diff --git "a/104663/metadata.json" "b/104663/metadata.json" new file mode 100644--- /dev/null +++ "b/104663/metadata.json" @@ -0,0 +1,34282 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "104663", + "quality_score": 0.8623, + "per_segment_quality_scores": [ + { + "start": 33.7, + "end": 36.82, + "probability": 0.98 + }, + { + "start": 38.1, + "end": 40.26, + "probability": 0.6949 + }, + { + "start": 42.5, + "end": 47.7, + "probability": 0.7289 + }, + { + "start": 48.7, + "end": 50.22, + "probability": 0.6454 + }, + { + "start": 51.34, + "end": 54.78, + "probability": 0.941 + }, + { + "start": 55.46, + "end": 56.78, + "probability": 0.9292 + }, + { + "start": 57.44, + "end": 60.71, + "probability": 0.9963 + }, + { + "start": 60.92, + "end": 62.78, + "probability": 0.9995 + }, + { + "start": 63.34, + "end": 65.46, + "probability": 0.783 + }, + { + "start": 66.48, + "end": 71.1, + "probability": 0.9181 + }, + { + "start": 71.76, + "end": 73.92, + "probability": 0.8193 + }, + { + "start": 74.92, + "end": 78.58, + "probability": 0.9972 + }, + { + "start": 79.48, + "end": 80.5, + "probability": 0.7833 + }, + { + "start": 80.8, + "end": 84.86, + "probability": 0.906 + }, + { + "start": 85.48, + "end": 88.12, + "probability": 0.9864 + }, + { + "start": 89.16, + "end": 92.48, + "probability": 0.8325 + }, + { + "start": 93.34, + "end": 95.44, + "probability": 0.7236 + }, + { + "start": 96.14, + "end": 97.26, + "probability": 0.9805 + }, + { + "start": 98.08, + "end": 99.02, + "probability": 0.9583 + }, + { + "start": 104.72, + "end": 106.3, + "probability": 0.7614 + }, + { + "start": 106.6, + "end": 108.12, + "probability": 0.8441 + }, + { + "start": 108.2, + "end": 109.84, + "probability": 0.8995 + }, + { + "start": 110.36, + "end": 113.78, + "probability": 0.9336 + }, + { + "start": 114.5, + "end": 116.7, + "probability": 0.8989 + }, + { + "start": 116.8, + "end": 118.56, + "probability": 0.5422 + }, + { + "start": 119.12, + "end": 119.52, + "probability": 0.2032 + }, + { + "start": 120.14, + "end": 124.58, + "probability": 0.9365 + }, + { + "start": 125.18, + "end": 127.22, + "probability": 0.7773 + }, + { + "start": 128.04, + "end": 132.96, + "probability": 0.7951 + }, + { + "start": 133.52, + "end": 137.74, + "probability": 0.6967 + }, + { + "start": 138.64, + "end": 141.74, + "probability": 0.7659 + }, + { + "start": 142.6, + "end": 145.6, + "probability": 0.9506 + }, + { + "start": 145.96, + "end": 149.12, + "probability": 0.7629 + }, + { + "start": 149.74, + "end": 150.84, + "probability": 0.6951 + }, + { + "start": 152.1, + "end": 155.86, + "probability": 0.4956 + }, + { + "start": 155.86, + "end": 157.78, + "probability": 0.7016 + }, + { + "start": 159.18, + "end": 162.0, + "probability": 0.6545 + }, + { + "start": 162.6, + "end": 164.76, + "probability": 0.3399 + }, + { + "start": 165.36, + "end": 167.4, + "probability": 0.9827 + }, + { + "start": 168.34, + "end": 169.02, + "probability": 0.5687 + }, + { + "start": 183.12, + "end": 185.72, + "probability": 0.2106 + }, + { + "start": 186.73, + "end": 189.66, + "probability": 0.0221 + }, + { + "start": 189.88, + "end": 192.02, + "probability": 0.1121 + }, + { + "start": 192.56, + "end": 194.64, + "probability": 0.2501 + }, + { + "start": 196.16, + "end": 198.42, + "probability": 0.0653 + }, + { + "start": 200.28, + "end": 203.4, + "probability": 0.1561 + }, + { + "start": 204.3, + "end": 207.08, + "probability": 0.0831 + }, + { + "start": 209.2, + "end": 211.14, + "probability": 0.0226 + }, + { + "start": 211.96, + "end": 213.68, + "probability": 0.0177 + }, + { + "start": 215.08, + "end": 215.34, + "probability": 0.0156 + }, + { + "start": 216.9, + "end": 218.4, + "probability": 0.0693 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 239.0, + "end": 239.0, + "probability": 0.0 + }, + { + "start": 246.85, + "end": 249.5, + "probability": 0.5409 + }, + { + "start": 250.88, + "end": 251.38, + "probability": 0.8904 + }, + { + "start": 259.16, + "end": 259.16, + "probability": 0.0968 + }, + { + "start": 259.16, + "end": 259.22, + "probability": 0.3685 + }, + { + "start": 259.4, + "end": 262.9, + "probability": 0.9969 + }, + { + "start": 263.24, + "end": 270.02, + "probability": 0.9337 + }, + { + "start": 270.9, + "end": 277.78, + "probability": 0.997 + }, + { + "start": 278.64, + "end": 282.32, + "probability": 0.7458 + }, + { + "start": 283.26, + "end": 285.58, + "probability": 0.8762 + }, + { + "start": 286.2, + "end": 288.4, + "probability": 0.8447 + }, + { + "start": 289.62, + "end": 290.96, + "probability": 0.4601 + }, + { + "start": 290.98, + "end": 291.46, + "probability": 0.8029 + }, + { + "start": 291.54, + "end": 293.16, + "probability": 0.7616 + }, + { + "start": 293.28, + "end": 293.9, + "probability": 0.0456 + }, + { + "start": 293.9, + "end": 293.98, + "probability": 0.2548 + }, + { + "start": 294.12, + "end": 295.03, + "probability": 0.5837 + }, + { + "start": 295.2, + "end": 295.8, + "probability": 0.1945 + }, + { + "start": 297.14, + "end": 297.86, + "probability": 0.9693 + }, + { + "start": 299.56, + "end": 302.4, + "probability": 0.7493 + }, + { + "start": 303.18, + "end": 306.98, + "probability": 0.9988 + }, + { + "start": 306.98, + "end": 309.9, + "probability": 0.9956 + }, + { + "start": 311.02, + "end": 313.88, + "probability": 0.9753 + }, + { + "start": 315.14, + "end": 317.98, + "probability": 0.991 + }, + { + "start": 318.62, + "end": 320.3, + "probability": 0.9196 + }, + { + "start": 321.2, + "end": 322.28, + "probability": 0.7989 + }, + { + "start": 323.61, + "end": 327.92, + "probability": 0.9957 + }, + { + "start": 328.66, + "end": 334.96, + "probability": 0.9935 + }, + { + "start": 335.76, + "end": 337.6, + "probability": 0.9057 + }, + { + "start": 338.16, + "end": 340.78, + "probability": 0.9985 + }, + { + "start": 341.62, + "end": 343.54, + "probability": 0.698 + }, + { + "start": 344.42, + "end": 347.32, + "probability": 0.9211 + }, + { + "start": 347.84, + "end": 349.44, + "probability": 0.9379 + }, + { + "start": 350.04, + "end": 350.97, + "probability": 0.9868 + }, + { + "start": 352.32, + "end": 361.28, + "probability": 0.9736 + }, + { + "start": 361.46, + "end": 365.08, + "probability": 0.9614 + }, + { + "start": 365.48, + "end": 369.9, + "probability": 0.9988 + }, + { + "start": 370.08, + "end": 372.42, + "probability": 0.9989 + }, + { + "start": 373.8, + "end": 379.66, + "probability": 0.998 + }, + { + "start": 380.52, + "end": 382.38, + "probability": 0.9619 + }, + { + "start": 382.56, + "end": 384.3, + "probability": 0.9286 + }, + { + "start": 384.9, + "end": 387.34, + "probability": 0.986 + }, + { + "start": 387.92, + "end": 389.7, + "probability": 0.9704 + }, + { + "start": 390.2, + "end": 392.74, + "probability": 0.9861 + }, + { + "start": 392.88, + "end": 394.16, + "probability": 0.9968 + }, + { + "start": 395.0, + "end": 398.0, + "probability": 0.8972 + }, + { + "start": 398.74, + "end": 400.16, + "probability": 0.8426 + }, + { + "start": 401.16, + "end": 403.04, + "probability": 0.8691 + }, + { + "start": 403.24, + "end": 405.42, + "probability": 0.9955 + }, + { + "start": 405.88, + "end": 406.74, + "probability": 0.9556 + }, + { + "start": 407.12, + "end": 411.72, + "probability": 0.9883 + }, + { + "start": 412.34, + "end": 415.0, + "probability": 0.9677 + }, + { + "start": 415.54, + "end": 417.64, + "probability": 0.8557 + }, + { + "start": 418.22, + "end": 419.48, + "probability": 0.9536 + }, + { + "start": 419.54, + "end": 420.0, + "probability": 0.7531 + }, + { + "start": 420.4, + "end": 422.56, + "probability": 0.9777 + }, + { + "start": 425.04, + "end": 425.72, + "probability": 0.7861 + }, + { + "start": 427.06, + "end": 427.32, + "probability": 0.0477 + }, + { + "start": 427.32, + "end": 427.32, + "probability": 0.4474 + }, + { + "start": 427.32, + "end": 427.34, + "probability": 0.0121 + }, + { + "start": 427.34, + "end": 427.34, + "probability": 0.1866 + }, + { + "start": 427.34, + "end": 427.55, + "probability": 0.3855 + }, + { + "start": 428.0, + "end": 431.22, + "probability": 0.6645 + }, + { + "start": 431.36, + "end": 433.86, + "probability": 0.9238 + }, + { + "start": 434.34, + "end": 436.4, + "probability": 0.9722 + }, + { + "start": 437.04, + "end": 440.24, + "probability": 0.9992 + }, + { + "start": 440.84, + "end": 445.06, + "probability": 0.9946 + }, + { + "start": 445.18, + "end": 445.88, + "probability": 0.7852 + }, + { + "start": 446.26, + "end": 446.62, + "probability": 0.739 + }, + { + "start": 446.7, + "end": 449.88, + "probability": 0.9731 + }, + { + "start": 450.62, + "end": 451.8, + "probability": 0.8346 + }, + { + "start": 452.7, + "end": 458.62, + "probability": 0.8126 + }, + { + "start": 459.1, + "end": 461.54, + "probability": 0.9952 + }, + { + "start": 461.92, + "end": 463.99, + "probability": 0.9633 + }, + { + "start": 465.68, + "end": 467.5, + "probability": 0.9287 + }, + { + "start": 467.92, + "end": 469.96, + "probability": 0.991 + }, + { + "start": 470.0, + "end": 471.38, + "probability": 0.813 + }, + { + "start": 471.86, + "end": 472.28, + "probability": 0.6884 + }, + { + "start": 472.42, + "end": 473.38, + "probability": 0.9775 + }, + { + "start": 473.48, + "end": 474.44, + "probability": 0.9985 + }, + { + "start": 474.8, + "end": 475.88, + "probability": 0.9802 + }, + { + "start": 475.92, + "end": 476.94, + "probability": 0.7851 + }, + { + "start": 477.24, + "end": 478.06, + "probability": 0.9766 + }, + { + "start": 478.1, + "end": 479.16, + "probability": 0.9963 + }, + { + "start": 479.68, + "end": 484.26, + "probability": 0.9764 + }, + { + "start": 485.0, + "end": 487.74, + "probability": 0.995 + }, + { + "start": 487.82, + "end": 488.28, + "probability": 0.6371 + }, + { + "start": 488.58, + "end": 489.32, + "probability": 0.8785 + }, + { + "start": 489.4, + "end": 490.3, + "probability": 0.6997 + }, + { + "start": 490.3, + "end": 490.58, + "probability": 0.728 + }, + { + "start": 490.98, + "end": 491.78, + "probability": 0.8643 + }, + { + "start": 491.9, + "end": 492.08, + "probability": 0.6598 + }, + { + "start": 492.26, + "end": 493.46, + "probability": 0.5134 + }, + { + "start": 493.5, + "end": 496.86, + "probability": 0.9995 + }, + { + "start": 497.46, + "end": 499.96, + "probability": 0.9726 + }, + { + "start": 500.24, + "end": 501.1, + "probability": 0.7622 + }, + { + "start": 501.36, + "end": 502.46, + "probability": 0.7221 + }, + { + "start": 502.78, + "end": 503.62, + "probability": 0.8921 + }, + { + "start": 503.98, + "end": 504.9, + "probability": 0.7429 + }, + { + "start": 505.32, + "end": 506.12, + "probability": 0.4763 + }, + { + "start": 506.22, + "end": 507.5, + "probability": 0.9901 + }, + { + "start": 508.3, + "end": 510.48, + "probability": 0.7695 + }, + { + "start": 510.9, + "end": 514.18, + "probability": 0.9985 + }, + { + "start": 514.62, + "end": 516.76, + "probability": 0.9367 + }, + { + "start": 517.16, + "end": 518.82, + "probability": 0.9993 + }, + { + "start": 518.96, + "end": 519.16, + "probability": 0.3959 + }, + { + "start": 519.22, + "end": 519.92, + "probability": 0.9008 + }, + { + "start": 519.96, + "end": 522.92, + "probability": 0.9606 + }, + { + "start": 522.98, + "end": 523.88, + "probability": 0.9642 + }, + { + "start": 524.44, + "end": 525.42, + "probability": 0.9951 + }, + { + "start": 525.94, + "end": 531.56, + "probability": 0.9846 + }, + { + "start": 531.82, + "end": 532.94, + "probability": 0.9749 + }, + { + "start": 533.98, + "end": 537.52, + "probability": 0.9644 + }, + { + "start": 537.6, + "end": 540.08, + "probability": 0.9961 + }, + { + "start": 540.64, + "end": 541.86, + "probability": 0.854 + }, + { + "start": 542.54, + "end": 543.68, + "probability": 0.973 + }, + { + "start": 543.96, + "end": 545.58, + "probability": 0.9964 + }, + { + "start": 547.54, + "end": 549.74, + "probability": 0.9384 + }, + { + "start": 550.28, + "end": 552.86, + "probability": 0.945 + }, + { + "start": 552.86, + "end": 555.12, + "probability": 0.9917 + }, + { + "start": 555.62, + "end": 557.48, + "probability": 0.8133 + }, + { + "start": 557.6, + "end": 559.86, + "probability": 0.9778 + }, + { + "start": 561.78, + "end": 563.56, + "probability": 0.9379 + }, + { + "start": 563.88, + "end": 564.66, + "probability": 0.9206 + }, + { + "start": 565.1, + "end": 565.68, + "probability": 0.984 + }, + { + "start": 566.06, + "end": 567.4, + "probability": 0.9926 + }, + { + "start": 567.48, + "end": 568.78, + "probability": 0.9392 + }, + { + "start": 569.22, + "end": 569.88, + "probability": 0.986 + }, + { + "start": 569.96, + "end": 571.54, + "probability": 0.9661 + }, + { + "start": 571.98, + "end": 572.92, + "probability": 0.9938 + }, + { + "start": 573.06, + "end": 573.36, + "probability": 0.7992 + }, + { + "start": 574.38, + "end": 576.22, + "probability": 0.9622 + }, + { + "start": 576.32, + "end": 576.82, + "probability": 0.9488 + }, + { + "start": 577.18, + "end": 580.68, + "probability": 0.9933 + }, + { + "start": 580.74, + "end": 581.58, + "probability": 0.6474 + }, + { + "start": 582.12, + "end": 583.14, + "probability": 0.7746 + }, + { + "start": 583.5, + "end": 585.78, + "probability": 0.9922 + }, + { + "start": 586.22, + "end": 590.2, + "probability": 0.9966 + }, + { + "start": 593.98, + "end": 596.62, + "probability": 0.9486 + }, + { + "start": 596.76, + "end": 598.44, + "probability": 0.9487 + }, + { + "start": 598.72, + "end": 600.6, + "probability": 0.9734 + }, + { + "start": 600.72, + "end": 602.24, + "probability": 0.961 + }, + { + "start": 603.2, + "end": 607.04, + "probability": 0.9785 + }, + { + "start": 608.08, + "end": 611.52, + "probability": 0.6174 + }, + { + "start": 611.58, + "end": 612.4, + "probability": 0.8938 + }, + { + "start": 614.12, + "end": 616.74, + "probability": 0.9329 + }, + { + "start": 618.42, + "end": 618.9, + "probability": 0.8738 + }, + { + "start": 618.98, + "end": 619.7, + "probability": 0.6676 + }, + { + "start": 619.98, + "end": 621.62, + "probability": 0.747 + }, + { + "start": 621.64, + "end": 623.6, + "probability": 0.8232 + }, + { + "start": 623.68, + "end": 624.05, + "probability": 0.7456 + }, + { + "start": 624.46, + "end": 627.68, + "probability": 0.993 + }, + { + "start": 628.18, + "end": 628.66, + "probability": 0.8838 + }, + { + "start": 629.12, + "end": 631.28, + "probability": 0.8256 + }, + { + "start": 632.34, + "end": 633.5, + "probability": 0.948 + }, + { + "start": 633.88, + "end": 634.86, + "probability": 0.8085 + }, + { + "start": 635.12, + "end": 636.12, + "probability": 0.9304 + }, + { + "start": 636.42, + "end": 639.1, + "probability": 0.9905 + }, + { + "start": 641.12, + "end": 642.38, + "probability": 0.988 + }, + { + "start": 643.3, + "end": 643.58, + "probability": 0.8633 + }, + { + "start": 644.34, + "end": 647.56, + "probability": 0.9707 + }, + { + "start": 648.02, + "end": 650.24, + "probability": 0.9912 + }, + { + "start": 652.92, + "end": 658.52, + "probability": 0.9829 + }, + { + "start": 659.3, + "end": 662.18, + "probability": 0.9653 + }, + { + "start": 662.86, + "end": 665.52, + "probability": 0.9785 + }, + { + "start": 665.62, + "end": 667.64, + "probability": 0.9961 + }, + { + "start": 669.18, + "end": 669.72, + "probability": 0.1414 + }, + { + "start": 670.54, + "end": 672.2, + "probability": 0.6609 + }, + { + "start": 677.32, + "end": 679.38, + "probability": 0.9988 + }, + { + "start": 679.46, + "end": 680.18, + "probability": 0.9519 + }, + { + "start": 680.2, + "end": 680.78, + "probability": 0.9644 + }, + { + "start": 681.46, + "end": 682.68, + "probability": 0.6482 + }, + { + "start": 683.42, + "end": 684.06, + "probability": 0.6902 + }, + { + "start": 685.22, + "end": 686.8, + "probability": 0.9752 + }, + { + "start": 687.24, + "end": 688.52, + "probability": 0.9943 + }, + { + "start": 688.88, + "end": 690.6, + "probability": 0.9852 + }, + { + "start": 691.7, + "end": 692.6, + "probability": 0.9634 + }, + { + "start": 693.14, + "end": 694.86, + "probability": 0.0019 + }, + { + "start": 696.42, + "end": 696.66, + "probability": 0.2436 + }, + { + "start": 696.88, + "end": 699.63, + "probability": 0.0869 + }, + { + "start": 699.92, + "end": 699.92, + "probability": 0.5191 + }, + { + "start": 699.92, + "end": 704.56, + "probability": 0.9325 + }, + { + "start": 704.94, + "end": 706.06, + "probability": 0.9231 + }, + { + "start": 706.32, + "end": 709.12, + "probability": 0.975 + }, + { + "start": 709.12, + "end": 709.96, + "probability": 0.985 + }, + { + "start": 710.42, + "end": 711.35, + "probability": 0.9886 + }, + { + "start": 711.66, + "end": 713.66, + "probability": 0.7621 + }, + { + "start": 714.3, + "end": 716.28, + "probability": 0.9895 + }, + { + "start": 716.62, + "end": 718.7, + "probability": 0.9871 + }, + { + "start": 719.1, + "end": 722.48, + "probability": 0.9834 + }, + { + "start": 722.88, + "end": 724.84, + "probability": 0.8863 + }, + { + "start": 725.68, + "end": 726.49, + "probability": 0.9863 + }, + { + "start": 726.86, + "end": 728.92, + "probability": 0.9914 + }, + { + "start": 729.34, + "end": 729.92, + "probability": 0.8708 + }, + { + "start": 730.4, + "end": 732.3, + "probability": 0.8521 + }, + { + "start": 733.24, + "end": 733.8, + "probability": 0.618 + }, + { + "start": 734.8, + "end": 735.7, + "probability": 0.2357 + }, + { + "start": 736.29, + "end": 738.47, + "probability": 0.3865 + }, + { + "start": 738.62, + "end": 740.67, + "probability": 0.9638 + }, + { + "start": 740.81, + "end": 742.73, + "probability": 0.7312 + }, + { + "start": 742.87, + "end": 747.87, + "probability": 0.9971 + }, + { + "start": 748.33, + "end": 750.61, + "probability": 0.9651 + }, + { + "start": 751.01, + "end": 753.19, + "probability": 0.9961 + }, + { + "start": 753.19, + "end": 755.91, + "probability": 0.9459 + }, + { + "start": 756.45, + "end": 758.75, + "probability": 0.9892 + }, + { + "start": 758.87, + "end": 761.03, + "probability": 0.7699 + }, + { + "start": 761.61, + "end": 762.87, + "probability": 0.9821 + }, + { + "start": 762.95, + "end": 764.57, + "probability": 0.9483 + }, + { + "start": 765.05, + "end": 765.67, + "probability": 0.9902 + }, + { + "start": 766.43, + "end": 770.59, + "probability": 0.7557 + }, + { + "start": 770.59, + "end": 772.69, + "probability": 0.9961 + }, + { + "start": 772.71, + "end": 774.39, + "probability": 0.9918 + }, + { + "start": 774.69, + "end": 775.03, + "probability": 0.275 + }, + { + "start": 775.27, + "end": 775.65, + "probability": 0.3668 + }, + { + "start": 775.99, + "end": 779.03, + "probability": 0.5512 + }, + { + "start": 779.31, + "end": 779.57, + "probability": 0.0999 + }, + { + "start": 779.57, + "end": 779.57, + "probability": 0.0335 + }, + { + "start": 779.57, + "end": 779.57, + "probability": 0.3314 + }, + { + "start": 779.57, + "end": 783.51, + "probability": 0.8405 + }, + { + "start": 783.93, + "end": 784.69, + "probability": 0.6372 + }, + { + "start": 784.79, + "end": 785.07, + "probability": 0.3563 + }, + { + "start": 785.07, + "end": 788.54, + "probability": 0.9863 + }, + { + "start": 789.57, + "end": 792.23, + "probability": 0.9542 + }, + { + "start": 793.43, + "end": 795.63, + "probability": 0.1007 + }, + { + "start": 796.61, + "end": 796.93, + "probability": 0.3907 + }, + { + "start": 797.57, + "end": 799.63, + "probability": 0.0673 + }, + { + "start": 799.71, + "end": 799.71, + "probability": 0.2005 + }, + { + "start": 799.71, + "end": 799.71, + "probability": 0.3043 + }, + { + "start": 799.71, + "end": 799.95, + "probability": 0.1095 + }, + { + "start": 800.03, + "end": 803.65, + "probability": 0.1636 + }, + { + "start": 803.65, + "end": 803.65, + "probability": 0.0729 + }, + { + "start": 804.09, + "end": 804.49, + "probability": 0.6771 + }, + { + "start": 805.23, + "end": 808.79, + "probability": 0.9453 + }, + { + "start": 809.09, + "end": 809.09, + "probability": 0.0641 + }, + { + "start": 809.09, + "end": 809.09, + "probability": 0.109 + }, + { + "start": 809.09, + "end": 809.09, + "probability": 0.5192 + }, + { + "start": 809.09, + "end": 814.51, + "probability": 0.1597 + }, + { + "start": 814.77, + "end": 815.31, + "probability": 0.3152 + }, + { + "start": 816.03, + "end": 816.19, + "probability": 0.1032 + }, + { + "start": 816.19, + "end": 816.19, + "probability": 0.1951 + }, + { + "start": 816.19, + "end": 816.19, + "probability": 0.0419 + }, + { + "start": 816.19, + "end": 816.39, + "probability": 0.1558 + }, + { + "start": 816.39, + "end": 817.19, + "probability": 0.4402 + }, + { + "start": 817.65, + "end": 821.35, + "probability": 0.9957 + }, + { + "start": 821.97, + "end": 822.15, + "probability": 0.311 + }, + { + "start": 822.15, + "end": 823.25, + "probability": 0.9865 + }, + { + "start": 823.77, + "end": 826.07, + "probability": 0.9862 + }, + { + "start": 826.35, + "end": 827.91, + "probability": 0.9889 + }, + { + "start": 828.19, + "end": 828.81, + "probability": 0.0885 + }, + { + "start": 828.81, + "end": 830.39, + "probability": 0.9707 + }, + { + "start": 830.77, + "end": 831.71, + "probability": 0.8207 + }, + { + "start": 831.73, + "end": 835.15, + "probability": 0.9961 + }, + { + "start": 835.49, + "end": 836.39, + "probability": 0.8095 + }, + { + "start": 836.49, + "end": 840.29, + "probability": 0.9614 + }, + { + "start": 840.55, + "end": 841.85, + "probability": 0.9946 + }, + { + "start": 841.99, + "end": 842.36, + "probability": 0.9727 + }, + { + "start": 842.95, + "end": 845.31, + "probability": 0.979 + }, + { + "start": 846.13, + "end": 848.09, + "probability": 0.5693 + }, + { + "start": 848.29, + "end": 849.67, + "probability": 0.6075 + }, + { + "start": 850.31, + "end": 851.99, + "probability": 0.7075 + }, + { + "start": 852.63, + "end": 852.71, + "probability": 0.4991 + }, + { + "start": 852.71, + "end": 855.09, + "probability": 0.584 + }, + { + "start": 856.27, + "end": 857.61, + "probability": 0.7534 + }, + { + "start": 857.85, + "end": 858.73, + "probability": 0.4673 + }, + { + "start": 859.17, + "end": 860.97, + "probability": 0.8911 + }, + { + "start": 861.67, + "end": 863.47, + "probability": 0.4147 + }, + { + "start": 863.47, + "end": 865.18, + "probability": 0.6552 + }, + { + "start": 865.79, + "end": 867.47, + "probability": 0.5498 + }, + { + "start": 867.93, + "end": 869.75, + "probability": 0.5971 + }, + { + "start": 869.97, + "end": 871.05, + "probability": 0.2308 + }, + { + "start": 871.59, + "end": 873.77, + "probability": 0.9175 + }, + { + "start": 874.19, + "end": 874.71, + "probability": 0.6852 + }, + { + "start": 875.07, + "end": 877.99, + "probability": 0.8835 + }, + { + "start": 878.21, + "end": 878.45, + "probability": 0.8535 + }, + { + "start": 878.51, + "end": 879.09, + "probability": 0.98 + }, + { + "start": 879.35, + "end": 880.23, + "probability": 0.9656 + }, + { + "start": 880.29, + "end": 880.87, + "probability": 0.3449 + }, + { + "start": 881.07, + "end": 886.09, + "probability": 0.9058 + }, + { + "start": 887.15, + "end": 893.59, + "probability": 0.9973 + }, + { + "start": 893.91, + "end": 894.27, + "probability": 0.1725 + }, + { + "start": 895.01, + "end": 895.41, + "probability": 0.1502 + }, + { + "start": 895.67, + "end": 895.67, + "probability": 0.1671 + }, + { + "start": 895.67, + "end": 895.67, + "probability": 0.0414 + }, + { + "start": 895.67, + "end": 895.67, + "probability": 0.3546 + }, + { + "start": 895.67, + "end": 899.91, + "probability": 0.9393 + }, + { + "start": 900.61, + "end": 906.47, + "probability": 0.9963 + }, + { + "start": 906.65, + "end": 906.79, + "probability": 0.0683 + }, + { + "start": 906.79, + "end": 906.79, + "probability": 0.1714 + }, + { + "start": 906.79, + "end": 907.85, + "probability": 0.6477 + }, + { + "start": 908.17, + "end": 911.94, + "probability": 0.9127 + }, + { + "start": 912.03, + "end": 912.43, + "probability": 0.0016 + }, + { + "start": 912.53, + "end": 915.73, + "probability": 0.2072 + }, + { + "start": 916.51, + "end": 916.67, + "probability": 0.3209 + }, + { + "start": 917.85, + "end": 917.85, + "probability": 0.0049 + }, + { + "start": 917.85, + "end": 917.85, + "probability": 0.1233 + }, + { + "start": 917.85, + "end": 919.13, + "probability": 0.5615 + }, + { + "start": 919.77, + "end": 926.39, + "probability": 0.9938 + }, + { + "start": 927.19, + "end": 929.39, + "probability": 0.399 + }, + { + "start": 932.17, + "end": 935.85, + "probability": 0.1074 + }, + { + "start": 935.97, + "end": 936.57, + "probability": 0.1496 + }, + { + "start": 936.83, + "end": 937.75, + "probability": 0.211 + }, + { + "start": 937.99, + "end": 938.85, + "probability": 0.3948 + }, + { + "start": 940.09, + "end": 944.25, + "probability": 0.0584 + }, + { + "start": 944.47, + "end": 945.81, + "probability": 0.2168 + }, + { + "start": 947.95, + "end": 948.15, + "probability": 0.3104 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.0, + "end": 1027.0, + "probability": 0.0 + }, + { + "start": 1027.14, + "end": 1029.46, + "probability": 0.2757 + }, + { + "start": 1029.54, + "end": 1030.76, + "probability": 0.7297 + }, + { + "start": 1030.84, + "end": 1031.42, + "probability": 0.4983 + }, + { + "start": 1031.42, + "end": 1033.18, + "probability": 0.5667 + }, + { + "start": 1033.72, + "end": 1033.98, + "probability": 0.0429 + }, + { + "start": 1033.98, + "end": 1035.18, + "probability": 0.7185 + }, + { + "start": 1035.22, + "end": 1036.36, + "probability": 0.9532 + }, + { + "start": 1036.76, + "end": 1038.24, + "probability": 0.9533 + }, + { + "start": 1038.54, + "end": 1041.4, + "probability": 0.9319 + }, + { + "start": 1041.84, + "end": 1041.88, + "probability": 0.0281 + }, + { + "start": 1041.88, + "end": 1041.88, + "probability": 0.0337 + }, + { + "start": 1041.88, + "end": 1044.07, + "probability": 0.7984 + }, + { + "start": 1044.38, + "end": 1046.12, + "probability": 0.9909 + }, + { + "start": 1046.2, + "end": 1046.86, + "probability": 0.956 + }, + { + "start": 1047.38, + "end": 1047.92, + "probability": 0.9316 + }, + { + "start": 1049.52, + "end": 1051.22, + "probability": 0.9657 + }, + { + "start": 1051.76, + "end": 1054.4, + "probability": 0.9897 + }, + { + "start": 1054.48, + "end": 1055.24, + "probability": 0.8487 + }, + { + "start": 1056.86, + "end": 1059.1, + "probability": 0.9961 + }, + { + "start": 1059.84, + "end": 1062.06, + "probability": 0.9827 + }, + { + "start": 1062.76, + "end": 1065.16, + "probability": 0.9921 + }, + { + "start": 1065.16, + "end": 1067.94, + "probability": 0.9814 + }, + { + "start": 1068.1, + "end": 1071.22, + "probability": 0.9911 + }, + { + "start": 1071.92, + "end": 1073.38, + "probability": 0.9963 + }, + { + "start": 1073.52, + "end": 1075.02, + "probability": 0.998 + }, + { + "start": 1075.56, + "end": 1078.2, + "probability": 0.9311 + }, + { + "start": 1078.44, + "end": 1080.62, + "probability": 0.9778 + }, + { + "start": 1081.14, + "end": 1083.64, + "probability": 0.9855 + }, + { + "start": 1084.88, + "end": 1089.32, + "probability": 0.5632 + }, + { + "start": 1089.64, + "end": 1089.86, + "probability": 0.1117 + }, + { + "start": 1089.86, + "end": 1096.18, + "probability": 0.9684 + }, + { + "start": 1096.32, + "end": 1096.62, + "probability": 0.326 + }, + { + "start": 1096.96, + "end": 1098.56, + "probability": 0.9366 + }, + { + "start": 1099.08, + "end": 1102.36, + "probability": 0.9852 + }, + { + "start": 1102.88, + "end": 1105.66, + "probability": 0.9823 + }, + { + "start": 1105.84, + "end": 1106.32, + "probability": 0.6657 + }, + { + "start": 1106.34, + "end": 1107.14, + "probability": 0.5112 + }, + { + "start": 1110.94, + "end": 1111.52, + "probability": 0.1134 + }, + { + "start": 1111.52, + "end": 1113.03, + "probability": 0.2259 + }, + { + "start": 1114.84, + "end": 1117.66, + "probability": 0.681 + }, + { + "start": 1118.88, + "end": 1118.88, + "probability": 0.0678 + }, + { + "start": 1118.88, + "end": 1121.24, + "probability": 0.979 + }, + { + "start": 1121.38, + "end": 1121.62, + "probability": 0.0727 + }, + { + "start": 1121.84, + "end": 1122.48, + "probability": 0.6773 + }, + { + "start": 1123.32, + "end": 1124.0, + "probability": 0.009 + }, + { + "start": 1124.86, + "end": 1127.96, + "probability": 0.5296 + }, + { + "start": 1128.12, + "end": 1128.6, + "probability": 0.656 + }, + { + "start": 1128.88, + "end": 1129.56, + "probability": 0.5096 + }, + { + "start": 1129.72, + "end": 1130.57, + "probability": 0.801 + }, + { + "start": 1131.02, + "end": 1133.26, + "probability": 0.1153 + }, + { + "start": 1133.34, + "end": 1133.68, + "probability": 0.0397 + }, + { + "start": 1134.56, + "end": 1134.6, + "probability": 0.0007 + }, + { + "start": 1134.6, + "end": 1134.81, + "probability": 0.1014 + }, + { + "start": 1136.89, + "end": 1137.76, + "probability": 0.0276 + }, + { + "start": 1137.94, + "end": 1140.94, + "probability": 0.738 + }, + { + "start": 1141.48, + "end": 1143.16, + "probability": 0.5779 + }, + { + "start": 1143.2, + "end": 1144.4, + "probability": 0.5344 + }, + { + "start": 1145.28, + "end": 1146.86, + "probability": 0.93 + }, + { + "start": 1147.62, + "end": 1150.36, + "probability": 0.8218 + }, + { + "start": 1150.86, + "end": 1155.08, + "probability": 0.9894 + }, + { + "start": 1156.02, + "end": 1158.9, + "probability": 0.8602 + }, + { + "start": 1159.14, + "end": 1159.9, + "probability": 0.0593 + }, + { + "start": 1160.22, + "end": 1160.8, + "probability": 0.7607 + }, + { + "start": 1162.28, + "end": 1162.58, + "probability": 0.1791 + }, + { + "start": 1162.58, + "end": 1162.76, + "probability": 0.2067 + }, + { + "start": 1162.76, + "end": 1163.48, + "probability": 0.0411 + }, + { + "start": 1163.56, + "end": 1164.42, + "probability": 0.0445 + }, + { + "start": 1165.49, + "end": 1168.8, + "probability": 0.1468 + }, + { + "start": 1168.8, + "end": 1170.62, + "probability": 0.2667 + }, + { + "start": 1170.62, + "end": 1171.68, + "probability": 0.215 + }, + { + "start": 1171.68, + "end": 1173.32, + "probability": 0.0413 + }, + { + "start": 1173.42, + "end": 1174.98, + "probability": 0.4051 + }, + { + "start": 1174.98, + "end": 1175.52, + "probability": 0.0071 + }, + { + "start": 1176.04, + "end": 1176.3, + "probability": 0.0301 + }, + { + "start": 1176.3, + "end": 1176.3, + "probability": 0.0465 + }, + { + "start": 1176.3, + "end": 1176.74, + "probability": 0.1864 + }, + { + "start": 1177.6, + "end": 1178.32, + "probability": 0.3768 + }, + { + "start": 1178.79, + "end": 1180.45, + "probability": 0.885 + }, + { + "start": 1181.42, + "end": 1183.04, + "probability": 0.3187 + }, + { + "start": 1183.04, + "end": 1184.08, + "probability": 0.0762 + }, + { + "start": 1184.22, + "end": 1185.11, + "probability": 0.8252 + }, + { + "start": 1185.92, + "end": 1186.04, + "probability": 0.0108 + }, + { + "start": 1186.04, + "end": 1188.54, + "probability": 0.6159 + }, + { + "start": 1190.04, + "end": 1190.14, + "probability": 0.0425 + }, + { + "start": 1190.14, + "end": 1191.2, + "probability": 0.387 + }, + { + "start": 1191.2, + "end": 1192.88, + "probability": 0.9725 + }, + { + "start": 1193.68, + "end": 1195.24, + "probability": 0.6686 + }, + { + "start": 1195.8, + "end": 1195.86, + "probability": 0.1447 + }, + { + "start": 1195.86, + "end": 1196.9, + "probability": 0.7339 + }, + { + "start": 1197.28, + "end": 1197.42, + "probability": 0.0185 + }, + { + "start": 1197.42, + "end": 1198.54, + "probability": 0.5756 + }, + { + "start": 1198.68, + "end": 1200.1, + "probability": 0.9554 + }, + { + "start": 1200.26, + "end": 1200.72, + "probability": 0.0148 + }, + { + "start": 1200.72, + "end": 1201.7, + "probability": 0.396 + }, + { + "start": 1201.96, + "end": 1202.06, + "probability": 0.7161 + }, + { + "start": 1202.12, + "end": 1203.22, + "probability": 0.8967 + }, + { + "start": 1203.52, + "end": 1204.56, + "probability": 0.9307 + }, + { + "start": 1204.94, + "end": 1207.2, + "probability": 0.8381 + }, + { + "start": 1207.32, + "end": 1207.36, + "probability": 0.2352 + }, + { + "start": 1207.52, + "end": 1208.64, + "probability": 0.652 + }, + { + "start": 1209.36, + "end": 1209.54, + "probability": 0.5336 + }, + { + "start": 1212.32, + "end": 1212.4, + "probability": 0.0958 + }, + { + "start": 1212.4, + "end": 1212.4, + "probability": 0.0172 + }, + { + "start": 1212.4, + "end": 1212.4, + "probability": 0.0856 + }, + { + "start": 1212.4, + "end": 1213.18, + "probability": 0.8801 + }, + { + "start": 1213.3, + "end": 1214.22, + "probability": 0.771 + }, + { + "start": 1214.88, + "end": 1215.02, + "probability": 0.2075 + }, + { + "start": 1215.02, + "end": 1217.0, + "probability": 0.7543 + }, + { + "start": 1217.8, + "end": 1217.8, + "probability": 0.2868 + }, + { + "start": 1220.3, + "end": 1220.68, + "probability": 0.0172 + }, + { + "start": 1220.68, + "end": 1220.74, + "probability": 0.0262 + }, + { + "start": 1220.74, + "end": 1220.74, + "probability": 0.0133 + }, + { + "start": 1220.74, + "end": 1221.86, + "probability": 0.1176 + }, + { + "start": 1221.86, + "end": 1222.74, + "probability": 0.7017 + }, + { + "start": 1222.92, + "end": 1223.32, + "probability": 0.6347 + }, + { + "start": 1223.76, + "end": 1223.76, + "probability": 0.7146 + }, + { + "start": 1223.76, + "end": 1223.76, + "probability": 0.1152 + }, + { + "start": 1223.76, + "end": 1223.76, + "probability": 0.6719 + }, + { + "start": 1223.76, + "end": 1226.22, + "probability": 0.8452 + }, + { + "start": 1226.24, + "end": 1226.48, + "probability": 0.0888 + }, + { + "start": 1226.48, + "end": 1227.38, + "probability": 0.017 + }, + { + "start": 1227.38, + "end": 1228.12, + "probability": 0.6115 + }, + { + "start": 1229.0, + "end": 1233.54, + "probability": 0.6682 + }, + { + "start": 1234.14, + "end": 1234.34, + "probability": 0.0378 + }, + { + "start": 1234.34, + "end": 1234.34, + "probability": 0.0056 + }, + { + "start": 1234.34, + "end": 1236.46, + "probability": 0.394 + }, + { + "start": 1237.0, + "end": 1237.0, + "probability": 0.1448 + }, + { + "start": 1237.0, + "end": 1238.84, + "probability": 0.9301 + }, + { + "start": 1238.94, + "end": 1239.14, + "probability": 0.0051 + }, + { + "start": 1239.3, + "end": 1239.46, + "probability": 0.0066 + }, + { + "start": 1239.46, + "end": 1239.46, + "probability": 0.2698 + }, + { + "start": 1239.46, + "end": 1240.31, + "probability": 0.9727 + }, + { + "start": 1241.24, + "end": 1241.88, + "probability": 0.6349 + }, + { + "start": 1241.96, + "end": 1242.02, + "probability": 0.1486 + }, + { + "start": 1242.02, + "end": 1243.6, + "probability": 0.7731 + }, + { + "start": 1243.62, + "end": 1244.02, + "probability": 0.3468 + }, + { + "start": 1244.08, + "end": 1246.26, + "probability": 0.6556 + }, + { + "start": 1246.52, + "end": 1247.52, + "probability": 0.4549 + }, + { + "start": 1247.72, + "end": 1248.88, + "probability": 0.2633 + }, + { + "start": 1249.28, + "end": 1249.84, + "probability": 0.6275 + }, + { + "start": 1249.94, + "end": 1250.46, + "probability": 0.0663 + }, + { + "start": 1250.46, + "end": 1251.5, + "probability": 0.4553 + }, + { + "start": 1251.59, + "end": 1251.98, + "probability": 0.193 + }, + { + "start": 1252.12, + "end": 1252.12, + "probability": 0.1023 + }, + { + "start": 1252.12, + "end": 1252.78, + "probability": 0.6963 + }, + { + "start": 1252.84, + "end": 1253.34, + "probability": 0.6098 + }, + { + "start": 1254.0, + "end": 1254.1, + "probability": 0.7234 + }, + { + "start": 1254.5, + "end": 1255.85, + "probability": 0.4271 + }, + { + "start": 1256.96, + "end": 1256.96, + "probability": 0.0641 + }, + { + "start": 1256.96, + "end": 1258.44, + "probability": 0.3552 + }, + { + "start": 1258.54, + "end": 1259.8, + "probability": 0.9593 + }, + { + "start": 1260.54, + "end": 1263.22, + "probability": 0.9768 + }, + { + "start": 1263.36, + "end": 1264.34, + "probability": 0.6355 + }, + { + "start": 1264.5, + "end": 1265.6, + "probability": 0.2714 + }, + { + "start": 1266.68, + "end": 1269.2, + "probability": 0.2003 + }, + { + "start": 1271.6, + "end": 1272.08, + "probability": 0.0413 + }, + { + "start": 1272.08, + "end": 1272.08, + "probability": 0.0232 + }, + { + "start": 1272.08, + "end": 1272.08, + "probability": 0.0798 + }, + { + "start": 1272.08, + "end": 1272.08, + "probability": 0.0602 + }, + { + "start": 1272.08, + "end": 1276.74, + "probability": 0.9855 + }, + { + "start": 1276.74, + "end": 1280.92, + "probability": 0.9597 + }, + { + "start": 1281.96, + "end": 1283.62, + "probability": 0.9166 + }, + { + "start": 1283.72, + "end": 1286.0, + "probability": 0.8877 + }, + { + "start": 1286.2, + "end": 1288.68, + "probability": 0.9976 + }, + { + "start": 1289.16, + "end": 1291.74, + "probability": 0.9921 + }, + { + "start": 1291.84, + "end": 1292.9, + "probability": 0.0424 + }, + { + "start": 1292.9, + "end": 1293.67, + "probability": 0.2017 + }, + { + "start": 1294.56, + "end": 1294.56, + "probability": 0.1995 + }, + { + "start": 1294.56, + "end": 1299.26, + "probability": 0.9431 + }, + { + "start": 1299.86, + "end": 1304.98, + "probability": 0.9892 + }, + { + "start": 1305.4, + "end": 1305.76, + "probability": 0.7642 + }, + { + "start": 1305.82, + "end": 1308.28, + "probability": 0.9698 + }, + { + "start": 1308.8, + "end": 1314.2, + "probability": 0.9682 + }, + { + "start": 1314.48, + "end": 1315.28, + "probability": 0.8223 + }, + { + "start": 1315.3, + "end": 1316.48, + "probability": 0.6934 + }, + { + "start": 1316.66, + "end": 1318.96, + "probability": 0.9912 + }, + { + "start": 1319.1, + "end": 1321.36, + "probability": 0.9929 + }, + { + "start": 1322.06, + "end": 1324.84, + "probability": 0.9328 + }, + { + "start": 1325.18, + "end": 1326.6, + "probability": 0.9454 + }, + { + "start": 1326.68, + "end": 1332.2, + "probability": 0.9966 + }, + { + "start": 1332.5, + "end": 1335.3, + "probability": 0.9995 + }, + { + "start": 1335.78, + "end": 1339.96, + "probability": 0.9946 + }, + { + "start": 1340.26, + "end": 1343.52, + "probability": 0.9516 + }, + { + "start": 1344.02, + "end": 1348.0, + "probability": 0.9857 + }, + { + "start": 1348.08, + "end": 1348.58, + "probability": 0.9756 + }, + { + "start": 1349.26, + "end": 1350.53, + "probability": 0.9917 + }, + { + "start": 1350.9, + "end": 1351.62, + "probability": 0.9184 + }, + { + "start": 1351.76, + "end": 1353.68, + "probability": 0.9979 + }, + { + "start": 1353.72, + "end": 1355.86, + "probability": 0.9845 + }, + { + "start": 1356.18, + "end": 1357.56, + "probability": 0.9873 + }, + { + "start": 1357.6, + "end": 1360.7, + "probability": 0.6678 + }, + { + "start": 1360.9, + "end": 1362.48, + "probability": 0.9513 + }, + { + "start": 1363.12, + "end": 1366.58, + "probability": 0.9851 + }, + { + "start": 1367.14, + "end": 1367.6, + "probability": 0.9471 + }, + { + "start": 1367.7, + "end": 1368.44, + "probability": 0.9883 + }, + { + "start": 1368.58, + "end": 1369.34, + "probability": 0.9142 + }, + { + "start": 1369.74, + "end": 1373.44, + "probability": 0.9963 + }, + { + "start": 1373.72, + "end": 1376.12, + "probability": 0.9865 + }, + { + "start": 1376.52, + "end": 1379.54, + "probability": 0.9965 + }, + { + "start": 1379.96, + "end": 1383.36, + "probability": 0.9195 + }, + { + "start": 1383.8, + "end": 1388.54, + "probability": 0.9939 + }, + { + "start": 1389.0, + "end": 1390.66, + "probability": 0.9956 + }, + { + "start": 1391.18, + "end": 1393.94, + "probability": 0.8778 + }, + { + "start": 1394.56, + "end": 1395.32, + "probability": 0.6315 + }, + { + "start": 1396.02, + "end": 1396.08, + "probability": 0.0336 + }, + { + "start": 1396.08, + "end": 1397.58, + "probability": 0.704 + }, + { + "start": 1398.22, + "end": 1398.58, + "probability": 0.4868 + }, + { + "start": 1398.82, + "end": 1399.3, + "probability": 0.0216 + }, + { + "start": 1399.3, + "end": 1403.64, + "probability": 0.8893 + }, + { + "start": 1404.58, + "end": 1405.06, + "probability": 0.0125 + }, + { + "start": 1405.06, + "end": 1405.06, + "probability": 0.0561 + }, + { + "start": 1405.06, + "end": 1405.34, + "probability": 0.2851 + }, + { + "start": 1406.04, + "end": 1406.08, + "probability": 0.0123 + }, + { + "start": 1406.08, + "end": 1407.62, + "probability": 0.4833 + }, + { + "start": 1407.74, + "end": 1407.76, + "probability": 0.0547 + }, + { + "start": 1407.76, + "end": 1409.64, + "probability": 0.7596 + }, + { + "start": 1409.8, + "end": 1411.4, + "probability": 0.5737 + }, + { + "start": 1411.4, + "end": 1411.72, + "probability": 0.1682 + }, + { + "start": 1411.98, + "end": 1413.4, + "probability": 0.249 + }, + { + "start": 1413.4, + "end": 1413.4, + "probability": 0.0007 + }, + { + "start": 1413.4, + "end": 1414.36, + "probability": 0.3737 + }, + { + "start": 1415.08, + "end": 1417.18, + "probability": 0.228 + }, + { + "start": 1418.26, + "end": 1418.78, + "probability": 0.0897 + }, + { + "start": 1418.78, + "end": 1420.94, + "probability": 0.763 + }, + { + "start": 1421.04, + "end": 1422.1, + "probability": 0.7378 + }, + { + "start": 1422.36, + "end": 1422.36, + "probability": 0.0524 + }, + { + "start": 1422.36, + "end": 1423.78, + "probability": 0.4573 + }, + { + "start": 1423.78, + "end": 1424.46, + "probability": 0.3958 + }, + { + "start": 1425.3, + "end": 1427.96, + "probability": 0.1199 + }, + { + "start": 1428.34, + "end": 1428.81, + "probability": 0.0343 + }, + { + "start": 1428.86, + "end": 1428.92, + "probability": 0.7106 + }, + { + "start": 1428.92, + "end": 1430.36, + "probability": 0.69 + }, + { + "start": 1431.1, + "end": 1431.1, + "probability": 0.0344 + }, + { + "start": 1431.1, + "end": 1431.1, + "probability": 0.3137 + }, + { + "start": 1431.1, + "end": 1431.5, + "probability": 0.3996 + }, + { + "start": 1431.5, + "end": 1432.3, + "probability": 0.672 + }, + { + "start": 1434.62, + "end": 1435.7, + "probability": 0.6584 + }, + { + "start": 1435.8, + "end": 1435.89, + "probability": 0.2317 + }, + { + "start": 1436.3, + "end": 1436.38, + "probability": 0.7241 + }, + { + "start": 1436.38, + "end": 1437.64, + "probability": 0.7495 + }, + { + "start": 1437.98, + "end": 1440.02, + "probability": 0.9939 + }, + { + "start": 1441.04, + "end": 1441.12, + "probability": 0.3365 + }, + { + "start": 1441.12, + "end": 1441.12, + "probability": 0.0155 + }, + { + "start": 1441.12, + "end": 1442.42, + "probability": 0.8512 + }, + { + "start": 1442.98, + "end": 1444.52, + "probability": 0.6423 + }, + { + "start": 1444.72, + "end": 1444.74, + "probability": 0.0045 + }, + { + "start": 1444.74, + "end": 1444.74, + "probability": 0.1295 + }, + { + "start": 1444.74, + "end": 1444.74, + "probability": 0.3401 + }, + { + "start": 1444.74, + "end": 1444.74, + "probability": 0.4073 + }, + { + "start": 1444.74, + "end": 1445.34, + "probability": 0.617 + }, + { + "start": 1445.7, + "end": 1446.36, + "probability": 0.6217 + }, + { + "start": 1446.36, + "end": 1446.99, + "probability": 0.0818 + }, + { + "start": 1448.06, + "end": 1448.94, + "probability": 0.3789 + }, + { + "start": 1449.58, + "end": 1452.45, + "probability": 0.5226 + }, + { + "start": 1455.06, + "end": 1455.8, + "probability": 0.1778 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.0, + "end": 1497.0, + "probability": 0.0 + }, + { + "start": 1497.08, + "end": 1498.72, + "probability": 0.799 + }, + { + "start": 1499.16, + "end": 1500.12, + "probability": 0.8091 + }, + { + "start": 1500.16, + "end": 1504.9, + "probability": 0.9739 + }, + { + "start": 1505.34, + "end": 1505.34, + "probability": 0.1261 + }, + { + "start": 1505.34, + "end": 1505.34, + "probability": 0.0053 + }, + { + "start": 1505.36, + "end": 1507.08, + "probability": 0.9212 + }, + { + "start": 1509.62, + "end": 1509.62, + "probability": 0.0768 + }, + { + "start": 1509.62, + "end": 1512.5, + "probability": 0.6745 + }, + { + "start": 1512.96, + "end": 1514.42, + "probability": 0.7427 + }, + { + "start": 1514.54, + "end": 1514.6, + "probability": 0.0261 + }, + { + "start": 1514.6, + "end": 1517.44, + "probability": 0.9241 + }, + { + "start": 1517.5, + "end": 1519.94, + "probability": 0.8027 + }, + { + "start": 1520.6, + "end": 1521.94, + "probability": 0.5135 + }, + { + "start": 1522.46, + "end": 1523.78, + "probability": 0.8635 + }, + { + "start": 1523.82, + "end": 1524.58, + "probability": 0.0954 + }, + { + "start": 1524.58, + "end": 1526.18, + "probability": 0.2413 + }, + { + "start": 1526.18, + "end": 1526.18, + "probability": 0.6619 + }, + { + "start": 1526.18, + "end": 1526.88, + "probability": 0.0426 + }, + { + "start": 1527.84, + "end": 1527.84, + "probability": 0.1119 + }, + { + "start": 1527.84, + "end": 1528.24, + "probability": 0.0084 + }, + { + "start": 1528.24, + "end": 1529.38, + "probability": 0.5443 + }, + { + "start": 1529.56, + "end": 1530.54, + "probability": 0.8388 + }, + { + "start": 1530.54, + "end": 1534.34, + "probability": 0.969 + }, + { + "start": 1534.96, + "end": 1534.98, + "probability": 0.0107 + }, + { + "start": 1534.98, + "end": 1534.98, + "probability": 0.0563 + }, + { + "start": 1534.98, + "end": 1536.44, + "probability": 0.9407 + }, + { + "start": 1536.54, + "end": 1536.8, + "probability": 0.3086 + }, + { + "start": 1537.02, + "end": 1537.02, + "probability": 0.1338 + }, + { + "start": 1537.02, + "end": 1537.46, + "probability": 0.2767 + }, + { + "start": 1537.46, + "end": 1539.74, + "probability": 0.9863 + }, + { + "start": 1540.2, + "end": 1540.2, + "probability": 0.0543 + }, + { + "start": 1540.2, + "end": 1541.44, + "probability": 0.7384 + }, + { + "start": 1541.6, + "end": 1542.22, + "probability": 0.3702 + }, + { + "start": 1542.28, + "end": 1544.14, + "probability": 0.8441 + }, + { + "start": 1544.2, + "end": 1545.44, + "probability": 0.9142 + }, + { + "start": 1545.86, + "end": 1547.52, + "probability": 0.0316 + }, + { + "start": 1547.52, + "end": 1547.52, + "probability": 0.3121 + }, + { + "start": 1547.52, + "end": 1547.52, + "probability": 0.3069 + }, + { + "start": 1547.52, + "end": 1547.52, + "probability": 0.0354 + }, + { + "start": 1547.52, + "end": 1548.94, + "probability": 0.58 + }, + { + "start": 1549.84, + "end": 1552.54, + "probability": 0.2092 + }, + { + "start": 1553.32, + "end": 1553.5, + "probability": 0.0093 + }, + { + "start": 1553.92, + "end": 1553.92, + "probability": 0.2195 + }, + { + "start": 1553.92, + "end": 1553.92, + "probability": 0.3587 + }, + { + "start": 1554.04, + "end": 1555.1, + "probability": 0.9444 + }, + { + "start": 1555.1, + "end": 1556.58, + "probability": 0.1889 + }, + { + "start": 1557.08, + "end": 1558.76, + "probability": 0.2873 + }, + { + "start": 1559.42, + "end": 1561.2, + "probability": 0.8018 + }, + { + "start": 1561.58, + "end": 1565.62, + "probability": 0.9118 + }, + { + "start": 1565.96, + "end": 1568.33, + "probability": 0.1303 + }, + { + "start": 1568.9, + "end": 1568.9, + "probability": 0.1887 + }, + { + "start": 1568.9, + "end": 1570.48, + "probability": 0.7756 + }, + { + "start": 1570.86, + "end": 1573.34, + "probability": 0.7258 + }, + { + "start": 1573.68, + "end": 1575.14, + "probability": 0.0585 + }, + { + "start": 1576.16, + "end": 1579.06, + "probability": 0.1277 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.0, + "end": 1689.0, + "probability": 0.0 + }, + { + "start": 1689.1, + "end": 1689.14, + "probability": 0.0194 + }, + { + "start": 1689.14, + "end": 1692.02, + "probability": 0.7349 + }, + { + "start": 1692.6, + "end": 1694.84, + "probability": 0.9956 + }, + { + "start": 1694.86, + "end": 1696.32, + "probability": 0.6751 + }, + { + "start": 1696.7, + "end": 1697.26, + "probability": 0.4775 + }, + { + "start": 1697.42, + "end": 1697.98, + "probability": 0.7346 + }, + { + "start": 1698.32, + "end": 1702.26, + "probability": 0.1594 + }, + { + "start": 1704.26, + "end": 1704.94, + "probability": 0.0876 + }, + { + "start": 1704.94, + "end": 1706.2, + "probability": 0.0252 + }, + { + "start": 1706.22, + "end": 1707.54, + "probability": 0.0808 + }, + { + "start": 1707.86, + "end": 1709.4, + "probability": 0.072 + }, + { + "start": 1710.2, + "end": 1710.96, + "probability": 0.1778 + }, + { + "start": 1713.52, + "end": 1717.58, + "probability": 0.409 + }, + { + "start": 1721.68, + "end": 1721.88, + "probability": 0.3464 + }, + { + "start": 1722.56, + "end": 1724.46, + "probability": 0.0801 + }, + { + "start": 1726.12, + "end": 1726.56, + "probability": 0.0968 + }, + { + "start": 1730.2, + "end": 1731.39, + "probability": 0.0418 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.0, + "end": 1811.0, + "probability": 0.0 + }, + { + "start": 1811.18, + "end": 1814.82, + "probability": 0.5499 + }, + { + "start": 1814.98, + "end": 1815.58, + "probability": 0.5441 + }, + { + "start": 1816.64, + "end": 1817.28, + "probability": 0.5054 + }, + { + "start": 1817.78, + "end": 1819.96, + "probability": 0.7884 + }, + { + "start": 1820.48, + "end": 1821.16, + "probability": 0.8577 + }, + { + "start": 1822.24, + "end": 1824.3, + "probability": 0.5044 + }, + { + "start": 1824.76, + "end": 1829.82, + "probability": 0.3097 + }, + { + "start": 1829.82, + "end": 1832.38, + "probability": 0.7404 + }, + { + "start": 1833.96, + "end": 1837.24, + "probability": 0.7656 + }, + { + "start": 1837.98, + "end": 1841.12, + "probability": 0.9939 + }, + { + "start": 1841.74, + "end": 1844.12, + "probability": 0.806 + }, + { + "start": 1844.58, + "end": 1845.38, + "probability": 0.9664 + }, + { + "start": 1846.3, + "end": 1850.31, + "probability": 0.9707 + }, + { + "start": 1852.1, + "end": 1853.46, + "probability": 0.7428 + }, + { + "start": 1855.08, + "end": 1857.06, + "probability": 0.9932 + }, + { + "start": 1858.04, + "end": 1862.48, + "probability": 0.9658 + }, + { + "start": 1863.18, + "end": 1864.18, + "probability": 0.8796 + }, + { + "start": 1865.44, + "end": 1866.38, + "probability": 0.6503 + }, + { + "start": 1867.24, + "end": 1870.16, + "probability": 0.9032 + }, + { + "start": 1871.52, + "end": 1872.64, + "probability": 0.5008 + }, + { + "start": 1874.0, + "end": 1874.7, + "probability": 0.9864 + }, + { + "start": 1876.14, + "end": 1877.24, + "probability": 0.9255 + }, + { + "start": 1878.3, + "end": 1880.12, + "probability": 0.9126 + }, + { + "start": 1880.96, + "end": 1882.0, + "probability": 0.927 + }, + { + "start": 1883.06, + "end": 1883.52, + "probability": 0.6569 + }, + { + "start": 1884.32, + "end": 1885.02, + "probability": 0.9928 + }, + { + "start": 1885.52, + "end": 1886.1, + "probability": 0.9778 + }, + { + "start": 1887.34, + "end": 1887.92, + "probability": 0.4317 + }, + { + "start": 1888.76, + "end": 1890.86, + "probability": 0.8845 + }, + { + "start": 1892.14, + "end": 1894.32, + "probability": 0.9758 + }, + { + "start": 1895.3, + "end": 1896.4, + "probability": 0.9305 + }, + { + "start": 1897.02, + "end": 1899.4, + "probability": 0.9161 + }, + { + "start": 1899.98, + "end": 1901.72, + "probability": 0.9571 + }, + { + "start": 1902.24, + "end": 1905.24, + "probability": 0.8167 + }, + { + "start": 1906.2, + "end": 1906.8, + "probability": 0.4064 + }, + { + "start": 1906.84, + "end": 1912.74, + "probability": 0.9062 + }, + { + "start": 1913.24, + "end": 1914.52, + "probability": 0.4085 + }, + { + "start": 1915.74, + "end": 1916.5, + "probability": 0.884 + }, + { + "start": 1917.44, + "end": 1919.64, + "probability": 0.8701 + }, + { + "start": 1920.18, + "end": 1921.52, + "probability": 0.9881 + }, + { + "start": 1922.42, + "end": 1926.58, + "probability": 0.9749 + }, + { + "start": 1927.34, + "end": 1929.96, + "probability": 0.0368 + }, + { + "start": 1931.22, + "end": 1932.36, + "probability": 0.1055 + }, + { + "start": 1932.58, + "end": 1933.57, + "probability": 0.5215 + }, + { + "start": 1934.12, + "end": 1934.86, + "probability": 0.7065 + }, + { + "start": 1934.98, + "end": 1937.38, + "probability": 0.4236 + }, + { + "start": 1937.7, + "end": 1939.76, + "probability": 0.4121 + }, + { + "start": 1939.9, + "end": 1940.04, + "probability": 0.3159 + }, + { + "start": 1941.79, + "end": 1945.79, + "probability": 0.9429 + }, + { + "start": 1946.94, + "end": 1947.54, + "probability": 0.0491 + }, + { + "start": 1947.54, + "end": 1950.5, + "probability": 0.9175 + }, + { + "start": 1950.58, + "end": 1951.32, + "probability": 0.6809 + }, + { + "start": 1952.04, + "end": 1953.4, + "probability": 0.7492 + }, + { + "start": 1954.24, + "end": 1955.02, + "probability": 0.8164 + }, + { + "start": 1955.78, + "end": 1958.08, + "probability": 0.7876 + }, + { + "start": 1958.16, + "end": 1959.06, + "probability": 0.7265 + }, + { + "start": 1959.24, + "end": 1960.22, + "probability": 0.5188 + }, + { + "start": 1960.26, + "end": 1961.32, + "probability": 0.9904 + }, + { + "start": 1962.3, + "end": 1964.76, + "probability": 0.9466 + }, + { + "start": 1965.3, + "end": 1967.99, + "probability": 0.9808 + }, + { + "start": 1969.46, + "end": 1974.54, + "probability": 0.9886 + }, + { + "start": 1974.98, + "end": 1976.72, + "probability": 0.8151 + }, + { + "start": 1977.34, + "end": 1980.76, + "probability": 0.7306 + }, + { + "start": 1981.56, + "end": 1982.68, + "probability": 0.9565 + }, + { + "start": 1983.28, + "end": 1985.38, + "probability": 0.9741 + }, + { + "start": 1985.9, + "end": 1986.16, + "probability": 0.6807 + }, + { + "start": 1986.16, + "end": 1986.9, + "probability": 0.5291 + }, + { + "start": 1987.64, + "end": 1989.94, + "probability": 0.83 + }, + { + "start": 1990.16, + "end": 1992.72, + "probability": 0.9146 + }, + { + "start": 1994.2, + "end": 1995.56, + "probability": 0.917 + }, + { + "start": 1997.54, + "end": 2001.02, + "probability": 0.6338 + }, + { + "start": 2001.64, + "end": 2002.68, + "probability": 0.8691 + }, + { + "start": 2006.72, + "end": 2006.98, + "probability": 0.0224 + }, + { + "start": 2006.98, + "end": 2006.98, + "probability": 0.0656 + }, + { + "start": 2006.98, + "end": 2012.16, + "probability": 0.9626 + }, + { + "start": 2013.1, + "end": 2019.54, + "probability": 0.9844 + }, + { + "start": 2020.56, + "end": 2022.82, + "probability": 0.859 + }, + { + "start": 2023.6, + "end": 2027.74, + "probability": 0.9723 + }, + { + "start": 2028.7, + "end": 2029.9, + "probability": 0.9678 + }, + { + "start": 2031.42, + "end": 2033.94, + "probability": 0.9399 + }, + { + "start": 2034.8, + "end": 2037.4, + "probability": 0.9441 + }, + { + "start": 2038.56, + "end": 2042.42, + "probability": 0.7983 + }, + { + "start": 2042.58, + "end": 2044.64, + "probability": 0.9093 + }, + { + "start": 2045.08, + "end": 2046.64, + "probability": 0.9615 + }, + { + "start": 2047.14, + "end": 2049.34, + "probability": 0.9442 + }, + { + "start": 2049.44, + "end": 2053.06, + "probability": 0.8116 + }, + { + "start": 2053.3, + "end": 2056.96, + "probability": 0.9238 + }, + { + "start": 2058.14, + "end": 2060.4, + "probability": 0.7179 + }, + { + "start": 2061.36, + "end": 2063.34, + "probability": 0.9181 + }, + { + "start": 2065.76, + "end": 2067.98, + "probability": 0.8924 + }, + { + "start": 2068.58, + "end": 2069.74, + "probability": 0.9209 + }, + { + "start": 2071.0, + "end": 2072.24, + "probability": 0.9573 + }, + { + "start": 2072.82, + "end": 2074.58, + "probability": 0.7346 + }, + { + "start": 2075.38, + "end": 2076.52, + "probability": 0.9386 + }, + { + "start": 2077.58, + "end": 2080.7, + "probability": 0.9781 + }, + { + "start": 2080.98, + "end": 2081.92, + "probability": 0.5402 + }, + { + "start": 2082.3, + "end": 2085.36, + "probability": 0.9938 + }, + { + "start": 2085.88, + "end": 2086.8, + "probability": 0.5283 + }, + { + "start": 2089.08, + "end": 2091.7, + "probability": 0.3063 + }, + { + "start": 2091.7, + "end": 2092.3, + "probability": 0.583 + }, + { + "start": 2092.86, + "end": 2095.6, + "probability": 0.9605 + }, + { + "start": 2098.04, + "end": 2104.02, + "probability": 0.9988 + }, + { + "start": 2104.76, + "end": 2106.6, + "probability": 0.9844 + }, + { + "start": 2107.34, + "end": 2111.54, + "probability": 0.9971 + }, + { + "start": 2112.7, + "end": 2117.04, + "probability": 0.8316 + }, + { + "start": 2117.76, + "end": 2119.68, + "probability": 0.7838 + }, + { + "start": 2120.32, + "end": 2121.26, + "probability": 0.6339 + }, + { + "start": 2123.58, + "end": 2124.18, + "probability": 0.6183 + }, + { + "start": 2124.86, + "end": 2125.7, + "probability": 0.5336 + }, + { + "start": 2126.3, + "end": 2128.46, + "probability": 0.3104 + }, + { + "start": 