diff --git "a/126119/metadata.json" "b/126119/metadata.json" new file mode 100644--- /dev/null +++ "b/126119/metadata.json" @@ -0,0 +1,65037 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "126119", + "quality_score": 0.866, + "per_segment_quality_scores": [ + { + "start": 37.22, + "end": 37.54, + "probability": 0.0073 + }, + { + "start": 79.93, + "end": 88.2, + "probability": 0.801 + }, + { + "start": 89.04, + "end": 91.36, + "probability": 0.8557 + }, + { + "start": 92.04, + "end": 95.24, + "probability": 0.9918 + }, + { + "start": 95.88, + "end": 101.7, + "probability": 0.9803 + }, + { + "start": 102.66, + "end": 106.02, + "probability": 0.989 + }, + { + "start": 107.08, + "end": 108.44, + "probability": 0.97 + }, + { + "start": 109.22, + "end": 113.42, + "probability": 0.9965 + }, + { + "start": 114.46, + "end": 115.56, + "probability": 0.7741 + }, + { + "start": 116.22, + "end": 118.02, + "probability": 0.9805 + }, + { + "start": 119.04, + "end": 120.2, + "probability": 0.9915 + }, + { + "start": 120.88, + "end": 123.38, + "probability": 0.9908 + }, + { + "start": 123.98, + "end": 129.12, + "probability": 0.9958 + }, + { + "start": 129.6, + "end": 131.14, + "probability": 0.9343 + }, + { + "start": 132.88, + "end": 133.16, + "probability": 0.1137 + }, + { + "start": 133.16, + "end": 134.64, + "probability": 0.8356 + }, + { + "start": 135.16, + "end": 137.5, + "probability": 0.9858 + }, + { + "start": 138.6, + "end": 139.76, + "probability": 0.9519 + }, + { + "start": 140.4, + "end": 141.56, + "probability": 0.944 + }, + { + "start": 142.08, + "end": 146.06, + "probability": 0.9976 + }, + { + "start": 146.7, + "end": 148.26, + "probability": 0.9095 + }, + { + "start": 149.0, + "end": 150.2, + "probability": 0.9753 + }, + { + "start": 150.64, + "end": 151.56, + "probability": 0.6733 + }, + { + "start": 151.7, + "end": 155.14, + "probability": 0.9444 + }, + { + "start": 155.76, + "end": 157.6, + "probability": 0.8655 + }, + { + "start": 158.7, + "end": 162.88, + "probability": 0.9596 + }, + { + "start": 162.98, + "end": 163.88, + "probability": 0.8521 + }, + { + "start": 164.88, + "end": 169.38, + "probability": 0.9867 + }, + { + "start": 170.58, + "end": 176.22, + "probability": 0.9628 + }, + { + "start": 176.3, + "end": 176.66, + "probability": 0.8503 + }, + { + "start": 177.38, + "end": 178.38, + "probability": 0.8425 + }, + { + "start": 179.16, + "end": 183.12, + "probability": 0.9982 + }, + { + "start": 183.8, + "end": 188.48, + "probability": 0.9879 + }, + { + "start": 189.12, + "end": 195.38, + "probability": 0.9909 + }, + { + "start": 195.98, + "end": 197.1, + "probability": 0.655 + }, + { + "start": 198.02, + "end": 199.0, + "probability": 0.6779 + }, + { + "start": 200.22, + "end": 206.32, + "probability": 0.9893 + }, + { + "start": 207.78, + "end": 208.74, + "probability": 0.8945 + }, + { + "start": 210.28, + "end": 211.4, + "probability": 0.9832 + }, + { + "start": 213.42, + "end": 214.58, + "probability": 0.7121 + }, + { + "start": 214.74, + "end": 215.7, + "probability": 0.6162 + }, + { + "start": 215.78, + "end": 217.14, + "probability": 0.8601 + }, + { + "start": 217.24, + "end": 217.84, + "probability": 0.7304 + }, + { + "start": 217.9, + "end": 222.3, + "probability": 0.7349 + }, + { + "start": 222.94, + "end": 226.42, + "probability": 0.6517 + }, + { + "start": 227.38, + "end": 229.66, + "probability": 0.9812 + }, + { + "start": 230.64, + "end": 234.38, + "probability": 0.9973 + }, + { + "start": 234.38, + "end": 238.06, + "probability": 0.9673 + }, + { + "start": 238.22, + "end": 238.46, + "probability": 0.7297 + }, + { + "start": 239.84, + "end": 240.82, + "probability": 0.8262 + }, + { + "start": 240.96, + "end": 243.27, + "probability": 0.7557 + }, + { + "start": 243.66, + "end": 244.54, + "probability": 0.2871 + }, + { + "start": 245.3, + "end": 245.92, + "probability": 0.6278 + }, + { + "start": 245.96, + "end": 246.98, + "probability": 0.9926 + }, + { + "start": 247.56, + "end": 251.62, + "probability": 0.9699 + }, + { + "start": 252.28, + "end": 253.12, + "probability": 0.3738 + }, + { + "start": 261.66, + "end": 263.66, + "probability": 0.8258 + }, + { + "start": 267.9, + "end": 268.88, + "probability": 0.6579 + }, + { + "start": 268.98, + "end": 270.48, + "probability": 0.68 + }, + { + "start": 270.62, + "end": 272.1, + "probability": 0.693 + }, + { + "start": 272.92, + "end": 273.86, + "probability": 0.647 + }, + { + "start": 273.96, + "end": 276.74, + "probability": 0.9718 + }, + { + "start": 277.02, + "end": 279.1, + "probability": 0.9896 + }, + { + "start": 280.14, + "end": 284.16, + "probability": 0.9762 + }, + { + "start": 284.72, + "end": 285.6, + "probability": 0.7625 + }, + { + "start": 286.72, + "end": 288.22, + "probability": 0.8311 + }, + { + "start": 288.94, + "end": 290.36, + "probability": 0.9932 + }, + { + "start": 291.28, + "end": 292.48, + "probability": 0.9698 + }, + { + "start": 292.92, + "end": 293.88, + "probability": 0.7689 + }, + { + "start": 294.28, + "end": 297.6, + "probability": 0.6914 + }, + { + "start": 297.74, + "end": 298.78, + "probability": 0.7245 + }, + { + "start": 299.5, + "end": 302.56, + "probability": 0.9432 + }, + { + "start": 303.38, + "end": 304.18, + "probability": 0.7574 + }, + { + "start": 304.78, + "end": 307.52, + "probability": 0.9741 + }, + { + "start": 308.48, + "end": 308.68, + "probability": 0.3746 + }, + { + "start": 308.7, + "end": 309.38, + "probability": 0.3021 + }, + { + "start": 311.46, + "end": 316.56, + "probability": 0.8514 + }, + { + "start": 317.0, + "end": 319.56, + "probability": 0.9895 + }, + { + "start": 320.4, + "end": 325.88, + "probability": 0.9979 + }, + { + "start": 326.86, + "end": 331.5, + "probability": 0.9909 + }, + { + "start": 333.34, + "end": 334.28, + "probability": 0.7131 + }, + { + "start": 334.38, + "end": 335.64, + "probability": 0.4843 + }, + { + "start": 336.75, + "end": 342.4, + "probability": 0.9974 + }, + { + "start": 342.4, + "end": 348.54, + "probability": 0.9549 + }, + { + "start": 349.08, + "end": 352.82, + "probability": 0.8116 + }, + { + "start": 353.64, + "end": 355.44, + "probability": 0.995 + }, + { + "start": 356.02, + "end": 357.88, + "probability": 0.8122 + }, + { + "start": 358.92, + "end": 362.08, + "probability": 0.8559 + }, + { + "start": 362.6, + "end": 366.18, + "probability": 0.9847 + }, + { + "start": 366.6, + "end": 368.88, + "probability": 0.8859 + }, + { + "start": 368.88, + "end": 371.56, + "probability": 0.9882 + }, + { + "start": 371.7, + "end": 374.28, + "probability": 0.7485 + }, + { + "start": 374.8, + "end": 376.18, + "probability": 0.7206 + }, + { + "start": 376.64, + "end": 379.96, + "probability": 0.9792 + }, + { + "start": 380.56, + "end": 383.68, + "probability": 0.9666 + }, + { + "start": 384.08, + "end": 389.88, + "probability": 0.9774 + }, + { + "start": 390.5, + "end": 392.38, + "probability": 0.87 + }, + { + "start": 392.46, + "end": 395.82, + "probability": 0.9788 + }, + { + "start": 395.82, + "end": 398.46, + "probability": 0.9919 + }, + { + "start": 398.88, + "end": 403.32, + "probability": 0.6587 + }, + { + "start": 404.7, + "end": 405.64, + "probability": 0.6894 + }, + { + "start": 406.22, + "end": 407.74, + "probability": 0.9358 + }, + { + "start": 408.22, + "end": 410.5, + "probability": 0.9969 + }, + { + "start": 410.52, + "end": 413.98, + "probability": 0.7192 + }, + { + "start": 414.42, + "end": 415.64, + "probability": 0.5245 + }, + { + "start": 416.3, + "end": 420.38, + "probability": 0.9973 + }, + { + "start": 420.92, + "end": 425.2, + "probability": 0.9893 + }, + { + "start": 425.54, + "end": 429.08, + "probability": 0.9801 + }, + { + "start": 429.48, + "end": 434.1, + "probability": 0.9339 + }, + { + "start": 434.1, + "end": 437.22, + "probability": 0.9972 + }, + { + "start": 437.66, + "end": 438.22, + "probability": 0.8508 + }, + { + "start": 438.64, + "end": 440.0, + "probability": 0.9973 + }, + { + "start": 440.42, + "end": 442.48, + "probability": 0.9957 + }, + { + "start": 442.98, + "end": 447.6, + "probability": 0.9863 + }, + { + "start": 448.38, + "end": 450.3, + "probability": 0.9932 + }, + { + "start": 450.44, + "end": 451.16, + "probability": 0.829 + }, + { + "start": 451.26, + "end": 455.08, + "probability": 0.9579 + }, + { + "start": 455.08, + "end": 459.1, + "probability": 0.9896 + }, + { + "start": 460.16, + "end": 461.24, + "probability": 0.8814 + }, + { + "start": 461.88, + "end": 464.66, + "probability": 0.9712 + }, + { + "start": 464.76, + "end": 466.06, + "probability": 0.951 + }, + { + "start": 466.6, + "end": 467.56, + "probability": 0.9107 + }, + { + "start": 468.32, + "end": 469.24, + "probability": 0.6634 + }, + { + "start": 470.38, + "end": 475.62, + "probability": 0.859 + }, + { + "start": 475.62, + "end": 476.66, + "probability": 0.5599 + }, + { + "start": 477.16, + "end": 480.32, + "probability": 0.9822 + }, + { + "start": 480.32, + "end": 483.9, + "probability": 0.9663 + }, + { + "start": 484.62, + "end": 486.78, + "probability": 0.9956 + }, + { + "start": 487.6, + "end": 492.52, + "probability": 0.9099 + }, + { + "start": 492.52, + "end": 494.64, + "probability": 0.8555 + }, + { + "start": 495.1, + "end": 498.16, + "probability": 0.8532 + }, + { + "start": 498.18, + "end": 501.28, + "probability": 0.6784 + }, + { + "start": 502.62, + "end": 503.38, + "probability": 0.6544 + }, + { + "start": 503.46, + "end": 504.64, + "probability": 0.9067 + }, + { + "start": 505.02, + "end": 508.96, + "probability": 0.9417 + }, + { + "start": 509.06, + "end": 511.66, + "probability": 0.8579 + }, + { + "start": 512.08, + "end": 514.72, + "probability": 0.9927 + }, + { + "start": 514.72, + "end": 519.04, + "probability": 0.9383 + }, + { + "start": 520.06, + "end": 523.6, + "probability": 0.8115 + }, + { + "start": 524.36, + "end": 529.68, + "probability": 0.9971 + }, + { + "start": 530.72, + "end": 535.08, + "probability": 0.6501 + }, + { + "start": 535.08, + "end": 539.06, + "probability": 0.9983 + }, + { + "start": 539.24, + "end": 541.64, + "probability": 0.8018 + }, + { + "start": 541.64, + "end": 544.34, + "probability": 0.9962 + }, + { + "start": 545.0, + "end": 549.72, + "probability": 0.9645 + }, + { + "start": 549.72, + "end": 552.48, + "probability": 0.9949 + }, + { + "start": 553.32, + "end": 553.66, + "probability": 0.6512 + }, + { + "start": 553.86, + "end": 557.5, + "probability": 0.8074 + }, + { + "start": 557.62, + "end": 561.06, + "probability": 0.9723 + }, + { + "start": 561.62, + "end": 563.7, + "probability": 0.5417 + }, + { + "start": 564.24, + "end": 566.5, + "probability": 0.9452 + }, + { + "start": 566.5, + "end": 570.14, + "probability": 0.8733 + }, + { + "start": 570.56, + "end": 573.94, + "probability": 0.9874 + }, + { + "start": 575.04, + "end": 578.8, + "probability": 0.9839 + }, + { + "start": 579.26, + "end": 580.12, + "probability": 0.8132 + }, + { + "start": 580.5, + "end": 583.48, + "probability": 0.9823 + }, + { + "start": 583.7, + "end": 587.76, + "probability": 0.9922 + }, + { + "start": 588.22, + "end": 589.52, + "probability": 0.8789 + }, + { + "start": 589.82, + "end": 592.18, + "probability": 0.9816 + }, + { + "start": 592.54, + "end": 595.18, + "probability": 0.9154 + }, + { + "start": 595.18, + "end": 595.8, + "probability": 0.8234 + }, + { + "start": 595.8, + "end": 598.74, + "probability": 0.9028 + }, + { + "start": 599.18, + "end": 602.4, + "probability": 0.8173 + }, + { + "start": 602.94, + "end": 608.1, + "probability": 0.6907 + }, + { + "start": 608.68, + "end": 609.12, + "probability": 0.954 + }, + { + "start": 609.94, + "end": 612.74, + "probability": 0.9858 + }, + { + "start": 613.32, + "end": 615.7, + "probability": 0.6462 + }, + { + "start": 615.96, + "end": 619.22, + "probability": 0.8902 + }, + { + "start": 619.72, + "end": 619.92, + "probability": 0.1094 + }, + { + "start": 619.92, + "end": 622.97, + "probability": 0.681 + }, + { + "start": 625.28, + "end": 626.44, + "probability": 0.9143 + }, + { + "start": 626.84, + "end": 627.0, + "probability": 0.0488 + }, + { + "start": 628.34, + "end": 628.62, + "probability": 0.2473 + }, + { + "start": 630.06, + "end": 633.72, + "probability": 0.9618 + }, + { + "start": 634.32, + "end": 640.06, + "probability": 0.9955 + }, + { + "start": 640.62, + "end": 643.92, + "probability": 0.9976 + }, + { + "start": 643.92, + "end": 646.78, + "probability": 0.9985 + }, + { + "start": 647.08, + "end": 652.78, + "probability": 0.9959 + }, + { + "start": 652.78, + "end": 660.8, + "probability": 0.9812 + }, + { + "start": 661.16, + "end": 662.68, + "probability": 0.9971 + }, + { + "start": 663.02, + "end": 664.66, + "probability": 0.9589 + }, + { + "start": 665.24, + "end": 669.16, + "probability": 0.9917 + }, + { + "start": 669.52, + "end": 672.24, + "probability": 0.9954 + }, + { + "start": 673.16, + "end": 678.32, + "probability": 0.9774 + }, + { + "start": 679.0, + "end": 681.48, + "probability": 0.9699 + }, + { + "start": 682.1, + "end": 682.92, + "probability": 0.899 + }, + { + "start": 683.32, + "end": 687.82, + "probability": 0.9902 + }, + { + "start": 688.14, + "end": 690.9, + "probability": 0.9547 + }, + { + "start": 690.9, + "end": 694.48, + "probability": 0.9993 + }, + { + "start": 695.52, + "end": 698.96, + "probability": 0.998 + }, + { + "start": 698.96, + "end": 702.5, + "probability": 0.9084 + }, + { + "start": 703.06, + "end": 706.52, + "probability": 0.9127 + }, + { + "start": 706.96, + "end": 711.06, + "probability": 0.9825 + }, + { + "start": 711.7, + "end": 715.48, + "probability": 0.9795 + }, + { + "start": 715.8, + "end": 716.74, + "probability": 0.8773 + }, + { + "start": 717.04, + "end": 718.58, + "probability": 0.498 + }, + { + "start": 718.9, + "end": 722.38, + "probability": 0.9642 + }, + { + "start": 723.9, + "end": 725.76, + "probability": 0.7437 + }, + { + "start": 725.76, + "end": 728.32, + "probability": 0.9913 + }, + { + "start": 728.92, + "end": 731.72, + "probability": 0.9841 + }, + { + "start": 731.72, + "end": 734.98, + "probability": 0.9723 + }, + { + "start": 735.44, + "end": 737.32, + "probability": 0.8421 + }, + { + "start": 737.72, + "end": 738.96, + "probability": 0.996 + }, + { + "start": 739.32, + "end": 740.6, + "probability": 0.9828 + }, + { + "start": 741.0, + "end": 743.14, + "probability": 0.9326 + }, + { + "start": 743.14, + "end": 746.68, + "probability": 0.9824 + }, + { + "start": 747.06, + "end": 750.6, + "probability": 0.8552 + }, + { + "start": 751.06, + "end": 754.84, + "probability": 0.9748 + }, + { + "start": 755.22, + "end": 756.24, + "probability": 0.9445 + }, + { + "start": 756.58, + "end": 757.7, + "probability": 0.9897 + }, + { + "start": 758.04, + "end": 762.6, + "probability": 0.9863 + }, + { + "start": 763.28, + "end": 764.1, + "probability": 0.7636 + }, + { + "start": 765.18, + "end": 766.26, + "probability": 0.9876 + }, + { + "start": 767.54, + "end": 771.18, + "probability": 0.983 + }, + { + "start": 771.18, + "end": 774.78, + "probability": 0.948 + }, + { + "start": 775.24, + "end": 777.48, + "probability": 0.8792 + }, + { + "start": 778.02, + "end": 780.14, + "probability": 0.677 + }, + { + "start": 780.24, + "end": 783.82, + "probability": 0.9964 + }, + { + "start": 783.82, + "end": 787.42, + "probability": 0.9398 + }, + { + "start": 787.48, + "end": 788.76, + "probability": 0.6642 + }, + { + "start": 789.3, + "end": 789.8, + "probability": 0.482 + }, + { + "start": 789.96, + "end": 794.82, + "probability": 0.9505 + }, + { + "start": 794.82, + "end": 800.02, + "probability": 0.9902 + }, + { + "start": 800.02, + "end": 803.8, + "probability": 0.9754 + }, + { + "start": 804.38, + "end": 808.18, + "probability": 0.9873 + }, + { + "start": 808.18, + "end": 813.06, + "probability": 0.9975 + }, + { + "start": 813.84, + "end": 814.78, + "probability": 0.7705 + }, + { + "start": 815.1, + "end": 815.88, + "probability": 0.902 + }, + { + "start": 816.38, + "end": 817.28, + "probability": 0.8645 + }, + { + "start": 817.32, + "end": 820.2, + "probability": 0.9979 + }, + { + "start": 820.8, + "end": 822.42, + "probability": 0.965 + }, + { + "start": 823.0, + "end": 827.8, + "probability": 0.9954 + }, + { + "start": 827.88, + "end": 828.66, + "probability": 0.7616 + }, + { + "start": 828.86, + "end": 830.04, + "probability": 0.53 + }, + { + "start": 830.48, + "end": 832.22, + "probability": 0.9905 + }, + { + "start": 832.76, + "end": 835.66, + "probability": 0.9932 + }, + { + "start": 835.7, + "end": 836.38, + "probability": 0.8978 + }, + { + "start": 836.86, + "end": 840.94, + "probability": 0.9839 + }, + { + "start": 841.32, + "end": 843.68, + "probability": 0.8011 + }, + { + "start": 845.06, + "end": 845.64, + "probability": 0.8577 + }, + { + "start": 845.74, + "end": 847.8, + "probability": 0.991 + }, + { + "start": 848.26, + "end": 850.24, + "probability": 0.6113 + }, + { + "start": 851.18, + "end": 852.6, + "probability": 0.8947 + }, + { + "start": 852.7, + "end": 855.16, + "probability": 0.9531 + }, + { + "start": 855.16, + "end": 858.72, + "probability": 0.9951 + }, + { + "start": 859.18, + "end": 862.4, + "probability": 0.9933 + }, + { + "start": 862.86, + "end": 864.86, + "probability": 0.8359 + }, + { + "start": 865.48, + "end": 867.5, + "probability": 0.939 + }, + { + "start": 868.0, + "end": 873.04, + "probability": 0.9985 + }, + { + "start": 873.06, + "end": 877.98, + "probability": 0.9963 + }, + { + "start": 878.42, + "end": 882.16, + "probability": 0.771 + }, + { + "start": 882.44, + "end": 884.3, + "probability": 0.9482 + }, + { + "start": 884.38, + "end": 886.94, + "probability": 0.9958 + }, + { + "start": 887.24, + "end": 888.5, + "probability": 0.9284 + }, + { + "start": 888.68, + "end": 889.8, + "probability": 0.8498 + }, + { + "start": 890.24, + "end": 891.32, + "probability": 0.7276 + }, + { + "start": 891.62, + "end": 894.62, + "probability": 0.9852 + }, + { + "start": 895.12, + "end": 898.04, + "probability": 0.9995 + }, + { + "start": 898.52, + "end": 900.52, + "probability": 0.8754 + }, + { + "start": 901.66, + "end": 904.46, + "probability": 0.9986 + }, + { + "start": 905.16, + "end": 906.74, + "probability": 0.9958 + }, + { + "start": 907.7, + "end": 910.24, + "probability": 0.9531 + }, + { + "start": 910.82, + "end": 915.04, + "probability": 0.9346 + }, + { + "start": 915.68, + "end": 917.84, + "probability": 0.9875 + }, + { + "start": 918.34, + "end": 919.84, + "probability": 0.999 + }, + { + "start": 920.6, + "end": 923.4, + "probability": 0.9932 + }, + { + "start": 923.82, + "end": 925.84, + "probability": 0.9998 + }, + { + "start": 926.26, + "end": 926.76, + "probability": 0.8861 + }, + { + "start": 927.2, + "end": 928.24, + "probability": 0.9628 + }, + { + "start": 928.34, + "end": 929.62, + "probability": 0.9186 + }, + { + "start": 929.62, + "end": 929.9, + "probability": 0.8071 + }, + { + "start": 929.98, + "end": 933.24, + "probability": 0.6412 + }, + { + "start": 934.1, + "end": 934.5, + "probability": 0.3138 + }, + { + "start": 934.88, + "end": 935.26, + "probability": 0.7119 + }, + { + "start": 935.9, + "end": 937.9, + "probability": 0.9888 + }, + { + "start": 937.94, + "end": 941.78, + "probability": 0.9837 + }, + { + "start": 941.84, + "end": 943.02, + "probability": 0.9926 + }, + { + "start": 946.11, + "end": 948.42, + "probability": 0.9349 + }, + { + "start": 950.34, + "end": 951.18, + "probability": 0.6356 + }, + { + "start": 951.3, + "end": 952.72, + "probability": 0.9663 + }, + { + "start": 952.82, + "end": 957.64, + "probability": 0.9927 + }, + { + "start": 959.4, + "end": 961.26, + "probability": 0.9216 + }, + { + "start": 961.68, + "end": 962.52, + "probability": 0.9111 + }, + { + "start": 963.74, + "end": 967.86, + "probability": 0.9675 + }, + { + "start": 968.22, + "end": 970.5, + "probability": 0.9197 + }, + { + "start": 970.64, + "end": 973.74, + "probability": 0.8374 + }, + { + "start": 974.12, + "end": 977.32, + "probability": 0.991 + }, + { + "start": 977.64, + "end": 980.66, + "probability": 0.9731 + }, + { + "start": 980.94, + "end": 983.28, + "probability": 0.9197 + }, + { + "start": 984.68, + "end": 986.4, + "probability": 0.5944 + }, + { + "start": 987.46, + "end": 988.3, + "probability": 0.9886 + }, + { + "start": 988.38, + "end": 988.68, + "probability": 0.8819 + }, + { + "start": 988.84, + "end": 990.78, + "probability": 0.8992 + }, + { + "start": 990.82, + "end": 993.7, + "probability": 0.9724 + }, + { + "start": 993.76, + "end": 998.78, + "probability": 0.8339 + }, + { + "start": 999.38, + "end": 1000.16, + "probability": 0.9087 + }, + { + "start": 1000.6, + "end": 1003.66, + "probability": 0.9858 + }, + { + "start": 1004.32, + "end": 1006.22, + "probability": 0.9924 + }, + { + "start": 1007.08, + "end": 1007.78, + "probability": 0.8239 + }, + { + "start": 1009.2, + "end": 1012.94, + "probability": 0.9352 + }, + { + "start": 1013.54, + "end": 1014.52, + "probability": 0.9828 + }, + { + "start": 1015.02, + "end": 1015.32, + "probability": 0.828 + }, + { + "start": 1015.38, + "end": 1020.48, + "probability": 0.9406 + }, + { + "start": 1021.8, + "end": 1022.86, + "probability": 0.9813 + }, + { + "start": 1023.66, + "end": 1024.18, + "probability": 0.7825 + }, + { + "start": 1024.2, + "end": 1024.78, + "probability": 0.9564 + }, + { + "start": 1024.82, + "end": 1025.76, + "probability": 0.9839 + }, + { + "start": 1025.8, + "end": 1026.42, + "probability": 0.9649 + }, + { + "start": 1026.48, + "end": 1027.5, + "probability": 0.8079 + }, + { + "start": 1027.9, + "end": 1031.16, + "probability": 0.8597 + }, + { + "start": 1032.86, + "end": 1038.78, + "probability": 0.6527 + }, + { + "start": 1040.52, + "end": 1042.22, + "probability": 0.8705 + }, + { + "start": 1043.2, + "end": 1047.2, + "probability": 0.984 + }, + { + "start": 1047.98, + "end": 1050.92, + "probability": 0.9613 + }, + { + "start": 1051.76, + "end": 1053.72, + "probability": 0.7117 + }, + { + "start": 1054.62, + "end": 1056.9, + "probability": 0.9941 + }, + { + "start": 1057.78, + "end": 1060.48, + "probability": 0.9985 + }, + { + "start": 1061.48, + "end": 1062.9, + "probability": 0.919 + }, + { + "start": 1063.94, + "end": 1065.48, + "probability": 0.969 + }, + { + "start": 1066.7, + "end": 1068.78, + "probability": 0.9844 + }, + { + "start": 1069.72, + "end": 1072.06, + "probability": 0.9901 + }, + { + "start": 1072.18, + "end": 1074.32, + "probability": 0.7776 + }, + { + "start": 1077.73, + "end": 1078.22, + "probability": 0.216 + }, + { + "start": 1078.22, + "end": 1078.64, + "probability": 0.4547 + }, + { + "start": 1078.96, + "end": 1081.98, + "probability": 0.6884 + }, + { + "start": 1082.28, + "end": 1085.54, + "probability": 0.9941 + }, + { + "start": 1086.1, + "end": 1086.92, + "probability": 0.9974 + }, + { + "start": 1088.08, + "end": 1088.78, + "probability": 0.8011 + }, + { + "start": 1089.46, + "end": 1090.06, + "probability": 0.8088 + }, + { + "start": 1090.68, + "end": 1091.5, + "probability": 0.6948 + }, + { + "start": 1092.66, + "end": 1097.4, + "probability": 0.9936 + }, + { + "start": 1098.14, + "end": 1101.82, + "probability": 0.9832 + }, + { + "start": 1102.68, + "end": 1106.32, + "probability": 0.9891 + }, + { + "start": 1106.72, + "end": 1107.58, + "probability": 0.7691 + }, + { + "start": 1107.96, + "end": 1109.31, + "probability": 0.7964 + }, + { + "start": 1110.52, + "end": 1113.08, + "probability": 0.9925 + }, + { + "start": 1113.8, + "end": 1116.92, + "probability": 0.9342 + }, + { + "start": 1119.18, + "end": 1123.88, + "probability": 0.8123 + }, + { + "start": 1124.24, + "end": 1124.62, + "probability": 0.9186 + }, + { + "start": 1125.88, + "end": 1126.38, + "probability": 0.781 + }, + { + "start": 1126.86, + "end": 1127.52, + "probability": 0.6746 + }, + { + "start": 1127.64, + "end": 1128.24, + "probability": 0.7981 + }, + { + "start": 1128.3, + "end": 1130.72, + "probability": 0.9818 + }, + { + "start": 1131.14, + "end": 1132.02, + "probability": 0.9865 + }, + { + "start": 1132.14, + "end": 1132.86, + "probability": 0.9872 + }, + { + "start": 1133.02, + "end": 1135.9, + "probability": 0.9828 + }, + { + "start": 1136.34, + "end": 1137.6, + "probability": 0.6891 + }, + { + "start": 1138.16, + "end": 1138.5, + "probability": 0.8631 + }, + { + "start": 1138.64, + "end": 1139.26, + "probability": 0.7332 + }, + { + "start": 1139.76, + "end": 1140.84, + "probability": 0.9307 + }, + { + "start": 1141.78, + "end": 1143.44, + "probability": 0.9966 + }, + { + "start": 1144.02, + "end": 1147.26, + "probability": 0.9973 + }, + { + "start": 1147.26, + "end": 1150.06, + "probability": 0.9655 + }, + { + "start": 1150.24, + "end": 1151.42, + "probability": 0.7934 + }, + { + "start": 1151.7, + "end": 1152.58, + "probability": 0.6566 + }, + { + "start": 1152.58, + "end": 1155.66, + "probability": 0.9205 + }, + { + "start": 1156.6, + "end": 1157.44, + "probability": 0.6955 + }, + { + "start": 1157.64, + "end": 1158.86, + "probability": 0.7958 + }, + { + "start": 1180.42, + "end": 1180.46, + "probability": 0.7892 + }, + { + "start": 1180.46, + "end": 1181.74, + "probability": 0.7497 + }, + { + "start": 1181.74, + "end": 1182.26, + "probability": 0.8703 + }, + { + "start": 1183.94, + "end": 1185.9, + "probability": 0.4275 + }, + { + "start": 1186.7, + "end": 1188.36, + "probability": 0.9172 + }, + { + "start": 1189.44, + "end": 1191.92, + "probability": 0.9822 + }, + { + "start": 1192.56, + "end": 1197.88, + "probability": 0.9854 + }, + { + "start": 1198.6, + "end": 1199.84, + "probability": 0.948 + }, + { + "start": 1200.98, + "end": 1204.82, + "probability": 0.9309 + }, + { + "start": 1205.46, + "end": 1210.08, + "probability": 0.9897 + }, + { + "start": 1211.1, + "end": 1213.72, + "probability": 0.9948 + }, + { + "start": 1214.5, + "end": 1218.1, + "probability": 0.989 + }, + { + "start": 1218.86, + "end": 1221.72, + "probability": 0.998 + }, + { + "start": 1223.44, + "end": 1229.9, + "probability": 0.9949 + }, + { + "start": 1230.94, + "end": 1232.12, + "probability": 0.6026 + }, + { + "start": 1233.0, + "end": 1233.96, + "probability": 0.7629 + }, + { + "start": 1234.44, + "end": 1236.92, + "probability": 0.9488 + }, + { + "start": 1236.98, + "end": 1237.8, + "probability": 0.9762 + }, + { + "start": 1238.44, + "end": 1240.26, + "probability": 0.9595 + }, + { + "start": 1241.24, + "end": 1247.1, + "probability": 0.9884 + }, + { + "start": 1248.72, + "end": 1251.9, + "probability": 0.941 + }, + { + "start": 1252.72, + "end": 1256.06, + "probability": 0.9926 + }, + { + "start": 1257.06, + "end": 1260.82, + "probability": 0.9944 + }, + { + "start": 1261.46, + "end": 1263.98, + "probability": 0.9953 + }, + { + "start": 1264.88, + "end": 1265.56, + "probability": 0.7288 + }, + { + "start": 1265.66, + "end": 1271.4, + "probability": 0.9971 + }, + { + "start": 1272.48, + "end": 1277.58, + "probability": 0.993 + }, + { + "start": 1278.24, + "end": 1279.26, + "probability": 0.7286 + }, + { + "start": 1279.84, + "end": 1284.22, + "probability": 0.9819 + }, + { + "start": 1285.32, + "end": 1289.94, + "probability": 0.9904 + }, + { + "start": 1290.78, + "end": 1294.26, + "probability": 0.996 + }, + { + "start": 1294.26, + "end": 1298.04, + "probability": 0.9727 + }, + { + "start": 1299.38, + "end": 1302.94, + "probability": 0.9727 + }, + { + "start": 1303.28, + "end": 1308.08, + "probability": 0.9332 + }, + { + "start": 1308.22, + "end": 1309.8, + "probability": 0.4151 + }, + { + "start": 1309.86, + "end": 1312.0, + "probability": 0.988 + }, + { + "start": 1312.64, + "end": 1314.86, + "probability": 0.9751 + }, + { + "start": 1314.86, + "end": 1317.14, + "probability": 0.9932 + }, + { + "start": 1318.0, + "end": 1322.02, + "probability": 0.9865 + }, + { + "start": 1322.02, + "end": 1328.6, + "probability": 0.9917 + }, + { + "start": 1329.26, + "end": 1330.26, + "probability": 0.6229 + }, + { + "start": 1330.78, + "end": 1332.44, + "probability": 0.9611 + }, + { + "start": 1333.22, + "end": 1334.3, + "probability": 0.9193 + }, + { + "start": 1334.88, + "end": 1337.28, + "probability": 0.9637 + }, + { + "start": 1337.9, + "end": 1342.14, + "probability": 0.9455 + }, + { + "start": 1342.78, + "end": 1345.92, + "probability": 0.9824 + }, + { + "start": 1346.92, + "end": 1348.96, + "probability": 0.9984 + }, + { + "start": 1349.92, + "end": 1356.44, + "probability": 0.9892 + }, + { + "start": 1357.04, + "end": 1359.28, + "probability": 0.9284 + }, + { + "start": 1360.28, + "end": 1360.88, + "probability": 0.7239 + }, + { + "start": 1360.96, + "end": 1363.82, + "probability": 0.7677 + }, + { + "start": 1367.76, + "end": 1368.46, + "probability": 0.5008 + }, + { + "start": 1368.6, + "end": 1370.08, + "probability": 0.9546 + }, + { + "start": 1385.2, + "end": 1385.2, + "probability": 0.4862 + }, + { + "start": 1385.2, + "end": 1385.2, + "probability": 0.0837 + }, + { + "start": 1385.2, + "end": 1385.3, + "probability": 0.1951 + }, + { + "start": 1393.72, + "end": 1395.28, + "probability": 0.449 + }, + { + "start": 1395.58, + "end": 1396.5, + "probability": 0.6209 + }, + { + "start": 1397.62, + "end": 1401.74, + "probability": 0.8428 + }, + { + "start": 1403.32, + "end": 1404.38, + "probability": 0.9941 + }, + { + "start": 1406.55, + "end": 1411.12, + "probability": 0.9824 + }, + { + "start": 1412.02, + "end": 1413.74, + "probability": 0.9115 + }, + { + "start": 1414.88, + "end": 1417.0, + "probability": 0.969 + }, + { + "start": 1418.18, + "end": 1420.13, + "probability": 0.9744 + }, + { + "start": 1421.7, + "end": 1425.98, + "probability": 0.5054 + }, + { + "start": 1426.16, + "end": 1427.32, + "probability": 0.8989 + }, + { + "start": 1428.08, + "end": 1432.72, + "probability": 0.9445 + }, + { + "start": 1433.44, + "end": 1437.12, + "probability": 0.9989 + }, + { + "start": 1437.58, + "end": 1440.18, + "probability": 0.9421 + }, + { + "start": 1441.16, + "end": 1443.22, + "probability": 0.9724 + }, + { + "start": 1444.12, + "end": 1446.96, + "probability": 0.9882 + }, + { + "start": 1448.72, + "end": 1451.76, + "probability": 0.9673 + }, + { + "start": 1452.7, + "end": 1454.26, + "probability": 0.9753 + }, + { + "start": 1454.46, + "end": 1461.02, + "probability": 0.9886 + }, + { + "start": 1462.84, + "end": 1466.62, + "probability": 0.8912 + }, + { + "start": 1467.78, + "end": 1468.75, + "probability": 0.9883 + }, + { + "start": 1469.94, + "end": 1471.8, + "probability": 0.7717 + }, + { + "start": 1472.3, + "end": 1473.2, + "probability": 0.8037 + }, + { + "start": 1473.28, + "end": 1475.12, + "probability": 0.5002 + }, + { + "start": 1476.6, + "end": 1478.78, + "probability": 0.5181 + }, + { + "start": 1479.02, + "end": 1479.72, + "probability": 0.8217 + }, + { + "start": 1479.82, + "end": 1483.6, + "probability": 0.9884 + }, + { + "start": 1484.62, + "end": 1484.92, + "probability": 0.888 + }, + { + "start": 1486.02, + "end": 1489.92, + "probability": 0.8066 + }, + { + "start": 1490.97, + "end": 1492.77, + "probability": 0.4718 + }, + { + "start": 1493.44, + "end": 1494.06, + "probability": 0.3634 + }, + { + "start": 1495.8, + "end": 1498.04, + "probability": 0.9822 + }, + { + "start": 1498.14, + "end": 1499.7, + "probability": 0.8483 + }, + { + "start": 1500.34, + "end": 1501.2, + "probability": 0.8516 + }, + { + "start": 1501.98, + "end": 1503.96, + "probability": 0.9917 + }, + { + "start": 1504.48, + "end": 1509.08, + "probability": 0.994 + }, + { + "start": 1511.96, + "end": 1515.1, + "probability": 0.8958 + }, + { + "start": 1516.26, + "end": 1516.62, + "probability": 0.778 + }, + { + "start": 1516.74, + "end": 1517.76, + "probability": 0.7188 + }, + { + "start": 1517.92, + "end": 1518.54, + "probability": 0.7605 + }, + { + "start": 1518.56, + "end": 1519.64, + "probability": 0.8704 + }, + { + "start": 1520.0, + "end": 1521.46, + "probability": 0.8962 + }, + { + "start": 1522.08, + "end": 1523.22, + "probability": 0.8675 + }, + { + "start": 1524.14, + "end": 1525.9, + "probability": 0.9728 + }, + { + "start": 1526.72, + "end": 1529.85, + "probability": 0.9669 + }, + { + "start": 1530.24, + "end": 1535.02, + "probability": 0.998 + }, + { + "start": 1535.5, + "end": 1537.4, + "probability": 0.9956 + }, + { + "start": 1538.16, + "end": 1540.95, + "probability": 0.8699 + }, + { + "start": 1542.24, + "end": 1543.44, + "probability": 0.8932 + }, + { + "start": 1544.0, + "end": 1546.44, + "probability": 0.9956 + }, + { + "start": 1547.46, + "end": 1550.8, + "probability": 0.6622 + }, + { + "start": 1550.94, + "end": 1552.35, + "probability": 0.9932 + }, + { + "start": 1553.32, + "end": 1553.56, + "probability": 0.648 + }, + { + "start": 1553.76, + "end": 1556.45, + "probability": 0.9857 + }, + { + "start": 1557.84, + "end": 1559.52, + "probability": 0.9955 + }, + { + "start": 1560.08, + "end": 1563.7, + "probability": 0.9983 + }, + { + "start": 1563.88, + "end": 1565.28, + "probability": 0.8968 + }, + { + "start": 1565.94, + "end": 1568.82, + "probability": 0.9758 + }, + { + "start": 