + "start": 1882.74, + "end": 1883.0, + "probability": 0.5957 + }, + { + "start": 1887.8, + "end": 1890.16, + "probability": 0.9251 + }, + { + "start": 1890.3, + "end": 1894.18, + "probability": 0.9938 + }, + { + "start": 1894.22, + "end": 1899.4, + "probability": 0.9948 + }, + { + "start": 1899.96, + "end": 1903.9, + "probability": 0.9747 + }, + { + "start": 1903.96, + "end": 1904.4, + "probability": 0.2746 + }, + { + "start": 1904.52, + "end": 1904.88, + "probability": 0.0564 + }, + { + "start": 1905.38, + "end": 1905.74, + "probability": 0.8154 + }, + { + "start": 1906.02, + "end": 1913.42, + "probability": 0.7276 + }, + { + "start": 1913.54, + "end": 1915.12, + "probability": 0.9841 + }, + { + "start": 1915.54, + "end": 1916.04, + "probability": 0.7621 + }, + { + "start": 1916.4, + "end": 1916.98, + "probability": 0.7789 + }, + { + "start": 1917.38, + "end": 1919.74, + "probability": 0.4763 + }, + { + "start": 1919.8, + "end": 1920.84, + "probability": 0.8631 + }, + { + "start": 1920.9, + "end": 1925.72, + "probability": 0.8565 + }, + { + "start": 1925.72, + "end": 1931.2, + "probability": 0.9586 + }, + { + "start": 1931.52, + "end": 1933.44, + "probability": 0.8422 + }, + { + "start": 1933.64, + "end": 1933.9, + "probability": 0.8239 + }, + { + "start": 1933.94, + "end": 1937.34, + "probability": 0.9948 + }, + { + "start": 1937.4, + "end": 1942.7, + "probability": 0.9976 + }, + { + "start": 1942.7, + "end": 1943.04, + "probability": 0.2561 + }, + { + "start": 1943.36, + "end": 1945.48, + "probability": 0.9973 + }, + { + "start": 1945.48, + "end": 1947.52, + "probability": 0.7961 + }, + { + "start": 1947.58, + "end": 1948.1, + "probability": 0.9287 + }, + { + "start": 1948.64, + "end": 1948.9, + "probability": 0.4721 + }, + { + "start": 1950.64, + "end": 1951.88, + "probability": 0.4987 + }, + { + "start": 1952.14, + "end": 1955.94, + "probability": 0.9736 + }, + { + "start": 1956.56, + "end": 1959.68, + "probability": 0.8713 + }, + { + "start": 1959.68, + "end": 1962.08, + "probability": 0.9178 + }, + { + "start": 1962.52, + "end": 1964.14, + "probability": 0.8949 + }, + { + "start": 1964.22, + "end": 1968.9, + "probability": 0.8211 + }, + { + "start": 1969.5, + "end": 1971.7, + "probability": 0.7827 + }, + { + "start": 1973.9, + "end": 1974.5, + "probability": 0.9909 + }, + { + "start": 1980.18, + "end": 1982.14, + "probability": 0.8882 + }, + { + "start": 1998.64, + "end": 2000.84, + "probability": 0.7469 + }, + { + "start": 2002.48, + "end": 2007.34, + "probability": 0.9971 + }, + { + "start": 2008.22, + "end": 2011.92, + "probability": 0.9366 + }, + { + "start": 2013.12, + "end": 2017.26, + "probability": 0.9805 + }, + { + "start": 2017.74, + "end": 2021.46, + "probability": 0.9327 + }, + { + "start": 2022.18, + "end": 2025.14, + "probability": 0.9915 + }, + { + "start": 2025.98, + "end": 2026.66, + "probability": 0.9738 + }, + { + "start": 2027.3, + "end": 2030.6, + "probability": 0.9847 + }, + { + "start": 2031.66, + "end": 2034.9, + "probability": 0.9965 + }, + { + "start": 2035.04, + "end": 2038.16, + "probability": 0.9957 + }, + { + "start": 2038.72, + "end": 2041.24, + "probability": 0.9841 + }, + { + "start": 2041.24, + "end": 2044.7, + "probability": 0.9666 + }, + { + "start": 2045.08, + "end": 2050.44, + "probability": 0.985 + }, + { + "start": 2050.94, + "end": 2053.74, + "probability": 0.9286 + }, + { + "start": 2055.52, + "end": 2056.4, + "probability": 0.6067 + }, + { + "start": 2056.78, + "end": 2058.82, + "probability": 0.8818 + }, + { + "start": 2058.94, + "end": 2060.02, + "probability": 0.9527 + }, + { + "start": 2060.2, + "end": 2062.64, + "probability": 0.9634 + }, + { + "start": 2063.26, + "end": 2066.5, + "probability": 0.9722 + }, + { + "start": 2066.9, + "end": 2069.36, + "probability": 0.9952 + }, + { + "start": 2069.78, + "end": 2071.76, + "probability": 0.8115 + }, + { + "start": 2072.44, + "end": 2076.04, + "probability": 0.997 + }, + { + "start": 2077.18, + "end": 2082.8, + "probability": 0.9945 + }, + { + "start": 2082.8, + "end": 2088.1, + "probability": 0.9934 + }, + { + "start": 2088.7, + "end": 2090.6, + "probability": 0.9316 + }, + { + "start": 2091.02, + "end": 2092.6, + "probability": 0.995 + }, + { + "start": 2093.32, + "end": 2095.86, + "probability": 0.9958 + }, + { + "start": 2096.5, + "end": 2097.12, + "probability": 0.9414 + }, + { + "start": 2097.34, + "end": 2097.92, + "probability": 0.9827 + }, + { + "start": 2098.02, + "end": 2098.6, + "probability": 0.8878 + }, + { + "start": 2099.0, + "end": 2100.06, + "probability": 0.9917 + }, + { + "start": 2100.24, + "end": 2101.48, + "probability": 0.9704 + }, + { + "start": 2101.92, + "end": 2103.98, + "probability": 0.9932 + }, + { + "start": 2104.4, + "end": 2106.12, + "probability": 0.8331 + }, + { + "start": 2106.58, + "end": 2109.14, + "probability": 0.9027 + }, + { + "start": 2109.78, + "end": 2110.22, + "probability": 0.7351 + }, + { + "start": 2110.32, + "end": 2114.2, + "probability": 0.9796 + }, + { + "start": 2114.34, + "end": 2117.78, + "probability": 0.9893 + }, + { + "start": 2118.22, + "end": 2119.21, + "probability": 0.9805 + }, + { + "start": 2119.32, + "end": 2120.12, + "probability": 0.9727 + }, + { + "start": 2120.86, + "end": 2122.02, + "probability": 0.9761 + }, + { + "start": 2122.14, + "end": 2123.06, + "probability": 0.9836 + }, + { + "start": 2124.14, + "end": 2124.24, + "probability": 0.8057 + }, + { + "start": 2124.6, + "end": 2125.12, + "probability": 0.9706 + }, + { + "start": 2125.48, + "end": 2129.0, + "probability": 0.9706 + }, + { + "start": 2129.74, + "end": 2132.84, + "probability": 0.9941 + }, + { + "start": 2132.94, + "end": 2138.94, + "probability": 0.9992 + }, + { + "start": 2139.32, + "end": 2142.28, + "probability": 0.9814 + }, + { + "start": 2142.72, + "end": 2146.16, + "probability": 0.9995 + }, + { + "start": 2146.22, + "end": 2147.56, + "probability": 0.9573 + }, + { + "start": 2147.96, + "end": 2150.5, + "probability": 0.9699 + }, + { + "start": 2151.04, + "end": 2155.28, + "probability": 0.9935 + }, + { + "start": 2155.94, + "end": 2157.92, + "probability": 0.996 + }, + { + "start": 2158.58, + "end": 2161.06, + "probability": 0.9959 + }, + { + "start": 2161.06, + "end": 2165.8, + "probability": 0.9976 + }, + { + "start": 2166.5, + "end": 2169.8, + "probability": 0.7753 + }, + { + "start": 2170.42, + "end": 2173.4, + "probability": 0.7828 + }, + { + "start": 2173.9, + "end": 2174.46, + "probability": 0.8031 + }, + { + "start": 2174.5, + "end": 2176.86, + "probability": 0.9727 + }, + { + "start": 2177.4, + "end": 2180.56, + "probability": 0.9227 + }, + { + "start": 2181.08, + "end": 2182.36, + "probability": 0.6264 + }, + { + "start": 2182.98, + "end": 2183.5, + "probability": 0.9177 + }, + { + "start": 2183.6, + "end": 2184.9, + "probability": 0.9077 + }, + { + "start": 2185.36, + "end": 2189.1, + "probability": 0.9728 + }, + { + "start": 2189.64, + "end": 2193.54, + "probability": 0.9967 + }, + { + "start": 2193.54, + "end": 2198.94, + "probability": 0.9972 + }, + { + "start": 2199.72, + "end": 2202.74, + "probability": 0.8464 + }, + { + "start": 2203.04, + "end": 2205.34, + "probability": 0.9951 + }, + { + "start": 2205.78, + "end": 2209.24, + "probability": 0.9907 + }, + { + "start": 2209.66, + "end": 2214.48, + "probability": 0.993 + }, + { + "start": 2214.8, + "end": 2217.64, + "probability": 0.9291 + }, + { + "start": 2217.64, + "end": 2220.84, + "probability": 0.9992 + }, + { + "start": 2221.6, + "end": 2224.48, + "probability": 0.9988 + }, + { + "start": 2224.56, + "end": 2226.18, + "probability": 0.89 + }, + { + "start": 2226.58, + "end": 2227.6, + "probability": 0.9126 + }, + { + "start": 2227.84, + "end": 2228.62, + "probability": 0.9935 + }, + { + "start": 2228.78, + "end": 2229.66, + "probability": 0.9763 + }, + { + "start": 2229.78, + "end": 2230.82, + "probability": 0.9861 + }, + { + "start": 2231.34, + "end": 2232.62, + "probability": 0.9626 + }, + { + "start": 2233.18, + "end": 2234.74, + "probability": 0.9897 + }, + { + "start": 2235.16, + "end": 2237.0, + "probability": 0.936 + }, + { + "start": 2237.28, + "end": 2239.46, + "probability": 0.9227 + }, + { + "start": 2239.68, + "end": 2239.88, + "probability": 0.7688 + }, + { + "start": 2240.94, + "end": 2241.5, + "probability": 0.6142 + }, + { + "start": 2241.72, + "end": 2244.06, + "probability": 0.9932 + }, + { + "start": 2244.5, + "end": 2247.82, + "probability": 0.9939 + }, + { + "start": 2248.34, + "end": 2252.88, + "probability": 0.9912 + }, + { + "start": 2253.56, + "end": 2258.0, + "probability": 0.973 + }, + { + "start": 2258.83, + "end": 2264.88, + "probability": 0.9839 + }, + { + "start": 2264.96, + "end": 2265.64, + "probability": 0.9329 + }, + { + "start": 2266.04, + "end": 2267.5, + "probability": 0.9705 + }, + { + "start": 2267.76, + "end": 2269.02, + "probability": 0.9186 + }, + { + "start": 2269.14, + "end": 2270.9, + "probability": 0.9844 + }, + { + "start": 2271.4, + "end": 2273.26, + "probability": 0.9976 + }, + { + "start": 2273.62, + "end": 2277.74, + "probability": 0.9959 + }, + { + "start": 2278.26, + "end": 2280.42, + "probability": 0.9541 + }, + { + "start": 2280.94, + "end": 2282.16, + "probability": 0.9488 + }, + { + "start": 2282.6, + "end": 2286.52, + "probability": 0.9902 + }, + { + "start": 2287.0, + "end": 2288.24, + "probability": 0.9602 + }, + { + "start": 2288.78, + "end": 2291.78, + "probability": 0.9673 + }, + { + "start": 2292.2, + "end": 2294.9, + "probability": 0.9244 + }, + { + "start": 2295.24, + "end": 2297.2, + "probability": 0.9891 + }, + { + "start": 2297.3, + "end": 2300.04, + "probability": 0.9561 + }, + { + "start": 2300.88, + "end": 2302.18, + "probability": 0.7618 + }, + { + "start": 2302.24, + "end": 2305.84, + "probability": 0.9546 + }, + { + "start": 2306.18, + "end": 2308.34, + "probability": 0.9858 + }, + { + "start": 2308.54, + "end": 2311.9, + "probability": 0.9847 + }, + { + "start": 2311.94, + "end": 2312.56, + "probability": 0.7216 + }, + { + "start": 2313.08, + "end": 2315.14, + "probability": 0.9851 + }, + { + "start": 2315.66, + "end": 2319.04, + "probability": 0.9955 + }, + { + "start": 2319.74, + "end": 2324.26, + "probability": 0.9952 + }, + { + "start": 2324.72, + "end": 2326.3, + "probability": 0.9314 + }, + { + "start": 2326.42, + "end": 2327.72, + "probability": 0.9299 + }, + { + "start": 2328.06, + "end": 2330.48, + "probability": 0.9808 + }, + { + "start": 2331.2, + "end": 2331.66, + "probability": 0.9362 + }, + { + "start": 2331.94, + "end": 2334.4, + "probability": 0.9265 + }, + { + "start": 2334.42, + "end": 2338.8, + "probability": 0.9281 + }, + { + "start": 2339.8, + "end": 2341.21, + "probability": 0.8485 + }, + { + "start": 2360.14, + "end": 2361.02, + "probability": 0.6088 + }, + { + "start": 2361.04, + "end": 2361.98, + "probability": 0.7072 + }, + { + "start": 2362.32, + "end": 2365.94, + "probability": 0.9421 + }, + { + "start": 2367.8, + "end": 2369.46, + "probability": 0.9631 + }, + { + "start": 2370.24, + "end": 2372.14, + "probability": 0.9898 + }, + { + "start": 2372.32, + "end": 2372.54, + "probability": 0.9316 + }, + { + "start": 2372.66, + "end": 2373.34, + "probability": 0.5572 + }, + { + "start": 2373.36, + "end": 2375.84, + "probability": 0.9935 + }, + { + "start": 2376.12, + "end": 2377.46, + "probability": 0.7965 + }, + { + "start": 2377.78, + "end": 2383.76, + "probability": 0.9786 + }, + { + "start": 2384.26, + "end": 2384.74, + "probability": 0.9339 + }, + { + "start": 2385.5, + "end": 2386.98, + "probability": 0.9586 + }, + { + "start": 2388.54, + "end": 2389.96, + "probability": 0.9088 + }, + { + "start": 2390.08, + "end": 2396.06, + "probability": 0.9927 + }, + { + "start": 2396.84, + "end": 2399.46, + "probability": 0.9902 + }, + { + "start": 2399.52, + "end": 2404.52, + "probability": 0.9712 + }, + { + "start": 2405.92, + "end": 2408.28, + "probability": 0.9216 + }, + { + "start": 2408.28, + "end": 2412.42, + "probability": 0.9951 + }, + { + "start": 2412.42, + "end": 2416.9, + "probability": 0.9409 + }, + { + "start": 2419.01, + "end": 2421.74, + "probability": 0.8546 + }, + { + "start": 2422.88, + "end": 2426.54, + "probability": 0.9819 + }, + { + "start": 2426.54, + "end": 2431.94, + "probability": 0.9968 + }, + { + "start": 2433.2, + "end": 2437.18, + "probability": 0.9974 + }, + { + "start": 2437.18, + "end": 2440.3, + "probability": 0.9953 + }, + { + "start": 2440.92, + "end": 2441.62, + "probability": 0.8402 + }, + { + "start": 2441.76, + "end": 2444.74, + "probability": 0.8457 + }, + { + "start": 2445.52, + "end": 2448.1, + "probability": 0.9858 + }, + { + "start": 2448.1, + "end": 2451.16, + "probability": 0.9877 + }, + { + "start": 2451.86, + "end": 2454.94, + "probability": 0.8704 + }, + { + "start": 2455.36, + "end": 2458.34, + "probability": 0.9912 + }, + { + "start": 2458.58, + "end": 2462.18, + "probability": 0.9653 + }, + { + "start": 2463.4, + "end": 2468.84, + "probability": 0.9675 + }, + { + "start": 2468.84, + "end": 2472.72, + "probability": 0.9995 + }, + { + "start": 2473.78, + "end": 2476.48, + "probability": 0.8992 + }, + { + "start": 2476.7, + "end": 2478.36, + "probability": 0.8271 + }, + { + "start": 2480.78, + "end": 2484.88, + "probability": 0.9811 + }, + { + "start": 2485.02, + "end": 2485.78, + "probability": 0.7864 + }, + { + "start": 2485.9, + "end": 2488.8, + "probability": 0.9805 + }, + { + "start": 2489.48, + "end": 2491.2, + "probability": 0.9416 + }, + { + "start": 2491.7, + "end": 2497.48, + "probability": 0.894 + }, + { + "start": 2510.3, + "end": 2513.42, + "probability": 0.5751 + }, + { + "start": 2513.82, + "end": 2514.18, + "probability": 0.5953 + }, + { + "start": 2516.28, + "end": 2518.34, + "probability": 0.825 + }, + { + "start": 2519.62, + "end": 2522.52, + "probability": 0.9922 + }, + { + "start": 2523.96, + "end": 2531.0, + "probability": 0.9815 + }, + { + "start": 2531.9, + "end": 2533.8, + "probability": 0.9806 + }, + { + "start": 2534.54, + "end": 2537.88, + "probability": 0.9925 + }, + { + "start": 2538.2, + "end": 2539.54, + "probability": 0.7995 + }, + { + "start": 2540.86, + "end": 2541.52, + "probability": 0.7387 + }, + { + "start": 2541.58, + "end": 2544.72, + "probability": 0.754 + }, + { + "start": 2544.8, + "end": 2548.04, + "probability": 0.9032 + }, + { + "start": 2548.42, + "end": 2549.08, + "probability": 0.6924 + }, + { + "start": 2549.72, + "end": 2551.06, + "probability": 0.9656 + }, + { + "start": 2551.42, + "end": 2551.82, + "probability": 0.7978 + }, + { + "start": 2552.9, + "end": 2553.66, + "probability": 0.9376 + }, + { + "start": 2554.12, + "end": 2559.78, + "probability": 0.9751 + }, + { + "start": 2560.34, + "end": 2560.86, + "probability": 0.9558 + }, + { + "start": 2561.6, + "end": 2562.22, + "probability": 0.5464 + }, + { + "start": 2563.28, + "end": 2563.96, + "probability": 0.6626 + }, + { + "start": 2564.6, + "end": 2566.54, + "probability": 0.8561 + }, + { + "start": 2568.26, + "end": 2569.88, + "probability": 0.3997 + }, + { + "start": 2570.12, + "end": 2570.9, + "probability": 0.025 + }, + { + "start": 2570.9, + "end": 2570.9, + "probability": 0.3673 + }, + { + "start": 2570.9, + "end": 2571.74, + "probability": 0.7179 + }, + { + "start": 2572.3, + "end": 2573.76, + "probability": 0.7851 + }, + { + "start": 2573.88, + "end": 2575.12, + "probability": 0.9336 + }, + { + "start": 2575.18, + "end": 2577.24, + "probability": 0.8397 + }, + { + "start": 2578.68, + "end": 2582.28, + "probability": 0.9927 + }, + { + "start": 2583.22, + "end": 2584.62, + "probability": 0.8239 + }, + { + "start": 2586.36, + "end": 2586.56, + "probability": 0.5698 + }, + { + "start": 2587.7, + "end": 2589.32, + "probability": 0.8394 + }, + { + "start": 2590.46, + "end": 2591.66, + "probability": 0.9859 + }, + { + "start": 2592.06, + "end": 2593.56, + "probability": 0.9189 + }, + { + "start": 2594.4, + "end": 2598.4, + "probability": 0.9902 + }, + { + "start": 2598.44, + "end": 2600.16, + "probability": 0.5385 + }, + { + "start": 2600.7, + "end": 2601.96, + "probability": 0.7244 + }, + { + "start": 2602.92, + "end": 2605.54, + "probability": 0.9497 + }, + { + "start": 2606.7, + "end": 2607.54, + "probability": 0.7643 + }, + { + "start": 2607.82, + "end": 2610.4, + "probability": 0.9969 + }, + { + "start": 2611.44, + "end": 2612.56, + "probability": 0.8284 + }, + { + "start": 2613.74, + "end": 2614.66, + "probability": 0.8799 + }, + { + "start": 2615.2, + "end": 2616.02, + "probability": 0.8998 + }, + { + "start": 2617.36, + "end": 2619.78, + "probability": 0.9149 + }, + { + "start": 2620.64, + "end": 2621.04, + "probability": 0.9042 + }, + { + "start": 2621.7, + "end": 2623.16, + "probability": 0.8377 + }, + { + "start": 2623.24, + "end": 2627.3, + "probability": 0.8644 + }, + { + "start": 2628.0, + "end": 2631.52, + "probability": 0.9847 + }, + { + "start": 2632.7, + "end": 2633.42, + "probability": 0.7113 + }, + { + "start": 2634.9, + "end": 2636.62, + "probability": 0.7915 + }, + { + "start": 2636.76, + "end": 2638.0, + "probability": 0.9931 + }, + { + "start": 2638.28, + "end": 2638.44, + "probability": 0.9146 + }, + { + "start": 2639.06, + "end": 2641.44, + "probability": 0.6615 + }, + { + "start": 2642.4, + "end": 2643.52, + "probability": 0.8594 + }, + { + "start": 2644.1, + "end": 2647.68, + "probability": 0.8444 + }, + { + "start": 2648.16, + "end": 2649.92, + "probability": 0.3149 + }, + { + "start": 2650.02, + "end": 2653.2, + "probability": 0.7824 + }, + { + "start": 2653.86, + "end": 2655.22, + "probability": 0.6663 + }, + { + "start": 2655.28, + "end": 2656.0, + "probability": 0.4818 + }, + { + "start": 2656.14, + "end": 2656.88, + "probability": 0.4228 + }, + { + "start": 2657.36, + "end": 2661.68, + "probability": 0.0561 + }, + { + "start": 2663.32, + "end": 2663.46, + "probability": 0.0494 + }, + { + "start": 2675.52, + "end": 2675.82, + "probability": 0.4613 + }, + { + "start": 2675.82, + "end": 2678.4, + "probability": 0.552 + }, + { + "start": 2678.86, + "end": 2681.02, + "probability": 0.9442 + }, + { + "start": 2682.06, + "end": 2684.74, + "probability": 0.6576 + }, + { + "start": 2685.04, + "end": 2685.88, + "probability": 0.9835 + }, + { + "start": 2687.08, + "end": 2689.4, + "probability": 0.8041 + }, + { + "start": 2689.9, + "end": 2690.38, + "probability": 0.6708 + }, + { + "start": 2691.75, + "end": 2694.12, + "probability": 0.7893 + }, + { + "start": 2694.22, + "end": 2695.36, + "probability": 0.6822 + }, + { + "start": 2695.42, + "end": 2696.9, + "probability": 0.9342 + }, + { + "start": 2697.5, + "end": 2699.4, + "probability": 0.6405 + }, + { + "start": 2699.98, + "end": 2701.54, + "probability": 0.9382 + }, + { + "start": 2702.46, + "end": 2705.58, + "probability": 0.56 + }, + { + "start": 2706.1, + "end": 2707.26, + "probability": 0.5397 + }, + { + "start": 2708.32, + "end": 2711.85, + "probability": 0.8428 + }, + { + "start": 2712.88, + "end": 2716.8, + "probability": 0.933 + }, + { + "start": 2717.52, + "end": 2720.78, + "probability": 0.9305 + }, + { + "start": 2721.42, + "end": 2723.3, + "probability": 0.6221 + }, + { + "start": 2723.62, + "end": 2724.94, + "probability": 0.9205 + }, + { + "start": 2725.02, + "end": 2726.66, + "probability": 0.8169 + }, + { + "start": 2727.28, + "end": 2730.26, + "probability": 0.7184 + }, + { + "start": 2730.92, + "end": 2733.18, + "probability": 0.5822 + }, + { + "start": 2733.36, + "end": 2736.68, + "probability": 0.8535 + }, + { + "start": 2736.68, + "end": 2740.44, + "probability": 0.9575 + }, + { + "start": 2741.08, + "end": 2742.18, + "probability": 0.8393 + }, + { + "start": 2743.32, + "end": 2743.32, + "probability": 0.2087 + }, + { + "start": 2745.58, + "end": 2746.34, + "probability": 0.0422 + }, + { + "start": 2747.04, + "end": 2747.04, + "probability": 0.4767 + }, + { + "start": 2773.22, + "end": 2776.68, + "probability": 0.8316 + }, + { + "start": 2780.62, + "end": 2780.72, + "probability": 0.5222 + }, + { + "start": 2781.52, + "end": 2784.66, + "probability": 0.7677 + }, + { + "start": 2784.76, + "end": 2790.54, + "probability": 0.9398 + }, + { + "start": 2793.1, + "end": 2794.26, + "probability": 0.8898 + }, + { + "start": 2794.3, + "end": 2797.26, + "probability": 0.9978 + }, + { + "start": 2797.34, + "end": 2801.56, + "probability": 0.9975 + }, + { + "start": 2801.62, + "end": 2805.4, + "probability": 0.9922 + }, + { + "start": 2805.52, + "end": 2807.16, + "probability": 0.9885 + }, + { + "start": 2808.96, + "end": 2812.32, + "probability": 0.9421 + }, + { + "start": 2814.58, + "end": 2817.2, + "probability": 0.9959 + }, + { + "start": 2819.22, + "end": 2825.1, + "probability": 0.9933 + }, + { + "start": 2826.86, + "end": 2829.32, + "probability": 0.9951 + }, + { + "start": 2830.26, + "end": 2835.2, + "probability": 0.989 + }, + { + "start": 2835.82, + "end": 2837.33, + "probability": 0.9985 + }, + { + "start": 2838.16, + "end": 2840.14, + "probability": 0.9836 + }, + { + "start": 2841.44, + "end": 2843.92, + "probability": 0.9604 + }, + { + "start": 2844.16, + "end": 2845.1, + "probability": 0.986 + }, + { + "start": 2845.5, + "end": 2845.96, + "probability": 0.9626 + }, + { + "start": 2846.1, + "end": 2846.8, + "probability": 0.9887 + }, + { + "start": 2847.2, + "end": 2847.54, + "probability": 0.6423 + }, + { + "start": 2848.1, + "end": 2849.32, + "probability": 0.9971 + }, + { + "start": 2850.4, + "end": 2852.22, + "probability": 0.9977 + }, + { + "start": 2853.92, + "end": 2855.11, + "probability": 0.9949 + }, + { + "start": 2855.82, + "end": 2861.02, + "probability": 0.9796 + }, + { + "start": 2862.2, + "end": 2863.14, + "probability": 0.5631 + }, + { + "start": 2863.94, + "end": 2865.22, + "probability": 0.9761 + }, + { + "start": 2865.74, + "end": 2867.0, + "probability": 0.9683 + }, + { + "start": 2867.82, + "end": 2871.02, + "probability": 0.99 + }, + { + "start": 2871.68, + "end": 2876.92, + "probability": 0.993 + }, + { + "start": 2878.46, + "end": 2881.88, + "probability": 0.9465 + }, + { + "start": 2882.7, + "end": 2884.92, + "probability": 0.9125 + }, + { + "start": 2885.52, + "end": 2887.28, + "probability": 0.9006 + }, + { + "start": 2887.4, + "end": 2890.3, + "probability": 0.9664 + }, + { + "start": 2890.52, + "end": 2891.7, + "probability": 0.9855 + }, + { + "start": 2891.82, + "end": 2892.5, + "probability": 0.645 + }, + { + "start": 2893.08, + "end": 2898.02, + "probability": 0.9595 + }, + { + "start": 2898.74, + "end": 2901.0, + "probability": 0.9548 + }, + { + "start": 2901.88, + "end": 2904.18, + "probability": 0.8931 + }, + { + "start": 2905.12, + "end": 2907.02, + "probability": 0.9441 + }, + { + "start": 2907.8, + "end": 2910.76, + "probability": 0.9259 + }, + { + "start": 2911.5, + "end": 2913.16, + "probability": 0.9798 + }, + { + "start": 2913.68, + "end": 2920.36, + "probability": 0.9084 + }, + { + "start": 2921.5, + "end": 2922.7, + "probability": 0.9335 + }, + { + "start": 2923.74, + "end": 2926.66, + "probability": 0.8617 + }, + { + "start": 2927.74, + "end": 2929.36, + "probability": 0.8782 + }, + { + "start": 2930.02, + "end": 2933.52, + "probability": 0.998 + }, + { + "start": 2934.04, + "end": 2939.78, + "probability": 0.7189 + }, + { + "start": 2940.28, + "end": 2941.32, + "probability": 0.8447 + }, + { + "start": 2941.48, + "end": 2943.66, + "probability": 0.5711 + }, + { + "start": 2943.7, + "end": 2944.44, + "probability": 0.8395 + }, + { + "start": 2944.56, + "end": 2945.2, + "probability": 0.9351 + }, + { + "start": 2945.3, + "end": 2945.95, + "probability": 0.9388 + }, + { + "start": 2946.1, + "end": 2946.97, + "probability": 0.9614 + }, + { + "start": 2947.36, + "end": 2948.88, + "probability": 0.9748 + }, + { + "start": 2949.02, + "end": 2950.2, + "probability": 0.9324 + }, + { + "start": 2950.36, + "end": 2951.46, + "probability": 0.9629 + }, + { + "start": 2951.9, + "end": 2953.84, + "probability": 0.9853 + }, + { + "start": 2954.8, + "end": 2957.46, + "probability": 0.9561 + }, + { + "start": 2958.3, + "end": 2959.51, + "probability": 0.9827 + }, + { + "start": 2960.16, + "end": 2961.08, + "probability": 0.9674 + }, + { + "start": 2961.9, + "end": 2964.82, + "probability": 0.9969 + }, + { + "start": 2965.0, + "end": 2969.48, + "probability": 0.8826 + }, + { + "start": 2971.98, + "end": 2972.76, + "probability": 0.07 + }, + { + "start": 2972.76, + "end": 2974.18, + "probability": 0.7942 + }, + { + "start": 2974.62, + "end": 2975.34, + "probability": 0.8579 + }, + { + "start": 2976.18, + "end": 2979.6, + "probability": 0.9539 + }, + { + "start": 2979.6, + "end": 2982.4, + "probability": 0.9972 + }, + { + "start": 2982.92, + "end": 2984.76, + "probability": 0.9956 + }, + { + "start": 2985.88, + "end": 2987.09, + "probability": 0.9833 + }, + { + "start": 2987.68, + "end": 2990.42, + "probability": 0.9909 + }, + { + "start": 2990.98, + "end": 2992.32, + "probability": 0.935 + }, + { + "start": 2992.38, + "end": 2992.92, + "probability": 0.8881 + }, + { + "start": 2993.62, + "end": 2995.26, + "probability": 0.8728 + }, + { + "start": 2995.82, + "end": 2998.64, + "probability": 0.8528 + }, + { + "start": 2999.34, + "end": 3001.52, + "probability": 0.9984 + }, + { + "start": 3003.22, + "end": 3004.26, + "probability": 0.9062 + }, + { + "start": 3004.58, + "end": 3008.7, + "probability": 0.9362 + }, + { + "start": 3010.36, + "end": 3010.6, + "probability": 0.8811 + }, + { + "start": 3010.82, + "end": 3012.9, + "probability": 0.9946 + }, + { + "start": 3013.04, + "end": 3015.61, + "probability": 0.9706 + }, + { + "start": 3017.24, + "end": 3021.14, + "probability": 0.9524 + }, + { + "start": 3021.78, + "end": 3023.34, + "probability": 0.8926 + }, + { + "start": 3024.16, + "end": 3026.64, + "probability": 0.9995 + }, + { + "start": 3027.24, + "end": 3028.64, + "probability": 0.7986 + }, + { + "start": 3028.72, + "end": 3029.32, + "probability": 0.9304 + }, + { + "start": 3030.06, + "end": 3031.02, + "probability": 0.9417 + }, + { + "start": 3031.66, + "end": 3033.42, + "probability": 0.994 + }, + { + "start": 3034.32, + "end": 3034.82, + "probability": 0.978 + }, + { + "start": 3035.48, + "end": 3036.06, + "probability": 0.7866 + }, + { + "start": 3037.72, + "end": 3040.02, + "probability": 0.9311 + }, + { + "start": 3040.74, + "end": 3041.24, + "probability": 0.986 + }, + { + "start": 3041.3, + "end": 3041.84, + "probability": 0.9896 + }, + { + "start": 3042.04, + "end": 3043.4, + "probability": 0.9956 + }, + { + "start": 3043.44, + "end": 3047.32, + "probability": 0.9876 + }, + { + "start": 3048.12, + "end": 3049.6, + "probability": 0.9942 + }, + { + "start": 3049.68, + "end": 3050.3, + "probability": 0.9784 + }, + { + "start": 3050.44, + "end": 3050.82, + "probability": 0.6782 + }, + { + "start": 3050.84, + "end": 3051.96, + "probability": 0.9374 + }, + { + "start": 3052.24, + "end": 3054.84, + "probability": 0.9881 + }, + { + "start": 3055.4, + "end": 3056.54, + "probability": 0.7514 + }, + { + "start": 3057.56, + "end": 3061.44, + "probability": 0.9987 + }, + { + "start": 3061.44, + "end": 3065.68, + "probability": 0.9978 + }, + { + "start": 3066.32, + "end": 3069.12, + "probability": 0.9969 + }, + { + "start": 3069.92, + "end": 3074.76, + "probability": 0.9937 + }, + { + "start": 3075.3, + "end": 3077.54, + "probability": 0.9791 + }, + { + "start": 3078.18, + "end": 3082.36, + "probability": 0.9958 + }, + { + "start": 3083.08, + "end": 3084.02, + "probability": 0.9963 + }, + { + "start": 3086.58, + "end": 3087.45, + "probability": 0.7692 + }, + { + "start": 3089.82, + "end": 3094.18, + "probability": 0.9196 + }, + { + "start": 3095.2, + "end": 3098.05, + "probability": 0.8356 + }, + { + "start": 3098.58, + "end": 3102.8, + "probability": 0.968 + }, + { + "start": 3103.7, + "end": 3105.92, + "probability": 0.8692 + }, + { + "start": 3106.02, + "end": 3108.46, + "probability": 0.9966 + }, + { + "start": 3109.2, + "end": 3113.14, + "probability": 0.9006 + }, + { + "start": 3114.26, + "end": 3117.1, + "probability": 0.9651 + }, + { + "start": 3118.26, + "end": 3118.82, + "probability": 0.7558 + }, + { + "start": 3119.46, + "end": 3122.94, + "probability": 0.8563 + }, + { + "start": 3123.96, + "end": 3124.62, + "probability": 0.3919 + }, + { + "start": 3124.7, + "end": 3124.84, + "probability": 0.8823 + }, + { + "start": 3124.98, + "end": 3125.34, + "probability": 0.9191 + }, + { + "start": 3125.7, + "end": 3126.19, + "probability": 0.9682 + }, + { + "start": 3127.14, + "end": 3127.8, + "probability": 0.9392 + }, + { + "start": 3127.92, + "end": 3128.62, + "probability": 0.9709 + }, + { + "start": 3129.12, + "end": 3129.92, + "probability": 0.8313 + }, + { + "start": 3130.52, + "end": 3135.14, + "probability": 0.8477 + }, + { + "start": 3136.02, + "end": 3140.24, + "probability": 0.9832 + }, + { + "start": 3140.48, + "end": 3141.76, + "probability": 0.8297 + }, + { + "start": 3143.96, + "end": 3149.28, + "probability": 0.9243 + }, + { + "start": 3150.42, + "end": 3152.29, + "probability": 0.9961 + }, + { + "start": 3153.48, + "end": 3156.34, + "probability": 0.9224 + }, + { + "start": 3156.74, + "end": 3161.54, + "probability": 0.9436 + }, + { + "start": 3162.28, + "end": 3167.64, + "probability": 0.9981 + }, + { + "start": 3168.2, + "end": 3170.02, + "probability": 0.7699 + }, + { + "start": 3170.84, + "end": 3173.96, + "probability": 0.9889 + }, + { + "start": 3173.98, + "end": 3177.94, + "probability": 0.996 + }, + { + "start": 3178.3, + "end": 3179.7, + "probability": 0.763 + }, + { + "start": 3180.04, + "end": 3183.18, + "probability": 0.8217 + }, + { + "start": 3183.38, + "end": 3184.14, + "probability": 0.9701 + }, + { + "start": 3184.24, + "end": 3187.68, + "probability": 0.8517 + }, + { + "start": 3187.82, + "end": 3193.02, + "probability": 0.9611 + }, + { + "start": 3193.12, + "end": 3198.42, + "probability": 0.7784 + }, + { + "start": 3198.82, + "end": 3201.36, + "probability": 0.9961 + }, + { + "start": 3201.92, + "end": 3206.9, + "probability": 0.9868 + }, + { + "start": 3207.94, + "end": 3210.3, + "probability": 0.9216 + }, + { + "start": 3211.42, + "end": 3215.76, + "probability": 0.8652 + }, + { + "start": 3216.14, + "end": 3217.82, + "probability": 0.9817 + }, + { + "start": 3218.92, + "end": 3221.84, + "probability": 0.9985 + }, + { + "start": 3221.84, + "end": 3225.32, + "probability": 0.9957 + }, + { + "start": 3225.66, + "end": 3228.88, + "probability": 0.991 + }, + { + "start": 3229.4, + "end": 3231.48, + "probability": 0.9824 + }, + { + "start": 3232.12, + "end": 3235.86, + "probability": 0.9978 + }, + { + "start": 3236.82, + "end": 3244.14, + "probability": 0.9313 + }, + { + "start": 3244.14, + "end": 3248.34, + "probability": 0.9756 + }, + { + "start": 3248.68, + "end": 3253.98, + "probability": 0.9886 + }, + { + "start": 3254.0, + "end": 3254.5, + "probability": 0.8658 + }, + { + "start": 3254.62, + "end": 3256.7, + "probability": 0.9961 + }, + { + "start": 3257.46, + "end": 3262.76, + "probability": 0.9708 + }, + { + "start": 3264.06, + "end": 3265.54, + "probability": 0.8829 + }, + { + "start": 3266.24, + "end": 3267.02, + "probability": 0.879 + }, + { + "start": 3267.08, + "end": 3271.1, + "probability": 0.9777 + }, + { + "start": 3271.26, + "end": 3273.34, + "probability": 0.9946 + }, + { + "start": 3274.7, + "end": 3275.62, + "probability": 0.951 + }, + { + "start": 3276.6, + "end": 3280.48, + "probability": 0.7174 + }, + { + "start": 3281.24, + "end": 3283.88, + "probability": 0.8501 + }, + { + "start": 3285.64, + "end": 3287.14, + "probability": 0.9284 + }, + { + "start": 3287.42, + "end": 3291.64, + "probability": 0.9958 + }, + { + "start": 3292.28, + "end": 3293.52, + "probability": 0.5201 + }, + { + "start": 3294.1, + "end": 3296.48, + "probability": 0.8345 + }, + { + "start": 3296.54, + "end": 3299.22, + "probability": 0.9979 + }, + { + "start": 3299.96, + "end": 3303.74, + "probability": 0.9946 + }, + { + "start": 3303.98, + "end": 3304.48, + "probability": 0.8411 + }, + { + "start": 3304.72, + "end": 3306.88, + "probability": 0.8225 + }, + { + "start": 3307.04, + "end": 3311.03, + "probability": 0.9945 + }, + { + "start": 3311.78, + "end": 3312.3, + "probability": 0.998 + }, + { + "start": 3312.58, + "end": 3312.98, + "probability": 0.6898 + }, + { + "start": 3328.6, + "end": 3329.7, + "probability": 0.4793 + }, + { + "start": 3332.46, + "end": 3335.06, + "probability": 0.9184 + }, + { + "start": 3335.9, + "end": 3336.82, + "probability": 0.6473 + }, + { + "start": 3337.66, + "end": 3338.14, + "probability": 0.7253 + }, + { + "start": 3339.57, + "end": 3345.28, + "probability": 0.9704 + }, + { + "start": 3345.52, + "end": 3346.4, + "probability": 0.7522 + }, + { + "start": 3346.7, + "end": 3346.84, + "probability": 0.6799 + }, + { + "start": 3347.22, + "end": 3350.84, + "probability": 0.6929 + }, + { + "start": 3351.5, + "end": 3354.24, + "probability": 0.8795 + }, + { + "start": 3354.96, + "end": 3358.14, + "probability": 0.9447 + }, + { + "start": 3359.0, + "end": 3360.16, + "probability": 0.9653 + }, + { + "start": 3361.36, + "end": 3361.56, + "probability": 0.8179 + }, + { + "start": 3362.1, + "end": 3362.22, + "probability": 0.4716 + }, + { + "start": 3362.24, + "end": 3362.4, + "probability": 0.4339 + }, + { + "start": 3363.78, + "end": 3367.56, + "probability": 0.9875 + }, + { + "start": 3367.56, + "end": 3370.72, + "probability": 0.9958 + }, + { + "start": 3371.7, + "end": 3374.32, + "probability": 0.7972 + }, + { + "start": 3375.1, + "end": 3375.28, + "probability": 0.494 + }, + { + "start": 3375.3, + "end": 3379.38, + "probability": 0.9924 + }, + { + "start": 3380.78, + "end": 3389.96, + "probability": 0.9907 + }, + { + "start": 3390.52, + "end": 3393.98, + "probability": 0.9963 + }, + { + "start": 3395.02, + "end": 3398.6, + "probability": 0.8478 + }, + { + "start": 3399.16, + "end": 3402.1, + "probability": 0.9756 + }, + { + "start": 3403.12, + "end": 3404.48, + "probability": 0.7593 + }, + { + "start": 3405.18, + "end": 3406.32, + "probability": 0.9985 + }, + { + "start": 3407.48, + "end": 3411.1, + "probability": 0.664 + }, + { + "start": 3411.32, + "end": 3414.6, + "probability": 0.656 + }, + { + "start": 3415.9, + "end": 3417.76, + "probability": 0.9299 + }, + { + "start": 3418.4, + "end": 3421.68, + "probability": 0.8047 + }, + { + "start": 3422.44, + "end": 3426.02, + "probability": 0.9949 + }, + { + "start": 3426.22, + "end": 3428.76, + "probability": 0.6319 + }, + { + "start": 3429.96, + "end": 3430.62, + "probability": 0.9031 + }, + { + "start": 3430.68, + "end": 3436.12, + "probability": 0.9814 + }, + { + "start": 3436.94, + "end": 3439.08, + "probability": 0.8801 + }, + { + "start": 3439.3, + "end": 3439.46, + "probability": 0.1686 + }, + { + "start": 3439.62, + "end": 3446.74, + "probability": 0.9666 + }, + { + "start": 3446.98, + "end": 3448.92, + "probability": 0.8219 + }, + { + "start": 3449.5, + "end": 3450.2, + "probability": 0.4616 + }, + { + "start": 3450.58, + "end": 3455.08, + "probability": 0.9191 + }, + { + "start": 3455.58, + "end": 3456.48, + "probability": 0.797 + }, + { + "start": 3457.74, + "end": 3461.88, + "probability": 0.9763 + }, + { + "start": 3462.6, + "end": 3467.77, + "probability": 0.3107 + }, + { + "start": 3469.0, + "end": 3470.28, + "probability": 0.7128 + }, + { + "start": 3470.4, + "end": 3471.82, + "probability": 0.9566 + }, + { + "start": 3472.16, + "end": 3474.64, + "probability": 0.9548 + }, + { + "start": 3474.64, + "end": 3478.16, + "probability": 0.9293 + }, + { + "start": 3479.6, + "end": 3480.74, + "probability": 0.8064 + }, + { + "start": 3480.8, + "end": 3481.76, + "probability": 0.7253 + }, + { + "start": 3481.94, + "end": 3482.88, + "probability": 0.4894 + }, + { + "start": 3482.98, + "end": 3483.6, + "probability": 0.7836 + }, + { + "start": 3483.74, + "end": 3485.6, + "probability": 0.7516 + }, + { + "start": 3485.68, + "end": 3486.54, + "probability": 0.9507 + }, + { + "start": 3486.72, + "end": 3487.5, + "probability": 0.9216 + }, + { + "start": 3487.94, + "end": 3489.34, + "probability": 0.6871 + }, + { + "start": 3489.34, + "end": 3489.54, + "probability": 0.1295 + }, + { + "start": 3489.54, + "end": 3490.14, + "probability": 0.0013 + }, + { + "start": 3490.32, + "end": 3490.66, + "probability": 0.491 + }, + { + "start": 3491.3, + "end": 3492.06, + "probability": 0.0196 + }, + { + "start": 3492.4, + "end": 3495.92, + "probability": 0.8614 + }, + { + "start": 3496.22, + "end": 3497.67, + "probability": 0.9951 + }, + { + "start": 3498.36, + "end": 3498.82, + "probability": 0.6544 + }, + { + "start": 3501.0, + "end": 3501.88, + "probability": 0.8669 + }, + { + "start": 3502.0, + "end": 3502.7, + "probability": 0.7223 + }, + { + "start": 3502.72, + "end": 3503.02, + "probability": 0.4683 + }, + { + "start": 3503.1, + "end": 3506.82, + "probability": 0.793 + }, + { + "start": 3506.86, + "end": 3507.8, + "probability": 0.4417 + }, + { + "start": 3509.28, + "end": 3513.0, + "probability": 0.9792 + }, + { + "start": 3513.08, + "end": 3515.56, + "probability": 0.8256 + }, + { + "start": 3515.78, + "end": 3516.93, + "probability": 0.7519 + }, + { + "start": 3517.7, + "end": 3518.86, + "probability": 0.7456 + }, + { + "start": 3519.8, + "end": 3520.98, + "probability": 0.6245 + }, + { + "start": 3521.84, + "end": 3523.32, + "probability": 0.9489 + }, + { + "start": 3523.72, + "end": 3524.32, + "probability": 0.1346 + }, + { + "start": 3524.42, + "end": 3525.7, + "probability": 0.6997 + }, + { + "start": 3527.78, + "end": 3531.2, + "probability": 0.9865 + }, + { + "start": 3531.32, + "end": 3532.54, + "probability": 0.9777 + }, + { + "start": 3532.98, + "end": 3534.8, + "probability": 0.892 + }, + { + "start": 3535.62, + "end": 3536.62, + "probability": 0.8775 + }, + { + "start": 3537.7, + "end": 3540.08, + "probability": 0.9869 + }, + { + "start": 3540.12, + "end": 3541.26, + "probability": 0.7707 + }, + { + "start": 3541.4, + "end": 3545.0, + "probability": 0.9507 + }, + { + "start": 3545.74, + "end": 3546.08, + "probability": 0.9664 + }, + { + "start": 3546.64, + "end": 3547.28, + "probability": 0.6708 + }, + { + "start": 3547.58, + "end": 3549.02, + "probability": 0.7311 + }, + { + "start": 3549.2, + "end": 3550.2, + "probability": 0.8369 + }, + { + "start": 3550.74, + "end": 3553.2, + "probability": 0.9385 + }, + { + "start": 3563.78, + "end": 3564.14, + "probability": 0.2279 + }, + { + "start": 3565.58, + "end": 3565.58, + "probability": 0.2207 + }, + { + "start": 3568.54, + "end": 3569.34, + "probability": 0.6702 + }, + { + "start": 3570.64, + "end": 3571.64, + "probability": 0.7858 + }, + { + "start": 3571.78, + "end": 3572.16, + "probability": 0.5282 + }, + { + "start": 3572.3, + "end": 3574.6, + "probability": 0.9532 + }, + { + "start": 3578.16, + "end": 3580.64, + "probability": 0.5621 + }, + { + "start": 3580.76, + "end": 3582.7, + "probability": 0.9844 + }, + { + "start": 3583.38, + "end": 3584.52, + "probability": 0.9492 + }, + { + "start": 3584.66, + "end": 3591.34, + "probability": 0.9667 + }, + { + "start": 3591.8, + "end": 3592.32, + "probability": 0.5164 + }, + { + "start": 3593.08, + "end": 3596.16, + "probability": 0.9363 + }, + { + "start": 3596.86, + "end": 3600.82, + "probability": 0.9945 + }, + { + "start": 3601.94, + "end": 3602.92, + "probability": 0.9221 + }, + { + "start": 3603.04, + "end": 3604.86, + "probability": 0.7144 + }, + { + "start": 3605.76, + "end": 3606.68, + "probability": 0.7866 + }, + { + "start": 3607.66, + "end": 3610.02, + "probability": 0.5238 + }, + { + "start": 3610.64, + "end": 3612.16, + "probability": 0.8273 + }, + { + "start": 3612.6, + "end": 3613.76, + "probability": 0.9667 + }, + { + "start": 3613.8, + "end": 3614.58, + "probability": 0.9265 + }, + { + "start": 3614.6, + "end": 3616.58, + "probability": 0.7308 + }, + { + "start": 3616.66, + "end": 3617.0, + "probability": 0.3712 + }, + { + "start": 3617.64, + "end": 3618.52, + "probability": 0.6557 + }, + { + "start": 3619.8, + "end": 3621.24, + "probability": 0.8606 + }, + { + "start": 3622.4, + "end": 3624.66, + "probability": 0.9133 + }, + { + "start": 3624.76, + "end": 3626.78, + "probability": 0.9255 + }, + { + "start": 3627.5, + "end": 3629.26, + "probability": 0.979 + }, + { + "start": 3629.4, + "end": 3629.74, + "probability": 0.4846 + }, + { + "start": 3630.28, + "end": 3631.38, + "probability": 0.9168 + }, + { + "start": 3631.72, + "end": 3633.94, + "probability": 0.9915 + }, + { + "start": 3633.96, + "end": 3634.4, + "probability": 0.3099 + }, + { + "start": 3634.84, + "end": 3637.88, + "probability": 0.9829 + }, + { + "start": 3638.26, + "end": 3640.56, + "probability": 0.9315 + }, + { + "start": 3640.7, + "end": 3641.24, + "probability": 0.3749 + }, + { + "start": 3642.24, + "end": 3644.98, + "probability": 0.9941 + }, + { + "start": 3645.02, + "end": 3645.88, + "probability": 0.9455 + }, + { + "start": 3646.52, + "end": 3647.52, + "probability": 0.8989 + }, + { + "start": 3647.7, + "end": 3648.36, + "probability": 0.6517 + }, + { + "start": 3648.46, + "end": 3648.46, + "probability": 0.4948 + }, + { + "start": 3648.46, + "end": 3650.74, + "probability": 0.6939 + }, + { + "start": 3650.84, + "end": 3654.44, + "probability": 0.9895 + }, + { + "start": 3655.04, + "end": 3655.5, + "probability": 0.9377 + }, + { + "start": 3656.02, + "end": 3656.4, + "probability": 0.5049 + }, + { + "start": 3656.52, + "end": 3657.9, + "probability": 0.6836 + }, + { + "start": 3658.68, + "end": 3659.18, + "probability": 0.5969 + }, + { + "start": 3659.78, + "end": 3662.38, + "probability": 0.962 + }, + { + "start": 3663.29, + "end": 3664.42, + "probability": 0.7921 + }, + { + "start": 3664.42, + "end": 3664.78, + "probability": 0.6155 + }, + { + "start": 3665.84, + "end": 3668.98, + "probability": 0.9816 + }, + { + "start": 3669.16, + "end": 3671.1, + "probability": 0.9338 + }, + { + "start": 3671.24, + "end": 3672.1, + "probability": 0.9287 + }, + { + "start": 3673.4, + "end": 3674.98, + "probability": 0.8867 + }, + { + "start": 3676.66, + "end": 3677.86, + "probability": 0.9617 + }, + { + "start": 3679.26, + "end": 3679.82, + "probability": 0.9355 + }, + { + "start": 3680.52, + "end": 3681.22, + "probability": 0.9883 + }, + { + "start": 3682.52, + "end": 3683.4, + "probability": 0.9497 + }, + { + "start": 3684.72, + "end": 3686.16, + "probability": 0.9793 + }, + { + "start": 3687.64, + "end": 3689.97, + "probability": 0.853 + }, + { + "start": 3691.14, + "end": 3692.36, + "probability": 0.9347 + }, + { + "start": 3693.54, + "end": 3694.68, + "probability": 0.9592 + }, + { + "start": 3695.76, + "end": 3697.24, + "probability": 0.9802 + }, + { + "start": 3698.04, + "end": 3701.12, + "probability": 0.9025 + }, + { + "start": 3702.12, + "end": 3703.5, + "probability": 0.9385 + }, + { + "start": 3704.6, + "end": 3709.3, + "probability": 0.9977 + }, + { + "start": 3709.94, + "end": 3714.26, + "probability": 0.979 + }, + { + "start": 3715.24, + "end": 3716.18, + "probability": 0.999 + }, + { + "start": 3717.82, + "end": 3721.02, + "probability": 0.9795 + }, + { + "start": 3721.06, + "end": 3721.68, + "probability": 0.807 + }, + { + "start": 3721.74, + "end": 3722.7, + "probability": 0.9501 + }, + { + "start": 3723.56, + "end": 3724.52, + "probability": 0.7358 + }, + { + "start": 3725.22, + "end": 3726.06, + "probability": 0.4002 + }, + { + "start": 3727.08, + "end": 3728.62, + "probability": 0.9863 + }, + { + "start": 3728.76, + "end": 3730.66, + "probability": 0.9885 + }, + { + "start": 3731.56, + "end": 3734.0, + "probability": 0.9277 + }, + { + "start": 3734.22, + "end": 3736.86, + "probability": 0.6791 + }, + { + "start": 3737.12, + "end": 3738.17, + "probability": 0.8668 + }, + { + "start": 3738.54, + "end": 3738.94, + "probability": 0.4231 + }, + { + "start": 3739.34, + "end": 3740.14, + "probability": 0.954 + }, + { + "start": 3740.58, + "end": 3741.76, + "probability": 0.9856 + }, + { + "start": 3741.82, + "end": 3742.88, + "probability": 0.9089 + }, + { + "start": 3743.2, + "end": 3744.38, + "probability": 0.8802 + }, + { + "start": 3744.6, + "end": 3745.48, + "probability": 0.9819 + }, + { + "start": 3745.52, + "end": 3746.04, + "probability": 0.9841 + }, + { + "start": 3747.2, + "end": 3749.04, + "probability": 0.968 + }, + { + "start": 3751.34, + "end": 3751.82, + "probability": 0.4948 + }, + { + "start": 3751.98, + "end": 3752.66, + "probability": 0.9404 + }, + { + "start": 3753.54, + "end": 3755.48, + "probability": 0.6408 + }, + { + "start": 3755.6, + "end": 3760.36, + "probability": 0.9208 + }, + { + "start": 3761.04, + "end": 3762.12, + "probability": 0.9098 + }, + { + "start": 3762.12, + "end": 3762.34, + "probability": 0.4046 + }, + { + "start": 3762.4, + "end": 3763.7, + "probability": 0.8936 + }, + { + "start": 3764.42, + "end": 3765.88, + "probability": 0.7356 + }, + { + "start": 3765.9, + "end": 3766.84, + "probability": 0.9756 + }, + { + "start": 3766.88, + "end": 3767.38, + "probability": 0.7177 + }, + { + "start": 3767.58, + "end": 3769.64, + "probability": 0.9526 + }, + { + "start": 3770.36, + "end": 3771.56, + "probability": 0.7497 + }, + { + "start": 3771.66, + "end": 3777.4, + "probability": 0.8207 + }, + { + "start": 3779.04, + "end": 3779.94, + "probability": 0.7783 + }, + { + "start": 3780.26, + "end": 3781.0, + "probability": 0.9334 + }, + { + "start": 3781.34, + "end": 3781.92, + "probability": 0.6429 + }, + { + "start": 3782.96, + "end": 3786.04, + "probability": 0.1182 + }, + { + "start": 3787.2, + "end": 3787.32, + "probability": 0.1314 + }, + { + "start": 3799.54, + "end": 3799.76, + "probability": 0.0187 + }, + { + "start": 3799.76, + "end": 3799.76, + "probability": 0.0428 + }, + { + "start": 3799.76, + "end": 3799.76, + "probability": 0.4505 + }, + { + "start": 3799.76, + "end": 3802.5, + "probability": 0.5453 + }, + { + "start": 3802.68, + "end": 3804.16, + "probability": 0.9917 + }, + { + "start": 3804.88, + "end": 3809.82, + "probability": 0.956 + }, + { + "start": 3810.94, + "end": 3812.42, + "probability": 0.7147 + }, + { + "start": 3812.56, + "end": 3814.34, + "probability": 0.7755 + }, + { + "start": 3814.46, + "end": 3817.72, + "probability": 0.6946 + }, + { + "start": 3818.2, + "end": 3820.04, + "probability": 0.8794 + }, + { + "start": 3820.18, + "end": 3825.88, + "probability": 0.9382 + }, + { + "start": 3825.94, + "end": 3826.28, + "probability": 0.7511 + }, + { + "start": 3826.38, + "end": 3826.6, + "probability": 0.4729 + }, + { + "start": 3828.31, + "end": 3829.54, + "probability": 0.7959 + }, + { + "start": 3830.4, + "end": 3832.24, + "probability": 0.5256 + }, + { + "start": 3836.68, + "end": 3837.36, + "probability": 0.6367 + }, + { + "start": 3837.58, + "end": 3837.82, + "probability": 0.8833 + }, + { + "start": 3839.5, + "end": 3842.58, + "probability": 0.7661 + }, + { + "start": 3842.98, + "end": 3845.37, + "probability": 0.7657 + }, + { + "start": 3845.86, + "end": 3854.06, + "probability": 0.9504 + }, + { + "start": 3854.06, + "end": 3862.0, + "probability": 0.9833 + }, + { + "start": 3862.52, + "end": 3866.8, + "probability": 0.9864 + }, + { + "start": 3866.98, + "end": 3870.32, + "probability": 0.999 + }, + { + "start": 3870.74, + "end": 3875.64, + "probability": 0.998 + }, + { + "start": 3876.1, + "end": 3876.4, + "probability": 0.323 + }, + { + "start": 3876.9, + "end": 3877.63, + "probability": 0.5585 + }, + { + "start": 3878.32, + "end": 3878.68, + "probability": 0.6515 + }, + { + "start": 3879.54, + "end": 3881.6, + "probability": 0.9835 + }, + { + "start": 3882.36, + "end": 3886.03, + "probability": 0.9912 + }, + { + "start": 3886.56, + "end": 3890.54, + "probability": 0.9985 + }, + { + "start": 3891.02, + "end": 3892.32, + "probability": 0.9834 + }, + { + "start": 3892.48, + "end": 3897.72, + "probability": 0.977 + }, + { + "start": 3897.8, + "end": 3901.2, + "probability": 0.9643 + }, + { + "start": 3901.66, + "end": 3905.34, + "probability": 0.9795 + }, + { + "start": 3905.7, + "end": 3908.76, + "probability": 0.9965 + }, + { + "start": 3908.88, + "end": 3909.42, + "probability": 0.5193 + }, + { + "start": 3910.3, + "end": 3912.01, + "probability": 0.928 + }, + { + "start": 3912.46, + "end": 3915.28, + "probability": 0.948 + }, + { + "start": 3916.32, + "end": 3918.3, + "probability": 0.9875 + }, + { + "start": 3918.44, + "end": 3920.34, + "probability": 0.9724 + }, + { + "start": 3920.44, + "end": 3921.72, + "probability": 0.8038 + }, + { + "start": 3922.0, + "end": 3922.24, + "probability": 0.7277 + }, + { + "start": 3923.73, + "end": 3927.3, + "probability": 0.6912 + }, + { + "start": 3928.22, + "end": 3930.99, + "probability": 0.9351 + }, + { + "start": 3932.02, + "end": 3933.36, + "probability": 0.5266 + }, + { + "start": 3933.54, + "end": 3935.66, + "probability": 0.8271 + }, + { + "start": 3935.68, + "end": 3937.16, + "probability": 0.7892 + }, + { + "start": 3938.04, + "end": 3938.66, + "probability": 0.6468 + }, + { + "start": 3938.86, + "end": 3941.0, + "probability": 0.9564 + }, + { + "start": 3941.42, + "end": 3946.76, + "probability": 0.9751 + }, + { + "start": 3947.54, + "end": 3950.16, + "probability": 0.645 + }, + { + "start": 3950.5, + "end": 3951.12, + "probability": 0.9553 + }, + { + "start": 3951.56, + "end": 3952.86, + "probability": 0.7546 + }, + { + "start": 3953.3, + "end": 3953.78, + "probability": 0.785 + }, + { + "start": 3954.46, + "end": 3957.64, + "probability": 0.9459 + }, + { + "start": 3958.32, + "end": 3959.27, + "probability": 0.8885 + }, + { + "start": 3960.24, + "end": 3962.32, + "probability": 0.972 + }, + { + "start": 3962.82, + "end": 3964.52, + "probability": 0.7922 + }, + { + "start": 3965.08, + "end": 3966.94, + "probability": 0.9576 + }, + { + "start": 3967.66, + "end": 3968.66, + "probability": 0.6209 + }, + { + "start": 3969.34, + "end": 3971.6, + "probability": 0.9888 + }, + { + "start": 3972.18, + "end": 3978.4, + "probability": 0.9925 + }, + { + "start": 3978.96, + "end": 3982.24, + "probability": 0.9604 + }, + { + "start": 3982.76, + "end": 3986.34, + "probability": 0.9862 + }, + { + "start": 3986.34, + "end": 3990.36, + "probability": 0.9952 + }, + { + "start": 3991.34, + "end": 3995.38, + "probability": 0.9443 + }, + { + "start": 3996.02, + "end": 4000.12, + "probability": 0.9825 + }, + { + "start": 4000.78, + "end": 4002.34, + "probability": 0.9736 + }, + { + "start": 4002.56, + "end": 4002.84, + "probability": 0.7463 + }, + { + "start": 4003.68, + "end": 4004.0, + "probability": 0.7164 + }, + { + "start": 4004.26, + "end": 4006.08, + "probability": 0.6241 + }, + { + "start": 4006.7, + "end": 4007.26, + "probability": 0.8038 + }, + { + "start": 4007.94, + "end": 4012.96, + "probability": 0.7525 + }, + { + "start": 4029.48, + "end": 4030.08, + "probability": 0.4658 + }, + { + "start": 4030.22, + "end": 4031.16, + "probability": 0.6802 + }, + { + "start": 4031.38, + "end": 4034.18, + "probability": 0.974 + }, + { + "start": 4034.3, + "end": 4035.82, + "probability": 0.9005 + }, + { + "start": 4036.54, + "end": 4039.5, + "probability": 0.9863 + }, + { + "start": 4040.44, + "end": 4042.62, + "probability": 0.9551 + }, + { + "start": 4042.62, + "end": 4045.54, + "probability": 0.9937 + }, + { + "start": 4046.14, + "end": 4048.52, + "probability": 0.9473 + }, + { + "start": 4049.58, + "end": 4052.52, + "probability": 0.9622 + }, + { + "start": 4052.52, + "end": 4055.88, + "probability": 0.9954 + }, + { + "start": 4056.52, + "end": 4061.02, + "probability": 0.996 + }, + { + "start": 4063.78, + "end": 4068.46, + "probability": 0.9448 + }, + { + "start": 4068.62, + "end": 4071.0, + "probability": 0.9888 + }, + { + "start": 4071.0, + "end": 4073.92, + "probability": 0.9237 + }, + { + "start": 4074.46, + "end": 4075.68, + "probability": 0.6986 + }, + { + "start": 4076.32, + "end": 4080.02, + "probability": 0.996 + }, + { + "start": 4080.64, + "end": 4084.1, + "probability": 0.9697 + }, + { + "start": 4084.94, + "end": 4089.16, + "probability": 0.9856 + }, + { + "start": 4089.88, + "end": 4091.02, + "probability": 0.7464 + }, + { + "start": 4091.76, + "end": 4095.78, + "probability": 0.9748 + }, + { + "start": 4096.82, + "end": 4101.1, + "probability": 0.9936 + }, + { + "start": 4101.74, + "end": 4102.74, + "probability": 0.7981 + }, + { + "start": 4103.4, + "end": 4109.06, + "probability": 0.9938 + }, + { + "start": 4109.64, + "end": 4114.16, + "probability": 0.9886 + }, + { + "start": 4114.54, + "end": 4118.54, + "probability": 0.9823 + }, + { + "start": 4118.84, + "end": 4119.26, + "probability": 0.6994 + }, + { + "start": 4119.88, + "end": 4122.48, + "probability": 0.9829 + }, + { + "start": 4122.48, + "end": 4125.5, + "probability": 0.9404 + }, + { + "start": 4125.78, + "end": 4130.4, + "probability": 0.9742 + }, + { + "start": 4131.2, + "end": 4132.86, + "probability": 0.996 + }, + { + "start": 4132.9, + "end": 4135.26, + "probability": 0.8427 + }, + { + "start": 4135.84, + "end": 4139.46, + "probability": 0.994 + }, + { + "start": 4140.04, + "end": 4143.2, + "probability": 0.9714 + }, + { + "start": 4143.94, + "end": 4144.5, + "probability": 0.681 + }, + { + "start": 4145.62, + "end": 4148.54, + "probability": 0.8858 + }, + { + "start": 4149.2, + "end": 4151.42, + "probability": 0.9934 + }, + { + "start": 4152.24, + "end": 4152.8, + "probability": 0.965 + }, + { + "start": 4152.96, + "end": 4156.68, + "probability": 0.9889 + }, + { + "start": 4157.84, + "end": 4158.44, + "probability": 0.4633 + }, + { + "start": 4158.9, + "end": 4161.16, + "probability": 0.9517 + }, + { + "start": 4161.26, + "end": 4162.38, + "probability": 0.6256 + }, + { + "start": 4184.28, + "end": 4184.88, + "probability": 0.5337 + }, + { + "start": 4184.92, + "end": 4185.36, + "probability": 0.4419 + }, + { + "start": 4185.36, + "end": 4185.6, + "probability": 0.8021 + }, + { + "start": 4185.68, + "end": 4186.32, + "probability": 0.9237 + }, + { + "start": 4186.48, + "end": 4191.28, + "probability": 0.9944 + }, + { + "start": 4192.62, + "end": 4193.32, + "probability": 0.9688 + }, + { + "start": 4193.42, + "end": 4194.21, + "probability": 0.76 + }, + { + "start": 4194.32, + "end": 4195.98, + "probability": 0.8468 + }, + { + "start": 4196.64, + "end": 4199.58, + "probability": 0.8677 + }, + { + "start": 4199.72, + "end": 4202.98, + "probability": 0.6908 + }, + { + "start": 4203.46, + "end": 4204.52, + "probability": 0.6765 + }, + { + "start": 4204.96, + "end": 4207.2, + "probability": 0.6613 + }, + { + "start": 4208.26, + "end": 4209.08, + "probability": 0.6375 + }, + { + "start": 4209.18, + "end": 4212.77, + "probability": 0.7621 + }, + { + "start": 4213.14, + "end": 4216.18, + "probability": 0.7368 + }, + { + "start": 4216.32, + "end": 4217.36, + "probability": 0.9255 + }, + { + "start": 4217.96, + "end": 4221.5, + "probability": 0.6604 + }, + { + "start": 4221.56, + "end": 4222.14, + "probability": 0.7098 + }, + { + "start": 4223.08, + "end": 4224.3, + "probability": 0.8101 + }, + { + "start": 4225.82, + "end": 4227.38, + "probability": 0.8701 + }, + { + "start": 4228.36, + "end": 4230.14, + "probability": 0.8699 + }, + { + "start": 4230.48, + "end": 4231.82, + "probability": 0.9502 + }, + { + "start": 4233.26, + "end": 4235.48, + "probability": 0.8553 + }, + { + "start": 4236.62, + "end": 4237.12, + "probability": 0.9878 + }, + { + "start": 4237.42, + "end": 4238.64, + "probability": 0.9587 + }, + { + "start": 4239.36, + "end": 4239.44, + "probability": 0.2899 + }, + { + "start": 4239.56, + "end": 4240.46, + "probability": 0.739 + }, + { + "start": 4240.54, + "end": 4242.86, + "probability": 0.7496 + }, + { + "start": 4244.3, + "end": 4246.1, + "probability": 0.89 + }, + { + "start": 4249.38, + "end": 4250.5, + "probability": 0.9694 + }, + { + "start": 4251.24, + "end": 4253.58, + "probability": 0.931 + }, + { + "start": 4254.16, + "end": 4258.76, + "probability": 0.998 + }, + { + "start": 4259.64, + "end": 4261.28, + "probability": 0.9565 + }, + { + "start": 4262.0, + "end": 4262.82, + "probability": 0.6489 + }, + { + "start": 4265.18, + "end": 4270.4, + "probability": 0.7485 + }, + { + "start": 4270.94, + "end": 4271.8, + "probability": 0.7397 + }, + { + "start": 4271.92, + "end": 4272.72, + "probability": 0.8806 + }, + { + "start": 4272.82, + "end": 4273.4, + "probability": 0.7539 + }, + { + "start": 4273.68, + "end": 4278.04, + "probability": 0.9639 + }, + { + "start": 4278.34, + "end": 4280.52, + "probability": 0.9552 + }, + { + "start": 4280.96, + "end": 4282.18, + "probability": 0.7717 + }, + { + "start": 4282.74, + "end": 4284.5, + "probability": 0.7574 + }, + { + "start": 4285.96, + "end": 4286.98, + "probability": 0.5618 + }, + { + "start": 4288.06, + "end": 4289.68, + "probability": 0.914 + }, + { + "start": 4290.24, + "end": 4292.66, + "probability": 0.9831 + }, + { + "start": 4293.58, + "end": 4296.12, + "probability": 0.8146 + }, + { + "start": 4297.18, + "end": 4299.12, + "probability": 0.5935 + }, + { + "start": 4299.14, + "end": 4302.02, + "probability": 0.5703 + }, + { + "start": 4302.02, + "end": 4302.02, + "probability": 0.262 + }, + { + "start": 4302.02, + "end": 4302.22, + "probability": 0.492 + }, + { + "start": 4302.6, + "end": 4304.18, + "probability": 0.5817 + }, + { + "start": 4304.6, + "end": 4305.62, + "probability": 0.9463 + }, + { + "start": 4306.7, + "end": 4308.44, + "probability": 0.9709 + }, + { + "start": 4308.98, + "end": 4309.22, + "probability": 0.0049 + }, + { + "start": 4309.22, + "end": 4309.22, + "probability": 0.2444 + }, + { + "start": 4309.22, + "end": 4309.22, + "probability": 0.0166 + }, + { + "start": 4309.22, + "end": 4310.48, + "probability": 0.7777 + }, + { + "start": 4310.96, + "end": 4315.94, + "probability": 0.9422 + }, + { + "start": 4316.18, + "end": 4316.36, + "probability": 0.2713 + }, + { + "start": 4316.38, + "end": 4318.16, + "probability": 0.7288 + }, + { + "start": 4318.46, + "end": 4318.82, + "probability": 0.11 + }, + { + "start": 4319.62, + "end": 4320.04, + "probability": 0.4217 + }, + { + "start": 4320.7, + "end": 4321.04, + "probability": 0.0127 + }, + { + "start": 4321.46, + "end": 4322.24, + "probability": 0.0259 + }, + { + "start": 4323.18, + "end": 4324.88, + "probability": 0.0455 + }, + { + "start": 4328.95, + "end": 4330.92, + "probability": 0.4719 + }, + { + "start": 4331.44, + "end": 4335.04, + "probability": 0.9958 + }, + { + "start": 4335.14, + "end": 4337.3, + "probability": 0.9482 + }, + { + "start": 4337.74, + "end": 4338.56, + "probability": 0.8116 + }, + { + "start": 4339.4, + "end": 4341.28, + "probability": 0.9038 + }, + { + "start": 4342.06, + "end": 4344.0, + "probability": 0.9434 + }, + { + "start": 4344.64, + "end": 4346.88, + "probability": 0.9989 + }, + { + "start": 4347.66, + "end": 4349.56, + "probability": 0.9983 + }, + { + "start": 4350.08, + "end": 4354.06, + "probability": 0.9896 + }, + { + "start": 4354.76, + "end": 4360.14, + "probability": 0.9812 + }, + { + "start": 4360.64, + "end": 4363.08, + "probability": 0.9978 + }, + { + "start": 4363.88, + "end": 4364.6, + "probability": 0.6979 + }, + { + "start": 4365.06, + "end": 4365.72, + "probability": 0.4767 + }, + { + "start": 4365.74, + "end": 4367.34, + "probability": 0.989 + }, + { + "start": 4367.42, + "end": 4370.56, + "probability": 0.9158 + }, + { + "start": 4370.66, + "end": 4371.54, + "probability": 0.8364 + }, + { + "start": 4372.2, + "end": 4372.92, + "probability": 0.7019 + }, + { + "start": 4373.36, + "end": 4373.36, + "probability": 0.1723 + }, + { + "start": 4373.38, + "end": 4374.24, + "probability": 0.7341 + }, + { + "start": 4374.52, + "end": 4376.42, + "probability": 0.9729 + }, + { + "start": 4376.64, + "end": 4376.84, + "probability": 0.6565 + }, + { + "start": 4376.9, + "end": 4379.54, + "probability": 0.9165 + }, + { + "start": 4380.08, + "end": 4381.22, + "probability": 0.7983 + }, + { + "start": 4381.48, + "end": 4382.28, + "probability": 0.7372 + }, + { + "start": 4382.48, + "end": 4385.92, + "probability": 0.9917 + }, + { + "start": 4386.16, + "end": 4387.6, + "probability": 0.7115 + }, + { + "start": 4388.06, + "end": 4390.55, + "probability": 0.8872 + }, + { + "start": 4390.74, + "end": 4393.28, + "probability": 0.7328 + }, + { + "start": 4393.32, + "end": 4393.32, + "probability": 0.0736 + }, + { + "start": 4393.32, + "end": 4394.84, + "probability": 0.8109 + }, + { + "start": 4394.92, + "end": 4397.36, + "probability": 0.9726 + }, + { + "start": 4397.76, + "end": 4398.18, + "probability": 0.8898 + }, + { + "start": 4399.29, + "end": 4401.16, + "probability": 0.8087 + }, + { + "start": 4402.24, + "end": 4402.58, + "probability": 0.8261 + }, + { + "start": 4402.9, + "end": 4403.2, + "probability": 0.8249 + }, + { + "start": 4403.84, + "end": 4406.72, + "probability": 0.998 + }, + { + "start": 4406.82, + "end": 4407.84, + "probability": 0.8463 + }, + { + "start": 4408.68, + "end": 4408.98, + "probability": 0.9653 + }, + { + "start": 4409.7, + "end": 4412.74, + "probability": 0.8703 + }, + { + "start": 4413.24, + "end": 4414.26, + "probability": 0.8582 + }, + { + "start": 4414.82, + "end": 4414.92, + "probability": 0.1589 + }, + { + "start": 4416.4, + "end": 4417.1, + "probability": 0.0047 + }, + { + "start": 4418.8, + "end": 4419.04, + "probability": 0.003 + }, + { + "start": 4419.59, + "end": 4419.66, + "probability": 0.0568 + }, + { + "start": 4419.66, + "end": 4420.74, + "probability": 0.4989 + }, + { + "start": 4421.22, + "end": 4421.34, + "probability": 0.2034 + }, + { + "start": 4421.34, + "end": 4421.34, + "probability": 0.0452 + }, + { + "start": 4421.34, + "end": 4421.34, + "probability": 0.4 + }, + { + "start": 4421.34, + "end": 4421.36, + "probability": 0.279 + }, + { + "start": 4421.54, + "end": 4425.36, + "probability": 0.5132 + }, + { + "start": 4425.58, + "end": 4426.24, + "probability": 0.6052 + }, + { + "start": 4426.68, + "end": 4431.46, + "probability": 0.9861 + }, + { + "start": 4431.46, + "end": 4435.04, + "probability": 0.9906 + }, + { + "start": 4436.2, + "end": 4438.58, + "probability": 0.9943 + }, + { + "start": 4439.62, + "end": 4443.2, + "probability": 0.9644 + }, + { + "start": 4443.2, + "end": 4445.38, + "probability": 0.8233 + }, + { + "start": 4446.7, + "end": 4451.2, + "probability": 0.945 + }, + { + "start": 4452.4, + "end": 4453.7, + "probability": 0.9982 + }, + { + "start": 4454.44, + "end": 4457.73, + "probability": 0.3683 + }, + { + "start": 4457.94, + "end": 4459.72, + "probability": 0.781 + }, + { + "start": 4459.94, + "end": 4460.92, + "probability": 0.2989 + }, + { + "start": 4461.66, + "end": 4463.58, + "probability": 0.952 + }, + { + "start": 4464.1, + "end": 4470.8, + "probability": 0.9682 + }, + { + "start": 4471.78, + "end": 4475.82, + "probability": 0.9299 + }, + { + "start": 4476.56, + "end": 4479.38, + "probability": 0.9919 + }, + { + "start": 4479.94, + "end": 4482.49, + "probability": 0.9976 + }, + { + "start": 4483.34, + "end": 4483.82, + "probability": 0.74 + }, + { + "start": 4483.9, + "end": 4487.4, + "probability": 0.9948 + }, + { + "start": 4488.18, + "end": 4491.1, + "probability": 0.9745 + }, + { + "start": 4492.04, + "end": 4494.84, + "probability": 0.9676 + }, + { + "start": 4495.56, + "end": 4498.3, + "probability": 0.8364 + }, + { + "start": 4498.3, + "end": 4499.56, + "probability": 0.9525 + }, + { + "start": 4499.9, + "end": 4501.3, + "probability": 0.9845 + }, + { + "start": 4501.96, + "end": 4503.06, + "probability": 0.9783 + }, + { + "start": 4503.46, + "end": 4505.48, + "probability": 0.9149 + }, + { + "start": 4506.42, + "end": 4507.9, + "probability": 0.8893 + }, + { + "start": 4508.2, + "end": 4509.88, + "probability": 0.9983 + }, + { + "start": 4510.56, + "end": 4514.1, + "probability": 0.9736 + }, + { + "start": 4514.22, + "end": 4516.8, + "probability": 0.6497 + }, + { + "start": 4517.24, + "end": 4519.0, + "probability": 0.5916 + }, + { + "start": 4519.12, + "end": 4520.54, + "probability": 0.4631 + }, + { + "start": 4521.02, + "end": 4521.66, + "probability": 0.6338 + }, + { + "start": 4521.78, + "end": 4522.44, + "probability": 0.6741 + }, + { + "start": 4523.06, + "end": 4523.6, + "probability": 0.5296 + }, + { + "start": 4524.54, + "end": 4531.6, + "probability": 0.1127 + }, + { + "start": 4531.6, + "end": 4533.3, + "probability": 0.025 + }, + { + "start": 4539.68, + "end": 4540.36, + "probability": 0.153 + }, + { + "start": 4540.36, + "end": 4540.36, + "probability": 0.0279 + }, + { + "start": 4540.36, + "end": 4540.36, + "probability": 0.3597 + }, + { + "start": 4540.36, + "end": 4540.36, + "probability": 0.3723 + }, + { + "start": 4540.36, + "end": 4542.04, + "probability": 0.4955 + }, + { + "start": 4542.14, + "end": 4543.78, + "probability": 0.9792 + }, + { + "start": 4544.34, + "end": 4545.62, + "probability": 0.7555 + }, + { + "start": 4545.7, + "end": 4546.34, + "probability": 0.6654 + }, + { + "start": 4548.4, + "end": 4553.96, + "probability": 0.6636 + }, + { + "start": 4554.06, + "end": 4556.24, + "probability": 0.6518 + }, + { + "start": 4556.66, + "end": 4558.52, + "probability": 0.6774 + }, + { + "start": 4558.62, + "end": 4560.14, + "probability": 0.6532 + }, + { + "start": 4560.36, + "end": 4561.0, + "probability": 0.6005 + }, + { + "start": 4561.36, + "end": 4561.64, + "probability": 0.1816 + }, + { + "start": 4561.9, + "end": 4562.36, + "probability": 0.6168 + }, + { + "start": 4563.32, + "end": 4565.94, + "probability": 0.1523 + }, + { + "start": 4580.54, + "end": 4586.36, + "probability": 0.052 + }, + { + "start": 4586.36, + "end": 4586.36, + "probability": 0.0158 + }, + { + "start": 4586.36, + "end": 4587.34, + "probability": 0.0241 + }, + { + "start": 4587.34, + "end": 4587.98, + "probability": 0.2116 + }, + { + "start": 4588.14, + "end": 4588.96, + "probability": 0.1366 + }, + { + "start": 4589.74, + "end": 4590.44, + "probability": 0.061 + }, + { + "start": 4590.44, + "end": 4590.44, + "probability": 0.0733 + }, + { + "start": 4590.44, + "end": 4590.44, + "probability": 0.0735 + }, + { + "start": 4590.44, + "end": 4590.44, + "probability": 0.0379 + }, + { + "start": 4590.44, + "end": 4590.44, + "probability": 0.1954 + }, + { + "start": 4590.44, + "end": 4594.24, + "probability": 0.5534 + }, + { + "start": 4595.26, + "end": 4595.96, + "probability": 0.8867 + }, + { + "start": 4596.56, + "end": 4599.08, + "probability": 0.6691 + }, + { + "start": 4599.64, + "end": 4603.74, + "probability": 0.7875 + }, + { + "start": 4604.08, + "end": 4605.76, + "probability": 0.9233 + }, + { + "start": 4606.32, + "end": 4608.92, + "probability": 0.9937 + }, + { + "start": 4610.14, + "end": 4611.68, + "probability": 0.7787 + }, + { + "start": 4611.8, + "end": 4614.2, + "probability": 0.9144 + }, + { + "start": 4614.66, + "end": 4615.86, + "probability": 0.7135 + }, + { + "start": 4615.92, + "end": 4619.96, + "probability": 0.55 + }, + { + "start": 4620.58, + "end": 4623.58, + "probability": 0.625 + }, + { + "start": 4638.64, + "end": 4638.78, + "probability": 0.1267 + }, + { + "start": 4638.78, + "end": 4639.38, + "probability": 0.071 + }, + { + "start": 4639.38, + "end": 4640.24, + "probability": 0.8335 + }, + { + "start": 4643.22, + "end": 4646.48, + "probability": 0.8622 + }, + { + "start": 4647.26, + "end": 4652.14, + "probability": 0.9918 + }, + { + "start": 4652.68, + "end": 4657.96, + "probability": 0.9979 + }, + { + "start": 4659.54, + "end": 4661.65, + "probability": 0.9971 + }, + { + "start": 4664.82, + "end": 4672.5, + "probability": 0.9985 + }, + { + "start": 4672.76, + "end": 4674.29, + "probability": 0.7651 + }, + { + "start": 4675.16, + "end": 4677.4, + "probability": 0.9481 + }, + { + "start": 4678.1, + "end": 4681.36, + "probability": 0.9854 + }, + { + "start": 4681.46, + "end": 4682.24, + "probability": 0.7205 + }, + { + "start": 4682.34, + "end": 4683.02, + "probability": 0.8751 + }, + { + "start": 4683.5, + "end": 4685.18, + "probability": 0.939 + }, + { + "start": 4685.24, + "end": 4686.06, + "probability": 0.62 + }, + { + "start": 4686.16, + "end": 4693.78, + "probability": 0.9207 + }, + { + "start": 4694.5, + "end": 4695.64, + "probability": 0.8589 + }, + { + "start": 4696.16, + "end": 4697.4, + "probability": 0.5029 + }, + { + "start": 4697.4, + "end": 4698.02, + "probability": 0.9842 + }, + { + "start": 4698.02, + "end": 4698.34, + "probability": 0.39 + }, + { + "start": 4698.58, + "end": 4698.62, + "probability": 0.413 + }, + { + "start": 4698.76, + "end": 4700.76, + "probability": 0.9053 + }, + { + "start": 4701.14, + "end": 4702.38, + "probability": 0.9266 + }, + { + "start": 4702.48, + "end": 4703.52, + "probability": 0.5638 + }, + { + "start": 4703.74, + "end": 4703.74, + "probability": 0.2657 + }, + { + "start": 4703.74, + "end": 4705.06, + "probability": 0.3667 + }, + { + "start": 4705.06, + "end": 4705.34, + "probability": 0.593 + }, + { + "start": 4705.4, + "end": 4706.1, + "probability": 0.9565 + }, + { + "start": 4706.34, + "end": 4707.02, + "probability": 0.8833 + }, + { + "start": 4708.7, + "end": 4711.34, + "probability": 0.9965 + }, + { + "start": 4712.29, + "end": 4716.56, + "probability": 0.956 + }, + { + "start": 4718.54, + "end": 4721.58, + "probability": 0.9845 + }, + { + "start": 4722.12, + "end": 4722.94, + "probability": 0.7752 + }, + { + "start": 4723.6, + "end": 4726.78, + "probability": 0.9977 + }, + { + "start": 4726.82, + "end": 4731.72, + "probability": 0.9984 + }, + { + "start": 4732.44, + "end": 4739.7, + "probability": 0.9979 + }, + { + "start": 4739.86, + "end": 4745.08, + "probability": 0.9428 + }, + { + "start": 4745.12, + "end": 4745.56, + "probability": 0.8671 + }, + { + "start": 4745.64, + "end": 4746.36, + "probability": 0.5432 + }, + { + "start": 4747.18, + "end": 4750.68, + "probability": 0.9899 + }, + { + "start": 4750.68, + "end": 4754.38, + "probability": 0.9821 + }, + { + "start": 4754.58, + "end": 4755.6, + "probability": 0.9442 + }, + { + "start": 4757.1, + "end": 4758.24, + "probability": 0.8296 + }, + { + "start": 4758.38, + "end": 4759.5, + "probability": 0.7552 + }, + { + "start": 4759.54, + "end": 4759.68, + "probability": 0.426 + }, + { + "start": 4760.34, + "end": 4761.76, + "probability": 0.8305 + }, + { + "start": 4761.76, + "end": 4762.82, + "probability": 0.7644 + }, + { + "start": 4764.1, + "end": 4765.01, + "probability": 0.58 + }, + { + "start": 4765.08, + "end": 4766.72, + "probability": 0.9893 + }, + { + "start": 4767.22, + "end": 4767.74, + "probability": 0.0301 + }, + { + "start": 4768.0, + "end": 4768.28, + "probability": 0.2026 + }, + { + "start": 4768.4, + "end": 4769.64, + "probability": 0.9697 + }, + { + "start": 4771.28, + "end": 4772.92, + "probability": 0.4261 + }, + { + "start": 4772.98, + "end": 4777.16, + "probability": 0.989 + }, + { + "start": 4778.1, + "end": 4780.26, + "probability": 0.9979 + }, + { + "start": 4780.3, + "end": 4782.88, + "probability": 0.9949 + }, + { + "start": 4783.58, + "end": 4783.86, + "probability": 0.3036 + }, + { + "start": 4783.96, + "end": 4785.98, + "probability": 0.9539 + }, + { + "start": 4786.06, + "end": 4791.92, + "probability": 0.9727 + }, + { + "start": 4791.92, + "end": 4796.68, + "probability": 0.9892 + }, + { + "start": 4796.94, + "end": 4797.94, + "probability": 0.7784 + }, + { + "start": 4798.76, + "end": 4801.68, + "probability": 0.98 + }, + { + "start": 4801.68, + "end": 4804.02, + "probability": 0.9997 + }, + { + "start": 4805.16, + "end": 4809.66, + "probability": 0.9314 + }, + { + "start": 4810.48, + "end": 4812.32, + "probability": 0.9843 + }, + { + "start": 4812.58, + "end": 4816.38, + "probability": 0.9805 + }, + { + "start": 4817.18, + "end": 4821.56, + "probability": 0.8612 + }, + { + "start": 4822.08, + "end": 4824.72, + "probability": 0.7621 + }, + { + "start": 4825.42, + "end": 4833.22, + "probability": 0.9956 + }, + { + "start": 4834.48, + "end": 4838.32, + "probability": 0.9297 + }, + { + "start": 4839.82, + "end": 4845.06, + "probability": 0.9817 + }, + { + "start": 4845.64, + "end": 4847.92, + "probability": 0.9976 + }, + { + "start": 4848.86, + "end": 4853.02, + "probability": 0.9654 + }, + { + "start": 4854.04, + "end": 4856.44, + "probability": 0.9575 + }, + { + "start": 4857.56, + "end": 4861.84, + "probability": 0.962 + }, + { + "start": 4862.98, + "end": 4867.8, + "probability": 0.9884 + }, + { + "start": 4867.8, + "end": 4870.58, + "probability": 0.934 + }, + { + "start": 4870.74, + "end": 4871.84, + "probability": 0.9186 + }, + { + "start": 4872.4, + "end": 4876.62, + "probability": 0.921 + }, + { + "start": 4878.14, + "end": 4879.74, + "probability": 0.003 + }, + { + "start": 4879.74, + "end": 4879.74, + "probability": 0.0977 + }, + { + "start": 4879.74, + "end": 4879.8, + "probability": 0.2422 + }, + { + "start": 4880.0, + "end": 4884.06, + "probability": 0.9983 + }, + { + "start": 4884.16, + "end": 4889.62, + "probability": 0.9968 + }, + { + "start": 4889.72, + "end": 4893.3, + "probability": 0.9822 + }, + { + "start": 4895.31, + "end": 4897.7, + "probability": 0.8325 + }, + { + "start": 4898.58, + "end": 4903.98, + "probability": 0.9611 + }, + { + "start": 4904.62, + "end": 4912.46, + "probability": 0.9906 + }, + { + "start": 4912.9, + "end": 4913.58, + "probability": 0.6171 + }, + { + "start": 4913.92, + "end": 4914.88, + "probability": 0.7196 + }, + { + "start": 4914.88, + "end": 4915.3, + "probability": 0.9119 + }, + { + "start": 4915.78, + "end": 4917.42, + "probability": 0.0655 + }, + { + "start": 4920.16, + "end": 4921.04, + "probability": 0.403 + }, + { + "start": 4921.46, + "end": 4921.48, + "probability": 0.2178 + }, + { + "start": 4921.48, + "end": 4921.48, + "probability": 0.3751 + }, + { + "start": 4921.48, + "end": 4923.28, + "probability": 0.3496 + }, + { + "start": 4923.38, + "end": 4923.88, + "probability": 0.2874 + }, + { + "start": 4923.88, + "end": 4924.24, + "probability": 0.5466 + }, + { + "start": 4924.28, + "end": 4924.81, + "probability": 0.0106 + }, + { + "start": 4925.2, + "end": 4925.52, + "probability": 0.4011 + }, + { + "start": 4925.6, + "end": 4928.96, + "probability": 0.7969 + }, + { + "start": 4929.88, + "end": 4929.88, + "probability": 0.0228 + }, + { + "start": 4929.88, + "end": 4932.06, + "probability": 0.8886 + }, + { + "start": 4932.6, + "end": 4936.28, + "probability": 0.8492 + }, + { + "start": 4936.3, + "end": 4936.68, + "probability": 0.7714 + }, + { + "start": 4936.8, + "end": 4938.62, + "probability": 0.9717 + }, + { + "start": 4941.02, + "end": 4941.76, + "probability": 0.8554 + }, + { + "start": 4941.92, + "end": 4943.24, + "probability": 0.8018 + }, + { + "start": 4943.62, + "end": 4944.68, + "probability": 0.7637 + }, + { + "start": 4944.8, + "end": 4949.52, + "probability": 0.9775 + }, + { + "start": 4951.04, + "end": 4954.98, + "probability": 0.9512 + }, + { + "start": 4956.8, + "end": 4960.08, + "probability": 0.8221 + }, + { + "start": 4960.8, + "end": 4966.42, + "probability": 0.9825 + }, + { + "start": 4966.98, + "end": 4969.94, + "probability": 0.9947 + }, + { + "start": 4970.44, + "end": 4973.24, + "probability": 0.937 + }, + { + "start": 4973.74, + "end": 4978.06, + "probability": 0.9881 + }, + { + "start": 4978.46, + "end": 4979.16, + "probability": 0.9009 + }, + { + "start": 4979.58, + "end": 4981.64, + "probability": 0.9928 + }, + { + "start": 4982.18, + "end": 4982.96, + "probability": 0.7766 + }, + { + "start": 4983.74, + "end": 4989.44, + "probability": 0.9893 + }, + { + "start": 4989.44, + "end": 4996.08, + "probability": 0.9744 + }, + { + "start": 4998.16, + "end": 4999.52, + "probability": 0.8604 + }, + { + "start": 5000.28, + "end": 5000.62, + "probability": 0.4835 + }, + { + "start": 5000.78, + "end": 5001.14, + "probability": 0.9111 + }, + { + "start": 5001.26, + "end": 5002.36, + "probability": 0.9811 + }, + { + "start": 5002.52, + "end": 5004.32, + "probability": 0.9946 + }, + { + "start": 5004.4, + "end": 5006.1, + "probability": 0.9982 + }, + { + "start": 5006.48, + "end": 5008.16, + "probability": 0.6506 + }, + { + "start": 5008.9, + "end": 5015.92, + "probability": 0.9931 + }, + { + "start": 5016.32, + "end": 5019.14, + "probability": 0.9471 + }, + { + "start": 5019.16, + "end": 5019.58, + "probability": 0.7276 + }, + { + "start": 5020.38, + "end": 5022.38, + "probability": 0.7144 + }, + { + "start": 5022.98, + "end": 5026.34, + "probability": 0.9853 + }, + { + "start": 5027.56, + "end": 5028.24, + "probability": 0.873 + }, + { + "start": 5030.22, + "end": 5031.7, + "probability": 0.9974 + }, + { + "start": 5032.54, + "end": 5036.68, + "probability": 0.9951 + }, + { + "start": 5037.82, + "end": 5040.3, + "probability": 0.6941 + }, + { + "start": 5040.84, + "end": 5043.08, + "probability": 0.9816 + }, + { + "start": 5044.52, + "end": 5047.68, + "probability": 0.9871 + }, + { + "start": 5049.14, + "end": 5051.54, + "probability": 0.9941 + }, + { + "start": 5051.66, + "end": 5055.26, + "probability": 0.985 + }, + { + "start": 5055.64, + "end": 5058.18, + "probability": 0.8738 + }, + { + "start": 5058.56, + "end": 5060.76, + "probability": 0.9182 + }, + { + "start": 5060.86, + "end": 5061.28, + "probability": 0.8188 + }, + { + "start": 5062.2, + "end": 5063.44, + "probability": 0.9812 + }, + { + "start": 5064.02, + "end": 5065.24, + "probability": 0.581 + }, + { + "start": 5066.78, + "end": 5068.42, + "probability": 0.9213 + }, + { + "start": 5068.68, + "end": 5070.12, + "probability": 0.9829 + }, + { + "start": 5070.8, + "end": 5072.54, + "probability": 0.9978 + }, + { + "start": 5073.22, + "end": 5075.74, + "probability": 0.959 + }, + { + "start": 5076.5, + "end": 5080.26, + "probability": 0.9963 + }, + { + "start": 5080.26, + "end": 5083.48, + "probability": 0.9958 + }, + { + "start": 5084.24, + "end": 5085.38, + "probability": 0.9985 + }, + { + "start": 5086.38, + "end": 5092.5, + "probability": 0.9976 + }, + { + "start": 5092.5, + "end": 5098.0, + "probability": 0.99 + }, + { + "start": 5098.48, + "end": 5099.74, + "probability": 0.6481 + }, + { + "start": 5101.34, + "end": 5103.02, + "probability": 0.9806 + }, + { + "start": 5103.5, + "end": 5104.36, + "probability": 0.4133 + }, + { + "start": 5105.1, + "end": 5108.44, + "probability": 0.9995 + }, + { + "start": 5109.4, + "end": 5113.26, + "probability": 0.9578 + }, + { + "start": 5114.18, + "end": 5119.62, + "probability": 0.9251 + }, + { + "start": 5120.04, + "end": 5120.92, + "probability": 0.8707 + }, + { + "start": 5121.2, + "end": 5121.86, + "probability": 0.9436 + }, + { + "start": 5122.26, + "end": 5122.84, + "probability": 0.9779 + }, + { + "start": 5123.16, + "end": 5123.9, + "probability": 0.9805 + }, + { + "start": 5124.08, + "end": 5124.7, + "probability": 0.8658 + }, + { + "start": 5125.2, + "end": 5126.28, + "probability": 0.9792 + }, + { + "start": 5127.66, + "end": 5130.56, + "probability": 0.9937 + }, + { + "start": 5131.86, + "end": 5136.78, + "probability": 0.9186 + }, + { + "start": 5137.76, + "end": 5139.36, + "probability": 0.9987 + }, + { + "start": 5141.3, + "end": 5146.24, + "probability": 0.9717 + }, + { + "start": 5147.22, + "end": 5151.22, + "probability": 0.9908 + }, + { + "start": 5151.34, + "end": 5151.42, + "probability": 0.6309 + }, + { + "start": 5151.56, + "end": 5151.7, + "probability": 0.2969 + }, + { + "start": 5153.08, + "end": 5154.64, + "probability": 0.9983 + }, + { + "start": 5155.9, + "end": 5160.14, + "probability": 0.9215 + }, + { + "start": 5160.82, + "end": 5164.22, + "probability": 0.9197 + }, + { + "start": 5166.02, + "end": 5167.86, + "probability": 0.9329 + }, + { + "start": 5168.0, + "end": 5169.7, + "probability": 0.9385 + }, + { + "start": 5170.08, + "end": 5173.96, + "probability": 0.8149 + }, + { + "start": 5174.12, + "end": 5174.34, + "probability": 0.8864 + }, + { + "start": 5175.36, + "end": 5177.8, + "probability": 0.9289 + }, + { + "start": 5178.48, + "end": 5184.58, + "probability": 0.9993 + }, + { + "start": 5184.96, + "end": 5185.68, + "probability": 0.5622 + }, + { + "start": 5198.21, + "end": 5200.56, + "probability": 0.9846 + }, + { + "start": 5201.66, + "end": 5203.38, + "probability": 0.9627 + }, + { + "start": 5204.1, + "end": 5204.68, + "probability": 0.659 + }, + { + "start": 5204.7, + "end": 5208.88, + "probability": 0.9838 + }, + { + "start": 5210.08, + "end": 5214.28, + "probability": 0.9863 + }, + { + "start": 5215.12, + "end": 5216.34, + "probability": 0.9987 + }, + { + "start": 5216.5, + "end": 5217.97, + "probability": 0.8568 + }, + { + "start": 5218.9, + "end": 5220.02, + "probability": 0.8109 + }, + { + "start": 5220.76, + "end": 5223.1, + "probability": 0.9764 + }, + { + "start": 5223.64, + "end": 5224.94, + "probability": 0.9879 + }, + { + "start": 5225.3, + "end": 5232.26, + "probability": 0.9801 + }, + { + "start": 5233.72, + "end": 5237.22, + "probability": 0.9937 + }, + { + "start": 5237.22, + "end": 5244.5, + "probability": 0.985 + }, + { + "start": 5244.5, + "end": 5248.6, + "probability": 0.999 + }, + { + "start": 5249.16, + "end": 5254.5, + "probability": 0.9996 + }, + { + "start": 5255.58, + "end": 5257.42, + "probability": 0.979 + }, + { + "start": 5257.98, + "end": 5258.3, + "probability": 0.7182 + }, + { + "start": 5259.74, + "end": 5260.92, + "probability": 0.9564 + }, + { + "start": 5268.14, + "end": 5269.24, + "probability": 0.5135 + }, + { + "start": 5272.82, + "end": 5275.88, + "probability": 0.9473 + }, + { + "start": 5277.1, + "end": 5280.32, + "probability": 0.1349 + }, + { + "start": 5281.16, + "end": 5281.52, + "probability": 0.7747 + }, + { + "start": 5282.12, + "end": 5284.58, + "probability": 0.5723 + }, + { + "start": 5286.78, + "end": 5289.12, + "probability": 0.7889 + }, + { + "start": 5289.88, + "end": 5291.1, + "probability": 0.8061 + }, + { + "start": 5294.54, + "end": 5296.02, + "probability": 0.252 + }, + { + "start": 5297.04, + "end": 5299.24, + "probability": 0.8018 + }, + { + "start": 5299.76, + "end": 5300.3, + "probability": 0.4761 + }, + { + "start": 5301.63, + "end": 5304.48, + "probability": 0.8108 + }, + { + "start": 5304.98, + "end": 5307.76, + "probability": 0.776 + }, + { + "start": 5307.92, + "end": 5308.64, + "probability": 0.678 + }, + { + "start": 5308.94, + "end": 5310.44, + "probability": 0.8089 + }, + { + "start": 5311.24, + "end": 5311.96, + "probability": 0.7592 + }, + { + "start": 5312.4, + "end": 5313.12, + "probability": 0.9312 + }, + { + "start": 5313.28, + "end": 5314.08, + "probability": 0.5729 + }, + { + "start": 5314.44, + "end": 5314.72, + "probability": 0.3029 + }, + { + "start": 5316.6, + "end": 5321.6, + "probability": 0.1408 + }, + { + "start": 5321.74, + "end": 5323.46, + "probability": 0.0381 + }, + { + "start": 5323.82, + "end": 5323.82, + "probability": 0.0694 + }, + { + "start": 5324.04, + "end": 5324.72, + "probability": 0.2142 + }, + { + "start": 5334.72, + "end": 5337.74, + "probability": 0.6257 + }, + { + "start": 5338.24, + "end": 5340.44, + "probability": 0.9548 + }, + { + "start": 5341.3, + "end": 5342.36, + "probability": 0.8717 + }, + { + "start": 5342.94, + "end": 5345.54, + "probability": 0.6902 + }, + { + "start": 5345.6, + "end": 5347.2, + "probability": 0.7935 + }, + { + "start": 5347.76, + "end": 5349.68, + "probability": 0.915 + }, + { + "start": 5350.32, + "end": 5351.5, + "probability": 0.8255 + }, + { + "start": 5354.02, + "end": 5354.72, + "probability": 0.2846 + }, + { + "start": 5355.64, + "end": 5356.34, + "probability": 0.5985 + }, + { + "start": 5358.62, + "end": 5361.02, + "probability": 0.7835 + }, + { + "start": 5361.76, + "end": 5363.42, + "probability": 0.6504 + }, + { + "start": 5364.24, + "end": 5366.57, + "probability": 0.7931 + }, + { + "start": 5367.32, + "end": 5368.22, + "probability": 0.237 + }, + { + "start": 5369.35, + "end": 5372.08, + "probability": 0.5845 + }, + { + "start": 5372.12, + "end": 5373.68, + "probability": 0.6371 + }, + { + "start": 5374.88, + "end": 5375.52, + "probability": 0.7263 + }, + { + "start": 5376.14, + "end": 5378.02, + "probability": 0.9235 + }, + { + "start": 5378.78, + "end": 5379.48, + "probability": 0.8564 + }, + { + "start": 5379.72, + "end": 5380.98, + "probability": 0.8867 + }, + { + "start": 5386.1, + "end": 5387.26, + "probability": 0.8368 + }, + { + "start": 5388.96, + "end": 5389.48, + "probability": 0.912 + }, + { + "start": 5390.35, + "end": 5393.62, + "probability": 0.8848 + }, + { + "start": 5394.42, + "end": 5394.91, + "probability": 0.8862 + }, + { + "start": 5396.12, + "end": 5398.7, + "probability": 0.5587 + }, + { + "start": 5398.76, + "end": 5399.54, + "probability": 0.8875 + }, + { + "start": 5400.1, + "end": 5401.62, + "probability": 0.9672 + }, + { + "start": 5401.66, + "end": 5402.18, + "probability": 0.96 + }, + { + "start": 5402.78, + "end": 5404.42, + "probability": 0.434 + }, + { + "start": 5406.57, + "end": 5407.63, + "probability": 0.2551 + }, + { + "start": 5408.3, + "end": 5409.38, + "probability": 0.5768 + }, + { + "start": 5409.6, + "end": 5410.6, + "probability": 0.5496 + }, + { + "start": 5410.86, + "end": 5414.52, + "probability": 0.7988 + }, + { + "start": 5414.82, + "end": 5416.08, + "probability": 0.9795 + }, + { + "start": 5416.46, + "end": 5417.26, + "probability": 0.652 + }, + { + "start": 5417.56, + "end": 5417.86, + "probability": 0.1311 + }, + { + "start": 5417.86, + "end": 5420.3, + "probability": 0.6371 + }, + { + "start": 5420.46, + "end": 5421.14, + "probability": 0.8751 + }, + { + "start": 5421.26, + "end": 5421.84, + "probability": 0.8022 + }, + { + "start": 5422.1, + "end": 5423.16, + "probability": 0.8303 + }, + { + "start": 5423.26, + "end": 5426.66, + "probability": 0.5892 + }, + { + "start": 5426.94, + "end": 5427.36, + "probability": 0.2223 + }, + { + "start": 5427.48, + "end": 5430.58, + "probability": 0.6804 + }, + { + "start": 5431.1, + "end": 5431.68, + "probability": 0.1847 + }, + { + "start": 5431.68, + "end": 5431.68, + "probability": 0.156 + }, + { + "start": 5431.9, + "end": 5434.04, + "probability": 0.9811 + }, + { + "start": 5434.44, + "end": 5435.2, + "probability": 0.2106 + }, + { + "start": 5435.2, + "end": 5438.04, + "probability": 0.9018 + }, + { + "start": 5438.3, + "end": 5439.8, + "probability": 0.5253 + }, + { + "start": 5439.9, + "end": 5441.24, + "probability": 0.9849 + }, + { + "start": 5444.28, + "end": 5444.28, + "probability": 0.2399 + }, + { + "start": 5444.3, + "end": 5444.8, + "probability": 0.1609 + }, + { + "start": 5444.8, + "end": 5444.8, + "probability": 0.0005 + }, + { + "start": 5445.5, + "end": 5445.74, + "probability": 0.0636 + }, + { + "start": 5445.74, + "end": 5445.8, + "probability": 0.4493 + }, + { + "start": 5447.04, + "end": 5448.48, + "probability": 0.5787 + }, + { + "start": 5449.0, + "end": 5450.4, + "probability": 0.3742 + }, + { + "start": 5450.44, + "end": 5452.14, + "probability": 0.3694 + }, + { + "start": 5461.63, + "end": 5462.22, + "probability": 0.3636 + }, + { + "start": 5462.28, + "end": 5462.54, + "probability": 0.819 + }, + { + "start": 5462.54, + "end": 5463.42, + "probability": 0.7514 + }, + { + "start": 5463.56, + "end": 5464.24, + "probability": 0.5056 + }, + { + "start": 5464.26, + "end": 5464.78, + "probability": 0.8339 + }, + { + "start": 5465.0, + "end": 5466.24, + "probability": 0.9803 + }, + { + "start": 5468.44, + "end": 5471.32, + "probability": 0.8349 + }, + { + "start": 5472.32, + "end": 5472.86, + "probability": 0.9365 + }, + { + "start": 5475.1, + "end": 5476.74, + "probability": 0.9344 + }, + { + "start": 5476.98, + "end": 5478.14, + "probability": 0.9738 + }, + { + "start": 5478.64, + "end": 5479.94, + "probability": 0.6647 + }, + { + "start": 5480.46, + "end": 5483.8, + "probability": 0.8738 + }, + { + "start": 5484.62, + "end": 5493.64, + "probability": 0.9067 + }, + { + "start": 5494.18, + "end": 5496.32, + "probability": 0.9995 + }, + { + "start": 5497.04, + "end": 5497.76, + "probability": 0.7367 + }, + { + "start": 5498.76, + "end": 5502.06, + "probability": 0.7321 + }, + { + "start": 5502.96, + "end": 5505.04, + "probability": 0.9897 + }, + { + "start": 5505.16, + "end": 5505.96, + "probability": 0.7668 + }, + { + "start": 5506.36, + "end": 5507.88, + "probability": 0.9351 + }, + { + "start": 5508.52, + "end": 5514.34, + "probability": 0.9816 + }, + { + "start": 5514.74, + "end": 5515.12, + "probability": 0.5833 + }, + { + "start": 5515.92, + "end": 5518.74, + "probability": 0.8637 + }, + { + "start": 5519.22, + "end": 5522.84, + "probability": 0.8745 + }, + { + "start": 5523.58, + "end": 5529.34, + "probability": 0.9539 + }, + { + "start": 5529.34, + "end": 5534.58, + "probability": 0.9886 + }, + { + "start": 5534.86, + "end": 5536.88, + "probability": 0.9988 + }, + { + "start": 5537.26, + "end": 5539.14, + "probability": 0.7526 + }, + { + "start": 5539.16, + "end": 5541.14, + "probability": 0.9538 + }, + { + "start": 5541.76, + "end": 5542.88, + "probability": 0.7769 + }, + { + "start": 5543.38, + "end": 5544.04, + "probability": 0.968 + }, + { + "start": 5544.24, + "end": 5547.16, + "probability": 0.9515 + }, + { + "start": 5547.74, + "end": 5548.88, + "probability": 0.9313 + }, + { + "start": 5548.94, + "end": 5553.44, + "probability": 0.986 + }, + { + "start": 5555.15, + "end": 5557.56, + "probability": 0.9929 + }, + { + "start": 5559.0, + "end": 5564.02, + "probability": 0.9653 + }, + { + "start": 5564.52, + "end": 5569.69, + "probability": 0.9893 + }, + { + "start": 5570.02, + "end": 5573.26, + "probability": 0.9991 + }, + { + "start": 5574.18, + "end": 5578.33, + "probability": 0.9985 + }, + { + "start": 5578.74, + "end": 5581.88, + "probability": 0.9828 + }, + { + "start": 5582.46, + "end": 5583.56, + "probability": 0.9561 + }, + { + "start": 5583.64, + "end": 5590.04, + "probability": 0.9795 + }, + { + "start": 5591.56, + "end": 5595.74, + "probability": 0.9575 + }, + { + "start": 5596.4, + "end": 5598.48, + "probability": 0.9965 + }, + { + "start": 5598.9, + "end": 5602.44, + "probability": 0.9954 + }, + { + "start": 5603.04, + "end": 5605.34, + "probability": 0.7443 + }, + { + "start": 5607.94, + "end": 5615.88, + "probability": 0.9988 + }, + { + "start": 5619.08, + "end": 5620.46, + "probability": 0.9258 + }, + { + "start": 5621.02, + "end": 5621.32, + "probability": 0.7408 + }, + { + "start": 5621.92, + "end": 5624.22, + "probability": 0.986 + }, + { + "start": 5624.94, + "end": 5626.36, + "probability": 0.8004 + }, + { + "start": 5626.52, + "end": 5631.8, + "probability": 0.9639 + }, + { + "start": 5632.4, + "end": 5636.44, + "probability": 0.6582 + }, + { + "start": 5637.24, + "end": 5640.6, + "probability": 0.7925 + }, + { + "start": 5640.62, + "end": 5643.24, + "probability": 0.936 + }, + { + "start": 5643.24, + "end": 5647.78, + "probability": 0.9932 + }, + { + "start": 5649.56, + "end": 5652.2, + "probability": 0.7748 + }, + { + "start": 5653.04, + "end": 5653.58, + "probability": 0.6405 + }, + { + "start": 5654.5, + "end": 5658.82, + "probability": 0.9834 + }, + { + "start": 5658.86, + "end": 5663.58, + "probability": 0.5274 + }, + { + "start": 5663.6, + "end": 5664.32, + "probability": 0.8308 + }, + { + "start": 5664.62, + "end": 5666.1, + "probability": 0.7893 + }, + { + "start": 5666.18, + "end": 5668.76, + "probability": 0.7214 + }, + { + "start": 5669.52, + "end": 5672.68, + "probability": 0.9556 + }, + { + "start": 5674.0, + "end": 5676.02, + "probability": 0.5594 + }, + { + "start": 5676.98, + "end": 5677.58, + "probability": 0.6051 + }, + { + "start": 5679.0, + "end": 5682.38, + "probability": 0.7205 + }, + { + "start": 5683.32, + "end": 5683.9, + "probability": 0.5581 + }, + { + "start": 5684.0, + "end": 5688.66, + "probability": 0.6748 + }, + { + "start": 5688.92, + "end": 5690.96, + "probability": 0.98 + }, + { + "start": 5691.54, + "end": 5692.7, + "probability": 0.9471 + }, + { + "start": 5693.28, + "end": 5697.0, + "probability": 0.9963 + }, + { + "start": 5697.52, + "end": 5703.34, + "probability": 0.9669 + }, + { + "start": 5703.74, + "end": 5706.14, + "probability": 0.9875 + }, + { + "start": 5706.7, + "end": 5708.28, + "probability": 0.9941 + }, + { + "start": 5708.94, + "end": 5715.56, + "probability": 0.9066 + }, + { + "start": 5716.3, + "end": 5718.06, + "probability": 0.9498 + }, + { + "start": 5718.5, + "end": 5719.34, + "probability": 0.9097 + }, + { + "start": 5719.4, + "end": 5719.62, + "probability": 0.778 + }, + { + "start": 5720.1, + "end": 5724.42, + "probability": 0.9443 + }, + { + "start": 5724.76, + "end": 5725.7, + "probability": 0.9407 + }, + { + "start": 5726.08, + "end": 5727.14, + "probability": 0.785 + }, + { + "start": 5727.36, + "end": 5727.76, + "probability": 0.4034 + }, + { + "start": 5728.5, + "end": 5729.88, + "probability": 0.9826 + }, + { + "start": 5730.48, + "end": 5731.96, + "probability": 0.8976 + }, + { + "start": 5732.74, + "end": 5735.7, + "probability": 0.9642 + }, + { + "start": 5736.48, + "end": 5737.84, + "probability": 0.9714 + }, + { + "start": 5738.26, + "end": 5740.76, + "probability": 0.8309 + }, + { + "start": 5740.76, + "end": 5743.56, + "probability": 0.944 + }, + { + "start": 5743.72, + "end": 5744.96, + "probability": 0.8449 + }, + { + "start": 5745.02, + "end": 5745.66, + "probability": 0.68 + }, + { + "start": 5746.56, + "end": 5748.84, + "probability": 0.999 + }, + { + "start": 5749.44, + "end": 5750.36, + "probability": 0.7505 + }, + { + "start": 5751.12, + "end": 5755.18, + "probability": 0.9939 + }, + { + "start": 5756.32, + "end": 5758.16, + "probability": 0.7305 + }, + { + "start": 5758.7, + "end": 5759.76, + "probability": 0.9394 + }, + { + "start": 5760.34, + "end": 5764.04, + "probability": 0.9092 + }, + { + "start": 5764.46, + "end": 5768.2, + "probability": 0.9451 + }, + { + "start": 5768.58, + "end": 5770.58, + "probability": 0.9791 + }, + { + "start": 5771.24, + "end": 5775.82, + "probability": 0.9638 + }, + { + "start": 5776.66, + "end": 5778.92, + "probability": 0.8614 + }, + { + "start": 5779.98, + "end": 5786.66, + "probability": 0.9966 + }, + { + "start": 5786.96, + "end": 5787.98, + "probability": 0.9742 + }, + { + "start": 5788.04, + "end": 5789.5, + "probability": 0.9866 + }, + { + "start": 5794.13, + "end": 5800.72, + "probability": 0.9866 + }, + { + "start": 5800.72, + "end": 5804.12, + "probability": 0.9976 + }, + { + "start": 5804.58, + "end": 5805.76, + "probability": 0.7819 + }, + { + "start": 5806.56, + "end": 5809.48, + "probability": 0.722 + }, + { + "start": 5810.1, + "end": 5811.2, + "probability": 0.9082 + }, + { + "start": 5811.28, + "end": 5814.64, + "probability": 0.992 + }, + { + "start": 5815.26, + "end": 5817.98, + "probability": 0.9973 + }, + { + "start": 5818.64, + "end": 5819.9, + "probability": 0.9692 + }, + { + "start": 5820.58, + "end": 5821.26, + "probability": 0.8911 + }, + { + "start": 5821.72, + "end": 5822.42, + "probability": 0.5942 + }, + { + "start": 5822.52, + "end": 5823.0, + "probability": 0.6573 + }, + { + "start": 5823.02, + "end": 5824.24, + "probability": 0.6709 + }, + { + "start": 5824.72, + "end": 5825.98, + "probability": 0.9067 + }, + { + "start": 5826.42, + "end": 5826.62, + "probability": 0.1437 + }, + { + "start": 5826.7, + "end": 5827.02, + "probability": 0.8 + }, + { + "start": 5827.08, + "end": 5827.72, + "probability": 0.8442 + }, + { + "start": 5827.78, + "end": 5829.78, + "probability": 0.9904 + }, + { + "start": 5830.33, + "end": 5833.04, + "probability": 0.9988 + }, + { + "start": 5833.04, + "end": 5835.8, + "probability": 0.8533 + }, + { + "start": 5836.24, + "end": 5838.4, + "probability": 0.8974 + }, + { + "start": 5839.2, + "end": 5844.14, + "probability": 0.9897 + }, + { + "start": 5844.66, + "end": 5845.88, + "probability": 0.9989 + }, + { + "start": 5846.64, + "end": 5848.38, + "probability": 0.9089 + }, + { + "start": 5848.9, + "end": 5851.54, + "probability": 0.9674 + }, + { + "start": 5851.92, + "end": 5854.08, + "probability": 0.9719 + }, + { + "start": 5854.74, + "end": 5858.02, + "probability": 0.9777 + }, + { + "start": 5858.6, + "end": 5862.52, + "probability": 0.9837 + }, + { + "start": 5862.6, + "end": 5864.26, + "probability": 0.9262 + }, + { + "start": 5864.82, + "end": 5869.64, + "probability": 0.9819 + }, + { + "start": 5869.92, + "end": 5870.58, + "probability": 0.3314 + }, + { + "start": 5871.4, + "end": 5872.1, + "probability": 0.6924 + }, + { + "start": 5872.78, + "end": 5873.46, + "probability": 0.7381 + }, + { + "start": 5874.38, + "end": 5876.8, + "probability": 0.7234 + }, + { + "start": 5884.02, + "end": 5885.36, + "probability": 0.0958 + }, + { + "start": 5902.54, + "end": 5904.52, + "probability": 0.6136 + }, + { + "start": 5904.72, + "end": 5906.4, + "probability": 0.6541 + }, + { + "start": 5907.84, + "end": 5910.74, + "probability": 0.9593 + }, + { + "start": 5910.74, + "end": 5912.98, + "probability": 0.9987 + }, + { + "start": 5913.08, + "end": 5913.52, + "probability": 0.8224 + }, + { + "start": 5914.18, + "end": 5917.38, + "probability": 0.9645 + }, + { + "start": 5918.02, + "end": 5918.84, + "probability": 0.8868 + }, + { + "start": 5919.36, + "end": 5921.12, + "probability": 0.8692 + }, + { + "start": 5921.62, + "end": 5925.5, + "probability": 0.9803 + }, + { + "start": 5926.8, + "end": 5927.56, + "probability": 0.8525 + }, + { + "start": 5927.72, + "end": 5930.58, + "probability": 0.9808 + }, + { + "start": 5931.24, + "end": 5934.28, + "probability": 0.9903 + }, + { + "start": 5935.56, + "end": 5937.78, + "probability": 0.6617 + }, + { + "start": 5938.32, + "end": 5938.74, + "probability": 0.7282 + }, + { + "start": 5940.04, + "end": 5944.4, + "probability": 0.9985 + }, + { + "start": 5945.18, + "end": 5948.36, + "probability": 0.9946 + }, + { + "start": 5949.46, + "end": 5951.34, + "probability": 0.9592 + }, + { + "start": 5951.92, + "end": 5953.58, + "probability": 0.9927 + }, + { + "start": 5954.36, + "end": 5954.8, + "probability": 0.854 + }, + { + "start": 5955.54, + "end": 5958.74, + "probability": 0.8822 + }, + { + "start": 5959.62, + "end": 5960.18, + "probability": 0.5222 + }, + { + "start": 5961.06, + "end": 5965.42, + "probability": 0.9965 + }, + { + "start": 5965.42, + "end": 5969.36, + "probability": 0.9876 + }, + { + "start": 5970.16, + "end": 5975.0, + "probability": 0.9338 + }, + { + "start": 5975.0, + "end": 5979.04, + "probability": 0.9904 + }, + { + "start": 5979.54, + "end": 5982.44, + "probability": 0.9941 + }, + { + "start": 5982.44, + "end": 5985.82, + "probability": 0.9921 + }, + { + "start": 5987.42, + "end": 5988.54, + "probability": 0.999 + }, + { + "start": 5989.34, + "end": 5993.74, + "probability": 0.9771 + }, + { + "start": 5994.8, + "end": 5995.32, + "probability": 0.7756 + }, + { + "start": 5995.34, + "end": 5999.4, + "probability": 0.9756 + }, + { + "start": 5999.94, + "end": 6001.32, + "probability": 0.9907 + }, + { + "start": 6001.92, + "end": 6003.42, + "probability": 0.986 + }, + { + "start": 6003.56, + "end": 6006.78, + "probability": 0.988 + }, + { + "start": 6006.78, + "end": 6012.62, + "probability": 0.9991 + }, + { + "start": 6015.0, + "end": 6017.3, + "probability": 0.9935 + }, + { + "start": 6017.3, + "end": 6020.84, + "probability": 0.9989 + }, + { + "start": 6021.68, + "end": 6026.6, + "probability": 0.9976 + }, + { + "start": 6027.08, + "end": 6029.18, + "probability": 0.9825 + }, + { + "start": 6029.98, + "end": 6030.48, + "probability": 0.9402 + }, + { + "start": 6031.38, + "end": 6033.44, + "probability": 0.9966 + }, + { + "start": 6034.24, + "end": 6037.16, + "probability": 0.9697 + }, + { + "start": 6038.82, + "end": 6045.06, + "probability": 0.9408 + }, + { + "start": 6046.66, + "end": 6051.86, + "probability": 0.9669 + }, + { + "start": 6063.89, + "end": 6069.88, + "probability": 0.9834 + }, + { + "start": 6070.78, + "end": 6071.06, + "probability": 0.4653 + }, + { + "start": 6071.16, + "end": 6073.64, + "probability": 0.8259 + }, + { + "start": 6073.76, + "end": 6075.76, + "probability": 0.9693 + }, + { + "start": 6076.9, + "end": 6079.44, + "probability": 0.8457 + }, + { + "start": 6080.22, + "end": 6081.42, + "probability": 0.9023 + }, + { + "start": 6082.04, + "end": 6086.66, + "probability": 0.8025 + }, + { + "start": 6087.34, + "end": 6089.64, + "probability": 0.7502 + }, + { + "start": 6090.32, + "end": 6092.2, + "probability": 0.9919 + }, + { + "start": 6094.36, + "end": 6095.96, + "probability": 0.9043 + }, + { + "start": 6096.84, + "end": 6097.36, + "probability": 0.0133 + }, + { + "start": 6098.44, + "end": 6100.92, + "probability": 0.8936 + }, + { + "start": 6103.06, + "end": 6103.9, + "probability": 0.9835 + }, + { + "start": 6104.52, + "end": 6105.66, + "probability": 0.5516 + }, + { + "start": 6106.26, + "end": 6106.68, + "probability": 0.9395 + }, + { + "start": 6107.66, + "end": 6108.52, + "probability": 0.8111 + }, + { + "start": 6110.06, + "end": 6110.78, + "probability": 0.9284 + }, + { + "start": 6111.38, + "end": 6112.24, + "probability": 0.9314 + }, + { + "start": 6113.44, + "end": 6115.64, + "probability": 0.9046 + }, + { + "start": 6117.06, + "end": 6120.4, + "probability": 0.5779 + }, + { + "start": 6121.34, + "end": 6122.5, + "probability": 0.5105 + }, + { + "start": 6123.46, + "end": 6125.34, + "probability": 0.8719 + }, + { + "start": 6126.24, + "end": 6126.5, + "probability": 0.7009 + }, + { + "start": 6127.76, + "end": 6128.76, + "probability": 0.9245 + }, + { + "start": 6129.68, + "end": 6130.14, + "probability": 0.9045 + }, + { + "start": 6130.7, + "end": 6131.7, + "probability": 0.9557 + }, + { + "start": 6132.96, + "end": 6133.78, + "probability": 0.9909 + }, + { + "start": 6134.38, + "end": 6135.38, + "probability": 0.973 + }, + { + "start": 6137.3, + "end": 6139.52, + "probability": 0.9294 + }, + { + "start": 6140.84, + "end": 6141.28, + "probability": 0.9897 + }, + { + "start": 6142.88, + "end": 6143.9, + "probability": 0.946 + }, + { + "start": 6145.22, + "end": 6146.0, + "probability": 0.9897 + }, + { + "start": 6146.58, + "end": 6147.38, + "probability": 0.5752 + }, + { + "start": 6148.48, + "end": 6148.78, + "probability": 0.9377 + }, + { + "start": 6149.68, + "end": 6150.6, + "probability": 0.846 + }, + { + "start": 6151.68, + "end": 6152.52, + "probability": 0.9878 + }, + { + "start": 6160.18, + "end": 6163.54, + "probability": 0.4635 + }, + { + "start": 6167.0, + "end": 6169.7, + "probability": 0.658 + }, + { + "start": 6171.46, + "end": 6172.22, + "probability": 0.8671 + }, + { + "start": 6173.06, + "end": 6175.52, + "probability": 0.6816 + }, + { + "start": 6177.26, + "end": 6178.14, + "probability": 0.8944 + }, + { + "start": 6179.86, + "end": 6180.74, + "probability": 0.9807 + }, + { + "start": 6181.46, + "end": 6182.2, + "probability": 0.9735 + }, + { + "start": 6183.08, + "end": 6183.62, + "probability": 0.9735 + }, + { + "start": 6184.7, + "end": 6188.78, + "probability": 0.9712 + }, + { + "start": 6189.88, + "end": 6191.04, + "probability": 0.9418 + }, + { + "start": 6193.78, + "end": 6196.68, + "probability": 0.6367 + }, + { + "start": 6197.36, + "end": 6199.68, + "probability": 0.7771 + }, + { + "start": 6200.56, + "end": 6200.86, + "probability": 0.9733 + }, + { + "start": 6201.6, + "end": 6205.58, + "probability": 0.7964 + }, + { + "start": 6206.26, + "end": 6207.1, + "probability": 0.9067 + }, + { + "start": 6208.54, + "end": 6209.3, + "probability": 0.9813 + }, + { + "start": 6209.92, + "end": 6210.8, + "probability": 0.9657 + }, + { + "start": 6211.64, + "end": 6212.12, + "probability": 0.9836 + }, + { + "start": 6212.7, + "end": 6213.66, + "probability": 0.8136 + }, + { + "start": 6217.48, + "end": 6219.58, + "probability": 0.6451 + }, + { + "start": 6220.94, + "end": 6221.96, + "probability": 0.9085 + }, + { + "start": 6222.58, + "end": 6224.16, + "probability": 0.6599 + }, + { + "start": 6225.7, + "end": 6226.44, + "probability": 0.9537 + }, + { + "start": 6227.56, + "end": 6228.44, + "probability": 0.821 + }, + { + "start": 6229.56, + "end": 6230.38, + "probability": 0.9697 + }, + { + "start": 6230.92, + "end": 6231.96, + "probability": 0.7477 + }, + { + "start": 6232.8, + "end": 6233.42, + "probability": 0.991 + }, + { + "start": 6234.76, + "end": 6235.64, + "probability": 0.9766 + }, + { + "start": 6237.16, + "end": 6239.3, + "probability": 0.994 + }, + { + "start": 6242.46, + "end": 6243.22, + "probability": 0.8316 + }, + { + "start": 6244.16, + "end": 6245.26, + "probability": 0.9017 + }, + { + "start": 6246.04, + "end": 6246.56, + "probability": 0.992 + }, + { + "start": 6247.24, + "end": 6248.14, + "probability": 0.9899 + }, + { + "start": 6249.38, + "end": 6249.8, + "probability": 0.9851 + }, + { + "start": 6251.28, + "end": 6252.7, + "probability": 0.4835 + }, + { + "start": 6253.32, + "end": 6253.6, + "probability": 0.5734 + }, + { + "start": 6254.38, + "end": 6255.14, + "probability": 0.865 + }, + { + "start": 6256.72, + "end": 6257.76, + "probability": 0.9873 + }, + { + "start": 6258.36, + "end": 6259.4, + "probability": 0.9395 + }, + { + "start": 6260.18, + "end": 6260.74, + "probability": 0.9806 + }, + { + "start": 6261.68, + "end": 6262.58, + "probability": 0.6898 + }, + { + "start": 6263.54, + "end": 6265.74, + "probability": 0.7049 + }, + { + "start": 6267.1, + "end": 6273.64, + "probability": 0.9659 + }, + { + "start": 6274.46, + "end": 6275.02, + "probability": 0.984 + }, + { + "start": 6275.78, + "end": 6277.18, + "probability": 0.9538 + }, + { + "start": 6277.94, + "end": 6278.34, + "probability": 0.5552 + }, + { + "start": 6279.14, + "end": 6280.48, + "probability": 0.7269 + }, + { + "start": 6281.6, + "end": 6282.02, + "probability": 0.9297 + }, + { + "start": 6283.02, + "end": 6284.22, + "probability": 0.6524 + }, + { + "start": 6285.18, + "end": 6285.78, + "probability": 0.9342 + }, + { + "start": 6286.52, + "end": 6287.72, + "probability": 0.8493 + }, + { + "start": 6288.64, + "end": 6290.96, + "probability": 0.8856 + }, + { + "start": 6291.58, + "end": 6292.06, + "probability": 0.9876 + }, + { + "start": 6292.7, + "end": 6293.6, + "probability": 0.927 + }, + { + "start": 6298.76, + "end": 6299.16, + "probability": 0.5954 + }, + { + "start": 6300.34, + "end": 6301.18, + "probability": 0.7149 + }, + { + "start": 6302.62, + "end": 6303.02, + "probability": 0.9425 + }, + { + "start": 6303.74, + "end": 6305.06, + "probability": 0.7654 + }, + { + "start": 6306.62, + "end": 6307.36, + "probability": 0.9776 + }, + { + "start": 6308.18, + "end": 6309.44, + "probability": 0.9388 + }, + { + "start": 6311.78, + "end": 6312.7, + "probability": 0.9871 + }, + { + "start": 6314.04, + "end": 6316.7, + "probability": 0.4824 + }, + { + "start": 6318.5, + "end": 6320.42, + "probability": 0.8649 + }, + { + "start": 6321.38, + "end": 6322.2, + "probability": 0.7243 + }, + { + "start": 6323.04, + "end": 6323.34, + "probability": 0.9408 + }, + { + "start": 6324.28, + "end": 6325.54, + "probability": 0.9366 + }, + { + "start": 6327.22, + "end": 6327.96, + "probability": 0.9932 + }, + { + "start": 6328.7, + "end": 6329.62, + "probability": 0.9118 + }, + { + "start": 6330.86, + "end": 6333.08, + "probability": 0.9734 + }, + { + "start": 6334.06, + "end": 6334.52, + "probability": 0.2937 + }, + { + "start": 6336.52, + "end": 6337.4, + "probability": 0.8885 + }, + { + "start": 6340.8, + "end": 6341.52, + "probability": 0.9547 + }, + { + "start": 6342.76, + "end": 6343.52, + "probability": 0.5467 + }, + { + "start": 6344.22, + "end": 6347.72, + "probability": 0.8103 + }, + { + "start": 6348.52, + "end": 6351.36, + "probability": 0.6904 + }, + { + "start": 6352.88, + "end": 6354.48, + "probability": 0.933 + }, + { + "start": 6355.86, + "end": 6358.36, + "probability": 0.9736 + }, + { + "start": 6359.6, + "end": 6360.14, + "probability": 0.9746 + }, + { + "start": 6361.36, + "end": 6362.26, + "probability": 0.9738 + }, + { + "start": 6363.48, + "end": 6365.8, + "probability": 0.9728 + }, + { + "start": 6367.02, + "end": 6367.54, + "probability": 0.9816 + }, + { + "start": 6368.34, + "end": 6369.38, + "probability": 0.9885 + }, + { + "start": 6370.18, + "end": 6370.58, + "probability": 0.9875 + }, + { + "start": 6371.56, + "end": 6372.34, + "probability": 0.6549 + }, + { + "start": 6373.44, + "end": 6374.06, + "probability": 0.9536 + }, + { + "start": 6374.82, + "end": 6375.72, + "probability": 0.8208 + }, + { + "start": 6377.28, + "end": 6382.16, + "probability": 0.9709 + }, + { + "start": 6383.14, + "end": 6386.28, + "probability": 0.936 + }, + { + "start": 6387.08, + "end": 6388.02, + "probability": 0.8332 + }, + { + "start": 6390.4, + "end": 6393.74, + "probability": 0.9102 + }, + { + "start": 6397.98, + "end": 6399.16, + "probability": 0.925 + }, + { + "start": 6400.12, + "end": 6400.54, + "probability": 0.7044 + }, + { + "start": 6402.76, + "end": 6405.58, + "probability": 0.7928 + }, + { + "start": 6406.84, + "end": 6409.18, + "probability": 0.948 + }, + { + "start": 6410.98, + "end": 6411.4, + "probability": 0.9023 + }, + { + "start": 6412.64, + "end": 6413.4, + "probability": 0.9664 + }, + { + "start": 6414.88, + "end": 6417.14, + "probability": 0.9784 + }, + { + "start": 6418.9, + "end": 6419.46, + "probability": 0.9905 + }, + { + "start": 6420.14, + "end": 6421.32, + "probability": 0.4927 + }, + { + "start": 6421.96, + "end": 6422.44, + "probability": 0.9704 + }, + { + "start": 6422.96, + "end": 6424.38, + "probability": 0.9901 + }, + { + "start": 6425.34, + "end": 6425.74, + "probability": 0.9819 + }, + { + "start": 6427.1, + "end": 6428.04, + "probability": 0.7779 + }, + { + "start": 6429.12, + "end": 6429.58, + "probability": 0.7389 + }, + { + "start": 6430.58, + "end": 6431.74, + "probability": 0.7546 + }, + { + "start": 6434.04, + "end": 6437.2, + "probability": 0.6512 + }, + { + "start": 6438.32, + "end": 6439.28, + "probability": 0.7264 + }, + { + "start": 6440.08, + "end": 6440.54, + "probability": 0.971 + }, + { + "start": 6443.18, + "end": 6444.2, + "probability": 0.6055 + }, + { + "start": 6445.62, + "end": 6449.16, + "probability": 0.7304 + }, + { + "start": 6449.98, + "end": 6450.36, + "probability": 0.7922 + }, + { + "start": 6451.2, + "end": 6451.88, + "probability": 0.6479 + }, + { + "start": 6452.86, + "end": 6454.36, + "probability": 0.9243 + }, + { + "start": 6456.18, + "end": 6456.72, + "probability": 0.9645 + }, + { + "start": 6458.18, + "end": 6459.28, + "probability": 0.456 + }, + { + "start": 6462.92, + "end": 6463.58, + "probability": 0.8083 + }, + { + "start": 6464.32, + "end": 6465.36, + "probability": 0.6747 + }, + { + "start": 6466.28, + "end": 6466.72, + "probability": 0.6866 + }, + { + "start": 6467.88, + "end": 6468.9, + "probability": 0.5454 + }, + { + "start": 6471.64, + "end": 6472.38, + "probability": 0.6444 + }, + { + "start": 6473.22, + "end": 6474.18, + "probability": 0.8375 + }, + { + "start": 6475.84, + "end": 6476.34, + "probability": 0.9868 + }, + { + "start": 6477.32, + "end": 6478.16, + "probability": 0.9191 + }, + { + "start": 6478.9, + "end": 6479.34, + "probability": 0.9819 + }, + { + "start": 6480.36, + "end": 6480.88, + "probability": 0.49 + }, + { + "start": 6481.72, + "end": 6482.26, + "probability": 0.9805 + }, + { + "start": 6483.58, + "end": 6484.92, + "probability": 0.9287 + }, + { + "start": 6485.98, + "end": 6488.02, + "probability": 0.9354 + }, + { + "start": 6489.7, + "end": 6491.98, + "probability": 0.8122 + }, + { + "start": 6493.2, + "end": 6493.92, + "probability": 0.9474 + }, + { + "start": 6494.58, + "end": 6495.62, + "probability": 0.8957 + }, + { + "start": 6496.52, + "end": 6496.98, + "probability": 0.9201 + }, + { + "start": 6498.06, + "end": 6498.92, + "probability": 0.926 + }, + { + "start": 6500.96, + "end": 6501.54, + "probability": 0.991 + }, + { + "start": 6502.28, + "end": 6503.34, + "probability": 0.9162 + }, + { + "start": 6504.4, + "end": 6504.86, + "probability": 0.9497 + }, + { + "start": 6505.68, + "end": 6510.12, + "probability": 0.9367 + }, + { + "start": 6510.98, + "end": 6511.46, + "probability": 0.9748 + }, + { + "start": 6512.14, + "end": 6513.16, + "probability": 0.9501 + }, + { + "start": 6514.28, + "end": 6514.7, + "probability": 0.9834 + }, + { + "start": 6515.46, + "end": 6516.22, + "probability": 0.5891 + }, + { + "start": 6517.72, + "end": 6518.64, + "probability": 0.8348 + }, + { + "start": 6519.52, + "end": 6520.66, + "probability": 0.79 + }, + { + "start": 6523.24, + "end": 6523.8, + "probability": 0.9806 + }, + { + "start": 6525.2, + "end": 6526.22, + "probability": 0.9579 + }, + { + "start": 6527.8, + "end": 6530.38, + "probability": 0.989 + }, + { + "start": 6531.1, + "end": 6531.54, + "probability": 0.9478 + }, + { + "start": 6532.72, + "end": 6533.92, + "probability": 0.9865 + }, + { + "start": 6534.94, + "end": 6535.36, + "probability": 0.9979 + }, + { + "start": 6536.3, + "end": 6537.22, + "probability": 0.9743 + }, + { + "start": 6538.84, + "end": 6539.36, + "probability": 0.9943 + }, + { + "start": 6540.04, + "end": 6541.4, + "probability": 0.9271 + }, + { + "start": 6544.88, + "end": 6545.68, + "probability": 0.8779 + }, + { + "start": 6546.44, + "end": 6547.64, + "probability": 0.5837 + }, + { + "start": 6548.44, + "end": 6548.74, + "probability": 0.8363 + }, + { + "start": 6549.76, + "end": 6550.96, + "probability": 0.832 + }, + { + "start": 6552.06, + "end": 6554.34, + "probability": 0.8629 + }, + { + "start": 6557.58, + "end": 6558.34, + "probability": 0.7908 + }, + { + "start": 6559.54, + "end": 6560.82, + "probability": 0.849 + }, + { + "start": 6562.32, + "end": 6564.32, + "probability": 0.7272 + }, + { + "start": 6566.78, + "end": 6567.98, + "probability": 0.4207 + }, + { + "start": 6571.06, + "end": 6573.12, + "probability": 0.7587 + }, + { + "start": 6574.82, + "end": 6575.34, + "probability": 0.9355 + }, + { + "start": 6576.24, + "end": 6577.06, + "probability": 0.7173 + }, + { + "start": 6578.12, + "end": 6580.34, + "probability": 0.925 + }, + { + "start": 6581.56, + "end": 6584.52, + "probability": 0.9355 + }, + { + "start": 6586.72, + "end": 6587.26, + "probability": 0.9793 + }, + { + "start": 6588.3, + "end": 6589.22, + "probability": 0.7833 + }, + { + "start": 6590.2, + "end": 6590.82, + "probability": 0.9912 + }, + { + "start": 6592.02, + "end": 6592.8, + "probability": 0.7989 + }, + { + "start": 6594.38, + "end": 6594.76, + "probability": 0.9897 + }, + { + "start": 6596.24, + "end": 6597.38, + "probability": 0.5887 + }, + { + "start": 6599.62, + "end": 6600.52, + "probability": 0.9011 + }, + { + "start": 6602.53, + "end": 6605.98, + "probability": 0.8629 + }, + { + "start": 6614.36, + "end": 6615.42, + "probability": 0.2645 + }, + { + "start": 6617.16, + "end": 6617.84, + "probability": 0.9672 + }, + { + "start": 6618.44, + "end": 6619.44, + "probability": 0.8579 + }, + { + "start": 6620.94, + "end": 6622.84, + "probability": 0.8978 + }, + { + "start": 6624.6, + "end": 6625.32, + "probability": 0.961 + }, + { + "start": 6625.98, + "end": 6626.8, + "probability": 0.8599 + }, + { + "start": 6627.9, + "end": 6630.0, + "probability": 0.7311 + }, + { + "start": 6632.44, + "end": 6633.4, + "probability": 0.4906 + }, + { + "start": 6634.7, + "end": 6635.68, + "probability": 0.5299 + }, + { + "start": 6636.92, + "end": 6637.54, + "probability": 0.823 + }, + { + "start": 6638.48, + "end": 6639.34, + "probability": 0.7258 + }, + { + "start": 6643.2, + "end": 6643.44, + "probability": 0.4483 + }, + { + "start": 6645.7, + "end": 6646.68, + "probability": 0.6899 + }, + { + "start": 6647.94, + "end": 6649.46, + "probability": 0.9397 + }, + { + "start": 6650.26, + "end": 6651.12, + "probability": 0.9469 + }, + { + "start": 6652.83, + "end": 6655.12, + "probability": 0.9844 + }, + { + "start": 6656.68, + "end": 6657.78, + "probability": 0.9912 + }, + { + "start": 6658.96, + "end": 6660.18, + "probability": 0.6195 + }, + { + "start": 6661.48, + "end": 6662.16, + "probability": 0.791 + }, + { + "start": 6663.28, + "end": 6664.22, + "probability": 0.8668 + }, + { + "start": 6664.92, + "end": 6665.82, + "probability": 0.9817 + }, + { + "start": 6668.68, + "end": 6669.5, + "probability": 0.655 + }, + { + "start": 6671.16, + "end": 6672.6, + "probability": 0.8129 + }, + { + "start": 6673.36, + "end": 6675.76, + "probability": 0.8067 + }, + { + "start": 6677.56, + "end": 6678.42, + "probability": 0.9331 + }, + { + "start": 6681.88, + "end": 6682.62, + "probability": 0.7905 + }, + { + "start": 6683.22, + "end": 6684.08, + "probability": 0.8917 + }, + { + "start": 6685.1, + "end": 6685.86, + "probability": 0.9916 + }, + { + "start": 6686.78, + "end": 6687.1, + "probability": 0.9592 + }, + { + "start": 6689.78, + "end": 6691.82, + "probability": 0.9182 + }, + { + "start": 6693.3, + "end": 6694.16, + "probability": 0.4865 + }, + { + "start": 6699.54, + "end": 6702.12, + "probability": 0.537 + }, + { + "start": 6704.86, + "end": 6706.38, + "probability": 0.4725 + }, + { + "start": 6707.68, + "end": 6708.58, + "probability": 0.6697 + }, + { + "start": 6709.6, + "end": 6711.58, + "probability": 0.9246 + }, + { + "start": 6713.96, + "end": 6714.74, + "probability": 0.888 + }, + { + "start": 6715.52, + "end": 6716.36, + "probability": 0.5356 + }, + { + "start": 6717.5, + "end": 6718.36, + "probability": 0.9607 + }, + { + "start": 6719.16, + "end": 6720.2, + "probability": 0.4578 + }, + { + "start": 6721.46, + "end": 6722.24, + "probability": 0.9923 + }, + { + "start": 6723.0, + "end": 6724.32, + "probability": 0.9456 + }, + { + "start": 6726.04, + "end": 6726.88, + "probability": 0.9954 + }, + { + "start": 6727.92, + "end": 6728.84, + "probability": 0.9677 + }, + { + "start": 6731.42, + "end": 6732.2, + "probability": 0.9856 + }, + { + "start": 6732.9, + "end": 6734.18, + "probability": 0.734 + }, + { + "start": 6735.54, + "end": 6737.8, + "probability": 0.7204 + }, + { + "start": 6738.46, + "end": 6740.32, + "probability": 0.8286 + }, + { + "start": 6741.08, + "end": 6741.82, + "probability": 0.7653 + }, + { + "start": 6745.02, + "end": 6745.82, + "probability": 0.9535 + }, + { + "start": 6747.56, + "end": 6748.94, + "probability": 0.7908 + }, + { + "start": 6750.04, + "end": 6752.08, + "probability": 0.9785 + }, + { + "start": 6753.18, + "end": 6753.94, + "probability": 0.9858 + }, + { + "start": 6754.58, + "end": 6755.42, + "probability": 0.9791 + }, + { + "start": 6756.54, + "end": 6757.34, + "probability": 0.9698 + }, + { + "start": 6757.98, + "end": 6758.92, + "probability": 0.8492 + }, + { + "start": 6761.82, + "end": 6764.3, + "probability": 0.782 + }, + { + "start": 6766.24, + "end": 6767.24, + "probability": 0.9659 + }, + { + "start": 6767.78, + "end": 6769.06, + "probability": 0.8535 + }, + { + "start": 6770.2, + "end": 6772.64, + "probability": 0.9596 + }, + { + "start": 6773.88, + "end": 6776.24, + "probability": 0.9727 + }, + { + "start": 6776.84, + "end": 6777.32, + "probability": 0.9729 + }, + { + "start": 6778.06, + "end": 6780.96, + "probability": 0.5618 + }, + { + "start": 6782.54, + "end": 6785.7, + "probability": 0.9324 + }, + { + "start": 6787.26, + "end": 6788.0, + "probability": 0.4932 + }, + { + "start": 6788.86, + "end": 6788.96, + "probability": 0.727 + }, + { + "start": 6803.04, + "end": 6804.36, + "probability": 0.243 + }, + { + "start": 6805.3, + "end": 6807.74, + "probability": 0.7916 + }, + { + "start": 6808.68, + "end": 6809.06, + "probability": 0.8771 + }, + { + "start": 6811.34, + "end": 6812.38, + "probability": 0.7815 + }, + { + "start": 6814.02, + "end": 6814.76, + "probability": 0.8908 + }, + { + "start": 6815.66, + "end": 6816.6, + "probability": 0.7571 + }, + { + "start": 6817.94, + "end": 6818.84, + "probability": 0.9804 + }, + { + "start": 6821.48, + "end": 6822.38, + "probability": 0.6449 + }, + { + "start": 6822.98, + "end": 6825.68, + "probability": 0.8611 + }, + { + "start": 6826.94, + "end": 6829.48, + "probability": 0.9332 + }, + { + "start": 6830.26, + "end": 6832.34, + "probability": 0.9336 + }, + { + "start": 6834.38, + "end": 6836.97, + "probability": 0.444 + }, + { + "start": 6839.1, + "end": 6840.58, + "probability": 0.512 + }, + { + "start": 6842.22, + "end": 6843.3, + "probability": 0.6993 + }, + { + "start": 6844.6, + "end": 6847.22, + "probability": 0.6512 + }, + { + "start": 6848.26, + "end": 6849.42, + "probability": 0.7581 + }, + { + "start": 6853.26, + "end": 6855.14, + "probability": 0.7341 + }, + { + "start": 6855.56, + "end": 6856.33, + "probability": 0.4571 + }, + { + "start": 6857.98, + "end": 6860.66, + "probability": 0.6163 + }, + { + "start": 6863.51, + "end": 6868.82, + "probability": 0.5482 + }, + { + "start": 6869.42, + "end": 6871.62, + "probability": 0.2383 + }, + { + "start": 6872.76, + "end": 6873.98, + "probability": 0.6669 + }, + { + "start": 6878.74, + "end": 6879.3, + "probability": 0.6515 + }, + { + "start": 6879.44, + "end": 6882.18, + "probability": 0.3048 + }, + { + "start": 6882.26, + "end": 6883.12, + "probability": 0.8018 + }, + { + "start": 6971.26, + "end": 6971.28, + "probability": 0.4644 + }, + { + "start": 6971.28, + "end": 6973.54, + "probability": 0.4961 + }, + { + "start": 6973.76, + "end": 6974.74, + "probability": 0.4383 + }, + { + "start": 6974.86, + "end": 6975.16, + "probability": 0.9544 + }, + { + "start": 6975.22, + "end": 6975.96, + "probability": 0.9597 + }, + { + "start": 6976.08, + "end": 6976.72, + "probability": 0.7379 + }, + { + "start": 6977.14, + "end": 6979.52, + "probability": 0.9473 + }, + { + "start": 6980.22, + "end": 6983.67, + "probability": 0.8587 + }, + { + "start": 6985.1, + "end": 6985.32, + "probability": 0.1419 + }, + { + "start": 6985.44, + "end": 6988.24, + "probability": 0.4477 + }, + { + "start": 6988.28, + "end": 6990.32, + "probability": 0.5048 + }, + { + "start": 6990.66, + "end": 6991.52, + "probability": 0.9054 + }, + { + "start": 6992.08, + "end": 6994.86, + "probability": 0.8029 + }, + { + "start": 6994.94, + "end": 6995.44, + "probability": 0.4641 + }, + { + "start": 6995.54, + "end": 6997.84, + "probability": 0.9476 + }, + { + "start": 6999.24, + "end": 7002.44, + "probability": 0.1334 + }, + { + "start": 7019.18, + "end": 7020.66, + "probability": 0.6881 + }, + { + "start": 7022.2, + "end": 7022.56, + "probability": 0.8161 + }, + { + "start": 7026.66, + "end": 7027.8, + "probability": 0.7619 + }, + { + "start": 7028.74, + "end": 7033.82, + "probability": 0.9927 + }, + { + "start": 7034.94, + "end": 7036.34, + "probability": 0.9943 + }, + { + "start": 7037.06, + "end": 7040.12, + "probability": 0.9791 + }, + { + "start": 7040.88, + "end": 7041.96, + "probability": 0.9436 + }, + { + "start": 7043.72, + "end": 7044.34, + "probability": 0.6898 + }, + { + "start": 7044.94, + "end": 7048.2, + "probability": 0.7361 + }, + { + "start": 7052.14, + "end": 7053.88, + "probability": 0.8885 + }, + { + "start": 7055.6, + "end": 7057.22, + "probability": 0.7576 + }, + { + "start": 7058.3, + "end": 7059.2, + "probability": 0.9085 + }, + { + "start": 7059.94, + "end": 7060.42, + "probability": 0.9564 + }, + { + "start": 7064.14, + "end": 7067.66, + "probability": 0.9089 + }, + { + "start": 7068.04, + "end": 7068.86, + "probability": 0.8617 + }, + { + "start": 7071.16, + "end": 7072.6, + "probability": 0.8666 + }, + { + "start": 7073.06, + "end": 7076.4, + "probability": 0.6821 + }, + { + "start": 7077.42, + "end": 7085.1, + "probability": 0.9871 + }, + { + "start": 7085.44, + "end": 7086.36, + "probability": 0.8734 + }, + { + "start": 7086.48, + "end": 7087.46, + "probability": 0.9478 + }, + { + "start": 7089.76, + "end": 7095.44, + "probability": 0.9151 + }, + { + "start": 7097.3, + "end": 7099.26, + "probability": 0.8571 + }, + { + "start": 7101.84, + "end": 7106.98, + "probability": 0.993 + }, + { + "start": 7107.74, + "end": 7109.14, + "probability": 0.7461 + }, + { + "start": 7110.1, + "end": 7111.9, + "probability": 0.9993 + }, + { + "start": 7115.58, + "end": 7116.74, + "probability": 0.6606 + }, + { + "start": 7117.58, + "end": 7118.74, + "probability": 0.5829 + }, + { + "start": 7124.6, + "end": 7127.3, + "probability": 0.7358 + }, + { + "start": 7127.6, + "end": 7128.68, + "probability": 0.6436 + }, + { + "start": 7129.7, + "end": 7131.82, + "probability": 0.739 + }, + { + "start": 7132.46, + "end": 7133.58, + "probability": 0.7377 + }, + { + "start": 7134.12, + "end": 7134.42, + "probability": 0.7617 + }, + { + "start": 7134.6, + "end": 7135.52, + "probability": 0.9432 + }, + { + "start": 7137.22, + "end": 7137.84, + "probability": 0.9332 + }, + { + "start": 7138.7, + "end": 7139.32, + "probability": 0.9551 + }, + { + "start": 7139.94, + "end": 7140.54, + "probability": 0.8887 + }, + { + "start": 7143.72, + "end": 7148.44, + "probability": 0.7235 + }, + { + "start": 7150.14, + "end": 7152.48, + "probability": 0.9821 + }, + { + "start": 7153.54, + "end": 7155.9, + "probability": 0.8752 + }, + { + "start": 7157.88, + "end": 7160.68, + "probability": 0.9735 + }, + { + "start": 7161.72, + "end": 7164.52, + "probability": 0.9321 + }, + { + "start": 7165.24, + "end": 7167.14, + "probability": 0.9786 + }, + { + "start": 7168.66, + "end": 7172.66, + "probability": 0.994 + }, + { + "start": 7173.52, + "end": 7175.12, + "probability": 0.9998 + }, + { + "start": 7175.72, + "end": 7178.94, + "probability": 0.9968 + }, + { + "start": 7179.68, + "end": 7183.94, + "probability": 0.958 + }, + { + "start": 7184.64, + "end": 7186.66, + "probability": 0.8843 + }, + { + "start": 7188.18, + "end": 7193.0, + "probability": 0.9819 + }, + { + "start": 7194.08, + "end": 7199.74, + "probability": 0.9858 + }, + { + "start": 7200.7, + "end": 7201.5, + "probability": 0.7467 + }, + { + "start": 7202.64, + "end": 7212.24, + "probability": 0.9839 + }, + { + "start": 7213.82, + "end": 7216.62, + "probability": 0.9969 + }, + { + "start": 7217.68, + "end": 7218.9, + "probability": 0.8741 + }, + { + "start": 7220.12, + "end": 7222.1, + "probability": 0.974 + }, + { + "start": 7223.34, + "end": 7227.34, + "probability": 0.9982 + }, + { + "start": 7229.04, + "end": 7230.8, + "probability": 0.9538 + }, + { + "start": 7231.92, + "end": 7233.22, + "probability": 0.9458 + }, + { + "start": 7234.28, + "end": 7237.8, + "probability": 0.8679 + }, + { + "start": 7239.02, + "end": 7241.46, + "probability": 0.8381 + }, + { + "start": 7244.04, + "end": 7247.36, + "probability": 0.9986 + }, + { + "start": 7250.96, + "end": 7258.8, + "probability": 0.9934 + }, + { + "start": 7259.5, + "end": 7267.06, + "probability": 0.7645 + }, + { + "start": 7267.62, + "end": 7268.76, + "probability": 0.9666 + }, + { + "start": 7269.48, + "end": 7270.2, + "probability": 0.8598 + }, + { + "start": 7272.98, + "end": 7274.94, + "probability": 0.9035 + }, + { + "start": 7276.14, + "end": 7277.42, + "probability": 0.7678 + }, + { + "start": 7280.18, + "end": 7283.8, + "probability": 0.8298 + }, + { + "start": 7285.38, + "end": 7290.96, + "probability": 0.9565 + }, + { + "start": 7291.62, + "end": 7292.44, + "probability": 0.7801 + }, + { + "start": 7293.04, + "end": 7293.9, + "probability": 0.5877 + }, + { + "start": 7294.1, + "end": 7294.74, + "probability": 0.963 + }, + { + "start": 7295.04, + "end": 7296.1, + "probability": 0.9915 + }, + { + "start": 7296.28, + "end": 7297.73, + "probability": 0.9194 + }, + { + "start": 7298.22, + "end": 7302.62, + "probability": 0.7777 + }, + { + "start": 7306.88, + "end": 7309.14, + "probability": 0.986 + }, + { + "start": 7311.3, + "end": 7312.36, + "probability": 0.9651 + }, + { + "start": 7313.26, + "end": 7316.8, + "probability": 0.8323 + }, + { + "start": 7317.42, + "end": 7320.04, + "probability": 0.877 + }, + { + "start": 7320.58, + "end": 7323.06, + "probability": 0.9967 + }, + { + "start": 7323.7, + "end": 7328.68, + "probability": 0.8914 + }, + { + "start": 7328.68, + "end": 7333.32, + "probability": 0.986 + }, + { + "start": 7334.06, + "end": 7335.76, + "probability": 0.9977 + }, + { + "start": 7336.44, + "end": 7337.44, + "probability": 0.9932 + }, + { + "start": 7338.12, + "end": 7338.64, + "probability": 0.7435 + }, + { + "start": 7339.2, + "end": 7343.48, + "probability": 0.9973 + }, + { + "start": 7343.7, + "end": 7348.0, + "probability": 0.9479 + }, + { + "start": 7348.78, + "end": 7352.34, + "probability": 0.7016 + }, + { + "start": 7353.08, + "end": 7354.18, + "probability": 0.785 + }, + { + "start": 7354.34, + "end": 7355.04, + "probability": 0.9248 + }, + { + "start": 7355.12, + "end": 7358.94, + "probability": 0.9867 + }, + { + "start": 7360.9, + "end": 7361.86, + "probability": 0.9707 + }, + { + "start": 7363.54, + "end": 7364.54, + "probability": 0.7175 + }, + { + "start": 7365.86, + "end": 7366.7, + "probability": 0.5585 + }, + { + "start": 7367.4, + "end": 7368.51, + "probability": 0.9114 + }, + { + "start": 7369.24, + "end": 7373.0, + "probability": 0.8693 + }, + { + "start": 7374.46, + "end": 7375.36, + "probability": 0.8317 + }, + { + "start": 7375.52, + "end": 7376.12, + "probability": 0.5535 + }, + { + "start": 7376.32, + "end": 7376.66, + "probability": 0.4984 + }, + { + "start": 7376.68, + "end": 7379.08, + "probability": 0.9719 + }, + { + "start": 7380.18, + "end": 7381.08, + "probability": 0.9917 + }, + { + "start": 7382.84, + "end": 7388.06, + "probability": 0.9673 + }, + { + "start": 7388.9, + "end": 7391.08, + "probability": 0.9922 + }, + { + "start": 7391.92, + "end": 7393.04, + "probability": 0.9639 + }, + { + "start": 7393.7, + "end": 7395.26, + "probability": 0.9587 + }, + { + "start": 7395.56, + "end": 7396.52, + "probability": 0.6538 + }, + { + "start": 7399.04, + "end": 7403.38, + "probability": 0.9891 + }, + { + "start": 7403.68, + "end": 7404.38, + "probability": 0.9346 + }, + { + "start": 7406.7, + "end": 7409.39, + "probability": 0.8601 + }, + { + "start": 7409.86, + "end": 7410.0, + "probability": 0.8194 + }, + { + "start": 7410.1, + "end": 7415.6, + "probability": 0.9788 + }, + { + "start": 7417.26, + "end": 7418.42, + "probability": 0.0109 + }, + { + "start": 7421.26, + "end": 7426.74, + "probability": 0.8479 + }, + { + "start": 7428.16, + "end": 7430.21, + "probability": 0.9814 + }, + { + "start": 7431.51, + "end": 7433.49, + "probability": 0.581 + }, + { + "start": 7433.71, + "end": 7434.63, + "probability": 0.8064 + }, + { + "start": 7434.93, + "end": 7439.25, + "probability": 0.9984 + }, + { + "start": 7440.01, + "end": 7442.59, + "probability": 0.9089 + }, + { + "start": 7443.61, + "end": 7447.11, + "probability": 0.7808 + }, + { + "start": 7448.17, + "end": 7451.11, + "probability": 0.9916 + }, + { + "start": 7452.63, + "end": 7453.55, + "probability": 0.9487 + }, + { + "start": 7455.21, + "end": 7457.45, + "probability": 0.9976 + }, + { + "start": 7457.53, + "end": 7459.23, + "probability": 0.9816 + }, + { + "start": 7460.25, + "end": 7461.13, + "probability": 0.7657 + }, + { + "start": 7462.47, + "end": 7467.31, + "probability": 0.9612 + }, + { + "start": 7468.97, + "end": 7475.25, + "probability": 0.9923 + }, + { + "start": 7475.59, + "end": 7476.83, + "probability": 0.8584 + }, + { + "start": 7479.61, + "end": 7480.41, + "probability": 0.4977 + }, + { + "start": 7481.59, + "end": 7482.02, + "probability": 0.7628 + }, + { + "start": 7482.31, + "end": 7484.75, + "probability": 0.9497 + }, + { + "start": 7485.89, + "end": 7485.89, + "probability": 0.8325 + }, + { + "start": 7486.79, + "end": 7490.46, + "probability": 0.9924 + }, + { + "start": 7491.69, + "end": 7498.25, + "probability": 0.9875 + }, + { + "start": 7500.19, + "end": 7501.39, + "probability": 0.9579 + }, + { + "start": 7503.31, + "end": 7505.65, + "probability": 0.0502 + }, + { + "start": 7506.53, + "end": 7507.61, + "probability": 0.0025 + }, + { + "start": 7508.81, + "end": 7509.69, + "probability": 0.0765 + }, + { + "start": 7510.01, + "end": 7510.15, + "probability": 0.036 + }, + { + "start": 7510.15, + "end": 7510.15, + "probability": 0.1482 + }, + { + "start": 7510.15, + "end": 7510.89, + "probability": 0.0624 + }, + { + "start": 7511.57, + "end": 7512.55, + "probability": 0.0384 + }, + { + "start": 7513.15, + "end": 7514.87, + "probability": 0.3037 + }, + { + "start": 7515.45, + "end": 7515.53, + "probability": 0.0951 + }, + { + "start": 7518.13, + "end": 7519.15, + "probability": 0.0747 + }, + { + "start": 7519.17, + "end": 7521.35, + "probability": 0.059 + }, + { + "start": 7521.39, + "end": 7522.01, + "probability": 0.8374 + }, + { + "start": 7522.11, + "end": 7522.65, + "probability": 0.8564 + }, + { + "start": 7522.71, + "end": 7523.75, + "probability": 0.3349 + }, + { + "start": 7524.91, + "end": 7527.84, + "probability": 0.035 + }, + { + "start": 7529.65, + "end": 7536.47, + "probability": 0.1706 + }, + { + "start": 7537.33, + "end": 7537.87, + "probability": 0.3602 + }, + { + "start": 7538.47, + "end": 7539.49, + "probability": 0.3353 + }, + { + "start": 7540.67, + "end": 7542.23, + "probability": 0.0512 + }, + { + "start": 7543.45, + "end": 7545.81, + "probability": 0.0276 + }, + { + "start": 7546.37, + "end": 7549.23, + "probability": 0.2395 + }, + { + "start": 7550.65, + "end": 7551.23, + "probability": 0.0282 + }, + { + "start": 7551.75, + "end": 7558.95, + "probability": 0.0593 + }, + { + "start": 7558.95, + "end": 7560.83, + "probability": 0.0278 + }, + { + "start": 7561.81, + "end": 7563.95, + "probability": 0.0816 + }, + { + "start": 7564.55, + "end": 7566.45, + "probability": 0.1426 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.0, + "end": 7629.0, + "probability": 0.0 + }, + { + "start": 7629.14, + "end": 7633.4, + "probability": 0.9404 + }, + { + "start": 7633.52, + "end": 7634.38, + "probability": 0.5205 + }, + { + "start": 7634.46, + "end": 7636.14, + "probability": 0.772 + }, + { + "start": 7636.24, + "end": 7638.15, + "probability": 0.7145 + }, + { + "start": 7638.9, + "end": 7642.56, + "probability": 0.9337 + }, + { + "start": 7651.34, + "end": 7657.5, + "probability": 0.2112 + }, + { + "start": 7670.2, + "end": 7670.9, + "probability": 0.6276 + }, + { + "start": 7671.24, + "end": 7675.96, + "probability": 0.4525 + }, + { + "start": 7676.26, + "end": 7678.16, + "probability": 0.8456 + }, + { + "start": 7678.42, + "end": 7680.2, + "probability": 0.3255 + }, + { + "start": 7680.32, + "end": 7681.4, + "probability": 0.3136 + }, + { + "start": 7681.88, + "end": 7683.06, + "probability": 0.365 + }, + { + "start": 7683.18, + "end": 7685.62, + "probability": 0.7204 + }, + { + "start": 7687.26, + "end": 7687.4, + "probability": 0.6096 + }, + { + "start": 7687.4, + "end": 7689.12, + "probability": 0.4446 + }, + { + "start": 7689.12, + "end": 7689.24, + "probability": 0.1933 + }, + { + "start": 7689.24, + "end": 7690.8, + "probability": 0.0672 + }, + { + "start": 7690.86, + "end": 7691.5, + "probability": 0.3512 + }, + { + "start": 7691.58, + "end": 7692.8, + "probability": 0.4021 + }, + { + "start": 7693.2, + "end": 7693.88, + "probability": 0.4386 + }, + { + "start": 7693.98, + "end": 7694.78, + "probability": 0.2641 + }, + { + "start": 7694.96, + "end": 7696.66, + "probability": 0.6603 + }, + { + "start": 7696.98, + "end": 7698.22, + "probability": 0.671 + }, + { + "start": 7698.42, + "end": 7698.8, + "probability": 0.7201 + }, + { + "start": 7698.92, + "end": 7699.4, + "probability": 0.4746 + }, + { + "start": 7699.65, + "end": 7702.18, + "probability": 0.6028 + }, + { + "start": 7702.46, + "end": 7703.28, + "probability": 0.5939 + }, + { + "start": 7703.74, + "end": 7704.78, + "probability": 0.569 + }, + { + "start": 7705.92, + "end": 7707.18, + "probability": 0.9411 + }, + { + "start": 7707.26, + "end": 7708.92, + "probability": 0.2032 + }, + { + "start": 7709.0, + "end": 7710.44, + "probability": 0.6043 + }, + { + "start": 7710.54, + "end": 7711.16, + "probability": 0.4377 + }, + { + "start": 7711.26, + "end": 7712.56, + "probability": 0.6638 + }, + { + "start": 7713.52, + "end": 7715.44, + "probability": 0.0643 + }, + { + "start": 7715.44, + "end": 7717.0, + "probability": 0.0825 + }, + { + "start": 7717.0, + "end": 7721.02, + "probability": 0.969 + }, + { + "start": 7721.42, + "end": 7726.0, + "probability": 0.9258 + }, + { + "start": 7726.78, + "end": 7727.82, + "probability": 0.9387 + }, + { + "start": 7728.46, + "end": 7733.86, + "probability": 0.998 + }, + { + "start": 7734.4, + "end": 7739.6, + "probability": 0.887 + }, + { + "start": 7739.88, + "end": 7740.98, + "probability": 0.6667 + }, + { + "start": 7741.72, + "end": 7742.72, + "probability": 0.6072 + }, + { + "start": 7743.46, + "end": 7750.06, + "probability": 0.7915 + }, + { + "start": 7750.06, + "end": 7753.25, + "probability": 0.8586 + }, + { + "start": 7754.36, + "end": 7756.28, + "probability": 0.0382 + }, + { + "start": 7757.44, + "end": 7758.36, + "probability": 0.3299 + }, + { + "start": 7759.6, + "end": 7762.72, + "probability": 0.9832 + }, + { + "start": 7763.0, + "end": 7763.68, + "probability": 0.8957 + }, + { + "start": 7764.5, + "end": 7767.58, + "probability": 0.9988 + }, + { + "start": 7768.12, + "end": 7769.2, + "probability": 0.9551 + }, + { + "start": 7769.64, + "end": 7770.12, + "probability": 0.8486 + }, + { + "start": 7770.22, + "end": 7771.42, + "probability": 0.8421 + }, + { + "start": 7771.82, + "end": 7773.8, + "probability": 0.6086 + }, + { + "start": 7774.56, + "end": 7777.48, + "probability": 0.9928 + }, + { + "start": 7777.48, + "end": 7779.92, + "probability": 0.983 + }, + { + "start": 7781.16, + "end": 7783.72, + "probability": 0.9771 + }, + { + "start": 7784.46, + "end": 7789.94, + "probability": 0.9641 + }, + { + "start": 7790.24, + "end": 7792.44, + "probability": 0.8416 + }, + { + "start": 7793.34, + "end": 7797.68, + "probability": 0.9967 + }, + { + "start": 7797.76, + "end": 7799.72, + "probability": 0.9785 + }, + { + "start": 7800.3, + "end": 7802.44, + "probability": 0.3754 + }, + { + "start": 7802.48, + "end": 7802.54, + "probability": 0.0052 + }, + { + "start": 7802.54, + "end": 7802.54, + "probability": 0.662 + }, + { + "start": 7802.54, + "end": 7803.66, + "probability": 0.5979 + }, + { + "start": 7803.72, + "end": 7805.8, + "probability": 0.5603 + }, + { + "start": 7805.8, + "end": 7810.62, + "probability": 0.1866 + }, + { + "start": 7811.08, + "end": 7811.08, + "probability": 0.0136 + }, + { + "start": 7811.08, + "end": 7811.08, + "probability": 0.0256 + }, + { + "start": 7811.08, + "end": 7814.8, + "probability": 0.9415 + }, + { + "start": 7815.36, + "end": 7815.36, + "probability": 0.0056 + }, + { + "start": 7815.36, + "end": 7816.96, + "probability": 0.8782 + }, + { + "start": 7817.58, + "end": 7821.42, + "probability": 0.9422 + }, + { + "start": 7822.48, + "end": 7823.34, + "probability": 0.953 + }, + { + "start": 7823.48, + "end": 7825.16, + "probability": 0.9398 + }, + { + "start": 7825.26, + "end": 7825.82, + "probability": 0.8782 + }, + { + "start": 7825.88, + "end": 7827.74, + "probability": 0.9933 + }, + { + "start": 7828.4, + "end": 7831.72, + "probability": 0.9931 + }, + { + "start": 7832.4, + "end": 7832.9, + "probability": 0.7853 + }, + { + "start": 7833.0, + "end": 7834.28, + "probability": 0.8001 + }, + { + "start": 7834.76, + "end": 7837.76, + "probability": 0.6324 + }, + { + "start": 7837.8, + "end": 7840.48, + "probability": 0.7941 + }, + { + "start": 7841.04, + "end": 7844.46, + "probability": 0.9609 + }, + { + "start": 7844.98, + "end": 7850.36, + "probability": 0.9934 + }, + { + "start": 7850.96, + "end": 7852.4, + "probability": 0.7554 + }, + { + "start": 7853.0, + "end": 7854.56, + "probability": 0.6905 + }, + { + "start": 7855.32, + "end": 7863.58, + "probability": 0.926 + }, + { + "start": 7863.88, + "end": 7865.86, + "probability": 0.9561 + }, + { + "start": 7866.5, + "end": 7867.14, + "probability": 0.8726 + }, + { + "start": 7867.48, + "end": 7872.02, + "probability": 0.9725 + }, + { + "start": 7872.88, + "end": 7875.72, + "probability": 0.7523 + }, + { + "start": 7876.42, + "end": 7880.04, + "probability": 0.8727 + }, + { + "start": 7882.82, + "end": 7885.56, + "probability": 0.9954 + }, + { + "start": 7885.56, + "end": 7888.36, + "probability": 0.9794 + }, + { + "start": 7888.56, + "end": 7889.92, + "probability": 0.9661 + }, + { + "start": 7890.32, + "end": 7894.88, + "probability": 0.997 + }, + { + "start": 7897.0, + "end": 7900.62, + "probability": 0.9741 + }, + { + "start": 7900.62, + "end": 7903.82, + "probability": 0.9946 + }, + { + "start": 7903.9, + "end": 7903.9, + "probability": 0.0001 + }, + { + "start": 7904.44, + "end": 7905.38, + "probability": 0.0241 + }, + { + "start": 7905.38, + "end": 7907.2, + "probability": 0.485 + }, + { + "start": 7907.98, + "end": 7913.54, + "probability": 0.1862 + }, + { + "start": 7913.54, + "end": 7916.32, + "probability": 0.378 + }, + { + "start": 7916.32, + "end": 7918.1, + "probability": 0.0985 + }, + { + "start": 7918.1, + "end": 7920.14, + "probability": 0.5904 + }, + { + "start": 7921.62, + "end": 7921.9, + "probability": 0.0071 + }, + { + "start": 7921.9, + "end": 7921.9, + "probability": 0.0694 + }, + { + "start": 7921.9, + "end": 7921.9, + "probability": 0.0885 + }, + { + "start": 7921.9, + "end": 7924.7, + "probability": 0.0499 + }, + { + "start": 7924.7, + "end": 7929.38, + "probability": 0.9618 + }, + { + "start": 7929.46, + "end": 7931.16, + "probability": 0.9189 + }, + { + "start": 7931.58, + "end": 7933.57, + "probability": 0.7927 + }, + { + "start": 7934.62, + "end": 7934.72, + "probability": 0.0867 + }, + { + "start": 7934.72, + "end": 7937.96, + "probability": 0.7182 + }, + { + "start": 7938.5, + "end": 7938.7, + "probability": 0.2232 + }, + { + "start": 7938.7, + "end": 7938.7, + "probability": 0.0158 + }, + { + "start": 7938.7, + "end": 7940.06, + "probability": 0.365 + }, + { + "start": 7940.42, + "end": 7942.7, + "probability": 0.9649 + }, + { + "start": 7942.7, + "end": 7946.56, + "probability": 0.9717 + }, + { + "start": 7946.66, + "end": 7951.62, + "probability": 0.0459 + }, + { + "start": 7954.44, + "end": 7954.66, + "probability": 0.0241 + }, + { + "start": 7954.66, + "end": 7954.74, + "probability": 0.1325 + }, + { + "start": 7954.74, + "end": 7954.74, + "probability": 0.0807 + }, + { + "start": 7954.74, + "end": 7954.74, + "probability": 0.1957 + }, + { + "start": 7954.74, + "end": 7954.74, + "probability": 0.0345 + }, + { + "start": 7954.74, + "end": 7956.7, + "probability": 0.4863 + }, + { + "start": 7956.8, + "end": 7960.54, + "probability": 0.8945 + }, + { + "start": 7960.98, + "end": 7963.26, + "probability": 0.9762 + }, + { + "start": 7964.04, + "end": 7965.04, + "probability": 0.8193 + }, + { + "start": 7965.8, + "end": 7967.68, + "probability": 0.9731 + }, + { + "start": 7968.38, + "end": 7972.6, + "probability": 0.9746 + }, + { + "start": 7973.14, + "end": 7977.98, + "probability": 0.9637 + }, + { + "start": 7978.62, + "end": 7981.76, + "probability": 0.9976 + }, + { + "start": 7982.3, + "end": 7986.9, + "probability": 0.9941 + }, + { + "start": 7986.98, + "end": 7991.44, + "probability": 0.991 + }, + { + "start": 8001.88, + "end": 8005.14, + "probability": 0.8824 + }, + { + "start": 8006.22, + "end": 8008.18, + "probability": 0.9937 + }, + { + "start": 8009.16, + "end": 8012.36, + "probability": 0.9935 + }, + { + "start": 8013.3, + "end": 8015.82, + "probability": 0.9984 + }, + { + "start": 8015.96, + "end": 8017.46, + "probability": 0.9919 + }, + { + "start": 8018.14, + "end": 8018.7, + "probability": 0.9119 + }, + { + "start": 8020.0, + "end": 8022.26, + "probability": 0.5394 + }, + { + "start": 8023.22, + "end": 8024.62, + "probability": 0.5868 + }, + { + "start": 8024.78, + "end": 8025.96, + "probability": 0.6969 + }, + { + "start": 8026.4, + "end": 8026.8, + "probability": 0.3914 + }, + { + "start": 8030.16, + "end": 8033.16, + "probability": 0.7154 + }, + { + "start": 8035.22, + "end": 8036.86, + "probability": 0.8072 + }, + { + "start": 8042.04, + "end": 8042.04, + "probability": 0.322 + }, + { + "start": 8042.04, + "end": 8043.84, + "probability": 0.0289 + }, + { + "start": 8045.58, + "end": 8048.04, + "probability": 0.129 + }, + { + "start": 8049.68, + "end": 8049.78, + "probability": 0.0867 + }, + { + "start": 8050.0, + "end": 8050.28, + "probability": 0.4851 + }, + { + "start": 8050.54, + "end": 8050.56, + "probability": 0.6196 + }, + { + "start": 8050.56, + "end": 8050.64, + "probability": 0.6753 + }, + { + "start": 8050.72, + "end": 8051.79, + "probability": 0.0202 + }, + { + "start": 8052.96, + "end": 8054.62, + "probability": 0.0585 + }, + { + "start": 8056.26, + "end": 8058.08, + "probability": 0.6957 + }, + { + "start": 8059.2, + "end": 8064.24, + "probability": 0.8871 + }, + { + "start": 8065.28, + "end": 8069.04, + "probability": 0.8282 + }, + { + "start": 8069.76, + "end": 8071.02, + "probability": 0.9625 + }, + { + "start": 8071.16, + "end": 8071.95, + "probability": 0.0891 + }, + { + "start": 8072.7, + "end": 8073.5, + "probability": 0.0691 + }, + { + "start": 8073.6, + "end": 8077.16, + "probability": 0.8532 + }, + { + "start": 8077.34, + "end": 8078.18, + "probability": 0.8638 + }, + { + "start": 8078.26, + "end": 8078.98, + "probability": 0.5646 + }, + { + "start": 8079.82, + "end": 8085.4, + "probability": 0.996 + }, + { + "start": 8085.48, + "end": 8086.72, + "probability": 0.3067 + }, + { + "start": 8087.46, + "end": 8089.7, + "probability": 0.88 + }, + { + "start": 8090.76, + "end": 8097.62, + "probability": 0.9843 + }, + { + "start": 8098.7, + "end": 8103.1, + "probability": 0.6369 + }, + { + "start": 8103.62, + "end": 8109.88, + "probability": 0.9954 + }, + { + "start": 8109.88, + "end": 8116.22, + "probability": 0.9958 + }, + { + "start": 8117.28, + "end": 8118.58, + "probability": 0.9775 + }, + { + "start": 8120.58, + "end": 8122.86, + "probability": 0.9545 + }, + { + "start": 8123.76, + "end": 8125.24, + "probability": 0.5184 + }, + { + "start": 8126.2, + "end": 8127.74, + "probability": 0.7716 + }, + { + "start": 8128.56, + "end": 8135.0, + "probability": 0.9993 + }, + { + "start": 8135.48, + "end": 8138.0, + "probability": 0.7759 + }, + { + "start": 8138.62, + "end": 8140.22, + "probability": 0.8415 + }, + { + "start": 8140.52, + "end": 8143.3, + "probability": 0.9376 + }, + { + "start": 8143.56, + "end": 8145.74, + "probability": 0.9883 + }, + { + "start": 8147.1, + "end": 8149.6, + "probability": 0.0609 + }, + { + "start": 8150.34, + "end": 8154.5, + "probability": 0.2259 + }, + { + "start": 8155.7, + "end": 8157.94, + "probability": 0.8569 + }, + { + "start": 8161.4, + "end": 8162.6, + "probability": 0.656 + }, + { + "start": 8163.06, + "end": 8164.24, + "probability": 0.7716 + }, + { + "start": 8165.88, + "end": 8169.04, + "probability": 0.9904 + }, + { + "start": 8170.06, + "end": 8170.56, + "probability": 0.9395 + }, + { + "start": 8172.94, + "end": 8176.22, + "probability": 0.7593 + }, + { + "start": 8177.0, + "end": 8179.86, + "probability": 0.9897 + }, + { + "start": 8180.24, + "end": 8182.6, + "probability": 0.8486 + }, + { + "start": 8182.98, + "end": 8184.28, + "probability": 0.9092 + }, + { + "start": 8185.28, + "end": 8185.64, + "probability": 0.6084 + }, + { + "start": 8185.94, + "end": 8187.28, + "probability": 0.9741 + }, + { + "start": 8188.28, + "end": 8191.08, + "probability": 0.8867 + }, + { + "start": 8191.84, + "end": 8192.86, + "probability": 0.7399 + }, + { + "start": 8192.94, + "end": 8196.8, + "probability": 0.9936 + }, + { + "start": 8197.26, + "end": 8200.8, + "probability": 0.9001 + }, + { + "start": 8202.5, + "end": 8204.92, + "probability": 0.9251 + }, + { + "start": 8205.7, + "end": 8206.2, + "probability": 0.6559 + }, + { + "start": 8207.1, + "end": 8209.91, + "probability": 0.9897 + }, + { + "start": 8210.54, + "end": 8212.76, + "probability": 0.7723 + }, + { + "start": 8212.84, + "end": 8214.34, + "probability": 0.8292 + }, + { + "start": 8214.42, + "end": 8214.7, + "probability": 0.8375 + }, + { + "start": 8215.38, + "end": 8217.38, + "probability": 0.7852 + }, + { + "start": 8217.98, + "end": 8219.2, + "probability": 0.7912 + }, + { + "start": 8219.3, + "end": 8219.9, + "probability": 0.6863 + }, + { + "start": 8220.24, + "end": 8224.0, + "probability": 0.9915 + }, + { + "start": 8224.14, + "end": 8225.03, + "probability": 0.9021 + }, + { + "start": 8225.64, + "end": 8228.8, + "probability": 0.9806 + }, + { + "start": 8228.88, + "end": 8229.62, + "probability": 0.8192 + }, + { + "start": 8229.9, + "end": 8230.86, + "probability": 0.9298 + }, + { + "start": 8231.28, + "end": 8233.08, + "probability": 0.6639 + }, + { + "start": 8233.14, + "end": 8236.0, + "probability": 0.7703 + }, + { + "start": 8236.02, + "end": 8238.86, + "probability": 0.7992 + }, + { + "start": 8238.86, + "end": 8239.08, + "probability": 0.8149 + }, + { + "start": 8239.6, + "end": 8240.28, + "probability": 0.9609 + }, + { + "start": 8241.45, + "end": 8242.05, + "probability": 0.0164 + }, + { + "start": 8243.72, + "end": 8244.42, + "probability": 0.8941 + }, + { + "start": 8244.98, + "end": 8246.04, + "probability": 0.7064 + }, + { + "start": 8247.02, + "end": 8247.42, + "probability": 0.9473 + }, + { + "start": 8248.26, + "end": 8249.29, + "probability": 0.7505 + }, + { + "start": 8250.24, + "end": 8250.66, + "probability": 0.9128 + }, + { + "start": 8251.42, + "end": 8252.32, + "probability": 0.8591 + }, + { + "start": 8253.48, + "end": 8255.4, + "probability": 0.9669 + }, + { + "start": 8256.48, + "end": 8256.92, + "probability": 0.9893 + }, + { + "start": 8257.9, + "end": 8258.78, + "probability": 0.6417 + }, + { + "start": 8260.36, + "end": 8261.14, + "probability": 0.927 + }, + { + "start": 8262.94, + "end": 8264.0, + "probability": 0.8352 + }, + { + "start": 8264.74, + "end": 8266.78, + "probability": 0.7166 + }, + { + "start": 8267.7, + "end": 8268.1, + "probability": 0.814 + }, + { + "start": 8269.34, + "end": 8269.98, + "probability": 0.9628 + }, + { + "start": 8271.1, + "end": 8271.7, + "probability": 0.8711 + }, + { + "start": 8272.44, + "end": 8273.24, + "probability": 0.9463 + }, + { + "start": 8277.12, + "end": 8277.88, + "probability": 0.7254 + }, + { + "start": 8278.44, + "end": 8279.32, + "probability": 0.987 + }, + { + "start": 8280.18, + "end": 8282.58, + "probability": 0.9683 + }, + { + "start": 8283.8, + "end": 8284.26, + "probability": 0.9857 + }, + { + "start": 8285.28, + "end": 8286.18, + "probability": 0.9809 + }, + { + "start": 8287.12, + "end": 8289.14, + "probability": 0.9901 + }, + { + "start": 8289.98, + "end": 8290.4, + "probability": 0.9308 + }, + { + "start": 8291.18, + "end": 8291.98, + "probability": 0.7942 + }, + { + "start": 8292.7, + "end": 8293.04, + "probability": 0.6099 + }, + { + "start": 8293.86, + "end": 8294.84, + "probability": 0.6707 + }, + { + "start": 8296.12, + "end": 8296.8, + "probability": 0.7839 + }, + { + "start": 8298.1, + "end": 8299.04, + "probability": 0.8791 + }, + { + "start": 8302.24, + "end": 8303.0, + "probability": 0.8296 + }, + { + "start": 8304.12, + "end": 8305.14, + "probability": 0.918 + }, + { + "start": 8307.24, + "end": 8307.7, + "probability": 0.9749 + }, + { + "start": 8309.06, + "end": 8309.86, + "probability": 0.9578 + }, + { + "start": 8311.7, + "end": 8312.48, + "probability": 0.9882 + }, + { + "start": 8313.24, + "end": 8313.96, + "probability": 0.9825 + }, + { + "start": 8314.9, + "end": 8315.36, + "probability": 0.9144 + }, + { + "start": 8316.3, + "end": 8317.42, + "probability": 0.9901 + }, + { + "start": 8319.2, + "end": 8320.68, + "probability": 0.9723 + }, + { + "start": 8321.8, + "end": 8322.56, + "probability": 0.6509 + }, + { + "start": 8323.9, + "end": 8325.54, + "probability": 0.7599 + }, + { + "start": 8326.32, + "end": 8326.98, + "probability": 0.8349 + }, + { + "start": 8327.92, + "end": 8328.62, + "probability": 0.9729 + }, + { + "start": 8329.26, + "end": 8330.42, + "probability": 0.738 + }, + { + "start": 8334.72, + "end": 8335.64, + "probability": 0.9858 + }, + { + "start": 8336.18, + "end": 8336.84, + "probability": 0.9464 + }, + { + "start": 8338.88, + "end": 8339.26, + "probability": 0.5781 + }, + { + "start": 8340.42, + "end": 8341.2, + "probability": 0.9416 + }, + { + "start": 8342.28, + "end": 8343.08, + "probability": 0.9905 + }, + { + "start": 8344.04, + "end": 8344.82, + "probability": 0.9609 + }, + { + "start": 8346.88, + "end": 8347.58, + "probability": 0.9924 + }, + { + "start": 8348.54, + "end": 8349.42, + "probability": 0.8926 + }, + { + "start": 8351.46, + "end": 8352.4, + "probability": 0.736 + }, + { + "start": 8353.58, + "end": 8354.6, + "probability": 0.6021 + }, + { + "start": 8355.26, + "end": 8356.64, + "probability": 0.7887 + }, + { + "start": 8358.66, + "end": 8358.98, + "probability": 0.5408 + }, + { + "start": 8360.02, + "end": 8360.9, + "probability": 0.8678 + }, + { + "start": 8362.34, + "end": 8362.78, + "probability": 0.9412 + }, + { + "start": 8363.62, + "end": 8364.46, + "probability": 0.7948 + }, + { + "start": 8365.3, + "end": 8365.78, + "probability": 0.9419 + }, + { + "start": 8366.72, + "end": 8367.54, + "probability": 0.8525 + }, + { + "start": 8373.34, + "end": 8374.22, + "probability": 0.7629 + }, + { + "start": 8375.4, + "end": 8376.46, + "probability": 0.9248 + }, + { + "start": 8378.54, + "end": 8379.02, + "probability": 0.537 + }, + { + "start": 8379.66, + "end": 8380.66, + "probability": 0.694 + }, + { + "start": 8381.48, + "end": 8381.98, + "probability": 0.6969 + }, + { + "start": 8382.78, + "end": 8383.62, + "probability": 0.8303 + }, + { + "start": 8384.5, + "end": 8384.84, + "probability": 0.8044 + }, + { + "start": 8385.88, + "end": 8387.5, + "probability": 0.8704 + }, + { + "start": 8388.38, + "end": 8388.78, + "probability": 0.9546 + }, + { + "start": 8389.7, + "end": 8390.86, + "probability": 0.9427 + }, + { + "start": 8393.02, + "end": 8395.7, + "probability": 0.985 + }, + { + "start": 8396.72, + "end": 8397.2, + "probability": 0.9839 + }, + { + "start": 8398.04, + "end": 8399.04, + "probability": 0.9545 + }, + { + "start": 8399.94, + "end": 8400.42, + "probability": 0.9912 + }, + { + "start": 8401.26, + "end": 8402.2, + "probability": 0.416 + }, + { + "start": 8403.98, + "end": 8404.94, + "probability": 0.9651 + }, + { + "start": 8405.98, + "end": 8406.48, + "probability": 0.7896 + }, + { + "start": 8409.04, + "end": 8410.02, + "probability": 0.9078 + }, + { + "start": 8410.68, + "end": 8412.14, + "probability": 0.7936 + }, + { + "start": 8413.44, + "end": 8413.96, + "probability": 0.9839 + }, + { + "start": 8416.16, + "end": 8417.32, + "probability": 0.9896 + }, + { + "start": 8417.98, + "end": 8420.36, + "probability": 0.7631 + }, + { + "start": 8425.02, + "end": 8425.94, + "probability": 0.8954 + }, + { + "start": 8427.06, + "end": 8428.3, + "probability": 0.5598 + }, + { + "start": 8429.34, + "end": 8429.84, + "probability": 0.9686 + }, + { + "start": 8430.96, + "end": 8432.92, + "probability": 0.7858 + }, + { + "start": 8433.98, + "end": 8435.0, + "probability": 0.8652 + }, + { + "start": 8435.82, + "end": 8436.16, + "probability": 0.7038 + }, + { + "start": 8437.18, + "end": 8438.08, + "probability": 0.6486 + }, + { + "start": 8439.14, + "end": 8439.46, + "probability": 0.8867 + }, + { + "start": 8440.48, + "end": 8441.3, + "probability": 0.9084 + }, + { + "start": 8442.18, + "end": 8444.9, + "probability": 0.6812 + }, + { + "start": 8445.86, + "end": 8446.3, + "probability": 0.958 + }, + { + "start": 8447.28, + "end": 8448.6, + "probability": 0.9426 + }, + { + "start": 8449.86, + "end": 8450.6, + "probability": 0.9825 + }, + { + "start": 8451.26, + "end": 8451.98, + "probability": 0.9576 + }, + { + "start": 8453.86, + "end": 8454.66, + "probability": 0.9861 + }, + { + "start": 8455.56, + "end": 8456.4, + "probability": 0.9458 + }, + { + "start": 8457.54, + "end": 8458.46, + "probability": 0.8984 + }, + { + "start": 8459.72, + "end": 8461.1, + "probability": 0.9346 + }, + { + "start": 8461.92, + "end": 8462.36, + "probability": 0.9842 + }, + { + "start": 8463.3, + "end": 8464.22, + "probability": 0.9284 + }, + { + "start": 8465.4, + "end": 8465.64, + "probability": 0.5132 + }, + { + "start": 8466.58, + "end": 8467.36, + "probability": 0.7753 + }, + { + "start": 8468.74, + "end": 8471.64, + "probability": 0.9312 + }, + { + "start": 8474.94, + "end": 8478.84, + "probability": 0.5148 + }, + { + "start": 8479.68, + "end": 8480.28, + "probability": 0.8652 + }, + { + "start": 8481.06, + "end": 8481.72, + "probability": 0.7248 + }, + { + "start": 8483.0, + "end": 8484.68, + "probability": 0.7244 + }, + { + "start": 8487.18, + "end": 8488.22, + "probability": 0.6094 + }, + { + "start": 8489.48, + "end": 8490.18, + "probability": 0.9559 + }, + { + "start": 8490.78, + "end": 8491.52, + "probability": 0.8169 + }, + { + "start": 8493.3, + "end": 8494.44, + "probability": 0.9659 + }, + { + "start": 8495.12, + "end": 8496.38, + "probability": 0.9603 + }, + { + "start": 8497.78, + "end": 8498.22, + "probability": 0.8174 + }, + { + "start": 8499.52, + "end": 8500.4, + "probability": 0.902 + }, + { + "start": 8501.28, + "end": 8501.62, + "probability": 0.9619 + }, + { + "start": 8502.64, + "end": 8503.6, + "probability": 0.5895 + }, + { + "start": 8505.16, + "end": 8505.68, + "probability": 0.9552 + }, + { + "start": 8506.96, + "end": 8507.9, + "probability": 0.9741 + }, + { + "start": 8508.58, + "end": 8509.0, + "probability": 0.9761 + }, + { + "start": 8509.74, + "end": 8510.56, + "probability": 0.9795 + }, + { + "start": 8511.78, + "end": 8512.24, + "probability": 0.9904 + }, + { + "start": 8513.34, + "end": 8514.12, + "probability": 0.9762 + }, + { + "start": 8515.7, + "end": 8516.48, + "probability": 0.9772 + }, + { + "start": 8517.74, + "end": 8518.82, + "probability": 0.8952 + }, + { + "start": 8519.78, + "end": 8520.26, + "probability": 0.9907 + }, + { + "start": 8521.78, + "end": 8522.72, + "probability": 0.8347 + }, + { + "start": 8524.26, + "end": 8524.78, + "probability": 0.9902 + }, + { + "start": 8525.82, + "end": 8526.66, + "probability": 0.8302 + }, + { + "start": 8527.82, + "end": 8528.58, + "probability": 0.9908 + }, + { + "start": 8529.56, + "end": 8530.62, + "probability": 0.7952 + }, + { + "start": 8532.16, + "end": 8533.08, + "probability": 0.8895 + }, + { + "start": 8534.2, + "end": 8535.22, + "probability": 0.6064 + }, + { + "start": 8536.98, + "end": 8537.44, + "probability": 0.9635 + }, + { + "start": 8538.54, + "end": 8539.7, + "probability": 0.8856 + }, + { + "start": 8540.96, + "end": 8541.8, + "probability": 0.9818 + }, + { + "start": 8542.34, + "end": 8543.48, + "probability": 0.9426 + }, + { + "start": 8544.52, + "end": 8544.92, + "probability": 0.9297 + }, + { + "start": 8546.08, + "end": 8546.84, + "probability": 0.9575 + }, + { + "start": 8549.38, + "end": 8553.12, + "probability": 0.7352 + }, + { + "start": 8554.48, + "end": 8555.26, + "probability": 0.8396 + }, + { + "start": 8556.24, + "end": 8556.62, + "probability": 0.967 + }, + { + "start": 8558.22, + "end": 8559.34, + "probability": 0.4263 + }, + { + "start": 8560.06, + "end": 8560.56, + "probability": 0.9364 + }, + { + "start": 8561.46, + "end": 8562.36, + "probability": 0.8858 + }, + { + "start": 8563.56, + "end": 8563.96, + "probability": 0.979 + }, + { + "start": 8564.8, + "end": 8565.7, + "probability": 0.9264 + }, + { + "start": 8568.34, + "end": 8568.78, + "probability": 0.9727 + }, + { + "start": 8570.38, + "end": 8571.52, + "probability": 0.918 + }, + { + "start": 8576.24, + "end": 8581.74, + "probability": 0.6258 + }, + { + "start": 8582.96, + "end": 8583.34, + "probability": 0.9476 + }, + { + "start": 8584.4, + "end": 8585.62, + "probability": 0.6994 + }, + { + "start": 8586.46, + "end": 8588.38, + "probability": 0.9697 + }, + { + "start": 8591.44, + "end": 8591.86, + "probability": 0.8491 + }, + { + "start": 8593.42, + "end": 8594.18, + "probability": 0.708 + }, + { + "start": 8595.06, + "end": 8595.86, + "probability": 0.95 + }, + { + "start": 8596.38, + "end": 8597.34, + "probability": 0.8146 + }, + { + "start": 8598.96, + "end": 8599.42, + "probability": 0.9526 + }, + { + "start": 8600.82, + "end": 8601.8, + "probability": 0.3751 + }, + { + "start": 8602.84, + "end": 8605.36, + "probability": 0.8265 + }, + { + "start": 8606.82, + "end": 8607.18, + "probability": 0.5489 + }, + { + "start": 8609.2, + "end": 8610.06, + "probability": 0.5009 + }, + { + "start": 8611.1, + "end": 8613.36, + "probability": 0.9583 + }, + { + "start": 8614.62, + "end": 8615.12, + "probability": 0.9727 + }, + { + "start": 8616.18, + "end": 8617.0, + "probability": 0.9366 + }, + { + "start": 8618.2, + "end": 8618.8, + "probability": 0.9802 + }, + { + "start": 8619.84, + "end": 8620.68, + "probability": 0.493 + }, + { + "start": 8622.72, + "end": 8623.24, + "probability": 0.9907 + }, + { + "start": 8626.06, + "end": 8627.04, + "probability": 0.7524 + }, + { + "start": 8628.12, + "end": 8628.84, + "probability": 0.8103 + }, + { + "start": 8629.7, + "end": 8630.94, + "probability": 0.9395 + }, + { + "start": 8631.6, + "end": 8632.08, + "probability": 0.9813 + }, + { + "start": 8633.02, + "end": 8633.98, + "probability": 0.8382 + }, + { + "start": 8635.7, + "end": 8636.52, + "probability": 0.9872 + }, + { + "start": 8637.48, + "end": 8638.58, + "probability": 0.9537 + }, + { + "start": 8639.74, + "end": 8640.22, + "probability": 0.984 + }, + { + "start": 8641.3, + "end": 8642.22, + "probability": 0.9186 + }, + { + "start": 8644.4, + "end": 8644.86, + "probability": 0.9964 + }, + { + "start": 8645.8, + "end": 8646.74, + "probability": 0.9404 + }, + { + "start": 8647.42, + "end": 8647.88, + "probability": 0.9925 + }, + { + "start": 8648.68, + "end": 8649.56, + "probability": 0.9761 + }, + { + "start": 8652.66, + "end": 8653.02, + "probability": 0.7484 + }, + { + "start": 8655.18, + "end": 8655.98, + "probability": 0.8712 + }, + { + "start": 8657.24, + "end": 8657.66, + "probability": 0.788 + }, + { + "start": 8658.58, + "end": 8659.46, + "probability": 0.7374 + }, + { + "start": 8660.3, + "end": 8660.74, + "probability": 0.9282 + }, + { + "start": 8661.68, + "end": 8662.5, + "probability": 0.9633 + }, + { + "start": 8663.66, + "end": 8665.78, + "probability": 0.8939 + }, + { + "start": 8673.58, + "end": 8674.42, + "probability": 0.6984 + }, + { + "start": 8675.64, + "end": 8676.58, + "probability": 0.5977 + }, + { + "start": 8678.54, + "end": 8679.22, + "probability": 0.8647 + }, + { + "start": 8679.98, + "end": 8680.82, + "probability": 0.9298 + }, + { + "start": 8681.86, + "end": 8682.34, + "probability": 0.9749 + }, + { + "start": 8683.28, + "end": 8684.46, + "probability": 0.984 + }, + { + "start": 8685.34, + "end": 8685.82, + "probability": 0.9964 + }, + { + "start": 8686.76, + "end": 8687.46, + "probability": 0.9561 + }, + { + "start": 8688.34, + "end": 8688.78, + "probability": 0.9847 + }, + { + "start": 8689.88, + "end": 8690.96, + "probability": 0.8516 + }, + { + "start": 8692.88, + "end": 8693.84, + "probability": 0.9843 + }, + { + "start": 8694.96, + "end": 8696.36, + "probability": 0.8935 + }, + { + "start": 8696.98, + "end": 8697.52, + "probability": 0.9924 + }, + { + "start": 8698.72, + "end": 8699.68, + "probability": 0.7557 + }, + { + "start": 8700.78, + "end": 8701.64, + "probability": 0.7918 + }, + { + "start": 8702.48, + "end": 8703.34, + "probability": 0.5406 + }, + { + "start": 8704.98, + "end": 8707.64, + "probability": 0.8062 + }, + { + "start": 8709.22, + "end": 8710.1, + "probability": 0.7489 + }, + { + "start": 8711.12, + "end": 8711.42, + "probability": 0.5446 + }, + { + "start": 8712.38, + "end": 8713.26, + "probability": 0.3866 + }, + { + "start": 8715.78, + "end": 8718.02, + "probability": 0.3989 + }, + { + "start": 8719.0, + "end": 8721.1, + "probability": 0.0647 + }, + { + "start": 8721.1, + "end": 8721.98, + "probability": 0.0969 + }, + { + "start": 8721.98, + "end": 8724.92, + "probability": 0.1057 + }, + { + "start": 8726.02, + "end": 8728.02, + "probability": 0.2347 + }, + { + "start": 8748.82, + "end": 8750.18, + "probability": 0.3985 + }, + { + "start": 8751.0, + "end": 8751.74, + "probability": 0.3373 + }, + { + "start": 8756.06, + "end": 8757.86, + "probability": 0.6292 + }, + { + "start": 8758.66, + "end": 8759.9, + "probability": 0.3041 + }, + { + "start": 8760.74, + "end": 8761.18, + "probability": 0.5963 + }, + { + "start": 8762.08, + "end": 8764.04, + "probability": 0.6185 + }, + { + "start": 8767.04, + "end": 8767.48, + "probability": 0.3467 + }, + { + "start": 8774.42, + "end": 8776.58, + "probability": 0.49 + }, + { + "start": 8780.3, + "end": 8781.06, + "probability": 0.5888 + }, + { + "start": 8782.74, + "end": 8784.74, + "probability": 0.756 + }, + { + "start": 8785.86, + "end": 8786.74, + "probability": 0.8582 + }, + { + "start": 8787.9, + "end": 8788.82, + "probability": 0.9449 + }, + { + "start": 8790.18, + "end": 8792.02, + "probability": 0.8965 + }, + { + "start": 8793.04, + "end": 8793.36, + "probability": 0.9868 + }, + { + "start": 8795.44, + "end": 8796.42, + "probability": 0.9189 + }, + { + "start": 8797.38, + "end": 8798.12, + "probability": 0.9333 + }, + { + "start": 8798.7, + "end": 8799.64, + "probability": 0.9301 + }, + { + "start": 8800.34, + "end": 8802.12, + "probability": 0.9873 + }, + { + "start": 8803.14, + "end": 8804.06, + "probability": 0.742 + }, + { + "start": 8805.06, + "end": 8805.44, + "probability": 0.9845 + }, + { + "start": 8808.32, + "end": 8809.34, + "probability": 0.7403 + }, + { + "start": 8812.26, + "end": 8813.04, + "probability": 0.8283 + }, + { + "start": 8814.1, + "end": 8815.08, + "probability": 0.9709 + }, + { + "start": 8818.12, + "end": 8820.14, + "probability": 0.9019 + }, + { + "start": 8821.9, + "end": 8822.34, + "probability": 0.9777 + }, + { + "start": 8825.96, + "end": 8827.28, + "probability": 0.4901 + }, + { + "start": 8828.34, + "end": 8828.76, + "probability": 0.96 + }, + { + "start": 8829.84, + "end": 8832.1, + "probability": 0.0467 + }, + { + "start": 8833.1, + "end": 8835.18, + "probability": 0.7802 + }, + { + "start": 8837.64, + "end": 8840.1, + "probability": 0.8813 + }, + { + "start": 8843.24, + "end": 8844.22, + "probability": 0.9324 + }, + { + "start": 8846.02, + "end": 8846.94, + "probability": 0.7567 + }, + { + "start": 8847.86, + "end": 8848.58, + "probability": 0.9568 + }, + { + "start": 8849.64, + "end": 8850.56, + "probability": 0.351 + }, + { + "start": 8852.3, + "end": 8854.92, + "probability": 0.6316 + }, + { + "start": 8855.8, + "end": 8857.2, + "probability": 0.6414 + }, + { + "start": 8859.22, + "end": 8860.6, + "probability": 0.6494 + }, + { + "start": 8862.34, + "end": 8865.3, + "probability": 0.8898 + }, + { + "start": 8868.42, + "end": 8869.7, + "probability": 0.5157 + }, + { + "start": 8871.0, + "end": 8871.86, + "probability": 0.9379 + }, + { + "start": 8873.08, + "end": 8873.56, + "probability": 0.7695 + }, + { + "start": 8875.98, + "end": 8876.44, + "probability": 0.6666 + }, + { + "start": 8879.9, + "end": 8881.28, + "probability": 0.403 + }, + { + "start": 8883.06, + "end": 8885.02, + "probability": 0.7846 + }, + { + "start": 8887.5, + "end": 8891.36, + "probability": 0.8856 + }, + { + "start": 8892.54, + "end": 8895.02, + "probability": 0.919 + }, + { + "start": 8896.38, + "end": 8897.04, + "probability": 0.9873 + }, + { + "start": 8897.82, + "end": 8898.98, + "probability": 0.8559 + }, + { + "start": 8899.96, + "end": 8902.36, + "probability": 0.6037 + }, + { + "start": 8903.46, + "end": 8905.18, + "probability": 0.9259 + }, + { + "start": 8906.42, + "end": 8907.18, + "probability": 0.9258 + }, + { + "start": 8908.28, + "end": 8909.5, + "probability": 0.4624 + }, + { + "start": 8911.56, + "end": 8912.22, + "probability": 0.9701 + }, + { + "start": 8914.3, + "end": 8914.62, + "probability": 0.9582 + }, + { + "start": 8916.08, + "end": 8918.24, + "probability": 0.9696 + }, + { + "start": 8919.2, + "end": 8921.56, + "probability": 0.9743 + }, + { + "start": 8922.44, + "end": 8924.28, + "probability": 0.9283 + }, + { + "start": 8925.28, + "end": 8926.14, + "probability": 0.7699 + }, + { + "start": 8927.1, + "end": 8928.2, + "probability": 0.9071 + }, + { + "start": 8929.66, + "end": 8930.64, + "probability": 0.981 + }, + { + "start": 8931.16, + "end": 8931.94, + "probability": 0.6525 + }, + { + "start": 8933.14, + "end": 8938.6, + "probability": 0.8067 + }, + { + "start": 8943.06, + "end": 8946.1, + "probability": 0.4157 + }, + { + "start": 8946.94, + "end": 8947.82, + "probability": 0.7443 + }, + { + "start": 8949.42, + "end": 8951.24, + "probability": 0.6019 + }, + { + "start": 8951.8, + "end": 8952.86, + "probability": 0.4672 + }, + { + "start": 8953.32, + "end": 8954.82, + "probability": 0.4465 + }, + { + "start": 8954.9, + "end": 8955.64, + "probability": 0.5845 + }, + { + "start": 9050.51, + "end": 9050.83, + "probability": 0.495 + }, + { + "start": 9051.31, + "end": 9053.51, + "probability": 0.6331 + }, + { + "start": 9053.89, + "end": 9054.85, + "probability": 0.5593 + }, + { + "start": 9055.27, + "end": 9055.59, + "probability": 0.9588 + }, + { + "start": 9055.83, + "end": 9057.41, + "probability": 0.401 + }, + { + "start": 9057.61, + "end": 9059.79, + "probability": 0.9775 + }, + { + "start": 9060.41, + "end": 9061.57, + "probability": 0.8287 + }, + { + "start": 9062.61, + "end": 9063.25, + "probability": 0.8382 + }, + { + "start": 9064.05, + "end": 9067.27, + "probability": 0.7598 + }, + { + "start": 9068.13, + "end": 9070.73, + "probability": 0.9095 + }, + { + "start": 9085.98, + "end": 9087.27, + "probability": 0.8296 + }, + { + "start": 9093.09, + "end": 9095.09, + "probability": 0.7008 + }, + { + "start": 9097.09, + "end": 9097.09, + "probability": 0.437 + }, + { + "start": 9097.17, + "end": 9098.56, + "probability": 0.6233 + }, + { + "start": 9099.63, + "end": 9102.15, + "probability": 0.8943 + }, + { + "start": 9103.33, + "end": 9104.73, + "probability": 0.8674 + }, + { + "start": 9105.61, + "end": 9106.59, + "probability": 0.8056 + }, + { + "start": 9107.59, + "end": 9110.21, + "probability": 0.9467 + }, + { + "start": 9111.09, + "end": 9112.25, + "probability": 0.9099 + }, + { + "start": 9112.97, + "end": 9113.83, + "probability": 0.8831 + }, + { + "start": 9114.67, + "end": 9115.51, + "probability": 0.9752 + }, + { + "start": 9116.09, + "end": 9116.97, + "probability": 0.9384 + }, + { + "start": 9117.51, + "end": 9120.15, + "probability": 0.3644 + }, + { + "start": 9136.69, + "end": 9139.61, + "probability": 0.9946 + }, + { + "start": 9140.07, + "end": 9140.87, + "probability": 0.8229 + }, + { + "start": 9141.35, + "end": 9143.97, + "probability": 0.9791 + }, + { + "start": 9146.21, + "end": 9147.47, + "probability": 0.1559 + }, + { + "start": 9149.03, + "end": 9152.77, + "probability": 0.0795 + }, + { + "start": 9153.39, + "end": 9154.73, + "probability": 0.0791 + }, + { + "start": 9155.68, + "end": 9159.81, + "probability": 0.0384 + }, + { + "start": 9162.01, + "end": 9169.75, + "probability": 0.098 + }, + { + "start": 9171.29, + "end": 9173.85, + "probability": 0.2036 + }, + { + "start": 9174.11, + "end": 9175.03, + "probability": 0.0069 + }, + { + "start": 9175.85, + "end": 9176.45, + "probability": 0.0738 + }, + { + "start": 9184.41, + "end": 9185.61, + "probability": 0.0486 + }, + { + "start": 9186.25, + "end": 9188.75, + "probability": 0.0381 + }, + { + "start": 9188.75, + "end": 9188.77, + "probability": 0.0419 + }, + { + "start": 9188.77, + "end": 9190.67, + "probability": 0.0857 + }, + { + "start": 9190.67, + "end": 9194.71, + "probability": 0.0506 + }, + { + "start": 9196.01, + "end": 9198.91, + "probability": 0.0279 + }, + { + "start": 9199.59, + "end": 9201.33, + "probability": 0.0608 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.0, + "end": 9216.0, + "probability": 0.0 + }, + { + "start": 9216.64, + "end": 9216.64, + "probability": 0.0933 + }, + { + "start": 9216.64, + "end": 9218.92, + "probability": 0.8667 + }, + { + "start": 9219.74, + "end": 9220.3, + "probability": 0.9637 + }, + { + "start": 9220.82, + "end": 9223.78, + "probability": 0.9883 + }, + { + "start": 9224.34, + "end": 9225.56, + "probability": 0.8932 + }, + { + "start": 9228.02, + "end": 9230.28, + "probability": 0.6028 + }, + { + "start": 9231.26, + "end": 9232.02, + "probability": 0.7842 + }, + { + "start": 9232.8, + "end": 9233.42, + "probability": 0.7858 + }, + { + "start": 9235.06, + "end": 9237.5, + "probability": 0.9543 + }, + { + "start": 9238.86, + "end": 9241.64, + "probability": 0.8718 + }, + { + "start": 9245.06, + "end": 9246.2, + "probability": 0.6957 + }, + { + "start": 9246.44, + "end": 9249.98, + "probability": 0.9962 + }, + { + "start": 9250.58, + "end": 9254.46, + "probability": 0.8813 + }, + { + "start": 9255.78, + "end": 9256.3, + "probability": 0.918 + }, + { + "start": 9257.2, + "end": 9261.08, + "probability": 0.9207 + }, + { + "start": 9262.04, + "end": 9264.74, + "probability": 0.9955 + }, + { + "start": 9266.2, + "end": 9267.3, + "probability": 0.6518 + }, + { + "start": 9268.26, + "end": 9269.24, + "probability": 0.9259 + }, + { + "start": 9270.38, + "end": 9272.74, + "probability": 0.9946 + }, + { + "start": 9273.96, + "end": 9275.42, + "probability": 0.9483 + }, + { + "start": 9277.64, + "end": 9280.32, + "probability": 0.8694 + }, + { + "start": 9281.72, + "end": 9283.8, + "probability": 0.7481 + }, + { + "start": 9285.1, + "end": 9287.82, + "probability": 0.7542 + }, + { + "start": 9288.78, + "end": 9291.02, + "probability": 0.8718 + }, + { + "start": 9291.92, + "end": 9292.98, + "probability": 0.8358 + }, + { + "start": 9295.16, + "end": 9297.76, + "probability": 0.9626 + }, + { + "start": 9298.9, + "end": 9303.46, + "probability": 0.996 + }, + { + "start": 9304.08, + "end": 9305.44, + "probability": 0.9885 + }, + { + "start": 9306.94, + "end": 9308.28, + "probability": 0.9507 + }, + { + "start": 9309.38, + "end": 9311.44, + "probability": 0.9802 + }, + { + "start": 9313.1, + "end": 9314.1, + "probability": 0.9973 + }, + { + "start": 9314.64, + "end": 9316.62, + "probability": 0.9824 + }, + { + "start": 9318.14, + "end": 9320.36, + "probability": 0.9949 + }, + { + "start": 9321.26, + "end": 9321.79, + "probability": 0.9336 + }, + { + "start": 9322.66, + "end": 9323.12, + "probability": 0.8623 + }, + { + "start": 9325.34, + "end": 9328.2, + "probability": 0.991 + }, + { + "start": 9328.82, + "end": 9330.62, + "probability": 0.9979 + }, + { + "start": 9333.62, + "end": 9334.3, + "probability": 0.5377 + }, + { + "start": 9334.92, + "end": 9336.82, + "probability": 0.9979 + }, + { + "start": 9338.06, + "end": 9339.96, + "probability": 0.9373 + }, + { + "start": 9341.2, + "end": 9344.12, + "probability": 0.9969 + }, + { + "start": 9346.6, + "end": 9347.5, + "probability": 0.9995 + }, + { + "start": 9348.06, + "end": 9349.18, + "probability": 0.9894 + }, + { + "start": 9350.0, + "end": 9351.34, + "probability": 0.8274 + }, + { + "start": 9351.74, + "end": 9352.42, + "probability": 0.5094 + }, + { + "start": 9352.94, + "end": 9355.4, + "probability": 0.8805 + }, + { + "start": 9356.26, + "end": 9358.82, + "probability": 0.9569 + }, + { + "start": 9361.54, + "end": 9363.22, + "probability": 0.9567 + }, + { + "start": 9364.32, + "end": 9366.34, + "probability": 0.9771 + }, + { + "start": 9367.24, + "end": 9369.04, + "probability": 0.9896 + }, + { + "start": 9369.66, + "end": 9370.78, + "probability": 0.9797 + }, + { + "start": 9372.18, + "end": 9373.26, + "probability": 0.9333 + }, + { + "start": 9374.12, + "end": 9377.54, + "probability": 0.9486 + }, + { + "start": 9378.68, + "end": 9381.56, + "probability": 0.9729 + }, + { + "start": 9382.44, + "end": 9383.66, + "probability": 0.9666 + }, + { + "start": 9385.36, + "end": 9390.06, + "probability": 0.9982 + }, + { + "start": 9390.68, + "end": 9391.72, + "probability": 0.98 + }, + { + "start": 9394.2, + "end": 9397.0, + "probability": 0.9995 + }, + { + "start": 9397.86, + "end": 9399.04, + "probability": 0.999 + }, + { + "start": 9399.78, + "end": 9400.9, + "probability": 0.9989 + }, + { + "start": 9401.64, + "end": 9402.48, + "probability": 0.989 + }, + { + "start": 9403.3, + "end": 9404.42, + "probability": 0.9792 + }, + { + "start": 9406.34, + "end": 9407.93, + "probability": 0.9993 + }, + { + "start": 9408.52, + "end": 9409.6, + "probability": 0.9958 + }, + { + "start": 9411.48, + "end": 9412.9, + "probability": 0.9786 + }, + { + "start": 9413.26, + "end": 9415.22, + "probability": 0.9436 + }, + { + "start": 9415.68, + "end": 9420.34, + "probability": 0.9979 + }, + { + "start": 9421.24, + "end": 9425.96, + "probability": 0.9781 + }, + { + "start": 9426.86, + "end": 9430.58, + "probability": 0.9576 + }, + { + "start": 9432.82, + "end": 9437.38, + "probability": 0.9925 + }, + { + "start": 9438.3, + "end": 9443.4, + "probability": 0.9877 + }, + { + "start": 9443.96, + "end": 9445.34, + "probability": 0.9559 + }, + { + "start": 9446.32, + "end": 9448.9, + "probability": 0.9815 + }, + { + "start": 9450.8, + "end": 9454.54, + "probability": 0.9832 + }, + { + "start": 9455.26, + "end": 9457.52, + "probability": 0.9754 + }, + { + "start": 9458.54, + "end": 9461.14, + "probability": 0.9872 + }, + { + "start": 9461.68, + "end": 9466.48, + "probability": 0.998 + }, + { + "start": 9467.51, + "end": 9469.06, + "probability": 0.6012 + }, + { + "start": 9471.16, + "end": 9472.51, + "probability": 0.9684 + }, + { + "start": 9473.46, + "end": 9474.12, + "probability": 0.877 + }, + { + "start": 9475.2, + "end": 9477.78, + "probability": 0.9858 + }, + { + "start": 9479.9, + "end": 9483.5, + "probability": 0.9873 + }, + { + "start": 9484.58, + "end": 9485.68, + "probability": 0.7047 + }, + { + "start": 9486.56, + "end": 9487.94, + "probability": 0.999 + }, + { + "start": 9488.4, + "end": 9489.9, + "probability": 0.9704 + }, + { + "start": 9490.96, + "end": 9493.12, + "probability": 0.9976 + }, + { + "start": 9494.36, + "end": 9495.58, + "probability": 0.8239 + }, + { + "start": 9496.2, + "end": 9498.86, + "probability": 0.8523 + }, + { + "start": 9499.92, + "end": 9502.36, + "probability": 0.9644 + }, + { + "start": 9502.86, + "end": 9505.76, + "probability": 0.9307 + }, + { + "start": 9506.76, + "end": 9507.1, + "probability": 0.645 + }, + { + "start": 9508.36, + "end": 9511.82, + "probability": 0.9977 + }, + { + "start": 9511.82, + "end": 9515.47, + "probability": 0.9944 + }, + { + "start": 9516.34, + "end": 9518.64, + "probability": 0.9901 + }, + { + "start": 9519.1, + "end": 9520.04, + "probability": 0.9236 + }, + { + "start": 9520.4, + "end": 9521.54, + "probability": 0.9834 + }, + { + "start": 9522.04, + "end": 9522.98, + "probability": 0.9253 + }, + { + "start": 9523.8, + "end": 9525.22, + "probability": 0.979 + }, + { + "start": 9525.68, + "end": 9527.5, + "probability": 0.9876 + }, + { + "start": 9528.22, + "end": 9528.8, + "probability": 0.5907 + }, + { + "start": 9529.46, + "end": 9531.42, + "probability": 0.9706 + }, + { + "start": 9532.28, + "end": 9533.3, + "probability": 0.9595 + }, + { + "start": 9535.4, + "end": 9536.74, + "probability": 0.9397 + }, + { + "start": 9537.94, + "end": 9539.46, + "probability": 0.8385 + }, + { + "start": 9539.96, + "end": 9541.78, + "probability": 0.9536 + }, + { + "start": 9543.04, + "end": 9544.38, + "probability": 0.9467 + }, + { + "start": 9544.96, + "end": 9548.46, + "probability": 0.9587 + }, + { + "start": 9548.62, + "end": 9549.24, + "probability": 0.7173 + }, + { + "start": 9549.82, + "end": 9551.88, + "probability": 0.7952 + }, + { + "start": 9553.54, + "end": 9556.08, + "probability": 0.9087 + }, + { + "start": 9556.56, + "end": 9557.48, + "probability": 0.9235 + }, + { + "start": 9558.18, + "end": 9561.94, + "probability": 0.9619 + }, + { + "start": 9562.4, + "end": 9563.9, + "probability": 0.8177 + }, + { + "start": 9564.32, + "end": 9565.2, + "probability": 0.924 + }, + { + "start": 9565.66, + "end": 9567.12, + "probability": 0.9767 + }, + { + "start": 9567.96, + "end": 9568.5, + "probability": 0.9862 + }, + { + "start": 9569.14, + "end": 9569.72, + "probability": 0.7083 + }, + { + "start": 9571.86, + "end": 9575.34, + "probability": 0.9936 + }, + { + "start": 9576.94, + "end": 9578.45, + "probability": 0.9966 + }, + { + "start": 9579.42, + "end": 9581.44, + "probability": 0.957 + }, + { + "start": 9584.34, + "end": 9584.92, + "probability": 0.6703 + }, + { + "start": 9585.82, + "end": 9589.6, + "probability": 0.9809 + }, + { + "start": 9590.7, + "end": 9592.42, + "probability": 0.997 + }, + { + "start": 9593.48, + "end": 9595.58, + "probability": 0.9858 + }, + { + "start": 9597.42, + "end": 9597.88, + "probability": 0.967 + }, + { + "start": 9598.36, + "end": 9599.38, + "probability": 0.9248 + }, + { + "start": 9599.56, + "end": 9601.96, + "probability": 0.948 + }, + { + "start": 9602.52, + "end": 9603.64, + "probability": 0.8654 + }, + { + "start": 9604.44, + "end": 9606.12, + "probability": 0.9835 + }, + { + "start": 9607.22, + "end": 9610.68, + "probability": 0.87 + }, + { + "start": 9611.5, + "end": 9612.4, + "probability": 0.9927 + }, + { + "start": 9612.72, + "end": 9613.5, + "probability": 0.935 + }, + { + "start": 9613.52, + "end": 9614.4, + "probability": 0.8962 + }, + { + "start": 9614.86, + "end": 9616.4, + "probability": 0.98 + }, + { + "start": 9617.38, + "end": 9619.94, + "probability": 0.9801 + }, + { + "start": 9620.62, + "end": 9621.76, + "probability": 0.5343 + }, + { + "start": 9622.62, + "end": 9624.68, + "probability": 0.976 + }, + { + "start": 9625.32, + "end": 9626.14, + "probability": 0.8765 + }, + { + "start": 9626.92, + "end": 9629.22, + "probability": 0.9731 + }, + { + "start": 9631.18, + "end": 9633.5, + "probability": 0.9489 + }, + { + "start": 9634.1, + "end": 9638.48, + "probability": 0.9795 + }, + { + "start": 9638.6, + "end": 9639.42, + "probability": 0.8861 + }, + { + "start": 9639.92, + "end": 9640.3, + "probability": 0.9565 + }, + { + "start": 9641.68, + "end": 9642.92, + "probability": 0.9616 + }, + { + "start": 9644.04, + "end": 9644.78, + "probability": 0.9526 + }, + { + "start": 9644.88, + "end": 9647.49, + "probability": 0.9826 + }, + { + "start": 9648.02, + "end": 9650.12, + "probability": 0.9913 + }, + { + "start": 9650.84, + "end": 9653.76, + "probability": 0.9111 + }, + { + "start": 9654.28, + "end": 9654.92, + "probability": 0.7729 + }, + { + "start": 9655.68, + "end": 9657.72, + "probability": 0.8187 + }, + { + "start": 9658.0, + "end": 9658.42, + "probability": 0.6863 + }, + { + "start": 9658.7, + "end": 9659.97, + "probability": 0.9609 + }, + { + "start": 9660.24, + "end": 9662.84, + "probability": 0.9268 + }, + { + "start": 9675.02, + "end": 9677.1, + "probability": 0.6807 + }, + { + "start": 9677.2, + "end": 9678.62, + "probability": 0.5833 + }, + { + "start": 9681.72, + "end": 9683.58, + "probability": 0.896 + }, + { + "start": 9684.42, + "end": 9684.94, + "probability": 0.2897 + }, + { + "start": 9685.2, + "end": 9685.98, + "probability": 0.4696 + }, + { + "start": 9686.06, + "end": 9687.08, + "probability": 0.696 + }, + { + "start": 9687.42, + "end": 9690.42, + "probability": 0.9694 + }, + { + "start": 9691.54, + "end": 9693.2, + "probability": 0.6483 + }, + { + "start": 9693.74, + "end": 9696.5, + "probability": 0.9946 + }, + { + "start": 9697.44, + "end": 9700.0, + "probability": 0.8809 + }, + { + "start": 9700.46, + "end": 9702.56, + "probability": 0.9776 + }, + { + "start": 9704.76, + "end": 9709.65, + "probability": 0.9768 + }, + { + "start": 9710.4, + "end": 9713.06, + "probability": 0.9971 + }, + { + "start": 9715.36, + "end": 9718.22, + "probability": 0.9694 + }, + { + "start": 9719.7, + "end": 9721.56, + "probability": 0.9685 + }, + { + "start": 9723.68, + "end": 9730.84, + "probability": 0.9953 + }, + { + "start": 9730.98, + "end": 9731.14, + "probability": 0.6451 + }, + { + "start": 9731.24, + "end": 9732.34, + "probability": 0.844 + }, + { + "start": 9734.68, + "end": 9738.58, + "probability": 0.5162 + }, + { + "start": 9738.92, + "end": 9740.6, + "probability": 0.7338 + }, + { + "start": 9740.86, + "end": 9741.9, + "probability": 0.6773 + }, + { + "start": 9742.22, + "end": 9744.46, + "probability": 0.1874 + }, + { + "start": 9745.76, + "end": 9748.92, + "probability": 0.9934 + }, + { + "start": 9749.68, + "end": 9750.66, + "probability": 0.5897 + }, + { + "start": 9751.7, + "end": 9753.11, + "probability": 0.9678 + }, + { + "start": 9754.06, + "end": 9757.8, + "probability": 0.9609 + }, + { + "start": 9757.9, + "end": 9761.84, + "probability": 0.9406 + }, + { + "start": 9763.04, + "end": 9766.8, + "probability": 0.9734 + }, + { + "start": 9767.14, + "end": 9769.32, + "probability": 0.9555 + }, + { + "start": 9769.44, + "end": 9773.1, + "probability": 0.9984 + }, + { + "start": 9773.84, + "end": 9778.32, + "probability": 0.9874 + }, + { + "start": 9778.54, + "end": 9780.56, + "probability": 0.9642 + }, + { + "start": 9781.98, + "end": 9787.92, + "probability": 0.5016 + }, + { + "start": 9787.92, + "end": 9790.48, + "probability": 0.981 + }, + { + "start": 9790.72, + "end": 9792.72, + "probability": 0.8613 + }, + { + "start": 9793.44, + "end": 9794.44, + "probability": 0.9881 + }, + { + "start": 9794.56, + "end": 9795.74, + "probability": 0.991 + }, + { + "start": 9796.96, + "end": 9803.3, + "probability": 0.971 + }, + { + "start": 9803.36, + "end": 9806.02, + "probability": 0.9808 + }, + { + "start": 9807.2, + "end": 9808.14, + "probability": 0.8499 + }, + { + "start": 9809.02, + "end": 9810.38, + "probability": 0.5632 + }, + { + "start": 9811.92, + "end": 9812.94, + "probability": 0.8798 + }, + { + "start": 9813.04, + "end": 9813.76, + "probability": 0.8292 + }, + { + "start": 9813.84, + "end": 9814.1, + "probability": 0.8235 + }, + { + "start": 9814.22, + "end": 9815.24, + "probability": 0.846 + }, + { + "start": 9815.6, + "end": 9817.94, + "probability": 0.8024 + }, + { + "start": 9818.02, + "end": 9821.94, + "probability": 0.9442 + }, + { + "start": 9821.94, + "end": 9824.83, + "probability": 0.9939 + }, + { + "start": 9825.1, + "end": 9828.1, + "probability": 0.9576 + }, + { + "start": 9834.08, + "end": 9834.9, + "probability": 0.5288 + }, + { + "start": 9835.0, + "end": 9835.68, + "probability": 0.7226 + }, + { + "start": 9835.7, + "end": 9837.76, + "probability": 0.9226 + }, + { + "start": 9838.34, + "end": 9841.78, + "probability": 0.6243 + }, + { + "start": 9843.02, + "end": 9843.86, + "probability": 0.5233 + }, + { + "start": 9844.1, + "end": 9844.76, + "probability": 0.0799 + }, + { + "start": 9846.66, + "end": 9848.3, + "probability": 0.2903 + }, + { + "start": 9849.16, + "end": 9850.46, + "probability": 0.0782 + }, + { + "start": 9850.46, + "end": 9851.4, + "probability": 0.2066 + }, + { + "start": 9854.12, + "end": 9854.26, + "probability": 0.108 + }, + { + "start": 9854.26, + "end": 9855.14, + "probability": 0.0163 + }, + { + "start": 9857.96, + "end": 9859.0, + "probability": 0.113 + }, + { + "start": 9859.24, + "end": 9861.82, + "probability": 0.7914 + }, + { + "start": 9867.64, + "end": 9871.18, + "probability": 0.7698 + }, + { + "start": 9872.02, + "end": 9872.48, + "probability": 0.7905 + }, + { + "start": 9873.7, + "end": 9874.76, + "probability": 0.7221 + }, + { + "start": 9875.08, + "end": 9875.91, + "probability": 0.6555 + }, + { + "start": 9876.62, + "end": 9877.88, + "probability": 0.9437 + }, + { + "start": 9877.94, + "end": 9879.3, + "probability": 0.9067 + }, + { + "start": 9879.74, + "end": 9884.08, + "probability": 0.9893 + }, + { + "start": 9884.58, + "end": 9886.96, + "probability": 0.9912 + }, + { + "start": 9890.5, + "end": 9891.1, + "probability": 0.472 + }, + { + "start": 9891.1, + "end": 9893.06, + "probability": 0.8284 + }, + { + "start": 9893.2, + "end": 9897.36, + "probability": 0.903 + }, + { + "start": 9899.16, + "end": 9901.22, + "probability": 0.8994 + }, + { + "start": 9901.26, + "end": 9902.64, + "probability": 0.7188 + }, + { + "start": 9903.24, + "end": 9904.9, + "probability": 0.9935 + }, + { + "start": 9905.3, + "end": 9905.34, + "probability": 0.0383 + }, + { + "start": 9905.34, + "end": 9908.36, + "probability": 0.8424 + }, + { + "start": 9908.5, + "end": 9912.22, + "probability": 0.9957 + }, + { + "start": 9912.26, + "end": 9912.54, + "probability": 0.8039 + }, + { + "start": 9925.6, + "end": 9927.0, + "probability": 0.8515 + }, + { + "start": 9928.7, + "end": 9930.36, + "probability": 0.9424 + }, + { + "start": 9932.38, + "end": 9933.18, + "probability": 0.8809 + }, + { + "start": 9935.18, + "end": 9936.14, + "probability": 0.9393 + }, + { + "start": 9937.48, + "end": 9940.74, + "probability": 0.9912 + }, + { + "start": 9941.86, + "end": 9943.02, + "probability": 0.9041 + }, + { + "start": 9945.0, + "end": 9947.1, + "probability": 0.6806 + }, + { + "start": 9949.64, + "end": 9953.82, + "probability": 0.9795 + }, + { + "start": 9954.38, + "end": 9955.52, + "probability": 0.8569 + }, + { + "start": 9956.58, + "end": 9959.76, + "probability": 0.9849 + }, + { + "start": 9961.14, + "end": 9962.36, + "probability": 0.9996 + }, + { + "start": 9962.94, + "end": 9964.48, + "probability": 0.9977 + }, + { + "start": 9965.7, + "end": 9967.14, + "probability": 0.9961 + }, + { + "start": 9967.94, + "end": 9971.06, + "probability": 0.9854 + }, + { + "start": 9972.2, + "end": 9973.5, + "probability": 0.9307 + }, + { + "start": 9974.98, + "end": 9983.66, + "probability": 0.9819 + }, + { + "start": 9984.24, + "end": 9986.18, + "probability": 0.9658 + }, + { + "start": 9987.52, + "end": 9992.4, + "probability": 0.9852 + }, + { + "start": 9994.18, + "end": 10001.28, + "probability": 0.9004 + }, + { + "start": 10001.78, + "end": 10002.58, + "probability": 0.8737 + }, + { + "start": 10003.14, + "end": 10005.64, + "probability": 0.9975 + }, + { + "start": 10006.36, + "end": 10007.84, + "probability": 0.9985 + }, + { + "start": 10009.58, + "end": 10012.08, + "probability": 0.7489 + }, + { + "start": 10013.04, + "end": 10018.58, + "probability": 0.9092 + }, + { + "start": 10019.82, + "end": 10022.28, + "probability": 0.8682 + }, + { + "start": 10022.9, + "end": 10024.82, + "probability": 0.9903 + }, + { + "start": 10024.82, + "end": 10029.4, + "probability": 0.988 + }, + { + "start": 10030.24, + "end": 10030.66, + "probability": 0.4918 + }, + { + "start": 10032.24, + "end": 10035.0, + "probability": 0.9935 + }, + { + "start": 10036.1, + "end": 10038.46, + "probability": 0.9247 + }, + { + "start": 10039.28, + "end": 10041.22, + "probability": 0.9623 + }, + { + "start": 10042.88, + "end": 10046.3, + "probability": 0.8292 + }, + { + "start": 10047.08, + "end": 10048.36, + "probability": 0.7882 + }, + { + "start": 10049.34, + "end": 10050.2, + "probability": 0.7657 + }, + { + "start": 10051.1, + "end": 10056.38, + "probability": 0.9937 + }, + { + "start": 10056.38, + "end": 10061.56, + "probability": 0.9946 + }, + { + "start": 10062.44, + "end": 10064.8, + "probability": 0.99 + }, + { + "start": 10066.18, + "end": 10070.44, + "probability": 0.9657 + }, + { + "start": 10070.62, + "end": 10072.0, + "probability": 0.5278 + }, + { + "start": 10072.0, + "end": 10073.67, + "probability": 0.501 + }, + { + "start": 10074.6, + "end": 10075.3, + "probability": 0.7763 + }, + { + "start": 10076.36, + "end": 10078.31, + "probability": 0.7865 + }, + { + "start": 10079.48, + "end": 10084.16, + "probability": 0.8833 + }, + { + "start": 10084.7, + "end": 10086.66, + "probability": 0.8826 + }, + { + "start": 10087.18, + "end": 10089.36, + "probability": 0.8412 + }, + { + "start": 10090.8, + "end": 10094.84, + "probability": 0.9967 + }, + { + "start": 10094.84, + "end": 10097.38, + "probability": 0.9957 + }, + { + "start": 10098.7, + "end": 10101.74, + "probability": 0.9698 + }, + { + "start": 10103.5, + "end": 10106.15, + "probability": 0.9818 + }, + { + "start": 10107.14, + "end": 10108.0, + "probability": 0.9795 + }, + { + "start": 10108.04, + "end": 10109.94, + "probability": 0.8546 + }, + { + "start": 10110.72, + "end": 10113.75, + "probability": 0.9978 + }, + { + "start": 10114.96, + "end": 10115.82, + "probability": 0.7906 + }, + { + "start": 10116.48, + "end": 10117.78, + "probability": 0.9663 + }, + { + "start": 10117.86, + "end": 10121.06, + "probability": 0.7169 + }, + { + "start": 10121.62, + "end": 10125.14, + "probability": 0.7715 + }, + { + "start": 10125.7, + "end": 10128.34, + "probability": 0.9958 + }, + { + "start": 10129.54, + "end": 10131.83, + "probability": 0.9135 + }, + { + "start": 10132.62, + "end": 10139.66, + "probability": 0.9899 + }, + { + "start": 10140.44, + "end": 10143.12, + "probability": 0.9958 + }, + { + "start": 10143.54, + "end": 10144.44, + "probability": 0.9015 + }, + { + "start": 10145.14, + "end": 10148.22, + "probability": 0.9919 + }, + { + "start": 10149.52, + "end": 10152.44, + "probability": 0.9971 + }, + { + "start": 10153.84, + "end": 10158.32, + "probability": 0.9491 + }, + { + "start": 10158.36, + "end": 10159.12, + "probability": 0.574 + }, + { + "start": 10159.54, + "end": 10160.6, + "probability": 0.7517 + }, + { + "start": 10161.66, + "end": 10164.15, + "probability": 0.9635 + }, + { + "start": 10164.96, + "end": 10166.72, + "probability": 0.9037 + }, + { + "start": 10167.46, + "end": 10168.77, + "probability": 0.9863 + }, + { + "start": 10170.48, + "end": 10172.66, + "probability": 0.9917 + }, + { + "start": 10173.8, + "end": 10174.68, + "probability": 0.8466 + }, + { + "start": 10176.04, + "end": 10181.7, + "probability": 0.9746 + }, + { + "start": 10181.76, + "end": 10183.96, + "probability": 0.9978 + }, + { + "start": 10184.04, + "end": 10184.82, + "probability": 0.9414 + }, + { + "start": 10186.46, + "end": 10189.92, + "probability": 0.9131 + }, + { + "start": 10190.46, + "end": 10192.7, + "probability": 0.9357 + }, + { + "start": 10194.0, + "end": 10195.88, + "probability": 0.6686 + }, + { + "start": 10196.44, + "end": 10198.32, + "probability": 0.9935 + }, + { + "start": 10199.98, + "end": 10202.86, + "probability": 0.9657 + }, + { + "start": 10203.72, + "end": 10206.84, + "probability": 0.9875 + }, + { + "start": 10207.52, + "end": 10208.5, + "probability": 0.7159 + }, + { + "start": 10209.68, + "end": 10212.7, + "probability": 0.9946 + }, + { + "start": 10214.04, + "end": 10214.93, + "probability": 0.7412 + }, + { + "start": 10217.0, + "end": 10217.94, + "probability": 0.4568 + }, + { + "start": 10219.18, + "end": 10222.84, + "probability": 0.61 + }, + { + "start": 10223.6, + "end": 10227.2, + "probability": 0.9839 + }, + { + "start": 10228.2, + "end": 10231.92, + "probability": 0.9717 + }, + { + "start": 10233.04, + "end": 10233.8, + "probability": 0.2607 + }, + { + "start": 10234.72, + "end": 10240.1, + "probability": 0.8965 + }, + { + "start": 10241.06, + "end": 10245.82, + "probability": 0.987 + }, + { + "start": 10246.5, + "end": 10247.78, + "probability": 0.9933 + }, + { + "start": 10249.08, + "end": 10254.6, + "probability": 0.978 + }, + { + "start": 10254.7, + "end": 10259.5, + "probability": 0.9386 + }, + { + "start": 10259.96, + "end": 10260.22, + "probability": 0.8605 + }, + { + "start": 10260.3, + "end": 10261.31, + "probability": 0.9979 + }, + { + "start": 10262.3, + "end": 10264.38, + "probability": 0.9899 + }, + { + "start": 10265.48, + "end": 10266.24, + "probability": 0.9889 + }, + { + "start": 10266.3, + "end": 10267.36, + "probability": 0.8404 + }, + { + "start": 10267.54, + "end": 10268.54, + "probability": 0.6187 + }, + { + "start": 10270.18, + "end": 10271.38, + "probability": 0.9384 + }, + { + "start": 10272.32, + "end": 10273.7, + "probability": 0.9761 + }, + { + "start": 10273.92, + "end": 10274.76, + "probability": 0.7501 + }, + { + "start": 10275.48, + "end": 10276.56, + "probability": 0.9268 + }, + { + "start": 10277.6, + "end": 10279.4, + "probability": 0.9946 + }, + { + "start": 10280.08, + "end": 10284.36, + "probability": 0.9983 + }, + { + "start": 10285.4, + "end": 10286.36, + "probability": 0.9989 + }, + { + "start": 10287.28, + "end": 10289.9, + "probability": 0.9871 + }, + { + "start": 10290.4, + "end": 10291.83, + "probability": 0.9226 + }, + { + "start": 10292.7, + "end": 10294.64, + "probability": 0.9917 + }, + { + "start": 10294.76, + "end": 10295.46, + "probability": 0.7181 + }, + { + "start": 10295.6, + "end": 10295.8, + "probability": 0.6398 + }, + { + "start": 10295.88, + "end": 10296.92, + "probability": 0.9915 + }, + { + "start": 10297.44, + "end": 10302.54, + "probability": 0.8778 + }, + { + "start": 10303.46, + "end": 10303.88, + "probability": 0.8117 + }, + { + "start": 10304.46, + "end": 10305.26, + "probability": 0.878 + }, + { + "start": 10306.36, + "end": 10307.62, + "probability": 0.9224 + }, + { + "start": 10309.42, + "end": 10310.9, + "probability": 0.9561 + }, + { + "start": 10311.42, + "end": 10312.5, + "probability": 0.8838 + }, + { + "start": 10313.34, + "end": 10317.86, + "probability": 0.9896 + }, + { + "start": 10318.44, + "end": 10319.28, + "probability": 0.3679 + }, + { + "start": 10320.56, + "end": 10321.32, + "probability": 0.9049 + }, + { + "start": 10323.36, + "end": 10325.76, + "probability": 0.5414 + }, + { + "start": 10327.3, + "end": 10329.04, + "probability": 0.9937 + }, + { + "start": 10329.92, + "end": 10333.4, + "probability": 0.6784 + }, + { + "start": 10334.2, + "end": 10335.32, + "probability": 0.6403 + }, + { + "start": 10336.34, + "end": 10337.2, + "probability": 0.7964 + }, + { + "start": 10337.78, + "end": 10338.86, + "probability": 0.9487 + }, + { + "start": 10339.4, + "end": 10341.7, + "probability": 0.6904 + }, + { + "start": 10342.64, + "end": 10345.36, + "probability": 0.992 + }, + { + "start": 10346.1, + "end": 10348.46, + "probability": 0.966 + }, + { + "start": 10349.08, + "end": 10352.52, + "probability": 0.9938 + }, + { + "start": 10352.9, + "end": 10355.66, + "probability": 0.9633 + }, + { + "start": 10356.34, + "end": 10356.7, + "probability": 0.9386 + }, + { + "start": 10357.56, + "end": 10358.1, + "probability": 0.985 + }, + { + "start": 10359.16, + "end": 10366.28, + "probability": 0.9891 + }, + { + "start": 10367.04, + "end": 10369.46, + "probability": 0.9916 + }, + { + "start": 10369.96, + "end": 10370.52, + "probability": 0.9772 + }, + { + "start": 10370.68, + "end": 10371.54, + "probability": 0.9471 + }, + { + "start": 10371.86, + "end": 10372.84, + "probability": 0.9938 + }, + { + "start": 10373.54, + "end": 10378.54, + "probability": 0.9616 + }, + { + "start": 10379.94, + "end": 10381.74, + "probability": 0.9135 + }, + { + "start": 10381.86, + "end": 10384.16, + "probability": 0.9514 + }, + { + "start": 10384.72, + "end": 10387.06, + "probability": 0.9877 + }, + { + "start": 10387.62, + "end": 10391.04, + "probability": 0.9966 + }, + { + "start": 10391.04, + "end": 10394.58, + "probability": 0.9974 + }, + { + "start": 10395.26, + "end": 10395.92, + "probability": 0.895 + }, + { + "start": 10396.48, + "end": 10399.14, + "probability": 0.9982 + }, + { + "start": 10399.66, + "end": 10401.58, + "probability": 0.9448 + }, + { + "start": 10401.88, + "end": 10402.88, + "probability": 0.5075 + }, + { + "start": 10403.02, + "end": 10403.54, + "probability": 0.7656 + }, + { + "start": 10404.12, + "end": 10406.98, + "probability": 0.8914 + }, + { + "start": 10407.62, + "end": 10410.82, + "probability": 0.9958 + }, + { + "start": 10410.82, + "end": 10413.58, + "probability": 0.9993 + }, + { + "start": 10414.46, + "end": 10416.74, + "probability": 0.9956 + }, + { + "start": 10417.26, + "end": 10418.92, + "probability": 0.973 + }, + { + "start": 10419.56, + "end": 10420.52, + "probability": 0.9921 + }, + { + "start": 10421.16, + "end": 10421.88, + "probability": 0.8161 + }, + { + "start": 10421.98, + "end": 10422.56, + "probability": 0.7283 + }, + { + "start": 10422.66, + "end": 10424.52, + "probability": 0.8806 + }, + { + "start": 10424.98, + "end": 10428.56, + "probability": 0.9459 + }, + { + "start": 10428.94, + "end": 10429.48, + "probability": 0.9792 + }, + { + "start": 10429.54, + "end": 10430.12, + "probability": 0.9863 + }, + { + "start": 10430.38, + "end": 10432.56, + "probability": 0.9865 + }, + { + "start": 10433.56, + "end": 10434.26, + "probability": 0.9673 + }, + { + "start": 10434.3, + "end": 10435.08, + "probability": 0.9869 + }, + { + "start": 10435.44, + "end": 10438.7, + "probability": 0.9928 + }, + { + "start": 10439.54, + "end": 10442.62, + "probability": 0.9225 + }, + { + "start": 10443.18, + "end": 10444.36, + "probability": 0.9557 + }, + { + "start": 10445.62, + "end": 10448.92, + "probability": 0.9128 + }, + { + "start": 10449.68, + "end": 10450.16, + "probability": 0.9288 + }, + { + "start": 10450.22, + "end": 10451.8, + "probability": 0.9845 + }, + { + "start": 10452.34, + "end": 10455.12, + "probability": 0.0751 + }, + { + "start": 10455.18, + "end": 10456.26, + "probability": 0.8615 + }, + { + "start": 10456.88, + "end": 10460.24, + "probability": 0.9055 + }, + { + "start": 10460.88, + "end": 10465.86, + "probability": 0.9976 + }, + { + "start": 10466.8, + "end": 10467.31, + "probability": 0.9939 + }, + { + "start": 10467.68, + "end": 10468.06, + "probability": 0.8359 + }, + { + "start": 10469.0, + "end": 10471.46, + "probability": 0.8104 + }, + { + "start": 10473.3, + "end": 10477.18, + "probability": 0.9991 + }, + { + "start": 10477.92, + "end": 10479.8, + "probability": 0.9526 + }, + { + "start": 10480.62, + "end": 10481.72, + "probability": 0.7738 + }, + { + "start": 10482.42, + "end": 10483.8, + "probability": 0.9838 + }, + { + "start": 10484.34, + "end": 10486.28, + "probability": 0.6866 + }, + { + "start": 10486.9, + "end": 10487.18, + "probability": 0.3772 + }, + { + "start": 10487.28, + "end": 10491.71, + "probability": 0.9585 + }, + { + "start": 10491.9, + "end": 10493.44, + "probability": 0.9642 + }, + { + "start": 10494.12, + "end": 10496.54, + "probability": 0.9755 + }, + { + "start": 10497.68, + "end": 10501.14, + "probability": 0.9927 + }, + { + "start": 10501.98, + "end": 10503.02, + "probability": 0.2724 + }, + { + "start": 10503.12, + "end": 10504.25, + "probability": 0.762 + }, + { + "start": 10504.62, + "end": 10505.18, + "probability": 0.4165 + }, + { + "start": 10505.34, + "end": 10505.69, + "probability": 0.0065 + }, + { + "start": 10506.7, + "end": 10509.66, + "probability": 0.9985 + }, + { + "start": 10510.52, + "end": 10512.86, + "probability": 0.9584 + }, + { + "start": 10513.72, + "end": 10516.92, + "probability": 0.9541 + }, + { + "start": 10517.5, + "end": 10519.9, + "probability": 0.8775 + }, + { + "start": 10520.84, + "end": 10523.98, + "probability": 0.9541 + }, + { + "start": 10524.86, + "end": 10526.74, + "probability": 0.6097 + }, + { + "start": 10527.42, + "end": 10529.4, + "probability": 0.9541 + }, + { + "start": 10529.84, + "end": 10533.32, + "probability": 0.9912 + }, + { + "start": 10533.74, + "end": 10535.84, + "probability": 0.5901 + }, + { + "start": 10536.26, + "end": 10536.96, + "probability": 0.9785 + }, + { + "start": 10537.48, + "end": 10538.6, + "probability": 0.924 + }, + { + "start": 10539.28, + "end": 10544.48, + "probability": 0.9852 + }, + { + "start": 10544.92, + "end": 10545.74, + "probability": 0.8512 + }, + { + "start": 10545.86, + "end": 10547.26, + "probability": 0.9814 + }, + { + "start": 10547.84, + "end": 10550.63, + "probability": 0.9915 + }, + { + "start": 10551.24, + "end": 10552.82, + "probability": 0.9841 + }, + { + "start": 10553.02, + "end": 10556.76, + "probability": 0.732 + }, + { + "start": 10556.86, + "end": 10557.56, + "probability": 0.9397 + }, + { + "start": 10558.32, + "end": 10560.39, + "probability": 0.7014 + }, + { + "start": 10561.08, + "end": 10561.26, + "probability": 0.937 + }, + { + "start": 10561.28, + "end": 10562.76, + "probability": 0.9761 + }, + { + "start": 10562.86, + "end": 10567.22, + "probability": 0.9387 + }, + { + "start": 10568.24, + "end": 10568.24, + "probability": 0.5362 + }, + { + "start": 10568.56, + "end": 10569.16, + "probability": 0.4846 + }, + { + "start": 10569.88, + "end": 10572.32, + "probability": 0.924 + }, + { + "start": 10572.88, + "end": 10574.1, + "probability": 0.9803 + }, + { + "start": 10575.0, + "end": 10575.66, + "probability": 0.4358 + }, + { + "start": 10576.24, + "end": 10578.66, + "probability": 0.899 + }, + { + "start": 10579.48, + "end": 10582.02, + "probability": 0.991 + }, + { + "start": 10582.72, + "end": 10585.42, + "probability": 0.9966 + }, + { + "start": 10586.44, + "end": 10589.44, + "probability": 0.9474 + }, + { + "start": 10590.02, + "end": 10591.18, + "probability": 0.8549 + }, + { + "start": 10591.9, + "end": 10596.4, + "probability": 0.9902 + }, + { + "start": 10596.52, + "end": 10597.2, + "probability": 0.6416 + }, + { + "start": 10598.46, + "end": 10599.3, + "probability": 0.6957 + }, + { + "start": 10600.3, + "end": 10600.95, + "probability": 0.9081 + }, + { + "start": 10601.8, + "end": 10603.24, + "probability": 0.9364 + }, + { + "start": 10603.8, + "end": 10605.1, + "probability": 0.9984 + }, + { + "start": 10605.68, + "end": 10606.86, + "probability": 0.9976 + }, + { + "start": 10606.96, + "end": 10607.38, + "probability": 0.8932 + }, + { + "start": 10607.5, + "end": 10609.98, + "probability": 0.8279 + }, + { + "start": 10610.12, + "end": 10614.46, + "probability": 0.8245 + }, + { + "start": 10636.08, + "end": 10637.24, + "probability": 0.5924 + }, + { + "start": 10637.5, + "end": 10639.62, + "probability": 0.837 + }, + { + "start": 10641.66, + "end": 10642.18, + "probability": 0.7363 + }, + { + "start": 10642.36, + "end": 10644.26, + "probability": 0.9484 + }, + { + "start": 10644.56, + "end": 10645.34, + "probability": 0.7591 + }, + { + "start": 10645.38, + "end": 10649.22, + "probability": 0.9934 + }, + { + "start": 10649.76, + "end": 10651.5, + "probability": 0.9979 + }, + { + "start": 10652.16, + "end": 10655.56, + "probability": 0.6462 + }, + { + "start": 10655.56, + "end": 10659.66, + "probability": 0.8501 + }, + { + "start": 10659.88, + "end": 10661.44, + "probability": 0.8442 + }, + { + "start": 10661.5, + "end": 10665.34, + "probability": 0.9866 + }, + { + "start": 10665.38, + "end": 10667.64, + "probability": 0.9847 + }, + { + "start": 10668.26, + "end": 10669.24, + "probability": 0.6659 + }, + { + "start": 10669.92, + "end": 10674.78, + "probability": 0.854 + }, + { + "start": 10674.78, + "end": 10678.0, + "probability": 0.9478 + }, + { + "start": 10678.72, + "end": 10684.12, + "probability": 0.9881 + }, + { + "start": 10684.28, + "end": 10688.98, + "probability": 0.95 + }, + { + "start": 10690.38, + "end": 10692.42, + "probability": 0.4886 + }, + { + "start": 10692.96, + "end": 10695.02, + "probability": 0.6162 + }, + { + "start": 10695.8, + "end": 10697.12, + "probability": 0.7547 + }, + { + "start": 10697.22, + "end": 10698.26, + "probability": 0.7515 + }, + { + "start": 10698.3, + "end": 10701.86, + "probability": 0.9093 + }, + { + "start": 10702.4, + "end": 10705.66, + "probability": 0.9358 + }, + { + "start": 10705.72, + "end": 10709.96, + "probability": 0.9988 + }, + { + "start": 10710.12, + "end": 10713.96, + "probability": 0.7769 + }, + { + "start": 10714.64, + "end": 10718.88, + "probability": 0.9954 + }, + { + "start": 10718.98, + "end": 10722.98, + "probability": 0.8012 + }, + { + "start": 10723.18, + "end": 10724.9, + "probability": 0.8206 + }, + { + "start": 10725.64, + "end": 10726.32, + "probability": 0.7527 + }, + { + "start": 10726.42, + "end": 10728.5, + "probability": 0.8105 + }, + { + "start": 10729.04, + "end": 10732.89, + "probability": 0.9141 + }, + { + "start": 10733.58, + "end": 10737.16, + "probability": 0.9683 + }, + { + "start": 10737.16, + "end": 10741.2, + "probability": 0.9954 + }, + { + "start": 10741.3, + "end": 10742.68, + "probability": 0.9312 + }, + { + "start": 10743.46, + "end": 10743.9, + "probability": 0.9749 + }, + { + "start": 10746.3, + "end": 10748.74, + "probability": 0.0417 + }, + { + "start": 10749.42, + "end": 10754.48, + "probability": 0.9954 + }, + { + "start": 10755.02, + "end": 10758.9, + "probability": 0.9961 + }, + { + "start": 10759.8, + "end": 10763.24, + "probability": 0.8455 + }, + { + "start": 10763.6, + "end": 10766.8, + "probability": 0.9823 + }, + { + "start": 10767.4, + "end": 10770.28, + "probability": 0.998 + }, + { + "start": 10770.38, + "end": 10772.34, + "probability": 0.995 + }, + { + "start": 10772.86, + "end": 10773.94, + "probability": 0.9971 + }, + { + "start": 10774.04, + "end": 10775.22, + "probability": 0.9517 + }, + { + "start": 10775.28, + "end": 10776.08, + "probability": 0.7507 + }, + { + "start": 10776.28, + "end": 10777.4, + "probability": 0.9092 + }, + { + "start": 10777.5, + "end": 10778.9, + "probability": 0.9023 + }, + { + "start": 10779.04, + "end": 10779.54, + "probability": 0.5485 + }, + { + "start": 10780.12, + "end": 10784.06, + "probability": 0.9814 + }, + { + "start": 10784.06, + "end": 10787.52, + "probability": 0.9072 + }, + { + "start": 10787.52, + "end": 10789.48, + "probability": 0.7598 + }, + { + "start": 10790.26, + "end": 10790.68, + "probability": 0.4347 + }, + { + "start": 10790.82, + "end": 10791.12, + "probability": 0.8992 + }, + { + "start": 10791.26, + "end": 10792.44, + "probability": 0.883 + }, + { + "start": 10792.72, + "end": 10797.86, + "probability": 0.9884 + }, + { + "start": 10798.76, + "end": 10801.8, + "probability": 0.9211 + }, + { + "start": 10801.8, + "end": 10805.82, + "probability": 0.9916 + }, + { + "start": 10805.86, + "end": 10807.66, + "probability": 0.9727 + }, + { + "start": 10807.9, + "end": 10809.24, + "probability": 0.9778 + }, + { + "start": 10809.46, + "end": 10812.22, + "probability": 0.902 + }, + { + "start": 10812.6, + "end": 10815.56, + "probability": 0.9934 + }, + { + "start": 10816.52, + "end": 10817.48, + "probability": 0.2616 + }, + { + "start": 10817.74, + "end": 10821.78, + "probability": 0.8307 + }, + { + "start": 10821.78, + "end": 10824.03, + "probability": 0.9575 + }, + { + "start": 10825.98, + "end": 10828.59, + "probability": 0.7769 + }, + { + "start": 10831.78, + "end": 10834.41, + "probability": 0.3517 + }, + { + "start": 10834.42, + "end": 10835.4, + "probability": 0.1032 + }, + { + "start": 10835.72, + "end": 10837.88, + "probability": 0.9016 + }, + { + "start": 10839.36, + "end": 10841.16, + "probability": 0.8328 + }, + { + "start": 10841.74, + "end": 10843.5, + "probability": 0.8871 + }, + { + "start": 10844.26, + "end": 10846.7, + "probability": 0.8975 + }, + { + "start": 10847.14, + "end": 10847.94, + "probability": 0.8042 + }, + { + "start": 10848.0, + "end": 10849.18, + "probability": 0.9429 + }, + { + "start": 10849.74, + "end": 10851.3, + "probability": 0.6647 + }, + { + "start": 10852.3, + "end": 10852.76, + "probability": 0.8334 + }, + { + "start": 10859.22, + "end": 10859.22, + "probability": 0.3317 + }, + { + "start": 10859.22, + "end": 10859.46, + "probability": 0.6961 + }, + { + "start": 10860.62, + "end": 10861.0, + "probability": 0.8529 + }, + { + "start": 10863.66, + "end": 10865.42, + "probability": 0.9482 + }, + { + "start": 10865.88, + "end": 10866.24, + "probability": 0.4856 + }, + { + "start": 10866.24, + "end": 10866.32, + "probability": 0.0009 + }, + { + "start": 10866.94, + "end": 10867.92, + "probability": 0.6606 + }, + { + "start": 10869.8, + "end": 10870.26, + "probability": 0.2281 + }, + { + "start": 10870.26, + "end": 10871.28, + "probability": 0.5223 + }, + { + "start": 10871.5, + "end": 10871.6, + "probability": 0.5783 + }, + { + "start": 10871.92, + "end": 10872.48, + "probability": 0.881 + }, + { + "start": 10872.66, + "end": 10872.82, + "probability": 0.4587 + }, + { + "start": 10872.88, + "end": 10873.12, + "probability": 0.7298 + }, + { + "start": 10875.79, + "end": 10878.88, + "probability": 0.7424 + }, + { + "start": 10879.6, + "end": 10881.92, + "probability": 0.9752 + }, + { + "start": 10882.1, + "end": 10882.7, + "probability": 0.9462 + }, + { + "start": 10882.98, + "end": 10883.5, + "probability": 0.9526 + }, + { + "start": 10883.76, + "end": 10887.99, + "probability": 0.9817 + }, + { + "start": 10888.6, + "end": 10891.96, + "probability": 0.9551 + }, + { + "start": 10892.64, + "end": 10894.98, + "probability": 0.9933 + }, + { + "start": 10895.44, + "end": 10895.84, + "probability": 0.4556 + }, + { + "start": 10895.9, + "end": 10897.58, + "probability": 0.9666 + }, + { + "start": 10898.54, + "end": 10903.76, + "probability": 0.927 + }, + { + "start": 10904.16, + "end": 10905.1, + "probability": 0.981 + }, + { + "start": 10905.3, + "end": 10907.18, + "probability": 0.8016 + }, + { + "start": 10907.92, + "end": 10911.38, + "probability": 0.9597 + }, + { + "start": 10911.86, + "end": 10912.58, + "probability": 0.7158 + }, + { + "start": 10912.66, + "end": 10913.66, + "probability": 0.8438 + }, + { + "start": 10914.14, + "end": 10915.02, + "probability": 0.933 + }, + { + "start": 10915.12, + "end": 10916.18, + "probability": 0.9685 + }, + { + "start": 10916.28, + "end": 10917.4, + "probability": 0.9467 + }, + { + "start": 10917.94, + "end": 10920.78, + "probability": 0.8864 + }, + { + "start": 10921.4, + "end": 10923.74, + "probability": 0.9426 + }, + { + "start": 10924.76, + "end": 10925.76, + "probability": 0.9171 + }, + { + "start": 10926.28, + "end": 10927.36, + "probability": 0.3809 + }, + { + "start": 10927.78, + "end": 10932.64, + "probability": 0.9849 + }, + { + "start": 10934.0, + "end": 10937.9, + "probability": 0.8299 + }, + { + "start": 10938.0, + "end": 10939.32, + "probability": 0.9686 + }, + { + "start": 10939.64, + "end": 10941.52, + "probability": 0.938 + }, + { + "start": 10941.58, + "end": 10947.26, + "probability": 0.9915 + }, + { + "start": 10947.64, + "end": 10948.2, + "probability": 0.7716 + }, + { + "start": 10948.88, + "end": 10950.56, + "probability": 0.9575 + }, + { + "start": 10950.66, + "end": 10952.7, + "probability": 0.9989 + }, + { + "start": 10952.7, + "end": 10954.76, + "probability": 0.9963 + }, + { + "start": 10955.48, + "end": 10956.54, + "probability": 0.8429 + }, + { + "start": 10956.68, + "end": 10959.3, + "probability": 0.7071 + }, + { + "start": 10959.58, + "end": 10961.04, + "probability": 0.3932 + }, + { + "start": 10961.44, + "end": 10962.4, + "probability": 0.5454 + }, + { + "start": 10962.8, + "end": 10964.32, + "probability": 0.7915 + }, + { + "start": 10964.64, + "end": 10965.78, + "probability": 0.6301 + }, + { + "start": 10965.78, + "end": 10965.9, + "probability": 0.3712 + }, + { + "start": 10966.02, + "end": 10966.18, + "probability": 0.3825 + }, + { + "start": 10966.44, + "end": 10974.53, + "probability": 0.9728 + }, + { + "start": 10974.58, + "end": 10979.63, + "probability": 0.8604 + }, + { + "start": 10980.34, + "end": 10980.5, + "probability": 0.0398 + }, + { + "start": 10980.5, + "end": 10981.74, + "probability": 0.7297 + }, + { + "start": 10981.82, + "end": 10983.24, + "probability": 0.975 + }, + { + "start": 10983.36, + "end": 10984.22, + "probability": 0.6049 + }, + { + "start": 10984.84, + "end": 10988.78, + "probability": 0.9882 + }, + { + "start": 10988.78, + "end": 10991.42, + "probability": 0.996 + }, + { + "start": 10991.5, + "end": 10992.92, + "probability": 0.7039 + }, + { + "start": 10993.64, + "end": 10994.12, + "probability": 0.7925 + }, + { + "start": 10994.2, + "end": 10998.34, + "probability": 0.8429 + }, + { + "start": 10998.54, + "end": 10999.56, + "probability": 0.6956 + }, + { + "start": 10999.8, + "end": 11005.86, + "probability": 0.9517 + }, + { + "start": 11008.6, + "end": 11013.98, + "probability": 0.8792 + }, + { + "start": 11014.26, + "end": 11017.58, + "probability": 0.9839 + }, + { + "start": 11018.14, + "end": 11018.92, + "probability": 0.4778 + }, + { + "start": 11019.14, + "end": 11020.22, + "probability": 0.9946 + }, + { + "start": 11020.3, + "end": 11020.74, + "probability": 0.8679 + }, + { + "start": 11020.78, + "end": 11022.4, + "probability": 0.9807 + }, + { + "start": 11022.6, + "end": 11024.46, + "probability": 0.9739 + }, + { + "start": 11024.82, + "end": 11027.04, + "probability": 0.9972 + }, + { + "start": 11027.54, + "end": 11028.48, + "probability": 0.9781 + }, + { + "start": 11028.82, + "end": 11029.6, + "probability": 0.8113 + }, + { + "start": 11029.68, + "end": 11033.36, + "probability": 0.9827 + }, + { + "start": 11033.94, + "end": 11036.42, + "probability": 0.91 + }, + { + "start": 11036.84, + "end": 11040.22, + "probability": 0.9197 + }, + { + "start": 11040.76, + "end": 11044.24, + "probability": 0.9222 + }, + { + "start": 11045.32, + "end": 11048.14, + "probability": 0.9898 + }, + { + "start": 11048.88, + "end": 11052.16, + "probability": 0.9442 + }, + { + "start": 11052.2, + "end": 11054.36, + "probability": 0.977 + }, + { + "start": 11054.44, + "end": 11056.72, + "probability": 0.8928 + }, + { + "start": 11057.58, + "end": 11058.14, + "probability": 0.521 + }, + { + "start": 11058.54, + "end": 11060.04, + "probability": 0.7454 + }, + { + "start": 11060.18, + "end": 11062.59, + "probability": 0.4832 + }, + { + "start": 11063.32, + "end": 11068.34, + "probability": 0.9712 + }, + { + "start": 11068.44, + "end": 11073.22, + "probability": 0.9967 + }, + { + "start": 11073.48, + "end": 11073.82, + "probability": 0.3759 + }, + { + "start": 11074.02, + "end": 11078.48, + "probability": 0.9966 + }, + { + "start": 11078.64, + "end": 11079.16, + "probability": 0.832 + }, + { + "start": 11079.6, + "end": 11082.5, + "probability": 0.9924 + }, + { + "start": 11083.12, + "end": 11084.96, + "probability": 0.9053 + }, + { + "start": 11085.16, + "end": 11085.82, + "probability": 0.7647 + }, + { + "start": 11086.28, + "end": 11087.1, + "probability": 0.882 + }, + { + "start": 11087.18, + "end": 11087.74, + "probability": 0.9548 + }, + { + "start": 11088.92, + "end": 11089.14, + "probability": 0.5809 + }, + { + "start": 11089.36, + "end": 11090.54, + "probability": 0.9321 + }, + { + "start": 11091.96, + "end": 11094.26, + "probability": 0.4797 + }, + { + "start": 11094.36, + "end": 11094.6, + "probability": 0.7484 + }, + { + "start": 11094.62, + "end": 11095.86, + "probability": 0.596 + }, + { + "start": 11096.04, + "end": 11096.94, + "probability": 0.7538 + }, + { + "start": 11097.06, + "end": 11098.72, + "probability": 0.5113 + }, + { + "start": 11099.08, + "end": 11101.98, + "probability": 0.8529 + }, + { + "start": 11102.7, + "end": 11103.58, + "probability": 0.6755 + }, + { + "start": 11108.52, + "end": 11109.32, + "probability": 0.3944 + }, + { + "start": 11110.06, + "end": 11111.5, + "probability": 0.6295 + }, + { + "start": 11112.62, + "end": 11113.5, + "probability": 0.6601 + }, + { + "start": 11114.94, + "end": 11115.86, + "probability": 0.606 + }, + { + "start": 11117.12, + "end": 11117.88, + "probability": 0.9056 + }, + { + "start": 11120.86, + "end": 11121.3, + "probability": 0.8936 + }, + { + "start": 11123.12, + "end": 11125.74, + "probability": 0.9269 + }, + { + "start": 11125.82, + "end": 11128.12, + "probability": 0.9886 + }, + { + "start": 11128.48, + "end": 11129.76, + "probability": 0.8901 + }, + { + "start": 11129.9, + "end": 11131.02, + "probability": 0.561 + }, + { + "start": 11131.68, + "end": 11132.4, + "probability": 0.8383 + }, + { + "start": 11132.4, + "end": 11133.98, + "probability": 0.9267 + }, + { + "start": 11134.16, + "end": 11136.3, + "probability": 0.991 + }, + { + "start": 11136.9, + "end": 11140.08, + "probability": 0.9624 + }, + { + "start": 11140.32, + "end": 11142.94, + "probability": 0.8984 + }, + { + "start": 11143.4, + "end": 11144.78, + "probability": 0.9698 + }, + { + "start": 11145.18, + "end": 11147.16, + "probability": 0.9504 + }, + { + "start": 11147.28, + "end": 11148.78, + "probability": 0.7803 + }, + { + "start": 11149.48, + "end": 11150.94, + "probability": 0.9929 + }, + { + "start": 11157.9, + "end": 11158.82, + "probability": 0.7903 + }, + { + "start": 11159.52, + "end": 11160.42, + "probability": 0.6356 + }, + { + "start": 11160.5, + "end": 11163.04, + "probability": 0.9226 + }, + { + "start": 11163.04, + "end": 11166.24, + "probability": 0.9927 + }, + { + "start": 11166.32, + "end": 11166.99, + "probability": 0.7717 + }, + { + "start": 11167.82, + "end": 11170.46, + "probability": 0.9113 + }, + { + "start": 11171.1, + "end": 11172.4, + "probability": 0.4617 + }, + { + "start": 11172.48, + "end": 11173.66, + "probability": 0.8108 + }, + { + "start": 11173.9, + "end": 11174.22, + "probability": 0.8864 + }, + { + "start": 11174.98, + "end": 11177.96, + "probability": 0.9944 + }, + { + "start": 11178.56, + "end": 11183.54, + "probability": 0.9779 + }, + { + "start": 11183.7, + "end": 11185.32, + "probability": 0.9897 + }, + { + "start": 11185.44, + "end": 11188.88, + "probability": 0.8723 + }, + { + "start": 11188.88, + "end": 11192.32, + "probability": 0.9962 + }, + { + "start": 11192.36, + "end": 11192.76, + "probability": 0.4907 + }, + { + "start": 11192.86, + "end": 11197.78, + "probability": 0.909 + }, + { + "start": 11197.78, + "end": 11203.46, + "probability": 0.9939 + }, + { + "start": 11203.52, + "end": 11207.38, + "probability": 0.9634 + }, + { + "start": 11207.48, + "end": 11210.6, + "probability": 0.673 + }, + { + "start": 11210.68, + "end": 11211.52, + "probability": 0.7644 + }, + { + "start": 11211.6, + "end": 11214.66, + "probability": 0.9924 + }, + { + "start": 11214.66, + "end": 11217.94, + "probability": 0.9618 + }, + { + "start": 11218.2, + "end": 11221.66, + "probability": 0.7958 + }, + { + "start": 11221.8, + "end": 11223.22, + "probability": 0.9971 + }, + { + "start": 11223.4, + "end": 11224.56, + "probability": 0.9034 + }, + { + "start": 11224.72, + "end": 11228.04, + "probability": 0.985 + }, + { + "start": 11228.04, + "end": 11230.84, + "probability": 0.996 + }, + { + "start": 11230.88, + "end": 11232.84, + "probability": 0.9173 + }, + { + "start": 11233.32, + "end": 11235.48, + "probability": 0.9729 + }, + { + "start": 11235.58, + "end": 11235.99, + "probability": 0.7517 + }, + { + "start": 11236.52, + "end": 11241.53, + "probability": 0.9671 + }, + { + "start": 11242.26, + "end": 11247.26, + "probability": 0.9609 + }, + { + "start": 11249.3, + "end": 11250.66, + "probability": 0.5773 + }, + { + "start": 11250.68, + "end": 11253.78, + "probability": 0.9897 + }, + { + "start": 11255.37, + "end": 11260.08, + "probability": 0.767 + }, + { + "start": 11260.58, + "end": 11261.66, + "probability": 0.9912 + }, + { + "start": 11261.8, + "end": 11264.76, + "probability": 0.9414 + }, + { + "start": 11264.96, + "end": 11271.56, + "probability": 0.9917 + }, + { + "start": 11271.66, + "end": 11277.94, + "probability": 0.9931 + }, + { + "start": 11279.16, + "end": 11283.52, + "probability": 0.5532 + }, + { + "start": 11283.7, + "end": 11285.55, + "probability": 0.9585 + }, + { + "start": 11286.1, + "end": 11288.66, + "probability": 0.98 + }, + { + "start": 11288.66, + "end": 11290.9, + "probability": 0.9482 + }, + { + "start": 11291.06, + "end": 11292.82, + "probability": 0.7716 + }, + { + "start": 11293.52, + "end": 11298.64, + "probability": 0.9946 + }, + { + "start": 11298.84, + "end": 11302.83, + "probability": 0.9803 + }, + { + "start": 11303.24, + "end": 11307.3, + "probability": 0.8604 + }, + { + "start": 11307.46, + "end": 11309.8, + "probability": 0.8489 + }, + { + "start": 11309.86, + "end": 11310.6, + "probability": 0.9627 + }, + { + "start": 11311.02, + "end": 11311.06, + "probability": 0.0343 + }, + { + "start": 11311.06, + "end": 11313.42, + "probability": 0.8877 + }, + { + "start": 11313.86, + "end": 11317.43, + "probability": 0.9575 + }, + { + "start": 11318.42, + "end": 11319.1, + "probability": 0.5421 + }, + { + "start": 11319.2, + "end": 11319.74, + "probability": 0.7379 + }, + { + "start": 11320.32, + "end": 11323.46, + "probability": 0.9974 + }, + { + "start": 11323.46, + "end": 11328.02, + "probability": 0.9843 + }, + { + "start": 11329.0, + "end": 11331.26, + "probability": 0.9982 + }, + { + "start": 11331.26, + "end": 11335.02, + "probability": 0.988 + }, + { + "start": 11335.14, + "end": 11341.34, + "probability": 0.9744 + }, + { + "start": 11342.56, + "end": 11344.02, + "probability": 0.5735 + }, + { + "start": 11344.16, + "end": 11344.68, + "probability": 0.9043 + }, + { + "start": 11344.84, + "end": 11346.06, + "probability": 0.9655 + }, + { + "start": 11346.1, + "end": 11351.26, + "probability": 0.9027 + }, + { + "start": 11351.26, + "end": 11357.6, + "probability": 0.9607 + }, + { + "start": 11358.12, + "end": 11361.7, + "probability": 0.9846 + }, + { + "start": 11361.78, + "end": 11363.6, + "probability": 0.9948 + }, + { + "start": 11365.86, + "end": 11369.6, + "probability": 0.5572 + }, + { + "start": 11369.6, + "end": 11370.86, + "probability": 0.1471 + }, + { + "start": 11371.47, + "end": 11373.18, + "probability": 0.139 + }, + { + "start": 11374.02, + "end": 11374.23, + "probability": 0.3132 + }, + { + "start": 11374.76, + "end": 11378.6, + "probability": 0.9867 + }, + { + "start": 11378.7, + "end": 11380.2, + "probability": 0.184 + }, + { + "start": 11384.36, + "end": 11384.48, + "probability": 0.2286 + }, + { + "start": 11384.48, + "end": 11386.31, + "probability": 0.7882 + }, + { + "start": 11386.92, + "end": 11389.88, + "probability": 0.991 + }, + { + "start": 11389.88, + "end": 11394.44, + "probability": 0.9936 + }, + { + "start": 11394.68, + "end": 11395.54, + "probability": 0.7723 + }, + { + "start": 11395.94, + "end": 11398.26, + "probability": 0.0388 + }, + { + "start": 11398.26, + "end": 11398.26, + "probability": 0.0556 + }, + { + "start": 11398.26, + "end": 11403.42, + "probability": 0.9941 + }, + { + "start": 11403.42, + "end": 11409.02, + "probability": 0.9647 + }, + { + "start": 11409.2, + "end": 11409.77, + "probability": 0.6241 + }, + { + "start": 11410.84, + "end": 11410.84, + "probability": 0.0325 + }, + { + "start": 11410.84, + "end": 11410.84, + "probability": 0.0961 + }, + { + "start": 11410.84, + "end": 11413.56, + "probability": 0.8792 + }, + { + "start": 11413.74, + "end": 11415.18, + "probability": 0.7934 + }, + { + "start": 11416.0, + "end": 11417.72, + "probability": 0.4303 + }, + { + "start": 11418.22, + "end": 11420.82, + "probability": 0.875 + }, + { + "start": 11421.04, + "end": 11423.32, + "probability": 0.7504 + }, + { + "start": 11423.68, + "end": 11426.98, + "probability": 0.9858 + }, + { + "start": 11427.44, + "end": 11428.28, + "probability": 0.9337 + }, + { + "start": 11428.44, + "end": 11429.02, + "probability": 0.962 + }, + { + "start": 11429.44, + "end": 11429.98, + "probability": 0.4931 + }, + { + "start": 11430.52, + "end": 11431.12, + "probability": 0.2822 + }, + { + "start": 11431.4, + "end": 11433.54, + "probability": 0.9863 + }, + { + "start": 11433.86, + "end": 11436.9, + "probability": 0.9979 + }, + { + "start": 11437.02, + "end": 11441.02, + "probability": 0.9438 + }, + { + "start": 11441.14, + "end": 11443.02, + "probability": 0.9848 + }, + { + "start": 11443.16, + "end": 11445.22, + "probability": 0.9934 + }, + { + "start": 11445.74, + "end": 11448.64, + "probability": 0.9863 + }, + { + "start": 11449.0, + "end": 11450.58, + "probability": 0.8745 + }, + { + "start": 11450.94, + "end": 11453.58, + "probability": 0.974 + }, + { + "start": 11453.72, + "end": 11456.86, + "probability": 0.793 + }, + { + "start": 11457.4, + "end": 11460.14, + "probability": 0.9263 + }, + { + "start": 11460.68, + "end": 11463.2, + "probability": 0.9969 + }, + { + "start": 11463.26, + "end": 11465.38, + "probability": 0.9894 + }, + { + "start": 11466.38, + "end": 11467.52, + "probability": 0.0638 + }, + { + "start": 11467.52, + "end": 11470.92, + "probability": 0.644 + }, + { + "start": 11471.68, + "end": 11473.0, + "probability": 0.8883 + }, + { + "start": 11473.44, + "end": 11477.68, + "probability": 0.9702 + }, + { + "start": 11477.68, + "end": 11482.0, + "probability": 0.9896 + }, + { + "start": 11482.14, + "end": 11485.65, + "probability": 0.9921 + }, + { + "start": 11486.2, + "end": 11486.86, + "probability": 0.8365 + }, + { + "start": 11487.06, + "end": 11487.42, + "probability": 0.5686 + }, + { + "start": 11487.7, + "end": 11490.84, + "probability": 0.9772 + }, + { + "start": 11490.94, + "end": 11491.34, + "probability": 0.8437 + }, + { + "start": 11492.94, + "end": 11493.72, + "probability": 0.7898 + }, + { + "start": 11494.02, + "end": 11496.16, + "probability": 0.945 + }, + { + "start": 11510.08, + "end": 11511.24, + "probability": 0.7754 + }, + { + "start": 11513.24, + "end": 11516.42, + "probability": 0.9976 + }, + { + "start": 11517.2, + "end": 11522.84, + "probability": 0.998 + }, + { + "start": 11524.3, + "end": 11525.62, + "probability": 0.9852 + }, + { + "start": 11526.86, + "end": 11529.06, + "probability": 0.9987 + }, + { + "start": 11529.3, + "end": 11532.52, + "probability": 0.9564 + }, + { + "start": 11533.02, + "end": 11533.9, + "probability": 0.7716 + }, + { + "start": 11535.26, + "end": 11539.04, + "probability": 0.996 + }, + { + "start": 11539.04, + "end": 11543.18, + "probability": 0.9909 + }, + { + "start": 11545.0, + "end": 11545.52, + "probability": 0.0318 + }, + { + "start": 11545.52, + "end": 11551.16, + "probability": 0.749 + }, + { + "start": 11552.02, + "end": 11554.08, + "probability": 0.1762 + }, + { + "start": 11554.08, + "end": 11554.08, + "probability": 0.3218 + }, + { + "start": 11554.08, + "end": 11557.74, + "probability": 0.8236 + }, + { + "start": 11557.88, + "end": 11560.36, + "probability": 0.5107 + }, + { + "start": 11560.56, + "end": 11561.71, + "probability": 0.7365 + }, + { + "start": 11562.86, + "end": 11562.86, + "probability": 0.0042 + }, + { + "start": 11562.86, + "end": 11565.14, + "probability": 0.6992 + }, + { + "start": 11565.16, + "end": 11565.9, + "probability": 0.632 + }, + { + "start": 11566.46, + "end": 11566.98, + "probability": 0.457 + }, + { + "start": 11567.24, + "end": 11568.72, + "probability": 0.5161 + }, + { + "start": 11568.72, + "end": 11571.44, + "probability": 0.8946 + }, + { + "start": 11571.54, + "end": 11572.34, + "probability": 0.7528 + }, + { + "start": 11572.34, + "end": 11573.4, + "probability": 0.6597 + }, + { + "start": 11573.4, + "end": 11573.9, + "probability": 0.2954 + }, + { + "start": 11573.96, + "end": 11574.8, + "probability": 0.2494 + }, + { + "start": 11575.36, + "end": 11579.3, + "probability": 0.9963 + }, + { + "start": 11580.22, + "end": 11584.14, + "probability": 0.8112 + }, + { + "start": 11584.46, + "end": 11585.24, + "probability": 0.7873 + }, + { + "start": 11585.82, + "end": 11588.1, + "probability": 0.9694 + }, + { + "start": 11588.58, + "end": 11589.68, + "probability": 0.906 + }, + { + "start": 11589.76, + "end": 11590.86, + "probability": 0.9795 + }, + { + "start": 11591.06, + "end": 11594.64, + "probability": 0.8667 + }, + { + "start": 11595.06, + "end": 11596.12, + "probability": 0.7853 + }, + { + "start": 11596.22, + "end": 11597.14, + "probability": 0.7949 + }, + { + "start": 11597.58, + "end": 11599.67, + "probability": 0.9609 + }, + { + "start": 11600.5, + "end": 11604.6, + "probability": 0.8773 + }, + { + "start": 11605.88, + "end": 11612.62, + "probability": 0.9551 + }, + { + "start": 11613.14, + "end": 11614.5, + "probability": 0.9863 + }, + { + "start": 11615.22, + "end": 11618.2, + "probability": 0.7226 + }, + { + "start": 11618.84, + "end": 11620.3, + "probability": 0.9162 + }, + { + "start": 11620.64, + "end": 11621.75, + "probability": 0.9717 + }, + { + "start": 11622.24, + "end": 11625.28, + "probability": 0.9707 + }, + { + "start": 11625.36, + "end": 11626.36, + "probability": 0.9858 + }, + { + "start": 11626.92, + "end": 11628.47, + "probability": 0.9929 + }, + { + "start": 11629.02, + "end": 11631.24, + "probability": 0.9465 + }, + { + "start": 11632.0, + "end": 11633.9, + "probability": 0.9407 + }, + { + "start": 11634.32, + "end": 11637.96, + "probability": 0.8302 + }, + { + "start": 11638.62, + "end": 11641.52, + "probability": 0.9679 + }, + { + "start": 11642.0, + "end": 11643.58, + "probability": 0.9327 + }, + { + "start": 11643.94, + "end": 11645.3, + "probability": 0.7779 + }, + { + "start": 11646.08, + "end": 11649.9, + "probability": 0.6171 + }, + { + "start": 11651.26, + "end": 11654.92, + "probability": 0.9902 + }, + { + "start": 11655.42, + "end": 11659.36, + "probability": 0.8423 + }, + { + "start": 11660.02, + "end": 11661.4, + "probability": 0.9753 + }, + { + "start": 11662.74, + "end": 11664.72, + "probability": 0.9963 + }, + { + "start": 11666.22, + "end": 11666.98, + "probability": 0.9976 + }, + { + "start": 11667.82, + "end": 11669.96, + "probability": 0.1078 + }, + { + "start": 11670.5, + "end": 11676.58, + "probability": 0.9866 + }, + { + "start": 11677.06, + "end": 11678.4, + "probability": 0.9805 + }, + { + "start": 11678.64, + "end": 11683.64, + "probability": 0.856 + }, + { + "start": 11683.8, + "end": 11684.48, + "probability": 0.8315 + }, + { + "start": 11684.74, + "end": 11685.38, + "probability": 0.8275 + }, + { + "start": 11685.84, + "end": 11687.08, + "probability": 0.9731 + }, + { + "start": 11687.16, + "end": 11688.24, + "probability": 0.7048 + }, + { + "start": 11688.94, + "end": 11690.94, + "probability": 0.9912 + }, + { + "start": 11691.44, + "end": 11694.82, + "probability": 0.9914 + }, + { + "start": 11695.2, + "end": 11696.54, + "probability": 0.9849 + }, + { + "start": 11697.06, + "end": 11701.82, + "probability": 0.7718 + }, + { + "start": 11702.22, + "end": 11704.16, + "probability": 0.6435 + }, + { + "start": 11704.16, + "end": 11707.74, + "probability": 0.883 + }, + { + "start": 11708.3, + "end": 11710.08, + "probability": 0.8369 + }, + { + "start": 11710.18, + "end": 11712.74, + "probability": 0.9362 + }, + { + "start": 11713.26, + "end": 11714.66, + "probability": 0.7777 + }, + { + "start": 11714.98, + "end": 11717.7, + "probability": 0.9886 + }, + { + "start": 11717.92, + "end": 11718.44, + "probability": 0.3711 + }, + { + "start": 11718.44, + "end": 11719.2, + "probability": 0.5534 + }, + { + "start": 11719.88, + "end": 11720.76, + "probability": 0.6951 + }, + { + "start": 11721.12, + "end": 11721.46, + "probability": 0.7004 + }, + { + "start": 11721.9, + "end": 11722.84, + "probability": 0.9303 + }, + { + "start": 11722.94, + "end": 11723.42, + "probability": 0.7253 + }, + { + "start": 11723.68, + "end": 11724.16, + "probability": 0.7714 + }, + { + "start": 11724.4, + "end": 11726.76, + "probability": 0.9187 + }, + { + "start": 11727.68, + "end": 11730.62, + "probability": 0.9711 + }, + { + "start": 11730.9, + "end": 11730.94, + "probability": 0.6843 + }, + { + "start": 11731.04, + "end": 11731.76, + "probability": 0.9248 + }, + { + "start": 11731.82, + "end": 11733.44, + "probability": 0.779 + }, + { + "start": 11733.46, + "end": 11734.68, + "probability": 0.8569 + }, + { + "start": 11734.76, + "end": 11735.2, + "probability": 0.7101 + }, + { + "start": 11735.28, + "end": 11736.42, + "probability": 0.8486 + }, + { + "start": 11736.78, + "end": 11738.22, + "probability": 0.859 + }, + { + "start": 11738.76, + "end": 11743.48, + "probability": 0.9624 + }, + { + "start": 11743.62, + "end": 11743.84, + "probability": 0.6496 + }, + { + "start": 11743.92, + "end": 11744.96, + "probability": 0.9578 + }, + { + "start": 11745.48, + "end": 11746.12, + "probability": 0.9704 + }, + { + "start": 11746.38, + "end": 11747.0, + "probability": 0.8806 + }, + { + "start": 11747.24, + "end": 11747.24, + "probability": 0.7102 + }, + { + "start": 11747.9, + "end": 11750.56, + "probability": 0.98 + }, + { + "start": 11750.98, + "end": 11752.2, + "probability": 0.6303 + }, + { + "start": 11752.24, + "end": 11753.96, + "probability": 0.8605 + }, + { + "start": 11755.24, + "end": 11755.38, + "probability": 0.0078 + }, + { + "start": 11757.78, + "end": 11758.6, + "probability": 0.0076 + }, + { + "start": 11759.12, + "end": 11763.8, + "probability": 0.5937 + }, + { + "start": 11765.12, + "end": 11768.3, + "probability": 0.382 + }, + { + "start": 11768.84, + "end": 11770.98, + "probability": 0.7417 + }, + { + "start": 11772.56, + "end": 11773.28, + "probability": 0.9296 + }, + { + "start": 11773.94, + "end": 11774.56, + "probability": 0.7732 + }, + { + "start": 11775.9, + "end": 11776.36, + "probability": 0.7932 + }, + { + "start": 11777.34, + "end": 11778.14, + "probability": 0.5858 + }, + { + "start": 11778.98, + "end": 11779.32, + "probability": 0.887 + }, + { + "start": 11780.26, + "end": 11780.96, + "probability": 0.8268 + }, + { + "start": 11783.92, + "end": 11786.26, + "probability": 0.8759 + }, + { + "start": 11787.82, + "end": 11788.28, + "probability": 0.9917 + }, + { + "start": 11789.46, + "end": 11790.16, + "probability": 0.9724 + }, + { + "start": 11790.86, + "end": 11791.26, + "probability": 0.9819 + }, + { + "start": 11791.94, + "end": 11792.76, + "probability": 0.93 + }, + { + "start": 11793.82, + "end": 11794.1, + "probability": 0.9897 + }, + { + "start": 11797.24, + "end": 11798.18, + "probability": 0.6758 + }, + { + "start": 11800.18, + "end": 11802.14, + "probability": 0.7705 + }, + { + "start": 11803.0, + "end": 11804.12, + "probability": 0.8709 + }, + { + "start": 11805.08, + "end": 11805.46, + "probability": 0.8817 + }, + { + "start": 11806.2, + "end": 11807.04, + "probability": 0.9457 + }, + { + "start": 11807.69, + "end": 11809.98, + "probability": 0.9561 + }, + { + "start": 11810.98, + "end": 11813.62, + "probability": 0.9825 + }, + { + "start": 11814.6, + "end": 11815.0, + "probability": 0.9753 + }, + { + "start": 11816.0, + "end": 11816.86, + "probability": 0.8103 + }, + { + "start": 11817.94, + "end": 11818.64, + "probability": 0.9648 + }, + { + "start": 11819.26, + "end": 11819.8, + "probability": 0.7964 + }, + { + "start": 11820.58, + "end": 11823.42, + "probability": 0.2261 + }, + { + "start": 11827.76, + "end": 11828.78, + "probability": 0.1852 + }, + { + "start": 11829.98, + "end": 11830.36, + "probability": 0.7788 + }, + { + "start": 11831.36, + "end": 11832.12, + "probability": 0.7384 + }, + { + "start": 11833.44, + "end": 11834.18, + "probability": 0.7947 + }, + { + "start": 11834.8, + "end": 11835.52, + "probability": 0.9386 + }, + { + "start": 11837.38, + "end": 11837.8, + "probability": 0.9857 + }, + { + "start": 11839.68, + "end": 11840.74, + "probability": 0.9919 + }, + { + "start": 11841.72, + "end": 11842.08, + "probability": 0.8538 + }, + { + "start": 11842.98, + "end": 11843.9, + "probability": 0.9943 + }, + { + "start": 11845.2, + "end": 11845.78, + "probability": 0.8766 + }, + { + "start": 11847.38, + "end": 