2129.1, + "end": 2131.44, + "probability": 0.7087 + }, + { + "start": 2131.98, + "end": 2132.2, + "probability": 0.4991 + }, + { + "start": 2132.88, + "end": 2133.62, + "probability": 0.1593 + }, + { + "start": 2134.18, + "end": 2135.72, + "probability": 0.8951 + }, + { + "start": 2136.4, + "end": 2139.34, + "probability": 0.9915 + }, + { + "start": 2140.34, + "end": 2141.58, + "probability": 0.8077 + }, + { + "start": 2141.66, + "end": 2143.73, + "probability": 0.2097 + }, + { + "start": 2143.92, + "end": 2148.14, + "probability": 0.8985 + }, + { + "start": 2148.46, + "end": 2152.32, + "probability": 0.9678 + }, + { + "start": 2153.16, + "end": 2153.96, + "probability": 0.7505 + }, + { + "start": 2155.32, + "end": 2156.2, + "probability": 0.9932 + }, + { + "start": 2157.38, + "end": 2158.1, + "probability": 0.6526 + }, + { + "start": 2159.24, + "end": 2160.3, + "probability": 0.9177 + }, + { + "start": 2160.34, + "end": 2162.34, + "probability": 0.9197 + }, + { + "start": 2163.64, + "end": 2164.76, + "probability": 0.9756 + }, + { + "start": 2165.64, + "end": 2166.4, + "probability": 0.9111 + }, + { + "start": 2167.7, + "end": 2170.18, + "probability": 0.7441 + }, + { + "start": 2171.54, + "end": 2174.84, + "probability": 0.7461 + }, + { + "start": 2175.38, + "end": 2179.22, + "probability": 0.9781 + }, + { + "start": 2182.2, + "end": 2182.7, + "probability": 0.7941 + }, + { + "start": 2183.06, + "end": 2184.92, + "probability": 0.6186 + }, + { + "start": 2186.02, + "end": 2186.23, + "probability": 0.6436 + }, + { + "start": 2186.7, + "end": 2188.38, + "probability": 0.9595 + }, + { + "start": 2188.38, + "end": 2188.82, + "probability": 0.8664 + }, + { + "start": 2189.02, + "end": 2189.68, + "probability": 0.809 + }, + { + "start": 2190.52, + "end": 2191.2, + "probability": 0.094 + }, + { + "start": 2191.38, + "end": 2191.88, + "probability": 0.312 + }, + { + "start": 2192.0, + "end": 2199.98, + "probability": 0.9878 + }, + { + "start": 2200.92, + "end": 2202.81, + "probability": 0.994 + }, + { + "start": 2203.88, + "end": 2205.34, + "probability": 0.9878 + }, + { + "start": 2205.5, + "end": 2207.34, + "probability": 0.9951 + }, + { + "start": 2207.96, + "end": 2209.3, + "probability": 0.9946 + }, + { + "start": 2209.92, + "end": 2213.4, + "probability": 0.9932 + }, + { + "start": 2214.74, + "end": 2222.3, + "probability": 0.989 + }, + { + "start": 2223.44, + "end": 2224.24, + "probability": 0.6728 + }, + { + "start": 2224.7, + "end": 2226.04, + "probability": 0.85 + }, + { + "start": 2226.7, + "end": 2229.22, + "probability": 0.731 + }, + { + "start": 2229.5, + "end": 2235.56, + "probability": 0.9955 + }, + { + "start": 2236.58, + "end": 2237.1, + "probability": 0.85 + }, + { + "start": 2237.78, + "end": 2241.2, + "probability": 0.9995 + }, + { + "start": 2242.58, + "end": 2245.7, + "probability": 0.9622 + }, + { + "start": 2246.68, + "end": 2248.12, + "probability": 0.9308 + }, + { + "start": 2249.0, + "end": 2250.47, + "probability": 0.9763 + }, + { + "start": 2250.64, + "end": 2254.62, + "probability": 0.9282 + }, + { + "start": 2255.82, + "end": 2259.12, + "probability": 0.9281 + }, + { + "start": 2260.38, + "end": 2262.9, + "probability": 0.9762 + }, + { + "start": 2263.94, + "end": 2266.96, + "probability": 0.9857 + }, + { + "start": 2267.58, + "end": 2269.62, + "probability": 0.7979 + }, + { + "start": 2271.18, + "end": 2274.86, + "probability": 0.9735 + }, + { + "start": 2275.52, + "end": 2277.84, + "probability": 0.9958 + }, + { + "start": 2278.9, + "end": 2280.86, + "probability": 0.9978 + }, + { + "start": 2280.92, + "end": 2281.34, + "probability": 0.7973 + }, + { + "start": 2281.4, + "end": 2282.7, + "probability": 0.824 + }, + { + "start": 2282.72, + "end": 2282.98, + "probability": 0.0212 + }, + { + "start": 2283.08, + "end": 2283.59, + "probability": 0.4509 + }, + { + "start": 2284.3, + "end": 2285.48, + "probability": 0.7765 + }, + { + "start": 2286.12, + "end": 2288.92, + "probability": 0.5343 + }, + { + "start": 2288.94, + "end": 2289.76, + "probability": 0.9018 + }, + { + "start": 2289.86, + "end": 2290.68, + "probability": 0.9924 + }, + { + "start": 2290.82, + "end": 2291.75, + "probability": 0.2784 + }, + { + "start": 2292.8, + "end": 2299.1, + "probability": 0.9258 + }, + { + "start": 2300.02, + "end": 2300.64, + "probability": 0.7348 + }, + { + "start": 2301.2, + "end": 2304.1, + "probability": 0.9824 + }, + { + "start": 2306.14, + "end": 2307.18, + "probability": 0.9554 + }, + { + "start": 2307.86, + "end": 2309.36, + "probability": 0.9763 + }, + { + "start": 2311.02, + "end": 2311.02, + "probability": 0.6365 + }, + { + "start": 2311.06, + "end": 2312.18, + "probability": 0.685 + }, + { + "start": 2312.28, + "end": 2313.4, + "probability": 0.9638 + }, + { + "start": 2314.64, + "end": 2317.5, + "probability": 0.9395 + }, + { + "start": 2318.18, + "end": 2323.04, + "probability": 0.9404 + }, + { + "start": 2323.98, + "end": 2326.86, + "probability": 0.8691 + }, + { + "start": 2327.8, + "end": 2330.96, + "probability": 0.8348 + }, + { + "start": 2332.0, + "end": 2333.66, + "probability": 0.9064 + }, + { + "start": 2335.06, + "end": 2339.58, + "probability": 0.9941 + }, + { + "start": 2340.44, + "end": 2341.74, + "probability": 0.925 + }, + { + "start": 2342.2, + "end": 2345.6, + "probability": 0.8966 + }, + { + "start": 2346.0, + "end": 2346.18, + "probability": 0.6284 + }, + { + "start": 2346.36, + "end": 2348.3, + "probability": 0.8914 + }, + { + "start": 2348.9, + "end": 2351.68, + "probability": 0.9334 + }, + { + "start": 2352.06, + "end": 2358.16, + "probability": 0.957 + }, + { + "start": 2358.16, + "end": 2363.8, + "probability": 0.9969 + }, + { + "start": 2365.56, + "end": 2368.72, + "probability": 0.9658 + }, + { + "start": 2369.28, + "end": 2374.86, + "probability": 0.8794 + }, + { + "start": 2376.04, + "end": 2378.52, + "probability": 0.1411 + }, + { + "start": 2388.54, + "end": 2388.58, + "probability": 0.1168 + }, + { + "start": 2397.72, + "end": 2402.0, + "probability": 0.6157 + }, + { + "start": 2403.21, + "end": 2407.38, + "probability": 0.8836 + }, + { + "start": 2408.54, + "end": 2409.44, + "probability": 0.9126 + }, + { + "start": 2410.52, + "end": 2410.95, + "probability": 0.7898 + }, + { + "start": 2411.94, + "end": 2412.54, + "probability": 0.8872 + }, + { + "start": 2414.26, + "end": 2414.96, + "probability": 0.9396 + }, + { + "start": 2416.18, + "end": 2418.14, + "probability": 0.9907 + }, + { + "start": 2419.48, + "end": 2420.42, + "probability": 0.9359 + }, + { + "start": 2421.56, + "end": 2422.68, + "probability": 0.7632 + }, + { + "start": 2423.86, + "end": 2425.4, + "probability": 0.9508 + }, + { + "start": 2425.94, + "end": 2426.9, + "probability": 0.7419 + }, + { + "start": 2428.06, + "end": 2430.6, + "probability": 0.8745 + }, + { + "start": 2431.02, + "end": 2431.74, + "probability": 0.8295 + }, + { + "start": 2432.44, + "end": 2432.6, + "probability": 0.054 + }, + { + "start": 2432.6, + "end": 2434.26, + "probability": 0.9478 + }, + { + "start": 2435.1, + "end": 2436.8, + "probability": 0.9324 + }, + { + "start": 2438.6, + "end": 2439.54, + "probability": 0.4503 + }, + { + "start": 2440.56, + "end": 2441.12, + "probability": 0.9872 + }, + { + "start": 2441.78, + "end": 2442.44, + "probability": 0.4595 + }, + { + "start": 2443.34, + "end": 2443.9, + "probability": 0.4621 + }, + { + "start": 2445.2, + "end": 2447.74, + "probability": 0.5095 + }, + { + "start": 2448.6, + "end": 2449.98, + "probability": 0.8054 + }, + { + "start": 2451.02, + "end": 2451.38, + "probability": 0.7888 + }, + { + "start": 2452.66, + "end": 2453.28, + "probability": 0.6829 + }, + { + "start": 2454.42, + "end": 2456.14, + "probability": 0.8181 + }, + { + "start": 2457.86, + "end": 2460.7, + "probability": 0.9983 + }, + { + "start": 2461.26, + "end": 2462.32, + "probability": 0.9799 + }, + { + "start": 2463.18, + "end": 2464.76, + "probability": 0.9666 + }, + { + "start": 2465.82, + "end": 2469.6, + "probability": 0.7578 + }, + { + "start": 2470.1, + "end": 2470.52, + "probability": 0.9709 + }, + { + "start": 2471.02, + "end": 2471.62, + "probability": 0.7751 + }, + { + "start": 2472.68, + "end": 2474.88, + "probability": 0.986 + }, + { + "start": 2476.1, + "end": 2477.32, + "probability": 0.6129 + }, + { + "start": 2478.02, + "end": 2479.46, + "probability": 0.8368 + }, + { + "start": 2480.76, + "end": 2482.44, + "probability": 0.9957 + }, + { + "start": 2483.24, + "end": 2488.92, + "probability": 0.9976 + }, + { + "start": 2491.1, + "end": 2493.06, + "probability": 0.9766 + }, + { + "start": 2493.84, + "end": 2497.04, + "probability": 0.908 + }, + { + "start": 2497.36, + "end": 2498.24, + "probability": 0.9618 + }, + { + "start": 2498.82, + "end": 2500.96, + "probability": 0.9866 + }, + { + "start": 2501.52, + "end": 2502.26, + "probability": 0.6957 + }, + { + "start": 2503.18, + "end": 2506.5, + "probability": 0.9137 + }, + { + "start": 2506.56, + "end": 2507.2, + "probability": 0.8964 + }, + { + "start": 2507.96, + "end": 2507.98, + "probability": 0.0589 + }, + { + "start": 2507.98, + "end": 2511.56, + "probability": 0.6667 + }, + { + "start": 2512.06, + "end": 2512.06, + "probability": 0.0288 + }, + { + "start": 2512.06, + "end": 2512.06, + "probability": 0.6978 + }, + { + "start": 2512.06, + "end": 2513.22, + "probability": 0.5236 + }, + { + "start": 2513.56, + "end": 2513.56, + "probability": 0.0134 + }, + { + "start": 2513.56, + "end": 2514.88, + "probability": 0.4148 + }, + { + "start": 2515.32, + "end": 2517.1, + "probability": 0.8029 + }, + { + "start": 2517.22, + "end": 2517.36, + "probability": 0.0356 + }, + { + "start": 2517.36, + "end": 2518.76, + "probability": 0.3518 + }, + { + "start": 2519.14, + "end": 2519.26, + "probability": 0.0972 + }, + { + "start": 2519.26, + "end": 2520.39, + "probability": 0.8231 + }, + { + "start": 2520.82, + "end": 2524.4, + "probability": 0.3923 + }, + { + "start": 2524.4, + "end": 2526.08, + "probability": 0.3458 + }, + { + "start": 2526.08, + "end": 2528.7, + "probability": 0.9492 + }, + { + "start": 2529.3, + "end": 2529.42, + "probability": 0.0919 + }, + { + "start": 2529.7, + "end": 2531.14, + "probability": 0.8063 + }, + { + "start": 2531.72, + "end": 2532.8, + "probability": 0.8303 + }, + { + "start": 2532.94, + "end": 2533.58, + "probability": 0.2963 + }, + { + "start": 2533.58, + "end": 2533.76, + "probability": 0.2555 + }, + { + "start": 2533.98, + "end": 2535.3, + "probability": 0.9118 + }, + { + "start": 2535.82, + "end": 2535.86, + "probability": 0.0277 + }, + { + "start": 2535.86, + "end": 2536.79, + "probability": 0.3874 + }, + { + "start": 2537.12, + "end": 2538.3, + "probability": 0.8332 + }, + { + "start": 2538.52, + "end": 2541.94, + "probability": 0.923 + }, + { + "start": 2542.12, + "end": 2545.44, + "probability": 0.7399 + }, + { + "start": 2545.68, + "end": 2546.54, + "probability": 0.7112 + }, + { + "start": 2547.16, + "end": 2548.72, + "probability": 0.9564 + }, + { + "start": 2549.14, + "end": 2552.14, + "probability": 0.7449 + }, + { + "start": 2552.14, + "end": 2554.72, + "probability": 0.8125 + }, + { + "start": 2555.46, + "end": 2557.26, + "probability": 0.921 + }, + { + "start": 2557.72, + "end": 2559.38, + "probability": 0.9888 + }, + { + "start": 2560.38, + "end": 2560.6, + "probability": 0.3407 + }, + { + "start": 2560.62, + "end": 2561.78, + "probability": 0.8256 + }, + { + "start": 2562.14, + "end": 2569.28, + "probability": 0.8229 + }, + { + "start": 2569.74, + "end": 2570.02, + "probability": 0.1638 + }, + { + "start": 2570.02, + "end": 2570.02, + "probability": 0.0804 + }, + { + "start": 2570.02, + "end": 2570.02, + "probability": 0.029 + }, + { + "start": 2570.02, + "end": 2570.02, + "probability": 0.3498 + }, + { + "start": 2570.02, + "end": 2570.72, + "probability": 0.6956 + }, + { + "start": 2571.46, + "end": 2574.78, + "probability": 0.928 + }, + { + "start": 2575.68, + "end": 2577.06, + "probability": 0.9254 + }, + { + "start": 2592.59, + "end": 2596.02, + "probability": 0.0601 + }, + { + "start": 2596.02, + "end": 2596.96, + "probability": 0.1007 + }, + { + "start": 2596.96, + "end": 2599.06, + "probability": 0.1141 + }, + { + "start": 2599.06, + "end": 2599.92, + "probability": 0.1147 + }, + { + "start": 2599.92, + "end": 2601.82, + "probability": 0.1415 + }, + { + "start": 2607.62, + "end": 2608.94, + "probability": 0.0412 + }, + { + "start": 2619.26, + "end": 2621.7, + "probability": 0.1437 + }, + { + "start": 2623.08, + "end": 2623.88, + "probability": 0.1089 + }, + { + "start": 2623.88, + "end": 2624.48, + "probability": 0.0156 + }, + { + "start": 2624.48, + "end": 2627.96, + "probability": 0.1839 + }, + { + "start": 2629.08, + "end": 2630.86, + "probability": 0.0911 + }, + { + "start": 2630.86, + "end": 2631.1, + "probability": 0.0659 + }, + { + "start": 2631.1, + "end": 2631.1, + "probability": 0.1424 + }, + { + "start": 2631.18, + "end": 2633.82, + "probability": 0.0075 + }, + { + "start": 2636.14, + "end": 2638.88, + "probability": 0.0597 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.0, + "end": 2673.0, + "probability": 0.0 + }, + { + "start": 2673.28, + "end": 2677.62, + "probability": 0.6875 + }, + { + "start": 2678.6, + "end": 2683.28, + "probability": 0.4034 + }, + { + "start": 2684.52, + "end": 2687.6, + "probability": 0.9712 + }, + { + "start": 2688.8, + "end": 2689.84, + "probability": 0.7012 + }, + { + "start": 2691.22, + "end": 2691.64, + "probability": 0.5148 + }, + { + "start": 2691.9, + "end": 2692.88, + "probability": 0.83 + }, + { + "start": 2695.42, + "end": 2699.6, + "probability": 0.406 + }, + { + "start": 2700.24, + "end": 2705.76, + "probability": 0.9351 + }, + { + "start": 2706.32, + "end": 2707.07, + "probability": 0.9176 + }, + { + "start": 2708.4, + "end": 2712.54, + "probability": 0.9733 + }, + { + "start": 2713.1, + "end": 2714.1, + "probability": 0.9101 + }, + { + "start": 2714.36, + "end": 2719.44, + "probability": 0.9108 + }, + { + "start": 2720.1, + "end": 2723.48, + "probability": 0.5576 + }, + { + "start": 2723.82, + "end": 2726.2, + "probability": 0.7175 + }, + { + "start": 2726.78, + "end": 2729.72, + "probability": 0.9782 + }, + { + "start": 2730.88, + "end": 2734.5, + "probability": 0.9666 + }, + { + "start": 2735.4, + "end": 2735.5, + "probability": 0.481 + }, + { + "start": 2735.5, + "end": 2738.68, + "probability": 0.9946 + }, + { + "start": 2739.38, + "end": 2740.7, + "probability": 0.7988 + }, + { + "start": 2740.8, + "end": 2741.96, + "probability": 0.9961 + }, + { + "start": 2742.6, + "end": 2743.14, + "probability": 0.7286 + }, + { + "start": 2743.7, + "end": 2745.29, + "probability": 0.868 + }, + { + "start": 2746.28, + "end": 2749.48, + "probability": 0.7135 + }, + { + "start": 2750.02, + "end": 2751.02, + "probability": 0.9401 + }, + { + "start": 2751.16, + "end": 2752.78, + "probability": 0.7783 + }, + { + "start": 2753.5, + "end": 2756.66, + "probability": 0.9753 + }, + { + "start": 2756.82, + "end": 2758.9, + "probability": 0.9447 + }, + { + "start": 2759.36, + "end": 2763.0, + "probability": 0.9787 + }, + { + "start": 2763.46, + "end": 2764.5, + "probability": 0.9579 + }, + { + "start": 2764.9, + "end": 2766.52, + "probability": 0.9923 + }, + { + "start": 2766.88, + "end": 2768.81, + "probability": 0.6202 + }, + { + "start": 2769.5, + "end": 2773.8, + "probability": 0.8147 + }, + { + "start": 2774.16, + "end": 2774.95, + "probability": 0.7372 + }, + { + "start": 2775.98, + "end": 2778.96, + "probability": 0.8378 + }, + { + "start": 2779.4, + "end": 2781.06, + "probability": 0.9885 + }, + { + "start": 2781.98, + "end": 2783.7, + "probability": 0.8172 + }, + { + "start": 2784.48, + "end": 2787.22, + "probability": 0.9973 + }, + { + "start": 2788.06, + "end": 2789.24, + "probability": 0.9233 + }, + { + "start": 2789.66, + "end": 2790.92, + "probability": 0.8274 + }, + { + "start": 2791.24, + "end": 2792.96, + "probability": 0.7925 + }, + { + "start": 2793.48, + "end": 2797.18, + "probability": 0.9354 + }, + { + "start": 2797.48, + "end": 2798.76, + "probability": 0.9985 + }, + { + "start": 2799.58, + "end": 2804.78, + "probability": 0.9041 + }, + { + "start": 2804.92, + "end": 2805.38, + "probability": 0.7693 + }, + { + "start": 2806.96, + "end": 2810.08, + "probability": 0.811 + }, + { + "start": 2810.54, + "end": 2815.86, + "probability": 0.9487 + }, + { + "start": 2817.16, + "end": 2817.92, + "probability": 0.5947 + }, + { + "start": 2818.14, + "end": 2819.26, + "probability": 0.9531 + }, + { + "start": 2819.34, + "end": 2822.14, + "probability": 0.6582 + }, + { + "start": 2822.16, + "end": 2822.7, + "probability": 0.6794 + }, + { + "start": 2823.42, + "end": 2823.64, + "probability": 0.8692 + }, + { + "start": 2840.32, + "end": 2841.24, + "probability": 0.726 + }, + { + "start": 2842.16, + "end": 2843.1, + "probability": 0.7323 + }, + { + "start": 2843.2, + "end": 2850.24, + "probability": 0.7766 + }, + { + "start": 2850.9, + "end": 2854.66, + "probability": 0.9841 + }, + { + "start": 2855.54, + "end": 2861.84, + "probability": 0.996 + }, + { + "start": 2862.42, + "end": 2867.2, + "probability": 0.9036 + }, + { + "start": 2867.2, + "end": 2871.72, + "probability": 0.9707 + }, + { + "start": 2872.34, + "end": 2874.84, + "probability": 0.9952 + }, + { + "start": 2875.54, + "end": 2877.72, + "probability": 0.8913 + }, + { + "start": 2877.86, + "end": 2881.1, + "probability": 0.8475 + }, + { + "start": 2881.58, + "end": 2882.28, + "probability": 0.6711 + }, + { + "start": 2882.52, + "end": 2887.92, + "probability": 0.8165 + }, + { + "start": 2888.6, + "end": 2895.08, + "probability": 0.9348 + }, + { + "start": 2895.6, + "end": 2897.1, + "probability": 0.9197 + }, + { + "start": 2897.84, + "end": 2900.86, + "probability": 0.7613 + }, + { + "start": 2901.38, + "end": 2904.0, + "probability": 0.7102 + }, + { + "start": 2904.18, + "end": 2905.0, + "probability": 0.5704 + }, + { + "start": 2905.44, + "end": 2909.78, + "probability": 0.9938 + }, + { + "start": 2911.32, + "end": 2915.64, + "probability": 0.9457 + }, + { + "start": 2916.4, + "end": 2919.76, + "probability": 0.9899 + }, + { + "start": 2920.32, + "end": 2923.62, + "probability": 0.9212 + }, + { + "start": 2923.62, + "end": 2927.4, + "probability": 0.9967 + }, + { + "start": 2927.86, + "end": 2929.64, + "probability": 0.997 + }, + { + "start": 2929.72, + "end": 2931.02, + "probability": 0.9098 + }, + { + "start": 2931.52, + "end": 2935.28, + "probability": 0.9739 + }, + { + "start": 2935.28, + "end": 2940.1, + "probability": 0.9839 + }, + { + "start": 2940.48, + "end": 2946.74, + "probability": 0.994 + }, + { + "start": 2946.86, + "end": 2948.04, + "probability": 0.7453 + }, + { + "start": 2948.46, + "end": 2951.96, + "probability": 0.9812 + }, + { + "start": 2952.44, + "end": 2955.22, + "probability": 0.9748 + }, + { + "start": 2955.78, + "end": 2956.48, + "probability": 0.906 + }, + { + "start": 2956.52, + "end": 2958.62, + "probability": 0.9647 + }, + { + "start": 2958.98, + "end": 2962.54, + "probability": 0.9955 + }, + { + "start": 2962.74, + "end": 2963.18, + "probability": 0.7192 + }, + { + "start": 2963.64, + "end": 2965.54, + "probability": 0.575 + }, + { + "start": 2966.3, + "end": 2968.8, + "probability": 0.9156 + }, + { + "start": 2969.2, + "end": 2971.21, + "probability": 0.9469 + }, + { + "start": 2972.8, + "end": 2977.72, + "probability": 0.9844 + }, + { + "start": 2978.02, + "end": 2980.98, + "probability": 0.9781 + }, + { + "start": 2980.98, + "end": 2983.38, + "probability": 0.9703 + }, + { + "start": 2984.16, + "end": 2989.52, + "probability": 0.9958 + }, + { + "start": 2989.52, + "end": 2994.64, + "probability": 0.9852 + }, + { + "start": 2995.28, + "end": 2998.1, + "probability": 0.9451 + }, + { + "start": 2998.5, + "end": 3002.94, + "probability": 0.796 + }, + { + "start": 3002.94, + "end": 3005.78, + "probability": 0.9974 + }, + { + "start": 3006.34, + "end": 3009.64, + "probability": 0.8046 + }, + { + "start": 3010.76, + "end": 3014.24, + "probability": 0.938 + }, + { + "start": 3015.16, + "end": 3016.34, + "probability": 0.8662 + }, + { + "start": 3016.86, + "end": 3018.24, + "probability": 0.8169 + }, + { + "start": 3018.6, + "end": 3023.1, + "probability": 0.9932 + }, + { + "start": 3023.46, + "end": 3025.02, + "probability": 0.9128 + }, + { + "start": 3025.14, + "end": 3026.02, + "probability": 0.6778 + }, + { + "start": 3026.4, + "end": 3031.72, + "probability": 0.9856 + }, + { + "start": 3031.8, + "end": 3034.1, + "probability": 0.9957 + }, + { + "start": 3034.24, + "end": 3036.14, + "probability": 0.9201 + }, + { + "start": 3036.24, + "end": 3037.54, + "probability": 0.8903 + }, + { + "start": 3038.0, + "end": 3041.42, + "probability": 0.9162 + }, + { + "start": 3041.84, + "end": 3044.26, + "probability": 0.7686 + }, + { + "start": 3044.98, + "end": 3048.14, + "probability": 0.9941 + }, + { + "start": 3048.62, + "end": 3052.5, + "probability": 0.958 + }, + { + "start": 3052.86, + "end": 3058.05, + "probability": 0.9495 + }, + { + "start": 3058.08, + "end": 3062.88, + "probability": 0.9945 + }, + { + "start": 3063.1, + "end": 3063.26, + "probability": 0.7209 + }, + { + "start": 3063.44, + "end": 3066.96, + "probability": 0.9819 + }, + { + "start": 3067.24, + "end": 3071.3, + "probability": 0.9888 + }, + { + "start": 3071.4, + "end": 3074.5, + "probability": 0.9432 + }, + { + "start": 3074.88, + "end": 3075.92, + "probability": 0.827 + }, + { + "start": 3076.32, + "end": 3077.9, + "probability": 0.9946 + }, + { + "start": 3078.42, + "end": 3079.84, + "probability": 0.9978 + }, + { + "start": 3080.12, + "end": 3083.56, + "probability": 0.9914 + }, + { + "start": 3083.66, + "end": 3084.26, + "probability": 0.8893 + }, + { + "start": 3084.72, + "end": 3085.68, + "probability": 0.8015 + }, + { + "start": 3087.04, + "end": 3087.7, + "probability": 0.9666 + }, + { + "start": 3089.64, + "end": 3092.84, + "probability": 0.8932 + }, + { + "start": 3121.24, + "end": 3122.32, + "probability": 0.772 + }, + { + "start": 3123.16, + "end": 3124.36, + "probability": 0.7896 + }, + { + "start": 3127.34, + "end": 3130.84, + "probability": 0.9443 + }, + { + "start": 3132.14, + "end": 3133.8, + "probability": 0.9966 + }, + { + "start": 3135.14, + "end": 3137.86, + "probability": 0.9679 + }, + { + "start": 3138.04, + "end": 3138.62, + "probability": 0.768 + }, + { + "start": 3138.68, + "end": 3139.48, + "probability": 0.832 + }, + { + "start": 3140.52, + "end": 3141.32, + "probability": 0.7536 + }, + { + "start": 3142.52, + "end": 3143.5, + "probability": 0.9913 + }, + { + "start": 3144.5, + "end": 3145.2, + "probability": 0.4361 + }, + { + "start": 3146.2, + "end": 3146.88, + "probability": 0.6317 + }, + { + "start": 3147.62, + "end": 3149.5, + "probability": 0.9179 + }, + { + "start": 3150.26, + "end": 3151.02, + "probability": 0.8477 + }, + { + "start": 3151.82, + "end": 3153.24, + "probability": 0.9341 + }, + { + "start": 3154.5, + "end": 3156.54, + "probability": 0.9614 + }, + { + "start": 3157.06, + "end": 3157.66, + "probability": 0.9218 + }, + { + "start": 3158.28, + "end": 3159.52, + "probability": 0.9644 + }, + { + "start": 3160.56, + "end": 3161.9, + "probability": 0.9902 + }, + { + "start": 3162.28, + "end": 3164.6, + "probability": 0.992 + }, + { + "start": 3165.16, + "end": 3165.96, + "probability": 0.9782 + }, + { + "start": 3167.3, + "end": 3171.46, + "probability": 0.9973 + }, + { + "start": 3171.58, + "end": 3171.8, + "probability": 0.6099 + }, + { + "start": 3173.54, + "end": 3176.8, + "probability": 0.9382 + }, + { + "start": 3178.86, + "end": 3182.26, + "probability": 0.9794 + }, + { + "start": 3182.74, + "end": 3187.0, + "probability": 0.9764 + }, + { + "start": 3188.14, + "end": 3189.44, + "probability": 0.9956 + }, + { + "start": 3190.26, + "end": 3192.8, + "probability": 0.9707 + }, + { + "start": 3194.16, + "end": 3197.64, + "probability": 0.9814 + }, + { + "start": 3197.78, + "end": 3201.46, + "probability": 0.9469 + }, + { + "start": 3201.98, + "end": 3203.22, + "probability": 0.8297 + }, + { + "start": 3205.0, + "end": 3206.94, + "probability": 0.77 + }, + { + "start": 3208.04, + "end": 3209.38, + "probability": 0.9295 + }, + { + "start": 3210.88, + "end": 3213.78, + "probability": 0.9895 + }, + { + "start": 3214.54, + "end": 3215.77, + "probability": 0.9902 + }, + { + "start": 3216.82, + "end": 3218.6, + "probability": 0.9877 + }, + { + "start": 3219.46, + "end": 3222.21, + "probability": 0.9961 + }, + { + "start": 3223.34, + "end": 3229.22, + "probability": 0.9633 + }, + { + "start": 3230.08, + "end": 3233.02, + "probability": 0.99 + }, + { + "start": 3233.02, + "end": 3235.86, + "probability": 0.9911 + }, + { + "start": 3236.04, + "end": 3236.78, + "probability": 0.7184 + }, + { + "start": 3237.06, + "end": 3238.04, + "probability": 0.7347 + }, + { + "start": 3238.46, + "end": 3240.14, + "probability": 0.9985 + }, + { + "start": 3241.16, + "end": 3242.74, + "probability": 0.9934 + }, + { + "start": 3243.4, + "end": 3243.92, + "probability": 0.7468 + }, + { + "start": 3245.4, + "end": 3246.0, + "probability": 0.9941 + }, + { + "start": 3246.9, + "end": 3249.32, + "probability": 0.7208 + }, + { + "start": 3250.0, + "end": 3250.82, + "probability": 0.8207 + }, + { + "start": 3251.78, + "end": 3254.22, + "probability": 0.9736 + }, + { + "start": 3255.64, + "end": 3257.44, + "probability": 0.8193 + }, + { + "start": 3258.16, + "end": 3258.8, + "probability": 0.8881 + }, + { + "start": 3259.32, + "end": 3261.16, + "probability": 0.9557 + }, + { + "start": 3261.66, + "end": 3263.54, + "probability": 0.9841 + }, + { + "start": 3264.46, + "end": 3267.3, + "probability": 0.6478 + }, + { + "start": 3267.88, + "end": 3268.94, + "probability": 0.8447 + }, + { + "start": 3269.72, + "end": 3273.17, + "probability": 0.9032 + }, + { + "start": 3274.14, + "end": 3275.36, + "probability": 0.726 + }, + { + "start": 3278.24, + "end": 3279.18, + "probability": 0.9894 + }, + { + "start": 3280.1, + "end": 3282.76, + "probability": 0.9961 + }, + { + "start": 3283.2, + "end": 3285.18, + "probability": 0.9978 + }, + { + "start": 3285.3, + "end": 3285.68, + "probability": 0.4604 + }, + { + "start": 3285.72, + "end": 3286.26, + "probability": 0.9072 + }, + { + "start": 3288.28, + "end": 3289.78, + "probability": 0.6027 + }, + { + "start": 3290.26, + "end": 3290.46, + "probability": 0.8146 + }, + { + "start": 3290.56, + "end": 3291.82, + "probability": 0.9844 + }, + { + "start": 3292.0, + "end": 3293.92, + "probability": 0.7715 + }, + { + "start": 3294.04, + "end": 3294.45, + "probability": 0.5081 + }, + { + "start": 3295.1, + "end": 3296.82, + "probability": 0.852 + }, + { + "start": 3296.82, + "end": 3297.22, + "probability": 0.2029 + }, + { + "start": 3298.14, + "end": 3299.26, + "probability": 0.6247 + }, + { + "start": 3299.38, + "end": 3299.38, + "probability": 0.1667 + }, + { + "start": 3299.38, + "end": 3299.38, + "probability": 0.0976 + }, + { + "start": 3299.38, + "end": 3299.38, + "probability": 0.2489 + }, + { + "start": 3299.38, + "end": 3300.26, + "probability": 0.6172 + }, + { + "start": 3300.34, + "end": 3303.06, + "probability": 0.7884 + }, + { + "start": 3303.73, + "end": 3305.46, + "probability": 0.7537 + }, + { + "start": 3305.96, + "end": 3306.48, + "probability": 0.5806 + }, + { + "start": 3306.48, + "end": 3307.02, + "probability": 0.0442 + }, + { + "start": 3307.02, + "end": 3311.72, + "probability": 0.9652 + }, + { + "start": 3312.08, + "end": 3312.92, + "probability": 0.9738 + }, + { + "start": 3313.22, + "end": 3314.42, + "probability": 0.9927 + }, + { + "start": 3314.64, + "end": 3315.4, + "probability": 0.9911 + }, + { + "start": 3315.78, + "end": 3317.12, + "probability": 0.504 + }, + { + "start": 3317.12, + "end": 3317.52, + "probability": 0.6109 + }, + { + "start": 3317.84, + "end": 3319.0, + "probability": 0.8794 + }, + { + "start": 3319.16, + "end": 3320.14, + "probability": 0.9586 + }, + { + "start": 3320.2, + "end": 3320.78, + "probability": 0.6936 + }, + { + "start": 3320.78, + "end": 3321.2, + "probability": 0.7014 + }, + { + "start": 3321.82, + "end": 3323.24, + "probability": 0.9038 + }, + { + "start": 3323.24, + "end": 3325.16, + "probability": 0.2701 + }, + { + "start": 3325.16, + "end": 3325.96, + "probability": 0.8245 + }, + { + "start": 3325.96, + "end": 3328.34, + "probability": 0.2984 + }, + { + "start": 3328.94, + "end": 3331.36, + "probability": 0.302 + }, + { + "start": 3331.36, + "end": 3331.36, + "probability": 0.1999 + }, + { + "start": 3331.36, + "end": 3331.36, + "probability": 0.0292 + }, + { + "start": 3331.36, + "end": 3334.88, + "probability": 0.872 + }, + { + "start": 3334.88, + "end": 3335.44, + "probability": 0.7663 + }, + { + "start": 3335.5, + "end": 3336.42, + "probability": 0.7631 + }, + { + "start": 3337.34, + "end": 3340.78, + "probability": 0.9474 + }, + { + "start": 3347.16, + "end": 3347.16, + "probability": 0.0905 + }, + { + "start": 3347.16, + "end": 3347.18, + "probability": 0.2735 + }, + { + "start": 3347.18, + "end": 3347.26, + "probability": 0.2991 + }, + { + "start": 3347.26, + "end": 3347.26, + "probability": 0.1898 + }, + { + "start": 3347.26, + "end": 3348.14, + "probability": 0.0285 + }, + { + "start": 3348.14, + "end": 3348.14, + "probability": 0.0392 + }, + { + "start": 3370.38, + "end": 3372.98, + "probability": 0.1301 + }, + { + "start": 3373.96, + "end": 3378.92, + "probability": 0.8863 + }, + { + "start": 3378.92, + "end": 3384.08, + "probability": 0.9943 + }, + { + "start": 3384.98, + "end": 3385.9, + "probability": 0.885 + }, + { + "start": 3386.0, + "end": 3388.02, + "probability": 0.9302 + }, + { + "start": 3388.08, + "end": 3390.12, + "probability": 0.9212 + }, + { + "start": 3390.42, + "end": 3393.26, + "probability": 0.7794 + }, + { + "start": 3393.26, + "end": 3399.02, + "probability": 0.9748 + }, + { + "start": 3399.94, + "end": 3400.72, + "probability": 0.9017 + }, + { + "start": 3400.94, + "end": 3405.9, + "probability": 0.9955 + }, + { + "start": 3406.74, + "end": 3409.62, + "probability": 0.9858 + }, + { + "start": 3410.18, + "end": 3410.42, + "probability": 0.7621 + }, + { + "start": 3410.96, + "end": 3412.08, + "probability": 0.9661 + }, + { + "start": 3412.52, + "end": 3415.8, + "probability": 0.9963 + }, + { + "start": 3416.54, + "end": 3418.08, + "probability": 0.4847 + }, + { + "start": 3418.14, + "end": 3419.4, + "probability": 0.8184 + }, + { + "start": 3419.54, + "end": 3421.54, + "probability": 0.7602 + }, + { + "start": 3422.96, + "end": 3426.08, + "probability": 0.7654 + }, + { + "start": 3426.58, + "end": 3430.7, + "probability": 0.8592 + }, + { + "start": 3431.04, + "end": 3433.3, + "probability": 0.93 + }, + { + "start": 3433.48, + "end": 3433.48, + "probability": 0.2266 + }, + { + "start": 3433.48, + "end": 3436.56, + "probability": 0.9563 + }, + { + "start": 3437.0, + "end": 3437.58, + "probability": 0.88 + }, + { + "start": 3438.56, + "end": 3439.2, + "probability": 0.3777 + }, + { + "start": 3439.92, + "end": 3440.42, + "probability": 0.8013 + }, + { + "start": 3441.14, + "end": 3445.76, + "probability": 0.9895 + }, + { + "start": 3446.26, + "end": 3447.82, + "probability": 0.9725 + }, + { + "start": 3448.88, + "end": 3451.46, + "probability": 0.6769 + }, + { + "start": 3452.5, + "end": 3452.52, + "probability": 0.1797 + }, + { + "start": 3452.52, + "end": 3452.52, + "probability": 0.1687 + }, + { + "start": 3452.52, + "end": 3452.52, + "probability": 0.1632 + }, + { + "start": 3452.52, + "end": 3452.52, + "probability": 0.2005 + }, + { + "start": 3452.52, + "end": 3457.26, + "probability": 0.9416 + }, + { + "start": 3458.2, + "end": 3463.7, + "probability": 0.8967 + }, + { + "start": 3464.42, + "end": 3465.22, + "probability": 0.6756 + }, + { + "start": 3466.38, + "end": 3467.04, + "probability": 0.6636 + }, + { + "start": 3467.2, + "end": 3471.48, + "probability": 0.9897 + }, + { + "start": 3472.62, + "end": 3474.38, + "probability": 0.9749 + }, + { + "start": 3475.48, + "end": 3478.02, + "probability": 0.3385 + }, + { + "start": 3478.54, + "end": 3479.28, + "probability": 0.0271 + }, + { + "start": 3479.28, + "end": 3479.28, + "probability": 0.0684 + }, + { + "start": 3479.28, + "end": 3479.28, + "probability": 0.0701 + }, + { + "start": 3479.28, + "end": 3482.27, + "probability": 0.4487 + }, + { + "start": 3483.54, + "end": 3483.54, + "probability": 0.0021 + }, + { + "start": 3484.2, + "end": 3484.3, + "probability": 0.0244 + }, + { + "start": 3484.34, + "end": 3486.72, + "probability": 0.8369 + }, + { + "start": 3487.2, + "end": 3488.24, + "probability": 0.1701 + }, + { + "start": 3488.32, + "end": 3488.86, + "probability": 0.5401 + }, + { + "start": 3489.28, + "end": 3490.48, + "probability": 0.0898 + }, + { + "start": 3490.48, + "end": 3490.94, + "probability": 0.9667 + }, + { + "start": 3491.44, + "end": 3495.6, + "probability": 0.9485 + }, + { + "start": 3497.12, + "end": 3498.4, + "probability": 0.7281 + }, + { + "start": 3498.82, + "end": 3503.1, + "probability": 0.9873 + }, + { + "start": 3503.76, + "end": 3507.02, + "probability": 0.8977 + }, + { + "start": 3507.38, + "end": 3514.28, + "probability": 0.9509 + }, + { + "start": 3514.92, + "end": 3515.46, + "probability": 0.9675 + }, + { + "start": 3515.58, + "end": 3518.6, + "probability": 0.9709 + }, + { + "start": 3518.94, + "end": 3522.78, + "probability": 0.907 + }, + { + "start": 3523.68, + "end": 3524.86, + "probability": 0.8291 + }, + { + "start": 3525.28, + "end": 3526.66, + "probability": 0.89 + }, + { + "start": 3526.9, + "end": 3531.78, + "probability": 0.9817 + }, + { + "start": 3532.1, + "end": 3534.14, + "probability": 0.8195 + }, + { + "start": 3534.86, + "end": 3540.42, + "probability": 0.9945 + }, + { + "start": 3541.48, + "end": 3546.04, + "probability": 0.9607 + }, + { + "start": 3546.46, + "end": 3547.98, + "probability": 0.8935 + }, + { + "start": 3548.32, + "end": 3551.74, + "probability": 0.9873 + }, + { + "start": 3552.44, + "end": 3556.32, + "probability": 0.9672 + }, + { + "start": 3556.98, + "end": 3560.34, + "probability": 0.874 + }, + { + "start": 3560.52, + "end": 3560.54, + "probability": 0.1249 + }, + { + "start": 3560.54, + "end": 3566.44, + "probability": 0.9129 + }, + { + "start": 3567.12, + "end": 3569.68, + "probability": 0.6951 + }, + { + "start": 3570.16, + "end": 3571.42, + "probability": 0.9038 + }, + { + "start": 3572.08, + "end": 3572.66, + "probability": 0.756 + }, + { + "start": 3573.92, + "end": 3577.0, + "probability": 0.9551 + }, + { + "start": 3577.9, + "end": 3581.4, + "probability": 0.9819 + }, + { + "start": 3581.8, + "end": 3584.02, + "probability": 0.9701 + }, + { + "start": 3584.98, + "end": 3589.4, + "probability": 0.9961 + }, + { + "start": 3589.4, + "end": 3594.22, + "probability": 0.9919 + }, + { + "start": 3594.72, + "end": 3596.02, + "probability": 0.9839 + }, + { + "start": 3596.42, + "end": 3597.5, + "probability": 0.6094 + }, + { + "start": 3597.98, + "end": 3599.38, + "probability": 0.9751 + }, + { + "start": 3599.96, + "end": 3603.4, + "probability": 0.9131 + }, + { + "start": 3604.3, + "end": 3608.88, + "probability": 0.8405 + }, + { + "start": 3609.82, + "end": 3611.26, + "probability": 0.801 + }, + { + "start": 3611.58, + "end": 3612.06, + "probability": 0.8894 + }, + { + "start": 3613.44, + "end": 3614.42, + "probability": 0.6419 + }, + { + "start": 3616.1, + "end": 3618.8, + "probability": 0.951 + }, + { + "start": 3619.2, + "end": 3620.5, + "probability": 0.9736 + }, + { + "start": 3621.22, + "end": 3624.16, + "probability": 0.9333 + }, + { + "start": 3624.4, + "end": 3626.14, + "probability": 0.5019 + }, + { + "start": 3626.14, + "end": 3627.12, + "probability": 0.9497 + }, + { + "start": 3627.94, + "end": 3628.52, + "probability": 0.1021 + }, + { + "start": 3628.6, + "end": 3629.32, + "probability": 0.7206 + }, + { + "start": 3630.32, + "end": 3635.94, + "probability": 0.9631 + }, + { + "start": 3636.12, + "end": 3639.52, + "probability": 0.9771 + }, + { + "start": 3640.3, + "end": 3643.68, + "probability": 0.8179 + }, + { + "start": 3644.08, + "end": 3645.94, + "probability": 0.9609 + }, + { + "start": 3646.9, + "end": 3648.94, + "probability": 0.7696 + }, + { + "start": 3649.38, + "end": 3650.44, + "probability": 0.8829 + }, + { + "start": 3650.8, + "end": 3653.82, + "probability": 0.8719 + }, + { + "start": 3653.96, + "end": 3657.84, + "probability": 0.9226 + }, + { + "start": 3658.72, + "end": 3659.76, + "probability": 0.7233 + }, + { + "start": 3659.82, + "end": 3661.1, + "probability": 0.7865 + }, + { + "start": 3661.22, + "end": 3661.96, + "probability": 0.5894 + }, + { + "start": 3662.88, + "end": 3663.62, + "probability": 0.5065 + }, + { + "start": 3663.64, + "end": 3667.3, + "probability": 0.8131 + }, + { + "start": 3667.4, + "end": 3668.02, + "probability": 0.6053 + }, + { + "start": 3668.66, + "end": 3669.82, + "probability": 0.9801 + }, + { + "start": 3670.74, + "end": 3675.74, + "probability": 0.9334 + }, + { + "start": 3676.02, + "end": 3679.8, + "probability": 0.9941 + }, + { + "start": 3679.84, + "end": 3682.6, + "probability": 0.7863 + }, + { + "start": 3683.12, + "end": 3685.42, + "probability": 0.9153 + }, + { + "start": 3685.9, + "end": 3688.92, + "probability": 0.9722 + }, + { + "start": 3689.52, + "end": 3693.66, + "probability": 0.5966 + }, + { + "start": 3693.82, + "end": 3694.28, + "probability": 0.4642 + }, + { + "start": 3694.7, + "end": 3695.72, + "probability": 0.7333 + }, + { + "start": 3696.16, + "end": 3701.56, + "probability": 0.9151 + }, + { + "start": 3701.56, + "end": 3704.86, + "probability": 0.8258 + }, + { + "start": 3705.42, + "end": 3710.4, + "probability": 0.9324 + }, + { + "start": 3710.4, + "end": 3713.7, + "probability": 0.8637 + }, + { + "start": 3714.38, + "end": 3717.95, + "probability": 0.9968 + }, + { + "start": 3718.14, + "end": 3721.9, + "probability": 0.9744 + }, + { + "start": 3722.26, + "end": 3724.18, + "probability": 0.7035 + }, + { + "start": 3724.36, + "end": 3725.1, + "probability": 0.9146 + }, + { + "start": 3725.58, + "end": 3728.7, + "probability": 0.4747 + }, + { + "start": 3728.94, + "end": 3730.92, + "probability": 0.57 + }, + { + "start": 3731.46, + "end": 3734.52, + "probability": 0.7291 + }, + { + "start": 3734.7, + "end": 3734.86, + "probability": 0.6125 + }, + { + "start": 3735.0, + "end": 3736.26, + "probability": 0.9096 + }, + { + "start": 3736.46, + "end": 3737.14, + "probability": 0.5563 + }, + { + "start": 3737.46, + "end": 3738.42, + "probability": 0.5135 + }, + { + "start": 3738.54, + "end": 3739.05, + "probability": 0.8486 + }, + { + "start": 3739.92, + "end": 3741.06, + "probability": 0.5212 + }, + { + "start": 3741.42, + "end": 3744.62, + "probability": 0.9364 + }, + { + "start": 3745.3, + "end": 3750.22, + "probability": 0.6966 + }, + { + "start": 3750.24, + "end": 3751.4, + "probability": 0.7603 + }, + { + "start": 3751.62, + "end": 3754.16, + "probability": 0.9408 + }, + { + "start": 3754.3, + "end": 3756.5, + "probability": 0.5699 + }, + { + "start": 3757.04, + "end": 3758.96, + "probability": 0.6654 + }, + { + "start": 3759.36, + "end": 3760.42, + "probability": 0.6699 + }, + { + "start": 3760.72, + "end": 3761.36, + "probability": 0.9431 + }, + { + "start": 3761.52, + "end": 3762.48, + "probability": 0.7353 + }, + { + "start": 3762.48, + "end": 3763.06, + "probability": 0.5003 + }, + { + "start": 3763.6, + "end": 3764.18, + "probability": 0.7004 + }, + { + "start": 3764.34, + "end": 3768.88, + "probability": 0.8167 + }, + { + "start": 3769.36, + "end": 3770.36, + "probability": 0.4189 + }, + { + "start": 3770.66, + "end": 3775.06, + "probability": 0.9166 + }, + { + "start": 3775.76, + "end": 3778.12, + "probability": 0.962 + }, + { + "start": 3778.14, + "end": 3780.2, + "probability": 0.4375 + }, + { + "start": 3782.94, + "end": 3783.76, + "probability": 0.0181 + }, + { + "start": 3783.76, + "end": 3783.76, + "probability": 0.0782 + }, + { + "start": 3783.76, + "end": 3783.76, + "probability": 0.2074 + }, + { + "start": 3783.76, + "end": 3784.76, + "probability": 0.5532 + }, + { + "start": 3784.8, + "end": 3786.76, + "probability": 0.9697 + }, + { + "start": 3787.46, + "end": 3788.22, + "probability": 0.799 + }, + { + "start": 3788.3, + "end": 3789.26, + "probability": 0.9791 + }, + { + "start": 3789.44, + "end": 3790.72, + "probability": 0.6858 + }, + { + "start": 3790.84, + "end": 3791.92, + "probability": 0.7786 + }, + { + "start": 3792.4, + "end": 3794.26, + "probability": 0.7967 + }, + { + "start": 3794.34, + "end": 3796.66, + "probability": 0.6482 + }, + { + "start": 3796.72, + "end": 3797.57, + "probability": 0.7765 + }, + { + "start": 3798.34, + "end": 3801.48, + "probability": 0.6593 + }, + { + "start": 3801.6, + "end": 3803.94, + "probability": 0.9836 + }, + { + "start": 3804.84, + "end": 3806.92, + "probability": 0.8098 + }, + { + "start": 3807.14, + "end": 3809.38, + "probability": 0.9873 + }, + { + "start": 3809.92, + "end": 3811.58, + "probability": 0.9595 + }, + { + "start": 3812.38, + "end": 3813.99, + "probability": 0.9246 + }, + { + "start": 3814.12, + "end": 3815.96, + "probability": 0.8962 + }, + { + "start": 3816.16, + "end": 3817.68, + "probability": 0.986 + }, + { + "start": 3817.76, + "end": 3819.08, + "probability": 0.985 + }, + { + "start": 3819.5, + "end": 3822.96, + "probability": 0.8766 + }, + { + "start": 3823.3, + "end": 3824.14, + "probability": 0.8755 + }, + { + "start": 3824.38, + "end": 3825.94, + "probability": 0.8923 + }, + { + "start": 3826.72, + "end": 3827.74, + "probability": 0.7455 + }, + { + "start": 3827.74, + "end": 3830.34, + "probability": 0.7412 + }, + { + "start": 3830.74, + "end": 3834.38, + "probability": 0.9976 + }, + { + "start": 3834.72, + "end": 3836.96, + "probability": 0.9966 + }, + { + "start": 3837.04, + "end": 3839.3, + "probability": 0.9873 + }, + { + "start": 3839.3, + "end": 3844.48, + "probability": 0.8261 + }, + { + "start": 3845.0, + "end": 3847.08, + "probability": 0.9486 + }, + { + "start": 3847.8, + "end": 3854.06, + "probability": 0.997 + }, + { + "start": 3854.22, + "end": 3855.38, + "probability": 0.7798 + }, + { + "start": 3855.44, + "end": 3856.05, + "probability": 0.6812 + }, + { + "start": 3856.14, + "end": 3860.22, + "probability": 0.9554 + }, + { + "start": 3860.32, + "end": 3862.42, + "probability": 0.9215 + }, + { + "start": 3862.42, + "end": 3865.18, + "probability": 0.9357 + }, + { + "start": 3865.82, + "end": 3867.92, + "probability": 0.9601 + }, + { + "start": 3868.04, + "end": 3870.24, + "probability": 0.9941 + }, + { + "start": 3870.3, + "end": 3871.12, + "probability": 0.8856 + }, + { + "start": 3871.48, + "end": 3878.02, + "probability": 0.9123 + }, + { + "start": 3878.38, + "end": 3881.2, + "probability": 0.8352 + }, + { + "start": 3881.56, + "end": 3886.4, + "probability": 0.9806 + }, + { + "start": 3886.84, + "end": 3890.04, + "probability": 0.9509 + }, + { + "start": 3890.5, + "end": 3891.54, + "probability": 0.1526 + }, + { + "start": 3891.62, + "end": 3892.38, + "probability": 0.831 + }, + { + "start": 3892.54, + "end": 3895.8, + "probability": 0.7334 + }, + { + "start": 3895.94, + "end": 3902.77, + "probability": 0.8494 + }, + { + "start": 3903.66, + "end": 3904.36, + "probability": 0.8603 + }, + { + "start": 3904.52, + "end": 3905.54, + "probability": 0.7373 + }, + { + "start": 3905.92, + "end": 3908.78, + "probability": 0.61 + }, + { + "start": 3908.78, + "end": 3909.18, + "probability": 0.3146 + }, + { + "start": 3909.26, + "end": 3910.6, + "probability": 0.819 + }, + { + "start": 3911.48, + "end": 3914.36, + "probability": 0.8458 + }, + { + "start": 3914.48, + "end": 3915.28, + "probability": 0.7548 + }, + { + "start": 3915.88, + "end": 3916.02, + "probability": 0.6563 + }, + { + "start": 3916.12, + "end": 3919.36, + "probability": 0.6752 + }, + { + "start": 3919.98, + "end": 3920.6, + "probability": 0.3287 + }, + { + "start": 3921.31, + "end": 3923.02, + "probability": 0.8024 + }, + { + "start": 3923.28, + "end": 3923.96, + "probability": 0.3698 + }, + { + "start": 3924.02, + "end": 3925.48, + "probability": 0.8588 + }, + { + "start": 3926.24, + "end": 3929.22, + "probability": 0.923 + }, + { + "start": 3929.92, + "end": 3932.58, + "probability": 0.7187 + }, + { + "start": 3932.68, + "end": 3934.06, + "probability": 0.9734 + }, + { + "start": 3934.56, + "end": 3934.91, + "probability": 0.8201 + }, + { + "start": 3935.2, + "end": 3939.44, + "probability": 0.7258 + }, + { + "start": 3939.82, + "end": 3940.32, + "probability": 0.5889 + }, + { + "start": 3940.62, + "end": 3941.32, + "probability": 0.4478 + }, + { + "start": 3941.4, + "end": 3942.3, + "probability": 0.9146 + }, + { + "start": 3942.4, + "end": 3943.68, + "probability": 0.9423 + }, + { + "start": 3944.22, + "end": 3947.14, + "probability": 0.9181 + }, + { + "start": 3947.26, + "end": 3948.94, + "probability": 0.8066 + }, + { + "start": 3948.94, + "end": 3950.08, + "probability": 0.6312 + }, + { + "start": 3950.08, + "end": 3951.06, + "probability": 0.9839 + }, + { + "start": 3951.2, + "end": 3953.88, + "probability": 0.8682 + }, + { + "start": 3954.16, + "end": 3957.68, + "probability": 0.8384 + }, + { + "start": 3958.56, + "end": 3959.4, + "probability": 0.5624 + }, + { + "start": 3959.54, + "end": 3962.26, + "probability": 0.4923 + }, + { + "start": 3962.28, + "end": 3962.82, + "probability": 0.5925 + }, + { + "start": 3962.92, + "end": 3964.12, + "probability": 0.8416 + }, + { + "start": 3964.62, + "end": 3965.34, + "probability": 0.7127 + }, + { + "start": 3965.6, + "end": 3966.62, + "probability": 0.596 + }, + { + "start": 3966.64, + "end": 3967.3, + "probability": 0.8883 + }, + { + "start": 3970.19, + "end": 3975.3, + "probability": 0.9095 + }, + { + "start": 3988.58, + "end": 3989.46, + "probability": 0.4434 + }, + { + "start": 3991.06, + "end": 3993.26, + "probability": 0.8016 + }, + { + "start": 3993.58, + "end": 3994.74, + "probability": 0.8662 + }, + { + "start": 3995.34, + "end": 3997.86, + "probability": 0.9762 + }, + { + "start": 3999.24, + "end": 4002.1, + "probability": 0.7931 + }, + { + "start": 4003.58, + "end": 4006.46, + "probability": 0.9922 + }, + { + "start": 4007.44, + "end": 4010.08, + "probability": 0.9919 + }, + { + "start": 4011.58, + "end": 4014.68, + "probability": 0.9963 + }, + { + "start": 4015.22, + "end": 4016.2, + "probability": 0.9371 + }, + { + "start": 4017.32, + "end": 4020.68, + "probability": 0.8994 + }, + { + "start": 4021.32, + "end": 4022.3, + "probability": 0.9916 + }, + { + "start": 4023.7, + "end": 4024.8, + "probability": 0.744 + }, + { + "start": 4025.3, + "end": 4027.36, + "probability": 0.708 + }, + { + "start": 4027.62, + "end": 4029.16, + "probability": 0.9966 + }, + { + "start": 4029.72, + "end": 4031.8, + "probability": 0.9419 + }, + { + "start": 4032.74, + "end": 4033.74, + "probability": 0.8474 + }, + { + "start": 4034.14, + "end": 4035.4, + "probability": 0.7501 + }, + { + "start": 4036.64, + "end": 4040.58, + "probability": 0.8062 + }, + { + "start": 4040.84, + "end": 4043.0, + "probability": 0.9421 + }, + { + "start": 4043.34, + "end": 4044.42, + "probability": 0.9804 + }, + { + "start": 4045.04, + "end": 4046.74, + "probability": 0.9316 + }, + { + "start": 4048.62, + "end": 4049.82, + "probability": 0.9935 + }, + { + "start": 4051.3, + "end": 4056.4, + "probability": 0.9988 + }, + { + "start": 4057.66, + "end": 4065.36, + "probability": 0.9871 + }, + { + "start": 4065.5, + "end": 4066.78, + "probability": 0.9224 + }, + { + "start": 4067.5, + "end": 4069.64, + "probability": 0.9993 + }, + { + "start": 4069.64, + "end": 4073.36, + "probability": 0.9924 + }, + { + "start": 4073.66, + "end": 4074.38, + "probability": 0.0285 + }, + { + "start": 4074.48, + "end": 4075.66, + "probability": 0.5356 + }, + { + "start": 4076.12, + "end": 4079.01, + "probability": 0.9829 + }, + { + "start": 4079.22, + "end": 4079.68, + "probability": 0.2108 + }, + { + "start": 4080.06, + "end": 4080.4, + "probability": 0.0547 + }, + { + "start": 4081.12, + "end": 4081.88, + "probability": 0.9333 + }, + { + "start": 4082.06, + "end": 4086.56, + "probability": 0.9653 + }, + { + "start": 4087.38, + "end": 4087.94, + "probability": 0.7647 + }, + { + "start": 4088.26, + "end": 4090.88, + "probability": 0.8295 + }, + { + "start": 4090.9, + "end": 4092.28, + "probability": 0.9719 + }, + { + "start": 4092.84, + "end": 4100.4, + "probability": 0.9858 + }, + { + "start": 4101.24, + "end": 4102.76, + "probability": 0.9949 + }, + { + "start": 4103.66, + "end": 4105.5, + "probability": 0.8556 + }, + { + "start": 4106.04, + "end": 4107.6, + "probability": 0.981 + }, + { + "start": 4108.84, + "end": 4113.48, + "probability": 0.912 + }, + { + "start": 4114.36, + "end": 4119.76, + "probability": 0.9862 + }, + { + "start": 4120.36, + "end": 4124.56, + "probability": 0.9746 + }, + { + "start": 4125.3, + "end": 4126.28, + "probability": 0.793 + }, + { + "start": 4127.16, + "end": 4128.96, + "probability": 0.9411 + }, + { + "start": 4129.62, + "end": 4135.38, + "probability": 0.9914 + }, + { + "start": 4135.88, + "end": 4138.86, + "probability": 0.9676 + }, + { + "start": 4139.18, + "end": 4140.18, + "probability": 0.9739 + }, + { + "start": 4141.0, + "end": 4144.0, + "probability": 0.9836 + }, + { + "start": 4144.76, + "end": 4150.88, + "probability": 0.9952 + }, + { + "start": 4151.34, + "end": 4153.4, + "probability": 0.9382 + }, + { + "start": 4154.82, + "end": 4155.64, + "probability": 0.6475 + }, + { + "start": 4156.04, + "end": 4161.1, + "probability": 0.9878 + }, + { + "start": 4161.78, + "end": 4167.78, + "probability": 0.9819 + }, + { + "start": 4168.42, + "end": 4171.28, + "probability": 0.9935 + }, + { + "start": 4171.94, + "end": 4175.8, + "probability": 0.9977 + }, + { + "start": 4175.8, + "end": 4178.56, + "probability": 0.9081 + }, + { + "start": 4179.8, + "end": 4183.06, + "probability": 0.9901 + }, + { + "start": 4183.4, + "end": 4184.04, + "probability": 0.6564 + }, + { + "start": 4184.3, + "end": 4185.1, + "probability": 0.9172 + }, + { + "start": 4185.5, + "end": 4187.56, + "probability": 0.9601 + }, + { + "start": 4188.2, + "end": 4192.22, + "probability": 0.9596 + }, + { + "start": 4192.88, + "end": 4196.3, + "probability": 0.9905 + }, + { + "start": 4196.3, + "end": 4199.6, + "probability": 0.9983 + }, + { + "start": 4199.6, + "end": 4200.38, + "probability": 0.7689 + }, + { + "start": 4200.42, + "end": 4200.68, + "probability": 0.4215 + }, + { + "start": 4200.68, + "end": 4202.48, + "probability": 0.8786 + }, + { + "start": 4203.14, + "end": 4208.46, + "probability": 0.9313 + }, + { + "start": 4209.22, + "end": 4212.56, + "probability": 0.9967 + }, + { + "start": 4212.8, + "end": 4213.1, + "probability": 0.8113 + }, + { + "start": 4213.31, + "end": 4215.66, + "probability": 0.7884 + }, + { + "start": 4215.76, + "end": 4216.72, + "probability": 0.8475 + }, + { + "start": 4217.08, + "end": 4220.52, + "probability": 0.994 + }, + { + "start": 4220.72, + "end": 4223.82, + "probability": 0.9586 + }, + { + "start": 4224.24, + "end": 4228.9, + "probability": 0.998 + }, + { + "start": 4229.62, + "end": 4230.56, + "probability": 0.8203 + }, + { + "start": 4231.1, + "end": 4235.36, + "probability": 0.9885 + }, + { + "start": 4235.5, + "end": 4236.06, + "probability": 0.6928 + }, + { + "start": 4236.26, + "end": 4240.24, + "probability": 0.9518 + }, + { + "start": 4240.7, + "end": 4241.34, + "probability": 0.9197 + }, + { + "start": 4247.29, + "end": 4254.04, + "probability": 0.9949 + }, + { + "start": 4265.2, + "end": 4267.32, + "probability": 0.6972 + }, + { + "start": 4267.98, + "end": 4272.3, + "probability": 0.9324 + }, + { + "start": 4273.56, + "end": 4282.84, + "probability": 0.8838 + }, + { + "start": 4283.96, + "end": 4286.14, + "probability": 0.8109 + }, + { + "start": 4287.59, + "end": 4290.48, + "probability": 0.7694 + }, + { + "start": 4291.86, + "end": 4291.96, + "probability": 0.3682 + }, + { + "start": 4292.06, + "end": 4292.54, + "probability": 0.6946 + }, + { + "start": 4292.58, + "end": 4293.99, + "probability": 0.9912 + }, + { + "start": 4294.36, + "end": 4296.76, + "probability": 0.9731 + }, + { + "start": 4297.18, + "end": 4297.94, + "probability": 0.9462 + }, + { + "start": 4298.8, + "end": 4302.5, + "probability": 0.9575 + }, + { + "start": 4303.24, + "end": 4306.86, + "probability": 0.979 + }, + { + "start": 4307.52, + "end": 4311.14, + "probability": 0.9151 + }, + { + "start": 4311.28, + "end": 4312.42, + "probability": 0.9036 + }, + { + "start": 4313.12, + "end": 4314.6, + "probability": 0.7318 + }, + { + "start": 4315.44, + "end": 4317.36, + "probability": 0.9187 + }, + { + "start": 4319.2, + "end": 4320.24, + "probability": 0.7786 + }, + { + "start": 4320.52, + "end": 4325.04, + "probability": 0.9937 + }, + { + "start": 4325.88, + "end": 4327.86, + "probability": 0.7612 + }, + { + "start": 4328.48, + "end": 4329.26, + "probability": 0.7573 + }, + { + "start": 4329.72, + "end": 4330.6, + "probability": 0.8626 + }, + { + "start": 4330.9, + "end": 4331.8, + "probability": 0.9913 + }, + { + "start": 4331.88, + "end": 4332.73, + "probability": 0.5476 + }, + { + "start": 4333.12, + "end": 4339.28, + "probability": 0.8818 + }, + { + "start": 4339.64, + "end": 4341.64, + "probability": 0.8617 + }, + { + "start": 4342.34, + "end": 4344.02, + "probability": 0.7381 + }, + { + "start": 4344.92, + "end": 4345.92, + "probability": 0.6714 + }, + { + "start": 4346.88, + "end": 4349.04, + "probability": 0.8831 + }, + { + "start": 4349.88, + "end": 4353.06, + "probability": 0.8843 + }, + { + "start": 4353.78, + "end": 4359.48, + "probability": 0.6623 + }, + { + "start": 4360.1, + "end": 4363.72, + "probability": 0.9886 + }, + { + "start": 4364.24, + "end": 4367.98, + "probability": 0.9567 + }, + { + "start": 4368.58, + "end": 4371.26, + "probability": 0.998 + }, + { + "start": 4371.64, + "end": 4372.04, + "probability": 0.4491 + }, + { + "start": 4372.16, + "end": 4373.2, + "probability": 0.9885 + }, + { + "start": 4373.5, + "end": 4374.5, + "probability": 0.9266 + }, + { + "start": 4374.6, + "end": 4375.64, + "probability": 0.771 + }, + { + "start": 4376.68, + "end": 4380.88, + "probability": 0.9964 + }, + { + "start": 4381.52, + "end": 4384.26, + "probability": 0.9966 + }, + { + "start": 4384.26, + "end": 4384.28, + "probability": 0.0437 + }, + { + "start": 4384.34, + "end": 4385.58, + "probability": 0.9455 + }, + { + "start": 4386.0, + "end": 4389.06, + "probability": 0.9871 + }, + { + "start": 4389.8, + "end": 4391.56, + "probability": 0.9172 + }, + { + "start": 4391.64, + "end": 4394.34, + "probability": 0.9203 + }, + { + "start": 4394.34, + "end": 4397.32, + "probability": 0.9971 + }, + { + "start": 4398.2, + "end": 4398.52, + "probability": 0.4543 + }, + { + "start": 4399.08, + "end": 4402.48, + "probability": 0.9691 + }, + { + "start": 4402.92, + "end": 4405.34, + "probability": 0.9079 + }, + { + "start": 4406.22, + "end": 4406.78, + "probability": 0.9209 + }, + { + "start": 4407.5, + "end": 4408.1, + "probability": 0.6151 + }, + { + "start": 4409.08, + "end": 4413.58, + "probability": 0.98 + }, + { + "start": 4414.22, + "end": 4416.14, + "probability": 0.9963 + }, + { + "start": 4416.62, + "end": 4417.4, + "probability": 0.7429 + }, + { + "start": 4417.76, + "end": 4419.28, + "probability": 0.9754 + }, + { + "start": 4420.02, + "end": 4420.62, + "probability": 0.7466 + }, + { + "start": 4420.66, + "end": 4422.28, + "probability": 0.9362 + }, + { + "start": 4422.54, + "end": 4424.66, + "probability": 0.9467 + }, + { + "start": 4425.24, + "end": 4427.4, + "probability": 0.5124 + }, + { + "start": 4427.4, + "end": 4427.9, + "probability": 0.3976 + }, + { + "start": 4428.4, + "end": 4429.54, + "probability": 0.9563 + }, + { + "start": 4429.62, + "end": 4430.48, + "probability": 0.8597 + }, + { + "start": 4431.36, + "end": 4434.92, + "probability": 0.9634 + }, + { + "start": 4435.9, + "end": 4437.5, + "probability": 