1569.48, + "end": 1570.28, + "probability": 0.8711 + }, + { + "start": 1570.84, + "end": 1576.0, + "probability": 0.9543 + }, + { + "start": 1576.14, + "end": 1576.98, + "probability": 0.9753 + }, + { + "start": 1577.22, + "end": 1578.84, + "probability": 0.9526 + }, + { + "start": 1579.36, + "end": 1581.0, + "probability": 0.8913 + }, + { + "start": 1581.42, + "end": 1582.54, + "probability": 0.9387 + }, + { + "start": 1583.38, + "end": 1584.78, + "probability": 0.8335 + }, + { + "start": 1586.08, + "end": 1587.42, + "probability": 0.9914 + }, + { + "start": 1587.64, + "end": 1588.24, + "probability": 0.8182 + }, + { + "start": 1588.78, + "end": 1589.78, + "probability": 0.6731 + }, + { + "start": 1589.92, + "end": 1591.84, + "probability": 0.9758 + }, + { + "start": 1593.8, + "end": 1595.34, + "probability": 0.8112 + }, + { + "start": 1604.84, + "end": 1606.28, + "probability": 0.9529 + }, + { + "start": 1606.68, + "end": 1606.84, + "probability": 0.8615 + }, + { + "start": 1610.46, + "end": 1612.7, + "probability": 0.723 + }, + { + "start": 1613.96, + "end": 1615.2, + "probability": 0.7841 + }, + { + "start": 1615.78, + "end": 1616.36, + "probability": 0.9434 + }, + { + "start": 1620.34, + "end": 1625.18, + "probability": 0.6753 + }, + { + "start": 1629.72, + "end": 1634.01, + "probability": 0.9831 + }, + { + "start": 1636.02, + "end": 1637.16, + "probability": 0.9979 + }, + { + "start": 1637.34, + "end": 1638.12, + "probability": 0.6488 + }, + { + "start": 1638.22, + "end": 1639.0, + "probability": 0.7328 + }, + { + "start": 1640.66, + "end": 1647.0, + "probability": 0.9977 + }, + { + "start": 1648.38, + "end": 1650.46, + "probability": 0.9053 + }, + { + "start": 1652.72, + "end": 1656.38, + "probability": 0.9306 + }, + { + "start": 1656.42, + "end": 1658.0, + "probability": 0.9562 + }, + { + "start": 1658.88, + "end": 1662.94, + "probability": 0.9759 + }, + { + "start": 1664.56, + "end": 1665.68, + "probability": 0.937 + }, + { + "start": 1666.94, + "end": 1674.14, + "probability": 0.9781 + }, + { + "start": 1674.14, + "end": 1679.0, + "probability": 0.8997 + }, + { + "start": 1679.24, + "end": 1683.66, + "probability": 0.9845 + }, + { + "start": 1683.98, + "end": 1686.9, + "probability": 0.9948 + }, + { + "start": 1686.9, + "end": 1692.61, + "probability": 0.9953 + }, + { + "start": 1694.66, + "end": 1700.28, + "probability": 0.9389 + }, + { + "start": 1701.72, + "end": 1705.3, + "probability": 0.9851 + }, + { + "start": 1707.76, + "end": 1708.72, + "probability": 0.3266 + }, + { + "start": 1709.72, + "end": 1714.64, + "probability": 0.9973 + }, + { + "start": 1716.42, + "end": 1720.86, + "probability": 0.999 + }, + { + "start": 1721.84, + "end": 1722.58, + "probability": 0.2416 + }, + { + "start": 1722.66, + "end": 1723.54, + "probability": 0.8341 + }, + { + "start": 1723.62, + "end": 1724.3, + "probability": 0.7857 + }, + { + "start": 1724.44, + "end": 1724.76, + "probability": 0.9557 + }, + { + "start": 1725.22, + "end": 1726.2, + "probability": 0.8937 + }, + { + "start": 1726.72, + "end": 1730.22, + "probability": 0.9899 + }, + { + "start": 1730.22, + "end": 1733.92, + "probability": 0.9682 + }, + { + "start": 1734.02, + "end": 1734.34, + "probability": 0.8455 + }, + { + "start": 1735.4, + "end": 1737.18, + "probability": 0.9648 + }, + { + "start": 1739.32, + "end": 1740.64, + "probability": 0.4536 + }, + { + "start": 1740.72, + "end": 1742.17, + "probability": 0.9948 + }, + { + "start": 1742.38, + "end": 1743.68, + "probability": 0.8883 + }, + { + "start": 1744.06, + "end": 1744.55, + "probability": 0.9773 + }, + { + "start": 1745.4, + "end": 1748.1, + "probability": 0.9358 + }, + { + "start": 1748.1, + "end": 1752.4, + "probability": 0.9759 + }, + { + "start": 1753.18, + "end": 1754.1, + "probability": 0.8093 + }, + { + "start": 1754.18, + "end": 1758.4, + "probability": 0.9937 + }, + { + "start": 1759.2, + "end": 1763.1, + "probability": 0.9893 + }, + { + "start": 1764.94, + "end": 1765.76, + "probability": 0.7762 + }, + { + "start": 1765.8, + "end": 1766.46, + "probability": 0.4968 + }, + { + "start": 1766.68, + "end": 1767.42, + "probability": 0.7172 + }, + { + "start": 1767.56, + "end": 1768.26, + "probability": 0.8311 + }, + { + "start": 1768.34, + "end": 1770.36, + "probability": 0.8352 + }, + { + "start": 1770.62, + "end": 1772.42, + "probability": 0.991 + }, + { + "start": 1773.16, + "end": 1774.24, + "probability": 0.9199 + }, + { + "start": 1774.42, + "end": 1777.48, + "probability": 0.9531 + }, + { + "start": 1777.66, + "end": 1778.04, + "probability": 0.625 + }, + { + "start": 1779.14, + "end": 1783.92, + "probability": 0.9969 + }, + { + "start": 1784.06, + "end": 1785.14, + "probability": 0.9873 + }, + { + "start": 1787.2, + "end": 1789.96, + "probability": 0.9052 + }, + { + "start": 1790.92, + "end": 1793.02, + "probability": 0.9909 + }, + { + "start": 1793.82, + "end": 1794.33, + "probability": 0.8343 + }, + { + "start": 1794.56, + "end": 1795.36, + "probability": 0.808 + }, + { + "start": 1796.74, + "end": 1798.9, + "probability": 0.9453 + }, + { + "start": 1799.54, + "end": 1801.14, + "probability": 0.8774 + }, + { + "start": 1802.3, + "end": 1807.0, + "probability": 0.9894 + }, + { + "start": 1807.92, + "end": 1809.7, + "probability": 0.8936 + }, + { + "start": 1809.88, + "end": 1811.16, + "probability": 0.7599 + }, + { + "start": 1812.14, + "end": 1814.31, + "probability": 0.9974 + }, + { + "start": 1815.32, + "end": 1817.32, + "probability": 0.9897 + }, + { + "start": 1817.46, + "end": 1818.86, + "probability": 0.9274 + }, + { + "start": 1818.9, + "end": 1822.42, + "probability": 0.8962 + }, + { + "start": 1823.5, + "end": 1828.0, + "probability": 0.9465 + }, + { + "start": 1828.16, + "end": 1828.58, + "probability": 0.3363 + }, + { + "start": 1828.64, + "end": 1832.1, + "probability": 0.7896 + }, + { + "start": 1832.28, + "end": 1832.38, + "probability": 0.628 + }, + { + "start": 1832.52, + "end": 1836.08, + "probability": 0.9282 + }, + { + "start": 1836.58, + "end": 1838.36, + "probability": 0.7473 + }, + { + "start": 1839.06, + "end": 1842.38, + "probability": 0.9807 + }, + { + "start": 1842.38, + "end": 1845.34, + "probability": 0.9867 + }, + { + "start": 1845.76, + "end": 1846.02, + "probability": 0.3991 + }, + { + "start": 1846.14, + "end": 1847.32, + "probability": 0.976 + }, + { + "start": 1847.52, + "end": 1848.3, + "probability": 0.9053 + }, + { + "start": 1848.34, + "end": 1852.2, + "probability": 0.9755 + }, + { + "start": 1852.24, + "end": 1857.08, + "probability": 0.998 + }, + { + "start": 1857.32, + "end": 1859.36, + "probability": 0.9392 + }, + { + "start": 1859.54, + "end": 1859.78, + "probability": 0.7253 + }, + { + "start": 1860.12, + "end": 1860.68, + "probability": 0.5715 + }, + { + "start": 1860.78, + "end": 1862.74, + "probability": 0.9386 + }, + { + "start": 1874.08, + "end": 1875.96, + "probability": 0.8225 + }, + { + "start": 1876.94, + "end": 1878.12, + "probability": 0.7467 + }, + { + "start": 1879.26, + "end": 1880.22, + "probability": 0.6863 + }, + { + "start": 1881.32, + "end": 1881.58, + "probability": 0.6125 + }, + { + "start": 1881.68, + "end": 1882.56, + "probability": 0.9482 + }, + { + "start": 1882.58, + "end": 1885.1, + "probability": 0.8613 + }, + { + "start": 1885.44, + "end": 1886.18, + "probability": 0.9729 + }, + { + "start": 1886.98, + "end": 1888.86, + "probability": 0.9347 + }, + { + "start": 1889.68, + "end": 1891.84, + "probability": 0.9429 + }, + { + "start": 1893.88, + "end": 1896.9, + "probability": 0.9891 + }, + { + "start": 1898.24, + "end": 1902.92, + "probability": 0.9984 + }, + { + "start": 1902.92, + "end": 1908.62, + "probability": 0.9995 + }, + { + "start": 1909.94, + "end": 1911.09, + "probability": 0.9749 + }, + { + "start": 1912.3, + "end": 1913.54, + "probability": 0.9176 + }, + { + "start": 1914.56, + "end": 1915.98, + "probability": 0.9849 + }, + { + "start": 1917.06, + "end": 1919.18, + "probability": 0.9851 + }, + { + "start": 1920.24, + "end": 1921.6, + "probability": 0.9541 + }, + { + "start": 1922.22, + "end": 1925.04, + "probability": 0.9888 + }, + { + "start": 1925.04, + "end": 1929.24, + "probability": 0.9956 + }, + { + "start": 1930.22, + "end": 1932.08, + "probability": 0.7714 + }, + { + "start": 1932.86, + "end": 1934.66, + "probability": 0.9989 + }, + { + "start": 1935.22, + "end": 1937.04, + "probability": 0.9709 + }, + { + "start": 1938.26, + "end": 1941.14, + "probability": 0.7559 + }, + { + "start": 1941.84, + "end": 1944.46, + "probability": 0.9795 + }, + { + "start": 1945.6, + "end": 1946.88, + "probability": 0.9985 + }, + { + "start": 1947.68, + "end": 1949.98, + "probability": 0.9979 + }, + { + "start": 1950.78, + "end": 1952.88, + "probability": 0.8132 + }, + { + "start": 1953.54, + "end": 1955.3, + "probability": 0.9934 + }, + { + "start": 1955.9, + "end": 1959.16, + "probability": 0.9515 + }, + { + "start": 1960.42, + "end": 1961.42, + "probability": 0.9067 + }, + { + "start": 1962.3, + "end": 1963.34, + "probability": 0.9724 + }, + { + "start": 1963.8, + "end": 1964.7, + "probability": 0.9785 + }, + { + "start": 1965.24, + "end": 1967.6, + "probability": 0.8816 + }, + { + "start": 1968.06, + "end": 1968.92, + "probability": 0.891 + }, + { + "start": 1969.52, + "end": 1970.8, + "probability": 0.9868 + }, + { + "start": 1971.56, + "end": 1973.9, + "probability": 0.999 + }, + { + "start": 1974.62, + "end": 1975.7, + "probability": 0.012 + }, + { + "start": 1978.36, + "end": 1980.66, + "probability": 0.8697 + }, + { + "start": 1982.62, + "end": 1986.04, + "probability": 0.9961 + }, + { + "start": 1986.56, + "end": 1987.84, + "probability": 0.9662 + }, + { + "start": 1988.66, + "end": 1990.82, + "probability": 0.995 + }, + { + "start": 1992.1, + "end": 1994.94, + "probability": 0.7498 + }, + { + "start": 1995.66, + "end": 1998.74, + "probability": 0.7517 + }, + { + "start": 1999.34, + "end": 2000.54, + "probability": 0.8071 + }, + { + "start": 2001.36, + "end": 2005.96, + "probability": 0.9404 + }, + { + "start": 2007.06, + "end": 2009.42, + "probability": 0.9962 + }, + { + "start": 2010.42, + "end": 2013.5, + "probability": 0.908 + }, + { + "start": 2013.58, + "end": 2014.09, + "probability": 0.8447 + }, + { + "start": 2014.4, + "end": 2015.24, + "probability": 0.6696 + }, + { + "start": 2015.94, + "end": 2017.72, + "probability": 0.6293 + }, + { + "start": 2019.06, + "end": 2020.6, + "probability": 0.923 + }, + { + "start": 2021.22, + "end": 2023.02, + "probability": 0.9744 + }, + { + "start": 2024.3, + "end": 2027.66, + "probability": 0.9768 + }, + { + "start": 2028.22, + "end": 2031.24, + "probability": 0.9943 + }, + { + "start": 2032.74, + "end": 2034.44, + "probability": 0.9854 + }, + { + "start": 2034.8, + "end": 2039.36, + "probability": 0.9793 + }, + { + "start": 2040.52, + "end": 2042.26, + "probability": 0.9207 + }, + { + "start": 2042.64, + "end": 2043.22, + "probability": 0.9327 + }, + { + "start": 2043.3, + "end": 2044.02, + "probability": 0.9021 + }, + { + "start": 2044.1, + "end": 2044.74, + "probability": 0.9742 + }, + { + "start": 2044.9, + "end": 2046.26, + "probability": 0.957 + }, + { + "start": 2046.98, + "end": 2048.8, + "probability": 0.875 + }, + { + "start": 2049.36, + "end": 2053.1, + "probability": 0.946 + }, + { + "start": 2054.14, + "end": 2055.96, + "probability": 0.8331 + }, + { + "start": 2056.58, + "end": 2057.48, + "probability": 0.8819 + }, + { + "start": 2057.9, + "end": 2062.26, + "probability": 0.9938 + }, + { + "start": 2062.88, + "end": 2064.46, + "probability": 0.9916 + }, + { + "start": 2065.76, + "end": 2068.92, + "probability": 0.9474 + }, + { + "start": 2070.62, + "end": 2072.56, + "probability": 0.9412 + }, + { + "start": 2073.1, + "end": 2073.92, + "probability": 0.4183 + }, + { + "start": 2073.92, + "end": 2075.82, + "probability": 0.9849 + }, + { + "start": 2077.0, + "end": 2077.66, + "probability": 0.8684 + }, + { + "start": 2079.58, + "end": 2080.26, + "probability": 0.6328 + }, + { + "start": 2080.36, + "end": 2082.9, + "probability": 0.9754 + }, + { + "start": 2084.26, + "end": 2084.78, + "probability": 0.6992 + }, + { + "start": 2085.54, + "end": 2087.94, + "probability": 0.9671 + }, + { + "start": 2088.86, + "end": 2089.32, + "probability": 0.9096 + }, + { + "start": 2090.56, + "end": 2092.32, + "probability": 0.9934 + }, + { + "start": 2093.46, + "end": 2094.07, + "probability": 0.8205 + }, + { + "start": 2095.2, + "end": 2096.72, + "probability": 0.9551 + }, + { + "start": 2097.7, + "end": 2098.56, + "probability": 0.6934 + }, + { + "start": 2098.76, + "end": 2102.42, + "probability": 0.518 + }, + { + "start": 2102.5, + "end": 2104.7, + "probability": 0.8963 + }, + { + "start": 2114.2, + "end": 2115.08, + "probability": 0.5551 + }, + { + "start": 2115.2, + "end": 2116.32, + "probability": 0.5925 + }, + { + "start": 2116.4, + "end": 2119.1, + "probability": 0.9975 + }, + { + "start": 2119.62, + "end": 2123.84, + "probability": 0.9936 + }, + { + "start": 2123.84, + "end": 2128.08, + "probability": 0.9973 + }, + { + "start": 2128.66, + "end": 2130.8, + "probability": 0.6341 + }, + { + "start": 2131.26, + "end": 2131.9, + "probability": 0.5113 + }, + { + "start": 2131.92, + "end": 2134.12, + "probability": 0.9742 + }, + { + "start": 2134.12, + "end": 2137.6, + "probability": 0.9935 + }, + { + "start": 2138.12, + "end": 2138.66, + "probability": 0.808 + }, + { + "start": 2138.86, + "end": 2142.9, + "probability": 0.9961 + }, + { + "start": 2143.08, + "end": 2145.26, + "probability": 0.9854 + }, + { + "start": 2145.86, + "end": 2149.78, + "probability": 0.9899 + }, + { + "start": 2149.78, + "end": 2153.46, + "probability": 0.9986 + }, + { + "start": 2153.6, + "end": 2155.78, + "probability": 0.9883 + }, + { + "start": 2156.18, + "end": 2156.58, + "probability": 0.6936 + }, + { + "start": 2156.68, + "end": 2157.7, + "probability": 0.8777 + }, + { + "start": 2158.2, + "end": 2159.2, + "probability": 0.9663 + }, + { + "start": 2159.48, + "end": 2163.56, + "probability": 0.9737 + }, + { + "start": 2164.3, + "end": 2165.56, + "probability": 0.9295 + }, + { + "start": 2165.88, + "end": 2166.24, + "probability": 0.9113 + }, + { + "start": 2166.34, + "end": 2171.18, + "probability": 0.951 + }, + { + "start": 2172.02, + "end": 2173.82, + "probability": 0.7607 + }, + { + "start": 2175.9, + "end": 2177.84, + "probability": 0.7986 + }, + { + "start": 2177.9, + "end": 2182.96, + "probability": 0.9946 + }, + { + "start": 2183.4, + "end": 2184.5, + "probability": 0.9264 + }, + { + "start": 2184.64, + "end": 2185.22, + "probability": 0.9012 + }, + { + "start": 2185.3, + "end": 2186.44, + "probability": 0.7057 + }, + { + "start": 2186.56, + "end": 2188.1, + "probability": 0.989 + }, + { + "start": 2188.88, + "end": 2189.46, + "probability": 0.8711 + }, + { + "start": 2189.96, + "end": 2191.74, + "probability": 0.8882 + }, + { + "start": 2191.84, + "end": 2196.7, + "probability": 0.9855 + }, + { + "start": 2197.42, + "end": 2203.5, + "probability": 0.993 + }, + { + "start": 2203.74, + "end": 2209.04, + "probability": 0.9977 + }, + { + "start": 2209.66, + "end": 2212.34, + "probability": 0.9987 + }, + { + "start": 2212.7, + "end": 2216.06, + "probability": 0.9875 + }, + { + "start": 2216.06, + "end": 2219.24, + "probability": 0.9993 + }, + { + "start": 2220.0, + "end": 2220.3, + "probability": 0.8902 + }, + { + "start": 2220.88, + "end": 2224.58, + "probability": 0.9194 + }, + { + "start": 2224.74, + "end": 2228.48, + "probability": 0.9863 + }, + { + "start": 2228.48, + "end": 2231.8, + "probability": 0.8313 + }, + { + "start": 2231.84, + "end": 2236.62, + "probability": 0.9937 + }, + { + "start": 2238.1, + "end": 2239.04, + "probability": 0.736 + }, + { + "start": 2239.16, + "end": 2241.22, + "probability": 0.9928 + }, + { + "start": 2241.26, + "end": 2244.06, + "probability": 0.9927 + }, + { + "start": 2244.58, + "end": 2247.94, + "probability": 0.9974 + }, + { + "start": 2247.94, + "end": 2251.54, + "probability": 0.9836 + }, + { + "start": 2252.0, + "end": 2253.0, + "probability": 0.9984 + }, + { + "start": 2253.74, + "end": 2256.6, + "probability": 0.9832 + }, + { + "start": 2256.7, + "end": 2258.24, + "probability": 0.9891 + }, + { + "start": 2258.34, + "end": 2260.8, + "probability": 0.9973 + }, + { + "start": 2261.66, + "end": 2264.48, + "probability": 0.8539 + }, + { + "start": 2265.5, + "end": 2265.92, + "probability": 0.6298 + }, + { + "start": 2266.0, + "end": 2266.94, + "probability": 0.6655 + }, + { + "start": 2267.3, + "end": 2268.98, + "probability": 0.7514 + }, + { + "start": 2269.58, + "end": 2271.26, + "probability": 0.919 + }, + { + "start": 2271.64, + "end": 2272.13, + "probability": 0.7934 + }, + { + "start": 2272.3, + "end": 2275.36, + "probability": 0.9712 + }, + { + "start": 2275.48, + "end": 2275.8, + "probability": 0.9851 + }, + { + "start": 2275.88, + "end": 2276.26, + "probability": 0.9348 + }, + { + "start": 2276.76, + "end": 2279.03, + "probability": 0.8378 + }, + { + "start": 2280.54, + "end": 2283.84, + "probability": 0.9497 + }, + { + "start": 2284.32, + "end": 2288.56, + "probability": 0.9676 + }, + { + "start": 2289.06, + "end": 2290.36, + "probability": 0.9178 + }, + { + "start": 2290.7, + "end": 2294.1, + "probability": 0.9694 + }, + { + "start": 2294.1, + "end": 2297.6, + "probability": 0.992 + }, + { + "start": 2297.68, + "end": 2299.46, + "probability": 0.9987 + }, + { + "start": 2299.96, + "end": 2302.12, + "probability": 0.9412 + }, + { + "start": 2303.14, + "end": 2304.42, + "probability": 0.8317 + }, + { + "start": 2304.72, + "end": 2306.18, + "probability": 0.9386 + }, + { + "start": 2306.26, + "end": 2307.7, + "probability": 0.899 + }, + { + "start": 2308.18, + "end": 2310.8, + "probability": 0.9414 + }, + { + "start": 2310.8, + "end": 2314.12, + "probability": 0.9976 + }, + { + "start": 2314.12, + "end": 2319.22, + "probability": 0.9118 + }, + { + "start": 2320.08, + "end": 2321.44, + "probability": 0.7646 + }, + { + "start": 2322.42, + "end": 2324.04, + "probability": 0.9917 + }, + { + "start": 2324.2, + "end": 2326.34, + "probability": 0.9366 + }, + { + "start": 2326.5, + "end": 2329.08, + "probability": 0.9822 + }, + { + "start": 2330.36, + "end": 2331.74, + "probability": 0.7855 + }, + { + "start": 2331.9, + "end": 2334.78, + "probability": 0.7457 + }, + { + "start": 2335.56, + "end": 2336.74, + "probability": 0.6884 + }, + { + "start": 2340.64, + "end": 2342.4, + "probability": 0.9403 + }, + { + "start": 2345.26, + "end": 2347.02, + "probability": 0.6667 + }, + { + "start": 2348.82, + "end": 2353.48, + "probability": 0.9759 + }, + { + "start": 2355.42, + "end": 2356.74, + "probability": 0.998 + }, + { + "start": 2356.84, + "end": 2360.2, + "probability": 0.9881 + }, + { + "start": 2361.62, + "end": 2362.1, + "probability": 0.7374 + }, + { + "start": 2363.3, + "end": 2366.42, + "probability": 0.967 + }, + { + "start": 2366.96, + "end": 2367.5, + "probability": 0.6802 + }, + { + "start": 2369.94, + "end": 2372.14, + "probability": 0.9133 + }, + { + "start": 2374.18, + "end": 2377.16, + "probability": 0.9929 + }, + { + "start": 2378.02, + "end": 2378.46, + "probability": 0.8421 + }, + { + "start": 2380.08, + "end": 2381.74, + "probability": 0.9392 + }, + { + "start": 2382.8, + "end": 2386.9, + "probability": 0.8726 + }, + { + "start": 2388.44, + "end": 2389.51, + "probability": 0.8765 + }, + { + "start": 2391.2, + "end": 2391.78, + "probability": 0.9608 + }, + { + "start": 2393.84, + "end": 2396.1, + "probability": 0.9938 + }, + { + "start": 2398.68, + "end": 2399.34, + "probability": 0.7001 + }, + { + "start": 2400.18, + "end": 2401.72, + "probability": 0.9406 + }, + { + "start": 2402.54, + "end": 2403.32, + "probability": 0.673 + }, + { + "start": 2405.56, + "end": 2408.08, + "probability": 0.9572 + }, + { + "start": 2409.54, + "end": 2410.86, + "probability": 0.9255 + }, + { + "start": 2411.94, + "end": 2416.56, + "probability": 0.9551 + }, + { + "start": 2418.02, + "end": 2422.06, + "probability": 0.9919 + }, + { + "start": 2423.12, + "end": 2424.5, + "probability": 0.7152 + }, + { + "start": 2425.94, + "end": 2431.48, + "probability": 0.9879 + }, + { + "start": 2433.16, + "end": 2439.26, + "probability": 0.981 + }, + { + "start": 2439.26, + "end": 2442.36, + "probability": 0.7742 + }, + { + "start": 2443.72, + "end": 2444.77, + "probability": 0.8325 + }, + { + "start": 2446.26, + "end": 2449.22, + "probability": 0.9916 + }, + { + "start": 2450.02, + "end": 2451.76, + "probability": 0.9183 + }, + { + "start": 2452.54, + "end": 2455.02, + "probability": 0.9832 + }, + { + "start": 2455.74, + "end": 2457.74, + "probability": 0.9926 + }, + { + "start": 2459.38, + "end": 2460.61, + "probability": 0.8902 + }, + { + "start": 2461.68, + "end": 2463.96, + "probability": 0.7954 + }, + { + "start": 2465.54, + "end": 2466.88, + "probability": 0.9976 + }, + { + "start": 2467.62, + "end": 2468.22, + "probability": 0.6576 + }, + { + "start": 2469.4, + "end": 2472.28, + "probability": 0.9387 + }, + { + "start": 2473.54, + "end": 2477.48, + "probability": 0.9448 + }, + { + "start": 2478.56, + "end": 2480.6, + "probability": 0.6947 + }, + { + "start": 2481.44, + "end": 2485.62, + "probability": 0.9541 + }, + { + "start": 2486.94, + "end": 2488.46, + "probability": 0.9342 + }, + { + "start": 2489.36, + "end": 2493.44, + "probability": 0.748 + }, + { + "start": 2495.02, + "end": 2498.2, + "probability": 0.7462 + }, + { + "start": 2499.4, + "end": 2499.94, + "probability": 0.8034 + }, + { + "start": 2501.08, + "end": 2505.28, + "probability": 0.9805 + }, + { + "start": 2505.28, + "end": 2506.38, + "probability": 0.9315 + }, + { + "start": 2507.1, + "end": 2507.76, + "probability": 0.9704 + }, + { + "start": 2508.66, + "end": 2510.46, + "probability": 0.8528 + }, + { + "start": 2511.54, + "end": 2512.0, + "probability": 0.9893 + }, + { + "start": 2513.14, + "end": 2515.48, + "probability": 0.9705 + }, + { + "start": 2516.74, + "end": 2519.0, + "probability": 0.6396 + }, + { + "start": 2520.14, + "end": 2522.18, + "probability": 0.9985 + }, + { + "start": 2522.42, + "end": 2525.78, + "probability": 0.5348 + }, + { + "start": 2526.52, + "end": 2529.22, + "probability": 0.8374 + }, + { + "start": 2530.52, + "end": 2532.28, + "probability": 0.7995 + }, + { + "start": 2533.02, + "end": 2533.7, + "probability": 0.976 + }, + { + "start": 2534.04, + "end": 2534.84, + "probability": 0.6139 + }, + { + "start": 2534.96, + "end": 2535.48, + "probability": 0.5165 + }, + { + "start": 2535.76, + "end": 2538.38, + "probability": 0.9436 + }, + { + "start": 2539.24, + "end": 2542.54, + "probability": 0.8794 + }, + { + "start": 2554.36, + "end": 2556.3, + "probability": 0.8936 + }, + { + "start": 2557.2, + "end": 2557.44, + "probability": 0.3958 + }, + { + "start": 2557.44, + "end": 2557.97, + "probability": 0.4955 + }, + { + "start": 2558.54, + "end": 2561.8, + "probability": 0.9028 + }, + { + "start": 2563.22, + "end": 2566.1, + "probability": 0.9904 + }, + { + "start": 2567.14, + "end": 2568.82, + "probability": 0.9905 + }, + { + "start": 2569.56, + "end": 2573.32, + "probability": 0.9789 + }, + { + "start": 2573.42, + "end": 2574.54, + "probability": 0.7804 + }, + { + "start": 2574.68, + "end": 2576.28, + "probability": 0.7686 + }, + { + "start": 2576.5, + "end": 2579.5, + "probability": 0.9771 + }, + { + "start": 2580.54, + "end": 2583.44, + "probability": 0.8509 + }, + { + "start": 2583.68, + "end": 2584.64, + "probability": 0.8691 + }, + { + "start": 2584.7, + "end": 2586.44, + "probability": 0.9884 + }, + { + "start": 2586.52, + "end": 2588.64, + "probability": 0.9723 + }, + { + "start": 2588.64, + "end": 2591.32, + "probability": 0.4423 + }, + { + "start": 2591.96, + "end": 2595.84, + "probability": 0.9534 + }, + { + "start": 2595.9, + "end": 2596.12, + "probability": 0.9469 + }, + { + "start": 2597.82, + "end": 2600.82, + "probability": 0.999 + }, + { + "start": 2601.58, + "end": 2602.67, + "probability": 0.9868 + }, + { + "start": 2603.02, + "end": 2607.9, + "probability": 0.9658 + }, + { + "start": 2608.6, + "end": 2613.4, + "probability": 0.9963 + }, + { + "start": 2613.44, + "end": 2614.06, + "probability": 0.8943 + }, + { + "start": 2616.24, + "end": 2618.52, + "probability": 0.9531 + }, + { + "start": 2619.88, + "end": 2620.28, + "probability": 0.6793 + }, + { + "start": 2620.76, + "end": 2623.7, + "probability": 0.4952 + }, + { + "start": 2623.72, + "end": 2628.72, + "probability": 0.9919 + }, + { + "start": 2629.78, + "end": 2630.96, + "probability": 0.9413 + }, + { + "start": 2632.24, + "end": 2633.0, + "probability": 0.4393 + }, + { + "start": 2633.7, + "end": 2635.56, + "probability": 0.9902 + }, + { + "start": 2638.32, + "end": 2638.9, + "probability": 0.9071 + }, + { + "start": 2640.24, + "end": 2642.22, + "probability": 0.9971 + }, + { + "start": 2643.08, + "end": 2645.76, + "probability": 0.9844 + }, + { + "start": 2647.08, + "end": 2648.24, + "probability": 0.5885 + }, + { + "start": 2649.04, + "end": 2650.98, + "probability": 0.8859 + }, + { + "start": 2651.06, + "end": 2651.68, + "probability": 0.87 + }, + { + "start": 2651.76, + "end": 2655.1, + "probability": 0.8919 + }, + { + "start": 2655.64, + "end": 2656.42, + "probability": 0.797 + }, + { + "start": 2656.46, + "end": 2659.51, + "probability": 0.9556 + }, + { + "start": 2659.74, + "end": 2663.0, + "probability": 0.9961 + }, + { + "start": 2663.12, + "end": 2666.58, + "probability": 0.9868 + }, + { + "start": 2666.58, + "end": 2669.44, + "probability": 0.965 + }, + { + "start": 2669.64, + "end": 2671.11, + "probability": 0.6025 + }, + { + "start": 2671.66, + "end": 2674.22, + "probability": 0.9959 + }, + { + "start": 2675.24, + "end": 2678.8, + "probability": 0.7569 + }, + { + "start": 2678.84, + "end": 2683.82, + "probability": 0.9951 + }, + { + "start": 2684.48, + "end": 2688.44, + "probability": 0.8827 + }, + { + "start": 2689.48, + "end": 2691.22, + "probability": 0.9969 + }, + { + "start": 2692.0, + "end": 2694.8, + "probability": 0.984 + }, + { + "start": 2695.46, + "end": 2698.2, + "probability": 0.9646 + }, + { + "start": 2698.34, + "end": 2702.42, + "probability": 0.9942 + }, + { + "start": 2704.16, + "end": 2705.36, + "probability": 0.998 + }, + { + "start": 2706.04, + "end": 2707.79, + "probability": 0.9985 + }, + { + "start": 2708.2, + "end": 2709.36, + "probability": 0.9743 + }, + { + "start": 2709.62, + "end": 2710.04, + "probability": 0.9215 + }, + { + "start": 2710.4, + "end": 2711.3, + "probability": 0.8846 + }, + { + "start": 2712.58, + "end": 2714.7, + "probability": 0.9624 + }, + { + "start": 2714.84, + "end": 2716.32, + "probability": 0.9976 + }, + { + "start": 2716.38, + "end": 2716.56, + "probability": 0.9614 + }, + { + "start": 2717.78, + "end": 2718.62, + "probability": 0.9794 + }, + { + "start": 2721.84, + "end": 2724.3, + "probability": 0.9823 + }, + { + "start": 2724.84, + "end": 2725.86, + "probability": 0.9833 + }, + { + "start": 2726.02, + "end": 2727.18, + "probability": 0.9236 + }, + { + "start": 2727.28, + "end": 2727.85, + "probability": 0.6463 + }, + { + "start": 2728.16, + "end": 2728.67, + "probability": 0.8925 + }, + { + "start": 2728.88, + "end": 2729.98, + "probability": 0.8875 + }, + { + "start": 2732.98, + "end": 2735.56, + "probability": 0.9281 + }, + { + "start": 2736.32, + "end": 2740.82, + "probability": 0.9899 + }, + { + "start": 2743.82, + "end": 2746.57, + "probability": 0.9795 + }, + { + "start": 2747.9, + "end": 2749.44, + "probability": 0.9715 + }, + { + "start": 2750.86, + "end": 2751.78, + "probability": 0.979 + }, + { + "start": 2753.66, + "end": 2754.94, + "probability": 0.9958 + }, + { + "start": 2755.52, + "end": 2757.96, + "probability": 0.9995 + }, + { + "start": 2758.62, + "end": 2760.66, + "probability": 0.9768 + }, + { + "start": 2761.92, + "end": 2766.34, + "probability": 0.9775 + }, + { + "start": 2766.96, + "end": 2767.28, + "probability": 0.4105 + }, + { + "start": 2767.86, + "end": 2770.08, + "probability": 0.9858 + }, + { + "start": 2770.2, + "end": 2770.82, + "probability": 0.8474 + }, + { + "start": 2771.24, + "end": 2773.44, + "probability": 0.8823 + }, + { + "start": 2773.66, + "end": 2777.22, + "probability": 0.9783 + }, + { + "start": 2777.42, + "end": 2777.9, + "probability": 0.8698 + }, + { + "start": 2778.42, + "end": 2780.34, + "probability": 0.9938 + }, + { + "start": 2781.7, + "end": 2785.22, + "probability": 0.9907 + }, + { + "start": 2785.32, + "end": 2786.24, + "probability": 0.8688 + }, + { + "start": 2786.38, + "end": 2786.96, + "probability": 0.7151 + }, + { + "start": 2788.34, + "end": 2789.06, + "probability": 0.8477 + }, + { + "start": 2789.98, + "end": 2789.98, + "probability": 0.2835 + }, + { + "start": 2790.1, + "end": 2793.13, + "probability": 0.7761 + }, + { + "start": 2793.66, + "end": 2797.62, + "probability": 0.98 + }, + { + "start": 2797.78, + "end": 2799.32, + "probability": 0.9962 + }, + { + "start": 2799.42, + "end": 2799.9, + "probability": 0.6691 + }, + { + "start": 2799.98, + "end": 2801.32, + "probability": 0.9773 + }, + { + "start": 2802.06, + "end": 2805.24, + "probability": 0.8412 + }, + { + "start": 2805.24, + "end": 2808.76, + "probability": 0.9868 + }, + { + "start": 2809.06, + "end": 2810.58, + "probability": 0.9814 + }, + { + "start": 2811.02, + "end": 2811.6, + "probability": 0.8787 + }, + { + "start": 2811.76, + "end": 2812.52, + "probability": 0.3002 + }, + { + "start": 2812.62, + "end": 2814.84, + "probability": 0.9058 + }, + { + "start": 2824.8, + "end": 2826.42, + "probability": 0.8696 + }, + { + "start": 2826.62, + "end": 2827.72, + "probability": 0.6877 + }, + { + "start": 2827.86, + "end": 2829.42, + "probability": 0.6866 + }, + { + "start": 2830.36, + "end": 2833.64, + "probability": 0.6859 + }, + { + "start": 2835.03, + "end": 2838.89, + "probability": 0.3355 + }, + { + "start": 2839.84, + "end": 2845.58, + "probability": 0.9913 + }, + { + "start": 2847.12, + "end": 2849.66, + "probability": 0.9917 + }, + { + "start": 2849.94, + "end": 2852.7, + "probability": 0.9968 + }, + { + "start": 2854.0, + "end": 2855.6, + "probability": 0.8441 + }, + { + "start": 2861.0, + "end": 2868.04, + "probability": 0.9816 + }, + { + "start": 2869.02, + "end": 2869.12, + "probability": 0.7588 + }, + { + "start": 2869.12, + "end": 2870.1, + "probability": 0.7958 + }, + { + "start": 2871.36, + "end": 2873.18, + "probability": 0.9569 + }, + { + "start": 2873.84, + "end": 2875.44, + "probability": 0.998 + }, + { + "start": 2876.0, + "end": 2879.68, + "probability": 0.863 + }, + { + "start": 2880.68, + "end": 2883.2, + "probability": 0.9915 + }, + { + "start": 2883.74, + "end": 2887.74, + "probability": 0.9841 + }, + { + "start": 2889.18, + "end": 2894.4, + "probability": 0.9974 + }, + { + "start": 2894.54, + "end": 2896.07, + "probability": 0.3337 + }, + { + "start": 2897.34, + "end": 2903.72, + "probability": 0.9986 + }, + { + "start": 2904.26, + "end": 2908.62, + "probability": 0.9954 + }, + { + "start": 2910.36, + "end": 2912.36, + "probability": 0.9974 + }, + { + "start": 2912.52, + "end": 2915.5, + "probability": 0.9946 + }, + { + "start": 2915.92, + "end": 2918.08, + "probability": 0.96 + }, + { + "start": 2919.72, + "end": 2921.78, + "probability": 0.9001 + }, + { + "start": 2923.26, + "end": 2928.14, + "probability": 0.963 + }, + { + "start": 2928.36, + "end": 2930.66, + "probability": 0.9279 + }, + { + "start": 2931.54, + "end": 2932.37, + "probability": 0.9709 + }, + { + "start": 2933.38, + "end": 2934.74, + "probability": 0.9919 + }, + { + "start": 2935.72, + "end": 2936.67, + "probability": 0.998 + }, + { + "start": 2937.94, + "end": 2938.68, + "probability": 0.9507 + }, + { + "start": 2940.46, + "end": 2944.22, + "probability": 0.915 + }, + { + "start": 2945.2, + "end": 2947.22, + "probability": 0.9528 + }, + { + "start": 2948.12, + "end": 2949.67, + "probability": 0.9935 + }, + { + "start": 2950.66, + "end": 2951.42, + "probability": 0.9868 + }, + { + "start": 2953.54, + "end": 2955.94, + "probability": 0.9896 + }, + { + "start": 2956.08, + "end": 2961.62, + "probability": 0.9795 + }, + { + "start": 2961.78, + "end": 2963.62, + "probability": 0.9279 + }, + { + "start": 2963.66, + "end": 2967.94, + "probability": 0.8685 + }, + { + "start": 2968.68, + "end": 2972.14, + "probability": 0.976 + }, + { + "start": 2972.7, + "end": 2974.24, + "probability": 0.9824 + }, + { + "start": 2974.78, + "end": 2976.06, + "probability": 0.9985 + }, + { + "start": 2976.12, + "end": 2976.54, + "probability": 0.7999 + }, + { + "start": 2977.68, + "end": 2979.04, + "probability": 0.938 + }, + { + "start": 2979.16, + "end": 2981.06, + "probability": 0.9196 + }, + { + "start": 2981.94, + "end": 2983.3, + "probability": 0.355 + }, + { + "start": 2983.7, + "end": 2984.66, + "probability": 0.7507 + }, + { + "start": 2985.34, + "end": 2986.72, + "probability": 0.8199 + }, + { + "start": 3000.7, + "end": 3002.1, + "probability": 