diff --git "a/105861/metadata.json" "b/105861/metadata.json" new file mode 100644--- /dev/null +++ "b/105861/metadata.json" @@ -0,0 +1,17187 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "105861", + "quality_score": 0.8646, + "per_segment_quality_scores": [ + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.2, + "end": 124.24, + "probability": 0.0127 + }, + { + "start": 124.24, + "end": 131.1, + "probability": 0.2307 + }, + { + "start": 131.1, + "end": 134.78, + "probability": 0.1161 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.28, + "end": 245.92, + "probability": 0.0061 + }, + { + "start": 245.92, + "end": 245.92, + "probability": 0.0285 + }, + { + "start": 245.92, + "end": 248.74, + "probability": 0.8534 + }, + { + "start": 249.26, + "end": 249.82, + "probability": 0.8491 + }, + { + "start": 249.98, + "end": 251.36, + "probability": 0.6161 + }, + { + "start": 251.86, + "end": 252.58, + "probability": 0.8685 + }, + { + "start": 252.72, + "end": 253.56, + "probability": 0.8418 + }, + { + "start": 254.14, + "end": 257.22, + "probability": 0.9752 + }, + { + "start": 274.9, + "end": 275.75, + "probability": 0.4653 + }, + { + "start": 276.58, + "end": 278.26, + "probability": 0.8521 + }, + { + "start": 278.46, + "end": 279.76, + "probability": 0.6588 + }, + { + "start": 279.84, + "end": 281.96, + "probability": 0.9021 + }, + { + "start": 282.08, + "end": 284.3, + "probability": 0.8959 + }, + { + "start": 284.38, + "end": 285.9, + "probability": 0.9782 + }, + { + "start": 287.3, + "end": 292.46, + "probability": 0.9529 + }, + { + "start": 292.86, + "end": 298.14, + "probability": 0.9904 + }, + { + "start": 299.0, + "end": 300.4, + "probability": 0.88 + }, + { + "start": 300.96, + "end": 303.24, + "probability": 0.8491 + }, + { + "start": 303.72, + "end": 306.5, + "probability": 0.7287 + }, + { + "start": 306.72, + "end": 307.9, + "probability": 0.9695 + }, + { + "start": 308.43, + "end": 311.76, + "probability": 0.9106 + }, + { + "start": 313.28, + "end": 315.24, + "probability": 0.9559 + }, + { + "start": 315.9, + "end": 320.35, + "probability": 0.959 + }, + { + "start": 321.66, + "end": 323.12, + "probability": 0.6791 + }, + { + "start": 324.32, + "end": 324.93, + "probability": 0.7532 + }, + { + "start": 326.18, + "end": 328.82, + "probability": 0.8329 + }, + { + "start": 329.8, + "end": 335.48, + "probability": 0.9186 + }, + { + "start": 336.24, + "end": 336.34, + "probability": 0.8065 + }, + { + "start": 337.1, + "end": 338.34, + "probability": 0.999 + }, + { + "start": 338.66, + "end": 340.16, + "probability": 0.9321 + }, + { + "start": 340.32, + "end": 340.74, + "probability": 0.689 + }, + { + "start": 341.8, + "end": 345.3, + "probability": 0.9821 + }, + { + "start": 350.08, + "end": 350.56, + "probability": 0.897 + }, + { + "start": 350.62, + "end": 351.28, + "probability": 0.9129 + }, + { + "start": 351.36, + "end": 352.18, + "probability": 0.7637 + }, + { + "start": 352.32, + "end": 353.42, + "probability": 0.9906 + }, + { + "start": 354.8, + "end": 359.68, + "probability": 0.9899 + }, + { + "start": 360.32, + "end": 361.9, + "probability": 0.5161 + }, + { + "start": 362.08, + "end": 364.36, + "probability": 0.9753 + }, + { + "start": 364.46, + "end": 367.42, + "probability": 0.9908 + }, + { + "start": 369.94, + "end": 373.84, + "probability": 0.9842 + }, + { + "start": 375.02, + "end": 375.48, + "probability": 0.9254 + }, + { + "start": 376.84, + "end": 380.44, + "probability": 0.9636 + }, + { + "start": 381.22, + "end": 384.26, + "probability": 0.9933 + }, + { + "start": 385.4, + "end": 386.38, + "probability": 0.7386 + }, + { + "start": 387.58, + "end": 390.5, + "probability": 0.6824 + }, + { + "start": 391.66, + "end": 397.0, + "probability": 0.9688 + }, + { + "start": 397.48, + "end": 398.18, + "probability": 0.9174 + }, + { + "start": 398.5, + "end": 399.13, + "probability": 0.9457 + }, + { + "start": 399.42, + "end": 400.74, + "probability": 0.9547 + }, + { + "start": 402.36, + "end": 404.82, + "probability": 0.974 + }, + { + "start": 407.4, + "end": 407.76, + "probability": 0.6682 + }, + { + "start": 409.02, + "end": 410.7, + "probability": 0.9603 + }, + { + "start": 411.72, + "end": 414.52, + "probability": 0.9961 + }, + { + "start": 416.54, + "end": 422.26, + "probability": 0.9882 + }, + { + "start": 423.46, + "end": 427.98, + "probability": 0.9989 + }, + { + "start": 428.02, + "end": 432.64, + "probability": 0.9402 + }, + { + "start": 432.96, + "end": 434.18, + "probability": 0.8393 + }, + { + "start": 436.2, + "end": 437.12, + "probability": 0.9586 + }, + { + "start": 438.18, + "end": 441.46, + "probability": 0.8774 + }, + { + "start": 443.26, + "end": 444.92, + "probability": 0.9639 + }, + { + "start": 445.54, + "end": 446.18, + "probability": 0.9372 + }, + { + "start": 446.98, + "end": 451.32, + "probability": 0.9688 + }, + { + "start": 452.72, + "end": 454.06, + "probability": 0.9705 + }, + { + "start": 455.6, + "end": 459.84, + "probability": 0.9481 + }, + { + "start": 460.92, + "end": 462.26, + "probability": 0.9878 + }, + { + "start": 462.9, + "end": 466.22, + "probability": 0.9844 + }, + { + "start": 468.24, + "end": 468.96, + "probability": 0.804 + }, + { + "start": 469.54, + "end": 473.68, + "probability": 0.99 + }, + { + "start": 473.68, + "end": 476.88, + "probability": 0.9858 + }, + { + "start": 478.08, + "end": 480.24, + "probability": 0.9416 + }, + { + "start": 480.3, + "end": 480.84, + "probability": 0.815 + }, + { + "start": 481.28, + "end": 482.24, + "probability": 0.7509 + }, + { + "start": 482.86, + "end": 482.98, + "probability": 0.4026 + }, + { + "start": 483.32, + "end": 485.84, + "probability": 0.9692 + }, + { + "start": 486.42, + "end": 487.16, + "probability": 0.8493 + }, + { + "start": 487.28, + "end": 491.12, + "probability": 0.9802 + }, + { + "start": 491.2, + "end": 494.4, + "probability": 0.9922 + }, + { + "start": 494.74, + "end": 495.06, + "probability": 0.6612 + }, + { + "start": 495.58, + "end": 495.96, + "probability": 0.536 + }, + { + "start": 496.1, + "end": 497.44, + "probability": 0.7018 + }, + { + "start": 498.18, + "end": 499.78, + "probability": 0.8932 + }, + { + "start": 500.32, + "end": 504.63, + "probability": 0.9844 + }, + { + "start": 504.94, + "end": 505.68, + "probability": 0.5162 + }, + { + "start": 506.14, + "end": 509.65, + "probability": 0.9979 + }, + { + "start": 511.28, + "end": 511.64, + "probability": 0.959 + }, + { + "start": 512.8, + "end": 515.34, + "probability": 0.8221 + }, + { + "start": 516.68, + "end": 521.9, + "probability": 0.9575 + }, + { + "start": 522.06, + "end": 522.3, + "probability": 0.5948 + }, + { + "start": 523.82, + "end": 526.86, + "probability": 0.9929 + }, + { + "start": 527.46, + "end": 528.5, + "probability": 0.9229 + }, + { + "start": 529.28, + "end": 530.92, + "probability": 0.6858 + }, + { + "start": 531.88, + "end": 532.48, + "probability": 0.8502 + }, + { + "start": 532.62, + "end": 533.0, + "probability": 0.9405 + }, + { + "start": 533.2, + "end": 535.42, + "probability": 0.9574 + }, + { + "start": 535.56, + "end": 537.3, + "probability": 0.9363 + }, + { + "start": 537.7, + "end": 539.92, + "probability": 0.9789 + }, + { + "start": 541.96, + "end": 545.1, + "probability": 0.9822 + }, + { + "start": 545.48, + "end": 546.42, + "probability": 0.9513 + }, + { + "start": 547.84, + "end": 548.82, + "probability": 0.7923 + }, + { + "start": 550.96, + "end": 552.99, + "probability": 0.9915 + }, + { + "start": 555.36, + "end": 559.98, + "probability": 0.9976 + }, + { + "start": 561.4, + "end": 562.92, + "probability": 0.6878 + }, + { + "start": 564.42, + "end": 565.98, + "probability": 0.9792 + }, + { + "start": 566.1, + "end": 567.04, + "probability": 0.9924 + }, + { + "start": 567.18, + "end": 568.5, + "probability": 0.8848 + }, + { + "start": 568.72, + "end": 569.62, + "probability": 0.8181 + }, + { + "start": 570.46, + "end": 576.26, + "probability": 0.9652 + }, + { + "start": 576.4, + "end": 578.54, + "probability": 0.9828 + }, + { + "start": 579.96, + "end": 580.84, + "probability": 0.98 + }, + { + "start": 581.92, + "end": 582.63, + "probability": 0.9591 + }, + { + "start": 583.24, + "end": 584.02, + "probability": 0.8822 + }, + { + "start": 584.5, + "end": 586.52, + "probability": 0.937 + }, + { + "start": 587.5, + "end": 588.62, + "probability": 0.7732 + }, + { + "start": 588.72, + "end": 589.86, + "probability": 0.9911 + }, + { + "start": 590.88, + "end": 592.68, + "probability": 0.9614 + }, + { + "start": 592.82, + "end": 593.02, + "probability": 0.9016 + }, + { + "start": 595.34, + "end": 596.68, + "probability": 0.9935 + }, + { + "start": 597.66, + "end": 602.26, + "probability": 0.9985 + }, + { + "start": 603.4, + "end": 606.28, + "probability": 0.996 + }, + { + "start": 607.26, + "end": 608.0, + "probability": 0.9945 + }, + { + "start": 609.3, + "end": 610.9, + "probability": 0.999 + }, + { + "start": 611.44, + "end": 612.32, + "probability": 0.9152 + }, + { + "start": 614.0, + "end": 614.1, + "probability": 0.4224 + }, + { + "start": 615.06, + "end": 616.3, + "probability": 0.999 + }, + { + "start": 616.48, + "end": 617.68, + "probability": 0.7175 + }, + { + "start": 618.54, + "end": 619.66, + "probability": 0.7702 + }, + { + "start": 619.66, + "end": 621.36, + "probability": 0.8589 + }, + { + "start": 622.56, + "end": 624.76, + "probability": 0.9933 + }, + { + "start": 625.64, + "end": 627.16, + "probability": 0.9738 + }, + { + "start": 628.02, + "end": 629.0, + "probability": 0.9482 + }, + { + "start": 630.8, + "end": 632.48, + "probability": 0.9922 + }, + { + "start": 634.52, + "end": 636.74, + "probability": 0.9678 + }, + { + "start": 637.18, + "end": 637.8, + "probability": 0.5974 + }, + { + "start": 638.08, + "end": 638.84, + "probability": 0.8805 + }, + { + "start": 640.3, + "end": 643.74, + "probability": 0.9712 + }, + { + "start": 645.66, + "end": 647.32, + "probability": 0.9738 + }, + { + "start": 648.42, + "end": 649.82, + "probability": 0.9691 + }, + { + "start": 651.08, + "end": 652.2, + "probability": 0.9873 + }, + { + "start": 652.36, + "end": 653.02, + "probability": 0.4769 + }, + { + "start": 653.08, + "end": 654.38, + "probability": 0.9909 + }, + { + "start": 654.46, + "end": 655.4, + "probability": 0.7987 + }, + { + "start": 656.82, + "end": 658.6, + "probability": 0.9249 + }, + { + "start": 659.44, + "end": 661.14, + "probability": 0.9292 + }, + { + "start": 661.46, + "end": 663.94, + "probability": 0.9806 + }, + { + "start": 665.2, + "end": 667.14, + "probability": 0.9827 + }, + { + "start": 667.98, + "end": 669.68, + "probability": 0.965 + }, + { + "start": 669.82, + "end": 671.06, + "probability": 0.9721 + }, + { + "start": 672.06, + "end": 673.18, + "probability": 0.9583 + }, + { + "start": 675.0, + "end": 675.0, + "probability": 0.3335 + }, + { + "start": 675.0, + "end": 676.94, + "probability": 0.7591 + }, + { + "start": 677.1, + "end": 678.64, + "probability": 0.959 + }, + { + "start": 680.88, + "end": 683.8, + "probability": 0.9922 + }, + { + "start": 685.6, + "end": 687.76, + "probability": 0.8909 + }, + { + "start": 688.32, + "end": 689.11, + "probability": 0.6764 + }, + { + "start": 689.5, + "end": 690.74, + "probability": 0.9711 + }, + { + "start": 690.94, + "end": 692.74, + "probability": 0.722 + }, + { + "start": 692.84, + "end": 693.76, + "probability": 0.8336 + }, + { + "start": 694.24, + "end": 695.54, + "probability": 0.9576 + }, + { + "start": 696.76, + "end": 699.86, + "probability": 0.9504 + }, + { + "start": 699.86, + "end": 703.74, + "probability": 0.9522 + }, + { + "start": 703.88, + "end": 708.3, + "probability": 0.9141 + }, + { + "start": 708.82, + "end": 711.72, + "probability": 0.8718 + }, + { + "start": 712.54, + "end": 715.22, + "probability": 0.8975 + }, + { + "start": 716.62, + "end": 717.4, + "probability": 0.7445 + }, + { + "start": 719.74, + "end": 721.04, + "probability": 0.8805 + }, + { + "start": 721.3, + "end": 722.48, + "probability": 0.9834 + }, + { + "start": 724.2, + "end": 724.5, + "probability": 0.8036 + }, + { + "start": 725.82, + "end": 729.35, + "probability": 0.9763 + }, + { + "start": 729.38, + "end": 732.72, + "probability": 0.9941 + }, + { + "start": 732.76, + "end": 735.1, + "probability": 0.8903 + }, + { + "start": 735.68, + "end": 737.02, + "probability": 0.7512 + }, + { + "start": 737.62, + "end": 738.62, + "probability": 0.8369 + }, + { + "start": 739.38, + "end": 741.92, + "probability": 0.9101 + }, + { + "start": 742.1, + "end": 743.36, + "probability": 0.9699 + }, + { + "start": 744.38, + "end": 745.56, + "probability": 0.9155 + }, + { + "start": 746.5, + "end": 747.26, + "probability": 0.9638 + }, + { + "start": 747.9, + "end": 749.9, + "probability": 0.9385 + }, + { + "start": 750.16, + "end": 752.0, + "probability": 0.6775 + }, + { + "start": 752.42, + "end": 752.9, + "probability": 0.9317 + }, + { + "start": 753.24, + "end": 754.02, + "probability": 0.9722 + }, + { + "start": 756.3, + "end": 759.34, + "probability": 0.9697 + }, + { + "start": 759.92, + "end": 762.1, + "probability": 0.9922 + }, + { + "start": 763.88, + "end": 765.68, + "probability": 0.9808 + }, + { + "start": 766.8, + "end": 767.44, + "probability": 0.6746 + }, + { + "start": 768.46, + "end": 771.74, + "probability": 0.9302 + }, + { + "start": 772.86, + "end": 773.38, + "probability": 0.6591 + }, + { + "start": 774.22, + "end": 775.36, + "probability": 0.9662 + }, + { + "start": 776.6, + "end": 777.24, + "probability": 0.2852 + }, + { + "start": 777.4, + "end": 778.74, + "probability": 0.9449 + }, + { + "start": 778.88, + "end": 779.96, + "probability": 0.9741 + }, + { + "start": 781.38, + "end": 785.91, + "probability": 0.9673 + }, + { + "start": 786.68, + "end": 788.22, + "probability": 0.7324 + }, + { + "start": 789.66, + "end": 793.4, + "probability": 0.9773 + }, + { + "start": 793.88, + "end": 795.12, + "probability": 0.9051 + }, + { + "start": 795.32, + "end": 797.4, + "probability": 0.9969 + }, + { + "start": 797.8, + "end": 798.74, + "probability": 0.8491 + }, + { + "start": 798.98, + "end": 801.06, + "probability": 0.9924 + }, + { + "start": 801.2, + "end": 801.68, + "probability": 0.5747 + }, + { + "start": 802.74, + "end": 806.14, + "probability": 0.9706 + }, + { + "start": 806.92, + "end": 810.7, + "probability": 0.9902 + }, + { + "start": 811.36, + "end": 811.96, + "probability": 0.3921 + }, + { + "start": 813.08, + "end": 814.46, + "probability": 0.9342 + }, + { + "start": 815.02, + "end": 815.12, + "probability": 0.6775 + }, + { + "start": 815.2, + "end": 815.76, + "probability": 0.8135 + }, + { + "start": 816.22, + "end": 816.78, + "probability": 0.8387 + }, + { + "start": 816.86, + "end": 818.43, + "probability": 0.8811 + }, + { + "start": 819.06, + "end": 819.42, + "probability": 0.5406 + }, + { + "start": 820.08, + "end": 822.14, + "probability": 0.9952 + }, + { + "start": 823.4, + "end": 825.54, + "probability": 0.9963 + }, + { + "start": 826.06, + "end": 829.02, + "probability": 0.9976 + }, + { + "start": 829.88, + "end": 830.84, + "probability": 0.7817 + }, + { + "start": 831.54, + "end": 833.4, + "probability": 0.9839 + }, + { + "start": 834.02, + "end": 835.7, + "probability": 0.9618 + }, + { + "start": 836.54, + "end": 837.42, + "probability": 0.85 + }, + { + "start": 838.56, + "end": 840.82, + "probability": 0.9033 + }, + { + "start": 841.96, + "end": 844.34, + "probability": 0.8404 + }, + { + "start": 845.62, + "end": 848.42, + "probability": 0.7744 + }, + { + "start": 848.88, + "end": 850.8, + "probability": 0.9927 + }, + { + "start": 851.0, + "end": 851.6, + "probability": 0.7271 + }, + { + "start": 852.14, + "end": 854.74, + "probability": 0.9277 + }, + { + "start": 856.18, + "end": 860.2, + "probability": 0.9631 + }, + { + "start": 861.46, + "end": 861.98, + "probability": 0.8185 + }, + { + "start": 863.12, + "end": 866.04, + "probability": 0.9878 + }, + { + "start": 867.5, + "end": 870.12, + "probability": 0.9961 + }, + { + "start": 870.7, + "end": 873.78, + "probability": 0.9766 + }, + { + "start": 875.64, + "end": 877.0, + "probability": 0.735 + }, + { + "start": 878.1, + "end": 880.1, + "probability": 0.9744 + }, + { + "start": 881.26, + "end": 884.82, + "probability": 0.9985 + }, + { + "start": 885.38, + "end": 888.8, + "probability": 0.9894 + }, + { + "start": 889.46, + "end": 890.54, + "probability": 0.9951 + }, + { + "start": 891.14, + "end": 891.8, + "probability": 0.955 + }, + { + "start": 892.42, + "end": 895.8, + "probability": 0.9542 + }, + { + "start": 896.34, + "end": 897.59, + "probability": 0.9224 + }, + { + "start": 898.5, + "end": 900.34, + "probability": 0.9964 + }, + { + "start": 900.76, + "end": 901.18, + "probability": 0.8055 + }, + { + "start": 903.36, + "end": 904.98, + "probability": 0.9866 + }, + { + "start": 906.28, + "end": 908.26, + "probability": 0.8538 + }, + { + "start": 922.26, + "end": 922.58, + "probability": 0.429 + }, + { + "start": 931.58, + "end": 932.68, + "probability": 0.6755 + }, + { + "start": 933.42, + "end": 934.2, + "probability": 0.7151 + }, + { + "start": 935.26, + "end": 936.54, + "probability": 0.9427 + }, + { + "start": 936.74, + "end": 938.06, + "probability": 0.7394 + }, + { + "start": 938.12, + "end": 939.48, + "probability": 0.9885 + }, + { + "start": 940.56, + "end": 941.18, + "probability": 0.7875 + }, + { + "start": 941.3, + "end": 942.2, + "probability": 0.9227 + }, + { + "start": 942.36, + "end": 943.74, + "probability": 0.9806 + }, + { + "start": 944.56, + "end": 945.52, + "probability": 0.8519 + }, + { + "start": 946.92, + "end": 950.38, + "probability": 0.9619 + }, + { + "start": 950.66, + "end": 954.62, + "probability": 0.9985 + }, + { + "start": 955.1, + "end": 958.44, + "probability": 0.9946 + }, + { + "start": 959.1, + "end": 960.0, + "probability": 0.4046 + }, + { + "start": 960.04, + "end": 960.93, + "probability": 0.8822 + }, + { + "start": 961.54, + "end": 965.64, + "probability": 0.8965 + }, + { + "start": 966.16, + "end": 969.86, + "probability": 0.9714 + }, + { + "start": 970.02, + "end": 970.26, + "probability": 0.9188 + }, + { + "start": 970.52, + "end": 971.44, + "probability": 0.9185 + }, + { + "start": 971.52, + "end": 972.38, + "probability": 0.8354 + }, + { + "start": 972.46, + "end": 972.82, + "probability": 0.6599 + }, + { + "start": 972.86, + "end": 973.6, + "probability": 0.9526 + }, + { + "start": 974.48, + "end": 978.54, + "probability": 0.9961 + }, + { + "start": 980.64, + "end": 981.06, + "probability": 0.7929 + }, + { + "start": 981.82, + "end": 985.44, + "probability": 0.9978 + }, + { + "start": 986.12, + "end": 989.66, + "probability": 0.9797 + }, + { + "start": 991.56, + "end": 992.94, + "probability": 0.9939 + }, + { + "start": 993.1, + "end": 997.44, + "probability": 0.9839 + }, + { + "start": 998.6, + "end": 1001.14, + "probability": 0.9465 + }, + { + "start": 1001.26, + "end": 1003.36, + "probability": 0.6372 + }, + { + "start": 1003.66, + "end": 1004.1, + "probability": 0.8586 + }, + { + "start": 1004.12, + "end": 1007.84, + "probability": 0.9609 + }, + { + "start": 1008.86, + "end": 1014.64, + "probability": 0.9762 + }, + { + "start": 1014.64, + "end": 1018.18, + "probability": 0.9898 + }, + { + "start": 1018.7, + "end": 1019.52, + "probability": 0.8116 + }, + { + "start": 1019.78, + "end": 1024.24, + "probability": 0.9991 + }, + { + "start": 1024.4, + "end": 1027.5, + "probability": 0.9985 + }, + { + "start": 1028.0, + "end": 1031.22, + "probability": 0.9775 + }, + { + "start": 1031.42, + "end": 1032.71, + "probability": 0.9835 + }, + { + "start": 1033.34, + "end": 1033.78, + "probability": 0.5515 + }, + { + "start": 1034.1, + "end": 1035.96, + "probability": 0.9328 + }, + { + "start": 1037.54, + "end": 1042.32, + "probability": 0.9888 + }, + { + "start": 1042.32, + "end": 1047.44, + "probability": 0.9936 + }, + { + "start": 1048.2, + "end": 1051.14, + "probability": 0.9065 + }, + { + "start": 1052.12, + "end": 1053.12, + "probability": 0.9846 + }, + { + "start": 1054.56, + "end": 1056.8, + "probability": 0.7612 + }, + { + "start": 1057.28, + "end": 1060.48, + "probability": 0.986 + }, + { + "start": 1060.7, + "end": 1062.04, + "probability": 0.9795 + }, + { + "start": 1062.84, + "end": 1063.18, + "probability": 0.9219 + }, + { + "start": 1064.76, + "end": 1069.28, + "probability": 0.9106 + }, + { + "start": 1069.42, + "end": 1070.42, + "probability": 0.7314 + }, + { + "start": 1070.44, + "end": 1072.22, + "probability": 0.7804 + }, + { + "start": 1073.16, + "end": 1074.02, + "probability": 0.3132 + }, + { + "start": 1074.38, + "end": 1075.52, + "probability": 0.9902 + }, + { + "start": 1075.96, + "end": 1079.22, + "probability": 0.8862 + }, + { + "start": 1079.36, + "end": 1083.62, + "probability": 0.989 + }, + { + "start": 1084.26, + "end": 1085.78, + "probability": 0.8048 + }, + { + "start": 1086.34, + "end": 1088.56, + "probability": 0.9893 + }, + { + "start": 1088.7, + "end": 1089.04, + "probability": 0.6075 + }, + { + "start": 1089.5, + "end": 1093.96, + "probability": 0.9614 + }, + { + "start": 1094.58, + "end": 1094.92, + "probability": 0.8197 + }, + { + "start": 1095.02, + "end": 1099.34, + "probability": 0.9961 + }, + { + "start": 1099.88, + "end": 1101.06, + "probability": 0.9395 + }, + { + "start": 1101.84, + "end": 1107.26, + "probability": 0.9247 + }, + { + "start": 1107.78, + "end": 1108.22, + "probability": 0.9019 + }, + { + "start": 1109.24, + "end": 1110.64, + "probability": 0.8702 + }, + { + "start": 1111.52, + "end": 1112.28, + "probability": 0.9503 + }, + { + "start": 1112.34, + "end": 1114.3, + "probability": 0.8883 + }, + { + "start": 1114.59, + "end": 1116.84, + "probability": 0.8948 + }, + { + "start": 1117.5, + "end": 1121.28, + "probability": 0.9846 + }, + { + "start": 1121.28, + "end": 1127.02, + "probability": 0.9218 + }, + { + "start": 1127.42, + "end": 1128.07, + "probability": 0.7744 + }, + { + "start": 1128.98, + "end": 1134.46, + "probability": 0.9848 + }, + { + "start": 1134.46, + "end": 1139.76, + "probability": 0.9916 + }, + { + "start": 1139.82, + "end": 1141.14, + "probability": 0.9788 + }, + { + "start": 1141.78, + "end": 1144.12, + "probability": 0.8896 + }, + { + "start": 1144.78, + "end": 1145.52, + "probability": 0.7317 + }, + { + "start": 1146.14, + "end": 1151.0, + "probability": 0.9823 + }, + { + "start": 1151.0, + "end": 1156.52, + "probability": 0.8877 + }, + { + "start": 1156.72, + "end": 1157.48, + "probability": 0.637 + }, + { + "start": 1157.68, + "end": 1157.98, + "probability": 0.3588 + }, + { + "start": 1158.0, + "end": 1159.74, + "probability": 0.8974 + }, + { + "start": 1159.94, + "end": 1163.22, + "probability": 0.978 + }, + { + "start": 1163.26, + "end": 1165.5, + "probability": 0.9946 + }, + { + "start": 1166.08, + "end": 1168.16, + "probability": 0.9909 + }, + { + "start": 1169.02, + "end": 1173.32, + "probability": 0.9968 + }, + { + "start": 1173.86, + "end": 1175.26, + "probability": 0.8849 + }, + { + "start": 1175.78, + "end": 1176.9, + "probability": 0.874 + }, + { + "start": 1177.0, + "end": 1177.28, + "probability": 0.8525 + }, + { + "start": 1177.38, + "end": 1177.66, + "probability": 0.7675 + }, + { + "start": 1177.88, + "end": 1182.72, + "probability": 0.8744 + }, + { + "start": 1183.36, + "end": 1184.32, + "probability": 0.802 + }, + { + "start": 1184.5, + "end": 1188.24, + "probability": 0.994 + }, + { + "start": 1188.24, + "end": 1191.36, + "probability": 0.9795 + }, + { + "start": 1191.42, + "end": 1196.6, + "probability": 0.9926 + }, + { + "start": 1197.94, + "end": 1202.48, + "probability": 0.9983 + }, + { + "start": 1203.8, + "end": 1206.1, + "probability": 0.9112 + }, + { + "start": 1208.0, + "end": 1210.28, + "probability": 0.9831 + }, + { + "start": 1212.5, + "end": 1214.22, + "probability": 0.9861 + }, + { + "start": 1215.26, + "end": 1215.88, + "probability": 0.8633 + }, + { + "start": 1216.02, + "end": 1219.76, + "probability": 0.8506 + }, + { + "start": 1220.38, + "end": 1222.98, + "probability": 0.998 + }, + { + "start": 1222.98, + "end": 1225.12, + "probability": 0.9978 + }, + { + "start": 1225.28, + "end": 1226.24, + "probability": 0.9892 + }, + { + "start": 1227.76, + "end": 1230.64, + "probability": 0.9932 + }, + { + "start": 1232.14, + "end": 1232.87, + "probability": 0.9781 + }, + { + "start": 1233.46, + "end": 1239.26, + "probability": 0.9968 + }, + { + "start": 1239.26, + "end": 1242.4, + "probability": 0.9304 + }, + { + "start": 1242.72, + "end": 1244.14, + "probability": 0.7983 + }, + { + "start": 1244.76, + "end": 1248.84, + "probability": 0.9944 + }, + { + "start": 1249.96, + "end": 1252.86, + "probability": 0.9939 + }, + { + "start": 1254.72, + "end": 1258.82, + "probability": 0.9973 + }, + { + "start": 1259.78, + "end": 1261.46, + "probability": 0.9214 + }, + { + "start": 1261.58, + "end": 1265.64, + "probability": 0.9878 + }, + { + "start": 1265.76, + "end": 1269.02, + "probability": 0.9975 + }, + { + "start": 1269.3, + "end": 1269.98, + "probability": 0.5058 + }, + { + "start": 1270.74, + "end": 1276.56, + "probability": 0.9948 + }, + { + "start": 1276.7, + "end": 1280.16, + "probability": 0.9886 + }, + { + "start": 1281.22, + "end": 1283.08, + "probability": 0.5902 + }, + { + "start": 1284.1, + "end": 1290.26, + "probability": 0.989 + }, + { + "start": 1290.26, + "end": 1296.28, + "probability": 0.9982 + }, + { + "start": 1296.54, + "end": 1297.99, + "probability": 0.9939 + }, + { + "start": 1298.72, + "end": 1302.18, + "probability": 0.9942 + }, + { + "start": 1302.32, + "end": 1304.44, + "probability": 0.9922 + }, + { + "start": 1305.4, + "end": 1306.14, + "probability": 0.9812 + }, + { + "start": 1307.8, + "end": 1310.22, + "probability": 0.8662 + }, + { + "start": 1310.9, + "end": 1314.68, + "probability": 0.9991 + }, + { + "start": 1315.22, + "end": 1316.78, + "probability": 0.9277 + }, + { + "start": 1316.88, + "end": 1317.76, + "probability": 0.7608 + }, + { + "start": 1317.9, + "end": 1318.92, + "probability": 0.9896 + }, + { + "start": 1320.76, + "end": 1324.78, + "probability": 0.9984 + }, + { + "start": 1326.04, + "end": 1327.42, + "probability": 0.835 + }, + { + "start": 1328.1, + "end": 1329.22, + "probability": 0.9812 + }, + { + "start": 1329.44, + "end": 1332.92, + "probability": 0.9949 + }, + { + "start": 1333.04, + "end": 1338.48, + "probability": 0.9937 + }, + { + "start": 1338.66, + "end": 1342.22, + "probability": 0.9957 + }, + { + "start": 1342.54, + "end": 1344.94, + "probability": 0.7739 + }, + { + "start": 1346.38, + "end": 1349.78, + "probability": 0.918 + }, + { + "start": 1350.2, + "end": 1354.34, + "probability": 0.9253 + }, + { + "start": 1354.68, + "end": 1356.22, + "probability": 0.6974 + }, + { + "start": 