0.9167 + }, + { + "start": 4438.16, + "end": 4440.03, + "probability": 0.9988 + }, + { + "start": 4441.2, + "end": 4442.3, + "probability": 0.4978 + }, + { + "start": 4442.38, + "end": 4443.78, + "probability": 0.8577 + }, + { + "start": 4444.32, + "end": 4446.36, + "probability": 0.5289 + }, + { + "start": 4446.92, + "end": 4447.8, + "probability": 0.7377 + }, + { + "start": 4447.96, + "end": 4450.0, + "probability": 0.9911 + }, + { + "start": 4450.56, + "end": 4451.44, + "probability": 0.9282 + }, + { + "start": 4451.98, + "end": 4455.16, + "probability": 0.8155 + }, + { + "start": 4455.48, + "end": 4456.26, + "probability": 0.9662 + }, + { + "start": 4456.82, + "end": 4457.04, + "probability": 0.8942 + }, + { + "start": 4457.98, + "end": 4458.78, + "probability": 0.8794 + }, + { + "start": 4459.58, + "end": 4459.88, + "probability": 0.907 + }, + { + "start": 4460.54, + "end": 4462.06, + "probability": 0.795 + }, + { + "start": 4462.68, + "end": 4463.67, + "probability": 0.9969 + }, + { + "start": 4464.2, + "end": 4468.82, + "probability": 0.9795 + }, + { + "start": 4469.14, + "end": 4469.48, + "probability": 0.2725 + }, + { + "start": 4469.48, + "end": 4469.66, + "probability": 0.5608 + }, + { + "start": 4475.16, + "end": 4477.88, + "probability": 0.6923 + }, + { + "start": 4477.96, + "end": 4478.94, + "probability": 0.5435 + }, + { + "start": 4479.08, + "end": 4482.22, + "probability": 0.7762 + }, + { + "start": 4507.32, + "end": 4509.44, + "probability": 0.5693 + }, + { + "start": 4510.68, + "end": 4516.4, + "probability": 0.957 + }, + { + "start": 4517.36, + "end": 4520.12, + "probability": 0.7849 + }, + { + "start": 4521.2, + "end": 4523.98, + "probability": 0.8156 + }, + { + "start": 4524.56, + "end": 4527.82, + "probability": 0.9265 + }, + { + "start": 4528.38, + "end": 4530.88, + "probability": 0.9976 + }, + { + "start": 4531.5, + "end": 4537.6, + "probability": 0.8408 + }, + { + "start": 4538.58, + "end": 4544.24, + "probability": 0.9813 + }, + { + "start": 4544.32, + "end": 4546.18, + "probability": 0.9884 + }, + { + "start": 4546.88, + "end": 4548.44, + "probability": 0.8959 + }, + { + "start": 4549.5, + "end": 4553.28, + "probability": 0.8549 + }, + { + "start": 4554.1, + "end": 4557.7, + "probability": 0.9863 + }, + { + "start": 4558.34, + "end": 4561.52, + "probability": 0.9607 + }, + { + "start": 4562.24, + "end": 4563.6, + "probability": 0.8375 + }, + { + "start": 4563.76, + "end": 4567.8, + "probability": 0.9793 + }, + { + "start": 4567.8, + "end": 4571.62, + "probability": 0.9988 + }, + { + "start": 4572.44, + "end": 4578.0, + "probability": 0.9138 + }, + { + "start": 4578.0, + "end": 4582.3, + "probability": 0.9969 + }, + { + "start": 4582.88, + "end": 4587.74, + "probability": 0.9952 + }, + { + "start": 4588.54, + "end": 4591.78, + "probability": 0.9462 + }, + { + "start": 4592.44, + "end": 4594.4, + "probability": 0.8007 + }, + { + "start": 4595.04, + "end": 4599.8, + "probability": 0.8716 + }, + { + "start": 4600.26, + "end": 4602.68, + "probability": 0.7654 + }, + { + "start": 4603.34, + "end": 4603.74, + "probability": 0.8073 + }, + { + "start": 4604.42, + "end": 4605.98, + "probability": 0.9645 + }, + { + "start": 4606.56, + "end": 4608.94, + "probability": 0.9893 + }, + { + "start": 4609.78, + "end": 4610.1, + "probability": 0.5432 + }, + { + "start": 4610.28, + "end": 4612.5, + "probability": 0.9482 + }, + { + "start": 4613.0, + "end": 4616.92, + "probability": 0.9629 + }, + { + "start": 4617.66, + "end": 4621.78, + "probability": 0.9606 + }, + { + "start": 4622.84, + "end": 4626.34, + "probability": 0.9047 + }, + { + "start": 4626.88, + "end": 4629.06, + "probability": 0.0522 + }, + { + "start": 4629.66, + "end": 4631.36, + "probability": 0.9465 + }, + { + "start": 4632.02, + "end": 4636.04, + "probability": 0.9845 + }, + { + "start": 4637.0, + "end": 4643.7, + "probability": 0.9463 + }, + { + "start": 4643.7, + "end": 4650.4, + "probability": 0.9072 + }, + { + "start": 4651.42, + "end": 4655.38, + "probability": 0.9956 + }, + { + "start": 4655.38, + "end": 4659.4, + "probability": 0.8767 + }, + { + "start": 4660.06, + "end": 4661.06, + "probability": 0.7991 + }, + { + "start": 4661.84, + "end": 4665.74, + "probability": 0.9516 + }, + { + "start": 4666.3, + "end": 4668.0, + "probability": 0.9502 + }, + { + "start": 4668.62, + "end": 4674.82, + "probability": 0.9915 + }, + { + "start": 4675.34, + "end": 4679.24, + "probability": 0.9813 + }, + { + "start": 4679.8, + "end": 4683.52, + "probability": 0.8832 + }, + { + "start": 4683.52, + "end": 4686.58, + "probability": 0.8797 + }, + { + "start": 4687.14, + "end": 4692.12, + "probability": 0.976 + }, + { + "start": 4692.34, + "end": 4695.68, + "probability": 0.9896 + }, + { + "start": 4696.22, + "end": 4702.14, + "probability": 0.9929 + }, + { + "start": 4702.56, + "end": 4707.2, + "probability": 0.9919 + }, + { + "start": 4708.62, + "end": 4709.56, + "probability": 0.635 + }, + { + "start": 4710.02, + "end": 4711.92, + "probability": 0.7179 + }, + { + "start": 4712.5, + "end": 4714.68, + "probability": 0.9471 + }, + { + "start": 4724.72, + "end": 4725.02, + "probability": 0.2546 + }, + { + "start": 4725.73, + "end": 4728.56, + "probability": 0.9291 + }, + { + "start": 4728.74, + "end": 4729.1, + "probability": 0.4874 + }, + { + "start": 4729.2, + "end": 4731.54, + "probability": 0.9879 + }, + { + "start": 4731.68, + "end": 4732.12, + "probability": 0.7554 + }, + { + "start": 4732.3, + "end": 4735.22, + "probability": 0.9071 + }, + { + "start": 4736.74, + "end": 4737.92, + "probability": 0.3906 + }, + { + "start": 4741.8, + "end": 4743.52, + "probability": 0.9529 + }, + { + "start": 4743.6, + "end": 4744.48, + "probability": 0.8458 + }, + { + "start": 4744.62, + "end": 4745.37, + "probability": 0.493 + }, + { + "start": 4746.04, + "end": 4748.38, + "probability": 0.844 + }, + { + "start": 4748.42, + "end": 4749.24, + "probability": 0.4951 + }, + { + "start": 4751.4, + "end": 4752.0, + "probability": 0.9424 + }, + { + "start": 4752.0, + "end": 4752.51, + "probability": 0.7309 + }, + { + "start": 4754.4, + "end": 4756.2, + "probability": 0.7461 + }, + { + "start": 4757.94, + "end": 4764.82, + "probability": 0.9819 + }, + { + "start": 4764.82, + "end": 4769.02, + "probability": 0.9932 + }, + { + "start": 4769.64, + "end": 4771.04, + "probability": 0.8073 + }, + { + "start": 4771.8, + "end": 4772.88, + "probability": 0.2889 + }, + { + "start": 4773.62, + "end": 4778.22, + "probability": 0.7827 + }, + { + "start": 4778.96, + "end": 4785.08, + "probability": 0.9912 + }, + { + "start": 4785.24, + "end": 4786.08, + "probability": 0.7317 + }, + { + "start": 4786.82, + "end": 4789.84, + "probability": 0.998 + }, + { + "start": 4790.36, + "end": 4790.94, + "probability": 0.8534 + }, + { + "start": 4791.14, + "end": 4792.06, + "probability": 0.9956 + }, + { + "start": 4792.32, + "end": 4802.36, + "probability": 0.934 + }, + { + "start": 4804.17, + "end": 4808.46, + "probability": 0.9018 + }, + { + "start": 4808.58, + "end": 4812.22, + "probability": 0.8267 + }, + { + "start": 4812.3, + "end": 4813.08, + "probability": 0.6872 + }, + { + "start": 4814.06, + "end": 4821.64, + "probability": 0.9639 + }, + { + "start": 4822.28, + "end": 4825.17, + "probability": 0.9785 + }, + { + "start": 4825.98, + "end": 4828.72, + "probability": 0.9448 + }, + { + "start": 4828.88, + "end": 4833.76, + "probability": 0.9935 + }, + { + "start": 4833.88, + "end": 4840.66, + "probability": 0.9802 + }, + { + "start": 4840.66, + "end": 4844.8, + "probability": 0.8587 + }, + { + "start": 4846.1, + "end": 4848.26, + "probability": 0.9165 + }, + { + "start": 4848.92, + "end": 4853.06, + "probability": 0.9297 + }, + { + "start": 4853.06, + "end": 4857.7, + "probability": 0.9697 + }, + { + "start": 4858.66, + "end": 4862.04, + "probability": 0.9924 + }, + { + "start": 4862.6, + "end": 4864.45, + "probability": 0.9132 + }, + { + "start": 4866.86, + "end": 4867.96, + "probability": 0.0471 + }, + { + "start": 4868.16, + "end": 4868.64, + "probability": 0.0645 + }, + { + "start": 4869.76, + "end": 4870.7, + "probability": 0.0566 + }, + { + "start": 4870.82, + "end": 4874.68, + "probability": 0.5744 + }, + { + "start": 4874.74, + "end": 4875.98, + "probability": 0.9445 + }, + { + "start": 4876.5, + "end": 4879.64, + "probability": 0.9645 + }, + { + "start": 4880.46, + "end": 4886.52, + "probability": 0.9786 + }, + { + "start": 4887.56, + "end": 4891.54, + "probability": 0.9683 + }, + { + "start": 4891.6, + "end": 4892.74, + "probability": 0.8732 + }, + { + "start": 4893.58, + "end": 4894.86, + "probability": 0.9854 + }, + { + "start": 4895.4, + "end": 4896.42, + "probability": 0.5594 + }, + { + "start": 4897.04, + "end": 4899.62, + "probability": 0.9863 + }, + { + "start": 4900.76, + "end": 4905.92, + "probability": 0.896 + }, + { + "start": 4906.64, + "end": 4908.0, + "probability": 0.858 + }, + { + "start": 4908.66, + "end": 4909.78, + "probability": 0.988 + }, + { + "start": 4911.26, + "end": 4913.1, + "probability": 0.9854 + }, + { + "start": 4914.96, + "end": 4916.1, + "probability": 0.9234 + }, + { + "start": 4916.7, + "end": 4921.02, + "probability": 0.9215 + }, + { + "start": 4921.7, + "end": 4926.14, + "probability": 0.8048 + }, + { + "start": 4926.6, + "end": 4929.32, + "probability": 0.8392 + }, + { + "start": 4929.88, + "end": 4935.23, + "probability": 0.9565 + }, + { + "start": 4936.72, + "end": 4940.1, + "probability": 0.9972 + }, + { + "start": 4940.6, + "end": 4942.82, + "probability": 0.9933 + }, + { + "start": 4943.44, + "end": 4943.64, + "probability": 0.7847 + }, + { + "start": 4944.54, + "end": 4951.64, + "probability": 0.9825 + }, + { + "start": 4952.42, + "end": 4952.62, + "probability": 0.4593 + }, + { + "start": 4953.7, + "end": 4959.01, + "probability": 0.9919 + }, + { + "start": 4959.44, + "end": 4962.66, + "probability": 0.9962 + }, + { + "start": 4962.74, + "end": 4967.94, + "probability": 0.8676 + }, + { + "start": 4968.6, + "end": 4971.64, + "probability": 0.9005 + }, + { + "start": 4972.4, + "end": 4977.6, + "probability": 0.9205 + }, + { + "start": 4978.28, + "end": 4981.66, + "probability": 0.984 + }, + { + "start": 4982.64, + "end": 4982.64, + "probability": 0.5409 + }, + { + "start": 4982.86, + "end": 4983.82, + "probability": 0.9689 + }, + { + "start": 4983.88, + "end": 4987.78, + "probability": 0.9884 + }, + { + "start": 4987.92, + "end": 4988.72, + "probability": 0.9847 + }, + { + "start": 4989.3, + "end": 4991.5, + "probability": 0.9995 + }, + { + "start": 4991.96, + "end": 4994.06, + "probability": 0.9466 + }, + { + "start": 4994.5, + "end": 4996.38, + "probability": 0.9738 + }, + { + "start": 4997.1, + "end": 4999.5, + "probability": 0.9508 + }, + { + "start": 5000.32, + "end": 5003.04, + "probability": 0.7459 + }, + { + "start": 5005.68, + "end": 5010.36, + "probability": 0.9946 + }, + { + "start": 5010.72, + "end": 5016.72, + "probability": 0.9766 + }, + { + "start": 5017.3, + "end": 5018.66, + "probability": 0.9088 + }, + { + "start": 5019.2, + "end": 5020.94, + "probability": 0.9763 + }, + { + "start": 5021.5, + "end": 5022.98, + "probability": 0.4923 + }, + { + "start": 5023.44, + "end": 5024.5, + "probability": 0.9441 + }, + { + "start": 5025.24, + "end": 5029.72, + "probability": 0.9938 + }, + { + "start": 5029.92, + "end": 5032.26, + "probability": 0.7221 + }, + { + "start": 5033.5, + "end": 5035.44, + "probability": 0.9935 + }, + { + "start": 5035.56, + "end": 5038.92, + "probability": 0.9941 + }, + { + "start": 5038.92, + "end": 5043.7, + "probability": 0.8709 + }, + { + "start": 5043.8, + "end": 5044.88, + "probability": 0.9107 + }, + { + "start": 5044.9, + "end": 5046.06, + "probability": 0.4776 + }, + { + "start": 5046.1, + "end": 5048.82, + "probability": 0.9346 + }, + { + "start": 5048.88, + "end": 5049.16, + "probability": 0.6209 + }, + { + "start": 5049.38, + "end": 5049.42, + "probability": 0.0384 + }, + { + "start": 5049.42, + "end": 5050.54, + "probability": 0.9038 + }, + { + "start": 5052.59, + "end": 5055.06, + "probability": 0.7817 + }, + { + "start": 5055.14, + "end": 5055.86, + "probability": 0.8334 + }, + { + "start": 5055.88, + "end": 5057.3, + "probability": 0.9873 + }, + { + "start": 5057.68, + "end": 5060.18, + "probability": 0.6014 + }, + { + "start": 5060.74, + "end": 5066.32, + "probability": 0.9762 + }, + { + "start": 5066.84, + "end": 5070.9, + "probability": 0.9574 + }, + { + "start": 5071.04, + "end": 5071.64, + "probability": 0.7475 + }, + { + "start": 5072.84, + "end": 5073.56, + "probability": 0.7894 + }, + { + "start": 5074.84, + "end": 5074.84, + "probability": 0.5881 + }, + { + "start": 5074.84, + "end": 5074.84, + "probability": 0.6443 + }, + { + "start": 5074.84, + "end": 5078.4, + "probability": 0.958 + }, + { + "start": 5078.46, + "end": 5081.02, + "probability": 0.9797 + }, + { + "start": 5082.32, + "end": 5085.6, + "probability": 0.8447 + }, + { + "start": 5085.88, + "end": 5086.5, + "probability": 0.8648 + }, + { + "start": 5120.08, + "end": 5121.26, + "probability": 0.7446 + }, + { + "start": 5129.98, + "end": 5131.38, + "probability": 0.7004 + }, + { + "start": 5132.1, + "end": 5135.0, + "probability": 0.9644 + }, + { + "start": 5135.62, + "end": 5141.08, + "probability": 0.9248 + }, + { + "start": 5141.34, + "end": 5145.06, + "probability": 0.9751 + }, + { + "start": 5145.06, + "end": 5149.46, + "probability": 0.9952 + }, + { + "start": 5149.98, + "end": 5150.84, + "probability": 0.6223 + }, + { + "start": 5154.75, + "end": 5162.18, + "probability": 0.9856 + }, + { + "start": 5162.72, + "end": 5165.34, + "probability": 0.9933 + }, + { + "start": 5166.04, + "end": 5168.94, + "probability": 0.9897 + }, + { + "start": 5170.12, + "end": 5170.64, + "probability": 0.4178 + }, + { + "start": 5170.72, + "end": 5172.56, + "probability": 0.96 + }, + { + "start": 5172.72, + "end": 5178.28, + "probability": 0.987 + }, + { + "start": 5179.02, + "end": 5183.1, + "probability": 0.9956 + }, + { + "start": 5183.9, + "end": 5185.9, + "probability": 0.8995 + }, + { + "start": 5187.78, + "end": 5188.28, + "probability": 0.6338 + }, + { + "start": 5188.5, + "end": 5191.74, + "probability": 0.999 + }, + { + "start": 5191.74, + "end": 5196.35, + "probability": 0.9971 + }, + { + "start": 5196.6, + "end": 5199.16, + "probability": 0.9127 + }, + { + "start": 5199.23, + "end": 5201.22, + "probability": 0.7774 + }, + { + "start": 5201.38, + "end": 5204.12, + "probability": 0.946 + }, + { + "start": 5204.24, + "end": 5207.06, + "probability": 0.0274 + }, + { + "start": 5207.06, + "end": 5207.2, + "probability": 0.6664 + }, + { + "start": 5211.32, + "end": 5212.14, + "probability": 0.6733 + }, + { + "start": 5214.84, + "end": 5220.66, + "probability": 0.9865 + }, + { + "start": 5220.76, + "end": 5220.76, + "probability": 0.0064 + }, + { + "start": 5221.4, + "end": 5222.38, + "probability": 0.2364 + }, + { + "start": 5222.9, + "end": 5226.64, + "probability": 0.9738 + }, + { + "start": 5227.02, + "end": 5232.34, + "probability": 0.8649 + }, + { + "start": 5232.5, + "end": 5234.36, + "probability": 0.6083 + }, + { + "start": 5234.5, + "end": 5236.0, + "probability": 0.8137 + }, + { + "start": 5236.0, + "end": 5238.96, + "probability": 0.7669 + }, + { + "start": 5239.46, + "end": 5240.66, + "probability": 0.719 + }, + { + "start": 5240.9, + "end": 5240.9, + "probability": 0.0188 + }, + { + "start": 5240.92, + "end": 5244.25, + "probability": 0.409 + }, + { + "start": 5245.32, + "end": 5246.5, + "probability": 0.3181 + }, + { + "start": 5246.82, + "end": 5249.28, + "probability": 0.462 + }, + { + "start": 5249.46, + "end": 5250.32, + "probability": 0.7734 + }, + { + "start": 5250.42, + "end": 5252.56, + "probability": 0.9099 + }, + { + "start": 5252.72, + "end": 5256.52, + "probability": 0.9971 + }, + { + "start": 5256.66, + "end": 5258.52, + "probability": 0.9574 + }, + { + "start": 5258.98, + "end": 5259.82, + "probability": 0.537 + }, + { + "start": 5259.94, + "end": 5262.72, + "probability": 0.1906 + }, + { + "start": 5262.86, + "end": 5265.76, + "probability": 0.237 + }, + { + "start": 5267.18, + "end": 5267.58, + "probability": 0.4845 + }, + { + "start": 5268.36, + "end": 5269.19, + "probability": 0.2547 + }, + { + "start": 5269.4, + "end": 5269.84, + "probability": 0.4739 + }, + { + "start": 5269.88, + "end": 5271.88, + "probability": 0.4081 + }, + { + "start": 5272.04, + "end": 5272.04, + "probability": 0.0904 + }, + { + "start": 5272.04, + "end": 5272.08, + "probability": 0.2788 + }, + { + "start": 5272.3, + "end": 5273.0, + "probability": 0.1622 + }, + { + "start": 5273.1, + "end": 5273.68, + "probability": 0.8195 + }, + { + "start": 5273.78, + "end": 5275.28, + "probability": 0.6923 + }, + { + "start": 5275.44, + "end": 5277.4, + "probability": 0.6077 + }, + { + "start": 5277.48, + "end": 5278.32, + "probability": 0.6819 + }, + { + "start": 5278.84, + "end": 5282.8, + "probability": 0.7817 + }, + { + "start": 5283.61, + "end": 5285.68, + "probability": 0.998 + }, + { + "start": 5286.52, + "end": 5290.88, + "probability": 0.9695 + }, + { + "start": 5291.02, + "end": 5291.54, + "probability": 0.8086 + }, + { + "start": 5292.2, + "end": 5295.2, + "probability": 0.9948 + }, + { + "start": 5295.28, + "end": 5296.94, + "probability": 0.98 + }, + { + "start": 5297.74, + "end": 5301.4, + "probability": 0.987 + }, + { + "start": 5301.88, + "end": 5305.7, + "probability": 0.9927 + }, + { + "start": 5305.7, + "end": 5312.38, + "probability": 0.9986 + }, + { + "start": 5312.5, + "end": 5312.6, + "probability": 0.4226 + }, + { + "start": 5312.66, + "end": 5313.54, + "probability": 0.562 + }, + { + "start": 5313.66, + "end": 5314.94, + "probability": 0.6228 + }, + { + "start": 5315.6, + "end": 5318.62, + "probability": 0.9984 + }, + { + "start": 5319.48, + "end": 5323.88, + "probability": 0.9876 + }, + { + "start": 5324.1, + "end": 5328.22, + "probability": 0.9661 + }, + { + "start": 5328.56, + "end": 5330.64, + "probability": 0.9774 + }, + { + "start": 5330.92, + "end": 5331.88, + "probability": 0.3095 + }, + { + "start": 5345.56, + "end": 5345.88, + "probability": 0.1786 + }, + { + "start": 5346.26, + "end": 5346.94, + "probability": 0.0209 + }, + { + "start": 5346.94, + "end": 5349.46, + "probability": 0.6669 + }, + { + "start": 5349.46, + "end": 5351.96, + "probability": 0.8826 + }, + { + "start": 5355.68, + "end": 5357.32, + "probability": 0.8127 + }, + { + "start": 5357.44, + "end": 5360.58, + "probability": 0.9414 + }, + { + "start": 5360.8, + "end": 5361.24, + "probability": 0.8898 + }, + { + "start": 5361.28, + "end": 5362.56, + "probability": 0.7243 + }, + { + "start": 5362.64, + "end": 5365.72, + "probability": 0.8306 + }, + { + "start": 5366.98, + "end": 5367.9, + "probability": 0.0541 + }, + { + "start": 5370.48, + "end": 5370.52, + "probability": 0.0211 + }, + { + "start": 5371.12, + "end": 5372.06, + "probability": 0.2071 + }, + { + "start": 5372.06, + "end": 5372.22, + "probability": 0.0698 + }, + { + "start": 5372.22, + "end": 5372.9, + "probability": 0.0643 + }, + { + "start": 5373.04, + "end": 5374.82, + "probability": 0.147 + }, + { + "start": 5375.16, + "end": 5377.86, + "probability": 0.1745 + }, + { + "start": 5377.88, + "end": 5379.78, + "probability": 0.4929 + }, + { + "start": 5380.02, + "end": 5380.22, + "probability": 0.5075 + }, + { + "start": 5381.82, + "end": 5382.28, + "probability": 0.588 + }, + { + "start": 5382.28, + "end": 5382.54, + "probability": 0.0945 + }, + { + "start": 5383.2, + "end": 5384.08, + "probability": 0.402 + }, + { + "start": 5385.44, + "end": 5386.86, + "probability": 0.0967 + }, + { + "start": 5386.86, + "end": 5386.86, + "probability": 0.3457 + }, + { + "start": 5386.86, + "end": 5388.0, + "probability": 0.701 + }, + { + "start": 5388.06, + "end": 5389.22, + "probability": 0.8666 + }, + { + "start": 5389.26, + "end": 5390.46, + "probability": 0.8252 + }, + { + "start": 5390.48, + "end": 5394.14, + "probability": 0.881 + }, + { + "start": 5394.36, + "end": 5395.3, + "probability": 0.7185 + }, + { + "start": 5395.3, + "end": 5395.42, + "probability": 0.8107 + }, + { + "start": 5395.42, + "end": 5396.62, + "probability": 0.5043 + }, + { + "start": 5397.4, + "end": 5397.77, + "probability": 0.1449 + }, + { + "start": 5398.58, + "end": 5400.16, + "probability": 0.8689 + }, + { + "start": 5400.48, + "end": 5403.48, + "probability": 0.9491 + }, + { + "start": 5404.12, + "end": 5408.36, + "probability": 0.8655 + }, + { + "start": 5408.4, + "end": 5408.96, + "probability": 0.314 + }, + { + "start": 5409.4, + "end": 5409.74, + "probability": 0.095 + }, + { + "start": 5410.31, + "end": 5411.58, + "probability": 0.3241 + }, + { + "start": 5412.28, + "end": 5414.02, + "probability": 0.3514 + }, + { + "start": 5414.08, + "end": 5414.96, + "probability": 0.319 + }, + { + "start": 5415.74, + "end": 5415.76, + "probability": 0.7957 + }, + { + "start": 5416.08, + "end": 5416.74, + "probability": 0.9146 + }, + { + "start": 5416.94, + "end": 5417.76, + "probability": 0.4062 + }, + { + "start": 5417.8, + "end": 5419.6, + "probability": 0.8887 + }, + { + "start": 5419.68, + "end": 5419.68, + "probability": 0.4256 + }, + { + "start": 5419.68, + "end": 5419.68, + "probability": 0.3468 + }, + { + "start": 5419.68, + "end": 5421.08, + "probability": 0.7292 + }, + { + "start": 5421.08, + "end": 5425.18, + "probability": 0.5891 + }, + { + "start": 5425.64, + "end": 5427.26, + "probability": 0.1292 + }, + { + "start": 5427.5, + "end": 5429.38, + "probability": 0.5014 + }, + { + "start": 5429.44, + "end": 5430.3, + "probability": 0.751 + }, + { + "start": 5430.4, + "end": 5430.86, + "probability": 0.3114 + }, + { + "start": 5431.28, + "end": 5432.84, + "probability": 0.9103 + }, + { + "start": 5433.02, + "end": 5434.2, + "probability": 0.9015 + }, + { + "start": 5434.72, + "end": 5434.8, + "probability": 0.046 + }, + { + "start": 5434.8, + "end": 5434.94, + "probability": 0.1762 + }, + { + "start": 5435.48, + "end": 5435.9, + "probability": 0.3415 + }, + { + "start": 5436.28, + "end": 5437.09, + "probability": 0.2555 + }, + { + "start": 5437.74, + "end": 5438.16, + "probability": 0.4741 + }, + { + "start": 5438.24, + "end": 5438.87, + "probability": 0.5442 + }, + { + "start": 5439.4, + "end": 5440.3, + "probability": 0.5952 + }, + { + "start": 5440.48, + "end": 5441.08, + "probability": 0.3629 + }, + { + "start": 5442.46, + "end": 5447.36, + "probability": 0.9543 + }, + { + "start": 5447.5, + "end": 5448.14, + "probability": 0.5857 + }, + { + "start": 5448.16, + "end": 5451.16, + "probability": 0.9473 + }, + { + "start": 5451.82, + "end": 5453.82, + "probability": 0.6885 + }, + { + "start": 5454.64, + "end": 5456.62, + "probability": 0.7136 + }, + { + "start": 5456.78, + "end": 5460.28, + "probability": 0.894 + }, + { + "start": 5460.71, + "end": 5463.14, + "probability": 0.7461 + }, + { + "start": 5463.18, + "end": 5465.88, + "probability": 0.7739 + }, + { + "start": 5466.14, + "end": 5468.26, + "probability": 0.8391 + }, + { + "start": 5468.5, + "end": 5468.98, + "probability": 0.7945 + }, + { + "start": 5469.24, + "end": 5470.2, + "probability": 0.9088 + }, + { + "start": 5470.34, + "end": 5471.58, + "probability": 0.9329 + }, + { + "start": 5472.32, + "end": 5473.2, + "probability": 0.9937 + }, + { + "start": 5475.81, + "end": 5480.16, + "probability": 0.9908 + }, + { + "start": 5482.7, + "end": 5484.3, + "probability": 0.95 + }, + { + "start": 5484.4, + "end": 5488.36, + "probability": 0.9771 + }, + { + "start": 5489.1, + "end": 5490.64, + "probability": 0.9343 + }, + { + "start": 5492.26, + "end": 5493.86, + "probability": 0.5823 + }, + { + "start": 5495.22, + "end": 5496.11, + "probability": 0.583 + }, + { + "start": 5496.46, + "end": 5496.68, + "probability": 0.8428 + }, + { + "start": 5497.98, + "end": 5499.38, + "probability": 0.5514 + }, + { + "start": 5500.98, + "end": 5503.26, + "probability": 0.166 + }, + { + "start": 5504.16, + "end": 5505.9, + "probability": 0.1169 + }, + { + "start": 5506.7, + "end": 5507.24, + "probability": 0.9701 + }, + { + "start": 5507.24, + "end": 5510.4, + "probability": 0.8343 + }, + { + "start": 5510.58, + "end": 5513.4, + "probability": 0.5553 + }, + { + "start": 5513.4, + "end": 5516.58, + "probability": 0.9851 + }, + { + "start": 5516.82, + "end": 5519.8, + "probability": 0.9918 + }, + { + "start": 5519.86, + "end": 5520.62, + "probability": 0.8215 + }, + { + "start": 5520.7, + "end": 5522.37, + "probability": 0.9702 + }, + { + "start": 5522.5, + "end": 5526.66, + "probability": 0.9893 + }, + { + "start": 5527.0, + "end": 5528.46, + "probability": 0.7801 + }, + { + "start": 5528.52, + "end": 5529.0, + "probability": 0.9256 + }, + { + "start": 5529.26, + "end": 5534.16, + "probability": 0.9936 + }, + { + "start": 5535.0, + "end": 5536.38, + "probability": 0.9575 + }, + { + "start": 5536.48, + "end": 5539.84, + "probability": 0.9722 + }, + { + "start": 5540.04, + "end": 5541.78, + "probability": 0.9946 + }, + { + "start": 5542.16, + "end": 5547.52, + "probability": 0.9871 + }, + { + "start": 5552.96, + "end": 5556.64, + "probability": 0.9897 + }, + { + "start": 5556.98, + "end": 5559.86, + "probability": 0.991 + }, + { + "start": 5560.12, + "end": 5565.18, + "probability": 0.9844 + }, + { + "start": 5565.18, + "end": 5569.51, + "probability": 0.9883 + }, + { + "start": 5570.36, + "end": 5573.76, + "probability": 0.9138 + }, + { + "start": 5573.94, + "end": 5575.38, + "probability": 0.8441 + }, + { + "start": 5575.52, + "end": 5575.84, + "probability": 0.5714 + }, + { + "start": 5575.9, + "end": 5576.94, + "probability": 0.7575 + }, + { + "start": 5577.24, + "end": 5578.84, + "probability": 0.9929 + }, + { + "start": 5579.14, + "end": 5580.88, + "probability": 0.6155 + }, + { + "start": 5581.48, + "end": 5585.16, + "probability": 0.8992 + }, + { + "start": 5585.82, + "end": 5587.04, + "probability": 0.813 + }, + { + "start": 5587.16, + "end": 5588.9, + "probability": 0.8805 + }, + { + "start": 5589.0, + "end": 5592.9, + "probability": 0.9746 + }, + { + "start": 5592.98, + "end": 5594.02, + "probability": 0.8333 + }, + { + "start": 5594.94, + "end": 5601.06, + "probability": 0.7495 + }, + { + "start": 5601.92, + "end": 5602.84, + "probability": 0.0214 + }, + { + "start": 5603.64, + "end": 5604.96, + "probability": 0.0672 + }, + { + "start": 5605.7, + "end": 5607.48, + "probability": 0.6999 + }, + { + "start": 5608.02, + "end": 5610.82, + "probability": 0.792 + }, + { + "start": 5611.56, + "end": 5613.34, + "probability": 0.6677 + }, + { + "start": 5613.44, + "end": 5615.76, + "probability": 0.0823 + }, + { + "start": 5615.76, + "end": 5619.6, + "probability": 0.9346 + }, + { + "start": 5619.64, + "end": 5625.86, + "probability": 0.6626 + }, + { + "start": 5626.2, + "end": 5627.42, + "probability": 0.4386 + }, + { + "start": 5627.44, + "end": 5628.52, + "probability": 0.7964 + }, + { + "start": 5628.94, + "end": 5630.68, + "probability": 0.3501 + }, + { + "start": 5631.64, + "end": 5637.1, + "probability": 0.9957 + }, + { + "start": 5637.1, + "end": 5643.42, + "probability": 0.9856 + }, + { + "start": 5643.92, + "end": 5646.06, + "probability": 0.9829 + }, + { + "start": 5646.26, + "end": 5648.48, + "probability": 0.8745 + }, + { + "start": 5648.74, + "end": 5649.12, + "probability": 0.652 + }, + { + "start": 5649.12, + "end": 5649.68, + "probability": 0.6041 + }, + { + "start": 5649.92, + "end": 5651.23, + "probability": 0.0293 + }, + { + "start": 5652.78, + "end": 5655.16, + "probability": 0.2425 + }, + { + "start": 5655.36, + "end": 5657.66, + "probability": 0.8829 + }, + { + "start": 5657.74, + "end": 5658.88, + "probability": 0.5059 + }, + { + "start": 5658.96, + "end": 5661.34, + "probability": 0.4945 + }, + { + "start": 5661.78, + "end": 5664.52, + "probability": 0.998 + }, + { + "start": 5664.52, + "end": 5668.1, + "probability": 0.8045 + }, + { + "start": 5668.3, + "end": 5670.62, + "probability": 0.9973 + }, + { + "start": 5670.84, + "end": 5673.06, + "probability": 0.9237 + }, + { + "start": 5673.14, + "end": 5675.28, + "probability": 0.9931 + }, + { + "start": 5675.42, + "end": 5676.1, + "probability": 0.1659 + }, + { + "start": 5677.0, + "end": 5678.08, + "probability": 0.0766 + }, + { + "start": 5678.7, + "end": 5681.28, + "probability": 0.2214 + }, + { + "start": 5685.28, + "end": 5686.72, + "probability": 0.2621 + }, + { + "start": 5687.64, + "end": 5691.24, + "probability": 0.3376 + }, + { + "start": 5691.9, + "end": 5696.54, + "probability": 0.7345 + }, + { + "start": 5696.7, + "end": 5697.16, + "probability": 0.8073 + }, + { + "start": 5697.38, + "end": 5698.72, + "probability": 0.8486 + }, + { + "start": 5698.8, + "end": 5701.98, + "probability": 0.7361 + }, + { + "start": 5702.24, + "end": 5705.54, + "probability": 0.9368 + }, + { + "start": 5706.04, + "end": 5707.38, + "probability": 0.8733 + }, + { + "start": 5707.5, + "end": 5709.6, + "probability": 0.8737 + }, + { + "start": 5709.88, + "end": 5715.22, + "probability": 0.8252 + }, + { + "start": 5715.42, + "end": 5717.46, + "probability": 0.98 + }, + { + "start": 5717.64, + "end": 5718.76, + "probability": 0.9877 + }, + { + "start": 5719.04, + "end": 5720.7, + "probability": 0.9804 + }, + { + "start": 5720.98, + "end": 5725.5, + "probability": 0.9815 + }, + { + "start": 5725.5, + "end": 5729.38, + "probability": 0.981 + }, + { + "start": 5729.6, + "end": 5730.98, + "probability": 0.9983 + }, + { + "start": 5731.48, + "end": 5732.12, + "probability": 0.9489 + }, + { + "start": 5732.22, + "end": 5732.96, + "probability": 0.7514 + }, + { + "start": 5733.24, + "end": 5734.8, + "probability": 0.9512 + }, + { + "start": 5735.44, + "end": 5736.48, + "probability": 0.9016 + }, + { + "start": 5737.04, + "end": 5737.89, + "probability": 0.9933 + }, + { + "start": 5738.72, + "end": 5741.32, + "probability": 0.9643 + }, + { + "start": 5741.42, + "end": 5742.12, + "probability": 0.4315 + }, + { + "start": 5742.82, + "end": 5743.76, + "probability": 0.6741 + }, + { + "start": 5743.8, + "end": 5744.58, + "probability": 0.8215 + }, + { + "start": 5744.7, + "end": 5749.04, + "probability": 0.9492 + }, + { + "start": 5749.2, + "end": 5753.3, + "probability": 0.9946 + }, + { + "start": 5753.74, + "end": 5754.69, + "probability": 0.8628 + }, + { + "start": 5755.08, + "end": 5757.78, + "probability": 0.84 + }, + { + "start": 5759.14, + "end": 5764.6, + "probability": 0.6665 + }, + { + "start": 5764.68, + "end": 5766.76, + "probability": 0.9203 + }, + { + "start": 5767.0, + "end": 5770.32, + "probability": 0.9615 + }, + { + "start": 5771.26, + "end": 5774.39, + "probability": 0.8696 + }, + { + "start": 5775.16, + "end": 5779.42, + "probability": 0.8345 + }, + { + "start": 5779.86, + "end": 5781.38, + "probability": 0.7871 + }, + { + "start": 5781.74, + "end": 5789.36, + "probability": 0.7245 + }, + { + "start": 5789.5, + "end": 5792.02, + "probability": 0.8732 + }, + { + "start": 5792.68, + "end": 5793.38, + "probability": 0.4916 + }, + { + "start": 5796.18, + "end": 5798.22, + "probability": 0.0469 + }, + { + "start": 5799.82, + "end": 5800.34, + "probability": 0.0077 + }, + { + "start": 5800.66, + "end": 5803.0, + "probability": 0.7272 + }, + { + "start": 5803.36, + "end": 5807.48, + "probability": 0.8611 + }, + { + "start": 5808.06, + "end": 5809.08, + "probability": 0.0245 + }, + { + "start": 5810.16, + "end": 5814.96, + "probability": 0.2982 + }, + { + "start": 5815.18, + "end": 5820.18, + "probability": 0.3796 + }, + { + "start": 5820.92, + "end": 5821.92, + "probability": 0.2587 + }, + { + "start": 5822.24, + "end": 5823.24, + "probability": 0.2645 + }, + { + "start": 5823.4, + "end": 5828.52, + "probability": 0.8171 + }, + { + "start": 5828.62, + "end": 5832.7, + "probability": 0.994 + }, + { + "start": 5832.7, + "end": 5836.36, + "probability": 0.9982 + }, + { + "start": 5836.36, + "end": 5840.66, + "probability": 0.9515 + }, + { + "start": 5841.04, + "end": 5846.62, + "probability": 0.9837 + }, + { + "start": 5847.06, + "end": 5849.98, + "probability": 0.8544 + }, + { + "start": 5849.98, + "end": 5853.52, + "probability": 0.9944 + }, + { + "start": 5853.52, + "end": 5854.64, + "probability": 0.502 + }, + { + "start": 5855.16, + "end": 5856.24, + "probability": 0.7595 + }, + { + "start": 5857.4, + "end": 5859.07, + "probability": 0.667 + }, + { + "start": 5859.34, + "end": 5862.36, + "probability": 0.9702 + }, + { + "start": 5862.44, + "end": 5864.63, + "probability": 0.877 + }, + { + "start": 5864.92, + "end": 5864.94, + "probability": 0.0043 + }, + { + "start": 5864.94, + "end": 5866.33, + "probability": 0.3453 + }, + { + "start": 5866.78, + "end": 5870.56, + "probability": 0.4018 + }, + { + "start": 5871.2, + "end": 5871.2, + "probability": 0.0783 + }, + { + "start": 5871.2, + "end": 5872.46, + "probability": 0.1835 + }, + { + "start": 5872.54, + "end": 5875.28, + "probability": 0.2022 + }, + { + "start": 5875.36, + "end": 5876.07, + "probability": 0.8091 + }, + { + "start": 5877.08, + "end": 5878.13, + "probability": 0.8369 + }, + { + "start": 5878.36, + "end": 5878.87, + "probability": 0.9181 + }, + { + "start": 5879.32, + "end": 5879.66, + "probability": 0.4965 + }, + { + "start": 5880.56, + "end": 5881.07, + "probability": 0.7629 + }, + { + "start": 5881.58, + "end": 5883.42, + "probability": 0.2785 + }, + { + "start": 5883.54, + "end": 5885.2, + "probability": 0.1247 + }, + { + "start": 5885.58, + "end": 5885.58, + "probability": 0.0055 + }, + { + "start": 5885.58, + "end": 5886.78, + "probability": 0.0543 + }, + { + "start": 5887.52, + "end": 5887.52, + "probability": 0.4305 + }, + { + "start": 5887.88, + "end": 5888.81, + "probability": 0.4933 + }, + { + "start": 5889.08, + "end": 5891.06, + "probability": 0.5059 + }, + { + "start": 5891.24, + "end": 5892.19, + "probability": 0.3647 + }, + { + "start": 5892.54, + "end": 5894.42, + "probability": 0.8335 + }, + { + "start": 5894.56, + "end": 5898.26, + "probability": 0.7463 + }, + { + "start": 5898.26, + "end": 5900.82, + "probability": 0.9935 + }, + { + "start": 5901.26, + "end": 5902.86, + "probability": 0.9595 + }, + { + "start": 5902.94, + "end": 5904.02, + "probability": 0.2119 + }, + { + "start": 5904.18, + "end": 5905.05, + "probability": 0.9591 + }, + { + "start": 5905.26, + "end": 5907.48, + "probability": 0.9458 + }, + { + "start": 5907.48, + "end": 5908.88, + "probability": 0.9398 + }, + { + "start": 5909.06, + "end": 5909.76, + "probability": 0.6149 + }, + { + "start": 5909.94, + "end": 5912.9, + "probability": 0.7615 + }, + { + "start": 5912.98, + "end": 5914.32, + "probability": 0.4503 + }, + { + "start": 5914.44, + "end": 5916.4, + "probability": 0.3321 + }, + { + "start": 5916.62, + "end": 5917.24, + "probability": 0.5082 + }, + { + "start": 5917.38, + "end": 5919.22, + "probability": 0.8458 + }, + { + "start": 5919.62, + "end": 5923.6, + "probability": 0.9448 + }, + { + "start": 5923.72, + "end": 5926.42, + "probability": 0.9495 + }, + { + "start": 5926.48, + "end": 5928.24, + "probability": 0.5336 + }, + { + "start": 5928.28, + "end": 5930.16, + "probability": 0.9968 + }, + { + "start": 5930.16, + "end": 5932.32, + "probability": 0.7576 + }, + { + "start": 5932.38, + "end": 5933.1, + "probability": 0.4384 + }, + { + "start": 5933.28, + "end": 5933.56, + "probability": 0.7181 + }, + { + "start": 5933.8, + "end": 5934.5, + "probability": 0.9828 + }, + { + "start": 5934.6, + "end": 5938.08, + "probability": 0.7293 + }, + { + "start": 5938.34, + "end": 5940.1, + "probability": 0.8789 + }, + { + "start": 5940.16, + "end": 5941.38, + "probability": 0.9346 + }, + { + "start": 5941.5, + "end": 5942.3, + "probability": 0.7019 + }, + { + "start": 5942.3, + "end": 5943.26, + "probability": 0.9509 + }, + { + "start": 5943.48, + "end": 5944.24, + "probability": 0.9248 + }, + { + "start": 5944.34, + "end": 5945.18, + "probability": 0.4736 + }, + { + "start": 5945.3, + "end": 5947.51, + "probability": 0.695 + }, + { + "start": 5947.76, + "end": 5950.14, + "probability": 0.0093 + }, + { + "start": 5950.26, + "end": 5950.88, + "probability": 0.0189 + }, + { + "start": 5950.88, + "end": 5950.88, + "probability": 0.1074 + }, + { + "start": 5950.88, + "end": 5951.92, + "probability": 0.1731 + }, + { + "start": 5952.48, + "end": 5954.02, + "probability": 0.6619 + }, + { + "start": 5954.32, + "end": 5955.14, + "probability": 0.0829 + }, + { + "start": 5955.2, + "end": 5955.94, + "probability": 0.4477 + }, + { + "start": 5955.96, + "end": 5956.2, + "probability": 0.717 + }, + { + "start": 5956.24, + "end": 5957.1, + "probability": 0.6818 + }, + { + "start": 5957.24, + "end": 5961.88, + "probability": 0.927 + }, + { + "start": 5961.96, + "end": 5962.18, + "probability": 0.0547 + }, + { + "start": 5962.18, + "end": 5965.0, + "probability": 0.9563 + }, + { + "start": 5965.08, + "end": 5965.96, + "probability": 0.667 + }, + { + "start": 5966.1, + "end": 5966.14, + "probability": 0.3273 + }, + { + "start": 5966.14, + "end": 5967.22, + "probability": 0.7337 + }, + { + "start": 5967.34, + "end": 5968.08, + "probability": 0.7878 + }, + { + "start": 5968.44, + "end": 5973.4, + "probability": 0.4049 + }, + { + "start": 5973.4, + "end": 5974.64, + "probability": 0.1658 + }, + { + "start": 5974.66, + "end": 5976.58, + "probability": 0.2994 + }, + { + "start": 5976.7, + "end": 5977.32, + "probability": 0.2444 + }, + { + "start": 5977.32, + "end": 5977.91, + "probability": 0.4629 + }, + { + "start": 5979.3, + "end": 5979.68, + "probability": 0.7028 + }, + { + "start": 5980.02, + "end": 5980.58, + "probability": 0.7314 + }, + { + "start": 5980.7, + "end": 5983.84, + "probability": 0.9454 + }, + { + "start": 5983.98, + "end": 5984.92, + "probability": 0.6753 + }, + { + "start": 5985.58, + "end": 5988.88, + "probability": 0.7922 + }, + { + "start": 5989.36, + "end": 5990.94, + "probability": 0.978 + }, + { + "start": 5991.1, + "end": 5991.66, + "probability": 0.8586 + }, + { + "start": 5991.72, + "end": 5992.8, + "probability": 0.9293 + }, + { + "start": 5992.94, + "end": 5995.72, + "probability": 0.9902 + }, + { + "start": 5996.34, + "end": 5999.04, + "probability": 0.6575 + }, + { + "start": 5999.28, + "end": 6003.84, + "probability": 0.9586 + }, + { + "start": 6003.92, + "end": 6005.64, + "probability": 0.9763 + }, + { + "start": 6005.78, + "end": 6008.32, + "probability": 0.9936 + }, + { + "start": 6008.4, + "end": 6010.58, + "probability": 0.9971 + }, + { + "start": 6010.86, + "end": 6011.48, + "probability": 0.8525 + }, + { + "start": 6011.8, + "end": 6015.7, + "probability": 0.9451 + }, + { + "start": 6015.72, + "end": 6017.24, + "probability": 0.9897 + }, + { + "start": 6017.38, + "end": 6020.42, + "probability": 0.9929 + }, + { + "start": 6020.54, + "end": 6022.68, + "probability": 0.5791 + }, + { + "start": 6022.7, + "end": 6024.1, + "probability": 0.7961 + }, + { + "start": 6024.58, + "end": 6025.36, + "probability": 0.8451 + }, + { + "start": 6026.14, + "end": 6026.82, + "probability": 0.7729 + }, + { + "start": 6027.21, + "end": 6029.98, + "probability": 0.6368 + }, + { + "start": 6030.12, + "end": 6031.22, + "probability": 0.6913 + }, + { + "start": 6031.54, + "end": 6032.8, + "probability": 0.8702 + }, + { + "start": 6033.46, + "end": 6034.48, + "probability": 0.7261 + }, + { + "start": 6034.8, + "end": 6035.88, + "probability": 0.8237 + }, + { + "start": 6036.08, + "end": 6037.64, + "probability": 0.5071 + }, + { + "start": 6038.2, + "end": 6038.92, + "probability": 0.3408 + }, + { + "start": 6039.04, + "end": 6040.56, + "probability": 0.9428 + }, + { + "start": 6040.72, + "end": 6043.12, + "probability": 0.5086 + }, + { + "start": 6043.42, + "end": 6043.7, + "probability": 0.6155 + }, + { + "start": 6043.84, + "end": 6045.28, + "probability": 0.8379 + }, + { + "start": 6046.44, + "end": 6048.92, + "probability": 0.9827 + }, + { + "start": 6048.92, + "end": 6051.5, + "probability": 0.8113 + }, + { + "start": 6051.64, + "end": 6053.0, + "probability": 0.8228 + }, + { + "start": 6065.21, + "end": 6065.98, + "probability": 0.2054 + }, + { + "start": 6065.98, + "end": 6065.98, + "probability": 0.1637 + }, + { + "start": 6065.98, + "end": 6065.98, + "probability": 0.1132 + }, + { + "start": 6065.98, + "end": 6065.98, + "probability": 0.135 + }, + { + "start": 6065.98, + "end": 6065.98, + "probability": 0.0572 + }, + { + "start": 6065.98, + "end": 6065.98, + "probability": 0.0823 + }, + { + "start": 6065.98, + "end": 6065.98, + "probability": 0.0038 + }, + { + "start": 6065.98, + "end": 6065.98, + "probability": 0.021 + }, + { + "start": 6065.98, + "end": 6067.1, + "probability": 0.1417 + }, + { + "start": 6067.5, + "end": 6070.66, + "probability": 0.466 + }, + { + "start": 6071.24, + "end": 6071.76, + "probability": 0.0234 + }, + { + "start": 6071.76, + "end": 6072.54, + "probability": 0.7179 + }, + { + "start": 6072.84, + "end": 6073.54, + "probability": 0.068 + }, + { + "start": 6073.58, + "end": 6079.72, + "probability": 0.9543 + }, + { + "start": 6079.72, + "end": 6085.48, + "probability": 0.9941 + }, + { + "start": 6085.88, + "end": 6086.86, + "probability": 0.6228 + }, + { + "start": 6086.94, + "end": 6087.4, + "probability": 0.7586 + }, + { + "start": 6087.58, + "end": 6088.02, + "probability": 0.917 + }, + { + "start": 6088.34, + "end": 6091.92, + "probability": 0.9817 + }, + { + "start": 6092.2, + "end": 6092.94, + "probability": 0.5689 + }, + { + "start": 6093.12, + "end": 6095.36, + "probability": 0.1197 + }, + { + "start": 6095.68, + "end": 6096.9, + "probability": 0.5823 + }, + { + "start": 6097.28, + "end": 6098.4, + "probability": 0.247 + }, + { + "start": 6098.54, + "end": 6103.36, + "probability": 0.7184 + }, + { + "start": 6103.62, + "end": 6106.0, + "probability": 0.8687 + }, + { + "start": 6106.14, + "end": 6107.36, + "probability": 0.4951 + }, + { + "start": 6107.74, + "end": 6109.07, + "probability": 0.9465 + }, + { + "start": 6109.54, + "end": 6111.14, + "probability": 0.7688 + }, + { + "start": 6111.26, + "end": 6114.05, + "probability": 0.8708 + }, + { + "start": 6114.38, + "end": 6117.84, + "probability": 0.9961 + }, + { + "start": 6117.88, + "end": 6118.28, + "probability": 0.2537 + }, + { + "start": 6118.28, + "end": 6122.38, + "probability": 0.9089 + }, + { + "start": 6122.78, + "end": 6124.78, + "probability": 0.974 + }, + { + "start": 6124.9, + "end": 6126.42, + "probability": 0.916 + }, + { + "start": 6126.58, + "end": 6127.98, + "probability": 0.352 + }, + { + "start": 6128.12, + "end": 6129.1, + "probability": 0.1713 + }, + { + "start": 6129.6, + "end": 6130.86, + "probability": 0.4974 + }, + { + "start": 6131.26, + "end": 6133.24, + "probability": 0.7324 + }, + { + "start": 6133.24, + "end": 6135.52, + "probability": 0.6087 + }, + { + "start": 6136.41, + "end": 6138.24, + "probability": 0.9181 + }, + { + "start": 6138.4, + "end": 6141.4, + "probability": 0.9526 + }, + { + "start": 6141.92, + "end": 6146.38, + "probability": 0.6166 + }, + { + "start": 6146.52, + "end": 6148.5, + "probability": 0.8638 + }, + { + "start": 6149.02, + "end": 6149.62, + "probability": 0.8945 + }, + { + "start": 6151.7, + "end": 6152.18, + "probability": 0.0365 + }, + { + "start": 6153.12, + "end": 6154.04, + "probability": 0.2538 + }, + { + "start": 6154.56, + "end": 6157.18, + "probability": 0.4631 + }, + { + "start": 6157.36, + "end": 6160.62, + "probability": 0.7337 + }, + { + "start": 6160.62, + "end": 6163.48, + "probability": 0.5742 + }, + { + "start": 6163.86, + "end": 6164.48, + "probability": 0.1869 + }, + { + "start": 6164.6, + "end": 6166.18, + "probability": 0.8536 + }, + { + "start": 6166.38, + "end": 6167.12, + "probability": 0.5627 + }, + { + "start": 6167.44, + "end": 6168.74, + "probability": 0.4544 + }, + { + "start": 6168.84, + "end": 6169.72, + "probability": 0.6647 + }, + { + "start": 6169.82, + "end": 6174.3, + "probability": 0.6406 + }, + { + "start": 6174.3, + "end": 6176.52, + "probability": 0.9574 + }, + { + "start": 6176.64, + "end": 6178.18, + "probability": 0.7267 + }, + { + "start": 6178.54, + "end": 6179.2, + "probability": 0.0273 + }, + { + "start": 6179.4, + "end": 6180.54, + "probability": 0.7119 + }, + { + "start": 6180.62, + "end": 6181.34, + "probability": 0.4993 + }, + { + "start": 6181.48, + "end": 6184.92, + "probability": 0.8576 + }, + { + "start": 6185.52, + "end": 6186.06, + "probability": 0.3882 + }, + { + "start": 6186.12, + "end": 6189.0, + "probability": 0.1117 + }, + { + "start": 6189.12, + "end": 6189.5, + "probability": 0.8188 + }, + { + "start": 6189.68, + "end": 6192.58, + "probability": 0.825 + }, + { + "start": 6192.7, + "end": 6193.2, + "probability": 0.2623 + }, + { + "start": 6193.28, + "end": 6195.34, + "probability": 0.9448 + }, + { + "start": 6195.42, + "end": 6198.12, + "probability": 0.8145 + }, + { + "start": 6198.36, + "end": 6200.18, + "probability": 0.5626 + }, + { + "start": 6200.46, + "end": 6201.92, + "probability": 0.5016 + }, + { + "start": 6202.0, + "end": 6202.71, + "probability": 0.812 + }, + { + "start": 6203.24, + "end": 6204.84, + "probability": 0.75 + }, + { + "start": 6205.08, + "end": 6206.64, + "probability": 0.7262 + }, + { + "start": 6206.74, + "end": 6208.62, + "probability": 0.9434 + }, + { + "start": 6208.62, + "end": 6210.38, + "probability": 0.9277 + }, + { + "start": 6210.56, + "end": 6215.46, + "probability": 0.811 + }, + { + "start": 6215.88, + "end": 6219.34, + "probability": 0.9427 + }, + { + "start": 6219.78, + "end": 6223.94, + "probability": 0.9264 + }, + { + "start": 6224.18, + "end": 6225.1, + "probability": 0.9618 + }, + { + "start": 6225.42, + "end": 6228.92, + "probability": 0.8848 + }, + { + "start": 6229.34, + "end": 6229.8, + "probability": 0.596 + }, + { + "start": 6229.86, + "end": 6231.64, + "probability": 0.7911 + }, + { + "start": 6231.88, + "end": 6232.38, + "probability": 0.6787 + }, + { + "start": 6233.63, + "end": 6235.9, + "probability": 0.8611 + }, + { + "start": 6236.66, + "end": 6236.66, + "probability": 0.1182 + }, + { + "start": 6236.66, + "end": 6236.92, + "probability": 0.0129 + }, + { + "start": 6236.92, + "end": 6237.26, + "probability": 0.4666 + }, + { + "start": 6237.46, + "end": 6239.98, + "probability": 0.8771 + }, + { + "start": 6240.02, + "end": 6240.34, + "probability": 0.844 + }, + { + "start": 6240.38, + "end": 6241.64, + "probability": 0.9666 + }, + { + "start": 6242.36, + "end": 6243.9, + "probability": 0.769 + }, + { + "start": 6244.56, + "end": 6247.36, + "probability": 0.9932 + }, + { + "start": 6247.38, + "end": 6248.22, + "probability": 0.4177 + }, + { + "start": 6248.26, + "end": 6249.78, + "probability": 0.7596 + }, + { + "start": 6249.92, + "end": 6250.58, + "probability": 0.0175 + }, + { + "start": 6250.58, + "end": 6250.58, + "probability": 0.0747 + }, + { + "start": 6250.82, + "end": 6251.68, + "probability": 0.6897 + }, + { + "start": 6251.82, + "end": 6252.76, + "probability": 0.4628 + }, + { + "start": 6252.96, + "end": 6255.78, + "probability": 0.99 + }, + { + "start": 6255.86, + "end": 6255.98, + "probability": 0.114 + }, + { + "start": 6255.98, + "end": 6256.46, + "probability": 0.0142 + }, + { + "start": 6256.72, + "end": 6257.82, + "probability": 0.1949 + }, + { + "start": 6258.34, + "end": 6260.02, + "probability": 0.0086 + }, + { + "start": 6261.78, + "end": 6262.38, + "probability": 0.0575 + }, + { + "start": 6263.58, + "end": 6265.9, + "probability": 0.7897 + }, + { + "start": 6265.96, + "end": 6270.24, + "probability": 0.9988 + }, + { + "start": 6270.56, + "end": 6271.36, + "probability": 0.7872 + }, + { + "start": 6271.56, + "end": 6272.06, + "probability": 0.3266 + }, + { + "start": 6272.72, + "end": 6276.5, + "probability": 0.298 + }, + { + "start": 6276.56, + "end": 6277.26, + "probability": 0.7234 + }, + { + "start": 6277.36, + "end": 6279.24, + "probability": 0.4719 + }, + { + "start": 6280.27, + "end": 6281.24, + "probability": 0.5419 + }, + { + "start": 6281.52, + "end": 6284.54, + "probability": 0.7466 + }, + { + "start": 6284.6, + "end": 6286.22, + "probability": 0.3629 + }, + { + "start": 6286.86, + "end": 6289.76, + "probability": 0.2956 + }, + { + "start": 6291.34, + "end": 6294.98, + "probability": 0.7075 + }, + { + "start": 6295.12, + "end": 6295.88, + "probability": 0.8029 + }, + { + "start": 6296.26, + "end": 6298.32, + "probability": 0.8449 + }, + { + "start": 6298.36, + "end": 6298.8, + "probability": 0.5331 + }, + { + "start": 6298.86, + "end": 6300.1, + "probability": 0.8674 + }, + { + "start": 6300.2, + "end": 6301.7, + "probability": 0.9646 + }, + { + "start": 6301.72, + "end": 6302.24, + "probability": 0.1575 + }, + { + "start": 6302.58, + "end": 6305.86, + "probability": 0.6824 + }, + { + "start": 6305.95, + "end": 6307.76, + "probability": 0.6071 + }, + { + "start": 6307.84, + "end": 6308.66, + "probability": 0.7072 + }, + { + "start": 6308.72, + "end": 6313.78, + "probability": 0.9945 + }, + { + "start": 6314.5, + "end": 6315.46, + "probability": 0.6777 + }, + { + "start": 6315.56, + "end": 6317.16, + "probability": 0.9437 + }, + { + "start": 6317.38, + "end": 6319.24, + "probability": 0.8961 + }, + { + "start": 6319.68, + "end": 6320.68, + "probability": 0.7922 + }, + { + "start": 6320.76, + "end": 6321.9, + "probability": 0.8838 + }, + { + "start": 6323.34, + "end": 6324.18, + "probability": 0.8679 + }, + { + "start": 6324.3, + "end": 6324.8, + "probability": 0.7819 + }, + { + "start": 6324.96, + "end": 6327.86, + "probability": 0.8655 + }, + { + "start": 6327.94, + "end": 6328.42, + "probability": 0.7626 + }, + { + "start": 6329.26, + "end": 6330.12, + "probability": 0.8454 + }, + { + "start": 6330.24, + "end": 6332.86, + "probability": 0.998 + }, + { + "start": 6332.96, + "end": 6335.44, + "probability": 0.9817 + }, + { + "start": 6336.16, + "end": 6338.92, + "probability": 0.9718 + }, + { + "start": 6339.04, + "end": 6341.36, + "probability": 0.0242 + }, + { + "start": 6342.5, + "end": 6343.34, + "probability": 0.799 + }, + { + "start": 6344.04, + "end": 6345.14, + "probability": 0.7888 + }, + { + "start": 6346.86, + "end": 6351.82, + "probability": 0.1445 + }, + { + "start": 6354.71, + "end": 6354.88, + "probability": 0.0646 + }, + { + "start": 6354.88, + "end": 6354.96, + "probability": 0.3618 + }, + { + "start": 6354.96, + "end": 6354.96, + "probability": 0.0847 + }, + { + "start": 6354.96, + "end": 6355.32, + "probability": 0.4861 + }, + { + "start": 6355.32, + "end": 6356.08, + "probability": 0.5814 + }, + { + "start": 6356.46, + "end": 6357.76, + "probability": 0.9016 + }, + { + "start": 6357.88, + "end": 6360.12, + "probability": 0.813 + }, + { + "start": 6360.12, + "end": 6362.62, + "probability": 0.9944 + }, + { + "start": 6363.1, + "end": 6365.44, + "probability": 0.9841 + }, + { + "start": 6365.54, + "end": 6367.7, + "probability": 0.7994 + }, + { + "start": 6367.8, + "end": 6368.12, + "probability": 0.8012 + }, + { + "start": 6368.14, + "end": 6371.02, + "probability": 0.9765 + }, + { + "start": 6371.14, + "end": 6371.82, + "probability": 0.421 + }, + { + "start": 6372.44, + "end": 6374.82, + "probability": 0.253 + }, + { + "start": 6374.82, + "end": 6378.14, + "probability": 0.9522 + }, + { + "start": 6378.26, + "end": 6380.38, + "probability": 0.0984 + }, + { + "start": 6380.74, + "end": 6381.06, + "probability": 0.234 + }, + { + "start": 6381.38, + "end": 6384.24, + "probability": 0.4484 + }, + { + "start": 6384.42, + "end": 6385.08, + "probability": 0.7517 + }, + { + "start": 6385.2, + "end": 6387.18, + "probability": 0.9888 + }, + { + "start": 6387.42, + "end": 6388.5, + "probability": 0.5938 + }, + { + "start": 6388.58, + "end": 6389.5, + "probability": 0.3995 + }, + { + "start": 6389.96, + "end": 6390.82, + "probability": 0.8761 + }, + { + "start": 6391.4, + "end": 6394.58, + "probability": 0.9761 + }, + { + "start": 6394.66, + "end": 6399.1, + "probability": 0.9789 + }, + { + "start": 6401.52, + "end": 6401.8, + "probability": 0.2695 + }, + { + "start": 6401.8, + "end": 6403.42, + "probability": 0.4595 + }, + { + "start": 6403.86, + "end": 6405.42, + "probability": 0.9941 + }, + { + "start": 6406.28, + "end": 6409.62, + "probability": 0.8425 + }, + { + "start": 6410.16, + "end": 6413.3, + "probability": 0.989 + }, + { + "start": 6413.46, + "end": 6414.88, + "probability": 0.7973 + }, + { + "start": 6415.34, + "end": 6419.12, + "probability": 0.9667 + }, + { + "start": 6419.5, + "end": 6420.8, + "probability": 0.9122 + }, + { + "start": 6421.0, + "end": 6422.82, + "probability": 0.9759 + }, + { + "start": 6423.18, + "end": 6423.9, + "probability": 0.686 + }, + { + "start": 6424.52, + "end": 6427.66, + "probability": 0.8951 + }, + { + "start": 6440.84, + "end": 6443.76, + "probability": 0.9953 + }, + { + "start": 6444.42, + "end": 6444.46, + "probability": 0.0925 + }, + { + "start": 6444.46, + "end": 6448.04, + "probability": 0.9341 + }, + { + "start": 6448.5, + "end": 6450.84, + "probability": 0.9985 + }, + { + "start": 6451.5, + "end": 6453.5, + "probability": 0.9221 + }, + { + "start": 6453.66, + "end": 6455.14, + "probability": 0.9374 + }, + { + "start": 6456.06, + "end": 6458.2, + "probability": 0.7711 + }, + { + "start": 6458.34, + "end": 6461.82, + "probability": 0.9111 + }, + { + "start": 6461.92, + "end": 6465.12, + "probability": 0.9902 + }, + { + "start": 6465.16, + "end": 6466.82, + "probability": 0.9899 + }, + { + "start": 6467.36, + "end": 6471.64, + "probability": 0.9945 + }, + { + "start": 6472.06, + "end": 6475.28, + "probability": 0.8031 + }, + { + "start": 6475.42, + "end": 6477.58, + "probability": 0.9857 + }, + { + "start": 6478.06, + "end": 6478.62, + "probability": 0.5368 + }, + { + "start": 6479.02, + "end": 6479.04, + "probability": 0.5048 + }, + { + "start": 6479.18, + "end": 6480.2, + "probability": 0.8748 + }, + { + "start": 6480.36, + "end": 6485.7, + "probability": 0.9869 + }, + { + "start": 6486.5, + "end": 6487.22, + "probability": 0.5146 + }, + { + "start": 6487.58, + "end": 6487.74, + "probability": 0.5091 + }, + { + "start": 6487.74, + "end": 6489.26, + "probability": 0.9521 + }, + { + "start": 6489.36, + "end": 6491.06, + "probability": 0.9913 + }, + { + "start": 6491.28, + "end": 6495.37, + "probability": 0.8919 + }, + { + "start": 6495.98, + "end": 6499.36, + "probability": 0.9663 + }, + { + "start": 6499.5, + "end": 6501.96, + "probability": 0.9739 + }, + { + "start": 6502.26, + "end": 6505.62, + "probability": 0.8137 + }, + { + "start": 6506.32, + "end": 6509.12, + "probability": 0.9712 + }, + { + "start": 6509.64, + "end": 6511.7, + "probability": 0.6123 + }, + { + "start": 6512.4, + "end": 6514.34, + "probability": 0.9578 + }, + { + "start": 6518.77, + "end": 6522.86, + "probability": 0.6897 + }, + { + "start": 6523.52, + "end": 6528.54, + "probability": 0.9788 + }, + { + "start": 6529.27, + "end": 6533.3, + "probability": 0.8453 + }, + { + "start": 6533.44, + "end": 6536.58, + "probability": 0.9681 + }, + { + "start": 6536.68, + "end": 6538.04, + "probability": 0.8946 + }, + { + "start": 6538.1, + "end": 6538.58, + "probability": 0.4706 + }, + { + "start": 6538.74, + "end": 6543.49, + "probability": 0.8174 + }, + { + "start": 6544.52, + "end": 6547.1, + "probability": 0.1656 + }, + { + "start": 6548.04, + "end": 6548.26, + "probability": 0.0097 + }, + { + "start": 6551.6, + "end": 6554.62, + "probability": 0.7897 + }, + { + "start": 6554.72, + "end": 6558.56, + "probability": 0.9823 + }, + { + "start": 6558.82, + "end": 6561.82, + "probability": 0.9867 + }, + { + "start": 6562.24, + "end": 6563.48, + "probability": 0.9902 + }, + { + "start": 6563.62, + "end": 6565.42, + "probability": 0.9549 + }, + { + "start": 6565.44, + "end": 6566.09, + "probability": 0.8555 + }, + { + "start": 6567.64, + "end": 6572.48, + "probability": 0.9981 + }, + { + "start": 6572.48, + "end": 6575.96, + "probability": 0.9965 + }, + { + "start": 6576.7, + "end": 6578.7, + "probability": 0.8257 + }, + { + "start": 6579.26, + "end": 6580.12, + "probability": 0.5566 + }, + { + "start": 6580.4, + "end": 