0.8096 + }, + { + "start": 3002.1, + "end": 3003.96, + "probability": 0.6398 + }, + { + "start": 3004.64, + "end": 3006.36, + "probability": 0.9533 + }, + { + "start": 3007.96, + "end": 3008.8, + "probability": 0.3861 + }, + { + "start": 3008.98, + "end": 3009.92, + "probability": 0.5487 + }, + { + "start": 3010.0, + "end": 3014.34, + "probability": 0.969 + }, + { + "start": 3015.0, + "end": 3017.4, + "probability": 0.9155 + }, + { + "start": 3017.4, + "end": 3020.84, + "probability": 0.8586 + }, + { + "start": 3020.98, + "end": 3021.36, + "probability": 0.7084 + }, + { + "start": 3021.92, + "end": 3024.82, + "probability": 0.9956 + }, + { + "start": 3025.4, + "end": 3029.56, + "probability": 0.6802 + }, + { + "start": 3030.06, + "end": 3031.22, + "probability": 0.6079 + }, + { + "start": 3031.8, + "end": 3032.88, + "probability": 0.7694 + }, + { + "start": 3032.98, + "end": 3034.05, + "probability": 0.9247 + }, + { + "start": 3034.24, + "end": 3034.77, + "probability": 0.9649 + }, + { + "start": 3035.32, + "end": 3036.46, + "probability": 0.9871 + }, + { + "start": 3036.62, + "end": 3039.48, + "probability": 0.5894 + }, + { + "start": 3039.64, + "end": 3041.66, + "probability": 0.817 + }, + { + "start": 3042.32, + "end": 3044.76, + "probability": 0.9614 + }, + { + "start": 3044.76, + "end": 3046.36, + "probability": 0.8812 + }, + { + "start": 3046.7, + "end": 3046.92, + "probability": 0.7847 + }, + { + "start": 3048.54, + "end": 3049.42, + "probability": 0.5583 + }, + { + "start": 3049.42, + "end": 3051.48, + "probability": 0.9567 + }, + { + "start": 3052.78, + "end": 3053.58, + "probability": 0.4406 + }, + { + "start": 3054.7, + "end": 3057.44, + "probability": 0.6623 + }, + { + "start": 3078.94, + "end": 3079.4, + "probability": 0.3794 + }, + { + "start": 3079.4, + "end": 3081.32, + "probability": 0.6749 + }, + { + "start": 3082.1, + "end": 3083.08, + "probability": 0.864 + }, + { + "start": 3084.06, + "end": 3085.8, + "probability": 0.767 + }, + { + "start": 3086.02, + "end": 3087.52, + "probability": 0.782 + }, + { + "start": 3087.62, + "end": 3091.26, + "probability": 0.8223 + }, + { + "start": 3091.26, + "end": 3094.66, + "probability": 0.9907 + }, + { + "start": 3095.5, + "end": 3097.3, + "probability": 0.7711 + }, + { + "start": 3097.62, + "end": 3106.96, + "probability": 0.9841 + }, + { + "start": 3108.1, + "end": 3111.2, + "probability": 0.994 + }, + { + "start": 3111.3, + "end": 3112.76, + "probability": 0.9756 + }, + { + "start": 3112.84, + "end": 3114.0, + "probability": 0.988 + }, + { + "start": 3114.34, + "end": 3115.4, + "probability": 0.9548 + }, + { + "start": 3115.56, + "end": 3116.9, + "probability": 0.9644 + }, + { + "start": 3118.2, + "end": 3118.6, + "probability": 0.822 + }, + { + "start": 3119.0, + "end": 3120.52, + "probability": 0.9142 + }, + { + "start": 3120.6, + "end": 3123.06, + "probability": 0.993 + }, + { + "start": 3123.06, + "end": 3127.08, + "probability": 0.9888 + }, + { + "start": 3127.72, + "end": 3131.04, + "probability": 0.9905 + }, + { + "start": 3131.24, + "end": 3132.52, + "probability": 0.776 + }, + { + "start": 3133.08, + "end": 3136.12, + "probability": 0.9758 + }, + { + "start": 3136.98, + "end": 3139.58, + "probability": 0.6905 + }, + { + "start": 3140.24, + "end": 3143.34, + "probability": 0.7329 + }, + { + "start": 3144.74, + "end": 3148.56, + "probability": 0.9971 + }, + { + "start": 3149.26, + "end": 3150.48, + "probability": 0.9796 + }, + { + "start": 3151.1, + "end": 3152.46, + "probability": 0.9937 + }, + { + "start": 3152.56, + "end": 3159.34, + "probability": 0.999 + }, + { + "start": 3159.88, + "end": 3162.64, + "probability": 0.933 + }, + { + "start": 3162.82, + "end": 3164.76, + "probability": 0.9987 + }, + { + "start": 3164.76, + "end": 3166.9, + "probability": 0.9982 + }, + { + "start": 3169.27, + "end": 3169.34, + "probability": 0.1148 + }, + { + "start": 3169.34, + "end": 3172.38, + "probability": 0.3993 + }, + { + "start": 3173.08, + "end": 3174.36, + "probability": 0.9175 + }, + { + "start": 3174.72, + "end": 3176.76, + "probability": 0.989 + }, + { + "start": 3177.52, + "end": 3183.0, + "probability": 0.9865 + }, + { + "start": 3183.48, + "end": 3184.8, + "probability": 0.8984 + }, + { + "start": 3185.24, + "end": 3188.6, + "probability": 0.9961 + }, + { + "start": 3189.5, + "end": 3194.48, + "probability": 0.9775 + }, + { + "start": 3194.48, + "end": 3198.96, + "probability": 0.9973 + }, + { + "start": 3200.2, + "end": 3205.24, + "probability": 0.9927 + }, + { + "start": 3205.62, + "end": 3206.6, + "probability": 0.9551 + }, + { + "start": 3207.86, + "end": 3212.9, + "probability": 0.8615 + }, + { + "start": 3213.52, + "end": 3220.91, + "probability": 0.9081 + }, + { + "start": 3221.2, + "end": 3222.06, + "probability": 0.9824 + }, + { + "start": 3222.9, + "end": 3225.96, + "probability": 0.6109 + }, + { + "start": 3225.96, + "end": 3228.77, + "probability": 0.9878 + }, + { + "start": 3229.66, + "end": 3231.24, + "probability": 0.9331 + }, + { + "start": 3232.16, + "end": 3234.98, + "probability": 0.994 + }, + { + "start": 3235.04, + "end": 3237.44, + "probability": 0.9982 + }, + { + "start": 3238.4, + "end": 3240.16, + "probability": 0.9991 + }, + { + "start": 3240.42, + "end": 3242.46, + "probability": 0.8911 + }, + { + "start": 3242.58, + "end": 3246.82, + "probability": 0.9743 + }, + { + "start": 3247.2, + "end": 3248.9, + "probability": 0.9875 + }, + { + "start": 3249.1, + "end": 3250.76, + "probability": 0.9961 + }, + { + "start": 3250.9, + "end": 3252.56, + "probability": 0.9556 + }, + { + "start": 3253.04, + "end": 3256.28, + "probability": 0.9976 + }, + { + "start": 3257.0, + "end": 3258.72, + "probability": 0.9464 + }, + { + "start": 3259.58, + "end": 3266.02, + "probability": 0.9974 + }, + { + "start": 3266.02, + "end": 3271.28, + "probability": 0.9989 + }, + { + "start": 3272.14, + "end": 3275.42, + "probability": 0.9939 + }, + { + "start": 3276.02, + "end": 3279.84, + "probability": 0.9927 + }, + { + "start": 3280.28, + "end": 3282.2, + "probability": 0.9958 + }, + { + "start": 3282.38, + "end": 3283.48, + "probability": 0.9577 + }, + { + "start": 3283.8, + "end": 3288.92, + "probability": 0.9968 + }, + { + "start": 3289.16, + "end": 3291.68, + "probability": 0.9972 + }, + { + "start": 3291.82, + "end": 3293.8, + "probability": 0.5376 + }, + { + "start": 3294.94, + "end": 3299.92, + "probability": 0.9924 + }, + { + "start": 3299.98, + "end": 3303.1, + "probability": 0.9949 + }, + { + "start": 3304.18, + "end": 3309.96, + "probability": 0.9977 + }, + { + "start": 3310.4, + "end": 3314.62, + "probability": 0.9985 + }, + { + "start": 3315.16, + "end": 3318.24, + "probability": 0.9557 + }, + { + "start": 3318.48, + "end": 3319.74, + "probability": 0.8142 + }, + { + "start": 3320.4, + "end": 3323.1, + "probability": 0.9882 + }, + { + "start": 3323.28, + "end": 3326.74, + "probability": 0.9946 + }, + { + "start": 3326.86, + "end": 3327.38, + "probability": 0.8951 + }, + { + "start": 3327.84, + "end": 3328.56, + "probability": 0.6302 + }, + { + "start": 3328.62, + "end": 3329.32, + "probability": 0.9691 + }, + { + "start": 3329.34, + "end": 3330.88, + "probability": 0.9137 + }, + { + "start": 3331.0, + "end": 3335.02, + "probability": 0.9965 + }, + { + "start": 3335.58, + "end": 3337.8, + "probability": 0.8406 + }, + { + "start": 3338.28, + "end": 3340.44, + "probability": 0.5918 + }, + { + "start": 3341.14, + "end": 3343.17, + "probability": 0.896 + }, + { + "start": 3343.68, + "end": 3345.16, + "probability": 0.9756 + }, + { + "start": 3345.16, + "end": 3347.42, + "probability": 0.9658 + }, + { + "start": 3347.92, + "end": 3349.82, + "probability": 0.3441 + }, + { + "start": 3350.34, + "end": 3350.76, + "probability": 0.7903 + }, + { + "start": 3351.46, + "end": 3353.74, + "probability": 0.7285 + }, + { + "start": 3354.3, + "end": 3356.34, + "probability": 0.1902 + }, + { + "start": 3356.34, + "end": 3359.84, + "probability": 0.35 + }, + { + "start": 3360.3, + "end": 3364.2, + "probability": 0.542 + }, + { + "start": 3365.16, + "end": 3367.46, + "probability": 0.8943 + }, + { + "start": 3367.46, + "end": 3371.92, + "probability": 0.103 + }, + { + "start": 3372.64, + "end": 3376.74, + "probability": 0.4337 + }, + { + "start": 3377.46, + "end": 3378.49, + "probability": 0.9517 + }, + { + "start": 3378.6, + "end": 3381.48, + "probability": 0.6155 + }, + { + "start": 3381.62, + "end": 3382.64, + "probability": 0.4292 + }, + { + "start": 3382.8, + "end": 3387.0, + "probability": 0.7755 + }, + { + "start": 3387.38, + "end": 3390.2, + "probability": 0.8418 + }, + { + "start": 3390.86, + "end": 3392.02, + "probability": 0.718 + }, + { + "start": 3392.54, + "end": 3395.72, + "probability": 0.8301 + }, + { + "start": 3397.12, + "end": 3397.7, + "probability": 0.6534 + }, + { + "start": 3397.78, + "end": 3401.46, + "probability": 0.6882 + }, + { + "start": 3402.68, + "end": 3404.72, + "probability": 0.7612 + }, + { + "start": 3405.2, + "end": 3406.44, + "probability": 0.7627 + }, + { + "start": 3406.5, + "end": 3407.9, + "probability": 0.8804 + }, + { + "start": 3408.76, + "end": 3409.84, + "probability": 0.5114 + }, + { + "start": 3410.52, + "end": 3414.89, + "probability": 0.9825 + }, + { + "start": 3414.94, + "end": 3417.52, + "probability": 0.9531 + }, + { + "start": 3417.62, + "end": 3420.94, + "probability": 0.9702 + }, + { + "start": 3420.94, + "end": 3423.9, + "probability": 0.9678 + }, + { + "start": 3424.74, + "end": 3426.74, + "probability": 0.9216 + }, + { + "start": 3426.74, + "end": 3430.14, + "probability": 0.9424 + }, + { + "start": 3430.56, + "end": 3431.36, + "probability": 0.4866 + }, + { + "start": 3431.86, + "end": 3433.98, + "probability": 0.8965 + }, + { + "start": 3434.68, + "end": 3438.04, + "probability": 0.9246 + }, + { + "start": 3438.64, + "end": 3440.52, + "probability": 0.9664 + }, + { + "start": 3441.32, + "end": 3441.9, + "probability": 0.8491 + }, + { + "start": 3443.12, + "end": 3444.14, + "probability": 0.902 + }, + { + "start": 3448.22, + "end": 3449.18, + "probability": 0.2727 + }, + { + "start": 3461.26, + "end": 3463.14, + "probability": 0.8385 + }, + { + "start": 3477.22, + "end": 3479.2, + "probability": 0.8164 + }, + { + "start": 3479.36, + "end": 3479.56, + "probability": 0.9005 + }, + { + "start": 3481.24, + "end": 3483.7, + "probability": 0.8319 + }, + { + "start": 3484.6, + "end": 3489.12, + "probability": 0.9869 + }, + { + "start": 3489.78, + "end": 3495.04, + "probability": 0.9819 + }, + { + "start": 3495.14, + "end": 3501.3, + "probability": 0.9909 + }, + { + "start": 3502.24, + "end": 3503.26, + "probability": 0.6414 + }, + { + "start": 3503.88, + "end": 3508.14, + "probability": 0.9702 + }, + { + "start": 3509.24, + "end": 3512.24, + "probability": 0.9768 + }, + { + "start": 3512.62, + "end": 3515.6, + "probability": 0.9922 + }, + { + "start": 3516.38, + "end": 3522.8, + "probability": 0.9988 + }, + { + "start": 3524.24, + "end": 3525.16, + "probability": 0.8716 + }, + { + "start": 3526.28, + "end": 3530.96, + "probability": 0.9979 + }, + { + "start": 3530.96, + "end": 3535.5, + "probability": 0.9971 + }, + { + "start": 3535.68, + "end": 3537.94, + "probability": 0.9849 + }, + { + "start": 3539.72, + "end": 3543.92, + "probability": 0.9565 + }, + { + "start": 3544.96, + "end": 3552.26, + "probability": 0.9873 + }, + { + "start": 3553.64, + "end": 3558.4, + "probability": 0.9837 + }, + { + "start": 3558.94, + "end": 3560.34, + "probability": 0.9668 + }, + { + "start": 3562.1, + "end": 3567.84, + "probability": 0.982 + }, + { + "start": 3569.0, + "end": 3570.74, + "probability": 0.9836 + }, + { + "start": 3571.8, + "end": 3572.59, + "probability": 0.9807 + }, + { + "start": 3573.54, + "end": 3575.72, + "probability": 0.992 + }, + { + "start": 3577.04, + "end": 3580.88, + "probability": 0.9857 + }, + { + "start": 3583.4, + "end": 3591.9, + "probability": 0.9933 + }, + { + "start": 3592.78, + "end": 3597.78, + "probability": 0.9989 + }, + { + "start": 3598.88, + "end": 3599.76, + "probability": 0.6924 + }, + { + "start": 3600.64, + "end": 3602.54, + "probability": 0.9927 + }, + { + "start": 3603.28, + "end": 3604.42, + "probability": 0.9521 + }, + { + "start": 3605.16, + "end": 3608.94, + "probability": 0.9977 + }, + { + "start": 3609.46, + "end": 3614.52, + "probability": 0.6289 + }, + { + "start": 3615.22, + "end": 3619.38, + "probability": 0.8716 + }, + { + "start": 3620.26, + "end": 3626.22, + "probability": 0.9971 + }, + { + "start": 3626.84, + "end": 3627.38, + "probability": 0.7826 + }, + { + "start": 3628.66, + "end": 3629.58, + "probability": 0.5427 + }, + { + "start": 3629.72, + "end": 3633.2, + "probability": 0.924 + }, + { + "start": 3633.24, + "end": 3636.46, + "probability": 0.5682 + }, + { + "start": 3636.72, + "end": 3639.78, + "probability": 0.6168 + }, + { + "start": 3639.86, + "end": 3640.3, + "probability": 0.6243 + }, + { + "start": 3641.7, + "end": 3643.66, + "probability": 0.6179 + }, + { + "start": 3659.08, + "end": 3660.88, + "probability": 0.1609 + }, + { + "start": 3665.06, + "end": 3666.4, + "probability": 0.6191 + }, + { + "start": 3666.52, + "end": 3667.78, + "probability": 0.8576 + }, + { + "start": 3667.86, + "end": 3669.12, + "probability": 0.8579 + }, + { + "start": 3669.68, + "end": 3670.72, + "probability": 0.9746 + }, + { + "start": 3671.38, + "end": 3675.68, + "probability": 0.9983 + }, + { + "start": 3677.2, + "end": 3678.04, + "probability": 0.948 + }, + { + "start": 3678.24, + "end": 3682.56, + "probability": 0.9868 + }, + { + "start": 3682.56, + "end": 3687.94, + "probability": 0.9946 + }, + { + "start": 3688.72, + "end": 3692.92, + "probability": 0.8484 + }, + { + "start": 3693.6, + "end": 3694.98, + "probability": 0.9627 + }, + { + "start": 3695.6, + "end": 3699.84, + "probability": 0.9892 + }, + { + "start": 3700.12, + "end": 3701.88, + "probability": 0.7306 + }, + { + "start": 3702.64, + "end": 3705.36, + "probability": 0.9216 + }, + { + "start": 3706.12, + "end": 3710.6, + "probability": 0.994 + }, + { + "start": 3711.2, + "end": 3714.36, + "probability": 0.9944 + }, + { + "start": 3714.82, + "end": 3719.98, + "probability": 0.9731 + }, + { + "start": 3720.46, + "end": 3722.6, + "probability": 0.9747 + }, + { + "start": 3723.1, + "end": 3731.9, + "probability": 0.9921 + }, + { + "start": 3732.64, + "end": 3737.08, + "probability": 0.9844 + }, + { + "start": 3737.48, + "end": 3740.88, + "probability": 0.9985 + }, + { + "start": 3740.88, + "end": 3746.26, + "probability": 0.9987 + }, + { + "start": 3746.44, + "end": 3749.2, + "probability": 0.9791 + }, + { + "start": 3749.58, + "end": 3752.68, + "probability": 0.9696 + }, + { + "start": 3753.16, + "end": 3755.4, + "probability": 0.9911 + }, + { + "start": 3756.3, + "end": 3760.54, + "probability": 0.9894 + }, + { + "start": 3760.54, + "end": 3765.0, + "probability": 0.9775 + }, + { + "start": 3765.84, + "end": 3766.88, + "probability": 0.9601 + }, + { + "start": 3767.0, + "end": 3767.48, + "probability": 0.8721 + }, + { + "start": 3767.98, + "end": 3768.58, + "probability": 0.5947 + }, + { + "start": 3769.04, + "end": 3770.52, + "probability": 0.978 + }, + { + "start": 3770.96, + "end": 3775.56, + "probability": 0.943 + }, + { + "start": 3775.8, + "end": 3779.84, + "probability": 0.9862 + }, + { + "start": 3780.42, + "end": 3783.52, + "probability": 0.886 + }, + { + "start": 3783.76, + "end": 3786.7, + "probability": 0.846 + }, + { + "start": 3787.76, + "end": 3790.16, + "probability": 0.9943 + }, + { + "start": 3790.96, + "end": 3796.36, + "probability": 0.9022 + }, + { + "start": 3797.16, + "end": 3799.18, + "probability": 0.9592 + }, + { + "start": 3799.74, + "end": 3802.2, + "probability": 0.9512 + }, + { + "start": 3802.8, + "end": 3809.98, + "probability": 0.9904 + }, + { + "start": 3810.46, + "end": 3814.38, + "probability": 0.8227 + }, + { + "start": 3815.04, + "end": 3817.1, + "probability": 0.9311 + }, + { + "start": 3818.08, + "end": 3820.22, + "probability": 0.8314 + }, + { + "start": 3820.96, + "end": 3821.44, + "probability": 0.9815 + }, + { + "start": 3822.02, + "end": 3824.16, + "probability": 0.9644 + }, + { + "start": 3825.12, + "end": 3825.94, + "probability": 0.7918 + }, + { + "start": 3826.04, + "end": 3826.94, + "probability": 0.7759 + }, + { + "start": 3827.04, + "end": 3831.86, + "probability": 0.9702 + }, + { + "start": 3832.46, + "end": 3840.0, + "probability": 0.9969 + }, + { + "start": 3840.0, + "end": 3844.4, + "probability": 0.9977 + }, + { + "start": 3845.34, + "end": 3847.28, + "probability": 0.955 + }, + { + "start": 3848.38, + "end": 3851.74, + "probability": 0.9412 + }, + { + "start": 3851.76, + "end": 3855.3, + "probability": 0.9978 + }, + { + "start": 3855.7, + "end": 3858.6, + "probability": 0.9485 + }, + { + "start": 3859.04, + "end": 3860.98, + "probability": 0.8542 + }, + { + "start": 3861.26, + "end": 3861.4, + "probability": 0.7173 + }, + { + "start": 3861.58, + "end": 3862.94, + "probability": 0.9296 + }, + { + "start": 3862.98, + "end": 3864.06, + "probability": 0.7168 + }, + { + "start": 3864.44, + "end": 3866.76, + "probability": 0.981 + }, + { + "start": 3867.2, + "end": 3872.92, + "probability": 0.9432 + }, + { + "start": 3873.42, + "end": 3877.34, + "probability": 0.9395 + }, + { + "start": 3877.88, + "end": 3882.6, + "probability": 0.9974 + }, + { + "start": 3883.14, + "end": 3886.18, + "probability": 0.9927 + }, + { + "start": 3886.84, + "end": 3888.32, + "probability": 0.9894 + }, + { + "start": 3889.0, + "end": 3889.28, + "probability": 0.7749 + }, + { + "start": 3889.56, + "end": 3890.35, + "probability": 0.6593 + }, + { + "start": 3890.78, + "end": 3893.38, + "probability": 0.7832 + }, + { + "start": 3894.1, + "end": 3896.4, + "probability": 0.9177 + }, + { + "start": 3896.66, + "end": 3898.68, + "probability": 0.9675 + }, + { + "start": 3906.76, + "end": 3908.62, + "probability": 0.5198 + }, + { + "start": 3910.04, + "end": 3915.36, + "probability": 0.9956 + }, + { + "start": 3919.5, + "end": 3920.44, + "probability": 0.5566 + }, + { + "start": 3922.22, + "end": 3926.0, + "probability": 0.9868 + }, + { + "start": 3927.84, + "end": 3931.06, + "probability": 0.9813 + }, + { + "start": 3932.04, + "end": 3933.06, + "probability": 0.8223 + }, + { + "start": 3933.56, + "end": 3940.34, + "probability": 0.9745 + }, + { + "start": 3944.5, + "end": 3946.18, + "probability": 0.5141 + }, + { + "start": 3949.0, + "end": 3949.8, + "probability": 0.3828 + }, + { + "start": 3950.0, + "end": 3952.2, + "probability": 0.8442 + }, + { + "start": 3952.38, + "end": 3955.86, + "probability": 0.7808 + }, + { + "start": 3956.14, + "end": 3956.92, + "probability": 0.7133 + }, + { + "start": 3956.92, + "end": 3957.7, + "probability": 0.5289 + }, + { + "start": 3957.98, + "end": 3958.44, + "probability": 0.9482 + }, + { + "start": 3959.18, + "end": 3962.9, + "probability": 0.9961 + }, + { + "start": 3962.9, + "end": 3967.36, + "probability": 0.9985 + }, + { + "start": 3967.82, + "end": 3968.38, + "probability": 0.709 + }, + { + "start": 3968.7, + "end": 3969.44, + "probability": 0.998 + }, + { + "start": 3970.28, + "end": 3975.66, + "probability": 0.7911 + }, + { + "start": 3976.26, + "end": 3980.0, + "probability": 0.9873 + }, + { + "start": 3980.86, + "end": 3984.9, + "probability": 0.995 + }, + { + "start": 3985.56, + "end": 3988.32, + "probability": 0.9845 + }, + { + "start": 3989.08, + "end": 3991.44, + "probability": 0.9587 + }, + { + "start": 3991.96, + "end": 3993.12, + "probability": 0.8282 + }, + { + "start": 3994.64, + "end": 3998.42, + "probability": 0.8627 + }, + { + "start": 3999.66, + "end": 4001.06, + "probability": 0.8981 + }, + { + "start": 4001.86, + "end": 4003.2, + "probability": 0.9709 + }, + { + "start": 4003.4, + "end": 4005.48, + "probability": 0.8674 + }, + { + "start": 4006.24, + "end": 4008.16, + "probability": 0.2904 + }, + { + "start": 4009.6, + "end": 4012.32, + "probability": 0.9821 + }, + { + "start": 4012.46, + "end": 4013.2, + "probability": 0.826 + }, + { + "start": 4013.28, + "end": 4014.02, + "probability": 0.9096 + }, + { + "start": 4014.1, + "end": 4015.44, + "probability": 0.989 + }, + { + "start": 4015.86, + "end": 4016.92, + "probability": 0.8039 + }, + { + "start": 4017.4, + "end": 4019.6, + "probability": 0.8682 + }, + { + "start": 4019.92, + "end": 4021.34, + "probability": 0.7999 + }, + { + "start": 4022.64, + "end": 4024.5, + "probability": 0.9487 + }, + { + "start": 4025.6, + "end": 4027.3, + "probability": 0.8219 + }, + { + "start": 4027.48, + "end": 4029.58, + "probability": 0.9385 + }, + { + "start": 4030.1, + "end": 4031.22, + "probability": 0.7949 + }, + { + "start": 4032.52, + "end": 4034.68, + "probability": 0.9762 + }, + { + "start": 4034.94, + "end": 4038.48, + "probability": 0.9802 + }, + { + "start": 4038.56, + "end": 4039.22, + "probability": 0.512 + }, + { + "start": 4041.4, + "end": 4042.62, + "probability": 0.6763 + }, + { + "start": 4043.26, + "end": 4045.24, + "probability": 0.8231 + }, + { + "start": 4047.52, + "end": 4048.28, + "probability": 0.7295 + }, + { + "start": 4050.14, + "end": 4052.28, + "probability": 0.7188 + }, + { + "start": 4052.82, + "end": 4054.52, + "probability": 0.7227 + }, + { + "start": 4055.12, + "end": 4056.58, + "probability": 0.9954 + }, + { + "start": 4070.14, + "end": 4072.1, + "probability": 0.6567 + }, + { + "start": 4073.78, + "end": 4075.92, + "probability": 0.9683 + }, + { + "start": 4078.02, + "end": 4079.4, + "probability": 0.8703 + }, + { + "start": 4081.94, + "end": 4086.54, + "probability": 0.8235 + }, + { + "start": 4087.54, + "end": 4088.54, + "probability": 0.8066 + }, + { + "start": 4090.14, + "end": 4092.3, + "probability": 0.9203 + }, + { + "start": 4092.92, + "end": 4094.2, + "probability": 0.9233 + }, + { + "start": 4095.4, + "end": 4096.52, + "probability": 0.7462 + }, + { + "start": 4097.2, + "end": 4097.86, + "probability": 0.8641 + }, + { + "start": 4098.68, + "end": 4099.66, + "probability": 0.9463 + }, + { + "start": 4100.88, + "end": 4101.16, + "probability": 0.942 + }, + { + "start": 4103.2, + "end": 4104.08, + "probability": 0.5665 + }, + { + "start": 4105.98, + "end": 4107.74, + "probability": 0.8089 + }, + { + "start": 4108.96, + "end": 4109.8, + "probability": 0.861 + }, + { + "start": 4110.52, + "end": 4112.1, + "probability": 0.9774 + }, + { + "start": 4113.28, + "end": 4115.08, + "probability": 0.6994 + }, + { + "start": 4116.78, + "end": 4117.66, + "probability": 0.9564 + }, + { + "start": 4118.6, + "end": 4122.92, + "probability": 0.9247 + }, + { + "start": 4122.92, + "end": 4124.34, + "probability": 0.933 + }, + { + "start": 4127.12, + "end": 4129.74, + "probability": 0.9883 + }, + { + "start": 4131.54, + "end": 4134.08, + "probability": 0.7661 + }, + { + "start": 4134.58, + "end": 4135.56, + "probability": 0.9173 + }, + { + "start": 4135.94, + "end": 4137.18, + "probability": 0.9963 + }, + { + "start": 4139.14, + "end": 4141.34, + "probability": 0.9654 + }, + { + "start": 4142.12, + "end": 4143.06, + "probability": 0.6784 + }, + { + "start": 4146.18, + "end": 4148.04, + "probability": 0.9367 + }, + { + "start": 4148.18, + "end": 4149.56, + "probability": 0.8223 + }, + { + "start": 4150.5, + "end": 4153.22, + "probability": 0.879 + }, + { + "start": 4154.02, + "end": 4158.64, + "probability": 0.985 + }, + { + "start": 4159.2, + "end": 4160.18, + "probability": 0.999 + }, + { + "start": 4161.62, + "end": 4164.86, + "probability": 0.959 + }, + { + "start": 4165.22, + "end": 4166.22, + "probability": 0.9856 + }, + { + "start": 4166.38, + "end": 4167.68, + "probability": 0.9901 + }, + { + "start": 4170.36, + "end": 4171.84, + "probability": 0.9946 + }, + { + "start": 4173.76, + "end": 4175.14, + "probability": 0.9978 + }, + { + "start": 4175.3, + "end": 4177.06, + "probability": 0.8952 + }, + { + "start": 4178.6, + "end": 4180.98, + "probability": 0.9515 + }, + { + "start": 4181.62, + "end": 4183.06, + "probability": 0.6427 + }, + { + "start": 4183.74, + "end": 4184.67, + "probability": 0.5839 + }, + { + "start": 4185.02, + "end": 4186.16, + "probability": 0.8244 + }, + { + "start": 4186.98, + "end": 4188.34, + "probability": 0.8201 + }, + { + "start": 4188.88, + "end": 4190.14, + "probability": 0.9856 + }, + { + "start": 4191.42, + "end": 4192.3, + "probability": 0.9663 + }, + { + "start": 4192.3, + "end": 4196.16, + "probability": 0.7819 + }, + { + "start": 4197.3, + "end": 4198.24, + "probability": 0.7748 + }, + { + "start": 4198.52, + "end": 4199.28, + "probability": 0.0186 + }, + { + "start": 4199.56, + "end": 4200.3, + "probability": 0.2186 + }, + { + "start": 4200.56, + "end": 4201.66, + "probability": 0.8621 + }, + { + "start": 4201.8, + "end": 4202.72, + "probability": 0.693 + }, + { + "start": 4202.94, + "end": 4203.97, + "probability": 0.2788 + }, + { + "start": 4204.56, + "end": 4207.98, + "probability": 0.3023 + }, + { + "start": 4207.98, + "end": 4212.44, + "probability": 0.8615 + }, + { + "start": 4213.13, + "end": 4214.76, + "probability": 0.1526 + }, + { + "start": 4214.76, + "end": 4214.76, + "probability": 0.1401 + }, + { + "start": 4214.76, + "end": 4214.76, + "probability": 0.1791 + }, + { + "start": 4214.76, + "end": 4215.34, + "probability": 0.1083 + }, + { + "start": 4215.64, + "end": 4218.48, + "probability": 0.6937 + }, + { + "start": 4219.14, + "end": 4220.1, + "probability": 0.2058 + }, + { + "start": 4220.1, + "end": 4220.1, + "probability": 0.0513 + }, + { + "start": 4220.1, + "end": 4220.1, + "probability": 0.0967 + }, + { + "start": 4220.1, + "end": 4222.98, + "probability": 0.57 + }, + { + "start": 4223.0, + "end": 4223.54, + "probability": 0.0648 + }, + { + "start": 4223.58, + "end": 4224.0, + "probability": 0.4473 + }, + { + "start": 4224.0, + "end": 4224.0, + "probability": 0.2527 + }, + { + "start": 4224.0, + "end": 4225.02, + "probability": 0.3097 + }, + { + "start": 4225.04, + "end": 4227.62, + "probability": 0.8162 + }, + { + "start": 4227.78, + "end": 4228.68, + "probability": 0.0314 + }, + { + "start": 4228.68, + "end": 4228.68, + "probability": 0.0268 + }, + { + "start": 4228.68, + "end": 4230.74, + "probability": 0.6534 + }, + { + "start": 4230.74, + "end": 4234.32, + "probability": 0.7351 + }, + { + "start": 4234.42, + "end": 4235.32, + "probability": 0.6417 + }, + { + "start": 4235.92, + "end": 4237.36, + "probability": 0.9808 + }, + { + "start": 4239.76, + "end": 4240.6, + "probability": 0.3015 + }, + { + "start": 4240.6, + "end": 4240.6, + "probability": 0.01 + }, + { + "start": 4240.6, + "end": 4240.6, + "probability": 0.1343 + }, + { + "start": 4240.6, + "end": 4240.6, + "probability": 0.2778 + }, + { + "start": 4240.6, + "end": 4241.72, + "probability": 0.2642 + }, + { + "start": 4242.36, + "end": 4243.54, + "probability": 0.6072 + }, + { + "start": 4244.12, + "end": 4245.28, + "probability": 0.1119 + }, + { + "start": 4246.1, + "end": 4246.5, + "probability": 0.1181 + }, + { + "start": 4246.5, + "end": 4247.02, + "probability": 0.0405 + }, + { + "start": 4247.28, + "end": 4249.7, + "probability": 0.1835 + }, + { + "start": 4249.9, + "end": 4251.38, + "probability": 0.5427 + }, + { + "start": 4252.36, + "end": 4256.26, + "probability": 0.2463 + }, + { + "start": 4257.08, + "end": 4258.64, + "probability": 0.7718 + }, + { + "start": 4259.09, + "end": 4262.06, + "probability": 0.7552 + }, + { + "start": 4262.06, + "end": 4266.8, + "probability": 0.411 + }, + { + "start": 4267.0, + "end": 4268.06, + "probability": 0.3956 + }, + { + "start": 4268.08, + "end": 4269.0, + "probability": 0.4266 + }, + { + "start": 4269.1, + "end": 4270.12, + "probability": 0.3974 + }, + { + "start": 4270.58, + "end": 4272.5, + "probability": 0.7433 + }, + { + "start": 4272.6, + "end": 4274.36, + "probability": 0.4411 + }, + { + "start": 4274.88, + "end": 4276.7, + "probability": 0.0984 + }, + { + "start": 4276.84, + "end": 4277.96, + "probability": 0.4003 + }, + { + "start": 4278.32, + "end": 4278.42, + "probability": 0.1777 + }, + { + "start": 4278.42, + "end": 4278.42, + "probability": 0.1035 + }, + { + "start": 4278.42, + "end": 4279.94, + "probability": 0.4584 + }, + { + "start": 4281.46, + "end": 4283.1, + "probability": 0.6125 + }, + { + "start": 4283.24, + "end": 4284.3, + "probability": 0.9663 + }, + { + "start": 4285.0, + "end": 4285.88, + "probability": 0.437 + }, + { + "start": 4286.18, + "end": 4286.76, + "probability": 0.1456 + }, + { + "start": 4287.72, + "end": 4289.58, + "probability": 0.7364 + }, + { + "start": 4289.8, + "end": 4290.12, + "probability": 0.9717 + }, + { + "start": 4290.98, + "end": 4292.36, + "probability": 0.7622 + }, + { + "start": 4292.48, + "end": 4293.46, + "probability": 0.6771 + }, + { + "start": 4294.38, + "end": 4296.32, + "probability": 0.9247 + }, + { + "start": 4301.06, + "end": 4303.38, + "probability": 0.6166 + }, + { + "start": 4304.7, + "end": 4306.22, + "probability": 0.6438 + }, + { + "start": 4307.2, + "end": 4310.54, + "probability": 0.8406 + }, + { + "start": 4310.72, + "end": 4312.94, + "probability": 0.9825 + }, + { + "start": 4314.66, + "end": 4318.86, + "probability": 0.9874 + }, + { + "start": 4319.94, + "end": 4323.36, + "probability": 0.9902 + }, + { + "start": 4325.26, + "end": 4325.44, + "probability": 0.1816 + }, + { + "start": 4327.12, + "end": 4328.8, + "probability": 0.8475 + }, + { + "start": 4330.28, + "end": 4333.02, + "probability": 0.9359 + }, + { + "start": 4334.52, + "end": 4338.08, + "probability": 0.9967 + }, + { + "start": 4338.08, + "end": 4342.66, + "probability": 0.983 + }, + { + "start": 4343.6, + "end": 4346.12, + "probability": 0.9053 + }, + { + "start": 4347.0, + "end": 4350.6, + "probability": 0.9495 + }, + { + "start": 4351.28, + "end": 4354.4, + "probability": 0.7036 + }, + { + "start": 4356.76, + "end": 4359.48, + "probability": 0.9783 + }, + { + "start": 4360.26, + "end": 4363.92, + "probability": 0.9342 + }, + { + "start": 4367.78, + "end": 4369.1, + "probability": 0.8219 + }, + { + "start": 4369.94, + "end": 4371.5, + "probability": 0.9684 + }, + { + "start": 4372.7, + "end": 4375.46, + "probability": 0.978 + }, + { + "start": 4376.9, + "end": 4380.62, + "probability": 0.9497 + }, + { + "start": 4380.64, + "end": 4381.7, + "probability": 0.953 + }, + { + "start": 4382.18, + "end": 4384.84, + "probability": 0.9923 + }, + { + "start": 4385.48, + "end": 4386.64, + "probability": 0.8077 + }, + { + "start": 4386.66, + "end": 4392.14, + "probability": 0.9392 + }, + { + "start": 4393.46, + "end": 4394.72, + "probability": 0.749 + }, + { + "start": 4395.4, + "end": 4397.77, + "probability": 0.932 + }, + { + "start": 4398.42, + "end": 4402.74, + "probability": 0.9897 + }, + { + "start": 4403.82, + "end": 4405.5, + "probability": 0.9862 + }, + { + "start": 4406.14, + "end": 4409.46, + "probability": 0.9814 + }, + { + "start": 4409.52, + "end": 4411.14, + "probability": 0.8418 + }, + { + "start": 4412.32, + "end": 4415.74, + "probability": 0.8296 + }, + { + "start": 4416.34, + "end": 4418.28, + "probability": 0.9634 + }, + { + "start": 4419.28, + "end": 4421.44, + "probability": 0.7571 + }, + { + "start": 4421.74, + "end": 4425.3, + "probability": 0.9695 + }, + { + "start": 4425.52, + "end": 4427.28, + "probability": 0.9388 + }, + { + "start": 4428.66, + "end": 4435.56, + "probability": 0.9542 + }, + { + "start": 4436.84, + "end": 4440.26, + "probability": 0.7966 + }, + { + "start": 4441.06, + "end": 4444.37, + "probability": 0.9849 + }, + { + "start": 4445.68, + "end": 4449.26, + "probability": 0.9871 + }, + { + "start": 4451.12, + "end": 4455.14, + "probability": 0.9973 + }, + { + "start": 4455.98, + "end": 4462.84, + "probability": 0.9111 + }, + { + "start": 4464.02, + "end": 4467.44, + "probability": 0.588 + }, + { + "start": 4467.58, + "end": 4469.76, + "probability": 0.8778 + }, + { + "start": 4470.34, + "end": 4471.92, + "probability": 0.7715 + }, + { + "start": 4471.98, + "end": 4473.56, + "probability": 0.6667 + }, + { + "start": 4473.56, + "end": 4475.02, + "probability": 0.3341 + }, + { + "start": 4475.5, + "end": 4477.26, + "probability": 0.7924 + }, + { + "start": 4477.98, + "end": 4481.4, + "probability": 0.9764 + }, + { + "start": 4481.4, + "end": 4485.74, + "probability": 0.9711 + }, + { + "start": 4486.02, + "end": 4488.16, + "probability": 0.7475 + }, + { + "start": 4488.68, + "end": 4490.18, + "probability": 0.7413 + }, + { + "start": 4490.64, + "end": 4492.96, + "probability": 0.3088 + }, + { + "start": 4493.22, + "end": 4493.58, + "probability": 0.6005 + }, + { + "start": 4494.3, + "end": 4494.86, + "probability": 0.5539 + }, + { + "start": 4495.1, + "end": 4497.86, + "probability": 0.9799 + }, + { + "start": 4498.92, + "end": 4499.99, + "probability": 0.5405 + }, + { + "start": 4503.28, + "end": 4505.42, + "probability": 0.5375 + }, + { + "start": 4506.4, + "end": 4506.9, + "probability": 0.2952 + }, + { + "start": 4507.42, + "end": 4510.27, + "probability": 