1356.78, + "end": 1358.92, + "probability": 0.7726 + }, + { + "start": 1359.46, + "end": 1361.34, + "probability": 0.9075 + }, + { + "start": 1361.52, + "end": 1362.48, + "probability": 0.6842 + }, + { + "start": 1362.9, + "end": 1364.94, + "probability": 0.978 + }, + { + "start": 1365.0, + "end": 1370.08, + "probability": 0.995 + }, + { + "start": 1370.14, + "end": 1371.1, + "probability": 0.9177 + }, + { + "start": 1372.02, + "end": 1375.06, + "probability": 0.9939 + }, + { + "start": 1375.96, + "end": 1380.0, + "probability": 0.9304 + }, + { + "start": 1380.78, + "end": 1384.28, + "probability": 0.6119 + }, + { + "start": 1384.32, + "end": 1387.4, + "probability": 0.9946 + }, + { + "start": 1387.84, + "end": 1392.52, + "probability": 0.9894 + }, + { + "start": 1392.98, + "end": 1394.0, + "probability": 0.7799 + }, + { + "start": 1394.72, + "end": 1396.1, + "probability": 0.9858 + }, + { + "start": 1396.18, + "end": 1397.22, + "probability": 0.9602 + }, + { + "start": 1397.48, + "end": 1399.04, + "probability": 0.9936 + }, + { + "start": 1399.88, + "end": 1402.46, + "probability": 0.9967 + }, + { + "start": 1403.96, + "end": 1408.32, + "probability": 0.9978 + }, + { + "start": 1408.48, + "end": 1409.28, + "probability": 0.6927 + }, + { + "start": 1409.42, + "end": 1409.86, + "probability": 0.7725 + }, + { + "start": 1410.3, + "end": 1413.34, + "probability": 0.975 + }, + { + "start": 1413.54, + "end": 1417.92, + "probability": 0.9794 + }, + { + "start": 1417.92, + "end": 1422.58, + "probability": 0.9984 + }, + { + "start": 1423.88, + "end": 1427.56, + "probability": 0.9366 + }, + { + "start": 1428.5, + "end": 1431.7, + "probability": 0.9927 + }, + { + "start": 1431.74, + "end": 1433.7, + "probability": 0.9995 + }, + { + "start": 1434.78, + "end": 1437.24, + "probability": 0.999 + }, + { + "start": 1437.24, + "end": 1440.4, + "probability": 0.8636 + }, + { + "start": 1440.64, + "end": 1443.52, + "probability": 0.8372 + }, + { + "start": 1445.4, + "end": 1446.62, + "probability": 0.6743 + }, + { + "start": 1447.84, + "end": 1448.78, + "probability": 0.8793 + }, + { + "start": 1449.34, + "end": 1453.96, + "probability": 0.9783 + }, + { + "start": 1453.96, + "end": 1459.18, + "probability": 0.9979 + }, + { + "start": 1459.18, + "end": 1462.42, + "probability": 0.9944 + }, + { + "start": 1462.66, + "end": 1467.92, + "probability": 0.9908 + }, + { + "start": 1468.08, + "end": 1471.66, + "probability": 0.8305 + }, + { + "start": 1471.66, + "end": 1474.22, + "probability": 0.958 + }, + { + "start": 1474.48, + "end": 1476.48, + "probability": 0.9966 + }, + { + "start": 1476.6, + "end": 1476.9, + "probability": 0.5944 + }, + { + "start": 1477.54, + "end": 1480.7, + "probability": 0.7366 + }, + { + "start": 1481.8, + "end": 1485.62, + "probability": 0.9987 + }, + { + "start": 1485.62, + "end": 1489.48, + "probability": 0.9971 + }, + { + "start": 1490.68, + "end": 1491.7, + "probability": 0.8333 + }, + { + "start": 1493.22, + "end": 1495.12, + "probability": 0.8976 + }, + { + "start": 1495.18, + "end": 1495.84, + "probability": 0.8834 + }, + { + "start": 1495.96, + "end": 1498.94, + "probability": 0.9792 + }, + { + "start": 1499.04, + "end": 1499.4, + "probability": 0.686 + }, + { + "start": 1500.6, + "end": 1501.78, + "probability": 0.768 + }, + { + "start": 1503.08, + "end": 1503.82, + "probability": 0.6266 + }, + { + "start": 1505.16, + "end": 1509.18, + "probability": 0.9727 + }, + { + "start": 1509.72, + "end": 1511.86, + "probability": 0.9776 + }, + { + "start": 1512.56, + "end": 1513.98, + "probability": 0.9978 + }, + { + "start": 1515.12, + "end": 1517.9, + "probability": 0.9907 + }, + { + "start": 1518.74, + "end": 1519.62, + "probability": 0.8434 + }, + { + "start": 1519.74, + "end": 1523.82, + "probability": 0.9906 + }, + { + "start": 1523.9, + "end": 1524.16, + "probability": 0.5622 + }, + { + "start": 1524.28, + "end": 1525.28, + "probability": 0.8228 + }, + { + "start": 1525.42, + "end": 1531.72, + "probability": 0.9824 + }, + { + "start": 1531.78, + "end": 1533.58, + "probability": 0.7632 + }, + { + "start": 1533.82, + "end": 1536.38, + "probability": 0.9966 + }, + { + "start": 1536.4, + "end": 1540.4, + "probability": 0.9121 + }, + { + "start": 1540.8, + "end": 1543.4, + "probability": 0.9975 + }, + { + "start": 1544.16, + "end": 1547.5, + "probability": 0.98 + }, + { + "start": 1547.77, + "end": 1553.34, + "probability": 0.8862 + }, + { + "start": 1554.5, + "end": 1558.6, + "probability": 0.9673 + }, + { + "start": 1558.6, + "end": 1561.12, + "probability": 0.9937 + }, + { + "start": 1561.34, + "end": 1561.52, + "probability": 0.3913 + }, + { + "start": 1561.72, + "end": 1563.6, + "probability": 0.7868 + }, + { + "start": 1563.72, + "end": 1564.22, + "probability": 0.8094 + }, + { + "start": 1564.3, + "end": 1564.54, + "probability": 0.8991 + }, + { + "start": 1565.28, + "end": 1568.76, + "probability": 0.9838 + }, + { + "start": 1569.04, + "end": 1569.96, + "probability": 0.8955 + }, + { + "start": 1570.42, + "end": 1575.62, + "probability": 0.9791 + }, + { + "start": 1575.7, + "end": 1581.8, + "probability": 0.9944 + }, + { + "start": 1582.42, + "end": 1585.92, + "probability": 0.9937 + }, + { + "start": 1585.92, + "end": 1589.32, + "probability": 0.9871 + }, + { + "start": 1590.58, + "end": 1592.58, + "probability": 0.9801 + }, + { + "start": 1593.04, + "end": 1595.56, + "probability": 0.891 + }, + { + "start": 1596.18, + "end": 1597.08, + "probability": 0.6853 + }, + { + "start": 1598.98, + "end": 1601.88, + "probability": 0.8849 + }, + { + "start": 1602.46, + "end": 1603.34, + "probability": 0.624 + }, + { + "start": 1603.56, + "end": 1606.66, + "probability": 0.9717 + }, + { + "start": 1606.98, + "end": 1608.46, + "probability": 0.9822 + }, + { + "start": 1611.3, + "end": 1615.18, + "probability": 0.9806 + }, + { + "start": 1616.02, + "end": 1619.0, + "probability": 0.9941 + }, + { + "start": 1619.7, + "end": 1621.7, + "probability": 0.8904 + }, + { + "start": 1621.86, + "end": 1624.96, + "probability": 0.9454 + }, + { + "start": 1626.74, + "end": 1631.56, + "probability": 0.9529 + }, + { + "start": 1632.34, + "end": 1633.94, + "probability": 0.9231 + }, + { + "start": 1634.74, + "end": 1636.62, + "probability": 0.9783 + }, + { + "start": 1636.9, + "end": 1638.4, + "probability": 0.9883 + }, + { + "start": 1639.34, + "end": 1639.88, + "probability": 0.6445 + }, + { + "start": 1640.62, + "end": 1643.4, + "probability": 0.8098 + }, + { + "start": 1643.74, + "end": 1647.56, + "probability": 0.976 + }, + { + "start": 1648.08, + "end": 1651.24, + "probability": 0.9995 + }, + { + "start": 1651.42, + "end": 1652.12, + "probability": 0.5061 + }, + { + "start": 1652.2, + "end": 1652.58, + "probability": 0.6318 + }, + { + "start": 1653.68, + "end": 1656.06, + "probability": 0.8743 + }, + { + "start": 1656.08, + "end": 1657.66, + "probability": 0.7996 + }, + { + "start": 1658.22, + "end": 1661.82, + "probability": 0.9734 + }, + { + "start": 1662.02, + "end": 1663.4, + "probability": 0.9657 + }, + { + "start": 1664.52, + "end": 1665.74, + "probability": 0.4046 + }, + { + "start": 1666.98, + "end": 1667.87, + "probability": 0.9951 + }, + { + "start": 1668.18, + "end": 1668.9, + "probability": 0.706 + }, + { + "start": 1669.24, + "end": 1669.83, + "probability": 0.7693 + }, + { + "start": 1670.26, + "end": 1671.38, + "probability": 0.8943 + }, + { + "start": 1672.86, + "end": 1674.42, + "probability": 0.9754 + }, + { + "start": 1674.48, + "end": 1677.06, + "probability": 0.8882 + }, + { + "start": 1677.08, + "end": 1677.88, + "probability": 0.9844 + }, + { + "start": 1678.58, + "end": 1679.84, + "probability": 0.9754 + }, + { + "start": 1679.84, + "end": 1680.78, + "probability": 0.8689 + }, + { + "start": 1680.88, + "end": 1681.76, + "probability": 0.9048 + }, + { + "start": 1682.2, + "end": 1683.02, + "probability": 0.762 + }, + { + "start": 1683.02, + "end": 1684.03, + "probability": 0.6017 + }, + { + "start": 1684.26, + "end": 1684.88, + "probability": 0.4025 + }, + { + "start": 1684.9, + "end": 1684.96, + "probability": 0.4402 + }, + { + "start": 1684.98, + "end": 1685.0, + "probability": 0.1542 + }, + { + "start": 1685.62, + "end": 1687.16, + "probability": 0.98 + }, + { + "start": 1687.62, + "end": 1689.06, + "probability": 0.9064 + }, + { + "start": 1689.16, + "end": 1692.4, + "probability": 0.9448 + }, + { + "start": 1693.02, + "end": 1693.46, + "probability": 0.5473 + }, + { + "start": 1693.54, + "end": 1695.7, + "probability": 0.7995 + }, + { + "start": 1695.96, + "end": 1697.36, + "probability": 0.834 + }, + { + "start": 1697.9, + "end": 1698.86, + "probability": 0.8784 + }, + { + "start": 1699.44, + "end": 1700.3, + "probability": 0.5758 + }, + { + "start": 1700.88, + "end": 1701.02, + "probability": 0.1208 + }, + { + "start": 1701.02, + "end": 1702.1, + "probability": 0.3834 + }, + { + "start": 1702.3, + "end": 1703.08, + "probability": 0.6043 + }, + { + "start": 1703.46, + "end": 1704.28, + "probability": 0.7938 + }, + { + "start": 1704.78, + "end": 1707.52, + "probability": 0.8341 + }, + { + "start": 1708.3, + "end": 1709.3, + "probability": 0.7029 + }, + { + "start": 1709.92, + "end": 1710.44, + "probability": 0.7923 + }, + { + "start": 1710.86, + "end": 1713.76, + "probability": 0.8504 + }, + { + "start": 1714.4, + "end": 1717.46, + "probability": 0.8511 + }, + { + "start": 1717.58, + "end": 1719.42, + "probability": 0.7454 + }, + { + "start": 1722.94, + "end": 1723.24, + "probability": 0.0821 + }, + { + "start": 1723.24, + "end": 1723.24, + "probability": 0.0994 + }, + { + "start": 1723.24, + "end": 1723.24, + "probability": 0.0286 + }, + { + "start": 1723.24, + "end": 1724.18, + "probability": 0.5499 + }, + { + "start": 1724.18, + "end": 1725.24, + "probability": 0.6555 + }, + { + "start": 1725.5, + "end": 1728.98, + "probability": 0.9546 + }, + { + "start": 1729.06, + "end": 1730.14, + "probability": 0.9976 + }, + { + "start": 1730.66, + "end": 1733.56, + "probability": 0.9573 + }, + { + "start": 1733.64, + "end": 1734.71, + "probability": 0.1308 + }, + { + "start": 1735.76, + "end": 1737.22, + "probability": 0.0199 + }, + { + "start": 1737.7, + "end": 1738.1, + "probability": 0.2115 + }, + { + "start": 1738.1, + "end": 1738.36, + "probability": 0.1497 + }, + { + "start": 1738.44, + "end": 1738.6, + "probability": 0.5285 + }, + { + "start": 1738.88, + "end": 1739.12, + "probability": 0.6568 + }, + { + "start": 1739.38, + "end": 1739.98, + "probability": 0.5032 + }, + { + "start": 1740.02, + "end": 1742.62, + "probability": 0.8931 + }, + { + "start": 1742.7, + "end": 1743.4, + "probability": 0.6585 + }, + { + "start": 1743.9, + "end": 1746.22, + "probability": 0.4363 + }, + { + "start": 1746.3, + "end": 1746.3, + "probability": 0.1189 + }, + { + "start": 1746.3, + "end": 1746.74, + "probability": 0.0294 + }, + { + "start": 1746.96, + "end": 1748.26, + "probability": 0.4458 + }, + { + "start": 1748.38, + "end": 1748.72, + "probability": 0.6608 + }, + { + "start": 1748.74, + "end": 1748.96, + "probability": 0.1205 + }, + { + "start": 1748.96, + "end": 1750.98, + "probability": 0.8205 + }, + { + "start": 1751.04, + "end": 1752.1, + "probability": 0.6262 + }, + { + "start": 1752.58, + "end": 1756.84, + "probability": 0.5686 + }, + { + "start": 1757.46, + "end": 1757.46, + "probability": 0.3889 + }, + { + "start": 1757.46, + "end": 1757.76, + "probability": 0.1113 + }, + { + "start": 1757.88, + "end": 1758.26, + "probability": 0.4902 + }, + { + "start": 1758.5, + "end": 1759.53, + "probability": 0.6548 + }, + { + "start": 1759.72, + "end": 1760.02, + "probability": 0.4778 + }, + { + "start": 1760.24, + "end": 1761.44, + "probability": 0.5681 + }, + { + "start": 1761.92, + "end": 1762.42, + "probability": 0.9411 + }, + { + "start": 1763.54, + "end": 1765.82, + "probability": 0.7515 + }, + { + "start": 1765.98, + "end": 1766.44, + "probability": 0.7412 + }, + { + "start": 1767.14, + "end": 1768.11, + "probability": 0.4798 + }, + { + "start": 1768.2, + "end": 1769.52, + "probability": 0.5389 + }, + { + "start": 1769.94, + "end": 1771.5, + "probability": 0.7466 + }, + { + "start": 1771.56, + "end": 1773.0, + "probability": 0.7241 + }, + { + "start": 1773.28, + "end": 1774.14, + "probability": 0.8496 + }, + { + "start": 1774.47, + "end": 1776.76, + "probability": 0.8306 + }, + { + "start": 1777.54, + "end": 1778.44, + "probability": 0.2404 + }, + { + "start": 1778.78, + "end": 1779.92, + "probability": 0.6179 + }, + { + "start": 1780.02, + "end": 1786.9, + "probability": 0.9797 + }, + { + "start": 1787.48, + "end": 1789.42, + "probability": 0.743 + }, + { + "start": 1790.12, + "end": 1790.96, + "probability": 0.4419 + }, + { + "start": 1791.32, + "end": 1792.4, + "probability": 0.7492 + }, + { + "start": 1793.98, + "end": 1795.18, + "probability": 0.8296 + }, + { + "start": 1796.74, + "end": 1799.34, + "probability": 0.8249 + }, + { + "start": 1799.52, + "end": 1800.32, + "probability": 0.9408 + }, + { + "start": 1800.54, + "end": 1802.72, + "probability": 0.9711 + }, + { + "start": 1802.84, + "end": 1805.24, + "probability": 0.8555 + }, + { + "start": 1805.24, + "end": 1807.84, + "probability": 0.8307 + }, + { + "start": 1810.34, + "end": 1811.2, + "probability": 0.2328 + }, + { + "start": 1812.2, + "end": 1815.26, + "probability": 0.8804 + }, + { + "start": 1815.66, + "end": 1816.72, + "probability": 0.737 + }, + { + "start": 1817.46, + "end": 1818.7, + "probability": 0.7739 + }, + { + "start": 1818.96, + "end": 1820.92, + "probability": 0.9401 + }, + { + "start": 1822.12, + "end": 1824.08, + "probability": 0.9969 + }, + { + "start": 1825.42, + "end": 1827.34, + "probability": 0.9961 + }, + { + "start": 1828.1, + "end": 1828.86, + "probability": 0.9975 + }, + { + "start": 1830.1, + "end": 1831.42, + "probability": 0.9943 + }, + { + "start": 1831.56, + "end": 1832.42, + "probability": 0.6766 + }, + { + "start": 1832.58, + "end": 1836.08, + "probability": 0.7566 + }, + { + "start": 1836.18, + "end": 1839.6, + "probability": 0.9888 + }, + { + "start": 1841.2, + "end": 1842.9, + "probability": 0.9985 + }, + { + "start": 1844.6, + "end": 1849.64, + "probability": 0.9955 + }, + { + "start": 1851.1, + "end": 1851.92, + "probability": 0.7412 + }, + { + "start": 1852.68, + "end": 1854.2, + "probability": 0.8887 + }, + { + "start": 1854.3, + "end": 1856.2, + "probability": 0.9956 + }, + { + "start": 1858.08, + "end": 1861.12, + "probability": 0.9644 + }, + { + "start": 1861.2, + "end": 1861.74, + "probability": 0.6044 + }, + { + "start": 1862.56, + "end": 1865.16, + "probability": 0.9893 + }, + { + "start": 1866.22, + "end": 1870.74, + "probability": 0.9951 + }, + { + "start": 1870.74, + "end": 1874.82, + "probability": 0.9995 + }, + { + "start": 1874.94, + "end": 1875.54, + "probability": 0.7748 + }, + { + "start": 1876.06, + "end": 1876.86, + "probability": 0.9501 + }, + { + "start": 1877.8, + "end": 1879.06, + "probability": 0.9254 + }, + { + "start": 1879.84, + "end": 1882.96, + "probability": 0.9894 + }, + { + "start": 1884.78, + "end": 1887.6, + "probability": 0.9707 + }, + { + "start": 1887.76, + "end": 1891.0, + "probability": 0.9295 + }, + { + "start": 1891.18, + "end": 1893.6, + "probability": 0.9434 + }, + { + "start": 1894.12, + "end": 1894.64, + "probability": 0.5555 + }, + { + "start": 1895.4, + "end": 1897.8, + "probability": 0.9829 + }, + { + "start": 1897.9, + "end": 1899.42, + "probability": 0.3682 + }, + { + "start": 1899.42, + "end": 1901.16, + "probability": 0.8315 + }, + { + "start": 1901.5, + "end": 1903.92, + "probability": 0.9868 + }, + { + "start": 1904.12, + "end": 1904.3, + "probability": 0.2316 + }, + { + "start": 1905.0, + "end": 1909.62, + "probability": 0.9962 + }, + { + "start": 1910.22, + "end": 1911.94, + "probability": 0.9944 + }, + { + "start": 1912.18, + "end": 1913.58, + "probability": 0.9912 + }, + { + "start": 1913.66, + "end": 1918.08, + "probability": 0.967 + }, + { + "start": 1918.08, + "end": 1920.08, + "probability": 0.9821 + }, + { + "start": 1920.58, + "end": 1922.98, + "probability": 0.9824 + }, + { + "start": 1923.1, + "end": 1924.53, + "probability": 0.8682 + }, + { + "start": 1924.84, + "end": 1927.48, + "probability": 0.967 + }, + { + "start": 1928.02, + "end": 1930.74, + "probability": 0.9718 + }, + { + "start": 1930.86, + "end": 1932.22, + "probability": 0.395 + }, + { + "start": 1932.9, + "end": 1935.06, + "probability": 0.9534 + }, + { + "start": 1935.12, + "end": 1936.28, + "probability": 0.6943 + }, + { + "start": 1936.42, + "end": 1937.42, + "probability": 0.8914 + }, + { + "start": 1938.26, + "end": 1941.3, + "probability": 0.992 + }, + { + "start": 1941.3, + "end": 1943.94, + "probability": 0.9927 + }, + { + "start": 1944.36, + "end": 1945.56, + "probability": 0.9775 + }, + { + "start": 1945.64, + "end": 1946.18, + "probability": 0.9805 + }, + { + "start": 1946.38, + "end": 1947.12, + "probability": 0.4651 + }, + { + "start": 1947.84, + "end": 1949.54, + "probability": 0.9646 + }, + { + "start": 1949.74, + "end": 1950.84, + "probability": 0.8813 + }, + { + "start": 1951.26, + "end": 1952.36, + "probability": 0.837 + }, + { + "start": 1952.74, + "end": 1955.06, + "probability": 0.9723 + }, + { + "start": 1955.12, + "end": 1956.78, + "probability": 0.7956 + }, + { + "start": 1956.8, + "end": 1959.76, + "probability": 0.7795 + }, + { + "start": 1960.62, + "end": 1962.82, + "probability": 0.7898 + }, + { + "start": 1963.4, + "end": 1964.54, + "probability": 0.628 + }, + { + "start": 1964.58, + "end": 1967.41, + "probability": 0.9513 + }, + { + "start": 1967.48, + "end": 1968.56, + "probability": 0.9773 + }, + { + "start": 1969.3, + "end": 1970.26, + "probability": 0.8638 + }, + { + "start": 1971.5, + "end": 1973.54, + "probability": 0.7646 + }, + { + "start": 1974.42, + "end": 1975.04, + "probability": 0.6167 + }, + { + "start": 1975.26, + "end": 1975.48, + "probability": 0.9122 + }, + { + "start": 1975.64, + "end": 1978.08, + "probability": 0.9685 + }, + { + "start": 1978.58, + "end": 1979.86, + "probability": 0.9512 + }, + { + "start": 1981.16, + "end": 1982.3, + "probability": 0.9858 + }, + { + "start": 1982.36, + "end": 1983.72, + "probability": 0.9214 + }, + { + "start": 1983.82, + "end": 1984.85, + "probability": 0.9941 + }, + { + "start": 1985.32, + "end": 1986.0, + "probability": 0.6879 + }, + { + "start": 1986.78, + "end": 1991.66, + "probability": 0.9939 + }, + { + "start": 1992.34, + "end": 1993.58, + "probability": 0.9434 + }, + { + "start": 1994.62, + "end": 1995.34, + "probability": 0.6638 + }, + { + "start": 1995.96, + "end": 1996.76, + "probability": 0.6354 + }, + { + "start": 1996.84, + "end": 1997.9, + "probability": 0.96 + }, + { + "start": 1998.28, + "end": 2000.72, + "probability": 0.9793 + }, + { + "start": 2000.92, + "end": 2001.26, + "probability": 0.265 + }, + { + "start": 2001.34, + "end": 2002.04, + "probability": 0.6649 + }, + { + "start": 2002.1, + "end": 2005.86, + "probability": 0.9526 + }, + { + "start": 2007.2, + "end": 2008.56, + "probability": 0.9488 + }, + { + "start": 2008.8, + "end": 2012.9, + "probability": 0.9565 + }, + { + "start": 2013.86, + "end": 2019.24, + "probability": 0.9965 + }, + { + "start": 2019.56, + "end": 2022.92, + "probability": 0.9946 + }, + { + "start": 2022.92, + "end": 2026.18, + "probability": 0.9917 + }, + { + "start": 2026.88, + "end": 2030.82, + "probability": 0.8701 + }, + { + "start": 2030.86, + "end": 2034.2, + "probability": 0.9581 + }, + { + "start": 2034.52, + "end": 2036.0, + "probability": 0.864 + }, + { + "start": 2036.12, + "end": 2036.48, + "probability": 0.4763 + }, + { + "start": 2036.86, + "end": 2037.1, + "probability": 0.7775 + }, + { + "start": 2037.54, + "end": 2039.3, + "probability": 0.6328 + }, + { + "start": 2042.22, + "end": 2043.14, + "probability": 0.751 + }, + { + "start": 2043.76, + "end": 2043.76, + "probability": 0.0007 + }, + { + "start": 2045.66, + "end": 2049.28, + "probability": 0.9942 + }, + { + "start": 2050.04, + "end": 2051.74, + "probability": 0.7341 + }, + { + "start": 2055.08, + "end": 2056.52, + "probability": 0.6126 + }, + { + "start": 2056.56, + "end": 2059.1, + "probability": 0.3751 + }, + { + "start": 2070.04, + "end": 2072.56, + "probability": 0.5714 + }, + { + "start": 2074.14, + "end": 2075.06, + "probability": 0.6944 + }, + { + "start": 2075.6, + "end": 2076.58, + "probability": 0.7649 + }, + { + "start": 2077.16, + "end": 2080.74, + "probability": 0.8184 + }, + { + "start": 2080.74, + "end": 2081.6, + "probability": 0.6333 + }, + { + "start": 2082.6, + "end": 2084.92, + "probability": 0.9343 + }, + { + "start": 2085.52, + "end": 2087.9, + "probability": 0.8175 + }, + { + "start": 2088.6, + "end": 2094.98, + "probability": 0.981 + }, + { + "start": 2095.58, + "end": 2098.36, + "probability": 0.9839 + }, + { + "start": 2099.44, + "end": 2102.58, + "probability": 0.8262 + }, + { + "start": 2102.98, + "end": 2106.18, + "probability": 0.9901 + }, + { + "start": 2106.3, + "end": 2111.34, + "probability": 0.9839 + }, + { + "start": 2112.26, + "end": 2114.1, + "probability": 0.806 + }, + { + "start": 2114.58, + "end": 2121.28, + "probability": 0.8156 + }, + { + "start": 2121.76, + "end": 2123.64, + "probability": 0.8592 + }, + { + "start": 2124.08, + "end": 2127.66, + "probability": 0.9651 + }, + { + "start": 2127.66, + "end": 2132.12, + "probability": 0.9003 + }, + { + "start": 2133.6, + "end": 2134.72, + "probability": 0.6904 + }, + { + "start": 2135.36, + "end": 2138.82, + "probability": 0.9511 + }, + { + "start": 2139.38, + "end": 2140.56, + "probability": 0.8847 + }, + { + "start": 2141.04, + "end": 2145.56, + "probability": 0.7339 + }, + { + "start": 2146.22, + "end": 2147.22, + "probability": 0.8988 + }, + { + "start": 2147.32, + "end": 2148.24, + "probability": 0.3613 + }, + { + "start": 2148.38, + "end": 2149.44, + "probability": 0.4846 + }, + { + "start": 2149.88, + "end": 2150.78, + "probability": 0.8823 + }, + { + "start": 2151.24, + "end": 2153.04, + "probability": 0.5733 + }, + { + "start": 2154.18, + "end": 2155.02, + "probability": 0.7748 + }, + { + "start": 2155.32, + "end": 2157.26, + "probability": 0.5896 + }, + { + "start": 2157.76, + "end": 2161.36, + "probability": 0.6493 + }, + { + "start": 2161.76, + "end": 2162.88, + "probability": 0.7601 + }, + { + "start": 2163.98, + "end": 2166.96, + "probability": 0.6206 + }, + { + "start": 2167.46, + "end": 2169.44, + "probability": 0.801 + }, + { + "start": 2169.62, + "end": 2170.22, + "probability": 0.7162 + }, + { + "start": 2170.72, + "end": 2173.44, + "probability": 0.9248 + }, + { + "start": 2174.34, + "end": 2179.66, + "probability": 0.9588 + }, + { + "start": 2180.26, + "end": 2181.52, + "probability": 0.7614 + }, + { + "start": 2181.72, + "end": 2186.4, + "probability": 0.9619 + }, + { + "start": 2188.94, + "end": 2194.9, + "probability": 0.9748 + }, + { + "start": 2195.2, + "end": 2196.18, + "probability": 0.7198 + }, + { + "start": 2196.52, + "end": 2197.88, + "probability": 0.6383 + }, + { + "start": 2198.32, + "end": 2202.62, + "probability": 0.8242 + }, + { + "start": 2203.3, + "end": 2207.1, + "probability": 0.9829 + }, + { + "start": 2207.6, + "end": 2213.78, + "probability": 0.7913 + }, + { + "start": 2214.74, + "end": 2217.88, + "probability": 0.5872 + }, + { + "start": 2218.02, + "end": 2219.16, + "probability": 0.9673 + }, + { + "start": 2220.1, + "end": 2221.9, + "probability": 0.9989 + }, + { + "start": 2222.12, + "end": 2224.54, + "probability": 0.7442 + }, + { + "start": 2225.34, + "end": 2227.98, + "probability": 0.9057 + }, + { + "start": 2228.42, + "end": 2233.5, + "probability": 0.3357 + }, + { + "start": 2234.06, + "end": 2235.64, + "probability": 0.9915 + }, + { + "start": 2236.62, + "end": 2238.46, + "probability": 0.923 + }, + { + "start": 2239.0, + "end": 2242.24, + "probability": 0.9788 + }, + { + "start": 2242.66, + "end": 2246.68, + "probability": 0.9625 + }, + { + "start": 2247.06, + "end": 2248.22, + "probability": 0.8477 + }, + { + "start": 2248.62, + "end": 2249.36, + "probability": 0.6758 + }, + { + "start": 2250.0, + "end": 2255.04, + "probability": 0.9524 + }, + { + "start": 2255.46, + "end": 2259.1, + "probability": 0.5446 + }, + { + "start": 2259.2, + "end": 2260.1, + "probability": 0.6972 + }, + { + "start": 2260.22, + "end": 2264.6, + "probability": 0.8958 + }, + { + "start": 2264.6, + "end": 2268.18, + "probability": 0.8531 + }, + { + "start": 2269.62, + "end": 2271.4, + "probability": 0.6677 + }, + { + "start": 2271.98, + "end": 2274.76, + "probability": 0.9728 + }, + { + "start": 2274.76, + "end": 2278.7, + "probability": 0.9977 + }, + { + "start": 2279.2, + "end": 2279.97, + "probability": 0.5698 + }, + { + "start": 2280.6, + "end": 2280.94, + "probability": 0.4726 + }, + { + "start": 2281.0, + "end": 2283.72, + "probability": 0.8 + }, + { + "start": 2283.9, + "end": 2291.07, + "probability": 0.8276 + }, + { + "start": 2293.8, + "end": 2293.8, + "probability": 0.0295 + }, + { + "start": 2293.98, + "end": 2296.46, + "probability": 0.1095 + }, + { + "start": 2296.54, + "end": 2296.96, + "probability": 0.046 + }, + { + "start": 2296.96, + "end": 2297.84, + "probability": 0.3786 + }, + { + "start": 2298.2, + "end": 2302.44, + "probability": 0.5435 + }, + { + "start": 2302.96, + "end": 2304.72, + "probability": 0.7188 + }, + { + "start": 2306.48, + "end": 2312.7, + "probability": 0.8361 + }, + { + "start": 2312.78, + "end": 2314.84, + "probability": 0.8213 + }, + { + "start": 2315.36, + "end": 2317.4, + "probability": 0.6649 + }, + { + "start": 2317.46, + "end": 2318.72, + "probability": 0.6321 + }, + { + "start": 2318.74, + "end": 2319.1, + "probability": 0.0913 + }, + { + "start": 2319.28, + "end": 2320.2, + "probability": 0.6217 + }, + { + "start": 2320.78, + "end": 2321.56, + "probability": 0.0259 + }, + { + "start": 2321.72, + "end": 2322.59, + "probability": 0.4794 + }, + { + "start": 2323.86, + "end": 2325.1, + "probability": 0.5297 + }, + { + "start": 2325.52, + "end": 2325.54, + "probability": 0.0436 + }, + { + "start": 2325.54, + "end": 2325.54, + "probability": 0.1945 + }, + { + "start": 2325.54, + "end": 2325.54, + "probability": 0.0902 + }, + { + "start": 2325.54, + "end": 2327.82, + "probability": 0.4694 + }, + { + "start": 2328.38, + "end": 2331.31, + "probability": 0.7308 + }, + { + "start": 2332.18, + "end": 2333.54, + "probability": 0.7822 + }, + { + "start": 2334.36, + "end": 2334.74, + "probability": 0.0437 + }, + { + "start": 2334.88, + "end": 2335.62, + "probability": 0.6806 + }, + { + "start": 2336.88, + "end": 2340.4, + "probability": 0.5058 + }, + { + "start": 2340.76, + "end": 2342.94, + "probability": 0.4943 + }, + { + "start": 2343.74, + "end": 2345.12, + "probability": 