6586.38, + "probability": 0.9336 + }, + { + "start": 6587.92, + "end": 6596.34, + "probability": 0.9836 + }, + { + "start": 6596.42, + "end": 6597.78, + "probability": 0.96 + }, + { + "start": 6597.9, + "end": 6598.42, + "probability": 0.6333 + }, + { + "start": 6598.52, + "end": 6601.32, + "probability": 0.7068 + }, + { + "start": 6601.6, + "end": 6602.62, + "probability": 0.7077 + }, + { + "start": 6602.82, + "end": 6607.08, + "probability": 0.9922 + }, + { + "start": 6607.56, + "end": 6609.14, + "probability": 0.8958 + }, + { + "start": 6609.22, + "end": 6611.08, + "probability": 0.5438 + }, + { + "start": 6611.2, + "end": 6613.9, + "probability": 0.9697 + }, + { + "start": 6613.9, + "end": 6616.24, + "probability": 0.9764 + }, + { + "start": 6616.78, + "end": 6621.42, + "probability": 0.9927 + }, + { + "start": 6621.42, + "end": 6624.84, + "probability": 0.9841 + }, + { + "start": 6625.26, + "end": 6627.66, + "probability": 0.6561 + }, + { + "start": 6627.76, + "end": 6631.24, + "probability": 0.9896 + }, + { + "start": 6631.3, + "end": 6631.56, + "probability": 0.6979 + }, + { + "start": 6631.76, + "end": 6632.48, + "probability": 0.5054 + }, + { + "start": 6632.92, + "end": 6636.96, + "probability": 0.9943 + }, + { + "start": 6637.28, + "end": 6638.0, + "probability": 0.8561 + }, + { + "start": 6638.06, + "end": 6639.44, + "probability": 0.922 + }, + { + "start": 6639.84, + "end": 6642.96, + "probability": 0.9828 + }, + { + "start": 6642.96, + "end": 6647.0, + "probability": 0.9807 + }, + { + "start": 6647.66, + "end": 6650.0, + "probability": 0.856 + }, + { + "start": 6650.24, + "end": 6653.16, + "probability": 0.9895 + }, + { + "start": 6653.4, + "end": 6653.54, + "probability": 0.2984 + }, + { + "start": 6653.62, + "end": 6658.9, + "probability": 0.9925 + }, + { + "start": 6659.6, + "end": 6662.74, + "probability": 0.949 + }, + { + "start": 6663.22, + "end": 6665.0, + "probability": 0.9501 + }, + { + "start": 6665.02, + "end": 6669.78, + "probability": 0.9989 + }, + { + "start": 6669.78, + "end": 6677.02, + "probability": 0.9953 + }, + { + "start": 6678.08, + "end": 6679.64, + "probability": 0.6 + }, + { + "start": 6680.66, + "end": 6682.34, + "probability": 0.9701 + }, + { + "start": 6682.44, + "end": 6685.86, + "probability": 0.8908 + }, + { + "start": 6686.0, + "end": 6686.66, + "probability": 0.6524 + }, + { + "start": 6687.44, + "end": 6692.06, + "probability": 0.9784 + }, + { + "start": 6692.22, + "end": 6698.12, + "probability": 0.997 + }, + { + "start": 6698.12, + "end": 6703.98, + "probability": 0.985 + }, + { + "start": 6706.8, + "end": 6712.62, + "probability": 0.9972 + }, + { + "start": 6713.0, + "end": 6716.76, + "probability": 0.9895 + }, + { + "start": 6717.68, + "end": 6718.14, + "probability": 0.5287 + }, + { + "start": 6718.18, + "end": 6719.32, + "probability": 0.9662 + }, + { + "start": 6719.44, + "end": 6725.82, + "probability": 0.9937 + }, + { + "start": 6725.82, + "end": 6733.48, + "probability": 0.9945 + }, + { + "start": 6734.18, + "end": 6735.9, + "probability": 0.8014 + }, + { + "start": 6736.48, + "end": 6737.42, + "probability": 0.9146 + }, + { + "start": 6737.71, + "end": 6745.26, + "probability": 0.9404 + }, + { + "start": 6745.26, + "end": 6752.24, + "probability": 0.9966 + }, + { + "start": 6752.48, + "end": 6756.41, + "probability": 0.861 + }, + { + "start": 6758.1, + "end": 6765.94, + "probability": 0.9513 + }, + { + "start": 6766.5, + "end": 6768.96, + "probability": 0.9805 + }, + { + "start": 6770.88, + "end": 6773.88, + "probability": 0.9067 + }, + { + "start": 6774.62, + "end": 6775.58, + "probability": 0.9542 + }, + { + "start": 6776.12, + "end": 6779.26, + "probability": 0.7036 + }, + { + "start": 6779.32, + "end": 6782.62, + "probability": 0.705 + }, + { + "start": 6783.04, + "end": 6783.18, + "probability": 0.0433 + }, + { + "start": 6783.32, + "end": 6784.98, + "probability": 0.6329 + }, + { + "start": 6789.65, + "end": 6793.56, + "probability": 0.9318 + }, + { + "start": 6793.74, + "end": 6797.96, + "probability": 0.8635 + }, + { + "start": 6798.56, + "end": 6799.78, + "probability": 0.2234 + }, + { + "start": 6803.98, + "end": 6805.08, + "probability": 0.5239 + }, + { + "start": 6811.38, + "end": 6813.3, + "probability": 0.998 + }, + { + "start": 6813.44, + "end": 6814.92, + "probability": 0.5027 + }, + { + "start": 6817.28, + "end": 6821.88, + "probability": 0.9666 + }, + { + "start": 6823.16, + "end": 6825.16, + "probability": 0.9945 + }, + { + "start": 6825.32, + "end": 6829.84, + "probability": 0.7102 + }, + { + "start": 6829.88, + "end": 6832.12, + "probability": 0.9829 + }, + { + "start": 6832.8, + "end": 6835.74, + "probability": 0.9291 + }, + { + "start": 6835.8, + "end": 6837.74, + "probability": 0.7318 + }, + { + "start": 6837.78, + "end": 6838.16, + "probability": 0.7904 + }, + { + "start": 6838.28, + "end": 6842.47, + "probability": 0.9706 + }, + { + "start": 6842.74, + "end": 6844.78, + "probability": 0.8659 + }, + { + "start": 6845.4, + "end": 6849.64, + "probability": 0.9888 + }, + { + "start": 6850.16, + "end": 6853.6, + "probability": 0.9905 + }, + { + "start": 6853.96, + "end": 6857.24, + "probability": 0.9982 + }, + { + "start": 6857.48, + "end": 6861.16, + "probability": 0.9453 + }, + { + "start": 6862.08, + "end": 6864.74, + "probability": 0.9575 + }, + { + "start": 6864.96, + "end": 6868.74, + "probability": 0.9598 + }, + { + "start": 6868.78, + "end": 6869.72, + "probability": 0.7515 + }, + { + "start": 6870.44, + "end": 6871.48, + "probability": 0.7372 + }, + { + "start": 6871.74, + "end": 6874.04, + "probability": 0.9916 + }, + { + "start": 6874.66, + "end": 6877.38, + "probability": 0.4559 + }, + { + "start": 6877.68, + "end": 6877.68, + "probability": 0.0478 + }, + { + "start": 6877.68, + "end": 6877.68, + "probability": 0.22 + }, + { + "start": 6877.68, + "end": 6881.48, + "probability": 0.8646 + }, + { + "start": 6881.66, + "end": 6884.6, + "probability": 0.8913 + }, + { + "start": 6884.74, + "end": 6886.8, + "probability": 0.9957 + }, + { + "start": 6886.8, + "end": 6889.02, + "probability": 0.9856 + }, + { + "start": 6889.58, + "end": 6895.42, + "probability": 0.9606 + }, + { + "start": 6895.42, + "end": 6900.48, + "probability": 0.9972 + }, + { + "start": 6900.82, + "end": 6904.85, + "probability": 0.6214 + }, + { + "start": 6905.06, + "end": 6905.24, + "probability": 0.0648 + }, + { + "start": 6905.24, + "end": 6907.93, + "probability": 0.9228 + }, + { + "start": 6908.74, + "end": 6912.92, + "probability": 0.9895 + }, + { + "start": 6913.1, + "end": 6915.78, + "probability": 0.9829 + }, + { + "start": 6917.42, + "end": 6917.82, + "probability": 0.8083 + }, + { + "start": 6917.86, + "end": 6918.54, + "probability": 0.9448 + }, + { + "start": 6919.02, + "end": 6923.46, + "probability": 0.9305 + }, + { + "start": 6923.88, + "end": 6925.22, + "probability": 0.8762 + }, + { + "start": 6925.88, + "end": 6927.84, + "probability": 0.9124 + }, + { + "start": 6928.38, + "end": 6931.24, + "probability": 0.7833 + }, + { + "start": 6932.26, + "end": 6938.86, + "probability": 0.9919 + }, + { + "start": 6938.98, + "end": 6941.52, + "probability": 0.9985 + }, + { + "start": 6941.52, + "end": 6944.56, + "probability": 0.9983 + }, + { + "start": 6945.2, + "end": 6946.78, + "probability": 0.9623 + }, + { + "start": 6946.94, + "end": 6949.56, + "probability": 0.9852 + }, + { + "start": 6950.72, + "end": 6950.98, + "probability": 0.7238 + }, + { + "start": 6951.1, + "end": 6957.06, + "probability": 0.917 + }, + { + "start": 6957.06, + "end": 6960.26, + "probability": 0.9978 + }, + { + "start": 6960.42, + "end": 6961.59, + "probability": 0.9937 + }, + { + "start": 6962.44, + "end": 6963.04, + "probability": 0.7311 + }, + { + "start": 6963.1, + "end": 6966.64, + "probability": 0.8155 + }, + { + "start": 6967.08, + "end": 6968.64, + "probability": 0.7888 + }, + { + "start": 6968.7, + "end": 6973.42, + "probability": 0.8435 + }, + { + "start": 6973.5, + "end": 6974.68, + "probability": 0.9559 + }, + { + "start": 6975.58, + "end": 6976.98, + "probability": 0.4307 + }, + { + "start": 6977.22, + "end": 6980.3, + "probability": 0.5521 + }, + { + "start": 6980.36, + "end": 6987.22, + "probability": 0.9948 + }, + { + "start": 6987.78, + "end": 6987.98, + "probability": 0.3314 + }, + { + "start": 6988.08, + "end": 6989.46, + "probability": 0.277 + }, + { + "start": 6989.48, + "end": 6989.94, + "probability": 0.3626 + }, + { + "start": 6989.94, + "end": 6989.98, + "probability": 0.5289 + }, + { + "start": 6990.14, + "end": 6994.76, + "probability": 0.9766 + }, + { + "start": 6995.72, + "end": 7001.68, + "probability": 0.9853 + }, + { + "start": 7001.78, + "end": 7002.88, + "probability": 0.9956 + }, + { + "start": 7004.08, + "end": 7004.24, + "probability": 0.2599 + }, + { + "start": 7005.36, + "end": 7006.12, + "probability": 0.6353 + }, + { + "start": 7006.22, + "end": 7009.78, + "probability": 0.9582 + }, + { + "start": 7017.66, + "end": 7017.82, + "probability": 0.0604 + }, + { + "start": 7017.92, + "end": 7021.38, + "probability": 0.9618 + }, + { + "start": 7022.14, + "end": 7024.09, + "probability": 0.9954 + }, + { + "start": 7024.18, + "end": 7025.34, + "probability": 0.9941 + }, + { + "start": 7025.58, + "end": 7027.76, + "probability": 0.9676 + }, + { + "start": 7028.32, + "end": 7029.52, + "probability": 0.3284 + }, + { + "start": 7030.06, + "end": 7030.06, + "probability": 0.0447 + }, + { + "start": 7030.06, + "end": 7034.58, + "probability": 0.8737 + }, + { + "start": 7034.88, + "end": 7037.0, + "probability": 0.9889 + }, + { + "start": 7037.24, + "end": 7037.9, + "probability": 0.5582 + }, + { + "start": 7037.9, + "end": 7038.36, + "probability": 0.5451 + }, + { + "start": 7038.48, + "end": 7040.57, + "probability": 0.9676 + }, + { + "start": 7040.9, + "end": 7044.58, + "probability": 0.974 + }, + { + "start": 7044.76, + "end": 7045.0, + "probability": 0.0349 + }, + { + "start": 7045.0, + "end": 7045.0, + "probability": 0.0825 + }, + { + "start": 7045.0, + "end": 7045.04, + "probability": 0.2291 + }, + { + "start": 7045.37, + "end": 7049.98, + "probability": 0.9974 + }, + { + "start": 7050.2, + "end": 7051.9, + "probability": 0.6915 + }, + { + "start": 7052.76, + "end": 7055.48, + "probability": 0.7413 + }, + { + "start": 7055.52, + "end": 7057.92, + "probability": 0.9753 + }, + { + "start": 7058.44, + "end": 7059.74, + "probability": 0.738 + }, + { + "start": 7059.74, + "end": 7059.9, + "probability": 0.1232 + }, + { + "start": 7059.9, + "end": 7062.3, + "probability": 0.7985 + }, + { + "start": 7062.42, + "end": 7063.08, + "probability": 0.3611 + }, + { + "start": 7063.08, + "end": 7065.4, + "probability": 0.7812 + }, + { + "start": 7067.42, + "end": 7067.42, + "probability": 0.0007 + }, + { + "start": 7069.12, + "end": 7069.82, + "probability": 0.0026 + }, + { + "start": 7069.82, + "end": 7069.84, + "probability": 0.0577 + }, + { + "start": 7069.84, + "end": 7069.92, + "probability": 0.0426 + }, + { + "start": 7069.92, + "end": 7069.92, + "probability": 0.0894 + }, + { + "start": 7069.92, + "end": 7070.8, + "probability": 0.5223 + }, + { + "start": 7070.86, + "end": 7072.68, + "probability": 0.9772 + }, + { + "start": 7072.76, + "end": 7081.28, + "probability": 0.9834 + }, + { + "start": 7083.04, + "end": 7085.56, + "probability": 0.9368 + }, + { + "start": 7085.67, + "end": 7087.8, + "probability": 0.4136 + }, + { + "start": 7087.98, + "end": 7088.32, + "probability": 0.3539 + }, + { + "start": 7088.36, + "end": 7089.88, + "probability": 0.9833 + }, + { + "start": 7090.31, + "end": 7090.58, + "probability": 0.1494 + }, + { + "start": 7090.6, + "end": 7090.78, + "probability": 0.3272 + }, + { + "start": 7090.98, + "end": 7091.26, + "probability": 0.1376 + }, + { + "start": 7091.26, + "end": 7092.58, + "probability": 0.415 + }, + { + "start": 7092.7, + "end": 7096.3, + "probability": 0.9161 + }, + { + "start": 7096.3, + "end": 7099.7, + "probability": 0.9873 + }, + { + "start": 7100.06, + "end": 7102.1, + "probability": 0.9266 + }, + { + "start": 7102.46, + "end": 7106.04, + "probability": 0.984 + }, + { + "start": 7106.2, + "end": 7106.96, + "probability": 0.9437 + }, + { + "start": 7107.46, + "end": 7109.86, + "probability": 0.7931 + }, + { + "start": 7110.4, + "end": 7113.08, + "probability": 0.8884 + }, + { + "start": 7113.22, + "end": 7114.22, + "probability": 0.5512 + }, + { + "start": 7115.06, + "end": 7116.28, + "probability": 0.7627 + }, + { + "start": 7116.52, + "end": 7120.8, + "probability": 0.9622 + }, + { + "start": 7120.94, + "end": 7122.32, + "probability": 0.9207 + }, + { + "start": 7122.32, + "end": 7122.46, + "probability": 0.1124 + }, + { + "start": 7123.66, + "end": 7124.5, + "probability": 0.2548 + }, + { + "start": 7124.66, + "end": 7127.22, + "probability": 0.5195 + }, + { + "start": 7127.22, + "end": 7129.62, + "probability": 0.7584 + }, + { + "start": 7129.92, + "end": 7130.54, + "probability": 0.7143 + }, + { + "start": 7130.64, + "end": 7131.98, + "probability": 0.6233 + }, + { + "start": 7132.02, + "end": 7133.36, + "probability": 0.8402 + }, + { + "start": 7133.74, + "end": 7135.78, + "probability": 0.3464 + }, + { + "start": 7136.04, + "end": 7137.48, + "probability": 0.138 + }, + { + "start": 7137.54, + "end": 7141.7, + "probability": 0.799 + }, + { + "start": 7142.46, + "end": 7144.66, + "probability": 0.5195 + }, + { + "start": 7144.7, + "end": 7145.98, + "probability": 0.9858 + }, + { + "start": 7146.04, + "end": 7149.45, + "probability": 0.4731 + }, + { + "start": 7151.62, + "end": 7156.8, + "probability": 0.7315 + }, + { + "start": 7156.8, + "end": 7162.8, + "probability": 0.9842 + }, + { + "start": 7163.26, + "end": 7165.34, + "probability": 0.6642 + }, + { + "start": 7165.46, + "end": 7167.42, + "probability": 0.8848 + }, + { + "start": 7167.66, + "end": 7168.2, + "probability": 0.7816 + }, + { + "start": 7168.3, + "end": 7174.64, + "probability": 0.7882 + }, + { + "start": 7174.68, + "end": 7178.22, + "probability": 0.9492 + }, + { + "start": 7180.14, + "end": 7182.18, + "probability": 0.8539 + }, + { + "start": 7182.46, + "end": 7183.46, + "probability": 0.7933 + }, + { + "start": 7183.48, + "end": 7190.58, + "probability": 0.9646 + }, + { + "start": 7191.18, + "end": 7192.56, + "probability": 0.7173 + }, + { + "start": 7192.72, + "end": 7193.5, + "probability": 0.9259 + }, + { + "start": 7193.66, + "end": 7196.98, + "probability": 0.9649 + }, + { + "start": 7196.98, + "end": 7199.54, + "probability": 0.6442 + }, + { + "start": 7200.02, + "end": 7201.36, + "probability": 0.9182 + }, + { + "start": 7201.96, + "end": 7202.38, + "probability": 0.4954 + }, + { + "start": 7202.56, + "end": 7203.22, + "probability": 0.9045 + }, + { + "start": 7203.74, + "end": 7203.96, + "probability": 0.7361 + }, + { + "start": 7204.62, + "end": 7209.18, + "probability": 0.9938 + }, + { + "start": 7209.7, + "end": 7214.58, + "probability": 0.976 + }, + { + "start": 7214.58, + "end": 7218.56, + "probability": 0.9514 + }, + { + "start": 7219.52, + "end": 7221.98, + "probability": 0.9243 + }, + { + "start": 7222.18, + "end": 7224.6, + "probability": 0.8923 + }, + { + "start": 7224.6, + "end": 7225.46, + "probability": 0.8711 + }, + { + "start": 7225.56, + "end": 7228.44, + "probability": 0.8402 + }, + { + "start": 7229.5, + "end": 7229.96, + "probability": 0.8375 + }, + { + "start": 7230.06, + "end": 7233.32, + "probability": 0.9628 + }, + { + "start": 7241.02, + "end": 7244.54, + "probability": 0.8013 + }, + { + "start": 7245.16, + "end": 7246.0, + "probability": 0.7731 + }, + { + "start": 7246.2, + "end": 7247.58, + "probability": 0.9967 + }, + { + "start": 7247.76, + "end": 7248.0, + "probability": 0.894 + }, + { + "start": 7248.94, + "end": 7251.36, + "probability": 0.9081 + }, + { + "start": 7252.08, + "end": 7256.58, + "probability": 0.9859 + }, + { + "start": 7260.14, + "end": 7261.85, + "probability": 0.6692 + }, + { + "start": 7262.44, + "end": 7263.48, + "probability": 0.9183 + }, + { + "start": 7267.78, + "end": 7268.14, + "probability": 0.5131 + }, + { + "start": 7268.94, + "end": 7269.84, + "probability": 0.7634 + }, + { + "start": 7269.98, + "end": 7275.3, + "probability": 0.9929 + }, + { + "start": 7281.14, + "end": 7281.8, + "probability": 0.2499 + }, + { + "start": 7282.42, + "end": 7284.44, + "probability": 0.9612 + }, + { + "start": 7284.44, + "end": 7286.88, + "probability": 0.9958 + }, + { + "start": 7288.38, + "end": 7289.36, + "probability": 0.5579 + }, + { + "start": 7289.78, + "end": 7290.48, + "probability": 0.936 + }, + { + "start": 7291.05, + "end": 7298.94, + "probability": 0.9948 + }, + { + "start": 7299.08, + "end": 7299.96, + "probability": 0.9409 + }, + { + "start": 7301.2, + "end": 7304.34, + "probability": 0.9575 + }, + { + "start": 7305.2, + "end": 7307.32, + "probability": 0.8804 + }, + { + "start": 7307.78, + "end": 7318.86, + "probability": 0.9953 + }, + { + "start": 7318.94, + "end": 7321.41, + "probability": 0.7272 + }, + { + "start": 7322.92, + "end": 7323.44, + "probability": 0.8889 + }, + { + "start": 7323.54, + "end": 7324.22, + "probability": 0.6606 + }, + { + "start": 7324.4, + "end": 7329.16, + "probability": 0.8479 + }, + { + "start": 7329.26, + "end": 7329.4, + "probability": 0.4467 + }, + { + "start": 7330.06, + "end": 7330.96, + "probability": 0.8121 + }, + { + "start": 7331.85, + "end": 7336.66, + "probability": 0.9084 + }, + { + "start": 7346.54, + "end": 7349.22, + "probability": 0.8667 + }, + { + "start": 7349.28, + "end": 7351.32, + "probability": 0.9943 + }, + { + "start": 7352.04, + "end": 7353.34, + "probability": 0.7671 + }, + { + "start": 7354.41, + "end": 7356.34, + "probability": 0.5369 + }, + { + "start": 7356.34, + "end": 7357.98, + "probability": 0.8507 + }, + { + "start": 7358.02, + "end": 7358.8, + "probability": 0.8145 + }, + { + "start": 7358.94, + "end": 7361.58, + "probability": 0.9905 + }, + { + "start": 7362.32, + "end": 7363.32, + "probability": 0.7281 + }, + { + "start": 7363.94, + "end": 7365.6, + "probability": 0.5805 + }, + { + "start": 7365.62, + "end": 7368.28, + "probability": 0.9435 + }, + { + "start": 7368.3, + "end": 7368.82, + "probability": 0.7847 + }, + { + "start": 7368.9, + "end": 7369.62, + "probability": 0.8785 + }, + { + "start": 7370.14, + "end": 7372.18, + "probability": 0.6893 + }, + { + "start": 7373.64, + "end": 7374.44, + "probability": 0.006 + }, + { + "start": 7388.94, + "end": 7390.46, + "probability": 0.7079 + }, + { + "start": 7399.4, + "end": 7400.12, + "probability": 0.0056 + }, + { + "start": 7400.24, + "end": 7401.64, + "probability": 0.8144 + }, + { + "start": 7404.12, + "end": 7408.82, + "probability": 0.7238 + }, + { + "start": 7409.26, + "end": 7413.22, + "probability": 0.9066 + }, + { + "start": 7415.06, + "end": 7420.06, + "probability": 0.9565 + }, + { + "start": 7420.9, + "end": 7422.98, + "probability": 0.9617 + }, + { + "start": 7422.98, + "end": 7423.5, + "probability": 0.6742 + }, + { + "start": 7424.2, + "end": 7426.2, + "probability": 0.5341 + }, + { + "start": 7426.36, + "end": 7428.44, + "probability": 0.6066 + }, + { + "start": 7428.48, + "end": 7429.02, + "probability": 0.5029 + }, + { + "start": 7429.1, + "end": 7429.1, + "probability": 0.5356 + }, + { + "start": 7429.1, + "end": 7431.64, + "probability": 0.9349 + }, + { + "start": 7434.34, + "end": 7436.2, + "probability": 0.8724 + }, + { + "start": 7438.42, + "end": 7441.4, + "probability": 0.9418 + }, + { + "start": 7442.56, + "end": 7443.92, + "probability": 0.9053 + }, + { + "start": 7443.98, + "end": 7448.74, + "probability": 0.9809 + }, + { + "start": 7448.74, + "end": 7452.24, + "probability": 0.9998 + }, + { + "start": 7452.44, + "end": 7452.8, + "probability": 0.5259 + }, + { + "start": 7452.88, + "end": 7454.52, + "probability": 0.9905 + }, + { + "start": 7455.42, + "end": 7456.52, + "probability": 0.9934 + }, + { + "start": 7456.68, + "end": 7458.24, + "probability": 0.9542 + }, + { + "start": 7458.32, + "end": 7461.08, + "probability": 0.9982 + }, + { + "start": 7462.38, + "end": 7468.74, + "probability": 0.9456 + }, + { + "start": 7468.94, + "end": 7470.72, + "probability": 0.9613 + }, + { + "start": 7470.88, + "end": 7471.04, + "probability": 0.8796 + }, + { + "start": 7471.16, + "end": 7472.05, + "probability": 0.9263 + }, + { + "start": 7472.36, + "end": 7475.22, + "probability": 0.9893 + }, + { + "start": 7475.9, + "end": 7479.92, + "probability": 0.7855 + }, + { + "start": 7480.94, + "end": 7485.34, + "probability": 0.9521 + }, + { + "start": 7487.32, + "end": 7489.42, + "probability": 0.9707 + }, + { + "start": 7491.14, + "end": 7491.92, + "probability": 0.9685 + }, + { + "start": 7493.0, + "end": 7494.18, + "probability": 0.8834 + }, + { + "start": 7495.66, + "end": 7500.38, + "probability": 0.9814 + }, + { + "start": 7501.04, + "end": 7502.98, + "probability": 0.8548 + }, + { + "start": 7503.9, + "end": 7506.72, + "probability": 0.9198 + }, + { + "start": 7506.8, + "end": 7507.94, + "probability": 0.8964 + }, + { + "start": 7508.04, + "end": 7509.95, + "probability": 0.9927 + }, + { + "start": 7510.78, + "end": 7513.31, + "probability": 0.9517 + }, + { + "start": 7514.3, + "end": 7519.62, + "probability": 0.9949 + }, + { + "start": 7519.62, + "end": 7523.98, + "probability": 0.9746 + }, + { + "start": 7525.98, + "end": 7526.52, + "probability": 0.3511 + }, + { + "start": 7527.5, + "end": 7528.26, + "probability": 0.653 + }, + { + "start": 7528.36, + "end": 7530.48, + "probability": 0.9868 + }, + { + "start": 7530.94, + "end": 7531.88, + "probability": 0.9325 + }, + { + "start": 7533.06, + "end": 7535.68, + "probability": 0.8534 + }, + { + "start": 7537.2, + "end": 7537.78, + "probability": 0.8987 + }, + { + "start": 7538.18, + "end": 7541.88, + "probability": 0.9744 + }, + { + "start": 7542.8, + "end": 7545.86, + "probability": 0.994 + }, + { + "start": 7546.56, + "end": 7552.42, + "probability": 0.8597 + }, + { + "start": 7552.68, + "end": 7555.8, + "probability": 0.9937 + }, + { + "start": 7555.84, + "end": 7557.4, + "probability": 0.9709 + }, + { + "start": 7558.64, + "end": 7560.84, + "probability": 0.9604 + }, + { + "start": 7560.84, + "end": 7561.62, + "probability": 0.6617 + }, + { + "start": 7561.96, + "end": 7562.3, + "probability": 0.0474 + }, + { + "start": 7562.38, + "end": 7563.98, + "probability": 0.8406 + }, + { + "start": 7565.22, + "end": 7570.82, + "probability": 0.8811 + }, + { + "start": 7570.88, + "end": 7573.84, + "probability": 0.8953 + }, + { + "start": 7573.84, + "end": 7576.44, + "probability": 0.2258 + }, + { + "start": 7576.98, + "end": 7577.36, + "probability": 0.4291 + }, + { + "start": 7578.56, + "end": 7579.5, + "probability": 0.4389 + }, + { + "start": 7580.3, + "end": 7580.96, + "probability": 0.6867 + }, + { + "start": 7580.96, + "end": 7582.34, + "probability": 0.608 + }, + { + "start": 7582.38, + "end": 7586.21, + "probability": 0.8352 + }, + { + "start": 7586.4, + "end": 7587.44, + "probability": 0.069 + }, + { + "start": 7589.18, + "end": 7592.02, + "probability": 0.9214 + }, + { + "start": 7592.08, + "end": 7593.38, + "probability": 0.985 + }, + { + "start": 7593.76, + "end": 7596.54, + "probability": 0.7269 + }, + { + "start": 7597.68, + "end": 7599.36, + "probability": 0.8659 + }, + { + "start": 7606.62, + "end": 7609.04, + "probability": 0.4526 + }, + { + "start": 7609.14, + "end": 7614.18, + "probability": 0.8813 + }, + { + "start": 7614.4, + "end": 7616.76, + "probability": 0.9253 + }, + { + "start": 7617.2, + "end": 7617.7, + "probability": 0.613 + }, + { + "start": 7618.38, + "end": 7620.18, + "probability": 0.9473 + }, + { + "start": 7620.46, + "end": 7621.66, + "probability": 0.925 + }, + { + "start": 7622.42, + "end": 7624.14, + "probability": 0.0955 + }, + { + "start": 7624.2, + "end": 7625.6, + "probability": 0.8407 + }, + { + "start": 7625.96, + "end": 7628.58, + "probability": 0.8167 + }, + { + "start": 7629.14, + "end": 7629.96, + "probability": 0.9602 + }, + { + "start": 7633.14, + "end": 7636.98, + "probability": 0.8571 + }, + { + "start": 7638.6, + "end": 7639.86, + "probability": 0.4978 + }, + { + "start": 7639.86, + "end": 7646.21, + "probability": 0.6808 + }, + { + "start": 7646.72, + "end": 7647.6, + "probability": 0.3013 + }, + { + "start": 7647.9, + "end": 7649.94, + "probability": 0.858 + }, + { + "start": 7651.19, + "end": 7655.02, + "probability": 0.9988 + }, + { + "start": 7655.2, + "end": 7656.48, + "probability": 0.9761 + }, + { + "start": 7656.56, + "end": 7657.08, + "probability": 0.8781 + }, + { + "start": 7657.16, + "end": 7658.8, + "probability": 0.9712 + }, + { + "start": 7658.92, + "end": 7660.1, + "probability": 0.9521 + }, + { + "start": 7660.16, + "end": 7660.9, + "probability": 0.9937 + }, + { + "start": 7661.58, + "end": 7662.56, + "probability": 0.908 + }, + { + "start": 7662.74, + "end": 7664.58, + "probability": 0.9425 + }, + { + "start": 7664.64, + "end": 7668.96, + "probability": 0.8774 + }, + { + "start": 7672.18, + "end": 7679.58, + "probability": 0.9817 + }, + { + "start": 7679.76, + "end": 7684.4, + "probability": 0.9325 + }, + { + "start": 7685.14, + "end": 7686.24, + "probability": 0.7775 + }, + { + "start": 7687.9, + "end": 7690.3, + "probability": 0.6532 + }, + { + "start": 7690.36, + "end": 7691.12, + "probability": 0.9248 + }, + { + "start": 7691.12, + "end": 7694.56, + "probability": 0.9902 + }, + { + "start": 7695.24, + "end": 7696.08, + "probability": 0.7678 + }, + { + "start": 7696.82, + "end": 7697.82, + "probability": 0.8197 + }, + { + "start": 7699.25, + "end": 7703.58, + "probability": 0.9743 + }, + { + "start": 7703.74, + "end": 7709.64, + "probability": 0.9644 + }, + { + "start": 7709.92, + "end": 7712.8, + "probability": 0.971 + }, + { + "start": 7714.72, + "end": 7717.0, + "probability": 0.9478 + }, + { + "start": 7718.3, + "end": 7723.94, + "probability": 0.9823 + }, + { + "start": 7724.06, + "end": 7726.46, + "probability": 0.8602 + }, + { + "start": 7727.52, + "end": 7729.66, + "probability": 0.9937 + }, + { + "start": 7730.0, + "end": 7732.88, + "probability": 0.9958 + }, + { + "start": 7733.44, + "end": 7735.57, + "probability": 0.9907 + }, + { + "start": 7735.64, + "end": 7738.42, + "probability": 0.6806 + }, + { + "start": 7739.36, + "end": 7740.96, + "probability": 0.8434 + }, + { + "start": 7741.02, + "end": 7746.14, + "probability": 0.9932 + }, + { + "start": 7746.32, + "end": 7749.3, + "probability": 0.5445 + }, + { + "start": 7750.08, + "end": 7751.3, + "probability": 0.7547 + }, + { + "start": 7751.46, + "end": 7751.72, + "probability": 0.8037 + }, + { + "start": 7751.88, + "end": 7755.42, + "probability": 0.9572 + }, + { + "start": 7757.38, + "end": 7760.8, + "probability": 0.7753 + }, + { + "start": 7761.26, + "end": 7763.9, + "probability": 0.907 + }, + { + "start": 7767.4, + "end": 7768.6, + "probability": 0.5542 + }, + { + "start": 7771.58, + "end": 7772.16, + "probability": 0.5075 + }, + { + "start": 7773.14, + "end": 7773.7, + "probability": 0.6907 + }, + { + "start": 7781.8, + "end": 7782.92, + "probability": 0.7642 + }, + { + "start": 7783.72, + "end": 7785.22, + "probability": 0.9961 + }, + { + "start": 7786.32, + "end": 7789.34, + "probability": 0.7437 + }, + { + "start": 7789.64, + "end": 7792.72, + "probability": 0.2443 + }, + { + "start": 7793.5, + "end": 7794.24, + "probability": 0.6635 + }, + { + "start": 7794.8, + "end": 7795.96, + "probability": 0.4161 + }, + { + "start": 7796.74, + "end": 7797.84, + "probability": 0.7056 + }, + { + "start": 7798.92, + "end": 7802.28, + "probability": 0.9295 + }, + { + "start": 7803.02, + "end": 7807.18, + "probability": 0.9766 + }, + { + "start": 7807.64, + "end": 7808.94, + "probability": 0.9668 + }, + { + "start": 7808.98, + "end": 7810.52, + "probability": 0.95 + }, + { + "start": 7810.58, + "end": 7810.99, + "probability": 0.8791 + }, + { + "start": 7812.1, + "end": 7814.72, + "probability": 0.646 + }, + { + "start": 7815.02, + "end": 7818.3, + "probability": 0.6409 + }, + { + "start": 7819.0, + "end": 7819.9, + "probability": 0.9155 + }, + { + "start": 7820.82, + "end": 7824.66, + "probability": 0.8518 + }, + { + "start": 7824.66, + "end": 7827.68, + "probability": 0.9927 + }, + { + "start": 7828.52, + "end": 7829.22, + "probability": 0.0773 + }, + { + "start": 7829.22, + "end": 7831.45, + "probability": 0.4499 + }, + { + "start": 7831.66, + "end": 7833.06, + "probability": 0.5539 + }, + { + "start": 7833.22, + "end": 7834.36, + "probability": 0.9318 + }, + { + "start": 7834.54, + "end": 7835.46, + "probability": 0.9097 + }, + { + "start": 7835.54, + "end": 7837.24, + "probability": 0.9634 + }, + { + "start": 7837.44, + "end": 7838.86, + "probability": 0.9218 + }, + { + "start": 7839.2, + "end": 7843.46, + "probability": 0.9568 + }, + { + "start": 7843.72, + "end": 7844.54, + "probability": 0.9017 + }, + { + "start": 7845.4, + "end": 7848.14, + "probability": 0.7629 + }, + { + "start": 7849.48, + "end": 7850.16, + "probability": 0.1164 + }, + { + "start": 7851.3, + "end": 7854.26, + "probability": 0.5056 + }, + { + "start": 7854.42, + "end": 7857.26, + "probability": 0.219 + }, + { + "start": 7857.4, + "end": 7859.98, + "probability": 0.1543 + }, + { + "start": 7860.1, + "end": 7862.62, + "probability": 0.886 + }, + { + "start": 7862.7, + "end": 7863.12, + "probability": 0.9573 + }, + { + "start": 7863.56, + "end": 7867.9, + "probability": 0.9783 + }, + { + "start": 7867.9, + "end": 7871.62, + "probability": 0.812 + }, + { + "start": 7871.82, + "end": 7875.74, + "probability": 0.991 + }, + { + "start": 7875.9, + "end": 7877.68, + "probability": 0.1356 + }, + { + "start": 7878.52, + "end": 7880.28, + "probability": 0.1729 + }, + { + "start": 7883.3, + "end": 7884.36, + "probability": 0.0201 + }, + { + "start": 7884.36, + "end": 7885.04, + "probability": 0.2866 + }, + { + "start": 7885.62, + "end": 7886.82, + "probability": 0.7937 + }, + { + "start": 7887.04, + "end": 7889.9, + "probability": 0.7213 + }, + { + "start": 7890.36, + "end": 7894.04, + "probability": 0.9708 + }, + { + "start": 7894.22, + "end": 7895.0, + "probability": 0.8788 + }, + { + "start": 7895.5, + "end": 7898.12, + "probability": 0.8678 + }, + { + "start": 7898.68, + "end": 7901.13, + "probability": 0.9988 + }, + { + "start": 7901.24, + "end": 7902.12, + "probability": 0.8867 + }, + { + "start": 7902.5, + "end": 7903.52, + "probability": 0.7179 + }, + { + "start": 7903.66, + "end": 7906.64, + "probability": 0.9795 + }, + { + "start": 7907.08, + "end": 7908.16, + "probability": 0.823 + }, + { + "start": 7910.63, + "end": 7911.2, + "probability": 0.2965 + }, + { + "start": 7911.26, + "end": 7911.26, + "probability": 0.106 + }, + { + "start": 7911.26, + "end": 7911.26, + "probability": 0.0272 + }, + { + "start": 7911.26, + "end": 7914.7, + "probability": 0.964 + }, + { + "start": 7915.06, + "end": 7916.24, + "probability": 0.8518 + }, + { + "start": 7916.52, + "end": 7919.3, + "probability": 0.9828 + }, + { + "start": 7920.74, + "end": 7922.72, + "probability": 0.8665 + }, + { + "start": 7924.15, + "end": 7928.18, + "probability": 0.9839 + }, + { + "start": 7928.28, + "end": 7929.6, + "probability": 0.725 + }, + { + "start": 7930.18, + "end": 7934.38, + "probability": 0.9935 + }, + { + "start": 7934.56, + "end": 7936.36, + "probability": 0.9688 + }, + { + "start": 7939.3, + "end": 7940.98, + "probability": 0.7821 + }, + { + "start": 7941.06, + "end": 7946.22, + "probability": 0.9961 + }, + { + "start": 7948.32, + "end": 7950.36, + "probability": 0.9947 + }, + { + "start": 7953.38, + "end": 7955.18, + "probability": 0.8045 + }, + { + "start": 7956.7, + "end": 7959.32, + "probability": 0.8929 + }, + { + "start": 7959.78, + "end": 7961.84, + "probability": 0.9465 + }, + { + "start": 7961.94, + "end": 7962.44, + "probability": 0.3797 + }, + { + "start": 7962.46, + "end": 7964.84, + "probability": 0.8508 + }, + { + "start": 7965.46, + "end": 7965.56, + "probability": 0.0013 + }, + { + "start": 7966.16, + "end": 7967.12, + "probability": 0.1761 + }, + { + "start": 7967.16, + "end": 7968.3, + "probability": 0.4052 + }, + { + "start": 7968.3, + "end": 7969.04, + "probability": 0.6976 + }, + { + "start": 7969.28, + "end": 7969.42, + "probability": 0.7986 + }, + { + "start": 7969.64, + "end": 7974.84, + "probability": 0.9847 + }, + { + "start": 7975.96, + "end": 7978.0, + "probability": 0.7492 + }, + { + "start": 7978.34, + "end": 7979.04, + "probability": 0.8623 + }, + { + "start": 7979.12, + "end": 7980.36, + "probability": 0.8744 + }, + { + "start": 7980.36, + "end": 7981.18, + "probability": 0.7161 + }, + { + "start": 7981.82, + "end": 7984.46, + "probability": 0.9895 + }, + { + "start": 7984.46, + "end": 7987.7, + "probability": 0.9919 + }, + { + "start": 7988.26, + "end": 7993.02, + "probability": 0.8572 + }, + { + "start": 7993.32, + "end": 7997.3, + "probability": 0.9967 + }, + { + "start": 7997.3, + "end": 8000.36, + "probability": 0.9988 + }, + { + "start": 8000.84, + "end": 8000.98, + "probability": 0.3103 + }, + { + "start": 8000.98, + "end": 8003.22, + "probability": 0.5756 + }, + { + "start": 8003.86, + "end": 8006.47, + "probability": 0.4076 + }, + { + "start": 8006.94, + "end": 8009.3, + "probability": 0.3105 + }, + { + "start": 8009.36, + "end": 8010.66, + "probability": 0.7449 + }, + { + "start": 8011.9, + "end": 8014.62, + "probability": 0.4594 + }, + { + "start": 8016.26, + "end": 8018.78, + "probability": 0.8868 + }, + { + "start": 8019.44, + "end": 8019.7, + "probability": 0.4907 + }, + { + "start": 8019.92, + "end": 8021.32, + "probability": 0.9383 + }, + { + "start": 8021.5, + "end": 8025.48, + "probability": 0.9663 + }, + { + "start": 8026.16, + "end": 8029.28, + "probability": 0.4978 + }, + { + "start": 8029.28, + "end": 8031.06, + "probability": 0.2218 + }, + { + "start": 8033.26, + "end": 8033.44, + "probability": 0.0515 + }, + { + "start": 8033.44, + "end": 8033.44, + "probability": 0.2829 + }, + { + "start": 8033.44, + "end": 8034.06, + "probability": 0.2975 + }, + { + "start": 8034.12, + "end": 8035.42, + "probability": 0.5932 + }, + { + "start": 8035.42, + "end": 8037.5, + "probability": 0.584 + }, + { + "start": 8037.52, + "end": 8043.86, + "probability": 0.8507 + }, + { + "start": 8043.9, + "end": 8044.64, + "probability": 0.7739 + }, + { + "start": 8044.8, + "end": 8047.2, + "probability": 0.045 + }, + { + "start": 8047.98, + "end": 8048.0, + "probability": 0.0128 + }, + { + "start": 8048.0, + "end": 8048.0, + "probability": 0.0493 + }, + { + "start": 8048.0, + "end": 8048.71, + "probability": 0.2259 + }, + { + "start": 8048.84, + "end": 8051.88, + "probability": 0.7102 + }, + { + "start": 8052.12, + "end": 8052.66, + "probability": 0.4895 + }, + { + "start": 8052.68, + "end": 8053.48, + "probability": 0.8889 + }, + { + "start": 8054.87, + "end": 8059.58, + "probability": 0.8633 + }, + { + "start": 8059.66, + "end": 8060.14, + "probability": 0.5202 + }, + { + "start": 8060.9, + "end": 8062.34, + "probability": 0.0563 + }, + { + "start": 8062.48, + "end": 8063.38, + "probability": 0.4174 + }, + { + "start": 8063.52, + "end": 8065.62, + "probability": 0.709 + }, + { + "start": 8065.88, + "end": 8069.8, + "probability": 0.9487 + }, + { + "start": 8069.92, + "end": 8070.33, + "probability": 0.6708 + }, + { + "start": 8070.64, + "end": 8073.02, + "probability": 0.9978 + }, + { + "start": 8073.42, + "end": 8075.84, + "probability": 0.988 + }, + { + "start": 8075.84, + "end": 8077.22, + "probability": 0.3017 + }, + { + "start": 8078.1, + "end": 8081.88, + "probability": 0.0172 + }, + { + "start": 8082.22, + "end": 8085.68, + "probability": 0.4659 + }, + { + "start": 8085.96, + "end": 8086.51, + "probability": 0.4603 + }, + { + "start": 8086.82, + "end": 8089.52, + "probability": 0.7527 + }, + { + "start": 8089.68, + "end": 8091.06, + "probability": 0.6829 + }, + { + "start": 8091.24, + "end": 8096.6, + "probability": 0.3384 + }, + { + "start": 8097.14, + "end": 8098.16, + "probability": 0.8934 + }, + { + "start": 8098.32, + "end": 8099.04, + "probability": 0.9312 + }, + { + "start": 8099.18, + "end": 8101.8, + "probability": 0.9844 + }, + { + "start": 8101.96, + "end": 8105.13, + "probability": 0.9338 + }, + { + "start": 8105.28, + "end": 8108.82, + "probability": 0.9319 + }, + { + "start": 8108.82, + "end": 8109.7, + "probability": 0.4527 + }, + { + "start": 8110.5, + "end": 8110.64, + "probability": 0.3271 + }, + { + "start": 8110.76, + "end": 8114.04, + "probability": 0.9173 + }, + { + "start": 8114.1, + "end": 8115.14, + "probability": 0.7935 + }, + { + "start": 8115.32, + "end": 8117.72, + "probability": 0.7019 + }, + { + "start": 8118.24, + "end": 8119.64, + "probability": 0.9574 + }, + { + "start": 8119.7, + "end": 8121.3, + "probability": 0.9743 + }, + { + "start": 8121.44, + "end": 8122.34, + "probability": 0.5015 + }, + { + "start": 8122.34, + "end": 8125.18, + "probability": 0.6668 + }, + { + "start": 8125.46, + "end": 8126.6, + "probability": 0.7235 + }, + { + "start": 8127.02, + "end": 8129.88, + "probability": 0.9139 + }, + { + "start": 8130.26, + "end": 8134.5, + "probability": 0.9529 + }, + { + "start": 8134.64, + "end": 8135.61, + "probability": 0.9361 + }, + { + "start": 8136.28, + "end": 8138.32, + "probability": 0.7988 + }, + { + "start": 8138.95, + "end": 8142.08, + "probability": 0.0449 + }, + { + "start": 8142.38, + "end": 8147.48, + "probability": 0.8018 + }, + { + "start": 8147.78, + "end": 8148.58, + "probability": 0.722 + }, + { + "start": 8148.96, + "end": 8154.48, + "probability": 0.9133 + }, + { + "start": 8154.66, + "end": 8158.36, + "probability": 0.9883 + }, + { + "start": 8158.46, + "end": 8159.44, + "probability": 0.896 + }, + { + "start": 8160.16, + "end": 8160.98, + "probability": 0.2521 + }, + { + "start": 8161.04, + "end": 8162.22, + "probability": 0.3735 + }, + { + "start": 8164.28, + "end": 8165.08, + "probability": 0.1137 + }, + { + "start": 8165.12, + "end": 8168.7, + "probability": 0.9468 + }, + { + "start": 8168.8, + "end": 8171.62, + "probability": 0.9926 + }, + { + "start": 8171.98, + "end": 8176.44, + "probability": 0.9482 + }, + { + "start": 8176.58, + "end": 8177.44, + "probability": 0.925 + }, + { + "start": 8177.8, + "end": 8181.28, + "probability": 0.9902 + }, + { + "start": 8181.44, + "end": 8183.1, + "probability": 0.4935 + }, + { + "start": 8183.56, + "end": 8185.02, + "probability": 0.8387 + }, + { + "start": 8185.28, + "end": 8189.81, + "probability": 0.8308 + }, + { + "start": 8190.48, + "end": 8194.42, + "probability": 0.9766 + }, + { + "start": 8194.64, + "end": 8196.54, + "probability": 0.7938 + }, + { + "start": 8196.9, + "end": 8199.82, + "probability": 0.3065 + }, + { + "start": 8200.62, + "end": 8200.72, + "probability": 0.1877 + }, + { + "start": 8204.34, + "end": 8204.96, + "probability": 0.3563 + }, + { + "start": 8209.69, + "end": 8211.84, + "probability": 0.545 + }, + { + "start": 8212.1, + "end": 8213.18, + "probability": 0.5757 + }, + { + "start": 8213.58, + "end": 8218.18, + "probability": 0.9489 + }, + { + "start": 8218.28, + "end": 8220.2, + "probability": 0.9785 + }, + { + "start": 8220.2, + "end": 8222.6, + "probability": 0.9967 + }, + { + "start": 8222.7, + "end": 8224.62, + "probability": 0.8667 + }, + { + "start": 8247.74, + "end": 8248.66, + "probability": 0.7158 + }, + { + "start": 8250.56, + "end": 8252.22, + "probability": 0.9814 + }, + { + "start": 8252.32, + "end": 8254.26, + "probability": 0.5442 + }, + { + "start": 8254.32, + "end": 8255.8, + "probability": 0.9868 + }, + { + "start": 8256.08, + "end": 8257.4, + "probability": 0.949 + }, + { + "start": 8258.59, + "end": 8260.21, + "probability": 0.993 + }, + { + "start": 8260.75, + "end": 8264.48, + "probability": 0.8379 + }, + { + "start": 8264.58, + "end": 8266.62, + "probability": 0.9327 + }, + { + "start": 8266.92, + "end": 8267.3, + "probability": 0.715 + }, + { + "start": 8267.76, + "end": 8268.46, + "probability": 0.9468 + }, + { + "start": 8269.49, + "end": 8273.26, + "probability": 0.4903 + }, + { + "start": 8273.32, + "end": 8274.02, + "probability": 0.5903 + }, + { + "start": 8274.32, + "end": 8274.8, + "probability": 0.683 + }, + { + "start": 8274.86, + "end": 8275.98, + "probability": 0.0305 + }, + { + "start": 8278.16, + "end": 8278.64, + "probability": 0.1006 + }, + { + "start": 8278.64, + "end": 8278.64, + "probability": 0.0507 + }, + { + "start": 8278.64, + "end": 8278.64, + "probability": 0.1255 + }, + { + "start": 8278.64, + "end": 8278.64, + "probability": 0.0201 + }, + { + "start": 8278.64, + "end": 8281.02, + "probability": 0.3813 + }, + { + "start": 8282.54, + "end": 8283.36, + "probability": 0.6757 + }, + { + "start": 8283.46, + "end": 8285.08, + "probability": 0.6246 + }, + { + "start": 8285.22, + "end": 8286.54, + "probability": 0.7422 + }, + { + "start": 8287.18, + "end": 8288.42, + "probability": 0.7092 + }, + { + "start": 8288.58, + "end": 8289.08, + "probability": 0.6201 + }, + { + "start": 8289.18, + "end": 8291.34, + "probability": 0.9738 + }, + { + "start": 8293.85, + "end": 8297.46, + "probability": 0.841 + }, + { + "start": 8298.13, + "end": 8305.76, + "probability": 0.9056 + }, + { + "start": 8307.54, + "end": 8308.12, + "probability": 0.862 + }, + { + "start": 8308.42, + "end": 8309.78, + "probability": 0.7639 + }, + { + "start": 8310.76, + "end": 8312.1, + "probability": 0.3703 + }, + { + "start": 8312.14, + "end": 8315.76, + "probability": 0.8737 + }, + { + "start": 8316.82, + "end": 8322.0, + "probability": 0.8233 + }, + { + "start": 8322.7, + "end": 8327.16, + "probability": 0.7467 + }, + { + "start": 8328.28, + "end": 8329.74, + "probability": 0.7671 + }, + { + "start": 8331.28, + "end": 8335.48, + "probability": 0.5136 + }, + { + "start": 8336.84, + "end": 8342.12, + "probability": 0.8149 + }, + { + "start": 8342.22, + "end": 8345.75, + "probability": 0.9384 + }, + { + "start": 8347.12, + "end": 8351.02, + "probability": 0.8882 + }, + { + "start": 8351.58, + "end": 8355.48, + "probability": 0.7982 + }, + { + "start": 8356.4, + "end": 8357.96, + "probability": 0.4646 + }, + { + "start": 8358.6, + "end": 8360.34, + "probability": 0.2483 + }, + { + "start": 8360.6, + "end": 8362.14, + "probability": 0.7378 + }, + { + "start": 8363.46, + "end": 8364.68, + "probability": 0.9811 + }, + { + "start": 8365.12, + "end": 8365.44, + "probability": 0.5351 + }, + { + "start": 8365.62, + "end": 8371.9, + "probability": 0.7236 + }, + { + "start": 8371.9, + "end": 8373.64, + "probability": 0.7804 + }, + { + "start": 8374.1, + "end": 8375.52, + "probability": 0.9181 + }, + { + "start": 8375.66, + "end": 8377.04, + "probability": 0.3283 + }, + { + "start": 8377.1, + "end": 8379.52, + "probability": 0.4808 + }, + { + "start": 8379.54, + "end": 8382.18, + "probability": 0.981 + }, + { + "start": 8382.94, + "end": 8384.4, + "probability": 0.9317 + }, + { + "start": 8385.4, + "end": 8390.02, + "probability": 0.9868 + }, + { + "start": 8390.66, + "end": 8394.4, + "probability": 0.9784 + }, + { + "start": 8396.56, + "end": 8397.12, + "probability": 0.8793 + }, + { + "start": 8398.18, + "end": 8398.88, + "probability": 0.4417 + }, + { + "start": 8399.0, + "end": 8400.36, + "probability": 0.868 + }, + { + "start": 8400.86, + "end": 8402.18, + "probability": 0.9193 + }, + { + "start": 8402.24, + "end": 8402.48, + "probability": 0.3829 + }, + { + "start": 8402.48, + "end": 8403.66, + "probability": 0.8438 + }, + { + "start": 8404.48, + "end": 8407.12, + "probability": 0.9963 + }, + { + "start": 8407.74, + "end": 8409.8, + "probability": 0.6481 + }, + { + "start": 8410.08, + "end": 8415.02, + "probability": 0.8776 + }, + { + "start": 8417.03, + "end": 8424.88, + "probability": 0.9651 + }, + { + "start": 8425.02, + "end": 8426.9, + "probability": 0.9381 + }, + { + "start": 8427.26, + "end": 8430.58, + "probability": 0.9309 + }, + { + "start": 8431.16, + "end": 8434.96, + "probability": 0.9929 + }, + { + "start": 8436.34, + "end": 8438.82, + "probability": 0.9331 + }, + { + "start": 8439.34, + "end": 8440.38, + "probability": 0.5973 + }, + { + "start": 8440.92, + "end": 8442.92, + "probability": 0.6544 + }, + { + "start": 8442.98, + "end": 8443.62, + "probability": 0.6648 + }, + { + "start": 8443.62, + "end": 8445.16, + "probability": 0.9315 + }, + { + "start": 8445.36, + "end": 8446.2, + "probability": 0.7141 + }, + { + "start": 8446.36, + "end": 8448.3, + "probability": 0.7941 + }, + { + "start": 8448.38, + "end": 8449.64, + "probability": 0.9762 + }, + { + "start": 8450.16, + "end": 8451.62, + "probability": 0.8165 + }, + { + "start": 8454.19, + "end": 8457.48, + "probability": 0.7716 + }, + { + "start": 8458.02, + "end": 8459.62, + "probability": 0.7665 + }, + { + "start": 8459.78, + "end": 8461.76, + "probability": 0.9917 + }, + { + "start": 8461.76, + "end": 8463.92, + "probability": 0.9679 + }, + { + "start": 8464.32, + "end": 8468.36, + "probability": 0.998 + }, + { + "start": 8468.36, + "end": 8471.48, + "probability": 0.9943 + }, + { + "start": 8471.68, + "end": 8472.78, + "probability": 0.0817 + }, + { + "start": 8477.86, + "end": 8479.14, + "probability": 0.4336 + }, + { + "start": 8479.22, + "end": 8479.34, + "probability": 0.3644 + }, + { + "start": 8479.5, + "end": 8481.58, + "probability": 0.9712 + }, + { + "start": 8486.92, + "end": 8487.6, + "probability": 0.7098 + }, + { + "start": 8487.68, + "end": 8488.64, + "probability": 0.7751 + }, + { + "start": 8488.76, + "end": 8489.99, + "probability": 0.9302 + }, + { + "start": 8490.04, + "end": 8497.15, + "probability": 0.9195 + }, + { + "start": 8497.6, + "end": 8503.38, + "probability": 0.724 + }, + { + "start": 8503.48, + "end": 8505.48, + "probability": 0.9276 + }, + { + "start": 8506.26, + "end": 8506.52, + "probability": 0.5593 + }, + { + "start": 8506.7, + "end": 8506.9, + "probability": 0.4644 + }, + { + "start": 8506.9, + "end": 8511.02, + "probability": 0.7697 + }, + { + "start": 8511.52, + "end": 8513.84, + "probability": 0.6759 + }, + { + "start": 8513.86, + "end": 8514.0, + "probability": 0.1351 + }, + { + "start": 8514.16, + "end": 8515.24, + "probability": 0.9517 + }, + { + "start": 8515.28, + "end": 8516.88, + "probability": 0.5081 + }, + { + "start": 8516.92, + "end": 8518.26, + "probability": 0.8841 + }, + { + "start": 8518.62, + "end": 8519.25, + "probability": 0.6543 + }, + { + "start": 8519.82, + "end": 8521.26, + "probability": 0.8114 + }, + { + "start": 8523.09, + "end": 8527.0, + "probability": 0.7608 + }, + { + "start": 8530.01, + "end": 8532.84, + "probability": 0.9397 + }, + { + "start": 8533.18, + "end": 8533.8, + "probability": 0.9431 + }, + { + "start": 8533.9, + "end": 8535.16, + "probability": 0.6839 + }, + { + "start": 8536.73, + "end": 8538.82, + "probability": 0.9276 + }, + { + "start": 8538.94, + "end": 8539.72, + "probability": 0.8553 + }, + { + "start": 8539.8, + "end": 8541.78, + "probability": 0.9122 + }, + { + "start": 8542.12, + "end": 8543.86, + "probability": 0.5411 + }, + { + "start": 8545.46, + "end": 8550.72, + "probability": 0.7007 + }, + { + "start": 8552.2, + "end": 8553.24, + "probability": 0.892 + }, + { + "start": 8553.92, + "end": 8557.7, + "probability": 0.9805 + }, + { + "start": 8558.28, + "end": 8561.06, + "probability": 0.9321 + }, + { + "start": 8561.46, + "end": 8564.9, + "probability": 0.9088 + }, + { + "start": 8565.62, + "end": 8565.84, + "probability": 0.2526 + }, + { + "start": 8567.2, + "end": 8568.62, + "probability": 0.8677 + }, + { + "start": 8568.9, + "end": 8569.74, + "probability": 0.7753 + }, + { + "start": 8569.76, + "end": 8571.74, + "probability": 0.7083 + }, + { + "start": 8571.74, + "end": 8577.04, + "probability": 0.9966 + }, + { + "start": 8577.12, + "end": 8580.04, + "probability": 0.9624 + }, + { + "start": 8580.8, + "end": 8583.86, + "probability": 0.9983 + }, + { + "start": 8583.92, + "end": 8588.08, + "probability": 0.9543 + }, + { + "start": 8588.76, + "end": 8589.64, + "probability": 0.882 + }, + { + "start": 8589.66, + "end": 8592.14, + "probability": 0.8102 + }, + { + "start": 8592.22, + "end": 8594.16, + "probability": 0.9862 + }, + { + "start": 8594.22, + "end": 8594.88, + "probability": 0.9524 + }, + { + "start": 8594.96, + "end": 8596.5, + "probability": 0.5678 + }, + { + "start": 8596.5, + "end": 8597.38, + "probability": 0.8783 + }, + { + "start": 8597.54, + "end": 8598.68, + "probability": 0.9001 + }, + { + "start": 8599.28, + "end": 8601.9, + "probability": 0.8737 + }, + { + "start": 8602.24, + "end": 8605.78, + "probability": 0.9936 + }, + { + "start": 8605.78, + "end": 8609.48, + "probability": 0.9855 + }, + { + "start": 8609.76, + "end": 8610.12, + "probability": 0.7068 + }, + { + "start": 8610.36, + "end": 8611.64, + "probability": 0.9755 + }, + { + "start": 8612.02, + "end": 8613.22, + "probability": 0.976 + }, + { + "start": 8613.32, + "end": 8614.52, + "probability": 0.8464 + }, + { + "start": 8614.66, + "end": 8615.68, + "probability": 0.9869 + }, + { + "start": 8615.8, + "end": 8618.89, + "probability": 0.898 + }, + { + "start": 8619.22, + "end": 8620.45, + "probability": 0.9741 + }, + { + "start": 8620.62, + "end": 8620.94, + "probability": 0.6439 + }, + { + "start": 8620.94, + "end": 8622.14, + "probability": 0.5638 + }, + { + "start": 8622.64, + "end": 8624.42, + "probability": 0.7533 + }, + { + "start": 8624.7, + "end": 8627.98, + "probability": 0.9701 + }, + { + "start": 8628.04, + "end": 8628.52, + "probability": 0.9149 + }, + { + "start": 8628.58, + "end": 8629.52, + "probability": 0.963 + }, + { + "start": 8629.9, + "end": 8631.74, + "probability": 0.3899 + }, + { + "start": 8631.92, + "end": 8636.12, + "probability": 0.8228 + }, + { + "start": 8636.26, + "end": 8637.48, + "probability": 0.9712 + }, + { + "start": 8637.58, + "end": 8639.69, + "probability": 0.9035 + }, + { + "start": 8640.64, + "end": 8644.9, + "probability": 0.9949 + }, + { + "start": 8644.9, + "end": 8648.56, + "probability": 0.9911 + }, + { + "start": 8648.9, + "end": 8650.6, + "probability": 0.9619 + }, + { + "start": 8650.7, + "end": 8653.4, + "probability": 0.9754 + }, + { + "start": 8653.7, + "end": 8658.0, + "probability": 0.9829 + }, + { + "start": 8658.06, + "end": 8662.5, + "probability": 0.9951 + }, + { + "start": 8662.8, + "end": 8666.04, + "probability": 0.9985 + }, + { + "start": 8666.2, + "end": 8666.88, + "probability": 0.7104 + }, + { + "start": 8667.38, + "end": 8668.84, + "probability": 0.8534 + }, + { + "start": 8668.88, + "end": 8673.04, + "probability": 0.9899 + }, + { + "start": 8678.32, + "end": 8680.54, + "probability": 0.8988 + }, + { + "start": 8680.6, + "end": 8681.52, + "probability": 0.8093 + }, + { + "start": 8681.66, + "end": 8682.66, + "probability": 0.752 + }, + { + "start": 8682.98, + "end": 8684.17, + "probability": 0.8807 + }, + { + "start": 8684.42, + "end": 8689.2, + "probability": 0.9928 + }, + { + "start": 8689.6, + "end": 8689.62, + "probability": 0.5429 + }, + { + "start": 8689.7, + "end": 8689.98, + "probability": 0.7912 + }, + { + "start": 8690.1, + "end": 8694.32, + "probability": 0.7811 + }, + { + "start": 8695.08, + "end": 8698.7, + "probability": 0.9824 + }, + { + "start": 8698.82, + "end": 8700.66, + "probability": 0.9424 + }, + { + "start": 8701.06, + "end": 8701.86, + "probability": 0.8105 + }, + { + "start": 8701.92, + "end": 8704.86, + "probability": 0.9736 + }, + { + "start": 8705.3, + "end": 8710.14, + "probability": 0.9948 + }, + { + "start": 8711.86, + "end": 8713.4, + "probability": 0.92 + }, + { + "start": 8713.52, + "end": 8717.94, + "probability": 0.9717 + }, + { + "start": 8718.8, + "end": 8720.3, + "probability": 0.8474 + }, + { + "start": 8720.4, + "end": 8721.07, + "probability": 0.9746 + }, + { + "start": 8722.26, + "end": 8723.8, + "probability": 0.7408 + }, + { + "start": 8724.92, + "end": 8726.34, + "probability": 0.8307 + }, + { + "start": 8726.88, + "end": 8727.1, + "probability": 0.1333 + }, + { + "start": 8729.06, + "end": 8731.14, + "probability": 0.0724 + }, + { + "start": 8731.14, + "end": 8731.14, + "probability": 0.096 + }, + { + "start": 8731.96, + "end": 8732.24, + "probability": 0.0838 + }, + { + "start": 8734.3, + "end": 8737.1, + "probability": 0.647 + }, + { + "start": 8737.28, + "end": 8738.11, + "probability": 0.6836 + }, + { + "start": 8738.68, + "end": 8741.4, + "probability": 0.1352 + }, + { + "start": 8744.88, + "end": 8751.4, + "probability": 0.8552 + }, + { + "start": 8753.2, + "end": 8755.82, + "probability": 0.7419 + }, + { + "start": 8758.36, + "end": 8759.14, + "probability": 0.6733 + }, + { + "start": 8759.52, + "end": 8761.28, + "probability": 0.0514 + }, + { + "start": 8761.3, + "end": 8761.7, + "probability": 0.0387 + }, + { + "start": 8761.7, + "end": 8762.32, + "probability": 0.104 + }, + { + "start": 8762.44, + "end": 8763.36, + "probability": 0.6073 + }, + { + "start": 8763.46, + "end": 8764.32, + "probability": 0.7857 + }, + { + "start": 8764.62, + "end": 8765.24, + "probability": 0.191 + }, + { + "start": 8765.4, + "end": 8767.02, + "probability": 0.5269 + }, + { + "start": 8767.22, + "end": 8767.84, + "probability": 0.7633 + }, + { + "start": 8767.92, + "end": 8769.78, + "probability": 0.6769 + }, + { + "start": 8770.06, + "end": 8771.5, + "probability": 0.8496 + }, + { + "start": 8772.16, + "end": 8775.18, + "probability": 0.7125 + }, + { + "start": 8775.54, + "end": 8782.0, + "probability": 0.9751 + }, + { + "start": 8782.08, + "end": 8784.94, + "probability": 0.7668 + }, + { + "start": 8785.1, + "end": 8789.54, + "probability": 0.8931 + }, + { + "start": 8789.62, + "end": 8793.28, + "probability": 0.9934 + }, + { + "start": 8793.84, + "end": 8794.86, + "probability": 0.8566 + }, + { + "start": 8794.9, + "end": 8795.36, + "probability": 0.7812 + }, + { + "start": 8796.0, + "end": 8798.34, + "probability": 0.7556 + }, + { + "start": 8798.96, + "end": 8801.36, + "probability": 0.7675 + }, + { + "start": 8801.44, + "end": 8803.26, + "probability": 0.9583 + }, + { + "start": 8803.98, + "end": 8805.46, + "probability": 0.3316 + }, + { + "start": 8805.56, + "end": 8809.36, + "probability": 0.4349 + }, + { + "start": 8809.64, + "end": 8811.76, + "probability": 0.3617 + }, + { + "start": 8812.54, + "end": 8816.1, + "probability": 0.7334 + }, + { + "start": 8816.96, + "end": 8818.06, + "probability": 0.5842 + }, + { + "start": 8819.2, + "end": 8821.75, + "probability": 0.3841 + }, + { + "start": 8822.02, + "end": 8823.56, + "probability": 0.0345 + }, + { + "start": 8823.7, + "end": 8826.5, + "probability": 0.3447 + }, + { + "start": 8826.56, + "end": 8826.8, + "probability": 0.1104 + }, + { + "start": 8827.04, + "end": 8827.96, + "probability": 0.3422 + }, + { + "start": 8827.96, + "end": 8829.5, + "probability": 0.752 + }, + { + "start": 8829.84, + "end": 8832.36, + "probability": 0.6938 + }, + { + "start": 8832.36, + "end": 8832.84, + "probability": 0.5867 + }, + { + "start": 8833.22, + "end": 8835.18, + "probability": 0.681 + }, + { + "start": 8835.26, + "end": 8837.1, + "probability": 0.8821 + }, + { + "start": 8837.46, + "end": 8839.01, + "probability": 0.9575 + }, + { + "start": 8839.26, + "end": 8844.24, + "probability": 0.9878 + }, + { + "start": 8844.4, + "end": 8847.08, + "probability": 0.9935 + }, + { + "start": 8847.14, + "end": 8848.6, + "probability": 0.8363 + }, + { + "start": 8849.67, + "end": 8856.86, + "probability": 0.9929 + }, + { + "start": 8857.14, + "end": 8858.4, + "probability": 0.904 + }, + { + "start": 8858.54, + "end": 8860.34, + "probability": 0.9902 + }, + { + "start": 8862.2, + "end": 8866.58, + "probability": 0.984 + }, + { + "start": 8866.58, + "end": 8869.54, + "probability": 0.9935 + }, + { + "start": 8869.56, + "end": 8870.4, + "probability": 0.7198 + }, + { + "start": 8870.74, + "end": 8871.92, + "probability": 0.8235 + }, + { + "start": 8872.38, + "end": 8876.08, + "probability": 0.9478 + }, + { + "start": 8876.4, + "end": 8879.6, + "probability": 0.988 + }, + { + "start": 8879.66, + "end": 8881.93, + "probability": 0.8206 + }, + { + "start": 8882.06, + "end": 8883.6, + "probability": 0.9602 + }, + { + "start": 8883.66, + "end": 8885.56, + "probability": 0.8579 + }, + { + "start": 8885.6, + "end": 8889.16, + "probability": 0.8246 + }, + { + "start": 8889.42, + "end": 8890.62, + "probability": 0.3727 + }, + { + "start": 8891.57, + "end": 8897.54, + "probability": 0.959 + }, + { + "start": 8897.7, + "end": 8900.62, + "probability": 0.9861 + }, + { + "start": 8900.78, + "end": 8901.7, + "probability": 0.861 + }, + { + "start": 8902.04, + "end": 8903.7, + "probability": 0.9709 + }, + { + "start": 8904.32, + "end": 8908.1, + "probability": 0.9895 + }, + { + "start": 8908.32, + "end": 8909.38, + "probability": 0.4994 + }, + { + "start": 8910.08, + "end": 8911.9, + "probability": 0.9866 + }, + { + "start": 8912.52, + "end": 8914.18, + "probability": 0.9967 + }, + { + "start": 8914.34, + "end": 8915.52, + "probability": 0.9777 + }, + { + "start": 8915.56, + "end": 8918.0, + "probability": 0.4328 + }, + { + "start": 8918.72, + "end": 8919.98, + "probability": 0.4705 + }, + { + "start": 8920.64, + "end": 8921.32, + "probability": 0.1017 + }, + { + "start": 8921.48, + "end": 8921.72, + "probability": 0.3839 + }, + { + "start": 8921.92, + "end": 8923.74, + "probability": 0.4854 + }, + { + "start": 8923.76, + "end": 8926.74, + "probability": 0.2991 + }, + { + "start": 8927.38, + "end": 8930.2, + "probability": 0.8404 + }, + { + "start": 8930.4, + "end": 8931.73, + "probability": 0.4788 + }, + { + "start": 8932.02, + "end": 8932.5, + "probability": 0.0484 + }, + { + "start": 8932.5, + "end": 8933.12, + "probability": 0.248 + }, + { + "start": 8934.18, + "end": 8934.6, + "probability": 0.8734 + }, + { + "start": 8934.8, + "end": 8935.62, + "probability": 0.8532 + }, + { + "start": 8935.76, + "end": 8937.72, + "probability": 0.9727 + }, + { + "start": 8937.72, + "end": 8938.34, + "probability": 0.7547 + }, + { + "start": 8938.62, + "end": 8941.84, + "probability": 0.5701 + }, + { + "start": 8942.16, + "end": 8943.52, + "probability": 0.8762 + }, + { + "start": 8943.86, + "end": 8945.52, + "probability": 0.709 + }, + { + "start": 8945.68, + "end": 8950.36, + "probability": 0.994 + }, + { + "start": 8950.52, + "end": 8951.72, + "probability": 0.2745 + }, + { + "start": 8951.72, + "end": 8952.83, + "probability": 0.4173 + }, + { + "start": 8956.08, + "end": 8957.2, + "probability": 0.454 + }, + { + "start": 8957.24, + "end": 8957.64, + "probability": 0.4883 + }, + { + "start": 8958.06, + "end": 8958.3, + "probability": 0.0058 + }, + { + "start": 8958.3, + "end": 8958.66, + "probability": 0.0078 + }, + { + "start": 8958.74, + "end": 8959.22, + "probability": 0.0403 + }, + { + "start": 8959.32, + "end": 8959.36, + "probability": 0.6696 + }, + { + "start": 8959.4, + "end": 8960.22, + "probability": 0.9653 + }, + { + "start": 8960.26, + "end": 8961.76, + "probability": 0.9072 + }, + { + "start": 8961.9, + "end": 8965.12, + "probability": 0.9017 + }, + { + "start": 8965.24, + "end": 8966.84, + "probability": 0.9954 + }, + { + "start": 8966.9, + "end": 8970.1, + "probability": 0.9938 + }, + { + "start": 8970.78, + "end": 8974.51, + "probability": 0.5092 + }, + { + "start": 8974.94, + "end": 8979.36, + "probability": 0.9633 + }, + { + "start": 8979.42, + "end": 8979.84, + "probability": 0.6616 + }, + { + "start": 8980.02, + "end": 8980.32, + "probability": 0.6276 + }, + { + "start": 8982.28, + "end": 8985.78, + "probability": 0.5457 + }, + { + "start": 8986.16, + "end": 8987.0, + "probability": 0.5019 + }, + { + "start": 8987.04, + "end": 8988.22, + "probability": 0.8159 + }, + { + "start": 8988.62, + "end": 8992.56, + "probability": 0.8315 + }, + { + "start": 8992.98, + "end": 8994.04, + "probability": 0.5742 + }, + { + "start": 8994.71, + "end": 8995.91, + "probability": 0.6619 + }, + { + "start": 8996.52, + "end": 8997.43, + "probability": 0.6254 + }, + { + "start": 8997.76, + "end": 9001.76, + "probability": 0.8407 + }, + { + "start": 9002.39, + "end": 9005.28, + "probability": 0.6507 + }, + { + "start": 9005.92, + "end": 9007.28, + "probability": 0.4723 + }, + { + "start": 9008.9, + "end": 9011.44, + "probability": 0.4887 + }, + { + "start": 9011.86, + "end": 9017.6, + "probability": 0.8303 + }, + { + "start": 9017.64, + "end": 9018.32, + "probability": 0.7081 + }, + { + "start": 9018.9, + "end": 9022.26, + "probability": 0.9825 + }, + { + "start": 9022.32, + "end": 9024.4, + "probability": 0.8036 + }, + { + "start": 9024.44, + "end": 9025.06, + "probability": 0.7778 + }, + { + "start": 9025.06, + "end": 9026.26, + "probability": 0.8123 + }, + { + "start": 9026.28, + "end": 9027.33, + "probability": 0.9709 + }, + { + "start": 9027.62, + "end": 9029.9, + "probability": 0.76 + }, + { + "start": 9029.96, + "end": 9032.78, + "probability": 0.9812 + }, + { + "start": 9032.96, + "end": 9033.58, + "probability": 0.7846 + }, + { + "start": 9034.04, + "end": 9034.56, + "probability": 0.4811 + }, + { + "start": 9034.6, + "end": 9038.44, + "probability": 0.9723 + }, + { + "start": 9038.5, + "end": 9039.28, + "probability": 0.8007 + }, + { + "start": 9039.36, + "end": 9040.84, + "probability": 0.9153 + }, + { + "start": 9040.92, + "end": 9042.32, + "probability": 0.7221 + }, + { + "start": 9042.4, + "end": 9043.96, + "probability": 0.873 + }, + { + "start": 9044.06, + "end": 9045.23, + "probability": 0.5099 + }, + { + "start": 9045.84, + "end": 9047.38, + "probability": 0.5326 + }, + { + "start": 9048.26, + "end": 9049.16, + "probability": 0.4281 + }, + { + "start": 9049.3, + "end": 9049.64, + "probability": 0.487 + }, + { + "start": 9049.78, + "end": 9050.44, + "probability": 0.2105 + }, + { + "start": 9050.64, + "end": 9054.72, + "probability": 0.989 + }, + { + "start": 9055.42, + "end": 9055.78, + "probability": 0.3288 + }, + { + "start": 9055.78, + "end": 9056.8, + "probability": 0.7041 + }, + { + "start": 9056.84, + "end": 9057.04, + "probability": 0.0344 + }, + { + "start": 9059.4, + "end": 9060.72, + "probability": 0.2183 + }, + { + "start": 9060.74, + "end": 9062.08, + "probability": 0.7841 + }, + { + "start": 9062.4, + "end": 9066.18, + "probability": 0.9521 + }, + { + "start": 9066.68, + "end": 9067.92, + "probability": 0.5943 + }, + { + "start": 9067.98, + "end": 9070.02, + "probability": 0.3116 + }, + { + "start": 9071.22, + "end": 9074.02, + "probability": 0.4864 + }, + { + "start": 9074.9, + "end": 9076.86, + "probability": 0.6745 + }, + { + "start": 9078.14, + "end": 9082.24, + "probability": 0.4867 + }, + { + "start": 9082.82, + "end": 9084.56, + "probability": 0.656 + }, + { + "start": 9085.58, + "end": 9087.08, + "probability": 0.3953 + }, + { + "start": 9087.7, + "end": 9088.33, + "probability": 0.5518 + }, + { + "start": 9089.1, + "end": 9091.6, + "probability": 0.8955 + }, + { + "start": 9091.78, + "end": 9093.04, + "probability": 0.8391 + }, + { + "start": 9093.18, + "end": 9099.5, + "probability": 0.8999 + }, + { + "start": 9099.68, + "end": 9100.5, + "probability": 0.7949 + }, + { + "start": 9101.04, + "end": 9103.6, + "probability": 0.5605 + }, + { + "start": 9103.6, + "end": 9107.02, + "probability": 0.7633 + }, + { + "start": 9107.32, + "end": 9110.46, + "probability": 0.5718 + }, + { + "start": 9110.46, + "end": 9112.5, + "probability": 0.7788 + }, + { + "start": 9112.66, + "end": 9113.74, + "probability": 0.2626 + }, + { + "start": 9114.14, + "end": 9115.26, + "probability": 0.4824 + }, + { + "start": 9115.28, + "end": 9116.94, + "probability": 0.6425 + }, + { + "start": 9116.94, + "end": 9121.14, + "probability": 0.5362 + }, + { + "start": 9121.28, + "end": 9123.68, + "probability": 0.9881 + }, + { + "start": 9123.86, + "end": 9124.28, + "probability": 0.3061 + }, + { + "start": 9124.48, + "end": 9124.96, + "probability": 0.6846 + }, + { + "start": 9125.24, + "end": 9127.66, + "probability": 0.3275 + }, + { + "start": 9128.64, + "end": 9130.6, + "probability": 0.988 + }, + { + "start": 9130.7, + "end": 9131.76, + "probability": 0.7504 + }, + { + "start": 9131.92, + "end": 9134.03, + "probability": 0.9028 + }, + { + "start": 9134.9, + "end": 9140.5, + "probability": 0.8062 + }, + { + "start": 9143.72, + "end": 9144.64, + "probability": 0.7605 + }, + { + "start": 9145.19, + "end": 9146.72, + "probability": 0.7994 + }, + { + "start": 9146.9, + "end": 9151.06, + "probability": 0.9922 + }, + { + "start": 9151.5, + "end": 9154.84, + "probability": 0.9958 + }, + { + "start": 9155.88, + "end": 9158.5, + "probability": 0.9956 + }, + { + "start": 9159.1, + "end": 9160.24, + "probability": 0.5108 + }, + { + "start": 9160.9, + "end": 9162.98, + "probability": 0.7973 + }, + { + "start": 9163.76, + "end": 9167.46, + "probability": 0.9945 + }, + { + "start": 9167.9, + "end": 9172.48, + "probability": 0.9642 + }, + { + "start": 9173.5, + "end": 9174.88, + "probability": 0.5885 + }, + { + "start": 9174.94, + "end": 9175.66, + "probability": 0.8652 + }, + { + "start": 9175.98, + "end": 9177.78, + "probability": 0.9785 + }, + { + "start": 9178.2, + "end": 9179.26, + "probability": 0.7453 + }, + { + "start": 9179.82, + "end": 9183.34, + "probability": 0.7558 + }, + { + "start": 9183.34, + "end": 9186.11, + "probability": 0.9375 + }, + { + "start": 9187.26, + "end": 9188.75, + "probability": 0.6377 + }, + { + "start": 9189.02, + "end": 9191.32, + "probability": 0.978 + }, + { + "start": 9193.9, + "end": 9196.1, + "probability": 0.0204 + }, + { + "start": 9196.22, + "end": 9196.22, + "probability": 0.043 + }, + { + "start": 9196.22, + "end": 9196.76, + "probability": 0.218 + }, + { + "start": 9196.9, + "end": 9197.9, + "probability": 0.1579 + }, + { + "start": 9199.04, + "end": 9199.68, + "probability": 0.3699 + }, + { + "start": 9199.86, + "end": 9200.32, + "probability": 0.876 + }, + { + "start": 9200.38, + "end": 9201.96, + "probability": 0.8452 + }, + { + "start": 9202.18, + "end": 9203.06, + "probability": 0.7314 + }, + { + "start": 9203.6, + "end": 9205.28, + "probability": 0.932 + }, + { + "start": 9205.58, + "end": 9207.32, + "probability": 0.7822 + }, + { + "start": 9208.16, + "end": 9211.9, + "probability": 0.908 + }, + { + "start": 9212.25, + "end": 9214.0, + "probability": 0.9863 + }, + { + "start": 9214.16, + "end": 9215.64, + "probability": 0.688 + }, + { + "start": 9215.72, + "end": 9217.22, + "probability": 0.9902 + }, + { + "start": 9217.38, + "end": 9218.87, + "probability": 0.7464 + }, + { + "start": 9219.06, + "end": 9219.9, + "probability": 0.9394 + }, + { + "start": 9219.94, + "end": 9221.7, + "probability": 0.9959 + }, + { + "start": 9222.16, + "end": 9224.04, + "probability": 0.9222 + }, + { + "start": 9224.16, + "end": 9226.3, + "probability": 0.9575 + }, + { + "start": 9226.38, + "end": 9227.5, + "probability": 0.9702 + }, + { + "start": 9227.6, + "end": 9229.4, + "probability": 0.8487 + }, + { + "start": 9231.06, + "end": 9233.44, + "probability": 0.9946 + }, + { + "start": 9233.96, + "end": 9237.1, + "probability": 0.9969 + }, + { + "start": 9237.18, + "end": 9237.6, + "probability": 0.8967 + }, + { + "start": 9237.64, + "end": 9239.08, + "probability": 0.7321 + }, + { + "start": 9240.1, + "end": 9241.52, + "probability": 0.9995 + }, + { + "start": 9242.54, + "end": 9247.84, + "probability": 0.8226 + }, + { + "start": 9248.76, + "end": 9250.82, + "probability": 0.2848 + }, + { + "start": 9250.96, + "end": 9251.8, + "probability": 0.8311 + }, + { + "start": 9251.92, + "end": 9256.76, + "probability": 0.654 + }, + { + "start": 9258.28, + "end": 9258.38, + "probability": 0.3006 + }, + { + "start": 9258.38, + "end": 9259.32, + "probability": 0.0619 + }, + { + "start": 9259.36, + "end": 9261.68, + "probability": 0.9886 + }, + { + "start": 9261.78, + "end": 9263.52, + "probability": 0.2841 + }, + { + "start": 9264.1, + "end": 9267.22, + "probability": 0.3184 + }, + { + "start": 9268.22, + "end": 9269.9, + "probability": 0.8797 + }, + { + "start": 9270.08, + "end": 9271.48, + "probability": 0.6678 + }, + { + "start": 9271.54, + "end": 9275.11, + "probability": 0.5793 + }, + { + "start": 9275.3, + "end": 9276.36, + "probability": 0.8534 + }, + { + "start": 9276.54, + "end": 9279.35, + "probability": 0.0647 + }, + { + "start": 9279.7, + "end": 9280.48, + "probability": 0.6333 + }, + { + "start": 9280.6, + "end": 9281.37, + "probability": 0.8945 + }, + { + "start": 9281.72, + "end": 9281.98, + "probability": 0.405 + }, + { + "start": 9282.38, + "end": 9287.72, + "probability": 0.905 + }, + { + "start": 9288.26, + "end": 9293.66, + "probability": 0.7791 + }, + { + "start": 9294.32, + "end": 9300.04, + "probability": 0.3808 + }, + { + "start": 9300.14, + "end": 9302.9, + "probability": 0.3453 + }, + { + "start": 9303.02, + "end": 9304.1, + "probability": 0.8628 + }, + { + "start": 9304.24, + "end": 9306.96, + "probability": 0.9921 + }, + { + "start": 9307.38, + "end": 9308.38, + "probability": 0.6825 + }, + { + "start": 9309.46, + "end": 9312.8, + "probability": 0.7726 + }, + { + "start": 9312.88, + "end": 9315.06, + "probability": 0.9902 + }, + { + "start": 9315.1, + "end": 9319.96, + "probability": 0.9692 + }, + { + "start": 9320.5, + "end": 9323.1, + "probability": 0.9203 + }, + { + "start": 9323.16, + "end": 9326.44, + "probability": 0.9657 + }, + { + "start": 9326.44, + "end": 9329.12, + "probability": 0.9682 + }, + { + "start": 9329.22, + "end": 9329.78, + "probability": 0.7286 + }, + { + "start": 9331.82, + "end": 9333.76, + "probability": 0.7186 + }, + { + "start": 9333.82, + "end": 9335.77, + "probability": 0.6504 + }, + { + "start": 9337.88, + "end": 9346.66, + "probability": 0.9681 + }, + { + "start": 9347.12, + "end": 9348.3, + "probability": 0.5803 + }, + { + "start": 9351.02, + "end": 9351.58, + "probability": 0.3244 + }, + { + "start": 9353.36, + "end": 9357.76, + "probability": 0.7812 + }, + { + "start": 9358.34, + "end": 9361.46, + "probability": 0.9926 + }, + { + "start": 9363.34, + "end": 9363.46, + "probability": 0.9302 + }, + { + "start": 9364.24, + "end": 9365.46, + "probability": 0.322 + }, + { + "start": 9365.54, + "end": 9368.72, + "probability": 0.8515 + }, + { + "start": 9374.34, + "end": 9375.14, + "probability": 0.5277 + }, + { + "start": 9388.1, + "end": 9388.9, + "probability": 0.4606 + }, + { + "start": 9395.36, + "end": 9400.14, + "probability": 0.8176 + }, + { + "start": 9403.55, + "end": 9406.98, + "probability": 0.9017 + }, + { + "start": 9407.84, + "end": 9409.04, + "probability": 0.6692 + }, + { + "start": 9409.26, + "end": 9412.18, + "probability": 0.8834 + }, + { + "start": 9412.72, + "end": 9414.44, + "probability": 0.9679 + }, + { + "start": 9415.2, + "end": 9416.08, + "probability": 0.6604 + }, + { + "start": 9416.68, + "end": 9417.8, + "probability": 0.5558 + }, + { + "start": 9417.8, + "end": 9423.28, + "probability": 0.675 + }, + { + "start": 9424.06, + "end": 9424.9, + "probability": 0.535 + }, + { + "start": 9426.52, + "end": 9429.38, + "probability": 0.015 + }, + { + "start": 9447.54, + "end": 9448.58, + "probability": 0.2121 + }, + { + "start": 9448.6, + "end": 9454.88, + "probability": 0.7557 + }, + { + "start": 9455.56, + "end": 9459.36, + "probability": 0.77 + }, + { + "start": 9461.0, + "end": 9467.78, + "probability": 0.7678 + }, + { + "start": 9468.84, + "end": 9470.02, + "probability": 0.8545 + }, + { + "start": 9472.98, + "end": 9474.0, + "probability": 0.5322 + }, + { + "start": 9474.64, + "end": 9475.24, + "probability": 0.616 + }, + { + "start": 9475.52, + "end": 9476.18, + "probability": 0.5435 + }, + { + "start": 9476.72, + "end": 9477.92, + "probability": 0.5064 + }, + { + "start": 9478.96, + "end": 9482.82, + "probability": 0.0054 + }, + { + "start": 9484.5, + "end": 9490.8, + "probability": 0.0159 + }, + { + "start": 9501.34, + "end": 9501.84, + "probability": 0.0369 + }, + { + "start": 9502.18, + "end": 9507.02, + "probability": 0.7351 + }, + { + "start": 9507.24, + "end": 9509.32, + "probability": 0.9127 + }, + { + "start": 9510.24, + "end": 9516.52, + "probability": 0.9557 + }, + { + "start": 9516.96, + "end": 9518.62, + "probability": 0.818 + }, + { + "start": 9530.42, + "end": 9531.82, + "probability": 0.5435 + }, + { + "start": 9532.1, + "end": 9540.16, + "probability": 0.6289 + }, + { + "start": 9541.0, + "end": 9546.32, + "probability": 0.7372 + }, + { + "start": 9547.04, + "end": 9547.56, + "probability": 0.882 + }, + { + "start": 9547.84, + "end": 9548.86, + "probability": 0.8081 + }, + { + "start": 9549.58, + "end": 9551.54, + "probability": 0.7415 + }, + { + "start": 9551.6, + "end": 9556.6, + "probability": 0.9949 + }, + { + "start": 9557.55, + "end": 9561.2, + "probability": 0.2394 + }, + { + "start": 9561.8, + "end": 9564.6, + "probability": 0.984 + }, + { + "start": 9566.08, + "end": 9566.88, + "probability": 0.7793 + }, + { + "start": 9567.52, + "end": 9568.02, + "probability": 0.5001 + }, + { + "start": 9568.58, + "end": 9569.92, + "probability": 0.8936 + }, + { + "start": 9570.68, + "end": 9573.68, + "probability": 0.9664 + }, + { + "start": 9573.76, + "end": 9574.56, + "probability": 0.8362 + }, + { + "start": 9575.48, + "end": 9577.56, + "probability": 0.9499 + }, + { + "start": 9578.42, + "end": 9580.06, + "probability": 0.9647 + }, + { + "start": 9580.8, + "end": 9582.92, + "probability": 0.9684 + }, + { + "start": 9583.54, + "end": 9586.38, + "probability": 0.8924 + }, + { + "start": 9587.62, + "end": 9591.7, + "probability": 0.9886 + }, + { + "start": 9592.42, + "end": 9594.36, + "probability": 0.7599 + }, + { + "start": 9595.18, + "end": 9596.06, + "probability": 0.778 + }, + { + "start": 9596.14, + "end": 9596.68, + "probability": 0.7178 + }, + { + "start": 9596.74, + "end": 9598.6, + "probability": 0.7694 + }, + { + "start": 9599.16, + "end": 9601.42, + "probability": 0.9181 + }, + { + "start": 9602.26, + "end": 9605.36, + "probability": 0.9458 + }, + { + "start": 9606.02, + "end": 9607.28, + "probability": 0.816 + }, + { + "start": 9607.34, + "end": 9609.08, + "probability": 0.9641 + }, + { + "start": 9609.56, + "end": 9610.46, + "probability": 0.952 + }, + { + "start": 9611.0, + "end": 9612.7, + "probability": 0.9482 + }, + { + "start": 9614.32, + "end": 9617.2, + "probability": 0.9929 + }, + { + "start": 9617.2, + "end": 9620.78, + "probability": 0.9937 + }, + { + "start": 9620.88, + "end": 9624.02, + "probability": 0.9868 + }, + { + "start": 9624.08, + "end": 9624.78, + "probability": 0.4197 + }, + { + "start": 9625.68, + "end": 9626.92, + "probability": 0.6834 + }, + { + "start": 9627.08, + "end": 9632.12, + "probability": 0.9277 + }, + { + "start": 9633.06, + "end": 9637.86, + "probability": 0.8585 + }, + { + "start": 9639.32, + "end": 9640.26, + "probability": 0.6786 + }, + { + "start": 9640.36, + "end": 9640.92, + "probability": 0.7174 + }, + { + "start": 9641.04, + "end": 9644.7, + "probability": 0.9799 + }, + { + "start": 9645.24, + "end": 9648.74, + "probability": 0.9763 + }, + { + "start": 9649.4, + "end": 9649.9, + "probability": 0.6922 + }, + { + "start": 9649.98, + "end": 9654.6, + "probability": 0.9697 + }, + { + "start": 9655.72, + "end": 9658.56, + "probability": 0.9944 + }, + { + "start": 9658.56, + "end": 9662.46, + "probability": 0.9308 + }, + { + "start": 9662.98, + "end": 9666.77, + "probability": 0.7496 + }, + { + "start": 9667.6, + "end": 9668.4, + "probability": 0.2546 + }, + { + "start": 9670.43, + "end": 9675.16, + "probability": 0.9308 + }, + { + "start": 9677.04, + "end": 9677.66, + "probability": 0.9985 + }, + { + "start": 9678.54, + "end": 9679.72, + "probability": 0.7371 + }, + { + "start": 9680.22, + "end": 9682.38, + "probability": 0.7537 + }, + { + "start": 9683.46, + "end": 9687.08, + "probability": 0.5894 + }, + { + "start": 9687.74, + "end": 9690.04, + "probability": 0.7802 + }, + { + "start": 9690.1, + "end": 9690.7, + "probability": 0.851 + }, + { + "start": 9691.54, + "end": 9694.7, + "probability": 0.91 + }, + { + "start": 9694.76, + "end": 9696.8, + "probability": 0.3013 + }, + { + "start": 9697.98, + "end": 9701.06, + "probability": 0.9923 + }, + { + "start": 9701.06, + "end": 9701.4, + "probability": 0.4503 + }, + { + "start": 9702.18, + "end": 9705.04, + "probability": 0.4241 + }, + { + "start": 9707.0, + "end": 9711.26, + "probability": 0.9848 + }, + { + "start": 9711.34, + "end": 9713.76, + "probability": 0.9402 + }, + { + "start": 9714.42, + "end": 9716.04, + "probability": 0.8843 + }, + { + "start": 9716.1, + "end": 9718.5, + "probability": 0.94 + }, + { + "start": 9719.12, + "end": 9721.14, + "probability": 0.984 + }, + { + "start": 9721.24, + "end": 9722.26, + "probability": 0.9885 + }, + { + "start": 9722.88, + "end": 9724.64, + "probability": 0.9973 + }, + { + "start": 9724.74, + "end": 9727.1, + "probability": 0.7609 + }, + { + "start": 9727.72, + "end": 9729.78, + "probability": 0.9743 + }, + { + "start": 9729.86, + "end": 9730.98, + "probability": 0.7397 + }, + { + "start": 9732.32, + "end": 9733.7, + "probability": 0.861 + }, + { + "start": 9736.82, + "end": 9738.72, + "probability": 0.6476 + }, + { + "start": 9738.78, + "end": 9739.76, + "probability": 0.9175 + }, + { + "start": 9740.0, + "end": 9746.92, + "probability": 0.9873 + }, + { + "start": 9748.18, + "end": 9749.88, + "probability": 0.8701 + }, + { + "start": 9751.48, + "end": 9752.76, + "probability": 0.9523 + }, + { + "start": 9753.36, + "end": 9755.2, + "probability": 0.978 + }, + { + "start": 9757.38, + "end": 9757.98, + "probability": 0.9897 + }, + { + "start": 9760.78, + "end": 9761.72, + "probability": 0.4685 + }, + { + "start": 9762.54, + "end": 9763.4, + "probability": 0.6888 + }, + { + "start": 9764.0, + "end": 9764.88, + "probability": 0.7229 + }, + { + "start": 9769.32, + "end": 9770.1, + "probability": 0.1553 + }, + { + "start": 9770.44, + "end": 9777.26, + "probability": 0.058 + }, + { + "start": 9777.26, + "end": 9778.14, + "probability": 0.0172 + }, + { + "start": 9778.58, + "end": 9778.94, + "probability": 0.0198 + }, + { + "start": 9782.04, + "end": 9783.76, + "probability": 0.0739 + }, + { + "start": 9783.76, + "end": 9784.56, + "probability": 0.2243 + }, + { + "start": 9784.88, + "end": 9785.38, + "probability": 0.0887 + }, + { + "start": 9786.06, + "end": 9791.72, + "probability": 0.5811 + }, + { + "start": 9792.96, + "end": 9800.44, + "probability": 0.995 + }, + { + "start": 9801.98, + "end": 9807.04, + "probability": 0.9854 + }, + { + "start": 9807.16, + "end": 9812.38, + "probability": 0.4905 + }, + { + "start": 9812.66, + "end": 9813.9, + "probability": 0.4894 + }, + { + "start": 9814.54, + "end": 9815.72, + "probability": 0.8977 + }, + { + "start": 9815.82, + "end": 9817.1, + "probability": 0.8213 + }, + { + "start": 9817.16, + "end": 9818.48, + "probability": 0.7126 + }, + { + "start": 9818.7, + "end": 9821.24, + "probability": 0.7659 + }, + { + "start": 9822.24, + "end": 9823.48, + "probability": 0.7847 + }, + { + "start": 9823.48, + "end": 9827.78, + "probability": 0.9966 + }, + { + "start": 9828.3, + "end": 9830.56, + "probability": 0.3113 + }, + { + "start": 9830.94, + "end": 9835.78, + "probability": 0.9362 + }, + { + "start": 9836.44, + "end": 9840.16, + "probability": 0.2697 + }, + { + "start": 9840.48, + "end": 9844.3, + "probability": 0.9743 + }, + { + "start": 9846.41, + "end": 9848.06, + "probability": 0.8127 + }, + { + "start": 9848.16, + "end": 9850.12, + "probability": 0.8452 + }, + { + "start": 9856.1, + "end": 9858.02, + "probability": 0.8794 + }, + { + "start": 9858.16, + "end": 9858.62, + "probability": 0.6134 + }, + { + "start": 9858.68, + "end": 9859.42, + "probability": 0.6635 + }, + { + "start": 9859.66, + "end": 9860.22, + "probability": 0.6493 + }, + { + "start": 9860.36, + "end": 9861.72, + "probability": 0.7942 + }, + { + "start": 9862.98, + "end": 9863.08, + "probability": 0.1573 + }, + { + "start": 9865.18, + "end": 9866.8, + "probability": 0.0879 + }, + { + "start": 9867.34, + "end": 9872.3, + "probability": 0.7654 + }, + { + "start": 9873.04, + "end": 9873.98, + "probability": 0.2427 + }, + { + "start": 9873.98, + "end": 9873.98, + "probability": 0.0789 + }, + { + "start": 9874.18, + "end": 9877.8, + "probability": 0.8464 + }, + { + "start": 9877.8, + "end": 9881.76, + "probability": 0.4392 + }, + { + "start": 9881.76, + "end": 9882.8, + "probability": 0.6362 + }, + { + "start": 9882.96, + "end": 9884.46, + "probability": 0.7697 + }, + { + "start": 9887.2, + "end": 9887.44, + "probability": 0.349 + }, + { + "start": 9890.04, + "end": 9890.84, + "probability": 0.4996 + }, + { + "start": 9891.28, + "end": 9893.7, + "probability": 0.9975 + }, + { + "start": 9893.98, + "end": 9899.16, + "probability": 0.7526 + }, + { + "start": 9899.72, + "end": 9901.48, + "probability": 0.8721 + }, + { + "start": 9908.72, + "end": 9913.66, + "probability": 0.9492 + }, + { + "start": 9913.74, + "end": 9916.17, + "probability": 0.6686 + }, + { + "start": 9916.86, + "end": 9919.68, + "probability": 0.7511 + }, + { + "start": 9919.76, + "end": 9920.22, + "probability": 0.407 + }, + { + "start": 9920.42, + "end": 9922.9, + "probability": 0.5892 + }, + { + "start": 9922.9, + "end": 9927.48, + "probability": 0.988 + }, + { + "start": 9927.48, + "end": 9927.58, + "probability": 0.738 + }, + { + "start": 9929.64, + "end": 9930.28, + "probability": 0.7455 + }, + { + "start": 9936.38, + "end": 9938.88, + "probability": 0.777 + }, + { + "start": 9939.6, + "end": 9942.16, + "probability": 0.9438 + }, + { + "start": 9942.52, + "end": 9947.54, + "probability": 0.6962 + }, + { + "start": 9948.34, + "end": 9950.54, + "probability": 0.9517 + }, + { + "start": 9951.78, + "end": 9954.8, + "probability": 0.9885 + }, + { + "start": 9955.48, + "end": 9955.64, + "probability": 0.1838 + }, + { + "start": 9956.06, + "end": 9958.0, + "probability": 0.986 + }, + { + "start": 9958.18, + "end": 9959.48, + "probability": 0.6029 + }, + { + "start": 9959.76, + "end": 9963.34, + "probability": 0.98 + }, + { + "start": 9963.94, + "end": 9964.0, + "probability": 0.0217 + }, + { + "start": 9964.0, + "end": 9965.74, + "probability": 0.9174 + }, + { + "start": 9966.92, + "end": 9970.32, + "probability": 0.924 + }, + { + "start": 9970.58, + "end": 9971.84, + "probability": 0.4601 + }, + { + "start": 9972.34, + "end": 9975.1, + "probability": 0.9541 + }, + { + "start": 9975.72, + "end": 9977.24, + "probability": 0.5795 + }, + { + "start": 9978.02, + "end": 9982.2, + "probability": 0.9243 + }, + { + "start": 9983.26, + "end": 9983.26, + "probability": 0.0005 + }, + { + "start": 9983.26, + "end": 9986.6, + "probability": 0.9587 + }, + { + "start": 9986.7, + "end": 9987.98, + "probability": 0.6283 + }, + { + "start": 9988.72, + "end": 9991.4, + "probability": 0.9841 + }, + { + "start": 9991.4, + "end": 9992.58, + "probability": 0.9662 + }, + { + "start": 9992.74, + "end": 9994.02, + "probability": 0.6064 + }, + { + "start": 9994.34, + "end": 9996.0, + "probability": 0.9985 + }, + { + "start": 9996.54, + "end": 9998.45, + "probability": 0.9251 + }, + { + "start": 9999.64, + "end": 10003.02, + "probability": 0.7768 + }, + { + "start": 10003.4, + "end": 10006.69, + "probability": 0.9679 + }, + { + "start": 10007.98, + "end": 10009.9, + "probability": 0.393 + }, + { + "start": 10010.0, + "end": 10011.12, + "probability": 0.929 + }, + { + "start": 10011.6, + "end": 10014.14, + "probability": 0.9948 + }, + { + "start": 10014.2, + "end": 10014.4, + "probability": 0.6198 + }, + { + "start": 10017.14, + "end": 10017.98, + "probability": 0.5797 + }, + { + "start": 10018.18, + "end": 10022.98, + "probability": 0.9513 + }, + { + "start": 10023.82, + "end": 10026.82, + "probability": 0.9723 + }, + { + "start": 10029.4, + "end": 10029.78, + "probability": 0.775 + }, + { + "start": 10030.62, + "end": 10031.42, + "probability": 0.7002 + }, + { + "start": 10033.6, + "end": 10037.2, + "probability": 0.7222 + }, + { + "start": 10045.6, + "end": 10048.78, + "probability": 0.9958 + }, + { + "start": 10049.51, + "end": 10054.82, + "probability": 0.9645 + }, + { + "start": 10058.54, + "end": 10060.27, + "probability": 0.3176 + }, + { + "start": 10061.94, + "end": 10063.28, + "probability": 0.77 + }, + { + "start": 10065.72, + "end": 10067.7, + "probability": 0.9298 + }, + { + "start": 10068.16, + "end": 10069.36, + "probability": 0.977 + }, + { + "start": 10070.08, + "end": 10071.7, + "probability": 0.9426 + }, + { + "start": 10074.72, + "end": 10078.4, + "probability": 0.9249 + }, + { + "start": 10079.68, + "end": 10082.24, + "probability": 0.9951 + }, + { + "start": 10082.76, + "end": 10085.78, + "probability": 0.9426 + }, + { + "start": 10086.9, + "end": 10089.18, + "probability": 0.9703 + }, + { + "start": 10091.12, + "end": 10100.5, + "probability": 0.9624 + }, + { + "start": 10101.6, + "end": 10101.84, + "probability": 0.4507 + }, + { + "start": 10101.86, + "end": 10102.06, + "probability": 0.9486 + }, + { + "start": 10102.16, + "end": 10105.36, + "probability": 0.9607 + }, + { + "start": 10105.66, + "end": 10112.74, + "probability": 0.9591 + }, + { + "start": 10113.7, + "end": 10118.98, + "probability": 0.9854 + }, + { + "start": 10120.34, + "end": 10120.7, + "probability": 0.8091 + }, + { + "start": 10121.84, + "end": 10124.48, + "probability": 0.9978 + }, + { + "start": 10125.74, + "end": 10134.34, + "probability": 0.9857 + }, + { + "start": 10135.8, + "end": 10139.14, + "probability": 0.995 + }, + { + "start": 10139.88, + "end": 10141.24, + "probability": 0.9656 + }, + { + "start": 10142.4, + "end": 10146.6, + "probability": 0.9474 + }, + { + "start": 10148.04, + "end": 10151.58, + "probability": 0.9906 + }, + { + "start": 10151.58, + "end": 10157.14, + "probability": 0.9909 + }, + { + "start": 10157.74, + "end": 10160.8, + "probability": 0.9783 + }, + { + "start": 10161.28, + "end": 10162.66, + "probability": 0.903 + }, + { + "start": 10163.34, + "end": 10164.38, + "probability": 0.9223 + }, + { + "start": 10165.36, + "end": 10167.44, + "probability": 0.9668 + }, + { + "start": 10168.24, + "end": 10170.26, + "probability": 0.9765 + }, + { + "start": 10172.1, + "end": 10174.1, + "probability": 0.8499 + }, + { + "start": 10175.24, + "end": 10177.12, + "probability": 0.9553 + }, + { + "start": 10178.22, + "end": 10183.02, + "probability": 0.9864 + }, + { + "start": 10183.98, + "end": 10184.6, + "probability": 0.5744 + }, + { + "start": 10185.34, + "end": 10191.84, + "probability": 0.9915 + }, + { + "start": 10193.32, + "end": 10196.36, + "probability": 0.8931 + }, + { + "start": 10196.92, + "end": 10202.76, + "probability": 0.9984 + }, + { + "start": 10203.38, + "end": 10205.2, + "probability": 0.9977 + }, + { + "start": 10206.14, + "end": 10206.86, + "probability": 0.9003 + }, + { + "start": 10207.1, + "end": 10207.64, + "probability": 0.9464 + }, + { + "start": 10207.68, + "end": 10213.38, + "probability": 0.819 + }, + { + "start": 10214.06, + "end": 10218.12, + "probability": 0.7066 + }, + { + "start": 10219.14, + "end": 10219.92, + "probability": 0.8523 + }, + { + "start": 10220.02, + "end": 10223.9, + "probability": 0.9445 + }, + { + "start": 10224.26, + "end": 10225.26, + "probability": 0.9678 + }, + { + "start": 10226.62, + "end": 10227.6, + "probability": 0.9576 + }, + { + "start": 10227.68, + "end": 10228.14, + "probability": 0.8438 + }, + { + "start": 10228.32, + "end": 10232.8, + "probability": 0.9963 + }, + { + "start": 10233.36, + "end": 10238.94, + "probability": 0.9785 + }, + { + "start": 10239.72, + "end": 10244.17, + "probability": 0.9915 + }, + { + "start": 10244.68, + "end": 10245.42, + "probability": 0.8605 + }, + { + "start": 10246.16, + "end": 10248.92, + "probability": 0.9988 + }, + { + "start": 10249.84, + "end": 10251.76, + "probability": 0.8805 + }, + { + "start": 10252.4, + "end": 10254.62, + "probability": 0.8954 + }, + { + "start": 10255.24, + "end": 10258.36, + "probability": 0.9868 + }, + { + "start": 10259.14, + "end": 10259.48, + "probability": 0.9086 + }, + { + "start": 10260.78, + "end": 10261.76, + "probability": 0.6885 + }, + { + "start": 10262.7, + "end": 10266.22, + "probability": 0.7493 + }, + { + "start": 10268.76, + "end": 10270.72, + "probability": 0.0603 + }, + { + "start": 10295.2, + "end": 10297.96, + "probability": 0.7229 + }, + { + "start": 10299.1, + "end": 10304.16, + "probability": 0.9982 + }, + { + "start": 10304.78, + "end": 10306.3, + "probability": 0.9727 + }, + { + "start": 10306.82, + "end": 10309.1, + "probability": 0.8094 + }, + { + "start": 10310.12, + "end": 10314.92, + "probability": 0.9983 + }, + { + "start": 10314.92, + "end": 10321.84, + "probability": 0.7961 + }, + { + "start": 10321.84, + "end": 10326.92, + "probability": 0.9974 + }, + { + "start": 10328.02, + "end": 10331.12, + "probability": 0.8469 + }, + { + "start": 10331.9, + "end": 10333.26, + "probability": 0.8899 + }, + { + "start": 10333.5, + "end": 10338.44, + "probability": 0.9845 + }, + { + "start": 10339.7, + "end": 10345.2, + "probability": 0.9758 + }, + { + "start": 10345.2, + "end": 10351.0, + "probability": 0.9934 + }, + { + "start": 10352.0, + "end": 10354.44, + "probability": 0.9832 + }, + { + "start": 10355.54, + "end": 10357.36, + "probability": 0.9249 + }, + { + "start": 10357.74, + "end": 10365.96, + "probability": 0.9308 + }, + { + "start": 10367.92, + "end": 10371.32, + "probability": 0.9951 + }, + { + "start": 10371.32, + "end": 10376.78, + "probability": 0.8916 + }, + { + "start": 10377.32, + "end": 10378.98, + "probability": 0.9116 + }, + { + "start": 10379.6, + "end": 10382.62, + "probability": 0.9499 + }, + { + "start": 10383.16, + "end": 10387.32, + "probability": 0.9893 + }, + { + "start": 10387.84, + "end": 10391.48, + "probability": 0.9927 + }, + { + "start": 10391.48, + "end": 10396.84, + "probability": 0.972 + }, + { + "start": 10397.84, + "end": 10398.82, + "probability": 0.6642 + }, + { + "start": 10400.32, + "end": 10403.26, + "probability": 0.9763 + }, + { + "start": 10404.32, + "end": 10406.7, + "probability": 0.9912 + }, + { + "start": 10407.84, + "end": 10412.36, + "probability": 0.9753 + }, + { + "start": 10413.1, + "end": 10413.88, + "probability": 0.7134 + }, + { + "start": 10415.44, + "end": 10415.8, + "probability": 0.0748 + }, + { + "start": 10416.56, + "end": 10421.08, + "probability": 0.9845 + }, + { + "start": 10421.08, + "end": 10425.84, + "probability": 0.9948 + }, + { + "start": 10426.7, + "end": 10426.94, + "probability": 0.4463 + }, + { + "start": 10427.68, + "end": 10430.3, + "probability": 0.9932 + }, + { + "start": 10430.88, + "end": 10432.4, + "probability": 0.9568 + }, + { + "start": 10433.0, + "end": 10434.64, + "probability": 0.7412 + }, + { + "start": 10435.6, + "end": 10442.38, + "probability": 0.9499 + }, + { + "start": 10443.66, + "end": 10446.26, + "probability": 0.9961 + }, + { + "start": 10447.2, + "end": 10447.4, + "probability": 0.0414 + }, + { + "start": 10448.18, + "end": 10452.56, + "probability": 0.9892 + }, + { + "start": 10452.8, + "end": 10454.62, + "probability": 0.5889 + }, + { + "start": 10454.7, + "end": 10454.94, + "probability": 0.0535 + }, + { + "start": 10455.72, + "end": 10460.44, + "probability": 0.8525 + }, + { + "start": 10460.82, + "end": 10461.78, + "probability": 0.7648 + }, + { + "start": 10462.46, + "end": 10466.88, + "probability": 0.8044 + }, + { + "start": 10467.36, + "end": 10468.0, + "probability": 0.708 + }, + { + "start": 10469.04, + "end": 10473.48, + "probability": 0.9738 + }, + { + "start": 10474.52, + "end": 10476.36, + "probability": 0.6058 + }, + { + "start": 10477.06, + "end": 10480.14, + "probability": 0.9718 + }, + { + "start": 10481.46, + "end": 10483.36, + "probability": 0.6421 + }, + { + "start": 10484.45, + "end": 10485.98, + "probability": 0.6979 + }, + { + "start": 10487.36, + "end": 10487.4, + "probability": 0.0695 + }, + { + "start": 10487.4, + "end": 10493.06, + "probability": 0.9141 + }, + { + "start": 10493.06, + "end": 10499.44, + "probability": 0.9867 + }, + { + "start": 10499.84, + "end": 10500.1, + "probability": 0.7017 + }, + { + "start": 10500.12, + "end": 10502.06, + "probability": 0.8794 + }, + { + "start": 10502.16, + "end": 10504.0, + "probability": 0.8183 + }, + { + "start": 10504.3, + "end": 10506.38, + "probability": 0.9873 + }, + { + "start": 10507.04, + "end": 10513.44, + "probability": 0.9609 + }, + { + "start": 10513.44, + "end": 10513.96, + "probability": 0.664 + }, + { + "start": 10513.96, + "end": 10514.22, + "probability": 0.7214 + }, + { + "start": 10515.4, + "end": 10517.44, + "probability": 0.9746 + }, + { + "start": 10518.48, + "end": 10519.2, + "probability": 0.7498 + }, + { + "start": 10520.42, + "end": 10521.94, + "probability": 0.973 + }, + { + "start": 10525.08, + "end": 10525.78, + "probability": 0.5716 + }, + { + "start": 10527.96, + "end": 10529.94, + "probability": 0.9464 + }, + { + "start": 10533.74, + "end": 10534.56, + "probability": 0.6062 + }, + { + "start": 10535.46, + "end": 10537.0, + "probability": 0.9395 + }, + { + "start": 10538.14, + "end": 10538.44, + "probability": 0.7418 + }, + { + "start": 10559.0, + "end": 10560.04, + "probability": 0.4966 + }, + { + "start": 10560.6, + "end": 10561.48, + "probability": 0.5967 + }, + { + "start": 10564.64, + "end": 10565.36, + "probability": 0.9526 + }, + { + "start": 10566.02, + "end": 10567.38, + "probability": 0.9325 + }, + { + "start": 10568.7, + "end": 10572.76, + "probability": 0.9163 + }, + { + "start": 10574.68, + "end": 10576.28, + "probability": 0.9017 + }, + { + "start": 10578.28, + "end": 10583.32, + "probability": 0.9544 + }, + { + "start": 10585.72, + "end": 10587.54, + "probability": 0.8342 + }, + { + "start": 10588.78, + "end": 10590.32, + "probability": 0.8076 + }, + { + "start": 10591.14, + "end": 10596.06, + "probability": 0.797 + }, + { + "start": 10597.04, + "end": 10599.8, + "probability": 0.3687 + }, + { + "start": 10601.36, + "end": 10603.82, + "probability": 0.6766 + }, + { + "start": 10604.28, + "end": 10606.24, + "probability": 0.968 + }, + { + "start": 10606.36, + "end": 10607.16, + "probability": 0.5947 + }, + { + "start": 10608.94, + "end": 10611.4, + "probability": 0.0361 + }, + { + "start": 10613.08, + "end": 10614.98, + "probability": 0.016 + }, + { + "start": 10617.44, + "end": 10619.78, + "probability": 0.0514 + }, + { + "start": 10620.58, + "end": 10623.96, + "probability": 0.3095 + }, + { + "start": 10624.7, + "end": 10624.7, + "probability": 0.0 + }, + { + "start": 10625.92, + "end": 10625.92, + "probability": 0.4392 + }, + { + "start": 10626.74, + "end": 10627.35, + "probability": 0.1143 + }, + { + "start": 10629.78, + "end": 10631.31, + "probability": 0.1297 + }, + { + "start": 10633.2, + "end": 10635.84, + "probability": 0.0182 + }, + { + "start": 10636.8, + "end": 10638.16, + "probability": 0.0563 + }, + { + "start": 10641.52, + "end": 10641.82, + "probability": 0.0319 + }, + { + "start": 10641.82, + "end": 10642.02, + "probability": 0.038 + }, + { + "start": 10642.02, + "end": 10642.1, + "probability": 0.1205 + }, + { + "start": 10642.1, + "end": 10643.42, + "probability": 0.3296 + }, + { + "start": 10643.62, + "end": 10645.98, + "probability": 0.7421 + }, + { + "start": 10646.74, + "end": 10646.94, + "probability": 0.0225 + }, + { + "start": 10649.22, + "end": 10649.34, + "probability": 0.0391 + }, + { + "start": 10649.34, + "end": 10649.69, + "probability": 0.413 + }, + { + "start": 10652.7, + "end": 10653.71, + "probability": 0.159 + }, + { + "start": 10654.82, + "end": 10657.82, + "probability": 0.1862 + }, + { + "start": 10658.62, + "end": 10659.42, + "probability": 0.0862 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10686.0, + "end": 10686.0, + "probability": 0.0 + }, + { + "start": 10693.44, + "end": 10695.56, + "probability": 0.3855 + }, + { + "start": 10696.24, + "end": 10697.96, + "probability": 0.8097 + }, + { + "start": 10699.5, + "end": 10701.89, + "probability": 0.0852 + }, + { + "start": 10703.68, + "end": 10705.7, + "probability": 0.8453 + }, + { + "start": 10705.86, + "end": 10707.3, + "probability": 0.3743 + }, + { + "start": 10707.84, + "end": 10710.7, + "probability": 0.6754 + }, + { + "start": 10711.72, + "end": 10714.72, + "probability": 0.0863 + }, + { + "start": 10718.2, + "end": 10719.72, + "probability": 0.4718 + }, + { + "start": 10720.64, + "end": 10721.82, + "probability": 0.3817 + }, + { + "start": 10722.76, + "end": 10723.82, + "probability": 0.1715 + }, + { + "start": 10723.82, + "end": 10725.88, + "probability": 0.0664 + }, + { + "start": 10727.92, + "end": 10729.18, + "probability": 0.2737 + }, + { + "start": 10729.32, + "end": 10730.04, + "probability": 0.3264 + }, + { + "start": 10730.32, + "end": 10731.14, + "probability": 0.498 + }, + { + "start": 10732.2, + "end": 10733.08, + "probability": 0.71 + }, + { + "start": 10733.6, + "end": 10734.76, + "probability": 0.5438 + }, + { + "start": 10735.52, + "end": 10737.74, + "probability": 0.9969 + }, + { + "start": 10738.38, + "end": 10739.06, + "probability": 0.7146 + }, + { + "start": 10740.4, + "end": 10741.6, + "probability": 0.9178 + }, + { + "start": 10742.14, + "end": 10743.76, + "probability": 0.7145 + }, + { + "start": 10744.14, + "end": 10745.0, + "probability": 0.6279 + }, + { + "start": 10745.68, + "end": 10746.36, + "probability": 0.826 + }, + { + "start": 10748.48, + "end": 10752.36, + "probability": 0.9384 + }, + { + "start": 10752.92, + "end": 10754.88, + "probability": 0.9404 + }, + { + "start": 10755.16, + "end": 10757.44, + "probability": 0.918 + }, + { + "start": 10757.8, + "end": 10758.38, + "probability": 0.9682 + }, + { + "start": 10759.08, + "end": 10759.84, + "probability": 0.8222 + }, + { + "start": 10760.94, + "end": 10761.88, + "probability": 0.5444 + }, + { + "start": 10764.36, + "end": 10767.28, + "probability": 0.7816 + }, + { + "start": 10770.22, + "end": 10770.86, + "probability": 0.6771 + }, + { + "start": 10771.6, + "end": 10774.64, + "probability": 0.9583 + }, + { + "start": 10775.64, + "end": 10777.16, + "probability": 0.8807 + }, + { + "start": 10777.92, + "end": 10779.82, + "probability": 0.9734 + }, + { + "start": 10781.36, + "end": 10782.16, + "probability": 0.9783 + }, + { + "start": 10783.0, + "end": 10784.76, + "probability": 0.9434 + }, + { + "start": 10786.22, + "end": 10787.08, + "probability": 0.9793 + }, + { + "start": 10788.24, + "end": 10789.66, + "probability": 0.8821 + }, + { + "start": 10791.92, + "end": 10792.84, + "probability": 0.7083 + }, + { + "start": 10793.48, + "end": 10795.02, + "probability": 0.9683 + }, + { + "start": 10796.06, + "end": 10796.88, + "probability": 0.9316 + }, + { + "start": 10797.96, + "end": 10799.6, + "probability": 0.9868 + }, + { + "start": 10801.2, + "end": 10801.9, + "probability": 0.9878 + }, + { + "start": 10802.78, + "end": 10804.56, + "probability": 0.9961 + }, + { + "start": 10805.94, + "end": 10806.74, + "probability": 0.7486 + }, + { + "start": 10807.6, + "end": 10808.92, + "probability": 0.9983 + }, + { + "start": 10837.94, + "end": 10838.52, + "probability": 0.7653 + }, + { + "start": 10839.46, + "end": 10840.9, + "probability": 0.8737 + }, + { + "start": 10841.44, + "end": 10843.36, + "probability": 0.8081 + }, + { + "start": 10844.58, + "end": 10848.76, + "probability": 0.9977 + }, + { + "start": 10849.7, + "end": 10851.64, + "probability": 0.999 + }, + { + "start": 10852.88, + "end": 10855.02, + "probability": 0.911 + }, + { + "start": 10855.76, + "end": 10860.34, + "probability": 0.9771 + }, + { + "start": 10861.68, + "end": 10864.12, + "probability": 0.9985 + }, + { + "start": 10864.82, + "end": 10865.98, + "probability": 0.6182 + }, + { + "start": 10866.66, + "end": 10870.36, + "probability": 0.8374 + }, + { + "start": 10870.36, + "end": 10873.78, + "probability": 0.9954 + }, + { + "start": 10873.92, + "end": 10874.48, + "probability": 0.477 + }, + { + "start": 10874.56, + "end": 10875.24, + "probability": 0.6347 + }, + { + "start": 10875.38, + "end": 10879.76, + "probability": 0.9937 + }, + { + "start": 10879.94, + "end": 10885.08, + "probability": 0.9919 + }, + { + "start": 10885.8, + "end": 10889.88, + "probability": 0.9833 + }, + { + "start": 10890.66, + "end": 10892.86, + "probability": 0.9546 + }, + { + "start": 10893.66, + "end": 10897.92, + "probability": 0.9886 + }, + { + "start": 10898.06, + "end": 10899.34, + "probability": 0.8976 + }, + { + "start": 10900.02, + "end": 10903.08, + "probability": 0.9939 + }, + { + "start": 10903.98, + "end": 10909.1, + "probability": 0.9849 + }, + { + "start": 10909.68, + "end": 10910.26, + "probability": 0.352 + }, + { + "start": 10910.6, + "end": 10911.1, + "probability": 0.8855 + }, + { + "start": 10911.18, + "end": 10915.24, + "probability": 0.9275 + }, + { + "start": 10915.24, + "end": 10919.36, + "probability": 0.9669 + }, + { + "start": 10920.36, + "end": 10925.04, + "probability": 0.8837 + }, + { + "start": 10925.04, + "end": 10927.68, + "probability": 0.9795 + }, + { + "start": 10928.28, + "end": 10929.4, + "probability": 0.8713 + }, + { + "start": 10929.64, + "end": 10934.64, + "probability": 0.9881 + }, + { + "start": 10935.18, + "end": 10937.34, + "probability": 0.9963 + }, + { + "start": 10937.96, + "end": 10940.94, + "probability": 0.9717 + }, + { + "start": 10941.62, + "end": 10945.0, + "probability": 0.9869 + }, + { + "start": 10945.64, + "end": 10948.24, + "probability": 0.96 + }, + { + "start": 10948.84, + "end": 10950.3, + "probability": 0.929 + }, + { + "start": 10950.8, + "end": 10952.96, + "probability": 0.9796 + }, + { + "start": 10952.96, + "end": 10956.84, + "probability": 0.9945 + }, + { + "start": 10956.98, + "end": 10958.74, + "probability": 0.7223 + }, + { + "start": 10959.4, + "end": 10964.02, + "probability": 0.9699 + }, + { + "start": 10964.02, + "end": 10969.04, + "probability": 0.9965 + }, + { + "start": 10969.26, + "end": 10970.84, + "probability": 0.7042 + }, + { + "start": 10971.6, + "end": 10974.66, + "probability": 0.6413 + }, + { + "start": 10975.2, + "end": 10977.62, + "probability": 0.9487 + }, + { + "start": 10978.3, + "end": 10981.52, + "probability": 0.9932 + }, + { + "start": 10982.11, + "end": 10986.72, + "probability": 0.9977 + }, + { + "start": 10986.72, + "end": 10991.38, + "probability": 0.9997 + }, + { + "start": 10991.9, + "end": 10992.26, + "probability": 0.7867 + }, + { + "start": 10992.9, + "end": 10995.45, + "probability": 0.7963 + }, + { + "start": 10996.24, + "end": 10999.7, + "probability": 0.9852 + }, + { + "start": 11000.32, + "end": 11001.23, + "probability": 0.8349 + }, + { + "start": 11002.26, + "end": 11004.44, + "probability": 0.8603 + }, + { + "start": 11004.78, + "end": 11013.02, + "probability": 0.975 + }, + { + "start": 11013.86, + "end": 11019.28, + "probability": 0.9956 + }, + { + "start": 11019.98, + "end": 11023.4, + "probability": 0.9295 + }, + { + "start": 11023.8, + "end": 11026.16, + "probability": 0.9083 + }, + { + "start": 11026.32, + "end": 11026.82, + "probability": 0.76 + }, + { + "start": 11027.24, + "end": 11028.78, + "probability": 0.9486 + }, + { + "start": 11029.0, + "end": 11029.3, + "probability": 0.7824 + }, + { + "start": 11029.44, + "end": 11030.28, + "probability": 0.7503 + }, + { + "start": 11032.8, + "end": 11035.82, + "probability": 0.9299 + }, + { + "start": 11036.34, + "end": 11037.22, + "probability": 0.7405 + }, + { + "start": 11039.58, + "end": 11041.4, + "probability": 0.9865 + }, + { + "start": 11058.64, + "end": 11060.68, + "probability": 0.7955 + }, + { + "start": 11062.74, + "end": 11064.34, + "probability": 0.9974 + }, + { + "start": 11065.42, + "end": 11067.97, + "probability": 0.8001 + }, + { + "start": 11069.5, + "end": 11073.14, + "probability": 0.9724 + }, + { + "start": 11073.66, + "end": 11074.54, + "probability": 0.9946 + }, + { + "start": 11075.62, + "end": 11077.42, + "probability": 0.8239 + }, + { + "start": 11078.8, + "end": 11080.64, + "probability": 0.906 + }, + { + "start": 11081.72, + "end": 11082.56, + "probability": 0.8345 + }, + { + "start": 11083.42, + "end": 11084.0, + "probability": 0.993 + }, + { + "start": 11085.22, + "end": 11089.08, + "probability": 0.941 + }, + { + "start": 11089.08, + "end": 11092.9, + "probability": 0.9958 + }, + { + "start": 11092.94, + "end": 11093.9, + "probability": 0.8368 + }, + { + "start": 11094.62, + "end": 11096.88, + "probability": 0.9777 + }, + { + "start": 11098.02, + "end": 11101.1, + "probability": 0.8149 + }, + { + "start": 11101.2, + "end": 11103.78, + "probability": 0.6529 + }, + { + "start": 11104.3, + "end": 11105.64, + "probability": 0.9741 + }, + { + "start": 11106.16, + "end": 11107.06, + "probability": 0.5979 + }, + { + "start": 11107.76, + "end": 11111.14, + "probability": 0.9554 + }, + { + "start": 11111.58, + "end": 11112.35, + "probability": 0.605 + }, + { + "start": 11112.6, + "end": 11112.6, + "probability": 0.1253 + }, + { + "start": 11112.6, + "end": 11115.34, + "probability": 0.7954 + }, + { + "start": 11115.48, + "end": 11117.7, + "probability": 0.3001 + }, + { + "start": 11118.3, + "end": 11119.0, + "probability": 0.5249 + }, + { + "start": 11119.58, + "end": 11119.58, + "probability": 0.0433 + }, + { + "start": 11119.58, + "end": 11123.58, + "probability": 0.9461 + }, + { + "start": 11124.1, + "end": 11125.9, + "probability": 0.7233 + }, + { + "start": 11127.22, + "end": 11127.88, + "probability": 0.9138 + }, + { + "start": 11129.34, + "end": 11132.62, + "probability": 0.9184 + }, + { + "start": 11133.48, + "end": 11139.58, + "probability": 0.9714 + }, + { + "start": 11140.48, + "end": 11142.72, + "probability": 0.9985 + }, + { + "start": 11143.42, + "end": 11144.24, + "probability": 0.6538 + }, + { + "start": 11145.86, + "end": 11150.5, + "probability": 0.9175 + }, + { + "start": 11150.56, + "end": 11154.86, + "probability": 0.8673 + }, + { + "start": 11155.88, + "end": 11155.88, + "probability": 0.0226 + }, + { + "start": 11155.88, + "end": 11156.52, + "probability": 0.7454 + }, + { + "start": 11157.68, + "end": 11159.92, + "probability": 0.8766 + }, + { + "start": 11160.66, + "end": 11163.24, + "probability": 0.9542 + }, + { + "start": 11163.8, + "end": 11165.14, + "probability": 0.3344 + }, + { + "start": 11165.18, + "end": 11168.9, + "probability": 0.5471 + }, + { + "start": 11168.9, + "end": 11168.9, + "probability": 0.0566 + }, + { + "start": 11169.12, + "end": 11169.72, + "probability": 0.4614 + }, + { + "start": 11169.9, + "end": 11172.7, + "probability": 0.9482 + }, + { + "start": 11173.54, + "end": 11174.36, + "probability": 0.6222 + }, + { + "start": 11175.12, + "end": 11178.47, + "probability": 0.8081 + }, + { + "start": 11179.88, + "end": 11181.9, + "probability": 0.9141 + }, + { + "start": 11182.08, + "end": 11182.64, + "probability": 0.7165 + }, + { + "start": 11183.14, + "end": 11184.12, + "probability": 0.7427 + }, + { + "start": 11184.16, + "end": 11185.02, + "probability": 0.8191 + }, + { + "start": 11186.98, + "end": 11188.02, + "probability": 0.8988 + }, + { + "start": 11188.14, + "end": 11190.8, + "probability": 0.9844 + }, + { + "start": 11191.08, + "end": 11192.38, + "probability": 0.6505 + }, + { + "start": 11196.96, + "end": 11197.0, + "probability": 0.069 + }, + { + "start": 11197.0, + "end": 11200.44, + "probability": 0.6206 + }, + { + "start": 11201.0, + "end": 11203.76, + "probability": 0.9302 + }, + { + "start": 11205.06, + "end": 11205.74, + "probability": 0.9101 + }, + { + "start": 11207.24, + "end": 11210.34, + "probability": 0.8683 + }, + { + "start": 11210.7, + "end": 11212.84, + "probability": 0.8407 + }, + { + "start": 11213.14, + "end": 11213.9, + "probability": 0.9595 + }, + { + "start": 11214.12, + "end": 11215.4, + "probability": 0.921 + }, + { + "start": 11215.46, + "end": 11216.12, + "probability": 0.983 + }, + { + "start": 11216.16, + "end": 11220.74, + "probability": 0.9625 + }, + { + "start": 11221.96, + "end": 11223.06, + "probability": 0.9922 + }, + { + "start": 11223.3, + "end": 11224.89, + "probability": 0.9797 + }, + { + "start": 11225.64, + "end": 11227.26, + "probability": 0.8065 + }, + { + "start": 11227.78, + "end": 11228.72, + "probability": 0.6245 + }, + { + "start": 11229.48, + "end": 11231.26, + "probability": 0.9832 + }, + { + "start": 11231.36, + "end": 11234.42, + "probability": 0.9595 + }, + { + "start": 11235.4, + "end": 11236.47, + "probability": 0.9982 + }, + { + "start": 11236.72, + "end": 11237.06, + "probability": 0.7142 + }, + { + "start": 11237.94, + "end": 11239.34, + "probability": 0.9583 + }, + { + "start": 11239.66, + "end": 11239.94, + "probability": 0.6998 + }, + { + "start": 11240.06, + "end": 11242.46, + "probability": 0.8454 + }, + { + "start": 11242.74, + "end": 11243.9, + "probability": 0.9399 + }, + { + "start": 11244.1, + "end": 11244.86, + "probability": 0.7672 + }, + { + "start": 11245.84, + "end": 11246.86, + "probability": 0.7084 + }, + { + "start": 11247.52, + "end": 11251.22, + "probability": 0.9333 + }, + { + "start": 11252.16, + "end": 11252.82, + "probability": 0.9423 + }, + { + "start": 11253.1, + "end": 11258.26, + "probability": 0.9528 + }, + { + "start": 11258.5, + "end": 11258.92, + "probability": 0.7729 + }, + { + "start": 11259.76, + "end": 11260.68, + "probability": 0.6748 + }, + { + "start": 11261.5, + "end": 11263.94, + "probability": 0.938 + }, + { + "start": 11265.02, + "end": 11265.8, + "probability": 0.7728 + }, + { + "start": 11266.9, + "end": 11268.2, + "probability": 0.7418 + }, + { + "start": 11277.87, + "end": 11278.3, + "probability": 0.1852 + }, + { + "start": 11279.74, + "end": 11279.9, + "probability": 0.2638 + }, + { + "start": 11290.58, + "end": 11290.86, + "probability": 0.1521 + }, + { + "start": 11290.86, + "end": 11290.96, + "probability": 0.054 + }, + { + "start": 11290.96, + "end": 11291.14, + "probability": 0.0327 + }, + { + "start": 11291.14, + "end": 11291.24, + "probability": 0.0395 + }, + { + "start": 11317.44, + "end": 11319.98, + "probability": 0.6485 + }, + { + "start": 11320.44, + "end": 11323.76, + "probability": 0.6096 + }, + { + "start": 11323.78, + "end": 11325.04, + "probability": 0.8129 + }, + { + "start": 11326.0, + "end": 11330.42, + "probability": 0.9946 + }, + { + "start": 11331.02, + "end": 11333.54, + "probability": 0.9711 + }, + { + "start": 11333.82, + "end": 11335.02, + "probability": 0.8745 + }, + { + "start": 11335.18, + "end": 11336.78, + "probability": 0.8037 + }, + { + "start": 11337.3, + "end": 11339.68, + "probability": 0.8955 + }, + { + "start": 11340.58, + "end": 11341.64, + "probability": 0.784 + }, + { + "start": 11342.12, + "end": 11342.94, + "probability": 0.7479 + }, + { + "start": 11343.32, + "end": 11343.84, + "probability": 0.4417 + }, + { + "start": 11343.84, + "end": 11344.51, + "probability": 0.5241 + }, + { + "start": 11344.62, + "end": 11345.19, + "probability": 0.505 + }, + { + "start": 11345.46, + "end": 11349.54, + "probability": 0.7617 + }, + { + "start": 11349.94, + "end": 11351.38, + "probability": 0.9788 + }, + { + "start": 11351.38, + "end": 11353.56, + "probability": 0.8008 + }, + { + "start": 11354.16, + "end": 11355.16, + "probability": 0.5406 + }, + { + "start": 11355.86, + "end": 11357.3, + "probability": 0.6686 + }, + { + "start": 11357.4, + "end": 11361.46, + "probability": 0.9666 + }, + { + "start": 11363.48, + "end": 11368.2, + "probability": 0.8939 + }, + { + "start": 11368.88, + "end": 11370.64, + "probability": 0.6991 + }, + { + "start": 11370.72, + "end": 11371.46, + "probability": 0.6593 + }, + { + "start": 11371.58, + "end": 11372.0, + "probability": 0.2194 + }, + { + "start": 11372.08, + "end": 11374.1, + "probability": 0.8427 + }, + { + "start": 11375.4, + "end": 11378.52, + "probability": 0.8706 + }, + { + "start": 11378.58, + "end": 11379.0, + "probability": 0.3174 + }, + { + "start": 11379.08, + "end": 11383.76, + "probability": 0.9876 + }, + { + "start": 11384.48, + "end": 11388.28, + "probability": 0.7582 + }, + { + "start": 11388.54, + "end": 11389.72, + "probability": 0.3381 + }, + { + "start": 11389.86, + "end": 11391.72, + "probability": 0.6486 + }, + { + "start": 11392.26, + "end": 11394.09, + "probability": 0.8501 + }, + { + "start": 11394.3, + "end": 