11847.68, + "probability": 0.9712 + }, + { + "start": 11849.1, + "end": 11850.7, + "probability": 0.9834 + }, + { + "start": 11851.46, + "end": 11852.36, + "probability": 0.8014 + }, + { + "start": 11853.48, + "end": 11853.9, + "probability": 0.9559 + }, + { + "start": 11854.74, + "end": 11855.54, + "probability": 0.9953 + }, + { + "start": 11856.16, + "end": 11856.5, + "probability": 0.9734 + }, + { + "start": 11857.3, + "end": 11857.96, + "probability": 0.8588 + }, + { + "start": 11858.94, + "end": 11859.54, + "probability": 0.804 + }, + { + "start": 11860.32, + "end": 11861.32, + "probability": 0.7452 + }, + { + "start": 11862.6, + "end": 11863.02, + "probability": 0.9202 + }, + { + "start": 11864.36, + "end": 11865.38, + "probability": 0.7229 + }, + { + "start": 11868.9, + "end": 11869.78, + "probability": 0.9033 + }, + { + "start": 11870.92, + "end": 11871.96, + "probability": 0.8576 + }, + { + "start": 11873.46, + "end": 11873.96, + "probability": 0.9818 + }, + { + "start": 11874.88, + "end": 11875.8, + "probability": 0.8758 + }, + { + "start": 11882.58, + "end": 11886.06, + "probability": 0.6278 + }, + { + "start": 11889.12, + "end": 11889.94, + "probability": 0.8629 + }, + { + "start": 11890.54, + "end": 11891.62, + "probability": 0.6485 + }, + { + "start": 11892.28, + "end": 11892.74, + "probability": 0.9285 + }, + { + "start": 11893.92, + "end": 11896.92, + "probability": 0.9439 + }, + { + "start": 11897.46, + "end": 11898.76, + "probability": 0.9597 + }, + { + "start": 11899.66, + "end": 11903.22, + "probability": 0.9275 + }, + { + "start": 11903.98, + "end": 11904.44, + "probability": 0.9681 + }, + { + "start": 11905.26, + "end": 11906.12, + "probability": 0.9787 + }, + { + "start": 11907.08, + "end": 11907.5, + "probability": 0.9617 + }, + { + "start": 11908.28, + "end": 11909.66, + "probability": 0.7619 + }, + { + "start": 11910.94, + "end": 11911.8, + "probability": 0.9929 + }, + { + "start": 11912.4, + "end": 11913.5, + "probability": 0.9432 + }, + { + "start": 11914.42, + "end": 11914.8, + "probability": 0.6399 + }, + { + "start": 11915.88, + "end": 11916.68, + "probability": 0.7411 + }, + { + "start": 11917.46, + "end": 11917.98, + "probability": 0.8644 + }, + { + "start": 11918.76, + "end": 11919.62, + "probability": 0.636 + }, + { + "start": 11920.6, + "end": 11922.82, + "probability": 0.6907 + }, + { + "start": 11923.94, + "end": 11924.8, + "probability": 0.8748 + }, + { + "start": 11925.38, + "end": 11926.5, + "probability": 0.8705 + }, + { + "start": 11927.86, + "end": 11928.26, + "probability": 0.9902 + }, + { + "start": 11929.9, + "end": 11931.12, + "probability": 0.9526 + }, + { + "start": 11932.2, + "end": 11932.7, + "probability": 0.9888 + }, + { + "start": 11933.66, + "end": 11934.82, + "probability": 0.86 + }, + { + "start": 11936.64, + "end": 11939.16, + "probability": 0.8758 + }, + { + "start": 11939.92, + "end": 11941.08, + "probability": 0.677 + }, + { + "start": 11942.24, + "end": 11942.52, + "probability": 0.7088 + }, + { + "start": 11943.98, + "end": 11944.94, + "probability": 0.4719 + }, + { + "start": 11945.66, + "end": 11946.06, + "probability": 0.9289 + }, + { + "start": 11946.96, + "end": 11948.0, + "probability": 0.822 + }, + { + "start": 11949.08, + "end": 11949.5, + "probability": 0.9951 + }, + { + "start": 11950.28, + "end": 11951.2, + "probability": 0.7505 + }, + { + "start": 11952.21, + "end": 11953.72, + "probability": 0.9858 + }, + { + "start": 11955.68, + "end": 11957.62, + "probability": 0.9496 + }, + { + "start": 11958.14, + "end": 11958.8, + "probability": 0.84 + }, + { + "start": 11959.86, + "end": 11961.04, + "probability": 0.9919 + }, + { + "start": 11961.88, + "end": 11963.14, + "probability": 0.8154 + }, + { + "start": 11963.68, + "end": 11964.48, + "probability": 0.9282 + }, + { + "start": 11965.34, + "end": 11966.44, + "probability": 0.9491 + }, + { + "start": 11967.56, + "end": 11968.26, + "probability": 0.9823 + }, + { + "start": 11969.02, + "end": 11969.72, + "probability": 0.8109 + }, + { + "start": 11970.62, + "end": 11970.96, + "probability": 0.5326 + }, + { + "start": 11972.7, + "end": 11973.18, + "probability": 0.7494 + }, + { + "start": 11974.38, + "end": 11974.72, + "probability": 0.8656 + }, + { + "start": 11975.52, + "end": 11976.88, + "probability": 0.9755 + }, + { + "start": 11977.8, + "end": 11978.66, + "probability": 0.9912 + }, + { + "start": 11979.56, + "end": 11980.3, + "probability": 0.8832 + }, + { + "start": 11983.3, + "end": 11983.96, + "probability": 0.8776 + }, + { + "start": 11984.68, + "end": 11985.4, + "probability": 0.9645 + }, + { + "start": 11986.48, + "end": 11986.86, + "probability": 0.9722 + }, + { + "start": 11987.86, + "end": 11988.42, + "probability": 0.9878 + }, + { + "start": 11989.34, + "end": 11989.72, + "probability": 0.9866 + }, + { + "start": 11990.54, + "end": 11991.12, + "probability": 0.9745 + }, + { + "start": 11994.06, + "end": 11994.42, + "probability": 0.9915 + }, + { + "start": 11995.36, + "end": 11995.94, + "probability": 0.9863 + }, + { + "start": 11997.18, + "end": 11997.58, + "probability": 0.9946 + }, + { + "start": 11998.66, + "end": 11999.84, + "probability": 0.4641 + }, + { + "start": 12000.8, + "end": 12002.48, + "probability": 0.79 + }, + { + "start": 12003.5, + "end": 12003.84, + "probability": 0.9351 + }, + { + "start": 12005.52, + "end": 12006.76, + "probability": 0.793 + }, + { + "start": 12010.94, + "end": 12011.16, + "probability": 0.5715 + }, + { + "start": 12012.06, + "end": 12012.9, + "probability": 0.9332 + }, + { + "start": 12013.72, + "end": 12014.48, + "probability": 0.8919 + }, + { + "start": 12015.26, + "end": 12015.66, + "probability": 0.8357 + }, + { + "start": 12016.74, + "end": 12017.68, + "probability": 0.8799 + }, + { + "start": 12019.22, + "end": 12019.68, + "probability": 0.9912 + }, + { + "start": 12020.5, + "end": 12021.4, + "probability": 0.9814 + }, + { + "start": 12022.42, + "end": 12022.86, + "probability": 0.967 + }, + { + "start": 12023.74, + "end": 12024.54, + "probability": 0.9852 + }, + { + "start": 12025.74, + "end": 12026.18, + "probability": 0.9925 + }, + { + "start": 12027.14, + "end": 12027.8, + "probability": 0.8718 + }, + { + "start": 12029.36, + "end": 12030.06, + "probability": 0.8746 + }, + { + "start": 12030.96, + "end": 12031.98, + "probability": 0.9471 + }, + { + "start": 12033.1, + "end": 12033.5, + "probability": 0.9476 + }, + { + "start": 12034.98, + "end": 12035.9, + "probability": 0.8147 + }, + { + "start": 12037.04, + "end": 12037.52, + "probability": 0.9891 + }, + { + "start": 12038.3, + "end": 12039.0, + "probability": 0.8007 + }, + { + "start": 12041.7, + "end": 12044.22, + "probability": 0.8946 + }, + { + "start": 12045.4, + "end": 12046.28, + "probability": 0.9907 + }, + { + "start": 12047.14, + "end": 12048.1, + "probability": 0.7296 + }, + { + "start": 12050.14, + "end": 12050.68, + "probability": 0.9888 + }, + { + "start": 12051.8, + "end": 12052.96, + "probability": 0.8879 + }, + { + "start": 12054.1, + "end": 12054.9, + "probability": 0.9364 + }, + { + "start": 12055.54, + "end": 12057.8, + "probability": 0.5436 + }, + { + "start": 12058.88, + "end": 12059.54, + "probability": 0.82 + }, + { + "start": 12061.24, + "end": 12064.32, + "probability": 0.8745 + }, + { + "start": 12067.68, + "end": 12068.42, + "probability": 0.9914 + }, + { + "start": 12069.02, + "end": 12070.14, + "probability": 0.4039 + }, + { + "start": 12070.84, + "end": 12071.22, + "probability": 0.9645 + }, + { + "start": 12072.28, + "end": 12072.82, + "probability": 0.9571 + }, + { + "start": 12075.74, + "end": 12078.12, + "probability": 0.8506 + }, + { + "start": 12078.92, + "end": 12079.7, + "probability": 0.9204 + }, + { + "start": 12080.76, + "end": 12081.1, + "probability": 0.8701 + }, + { + "start": 12086.36, + "end": 12087.74, + "probability": 0.7292 + }, + { + "start": 12088.78, + "end": 12089.5, + "probability": 0.785 + }, + { + "start": 12091.32, + "end": 12092.22, + "probability": 0.574 + }, + { + "start": 12092.88, + "end": 12093.28, + "probability": 0.9631 + }, + { + "start": 12094.22, + "end": 12095.08, + "probability": 0.759 + }, + { + "start": 12095.82, + "end": 12097.8, + "probability": 0.8877 + }, + { + "start": 12098.6, + "end": 12098.98, + "probability": 0.9473 + }, + { + "start": 12099.92, + "end": 12100.58, + "probability": 0.8164 + }, + { + "start": 12101.46, + "end": 12101.86, + "probability": 0.9851 + }, + { + "start": 12102.64, + "end": 12103.54, + "probability": 0.9268 + }, + { + "start": 12105.3, + "end": 12109.92, + "probability": 0.6624 + }, + { + "start": 12111.12, + "end": 12111.8, + "probability": 0.9519 + }, + { + "start": 12112.8, + "end": 12113.62, + "probability": 0.6606 + }, + { + "start": 12114.68, + "end": 12115.02, + "probability": 0.6979 + }, + { + "start": 12118.9, + "end": 12120.12, + "probability": 0.6924 + }, + { + "start": 12121.12, + "end": 12121.78, + "probability": 0.7408 + }, + { + "start": 12122.48, + "end": 12123.38, + "probability": 0.8459 + }, + { + "start": 12125.06, + "end": 12125.42, + "probability": 0.8906 + }, + { + "start": 12126.86, + "end": 12127.58, + "probability": 0.9117 + }, + { + "start": 12130.11, + "end": 12132.34, + "probability": 0.2189 + }, + { + "start": 12133.36, + "end": 12135.28, + "probability": 0.5213 + }, + { + "start": 12136.42, + "end": 12137.26, + "probability": 0.6913 + }, + { + "start": 12138.16, + "end": 12139.0, + "probability": 0.963 + }, + { + "start": 12140.56, + "end": 12141.3, + "probability": 0.9139 + }, + { + "start": 12142.04, + "end": 12143.14, + "probability": 0.9556 + }, + { + "start": 12144.02, + "end": 12145.24, + "probability": 0.4894 + }, + { + "start": 12146.4, + "end": 12147.9, + "probability": 0.2797 + }, + { + "start": 12149.22, + "end": 12150.62, + "probability": 0.7814 + }, + { + "start": 12151.52, + "end": 12152.26, + "probability": 0.7567 + }, + { + "start": 12153.74, + "end": 12154.04, + "probability": 0.9071 + }, + { + "start": 12155.2, + "end": 12155.92, + "probability": 0.8458 + }, + { + "start": 12156.94, + "end": 12157.46, + "probability": 0.9831 + }, + { + "start": 12158.22, + "end": 12159.08, + "probability": 0.8741 + }, + { + "start": 12160.08, + "end": 12160.58, + "probability": 0.9437 + }, + { + "start": 12161.34, + "end": 12162.12, + "probability": 0.8944 + }, + { + "start": 12177.64, + "end": 12178.28, + "probability": 0.5014 + }, + { + "start": 12180.44, + "end": 12181.12, + "probability": 0.6545 + }, + { + "start": 12182.26, + "end": 12183.3, + "probability": 0.7406 + }, + { + "start": 12184.12, + "end": 12184.84, + "probability": 0.704 + }, + { + "start": 12185.66, + "end": 12185.96, + "probability": 0.9563 + }, + { + "start": 12186.86, + "end": 12187.6, + "probability": 0.783 + }, + { + "start": 12189.04, + "end": 12190.9, + "probability": 0.8796 + }, + { + "start": 12193.84, + "end": 12195.92, + "probability": 0.8991 + }, + { + "start": 12197.6, + "end": 12198.26, + "probability": 0.9175 + }, + { + "start": 12198.98, + "end": 12201.12, + "probability": 0.9424 + }, + { + "start": 12202.12, + "end": 12203.28, + "probability": 0.9609 + }, + { + "start": 12203.96, + "end": 12204.6, + "probability": 0.9925 + }, + { + "start": 12205.6, + "end": 12206.32, + "probability": 0.9285 + }, + { + "start": 12207.2, + "end": 12207.48, + "probability": 0.7944 + }, + { + "start": 12208.26, + "end": 12209.38, + "probability": 0.6007 + }, + { + "start": 12210.6, + "end": 12213.3, + "probability": 0.8388 + }, + { + "start": 12220.74, + "end": 12221.2, + "probability": 0.7804 + }, + { + "start": 12222.36, + "end": 12223.52, + "probability": 0.6998 + }, + { + "start": 12224.86, + "end": 12225.66, + "probability": 0.9482 + }, + { + "start": 12226.36, + "end": 12227.2, + "probability": 0.7677 + }, + { + "start": 12227.98, + "end": 12228.32, + "probability": 0.9648 + }, + { + "start": 12230.0, + "end": 12231.04, + "probability": 0.9011 + }, + { + "start": 12232.62, + "end": 12233.48, + "probability": 0.7275 + }, + { + "start": 12235.02, + "end": 12235.86, + "probability": 0.549 + }, + { + "start": 12237.14, + "end": 12239.34, + "probability": 0.8076 + }, + { + "start": 12241.72, + "end": 12243.54, + "probability": 0.6383 + }, + { + "start": 12244.98, + "end": 12245.46, + "probability": 0.7791 + }, + { + "start": 12246.32, + "end": 12247.32, + "probability": 0.7394 + }, + { + "start": 12248.8, + "end": 12249.42, + "probability": 0.8377 + }, + { + "start": 12250.14, + "end": 12250.96, + "probability": 0.8841 + }, + { + "start": 12252.42, + "end": 12252.86, + "probability": 0.9683 + }, + { + "start": 12254.34, + "end": 12255.04, + "probability": 0.798 + }, + { + "start": 12257.22, + "end": 12260.04, + "probability": 0.9261 + }, + { + "start": 12261.18, + "end": 12261.96, + "probability": 0.6545 + }, + { + "start": 12263.66, + "end": 12264.64, + "probability": 0.9769 + }, + { + "start": 12265.16, + "end": 12266.44, + "probability": 0.6713 + }, + { + "start": 12267.72, + "end": 12268.18, + "probability": 0.8284 + }, + { + "start": 12269.74, + "end": 12269.96, + "probability": 0.3944 + }, + { + "start": 12271.68, + "end": 12274.78, + "probability": 0.2965 + }, + { + "start": 12275.2, + "end": 12275.8, + "probability": 0.0144 + }, + { + "start": 12276.54, + "end": 12278.6, + "probability": 0.6292 + }, + { + "start": 12280.2, + "end": 12282.38, + "probability": 0.886 + }, + { + "start": 12283.58, + "end": 12285.68, + "probability": 0.8604 + }, + { + "start": 12288.26, + "end": 12290.82, + "probability": 0.5137 + }, + { + "start": 12291.56, + "end": 12293.48, + "probability": 0.9462 + }, + { + "start": 12294.66, + "end": 12295.56, + "probability": 0.9802 + }, + { + "start": 12296.7, + "end": 12297.4, + "probability": 0.865 + }, + { + "start": 12299.68, + "end": 12300.44, + "probability": 0.8395 + }, + { + "start": 12301.22, + "end": 12301.98, + "probability": 0.7308 + }, + { + "start": 12302.94, + "end": 12304.86, + "probability": 0.964 + }, + { + "start": 12306.04, + "end": 12307.3, + "probability": 0.9769 + }, + { + "start": 12308.76, + "end": 12309.64, + "probability": 0.93 + }, + { + "start": 12311.28, + "end": 12312.12, + "probability": 0.9906 + }, + { + "start": 12312.64, + "end": 12314.64, + "probability": 0.9744 + }, + { + "start": 12315.24, + "end": 12316.56, + "probability": 0.8042 + }, + { + "start": 12318.28, + "end": 12319.16, + "probability": 0.9918 + }, + { + "start": 12320.1, + "end": 12320.94, + "probability": 0.6384 + }, + { + "start": 12321.78, + "end": 12322.56, + "probability": 0.7157 + }, + { + "start": 12323.28, + "end": 12324.3, + "probability": 0.5905 + }, + { + "start": 12327.84, + "end": 12328.6, + "probability": 0.9292 + }, + { + "start": 12329.2, + "end": 12330.12, + "probability": 0.7194 + }, + { + "start": 12332.5, + "end": 12332.96, + "probability": 0.5206 + }, + { + "start": 12334.26, + "end": 12335.72, + "probability": 0.8931 + }, + { + "start": 12337.34, + "end": 12338.3, + "probability": 0.9936 + }, + { + "start": 12339.98, + "end": 12340.92, + "probability": 0.87 + }, + { + "start": 12342.52, + "end": 12343.4, + "probability": 0.9918 + }, + { + "start": 12345.66, + "end": 12347.06, + "probability": 0.7189 + }, + { + "start": 12348.42, + "end": 12350.62, + "probability": 0.9313 + }, + { + "start": 12353.3, + "end": 12354.38, + "probability": 0.5024 + }, + { + "start": 12356.32, + "end": 12357.18, + "probability": 0.6061 + }, + { + "start": 12358.54, + "end": 12359.36, + "probability": 0.9092 + }, + { + "start": 12359.88, + "end": 12360.62, + "probability": 0.7143 + }, + { + "start": 12362.92, + "end": 12365.5, + "probability": 0.8834 + }, + { + "start": 12366.92, + "end": 12369.06, + "probability": 0.9786 + }, + { + "start": 12370.64, + "end": 12372.44, + "probability": 0.9713 + }, + { + "start": 12374.1, + "end": 12375.72, + "probability": 0.9791 + }, + { + "start": 12377.56, + "end": 12379.32, + "probability": 0.7128 + }, + { + "start": 12380.26, + "end": 12381.48, + "probability": 0.8902 + }, + { + "start": 12383.4, + "end": 12386.84, + "probability": 0.7787 + }, + { + "start": 12389.44, + "end": 12390.44, + "probability": 0.642 + }, + { + "start": 12391.38, + "end": 12393.1, + "probability": 0.9102 + }, + { + "start": 12395.9, + "end": 12397.88, + "probability": 0.9822 + }, + { + "start": 12398.82, + "end": 12399.54, + "probability": 0.9912 + }, + { + "start": 12400.94, + "end": 12401.82, + "probability": 0.9889 + }, + { + "start": 12402.54, + "end": 12404.24, + "probability": 0.8889 + }, + { + "start": 12406.84, + "end": 12407.76, + "probability": 0.918 + }, + { + "start": 12408.46, + "end": 12409.2, + "probability": 0.4111 + }, + { + "start": 12410.02, + "end": 12411.92, + "probability": 0.6801 + }, + { + "start": 12412.96, + "end": 12414.6, + "probability": 0.8337 + }, + { + "start": 12415.74, + "end": 12417.72, + "probability": 0.9474 + }, + { + "start": 12418.72, + "end": 12420.62, + "probability": 0.9536 + }, + { + "start": 12422.58, + "end": 12425.28, + "probability": 0.4111 + }, + { + "start": 12426.2, + "end": 12427.28, + "probability": 0.6463 + }, + { + "start": 12428.52, + "end": 12431.04, + "probability": 0.777 + }, + { + "start": 12431.7, + "end": 12433.04, + "probability": 0.6933 + }, + { + "start": 12437.02, + "end": 12438.62, + "probability": 0.5349 + }, + { + "start": 12439.16, + "end": 12440.06, + "probability": 0.8108 + }, + { + "start": 12441.36, + "end": 12446.78, + "probability": 0.7847 + }, + { + "start": 12448.21, + "end": 12448.7, + "probability": 0.1628 + }, + { + "start": 12449.72, + "end": 12455.74, + "probability": 0.6299 + }, + { + "start": 12455.84, + "end": 12456.88, + "probability": 0.6782 + }, + { + "start": 12464.33, + "end": 12466.5, + "probability": 0.6981 + }, + { + "start": 12466.94, + "end": 12470.18, + "probability": 0.4277 + }, + { + "start": 12470.28, + "end": 12471.96, + "probability": 0.3087 + }, + { + "start": 12472.7, + "end": 12476.68, + "probability": 0.8643 + }, + { + "start": 12477.22, + "end": 12478.54, + "probability": 0.389 + }, + { + "start": 12478.94, + "end": 12479.76, + "probability": 0.516 + }, + { + "start": 12479.94, + "end": 12481.65, + "probability": 0.4378 + }, + { + "start": 12481.98, + "end": 12484.12, + "probability": 0.7136 + }, + { + "start": 12485.08, + "end": 12487.06, + "probability": 0.0638 + }, + { + "start": 12487.88, + "end": 12488.78, + "probability": 0.269 + }, + { + "start": 12488.98, + "end": 12491.28, + "probability": 0.1066 + }, + { + "start": 12493.42, + "end": 12497.18, + "probability": 0.5618 + }, + { + "start": 12497.98, + "end": 12499.44, + "probability": 0.6321 + }, + { + "start": 12507.9, + "end": 12512.26, + "probability": 0.6664 + }, + { + "start": 12512.6, + "end": 12514.74, + "probability": 0.7372 + }, + { + "start": 12515.3, + "end": 12517.82, + "probability": 0.622 + }, + { + "start": 12517.88, + "end": 12519.06, + "probability": 0.2969 + }, + { + "start": 12519.22, + "end": 12519.74, + "probability": 0.3012 + }, + { + "start": 12519.88, + "end": 12525.36, + "probability": 0.4773 + }, + { + "start": 12526.4, + "end": 12528.56, + "probability": 0.4915 + }, + { + "start": 12529.32, + "end": 12529.99, + "probability": 0.2211 + }, + { + "start": 12531.91, + "end": 12535.06, + "probability": 0.4458 + }, + { + "start": 12535.34, + "end": 12537.72, + "probability": 0.0277 + }, + { + "start": 12537.82, + "end": 12541.96, + "probability": 0.7855 + }, + { + "start": 12542.14, + "end": 12543.98, + "probability": 0.3584 + }, + { + "start": 12545.46, + "end": 12546.24, + "probability": 0.7108 + }, + { + "start": 12546.48, + "end": 12547.96, + "probability": 0.5611 + }, + { + "start": 12547.96, + "end": 12554.4, + "probability": 0.9956 + }, + { + "start": 12555.1, + "end": 12558.68, + "probability": 0.9844 + }, + { + "start": 12558.82, + "end": 12560.72, + "probability": 0.8461 + }, + { + "start": 12561.32, + "end": 12563.04, + "probability": 0.37 + }, + { + "start": 12563.05, + "end": 12568.66, + "probability": 0.9803 + }, + { + "start": 12569.3, + "end": 12572.42, + "probability": 0.9596 + }, + { + "start": 12572.46, + "end": 12572.56, + "probability": 0.9 + }, + { + "start": 12574.88, + "end": 12576.18, + "probability": 0.9126 + }, + { + "start": 12604.34, + "end": 12605.56, + "probability": 0.7753 + }, + { + "start": 12607.18, + "end": 12609.12, + "probability": 0.8999 + }, + { + "start": 12611.04, + "end": 12614.88, + "probability": 0.9974 + }, + { + "start": 12616.04, + "end": 12620.68, + "probability": 0.6675 + }, + { + "start": 12620.84, + "end": 12621.76, + "probability": 0.9634 + }, + { + "start": 12623.2, + "end": 12627.86, + "probability": 0.9831 + }, + { + "start": 12628.56, + "end": 12631.92, + "probability": 0.9832 + }, + { + "start": 12633.82, + "end": 12635.92, + "probability": 0.9928 + }, + { + "start": 12636.44, + "end": 12639.98, + "probability": 0.983 + }, + { + "start": 12639.98, + "end": 12644.18, + "probability": 0.9749 + }, + { + "start": 12644.48, + "end": 12645.94, + "probability": 0.8915 + }, + { + "start": 12646.1, + "end": 12648.14, + "probability": 0.9664 + }, + { + "start": 12648.58, + "end": 12651.48, + "probability": 0.8058 + }, + { + "start": 12651.72, + "end": 12657.08, + "probability": 0.0901 + }, + { + "start": 12657.32, + "end": 12658.82, + "probability": 0.6498 + }, + { + "start": 12659.46, + "end": 12660.78, + "probability": 0.8787 + }, + { + "start": 12660.78, + "end": 12664.82, + "probability": 0.9866 + }, + { + "start": 12665.7, + "end": 12671.52, + "probability": 0.9291 + }, + { + "start": 12672.56, + "end": 12674.86, + "probability": 0.9526 + }, + { + "start": 12675.98, + "end": 12679.1, + "probability": 0.9819 + }, + { + "start": 12680.22, + "end": 12682.7, + "probability": 0.867 + }, + { + "start": 12685.44, + "end": 12686.92, + "probability": 0.9465 + }, + { + "start": 12687.72, + "end": 12689.82, + "probability": 0.9997 + }, + { + "start": 12690.8, + "end": 12694.46, + "probability": 0.8813 + }, + { + "start": 12694.5, + "end": 12696.69, + "probability": 0.9958 + }, + { + "start": 12698.28, + "end": 12701.2, + "probability": 0.5823 + }, + { + "start": 12702.42, + "end": 12706.26, + "probability": 0.8338 + }, + { + "start": 12706.34, + "end": 12711.86, + "probability": 0.8092 + }, + { + "start": 12712.02, + "end": 12719.94, + "probability": 0.991 + }, + { + "start": 12720.26, + "end": 12721.9, + "probability": 0.8758 + }, + { + "start": 12722.28, + "end": 12726.8, + "probability": 0.9756 + }, + { + "start": 12727.9, + "end": 12731.5, + "probability": 0.9983 + }, + { + "start": 12733.0, + "end": 12737.32, + "probability": 0.9766 + }, + { + "start": 12739.72, + "end": 12743.7, + "probability": 0.9113 + }, + { + "start": 12745.14, + "end": 12748.2, + "probability": 0.6405 + }, + { + "start": 12748.2, + "end": 12753.46, + "probability": 0.6215 + }, + { + "start": 12754.26, + "end": 12759.14, + "probability": 0.9932 + }, + { + "start": 12760.48, + "end": 12762.2, + "probability": 0.9504 + }, + { + "start": 12763.62, + "end": 12769.66, + "probability": 0.8375 + }, + { + "start": 12771.42, + "end": 12776.66, + "probability": 0.9912 + }, + { + "start": 12777.34, + "end": 12781.44, + "probability": 0.8362 + }, + { + "start": 12782.72, + "end": 12783.92, + "probability": 0.9967 + }, + { + "start": 12785.02, + "end": 12787.2, + "probability": 0.8923 + }, + { + "start": 12787.36, + "end": 12789.76, + "probability": 0.7271 + }, + { + "start": 12790.78, + "end": 12793.74, + "probability": 0.9468 + }, + { + "start": 12794.1, + "end": 12795.32, + "probability": 0.9242 + }, + { + "start": 12796.0, + "end": 12798.54, + "probability": 0.9338 + }, + { + "start": 12799.78, + "end": 12801.22, + "probability": 0.6018 + }, + { + "start": 12802.54, + "end": 12804.1, + "probability": 0.9062 + }, + { + "start": 12805.84, + "end": 12807.32, + "probability": 0.9866 + }, + { + "start": 12807.98, + "end": 12809.32, + "probability": 0.9207 + }, + { + "start": 12810.26, + "end": 12811.88, + "probability": 0.9961 + }, + { + "start": 12813.04, + "end": 12814.6, + "probability": 0.7951 + }, + { + "start": 12818.98, + "end": 12820.08, + "probability": 0.9287 + }, + { + "start": 12821.14, + "end": 12821.96, + "probability": 0.7446 + }, + { + "start": 12824.35, + "end": 12829.3, + "probability": 0.8965 + }, + { + "start": 12830.08, + "end": 12831.38, + "probability": 0.7949 + }, + { + "start": 12831.96, + "end": 12833.58, + "probability": 0.9932 + }, + { + "start": 12833.6, + "end": 12836.52, + "probability": 0.9958 + }, + { + "start": 12837.6, + "end": 12839.8, + "probability": 0.957 + }, + { + "start": 12840.54, + "end": 12842.48, + "probability": 0.9955 + }, + { + "start": 12843.3, + "end": 12845.4, + "probability": 0.9726 + }, + { + "start": 12846.06, + "end": 12848.32, + "probability": 0.6814 + }, + { + "start": 12848.46, + "end": 12851.5, + "probability": 0.9881 + }, + { + "start": 12852.26, + "end": 12853.12, + "probability": 0.9748 + }, + { + "start": 12854.46, + "end": 12856.88, + "probability": 0.9131 + }, + { + "start": 12857.68, + "end": 12859.0, + "probability": 0.8326 + }, + { + "start": 12860.56, + "end": 12862.75, + "probability": 0.7671 + }, + { + "start": 12864.2, + "end": 12867.54, + "probability": 0.9359 + }, + { + "start": 12867.54, + "end": 12871.22, + "probability": 0.6979 + }, + { + "start": 12872.2, + "end": 12875.68, + "probability": 0.9613 + }, + { + "start": 12877.9, + "end": 12879.26, + "probability": 0.998 + }, + { + "start": 12879.36, + "end": 12885.68, + "probability": 0.9806 + }, + { + "start": 12886.78, + "end": 12888.14, + "probability": 0.9958 + }, + { + "start": 12890.18, + "end": 12890.84, + "probability": 0.7739 + }, + { + "start": 12891.28, + "end": 12893.0, + "probability": 0.6089 + }, + { + "start": 12894.14, + "end": 12896.0, + "probability": 0.9902 + }, + { + "start": 12896.98, + "end": 12899.3, + "probability": 0.8961 + }, + { + "start": 12899.44, + "end": 12902.36, + "probability": 0.957 + }, + { + "start": 12902.82, + "end": 12903.62, + "probability": 0.7363 + }, + { + "start": 12904.58, + "end": 12908.14, + "probability": 0.8608 + }, + { + "start": 12909.12, + "end": 12911.86, + "probability": 0.9944 + }, + { + "start": 12912.84, + "end": 12914.38, + "probability": 0.9736 + }, + { + "start": 12915.0, + "end": 12919.44, + "probability": 0.9195 + }, + { + "start": 12921.86, + "end": 12924.58, + "probability": 0.7665 + }, + { + "start": 12927.1, + "end": 12930.06, + "probability": 0.6294 + }, + { + "start": 12931.36, + "end": 12933.42, + "probability": 0.9951 + }, + { + "start": 12933.96, + "end": 12936.22, + "probability": 0.7325 + }, + { + "start": 12936.76, + "end": 12938.7, + "probability": 0.9783 + }, + { + "start": 12939.72, + "end": 12940.18, + "probability": 0.8009 + }, + { + "start": 12941.32, + "end": 12941.6, + "probability": 0.0145 + }, + { + "start": 12944.48, + "end": 12945.92, + "probability": 0.8721 + }, + { + "start": 12947.46, + "end": 12948.88, + "probability": 0.8615 + }, + { + "start": 12949.82, + "end": 12951.16, + "probability": 0.5042 + }, + { + "start": 12953.76, + "end": 12956.44, + "probability": 0.7653 + }, + { + "start": 12956.96, + "end": 12958.24, + "probability": 0.8722 + }, + { + "start": 12958.8, + "end": 12964.78, + "probability": 0.9883 + }, + { + "start": 12965.36, + "end": 12970.36, + "probability": 0.9242 + }, + { + "start": 12971.08, + "end": 12974.32, + "probability": 0.9971 + }, + { + "start": 12974.9, + "end": 12976.64, + "probability": 0.8801 + }, + { + "start": 12977.22, + "end": 12979.7, + "probability": 0.9968 + }, + { + "start": 12979.78, + "end": 12982.36, + "probability": 0.9988 + }, + { + "start": 12983.56, + "end": 12984.0, + "probability": 0.7904 + }, + { + "start": 12984.7, + "end": 12986.92, + "probability": 0.98 + }, + { + "start": 12986.92, + "end": 12989.86, + "probability": 0.9972 + }, + { + "start": 12990.56, + "end": 12992.48, + "probability": 0.6921 + }, + { + "start": 12993.62, + "end": 12994.94, + "probability": 0.7332 + }, + { + "start": 12995.9, + "end": 12998.94, + "probability": 0.9829 + }, + { + "start": 12998.94, + "end": 13002.18, + "probability": 0.9626 + }, + { + "start": 13002.78, + "end": 13009.29, + "probability": 0.9368 + }, + { + "start": 13010.3, + "end": 13012.06, + "probability": 0.5717 + }, + { + "start": 13012.68, + "end": 13016.76, + "probability": 0.9408 + }, + { + "start": 13017.56, + "end": 13019.84, + "probability": 0.9526 + }, + { + "start": 13020.08, + "end": 13022.62, + "probability": 0.7585 + }, + { + "start": 13023.28, + "end": 13025.76, + "probability": 0.9815 + }, + { + "start": 13025.76, + "end": 13029.42, + "probability": 0.9839 + }, + { + "start": 13030.62, + "end": 13031.56, + "probability": 0.7229 + }, + { + "start": 13032.2, + "end": 13037.0, + "probability": 0.7324 + }, + { + "start": 13037.6, + "end": 13038.42, + "probability": 0.6411 + }, + { + "start": 13038.9, + "end": 13040.26, + "probability": 0.9007 + }, + { + "start": 13040.38, + "end": 13043.48, + "probability": 0.9497 + }, + { + "start": 13043.82, + "end": 13044.94, + "probability": 0.9834 + }, + { + "start": 13046.0, + "end": 13049.16, + "probability": 0.7207 + }, + { + "start": 13050.22, + "end": 13053.04, + "probability": 0.8277 + }, + { + "start": 13053.74, + "end": 13056.52, + "probability": 0.4911 + }, + { + "start": 13057.42, + "end": 13059.54, + "probability": 0.9831 + }, + { + "start": 13059.54, + "end": 13062.72, + "probability": 0.9889 + }, + { + "start": 13063.28, + "end": 13066.8, + "probability": 0.6401 + }, + { + "start": 13068.44, + "end": 13070.04, + "probability": 0.9618 + }, + { + "start": 13070.12, + "end": 13070.72, + "probability": 0.7579 + }, + { + "start": 13072.06, + "end": 13074.78, + "probability": 0.8858 + }, + { + "start": 13076.0, + "end": 13078.32, + "probability": 0.4818 + }, + { + "start": 13079.3, + "end": 13080.58, + "probability": 0.4606 + }, + { + "start": 13081.12, + "end": 13083.08, + "probability": 0.8216 + }, + { + "start": 13083.5, + "end": 13084.78, + "probability": 0.9871 + }, + { + "start": 13087.42, + "end": 13089.0, + "probability": 0.4977 + }, + { + "start": 13089.6, + "end": 13090.54, + "probability": 0.7712 + }, + { + "start": 13091.0, + "end": 13092.62, + "probability": 0.7252 + }, + { + "start": 13092.8, + "end": 13092.9, + "probability": 0.9115 + }, + { + "start": 13094.56, + "end": 13095.6, + "probability": 0.828 + }, + { + "start": 13096.3, + "end": 13099.0, + "probability": 0.9482 + }, + { + "start": 13100.28, + "end": 13104.68, + "probability": 0.9621 + }, + { + "start": 13105.64, + "end": 13106.84, + "probability": 0.7649 + }, + { + "start": 13106.94, + "end": 13108.34, + "probability": 0.9961 + }, + { + "start": 13108.48, + "end": 13111.68, + "probability": 0.9846 + }, + { + "start": 13112.34, + "end": 13116.4, + "probability": 0.7838 + }, + { + "start": 13117.56, + "end": 13120.4, + "probability": 0.9515 + }, + { + "start": 13121.64, + "end": 13123.66, + "probability": 0.9873 + }, + { + "start": 13124.64, + "end": 13125.24, + "probability": 0.7161 + }, + { + "start": 13126.56, + "end": 13127.14, + "probability": 0.79 + }, + { + "start": 13128.34, + "end": 13130.52, + "probability": 0.8737 + }, + { + "start": 13131.32, + "end": 13136.2, + "probability": 0.9877 + }, + { + "start": 13136.28, + "end": 13138.02, + "probability": 0.8707 + }, + { + "start": 13138.98, + "end": 13140.8, + "probability": 0.9956 + }, + { + "start": 13141.32, + "end": 13144.21, + "probability": 0.9077 + }, + { + "start": 13144.86, + "end": 13145.56, + "probability": 0.9868 + }, + { + "start": 13146.98, + "end": 13151.1, + "probability": 0.7227 + }, + { + "start": 13151.3, + "end": 13153.14, + "probability": 0.9649 + }, + { + "start": 13156.95, + "end": 13162.06, + "probability": 0.979 + }, + { + "start": 13162.06, + "end": 13165.9, + "probability": 0.7187 + }, + { + "start": 13166.5, + "end": 13170.32, + "probability": 0.641 + }, + { + "start": 13171.74, + "end": 13171.76, + "probability": 0.3181 + }, + { + "start": 13171.76, + "end": 13173.61, + "probability": 0.7007 + }, + { + "start": 13173.94, + "end": 13175.0, + "probability": 0.2429 + }, + { + "start": 13175.59, + "end": 13178.12, + "probability": 0.5332 + }, + { + "start": 13178.38, + "end": 13180.18, + "probability": 0.9925 + }, + { + "start": 13181.1, + "end": 13181.98, + "probability": 0.3962 + }, + { + "start": 13183.4, + "end": 13185.56, + "probability": 0.9222 + }, + { + "start": 13186.52, + "end": 13187.52, + "probability": 0.9507 + }, + { + "start": 13188.1, + "end": 13189.06, + "probability": 0.7251 + }, + { + "start": 13190.72, + "end": 13193.16, + "probability": 0.7738 + }, + { + "start": 13194.44, + "end": 13201.46, + "probability": 0.9204 + }, + { + "start": 13201.64, + "end": 13203.78, + "probability": 0.9098 + }, + { + "start": 13204.4, + "end": 13204.8, + "probability": 0.5504 + }, + { + "start": 13205.02, + "end": 13207.48, + "probability": 0.8625 + }, + { + "start": 13208.12, + "end": 13211.72, + "probability": 0.97 + }, + { + "start": 13212.44, + "end": 13213.76, + "probability": 0.9974 + }, + { + "start": 13214.68, + "end": 13217.14, + "probability": 0.6895 + }, + { + "start": 13217.88, + "end": 13220.7, + "probability": 0.9941 + }, + { + "start": 13222.34, + "end": 13223.5, + "probability": 0.7417 + }, + { + "start": 13224.8, + "end": 13226.06, + "probability": 0.6056 + }, + { + "start": 13227.16, + "end": 13230.24, + "probability": 0.9871 + }, + { + "start": 13230.32, + "end": 13231.08, + "probability": 0.9525 + }, + { + "start": 13231.16, + "end": 13234.2, + "probability": 0.9604 + }, + { + "start": 13235.4, + "end": 13236.98, + "probability": 0.7422 + }, + { + "start": 13237.1, + "end": 13240.58, + "probability": 0.993 + }, + { + "start": 13241.28, + "end": 13242.68, + "probability": 0.8247 + }, + { + "start": 13243.04, + "end": 13245.2, + "probability": 0.9739 + }, + { + "start": 13246.28, + "end": 13248.76, + "probability": 0.9912 + }, + { + "start": 13250.14, + "end": 13254.62, + "probability": 0.9912 + }, + { + "start": 13256.22, + "end": 13257.76, + "probability": 0.9993 + }, + { + "start": 13259.58, + "end": 13262.1, + "probability": 0.8988 + }, + { + "start": 13266.32, + "end": 13268.32, + "probability": 0.4041 + }, + { + "start": 13269.04, + "end": 13269.94, + "probability": 0.9417 + }, + { + "start": 13269.98, + "end": 13270.6, + "probability": 0.0927 + }, + { + "start": 13270.88, + "end": 13271.38, + "probability": 0.564 + }, + { + "start": 13271.46, + "end": 13272.92, + "probability": 0.86 + }, + { + "start": 13273.06, + "end": 13273.3, + "probability": 0.419 + }, + { + "start": 13273.76, + "end": 13274.28, + "probability": 0.5126 + }, + { + "start": 13274.88, + "end": 13276.26, + "probability": 0.9158 + }, + { + "start": 13276.74, + "end": 13276.9, + "probability": 0.177 + }, + { + "start": 13276.9, + "end": 13278.89, + "probability": 0.9007 + }, + { + "start": 13279.26, + "end": 13281.46, + "probability": 0.9863 + }, + { + "start": 13282.12, + "end": 13284.54, + "probability": 0.9159 + }, + { + "start": 13285.5, + "end": 13285.66, + "probability": 0.1602 + }, + { + "start": 13285.66, + "end": 13287.22, + "probability": 0.7075 + }, + { + "start": 13287.66, + "end": 13289.84, + "probability": 0.8055 + }, + { + "start": 13291.1, + "end": 13292.5, + "probability": 0.4263 + }, + { + "start": 13292.78, + "end": 13293.2, + "probability": 0.4588 + }, + { + "start": 13294.28, + "end": 13294.84, + "probability": 0.866 + }, + { + "start": 13294.92, + "end": 13296.78, + "probability": 0.8455 + }, + { + "start": 13297.3, + "end": 13297.98, + "probability": 0.7468 + }, + { + "start": 13299.06, + "end": 13300.58, + "probability": 0.9194 + }, + { + "start": 13301.64, + "end": 13303.42, + "probability": 0.8235 + }, + { + "start": 13305.12, + "end": 13308.4, + "probability": 0.9839 + }, + { + "start": 13309.0, + "end": 13311.5, + "probability": 0.9781 + }, + { + "start": 13312.86, + "end": 13313.64, + "probability": 0.7763 + }, + { + "start": 13314.7, + "end": 13315.92, + "probability": 0.9795 + }, + { + "start": 13316.02, + "end": 13317.96, + "probability": 0.9719 + }, + { + "start": 13318.04, + "end": 13320.34, + "probability": 0.9846 + }, + { + "start": 13320.88, + "end": 13321.48, + "probability": 0.9001 + }, + { + "start": 13321.48, + "end": 13322.42, + "probability": 0.6448 + }, + { + "start": 13323.22, + "end": 13323.62, + "probability": 0.9742 + }, + { + "start": 13326.0, + "end": 13328.94, + "probability": 0.7806 + }, + { + "start": 13331.0, + "end": 13333.46, + "probability": 0.9713 + }, + { + "start": 13334.5, + "end": 13337.62, + "probability": 0.5024 + }, + { + "start": 13339.02, + "end": 13340.98, + "probability": 0.835 + }, + { + "start": 13342.82, + "end": 13344.48, + "probability": 0.461 + }, + { + "start": 13345.76, + "end": 13347.18, + "probability": 0.5187 + }, + { + "start": 13349.52, + "end": 13351.64, + "probability": 0.7233 + }, + { + "start": 13353.6, + "end": 13355.54, + "probability": 0.8058 + }, + { + "start": 13356.1, + "end": 13357.36, + "probability": 0.3857 + }, + { + "start": 13359.92, + "end": 13362.2, + "probability": 0.0591 + }, + { + "start": 13362.44, + "end": 13365.26, + "probability": 0.3607 + }, + { + "start": 13366.1, + "end": 13366.92, + "probability": 0.4886 + }, + { + "start": 13367.4, + "end": 13368.51, + "probability": 0.1693 + }, + { + "start": 13369.52, + "end": 13369.68, + "probability": 0.0115 + }, + { + "start": 13369.68, + "end": 13369.68, + "probability": 0.0712 + }, + { + "start": 13369.68, + "end": 13370.02, + "probability": 0.1417 + }, + { + "start": 13370.02, + "end": 13370.82, + "probability": 0.3866 + }, + { + "start": 13371.84, + "end": 13373.78, + "probability": 0.8352 + }, + { + "start": 13374.46, + "end": 13377.14, + "probability": 0.5898 + }, + { + "start": 13377.14, + "end": 13377.86, + "probability": 0.099 + }, + { + "start": 13378.16, + "end": 13378.56, + "probability": 0.3709 + }, + { + "start": 13379.22, + "end": 13380.0, + "probability": 0.6346 + }, + { + "start": 13381.42, + "end": 13383.36, + "probability": 0.9766 + }, + { + "start": 13384.06, + "end": 13384.88, + "probability": 0.4676 + }, + { + "start": 13384.96, + "end": 13385.76, + "probability": 0.801 + }, + { + "start": 13385.98, + "end": 13387.72, + "probability": 0.9136 + }, + { + "start": 13388.6, + "end": 13389.54, + "probability": 0.8838 + }, + { + "start": 13389.7, + "end": 13392.64, + "probability": 0.9391 + }, + { + "start": 13393.54, + "end": 13395.06, + "probability": 0.999 + }, + { + "start": 13395.86, + "end": 13398.36, + "probability": 0.9972 + }, + { + "start": 13398.78, + "end": 13400.54, + "probability": 0.9057 + }, + { + "start": 13401.04, + "end": 13402.72, + "probability": 0.998 + }, + { + "start": 13402.72, + "end": 13403.74, + "probability": 0.9938 + }, + { + "start": 13404.38, + "end": 13407.52, + "probability": 0.9952 + }, + { + "start": 13408.0, + "end": 13408.44, + "probability": 0.7067 + }, + { + "start": 13409.18, + "end": 13409.68, + "probability": 0.6669 + }, + { + "start": 13409.88, + "end": 13411.8, + "probability": 0.8782 + }, + { + "start": 13416.2, + "end": 13420.12, + "probability": 0.9187 + }, + { + "start": 13420.12, + "end": 13424.46, + "probability": 0.9773 + }, + { + "start": 13424.61, + "end": 13425.54, + "probability": 0.7969 + }, + { + "start": 13426.24, + "end": 13427.76, + "probability": 0.0592 + }, + { + "start": 13428.66, + "end": 13431.36, + "probability": 0.7224 + }, + { + "start": 13431.62, + "end": 13432.78, + "probability": 0.6721 + }, + { + "start": 13433.44, + "end": 13437.56, + "probability": 0.6927 + }, + { + "start": 13437.86, + "end": 13439.6, + "probability": 0.7517 + }, + { + "start": 13440.82, + "end": 13447.46, + "probability": 0.9706 + }, + { + "start": 13448.52, + "end": 13450.58, + "probability": 0.9879 + }, + { + "start": 13451.68, + "end": 13453.74, + "probability": 0.9873 + }, + { + "start": 13455.2, + "end": 13459.46, + "probability": 0.9495 + }, + { + "start": 13460.18, + "end": 13462.54, + "probability": 0.8606 + }, + { + "start": 13462.78, + "end": 13466.41, + "probability": 0.9037 + }, + { + "start": 13467.64, + "end": 13469.72, + "probability": 0.999 + }, + { + "start": 13470.34, + "end": 13475.76, + "probability": 0.9985 + }, + { + "start": 13476.58, + "end": 13485.1, + "probability": 0.9824 + }, + { + "start": 13486.18, + "end": 13489.66, + "probability": 0.9814 + }, + { + "start": 13490.74, + "end": 13493.32, + "probability": 0.997 + }, + { + "start": 13494.04, + "end": 13497.24, + "probability": 0.9816 + }, + { + "start": 13497.96, + "end": 13502.04, + "probability": 0.9851 + }, + { + "start": 13502.66, + "end": 13509.14, + "probability": 0.9763 + }, + { + "start": 13509.7, + "end": 13516.94, + "probability": 0.9731 + }, + { + "start": 13517.56, + "end": 13520.32, + "probability": 0.7075 + }, + { + "start": 13521.44, + "end": 13525.6, + "probability": 0.9935 + }, + { + "start": 13526.22, + "end": 13527.54, + "probability": 0.8676 + }, + { + "start": 13528.22, + "end": 13531.12, + "probability": 0.9932 + }, + { + "start": 13531.82, + "end": 13533.52, + "probability": 0.7448 + }, + { + "start": 13534.52, + "end": 13540.66, + "probability": 0.9792 + }, + { + "start": 13541.84, + "end": 13544.92, + "probability": 0.9111 + }, + { + "start": 13545.64, + "end": 13554.14, + "probability": 0.9912 + }, + { + "start": 13554.88, + "end": 13557.54, + "probability": 0.9836 + }, + { + "start": 13558.32, + "end": 13561.12, + "probability": 0.8848 + }, + { + "start": 13563.14, + "end": 13568.24, + "probability": 0.999 + }, + { + "start": 13568.36, + "end": 13572.33, + "probability": 0.9258 + }, + { + "start": 13573.04, + "end": 13578.36, + "probability": 0.9906 + }, + { + "start": 13579.74, + "end": 13583.56, + "probability": 0.9956 + }, + { + "start": 13584.28, + "end": 13586.09, + "probability": 0.5844 + }, + { + "start": 13587.02, + "end": 13589.72, + "probability": 0.6611 + }, + { + "start": 13590.58, + "end": 13591.8, + "probability": 0.9289 + }, + { + "start": 13592.36, + "end": 13593.34, + "probability": 0.9803 + }, + { + "start": 13593.88, + "end": 13600.32, + "probability": 0.798 + }, + { + "start": 13600.82, + "end": 13607.72, + "probability": 0.9919 + }, + { + "start": 13608.18, + "end": 13610.9, + "probability": 0.814 + }, + { + "start": 13611.76, + "end": 13613.46, + "probability": 0.9971 + }, + { + "start": 13613.88, + "end": 13615.28, + "probability": 0.7279 + }, + { + "start": 13616.0, + "end": 13620.14, + "probability": 0.9429 + }, + { + "start": 13621.0, + "end": 13624.68, + "probability": 0.7586 + }, + { + "start": 13625.54, + "end": 13628.35, + "probability": 0.8519 + }, + { + "start": 13628.94, + "end": 13633.06, + "probability": 0.8859 + }, + { + "start": 13634.56, + "end": 13636.54, + "probability": 0.722 + }, + { + "start": 13637.18, + "end": 13639.61, + "probability": 0.7801 + }, + { + "start": 13640.94, + "end": 13642.2, + "probability": 0.7124 + }, + { + "start": 13642.34, + "end": 13645.6, + "probability": 0.9631 + }, + { + "start": 13645.9, + "end": 13648.02, + "probability": 0.6662 + }, + { + "start": 13650.78, + "end": 13654.52, + "probability": 0.8344 + }, + { + "start": 13655.88, + "end": 13658.28, + "probability": 0.9652 + }, + { + "start": 13659.26, + "end": 13665.4, + "probability": 0.9723 + }, + { + "start": 13665.86, + "end": 13668.58, + "probability": 0.8849 + }, + { + "start": 13669.02, + "end": 13670.74, + "probability": 0.6628 + }, + { + "start": 13671.4, + "end": 13671.54, + "probability": 0.3326 + }, + { + "start": 13671.54, + "end": 13671.66, + "probability": 0.4175 + }, + { + "start": 13672.34, + "end": 13676.58, + "probability": 0.9893 + }, + { + "start": 13677.08, + "end": 13679.38, + "probability": 0.9896 + }, + { + "start": 13679.94, + "end": 13680.68, + "probability": 0.7859 + }, + { + "start": 13680.76, + "end": 13683.08, + "probability": 0.8222 + }, + { + "start": 13684.16, + "end": 13685.34, + "probability": 0.8995 + }, + { + "start": 13686.12, + "end": 13686.44, + "probability": 0.7059 + }, + { + "start": 13688.24, + "end": 13689.88, + "probability": 0.3518 + }, + { + "start": 13690.44, + "end": 13690.68, + "probability": 0.9279 + }, + { + "start": 13692.6, + "end": 13696.66, + "probability": 0.9392 + }, + { + "start": 13708.08, + "end": 13709.9, + "probability": 0.6006 + }, + { + "start": 13711.52, + "end": 13717.04, + "probability": 0.9221 + }, + { + "start": 13717.04, + "end": 13721.46, + "probability": 0.9978 + }, + { + "start": 13722.56, + "end": 13723.8, + "probability": 0.95 + }, + { + "start": 13724.32, + "end": 13725.46, + "probability": 0.9585 + }, + { + "start": 13725.96, + "end": 13726.78, + "probability": 0.7613 + }, + { + "start": 13726.94, + "end": 13729.16, + "probability": 0.4937 + }, + { + "start": 13730.54, + "end": 13732.56, + "probability": 0.5009 + }, + { + "start": 13732.56, + "end": 13733.0, + "probability": 0.5909 + }, + { + "start": 13733.94, + "end": 13735.98, + "probability": 0.9914 + }, + { + "start": 13736.66, + "end": 13739.96, + "probability": 0.878 + }, + { + "start": 13745.76, + "end": 13751.04, + "probability": 0.9601 + }, + { + "start": 13751.1, + "end": 13756.26, + "probability": 0.9977 + }, + { + "start": 13756.36, + "end": 13761.48, + "probability": 0.9989 + }, + { + "start": 13762.56, + "end": 13764.66, + "probability": 0.9763 + }, + { + "start": 13765.08, + "end": 13767.42, + "probability": 0.9709 + }, + { + "start": 13768.22, + "end": 13772.14, + "probability": 0.973 + }, + { + "start": 13773.88, + "end": 13775.3, + "probability": 0.9806 + }, + { + "start": 13775.48, + "end": 13778.36, + "probability": 0.8137 + }, + { + "start": 13778.98, + "end": 13783.7, + "probability": 0.9608 + }, + { + "start": 13785.64, + "end": 13789.7, + "probability": 0.9873 + }, + { + "start": 13790.58, + "end": 13792.24, + "probability": 0.6933 + }, + { + "start": 13792.94, + "end": 13794.26, + "probability": 0.6348 + }, + { + "start": 13795.68, + "end": 13799.92, + "probability": 0.9727 + }, + { + "start": 13800.68, + "end": 13801.56, + "probability": 0.8159 + }, + { + "start": 13802.64, + "end": 13804.76, + "probability": 0.8364 + }, + { + "start": 13806.04, + "end": 13807.3, + "probability": 0.8638 + }, + { + "start": 13808.2, + "end": 13811.32, + "probability": 0.9829 + }, + { + "start": 13812.74, + "end": 13815.06, + "probability": 0.9905 + }, + { + "start": 13815.68, + "end": 13819.04, + "probability": 0.9924 + }, + { + "start": 13819.64, + "end": 13826.14, + "probability": 0.7623 + }, + { + "start": 13826.24, + "end": 13831.22, + "probability": 0.973 + }, + { + "start": 13832.42, + "end": 13835.16, + "probability": 0.6599 + }, + { + "start": 13835.22, + "end": 13837.78, + "probability": 0.4967 + }, + { + "start": 13838.16, + "end": 13838.82, + "probability": 0.5833 + }, + { + "start": 13839.28, + "end": 13843.16, + "probability": 0.9817 + }, + { + "start": 13844.02, + "end": 13848.92, + "probability": 0.9884 + }, + { + "start": 13850.74, + "end": 13856.96, + "probability": 0.9193 + }, + { + "start": 13857.84, + "end": 13860.8, + "probability": 0.979 + }, + { + "start": 13860.98, + "end": 13861.98, + "probability": 0.9404 + }, + { + "start": 13864.28, + "end": 13868.92, + "probability": 0.9264 + }, + { + "start": 13868.92, + "end": 13873.08, + "probability": 0.9993 + }, + { + "start": 13873.08, + "end": 13879.14, + "probability": 0.9832 + }, + { + "start": 13879.16, + "end": 13884.06, + "probability": 0.9917 + }, + { + "start": 13885.5, + "end": 13888.84, + "probability": 0.9909 + }, + { + "start": 13888.84, + "end": 13893.7, + "probability": 0.9841 + }, + { + "start": 13895.22, + "end": 13898.72, + "probability": 0.993 + }, + { + "start": 13898.74, + "end": 13903.06, + "probability": 0.9854 + }, + { + "start": 13904.24, + "end": 13908.68, + "probability": 0.8073 + }, + { + "start": 13910.08, + "end": 13913.22, + "probability": 0.9952 + }, + { + "start": 13913.64, + "end": 13915.82, + "probability": 0.9737 + }, + { + "start": 13916.64, + "end": 13918.27, + "probability": 0.9957 + }, + { + "start": 13918.92, + "end": 13921.5, + "probability": 0.9696 + }, + { + "start": 13921.5, + "end": 13924.64, + "probability": 0.9968 + }, + { + "start": 13925.3, + "end": 13928.6, + "probability": 0.9933 + }, + { + "start": 13930.26, + "end": 13935.38, + "probability": 0.988 + }, + { + "start": 13935.38, + "end": 13940.14, + "probability": 0.9976 + }, + { + "start": 13940.9, + "end": 13944.1, + "probability": 0.8016 + }, + { + "start": 13945.58, + "end": 13948.78, + "probability": 0.654 + }, + { + "start": 13949.5, + "end": 13951.42, + "probability": 0.9373 + }, + { + "start": 13951.96, + "end": 13954.62, + "probability": 0.8936 + }, + { + "start": 13954.8, + "end": 13960.32, + "probability": 0.8114 + }, + { + "start": 13960.32, + "end": 13964.36, + "probability": 0.9948 + }, + { + "start": 13966.16, + "end": 13969.86, + "probability": 0.9825 + }, + { + "start": 13971.08, + "end": 13972.08, + "probability": 0.6243 + }, + { + "start": 13972.6, + "end": 13976.78, + "probability": 0.9972 + }, + { + "start": 13976.92, + "end": 13981.36, + "probability": 0.9906 + }, + { + "start": 13982.64, + "end": 13988.3, + "probability": 0.9954 + }, + { + "start": 13988.36, + "end": 13990.7, + "probability": 0.998 + }, + { + "start": 13991.32, + "end": 13993.32, + "probability": 0.8099 + }, + { + "start": 13994.04, + "end": 13997.54, + "probability": 0.9969 + }, + { + "start": 13997.68, + "end": 14001.22, + "probability": 0.9036 + }, + { + "start": 14002.02, + "end": 14004.56, + "probability": 0.9523 + }, + { + "start": 14004.56, + "end": 14007.98, + "probability": 0.9982 + }, + { + "start": 14008.62, + "end": 14010.38, + "probability": 0.7721 + }, + { + "start": 14011.83, + "end": 14013.72, + "probability": 0.9028 + }, + { + "start": 14015.62, + "end": 14016.86, + "probability": 0.858 + }, + { + "start": 14017.04, + "end": 14020.68, + "probability": 0.9793 + }, + { + "start": 14020.68, + "end": 14024.72, + "probability": 0.9839 + }, + { + "start": 14024.84, + "end": 14027.88, + "probability": 0.9008 + }, + { + "start": 14029.9, + "end": 14034.24, + "probability": 0.9949 + }, + { + "start": 14034.24, + "end": 14041.3, + "probability": 0.9093 + }, + { + "start": 14042.16, + "end": 14045.66, + "probability": 0.938 + }, + { + "start": 14046.4, + "end": 14049.85, + "probability": 0.6121 + }, + { + "start": 14050.42, + "end": 14050.44, + "probability": 0.5565 + }, + { + "start": 14050.44, + "end": 14052.04, + "probability": 0.924 + }, + { + "start": 14052.18, + "end": 14052.82, + "probability": 0.6529 + }, + { + "start": 14052.92, + "end": 14054.68, + "probability": 0.9562 + }, + { + "start": 14055.44, + "end": 14058.34, + "probability": 0.9878 + }, + { + "start": 14059.2, + "end": 14065.23, + "probability": 0.8867 + }, + { + "start": 14066.06, + "end": 14071.22, + "probability": 0.9759 + }, + { + "start": 14072.12, + "end": 14074.68, + "probability": 0.9453 + }, + { + "start": 14075.8, + "end": 14079.98, + "probability": 0.9458 + }, + { + "start": 14079.98, + "end": 14083.32, + "probability": 0.9032 + }, + { + "start": 14083.82, + "end": 14087.88, + "probability": 0.6918 + }, + { + "start": 14088.56, + "end": 14089.94, + "probability": 0.8454 + }, + { + "start": 14090.44, + "end": 14091.1, + "probability": 0.7489 + }, + { + "start": 14091.2, + "end": 14092.28, + "probability": 0.6899 + }, + { + "start": 14092.76, + "end": 14093.92, + "probability": 0.9368 + }, + { + "start": 14095.34, + "end": 14101.16, + "probability": 0.9401 + }, + { + "start": 14101.2, + "end": 14105.84, + "probability": 0.9937 + }, + { + "start": 14107.9, + "end": 14112.86, + "probability": 0.9815 + }, + { + "start": 14113.78, + "end": 14118.3, + "probability": 0.992 + }, + { + "start": 14119.46, + "end": 14121.02, + "probability": 0.8948 + }, + { + "start": 14121.38, + "end": 14123.92, + "probability": 0.9637 + }, + { + "start": 14125.1, + "end": 14130.56, + "probability": 0.9873 + }, + { + "start": 14131.3, + "end": 14132.46, + "probability": 0.9961 + }, + { + "start": 14133.2, + "end": 14134.72, + "probability": 0.8278 + }, + { + "start": 14135.8, + "end": 14135.84, + "probability": 0.1633 + }, + { + "start": 14135.84, + "end": 14136.76, + "probability": 0.4539 + }, + { + "start": 14137.48, + "end": 14138.76, + "probability": 0.9935 + }, + { + "start": 14139.66, + "end": 14142.3, + "probability": 0.9111 + }, + { + "start": 14142.82, + "end": 14148.4, + "probability": 0.9759 + }, + { + "start": 14149.38, + "end": 14154.98, + "probability": 0.6064 + }, + { + "start": 14155.52, + "end": 14157.58, + "probability": 0.9655 + }, + { + "start": 14161.32, + "end": 14164.68, + "probability": 0.7189 + }, + { + "start": 14165.7, + "end": 14170.32, + "probability": 0.9795 + }, + { + "start": 14174.82, + "end": 14176.58, + "probability": 0.6636 + }, + { + "start": 14176.88, + "end": 14176.98, + "probability": 0.1676 + }, + { + "start": 14176.98, + "end": 14178.6, + "probability": 0.3759 + }, + { + "start": 14178.66, + "end": 14180.54, + "probability": 0.6704 + }, + { + "start": 14180.56, + "end": 14180.72, + "probability": 0.0079 + }, + { + "start": 14180.74, + "end": 14184.64, + "probability": 0.2311 + }, + { + "start": 14184.64, + "end": 14187.84, + "probability": 0.1358 + }, + { + "start": 14188.1, + "end": 14190.2, + "probability": 0.1991 + }, + { + "start": 14190.74, + "end": 14193.2, + "probability": 0.4947 + }, + { + "start": 14193.3, + "end": 14193.84, + "probability": 0.7273 + }, + { + "start": 14194.02, + "end": 14198.6, + "probability": 0.9129 + }, + { + "start": 14199.96, + "end": 14205.14, + "probability": 0.7106 + }, + { + "start": 14207.02, + "end": 14209.98, + "probability": 0.8571 + }, + { + "start": 14211.38, + "end": 14216.62, + "probability": 0.9961 + }, + { + "start": 14217.5, + "end": 14218.5, + "probability": 0.9021 + }, + { + "start": 14218.62, + "end": 14219.42, + "probability": 0.8565 + }, + { + "start": 14219.42, + "end": 14220.59, + "probability": 0.9658 + }, + { + "start": 14221.04, + "end": 14223.54, + "probability": 0.9371 + }, + { + "start": 14223.9, + "end": 14226.58, + "probability": 0.9211 + }, + { + "start": 14227.44, + "end": 14230.74, + "probability": 0.9982 + }, + { + "start": 14231.44, + "end": 14235.1, + "probability": 0.9613 + }, + { + "start": 14235.84, + "end": 14243.2, + "probability": 0.9989 + }, + { + "start": 14243.52, + "end": 14244.68, + "probability": 0.9951 + }, + { + "start": 14245.34, + "end": 14245.66, + "probability": 0.6033 + }, + { + "start": 14246.06, + "end": 14250.48, + "probability": 0.9899 + }, + { + "start": 14250.68, + "end": 14253.21, + "probability": 0.9374 + }, + { + "start": 14254.02, + "end": 14257.72, + "probability": 0.719 + }, + { + "start": 14257.78, + "end": 14259.46, + "probability": 0.7524 + }, + { + "start": 14259.5, + "end": 14268.06, + "probability": 0.9714 + }, + { + "start": 14268.06, + "end": 14268.72, + "probability": 0.9114 + }, + { + "start": 14269.32, + "end": 14271.26, + "probability": 0.6999 + }, + { + "start": 14271.44, + "end": 14275.43, + "probability": 0.613 + }, + { + "start": 14276.08, + "end": 14276.78, + "probability": 0.1532 + }, + { + "start": 14277.06, + "end": 14277.7, + "probability": 0.2648 + }, + { + "start": 14277.9, + "end": 14280.62, + "probability": 0.7869 + }, + { + "start": 14281.9, + "end": 14286.64, + "probability": 0.7657 + }, + { + "start": 14286.84, + "end": 14288.58, + "probability": 0.3834 + }, + { + "start": 14289.36, + "end": 14291.9, + "probability": 0.9535 + }, + { + "start": 14293.48, + "end": 14297.38, + "probability": 0.8133 + }, + { + "start": 14297.38, + "end": 14298.58, + "probability": 0.1218 + }, + { + "start": 14299.04, + "end": 14299.52, + "probability": 0.5747 + }, + { + "start": 14300.12, + "end": 14302.32, + "probability": 0.7651 + }, + { + "start": 14303.0, + "end": 14306.94, + "probability": 0.7137 + }, + { + "start": 14307.54, + "end": 14312.64, + "probability": 0.9581 + }, + { + "start": 14313.14, + "end": 14318.76, + "probability": 0.9976 + }, + { + "start": 14319.34, + "end": 14321.56, + "probability": 0.9191 + }, + { + "start": 14321.96, + "end": 14322.3, + "probability": 0.8577 + }, + { + "start": 14322.88, + "end": 14323.42, + "probability": 0.6839 + }, + { + "start": 14323.42, + "end": 14325.7, + "probability": 0.9491 + }, + { + "start": 14359.34, + "end": 14361.06, + "probability": 0.5595 + }, + { + "start": 14361.18, + "end": 14363.06, + "probability": 0.9118 + }, + { + "start": 14363.8, + "end": 14364.2, + "probability": 0.8895 + }, + { + "start": 14374.29, + "end": 14378.22, + "probability": 0.6951 + }, + { + "start": 14379.28, + "end": 14384.44, + "probability": 0.9969 + }, + { + "start": 14390.5, + "end": 14391.97, + "probability": 0.7848 + }, + { + "start": 14394.51, + "end": 14396.96, + "probability": 0.2333 + }, + { + "start": 14397.18, + "end": 14397.86, + "probability": 0.7413 + }, + { + "start": 14399.18, + "end": 14405.08, + "probability": 0.9932 + }, + { + "start": 14405.54, + "end": 14407.54, + "probability": 0.9972 + }, + { + "start": 14408.22, + "end": 14410.76, + "probability": 0.9927 + }, + { + "start": 14411.34, + "end": 14413.68, + "probability": 0.767 + }, + { + "start": 14414.64, + "end": 14415.58, + "probability": 0.9645 + }, + { + "start": 14415.64, + "end": 14416.58, + "probability": 0.6934 + }, + { + "start": 14417.08, + "end": 14418.34, + "probability": 0.7723 + }, + { + "start": 14418.58, + "end": 14419.92, + "probability": 0.9871 + }, + { + "start": 14420.7, + "end": 14421.46, + "probability": 0.6686 + }, + { + "start": 14421.94, + "end": 14422.4, + "probability": 0.939 + }, + { + "start": 14423.18, + "end": 14424.06, + "probability": 0.913 + }, + { + "start": 14424.12, + "end": 14426.56, + "probability": 0.9766 + }, + { + "start": 14427.3, + "end": 14428.19, + "probability": 0.7881 + }, + { + "start": 14429.04, + "end": 14430.3, + "probability": 0.9958 + }, + { + "start": 14431.34, + "end": 14433.53, + "probability": 0.9651 + }, + { + "start": 14433.92, + "end": 14434.66, + "probability": 0.933 + }, + { + "start": 14435.1, + "end": 14436.46, + "probability": 0.8684 + }, + { + "start": 14437.3, + "end": 14438.42, + "probability": 0.9069 + }, + { + "start": 14439.32, + "end": 14442.76, + "probability": 0.9875 + }, + { + "start": 14443.84, + "end": 14445.9, + "probability": 0.6709 + }, + { + "start": 14446.66, + "end": 14448.58, + "probability": 0.8113 + }, + { + "start": 14449.46, + "end": 14451.35, + "probability": 0.8942 + }, + { + "start": 14452.0, + "end": 14453.8, + "probability": 0.9486 + }, + { + "start": 14455.3, + "end": 14456.72, + "probability": 0.8389 + }, + { + "start": 14457.78, + "end": 14458.01, + "probability": 0.4126 + }, + { + "start": 14458.86, + "end": 14463.38, + "probability": 0.9472 + }, + { + "start": 14464.02, + "end": 14465.24, + "probability": 0.999 + }, + { + "start": 14466.3, + "end": 14468.28, + "probability": 0.8334 + }, + { + "start": 14469.0, + "end": 14469.46, + "probability": 0.5664 + }, + { + "start": 14470.68, + "end": 14474.02, + "probability": 0.95 + }, + { + "start": 14474.72, + "end": 14476.28, + "probability": 0.7678 + }, + { + "start": 14477.04, + "end": 14480.02, + "probability": 0.9855 + }, + { + "start": 14480.86, + "end": 14481.5, + "probability": 0.9881 + }, + { + "start": 14481.64, + "end": 14482.62, + "probability": 0.9122 + }, + { + "start": 14482.68, + "end": 14484.3, + "probability": 0.7358 + }, + { + "start": 14484.42, + "end": 14489.34, + "probability": 0.9618 + }, + { + "start": 14490.36, + "end": 14492.38, + "probability": 0.9912 + }, + { + "start": 14492.72, + "end": 14495.08, + "probability": 0.9476 + }, + { + "start": 14495.84, + "end": 14496.72, + "probability": 0.9712 + }, + { + "start": 14497.38, + "end": 14498.14, + "probability": 0.5567 + }, + { + "start": 14498.24, + "end": 14499.71, + "probability": 0.9827 + }, + { + "start": 14500.68, + "end": 14502.06, + "probability": 0.8181 + }, + { + "start": 14503.12, + "end": 14505.11, + "probability": 0.9387 + }, + { + "start": 14506.4, + "end": 14508.6, + "probability": 0.9865 + }, + { + "start": 14509.26, + "end": 14513.7, + "probability": 0.9528 + }, + { + "start": 14514.2, + "end": 14516.08, + "probability": 0.9474 + }, + { + "start": 14516.26, + "end": 14519.48, + "probability": 0.3073 + }, + { + "start": 14520.06, + "end": 14520.86, + "probability": 0.1344 + }, + { + "start": 14521.52, + "end": 14526.28, + "probability": 0.4725 + }, + { + "start": 14526.66, + "end": 14529.32, + "probability": 0.3553 + }, + { + "start": 14529.58, + "end": 14529.76, + "probability": 0.8162 + }, + { + "start": 14530.4, + "end": 14533.52, + "probability": 0.71 + }, + { + "start": 14533.88, + "end": 14535.94, + "probability": 0.8774 + }, + { + "start": 14536.66, + "end": 14537.29, + "probability": 0.6679 + }, + { + "start": 14538.58, + "end": 14542.42, + "probability": 0.9949 + }, + { + "start": 14543.4, + "end": 14545.18, + "probability": 0.7494 + }, + { + "start": 14546.6, + "end": 14548.12, + "probability": 0.5205 + }, + { + "start": 14548.16, + "end": 14550.14, + "probability": 0.7928 + }, + { + "start": 14550.7, + "end": 14555.32, + "probability": 0.9826 + }, + { + "start": 14555.68, + "end": 14557.54, + "probability": 0.9793 + }, + { + "start": 14557.64, + "end": 14558.56, + "probability": 0.8895 + }, + { + "start": 14560.58, + "end": 14563.32, + "probability": 0.688 + }, + { + "start": 14581.32, + "end": 14583.1, + "probability": 0.6483 + }, + { + "start": 14584.72, + "end": 14586.66, + "probability": 0.7579 + }, + { + "start": 14587.52, + "end": 14590.58, + "probability": 0.9416 + }, + { + "start": 14592.14, + "end": 14595.14, + "probability": 0.9093 + }, + { + "start": 14596.4, + "end": 14598.76, + "probability": 0.9551 + }, + { + "start": 14599.54, + "end": 14605.06, + "probability": 0.8542 + }, + { + "start": 14605.68, + "end": 14609.5, + "probability": 0.7231 + }, + { + "start": 14610.12, + "end": 14612.44, + "probability": 0.6534 + }, + { + "start": 14612.78, + "end": 14619.1, + "probability": 0.995 + }, + { + "start": 14619.5, + "end": 14621.56, + "probability": 0.7538 + }, + { + "start": 14622.14, + "end": 14622.48, + "probability": 0.5589 + }, + { + "start": 14623.02, + "end": 14625.48, + "probability": 0.9084 + }, + { + "start": 14626.06, + "end": 14636.42, + "probability": 0.9922 + }, + { + "start": 14636.94, + "end": 14638.52, + "probability": 0.5984 + }, + { + "start": 14638.66, + "end": 14643.36, + "probability": 0.7432 + }, + { + "start": 14643.96, + "end": 14645.14, + "probability": 0.7631 + }, + { + "start": 14645.32, + "end": 14650.22, + "probability": 0.9956 + }, + { + "start": 14650.62, + "end": 14653.04, + "probability": 0.9922 + }, + { + "start": 14653.52, + "end": 14655.03, + "probability": 0.8293 + }, + { + "start": 14655.7, + "end": 14661.56, + "probability": 0.938 + }, + { + "start": 14662.32, + "end": 14669.5, + "probability": 0.9894 + }, + { + "start": 14670.14, + "end": 14675.2, + "probability": 0.9892 + }, + { + "start": 14675.44, + "end": 14679.18, + "probability": 0.8412 + }, + { + "start": 14679.36, + "end": 14681.58, + "probability": 0.8522 + }, + { + "start": 14682.52, + "end": 14686.54, + "probability": 0.9979 + }, + { + "start": 14686.9, + "end": 14692.28, + "probability": 0.7994 + }, + { + "start": 14692.82, + "end": 14694.2, + "probability": 0.9628 + }, + { + "start": 14694.62, + "end": 14698.12, + "probability": 0.9884 + }, + { + "start": 14698.26, + "end": 14699.24, + "probability": 0.9716 + }, + { + "start": 14700.18, + "end": 14705.42, + "probability": 0.9888 + }, + { + "start": 14706.04, + "end": 14707.34, + "probability": 0.981 + }, + { + "start": 14708.24, + "end": 14709.34, + "probability": 0.9194 + }, + { + "start": 14709.8, + "end": 14715.0, + "probability": 0.8557 + }, + { + "start": 14715.52, + "end": 14719.36, + "probability": 0.9259 + }, + { + "start": 14719.82, + "end": 14722.1, + "probability": 0.5386 + }, + { + "start": 14722.52, + "end": 14727.1, + "probability": 0.9518 + }, + { + "start": 14729.02, + "end": 14729.58, + "probability": 0.5847 + }, + { + "start": 14729.7, + "end": 14735.04, + "probability": 0.7358 + }, + { + "start": 14735.08, + "end": 14736.74, + "probability": 0.8557 + }, + { + "start": 14737.46, + "end": 14739.99, + "probability": 0.2244 + }, + { + "start": 14740.16, + "end": 14743.74, + "probability": 0.778 + }, + { + "start": 14743.74, + "end": 14747.42, + "probability": 0.6521 + }, + { + "start": 14748.0, + "end": 14750.42, + "probability": 0.853 + }, + { + "start": 14751.66, + "end": 14756.06, + "probability": 0.7015 + }, + { + "start": 14757.3, + "end": 14761.62, + "probability": 0.7659 + }, + { + "start": 14762.52, + "end": 14764.66, + "probability": 0.8991 + }, + { + "start": 14765.46, + "end": 14767.68, + "probability": 0.9857 + }, + { + "start": 14768.32, + "end": 14770.96, + "probability": 0.9923 + }, + { + "start": 14771.72, + "end": 14774.14, + "probability": 0.9862 + }, + { + "start": 14774.82, + "end": 14777.2, + "probability": 0.9835 + }, + { + "start": 14778.5, + "end": 14784.86, + "probability": 0.9802 + }, + { + "start": 14785.52, + "end": 14785.84, + "probability": 0.7364 + }, + { + "start": 14787.16, + "end": 14788.02, + "probability": 0.6029 + }, + { + "start": 14790.54, + "end": 14794.88, + "probability": 0.679 + }, + { + "start": 14795.5, + "end": 14797.24, + "probability": 0.8525 + }, + { + "start": 14799.04, + "end": 14804.1, + "probability": 0.9031 + }, + { + "start": 14805.44, + "end": 14806.46, + "probability": 0.9182 + }, + { + "start": 14808.06, + "end": 14809.06, + "probability": 0.972 + }, + { + "start": 14809.64, + "end": 14810.55, + "probability": 0.9835 + }, + { + "start": 14812.1, + "end": 14812.74, + "probability": 0.9945 + }, + { + "start": 14814.12, + "end": 14815.12, + "probability": 0.7133 + }, + { + "start": 14816.9, + "end": 14822.46, + "probability": 0.9818 + }, + { + "start": 14823.62, + "end": 14826.36, + "probability": 0.8354 + }, + { + "start": 14828.12, + "end": 14834.14, + "probability": 0.9373 + }, + { + "start": 14835.28, + "end": 14837.88, + "probability": 0.9702 + }, + { + "start": 14838.62, + "end": 14840.82, + "probability": 0.8594 + }, + { + "start": 14841.66, + "end": 14842.68, + "probability": 0.8342 + }, + { + "start": 14844.48, + "end": 14845.54, + "probability": 0.7697 + }, + { + "start": 14848.02, + "end": 14850.1, + "probability": 0.9258 + }, + { + "start": 14853.6, + "end": 14854.43, + "probability": 0.7178 + }, + { + "start": 14864.32, + "end": 14866.8, + "probability": 0.6133 + }, + { + "start": 14867.48, + "end": 14870.44, + "probability": 0.9052 + }, + { + "start": 14870.92, + "end": 14873.16, + "probability": 0.9303 + }, + { + "start": 14873.46, + "end": 14876.08, + "probability": 0.8342 + }, + { + "start": 14876.66, + "end": 14879.18, + "probability": 0.9708 + }, + { + "start": 14880.66, + "end": 14883.74, + "probability": 0.8037 + }, + { + "start": 14885.7, + "end": 14887.86, + "probability": 0.6918 + }, + { + "start": 14888.6, + "end": 14889.04, + "probability": 0.8228 + }, + { + "start": 14889.72, + "end": 14890.56, + "probability": 0.8233 + }, + { + "start": 14891.62, + "end": 14892.1, + "probability": 0.9471 + }, + { + "start": 14892.74, + "end": 14893.66, + "probability": 0.889 + }, + { + "start": 14894.1, + "end": 14896.98, + "probability": 0.7492 + }, + { + "start": 14897.34, + "end": 14899.98, + "probability": 0.9348 + }, + { + "start": 14900.9, + "end": 14908.8, + "probability": 0.8845 + }, + { + "start": 14910.88, + "end": 14911.76, + "probability": 0.9415 + }, + { + "start": 14912.84, + "end": 14914.04, + "probability": 0.6762 + }, + { + "start": 14915.2, + "end": 14915.74, + "probability": 0.8135 + }, + { + "start": 14916.96, + "end": 14918.22, + "probability": 0.3481 + }, + { + "start": 14919.1, + "end": 14921.72, + "probability": 0.6347 + }, + { + "start": 14922.6, + "end": 14923.78, + "probability": 0.7587 + }, + { + "start": 14924.52, + "end": 14926.66, + "probability": 0.8381 + }, + { + "start": 14927.38, + "end": 14929.4, + "probability": 0.991 + }, + { + "start": 14930.42, + "end": 14933.32, + "probability": 0.8999 + }, + { + "start": 14934.2, + "end": 14934.86, + "probability": 0.952 + }, + { + "start": 14936.22, + "end": 14937.48, + "probability": 0.8067 + }, + { + "start": 14937.9, + "end": 14941.02, + "probability": 0.9731 + }, + { + "start": 14941.32, + "end": 14944.0, + "probability": 0.6805 + }, + { + "start": 14944.92, + "end": 14947.62, + "probability": 0.7566 + }, + { + "start": 14948.6, + "end": 14951.72, + "probability": 0.9264 + }, + { + "start": 14953.1, + "end": 14960.68, + "probability": 0.9726 + }, + { + "start": 14961.22, + "end": 14964.3, + "probability": 0.9788 + }, + { + "start": 14965.02, + "end": 14966.96, + "probability": 0.9805 + }, + { + "start": 14968.1, + "end": 14970.02, + "probability": 0.9146 + }, + { + "start": 14970.9, + "end": 14976.98, + "probability": 0.5917 + }, + { + "start": 14977.5, + "end": 14980.3, + "probability": 0.9804 + }, + { + "start": 14980.86, + "end": 14981.76, + "probability": 0.674 + }, + { + "start": 14982.38, + "end": 14987.06, + "probability": 0.9469 + }, + { + "start": 14988.08, + "end": 14990.94, + "probability": 0.9871 + }, + { + "start": 14991.76, + "end": 14994.42, + "probability": 0.6893 + }, + { + "start": 14995.18, + "end": 14998.06, + "probability": 0.9674 + }, + { + "start": 14998.74, + "end": 15001.6, + "probability": 0.8786 + }, + { + "start": 15002.2, + "end": 15005.12, + "probability": 0.7289 + }, + { + "start": 15006.04, + "end": 15008.78, + "probability": 0.6634 + }, + { + "start": 15010.92, + "end": 15017.16, + "probability": 0.7679 + }, + { + "start": 15019.03, + "end": 15023.34, + "probability": 0.7387 + }, + { + "start": 15024.08, + "end": 15027.04, + "probability": 0.8937 + }, + { + "start": 15027.7, + "end": 15029.82, + "probability": 0.8428 + }, + { + "start": 15031.14, + "end": 15033.22, + "probability": 0.8931 + }, + { + "start": 15033.88, + "end": 15036.6, + "probability": 0.6779 + }, + { + "start": 15037.92, + "end": 15041.42, + "probability": 0.9802 + }, + { + "start": 15041.94, + "end": 15044.58, + "probability": 0.9617 + }, + { + "start": 15048.2, + "end": 15051.06, + "probability": 0.7308 + }, + { + "start": 15051.16, + "end": 15056.4, + "probability": 0.7004 + }, + { + "start": 15056.9, + "end": 15059.28, + "probability": 0.9588 + }, + { + "start": 15061.66, + "end": 15065.48, + "probability": 0.7565 + }, + { + "start": 15066.46, + "end": 15068.86, + "probability": 0.8015 + }, + { + "start": 15072.04, + "end": 15072.64, + "probability": 0.9933 + }, + { + "start": 15074.22, + "end": 15075.14, + "probability": 0.2305 + }, + { + "start": 15080.3, + "end": 15082.36, + "probability": 0.7421 + }, + { + "start": 15084.84, + "end": 15086.88, + "probability": 0.779 + }, + { + "start": 15088.38, + "end": 15091.66, + "probability": 0.8201 + }, + { + "start": 15093.32, + "end": 15096.86, + "probability": 0.9486 + }, + { + "start": 15097.7, + "end": 15098.43, + "probability": 0.4928 + }, + { + "start": 15099.88, + "end": 15103.98, + "probability": 0.9724 + }, + { + "start": 15104.6, + "end": 15108.0, + "probability": 0.9226 + }, + { + "start": 15108.88, + "end": 15115.62, + "probability": 0.7497 + }, + { + "start": 15118.8, + "end": 15121.26, + "probability": 0.8983 + }, + { + "start": 15121.9, + "end": 15122.52, + "probability": 0.9943 + }, + { + "start": 15123.52, + "end": 15124.48, + "probability": 0.8802 + }, + { + "start": 15127.26, + "end": 15133.72, + "probability": 0.8772 + }, + { + "start": 15134.58, + "end": 15140.0, + "probability": 0.5007 + }, + { + "start": 15140.62, + "end": 15143.38, + "probability": 0.8167 + }, + { + "start": 15144.84, + "end": 15147.26, + "probability": 0.9655 + }, + { + "start": 15148.3, + "end": 15154.98, + "probability": 0.9622 + }, + { + "start": 15155.54, + "end": 15157.64, + "probability": 0.9715 + }, + { + "start": 15158.66, + "end": 15161.08, + "probability": 0.9214 + }, + { + "start": 15161.94, + "end": 15164.74, + "probability": 0.7061 + }, + { + "start": 15165.32, + "end": 15170.88, + "probability": 0.9013 + }, + { + "start": 15172.6, + "end": 15177.86, + "probability": 0.8717 + }, + { + "start": 15178.68, + "end": 15181.2, + "probability": 0.9421 + }, + { + "start": 15184.22, + "end": 15187.48, + "probability": 0.4366 + }, + { + "start": 15191.1, + "end": 15191.6, + "probability": 0.7742 + }, + { + "start": 15192.7, + "end": 15193.62, + "probability": 0.8561 + }, + { + "start": 15194.14, + "end": 15196.6, + "probability": 0.881 + }, + { + "start": 15197.14, + "end": 15197.68, + "probability": 0.952 + }, + { + "start": 15198.42, + "end": 15199.48, + "probability": 0.8524 + }, + { + "start": 15200.2, + "end": 15202.46, + "probability": 0.6073 + }, + { + "start": 15203.92, + "end": 15206.38, + "probability": 0.7808 + }, + { + "start": 15207.38, + "end": 15209.58, + "probability": 0.8083 + }, + { + "start": 15213.82, + "end": 15217.68, + "probability": 0.5478 + }, + { + "start": 15217.74, + "end": 15219.12, + "probability": 0.3475 + }, + { + "start": 15220.5, + "end": 15222.84, + "probability": 0.7915 + }, + { + "start": 15223.64, + "end": 15226.12, + "probability": 0.8541 + }, + { + "start": 15228.04, + "end": 15229.12, + "probability": 0.9629 + }, + { + "start": 15231.28, + "end": 15234.7, + "probability": 0.7063 + }, + { + "start": 15235.44, + "end": 15237.28, + "probability": 0.8083 + }, + { + "start": 15237.4, + "end": 15238.1, + "probability": 0.3417 + }, + { + "start": 15238.48, + "end": 15243.56, + "probability": 0.6584 + }, + { + "start": 15243.72, + "end": 15244.2, + "probability": 0.1936 + }, + { + "start": 15244.34, + "end": 15246.92, + "probability": 0.9574 + }, + { + "start": 15247.48, + "end": 15248.2, + "probability": 0.343 + }, + { + "start": 15248.34, + "end": 15250.54, + "probability": 0.6341 + }, + { + "start": 15251.26, + "end": 15253.8, + "probability": 0.9493 + }, + { + "start": 15254.98, + "end": 15258.58, + "probability": 0.7871 + }, + { + "start": 15259.9, + "end": 15261.36, + "probability": 0.7248 + }, + { + "start": 15262.76, + "end": 15266.12, + "probability": 0.8925 + }, + { + "start": 15266.66, + "end": 15267.94, + "probability": 0.8877 + }, + { + "start": 15268.48, + "end": 15270.24, + "probability": 0.9498 + }, + { + "start": 15272.2, + "end": 15274.44, + "probability": 0.9378 + }, + { + "start": 15274.6, + "end": 15278.08, + "probability": 0.7713 + }, + { + "start": 15278.18, + "end": 15279.36, + "probability": 0.8816 + }, + { + "start": 15280.08, + "end": 15283.38, + "probability": 0.7073 + }, + { + "start": 15283.96, + "end": 15285.27, + "probability": 0.7148 + }, + { + "start": 15287.06, + "end": 15294.24, + "probability": 0.5382 + }, + { + "start": 15294.82, + "end": 15298.26, + "probability": 0.915 + }, + { + "start": 15299.3, + "end": 15303.52, + "probability": 0.9708 + }, + { + "start": 15303.94, + "end": 15306.16, + "probability": 0.847 + }, + { + "start": 15306.64, + "end": 15309.58, + "probability": 0.976 + }, + { + "start": 15310.02, + "end": 15311.8, + "probability": 0.4713 + }, + { + "start": 15316.06, + "end": 15319.04, + "probability": 0.648 + }, + { + "start": 15319.14, + "end": 15321.86, + "probability": 0.7878 + }, + { + "start": 15321.88, + "end": 15324.72, + "probability": 0.405 + }, + { + "start": 15325.14, + "end": 15328.64, + "probability": 0.9393 + }, + { + "start": 15329.76, + "end": 15335.08, + "probability": 0.7447 + }, + { + "start": 15335.12, + "end": 15340.76, + "probability": 0.8969 + }, + { + "start": 15341.54, + "end": 15342.44, + "probability": 0.6751 + }, + { + "start": 15342.96, + "end": 15347.8, + "probability": 0.8384 + }, + { + "start": 15348.5, + "end": 15350.94, + "probability": 0.798 + }, + { + "start": 15352.94, + "end": 15354.92, + "probability": 0.8796 + }, + { + "start": 15355.82, + "end": 15357.6, + "probability": 0.9207 + }, + { + "start": 15359.36, + "end": 15362.18, + "probability": 0.8561 + }, + { + "start": 15362.6, + "end": 15365.1, + "probability": 0.811 + }, + { + "start": 15365.16, + "end": 15368.32, + "probability": 0.7078 + }, + { + "start": 15369.42, + "end": 15372.98, + "probability": 0.6683 + }, + { + "start": 15373.64, + "end": 15379.74, + "probability": 0.9674 + }, + { + "start": 15379.82, + "end": 15379.84, + "probability": 0.0066 + }, + { + "start": 15380.0, + "end": 15380.77, + "probability": 0.2308 + }, + { + "start": 15381.86, + "end": 15386.3, + "probability": 0.5788 + }, + { + "start": 15386.32, + "end": 15388.82, + "probability": 0.9198 + }, + { + "start": 15391.82, + "end": 15393.12, + "probability": 0.6209 + }, + { + "start": 15393.2, + "end": 15394.82, + "probability": 0.6139 + }, + { + "start": 15414.5, + "end": 15415.54, + "probability": 0.2221 + }, + { + "start": 15415.82, + "end": 15418.92, + "probability": 0.9241 + }, + { + "start": 15419.24, + "end": 15420.59, + "probability": 0.6536 + }, + { + "start": 15421.1, + "end": 15424.7, + "probability": 0.787 + }, + { + "start": 15427.31, + "end": 15431.26, + "probability": 0.8064 + }, + { + "start": 15431.4, + "end": 15433.18, + "probability": 0.8047 + }, + { + "start": 15433.26, + "end": 15433.56, + "probability": 0.7496 + }, + { + "start": 15433.74, + "end": 15435.54, + "probability": 0.8962 + }, + { + "start": 15435.66, + "end": 15438.64, + "probability": 0.9045 + }, + { + "start": 15439.02, + "end": 15439.78, + "probability": 0.0422 + }, + { + "start": 15440.36, + "end": 15441.76, + "probability": 0.0983 + }, + { + "start": 15442.68, + "end": 15445.0, + "probability": 0.0513 + }, + { + "start": 15445.56, + "end": 15445.92, + "probability": 0.0162 + }, + { + "start": 15452.12, + "end": 15456.28, + "probability": 0.0149 + }, + { + "start": 15459.96, + "end": 15460.74, + "probability": 0.0017 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.0, + "end": 15563.0, + "probability": 0.0 + }, + { + "start": 15563.12, + "end": 15563.78, + "probability": 0.3012 + }, + { + "start": 15563.88, + "end": 15563.88, + "probability": 0.3478 + }, + { + "start": 15563.94, + "end": 15564.18, + "probability": 0.4583 + }, + { + "start": 15564.22, + "end": 15565.9, + "probability": 0.5038 + }, + { + "start": 15565.98, + "end": 15571.34, + "probability": 0.811 + }, + { + "start": 15572.4, + "end": 15574.44, + "probability": 0.8173 + }, + { + "start": 15584.14, + "end": 15587.46, + "probability": 0.6918 + }, + { + "start": 15587.56, + "end": 15591.78, + "probability": 0.9341 + }, + { + "start": 15591.84, + "end": 15594.29, + "probability": 0.0059 + }, + { + "start": 15594.38, + "end": 15594.82, + "probability": 0.2495 + }, + { + "start": 15595.58, + "end": 15598.26, + "probability": 0.996 + }, + { + "start": 15599.47, + "end": 15602.78, + "probability": 0.8805 + }, + { + "start": 15603.4, + "end": 15603.66, + "probability": 0.2366 + }, + { + "start": 15607.74, + "end": 15609.22, + "probability": 0.0326 + }, + { + "start": 15613.22, + "end": 15614.04, + "probability": 0.5754 + }, + { + "start": 15614.5, + "end": 15616.84, + "probability": 0.9983 + }, + { + "start": 15617.18, + "end": 15617.8, + "probability": 0.2999 + }, + { + "start": 15618.12, + "end": 15618.16, + "probability": 0.0057 + }, + { + "start": 15618.16, + "end": 15618.76, + "probability": 0.0829 + }, + { + "start": 15618.88, + "end": 15619.65, + "probability": 0.8771 + }, + { + "start": 15652.2, + "end": 15656.06, + "probability": 0.9774 + }, + { + "start": 15656.2, + "end": 15660.24, + "probability": 0.9902 + }, + { + "start": 15661.36, + "end": 15663.18, + "probability": 0.4001 + }, + { + "start": 15663.8, + "end": 15668.94, + "probability": 0.9478 + }, + { + "start": 15669.14, + "end": 15671.8, + "probability": 0.8174 + }, + { + "start": 15672.54, + "end": 15674.9, + "probability": 0.9429 + }, + { + "start": 15675.6, + "end": 15677.58, + "probability": 0.758 + }, + { + "start": 15677.92, + "end": 15681.32, + "probability": 0.9768 + }, + { + "start": 15681.32, + "end": 15681.88, + "probability": 0.4826 + }, + { + "start": 15682.12, + "end": 15683.12, + "probability": 0.8679 + }, + { + "start": 15683.86, + "end": 15685.74, + "probability": 0.9097 + }, + { + "start": 15687.24, + "end": 15687.76, + "probability": 0.5051 + }, + { + "start": 15687.82, + "end": 15688.74, + "probability": 0.6776 + }, + { + "start": 15690.42, + "end": 15691.76, + "probability": 0.7799 + }, + { + "start": 15692.78, + "end": 15694.2, + "probability": 0.719 + }, + { + "start": 15694.86, + "end": 15696.0, + "probability": 0.7472 + }, + { + "start": 15696.12, + "end": 15701.5, + "probability": 0.9967 + }, + { + "start": 15702.56, + "end": 15703.94, + "probability": 0.7314 + }, + { + "start": 15705.62, + "end": 15708.32, + "probability": 0.978 + }, + { + "start": 15710.12, + "end": 15712.26, + "probability": 0.9156 + }, + { + "start": 15713.4, + "end": 15714.4, + "probability": 0.7554 + }, + { + "start": 15716.08, + "end": 15723.72, + "probability": 0.9431 + }, + { + "start": 15724.94, + "end": 15729.9, + "probability": 0.9816 + }, + { + "start": 15732.16, + "end": 15737.88, + "probability": 0.9912 + }, + { + "start": 15737.88, + "end": 15743.88, + "probability": 0.9976 + }, + { + "start": 15745.16, + "end": 15747.22, + "probability": 0.8917 + }, + { + "start": 15748.2, + "end": 15752.34, + "probability": 0.9924 + }, + { + "start": 15753.14, + "end": 15756.92, + "probability": 0.9868 + }, + { + "start": 15757.54, + "end": 15758.22, + "probability": 0.8784 + }, + { + "start": 15758.76, + "end": 15761.48, + "probability": 0.9897 + }, + { + "start": 15762.06, + "end": 15766.76, + "probability": 0.9908 + }, + { + "start": 15766.76, + "end": 15770.8, + "probability": 0.999 + }, + { + "start": 15771.76, + "end": 15775.5, + "probability": 0.9827 + }, + { + "start": 15776.74, + "end": 15780.19, + "probability": 0.958 + }, + { + "start": 15781.04, + "end": 15784.3, + "probability": 0.9954 + }, + { + "start": 15785.3, + "end": 15786.84, + "probability": 0.9535 + }, + { + "start": 15787.32, + "end": 15791.74, + "probability": 0.988 + }, + { + "start": 15792.34, + "end": 15797.76, + "probability": 0.9967 + }, + { + "start": 15798.5, + "end": 15799.36, + "probability": 0.4213 + }, + { + "start": 15800.08, + "end": 15807.22, + "probability": 0.7471 + }, + { + "start": 15807.82, + "end": 15810.6, + "probability": 0.9951 + }, + { + "start": 15811.18, + "end": 15815.64, + "probability": 0.9814 + }, + { + "start": 15816.64, + "end": 15820.8, + "probability": 0.9193 + }, + { + "start": 15823.22, + "end": 15825.97, + "probability": 0.9798 + }, + { + "start": 15829.24, + "end": 15830.0, + "probability": 0.1734 + }, + { + "start": 15830.53, + "end": 15832.94, + "probability": 0.9965 + }, + { + "start": 15834.08, + "end": 15836.32, + "probability": 0.3687 + }, + { + "start": 15838.1, + "end": 15840.04, + "probability": 0.7971 + }, + { + "start": 15843.3, + "end": 15845.66, + "probability": 0.8885 + }, + { + "start": 15846.2, + "end": 15847.38, + "probability": 0.83 + }, + { + "start": 15848.22, + "end": 15850.74, + "probability": 0.9595 + }, + { + "start": 15852.28, + "end": 15854.12, + "probability": 0.1855 + }, + { + "start": 15854.12, + "end": 15854.12, + "probability": 0.1214 + }, + { + "start": 15854.12, + "end": 15857.5, + "probability": 0.2011 + }, + { + "start": 15858.6, + "end": 15866.28, + "probability": 0.7483 + }, + { + "start": 15868.18, + "end": 15875.02, + "probability": 0.2685 + }, + { + "start": 15875.76, + "end": 15881.72, + "probability": 0.9896 + }, + { + "start": 15882.62, + "end": 15887.84, + "probability": 0.9233 + }, + { + "start": 15888.6, + "end": 15890.24, + "probability": 0.6572 + }, + { + "start": 15890.44, + "end": 15894.44, + "probability": 0.6647 + }, + { + "start": 15895.0, + "end": 15899.16, + "probability": 0.7493 + }, + { + "start": 15901.04, + "end": 15902.1, + "probability": 0.7033 + }, + { + "start": 15903.16, + "end": 15905.8, + "probability": 0.9839 + }, + { + "start": 15905.94, + "end": 15908.3, + "probability": 0.9951 + }, + { + "start": 15908.3, + "end": 15911.74, + "probability": 0.9902 + }, + { + "start": 15912.36, + "end": 15914.78, + "probability": 0.9989 + }, + { + "start": 15916.08, + "end": 15920.98, + "probability": 0.9873 + }, + { + "start": 15920.98, + "end": 15926.16, + "probability": 0.9883 + }, + { + "start": 15927.0, + "end": 15929.64, + "probability": 0.8508 + }, + { + "start": 15929.82, + "end": 15936.26, + "probability": 0.9685 + }, + { + "start": 15936.84, + "end": 15938.12, + "probability": 0.9438 + }, + { + "start": 15939.08, + "end": 15941.02, + "probability": 0.9788 + }, + { + "start": 15941.18, + "end": 15942.0, + "probability": 0.88 + }, + { + "start": 15942.56, + "end": 15948.88, + "probability": 0.9761 + }, + { + "start": 15949.38, + "end": 15958.22, + "probability": 0.7946 + }, + { + "start": 15958.86, + "end": 15959.62, + "probability": 0.8292 + }, + { + "start": 15960.38, + "end": 15962.64, + "probability": 0.9964 + }, + { + "start": 15963.52, + "end": 15964.44, + "probability": 0.8259 + }, + { + "start": 15964.82, + "end": 15966.3, + "probability": 0.9703 + }, + { + "start": 15966.72, + "end": 15969.58, + "probability": 0.8994 + }, + { + "start": 15970.12, + "end": 15971.84, + "probability": 0.9971 + }, + { + "start": 15972.46, + "end": 15975.88, + "probability": 0.9943 + }, + { + "start": 15976.54, + "end": 15977.25, + "probability": 0.9766 + }, + { + "start": 15978.42, + "end": 15979.26, + "probability": 0.7097 + }, + { + "start": 15979.92, + "end": 15981.56, + "probability": 0.9827 + }, + { + "start": 15982.08, + "end": 15983.98, + "probability": 0.9971 + }, + { + "start": 15984.96, + "end": 15986.64, + "probability": 0.9966 + }, + { + "start": 15987.06, + "end": 15988.18, + "probability": 0.996 + }, + { + "start": 15988.56, + "end": 15989.44, + "probability": 0.9618 + }, + { + "start": 15990.7, + "end": 15995.4, + "probability": 0.996 + }, + { + "start": 15995.4, + "end": 15998.84, + "probability": 0.999 + }, + { + "start": 15999.54, + "end": 16002.5, + "probability": 0.9943 + }, + { + "start": 16003.12, + "end": 16005.9, + "probability": 0.6577 + }, + { + "start": 16006.52, + "end": 16009.64, + "probability": 0.8911 + }, + { + "start": 16010.3, + "end": 16010.54, + "probability": 0.0117 + }, + { + "start": 16014.28, + "end": 16016.78, + "probability": 0.655 + }, + { + "start": 16016.86, + "end": 16020.98, + "probability": 0.9965 + }, + { + "start": 16020.98, + "end": 16026.24, + "probability": 0.9181 + }, + { + "start": 16027.34, + "end": 16031.44, + "probability": 0.9746 + }, + { + "start": 16032.3, + "end": 16034.76, + "probability": 0.8511 + }, + { + "start": 16035.46, + "end": 16037.12, + "probability": 0.9097 + }, + { + "start": 16038.72, + "end": 16041.78, + "probability": 0.8062 + }, + { + "start": 16043.06, + "end": 16044.68, + "probability": 0.9487 + }, + { + "start": 16044.86, + "end": 16047.52, + "probability": 0.7094 + }, + { + "start": 16049.02, + "end": 16053.62, + "probability": 0.9199 + }, + { + "start": 16054.36, + "end": 16056.74, + "probability": 0.9971 + }, + { + "start": 16056.88, + "end": 16060.14, + "probability": 0.9889 + }, + { + "start": 16061.84, + "end": 16065.13, + "probability": 0.9401 + }, + { + "start": 16066.5, + "end": 16070.44, + "probability": 0.9955 + }, + { + "start": 16070.8, + "end": 16071.46, + "probability": 0.8321 + }, + { + "start": 16072.48, + "end": 16074.26, + "probability": 0.9971 + }, + { + "start": 16075.32, + "end": 16075.81, + "probability": 0.998 + }, + { + "start": 16076.84, + "end": 16081.36, + "probability": 0.968 + }, + { + "start": 16082.5, + "end": 16084.24, + "probability": 0.9994 + }, + { + "start": 16085.18, + "end": 16089.06, + "probability": 0.9886 + }, + { + "start": 16089.68, + "end": 16092.48, + "probability": 0.9829 + }, + { + "start": 16092.54, + "end": 16094.78, + "probability": 0.9727 + }, + { + "start": 16094.94, + "end": 16095.64, + "probability": 0.9312 + }, + { + "start": 16096.08, + "end": 16099.15, + "probability": 0.9902 + }, + { + "start": 16099.7, + "end": 16101.62, + "probability": 0.6499 + }, + { + "start": 16101.7, + "end": 16101.84, + "probability": 0.5471 + }, + { + "start": 16101.9, + "end": 16102.52, + "probability": 0.9491 + }, + { + "start": 16103.44, + "end": 16104.52, + "probability": 0.7351 + }, + { + "start": 16105.26, + "end": 16107.38, + "probability": 0.9843 + }, + { + "start": 16108.82, + "end": 16110.8, + "probability": 0.8352 + }, + { + "start": 16111.96, + "end": 16118.48, + "probability": 0.9719 + }, + { + "start": 16119.3, + "end": 16119.56, + "probability": 0.3174 + }, + { + "start": 16120.0, + "end": 16122.04, + "probability": 0.9795 + }, + { + "start": 16122.48, + "end": 16123.98, + "probability": 0.9854 + }, + { + "start": 16124.44, + "end": 16124.86, + "probability": 0.5998 + }, + { + "start": 16125.34, + "end": 16126.88, + "probability": 0.8237 + }, + { + "start": 16127.3, + "end": 16133.04, + "probability": 0.9666 + }, + { + "start": 16133.94, + "end": 16139.56, + "probability": 0.9872 + }, + { + "start": 16139.68, + "end": 16140.64, + "probability": 0.9753 + }, + { + "start": 16141.48, + "end": 16143.42, + "probability": 0.996 + }, + { + "start": 16145.18, + "end": 16146.34, + "probability": 0.9946 + }, + { + "start": 16147.4, + "end": 16151.0, + "probability": 0.9469 + }, + { + "start": 16151.56, + "end": 16153.2, + "probability": 0.8917 + }, + { + "start": 16153.72, + "end": 16155.38, + "probability": 0.6678 + }, + { + "start": 16155.42, + "end": 16160.78, + "probability": 0.9868 + }, + { + "start": 16160.88, + "end": 16165.94, + "probability": 0.9986 + }, + { + "start": 16166.72, + "end": 16169.52, + "probability": 0.9355 + }, + { + "start": 16169.78, + "end": 16172.74, + "probability": 0.9312 + }, + { + "start": 16173.66, + "end": 16175.54, + "probability": 0.7912 + }, + { + "start": 16175.74, + "end": 16178.48, + "probability": 0.8656 + }, + { + "start": 16179.02, + "end": 16180.54, + "probability": 0.9594 + }, + { + "start": 16181.0, + "end": 16182.13, + "probability": 0.981 + }, + { + "start": 16183.02, + "end": 16185.52, + "probability": 0.97 + }, + { + "start": 16186.06, + "end": 16186.78, + "probability": 0.6372 + }, + { + "start": 16187.0, + "end": 16187.66, + "probability": 0.9961 + }, + { + "start": 16188.22, + "end": 16191.12, + "probability": 0.9928 + }, + { + "start": 16191.84, + "end": 16194.62, + "probability": 0.8319 + }, + { + "start": 16195.54, + "end": 16197.92, + "probability": 0.9946 + }, + { + "start": 16199.16, + "end": 16200.4, + "probability": 0.9951 + }, + { + "start": 16201.16, + "end": 16202.94, + "probability": 0.9917 + }, + { + "start": 16203.84, + "end": 16207.78, + "probability": 0.9954 + }, + { + "start": 16208.5, + "end": 16214.34, + "probability": 0.8032 + }, + { + "start": 16214.9, + "end": 16218.78, + "probability": 0.9975 + }, + { + "start": 16219.76, + "end": 16220.56, + "probability": 0.9736 + }, + { + "start": 16221.16, + "end": 16222.22, + "probability": 0.9798 + }, + { + "start": 16222.66, + "end": 16223.72, + "probability": 0.9903 + }, + { + "start": 16223.8, + "end": 16224.5, + "probability": 0.6525 + }, + { + "start": 16224.62, + "end": 16226.48, + "probability": 0.7084 + }, + { + "start": 16226.82, + "end": 16227.46, + "probability": 0.9256 + }, + { + "start": 16227.58, + "end": 16228.36, + "probability": 0.9075 + }, + { + "start": 16228.96, + "end": 16231.14, + "probability": 0.9922 + }, + { + "start": 16231.92, + "end": 16233.2, + "probability": 0.9811 + }, + { + "start": 16233.8, + "end": 16234.98, + "probability": 0.8762 + }, + { + "start": 16237.88, + "end": 16240.22, + "probability": 0.6475 + }, + { + "start": 16241.26, + "end": 16244.38, + "probability": 0.9688 + }, + { + "start": 16245.02, + "end": 16246.94, + "probability": 0.7259 + }, + { + "start": 16247.06, + "end": 16248.59, + "probability": 0.9907 + }, + { + "start": 16249.22, + "end": 16250.0, + "probability": 0.7468 + }, + { + "start": 16250.64, + "end": 16251.71, + "probability": 0.9937 + }, + { + "start": 16252.0, + "end": 16255.1, + "probability": 0.8241 + }, + { + "start": 16255.86, + "end": 16257.48, + "probability": 0.5067 + }, + { + "start": 16257.92, + "end": 16260.7, + "probability": 0.895 + }, + { + "start": 16260.8, + "end": 16265.94, + "probability": 0.9755 + }, + { + "start": 16266.66, + "end": 16267.5, + "probability": 0.918 + }, + { + "start": 16267.58, + "end": 16270.9, + "probability": 0.8581 + }, + { + "start": 16270.96, + "end": 16272.14, + "probability": 0.995 + }, + { + "start": 16273.14, + "end": 16273.68, + "probability": 0.5848 + }, + { + "start": 16274.36, + "end": 16277.3, + "probability": 0.9883 + }, + { + "start": 16277.78, + "end": 16278.74, + "probability": 0.4778 + }, + { + "start": 16279.22, + "end": 16280.36, + "probability": 0.9963 + }, + { + "start": 16280.62, + "end": 16282.42, + "probability": 0.9711 + }, + { + "start": 16283.08, + "end": 16283.64, + "probability": 0.9719 + }, + { + "start": 16284.84, + "end": 16286.06, + "probability": 0.9703 + }, + { + "start": 16286.24, + "end": 16286.26, + "probability": 0.466 + }, + { + "start": 16286.5, + "end": 16288.72, + "probability": 0.8015 + }, + { + "start": 16289.32, + "end": 16292.8, + "probability": 0.9982 + }, + { + "start": 16293.3, + "end": 16295.3, + "probability": 0.9691 + }, + { + "start": 16295.82, + "end": 16296.36, + "probability": 0.7669 + }, + { + "start": 16296.98, + "end": 16299.18, + "probability": 0.6754 + }, + { + "start": 16299.42, + "end": 16301.78, + "probability": 0.9781 + }, + { + "start": 16302.84, + "end": 16305.58, + "probability": 0.9878 + }, + { + "start": 16311.04, + "end": 16315.32, + "probability": 0.884 + }, + { + "start": 16315.36, + "end": 16321.78, + "probability": 0.951 + }, + { + "start": 16322.2, + "end": 16324.76, + "probability": 0.6721 + }, + { + "start": 16325.22, + "end": 16327.72, + "probability": 0.2417 + }, + { + "start": 16328.96, + "end": 16329.14, + "probability": 0.0165 + }, + { + "start": 16329.14, + "end": 16329.14, + "probability": 0.2302 + }, + { + "start": 16329.14, + "end": 16329.14, + "probability": 0.1913 + }, + { + "start": 16329.14, + "end": 16329.72, + "probability": 0.7939 + }, + { + "start": 16332.14, + "end": 16336.68, + "probability": 0.939 + }, + { + "start": 16351.2, + "end": 16353.92, + "probability": 0.8467 + }, + { + "start": 16355.52, + "end": 16357.92, + "probability": 0.8022 + }, + { + "start": 16359.28, + "end": 16360.54, + "probability": 0.8595 + }, + { + "start": 16372.58, + "end": 16373.81, + "probability": 0.2833 + }, + { + "start": 16374.0, + "end": 16374.46, + "probability": 0.6443 + }, + { + "start": 16374.66, + "end": 16376.42, + "probability": 0.7932 + }, + { + "start": 16377.0, + "end": 16381.1, + "probability": 0.9141 + }, + { + "start": 16381.16, + "end": 16382.84, + "probability": 0.0865 + }, + { + "start": 16383.04, + "end": 16387.28, + "probability": 0.3153 + }, + { + "start": 16388.68, + "end": 16389.68, + "probability": 0.7336 + }, + { + "start": 16389.86, + "end": 16390.94, + "probability": 0.5831 + }, + { + "start": 16392.04, + "end": 16394.44, + "probability": 0.9325 + }, + { + "start": 16395.52, + "end": 16397.3, + "probability": 0.9601 + }, + { + "start": 16399.1, + "end": 16400.8, + "probability": 0.7658 + }, + { + "start": 16403.06, + "end": 16406.23, + "probability": 0.8859 + }, + { + "start": 16411.34, + "end": 16413.14, + "probability": 0.751 + }, + { + "start": 16414.42, + "end": 16419.42, + "probability": 0.9113 + }, + { + "start": 16420.0, + "end": 16421.1, + "probability": 0.8877 + }, + { + "start": 16422.14, + "end": 16422.84, + "probability": 0.9038 + }, + { + "start": 16424.2, + "end": 16428.02, + "probability": 0.6798 + }, + { + "start": 16429.7, + "end": 16431.48, + "probability": 0.8806 + }, + { + "start": 16432.4, + "end": 16434.5, + "probability": 0.9097 + }, + { + "start": 16434.98, + "end": 16436.74, + "probability": 0.844 + }, + { + "start": 16438.02, + "end": 16439.98, + "probability": 0.8318 + }, + { + "start": 16439.98, + "end": 16440.79, + "probability": 0.1081 + }, + { + "start": 16441.26, + "end": 16444.96, + "probability": 0.9124 + }, + { + "start": 16445.8, + "end": 16447.96, + "probability": 0.9805 + }, + { + "start": 16448.48, + "end": 16450.64, + "probability": 0.96 + }, + { + "start": 16451.74, + "end": 16453.02, + "probability": 0.8669 + }, + { + "start": 16453.14, + "end": 16454.02, + "probability": 0.7165 + }, + { + "start": 16454.22, + "end": 16456.52, + "probability": 0.6169 + }, + { + "start": 16457.4, + "end": 16458.96, + "probability": 0.7618 + }, + { + "start": 16459.78, + "end": 16462.44, + "probability": 0.9966 + }, + { + "start": 16462.5, + "end": 16462.72, + "probability": 0.8591 + }, + { + "start": 16462.78, + "end": 16463.72, + "probability": 0.7921 + }, + { + "start": 16464.26, + "end": 16466.32, + "probability": 0.7418 + }, + { + "start": 16467.0, + "end": 16469.34, + "probability": 0.8135 + }, + { + "start": 16469.96, + "end": 16470.48, + "probability": 0.9741 + }, + { + "start": 16471.4, + "end": 16472.34, + "probability": 0.7536 + }, + { + "start": 16473.84, + "end": 16475.96, + "probability": 0.9561 + }, + { + "start": 16476.64, + "end": 16477.27, + "probability": 0.9966 + }, + { + "start": 16478.18, + "end": 16481.44, + "probability": 0.9976 + }, + { + "start": 16482.0, + "end": 16486.0, + "probability": 0.7252 + }, + { + "start": 16486.62, + "end": 16489.26, + "probability": 0.5889 + }, + { + "start": 16489.86, + "end": 16494.22, + "probability": 0.6327 + }, + { + "start": 16494.58, + "end": 16494.88, + "probability": 0.498 + }, + { + "start": 16495.5, + "end": 16496.44, + "probability": 0.9614 + }, + { + "start": 16497.52, + "end": 16499.48, + "probability": 0.5294 + }, + { + "start": 16500.42, + "end": 16501.4, + "probability": 0.9191 + }, + { + "start": 16501.52, + "end": 16502.26, + "probability": 0.9325 + }, + { + "start": 16502.46, + "end": 16503.02, + "probability": 0.9807 + }, + { + "start": 16503.32, + "end": 16506.62, + "probability": 0.9532 + }, + { + "start": 16507.62, + "end": 16511.48, + "probability": 0.9568 + }, + { + "start": 16513.86, + "end": 16515.18, + "probability": 0.9937 + }, + { + "start": 16515.38, + "end": 16518.76, + "probability": 0.7857 + }, + { + "start": 16519.96, + "end": 16520.52, + "probability": 0.7992 + }, + { + "start": 16521.8, + "end": 16523.26, + "probability": 0.958 + }, + { + "start": 16527.54, + "end": 16531.59, + "probability": 0.998 + }, + { + "start": 16532.32, + "end": 16533.06, + "probability": 0.8751 + }, + { + "start": 16533.38, + "end": 16534.9, + "probability": 0.7707 + }, + { + "start": 16536.18, + "end": 16539.78, + "probability": 0.8177 + }, + { + "start": 16541.06, + "end": 16542.6, + "probability": 0.5029 + }, + { + "start": 16544.8, + "end": 16546.06, + "probability": 0.5215 + }, + { + "start": 16546.32, + "end": 16548.06, + "probability": 0.9481 + }, + { + "start": 16548.16, + "end": 16549.66, + "probability": 0.7137 + }, + { + "start": 16549.74, + "end": 16550.92, + "probability": 0.9381 + }, + { + "start": 16553.5, + "end": 16556.28, + "probability": 0.9844 + }, + { + "start": 16557.36, + "end": 16558.9, + "probability": 0.9328 + }, + { + "start": 16559.0, + "end": 16559.74, + "probability": 0.6071 + }, + { + "start": 16559.98, + "end": 16565.22, + "probability": 0.9668 + }, + { + "start": 16565.86, + "end": 16567.82, + "probability": 0.9942 + }, + { + "start": 16568.46, + "end": 16572.98, + "probability": 0.8979 + }, + { + "start": 16573.88, + "end": 16576.98, + "probability": 0.8982 + }, + { + "start": 16577.78, + "end": 16583.2, + "probability": 0.9953 + }, + { + "start": 16584.74, + "end": 16586.5, + "probability": 0.9769 + }, + { + "start": 16587.66, + "end": 16589.71, + "probability": 0.9357 + }, + { + "start": 16590.72, + "end": 16590.92, + "probability": 0.9512 + }, + { + "start": 16591.82, + "end": 16593.98, + "probability": 0.8811 + }, + { + "start": 16595.1, + "end": 16600.74, + "probability": 0.8555 + }, + { + "start": 16602.08, + "end": 16603.66, + "probability": 0.79 + }, + { + "start": 16604.88, + "end": 16607.52, + "probability": 0.9943 + }, + { + "start": 16608.1, + "end": 16609.16, + "probability": 0.9098 + }, + { + "start": 16610.62, + "end": 16611.66, + "probability": 0.6461 + }, + { + "start": 16612.74, + "end": 16618.84, + "probability": 0.9944 + }, + { + "start": 16619.56, + "end": 16621.26, + "probability": 0.9461 + }, + { + "start": 16621.4, + "end": 16622.68, + "probability": 0.9039 + }, + { + "start": 16623.46, + "end": 16626.82, + "probability": 0.9388 + }, + { + "start": 16627.76, + "end": 16628.88, + "probability": 0.9548 + }, + { + "start": 16631.12, + "end": 16633.28, + "probability": 0.9888 + }, + { + "start": 16635.96, + "end": 16639.78, + "probability": 0.9602 + }, + { + "start": 16640.46, + "end": 16643.62, + "probability": 0.9697 + }, + { + "start": 16644.16, + "end": 16646.16, + "probability": 0.9325 + }, + { + "start": 16646.84, + "end": 16647.78, + "probability": 0.8136 + }, + { + "start": 16648.5, + "end": 16651.78, + "probability": 0.9348 + }, + { + "start": 16652.66, + "end": 16653.82, + "probability": 0.9372 + }, + { + "start": 16654.52, + "end": 16656.86, + "probability": 0.9493 + }, + { + "start": 16656.94, + "end": 16658.24, + "probability": 0.9447 + }, + { + "start": 16659.2, + "end": 16659.81, + "probability": 0.5312 + }, + { + "start": 16660.4, + "end": 16661.38, + "probability": 0.9927 + }, + { + "start": 16663.02, + "end": 16664.06, + "probability": 0.9267 + }, + { + "start": 16664.86, + "end": 16666.72, + "probability": 0.8139 + }, + { + "start": 16667.54, + "end": 16668.58, + "probability": 0.8459 + }, + { + "start": 16668.66, + "end": 16670.2, + "probability": 0.7236 + }, + { + "start": 16670.3, + "end": 16671.24, + "probability": 0.9298 + }, + { + "start": 16671.26, + "end": 16674.66, + "probability": 0.9438 + }, + { + "start": 16675.2, + "end": 16677.82, + "probability": 0.9915 + }, + { + "start": 16682.5, + "end": 16683.24, + "probability": 0.9737 + }, + { + "start": 16683.38, + "end": 16685.38, + "probability": 0.8857 + }, + { + "start": 16685.48, + "end": 16686.32, + "probability": 0.509 + }, + { + "start": 16687.2, + "end": 16687.98, + "probability": 0.9564 + }, + { + "start": 16688.7, + "end": 16690.56, + "probability": 0.8325 + }, + { + "start": 16691.8, + "end": 16693.12, + "probability": 0.8687 + }, + { + "start": 16693.5, + "end": 16696.4, + "probability": 0.7075 + }, + { + "start": 16696.4, + "end": 16700.64, + "probability": 0.9771 + }, + { + "start": 16702.22, + "end": 16703.58, + "probability": 0.7355 + }, + { + "start": 16703.76, + "end": 16704.32, + "probability": 0.6898 + }, + { + "start": 16705.28, + "end": 16706.0, + "probability": 0.3562 + }, + { + "start": 16706.64, + "end": 16708.78, + "probability": 0.5947 + }, + { + "start": 16708.78, + "end": 16710.32, + "probability": 0.505 + }, + { + "start": 16710.42, + "end": 16710.82, + "probability": 0.7802 + }, + { + "start": 16711.14, + "end": 16712.76, + "probability": 0.9675 + }, + { + "start": 16712.94, + "end": 16713.66, + "probability": 0.5804 + }, + { + "start": 16713.9, + "end": 16717.6, + "probability": 0.7241 + }, + { + "start": 16717.76, + "end": 16718.96, + "probability": 0.6875 + }, + { + "start": 16719.04, + "end": 16720.02, + "probability": 0.5049 + }, + { + "start": 16720.6, + "end": 16726.28, + "probability": 0.1357 + }, + { + "start": 16726.28, + "end": 16727.08, + "probability": 0.6237 + }, + { + "start": 16727.32, + "end": 16729.5, + "probability": 0.6528 + }, + { + "start": 16729.66, + "end": 16730.81, + "probability": 0.9722 + }, + { + "start": 16730.96, + "end": 16731.67, + "probability": 0.9966 + }, + { + "start": 16732.62, + "end": 16734.62, + "probability": 0.954 + }, + { + "start": 16735.18, + "end": 16738.62, + "probability": 0.9312 + }, + { + "start": 16739.06, + "end": 16742.62, + "probability": 0.4829 + }, + { + "start": 16742.62, + "end": 16744.74, + "probability": 0.3754 + }, + { + "start": 16745.3, + "end": 16746.6, + "probability": 0.8287 + }, + { + "start": 16747.6, + "end": 16750.54, + "probability": 0.9664 + }, + { + "start": 16751.1, + "end": 16755.42, + "probability": 0.9299 + }, + { + "start": 16755.82, + "end": 16757.56, + "probability": 0.5562 + }, + { + "start": 16758.22, + "end": 16760.42, + "probability": 0.9812 + }, + { + "start": 16760.68, + "end": 16762.14, + "probability": 0.653 + }, + { + "start": 16763.42, + "end": 16764.12, + "probability": 0.825 + }, + { + "start": 16764.32, + "end": 16765.42, + "probability": 0.9314 + }, + { + "start": 16768.96, + "end": 16771.04, + "probability": 0.8342 + }, + { + "start": 16771.7, + "end": 16774.48, + "probability": 0.5267 + }, + { + "start": 16775.14, + "end": 16776.6, + "probability": 0.8719 + }, + { + "start": 16777.44, + "end": 16784.36, + "probability": 0.9669 + }, + { + "start": 16784.92, + "end": 16786.12, + "probability": 0.8708 + }, + { + "start": 16787.1, + "end": 16788.22, + "probability": 0.8345 + }, + { + "start": 16788.3, + "end": 16788.62, + "probability": 0.723 + }, + { + "start": 16788.66, + "end": 16789.78, + "probability": 0.9727 + }, + { + "start": 16790.9, + "end": 16791.84, + "probability": 0.8082 + }, + { + "start": 16792.78, + "end": 16794.06, + "probability": 0.8755 + }, + { + "start": 16795.0, + "end": 16796.86, + "probability": 0.959 + }, + { + "start": 16798.02, + "end": 16798.76, + "probability": 0.2216 + }, + { + "start": 16798.8, + "end": 16799.18, + "probability": 0.8324 + }, + { + "start": 16799.98, + "end": 16801.56, + "probability": 0.9995 + }, + { + "start": 16802.48, + "end": 16804.36, + "probability": 0.9878 + }, + { + "start": 16805.22, + "end": 16808.04, + "probability": 0.9927 + }, + { + "start": 16808.84, + "end": 16808.98, + "probability": 0.3008 + }, + { + "start": 16808.98, + "end": 16810.42, + "probability": 0.9501 + }, + { + "start": 16811.42, + "end": 16812.14, + "probability": 0.7458 + }, + { + "start": 16812.16, + "end": 16813.92, + "probability": 0.9753 + }, + { + "start": 16814.92, + "end": 16815.9, + "probability": 0.6642 + }, + { + "start": 16816.08, + "end": 16817.7, + "probability": 0.4819 + }, + { + "start": 16818.32, + "end": 16819.6, + "probability": 0.9904 + }, + { + "start": 16820.16, + "end": 16821.2, + "probability": 0.8385 + }, + { + "start": 16822.06, + "end": 16824.46, + "probability": 0.8398 + }, + { + "start": 16824.84, + "end": 16826.95, + "probability": 0.9316 + }, + { + "start": 16828.22, + "end": 16829.02, + "probability": 0.0927 + }, + { + "start": 16829.24, + "end": 16829.98, + "probability": 0.7107 + }, + { + "start": 16830.58, + "end": 16831.8, + "probability": 0.4582 + }, + { + "start": 16831.8, + "end": 16833.52, + "probability": 0.872 + }, + { + "start": 16833.92, + "end": 16835.7, + "probability": 0.9344 + }, + { + "start": 16836.24, + "end": 16839.72, + "probability": 0.6836 + }, + { + "start": 16840.14, + "end": 16842.64, + "probability": 0.9624 + }, + { + "start": 16843.48, + "end": 16846.2, + "probability": 0.6626 + }, + { + "start": 16846.62, + "end": 16847.12, + "probability": 0.5745 + }, + { + "start": 16848.06, + "end": 16852.42, + "probability": 0.7068 + }, + { + "start": 16853.02, + "end": 16854.04, + "probability": 0.7785 + }, + { + "start": 16854.42, + "end": 16857.32, + "probability": 0.7848 + }, + { + "start": 16857.4, + "end": 16858.14, + "probability": 0.1121 + }, + { + "start": 16858.2, + "end": 16859.06, + "probability": 0.7224 + }, + { + "start": 16859.46, + "end": 16859.96, + "probability": 0.4625 + }, + { + "start": 16860.18, + "end": 16861.52, + "probability": 0.6947 + }, + { + "start": 16861.56, + "end": 16864.16, + "probability": 0.9419 + }, + { + "start": 16864.64, + "end": 16866.56, + "probability": 0.6713 + }, + { + "start": 16867.08, + "end": 16868.02, + "probability": 0.7921 + }, + { + "start": 16868.54, + "end": 16869.58, + "probability": 0.8157 + }, + { + "start": 16869.82, + "end": 16870.12, + "probability": 0.6416 + }, + { + "start": 16870.92, + "end": 16873.75, + "probability": 0.9797 + }, + { + "start": 16874.9, + "end": 16877.1, + "probability": 0.9949 + }, + { + "start": 16877.92, + "end": 16879.34, + "probability": 0.9718 + }, + { + "start": 16880.18, + "end": 16881.05, + "probability": 0.5671 + }, + { + "start": 16881.72, + "end": 16882.64, + "probability": 0.688 + }, + { + "start": 16883.16, + "end": 16883.94, + "probability": 0.9102 + }, + { + "start": 16884.64, + "end": 16886.08, + "probability": 0.9246 + }, + { + "start": 16886.94, + "end": 16888.24, + "probability": 0.8919 + }, + { + "start": 16889.04, + "end": 16891.4, + "probability": 0.9795 + }, + { + "start": 16892.16, + "end": 16896.82, + "probability": 0.997 + }, + { + "start": 16897.52, + "end": 16899.08, + "probability": 0.8048 + }, + { + "start": 16899.66, + "end": 16902.3, + "probability": 0.8549 + }, + { + "start": 16903.08, + "end": 16903.86, + "probability": 0.7387 + }, + { + "start": 16904.32, + "end": 16905.84, + "probability": 0.9836 + }, + { + "start": 16906.32, + "end": 16908.38, + "probability": 0.9208 + }, + { + "start": 16908.82, + "end": 16911.54, + "probability": 0.855 + }, + { + "start": 16911.72, + "end": 16913.87, + "probability": 0.8101 + }, + { + "start": 16914.7, + "end": 16916.72, + "probability": 0.8657 + }, + { + "start": 16917.68, + "end": 16920.76, + "probability": 0.5622 + }, + { + "start": 16921.44, + "end": 16921.84, + "probability": 0.4417 + }, + { + "start": 16922.38, + "end": 16927.22, + "probability": 0.9626 + }, + { + "start": 16927.62, + "end": 16928.62, + "probability": 0.8026 + }, + { + "start": 16928.7, + "end": 16932.08, + "probability": 0.9431 + }, + { + "start": 16932.58, + "end": 16933.8, + "probability": 0.8227 + }, + { + "start": 16933.88, + "end": 16934.41, + "probability": 0.8268 + }, + { + "start": 16935.32, + "end": 16938.58, + "probability": 0.3067 + }, + { + "start": 16938.84, + "end": 16939.14, + "probability": 0.5662 + }, + { + "start": 16940.52, + "end": 16942.1, + "probability": 0.6995 + }, + { + "start": 16943.54, + "end": 16944.94, + "probability": 0.966 + }, + { + "start": 16946.22, + "end": 16949.46, + "probability": 0.9502 + }, + { + "start": 16949.94, + "end": 16950.8, + "probability": 0.6178 + }, + { + "start": 16951.28, + "end": 16954.36, + "probability": 0.9033 + }, + { + "start": 16955.08, + "end": 16958.08, + "probability": 0.9121 + }, + { + "start": 16959.64, + "end": 16962.02, + "probability": 0.9407 + }, + { + "start": 16962.58, + "end": 16968.14, + "probability": 0.8868 + }, + { + "start": 16968.26, + "end": 16971.65, + "probability": 0.8015 + }, + { + "start": 16973.11, + "end": 16977.62, + "probability": 0.8714 + }, + { + "start": 16978.56, + "end": 16979.48, + "probability": 0.797 + }, + { + "start": 16980.46, + "end": 16981.62, + "probability": 0.8804 + }, + { + "start": 16982.22, + "end": 16985.04, + "probability": 0.932 + }, + { + "start": 16985.82, + "end": 16986.9, + "probability": 0.6924 + }, + { + "start": 16987.52, + "end": 16989.16, + "probability": 0.9893 + }, + { + "start": 16989.28, + "end": 16990.98, + "probability": 0.3655 + }, + { + "start": 16991.04, + "end": 16992.8, + "probability": 0.8042 + }, + { + "start": 16992.86, + "end": 16995.58, + "probability": 0.9684 + }, + { + "start": 16995.78, + "end": 16996.7, + "probability": 0.5813 + }, + { + "start": 16997.26, + "end": 16998.42, + "probability": 0.5008 + }, + { + "start": 16999.02, + "end": 17002.7, + "probability": 0.8743 + }, + { + "start": 17003.2, + "end": 17005.62, + "probability": 0.805 + }, + { + "start": 17006.1, + "end": 17008.4, + "probability": 0.9597 + }, + { + "start": 17008.48, + "end": 17011.82, + "probability": 0.952 + }, + { + "start": 17012.38, + "end": 17015.18, + "probability": 0.9373 + }, + { + "start": 17015.74, + "end": 17018.98, + "probability": 0.9559 + }, + { + "start": 17019.52, + "end": 17022.52, + "probability": 0.9162 + }, + { + "start": 17023.08, + "end": 17024.18, + "probability": 0.9741 + }, + { + "start": 17024.62, + "end": 17025.57, + "probability": 0.9673 + }, + { + "start": 17026.54, + "end": 17027.34, + "probability": 0.9268 + }, + { + "start": 17027.38, + "end": 17028.6, + "probability": 0.9306 + }, + { + "start": 17030.34, + "end": 17030.58, + "probability": 0.2925 + }, + { + "start": 17030.58, + "end": 17032.1, + "probability": 0.6324 + }, + { + "start": 17032.45, + "end": 17035.48, + "probability": 0.9803 + }, + { + "start": 17036.24, + "end": 17038.44, + "probability": 0.9567 + }, + { + "start": 17039.8, + "end": 17041.12, + "probability": 0.9323 + }, + { + "start": 17041.26, + "end": 17043.92, + "probability": 0.9208 + }, + { + "start": 17046.24, + "end": 17047.98, + "probability": 0.4335 + }, + { + "start": 17049.34, + "end": 17051.44, + "probability": 0.9808 + }, + { + "start": 17061.96, + "end": 17064.14, + "probability": 0.9547 + }, + { + "start": 17064.26, + "end": 17065.2, + "probability": 0.6381 + }, + { + "start": 17065.68, + "end": 17066.1, + "probability": 0.8706 + }, + { + "start": 17066.42, + "end": 17066.62, + "probability": 0.7292 + }, + { + "start": 17067.38, + "end": 17069.94, + "probability": 0.7983 + }, + { + "start": 17070.46, + "end": 17071.88, + "probability": 0.9869 + }, + { + "start": 17072.04, + "end": 17073.32, + "probability": 0.9754 + }, + { + "start": 17073.94, + "end": 17077.22, + "probability": 0.6324 + }, + { + "start": 17077.7, + "end": 17079.32, + "probability": 0.3732 + }, + { + "start": 17079.42, + "end": 17080.52, + "probability": 0.9762 + }, + { + "start": 17080.68, + "end": 17081.26, + "probability": 0.9488 + }, + { + "start": 17081.54, + "end": 17081.74, + "probability": 0.8374 + }, + { + "start": 17082.14, + "end": 17082.48, + "probability": 0.8104 + }, + { + "start": 17083.62, + "end": 17085.38, + "probability": 0.9066 + }, + { + "start": 17085.46, + "end": 17085.56, + "probability": 0.5905 + }, + { + "start": 17085.76, + "end": 17086.78, + "probability": 0.8448 + }, + { + "start": 17086.84, + "end": 17087.46, + "probability": 0.9587 + }, + { + "start": 17087.6, + "end": 17088.3, + "probability": 0.889 + }, + { + "start": 17089.58, + "end": 17093.0, + "probability": 0.5384 + }, + { + "start": 17103.33, + "end": 17103.44, + "probability": 0.2871 + }, + { + "start": 17103.54, + "end": 17107.3, + "probability": 0.8539 + }, + { + "start": 17109.26, + "end": 17112.3, + "probability": 0.995 + }, + { + "start": 17113.22, + "end": 17115.08, + "probability": 0.9673 + }, + { + "start": 17115.66, + "end": 17117.28, + "probability": 0.6838 + }, + { + "start": 17117.36, + "end": 17117.72, + "probability": 0.8396 + }, + { + "start": 17117.72, + "end": 17117.79, + "probability": 0.5459 + }, + { + "start": 17119.2, + "end": 17120.12, + "probability": 0.4091 + }, + { + "start": 17120.14, + "end": 17121.92, + "probability": 0.9831 + }, + { + "start": 17122.06, + "end": 17126.2, + "probability": 0.8072 + }, + { + "start": 17126.5, + "end": 17128.08, + "probability": 0.6954 + }, + { + "start": 17128.76, + "end": 17129.64, + "probability": 0.8158 + }, + { + "start": 17129.64, + "end": 17132.3, + "probability": 0.9938 + }, + { + "start": 17132.36, + "end": 17133.1, + "probability": 0.8027 + }, + { + "start": 17133.12, + "end": 17134.18, + "probability": 0.9881 + }, + { + "start": 17134.58, + "end": 17135.78, + "probability": 0.3036 + }, + { + "start": 17136.2, + "end": 17140.18, + "probability": 0.5001 + }, + { + "start": 17140.9, + "end": 17141.76, + "probability": 0.7559 + }, + { + "start": 17142.44, + "end": 17143.2, + "probability": 0.7366 + }, + { + "start": 17143.82, + "end": 17143.92, + "probability": 0.5828 + }, + { + "start": 17144.58, + "end": 17144.68, + "probability": 0.3673 + }, + { + "start": 17144.76, + "end": 17145.16, + "probability": 0.9429 + }, + { + "start": 17145.68, + "end": 17145.96, + "probability": 0.9739 + }, + { + "start": 17151.78, + "end": 17155.74, + "probability": 0.9841 + }, + { + "start": 17156.14, + "end": 17156.68, + "probability": 0.5884 + }, + { + "start": 17156.74, + "end": 17157.52, + "probability": 0.8665 + }, + { + "start": 17158.16, + "end": 17161.04, + "probability": 0.8641 + }, + { + "start": 17161.72, + "end": 17162.97, + "probability": 0.9542 + }, + { + "start": 17163.66, + "end": 17167.08, + "probability": 0.9952 + }, + { + "start": 17167.6, + "end": 17173.92, + "probability": 0.9893 + }, + { + "start": 17174.96, + "end": 17175.84, + "probability": 0.6114 + }, + { + "start": 17176.1, + "end": 17180.36, + "probability": 0.916 + }, + { + "start": 17180.58, + "end": 17183.44, + "probability": 0.9932 + }, + { + "start": 17184.56, + "end": 17185.5, + "probability": 0.9626 + }, + { + "start": 17185.6, + "end": 17186.24, + "probability": 0.9919 + }, + { + "start": 17187.12, + "end": 17188.04, + "probability": 0.6112 + }, + { + "start": 17188.24, + "end": 17190.88, + "probability": 0.9126 + }, + { + "start": 17192.02, + "end": 17194.84, + "probability": 0.9717 + }, + { + "start": 17196.4, + "end": 17198.14, + "probability": 0.9969 + }, + { + "start": 17199.04, + "end": 17200.58, + "probability": 0.7943 + }, + { + "start": 17202.42, + "end": 17206.38, + "probability": 0.9921 + }, + { + "start": 17206.38, + "end": 17209.56, + "probability": 0.9976 + }, + { + "start": 17210.78, + "end": 17214.1, + "probability": 0.9971 + }, + { + "start": 17215.02, + "end": 17218.72, + "probability": 0.9922 + }, + { + "start": 17219.81, + "end": 17225.3, + "probability": 0.967 + }, + { + "start": 17225.88, + "end": 17231.56, + "probability": 0.9272 + }, + { + "start": 17236.54, + "end": 17237.22, + "probability": 0.661 + }, + { + "start": 17237.34, + "end": 17237.34, + "probability": 0.6905 + }, + { + "start": 17237.34, + "end": 17237.42, + "probability": 0.1776 + }, + { + "start": 17237.42, + "end": 17237.42, + "probability": 0.3326 + }, + { + "start": 17237.42, + "end": 17237.42, + "probability": 0.0178 + }, + { + "start": 17237.42, + "end": 17237.42, + "probability": 0.2236 + }, + { + "start": 17237.42, + "end": 17237.42, + "probability": 0.0152 + }, + { + "start": 17237.42, + "end": 17237.42, + "probability": 0.1118 + }, + { + "start": 17237.42, + "end": 17237.42, + "probability": 0.2264 + }, + { + "start": 17237.42, + "end": 17239.16, + "probability": 0.4337 + }, + { + "start": 17240.46, + "end": 17242.78, + "probability": 0.3238 + }, + { + "start": 17243.68, + "end": 17244.78, + "probability": 0.4935 + }, + { + "start": 17245.86, + "end": 17247.16, + "probability": 0.8373 + }, + { + "start": 17247.32, + "end": 17248.66, + "probability": 0.9736 + }, + { + "start": 17248.84, + "end": 17251.9, + "probability": 0.6512 + }, + { + "start": 17251.98, + "end": 17254.28, + "probability": 0.9692 + }, + { + "start": 17254.82, + "end": 17257.22, + "probability": 0.9517 + }, + { + "start": 17257.9, + "end": 17261.18, + "probability": 0.9803 + }, + { + "start": 17261.36, + "end": 17264.32, + "probability": 0.8009 + }, + { + "start": 17264.94, + "end": 17265.14, + "probability": 0.5256 + }, + { + "start": 17265.3, + "end": 17266.9, + "probability": 0.9674 + }, + { + "start": 17266.9, + "end": 17269.12, + "probability": 0.6183 + }, + { + "start": 17269.84, + "end": 17270.54, + "probability": 0.9865 + }, + { + "start": 17271.74, + "end": 17273.04, + "probability": 0.9225 + }, + { + "start": 17273.54, + "end": 17277.54, + "probability": 0.7683 + }, + { + "start": 17278.35, + "end": 17283.4, + "probability": 0.9976 + }, + { + "start": 17284.34, + "end": 17288.74, + "probability": 0.9946 + }, + { + "start": 17288.74, + "end": 17294.76, + "probability": 0.9863 + }, + { + "start": 17296.88, + "end": 17304.32, + "probability": 0.857 + }, + { + "start": 17304.54, + "end": 17308.32, + "probability": 0.9915 + }, + { + "start": 17308.76, + "end": 17310.5, + "probability": 0.8994 + }, + { + "start": 17311.2, + "end": 17315.16, + "probability": 0.8682 + }, + { + "start": 17315.56, + "end": 17318.82, + "probability": 0.8824 + }, + { + "start": 17319.32, + "end": 17320.02, + "probability": 0.8095 + }, + { + "start": 17320.54, + "end": 17321.2, + "probability": 0.956 + }, + { + "start": 17322.06, + "end": 17324.02, + "probability": 0.7711 + }, + { + "start": 17324.56, + "end": 17325.34, + "probability": 0.7567 + }, + { + "start": 17325.86, + "end": 17331.86, + "probability": 0.9478 + }, + { + "start": 17332.18, + "end": 17333.15, + "probability": 0.9326 + }, + { + "start": 17333.74, + "end": 17335.0, + "probability": 0.9814 + }, + { + "start": 17335.1, + "end": 17336.12, + "probability": 0.6771 + }, + { + "start": 17336.22, + "end": 17339.0, + "probability": 0.9658 + }, + { + "start": 17339.48, + "end": 17340.6, + "probability": 0.7977 + }, + { + "start": 17341.0, + "end": 17344.5, + "probability": 0.9746 + }, + { + "start": 17345.16, + "end": 17348.34, + "probability": 0.9518 + }, + { + "start": 17350.84, + "end": 17352.9, + "probability": 0.6084 + }, + { + "start": 17352.92, + "end": 17357.76, + "probability": 0.9139 + }, + { + "start": 17357.82, + "end": 17358.58, + "probability": 0.5385 + }, + { + "start": 17358.7, + "end": 17359.24, + "probability": 0.9423 + }, + { + "start": 17359.32, + "end": 17360.5, + "probability": 0.9917 + }, + { + "start": 17360.52, + "end": 17361.72, + "probability": 0.7261 + }, + { + "start": 17361.8, + "end": 17362.7, + "probability": 0.9468 + }, + { + "start": 17363.36, + "end": 17367.74, + "probability": 0.9614 + }, + { + "start": 17368.26, + "end": 17368.72, + "probability": 0.4841 + }, + { + "start": 17369.98, + "end": 17370.52, + "probability": 0.8199 + }, + { + "start": 17370.62, + "end": 17372.14, + "probability": 0.7477 + }, + { + "start": 17372.2, + "end": 17372.2, + "probability": 0.485 + }, + { + "start": 17372.2, + "end": 17372.32, + "probability": 0.6276 + }, + { + "start": 17372.4, + "end": 17373.02, + "probability": 0.6797 + }, + { + "start": 17373.06, + "end": 17373.52, + "probability": 0.8823 + }, + { + "start": 17373.54, + "end": 17375.18, + "probability": 0.6081 + }, + { + "start": 17375.22, + "end": 17375.94, + "probability": 0.6069 + }, + { + "start": 17376.0, + "end": 17376.4, + "probability": 0.6438 + }, + { + "start": 17376.62, + "end": 17376.72, + "probability": 0.5966 + }, + { + "start": 17376.72, + "end": 17379.32, + "probability": 0.9333 + }, + { + "start": 17379.42, + "end": 17379.76, + "probability": 0.2904 + }, + { + "start": 17380.68, + "end": 17383.08, + "probability": 0.4779 + }, + { + "start": 17383.14, + "end": 17383.48, + "probability": 0.8003 + }, + { + "start": 17383.48, + "end": 17384.13, + "probability": 0.5329 + }, + { + "start": 17385.94, + "end": 17387.26, + "probability": 0.2539 + }, + { + "start": 17388.3, + "end": 17391.72, + "probability": 0.7432 + }, + { + "start": 17392.44, + "end": 17394.86, + "probability": 0.9405 + }, + { + "start": 17395.38, + "end": 17399.04, + "probability": 0.678 + }, + { + "start": 17399.24, + "end": 17399.72, + "probability": 0.9115 + }, + { + "start": 17400.22, + "end": 17403.2, + "probability": 0.9651 + }, + { + "start": 17404.26, + "end": 17406.54, + "probability": 0.9838 + }, + { + "start": 17407.0, + "end": 17408.66, + "probability": 0.9805 + }, + { + "start": 17410.18, + "end": 17411.74, + "probability": 0.7684 + }, + { + "start": 17411.74, + "end": 17415.04, + "probability": 0.9972 + }, + { + "start": 17416.06, + "end": 17418.6, + "probability": 0.9952 + }, + { + "start": 17419.12, + "end": 17421.12, + "probability": 0.9604 + }, + { + "start": 17421.82, + "end": 17423.19, + "probability": 0.4338 + }, + { + "start": 17423.98, + "end": 17427.58, + "probability": 0.9751 + }, + { + "start": 17428.72, + "end": 17430.52, + "probability": 0.9924 + }, + { + "start": 17431.06, + "end": 17432.06, + "probability": 0.9768 + }, + { + "start": 17432.96, + "end": 17435.08, + "probability": 0.7525 + }, + { + "start": 17435.24, + "end": 17435.56, + "probability": 0.5693 + }, + { + "start": 17436.04, + "end": 17437.34, + "probability": 0.9413 + }, + { + "start": 17437.8, + "end": 17438.53, + "probability": 0.9729 + }, + { + "start": 17439.38, + "end": 17442.42, + "probability": 0.8225 + }, + { + "start": 17442.5, + "end": 17442.9, + "probability": 0.9157 + }, + { + "start": 17443.88, + "end": 17444.32, + "probability": 0.4876 + }, + { + "start": 17444.98, + "end": 17446.07, + "probability": 0.888 + }, + { + "start": 17446.26, + "end": 17449.38, + "probability": 0.978 + }, + { + "start": 17449.38, + "end": 17451.7, + "probability": 0.8809 + }, + { + "start": 17452.18, + "end": 17453.3, + "probability": 0.9329 + }, + { + "start": 17453.44, + "end": 17454.58, + "probability": 0.989 + }, + { + "start": 17455.3, + "end": 17455.82, + "probability": 0.8159 + }, + { + "start": 17456.04, + "end": 17457.68, + "probability": 0.8615 + }, + { + "start": 17458.54, + "end": 17462.76, + "probability": 0.8227 + }, + { + "start": 17463.26, + "end": 17467.56, + "probability": 0.9718 + }, + { + "start": 17468.67, + "end": 17469.82, + "probability": 0.672 + }, + { + "start": 17470.98, + "end": 17472.1, + "probability": 0.7651 + }, + { + "start": 17472.26, + "end": 17473.86, + "probability": 0.9755 + }, + { + "start": 17474.58, + "end": 17477.28, + "probability": 0.9616 + }, + { + "start": 17477.95, + "end": 17482.88, + "probability": 0.9217 + }, + { + "start": 17483.02, + "end": 17483.44, + "probability": 0.7686 + }, + { + "start": 17483.5, + "end": 17484.72, + "probability": 0.9847 + }, + { + "start": 17485.06, + "end": 17485.99, + "probability": 0.9861 + }, + { + "start": 17486.88, + "end": 17488.5, + "probability": 0.5656 + }, + { + "start": 17488.54, + "end": 17489.86, + "probability": 0.9814 + }, + { + "start": 17490.38, + "end": 17492.5, + "probability": 0.8291 + }, + { + "start": 17493.14, + "end": 17495.22, + "probability": 0.6792 + }, + { + "start": 17495.84, + "end": 17496.4, + "probability": 0.9116 + }, + { + "start": 17496.88, + "end": 17498.84, + "probability": 0.9831 + }, + { + "start": 17499.32, + "end": 17500.16, + "probability": 0.8452 + }, + { + "start": 17500.5, + "end": 17503.58, + "probability": 0.8498 + }, + { + "start": 17503.96, + "end": 17504.63, + "probability": 0.9653 + }, + { + "start": 17505.3, + "end": 17507.18, + "probability": 0.9683 + }, + { + "start": 17508.96, + "end": 17511.0, + "probability": 0.9971 + }, + { + "start": 17511.88, + "end": 17515.16, + "probability": 0.8309 + }, + { + "start": 17515.84, + "end": 17518.46, + "probability": 0.9443 + }, + { + "start": 17518.46, + "end": 17521.02, + "probability": 0.9975 + }, + { + "start": 17522.0, + "end": 17525.14, + "probability": 0.9647 + }, + { + "start": 17525.14, + "end": 17528.44, + "probability": 0.9951 + }, + { + "start": 17529.0, + "end": 17529.46, + "probability": 0.4936 + }, + { + "start": 17530.42, + "end": 17533.2, + "probability": 0.9701 + }, + { + "start": 17533.92, + "end": 17540.1, + "probability": 0.9956 + }, + { + "start": 17540.78, + "end": 17541.54, + "probability": 0.9735 + }, + { + "start": 17541.86, + "end": 17542.36, + "probability": 0.9846 + }, + { + "start": 17542.52, + "end": 17542.8, + "probability": 0.8024 + }, + { + "start": 17542.98, + "end": 17544.82, + "probability": 0.9752 + }, + { + "start": 17545.34, + "end": 17548.9, + "probability": 0.835 + }, + { + "start": 17549.52, + "end": 17553.87, + "probability": 0.9249 + }, + { + "start": 17554.48, + "end": 17559.32, + "probability": 0.9962 + }, + { + "start": 17560.76, + "end": 17561.88, + "probability": 0.9701 + }, + { + "start": 17562.36, + "end": 17568.26, + "probability": 0.803 + }, + { + "start": 17568.3, + "end": 17569.24, + "probability": 0.6944 + }, + { + "start": 17570.14, + "end": 17571.06, + "probability": 0.9937 + }, + { + "start": 17571.62, + "end": 17573.62, + "probability": 0.8041 + }, + { + "start": 17575.48, + "end": 17578.64, + "probability": 0.8374 + }, + { + "start": 17579.22, + "end": 17579.7, + "probability": 0.8106 + }, + { + "start": 17580.6, + "end": 17583.28, + "probability": 0.9583 + }, + { + "start": 17583.42, + "end": 17584.64, + "probability": 0.8973 + }, + { + "start": 17584.76, + "end": 17586.06, + "probability": 0.9344 + }, + { + "start": 17586.38, + "end": 17588.38, + "probability": 0.9857 + }, + { + "start": 17588.46, + "end": 17589.24, + "probability": 0.9288 + }, + { + "start": 17589.78, + "end": 17591.38, + "probability": 0.9983 + }, + { + "start": 17591.52, + "end": 17592.86, + "probability": 0.956 + }, + { + "start": 17592.9, + "end": 17593.12, + "probability": 0.845 + }, + { + "start": 17593.58, + "end": 17595.24, + "probability": 0.9985 + }, + { + "start": 17595.52, + "end": 17596.68, + "probability": 0.9189 + }, + { + "start": 17596.88, + "end": 17597.49, + "probability": 0.9891 + }, + { + "start": 17597.92, + "end": 17598.5, + "probability": 0.5008 + }, + { + "start": 17602.22, + "end": 17605.36, + "probability": 0.9893 + }, + { + "start": 17605.46, + "end": 17609.74, + "probability": 0.9927 + }, + { + "start": 17609.74, + "end": 17613.14, + "probability": 0.9929 + }, + { + "start": 17615.46, + "end": 17619.32, + "probability": 0.9131 + }, + { + "start": 17619.32, + "end": 17623.04, + "probability": 0.9933 + }, + { + "start": 17623.68, + "end": 17624.96, + "probability": 0.9309 + }, + { + "start": 17625.08, + "end": 17626.8, + "probability": 0.9985 + }, + { + "start": 17627.18, + "end": 17628.8, + "probability": 0.9858 + }, + { + "start": 17629.74, + "end": 17630.3, + "probability": 0.9865 + }, + { + "start": 17630.74, + "end": 17632.26, + "probability": 0.9859 + }, + { + "start": 17633.14, + "end": 17635.08, + "probability": 0.5977 + }, + { + "start": 17635.6, + "end": 17636.6, + "probability": 0.8412 + }, + { + "start": 17637.26, + "end": 17638.5, + "probability": 0.9745 + }, + { + "start": 17638.84, + "end": 17640.56, + "probability": 0.8607 + }, + { + "start": 17640.64, + "end": 17642.42, + "probability": 0.9835 + }, + { + "start": 17642.68, + "end": 17643.88, + "probability": 0.9678 + }, + { + "start": 17644.36, + "end": 17646.08, + "probability": 0.9978 + }, + { + "start": 17646.32, + "end": 17647.24, + "probability": 0.8361 + }, + { + "start": 17647.74, + "end": 17648.54, + "probability": 0.5384 + }, + { + "start": 17648.76, + "end": 17649.42, + "probability": 0.8215 + }, + { + "start": 17649.52, + "end": 17650.4, + "probability": 0.5347 + }, + { + "start": 17650.48, + "end": 17651.46, + "probability": 0.8434 + }, + { + "start": 17651.88, + "end": 17655.64, + "probability": 0.8165 + }, + { + "start": 17655.66, + "end": 17656.4, + "probability": 0.9357 + }, + { + "start": 17656.74, + "end": 17660.08, + "probability": 0.9757 + }, + { + "start": 17660.28, + "end": 17666.6, + "probability": 0.938 + }, + { + "start": 17667.18, + "end": 17670.16, + "probability": 0.7332 + }, + { + "start": 17670.16, + "end": 17670.9, + "probability": 0.826 + }, + { + "start": 17672.26, + "end": 17672.6, + "probability": 0.8435 + }, + { + "start": 17673.26, + "end": 17673.84, + "probability": 0.8538 + }, + { + "start": 17673.84, + "end": 17674.62, + "probability": 0.9749 + }, + { + "start": 17674.72, + "end": 17677.94, + "probability": 0.8711 + }, + { + "start": 17679.08, + "end": 17680.9, + "probability": 0.7817 + }, + { + "start": 17681.16, + "end": 17682.52, + "probability": 0.9748 + }, + { + "start": 17682.62, + "end": 17683.92, + "probability": 0.8645 + }, + { + "start": 17684.68, + "end": 17687.76, + "probability": 0.9744 + }, + { + "start": 17688.3, + "end": 17691.58, + "probability": 0.9946 + }, + { + "start": 17692.6, + "end": 17696.34, + "probability": 0.7911 + }, + { + "start": 17696.44, + "end": 17697.02, + "probability": 0.8125 + }, + { + "start": 17697.1, + "end": 17697.95, + "probability": 0.8939 + }, + { + "start": 17698.64, + "end": 17700.74, + "probability": 0.9897 + }, + { + "start": 17701.24, + "end": 17703.8, + "probability": 0.8988 + }, + { + "start": 17704.08, + "end": 17706.0, + "probability": 0.928 + }, + { + "start": 17706.5, + "end": 17710.34, + "probability": 0.9886 + }, + { + "start": 17710.52, + "end": 17710.66, + "probability": 0.1322 + }, + { + "start": 17710.84, + "end": 17713.14, + "probability": 0.7987 + }, + { + "start": 17713.48, + "end": 17714.37, + "probability": 0.996 + }, + { + "start": 17715.1, + "end": 17716.8, + "probability": 0.9961 + }, + { + "start": 17717.26, + "end": 17717.9, + "probability": 0.8324 + }, + { + "start": 17719.84, + "end": 17721.54, + "probability": 0.9535 + }, + { + "start": 17736.44, + "end": 17737.2, + "probability": 0.7211 + }, + { + "start": 17738.02, + "end": 17738.84, + "probability": 0.6662 + }, + { + "start": 17740.04, + "end": 17742.4, + "probability": 0.9283 + }, + { + "start": 17742.56, + "end": 17744.76, + "probability": 0.9017 + }, + { + "start": 17748.16, + "end": 17750.12, + "probability": 0.788 + }, + { + "start": 17751.52, + "end": 17751.87, + "probability": 0.0774 + }, + { + "start": 17753.56, + "end": 17757.14, + "probability": 0.9714 + }, + { + "start": 17757.18, + "end": 17761.8, + "probability": 0.9679 + }, + { + "start": 17761.8, + "end": 17764.42, + "probability": 0.9655 + }, + { + "start": 17765.92, + "end": 17772.34, + "probability": 0.9786 + }, + { + "start": 17772.92, + "end": 17774.02, + "probability": 0.9361 + }, + { + "start": 17774.72, + "end": 17775.08, + "probability": 0.7686 + }, + { + "start": 17775.72, + "end": 17777.42, + "probability": 0.949 + }, + { + "start": 17777.9, + "end": 17778.96, + "probability": 0.5057 + }, + { + "start": 17779.1, + "end": 17779.6, + "probability": 0.7654 + }, + { + "start": 17780.08, + "end": 17780.94, + "probability": 0.9052 + }, + { + "start": 17781.0, + "end": 17782.42, + "probability": 0.7924 + }, + { + "start": 17783.12, + "end": 17786.08, + "probability": 0.8063 + }, + { + "start": 17787.38, + "end": 17790.54, + "probability": 0.8396 + }, + { + "start": 17790.8, + "end": 17791.74, + "probability": 0.7572 + }, + { + "start": 17792.7, + "end": 17796.14, + "probability": 0.9598 + }, + { + "start": 17796.7, + "end": 17798.94, + "probability": 0.9717 + }, + { + "start": 17799.22, + "end": 17799.22, + "probability": 0.1407 + }, + { + "start": 17799.22, + "end": 17800.1, + "probability": 0.7 + }, + { + "start": 17800.9, + "end": 17807.58, + "probability": 0.9827 + }, + { + "start": 17808.22, + "end": 17808.94, + "probability": 0.5944 + }, + { + "start": 17809.18, + "end": 17810.96, + "probability": 0.7402 + }, + { + "start": 17811.1, + "end": 17812.07, + "probability": 0.9554 + }, + { + "start": 17812.98, + "end": 17816.52, + "probability": 0.9788 + }, + { + "start": 17817.26, + "end": 17818.78, + "probability": 0.8367 + }, + { + "start": 17818.88, + "end": 17822.84, + "probability": 0.9799 + }, + { + "start": 17823.48, + "end": 17826.32, + "probability": 0.9197 + }, + { + "start": 17826.92, + "end": 17828.1, + "probability": 0.7764 + }, + { + "start": 17828.64, + "end": 17831.92, + "probability": 0.9804 + }, + { + "start": 17833.26, + "end": 17836.82, + "probability": 0.9772 + }, + { + "start": 17837.58, + "end": 17838.56, + "probability": 0.5508 + }, + { + "start": 17838.9, + "end": 17839.78, + "probability": 0.0897 + }, + { + "start": 17839.86, + "end": 17842.06, + "probability": 0.9048 + }, + { + "start": 17842.62, + "end": 17844.1, + "probability": 0.6228 + }, + { + "start": 17844.34, + "end": 17846.26, + "probability": 0.8342 + }, + { + "start": 17846.62, + "end": 17849.1, + "probability": 0.8179 + }, + { + "start": 17850.7, + "end": 17853.9, + "probability": 0.4424 + }, + { + "start": 17854.56, + "end": 17854.8, + "probability": 0.0155 + }, + { + "start": 17854.8, + "end": 17854.8, + "probability": 0.1965 + }, + { + "start": 17854.8, + "end": 17855.32, + "probability": 0.0624 + }, + { + "start": 17855.86, + "end": 17856.34, + "probability": 0.4329 + }, + { + "start": 17856.48, + "end": 17860.5, + "probability": 0.5236 + }, + { + "start": 17860.52, + "end": 17862.72, + "probability": 0.7003 + }, + { + "start": 17863.26, + "end": 17867.0, + "probability": 0.7285 + }, + { + "start": 17867.86, + "end": 17868.54, + "probability": 0.3279 + }, + { + "start": 17869.78, + "end": 17873.7, + "probability": 0.9971 + }, + { + "start": 17873.98, + "end": 17873.98, + "probability": 0.0063 + }, + { + "start": 17874.0, + "end": 17874.0, + "probability": 0.0645 + }, + { + "start": 17874.0, + "end": 17875.52, + "probability": 0.501 + }, + { + "start": 17877.74, + "end": 17880.24, + "probability": 0.874 + }, + { + "start": 17883.17, + "end": 17884.4, + "probability": 0.3121 + }, + { + "start": 17884.42, + "end": 17886.5, + "probability": 0.8107 + }, + { + "start": 17887.62, + "end": 17892.26, + "probability": 0.8142 + }, + { + "start": 17892.36, + "end": 17894.46, + "probability": 0.5098 + }, + { + "start": 17894.46, + "end": 17896.82, + "probability": 0.6992 + }, + { + "start": 17897.06, + "end": 17898.54, + "probability": 0.9824 + }, + { + "start": 17900.02, + "end": 17901.91, + "probability": 0.762 + }, + { + "start": 17903.78, + "end": 17904.33, + "probability": 0.1719 + }, + { + "start": 17905.32, + "end": 17907.3, + "probability": 0.375 + }, + { + "start": 17907.3, + "end": 17907.68, + "probability": 0.4951 + }, + { + "start": 17907.68, + "end": 17909.24, + "probability": 0.5584 + }, + { + "start": 17910.02, + "end": 17913.14, + "probability": 0.9866 + }, + { + "start": 17913.92, + "end": 17914.6, + "probability": 0.7169 + }, + { + "start": 17914.6, + "end": 17915.24, + "probability": 0.3965 + }, + { + "start": 17915.38, + "end": 17916.67, + "probability": 0.6622 + }, + { + "start": 17917.9, + "end": 17919.16, + "probability": 0.9878 + }, + { + "start": 17919.34, + "end": 17919.38, + "probability": 0.0377 + }, + { + "start": 17919.38, + "end": 17919.7, + "probability": 0.5859 + }, + { + "start": 17919.78, + "end": 17919.88, + "probability": 0.5459 + }, + { + "start": 17920.9, + "end": 17923.34, + "probability": 0.7186 + }, + { + "start": 17923.8, + "end": 17925.44, + "probability": 0.6878 + }, + { + "start": 17926.36, + "end": 17929.08, + "probability": 0.4871 + }, + { + "start": 17930.04, + "end": 17932.64, + "probability": 0.4623 + }, + { + "start": 17932.72, + "end": 17936.56, + "probability": 0.8477 + }, + { + "start": 17936.88, + "end": 17940.42, + "probability": 0.9902 + }, + { + "start": 17940.48, + "end": 17941.02, + "probability": 0.9885 + }, + { + "start": 17941.2, + "end": 17941.92, + "probability": 0.2251 + }, + { + "start": 17942.16, + "end": 17943.1, + "probability": 0.5673 + }, + { + "start": 17943.74, + "end": 17944.24, + "probability": 0.2308 + }, + { + "start": 17944.24, + "end": 17947.34, + "probability": 0.3463 + }, + { + "start": 17948.1, + "end": 17948.64, + "probability": 0.1401 + }, + { + "start": 17951.18, + "end": 17953.24, + "probability": 0.6286 + }, + { + "start": 17955.34, + "end": 17957.28, + "probability": 0.654 + }, + { + "start": 17957.54, + "end": 17957.54, + "probability": 0.1165 + }, + { + "start": 17957.64, + "end": 17961.88, + "probability": 0.8204 + }, + { + "start": 17963.58, + "end": 17964.14, + "probability": 0.646 + }, + { + "start": 17964.52, + "end": 17965.82, + "probability": 0.4492 + }, + { + "start": 17966.92, + "end": 17969.06, + "probability": 0.9786 + }, + { + "start": 17969.66, + "end": 17970.2, + "probability": 0.2396 + }, + { + "start": 17970.92, + "end": 17971.3, + "probability": 0.1905 + }, + { + "start": 17971.3, + "end": 17971.32, + "probability": 0.2524 + }, + { + "start": 17971.68, + "end": 17976.3, + "probability": 0.6382 + }, + { + "start": 17976.86, + "end": 17977.0, + "probability": 0.4973 + }, + { + "start": 17977.12, + "end": 17977.5, + "probability": 0.588 + }, + { + "start": 17978.64, + "end": 17980.88, + "probability": 0.9217 + }, + { + "start": 17980.96, + "end": 17982.0, + "probability": 0.9231 + }, + { + "start": 17982.7, + "end": 17985.72, + "probability": 0.9414 + }, + { + "start": 17986.38, + "end": 17987.52, + "probability": 0.9773 + }, + { + "start": 17989.12, + "end": 17991.92, + "probability": 0.9836 + }, + { + "start": 17995.66, + "end": 17996.94, + "probability": 0.9914 + }, + { + "start": 17997.16, + "end": 18000.2, + "probability": 0.9704 + }, + { + "start": 18001.18, + "end": 18001.38, + "probability": 0.2113 + }, + { + "start": 18001.38, + "end": 18003.58, + "probability": 0.1858 + }, + { + "start": 18004.18, + "end": 18005.5, + "probability": 0.7601 + }, + { + "start": 18008.06, + "end": 18008.18, + "probability": 0.0663 + }, + { + "start": 18008.18, + "end": 18009.12, + "probability": 0.3507 + }, + { + "start": 18009.12, + "end": 18009.94, + "probability": 0.7228 + }, + { + "start": 18010.48, + "end": 18010.9, + "probability": 0.6466 + }, + { + "start": 18011.0, + "end": 18011.26, + "probability": 0.7882 + }, + { + "start": 18011.36, + "end": 18014.56, + "probability": 0.9411 + }, + { + "start": 18014.72, + "end": 18015.64, + "probability": 0.9492 + }, + { + "start": 18016.0, + "end": 18018.46, + "probability": 0.9798 + }, + { + "start": 18018.74, + "end": 18019.7, + "probability": 0.9731 + }, + { + "start": 18020.54, + "end": 18021.34, + "probability": 0.2271 + }, + { + "start": 18021.34, + "end": 18021.46, + "probability": 0.4051 + }, + { + "start": 18021.54, + "end": 18022.44, + "probability": 0.93 + }, + { + "start": 18022.5, + "end": 18023.56, + "probability": 0.887 + }, + { + "start": 18023.56, + "end": 18023.96, + "probability": 0.1207 + }, + { + "start": 18024.42, + "end": 18024.58, + "probability": 0.4047 + }, + { + "start": 18024.64, + "end": 18025.42, + "probability": 0.921 + }, + { + "start": 18025.92, + "end": 18028.42, + "probability": 0.916 + }, + { + "start": 18028.92, + "end": 18030.74, + "probability": 0.5436 + }, + { + "start": 18030.84, + "end": 18031.9, + "probability": 0.8792 + }, + { + "start": 18031.94, + "end": 18032.6, + "probability": 0.8313 + }, + { + "start": 18033.08, + "end": 18035.14, + "probability": 0.0236 + }, + { + "start": 18035.2, + "end": 18035.9, + "probability": 0.8211 + }, + { + "start": 18037.26, + "end": 18038.08, + "probability": 0.914 + }, + { + "start": 18038.12, + "end": 18039.4, + "probability": 0.9963 + }, + { + "start": 18039.68, + "end": 18042.46, + "probability": 0.8503 + }, + { + "start": 18042.52, + "end": 18045.02, + "probability": 0.9699 + }, + { + "start": 18045.02, + "end": 18045.02, + "probability": 0.0882 + }, + { + "start": 18045.02, + "end": 18048.48, + "probability": 0.9495 + }, + { + "start": 18049.04, + "end": 18051.7, + "probability": 0.9771 + }, + { + "start": 18051.88, + "end": 18054.28, + "probability": 0.9618 + }, + { + "start": 18054.34, + "end": 18055.79, + "probability": 0.9577 + }, + { + "start": 18055.94, + "end": 18060.44, + "probability": 0.9577 + }, + { + "start": 18061.38, + "end": 18064.22, + "probability": 0.8828 + }, + { + "start": 18064.5, + "end": 18064.76, + "probability": 0.5857 + }, + { + "start": 18065.04, + "end": 18065.94, + "probability": 0.1768 + }, + { + "start": 18066.02, + "end": 18066.9, + "probability": 0.4905 + }, + { + "start": 18067.28, + "end": 18068.2, + "probability": 0.2711 + }, + { + "start": 18068.74, + "end": 18071.56, + "probability": 0.8608 + }, + { + "start": 18072.4, + "end": 18073.4, + "probability": 0.9491 + }, + { + "start": 18073.7, + "end": 18074.48, + "probability": 0.9594 + }, + { + "start": 18074.52, + "end": 18077.7, + "probability": 0.9723 + }, + { + "start": 18078.6, + "end": 18082.54, + "probability": 0.9724 + }, + { + "start": 18083.02, + "end": 18083.28, + "probability": 0.9783 + }, + { + "start": 18083.84, + "end": 18084.34, + "probability": 0.9233 + }, + { + "start": 18084.88, + "end": 18086.0, + "probability": 0.9163 + }, + { + "start": 18087.3, + "end": 18089.82, + "probability": 0.9828 + }, + { + "start": 18090.8, + "end": 18093.42, + "probability": 0.9856 + }, + { + "start": 18093.78, + "end": 18094.4, + "probability": 0.6578 + }, + { + "start": 18094.82, + "end": 18095.22, + "probability": 0.9292 + }, + { + "start": 18096.76, + "end": 18097.66, + "probability": 0.8729 + }, + { + "start": 18098.6, + "end": 18099.76, + "probability": 0.996 + }, + { + "start": 18100.8, + "end": 18102.88, + "probability": 0.9672 + }, + { + "start": 18104.02, + "end": 18105.64, + "probability": 0.9917 + }, + { + "start": 18106.2, + "end": 18109.72, + "probability": 0.9937 + }, + { + "start": 18111.0, + "end": 18113.2, + "probability": 0.968 + }, + { + "start": 18113.24, + "end": 18114.64, + "probability": 0.9951 + }, + { + "start": 18114.72, + "end": 18116.76, + "probability": 0.9937 + }, + { + "start": 18117.4, + "end": 18118.36, + "probability": 0.8604 + }, + { + "start": 18119.1, + "end": 18120.4, + "probability": 0.9951 + }, + { + "start": 18121.31, + "end": 18123.32, + "probability": 0.9946 + }, + { + "start": 18124.04, + "end": 18125.34, + "probability": 0.9435 + }, + { + "start": 18125.78, + "end": 18127.9, + "probability": 0.962 + }, + { + "start": 18128.32, + "end": 18129.22, + "probability": 0.9771 + }, + { + "start": 18130.46, + "end": 18131.08, + "probability": 0.8513 + }, + { + "start": 18132.12, + "end": 18132.86, + "probability": 0.9672 + }, + { + "start": 18133.28, + "end": 18137.46, + "probability": 0.974 + }, + { + "start": 18139.68, + "end": 18144.22, + "probability": 0.9953 + }, + { + "start": 18144.9, + "end": 18147.98, + "probability": 0.9106 + }, + { + "start": 18149.98, + "end": 18156.06, + "probability": 0.9752 + }, + { + "start": 18156.56, + "end": 18157.68, + "probability": 0.9868 + }, + { + "start": 18158.24, + "end": 18160.54, + "probability": 0.9282 + }, + { + "start": 18161.08, + "end": 18161.52, + "probability": 0.9084 + }, + { + "start": 18162.16, + "end": 18164.36, + "probability": 0.9632 + }, + { + "start": 18164.46, + "end": 18165.54, + "probability": 0.9451 + }, + { + "start": 18165.9, + "end": 18166.96, + "probability": 0.9233 + }, + { + "start": 18167.92, + "end": 18169.02, + "probability": 0.937 + }, + { + "start": 18169.12, + "end": 18170.84, + "probability": 0.8523 + }, + { + "start": 18170.88, + "end": 18173.14, + "probability": 0.7456 + }, + { + "start": 18174.76, + "end": 18176.1, + "probability": 0.9947 + }, + { + "start": 18176.64, + "end": 18180.72, + "probability": 0.709 + }, + { + "start": 18180.9, + "end": 18184.3, + "probability": 0.8729 + }, + { + "start": 18185.16, + "end": 18185.3, + "probability": 0.3122 + }, + { + "start": 18185.48, + "end": 18186.78, + "probability": 0.9897 + }, + { + "start": 18186.92, + "end": 18187.58, + "probability": 0.7909 + }, + { + "start": 18188.04, + "end": 18190.86, + "probability": 0.9744 + }, + { + "start": 18192.04, + "end": 18192.62, + "probability": 0.8885 + }, + { + "start": 18192.9, + "end": 18198.14, + "probability": 0.9922 + }, + { + "start": 18198.72, + "end": 18203.42, + "probability": 0.9856 + }, + { + "start": 18203.42, + "end": 18207.2, + "probability": 0.9864 + }, + { + "start": 18207.78, + "end": 18208.46, + "probability": 0.7592 + }, + { + "start": 18209.02, + "end": 18210.68, + "probability": 0.9863 + }, + { + "start": 18211.84, + "end": 18212.45, + "probability": 0.8337 + }, + { + "start": 18213.6, + "end": 18215.42, + "probability": 0.9829 + }, + { + "start": 18215.7, + "end": 18218.3, + "probability": 0.9938 + }, + { + "start": 18218.88, + "end": 18220.22, + "probability": 0.9565 + }, + { + "start": 18220.82, + "end": 18222.22, + "probability": 0.8698 + }, + { + "start": 18223.44, + "end": 18226.54, + "probability": 0.9749 + }, + { + "start": 18227.2, + "end": 18229.3, + "probability": 0.9852 + }, + { + "start": 18229.78, + "end": 18231.32, + "probability": 0.9867 + }, + { + "start": 18231.98, + "end": 18233.8, + "probability": 0.9504 + }, + { + "start": 18234.54, + "end": 18235.68, + "probability": 0.9697 + }, + { + "start": 18236.66, + "end": 18239.0, + "probability": 0.9966 + }, + { + "start": 18240.64, + "end": 18241.98, + "probability": 0.9898 + }, + { + "start": 18242.76, + "end": 18246.72, + "probability": 0.9932 + }, + { + "start": 18247.36, + "end": 18249.26, + "probability": 0.899 + }, + { + "start": 18249.68, + "end": 18249.98, + "probability": 0.8804 + }, + { + "start": 18251.9, + "end": 18253.98, + "probability": 0.7042 + }, + { + "start": 18254.08, + "end": 18255.9, + "probability": 0.6611 + }, + { + "start": 18255.9, + "end": 18256.68, + "probability": 0.6208 + }, + { + "start": 18258.28, + "end": 18259.66, + "probability": 0.0599 + }, + { + "start": 18259.66, + "end": 18260.88, + "probability": 0.1634 + }, + { + "start": 18260.96, + "end": 18266.8, + "probability": 0.8909 + }, + { + "start": 18267.42, + "end": 18270.94, + "probability": 0.8984 + }, + { + "start": 18272.32, + "end": 18274.98, + "probability": 0.7795 + }, + { + "start": 18275.58, + "end": 18279.34, + "probability": 0.9766 + }, + { + "start": 18280.44, + "end": 18281.08, + "probability": 0.1735 + }, + { + "start": 18283.66, + "end": 18283.94, + "probability": 0.0728 + }, + { + "start": 18284.28, + "end": 18285.68, + "probability": 0.3848 + }, + { + "start": 18286.32, + "end": 18292.12, + "probability": 0.8878 + }, + { + "start": 18292.12, + "end": 18298.54, + "probability": 0.9829 + }, + { + "start": 18298.64, + "end": 18299.52, + "probability": 0.998 + }, + { + "start": 18303.08, + "end": 18305.28, + "probability": 0.8762 + }, + { + "start": 18306.12, + "end": 18307.72, + "probability": 0.2543 + }, + { + "start": 18307.86, + "end": 18308.96, + "probability": 0.5057 + }, + { + "start": 18310.35, + "end": 18317.38, + "probability": 0.2512 + }, + { + "start": 18319.0, + "end": 18320.92, + "probability": 0.0633 + }, + { + "start": 18332.3, + "end": 18334.9, + "probability": 0.4849 + }, + { + "start": 18335.58, + "end": 18338.72, + "probability": 0.4935 + }, + { + "start": 18338.88, + "end": 18340.84, + "probability": 0.9842 + }, + { + "start": 18341.06, + "end": 18341.28, + "probability": 0.763 + }, + { + "start": 18341.36, + "end": 18345.7, + "probability": 0.9955 + }, + { + "start": 18346.72, + "end": 18350.6, + "probability": 0.8664 + }, + { + "start": 18351.3, + "end": 18356.9, + "probability": 0.9979 + }, + { + "start": 18357.9, + "end": 18358.76, + "probability": 0.9082 + }, + { + "start": 18359.42, + "end": 18363.38, + "probability": 0.9677 + }, + { + "start": 18364.22, + "end": 18365.12, + "probability": 0.8445 + }, + { + "start": 18365.64, + "end": 18369.0, + "probability": 0.8491 + }, + { + "start": 18369.58, + "end": 18373.24, + "probability": 0.9386 + }, + { + "start": 18373.3, + "end": 18374.32, + "probability": 0.9327 + }, + { + "start": 18374.48, + "end": 18376.0, + "probability": 0.4361 + }, + { + "start": 18376.28, + "end": 18376.64, + "probability": 0.6871 + }, + { + "start": 18377.34, + "end": 18378.38, + "probability": 0.7732 + }, + { + "start": 18379.58, + "end": 18379.58, + "probability": 0.3576 + }, + { + "start": 18379.58, + "end": 18380.04, + "probability": 0.9714 + }, + { + "start": 18380.6, + "end": 18382.16, + "probability": 0.7641 + }, + { + "start": 18383.06, + "end": 18387.36, + "probability": 0.9984 + }, + { + "start": 18387.96, + "end": 18392.88, + "probability": 0.9905 + }, + { + "start": 18393.84, + "end": 18397.86, + "probability": 0.9927 + }, + { + "start": 18398.44, + "end": 18400.0, + "probability": 0.9417 + }, + { + "start": 18400.96, + "end": 18402.8, + "probability": 0.9285 + }, + { + "start": 18403.54, + "end": 18407.38, + "probability": 0.9885 + }, + { + "start": 18408.24, + "end": 18410.18, + "probability": 0.9948 + }, + { + "start": 18410.98, + "end": 18412.9, + "probability": 0.9896 + }, + { + "start": 18413.42, + "end": 18414.34, + "probability": 0.7951 + }, + { + "start": 18415.8, + "end": 18416.94, + "probability": 0.9977 + }, + { + "start": 18418.2, + "end": 18419.22, + "probability": 0.8885 + }, + { + "start": 18419.92, + "end": 18426.74, + "probability": 0.998 + }, + { + "start": 18426.9, + "end": 18428.64, + "probability": 0.8962 + }, + { + "start": 18429.18, + "end": 18432.86, + "probability": 0.9917 + }, + { + "start": 18433.06, + "end": 18434.28, + "probability": 0.8535 + }, + { + "start": 18434.72, + "end": 18437.94, + "probability": 0.9868 + }, + { + "start": 18437.94, + "end": 18441.46, + "probability": 0.9434 + }, + { + "start": 18441.56, + "end": 18442.26, + "probability": 0.6748 + }, + { + "start": 18443.28, + "end": 18443.84, + "probability": 0.5629 + }, + { + "start": 18444.78, + "end": 18445.84, + "probability": 0.6448 + }, + { + "start": 18446.04, + "end": 18447.7, + "probability": 0.8778 + }, + { + "start": 18447.72, + "end": 18449.84, + "probability": 0.9704 + }, + { + "start": 18449.94, + "end": 18451.62, + "probability": 0.9796 + }, + { + "start": 18452.08, + "end": 18452.8, + "probability": 0.451 + }, + { + "start": 18452.92, + "end": 18453.46, + "probability": 0.6949 + }, + { + "start": 18453.78, + "end": 18455.12, + "probability": 0.2662 + }, + { + "start": 18455.62, + "end": 18455.8, + "probability": 0.8171 + }, + { + "start": 18456.76, + "end": 18456.76, + "probability": 0.5044 + }, + { + "start": 18456.76, + "end": 18457.04, + "probability": 0.8986 + }, + { + "start": 18457.72, + "end": 18459.34, + "probability": 0.9891 + }, + { + "start": 18459.9, + "end": 18461.62, + "probability": 0.9891 + }, + { + "start": 18462.24, + "end": 18467.18, + "probability": 0.9955 + }, + { + "start": 18467.76, + "end": 18469.39, + "probability": 0.9827 + }, + { + "start": 18470.46, + "end": 18471.7, + "probability": 0.8652 + }, + { + "start": 18471.8, + "end": 18474.52, + "probability": 0.9982 + }, + { + "start": 18475.06, + "end": 18476.52, + "probability": 0.9991 + }, + { + "start": 18477.36, + "end": 18480.48, + "probability": 0.9946 + }, + { + "start": 18480.48, + "end": 18484.46, + "probability": 0.9951 + }, + { + "start": 18485.18, + "end": 18490.48, + "probability": 0.9875 + }, + { + "start": 18490.64, + "end": 18491.04, + "probability": 0.9465 + }, + { + "start": 18491.88, + "end": 18494.78, + "probability": 0.9251 + }, + { + "start": 18495.28, + "end": 18496.04, + "probability": 0.4411 + }, + { + "start": 18496.08, + "end": 18496.36, + "probability": 0.7402 + }, + { + "start": 18497.38, + "end": 18498.86, + "probability": 0.9323 + }, + { + "start": 18499.42, + "end": 18503.44, + "probability": 0.9652 + }, + { + "start": 18504.16, + "end": 18505.68, + "probability": 0.932 + }, + { + "start": 18506.46, + "end": 18506.74, + "probability": 0.673 + }, + { + "start": 18506.78, + "end": 18506.98, + "probability": 0.9923 + }, + { + "start": 18507.16, + "end": 18508.68, + "probability": 0.6013 + }, + { + "start": 18509.06, + "end": 18510.8, + "probability": 0.9849 + }, + { + "start": 18511.36, + "end": 18512.06, + "probability": 0.9493 + }, + { + "start": 18512.92, + "end": 18515.3, + "probability": 0.3361 + }, + { + "start": 18515.86, + "end": 18516.74, + "probability": 0.2433 + }, + { + "start": 18517.2, + "end": 18518.04, + "probability": 0.5695 + }, + { + "start": 18518.66, + "end": 18519.32, + "probability": 0.9048 + }, + { + "start": 18519.9, + "end": 18520.62, + "probability": 0.7779 + }, + { + "start": 18520.98, + "end": 18522.16, + "probability": 0.0444 + }, + { + "start": 18522.16, + "end": 18522.62, + "probability": 0.2835 + }, + { + "start": 18523.16, + "end": 18525.36, + "probability": 0.817 + }, + { + "start": 18530.3, + "end": 18534.6, + "probability": 0.9962 + }, + { + "start": 18534.62, + "end": 18538.86, + "probability": 0.9989 + }, + { + "start": 18539.52, + "end": 18541.86, + "probability": 0.9979 + }, + { + "start": 18542.42, + "end": 18543.96, + "probability": 0.7342 + }, + { + "start": 18544.62, + "end": 18546.68, + "probability": 0.9578 + }, + { + "start": 18547.24, + "end": 18550.12, + "probability": 0.9928 + }, + { + "start": 18550.68, + "end": 18556.4, + "probability": 0.9977 + }, + { + "start": 18556.88, + "end": 18559.86, + "probability": 0.9707 + }, + { + "start": 18560.4, + "end": 18562.78, + "probability": 0.9907 + }, + { + "start": 18563.28, + "end": 18564.62, + "probability": 0.6868 + }, + { + "start": 18564.66, + "end": 18565.44, + "probability": 0.9301 + }, + { + "start": 18565.54, + "end": 18568.22, + "probability": 0.9406 + }, + { + "start": 18568.44, + "end": 18571.34, + "probability": 0.9583 + }, + { + "start": 18571.92, + "end": 18575.56, + "probability": 0.9843 + }, + { + "start": 18576.0, + "end": 18578.5, + "probability": 0.9865 + }, + { + "start": 18578.88, + "end": 18580.42, + "probability": 0.9438 + }, + { + "start": 18580.76, + "end": 18582.16, + "probability": 0.9614 + }, + { + "start": 18582.68, + "end": 18583.42, + "probability": 0.9179 + }, + { + "start": 18584.02, + "end": 18584.4, + "probability": 0.9292 + }, + { + "start": 18585.4, + "end": 18585.8, + "probability": 0.8911 + }, + { + "start": 18587.88, + "end": 18589.3, + "probability": 0.7915 + }, + { + "start": 18592.92, + "end": 18597.78, + "probability": 0.8757 + }, + { + "start": 18598.08, + "end": 18598.2, + "probability": 0.5731 + }, + { + "start": 18598.54, + "end": 18599.74, + "probability": 0.8971 + }, + { + "start": 18599.74, + "end": 18602.18, + "probability": 0.6565 + }, + { + "start": 18602.7, + "end": 18602.84, + "probability": 0.5021 + }, + { + "start": 18602.84, + "end": 18605.5, + "probability": 0.9348 + }, + { + "start": 18605.56, + "end": 18606.48, + "probability": 0.6628 + }, + { + "start": 18606.48, + "end": 18608.74, + "probability": 0.8158 + }, + { + "start": 18609.04, + "end": 18609.26, + "probability": 0.8682 + }, + { + "start": 18609.52, + "end": 18610.62, + "probability": 0.9736 + }, + { + "start": 18610.74, + "end": 18613.98, + "probability": 0.8395 + }, + { + "start": 18614.42, + "end": 18616.02, + "probability": 0.98 + }, + { + "start": 18616.74, + "end": 18616.94, + "probability": 0.4539 + }, + { + "start": 18616.94, + "end": 18618.94, + "probability": 0.9728 + }, + { + "start": 18618.96, + "end": 18618.96, + "probability": 0.2776 + }, + { + "start": 18618.96, + "end": 18621.54, + "probability": 0.5117 + }, + { + "start": 18623.04, + "end": 18624.76, + "probability": 0.8604 + }, + { + "start": 18625.82, + "end": 18627.48, + "probability": 0.1781 + }, + { + "start": 18627.56, + "end": 18630.2, + "probability": 0.1053 + }, + { + "start": 18630.74, + "end": 18631.5, + "probability": 0.6543 + }, + { + "start": 18631.98, + "end": 18632.45, + "probability": 0.3301 + }, + { + "start": 18633.1, + "end": 18635.62, + "probability": 0.0071 + }, + { + "start": 18636.4, + "end": 18637.2, + "probability": 0.0062 + }, + { + "start": 18637.97, + "end": 18640.12, + "probability": 0.1611 + }, + { + "start": 18640.25, + "end": 18640.86, + "probability": 0.01 + }, + { + "start": 18641.16, + "end": 18642.12, + "probability": 0.1537 + }, + { + "start": 18644.4, + "end": 18646.2, + "probability": 0.0327 + }, + { + "start": 18646.58, + "end": 