0.6867 + }, + { + "start": 4512.84, + "end": 4517.04, + "probability": 0.5173 + }, + { + "start": 4518.14, + "end": 4518.86, + "probability": 0.5966 + }, + { + "start": 4529.12, + "end": 4529.22, + "probability": 0.6701 + }, + { + "start": 4530.3, + "end": 4532.42, + "probability": 0.7148 + }, + { + "start": 4532.5, + "end": 4533.58, + "probability": 0.7291 + }, + { + "start": 4535.02, + "end": 4541.8, + "probability": 0.9945 + }, + { + "start": 4543.58, + "end": 4543.58, + "probability": 0.2452 + }, + { + "start": 4543.78, + "end": 4545.84, + "probability": 0.9551 + }, + { + "start": 4546.6, + "end": 4548.82, + "probability": 0.9556 + }, + { + "start": 4548.92, + "end": 4550.64, + "probability": 0.4709 + }, + { + "start": 4551.84, + "end": 4555.96, + "probability": 0.9204 + }, + { + "start": 4557.06, + "end": 4558.56, + "probability": 0.6652 + }, + { + "start": 4558.72, + "end": 4562.28, + "probability": 0.9717 + }, + { + "start": 4562.54, + "end": 4565.84, + "probability": 0.9862 + }, + { + "start": 4567.18, + "end": 4569.78, + "probability": 0.895 + }, + { + "start": 4571.78, + "end": 4580.2, + "probability": 0.8955 + }, + { + "start": 4580.74, + "end": 4581.52, + "probability": 0.676 + }, + { + "start": 4581.82, + "end": 4582.74, + "probability": 0.8751 + }, + { + "start": 4583.24, + "end": 4585.88, + "probability": 0.9766 + }, + { + "start": 4588.03, + "end": 4591.26, + "probability": 0.8992 + }, + { + "start": 4592.38, + "end": 4592.6, + "probability": 0.5252 + }, + { + "start": 4592.72, + "end": 4594.38, + "probability": 0.8741 + }, + { + "start": 4594.46, + "end": 4596.3, + "probability": 0.9952 + }, + { + "start": 4596.86, + "end": 4597.88, + "probability": 0.9313 + }, + { + "start": 4599.38, + "end": 4601.56, + "probability": 0.9982 + }, + { + "start": 4601.72, + "end": 4604.58, + "probability": 0.8364 + }, + { + "start": 4604.58, + "end": 4606.8, + "probability": 0.987 + }, + { + "start": 4606.96, + "end": 4608.26, + "probability": 0.9451 + }, + { + "start": 4609.08, + "end": 4612.08, + "probability": 0.7952 + }, + { + "start": 4613.6, + "end": 4616.56, + "probability": 0.9829 + }, + { + "start": 4618.56, + "end": 4621.56, + "probability": 0.9876 + }, + { + "start": 4624.8, + "end": 4630.42, + "probability": 0.9448 + }, + { + "start": 4631.2, + "end": 4637.02, + "probability": 0.9935 + }, + { + "start": 4637.7, + "end": 4641.2, + "probability": 0.9238 + }, + { + "start": 4641.46, + "end": 4642.42, + "probability": 0.7775 + }, + { + "start": 4642.64, + "end": 4643.46, + "probability": 0.4759 + }, + { + "start": 4643.5, + "end": 4647.34, + "probability": 0.8134 + }, + { + "start": 4647.34, + "end": 4650.2, + "probability": 0.9985 + }, + { + "start": 4651.94, + "end": 4653.62, + "probability": 0.9974 + }, + { + "start": 4655.38, + "end": 4656.06, + "probability": 0.7281 + }, + { + "start": 4657.54, + "end": 4660.86, + "probability": 0.978 + }, + { + "start": 4661.08, + "end": 4662.7, + "probability": 0.9985 + }, + { + "start": 4663.22, + "end": 4667.26, + "probability": 0.9878 + }, + { + "start": 4667.82, + "end": 4670.04, + "probability": 0.9979 + }, + { + "start": 4670.56, + "end": 4673.88, + "probability": 0.983 + }, + { + "start": 4673.88, + "end": 4677.52, + "probability": 0.9978 + }, + { + "start": 4678.28, + "end": 4681.16, + "probability": 0.9982 + }, + { + "start": 4681.86, + "end": 4682.9, + "probability": 0.75 + }, + { + "start": 4683.38, + "end": 4684.68, + "probability": 0.9885 + }, + { + "start": 4684.78, + "end": 4687.56, + "probability": 0.9955 + }, + { + "start": 4687.56, + "end": 4690.24, + "probability": 0.9934 + }, + { + "start": 4690.64, + "end": 4692.32, + "probability": 0.9933 + }, + { + "start": 4693.02, + "end": 4696.06, + "probability": 0.9983 + }, + { + "start": 4696.84, + "end": 4705.58, + "probability": 0.9982 + }, + { + "start": 4706.62, + "end": 4708.92, + "probability": 0.9889 + }, + { + "start": 4709.86, + "end": 4711.54, + "probability": 0.9461 + }, + { + "start": 4711.7, + "end": 4712.4, + "probability": 0.6261 + }, + { + "start": 4713.59, + "end": 4717.54, + "probability": 0.998 + }, + { + "start": 4717.54, + "end": 4720.06, + "probability": 0.9946 + }, + { + "start": 4720.84, + "end": 4722.29, + "probability": 0.9983 + }, + { + "start": 4722.6, + "end": 4723.96, + "probability": 0.9951 + }, + { + "start": 4724.32, + "end": 4725.94, + "probability": 0.9298 + }, + { + "start": 4725.94, + "end": 4727.46, + "probability": 0.988 + }, + { + "start": 4727.98, + "end": 4729.54, + "probability": 0.9589 + }, + { + "start": 4730.16, + "end": 4732.88, + "probability": 0.9985 + }, + { + "start": 4733.06, + "end": 4735.82, + "probability": 0.9978 + }, + { + "start": 4736.46, + "end": 4736.86, + "probability": 0.6346 + }, + { + "start": 4736.86, + "end": 4737.66, + "probability": 0.4253 + }, + { + "start": 4738.56, + "end": 4739.58, + "probability": 0.9608 + }, + { + "start": 4740.12, + "end": 4741.0, + "probability": 0.6816 + }, + { + "start": 4742.08, + "end": 4743.54, + "probability": 0.9722 + }, + { + "start": 4743.6, + "end": 4744.9, + "probability": 0.9611 + }, + { + "start": 4745.12, + "end": 4746.3, + "probability": 0.8862 + }, + { + "start": 4754.32, + "end": 4756.1, + "probability": 0.5317 + }, + { + "start": 4759.08, + "end": 4759.94, + "probability": 0.5944 + }, + { + "start": 4760.14, + "end": 4762.8, + "probability": 0.794 + }, + { + "start": 4764.34, + "end": 4765.68, + "probability": 0.95 + }, + { + "start": 4767.22, + "end": 4769.16, + "probability": 0.5484 + }, + { + "start": 4770.38, + "end": 4771.52, + "probability": 0.8643 + }, + { + "start": 4772.08, + "end": 4773.2, + "probability": 0.865 + }, + { + "start": 4774.12, + "end": 4776.06, + "probability": 0.9814 + }, + { + "start": 4778.06, + "end": 4781.16, + "probability": 0.8827 + }, + { + "start": 4781.7, + "end": 4782.32, + "probability": 0.727 + }, + { + "start": 4783.08, + "end": 4785.58, + "probability": 0.64 + }, + { + "start": 4786.72, + "end": 4790.34, + "probability": 0.8622 + }, + { + "start": 4793.46, + "end": 4795.34, + "probability": 0.395 + }, + { + "start": 4796.16, + "end": 4799.64, + "probability": 0.9648 + }, + { + "start": 4800.62, + "end": 4803.64, + "probability": 0.9707 + }, + { + "start": 4804.8, + "end": 4806.8, + "probability": 0.8074 + }, + { + "start": 4807.54, + "end": 4808.1, + "probability": 0.6486 + }, + { + "start": 4809.58, + "end": 4811.06, + "probability": 0.7257 + }, + { + "start": 4811.78, + "end": 4812.58, + "probability": 0.5562 + }, + { + "start": 4813.2, + "end": 4814.22, + "probability": 0.6821 + }, + { + "start": 4814.78, + "end": 4817.12, + "probability": 0.716 + }, + { + "start": 4817.58, + "end": 4821.1, + "probability": 0.9837 + }, + { + "start": 4821.6, + "end": 4823.88, + "probability": 0.9557 + }, + { + "start": 4824.7, + "end": 4828.2, + "probability": 0.9425 + }, + { + "start": 4828.76, + "end": 4829.18, + "probability": 0.3908 + }, + { + "start": 4829.64, + "end": 4831.16, + "probability": 0.6977 + }, + { + "start": 4831.66, + "end": 4832.82, + "probability": 0.9453 + }, + { + "start": 4833.78, + "end": 4836.0, + "probability": 0.8149 + }, + { + "start": 4836.88, + "end": 4844.92, + "probability": 0.8927 + }, + { + "start": 4845.78, + "end": 4850.76, + "probability": 0.9476 + }, + { + "start": 4851.54, + "end": 4857.62, + "probability": 0.9925 + }, + { + "start": 4858.16, + "end": 4862.22, + "probability": 0.8301 + }, + { + "start": 4862.88, + "end": 4870.82, + "probability": 0.8616 + }, + { + "start": 4871.18, + "end": 4871.92, + "probability": 0.1388 + }, + { + "start": 4873.32, + "end": 4875.96, + "probability": 0.3039 + }, + { + "start": 4882.24, + "end": 4882.24, + "probability": 0.1961 + }, + { + "start": 4882.24, + "end": 4882.24, + "probability": 0.3334 + }, + { + "start": 4882.24, + "end": 4884.88, + "probability": 0.3601 + }, + { + "start": 4884.88, + "end": 4888.92, + "probability": 0.7128 + }, + { + "start": 4889.4, + "end": 4891.62, + "probability": 0.5114 + }, + { + "start": 4892.14, + "end": 4896.46, + "probability": 0.8427 + }, + { + "start": 4897.5, + "end": 4902.9, + "probability": 0.9685 + }, + { + "start": 4902.9, + "end": 4908.24, + "probability": 0.6735 + }, + { + "start": 4908.78, + "end": 4911.74, + "probability": 0.7929 + }, + { + "start": 4911.8, + "end": 4915.5, + "probability": 0.9957 + }, + { + "start": 4915.84, + "end": 4916.14, + "probability": 0.7748 + }, + { + "start": 4916.44, + "end": 4917.4, + "probability": 0.3883 + }, + { + "start": 4917.78, + "end": 4920.56, + "probability": 0.732 + }, + { + "start": 4931.54, + "end": 4933.46, + "probability": 0.7024 + }, + { + "start": 4941.04, + "end": 4942.36, + "probability": 0.7523 + }, + { + "start": 4943.44, + "end": 4944.24, + "probability": 0.8914 + }, + { + "start": 4945.14, + "end": 4945.56, + "probability": 0.9038 + }, + { + "start": 4946.84, + "end": 4948.08, + "probability": 0.8808 + }, + { + "start": 4951.6, + "end": 4952.36, + "probability": 0.9412 + }, + { + "start": 4953.5, + "end": 4958.58, + "probability": 0.9731 + }, + { + "start": 4960.12, + "end": 4962.52, + "probability": 0.9443 + }, + { + "start": 4963.54, + "end": 4965.64, + "probability": 0.6302 + }, + { + "start": 4965.66, + "end": 4967.3, + "probability": 0.2187 + }, + { + "start": 4967.48, + "end": 4968.7, + "probability": 0.4187 + }, + { + "start": 4969.34, + "end": 4970.8, + "probability": 0.9848 + }, + { + "start": 4972.2, + "end": 4975.28, + "probability": 0.9562 + }, + { + "start": 4975.5, + "end": 4977.82, + "probability": 0.9756 + }, + { + "start": 4978.12, + "end": 4979.08, + "probability": 0.9713 + }, + { + "start": 4979.94, + "end": 4984.06, + "probability": 0.8867 + }, + { + "start": 4984.56, + "end": 4986.44, + "probability": 0.8371 + }, + { + "start": 4986.52, + "end": 4987.88, + "probability": 0.8824 + }, + { + "start": 4988.86, + "end": 4991.11, + "probability": 0.7503 + }, + { + "start": 4993.22, + "end": 4993.88, + "probability": 0.8629 + }, + { + "start": 4994.56, + "end": 4996.65, + "probability": 0.9959 + }, + { + "start": 4997.06, + "end": 5000.42, + "probability": 0.919 + }, + { + "start": 5000.62, + "end": 5005.86, + "probability": 0.8435 + }, + { + "start": 5006.32, + "end": 5007.18, + "probability": 0.8138 + }, + { + "start": 5008.28, + "end": 5013.62, + "probability": 0.9828 + }, + { + "start": 5013.62, + "end": 5019.5, + "probability": 0.9116 + }, + { + "start": 5020.06, + "end": 5021.56, + "probability": 0.9744 + }, + { + "start": 5022.46, + "end": 5025.14, + "probability": 0.8381 + }, + { + "start": 5025.64, + "end": 5026.06, + "probability": 0.9072 + }, + { + "start": 5027.28, + "end": 5028.16, + "probability": 0.8374 + }, + { + "start": 5028.86, + "end": 5033.76, + "probability": 0.8872 + }, + { + "start": 5034.2, + "end": 5034.95, + "probability": 0.9261 + }, + { + "start": 5036.84, + "end": 5038.04, + "probability": 0.9644 + }, + { + "start": 5038.08, + "end": 5040.8, + "probability": 0.7844 + }, + { + "start": 5041.22, + "end": 5042.46, + "probability": 0.968 + }, + { + "start": 5043.66, + "end": 5045.7, + "probability": 0.6677 + }, + { + "start": 5046.48, + "end": 5046.48, + "probability": 0.0576 + }, + { + "start": 5046.48, + "end": 5048.54, + "probability": 0.8647 + }, + { + "start": 5049.86, + "end": 5051.48, + "probability": 0.8034 + }, + { + "start": 5052.34, + "end": 5054.46, + "probability": 0.9592 + }, + { + "start": 5055.34, + "end": 5056.6, + "probability": 0.9425 + }, + { + "start": 5058.01, + "end": 5059.64, + "probability": 0.5342 + }, + { + "start": 5060.34, + "end": 5060.88, + "probability": 0.3691 + }, + { + "start": 5061.62, + "end": 5064.26, + "probability": 0.9598 + }, + { + "start": 5064.96, + "end": 5066.56, + "probability": 0.993 + }, + { + "start": 5067.46, + "end": 5068.64, + "probability": 0.6941 + }, + { + "start": 5069.32, + "end": 5072.28, + "probability": 0.7628 + }, + { + "start": 5072.94, + "end": 5076.48, + "probability": 0.8541 + }, + { + "start": 5077.58, + "end": 5077.88, + "probability": 0.6276 + }, + { + "start": 5078.6, + "end": 5078.94, + "probability": 0.8782 + }, + { + "start": 5079.52, + "end": 5080.74, + "probability": 0.9502 + }, + { + "start": 5081.08, + "end": 5082.8, + "probability": 0.9966 + }, + { + "start": 5083.24, + "end": 5084.62, + "probability": 0.7403 + }, + { + "start": 5085.22, + "end": 5085.64, + "probability": 0.8754 + }, + { + "start": 5086.18, + "end": 5089.51, + "probability": 0.7276 + }, + { + "start": 5090.0, + "end": 5092.62, + "probability": 0.6819 + }, + { + "start": 5093.12, + "end": 5097.96, + "probability": 0.9781 + }, + { + "start": 5098.32, + "end": 5099.4, + "probability": 0.7631 + }, + { + "start": 5099.96, + "end": 5101.46, + "probability": 0.9613 + }, + { + "start": 5102.42, + "end": 5102.62, + "probability": 0.7938 + }, + { + "start": 5103.14, + "end": 5104.12, + "probability": 0.402 + }, + { + "start": 5104.28, + "end": 5104.82, + "probability": 0.9075 + }, + { + "start": 5105.3, + "end": 5108.08, + "probability": 0.7266 + }, + { + "start": 5123.76, + "end": 5125.94, + "probability": 0.6409 + }, + { + "start": 5127.12, + "end": 5133.74, + "probability": 0.9487 + }, + { + "start": 5134.54, + "end": 5137.46, + "probability": 0.9897 + }, + { + "start": 5137.54, + "end": 5139.16, + "probability": 0.9601 + }, + { + "start": 5139.78, + "end": 5144.54, + "probability": 0.9824 + }, + { + "start": 5144.78, + "end": 5145.6, + "probability": 0.8567 + }, + { + "start": 5146.62, + "end": 5150.68, + "probability": 0.9869 + }, + { + "start": 5151.8, + "end": 5156.8, + "probability": 0.7218 + }, + { + "start": 5157.04, + "end": 5160.28, + "probability": 0.5554 + }, + { + "start": 5161.12, + "end": 5162.64, + "probability": 0.9888 + }, + { + "start": 5163.3, + "end": 5165.84, + "probability": 0.9642 + }, + { + "start": 5166.98, + "end": 5167.94, + "probability": 0.8823 + }, + { + "start": 5167.94, + "end": 5168.92, + "probability": 0.6215 + }, + { + "start": 5169.41, + "end": 5173.04, + "probability": 0.8389 + }, + { + "start": 5174.74, + "end": 5175.96, + "probability": 0.9637 + }, + { + "start": 5177.46, + "end": 5179.22, + "probability": 0.6844 + }, + { + "start": 5180.12, + "end": 5183.64, + "probability": 0.9835 + }, + { + "start": 5184.88, + "end": 5186.14, + "probability": 0.9897 + }, + { + "start": 5186.68, + "end": 5188.74, + "probability": 0.9932 + }, + { + "start": 5189.36, + "end": 5190.58, + "probability": 0.9956 + }, + { + "start": 5191.64, + "end": 5194.86, + "probability": 0.9969 + }, + { + "start": 5195.42, + "end": 5196.78, + "probability": 0.9949 + }, + { + "start": 5197.3, + "end": 5201.38, + "probability": 0.3307 + }, + { + "start": 5201.94, + "end": 5202.72, + "probability": 0.4337 + }, + { + "start": 5203.3, + "end": 5205.58, + "probability": 0.7464 + }, + { + "start": 5206.82, + "end": 5207.08, + "probability": 0.7348 + }, + { + "start": 5207.16, + "end": 5211.98, + "probability": 0.9127 + }, + { + "start": 5212.82, + "end": 5213.86, + "probability": 0.8302 + }, + { + "start": 5214.78, + "end": 5217.14, + "probability": 0.8091 + }, + { + "start": 5218.38, + "end": 5220.2, + "probability": 0.7846 + }, + { + "start": 5220.96, + "end": 5221.98, + "probability": 0.7134 + }, + { + "start": 5223.2, + "end": 5226.85, + "probability": 0.9739 + }, + { + "start": 5227.74, + "end": 5230.22, + "probability": 0.9159 + }, + { + "start": 5231.24, + "end": 5232.62, + "probability": 0.9521 + }, + { + "start": 5233.36, + "end": 5236.3, + "probability": 0.7908 + }, + { + "start": 5237.04, + "end": 5237.84, + "probability": 0.5716 + }, + { + "start": 5238.06, + "end": 5241.78, + "probability": 0.7816 + }, + { + "start": 5242.32, + "end": 5246.66, + "probability": 0.8445 + }, + { + "start": 5246.78, + "end": 5249.91, + "probability": 0.9813 + }, + { + "start": 5251.14, + "end": 5252.34, + "probability": 0.7053 + }, + { + "start": 5252.4, + "end": 5255.38, + "probability": 0.9897 + }, + { + "start": 5255.82, + "end": 5257.2, + "probability": 0.5 + }, + { + "start": 5257.86, + "end": 5258.84, + "probability": 0.8111 + }, + { + "start": 5259.68, + "end": 5262.69, + "probability": 0.9712 + }, + { + "start": 5263.56, + "end": 5265.7, + "probability": 0.9561 + }, + { + "start": 5266.28, + "end": 5267.34, + "probability": 0.8298 + }, + { + "start": 5267.92, + "end": 5271.58, + "probability": 0.8188 + }, + { + "start": 5271.74, + "end": 5272.22, + "probability": 0.8684 + }, + { + "start": 5272.6, + "end": 5273.92, + "probability": 0.4954 + }, + { + "start": 5274.72, + "end": 5275.7, + "probability": 0.8487 + }, + { + "start": 5276.34, + "end": 5277.98, + "probability": 0.9106 + }, + { + "start": 5278.82, + "end": 5280.46, + "probability": 0.8055 + }, + { + "start": 5280.5, + "end": 5283.5, + "probability": 0.5054 + }, + { + "start": 5283.72, + "end": 5286.14, + "probability": 0.1577 + }, + { + "start": 5287.38, + "end": 5293.12, + "probability": 0.9464 + }, + { + "start": 5293.6, + "end": 5296.68, + "probability": 0.9634 + }, + { + "start": 5297.94, + "end": 5298.86, + "probability": 0.7371 + }, + { + "start": 5299.5, + "end": 5303.02, + "probability": 0.9615 + }, + { + "start": 5303.74, + "end": 5304.38, + "probability": 0.9491 + }, + { + "start": 5304.66, + "end": 5305.36, + "probability": 0.9849 + }, + { + "start": 5305.84, + "end": 5308.78, + "probability": 0.8464 + }, + { + "start": 5309.3, + "end": 5312.46, + "probability": 0.9913 + }, + { + "start": 5312.94, + "end": 5316.42, + "probability": 0.993 + }, + { + "start": 5316.5, + "end": 5319.34, + "probability": 0.9969 + }, + { + "start": 5320.3, + "end": 5321.26, + "probability": 0.5723 + }, + { + "start": 5321.52, + "end": 5325.42, + "probability": 0.9188 + }, + { + "start": 5326.0, + "end": 5328.52, + "probability": 0.7858 + }, + { + "start": 5328.94, + "end": 5330.2, + "probability": 0.9985 + }, + { + "start": 5330.54, + "end": 5331.14, + "probability": 0.5168 + }, + { + "start": 5331.46, + "end": 5333.26, + "probability": 0.6389 + }, + { + "start": 5333.26, + "end": 5335.62, + "probability": 0.9645 + }, + { + "start": 5348.6, + "end": 5350.24, + "probability": 0.6353 + }, + { + "start": 5350.98, + "end": 5352.58, + "probability": 0.7487 + }, + { + "start": 5354.38, + "end": 5356.56, + "probability": 0.9519 + }, + { + "start": 5357.58, + "end": 5363.54, + "probability": 0.9873 + }, + { + "start": 5363.92, + "end": 5364.75, + "probability": 0.9526 + }, + { + "start": 5366.24, + "end": 5371.24, + "probability": 0.8731 + }, + { + "start": 5371.52, + "end": 5372.68, + "probability": 0.7201 + }, + { + "start": 5373.3, + "end": 5377.38, + "probability": 0.9498 + }, + { + "start": 5379.56, + "end": 5382.68, + "probability": 0.9837 + }, + { + "start": 5382.68, + "end": 5385.22, + "probability": 0.9406 + }, + { + "start": 5387.62, + "end": 5389.24, + "probability": 0.9901 + }, + { + "start": 5389.76, + "end": 5393.1, + "probability": 0.888 + }, + { + "start": 5393.3, + "end": 5396.48, + "probability": 0.9842 + }, + { + "start": 5397.3, + "end": 5398.4, + "probability": 0.9806 + }, + { + "start": 5399.24, + "end": 5402.52, + "probability": 0.9902 + }, + { + "start": 5403.86, + "end": 5405.16, + "probability": 0.9842 + }, + { + "start": 5405.24, + "end": 5406.42, + "probability": 0.8912 + }, + { + "start": 5406.48, + "end": 5408.03, + "probability": 0.8378 + }, + { + "start": 5408.64, + "end": 5413.28, + "probability": 0.9231 + }, + { + "start": 5413.8, + "end": 5419.16, + "probability": 0.9807 + }, + { + "start": 5421.14, + "end": 5425.78, + "probability": 0.895 + }, + { + "start": 5426.16, + "end": 5428.3, + "probability": 0.9206 + }, + { + "start": 5429.16, + "end": 5430.2, + "probability": 0.8635 + }, + { + "start": 5431.54, + "end": 5436.62, + "probability": 0.9909 + }, + { + "start": 5437.1, + "end": 5438.82, + "probability": 0.9894 + }, + { + "start": 5439.82, + "end": 5442.22, + "probability": 0.8828 + }, + { + "start": 5444.32, + "end": 5447.36, + "probability": 0.8938 + }, + { + "start": 5449.12, + "end": 5454.74, + "probability": 0.9879 + }, + { + "start": 5455.32, + "end": 5456.8, + "probability": 0.8952 + }, + { + "start": 5457.34, + "end": 5459.24, + "probability": 0.9118 + }, + { + "start": 5459.82, + "end": 5463.58, + "probability": 0.8346 + }, + { + "start": 5465.28, + "end": 5466.42, + "probability": 0.9138 + }, + { + "start": 5467.4, + "end": 5470.02, + "probability": 0.9389 + }, + { + "start": 5470.86, + "end": 5472.38, + "probability": 0.86 + }, + { + "start": 5472.52, + "end": 5474.26, + "probability": 0.8827 + }, + { + "start": 5474.4, + "end": 5477.13, + "probability": 0.9888 + }, + { + "start": 5477.6, + "end": 5480.38, + "probability": 0.9791 + }, + { + "start": 5481.26, + "end": 5482.28, + "probability": 0.783 + }, + { + "start": 5483.36, + "end": 5487.53, + "probability": 0.9965 + }, + { + "start": 5488.46, + "end": 5490.04, + "probability": 0.7723 + }, + { + "start": 5491.54, + "end": 5496.8, + "probability": 0.9668 + }, + { + "start": 5496.8, + "end": 5501.14, + "probability": 0.9923 + }, + { + "start": 5501.4, + "end": 5502.26, + "probability": 0.771 + }, + { + "start": 5504.46, + "end": 5509.3, + "probability": 0.8448 + }, + { + "start": 5509.86, + "end": 5511.65, + "probability": 0.9864 + }, + { + "start": 5512.06, + "end": 5513.28, + "probability": 0.9893 + }, + { + "start": 5513.68, + "end": 5515.38, + "probability": 0.9457 + }, + { + "start": 5515.52, + "end": 5519.94, + "probability": 0.98 + }, + { + "start": 5520.2, + "end": 5521.32, + "probability": 0.9949 + }, + { + "start": 5521.68, + "end": 5525.15, + "probability": 0.998 + }, + { + "start": 5526.88, + "end": 5531.84, + "probability": 0.999 + }, + { + "start": 5531.96, + "end": 5533.58, + "probability": 0.6732 + }, + { + "start": 5533.58, + "end": 5533.78, + "probability": 0.8115 + }, + { + "start": 5533.82, + "end": 5534.46, + "probability": 0.736 + }, + { + "start": 5535.32, + "end": 5537.4, + "probability": 0.9941 + }, + { + "start": 5538.02, + "end": 5540.68, + "probability": 0.9082 + }, + { + "start": 5541.42, + "end": 5543.86, + "probability": 0.6971 + }, + { + "start": 5544.36, + "end": 5546.8, + "probability": 0.9956 + }, + { + "start": 5547.18, + "end": 5549.54, + "probability": 0.9878 + }, + { + "start": 5549.98, + "end": 5552.62, + "probability": 0.9944 + }, + { + "start": 5552.66, + "end": 5554.4, + "probability": 0.8003 + }, + { + "start": 5555.26, + "end": 5557.2, + "probability": 0.9798 + }, + { + "start": 5558.12, + "end": 5559.4, + "probability": 0.7883 + }, + { + "start": 5559.54, + "end": 5559.98, + "probability": 0.8077 + }, + { + "start": 5560.12, + "end": 5560.86, + "probability": 0.7664 + }, + { + "start": 5560.88, + "end": 5562.22, + "probability": 0.8556 + }, + { + "start": 5562.98, + "end": 5566.04, + "probability": 0.9316 + }, + { + "start": 5580.72, + "end": 5582.14, + "probability": 0.6434 + }, + { + "start": 5582.28, + "end": 5585.56, + "probability": 0.7826 + }, + { + "start": 5586.54, + "end": 5589.24, + "probability": 0.9746 + }, + { + "start": 5593.4, + "end": 5595.92, + "probability": 0.9841 + }, + { + "start": 5599.06, + "end": 5600.98, + "probability": 0.8977 + }, + { + "start": 5601.7, + "end": 5604.12, + "probability": 0.927 + }, + { + "start": 5604.9, + "end": 5609.2, + "probability": 0.8901 + }, + { + "start": 5610.1, + "end": 5614.06, + "probability": 0.9739 + }, + { + "start": 5614.52, + "end": 5617.68, + "probability": 0.8017 + }, + { + "start": 5617.84, + "end": 5619.3, + "probability": 0.9112 + }, + { + "start": 5619.42, + "end": 5619.9, + "probability": 0.807 + }, + { + "start": 5620.06, + "end": 5621.38, + "probability": 0.8752 + }, + { + "start": 5622.16, + "end": 5626.56, + "probability": 0.959 + }, + { + "start": 5626.96, + "end": 5629.48, + "probability": 0.9701 + }, + { + "start": 5630.08, + "end": 5633.56, + "probability": 0.9992 + }, + { + "start": 5633.96, + "end": 5634.58, + "probability": 0.4169 + }, + { + "start": 5634.8, + "end": 5636.08, + "probability": 0.9908 + }, + { + "start": 5637.76, + "end": 5638.22, + "probability": 0.8165 + }, + { + "start": 5638.32, + "end": 5639.78, + "probability": 0.96 + }, + { + "start": 5639.84, + "end": 5641.74, + "probability": 0.8865 + }, + { + "start": 5642.58, + "end": 5646.72, + "probability": 0.9891 + }, + { + "start": 5647.46, + "end": 5650.36, + "probability": 0.9743 + }, + { + "start": 5651.02, + "end": 5651.62, + "probability": 0.9389 + }, + { + "start": 5652.92, + "end": 5656.02, + "probability": 0.9696 + }, + { + "start": 5656.7, + "end": 5659.68, + "probability": 0.9951 + }, + { + "start": 5659.68, + "end": 5663.7, + "probability": 0.982 + }, + { + "start": 5664.12, + "end": 5664.8, + "probability": 0.7297 + }, + { + "start": 5665.66, + "end": 5669.62, + "probability": 0.5927 + }, + { + "start": 5670.5, + "end": 5671.92, + "probability": 0.4585 + }, + { + "start": 5672.54, + "end": 5676.04, + "probability": 0.9929 + }, + { + "start": 5676.9, + "end": 5681.54, + "probability": 0.9951 + }, + { + "start": 5682.54, + "end": 5685.7, + "probability": 0.6979 + }, + { + "start": 5686.46, + "end": 5688.03, + "probability": 0.9645 + }, + { + "start": 5688.48, + "end": 5691.1, + "probability": 0.9935 + }, + { + "start": 5691.46, + "end": 5692.98, + "probability": 0.994 + }, + { + "start": 5693.64, + "end": 5697.32, + "probability": 0.9873 + }, + { + "start": 5697.68, + "end": 5699.87, + "probability": 0.9971 + }, + { + "start": 5700.44, + "end": 5703.46, + "probability": 0.9022 + }, + { + "start": 5703.56, + "end": 5704.58, + "probability": 0.8899 + }, + { + "start": 5704.86, + "end": 5706.86, + "probability": 0.9669 + }, + { + "start": 5707.28, + "end": 5709.84, + "probability": 0.9889 + }, + { + "start": 5710.8, + "end": 5712.12, + "probability": 0.9985 + }, + { + "start": 5713.34, + "end": 5718.14, + "probability": 0.999 + }, + { + "start": 5718.74, + "end": 5723.96, + "probability": 0.9971 + }, + { + "start": 5724.82, + "end": 5726.36, + "probability": 0.9154 + }, + { + "start": 5727.2, + "end": 5728.18, + "probability": 0.8945 + }, + { + "start": 5729.3, + "end": 5732.12, + "probability": 0.992 + }, + { + "start": 5732.74, + "end": 5735.32, + "probability": 0.9979 + }, + { + "start": 5735.42, + "end": 5735.96, + "probability": 0.6243 + }, + { + "start": 5736.58, + "end": 5743.06, + "probability": 0.9889 + }, + { + "start": 5743.16, + "end": 5744.86, + "probability": 0.7812 + }, + { + "start": 5744.92, + "end": 5748.2, + "probability": 0.9949 + }, + { + "start": 5748.56, + "end": 5750.78, + "probability": 0.9916 + }, + { + "start": 5751.38, + "end": 5754.54, + "probability": 0.9963 + }, + { + "start": 5755.16, + "end": 5757.67, + "probability": 0.9871 + }, + { + "start": 5758.36, + "end": 5762.34, + "probability": 0.944 + }, + { + "start": 5762.46, + "end": 5767.68, + "probability": 0.9928 + }, + { + "start": 5768.22, + "end": 5775.5, + "probability": 0.7993 + }, + { + "start": 5775.9, + "end": 5779.4, + "probability": 0.9701 + }, + { + "start": 5779.48, + "end": 5779.94, + "probability": 0.3341 + }, + { + "start": 5779.94, + "end": 5781.14, + "probability": 0.5544 + }, + { + "start": 5781.2, + "end": 5784.7, + "probability": 0.8384 + }, + { + "start": 5787.36, + "end": 5789.82, + "probability": 0.9192 + }, + { + "start": 5795.34, + "end": 5796.41, + "probability": 0.2415 + }, + { + "start": 5812.22, + "end": 5813.6, + "probability": 0.5537 + }, + { + "start": 5814.22, + "end": 5817.02, + "probability": 0.9946 + }, + { + "start": 5817.22, + "end": 5820.5, + "probability": 0.9895 + }, + { + "start": 5821.06, + "end": 5821.48, + "probability": 0.658 + }, + { + "start": 5821.8, + "end": 5821.94, + "probability": 0.4559 + }, + { + "start": 5822.06, + "end": 5823.34, + "probability": 0.8867 + }, + { + "start": 5824.2, + "end": 5828.18, + "probability": 0.992 + }, + { + "start": 5829.32, + "end": 5831.66, + "probability": 0.9891 + }, + { + "start": 5833.4, + "end": 5837.44, + "probability": 0.9888 + }, + { + "start": 5839.4, + "end": 5842.44, + "probability": 0.9722 + }, + { + "start": 5843.18, + "end": 5845.64, + "probability": 0.9839 + }, + { + "start": 5846.96, + "end": 5848.84, + "probability": 0.6453 + }, + { + "start": 5849.6, + "end": 5854.18, + "probability": 0.7589 + }, + { + "start": 5854.52, + "end": 5857.96, + "probability": 0.9805 + }, + { + "start": 5858.48, + "end": 5864.48, + "probability": 0.9922 + }, + { + "start": 5865.56, + "end": 5867.04, + "probability": 0.9193 + }, + { + "start": 5867.1, + "end": 5871.06, + "probability": 0.9579 + }, + { + "start": 5871.86, + "end": 5872.66, + "probability": 0.5949 + }, + { + "start": 5873.04, + "end": 5874.76, + "probability": 0.5873 + }, + { + "start": 5876.34, + "end": 5877.16, + "probability": 0.9636 + }, + { + "start": 5877.5, + "end": 5885.08, + "probability": 0.9771 + }, + { + "start": 5885.64, + "end": 5887.65, + "probability": 0.985 + }, + { + "start": 5887.96, + "end": 5890.16, + "probability": 0.9934 + }, + { + "start": 5890.86, + "end": 5897.42, + "probability": 0.8868 + }, + { + "start": 5898.08, + "end": 5903.1, + "probability": 0.3198 + }, + { + "start": 5903.44, + "end": 5903.54, + "probability": 0.039 + }, + { + "start": 5903.54, + "end": 5905.92, + "probability": 0.4811 + }, + { + "start": 5906.6, + "end": 5907.91, + "probability": 0.4146 + }, + { + "start": 5908.38, + "end": 5909.15, + "probability": 0.027 + }, + { + "start": 5910.23, + "end": 5911.8, + "probability": 0.7134 + }, + { + "start": 5911.84, + "end": 5911.84, + "probability": 0.1661 + }, + { + "start": 5911.84, + "end": 5912.64, + "probability": 0.4919 + }, + { + "start": 5912.88, + "end": 5914.16, + "probability": 0.8784 + }, + { + "start": 5914.24, + "end": 5918.54, + "probability": 0.8616 + }, + { + "start": 5918.54, + "end": 5918.62, + "probability": 0.0857 + }, + { + "start": 5918.62, + "end": 5918.62, + "probability": 0.1264 + }, + { + "start": 5918.62, + "end": 5922.5, + "probability": 0.9147 + }, + { + "start": 5923.04, + "end": 5924.13, + "probability": 0.8531 + }, + { + "start": 5924.72, + "end": 5926.58, + "probability": 0.8694 + }, + { + "start": 5926.58, + "end": 5930.82, + "probability": 0.2208 + }, + { + "start": 5931.42, + "end": 5931.68, + "probability": 0.1985 + }, + { + "start": 5931.86, + "end": 5933.7, + "probability": 0.1206 + }, + { + "start": 5934.38, + "end": 5934.4, + "probability": 0.3719 + }, + { + "start": 5934.4, + "end": 5934.86, + "probability": 0.0859 + }, + { + "start": 5934.86, + "end": 5936.66, + "probability": 0.599 + }, + { + "start": 5937.78, + "end": 5939.36, + "probability": 0.4933 + }, + { + "start": 5940.58, + "end": 5943.68, + "probability": 0.744 + }, + { + "start": 5943.84, + "end": 5944.68, + "probability": 0.6307 + }, + { + "start": 5945.5, + "end": 5948.94, + "probability": 0.9595 + }, + { + "start": 5948.94, + "end": 5952.16, + "probability": 0.9949 + }, + { + "start": 5953.14, + "end": 5958.78, + "probability": 0.9982 + }, + { + "start": 5959.52, + "end": 5961.92, + "probability": 0.9155 + }, + { + "start": 5962.86, + "end": 5966.12, + "probability": 0.9949 + }, + { + "start": 5966.3, + "end": 5968.24, + "probability": 0.8894 + }, + { + "start": 5968.46, + "end": 5969.72, + "probability": 0.8028 + }, + { + "start": 5970.26, + "end": 5972.05, + "probability": 0.9784 + }, + { + "start": 5972.2, + "end": 5975.98, + "probability": 0.775 + }, + { + "start": 5976.54, + "end": 5980.38, + "probability": 0.9522 + }, + { + "start": 5980.84, + "end": 5982.52, + "probability": 0.9466 + }, + { + "start": 5983.36, + "end": 5985.7, + "probability": 0.9153 + }, + { + "start": 5985.84, + "end": 5987.7, + "probability": 0.9438 + }, + { + "start": 5988.14, + "end": 5991.18, + "probability": 0.9663 + }, + { + "start": 5991.64, + "end": 5995.46, + "probability": 0.999 + }, + { + "start": 5996.24, + "end": 6000.25, + "probability": 0.9973 + }, + { + "start": 6000.68, + "end": 6000.74, + "probability": 0.2107 + }, + { + "start": 6000.74, + "end": 6001.94, + "probability": 0.6317 + }, + { + "start": 6002.52, + "end": 6006.82, + "probability": 0.9232 + }, + { + "start": 6006.92, + "end": 6008.02, + "probability": 0.9338 + }, + { + "start": 6008.16, + "end": 6011.14, + "probability": 0.8094 + }, + { + "start": 6012.26, + "end": 6014.5, + "probability": 0.877 + }, + { + "start": 6014.6, + "end": 6014.96, + "probability": 0.7253 + }, + { + "start": 6015.66, + "end": 6016.94, + "probability": 0.6285 + }, + { + "start": 6017.32, + "end": 6019.04, + "probability": 0.9486 + }, + { + "start": 6026.1, + "end": 6026.1, + "probability": 0.4176 + }, + { + "start": 6026.1, + "end": 6026.1, + "probability": 0.1531 + }, + { + "start": 6026.1, + "end": 6026.1, + "probability": 0.1833 + }, + { + "start": 6026.1, + "end": 6026.1, + "probability": 0.0241 + }, + { + "start": 6042.92, + "end": 6044.22, + "probability": 0.6683 + }, + { + "start": 6045.46, + "end": 6046.92, + "probability": 0.9798 + }, + { + "start": 6048.06, + "end": 6049.06, + "probability": 0.8651 + }, + { + "start": 6049.76, + "end": 6050.06, + "probability": 0.9815 + }, + { + "start": 6052.8, + "end": 6053.38, + "probability": 0.7967 + }, + { + "start": 6054.96, + "end": 6055.7, + "probability": 0.6823 + }, + { + "start": 6056.56, + "end": 6059.64, + "probability": 0.9761 + }, + { + "start": 6060.36, + "end": 6062.5, + "probability": 0.8601 + }, + { + "start": 6063.26, + "end": 6063.88, + "probability": 0.583 + }, + { + "start": 6065.0, + "end": 6066.44, + "probability": 0.9785 + }, + { + "start": 6067.48, + "end": 6070.82, + "probability": 0.996 + }, + { + "start": 6071.44, + "end": 6075.1, + "probability": 0.9833 + }, + { + "start": 6076.12, + "end": 6077.38, + "probability": 0.9896 + }, + { + "start": 6078.14, + "end": 6080.74, + "probability": 0.9204 + }, + { + "start": 6081.64, + "end": 6083.52, + "probability": 0.9991 + }, + { + "start": 6084.5, + "end": 6086.12, + "probability": 0.8678 + }, + { + "start": 6087.82, + "end": 6090.48, + "probability": 0.9597 + }, + { + "start": 6092.56, + "end": 6094.06, + "probability": 0.9459 + }, + { + "start": 6094.84, + "end": 6096.28, + "probability": 0.7443 + }, + { + "start": 6097.4, + "end": 6100.44, + "probability": 0.9922 + }, + { + "start": 6101.32, + "end": 6104.4, + "probability": 0.9871 + }, + { + "start": 6105.24, + "end": 6106.96, + "probability": 0.9951 + }, + { + "start": 6107.84, + "end": 6112.82, + "probability": 0.9896 + }, + { + "start": 6113.36, + "end": 6114.52, + "probability": 0.8024 + }, + { + "start": 6115.44, + "end": 6119.52, + "probability": 0.9425 + }, + { + "start": 6120.2, + "end": 6122.8, + "probability": 0.967 + }, + { + "start": 6122.88, + "end": 6123.7, + "probability": 0.8466 + }, + { + "start": 6124.6, + "end": 6125.86, + "probability": 0.7829 + }, + { + "start": 6128.28, + "end": 6128.7, + "probability": 0.8111 + }, + { + "start": 6129.04, + "end": 6131.78, + "probability": 0.8239 + }, + { + "start": 6131.84, + "end": 6137.47, + "probability": 0.9758 + }, + { + "start": 6138.02, + "end": 6140.1, + "probability": 0.9779 + }, + { + "start": 6140.78, + "end": 6141.98, + "probability": 0.7222 + }, + { + "start": 6142.82, + "end": 6147.7, + "probability": 0.8159 + }, + { + "start": 6147.7, + "end": 6152.62, + "probability": 0.9952 + }, + { + "start": 6153.32, + "end": 6154.78, + "probability": 0.7462 + }, + { + "start": 6155.82, + "end": 6161.16, + "probability": 0.8708 + }, + { + "start": 6162.14, + "end": 6167.14, + "probability": 0.8193 + }, + { + "start": 6168.0, + "end": 6170.18, + "probability": 0.9689 + }, + { + "start": 6170.62, + "end": 6174.26, + "probability": 0.915 + }, + { + "start": 6174.9, + "end": 6176.64, + "probability": 0.9255 + }, + { + "start": 6177.18, + "end": 6180.42, + "probability": 0.962 + }, + { + "start": 6181.16, + "end": 6183.64, + "probability": 0.9787 + }, + { + "start": 6184.6, + "end": 6185.4, + "probability": 0.9102 + }, + { + "start": 6187.3, + "end": 6194.08, + "probability": 0.9768 + }, + { + "start": 6196.12, + "end": 6200.9, + "probability": 0.748 + }, + { + "start": 6201.88, + "end": 6206.42, + "probability": 0.9918 + }, + { + "start": 6207.36, + "end": 6209.3, + "probability": 0.7886 + }, + { + "start": 6209.9, + "end": 6211.46, + "probability": 0.9069 + }, + { + "start": 6212.92, + "end": 6217.8, + "probability": 0.9845 + }, + { + "start": 6217.8, + "end": 6225.18, + "probability": 0.9734 + }, + { + "start": 6225.26, + "end": 6225.56, + "probability": 0.7302 + }, + { + "start": 6226.44, + "end": 6229.5, + "probability": 0.9946 + }, + { + "start": 6230.18, + "end": 6234.84, + "probability": 0.9925 + }, + { + "start": 6235.62, + "end": 6238.78, + "probability": 0.9532 + }, + { + "start": 6239.44, + "end": 6240.6, + "probability": 0.724 + }, + { + "start": 6241.44, + "end": 6244.76, + "probability": 0.8634 + }, + { + "start": 6245.4, + "end": 6246.41, + "probability": 0.984 + }, + { + "start": 6247.46, + "end": 6252.4, + "probability": 0.9808 + }, + { + "start": 6252.9, + "end": 6254.36, + "probability": 0.7182 + }, + { + "start": 6254.54, + "end": 6255.4, + "probability": 0.5376 + }, + { + "start": 6255.6, + "end": 6256.14, + "probability": 0.7284 + }, + { + "start": 6256.78, + "end": 6259.92, + "probability": 0.8227 + }, + { + "start": 6261.11, + "end": 6263.7, + "probability": 0.97 + }, + { + "start": 6282.4, + "end": 6284.76, + "probability": 0.7492 + }, + { + "start": 6286.18, + "end": 6288.16, + "probability": 0.6046 + }, + { + "start": 6289.54, + "end": 6295.5, + "probability": 0.9076 + }, + { + "start": 6296.12, + "end": 6297.0, + "probability": 0.8371 + }, + { + "start": 6298.4, + "end": 6299.48, + "probability": 0.275 + }, + { + "start": 6300.0, + "end": 6302.48, + "probability": 0.9978 + }, + { + "start": 6303.22, + "end": 6305.58, + "probability": 0.8571 + }, + { + "start": 6306.62, + "end": 6307.9, + "probability": 0.9782 + }, + { + "start": 6309.82, + "end": 6312.86, + "probability": 0.8902 + }, + { + "start": 6314.36, + "end": 6317.33, + "probability": 0.7776 + }, + { + "start": 6318.06, + "end": 6319.52, + "probability": 0.7313 + }, + { + "start": 6320.58, + "end": 6326.66, + "probability": 0.8428 + }, + { + "start": 6328.04, + "end": 6329.46, + "probability": 0.9646 + }, + { + "start": 6330.88, + "end": 6333.54, + "probability": 0.9822 + }, + { + "start": 6333.66, + "end": 6338.56, + "probability": 0.9896 + }, + { + "start": 6339.24, + "end": 6342.12, + "probability": 0.9678 + }, + { + "start": 6342.78, + "end": 6345.74, + "probability": 0.916 + }, + { + "start": 6346.28, + "end": 6349.62, + "probability": 0.9031 + }, + { + "start": 6350.54, + "end": 6351.78, + "probability": 0.8224 + }, + { + "start": 6354.48, + "end": 6360.0, + "probability": 0.9961 + }, + { + "start": 6360.0, + "end": 6364.1, + "probability": 0.9973 + }, + { + "start": 6364.66, + "end": 6368.08, + "probability": 0.9894 + }, + { + "start": 6369.34, + "end": 6371.14, + "probability": 0.9784 + }, + { + "start": 6371.54, + "end": 6377.62, + "probability": 0.9912 + }, + { + "start": 6378.1, + "end": 6379.74, + "probability": 0.8709 + }, + { + "start": 6380.62, + "end": 6383.54, + "probability": 0.9789 + }, + { + "start": 6383.86, + "end": 6384.54, + "probability": 0.8841 + }, + { + "start": 6386.06, + "end": 6387.84, + "probability": 0.9257 + }, + { + "start": 6390.62, + "end": 6393.48, + "probability": 0.9917 + }, + { + "start": 6393.48, + "end": 6397.06, + "probability": 0.9875 + }, + { + "start": 6398.16, + "end": 6399.22, + "probability": 0.9663 + }, + { + "start": 6399.28, + "end": 6402.1, + "probability": 0.5836 + }, + { + "start": 6402.72, + "end": 6406.84, + "probability": 0.8539 + }, + { + "start": 6407.16, + "end": 6409.62, + "probability": 0.6168 + }, + { + "start": 6410.14, + "end": 6411.8, + "probability": 0.9558 + }, + { + "start": 6412.3, + "end": 6415.24, + "probability": 0.8848 + }, + { + "start": 6416.84, + "end": 6420.52, + "probability": 0.9034 + }, + { + "start": 6421.2, + "end": 6423.7, + "probability": 0.9971 + }, + { + "start": 6424.7, + "end": 6427.36, + "probability": 0.8966 + }, + { + "start": 6427.96, + "end": 6430.18, + "probability": 0.9764 + }, + { + "start": 6431.38, + "end": 6436.18, + "probability": 0.8058 + }, + { + "start": 6436.72, + "end": 6440.46, + "probability": 0.8314 + }, + { + "start": 6441.14, + "end": 6441.98, + "probability": 0.9445 + }, + { + "start": 6442.56, + "end": 6445.38, + "probability": 0.9946 + }, + { + "start": 6446.32, + "end": 6451.66, + "probability": 0.9529 + }, + { + "start": 6452.56, + "end": 6457.68, + "probability": 0.9925 + }, + { + "start": 6458.06, + "end": 6460.28, + "probability": 0.8513 + }, + { + "start": 6460.62, + "end": 6461.42, + "probability": 0.7399 + }, + { + "start": 6461.58, + "end": 6467.26, + "probability": 0.9845 + }, + { + "start": 6468.12, + "end": 6468.32, + "probability": 0.728 + }, + { + "start": 6468.44, + "end": 6469.1, + "probability": 0.7231 + }, + { + "start": 6469.22, + "end": 6469.78, + "probability": 0.8151 + }, + { + "start": 6469.82, + "end": 6470.38, + "probability": 0.835 + }, + { + "start": 6470.64, + "end": 6472.13, + "probability": 0.9961 + }, + { + "start": 6473.58, + "end": 6477.7, + "probability": 0.9433 + }, + { + "start": 6477.78, + "end": 6478.74, + "probability": 0.8365 + }, + { + "start": 6479.04, + "end": 6480.7, + "probability": 0.9675 + }, + { + "start": 6480.78, + "end": 6483.26, + "probability": 0.7432 + }, + { + "start": 6483.26, + "end": 6483.26, + "probability": 0.5695 + }, + { + "start": 6483.26, + "end": 6483.26, + "probability": 0.1618 + }, + { + "start": 6483.26, + "end": 6484.5, + "probability": 0.892 + }, + { + "start": 6485.98, + "end": 6487.56, + "probability": 0.8099 + }, + { + "start": 6487.6, + "end": 6489.76, + "probability": 0.9305 + }, + { + "start": 6490.02, + "end": 6491.64, + "probability": 0.9655 + }, + { + "start": 6492.26, + "end": 6496.44, + "probability": 0.7708 + }, + { + "start": 6497.42, + "end": 6500.54, + "probability": 0.8906 + }, + { + "start": 6501.22, + "end": 6502.64, + "probability": 0.7386 + }, + { + "start": 6502.84, + "end": 6504.64, + "probability": 0.9629 + }, + { + "start": 6504.68, + "end": 6506.74, + "probability": 0.7183 + }, + { + "start": 6525.04, + "end": 6527.74, + "probability": 0.7241 + }, + { + "start": 6528.44, + "end": 6530.04, + "probability": 0.9396 + }, + { + "start": 6531.78, + "end": 6535.66, + "probability": 0.9941 + }, + { + "start": 6535.88, + "end": 6536.08, + "probability": 0.923 + }, + { + "start": 6536.6, + "end": 6537.68, + "probability": 0.3628 + }, + { + "start": 6538.62, + "end": 6542.8, + "probability": 0.9841 + }, + { + "start": 6543.76, + "end": 6545.5, + "probability": 0.9961 + }, + { + "start": 6545.5, + "end": 6548.14, + "probability": 0.9001 + }, + { + "start": 6549.04, + "end": 6554.06, + "probability": 0.9526 + }, + { + "start": 6556.1, + "end": 6560.78, + "probability": 0.9964 + }, + { + "start": 6561.1, + "end": 6563.66, + "probability": 0.9987 + }, + { + "start": 6564.64, + "end": 6566.68, + "probability": 0.8112 + }, + { + "start": 6567.32, + "end": 6569.88, + "probability": 0.9904 + }, + { + "start": 6571.28, + "end": 6575.38, + "probability": 0.9924 + }, + { + "start": 6577.04, + "end": 6579.86, + "probability": 0.9757 + }, + { + "start": 6580.8, + "end": 6583.1, + "probability": 0.9995 + }, + { + "start": 6584.04, + "end": 6587.26, + "probability": 0.9951 + }, + { + "start": 6587.98, + "end": 6592.22, + "probability": 0.9777 + }, + { + "start": 6592.26, + "end": 6593.54, + "probability": 0.7398 + }, + { + "start": 6594.08, + "end": 6598.66, + "probability": 0.9956 + }, + { + "start": 6599.62, + "end": 6604.64, + "probability": 0.9901 + }, + { + "start": 6605.08, + "end": 6608.62, + "probability": 0.9871 + }, + { + "start": 6609.84, + "end": 6612.06, + "probability": 0.708 + }, + { + "start": 6612.66, + "end": 6614.52, + "probability": 0.9825 + }, + { + "start": 6614.8, + "end": 6616.36, + "probability": 0.9663 + }, + { + "start": 6616.8, + "end": 6617.86, + "probability": 0.9963 + }, + { + "start": 6618.98, + "end": 6620.56, + "probability": 0.7038 + }, + { + "start": 6621.52, + "end": 6623.44, + "probability": 0.9972 + }, + { + "start": 6624.1, + "end": 6626.71, + "probability": 0.9925 + }, + { + "start": 6629.06, + "end": 6631.02, + "probability": 0.9675 + }, + { + "start": 6631.82, + "end": 6633.2, + "probability": 0.9917 + }, + { + "start": 6633.94, + "end": 6636.98, + "probability": 0.9939 + }, + { + "start": 6637.06, + "end": 6643.26, + "probability": 0.9806 + }, + { + "start": 6643.88, + "end": 6646.16, + "probability": 0.9274 + }, + { + "start": 6646.94, + "end": 6648.04, + "probability": 0.9425 + }, + { + "start": 6648.66, + "end": 6650.74, + "probability": 0.8974 + }, + { + "start": 6651.94, + "end": 6654.06, + "probability": 0.8784 + }, + { + "start": 6654.62, + "end": 6656.66, + "probability": 0.9907 + }, + { + "start": 6657.98, + "end": 6659.74, + "probability": 0.9873 + }, + { + "start": 6659.88, + "end": 6664.0, + "probability": 0.9811 + }, + { + "start": 6664.64, + "end": 6669.08, + "probability": 0.9705 + }, + { + "start": 6669.76, + "end": 6670.16, + "probability": 0.9479 + }, + { + "start": 6671.26, + "end": 6672.96, + "probability": 0.9888 + }, + { + "start": 6673.64, + "end": 6676.3, + "probability": 0.8884 + }, + { + "start": 6676.98, + "end": 6679.2, + "probability": 0.936 + }, + { + "start": 6679.86, + "end": 6682.62, + "probability": 0.962 + }, + { + "start": 6683.3, + "end": 6685.26, + "probability": 0.9019 + }, + { + "start": 6685.96, + "end": 6686.94, + "probability": 0.9474 + }, + { + "start": 6687.54, + "end": 6688.1, + "probability": 0.8571 + }, + { + "start": 6688.68, + "end": 6691.66, + "probability": 0.9932 + }, + { + "start": 6692.44, + "end": 6694.1, + "probability": 0.9811 + }, + { + "start": 6694.18, + "end": 6697.62, + "probability": 0.9783 + }, + { + "start": 6698.38, + "end": 6698.8, + "probability": 0.9712 + }, + { + "start": 6700.24, + "end": 6704.16, + "probability": 0.9683 + }, + { + "start": 6704.72, + "end": 6707.82, + "probability": 0.9902 + }, + { + "start": 6707.82, + "end": 6711.34, + "probability": 0.9174 + }, + { + "start": 6712.32, + "end": 6715.32, + "probability": 0.962 + }, + { + "start": 6715.32, + "end": 6718.74, + "probability": 0.9996 + }, + { + "start": 6719.84, + "end": 6723.98, + "probability": 0.9639 + }, + { + "start": 6724.2, + "end": 6724.5, + "probability": 0.7653 + }, + { + "start": 6724.9, + "end": 6725.84, + "probability": 0.5748 + }, + { + "start": 6725.84, + "end": 6726.74, + "probability": 0.8235 + }, + { + "start": 6726.9, + "end": 6729.66, + "probability": 0.9674 + }, + { + "start": 6731.32, + "end": 6732.32, + "probability": 0.8733 + }, + { + "start": 6732.76, + "end": 6733.8, + "probability": 0.9983 + }, + { + "start": 6734.52, + "end": 6735.38, + "probability": 0.883 + }, + { + "start": 6745.44, + "end": 6745.5, + "probability": 0.746 + }, + { + "start": 6745.5, + "end": 6747.4, + "probability": 0.9648 + }, + { + "start": 6747.4, + "end": 6748.04, + "probability": 0.9307 + }, + { + "start": 6751.28, + "end": 6753.54, + "probability": 0.8732 + }, + { + "start": 6755.52, + "end": 6758.14, + "probability": 0.707 + }, + { + "start": 6758.84, + "end": 6762.12, + "probability": 0.6423 + }, + { + "start": 6763.02, + "end": 6763.72, + "probability": 0.7719 + }, + { + "start": 6764.9, + "end": 6765.74, + "probability": 0.9843 + }, + { + "start": 6766.88, + "end": 6768.78, + "probability": 0.7706 + }, + { + "start": 6769.46, + "end": 6771.12, + "probability": 0.9912 + }, + { + "start": 6772.3, + "end": 6774.38, + "probability": 0.8399 + }, + { + "start": 6774.9, + "end": 6775.5, + "probability": 0.6278 + }, + { + "start": 6776.9, + "end": 6779.14, + "probability": 0.9363 + }, + { + "start": 6780.36, + "end": 6782.84, + "probability": 0.8254 + }, + { + "start": 6783.08, + "end": 6789.2, + "probability": 0.951 + }, + { + "start": 6791.0, + "end": 6797.66, + "probability": 0.9804 + }, + { + "start": 6798.38, + "end": 6799.58, + "probability": 0.8749 + }, + { + "start": 6800.5, + "end": 6805.8, + "probability": 0.9688 + }, + { + "start": 6806.46, + "end": 6811.06, + "probability": 0.8967 + }, + { + "start": 6811.4, + "end": 6816.0, + "probability": 0.6761 + }, + { + "start": 6817.1, + "end": 6817.85, + "probability": 0.7206 + }, + { + "start": 6819.6, + "end": 6822.96, + "probability": 0.9858 + }, + { + "start": 6823.62, + "end": 6824.86, + "probability": 0.784 + }, + { + "start": 6826.52, + "end": 6829.94, + "probability": 0.9505 + }, + { + "start": 6830.94, + "end": 6833.96, + "probability": 0.9333 + }, + { + "start": 6834.04, + "end": 6836.62, + "probability": 0.9904 + }, + { + "start": 6837.84, + "end": 6839.78, + "probability": 0.8477 + }, + { + "start": 6840.6, + "end": 6841.44, + "probability": 0.8535 + }, + { + "start": 6841.6, + "end": 6841.86, + "probability": 0.7855 + }, + { + "start": 6841.94, + "end": 6843.82, + "probability": 0.9912 + }, + { + "start": 6843.88, + "end": 6845.72, + "probability": 0.9949 + }, + { + "start": 6846.84, + "end": 6849.26, + "probability": 0.6928 + }, + { + "start": 6849.94, + "end": 6850.68, + "probability": 0.7645 + }, + { + "start": 6851.28, + "end": 6853.58, + "probability": 0.9931 + }, + { + "start": 6854.8, + "end": 6855.98, + "probability": 0.7063 + }, + { + "start": 6856.82, + "end": 6859.4, + "probability": 0.7733 + }, + { + "start": 6860.24, + "end": 6865.5, + "probability": 0.9794 + }, + { + "start": 6866.22, + "end": 6866.76, + "probability": 0.9469 + }, + { + "start": 6869.76, + "end": 6870.62, + "probability": 0.9777 + }, + { + "start": 6871.56, + "end": 6872.28, + "probability": 0.8684 + }, + { + "start": 6873.44, + "end": 6874.36, + "probability": 0.881 + }, + { + "start": 6875.7, + "end": 6878.66, + "probability": 0.9683 + }, + { + "start": 6879.3, + "end": 6880.54, + "probability": 0.8293 + }, + { + "start": 6880.89, + "end": 6886.42, + "probability": 0.9612 + }, + { + "start": 6887.82, + "end": 6893.42, + "probability": 0.9954 + }, + { + "start": 6895.18, + "end": 6897.72, + "probability": 0.6903 + }, + { + "start": 6897.98, + "end": 6899.08, + "probability": 0.8471 + }, + { + "start": 6899.88, + "end": 6902.13, + "probability": 0.9706 + }, + { + "start": 6902.24, + "end": 6902.66, + "probability": 0.7242 + }, + { + "start": 6903.62, + "end": 6906.18, + "probability": 0.9902 + }, + { + "start": 6907.9, + "end": 6911.74, + "probability": 0.8104 + }, + { + "start": 6912.48, + "end": 6914.1, + "probability": 0.4781 + }, + { + "start": 6914.72, + "end": 6915.38, + "probability": 0.849 + }, + { + "start": 6916.04, + "end": 6919.84, + "probability": 0.9811 + }, + { + "start": 6920.5, + "end": 6921.9, + "probability": 0.9901 + }, + { + "start": 6922.5, + "end": 6928.28, + "probability": 0.9885 + }, + { + "start": 6928.28, + "end": 6933.46, + "probability": 0.9998 + }, + { + "start": 6934.24, + "end": 6935.02, + "probability": 0.5048 + }, + { + "start": 6935.04, + "end": 6937.04, + "probability": 0.665 + }, + { + "start": 6938.7, + "end": 6939.64, + "probability": 0.5894 + }, + { + "start": 6939.76, + "end": 6942.08, + "probability": 0.9532 + }, + { + "start": 6943.86, + "end": 6947.08, + "probability": 0.8115 + }, + { + "start": 6952.34, + "end": 6953.08, + "probability": 0.8648 + }, + { + "start": 6956.34, + "end": 6958.7, + "probability": 0.7564 + }, + { + "start": 6960.76, + "end": 6964.68, + "probability": 0.998 + }, + { + "start": 6964.78, + "end": 6970.62, + "probability": 0.9874 + }, + { + "start": 6971.84, + "end": 6975.4, + "probability": 0.9806 + }, + { + "start": 6975.48, + "end": 6978.62, + "probability": 0.9928 + }, + { + "start": 6980.04, + "end": 6981.0, + "probability": 0.7256 + }, + { + "start": 6981.98, + "end": 6983.46, + "probability": 0.8989 + }, + { + "start": 6983.98, + "end": 6985.12, + "probability": 0.9851 + }, + { + "start": 6985.14, + "end": 6988.7, + "probability": 0.8949 + }, + { + "start": 6991.17, + "end": 6996.84, + "probability": 0.8181 + }, + { + "start": 6997.68, + "end": 6999.22, + "probability": 0.9818 + }, + { + "start": 6999.3, + "end": 7000.02, + "probability": 0.8696 + }, + { + "start": 7000.42, + "end": 7004.88, + "probability": 0.9962 + }, + { + "start": 7006.46, + "end": 7008.46, + "probability": 0.9346 + }, + { + "start": 7010.5, + "end": 7010.72, + "probability": 0.4462 + }, + { + "start": 7010.72, + "end": 7013.36, + "probability": 0.4218 + }, + { + "start": 7013.5, + "end": 7016.88, + "probability": 0.9907 + }, + { + "start": 7017.76, + "end": 7018.83, + "probability": 0.9741 + }, + { + "start": 7020.5, + "end": 7024.18, + "probability": 0.9857 + }, + { + "start": 7024.18, + "end": 7028.2, + "probability": 0.9886 + }, + { + "start": 7028.26, + "end": 7029.38, + "probability": 0.6789 + }, + { + "start": 7030.2, + "end": 7032.1, + "probability": 0.9554 + }, + { + "start": 7033.42, + "end": 7036.3, + "probability": 0.9506 + }, + { + "start": 7037.42, + "end": 7042.28, + "probability": 0.993 + }, + { + "start": 7043.16, + "end": 7044.02, + "probability": 0.8538 + }, + { + "start": 7045.82, + "end": 7046.8, + "probability": 0.8687 + }, + { + "start": 7047.02, + "end": 7048.18, + "probability": 0.932 + }, + { + "start": 7048.18, + "end": 7049.2, + "probability": 0.5607 + }, + { + "start": 7050.18, + "end": 7051.84, + "probability": 0.9937 + }, + { + "start": 7051.94, + "end": 7054.8, + "probability": 0.9531 + }, + { + "start": 7056.04, + "end": 7059.08, + "probability": 0.9879 + }, + { + "start": 7061.84, + "end": 7065.04, + "probability": 0.9882 + }, + { + "start": 7065.08, + "end": 7065.76, + "probability": 0.3085 + }, + { + "start": 7066.48, + "end": 7070.7, + "probability": 0.877 + }, + { + "start": 7071.22, + "end": 7072.96, + "probability": 0.819 + }, + { + "start": 7073.06, + "end": 7076.76, + "probability": 0.998 + }, + { + "start": 7077.32, + "end": 7081.12, + "probability": 0.9997 + }, + { + "start": 7081.24, + "end": 7081.8, + "probability": 0.5514 + }, + { + "start": 7082.84, + "end": 7084.02, + "probability": 0.9921 + }, + { + "start": 7084.82, + "end": 7085.88, + "probability": 0.8202 + }, + { + "start": 7085.96, + "end": 7087.1, + "probability": 0.9662 + }, + { + "start": 7087.56, + "end": 7092.18, + "probability": 0.9417 + }, + { + "start": 7094.38, + "end": 7095.04, + "probability": 0.6109 + }, + { + "start": 7095.18, + "end": 7098.28, + "probability": 0.7186 + }, + { + "start": 7100.26, + "end": 7102.04, + "probability": 0.8264 + }, + { + "start": 7103.08, + "end": 7107.38, + "probability": 0.992 + }, + { + "start": 7107.38, + "end": 7109.97, + "probability": 0.9258 + }, + { + "start": 7111.58, + "end": 7115.32, + "probability": 0.9939 + }, + { + "start": 7116.88, + "end": 7119.92, + "probability": 0.9973 + }, + { + "start": 7121.78, + "end": 7124.16, + "probability": 0.8008 + }, + { + "start": 7124.68, + "end": 7127.18, + "probability": 0.969 + }, + { + "start": 7127.78, + "end": 7128.76, + "probability": 0.9465 + }, + { + "start": 7130.36, + "end": 7132.54, + "probability": 0.9963 + }, + { + "start": 7134.02, + "end": 7135.34, + "probability": 0.9987 + }, + { + "start": 7136.56, + "end": 7137.5, + "probability": 0.7249 + }, + { + "start": 7137.64, + "end": 7144.22, + "probability": 0.9949 + }, + { + "start": 7144.54, + "end": 7144.7, + "probability": 0.6698 + }, + { + "start": 7144.8, + "end": 7145.72, + "probability": 0.5564 + }, + { + "start": 7145.76, + "end": 7148.28, + "probability": 0.8993 + }, + { + "start": 7154.74, + "end": 7157.02, + "probability": 0.8796 + }, + { + "start": 7170.52, + "end": 7171.92, + "probability": 0.6735 + }, + { + "start": 7172.5, + "end": 7173.06, + "probability": 0.7806 + }, + { + "start": 7173.18, + "end": 7177.98, + "probability": 0.6388 + }, + { + "start": 7178.98, + "end": 7180.1, + "probability": 0.8677 + }, + { + "start": 7180.94, + "end": 7181.06, + "probability": 0.1632 + }, + { + "start": 7181.06, + "end": 7182.24, + "probability": 0.8174 + }, + { + "start": 7182.66, + "end": 7183.9, + "probability": 0.9827 + }, + { + "start": 7184.3, + "end": 7185.16, + "probability": 0.7062 + }, + { + "start": 7185.34, + "end": 7185.74, + "probability": 0.2377 + }, + { + "start": 7185.8, + "end": 7186.38, + "probability": 0.5115 + }, + { + "start": 7186.8, + "end": 7190.82, + "probability": 0.981 + }, + { + "start": 7190.92, + "end": 7191.52, + "probability": 0.75 + }, + { + "start": 7191.66, + "end": 7192.8, + "probability": 0.8418 + }, + { + "start": 7193.3, + "end": 7194.74, + "probability": 0.9133 + }, + { + "start": 7195.32, + "end": 7197.6, + "probability": 0.7175 + }, + { + "start": 7197.7, + "end": 7199.02, + "probability": 0.9645 + }, + { + "start": 7199.4, + "end": 7201.34, + "probability": 0.9724 + }, + { + "start": 7201.7, + "end": 7202.12, + "probability": 0.4211 + }, + { + "start": 7202.22, + "end": 7203.04, + "probability": 0.8962 + }, + { + "start": 7203.1, + "end": 7203.7, + "probability": 0.7013 + }, + { + "start": 7203.78, + "end": 7205.02, + "probability": 0.9878 + }, + { + "start": 7205.4, + "end": 7209.02, + "probability": 0.9956 + }, + { + "start": 7209.3, + "end": 7211.46, + "probability": 0.9844 + }, + { + "start": 7211.54, + "end": 7213.88, + "probability": 0.9935 + }, + { + "start": 7214.34, + "end": 7214.68, + "probability": 0.7981 + }, + { + "start": 7215.2, + "end": 7218.82, + "probability": 0.9702 + }, + { + "start": 7219.32, + "end": 7219.64, + "probability": 0.8371 + }, + { + "start": 7219.7, + "end": 7220.42, + "probability": 0.7023 + }, + { + "start": 7220.86, + "end": 7222.68, + "probability": 0.9569 + }, + { + "start": 7222.76, + "end": 7223.66, + "probability": 0.9429 + }, + { + "start": 7224.34, + "end": 7225.89, + "probability": 0.9754 + }, + { + "start": 7226.02, + "end": 7228.84, + "probability": 0.9824 + }, + { + "start": 7229.24, + "end": 7230.38, + "probability": 0.9067 + }, + { + "start": 7230.44, + "end": 7232.04, + "probability": 0.9496 + }, + { + "start": 7233.16, + "end": 7235.82, + "probability": 0.9902 + }, + { + "start": 7236.08, + "end": 7239.62, + "probability": 0.8499 + }, + { + "start": 7239.78, + "end": 7241.4, + "probability": 0.984 + }, + { + "start": 7241.54, + "end": 7242.76, + "probability": 0.8353 + }, + { + "start": 7242.88, + "end": 7245.18, + "probability": 0.9978 + }, + { + "start": 7245.64, + "end": 7246.86, + "probability": 0.8956 + }, + { + "start": 7247.54, + "end": 7249.1, + "probability": 0.9615 + }, + { + "start": 7249.84, + "end": 7250.64, + "probability": 0.925 + }, + { + "start": 7250.92, + "end": 7252.78, + "probability": 0.9896 + }, + { + "start": 7253.38, + "end": 7256.1, + "probability": 0.928 + }, + { + "start": 7256.64, + "end": 7258.72, + "probability": 0.9946 + }, + { + "start": 7258.86, + "end": 7259.28, + "probability": 0.7412 + }, + { + "start": 7259.3, + "end": 7260.0, + "probability": 0.9435 + }, + { + "start": 7260.34, + "end": 7262.64, + "probability": 0.9885 + }, + { + "start": 7263.52, + "end": 7266.6, + "probability": 0.9448 + }, + { + "start": 7266.72, + "end": 7266.88, + "probability": 0.6586 + }, + { + "start": 7266.9, + "end": 7267.66, + "probability": 0.5847 + }, + { + "start": 7267.78, + "end": 7268.4, + "probability": 0.8777 + }, + { + "start": 7268.56, + "end": 7269.52, + "probability": 0.9761 + }, + { + "start": 7269.92, + "end": 7270.76, + "probability": 0.9863 + }, + { + "start": 7270.84, + "end": 7273.64, + "probability": 0.9598 + }, + { + "start": 7273.74, + "end": 7273.98, + "probability": 0.7835 + }, + { + "start": 7274.06, + "end": 7274.54, + "probability": 0.9321 + }, + { + "start": 7274.62, + "end": 7276.52, + "probability": 0.8444 + }, + { + "start": 7278.64, + "end": 7279.32, + "probability": 0.9904 + }, + { + "start": 7279.38, + "end": 7281.02, + "probability": 0.9221 + }, + { + "start": 7281.1, + "end": 7282.14, + "probability": 0.9573 + }, + { + "start": 7282.2, + "end": 7284.46, + "probability": 0.9711 + }, + { + "start": 7284.76, + "end": 7286.04, + "probability": 0.9741 + }, + { + "start": 7286.6, + "end": 7288.36, + "probability": 0.992 + }, + { + "start": 7288.36, + "end": 7292.78, + "probability": 0.9889 + }, + { + "start": 7292.86, + "end": 7293.18, + "probability": 0.768 + }, + { + "start": 7293.28, + "end": 7295.14, + "probability": 0.9979 + }, + { + "start": 7295.32, + "end": 7295.32, + "probability": 0.4846 + }, + { + "start": 7295.36, + "end": 7296.78, + "probability": 0.9972 + }, + { + "start": 7298.26, + "end": 7300.7, + "probability": 0.9119 + }, + { + "start": 7300.82, + "end": 7301.24, + "probability": 0.8079 + }, + { + "start": 7301.32, + "end": 7304.38, + "probability": 0.9678 + }, + { + "start": 7304.92, + "end": 7306.8, + "probability": 0.9536 + }, + { + "start": 7307.54, + "end": 7310.6, + "probability": 0.9352 + }, + { + "start": 7310.68, + "end": 7311.54, + "probability": 0.9724 + }, + { + "start": 7311.56, + "end": 7312.48, + "probability": 0.8689 + }, + { + "start": 7312.58, + "end": 7313.33, + "probability": 0.7356 + }, + { + "start": 7314.34, + "end": 7315.94, + "probability": 0.8304 + }, + { + "start": 7316.54, + "end": 7317.52, + "probability": 0.8252 + }, + { + "start": 7317.7, + "end": 7319.02, + "probability": 0.9803 + }, + { + "start": 7319.28, + "end": 7320.36, + "probability": 0.9888 + }, + { + "start": 7320.7, + "end": 7324.28, + "probability": 0.9754 + }, + { + "start": 7325.22, + "end": 7326.98, + "probability": 0.95 + }, + { + "start": 7327.04, + "end": 7327.22, + "probability": 0.4567 + }, + { + "start": 7327.3, + "end": 7327.4, + "probability": 0.8411 + }, + { + "start": 7327.5, + "end": 7331.36, + "probability": 0.9612 + }, + { + "start": 7331.9, + "end": 7334.25, + "probability": 0.9069 + }, + { + "start": 7336.26, + "end": 7336.66, + "probability": 0.1553 + }, + { + "start": 7336.66, + "end": 7337.73, + "probability": 0.6587 + }, + { + "start": 7337.94, + "end": 7338.24, + "probability": 0.1562 + }, + { + "start": 7338.24, + "end": 7339.0, + "probability": 0.4013 + }, + { + "start": 7339.14, + "end": 7341.28, + "probability": 0.558 + }, + { + "start": 7341.38, + "end": 7341.84, + "probability": 0.9322 + }, + { + "start": 7342.38, + "end": 7344.68, + "probability": 0.9004 + }, + { + "start": 7344.72, + "end": 7347.32, + "probability": 0.8942 + }, + { + "start": 7347.36, + "end": 7348.86, + "probability": 0.8569 + }, + { + "start": 7349.28, + "end": 7351.32, + "probability": 0.9786 + }, + { + "start": 7351.42, + "end": 7353.64, + "probability": 0.9851 + }, + { + "start": 7354.38, + "end": 7356.68, + "probability": 0.9956 + }, + { + "start": 7356.68, + "end": 7359.38, + "probability": 0.9964 + }, + { + "start": 7360.1, + "end": 7360.24, + "probability": 0.4516 + }, + { + "start": 7360.4, + "end": 7361.0, + "probability": 0.9338 + }, + { + "start": 7361.1, + "end": 7363.34, + "probability": 0.995 + }, + { + "start": 7363.9, + "end": 7365.46, + "probability": 0.9889 + }, + { + "start": 7365.66, + "end": 7368.12, + "probability": 0.4547 + }, + { + "start": 7368.12, + "end": 7372.64, + "probability": 0.6891 + }, + { + "start": 7373.04, + "end": 7373.76, + "probability": 0.7317 + }, + { + "start": 7373.84, + "end": 7374.68, + "probability": 0.6889 + }, + { + "start": 7375.02, + "end": 7376.2, + "probability": 0.9852 + }, + { + "start": 7376.32, + "end": 7376.96, + "probability": 0.8604 + }, + { + "start": 7377.18, + "end": 7378.8, + "probability": 0.9868 + }, + { + "start": 7379.84, + "end": 7381.82, + "probability": 0.9993 + }, + { + "start": 7381.92, + "end": 7382.48, + "probability": 0.6445 + }, + { + "start": 7382.54, + "end": 7382.98, + "probability": 0.9291 + }, + { + "start": 7383.08, + "end": 7384.12, + "probability": 0.976 + }, + { + "start": 7384.3, + "end": 7385.94, + "probability": 0.9967 + }, + { + "start": 7386.3, + "end": 7386.5, + "probability": 0.7298 + }, + { + "start": 7386.78, + "end": 7387.66, + "probability": 0.9271 + }, + { + "start": 7388.2, + "end": 7389.12, + "probability": 0.9644 + }, + { + "start": 7389.2, + "end": 7390.46, + "probability": 0.9802 + }, + { + "start": 7391.08, + "end": 7393.0, + "probability": 0.7635 + }, + { + "start": 7393.08, + "end": 7393.92, + "probability": 0.9335 + }, + { + "start": 7394.3, + "end": 7396.42, + "probability": 0.9899 + }, + { + "start": 7396.54, + "end": 7397.4, + "probability": 0.8947 + }, + { + "start": 7399.43, + "end": 7400.34, + "probability": 0.519 + }, + { + "start": 7400.34, + "end": 7400.72, + "probability": 0.1874 + }, + { + "start": 7400.74, + "end": 7401.12, + "probability": 0.4922 + }, + { + "start": 7401.68, + "end": 7403.5, + "probability": 0.8499 + }, + { + "start": 7403.98, + "end": 7404.6, + "probability": 0.6722 + }, + { + "start": 7405.08, + "end": 7405.96, + "probability": 0.6956 + }, + { + "start": 7406.73, + "end": 7409.62, + "probability": 0.8142 + }, + { + "start": 7423.64, + "end": 7424.98, + "probability": 0.629 + }, + { + "start": 7424.98, + "end": 7426.32, + "probability": 0.6098 + }, + { + "start": 7426.96, + "end": 7428.38, + "probability": 0.7542 + }, + { + "start": 7428.62, + "end": 7434.16, + "probability": 0.9948 + }, + { + "start": 7435.04, + "end": 7440.38, + "probability": 0.9941 + }, + { + "start": 7440.4, + "end": 7441.58, + "probability": 0.7056 + }, + { + "start": 7442.6, + "end": 7443.74, + "probability": 0.8729 + }, + { + "start": 7444.18, + "end": 7446.36, + "probability": 0.8166 + }, + { + "start": 7446.5, + "end": 7447.3, + "probability": 0.8545 + }, + { + "start": 7447.48, + "end": 7450.04, + "probability": 0.8908 + }, + { + "start": 7450.2, + "end": 7451.62, + "probability": 0.9262 + }, + { + "start": 7452.08, + "end": 7452.96, + "probability": 0.989 + }, + { + "start": 7453.16, + "end": 7453.62, + "probability": 0.5258 + }, + { + "start": 7453.64, + "end": 7456.98, + "probability": 0.9144 + }, + { + "start": 7457.12, + "end": 7459.16, + "probability": 0.9169 + }, + { + "start": 7459.96, + "end": 7460.4, + "probability": 0.3768 + }, + { + "start": 7463.06, + "end": 7467.7, + "probability": 