11397.02, + "probability": 0.8756 + }, + { + "start": 11397.42, + "end": 11398.7, + "probability": 0.9064 + }, + { + "start": 11399.2, + "end": 11404.58, + "probability": 0.8272 + }, + { + "start": 11405.04, + "end": 11408.98, + "probability": 0.9504 + }, + { + "start": 11409.12, + "end": 11412.5, + "probability": 0.9473 + }, + { + "start": 11413.5, + "end": 11418.66, + "probability": 0.8282 + }, + { + "start": 11419.46, + "end": 11422.2, + "probability": 0.9801 + }, + { + "start": 11423.08, + "end": 11424.34, + "probability": 0.6888 + }, + { + "start": 11425.14, + "end": 11428.66, + "probability": 0.9888 + }, + { + "start": 11428.76, + "end": 11430.9, + "probability": 0.6856 + }, + { + "start": 11431.58, + "end": 11435.46, + "probability": 0.4755 + }, + { + "start": 11435.68, + "end": 11437.76, + "probability": 0.9894 + }, + { + "start": 11438.72, + "end": 11439.14, + "probability": 0.4928 + }, + { + "start": 11439.16, + "end": 11439.66, + "probability": 0.6381 + }, + { + "start": 11439.68, + "end": 11440.22, + "probability": 0.7763 + }, + { + "start": 11440.26, + "end": 11441.74, + "probability": 0.6232 + }, + { + "start": 11442.0, + "end": 11443.82, + "probability": 0.4696 + }, + { + "start": 11443.92, + "end": 11447.04, + "probability": 0.9707 + }, + { + "start": 11447.76, + "end": 11448.69, + "probability": 0.6704 + }, + { + "start": 11449.16, + "end": 11451.98, + "probability": 0.63 + }, + { + "start": 11452.1, + "end": 11453.88, + "probability": 0.8622 + }, + { + "start": 11454.26, + "end": 11455.24, + "probability": 0.9633 + }, + { + "start": 11455.92, + "end": 11458.54, + "probability": 0.908 + }, + { + "start": 11459.12, + "end": 11462.42, + "probability": 0.7882 + }, + { + "start": 11462.76, + "end": 11465.16, + "probability": 0.9919 + }, + { + "start": 11465.22, + "end": 11466.56, + "probability": 0.6103 + }, + { + "start": 11466.8, + "end": 11467.1, + "probability": 0.3733 + }, + { + "start": 11467.16, + "end": 11467.58, + "probability": 0.4742 + }, + { + "start": 11467.9, + "end": 11468.66, + "probability": 0.6038 + }, + { + "start": 11468.74, + "end": 11469.48, + "probability": 0.6316 + }, + { + "start": 11470.08, + "end": 11470.42, + "probability": 0.785 + }, + { + "start": 11470.58, + "end": 11472.08, + "probability": 0.6036 + }, + { + "start": 11472.42, + "end": 11475.12, + "probability": 0.9232 + }, + { + "start": 11475.26, + "end": 11476.82, + "probability": 0.753 + }, + { + "start": 11477.2, + "end": 11478.74, + "probability": 0.9629 + }, + { + "start": 11479.02, + "end": 11483.44, + "probability": 0.8214 + }, + { + "start": 11483.52, + "end": 11485.54, + "probability": 0.7503 + }, + { + "start": 11486.12, + "end": 11487.42, + "probability": 0.3318 + }, + { + "start": 11487.42, + "end": 11489.82, + "probability": 0.6619 + }, + { + "start": 11489.82, + "end": 11490.26, + "probability": 0.3975 + }, + { + "start": 11490.34, + "end": 11492.28, + "probability": 0.533 + }, + { + "start": 11492.58, + "end": 11495.17, + "probability": 0.9019 + }, + { + "start": 11495.84, + "end": 11500.32, + "probability": 0.9675 + }, + { + "start": 11500.7, + "end": 11501.8, + "probability": 0.6714 + }, + { + "start": 11501.82, + "end": 11503.08, + "probability": 0.5574 + }, + { + "start": 11503.26, + "end": 11503.26, + "probability": 0.6591 + }, + { + "start": 11503.26, + "end": 11504.72, + "probability": 0.8232 + }, + { + "start": 11504.88, + "end": 11505.46, + "probability": 0.9902 + }, + { + "start": 11505.72, + "end": 11507.06, + "probability": 0.6667 + }, + { + "start": 11507.42, + "end": 11509.32, + "probability": 0.8132 + }, + { + "start": 11509.32, + "end": 11509.98, + "probability": 0.5263 + }, + { + "start": 11510.06, + "end": 11512.52, + "probability": 0.6734 + }, + { + "start": 11512.56, + "end": 11513.16, + "probability": 0.4545 + }, + { + "start": 11513.22, + "end": 11514.16, + "probability": 0.5134 + }, + { + "start": 11514.9, + "end": 11516.68, + "probability": 0.8568 + }, + { + "start": 11516.78, + "end": 11517.16, + "probability": 0.155 + }, + { + "start": 11517.42, + "end": 11517.7, + "probability": 0.5103 + }, + { + "start": 11517.8, + "end": 11518.78, + "probability": 0.5465 + }, + { + "start": 11519.0, + "end": 11520.08, + "probability": 0.9904 + }, + { + "start": 11520.44, + "end": 11521.08, + "probability": 0.5974 + }, + { + "start": 11521.36, + "end": 11521.74, + "probability": 0.6868 + }, + { + "start": 11522.26, + "end": 11524.46, + "probability": 0.3331 + }, + { + "start": 11524.46, + "end": 11527.78, + "probability": 0.5718 + }, + { + "start": 11528.04, + "end": 11529.68, + "probability": 0.669 + }, + { + "start": 11529.96, + "end": 11530.38, + "probability": 0.2933 + }, + { + "start": 11530.4, + "end": 11531.58, + "probability": 0.7353 + }, + { + "start": 11532.16, + "end": 11535.22, + "probability": 0.8116 + }, + { + "start": 11535.32, + "end": 11537.94, + "probability": 0.6007 + }, + { + "start": 11538.54, + "end": 11539.76, + "probability": 0.6322 + }, + { + "start": 11539.84, + "end": 11541.18, + "probability": 0.8053 + }, + { + "start": 11541.92, + "end": 11544.42, + "probability": 0.9637 + }, + { + "start": 11544.88, + "end": 11547.72, + "probability": 0.9873 + }, + { + "start": 11548.1, + "end": 11550.38, + "probability": 0.9601 + }, + { + "start": 11550.9, + "end": 11551.9, + "probability": 0.6332 + }, + { + "start": 11551.96, + "end": 11554.76, + "probability": 0.6622 + }, + { + "start": 11555.02, + "end": 11556.18, + "probability": 0.5717 + }, + { + "start": 11556.54, + "end": 11556.82, + "probability": 0.5068 + }, + { + "start": 11557.0, + "end": 11557.74, + "probability": 0.7573 + }, + { + "start": 11558.72, + "end": 11560.26, + "probability": 0.8833 + }, + { + "start": 11561.5, + "end": 11562.26, + "probability": 0.6808 + }, + { + "start": 11563.16, + "end": 11565.08, + "probability": 0.9602 + }, + { + "start": 11566.28, + "end": 11567.0, + "probability": 0.9289 + }, + { + "start": 11567.64, + "end": 11569.12, + "probability": 0.9914 + }, + { + "start": 11569.96, + "end": 11570.68, + "probability": 0.953 + }, + { + "start": 11571.5, + "end": 11572.1, + "probability": 0.9906 + }, + { + "start": 11572.68, + "end": 11573.5, + "probability": 0.9482 + }, + { + "start": 11574.38, + "end": 11575.26, + "probability": 0.9626 + }, + { + "start": 11576.02, + "end": 11578.12, + "probability": 0.8664 + }, + { + "start": 11579.48, + "end": 11580.5, + "probability": 0.773 + }, + { + "start": 11581.28, + "end": 11582.98, + "probability": 0.9696 + }, + { + "start": 11584.4, + "end": 11585.18, + "probability": 0.8773 + }, + { + "start": 11586.1, + "end": 11587.28, + "probability": 0.9925 + }, + { + "start": 11588.1, + "end": 11588.86, + "probability": 0.9491 + }, + { + "start": 11589.68, + "end": 11591.86, + "probability": 0.988 + }, + { + "start": 11592.94, + "end": 11593.68, + "probability": 0.9413 + }, + { + "start": 11594.32, + "end": 11596.48, + "probability": 0.7671 + }, + { + "start": 11597.16, + "end": 11599.78, + "probability": 0.9313 + }, + { + "start": 11600.52, + "end": 11601.68, + "probability": 0.9021 + }, + { + "start": 11601.74, + "end": 11601.74, + "probability": 0.2807 + }, + { + "start": 11602.8, + "end": 11603.76, + "probability": 0.0779 + }, + { + "start": 11604.18, + "end": 11607.52, + "probability": 0.5003 + }, + { + "start": 11608.12, + "end": 11608.82, + "probability": 0.1808 + }, + { + "start": 11609.02, + "end": 11610.12, + "probability": 0.0602 + }, + { + "start": 11633.12, + "end": 11633.78, + "probability": 0.4655 + }, + { + "start": 11642.24, + "end": 11642.98, + "probability": 0.628 + }, + { + "start": 11643.9, + "end": 11647.2, + "probability": 0.796 + }, + { + "start": 11649.34, + "end": 11652.72, + "probability": 0.9208 + }, + { + "start": 11653.72, + "end": 11654.46, + "probability": 0.9242 + }, + { + "start": 11655.1, + "end": 11658.2, + "probability": 0.8929 + }, + { + "start": 11659.12, + "end": 11660.94, + "probability": 0.9713 + }, + { + "start": 11662.18, + "end": 11662.66, + "probability": 0.9016 + }, + { + "start": 11664.04, + "end": 11669.5, + "probability": 0.6937 + }, + { + "start": 11670.28, + "end": 11672.44, + "probability": 0.9934 + }, + { + "start": 11673.74, + "end": 11675.42, + "probability": 0.9669 + }, + { + "start": 11676.6, + "end": 11683.72, + "probability": 0.9859 + }, + { + "start": 11683.72, + "end": 11689.8, + "probability": 0.9889 + }, + { + "start": 11690.34, + "end": 11691.32, + "probability": 0.8187 + }, + { + "start": 11692.34, + "end": 11695.3, + "probability": 0.9988 + }, + { + "start": 11696.0, + "end": 11698.34, + "probability": 0.9808 + }, + { + "start": 11699.18, + "end": 11700.44, + "probability": 0.9933 + }, + { + "start": 11701.22, + "end": 11701.98, + "probability": 0.8452 + }, + { + "start": 11702.1, + "end": 11704.6, + "probability": 0.9873 + }, + { + "start": 11705.16, + "end": 11706.16, + "probability": 0.9414 + }, + { + "start": 11706.92, + "end": 11708.08, + "probability": 0.9995 + }, + { + "start": 11708.52, + "end": 11710.54, + "probability": 0.7612 + }, + { + "start": 11710.7, + "end": 11713.14, + "probability": 0.895 + }, + { + "start": 11713.74, + "end": 11714.92, + "probability": 0.9682 + }, + { + "start": 11715.36, + "end": 11716.31, + "probability": 0.9745 + }, + { + "start": 11716.92, + "end": 11720.14, + "probability": 0.9719 + }, + { + "start": 11720.66, + "end": 11721.93, + "probability": 0.9941 + }, + { + "start": 11723.6, + "end": 11724.72, + "probability": 0.9666 + }, + { + "start": 11724.92, + "end": 11726.14, + "probability": 0.9788 + }, + { + "start": 11726.38, + "end": 11727.89, + "probability": 0.9803 + }, + { + "start": 11728.22, + "end": 11729.32, + "probability": 0.9578 + }, + { + "start": 11729.66, + "end": 11732.96, + "probability": 0.9819 + }, + { + "start": 11733.94, + "end": 11736.96, + "probability": 0.9946 + }, + { + "start": 11737.5, + "end": 11738.5, + "probability": 0.8099 + }, + { + "start": 11738.72, + "end": 11743.26, + "probability": 0.9901 + }, + { + "start": 11743.26, + "end": 11745.92, + "probability": 0.9714 + }, + { + "start": 11746.6, + "end": 11750.0, + "probability": 0.8746 + }, + { + "start": 11750.54, + "end": 11753.9, + "probability": 0.8495 + }, + { + "start": 11755.28, + "end": 11757.58, + "probability": 0.993 + }, + { + "start": 11757.96, + "end": 11759.5, + "probability": 0.9619 + }, + { + "start": 11759.76, + "end": 11760.36, + "probability": 0.6262 + }, + { + "start": 11760.74, + "end": 11761.42, + "probability": 0.9853 + }, + { + "start": 11762.24, + "end": 11763.1, + "probability": 0.7369 + }, + { + "start": 11763.28, + "end": 11764.46, + "probability": 0.9077 + }, + { + "start": 11764.6, + "end": 11767.32, + "probability": 0.8682 + }, + { + "start": 11768.56, + "end": 11769.02, + "probability": 0.7111 + }, + { + "start": 11769.46, + "end": 11772.62, + "probability": 0.9879 + }, + { + "start": 11773.14, + "end": 11773.76, + "probability": 0.6045 + }, + { + "start": 11774.66, + "end": 11774.86, + "probability": 0.4817 + }, + { + "start": 11775.78, + "end": 11776.5, + "probability": 0.9341 + }, + { + "start": 11777.14, + "end": 11778.08, + "probability": 0.6616 + }, + { + "start": 11778.68, + "end": 11781.46, + "probability": 0.8626 + }, + { + "start": 11781.64, + "end": 11784.9, + "probability": 0.7781 + }, + { + "start": 11785.5, + "end": 11786.18, + "probability": 0.7705 + }, + { + "start": 11786.6, + "end": 11787.86, + "probability": 0.9624 + }, + { + "start": 11788.36, + "end": 11789.86, + "probability": 0.9652 + }, + { + "start": 11790.04, + "end": 11791.92, + "probability": 0.866 + }, + { + "start": 11792.42, + "end": 11795.35, + "probability": 0.8213 + }, + { + "start": 11796.06, + "end": 11797.11, + "probability": 0.7075 + }, + { + "start": 11797.98, + "end": 11798.84, + "probability": 0.8661 + }, + { + "start": 11799.3, + "end": 11800.12, + "probability": 0.8621 + }, + { + "start": 11800.58, + "end": 11803.09, + "probability": 0.8041 + }, + { + "start": 11803.64, + "end": 11804.66, + "probability": 0.8524 + }, + { + "start": 11804.84, + "end": 11807.04, + "probability": 0.9919 + }, + { + "start": 11807.62, + "end": 11808.98, + "probability": 0.7564 + }, + { + "start": 11809.48, + "end": 11811.44, + "probability": 0.8327 + }, + { + "start": 11811.52, + "end": 11812.48, + "probability": 0.8676 + }, + { + "start": 11812.52, + "end": 11813.42, + "probability": 0.7954 + }, + { + "start": 11813.46, + "end": 11814.56, + "probability": 0.8929 + }, + { + "start": 11814.64, + "end": 11815.34, + "probability": 0.9255 + }, + { + "start": 11815.5, + "end": 11816.04, + "probability": 0.7275 + }, + { + "start": 11816.3, + "end": 11817.74, + "probability": 0.6767 + }, + { + "start": 11817.94, + "end": 11818.58, + "probability": 0.5145 + }, + { + "start": 11818.62, + "end": 11819.97, + "probability": 0.9899 + }, + { + "start": 11820.2, + "end": 11821.5, + "probability": 0.9895 + }, + { + "start": 11821.82, + "end": 11827.98, + "probability": 0.8627 + }, + { + "start": 11828.44, + "end": 11829.34, + "probability": 0.6482 + }, + { + "start": 11829.6, + "end": 11832.7, + "probability": 0.9551 + }, + { + "start": 11832.88, + "end": 11833.18, + "probability": 0.683 + }, + { + "start": 11833.2, + "end": 11835.75, + "probability": 0.9863 + }, + { + "start": 11836.36, + "end": 11837.72, + "probability": 0.9821 + }, + { + "start": 11838.3, + "end": 11840.6, + "probability": 0.8025 + }, + { + "start": 11841.14, + "end": 11841.58, + "probability": 0.9302 + }, + { + "start": 11841.84, + "end": 11842.4, + "probability": 0.9619 + }, + { + "start": 11842.52, + "end": 11842.74, + "probability": 0.9278 + }, + { + "start": 11843.14, + "end": 11843.7, + "probability": 0.9808 + }, + { + "start": 11843.76, + "end": 11844.6, + "probability": 0.9417 + }, + { + "start": 11844.94, + "end": 11845.58, + "probability": 0.7737 + }, + { + "start": 11845.68, + "end": 11846.22, + "probability": 0.6925 + }, + { + "start": 11846.38, + "end": 11847.5, + "probability": 0.9582 + }, + { + "start": 11848.1, + "end": 11848.82, + "probability": 0.6153 + }, + { + "start": 11848.82, + "end": 11852.0, + "probability": 0.971 + }, + { + "start": 11852.42, + "end": 11854.08, + "probability": 0.9003 + }, + { + "start": 11854.48, + "end": 11854.92, + "probability": 0.8282 + }, + { + "start": 11862.52, + "end": 11864.98, + "probability": 0.9772 + }, + { + "start": 11867.34, + "end": 11867.96, + "probability": 0.7119 + }, + { + "start": 11869.0, + "end": 11870.9, + "probability": 0.9771 + }, + { + "start": 11872.58, + "end": 11873.24, + "probability": 0.9173 + }, + { + "start": 11874.4, + "end": 11876.5, + "probability": 0.9761 + }, + { + "start": 11877.54, + "end": 11878.36, + "probability": 0.7412 + }, + { + "start": 11878.84, + "end": 11880.9, + "probability": 0.9221 + }, + { + "start": 11893.2, + "end": 11893.9, + "probability": 0.7142 + }, + { + "start": 11894.92, + "end": 11895.66, + "probability": 0.8854 + }, + { + "start": 11896.7, + "end": 11898.02, + "probability": 0.8454 + }, + { + "start": 11898.62, + "end": 11901.06, + "probability": 0.9974 + }, + { + "start": 11902.34, + "end": 11905.54, + "probability": 0.9931 + }, + { + "start": 11906.06, + "end": 11908.34, + "probability": 0.9737 + }, + { + "start": 11909.24, + "end": 11910.96, + "probability": 0.9512 + }, + { + "start": 11911.76, + "end": 11914.82, + "probability": 0.9681 + }, + { + "start": 11916.1, + "end": 11918.6, + "probability": 0.9976 + }, + { + "start": 11919.56, + "end": 11921.7, + "probability": 0.9607 + }, + { + "start": 11921.7, + "end": 11924.64, + "probability": 0.9241 + }, + { + "start": 11925.58, + "end": 11927.4, + "probability": 0.9971 + }, + { + "start": 11928.0, + "end": 11928.66, + "probability": 0.9786 + }, + { + "start": 11929.06, + "end": 11930.3, + "probability": 0.9587 + }, + { + "start": 11930.78, + "end": 11932.94, + "probability": 0.9636 + }, + { + "start": 11934.2, + "end": 11934.62, + "probability": 0.9338 + }, + { + "start": 11934.8, + "end": 11938.24, + "probability": 0.9968 + }, + { + "start": 11938.86, + "end": 11943.64, + "probability": 0.998 + }, + { + "start": 11944.36, + "end": 11947.72, + "probability": 0.9761 + }, + { + "start": 11948.38, + "end": 11950.68, + "probability": 0.952 + }, + { + "start": 11951.78, + "end": 11953.08, + "probability": 0.9337 + }, + { + "start": 11953.62, + "end": 11956.66, + "probability": 0.9985 + }, + { + "start": 11957.38, + "end": 11958.9, + "probability": 0.8628 + }, + { + "start": 11959.7, + "end": 11961.84, + "probability": 0.9779 + }, + { + "start": 11962.12, + "end": 11963.7, + "probability": 0.999 + }, + { + "start": 11964.42, + "end": 11967.64, + "probability": 0.9969 + }, + { + "start": 11968.66, + "end": 11971.2, + "probability": 0.9966 + }, + { + "start": 11971.64, + "end": 11972.36, + "probability": 0.9271 + }, + { + "start": 11972.98, + "end": 11973.98, + "probability": 0.995 + }, + { + "start": 11974.62, + "end": 11976.88, + "probability": 0.9847 + }, + { + "start": 11977.94, + "end": 11978.46, + "probability": 0.8684 + }, + { + "start": 11979.04, + "end": 11980.54, + "probability": 0.9826 + }, + { + "start": 11981.02, + "end": 11983.58, + "probability": 0.9741 + }, + { + "start": 11984.68, + "end": 11988.16, + "probability": 0.9993 + }, + { + "start": 11988.76, + "end": 11989.82, + "probability": 0.8038 + }, + { + "start": 11990.64, + "end": 11994.24, + "probability": 0.9819 + }, + { + "start": 11995.04, + "end": 11997.8, + "probability": 0.9854 + }, + { + "start": 11998.34, + "end": 12001.54, + "probability": 0.9099 + }, + { + "start": 12002.46, + "end": 12003.64, + "probability": 0.8975 + }, + { + "start": 12004.22, + "end": 12006.82, + "probability": 0.9989 + }, + { + "start": 12007.14, + "end": 12009.5, + "probability": 0.998 + }, + { + "start": 12011.22, + "end": 12012.46, + "probability": 0.9332 + }, + { + "start": 12013.04, + "end": 12017.44, + "probability": 0.9984 + }, + { + "start": 12018.06, + "end": 12018.9, + "probability": 0.8676 + }, + { + "start": 12019.88, + "end": 12022.4, + "probability": 0.9962 + }, + { + "start": 12023.26, + "end": 12025.92, + "probability": 0.993 + }, + { + "start": 12026.66, + "end": 12029.34, + "probability": 0.9931 + }, + { + "start": 12029.34, + "end": 12033.42, + "probability": 0.9965 + }, + { + "start": 12034.42, + "end": 12036.9, + "probability": 0.7415 + }, + { + "start": 12037.54, + "end": 12040.74, + "probability": 0.9968 + }, + { + "start": 12041.42, + "end": 12043.3, + "probability": 0.8892 + }, + { + "start": 12044.14, + "end": 12047.92, + "probability": 0.8477 + }, + { + "start": 12047.92, + "end": 12051.62, + "probability": 0.9909 + }, + { + "start": 12052.46, + "end": 12054.04, + "probability": 0.9966 + }, + { + "start": 12054.68, + "end": 12055.44, + "probability": 0.9235 + }, + { + "start": 12055.66, + "end": 12056.34, + "probability": 0.6593 + }, + { + "start": 12056.36, + "end": 12058.2, + "probability": 0.5767 + }, + { + "start": 12058.38, + "end": 12059.42, + "probability": 0.9707 + }, + { + "start": 12061.28, + "end": 12062.44, + "probability": 0.8208 + }, + { + "start": 12062.8, + "end": 12064.56, + "probability": 0.9902 + }, + { + "start": 12065.04, + "end": 12068.42, + "probability": 0.9844 + }, + { + "start": 12068.42, + "end": 12072.28, + "probability": 0.9901 + }, + { + "start": 12072.38, + "end": 12073.76, + "probability": 0.999 + }, + { + "start": 12074.58, + "end": 12075.04, + "probability": 0.7594 + }, + { + "start": 12075.36, + "end": 12076.78, + "probability": 0.5498 + }, + { + "start": 12077.62, + "end": 12079.92, + "probability": 0.8788 + }, + { + "start": 12083.58, + "end": 12084.44, + "probability": 0.189 + }, + { + "start": 12101.82, + "end": 12102.46, + "probability": 0.4055 + }, + { + "start": 12102.56, + "end": 12104.75, + "probability": 0.7703 + }, + { + "start": 12105.4, + "end": 12106.04, + "probability": 0.8858 + }, + { + "start": 12106.26, + "end": 12108.14, + "probability": 0.3624 + }, + { + "start": 12109.64, + "end": 12112.5, + "probability": 0.7359 + }, + { + "start": 12113.44, + "end": 12116.87, + "probability": 0.9829 + }, + { + "start": 12118.26, + "end": 12120.1, + "probability": 0.5293 + }, + { + "start": 12121.08, + "end": 12121.82, + "probability": 0.8561 + }, + { + "start": 12122.56, + "end": 12125.74, + "probability": 0.8348 + }, + { + "start": 12126.92, + "end": 12129.96, + "probability": 0.7308 + }, + { + "start": 12130.42, + "end": 12130.9, + "probability": 0.9183 + }, + { + "start": 12130.94, + "end": 12131.62, + "probability": 0.9491 + }, + { + "start": 12131.7, + "end": 12133.66, + "probability": 0.9398 + }, + { + "start": 12133.76, + "end": 12134.32, + "probability": 0.8689 + }, + { + "start": 12134.44, + "end": 12136.24, + "probability": 0.9942 + }, + { + "start": 12136.8, + "end": 12139.04, + "probability": 0.9882 + }, + { + "start": 12139.84, + "end": 12140.62, + "probability": 0.9496 + }, + { + "start": 12140.84, + "end": 12144.26, + "probability": 0.9953 + }, + { + "start": 12144.26, + "end": 12148.98, + "probability": 0.9967 + }, + { + "start": 12149.04, + "end": 12152.42, + "probability": 0.9767 + }, + { + "start": 12152.94, + "end": 12156.64, + "probability": 0.9909 + }, + { + "start": 12157.96, + "end": 12158.18, + "probability": 0.707 + }, + { + "start": 12158.38, + "end": 12158.94, + "probability": 0.7296 + }, + { + "start": 12159.1, + "end": 12161.54, + "probability": 0.9978 + }, + { + "start": 12163.2, + "end": 12163.92, + "probability": 0.8015 + }, + { + "start": 12164.24, + "end": 12165.54, + "probability": 0.7435 + }, + { + "start": 12165.64, + "end": 12166.4, + "probability": 0.8725 + }, + { + "start": 12166.42, + "end": 12170.7, + "probability": 0.9474 + }, + { + "start": 12170.82, + "end": 12172.38, + "probability": 0.88 + }, + { + "start": 12173.12, + "end": 12174.08, + "probability": 0.8942 + }, + { + "start": 12174.72, + "end": 12175.64, + "probability": 0.6852 + }, + { + "start": 12175.76, + "end": 12179.18, + "probability": 0.9958 + }, + { + "start": 12179.34, + "end": 12179.68, + "probability": 0.286 + }, + { + "start": 12180.66, + "end": 12181.16, + "probability": 0.8835 + }, + { + "start": 12182.44, + "end": 12184.76, + "probability": 0.7585 + }, + { + "start": 12185.66, + "end": 12185.76, + "probability": 0.165 + }, + { + "start": 12185.76, + "end": 12186.28, + "probability": 0.5874 + }, + { + "start": 12186.96, + "end": 12188.16, + "probability": 0.9082 + }, + { + "start": 12188.26, + "end": 12191.88, + "probability": 0.9648 + }, + { + "start": 12193.18, + "end": 12196.6, + "probability": 0.9924 + }, + { + "start": 12196.68, + "end": 12197.83, + "probability": 0.8698 + }, + { + "start": 12199.74, + "end": 12201.32, + "probability": 0.9833 + }, + { + "start": 12203.82, + "end": 12203.98, + "probability": 0.3609 + }, + { + "start": 12204.82, + "end": 12205.7, + "probability": 0.8704 + }, + { + "start": 12205.98, + "end": 12208.88, + "probability": 0.9927 + }, + { + "start": 12210.46, + "end": 12213.62, + "probability": 0.6242 + }, + { + "start": 12214.84, + "end": 12215.77, + "probability": 0.7393 + }, + { + "start": 12216.08, + "end": 12216.86, + "probability": 0.2993 + }, + { + "start": 12217.12, + "end": 12217.68, + "probability": 0.8911 + }, + { + "start": 12218.2, + "end": 12219.52, + "probability": 0.7964 + }, + { + "start": 12219.58, + "end": 12221.02, + "probability": 0.9681 + }, + { + "start": 12221.38, + "end": 12221.9, + "probability": 0.7921 + }, + { + "start": 12221.9, + "end": 12222.7, + "probability": 0.6851 + }, + { + "start": 12222.96, + "end": 12223.22, + "probability": 0.7239 + }, + { + "start": 12223.54, + "end": 12223.9, + "probability": 0.8935 + }, + { + "start": 12223.96, + "end": 12224.4, + "probability": 0.9453 + }, + { + "start": 12224.78, + "end": 12225.72, + "probability": 0.8086 + }, + { + "start": 12226.46, + "end": 12232.54, + "probability": 0.8201 + }, + { + "start": 12233.36, + "end": 12236.02, + "probability": 0.9751 + }, + { + "start": 12236.7, + "end": 12239.22, + "probability": 0.9785 + }, + { + "start": 12240.5, + "end": 12241.56, + "probability": 0.8534 + }, + { + "start": 12242.36, + "end": 12243.44, + "probability": 0.7012 + }, + { + "start": 12244.18, + "end": 12246.16, + "probability": 0.9204 + }, + { + "start": 12246.48, + "end": 12247.7, + "probability": 0.8625 + }, + { + "start": 12248.06, + "end": 12250.14, + "probability": 0.9113 + }, + { + "start": 12250.34, + "end": 12251.44, + "probability": 0.4412 + }, + { + "start": 12251.96, + "end": 12254.92, + "probability": 0.9946 + }, + { + "start": 12255.76, + "end": 12256.34, + "probability": 0.9104 + }, + { + "start": 12256.98, + "end": 12262.28, + "probability": 0.9702 + }, + { + "start": 12262.86, + "end": 12263.38, + "probability": 0.8213 + }, + { + "start": 12264.0, + "end": 12264.78, + "probability": 0.7721 + }, + { + "start": 12266.42, + "end": 12266.93, + "probability": 0.9531 + }, + { + "start": 12268.08, + "end": 12268.92, + "probability": 0.8979 + }, + { + "start": 12270.16, + "end": 12272.1, + "probability": 0.9302 + }, + { + "start": 12273.68, + "end": 12275.0, + "probability": 0.9912 + }, + { + "start": 12275.74, + "end": 12278.45, + "probability": 0.989 + }, + { + "start": 12279.74, + "end": 12281.98, + "probability": 0.7232 + }, + { + "start": 12282.86, + "end": 12284.08, + "probability": 0.9887 + }, + { + "start": 12285.4, + "end": 12289.12, + "probability": 0.9907 + }, + { + "start": 12289.7, + "end": 12293.36, + "probability": 0.5514 + }, + { + "start": 12294.08, + "end": 12294.92, + "probability": 0.6511 + }, + { + "start": 12296.48, + "end": 12296.8, + "probability": 0.018 + }, + { + "start": 12296.8, + "end": 12299.24, + "probability": 0.8684 + }, + { + "start": 12299.92, + "end": 12301.86, + "probability": 0.8587 + }, + { + "start": 12302.86, + "end": 12308.02, + "probability": 0.8448 + }, + { + "start": 12308.48, + "end": 12308.9, + "probability": 0.8776 + }, + { + "start": 12310.02, + "end": 12313.56, + "probability": 0.9495 + }, + { + "start": 12314.08, + "end": 12314.71, + "probability": 0.9095 + }, + { + "start": 12315.6, + "end": 12318.74, + "probability": 0.802 + }, + { + "start": 12319.46, + "end": 12321.2, + "probability": 0.9971 + }, + { + "start": 12321.98, + "end": 12326.38, + "probability": 0.9946 + }, + { + "start": 12326.52, + "end": 12328.74, + "probability": 0.6328 + }, + { + "start": 12328.76, + "end": 12330.04, + "probability": 0.9171 + }, + { + "start": 12330.16, + "end": 12330.98, + "probability": 0.4469 + }, + { + "start": 12331.08, + "end": 12331.58, + "probability": 0.7384 + }, + { + "start": 12331.58, + "end": 12333.56, + "probability": 0.8805 + }, + { + "start": 12333.7, + "end": 12337.5, + "probability": 0.744 + }, + { + "start": 12338.02, + "end": 12341.18, + "probability": 0.9253 + }, + { + "start": 12341.26, + "end": 12342.04, + "probability": 0.5551 + }, + { + "start": 12342.66, + "end": 12344.26, + "probability": 0.3466 + }, + { + "start": 12344.7, + "end": 12344.76, + "probability": 0.3381 + }, + { + "start": 12344.76, + "end": 12345.4, + "probability": 0.8147 + }, + { + "start": 12345.62, + "end": 12346.46, + "probability": 0.8371 + }, + { + "start": 12346.54, + "end": 12348.72, + "probability": 0.9461 + }, + { + "start": 12351.36, + "end": 12353.92, + "probability": 0.5222 + }, + { + "start": 12353.92, + "end": 12354.26, + "probability": 0.0494 + }, + { + "start": 12354.26, + "end": 12354.94, + "probability": 0.2131 + }, + { + "start": 12354.94, + "end": 12356.28, + "probability": 0.8716 + }, + { + "start": 12356.38, + "end": 12357.7, + "probability": 0.5792 + }, + { + "start": 12359.18, + "end": 12361.6, + "probability": 0.4974 + }, + { + "start": 12361.8, + "end": 12362.1, + "probability": 0.146 + }, + { + "start": 12362.1, + "end": 12362.1, + "probability": 0.4714 + }, + { + "start": 12362.1, + "end": 12363.99, + "probability": 0.5531 + }, + { + "start": 12375.98, + "end": 12376.22, + "probability": 0.1592 + }, + { + "start": 12384.36, + "end": 12386.7, + "probability": 0.9938 + }, + { + "start": 12387.4, + "end": 12388.1, + "probability": 0.8314 + }, + { + "start": 12390.52, + "end": 12393.36, + "probability": 0.9197 + }, + { + "start": 12394.12, + "end": 12395.02, + "probability": 0.5955 + }, + { + "start": 12396.46, + "end": 12401.24, + "probability": 0.9967 + }, + { + "start": 12402.22, + "end": 12405.44, + "probability": 0.8135 + }, + { + "start": 12406.26, + "end": 12408.5, + "probability": 0.9966 + }, + { + "start": 12409.04, + "end": 12409.86, + "probability": 0.8995 + }, + { + "start": 12411.28, + "end": 12412.34, + "probability": 0.8322 + }, + { + "start": 12413.34, + "end": 12417.22, + "probability": 0.9928 + }, + { + "start": 12417.84, + "end": 12420.0, + "probability": 0.9626 + }, + { + "start": 12420.86, + "end": 12422.64, + "probability": 0.9956 + }, + { + "start": 12423.28, + "end": 12424.36, + "probability": 0.9832 + }, + { + "start": 12425.28, + "end": 12425.98, + "probability": 0.7767 + }, + { + "start": 12426.26, + "end": 12426.68, + "probability": 0.9137 + }, + { + "start": 12427.04, + "end": 12428.21, + "probability": 0.9224 + }, + { + "start": 12429.18, + "end": 12431.18, + "probability": 0.6974 + }, + { + "start": 12432.1, + "end": 12434.32, + "probability": 0.9969 + }, + { + "start": 12434.92, + "end": 12438.92, + "probability": 0.8929 + }, + { + "start": 12440.02, + "end": 12443.32, + "probability": 0.8464 + }, + { + "start": 12443.78, + "end": 12445.14, + "probability": 0.9797 + }, + { + "start": 12446.2, + "end": 12448.78, + "probability": 0.9858 + }, + { + "start": 12449.26, + "end": 12452.34, + "probability": 0.9887 + }, + { + "start": 12452.34, + "end": 12455.38, + "probability": 0.9971 + }, + { + "start": 12456.12, + "end": 12456.6, + "probability": 0.9153 + }, + { + "start": 12458.4, + "end": 12460.42, + "probability": 0.9883 + }, + { + "start": 12461.74, + "end": 12462.62, + "probability": 0.9923 + }, + { + "start": 12463.44, + "end": 12465.26, + "probability": 0.9264 + }, + { + "start": 12467.22, + "end": 12468.72, + "probability": 0.8015 + }, + { + "start": 12469.76, + "end": 12471.44, + "probability": 0.7948 + }, + { + "start": 12472.06, + "end": 12472.72, + "probability": 0.7792 + }, + { + "start": 12473.24, + "end": 12473.66, + "probability": 0.8696 + }, + { + "start": 12474.24, + "end": 12475.78, + "probability": 0.9722 + }, + { + "start": 12476.34, + "end": 12478.14, + "probability": 0.9846 + }, + { + "start": 12478.46, + "end": 12479.12, + "probability": 0.8969 + }, + { + "start": 12479.5, + "end": 12481.16, + "probability": 0.8825 + }, + { + "start": 12481.52, + "end": 12482.16, + "probability": 0.9179 + }, + { + "start": 12482.46, + "end": 12483.54, + "probability": 0.8873 + }, + { + "start": 12483.86, + "end": 12488.24, + "probability": 0.9858 + }, + { + "start": 12488.92, + "end": 12489.12, + "probability": 0.1114 + }, + { + "start": 12489.14, + "end": 12489.88, + "probability": 0.5318 + }, + { + "start": 12489.96, + "end": 12493.14, + "probability": 0.7617 + }, + { + "start": 12493.24, + "end": 12493.24, + "probability": 0.1633 + }, + { + "start": 12493.24, + "end": 12493.42, + "probability": 0.0455 + }, + { + "start": 12493.42, + "end": 12493.96, + "probability": 0.3132 + }, + { + "start": 12494.66, + "end": 12495.32, + "probability": 0.9811 + }, + { + "start": 12495.92, + "end": 12496.3, + "probability": 0.4445 + }, + { + "start": 12496.52, + "end": 12499.62, + "probability": 0.8714 + }, + { + "start": 12499.94, + "end": 12502.1, + "probability": 0.9733 + }, + { + "start": 12502.64, + "end": 12503.84, + "probability": 0.9888 + }, + { + "start": 12505.04, + "end": 12506.32, + "probability": 0.8793 + }, + { + "start": 12507.0, + "end": 12507.9, + "probability": 0.9724 + }, + { + "start": 12508.22, + "end": 12508.68, + "probability": 0.638 + }, + { + "start": 12509.3, + "end": 12511.34, + "probability": 0.8671 + }, + { + "start": 12511.98, + "end": 12511.98, + "probability": 0.2501 + }, + { + "start": 12511.98, + "end": 12514.32, + "probability": 0.448 + }, + { + "start": 12516.48, + "end": 12518.94, + "probability": 0.9194 + }, + { + "start": 12519.58, + "end": 12520.3, + "probability": 0.6785 + }, + { + "start": 12520.38, + "end": 12521.22, + "probability": 0.6581 + }, + { + "start": 12521.64, + "end": 12525.4, + "probability": 0.9453 + }, + { + "start": 12526.74, + "end": 12529.04, + "probability": 0.9972 + }, + { + "start": 12530.18, + "end": 12531.24, + "probability": 0.9467 + }, + { + "start": 12532.08, + "end": 12532.74, + "probability": 0.953 + }, + { + "start": 12533.38, + "end": 12533.76, + "probability": 0.6979 + }, + { + "start": 12534.16, + "end": 12535.82, + "probability": 0.9526 + }, + { + "start": 12537.24, + "end": 12537.42, + "probability": 0.2352 + }, + { + "start": 12539.98, + "end": 12541.56, + "probability": 0.7869 + }, + { + "start": 12543.0, + "end": 12545.5, + "probability": 0.8434 + }, + { + "start": 12545.92, + "end": 12550.98, + "probability": 0.9301 + }, + { + "start": 12551.08, + "end": 12551.94, + "probability": 0.6343 + }, + { + "start": 12552.32, + "end": 12555.88, + "probability": 0.9797 + }, + { + "start": 12557.36, + "end": 12558.96, + "probability": 0.9636 + }, + { + "start": 12559.4, + "end": 12564.86, + "probability": 0.8554 + }, + { + "start": 12565.46, + "end": 12566.54, + "probability": 0.966 + }, + { + "start": 12566.96, + "end": 12568.26, + "probability": 0.9839 + }, + { + "start": 12568.96, + "end": 12569.7, + "probability": 0.7764 + }, + { + "start": 12569.8, + "end": 12570.46, + "probability": 0.8691 + }, + { + "start": 12570.68, + "end": 12571.52, + "probability": 0.992 + }, + { + "start": 12571.6, + "end": 12572.38, + "probability": 0.8404 + }, + { + "start": 12572.84, + "end": 12573.94, + "probability": 0.8973 + }, + { + "start": 12574.38, + "end": 12575.48, + "probability": 0.9837 + }, + { + "start": 12575.9, + "end": 12577.08, + "probability": 0.9905 + }, + { + "start": 12577.14, + "end": 12578.0, + "probability": 0.7734 + }, + { + "start": 12578.8, + "end": 12581.18, + "probability": 0.9893 + }, + { + "start": 12583.22, + "end": 12584.34, + "probability": 0.9741 + }, + { + "start": 12586.04, + "end": 12588.32, + "probability": 0.93 + }, + { + "start": 12588.86, + "end": 12591.38, + "probability": 0.8926 + }, + { + "start": 12592.32, + "end": 12593.18, + "probability": 0.682 + }, + { + "start": 12593.64, + "end": 12594.32, + "probability": 0.9392 + }, + { + "start": 12594.42, + "end": 12595.05, + "probability": 0.8887 + }, + { + "start": 12595.22, + "end": 12595.28, + "probability": 0.7649 + }, + { + "start": 12595.46, + "end": 12596.1, + "probability": 0.7744 + }, + { + "start": 12597.44, + "end": 12599.26, + "probability": 0.3579 + }, + { + "start": 12599.32, + "end": 12601.16, + "probability": 0.9666 + }, + { + "start": 12602.44, + "end": 12603.18, + "probability": 0.9749 + }, + { + "start": 12603.74, + "end": 12606.62, + "probability": 0.9487 + }, + { + "start": 12607.56, + "end": 12610.1, + "probability": 0.9716 + }, + { + "start": 12610.58, + "end": 12611.8, + "probability": 0.9707 + }, + { + "start": 12612.6, + "end": 12614.2, + "probability": 0.825 + }, + { + "start": 12614.78, + "end": 12618.72, + "probability": 0.8961 + }, + { + "start": 12620.02, + "end": 12620.26, + "probability": 0.6862 + }, + { + "start": 12620.72, + "end": 12623.36, + "probability": 0.9388 + }, + { + "start": 12626.32, + "end": 12627.34, + "probability": 0.7613 + }, + { + "start": 12628.34, + "end": 12632.02, + "probability": 0.9622 + }, + { + "start": 12635.56, + "end": 12636.48, + "probability": 0.2606 + }, + { + "start": 12658.56, + "end": 12659.44, + "probability": 0.3805 + }, + { + "start": 12660.62, + "end": 12663.46, + "probability": 0.4096 + }, + { + "start": 12664.3, + "end": 12665.34, + "probability": 0.2581 + }, + { + "start": 12665.34, + "end": 12666.52, + "probability": 0.5426 + }, + { + "start": 12667.33, + "end": 12669.04, + "probability": 0.807 + }, + { + "start": 12670.06, + "end": 12674.52, + "probability": 0.9298 + }, + { + "start": 12674.64, + "end": 12676.12, + "probability": 0.94 + }, + { + "start": 12677.12, + "end": 12678.32, + "probability": 0.8982 + }, + { + "start": 12679.2, + "end": 12680.88, + "probability": 0.9639 + }, + { + "start": 12682.12, + "end": 12684.34, + "probability": 0.9622 + }, + { + "start": 12685.02, + "end": 12688.24, + "probability": 0.9933 + }, + { + "start": 12689.06, + "end": 12691.45, + "probability": 0.9997 + }, + { + "start": 12692.84, + "end": 12693.06, + "probability": 0.6733 + }, + { + "start": 12693.66, + "end": 12695.66, + "probability": 0.9958 + }, + { + "start": 12696.22, + "end": 12700.28, + "probability": 0.9891 + }, + { + "start": 12700.46, + "end": 12701.28, + "probability": 0.7708 + }, + { + "start": 12701.8, + "end": 12702.76, + "probability": 0.9946 + }, + { + "start": 12703.54, + "end": 12707.0, + "probability": 0.9968 + }, + { + "start": 12708.16, + "end": 12709.78, + "probability": 0.9824 + }, + { + "start": 12711.1, + "end": 12716.3, + "probability": 0.7067 + }, + { + "start": 12716.88, + "end": 12718.1, + "probability": 0.6471 + }, + { + "start": 12719.3, + "end": 12720.7, + "probability": 0.8078 + }, + { + "start": 12720.96, + "end": 12721.88, + "probability": 0.4888 + }, + { + "start": 12721.98, + "end": 12722.4, + "probability": 0.6741 + }, + { + "start": 12723.3, + "end": 12724.16, + "probability": 0.8873 + }, + { + "start": 12724.28, + "end": 12727.24, + "probability": 0.9858 + }, + { + "start": 12728.14, + "end": 12729.54, + "probability": 0.8129 + }, + { + "start": 12730.66, + "end": 12733.46, + "probability": 0.9497 + }, + { + "start": 12734.42, + "end": 12736.68, + "probability": 0.9807 + }, + { + "start": 12737.38, + "end": 12738.32, + "probability": 0.9971 + }, + { + "start": 12739.44, + "end": 12740.08, + "probability": 0.9859 + }, + { + "start": 12741.08, + "end": 12741.84, + "probability": 0.8139 + }, + { + "start": 12741.98, + "end": 12742.14, + "probability": 0.9771 + }, + { + "start": 12742.24, + "end": 12743.57, + "probability": 0.9638 + }, + { + "start": 12743.98, + "end": 12745.44, + "probability": 0.9895 + }, + { + "start": 12746.34, + "end": 12750.76, + "probability": 0.9971 + }, + { + "start": 12750.86, + "end": 12752.46, + "probability": 0.989 + }, + { + "start": 12753.66, + "end": 12755.7, + "probability": 0.9573 + }, + { + "start": 12756.9, + "end": 12758.46, + "probability": 0.9998 + }, + { + "start": 12759.32, + "end": 12763.96, + "probability": 0.9988 + }, + { + "start": 12764.94, + "end": 12771.86, + "probability": 0.9829 + }, + { + "start": 12773.28, + "end": 12776.32, + "probability": 0.9881 + }, + { + "start": 12776.42, + "end": 12779.4, + "probability": 0.9523 + }, + { + "start": 12780.14, + "end": 12785.46, + "probability": 0.7158 + }, + { + "start": 12786.24, + "end": 12787.34, + "probability": 0.9978 + }, + { + "start": 12787.94, + "end": 12791.3, + "probability": 0.998 + }, + { + "start": 12791.42, + "end": 12791.88, + "probability": 0.5964 + }, + { + "start": 12793.2, + "end": 12795.26, + "probability": 0.9932 + }, + { + "start": 12795.36, + "end": 12795.98, + "probability": 0.9566 + }, + { + "start": 12796.2, + "end": 12797.88, + "probability": 0.9731 + }, + { + "start": 12798.6, + "end": 12802.9, + "probability": 0.9839 + }, + { + "start": 12802.9, + "end": 12805.8, + "probability": 0.9985 + }, + { + "start": 12806.4, + "end": 12809.06, + "probability": 0.996 + }, + { + "start": 12809.64, + "end": 12810.94, + "probability": 0.9628 + }, + { + "start": 12811.06, + "end": 12811.7, + "probability": 0.9919 + }, + { + "start": 12812.6, + "end": 12816.12, + "probability": 0.9961 + }, + { + "start": 12816.12, + "end": 12819.56, + "probability": 0.9993 + }, + { + "start": 12819.64, + "end": 12826.12, + "probability": 0.9992 + }, + { + "start": 12827.3, + "end": 12828.52, + "probability": 0.9255 + }, + { + "start": 12829.28, + "end": 12830.34, + "probability": 0.7234 + }, + { + "start": 12831.44, + "end": 12832.02, + "probability": 0.9019 + }, + { + "start": 12832.46, + "end": 12833.15, + "probability": 0.8964 + }, + { + "start": 12834.44, + "end": 12834.44, + "probability": 0.0254 + }, + { + "start": 12834.44, + "end": 12837.6, + "probability": 0.8131 + }, + { + "start": 12837.72, + "end": 12838.06, + "probability": 0.8376 + }, + { + "start": 12838.5, + "end": 12839.5, + "probability": 0.7227 + }, + { + "start": 12840.9, + "end": 12841.54, + "probability": 0.7508 + }, + { + "start": 12843.22, + "end": 12846.66, + "probability": 0.9766 + }, + { + "start": 12847.56, + "end": 12852.54, + "probability": 0.9548 + }, + { + "start": 12852.78, + "end": 12856.68, + "probability": 0.7619 + }, + { + "start": 12856.82, + "end": 12857.88, + "probability": 0.6429 + }, + { + "start": 12858.56, + "end": 12861.5, + "probability": 0.8034 + }, + { + "start": 12862.5, + "end": 12864.02, + "probability": 0.7991 + }, + { + "start": 12864.12, + "end": 12864.58, + "probability": 0.9185 + }, + { + "start": 12864.6, + "end": 12868.3, + "probability": 0.9982 + }, + { + "start": 12868.3, + "end": 12871.06, + "probability": 0.9983 + }, + { + "start": 12871.68, + "end": 12875.12, + "probability": 0.9906 + }, + { + "start": 12875.68, + "end": 12876.6, + "probability": 0.9359 + }, + { + "start": 12876.66, + "end": 12877.5, + "probability": 0.6502 + }, + { + "start": 12877.56, + "end": 12877.9, + "probability": 0.6972 + }, + { + "start": 12877.96, + "end": 12879.2, + "probability": 0.9386 + }, + { + "start": 12879.9, + "end": 12882.92, + "probability": 0.9705 + }, + { + "start": 12883.9, + "end": 12887.12, + "probability": 0.8316 + }, + { + "start": 12887.12, + "end": 12890.96, + "probability": 0.9934 + }, + { + "start": 12891.5, + "end": 12893.98, + "probability": 0.9723 + }, + { + "start": 12894.78, + "end": 12899.72, + "probability": 0.9969 + }, + { + "start": 12899.88, + "end": 12902.0, + "probability": 0.9611 + }, + { + "start": 12902.62, + "end": 12905.54, + "probability": 0.9847 + }, + { + "start": 12905.62, + "end": 12906.06, + "probability": 0.6401 + }, + { + "start": 12907.5, + "end": 12914.1, + "probability": 0.9917 + }, + { + "start": 12914.8, + "end": 12915.08, + "probability": 0.8311 + }, + { + "start": 12915.6, + "end": 12916.24, + "probability": 0.5237 + }, + { + "start": 12916.86, + "end": 12917.8, + "probability": 0.7086 + }, + { + "start": 12918.04, + "end": 12918.64, + "probability": 0.9396 + }, + { + "start": 12919.74, + "end": 12921.49, + "probability": 0.8763 + }, + { + "start": 12922.22, + "end": 12923.36, + "probability": 0.7266 + }, + { + "start": 12923.54, + "end": 12925.68, + "probability": 0.3542 + }, + { + "start": 12925.8, + "end": 12929.98, + "probability": 0.7892 + }, + { + "start": 12930.74, + "end": 12933.9, + "probability": 0.8519 + }, + { + "start": 12934.56, + "end": 12936.96, + "probability": 0.9574 + }, + { + "start": 12938.12, + "end": 12939.78, + "probability": 0.9379 + }, + { + "start": 12939.78, + "end": 12942.02, + "probability": 0.7427 + }, + { + "start": 12942.54, + "end": 12943.02, + "probability": 0.66 + }, + { + "start": 12943.2, + "end": 12943.58, + "probability": 0.6771 + }, + { + "start": 12943.84, + "end": 12944.02, + "probability": 0.606 + }, + { + "start": 12965.58, + "end": 12968.96, + "probability": 0.1261 + }, + { + "start": 12968.96, + "end": 12970.48, + "probability": 0.0387 + }, + { + "start": 12971.48, + "end": 12972.04, + "probability": 0.0422 + }, + { + "start": 12975.34, + "end": 12976.1, + "probability": 0.6271 + }, + { + "start": 12976.88, + "end": 12979.66, + "probability": 0.9869 + }, + { + "start": 12985.72, + "end": 12987.36, + "probability": 0.0623 + }, + { + "start": 12992.32, + "end": 12992.68, + "probability": 0.1049 + }, + { + "start": 12995.74, + "end": 12996.2, + "probability": 0.004 + }, + { + "start": 12997.84, + "end": 13000.5, + "probability": 0.02 + }, + { + "start": 13001.62, + "end": 13004.18, + "probability": 0.0067 + }, + { + "start": 13004.18, + "end": 13004.46, + "probability": 0.0557 + }, + { + "start": 13005.78, + "end": 13010.06, + "probability": 0.0992 + }, + { + "start": 13011.42, + "end": 13012.77, + "probability": 0.0415 + }, + { + "start": 13014.26, + "end": 13014.98, + "probability": 0.2758 + }, + { + "start": 13014.98, + "end": 13015.88, + "probability": 0.1513 + }, + { + "start": 13015.88, + "end": 13020.72, + "probability": 0.0947 + }, + { + "start": 13026.0, + "end": 13026.0, + "probability": 0.0 + }, + { + "start": 13026.0, + "end": 13026.0, + "probability": 0.0 + }, + { + "start": 13026.0, + "end": 13026.0, + "probability": 0.0 + }, + { + "start": 13026.0, + "end": 13026.0, + "probability": 0.0 + }, + { + "start": 13026.0, + "end": 13026.0, + "probability": 0.0 + }, + { + "start": 13026.0, + "end": 13026.0, + "probability": 0.0 + }, + { + "start": 13026.0, + "end": 13026.0, + "probability": 0.0 + }, + { + "start": 13026.2, + "end": 13027.08, + "probability": 0.091 + }, + { + "start": 13027.08, + "end": 13027.08, + "probability": 0.1288 + }, + { + "start": 13027.08, + "end": 13027.24, + "probability": 0.4164 + }, + { + "start": 13028.26, + "end": 13029.46, + "probability": 0.0904 + }, + { + "start": 13036.22, + "end": 13037.0, + "probability": 0.1398 + }, + { + "start": 13052.4, + "end": 13059.88, + "probability": 0.1186 + }, + { + "start": 13061.46, + "end": 13063.18, + "probability": 0.1382 + }, + { + "start": 13063.9, + "end": 13065.7, + "probability": 0.0923 + }, + { + "start": 13065.74, + "end": 13069.2, + "probability": 0.1809 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.0, + "end": 13149.0, + "probability": 0.0 + }, + { + "start": 13149.2, + "end": 13149.24, + "probability": 0.0186 + }, + { + "start": 13149.24, + "end": 13149.56, + "probability": 0.0414 + }, + { + "start": 13150.0, + "end": 13150.86, + "probability": 0.9565 + }, + { + "start": 13151.0, + "end": 13151.8, + "probability": 0.9084 + }, + { + "start": 13151.86, + "end": 13154.48, + "probability": 0.9756 + }, + { + "start": 13155.44, + "end": 13158.8, + "probability": 0.9877 + }, + { + "start": 13159.72, + "end": 13160.26, + "probability": 0.5988 + }, + { + "start": 13160.36, + "end": 13163.28, + "probability": 0.9806 + }, + { + "start": 13163.82, + "end": 13165.54, + "probability": 0.7713 + }, + { + "start": 13166.24, + "end": 13172.38, + "probability": 0.9625 + }, + { + "start": 13172.38, + "end": 13176.48, + "probability": 0.9964 + }, + { + "start": 13177.1, + "end": 13178.64, + "probability": 0.981 + }, + { + "start": 13179.34, + "end": 13182.48, + "probability": 0.9554 + }, + { + "start": 13182.48, + "end": 13185.06, + "probability": 0.992 + }, + { + "start": 13186.16, + "end": 13186.4, + "probability": 0.8074 + }, + { + "start": 13186.46, + "end": 13186.56, + "probability": 0.726 + }, + { + "start": 13186.82, + "end": 13189.58, + "probability": 0.9979 + }, + { + "start": 13190.2, + "end": 13191.44, + "probability": 0.2406 + }, + { + "start": 13191.46, + "end": 13194.96, + "probability": 0.998 + }, + { + "start": 13194.96, + "end": 13197.2, + "probability": 0.9942 + }, + { + "start": 13198.56, + "end": 13200.58, + "probability": 0.999 + }, + { + "start": 13200.58, + "end": 13203.14, + "probability": 0.9989 + }, + { + "start": 13203.62, + "end": 13207.18, + "probability": 0.9886 + }, + { + "start": 13207.9, + "end": 13211.0, + "probability": 0.9958 + }, + { + "start": 13211.0, + "end": 13215.3, + "probability": 0.9976 + }, + { + "start": 13215.3, + "end": 13218.9, + "probability": 0.9987 + }, + { + "start": 13219.66, + "end": 13224.58, + "probability": 0.989 + }, + { + "start": 13225.52, + "end": 13227.52, + "probability": 0.9495 + }, + { + "start": 13227.52, + "end": 13230.38, + "probability": 0.9988 + }, + { + "start": 13230.92, + "end": 13233.22, + "probability": 0.999 + }, + { + "start": 13233.64, + "end": 13235.84, + "probability": 0.9806 + }, + { + "start": 13236.9, + "end": 13239.38, + "probability": 0.997 + }, + { + "start": 13239.76, + "end": 13241.76, + "probability": 0.9725 + }, + { + "start": 13242.18, + "end": 13243.7, + "probability": 0.924 + }, + { + "start": 13244.2, + "end": 13246.52, + "probability": 0.9913 + }, + { + "start": 13246.98, + "end": 13248.62, + "probability": 0.9778 + }, + { + "start": 13249.32, + "end": 13252.26, + "probability": 0.9985 + }, + { + "start": 13252.26, + "end": 13254.72, + "probability": 0.9961 + }, + { + "start": 13255.22, + "end": 13258.18, + "probability": 0.9728 + }, + { + "start": 13258.26, + "end": 13260.72, + "probability": 0.9786 + }, + { + "start": 13261.6, + "end": 13262.36, + "probability": 0.8184 + }, + { + "start": 13262.78, + "end": 13269.68, + "probability": 0.9926 + }, + { + "start": 13269.68, + "end": 13273.24, + "probability": 0.9993 + }, + { + "start": 13273.84, + "end": 13274.28, + "probability": 0.9642 + }, + { + "start": 13275.4, + "end": 13275.84, + "probability": 0.4833 + }, + { + "start": 13275.86, + "end": 13278.34, + "probability": 0.9938 + }, + { + "start": 13278.34, + "end": 13280.94, + "probability": 0.9836 + }, + { + "start": 13281.7, + "end": 13282.4, + "probability": 0.8287 + }, + { + "start": 13283.0, + "end": 13287.02, + "probability": 0.9963 + }, + { + "start": 13287.4, + "end": 13290.58, + "probability": 0.9966 + }, + { + "start": 13291.14, + "end": 13293.24, + "probability": 0.9822 + }, + { + "start": 13293.76, + "end": 13296.56, + "probability": 0.9425 + }, + { + "start": 13296.56, + "end": 13299.2, + "probability": 0.9801 + }, + { + "start": 13300.34, + "end": 13303.06, + "probability": 0.99 + }, + { + "start": 13303.88, + "end": 13304.5, + "probability": 0.7624 + }, + { + "start": 13305.08, + "end": 13310.52, + "probability": 0.984 + }, + { + "start": 13310.52, + "end": 13315.14, + "probability": 0.9964 + }, + { + "start": 13316.22, + "end": 13316.76, + "probability": 0.8388 + }, + { + "start": 13317.36, + "end": 13320.08, + "probability": 0.9985 + }, + { + "start": 13320.08, + "end": 13324.2, + "probability": 0.9974 + }, + { + "start": 13324.66, + "end": 13328.76, + "probability": 0.981 + }, + { + "start": 13329.36, + "end": 13331.64, + "probability": 0.9981 + }, + { + "start": 13331.64, + "end": 13334.58, + "probability": 0.9971 + }, + { + "start": 13335.04, + "end": 13337.62, + "probability": 0.9925 + }, + { + "start": 13338.6, + "end": 13342.76, + "probability": 0.9976 + }, + { + "start": 13342.76, + "end": 13346.08, + "probability": 0.9896 + }, + { + "start": 13346.08, + "end": 13348.86, + "probability": 0.9941 + }, + { + "start": 13349.52, + "end": 13351.4, + "probability": 0.9934 + }, + { + "start": 13351.54, + "end": 13355.12, + "probability": 0.9836 + }, + { + "start": 13355.12, + "end": 13358.58, + "probability": 0.8252 + }, + { + "start": 13358.96, + "end": 13361.46, + "probability": 0.9974 + }, + { + "start": 13361.86, + "end": 13365.88, + "probability": 0.9833 + }, + { + "start": 13366.76, + "end": 13367.54, + "probability": 0.7573 + }, + { + "start": 13368.0, + "end": 13371.58, + "probability": 0.9976 + }, + { + "start": 13372.2, + "end": 13374.52, + "probability": 0.8254 + }, + { + "start": 13376.78, + "end": 13378.16, + "probability": 0.5263 + }, + { + "start": 13378.3, + "end": 13379.34, + "probability": 0.7334 + }, + { + "start": 13380.02, + "end": 13382.12, + "probability": 0.8077 + }, + { + "start": 13383.36, + "end": 13384.08, + "probability": 0.7401 + }, + { + "start": 13384.2, + "end": 13385.7, + "probability": 0.9728 + }, + { + "start": 13407.1, + "end": 13407.22, + "probability": 0.6629 + }, + { + "start": 13407.88, + "end": 13409.0, + "probability": 0.7895 + }, + { + "start": 13413.88, + "end": 13415.92, + "probability": 0.6875 + }, + { + "start": 13417.08, + "end": 13420.0, + "probability": 0.8784 + }, + { + "start": 13420.8, + "end": 13424.89, + "probability": 0.9939 + }, + { + "start": 13425.18, + "end": 13429.1, + "probability": 0.995 + }, + { + "start": 13430.12, + "end": 13433.14, + "probability": 0.9767 + }, + { + "start": 13434.18, + "end": 13437.64, + "probability": 0.9923 + }, + { + "start": 13437.64, + "end": 13441.04, + "probability": 0.9985 + }, + { + "start": 13441.68, + "end": 13443.38, + "probability": 0.9631 + }, + { + "start": 13444.22, + "end": 13447.76, + "probability": 0.9731 + }, + { + "start": 13448.38, + "end": 13452.1, + "probability": 0.9977 + }, + { + "start": 13452.1, + "end": 13457.52, + "probability": 0.994 + }, + { + "start": 13458.02, + "end": 13461.22, + "probability": 0.977 + }, + { + "start": 13461.7, + "end": 13466.96, + "probability": 0.9971 + }, + { + "start": 13467.82, + "end": 13473.78, + "probability": 0.9734 + }, + { + "start": 13474.78, + "end": 13476.02, + "probability": 0.9266 + }, + { + "start": 13476.88, + "end": 13481.86, + "probability": 0.9991 + }, + { + "start": 13482.74, + "end": 13485.86, + "probability": 0.9572 + }, + { + "start": 13486.3, + "end": 13487.91, + "probability": 0.9932 + }, + { + "start": 13488.68, + "end": 13492.0, + "probability": 0.9569 + }, + { + "start": 13492.0, + "end": 13495.98, + "probability": 0.9509 + }, + { + "start": 13496.9, + "end": 13501.85, + "probability": 0.9933 + }, + { + "start": 13502.46, + "end": 13504.92, + "probability": 0.9776 + }, + { + "start": 13505.56, + "end": 13511.62, + "probability": 0.9858 + }, + { + "start": 13512.44, + "end": 13517.36, + "probability": 0.9921 + }, + { + "start": 13517.36, + "end": 13523.3, + "probability": 0.999 + }, + { + "start": 13523.92, + "end": 13528.7, + "probability": 0.9753 + }, + { + "start": 13528.86, + "end": 13529.84, + "probability": 0.5974 + }, + { + "start": 13530.4, + "end": 13530.78, + "probability": 0.7095 + }, + { + "start": 13530.88, + "end": 13532.28, + "probability": 0.8744 + }, + { + "start": 13532.48, + "end": 13537.84, + "probability": 0.9832 + }, + { + "start": 13538.6, + "end": 13542.44, + "probability": 0.903 + }, + { + "start": 13543.0, + "end": 13544.57, + "probability": 0.9679 + }, + { + "start": 13545.22, + "end": 13548.36, + "probability": 0.9953 + }, + { + "start": 13549.36, + "end": 13551.96, + "probability": 0.972 + }, + { + "start": 13552.5, + "end": 13558.2, + "probability": 0.9954 + }, + { + "start": 13558.98, + "end": 13564.22, + "probability": 0.9285 + }, + { + "start": 13564.42, + "end": 13569.82, + "probability": 0.9885 + }, + { + "start": 13571.32, + "end": 13574.24, + "probability": 0.7995 + }, + { + "start": 13574.84, + "end": 13579.6, + "probability": 0.9932 + }, + { + "start": 13580.4, + "end": 13582.64, + "probability": 0.9991 + }, + { + "start": 13583.24, + "end": 13585.02, + "probability": 0.9927 + }, + { + "start": 13586.08, + "end": 13589.76, + "probability": 0.9958 + }, + { + "start": 13589.76, + "end": 13595.84, + "probability": 0.9785 + }, + { + "start": 13596.34, + "end": 13596.58, + "probability": 0.5589 + }, + { + "start": 13597.76, + "end": 13599.62, + "probability": 0.9508 + }, + { + "start": 13600.4, + "end": 13601.72, + "probability": 0.9382 + }, + { + "start": 13605.19, + "end": 13608.52, + "probability": 0.5492 + }, + { + "start": 13609.16, + "end": 13610.04, + "probability": 0.7753 + }, + { + "start": 13610.04, + "end": 13610.04, + "probability": 0.7963 + }, + { + "start": 13610.04, + "end": 13610.78, + "probability": 0.8633 + }, + { + "start": 13612.12, + "end": 13612.8, + "probability": 0.883 + }, + { + "start": 13613.64, + "end": 13614.96, + "probability": 0.9402 + }, + { + "start": 13614.98, + "end": 13615.74, + "probability": 0.9486 + }, + { + "start": 13616.02, + "end": 13616.62, + "probability": 0.4996 + }, + { + "start": 13642.66, + "end": 13643.06, + "probability": 0.3848 + }, + { + "start": 13643.12, + "end": 13643.72, + "probability": 0.6309 + }, + { + "start": 13644.4, + "end": 13645.96, + "probability": 0.6601 + }, + { + "start": 13647.14, + "end": 13650.46, + "probability": 0.9342 + }, + { + "start": 13650.64, + "end": 13652.7, + "probability": 0.814 + }, + { + "start": 13653.38, + "end": 13655.6, + "probability": 0.7456 + }, + { + "start": 13657.24, + "end": 13663.38, + "probability": 0.9971 + }, + { + "start": 