18649.22, + "probability": 0.9558 + }, + { + "start": 18649.28, + "end": 18651.12, + "probability": 0.3826 + }, + { + "start": 18652.4, + "end": 18654.62, + "probability": 0.8428 + }, + { + "start": 18655.82, + "end": 18656.44, + "probability": 0.5243 + }, + { + "start": 18658.78, + "end": 18661.78, + "probability": 0.7968 + }, + { + "start": 18661.94, + "end": 18663.44, + "probability": 0.5829 + }, + { + "start": 18663.54, + "end": 18664.48, + "probability": 0.8375 + }, + { + "start": 18665.64, + "end": 18667.46, + "probability": 0.8033 + }, + { + "start": 18667.64, + "end": 18667.96, + "probability": 0.5996 + }, + { + "start": 18676.46, + "end": 18677.32, + "probability": 0.5534 + }, + { + "start": 18677.4, + "end": 18678.06, + "probability": 0.7116 + }, + { + "start": 18678.22, + "end": 18678.42, + "probability": 0.718 + }, + { + "start": 18678.58, + "end": 18679.26, + "probability": 0.9226 + }, + { + "start": 18680.02, + "end": 18681.12, + "probability": 0.9207 + }, + { + "start": 18682.0, + "end": 18682.36, + "probability": 0.8573 + }, + { + "start": 18683.1, + "end": 18685.24, + "probability": 0.9561 + }, + { + "start": 18686.82, + "end": 18689.88, + "probability": 0.8794 + }, + { + "start": 18691.36, + "end": 18692.56, + "probability": 0.8392 + }, + { + "start": 18693.58, + "end": 18694.96, + "probability": 0.7177 + }, + { + "start": 18695.04, + "end": 18696.97, + "probability": 0.6633 + }, + { + "start": 18697.82, + "end": 18698.86, + "probability": 0.7682 + }, + { + "start": 18699.86, + "end": 18700.94, + "probability": 0.7461 + }, + { + "start": 18701.06, + "end": 18701.92, + "probability": 0.8002 + }, + { + "start": 18703.02, + "end": 18705.86, + "probability": 0.8423 + }, + { + "start": 18706.22, + "end": 18707.3, + "probability": 0.9835 + }, + { + "start": 18707.66, + "end": 18708.24, + "probability": 0.9419 + }, + { + "start": 18709.0, + "end": 18710.5, + "probability": 0.7498 + }, + { + "start": 18710.54, + "end": 18711.28, + "probability": 0.9987 + }, + { + "start": 18712.64, + "end": 18714.5, + "probability": 0.6213 + }, + { + "start": 18715.36, + "end": 18715.92, + "probability": 0.6904 + }, + { + "start": 18716.82, + "end": 18717.9, + "probability": 0.938 + }, + { + "start": 18718.78, + "end": 18720.88, + "probability": 0.8887 + }, + { + "start": 18721.28, + "end": 18722.58, + "probability": 0.9966 + }, + { + "start": 18723.7, + "end": 18727.78, + "probability": 0.9758 + }, + { + "start": 18727.92, + "end": 18728.68, + "probability": 0.6715 + }, + { + "start": 18729.56, + "end": 18732.5, + "probability": 0.866 + }, + { + "start": 18733.46, + "end": 18734.2, + "probability": 0.6384 + }, + { + "start": 18734.2, + "end": 18735.2, + "probability": 0.959 + }, + { + "start": 18735.36, + "end": 18736.82, + "probability": 0.7895 + }, + { + "start": 18738.42, + "end": 18740.22, + "probability": 0.9958 + }, + { + "start": 18741.36, + "end": 18742.22, + "probability": 0.872 + }, + { + "start": 18743.06, + "end": 18743.96, + "probability": 0.7644 + }, + { + "start": 18745.26, + "end": 18746.86, + "probability": 0.8105 + }, + { + "start": 18747.6, + "end": 18747.92, + "probability": 0.0228 + }, + { + "start": 18748.06, + "end": 18751.16, + "probability": 0.758 + }, + { + "start": 18751.16, + "end": 18754.36, + "probability": 0.9857 + }, + { + "start": 18755.4, + "end": 18757.56, + "probability": 0.7636 + }, + { + "start": 18759.42, + "end": 18760.91, + "probability": 0.9819 + }, + { + "start": 18763.16, + "end": 18763.16, + "probability": 0.114 + }, + { + "start": 18763.16, + "end": 18764.12, + "probability": 0.1484 + }, + { + "start": 18764.68, + "end": 18765.38, + "probability": 0.4131 + }, + { + "start": 18765.4, + "end": 18768.36, + "probability": 0.9036 + }, + { + "start": 18769.56, + "end": 18771.58, + "probability": 0.9746 + }, + { + "start": 18772.3, + "end": 18773.58, + "probability": 0.6607 + }, + { + "start": 18773.86, + "end": 18775.85, + "probability": 0.9956 + }, + { + "start": 18776.7, + "end": 18777.32, + "probability": 0.4926 + }, + { + "start": 18777.38, + "end": 18777.68, + "probability": 0.7268 + }, + { + "start": 18777.68, + "end": 18779.92, + "probability": 0.9079 + }, + { + "start": 18780.44, + "end": 18782.42, + "probability": 0.9113 + }, + { + "start": 18782.76, + "end": 18782.76, + "probability": 0.5734 + }, + { + "start": 18782.86, + "end": 18784.96, + "probability": 0.8401 + }, + { + "start": 18786.0, + "end": 18787.9, + "probability": 0.7929 + }, + { + "start": 18788.76, + "end": 18790.62, + "probability": 0.8192 + }, + { + "start": 18791.48, + "end": 18794.32, + "probability": 0.9844 + }, + { + "start": 18795.3, + "end": 18798.54, + "probability": 0.7849 + }, + { + "start": 18800.84, + "end": 18801.8, + "probability": 0.142 + }, + { + "start": 18801.82, + "end": 18802.6, + "probability": 0.3962 + }, + { + "start": 18803.24, + "end": 18804.92, + "probability": 0.9917 + }, + { + "start": 18805.64, + "end": 18808.94, + "probability": 0.8046 + }, + { + "start": 18810.0, + "end": 18810.98, + "probability": 0.9663 + }, + { + "start": 18812.28, + "end": 18814.1, + "probability": 0.8467 + }, + { + "start": 18814.22, + "end": 18815.04, + "probability": 0.7454 + }, + { + "start": 18815.62, + "end": 18816.66, + "probability": 0.719 + }, + { + "start": 18817.26, + "end": 18819.02, + "probability": 0.8728 + }, + { + "start": 18820.28, + "end": 18821.94, + "probability": 0.9559 + }, + { + "start": 18823.16, + "end": 18824.52, + "probability": 0.283 + }, + { + "start": 18824.96, + "end": 18826.66, + "probability": 0.9728 + }, + { + "start": 18826.76, + "end": 18828.94, + "probability": 0.9943 + }, + { + "start": 18829.04, + "end": 18829.8, + "probability": 0.7497 + }, + { + "start": 18831.44, + "end": 18833.1, + "probability": 0.6741 + }, + { + "start": 18835.14, + "end": 18837.3, + "probability": 0.6699 + }, + { + "start": 18838.22, + "end": 18842.1, + "probability": 0.9872 + }, + { + "start": 18842.24, + "end": 18842.8, + "probability": 0.8183 + }, + { + "start": 18844.44, + "end": 18848.02, + "probability": 0.7878 + }, + { + "start": 18849.34, + "end": 18850.64, + "probability": 0.701 + }, + { + "start": 18851.98, + "end": 18853.28, + "probability": 0.806 + }, + { + "start": 18854.1, + "end": 18854.96, + "probability": 0.9604 + }, + { + "start": 18855.3, + "end": 18855.66, + "probability": 0.884 + }, + { + "start": 18855.72, + "end": 18856.48, + "probability": 0.9096 + }, + { + "start": 18856.68, + "end": 18857.64, + "probability": 0.9566 + }, + { + "start": 18858.02, + "end": 18858.58, + "probability": 0.9194 + }, + { + "start": 18858.64, + "end": 18859.54, + "probability": 0.8264 + }, + { + "start": 18861.08, + "end": 18861.82, + "probability": 0.9561 + }, + { + "start": 18862.54, + "end": 18864.1, + "probability": 0.9123 + }, + { + "start": 18864.2, + "end": 18865.78, + "probability": 0.9556 + }, + { + "start": 18866.18, + "end": 18868.5, + "probability": 0.9575 + }, + { + "start": 18868.68, + "end": 18869.42, + "probability": 0.8748 + }, + { + "start": 18870.94, + "end": 18872.4, + "probability": 0.8133 + }, + { + "start": 18873.46, + "end": 18878.7, + "probability": 0.9926 + }, + { + "start": 18879.48, + "end": 18881.08, + "probability": 0.9956 + }, + { + "start": 18881.64, + "end": 18884.24, + "probability": 0.5135 + }, + { + "start": 18885.0, + "end": 18887.96, + "probability": 0.9611 + }, + { + "start": 18889.2, + "end": 18890.1, + "probability": 0.9825 + }, + { + "start": 18891.26, + "end": 18896.26, + "probability": 0.9248 + }, + { + "start": 18896.28, + "end": 18897.28, + "probability": 0.8139 + }, + { + "start": 18897.92, + "end": 18900.08, + "probability": 0.9688 + }, + { + "start": 18900.94, + "end": 18902.76, + "probability": 0.8979 + }, + { + "start": 18903.76, + "end": 18904.86, + "probability": 0.8267 + }, + { + "start": 18906.02, + "end": 18908.84, + "probability": 0.9409 + }, + { + "start": 18908.94, + "end": 18910.28, + "probability": 0.5302 + }, + { + "start": 18911.4, + "end": 18912.16, + "probability": 0.6264 + }, + { + "start": 18912.78, + "end": 18915.4, + "probability": 0.7196 + }, + { + "start": 18915.5, + "end": 18917.92, + "probability": 0.8513 + }, + { + "start": 18918.84, + "end": 18920.54, + "probability": 0.9578 + }, + { + "start": 18921.08, + "end": 18923.2, + "probability": 0.6908 + }, + { + "start": 18923.42, + "end": 18927.0, + "probability": 0.9446 + }, + { + "start": 18927.78, + "end": 18929.1, + "probability": 0.6533 + }, + { + "start": 18930.24, + "end": 18932.5, + "probability": 0.9573 + }, + { + "start": 18933.0, + "end": 18935.76, + "probability": 0.8412 + }, + { + "start": 18936.74, + "end": 18938.02, + "probability": 0.7209 + }, + { + "start": 18938.62, + "end": 18940.34, + "probability": 0.9229 + }, + { + "start": 18940.88, + "end": 18943.54, + "probability": 0.9853 + }, + { + "start": 18943.96, + "end": 18944.4, + "probability": 0.3603 + }, + { + "start": 18944.84, + "end": 18947.68, + "probability": 0.9656 + }, + { + "start": 18948.1, + "end": 18950.78, + "probability": 0.7537 + }, + { + "start": 18951.14, + "end": 18953.48, + "probability": 0.956 + }, + { + "start": 18953.74, + "end": 18956.14, + "probability": 0.8619 + }, + { + "start": 18956.6, + "end": 18962.44, + "probability": 0.9698 + }, + { + "start": 18963.54, + "end": 18964.24, + "probability": 0.8883 + }, + { + "start": 18964.4, + "end": 18964.76, + "probability": 0.8838 + }, + { + "start": 18964.88, + "end": 18971.02, + "probability": 0.9831 + }, + { + "start": 18971.26, + "end": 18971.44, + "probability": 0.8838 + }, + { + "start": 18971.94, + "end": 18972.1, + "probability": 0.4272 + }, + { + "start": 18972.1, + "end": 18976.4, + "probability": 0.6224 + }, + { + "start": 18976.56, + "end": 18978.42, + "probability": 0.8138 + }, + { + "start": 18978.48, + "end": 18981.02, + "probability": 0.6312 + }, + { + "start": 18981.56, + "end": 18983.54, + "probability": 0.9395 + }, + { + "start": 18983.64, + "end": 18984.3, + "probability": 0.38 + }, + { + "start": 18984.8, + "end": 18986.9, + "probability": 0.6792 + }, + { + "start": 18987.0, + "end": 18987.96, + "probability": 0.9921 + }, + { + "start": 18988.12, + "end": 18991.4, + "probability": 0.963 + }, + { + "start": 18991.56, + "end": 18992.62, + "probability": 0.9402 + }, + { + "start": 18993.06, + "end": 18993.97, + "probability": 0.7708 + }, + { + "start": 18994.64, + "end": 18995.16, + "probability": 0.6506 + }, + { + "start": 18995.2, + "end": 18996.89, + "probability": 0.6119 + }, + { + "start": 18997.42, + "end": 19001.32, + "probability": 0.7538 + }, + { + "start": 19001.32, + "end": 19001.32, + "probability": 0.0696 + }, + { + "start": 19001.32, + "end": 19001.32, + "probability": 0.0457 + }, + { + "start": 19001.32, + "end": 19006.94, + "probability": 0.6502 + }, + { + "start": 19006.94, + "end": 19008.2, + "probability": 0.4433 + }, + { + "start": 19008.22, + "end": 19009.96, + "probability": 0.8945 + }, + { + "start": 19010.06, + "end": 19010.52, + "probability": 0.6578 + }, + { + "start": 19011.2, + "end": 19011.7, + "probability": 0.9707 + }, + { + "start": 19012.28, + "end": 19014.08, + "probability": 0.9799 + }, + { + "start": 19015.0, + "end": 19017.16, + "probability": 0.9841 + }, + { + "start": 19017.22, + "end": 19018.0, + "probability": 0.8378 + }, + { + "start": 19018.34, + "end": 19019.58, + "probability": 0.6118 + }, + { + "start": 19020.04, + "end": 19020.6, + "probability": 0.7263 + }, + { + "start": 19020.68, + "end": 19021.6, + "probability": 0.9746 + }, + { + "start": 19021.68, + "end": 19021.74, + "probability": 0.8297 + }, + { + "start": 19021.82, + "end": 19024.02, + "probability": 0.8351 + }, + { + "start": 19024.1, + "end": 19026.1, + "probability": 0.9534 + }, + { + "start": 19026.52, + "end": 19030.38, + "probability": 0.9948 + }, + { + "start": 19030.58, + "end": 19031.34, + "probability": 0.6728 + }, + { + "start": 19031.64, + "end": 19031.9, + "probability": 0.744 + }, + { + "start": 19032.16, + "end": 19035.72, + "probability": 0.7291 + }, + { + "start": 19035.76, + "end": 19038.38, + "probability": 0.9756 + }, + { + "start": 19038.46, + "end": 19040.82, + "probability": 0.3938 + }, + { + "start": 19041.54, + "end": 19045.22, + "probability": 0.4724 + }, + { + "start": 19045.22, + "end": 19048.94, + "probability": 0.6659 + }, + { + "start": 19049.14, + "end": 19051.06, + "probability": 0.5673 + }, + { + "start": 19051.57, + "end": 19052.2, + "probability": 0.4802 + }, + { + "start": 19052.26, + "end": 19052.52, + "probability": 0.1642 + }, + { + "start": 19052.52, + "end": 19053.52, + "probability": 0.6602 + }, + { + "start": 19054.08, + "end": 19056.34, + "probability": 0.666 + }, + { + "start": 19057.58, + "end": 19061.24, + "probability": 0.7241 + }, + { + "start": 19062.8, + "end": 19065.52, + "probability": 0.6731 + }, + { + "start": 19066.08, + "end": 19073.02, + "probability": 0.9413 + }, + { + "start": 19074.44, + "end": 19075.4, + "probability": 0.786 + }, + { + "start": 19076.08, + "end": 19077.94, + "probability": 0.4009 + }, + { + "start": 19078.06, + "end": 19078.44, + "probability": 0.7905 + }, + { + "start": 19078.98, + "end": 19080.34, + "probability": 0.7064 + }, + { + "start": 19080.66, + "end": 19081.56, + "probability": 0.6984 + }, + { + "start": 19081.64, + "end": 19082.64, + "probability": 0.96 + }, + { + "start": 19082.7, + "end": 19084.72, + "probability": 0.9839 + }, + { + "start": 19085.2, + "end": 19086.88, + "probability": 0.6571 + }, + { + "start": 19087.18, + "end": 19088.08, + "probability": 0.9786 + }, + { + "start": 19088.48, + "end": 19090.42, + "probability": 0.9526 + }, + { + "start": 19090.42, + "end": 19091.84, + "probability": 0.9245 + }, + { + "start": 19092.36, + "end": 19092.92, + "probability": 0.8098 + }, + { + "start": 19093.72, + "end": 19094.44, + "probability": 0.9121 + }, + { + "start": 19097.04, + "end": 19098.78, + "probability": 0.9622 + }, + { + "start": 19098.88, + "end": 19100.5, + "probability": 0.9949 + }, + { + "start": 19101.32, + "end": 19103.52, + "probability": 0.4278 + }, + { + "start": 19103.54, + "end": 19105.16, + "probability": 0.4299 + }, + { + "start": 19105.28, + "end": 19106.56, + "probability": 0.6947 + }, + { + "start": 19106.82, + "end": 19107.9, + "probability": 0.3824 + }, + { + "start": 19108.02, + "end": 19108.86, + "probability": 0.8053 + }, + { + "start": 19109.04, + "end": 19115.32, + "probability": 0.9491 + }, + { + "start": 19116.46, + "end": 19119.62, + "probability": 0.7833 + }, + { + "start": 19119.8, + "end": 19121.96, + "probability": 0.9515 + }, + { + "start": 19122.68, + "end": 19124.58, + "probability": 0.5205 + }, + { + "start": 19125.02, + "end": 19125.95, + "probability": 0.9386 + }, + { + "start": 19127.04, + "end": 19129.1, + "probability": 0.7738 + }, + { + "start": 19130.52, + "end": 19134.61, + "probability": 0.9945 + }, + { + "start": 19135.0, + "end": 19139.4, + "probability": 0.9772 + }, + { + "start": 19139.52, + "end": 19140.74, + "probability": 0.9963 + }, + { + "start": 19141.3, + "end": 19142.54, + "probability": 0.9061 + }, + { + "start": 19144.08, + "end": 19147.22, + "probability": 0.96 + }, + { + "start": 19148.84, + "end": 19149.6, + "probability": 0.8111 + }, + { + "start": 19151.62, + "end": 19154.96, + "probability": 0.7524 + }, + { + "start": 19155.48, + "end": 19158.38, + "probability": 0.9551 + }, + { + "start": 19159.16, + "end": 19160.48, + "probability": 0.838 + }, + { + "start": 19161.58, + "end": 19163.24, + "probability": 0.9954 + }, + { + "start": 19164.06, + "end": 19164.73, + "probability": 0.8774 + }, + { + "start": 19165.5, + "end": 19166.7, + "probability": 0.7162 + }, + { + "start": 19168.3, + "end": 19171.66, + "probability": 0.9423 + }, + { + "start": 19172.5, + "end": 19173.16, + "probability": 0.4332 + }, + { + "start": 19174.36, + "end": 19177.66, + "probability": 0.9795 + }, + { + "start": 19178.32, + "end": 19180.54, + "probability": 0.991 + }, + { + "start": 19180.66, + "end": 19184.22, + "probability": 0.9901 + }, + { + "start": 19186.02, + "end": 19188.34, + "probability": 0.8173 + }, + { + "start": 19190.0, + "end": 19194.18, + "probability": 0.996 + }, + { + "start": 19194.38, + "end": 19198.0, + "probability": 0.992 + }, + { + "start": 19198.76, + "end": 19199.36, + "probability": 0.9957 + }, + { + "start": 19200.1, + "end": 19203.2, + "probability": 0.9595 + }, + { + "start": 19203.76, + "end": 19204.26, + "probability": 0.8572 + }, + { + "start": 19204.6, + "end": 19206.04, + "probability": 0.9795 + }, + { + "start": 19206.96, + "end": 19209.75, + "probability": 0.9453 + }, + { + "start": 19210.82, + "end": 19215.72, + "probability": 0.7891 + }, + { + "start": 19216.84, + "end": 19217.28, + "probability": 0.8698 + }, + { + "start": 19217.9, + "end": 19220.26, + "probability": 0.9565 + }, + { + "start": 19221.3, + "end": 19224.84, + "probability": 0.9791 + }, + { + "start": 19225.64, + "end": 19226.18, + "probability": 0.5993 + }, + { + "start": 19226.2, + "end": 19229.64, + "probability": 0.7488 + }, + { + "start": 19229.64, + "end": 19232.2, + "probability": 0.9787 + }, + { + "start": 19232.92, + "end": 19233.74, + "probability": 0.7756 + }, + { + "start": 19234.3, + "end": 19236.74, + "probability": 0.6681 + }, + { + "start": 19237.62, + "end": 19238.04, + "probability": 0.7431 + }, + { + "start": 19238.16, + "end": 19241.5, + "probability": 0.9922 + }, + { + "start": 19241.92, + "end": 19243.22, + "probability": 0.7348 + }, + { + "start": 19243.56, + "end": 19244.42, + "probability": 0.9753 + }, + { + "start": 19245.08, + "end": 19249.7, + "probability": 0.8967 + }, + { + "start": 19250.14, + "end": 19250.44, + "probability": 0.8618 + }, + { + "start": 19250.5, + "end": 19251.14, + "probability": 0.537 + }, + { + "start": 19251.34, + "end": 19252.86, + "probability": 0.9316 + }, + { + "start": 19253.04, + "end": 19253.46, + "probability": 0.6626 + }, + { + "start": 19253.86, + "end": 19254.3, + "probability": 0.6851 + }, + { + "start": 19254.32, + "end": 19254.74, + "probability": 0.733 + }, + { + "start": 19254.84, + "end": 19255.2, + "probability": 0.8347 + }, + { + "start": 19255.72, + "end": 19256.84, + "probability": 0.7327 + }, + { + "start": 19257.44, + "end": 19260.52, + "probability": 0.9098 + }, + { + "start": 19261.02, + "end": 19261.9, + "probability": 0.844 + }, + { + "start": 19262.48, + "end": 19265.1, + "probability": 0.7824 + }, + { + "start": 19265.76, + "end": 19267.12, + "probability": 0.9779 + }, + { + "start": 19267.7, + "end": 19269.4, + "probability": 0.8755 + }, + { + "start": 19269.98, + "end": 19273.46, + "probability": 0.9447 + }, + { + "start": 19274.8, + "end": 19274.9, + "probability": 0.8672 + }, + { + "start": 19276.96, + "end": 19277.52, + "probability": 0.8989 + }, + { + "start": 19279.1, + "end": 19280.22, + "probability": 0.9636 + }, + { + "start": 19281.58, + "end": 19282.54, + "probability": 0.7286 + }, + { + "start": 19283.9, + "end": 19284.46, + "probability": 0.6934 + }, + { + "start": 19285.76, + "end": 19288.92, + "probability": 0.9959 + }, + { + "start": 19289.92, + "end": 19293.28, + "probability": 0.8924 + }, + { + "start": 19294.48, + "end": 19295.14, + "probability": 0.9239 + }, + { + "start": 19296.34, + "end": 19297.2, + "probability": 0.9025 + }, + { + "start": 19298.22, + "end": 19299.89, + "probability": 0.719 + }, + { + "start": 19301.0, + "end": 19303.38, + "probability": 0.753 + }, + { + "start": 19303.82, + "end": 19304.7, + "probability": 0.8866 + }, + { + "start": 19305.78, + "end": 19310.48, + "probability": 0.979 + }, + { + "start": 19311.28, + "end": 19311.8, + "probability": 0.8573 + }, + { + "start": 19312.38, + "end": 19312.96, + "probability": 0.9671 + }, + { + "start": 19313.8, + "end": 19314.58, + "probability": 0.9561 + }, + { + "start": 19315.42, + "end": 19316.19, + "probability": 0.9876 + }, + { + "start": 19317.3, + "end": 19318.5, + "probability": 0.8988 + }, + { + "start": 19318.72, + "end": 19320.48, + "probability": 0.945 + }, + { + "start": 19321.24, + "end": 19322.78, + "probability": 0.9412 + }, + { + "start": 19323.42, + "end": 19323.86, + "probability": 0.923 + }, + { + "start": 19324.5, + "end": 19326.14, + "probability": 0.9813 + }, + { + "start": 19326.3, + "end": 19326.86, + "probability": 0.9676 + }, + { + "start": 19327.7, + "end": 19328.56, + "probability": 0.8721 + }, + { + "start": 19330.34, + "end": 19330.66, + "probability": 0.557 + }, + { + "start": 19331.32, + "end": 19332.86, + "probability": 0.9824 + }, + { + "start": 19333.78, + "end": 19337.18, + "probability": 0.9958 + }, + { + "start": 19338.62, + "end": 19340.2, + "probability": 0.9913 + }, + { + "start": 19340.28, + "end": 19341.36, + "probability": 0.8931 + }, + { + "start": 19341.5, + "end": 19342.34, + "probability": 0.7961 + }, + { + "start": 19342.72, + "end": 19344.92, + "probability": 0.9908 + }, + { + "start": 19345.76, + "end": 19350.04, + "probability": 0.9214 + }, + { + "start": 19350.6, + "end": 19352.02, + "probability": 0.9775 + }, + { + "start": 19352.92, + "end": 19355.04, + "probability": 0.9871 + }, + { + "start": 19356.12, + "end": 19356.52, + "probability": 0.4987 + }, + { + "start": 19357.48, + "end": 19360.38, + "probability": 0.9732 + }, + { + "start": 19360.54, + "end": 19362.12, + "probability": 0.866 + }, + { + "start": 19362.94, + "end": 19364.6, + "probability": 0.9739 + }, + { + "start": 19365.24, + "end": 19369.14, + "probability": 0.9731 + }, + { + "start": 19371.98, + "end": 19374.82, + "probability": 0.9589 + }, + { + "start": 19376.02, + "end": 19377.86, + "probability": 0.7981 + }, + { + "start": 19378.78, + "end": 19380.88, + "probability": 0.8486 + }, + { + "start": 19381.6, + "end": 19383.96, + "probability": 0.9028 + }, + { + "start": 19384.74, + "end": 19388.88, + "probability": 0.6538 + }, + { + "start": 19390.06, + "end": 19391.82, + "probability": 0.9279 + }, + { + "start": 19392.88, + "end": 19394.82, + "probability": 0.9944 + }, + { + "start": 19394.96, + "end": 19396.12, + "probability": 0.9961 + }, + { + "start": 19396.9, + "end": 19397.98, + "probability": 0.9659 + }, + { + "start": 19398.86, + "end": 19399.66, + "probability": 0.9829 + }, + { + "start": 19400.18, + "end": 19400.32, + "probability": 0.0556 + }, + { + "start": 19400.32, + "end": 19401.18, + "probability": 0.5323 + }, + { + "start": 19401.44, + "end": 19402.38, + "probability": 0.933 + }, + { + "start": 19403.1, + "end": 19404.36, + "probability": 0.8447 + }, + { + "start": 19405.18, + "end": 19406.24, + "probability": 0.9863 + }, + { + "start": 19406.34, + "end": 19406.98, + "probability": 0.9121 + }, + { + "start": 19408.42, + "end": 19410.18, + "probability": 0.9925 + }, + { + "start": 19410.18, + "end": 19412.18, + "probability": 0.9987 + }, + { + "start": 19412.54, + "end": 19413.82, + "probability": 0.992 + }, + { + "start": 19413.84, + "end": 19415.66, + "probability": 0.9712 + }, + { + "start": 19415.98, + "end": 19418.06, + "probability": 0.7983 + }, + { + "start": 19418.62, + "end": 19421.94, + "probability": 0.9541 + }, + { + "start": 19424.78, + "end": 19428.34, + "probability": 0.8563 + }, + { + "start": 19430.12, + "end": 19431.76, + "probability": 0.8555 + }, + { + "start": 19432.92, + "end": 19434.52, + "probability": 0.9561 + }, + { + "start": 19435.42, + "end": 19439.38, + "probability": 0.9847 + }, + { + "start": 19440.14, + "end": 19441.84, + "probability": 0.952 + }, + { + "start": 19442.46, + "end": 19447.0, + "probability": 0.9629 + }, + { + "start": 19447.76, + "end": 19449.84, + "probability": 0.7969 + }, + { + "start": 19450.44, + "end": 19451.7, + "probability": 0.998 + }, + { + "start": 19452.22, + "end": 19452.9, + "probability": 0.4993 + }, + { + "start": 19454.32, + "end": 19455.52, + "probability": 0.927 + }, + { + "start": 19456.14, + "end": 19456.46, + "probability": 0.5592 + }, + { + "start": 19457.24, + "end": 19457.74, + "probability": 0.8371 + }, + { + "start": 19458.48, + "end": 19464.6, + "probability": 0.9951 + }, + { + "start": 19464.72, + "end": 19467.02, + "probability": 0.9968 + }, + { + "start": 19468.1, + "end": 19470.87, + "probability": 0.9783 + }, + { + "start": 19471.6, + "end": 19475.44, + "probability": 0.9971 + }, + { + "start": 19476.2, + "end": 19477.88, + "probability": 0.9758 + }, + { + "start": 19478.48, + "end": 19480.48, + "probability": 0.9809 + }, + { + "start": 19481.4, + "end": 19482.68, + "probability": 0.7022 + }, + { + "start": 19485.3, + "end": 19486.32, + "probability": 0.9053 + }, + { + "start": 19489.38, + "end": 19490.98, + "probability": 0.7206 + }, + { + "start": 19492.66, + "end": 19493.0, + "probability": 0.6896 + }, + { + "start": 19494.18, + "end": 19495.82, + "probability": 0.973 + }, + { + "start": 19497.04, + "end": 19497.4, + "probability": 0.9232 + }, + { + "start": 19498.28, + "end": 19499.24, + "probability": 0.932 + }, + { + "start": 19500.54, + "end": 19501.59, + "probability": 0.9902 + }, + { + "start": 19502.74, + "end": 19503.66, + "probability": 0.8087 + }, + { + "start": 19504.52, + "end": 19506.58, + "probability": 0.7409 + }, + { + "start": 19507.38, + "end": 19508.44, + "probability": 0.8885 + }, + { + "start": 19508.64, + "end": 19512.74, + "probability": 0.9802 + }, + { + "start": 19512.82, + "end": 19516.86, + "probability": 0.9835 + }, + { + "start": 19517.56, + "end": 19518.62, + "probability": 0.8059 + }, + { + "start": 19518.8, + "end": 19519.29, + "probability": 0.8484 + }, + { + "start": 19519.92, + "end": 19520.4, + "probability": 0.8674 + }, + { + "start": 19521.06, + "end": 19525.32, + "probability": 0.8941 + }, + { + "start": 19525.82, + "end": 19527.78, + "probability": 0.9808 + }, + { + "start": 19528.3, + "end": 19531.06, + "probability": 0.9339 + }, + { + "start": 19531.86, + "end": 19532.58, + "probability": 0.5459 + }, + { + "start": 19533.8, + "end": 19535.4, + "probability": 0.864 + }, + { + "start": 19536.52, + "end": 19541.94, + "probability": 0.9434 + }, + { + "start": 19542.42, + "end": 19543.74, + "probability": 0.9956 + }, + { + "start": 19544.86, + "end": 19546.7, + "probability": 0.9752 + }, + { + "start": 19547.24, + "end": 19549.02, + "probability": 0.9747 + }, + { + "start": 19549.72, + "end": 19550.32, + "probability": 0.8385 + }, + { + "start": 19550.88, + "end": 19552.92, + "probability": 0.7766 + }, + { + "start": 19553.7, + "end": 19554.18, + "probability": 0.4382 + }, + { + "start": 19554.42, + "end": 19556.32, + "probability": 0.8496 + }, + { + "start": 19556.7, + "end": 19557.42, + "probability": 0.9455 + }, + { + "start": 19557.72, + "end": 19559.84, + "probability": 0.9621 + }, + { + "start": 19562.12, + "end": 19564.76, + "probability": 0.9578 + }, + { + "start": 19566.4, + "end": 19566.82, + "probability": 0.7458 + }, + { + "start": 19566.9, + "end": 19567.6, + "probability": 0.9553 + }, + { + "start": 19567.62, + "end": 19569.18, + "probability": 0.9915 + }, + { + "start": 19570.06, + "end": 19571.46, + "probability": 0.8914 + }, + { + "start": 19571.68, + "end": 19574.28, + "probability": 0.9648 + }, + { + "start": 19574.7, + "end": 19575.78, + "probability": 0.9535 + }, + { + "start": 19575.88, + "end": 19576.32, + "probability": 0.9589 + }, + { + "start": 19577.86, + "end": 19578.82, + "probability": 0.8551 + }, + { + "start": 19578.98, + "end": 19579.74, + "probability": 0.9559 + }, + { + "start": 19579.92, + "end": 19582.32, + "probability": 0.9809 + }, + { + "start": 19583.58, + "end": 19586.66, + "probability": 0.8534 + }, + { + "start": 19586.94, + "end": 19588.16, + "probability": 0.5393 + }, + { + "start": 19588.3, + "end": 19589.2, + "probability": 0.8846 + }, + { + "start": 19589.32, + "end": 19590.22, + "probability": 0.8982 + }, + { + "start": 19590.7, + "end": 19595.68, + "probability": 0.9551 + }, + { + "start": 19596.36, + "end": 19601.64, + "probability": 0.9625 + }, + { + "start": 19602.82, + "end": 19602.92, + "probability": 0.6218 + }, + { + "start": 19603.48, + "end": 19605.12, + "probability": 0.6185 + }, + { + "start": 19606.24, + "end": 19606.74, + "probability": 0.6917 + }, + { + "start": 19608.08, + "end": 19609.88, + "probability": 0.7183 + }, + { + "start": 19622.04, + "end": 19622.42, + "probability": 0.5722 + }, + { + "start": 19623.38, + "end": 19625.18, + "probability": 0.4988 + }, + { + "start": 19625.8, + "end": 19626.42, + "probability": 0.6231 + }, + { + "start": 19626.76, + "end": 19626.76, + "probability": 0.0344 + }, + { + "start": 19626.76, + "end": 19626.78, + "probability": 0.1645 + }, + { + "start": 19626.78, + "end": 19627.08, + "probability": 0.2665 + }, + { + "start": 19629.15, + "end": 19633.02, + "probability": 0.4664 + }, + { + "start": 19634.72, + "end": 19636.76, + "probability": 0.5861 + }, + { + "start": 19637.94, + "end": 19639.6, + "probability": 0.5891 + }, + { + "start": 19639.88, + "end": 19639.88, + "probability": 0.0024 + }, + { + "start": 19640.98, + "end": 19641.46, + "probability": 0.5382 + }, + { + "start": 19641.96, + "end": 19642.8, + "probability": 0.4728 + }, + { + "start": 19642.88, + "end": 19643.74, + "probability": 0.9744 + }, + { + "start": 19645.4, + "end": 19648.44, + "probability": 0.6825 + }, + { + "start": 19648.7, + "end": 19651.2, + "probability": 0.8546 + }, + { + "start": 19652.22, + "end": 19654.6, + "probability": 0.8064 + }, + { + "start": 19654.8, + "end": 19657.52, + "probability": 0.8965 + }, + { + "start": 19658.04, + "end": 19658.76, + "probability": 0.7806 + }, + { + "start": 19660.08, + "end": 19663.74, + "probability": 0.9737 + }, + { + "start": 19664.12, + "end": 19666.88, + "probability": 0.7715 + }, + { + "start": 19667.06, + "end": 19667.42, + "probability": 0.9208 + }, + { + "start": 19667.52, + "end": 19670.16, + "probability": 0.8307 + }, + { + "start": 19670.96, + "end": 19673.24, + "probability": 0.7512 + }, + { + "start": 19673.54, + "end": 19677.74, + "probability": 0.9969 + }, + { + "start": 19678.26, + "end": 19680.24, + "probability": 0.9745 + }, + { + "start": 19680.96, + "end": 19682.34, + "probability": 0.9463 + }, + { + "start": 19683.12, + "end": 19683.46, + "probability": 0.9819 + }, + { + "start": 19684.82, + "end": 19687.16, + "probability": 0.9968 + }, + { + "start": 19687.28, + "end": 19688.14, + "probability": 0.7124 + }, + { + "start": 19688.76, + "end": 19691.57, + "probability": 0.9966 + }, + { + "start": 19692.26, + "end": 19695.68, + "probability": 0.9808 + }, + { + "start": 19696.62, + "end": 19699.2, + "probability": 0.9954 + }, + { + "start": 19699.74, + "end": 19699.98, + "probability": 0.5032 + }, + { + "start": 19700.14, + "end": 19701.28, + "probability": 0.8901 + }, + { + "start": 19701.74, + "end": 19703.07, + "probability": 0.9685 + }, + { + "start": 19703.28, + "end": 19703.76, + "probability": 0.7322 + }, + { + "start": 19703.8, + "end": 19704.7, + "probability": 0.9849 + }, + { + "start": 19705.2, + "end": 19707.1, + "probability": 0.9771 + }, + { + "start": 19707.16, + "end": 19708.34, + "probability": 0.9131 + }, + { + "start": 19709.06, + "end": 19713.74, + "probability": 0.828 + }, + { + "start": 19713.74, + "end": 19717.04, + "probability": 0.9893 + }, + { + "start": 19717.68, + "end": 19718.88, + "probability": 0.7559 + }, + { + "start": 19720.6, + "end": 19721.38, + "probability": 0.4994 + }, + { + "start": 19723.22, + "end": 19724.26, + "probability": 0.9927 + }, + { + "start": 19726.74, + "end": 19727.92, + "probability": 0.818 + }, + { + "start": 19728.04, + "end": 19730.54, + "probability": 0.9988 + }, + { + "start": 19731.24, + "end": 19734.34, + "probability": 0.9909 + }, + { + "start": 19734.34, + "end": 19737.08, + "probability": 0.9909 + }, + { + "start": 19737.98, + "end": 19739.68, + "probability": 0.9988 + }, + { + "start": 19740.3, + "end": 19741.9, + "probability": 0.9111 + }, + { + "start": 19742.64, + "end": 19744.72, + "probability": 0.9993 + }, + { + "start": 19745.64, + "end": 19747.56, + "probability": 0.9954 + }, + { + "start": 19747.56, + "end": 19749.7, + "probability": 0.9976 + }, + { + "start": 19750.26, + "end": 19752.16, + "probability": 0.9521 + }, + { + "start": 19753.04, + "end": 19754.22, + "probability": 0.7147 + }, + { + "start": 19754.3, + "end": 19757.06, + "probability": 0.9882 + }, + { + "start": 19757.72, + "end": 19758.26, + "probability": 0.8183 + }, + { + "start": 19758.8, + "end": 19763.24, + "probability": 0.9979 + }, + { + "start": 19763.68, + "end": 19766.78, + "probability": 0.9973 + }, + { + "start": 19767.32, + "end": 19767.94, + "probability": 0.7802 + }, + { + "start": 19768.58, + "end": 19772.5, + "probability": 0.5952 + }, + { + "start": 19772.84, + "end": 19773.52, + "probability": 0.848 + }, + { + "start": 19773.58, + "end": 19774.52, + "probability": 0.667 + }, + { + "start": 19775.0, + "end": 19780.66, + "probability": 0.7274 + }, + { + "start": 19780.66, + "end": 19784.9, + "probability": 0.946 + }, + { + "start": 19786.81, + "end": 19788.14, + "probability": 0.0263 + }, + { + "start": 19788.22, + "end": 19789.24, + "probability": 0.4216 + }, + { + "start": 19789.34, + "end": 19790.62, + "probability": 0.427 + }, + { + "start": 19790.86, + "end": 19792.0, + "probability": 0.7878 + }, + { + "start": 19792.84, + "end": 19795.04, + "probability": 0.7905 + }, + { + "start": 19795.18, + "end": 19798.24, + "probability": 0.7425 + }, + { + "start": 19798.8, + "end": 19800.02, + "probability": 0.796 + }, + { + "start": 19800.74, + "end": 19803.2, + "probability": 0.6259 + }, + { + "start": 19803.34, + "end": 19804.56, + "probability": 0.3788 + }, + { + "start": 19804.64, + "end": 19805.88, + "probability": 0.7743 + }, + { + "start": 19805.88, + "end": 19806.32, + "probability": 0.0064 + }, + { + "start": 19809.72, + "end": 19809.92, + "probability": 0.0559 + }, + { + "start": 19809.92, + "end": 19810.22, + "probability": 0.085 + }, + { + "start": 19810.46, + "end": 19813.32, + "probability": 0.2249 + }, + { + "start": 19813.32, + "end": 19814.46, + "probability": 0.6461 + }, + { + "start": 19814.92, + "end": 19817.22, + "probability": 0.0844 + }, + { + "start": 19818.26, + "end": 19820.0, + "probability": 0.2011 + }, + { + "start": 19820.0, + "end": 19820.1, + "probability": 0.3019 + }, + { + "start": 19820.52, + "end": 19820.98, + "probability": 0.4357 + }, + { + "start": 19821.14, + "end": 19823.16, + "probability": 0.1437 + }, + { + "start": 19823.58, + "end": 19824.02, + "probability": 0.373 + }, + { + "start": 19824.16, + "end": 19826.0, + "probability": 0.575 + }, + { + "start": 19826.04, + "end": 19827.22, + "probability": 0.1378 + }, + { + "start": 19827.4, + "end": 19828.24, + "probability": 0.5345 + }, + { + "start": 19828.44, + "end": 19829.2, + "probability": 0.6797 + }, + { + "start": 19829.4, + "end": 19832.78, + "probability": 0.11 + }, + { + "start": 19833.16, + "end": 19834.86, + "probability": 0.0514 + }, + { + "start": 19834.9, + "end": 19836.46, + "probability": 0.067 + }, + { + "start": 19837.54, + "end": 19838.94, + "probability": 0.4599 + }, + { + "start": 19842.5, + "end": 19844.28, + "probability": 0.658 + }, + { + "start": 19845.54, + "end": 19847.96, + "probability": 0.963 + }, + { + "start": 19849.14, + "end": 19853.02, + "probability": 0.9862 + }, + { + "start": 19853.62, + "end": 19854.8, + "probability": 0.9692 + }, + { + "start": 19855.56, + "end": 19856.96, + "probability": 0.9922 + }, + { + "start": 19857.68, + "end": 19860.36, + "probability": 0.9885 + }, + { + "start": 19860.36, + "end": 19864.12, + "probability": 0.9954 + }, + { + "start": 19864.68, + "end": 19866.98, + "probability": 0.9951 + }, + { + "start": 19867.82, + "end": 19874.5, + "probability": 0.9919 + }, + { + "start": 19875.44, + "end": 19878.34, + "probability": 0.9922 + }, + { + "start": 19879.2, + "end": 19881.92, + "probability": 0.9433 + }, + { + "start": 19882.72, + "end": 19885.88, + "probability": 0.9651 + }, + { + "start": 19886.44, + "end": 19888.52, + "probability": 0.8201 + }, + { + "start": 19889.36, + "end": 19891.28, + "probability": 0.9873 + }, + { + "start": 19892.22, + "end": 19894.38, + "probability": 0.9587 + }, + { + "start": 19895.28, + "end": 19902.46, + "probability": 0.9962 + }, + { + "start": 19902.56, + "end": 19905.04, + "probability": 0.953 + }, + { + "start": 19905.68, + "end": 19908.3, + "probability": 0.9342 + }, + { + "start": 19909.16, + "end": 19913.22, + "probability": 0.3152 + }, + { + "start": 19914.26, + "end": 19914.48, + "probability": 0.1105 + }, + { + "start": 19914.48, + "end": 19916.24, + "probability": 0.4763 + }, + { + "start": 19916.6, + "end": 19919.94, + "probability": 0.8462 + }, + { + "start": 19922.58, + "end": 19926.48, + "probability": 0.1148 + }, + { + "start": 19927.3, + "end": 19928.98, + "probability": 0.1742 + }, + { + "start": 19929.68, + "end": 19930.46, + "probability": 0.1661 + }, + { + "start": 19930.46, + "end": 19937.58, + "probability": 0.527 + }, + { + "start": 19938.88, + "end": 19942.37, + "probability": 0.9578 + }, + { + "start": 19942.68, + "end": 19949.96, + "probability": 0.9432 + }, + { + "start": 19951.02, + "end": 19955.02, + "probability": 0.7957 + }, + { + "start": 19955.02, + "end": 19958.68, + "probability": 0.9866 + }, + { + "start": 19959.2, + "end": 19960.56, + "probability": 0.899 + }, + { + "start": 19961.08, + "end": 19962.52, + "probability": 0.7939 + }, + { + "start": 19963.4, + "end": 19964.44, + "probability": 0.8273 + }, + { + "start": 19965.02, + "end": 19972.18, + "probability": 0.9925 + }, + { + "start": 19972.74, + "end": 19974.92, + "probability": 0.9236 + }, + { + "start": 19975.64, + "end": 19979.42, + "probability": 0.9095 + }, + { + "start": 19979.54, + "end": 19981.62, + "probability": 0.9338 + }, + { + "start": 19982.32, + "end": 19986.44, + "probability": 0.9694 + }, + { + "start": 19986.52, + "end": 19988.14, + "probability": 0.5845 + }, + { + "start": 19989.48, + "end": 19993.8, + "probability": 0.8759 + }, + { + "start": 19994.92, + "end": 19996.7, + "probability": 0.6675 + }, + { + "start": 19997.32, + "end": 19999.16, + "probability": 0.9958 + }, + { + "start": 19999.78, + "end": 20000.74, + "probability": 0.555 + }, + { + "start": 20001.22, + "end": 20004.8, + "probability": 0.987 + }, + { + "start": 20004.8, + "end": 20009.12, + "probability": 0.9666 + }, + { + "start": 20009.6, + "end": 20011.16, + "probability": 0.9817 + }, + { + "start": 20011.92, + "end": 20015.94, + "probability": 0.9959 + }, + { + "start": 20017.68, + "end": 20022.24, + "probability": 0.7742 + }, + { + "start": 20023.0, + "end": 20028.18, + "probability": 0.641 + }, + { + "start": 20028.18, + "end": 20032.8, + "probability": 0.0206 + }, + { + "start": 20033.48, + "end": 20036.24, + "probability": 0.0472 + }, + { + "start": 20037.84, + "end": 20038.74, + "probability": 0.0699 + }, + { + "start": 20039.0, + "end": 20041.0, + "probability": 0.8134 + }, + { + "start": 20041.0, + "end": 20047.68, + "probability": 0.9398 + }, + { + "start": 20048.46, + "end": 20052.28, + "probability": 0.5253 + }, + { + "start": 20052.34, + "end": 20052.82, + "probability": 0.3908 + }, + { + "start": 20052.86, + "end": 20052.96, + "probability": 0.4436 + }, + { + "start": 20053.71, + "end": 20055.76, + "probability": 0.2946 + }, + { + "start": 20055.9, + "end": 20057.54, + "probability": 0.9551 + }, + { + "start": 20059.1, + "end": 20060.64, + "probability": 0.2348 + }, + { + "start": 20061.24, + "end": 20062.16, + "probability": 0.0817 + }, + { + "start": 20062.9, + "end": 20062.9, + "probability": 0.4046 + }, + { + "start": 20063.21, + "end": 20064.28, + "probability": 0.4837 + }, + { + "start": 20064.28, + "end": 20065.16, + "probability": 0.4239 + }, + { + "start": 20065.38, + "end": 20066.56, + "probability": 0.517 + }, + { + "start": 20066.84, + "end": 20070.2, + "probability": 0.6646 + }, + { + "start": 20071.02, + "end": 20076.5, + "probability": 0.8071 + }, + { + "start": 20077.58, + "end": 20078.12, + "probability": 0.5561 + }, + { + "start": 20078.74, + "end": 20081.72, + "probability": 0.2715 + }, + { + "start": 20081.72, + "end": 20082.05, + "probability": 0.2535 + }, + { + "start": 20082.3, + "end": 20085.24, + "probability": 0.9486 + }, + { + "start": 20086.18, + "end": 20088.16, + "probability": 0.3881 + }, + { + "start": 20089.9, + "end": 20092.16, + "probability": 0.4241 + }, + { + "start": 20092.7, + "end": 20095.88, + "probability": 0.4763 + }, + { + "start": 20095.88, + "end": 20095.88, + "probability": 0.5156 + }, + { + "start": 20095.88, + "end": 20100.22, + "probability": 0.7195 + }, + { + "start": 20100.48, + "end": 20109.48, + "probability": 0.5474 + }, + { + "start": 20109.72, + "end": 20115.02, + "probability": 0.1134 + }, + { + "start": 20115.92, + "end": 20116.78, + "probability": 0.0536 + }, + { + "start": 20116.78, + "end": 20118.48, + "probability": 0.1053 + }, + { + "start": 20118.48, + "end": 20118.62, + "probability": 0.0114 + }, + { + "start": 20127.48, + "end": 20129.56, + "probability": 0.0222 + }, + { + "start": 20133.99, + "end": 20139.08, + "probability": 0.7099 + }, + { + "start": 20144.5, + "end": 20148.66, + "probability": 0.8283 + }, + { + "start": 20148.84, + "end": 20149.56, + "probability": 0.3304 + }, + { + "start": 20149.7, + "end": 20154.9, + "probability": 0.2378 + }, + { + "start": 20155.7, + "end": 20156.5, + "probability": 0.2504 + }, + { + "start": 20156.5, + "end": 20157.48, + "probability": 0.0464 + }, + { + "start": 20158.6, + "end": 20158.86, + "probability": 0.0303 + }, + { + "start": 20158.86, + "end": 20159.64, + "probability": 0.3167 + }, + { + "start": 20159.68, + "end": 20161.58, + "probability": 0.6363 + }, + { + "start": 20161.58, + "end": 20162.48, + "probability": 0.6701 + }, + { + "start": 20162.48, + "end": 20164.92, + "probability": 0.9734 + }, + { + "start": 20165.04, + "end": 20166.44, + "probability": 0.9836 + }, + { + "start": 20166.48, + "end": 20167.9, + "probability": 0.6872 + }, + { + "start": 20168.42, + "end": 20169.83, + "probability": 0.8905 + }, + { + "start": 20170.02, + "end": 20170.57, + "probability": 0.3474 + }, + { + "start": 20171.1, + "end": 20174.88, + "probability": 0.0434 + }, + { + "start": 20176.82, + "end": 20177.7, + "probability": 0.1379 + }, + { + "start": 20182.74, + "end": 20184.54, + "probability": 0.7467 + }, + { + "start": 20184.64, + "end": 20187.8, + "probability": 0.3513 + }, + { + "start": 20188.44, + "end": 20189.21, + "probability": 0.505 + }, + { + "start": 20189.54, + "end": 20189.72, + "probability": 0.2714 + }, + { + "start": 20189.86, + "end": 20190.1, + "probability": 0.7069 + }, + { + "start": 20190.18, + "end": 20190.94, + "probability": 0.789 + }, + { + "start": 20191.06, + "end": 20193.01, + "probability": 0.9157 + }, + { + "start": 20194.42, + "end": 20195.48, + "probability": 0.2838 + }, + { + "start": 20195.66, + "end": 20198.24, + "probability": 0.9598 + }, + { + "start": 20200.96, + "end": 20205.54, + "probability": 0.7647 + }, + { + "start": 20206.89, + "end": 20212.32, + "probability": 0.9787 + }, + { + "start": 20213.75, + "end": 20216.36, + "probability": 0.8656 + }, + { + "start": 20216.52, + "end": 20217.18, + "probability": 0.4569 + }, + { + "start": 20217.32, + "end": 20218.46, + "probability": 0.2935 + }, + { + "start": 20218.62, + "end": 20219.95, + "probability": 0.2056 + }, + { + "start": 20220.5, + "end": 20221.24, + "probability": 0.5641 + }, + { + "start": 20221.48, + "end": 20223.6, + "probability": 0.6925 + }, + { + "start": 20224.08, + "end": 20225.6, + "probability": 0.9541 + }, + { + "start": 20225.74, + "end": 20226.92, + "probability": 0.8933 + }, + { + "start": 20228.06, + "end": 20231.36, + "probability": 0.8942 + }, + { + "start": 20232.1, + "end": 20233.3, + "probability": 0.7203 + }, + { + "start": 20233.68, + "end": 20236.42, + "probability": 0.5634 + }, + { + "start": 20236.42, + "end": 20237.02, + "probability": 0.7603 + }, + { + "start": 20237.5, + "end": 20237.9, + "probability": 0.8921 + }, + { + "start": 20237.9, + "end": 20240.76, + "probability": 0.8759 + }, + { + "start": 20240.84, + "end": 20242.68, + "probability": 0.5846 + }, + { + "start": 20243.32, + "end": 20246.68, + "probability": 0.0338 + }, + { + "start": 20246.68, + "end": 20246.76, + "probability": 0.7222 + }, + { + "start": 20246.76, + "end": 20247.32, + "probability": 0.642 + }, + { + "start": 20248.2, + "end": 20249.85, + "probability": 0.5839 + }, + { + "start": 20250.12, + "end": 20250.5, + "probability": 0.6956 + }, + { + "start": 20250.96, + "end": 20253.5, + "probability": 0.974 + }, + { + "start": 20253.54, + "end": 20255.28, + "probability": 0.8438 + }, + { + "start": 20256.4, + "end": 20258.56, + "probability": 0.4133 + }, + { + "start": 20258.72, + "end": 20260.84, + "probability": 0.6977 + }, + { + "start": 20261.08, + "end": 20262.94, + "probability": 0.7257 + }, + { + "start": 20263.08, + "end": 20264.46, + "probability": 0.7432 + }, + { + "start": 20264.58, + "end": 20266.5, + "probability": 0.887 + }, + { + "start": 20266.72, + "end": 20270.8, + "probability": 0.8243 + }, + { + "start": 20271.18, + "end": 20273.58, + "probability": 0.9937 + }, + { + "start": 20273.7, + "end": 20274.82, + "probability": 0.0246 + }, + { + "start": 20275.28, + "end": 20276.86, + "probability": 0.4415 + }, + { + "start": 20277.08, + "end": 20277.08, + "probability": 0.1184 + }, + { + "start": 20277.08, + "end": 20277.08, + "probability": 0.4945 + }, + { + "start": 20277.08, + "end": 20279.86, + "probability": 0.9263 + }, + { + "start": 20280.54, + "end": 20281.76, + "probability": 0.8744 + }, + { + "start": 20284.28, + "end": 20286.72, + "probability": 0.8386 + }, + { + "start": 20287.94, + "end": 20291.94, + "probability": 0.5812 + }, + { + "start": 20291.98, + "end": 20292.8, + "probability": 0.5412 + }, + { + "start": 20295.72, + "end": 20299.76, + "probability": 0.6349 + }, + { + "start": 20301.46, + "end": 20302.5, + "probability": 0.6509 + }, + { + "start": 20303.54, + "end": 20304.96, + "probability": 0.7329 + }, + { + "start": 20306.76, + "end": 20307.68, + "probability": 0.2869 + }, + { + "start": 20308.92, + "end": 20313.02, + "probability": 0.8188 + }, + { + "start": 20313.54, + "end": 20314.46, + "probability": 0.994 + }, + { + "start": 20315.0, + "end": 20318.22, + "probability": 0.9988 + }, + { + "start": 20319.22, + "end": 20323.51, + "probability": 0.9929 + }, + { + "start": 20324.6, + "end": 20325.82, + "probability": 0.9022 + }, + { + "start": 20326.54, + "end": 20330.38, + "probability": 0.9922 + }, + { + "start": 20330.38, + "end": 20333.74, + "probability": 0.9993 + }, + { + "start": 20334.86, + "end": 20336.0, + "probability": 0.8337 + }, + { + "start": 20337.6, + "end": 20339.44, + "probability": 0.7388 + }, + { + "start": 20340.05, + "end": 20342.36, + "probability": 0.9166 + }, + { + "start": 20343.45, + "end": 20346.28, + "probability": 0.1607 + }, + { + "start": 20346.3, + "end": 20350.12, + "probability": 0.9526 + }, + { + "start": 20351.06, + "end": 20355.84, + "probability": 0.9393 + }, + { + "start": 20355.84, + "end": 20360.58, + "probability": 0.9878 + }, + { + "start": 20360.74, + "end": 20360.74, + "probability": 0.0496 + }, + { + "start": 20360.74, + "end": 20361.08, + "probability": 0.447 + }, + { + "start": 20361.18, + "end": 20366.18, + "probability": 0.9176 + }, + { + "start": 20366.18, + "end": 20369.98, + "probability": 0.9978 + }, + { + "start": 20370.4, + "end": 20372.44, + "probability": 0.9048 + }, + { + "start": 20373.16, + "end": 20374.5, + "probability": 0.6773 + }, + { + "start": 20375.26, + "end": 20375.76, + "probability": 0.7609 + }, + { + "start": 20376.36, + "end": 20377.64, + "probability": 0.5784 + }, + { + "start": 20377.74, + "end": 20380.44, + "probability": 0.9079 + }, + { + "start": 20381.0, + "end": 20382.78, + "probability": 0.829 + }, + { + "start": 20382.88, + "end": 20383.2, + "probability": 0.6444 + }, + { + "start": 20385.77, + "end": 20387.5, + "probability": 0.9355 + }, + { + "start": 20393.24, + "end": 20395.24, + "probability": 0.6239 + }, + { + "start": 20395.32, + "end": 20398.04, + "probability": 0.9944 + }, + { + "start": 20398.26, + "end": 20400.84, + "probability": 0.48 + }, + { + "start": 20401.14, + "end": 20405.4, + "probability": 0.8709 + }, + { + "start": 20405.48, + "end": 20405.82, + "probability": 0.5042 + }, + { + "start": 20407.1, + "end": 20408.48, + "probability": 0.7721 + }, + { + "start": 20412.24, + "end": 20413.98, + "probability": 0.8738 + }, + { + "start": 20415.76, + "end": 20417.62, + "probability": 0.9983 + }, + { + "start": 20417.72, + "end": 20419.08, + "probability": 0.9005 + }, + { + "start": 20420.06, + "end": 20422.08, + "probability": 0.9989 + }, + { + "start": 20422.32, + "end": 20425.1, + "probability": 0.7932 + }, + { + "start": 20425.68, + "end": 20429.38, + "probability": 0.9875 + }, + { + "start": 20429.5, + "end": 20431.62, + "probability": 0.9182 + }, + { + "start": 20431.74, + "end": 20433.72, + "probability": 0.9939 + }, + { + "start": 20434.58, + "end": 20438.76, + "probability": 0.8628 + }, + { + "start": 20439.96, + "end": 20442.86, + "probability": 0.8171 + }, + { + "start": 20443.0, + "end": 20444.34, + "probability": 0.7917 + }, + { + "start": 20444.76, + "end": 20445.62, + "probability": 0.917 + }, + { + "start": 20446.26, + "end": 20447.14, + "probability": 0.9412 + }, + { + "start": 20447.86, + "end": 20450.1, + "probability": 0.9883 + }, + { + "start": 20451.76, + "end": 20452.24, + "probability": 0.1481 + }, + { + "start": 20455.34, + "end": 20456.1, + "probability": 0.1115 + }, + { + "start": 20457.28, + "end": 20461.38, + "probability": 0.916 + }, + { + "start": 20462.46, + "end": 20465.24, + "probability": 0.9978 + }, + { + "start": 20465.76, + "end": 20466.56, + "probability": 0.7988 + }, + { + "start": 20466.6, + "end": 20468.98, + "probability": 0.8687 + }, + { + "start": 20469.12, + "end": 20469.94, + "probability": 0.8984 + }, + { + "start": 20470.24, + "end": 20473.42, + "probability": 0.7878 + }, + { + "start": 20473.5, + "end": 20476.12, + "probability": 0.9785 + }, + { + "start": 20476.68, + "end": 20477.2, + "probability": 0.9577 + }, + { + "start": 20478.34, + "end": 20479.3, + "probability": 0.3664 + }, + { + "start": 20479.3, + "end": 20479.92, + "probability": 0.095 + }, + { + "start": 20480.28, + "end": 20481.42, + "probability": 0.4504 + }, + { + "start": 20481.94, + "end": 20483.78, + "probability": 0.3441 + }, + { + "start": 20483.78, + "end": 20484.69, + "probability": 0.8463 + }, + { + "start": 20485.02, + "end": 20487.06, + "probability": 0.653 + }, + { + "start": 20487.08, + "end": 20487.98, + "probability": 0.1863 + }, + { + "start": 20488.89, + "end": 20491.99, + "probability": 0.8452 + }, + { + "start": 20492.08, + "end": 20493.54, + "probability": 0.5501 + }, + { + "start": 20493.68, + "end": 20494.76, + "probability": 0.3575 + }, + { + "start": 20494.78, + "end": 20498.87, + "probability": 0.1979 + }, + { + "start": 20509.74, + "end": 20511.36, + "probability": 0.1344 + }, + { + "start": 20511.48, + "end": 20513.02, + "probability": 0.2402 + }, + { + "start": 20513.24, + "end": 20514.98, + "probability": 0.7876 + }, + { + "start": 20515.14, + "end": 20516.58, + "probability": 0.3482 + }, + { + "start": 20517.02, + "end": 20517.76, + "probability": 0.4664 + }, + { + "start": 20517.94, + "end": 20519.6, + "probability": 0.6788 + }, + { + "start": 20520.04, + "end": 20521.88, + "probability": 0.4246 + }, + { + "start": 20522.3, + "end": 20523.24, + "probability": 0.8692 + }, + { + "start": 20523.4, + "end": 20523.96, + "probability": 0.7403 + }, + { + "start": 20523.98, + "end": 20524.9, + "probability": 0.4898 + }, + { + "start": 20524.9, + "end": 20526.28, + "probability": 0.2387 + }, + { + "start": 20527.08, + "end": 20528.22, + "probability": 0.1949 + }, + { + "start": 20528.5, + "end": 20532.46, + "probability": 0.7085 + }, + { + "start": 20532.46, + "end": 20536.42, + "probability": 0.9832 + }, + { + "start": 20536.56, + "end": 20541.42, + "probability": 0.9916 + }, + { + "start": 20541.7, + "end": 20541.94, + "probability": 0.7247 + }, + { + "start": 20542.04, + "end": 20544.37, + "probability": 0.7683 + }, + { + "start": 20544.92, + "end": 20545.18, + "probability": 0.3937 + }, + { + "start": 20545.18, + "end": 20548.62, + "probability": 0.8707 + }, + { + "start": 20548.7, + "end": 20549.02, + "probability": 0.7644 + }, + { + "start": 20549.5, + "end": 20552.26, + "probability": 0.9849 + }, + { + "start": 20553.38, + "end": 20554.8, + "probability": 0.633 + }, + { + "start": 20555.88, + "end": 20558.56, + "probability": 0.5443 + }, + { + "start": 20559.86, + "end": 20563.16, + "probability": 0.8567 + }, + { + "start": 20565.1, + "end": 20567.52, + "probability": 0.9052 + }, + { + "start": 20568.44, + "end": 20571.18, + "probability": 0.1417 + }, + { + "start": 20579.52, + "end": 20580.62, + "probability": 0.3399 + }, + { + "start": 20583.98, + "end": 20585.92, + "probability": 0.0626 + }, + { + "start": 20586.71, + "end": 20589.3, + "probability": 0.2715 + }, + { + "start": 20590.68, + "end": 20593.18, + "probability": 0.9767 + }, + { + "start": 20594.8, + "end": 20595.42, + "probability": 0.9504 + }, + { + "start": 20596.92, + "end": 20599.38, + "probability": 0.8138 + }, + { + "start": 20600.06, + "end": 20604.74, + "probability": 0.9598 + }, + { + "start": 20605.4, + "end": 20606.48, + "probability": 0.8448 + }, + { + "start": 20606.66, + "end": 20608.98, + "probability": 0.8133 + }, + { + "start": 20610.22, + "end": 20610.32, + "probability": 0.2993 + }, + { + "start": 20610.32, + "end": 20615.98, + "probability": 0.882 + }, + { + "start": 20616.62, + "end": 20616.96, + "probability": 0.919 + }, + { + "start": 20619.84, + "end": 20620.28, + "probability": 0.9423 + }, + { + "start": 20623.14, + "end": 20624.1, + "probability": 0.8085 + }, + { + "start": 20624.22, + "end": 20625.14, + "probability": 0.9091 + }, + { + "start": 20625.2, + "end": 20625.98, + "probability": 0.7249 + }, + { + "start": 20627.06, + "end": 20629.58, + "probability": 0.9036 + }, + { + "start": 20630.54, + "end": 20632.8, + "probability": 0.9819 + }, + { + "start": 20633.58, + "end": 20634.72, + "probability": 0.6631 + }, + { + "start": 20635.26, + "end": 20636.56, + "probability": 0.8642 + }, + { + "start": 20637.16, + "end": 20638.94, + "probability": 0.8738 + }, + { + "start": 20640.14, + "end": 20642.14, + "probability": 0.6691 + }, + { + "start": 20644.22, + "end": 20645.9, + "probability": 0.993 + }, + { + "start": 20647.26, + "end": 20648.18, + "probability": 0.4657 + }, + { + "start": 20648.26, + "end": 20650.6, + "probability": 0.6463 + }, + { + "start": 20650.6, + "end": 20653.58, + "probability": 0.9314 + }, + { + "start": 20653.62, + "end": 20655.92, + "probability": 0.9697 + }, + { + "start": 20656.32, + "end": 20657.24, + "probability": 0.9492 + }, + { + "start": 20657.38, + "end": 20661.74, + "probability": 0.9663 + }, + { + "start": 20663.4, + "end": 20666.26, + "probability": 0.8721 + }, + { + "start": 20667.3, + "end": 20670.46, + "probability": 0.9716 + }, + { + "start": 20671.08, + "end": 20673.3, + "probability": 0.9808 + }, + { + "start": 20674.52, + "end": 20675.72, + "probability": 0.9143 + }, + { + "start": 20676.4, + "end": 20678.5, + "probability": 0.7776 + }, + { + "start": 20679.38, + "end": 20682.8, + "probability": 0.9834 + }, + { + "start": 20683.38, + "end": 20684.46, + "probability": 0.6526 + }, + { + "start": 20685.26, + "end": 20687.68, + "probability": 0.8138 + }, + { + "start": 20688.34, + "end": 20689.0, + "probability": 0.9731 + }, + { + "start": 20689.42, + "end": 20693.18, + "probability": 0.9963 + }, + { + "start": 20694.9, + "end": 20695.7, + "probability": 0.7315 + }, + { + "start": 20696.42, + "end": 20697.7, + "probability": 0.8755 + }, + { + "start": 20698.6, + "end": 20700.74, + "probability": 0.9944 + }, + { + "start": 20700.82, + "end": 20702.26, + "probability": 0.9915 + }, + { + "start": 20702.82, + "end": 20704.1, + "probability": 0.9504 + }, + { + "start": 20704.3, + "end": 20707.81, + "probability": 0.9976 + }, + { + "start": 20708.82, + "end": 20710.56, + "probability": 0.9945 + }, + { + "start": 20711.28, + "end": 20714.53, + "probability": 0.8531 + }, + { + "start": 20715.32, + "end": 20718.1, + "probability": 0.789 + }, + { + "start": 20718.22, + "end": 20718.96, + "probability": 0.8069 + }, + { + "start": 20719.86, + "end": 20727.7, + "probability": 0.9832 + }, + { + "start": 20728.48, + "end": 20730.74, + "probability": 0.7602 + }, + { + "start": 20731.58, + "end": 20734.3, + "probability": 0.9912 + }, + { + "start": 20735.06, + "end": 20737.0, + "probability": 0.8595 + }, + { + "start": 20737.48, + "end": 20738.1, + "probability": 0.5014 + }, + { + "start": 20738.14, + "end": 20739.08, + "probability": 0.9358 + }, + { + "start": 20739.2, + "end": 20742.96, + "probability": 0.9954 + }, + { + "start": 20743.4, + "end": 20744.7, + "probability": 0.5751 + }, + { + "start": 20745.48, + "end": 20749.98, + "probability": 0.9858 + }, + { + "start": 20750.5, + "end": 20751.22, + "probability": 0.8707 + }, + { + "start": 20751.28, + "end": 20751.64, + "probability": 0.7892 + }, + { + "start": 20755.02, + "end": 20756.94, + "probability": 0.8523 + }, + { + "start": 20757.58, + "end": 20759.17, + "probability": 0.9984 + }, + { + "start": 20760.1, + "end": 20761.68, + "probability": 0.6088 + }, + { + "start": 20763.04, + "end": 20764.58, + "probability": 0.7418 + }, + { + "start": 20765.42, + "end": 20768.02, + "probability": 0.8883 + }, + { + "start": 20768.1, + "end": 20769.42, + "probability": 0.8728 + }, + { + "start": 20770.04, + "end": 20770.14, + "probability": 0.0007 + }, + { + "start": 20770.14, + "end": 20774.12, + "probability": 0.6688 + }, + { + "start": 20774.62, + "end": 20777.34, + "probability": 0.6125 + }, + { + "start": 20777.5, + "end": 20778.86, + "probability": 0.7127 + }, + { + "start": 20778.98, + "end": 20779.3, + "probability": 0.7365 + }, + { + "start": 20780.44, + "end": 20783.1, + "probability": 0.7772 + }, + { + "start": 20787.99, + "end": 20789.24, + "probability": 0.514 + }, + { + "start": 20794.02, + "end": 20797.28, + "probability": 0.6617 + }, + { + "start": 20797.4, + "end": 20798.56, + "probability": 0.8301 + }, + { + "start": 20798.78, + "end": 20800.26, + "probability": 0.8813 + }, + { + "start": 20800.36, + "end": 20801.62, + "probability": 0.9132 + }, + { + "start": 20802.88, + "end": 20804.42, + "probability": 0.8465 + }, + { + "start": 20804.6, + "end": 20807.28, + "probability": 0.9956 + }, + { + "start": 20807.28, + "end": 20810.88, + "probability": 0.9751 + }, + { + "start": 20811.9, + "end": 20812.92, + "probability": 0.7298 + }, + { + "start": 20813.12, + "end": 20813.6, + "probability": 0.7041 + }, + { + "start": 20814.16, + "end": 20815.26, + "probability": 0.9043 + }, + { + "start": 20815.68, + "end": 20820.28, + "probability": 0.9194 + }, + { + "start": 20820.44, + "end": 20822.46, + "probability": 0.961 + }, + { + "start": 20822.96, + "end": 20825.96, + "probability": 0.1194 + }, + { + "start": 20826.32, + "end": 20827.26, + "probability": 0.7588 + }, + { + "start": 20827.42, + "end": 20828.14, + "probability": 0.8637 + }, + { + "start": 20828.24, + "end": 20828.78, + "probability": 0.8936 + }, + { + "start": 20828.94, + "end": 20829.74, + "probability": 0.4055 + }, + { + "start": 20829.74, + "end": 20830.1, + "probability": 0.1918 + }, + { + "start": 20830.28, + "end": 20830.8, + "probability": 0.871 + }, + { + "start": 20830.84, + "end": 20832.02, + "probability": 0.9466 + }, + { + "start": 20832.08, + "end": 20833.46, + "probability": 0.9818 + }, + { + "start": 20833.54, + "end": 20835.1, + "probability": 0.9733 + }, + { + "start": 20835.74, + "end": 20837.18, + "probability": 0.424 + }, + { + "start": 20837.9, + "end": 20840.7, + "probability": 0.3071 + }, + { + "start": 20841.02, + "end": 20841.88, + "probability": 0.2344 + }, + { + "start": 20842.06, + "end": 20843.4, + "probability": 0.8377 + }, + { + "start": 20843.56, + "end": 20846.64, + "probability": 0.9897 + }, + { + "start": 20847.24, + "end": 20849.74, + "probability": 0.9964 + }, + { + "start": 20849.94, + "end": 20850.8, + "probability": 0.8705 + }, + { + "start": 20850.94, + "end": 20853.28, + "probability": 0.8727 + }, + { + "start": 20853.98, + "end": 20854.5, + "probability": 0.8383 + }, + { + "start": 20854.58, + "end": 20858.43, + "probability": 0.9299 + }, + { + "start": 20859.56, + "end": 20864.44, + "probability": 0.9857 + }, + { + "start": 20864.54, + "end": 20867.42, + "probability": 0.9895 + }, + { + "start": 20867.98, + "end": 20868.9, + "probability": 0.8254 + }, + { + "start": 20870.02, + "end": 20872.28, + "probability": 0.8875 + }, + { + "start": 20876.12, + "end": 20877.22, + "probability": 0.4564 + }, + { + "start": 20877.3, + "end": 20878.09, + "probability": 0.8733 + }, + { + "start": 20878.72, + "end": 20880.78, + "probability": 0.9871 + }, + { + "start": 20881.22, + "end": 20884.9, + "probability": 0.9395 + }, + { + "start": 20884.92, + "end": 20886.5, + "probability": 0.9701 + }, + { + "start": 20886.66, + "end": 20888.26, + "probability": 0.9805 + }, + { + "start": 20888.92, + "end": 20894.74, + "probability": 0.9844 + }, + { + "start": 20895.72, + "end": 20897.78, + "probability": 0.6749 + }, + { + "start": 20898.51, + "end": 20903.54, + "probability": 0.8555 + }, + { + "start": 20904.28, + "end": 20904.68, + "probability": 0.5072 + }, + { + "start": 20904.82, + "end": 20907.02, + "probability": 0.7082 + }, + { + "start": 20907.06, + "end": 20907.44, + "probability": 0.6403 + }, + { + "start": 20907.58, + "end": 20908.64, + "probability": 0.9029 + }, + { + "start": 20909.08, + "end": 20911.7, + "probability": 0.9949 + }, + { + "start": 20912.08, + "end": 20917.62, + "probability": 0.9932 + }, + { + "start": 20917.78, + "end": 20919.0, + "probability": 0.8665 + }, + { + "start": 20919.08, + "end": 20922.21, + "probability": 0.996 + }, + { + "start": 20922.76, + "end": 20923.42, + "probability": 0.8582 + }, + { + "start": 20923.48, + "end": 20926.4, + "probability": 0.9936 + }, + { + "start": 20926.62, + "end": 20928.86, + "probability": 0.9255 + }, + { + "start": 20929.2, + "end": 20930.92, + "probability": 0.9526 + }, + { + "start": 20931.34, + "end": 20933.26, + "probability": 0.9969 + }, + { + "start": 20933.46, + "end": 20934.48, + "probability": 0.503 + }, + { + "start": 20934.82, + "end": 20938.96, + "probability": 0.9774 + }, + { + "start": 20939.36, + "end": 20942.26, + "probability": 0.8863 + }, + { + "start": 20942.36, + "end": 20945.18, + "probability": 0.8787 + }, + { + "start": 20945.62, + "end": 20947.66, + "probability": 0.9273 + }, + { + "start": 20948.02, + "end": 20949.24, + "probability": 0.5064 + }, + { + "start": 20950.38, + "end": 20953.72, + "probability": 0.837 + }, + { + "start": 20954.3, + "end": 20955.26, + "probability": 0.5943 + }, + { + "start": 20955.72, + "end": 20956.54, + "probability": 0.7824 + }, + { + "start": 20956.62, + "end": 20957.38, + "probability": 0.8324 + }, + { + "start": 20957.72, + "end": 20958.8, + "probability": 0.9735 + }, + { + "start": 20958.96, + "end": 20959.22, + "probability": 0.7298 + }, + { + "start": 20959.26, + "end": 20960.42, + "probability": 0.9848 + }, + { + "start": 20960.52, + "end": 20961.54, + "probability": 0.9511 + }, + { + "start": 20961.92, + "end": 20962.66, + "probability": 0.8995 + }, + { + "start": 20962.7, + "end": 20963.52, + "probability": 0.5442 + }, + { + "start": 20963.82, + "end": 20967.16, + "probability": 0.9951 + }, + { + "start": 20967.54, + "end": 20967.9, + "probability": 0.8239 + }, + { + "start": 20968.32, + "end": 20971.28, + "probability": 0.9855 + }, + { + "start": 20971.42, + "end": 20972.12, + "probability": 0.821 + }, + { + "start": 20972.52, + "end": 20974.84, + "probability": 0.9915 + }, + { + "start": 20975.88, + "end": 20980.08, + "probability": 0.9409 + }, + { + "start": 20980.2, + "end": 20983.92, + "probability": 0.9371 + }, + { + "start": 20984.36, + "end": 20988.47, + "probability": 0.9857 + }, + { + "start": 20988.82, + "end": 20991.74, + "probability": 0.9954 + }, + { + "start": 20991.74, + "end": 20995.72, + "probability": 0.9902 + }, + { + "start": 20996.14, + "end": 20998.02, + "probability": 0.8403 + }, + { + "start": 20998.58, + "end": 21001.32, + "probability": 0.6346 + }, + { + "start": 21001.9, + "end": 21004.66, + "probability": 0.7967 + }, + { + "start": 21005.06, + "end": 21007.02, + "probability": 0.8636 + }, + { + "start": 21007.66, + "end": 21008.95, + "probability": 0.9824 + }, + { + "start": 21010.66, + "end": 21012.8, + "probability": 0.9255 + }, + { + "start": 21012.9, + "end": 21013.64, + "probability": 0.8773 + }, + { + "start": 21013.74, + "end": 21014.54, + "probability": 0.6939 + }, + { + "start": 21015.02, + "end": 21016.12, + "probability": 0.9968 + }, + { + "start": 21016.5, + "end": 21019.9, + "probability": 0.991 + }, + { + "start": 21020.12, + "end": 21021.34, + "probability": 0.9299 + }, + { + "start": 21021.48, + "end": 21022.02, + "probability": 0.4253 + }, + { + "start": 21022.98, + "end": 21024.66, + "probability": 0.507 + }, + { + "start": 21025.6, + "end": 21026.8, + "probability": 0.5388 + }, + { + "start": 21027.02, + "end": 21028.84, + "probability": 0.7738 + }, + { + "start": 21029.24, + "end": 21033.42, + "probability": 0.9785 + }, + { + "start": 21034.22, + "end": 21036.52, + "probability": 0.5493 + }, + { + "start": 21036.98, + "end": 21040.88, + "probability": 0.9744 + }, + { + "start": 21041.22, + "end": 21042.41, + "probability": 0.8334 + }, + { + "start": 21042.86, + "end": 21044.06, + "probability": 0.9781 + }, + { + "start": 21044.38, + "end": 21049.56, + "probability": 0.98 + }, + { + "start": 21049.84, + "end": 21052.02, + "probability": 0.9969 + }, + { + "start": 21052.2, + "end": 21052.78, + "probability": 0.9152 + }, + { + "start": 21053.24, + "end": 21053.84, + "probability": 0.267 + }, + { + "start": 21054.3, + "end": 21056.98, + "probability": 0.9927 + }, + { + "start": 21057.06, + "end": 21057.76, + "probability": 0.915 + }, + { + "start": 21057.92, + "end": 21058.74, + "probability": 0.6865 + }, + { + "start": 21058.86, + "end": 21059.04, + "probability": 0.5216 + }, + { + "start": 21059.4, + "end": 21062.28, + "probability": 0.997 + }, + { + "start": 21062.6, + "end": 21064.44, + "probability": 0.9967 + }, + { + "start": 21064.98, + "end": 21066.8, + "probability": 0.999 + }, + { + "start": 21067.2, + "end": 21068.9, + "probability": 0.7812 + }, + { + "start": 21069.48, + "end": 21073.0, + "probability": 0.9862 + }, + { + "start": 21073.42, + "end": 21075.28, + "probability": 0.96 + }, + { + "start": 21075.44, + "end": 21077.12, + "probability": 0.9798 + }, + { + "start": 21077.32, + "end": 21078.6, + "probability": 0.846 + }, + { + "start": 21078.68, + "end": 21079.84, + "probability": 0.9084 + }, + { + "start": 21080.26, + "end": 21081.16, + "probability": 0.9583 + }, + { + "start": 21081.36, + "end": 21082.54, + "probability": 0.7883 + }, + { + "start": 21082.84, + "end": 21082.84, + "probability": 0.6044 + }, + { + "start": 21083.1, + "end": 21085.16, + "probability": 0.9705 + }, + { + "start": 21085.16, + "end": 21087.76, + "probability": 0.9953 + }, + { + "start": 21088.18, + "end": 21091.5, + "probability": 0.9961 + }, + { + "start": 21091.62, + "end": 21093.1, + "probability": 0.9347 + }, + { + "start": 21093.1, + "end": 21093.84, + "probability": 0.7343 + }, + { + "start": 21094.68, + "end": 21096.72, + "probability": 0.5729 + }, + { + "start": 21096.78, + "end": 21098.46, + "probability": 0.8214 + }, + { + "start": 21099.96, + "end": 21100.96, + "probability": 0.5768 + }, + { + "start": 21102.66, + "end": 21104.76, + "probability": 0.5213 + }, + { + "start": 21105.76, + "end": 21108.56, + "probability": 0.8785 + }, + { + "start": 21108.68, + "end": 21109.18, + "probability": 0.6756 + }, + { + "start": 21128.84, + "end": 21129.66, + "probability": 0.5143 + }, + { + "start": 21129.82, + "end": 21134.18, + "probability": 0.8423 + }, + { + "start": 21134.5, + "end": 21135.62, + "probability": 0.4564 + }, + { + "start": 21136.2, + "end": 21138.64, + "probability": 0.7505 + }, + { + "start": 21139.46, + "end": 21139.91, + "probability": 0.8587 + }, + { + "start": 21143.39, + "end": 21144.22, + "probability": 0.0221 + }, + { + "start": 21144.22, + "end": 21144.22, + "probability": 0.0355 + }, + { + "start": 21144.22, + "end": 21144.84, + "probability": 0.4742 + }, + { + "start": 21145.14, + "end": 21146.18, + "probability": 0.0926 + }, + { + "start": 21148.36, + "end": 21153.18, + "probability": 0.2276 + }, + { + "start": 21153.64, + "end": 21154.08, + "probability": 0.5908 + }, + { + "start": 21154.7, + "end": 21155.34, + "probability": 0.8289 + }, + { + "start": 21155.62, + "end": 21155.94, + "probability": 0.6838 + }, + { + "start": 21156.52, + "end": 21157.85, + "probability": 0.9907 + }, + { + "start": 21160.54, + "end": 21163.62, + "probability": 0.5299 + }, + { + "start": 21163.62, + "end": 21163.62, + "probability": 0.3161 + }, + { + "start": 21163.62, + "end": 21166.14, + "probability": 0.655 + }, + { + "start": 21167.3, + "end": 21167.98, + "probability": 0.3561 + }, + { + "start": 21169.04, + "end": 21170.74, + "probability": 0.9552 + }, + { + "start": 21170.84, + "end": 21171.84, + "probability": 0.7401 + }, + { + "start": 21171.92, + "end": 21173.52, + "probability": 0.9963 + }, + { + "start": 21174.68, + "end": 21176.04, + "probability": 0.9882 + }, + { + "start": 21177.4, + "end": 21178.3, + "probability": 0.9858 + }, + { + "start": 21179.06, + "end": 21180.78, + "probability": 0.9645 + }, + { + "start": 21181.4, + "end": 21183.12, + "probability": 0.798 + }, + { + "start": 21183.82, + "end": 21186.98, + "probability": 0.9929 + }, + { + "start": 21187.06, + "end": 21188.22, + "probability": 0.8306 + }, + { + "start": 21188.5, + "end": 21192.4, + "probability": 0.9468 + }, + { + "start": 21192.92, + "end": 21197.6, + "probability": 0.9644 + }, + { + "start": 21198.14, + "end": 21201.32, + "probability": 0.9816 + }, + { + "start": 21201.32, + "end": 21207.09, + "probability": 0.9916 + }, + { + "start": 21207.12, + "end": 21209.78, + "probability": 0.9977 + }, + { + "start": 21210.34, + "end": 21212.14, + "probability": 0.9012 + }, + { + "start": 21212.84, + "end": 21216.6, + "probability": 0.9448 + }, + { + "start": 21217.14, + "end": 21218.7, + "probability": 0.9489 + }, + { + "start": 21218.76, + "end": 21222.82, + "probability": 0.9907 + }, + { + "start": 21223.2, + "end": 21229.18, + "probability": 0.9812 + }, + { + "start": 21229.3, + "end": 21229.86, + "probability": 0.1338 + }, + { + "start": 21229.92, + "end": 21230.78, + "probability": 0.4125 + }, + { + "start": 21231.8, + "end": 21235.98, + "probability": 0.9929 + }, + { + "start": 21236.18, + "end": 21237.6, + "probability": 0.9819 + }, + { + "start": 21238.36, + "end": 21242.68, + "probability": 0.969 + }, + { + "start": 21243.2, + "end": 21246.63, + "probability": 0.9697 + }, + { + "start": 21247.48, + "end": 21248.56, + "probability": 0.4784 + }, + { + "start": 21249.46, + "end": 21251.52, + "probability": 0.9668 + }, + { + "start": 21251.58, + "end": 21252.7, + "probability": 0.9967 + }, + { + "start": 21253.12, + "end": 21257.02, + "probability": 0.9544 + }, + { + "start": 21257.28, + "end": 21261.46, + "probability": 0.9404 + }, + { + "start": 21262.48, + "end": 21263.92, + "probability": 0.8438 + }, + { + "start": 21264.12, + "end": 21267.2, + "probability": 0.9611 + }, + { + "start": 21267.5, + "end": 21268.96, + "probability": 0.9775 + }, + { + "start": 21269.46, + "end": 21271.22, + "probability": 0.9802 + }, + { + "start": 21271.74, + "end": 21274.02, + "probability": 0.9463 + }, + { + "start": 21274.58, + "end": 21274.86, + "probability": 0.4982 + }, + { + "start": 21274.96, + "end": 21277.85, + "probability": 0.9258 + }, + { + "start": 21278.42, + "end": 21279.38, + "probability": 0.9312 + }, + { + "start": 21279.58, + "end": 21281.72, + "probability": 0.8177 + }, + { + "start": 21281.96, + "end": 21282.28, + "probability": 0.7549 + }, + { + "start": 21282.58, + "end": 21286.26, + "probability": 0.8632 + }, + { + "start": 21286.88, + "end": 21291.56, + "probability": 0.8791 + }, + { + "start": 21292.16, + "end": 21298.02, + "probability": 0.9851 + }, + { + "start": 21298.1, + "end": 21298.8, + "probability": 0.3554 + }, + { + "start": 21299.0, + "end": 21301.8, + "probability": 0.7874 + }, + { + "start": 21302.26, + "end": 21304.94, + "probability": 0.952 + }, + { + "start": 21305.36, + "end": 21305.62, + "probability": 0.7368 + }, + { + "start": 21305.7, + "end": 21306.36, + "probability": 0.8985 + }, + { + "start": 21306.52, + "end": 21310.08, + "probability": 0.9321 + }, + { + "start": 21310.08, + "end": 21315.56, + "probability": 0.981 + }, + { + "start": 21316.04, + "end": 21317.96, + "probability": 0.7491 + }, + { + "start": 21318.4, + "end": 21323.18, + "probability": 0.9934 + }, + { + "start": 21324.26, + "end": 21326.16, + "probability": 0.8385 + }, + { + "start": 21326.92, + "end": 21330.54, + "probability": 0.8502 + }, + { + "start": 21330.7, + "end": 21331.8, + "probability": 0.6171 + }, + { + "start": 21332.54, + "end": 21335.44, + "probability": 0.9835 + }, + { + "start": 21335.52, + "end": 21336.04, + "probability": 0.7459 + }, + { + "start": 21336.12, + "end": 21336.64, + "probability": 0.6986 + }, + { + "start": 21336.76, + "end": 21337.02, + "probability": 0.4278 + }, + { + "start": 21337.26, + "end": 21344.2, + "probability": 0.7971 + }, + { + "start": 21344.52, + "end": 21346.6, + "probability": 0.4847 + }, + { + "start": 21347.4, + "end": 21348.86, + "probability": 0.2598 + }, + { + "start": 21349.64, + "end": 21352.48, + "probability": 0.7894 + }, + { + "start": 21353.0, + "end": 21355.78, + "probability": 0.7351 + }, + { + "start": 21356.82, + "end": 21359.78, + "probability": 0.8997 + }, + { + "start": 21360.34, + "end": 21362.96, + "probability": 0.7382 + }, + { + "start": 21363.52, + "end": 21366.48, + "probability": 0.9979 + }, + { + "start": 21367.02, + "end": 21371.76, + "probability": 0.9995 + }, + { + "start": 21372.1, + "end": 21375.06, + "probability": 0.9907 + }, + { + "start": 21375.8, + "end": 21378.32, + "probability": 0.9951 + }, + { + "start": 21378.76, + "end": 21382.06, + "probability": 0.8821 + }, + { + "start": 21382.52, + "end": 21385.68, + "probability": 0.9735 + }, + { + "start": 21385.72, + "end": 21388.12, + "probability": 0.9826 + }, + { + "start": 21388.98, + "end": 21390.02, + "probability": 0.4989 + }, + { + "start": 21390.98, + "end": 21395.24, + "probability": 0.7398 + }, + { + "start": 21395.76, + "end": 21398.24, + "probability": 0.777 + }, + { + "start": 21398.98, + "end": 21400.88, + "probability": 0.997 + }, + { + "start": 21401.92, + "end": 21403.08, + "probability": 0.8101 + }, + { + "start": 21403.24, + "end": 21404.72, + "probability": 0.9641 + }, + { + "start": 21404.82, + "end": 21405.76, + "probability": 0.9775 + }, + { + "start": 21406.78, + "end": 21408.0, + "probability": 0.965 + }, + { + "start": 21408.08, + "end": 21411.72, + "probability": 0.9967 + }, + { + "start": 21412.36, + "end": 21413.28, + "probability": 0.8762 + }, + { + "start": 21413.46, + "end": 21413.9, + "probability": 0.5292 + }, + { + "start": 21413.9, + "end": 21416.66, + "probability": 0.7298 + }, + { + "start": 21417.44, + "end": 21419.02, + "probability": 0.9824 + }, + { + "start": 21419.28, + "end": 21419.42, + "probability": 0.4896 + }, + { + "start": 21419.56, + "end": 21424.14, + "probability": 0.9884 + }, + { + "start": 21424.66, + "end": 21426.56, + "probability": 0.7739 + }, + { + "start": 21426.96, + "end": 21427.7, + "probability": 0.9589 + }, + { + "start": 21427.76, + "end": 21429.08, + "probability": 0.9849 + }, + { + "start": 21429.2, + "end": 21429.7, + "probability": 0.8922 + }, + { + "start": 21430.14, + "end": 21433.88, + "probability": 0.972 + }, + { + "start": 21434.48, + "end": 21437.82, + "probability": 0.9956 + }, + { + "start": 21438.22, + "end": 21439.16, + "probability": 0.8583 + }, + { + "start": 21439.32, + "end": 21443.3, + "probability": 0.9746 + }, + { + "start": 21443.82, + "end": 21445.6, + "probability": 0.6754 + }, + { + "start": 21445.9, + "end": 21447.7, + "probability": 0.8689 + }, + { + "start": 21448.38, + "end": 21451.58, + "probability": 0.9984 + }, + { + "start": 21452.04, + "end": 21452.72, + "probability": 0.4805 + }, + { + "start": 21453.24, + "end": 21455.76, + "probability": 0.5949 + }, + { + "start": 21457.88, + "end": 21461.84, + "probability": 0.6211 + }, + { + "start": 21462.8, + "end": 21463.16, + "probability": 0.469 + }, + { + "start": 21463.16, + "end": 21465.32, + "probability": 0.7816 + }, + { + "start": 21465.6, + "end": 21468.78, + "probability": 0.9623 + }, + { + "start": 21470.68, + "end": 21473.24, + "probability": 0.9668 + }, + { + "start": 21473.82, + "end": 21476.62, + "probability": 0.9836 + }, + { + "start": 21476.72, + "end": 21481.64, + "probability": 0.6143 + }, + { + "start": 21481.84, + "end": 21482.54, + "probability": 0.4672 + }, + { + "start": 21482.96, + "end": 21483.32, + "probability": 0.4173 + }, + { + "start": 21485.72, + "end": 21486.18, + "probability": 0.1348 + }, + { + "start": 21486.18, + "end": 21487.1, + "probability": 0.9148 + }, + { + "start": 21487.32, + "end": 21490.38, + "probability": 0.9941 + }, + { + "start": 21490.38, + "end": 21493.14, + "probability": 0.965 + }, + { + "start": 21493.62, + "end": 21497.84, + "probability": 0.9908 + }, + { + "start": 21499.26, + "end": 21503.3, + "probability": 0.99 + }, + { + "start": 21503.32, + "end": 21504.98, + "probability": 0.6906 + }, + { + "start": 21507.16, + "end": 21507.7, + "probability": 0.6014 + }, + { + "start": 21508.52, + "end": 21509.84, + "probability": 0.4889 + }, + { + "start": 21509.84, + "end": 21510.34, + "probability": 0.0342 + }, + { + "start": 21513.64, + "end": 21513.66, + "probability": 0.0292 + }, + { + "start": 21514.74, + "end": 21515.64, + "probability": 0.086 + }, + { + "start": 21515.72, + "end": 21516.4, + "probability": 0.2343 + }, + { + "start": 21516.4, + "end": 21517.02, + "probability": 0.2324 + }, + { + "start": 21520.68, + "end": 21520.78, + "probability": 0.051 + }, + { + "start": 21520.78, + "end": 21521.0, + "probability": 0.0154 + }, + { + "start": 21521.0, + "end": 21521.0, + "probability": 0.262 + }, + { + "start": 21521.0, + "end": 21521.54, + "probability": 0.255 + }, + { + "start": 21523.38, + "end": 21524.02, + "probability": 0.137 + }, + { + "start": 21525.16, + "end": 21528.12, + "probability": 0.2013 + }, + { + "start": 21528.76, + "end": 21529.28, + "probability": 0.082 + }, + { + "start": 21529.28, + "end": 21529.28, + "probability": 0.2506 + }, + { + "start": 21529.28, + "end": 21529.28, + "probability": 0.0397 + }, + { + "start": 21529.28, + "end": 21530.66, + "probability": 0.139 + }, + { + "start": 21530.94, + "end": 21531.92, + "probability": 0.4023 + }, + { + "start": 21532.54, + "end": 21533.52, + "probability": 0.547 + }, + { + "start": 21533.58, + "end": 21535.96, + "probability": 0.7512 + }, + { + "start": 21536.42, + "end": 21540.64, + "probability": 0.8448 + }, + { + "start": 21540.64, + "end": 21543.46, + "probability": 0.9985 + }, + { + "start": 21543.7, + "end": 