0.0518 + }, + { + "start": 2345.12, + "end": 2346.04, + "probability": 0.1758 + }, + { + "start": 2346.3, + "end": 2347.12, + "probability": 0.4408 + }, + { + "start": 2347.4, + "end": 2349.24, + "probability": 0.5739 + }, + { + "start": 2349.44, + "end": 2350.52, + "probability": 0.8202 + }, + { + "start": 2350.8, + "end": 2352.32, + "probability": 0.6548 + }, + { + "start": 2352.38, + "end": 2354.0, + "probability": 0.7773 + }, + { + "start": 2354.0, + "end": 2354.84, + "probability": 0.6964 + }, + { + "start": 2354.94, + "end": 2355.76, + "probability": 0.5867 + }, + { + "start": 2355.84, + "end": 2358.0, + "probability": 0.969 + }, + { + "start": 2358.18, + "end": 2360.6, + "probability": 0.4803 + }, + { + "start": 2361.16, + "end": 2362.66, + "probability": 0.3188 + }, + { + "start": 2362.66, + "end": 2363.56, + "probability": 0.4157 + }, + { + "start": 2364.44, + "end": 2364.56, + "probability": 0.0503 + }, + { + "start": 2364.7, + "end": 2366.44, + "probability": 0.6509 + }, + { + "start": 2368.33, + "end": 2370.92, + "probability": 0.8197 + }, + { + "start": 2371.08, + "end": 2373.48, + "probability": 0.4419 + }, + { + "start": 2373.48, + "end": 2376.2, + "probability": 0.4175 + }, + { + "start": 2376.62, + "end": 2377.76, + "probability": 0.2865 + }, + { + "start": 2378.24, + "end": 2378.78, + "probability": 0.9354 + }, + { + "start": 2379.04, + "end": 2380.3, + "probability": 0.9672 + }, + { + "start": 2380.83, + "end": 2381.46, + "probability": 0.1525 + }, + { + "start": 2381.94, + "end": 2382.73, + "probability": 0.5287 + }, + { + "start": 2383.54, + "end": 2384.26, + "probability": 0.7944 + }, + { + "start": 2384.42, + "end": 2386.16, + "probability": 0.8154 + }, + { + "start": 2387.44, + "end": 2388.02, + "probability": 0.7407 + }, + { + "start": 2388.14, + "end": 2390.3, + "probability": 0.9144 + }, + { + "start": 2390.8, + "end": 2391.98, + "probability": 0.3947 + }, + { + "start": 2392.18, + "end": 2392.24, + "probability": 0.0174 + }, + { + "start": 2392.24, + "end": 2392.52, + "probability": 0.2927 + }, + { + "start": 2392.68, + "end": 2392.98, + "probability": 0.0467 + }, + { + "start": 2393.06, + "end": 2393.16, + "probability": 0.402 + }, + { + "start": 2394.56, + "end": 2395.48, + "probability": 0.8381 + }, + { + "start": 2396.64, + "end": 2398.84, + "probability": 0.6395 + }, + { + "start": 2399.72, + "end": 2402.5, + "probability": 0.9637 + }, + { + "start": 2402.5, + "end": 2406.06, + "probability": 0.9928 + }, + { + "start": 2406.48, + "end": 2407.0, + "probability": 0.5161 + }, + { + "start": 2407.12, + "end": 2411.72, + "probability": 0.7212 + }, + { + "start": 2411.74, + "end": 2412.6, + "probability": 0.2469 + }, + { + "start": 2412.82, + "end": 2415.9, + "probability": 0.9322 + }, + { + "start": 2416.28, + "end": 2419.12, + "probability": 0.8534 + }, + { + "start": 2419.36, + "end": 2421.34, + "probability": 0.7678 + }, + { + "start": 2421.56, + "end": 2422.62, + "probability": 0.9126 + }, + { + "start": 2422.8, + "end": 2425.28, + "probability": 0.7672 + }, + { + "start": 2425.74, + "end": 2428.52, + "probability": 0.8948 + }, + { + "start": 2428.86, + "end": 2432.77, + "probability": 0.8721 + }, + { + "start": 2433.54, + "end": 2436.24, + "probability": 0.9603 + }, + { + "start": 2436.24, + "end": 2439.18, + "probability": 0.9506 + }, + { + "start": 2439.48, + "end": 2440.07, + "probability": 0.9687 + }, + { + "start": 2441.34, + "end": 2444.37, + "probability": 0.7386 + }, + { + "start": 2444.62, + "end": 2446.96, + "probability": 0.6172 + }, + { + "start": 2447.38, + "end": 2448.28, + "probability": 0.1293 + }, + { + "start": 2448.28, + "end": 2450.0, + "probability": 0.8765 + }, + { + "start": 2450.36, + "end": 2451.76, + "probability": 0.8635 + }, + { + "start": 2452.12, + "end": 2453.94, + "probability": 0.9708 + }, + { + "start": 2454.1, + "end": 2454.76, + "probability": 0.4169 + }, + { + "start": 2455.34, + "end": 2457.4, + "probability": 0.7373 + }, + { + "start": 2457.76, + "end": 2459.78, + "probability": 0.9276 + }, + { + "start": 2461.26, + "end": 2463.92, + "probability": 0.8958 + }, + { + "start": 2464.22, + "end": 2465.04, + "probability": 0.5783 + }, + { + "start": 2465.8, + "end": 2469.9, + "probability": 0.7781 + }, + { + "start": 2470.72, + "end": 2472.2, + "probability": 0.5747 + }, + { + "start": 2472.42, + "end": 2477.16, + "probability": 0.8428 + }, + { + "start": 2477.32, + "end": 2481.92, + "probability": 0.9777 + }, + { + "start": 2482.3, + "end": 2484.42, + "probability": 0.9814 + }, + { + "start": 2484.88, + "end": 2486.06, + "probability": 0.9028 + }, + { + "start": 2486.14, + "end": 2491.62, + "probability": 0.9491 + }, + { + "start": 2493.76, + "end": 2494.44, + "probability": 0.6303 + }, + { + "start": 2495.22, + "end": 2500.12, + "probability": 0.8975 + }, + { + "start": 2500.58, + "end": 2500.88, + "probability": 0.5012 + }, + { + "start": 2501.08, + "end": 2504.38, + "probability": 0.8235 + }, + { + "start": 2504.58, + "end": 2506.6, + "probability": 0.7081 + }, + { + "start": 2506.88, + "end": 2509.32, + "probability": 0.9465 + }, + { + "start": 2509.4, + "end": 2509.8, + "probability": 0.6885 + }, + { + "start": 2510.26, + "end": 2512.76, + "probability": 0.8923 + }, + { + "start": 2512.84, + "end": 2516.14, + "probability": 0.6837 + }, + { + "start": 2516.66, + "end": 2517.78, + "probability": 0.5331 + }, + { + "start": 2518.04, + "end": 2521.0, + "probability": 0.7309 + }, + { + "start": 2521.4, + "end": 2523.16, + "probability": 0.9325 + }, + { + "start": 2523.66, + "end": 2524.36, + "probability": 0.6065 + }, + { + "start": 2524.82, + "end": 2527.76, + "probability": 0.9304 + }, + { + "start": 2527.92, + "end": 2528.72, + "probability": 0.8832 + }, + { + "start": 2529.02, + "end": 2529.86, + "probability": 0.7929 + }, + { + "start": 2529.92, + "end": 2535.16, + "probability": 0.8573 + }, + { + "start": 2535.32, + "end": 2538.54, + "probability": 0.7308 + }, + { + "start": 2538.66, + "end": 2540.3, + "probability": 0.9188 + }, + { + "start": 2541.7, + "end": 2542.88, + "probability": 0.7731 + }, + { + "start": 2543.22, + "end": 2548.42, + "probability": 0.8008 + }, + { + "start": 2548.58, + "end": 2549.36, + "probability": 0.6327 + }, + { + "start": 2549.46, + "end": 2550.72, + "probability": 0.6584 + }, + { + "start": 2551.48, + "end": 2552.5, + "probability": 0.7956 + }, + { + "start": 2552.88, + "end": 2555.52, + "probability": 0.8089 + }, + { + "start": 2555.9, + "end": 2558.44, + "probability": 0.6497 + }, + { + "start": 2558.44, + "end": 2561.68, + "probability": 0.996 + }, + { + "start": 2562.12, + "end": 2564.4, + "probability": 0.71 + }, + { + "start": 2564.84, + "end": 2565.6, + "probability": 0.4259 + }, + { + "start": 2565.86, + "end": 2570.68, + "probability": 0.9961 + }, + { + "start": 2571.26, + "end": 2572.16, + "probability": 0.5116 + }, + { + "start": 2572.42, + "end": 2575.38, + "probability": 0.7544 + }, + { + "start": 2576.34, + "end": 2577.38, + "probability": 0.7818 + }, + { + "start": 2577.8, + "end": 2578.12, + "probability": 0.4768 + }, + { + "start": 2578.28, + "end": 2580.74, + "probability": 0.8594 + }, + { + "start": 2580.86, + "end": 2584.04, + "probability": 0.9557 + }, + { + "start": 2584.24, + "end": 2585.98, + "probability": 0.7904 + }, + { + "start": 2585.98, + "end": 2586.04, + "probability": 0.8735 + }, + { + "start": 2590.8, + "end": 2595.12, + "probability": 0.9718 + }, + { + "start": 2595.32, + "end": 2599.04, + "probability": 0.8715 + }, + { + "start": 2599.4, + "end": 2600.66, + "probability": 0.8266 + }, + { + "start": 2601.96, + "end": 2602.76, + "probability": 0.6554 + }, + { + "start": 2603.14, + "end": 2606.9, + "probability": 0.6803 + }, + { + "start": 2607.04, + "end": 2607.58, + "probability": 0.7193 + }, + { + "start": 2609.52, + "end": 2610.88, + "probability": 0.8655 + }, + { + "start": 2611.4, + "end": 2611.44, + "probability": 0.2336 + }, + { + "start": 2611.6, + "end": 2612.54, + "probability": 0.7883 + }, + { + "start": 2612.62, + "end": 2615.18, + "probability": 0.8546 + }, + { + "start": 2615.26, + "end": 2615.72, + "probability": 0.3337 + }, + { + "start": 2616.06, + "end": 2619.54, + "probability": 0.7 + }, + { + "start": 2619.66, + "end": 2622.6, + "probability": 0.8328 + }, + { + "start": 2622.94, + "end": 2625.86, + "probability": 0.7752 + }, + { + "start": 2626.26, + "end": 2628.44, + "probability": 0.7574 + }, + { + "start": 2629.22, + "end": 2633.82, + "probability": 0.9183 + }, + { + "start": 2634.36, + "end": 2635.32, + "probability": 0.8262 + }, + { + "start": 2635.48, + "end": 2638.26, + "probability": 0.8237 + }, + { + "start": 2638.26, + "end": 2642.12, + "probability": 0.6741 + }, + { + "start": 2642.26, + "end": 2644.56, + "probability": 0.9676 + }, + { + "start": 2644.76, + "end": 2647.04, + "probability": 0.8492 + }, + { + "start": 2647.14, + "end": 2650.58, + "probability": 0.9802 + }, + { + "start": 2651.02, + "end": 2651.7, + "probability": 0.9656 + }, + { + "start": 2652.0, + "end": 2652.72, + "probability": 0.4603 + }, + { + "start": 2652.8, + "end": 2655.48, + "probability": 0.8663 + }, + { + "start": 2655.98, + "end": 2657.24, + "probability": 0.8802 + }, + { + "start": 2657.54, + "end": 2659.56, + "probability": 0.9075 + }, + { + "start": 2660.0, + "end": 2662.08, + "probability": 0.9341 + }, + { + "start": 2662.44, + "end": 2664.5, + "probability": 0.9749 + }, + { + "start": 2666.16, + "end": 2666.62, + "probability": 0.51 + }, + { + "start": 2666.9, + "end": 2668.5, + "probability": 0.7763 + }, + { + "start": 2668.58, + "end": 2669.48, + "probability": 0.6074 + }, + { + "start": 2669.92, + "end": 2674.3, + "probability": 0.9741 + }, + { + "start": 2674.5, + "end": 2680.02, + "probability": 0.9946 + }, + { + "start": 2680.4, + "end": 2685.2, + "probability": 0.9612 + }, + { + "start": 2685.84, + "end": 2688.2, + "probability": 0.6563 + }, + { + "start": 2688.38, + "end": 2689.1, + "probability": 0.7978 + }, + { + "start": 2689.6, + "end": 2692.72, + "probability": 0.7723 + }, + { + "start": 2693.56, + "end": 2694.38, + "probability": 0.1978 + }, + { + "start": 2694.5, + "end": 2695.64, + "probability": 0.867 + }, + { + "start": 2695.84, + "end": 2697.52, + "probability": 0.733 + }, + { + "start": 2697.56, + "end": 2698.48, + "probability": 0.6209 + }, + { + "start": 2698.84, + "end": 2701.02, + "probability": 0.8926 + }, + { + "start": 2701.56, + "end": 2704.04, + "probability": 0.6435 + }, + { + "start": 2704.04, + "end": 2707.72, + "probability": 0.8586 + }, + { + "start": 2708.16, + "end": 2708.94, + "probability": 0.8103 + }, + { + "start": 2709.7, + "end": 2712.68, + "probability": 0.7986 + }, + { + "start": 2713.02, + "end": 2716.52, + "probability": 0.8301 + }, + { + "start": 2716.88, + "end": 2717.42, + "probability": 0.4631 + }, + { + "start": 2717.5, + "end": 2718.36, + "probability": 0.8556 + }, + { + "start": 2718.94, + "end": 2719.54, + "probability": 0.7767 + }, + { + "start": 2719.62, + "end": 2720.98, + "probability": 0.8244 + }, + { + "start": 2721.02, + "end": 2723.1, + "probability": 0.8608 + }, + { + "start": 2723.24, + "end": 2724.72, + "probability": 0.7979 + }, + { + "start": 2725.26, + "end": 2727.72, + "probability": 0.3527 + }, + { + "start": 2729.0, + "end": 2729.76, + "probability": 0.7357 + }, + { + "start": 2729.86, + "end": 2736.26, + "probability": 0.7231 + }, + { + "start": 2736.58, + "end": 2738.16, + "probability": 0.9919 + }, + { + "start": 2738.94, + "end": 2741.38, + "probability": 0.9624 + }, + { + "start": 2741.44, + "end": 2743.9, + "probability": 0.7855 + }, + { + "start": 2744.1, + "end": 2745.7, + "probability": 0.8059 + }, + { + "start": 2746.1, + "end": 2748.18, + "probability": 0.8081 + }, + { + "start": 2748.58, + "end": 2755.18, + "probability": 0.7966 + }, + { + "start": 2755.32, + "end": 2755.64, + "probability": 0.263 + }, + { + "start": 2756.08, + "end": 2756.86, + "probability": 0.2634 + }, + { + "start": 2757.62, + "end": 2760.98, + "probability": 0.8132 + }, + { + "start": 2761.06, + "end": 2763.86, + "probability": 0.9429 + }, + { + "start": 2764.28, + "end": 2765.22, + "probability": 0.7783 + }, + { + "start": 2765.34, + "end": 2766.24, + "probability": 0.5286 + }, + { + "start": 2766.32, + "end": 2767.8, + "probability": 0.8052 + }, + { + "start": 2768.74, + "end": 2771.12, + "probability": 0.8406 + }, + { + "start": 2771.66, + "end": 2776.62, + "probability": 0.9087 + }, + { + "start": 2776.62, + "end": 2780.02, + "probability": 0.6481 + }, + { + "start": 2780.6, + "end": 2783.92, + "probability": 0.7889 + }, + { + "start": 2785.42, + "end": 2787.48, + "probability": 0.8864 + }, + { + "start": 2788.3, + "end": 2789.96, + "probability": 0.9668 + }, + { + "start": 2790.38, + "end": 2793.22, + "probability": 0.7778 + }, + { + "start": 2793.8, + "end": 2795.42, + "probability": 0.7546 + }, + { + "start": 2796.14, + "end": 2800.9, + "probability": 0.9395 + }, + { + "start": 2801.2, + "end": 2801.34, + "probability": 0.6754 + }, + { + "start": 2801.44, + "end": 2803.38, + "probability": 0.9709 + }, + { + "start": 2803.92, + "end": 2804.56, + "probability": 0.9655 + }, + { + "start": 2805.4, + "end": 2806.64, + "probability": 0.9458 + }, + { + "start": 2807.42, + "end": 2810.08, + "probability": 0.8699 + }, + { + "start": 2812.7, + "end": 2814.56, + "probability": 0.8145 + }, + { + "start": 2814.72, + "end": 2818.46, + "probability": 0.9888 + }, + { + "start": 2818.46, + "end": 2821.42, + "probability": 0.6862 + }, + { + "start": 2822.24, + "end": 2823.1, + "probability": 0.0936 + }, + { + "start": 2839.94, + "end": 2840.6, + "probability": 0.044 + }, + { + "start": 2841.12, + "end": 2841.96, + "probability": 0.1087 + }, + { + "start": 2841.96, + "end": 2842.0, + "probability": 0.0406 + }, + { + "start": 2842.0, + "end": 2842.0, + "probability": 0.0649 + }, + { + "start": 2842.0, + "end": 2843.0, + "probability": 0.0904 + }, + { + "start": 2843.4, + "end": 2846.8, + "probability": 0.1607 + }, + { + "start": 2861.48, + "end": 2862.4, + "probability": 0.0001 + }, + { + "start": 2878.82, + "end": 2882.18, + "probability": 0.7775 + }, + { + "start": 2882.92, + "end": 2887.92, + "probability": 0.8441 + }, + { + "start": 2889.36, + "end": 2890.96, + "probability": 0.8682 + }, + { + "start": 2891.74, + "end": 2891.92, + "probability": 0.2078 + }, + { + "start": 2892.18, + "end": 2892.9, + "probability": 0.5634 + }, + { + "start": 2893.14, + "end": 2894.54, + "probability": 0.6259 + }, + { + "start": 2896.46, + "end": 2898.34, + "probability": 0.7789 + }, + { + "start": 2898.8, + "end": 2899.52, + "probability": 0.7754 + }, + { + "start": 2900.14, + "end": 2902.85, + "probability": 0.8525 + }, + { + "start": 2905.02, + "end": 2906.94, + "probability": 0.8631 + }, + { + "start": 2907.64, + "end": 2910.58, + "probability": 0.0606 + }, + { + "start": 2911.58, + "end": 2911.58, + "probability": 0.4242 + }, + { + "start": 2911.58, + "end": 2914.16, + "probability": 0.7654 + }, + { + "start": 2914.66, + "end": 2916.33, + "probability": 0.6173 + }, + { + "start": 2917.68, + "end": 2918.62, + "probability": 0.9726 + }, + { + "start": 2918.78, + "end": 2921.66, + "probability": 0.9805 + }, + { + "start": 2921.7, + "end": 2922.62, + "probability": 0.8703 + }, + { + "start": 2923.3, + "end": 2924.42, + "probability": 0.4977 + }, + { + "start": 2924.58, + "end": 2925.14, + "probability": 0.6883 + }, + { + "start": 2926.14, + "end": 2928.24, + "probability": 0.8619 + }, + { + "start": 2928.84, + "end": 2930.3, + "probability": 0.9478 + }, + { + "start": 2930.6, + "end": 2933.8, + "probability": 0.995 + }, + { + "start": 2933.8, + "end": 2936.0, + "probability": 0.9982 + }, + { + "start": 2937.04, + "end": 2940.48, + "probability": 0.9994 + }, + { + "start": 2940.6, + "end": 2944.04, + "probability": 0.9971 + }, + { + "start": 2945.74, + "end": 2951.24, + "probability": 0.9991 + }, + { + "start": 2951.68, + "end": 2953.0, + "probability": 0.8527 + }, + { + "start": 2953.16, + "end": 2955.06, + "probability": 0.9144 + }, + { + "start": 2955.92, + "end": 2956.5, + "probability": 0.3989 + }, + { + "start": 2956.7, + "end": 2960.56, + "probability": 0.9631 + }, + { + "start": 2960.6, + "end": 2968.94, + "probability": 0.9609 + }, + { + "start": 2970.28, + "end": 2973.86, + "probability": 0.9444 + }, + { + "start": 2973.86, + "end": 2977.96, + "probability": 0.9937 + }, + { + "start": 2978.6, + "end": 2980.06, + "probability": 0.7928 + }, + { + "start": 2981.04, + "end": 2984.22, + "probability": 0.9932 + }, + { + "start": 2984.54, + "end": 2985.62, + "probability": 0.924 + }, + { + "start": 2985.7, + "end": 2986.58, + "probability": 0.8772 + }, + { + "start": 2987.28, + "end": 2990.22, + "probability": 0.9804 + }, + { + "start": 2990.7, + "end": 2991.48, + "probability": 0.7498 + }, + { + "start": 2991.6, + "end": 2992.1, + "probability": 0.8416 + }, + { + "start": 2992.24, + "end": 2993.9, + "probability": 0.6777 + }, + { + "start": 2994.02, + "end": 2995.72, + "probability": 0.9976 + }, + { + "start": 2996.24, + "end": 2999.34, + "probability": 0.9828 + }, + { + "start": 2999.76, + "end": 3004.26, + "probability": 0.9893 + }, + { + "start": 3004.76, + "end": 3007.54, + "probability": 0.985 + }, + { + "start": 3007.64, + "end": 3008.12, + "probability": 0.6709 + }, + { + "start": 3009.12, + "end": 3011.9, + "probability": 0.8413 + }, + { + "start": 3013.02, + "end": 3016.92, + "probability": 0.9959 + }, + { + "start": 3017.78, + "end": 3018.54, + "probability": 0.9205 + }, + { + "start": 3019.2, + "end": 3022.14, + "probability": 0.9507 + }, + { + "start": 3022.9, + "end": 3025.5, + "probability": 0.9563 + }, + { + "start": 3025.6, + "end": 3027.52, + "probability": 0.8635 + }, + { + "start": 3027.6, + "end": 3030.34, + "probability": 0.9783 + }, + { + "start": 3030.88, + "end": 3033.48, + "probability": 0.9836 + }, + { + "start": 3035.08, + "end": 3036.08, + "probability": 0.6353 + }, + { + "start": 3036.88, + "end": 3037.76, + "probability": 0.9207 + }, + { + "start": 3039.2, + "end": 3042.52, + "probability": 0.7083 + }, + { + "start": 3042.76, + "end": 3047.08, + "probability": 0.99 + }, + { + "start": 3047.8, + "end": 3052.26, + "probability": 0.9956 + }, + { + "start": 3052.38, + "end": 3056.22, + "probability": 0.9952 + }, + { + "start": 3056.38, + "end": 3060.44, + "probability": 0.9476 + }, + { + "start": 3060.44, + "end": 3064.96, + "probability": 0.9984 + }, + { + "start": 3066.82, + "end": 3070.68, + "probability": 0.9943 + }, + { + "start": 3071.06, + "end": 3075.44, + "probability": 0.9618 + }, + { + "start": 3076.32, + "end": 3076.46, + "probability": 0.0445 + }, + { + "start": 3076.46, + "end": 3079.92, + "probability": 0.9878 + }, + { + "start": 3080.14, + "end": 3082.54, + "probability": 0.8328 + }, + { + "start": 3082.64, + "end": 3083.7, + "probability": 0.669 + }, + { + "start": 3084.36, + "end": 3086.2, + "probability": 0.5546 + }, + { + "start": 3086.72, + "end": 3088.72, + "probability": 0.9513 + }, + { + "start": 3089.22, + "end": 3091.2, + "probability": 0.9409 + }, + { + "start": 3091.94, + "end": 3091.94, + "probability": 0.184 + }, + { + "start": 3091.94, + "end": 3091.94, + "probability": 0.6341 + }, + { + "start": 3091.94, + "end": 3095.58, + "probability": 0.7088 + }, + { + "start": 3095.66, + "end": 3101.02, + "probability": 0.994 + }, + { + "start": 3101.66, + "end": 3102.68, + "probability": 0.8377 + }, + { + "start": 3102.76, + "end": 3105.66, + "probability": 0.998 + }, + { + "start": 3106.46, + "end": 3109.62, + "probability": 0.998 + }, + { + "start": 3109.86, + "end": 3111.18, + "probability": 0.8433 + }, + { + "start": 3111.8, + "end": 3114.02, + "probability": 0.9973 + }, + { + "start": 3114.14, + "end": 3116.38, + "probability": 0.9231 + }, + { + "start": 3117.5, + "end": 3119.64, + "probability": 0.9917 + }, + { + "start": 3119.88, + "end": 3120.96, + "probability": 0.7447 + }, + { + "start": 3120.98, + "end": 3122.3, + "probability": 0.9402 + }, + { + "start": 3123.02, + "end": 3123.62, + "probability": 0.4804 + }, + { + "start": 3124.84, + "end": 3128.11, + "probability": 0.9948 + }, + { + "start": 3128.63, + "end": 3133.47, + "probability": 0.9746 + }, + { + "start": 3133.55, + "end": 3135.49, + "probability": 0.8218 + }, + { + "start": 3135.91, + "end": 3136.77, + "probability": 0.9629 + }, + { + "start": 3136.91, + "end": 3138.07, + "probability": 0.9604 + }, + { + "start": 3138.69, + "end": 3140.45, + "probability": 0.9859 + }, + { + "start": 3141.01, + "end": 3142.49, + "probability": 0.0683 + }, + { + "start": 3143.29, + "end": 3143.29, + "probability": 0.0006 + }, + { + "start": 3144.01, + "end": 3144.15, + "probability": 0.047 + }, + { + "start": 3144.15, + "end": 3144.21, + "probability": 0.1081 + }, + { + "start": 3144.21, + "end": 3144.21, + "probability": 0.1125 + }, + { + "start": 3144.21, + "end": 3144.77, + "probability": 0.1202 + }, + { + "start": 3144.77, + "end": 3147.65, + "probability": 0.8372 + }, + { + "start": 3148.67, + "end": 3151.07, + "probability": 0.602 + }, + { + "start": 3151.87, + "end": 3153.77, + "probability": 0.7239 + }, + { + "start": 3153.95, + "end": 3157.51, + "probability": 0.9669 + }, + { + "start": 3157.65, + "end": 3158.37, + "probability": 0.618 + }, + { + "start": 3159.55, + "end": 3162.11, + "probability": 0.7659 + }, + { + "start": 3162.59, + "end": 3166.17, + "probability": 0.851 + }, + { + "start": 3166.67, + "end": 3167.11, + "probability": 0.9268 + }, + { + "start": 3167.53, + "end": 3169.67, + "probability": 0.9858 + }, + { + "start": 3171.63, + "end": 3172.78, + "probability": 0.9831 + }, + { + "start": 3173.21, + "end": 3173.83, + "probability": 0.8949 + }, + { + "start": 3173.97, + "end": 3174.47, + "probability": 0.9041 + }, + { + "start": 3174.57, + "end": 3175.27, + "probability": 0.971 + }, + { + "start": 3175.31, + "end": 3177.35, + "probability": 0.9503 + }, + { + "start": 3177.45, + "end": 3178.35, + "probability": 0.947 + }, + { + "start": 3178.77, + "end": 3180.81, + "probability": 0.8983 + }, + { + "start": 3181.35, + "end": 3185.58, + "probability": 0.9487 + }, + { + "start": 3186.39, + "end": 3189.47, + "probability": 0.8331 + }, + { + "start": 3189.63, + "end": 3190.37, + "probability": 0.7255 + }, + { + "start": 3190.71, + "end": 3191.25, + "probability": 0.5959 + }, + { + "start": 3191.63, + "end": 3192.47, + "probability": 0.8501 + }, + { + "start": 3192.55, + "end": 3193.61, + "probability": 0.0709 + }, + { + "start": 3193.97, + "end": 3195.5, + "probability": 0.5236 + }, + { + "start": 3196.01, + "end": 3197.97, + "probability": 0.1033 + }, + { + "start": 3197.97, + "end": 3199.69, + "probability": 0.4597 + }, + { + "start": 3199.75, + "end": 3200.47, + "probability": 0.8841 + }, + { + "start": 3200.53, + "end": 3204.31, + "probability": 0.9907 + }, + { + "start": 3204.65, + "end": 3208.15, + "probability": 0.9126 + }, + { + "start": 3208.67, + "end": 3211.17, + "probability": 0.9966 + }, + { + "start": 3211.83, + "end": 3214.69, + "probability": 0.5089 + }, + { + "start": 3214.69, + "end": 3214.69, + "probability": 0.4991 + }, + { + "start": 3214.69, + "end": 3216.97, + "probability": 0.5361 + }, + { + "start": 3217.11, + "end": 3217.18, + "probability": 0.5968 + }, + { + "start": 3219.39, + "end": 3222.09, + "probability": 0.4228 + }, + { + "start": 3222.09, + "end": 3222.93, + "probability": 0.4695 + }, + { + "start": 3224.31, + "end": 3225.13, + "probability": 0.2133 + }, + { + "start": 3225.17, + "end": 3226.71, + "probability": 0.06 + }, + { + "start": 3226.81, + "end": 3227.47, + "probability": 0.1374 + }, + { + "start": 3228.09, + "end": 3228.31, + "probability": 0.0504 + }, + { + "start": 3228.31, + "end": 3228.31, + "probability": 0.1901 + }, + { + "start": 3228.31, + "end": 3228.31, + "probability": 0.0839 + }, + { + "start": 3228.31, + "end": 3228.31, + "probability": 0.4775 + }, + { + "start": 3228.31, + "end": 3228.31, + "probability": 0.1376 + }, + { + "start": 3228.31, + "end": 3231.25, + "probability": 0.6636 + }, + { + "start": 3231.99, + "end": 3232.43, + "probability": 0.7306 + }, + { + "start": 3235.07, + "end": 3236.33, + "probability": 0.02 + }, + { + "start": 3236.61, + "end": 3236.61, + "probability": 0.2899 + }, + { + "start": 3236.67, + "end": 3236.67, + "probability": 0.0506 + }, + { + "start": 3236.67, + "end": 3241.55, + "probability": 0.8127 + }, + { + "start": 3242.07, + "end": 3244.13, + "probability": 0.9766 + }, + { + "start": 3245.09, + "end": 3247.25, + "probability": 0.9856 + }, + { + "start": 3247.31, + "end": 3253.21, + "probability": 0.9873 + }, + { + "start": 3253.91, + "end": 3255.97, + "probability": 0.9889 + }, + { + "start": 3256.99, + "end": 3259.65, + "probability": 0.9958 + }, + { + "start": 3260.75, + "end": 3261.35, + "probability": 0.6807 + }, + { + "start": 3262.79, + "end": 3265.53, + "probability": 0.925 + }, + { + "start": 3267.49, + "end": 3269.97, + "probability": 0.0126 + }, + { + "start": 3269.97, + "end": 3269.97, + "probability": 0.0073 + }, + { + "start": 3269.97, + "end": 3269.97, + "probability": 0.0701 + }, + { + "start": 3269.97, + "end": 3272.33, + "probability": 0.411 + }, + { + "start": 3272.43, + "end": 3272.43, + "probability": 0.1762 + }, + { + "start": 3272.43, + "end": 3273.67, + "probability": 0.7174 + }, + { + "start": 3273.73, + "end": 3275.97, + "probability": 0.5965 + }, + { + "start": 3276.05, + "end": 3281.09, + "probability": 0.8455 + }, + { + "start": 3281.39, + "end": 3285.77, + "probability": 0.8903 + }, + { + "start": 3287.17, + "end": 3288.81, + "probability": 0.5602 + }, + { + "start": 3288.81, + "end": 3289.44, + "probability": 0.5381 + }, + { + "start": 3289.53, + "end": 3291.31, + "probability": 0.6131 + }, + { + "start": 3291.31, + "end": 3292.51, + "probability": 0.3432 + }, + { + "start": 3292.91, + "end": 3294.29, + "probability": 0.3296 + }, + { + "start": 3294.83, + "end": 3294.87, + "probability": 0.0006 + }, + { + "start": 3294.87, + "end": 3294.87, + "probability": 0.2206 + }, + { + "start": 3294.87, + "end": 3294.87, + "probability": 0.0526 + }, + { + "start": 3294.87, + "end": 3296.53, + "probability": 0.6802 + }, + { + "start": 3296.73, + "end": 3297.33, + "probability": 0.5169 + }, + { + "start": 3297.73, + "end": 3298.31, + "probability": 0.1227 + }, + { + "start": 3298.31, + "end": 3299.24, + "probability": 0.7559 + }, + { + "start": 3299.63, + "end": 3300.05, + "probability": 0.5237 + }, + { + "start": 3300.09, + "end": 3300.81, + "probability": 0.7109 + }, + { + "start": 3301.89, + "end": 3303.87, + "probability": 0.9351 + }, + { + "start": 3304.41, + "end": 3305.05, + "probability": 0.2252 + }, + { + "start": 3305.83, + "end": 3305.83, + "probability": 