13663.38, + "end": 13668.48, + "probability": 0.9995 + }, + { + "start": 13669.1, + "end": 13670.46, + "probability": 0.4937 + }, + { + "start": 13671.0, + "end": 13674.9, + "probability": 0.9946 + }, + { + "start": 13675.2, + "end": 13676.22, + "probability": 0.9684 + }, + { + "start": 13677.62, + "end": 13679.46, + "probability": 0.7609 + }, + { + "start": 13680.38, + "end": 13685.06, + "probability": 0.9847 + }, + { + "start": 13686.84, + "end": 13693.83, + "probability": 0.9976 + }, + { + "start": 13695.07, + "end": 13697.95, + "probability": 0.7736 + }, + { + "start": 13699.43, + "end": 13700.59, + "probability": 0.9846 + }, + { + "start": 13701.29, + "end": 13704.01, + "probability": 0.8465 + }, + { + "start": 13704.53, + "end": 13705.59, + "probability": 0.8166 + }, + { + "start": 13706.07, + "end": 13707.99, + "probability": 0.9977 + }, + { + "start": 13708.47, + "end": 13711.01, + "probability": 0.9785 + }, + { + "start": 13711.65, + "end": 13712.33, + "probability": 0.9797 + }, + { + "start": 13712.65, + "end": 13714.21, + "probability": 0.9044 + }, + { + "start": 13714.99, + "end": 13715.51, + "probability": 0.6302 + }, + { + "start": 13715.59, + "end": 13718.87, + "probability": 0.9521 + }, + { + "start": 13719.23, + "end": 13719.53, + "probability": 0.5577 + }, + { + "start": 13720.31, + "end": 13721.63, + "probability": 0.8532 + }, + { + "start": 13722.65, + "end": 13723.55, + "probability": 0.5433 + }, + { + "start": 13724.29, + "end": 13725.07, + "probability": 0.7935 + }, + { + "start": 13725.35, + "end": 13726.33, + "probability": 0.95 + }, + { + "start": 13726.53, + "end": 13727.33, + "probability": 0.9611 + }, + { + "start": 13727.67, + "end": 13728.35, + "probability": 0.9395 + }, + { + "start": 13728.41, + "end": 13730.51, + "probability": 0.7212 + }, + { + "start": 13731.17, + "end": 13731.17, + "probability": 0.1535 + }, + { + "start": 13731.17, + "end": 13731.17, + "probability": 0.5002 + }, + { + "start": 13731.17, + "end": 13731.67, + "probability": 0.528 + }, + { + "start": 13731.71, + "end": 13732.25, + "probability": 0.7753 + }, + { + "start": 13732.41, + "end": 13732.91, + "probability": 0.4952 + }, + { + "start": 13732.99, + "end": 13733.43, + "probability": 0.8437 + }, + { + "start": 13733.63, + "end": 13734.33, + "probability": 0.7262 + }, + { + "start": 13734.89, + "end": 13737.73, + "probability": 0.9194 + }, + { + "start": 13738.49, + "end": 13739.93, + "probability": 0.8838 + }, + { + "start": 13740.01, + "end": 13740.61, + "probability": 0.4415 + }, + { + "start": 13740.71, + "end": 13741.85, + "probability": 0.8092 + }, + { + "start": 13741.99, + "end": 13742.39, + "probability": 0.9519 + }, + { + "start": 13742.61, + "end": 13743.57, + "probability": 0.9731 + }, + { + "start": 13743.67, + "end": 13744.09, + "probability": 0.8728 + }, + { + "start": 13744.85, + "end": 13746.25, + "probability": 0.6601 + }, + { + "start": 13746.73, + "end": 13747.43, + "probability": 0.9403 + }, + { + "start": 13747.59, + "end": 13748.61, + "probability": 0.783 + }, + { + "start": 13748.73, + "end": 13749.09, + "probability": 0.8603 + }, + { + "start": 13749.83, + "end": 13751.39, + "probability": 0.7367 + }, + { + "start": 13751.91, + "end": 13752.81, + "probability": 0.9644 + }, + { + "start": 13753.33, + "end": 13753.87, + "probability": 0.9146 + }, + { + "start": 13754.01, + "end": 13755.17, + "probability": 0.7445 + }, + { + "start": 13755.25, + "end": 13755.87, + "probability": 0.6199 + }, + { + "start": 13756.65, + "end": 13758.29, + "probability": 0.8913 + }, + { + "start": 13760.17, + "end": 13761.47, + "probability": 0.997 + }, + { + "start": 13761.59, + "end": 13761.99, + "probability": 0.3248 + }, + { + "start": 13762.11, + "end": 13763.21, + "probability": 0.8201 + }, + { + "start": 13763.27, + "end": 13763.83, + "probability": 0.7562 + }, + { + "start": 13764.31, + "end": 13765.85, + "probability": 0.6141 + }, + { + "start": 13765.95, + "end": 13766.49, + "probability": 0.5494 + }, + { + "start": 13767.09, + "end": 13768.89, + "probability": 0.8723 + }, + { + "start": 13769.59, + "end": 13770.87, + "probability": 0.9488 + }, + { + "start": 13770.87, + "end": 13773.07, + "probability": 0.9404 + }, + { + "start": 13773.17, + "end": 13774.31, + "probability": 0.3209 + }, + { + "start": 13775.03, + "end": 13775.85, + "probability": 0.424 + }, + { + "start": 13775.87, + "end": 13776.49, + "probability": 0.6688 + }, + { + "start": 13776.49, + "end": 13776.49, + "probability": 0.5171 + }, + { + "start": 13776.49, + "end": 13776.7, + "probability": 0.7873 + }, + { + "start": 13777.61, + "end": 13781.11, + "probability": 0.8025 + }, + { + "start": 13781.71, + "end": 13783.65, + "probability": 0.6864 + }, + { + "start": 13784.17, + "end": 13786.49, + "probability": 0.7781 + }, + { + "start": 13787.15, + "end": 13788.47, + "probability": 0.0362 + }, + { + "start": 13791.41, + "end": 13791.67, + "probability": 0.4595 + }, + { + "start": 13801.93, + "end": 13802.45, + "probability": 0.9009 + }, + { + "start": 13804.13, + "end": 13805.61, + "probability": 0.7803 + }, + { + "start": 13806.64, + "end": 13807.55, + "probability": 0.3151 + }, + { + "start": 13807.55, + "end": 13810.17, + "probability": 0.8009 + }, + { + "start": 13811.21, + "end": 13812.49, + "probability": 0.786 + }, + { + "start": 13813.97, + "end": 13817.89, + "probability": 0.9948 + }, + { + "start": 13818.79, + "end": 13819.57, + "probability": 0.9504 + }, + { + "start": 13820.87, + "end": 13822.95, + "probability": 0.9979 + }, + { + "start": 13824.29, + "end": 13827.99, + "probability": 0.7812 + }, + { + "start": 13829.29, + "end": 13831.76, + "probability": 0.993 + }, + { + "start": 13832.95, + "end": 13834.81, + "probability": 0.9888 + }, + { + "start": 13836.07, + "end": 13836.71, + "probability": 0.7702 + }, + { + "start": 13836.83, + "end": 13838.01, + "probability": 0.9163 + }, + { + "start": 13838.23, + "end": 13840.17, + "probability": 0.98 + }, + { + "start": 13841.35, + "end": 13842.59, + "probability": 0.6738 + }, + { + "start": 13843.55, + "end": 13846.93, + "probability": 0.6856 + }, + { + "start": 13847.73, + "end": 13849.95, + "probability": 0.0204 + }, + { + "start": 13850.09, + "end": 13853.05, + "probability": 0.9904 + }, + { + "start": 13854.01, + "end": 13861.15, + "probability": 0.9888 + }, + { + "start": 13861.55, + "end": 13867.66, + "probability": 0.9717 + }, + { + "start": 13868.31, + "end": 13870.17, + "probability": 0.397 + }, + { + "start": 13870.33, + "end": 13872.35, + "probability": 0.9219 + }, + { + "start": 13872.57, + "end": 13874.57, + "probability": 0.9512 + }, + { + "start": 13874.97, + "end": 13876.27, + "probability": 0.6667 + }, + { + "start": 13879.31, + "end": 13879.53, + "probability": 0.0406 + }, + { + "start": 13879.53, + "end": 13879.77, + "probability": 0.4415 + }, + { + "start": 13879.91, + "end": 13882.92, + "probability": 0.688 + }, + { + "start": 13883.73, + "end": 13888.43, + "probability": 0.8864 + }, + { + "start": 13888.97, + "end": 13894.59, + "probability": 0.8867 + }, + { + "start": 13895.77, + "end": 13899.01, + "probability": 0.8148 + }, + { + "start": 13899.77, + "end": 13905.09, + "probability": 0.9128 + }, + { + "start": 13905.13, + "end": 13905.65, + "probability": 0.4245 + }, + { + "start": 13906.13, + "end": 13910.43, + "probability": 0.9942 + }, + { + "start": 13910.79, + "end": 13912.67, + "probability": 0.7333 + }, + { + "start": 13913.03, + "end": 13915.49, + "probability": 0.9509 + }, + { + "start": 13915.79, + "end": 13919.57, + "probability": 0.9272 + }, + { + "start": 13919.89, + "end": 13921.05, + "probability": 0.8162 + }, + { + "start": 13922.39, + "end": 13925.89, + "probability": 0.8658 + }, + { + "start": 13926.13, + "end": 13927.21, + "probability": 0.9768 + }, + { + "start": 13928.21, + "end": 13931.67, + "probability": 0.6833 + }, + { + "start": 13933.07, + "end": 13938.63, + "probability": 0.8952 + }, + { + "start": 13939.09, + "end": 13940.19, + "probability": 0.7194 + }, + { + "start": 13940.57, + "end": 13942.09, + "probability": 0.7275 + }, + { + "start": 13942.39, + "end": 13943.77, + "probability": 0.8273 + }, + { + "start": 13943.81, + "end": 13945.91, + "probability": 0.955 + }, + { + "start": 13946.27, + "end": 13947.09, + "probability": 0.7745 + }, + { + "start": 13947.77, + "end": 13950.31, + "probability": 0.9901 + }, + { + "start": 13950.35, + "end": 13954.03, + "probability": 0.9693 + }, + { + "start": 13954.31, + "end": 13954.93, + "probability": 0.6371 + }, + { + "start": 13955.03, + "end": 13959.43, + "probability": 0.9523 + }, + { + "start": 13959.43, + "end": 13961.95, + "probability": 0.9982 + }, + { + "start": 13962.07, + "end": 13964.49, + "probability": 0.8989 + }, + { + "start": 13964.59, + "end": 13966.39, + "probability": 0.6663 + }, + { + "start": 13966.51, + "end": 13967.81, + "probability": 0.9102 + }, + { + "start": 13969.99, + "end": 13971.97, + "probability": 0.755 + }, + { + "start": 13972.53, + "end": 13974.21, + "probability": 0.9343 + }, + { + "start": 13974.93, + "end": 13977.35, + "probability": 0.5664 + }, + { + "start": 13978.03, + "end": 13979.99, + "probability": 0.9247 + }, + { + "start": 13982.1, + "end": 13986.11, + "probability": 0.7819 + }, + { + "start": 13986.69, + "end": 13986.69, + "probability": 0.0136 + }, + { + "start": 13999.59, + "end": 14000.17, + "probability": 0.02 + }, + { + "start": 14002.09, + "end": 14002.09, + "probability": 0.042 + }, + { + "start": 14002.09, + "end": 14003.47, + "probability": 0.6386 + }, + { + "start": 14004.09, + "end": 14005.65, + "probability": 0.9143 + }, + { + "start": 14006.47, + "end": 14007.77, + "probability": 0.9054 + }, + { + "start": 14007.97, + "end": 14008.45, + "probability": 0.6804 + }, + { + "start": 14008.63, + "end": 14012.35, + "probability": 0.9224 + }, + { + "start": 14012.97, + "end": 14015.77, + "probability": 0.9934 + }, + { + "start": 14015.95, + "end": 14017.19, + "probability": 0.7416 + }, + { + "start": 14017.67, + "end": 14019.69, + "probability": 0.8386 + }, + { + "start": 14019.89, + "end": 14021.07, + "probability": 0.0065 + }, + { + "start": 14021.17, + "end": 14021.69, + "probability": 0.9531 + }, + { + "start": 14023.43, + "end": 14029.22, + "probability": 0.9747 + }, + { + "start": 14030.21, + "end": 14036.15, + "probability": 0.9954 + }, + { + "start": 14037.23, + "end": 14043.11, + "probability": 0.9987 + }, + { + "start": 14045.19, + "end": 14046.57, + "probability": 0.9731 + }, + { + "start": 14046.71, + "end": 14047.43, + "probability": 0.4807 + }, + { + "start": 14047.85, + "end": 14052.13, + "probability": 0.9941 + }, + { + "start": 14053.01, + "end": 14056.21, + "probability": 0.9788 + }, + { + "start": 14057.51, + "end": 14060.39, + "probability": 0.9888 + }, + { + "start": 14062.29, + "end": 14062.97, + "probability": 0.9574 + }, + { + "start": 14064.41, + "end": 14066.23, + "probability": 0.5532 + }, + { + "start": 14066.27, + "end": 14069.19, + "probability": 0.9968 + }, + { + "start": 14069.97, + "end": 14071.51, + "probability": 0.637 + }, + { + "start": 14071.93, + "end": 14072.63, + "probability": 0.5697 + }, + { + "start": 14072.79, + "end": 14073.99, + "probability": 0.9867 + }, + { + "start": 14074.17, + "end": 14079.07, + "probability": 0.9834 + }, + { + "start": 14079.11, + "end": 14080.53, + "probability": 0.9031 + }, + { + "start": 14081.03, + "end": 14082.15, + "probability": 0.7052 + }, + { + "start": 14082.55, + "end": 14083.59, + "probability": 0.6949 + }, + { + "start": 14083.63, + "end": 14084.67, + "probability": 0.8604 + }, + { + "start": 14084.87, + "end": 14088.77, + "probability": 0.8382 + }, + { + "start": 14091.33, + "end": 14093.17, + "probability": 0.9201 + }, + { + "start": 14096.7, + "end": 14098.03, + "probability": 0.8958 + }, + { + "start": 14098.07, + "end": 14099.99, + "probability": 0.5661 + }, + { + "start": 14100.21, + "end": 14100.65, + "probability": 0.7593 + }, + { + "start": 14100.75, + "end": 14101.85, + "probability": 0.8399 + }, + { + "start": 14103.01, + "end": 14107.33, + "probability": 0.9867 + }, + { + "start": 14107.67, + "end": 14108.49, + "probability": 0.7568 + }, + { + "start": 14109.53, + "end": 14110.57, + "probability": 0.9465 + }, + { + "start": 14111.11, + "end": 14113.59, + "probability": 0.966 + }, + { + "start": 14114.75, + "end": 14118.37, + "probability": 0.9774 + }, + { + "start": 14119.37, + "end": 14120.53, + "probability": 0.2493 + }, + { + "start": 14122.31, + "end": 14126.47, + "probability": 0.9771 + }, + { + "start": 14126.85, + "end": 14128.27, + "probability": 0.9971 + }, + { + "start": 14129.05, + "end": 14129.89, + "probability": 0.7079 + }, + { + "start": 14130.73, + "end": 14131.49, + "probability": 0.4174 + }, + { + "start": 14132.31, + "end": 14132.91, + "probability": 0.7551 + }, + { + "start": 14132.91, + "end": 14133.89, + "probability": 0.9021 + }, + { + "start": 14134.03, + "end": 14134.47, + "probability": 0.9332 + }, + { + "start": 14134.57, + "end": 14134.98, + "probability": 0.7634 + }, + { + "start": 14135.21, + "end": 14136.45, + "probability": 0.7425 + }, + { + "start": 14137.41, + "end": 14138.37, + "probability": 0.9831 + }, + { + "start": 14138.69, + "end": 14140.57, + "probability": 0.9634 + }, + { + "start": 14140.63, + "end": 14142.35, + "probability": 0.9159 + }, + { + "start": 14142.35, + "end": 14146.51, + "probability": 0.9817 + }, + { + "start": 14146.95, + "end": 14147.91, + "probability": 0.7593 + }, + { + "start": 14148.01, + "end": 14150.23, + "probability": 0.7337 + }, + { + "start": 14154.01, + "end": 14155.34, + "probability": 0.9508 + }, + { + "start": 14157.14, + "end": 14158.99, + "probability": 0.9264 + }, + { + "start": 14159.23, + "end": 14161.19, + "probability": 0.9309 + }, + { + "start": 14161.45, + "end": 14161.99, + "probability": 0.6215 + }, + { + "start": 14162.73, + "end": 14163.67, + "probability": 0.7442 + }, + { + "start": 14163.75, + "end": 14165.65, + "probability": 0.9783 + }, + { + "start": 14166.67, + "end": 14170.53, + "probability": 0.7617 + }, + { + "start": 14171.73, + "end": 14173.25, + "probability": 0.3985 + }, + { + "start": 14174.87, + "end": 14178.17, + "probability": 0.9767 + }, + { + "start": 14178.79, + "end": 14179.97, + "probability": 0.4006 + }, + { + "start": 14180.15, + "end": 14181.73, + "probability": 0.879 + }, + { + "start": 14181.79, + "end": 14182.17, + "probability": 0.2826 + }, + { + "start": 14182.45, + "end": 14182.91, + "probability": 0.9277 + }, + { + "start": 14182.95, + "end": 14183.55, + "probability": 0.9414 + }, + { + "start": 14184.89, + "end": 14185.71, + "probability": 0.9474 + }, + { + "start": 14186.29, + "end": 14187.33, + "probability": 0.9993 + }, + { + "start": 14188.01, + "end": 14189.19, + "probability": 0.6034 + }, + { + "start": 14189.77, + "end": 14191.85, + "probability": 0.9677 + }, + { + "start": 14192.55, + "end": 14193.95, + "probability": 0.9689 + }, + { + "start": 14194.97, + "end": 14196.95, + "probability": 0.9263 + }, + { + "start": 14197.27, + "end": 14200.43, + "probability": 0.9889 + }, + { + "start": 14200.49, + "end": 14200.97, + "probability": 0.8581 + }, + { + "start": 14201.31, + "end": 14202.23, + "probability": 0.9294 + }, + { + "start": 14202.31, + "end": 14203.11, + "probability": 0.9463 + }, + { + "start": 14203.45, + "end": 14205.43, + "probability": 0.8336 + }, + { + "start": 14206.13, + "end": 14207.51, + "probability": 0.6194 + }, + { + "start": 14207.87, + "end": 14208.67, + "probability": 0.9227 + }, + { + "start": 14208.77, + "end": 14209.19, + "probability": 0.9205 + }, + { + "start": 14209.21, + "end": 14209.83, + "probability": 0.7555 + }, + { + "start": 14210.29, + "end": 14213.43, + "probability": 0.9634 + }, + { + "start": 14213.87, + "end": 14215.83, + "probability": 0.9927 + }, + { + "start": 14216.07, + "end": 14218.49, + "probability": 0.9915 + }, + { + "start": 14218.49, + "end": 14220.99, + "probability": 0.9991 + }, + { + "start": 14221.29, + "end": 14222.93, + "probability": 0.0552 + }, + { + "start": 14223.51, + "end": 14224.49, + "probability": 0.0314 + }, + { + "start": 14224.49, + "end": 14226.03, + "probability": 0.5847 + }, + { + "start": 14226.15, + "end": 14228.11, + "probability": 0.9679 + }, + { + "start": 14228.75, + "end": 14228.75, + "probability": 0.239 + }, + { + "start": 14228.75, + "end": 14230.07, + "probability": 0.9354 + }, + { + "start": 14230.11, + "end": 14231.15, + "probability": 0.9001 + }, + { + "start": 14231.51, + "end": 14232.33, + "probability": 0.9548 + }, + { + "start": 14232.39, + "end": 14233.49, + "probability": 0.9479 + }, + { + "start": 14233.77, + "end": 14234.23, + "probability": 0.6323 + }, + { + "start": 14234.29, + "end": 14235.33, + "probability": 0.7283 + }, + { + "start": 14236.47, + "end": 14237.03, + "probability": 0.0991 + }, + { + "start": 14237.03, + "end": 14237.03, + "probability": 0.0149 + }, + { + "start": 14237.03, + "end": 14237.75, + "probability": 0.0337 + }, + { + "start": 14237.83, + "end": 14239.99, + "probability": 0.598 + }, + { + "start": 14240.21, + "end": 14240.95, + "probability": 0.894 + }, + { + "start": 14240.99, + "end": 14242.07, + "probability": 0.9756 + }, + { + "start": 14242.15, + "end": 14242.51, + "probability": 0.9165 + }, + { + "start": 14242.87, + "end": 14243.83, + "probability": 0.915 + }, + { + "start": 14243.91, + "end": 14244.95, + "probability": 0.8847 + }, + { + "start": 14245.35, + "end": 14247.75, + "probability": 0.9566 + }, + { + "start": 14248.05, + "end": 14250.17, + "probability": 0.5335 + }, + { + "start": 14250.67, + "end": 14251.66, + "probability": 0.8222 + }, + { + "start": 14252.33, + "end": 14256.71, + "probability": 0.9931 + }, + { + "start": 14257.79, + "end": 14258.07, + "probability": 0.006 + }, + { + "start": 14258.43, + "end": 14261.49, + "probability": 0.782 + }, + { + "start": 14261.55, + "end": 14262.29, + "probability": 0.6302 + }, + { + "start": 14262.83, + "end": 14263.31, + "probability": 0.2523 + }, + { + "start": 14263.77, + "end": 14263.93, + "probability": 0.0454 + }, + { + "start": 14263.93, + "end": 14264.23, + "probability": 0.657 + }, + { + "start": 14264.57, + "end": 14265.99, + "probability": 0.3348 + }, + { + "start": 14266.49, + "end": 14267.0, + "probability": 0.1141 + }, + { + "start": 14267.95, + "end": 14268.75, + "probability": 0.4373 + }, + { + "start": 14269.11, + "end": 14270.71, + "probability": 0.1699 + }, + { + "start": 14270.75, + "end": 14271.63, + "probability": 0.2622 + }, + { + "start": 14271.79, + "end": 14272.65, + "probability": 0.8701 + }, + { + "start": 14272.65, + "end": 14275.27, + "probability": 0.9537 + }, + { + "start": 14275.47, + "end": 14276.97, + "probability": 0.8801 + }, + { + "start": 14276.97, + "end": 14281.35, + "probability": 0.7172 + }, + { + "start": 14281.43, + "end": 14281.73, + "probability": 0.2915 + }, + { + "start": 14281.85, + "end": 14283.15, + "probability": 0.7212 + }, + { + "start": 14283.77, + "end": 14286.49, + "probability": 0.7443 + }, + { + "start": 14286.57, + "end": 14286.98, + "probability": 0.7065 + }, + { + "start": 14287.77, + "end": 14288.18, + "probability": 0.9102 + }, + { + "start": 14288.55, + "end": 14288.85, + "probability": 0.4116 + }, + { + "start": 14290.59, + "end": 14293.93, + "probability": 0.0392 + }, + { + "start": 14295.83, + "end": 14298.95, + "probability": 0.5708 + }, + { + "start": 14300.01, + "end": 14300.09, + "probability": 0.0155 + }, + { + "start": 14300.09, + "end": 14300.09, + "probability": 0.0384 + }, + { + "start": 14300.09, + "end": 14300.09, + "probability": 0.0601 + }, + { + "start": 14300.09, + "end": 14300.67, + "probability": 0.2169 + }, + { + "start": 14300.81, + "end": 14304.69, + "probability": 0.5041 + }, + { + "start": 14305.49, + "end": 14306.99, + "probability": 0.7947 + }, + { + "start": 14307.03, + "end": 14309.75, + "probability": 0.8984 + }, + { + "start": 14310.35, + "end": 14313.97, + "probability": 0.9749 + }, + { + "start": 14313.97, + "end": 14315.73, + "probability": 0.7942 + }, + { + "start": 14316.57, + "end": 14318.05, + "probability": 0.9378 + }, + { + "start": 14318.69, + "end": 14319.23, + "probability": 0.8273 + }, + { + "start": 14319.97, + "end": 14321.29, + "probability": 0.9307 + }, + { + "start": 14321.99, + "end": 14323.19, + "probability": 0.5402 + }, + { + "start": 14323.39, + "end": 14324.99, + "probability": 0.9622 + }, + { + "start": 14325.23, + "end": 14326.51, + "probability": 0.9184 + }, + { + "start": 14326.97, + "end": 14328.15, + "probability": 0.832 + }, + { + "start": 14328.73, + "end": 14330.07, + "probability": 0.6865 + }, + { + "start": 14330.49, + "end": 14332.87, + "probability": 0.1684 + }, + { + "start": 14332.91, + "end": 14333.73, + "probability": 0.3632 + }, + { + "start": 14334.03, + "end": 14338.53, + "probability": 0.7656 + }, + { + "start": 14338.57, + "end": 14341.73, + "probability": 0.9684 + }, + { + "start": 14341.85, + "end": 14341.91, + "probability": 0.2581 + }, + { + "start": 14342.13, + "end": 14342.75, + "probability": 0.4279 + }, + { + "start": 14343.09, + "end": 14343.83, + "probability": 0.278 + }, + { + "start": 14344.13, + "end": 14347.45, + "probability": 0.4763 + }, + { + "start": 14347.45, + "end": 14348.57, + "probability": 0.3413 + }, + { + "start": 14348.99, + "end": 14349.67, + "probability": 0.5004 + }, + { + "start": 14349.73, + "end": 14351.43, + "probability": 0.0496 + }, + { + "start": 14352.53, + "end": 14354.51, + "probability": 0.3545 + }, + { + "start": 14354.91, + "end": 14357.37, + "probability": 0.2978 + }, + { + "start": 14358.85, + "end": 14360.71, + "probability": 0.8057 + }, + { + "start": 14361.11, + "end": 14362.79, + "probability": 0.2834 + }, + { + "start": 14363.83, + "end": 14366.89, + "probability": 0.3238 + }, + { + "start": 14367.97, + "end": 14368.79, + "probability": 0.4019 + }, + { + "start": 14369.39, + "end": 14369.61, + "probability": 0.4815 + }, + { + "start": 14369.69, + "end": 14370.69, + "probability": 0.4143 + }, + { + "start": 14370.81, + "end": 14371.45, + "probability": 0.4524 + }, + { + "start": 14371.59, + "end": 14373.11, + "probability": 0.5932 + }, + { + "start": 14373.45, + "end": 14375.0, + "probability": 0.9244 + }, + { + "start": 14382.77, + "end": 14384.87, + "probability": 0.62 + }, + { + "start": 14385.59, + "end": 14387.31, + "probability": 0.8712 + }, + { + "start": 14387.93, + "end": 14390.79, + "probability": 0.983 + }, + { + "start": 14391.41, + "end": 14393.01, + "probability": 0.9407 + }, + { + "start": 14393.27, + "end": 14397.29, + "probability": 0.725 + }, + { + "start": 14397.89, + "end": 14398.97, + "probability": 0.5736 + }, + { + "start": 14398.99, + "end": 14399.85, + "probability": 0.9658 + }, + { + "start": 14399.91, + "end": 14401.64, + "probability": 0.9958 + }, + { + "start": 14401.75, + "end": 14402.55, + "probability": 0.4125 + }, + { + "start": 14402.59, + "end": 14408.29, + "probability": 0.9077 + }, + { + "start": 14408.39, + "end": 14410.99, + "probability": 0.9813 + }, + { + "start": 14411.61, + "end": 14412.53, + "probability": 0.7009 + }, + { + "start": 14413.27, + "end": 14415.69, + "probability": 0.9365 + }, + { + "start": 14416.39, + "end": 14418.11, + "probability": 0.9979 + }, + { + "start": 14418.21, + "end": 14418.21, + "probability": 0.4015 + }, + { + "start": 14418.21, + "end": 14420.77, + "probability": 0.7906 + }, + { + "start": 14421.33, + "end": 14425.51, + "probability": 0.8087 + }, + { + "start": 14425.51, + "end": 14426.15, + "probability": 0.3802 + }, + { + "start": 14426.99, + "end": 14426.99, + "probability": 0.2405 + }, + { + "start": 14426.99, + "end": 14427.47, + "probability": 0.1189 + }, + { + "start": 14427.57, + "end": 14427.89, + "probability": 0.8127 + }, + { + "start": 14428.05, + "end": 14430.49, + "probability": 0.9512 + }, + { + "start": 14431.13, + "end": 14431.87, + "probability": 0.7293 + }, + { + "start": 14432.03, + "end": 14433.07, + "probability": 0.749 + }, + { + "start": 14433.53, + "end": 14436.25, + "probability": 0.9902 + }, + { + "start": 14436.77, + "end": 14438.49, + "probability": 0.9599 + }, + { + "start": 14438.69, + "end": 14441.15, + "probability": 0.9971 + }, + { + "start": 14441.15, + "end": 14444.43, + "probability": 0.7941 + }, + { + "start": 14445.15, + "end": 14446.59, + "probability": 0.8822 + }, + { + "start": 14446.81, + "end": 14449.99, + "probability": 0.9856 + }, + { + "start": 14450.09, + "end": 14450.35, + "probability": 0.6693 + }, + { + "start": 14450.35, + "end": 14452.59, + "probability": 0.4255 + }, + { + "start": 14453.0, + "end": 14454.85, + "probability": 0.7498 + }, + { + "start": 14454.85, + "end": 14456.11, + "probability": 0.437 + }, + { + "start": 14456.65, + "end": 14461.01, + "probability": 0.9744 + }, + { + "start": 14461.29, + "end": 14461.29, + "probability": 0.5503 + }, + { + "start": 14461.41, + "end": 14465.07, + "probability": 0.9758 + }, + { + "start": 14465.81, + "end": 14468.41, + "probability": 0.9908 + }, + { + "start": 14469.43, + "end": 14472.25, + "probability": 0.8667 + }, + { + "start": 14473.01, + "end": 14473.89, + "probability": 0.9761 + }, + { + "start": 14475.13, + "end": 14475.45, + "probability": 0.8692 + }, + { + "start": 14476.13, + "end": 14479.86, + "probability": 0.9041 + }, + { + "start": 14480.13, + "end": 14484.63, + "probability": 0.9893 + }, + { + "start": 14484.73, + "end": 14487.03, + "probability": 0.9602 + }, + { + "start": 14487.61, + "end": 14487.67, + "probability": 0.0812 + }, + { + "start": 14487.67, + "end": 14488.77, + "probability": 0.5353 + }, + { + "start": 14491.51, + "end": 14495.89, + "probability": 0.7707 + }, + { + "start": 14496.55, + "end": 14498.01, + "probability": 0.7427 + }, + { + "start": 14498.65, + "end": 14502.93, + "probability": 0.9945 + }, + { + "start": 14502.93, + "end": 14506.93, + "probability": 0.9968 + }, + { + "start": 14506.93, + "end": 14509.65, + "probability": 0.9172 + }, + { + "start": 14509.79, + "end": 14511.69, + "probability": 0.9902 + }, + { + "start": 14512.49, + "end": 14513.67, + "probability": 0.9093 + }, + { + "start": 14513.81, + "end": 14515.51, + "probability": 0.9954 + }, + { + "start": 14517.19, + "end": 14519.95, + "probability": 0.9742 + }, + { + "start": 14520.45, + "end": 14522.17, + "probability": 0.9911 + }, + { + "start": 14522.83, + "end": 14526.59, + "probability": 0.9927 + }, + { + "start": 14526.95, + "end": 14528.27, + "probability": 0.9309 + }, + { + "start": 14528.73, + "end": 14533.11, + "probability": 0.9413 + }, + { + "start": 14533.27, + "end": 14535.97, + "probability": 0.9616 + }, + { + "start": 14536.79, + "end": 14539.17, + "probability": 0.9834 + }, + { + "start": 14539.71, + "end": 14541.93, + "probability": 0.933 + }, + { + "start": 14543.95, + "end": 14547.37, + "probability": 0.7173 + }, + { + "start": 14547.99, + "end": 14550.15, + "probability": 0.0287 + }, + { + "start": 14550.15, + "end": 14550.23, + "probability": 0.1324 + }, + { + "start": 14550.23, + "end": 14550.3, + "probability": 0.3625 + }, + { + "start": 14552.74, + "end": 14555.9, + "probability": 0.8953 + }, + { + "start": 14558.77, + "end": 14562.57, + "probability": 0.9234 + }, + { + "start": 14563.15, + "end": 14564.69, + "probability": 0.9309 + }, + { + "start": 14565.83, + "end": 14568.15, + "probability": 0.9931 + }, + { + "start": 14568.73, + "end": 14572.65, + "probability": 0.9639 + }, + { + "start": 14573.17, + "end": 14575.29, + "probability": 0.9283 + }, + { + "start": 14576.01, + "end": 14578.35, + "probability": 0.1173 + }, + { + "start": 14578.35, + "end": 14578.35, + "probability": 0.1691 + }, + { + "start": 14578.35, + "end": 14580.71, + "probability": 0.844 + }, + { + "start": 14580.71, + "end": 14581.53, + "probability": 0.6386 + }, + { + "start": 14581.87, + "end": 14583.7, + "probability": 0.5744 + }, + { + "start": 14584.21, + "end": 14586.23, + "probability": 0.9536 + }, + { + "start": 14586.93, + "end": 14588.29, + "probability": 0.9151 + }, + { + "start": 14588.91, + "end": 14589.47, + "probability": 0.4926 + }, + { + "start": 14589.65, + "end": 14590.91, + "probability": 0.7227 + }, + { + "start": 14591.27, + "end": 14596.25, + "probability": 0.9831 + }, + { + "start": 14596.33, + "end": 14599.67, + "probability": 0.996 + }, + { + "start": 14600.17, + "end": 14600.69, + "probability": 0.9325 + }, + { + "start": 14600.75, + "end": 14601.78, + "probability": 0.8188 + }, + { + "start": 14602.63, + "end": 14604.85, + "probability": 0.8662 + }, + { + "start": 14605.55, + "end": 14606.81, + "probability": 0.5937 + }, + { + "start": 14607.19, + "end": 14608.33, + "probability": 0.9747 + }, + { + "start": 14608.93, + "end": 14609.67, + "probability": 0.8433 + }, + { + "start": 14610.37, + "end": 14611.95, + "probability": 0.9883 + }, + { + "start": 14612.35, + "end": 14615.83, + "probability": 0.9641 + }, + { + "start": 14616.29, + "end": 14618.41, + "probability": 0.985 + }, + { + "start": 14618.43, + "end": 14619.93, + "probability": 0.9917 + }, + { + "start": 14620.05, + "end": 14621.73, + "probability": 0.7177 + }, + { + "start": 14622.37, + "end": 14624.95, + "probability": 0.9633 + }, + { + "start": 14625.03, + "end": 14625.75, + "probability": 0.8989 + }, + { + "start": 14626.29, + "end": 14629.83, + "probability": 0.9983 + }, + { + "start": 14630.29, + "end": 14633.19, + "probability": 0.9772 + }, + { + "start": 14633.19, + "end": 14634.25, + "probability": 0.5993 + }, + { + "start": 14634.59, + "end": 14635.55, + "probability": 0.8953 + }, + { + "start": 14635.97, + "end": 14636.99, + "probability": 0.9815 + }, + { + "start": 14637.29, + "end": 14638.29, + "probability": 0.9336 + }, + { + "start": 14638.57, + "end": 14639.43, + "probability": 0.964 + }, + { + "start": 14639.59, + "end": 14641.85, + "probability": 0.8896 + }, + { + "start": 14642.21, + "end": 14642.75, + "probability": 0.8611 + }, + { + "start": 14642.97, + "end": 14644.91, + "probability": 0.801 + }, + { + "start": 14645.41, + "end": 14645.67, + "probability": 0.6145 + }, + { + "start": 14647.45, + "end": 14648.67, + "probability": 0.9871 + }, + { + "start": 14649.79, + "end": 14651.13, + "probability": 0.3416 + }, + { + "start": 14651.19, + "end": 14652.88, + "probability": 0.7227 + }, + { + "start": 14654.49, + "end": 14656.31, + "probability": 0.6628 + }, + { + "start": 14656.83, + "end": 14659.63, + "probability": 0.5278 + }, + { + "start": 14659.81, + "end": 14660.63, + "probability": 0.2909 + }, + { + "start": 14660.85, + "end": 14661.61, + "probability": 0.7062 + }, + { + "start": 14681.22, + "end": 14683.39, + "probability": 0.2768 + }, + { + "start": 14683.71, + "end": 14684.75, + "probability": 0.0303 + }, + { + "start": 14685.43, + "end": 14689.11, + "probability": 0.6633 + }, + { + "start": 14690.39, + "end": 14693.67, + "probability": 0.0908 + }, + { + "start": 14693.67, + "end": 14694.73, + "probability": 0.0108 + }, + { + "start": 14698.67, + "end": 14700.69, + "probability": 0.0728 + }, + { + "start": 14700.78, + "end": 14702.65, + "probability": 0.039 + }, + { + "start": 14702.65, + "end": 14703.51, + "probability": 0.022 + }, + { + "start": 14704.13, + "end": 14706.83, + "probability": 0.0597 + }, + { + "start": 14709.05, + "end": 14709.3, + "probability": 0.0201 + }, + { + "start": 14726.0, + "end": 14726.0, + "probability": 0.0 + }, + { + "start": 14726.0, + "end": 14726.0, + "probability": 0.0 + }, + { + "start": 14726.0, + "end": 14726.0, + "probability": 0.0 + }, + { + "start": 14726.08, + "end": 14726.3, + "probability": 0.2602 + }, + { + "start": 14726.42, + "end": 14728.14, + "probability": 0.7874 + }, + { + "start": 14728.32, + "end": 14730.11, + "probability": 0.9497 + }, + { + "start": 14730.86, + "end": 14736.62, + "probability": 0.9077 + }, + { + "start": 14736.7, + "end": 14739.86, + "probability": 0.9961 + }, + { + "start": 14740.28, + "end": 14741.68, + "probability": 0.8864 + }, + { + "start": 14741.72, + "end": 14742.32, + "probability": 0.6727 + }, + { + "start": 14742.42, + "end": 14743.28, + "probability": 0.9062 + }, + { + "start": 14743.36, + "end": 14743.82, + "probability": 0.6235 + }, + { + "start": 14743.92, + "end": 14745.7, + "probability": 0.9823 + }, + { + "start": 14746.38, + "end": 14750.02, + "probability": 0.9836 + }, + { + "start": 14750.64, + "end": 14753.14, + "probability": 0.9974 + }, + { + "start": 14753.58, + "end": 14759.3, + "probability": 0.8721 + }, + { + "start": 14759.92, + "end": 14761.12, + "probability": 0.6141 + }, + { + "start": 14762.58, + "end": 14768.04, + "probability": 0.974 + }, + { + "start": 14768.04, + "end": 14773.16, + "probability": 0.9952 + }, + { + "start": 14773.16, + "end": 14777.36, + "probability": 0.9961 + }, + { + "start": 14777.92, + "end": 14786.06, + "probability": 0.9758 + }, + { + "start": 14787.52, + "end": 14793.66, + "probability": 0.9961 + }, + { + "start": 14793.66, + "end": 14800.4, + "probability": 0.9984 + }, + { + "start": 14801.22, + "end": 14804.3, + "probability": 0.9336 + }, + { + "start": 14804.36, + "end": 14808.08, + "probability": 0.8735 + }, + { + "start": 14808.76, + "end": 14816.78, + "probability": 0.9907 + }, + { + "start": 14817.82, + "end": 14819.4, + "probability": 0.9777 + }, + { + "start": 14820.22, + "end": 14820.72, + "probability": 0.7058 + }, + { + "start": 14822.02, + "end": 14823.42, + "probability": 0.9767 + }, + { + "start": 14823.48, + "end": 14828.28, + "probability": 0.8848 + }, + { + "start": 14828.74, + "end": 14830.88, + "probability": 0.6726 + }, + { + "start": 14830.96, + "end": 14835.62, + "probability": 0.9935 + }, + { + "start": 14836.64, + "end": 14838.08, + "probability": 0.5205 + }, + { + "start": 14838.6, + "end": 14844.5, + "probability": 0.9943 + }, + { + "start": 14844.62, + "end": 14845.48, + "probability": 0.6711 + }, + { + "start": 14845.58, + "end": 14846.92, + "probability": 0.7758 + }, + { + "start": 14847.56, + "end": 14848.7, + "probability": 0.4938 + }, + { + "start": 14849.36, + "end": 14855.08, + "probability": 0.996 + }, + { + "start": 14856.28, + "end": 14857.24, + "probability": 0.7744 + }, + { + "start": 14857.42, + "end": 14862.7, + "probability": 0.9964 + }, + { + "start": 14863.12, + "end": 14868.68, + "probability": 0.9868 + }, + { + "start": 14869.58, + "end": 14873.96, + "probability": 0.9971 + }, + { + "start": 14874.6, + "end": 14876.36, + "probability": 0.9102 + }, + { + "start": 14876.54, + "end": 14877.7, + "probability": 0.5951 + }, + { + "start": 14878.2, + "end": 14882.28, + "probability": 0.9929 + }, + { + "start": 14882.7, + "end": 14884.26, + "probability": 0.7514 + }, + { + "start": 14884.92, + "end": 14886.8, + "probability": 0.0585 + }, + { + "start": 14886.88, + "end": 14887.08, + "probability": 0.5663 + }, + { + "start": 14887.36, + "end": 14889.2, + "probability": 0.8763 + }, + { + "start": 14889.32, + "end": 14891.32, + "probability": 0.8426 + }, + { + "start": 14891.72, + "end": 14894.18, + "probability": 0.9805 + }, + { + "start": 14894.18, + "end": 14896.3, + "probability": 0.9966 + }, + { + "start": 14896.8, + "end": 14900.62, + "probability": 0.973 + }, + { + "start": 14900.96, + "end": 14906.04, + "probability": 0.9962 + }, + { + "start": 14906.52, + "end": 14907.86, + "probability": 0.7469 + }, + { + "start": 14908.48, + "end": 14912.4, + "probability": 0.9592 + }, + { + "start": 14912.56, + "end": 14913.18, + "probability": 0.693 + }, + { + "start": 14913.22, + "end": 14915.74, + "probability": 0.8769 + }, + { + "start": 14916.4, + "end": 14918.16, + "probability": 0.7433 + }, + { + "start": 14918.62, + "end": 14921.5, + "probability": 0.66 + }, + { + "start": 14922.24, + "end": 14923.91, + "probability": 0.911 + }, + { + "start": 14924.42, + "end": 14925.82, + "probability": 0.9232 + }, + { + "start": 14925.88, + "end": 14926.64, + "probability": 0.7429 + }, + { + "start": 14928.02, + "end": 14929.94, + "probability": 0.9132 + }, + { + "start": 14930.86, + "end": 14931.5, + "probability": 0.6399 + }, + { + "start": 14931.64, + "end": 14932.64, + "probability": 0.897 + }, + { + "start": 14940.62, + "end": 14941.04, + "probability": 0.1631 + }, + { + "start": 14941.04, + "end": 14941.08, + "probability": 0.1854 + }, + { + "start": 14941.08, + "end": 14941.08, + "probability": 0.0786 + }, + { + "start": 14963.94, + "end": 14964.8, + "probability": 0.2573 + }, + { + "start": 14965.84, + "end": 14968.12, + "probability": 0.9948 + }, + { + "start": 14969.78, + "end": 14971.74, + "probability": 0.9858 + }, + { + "start": 14971.74, + "end": 14974.2, + "probability": 0.9945 + }, + { + "start": 14974.9, + "end": 14977.3, + "probability": 0.9998 + }, + { + "start": 14978.2, + "end": 14979.18, + "probability": 0.7277 + }, + { + "start": 14979.8, + "end": 14980.86, + "probability": 0.9871 + }, + { + "start": 14982.1, + "end": 14984.6, + "probability": 0.9969 + }, + { + "start": 14984.6, + "end": 14988.32, + "probability": 0.9817 + }, + { + "start": 14989.0, + "end": 14992.7, + "probability": 0.9942 + }, + { + "start": 14993.8, + "end": 14997.2, + "probability": 0.8063 + }, + { + "start": 14998.02, + "end": 15000.04, + "probability": 0.9978 + }, + { + "start": 15000.7, + "end": 15004.24, + "probability": 0.9381 + }, + { + "start": 15004.78, + "end": 15007.16, + "probability": 0.9953 + }, + { + "start": 15008.02, + "end": 15012.42, + "probability": 0.9886 + }, + { + "start": 15012.98, + "end": 15015.88, + "probability": 0.9964 + }, + { + "start": 15017.14, + "end": 15018.4, + "probability": 0.7458 + }, + { + "start": 15018.46, + "end": 15022.96, + "probability": 0.9972 + }, + { + "start": 15022.96, + "end": 15027.36, + "probability": 0.9993 + }, + { + "start": 15028.16, + "end": 15032.87, + "probability": 0.9811 + }, + { + "start": 15033.62, + "end": 15036.14, + "probability": 0.9646 + }, + { + "start": 15036.9, + "end": 15039.68, + "probability": 0.9937 + }, + { + "start": 15040.28, + "end": 15043.26, + "probability": 0.9841 + }, + { + "start": 15044.36, + "end": 15046.78, + "probability": 0.9834 + }, + { + "start": 15046.78, + "end": 15049.88, + "probability": 0.9637 + }, + { + "start": 15050.42, + "end": 15051.66, + "probability": 0.9201 + }, + { + "start": 15051.74, + "end": 15052.28, + "probability": 0.7283 + }, + { + "start": 15052.38, + "end": 15053.42, + "probability": 0.9072 + }, + { + "start": 15053.84, + "end": 15055.46, + "probability": 0.92 + }, + { + "start": 15055.56, + "end": 15056.12, + "probability": 0.5305 + }, + { + "start": 15056.38, + "end": 15056.96, + "probability": 0.9263 + }, + { + "start": 15057.48, + "end": 15058.7, + "probability": 0.633 + }, + { + "start": 15059.74, + "end": 15060.8, + "probability": 0.8428 + }, + { + "start": 15061.76, + "end": 15064.68, + "probability": 0.9724 + }, + { + "start": 15065.2, + "end": 15068.42, + "probability": 0.9939 + }, + { + "start": 15068.42, + "end": 15072.84, + "probability": 0.9891 + }, + { + "start": 15073.04, + "end": 15076.32, + "probability": 0.6087 + }, + { + "start": 15076.94, + "end": 15080.42, + "probability": 0.9872 + }, + { + "start": 15081.48, + "end": 15083.64, + "probability": 0.8753 + }, + { + "start": 15084.54, + "end": 15086.96, + "probability": 0.9951 + }, + { + "start": 15087.56, + "end": 15092.52, + "probability": 0.9965 + }, + { + "start": 15092.98, + "end": 15093.34, + "probability": 0.6728 + }, + { + "start": 15094.08, + "end": 15095.58, + "probability": 0.8137 + }, + { + "start": 15096.22, + "end": 15097.58, + "probability": 0.9292 + }, + { + "start": 15098.2, + "end": 15100.28, + "probability": 0.9739 + }, + { + "start": 15100.84, + "end": 15101.76, + "probability": 0.9409 + }, + { + "start": 15102.38, + "end": 15106.98, + "probability": 0.8389 + }, + { + "start": 15107.58, + "end": 15111.04, + "probability": 0.9711 + }, + { + "start": 15112.0, + "end": 15112.77, + "probability": 0.6294 + }, + { + "start": 15114.72, + "end": 15118.96, + "probability": 0.9976 + }, + { + "start": 15118.96, + "end": 15124.89, + "probability": 0.9937 + }, + { + "start": 15126.82, + "end": 15128.16, + "probability": 0.9883 + }, + { + "start": 15129.22, + "end": 15130.4, + "probability": 0.9941 + }, + { + "start": 15131.16, + "end": 15134.08, + "probability": 0.9993 + }, + { + "start": 15134.08, + "end": 15136.9, + "probability": 0.9977 + }, + { + "start": 15137.7, + "end": 15142.3, + "probability": 0.9955 + }, + { + "start": 15142.3, + "end": 15147.8, + "probability": 0.9958 + }, + { + "start": 15148.6, + "end": 15151.16, + "probability": 0.9967 + }, + { + "start": 15151.82, + "end": 15154.28, + "probability": 0.9963 + }, + { + "start": 15155.26, + "end": 15160.6, + "probability": 0.9905 + }, + { + "start": 15161.04, + "end": 15161.28, + "probability": 0.6659 + }, + { + "start": 15162.46, + "end": 15164.4, + "probability": 0.992 + }, + { + "start": 15165.08, + "end": 15166.34, + "probability": 0.8754 + }, + { + "start": 15167.16, + "end": 15167.28, + "probability": 0.8865 + }, + { + "start": 15167.82, + "end": 15168.1, + "probability": 0.3441 + }, + { + "start": 15168.1, + "end": 15169.14, + "probability": 0.7375 + }, + { + "start": 15169.2, + "end": 15169.62, + "probability": 0.5226 + }, + { + "start": 15169.84, + "end": 15171.64, + "probability": 0.8714 + }, + { + "start": 15171.72, + "end": 15172.24, + "probability": 0.9024 + }, + { + "start": 15172.96, + "end": 15174.1, + "probability": 0.9789 + }, + { + "start": 15174.14, + "end": 15174.74, + "probability": 0.8214 + }, + { + "start": 15174.84, + "end": 15175.92, + "probability": 0.9897 + }, + { + "start": 15176.04, + "end": 15176.6, + "probability": 0.8024 + }, + { + "start": 15177.56, + "end": 15178.3, + "probability": 0.4478 + }, + { + "start": 15178.96, + "end": 15179.54, + "probability": 0.7046 + }, + { + "start": 15180.24, + "end": 15180.92, + "probability": 0.4034 + }, + { + "start": 15181.06, + "end": 15182.88, + "probability": 0.424 + }, + { + "start": 15183.0, + "end": 15183.78, + "probability": 0.8829 + }, + { + "start": 15183.9, + "end": 15184.88, + "probability": 0.8079 + }, + { + "start": 15185.0, + "end": 15185.58, + "probability": 0.959 + }, + { + "start": 15185.7, + "end": 15186.36, + "probability": 0.7633 + }, + { + "start": 15186.46, + "end": 15186.92, + "probability": 0.8083 + }, + { + "start": 15188.3, + "end": 15190.2, + "probability": 0.9829 + }, + { + "start": 15191.78, + "end": 15192.48, + "probability": 0.9845 + }, + { + "start": 15192.76, + "end": 15193.26, + "probability": 0.3996 + }, + { + "start": 15193.42, + "end": 15194.14, + "probability": 0.9065 + }, + { + "start": 15194.32, + "end": 15194.78, + "probability": 0.7476 + }, + { + "start": 15195.46, + "end": 15196.32, + "probability": 0.9603 + }, + { + "start": 15197.04, + "end": 15199.18, + "probability": 0.9556 + }, + { + "start": 15199.84, + "end": 15201.88, + "probability": 0.8931 + }, + { + "start": 15202.46, + "end": 15204.36, + "probability": 0.8407 + }, + { + "start": 15204.88, + "end": 15205.62, + "probability": 0.3962 + }, + { + "start": 15205.62, + "end": 15205.62, + "probability": 0.3196 + }, + { + "start": 15205.62, + "end": 15206.06, + "probability": 0.5756 + }, + { + "start": 15206.56, + "end": 15207.22, + "probability": 0.5101 + }, + { + "start": 15207.36, + "end": 15208.12, + "probability": 0.9634 + }, + { + "start": 15208.28, + "end": 15208.76, + "probability": 0.7767 + }, + { + "start": 15209.82, + "end": 15210.58, + "probability": 0.6806 + }, + { + "start": 15210.76, + "end": 15211.82, + "probability": 0.7663 + }, + { + "start": 15211.98, + "end": 15213.08, + "probability": 0.6368 + }, + { + "start": 15213.12, + "end": 15213.38, + "probability": 0.8804 + }, + { + "start": 15214.28, + "end": 15215.3, + "probability": 0.8231 + }, + { + "start": 15215.44, + "end": 15216.02, + "probability": 0.6809 + }, + { + "start": 15216.14, + "end": 15217.42, + "probability": 0.9706 + }, + { + "start": 15217.48, + "end": 15218.2, + "probability": 0.9145 + }, + { + "start": 15219.04, + "end": 15220.32, + "probability": 0.9856 + }, + { + "start": 15220.86, + "end": 15224.24, + "probability": 0.96 + }, + { + "start": 15226.66, + "end": 15229.92, + "probability": 0.9825 + }, + { + "start": 15230.76, + "end": 15231.32, + "probability": 0.5191 + }, + { + "start": 15231.44, + "end": 15232.2, + "probability": 0.9795 + }, + { + "start": 15232.32, + "end": 15232.84, + "probability": 0.4736 + }, + { + "start": 15233.1, + "end": 15233.72, + "probability": 0.9038 + }, + { + "start": 15234.02, + "end": 15234.56, + "probability": 0.8434 + }, + { + "start": 15235.28, + "end": 15237.26, + "probability": 0.9645 + }, + { + "start": 15237.86, + "end": 15239.06, + "probability": 0.9919 + }, + { + "start": 15239.26, + "end": 15243.12, + "probability": 0.9177 + }, + { + "start": 15243.12, + "end": 15243.7, + "probability": 0.3572 + }, + { + "start": 15243.74, + "end": 15243.94, + "probability": 0.0258 + }, + { + "start": 15243.94, + "end": 15244.96, + "probability": 0.7464 + }, + { + "start": 15269.68, + "end": 15270.28, + "probability": 0.3488 + }, + { + "start": 15272.46, + "end": 15273.04, + "probability": 0.4398 + }, + { + "start": 15273.4, + "end": 15274.32, + "probability": 0.5194 + }, + { + "start": 15275.16, + "end": 15276.66, + "probability": 0.6913 + }, + { + "start": 15277.64, + "end": 15281.12, + "probability": 0.9785 + }, + { + "start": 15281.12, + "end": 15285.4, + "probability": 0.995 + }, + { + "start": 15286.24, + "end": 15287.28, + "probability": 0.5648 + }, + { + "start": 15288.58, + "end": 15291.74, + "probability": 0.9927 + }, + { + "start": 15292.88, + "end": 15298.16, + "probability": 0.9912 + }, + { + "start": 15299.38, + "end": 15302.3, + "probability": 0.9231 + }, + { + "start": 15303.1, + "end": 15305.1, + "probability": 0.9573 + }, + { + "start": 15306.54, + "end": 15310.04, + "probability": 0.9889 + }, + { + "start": 15310.96, + "end": 15312.96, + "probability": 0.9258 + }, + { + "start": 15314.11, + "end": 15317.76, + "probability": 0.9047 + }, + { + "start": 15318.44, + "end": 15322.7, + "probability": 0.9846 + }, + { + "start": 15322.78, + "end": 15324.74, + "probability": 0.9989 + }, + { + "start": 15325.48, + "end": 15327.44, + "probability": 0.9273 + }, + { + "start": 15329.22, + "end": 15336.24, + "probability": 0.9857 + }, + { + "start": 15338.06, + "end": 15342.8, + "probability": 0.7603 + }, + { + "start": 15343.32, + "end": 15344.16, + "probability": 0.922 + }, + { + "start": 15344.22, + "end": 15345.74, + "probability": 0.9667 + }, + { + "start": 15346.1, + "end": 15347.28, + "probability": 0.9938 + }, + { + "start": 15347.52, + "end": 15348.26, + "probability": 0.3779 + }, + { + "start": 15348.96, + "end": 15350.78, + "probability": 0.8182 + }, + { + "start": 15351.56, + "end": 15355.86, + "probability": 0.7911 + }, + { + "start": 15358.14, + "end": 15361.58, + "probability": 0.9078 + }, + { + "start": 15361.74, + "end": 15363.1, + "probability": 0.5829 + }, + { + "start": 15363.64, + "end": 15364.44, + "probability": 0.9283 + }, + { + "start": 15364.84, + "end": 15365.42, + "probability": 0.9478 + }, + { + "start": 15366.24, + "end": 15369.5, + "probability": 0.9008 + }, + { + "start": 15369.66, + "end": 15370.56, + "probability": 0.862 + }, + { + "start": 15370.7, + "end": 15371.48, + "probability": 0.9024 + }, + { + "start": 15371.54, + "end": 15372.4, + "probability": 0.941 + }, + { + "start": 15373.92, + "end": 15376.54, + "probability": 0.9285 + }, + { + "start": 15377.56, + "end": 15381.23, + "probability": 0.7754 + }, + { + "start": 15383.1, + "end": 15396.24, + "probability": 0.9858 + }, + { + "start": 15396.36, + "end": 15398.1, + "probability": 0.6927 + }, + { + "start": 15399.2, + "end": 15402.54, + "probability": 0.7872 + }, + { + "start": 15403.86, + "end": 15407.48, + "probability": 0.9966 + }, + { + "start": 15407.66, + "end": 15408.88, + "probability": 0.8816 + }, + { + "start": 15409.44, + "end": 15411.3, + "probability": 0.9373 + }, + { + "start": 15412.42, + "end": 15415.58, + "probability": 0.9966 + }, + { + "start": 15415.72, + "end": 15418.32, + "probability": 0.7011 + }, + { + "start": 15419.02, + "end": 15421.46, + "probability": 0.9294 + }, + { + "start": 15422.04, + "end": 15424.6, + "probability": 0.924 + }, + { + "start": 15425.16, + "end": 15427.44, + "probability": 0.9929 + }, + { + "start": 15427.5, + "end": 15432.98, + "probability": 0.9971 + }, + { + "start": 15433.46, + "end": 15434.46, + "probability": 0.647 + }, + { + "start": 15434.54, + "end": 15438.16, + "probability": 0.9968 + }, + { + "start": 15446.06, + "end": 15448.04, + "probability": 0.5488 + }, + { + "start": 15448.3, + "end": 15449.7, + "probability": 0.9441 + }, + { + "start": 15450.16, + "end": 15450.48, + "probability": 0.0402 + }, + { + "start": 15450.72, + "end": 15451.68, + "probability": 0.3902 + }, + { + "start": 15452.14, + "end": 15452.38, + "probability": 0.8915 + }, + { + "start": 15452.6, + "end": 15455.06, + "probability": 0.596 + }, + { + "start": 15455.18, + "end": 15456.68, + "probability": 0.9306 + }, + { + "start": 15457.2, + "end": 15458.5, + "probability": 0.9656 + }, + { + "start": 15459.76, + "end": 15463.0, + "probability": 0.708 + }, + { + "start": 15464.0, + "end": 15465.58, + "probability": 0.9863 + }, + { + "start": 15466.28, + "end": 15466.96, + "probability": 0.8783 + }, + { + "start": 15467.88, + "end": 15469.2, + "probability": 0.8955 + }, + { + "start": 15469.8, + "end": 15472.44, + "probability": 0.9705 + }, + { + "start": 15473.64, + "end": 15474.36, + "probability": 0.9888 + }, + { + "start": 15475.46, + "end": 15477.28, + "probability": 0.7544 + }, + { + "start": 15478.08, + "end": 15478.68, + "probability": 0.5393 + }, + { + "start": 15483.82, + "end": 15485.36, + "probability": 0.8496 + }, + { + "start": 15486.62, + "end": 15486.96, + "probability": 0.0368 + }, + { + "start": 15486.96, + "end": 15487.14, + "probability": 0.1974 + }, + { + "start": 15487.44, + "end": 15490.06, + "probability": 0.8285 + }, + { + "start": 15490.6, + "end": 15491.74, + "probability": 0.8539 + }, + { + "start": 15497.04, + "end": 15501.16, + "probability": 0.0261 + }, + { + "start": 15507.42, + "end": 15507.92, + "probability": 0.0002 + }, + { + "start": 15509.5, + "end": 15509.5, + "probability": 0.1211 + }, + { + "start": 15509.5, + "end": 15509.5, + "probability": 0.1925 + }, + { + "start": 15509.5, + "end": 15509.5, + "probability": 0.0757 + }, + { + "start": 15509.5, + "end": 15511.41, + "probability": 0.626 + }, + { + "start": 15514.06, + "end": 15514.54, + "probability": 0.6116 + }, + { + "start": 15515.78, + "end": 15517.54, + "probability": 0.5401 + }, + { + "start": 15518.14, + "end": 15518.64, + "probability": 0.5862 + }, + { + "start": 15519.4, + "end": 15520.06, + "probability": 0.6896 + }, + { + "start": 15520.72, + "end": 15520.96, + "probability": 0.9211 + }, + { + "start": 15521.7, + "end": 15522.22, + "probability": 0.8591 + }, + { + "start": 15522.78, + "end": 15530.24, + "probability": 0.9886 + }, + { + "start": 15530.46, + "end": 15530.88, + "probability": 0.7383 + }, + { + "start": 15533.72, + "end": 15537.38, + "probability": 0.7832 + }, + { + "start": 15537.5, + "end": 15541.36, + "probability": 0.9399 + }, + { + "start": 15541.38, + "end": 15543.26, + "probability": 0.3337 + }, + { + "start": 15543.58, + "end": 15544.22, + "probability": 0.593 + }, + { + "start": 15544.54, + "end": 15545.86, + "probability": 0.8495 + }, + { + "start": 15546.42, + "end": 15547.16, + "probability": 0.552 + }, + { + "start": 15547.28, + "end": 15550.02, + "probability": 0.9699 + }, + { + "start": 15550.08, + "end": 15550.7, + "probability": 0.8271 + }, + { + "start": 15550.82, + "end": 15551.2, + "probability": 0.8666 + }, + { + "start": 15551.9, + "end": 15553.22, + "probability": 0.9857 + }, + { + "start": 15554.08, + "end": 15554.82, + "probability": 0.2703 + }, + { + "start": 15554.94, + "end": 15555.5, + "probability": 0.6137 + }, + { + "start": 15555.6, + "end": 15558.1, + "probability": 0.9725 + }, + { + "start": 15558.26, + "end": 15560.88, + "probability": 0.9792 + }, + { + "start": 15561.3, + "end": 15566.9, + "probability": 0.716 + }, + { + "start": 15566.98, + "end": 15569.38, + "probability": 0.9366 + }, + { + "start": 15570.2, + "end": 15572.36, + "probability": 0.8841 + }, + { + "start": 15572.36, + "end": 15575.28, + "probability": 0.9626 + }, + { + "start": 15575.78, + "end": 15578.16, + "probability": 0.9948 + }, + { + "start": 15578.4, + "end": 15579.3, + "probability": 0.2773 + }, + { + "start": 15579.82, + "end": 15583.56, + "probability": 0.9936 + }, + { + "start": 15583.64, + "end": 15584.54, + "probability": 0.8793 + }, + { + "start": 15584.96, + "end": 15587.9, + "probability": 0.9744 + }, + { + "start": 15588.54, + "end": 15589.02, + "probability": 0.4223 + }, + { + "start": 15589.04, + "end": 15590.34, + "probability": 0.7391 + }, + { + "start": 15590.42, + "end": 15592.5, + "probability": 0.9858 + }, + { + "start": 15592.86, + "end": 15593.84, + "probability": 0.0966 + }, + { + "start": 15593.94, + "end": 15596.72, + "probability": 0.8771 + }, + { + "start": 15596.72, + "end": 15599.2, + "probability": 0.9847 + }, + { + "start": 15599.28, + "end": 15600.44, + "probability": 0.8107 + }, + { + "start": 15601.0, + "end": 15603.62, + "probability": 0.8254 + }, + { + "start": 15604.02, + "end": 15607.08, + "probability": 0.9944 + }, + { + "start": 15607.08, + "end": 15610.36, + "probability": 0.9893 + }, + { + "start": 15611.18, + "end": 15615.0, + "probability": 0.993 + }, + { + "start": 15615.0, + "end": 15618.58, + "probability": 0.9673 + }, + { + "start": 15619.5, + "end": 15621.64, + "probability": 0.9955 + }, + { + "start": 15621.64, + "end": 15624.0, + "probability": 0.9922 + }, + { + "start": 15624.36, + "end": 15625.8, + "probability": 0.9912 + }, + { + "start": 15625.88, + "end": 15626.64, + "probability": 0.7344 + }, + { + "start": 15626.74, + "end": 15629.2, + "probability": 0.9604 + }, + { + "start": 15629.84, + "end": 15632.32, + "probability": 0.9933 + }, + { + "start": 15632.32, + "end": 15636.02, + "probability": 0.9989 + }, + { + "start": 15636.04, + "end": 15637.62, + "probability": 0.9976 + }, + { + "start": 15638.14, + "end": 15639.68, + "probability": 0.995 + }, + { + "start": 15639.84, + "end": 15640.06, + "probability": 0.6235 + }, + { + "start": 15640.12, + "end": 15640.92, + "probability": 0.8235 + }, + { + "start": 15641.36, + "end": 15643.16, + "probability": 0.8843 + }, + { + "start": 15643.16, + "end": 15646.1, + "probability": 0.9884 + }, + { + "start": 15646.56, + "end": 15648.02, + "probability": 0.9704 + }, + { + "start": 15648.18, + "end": 15650.36, + "probability": 0.9844 + }, + { + "start": 15650.36, + "end": 15653.5, + "probability": 0.9937 + }, + { + "start": 15654.16, + "end": 15656.26, + "probability": 0.9956 + }, + { + "start": 15656.26, + "end": 15658.04, + "probability": 0.9649 + }, + { + "start": 15658.2, + "end": 15660.22, + "probability": 0.7642 + }, + { + "start": 15660.74, + "end": 15662.18, + "probability": 0.8021 + }, + { + "start": 15662.74, + "end": 15664.22, + "probability": 0.7488 + }, + { + "start": 15664.26, + "end": 15665.96, + "probability": 0.9881 + }, + { + "start": 15665.96, + "end": 15667.92, + "probability": 0.9761 + }, + { + "start": 15668.48, + "end": 15668.94, + "probability": 0.5504 + }, + { + "start": 15669.0, + "end": 15670.4, + "probability": 0.953 + }, + { + "start": 15670.48, + "end": 15671.94, + "probability": 0.7123 + }, + { + "start": 15672.3, + "end": 15673.88, + "probability": 0.9493 + }, + { + "start": 15677.34, + "end": 15678.66, + "probability": 0.5553 + }, + { + "start": 15679.38, + "end": 15682.66, + "probability": 0.9012 + }, + { + "start": 15683.66, + "end": 15685.06, + "probability": 0.9854 + }, + { + "start": 15685.72, + "end": 15687.42, + "probability": 0.9465 + }, + { + "start": 15687.56, + "end": 15688.62, + "probability": 0.974 + }, + { + "start": 15688.84, + "end": 15689.16, + "probability": 0.822 + }, + { + "start": 