0.9021 + }, + { + "start": 7468.2, + "end": 7469.02, + "probability": 0.7776 + }, + { + "start": 7469.14, + "end": 7473.22, + "probability": 0.9868 + }, + { + "start": 7473.22, + "end": 7477.26, + "probability": 0.9995 + }, + { + "start": 7477.42, + "end": 7479.28, + "probability": 0.9985 + }, + { + "start": 7479.62, + "end": 7482.02, + "probability": 0.9949 + }, + { + "start": 7482.02, + "end": 7485.48, + "probability": 0.9885 + }, + { + "start": 7486.0, + "end": 7487.86, + "probability": 0.9467 + }, + { + "start": 7488.34, + "end": 7491.6, + "probability": 0.6289 + }, + { + "start": 7492.12, + "end": 7493.76, + "probability": 0.9753 + }, + { + "start": 7494.16, + "end": 7496.6, + "probability": 0.9611 + }, + { + "start": 7496.92, + "end": 7500.82, + "probability": 0.9132 + }, + { + "start": 7501.14, + "end": 7502.2, + "probability": 0.9823 + }, + { + "start": 7503.02, + "end": 7506.14, + "probability": 0.9917 + }, + { + "start": 7507.38, + "end": 7512.22, + "probability": 0.9628 + }, + { + "start": 7513.14, + "end": 7513.92, + "probability": 0.8582 + }, + { + "start": 7514.22, + "end": 7515.04, + "probability": 0.9716 + }, + { + "start": 7515.64, + "end": 7517.6, + "probability": 0.9976 + }, + { + "start": 7518.54, + "end": 7520.24, + "probability": 0.6436 + }, + { + "start": 7520.96, + "end": 7522.08, + "probability": 0.8592 + }, + { + "start": 7522.64, + "end": 7523.78, + "probability": 0.6822 + }, + { + "start": 7524.52, + "end": 7525.62, + "probability": 0.8036 + }, + { + "start": 7525.76, + "end": 7529.12, + "probability": 0.8718 + }, + { + "start": 7529.28, + "end": 7530.4, + "probability": 0.8531 + }, + { + "start": 7531.16, + "end": 7533.86, + "probability": 0.9878 + }, + { + "start": 7534.94, + "end": 7538.3, + "probability": 0.7484 + }, + { + "start": 7538.88, + "end": 7541.08, + "probability": 0.9871 + }, + { + "start": 7541.22, + "end": 7542.8, + "probability": 0.8776 + }, + { + "start": 7542.92, + "end": 7548.9, + "probability": 0.9132 + }, + { + "start": 7549.12, + "end": 7550.28, + "probability": 0.9443 + }, + { + "start": 7550.64, + "end": 7552.62, + "probability": 0.9971 + }, + { + "start": 7553.68, + "end": 7554.96, + "probability": 0.7979 + }, + { + "start": 7556.28, + "end": 7562.8, + "probability": 0.999 + }, + { + "start": 7562.98, + "end": 7568.02, + "probability": 0.998 + }, + { + "start": 7568.88, + "end": 7570.56, + "probability": 0.9985 + }, + { + "start": 7571.3, + "end": 7575.86, + "probability": 0.9987 + }, + { + "start": 7576.42, + "end": 7578.5, + "probability": 0.733 + }, + { + "start": 7579.08, + "end": 7580.1, + "probability": 0.9322 + }, + { + "start": 7581.02, + "end": 7582.4, + "probability": 0.9926 + }, + { + "start": 7582.5, + "end": 7585.4, + "probability": 0.9407 + }, + { + "start": 7585.68, + "end": 7588.96, + "probability": 0.9976 + }, + { + "start": 7589.32, + "end": 7592.9, + "probability": 0.9785 + }, + { + "start": 7593.2, + "end": 7596.47, + "probability": 0.9739 + }, + { + "start": 7596.84, + "end": 7599.02, + "probability": 0.9985 + }, + { + "start": 7599.08, + "end": 7600.38, + "probability": 0.998 + }, + { + "start": 7601.16, + "end": 7604.47, + "probability": 0.9326 + }, + { + "start": 7605.36, + "end": 7606.56, + "probability": 0.7249 + }, + { + "start": 7606.88, + "end": 7609.66, + "probability": 0.9501 + }, + { + "start": 7610.4, + "end": 7611.68, + "probability": 0.936 + }, + { + "start": 7611.84, + "end": 7612.84, + "probability": 0.9971 + }, + { + "start": 7613.6, + "end": 7614.98, + "probability": 0.9919 + }, + { + "start": 7615.78, + "end": 7616.72, + "probability": 0.989 + }, + { + "start": 7616.8, + "end": 7618.68, + "probability": 0.7969 + }, + { + "start": 7619.08, + "end": 7620.45, + "probability": 0.9932 + }, + { + "start": 7621.18, + "end": 7623.9, + "probability": 0.9962 + }, + { + "start": 7624.76, + "end": 7625.72, + "probability": 0.8101 + }, + { + "start": 7625.84, + "end": 7627.12, + "probability": 0.9937 + }, + { + "start": 7627.64, + "end": 7628.42, + "probability": 0.8788 + }, + { + "start": 7628.72, + "end": 7632.62, + "probability": 0.9407 + }, + { + "start": 7633.06, + "end": 7633.06, + "probability": 0.3956 + }, + { + "start": 7633.59, + "end": 7635.44, + "probability": 0.8112 + }, + { + "start": 7635.78, + "end": 7637.92, + "probability": 0.8716 + }, + { + "start": 7638.38, + "end": 7640.68, + "probability": 0.6591 + }, + { + "start": 7641.24, + "end": 7642.92, + "probability": 0.9596 + }, + { + "start": 7644.52, + "end": 7645.3, + "probability": 0.5171 + }, + { + "start": 7645.32, + "end": 7646.86, + "probability": 0.7678 + }, + { + "start": 7647.08, + "end": 7647.6, + "probability": 0.6745 + }, + { + "start": 7648.14, + "end": 7649.54, + "probability": 0.0039 + }, + { + "start": 7669.74, + "end": 7671.18, + "probability": 0.7587 + }, + { + "start": 7672.04, + "end": 7673.98, + "probability": 0.9979 + }, + { + "start": 7674.64, + "end": 7676.38, + "probability": 0.9966 + }, + { + "start": 7677.14, + "end": 7681.24, + "probability": 0.9391 + }, + { + "start": 7681.8, + "end": 7685.86, + "probability": 0.8818 + }, + { + "start": 7685.88, + "end": 7690.86, + "probability": 0.944 + }, + { + "start": 7691.64, + "end": 7692.36, + "probability": 0.8868 + }, + { + "start": 7692.92, + "end": 7694.26, + "probability": 0.9779 + }, + { + "start": 7695.18, + "end": 7697.78, + "probability": 0.861 + }, + { + "start": 7698.46, + "end": 7700.04, + "probability": 0.9983 + }, + { + "start": 7700.7, + "end": 7701.14, + "probability": 0.9342 + }, + { + "start": 7701.88, + "end": 7703.96, + "probability": 0.9898 + }, + { + "start": 7704.56, + "end": 7706.24, + "probability": 0.7715 + }, + { + "start": 7706.9, + "end": 7707.54, + "probability": 0.8021 + }, + { + "start": 7708.9, + "end": 7710.08, + "probability": 0.936 + }, + { + "start": 7711.18, + "end": 7712.24, + "probability": 0.8824 + }, + { + "start": 7714.72, + "end": 7717.5, + "probability": 0.9491 + }, + { + "start": 7718.12, + "end": 7722.68, + "probability": 0.9948 + }, + { + "start": 7722.72, + "end": 7723.51, + "probability": 0.9387 + }, + { + "start": 7723.94, + "end": 7727.94, + "probability": 0.9965 + }, + { + "start": 7728.18, + "end": 7730.72, + "probability": 0.9918 + }, + { + "start": 7731.12, + "end": 7731.84, + "probability": 0.8621 + }, + { + "start": 7732.52, + "end": 7733.96, + "probability": 0.9519 + }, + { + "start": 7734.7, + "end": 7737.78, + "probability": 0.9908 + }, + { + "start": 7738.68, + "end": 7739.88, + "probability": 0.9907 + }, + { + "start": 7740.42, + "end": 7743.26, + "probability": 0.9945 + }, + { + "start": 7744.14, + "end": 7747.34, + "probability": 0.9984 + }, + { + "start": 7748.28, + "end": 7750.24, + "probability": 0.9254 + }, + { + "start": 7751.1, + "end": 7752.38, + "probability": 0.9844 + }, + { + "start": 7753.5, + "end": 7755.16, + "probability": 0.9326 + }, + { + "start": 7755.72, + "end": 7759.48, + "probability": 0.7758 + }, + { + "start": 7760.6, + "end": 7763.0, + "probability": 0.9737 + }, + { + "start": 7763.66, + "end": 7769.94, + "probability": 0.9949 + }, + { + "start": 7770.94, + "end": 7771.98, + "probability": 0.5128 + }, + { + "start": 7772.8, + "end": 7775.6, + "probability": 0.8511 + }, + { + "start": 7776.36, + "end": 7782.64, + "probability": 0.9934 + }, + { + "start": 7782.74, + "end": 7784.8, + "probability": 0.9148 + }, + { + "start": 7785.4, + "end": 7788.34, + "probability": 0.8859 + }, + { + "start": 7788.8, + "end": 7791.06, + "probability": 0.8849 + }, + { + "start": 7791.94, + "end": 7796.34, + "probability": 0.9281 + }, + { + "start": 7796.46, + "end": 7798.32, + "probability": 0.9865 + }, + { + "start": 7799.0, + "end": 7802.68, + "probability": 0.9979 + }, + { + "start": 7802.68, + "end": 7806.48, + "probability": 0.9992 + }, + { + "start": 7807.02, + "end": 7807.76, + "probability": 0.9133 + }, + { + "start": 7808.42, + "end": 7809.54, + "probability": 0.9722 + }, + { + "start": 7810.18, + "end": 7811.95, + "probability": 0.9805 + }, + { + "start": 7813.68, + "end": 7814.84, + "probability": 0.9995 + }, + { + "start": 7815.36, + "end": 7817.4, + "probability": 0.9851 + }, + { + "start": 7818.4, + "end": 7819.8, + "probability": 0.7835 + }, + { + "start": 7820.76, + "end": 7822.88, + "probability": 0.9961 + }, + { + "start": 7823.7, + "end": 7825.72, + "probability": 0.9278 + }, + { + "start": 7826.06, + "end": 7830.94, + "probability": 0.9966 + }, + { + "start": 7830.98, + "end": 7832.04, + "probability": 0.5679 + }, + { + "start": 7832.28, + "end": 7836.72, + "probability": 0.7961 + }, + { + "start": 7837.28, + "end": 7841.5, + "probability": 0.9614 + }, + { + "start": 7841.9, + "end": 7844.74, + "probability": 0.9963 + }, + { + "start": 7845.26, + "end": 7846.28, + "probability": 0.9771 + }, + { + "start": 7846.8, + "end": 7848.76, + "probability": 0.8299 + }, + { + "start": 7850.24, + "end": 7854.7, + "probability": 0.7054 + }, + { + "start": 7855.72, + "end": 7857.36, + "probability": 0.8823 + }, + { + "start": 7857.44, + "end": 7859.18, + "probability": 0.998 + }, + { + "start": 7859.2, + "end": 7859.2, + "probability": 0.3092 + }, + { + "start": 7859.2, + "end": 7863.28, + "probability": 0.9343 + }, + { + "start": 7864.22, + "end": 7865.02, + "probability": 0.9814 + }, + { + "start": 7866.28, + "end": 7867.32, + "probability": 0.9569 + }, + { + "start": 7867.38, + "end": 7869.1, + "probability": 0.899 + }, + { + "start": 7869.3, + "end": 7871.31, + "probability": 0.8504 + }, + { + "start": 7871.46, + "end": 7874.82, + "probability": 0.9293 + }, + { + "start": 7875.24, + "end": 7875.98, + "probability": 0.8384 + }, + { + "start": 7876.46, + "end": 7877.26, + "probability": 0.6854 + }, + { + "start": 7877.26, + "end": 7878.1, + "probability": 0.9191 + }, + { + "start": 7878.1, + "end": 7879.72, + "probability": 0.6898 + }, + { + "start": 7879.82, + "end": 7881.56, + "probability": 0.4554 + }, + { + "start": 7881.9, + "end": 7886.9, + "probability": 0.3836 + }, + { + "start": 7887.04, + "end": 7887.4, + "probability": 0.2276 + }, + { + "start": 7887.58, + "end": 7887.88, + "probability": 0.3041 + }, + { + "start": 7887.88, + "end": 7888.42, + "probability": 0.3825 + }, + { + "start": 7888.46, + "end": 7888.94, + "probability": 0.4762 + }, + { + "start": 7889.66, + "end": 7889.66, + "probability": 0.1886 + }, + { + "start": 7889.66, + "end": 7890.16, + "probability": 0.5555 + }, + { + "start": 7890.16, + "end": 7891.56, + "probability": 0.2441 + }, + { + "start": 7891.78, + "end": 7893.36, + "probability": 0.3697 + }, + { + "start": 7893.45, + "end": 7895.96, + "probability": 0.8341 + }, + { + "start": 7895.98, + "end": 7897.28, + "probability": 0.5806 + }, + { + "start": 7898.16, + "end": 7903.88, + "probability": 0.6367 + }, + { + "start": 7904.12, + "end": 7905.64, + "probability": 0.9655 + }, + { + "start": 7905.76, + "end": 7906.22, + "probability": 0.2702 + }, + { + "start": 7906.88, + "end": 7908.2, + "probability": 0.7161 + }, + { + "start": 7909.0, + "end": 7912.12, + "probability": 0.8879 + }, + { + "start": 7912.42, + "end": 7912.5, + "probability": 0.2371 + }, + { + "start": 7912.74, + "end": 7914.86, + "probability": 0.6596 + }, + { + "start": 7915.12, + "end": 7915.58, + "probability": 0.7526 + }, + { + "start": 7915.64, + "end": 7916.2, + "probability": 0.7802 + }, + { + "start": 7916.2, + "end": 7917.0, + "probability": 0.8057 + }, + { + "start": 7917.0, + "end": 7917.34, + "probability": 0.7971 + }, + { + "start": 7917.34, + "end": 7918.53, + "probability": 0.714 + }, + { + "start": 7918.54, + "end": 7918.62, + "probability": 0.7005 + }, + { + "start": 7919.47, + "end": 7921.12, + "probability": 0.2579 + }, + { + "start": 7921.64, + "end": 7923.82, + "probability": 0.2874 + }, + { + "start": 7925.58, + "end": 7926.84, + "probability": 0.3667 + }, + { + "start": 7927.58, + "end": 7928.18, + "probability": 0.5245 + }, + { + "start": 7928.18, + "end": 7928.52, + "probability": 0.512 + }, + { + "start": 7928.52, + "end": 7928.7, + "probability": 0.2862 + }, + { + "start": 7928.7, + "end": 7928.7, + "probability": 0.3481 + }, + { + "start": 7928.7, + "end": 7929.78, + "probability": 0.7233 + }, + { + "start": 7931.2, + "end": 7933.98, + "probability": 0.5591 + }, + { + "start": 7935.12, + "end": 7935.12, + "probability": 0.006 + }, + { + "start": 7935.14, + "end": 7935.14, + "probability": 0.0207 + }, + { + "start": 7935.14, + "end": 7935.14, + "probability": 0.1887 + }, + { + "start": 7935.14, + "end": 7936.36, + "probability": 0.5305 + }, + { + "start": 7936.48, + "end": 7937.18, + "probability": 0.845 + }, + { + "start": 7939.3, + "end": 7939.44, + "probability": 0.7301 + }, + { + "start": 7943.8, + "end": 7945.64, + "probability": 0.2838 + }, + { + "start": 7949.36, + "end": 7950.44, + "probability": 0.1156 + }, + { + "start": 7951.68, + "end": 7953.82, + "probability": 0.3596 + }, + { + "start": 7955.02, + "end": 7956.44, + "probability": 0.7076 + }, + { + "start": 7957.84, + "end": 7962.52, + "probability": 0.996 + }, + { + "start": 7962.52, + "end": 7966.48, + "probability": 0.9957 + }, + { + "start": 7967.82, + "end": 7968.48, + "probability": 0.9456 + }, + { + "start": 7968.72, + "end": 7972.38, + "probability": 0.9941 + }, + { + "start": 7972.46, + "end": 7974.38, + "probability": 0.796 + }, + { + "start": 7975.0, + "end": 7976.72, + "probability": 0.9028 + }, + { + "start": 7977.86, + "end": 7981.4, + "probability": 0.9971 + }, + { + "start": 7981.7, + "end": 7983.9, + "probability": 0.9934 + }, + { + "start": 7983.98, + "end": 7984.56, + "probability": 0.7086 + }, + { + "start": 7986.88, + "end": 7991.14, + "probability": 0.8232 + }, + { + "start": 7992.0, + "end": 7993.98, + "probability": 0.9985 + }, + { + "start": 7994.72, + "end": 8000.08, + "probability": 0.9932 + }, + { + "start": 8001.48, + "end": 8003.54, + "probability": 0.9987 + }, + { + "start": 8004.38, + "end": 8008.34, + "probability": 0.9973 + }, + { + "start": 8008.34, + "end": 8012.68, + "probability": 0.9875 + }, + { + "start": 8014.24, + "end": 8016.54, + "probability": 0.8231 + }, + { + "start": 8017.16, + "end": 8022.12, + "probability": 0.9988 + }, + { + "start": 8022.74, + "end": 8025.32, + "probability": 0.9991 + }, + { + "start": 8026.54, + "end": 8031.0, + "probability": 0.981 + }, + { + "start": 8031.0, + "end": 8034.74, + "probability": 0.9889 + }, + { + "start": 8035.24, + "end": 8039.64, + "probability": 0.9927 + }, + { + "start": 8040.08, + "end": 8044.4, + "probability": 0.9993 + }, + { + "start": 8045.38, + "end": 8047.76, + "probability": 0.771 + }, + { + "start": 8049.16, + "end": 8051.8, + "probability": 0.9781 + }, + { + "start": 8052.88, + "end": 8059.0, + "probability": 0.9717 + }, + { + "start": 8060.36, + "end": 8064.0, + "probability": 0.9886 + }, + { + "start": 8064.66, + "end": 8067.44, + "probability": 0.97 + }, + { + "start": 8067.44, + "end": 8072.14, + "probability": 0.919 + }, + { + "start": 8072.26, + "end": 8078.64, + "probability": 0.9819 + }, + { + "start": 8079.54, + "end": 8080.98, + "probability": 0.9767 + }, + { + "start": 8081.5, + "end": 8086.86, + "probability": 0.9921 + }, + { + "start": 8087.56, + "end": 8088.98, + "probability": 0.8648 + }, + { + "start": 8090.68, + "end": 8093.29, + "probability": 0.9966 + }, + { + "start": 8093.62, + "end": 8099.44, + "probability": 0.9022 + }, + { + "start": 8099.44, + "end": 8104.34, + "probability": 0.999 + }, + { + "start": 8105.46, + "end": 8109.44, + "probability": 0.9916 + }, + { + "start": 8109.44, + "end": 8112.08, + "probability": 0.9976 + }, + { + "start": 8113.22, + "end": 8115.82, + "probability": 0.9787 + }, + { + "start": 8117.22, + "end": 8119.7, + "probability": 0.9845 + }, + { + "start": 8119.84, + "end": 8120.7, + "probability": 0.6901 + }, + { + "start": 8120.88, + "end": 8123.64, + "probability": 0.9783 + }, + { + "start": 8124.38, + "end": 8126.72, + "probability": 0.9827 + }, + { + "start": 8127.56, + "end": 8130.78, + "probability": 0.9979 + }, + { + "start": 8131.14, + "end": 8134.98, + "probability": 0.9672 + }, + { + "start": 8135.2, + "end": 8137.92, + "probability": 0.9974 + }, + { + "start": 8138.98, + "end": 8142.2, + "probability": 0.9982 + }, + { + "start": 8142.2, + "end": 8145.72, + "probability": 0.997 + }, + { + "start": 8146.76, + "end": 8148.7, + "probability": 0.7702 + }, + { + "start": 8148.88, + "end": 8149.64, + "probability": 0.7899 + }, + { + "start": 8150.14, + "end": 8156.08, + "probability": 0.9647 + }, + { + "start": 8156.32, + "end": 8157.22, + "probability": 0.5894 + }, + { + "start": 8157.3, + "end": 8161.42, + "probability": 0.9481 + }, + { + "start": 8161.84, + "end": 8163.42, + "probability": 0.9576 + }, + { + "start": 8164.1, + "end": 8167.44, + "probability": 0.7233 + }, + { + "start": 8167.54, + "end": 8167.76, + "probability": 0.7133 + }, + { + "start": 8169.14, + "end": 8170.08, + "probability": 0.5714 + }, + { + "start": 8170.38, + "end": 8173.24, + "probability": 0.9218 + }, + { + "start": 8173.9, + "end": 8178.28, + "probability": 0.7924 + }, + { + "start": 8178.32, + "end": 8178.74, + "probability": 0.8725 + }, + { + "start": 8180.25, + "end": 8182.54, + "probability": 0.7692 + }, + { + "start": 8182.62, + "end": 8183.68, + "probability": 0.7828 + }, + { + "start": 8184.64, + "end": 8186.32, + "probability": 0.9929 + }, + { + "start": 8187.36, + "end": 8192.1, + "probability": 0.9958 + }, + { + "start": 8192.86, + "end": 8196.22, + "probability": 0.9851 + }, + { + "start": 8196.96, + "end": 8197.66, + "probability": 0.3308 + }, + { + "start": 8197.72, + "end": 8199.44, + "probability": 0.9168 + }, + { + "start": 8200.26, + "end": 8203.28, + "probability": 0.708 + }, + { + "start": 8203.86, + "end": 8204.68, + "probability": 0.7988 + }, + { + "start": 8205.18, + "end": 8205.3, + "probability": 0.1009 + }, + { + "start": 8205.52, + "end": 8205.56, + "probability": 0.5558 + }, + { + "start": 8205.68, + "end": 8208.02, + "probability": 0.8647 + }, + { + "start": 8209.14, + "end": 8211.34, + "probability": 0.3856 + }, + { + "start": 8212.36, + "end": 8214.84, + "probability": 0.8436 + }, + { + "start": 8214.84, + "end": 8216.94, + "probability": 0.9443 + }, + { + "start": 8217.28, + "end": 8219.52, + "probability": 0.9375 + }, + { + "start": 8219.98, + "end": 8221.42, + "probability": 0.8848 + }, + { + "start": 8222.1, + "end": 8222.68, + "probability": 0.9022 + }, + { + "start": 8222.82, + "end": 8223.77, + "probability": 0.8908 + }, + { + "start": 8224.16, + "end": 8226.56, + "probability": 0.9287 + }, + { + "start": 8227.52, + "end": 8228.52, + "probability": 0.9141 + }, + { + "start": 8228.7, + "end": 8229.72, + "probability": 0.837 + }, + { + "start": 8229.8, + "end": 8231.82, + "probability": 0.9664 + }, + { + "start": 8233.54, + "end": 8236.6, + "probability": 0.9919 + }, + { + "start": 8236.8, + "end": 8237.42, + "probability": 0.7917 + }, + { + "start": 8238.12, + "end": 8239.0, + "probability": 0.6592 + }, + { + "start": 8239.06, + "end": 8240.4, + "probability": 0.7807 + }, + { + "start": 8241.34, + "end": 8242.32, + "probability": 0.73 + }, + { + "start": 8242.9, + "end": 8243.42, + "probability": 0.5008 + }, + { + "start": 8243.9, + "end": 8246.22, + "probability": 0.9427 + }, + { + "start": 8247.22, + "end": 8249.5, + "probability": 0.7786 + }, + { + "start": 8250.66, + "end": 8252.06, + "probability": 0.8158 + }, + { + "start": 8252.86, + "end": 8255.09, + "probability": 0.9672 + }, + { + "start": 8255.54, + "end": 8256.22, + "probability": 0.7228 + }, + { + "start": 8256.3, + "end": 8257.38, + "probability": 0.9081 + }, + { + "start": 8258.18, + "end": 8262.86, + "probability": 0.8851 + }, + { + "start": 8263.32, + "end": 8264.88, + "probability": 0.6398 + }, + { + "start": 8265.88, + "end": 8268.3, + "probability": 0.8812 + }, + { + "start": 8268.9, + "end": 8270.06, + "probability": 0.8051 + }, + { + "start": 8270.48, + "end": 8272.37, + "probability": 0.9683 + }, + { + "start": 8272.58, + "end": 8274.13, + "probability": 0.2474 + }, + { + "start": 8275.04, + "end": 8276.2, + "probability": 0.0747 + }, + { + "start": 8277.3, + "end": 8278.1, + "probability": 0.1571 + }, + { + "start": 8278.38, + "end": 8278.38, + "probability": 0.0612 + }, + { + "start": 8278.38, + "end": 8278.38, + "probability": 0.1418 + }, + { + "start": 8278.38, + "end": 8278.38, + "probability": 0.1796 + }, + { + "start": 8278.38, + "end": 8280.16, + "probability": 0.2524 + }, + { + "start": 8280.42, + "end": 8280.84, + "probability": 0.2652 + }, + { + "start": 8280.86, + "end": 8283.22, + "probability": 0.2096 + }, + { + "start": 8283.58, + "end": 8288.08, + "probability": 0.7573 + }, + { + "start": 8288.14, + "end": 8288.86, + "probability": 0.8959 + }, + { + "start": 8289.08, + "end": 8291.68, + "probability": 0.5227 + }, + { + "start": 8292.5, + "end": 8293.52, + "probability": 0.6086 + }, + { + "start": 8293.58, + "end": 8295.8, + "probability": 0.8079 + }, + { + "start": 8295.96, + "end": 8297.08, + "probability": 0.7384 + }, + { + "start": 8297.6, + "end": 8297.82, + "probability": 0.7627 + }, + { + "start": 8298.3, + "end": 8299.48, + "probability": 0.9562 + }, + { + "start": 8300.16, + "end": 8302.24, + "probability": 0.9796 + }, + { + "start": 8303.1, + "end": 8307.68, + "probability": 0.9674 + }, + { + "start": 8308.56, + "end": 8310.3, + "probability": 0.798 + }, + { + "start": 8311.1, + "end": 8313.8, + "probability": 0.9537 + }, + { + "start": 8314.02, + "end": 8314.34, + "probability": 0.6388 + }, + { + "start": 8314.84, + "end": 8320.2, + "probability": 0.9798 + }, + { + "start": 8321.12, + "end": 8323.0, + "probability": 0.986 + }, + { + "start": 8323.94, + "end": 8326.54, + "probability": 0.7786 + }, + { + "start": 8327.36, + "end": 8328.66, + "probability": 0.6754 + }, + { + "start": 8329.3, + "end": 8331.84, + "probability": 0.9681 + }, + { + "start": 8332.5, + "end": 8335.18, + "probability": 0.9401 + }, + { + "start": 8335.58, + "end": 8339.36, + "probability": 0.9894 + }, + { + "start": 8341.98, + "end": 8345.2, + "probability": 0.9974 + }, + { + "start": 8346.12, + "end": 8347.32, + "probability": 0.4911 + }, + { + "start": 8348.14, + "end": 8348.28, + "probability": 0.2813 + }, + { + "start": 8348.3, + "end": 8349.9, + "probability": 0.8397 + }, + { + "start": 8350.38, + "end": 8351.52, + "probability": 0.8594 + }, + { + "start": 8351.62, + "end": 8352.74, + "probability": 0.7066 + }, + { + "start": 8352.74, + "end": 8353.48, + "probability": 0.7968 + }, + { + "start": 8354.12, + "end": 8355.03, + "probability": 0.9672 + }, + { + "start": 8355.84, + "end": 8356.68, + "probability": 0.4277 + }, + { + "start": 8357.06, + "end": 8358.16, + "probability": 0.8374 + }, + { + "start": 8358.6, + "end": 8359.88, + "probability": 0.9121 + }, + { + "start": 8360.52, + "end": 8364.02, + "probability": 0.9858 + }, + { + "start": 8364.52, + "end": 8366.88, + "probability": 0.8716 + }, + { + "start": 8367.44, + "end": 8372.24, + "probability": 0.9155 + }, + { + "start": 8372.9, + "end": 8376.14, + "probability": 0.998 + }, + { + "start": 8377.04, + "end": 8378.6, + "probability": 0.9629 + }, + { + "start": 8379.16, + "end": 8381.62, + "probability": 0.6225 + }, + { + "start": 8382.06, + "end": 8386.92, + "probability": 0.9186 + }, + { + "start": 8388.52, + "end": 8389.5, + "probability": 0.9821 + }, + { + "start": 8390.08, + "end": 8391.88, + "probability": 0.8716 + }, + { + "start": 8393.56, + "end": 8397.0, + "probability": 0.9847 + }, + { + "start": 8397.58, + "end": 8401.1, + "probability": 0.9867 + }, + { + "start": 8401.26, + "end": 8403.16, + "probability": 0.9971 + }, + { + "start": 8403.22, + "end": 8404.2, + "probability": 0.874 + }, + { + "start": 8404.56, + "end": 8405.28, + "probability": 0.8211 + }, + { + "start": 8405.6, + "end": 8408.52, + "probability": 0.9984 + }, + { + "start": 8408.56, + "end": 8409.66, + "probability": 0.8687 + }, + { + "start": 8410.66, + "end": 8413.48, + "probability": 0.4633 + }, + { + "start": 8415.5, + "end": 8417.9, + "probability": 0.9102 + }, + { + "start": 8418.06, + "end": 8421.2, + "probability": 0.1198 + }, + { + "start": 8425.02, + "end": 8429.7, + "probability": 0.1847 + }, + { + "start": 8444.16, + "end": 8449.48, + "probability": 0.0736 + }, + { + "start": 8449.48, + "end": 8451.76, + "probability": 0.0238 + }, + { + "start": 8451.76, + "end": 8452.88, + "probability": 0.0084 + }, + { + "start": 8452.88, + "end": 8452.88, + "probability": 0.0616 + }, + { + "start": 8453.56, + "end": 8453.98, + "probability": 0.0906 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.0, + "end": 8540.0, + "probability": 0.0 + }, + { + "start": 8540.3, + "end": 8541.44, + "probability": 0.0 + }, + { + "start": 8544.11, + "end": 8545.98, + "probability": 0.0767 + }, + { + "start": 8546.1, + "end": 8547.06, + "probability": 0.0104 + }, + { + "start": 8548.64, + "end": 8549.52, + "probability": 0.1529 + }, + { + "start": 8552.34, + "end": 8556.14, + "probability": 0.0405 + }, + { + "start": 8556.6, + "end": 8559.72, + "probability": 0.0116 + }, + { + "start": 8560.96, + "end": 8564.1, + "probability": 0.1455 + }, + { + "start": 8564.72, + "end": 8570.7, + "probability": 0.1513 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.0, + "end": 8678.0, + "probability": 0.0 + }, + { + "start": 8678.64, + "end": 8682.46, + "probability": 0.1246 + }, + { + "start": 8683.11, + "end": 8684.17, + "probability": 0.048 + }, + { + "start": 8684.99, + "end": 8687.18, + "probability": 0.1072 + }, + { + "start": 8687.18, + "end": 8692.62, + "probability": 0.1213 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.0, + "end": 8817.0, + "probability": 0.0 + }, + { + "start": 8817.28, + "end": 8817.9, + "probability": 0.121 + }, + { + "start": 8817.92, + "end": 8822.7, + "probability": 0.0116 + }, + { + "start": 8822.7, + "end": 8825.4, + "probability": 0.0732 + }, + { + "start": 8825.48, + "end": 8831.02, + "probability": 0.2859 + }, + { + "start": 8831.22, + "end": 8832.5, + "probability": 0.0103 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8942.0, + "end": 8942.0, + "probability": 0.0 + }, + { + "start": 8943.53, + "end": 8948.08, + "probability": 0.7582 + }, + { + "start": 8948.14, + "end": 8948.8, + "probability": 0.6362 + }, + { + "start": 8950.04, + "end": 8955.08, + "probability": 0.8193 + }, + { + "start": 8955.26, + "end": 8958.38, + "probability": 0.9647 + }, + { + "start": 8958.4, + "end": 8959.24, + "probability": 0.1171 + }, + { + "start": 8959.24, + "end": 8960.36, + "probability": 0.5483 + }, + { + "start": 8960.72, + "end": 8962.3, + "probability": 0.9645 + }, + { + "start": 8969.89, + "end": 8973.1, + "probability": 0.6904 + }, + { + "start": 8973.32, + "end": 8977.68, + "probability": 0.4635 + }, + { + "start": 8977.9, + "end": 8980.16, + "probability": 0.9734 + }, + { + "start": 8980.38, + "end": 8982.88, + "probability": 0.6528 + }, + { + "start": 8983.0, + "end": 8983.66, + "probability": 0.6857 + }, + { + "start": 8984.83, + "end": 8987.53, + "probability": 0.6157 + }, + { + "start": 8987.98, + "end": 8989.6, + "probability": 0.6518 + }, + { + "start": 8989.6, + "end": 8991.72, + "probability": 0.9475 + }, + { + "start": 8992.08, + "end": 8995.16, + "probability": 0.9616 + }, + { + "start": 8996.2, + "end": 9000.16, + "probability": 0.5101 + }, + { + "start": 9000.86, + "end": 9002.06, + "probability": 0.2727 + }, + { + "start": 9002.06, + "end": 9004.16, + "probability": 0.2439 + }, + { + "start": 9004.16, + "end": 9005.2, + "probability": 0.5593 + }, + { + "start": 9005.34, + "end": 9007.5, + "probability": 0.9418 + }, + { + "start": 9007.6, + "end": 9010.66, + "probability": 0.9674 + }, + { + "start": 9011.54, + "end": 9013.72, + "probability": 0.9077 + }, + { + "start": 9014.34, + "end": 9015.52, + "probability": 0.8422 + }, + { + "start": 9015.82, + "end": 9017.76, + "probability": 0.5702 + }, + { + "start": 9017.84, + "end": 9019.12, + "probability": 0.7083 + }, + { + "start": 9019.88, + "end": 9023.04, + "probability": 0.9406 + }, + { + "start": 9023.04, + "end": 9027.04, + "probability": 0.4179 + }, + { + "start": 9027.14, + "end": 9031.92, + "probability": 0.9178 + }, + { + "start": 9031.94, + "end": 9032.92, + "probability": 0.7177 + }, + { + "start": 9033.62, + "end": 9033.8, + "probability": 0.2598 + }, + { + "start": 9033.8, + "end": 9035.2, + "probability": 0.9964 + }, + { + "start": 9035.2, + "end": 9038.16, + "probability": 0.9946 + }, + { + "start": 9038.16, + "end": 9039.06, + "probability": 0.8309 + }, + { + "start": 9039.5, + "end": 9041.32, + "probability": 0.8478 + }, + { + "start": 9042.16, + "end": 9043.98, + "probability": 0.5756 + }, + { + "start": 9044.02, + "end": 9046.2, + "probability": 0.9766 + }, + { + "start": 9046.6, + "end": 9047.74, + "probability": 0.7576 + }, + { + "start": 9048.12, + "end": 9049.7, + "probability": 0.8568 + }, + { + "start": 9050.18, + "end": 9051.7, + "probability": 0.9958 + }, + { + "start": 9051.88, + "end": 9055.22, + "probability": 0.8965 + }, + { + "start": 9055.22, + "end": 9058.06, + "probability": 0.9934 + }, + { + "start": 9058.72, + "end": 9059.4, + "probability": 0.998 + }, + { + "start": 9059.66, + "end": 9063.18, + "probability": 0.999 + }, + { + "start": 9064.4, + "end": 9068.0, + "probability": 0.9597 + }, + { + "start": 9068.8, + "end": 9070.24, + "probability": 0.9953 + }, + { + "start": 9071.54, + "end": 9072.72, + "probability": 0.9993 + }, + { + "start": 9073.16, + "end": 9075.3, + "probability": 0.8623 + }, + { + "start": 9075.62, + "end": 9076.54, + "probability": 0.9892 + }, + { + "start": 9076.64, + "end": 9077.98, + "probability": 0.9778 + }, + { + "start": 9078.6, + "end": 9082.22, + "probability": 0.9977 + }, + { + "start": 9082.92, + "end": 9084.24, + "probability": 0.9138 + }, + { + "start": 9084.92, + "end": 9087.72, + "probability": 0.9993 + }, + { + "start": 9088.3, + "end": 9089.46, + "probability": 0.99 + }, + { + "start": 9089.62, + "end": 9090.83, + "probability": 0.967 + }, + { + "start": 9091.36, + "end": 9092.24, + "probability": 0.8291 + }, + { + "start": 9093.48, + "end": 9095.48, + "probability": 0.9833 + }, + { + "start": 9095.68, + "end": 9099.08, + "probability": 0.9984 + }, + { + "start": 9099.48, + "end": 9100.06, + "probability": 0.9696 + }, + { + "start": 9100.48, + "end": 9102.14, + "probability": 0.9389 + }, + { + "start": 9102.2, + "end": 9108.1, + "probability": 0.9737 + }, + { + "start": 9110.02, + "end": 9111.34, + "probability": 0.9416 + }, + { + "start": 9112.4, + "end": 9113.96, + "probability": 0.8507 + }, + { + "start": 9115.26, + "end": 9118.34, + "probability": 0.7406 + }, + { + "start": 9118.88, + "end": 9120.59, + "probability": 0.9899 + }, + { + "start": 9121.04, + "end": 9124.32, + "probability": 0.996 + }, + { + "start": 9124.84, + "end": 9126.02, + "probability": 0.9875 + }, + { + "start": 9126.92, + "end": 9129.25, + "probability": 0.9805 + }, + { + "start": 9130.4, + "end": 9133.88, + "probability": 0.9824 + }, + { + "start": 9133.92, + "end": 9134.46, + "probability": 0.7741 + }, + { + "start": 9135.52, + "end": 9137.64, + "probability": 0.928 + }, + { + "start": 9138.04, + "end": 9141.1, + "probability": 0.9621 + }, + { + "start": 9141.1, + "end": 9144.26, + "probability": 0.9958 + }, + { + "start": 9144.8, + "end": 9145.48, + "probability": 0.5002 + }, + { + "start": 9146.06, + "end": 9146.67, + "probability": 0.9127 + }, + { + "start": 9147.52, + "end": 9148.86, + "probability": 0.9741 + }, + { + "start": 9149.16, + "end": 9149.95, + "probability": 0.9881 + }, + { + "start": 9150.66, + "end": 9153.68, + "probability": 0.9983 + }, + { + "start": 9154.34, + "end": 9156.22, + "probability": 0.9514 + }, + { + "start": 9156.82, + "end": 9159.84, + "probability": 0.998 + }, + { + "start": 9160.18, + "end": 9162.52, + "probability": 0.9199 + }, + { + "start": 9163.16, + "end": 9165.64, + "probability": 0.9761 + }, + { + "start": 9166.12, + "end": 9168.18, + "probability": 0.9927 + }, + { + "start": 9168.48, + "end": 9169.56, + "probability": 0.7207 + }, + { + "start": 9170.42, + "end": 9172.36, + "probability": 0.8813 + }, + { + "start": 9173.3, + "end": 9173.93, + "probability": 0.8558 + }, + { + "start": 9174.78, + "end": 9176.7, + "probability": 0.1004 + }, + { + "start": 9177.14, + "end": 9177.14, + "probability": 0.4467 + }, + { + "start": 9177.14, + "end": 9180.1, + "probability": 0.9647 + }, + { + "start": 9180.38, + "end": 9181.44, + "probability": 0.9878 + }, + { + "start": 9181.86, + "end": 9184.5, + "probability": 0.958 + }, + { + "start": 9184.86, + "end": 9185.28, + "probability": 0.5111 + }, + { + "start": 9185.62, + "end": 9187.8, + "probability": 0.9915 + }, + { + "start": 9188.36, + "end": 9193.14, + "probability": 0.9813 + }, + { + "start": 9193.2, + "end": 9195.41, + "probability": 0.9976 + }, + { + "start": 9196.14, + "end": 9197.26, + "probability": 0.9711 + }, + { + "start": 9197.96, + "end": 9199.36, + "probability": 