0.1218 + }, + { + "start": 3305.85, + "end": 3305.85, + "probability": 0.0238 + }, + { + "start": 3305.85, + "end": 3305.99, + "probability": 0.4467 + }, + { + "start": 3306.01, + "end": 3306.41, + "probability": 0.2503 + }, + { + "start": 3306.81, + "end": 3307.55, + "probability": 0.8028 + }, + { + "start": 3307.73, + "end": 3309.07, + "probability": 0.7593 + }, + { + "start": 3309.75, + "end": 3316.47, + "probability": 0.9944 + }, + { + "start": 3317.27, + "end": 3319.97, + "probability": 0.9944 + }, + { + "start": 3320.47, + "end": 3323.63, + "probability": 0.9584 + }, + { + "start": 3324.05, + "end": 3326.97, + "probability": 0.9847 + }, + { + "start": 3327.57, + "end": 3334.37, + "probability": 0.963 + }, + { + "start": 3334.47, + "end": 3335.59, + "probability": 0.655 + }, + { + "start": 3335.65, + "end": 3338.29, + "probability": 0.9773 + }, + { + "start": 3338.77, + "end": 3340.57, + "probability": 0.8572 + }, + { + "start": 3341.69, + "end": 3343.23, + "probability": 0.8969 + }, + { + "start": 3343.37, + "end": 3345.23, + "probability": 0.9958 + }, + { + "start": 3345.63, + "end": 3347.95, + "probability": 0.9946 + }, + { + "start": 3349.27, + "end": 3352.03, + "probability": 0.7648 + }, + { + "start": 3352.59, + "end": 3354.75, + "probability": 0.9807 + }, + { + "start": 3355.35, + "end": 3357.37, + "probability": 0.9657 + }, + { + "start": 3357.99, + "end": 3362.57, + "probability": 0.9923 + }, + { + "start": 3363.13, + "end": 3366.31, + "probability": 0.9978 + }, + { + "start": 3367.01, + "end": 3371.13, + "probability": 0.9995 + }, + { + "start": 3371.75, + "end": 3374.59, + "probability": 0.8486 + }, + { + "start": 3375.29, + "end": 3376.51, + "probability": 0.804 + }, + { + "start": 3377.03, + "end": 3380.41, + "probability": 0.9658 + }, + { + "start": 3381.21, + "end": 3385.89, + "probability": 0.9517 + }, + { + "start": 3387.69, + "end": 3390.29, + "probability": 0.7212 + }, + { + "start": 3390.93, + "end": 3394.37, + "probability": 0.9408 + }, + { + "start": 3395.07, + "end": 3395.75, + "probability": 0.7114 + }, + { + "start": 3396.15, + "end": 3400.39, + "probability": 0.9513 + }, + { + "start": 3401.07, + "end": 3405.27, + "probability": 0.9736 + }, + { + "start": 3405.93, + "end": 3406.45, + "probability": 0.8312 + }, + { + "start": 3406.91, + "end": 3408.09, + "probability": 0.9007 + }, + { + "start": 3408.49, + "end": 3409.01, + "probability": 0.7502 + }, + { + "start": 3409.39, + "end": 3410.77, + "probability": 0.9851 + }, + { + "start": 3411.89, + "end": 3413.99, + "probability": 0.9688 + }, + { + "start": 3414.59, + "end": 3414.97, + "probability": 0.6051 + }, + { + "start": 3415.29, + "end": 3416.01, + "probability": 0.8168 + }, + { + "start": 3417.23, + "end": 3420.21, + "probability": 0.998 + }, + { + "start": 3420.21, + "end": 3424.43, + "probability": 0.9997 + }, + { + "start": 3424.95, + "end": 3426.63, + "probability": 0.9863 + }, + { + "start": 3427.47, + "end": 3429.09, + "probability": 0.9803 + }, + { + "start": 3429.75, + "end": 3432.53, + "probability": 0.9985 + }, + { + "start": 3432.77, + "end": 3437.13, + "probability": 0.9915 + }, + { + "start": 3437.13, + "end": 3441.19, + "probability": 0.999 + }, + { + "start": 3441.65, + "end": 3445.03, + "probability": 0.7979 + }, + { + "start": 3445.19, + "end": 3446.35, + "probability": 0.7933 + }, + { + "start": 3446.59, + "end": 3446.85, + "probability": 0.0308 + }, + { + "start": 3446.85, + "end": 3446.85, + "probability": 0.0141 + }, + { + "start": 3446.85, + "end": 3449.89, + "probability": 0.371 + }, + { + "start": 3449.89, + "end": 3455.79, + "probability": 0.9797 + }, + { + "start": 3456.27, + "end": 3456.33, + "probability": 0.0596 + }, + { + "start": 3456.33, + "end": 3458.08, + "probability": 0.9893 + }, + { + "start": 3458.71, + "end": 3459.59, + "probability": 0.8753 + }, + { + "start": 3459.67, + "end": 3462.77, + "probability": 0.998 + }, + { + "start": 3463.65, + "end": 3467.43, + "probability": 0.9951 + }, + { + "start": 3467.45, + "end": 3468.09, + "probability": 0.0847 + }, + { + "start": 3468.25, + "end": 3472.33, + "probability": 0.9951 + }, + { + "start": 3472.47, + "end": 3473.46, + "probability": 0.9764 + }, + { + "start": 3473.97, + "end": 3475.45, + "probability": 0.9971 + }, + { + "start": 3477.51, + "end": 3480.29, + "probability": 0.9984 + }, + { + "start": 3480.47, + "end": 3483.13, + "probability": 0.9927 + }, + { + "start": 3483.77, + "end": 3486.55, + "probability": 0.9995 + }, + { + "start": 3487.23, + "end": 3490.75, + "probability": 0.9624 + }, + { + "start": 3491.35, + "end": 3494.79, + "probability": 0.995 + }, + { + "start": 3496.43, + "end": 3497.23, + "probability": 0.2063 + }, + { + "start": 3498.27, + "end": 3499.23, + "probability": 0.4577 + }, + { + "start": 3499.27, + "end": 3499.41, + "probability": 0.4023 + }, + { + "start": 3499.45, + "end": 3502.67, + "probability": 0.9857 + }, + { + "start": 3503.25, + "end": 3506.09, + "probability": 0.9143 + }, + { + "start": 3506.59, + "end": 3507.65, + "probability": 0.2634 + }, + { + "start": 3507.77, + "end": 3509.17, + "probability": 0.691 + }, + { + "start": 3510.04, + "end": 3510.37, + "probability": 0.3087 + }, + { + "start": 3510.37, + "end": 3510.86, + "probability": 0.7115 + }, + { + "start": 3511.05, + "end": 3512.73, + "probability": 0.9032 + }, + { + "start": 3513.19, + "end": 3513.97, + "probability": 0.94 + }, + { + "start": 3514.37, + "end": 3515.62, + "probability": 0.122 + }, + { + "start": 3516.49, + "end": 3517.27, + "probability": 0.0406 + }, + { + "start": 3518.13, + "end": 3518.13, + "probability": 0.0312 + }, + { + "start": 3518.13, + "end": 3518.88, + "probability": 0.5724 + }, + { + "start": 3519.77, + "end": 3520.13, + "probability": 0.6665 + }, + { + "start": 3521.27, + "end": 3522.47, + "probability": 0.894 + }, + { + "start": 3522.59, + "end": 3524.19, + "probability": 0.9185 + }, + { + "start": 3524.37, + "end": 3526.35, + "probability": 0.6172 + }, + { + "start": 3526.71, + "end": 3526.81, + "probability": 0.8465 + }, + { + "start": 3526.81, + "end": 3527.47, + "probability": 0.9653 + }, + { + "start": 3528.31, + "end": 3530.43, + "probability": 0.6958 + }, + { + "start": 3531.81, + "end": 3533.03, + "probability": 0.989 + }, + { + "start": 3533.09, + "end": 3534.01, + "probability": 0.9834 + }, + { + "start": 3534.23, + "end": 3536.59, + "probability": 0.7119 + }, + { + "start": 3536.59, + "end": 3537.51, + "probability": 0.1702 + }, + { + "start": 3538.55, + "end": 3539.05, + "probability": 0.121 + }, + { + "start": 3539.05, + "end": 3541.05, + "probability": 0.6032 + }, + { + "start": 3541.47, + "end": 3544.59, + "probability": 0.6804 + }, + { + "start": 3544.59, + "end": 3544.77, + "probability": 0.0807 + }, + { + "start": 3544.91, + "end": 3547.15, + "probability": 0.6546 + }, + { + "start": 3547.71, + "end": 3548.49, + "probability": 0.4961 + }, + { + "start": 3548.69, + "end": 3552.99, + "probability": 0.9784 + }, + { + "start": 3553.61, + "end": 3556.85, + "probability": 0.9893 + }, + { + "start": 3556.91, + "end": 3557.71, + "probability": 0.2024 + }, + { + "start": 3557.77, + "end": 3558.93, + "probability": 0.3009 + }, + { + "start": 3560.53, + "end": 3565.19, + "probability": 0.9003 + }, + { + "start": 3565.75, + "end": 3569.85, + "probability": 0.8992 + }, + { + "start": 3569.85, + "end": 3573.19, + "probability": 0.9977 + }, + { + "start": 3573.63, + "end": 3577.25, + "probability": 0.9955 + }, + { + "start": 3578.31, + "end": 3578.97, + "probability": 0.8033 + }, + { + "start": 3579.05, + "end": 3582.27, + "probability": 0.9974 + }, + { + "start": 3582.47, + "end": 3583.53, + "probability": 0.9822 + }, + { + "start": 3585.07, + "end": 3589.69, + "probability": 0.6442 + }, + { + "start": 3590.09, + "end": 3590.23, + "probability": 0.35 + }, + { + "start": 3591.39, + "end": 3593.41, + "probability": 0.6429 + }, + { + "start": 3594.21, + "end": 3595.23, + "probability": 0.8373 + }, + { + "start": 3595.63, + "end": 3597.17, + "probability": 0.4182 + }, + { + "start": 3597.45, + "end": 3598.47, + "probability": 0.6767 + }, + { + "start": 3598.49, + "end": 3600.91, + "probability": 0.9888 + }, + { + "start": 3601.29, + "end": 3603.79, + "probability": 0.9736 + }, + { + "start": 3603.79, + "end": 3606.99, + "probability": 0.9823 + }, + { + "start": 3607.62, + "end": 3608.13, + "probability": 0.0404 + }, + { + "start": 3608.19, + "end": 3612.25, + "probability": 0.99 + }, + { + "start": 3612.67, + "end": 3614.13, + "probability": 0.5338 + }, + { + "start": 3614.75, + "end": 3614.75, + "probability": 0.0044 + }, + { + "start": 3614.95, + "end": 3615.65, + "probability": 0.6809 + }, + { + "start": 3615.85, + "end": 3617.23, + "probability": 0.9462 + }, + { + "start": 3617.49, + "end": 3618.21, + "probability": 0.8494 + }, + { + "start": 3619.31, + "end": 3619.41, + "probability": 0.8956 + }, + { + "start": 3619.97, + "end": 3621.73, + "probability": 0.9414 + }, + { + "start": 3621.83, + "end": 3625.21, + "probability": 0.9792 + }, + { + "start": 3625.39, + "end": 3626.07, + "probability": 0.7983 + }, + { + "start": 3626.27, + "end": 3627.15, + "probability": 0.7307 + }, + { + "start": 3627.75, + "end": 3628.01, + "probability": 0.1307 + }, + { + "start": 3628.01, + "end": 3632.73, + "probability": 0.7754 + }, + { + "start": 3632.95, + "end": 3635.61, + "probability": 0.9938 + }, + { + "start": 3636.13, + "end": 3639.97, + "probability": 0.9909 + }, + { + "start": 3640.85, + "end": 3641.29, + "probability": 0.2237 + }, + { + "start": 3641.55, + "end": 3645.17, + "probability": 0.9057 + }, + { + "start": 3645.17, + "end": 3650.53, + "probability": 0.998 + }, + { + "start": 3650.53, + "end": 3655.93, + "probability": 0.9984 + }, + { + "start": 3657.13, + "end": 3661.95, + "probability": 0.9987 + }, + { + "start": 3662.11, + "end": 3665.87, + "probability": 0.9969 + }, + { + "start": 3666.71, + "end": 3669.24, + "probability": 0.8638 + }, + { + "start": 3669.79, + "end": 3670.59, + "probability": 0.7038 + }, + { + "start": 3670.73, + "end": 3671.11, + "probability": 0.5576 + }, + { + "start": 3671.31, + "end": 3674.43, + "probability": 0.9766 + }, + { + "start": 3675.03, + "end": 3675.97, + "probability": 0.957 + }, + { + "start": 3677.21, + "end": 3679.23, + "probability": 0.9484 + }, + { + "start": 3679.23, + "end": 3681.97, + "probability": 0.9972 + }, + { + "start": 3682.13, + "end": 3685.43, + "probability": 0.9942 + }, + { + "start": 3685.75, + "end": 3690.75, + "probability": 0.9474 + }, + { + "start": 3691.09, + "end": 3692.19, + "probability": 0.7188 + }, + { + "start": 3692.87, + "end": 3696.35, + "probability": 0.9943 + }, + { + "start": 3697.11, + "end": 3701.83, + "probability": 0.7801 + }, + { + "start": 3703.11, + "end": 3706.91, + "probability": 0.9679 + }, + { + "start": 3707.25, + "end": 3708.07, + "probability": 0.9479 + }, + { + "start": 3709.31, + "end": 3712.77, + "probability": 0.9914 + }, + { + "start": 3712.99, + "end": 3714.63, + "probability": 0.9915 + }, + { + "start": 3715.23, + "end": 3719.51, + "probability": 0.8931 + }, + { + "start": 3719.99, + "end": 3726.69, + "probability": 0.9888 + }, + { + "start": 3727.73, + "end": 3728.37, + "probability": 0.6712 + }, + { + "start": 3728.37, + "end": 3732.25, + "probability": 0.999 + }, + { + "start": 3733.81, + "end": 3735.25, + "probability": 0.5182 + }, + { + "start": 3736.03, + "end": 3739.37, + "probability": 0.8986 + }, + { + "start": 3740.07, + "end": 3741.07, + "probability": 0.9604 + }, + { + "start": 3741.69, + "end": 3743.45, + "probability": 0.8031 + }, + { + "start": 3744.13, + "end": 3745.53, + "probability": 0.7941 + }, + { + "start": 3746.21, + "end": 3751.53, + "probability": 0.9956 + }, + { + "start": 3751.53, + "end": 3755.82, + "probability": 0.999 + }, + { + "start": 3756.01, + "end": 3757.13, + "probability": 0.999 + }, + { + "start": 3758.03, + "end": 3758.61, + "probability": 0.979 + }, + { + "start": 3759.35, + "end": 3759.86, + "probability": 0.9888 + }, + { + "start": 3760.69, + "end": 3763.41, + "probability": 0.9894 + }, + { + "start": 3763.61, + "end": 3766.21, + "probability": 0.9396 + }, + { + "start": 3766.29, + "end": 3769.89, + "probability": 0.2261 + }, + { + "start": 3770.81, + "end": 3772.13, + "probability": 0.0089 + }, + { + "start": 3772.17, + "end": 3773.05, + "probability": 0.0164 + }, + { + "start": 3773.21, + "end": 3774.03, + "probability": 0.0766 + }, + { + "start": 3774.05, + "end": 3775.09, + "probability": 0.1124 + }, + { + "start": 3775.49, + "end": 3778.01, + "probability": 0.5453 + }, + { + "start": 3779.55, + "end": 3780.97, + "probability": 0.127 + }, + { + "start": 3781.91, + "end": 3781.91, + "probability": 0.1611 + }, + { + "start": 3781.91, + "end": 3781.91, + "probability": 0.4186 + }, + { + "start": 3781.91, + "end": 3781.91, + "probability": 0.301 + }, + { + "start": 3781.91, + "end": 3784.49, + "probability": 0.8881 + }, + { + "start": 3784.73, + "end": 3784.95, + "probability": 0.5408 + }, + { + "start": 3785.37, + "end": 3786.55, + "probability": 0.5505 + }, + { + "start": 3786.61, + "end": 3787.05, + "probability": 0.6354 + }, + { + "start": 3787.15, + "end": 3792.39, + "probability": 0.7917 + }, + { + "start": 3792.61, + "end": 3793.03, + "probability": 0.0063 + }, + { + "start": 3793.05, + "end": 3793.55, + "probability": 0.5772 + }, + { + "start": 3794.31, + "end": 3795.03, + "probability": 0.8301 + }, + { + "start": 3795.73, + "end": 3796.45, + "probability": 0.8961 + }, + { + "start": 3802.33, + "end": 3802.93, + "probability": 0.6705 + }, + { + "start": 3802.99, + "end": 3806.87, + "probability": 0.8425 + }, + { + "start": 3807.53, + "end": 3809.09, + "probability": 0.8208 + }, + { + "start": 3809.21, + "end": 3809.93, + "probability": 0.9054 + }, + { + "start": 3810.37, + "end": 3813.47, + "probability": 0.9979 + }, + { + "start": 3813.47, + "end": 3817.95, + "probability": 0.8689 + }, + { + "start": 3818.61, + "end": 3824.33, + "probability": 0.8071 + }, + { + "start": 3824.37, + "end": 3826.63, + "probability": 0.9955 + }, + { + "start": 3828.03, + "end": 3830.77, + "probability": 0.9954 + }, + { + "start": 3831.53, + "end": 3838.09, + "probability": 0.9833 + }, + { + "start": 3838.97, + "end": 3842.75, + "probability": 0.9856 + }, + { + "start": 3843.59, + "end": 3845.19, + "probability": 0.7287 + }, + { + "start": 3845.27, + "end": 3845.79, + "probability": 0.7769 + }, + { + "start": 3845.83, + "end": 3846.79, + "probability": 0.9163 + }, + { + "start": 3846.89, + "end": 3848.43, + "probability": 0.9926 + }, + { + "start": 3848.43, + "end": 3851.15, + "probability": 0.9756 + }, + { + "start": 3851.27, + "end": 3852.38, + "probability": 0.9771 + }, + { + "start": 3852.65, + "end": 3853.37, + "probability": 0.8399 + }, + { + "start": 3853.67, + "end": 3853.87, + "probability": 0.182 + }, + { + "start": 3854.29, + "end": 3858.79, + "probability": 0.8152 + }, + { + "start": 3858.83, + "end": 3860.75, + "probability": 0.9366 + }, + { + "start": 3861.81, + "end": 3863.79, + "probability": 0.6612 + }, + { + "start": 3865.77, + "end": 3869.35, + "probability": 0.9256 + }, + { + "start": 3869.51, + "end": 3872.01, + "probability": 0.9872 + }, + { + "start": 3872.09, + "end": 3872.65, + "probability": 0.8866 + }, + { + "start": 3872.71, + "end": 3873.71, + "probability": 0.9932 + }, + { + "start": 3874.05, + "end": 3876.59, + "probability": 0.9312 + }, + { + "start": 3877.07, + "end": 3877.23, + "probability": 0.0554 + }, + { + "start": 3877.45, + "end": 3879.91, + "probability": 0.9412 + }, + { + "start": 3880.97, + "end": 3884.45, + "probability": 0.9854 + }, + { + "start": 3884.45, + "end": 3887.15, + "probability": 0.9984 + }, + { + "start": 3888.31, + "end": 3891.07, + "probability": 0.987 + }, + { + "start": 3891.37, + "end": 3894.75, + "probability": 0.9927 + }, + { + "start": 3895.23, + "end": 3898.11, + "probability": 0.9973 + }, + { + "start": 3898.33, + "end": 3901.99, + "probability": 0.972 + }, + { + "start": 3903.26, + "end": 3907.53, + "probability": 0.9887 + }, + { + "start": 3907.53, + "end": 3912.91, + "probability": 0.9993 + }, + { + "start": 3912.91, + "end": 3916.63, + "probability": 0.9939 + }, + { + "start": 3916.79, + "end": 3917.67, + "probability": 0.8669 + }, + { + "start": 3917.79, + "end": 3920.37, + "probability": 0.9346 + }, + { + "start": 3920.91, + "end": 3924.29, + "probability": 0.975 + }, + { + "start": 3924.43, + "end": 3926.39, + "probability": 0.9506 + }, + { + "start": 3927.35, + "end": 3931.33, + "probability": 0.9835 + }, + { + "start": 3931.33, + "end": 3934.53, + "probability": 0.9975 + }, + { + "start": 3934.53, + "end": 3936.25, + "probability": 0.5574 + }, + { + "start": 3937.03, + "end": 3939.93, + "probability": 0.9907 + }, + { + "start": 3939.99, + "end": 3941.75, + "probability": 0.9936 + }, + { + "start": 3941.99, + "end": 3942.69, + "probability": 0.9733 + }, + { + "start": 3943.03, + "end": 3944.29, + "probability": 0.9115 + }, + { + "start": 3945.41, + "end": 3947.13, + "probability": 0.9943 + }, + { + "start": 3947.27, + "end": 3948.03, + "probability": 0.6533 + }, + { + "start": 3948.07, + "end": 3949.56, + "probability": 0.8501 + }, + { + "start": 3950.41, + "end": 3952.31, + "probability": 0.9343 + }, + { + "start": 3953.17, + "end": 3953.63, + "probability": 0.9174 + }, + { + "start": 3953.77, + "end": 3959.67, + "probability": 0.9872 + }, + { + "start": 3960.17, + "end": 3964.09, + "probability": 0.9536 + }, + { + "start": 3964.45, + "end": 3965.61, + "probability": 0.8746 + }, + { + "start": 3965.77, + "end": 3969.13, + "probability": 0.9523 + }, + { + "start": 3969.39, + "end": 3972.19, + "probability": 0.9973 + }, + { + "start": 3972.75, + "end": 3977.07, + "probability": 0.977 + }, + { + "start": 3977.69, + "end": 3979.75, + "probability": 0.9984 + }, + { + "start": 3980.45, + "end": 3985.39, + "probability": 0.985 + }, + { + "start": 3985.79, + "end": 3986.81, + "probability": 0.8317 + }, + { + "start": 3986.97, + "end": 3987.95, + "probability": 0.8696 + }, + { + "start": 3988.05, + "end": 3988.95, + "probability": 0.9452 + }, + { + "start": 3989.05, + "end": 3989.91, + "probability": 0.8975 + }, + { + "start": 3990.41, + "end": 3992.69, + "probability": 0.9097 + }, + { + "start": 3992.77, + "end": 3996.87, + "probability": 0.9059 + }, + { + "start": 3997.57, + "end": 3998.81, + "probability": 0.9772 + }, + { + "start": 3999.29, + "end": 3999.57, + "probability": 0.6982 + }, + { + "start": 3999.65, + "end": 4003.19, + "probability": 0.9558 + }, + { + "start": 4003.33, + "end": 4008.25, + "probability": 0.9944 + }, + { + "start": 4008.99, + "end": 4012.71, + "probability": 0.9359 + }, + { + "start": 4012.95, + "end": 4016.05, + "probability": 0.9412 + }, + { + "start": 4016.61, + "end": 4018.27, + "probability": 0.8281 + }, + { + "start": 4018.37, + "end": 4019.07, + "probability": 0.8571 + }, + { + "start": 4019.13, + "end": 4023.11, + "probability": 0.989 + }, + { + "start": 4023.89, + "end": 4029.75, + "probability": 0.9477 + }, + { + "start": 4029.79, + "end": 4031.91, + "probability": 0.9618 + }, + { + "start": 4032.41, + "end": 4032.69, + "probability": 0.7671 + }, + { + "start": 4033.01, + "end": 4034.23, + "probability": 0.6681 + }, + { + "start": 4035.95, + "end": 4036.43, + "probability": 0.7783 + }, + { + "start": 4036.93, + "end": 4037.13, + "probability": 0.9553 + }, + { + "start": 4037.91, + "end": 4040.03, + "probability": 0.684 + }, + { + "start": 4040.57, + "end": 4042.04, + "probability": 0.7564 + }, + { + "start": 4042.97, + "end": 4046.21, + "probability": 0.6767 + }, + { + "start": 4046.27, + "end": 4046.99, + "probability": 0.5941 + }, + { + "start": 4048.95, + "end": 4050.89, + "probability": 0.7463 + }, + { + "start": 4061.43, + "end": 4063.03, + "probability": 0.662 + }, + { + "start": 4063.03, + "end": 4063.95, + "probability": 0.7796 + }, + { + "start": 4064.37, + "end": 4066.39, + "probability": 0.9971 + }, + { + "start": 4066.49, + "end": 4068.63, + "probability": 0.995 + }, + { + "start": 4069.53, + "end": 4071.23, + "probability": 0.9802 + }, + { + "start": 4071.27, + "end": 4073.84, + "probability": 0.9812 + }, + { + "start": 4075.01, + "end": 4076.79, + "probability": 0.9794 + }, + { + "start": 4077.79, + "end": 4080.41, + "probability": 0.987 + }, + { + "start": 4080.93, + "end": 4086.01, + "probability": 0.9771 + }, + { + "start": 4086.07, + "end": 4088.39, + "probability": 0.9185 + }, + { + "start": 4089.23, + "end": 4090.33, + "probability": 0.8682 + }, + { + "start": 4091.09, + "end": 4095.57, + "probability": 0.9756 + }, + { + "start": 4096.33, + "end": 4099.13, + "probability": 0.9818 + }, + { + "start": 4099.93, + "end": 4105.49, + "probability": 0.9911 + }, + { + "start": 4105.59, + "end": 4106.49, + "probability": 0.8795 + }, + { + "start": 4106.93, + "end": 4108.03, + "probability": 0.956 + }, + { + "start": 4108.51, + "end": 4109.43, + "probability": 0.4589 + }, + { + "start": 4109.57, + "end": 4110.59, + "probability": 0.8153 + }, + { + "start": 4111.23, + "end": 4115.55, + "probability": 0.9526 + }, + { + "start": 4116.07, + "end": 4120.03, + "probability": 0.984 + }, + { + "start": 4120.03, + "end": 4122.59, + "probability": 0.9985 + }, + { + "start": 4123.23, + "end": 4123.81, + "probability": 0.6179 + }, + { + "start": 4124.23, + "end": 4126.41, + "probability": 0.9977 + }, + { + "start": 4127.47, + "end": 4129.89, + "probability": 0.9861 + }, + { + "start": 4130.53, + "end": 4132.11, + "probability": 0.9958 + }, + { + "start": 4132.87, + "end": 4134.43, + "probability": 0.9883 + }, + { + "start": 4135.11, + "end": 4136.76, + "probability": 0.9983 + }, + { + "start": 4137.67, + "end": 4139.19, + "probability": 0.9912 + }, + { + "start": 4140.27, + "end": 4142.25, + "probability": 0.9966 + }, + { + "start": 4143.27, + "end": 4145.05, + "probability": 0.8785 + }, + { + "start": 4146.11, + "end": 4149.37, + "probability": 0.9856 + }, + { + "start": 4149.61, + "end": 4150.87, + "probability": 0.9645 + }, + { + "start": 4151.31, + "end": 4152.37, + "probability": 0.9748 + }, + { + "start": 4153.27, + "end": 4154.86, + "probability": 0.9673 + }, + { + "start": 4155.89, + "end": 4160.37, + "probability": 0.998 + }, + { + "start": 4160.43, + "end": 4160.85, + "probability": 0.8073 + }, + { + "start": 4161.39, + "end": 4162.61, + "probability": 0.7852 + }, + { + "start": 4163.41, + "end": 4165.99, + "probability": 0.9057 + }, + { + "start": 4166.81, + "end": 4168.09, + "probability": 0.9908 + }, + { + "start": 4169.21, + "end": 4171.65, + "probability": 0.9832 + }, + { + "start": 4172.09, + "end": 4173.89, + "probability": 0.9318 + }, + { + "start": 4175.13, + "end": 4178.95, + "probability": 0.9922 + }, + { + "start": 4178.95, + "end": 4183.57, + "probability": 0.9966 + }, + { + "start": 4184.41, + "end": 4185.13, + "probability": 0.8134 + }, + { + "start": 4185.17, + "end": 4188.95, + "probability": 0.9327 + }, + { + "start": 4189.01, + "end": 4193.29, + "probability": 0.9923 + }, + { + "start": 4194.49, + "end": 4195.87, + "probability": 0.697 + }, + { + "start": 4196.45, + "end": 4197.75, + "probability": 0.9703 + }, + { + "start": 4198.21, + "end": 4201.65, + "probability": 0.8799 + }, + { + "start": 4202.15, + "end": 4202.8, + "probability": 0.7524 + }, + { + "start": 4203.37, + "end": 4204.49, + "probability": 0.9818 + }, + { + "start": 4205.25, + "end": 4206.79, + "probability": 0.8075 + }, + { + "start": 4206.93, + "end": 4207.87, + "probability": 0.8031 + }, + { + "start": 4208.89, + "end": 4211.61, + "probability": 0.9965 + }, + { + "start": 4212.23, + "end": 4213.21, + "probability": 0.8482 + }, + { + "start": 4214.03, + "end": 4217.33, + "probability": 0.9551 + }, + { + "start": 4218.05, + "end": 4221.11, + "probability": 0.9127 + }, + { + "start": 4221.65, + "end": 4224.25, + "probability": 0.9769 + }, + { + "start": 4225.25, + "end": 4227.18, + "probability": 0.9669 + }, + { + "start": 4228.13, + "end": 4231.57, + "probability": 0.9829 + }, + { + "start": 4231.61, + "end": 4232.69, + "probability": 0.7597 + }, + { + "start": 4233.89, + "end": 4239.27, + "probability": 0.9458 + }, + { + "start": 4240.03, + "end": 4241.65, + "probability": 0.8599 + }, + { + "start": 4242.35, + "end": 4244.03, + "probability": 0.9869 + }, + { + "start": 4244.59, + "end": 4246.27, + "probability": 0.9555 + }, + { + "start": 4247.01, + "end": 4248.57, + "probability": 0.904 + }, + { + "start": 4249.93, + "end": 4251.21, + "probability": 0.9846 + }, + { + "start": 4251.89, + "end": 4252.41, + "probability": 0.9805 + }, + { + "start": 4253.25, + "end": 4255.05, + "probability": 0.9982 + }, + { + "start": 4256.19, + "end": 4257.33, + "probability": 0.9894 + }, + { + "start": 4258.49, + "end": 4260.59, + "probability": 0.8076 + }, + { + "start": 4260.65, + "end": 4261.87, + "probability": 0.9292 + }, + { + "start": 4262.65, + "end": 4263.93, + "probability": 0.9995 + }, + { + "start": 4264.81, + "end": 4267.91, + "probability": 0.9548 + }, + { + "start": 4268.97, + "end": 4271.09, + "probability": 0.946 + }, + { + "start": 4271.69, + "end": 4274.25, + "probability": 0.7957 + }, + { + "start": 4274.25, + "end": 4278.03, + "probability": 0.9973 + }, + { + "start": 4278.87, + "end": 4280.47, + "probability": 0.8944 + }, + { + "start": 4280.47, + "end": 4281.87, + "probability": 0.9961 + }, + { + "start": 4282.95, + "end": 4284.09, + "probability": 0.868 + }, + { + "start": 4284.81, + "end": 4288.77, + "probability": 0.9932 + }, + { + "start": 4289.31, + "end": 4292.19, + "probability": 0.9969 + }, + { + "start": 4292.83, + "end": 4295.87, + "probability": 0.9985 + }, + { + "start": 4296.47, + "end": 4302.93, + "probability": 0.9871 + }, + { + "start": 4303.13, + "end": 4304.61, + "probability": 0.9981 + }, + { + "start": 4304.73, + "end": 4306.49, + "probability": 0.6322 + }, + { + "start": 4306.65, + "end": 4308.09, + "probability": 0.9767 + }, + { + "start": 4309.11, + "end": 4310.81, + "probability": 0.9085 + }, + { + "start": 4312.67, + "end": 4315.07, + "probability": 0.847 + }, + { + "start": 4316.11, + "end": 4317.47, + "probability": 0.9005 + }, + { + "start": 4338.85, + "end": 4339.39, + "probability": 0.1601 + }, + { + "start": 4340.09, + "end": 4340.09, + "probability": 0.058 + }, + { + "start": 4340.09, + "end": 4340.09, + "probability": 0.179 + }, + { + "start": 4340.09, + "end": 4340.09, + "probability": 0.0141 + }, + { + "start": 4340.09, + "end": 4340.23, + "probability": 0.1279 + }, + { + "start": 4340.23, + "end": 4340.83, + "probability": 0.0963 + }, + { + "start": 4341.75, + "end": 4342.03, + "probability": 0.025 + }, + { + "start": 4342.03, + "end": 4342.47, + "probability": 0.0049 + }, + { + "start": 