15690.83, + "end": 15693.8, + "probability": 0.8308 + }, + { + "start": 15694.74, + "end": 15695.94, + "probability": 0.9564 + }, + { + "start": 15696.24, + "end": 15698.92, + "probability": 0.606 + }, + { + "start": 15698.92, + "end": 15699.18, + "probability": 0.3091 + }, + { + "start": 15700.36, + "end": 15701.4, + "probability": 0.6195 + }, + { + "start": 15701.4, + "end": 15701.6, + "probability": 0.6607 + }, + { + "start": 15701.98, + "end": 15703.94, + "probability": 0.7866 + }, + { + "start": 15705.4, + "end": 15708.06, + "probability": 0.6595 + }, + { + "start": 15708.76, + "end": 15710.18, + "probability": 0.9612 + }, + { + "start": 15710.34, + "end": 15711.0, + "probability": 0.8171 + }, + { + "start": 15711.4, + "end": 15713.44, + "probability": 0.6338 + }, + { + "start": 15714.18, + "end": 15714.92, + "probability": 0.7337 + }, + { + "start": 15716.2, + "end": 15717.56, + "probability": 0.9684 + }, + { + "start": 15717.82, + "end": 15718.58, + "probability": 0.864 + }, + { + "start": 15718.74, + "end": 15721.2, + "probability": 0.9132 + }, + { + "start": 15721.54, + "end": 15723.04, + "probability": 0.9964 + }, + { + "start": 15723.38, + "end": 15724.0, + "probability": 0.9637 + }, + { + "start": 15727.7, + "end": 15728.82, + "probability": 0.5306 + }, + { + "start": 15728.82, + "end": 15728.82, + "probability": 0.5011 + }, + { + "start": 15728.82, + "end": 15729.73, + "probability": 0.9079 + }, + { + "start": 15729.96, + "end": 15730.62, + "probability": 0.8986 + }, + { + "start": 15731.38, + "end": 15732.76, + "probability": 0.989 + }, + { + "start": 15732.82, + "end": 15733.48, + "probability": 0.8939 + }, + { + "start": 15733.94, + "end": 15735.58, + "probability": 0.9841 + }, + { + "start": 15735.82, + "end": 15736.46, + "probability": 0.9453 + }, + { + "start": 15737.36, + "end": 15739.84, + "probability": 0.7595 + }, + { + "start": 15741.1, + "end": 15743.54, + "probability": 0.9481 + }, + { + "start": 15744.54, + "end": 15746.42, + "probability": 0.966 + }, + { + "start": 15746.42, + "end": 15747.38, + "probability": 0.9586 + }, + { + "start": 15747.5, + "end": 15749.2, + "probability": 0.936 + }, + { + "start": 15749.2, + "end": 15749.88, + "probability": 0.7452 + }, + { + "start": 15750.1, + "end": 15752.26, + "probability": 0.8719 + }, + { + "start": 15754.46, + "end": 15755.68, + "probability": 0.0299 + }, + { + "start": 15757.76, + "end": 15759.28, + "probability": 0.243 + }, + { + "start": 15785.48, + "end": 15788.86, + "probability": 0.5749 + }, + { + "start": 15790.08, + "end": 15791.08, + "probability": 0.8613 + }, + { + "start": 15792.92, + "end": 15794.24, + "probability": 0.9182 + }, + { + "start": 15794.66, + "end": 15795.69, + "probability": 0.969 + }, + { + "start": 15796.16, + "end": 15796.4, + "probability": 0.879 + }, + { + "start": 15797.66, + "end": 15805.04, + "probability": 0.9938 + }, + { + "start": 15806.2, + "end": 15808.84, + "probability": 0.893 + }, + { + "start": 15809.5, + "end": 15811.52, + "probability": 0.9805 + }, + { + "start": 15812.56, + "end": 15817.68, + "probability": 0.9464 + }, + { + "start": 15817.68, + "end": 15820.98, + "probability": 0.9927 + }, + { + "start": 15822.34, + "end": 15827.92, + "probability": 0.9995 + }, + { + "start": 15828.8, + "end": 15831.56, + "probability": 0.9967 + }, + { + "start": 15832.48, + "end": 15834.0, + "probability": 0.9828 + }, + { + "start": 15834.18, + "end": 15838.16, + "probability": 0.9731 + }, + { + "start": 15838.74, + "end": 15840.62, + "probability": 0.9915 + }, + { + "start": 15841.28, + "end": 15841.86, + "probability": 0.9941 + }, + { + "start": 15842.72, + "end": 15846.23, + "probability": 0.9897 + }, + { + "start": 15846.96, + "end": 15849.19, + "probability": 0.8216 + }, + { + "start": 15849.8, + "end": 15853.12, + "probability": 0.9425 + }, + { + "start": 15854.06, + "end": 15857.78, + "probability": 0.9932 + }, + { + "start": 15857.78, + "end": 15860.92, + "probability": 0.9991 + }, + { + "start": 15860.98, + "end": 15861.42, + "probability": 0.5215 + }, + { + "start": 15862.46, + "end": 15866.22, + "probability": 0.9959 + }, + { + "start": 15866.22, + "end": 15871.04, + "probability": 0.9938 + }, + { + "start": 15872.1, + "end": 15875.36, + "probability": 0.9646 + }, + { + "start": 15875.36, + "end": 15880.26, + "probability": 0.9969 + }, + { + "start": 15880.26, + "end": 15884.04, + "probability": 0.9972 + }, + { + "start": 15884.76, + "end": 15885.66, + "probability": 0.8324 + }, + { + "start": 15886.72, + "end": 15890.18, + "probability": 0.9786 + }, + { + "start": 15890.72, + "end": 15892.68, + "probability": 0.909 + }, + { + "start": 15893.28, + "end": 15896.54, + "probability": 0.9949 + }, + { + "start": 15898.06, + "end": 15901.72, + "probability": 0.9909 + }, + { + "start": 15902.26, + "end": 15904.98, + "probability": 0.9891 + }, + { + "start": 15905.58, + "end": 15908.96, + "probability": 0.9912 + }, + { + "start": 15910.04, + "end": 15912.36, + "probability": 0.9873 + }, + { + "start": 15912.52, + "end": 15918.84, + "probability": 0.9912 + }, + { + "start": 15919.36, + "end": 15921.92, + "probability": 0.9869 + }, + { + "start": 15922.7, + "end": 15923.12, + "probability": 0.441 + }, + { + "start": 15923.74, + "end": 15927.12, + "probability": 0.9682 + }, + { + "start": 15927.64, + "end": 15931.32, + "probability": 0.9918 + }, + { + "start": 15932.2, + "end": 15935.26, + "probability": 0.9855 + }, + { + "start": 15936.12, + "end": 15941.4, + "probability": 0.74 + }, + { + "start": 15942.04, + "end": 15944.16, + "probability": 0.962 + }, + { + "start": 15944.7, + "end": 15948.6, + "probability": 0.9952 + }, + { + "start": 15948.6, + "end": 15953.48, + "probability": 0.9881 + }, + { + "start": 15953.56, + "end": 15955.08, + "probability": 0.8317 + }, + { + "start": 15955.6, + "end": 15956.14, + "probability": 0.9908 + }, + { + "start": 15956.98, + "end": 15962.1, + "probability": 0.9978 + }, + { + "start": 15962.88, + "end": 15967.3, + "probability": 0.9963 + }, + { + "start": 15968.04, + "end": 15971.82, + "probability": 0.9894 + }, + { + "start": 15972.52, + "end": 15976.24, + "probability": 0.9978 + }, + { + "start": 15976.24, + "end": 15982.8, + "probability": 0.9966 + }, + { + "start": 15983.48, + "end": 15986.7, + "probability": 0.9982 + }, + { + "start": 15987.22, + "end": 15989.54, + "probability": 0.7899 + }, + { + "start": 15989.86, + "end": 15990.14, + "probability": 0.2618 + }, + { + "start": 15990.14, + "end": 15991.88, + "probability": 0.8523 + }, + { + "start": 15993.54, + "end": 15997.0, + "probability": 0.9932 + }, + { + "start": 15997.16, + "end": 15997.76, + "probability": 0.8811 + }, + { + "start": 16014.42, + "end": 16014.52, + "probability": 0.5983 + }, + { + "start": 16015.06, + "end": 16015.9, + "probability": 0.9939 + }, + { + "start": 16017.86, + "end": 16018.68, + "probability": 0.7092 + }, + { + "start": 16020.1, + "end": 16020.84, + "probability": 0.7917 + }, + { + "start": 16021.72, + "end": 16022.66, + "probability": 0.555 + }, + { + "start": 16023.7, + "end": 16025.3, + "probability": 0.7939 + }, + { + "start": 16026.08, + "end": 16026.86, + "probability": 0.9661 + }, + { + "start": 16026.86, + "end": 16030.5, + "probability": 0.9089 + }, + { + "start": 16031.88, + "end": 16032.74, + "probability": 0.0912 + }, + { + "start": 16034.26, + "end": 16036.5, + "probability": 0.9293 + }, + { + "start": 16037.4, + "end": 16038.7, + "probability": 0.9429 + }, + { + "start": 16039.46, + "end": 16039.86, + "probability": 0.7236 + }, + { + "start": 16042.4, + "end": 16046.2, + "probability": 0.8677 + }, + { + "start": 16046.9, + "end": 16049.08, + "probability": 0.795 + }, + { + "start": 16049.1, + "end": 16050.74, + "probability": 0.5056 + }, + { + "start": 16050.96, + "end": 16051.86, + "probability": 0.9679 + }, + { + "start": 16053.42, + "end": 16056.6, + "probability": 0.9183 + }, + { + "start": 16057.8, + "end": 16059.32, + "probability": 0.9902 + }, + { + "start": 16061.99, + "end": 16066.34, + "probability": 0.6172 + }, + { + "start": 16067.7, + "end": 16069.42, + "probability": 0.9272 + }, + { + "start": 16071.22, + "end": 16078.92, + "probability": 0.9921 + }, + { + "start": 16079.7, + "end": 16080.88, + "probability": 0.962 + }, + { + "start": 16081.78, + "end": 16088.58, + "probability": 0.984 + }, + { + "start": 16089.78, + "end": 16091.34, + "probability": 0.8987 + }, + { + "start": 16092.0, + "end": 16095.52, + "probability": 0.7677 + }, + { + "start": 16096.44, + "end": 16098.44, + "probability": 0.6708 + }, + { + "start": 16099.22, + "end": 16101.92, + "probability": 0.9092 + }, + { + "start": 16102.58, + "end": 16105.2, + "probability": 0.926 + }, + { + "start": 16107.0, + "end": 16110.09, + "probability": 0.9712 + }, + { + "start": 16110.36, + "end": 16112.58, + "probability": 0.9142 + }, + { + "start": 16113.24, + "end": 16115.28, + "probability": 0.9166 + }, + { + "start": 16115.9, + "end": 16120.84, + "probability": 0.9896 + }, + { + "start": 16121.02, + "end": 16122.72, + "probability": 0.5141 + }, + { + "start": 16123.72, + "end": 16125.92, + "probability": 0.9228 + }, + { + "start": 16126.83, + "end": 16130.68, + "probability": 0.7128 + }, + { + "start": 16130.68, + "end": 16134.14, + "probability": 0.8569 + }, + { + "start": 16134.6, + "end": 16135.72, + "probability": 0.8903 + }, + { + "start": 16136.66, + "end": 16141.24, + "probability": 0.8867 + }, + { + "start": 16142.66, + "end": 16145.26, + "probability": 0.9944 + }, + { + "start": 16146.24, + "end": 16149.52, + "probability": 0.8541 + }, + { + "start": 16149.58, + "end": 16150.3, + "probability": 0.9205 + }, + { + "start": 16152.18, + "end": 16156.56, + "probability": 0.9897 + }, + { + "start": 16156.62, + "end": 16157.58, + "probability": 0.5922 + }, + { + "start": 16157.58, + "end": 16158.04, + "probability": 0.6729 + }, + { + "start": 16158.44, + "end": 16158.62, + "probability": 0.8723 + }, + { + "start": 16158.72, + "end": 16160.24, + "probability": 0.8186 + }, + { + "start": 16160.5, + "end": 16161.2, + "probability": 0.793 + }, + { + "start": 16162.68, + "end": 16165.22, + "probability": 0.7231 + }, + { + "start": 16165.26, + "end": 16166.46, + "probability": 0.8579 + }, + { + "start": 16166.74, + "end": 16168.08, + "probability": 0.8474 + }, + { + "start": 16168.54, + "end": 16171.02, + "probability": 0.9952 + }, + { + "start": 16171.9, + "end": 16174.16, + "probability": 0.9958 + }, + { + "start": 16174.16, + "end": 16177.62, + "probability": 0.8726 + }, + { + "start": 16178.12, + "end": 16183.36, + "probability": 0.9771 + }, + { + "start": 16187.08, + "end": 16188.12, + "probability": 0.0186 + }, + { + "start": 16188.72, + "end": 16188.84, + "probability": 0.2471 + }, + { + "start": 16188.84, + "end": 16188.9, + "probability": 0.0589 + }, + { + "start": 16188.9, + "end": 16189.32, + "probability": 0.924 + }, + { + "start": 16191.88, + "end": 16191.88, + "probability": 0.3508 + }, + { + "start": 16191.88, + "end": 16192.18, + "probability": 0.5007 + }, + { + "start": 16192.42, + "end": 16195.54, + "probability": 0.6851 + }, + { + "start": 16196.44, + "end": 16196.56, + "probability": 0.0309 + }, + { + "start": 16197.82, + "end": 16197.94, + "probability": 0.2878 + }, + { + "start": 16206.3, + "end": 16206.4, + "probability": 0.2969 + }, + { + "start": 16206.4, + "end": 16206.4, + "probability": 0.2923 + }, + { + "start": 16206.4, + "end": 16206.4, + "probability": 0.0207 + }, + { + "start": 16206.4, + "end": 16207.52, + "probability": 0.6156 + }, + { + "start": 16209.7, + "end": 16211.36, + "probability": 0.4767 + }, + { + "start": 16211.36, + "end": 16213.3, + "probability": 0.6753 + }, + { + "start": 16214.76, + "end": 16215.52, + "probability": 0.0804 + }, + { + "start": 16215.52, + "end": 16218.22, + "probability": 0.8506 + }, + { + "start": 16218.44, + "end": 16222.4, + "probability": 0.7362 + }, + { + "start": 16222.5, + "end": 16223.64, + "probability": 0.9156 + }, + { + "start": 16224.04, + "end": 16225.58, + "probability": 0.6261 + }, + { + "start": 16225.68, + "end": 16226.18, + "probability": 0.725 + }, + { + "start": 16227.32, + "end": 16230.72, + "probability": 0.9748 + }, + { + "start": 16230.92, + "end": 16231.5, + "probability": 0.6672 + }, + { + "start": 16231.56, + "end": 16232.06, + "probability": 0.5779 + }, + { + "start": 16232.08, + "end": 16232.96, + "probability": 0.7272 + }, + { + "start": 16233.48, + "end": 16234.9, + "probability": 0.4927 + }, + { + "start": 16236.06, + "end": 16237.6, + "probability": 0.8369 + }, + { + "start": 16237.64, + "end": 16237.84, + "probability": 0.6418 + }, + { + "start": 16237.96, + "end": 16238.26, + "probability": 0.8603 + }, + { + "start": 16238.62, + "end": 16239.58, + "probability": 0.7932 + }, + { + "start": 16239.68, + "end": 16240.88, + "probability": 0.7534 + }, + { + "start": 16241.04, + "end": 16241.42, + "probability": 0.8967 + }, + { + "start": 16241.48, + "end": 16243.02, + "probability": 0.9707 + }, + { + "start": 16243.56, + "end": 16244.03, + "probability": 0.8638 + }, + { + "start": 16245.34, + "end": 16245.76, + "probability": 0.4904 + }, + { + "start": 16246.42, + "end": 16247.72, + "probability": 0.9966 + }, + { + "start": 16248.08, + "end": 16249.02, + "probability": 0.9966 + }, + { + "start": 16249.82, + "end": 16251.58, + "probability": 0.9834 + }, + { + "start": 16252.44, + "end": 16253.76, + "probability": 0.9371 + }, + { + "start": 16253.8, + "end": 16253.96, + "probability": 0.7529 + }, + { + "start": 16253.96, + "end": 16255.26, + "probability": 0.7636 + }, + { + "start": 16255.32, + "end": 16256.78, + "probability": 0.9759 + }, + { + "start": 16257.64, + "end": 16258.9, + "probability": 0.9839 + }, + { + "start": 16259.0, + "end": 16261.4, + "probability": 0.6734 + }, + { + "start": 16261.46, + "end": 16262.32, + "probability": 0.7821 + }, + { + "start": 16262.44, + "end": 16263.82, + "probability": 0.8284 + }, + { + "start": 16264.34, + "end": 16265.9, + "probability": 0.9431 + }, + { + "start": 16266.24, + "end": 16270.56, + "probability": 0.9941 + }, + { + "start": 16271.82, + "end": 16274.44, + "probability": 0.9958 + }, + { + "start": 16274.48, + "end": 16274.88, + "probability": 0.7481 + }, + { + "start": 16275.42, + "end": 16277.52, + "probability": 0.8141 + }, + { + "start": 16277.68, + "end": 16279.34, + "probability": 0.9223 + }, + { + "start": 16279.9, + "end": 16282.66, + "probability": 0.8636 + }, + { + "start": 16283.52, + "end": 16286.1, + "probability": 0.9815 + }, + { + "start": 16287.0, + "end": 16288.22, + "probability": 0.825 + }, + { + "start": 16289.1, + "end": 16289.72, + "probability": 0.5492 + }, + { + "start": 16291.16, + "end": 16294.16, + "probability": 0.9618 + }, + { + "start": 16294.8, + "end": 16296.36, + "probability": 0.8889 + }, + { + "start": 16297.52, + "end": 16298.48, + "probability": 0.8228 + }, + { + "start": 16311.7, + "end": 16313.12, + "probability": 0.443 + }, + { + "start": 16313.38, + "end": 16315.24, + "probability": 0.9209 + }, + { + "start": 16315.92, + "end": 16316.46, + "probability": 0.7205 + }, + { + "start": 16317.42, + "end": 16318.72, + "probability": 0.9704 + }, + { + "start": 16319.62, + "end": 16320.18, + "probability": 0.6146 + }, + { + "start": 16320.46, + "end": 16323.38, + "probability": 0.9795 + }, + { + "start": 16324.2, + "end": 16326.98, + "probability": 0.745 + }, + { + "start": 16327.08, + "end": 16327.59, + "probability": 0.7333 + }, + { + "start": 16328.5, + "end": 16329.82, + "probability": 0.9512 + }, + { + "start": 16329.96, + "end": 16330.06, + "probability": 0.5758 + }, + { + "start": 16330.76, + "end": 16331.16, + "probability": 0.9341 + }, + { + "start": 16332.34, + "end": 16333.28, + "probability": 0.8121 + }, + { + "start": 16334.04, + "end": 16334.72, + "probability": 0.803 + }, + { + "start": 16336.18, + "end": 16338.24, + "probability": 0.9755 + }, + { + "start": 16339.38, + "end": 16340.94, + "probability": 0.6362 + }, + { + "start": 16343.74, + "end": 16343.84, + "probability": 0.5714 + }, + { + "start": 16343.84, + "end": 16345.28, + "probability": 0.7605 + }, + { + "start": 16345.58, + "end": 16348.96, + "probability": 0.7365 + }, + { + "start": 16349.88, + "end": 16350.86, + "probability": 0.9788 + }, + { + "start": 16351.56, + "end": 16351.56, + "probability": 0.4759 + }, + { + "start": 16352.32, + "end": 16353.54, + "probability": 0.9868 + }, + { + "start": 16353.72, + "end": 16356.1, + "probability": 0.7764 + }, + { + "start": 16356.22, + "end": 16356.62, + "probability": 0.8387 + }, + { + "start": 16356.7, + "end": 16358.36, + "probability": 0.6418 + }, + { + "start": 16358.52, + "end": 16361.44, + "probability": 0.0179 + }, + { + "start": 16362.64, + "end": 16363.02, + "probability": 0.4925 + }, + { + "start": 16369.24, + "end": 16369.52, + "probability": 0.7102 + }, + { + "start": 16369.68, + "end": 16370.8, + "probability": 0.4133 + }, + { + "start": 16370.98, + "end": 16371.06, + "probability": 0.4772 + }, + { + "start": 16371.06, + "end": 16372.02, + "probability": 0.9361 + }, + { + "start": 16372.06, + "end": 16372.56, + "probability": 0.6405 + }, + { + "start": 16373.12, + "end": 16375.16, + "probability": 0.3295 + }, + { + "start": 16376.52, + "end": 16378.52, + "probability": 0.8663 + }, + { + "start": 16379.04, + "end": 16381.72, + "probability": 0.873 + }, + { + "start": 16382.38, + "end": 16383.8, + "probability": 0.916 + }, + { + "start": 16384.0, + "end": 16384.34, + "probability": 0.4669 + }, + { + "start": 16384.4, + "end": 16386.0, + "probability": 0.9169 + }, + { + "start": 16386.64, + "end": 16389.82, + "probability": 0.672 + }, + { + "start": 16390.48, + "end": 16395.74, + "probability": 0.7983 + }, + { + "start": 16395.86, + "end": 16396.38, + "probability": 0.9041 + }, + { + "start": 16396.42, + "end": 16396.86, + "probability": 0.8244 + }, + { + "start": 16397.42, + "end": 16398.34, + "probability": 0.9966 + }, + { + "start": 16399.32, + "end": 16400.3, + "probability": 0.9746 + }, + { + "start": 16400.9, + "end": 16402.16, + "probability": 0.9847 + }, + { + "start": 16402.77, + "end": 16404.06, + "probability": 0.8789 + }, + { + "start": 16404.56, + "end": 16405.31, + "probability": 0.7276 + }, + { + "start": 16405.96, + "end": 16407.24, + "probability": 0.9949 + }, + { + "start": 16407.58, + "end": 16409.34, + "probability": 0.9971 + }, + { + "start": 16409.38, + "end": 16410.56, + "probability": 0.7362 + }, + { + "start": 16411.62, + "end": 16414.62, + "probability": 0.9655 + }, + { + "start": 16415.5, + "end": 16418.22, + "probability": 0.8041 + }, + { + "start": 16418.74, + "end": 16419.34, + "probability": 0.7999 + }, + { + "start": 16420.3, + "end": 16420.48, + "probability": 0.4005 + }, + { + "start": 16420.52, + "end": 16421.34, + "probability": 0.9727 + }, + { + "start": 16421.46, + "end": 16422.22, + "probability": 0.7138 + }, + { + "start": 16422.3, + "end": 16422.88, + "probability": 0.8864 + }, + { + "start": 16422.92, + "end": 16424.28, + "probability": 0.9946 + }, + { + "start": 16425.28, + "end": 16427.34, + "probability": 0.9226 + }, + { + "start": 16428.2, + "end": 16428.52, + "probability": 0.4227 + }, + { + "start": 16428.64, + "end": 16429.2, + "probability": 0.8894 + }, + { + "start": 16429.46, + "end": 16430.41, + "probability": 0.6517 + }, + { + "start": 16430.62, + "end": 16431.86, + "probability": 0.9629 + }, + { + "start": 16432.84, + "end": 16434.52, + "probability": 0.8144 + }, + { + "start": 16434.94, + "end": 16436.98, + "probability": 0.9927 + }, + { + "start": 16437.68, + "end": 16438.54, + "probability": 0.9839 + }, + { + "start": 16438.76, + "end": 16444.04, + "probability": 0.6649 + }, + { + "start": 16445.22, + "end": 16445.64, + "probability": 0.4862 + }, + { + "start": 16445.98, + "end": 16447.66, + "probability": 0.6018 + }, + { + "start": 16447.78, + "end": 16448.98, + "probability": 0.8072 + }, + { + "start": 16449.28, + "end": 16449.74, + "probability": 0.6227 + }, + { + "start": 16449.76, + "end": 16450.66, + "probability": 0.8259 + }, + { + "start": 16450.72, + "end": 16451.12, + "probability": 0.7433 + }, + { + "start": 16451.12, + "end": 16454.18, + "probability": 0.9456 + }, + { + "start": 16454.94, + "end": 16456.86, + "probability": 0.0507 + }, + { + "start": 16457.44, + "end": 16458.86, + "probability": 0.7349 + }, + { + "start": 16458.96, + "end": 16459.2, + "probability": 0.6959 + }, + { + "start": 16459.52, + "end": 16462.72, + "probability": 0.9893 + }, + { + "start": 16462.78, + "end": 16463.83, + "probability": 0.932 + }, + { + "start": 16463.92, + "end": 16465.12, + "probability": 0.8788 + }, + { + "start": 16465.14, + "end": 16467.1, + "probability": 0.7388 + }, + { + "start": 16467.52, + "end": 16468.15, + "probability": 0.7973 + }, + { + "start": 16469.02, + "end": 16469.84, + "probability": 0.799 + }, + { + "start": 16472.94, + "end": 16473.42, + "probability": 0.4998 + }, + { + "start": 16473.46, + "end": 16474.13, + "probability": 0.0146 + }, + { + "start": 16474.92, + "end": 16475.66, + "probability": 0.8243 + }, + { + "start": 16475.78, + "end": 16478.72, + "probability": 0.7561 + }, + { + "start": 16479.94, + "end": 16481.5, + "probability": 0.6653 + }, + { + "start": 16482.22, + "end": 16483.72, + "probability": 0.9404 + }, + { + "start": 16484.1, + "end": 16484.88, + "probability": 0.208 + }, + { + "start": 16485.08, + "end": 16485.78, + "probability": 0.8831 + }, + { + "start": 16486.04, + "end": 16487.04, + "probability": 0.855 + }, + { + "start": 16487.14, + "end": 16488.4, + "probability": 0.7064 + }, + { + "start": 16488.5, + "end": 16488.78, + "probability": 0.8779 + }, + { + "start": 16488.84, + "end": 16489.95, + "probability": 0.6071 + }, + { + "start": 16490.3, + "end": 16492.22, + "probability": 0.8006 + }, + { + "start": 16492.34, + "end": 16492.52, + "probability": 0.0044 + }, + { + "start": 16492.52, + "end": 16493.98, + "probability": 0.2169 + }, + { + "start": 16493.98, + "end": 16494.84, + "probability": 0.4821 + }, + { + "start": 16494.84, + "end": 16496.38, + "probability": 0.9204 + }, + { + "start": 16496.52, + "end": 16497.46, + "probability": 0.9664 + }, + { + "start": 16498.22, + "end": 16498.62, + "probability": 0.784 + }, + { + "start": 16498.7, + "end": 16501.74, + "probability": 0.8135 + }, + { + "start": 16501.8, + "end": 16502.4, + "probability": 0.5262 + }, + { + "start": 16502.4, + "end": 16503.44, + "probability": 0.7463 + }, + { + "start": 16503.6, + "end": 16504.46, + "probability": 0.6437 + }, + { + "start": 16504.54, + "end": 16506.0, + "probability": 0.6822 + }, + { + "start": 16510.52, + "end": 16512.88, + "probability": 0.24 + }, + { + "start": 16513.6, + "end": 16517.32, + "probability": 0.9585 + }, + { + "start": 16517.38, + "end": 16518.59, + "probability": 0.7585 + }, + { + "start": 16519.14, + "end": 16520.02, + "probability": 0.3481 + }, + { + "start": 16520.02, + "end": 16520.94, + "probability": 0.6565 + }, + { + "start": 16521.16, + "end": 16522.2, + "probability": 0.5543 + }, + { + "start": 16522.24, + "end": 16523.06, + "probability": 0.793 + }, + { + "start": 16523.08, + "end": 16523.8, + "probability": 0.8802 + }, + { + "start": 16523.88, + "end": 16524.5, + "probability": 0.8373 + }, + { + "start": 16524.9, + "end": 16525.38, + "probability": 0.9102 + }, + { + "start": 16526.4, + "end": 16528.48, + "probability": 0.7186 + }, + { + "start": 16528.54, + "end": 16530.46, + "probability": 0.9323 + }, + { + "start": 16532.78, + "end": 16536.36, + "probability": 0.5205 + }, + { + "start": 16536.52, + "end": 16537.2, + "probability": 0.6039 + }, + { + "start": 16537.48, + "end": 16538.1, + "probability": 0.6127 + }, + { + "start": 16538.1, + "end": 16538.1, + "probability": 0.9016 + }, + { + "start": 16538.1, + "end": 16538.64, + "probability": 0.9288 + }, + { + "start": 16539.5, + "end": 16540.2, + "probability": 0.9617 + }, + { + "start": 16541.22, + "end": 16544.16, + "probability": 0.9389 + }, + { + "start": 16561.36, + "end": 16564.4, + "probability": 0.5891 + }, + { + "start": 16565.66, + "end": 16566.54, + "probability": 0.1762 + }, + { + "start": 16566.7, + "end": 16567.64, + "probability": 0.6833 + }, + { + "start": 16567.78, + "end": 16569.06, + "probability": 0.2256 + }, + { + "start": 16569.34, + "end": 16569.72, + "probability": 0.5174 + }, + { + "start": 16569.72, + "end": 16574.6, + "probability": 0.9453 + }, + { + "start": 16576.28, + "end": 16577.76, + "probability": 0.9753 + }, + { + "start": 16577.92, + "end": 16580.64, + "probability": 0.9949 + }, + { + "start": 16581.6, + "end": 16585.08, + "probability": 0.7922 + }, + { + "start": 16585.82, + "end": 16589.52, + "probability": 0.9929 + }, + { + "start": 16590.12, + "end": 16594.84, + "probability": 0.9417 + }, + { + "start": 16595.68, + "end": 16598.48, + "probability": 0.8648 + }, + { + "start": 16598.88, + "end": 16600.44, + "probability": 0.9277 + }, + { + "start": 16601.26, + "end": 16602.06, + "probability": 0.9954 + }, + { + "start": 16602.9, + "end": 16604.98, + "probability": 0.5371 + }, + { + "start": 16605.0, + "end": 16607.72, + "probability": 0.982 + }, + { + "start": 16612.25, + "end": 16614.14, + "probability": 0.7508 + }, + { + "start": 16614.42, + "end": 16616.78, + "probability": 0.8068 + }, + { + "start": 16641.8, + "end": 16645.24, + "probability": 0.9843 + }, + { + "start": 16645.24, + "end": 16645.74, + "probability": 0.4892 + }, + { + "start": 16645.9, + "end": 16647.9, + "probability": 0.8197 + }, + { + "start": 16647.92, + "end": 16651.42, + "probability": 0.5285 + }, + { + "start": 16652.18, + "end": 16657.14, + "probability": 0.2747 + }, + { + "start": 16667.56, + "end": 16668.74, + "probability": 0.5417 + }, + { + "start": 16670.02, + "end": 16671.86, + "probability": 0.1581 + }, + { + "start": 16672.4, + "end": 16674.1, + "probability": 0.9355 + }, + { + "start": 16685.04, + "end": 16685.84, + "probability": 0.4371 + }, + { + "start": 16685.86, + "end": 16687.44, + "probability": 0.349 + }, + { + "start": 16687.44, + "end": 16688.36, + "probability": 0.7917 + }, + { + "start": 16688.44, + "end": 16690.1, + "probability": 0.7592 + }, + { + "start": 16690.43, + "end": 16692.67, + "probability": 0.0893 + }, + { + "start": 16698.6, + "end": 16703.0, + "probability": 0.9932 + }, + { + "start": 16705.16, + "end": 16710.76, + "probability": 0.9714 + }, + { + "start": 16710.82, + "end": 16711.82, + "probability": 0.3188 + }, + { + "start": 16712.84, + "end": 16715.7, + "probability": 0.7844 + }, + { + "start": 16716.38, + "end": 16718.77, + "probability": 0.9429 + }, + { + "start": 16720.3, + "end": 16720.56, + "probability": 0.8022 + }, + { + "start": 16721.84, + "end": 16725.7, + "probability": 0.9253 + }, + { + "start": 16725.9, + "end": 16727.48, + "probability": 0.9691 + }, + { + "start": 16727.54, + "end": 16730.5, + "probability": 0.9943 + }, + { + "start": 16731.82, + "end": 16734.18, + "probability": 0.983 + }, + { + "start": 16735.0, + "end": 16737.8, + "probability": 0.9972 + }, + { + "start": 16737.8, + "end": 16741.76, + "probability": 0.9989 + }, + { + "start": 16741.88, + "end": 16742.98, + "probability": 0.6876 + }, + { + "start": 16744.02, + "end": 16748.6, + "probability": 0.9976 + }, + { + "start": 16749.76, + "end": 16753.14, + "probability": 0.9961 + }, + { + "start": 16753.74, + "end": 16755.14, + "probability": 0.8879 + }, + { + "start": 16755.22, + "end": 16756.8, + "probability": 0.865 + }, + { + "start": 16756.9, + "end": 16760.76, + "probability": 0.9607 + }, + { + "start": 16761.64, + "end": 16764.12, + "probability": 0.9731 + }, + { + "start": 16765.36, + "end": 16765.66, + "probability": 0.8787 + }, + { + "start": 16766.54, + "end": 16768.64, + "probability": 0.9045 + }, + { + "start": 16769.28, + "end": 16771.48, + "probability": 0.8623 + }, + { + "start": 16773.02, + "end": 16775.48, + "probability": 0.5933 + }, + { + "start": 16776.38, + "end": 16778.88, + "probability": 0.8451 + }, + { + "start": 16782.3, + "end": 16785.6, + "probability": 0.7646 + }, + { + "start": 16786.24, + "end": 16788.66, + "probability": 0.999 + }, + { + "start": 16790.4, + "end": 16792.46, + "probability": 0.8392 + }, + { + "start": 16793.64, + "end": 16797.06, + "probability": 0.8446 + }, + { + "start": 16798.24, + "end": 16800.62, + "probability": 0.8906 + }, + { + "start": 16801.5, + "end": 16802.42, + "probability": 0.8716 + }, + { + "start": 16803.56, + "end": 16804.72, + "probability": 0.9593 + }, + { + "start": 16805.22, + "end": 16806.14, + "probability": 0.9227 + }, + { + "start": 16806.18, + "end": 16808.6, + "probability": 0.9854 + }, + { + "start": 16809.3, + "end": 16811.17, + "probability": 0.974 + }, + { + "start": 16812.09, + "end": 16815.76, + "probability": 0.9604 + }, + { + "start": 16816.8, + "end": 16819.18, + "probability": 0.998 + }, + { + "start": 16819.48, + "end": 16822.01, + "probability": 0.9971 + }, + { + "start": 16823.42, + "end": 16824.98, + "probability": 0.8359 + }, + { + "start": 16825.44, + "end": 16826.06, + "probability": 0.5982 + }, + { + "start": 16826.2, + "end": 16833.14, + "probability": 0.9815 + }, + { + "start": 16834.1, + "end": 16840.98, + "probability": 0.9881 + }, + { + "start": 16842.62, + "end": 16844.46, + "probability": 0.8309 + }, + { + "start": 16845.18, + "end": 16847.5, + "probability": 0.9921 + }, + { + "start": 16848.3, + "end": 16852.92, + "probability": 0.9952 + }, + { + "start": 16853.42, + "end": 16853.98, + "probability": 0.4435 + }, + { + "start": 16854.2, + "end": 16857.36, + "probability": 0.7987 + }, + { + "start": 16857.76, + "end": 16858.94, + "probability": 0.804 + }, + { + "start": 16859.12, + "end": 16860.79, + "probability": 0.9854 + }, + { + "start": 16861.76, + "end": 16862.66, + "probability": 0.971 + }, + { + "start": 16864.38, + "end": 16865.58, + "probability": 0.9877 + }, + { + "start": 16866.76, + "end": 16868.89, + "probability": 0.9971 + }, + { + "start": 16869.82, + "end": 16872.04, + "probability": 0.5055 + }, + { + "start": 16872.08, + "end": 16872.08, + "probability": 0.1055 + }, + { + "start": 16872.14, + "end": 16873.06, + "probability": 0.902 + }, + { + "start": 16873.18, + "end": 16875.03, + "probability": 0.9951 + }, + { + "start": 16875.5, + "end": 16878.16, + "probability": 0.9953 + }, + { + "start": 16878.9, + "end": 16882.2, + "probability": 0.9255 + }, + { + "start": 16882.88, + "end": 16890.6, + "probability": 0.9639 + }, + { + "start": 16891.7, + "end": 16892.7, + "probability": 0.8668 + }, + { + "start": 16893.04, + "end": 16896.4, + "probability": 0.9746 + }, + { + "start": 16896.68, + "end": 16899.46, + "probability": 0.9847 + }, + { + "start": 16900.44, + "end": 16903.22, + "probability": 0.949 + }, + { + "start": 16903.68, + "end": 16904.46, + "probability": 0.9753 + }, + { + "start": 16904.8, + "end": 16905.32, + "probability": 0.8262 + }, + { + "start": 16905.76, + "end": 16906.44, + "probability": 0.9753 + }, + { + "start": 16906.82, + "end": 16907.64, + "probability": 0.9655 + }, + { + "start": 16907.88, + "end": 16908.62, + "probability": 0.9067 + }, + { + "start": 16908.66, + "end": 16909.38, + "probability": 0.7456 + }, + { + "start": 16909.66, + "end": 16910.39, + "probability": 0.9019 + }, + { + "start": 16911.36, + "end": 16914.9, + "probability": 0.9762 + }, + { + "start": 16914.9, + "end": 16916.66, + "probability": 0.3933 + }, + { + "start": 16918.1, + "end": 16918.26, + "probability": 0.0979 + }, + { + "start": 16918.26, + "end": 16918.96, + "probability": 0.5965 + }, + { + "start": 16919.48, + "end": 16919.9, + "probability": 0.345 + }, + { + "start": 16919.92, + "end": 16920.4, + "probability": 0.6826 + }, + { + "start": 16920.82, + "end": 16921.2, + "probability": 0.6609 + }, + { + "start": 16921.2, + "end": 16921.72, + "probability": 0.7671 + }, + { + "start": 16922.08, + "end": 16922.52, + "probability": 0.6191 + }, + { + "start": 16922.52, + "end": 16923.0, + "probability": 0.7891 + }, + { + "start": 16923.2, + "end": 16923.62, + "probability": 0.6303 + }, + { + "start": 16923.62, + "end": 16924.16, + "probability": 0.8294 + }, + { + "start": 16924.72, + "end": 16927.02, + "probability": 0.959 + }, + { + "start": 16927.54, + "end": 16930.58, + "probability": 0.9907 + }, + { + "start": 16931.52, + "end": 16934.4, + "probability": 0.9976 + }, + { + "start": 16934.56, + "end": 16936.58, + "probability": 0.9421 + }, + { + "start": 16937.12, + "end": 16939.9, + "probability": 0.8528 + }, + { + "start": 16939.98, + "end": 16941.76, + "probability": 0.7175 + }, + { + "start": 16941.86, + "end": 16943.52, + "probability": 0.9498 + }, + { + "start": 16945.48, + "end": 16947.1, + "probability": 0.9894 + }, + { + "start": 16947.98, + "end": 16951.84, + "probability": 0.7815 + }, + { + "start": 16952.56, + "end": 16953.36, + "probability": 0.7272 + }, + { + "start": 16954.2, + "end": 16957.56, + "probability": 0.9756 + }, + { + "start": 16958.34, + "end": 16959.68, + "probability": 0.9832 + }, + { + "start": 16959.72, + "end": 16960.42, + "probability": 0.981 + }, + { + "start": 16960.66, + "end": 16962.2, + "probability": 0.9884 + }, + { + "start": 16963.02, + "end": 16964.86, + "probability": 0.7302 + }, + { + "start": 16965.22, + "end": 16967.42, + "probability": 0.9436 + }, + { + "start": 16968.18, + "end": 16968.74, + "probability": 0.6956 + }, + { + "start": 16983.56, + "end": 16983.72, + "probability": 0.0422 + }, + { + "start": 16983.72, + "end": 16985.78, + "probability": 0.6211 + }, + { + "start": 16985.88, + "end": 16986.64, + "probability": 0.7014 + }, + { + "start": 16986.66, + "end": 16987.24, + "probability": 0.8737 + }, + { + "start": 16987.38, + "end": 16989.89, + "probability": 0.9975 + }, + { + "start": 16991.72, + "end": 16994.24, + "probability": 0.777 + }, + { + "start": 16994.83, + "end": 16995.9, + "probability": 0.9033 + }, + { + "start": 16996.04, + "end": 16996.92, + "probability": 0.6577 + }, + { + "start": 16996.96, + "end": 17001.36, + "probability": 0.9834 + }, + { + "start": 17001.44, + "end": 17003.92, + "probability": 0.9468 + }, + { + "start": 17004.44, + "end": 17006.58, + "probability": 0.9821 + }, + { + "start": 17006.94, + "end": 17008.72, + "probability": 0.8209 + }, + { + "start": 17009.32, + "end": 17013.7, + "probability": 0.9908 + }, + { + "start": 17013.74, + "end": 17015.56, + "probability": 0.9438 + }, + { + "start": 17016.28, + "end": 17018.36, + "probability": 0.7535 + }, + { + "start": 17018.84, + "end": 17020.78, + "probability": 0.9548 + }, + { + "start": 17020.84, + "end": 17021.46, + "probability": 0.4327 + }, + { + "start": 17021.46, + "end": 17021.81, + "probability": 0.3101 + }, + { + "start": 17022.12, + "end": 17022.5, + "probability": 0.8174 + }, + { + "start": 17026.3, + "end": 17028.74, + "probability": 0.9233 + }, + { + "start": 17029.74, + "end": 17030.38, + "probability": 0.9519 + }, + { + "start": 17061.09, + "end": 17063.02, + "probability": 0.2425 + }, + { + "start": 17063.64, + "end": 17068.36, + "probability": 0.0192 + }, + { + "start": 17068.62, + "end": 17068.82, + "probability": 0.1918 + }, + { + "start": 17068.82, + "end": 17070.16, + "probability": 0.2555 + }, + { + "start": 17071.12, + "end": 17074.62, + "probability": 0.1586 + }, + { + "start": 17081.01, + "end": 17082.62, + "probability": 0.0905 + }, + { + "start": 17082.86, + "end": 17087.16, + "probability": 0.0596 + }, + { + "start": 17087.16, + "end": 17088.2, + "probability": 0.0688 + }, + { + "start": 17090.22, + "end": 17092.68, + "probability": 0.2439 + }, + { + "start": 17093.92, + "end": 17094.22, + "probability": 0.3036 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17124.0, + "end": 17124.0, + "probability": 0.0 + }, + { + "start": 17127.58, + "end": 17129.98, + "probability": 0.7085 + }, + { + "start": 17130.24, + "end": 17130.94, + "probability": 0.6696 + }, + { + "start": 17131.72, + "end": 17132.92, + "probability": 0.1236 + }, + { + "start": 17135.7, + "end": 17137.3, + "probability": 0.5208 + }, + { + "start": 17138.86, + "end": 17143.44, + "probability": 0.9901 + }, + { + "start": 17143.44, + "end": 17147.34, + "probability": 0.68 + }, + { + "start": 17148.76, + "end": 17149.28, + "probability": 0.1914 + }, + { + "start": 17150.4, + "end": 17151.24, + "probability": 0.82 + }, + { + "start": 17151.82, + "end": 17155.92, + "probability": 0.979 + }, + { + "start": 17156.94, + "end": 17159.4, + "probability": 0.9945 + }, + { + "start": 17159.98, + "end": 17164.92, + "probability": 0.9552 + }, + { + "start": 17164.92, + "end": 17168.58, + "probability": 0.9963 + }, + { + "start": 17169.98, + "end": 17174.22, + "probability": 0.9706 + }, + { + "start": 17174.82, + "end": 17177.44, + "probability": 0.9615 + }, + { + "start": 17177.92, + "end": 17180.34, + "probability": 0.9939 + }, + { + "start": 17181.1, + "end": 17184.08, + "probability": 0.8555 + }, + { + "start": 17184.68, + "end": 17189.4, + "probability": 0.9852 + }, + { + "start": 17190.08, + "end": 17190.46, + "probability": 0.6597 + }, + { + "start": 17192.28, + "end": 17193.7, + "probability": 0.7366 + }, + { + "start": 17194.34, + "end": 17195.78, + "probability": 0.7395 + }, + { + "start": 17196.34, + "end": 17198.88, + "probability": 0.7937 + }, + { + "start": 17199.48, + "end": 17205.4, + "probability": 0.9791 + }, + { + "start": 17205.4, + "end": 17210.64, + "probability": 0.9906 + }, + { + "start": 17211.62, + "end": 17213.0, + "probability": 0.8802 + }, + { + "start": 17213.36, + "end": 17217.82, + "probability": 0.9236 + }, + { + "start": 17218.56, + "end": 17220.2, + "probability": 0.8665 + }, + { + "start": 17221.82, + "end": 17223.48, + "probability": 0.923 + }, + { + "start": 17224.2, + "end": 17225.92, + "probability": 0.927 + }, + { + "start": 17226.16, + "end": 17229.46, + "probability": 0.9529 + }, + { + "start": 17231.08, + "end": 17232.84, + "probability": 0.9989 + }, + { + "start": 17233.62, + "end": 17234.6, + "probability": 0.8728 + }, + { + "start": 17235.8, + "end": 17236.48, + "probability": 0.7972 + }, + { + "start": 17237.16, + "end": 17241.58, + "probability": 0.9531 + }, + { + "start": 17242.44, + "end": 17244.98, + "probability": 0.9976 + }, + { + "start": 17245.54, + "end": 17247.32, + "probability": 0.8291 + }, + { + "start": 17248.22, + "end": 17249.22, + "probability": 0.7381 + }, + { + "start": 17249.92, + "end": 17253.18, + "probability": 0.9186 + }, + { + "start": 17254.14, + "end": 17255.14, + "probability": 0.9448 + }, + { + "start": 17255.64, + "end": 17256.72, + "probability": 0.9619 + }, + { + "start": 17257.18, + "end": 17258.2, + "probability": 0.958 + }, + { + "start": 17258.54, + "end": 17260.86, + "probability": 0.994 + }, + { + "start": 17262.2, + "end": 17267.52, + "probability": 0.983 + }, + { + "start": 17268.02, + "end": 17269.42, + "probability": 0.9755 + }, + { + "start": 17270.12, + "end": 17272.94, + "probability": 0.9846 + }, + { + "start": 17273.56, + "end": 17278.84, + "probability": 0.9271 + }, + { + "start": 17279.36, + "end": 17281.3, + "probability": 0.9839 + }, + { + "start": 17281.82, + "end": 17284.76, + "probability": 0.961 + }, + { + "start": 17285.34, + "end": 17287.2, + "probability": 0.9807 + }, + { + "start": 17288.42, + "end": 17288.68, + "probability": 0.6362 + }, + { + "start": 17288.92, + "end": 17289.66, + "probability": 0.9708 + }, + { + "start": 17290.14, + "end": 17296.06, + "probability": 0.9536 + }, + { + "start": 17296.06, + "end": 17300.64, + "probability": 0.9732 + }, + { + "start": 17301.2, + "end": 17302.98, + "probability": 0.967 + }, + { + "start": 17303.72, + "end": 17306.1, + "probability": 0.9962 + }, + { + "start": 17307.24, + "end": 17308.46, + "probability": 0.8002 + }, + { + "start": 17309.36, + "end": 17311.2, + "probability": 0.8445 + }, + { + "start": 17312.24, + "end": 17313.58, + "probability": 0.9199 + }, + { + "start": 17314.3, + "end": 17320.7, + "probability": 0.9717 + }, + { + "start": 17321.58, + "end": 17328.38, + "probability": 0.9956 + }, + { + "start": 17328.9, + "end": 17331.88, + "probability": 0.9692 + }, + { + "start": 17332.88, + "end": 17334.14, + "probability": 0.803 + }, + { + "start": 17335.19, + "end": 17340.84, + "probability": 0.939 + }, + { + "start": 17341.92, + "end": 17345.72, + "probability": 0.9821 + }, + { + "start": 17349.48, + "end": 17352.9, + "probability": 0.518 + }, + { + "start": 17355.12, + "end": 17357.3, + "probability": 0.8145 + }, + { + "start": 17358.04, + "end": 17359.16, + "probability": 0.7642 + }, + { + "start": 17359.86, + "end": 17362.14, + "probability": 0.9861 + }, + { + "start": 17362.8, + "end": 17367.5, + "probability": 0.993 + }, + { + "start": 17368.04, + "end": 17370.14, + "probability": 0.957 + }, + { + "start": 17370.92, + "end": 17372.02, + "probability": 0.4267 + }, + { + "start": 17372.58, + "end": 17374.6, + "probability": 0.952 + }, + { + "start": 17375.22, + "end": 17378.33, + "probability": 0.974 + }, + { + "start": 17379.22, + "end": 17380.32, + "probability": 0.748 + }, + { + "start": 17380.92, + "end": 17382.53, + "probability": 0.9739 + }, + { + "start": 17383.22, + "end": 17386.82, + "probability": 0.9445 + }, + { + "start": 17387.7, + "end": 17388.84, + "probability": 0.9465 + }, + { + "start": 17389.68, + "end": 17392.1, + "probability": 0.9944 + }, + { + "start": 17392.66, + "end": 17396.0, + "probability": 0.9869 + }, + { + "start": 17396.38, + "end": 17401.0, + "probability": 0.9943 + }, + { + "start": 17401.98, + "end": 17406.0, + "probability": 0.994 + }, + { + "start": 17406.38, + "end": 17412.22, + "probability": 0.7504 + }, + { + "start": 17412.7, + "end": 17416.72, + "probability": 0.988 + }, + { + "start": 17417.08, + "end": 17417.92, + "probability": 0.8251 + }, + { + "start": 17418.42, + "end": 17421.04, + "probability": 0.7688 + }, + { + "start": 17421.7, + "end": 17424.3, + "probability": 0.9235 + }, + { + "start": 17424.7, + "end": 17425.22, + "probability": 0.4084 + }, + { + "start": 17425.28, + "end": 17426.42, + "probability": 0.7441 + }, + { + "start": 17427.02, + "end": 17429.34, + "probability": 0.945 + }, + { + "start": 17429.68, + "end": 17434.82, + "probability": 0.9524 + }, + { + "start": 17435.36, + "end": 17435.76, + "probability": 0.788 + }, + { + "start": 17435.92, + "end": 17438.02, + "probability": 0.7444 + }, + { + "start": 17439.6, + "end": 17440.02, + "probability": 0.4753 + }, + { + "start": 17462.7, + "end": 17466.0, + "probability": 0.5917 + }, + { + "start": 17466.46, + "end": 17469.64, + "probability": 0.8634 + }, + { + "start": 17469.64, + "end": 17471.58, + "probability": 0.4983 + }, + { + "start": 17471.58, + "end": 17473.54, + "probability": 0.4292 + }, + { + "start": 17475.24, + "end": 17476.34, + "probability": 0.0383 + }, + { + "start": 17481.44, + "end": 17483.12, + "probability": 0.2229 + }, + { + "start": 17498.74, + "end": 17498.74, + "probability": 0.0421 + }, + { + "start": 17498.74, + "end": 17498.74, + "probability": 0.0128 + }, + { + "start": 17520.78, + "end": 17525.86, + "probability": 0.8979 + }, + { + "start": 17526.02, + "end": 17527.14, + "probability": 0.9954 + }, + { + "start": 17528.26, + "end": 17529.98, + "probability": 0.7532 + }, + { + "start": 17530.06, + "end": 17531.56, + "probability": 0.8513 + }, + { + "start": 17531.56, + "end": 17533.94, + "probability": 0.9844 + }, + { + "start": 17534.24, + "end": 17537.82, + "probability": 0.9167 + }, + { + "start": 17537.82, + "end": 17542.06, + "probability": 0.9983 + }, + { + "start": 17543.04, + "end": 17546.9, + "probability": 0.9977 + }, + { + "start": 17548.82, + "end": 17553.14, + "probability": 0.9987 + }, + { + "start": 17554.4, + "end": 17558.84, + "probability": 0.998 + }, + { + "start": 17558.84, + "end": 17565.84, + "probability": 0.9994 + }, + { + "start": 17566.86, + "end": 17568.32, + "probability": 0.9561 + }, + { + "start": 17569.58, + "end": 17575.34, + "probability": 0.9967 + }, + { + "start": 17575.34, + "end": 17581.24, + "probability": 0.9943 + }, + { + "start": 17581.76, + "end": 17583.48, + "probability": 0.9766 + }, + { + "start": 17584.24, + "end": 17586.02, + "probability": 0.9587 + }, + { + "start": 17587.16, + "end": 17587.6, + "probability": 0.648 + }, + { + "start": 17588.4, + "end": 17590.08, + "probability": 0.9506 + }, + { + "start": 17590.14, + "end": 17593.54, + "probability": 0.9666 + }, + { + "start": 17593.54, + "end": 17597.84, + "probability": 0.995 + }, + { + "start": 17598.52, + "end": 17601.32, + "probability": 0.997 + }, + { + "start": 17601.32, + "end": 17604.6, + "probability": 0.9952 + }, + { + "start": 17605.68, + "end": 17612.36, + "probability": 0.9976 + }, + { + "start": 17613.3, + "end": 17616.64, + "probability": 0.9982 + }, + { + "start": 17617.4, + "end": 17621.84, + "probability": 0.998 + }, + { + "start": 17621.84, + "end": 17625.88, + "probability": 0.9159 + }, + { + "start": 17626.56, + "end": 17628.48, + "probability": 0.8997 + }, + { + "start": 17629.2, + "end": 17629.94, + "probability": 0.9224 + }, + { + "start": 17631.58, + "end": 17632.98, + "probability": 0.8841 + }, + { + "start": 17633.5, + "end": 17634.66, + "probability": 0.9193 + }, + { + "start": 17635.54, + "end": 17636.86, + "probability": 0.8292 + }, + { + "start": 17636.96, + "end": 17639.04, + "probability": 0.9861 + }, + { + "start": 17639.54, + "end": 17640.92, + "probability": 0.9642 + }, + { + "start": 17641.06, + "end": 17641.92, + "probability": 0.7541 + }, + { + "start": 17642.76, + "end": 17649.44, + "probability": 0.9732 + }, + { + "start": 17650.66, + "end": 17650.66, + "probability": 0.0086 + }, + { + "start": 17650.74, + "end": 17650.74, + "probability": 0.0994 + }, + { + "start": 17650.74, + "end": 17650.74, + "probability": 0.0957 + }, + { + "start": 17650.74, + "end": 17658.2, + "probability": 0.9833 + }, + { + "start": 17658.8, + "end": 17662.14, + "probability": 0.9844 + }, + { + "start": 17662.86, + "end": 17663.06, + "probability": 0.2218 + }, + { + "start": 17663.06, + "end": 17665.0, + "probability": 0.9677 + }, + { + "start": 17666.68, + "end": 17667.78, + "probability": 0.9395 + }, + { + "start": 17668.5, + "end": 17670.76, + "probability": 0.981 + }, + { + "start": 17671.54, + "end": 17673.34, + "probability": 0.9525 + }, + { + "start": 17673.78, + "end": 17679.88, + "probability": 0.9803 + }, + { + "start": 17680.4, + "end": 17686.34, + "probability": 0.9819 + }, + { + "start": 17686.44, + "end": 17686.76, + "probability": 0.2063 + }, + { + "start": 17687.46, + "end": 17690.78, + "probability": 0.9889 + }, + { + "start": 17691.52, + "end": 17692.62, + "probability": 0.939 + }, + { + "start": 17693.26, + "end": 17698.86, + "probability": 0.9925 + }, + { + "start": 17699.44, + "end": 17702.88, + "probability": 0.9025 + }, + { + "start": 17703.42, + "end": 17706.46, + "probability": 0.9888 + }, + { + "start": 17707.0, + "end": 17709.96, + "probability": 0.9599 + }, + { + "start": 17710.42, + "end": 17713.8, + "probability": 0.9601 + }, + { + "start": 17717.4, + "end": 17719.34, + "probability": 0.48 + }, + { + "start": 17719.34, + "end": 17720.64, + "probability": 0.4642 + }, + { + "start": 17721.1, + "end": 17722.58, + "probability": 0.9893 + }, + { + "start": 17722.6, + "end": 17725.66, + "probability": 0.9601 + }, + { + "start": 17726.2, + "end": 17730.14, + "probability": 0.9946 + }, + { + "start": 17730.68, + "end": 17732.0, + "probability": 0.8763 + }, + { + "start": 17732.62, + "end": 17735.9, + "probability": 0.993 + }, + { + "start": 17736.44, + "end": 17737.94, + "probability": 0.9088 + }, + { + "start": 17738.06, + "end": 17738.3, + "probability": 0.7601 + }, + { + "start": 17740.16, + "end": 17742.32, + "probability": 0.7886 + }, + { + "start": 17742.46, + "end": 17745.7, + "probability": 0.9849 + }, + { + "start": 17746.34, + "end": 17746.41, + "probability": 0.0161 + }, + { + "start": 17747.7, + "end": 17749.68, + "probability": 0.3656 + }, + { + "start": 17750.68, + "end": 17752.24, + "probability": 0.3975 + }, + { + "start": 17753.52, + "end": 17755.45, + "probability": 0.5222 + }, + { + "start": 17755.8, + "end": 17756.54, + "probability": 0.266 + }, + { + "start": 17756.84, + "end": 17757.04, + "probability": 0.2014 + }, + { + "start": 17757.04, + "end": 17759.18, + "probability": 0.7788 + }, + { + "start": 17759.78, + "end": 17765.36, + "probability": 0.7461 + }, + { + "start": 17765.98, + "end": 17767.42, + "probability": 0.4561 + }, + { + "start": 17767.56, + "end": 17767.56, + "probability": 0.2054 + }, + { + "start": 17767.56, + "end": 17771.84, + "probability": 0.7031 + }, + { + "start": 17772.86, + "end": 17773.72, + "probability": 0.493 + }, + { + "start": 17773.96, + "end": 17777.91, + "probability": 0.5777 + }, + { + "start": 17778.46, + "end": 17780.78, + "probability": 0.102 + }, + { + "start": 17781.9, + "end": 17783.48, + "probability": 0.873 + }, + { + "start": 17783.56, + "end": 17785.54, + "probability": 0.9506 + }, + { + "start": 17786.0, + "end": 17786.88, + "probability": 0.688 + }, + { + "start": 17786.9, + "end": 17789.34, + "probability": 0.9823 + }, + { + "start": 17790.22, + "end": 17794.36, + "probability": 0.9467 + }, + { + "start": 17795.32, + "end": 17797.56, + "probability": 0.7859 + }, + { + "start": 17798.12, + "end": 17800.06, + "probability": 0.9645 + }, + { + "start": 17800.78, + "end": 17801.48, + "probability": 0.9511 + }, + { + "start": 17802.34, + "end": 17803.26, + "probability": 0.9889 + }, + { + "start": 17804.04, + "end": 17804.72, + "probability": 0.9699 + }, + { + "start": 17805.64, + "end": 17808.78, + "probability": 0.6796 + }, + { + "start": 17809.35, + "end": 17812.5, + "probability": 0.7395 + }, + { + "start": 17813.74, + "end": 17816.14, + "probability": 0.98 + }, + { + "start": 17816.76, + "end": 17819.0, + "probability": 0.9822 + }, + { + "start": 17819.76, + "end": 17821.86, + "probability": 0.9577 + }, + { + "start": 17822.88, + "end": 17824.04, + "probability": 0.8142 + }, + { + "start": 17824.42, + "end": 17825.08, + "probability": 0.82 + }, + { + "start": 17825.54, + "end": 17826.76, + "probability": 0.9945 + }, + { + "start": 17827.14, + "end": 17827.68, + "probability": 0.9244 + }, + { + "start": 17829.08, + "end": 17830.72, + "probability": 0.994 + }, + { + "start": 17832.04, + "end": 17832.76, + "probability": 0.9698 + }, + { + "start": 17833.44, + "end": 17834.99, + "probability": 0.9751 + }, + { + "start": 17835.16, + "end": 17835.88, + "probability": 0.9622 + }, + { + "start": 17836.14, + "end": 17837.74, + "probability": 0.7734 + }, + { + "start": 17838.2, + "end": 17838.84, + "probability": 0.6172 + }, + { + "start": 17840.08, + "end": 17841.2, + "probability": 0.9703 + }, + { + "start": 17841.44, + "end": 17842.04, + "probability": 0.9016 + }, + { + "start": 17842.2, + "end": 17844.34, + "probability": 0.6968 + }, + { + "start": 17844.52, + "end": 17845.26, + "probability": 0.9693 + }, + { + "start": 17845.5, + "end": 17847.26, + "probability": 0.9792 + }, + { + "start": 17848.1, + "end": 17849.02, + "probability": 0.9895 + }, + { + "start": 17849.22, + "end": 17851.32, + "probability": 0.7204 + }, + { + "start": 17851.5, + "end": 17852.24, + "probability": 0.7244 + }, + { + "start": 17853.2, + "end": 17854.06, + "probability": 0.9542 + }, + { + "start": 17854.6, + "end": 17855.18, + "probability": 0.9005 + }, + { + "start": 17855.8, + "end": 17857.2, + "probability": 0.9921 + }, + { + "start": 17857.42, + "end": 17858.16, + "probability": 0.9643 + }, + { + "start": 17858.62, + "end": 17859.88, + "probability": 0.9895 + }, + { + "start": 17860.9, + "end": 17861.7, + "probability": 0.952 + }, + { + "start": 17862.92, + "end": 17865.9, + "probability": 0.7162 + }, + { + "start": 17867.12, + "end": 17868.94, + "probability": 0.9186 + }, + { + "start": 17869.22, + "end": 17869.94, + "probability": 0.9055 + }, + { + "start": 17870.2, + "end": 17871.6, + "probability": 0.973 + }, + { + "start": 17871.82, + "end": 17872.44, + "probability": 0.921 + }, + { + "start": 17873.08, + "end": 17875.24, + "probability": 0.9917 + }, + { + "start": 17876.02, + "end": 17877.66, + "probability": 0.8608 + }, + { + "start": 17878.34, + "end": 17878.88, + "probability": 0.4286 + }, + { + "start": 17879.72, + "end": 17881.08, + "probability": 0.8032 + }, + { + "start": 17881.32, + "end": 17882.0, + "probability": 0.8166 + }, + { + "start": 17882.42, + "end": 17884.6, + "probability": 0.8862 + }, + { + "start": 17884.8, + "end": 17885.5, + "probability": 0.9647 + }, + { + "start": 17886.42, + "end": 17888.9, + "probability": 0.9858 + }, + { + "start": 17889.8, + "end": 17891.14, + "probability": 0.9945 + }, + { + "start": 17891.74, + "end": 17895.2, + "probability": 0.8265 + }, + { + "start": 17896.18, + "end": 17898.68, + "probability": 0.9466 + }, + { + "start": 17898.98, + "end": 17900.74, + "probability": 0.9966 + }, + { + "start": 17900.76, + "end": 17901.5, + "probability": 0.9721 + }, + { + "start": 17902.46, + "end": 17903.98, + "probability": 0.9405 + }, + { + "start": 17904.56, + "end": 17905.24, + "probability": 0.9366 + }, + { + "start": 17905.62, + "end": 17906.84, + "probability": 0.9681 + }, + { + "start": 17907.12, + "end": 17907.74, + "probability": 0.4113 + }, + { + "start": 17907.9, + "end": 17909.29, + "probability": 0.8259 + }, + { + "start": 17910.36, + "end": 17911.38, + "probability": 0.4849 + }, + { + "start": 17911.7, + "end": 17914.16, + "probability": 0.8733 + }, + { + "start": 17915.32, + "end": 17919.56, + "probability": 0.0148 + }, + { + "start": 17935.84, + "end": 17936.36, + "probability": 0.0292 + }, + { + "start": 17937.26, + "end": 17937.26, + "probability": 0.5215 + }, + { + "start": 17937.26, + "end": 17939.42, + "probability": 0.3694 + }, + { + "start": 17939.72, + "end": 17941.96, + "probability": 0.9294 + }, + { + "start": 17941.96, + "end": 17944.7, + "probability": 0.3499 + }, + { + "start": 17945.42, + "end": 17947.22, + "probability": 0.9897 + }, + { + "start": 17947.94, + "end": 17948.24, + "probability": 0.9554 + }, + { + "start": 17950.3, + "end": 17953.14, + "probability": 0.9959 + }, + { + "start": 17954.18, + "end": 17956.56, + "probability": 0.891 + }, + { + "start": 17957.46, + "end": 17959.1, + "probability": 0.8398 + }, + { + "start": 17959.26, + "end": 17960.64, + "probability": 0.7432 + }, + { + "start": 17960.74, + "end": 17962.56, + "probability": 0.9921 + }, + { + "start": 17963.2, + "end": 17966.86, + "probability": 0.9616 + }, + { + "start": 17966.86, + "end": 17968.24, + "probability": 0.5095 + }, + { + "start": 17968.8, + "end": 17974.0, + "probability": 0.9885 + }, + { + "start": 17976.66, + "end": 17981.56, + "probability": 0.9717 + }, + { + "start": 17981.56, + "end": 17983.36, + "probability": 0.7754 + }, + { + "start": 17983.36, + "end": 17986.32, + "probability": 0.9648 + }, + { + "start": 17987.8, + "end": 17990.12, + "probability": 0.1292 + }, + { + "start": 17992.14, + "end": 17992.8, + "probability": 0.5226 + }, + { + "start": 17994.36, + "end": 17996.52, + "probability": 0.8096 + }, + { + "start": 17998.47, + "end": 18003.08, + "probability": 0.8359 + }, + { + "start": 18003.8, + "end": 18007.66, + "probability": 0.916 + }, + { + "start": 18009.14, + "end": 18010.36, + "probability": 0.9085 + }, + { + "start": 18010.98, + "end": 18011.9, + "probability": 0.4654 + }, + { + "start": 18012.3, + "end": 18014.2, + "probability": 0.9727 + }, + { + "start": 18014.46, + "end": 18015.06, + "probability": 0.6918 + }, + { + "start": 18015.2, + "end": 18016.76, + "probability": 0.638 + }, + { + "start": 18016.96, + "end": 18020.26, + "probability": 0.2932 + }, + { + "start": 18020.44, + "end": 18022.94, + "probability": 0.7725 + }, + { + "start": 18024.58, + "end": 18024.72, + "probability": 0.2468 + } + ], + "segments_count": 6853, + "words_count": 33203, + "avg_words_per_segment": 4.845, + "avg_segment_duration": 1.8542, + "avg_words_per_minute": 110.0535, + "plenum_id": "104663", + "duration": 18101.92, + "title": null, + "plenum_date": "2022-01-24" +} \ No newline at end of file