21545.58, + "probability": 0.8481 + }, + { + "start": 21545.78, + "end": 21545.84, + "probability": 0.157 + }, + { + "start": 21545.84, + "end": 21547.1, + "probability": 0.9238 + }, + { + "start": 21547.52, + "end": 21548.48, + "probability": 0.9023 + }, + { + "start": 21548.92, + "end": 21550.0, + "probability": 0.9599 + }, + { + "start": 21550.4, + "end": 21551.62, + "probability": 0.5734 + }, + { + "start": 21552.16, + "end": 21552.68, + "probability": 0.4907 + }, + { + "start": 21552.84, + "end": 21554.04, + "probability": 0.9976 + }, + { + "start": 21554.54, + "end": 21554.98, + "probability": 0.3867 + }, + { + "start": 21555.0, + "end": 21557.28, + "probability": 0.5457 + }, + { + "start": 21557.42, + "end": 21561.82, + "probability": 0.9475 + }, + { + "start": 21561.94, + "end": 21563.84, + "probability": 0.7504 + }, + { + "start": 21564.32, + "end": 21566.46, + "probability": 0.8892 + }, + { + "start": 21566.56, + "end": 21569.62, + "probability": 0.6291 + }, + { + "start": 21569.82, + "end": 21573.64, + "probability": 0.9075 + }, + { + "start": 21574.56, + "end": 21576.62, + "probability": 0.8208 + }, + { + "start": 21576.88, + "end": 21577.56, + "probability": 0.6817 + }, + { + "start": 21577.68, + "end": 21580.22, + "probability": 0.9226 + }, + { + "start": 21580.72, + "end": 21582.94, + "probability": 0.9687 + }, + { + "start": 21583.24, + "end": 21585.78, + "probability": 0.9816 + }, + { + "start": 21585.96, + "end": 21589.52, + "probability": 0.9829 + }, + { + "start": 21589.8, + "end": 21591.2, + "probability": 0.9102 + }, + { + "start": 21591.42, + "end": 21592.22, + "probability": 0.5049 + }, + { + "start": 21593.2, + "end": 21597.18, + "probability": 0.9928 + }, + { + "start": 21597.18, + "end": 21601.78, + "probability": 0.9967 + }, + { + "start": 21601.78, + "end": 21602.42, + "probability": 0.4671 + }, + { + "start": 21602.42, + "end": 21604.0, + "probability": 0.8072 + }, + { + "start": 21604.64, + "end": 21604.74, + "probability": 0.7367 + }, + { + "start": 21605.56, + "end": 21611.2, + "probability": 0.9563 + }, + { + "start": 21611.75, + "end": 21613.38, + "probability": 0.9481 + }, + { + "start": 21613.5, + "end": 21615.6, + "probability": 0.9766 + }, + { + "start": 21616.86, + "end": 21617.06, + "probability": 0.1788 + }, + { + "start": 21617.06, + "end": 21618.5, + "probability": 0.7087 + }, + { + "start": 21618.9, + "end": 21619.81, + "probability": 0.9749 + }, + { + "start": 21620.58, + "end": 21622.28, + "probability": 0.7375 + }, + { + "start": 21622.34, + "end": 21622.64, + "probability": 0.419 + }, + { + "start": 21622.84, + "end": 21623.2, + "probability": 0.7338 + }, + { + "start": 21623.48, + "end": 21624.4, + "probability": 0.9564 + }, + { + "start": 21624.48, + "end": 21624.58, + "probability": 0.5693 + }, + { + "start": 21624.94, + "end": 21628.38, + "probability": 0.9683 + }, + { + "start": 21628.38, + "end": 21632.46, + "probability": 0.9958 + }, + { + "start": 21632.8, + "end": 21633.54, + "probability": 0.882 + }, + { + "start": 21633.94, + "end": 21636.36, + "probability": 0.7606 + }, + { + "start": 21636.58, + "end": 21637.68, + "probability": 0.884 + }, + { + "start": 21637.7, + "end": 21641.18, + "probability": 0.9927 + }, + { + "start": 21641.64, + "end": 21642.4, + "probability": 0.957 + }, + { + "start": 21642.94, + "end": 21646.32, + "probability": 0.8005 + }, + { + "start": 21646.84, + "end": 21648.76, + "probability": 0.9901 + }, + { + "start": 21649.72, + "end": 21650.08, + "probability": 0.754 + }, + { + "start": 21650.22, + "end": 21650.66, + "probability": 0.8337 + }, + { + "start": 21651.16, + "end": 21651.98, + "probability": 0.8793 + }, + { + "start": 21652.72, + "end": 21652.84, + "probability": 0.4511 + }, + { + "start": 21653.4, + "end": 21654.22, + "probability": 0.7367 + }, + { + "start": 21655.02, + "end": 21657.68, + "probability": 0.339 + }, + { + "start": 21658.3, + "end": 21659.08, + "probability": 0.494 + }, + { + "start": 21659.86, + "end": 21661.12, + "probability": 0.4143 + }, + { + "start": 21662.18, + "end": 21664.6, + "probability": 0.6072 + }, + { + "start": 21665.34, + "end": 21668.58, + "probability": 0.8306 + }, + { + "start": 21668.64, + "end": 21669.98, + "probability": 0.3042 + }, + { + "start": 21670.06, + "end": 21672.84, + "probability": 0.7844 + }, + { + "start": 21673.1, + "end": 21676.84, + "probability": 0.8365 + }, + { + "start": 21677.36, + "end": 21682.68, + "probability": 0.9912 + }, + { + "start": 21683.2, + "end": 21684.28, + "probability": 0.6824 + }, + { + "start": 21685.36, + "end": 21688.42, + "probability": 0.9194 + }, + { + "start": 21689.32, + "end": 21689.38, + "probability": 0.2812 + }, + { + "start": 21689.54, + "end": 21693.04, + "probability": 0.9506 + }, + { + "start": 21693.1, + "end": 21696.32, + "probability": 0.8525 + }, + { + "start": 21696.4, + "end": 21696.5, + "probability": 0.4409 + }, + { + "start": 21696.9, + "end": 21698.34, + "probability": 0.3943 + }, + { + "start": 21698.38, + "end": 21700.32, + "probability": 0.2469 + }, + { + "start": 21700.44, + "end": 21700.72, + "probability": 0.0558 + }, + { + "start": 21700.72, + "end": 21701.08, + "probability": 0.7947 + }, + { + "start": 21701.42, + "end": 21701.42, + "probability": 0.7925 + }, + { + "start": 21701.68, + "end": 21701.7, + "probability": 0.8286 + }, + { + "start": 21701.82, + "end": 21701.9, + "probability": 0.4645 + }, + { + "start": 21702.06, + "end": 21703.14, + "probability": 0.9761 + }, + { + "start": 21703.3, + "end": 21706.0, + "probability": 0.4977 + }, + { + "start": 21708.78, + "end": 21709.12, + "probability": 0.0122 + }, + { + "start": 21709.12, + "end": 21709.12, + "probability": 0.2884 + }, + { + "start": 21709.12, + "end": 21709.12, + "probability": 0.1205 + }, + { + "start": 21709.12, + "end": 21709.84, + "probability": 0.3107 + }, + { + "start": 21710.84, + "end": 21711.46, + "probability": 0.753 + }, + { + "start": 21712.8, + "end": 21713.78, + "probability": 0.752 + }, + { + "start": 21716.38, + "end": 21716.62, + "probability": 0.8454 + }, + { + "start": 21719.54, + "end": 21721.68, + "probability": 0.3741 + }, + { + "start": 21722.16, + "end": 21724.38, + "probability": 0.6106 + }, + { + "start": 21724.58, + "end": 21726.92, + "probability": 0.8063 + }, + { + "start": 21727.82, + "end": 21728.78, + "probability": 0.765 + }, + { + "start": 21729.48, + "end": 21729.96, + "probability": 0.5735 + }, + { + "start": 21736.66, + "end": 21736.66, + "probability": 0.5483 + }, + { + "start": 21736.66, + "end": 21738.6, + "probability": 0.5929 + }, + { + "start": 21738.6, + "end": 21740.84, + "probability": 0.8664 + }, + { + "start": 21740.96, + "end": 21741.6, + "probability": 0.7598 + }, + { + "start": 21741.64, + "end": 21742.14, + "probability": 0.609 + }, + { + "start": 21742.78, + "end": 21744.1, + "probability": 0.63 + }, + { + "start": 21744.86, + "end": 21746.35, + "probability": 0.9572 + }, + { + "start": 21747.74, + "end": 21749.44, + "probability": 0.6253 + }, + { + "start": 21749.44, + "end": 21751.5, + "probability": 0.9684 + }, + { + "start": 21752.8, + "end": 21754.0, + "probability": 0.0165 + }, + { + "start": 21755.56, + "end": 21755.66, + "probability": 0.0503 + }, + { + "start": 21755.66, + "end": 21755.66, + "probability": 0.0591 + }, + { + "start": 21755.66, + "end": 21756.64, + "probability": 0.5476 + }, + { + "start": 21756.82, + "end": 21757.26, + "probability": 0.3822 + }, + { + "start": 21757.4, + "end": 21758.97, + "probability": 0.6262 + }, + { + "start": 21759.32, + "end": 21759.7, + "probability": 0.725 + }, + { + "start": 21760.08, + "end": 21761.5, + "probability": 0.8213 + }, + { + "start": 21771.12, + "end": 21772.1, + "probability": 0.6347 + }, + { + "start": 21772.72, + "end": 21774.26, + "probability": 0.7807 + }, + { + "start": 21775.38, + "end": 21778.6, + "probability": 0.8473 + }, + { + "start": 21779.5, + "end": 21780.68, + "probability": 0.7457 + }, + { + "start": 21781.52, + "end": 21781.94, + "probability": 0.721 + }, + { + "start": 21785.08, + "end": 21785.52, + "probability": 0.1553 + }, + { + "start": 21786.68, + "end": 21787.74, + "probability": 0.8 + }, + { + "start": 21787.96, + "end": 21788.5, + "probability": 0.8382 + }, + { + "start": 21788.54, + "end": 21791.5, + "probability": 0.8795 + }, + { + "start": 21792.62, + "end": 21795.3, + "probability": 0.875 + }, + { + "start": 21795.42, + "end": 21797.14, + "probability": 0.6937 + }, + { + "start": 21798.14, + "end": 21800.66, + "probability": 0.7038 + }, + { + "start": 21801.22, + "end": 21804.06, + "probability": 0.9382 + }, + { + "start": 21804.12, + "end": 21805.32, + "probability": 0.9741 + }, + { + "start": 21805.86, + "end": 21808.42, + "probability": 0.9186 + }, + { + "start": 21809.26, + "end": 21811.14, + "probability": 0.8375 + }, + { + "start": 21811.78, + "end": 21813.82, + "probability": 0.828 + }, + { + "start": 21814.02, + "end": 21816.2, + "probability": 0.9775 + }, + { + "start": 21817.22, + "end": 21820.12, + "probability": 0.8143 + }, + { + "start": 21821.12, + "end": 21823.1, + "probability": 0.9271 + }, + { + "start": 21824.02, + "end": 21825.5, + "probability": 0.7749 + }, + { + "start": 21825.74, + "end": 21827.56, + "probability": 0.988 + }, + { + "start": 21827.56, + "end": 21831.22, + "probability": 0.9924 + }, + { + "start": 21831.8, + "end": 21835.58, + "probability": 0.9589 + }, + { + "start": 21836.4, + "end": 21836.4, + "probability": 0.6849 + }, + { + "start": 21836.4, + "end": 21839.88, + "probability": 0.9543 + }, + { + "start": 21841.08, + "end": 21842.74, + "probability": 0.9374 + }, + { + "start": 21843.34, + "end": 21844.82, + "probability": 0.5868 + }, + { + "start": 21845.96, + "end": 21848.72, + "probability": 0.9843 + }, + { + "start": 21849.68, + "end": 21849.68, + "probability": 0.0922 + }, + { + "start": 21849.68, + "end": 21851.84, + "probability": 0.9844 + }, + { + "start": 21852.0, + "end": 21854.28, + "probability": 0.9194 + }, + { + "start": 21854.48, + "end": 21854.56, + "probability": 0.3782 + }, + { + "start": 21854.62, + "end": 21854.88, + "probability": 0.8634 + }, + { + "start": 21855.12, + "end": 21856.04, + "probability": 0.8238 + }, + { + "start": 21858.34, + "end": 21859.86, + "probability": 0.6239 + }, + { + "start": 21860.0, + "end": 21860.28, + "probability": 0.834 + }, + { + "start": 21860.32, + "end": 21861.8, + "probability": 0.953 + }, + { + "start": 21862.18, + "end": 21862.98, + "probability": 0.0127 + }, + { + "start": 21863.98, + "end": 21864.54, + "probability": 0.39 + }, + { + "start": 21864.62, + "end": 21866.68, + "probability": 0.3475 + }, + { + "start": 21867.12, + "end": 21870.58, + "probability": 0.825 + }, + { + "start": 21871.22, + "end": 21872.76, + "probability": 0.8503 + }, + { + "start": 21872.94, + "end": 21873.26, + "probability": 0.3338 + }, + { + "start": 21873.4, + "end": 21874.66, + "probability": 0.9387 + }, + { + "start": 21875.34, + "end": 21875.74, + "probability": 0.2856 + }, + { + "start": 21875.96, + "end": 21876.58, + "probability": 0.7395 + }, + { + "start": 21876.66, + "end": 21877.22, + "probability": 0.6144 + }, + { + "start": 21877.24, + "end": 21878.55, + "probability": 0.9496 + }, + { + "start": 21879.25, + "end": 21879.45, + "probability": 0.0945 + }, + { + "start": 21879.45, + "end": 21881.93, + "probability": 0.9201 + }, + { + "start": 21882.79, + "end": 21885.95, + "probability": 0.6923 + }, + { + "start": 21887.83, + "end": 21889.57, + "probability": 0.3555 + }, + { + "start": 21889.57, + "end": 21889.57, + "probability": 0.0945 + }, + { + "start": 21889.57, + "end": 21890.5, + "probability": 0.2267 + }, + { + "start": 21891.39, + "end": 21891.85, + "probability": 0.0536 + }, + { + "start": 21891.85, + "end": 21895.17, + "probability": 0.8289 + }, + { + "start": 21895.61, + "end": 21899.85, + "probability": 0.9683 + }, + { + "start": 21900.41, + "end": 21904.85, + "probability": 0.9954 + }, + { + "start": 21905.59, + "end": 21907.47, + "probability": 0.9905 + }, + { + "start": 21907.85, + "end": 21910.75, + "probability": 0.9949 + }, + { + "start": 21911.63, + "end": 21912.91, + "probability": 0.999 + }, + { + "start": 21913.65, + "end": 21915.35, + "probability": 0.9076 + }, + { + "start": 21915.99, + "end": 21917.47, + "probability": 0.8996 + }, + { + "start": 21917.81, + "end": 21920.2, + "probability": 0.9735 + }, + { + "start": 21920.43, + "end": 21921.83, + "probability": 0.9094 + }, + { + "start": 21922.79, + "end": 21926.45, + "probability": 0.9703 + }, + { + "start": 21926.87, + "end": 21928.47, + "probability": 0.9966 + }, + { + "start": 21928.85, + "end": 21932.89, + "probability": 0.9943 + }, + { + "start": 21934.51, + "end": 21936.45, + "probability": 0.7632 + }, + { + "start": 21937.23, + "end": 21939.05, + "probability": 0.9888 + }, + { + "start": 21939.05, + "end": 21942.17, + "probability": 0.7805 + }, + { + "start": 21942.41, + "end": 21944.31, + "probability": 0.9489 + }, + { + "start": 21944.45, + "end": 21945.13, + "probability": 0.6335 + }, + { + "start": 21945.39, + "end": 21948.53, + "probability": 0.9965 + }, + { + "start": 21949.19, + "end": 21951.81, + "probability": 0.8928 + }, + { + "start": 21952.47, + "end": 21954.43, + "probability": 0.9872 + }, + { + "start": 21954.43, + "end": 21956.59, + "probability": 0.991 + }, + { + "start": 21957.77, + "end": 21958.43, + "probability": 0.8332 + }, + { + "start": 21958.55, + "end": 21959.23, + "probability": 0.9808 + }, + { + "start": 21959.33, + "end": 21961.97, + "probability": 0.9453 + }, + { + "start": 21961.97, + "end": 21964.23, + "probability": 0.9929 + }, + { + "start": 21965.01, + "end": 21966.05, + "probability": 0.7683 + }, + { + "start": 21966.19, + "end": 21966.59, + "probability": 0.9583 + }, + { + "start": 21966.63, + "end": 21967.29, + "probability": 0.9495 + }, + { + "start": 21967.39, + "end": 21968.01, + "probability": 0.771 + }, + { + "start": 21968.63, + "end": 21970.35, + "probability": 0.9514 + }, + { + "start": 21970.75, + "end": 21975.19, + "probability": 0.981 + }, + { + "start": 21975.47, + "end": 21979.91, + "probability": 0.9507 + }, + { + "start": 21980.31, + "end": 21982.43, + "probability": 0.9928 + }, + { + "start": 21983.59, + "end": 21985.99, + "probability": 0.981 + }, + { + "start": 21986.11, + "end": 21991.07, + "probability": 0.9898 + }, + { + "start": 21991.07, + "end": 21994.67, + "probability": 0.997 + }, + { + "start": 21995.15, + "end": 21996.61, + "probability": 0.9311 + }, + { + "start": 21997.31, + "end": 22000.07, + "probability": 0.8526 + }, + { + "start": 22000.61, + "end": 22002.65, + "probability": 0.9908 + }, + { + "start": 22002.65, + "end": 22004.59, + "probability": 0.9021 + }, + { + "start": 22005.31, + "end": 22006.69, + "probability": 0.904 + }, + { + "start": 22006.77, + "end": 22008.41, + "probability": 0.9246 + }, + { + "start": 22009.19, + "end": 22010.79, + "probability": 0.9048 + }, + { + "start": 22010.79, + "end": 22014.63, + "probability": 0.8532 + }, + { + "start": 22014.73, + "end": 22016.85, + "probability": 0.8637 + }, + { + "start": 22017.99, + "end": 22020.05, + "probability": 0.9922 + }, + { + "start": 22020.05, + "end": 22023.33, + "probability": 0.9878 + }, + { + "start": 22023.93, + "end": 22027.35, + "probability": 0.9971 + }, + { + "start": 22027.35, + "end": 22030.87, + "probability": 0.9925 + }, + { + "start": 22031.37, + "end": 22034.85, + "probability": 0.8877 + }, + { + "start": 22035.55, + "end": 22037.31, + "probability": 0.9965 + }, + { + "start": 22037.35, + "end": 22040.01, + "probability": 0.7216 + }, + { + "start": 22040.53, + "end": 22042.03, + "probability": 0.927 + }, + { + "start": 22042.49, + "end": 22043.77, + "probability": 0.9797 + }, + { + "start": 22043.85, + "end": 22047.11, + "probability": 0.9905 + }, + { + "start": 22047.75, + "end": 22049.35, + "probability": 0.8766 + }, + { + "start": 22049.81, + "end": 22051.92, + "probability": 0.9966 + }, + { + "start": 22052.29, + "end": 22053.49, + "probability": 0.9476 + }, + { + "start": 22053.63, + "end": 22056.17, + "probability": 0.8926 + }, + { + "start": 22056.75, + "end": 22058.89, + "probability": 0.9961 + }, + { + "start": 22059.25, + "end": 22060.87, + "probability": 0.9809 + }, + { + "start": 22061.27, + "end": 22063.71, + "probability": 0.9915 + }, + { + "start": 22064.15, + "end": 22066.55, + "probability": 0.9425 + }, + { + "start": 22067.07, + "end": 22069.25, + "probability": 0.9824 + }, + { + "start": 22069.25, + "end": 22072.01, + "probability": 0.9766 + }, + { + "start": 22072.45, + "end": 22074.07, + "probability": 0.9614 + }, + { + "start": 22074.59, + "end": 22076.67, + "probability": 0.9868 + }, + { + "start": 22076.75, + "end": 22079.95, + "probability": 0.9183 + }, + { + "start": 22080.53, + "end": 22080.81, + "probability": 0.4005 + }, + { + "start": 22080.83, + "end": 22083.83, + "probability": 0.9689 + }, + { + "start": 22083.83, + "end": 22086.31, + "probability": 0.998 + }, + { + "start": 22087.65, + "end": 22088.31, + "probability": 0.6436 + }, + { + "start": 22088.45, + "end": 22091.77, + "probability": 0.9882 + }, + { + "start": 22092.35, + "end": 22094.29, + "probability": 0.9436 + }, + { + "start": 22095.07, + "end": 22095.61, + "probability": 0.7149 + }, + { + "start": 22095.77, + "end": 22099.09, + "probability": 0.9517 + }, + { + "start": 22099.09, + "end": 22101.45, + "probability": 0.9827 + }, + { + "start": 22102.01, + "end": 22104.35, + "probability": 0.9939 + }, + { + "start": 22104.79, + "end": 22107.23, + "probability": 0.9888 + }, + { + "start": 22107.27, + "end": 22107.43, + "probability": 0.3758 + }, + { + "start": 22107.55, + "end": 22109.41, + "probability": 0.5018 + }, + { + "start": 22110.01, + "end": 22112.23, + "probability": 0.2782 + }, + { + "start": 22112.67, + "end": 22113.73, + "probability": 0.9574 + }, + { + "start": 22113.91, + "end": 22115.79, + "probability": 0.9953 + }, + { + "start": 22115.79, + "end": 22118.69, + "probability": 0.9882 + }, + { + "start": 22119.05, + "end": 22122.43, + "probability": 0.8721 + }, + { + "start": 22123.07, + "end": 22125.1, + "probability": 0.7855 + }, + { + "start": 22125.15, + "end": 22126.69, + "probability": 0.5755 + }, + { + "start": 22126.83, + "end": 22127.67, + "probability": 0.9792 + }, + { + "start": 22158.5, + "end": 22161.25, + "probability": 0.8594 + }, + { + "start": 22161.89, + "end": 22161.91, + "probability": 0.0719 + }, + { + "start": 22162.19, + "end": 22162.95, + "probability": 0.328 + }, + { + "start": 22163.45, + "end": 22165.79, + "probability": 0.5705 + }, + { + "start": 22167.89, + "end": 22169.07, + "probability": 0.9112 + }, + { + "start": 22169.23, + "end": 22171.85, + "probability": 0.86 + }, + { + "start": 22171.87, + "end": 22172.85, + "probability": 0.8135 + }, + { + "start": 22174.95, + "end": 22176.11, + "probability": 0.9269 + }, + { + "start": 22177.05, + "end": 22178.41, + "probability": 0.7533 + }, + { + "start": 22180.13, + "end": 22185.01, + "probability": 0.9222 + }, + { + "start": 22186.63, + "end": 22191.75, + "probability": 0.8885 + }, + { + "start": 22192.83, + "end": 22196.55, + "probability": 0.9836 + }, + { + "start": 22196.67, + "end": 22197.89, + "probability": 0.8088 + }, + { + "start": 22198.85, + "end": 22199.17, + "probability": 0.8568 + }, + { + "start": 22199.25, + "end": 22201.01, + "probability": 0.9485 + }, + { + "start": 22201.01, + "end": 22204.33, + "probability": 0.9807 + }, + { + "start": 22204.97, + "end": 22205.37, + "probability": 0.7892 + }, + { + "start": 22205.47, + "end": 22205.99, + "probability": 0.7341 + }, + { + "start": 22206.07, + "end": 22209.21, + "probability": 0.9578 + }, + { + "start": 22210.49, + "end": 22213.16, + "probability": 0.8531 + }, + { + "start": 22214.01, + "end": 22218.13, + "probability": 0.75 + }, + { + "start": 22218.97, + "end": 22221.69, + "probability": 0.8403 + }, + { + "start": 22222.57, + "end": 22224.53, + "probability": 0.9539 + }, + { + "start": 22225.93, + "end": 22229.23, + "probability": 0.8261 + }, + { + "start": 22230.05, + "end": 22234.67, + "probability": 0.7672 + }, + { + "start": 22235.81, + "end": 22237.93, + "probability": 0.7008 + }, + { + "start": 22238.05, + "end": 22240.25, + "probability": 0.8231 + }, + { + "start": 22241.17, + "end": 22246.55, + "probability": 0.7394 + }, + { + "start": 22247.77, + "end": 22252.65, + "probability": 0.9816 + }, + { + "start": 22252.75, + "end": 22254.05, + "probability": 0.9018 + }, + { + "start": 22254.97, + "end": 22256.39, + "probability": 0.9929 + }, + { + "start": 22256.67, + "end": 22258.13, + "probability": 0.9709 + }, + { + "start": 22258.21, + "end": 22259.03, + "probability": 0.964 + }, + { + "start": 22259.73, + "end": 22265.77, + "probability": 0.8752 + }, + { + "start": 22265.89, + "end": 22266.27, + "probability": 0.8212 + }, + { + "start": 22266.35, + "end": 22267.96, + "probability": 0.9838 + }, + { + "start": 22268.75, + "end": 22269.87, + "probability": 0.7176 + }, + { + "start": 22270.67, + "end": 22274.21, + "probability": 0.7386 + }, + { + "start": 22274.99, + "end": 22276.41, + "probability": 0.9473 + }, + { + "start": 22276.67, + "end": 22280.83, + "probability": 0.9408 + }, + { + "start": 22281.89, + "end": 22283.83, + "probability": 0.7859 + }, + { + "start": 22284.43, + "end": 22284.67, + "probability": 0.6522 + }, + { + "start": 22284.79, + "end": 22285.05, + "probability": 0.6708 + }, + { + "start": 22285.11, + "end": 22285.71, + "probability": 0.7668 + }, + { + "start": 22285.79, + "end": 22286.63, + "probability": 0.7821 + }, + { + "start": 22286.85, + "end": 22287.89, + "probability": 0.7303 + }, + { + "start": 22288.59, + "end": 22292.49, + "probability": 0.5034 + }, + { + "start": 22292.53, + "end": 22294.29, + "probability": 0.6038 + }, + { + "start": 22296.63, + "end": 22298.63, + "probability": 0.8882 + }, + { + "start": 22298.65, + "end": 22298.99, + "probability": 0.3936 + }, + { + "start": 22299.05, + "end": 22299.69, + "probability": 0.5917 + }, + { + "start": 22299.73, + "end": 22303.75, + "probability": 0.9725 + }, + { + "start": 22304.85, + "end": 22307.17, + "probability": 0.8575 + }, + { + "start": 22308.07, + "end": 22311.55, + "probability": 0.9897 + }, + { + "start": 22311.69, + "end": 22312.85, + "probability": 0.9946 + }, + { + "start": 22313.57, + "end": 22317.29, + "probability": 0.9954 + }, + { + "start": 22317.45, + "end": 22318.49, + "probability": 0.8277 + }, + { + "start": 22319.83, + "end": 22321.13, + "probability": 0.958 + }, + { + "start": 22321.89, + "end": 22324.89, + "probability": 0.9591 + }, + { + "start": 22325.43, + "end": 22327.39, + "probability": 0.9785 + }, + { + "start": 22328.49, + "end": 22328.77, + "probability": 0.8803 + }, + { + "start": 22331.47, + "end": 22335.13, + "probability": 0.9243 + }, + { + "start": 22336.29, + "end": 22337.85, + "probability": 0.5815 + }, + { + "start": 22338.01, + "end": 22341.89, + "probability": 0.9528 + }, + { + "start": 22343.49, + "end": 22343.77, + "probability": 0.204 + }, + { + "start": 22343.77, + "end": 22346.21, + "probability": 0.7014 + }, + { + "start": 22346.47, + "end": 22347.53, + "probability": 0.5658 + }, + { + "start": 22347.59, + "end": 22349.35, + "probability": 0.7175 + }, + { + "start": 22349.65, + "end": 22350.89, + "probability": 0.3296 + }, + { + "start": 22350.99, + "end": 22354.31, + "probability": 0.9827 + }, + { + "start": 22365.29, + "end": 22367.41, + "probability": 0.0885 + }, + { + "start": 22367.41, + "end": 22368.57, + "probability": 0.0059 + }, + { + "start": 22370.49, + "end": 22372.59, + "probability": 0.1106 + }, + { + "start": 22372.93, + "end": 22373.45, + "probability": 0.5618 + }, + { + "start": 22374.23, + "end": 22375.41, + "probability": 0.7115 + }, + { + "start": 22376.17, + "end": 22376.95, + "probability": 0.7963 + }, + { + "start": 22377.53, + "end": 22378.25, + "probability": 0.8708 + }, + { + "start": 22378.63, + "end": 22379.13, + "probability": 0.5912 + }, + { + "start": 22379.45, + "end": 22380.47, + "probability": 0.8895 + }, + { + "start": 22381.83, + "end": 22385.57, + "probability": 0.8622 + }, + { + "start": 22385.99, + "end": 22387.49, + "probability": 0.0931 + }, + { + "start": 22389.29, + "end": 22391.61, + "probability": 0.7351 + }, + { + "start": 22392.93, + "end": 22394.05, + "probability": 0.7996 + }, + { + "start": 22394.17, + "end": 22398.91, + "probability": 0.8267 + }, + { + "start": 22399.87, + "end": 22406.65, + "probability": 0.9676 + }, + { + "start": 22407.49, + "end": 22415.75, + "probability": 0.9893 + }, + { + "start": 22416.47, + "end": 22417.15, + "probability": 0.8001 + }, + { + "start": 22417.93, + "end": 22422.05, + "probability": 0.8909 + }, + { + "start": 22423.03, + "end": 22423.51, + "probability": 0.5432 + }, + { + "start": 22424.61, + "end": 22429.23, + "probability": 0.9845 + }, + { + "start": 22429.87, + "end": 22431.07, + "probability": 0.8594 + }, + { + "start": 22431.65, + "end": 22432.49, + "probability": 0.9739 + }, + { + "start": 22432.63, + "end": 22432.99, + "probability": 0.7754 + }, + { + "start": 22434.09, + "end": 22435.23, + "probability": 0.7808 + }, + { + "start": 22436.51, + "end": 22437.19, + "probability": 0.2179 + }, + { + "start": 22438.31, + "end": 22440.27, + "probability": 0.4812 + }, + { + "start": 22440.99, + "end": 22443.05, + "probability": 0.7727 + }, + { + "start": 22443.61, + "end": 22444.51, + "probability": 0.4164 + }, + { + "start": 22444.95, + "end": 22445.69, + "probability": 0.1715 + }, + { + "start": 22445.69, + "end": 22446.32, + "probability": 0.2425 + }, + { + "start": 22446.37, + "end": 22451.17, + "probability": 0.1923 + }, + { + "start": 22473.49, + "end": 22474.22, + "probability": 0.3508 + }, + { + "start": 22482.1, + "end": 22485.37, + "probability": 0.9889 + }, + { + "start": 22485.47, + "end": 22486.79, + "probability": 0.9943 + }, + { + "start": 22486.87, + "end": 22490.47, + "probability": 0.4346 + }, + { + "start": 22492.29, + "end": 22493.71, + "probability": 0.7202 + }, + { + "start": 22493.83, + "end": 22494.13, + "probability": 0.4289 + }, + { + "start": 22494.13, + "end": 22494.13, + "probability": 0.646 + }, + { + "start": 22495.43, + "end": 22496.35, + "probability": 0.2453 + }, + { + "start": 22496.43, + "end": 22496.95, + "probability": 0.5824 + }, + { + "start": 22497.05, + "end": 22499.23, + "probability": 0.9762 + }, + { + "start": 22499.39, + "end": 22500.01, + "probability": 0.7257 + }, + { + "start": 22501.11, + "end": 22502.93, + "probability": 0.5103 + }, + { + "start": 22503.15, + "end": 22503.97, + "probability": 0.8682 + }, + { + "start": 22505.03, + "end": 22505.17, + "probability": 0.6003 + }, + { + "start": 22507.95, + "end": 22510.27, + "probability": 0.4493 + }, + { + "start": 22514.67, + "end": 22517.33, + "probability": 0.8394 + }, + { + "start": 22518.23, + "end": 22520.55, + "probability": 0.9285 + }, + { + "start": 22522.47, + "end": 22523.83, + "probability": 0.9917 + }, + { + "start": 22523.89, + "end": 22527.05, + "probability": 0.9092 + }, + { + "start": 22527.17, + "end": 22527.65, + "probability": 0.7141 + }, + { + "start": 22527.71, + "end": 22528.11, + "probability": 0.9149 + }, + { + "start": 22528.21, + "end": 22529.81, + "probability": 0.8306 + }, + { + "start": 22529.95, + "end": 22531.93, + "probability": 0.736 + }, + { + "start": 22532.77, + "end": 22534.63, + "probability": 0.9879 + }, + { + "start": 22534.77, + "end": 22535.54, + "probability": 0.9834 + }, + { + "start": 22536.83, + "end": 22542.65, + "probability": 0.9496 + }, + { + "start": 22543.77, + "end": 22544.55, + "probability": 0.7291 + }, + { + "start": 22545.09, + "end": 22547.43, + "probability": 0.917 + }, + { + "start": 22548.47, + "end": 22549.26, + "probability": 0.981 + }, + { + "start": 22549.63, + "end": 22550.13, + "probability": 0.8891 + }, + { + "start": 22551.14, + "end": 22554.68, + "probability": 0.9937 + }, + { + "start": 22554.83, + "end": 22557.61, + "probability": 0.8886 + }, + { + "start": 22558.39, + "end": 22560.67, + "probability": 0.9982 + }, + { + "start": 22561.27, + "end": 22564.73, + "probability": 0.9846 + }, + { + "start": 22565.39, + "end": 22566.55, + "probability": 0.6817 + }, + { + "start": 22566.63, + "end": 22567.97, + "probability": 0.4821 + }, + { + "start": 22568.07, + "end": 22568.99, + "probability": 0.6809 + }, + { + "start": 22569.07, + "end": 22570.6, + "probability": 0.9852 + }, + { + "start": 22577.21, + "end": 22577.83, + "probability": 0.7793 + }, + { + "start": 22579.49, + "end": 22581.75, + "probability": 0.6881 + }, + { + "start": 22581.97, + "end": 22583.77, + "probability": 0.9481 + }, + { + "start": 22584.79, + "end": 22587.37, + "probability": 0.792 + }, + { + "start": 22587.47, + "end": 22591.57, + "probability": 0.9576 + }, + { + "start": 22592.15, + "end": 22597.83, + "probability": 0.9827 + }, + { + "start": 22597.83, + "end": 22601.87, + "probability": 0.9832 + }, + { + "start": 22602.69, + "end": 22606.43, + "probability": 0.8328 + }, + { + "start": 22606.7, + "end": 22607.07, + "probability": 0.1738 + }, + { + "start": 22607.19, + "end": 22608.13, + "probability": 0.6727 + }, + { + "start": 22608.45, + "end": 22611.01, + "probability": 0.8404 + }, + { + "start": 22611.09, + "end": 22611.85, + "probability": 0.6368 + }, + { + "start": 22612.41, + "end": 22614.31, + "probability": 0.8477 + }, + { + "start": 22614.41, + "end": 22615.35, + "probability": 0.9782 + }, + { + "start": 22615.45, + "end": 22616.89, + "probability": 0.9939 + }, + { + "start": 22617.15, + "end": 22619.49, + "probability": 0.9906 + }, + { + "start": 22619.53, + "end": 22622.21, + "probability": 0.8387 + }, + { + "start": 22622.33, + "end": 22624.29, + "probability": 0.6631 + }, + { + "start": 22626.13, + "end": 22627.45, + "probability": 0.9834 + }, + { + "start": 22627.51, + "end": 22631.01, + "probability": 0.8445 + }, + { + "start": 22631.09, + "end": 22634.01, + "probability": 0.9785 + }, + { + "start": 22634.09, + "end": 22634.65, + "probability": 0.6948 + }, + { + "start": 22635.49, + "end": 22636.97, + "probability": 0.7841 + }, + { + "start": 22637.71, + "end": 22638.15, + "probability": 0.7111 + }, + { + "start": 22639.31, + "end": 22644.71, + "probability": 0.8114 + }, + { + "start": 22645.17, + "end": 22645.79, + "probability": 0.7261 + }, + { + "start": 22645.89, + "end": 22650.43, + "probability": 0.7788 + }, + { + "start": 22651.13, + "end": 22654.37, + "probability": 0.7929 + }, + { + "start": 22655.11, + "end": 22657.55, + "probability": 0.9851 + }, + { + "start": 22658.31, + "end": 22662.91, + "probability": 0.5949 + }, + { + "start": 22663.55, + "end": 22664.19, + "probability": 0.8738 + }, + { + "start": 22664.85, + "end": 22666.57, + "probability": 0.8835 + }, + { + "start": 22667.03, + "end": 22668.54, + "probability": 0.236 + }, + { + "start": 22669.11, + "end": 22672.35, + "probability": 0.79 + }, + { + "start": 22673.91, + "end": 22675.37, + "probability": 0.0713 + }, + { + "start": 22675.85, + "end": 22678.45, + "probability": 0.3917 + }, + { + "start": 22678.47, + "end": 22681.61, + "probability": 0.745 + }, + { + "start": 22681.61, + "end": 22684.45, + "probability": 0.3018 + }, + { + "start": 22684.69, + "end": 22686.03, + "probability": 0.5741 + }, + { + "start": 22686.49, + "end": 22689.43, + "probability": 0.4834 + }, + { + "start": 22689.95, + "end": 22690.87, + "probability": 0.6806 + }, + { + "start": 22691.93, + "end": 22693.37, + "probability": 0.9174 + }, + { + "start": 22693.45, + "end": 22695.33, + "probability": 0.6299 + }, + { + "start": 22695.49, + "end": 22698.69, + "probability": 0.0686 + }, + { + "start": 22698.69, + "end": 22699.92, + "probability": 0.7881 + }, + { + "start": 22700.11, + "end": 22700.71, + "probability": 0.2561 + }, + { + "start": 22700.71, + "end": 22701.57, + "probability": 0.0257 + }, + { + "start": 22702.13, + "end": 22704.55, + "probability": 0.7057 + }, + { + "start": 22704.93, + "end": 22706.48, + "probability": 0.9937 + }, + { + "start": 22706.75, + "end": 22707.97, + "probability": 0.0347 + }, + { + "start": 22707.97, + "end": 22710.19, + "probability": 0.0539 + }, + { + "start": 22710.29, + "end": 22711.13, + "probability": 0.0111 + }, + { + "start": 22711.59, + "end": 22715.07, + "probability": 0.7329 + }, + { + "start": 22715.23, + "end": 22716.71, + "probability": 0.5539 + }, + { + "start": 22716.89, + "end": 22717.69, + "probability": 0.313 + }, + { + "start": 22717.73, + "end": 22718.25, + "probability": 0.6563 + }, + { + "start": 22718.33, + "end": 22719.1, + "probability": 0.9229 + }, + { + "start": 22719.61, + "end": 22719.89, + "probability": 0.0165 + }, + { + "start": 22719.99, + "end": 22720.59, + "probability": 0.2247 + }, + { + "start": 22720.65, + "end": 22721.57, + "probability": 0.0218 + }, + { + "start": 22721.73, + "end": 22722.41, + "probability": 0.2796 + }, + { + "start": 22722.49, + "end": 22725.01, + "probability": 0.9031 + }, + { + "start": 22725.13, + "end": 22726.28, + "probability": 0.924 + }, + { + "start": 22726.87, + "end": 22727.17, + "probability": 0.0294 + }, + { + "start": 22727.17, + "end": 22727.39, + "probability": 0.8286 + }, + { + "start": 22727.45, + "end": 22728.83, + "probability": 0.9893 + }, + { + "start": 22728.83, + "end": 22732.47, + "probability": 0.9882 + }, + { + "start": 22732.67, + "end": 22735.07, + "probability": 0.8063 + }, + { + "start": 22735.19, + "end": 22735.73, + "probability": 0.5744 + }, + { + "start": 22736.23, + "end": 22737.89, + "probability": 0.2833 + }, + { + "start": 22737.99, + "end": 22738.73, + "probability": 0.3706 + }, + { + "start": 22738.91, + "end": 22739.26, + "probability": 0.4386 + }, + { + "start": 22739.55, + "end": 22740.43, + "probability": 0.1539 + }, + { + "start": 22740.73, + "end": 22742.23, + "probability": 0.3933 + }, + { + "start": 22742.35, + "end": 22742.49, + "probability": 0.3966 + }, + { + "start": 22742.61, + "end": 22743.83, + "probability": 0.4364 + }, + { + "start": 22744.01, + "end": 22744.75, + "probability": 0.7273 + }, + { + "start": 22745.45, + "end": 22746.41, + "probability": 0.0398 + }, + { + "start": 22746.91, + "end": 22749.41, + "probability": 0.4756 + }, + { + "start": 22749.59, + "end": 22751.55, + "probability": 0.9668 + }, + { + "start": 22751.63, + "end": 22753.25, + "probability": 0.1628 + }, + { + "start": 22753.39, + "end": 22753.71, + "probability": 0.4359 + }, + { + "start": 22753.85, + "end": 22755.03, + "probability": 0.4654 + }, + { + "start": 22755.25, + "end": 22757.49, + "probability": 0.9588 + }, + { + "start": 22757.49, + "end": 22757.84, + "probability": 0.3109 + }, + { + "start": 22758.27, + "end": 22759.71, + "probability": 0.9825 + }, + { + "start": 22759.87, + "end": 22765.45, + "probability": 0.832 + }, + { + "start": 22766.15, + "end": 22766.81, + "probability": 0.9937 + }, + { + "start": 22769.97, + "end": 22770.35, + "probability": 0.7691 + }, + { + "start": 22770.43, + "end": 22770.63, + "probability": 0.7538 + }, + { + "start": 22771.01, + "end": 22774.11, + "probability": 0.9863 + }, + { + "start": 22774.17, + "end": 22774.87, + "probability": 0.4988 + }, + { + "start": 22775.59, + "end": 22777.99, + "probability": 0.4767 + }, + { + "start": 22778.27, + "end": 22778.83, + "probability": 0.8703 + }, + { + "start": 22778.97, + "end": 22780.19, + "probability": 0.4449 + }, + { + "start": 22780.23, + "end": 22780.23, + "probability": 0.0522 + }, + { + "start": 22780.23, + "end": 22783.2, + "probability": 0.6335 + }, + { + "start": 22784.35, + "end": 22787.17, + "probability": 0.9974 + }, + { + "start": 22787.17, + "end": 22790.23, + "probability": 0.9858 + }, + { + "start": 22790.33, + "end": 22792.39, + "probability": 0.9026 + }, + { + "start": 22792.83, + "end": 22795.07, + "probability": 0.987 + }, + { + "start": 22795.49, + "end": 22799.23, + "probability": 0.9983 + }, + { + "start": 22799.81, + "end": 22803.03, + "probability": 0.9977 + }, + { + "start": 22803.73, + "end": 22804.83, + "probability": 0.9402 + }, + { + "start": 22805.17, + "end": 22806.37, + "probability": 0.7185 + }, + { + "start": 22806.45, + "end": 22808.79, + "probability": 0.9194 + }, + { + "start": 22809.63, + "end": 22813.27, + "probability": 0.8039 + }, + { + "start": 22813.67, + "end": 22816.57, + "probability": 0.9 + }, + { + "start": 22817.23, + "end": 22819.65, + "probability": 0.9976 + }, + { + "start": 22820.13, + "end": 22822.91, + "probability": 0.9872 + }, + { + "start": 22823.79, + "end": 22825.13, + "probability": 0.8435 + }, + { + "start": 22825.61, + "end": 22829.27, + "probability": 0.9902 + }, + { + "start": 22829.85, + "end": 22834.21, + "probability": 0.9717 + }, + { + "start": 22834.55, + "end": 22836.83, + "probability": 0.9883 + }, + { + "start": 22836.85, + "end": 22840.23, + "probability": 0.9374 + }, + { + "start": 22840.75, + "end": 22843.39, + "probability": 0.9984 + }, + { + "start": 22843.39, + "end": 22845.05, + "probability": 0.9919 + }, + { + "start": 22846.13, + "end": 22849.23, + "probability": 0.8156 + }, + { + "start": 22849.77, + "end": 22852.21, + "probability": 0.6574 + }, + { + "start": 22852.97, + "end": 22856.65, + "probability": 0.9965 + }, + { + "start": 22856.65, + "end": 22859.61, + "probability": 0.955 + }, + { + "start": 22860.15, + "end": 22860.63, + "probability": 0.4709 + }, + { + "start": 22860.65, + "end": 22864.27, + "probability": 0.9955 + }, + { + "start": 22864.45, + "end": 22865.55, + "probability": 0.9007 + }, + { + "start": 22866.21, + "end": 22866.69, + "probability": 0.9734 + }, + { + "start": 22867.33, + "end": 22870.17, + "probability": 0.74 + }, + { + "start": 22871.01, + "end": 22874.35, + "probability": 0.4512 + }, + { + "start": 22874.35, + "end": 22875.61, + "probability": 0.3562 + }, + { + "start": 22875.75, + "end": 22876.38, + "probability": 0.2169 + }, + { + "start": 22877.93, + "end": 22880.03, + "probability": 0.9255 + }, + { + "start": 22882.41, + "end": 22884.03, + "probability": 0.2073 + }, + { + "start": 22884.75, + "end": 22885.33, + "probability": 0.4969 + }, + { + "start": 22885.33, + "end": 22886.61, + "probability": 0.1854 + }, + { + "start": 22886.63, + "end": 22887.36, + "probability": 0.147 + }, + { + "start": 22887.59, + "end": 22888.31, + "probability": 0.3696 + }, + { + "start": 22888.31, + "end": 22889.25, + "probability": 0.4852 + }, + { + "start": 22889.37, + "end": 22889.99, + "probability": 0.9712 + }, + { + "start": 22890.99, + "end": 22893.55, + "probability": 0.8857 + }, + { + "start": 22894.39, + "end": 22896.53, + "probability": 0.4531 + }, + { + "start": 22898.03, + "end": 22898.35, + "probability": 0.0913 + }, + { + "start": 22900.23, + "end": 22907.23, + "probability": 0.7363 + }, + { + "start": 22910.23, + "end": 22912.35, + "probability": 0.9492 + }, + { + "start": 22913.09, + "end": 22916.89, + "probability": 0.9803 + }, + { + "start": 22917.07, + "end": 22920.79, + "probability": 0.9951 + }, + { + "start": 22921.45, + "end": 22924.71, + "probability": 0.8889 + }, + { + "start": 22925.35, + "end": 22928.45, + "probability": 0.9954 + }, + { + "start": 22929.73, + "end": 22933.35, + "probability": 0.9743 + }, + { + "start": 22933.91, + "end": 22936.13, + "probability": 0.6134 + }, + { + "start": 22936.81, + "end": 22940.51, + "probability": 0.9778 + }, + { + "start": 22940.51, + "end": 22943.49, + "probability": 0.9076 + }, + { + "start": 22944.31, + "end": 22945.35, + "probability": 0.6274 + }, + { + "start": 22950.65, + "end": 22950.85, + "probability": 0.0224 + }, + { + "start": 22950.85, + "end": 22951.61, + "probability": 0.4497 + }, + { + "start": 22951.61, + "end": 22952.69, + "probability": 0.9666 + }, + { + "start": 22952.83, + "end": 22954.51, + "probability": 0.9956 + }, + { + "start": 22954.59, + "end": 22955.75, + "probability": 0.5815 + }, + { + "start": 22955.97, + "end": 22957.51, + "probability": 0.7625 + }, + { + "start": 22958.11, + "end": 22959.25, + "probability": 0.2371 + }, + { + "start": 22959.57, + "end": 22961.53, + "probability": 0.9902 + }, + { + "start": 22961.53, + "end": 22963.98, + "probability": 0.6999 + }, + { + "start": 22964.39, + "end": 22965.55, + "probability": 0.8922 + }, + { + "start": 22965.55, + "end": 22966.49, + "probability": 0.1697 + }, + { + "start": 22966.73, + "end": 22967.89, + "probability": 0.1742 + }, + { + "start": 22967.95, + "end": 22969.37, + "probability": 0.5838 + }, + { + "start": 22970.39, + "end": 22971.79, + "probability": 0.9604 + }, + { + "start": 22972.11, + "end": 22972.95, + "probability": 0.823 + }, + { + "start": 22972.95, + "end": 22974.93, + "probability": 0.9907 + }, + { + "start": 22974.93, + "end": 22975.46, + "probability": 0.0766 + }, + { + "start": 22975.61, + "end": 22979.55, + "probability": 0.4803 + }, + { + "start": 22979.95, + "end": 22981.57, + "probability": 0.119 + }, + { + "start": 22981.57, + "end": 22986.45, + "probability": 0.9929 + }, + { + "start": 22986.73, + "end": 22987.29, + "probability": 0.5751 + }, + { + "start": 22987.29, + "end": 22989.49, + "probability": 0.4043 + }, + { + "start": 22990.9, + "end": 22992.95, + "probability": 0.8376 + }, + { + "start": 22994.29, + "end": 22998.19, + "probability": 0.995 + }, + { + "start": 22998.51, + "end": 23002.45, + "probability": 0.9919 + }, + { + "start": 23002.45, + "end": 23006.89, + "probability": 0.7835 + }, + { + "start": 23007.35, + "end": 23009.39, + "probability": 0.7303 + }, + { + "start": 23011.45, + "end": 23011.79, + "probability": 0.7237 + }, + { + "start": 23011.97, + "end": 23016.15, + "probability": 0.9947 + }, + { + "start": 23016.61, + "end": 23019.02, + "probability": 0.7267 + }, + { + "start": 23019.53, + "end": 23020.63, + "probability": 0.9167 + }, + { + "start": 23020.93, + "end": 23021.91, + "probability": 0.5093 + }, + { + "start": 23021.97, + "end": 23022.94, + "probability": 0.5605 + }, + { + "start": 23023.37, + "end": 23023.82, + "probability": 0.9619 + }, + { + "start": 23025.18, + "end": 23028.13, + "probability": 0.8177 + }, + { + "start": 23028.39, + "end": 23029.05, + "probability": 0.1863 + }, + { + "start": 23029.17, + "end": 23031.65, + "probability": 0.8853 + }, + { + "start": 23031.73, + "end": 23032.89, + "probability": 0.7352 + }, + { + "start": 23033.01, + "end": 23035.97, + "probability": 0.8455 + }, + { + "start": 23036.11, + "end": 23036.99, + "probability": 0.7634 + }, + { + "start": 23037.11, + "end": 23038.37, + "probability": 0.6855 + }, + { + "start": 23038.63, + "end": 23040.33, + "probability": 0.7135 + }, + { + "start": 23043.03, + "end": 23044.05, + "probability": 0.0128 + }, + { + "start": 23045.61, + "end": 23047.27, + "probability": 0.8953 + }, + { + "start": 23050.13, + "end": 23051.39, + "probability": 0.545 + }, + { + "start": 23053.07, + "end": 23057.17, + "probability": 0.3704 + }, + { + "start": 23057.93, + "end": 23061.31, + "probability": 0.4588 + }, + { + "start": 23061.63, + "end": 23065.81, + "probability": 0.6854 + }, + { + "start": 23066.23, + "end": 23068.33, + "probability": 0.4076 + }, + { + "start": 23068.99, + "end": 23072.91, + "probability": 0.9323 + }, + { + "start": 23073.77, + "end": 23075.85, + "probability": 0.5271 + }, + { + "start": 23077.93, + "end": 23079.31, + "probability": 0.9602 + }, + { + "start": 23080.35, + "end": 23081.99, + "probability": 0.8806 + }, + { + "start": 23082.65, + "end": 23085.05, + "probability": 0.5652 + }, + { + "start": 23085.13, + "end": 23087.13, + "probability": 0.8245 + }, + { + "start": 23087.71, + "end": 23088.27, + "probability": 0.1376 + }, + { + "start": 23088.43, + "end": 23091.53, + "probability": 0.4581 + }, + { + "start": 23091.81, + "end": 23094.51, + "probability": 0.6139 + }, + { + "start": 23095.27, + "end": 23096.97, + "probability": 0.917 + }, + { + "start": 23097.09, + "end": 23099.92, + "probability": 0.8399 + }, + { + "start": 23102.97, + "end": 23106.77, + "probability": 0.6635 + }, + { + "start": 23106.93, + "end": 23107.43, + "probability": 0.5954 + }, + { + "start": 23107.53, + "end": 23110.09, + "probability": 0.8965 + }, + { + "start": 23110.65, + "end": 23112.43, + "probability": 0.8296 + }, + { + "start": 23112.99, + "end": 23114.17, + "probability": 0.9365 + }, + { + "start": 23114.25, + "end": 23117.97, + "probability": 0.9644 + }, + { + "start": 23119.13, + "end": 23120.83, + "probability": 0.4838 + }, + { + "start": 23122.21, + "end": 23123.67, + "probability": 0.7661 + }, + { + "start": 23123.97, + "end": 23123.97, + "probability": 0.3002 + }, + { + "start": 23123.97, + "end": 23123.99, + "probability": 0.3195 + }, + { + "start": 23124.15, + "end": 23124.43, + "probability": 0.5269 + }, + { + "start": 23124.43, + "end": 23125.25, + "probability": 0.9377 + }, + { + "start": 23125.33, + "end": 23128.03, + "probability": 0.7425 + }, + { + "start": 23128.27, + "end": 23130.93, + "probability": 0.9872 + }, + { + "start": 23131.77, + "end": 23131.93, + "probability": 0.4101 + }, + { + "start": 23131.93, + "end": 23131.93, + "probability": 0.2083 + }, + { + "start": 23131.93, + "end": 23132.17, + "probability": 0.2196 + }, + { + "start": 23132.25, + "end": 23133.13, + "probability": 0.5937 + }, + { + "start": 23133.13, + "end": 23133.37, + "probability": 0.0066 + }, + { + "start": 23133.37, + "end": 23133.65, + "probability": 0.2415 + }, + { + "start": 23133.75, + "end": 23135.93, + "probability": 0.8203 + }, + { + "start": 23135.95, + "end": 23136.15, + "probability": 0.7471 + }, + { + "start": 23138.77, + "end": 23144.05, + "probability": 0.5733 + }, + { + "start": 23144.47, + "end": 23146.34, + "probability": 0.9561 + }, + { + "start": 23147.01, + "end": 23148.11, + "probability": 0.9945 + }, + { + "start": 23148.47, + "end": 23149.05, + "probability": 0.7364 + }, + { + "start": 23149.25, + "end": 23150.11, + "probability": 0.899 + }, + { + "start": 23150.21, + "end": 23151.25, + "probability": 0.5872 + }, + { + "start": 23152.45, + "end": 23154.81, + "probability": 0.1064 + }, + { + "start": 23155.17, + "end": 23156.85, + "probability": 0.493 + }, + { + "start": 23157.37, + "end": 23157.37, + "probability": 0.7341 + }, + { + "start": 23157.37, + "end": 23157.37, + "probability": 0.0748 + }, + { + "start": 23157.37, + "end": 23158.45, + "probability": 0.3179 + }, + { + "start": 23158.75, + "end": 23159.77, + "probability": 0.3129 + }, + { + "start": 23159.77, + "end": 23163.61, + "probability": 0.8263 + }, + { + "start": 23169.67, + "end": 23172.39, + "probability": 0.7879 + }, + { + "start": 23172.93, + "end": 23174.47, + "probability": 0.0203 + }, + { + "start": 23175.09, + "end": 23177.29, + "probability": 0.2631 + }, + { + "start": 23177.83, + "end": 23179.14, + "probability": 0.4174 + }, + { + "start": 23179.19, + "end": 23180.37, + "probability": 0.5871 + }, + { + "start": 23183.27, + "end": 23183.89, + "probability": 0.1105 + }, + { + "start": 23183.89, + "end": 23184.89, + "probability": 0.3978 + }, + { + "start": 23204.75, + "end": 23206.19, + "probability": 0.6756 + }, + { + "start": 23207.13, + "end": 23207.57, + "probability": 0.8127 + }, + { + "start": 23208.09, + "end": 23209.23, + "probability": 0.6445 + }, + { + "start": 23209.55, + "end": 23210.05, + "probability": 0.7999 + }, + { + "start": 23210.21, + "end": 23212.09, + "probability": 0.8196 + }, + { + "start": 23212.59, + "end": 23213.61, + "probability": 0.8928 + }, + { + "start": 23213.81, + "end": 23215.25, + "probability": 0.5913 + }, + { + "start": 23215.71, + "end": 23215.77, + "probability": 0.2842 + }, + { + "start": 23215.89, + "end": 23218.49, + "probability": 0.2035 + }, + { + "start": 23218.49, + "end": 23219.15, + "probability": 0.0745 + }, + { + "start": 23219.83, + "end": 23220.91, + "probability": 0.5101 + }, + { + "start": 23221.03, + "end": 23221.74, + "probability": 0.8944 + }, + { + "start": 23222.07, + "end": 23222.69, + "probability": 0.6167 + }, + { + "start": 23223.39, + "end": 23226.47, + "probability": 0.8745 + }, + { + "start": 23226.69, + "end": 23227.75, + "probability": 0.6263 + }, + { + "start": 23228.07, + "end": 23228.59, + "probability": 0.0675 + }, + { + "start": 23229.55, + "end": 23235.95, + "probability": 0.7976 + }, + { + "start": 23236.45, + "end": 23237.11, + "probability": 0.3979 + }, + { + "start": 23237.61, + "end": 23240.23, + "probability": 0.7891 + }, + { + "start": 23240.37, + "end": 23241.56, + "probability": 0.9795 + }, + { + "start": 23241.65, + "end": 23247.61, + "probability": 0.9718 + }, + { + "start": 23248.71, + "end": 23252.17, + "probability": 0.9756 + }, + { + "start": 23252.17, + "end": 23255.33, + "probability": 0.9042 + }, + { + "start": 23255.77, + "end": 23257.19, + "probability": 0.8758 + }, + { + "start": 23257.45, + "end": 23257.45, + "probability": 0.1755 + }, + { + "start": 23257.45, + "end": 23257.91, + "probability": 0.8427 + }, + { + "start": 23260.87, + "end": 23263.51, + "probability": 0.6889 + }, + { + "start": 23264.15, + "end": 23267.49, + "probability": 0.9955 + }, + { + "start": 23267.83, + "end": 23268.21, + "probability": 0.8303 + }, + { + "start": 23268.33, + "end": 23270.93, + "probability": 0.7044 + }, + { + "start": 23271.15, + "end": 23273.43, + "probability": 0.4332 + }, + { + "start": 23273.43, + "end": 23275.25, + "probability": 0.8366 + }, + { + "start": 23275.47, + "end": 23277.07, + "probability": 0.9087 + }, + { + "start": 23277.15, + "end": 23278.43, + "probability": 0.6588 + }, + { + "start": 23278.77, + "end": 23279.53, + "probability": 0.7293 + }, + { + "start": 23279.67, + "end": 23280.51, + "probability": 0.8617 + }, + { + "start": 23280.77, + "end": 23281.19, + "probability": 0.3596 + }, + { + "start": 23281.19, + "end": 23281.57, + "probability": 0.7888 + }, + { + "start": 23284.95, + "end": 23288.25, + "probability": 0.687 + }, + { + "start": 23288.61, + "end": 23291.57, + "probability": 0.9873 + }, + { + "start": 23291.63, + "end": 23291.79, + "probability": 0.2433 + }, + { + "start": 23291.85, + "end": 23292.61, + "probability": 0.7514 + }, + { + "start": 23292.69, + "end": 23293.03, + "probability": 0.5687 + }, + { + "start": 23293.51, + "end": 23296.27, + "probability": 0.9519 + }, + { + "start": 23296.37, + "end": 23296.95, + "probability": 0.7271 + }, + { + "start": 23297.23, + "end": 23298.99, + "probability": 0.9812 + }, + { + "start": 23299.21, + "end": 23300.49, + "probability": 0.8625 + }, + { + "start": 23300.53, + "end": 23301.45, + "probability": 0.5605 + }, + { + "start": 23301.85, + "end": 23302.95, + "probability": 0.9779 + }, + { + "start": 23303.21, + "end": 23305.09, + "probability": 0.8448 + }, + { + "start": 23305.22, + "end": 23307.45, + "probability": 0.647 + }, + { + "start": 23308.07, + "end": 23309.83, + "probability": 0.9346 + }, + { + "start": 23311.05, + "end": 23312.19, + "probability": 0.7868 + }, + { + "start": 23312.73, + "end": 23314.75, + "probability": 0.8657 + }, + { + "start": 23314.93, + "end": 23315.79, + "probability": 0.7814 + }, + { + "start": 23315.99, + "end": 23316.43, + "probability": 0.894 + }, + { + "start": 23319.87, + "end": 23319.99, + "probability": 0.2373 + }, + { + "start": 23320.17, + "end": 23323.79, + "probability": 0.8286 + }, + { + "start": 23324.87, + "end": 23328.87, + "probability": 0.8852 + }, + { + "start": 23329.45, + "end": 23331.89, + "probability": 0.3333 + }, + { + "start": 23333.75, + "end": 23335.55, + "probability": 0.7643 + }, + { + "start": 23337.95, + "end": 23338.21, + "probability": 0.5162 + }, + { + "start": 23339.71, + "end": 23339.81, + "probability": 0.398 + }, + { + "start": 23339.81, + "end": 23339.81, + "probability": 0.3308 + }, + { + "start": 23339.81, + "end": 23340.97, + "probability": 0.7578 + }, + { + "start": 23341.37, + "end": 23342.43, + "probability": 0.7879 + }, + { + "start": 23343.33, + "end": 23346.73, + "probability": 0.8644 + }, + { + "start": 23346.83, + "end": 23347.67, + "probability": 0.2605 + }, + { + "start": 23347.67, + "end": 23348.87, + "probability": 0.4954 + }, + { + "start": 23349.17, + "end": 23350.15, + "probability": 0.5625 + }, + { + "start": 23352.69, + "end": 23354.19, + "probability": 0.7362 + }, + { + "start": 23354.83, + "end": 23356.67, + "probability": 0.2179 + }, + { + "start": 23357.11, + "end": 23359.11, + "probability": 0.6541 + }, + { + "start": 23359.21, + "end": 23361.95, + "probability": 0.6304 + }, + { + "start": 23361.95, + "end": 23365.11, + "probability": 0.5971 + }, + { + "start": 23365.29, + "end": 23367.11, + "probability": 0.6581 + }, + { + "start": 23367.15, + "end": 23367.97, + "probability": 0.9026 + }, + { + "start": 23367.97, + "end": 23368.63, + "probability": 0.3117 + }, + { + "start": 23369.17, + "end": 23369.88, + "probability": 0.8403 + }, + { + "start": 23371.17, + "end": 23372.75, + "probability": 0.351 + }, + { + "start": 23372.91, + "end": 23374.43, + "probability": 0.3422 + }, + { + "start": 23374.63, + "end": 23375.61, + "probability": 0.7242 + }, + { + "start": 23376.17, + "end": 23376.91, + "probability": 0.4372 + }, + { + "start": 23377.07, + "end": 23381.43, + "probability": 0.9924 + }, + { + "start": 23382.13, + "end": 23388.0, + "probability": 0.9821 + }, + { + "start": 23388.97, + "end": 23390.11, + "probability": 0.2316 + }, + { + "start": 23392.28, + "end": 23394.82, + "probability": 0.9875 + }, + { + "start": 23395.49, + "end": 23396.51, + "probability": 0.9268 + }, + { + "start": 23397.73, + "end": 23398.71, + "probability": 0.2336 + }, + { + "start": 23398.71, + "end": 23400.49, + "probability": 0.896 + }, + { + "start": 23400.61, + "end": 23401.41, + "probability": 0.6894 + }, + { + "start": 23401.89, + "end": 23403.43, + "probability": 0.4824 + }, + { + "start": 23403.49, + "end": 23405.07, + "probability": 0.4687 + }, + { + "start": 23405.55, + "end": 23407.9, + "probability": 0.4322 + }, + { + "start": 23409.42, + "end": 23410.28, + "probability": 0.0805 + }, + { + "start": 23410.29, + "end": 23414.11, + "probability": 0.9106 + }, + { + "start": 23415.21, + "end": 23420.31, + "probability": 0.8704 + }, + { + "start": 23421.09, + "end": 23423.89, + "probability": 0.7275 + }, + { + "start": 23423.89, + "end": 23424.27, + "probability": 0.3791 + }, + { + "start": 23429.91, + "end": 23432.29, + "probability": 0.7984 + }, + { + "start": 23433.35, + "end": 23434.73, + "probability": 0.8713 + }, + { + "start": 23435.27, + "end": 23435.95, + "probability": 0.8079 + }, + { + "start": 23436.57, + "end": 23436.97, + "probability": 0.8115 + }, + { + "start": 23437.09, + "end": 23438.05, + "probability": 0.5781 + }, + { + "start": 23438.09, + "end": 23439.07, + "probability": 0.655 + }, + { + "start": 23439.07, + "end": 23439.79, + "probability": 0.4611 + }, + { + "start": 23439.93, + "end": 23440.25, + "probability": 0.1714 + }, + { + "start": 23440.81, + "end": 23440.91, + "probability": 0.6907 + }, + { + "start": 23441.63, + "end": 23446.41, + "probability": 0.8262 + }, + { + "start": 23446.61, + "end": 23446.99, + "probability": 0.7229 + }, + { + "start": 23447.03, + "end": 23450.07, + "probability": 0.9778 + }, + { + "start": 23451.11, + "end": 23455.15, + "probability": 0.8438 + }, + { + "start": 23456.19, + "end": 23456.37, + "probability": 0.4658 + }, + { + "start": 23457.27, + "end": 23460.31, + "probability": 0.7505 + }, + { + "start": 23460.79, + "end": 23463.81, + "probability": 0.5073 + }, + { + "start": 23464.01, + "end": 23465.29, + "probability": 0.4878 + }, + { + "start": 23465.77, + "end": 23467.41, + "probability": 0.2741 + }, + { + "start": 23467.53, + "end": 23469.35, + "probability": 0.8533 + }, + { + "start": 23474.07, + "end": 23477.19, + "probability": 0.4217 + }, + { + "start": 23477.35, + "end": 23478.97, + "probability": 0.699 + }, + { + "start": 23479.33, + "end": 23481.87, + "probability": 0.5196 + }, + { + "start": 23481.87, + "end": 23482.49, + "probability": 0.6539 + }, + { + "start": 23482.53, + "end": 23483.13, + "probability": 0.5012 + }, + { + "start": 23483.25, + "end": 23483.95, + "probability": 0.8266 + }, + { + "start": 23484.07, + "end": 23485.07, + "probability": 0.7572 + }, + { + "start": 23485.19, + "end": 23488.69, + "probability": 0.65 + }, + { + "start": 23489.55, + "end": 23490.81, + "probability": 0.712 + }, + { + "start": 23491.41, + "end": 23495.85, + "probability": 0.7294 + }, + { + "start": 23496.41, + "end": 23498.33, + "probability": 0.7858 + }, + { + "start": 23498.37, + "end": 23499.01, + "probability": 0.5314 + }, + { + "start": 23499.73, + "end": 23503.29, + "probability": 0.7802 + }, + { + "start": 23503.37, + "end": 23503.53, + "probability": 0.6281 + }, + { + "start": 23503.63, + "end": 23505.87, + "probability": 0.9738 + }, + { + "start": 23506.39, + "end": 23508.27, + "probability": 0.7742 + }, + { + "start": 23508.87, + "end": 23512.85, + "probability": 0.9502 + }, + { + "start": 23513.99, + "end": 23515.78, + "probability": 0.999 + }, + { + "start": 23516.93, + "end": 23517.79, + "probability": 0.5116 + }, + { + "start": 23518.35, + "end": 23519.27, + "probability": 0.8226 + }, + { + "start": 23519.89, + "end": 23520.89, + "probability": 0.965 + }, + { + "start": 23521.29, + "end": 23524.79, + "probability": 0.9902 + }, + { + "start": 23525.33, + "end": 23526.57, + "probability": 0.9995 + }, + { + "start": 23527.15, + "end": 23531.03, + "probability": 0.9976 + }, + { + "start": 23531.31, + "end": 23532.09, + "probability": 0.682 + }, + { + "start": 23532.43, + "end": 23534.99, + "probability": 0.8832 + }, + { + "start": 23535.35, + "end": 23536.77, + "probability": 0.8679 + }, + { + "start": 23537.19, + "end": 23538.69, + "probability": 0.9714 + }, + { + "start": 23539.21, + "end": 23541.89, + "probability": 0.7776 + }, + { + "start": 23542.31, + "end": 23544.65, + "probability": 0.9663 + }, + { + "start": 23545.31, + "end": 23548.53, + "probability": 0.9506 + }, + { + "start": 23549.03, + "end": 23551.67, + "probability": 0.9961 + }, + { + "start": 23552.47, + "end": 23553.33, + "probability": 0.8043 + }, + { + "start": 23554.79, + "end": 23558.83, + "probability": 0.9038 + }, + { + "start": 23559.87, + "end": 23560.27, + "probability": 0.746 + }, + { + "start": 23560.99, + "end": 23562.81, + "probability": 0.6182 + }, + { + "start": 23563.81, + "end": 23565.93, + "probability": 0.9941 + }, + { + "start": 23566.26, + "end": 23568.61, + "probability": 0.9753 + }, + { + "start": 23568.69, + "end": 23569.41, + "probability": 0.9365 + }, + { + "start": 23569.45, + "end": 23569.61, + "probability": 0.0112 + }, + { + "start": 23570.57, + "end": 23571.29, + "probability": 0.9797 + }, + { + "start": 23571.85, + "end": 23572.81, + "probability": 0.9646 + }, + { + "start": 23573.75, + "end": 23576.33, + "probability": 0.9915 + }, + { + "start": 23576.51, + "end": 23579.17, + "probability": 0.7715 + }, + { + "start": 23580.47, + "end": 23583.09, + "probability": 0.754 + }, + { + "start": 23583.61, + "end": 23583.95, + "probability": 0.7217 + }, + { + "start": 23585.09, + "end": 23588.45, + "probability": 0.9312 + }, + { + "start": 23589.19, + "end": 23592.13, + "probability": 0.9854 + }, + { + "start": 23592.85, + "end": 23595.05, + "probability": 0.9875 + }, + { + "start": 23595.21, + "end": 23599.79, + "probability": 0.9954 + }, + { + "start": 23601.05, + "end": 23603.63, + "probability": 0.8237 + }, + { + "start": 23603.65, + "end": 23605.41, + "probability": 0.9781 + }, + { + "start": 23605.51, + "end": 23605.89, + "probability": 0.2695 + }, + { + "start": 23607.11, + "end": 23609.87, + "probability": 0.7973 + }, + { + "start": 23610.41, + "end": 23610.93, + "probability": 0.9443 + }, + { + "start": 23611.33, + "end": 23612.51, + "probability": 0.9309 + }, + { + "start": 23612.99, + "end": 23614.15, + "probability": 0.9478 + }, + { + "start": 23614.95, + "end": 23615.45, + "probability": 0.7215 + }, + { + "start": 23615.93, + "end": 23617.03, + "probability": 0.7405 + }, + { + "start": 23617.21, + "end": 23619.51, + "probability": 0.4688 + }, + { + "start": 23619.79, + "end": 23620.17, + "probability": 0.5617 + }, + { + "start": 23620.33, + "end": 23622.82, + "probability": 0.7458 + }, + { + "start": 23623.17, + "end": 23625.55, + "probability": 0.99 + }, + { + "start": 23626.03, + "end": 23626.81, + "probability": 0.737 + }, + { + "start": 23627.47, + "end": 23629.95, + "probability": 0.9771 + }, + { + "start": 23630.31, + "end": 23631.71, + "probability": 0.7912 + }, + { + "start": 23631.75, + "end": 23632.89, + "probability": 0.9151 + }, + { + "start": 23633.61, + "end": 23636.69, + "probability": 0.9551 + }, + { + "start": 23636.87, + "end": 23639.37, + "probability": 0.9669 + }, + { + "start": 23640.17, + "end": 23641.03, + "probability": 0.8259 + }, + { + "start": 23641.59, + "end": 23641.65, + "probability": 0.7117 + }, + { + "start": 23641.77, + "end": 23642.71, + "probability": 0.9692 + }, + { + "start": 23642.79, + "end": 23644.25, + "probability": 0.9875 + }, + { + "start": 23645.21, + "end": 23650.79, + "probability": 0.9946 + }, + { + "start": 23651.23, + "end": 23652.43, + "probability": 0.9978 + }, + { + "start": 23653.03, + "end": 23656.29, + "probability": 0.5292 + }, + { + "start": 23656.93, + "end": 23657.57, + "probability": 0.4718 + }, + { + "start": 23658.19, + "end": 23659.57, + "probability": 0.9192 + }, + { + "start": 23660.07, + "end": 23661.01, + "probability": 0.8394 + }, + { + "start": 23661.53, + "end": 23663.93, + "probability": 0.9421 + }, + { + "start": 23664.57, + "end": 23666.55, + "probability": 0.9438 + }, + { + "start": 23666.83, + "end": 23667.09, + "probability": 0.545 + }, + { + "start": 23667.13, + "end": 23667.79, + "probability": 0.7953 + }, + { + "start": 23668.23, + "end": 23669.96, + "probability": 0.9901 + }, + { + "start": 23671.43, + "end": 23672.99, + "probability": 0.797 + }, + { + "start": 23673.11, + "end": 23673.33, + "probability": 0.7445 + }, + { + "start": 23674.09, + "end": 23675.03, + "probability": 0.8343 + }, + { + "start": 23676.45, + "end": 23677.63, + "probability": 0.9939 + }, + { + "start": 23678.53, + "end": 23681.77, + "probability": 0.8994 + }, + { + "start": 23682.83, + "end": 23685.05, + "probability": 0.9791 + }, + { + "start": 23685.15, + "end": 23689.33, + "probability": 0.9726 + }, + { + "start": 23689.43, + "end": 23689.97, + "probability": 0.842 + }, + { + "start": 23690.07, + "end": 23692.87, + "probability": 0.9447 + }, + { + "start": 23694.05, + "end": 23695.75, + "probability": 0.6513 + }, + { + "start": 23696.69, + "end": 23698.01, + "probability": 0.9865 + }, + { + "start": 23698.77, + "end": 23700.59, + "probability": 0.9985 + }, + { + "start": 23701.05, + "end": 23703.19, + "probability": 0.9987 + }, + { + "start": 23703.89, + "end": 23707.41, + "probability": 0.9956 + }, + { + "start": 23707.73, + "end": 23707.93, + "probability": 0.4694 + }, + { + "start": 23707.99, + "end": 23708.87, + "probability": 0.7154 + }, + { + "start": 23708.97, + "end": 23710.09, + "probability": 0.9106 + }, + { + "start": 23711.11, + "end": 23711.49, + "probability": 0.6128 + }, + { + "start": 23711.61, + "end": 23712.07, + "probability": 0.7973 + }, + { + "start": 23712.97, + "end": 23714.83, + "probability": 0.9602 + }, + { + "start": 23715.79, + "end": 23716.77, + "probability": 0.8411 + }, + { + "start": 23716.95, + "end": 23719.49, + "probability": 0.966 + }, + { + "start": 23720.87, + "end": 23723.31, + "probability": 0.9414 + }, + { + "start": 23724.19, + "end": 23726.68, + "probability": 0.7913 + }, + { + "start": 23727.65, + "end": 23727.67, + "probability": 0.6313 + }, + { + "start": 23728.49, + "end": 23732.45, + "probability": 0.8201 + }, + { + "start": 23733.03, + "end": 23734.34, + "probability": 0.6897 + }, + { + "start": 23735.03, + "end": 23737.67, + "probability": 0.9614 + }, + { + "start": 23739.27, + "end": 23744.25, + "probability": 0.9831 + }, + { + "start": 23745.13, + "end": 23745.25, + "probability": 0.6898 + }, + { + "start": 23745.43, + "end": 23752.59, + "probability": 0.9467 + }, + { + "start": 23753.71, + "end": 23756.51, + "probability": 0.9583 + }, + { + "start": 23758.15, + "end": 23758.61, + "probability": 0.0102 + }, + { + "start": 23758.67, + "end": 23758.67, + "probability": 0.0051 + }, + { + "start": 23758.67, + "end": 23759.01, + "probability": 0.0182 + }, + { + "start": 23759.01, + "end": 23759.59, + "probability": 0.8118 + }, + { + "start": 23759.85, + "end": 23764.37, + "probability": 0.9849 + }, + { + "start": 23764.43, + "end": 23765.21, + "probability": 0.314 + }, + { + "start": 23765.29, + "end": 23765.89, + "probability": 0.4163 + }, + { + "start": 23766.13, + "end": 23766.73, + "probability": 0.9019 + }, + { + "start": 23767.35, + "end": 23769.71, + "probability": 0.9812 + }, + { + "start": 23770.23, + "end": 23771.43, + "probability": 0.8381 + }, + { + "start": 23771.53, + "end": 23773.55, + "probability": 0.9421 + }, + { + "start": 23774.05, + "end": 23775.95, + "probability": 0.9134 + }, + { + "start": 23777.01, + "end": 23778.65, + "probability": 0.9457 + }, + { + "start": 23778.79, + "end": 23780.29, + "probability": 0.9939 + }, + { + "start": 23781.19, + "end": 23783.51, + "probability": 0.9957 + }, + { + "start": 23784.71, + "end": 23787.4, + "probability": 0.9673 + }, + { + "start": 23788.21, + "end": 23790.77, + "probability": 0.9871 + }, + { + "start": 23791.45, + "end": 23793.19, + "probability": 0.8721 + }, + { + "start": 23793.75, + "end": 23794.72, + "probability": 0.9841 + }, + { + "start": 23795.15, + "end": 23796.46, + "probability": 0.9604 + }, + { + "start": 23797.03, + "end": 23799.82, + "probability": 0.7311 + }, + { + "start": 23800.03, + "end": 23800.89, + "probability": 0.3817 + }, + { + "start": 23801.07, + "end": 23802.63, + "probability": 0.6474 + }, + { + "start": 23802.65, + "end": 23804.01, + "probability": 0.9049 + }, + { + "start": 23805.07, + "end": 23807.67, + "probability": 0.9932 + }, + { + "start": 23807.67, + "end": 23808.53, + "probability": 0.8148 + }, + { + "start": 23809.13, + "end": 23810.83, + "probability": 0.9847 + }, + { + "start": 23811.45, + "end": 23811.65, + "probability": 0.3939 + }, + { + "start": 23812.19, + "end": 23813.69, + "probability": 0.7902 + }, + { + "start": 23813.76, + "end": 23814.32, + "probability": 0.4558 + }, + { + "start": 23814.53, + "end": 23815.25, + "probability": 0.9907 + }, + { + "start": 23815.33, + "end": 23815.97, + "probability": 0.9961 + }, + { + "start": 23816.59, + "end": 23816.79, + "probability": 0.9419 + }, + { + "start": 23816.91, + "end": 23818.81, + "probability": 0.9132 + }, + { + "start": 23818.95, + "end": 23819.53, + "probability": 0.3293 + }, + { + "start": 23819.63, + "end": 23820.47, + "probability": 0.0961 + }, + { + "start": 23820.65, + "end": 23821.41, + "probability": 0.806 + }, + { + "start": 23821.71, + "end": 23821.77, + "probability": 0.406 + }, + { + "start": 23821.77, + "end": 23821.97, + "probability": 0.791 + }, + { + "start": 23821.99, + "end": 23823.43, + "probability": 0.1408 + }, + { + "start": 23823.43, + "end": 23826.65, + "probability": 0.6289 + }, + { + "start": 23826.69, + "end": 23827.11, + "probability": 0.7826 + }, + { + "start": 23827.63, + "end": 23829.73, + "probability": 0.854 + }, + { + "start": 23829.81, + "end": 23832.01, + "probability": 0.9906 + }, + { + "start": 23833.51, + "end": 23833.93, + "probability": 0.264 + }, + { + "start": 23833.93, + "end": 23833.93, + "probability": 0.12 + }, + { + "start": 23833.93, + "end": 23834.59, + "probability": 0.7568 + }, + { + "start": 23835.23, + "end": 23838.41, + "probability": 0.9823 + }, + { + "start": 23838.97, + "end": 23840.71, + "probability": 0.9814 + }, + { + "start": 23840.75, + "end": 23840.85, + "probability": 0.5371 + }, + { + "start": 23841.25, + "end": 23841.29, + "probability": 0.0557 + }, + { + "start": 23841.29, + "end": 23844.47, + "probability": 0.9583 + }, + { + "start": 23844.53, + "end": 23845.31, + "probability": 0.6512 + }, + { + "start": 23845.35, + "end": 23849.53, + "probability": 0.8022 + }, + { + "start": 23849.63, + "end": 23849.79, + "probability": 0.6208 + }, + { + "start": 23850.11, + "end": 23853.07, + "probability": 0.9708 + }, + { + "start": 23853.47, + "end": 23856.45, + "probability": 0.9911 + }, + { + "start": 23856.47, + "end": 23857.57, + "probability": 0.8688 + }, + { + "start": 23858.21, + "end": 23862.59, + "probability": 0.9784 + }, + { + "start": 23863.09, + "end": 23863.49, + "probability": 0.8757 + }, + { + "start": 23863.83, + "end": 23866.59, + "probability": 0.8046 + }, + { + "start": 23866.59, + "end": 23869.53, + "probability": 0.9604 + }, + { + "start": 23870.43, + "end": 23872.77, + "probability": 0.9313 + }, + { + "start": 23873.07, + "end": 23875.33, + "probability": 0.9526 + }, + { + "start": 23875.69, + "end": 23875.89, + "probability": 0.6995 + }, + { + "start": 23875.99, + "end": 23877.69, + "probability": 0.9205 + }, + { + "start": 23878.49, + "end": 23878.79, + "probability": 0.7432 + }, + { + "start": 23879.61, + "end": 23881.53, + "probability": 0.9595 + }, + { + "start": 23883.17, + "end": 23883.61, + "probability": 0.0307 + }, + { + "start": 23883.61, + "end": 23883.81, + "probability": 0.6113 + }, + { + "start": 23884.15, + "end": 23885.79, + "probability": 0.9498 + }, + { + "start": 23886.49, + "end": 23887.17, + "probability": 0.9808 + }, + { + "start": 23888.37, + "end": 23888.85, + "probability": 0.9857 + }, + { + "start": 23889.45, + "end": 23890.97, + "probability": 0.9783 + }, + { + "start": 23891.25, + "end": 23892.01, + "probability": 0.8895 + }, + { + "start": 23892.27, + "end": 23893.45, + "probability": 0.6103 + }, + { + "start": 23893.49, + "end": 23894.37, + "probability": 0.7491 + }, + { + "start": 23894.77, + "end": 23895.21, + "probability": 0.8674 + }, + { + "start": 23895.31, + "end": 23895.73, + "probability": 0.9096 + }, + { + "start": 23895.81, + "end": 23896.63, + "probability": 0.7555 + }, + { + "start": 23896.91, + "end": 23897.27, + "probability": 0.8701 + }, + { + "start": 23898.25, + "end": 23899.37, + "probability": 0.9272 + }, + { + "start": 23899.65, + "end": 23899.87, + "probability": 0.9535 + }, + { + "start": 23900.25, + "end": 23900.87, + "probability": 0.7414 + }, + { + "start": 23901.25, + "end": 23902.59, + "probability": 0.9731 + }, + { + "start": 23902.65, + "end": 23902.97, + "probability": 0.9351 + }, + { + "start": 23903.28, + "end": 23903.69, + "probability": 0.854 + }, + { + "start": 23904.51, + "end": 23905.85, + "probability": 0.9224 + }, + { + "start": 23905.91, + "end": 23906.49, + "probability": 0.667 + }, + { + "start": 23906.93, + "end": 23910.15, + "probability": 0.9958 + }, + { + "start": 23910.71, + "end": 23912.65, + "probability": 0.7055 + }, + { + "start": 23912.91, + "end": 23915.53, + "probability": 0.9601 + }, + { + "start": 23915.69, + "end": 23918.51, + "probability": 0.9815 + }, + { + "start": 23918.51, + "end": 23920.53, + "probability": 0.9917 + }, + { + "start": 23920.97, + "end": 23923.07, + "probability": 0.9551 + }, + { + "start": 23923.17, + "end": 23923.81, + "probability": 0.6017 + }, + { + "start": 23924.31, + "end": 23926.75, + "probability": 0.9194 + }, + { + "start": 23930.15, + "end": 23932.23, + "probability": 0.8635 + }, + { + "start": 23933.45, + "end": 23936.57, + "probability": 0.969 + }, + { + "start": 23936.95, + "end": 23939.41, + "probability": 0.9446 + }, + { + "start": 23940.25, + "end": 23942.97, + "probability": 0.1989 + }, + { + "start": 23945.53, + "end": 23946.09, + "probability": 0.6387 + }, + { + "start": 23948.63, + "end": 23950.15, + "probability": 0.1464 + }, + { + "start": 23951.99, + "end": 23953.33, + "probability": 0.4015 + }, + { + "start": 23953.41, + "end": 23954.83, + "probability": 0.6184 + }, + { + "start": 23955.9, + "end": 23957.61, + "probability": 0.6513 + }, + { + "start": 23958.09, + "end": 23960.82, + "probability": 0.9629 + }, + { + "start": 23961.47, + "end": 23963.57, + "probability": 0.5518 + }, + { + "start": 23963.65, + "end": 23963.75, + "probability": 0.8631 + }, + { + "start": 23964.88, + "end": 23967.99, + "probability": 0.7177 + }, + { + "start": 23979.19, + "end": 23983.81, + "probability": 0.7561 + }, + { + "start": 23983.91, + "end": 23986.27, + "probability": 0.8057 + }, + { + "start": 23987.71, + "end": 23988.31, + "probability": 0.0581 + }, + { + "start": 23988.79, + "end": 23990.49, + "probability": 0.4899 + }, + { + "start": 23990.57, + "end": 23991.81, + "probability": 0.4744 + }, + { + "start": 23991.99, + "end": 23992.85, + "probability": 0.8356 + }, + { + "start": 23993.03, + "end": 23994.09, + "probability": 0.8172 + }, + { + "start": 23994.63, + "end": 23996.99, + "probability": 0.9642 + }, + { + "start": 23997.11, + "end": 23998.75, + "probability": 0.9411 + }, + { + "start": 23999.75, + "end": 24003.53, + "probability": 0.6486 + }, + { + "start": 24003.53, + "end": 24004.03, + "probability": 0.7564 + }, + { + "start": 24004.79, + "end": 24008.63, + "probability": 0.9041 + }, + { + "start": 24008.75, + "end": 24009.65, + "probability": 0.8193 + }, + { + "start": 24009.73, + "end": 24010.47, + "probability": 0.8439 + }, + { + "start": 24010.57, + "end": 24010.75, + "probability": 0.4619 + }, + { + "start": 24010.81, + "end": 24016.17, + "probability": 0.8487 + }, + { + "start": 24016.95, + "end": 24018.29, + "probability": 0.9973 + }, + { + "start": 24019.17, + "end": 24021.35, + "probability": 0.5973 + }, + { + "start": 24022.7, + "end": 24025.69, + "probability": 0.8688 + }, + { + "start": 24026.91, + "end": 24029.41, + "probability": 0.6223 + }, + { + "start": 24029.83, + "end": 24031.25, + "probability": 0.9593 + }, + { + "start": 24031.35, + "end": 24033.15, + "probability": 0.9984 + }, + { + "start": 24033.63, + "end": 24035.37, + "probability": 0.9328 + }, + { + "start": 24036.33, + "end": 24039.53, + "probability": 0.9798 + }, + { + "start": 24039.67, + "end": 24044.59, + "probability": 0.922 + }, + { + "start": 24044.97, + "end": 24045.41, + "probability": 0.7924 + }, + { + "start": 24046.57, + "end": 24046.93, + "probability": 0.552 + }, + { + "start": 24048.85, + "end": 24050.51, + "probability": 0.972 + }, + { + "start": 24051.35, + "end": 24052.07, + "probability": 0.9021 + }, + { + "start": 24052.53, + "end": 24055.85, + "probability": 0.9978 + }, + { + "start": 24056.71, + "end": 24059.05, + "probability": 0.8087 + }, + { + "start": 24059.69, + "end": 24060.27, + "probability": 0.7502 + }, + { + "start": 24060.81, + "end": 24061.43, + "probability": 0.8038 + }, + { + "start": 24062.31, + "end": 24063.25, + "probability": 0.5934 + }, + { + "start": 24063.37, + "end": 24067.35, + "probability": 0.9956 + }, + { + "start": 24067.69, + "end": 24068.61, + "probability": 0.5773 + }, + { + "start": 24068.95, + "end": 24069.51, + "probability": 0.5917 + }, + { + "start": 24069.99, + "end": 24072.07, + "probability": 0.6233 + }, + { + "start": 24072.21, + "end": 24073.95, + "probability": 0.6403 + }, + { + "start": 24074.65, + "end": 24076.15, + "probability": 0.964 + }, + { + "start": 24077.65, + "end": 24081.73, + "probability": 0.9912 + }, + { + "start": 24081.85, + "end": 24082.91, + "probability": 0.9825 + }, + { + "start": 24083.71, + "end": 24083.89, + "probability": 0.9412 + }, + { + "start": 24084.41, + "end": 24088.17, + "probability": 0.8259 + }, + { + "start": 24088.29, + "end": 24088.39, + "probability": 0.47 + }, + { + "start": 24089.05, + "end": 24093.77, + "probability": 0.798 + }, + { + "start": 24095.13, + "end": 24097.25, + "probability": 0.9546 + }, + { + "start": 24098.31, + "end": 24099.17, + "probability": 0.4846 + }, + { + "start": 24100.47, + "end": 24103.61, + "probability": 0.8146 + }, + { + "start": 24105.29, + "end": 24108.16, + "probability": 0.866 + }, + { + "start": 24109.17, + "end": 24111.41, + "probability": 0.7844 + }, + { + "start": 24112.51, + "end": 24113.59, + "probability": 0.6335 + }, + { + "start": 24113.77, + "end": 24115.13, + "probability": 0.9139 + }, + { + "start": 24115.99, + "end": 24117.71, + "probability": 0.9745 + }, + { + "start": 24118.43, + "end": 24120.89, + "probability": 0.9769 + }, + { + "start": 24122.03, + "end": 24122.97, + "probability": 0.6137 + }, + { + "start": 24122.97, + "end": 24125.47, + "probability": 0.8857 + }, + { + "start": 24126.09, + "end": 24128.12, + "probability": 0.9688 + }, + { + "start": 24128.19, + "end": 24131.29, + "probability": 0.9536 + }, + { + "start": 24131.61, + "end": 24132.37, + "probability": 0.6657 + }, + { + "start": 24132.51, + "end": 24134.18, + "probability": 0.9595 + }, + { + "start": 24134.45, + "end": 24138.63, + "probability": 0.9951 + }, + { + "start": 24139.07, + "end": 24139.95, + "probability": 0.7208 + }, + { + "start": 24140.81, + "end": 24142.35, + "probability": 0.6554 + }, + { + "start": 24142.43, + "end": 24144.45, + "probability": 0.9937 + }, + { + "start": 24144.73, + "end": 24147.17, + "probability": 0.9653 + }, + { + "start": 24147.27, + "end": 24150.33, + "probability": 0.9678 + }, + { + "start": 24150.49, + "end": 24151.63, + "probability": 0.979 + }, + { + "start": 24151.85, + "end": 24154.81, + "probability": 0.9482 + }, + { + "start": 24155.01, + "end": 24156.11, + "probability": 0.876 + }, + { + "start": 24158.31, + "end": 24159.93, + "probability": 0.9993 + }, + { + "start": 24160.07, + "end": 24160.37, + "probability": 0.9272 + }, + { + "start": 24162.27, + "end": 24162.63, + "probability": 0.9618 + }, + { + "start": 24163.43, + "end": 24164.33, + "probability": 0.9963 + }, + { + "start": 24165.07, + "end": 24172.15, + "probability": 0.8656 + }, + { + "start": 24172.97, + "end": 24176.93, + "probability": 0.9966 + }, + { + "start": 24176.93, + "end": 24180.77, + "probability": 0.9968 + }, + { + "start": 24181.57, + "end": 24181.93, + "probability": 0.0499 + }, + { + "start": 24181.93, + "end": 24182.93, + "probability": 0.9895 + }, + { + "start": 24183.41, + "end": 24186.14, + "probability": 0.8162 + }, + { + "start": 24188.49, + "end": 24191.75, + "probability": 0.9377 + }, + { + "start": 24193.09, + "end": 24195.09, + "probability": 0.9631 + }, + { + "start": 24195.15, + "end": 24195.57, + "probability": 0.1055 + }, + { + "start": 24195.63, + "end": 24196.81, + "probability": 0.7405 + }, + { + "start": 24196.91, + "end": 24197.29, + "probability": 0.5118 + }, + { + "start": 24198.33, + "end": 24200.23, + "probability": 0.9383 + }, + { + "start": 24200.83, + "end": 24204.35, + "probability": 0.9813 + }, + { + "start": 24205.51, + "end": 24206.14, + "probability": 0.9863 + }, + { + "start": 24206.41, + "end": 24209.29, + "probability": 0.9865 + }, + { + "start": 24210.55, + "end": 24212.17, + "probability": 0.4638 + }, + { + "start": 24212.17, + "end": 24216.59, + "probability": 0.8384 + }, + { + "start": 24217.15, + "end": 24217.89, + "probability": 0.7389 + }, + { + "start": 24218.88, + "end": 24218.95, + "probability": 0.184 + }, + { + "start": 24218.95, + "end": 24223.25, + "probability": 0.6914 + }, + { + "start": 24223.63, + "end": 24223.81, + "probability": 0.2082 + }, + { + "start": 24224.11, + "end": 24224.11, + "probability": 0.1138 + }, + { + "start": 24224.13, + "end": 24224.35, + "probability": 0.2638 + }, + { + "start": 24224.43, + "end": 24229.09, + "probability": 0.9414 + }, + { + "start": 24229.45, + "end": 24231.17, + "probability": 0.9602 + }, + { + "start": 24231.89, + "end": 