4360.35, + "end": 4362.4, + "probability": 0.6767 + }, + { + "start": 4365.65, + "end": 4369.07, + "probability": 0.8777 + }, + { + "start": 4370.11, + "end": 4372.81, + "probability": 0.9731 + }, + { + "start": 4372.81, + "end": 4375.19, + "probability": 0.7019 + }, + { + "start": 4376.05, + "end": 4377.93, + "probability": 0.4547 + }, + { + "start": 4379.03, + "end": 4380.87, + "probability": 0.4188 + }, + { + "start": 4381.61, + "end": 4383.55, + "probability": 0.8223 + }, + { + "start": 4383.73, + "end": 4385.91, + "probability": 0.4597 + }, + { + "start": 4385.99, + "end": 4388.03, + "probability": 0.6356 + }, + { + "start": 4388.75, + "end": 4390.65, + "probability": 0.7007 + }, + { + "start": 4390.87, + "end": 4393.09, + "probability": 0.5192 + }, + { + "start": 4394.97, + "end": 4395.85, + "probability": 0.7591 + }, + { + "start": 4396.29, + "end": 4401.95, + "probability": 0.9972 + }, + { + "start": 4402.85, + "end": 4404.85, + "probability": 0.946 + }, + { + "start": 4405.59, + "end": 4410.05, + "probability": 0.9807 + }, + { + "start": 4410.91, + "end": 4415.39, + "probability": 0.9557 + }, + { + "start": 4416.47, + "end": 4417.79, + "probability": 0.8116 + }, + { + "start": 4417.87, + "end": 4419.36, + "probability": 0.7842 + }, + { + "start": 4419.57, + "end": 4420.19, + "probability": 0.9968 + }, + { + "start": 4420.93, + "end": 4422.15, + "probability": 0.7306 + }, + { + "start": 4422.81, + "end": 4425.55, + "probability": 0.9808 + }, + { + "start": 4426.53, + "end": 4427.23, + "probability": 0.5773 + }, + { + "start": 4428.01, + "end": 4429.67, + "probability": 0.9967 + }, + { + "start": 4430.87, + "end": 4431.23, + "probability": 0.6165 + }, + { + "start": 4431.23, + "end": 4433.51, + "probability": 0.9896 + }, + { + "start": 4433.51, + "end": 4436.13, + "probability": 0.9558 + }, + { + "start": 4437.47, + "end": 4438.21, + "probability": 0.575 + }, + { + "start": 4439.11, + "end": 4441.05, + "probability": 0.8921 + }, + { + "start": 4441.31, + "end": 4442.99, + "probability": 0.9209 + }, + { + "start": 4443.13, + "end": 4445.81, + "probability": 0.9725 + }, + { + "start": 4446.69, + "end": 4448.55, + "probability": 0.9974 + }, + { + "start": 4449.17, + "end": 4450.01, + "probability": 0.7917 + }, + { + "start": 4450.93, + "end": 4453.87, + "probability": 0.9978 + }, + { + "start": 4454.45, + "end": 4460.05, + "probability": 0.9835 + }, + { + "start": 4461.37, + "end": 4463.65, + "probability": 0.9934 + }, + { + "start": 4463.85, + "end": 4464.41, + "probability": 0.6715 + }, + { + "start": 4464.49, + "end": 4465.01, + "probability": 0.8612 + }, + { + "start": 4465.91, + "end": 4469.19, + "probability": 0.9111 + }, + { + "start": 4469.19, + "end": 4473.05, + "probability": 0.9823 + }, + { + "start": 4474.05, + "end": 4477.59, + "probability": 0.9865 + }, + { + "start": 4478.27, + "end": 4480.85, + "probability": 0.9891 + }, + { + "start": 4481.21, + "end": 4482.85, + "probability": 0.9597 + }, + { + "start": 4483.93, + "end": 4485.65, + "probability": 0.9176 + }, + { + "start": 4486.53, + "end": 4489.75, + "probability": 0.988 + }, + { + "start": 4489.75, + "end": 4492.17, + "probability": 0.9931 + }, + { + "start": 4493.07, + "end": 4494.57, + "probability": 0.9843 + }, + { + "start": 4496.39, + "end": 4500.17, + "probability": 0.8997 + }, + { + "start": 4500.39, + "end": 4506.07, + "probability": 0.9917 + }, + { + "start": 4506.07, + "end": 4510.71, + "probability": 0.9553 + }, + { + "start": 4512.03, + "end": 4517.63, + "probability": 0.9839 + }, + { + "start": 4518.21, + "end": 4520.45, + "probability": 0.9817 + }, + { + "start": 4522.07, + "end": 4524.17, + "probability": 0.9852 + }, + { + "start": 4524.33, + "end": 4526.23, + "probability": 0.9672 + }, + { + "start": 4526.81, + "end": 4530.08, + "probability": 0.9817 + }, + { + "start": 4530.77, + "end": 4532.79, + "probability": 0.9846 + }, + { + "start": 4533.31, + "end": 4534.65, + "probability": 0.9756 + }, + { + "start": 4534.83, + "end": 4535.73, + "probability": 0.9858 + }, + { + "start": 4537.37, + "end": 4539.91, + "probability": 0.8674 + }, + { + "start": 4540.63, + "end": 4545.21, + "probability": 0.9917 + }, + { + "start": 4546.65, + "end": 4550.75, + "probability": 0.9919 + }, + { + "start": 4551.51, + "end": 4552.77, + "probability": 0.999 + }, + { + "start": 4553.41, + "end": 4557.07, + "probability": 0.9937 + }, + { + "start": 4557.89, + "end": 4559.19, + "probability": 0.7565 + }, + { + "start": 4560.01, + "end": 4561.15, + "probability": 0.9501 + }, + { + "start": 4562.09, + "end": 4566.75, + "probability": 0.9872 + }, + { + "start": 4567.47, + "end": 4570.27, + "probability": 0.8212 + }, + { + "start": 4570.85, + "end": 4574.11, + "probability": 0.986 + }, + { + "start": 4574.61, + "end": 4576.19, + "probability": 0.7516 + }, + { + "start": 4576.83, + "end": 4579.71, + "probability": 0.7155 + }, + { + "start": 4579.81, + "end": 4581.35, + "probability": 0.6347 + }, + { + "start": 4581.71, + "end": 4586.83, + "probability": 0.9538 + }, + { + "start": 4588.77, + "end": 4589.55, + "probability": 0.7704 + }, + { + "start": 4591.93, + "end": 4593.13, + "probability": 0.9844 + }, + { + "start": 4593.75, + "end": 4597.97, + "probability": 0.5918 + }, + { + "start": 4601.95, + "end": 4604.69, + "probability": 0.863 + }, + { + "start": 4605.31, + "end": 4605.87, + "probability": 0.8936 + }, + { + "start": 4611.05, + "end": 4614.73, + "probability": 0.996 + }, + { + "start": 4625.87, + "end": 4626.23, + "probability": 0.34 + }, + { + "start": 4635.57, + "end": 4635.77, + "probability": 0.0369 + }, + { + "start": 4635.77, + "end": 4635.77, + "probability": 0.0372 + }, + { + "start": 4635.77, + "end": 4636.25, + "probability": 0.3639 + }, + { + "start": 4637.51, + "end": 4639.19, + "probability": 0.6838 + }, + { + "start": 4640.37, + "end": 4641.85, + "probability": 0.571 + }, + { + "start": 4643.65, + "end": 4647.91, + "probability": 0.9764 + }, + { + "start": 4648.05, + "end": 4649.37, + "probability": 0.9156 + }, + { + "start": 4650.25, + "end": 4651.76, + "probability": 0.7891 + }, + { + "start": 4652.73, + "end": 4657.85, + "probability": 0.873 + }, + { + "start": 4657.99, + "end": 4659.83, + "probability": 0.5287 + }, + { + "start": 4660.73, + "end": 4662.55, + "probability": 0.8961 + }, + { + "start": 4663.11, + "end": 4663.69, + "probability": 0.7872 + }, + { + "start": 4664.69, + "end": 4665.95, + "probability": 0.9515 + }, + { + "start": 4666.57, + "end": 4667.85, + "probability": 0.8137 + }, + { + "start": 4669.11, + "end": 4671.15, + "probability": 0.9694 + }, + { + "start": 4672.45, + "end": 4676.49, + "probability": 0.9418 + }, + { + "start": 4677.09, + "end": 4679.03, + "probability": 0.9272 + }, + { + "start": 4679.69, + "end": 4684.17, + "probability": 0.9647 + }, + { + "start": 4685.47, + "end": 4686.89, + "probability": 0.7617 + }, + { + "start": 4687.77, + "end": 4691.41, + "probability": 0.8774 + }, + { + "start": 4691.91, + "end": 4693.15, + "probability": 0.833 + }, + { + "start": 4694.09, + "end": 4696.39, + "probability": 0.9115 + }, + { + "start": 4696.53, + "end": 4698.39, + "probability": 0.868 + }, + { + "start": 4699.21, + "end": 4702.17, + "probability": 0.9858 + }, + { + "start": 4703.05, + "end": 4705.85, + "probability": 0.9091 + }, + { + "start": 4706.63, + "end": 4708.71, + "probability": 0.9463 + }, + { + "start": 4709.53, + "end": 4710.99, + "probability": 0.8548 + }, + { + "start": 4711.37, + "end": 4713.39, + "probability": 0.9741 + }, + { + "start": 4713.51, + "end": 4714.57, + "probability": 0.7014 + }, + { + "start": 4715.59, + "end": 4717.49, + "probability": 0.9546 + }, + { + "start": 4718.17, + "end": 4721.83, + "probability": 0.991 + }, + { + "start": 4721.83, + "end": 4726.83, + "probability": 0.998 + }, + { + "start": 4727.25, + "end": 4727.77, + "probability": 0.4075 + }, + { + "start": 4728.67, + "end": 4729.81, + "probability": 0.8876 + }, + { + "start": 4730.33, + "end": 4731.29, + "probability": 0.8937 + }, + { + "start": 4731.35, + "end": 4731.93, + "probability": 0.747 + }, + { + "start": 4732.31, + "end": 4733.91, + "probability": 0.9458 + }, + { + "start": 4734.41, + "end": 4737.03, + "probability": 0.9668 + }, + { + "start": 4737.75, + "end": 4738.43, + "probability": 0.8734 + }, + { + "start": 4738.49, + "end": 4739.47, + "probability": 0.4346 + }, + { + "start": 4739.85, + "end": 4742.53, + "probability": 0.9743 + }, + { + "start": 4743.11, + "end": 4746.11, + "probability": 0.9731 + }, + { + "start": 4746.79, + "end": 4751.85, + "probability": 0.9829 + }, + { + "start": 4751.99, + "end": 4754.13, + "probability": 0.9383 + }, + { + "start": 4754.57, + "end": 4756.97, + "probability": 0.7555 + }, + { + "start": 4757.87, + "end": 4762.87, + "probability": 0.9933 + }, + { + "start": 4764.07, + "end": 4766.17, + "probability": 0.9877 + }, + { + "start": 4766.59, + "end": 4767.85, + "probability": 0.9918 + }, + { + "start": 4768.19, + "end": 4768.76, + "probability": 0.6968 + }, + { + "start": 4769.71, + "end": 4774.11, + "probability": 0.9771 + }, + { + "start": 4774.77, + "end": 4776.19, + "probability": 0.7177 + }, + { + "start": 4777.01, + "end": 4780.33, + "probability": 0.994 + }, + { + "start": 4781.11, + "end": 4785.81, + "probability": 0.9831 + }, + { + "start": 4788.39, + "end": 4789.25, + "probability": 0.9555 + }, + { + "start": 4789.43, + "end": 4790.27, + "probability": 0.7717 + }, + { + "start": 4790.43, + "end": 4791.37, + "probability": 0.9453 + }, + { + "start": 4791.81, + "end": 4793.03, + "probability": 0.9462 + }, + { + "start": 4793.13, + "end": 4795.34, + "probability": 0.8516 + }, + { + "start": 4795.79, + "end": 4798.03, + "probability": 0.9741 + }, + { + "start": 4798.19, + "end": 4801.71, + "probability": 0.994 + }, + { + "start": 4801.85, + "end": 4803.53, + "probability": 0.9429 + }, + { + "start": 4804.37, + "end": 4810.05, + "probability": 0.993 + }, + { + "start": 4810.89, + "end": 4814.13, + "probability": 0.9972 + }, + { + "start": 4814.13, + "end": 4816.89, + "probability": 0.871 + }, + { + "start": 4816.91, + "end": 4818.64, + "probability": 0.9982 + }, + { + "start": 4820.13, + "end": 4822.45, + "probability": 0.9995 + }, + { + "start": 4822.63, + "end": 4824.83, + "probability": 0.7308 + }, + { + "start": 4825.51, + "end": 4828.59, + "probability": 0.9904 + }, + { + "start": 4830.05, + "end": 4831.57, + "probability": 0.767 + }, + { + "start": 4832.47, + "end": 4833.43, + "probability": 0.8548 + }, + { + "start": 4834.47, + "end": 4834.95, + "probability": 0.54 + }, + { + "start": 4835.73, + "end": 4836.73, + "probability": 0.5158 + }, + { + "start": 4836.73, + "end": 4837.57, + "probability": 0.586 + }, + { + "start": 4837.79, + "end": 4838.29, + "probability": 0.5741 + }, + { + "start": 4838.29, + "end": 4839.77, + "probability": 0.7898 + }, + { + "start": 4840.11, + "end": 4843.31, + "probability": 0.8877 + }, + { + "start": 4843.35, + "end": 4845.71, + "probability": 0.9373 + }, + { + "start": 4846.39, + "end": 4846.91, + "probability": 0.9536 + }, + { + "start": 4847.01, + "end": 4849.23, + "probability": 0.9553 + }, + { + "start": 4849.81, + "end": 4853.79, + "probability": 0.9551 + }, + { + "start": 4853.99, + "end": 4854.27, + "probability": 0.4906 + }, + { + "start": 4854.99, + "end": 4857.69, + "probability": 0.8953 + }, + { + "start": 4858.19, + "end": 4860.75, + "probability": 0.858 + }, + { + "start": 4862.45, + "end": 4865.15, + "probability": 0.9957 + }, + { + "start": 4865.75, + "end": 4866.45, + "probability": 0.6955 + }, + { + "start": 4867.19, + "end": 4870.39, + "probability": 0.9985 + }, + { + "start": 4870.87, + "end": 4871.79, + "probability": 0.7522 + }, + { + "start": 4871.91, + "end": 4872.53, + "probability": 0.9313 + }, + { + "start": 4872.59, + "end": 4873.13, + "probability": 0.866 + }, + { + "start": 4873.27, + "end": 4873.97, + "probability": 0.9797 + }, + { + "start": 4874.29, + "end": 4875.81, + "probability": 0.9958 + }, + { + "start": 4876.45, + "end": 4877.13, + "probability": 0.8855 + }, + { + "start": 4877.85, + "end": 4880.19, + "probability": 0.9436 + }, + { + "start": 4880.19, + "end": 4882.75, + "probability": 0.9956 + }, + { + "start": 4883.01, + "end": 4885.01, + "probability": 0.5907 + }, + { + "start": 4886.27, + "end": 4888.69, + "probability": 0.9891 + }, + { + "start": 4889.59, + "end": 4893.41, + "probability": 0.8979 + }, + { + "start": 4893.41, + "end": 4897.85, + "probability": 0.998 + }, + { + "start": 4898.39, + "end": 4900.15, + "probability": 0.9888 + }, + { + "start": 4901.05, + "end": 4902.67, + "probability": 0.9985 + }, + { + "start": 4903.35, + "end": 4904.61, + "probability": 0.7975 + }, + { + "start": 4906.06, + "end": 4910.25, + "probability": 0.9274 + }, + { + "start": 4913.85, + "end": 4914.29, + "probability": 0.2973 + }, + { + "start": 4914.49, + "end": 4914.63, + "probability": 0.0714 + }, + { + "start": 4914.63, + "end": 4916.59, + "probability": 0.0308 + }, + { + "start": 4919.41, + "end": 4920.17, + "probability": 0.0156 + }, + { + "start": 4920.17, + "end": 4920.89, + "probability": 0.204 + }, + { + "start": 4921.41, + "end": 4922.35, + "probability": 0.3322 + }, + { + "start": 4943.71, + "end": 4944.91, + "probability": 0.6865 + }, + { + "start": 4945.15, + "end": 4945.93, + "probability": 0.7886 + }, + { + "start": 4953.87, + "end": 4957.63, + "probability": 0.915 + }, + { + "start": 4958.27, + "end": 4961.27, + "probability": 0.9912 + }, + { + "start": 4961.71, + "end": 4963.73, + "probability": 0.8311 + }, + { + "start": 4963.85, + "end": 4964.51, + "probability": 0.7057 + }, + { + "start": 4965.71, + "end": 4968.41, + "probability": 0.991 + }, + { + "start": 4969.03, + "end": 4971.19, + "probability": 0.9901 + }, + { + "start": 4971.79, + "end": 4973.05, + "probability": 0.9053 + }, + { + "start": 4974.29, + "end": 4977.77, + "probability": 0.9822 + }, + { + "start": 4979.07, + "end": 4981.85, + "probability": 0.9753 + }, + { + "start": 4981.91, + "end": 4982.93, + "probability": 0.9893 + }, + { + "start": 4983.61, + "end": 4985.57, + "probability": 0.9933 + }, + { + "start": 4986.11, + "end": 4987.37, + "probability": 0.9564 + }, + { + "start": 4988.31, + "end": 4989.61, + "probability": 0.9976 + }, + { + "start": 4989.97, + "end": 4991.87, + "probability": 0.9803 + }, + { + "start": 4992.05, + "end": 4994.63, + "probability": 0.9794 + }, + { + "start": 4995.05, + "end": 4996.55, + "probability": 0.9967 + }, + { + "start": 4997.49, + "end": 4999.21, + "probability": 0.9952 + }, + { + "start": 4999.29, + "end": 4999.83, + "probability": 0.7486 + }, + { + "start": 4999.89, + "end": 5001.11, + "probability": 0.7589 + }, + { + "start": 5001.21, + "end": 5002.99, + "probability": 0.9851 + }, + { + "start": 5004.49, + "end": 5006.19, + "probability": 0.9253 + }, + { + "start": 5006.87, + "end": 5010.13, + "probability": 0.9934 + }, + { + "start": 5011.35, + "end": 5015.31, + "probability": 0.998 + }, + { + "start": 5016.11, + "end": 5021.23, + "probability": 0.9961 + }, + { + "start": 5021.79, + "end": 5024.43, + "probability": 0.9846 + }, + { + "start": 5024.59, + "end": 5025.7, + "probability": 0.9658 + }, + { + "start": 5026.55, + "end": 5027.15, + "probability": 0.8132 + }, + { + "start": 5027.71, + "end": 5029.69, + "probability": 0.5778 + }, + { + "start": 5031.45, + "end": 5032.69, + "probability": 0.9904 + }, + { + "start": 5033.53, + "end": 5037.07, + "probability": 0.9983 + }, + { + "start": 5037.45, + "end": 5039.55, + "probability": 0.9973 + }, + { + "start": 5039.55, + "end": 5041.67, + "probability": 0.999 + }, + { + "start": 5042.31, + "end": 5046.11, + "probability": 0.72 + }, + { + "start": 5046.95, + "end": 5051.73, + "probability": 0.9773 + }, + { + "start": 5052.79, + "end": 5056.05, + "probability": 0.8184 + }, + { + "start": 5057.05, + "end": 5059.49, + "probability": 0.9904 + }, + { + "start": 5060.45, + "end": 5061.97, + "probability": 0.7461 + }, + { + "start": 5062.73, + "end": 5064.73, + "probability": 0.9907 + }, + { + "start": 5065.81, + "end": 5070.65, + "probability": 0.9819 + }, + { + "start": 5071.49, + "end": 5074.33, + "probability": 0.956 + }, + { + "start": 5074.87, + "end": 5078.27, + "probability": 0.7526 + }, + { + "start": 5078.41, + "end": 5079.89, + "probability": 0.8691 + }, + { + "start": 5080.61, + "end": 5081.99, + "probability": 0.9513 + }, + { + "start": 5082.39, + "end": 5083.83, + "probability": 0.9477 + }, + { + "start": 5084.23, + "end": 5087.07, + "probability": 0.7971 + }, + { + "start": 5089.77, + "end": 5090.35, + "probability": 0.063 + }, + { + "start": 5091.03, + "end": 5096.51, + "probability": 0.9955 + }, + { + "start": 5097.43, + "end": 5097.81, + "probability": 0.8808 + }, + { + "start": 5098.11, + "end": 5098.95, + "probability": 0.8582 + }, + { + "start": 5099.09, + "end": 5099.61, + "probability": 0.7052 + }, + { + "start": 5100.29, + "end": 5100.81, + "probability": 0.9516 + }, + { + "start": 5101.53, + "end": 5102.21, + "probability": 0.9585 + }, + { + "start": 5103.21, + "end": 5105.77, + "probability": 0.9912 + }, + { + "start": 5106.25, + "end": 5106.79, + "probability": 0.7705 + }, + { + "start": 5107.99, + "end": 5108.43, + "probability": 0.753 + }, + { + "start": 5109.03, + "end": 5112.05, + "probability": 0.9953 + }, + { + "start": 5112.53, + "end": 5112.61, + "probability": 0.0816 + }, + { + "start": 5112.61, + "end": 5116.55, + "probability": 0.9854 + }, + { + "start": 5117.33, + "end": 5117.37, + "probability": 0.0114 + }, + { + "start": 5117.37, + "end": 5119.01, + "probability": 0.6288 + }, + { + "start": 5119.63, + "end": 5121.37, + "probability": 0.981 + }, + { + "start": 5122.03, + "end": 5123.25, + "probability": 0.9837 + }, + { + "start": 5123.37, + "end": 5125.72, + "probability": 0.9882 + }, + { + "start": 5126.11, + "end": 5130.05, + "probability": 0.9395 + }, + { + "start": 5130.75, + "end": 5132.03, + "probability": 0.9811 + }, + { + "start": 5132.71, + "end": 5133.65, + "probability": 0.8906 + }, + { + "start": 5134.01, + "end": 5135.75, + "probability": 0.9599 + }, + { + "start": 5136.19, + "end": 5140.11, + "probability": 0.9823 + }, + { + "start": 5140.39, + "end": 5143.59, + "probability": 0.8701 + }, + { + "start": 5144.53, + "end": 5149.63, + "probability": 0.9143 + }, + { + "start": 5149.99, + "end": 5150.97, + "probability": 0.9249 + }, + { + "start": 5151.03, + "end": 5152.01, + "probability": 0.9287 + }, + { + "start": 5152.59, + "end": 5154.47, + "probability": 0.9689 + }, + { + "start": 5155.33, + "end": 5159.52, + "probability": 0.985 + }, + { + "start": 5159.95, + "end": 5166.43, + "probability": 0.9292 + }, + { + "start": 5166.61, + "end": 5167.41, + "probability": 0.9666 + }, + { + "start": 5167.83, + "end": 5171.43, + "probability": 0.7652 + }, + { + "start": 5171.43, + "end": 5172.63, + "probability": 0.6864 + }, + { + "start": 5172.63, + "end": 5173.49, + "probability": 0.5096 + }, + { + "start": 5173.69, + "end": 5178.49, + "probability": 0.7792 + }, + { + "start": 5179.53, + "end": 5182.07, + "probability": 0.9871 + }, + { + "start": 5183.25, + "end": 5187.91, + "probability": 0.8925 + }, + { + "start": 5189.53, + "end": 5192.05, + "probability": 0.9845 + }, + { + "start": 5192.13, + "end": 5193.77, + "probability": 0.7559 + }, + { + "start": 5194.61, + "end": 5196.65, + "probability": 0.8345 + }, + { + "start": 5197.17, + "end": 5200.55, + "probability": 0.9868 + }, + { + "start": 5200.91, + "end": 5202.55, + "probability": 0.9985 + }, + { + "start": 5203.35, + "end": 5208.11, + "probability": 0.9751 + }, + { + "start": 5208.61, + "end": 5212.43, + "probability": 0.9906 + }, + { + "start": 5213.27, + "end": 5215.59, + "probability": 0.9756 + }, + { + "start": 5215.59, + "end": 5217.19, + "probability": 0.9494 + }, + { + "start": 5217.71, + "end": 5219.31, + "probability": 0.6559 + }, + { + "start": 5219.83, + "end": 5222.83, + "probability": 0.9856 + }, + { + "start": 5223.57, + "end": 5225.15, + "probability": 0.9962 + }, + { + "start": 5225.71, + "end": 5226.17, + "probability": 0.7593 + }, + { + "start": 5226.17, + "end": 5226.41, + "probability": 0.6399 + }, + { + "start": 5227.81, + "end": 5229.79, + "probability": 0.8026 + }, + { + "start": 5237.13, + "end": 5237.27, + "probability": 0.0267 + }, + { + "start": 5237.27, + "end": 5239.39, + "probability": 0.9683 + }, + { + "start": 5239.99, + "end": 5241.61, + "probability": 0.0317 + }, + { + "start": 5242.53, + "end": 5243.47, + "probability": 0.1008 + }, + { + "start": 5243.95, + "end": 5245.21, + "probability": 0.858 + }, + { + "start": 5249.87, + "end": 5251.3, + "probability": 0.8776 + }, + { + "start": 5253.63, + "end": 5256.13, + "probability": 0.9976 + }, + { + "start": 5258.27, + "end": 5260.19, + "probability": 0.7741 + }, + { + "start": 5261.09, + "end": 5262.03, + "probability": 0.8802 + }, + { + "start": 5264.73, + "end": 5267.99, + "probability": 0.9486 + }, + { + "start": 5268.73, + "end": 5270.23, + "probability": 0.9029 + }, + { + "start": 5271.87, + "end": 5274.85, + "probability": 0.9788 + }, + { + "start": 5277.19, + "end": 5278.41, + "probability": 0.8849 + }, + { + "start": 5279.91, + "end": 5282.65, + "probability": 0.9929 + }, + { + "start": 5283.23, + "end": 5285.27, + "probability": 0.9844 + }, + { + "start": 5285.91, + "end": 5286.38, + "probability": 0.9428 + }, + { + "start": 5288.33, + "end": 5289.69, + "probability": 0.9965 + }, + { + "start": 5290.63, + "end": 5292.63, + "probability": 0.9976 + }, + { + "start": 5294.99, + "end": 5295.91, + "probability": 0.6978 + }, + { + "start": 5298.89, + "end": 5302.01, + "probability": 0.9929 + }, + { + "start": 5302.59, + "end": 5303.31, + "probability": 0.5274 + }, + { + "start": 5304.15, + "end": 5304.79, + "probability": 0.6467 + }, + { + "start": 5306.09, + "end": 5306.79, + "probability": 0.9793 + }, + { + "start": 5308.87, + "end": 5310.51, + "probability": 0.997 + }, + { + "start": 5311.37, + "end": 5312.49, + "probability": 0.9604 + }, + { + "start": 5313.43, + "end": 5318.03, + "probability": 0.9951 + }, + { + "start": 5319.51, + "end": 5320.09, + "probability": 0.7041 + }, + { + "start": 5321.17, + "end": 5323.27, + "probability": 0.9954 + }, + { + "start": 5323.83, + "end": 5326.84, + "probability": 0.9938 + }, + { + "start": 5328.57, + "end": 5329.19, + "probability": 0.8894 + }, + { + "start": 5329.29, + "end": 5332.55, + "probability": 0.995 + }, + { + "start": 5333.75, + "end": 5339.39, + "probability": 0.9802 + }, + { + "start": 5339.93, + "end": 5341.73, + "probability": 0.798 + }, + { + "start": 5343.67, + "end": 5345.13, + "probability": 0.7488 + }, + { + "start": 5345.93, + "end": 5347.15, + "probability": 0.9684 + }, + { + "start": 5347.27, + "end": 5348.63, + "probability": 0.8752 + }, + { + "start": 5348.75, + "end": 5349.09, + "probability": 0.7519 + }, + { + "start": 5349.17, + "end": 5349.77, + "probability": 0.7911 + }, + { + "start": 5350.75, + "end": 5351.87, + "probability": 0.9371 + }, + { + "start": 5352.73, + "end": 5355.23, + "probability": 0.9629 + }, + { + "start": 5356.17, + "end": 5357.95, + "probability": 0.8622 + }, + { + "start": 5358.13, + "end": 5361.33, + "probability": 0.9948 + }, + { + "start": 5362.23, + "end": 5370.89, + "probability": 0.9848 + }, + { + "start": 5372.55, + "end": 5375.07, + "probability": 0.9893 + }, + { + "start": 5375.27, + "end": 5378.97, + "probability": 0.9635 + }, + { + "start": 5379.61, + "end": 5382.87, + "probability": 0.8215 + }, + { + "start": 5383.19, + "end": 5384.52, + "probability": 0.9395 + }, + { + "start": 5385.15, + "end": 5388.39, + "probability": 0.8791 + }, + { + "start": 5389.61, + "end": 5391.07, + "probability": 0.5209 + }, + { + "start": 5393.23, + "end": 5394.2, + "probability": 0.926 + }, + { + "start": 5395.55, + "end": 5399.47, + "probability": 0.6505 + }, + { + "start": 5399.59, + "end": 5400.91, + "probability": 0.9667 + }, + { + "start": 5400.99, + "end": 5402.89, + "probability": 0.9788 + }, + { + "start": 5403.05, + "end": 5406.63, + "probability": 0.9014 + }, + { + "start": 5407.39, + "end": 5408.22, + "probability": 0.9062 + }, + { + "start": 5408.97, + "end": 5410.61, + "probability": 0.9724 + }, + { + "start": 5412.49, + "end": 5414.63, + "probability": 0.9763 + }, + { + "start": 5414.71, + "end": 5415.17, + "probability": 0.9414 + }, + { + "start": 5415.23, + "end": 5416.43, + "probability": 0.8984 + }, + { + "start": 5416.57, + "end": 5418.51, + "probability": 0.6786 + }, + { + "start": 5419.49, + "end": 5421.51, + "probability": 0.9922 + }, + { + "start": 5422.51, + "end": 5424.65, + "probability": 0.7406 + }, + { + "start": 5425.21, + "end": 5427.01, + "probability": 0.7167 + }, + { + "start": 5427.07, + "end": 5427.25, + "probability": 0.217 + }, + { + "start": 5427.37, + "end": 5428.15, + "probability": 0.864 + }, + { + "start": 5429.07, + "end": 5430.77, + "probability": 0.9165 + }, + { + "start": 5431.67, + "end": 5435.81, + "probability": 0.9618 + }, + { + "start": 5436.11, + "end": 5436.31, + "probability": 0.7397 + }, + { + "start": 5436.39, + "end": 5436.57, + "probability": 0.427 + }, + { + "start": 5436.69, + "end": 5437.31, + "probability": 0.6592 + }, + { + "start": 5438.15, + "end": 5438.91, + "probability": 0.9859 + }, + { + "start": 5440.07, + "end": 5441.85, + "probability": 0.9489 + }, + { + "start": 5442.87, + "end": 5443.76, + "probability": 0.7497 + }, + { + "start": 5443.97, + "end": 5445.65, + "probability": 0.7593 + }, + { + "start": 5445.69, + "end": 5449.09, + "probability": 0.9714 + }, + { + "start": 5449.23, + "end": 5450.67, + "probability": 0.6715 + }, + { + "start": 5452.39, + "end": 5452.87, + "probability": 0.6974 + }, + { + "start": 5452.95, + "end": 5454.73, + "probability": 0.995 + }, + { + "start": 5454.83, + "end": 5454.91, + "probability": 0.6941 + }, + { + "start": 5455.07, + "end": 5455.91, + "probability": 0.9717 + }, + { + "start": 5456.03, + "end": 5456.87, + "probability": 0.7026 + }, + { + "start": 5457.35, + "end": 5458.71, + "probability": 0.9244 + }, + { + "start": 5458.73, + "end": 5461.23, + "probability": 0.9976 + }, + { + "start": 5461.45, + "end": 5466.46, + "probability": 0.6431 + }, + { + "start": 5466.79, + "end": 5467.59, + "probability": 0.584 + }, + { + "start": 5467.71, + "end": 5468.73, + "probability": 0.5182 + }, + { + "start": 5468.77, + "end": 5470.11, + "probability": 0.8942 + }, + { + "start": 5470.13, + "end": 5471.55, + "probability": 0.9956 + }, + { + "start": 5471.59, + "end": 5472.35, + "probability": 0.9155 + }, + { + "start": 5472.41, + "end": 5473.39, + "probability": 0.9782 + }, + { + "start": 5473.45, + "end": 5474.41, + "probability": 0.5086 + }, + { + "start": 5475.17, + "end": 