0.9178 + }, + { + "start": 9200.02, + "end": 9200.68, + "probability": 0.8885 + }, + { + "start": 9200.74, + "end": 9204.74, + "probability": 0.9819 + }, + { + "start": 9205.2, + "end": 9207.22, + "probability": 0.981 + }, + { + "start": 9207.76, + "end": 9216.52, + "probability": 0.9959 + }, + { + "start": 9216.64, + "end": 9217.52, + "probability": 0.8064 + }, + { + "start": 9217.6, + "end": 9218.3, + "probability": 0.7694 + }, + { + "start": 9218.66, + "end": 9219.52, + "probability": 0.8515 + }, + { + "start": 9220.04, + "end": 9222.14, + "probability": 0.9966 + }, + { + "start": 9222.62, + "end": 9223.66, + "probability": 0.9949 + }, + { + "start": 9223.7, + "end": 9225.14, + "probability": 0.9792 + }, + { + "start": 9225.88, + "end": 9227.16, + "probability": 0.9751 + }, + { + "start": 9227.86, + "end": 9231.08, + "probability": 0.9729 + }, + { + "start": 9231.44, + "end": 9232.48, + "probability": 0.838 + }, + { + "start": 9232.92, + "end": 9234.42, + "probability": 0.9156 + }, + { + "start": 9234.52, + "end": 9235.66, + "probability": 0.8198 + }, + { + "start": 9236.14, + "end": 9237.76, + "probability": 0.8162 + }, + { + "start": 9238.28, + "end": 9241.38, + "probability": 0.9705 + }, + { + "start": 9241.74, + "end": 9242.82, + "probability": 0.9949 + }, + { + "start": 9242.88, + "end": 9243.66, + "probability": 0.9741 + }, + { + "start": 9244.26, + "end": 9246.16, + "probability": 0.98 + }, + { + "start": 9246.82, + "end": 9249.5, + "probability": 0.8823 + }, + { + "start": 9249.74, + "end": 9251.2, + "probability": 0.9709 + }, + { + "start": 9251.6, + "end": 9254.78, + "probability": 0.9829 + }, + { + "start": 9254.96, + "end": 9255.46, + "probability": 0.4856 + }, + { + "start": 9256.04, + "end": 9258.3, + "probability": 0.985 + }, + { + "start": 9259.26, + "end": 9260.97, + "probability": 0.9979 + }, + { + "start": 9262.22, + "end": 9262.66, + "probability": 0.2229 + }, + { + "start": 9263.3, + "end": 9266.22, + "probability": 0.9881 + }, + { + "start": 9266.54, + "end": 9267.52, + "probability": 0.8794 + }, + { + "start": 9267.88, + "end": 9268.47, + "probability": 0.9868 + }, + { + "start": 9269.2, + "end": 9270.08, + "probability": 0.9576 + }, + { + "start": 9270.28, + "end": 9271.7, + "probability": 0.9979 + }, + { + "start": 9273.12, + "end": 9273.12, + "probability": 0.0057 + }, + { + "start": 9273.12, + "end": 9273.12, + "probability": 0.0168 + }, + { + "start": 9273.12, + "end": 9273.96, + "probability": 0.5682 + }, + { + "start": 9274.04, + "end": 9275.36, + "probability": 0.665 + }, + { + "start": 9275.7, + "end": 9278.4, + "probability": 0.9842 + }, + { + "start": 9278.4, + "end": 9281.4, + "probability": 0.9751 + }, + { + "start": 9282.6, + "end": 9284.56, + "probability": 0.2666 + }, + { + "start": 9285.52, + "end": 9287.04, + "probability": 0.6644 + }, + { + "start": 9287.48, + "end": 9290.04, + "probability": 0.6632 + }, + { + "start": 9290.18, + "end": 9291.87, + "probability": 0.7625 + }, + { + "start": 9292.6, + "end": 9294.34, + "probability": 0.6377 + }, + { + "start": 9294.68, + "end": 9296.48, + "probability": 0.7646 + }, + { + "start": 9297.32, + "end": 9297.7, + "probability": 0.2818 + }, + { + "start": 9297.7, + "end": 9301.47, + "probability": 0.6211 + }, + { + "start": 9301.78, + "end": 9305.78, + "probability": 0.9183 + }, + { + "start": 9306.2, + "end": 9309.22, + "probability": 0.227 + }, + { + "start": 9309.22, + "end": 9309.22, + "probability": 0.1306 + }, + { + "start": 9309.22, + "end": 9309.22, + "probability": 0.2154 + }, + { + "start": 9309.22, + "end": 9311.76, + "probability": 0.983 + }, + { + "start": 9311.8, + "end": 9317.42, + "probability": 0.9909 + }, + { + "start": 9318.1, + "end": 9321.14, + "probability": 0.9852 + }, + { + "start": 9321.14, + "end": 9325.46, + "probability": 0.9972 + }, + { + "start": 9326.9, + "end": 9328.9, + "probability": 0.7897 + }, + { + "start": 9329.08, + "end": 9331.16, + "probability": 0.1805 + }, + { + "start": 9331.98, + "end": 9336.16, + "probability": 0.9222 + }, + { + "start": 9336.4, + "end": 9338.04, + "probability": 0.914 + }, + { + "start": 9338.2, + "end": 9340.8, + "probability": 0.9797 + }, + { + "start": 9340.8, + "end": 9343.46, + "probability": 0.9983 + }, + { + "start": 9343.68, + "end": 9345.98, + "probability": 0.9855 + }, + { + "start": 9345.98, + "end": 9348.18, + "probability": 0.9897 + }, + { + "start": 9348.28, + "end": 9349.92, + "probability": 0.8374 + }, + { + "start": 9350.2, + "end": 9352.98, + "probability": 0.8743 + }, + { + "start": 9353.28, + "end": 9355.4, + "probability": 0.7832 + }, + { + "start": 9356.14, + "end": 9361.48, + "probability": 0.6787 + }, + { + "start": 9361.82, + "end": 9364.24, + "probability": 0.8556 + }, + { + "start": 9364.32, + "end": 9364.94, + "probability": 0.6411 + }, + { + "start": 9365.62, + "end": 9368.86, + "probability": 0.9926 + }, + { + "start": 9368.86, + "end": 9371.76, + "probability": 0.9981 + }, + { + "start": 9372.1, + "end": 9373.66, + "probability": 0.9611 + }, + { + "start": 9374.32, + "end": 9376.52, + "probability": 0.9449 + }, + { + "start": 9377.06, + "end": 9379.84, + "probability": 0.9904 + }, + { + "start": 9379.96, + "end": 9383.66, + "probability": 0.9913 + }, + { + "start": 9384.16, + "end": 9387.38, + "probability": 0.9443 + }, + { + "start": 9387.38, + "end": 9390.98, + "probability": 0.9938 + }, + { + "start": 9390.98, + "end": 9394.64, + "probability": 0.9977 + }, + { + "start": 9395.06, + "end": 9399.9, + "probability": 0.9271 + }, + { + "start": 9400.92, + "end": 9405.36, + "probability": 0.9893 + }, + { + "start": 9405.36, + "end": 9409.74, + "probability": 0.9883 + }, + { + "start": 9410.18, + "end": 9414.16, + "probability": 0.9064 + }, + { + "start": 9414.68, + "end": 9416.84, + "probability": 0.9875 + }, + { + "start": 9416.84, + "end": 9420.46, + "probability": 0.9855 + }, + { + "start": 9420.92, + "end": 9424.94, + "probability": 0.9892 + }, + { + "start": 9424.94, + "end": 9429.6, + "probability": 0.9922 + }, + { + "start": 9430.68, + "end": 9431.34, + "probability": 0.7485 + }, + { + "start": 9431.68, + "end": 9435.72, + "probability": 0.9799 + }, + { + "start": 9435.72, + "end": 9439.54, + "probability": 0.9891 + }, + { + "start": 9439.54, + "end": 9444.04, + "probability": 0.9702 + }, + { + "start": 9444.68, + "end": 9448.28, + "probability": 0.8918 + }, + { + "start": 9448.5, + "end": 9449.76, + "probability": 0.8848 + }, + { + "start": 9449.9, + "end": 9452.98, + "probability": 0.903 + }, + { + "start": 9453.38, + "end": 9454.06, + "probability": 0.9951 + }, + { + "start": 9459.52, + "end": 9464.2, + "probability": 0.9307 + }, + { + "start": 9464.2, + "end": 9467.9, + "probability": 0.9845 + }, + { + "start": 9468.78, + "end": 9472.1, + "probability": 0.9863 + }, + { + "start": 9472.28, + "end": 9475.18, + "probability": 0.9796 + }, + { + "start": 9475.68, + "end": 9479.37, + "probability": 0.9831 + }, + { + "start": 9479.5, + "end": 9479.98, + "probability": 0.8947 + }, + { + "start": 9480.1, + "end": 9482.02, + "probability": 0.8722 + }, + { + "start": 9482.56, + "end": 9485.7, + "probability": 0.9794 + }, + { + "start": 9486.46, + "end": 9491.3, + "probability": 0.998 + }, + { + "start": 9491.3, + "end": 9496.12, + "probability": 0.999 + }, + { + "start": 9496.56, + "end": 9498.3, + "probability": 0.9712 + }, + { + "start": 9498.88, + "end": 9500.56, + "probability": 0.9861 + }, + { + "start": 9500.56, + "end": 9503.34, + "probability": 0.95 + }, + { + "start": 9503.74, + "end": 9504.2, + "probability": 0.9276 + }, + { + "start": 9504.78, + "end": 9505.34, + "probability": 0.8452 + }, + { + "start": 9505.42, + "end": 9508.74, + "probability": 0.9014 + }, + { + "start": 9508.88, + "end": 9512.58, + "probability": 0.9899 + }, + { + "start": 9513.22, + "end": 9516.36, + "probability": 0.6783 + }, + { + "start": 9517.08, + "end": 9517.54, + "probability": 0.8437 + }, + { + "start": 9517.72, + "end": 9520.06, + "probability": 0.9812 + }, + { + "start": 9520.06, + "end": 9522.74, + "probability": 0.9667 + }, + { + "start": 9523.42, + "end": 9524.02, + "probability": 0.6903 + }, + { + "start": 9524.38, + "end": 9527.34, + "probability": 0.9866 + }, + { + "start": 9527.34, + "end": 9530.78, + "probability": 0.9951 + }, + { + "start": 9532.34, + "end": 9532.6, + "probability": 0.5126 + }, + { + "start": 9532.9, + "end": 9535.58, + "probability": 0.9641 + }, + { + "start": 9535.58, + "end": 9538.06, + "probability": 0.8137 + }, + { + "start": 9538.06, + "end": 9541.5, + "probability": 0.9833 + }, + { + "start": 9541.62, + "end": 9542.82, + "probability": 0.9515 + }, + { + "start": 9543.22, + "end": 9545.64, + "probability": 0.953 + }, + { + "start": 9545.66, + "end": 9549.56, + "probability": 0.8242 + }, + { + "start": 9549.78, + "end": 9552.3, + "probability": 0.8716 + }, + { + "start": 9552.3, + "end": 9555.02, + "probability": 0.8532 + }, + { + "start": 9555.54, + "end": 9560.18, + "probability": 0.784 + }, + { + "start": 9560.56, + "end": 9562.46, + "probability": 0.9881 + }, + { + "start": 9563.56, + "end": 9566.78, + "probability": 0.9948 + }, + { + "start": 9566.78, + "end": 9570.14, + "probability": 0.9976 + }, + { + "start": 9571.14, + "end": 9573.52, + "probability": 0.9563 + }, + { + "start": 9574.1, + "end": 9575.92, + "probability": 0.6342 + }, + { + "start": 9576.74, + "end": 9578.04, + "probability": 0.7744 + }, + { + "start": 9578.34, + "end": 9581.66, + "probability": 0.9872 + }, + { + "start": 9582.28, + "end": 9583.22, + "probability": 0.91 + }, + { + "start": 9583.36, + "end": 9585.14, + "probability": 0.8369 + }, + { + "start": 9585.22, + "end": 9585.64, + "probability": 0.9365 + }, + { + "start": 9585.7, + "end": 9587.32, + "probability": 0.9958 + }, + { + "start": 9587.68, + "end": 9589.24, + "probability": 0.9971 + }, + { + "start": 9589.5, + "end": 9592.22, + "probability": 0.9819 + }, + { + "start": 9592.76, + "end": 9594.19, + "probability": 0.9683 + }, + { + "start": 9595.2, + "end": 9595.82, + "probability": 0.843 + }, + { + "start": 9596.22, + "end": 9598.16, + "probability": 0.9944 + }, + { + "start": 9598.16, + "end": 9601.54, + "probability": 0.8901 + }, + { + "start": 9601.68, + "end": 9603.04, + "probability": 0.6061 + }, + { + "start": 9603.14, + "end": 9603.68, + "probability": 0.3422 + }, + { + "start": 9603.72, + "end": 9604.38, + "probability": 0.8656 + }, + { + "start": 9604.82, + "end": 9605.26, + "probability": 0.9011 + }, + { + "start": 9606.94, + "end": 9608.46, + "probability": 0.5096 + }, + { + "start": 9608.6, + "end": 9610.52, + "probability": 0.9625 + }, + { + "start": 9611.54, + "end": 9614.28, + "probability": 0.8733 + }, + { + "start": 9614.32, + "end": 9616.44, + "probability": 0.8211 + }, + { + "start": 9616.92, + "end": 9617.3, + "probability": 0.9511 + }, + { + "start": 9621.84, + "end": 9622.52, + "probability": 0.5714 + }, + { + "start": 9623.88, + "end": 9624.62, + "probability": 0.5722 + }, + { + "start": 9624.62, + "end": 9625.56, + "probability": 0.4963 + }, + { + "start": 9626.24, + "end": 9629.94, + "probability": 0.9703 + }, + { + "start": 9630.0, + "end": 9630.86, + "probability": 0.8279 + }, + { + "start": 9631.58, + "end": 9632.46, + "probability": 0.9095 + }, + { + "start": 9633.4, + "end": 9634.44, + "probability": 0.8911 + }, + { + "start": 9634.5, + "end": 9635.96, + "probability": 0.9982 + }, + { + "start": 9636.72, + "end": 9639.0, + "probability": 0.985 + }, + { + "start": 9639.64, + "end": 9640.26, + "probability": 0.8012 + }, + { + "start": 9640.36, + "end": 9640.76, + "probability": 0.8652 + }, + { + "start": 9641.0, + "end": 9645.46, + "probability": 0.9741 + }, + { + "start": 9646.16, + "end": 9646.86, + "probability": 0.952 + }, + { + "start": 9647.02, + "end": 9647.76, + "probability": 0.9487 + }, + { + "start": 9647.96, + "end": 9650.12, + "probability": 0.9613 + }, + { + "start": 9650.22, + "end": 9651.14, + "probability": 0.8173 + }, + { + "start": 9652.12, + "end": 9654.78, + "probability": 0.9985 + }, + { + "start": 9654.94, + "end": 9657.0, + "probability": 0.9578 + }, + { + "start": 9657.08, + "end": 9658.82, + "probability": 0.9211 + }, + { + "start": 9658.94, + "end": 9660.8, + "probability": 0.9894 + }, + { + "start": 9661.48, + "end": 9663.6, + "probability": 0.9858 + }, + { + "start": 9664.8, + "end": 9665.14, + "probability": 0.4414 + }, + { + "start": 9665.14, + "end": 9667.28, + "probability": 0.7317 + }, + { + "start": 9667.38, + "end": 9670.56, + "probability": 0.9968 + }, + { + "start": 9670.56, + "end": 9674.7, + "probability": 0.9922 + }, + { + "start": 9674.76, + "end": 9675.84, + "probability": 0.9471 + }, + { + "start": 9676.54, + "end": 9679.66, + "probability": 0.9951 + }, + { + "start": 9679.78, + "end": 9683.2, + "probability": 0.8332 + }, + { + "start": 9683.78, + "end": 9686.02, + "probability": 0.9984 + }, + { + "start": 9686.92, + "end": 9688.14, + "probability": 0.586 + }, + { + "start": 9689.32, + "end": 9691.12, + "probability": 0.9234 + }, + { + "start": 9692.46, + "end": 9696.96, + "probability": 0.9865 + }, + { + "start": 9697.94, + "end": 9703.2, + "probability": 0.973 + }, + { + "start": 9703.92, + "end": 9706.16, + "probability": 0.9363 + }, + { + "start": 9706.64, + "end": 9708.16, + "probability": 0.9966 + }, + { + "start": 9708.86, + "end": 9710.58, + "probability": 0.8205 + }, + { + "start": 9711.44, + "end": 9711.78, + "probability": 0.8301 + }, + { + "start": 9712.3, + "end": 9717.5, + "probability": 0.9507 + }, + { + "start": 9719.2, + "end": 9720.98, + "probability": 0.99 + }, + { + "start": 9721.6, + "end": 9725.76, + "probability": 0.9839 + }, + { + "start": 9727.54, + "end": 9728.26, + "probability": 0.7554 + }, + { + "start": 9729.68, + "end": 9733.2, + "probability": 0.9912 + }, + { + "start": 9733.32, + "end": 9736.0, + "probability": 0.8795 + }, + { + "start": 9736.26, + "end": 9737.2, + "probability": 0.8574 + }, + { + "start": 9737.7, + "end": 9738.86, + "probability": 0.9823 + }, + { + "start": 9739.27, + "end": 9740.0, + "probability": 0.7928 + }, + { + "start": 9740.34, + "end": 9740.74, + "probability": 0.7775 + }, + { + "start": 9740.9, + "end": 9741.92, + "probability": 0.5309 + }, + { + "start": 9742.0, + "end": 9742.68, + "probability": 0.8586 + }, + { + "start": 9742.94, + "end": 9744.52, + "probability": 0.8679 + }, + { + "start": 9746.24, + "end": 9749.88, + "probability": 0.9187 + }, + { + "start": 9750.56, + "end": 9751.64, + "probability": 0.7353 + }, + { + "start": 9752.42, + "end": 9754.04, + "probability": 0.983 + }, + { + "start": 9755.1, + "end": 9755.8, + "probability": 0.6784 + }, + { + "start": 9757.02, + "end": 9758.34, + "probability": 0.8952 + }, + { + "start": 9778.24, + "end": 9778.72, + "probability": 0.3749 + }, + { + "start": 9778.72, + "end": 9778.72, + "probability": 0.7234 + }, + { + "start": 9782.62, + "end": 9783.08, + "probability": 0.3887 + }, + { + "start": 9783.16, + "end": 9786.66, + "probability": 0.7007 + }, + { + "start": 9788.2, + "end": 9790.74, + "probability": 0.8719 + }, + { + "start": 9790.82, + "end": 9791.62, + "probability": 0.7939 + }, + { + "start": 9791.9, + "end": 9794.63, + "probability": 0.9816 + }, + { + "start": 9795.48, + "end": 9796.82, + "probability": 0.8963 + }, + { + "start": 9797.88, + "end": 9799.64, + "probability": 0.9217 + }, + { + "start": 9799.76, + "end": 9800.35, + "probability": 0.9226 + }, + { + "start": 9800.58, + "end": 9800.78, + "probability": 0.9271 + }, + { + "start": 9801.98, + "end": 9804.36, + "probability": 0.7909 + }, + { + "start": 9804.9, + "end": 9807.63, + "probability": 0.9345 + }, + { + "start": 9808.52, + "end": 9810.84, + "probability": 0.8643 + }, + { + "start": 9811.22, + "end": 9812.32, + "probability": 0.5341 + }, + { + "start": 9812.36, + "end": 9813.84, + "probability": 0.8633 + }, + { + "start": 9813.96, + "end": 9815.64, + "probability": 0.9009 + }, + { + "start": 9815.7, + "end": 9816.6, + "probability": 0.5649 + }, + { + "start": 9817.12, + "end": 9819.34, + "probability": 0.1072 + }, + { + "start": 9819.42, + "end": 9821.5, + "probability": 0.1835 + }, + { + "start": 9821.5, + "end": 9824.14, + "probability": 0.0422 + }, + { + "start": 9824.96, + "end": 9827.06, + "probability": 0.0965 + }, + { + "start": 9828.8, + "end": 9828.8, + "probability": 0.0226 + }, + { + "start": 9828.84, + "end": 9828.84, + "probability": 0.2507 + }, + { + "start": 9828.84, + "end": 9829.06, + "probability": 0.0456 + }, + { + "start": 9829.3, + "end": 9829.68, + "probability": 0.11 + }, + { + "start": 9829.68, + "end": 9830.42, + "probability": 0.4096 + }, + { + "start": 9830.42, + "end": 9831.4, + "probability": 0.2614 + }, + { + "start": 9835.26, + "end": 9837.98, + "probability": 0.229 + }, + { + "start": 9841.08, + "end": 9842.48, + "probability": 0.088 + }, + { + "start": 9843.14, + "end": 9846.89, + "probability": 0.0391 + }, + { + "start": 9846.96, + "end": 9847.24, + "probability": 0.2601 + }, + { + "start": 9847.24, + "end": 9851.56, + "probability": 0.1272 + }, + { + "start": 9851.72, + "end": 9853.7, + "probability": 0.0054 + }, + { + "start": 9853.8, + "end": 9854.9, + "probability": 0.0579 + }, + { + "start": 9855.1, + "end": 9855.44, + "probability": 0.2705 + }, + { + "start": 9855.66, + "end": 9856.46, + "probability": 0.2065 + }, + { + "start": 9857.26, + "end": 9862.18, + "probability": 0.1686 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.0, + "end": 9863.0, + "probability": 0.0 + }, + { + "start": 9863.26, + "end": 9863.54, + "probability": 0.0863 + }, + { + "start": 9863.68, + "end": 9864.58, + "probability": 0.2969 + }, + { + "start": 9864.68, + "end": 9864.68, + "probability": 0.0617 + }, + { + "start": 9864.68, + "end": 9865.46, + "probability": 0.7866 + }, + { + "start": 9865.6, + "end": 9866.66, + "probability": 0.5583 + }, + { + "start": 9866.72, + "end": 9868.48, + "probability": 0.7651 + }, + { + "start": 9868.58, + "end": 9869.44, + "probability": 0.4635 + }, + { + "start": 9869.6, + "end": 9869.74, + "probability": 0.2073 + }, + { + "start": 9869.74, + "end": 9870.23, + "probability": 0.3269 + }, + { + "start": 9870.6, + "end": 9872.12, + "probability": 0.4167 + }, + { + "start": 9872.62, + "end": 9873.88, + "probability": 0.2999 + }, + { + "start": 9874.02, + "end": 9876.62, + "probability": 0.955 + }, + { + "start": 9876.7, + "end": 9879.1, + "probability": 0.9729 + }, + { + "start": 9880.0, + "end": 9881.74, + "probability": 0.9209 + }, + { + "start": 9882.02, + "end": 9883.16, + "probability": 0.3857 + }, + { + "start": 9883.22, + "end": 9883.32, + "probability": 0.011 + }, + { + "start": 9883.32, + "end": 9884.06, + "probability": 0.1187 + }, + { + "start": 9884.36, + "end": 9885.14, + "probability": 0.8428 + }, + { + "start": 9885.26, + "end": 9888.12, + "probability": 0.8008 + }, + { + "start": 9888.68, + "end": 9891.2, + "probability": 0.8843 + }, + { + "start": 9891.2, + "end": 9891.3, + "probability": 0.0792 + }, + { + "start": 9891.5, + "end": 9893.39, + "probability": 0.6932 + }, + { + "start": 9893.5, + "end": 9894.54, + "probability": 0.7918 + }, + { + "start": 9894.68, + "end": 9896.5, + "probability": 0.8568 + }, + { + "start": 9896.58, + "end": 9897.82, + "probability": 0.9478 + }, + { + "start": 9897.82, + "end": 9899.49, + "probability": 0.9055 + }, + { + "start": 9900.08, + "end": 9901.74, + "probability": 0.0992 + }, + { + "start": 9901.74, + "end": 9902.86, + "probability": 0.5081 + }, + { + "start": 9902.92, + "end": 9903.34, + "probability": 0.6934 + }, + { + "start": 9903.38, + "end": 9904.58, + "probability": 0.6587 + }, + { + "start": 9904.88, + "end": 9907.38, + "probability": 0.43 + }, + { + "start": 9907.52, + "end": 9907.8, + "probability": 0.7537 + }, + { + "start": 9907.8, + "end": 9911.28, + "probability": 0.3452 + }, + { + "start": 9911.28, + "end": 9911.38, + "probability": 0.0502 + }, + { + "start": 9911.82, + "end": 9911.82, + "probability": 0.0105 + }, + { + "start": 9911.82, + "end": 9911.82, + "probability": 0.0285 + }, + { + "start": 9911.82, + "end": 9912.46, + "probability": 0.0846 + }, + { + "start": 9912.5, + "end": 9912.96, + "probability": 0.4961 + }, + { + "start": 9912.98, + "end": 9913.98, + "probability": 0.4085 + }, + { + "start": 9914.22, + "end": 9914.68, + "probability": 0.6188 + }, + { + "start": 9914.8, + "end": 9915.88, + "probability": 0.877 + }, + { + "start": 9916.04, + "end": 9917.5, + "probability": 0.5635 + }, + { + "start": 9917.66, + "end": 9918.94, + "probability": 0.6009 + }, + { + "start": 9919.0, + "end": 9919.45, + "probability": 0.1576 + }, + { + "start": 9919.82, + "end": 9920.56, + "probability": 0.6277 + }, + { + "start": 9920.72, + "end": 9922.86, + "probability": 0.7767 + }, + { + "start": 9922.86, + "end": 9925.36, + "probability": 0.0904 + }, + { + "start": 9925.88, + "end": 9927.86, + "probability": 0.2662 + }, + { + "start": 9927.96, + "end": 9927.98, + "probability": 0.1344 + }, + { + "start": 9927.98, + "end": 9927.98, + "probability": 0.109 + }, + { + "start": 9927.98, + "end": 9928.92, + "probability": 0.2478 + }, + { + "start": 9929.82, + "end": 9931.78, + "probability": 0.3529 + }, + { + "start": 9931.78, + "end": 9932.08, + "probability": 0.0497 + }, + { + "start": 9932.1, + "end": 9936.14, + "probability": 0.182 + }, + { + "start": 9936.14, + "end": 9936.96, + "probability": 0.2927 + }, + { + "start": 9938.42, + "end": 9940.24, + "probability": 0.2826 + }, + { + "start": 9940.26, + "end": 9940.26, + "probability": 0.3108 + }, + { + "start": 9940.34, + "end": 9941.42, + "probability": 0.1967 + }, + { + "start": 9942.5, + "end": 9944.1, + "probability": 0.8011 + }, + { + "start": 9944.1, + "end": 9945.74, + "probability": 0.3757 + }, + { + "start": 9945.86, + "end": 9945.92, + "probability": 0.0148 + }, + { + "start": 9947.84, + "end": 9948.42, + "probability": 0.0751 + }, + { + "start": 9948.8, + "end": 9950.34, + "probability": 0.0218 + }, + { + "start": 9951.0, + "end": 9952.38, + "probability": 0.3402 + }, + { + "start": 9952.38, + "end": 9955.48, + "probability": 0.1759 + }, + { + "start": 9955.6, + "end": 9955.82, + "probability": 0.1955 + }, + { + "start": 9955.82, + "end": 9959.23, + "probability": 0.1101 + }, + { + "start": 9959.48, + "end": 9961.6, + "probability": 0.0769 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9983.0, + "end": 9983.0, + "probability": 0.0 + }, + { + "start": 9990.52, + "end": 9990.76, + "probability": 0.6404 + }, + { + "start": 9991.3, + "end": 9992.28, + "probability": 0.8926 + }, + { + "start": 9992.34, + "end": 9993.26, + "probability": 0.4585 + }, + { + "start": 9993.38, + "end": 9994.96, + "probability": 0.8295 + }, + { + "start": 9995.58, + "end": 9997.62, + "probability": 0.9884 + }, + { + "start": 9997.8, + "end": 10000.58, + "probability": 0.163 + }, + { + "start": 10000.66, + "end": 10001.72, + "probability": 0.7353 + }, + { + "start": 10001.94, + "end": 10002.6, + "probability": 0.7222 + }, + { + "start": 10002.8, + "end": 10004.04, + "probability": 0.9746 + }, + { + "start": 10004.04, + "end": 10004.12, + "probability": 0.5974 + }, + { + "start": 10004.12, + "end": 10004.12, + "probability": 0.6255 + }, + { + "start": 10004.12, + "end": 10004.12, + "probability": 0.01 + }, + { + "start": 10004.12, + "end": 10004.12, + "probability": 0.1708 + }, + { + "start": 10004.12, + "end": 10004.12, + "probability": 0.0321 + }, + { + "start": 10004.12, + "end": 10007.16, + "probability": 0.4196 + }, + { + "start": 10007.28, + "end": 10007.74, + "probability": 0.5652 + }, + { + "start": 10007.86, + "end": 10009.5, + "probability": 0.5276 + }, + { + "start": 10009.5, + "end": 10009.6, + "probability": 0.1579 + }, + { + "start": 10011.36, + "end": 10012.82, + "probability": 0.6146 + }, + { + "start": 10013.58, + "end": 10014.96, + "probability": 0.0187 + }, + { + "start": 10015.68, + "end": 10015.68, + "probability": 0.0679 + }, + { + "start": 10015.68, + "end": 10016.58, + "probability": 0.371 + }, + { + "start": 10016.62, + "end": 10016.96, + "probability": 0.4443 + }, + { + "start": 10017.0, + "end": 10017.56, + "probability": 0.2947 + }, + { + "start": 10017.86, + "end": 10019.44, + "probability": 0.5581 + }, + { + "start": 10019.44, + "end": 10019.76, + "probability": 0.437 + }, + { + "start": 10021.04, + "end": 10021.28, + "probability": 0.089 + }, + { + "start": 10021.28, + "end": 10021.74, + "probability": 0.1923 + }, + { + "start": 10021.8, + "end": 10021.88, + "probability": 0.1014 + }, + { + "start": 10021.88, + "end": 10023.42, + "probability": 0.3539 + }, + { + "start": 10023.54, + "end": 10024.72, + "probability": 0.6489 + }, + { + "start": 10024.9, + "end": 10026.38, + "probability": 0.4178 + }, + { + "start": 10026.4, + "end": 10027.2, + "probability": 0.1442 + }, + { + "start": 10027.22, + "end": 10028.12, + "probability": 0.2512 + }, + { + "start": 10028.8, + "end": 10029.02, + "probability": 0.5161 + }, + { + "start": 10029.54, + "end": 10030.04, + "probability": 0.1834 + }, + { + "start": 10030.04, + "end": 10030.04, + "probability": 0.2359 + }, + { + "start": 10030.04, + "end": 10031.0, + "probability": 0.2539 + }, + { + "start": 10031.56, + "end": 10035.48, + "probability": 0.4857 + }, + { + "start": 10035.48, + "end": 10038.54, + "probability": 0.0373 + }, + { + "start": 10038.58, + "end": 10040.5, + "probability": 0.0705 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.0, + "end": 10104.0, + "probability": 0.0 + }, + { + "start": 10104.08, + "end": 10107.46, + "probability": 0.4857 + }, + { + "start": 10107.74, + "end": 10109.98, + "probability": 0.7136 + }, + { + "start": 10110.06, + "end": 10110.64, + "probability": 0.611 + }, + { + "start": 10111.86, + "end": 10112.0, + "probability": 0.2868 + }, + { + "start": 10112.0, + "end": 10113.6, + "probability": 0.5103 + }, + { + "start": 10113.68, + "end": 10118.18, + "probability": 0.9595 + }, + { + "start": 10120.48, + "end": 10121.04, + "probability": 0.7464 + }, + { + "start": 10121.12, + "end": 10121.62, + "probability": 0.9153 + }, + { + "start": 10121.7, + "end": 10126.26, + "probability": 0.8921 + }, + { + "start": 10126.4, + "end": 10130.14, + "probability": 0.6046 + }, + { + "start": 10131.22, + "end": 10135.38, + "probability": 0.8014 + }, + { + "start": 10135.94, + "end": 10136.72, + "probability": 0.7983 + }, + { + "start": 10137.7, + "end": 10138.54, + "probability": 0.8531 + }, + { + "start": 10139.18, + "end": 10141.76, + "probability": 0.5322 + }, + { + "start": 10142.8, + "end": 10147.67, + "probability": 0.9844 + }, + { + "start": 10148.5, + "end": 10151.28, + "probability": 0.9971 + }, + { + "start": 10152.46, + "end": 10154.42, + "probability": 0.7635 + }, + { + "start": 10154.5, + "end": 10155.52, + "probability": 0.7658 + }, + { + "start": 10155.58, + "end": 10158.5, + "probability": 0.9691 + }, + { + "start": 10159.34, + "end": 10160.08, + "probability": 0.8028 + }, + { + "start": 10160.24, + "end": 10160.58, + "probability": 0.8249 + }, + { + "start": 10160.68, + "end": 10164.24, + "probability": 0.728 + }, + { + "start": 10164.3, + "end": 10165.6, + "probability": 0.8774 + }, + { + "start": 10166.4, + "end": 10169.08, + "probability": 0.9907 + }, + { + "start": 10169.68, + "end": 10171.62, + "probability": 0.9744 + }, + { + "start": 10171.68, + "end": 10173.9, + "probability": 0.4937 + }, + { + "start": 10174.22, + "end": 10175.96, + "probability": 0.1042 + }, + { + "start": 10176.12, + "end": 10182.54, + "probability": 0.9404 + }, + { + "start": 10182.9, + "end": 10183.32, + "probability": 0.0072 + }, + { + "start": 10184.9, + "end": 10187.02, + "probability": 0.632 + }, + { + "start": 10189.16, + "end": 10191.14, + "probability": 0.8198 + }, + { + "start": 10192.18, + "end": 10197.96, + "probability": 0.819 + }, + { + "start": 10198.06, + "end": 10199.34, + "probability": 0.5768 + }, + { + "start": 10199.76, + "end": 10208.14, + "probability": 0.9624 + }, + { + "start": 10208.14, + "end": 10212.52, + "probability": 0.9856 + }, + { + "start": 10213.3, + "end": 10215.88, + "probability": 0.7224 + }, + { + "start": 10217.3, + "end": 10218.36, + "probability": 0.8136 + }, + { + "start": 10218.9, + "end": 10219.86, + "probability": 0.7423 + }, + { + "start": 10221.58, + "end": 10223.2, + "probability": 0.7355 + }, + { + "start": 10225.2, + "end": 10226.56, + "probability": 0.9243 + }, + { + "start": 10227.72, + "end": 10229.74, + "probability": 0.9087 + }, + { + "start": 10229.84, + "end": 10230.36, + "probability": 0.9648 + }, + { + "start": 10232.38, + "end": 10232.96, + "probability": 0.8774 + }, + { + "start": 10235.02, + "end": 10240.26, + "probability": 0.9961 + }, + { + "start": 10242.1, + "end": 10244.86, + "probability": 0.9974 + }, + { + "start": 10252.94, + "end": 10253.58, + "probability": 0.0014 + }, + { + "start": 10254.96, + "end": 10255.96, + "probability": 0.4958 + }, + { + "start": 10258.64, + "end": 10260.26, + "probability": 0.9946 + }, + { + "start": 10261.6, + "end": 10262.32, + "probability": 0.7139 + }, + { + "start": 10263.1, + "end": 10264.2, + "probability": 0.8687 + }, + { + "start": 10264.68, + "end": 10265.78, + "probability": 0.9295 + }, + { + "start": 10265.96, + "end": 10266.92, + "probability": 0.9404 + }, + { + "start": 10267.14, + "end": 10268.16, + "probability": 0.9336 + }, + { + "start": 10269.4, + "end": 10270.63, + "probability": 0.9275 + }, + { + "start": 10273.24, + "end": 10274.68, + "probability": 0.9766 + }, + { + "start": 10275.64, + "end": 10276.52, + "probability": 0.9885 + }, + { + "start": 10277.54, + "end": 10280.04, + "probability": 0.7309 + }, + { + "start": 10281.34, + "end": 10284.16, + "probability": 0.9994 + }, + { + "start": 10285.26, + "end": 10286.94, + "probability": 0.9956 + }, + { + "start": 10287.64, + "end": 10288.5, + "probability": 0.7325 + }, + { + "start": 10288.98, + "end": 10291.16, + "probability": 0.9043 + }, + { + "start": 10293.66, + "end": 10296.08, + "probability": 0.9971 + }, + { + "start": 10296.58, + "end": 10300.38, + "probability": 0.9776 + }, + { + "start": 10304.0, + "end": 10310.84, + "probability": 0.963 + }, + { + "start": 10311.78, + "end": 10315.42, + "probability": 0.9349 + }, + { + "start": 10315.72, + "end": 10317.1, + "probability": 0.7535 + }, + { + "start": 10317.16, + "end": 10318.4, + "probability": 0.9056 + }, + { + "start": 10318.8, + "end": 10319.48, + "probability": 0.9485 + }, + { + "start": 10320.46, + "end": 10320.9, + "probability": 0.6334 + }, + { + "start": 10321.38, + "end": 10321.86, + "probability": 0.3461 + }, + { + "start": 10321.88, + "end": 10322.92, + "probability": 0.9766 + }, + { + "start": 10323.8, + "end": 10325.62, + "probability": 0.9497 + }, + { + "start": 10326.16, + "end": 10327.58, + "probability": 0.8032 + }, + { + "start": 10328.14, + "end": 10331.4, + "probability": 0.8945 + }, + { + "start": 10331.76, + "end": 10333.5, + "probability": 0.9946 + }, + { + "start": 10333.96, + "end": 10335.94, + "probability": 0.9594 + }, + { + "start": 10336.72, + "end": 10337.28, + "probability": 0.6445 + }, + { + "start": 10338.08, + "end": 10339.06, + "probability": 0.645 + }, + { + "start": 10339.74, + "end": 10340.76, + "probability": 0.9514 + }, + { + "start": 10340.92, + "end": 10344.26, + "probability": 0.9927 + }, + { + "start": 10344.38, + "end": 10345.36, + "probability": 0.8841 + }, + { + "start": 10345.42, + "end": 10347.42, + "probability": 0.5532 + }, + { + "start": 10347.84, + "end": 10348.86, + "probability": 0.993 + }, + { + "start": 10349.04, + "end": 10350.56, + "probability": 0.5796 + }, + { + "start": 10351.86, + "end": 10352.0, + "probability": 0.2301 + }, + { + "start": 10352.0, + "end": 10352.76, + "probability": 0.5167 + }, + { + "start": 10353.14, + "end": 10355.38, + "probability": 0.7406 + }, + { + "start": 10356.84, + "end": 10359.12, + "probability": 0.9394 + }, + { + "start": 10373.36, + "end": 10374.22, + "probability": 0.4899 + }, + { + "start": 10375.04, + "end": 10379.04, + "probability": 0.7398 + }, + { + "start": 10379.96, + "end": 10381.5, + "probability": 0.8277 + }, + { + "start": 10382.36, + "end": 10385.18, + "probability": 0.9465 + }, + { + "start": 10385.82, + "end": 10387.42, + "probability": 0.98 + }, + { + "start": 10388.28, + "end": 10389.88, + "probability": 0.9893 + }, + { + "start": 10390.56, + "end": 10394.08, + "probability": 0.7874 + }, + { + "start": 10395.82, + "end": 10396.8, + "probability": 0.7268 + }, + { + "start": 10398.02, + "end": 10402.34, + "probability": 0.961 + }, + { + "start": 10402.48, + "end": 10402.62, + "probability": 0.3934 + }, + { + "start": 10402.68, + "end": 10403.78, + "probability": 0.9922 + }, + { + "start": 10405.04, + "end": 10411.4, + "probability": 0.9595 + }, + { + "start": 10412.51, + "end": 10414.58, + "probability": 0.4579 + }, + { + "start": 10415.36, + "end": 10421.38, + "probability": 0.9805 + }, + { + "start": 10422.12, + "end": 10422.8, + "probability": 0.5178 + }, + { + "start": 