24234.99, + "probability": 0.959 + }, + { + "start": 24235.11, + "end": 24235.55, + "probability": 0.9446 + }, + { + "start": 24236.01, + "end": 24237.79, + "probability": 0.959 + }, + { + "start": 24238.51, + "end": 24238.99, + "probability": 0.9526 + }, + { + "start": 24239.51, + "end": 24244.61, + "probability": 0.9951 + }, + { + "start": 24245.07, + "end": 24246.32, + "probability": 0.71 + }, + { + "start": 24246.91, + "end": 24251.37, + "probability": 0.8048 + }, + { + "start": 24251.89, + "end": 24252.49, + "probability": 0.9814 + }, + { + "start": 24253.15, + "end": 24254.01, + "probability": 0.7574 + }, + { + "start": 24254.01, + "end": 24257.65, + "probability": 0.9412 + }, + { + "start": 24258.21, + "end": 24260.83, + "probability": 0.7466 + }, + { + "start": 24260.95, + "end": 24261.31, + "probability": 0.4181 + }, + { + "start": 24261.63, + "end": 24264.39, + "probability": 0.8724 + }, + { + "start": 24265.11, + "end": 24266.35, + "probability": 0.9779 + }, + { + "start": 24267.09, + "end": 24268.71, + "probability": 0.3832 + }, + { + "start": 24269.73, + "end": 24271.17, + "probability": 0.855 + }, + { + "start": 24271.69, + "end": 24274.96, + "probability": 0.9937 + }, + { + "start": 24275.87, + "end": 24281.63, + "probability": 0.9915 + }, + { + "start": 24282.11, + "end": 24284.29, + "probability": 0.9536 + }, + { + "start": 24284.87, + "end": 24285.85, + "probability": 0.9956 + }, + { + "start": 24286.47, + "end": 24287.15, + "probability": 0.9951 + }, + { + "start": 24287.67, + "end": 24288.25, + "probability": 0.7321 + }, + { + "start": 24288.81, + "end": 24291.07, + "probability": 0.5651 + }, + { + "start": 24291.81, + "end": 24293.77, + "probability": 0.4436 + }, + { + "start": 24293.77, + "end": 24297.43, + "probability": 0.4194 + }, + { + "start": 24297.43, + "end": 24301.11, + "probability": 0.1134 + }, + { + "start": 24301.45, + "end": 24302.29, + "probability": 0.6976 + }, + { + "start": 24302.86, + "end": 24305.95, + "probability": 0.0412 + }, + { + "start": 24306.41, + "end": 24307.35, + "probability": 0.0992 + }, + { + "start": 24309.06, + "end": 24311.01, + "probability": 0.339 + }, + { + "start": 24311.57, + "end": 24312.09, + "probability": 0.0247 + }, + { + "start": 24312.09, + "end": 24312.53, + "probability": 0.1212 + }, + { + "start": 24312.53, + "end": 24316.93, + "probability": 0.2677 + }, + { + "start": 24317.59, + "end": 24318.63, + "probability": 0.1921 + }, + { + "start": 24320.61, + "end": 24321.31, + "probability": 0.0105 + }, + { + "start": 24323.01, + "end": 24326.41, + "probability": 0.1188 + }, + { + "start": 24327.29, + "end": 24327.39, + "probability": 0.0125 + }, + { + "start": 24348.49, + "end": 24350.43, + "probability": 0.1382 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.0, + "end": 24396.0, + "probability": 0.0 + }, + { + "start": 24396.04, + "end": 24396.36, + "probability": 0.1316 + }, + { + "start": 24397.24, + "end": 24398.78, + "probability": 0.4094 + }, + { + "start": 24399.08, + "end": 24400.48, + "probability": 0.5764 + }, + { + "start": 24400.58, + "end": 24402.38, + "probability": 0.167 + }, + { + "start": 24402.86, + "end": 24403.9, + "probability": 0.8811 + }, + { + "start": 24404.48, + "end": 24405.24, + "probability": 0.8995 + }, + { + "start": 24405.3, + "end": 24407.82, + "probability": 0.8097 + }, + { + "start": 24407.96, + "end": 24408.4, + "probability": 0.6089 + }, + { + "start": 24409.14, + "end": 24410.28, + "probability": 0.6725 + }, + { + "start": 24410.84, + "end": 24413.03, + "probability": 0.4061 + }, + { + "start": 24419.46, + "end": 24422.42, + "probability": 0.3018 + }, + { + "start": 24423.06, + "end": 24423.48, + "probability": 0.3365 + }, + { + "start": 24424.26, + "end": 24424.72, + "probability": 0.9167 + }, + { + "start": 24425.88, + "end": 24427.26, + "probability": 0.8777 + }, + { + "start": 24427.26, + "end": 24430.72, + "probability": 0.9366 + }, + { + "start": 24433.47, + "end": 24434.94, + "probability": 0.5946 + }, + { + "start": 24434.94, + "end": 24442.4, + "probability": 0.9126 + }, + { + "start": 24443.3, + "end": 24445.44, + "probability": 0.9878 + }, + { + "start": 24446.52, + "end": 24447.34, + "probability": 0.8225 + }, + { + "start": 24448.6, + "end": 24452.44, + "probability": 0.874 + }, + { + "start": 24453.52, + "end": 24457.66, + "probability": 0.8264 + }, + { + "start": 24457.78, + "end": 24458.28, + "probability": 0.8192 + }, + { + "start": 24458.76, + "end": 24463.3, + "probability": 0.9977 + }, + { + "start": 24463.3, + "end": 24467.78, + "probability": 0.9957 + }, + { + "start": 24468.36, + "end": 24474.0, + "probability": 0.7939 + }, + { + "start": 24474.1, + "end": 24474.52, + "probability": 0.5038 + }, + { + "start": 24474.52, + "end": 24474.52, + "probability": 0.508 + }, + { + "start": 24474.52, + "end": 24476.46, + "probability": 0.6803 + }, + { + "start": 24476.46, + "end": 24476.46, + "probability": 0.757 + }, + { + "start": 24476.46, + "end": 24478.36, + "probability": 0.4473 + }, + { + "start": 24479.15, + "end": 24479.94, + "probability": 0.8475 + }, + { + "start": 24480.62, + "end": 24482.6, + "probability": 0.7642 + }, + { + "start": 24482.8, + "end": 24483.96, + "probability": 0.9375 + }, + { + "start": 24484.52, + "end": 24486.66, + "probability": 0.3654 + }, + { + "start": 24488.22, + "end": 24490.44, + "probability": 0.9969 + }, + { + "start": 24490.44, + "end": 24493.6, + "probability": 0.9797 + }, + { + "start": 24494.7, + "end": 24494.92, + "probability": 0.8939 + }, + { + "start": 24495.28, + "end": 24496.85, + "probability": 0.9772 + }, + { + "start": 24498.18, + "end": 24499.08, + "probability": 0.8716 + }, + { + "start": 24499.08, + "end": 24500.34, + "probability": 0.9967 + }, + { + "start": 24501.06, + "end": 24502.72, + "probability": 0.998 + }, + { + "start": 24503.28, + "end": 24504.04, + "probability": 0.4327 + }, + { + "start": 24504.82, + "end": 24507.5, + "probability": 0.9958 + }, + { + "start": 24508.38, + "end": 24510.4, + "probability": 0.8646 + }, + { + "start": 24510.92, + "end": 24512.2, + "probability": 0.924 + }, + { + "start": 24513.12, + "end": 24516.14, + "probability": 0.9922 + }, + { + "start": 24516.2, + "end": 24517.0, + "probability": 0.6649 + }, + { + "start": 24518.04, + "end": 24520.24, + "probability": 0.7031 + }, + { + "start": 24520.36, + "end": 24524.24, + "probability": 0.8917 + }, + { + "start": 24524.24, + "end": 24527.82, + "probability": 0.991 + }, + { + "start": 24528.68, + "end": 24531.52, + "probability": 0.2442 + }, + { + "start": 24531.7, + "end": 24531.86, + "probability": 0.5613 + }, + { + "start": 24531.88, + "end": 24532.04, + "probability": 0.7271 + }, + { + "start": 24532.14, + "end": 24532.56, + "probability": 0.6026 + }, + { + "start": 24532.68, + "end": 24534.66, + "probability": 0.5015 + }, + { + "start": 24535.26, + "end": 24535.52, + "probability": 0.7809 + }, + { + "start": 24535.52, + "end": 24535.66, + "probability": 0.8794 + }, + { + "start": 24535.68, + "end": 24536.66, + "probability": 0.924 + }, + { + "start": 24537.21, + "end": 24538.5, + "probability": 0.9297 + }, + { + "start": 24538.6, + "end": 24540.86, + "probability": 0.7239 + }, + { + "start": 24541.12, + "end": 24542.08, + "probability": 0.9565 + }, + { + "start": 24542.32, + "end": 24542.66, + "probability": 0.95 + }, + { + "start": 24546.16, + "end": 24547.22, + "probability": 0.9979 + }, + { + "start": 24548.0, + "end": 24552.32, + "probability": 0.9857 + }, + { + "start": 24552.74, + "end": 24554.38, + "probability": 0.9198 + }, + { + "start": 24555.12, + "end": 24559.02, + "probability": 0.9734 + }, + { + "start": 24559.82, + "end": 24563.72, + "probability": 0.9934 + }, + { + "start": 24565.16, + "end": 24569.16, + "probability": 0.0311 + }, + { + "start": 24569.16, + "end": 24569.16, + "probability": 0.5455 + }, + { + "start": 24569.16, + "end": 24569.69, + "probability": 0.486 + }, + { + "start": 24570.8, + "end": 24574.76, + "probability": 0.8003 + }, + { + "start": 24575.38, + "end": 24579.89, + "probability": 0.9906 + }, + { + "start": 24580.79, + "end": 24583.37, + "probability": 0.8549 + }, + { + "start": 24583.65, + "end": 24586.01, + "probability": 0.9852 + }, + { + "start": 24586.73, + "end": 24587.25, + "probability": 0.8539 + }, + { + "start": 24587.51, + "end": 24588.37, + "probability": 0.7679 + }, + { + "start": 24588.47, + "end": 24588.87, + "probability": 0.4104 + }, + { + "start": 24588.87, + "end": 24589.55, + "probability": 0.2091 + }, + { + "start": 24589.55, + "end": 24590.41, + "probability": 0.4282 + }, + { + "start": 24590.65, + "end": 24591.09, + "probability": 0.586 + }, + { + "start": 24591.13, + "end": 24591.77, + "probability": 0.5502 + }, + { + "start": 24591.99, + "end": 24594.43, + "probability": 0.2079 + }, + { + "start": 24595.11, + "end": 24596.65, + "probability": 0.8087 + }, + { + "start": 24596.77, + "end": 24597.59, + "probability": 0.8 + }, + { + "start": 24598.03, + "end": 24601.51, + "probability": 0.8447 + }, + { + "start": 24601.59, + "end": 24604.23, + "probability": 0.6812 + }, + { + "start": 24604.25, + "end": 24605.99, + "probability": 0.7288 + }, + { + "start": 24607.11, + "end": 24610.32, + "probability": 0.9178 + }, + { + "start": 24612.07, + "end": 24614.71, + "probability": 0.8409 + }, + { + "start": 24614.71, + "end": 24619.2, + "probability": 0.9141 + }, + { + "start": 24620.25, + "end": 24622.33, + "probability": 0.821 + }, + { + "start": 24623.27, + "end": 24624.33, + "probability": 0.6676 + }, + { + "start": 24625.29, + "end": 24627.13, + "probability": 0.7598 + }, + { + "start": 24627.95, + "end": 24633.49, + "probability": 0.4055 + }, + { + "start": 24634.19, + "end": 24635.53, + "probability": 0.0746 + }, + { + "start": 24635.97, + "end": 24637.42, + "probability": 0.3657 + }, + { + "start": 24637.57, + "end": 24638.4, + "probability": 0.5772 + }, + { + "start": 24638.97, + "end": 24640.72, + "probability": 0.4718 + }, + { + "start": 24640.83, + "end": 24642.27, + "probability": 0.2819 + }, + { + "start": 24642.43, + "end": 24643.41, + "probability": 0.0863 + }, + { + "start": 24645.03, + "end": 24645.47, + "probability": 0.0215 + }, + { + "start": 24645.47, + "end": 24646.23, + "probability": 0.0925 + }, + { + "start": 24646.23, + "end": 24646.23, + "probability": 0.0616 + }, + { + "start": 24646.23, + "end": 24646.23, + "probability": 0.0695 + }, + { + "start": 24646.23, + "end": 24648.61, + "probability": 0.7783 + }, + { + "start": 24648.63, + "end": 24650.37, + "probability": 0.6817 + }, + { + "start": 24651.01, + "end": 24652.71, + "probability": 0.9254 + }, + { + "start": 24653.17, + "end": 24654.59, + "probability": 0.879 + }, + { + "start": 24654.75, + "end": 24655.09, + "probability": 0.2787 + }, + { + "start": 24655.13, + "end": 24655.82, + "probability": 0.5884 + }, + { + "start": 24656.15, + "end": 24657.87, + "probability": 0.2888 + }, + { + "start": 24658.71, + "end": 24662.0, + "probability": 0.4707 + }, + { + "start": 24663.65, + "end": 24663.89, + "probability": 0.431 + }, + { + "start": 24665.21, + "end": 24665.95, + "probability": 0.1705 + }, + { + "start": 24666.19, + "end": 24666.27, + "probability": 0.0504 + }, + { + "start": 24666.27, + "end": 24666.27, + "probability": 0.1467 + }, + { + "start": 24666.27, + "end": 24666.37, + "probability": 0.1914 + }, + { + "start": 24666.37, + "end": 24668.07, + "probability": 0.1054 + }, + { + "start": 24669.01, + "end": 24669.69, + "probability": 0.6785 + }, + { + "start": 24669.81, + "end": 24672.03, + "probability": 0.9255 + }, + { + "start": 24672.03, + "end": 24673.33, + "probability": 0.4091 + }, + { + "start": 24673.95, + "end": 24674.05, + "probability": 0.3676 + }, + { + "start": 24674.79, + "end": 24674.79, + "probability": 0.0095 + }, + { + "start": 24674.83, + "end": 24675.49, + "probability": 0.6063 + }, + { + "start": 24675.67, + "end": 24678.19, + "probability": 0.937 + }, + { + "start": 24678.37, + "end": 24679.31, + "probability": 0.7624 + }, + { + "start": 24679.71, + "end": 24680.37, + "probability": 0.6898 + }, + { + "start": 24680.53, + "end": 24681.11, + "probability": 0.5866 + }, + { + "start": 24682.47, + "end": 24684.79, + "probability": 0.2605 + }, + { + "start": 24684.89, + "end": 24686.65, + "probability": 0.342 + }, + { + "start": 24686.65, + "end": 24687.07, + "probability": 0.1327 + }, + { + "start": 24687.07, + "end": 24687.97, + "probability": 0.6541 + }, + { + "start": 24688.25, + "end": 24689.21, + "probability": 0.9657 + }, + { + "start": 24689.35, + "end": 24690.65, + "probability": 0.6842 + }, + { + "start": 24690.97, + "end": 24693.05, + "probability": 0.9424 + }, + { + "start": 24693.35, + "end": 24696.65, + "probability": 0.6265 + }, + { + "start": 24697.01, + "end": 24699.71, + "probability": 0.998 + }, + { + "start": 24700.05, + "end": 24705.11, + "probability": 0.906 + }, + { + "start": 24705.11, + "end": 24707.53, + "probability": 0.5746 + }, + { + "start": 24707.59, + "end": 24707.71, + "probability": 0.223 + }, + { + "start": 24707.71, + "end": 24709.03, + "probability": 0.7364 + }, + { + "start": 24709.59, + "end": 24711.49, + "probability": 0.9821 + }, + { + "start": 24711.57, + "end": 24712.79, + "probability": 0.6981 + }, + { + "start": 24713.23, + "end": 24713.79, + "probability": 0.7436 + }, + { + "start": 24713.81, + "end": 24714.09, + "probability": 0.5362 + }, + { + "start": 24714.43, + "end": 24714.95, + "probability": 0.7012 + }, + { + "start": 24714.99, + "end": 24715.61, + "probability": 0.5607 + }, + { + "start": 24715.93, + "end": 24717.49, + "probability": 0.9802 + }, + { + "start": 24717.73, + "end": 24719.09, + "probability": 0.8762 + }, + { + "start": 24719.15, + "end": 24719.81, + "probability": 0.8193 + }, + { + "start": 24719.81, + "end": 24720.17, + "probability": 0.1311 + }, + { + "start": 24721.41, + "end": 24721.87, + "probability": 0.2304 + }, + { + "start": 24723.21, + "end": 24723.47, + "probability": 0.1075 + }, + { + "start": 24723.47, + "end": 24724.31, + "probability": 0.3876 + }, + { + "start": 24724.33, + "end": 24724.83, + "probability": 0.157 + }, + { + "start": 24724.83, + "end": 24726.57, + "probability": 0.0251 + }, + { + "start": 24726.57, + "end": 24728.52, + "probability": 0.7705 + }, + { + "start": 24729.35, + "end": 24731.41, + "probability": 0.8882 + }, + { + "start": 24731.99, + "end": 24737.45, + "probability": 0.6328 + }, + { + "start": 24737.63, + "end": 24739.67, + "probability": 0.5279 + }, + { + "start": 24739.83, + "end": 24740.63, + "probability": 0.2974 + }, + { + "start": 24740.75, + "end": 24741.31, + "probability": 0.5649 + }, + { + "start": 24741.83, + "end": 24742.53, + "probability": 0.6207 + }, + { + "start": 24742.61, + "end": 24743.25, + "probability": 0.0463 + }, + { + "start": 24745.35, + "end": 24745.91, + "probability": 0.046 + }, + { + "start": 24745.99, + "end": 24746.07, + "probability": 0.0715 + }, + { + "start": 24746.07, + "end": 24746.42, + "probability": 0.4165 + }, + { + "start": 24747.85, + "end": 24748.67, + "probability": 0.8408 + }, + { + "start": 24749.19, + "end": 24749.49, + "probability": 0.2445 + }, + { + "start": 24749.49, + "end": 24753.13, + "probability": 0.3423 + }, + { + "start": 24753.23, + "end": 24755.11, + "probability": 0.1861 + }, + { + "start": 24755.93, + "end": 24758.49, + "probability": 0.97 + }, + { + "start": 24759.01, + "end": 24762.25, + "probability": 0.8776 + }, + { + "start": 24762.59, + "end": 24765.03, + "probability": 0.7485 + }, + { + "start": 24765.07, + "end": 24765.17, + "probability": 0.6951 + }, + { + "start": 24766.13, + "end": 24768.19, + "probability": 0.9103 + }, + { + "start": 24769.15, + "end": 24770.31, + "probability": 0.8792 + }, + { + "start": 24770.99, + "end": 24772.91, + "probability": 0.9375 + }, + { + "start": 24772.97, + "end": 24774.89, + "probability": 0.9657 + }, + { + "start": 24775.43, + "end": 24778.49, + "probability": 0.8542 + }, + { + "start": 24778.63, + "end": 24779.37, + "probability": 0.5443 + }, + { + "start": 24779.87, + "end": 24780.71, + "probability": 0.8546 + }, + { + "start": 24781.53, + "end": 24785.33, + "probability": 0.9993 + }, + { + "start": 24786.01, + "end": 24787.97, + "probability": 0.7091 + }, + { + "start": 24788.17, + "end": 24790.79, + "probability": 0.9911 + }, + { + "start": 24790.93, + "end": 24793.39, + "probability": 0.9043 + }, + { + "start": 24795.25, + "end": 24796.25, + "probability": 0.7165 + }, + { + "start": 24796.69, + "end": 24798.27, + "probability": 0.4667 + }, + { + "start": 24798.51, + "end": 24802.65, + "probability": 0.9883 + }, + { + "start": 24803.09, + "end": 24804.31, + "probability": 0.7333 + }, + { + "start": 24804.49, + "end": 24806.59, + "probability": 0.9689 + }, + { + "start": 24806.59, + "end": 24808.83, + "probability": 0.9334 + }, + { + "start": 24809.39, + "end": 24809.97, + "probability": 0.6948 + }, + { + "start": 24810.89, + "end": 24812.85, + "probability": 0.9744 + }, + { + "start": 24812.97, + "end": 24813.89, + "probability": 0.9041 + }, + { + "start": 24814.03, + "end": 24815.09, + "probability": 0.8184 + }, + { + "start": 24815.75, + "end": 24816.79, + "probability": 0.9649 + }, + { + "start": 24816.89, + "end": 24818.73, + "probability": 0.9917 + }, + { + "start": 24819.57, + "end": 24821.77, + "probability": 0.7291 + }, + { + "start": 24821.91, + "end": 24824.69, + "probability": 0.9901 + }, + { + "start": 24824.85, + "end": 24825.23, + "probability": 0.2673 + }, + { + "start": 24825.57, + "end": 24825.95, + "probability": 0.8337 + }, + { + "start": 24826.03, + "end": 24829.73, + "probability": 0.7498 + }, + { + "start": 24830.75, + "end": 24837.23, + "probability": 0.6991 + }, + { + "start": 24837.83, + "end": 24838.75, + "probability": 0.9971 + }, + { + "start": 24839.33, + "end": 24839.71, + "probability": 0.6913 + }, + { + "start": 24840.13, + "end": 24845.03, + "probability": 0.9597 + }, + { + "start": 24845.39, + "end": 24845.79, + "probability": 0.318 + }, + { + "start": 24845.79, + "end": 24847.35, + "probability": 0.9165 + }, + { + "start": 24847.81, + "end": 24849.23, + "probability": 0.9235 + }, + { + "start": 24849.67, + "end": 24850.75, + "probability": 0.865 + }, + { + "start": 24851.45, + "end": 24852.77, + "probability": 0.0522 + }, + { + "start": 24852.77, + "end": 24859.35, + "probability": 0.9766 + }, + { + "start": 24860.91, + "end": 24862.57, + "probability": 0.2635 + }, + { + "start": 24862.71, + "end": 24862.71, + "probability": 0.0168 + }, + { + "start": 24862.71, + "end": 24864.29, + "probability": 0.6773 + }, + { + "start": 24864.87, + "end": 24866.77, + "probability": 0.9688 + }, + { + "start": 24867.35, + "end": 24868.99, + "probability": 0.6826 + }, + { + "start": 24869.79, + "end": 24875.45, + "probability": 0.9756 + }, + { + "start": 24875.87, + "end": 24876.67, + "probability": 0.8481 + }, + { + "start": 24876.75, + "end": 24877.01, + "probability": 0.0096 + }, + { + "start": 24877.37, + "end": 24878.97, + "probability": 0.8879 + }, + { + "start": 24880.21, + "end": 24880.65, + "probability": 0.1073 + }, + { + "start": 24880.65, + "end": 24881.35, + "probability": 0.2194 + }, + { + "start": 24881.99, + "end": 24885.99, + "probability": 0.0947 + }, + { + "start": 24885.99, + "end": 24886.49, + "probability": 0.0275 + }, + { + "start": 24886.85, + "end": 24886.95, + "probability": 0.0467 + }, + { + "start": 24886.95, + "end": 24889.63, + "probability": 0.6468 + }, + { + "start": 24889.73, + "end": 24890.11, + "probability": 0.4638 + }, + { + "start": 24890.31, + "end": 24894.77, + "probability": 0.942 + }, + { + "start": 24894.77, + "end": 24896.89, + "probability": 0.7858 + }, + { + "start": 24897.01, + "end": 24897.01, + "probability": 0.2985 + }, + { + "start": 24897.15, + "end": 24897.53, + "probability": 0.8354 + }, + { + "start": 24897.55, + "end": 24897.85, + "probability": 0.3685 + }, + { + "start": 24897.93, + "end": 24898.87, + "probability": 0.7301 + }, + { + "start": 24899.85, + "end": 24904.35, + "probability": 0.9512 + }, + { + "start": 24904.89, + "end": 24907.49, + "probability": 0.9946 + }, + { + "start": 24908.15, + "end": 24910.75, + "probability": 0.8124 + }, + { + "start": 24911.03, + "end": 24911.1, + "probability": 0.4093 + }, + { + "start": 24911.91, + "end": 24913.73, + "probability": 0.8005 + }, + { + "start": 24913.75, + "end": 24914.39, + "probability": 0.926 + }, + { + "start": 24914.41, + "end": 24914.41, + "probability": 0.6687 + }, + { + "start": 24914.47, + "end": 24916.43, + "probability": 0.9844 + }, + { + "start": 24916.59, + "end": 24918.93, + "probability": 0.6749 + }, + { + "start": 24919.05, + "end": 24919.33, + "probability": 0.0771 + }, + { + "start": 24919.33, + "end": 24919.33, + "probability": 0.387 + }, + { + "start": 24919.33, + "end": 24921.55, + "probability": 0.585 + }, + { + "start": 24921.55, + "end": 24922.91, + "probability": 0.7669 + }, + { + "start": 24923.01, + "end": 24923.73, + "probability": 0.6193 + }, + { + "start": 24923.73, + "end": 24926.19, + "probability": 0.784 + }, + { + "start": 24926.53, + "end": 24926.71, + "probability": 0.3318 + }, + { + "start": 24926.71, + "end": 24929.87, + "probability": 0.7351 + }, + { + "start": 24930.15, + "end": 24930.15, + "probability": 0.2131 + }, + { + "start": 24930.17, + "end": 24930.79, + "probability": 0.7695 + }, + { + "start": 24930.85, + "end": 24931.71, + "probability": 0.7905 + }, + { + "start": 24931.75, + "end": 24932.49, + "probability": 0.5504 + }, + { + "start": 24932.49, + "end": 24932.81, + "probability": 0.3704 + }, + { + "start": 24932.81, + "end": 24935.45, + "probability": 0.4193 + }, + { + "start": 24935.45, + "end": 24935.45, + "probability": 0.2955 + }, + { + "start": 24935.45, + "end": 24935.45, + "probability": 0.2772 + }, + { + "start": 24935.45, + "end": 24936.55, + "probability": 0.9771 + }, + { + "start": 24936.91, + "end": 24938.01, + "probability": 0.5607 + }, + { + "start": 24938.17, + "end": 24940.95, + "probability": 0.4419 + }, + { + "start": 24943.29, + "end": 24943.73, + "probability": 0.043 + }, + { + "start": 24944.59, + "end": 24944.91, + "probability": 0.0543 + }, + { + "start": 24944.91, + "end": 24944.91, + "probability": 0.0281 + }, + { + "start": 24944.91, + "end": 24945.07, + "probability": 0.0453 + }, + { + "start": 24945.07, + "end": 24945.11, + "probability": 0.1473 + }, + { + "start": 24945.11, + "end": 24945.11, + "probability": 0.5195 + }, + { + "start": 24945.11, + "end": 24945.11, + "probability": 0.361 + }, + { + "start": 24945.11, + "end": 24945.11, + "probability": 0.8724 + }, + { + "start": 24945.11, + "end": 24946.79, + "probability": 0.7906 + }, + { + "start": 24947.13, + "end": 24951.54, + "probability": 0.9618 + }, + { + "start": 24951.73, + "end": 24951.73, + "probability": 0.2863 + }, + { + "start": 24951.73, + "end": 24958.93, + "probability": 0.9712 + }, + { + "start": 24958.93, + "end": 24958.97, + "probability": 0.6064 + }, + { + "start": 24958.98, + "end": 24959.13, + "probability": 0.8892 + }, + { + "start": 24959.21, + "end": 24963.06, + "probability": 0.9392 + }, + { + "start": 24963.45, + "end": 24964.63, + "probability": 0.6672 + }, + { + "start": 24964.63, + "end": 24964.63, + "probability": 0.578 + }, + { + "start": 24964.63, + "end": 24965.35, + "probability": 0.8122 + }, + { + "start": 24965.47, + "end": 24966.83, + "probability": 0.8853 + }, + { + "start": 24966.95, + "end": 24967.21, + "probability": 0.5417 + }, + { + "start": 24967.21, + "end": 24969.17, + "probability": 0.5508 + }, + { + "start": 24969.41, + "end": 24969.43, + "probability": 0.4617 + }, + { + "start": 24969.43, + "end": 24969.59, + "probability": 0.6523 + }, + { + "start": 24970.09, + "end": 24971.23, + "probability": 0.7476 + }, + { + "start": 24971.23, + "end": 24971.99, + "probability": 0.8066 + }, + { + "start": 24971.99, + "end": 24972.01, + "probability": 0.5533 + }, + { + "start": 24972.01, + "end": 24973.61, + "probability": 0.9925 + }, + { + "start": 24974.73, + "end": 24976.43, + "probability": 0.7535 + }, + { + "start": 24976.43, + "end": 24978.47, + "probability": 0.5841 + }, + { + "start": 24978.69, + "end": 24979.11, + "probability": 0.5152 + }, + { + "start": 24979.33, + "end": 24980.41, + "probability": 0.8236 + }, + { + "start": 24980.41, + "end": 24980.77, + "probability": 0.8761 + }, + { + "start": 24980.79, + "end": 24982.83, + "probability": 0.5825 + }, + { + "start": 24982.97, + "end": 24983.56, + "probability": 0.8701 + }, + { + "start": 24984.09, + "end": 24984.21, + "probability": 0.6073 + }, + { + "start": 24984.29, + "end": 24987.15, + "probability": 0.9481 + }, + { + "start": 24987.61, + "end": 24988.77, + "probability": 0.9362 + }, + { + "start": 24988.87, + "end": 24991.07, + "probability": 0.9124 + }, + { + "start": 24991.65, + "end": 24993.33, + "probability": 0.9293 + }, + { + "start": 24993.89, + "end": 24995.89, + "probability": 0.9746 + }, + { + "start": 24996.03, + "end": 25000.37, + "probability": 0.9603 + }, + { + "start": 25000.37, + "end": 25003.45, + "probability": 0.7881 + }, + { + "start": 25003.45, + "end": 25004.67, + "probability": 0.6644 + }, + { + "start": 25004.67, + "end": 25005.59, + "probability": 0.6277 + }, + { + "start": 25005.67, + "end": 25007.51, + "probability": 0.5759 + }, + { + "start": 25008.21, + "end": 25010.03, + "probability": 0.8481 + }, + { + "start": 25010.19, + "end": 25010.21, + "probability": 0.7299 + }, + { + "start": 25010.21, + "end": 25010.46, + "probability": 0.939 + }, + { + "start": 25010.78, + "end": 25011.92, + "probability": 0.7402 + }, + { + "start": 25012.91, + "end": 25014.21, + "probability": 0.8495 + }, + { + "start": 25014.33, + "end": 25016.87, + "probability": 0.9927 + }, + { + "start": 25017.27, + "end": 25017.69, + "probability": 0.5868 + }, + { + "start": 25017.69, + "end": 25017.75, + "probability": 0.2022 + }, + { + "start": 25017.75, + "end": 25018.37, + "probability": 0.3223 + }, + { + "start": 25018.79, + "end": 25023.97, + "probability": 0.8089 + }, + { + "start": 25024.49, + "end": 25024.49, + "probability": 0.3158 + }, + { + "start": 25024.49, + "end": 25025.27, + "probability": 0.6279 + }, + { + "start": 25025.35, + "end": 25025.87, + "probability": 0.3559 + }, + { + "start": 25025.95, + "end": 25027.85, + "probability": 0.8004 + }, + { + "start": 25028.13, + "end": 25028.63, + "probability": 0.5376 + }, + { + "start": 25028.73, + "end": 25029.48, + "probability": 0.9684 + }, + { + "start": 25030.47, + "end": 25032.41, + "probability": 0.6954 + }, + { + "start": 25032.45, + "end": 25033.05, + "probability": 0.6381 + }, + { + "start": 25034.95, + "end": 25035.05, + "probability": 0.4001 + }, + { + "start": 25035.59, + "end": 25036.93, + "probability": 0.3821 + }, + { + "start": 25036.93, + "end": 25038.35, + "probability": 0.6132 + }, + { + "start": 25038.51, + "end": 25039.27, + "probability": 0.6941 + }, + { + "start": 25039.41, + "end": 25040.07, + "probability": 0.3883 + }, + { + "start": 25041.03, + "end": 25041.47, + "probability": 0.4031 + }, + { + "start": 25044.54, + "end": 25044.61, + "probability": 0.0284 + }, + { + "start": 25044.61, + "end": 25044.61, + "probability": 0.0188 + }, + { + "start": 25044.61, + "end": 25044.61, + "probability": 0.061 + }, + { + "start": 25044.61, + "end": 25044.91, + "probability": 0.1988 + }, + { + "start": 25045.09, + "end": 25045.35, + "probability": 0.1988 + }, + { + "start": 25045.35, + "end": 25045.77, + "probability": 0.0635 + }, + { + "start": 25045.97, + "end": 25045.97, + "probability": 0.3703 + }, + { + "start": 25045.97, + "end": 25046.55, + "probability": 0.4411 + }, + { + "start": 25046.57, + "end": 25048.73, + "probability": 0.6932 + }, + { + "start": 25049.43, + "end": 25050.67, + "probability": 0.0101 + }, + { + "start": 25050.69, + "end": 25050.99, + "probability": 0.1119 + }, + { + "start": 25052.63, + "end": 25052.83, + "probability": 0.0503 + }, + { + "start": 25052.83, + "end": 25052.83, + "probability": 0.0569 + }, + { + "start": 25052.83, + "end": 25052.83, + "probability": 0.0793 + }, + { + "start": 25052.83, + "end": 25052.83, + "probability": 0.2151 + }, + { + "start": 25052.83, + "end": 25053.32, + "probability": 0.5903 + }, + { + "start": 25053.73, + "end": 25054.29, + "probability": 0.6617 + }, + { + "start": 25054.63, + "end": 25055.07, + "probability": 0.5637 + }, + { + "start": 25055.07, + "end": 25056.25, + "probability": 0.7467 + }, + { + "start": 25056.61, + "end": 25056.93, + "probability": 0.5812 + }, + { + "start": 25057.51, + "end": 25059.03, + "probability": 0.6292 + }, + { + "start": 25059.31, + "end": 25059.35, + "probability": 0.0461 + }, + { + "start": 25059.35, + "end": 25061.83, + "probability": 0.6051 + }, + { + "start": 25061.83, + "end": 25063.53, + "probability": 0.7471 + }, + { + "start": 25063.67, + "end": 25063.67, + "probability": 0.0429 + }, + { + "start": 25063.67, + "end": 25064.91, + "probability": 0.8992 + }, + { + "start": 25065.03, + "end": 25065.21, + "probability": 0.8216 + }, + { + "start": 25065.29, + "end": 25066.53, + "probability": 0.7061 + }, + { + "start": 25066.53, + "end": 25070.22, + "probability": 0.7459 + }, + { + "start": 25070.51, + "end": 25074.95, + "probability": 0.9656 + }, + { + "start": 25075.89, + "end": 25079.89, + "probability": 0.9214 + }, + { + "start": 25080.79, + "end": 25082.19, + "probability": 0.7482 + }, + { + "start": 25082.23, + "end": 25084.09, + "probability": 0.2195 + }, + { + "start": 25084.27, + "end": 25084.73, + "probability": 0.3731 + }, + { + "start": 25084.85, + "end": 25085.17, + "probability": 0.9289 + }, + { + "start": 25085.33, + "end": 25087.53, + "probability": 0.9316 + }, + { + "start": 25087.63, + "end": 25092.13, + "probability": 0.2898 + }, + { + "start": 25092.13, + "end": 25092.13, + "probability": 0.0667 + }, + { + "start": 25092.13, + "end": 25092.15, + "probability": 0.2001 + }, + { + "start": 25092.15, + "end": 25094.5, + "probability": 0.684 + }, + { + "start": 25094.63, + "end": 25094.84, + "probability": 0.212 + }, + { + "start": 25094.91, + "end": 25097.67, + "probability": 0.9219 + }, + { + "start": 25097.89, + "end": 25098.29, + "probability": 0.578 + }, + { + "start": 25098.29, + "end": 25100.65, + "probability": 0.4615 + }, + { + "start": 25100.73, + "end": 25101.57, + "probability": 0.5774 + }, + { + "start": 25101.99, + "end": 25103.47, + "probability": 0.9521 + }, + { + "start": 25103.53, + "end": 25105.95, + "probability": 0.9077 + }, + { + "start": 25106.19, + "end": 25108.63, + "probability": 0.9934 + }, + { + "start": 25109.13, + "end": 25110.31, + "probability": 0.9455 + }, + { + "start": 25110.39, + "end": 25110.84, + "probability": 0.9403 + }, + { + "start": 25111.15, + "end": 25111.29, + "probability": 0.7383 + }, + { + "start": 25111.47, + "end": 25112.01, + "probability": 0.8051 + }, + { + "start": 25112.09, + "end": 25112.85, + "probability": 0.8289 + }, + { + "start": 25112.89, + "end": 25113.65, + "probability": 0.6635 + }, + { + "start": 25113.65, + "end": 25114.47, + "probability": 0.7371 + }, + { + "start": 25114.69, + "end": 25115.37, + "probability": 0.7186 + }, + { + "start": 25115.37, + "end": 25117.17, + "probability": 0.3605 + }, + { + "start": 25117.79, + "end": 25118.09, + "probability": 0.4398 + }, + { + "start": 25119.1, + "end": 25119.17, + "probability": 0.2574 + }, + { + "start": 25119.17, + "end": 25119.55, + "probability": 0.1409 + }, + { + "start": 25119.63, + "end": 25119.77, + "probability": 0.003 + }, + { + "start": 25119.77, + "end": 25121.86, + "probability": 0.7781 + }, + { + "start": 25122.11, + "end": 25123.15, + "probability": 0.2045 + }, + { + "start": 25123.15, + "end": 25123.61, + "probability": 0.6511 + }, + { + "start": 25124.33, + "end": 25124.75, + "probability": 0.1846 + }, + { + "start": 25125.45, + "end": 25126.17, + "probability": 0.9716 + }, + { + "start": 25126.91, + "end": 25126.99, + "probability": 0.3765 + }, + { + "start": 25126.99, + "end": 25127.31, + "probability": 0.5716 + }, + { + "start": 25127.63, + "end": 25127.63, + "probability": 0.4944 + }, + { + "start": 25127.69, + "end": 25128.11, + "probability": 0.7686 + }, + { + "start": 25129.51, + "end": 25132.17, + "probability": 0.9647 + }, + { + "start": 25132.71, + "end": 25137.03, + "probability": 0.9807 + }, + { + "start": 25137.21, + "end": 25138.67, + "probability": 0.9546 + }, + { + "start": 25138.85, + "end": 25141.57, + "probability": 0.9602 + }, + { + "start": 25141.57, + "end": 25145.69, + "probability": 0.9962 + }, + { + "start": 25146.11, + "end": 25146.91, + "probability": 0.0375 + }, + { + "start": 25146.91, + "end": 25148.21, + "probability": 0.5838 + }, + { + "start": 25148.21, + "end": 25148.53, + "probability": 0.2819 + }, + { + "start": 25149.19, + "end": 25149.85, + "probability": 0.1234 + }, + { + "start": 25150.03, + "end": 25150.71, + "probability": 0.0231 + }, + { + "start": 25151.43, + "end": 25151.57, + "probability": 0.0678 + }, + { + "start": 25151.57, + "end": 25153.29, + "probability": 0.0529 + }, + { + "start": 25153.31, + "end": 25153.31, + "probability": 0.0207 + }, + { + "start": 25153.31, + "end": 25153.87, + "probability": 0.3628 + }, + { + "start": 25153.95, + "end": 25155.45, + "probability": 0.3201 + }, + { + "start": 25155.45, + "end": 25156.13, + "probability": 0.147 + }, + { + "start": 25156.83, + "end": 25158.51, + "probability": 0.8343 + }, + { + "start": 25158.93, + "end": 25159.51, + "probability": 0.0591 + }, + { + "start": 25160.03, + "end": 25160.53, + "probability": 0.6609 + }, + { + "start": 25160.69, + "end": 25162.89, + "probability": 0.8634 + }, + { + "start": 25162.99, + "end": 25164.49, + "probability": 0.8043 + }, + { + "start": 25165.07, + "end": 25165.07, + "probability": 0.0015 + }, + { + "start": 25165.07, + "end": 25165.33, + "probability": 0.0452 + }, + { + "start": 25165.43, + "end": 25167.59, + "probability": 0.8647 + }, + { + "start": 25167.89, + "end": 25171.89, + "probability": 0.5422 + }, + { + "start": 25171.89, + "end": 25172.59, + "probability": 0.1152 + }, + { + "start": 25172.61, + "end": 25172.89, + "probability": 0.2179 + }, + { + "start": 25172.89, + "end": 25173.63, + "probability": 0.6088 + }, + { + "start": 25173.63, + "end": 25176.51, + "probability": 0.7811 + }, + { + "start": 25176.55, + "end": 25177.37, + "probability": 0.9643 + }, + { + "start": 25177.37, + "end": 25177.44, + "probability": 0.5288 + }, + { + "start": 25178.23, + "end": 25179.33, + "probability": 0.838 + }, + { + "start": 25179.49, + "end": 25180.47, + "probability": 0.9976 + }, + { + "start": 25180.53, + "end": 25183.35, + "probability": 0.0231 + }, + { + "start": 25183.35, + "end": 25183.35, + "probability": 0.6 + }, + { + "start": 25183.35, + "end": 25183.65, + "probability": 0.0978 + }, + { + "start": 25183.65, + "end": 25184.03, + "probability": 0.1045 + }, + { + "start": 25184.03, + "end": 25184.65, + "probability": 0.7014 + }, + { + "start": 25184.65, + "end": 25185.79, + "probability": 0.829 + }, + { + "start": 25185.79, + "end": 25186.03, + "probability": 0.6714 + }, + { + "start": 25186.13, + "end": 25187.39, + "probability": 0.5713 + }, + { + "start": 25187.53, + "end": 25190.57, + "probability": 0.9598 + }, + { + "start": 25190.71, + "end": 25191.95, + "probability": 0.9718 + }, + { + "start": 25192.13, + "end": 25193.33, + "probability": 0.1205 + }, + { + "start": 25193.35, + "end": 25195.89, + "probability": 0.3791 + }, + { + "start": 25196.01, + "end": 25196.47, + "probability": 0.5093 + }, + { + "start": 25196.57, + "end": 25196.57, + "probability": 0.5056 + }, + { + "start": 25196.57, + "end": 25196.57, + "probability": 0.6426 + }, + { + "start": 25196.57, + "end": 25197.07, + "probability": 0.5358 + }, + { + "start": 25197.51, + "end": 25197.51, + "probability": 0.2302 + }, + { + "start": 25197.51, + "end": 25199.05, + "probability": 0.3331 + }, + { + "start": 25199.05, + "end": 25199.65, + "probability": 0.5445 + }, + { + "start": 25199.67, + "end": 25200.99, + "probability": 0.0944 + }, + { + "start": 25201.09, + "end": 25202.08, + "probability": 0.6793 + }, + { + "start": 25202.84, + "end": 25206.09, + "probability": 0.8115 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.0, + "end": 25221.0, + "probability": 0.0 + }, + { + "start": 25221.06, + "end": 25221.06, + "probability": 0.1485 + }, + { + "start": 25221.06, + "end": 25221.5, + "probability": 0.2234 + }, + { + "start": 25221.68, + "end": 25222.18, + "probability": 0.9551 + }, + { + "start": 25222.44, + "end": 25222.5, + "probability": 0.0092 + }, + { + "start": 25222.5, + "end": 25223.16, + "probability": 0.5278 + }, + { + "start": 25223.86, + "end": 25228.82, + "probability": 0.9855 + }, + { + "start": 25228.9, + "end": 25229.32, + "probability": 0.7513 + }, + { + "start": 25230.06, + "end": 25231.56, + "probability": 0.9381 + }, + { + "start": 25231.74, + "end": 25233.44, + "probability": 0.7847 + }, + { + "start": 25233.86, + "end": 25234.58, + "probability": 0.9408 + }, + { + "start": 25234.62, + "end": 25235.42, + "probability": 0.9307 + }, + { + "start": 25235.66, + "end": 25236.28, + "probability": 0.7068 + }, + { + "start": 25236.9, + "end": 25237.28, + "probability": 0.8579 + }, + { + "start": 25237.4, + "end": 25240.4, + "probability": 0.9957 + }, + { + "start": 25240.4, + "end": 25243.06, + "probability": 0.9155 + }, + { + "start": 25243.46, + "end": 25245.08, + "probability": 0.9523 + }, + { + "start": 25246.06, + "end": 25246.06, + "probability": 0.0009 + }, + { + "start": 25246.06, + "end": 25246.75, + "probability": 0.8543 + }, + { + "start": 25247.28, + "end": 25248.08, + "probability": 0.9289 + }, + { + "start": 25248.16, + "end": 25249.4, + "probability": 0.7915 + }, + { + "start": 25249.52, + "end": 25251.26, + "probability": 0.696 + }, + { + "start": 25251.46, + "end": 25252.3, + "probability": 0.6609 + }, + { + "start": 25252.82, + "end": 25254.9, + "probability": 0.8047 + }, + { + "start": 25255.68, + "end": 25255.68, + "probability": 0.0337 + }, + { + "start": 25255.68, + "end": 25256.46, + "probability": 0.5732 + }, + { + "start": 25256.86, + "end": 25257.46, + "probability": 0.0799 + }, + { + "start": 25257.46, + "end": 25257.46, + "probability": 0.0251 + }, + { + "start": 25257.48, + "end": 25260.86, + "probability": 0.8887 + }, + { + "start": 25261.24, + "end": 25263.62, + "probability": 0.487 + }, + { + "start": 25263.72, + "end": 25264.36, + "probability": 0.7436 + }, + { + "start": 25264.5, + "end": 25265.5, + "probability": 0.6408 + }, + { + "start": 25265.72, + "end": 25266.96, + "probability": 0.6871 + }, + { + "start": 25267.32, + "end": 25269.38, + "probability": 0.1441 + }, + { + "start": 25269.48, + "end": 25270.78, + "probability": 0.8187 + }, + { + "start": 25270.8, + "end": 25271.2, + "probability": 0.3155 + }, + { + "start": 25271.2, + "end": 25272.06, + "probability": 0.9233 + }, + { + "start": 25274.25, + "end": 25276.2, + "probability": 0.0417 + }, + { + "start": 25276.56, + "end": 25276.58, + "probability": 0.1561 + }, + { + "start": 25276.58, + "end": 25276.58, + "probability": 0.1368 + }, + { + "start": 25276.58, + "end": 25279.04, + "probability": 0.7066 + }, + { + "start": 25279.42, + "end": 25279.86, + "probability": 0.5071 + }, + { + "start": 25280.5, + "end": 25281.38, + "probability": 0.0168 + }, + { + "start": 25281.38, + "end": 25281.38, + "probability": 0.1788 + }, + { + "start": 25281.38, + "end": 25281.38, + "probability": 0.1326 + }, + { + "start": 25281.38, + "end": 25283.46, + "probability": 0.084 + }, + { + "start": 25283.72, + "end": 25287.14, + "probability": 0.6012 + }, + { + "start": 25287.24, + "end": 25290.13, + "probability": 0.8658 + }, + { + "start": 25290.16, + "end": 25290.96, + "probability": 0.3264 + }, + { + "start": 25291.16, + "end": 25292.06, + "probability": 0.7041 + }, + { + "start": 25292.16, + "end": 25293.33, + "probability": 0.2848 + }, + { + "start": 25293.36, + "end": 25295.81, + "probability": 0.682 + }, + { + "start": 25296.54, + "end": 25297.72, + "probability": 0.5936 + }, + { + "start": 25298.46, + "end": 25298.86, + "probability": 0.4332 + }, + { + "start": 25299.34, + "end": 25301.52, + "probability": 0.8764 + }, + { + "start": 25301.52, + "end": 25303.96, + "probability": 0.3979 + }, + { + "start": 25304.04, + "end": 25304.88, + "probability": 0.7759 + }, + { + "start": 25304.88, + "end": 25305.18, + "probability": 0.4593 + }, + { + "start": 25306.18, + "end": 25308.32, + "probability": 0.2315 + }, + { + "start": 25308.56, + "end": 25309.68, + "probability": 0.0311 + }, + { + "start": 25309.68, + "end": 25309.68, + "probability": 0.1771 + }, + { + "start": 25309.68, + "end": 25312.2, + "probability": 0.6816 + }, + { + "start": 25312.26, + "end": 25313.66, + "probability": 0.9154 + }, + { + "start": 25314.26, + "end": 25314.68, + "probability": 0.2494 + }, + { + "start": 25314.72, + "end": 25316.3, + "probability": 0.6561 + }, + { + "start": 25316.6, + "end": 25319.0, + "probability": 0.915 + }, + { + "start": 25319.72, + "end": 25322.44, + "probability": 0.7545 + }, + { + "start": 25323.22, + "end": 25329.34, + "probability": 0.7483 + }, + { + "start": 25330.16, + "end": 25333.06, + "probability": 0.8914 + }, + { + "start": 25333.1, + "end": 25334.12, + "probability": 0.9541 + }, + { + "start": 25336.68, + "end": 25337.94, + "probability": 0.2813 + }, + { + "start": 25337.98, + "end": 25338.78, + "probability": 0.7351 + }, + { + "start": 25339.06, + "end": 25339.13, + "probability": 0.2977 + }, + { + "start": 25341.6, + "end": 25342.41, + "probability": 0.0118 + }, + { + "start": 25342.58, + "end": 25343.57, + "probability": 0.4221 + }, + { + "start": 25346.36, + "end": 25347.64, + "probability": 0.7335 + }, + { + "start": 25347.64, + "end": 25350.01, + "probability": 0.8463 + }, + { + "start": 25350.22, + "end": 25351.34, + "probability": 0.9928 + }, + { + "start": 25351.46, + "end": 25353.06, + "probability": 0.9132 + }, + { + "start": 25353.14, + "end": 25354.38, + "probability": 0.9091 + }, + { + "start": 25354.54, + "end": 25355.74, + "probability": 0.7448 + }, + { + "start": 25356.3, + "end": 25358.88, + "probability": 0.9941 + }, + { + "start": 25359.08, + "end": 25363.84, + "probability": 0.9465 + }, + { + "start": 25363.84, + "end": 25367.34, + "probability": 0.8421 + }, + { + "start": 25368.04, + "end": 25371.32, + "probability": 0.9971 + }, + { + "start": 25371.82, + "end": 25377.1, + "probability": 0.9823 + }, + { + "start": 25377.62, + "end": 25379.88, + "probability": 0.9917 + }, + { + "start": 25380.52, + "end": 25382.72, + "probability": 0.9177 + }, + { + "start": 25382.78, + "end": 25385.5, + "probability": 0.987 + }, + { + "start": 25385.5, + "end": 25388.58, + "probability": 0.9954 + }, + { + "start": 25389.14, + "end": 25391.76, + "probability": 0.9823 + }, + { + "start": 25391.78, + "end": 25395.24, + "probability": 0.9951 + }, + { + "start": 25395.32, + "end": 25395.76, + "probability": 0.8706 + }, + { + "start": 25396.14, + "end": 25397.54, + "probability": 0.7384 + }, + { + "start": 25397.62, + "end": 25398.62, + "probability": 0.9821 + }, + { + "start": 25398.98, + "end": 25399.96, + "probability": 0.9644 + }, + { + "start": 25400.54, + "end": 25402.84, + "probability": 0.9939 + }, + { + "start": 25403.38, + "end": 25407.14, + "probability": 0.7468 + }, + { + "start": 25408.24, + "end": 25410.34, + "probability": 0.8618 + }, + { + "start": 25411.2, + "end": 25412.38, + "probability": 0.0553 + }, + { + "start": 25412.46, + "end": 25418.22, + "probability": 0.9508 + }, + { + "start": 25418.4, + "end": 25421.44, + "probability": 0.983 + }, + { + "start": 25422.0, + "end": 25423.96, + "probability": 0.9314 + }, + { + "start": 25425.28, + "end": 25427.4, + "probability": 0.6375 + }, + { + "start": 25428.14, + "end": 25431.28, + "probability": 0.9746 + }, + { + "start": 25431.28, + "end": 25432.95, + "probability": 0.6614 + }, + { + "start": 25433.04, + "end": 25433.6, + "probability": 0.5982 + }, + { + "start": 25433.7, + "end": 25435.03, + "probability": 0.9067 + }, + { + "start": 25435.44, + "end": 25435.54, + "probability": 0.2475 + }, + { + "start": 25436.02, + "end": 25437.16, + "probability": 0.8656 + }, + { + "start": 25437.72, + "end": 25439.54, + "probability": 0.909 + }, + { + "start": 25440.94, + "end": 25443.12, + "probability": 0.8851 + }, + { + "start": 25443.92, + "end": 25446.9, + "probability": 0.9421 + }, + { + "start": 25449.63, + "end": 25450.7, + "probability": 0.6219 + }, + { + "start": 25450.7, + "end": 25450.7, + "probability": 0.4139 + }, + { + "start": 25450.7, + "end": 25451.33, + "probability": 0.8143 + }, + { + "start": 25451.62, + "end": 25451.8, + "probability": 0.8599 + }, + { + "start": 25452.8, + "end": 25454.64, + "probability": 0.991 + }, + { + "start": 25454.88, + "end": 25455.34, + "probability": 0.9752 + }, + { + "start": 25455.5, + "end": 25456.84, + "probability": 0.9597 + }, + { + "start": 25457.56, + "end": 25459.66, + "probability": 0.9735 + }, + { + "start": 25460.24, + "end": 25460.64, + "probability": 0.3005 + }, + { + "start": 25461.44, + "end": 25462.94, + "probability": 0.7393 + }, + { + "start": 25463.16, + "end": 25463.64, + "probability": 0.8112 + }, + { + "start": 25463.76, + "end": 25464.98, + "probability": 0.8743 + }, + { + "start": 25465.02, + "end": 25465.5, + "probability": 0.7172 + }, + { + "start": 25465.68, + "end": 25467.14, + "probability": 0.9758 + }, + { + "start": 25467.18, + "end": 25467.76, + "probability": 0.9632 + }, + { + "start": 25468.5, + "end": 25471.14, + "probability": 0.9632 + }, + { + "start": 25471.14, + "end": 25473.94, + "probability": 0.9068 + }, + { + "start": 25475.62, + "end": 25477.64, + "probability": 0.7686 + }, + { + "start": 25477.72, + "end": 25478.38, + "probability": 0.3337 + }, + { + "start": 25478.44, + "end": 25479.78, + "probability": 0.9329 + }, + { + "start": 25479.82, + "end": 25480.24, + "probability": 0.4024 + }, + { + "start": 25480.3, + "end": 25481.84, + "probability": 0.9786 + }, + { + "start": 25482.46, + "end": 25486.3, + "probability": 0.859 + }, + { + "start": 25486.84, + "end": 25487.32, + "probability": 0.2443 + }, + { + "start": 25488.06, + "end": 25489.02, + "probability": 0.4725 + }, + { + "start": 25489.02, + "end": 25489.02, + "probability": 0.4853 + }, + { + "start": 25489.02, + "end": 25489.75, + "probability": 0.79 + }, + { + "start": 25491.06, + "end": 25491.68, + "probability": 0.4417 + }, + { + "start": 25491.68, + "end": 25493.38, + "probability": 0.8194 + }, + { + "start": 25493.42, + "end": 25493.66, + "probability": 0.6335 + }, + { + "start": 25496.2, + "end": 25498.18, + "probability": 0.9305 + }, + { + "start": 25498.26, + "end": 25498.74, + "probability": 0.3094 + }, + { + "start": 25498.86, + "end": 25500.02, + "probability": 0.8007 + }, + { + "start": 25500.12, + "end": 25500.42, + "probability": 0.7134 + }, + { + "start": 25500.7, + "end": 25501.14, + "probability": 0.6763 + }, + { + "start": 25501.74, + "end": 25502.7, + "probability": 0.7191 + }, + { + "start": 25503.14, + "end": 25505.44, + "probability": 0.9438 + }, + { + "start": 25507.69, + "end": 25510.64, + "probability": 0.4576 + }, + { + "start": 25513.78, + "end": 25515.02, + "probability": 0.6714 + }, + { + "start": 25517.22, + "end": 25518.22, + "probability": 0.1204 + }, + { + "start": 25529.2, + "end": 25531.14, + "probability": 0.7354 + }, + { + "start": 25533.0, + "end": 25534.0, + "probability": 0.7085 + }, + { + "start": 25534.82, + "end": 25535.78, + "probability": 0.897 + }, + { + "start": 25536.6, + "end": 25537.7, + "probability": 0.9443 + }, + { + "start": 25538.76, + "end": 25544.7, + "probability": 0.9548 + }, + { + "start": 25545.14, + "end": 25547.74, + "probability": 0.8086 + }, + { + "start": 25548.3, + "end": 25553.36, + "probability": 0.9548 + }, + { + "start": 25554.24, + "end": 25555.94, + "probability": 0.9355 + }, + { + "start": 25556.8, + "end": 25561.64, + "probability": 0.9976 + }, + { + "start": 25562.7, + "end": 25563.88, + "probability": 0.9197 + }, + { + "start": 25565.2, + "end": 25566.55, + "probability": 0.7093 + }, + { + "start": 25567.44, + "end": 25568.38, + "probability": 0.8208 + }, + { + "start": 25568.62, + "end": 25569.32, + "probability": 0.7485 + }, + { + "start": 25570.32, + "end": 25577.72, + "probability": 0.9161 + }, + { + "start": 25578.02, + "end": 25578.86, + "probability": 0.8049 + }, + { + "start": 25578.96, + "end": 25579.72, + "probability": 0.3728 + }, + { + "start": 25579.88, + "end": 25580.64, + "probability": 0.4168 + }, + { + "start": 25581.06, + "end": 25581.94, + "probability": 0.2771 + }, + { + "start": 25582.28, + "end": 25582.98, + "probability": 0.5338 + }, + { + "start": 25583.12, + "end": 25584.04, + "probability": 0.7929 + }, + { + "start": 25585.22, + "end": 25587.7, + "probability": 0.5357 + }, + { + "start": 25589.0, + "end": 25589.98, + "probability": 0.5445 + }, + { + "start": 25590.06, + "end": 25590.62, + "probability": 0.8647 + }, + { + "start": 25590.78, + "end": 25591.38, + "probability": 0.8669 + }, + { + "start": 25591.42, + "end": 25592.24, + "probability": 0.5803 + }, + { + "start": 25592.48, + "end": 25595.62, + "probability": 0.9299 + }, + { + "start": 25596.72, + "end": 25600.04, + "probability": 0.9551 + }, + { + "start": 25600.68, + "end": 25601.96, + "probability": 0.9852 + }, + { + "start": 25602.28, + "end": 25604.32, + "probability": 0.9937 + }, + { + "start": 25604.96, + "end": 25607.2, + "probability": 0.8135 + }, + { + "start": 25607.78, + "end": 25610.68, + "probability": 0.9357 + }, + { + "start": 25611.26, + "end": 25614.38, + "probability": 0.7757 + }, + { + "start": 25615.22, + "end": 25616.36, + "probability": 0.8578 + }, + { + "start": 25617.2, + "end": 25619.12, + "probability": 0.4024 + }, + { + "start": 25628.36, + "end": 25630.58, + "probability": 0.1836 + }, + { + "start": 25630.58, + "end": 25630.58, + "probability": 0.0147 + }, + { + "start": 25630.58, + "end": 25630.58, + "probability": 0.0631 + }, + { + "start": 25630.58, + "end": 25630.58, + "probability": 0.1122 + }, + { + "start": 25630.58, + "end": 25630.58, + "probability": 0.326 + }, + { + "start": 25630.58, + "end": 25630.58, + "probability": 0.0668 + }, + { + "start": 25630.58, + "end": 25630.58, + "probability": 0.0172 + }, + { + "start": 25630.58, + "end": 25630.58, + "probability": 0.2658 + }, + { + "start": 25630.58, + "end": 25633.72, + "probability": 0.4921 + }, + { + "start": 25634.0, + "end": 25634.0, + "probability": 0.2167 + }, + { + "start": 25634.0, + "end": 25637.0, + "probability": 0.7477 + }, + { + "start": 25638.08, + "end": 25639.69, + "probability": 0.979 + }, + { + "start": 25640.68, + "end": 25642.24, + "probability": 0.1637 + }, + { + "start": 25643.42, + "end": 25645.82, + "probability": 0.7869 + }, + { + "start": 25647.02, + "end": 25648.45, + "probability": 0.9966 + }, + { + "start": 25649.0, + "end": 25652.44, + "probability": 0.9788 + }, + { + "start": 25652.44, + "end": 25656.28, + "probability": 0.8295 + }, + { + "start": 25656.7, + "end": 25660.58, + "probability": 0.4204 + }, + { + "start": 25661.36, + "end": 25663.42, + "probability": 0.9908 + }, + { + "start": 25664.2, + "end": 25668.22, + "probability": 0.9911 + }, + { + "start": 25669.88, + "end": 25671.64, + "probability": 0.7537 + }, + { + "start": 25671.72, + "end": 25673.66, + "probability": 0.891 + }, + { + "start": 25674.28, + "end": 25675.92, + "probability": 0.8144 + }, + { + "start": 25677.52, + "end": 25677.92, + "probability": 0.4214 + }, + { + "start": 25677.92, + "end": 25678.94, + "probability": 0.9845 + }, + { + "start": 25679.98, + "end": 25680.64, + "probability": 0.5559 + }, + { + "start": 25693.36, + "end": 25694.26, + "probability": 0.5254 + }, + { + "start": 25695.64, + "end": 25697.1, + "probability": 0.9241 + }, + { + "start": 25698.16, + "end": 25699.56, + "probability": 0.9421 + }, + { + "start": 25700.4, + "end": 25701.24, + "probability": 0.9755 + }, + { + "start": 25702.5, + "end": 25703.96, + "probability": 0.3992 + }, + { + "start": 25705.34, + "end": 25707.3, + "probability": 0.9457 + }, + { + "start": 25708.6, + "end": 25714.6, + "probability": 0.8515 + }, + { + "start": 25716.74, + "end": 25717.94, + "probability": 0.8958 + }, + { + "start": 25720.38, + "end": 25722.78, + "probability": 0.9731 + }, + { + "start": 25722.98, + "end": 25724.12, + "probability": 0.8525 + }, + { + "start": 25725.26, + "end": 25726.8, + "probability": 0.6267 + }, + { + "start": 25728.2, + "end": 25733.54, + "probability": 0.8688 + }, + { + "start": 25734.34, + "end": 25737.08, + "probability": 0.8276 + }, + { + "start": 25737.9, + "end": 25738.48, + "probability": 0.5721 + }, + { + "start": 25739.62, + "end": 25743.3, + "probability": 0.951 + }, + { + "start": 25743.94, + "end": 25745.02, + "probability": 0.9544 + }, + { + "start": 25745.42, + "end": 25751.06, + "probability": 0.9357 + }, + { + "start": 25752.12, + "end": 25754.92, + "probability": 0.5986 + }, + { + "start": 25755.88, + "end": 25757.81, + "probability": 0.2933 + }, + { + "start": 25759.12, + "end": 25762.24, + "probability": 0.9795 + }, + { + "start": 25763.24, + "end": 25764.0, + "probability": 0.9771 + }, + { + "start": 25765.52, + "end": 25766.0, + "probability": 0.9288 + }, + { + "start": 25767.1, + "end": 25768.72, + "probability": 0.9774 + }, + { + "start": 25769.5, + "end": 25772.14, + "probability": 0.9832 + }, + { + "start": 25773.68, + "end": 25779.52, + "probability": 0.993 + }, + { + "start": 25779.54, + "end": 25780.06, + "probability": 0.4496 + }, + { + "start": 25781.2, + "end": 25781.58, + "probability": 0.6635 + }, + { + "start": 25783.18, + "end": 25784.82, + "probability": 0.9971 + }, + { + "start": 25785.06, + "end": 25788.64, + "probability": 0.897 + }, + { + "start": 25788.78, + "end": 25791.06, + "probability": 0.9978 + }, + { + "start": 25792.8, + "end": 25793.77, + "probability": 0.9663 + }, + { + "start": 25795.66, + "end": 25798.96, + "probability": 0.995 + }, + { + "start": 25799.64, + "end": 25801.2, + "probability": 0.9861 + }, + { + "start": 25801.4, + "end": 25805.06, + "probability": 0.8568 + }, + { + "start": 25805.1, + "end": 25807.08, + "probability": 0.9589 + }, + { + "start": 25807.56, + "end": 25807.76, + "probability": 0.7291 + }, + { + "start": 25808.86, + "end": 25810.44, + "probability": 0.8962 + }, + { + "start": 25810.56, + "end": 25812.46, + "probability": 0.9575 + }, + { + "start": 25813.34, + "end": 25814.28, + "probability": 0.5161 + }, + { + "start": 25814.4, + "end": 25816.62, + "probability": 0.676 + }, + { + "start": 25822.76, + "end": 25824.98, + "probability": 0.6136 + }, + { + "start": 25841.08, + "end": 25841.92, + "probability": 0.5222 + }, + { + "start": 25842.04, + "end": 25842.24, + "probability": 0.2872 + }, + { + "start": 25842.28, + "end": 25843.82, + "probability": 0.6111 + }, + { + "start": 25843.89, + "end": 25844.96, + "probability": 0.9784 + }, + { + "start": 25846.22, + "end": 25846.72, + "probability": 0.6811 + }, + { + "start": 25847.2, + "end": 25847.46, + "probability": 0.9221 + }, + { + "start": 25847.78, + "end": 25849.83, + "probability": 0.9561 + }, + { + "start": 25850.76, + "end": 25853.42, + "probability": 0.9464 + }, + { + "start": 25854.54, + "end": 25857.02, + "probability": 0.7295 + }, + { + "start": 25857.18, + "end": 25857.84, + "probability": 0.8333 + }, + { + "start": 25858.06, + "end": 25860.6, + "probability": 0.862 + }, + { + "start": 25861.48, + "end": 25863.46, + "probability": 0.9489 + }, + { + "start": 25863.54, + "end": 25864.56, + "probability": 0.9404 + }, + { + "start": 25865.56, + "end": 25865.93, + "probability": 0.8447 + }, + { + "start": 25866.52, + "end": 25868.88, + "probability": 0.9376 + }, + { + "start": 25869.44, + "end": 25870.42, + "probability": 0.9395 + }, + { + "start": 25871.74, + "end": 25874.84, + "probability": 0.9884 + }, + { + "start": 25875.36, + "end": 25876.22, + "probability": 0.5352 + }, + { + "start": 25876.84, + "end": 25878.78, + "probability": 0.8795 + }, + { + "start": 25879.24, + "end": 25879.98, + "probability": 0.9854 + }, + { + "start": 25880.72, + "end": 25884.38, + "probability": 0.9752 + }, + { + "start": 25885.44, + "end": 25888.32, + "probability": 0.8786 + }, + { + "start": 25888.88, + "end": 25890.22, + "probability": 0.6736 + }, + { + "start": 25890.8, + "end": 25894.46, + "probability": 0.7155 + }, + { + "start": 25894.86, + "end": 25897.24, + "probability": 0.6669 + }, + { + "start": 25897.92, + "end": 25901.46, + "probability": 0.9106 + }, + { + "start": 25902.48, + "end": 25904.48, + "probability": 0.7633 + }, + { + "start": 25905.12, + "end": 25907.52, + "probability": 0.9631 + }, + { + "start": 25908.02, + "end": 25914.12, + "probability": 0.9644 + }, + { + "start": 25914.74, + "end": 25917.58, + "probability": 0.8336 + }, + { + "start": 25917.6, + "end": 25919.78, + "probability": 0.8408 + }, + { + "start": 25920.22, + "end": 25927.26, + "probability": 0.9839 + }, + { + "start": 25927.26, + "end": 25932.72, + "probability": 0.9956 + }, + { + "start": 25932.72, + "end": 25939.42, + "probability": 0.9886 + }, + { + "start": 25940.48, + "end": 25942.12, + "probability": 0.8888 + }, + { + "start": 25942.76, + "end": 25943.42, + "probability": 0.0497 + }, + { + "start": 25946.12, + "end": 25948.5, + "probability": 0.255 + }, + { + "start": 25948.72, + "end": 25952.86, + "probability": 0.0664 + }, + { + "start": 25953.12, + "end": 25955.16, + "probability": 0.5608 + }, + { + "start": 25955.36, + "end": 25963.4, + "probability": 0.7053 + }, + { + "start": 25963.76, + "end": 25966.24, + "probability": 0.8397 + }, + { + "start": 25966.36, + "end": 25969.23, + "probability": 0.9115 + }, + { + "start": 25971.06, + "end": 25975.04, + "probability": 0.9971 + }, + { + "start": 25975.16, + "end": 25975.56, + "probability": 0.4453 + }, + { + "start": 25975.7, + "end": 25976.49, + "probability": 0.7457 + }, + { + "start": 25977.22, + "end": 25981.48, + "probability": 0.9969 + }, + { + "start": 25982.32, + "end": 25984.28, + "probability": 0.7831 + }, + { + "start": 25984.52, + "end": 25985.56, + "probability": 0.562 + }, + { + "start": 25985.64, + "end": 25986.24, + "probability": 0.5472 + }, + { + "start": 25986.24, + "end": 25987.94, + "probability": 0.7699 + }, + { + "start": 25988.04, + "end": 25988.9, + "probability": 0.7467 + }, + { + "start": 25989.54, + "end": 25989.56, + "probability": 0.0581 + }, + { + "start": 25992.62, + "end": 25993.02, + "probability": 0.0922 + }, + { + "start": 25993.02, + "end": 25993.02, + "probability": 0.1287 + }, + { + "start": 25993.02, + "end": 25993.02, + "probability": 0.0659 + }, + { + "start": 25993.02, + "end": 25993.02, + "probability": 0.3196 + }, + { + "start": 25993.02, + "end": 25997.2, + "probability": 0.8335 + }, + { + "start": 25997.32, + "end": 25997.82, + "probability": 0.7369 + }, + { + "start": 25997.88, + "end": 25998.32, + "probability": 0.5539 + }, + { + "start": 25998.44, + "end": 25999.42, + "probability": 0.7199 + }, + { + "start": 25999.5, + "end": 26003.86, + "probability": 0.8705 + }, + { + "start": 26005.22, + "end": 26008.48, + "probability": 0.6497 + }, + { + "start": 26008.48, + "end": 26009.32, + "probability": 0.4131 + }, + { + "start": 26010.4, + "end": 26012.22, + "probability": 0.9915 + }, + { + "start": 26013.1, + "end": 26016.96, + "probability": 0.9881 + }, + { + "start": 26017.48, + "end": 26022.16, + "probability": 0.9824 + }, + { + "start": 26022.58, + "end": 26024.64, + "probability": 0.9683 + }, + { + "start": 26024.68, + "end": 26026.46, + "probability": 0.9526 + }, + { + "start": 26026.9, + "end": 26028.58, + "probability": 0.9464 + }, + { + "start": 26028.8, + "end": 26030.08, + "probability": 0.7715 + }, + { + "start": 26030.62, + "end": 26032.76, + "probability": 0.9826 + }, + { + "start": 26033.62, + "end": 26034.48, + "probability": 0.977 + }, + { + "start": 26036.22, + "end": 26037.74, + "probability": 0.6086 + }, + { + "start": 26038.44, + "end": 26038.96, + "probability": 0.2737 + }, + { + "start": 26039.02, + "end": 26040.74, + "probability": 0.4169 + }, + { + "start": 26041.64, + "end": 26043.24, + "probability": 0.981 + }, + { + "start": 26059.42, + "end": 26059.66, + "probability": 0.2736 + }, + { + "start": 26061.32, + "end": 26063.84, + "probability": 0.9198 + }, + { + "start": 26065.8, + "end": 26066.74, + "probability": 0.0841 + }, + { + "start": 26067.52, + "end": 26069.4, + "probability": 0.6431 + }, + { + "start": 26069.68, + "end": 26070.92, + "probability": 0.7554 + }, + { + "start": 26071.32, + "end": 26072.14, + "probability": 0.794 + }, + { + "start": 26072.18, + "end": 26072.7, + "probability": 0.5092 + }, + { + "start": 26072.8, + "end": 26077.14, + "probability": 0.9374 + }, + { + "start": 26077.58, + "end": 26078.36, + "probability": 0.9794 + }, + { + "start": 26079.38, + "end": 26080.22, + "probability": 0.6426 + }, + { + "start": 26080.42, + "end": 26081.21, + "probability": 0.5342 + }, + { + "start": 26083.04, + "end": 26084.14, + "probability": 0.9434 + }, + { + "start": 26086.28, + "end": 26086.56, + "probability": 0.9539 + }, + { + "start": 26086.78, + "end": 26088.13, + "probability": 0.9966 + }, + { + "start": 26088.88, + "end": 26090.64, + "probability": 0.9574 + }, + { + "start": 26091.18, + "end": 26093.16, + "probability": 0.9355 + }, + { + "start": 26095.58, + "end": 26095.8, + "probability": 0.297 + }, + { + "start": 26095.8, + "end": 26100.54, + "probability": 0.9045 + }, + { + "start": 26100.62, + "end": 26103.58, + "probability": 0.9972 + }, + { + "start": 26104.3, + "end": 26105.86, + "probability": 0.9817 + }, + { + "start": 26106.7, + "end": 26110.54, + "probability": 0.9927 + }, + { + "start": 26112.6, + "end": 26112.7, + "probability": 0.2881 + }, + { + "start": 26112.7, + "end": 26113.18, + "probability": 0.528 + }, + { + "start": 26113.84, + "end": 26115.04, + "probability": 0.887 + }, + { + "start": 26115.04, + "end": 26116.48, + "probability": 0.7004 + }, + { + "start": 26117.34, + "end": 26119.9, + "probability": 0.9101 + }, + { + "start": 26120.3, + "end": 26121.36, + "probability": 0.4462 + }, + { + "start": 26121.9, + "end": 26123.38, + "probability": 0.8984 + }, + { + "start": 26123.71, + "end": 26124.96, + "probability": 0.9385 + }, + { + "start": 26124.96, + "end": 26128.44, + "probability": 0.7868 + }, + { + "start": 26128.68, + "end": 26129.44, + "probability": 0.0612 + }, + { + "start": 26129.64, + "end": 26130.7, + "probability": 0.7138 + }, + { + "start": 26130.84, + "end": 26132.78, + "probability": 0.9707 + }, + { + "start": 26132.8, + "end": 26134.08, + "probability": 0.6714 + }, + { + "start": 26134.24, + "end": 26134.24, + "probability": 0.1208 + }, + { + "start": 26134.24, + "end": 26135.94, + "probability": 0.9339 + }, + { + "start": 26136.12, + "end": 26136.26, + "probability": 0.8141 + }, + { + "start": 26136.72, + "end": 26137.9, + "probability": 0.8216 + }, + { + "start": 26138.06, + "end": 26141.36, + "probability": 0.9934 + }, + { + "start": 26141.5, + "end": 26142.6, + "probability": 0.9838 + }, + { + "start": 26143.26, + "end": 26145.1, + "probability": 0.9879 + }, + { + "start": 26145.7, + "end": 26146.4, + "probability": 0.882 + }, + { + "start": 26146.58, + "end": 26147.96, + "probability": 0.9912 + }, + { + "start": 26148.3, + "end": 26149.35, + "probability": 0.9406 + }, + { + "start": 26149.68, + "end": 26150.96, + "probability": 0.8809 + }, + { + "start": 26151.32, + "end": 26152.96, + "probability": 0.9079 + }, + { + "start": 26153.5, + "end": 26154.14, + "probability": 0.7759 + }, + { + "start": 26155.03, + "end": 26155.72, + "probability": 0.0619 + }, + { + "start": 26155.72, + "end": 26158.87, + "probability": 0.9597 + }, + { + "start": 26159.42, + "end": 26160.2, + "probability": 0.4561 + }, + { + "start": 26160.62, + "end": 26163.52, + "probability": 0.9523 + }, + { + "start": 26164.28, + "end": 26165.74, + "probability": 0.8668 + }, + { + "start": 26166.42, + "end": 26168.76, + "probability": 0.9904 + }, + { + "start": 26169.28, + "end": 26173.96, + "probability": 0.9528 + }, + { + "start": 26174.8, + "end": 26177.26, + "probability": 0.7686 + }, + { + "start": 26177.72, + "end": 26178.26, + "probability": 0.4973 + }, + { + "start": 26178.42, + "end": 26178.78, + "probability": 0.421 + }, + { + "start": 26178.96, + "end": 26180.54, + "probability": 0.9839 + }, + { + "start": 26180.92, + "end": 26184.74, + "probability": 0.9742 + }, + { + "start": 26185.72, + "end": 26188.28, + "probability": 0.9456 + }, + { + "start": 26188.94, + "end": 26192.98, + "probability": 0.8327 + }, + { + "start": 26193.4, + "end": 26195.96, + "probability": 0.9752 + }, + { + "start": 26196.26, + "end": 26197.76, + "probability": 0.9322 + }, + { + "start": 26198.1, + "end": 26200.48, + "probability": 0.9546 + }, + { + "start": 26200.9, + "end": 26203.96, + "probability": 0.9959 + }, + { + "start": 26204.68, + "end": 26206.32, + "probability": 0.7399 + }, + { + "start": 26206.9, + "end": 26208.92, + "probability": 0.9956 + }, + { + "start": 26209.46, + "end": 26210.88, + "probability": 0.9673 + }, + { + "start": 26211.44, + "end": 26212.06, + "probability": 0.5442 + }, + { + "start": 26212.44, + "end": 26213.5, + "probability": 0.9324 + }, + { + "start": 26213.64, + "end": 26214.52, + "probability": 0.2429 + }, + { + "start": 26214.64, + "end": 26216.02, + "probability": 0.9137 + }, + { + "start": 26216.14, + "end": 26216.24, + "probability": 0.3831 + }, + { + "start": 26216.5, + "end": 26217.42, + "probability": 0.5718 + }, + { + "start": 26218.1, + "end": 26218.86, + "probability": 0.7903 + }, + { + "start": 26219.38, + "end": 26220.08, + "probability": 0.9531 + }, + { + "start": 26220.52, + "end": 26221.31, + "probability": 0.8875 + }, + { + "start": 26221.62, + "end": 26223.26, + "probability": 0.9638 + }, + { + "start": 26223.92, + "end": 26227.34, + "probability": 0.9561 + }, + { + "start": 26227.62, + "end": 26229.34, + "probability": 0.9977 + }, + { + "start": 26229.36, + "end": 26232.1, + "probability": 0.9749 + }, + { + "start": 26232.56, + "end": 26237.14, + "probability": 0.9948 + }, + { + "start": 26237.46, + "end": 26240.98, + "probability": 0.9398 + }, + { + "start": 26241.5, + "end": 26243.58, + "probability": 0.9952 + }, + { + "start": 26243.94, + "end": 26246.76, + "probability": 0.9746 + }, + { + "start": 26247.68, + "end": 26248.46, + "probability": 0.9407 + }, + { + "start": 26248.84, + "end": 26249.58, + "probability": 0.7789 + }, + { + "start": 26249.9, + "end": 26250.88, + "probability": 0.9789 + }, + { + "start": 26250.92, + "end": 26252.82, + "probability": 0.6049 + }, + { + "start": 26252.9, + "end": 26253.28, + "probability": 0.6915 + }, + { + "start": 26253.3, + "end": 26254.1, + "probability": 0.9413 + }, + { + "start": 26254.2, + "end": 26254.6, + "probability": 0.7006 + }, + { + "start": 26254.6, + "end": 26256.06, + "probability": 0.9299 + }, + { + "start": 26256.46, + "end": 26256.8, + "probability": 0.7593 + }, + { + "start": 26256.96, + "end": 26257.16, + "probability": 0.7142 + }, + { + "start": 26257.74, + "end": 26258.94, + "probability": 0.9594 + }, + { + "start": 26259.14, + "end": 26259.56, + "probability": 0.2692 + }, + { + "start": 26259.78, + "end": 26261.76, + "probability": 0.85 + }, + { + "start": 26262.62, + "end": 26265.14, + "probability": 0.7672 + }, + { + "start": 26266.18, + "end": 26266.68, + "probability": 0.8717 + }, + { + "start": 26268.43, + "end": 26269.28, + "probability": 0.4275 + }, + { + "start": 26269.28, + "end": 26269.28, + "probability": 0.2586 + }, + { + "start": 26269.28, + "end": 26269.91, + "probability": 0.8339 + }, + { + "start": 26270.98, + "end": 26273.26, + "probability": 0.7341 + }, + { + "start": 26274.3, + "end": 26276.34, + "probability": 0.6565 + }, + { + "start": 26276.88, + "end": 26277.32, + "probability": 0.9555 + }, + { + "start": 26278.16, + "end": 26278.34, + "probability": 0.4577 + }, + { + "start": 26281.98, + "end": 26281.98, + "probability": 0.0287 + }, + { + "start": 26281.98, + "end": 26281.98, + "probability": 0.3425 + }, + { + "start": 26281.98, + "end": 26282.52, + "probability": 0.754 + }, + { + "start": 26283.3, + "end": 26285.34, + "probability": 0.7738 + }, + { + "start": 26286.48, + "end": 26288.54, + "probability": 0.9791 + }, + { + "start": 26289.06, + "end": 26291.28, + "probability": 0.8678 + }, + { + "start": 26292.32, + "end": 26293.42, + "probability": 0.3898 + }, + { + "start": 26293.42, + "end": 26293.42, + "probability": 0.224 + }, + { + "start": 26293.42, + "end": 26294.32, + "probability": 0.8733 + }, + { + "start": 26294.66, + "end": 26295.02, + "probability": 0.6526 + }, + { + "start": 26295.2, + "end": 26297.08, + "probability": 0.724 + }, + { + "start": 26297.84, + "end": 26298.44, + "probability": 0.5467 + }, + { + "start": 26298.58, + "end": 26299.86, + "probability": 0.9847 + }, + { + "start": 26299.92, + "end": 26302.44, + "probability": 0.8827 + }, + { + "start": 26302.78, + "end": 26303.54, + "probability": 0.336 + }, + { + "start": 26303.54, + "end": 26303.54, + "probability": 0.3835 + }, + { + "start": 26303.54, + "end": 26304.12, + "probability": 0.7357 + }, + { + "start": 26304.92, + "end": 26305.72, + "probability": 0.6752 + }, + { + "start": 26307.94, + "end": 26311.7, + "probability": 0.8694 + }, + { + "start": 26312.72, + "end": 26315.98, + "probability": 0.6202 + }, + { + "start": 26327.9, + "end": 26329.22, + "probability": 0.5145 + }, + { + "start": 26329.22, + "end": 26329.24, + "probability": 0.0283 + }, + { + "start": 26329.24, + "end": 26329.3, + "probability": 0.0413 + }, + { + "start": 26329.3, + "end": 26329.3, + "probability": 0.097 + }, + { + "start": 26329.3, + "end": 26329.3, + "probability": 0.1001 + }, + { + "start": 26329.3, + "end": 26329.3, + "probability": 0.1784 + }, + { + "start": 26329.3, + "end": 26329.66, + "probability": 0.2052 + }, + { + "start": 26330.64, + "end": 26331.26, + "probability": 0.2442 + }, + { + "start": 26332.14, + "end": 26334.62, + "probability": 0.7839 + }, + { + "start": 26336.5, + "end": 26337.04, + "probability": 0.019 + }, + { + "start": 26337.04, + "end": 26337.28, + "probability": 0.1518 + }, + { + "start": 26337.28, + "end": 26339.76, + "probability": 0.9226 + }, + { + "start": 26341.7, + "end": 26343.08, + "probability": 0.9401 + }, + { + "start": 26344.08, + "end": 26346.38, + "probability": 0.856 + }, + { + "start": 26346.58, + "end": 26352.09, + "probability": 0.5897 + }, + { + "start": 26353.22, + "end": 26354.62, + "probability": 0.0617 + }, + { + "start": 26355.06, + "end": 26356.78, + "probability": 0.5912 + }, + { + "start": 26356.92, + "end": 26359.2, + "probability": 0.5433 + }, + { + "start": 26361.18, + "end": 26372.96, + "probability": 0.4657 + }, + { + "start": 26377.82, + "end": 26379.56, + "probability": 0.1669 + }, + { + "start": 26381.98, + "end": 26381.98, + "probability": 0.2718 + }, + { + "start": 26381.98, + "end": 26382.9, + "probability": 0.0885 + }, + { + "start": 26383.2, + "end": 26384.82, + "probability": 0.0684 + }, + { + "start": 26385.1, + "end": 26385.68, + "probability": 0.28 + }, + { + "start": 26395.74, + "end": 26397.06, + "probability": 0.4462 + }, + { + "start": 26403.96, + "end": 26407.04, + "probability": 0.8038 + }, + { + "start": 26407.64, + "end": 26408.42, + "probability": 0.6977 + }, + { + "start": 26408.6, + "end": 26409.02, + "probability": 0.492 + }, + { + "start": 26409.58, + "end": 26412.18, + "probability": 0.988 + }, + { + "start": 26412.72, + "end": 26415.76, + "probability": 0.9218 + }, + { + "start": 26416.36, + "end": 26417.96, + "probability": 0.531 + }, + { + "start": 26418.84, + "end": 26419.82, + "probability": 0.3402 + }, + { + "start": 26419.92, + "end": 26420.65, + "probability": 0.6454 + }, + { + "start": 26420.98, + "end": 26427.3, + "probability": 0.9673 + }, + { + "start": 26427.48, + "end": 26431.48, + "probability": 0.9466 + }, + { + "start": 26432.68, + "end": 26435.72, + "probability": 0.7779 + }, + { + "start": 26436.82, + "end": 26440.54, + "probability": 0.8989 + }, + { + "start": 26441.44, + "end": 26442.08, + "probability": 0.1876 + }, + { + "start": 26442.18, + "end": 26442.96, + "probability": 0.9338 + }, + { + "start": 26443.54, + "end": 26445.9, + "probability": 0.439 + }, + { + "start": 26446.22, + "end": 26449.12, + "probability": 0.7298 + }, + { + "start": 26449.7, + "end": 26451.76, + "probability": 0.6024 + }, + { + "start": 26452.14, + "end": 26454.92, + "probability": 0.9756 + }, + { + "start": 26457.8, + "end": 26458.1, + "probability": 0.8735 + }, + { + "start": 26458.18, + "end": 26458.4, + "probability": 0.8687 + }, + { + "start": 26458.42, + "end": 26459.34, + "probability": 0.9933 + }, + { + "start": 26459.42, + "end": 26460.68, + "probability": 0.9742 + }, + { + "start": 26461.56, + "end": 26463.94, + "probability": 0.9043 + }, + { + "start": 26464.04, + "end": 26469.0, + "probability": 0.9912 + }, + { + "start": 26470.16, + "end": 26471.88, + "probability": 0.8715 + }, + { + "start": 26472.94, + "end": 26476.82, + "probability": 0.9941 + }, + { + "start": 26477.28, + "end": 26478.06, + "probability": 0.9746 + }, + { + "start": 26478.1, + "end": 26481.26, + "probability": 0.9929 + }, + { + "start": 26482.08, + "end": 26483.4, + "probability": 0.9663 + }, + { + "start": 26483.54, + "end": 26487.0, + "probability": 0.9949 + }, + { + "start": 26487.7, + "end": 26491.02, + "probability": 0.9015 + }, + { + "start": 26491.72, + "end": 26492.74, + "probability": 0.9856 + }, + { + "start": 26493.34, + "end": 26494.66, + "probability": 0.935 + }, + { + "start": 26495.58, + "end": 26496.78, + "probability": 0.9058 + }, + { + "start": 26497.56, + "end": 26499.14, + "probability": 0.6574 + }, + { + "start": 26499.18, + "end": 26500.18, + "probability": 0.7995 + }, + { + "start": 26500.3, + "end": 26503.26, + "probability": 0.9943 + }, + { + "start": 26504.1, + "end": 26508.2, + "probability": 0.7875 + }, + { + "start": 26509.0, + "end": 26510.26, + "probability": 0.9324 + }, + { + "start": 26510.6, + "end": 26514.96, + "probability": 0.9943 + }, + { + "start": 26516.8, + "end": 26517.22, + "probability": 0.9991 + }, + { + "start": 26517.94, + "end": 26520.17, + "probability": 0.7743 + }, + { + "start": 26520.46, + "end": 26522.02, + "probability": 0.6256 + }, + { + "start": 26522.64, + "end": 26526.7, + "probability": 0.9886 + }, + { + "start": 26527.35, + "end": 26529.9, + "probability": 0.9457 + }, + { + "start": 26530.9, + "end": 26533.52, + "probability": 0.7597 + }, + { + "start": 26535.22, + "end": 26536.18, + "probability": 0.8362 + }, + { + "start": 26540.38, + "end": 26543.26, + "probability": 0.9635 + }, + { + "start": 26543.64, + "end": 26546.56, + "probability": 0.8823 + }, + { + "start": 26548.98, + "end": 26552.04, + "probability": 0.7787 + }, + { + "start": 26552.62, + "end": 26556.48, + "probability": 0.948 + }, + { + "start": 26557.06, + "end": 26558.5, + "probability": 0.8945 + }, + { + "start": 26558.86, + "end": 26562.48, + "probability": 0.9922 + }, + { + "start": 26562.96, + "end": 26565.56, + "probability": 0.9956 + }, + { + "start": 26566.1, + "end": 26569.76, + "probability": 0.9937 + }, + { + "start": 26570.06, + "end": 26570.08, + "probability": 0.1389 + }, + { + "start": 26570.08, + "end": 26570.98, + "probability": 0.6929 + }, + { + "start": 26572.68, + "end": 26573.56, + "probability": 0.6398 + }, + { + "start": 26574.02, + "end": 26580.6, + "probability": 0.7119 + }, + { + "start": 26581.12, + "end": 26585.0, + "probability": 0.5027 + }, + { + "start": 26585.68, + "end": 26586.56, + "probability": 0.0761 + }, + { + "start": 26586.9, + "end": 26589.58, + "probability": 0.979 + }, + { + "start": 26589.72, + "end": 26592.25, + "probability": 0.771 + }, + { + "start": 26592.74, + "end": 26594.26, + "probability": 0.7483 + }, + { + "start": 26594.34, + "end": 26599.06, + "probability": 0.9844 + }, + { + "start": 26599.42, + "end": 26602.42, + "probability": 0.9963 + }, + { + "start": 26602.96, + "end": 26604.12, + "probability": 0.9366 + }, + { + "start": 26604.62, + "end": 26605.48, + "probability": 0.4735 + }, + { + "start": 26605.64, + "end": 26609.22, + "probability": 0.9395 + }, + { + "start": 26609.24, + "end": 26609.4, + "probability": 0.0371 + }, + { + "start": 26609.4, + "end": 26609.75, + "probability": 0.325 + }, + { + "start": 26609.84, + "end": 26610.61, + "probability": 0.5981 + }, + { + "start": 26611.6, + "end": 26617.16, + "probability": 0.9209 + }, + { + "start": 26617.24, + "end": 26617.44, + "probability": 0.3292 + }, + { + "start": 26618.3, + "end": 26618.3, + "probability": 0.0046 + }, + { + "start": 26618.3, + "end": 26620.0, + "probability": 0.6303 + }, + { + "start": 26620.28, + "end": 26621.72, + "probability": 0.8486 + }, + { + "start": 26621.76, + "end": 26622.54, + "probability": 0.8516 + }, + { + "start": 26622.6, + "end": 26624.64, + "probability": 0.7964 + }, + { + "start": 26624.82, + "end": 26626.3, + "probability": 0.5425 + }, + { + "start": 26627.0, + "end": 26629.88, + "probability": 0.9721 + }, + { + "start": 26631.44, + "end": 26637.16, + "probability": 0.3297 + }, + { + "start": 26637.72, + "end": 26642.22, + "probability": 0.5534 + }, + { + "start": 26643.48, + "end": 26647.66, + "probability": 0.1279 + }, + { + "start": 26649.96, + "end": 26651.38, + "probability": 0.0069 + }, + { + "start": 26651.38, + "end": 26651.38, + "probability": 0.0329 + }, + { + "start": 26651.38, + "end": 26654.1, + "probability": 0.1319 + }, + { + "start": 26654.2, + "end": 26656.45, + "probability": 0.2801 + }, + { + "start": 26658.56, + "end": 26659.82, + "probability": 0.4636 + }, + { + "start": 26660.38, + "end": 26661.46, + "probability": 0.2526 + }, + { + "start": 26661.74, + "end": 26662.18, + "probability": 0.1822 + }, + { + "start": 26662.76, + "end": 26663.84, + "probability": 0.4748 + }, + { + "start": 26665.28, + "end": 26666.9, + "probability": 0.2418 + }, + { + "start": 26667.22, + "end": 26668.26, + "probability": 0.3012 + }, + { + "start": 26668.26, + "end": 26668.66, + "probability": 0.6879 + }, + { + "start": 26668.78, + "end": 26669.54, + "probability": 0.1689 + }, + { + "start": 26670.14, + "end": 26671.28, + "probability": 0.8892 + }, + { + "start": 26671.86, + "end": 26674.34, + "probability": 0.8659 + }, + { + "start": 26674.4, + "end": 26678.78, + "probability": 0.6743 + }, + { + "start": 26678.78, + "end": 26682.32, + "probability": 0.8318 + }, + { + "start": 26683.52, + "end": 26684.92, + "probability": 0.9974 + }, + { + "start": 26685.54, + "end": 26692.72, + "probability": 0.9762 + }, + { + "start": 26693.36, + "end": 26694.45, + "probability": 0.9041 + }, + { + "start": 26716.58, + "end": 26719.52, + "probability": 0.2878 + }, + { + "start": 26719.58, + "end": 26721.7, + "probability": 0.9476 + }, + { + "start": 26722.3, + "end": 26727.3, + "probability": 0.3919 + }, + { + "start": 26728.1, + "end": 26730.42, + "probability": 0.4378 + } + ], + "segments_count": 9528, + "words_count": 44001, + "avg_words_per_segment": 4.6181, + "avg_segment_duration": 1.928, + "avg_words_per_minute": 98.6475, + "plenum_id": "101690", + "duration": 26762.57, + "title": null, + "plenum_date": "2021-11-17" +} \ No newline at end of file