5476.49, + "probability": 0.9573 + }, + { + "start": 5477.05, + "end": 5480.23, + "probability": 0.8509 + }, + { + "start": 5480.23, + "end": 5480.23, + "probability": 0.5063 + }, + { + "start": 5480.31, + "end": 5481.01, + "probability": 0.6278 + }, + { + "start": 5481.19, + "end": 5486.27, + "probability": 0.9116 + }, + { + "start": 5486.37, + "end": 5488.69, + "probability": 0.9932 + }, + { + "start": 5488.75, + "end": 5490.07, + "probability": 0.7377 + }, + { + "start": 5490.81, + "end": 5492.93, + "probability": 0.9604 + }, + { + "start": 5493.17, + "end": 5493.93, + "probability": 0.8705 + }, + { + "start": 5494.07, + "end": 5496.97, + "probability": 0.8004 + }, + { + "start": 5497.05, + "end": 5498.47, + "probability": 0.9822 + }, + { + "start": 5498.67, + "end": 5501.91, + "probability": 0.9845 + }, + { + "start": 5502.17, + "end": 5502.99, + "probability": 0.8579 + }, + { + "start": 5503.23, + "end": 5503.67, + "probability": 0.6677 + }, + { + "start": 5503.69, + "end": 5505.65, + "probability": 0.7522 + }, + { + "start": 5505.65, + "end": 5507.31, + "probability": 0.2431 + }, + { + "start": 5507.53, + "end": 5509.17, + "probability": 0.4932 + }, + { + "start": 5510.53, + "end": 5513.61, + "probability": 0.8164 + }, + { + "start": 5514.79, + "end": 5515.73, + "probability": 0.8779 + }, + { + "start": 5517.15, + "end": 5517.37, + "probability": 0.8227 + }, + { + "start": 5541.15, + "end": 5543.45, + "probability": 0.472 + }, + { + "start": 5544.23, + "end": 5544.79, + "probability": 0.5354 + }, + { + "start": 5545.21, + "end": 5546.68, + "probability": 0.755 + }, + { + "start": 5547.81, + "end": 5552.59, + "probability": 0.9192 + }, + { + "start": 5553.97, + "end": 5557.83, + "probability": 0.9268 + }, + { + "start": 5559.77, + "end": 5563.81, + "probability": 0.703 + }, + { + "start": 5564.33, + "end": 5566.47, + "probability": 0.9866 + }, + { + "start": 5568.13, + "end": 5568.83, + "probability": 0.8862 + }, + { + "start": 5569.51, + "end": 5571.21, + "probability": 0.7688 + }, + { + "start": 5571.51, + "end": 5572.63, + "probability": 0.8301 + }, + { + "start": 5573.09, + "end": 5575.01, + "probability": 0.9616 + }, + { + "start": 5576.25, + "end": 5579.55, + "probability": 0.987 + }, + { + "start": 5580.33, + "end": 5582.75, + "probability": 0.9587 + }, + { + "start": 5583.25, + "end": 5590.77, + "probability": 0.9902 + }, + { + "start": 5592.69, + "end": 5593.27, + "probability": 0.7515 + }, + { + "start": 5593.83, + "end": 5596.09, + "probability": 0.9986 + }, + { + "start": 5596.51, + "end": 5601.01, + "probability": 0.9941 + }, + { + "start": 5601.81, + "end": 5602.29, + "probability": 0.9709 + }, + { + "start": 5602.89, + "end": 5604.07, + "probability": 0.7012 + }, + { + "start": 5604.31, + "end": 5606.79, + "probability": 0.9766 + }, + { + "start": 5608.23, + "end": 5612.31, + "probability": 0.946 + }, + { + "start": 5613.15, + "end": 5614.38, + "probability": 0.9761 + }, + { + "start": 5615.21, + "end": 5618.01, + "probability": 0.9883 + }, + { + "start": 5619.39, + "end": 5623.81, + "probability": 0.9265 + }, + { + "start": 5623.91, + "end": 5625.47, + "probability": 0.8017 + }, + { + "start": 5626.37, + "end": 5628.61, + "probability": 0.8147 + }, + { + "start": 5629.55, + "end": 5630.37, + "probability": 0.729 + }, + { + "start": 5631.39, + "end": 5634.97, + "probability": 0.9853 + }, + { + "start": 5636.07, + "end": 5640.27, + "probability": 0.7341 + }, + { + "start": 5640.81, + "end": 5644.23, + "probability": 0.7401 + }, + { + "start": 5644.57, + "end": 5650.11, + "probability": 0.994 + }, + { + "start": 5650.15, + "end": 5654.13, + "probability": 0.9995 + }, + { + "start": 5656.43, + "end": 5657.85, + "probability": 0.7781 + }, + { + "start": 5657.93, + "end": 5659.77, + "probability": 0.875 + }, + { + "start": 5659.89, + "end": 5663.63, + "probability": 0.9618 + }, + { + "start": 5663.63, + "end": 5667.23, + "probability": 0.9971 + }, + { + "start": 5668.27, + "end": 5668.95, + "probability": 0.7102 + }, + { + "start": 5669.79, + "end": 5673.21, + "probability": 0.9721 + }, + { + "start": 5674.05, + "end": 5678.02, + "probability": 0.9976 + }, + { + "start": 5678.77, + "end": 5679.93, + "probability": 0.7645 + }, + { + "start": 5681.09, + "end": 5684.87, + "probability": 0.9779 + }, + { + "start": 5685.61, + "end": 5686.45, + "probability": 0.7053 + }, + { + "start": 5688.13, + "end": 5692.41, + "probability": 0.6884 + }, + { + "start": 5693.15, + "end": 5693.15, + "probability": 0.4871 + }, + { + "start": 5693.15, + "end": 5694.63, + "probability": 0.9639 + }, + { + "start": 5694.79, + "end": 5696.15, + "probability": 0.9822 + }, + { + "start": 5696.41, + "end": 5696.95, + "probability": 0.7029 + }, + { + "start": 5697.13, + "end": 5697.65, + "probability": 0.7725 + }, + { + "start": 5698.09, + "end": 5701.53, + "probability": 0.8791 + }, + { + "start": 5702.59, + "end": 5707.15, + "probability": 0.9844 + }, + { + "start": 5708.49, + "end": 5709.51, + "probability": 0.692 + }, + { + "start": 5709.57, + "end": 5714.47, + "probability": 0.9386 + }, + { + "start": 5715.17, + "end": 5717.27, + "probability": 0.998 + }, + { + "start": 5718.37, + "end": 5721.45, + "probability": 0.9952 + }, + { + "start": 5722.65, + "end": 5728.09, + "probability": 0.9965 + }, + { + "start": 5730.07, + "end": 5732.69, + "probability": 0.9806 + }, + { + "start": 5733.35, + "end": 5738.03, + "probability": 0.9961 + }, + { + "start": 5739.93, + "end": 5744.11, + "probability": 0.9968 + }, + { + "start": 5744.77, + "end": 5745.19, + "probability": 0.96 + }, + { + "start": 5745.89, + "end": 5745.91, + "probability": 0.5156 + }, + { + "start": 5745.91, + "end": 5746.29, + "probability": 0.9313 + }, + { + "start": 5747.03, + "end": 5751.57, + "probability": 0.9956 + }, + { + "start": 5752.39, + "end": 5757.39, + "probability": 0.9807 + }, + { + "start": 5757.99, + "end": 5761.53, + "probability": 0.96 + }, + { + "start": 5762.09, + "end": 5766.19, + "probability": 0.967 + }, + { + "start": 5766.75, + "end": 5772.11, + "probability": 0.9919 + }, + { + "start": 5772.97, + "end": 5778.37, + "probability": 0.9771 + }, + { + "start": 5779.19, + "end": 5780.09, + "probability": 0.9404 + }, + { + "start": 5780.23, + "end": 5782.95, + "probability": 0.7716 + }, + { + "start": 5782.95, + "end": 5786.41, + "probability": 0.9583 + }, + { + "start": 5786.87, + "end": 5789.79, + "probability": 0.8296 + }, + { + "start": 5789.81, + "end": 5790.07, + "probability": 0.1325 + }, + { + "start": 5790.09, + "end": 5791.57, + "probability": 0.7614 + }, + { + "start": 5792.39, + "end": 5792.47, + "probability": 0.114 + }, + { + "start": 5792.47, + "end": 5796.11, + "probability": 0.9619 + }, + { + "start": 5796.27, + "end": 5796.67, + "probability": 0.186 + }, + { + "start": 5796.71, + "end": 5800.51, + "probability": 0.9977 + }, + { + "start": 5801.09, + "end": 5804.19, + "probability": 0.8789 + }, + { + "start": 5805.32, + "end": 5806.41, + "probability": 0.7498 + }, + { + "start": 5806.41, + "end": 5807.23, + "probability": 0.417 + }, + { + "start": 5807.89, + "end": 5808.73, + "probability": 0.7654 + }, + { + "start": 5808.81, + "end": 5809.07, + "probability": 0.4323 + }, + { + "start": 5809.07, + "end": 5812.21, + "probability": 0.8187 + }, + { + "start": 5812.23, + "end": 5813.27, + "probability": 0.9041 + }, + { + "start": 5813.65, + "end": 5815.65, + "probability": 0.9873 + }, + { + "start": 5815.73, + "end": 5816.89, + "probability": 0.8942 + }, + { + "start": 5816.99, + "end": 5818.23, + "probability": 0.4239 + }, + { + "start": 5818.37, + "end": 5818.37, + "probability": 0.1591 + }, + { + "start": 5818.37, + "end": 5818.37, + "probability": 0.037 + }, + { + "start": 5818.37, + "end": 5821.51, + "probability": 0.7051 + }, + { + "start": 5821.59, + "end": 5822.95, + "probability": 0.7647 + }, + { + "start": 5824.73, + "end": 5825.29, + "probability": 0.1183 + }, + { + "start": 5825.29, + "end": 5827.57, + "probability": 0.8036 + }, + { + "start": 5828.49, + "end": 5830.87, + "probability": 0.4568 + }, + { + "start": 5847.71, + "end": 5847.71, + "probability": 0.0686 + }, + { + "start": 5847.73, + "end": 5850.73, + "probability": 0.7352 + }, + { + "start": 5851.87, + "end": 5856.55, + "probability": 0.9972 + }, + { + "start": 5856.89, + "end": 5857.99, + "probability": 0.6665 + }, + { + "start": 5858.47, + "end": 5859.13, + "probability": 0.9958 + }, + { + "start": 5859.83, + "end": 5861.29, + "probability": 0.8607 + }, + { + "start": 5862.35, + "end": 5866.17, + "probability": 0.9704 + }, + { + "start": 5867.29, + "end": 5870.03, + "probability": 0.9885 + }, + { + "start": 5871.27, + "end": 5873.89, + "probability": 0.9898 + }, + { + "start": 5874.93, + "end": 5878.87, + "probability": 0.991 + }, + { + "start": 5879.43, + "end": 5880.11, + "probability": 0.8756 + }, + { + "start": 5880.63, + "end": 5885.81, + "probability": 0.9589 + }, + { + "start": 5898.05, + "end": 5901.25, + "probability": 0.604 + }, + { + "start": 5902.07, + "end": 5904.26, + "probability": 0.9891 + }, + { + "start": 5905.33, + "end": 5910.25, + "probability": 0.9762 + }, + { + "start": 5910.91, + "end": 5915.31, + "probability": 0.9103 + }, + { + "start": 5916.41, + "end": 5919.71, + "probability": 0.8145 + }, + { + "start": 5921.07, + "end": 5925.99, + "probability": 0.8418 + }, + { + "start": 5927.75, + "end": 5929.21, + "probability": 0.7427 + }, + { + "start": 5930.17, + "end": 5933.85, + "probability": 0.9964 + }, + { + "start": 5935.27, + "end": 5939.47, + "probability": 0.9896 + }, + { + "start": 5940.89, + "end": 5943.81, + "probability": 0.9878 + }, + { + "start": 5944.41, + "end": 5946.27, + "probability": 0.9562 + }, + { + "start": 5947.43, + "end": 5948.19, + "probability": 0.755 + }, + { + "start": 5948.39, + "end": 5952.53, + "probability": 0.9613 + }, + { + "start": 5953.09, + "end": 5957.83, + "probability": 0.9899 + }, + { + "start": 5959.05, + "end": 5961.43, + "probability": 0.9797 + }, + { + "start": 5962.03, + "end": 5969.17, + "probability": 0.9811 + }, + { + "start": 5969.87, + "end": 5976.09, + "probability": 0.9978 + }, + { + "start": 5977.23, + "end": 5980.37, + "probability": 0.9979 + }, + { + "start": 5981.15, + "end": 5984.71, + "probability": 0.9997 + }, + { + "start": 5984.71, + "end": 5989.11, + "probability": 0.9992 + }, + { + "start": 5990.43, + "end": 5994.49, + "probability": 0.968 + }, + { + "start": 5995.13, + "end": 5995.71, + "probability": 0.6487 + }, + { + "start": 5996.53, + "end": 5998.59, + "probability": 0.9441 + }, + { + "start": 5999.65, + "end": 6001.11, + "probability": 0.9023 + }, + { + "start": 6001.89, + "end": 6004.51, + "probability": 0.967 + }, + { + "start": 6004.91, + "end": 6006.35, + "probability": 0.8269 + }, + { + "start": 6007.57, + "end": 6010.57, + "probability": 0.9717 + }, + { + "start": 6010.57, + "end": 6015.35, + "probability": 0.887 + }, + { + "start": 6015.99, + "end": 6019.79, + "probability": 0.96 + }, + { + "start": 6020.85, + "end": 6023.09, + "probability": 0.9983 + }, + { + "start": 6024.13, + "end": 6026.49, + "probability": 0.9722 + }, + { + "start": 6027.03, + "end": 6029.51, + "probability": 0.9645 + }, + { + "start": 6029.91, + "end": 6032.65, + "probability": 0.9023 + }, + { + "start": 6033.79, + "end": 6035.45, + "probability": 0.9966 + }, + { + "start": 6036.85, + "end": 6038.23, + "probability": 0.8815 + }, + { + "start": 6038.45, + "end": 6041.39, + "probability": 0.9155 + }, + { + "start": 6042.19, + "end": 6047.05, + "probability": 0.9902 + }, + { + "start": 6047.47, + "end": 6049.69, + "probability": 0.9072 + }, + { + "start": 6050.67, + "end": 6054.91, + "probability": 0.9989 + }, + { + "start": 6055.95, + "end": 6056.19, + "probability": 0.483 + }, + { + "start": 6057.65, + "end": 6058.53, + "probability": 0.72 + }, + { + "start": 6060.21, + "end": 6061.91, + "probability": 0.6217 + }, + { + "start": 6062.43, + "end": 6063.49, + "probability": 0.9264 + }, + { + "start": 6089.07, + "end": 6090.37, + "probability": 0.6408 + }, + { + "start": 6090.59, + "end": 6092.51, + "probability": 0.915 + }, + { + "start": 6092.63, + "end": 6093.87, + "probability": 0.9195 + }, + { + "start": 6093.95, + "end": 6094.89, + "probability": 0.9779 + }, + { + "start": 6094.93, + "end": 6095.98, + "probability": 0.9619 + }, + { + "start": 6098.74, + "end": 6101.11, + "probability": 0.7667 + }, + { + "start": 6101.77, + "end": 6103.63, + "probability": 0.865 + }, + { + "start": 6104.37, + "end": 6108.39, + "probability": 0.7452 + }, + { + "start": 6109.73, + "end": 6111.93, + "probability": 0.8487 + }, + { + "start": 6112.89, + "end": 6116.39, + "probability": 0.9954 + }, + { + "start": 6116.61, + "end": 6119.27, + "probability": 0.9913 + }, + { + "start": 6119.93, + "end": 6122.01, + "probability": 0.9688 + }, + { + "start": 6123.41, + "end": 6123.59, + "probability": 0.8806 + }, + { + "start": 6124.35, + "end": 6125.35, + "probability": 0.8713 + }, + { + "start": 6125.53, + "end": 6126.32, + "probability": 0.5776 + }, + { + "start": 6126.73, + "end": 6127.81, + "probability": 0.8837 + }, + { + "start": 6127.87, + "end": 6130.61, + "probability": 0.947 + }, + { + "start": 6131.09, + "end": 6132.63, + "probability": 0.9922 + }, + { + "start": 6133.57, + "end": 6135.55, + "probability": 0.9421 + }, + { + "start": 6135.73, + "end": 6139.41, + "probability": 0.9863 + }, + { + "start": 6140.13, + "end": 6142.21, + "probability": 0.9974 + }, + { + "start": 6142.39, + "end": 6142.61, + "probability": 0.9518 + }, + { + "start": 6143.07, + "end": 6146.11, + "probability": 0.9867 + }, + { + "start": 6146.19, + "end": 6151.07, + "probability": 0.9806 + }, + { + "start": 6152.1, + "end": 6155.15, + "probability": 0.3623 + }, + { + "start": 6155.15, + "end": 6155.79, + "probability": 0.2117 + }, + { + "start": 6156.01, + "end": 6156.77, + "probability": 0.6142 + }, + { + "start": 6157.33, + "end": 6157.71, + "probability": 0.9695 + }, + { + "start": 6158.43, + "end": 6160.01, + "probability": 0.9646 + }, + { + "start": 6160.21, + "end": 6162.55, + "probability": 0.8412 + }, + { + "start": 6162.89, + "end": 6164.81, + "probability": 0.9454 + }, + { + "start": 6165.21, + "end": 6168.65, + "probability": 0.936 + }, + { + "start": 6169.45, + "end": 6171.07, + "probability": 0.6894 + }, + { + "start": 6171.63, + "end": 6173.93, + "probability": 0.8848 + }, + { + "start": 6174.71, + "end": 6175.15, + "probability": 0.6132 + }, + { + "start": 6175.25, + "end": 6176.31, + "probability": 0.9697 + }, + { + "start": 6177.19, + "end": 6180.23, + "probability": 0.9501 + }, + { + "start": 6180.85, + "end": 6185.67, + "probability": 0.9935 + }, + { + "start": 6185.67, + "end": 6189.89, + "probability": 0.9989 + }, + { + "start": 6190.01, + "end": 6190.39, + "probability": 0.522 + }, + { + "start": 6190.53, + "end": 6191.18, + "probability": 0.9017 + }, + { + "start": 6191.49, + "end": 6192.51, + "probability": 0.6787 + }, + { + "start": 6193.81, + "end": 6194.87, + "probability": 0.899 + }, + { + "start": 6194.99, + "end": 6197.97, + "probability": 0.9873 + }, + { + "start": 6198.21, + "end": 6199.67, + "probability": 0.966 + }, + { + "start": 6199.91, + "end": 6201.51, + "probability": 0.9562 + }, + { + "start": 6201.95, + "end": 6202.53, + "probability": 0.7662 + }, + { + "start": 6202.71, + "end": 6204.09, + "probability": 0.9158 + }, + { + "start": 6204.73, + "end": 6206.29, + "probability": 0.9613 + }, + { + "start": 6207.21, + "end": 6209.7, + "probability": 0.9702 + }, + { + "start": 6210.35, + "end": 6212.89, + "probability": 0.9679 + }, + { + "start": 6213.09, + "end": 6213.77, + "probability": 0.4493 + }, + { + "start": 6213.85, + "end": 6214.51, + "probability": 0.2947 + }, + { + "start": 6215.43, + "end": 6217.47, + "probability": 0.9881 + }, + { + "start": 6218.01, + "end": 6219.79, + "probability": 0.9364 + }, + { + "start": 6220.57, + "end": 6220.95, + "probability": 0.1322 + }, + { + "start": 6221.39, + "end": 6221.6, + "probability": 0.4729 + }, + { + "start": 6223.91, + "end": 6227.35, + "probability": 0.2174 + }, + { + "start": 6228.3, + "end": 6233.63, + "probability": 0.7742 + }, + { + "start": 6233.77, + "end": 6238.63, + "probability": 0.4895 + }, + { + "start": 6238.97, + "end": 6243.97, + "probability": 0.6799 + }, + { + "start": 6244.07, + "end": 6247.15, + "probability": 0.9933 + }, + { + "start": 6247.93, + "end": 6247.93, + "probability": 0.1137 + }, + { + "start": 6247.93, + "end": 6252.93, + "probability": 0.9708 + }, + { + "start": 6253.45, + "end": 6255.57, + "probability": 0.998 + }, + { + "start": 6256.41, + "end": 6260.47, + "probability": 0.9978 + }, + { + "start": 6261.07, + "end": 6264.51, + "probability": 0.8867 + }, + { + "start": 6265.09, + "end": 6269.55, + "probability": 0.981 + }, + { + "start": 6269.63, + "end": 6269.93, + "probability": 0.0684 + }, + { + "start": 6270.19, + "end": 6271.63, + "probability": 0.8045 + }, + { + "start": 6271.77, + "end": 6276.93, + "probability": 0.9915 + }, + { + "start": 6277.37, + "end": 6278.93, + "probability": 0.9863 + }, + { + "start": 6279.29, + "end": 6284.39, + "probability": 0.8801 + }, + { + "start": 6284.39, + "end": 6284.45, + "probability": 0.1361 + }, + { + "start": 6284.45, + "end": 6285.33, + "probability": 0.23 + }, + { + "start": 6285.49, + "end": 6291.46, + "probability": 0.6133 + }, + { + "start": 6292.09, + "end": 6292.97, + "probability": 0.2144 + }, + { + "start": 6294.73, + "end": 6296.39, + "probability": 0.0243 + }, + { + "start": 6296.48, + "end": 6298.51, + "probability": 0.0724 + }, + { + "start": 6298.69, + "end": 6298.79, + "probability": 0.0005 + }, + { + "start": 6299.31, + "end": 6300.23, + "probability": 0.015 + }, + { + "start": 6300.23, + "end": 6300.27, + "probability": 0.2604 + }, + { + "start": 6300.27, + "end": 6300.27, + "probability": 0.0526 + }, + { + "start": 6300.27, + "end": 6301.05, + "probability": 0.042 + }, + { + "start": 6302.21, + "end": 6303.93, + "probability": 0.725 + }, + { + "start": 6307.67, + "end": 6310.01, + "probability": 0.2359 + }, + { + "start": 6314.73, + "end": 6316.43, + "probability": 0.2024 + }, + { + "start": 6316.51, + "end": 6319.69, + "probability": 0.0447 + }, + { + "start": 6319.93, + "end": 6321.51, + "probability": 0.4805 + }, + { + "start": 6321.67, + "end": 6321.77, + "probability": 0.496 + }, + { + "start": 6322.63, + "end": 6326.93, + "probability": 0.0177 + }, + { + "start": 6327.77, + "end": 6328.17, + "probability": 0.8591 + }, + { + "start": 6328.25, + "end": 6333.65, + "probability": 0.8765 + }, + { + "start": 6333.65, + "end": 6336.29, + "probability": 0.5084 + }, + { + "start": 6336.45, + "end": 6337.29, + "probability": 0.0587 + }, + { + "start": 6337.49, + "end": 6338.49, + "probability": 0.0155 + }, + { + "start": 6338.93, + "end": 6341.01, + "probability": 0.0512 + }, + { + "start": 6341.57, + "end": 6343.27, + "probability": 0.332 + }, + { + "start": 6343.57, + "end": 6345.03, + "probability": 0.5214 + }, + { + "start": 6345.11, + "end": 6346.3, + "probability": 0.887 + }, + { + "start": 6346.47, + "end": 6348.29, + "probability": 0.7561 + }, + { + "start": 6348.87, + "end": 6353.41, + "probability": 0.9878 + }, + { + "start": 6353.45, + "end": 6353.99, + "probability": 0.8077 + }, + { + "start": 6354.41, + "end": 6360.31, + "probability": 0.0783 + }, + { + "start": 6360.45, + "end": 6361.11, + "probability": 0.517 + }, + { + "start": 6361.55, + "end": 6363.71, + "probability": 0.6917 + }, + { + "start": 6363.77, + "end": 6366.65, + "probability": 0.8021 + }, + { + "start": 6371.21, + "end": 6372.15, + "probability": 0.5279 + }, + { + "start": 6372.83, + "end": 6375.95, + "probability": 0.7801 + }, + { + "start": 6376.87, + "end": 6379.41, + "probability": 0.9792 + }, + { + "start": 6380.77, + "end": 6384.13, + "probability": 0.7433 + }, + { + "start": 6384.29, + "end": 6388.03, + "probability": 0.9956 + }, + { + "start": 6388.29, + "end": 6394.35, + "probability": 0.9958 + }, + { + "start": 6395.01, + "end": 6397.21, + "probability": 0.9922 + }, + { + "start": 6397.99, + "end": 6399.51, + "probability": 0.6673 + }, + { + "start": 6400.53, + "end": 6404.17, + "probability": 0.9139 + }, + { + "start": 6404.93, + "end": 6411.71, + "probability": 0.9513 + }, + { + "start": 6413.19, + "end": 6415.45, + "probability": 0.9662 + }, + { + "start": 6415.79, + "end": 6418.21, + "probability": 0.981 + }, + { + "start": 6419.47, + "end": 6422.56, + "probability": 0.9971 + }, + { + "start": 6423.59, + "end": 6424.43, + "probability": 0.8945 + }, + { + "start": 6424.73, + "end": 6429.91, + "probability": 0.8826 + }, + { + "start": 6431.27, + "end": 6436.37, + "probability": 0.5116 + }, + { + "start": 6437.43, + "end": 6440.23, + "probability": 0.0736 + }, + { + "start": 6440.23, + "end": 6442.53, + "probability": 0.0408 + }, + { + "start": 6443.25, + "end": 6446.01, + "probability": 0.5775 + }, + { + "start": 6446.17, + "end": 6446.47, + "probability": 0.359 + }, + { + "start": 6446.51, + "end": 6447.79, + "probability": 0.4272 + }, + { + "start": 6448.37, + "end": 6448.93, + "probability": 0.727 + }, + { + "start": 6449.03, + "end": 6450.71, + "probability": 0.7921 + }, + { + "start": 6450.73, + "end": 6451.67, + "probability": 0.1778 + }, + { + "start": 6451.67, + "end": 6451.89, + "probability": 0.0084 + }, + { + "start": 6451.89, + "end": 6453.63, + "probability": 0.1282 + }, + { + "start": 6453.63, + "end": 6453.75, + "probability": 0.094 + }, + { + "start": 6454.13, + "end": 6456.39, + "probability": 0.1752 + }, + { + "start": 6456.53, + "end": 6457.37, + "probability": 0.8908 + }, + { + "start": 6458.89, + "end": 6460.91, + "probability": 0.812 + }, + { + "start": 6460.95, + "end": 6463.27, + "probability": 0.9894 + }, + { + "start": 6464.41, + "end": 6464.79, + "probability": 0.6911 + }, + { + "start": 6465.57, + "end": 6467.41, + "probability": 0.9569 + }, + { + "start": 6467.45, + "end": 6469.03, + "probability": 0.912 + }, + { + "start": 6470.11, + "end": 6473.84, + "probability": 0.8892 + }, + { + "start": 6475.61, + "end": 6478.85, + "probability": 0.6594 + }, + { + "start": 6479.69, + "end": 6480.63, + "probability": 0.8433 + }, + { + "start": 6481.09, + "end": 6486.47, + "probability": 0.9849 + }, + { + "start": 6486.97, + "end": 6488.41, + "probability": 0.707 + }, + { + "start": 6488.85, + "end": 6490.75, + "probability": 0.9481 + }, + { + "start": 6491.03, + "end": 6495.55, + "probability": 0.9336 + }, + { + "start": 6495.71, + "end": 6496.63, + "probability": 0.9639 + }, + { + "start": 6497.37, + "end": 6498.49, + "probability": 0.9665 + }, + { + "start": 6499.27, + "end": 6501.67, + "probability": 0.9192 + }, + { + "start": 6502.75, + "end": 6509.67, + "probability": 0.9773 + }, + { + "start": 6510.61, + "end": 6515.07, + "probability": 0.9984 + }, + { + "start": 6515.75, + "end": 6519.17, + "probability": 0.697 + }, + { + "start": 6520.65, + "end": 6525.51, + "probability": 0.9896 + }, + { + "start": 6525.67, + "end": 6526.83, + "probability": 0.5672 + }, + { + "start": 6527.55, + "end": 6528.47, + "probability": 0.9822 + }, + { + "start": 6529.01, + "end": 6531.57, + "probability": 0.9956 + }, + { + "start": 6534.61, + "end": 6536.53, + "probability": 0.9325 + }, + { + "start": 6536.85, + "end": 6537.91, + "probability": 0.9037 + }, + { + "start": 6538.03, + "end": 6542.27, + "probability": 0.9927 + }, + { + "start": 6543.29, + "end": 6543.63, + "probability": 0.8174 + }, + { + "start": 6544.23, + "end": 6546.39, + "probability": 0.8889 + }, + { + "start": 6546.89, + "end": 6548.23, + "probability": 0.9236 + }, + { + "start": 6548.31, + "end": 6551.39, + "probability": 0.9935 + }, + { + "start": 6552.15, + "end": 6558.99, + "probability": 0.8887 + }, + { + "start": 6559.13, + "end": 6561.41, + "probability": 0.9354 + }, + { + "start": 6562.45, + "end": 6563.55, + "probability": 0.8086 + }, + { + "start": 6568.42, + "end": 6570.41, + "probability": 0.5876 + }, + { + "start": 6571.55, + "end": 6572.93, + "probability": 0.6296 + }, + { + "start": 6573.09, + "end": 6577.09, + "probability": 0.9955 + }, + { + "start": 6577.09, + "end": 6581.33, + "probability": 0.9702 + }, + { + "start": 6581.75, + "end": 6582.41, + "probability": 0.5857 + }, + { + "start": 6582.53, + "end": 6582.95, + "probability": 0.9215 + }, + { + "start": 6583.05, + "end": 6584.35, + "probability": 0.7785 + }, + { + "start": 6584.95, + "end": 6590.73, + "probability": 0.999 + }, + { + "start": 6591.23, + "end": 6592.37, + "probability": 0.728 + }, + { + "start": 6592.45, + "end": 6592.71, + "probability": 0.7727 + }, + { + "start": 6592.71, + "end": 6593.21, + "probability": 0.5959 + }, + { + "start": 6593.43, + "end": 6598.07, + "probability": 0.9694 + }, + { + "start": 6598.17, + "end": 6598.81, + "probability": 0.7686 + }, + { + "start": 6599.31, + "end": 6600.61, + "probability": 0.9627 + }, + { + "start": 6602.31, + "end": 6604.47, + "probability": 0.9905 + }, + { + "start": 6605.11, + "end": 6607.81, + "probability": 0.7111 + }, + { + "start": 6607.87, + "end": 6608.71, + "probability": 0.9124 + }, + { + "start": 6609.17, + "end": 6610.75, + "probability": 0.7808 + }, + { + "start": 6611.13, + "end": 6611.53, + "probability": 0.6493 + }, + { + "start": 6613.65, + "end": 6616.6, + "probability": 0.9834 + }, + { + "start": 6616.93, + "end": 6619.25, + "probability": 0.8957 + }, + { + "start": 6619.51, + "end": 6620.37, + "probability": 0.9375 + }, + { + "start": 6620.57, + "end": 6625.53, + "probability": 0.9271 + }, + { + "start": 6626.75, + "end": 6629.45, + "probability": 0.7122 + }, + { + "start": 6631.03, + "end": 6632.63, + "probability": 0.1659 + }, + { + "start": 6632.63, + "end": 6632.98, + "probability": 0.3657 + }, + { + "start": 6633.15, + "end": 6634.01, + "probability": 0.6483 + }, + { + "start": 6634.51, + "end": 6636.73, + "probability": 0.9399 + }, + { + "start": 6636.83, + "end": 6638.95, + "probability": 0.9092 + }, + { + "start": 6639.11, + "end": 6639.89, + "probability": 0.8515 + }, + { + "start": 6640.07, + "end": 6640.53, + "probability": 0.6341 + }, + { + "start": 6640.57, + "end": 6643.37, + "probability": 0.6173 + }, + { + "start": 6643.55, + "end": 6644.05, + "probability": 0.1704 + }, + { + "start": 6644.63, + "end": 6646.47, + "probability": 0.5013 + }, + { + "start": 6646.47, + "end": 6649.41, + "probability": 0.3925 + }, + { + "start": 6650.13, + "end": 6651.41, + "probability": 0.7216 + }, + { + "start": 6651.49, + "end": 6652.13, + "probability": 0.5951 + }, + { + "start": 6652.21, + "end": 6653.89, + "probability": 0.9269 + }, + { + "start": 6654.25, + "end": 6658.13, + "probability": 0.9924 + }, + { + "start": 6659.43, + "end": 6663.01, + "probability": 0.9962 + }, + { + "start": 6664.07, + "end": 6666.47, + "probability": 0.9983 + }, + { + "start": 6667.03, + "end": 6670.21, + "probability": 0.9542 + }, + { + "start": 6670.27, + "end": 6672.84, + "probability": 0.955 + }, + { + "start": 6672.99, + "end": 6676.57, + "probability": 0.7007 + }, + { + "start": 6676.97, + "end": 6681.65, + "probability": 0.7208 + }, + { + "start": 6683.39, + "end": 6687.13, + "probability": 0.7033 + }, + { + "start": 6687.81, + "end": 6688.64, + "probability": 0.9468 + }, + { + "start": 6690.11, + "end": 6692.01, + "probability": 0.9915 + }, + { + "start": 6692.13, + "end": 6693.03, + "probability": 0.5343 + }, + { + "start": 6693.13, + "end": 6693.93, + "probability": 0.7332 + }, + { + "start": 6695.29, + "end": 6697.11, + "probability": 0.6631 + }, + { + "start": 6698.93, + "end": 6700.55, + "probability": 0.8799 + }, + { + "start": 6701.53, + "end": 6704.41, + "probability": 0.9411 + }, + { + "start": 6705.05, + "end": 6708.57, + "probability": 0.5439 + }, + { + "start": 6708.67, + "end": 6711.52, + "probability": 0.9917 + }, + { + "start": 6711.69, + "end": 6712.23, + "probability": 0.7679 + }, + { + "start": 6712.69, + "end": 6714.09, + "probability": 0.9678 + }, + { + "start": 6714.45, + "end": 6716.25, + "probability": 0.8488 + }, + { + "start": 6716.27, + "end": 6718.27, + "probability": 0.298 + }, + { + "start": 6718.43, + "end": 6718.89, + "probability": 0.0054 + }, + { + "start": 6718.89, + "end": 6719.21, + "probability": 0.3507 + }, + { + "start": 6719.29, + "end": 6722.01, + "probability": 0.4117 + }, + { + "start": 6722.11, + "end": 6723.47, + "probability": 0.8596 + }, + { + "start": 6724.14, + "end": 6727.31, + "probability": 0.6635 + }, + { + "start": 6727.61, + "end": 6730.49, + "probability": 0.4985 + }, + { + "start": 6731.75, + "end": 6734.81, + "probability": 0.8819 + }, + { + "start": 6735.07, + "end": 6736.73, + "probability": 0.9428 + }, + { + "start": 6736.85, + "end": 6737.51, + "probability": 0.9418 + }, + { + "start": 6737.87, + "end": 6738.73, + "probability": 0.7862 + }, + { + "start": 6738.79, + "end": 6739.79, + "probability": 0.535 + }, + { + "start": 6740.97, + "end": 6742.93, + "probability": 0.98 + }, + { + "start": 6744.47, + "end": 6744.93, + "probability": 0.7497 + }, + { + "start": 6746.57, + "end": 6751.19, + "probability": 0.5189 + }, + { + "start": 6751.39, + "end": 6756.31, + "probability": 0.9777 + }, + { + "start": 6756.93, + "end": 6758.43, + "probability": 0.9861 + }, + { + "start": 6759.11, + "end": 6760.79, + "probability": 0.9628 + }, + { + "start": 6761.63, + "end": 6763.92, + "probability": 0.8685 + }, + { + "start": 6764.55, + "end": 6765.13, + "probability": 0.5471 + }, + { + "start": 6766.11, + "end": 6771.47, + "probability": 0.9957 + }, + { + "start": 6772.89, + "end": 6780.24, + "probability": 0.6783 + }, + { + "start": 6781.97, + "end": 6782.43, + "probability": 0.1847 + }, + { + "start": 6782.43, + "end": 6783.53, + "probability": 0.4833 + }, + { + "start": 6783.67, + "end": 6783.89, + "probability": 0.4077 + }, + { + "start": 6783.89, + "end": 6785.69, + "probability": 0.5189 + }, + { + "start": 6786.17, + "end": 6787.99, + "probability": 0.8316 + }, + { + "start": 6788.17, + "end": 6790.51, + "probability": 0.9827 + }, + { + "start": 6790.53, + "end": 6792.29, + "probability": 0.6281 + }, + { + "start": 6792.53, + "end": 6793.16, + "probability": 0.9372 + }, + { + "start": 6793.61, + "end": 6793.65, + "probability": 0.3186 + }, + { + "start": 6795.02, + "end": 6796.35, + "probability": 0.657 + }, + { + "start": 6796.87, + "end": 6797.17, + "probability": 0.1042 + }, + { + "start": 6797.55, + "end": 6797.57, + "probability": 0.1878 + }, + { + "start": 6797.57, + "end": 6797.57, + "probability": 0.4601 + }, + { + "start": 6797.57, + "end": 6799.27, + "probability": 0.4941 + }, + { + "start": 6801.05, + "end": 6804.19, + "probability": 0.6787 + }, + { + "start": 6804.31, + "end": 6804.63, + "probability": 0.7713 + }, + { + "start": 6805.57, + "end": 6806.07, + "probability": 0.6341 + }, + { + "start": 6807.43, + "end": 6809.26, + "probability": 0.9204 + }, + { + "start": 6810.11, + "end": 6812.73, + "probability": 0.8247 + }, + { + "start": 6813.69, + "end": 6817.37, + "probability": 0.9819 + }, + { + "start": 6817.37, + "end": 6821.43, + "probability": 0.9575 + }, + { + "start": 6822.43, + "end": 6823.77, + "probability": 0.7969 + }, + { + "start": 6824.95, + "end": 6831.21, + "probability": 0.9878 + }, + { + "start": 6831.51, + "end": 6831.89, + "probability": 0.8218 + }, + { + "start": 6832.37, + "end": 6837.09, + "probability": 0.9181 + }, + { + "start": 6837.11, + "end": 6837.63, + "probability": 0.4721 + }, + { + "start": 6837.75, + "end": 6839.6, + "probability": 0.9883 + }, + { + "start": 6840.09, + "end": 6842.33, + "probability": 0.9897 + }, + { + "start": 6842.71, + "end": 6849.45, + "probability": 0.7925 + }, + { + "start": 6851.57, + "end": 6851.69, + "probability": 0.0053 + }, + { + "start": 6851.69, + "end": 6851.69, + "probability": 0.0498 + }, + { + "start": 6851.69, + "end": 6851.85, + "probability": 0.2192 + }, + { + "start": 6851.85, + "end": 6852.55, + "probability": 0.2916 + }, + { + "start": 6853.33, + "end": 6855.79, + "probability": 0.8306 + }, + { + "start": 6855.85, + "end": 6857.47, + "probability": 0.7824 + }, + { + "start": 6857.83, + "end": 6862.15, + "probability": 0.6564 + }, + { + "start": 6862.23, + "end": 6873.67, + "probability": 0.9756 + }, + { + "start": 6873.67, + "end": 6879.53, + "probability": 0.9878 + }, + { + "start": 6880.23, + "end": 6880.23, + "probability": 0.0141 + }, + { + "start": 6880.23, + "end": 6880.51, + "probability": 0.3279 + }, + { + "start": 6880.81, + "end": 6882.13, + "probability": 0.9137 + }, + { + "start": 6882.51, + "end": 6890.63, + "probability": 0.9985 + }, + { + "start": 6890.63, + "end": 6897.05, + "probability": 0.9773 + }, + { + "start": 6897.59, + "end": 6899.65, + "probability": 0.9258 + }, + { + "start": 6900.05, + "end": 6905.53, + "probability": 0.9956 + }, + { + "start": 6905.53, + "end": 6911.81, + "probability": 0.9989 + }, + { + "start": 6912.17, + "end": 6912.93, + "probability": 0.9316 + }, + { + "start": 6913.55, + "end": 6914.31, + "probability": 0.9403 + }, + { + "start": 6914.73, + "end": 6919.35, + "probability": 0.979 + }, + { + "start": 6919.79, + "end": 6923.81, + "probability": 0.998 + }, + { + "start": 6923.83, + "end": 6926.45, + "probability": 0.8366 + }, + { + "start": 6927.15, + "end": 6928.05, + "probability": 0.5318 + }, + { + "start": 6930.42, + "end": 6934.85, + "probability": 0.9233 + }, + { + "start": 6934.93, + "end": 6938.27, + "probability": 0.9557 + }, + { + "start": 6938.47, + "end": 6938.47, + "probability": 0.0162 + }, + { + "start": 6938.47, + "end": 6944.15, + "probability": 0.85 + }, + { + "start": 6944.77, + "end": 6947.31, + "probability": 0.6931 + }, + { + "start": 6947.87, + "end": 6948.47, + "probability": 0.8199 + }, + { + "start": 6950.11, + "end": 6951.29, + "probability": 0.9963 + }, + { + "start": 6951.91, + "end": 6953.73, + "probability": 0.999 + }, + { + "start": 6956.17, + "end": 6960.41, + "probability": 0.8052 + }, + { + "start": 6961.19, + "end": 6962.13, + "probability": 0.8427 + }, + { + "start": 6963.11, + "end": 6964.17, + "probability": 0.8372 + }, + { + "start": 6965.09, + "end": 6969.85, + "probability": 0.9923 + }, + { + "start": 6970.97, + "end": 6975.07, + "probability": 0.9643 + }, + { + "start": 6976.29, + "end": 6979.65, + "probability": 0.7157 + }, + { + "start": 6980.05, + "end": 6986.21, + "probability": 0.9967 + }, + { + "start": 6986.21, + "end": 6993.21, + "probability": 0.9994 + }, + { + "start": 6993.79, + "end": 6998.17, + "probability": 0.9832 + }, + { + "start": 6998.25, + "end": 6999.81, + "probability": 0.6422 + }, + { + "start": 7000.71, + "end": 7001.63, + "probability": 0.5748 + }, + { + "start": 7001.77, + "end": 7003.41, + "probability": 0.9728 + }, + { + "start": 7003.69, + "end": 7004.29, + "probability": 0.9244 + }, + { + "start": 7004.43, + "end": 7008.57, + "probability": 0.9602 + }, + { + "start": 7009.29, + "end": 7012.57, + "probability": 0.9477 + }, + { + "start": 7013.03, + "end": 7013.49, + "probability": 0.9109 + }, + { + "start": 7013.61, + "end": 7014.45, + "probability": 0.9781 + }, + { + "start": 7014.55, + "end": 7021.73, + "probability": 0.991 + }, + { + "start": 7023.42, + "end": 7028.95, + "probability": 0.9822 + }, + { + "start": 7029.11, + "end": 7029.95, + "probability": 0.5485 + }, + { + "start": 7030.43, + "end": 7031.79, + "probability": 0.9963 + }, + { + "start": 7034.42, + "end": 7039.73, + "probability": 0.8748 + }, + { + "start": 7040.79, + "end": 7043.23, + "probability": 0.6945 + }, + { + "start": 7043.27, + "end": 7044.57, + "probability": 0.8332 + }, + { + "start": 7045.03, + "end": 7047.69, + "probability": 0.9976 + }, + { + "start": 7048.57, + "end": 7053.13, + "probability": 0.9987 + }, + { + "start": 7053.81, + "end": 7056.51, + "probability": 0.9651 + }, + { + "start": 7057.11, + "end": 7063.25, + "probability": 0.9868 + }, + { + "start": 7063.69, + "end": 7065.67, + "probability": 0.3738 + }, + { + "start": 7067.11, + "end": 7067.5, + "probability": 0.2273 + }, + { + "start": 7068.75, + "end": 7070.75, + "probability": 0.546 + }, + { + "start": 7070.87, + "end": 7072.11, + "probability": 0.9956 + }, + { + "start": 7072.25, + "end": 7073.53, + "probability": 0.8935 + }, + { + "start": 7073.85, + "end": 7076.09, + "probability": 0.9301 + }, + { + "start": 7077.75, + "end": 7078.51, + "probability": 0.7779 + }, + { + "start": 7079.11, + "end": 7080.61, + "probability": 0.953 + }, + { + "start": 7080.99, + "end": 7082.33, + "probability": 0.8427 + }, + { + "start": 7083.05, + "end": 7084.87, + "probability": 0.7702 + }, + { + "start": 7085.45, + "end": 7085.65, + "probability": 0.6084 + }, + { + "start": 7086.03, + "end": 7089.81, + "probability": 0.9588 + }, + { + "start": 7090.77, + "end": 7091.01, + "probability": 0.6688 + }, + { + "start": 7091.11, + "end": 7092.17, + "probability": 0.9894 + }, + { + "start": 7092.19, + "end": 7095.67, + "probability": 0.9963 + }, + { + "start": 7095.67, + "end": 7098.33, + "probability": 0.0869 + }, + { + "start": 7098.57, + "end": 7103.41, + "probability": 0.8232 + }, + { + "start": 7103.83, + "end": 7104.17, + "probability": 0.0005 + }, + { + "start": 7105.01, + "end": 7105.81, + "probability": 0.416 + }, + { + "start": 7106.17, + "end": 7108.15, + "probability": 0.7095 + }, + { + "start": 7108.95, + "end": 7111.53, + "probability": 0.5869 + }, + { + "start": 7111.53, + "end": 7113.39, + "probability": 0.1344 + }, + { + "start": 7114.03, + "end": 7117.01, + "probability": 0.4502 + }, + { + "start": 7119.67, + "end": 7121.03, + "probability": 0.6235 + }, + { + "start": 7121.15, + "end": 7124.03, + "probability": 0.7098 + }, + { + "start": 7124.19, + "end": 7124.39, + "probability": 0.387 + }, + { + "start": 7124.39, + "end": 7124.39, + "probability": 0.1406 + }, + { + "start": 7124.39, + "end": 7129.23, + "probability": 0.594 + }, + { + "start": 7129.57, + "end": 7134.45, + "probability": 0.7734 + }, + { + "start": 7134.65, + "end": 7135.85, + "probability": 0.994 + }, + { + "start": 7135.85, + "end": 7135.87, + "probability": 0.5564 + }, + { + "start": 7135.87, + "end": 7135.93, + "probability": 0.1435 + }, + { + "start": 7135.93, + "end": 7135.93, + "probability": 0.122 + }, + { + "start": 7135.93, + "end": 7135.93, + "probability": 0.7071 + }, + { + "start": 7135.93, + "end": 7141.55, + "probability": 0.8862 + }, + { + "start": 7141.55, + "end": 7146.55, + "probability": 0.9924 + }, + { + "start": 7146.65, + "end": 7148.09, + "probability": 0.781 + }, + { + "start": 7148.09, + "end": 7149.85, + "probability": 0.8887 + }, + { + "start": 7149.87, + "end": 7151.61, + "probability": 0.6811 + }, + { + "start": 7151.73, + "end": 7153.09, + "probability": 0.8953 + }, + { + "start": 7154.03, + "end": 7157.49, + "probability": 0.9801 + }, + { + "start": 7157.59, + "end": 7158.81, + "probability": 0.6769 + }, + { + "start": 7158.89, + "end": 7160.51, + "probability": 0.2194 + }, + { + "start": 7161.03, + "end": 7162.09, + "probability": 0.6704 + }, + { + "start": 7162.61, + "end": 7165.55, + "probability": 0.917 + }, + { + "start": 7166.13, + "end": 7167.75, + "probability": 0.9551 + }, + { + "start": 7167.91, + "end": 7170.49, + "probability": 0.958 + }, + { + "start": 7170.55, + "end": 7171.39, + "probability": 0.8488 + }, + { + "start": 7171.47, + "end": 7173.11, + "probability": 0.7908 + }, + { + "start": 7173.11, + "end": 7173.19, + "probability": 0.0115 + }, + { + "start": 7173.19, + "end": 7173.91, + "probability": 0.6264 + }, + { + "start": 7174.01, + "end": 7176.27, + "probability": 0.9496 + }, + { + "start": 7176.41, + "end": 7180.69, + "probability": 0.9575 + }, + { + "start": 7180.85, + "end": 7185.49, + "probability": 0.9945 + }, + { + "start": 7185.93, + "end": 7189.33, + "probability": 0.9228 + }, + { + "start": 7190.95, + "end": 7193.37, + "probability": 0.9865 + }, + { + "start": 7193.77, + "end": 7195.53, + "probability": 0.9933 + }, + { + "start": 7196.07, + "end": 7197.11, + "probability": 0.9937 + }, + { + "start": 7197.35, + "end": 7197.83, + "probability": 0.8262 + }, + { + "start": 7198.95, + "end": 7201.41, + "probability": 0.4131 + }, + { + "start": 7201.41, + "end": 7201.41, + "probability": 0.2243 + }, + { + "start": 7201.41, + "end": 7204.63, + "probability": 0.6965 + }, + { + "start": 7205.17, + "end": 7208.55, + "probability": 0.9569 + }, + { + "start": 7208.55, + "end": 7210.97, + "probability": 0.9844 + }, + { + "start": 7211.37, + "end": 7215.27, + "probability": 0.9908 + }, + { + "start": 7215.47, + "end": 7217.79, + "probability": 0.9974 + }, + { + "start": 7218.17, + "end": 7223.81, + "probability": 0.881 + }, + { + "start": 7224.03, + "end": 7227.35, + "probability": 0.9483 + }, + { + "start": 7227.75, + "end": 7228.71, + "probability": 0.5293 + }, + { + "start": 7228.79, + "end": 7229.97, + "probability": 0.9363 + }, + { + "start": 7230.75, + "end": 7233.77, + "probability": 0.7487 + }, + { + "start": 7234.41, + "end": 7234.57, + "probability": 0.0168 + }, + { + "start": 7234.57, + "end": 7234.57, + "probability": 0.0145 + }, + { + "start": 7234.61, + "end": 7241.71, + "probability": 0.8503 + }, + { + "start": 7242.13, + "end": 7245.19, + "probability": 0.9982 + }, + { + "start": 7245.47, + "end": 7248.37, + "probability": 0.9969 + }, + { + "start": 7249.19, + "end": 7250.03, + "probability": 0.2519 + }, + { + "start": 7250.55, + "end": 7256.03, + "probability": 0.8335 + }, + { + "start": 7258.22, + "end": 7259.99, + "probability": 0.0331 + }, + { + "start": 7259.99, + "end": 7259.99, + "probability": 0.1641 + }, + { + "start": 7259.99, + "end": 7259.99, + "probability": 0.1444 + }, + { + "start": 7259.99, + "end": 7259.99, + "probability": 0.082 + }, + { + "start": 7259.99, + "end": 7261.09, + "probability": 0.805 + }, + { + "start": 7261.15, + "end": 7262.33, + "probability": 0.9149 + }, + { + "start": 7262.57, + "end": 7262.67, + "probability": 0.5205 + }, + { + "start": 7262.69, + "end": 7269.27, + "probability": 0.8711 + }, + { + "start": 7269.35, + "end": 7270.01, + "probability": 0.8276 + }, + { + "start": 7270.01, + "end": 7270.01, + "probability": 0.1672 + }, + { + "start": 7271.38, + "end": 7272.87, + "probability": 0.4738 + }, + { + "start": 7272.89, + "end": 7274.49, + "probability": 0.9785 + }, + { + "start": 7274.55, + "end": 7278.31, + "probability": 0.9983 + }, + { + "start": 7278.31, + "end": 7280.99, + "probability": 0.9989 + }, + { + "start": 7282.11, + "end": 7282.85, + "probability": 0.9872 + }, + { + "start": 7283.27, + "end": 7288.53, + "probability": 0.9985 + }, + { + "start": 7288.53, + "end": 7291.77, + "probability": 0.9956 + }, + { + "start": 7292.25, + "end": 7293.35, + "probability": 0.7564 + }, + { + "start": 7293.77, + "end": 7294.79, + "probability": 0.8875 + }, + { + "start": 7295.23, + "end": 7299.85, + "probability": 0.7723 + }, + { + "start": 7300.69, + "end": 7300.95, + "probability": 0.0129 + }, + { + "start": 7300.95, + "end": 7302.49, + "probability": 0.0381 + }, + { + "start": 7302.53, + "end": 7302.79, + "probability": 0.021 + }, + { + "start": 7302.79, + "end": 7302.91, + "probability": 0.0474 + }, + { + "start": 7302.91, + "end": 7306.13, + "probability": 0.9382 + }, + { + "start": 7306.59, + "end": 7306.89, + "probability": 0.1031 + }, + { + "start": 7306.89, + "end": 7306.89, + "probability": 0.3749 + }, + { + "start": 7306.89, + "end": 7310.59, + "probability": 0.6405 + }, + { + "start": 7310.59, + "end": 7310.59, + "probability": 0.1704 + }, + { + "start": 7310.59, + "end": 7310.89, + "probability": 0.3077 + }, + { + "start": 7311.13, + "end": 7311.79, + "probability": 0.9314 + }, + { + "start": 7311.99, + "end": 7314.53, + "probability": 0.9945 + }, + { + "start": 7314.53, + "end": 7314.63, + "probability": 0.0212 + }, + { + "start": 7314.63, + "end": 7314.95, + "probability": 0.0376 + }, + { + "start": 7315.13, + "end": 7318.79, + "probability": 0.9976 + }, + { + "start": 7319.41, + "end": 7321.23, + "probability": 0.9875 + }, + { + "start": 7321.77, + "end": 7324.37, + "probability": 0.9722 + }, + { + "start": 7324.37, + "end": 7328.63, + "probability": 0.9983 + }, + { + "start": 7329.43, + "end": 7332.23, + "probability": 0.9953 + }, + { + "start": 7332.83, + "end": 7336.01, + "probability": 0.8865 + }, + { + "start": 7336.67, + "end": 7339.93, + "probability": 0.9766 + }, + { + "start": 7339.93, + "end": 7342.87, + "probability": 0.8895 + }, + { + "start": 7342.99, + "end": 7343.69, + "probability": 0.8389 + }, + { + "start": 7343.79, + "end": 7346.05, + "probability": 0.9855 + }, + { + "start": 7346.29, + "end": 7348.99, + "probability": 0.9623 + }, + { + "start": 7349.73, + "end": 7352.13, + "probability": 0.9865 + }, + { + "start": 7352.23, + "end": 7353.04, + "probability": 0.6246 + }, + { + "start": 7354.63, + "end": 7356.85, + "probability": 0.9993 + }, + { + "start": 7357.05, + "end": 7358.65, + "probability": 0.8042 + }, + { + "start": 7358.67, + "end": 7359.25, + "probability": 0.7703 + }, + { + "start": 7359.35, + "end": 7360.07, + "probability": 0.9844 + }, + { + "start": 7360.15, + "end": 7360.45, + "probability": 0.2335 + }, + { + "start": 7360.45, + "end": 7364.43, + "probability": 0.794 + }, + { + "start": 7365.18, + "end": 7365.87, + "probability": 0.0371 + }, + { + "start": 7365.87, + "end": 7366.05, + "probability": 0.0056 + }, + { + "start": 7366.53, + "end": 7367.39, + "probability": 0.4226 + }, + { + "start": 7367.39, + "end": 7373.41, + "probability": 0.8005 + }, + { + "start": 7373.81, + "end": 7374.59, + "probability": 0.4116 + }, + { + "start": 7374.71, + "end": 7375.48, + "probability": 0.7812 + }, + { + "start": 7376.03, + "end": 7376.29, + "probability": 0.8247 + }, + { + "start": 7376.33, + "end": 7377.85, + "probability": 0.9712 + }, + { + "start": 7377.91, + "end": 7379.81, + "probability": 0.8638 + }, + { + "start": 7379.89, + "end": 7380.23, + "probability": 0.4504 + }, + { + "start": 7380.33, + "end": 7382.87, + "probability": 0.8851 + }, + { + "start": 7382.93, + "end": 7384.19, + "probability": 0.9234 + }, + { + "start": 7384.93, + "end": 7386.65, + "probability": 0.7051 + }, + { + "start": 7388.25, + "end": 7390.79, + "probability": 0.6601 + }, + { + "start": 7391.13, + "end": 7396.53, + "probability": 0.2515 + }, + { + "start": 7396.63, + "end": 7397.55, + "probability": 0.3786 + }, + { + "start": 7397.63, + "end": 7398.85, + "probability": 0.6748 + }, + { + "start": 7399.37, + "end": 7401.69, + "probability": 0.9395 + }, + { + "start": 7401.97, + "end": 7402.65, + "probability": 0.7768 + }, + { + "start": 7403.33, + "end": 7406.55, + "probability": 0.6701 + }, + { + "start": 7407.07, + "end": 7411.85, + "probability": 0.5615 + }, + { + "start": 7412.95, + "end": 7416.59, + "probability": 0.7711 + }, + { + "start": 7418.93, + "end": 7419.03, + "probability": 0.0653 + }, + { + "start": 7419.59, + "end": 7420.63, + "probability": 0.8722 + }, + { + "start": 7423.71, + "end": 7425.01, + "probability": 0.7799 + }, + { + "start": 7426.31, + "end": 7429.63, + "probability": 0.9773 + }, + { + "start": 7429.71, + "end": 7430.29, + "probability": 0.8629 + }, + { + "start": 7432.63, + "end": 7435.87, + "probability": 0.8174 + }, + { + "start": 7439.73, + "end": 7440.73, + "probability": 0.8836 + }, + { + "start": 7445.43, + "end": 7445.43, + "probability": 0.18 + }, + { + "start": 7445.43, + "end": 7446.41, + "probability": 0.5372 + }, + { + "start": 7447.55, + "end": 7448.05, + "probability": 0.6905 + }, + { + "start": 7449.79, + "end": 7450.27, + "probability": 0.3831 + }, + { + "start": 7450.37, + "end": 7451.03, + "probability": 0.6732 + }, + { + "start": 7451.09, + "end": 7454.19, + "probability": 0.9197 + }, + { + "start": 7454.23, + "end": 7454.89, + "probability": 0.6657 + }, + { + "start": 7454.99, + "end": 7456.31, + "probability": 0.7624 + }, + { + "start": 7456.43, + "end": 7458.19, + "probability": 0.8384 + }, + { + "start": 7459.35, + "end": 7461.19, + "probability": 0.6885 + }, + { + "start": 7463.85, + "end": 7465.55, + "probability": 0.4046 + }, + { + "start": 7465.59, + "end": 7467.93, + "probability": 0.4354 + }, + { + "start": 7468.17, + "end": 7469.11, + "probability": 0.4726 + }, + { + "start": 7469.11, + "end": 7473.05, + "probability": 0.9887 + }, + { + "start": 7473.05, + "end": 7473.09, + "probability": 0.4187 + }, + { + "start": 7473.09, + "end": 7473.93, + "probability": 0.2268 + }, + { + "start": 7474.01, + "end": 7475.79, + "probability": 0.9984 + }, + { + "start": 7477.08, + "end": 7480.57, + "probability": 0.9888 + }, + { + "start": 7480.97, + "end": 7482.79, + "probability": 0.8097 + }, + { + "start": 7482.79, + "end": 7482.89, + "probability": 0.4525 + }, + { + "start": 7484.21, + "end": 7488.67, + "probability": 0.9964 + }, + { + "start": 7488.81, + "end": 7490.25, + "probability": 0.8765 + }, + { + "start": 7491.31, + "end": 7491.47, + "probability": 0.3351 + }, + { + "start": 7491.47, + "end": 7494.01, + "probability": 0.853 + }, + { + "start": 7494.23, + "end": 7495.27, + "probability": 0.5761 + }, + { + "start": 7495.27, + "end": 7498.55, + "probability": 0.1603 + }, + { + "start": 7499.29, + "end": 7500.65, + "probability": 0.7525 + }, + { + "start": 7501.49, + "end": 7501.8, + "probability": 0.592 + }, + { + "start": 7504.13, + "end": 7507.01, + "probability": 0.7 + }, + { + "start": 7507.69, + "end": 7508.07, + "probability": 0.1184 + }, + { + "start": 7508.53, + "end": 7510.43, + "probability": 0.8114 + }, + { + "start": 7510.43, + "end": 7511.77, + "probability": 0.3694 + }, + { + "start": 7511.91, + "end": 7513.1, + "probability": 0.9639 + }, + { + "start": 7513.27, + "end": 7514.02, + "probability": 0.125 + }, + { + "start": 7514.07, + "end": 7514.09, + "probability": 0.021 + }, + { + "start": 7514.09, + "end": 7514.69, + "probability": 0.019 + }, + { + "start": 7514.99, + "end": 7517.01, + "probability": 0.7208 + }, + { + "start": 7517.65, + "end": 7521.35, + "probability": 0.7939 + }, + { + "start": 7522.01, + "end": 7525.65, + "probability": 0.1973 + }, + { + "start": 7526.05, + "end": 7527.91, + "probability": 0.9625 + }, + { + "start": 7528.39, + "end": 7531.91, + "probability": 0.9507 + }, + { + "start": 7535.37, + "end": 7537.81, + "probability": 0.1551 + }, + { + "start": 7538.45, + "end": 7539.73, + "probability": 0.9325 + }, + { + "start": 7540.67, + "end": 7543.37, + "probability": 0.9154 + }, + { + "start": 7543.89, + "end": 7545.85, + "probability": 0.6046 + }, + { + "start": 7548.15, + "end": 7548.91, + "probability": 0.6765 + }, + { + "start": 7548.93, + "end": 7549.93, + "probability": 0.9016 + }, + { + "start": 7550.51, + "end": 7551.07, + "probability": 0.7508 + }, + { + "start": 7551.23, + "end": 7552.35, + "probability": 0.8801 + }, + { + "start": 7552.39, + "end": 7553.29, + "probability": 0.97 + }, + { + "start": 7553.53, + "end": 7558.01, + "probability": 0.9657 + }, + { + "start": 7560.83, + "end": 7562.91, + "probability": 0.7993 + }, + { + "start": 7562.99, + "end": 7564.81, + "probability": 0.9902 + }, + { + "start": 7565.69, + "end": 7568.91, + "probability": 0.9902 + }, + { + "start": 7569.55, + "end": 7574.27, + "probability": 0.9823 + }, + { + "start": 7574.87, + "end": 7576.75, + "probability": 0.6959 + }, + { + "start": 7581.11, + "end": 7584.35, + "probability": 0.2827 + }, + { + "start": 7585.09, + "end": 7586.79, + "probability": 0.0878 + }, + { + "start": 7587.69, + "end": 7590.61, + "probability": 0.0832 + }, + { + "start": 7596.83, + "end": 7598.41, + "probability": 0.517 + }, + { + "start": 7598.93, + "end": 7599.49, + "probability": 0.5665 + }, + { + "start": 7599.55, + "end": 7601.05, + "probability": 0.6649 + }, + { + "start": 7601.51, + "end": 7603.47, + "probability": 0.8458 + }, + { + "start": 7603.61, + "end": 7604.75, + "probability": 0.6241 + }, + { + "start": 7608.46, + "end": 7609.49, + "probability": 0.8005 + }, + { + "start": 7620.17, + "end": 7624.55, + "probability": 0.8164 + }, + { + "start": 7624.69, + "end": 7627.45, + "probability": 0.8163 + }, + { + "start": 7628.01, + "end": 7628.99, + "probability": 0.9681 + }, + { + "start": 7629.29, + "end": 7629.8, + "probability": 0.3612 + }, + { + "start": 7631.57, + "end": 7635.51, + "probability": 0.9886 + }, + { + "start": 7635.55, + "end": 7638.41, + "probability": 0.8121 + }, + { + "start": 7638.47, + "end": 7640.14, + "probability": 0.9895 + }, + { + "start": 7641.05, + "end": 7642.93, + "probability": 0.9696 + }, + { + "start": 7643.61, + "end": 7647.73, + "probability": 0.7083 + }, + { + "start": 7647.85, + "end": 7648.27, + "probability": 0.9243 + }, + { + "start": 7648.87, + "end": 7653.61, + "probability": 0.9011 + }, + { + "start": 7653.75, + "end": 7656.69, + "probability": 0.994 + }, + { + "start": 7656.73, + "end": 7658.57, + "probability": 0.9102 + }, + { + "start": 7658.91, + "end": 7660.47, + "probability": 0.9677 + }, + { + "start": 7662.13, + "end": 7665.3, + "probability": 0.7313 + }, + { + "start": 7668.39, + "end": 7671.89, + "probability": 0.7312 + }, + { + "start": 7672.21, + "end": 7675.85, + "probability": 0.968 + }, + { + "start": 7676.07, + "end": 7678.01, + "probability": 0.9877 + }, + { + "start": 7678.79, + "end": 7681.87, + "probability": 0.9855 + }, + { + "start": 7682.33, + "end": 7683.14, + "probability": 0.993 + }, + { + "start": 7684.61, + "end": 7685.51, + "probability": 0.9771 + }, + { + "start": 7685.65, + "end": 7689.41, + "probability": 0.9844 + }, + { + "start": 7689.89, + "end": 7690.67, + "probability": 0.6393 + }, + { + "start": 7690.69, + "end": 7691.55, + "probability": 0.8247 + }, + { + "start": 7691.59, + "end": 7694.05, + "probability": 0.8224 + }, + { + "start": 7694.93, + "end": 7698.69, + "probability": 0.9829 + }, + { + "start": 7698.87, + "end": 7699.79, + "probability": 0.832 + }, + { + "start": 7700.15, + "end": 7700.87, + "probability": 0.8943 + }, + { + "start": 7701.05, + "end": 7704.81, + "probability": 0.8979 + }, + { + "start": 7704.91, + "end": 7705.74, + "probability": 0.5517 + }, + { + "start": 7705.97, + "end": 7707.37, + "probability": 0.7963 + }, + { + "start": 7707.97, + "end": 7711.81, + "probability": 0.9943 + }, + { + "start": 7712.41, + "end": 7715.01, + "probability": 0.9661 + }, + { + "start": 7716.01, + "end": 7719.29, + "probability": 0.9788 + }, + { + "start": 7719.79, + "end": 7721.61, + "probability": 0.9995 + }, + { + "start": 7721.61, + "end": 7724.81, + "probability": 0.9751 + }, + { + "start": 7724.93, + "end": 7727.15, + "probability": 0.8074 + }, + { + "start": 7727.69, + "end": 7729.85, + "probability": 0.9852 + }, + { + "start": 7730.21, + "end": 7731.81, + "probability": 0.9559 + }, + { + "start": 7732.15, + "end": 7733.25, + "probability": 0.9805 + }, + { + "start": 7733.29, + "end": 7735.67, + "probability": 0.6464 + }, + { + "start": 7735.75, + "end": 7743.07, + "probability": 0.9889 + }, + { + "start": 7744.36, + "end": 7747.95, + "probability": 0.9761 + }, + { + "start": 7748.57, + "end": 7753.41, + "probability": 0.9526 + }, + { + "start": 7753.79, + "end": 7756.23, + "probability": 0.9785 + }, + { + "start": 7757.59, + "end": 7764.49, + "probability": 0.9342 + }, + { + "start": 7764.61, + "end": 7767.05, + "probability": 0.7297 + }, + { + "start": 7767.09, + "end": 7769.25, + "probability": 0.9828 + }, + { + "start": 7769.53, + "end": 7771.31, + "probability": 0.9923 + }, + { + "start": 7772.53, + "end": 7773.59, + "probability": 0.8307 + }, + { + "start": 7773.97, + "end": 7775.45, + "probability": 0.993 + }, + { + "start": 7775.61, + "end": 7776.27, + "probability": 0.8497 + }, + { + "start": 7776.35, + "end": 7782.13, + "probability": 0.9795 + }, + { + "start": 7782.75, + "end": 7783.35, + "probability": 0.9487 + }, + { + "start": 7783.69, + "end": 7784.67, + "probability": 0.9768 + }, + { + "start": 7784.99, + "end": 7791.49, + "probability": 0.9836 + }, + { + "start": 7791.95, + "end": 7792.91, + "probability": 0.6289 + }, + { + "start": 7793.11, + "end": 7793.69, + "probability": 0.5921 + }, + { + "start": 7793.75, + "end": 7794.75, + "probability": 0.549 + }, + { + "start": 7794.81, + "end": 7796.01, + "probability": 0.7206 + }, + { + "start": 7796.95, + "end": 7802.99, + "probability": 0.7643 + }, + { + "start": 7805.49, + "end": 7807.17, + "probability": 0.9807 + }, + { + "start": 7808.23, + "end": 7810.29, + "probability": 0.9825 + }, + { + "start": 7810.37, + "end": 7810.89, + "probability": 0.7896 + }, + { + "start": 7811.01, + "end": 7811.51, + "probability": 0.7315 + }, + { + "start": 7811.99, + "end": 7814.39, + "probability": 0.8071 + }, + { + "start": 7815.11, + "end": 7817.73, + "probability": 0.9966 + }, + { + "start": 7817.73, + "end": 7821.25, + "probability": 0.9991 + }, + { + "start": 7821.69, + "end": 7822.81, + "probability": 0.9819 + }, + { + "start": 7823.09, + "end": 7826.33, + "probability": 0.5869 + }, + { + "start": 7826.61, + "end": 7827.47, + "probability": 0.9589 + }, + { + "start": 7827.79, + "end": 7828.09, + "probability": 0.271 + }, + { + "start": 7829.47, + "end": 7832.41, + "probability": 0.854 + }, + { + "start": 7832.51, + "end": 7833.37, + "probability": 0.7817 + }, + { + "start": 7833.77, + "end": 7835.93, + "probability": 0.9643 + }, + { + "start": 7836.51, + "end": 7839.41, + "probability": 0.9622 + }, + { + "start": 7839.85, + "end": 7841.75, + "probability": 0.9942 + }, + { + "start": 7841.81, + "end": 7845.33, + "probability": 0.9912 + }, + { + "start": 7845.75, + "end": 7849.95, + "probability": 0.9871 + }, + { + "start": 7852.96, + "end": 7856.54, + "probability": 0.7792 + }, + { + "start": 7857.23, + "end": 7858.17, + "probability": 0.9021 + }, + { + "start": 7858.43, + "end": 7860.97, + "probability": 0.8658 + }, + { + "start": 7861.69, + "end": 7864.71, + "probability": 0.9531 + }, + { + "start": 7865.39, + "end": 7868.21, + "probability": 0.9696 + }, + { + "start": 7868.61, + "end": 7869.87, + "probability": 0.9821 + }, + { + "start": 7870.39, + "end": 7872.39, + "probability": 0.9847 + }, + { + "start": 7872.71, + "end": 7873.43, + "probability": 0.7255 + }, + { + "start": 7873.65, + "end": 7878.69, + "probability": 0.9868 + }, + { + "start": 7878.71, + "end": 7878.87, + "probability": 0.6406 + }, + { + "start": 7880.47, + "end": 7882.83, + "probability": 0.8743 + }, + { + "start": 7882.89, + "end": 7883.59, + "probability": 0.7671 + }, + { + "start": 7883.81, + "end": 7885.01, + "probability": 0.7307 + }, + { + "start": 7885.17, + "end": 7886.27, + "probability": 0.8879 + }, + { + "start": 7887.83, + "end": 7889.63, + "probability": 0.7725 + }, + { + "start": 7890.39, + "end": 7891.87, + "probability": 0.7461 + }, + { + "start": 7892.89, + "end": 7895.03, + "probability": 0.9187 + }, + { + "start": 7895.87, + "end": 7897.0, + "probability": 0.7632 + }, + { + "start": 7899.89, + "end": 7901.57, + "probability": 0.9855 + }, + { + "start": 7902.51, + "end": 7902.93, + "probability": 0.5003 + }, + { + "start": 7904.09, + "end": 7906.3, + "probability": 0.6802 + }, + { + "start": 7909.33, + "end": 7912.09, + "probability": 0.9259 + }, + { + "start": 7912.87, + "end": 7913.49, + "probability": 0.8211 + }, + { + "start": 7914.13, + "end": 7915.59, + "probability": 0.6509 + }, + { + "start": 7920.73, + "end": 7921.45, + "probability": 0.8898 + }, + { + "start": 7923.59, + "end": 7925.95, + "probability": 0.8377 + }, + { + "start": 7929.39, + "end": 7935.01, + "probability": 0.9238 + }, + { + "start": 7941.01, + "end": 7941.67, + "probability": 0.3938 + }, + { + "start": 7942.39, + "end": 7946.35, + "probability": 0.6484 + }, + { + "start": 7946.99, + "end": 7948.39, + "probability": 0.8561 + }, + { + "start": 7948.55, + "end": 7949.85, + "probability": 0.7354 + }, + { + "start": 7950.55, + "end": 7952.53, + "probability": 0.9123 + }, + { + "start": 7956.23, + "end": 7958.21, + "probability": 0.9673 + }, + { + "start": 7958.91, + "end": 7959.47, + "probability": 0.7433 + }, + { + "start": 7961.21, + "end": 7962.23, + "probability": 0.2173 + }, + { + "start": 7963.61, + "end": 7964.05, + "probability": 0.9519 + }, + { + "start": 7965.95, + "end": 7966.99, + "probability": 0.6608 + }, + { + "start": 7968.77, + "end": 7970.61, + "probability": 0.7771 + }, + { + "start": 7971.53, + "end": 7974.45, + "probability": 0.96 + }, + { + "start": 7975.01, + "end": 7975.35, + "probability": 0.9883 + }, + { + "start": 7976.65, + "end": 7977.35, + "probability": 0.6056 + }, + { + "start": 7978.11, + "end": 7978.53, + "probability": 0.7198 + }, + { + "start": 7979.63, + "end": 7979.87, + "probability": 0.343 + }, + { + "start": 7989.39, + "end": 7990.53, + "probability": 0.3802 + }, + { + "start": 7991.31, + "end": 7994.87, + "probability": 0.6426 + }, + { + "start": 7995.75, + "end": 7998.41, + "probability": 0.9014 + }, + { + "start": 8000.57, + "end": 8002.59, + "probability": 0.9628 + }, + { + "start": 8003.84, + "end": 8006.17, + "probability": 0.9286 + }, + { + "start": 8009.11, + "end": 8011.73, + "probability": 0.897 + }, + { + "start": 8016.11, + "end": 8018.98, + "probability": 0.0467 + }, + { + "start": 8020.95, + "end": 8021.51, + "probability": 0.8232 + }, + { + "start": 8022.45, + "end": 8023.33, + "probability": 0.8444 + }, + { + "start": 8023.93, + "end": 8025.15, + "probability": 0.7761 + }, + { + "start": 8025.87, + "end": 8026.67, + "probability": 0.9583 + }, + { + "start": 8027.93, + "end": 8030.29, + "probability": 0.9517 + }, + { + "start": 8031.66, + "end": 8033.73, + "probability": 0.8385 + }, + { + "start": 8034.27, + "end": 8034.85, + "probability": 0.9826 + }, + { + "start": 8035.97, + "end": 8036.87, + "probability": 0.9635 + }, + { + "start": 8037.99, + "end": 8038.55, + "probability": 0.9834 + }, + { + "start": 8039.31, + "end": 8040.21, + "probability": 0.919 + }, + { + "start": 8040.85, + "end": 8041.39, + "probability": 0.9486 + }, + { + "start": 8042.69, + "end": 8043.53, + "probability": 0.9731 + }, + { + "start": 8044.73, + "end": 8045.21, + "probability": 0.9941 + }, + { + "start": 8047.39, + "end": 8048.15, + "probability": 0.6603 + }, + { + "start": 8048.77, + "end": 8049.19, + "probability": 0.7462 + }, + { + "start": 8050.33, + "end": 8051.51, + "probability": 0.9321 + }, + { + "start": 8052.51, + "end": 8054.85, + "probability": 0.8761 + }, + { + "start": 8059.71, + "end": 8063.09, + "probability": 0.7542 + }, + { + "start": 8065.55, + "end": 8068.61, + "probability": 0.6164 + }, + { + "start": 8069.93, + "end": 8070.47, + "probability": 0.9699 + }, + { + "start": 8071.49, + "end": 8072.21, + "probability": 0.9038 + }, + { + "start": 8074.27, + "end": 8074.79, + "probability": 0.958 + }, + { + "start": 8076.43, + "end": 8077.15, + "probability": 0.9073 + }, + { + "start": 8079.15, + "end": 8079.59, + "probability": 0.9797 + }, + { + "start": 8084.01, + "end": 8084.85, + "probability": 0.4538 + }, + { + "start": 8088.85, + "end": 8091.39, + "probability": 0.7551 + }, + { + "start": 8092.55, + "end": 8093.07, + "probability": 0.853 + }, + { + "start": 8094.81, + "end": 8096.79, + "probability": 0.8891 + }, + { + "start": 8097.53, + "end": 8098.35, + "probability": 0.8088 + }, + { + "start": 8101.59, + "end": 8106.41, + "probability": 0.7729 + }, + { + "start": 8107.69, + "end": 8108.63, + "probability": 0.7574 + }, + { + "start": 8109.45, + "end": 8110.35, + "probability": 0.7461 + }, + { + "start": 8111.43, + "end": 8111.81, + "probability": 0.9832 + }, + { + "start": 8113.33, + "end": 8114.61, + "probability": 0.9249 + }, + { + "start": 8116.47, + "end": 8117.37, + "probability": 0.3743 + }, + { + "start": 8118.15, + "end": 8119.07, + "probability": 0.5523 + }, + { + "start": 8120.19, + "end": 8120.71, + "probability": 0.6617 + }, + { + "start": 8122.19, + "end": 8123.17, + "probability": 0.8587 + }, + { + "start": 8124.03, + "end": 8125.65, + "probability": 0.9204 + }, + { + "start": 8127.13, + "end": 8130.19, + "probability": 0.9032 + }, + { + "start": 8130.81, + "end": 8132.69, + "probability": 0.9604 + }, + { + "start": 8134.23, + "end": 8134.77, + "probability": 0.9875 + }, + { + "start": 8136.25, + "end": 8137.01, + "probability": 0.9506 + }, + { + "start": 8137.67, + "end": 8138.71, + "probability": 0.9167 + }, + { + "start": 8139.55, + "end": 8140.47, + "probability": 0.5997 + }, + { + "start": 8141.83, + "end": 8142.39, + "probability": 0.991 + }, + { + "start": 8144.21, + "end": 8145.31, + "probability": 0.686 + }, + { + "start": 8146.27, + "end": 8146.81, + "probability": 0.5502 + }, + { + "start": 8148.13, + "end": 8149.49, + "probability": 0.8009 + }, + { + "start": 8150.31, + "end": 8150.87, + "probability": 0.9777 + }, + { + "start": 8152.65, + "end": 8153.69, + "probability": 0.9591 + }, + { + "start": 8154.53, + "end": 8155.89, + "probability": 0.9534 + }, + { + "start": 8156.47, + "end": 8157.57, + "probability": 0.652 + }, + { + "start": 8164.35, + "end": 8164.65, + "probability": 0.7546 + }, + { + "start": 8165.49, + "end": 8167.27, + "probability": 0.2367 + }, + { + "start": 8168.59, + "end": 8169.11, + "probability": 0.9741 + }, + { + "start": 8169.81, + "end": 8170.89, + "probability": 0.7871 + }, + { + "start": 8171.57, + "end": 8172.11, + "probability": 0.9727 + }, + { + "start": 8172.99, + "end": 8173.85, + "probability": 0.7129 + }, + { + "start": 8175.05, + "end": 8177.07, + "probability": 0.9818 + }, + { + "start": 8179.9, + "end": 8180.26, + "probability": 0.0452 + }, + { + "start": 8183.65, + "end": 8184.35, + "probability": 0.0096 + }, + { + "start": 8201.95, + "end": 8202.39, + "probability": 0.6863 + }, + { + "start": 8203.87, + "end": 8205.07, + "probability": 0.5974 + }, + { + "start": 8206.37, + "end": 8206.85, + "probability": 0.8799 + }, + { + "start": 8208.09, + "end": 8209.17, + "probability": 0.7436 + }, + { + "start": 8210.25, + "end": 8211.41, + "probability": 0.9871 + }, + { + "start": 8212.65, + "end": 8213.37, + "probability": 0.965 + }, + { + "start": 8216.77, + "end": 8217.19, + "probability": 0.9788 + }, + { + "start": 8218.23, + "end": 8219.13, + "probability": 0.9794 + }, + { + "start": 8220.67, + "end": 8221.29, + "probability": 0.9953 + }, + { + "start": 8222.43, + "end": 8223.73, + "probability": 0.827 + }, + { + "start": 8224.63, + "end": 8225.21, + "probability": 0.994 + }, + { + "start": 8226.49, + "end": 8227.27, + "probability": 0.8623 + }, + { + "start": 8230.57, + "end": 8230.75, + "probability": 0.08 + }, + { + "start": 8234.31, + "end": 8235.03, + "probability": 0.5187 + }, + { + "start": 8236.19, + "end": 8236.45, + "probability": 0.5242 + }, + { + "start": 8237.49, + "end": 8238.17, + "probability": 0.564 + }, + { + "start": 8242.13, + "end": 8243.59, + "probability": 0.5193 + }, + { + "start": 8244.83, + "end": 8245.65, + "probability": 0.6824 + }, + { + "start": 8248.59, + "end": 8248.59, + "probability": 0.9189 + }, + { + "start": 8260.37, + "end": 8261.05, + "probability": 0.4569 + }, + { + "start": 8262.73, + "end": 8263.33, + "probability": 0.6932 + }, + { + "start": 8265.97, + "end": 8267.35, + "probability": 0.5801 + }, + { + "start": 8268.19, + "end": 8270.85, + "probability": 0.7933 + }, + { + "start": 8272.99, + "end": 8274.67, + "probability": 0.9683 + }, + { + "start": 8277.95, + "end": 8278.95, + "probability": 0.6715 + }, + { + "start": 8280.13, + "end": 8280.65, + "probability": 0.7683 + }, + { + "start": 8281.73, + "end": 8282.53, + "probability": 0.9048 + }, + { + "start": 8283.77, + "end": 8286.25, + "probability": 0.904 + }, + { + "start": 8288.15, + "end": 8289.31, + "probability": 0.993 + }, + { + "start": 8290.39, + "end": 8291.43, + "probability": 0.9841 + }, + { + "start": 8293.33, + "end": 8295.83, + "probability": 0.9694 + }, + { + "start": 8296.97, + "end": 8297.59, + "probability": 0.9941 + }, + { + "start": 8298.79, + "end": 8299.65, + "probability": 0.9675 + }, + { + "start": 8301.51, + "end": 8302.09, + "probability": 0.9928 + }, + { + "start": 8304.69, + "end": 8305.93, + "probability": 0.8153 + }, + { + "start": 8307.53, + "end": 8308.95, + "probability": 0.2782 + }, + { + "start": 8309.83, + "end": 8310.49, + "probability": 0.7837 + }, + { + "start": 8311.65, + "end": 8312.53, + "probability": 0.6955 + }, + { + "start": 8313.29, + "end": 8315.81, + "probability": 0.8303 + }, + { + "start": 8316.75, + "end": 8317.73, + "probability": 0.9445 + }, + { + "start": 8318.85, + "end": 8319.89, + "probability": 0.848 + }, + { + "start": 8321.57, + "end": 8324.87, + "probability": 0.901 + }, + { + "start": 8325.83, + "end": 8326.99, + "probability": 0.9524 + }, + { + "start": 8328.11, + "end": 8328.63, + "probability": 0.9851 + }, + { + "start": 8329.51, + "end": 8330.33, + "probability": 0.9244 + }, + { + "start": 8331.77, + "end": 8332.91, + "probability": 0.9812 + }, + { + "start": 8333.61, + "end": 8334.53, + "probability": 0.9121 + }, + { + "start": 8339.17, + "end": 8339.73, + "probability": 0.5912 + }, + { + "start": 8341.77, + "end": 8343.01, + "probability": 0.3453 + }, + { + "start": 8345.59, + "end": 8346.19, + "probability": 0.9754 + }, + { + "start": 8347.67, + "end": 8348.69, + "probability": 0.9371 + }, + { + "start": 8351.95, + "end": 8352.57, + "probability": 0.8687 + }, + { + "start": 8353.81, + "end": 8354.81, + "probability": 0.915 + }, + { + "start": 8358.01, + "end": 8358.45, + "probability": 0.7136 + }, + { + "start": 8360.33, + "end": 8360.73, + "probability": 0.776 + }, + { + "start": 8363.27, + "end": 8364.45, + "probability": 0.3474 + }, + { + "start": 8365.13, + "end": 8367.81, + "probability": 0.646 + }, + { + "start": 8368.49, + "end": 8369.01, + "probability": 0.9562 + }, + { + "start": 8369.55, + "end": 8370.49, + "probability": 0.6777 + }, + { + "start": 8371.13, + "end": 8373.37, + "probability": 0.9177 + }, + { + "start": 8375.33, + "end": 8376.79, + "probability": 0.8475 + }, + { + "start": 8378.15, + "end": 8380.47, + "probability": 0.8945 + }, + { + "start": 8382.41, + "end": 8387.43, + "probability": 0.6816 + }, + { + "start": 8388.31, + "end": 8388.93, + "probability": 0.9816 + }, + { + "start": 8390.81, + "end": 8391.81, + "probability": 0.4764 + }, + { + "start": 8392.87, + "end": 8395.49, + "probability": 0.5779 + }, + { + "start": 8400.07, + "end": 8405.09, + "probability": 0.5099 + }, + { + "start": 8409.47, + "end": 8410.45, + "probability": 0.6713 + }, + { + "start": 8411.73, + "end": 8412.49, + "probability": 0.5538 + }, + { + "start": 8414.95, + "end": 8415.07, + "probability": 0.0033 + }, + { + "start": 8415.77, + "end": 8421.21, + "probability": 0.2855 + }, + { + "start": 8422.91, + "end": 8423.41, + "probability": 0.5484 + }, + { + "start": 8426.47, + "end": 8426.79, + "probability": 0.8484 + }, + { + "start": 8429.91, + "end": 8436.75, + "probability": 0.6669 + }, + { + "start": 8438.03, + "end": 8438.73, + "probability": 0.8657 + }, + { + "start": 8440.43, + "end": 8441.27, + "probability": 0.6135 + }, + { + "start": 8443.17, + "end": 8445.63, + "probability": 0.8257 + }, + { + "start": 8446.55, + "end": 8447.05, + "probability": 0.9427 + }, + { + "start": 8447.79, + "end": 8448.65, + "probability": 0.8582 + }, + { + "start": 8451.15, + "end": 8451.75, + "probability": 0.9925 + }, + { + "start": 8452.87, + "end": 8453.33, + "probability": 0.8772 + }, + { + "start": 8455.19, + "end": 8455.67, + "probability": 0.9862 + }, + { + "start": 8456.47, + "end": 8457.25, + "probability": 0.9141 + }, + { + "start": 8458.23, + "end": 8460.65, + "probability": 0.5724 + }, + { + "start": 8462.09, + "end": 8462.55, + "probability": 0.9604 + }, + { + "start": 8463.79, + "end": 8464.71, + "probability": 0.8259 + }, + { + "start": 8465.35, + "end": 8466.75, + "probability": 0.958 + }, + { + "start": 8467.53, + "end": 8468.41, + "probability": 0.9562 + }, + { + "start": 8469.9, + "end": 8472.55, + "probability": 0.9517 + }, + { + "start": 8474.19, + "end": 8474.89, + "probability": 0.9897 + }, + { + "start": 8477.17, + "end": 8478.15, + "probability": 0.8014 + }, + { + "start": 8480.93, + "end": 8483.41, + "probability": 0.9742 + }, + { + "start": 8484.25, + "end": 8484.81, + "probability": 0.9559 + }, + { + "start": 8486.29, + "end": 8487.41, + "probability": 0.9391 + }, + { + "start": 8488.45, + "end": 8489.05, + "probability": 0.7343 + }, + { + "start": 8490.23, + "end": 8491.03, + "probability": 0.8309 + }, + { + "start": 8491.73, + "end": 8494.29, + "probability": 0.9331 + }, + { + "start": 8495.65, + "end": 8496.85, + "probability": 0.6995 + }, + { + "start": 8497.39, + "end": 8498.61, + "probability": 0.781 + }, + { + "start": 8499.17, + "end": 8500.43, + "probability": 0.9805 + }, + { + "start": 8501.17, + "end": 8502.47, + "probability": 0.8828 + }, + { + "start": 8503.85, + "end": 8505.01, + "probability": 0.9649 + }, + { + "start": 8505.87, + "end": 8506.85, + "probability": 0.8146 + }, + { + "start": 8509.19, + "end": 8511.95, + "probability": 0.745 + }, + { + "start": 8513.53, + "end": 8514.45, + "probability": 0.7444 + }, + { + "start": 8516.37, + "end": 8517.05, + "probability": 0.6937 + }, + { + "start": 8518.91, + "end": 8519.73, + "probability": 0.6554 + }, + { + "start": 8521.19, + "end": 8523.47, + "probability": 0.916 + }, + { + "start": 8524.73, + "end": 8525.35, + "probability": 0.9785 + }, + { + "start": 8527.33, + "end": 8528.27, + "probability": 0.7277 + }, + { + "start": 8528.91, + "end": 8529.55, + "probability": 0.9743 + }, + { + "start": 8530.31, + "end": 8534.41, + "probability": 0.6275 + }, + { + "start": 8541.61, + "end": 8542.95, + "probability": 0.7236 + }, + { + "start": 8543.59, + "end": 8544.45, + "probability": 0.5165 + }, + { + "start": 8546.34, + "end": 8548.05, + "probability": 0.7758 + }, + { + "start": 8548.67, + "end": 8551.13, + "probability": 0.7153 + }, + { + "start": 8553.38, + "end": 8557.05, + "probability": 0.6767 + }, + { + "start": 8558.67, + "end": 8559.71, + "probability": 0.3422 + }, + { + "start": 8560.87, + "end": 8563.65, + "probability": 0.7405 + }, + { + "start": 8566.95, + "end": 8567.83, + "probability": 0.9029 + }, + { + "start": 8569.67, + "end": 8570.67, + "probability": 0.6384 + }, + { + "start": 8572.79, + "end": 8574.39, + "probability": 0.4989 + }, + { + "start": 8576.09, + "end": 8576.97, + "probability": 0.6824 + }, + { + "start": 8578.03, + "end": 8578.45, + "probability": 0.801 + }, + { + "start": 8582.05, + "end": 8582.69, + "probability": 0.4519 + }, + { + "start": 8584.57, + "end": 8584.67, + "probability": 0.2943 + }, + { + "start": 8585.25, + "end": 8586.41, + "probability": 0.7496 + }, + { + "start": 8588.03, + "end": 8590.01, + "probability": 0.2555 + }, + { + "start": 8592.97, + "end": 8593.55, + "probability": 0.2583 + }, + { + "start": 8595.39, + "end": 8596.59, + "probability": 0.7243 + }, + { + "start": 8598.75, + "end": 8600.07, + "probability": 0.7566 + }, + { + "start": 8600.67, + "end": 8601.53, + "probability": 0.9555 + }, + { + "start": 8605.01, + "end": 8605.67, + "probability": 0.6379 + }, + { + "start": 8608.81, + "end": 8609.67, + "probability": 0.7734 + }, + { + "start": 8610.21, + "end": 8611.15, + "probability": 0.7161 + }, + { + "start": 8613.19, + "end": 8614.61, + "probability": 0.9613 + }, + { + "start": 8615.35, + "end": 8616.69, + "probability": 0.7368 + }, + { + "start": 8617.17, + "end": 8620.43, + "probability": 0.8228 + }, + { + "start": 8620.77, + "end": 8621.47, + "probability": 0.9261 + }, + { + "start": 8622.13, + "end": 8624.01, + "probability": 0.8689 + }, + { + "start": 8624.81, + "end": 8627.25, + "probability": 0.4425 + }, + { + "start": 8627.53, + "end": 8629.11, + "probability": 0.4446 + }, + { + "start": 8629.27, + "end": 8630.29, + "probability": 0.8057 + }, + { + "start": 8631.11, + "end": 8633.09, + "probability": 0.1064 + }, + { + "start": 8633.85, + "end": 8634.15, + "probability": 0.0831 + }, + { + "start": 8638.87, + "end": 8643.97, + "probability": 0.0776 + }, + { + "start": 8650.53, + "end": 8653.49, + "probability": 0.0663 + }, + { + "start": 8654.75, + "end": 8654.75, + "probability": 0.1489 + }, + { + "start": 8656.13, + "end": 8660.01, + "probability": 0.0714 + }, + { + "start": 8660.05, + "end": 8662.93, + "probability": 0.0124 + }, + { + "start": 8663.06, + "end": 8666.59, + "probability": 0.0372 + }, + { + "start": 8727.76, + "end": 8729.32, + "probability": 0.7856 + }, + { + "start": 8735.38, + "end": 8736.56, + "probability": 0.7119 + }, + { + "start": 8736.6, + "end": 8737.74, + "probability": 0.4468 + }, + { + "start": 8737.86, + "end": 8739.13, + "probability": 0.7515 + }, + { + "start": 8739.72, + "end": 8741.22, + "probability": 0.9657 + }, + { + "start": 8742.0, + "end": 8743.64, + "probability": 0.9543 + }, + { + "start": 8744.28, + "end": 8745.11, + "probability": 0.3607 + }, + { + "start": 8746.34, + "end": 8750.02, + "probability": 0.9899 + }, + { + "start": 8751.0, + "end": 8753.64, + "probability": 0.7332 + }, + { + "start": 8753.64, + "end": 8755.38, + "probability": 0.8977 + }, + { + "start": 8755.78, + "end": 8757.8, + "probability": 0.9834 + }, + { + "start": 8758.46, + "end": 8761.1, + "probability": 0.6646 + }, + { + "start": 8761.1, + "end": 8762.56, + "probability": 0.3788 + }, + { + "start": 8762.64, + "end": 8764.22, + "probability": 0.9883 + }, + { + "start": 8765.1, + "end": 8765.58, + "probability": 0.6291 + }, + { + "start": 8765.72, + "end": 8769.44, + "probability": 0.7721 + }, + { + "start": 8770.08, + "end": 8771.34, + "probability": 0.3424 + }, + { + "start": 8771.42, + "end": 8773.03, + "probability": 0.8896 + }, + { + "start": 8773.59, + "end": 8777.09, + "probability": 0.773 + }, + { + "start": 8777.73, + "end": 8780.31, + "probability": 0.9614 + }, + { + "start": 8781.05, + "end": 8783.57, + "probability": 0.8025 + }, + { + "start": 8784.19, + "end": 8785.31, + "probability": 0.8411 + }, + { + "start": 8785.49, + "end": 8786.73, + "probability": 0.5741 + }, + { + "start": 8786.81, + "end": 8788.17, + "probability": 0.967 + }, + { + "start": 8788.21, + "end": 8790.99, + "probability": 0.874 + }, + { + "start": 8791.63, + "end": 8794.37, + "probability": 0.9669 + }, + { + "start": 8794.47, + "end": 8797.23, + "probability": 0.6342 + }, + { + "start": 8797.37, + "end": 8798.91, + "probability": 0.6913 + }, + { + "start": 8799.29, + "end": 8800.01, + "probability": 0.9567 + }, + { + "start": 8801.09, + "end": 8802.45, + "probability": 0.957 + }, + { + "start": 8810.11, + "end": 8813.51, + "probability": 0.6288 + }, + { + "start": 8814.23, + "end": 8814.87, + "probability": 0.6457 + }, + { + "start": 8816.47, + "end": 8817.41, + "probability": 0.6611 + }, + { + "start": 8817.55, + "end": 8820.47, + "probability": 0.3902 + }, + { + "start": 8821.73, + "end": 8823.21, + "probability": 0.7084 + }, + { + "start": 8823.31, + "end": 8824.51, + "probability": 0.8268 + }, + { + "start": 8834.13, + "end": 8835.01, + "probability": 0.2176 + }, + { + "start": 8835.69, + "end": 8836.43, + "probability": 0.0065 + }, + { + "start": 8837.47, + "end": 8840.81, + "probability": 0.0611 + }, + { + "start": 8841.81, + "end": 8846.89, + "probability": 0.3948 + }, + { + "start": 8848.39, + "end": 8854.59, + "probability": 0.1307 + }, + { + "start": 8872.45, + "end": 8873.11, + "probability": 0.2096 + }, + { + "start": 8874.37, + "end": 8877.71, + "probability": 0.1031 + }, + { + "start": 8879.87, + "end": 8883.59, + "probability": 0.0433 + }, + { + "start": 8884.33, + "end": 8884.97, + "probability": 0.0328 + }, + { + "start": 8885.45, + "end": 8888.33, + "probability": 0.0539 + }, + { + "start": 8888.33, + "end": 8888.43, + "probability": 0.1148 + }, + { + "start": 8888.71, + "end": 8890.27, + "probability": 0.0451 + }, + { + "start": 8892.31, + "end": 8896.39, + "probability": 0.0498 + }, + { + "start": 8896.47, + "end": 8896.97, + "probability": 0.1186 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.0, + "probability": 0.0 + }, + { + "start": 8897.0, + "end": 8897.12, + "probability": 0.0303 + }, + { + "start": 8897.12, + "end": 8900.18, + "probability": 0.6821 + }, + { + "start": 8900.58, + "end": 8901.78, + "probability": 0.0079 + } + ], + "segments_count": 3434, + "words_count": 16596, + "avg_words_per_segment": 4.8328, + "avg_segment_duration": 1.8091, + "avg_words_per_minute": 111.2622, + "plenum_id": "105861", + "duration": 8949.67, + "title": null, + "plenum_date": "2022-02-21" +} \ No newline at end of file