10423.88, + "end": 10427.28, + "probability": 0.9702 + }, + { + "start": 10428.4, + "end": 10429.5, + "probability": 0.9491 + }, + { + "start": 10431.94, + "end": 10435.08, + "probability": 0.9967 + }, + { + "start": 10435.9, + "end": 10437.34, + "probability": 0.9576 + }, + { + "start": 10438.32, + "end": 10440.26, + "probability": 0.9961 + }, + { + "start": 10440.84, + "end": 10445.12, + "probability": 0.9941 + }, + { + "start": 10446.18, + "end": 10448.5, + "probability": 0.9951 + }, + { + "start": 10449.34, + "end": 10450.64, + "probability": 0.897 + }, + { + "start": 10451.3, + "end": 10454.52, + "probability": 0.967 + }, + { + "start": 10455.92, + "end": 10462.98, + "probability": 0.8615 + }, + { + "start": 10463.3, + "end": 10465.42, + "probability": 0.9854 + }, + { + "start": 10466.16, + "end": 10468.84, + "probability": 0.9956 + }, + { + "start": 10469.38, + "end": 10471.0, + "probability": 0.9349 + }, + { + "start": 10471.52, + "end": 10475.58, + "probability": 0.9912 + }, + { + "start": 10476.22, + "end": 10477.54, + "probability": 0.8675 + }, + { + "start": 10478.98, + "end": 10481.18, + "probability": 0.9973 + }, + { + "start": 10481.66, + "end": 10483.78, + "probability": 0.9777 + }, + { + "start": 10485.02, + "end": 10488.36, + "probability": 0.9747 + }, + { + "start": 10489.12, + "end": 10491.2, + "probability": 0.936 + }, + { + "start": 10492.04, + "end": 10495.64, + "probability": 0.9502 + }, + { + "start": 10496.48, + "end": 10497.74, + "probability": 0.9186 + }, + { + "start": 10497.82, + "end": 10500.12, + "probability": 0.9631 + }, + { + "start": 10500.74, + "end": 10507.98, + "probability": 0.994 + }, + { + "start": 10509.9, + "end": 10513.0, + "probability": 0.9975 + }, + { + "start": 10513.0, + "end": 10517.7, + "probability": 0.9488 + }, + { + "start": 10518.16, + "end": 10518.88, + "probability": 0.6697 + }, + { + "start": 10519.44, + "end": 10520.62, + "probability": 0.8418 + }, + { + "start": 10520.8, + "end": 10523.8, + "probability": 0.9607 + }, + { + "start": 10524.92, + "end": 10525.08, + "probability": 0.8911 + }, + { + "start": 10525.6, + "end": 10526.26, + "probability": 0.999 + }, + { + "start": 10526.96, + "end": 10528.36, + "probability": 0.9938 + }, + { + "start": 10528.82, + "end": 10529.78, + "probability": 0.7892 + }, + { + "start": 10530.22, + "end": 10533.0, + "probability": 0.842 + }, + { + "start": 10533.64, + "end": 10535.28, + "probability": 0.7756 + }, + { + "start": 10535.76, + "end": 10541.06, + "probability": 0.9517 + }, + { + "start": 10541.34, + "end": 10542.8, + "probability": 0.9579 + }, + { + "start": 10545.64, + "end": 10547.5, + "probability": 0.9779 + }, + { + "start": 10548.5, + "end": 10550.26, + "probability": 0.9985 + }, + { + "start": 10550.56, + "end": 10551.92, + "probability": 0.8472 + }, + { + "start": 10552.64, + "end": 10554.9, + "probability": 0.6899 + }, + { + "start": 10555.64, + "end": 10556.74, + "probability": 0.7893 + }, + { + "start": 10556.9, + "end": 10557.3, + "probability": 0.95 + }, + { + "start": 10557.36, + "end": 10557.8, + "probability": 0.9101 + }, + { + "start": 10558.14, + "end": 10563.08, + "probability": 0.9597 + }, + { + "start": 10563.08, + "end": 10566.32, + "probability": 0.8091 + }, + { + "start": 10566.74, + "end": 10568.42, + "probability": 0.7205 + }, + { + "start": 10568.82, + "end": 10569.96, + "probability": 0.7451 + }, + { + "start": 10570.28, + "end": 10570.38, + "probability": 0.7167 + }, + { + "start": 10570.38, + "end": 10571.2, + "probability": 0.3589 + }, + { + "start": 10571.56, + "end": 10573.64, + "probability": 0.9876 + }, + { + "start": 10580.66, + "end": 10582.3, + "probability": 0.7726 + }, + { + "start": 10597.66, + "end": 10598.96, + "probability": 0.7184 + }, + { + "start": 10599.66, + "end": 10600.7, + "probability": 0.8449 + }, + { + "start": 10601.94, + "end": 10603.12, + "probability": 0.8676 + }, + { + "start": 10605.48, + "end": 10607.28, + "probability": 0.9868 + }, + { + "start": 10608.56, + "end": 10609.85, + "probability": 0.9551 + }, + { + "start": 10610.82, + "end": 10614.1, + "probability": 0.9956 + }, + { + "start": 10615.62, + "end": 10620.24, + "probability": 0.9982 + }, + { + "start": 10620.24, + "end": 10623.26, + "probability": 0.9943 + }, + { + "start": 10623.9, + "end": 10625.14, + "probability": 0.9805 + }, + { + "start": 10626.78, + "end": 10628.14, + "probability": 0.9696 + }, + { + "start": 10629.78, + "end": 10635.54, + "probability": 0.9943 + }, + { + "start": 10635.54, + "end": 10640.9, + "probability": 0.9989 + }, + { + "start": 10642.54, + "end": 10649.96, + "probability": 0.9945 + }, + { + "start": 10651.24, + "end": 10652.38, + "probability": 0.7314 + }, + { + "start": 10652.82, + "end": 10657.22, + "probability": 0.9984 + }, + { + "start": 10657.74, + "end": 10663.06, + "probability": 0.9558 + }, + { + "start": 10663.76, + "end": 10667.12, + "probability": 0.8048 + }, + { + "start": 10667.68, + "end": 10668.46, + "probability": 0.6025 + }, + { + "start": 10670.82, + "end": 10673.98, + "probability": 0.998 + }, + { + "start": 10674.62, + "end": 10676.6, + "probability": 0.9905 + }, + { + "start": 10677.0, + "end": 10678.32, + "probability": 0.9301 + }, + { + "start": 10678.46, + "end": 10679.76, + "probability": 0.9762 + }, + { + "start": 10679.84, + "end": 10680.9, + "probability": 0.9349 + }, + { + "start": 10681.04, + "end": 10684.17, + "probability": 0.9783 + }, + { + "start": 10687.54, + "end": 10688.94, + "probability": 0.6451 + }, + { + "start": 10689.34, + "end": 10690.2, + "probability": 0.6108 + }, + { + "start": 10690.3, + "end": 10691.9, + "probability": 0.9941 + }, + { + "start": 10692.38, + "end": 10694.96, + "probability": 0.961 + }, + { + "start": 10696.0, + "end": 10697.82, + "probability": 0.9974 + }, + { + "start": 10699.34, + "end": 10700.66, + "probability": 0.9883 + }, + { + "start": 10701.22, + "end": 10702.04, + "probability": 0.6962 + }, + { + "start": 10702.38, + "end": 10703.5, + "probability": 0.8689 + }, + { + "start": 10704.8, + "end": 10707.22, + "probability": 0.9915 + }, + { + "start": 10707.82, + "end": 10710.06, + "probability": 0.8544 + }, + { + "start": 10710.48, + "end": 10712.26, + "probability": 0.6841 + }, + { + "start": 10714.62, + "end": 10718.04, + "probability": 0.9971 + }, + { + "start": 10718.62, + "end": 10719.58, + "probability": 0.8333 + }, + { + "start": 10720.18, + "end": 10721.58, + "probability": 0.8784 + }, + { + "start": 10722.12, + "end": 10722.9, + "probability": 0.6323 + }, + { + "start": 10723.12, + "end": 10725.7, + "probability": 0.7513 + }, + { + "start": 10726.04, + "end": 10727.3, + "probability": 0.5209 + }, + { + "start": 10727.48, + "end": 10728.82, + "probability": 0.7155 + }, + { + "start": 10730.7, + "end": 10733.69, + "probability": 0.9341 + }, + { + "start": 10735.36, + "end": 10740.74, + "probability": 0.952 + }, + { + "start": 10743.5, + "end": 10746.58, + "probability": 0.9287 + }, + { + "start": 10751.26, + "end": 10754.26, + "probability": 0.8918 + }, + { + "start": 10757.98, + "end": 10758.64, + "probability": 0.7541 + }, + { + "start": 10760.02, + "end": 10760.26, + "probability": 0.3144 + }, + { + "start": 10760.26, + "end": 10761.56, + "probability": 0.825 + }, + { + "start": 10770.16, + "end": 10771.4, + "probability": 0.6476 + }, + { + "start": 10772.46, + "end": 10774.43, + "probability": 0.8999 + }, + { + "start": 10774.72, + "end": 10774.94, + "probability": 0.8804 + }, + { + "start": 10775.08, + "end": 10780.04, + "probability": 0.9871 + }, + { + "start": 10780.74, + "end": 10782.62, + "probability": 0.8533 + }, + { + "start": 10783.86, + "end": 10784.68, + "probability": 0.8328 + }, + { + "start": 10785.42, + "end": 10786.46, + "probability": 0.9823 + }, + { + "start": 10787.3, + "end": 10788.24, + "probability": 0.8865 + }, + { + "start": 10788.98, + "end": 10794.46, + "probability": 0.985 + }, + { + "start": 10794.46, + "end": 10797.46, + "probability": 0.9971 + }, + { + "start": 10798.96, + "end": 10801.68, + "probability": 0.6202 + }, + { + "start": 10802.7, + "end": 10804.62, + "probability": 0.1088 + }, + { + "start": 10804.96, + "end": 10806.8, + "probability": 0.749 + }, + { + "start": 10808.04, + "end": 10809.62, + "probability": 0.8242 + }, + { + "start": 10810.2, + "end": 10813.14, + "probability": 0.9534 + }, + { + "start": 10814.2, + "end": 10815.42, + "probability": 0.9058 + }, + { + "start": 10816.44, + "end": 10818.16, + "probability": 0.991 + }, + { + "start": 10818.38, + "end": 10820.32, + "probability": 0.999 + }, + { + "start": 10821.76, + "end": 10823.82, + "probability": 0.9987 + }, + { + "start": 10824.12, + "end": 10827.16, + "probability": 0.8485 + }, + { + "start": 10827.88, + "end": 10830.3, + "probability": 0.6183 + }, + { + "start": 10830.3, + "end": 10833.18, + "probability": 0.9477 + }, + { + "start": 10833.38, + "end": 10838.8, + "probability": 0.9504 + }, + { + "start": 10839.6, + "end": 10843.0, + "probability": 0.9943 + }, + { + "start": 10844.68, + "end": 10846.8, + "probability": 0.9351 + }, + { + "start": 10846.92, + "end": 10847.62, + "probability": 0.6833 + }, + { + "start": 10847.72, + "end": 10849.3, + "probability": 0.6515 + }, + { + "start": 10850.56, + "end": 10853.24, + "probability": 0.7539 + }, + { + "start": 10853.46, + "end": 10856.4, + "probability": 0.9929 + }, + { + "start": 10857.04, + "end": 10859.84, + "probability": 0.9836 + }, + { + "start": 10860.06, + "end": 10862.4, + "probability": 0.9932 + }, + { + "start": 10862.94, + "end": 10864.48, + "probability": 0.9863 + }, + { + "start": 10865.86, + "end": 10867.96, + "probability": 0.9817 + }, + { + "start": 10869.14, + "end": 10871.12, + "probability": 0.9969 + }, + { + "start": 10872.52, + "end": 10876.46, + "probability": 0.9926 + }, + { + "start": 10876.94, + "end": 10877.66, + "probability": 0.6121 + }, + { + "start": 10878.52, + "end": 10879.2, + "probability": 0.7353 + }, + { + "start": 10879.62, + "end": 10882.5, + "probability": 0.9039 + }, + { + "start": 10883.46, + "end": 10886.24, + "probability": 0.8467 + }, + { + "start": 10887.8, + "end": 10888.52, + "probability": 0.5142 + }, + { + "start": 10889.98, + "end": 10892.1, + "probability": 0.7124 + }, + { + "start": 10892.66, + "end": 10894.82, + "probability": 0.9755 + }, + { + "start": 10897.44, + "end": 10899.62, + "probability": 0.8839 + }, + { + "start": 10901.42, + "end": 10902.7, + "probability": 0.9748 + }, + { + "start": 10903.98, + "end": 10906.74, + "probability": 0.9907 + }, + { + "start": 10906.86, + "end": 10908.28, + "probability": 0.752 + }, + { + "start": 10909.88, + "end": 10911.72, + "probability": 0.9378 + }, + { + "start": 10911.8, + "end": 10915.66, + "probability": 0.9036 + }, + { + "start": 10915.74, + "end": 10916.42, + "probability": 0.9899 + }, + { + "start": 10916.64, + "end": 10917.96, + "probability": 0.7375 + }, + { + "start": 10919.38, + "end": 10920.9, + "probability": 0.8539 + }, + { + "start": 10921.1, + "end": 10922.32, + "probability": 0.9294 + }, + { + "start": 10922.44, + "end": 10923.94, + "probability": 0.8621 + }, + { + "start": 10924.44, + "end": 10925.62, + "probability": 0.6447 + }, + { + "start": 10926.38, + "end": 10927.04, + "probability": 0.8665 + }, + { + "start": 10928.18, + "end": 10930.08, + "probability": 0.9304 + }, + { + "start": 10931.82, + "end": 10933.58, + "probability": 0.7266 + }, + { + "start": 10935.18, + "end": 10938.12, + "probability": 0.9973 + }, + { + "start": 10938.18, + "end": 10939.04, + "probability": 0.8941 + }, + { + "start": 10941.02, + "end": 10942.08, + "probability": 0.9903 + }, + { + "start": 10942.2, + "end": 10945.46, + "probability": 0.9916 + }, + { + "start": 10947.74, + "end": 10949.26, + "probability": 0.75 + }, + { + "start": 10950.2, + "end": 10953.66, + "probability": 0.8975 + }, + { + "start": 10954.66, + "end": 10955.58, + "probability": 0.895 + }, + { + "start": 10957.12, + "end": 10957.58, + "probability": 0.4982 + }, + { + "start": 10957.88, + "end": 10960.02, + "probability": 0.9941 + }, + { + "start": 10960.02, + "end": 10963.86, + "probability": 0.993 + }, + { + "start": 10964.02, + "end": 10964.8, + "probability": 0.6444 + }, + { + "start": 10964.84, + "end": 10968.76, + "probability": 0.9858 + }, + { + "start": 10968.88, + "end": 10970.12, + "probability": 0.9032 + }, + { + "start": 10970.7, + "end": 10971.44, + "probability": 0.8545 + }, + { + "start": 10971.86, + "end": 10972.3, + "probability": 0.8656 + }, + { + "start": 10973.58, + "end": 10975.12, + "probability": 0.8768 + }, + { + "start": 10994.42, + "end": 10995.32, + "probability": 0.5634 + }, + { + "start": 10996.06, + "end": 10998.88, + "probability": 0.8217 + }, + { + "start": 10999.66, + "end": 11001.4, + "probability": 0.9487 + }, + { + "start": 11001.56, + "end": 11002.24, + "probability": 0.6103 + }, + { + "start": 11002.3, + "end": 11003.08, + "probability": 0.9519 + }, + { + "start": 11003.28, + "end": 11004.18, + "probability": 0.9615 + }, + { + "start": 11005.84, + "end": 11006.88, + "probability": 0.0888 + }, + { + "start": 11006.88, + "end": 11007.96, + "probability": 0.748 + }, + { + "start": 11008.1, + "end": 11010.86, + "probability": 0.9819 + }, + { + "start": 11011.76, + "end": 11015.65, + "probability": 0.9967 + }, + { + "start": 11016.86, + "end": 11018.9, + "probability": 0.9803 + }, + { + "start": 11019.02, + "end": 11021.88, + "probability": 0.9983 + }, + { + "start": 11022.58, + "end": 11024.74, + "probability": 0.9402 + }, + { + "start": 11025.8, + "end": 11029.64, + "probability": 0.9795 + }, + { + "start": 11030.5, + "end": 11031.74, + "probability": 0.9207 + }, + { + "start": 11032.04, + "end": 11033.1, + "probability": 0.7733 + }, + { + "start": 11033.26, + "end": 11034.78, + "probability": 0.8677 + }, + { + "start": 11035.48, + "end": 11037.58, + "probability": 0.9983 + }, + { + "start": 11038.7, + "end": 11043.1, + "probability": 0.8986 + }, + { + "start": 11043.76, + "end": 11045.12, + "probability": 0.9789 + }, + { + "start": 11046.08, + "end": 11049.9, + "probability": 0.9421 + }, + { + "start": 11051.24, + "end": 11051.69, + "probability": 0.6879 + }, + { + "start": 11052.06, + "end": 11052.8, + "probability": 0.7615 + }, + { + "start": 11052.94, + "end": 11055.84, + "probability": 0.9362 + }, + { + "start": 11057.46, + "end": 11059.66, + "probability": 0.7701 + }, + { + "start": 11060.18, + "end": 11062.0, + "probability": 0.8283 + }, + { + "start": 11062.08, + "end": 11064.14, + "probability": 0.9865 + }, + { + "start": 11065.04, + "end": 11067.82, + "probability": 0.8733 + }, + { + "start": 11068.28, + "end": 11070.06, + "probability": 0.9983 + }, + { + "start": 11071.2, + "end": 11072.26, + "probability": 0.9202 + }, + { + "start": 11072.46, + "end": 11075.66, + "probability": 0.9369 + }, + { + "start": 11075.82, + "end": 11076.74, + "probability": 0.7042 + }, + { + "start": 11076.84, + "end": 11078.94, + "probability": 0.9611 + }, + { + "start": 11079.78, + "end": 11083.1, + "probability": 0.9585 + }, + { + "start": 11083.4, + "end": 11086.2, + "probability": 0.9017 + }, + { + "start": 11087.4, + "end": 11090.62, + "probability": 0.8971 + }, + { + "start": 11091.46, + "end": 11093.56, + "probability": 0.9932 + }, + { + "start": 11094.28, + "end": 11095.06, + "probability": 0.9632 + }, + { + "start": 11095.7, + "end": 11096.7, + "probability": 0.9578 + }, + { + "start": 11097.44, + "end": 11100.24, + "probability": 0.8333 + }, + { + "start": 11100.24, + "end": 11102.52, + "probability": 0.985 + }, + { + "start": 11104.44, + "end": 11106.18, + "probability": 0.7813 + }, + { + "start": 11106.24, + "end": 11107.14, + "probability": 0.8765 + }, + { + "start": 11107.2, + "end": 11107.74, + "probability": 0.9318 + }, + { + "start": 11107.94, + "end": 11108.94, + "probability": 0.901 + }, + { + "start": 11109.48, + "end": 11112.34, + "probability": 0.9863 + }, + { + "start": 11112.36, + "end": 11115.08, + "probability": 0.9795 + }, + { + "start": 11116.04, + "end": 11119.62, + "probability": 0.9565 + }, + { + "start": 11120.12, + "end": 11121.9, + "probability": 0.9541 + }, + { + "start": 11122.74, + "end": 11123.64, + "probability": 0.8421 + }, + { + "start": 11124.1, + "end": 11126.58, + "probability": 0.9961 + }, + { + "start": 11126.88, + "end": 11128.36, + "probability": 0.9781 + }, + { + "start": 11128.66, + "end": 11130.56, + "probability": 0.9321 + }, + { + "start": 11130.68, + "end": 11133.36, + "probability": 0.9434 + }, + { + "start": 11134.6, + "end": 11135.66, + "probability": 0.9927 + }, + { + "start": 11135.92, + "end": 11137.08, + "probability": 0.9512 + }, + { + "start": 11137.12, + "end": 11140.6, + "probability": 0.9903 + }, + { + "start": 11141.36, + "end": 11142.86, + "probability": 0.9348 + }, + { + "start": 11142.86, + "end": 11145.96, + "probability": 0.9943 + }, + { + "start": 11146.54, + "end": 11148.3, + "probability": 0.7721 + }, + { + "start": 11148.3, + "end": 11150.82, + "probability": 0.9847 + }, + { + "start": 11151.6, + "end": 11152.55, + "probability": 0.9253 + }, + { + "start": 11152.86, + "end": 11155.64, + "probability": 0.9877 + }, + { + "start": 11156.32, + "end": 11156.94, + "probability": 0.7396 + }, + { + "start": 11157.2, + "end": 11157.68, + "probability": 0.3182 + }, + { + "start": 11157.84, + "end": 11160.72, + "probability": 0.6632 + }, + { + "start": 11161.38, + "end": 11162.6, + "probability": 0.6581 + }, + { + "start": 11163.47, + "end": 11164.82, + "probability": 0.8621 + }, + { + "start": 11164.86, + "end": 11166.4, + "probability": 0.9713 + }, + { + "start": 11166.48, + "end": 11168.2, + "probability": 0.7104 + }, + { + "start": 11168.74, + "end": 11169.18, + "probability": 0.5021 + }, + { + "start": 11169.3, + "end": 11171.08, + "probability": 0.9056 + }, + { + "start": 11171.8, + "end": 11172.46, + "probability": 0.9757 + }, + { + "start": 11173.12, + "end": 11177.76, + "probability": 0.9694 + }, + { + "start": 11178.48, + "end": 11181.68, + "probability": 0.4697 + }, + { + "start": 11181.68, + "end": 11185.72, + "probability": 0.8915 + }, + { + "start": 11186.0, + "end": 11186.16, + "probability": 0.7581 + }, + { + "start": 11186.68, + "end": 11187.16, + "probability": 0.2336 + }, + { + "start": 11187.16, + "end": 11188.16, + "probability": 0.7047 + }, + { + "start": 11212.03, + "end": 11217.98, + "probability": 0.636 + }, + { + "start": 11219.32, + "end": 11222.74, + "probability": 0.9983 + }, + { + "start": 11222.74, + "end": 11228.34, + "probability": 0.9983 + }, + { + "start": 11229.14, + "end": 11230.6, + "probability": 0.9896 + }, + { + "start": 11232.14, + "end": 11233.84, + "probability": 0.9271 + }, + { + "start": 11234.6, + "end": 11237.2, + "probability": 0.998 + }, + { + "start": 11238.06, + "end": 11243.36, + "probability": 0.9572 + }, + { + "start": 11244.4, + "end": 11250.18, + "probability": 0.9881 + }, + { + "start": 11251.0, + "end": 11253.86, + "probability": 0.8293 + }, + { + "start": 11254.04, + "end": 11256.38, + "probability": 0.7946 + }, + { + "start": 11256.96, + "end": 11258.72, + "probability": 0.9448 + }, + { + "start": 11258.96, + "end": 11264.6, + "probability": 0.9941 + }, + { + "start": 11265.44, + "end": 11268.62, + "probability": 0.9813 + }, + { + "start": 11269.36, + "end": 11269.5, + "probability": 0.0891 + }, + { + "start": 11270.56, + "end": 11272.1, + "probability": 0.9718 + }, + { + "start": 11272.86, + "end": 11274.7, + "probability": 0.9821 + }, + { + "start": 11275.38, + "end": 11276.46, + "probability": 0.9355 + }, + { + "start": 11276.54, + "end": 11277.8, + "probability": 0.918 + }, + { + "start": 11277.92, + "end": 11283.22, + "probability": 0.88 + }, + { + "start": 11284.08, + "end": 11285.6, + "probability": 0.978 + }, + { + "start": 11285.72, + "end": 11287.27, + "probability": 0.9963 + }, + { + "start": 11288.72, + "end": 11289.86, + "probability": 0.7159 + }, + { + "start": 11289.94, + "end": 11291.54, + "probability": 0.9338 + }, + { + "start": 11292.0, + "end": 11293.2, + "probability": 0.7533 + }, + { + "start": 11293.82, + "end": 11299.58, + "probability": 0.9978 + }, + { + "start": 11300.58, + "end": 11303.74, + "probability": 0.9985 + }, + { + "start": 11303.74, + "end": 11308.24, + "probability": 0.9767 + }, + { + "start": 11308.76, + "end": 11310.16, + "probability": 0.91 + }, + { + "start": 11311.32, + "end": 11312.8, + "probability": 0.9944 + }, + { + "start": 11313.34, + "end": 11314.68, + "probability": 0.99 + }, + { + "start": 11315.48, + "end": 11319.22, + "probability": 0.9263 + }, + { + "start": 11320.12, + "end": 11325.08, + "probability": 0.9609 + }, + { + "start": 11325.72, + "end": 11329.48, + "probability": 0.9413 + }, + { + "start": 11330.3, + "end": 11332.0, + "probability": 0.9714 + }, + { + "start": 11332.7, + "end": 11333.92, + "probability": 0.9886 + }, + { + "start": 11334.08, + "end": 11339.08, + "probability": 0.9893 + }, + { + "start": 11339.54, + "end": 11345.54, + "probability": 0.9847 + }, + { + "start": 11345.54, + "end": 11351.7, + "probability": 0.9864 + }, + { + "start": 11352.56, + "end": 11353.9, + "probability": 0.8171 + }, + { + "start": 11354.88, + "end": 11355.1, + "probability": 0.1866 + }, + { + "start": 11355.26, + "end": 11357.32, + "probability": 0.7529 + }, + { + "start": 11357.38, + "end": 11359.76, + "probability": 0.6953 + }, + { + "start": 11360.18, + "end": 11361.2, + "probability": 0.9252 + }, + { + "start": 11361.38, + "end": 11362.22, + "probability": 0.6903 + }, + { + "start": 11363.08, + "end": 11366.32, + "probability": 0.9508 + }, + { + "start": 11367.26, + "end": 11371.14, + "probability": 0.984 + }, + { + "start": 11371.14, + "end": 11374.3, + "probability": 0.9995 + }, + { + "start": 11375.26, + "end": 11379.2, + "probability": 0.9701 + }, + { + "start": 11379.2, + "end": 11384.24, + "probability": 0.999 + }, + { + "start": 11384.8, + "end": 11390.08, + "probability": 0.944 + }, + { + "start": 11390.9, + "end": 11397.42, + "probability": 0.9941 + }, + { + "start": 11397.42, + "end": 11404.1, + "probability": 0.9995 + }, + { + "start": 11404.74, + "end": 11409.04, + "probability": 0.9136 + }, + { + "start": 11409.88, + "end": 11410.02, + "probability": 0.2796 + }, + { + "start": 11410.2, + "end": 11411.26, + "probability": 0.9504 + }, + { + "start": 11411.36, + "end": 11411.86, + "probability": 0.6655 + }, + { + "start": 11411.94, + "end": 11413.32, + "probability": 0.8294 + }, + { + "start": 11414.2, + "end": 11415.04, + "probability": 0.8175 + }, + { + "start": 11415.96, + "end": 11418.44, + "probability": 0.6922 + }, + { + "start": 11430.42, + "end": 11435.2, + "probability": 0.8857 + }, + { + "start": 11446.4, + "end": 11447.12, + "probability": 0.3118 + }, + { + "start": 11447.72, + "end": 11448.06, + "probability": 0.8587 + }, + { + "start": 11448.92, + "end": 11450.08, + "probability": 0.5843 + }, + { + "start": 11450.74, + "end": 11451.48, + "probability": 0.1531 + }, + { + "start": 11452.34, + "end": 11456.62, + "probability": 0.7708 + }, + { + "start": 11457.96, + "end": 11461.86, + "probability": 0.9113 + }, + { + "start": 11463.42, + "end": 11465.82, + "probability": 0.985 + }, + { + "start": 11466.44, + "end": 11468.84, + "probability": 0.9893 + }, + { + "start": 11469.6, + "end": 11474.44, + "probability": 0.967 + }, + { + "start": 11474.52, + "end": 11475.18, + "probability": 0.8629 + }, + { + "start": 11476.72, + "end": 11479.18, + "probability": 0.9857 + }, + { + "start": 11480.06, + "end": 11482.15, + "probability": 0.995 + }, + { + "start": 11483.24, + "end": 11485.57, + "probability": 0.9692 + }, + { + "start": 11487.6, + "end": 11489.08, + "probability": 0.7491 + }, + { + "start": 11489.22, + "end": 11491.0, + "probability": 0.9849 + }, + { + "start": 11493.45, + "end": 11496.3, + "probability": 0.8047 + }, + { + "start": 11496.42, + "end": 11499.28, + "probability": 0.9952 + }, + { + "start": 11499.82, + "end": 11501.22, + "probability": 0.7267 + }, + { + "start": 11502.4, + "end": 11507.42, + "probability": 0.9781 + }, + { + "start": 11508.74, + "end": 11514.08, + "probability": 0.9731 + }, + { + "start": 11515.46, + "end": 11518.32, + "probability": 0.9946 + }, + { + "start": 11518.32, + "end": 11521.66, + "probability": 0.9988 + }, + { + "start": 11524.56, + "end": 11529.56, + "probability": 0.9837 + }, + { + "start": 11530.16, + "end": 11532.68, + "probability": 0.8102 + }, + { + "start": 11532.84, + "end": 11535.44, + "probability": 0.9994 + }, + { + "start": 11536.78, + "end": 11539.96, + "probability": 0.9087 + }, + { + "start": 11540.62, + "end": 11542.26, + "probability": 0.9737 + }, + { + "start": 11542.38, + "end": 11543.4, + "probability": 0.793 + }, + { + "start": 11543.98, + "end": 11548.68, + "probability": 0.9971 + }, + { + "start": 11549.32, + "end": 11550.96, + "probability": 0.7785 + }, + { + "start": 11551.58, + "end": 11554.62, + "probability": 0.9983 + }, + { + "start": 11555.36, + "end": 11557.4, + "probability": 0.9681 + }, + { + "start": 11557.98, + "end": 11559.62, + "probability": 0.9761 + }, + { + "start": 11560.36, + "end": 11563.08, + "probability": 0.6431 + }, + { + "start": 11563.14, + "end": 11565.12, + "probability": 0.8722 + }, + { + "start": 11566.14, + "end": 11569.4, + "probability": 0.9882 + }, + { + "start": 11569.64, + "end": 11570.56, + "probability": 0.7459 + }, + { + "start": 11572.04, + "end": 11574.3, + "probability": 0.9921 + }, + { + "start": 11574.4, + "end": 11574.86, + "probability": 0.8636 + }, + { + "start": 11575.54, + "end": 11576.98, + "probability": 0.9976 + }, + { + "start": 11578.32, + "end": 11580.38, + "probability": 0.9902 + }, + { + "start": 11581.04, + "end": 11587.58, + "probability": 0.9365 + }, + { + "start": 11587.9, + "end": 11588.25, + "probability": 0.9833 + }, + { + "start": 11589.38, + "end": 11592.96, + "probability": 0.9893 + }, + { + "start": 11593.04, + "end": 11593.96, + "probability": 0.9055 + }, + { + "start": 11594.02, + "end": 11595.8, + "probability": 0.8582 + }, + { + "start": 11596.6, + "end": 11601.32, + "probability": 0.8008 + }, + { + "start": 11601.46, + "end": 11602.36, + "probability": 0.8734 + }, + { + "start": 11603.64, + "end": 11604.54, + "probability": 0.9896 + }, + { + "start": 11605.6, + "end": 11607.84, + "probability": 0.9399 + }, + { + "start": 11610.12, + "end": 11610.84, + "probability": 0.4874 + }, + { + "start": 11610.88, + "end": 11613.8, + "probability": 0.8038 + }, + { + "start": 11614.74, + "end": 11620.18, + "probability": 0.8966 + }, + { + "start": 11620.76, + "end": 11623.08, + "probability": 0.9886 + }, + { + "start": 11623.32, + "end": 11625.64, + "probability": 0.9459 + }, + { + "start": 11626.44, + "end": 11628.36, + "probability": 0.9779 + }, + { + "start": 11629.74, + "end": 11631.72, + "probability": 0.9548 + }, + { + "start": 11633.52, + "end": 11634.44, + "probability": 0.2496 + }, + { + "start": 11635.16, + "end": 11636.7, + "probability": 0.7385 + }, + { + "start": 11637.28, + "end": 11637.94, + "probability": 0.1212 + }, + { + "start": 11638.22, + "end": 11639.22, + "probability": 0.6692 + }, + { + "start": 11640.32, + "end": 11642.48, + "probability": 0.8733 + }, + { + "start": 11642.66, + "end": 11645.46, + "probability": 0.943 + }, + { + "start": 11645.68, + "end": 11653.22, + "probability": 0.9846 + }, + { + "start": 11655.7, + "end": 11657.06, + "probability": 0.8368 + }, + { + "start": 11658.06, + "end": 11659.08, + "probability": 0.9991 + }, + { + "start": 11659.46, + "end": 11661.91, + "probability": 0.8564 + }, + { + "start": 11663.14, + "end": 11669.86, + "probability": 0.9903 + }, + { + "start": 11670.38, + "end": 11671.24, + "probability": 0.9629 + }, + { + "start": 11671.94, + "end": 11672.86, + "probability": 0.9612 + }, + { + "start": 11674.36, + "end": 11674.92, + "probability": 0.6357 + }, + { + "start": 11675.0, + "end": 11675.8, + "probability": 0.8311 + }, + { + "start": 11687.16, + "end": 11687.16, + "probability": 0.2289 + }, + { + "start": 11687.16, + "end": 11687.16, + "probability": 0.1032 + }, + { + "start": 11700.14, + "end": 11704.24, + "probability": 0.9713 + }, + { + "start": 11705.62, + "end": 11706.32, + "probability": 0.9133 + }, + { + "start": 11707.44, + "end": 11711.32, + "probability": 0.7415 + }, + { + "start": 11713.64, + "end": 11714.06, + "probability": 0.2773 + }, + { + "start": 11714.32, + "end": 11715.18, + "probability": 0.6343 + }, + { + "start": 11715.8, + "end": 11716.82, + "probability": 0.9434 + }, + { + "start": 11717.76, + "end": 11719.98, + "probability": 0.96 + }, + { + "start": 11721.54, + "end": 11723.24, + "probability": 0.6753 + }, + { + "start": 11725.44, + "end": 11728.18, + "probability": 0.9927 + }, + { + "start": 11728.7, + "end": 11729.34, + "probability": 0.8431 + }, + { + "start": 11729.86, + "end": 11730.7, + "probability": 0.9491 + }, + { + "start": 11731.86, + "end": 11733.01, + "probability": 0.9561 + }, + { + "start": 11734.88, + "end": 11738.7, + "probability": 0.9965 + }, + { + "start": 11740.1, + "end": 11740.98, + "probability": 0.9805 + }, + { + "start": 11741.42, + "end": 11742.54, + "probability": 0.7052 + }, + { + "start": 11743.3, + "end": 11743.9, + "probability": 0.9453 + }, + { + "start": 11745.2, + "end": 11747.68, + "probability": 0.9958 + }, + { + "start": 11748.66, + "end": 11750.06, + "probability": 0.9958 + }, + { + "start": 11750.64, + "end": 11751.54, + "probability": 0.9978 + }, + { + "start": 11752.38, + "end": 11754.08, + "probability": 0.9983 + }, + { + "start": 11755.16, + "end": 11758.54, + "probability": 0.9904 + }, + { + "start": 11760.26, + "end": 11764.46, + "probability": 0.9948 + }, + { + "start": 11764.62, + "end": 11765.88, + "probability": 0.9907 + }, + { + "start": 11766.48, + "end": 11773.42, + "probability": 0.9871 + }, + { + "start": 11774.3, + "end": 11778.76, + "probability": 0.9751 + }, + { + "start": 11780.02, + "end": 11783.92, + "probability": 0.9954 + }, + { + "start": 11785.14, + "end": 11785.14, + "probability": 0.0127 + }, + { + "start": 11785.14, + "end": 11785.14, + "probability": 0.036 + }, + { + "start": 11785.14, + "end": 11790.26, + "probability": 0.9964 + }, + { + "start": 11791.06, + "end": 11792.22, + "probability": 0.9675 + }, + { + "start": 11792.36, + "end": 11794.74, + "probability": 0.976 + }, + { + "start": 11794.74, + "end": 11797.9, + "probability": 0.9914 + }, + { + "start": 11799.1, + "end": 11804.18, + "probability": 0.9601 + }, + { + "start": 11804.92, + "end": 11807.42, + "probability": 0.7996 + }, + { + "start": 11808.26, + "end": 11808.84, + "probability": 0.5482 + }, + { + "start": 11809.46, + "end": 11810.24, + "probability": 0.7711 + }, + { + "start": 11811.54, + "end": 11814.98, + "probability": 0.9912 + }, + { + "start": 11815.58, + "end": 11816.12, + "probability": 0.9865 + }, + { + "start": 11817.0, + "end": 11817.9, + "probability": 0.4253 + }, + { + "start": 11818.98, + "end": 11821.32, + "probability": 0.9149 + }, + { + "start": 11821.96, + "end": 11828.54, + "probability": 0.9976 + }, + { + "start": 11829.14, + "end": 11829.54, + "probability": 0.755 + }, + { + "start": 11831.18, + "end": 11831.58, + "probability": 0.6085 + }, + { + "start": 11832.54, + "end": 11833.62, + "probability": 0.9099 + }, + { + "start": 11834.64, + "end": 11835.36, + "probability": 0.96 + }, + { + "start": 11835.5, + "end": 11838.14, + "probability": 0.9858 + }, + { + "start": 11838.2, + "end": 11839.24, + "probability": 0.8247 + }, + { + "start": 11839.34, + "end": 11839.88, + "probability": 0.3584 + }, + { + "start": 11840.3, + "end": 11845.96, + "probability": 0.779 + }, + { + "start": 11846.34, + "end": 11846.54, + "probability": 0.1924 + }, + { + "start": 11858.68, + "end": 11860.12, + "probability": 0.4475 + }, + { + "start": 11860.2, + "end": 11861.12, + "probability": 0.8439 + }, + { + "start": 11861.24, + "end": 11862.48, + "probability": 0.7251 + }, + { + "start": 11863.64, + "end": 11869.22, + "probability": 0.9867 + }, + { + "start": 11870.88, + "end": 11876.4, + "probability": 0.9587 + }, + { + "start": 11877.54, + "end": 11880.44, + "probability": 0.9976 + }, + { + "start": 11881.54, + "end": 11883.66, + "probability": 0.9985 + }, + { + "start": 11884.02, + "end": 11885.1, + "probability": 0.999 + }, + { + "start": 11886.86, + "end": 11894.0, + "probability": 0.9664 + }, + { + "start": 11894.7, + "end": 11895.18, + "probability": 0.8708 + }, + { + "start": 11895.86, + "end": 11896.78, + "probability": 0.9406 + }, + { + "start": 11897.4, + "end": 11898.32, + "probability": 0.9373 + }, + { + "start": 11898.9, + "end": 11900.08, + "probability": 0.9939 + }, + { + "start": 11900.16, + "end": 11905.16, + "probability": 0.9968 + }, + { + "start": 11905.22, + "end": 11906.1, + "probability": 0.8134 + }, + { + "start": 11907.32, + "end": 11909.24, + "probability": 0.9956 + }, + { + "start": 11909.9, + "end": 11910.46, + "probability": 0.9204 + }, + { + "start": 11913.06, + "end": 11916.52, + "probability": 0.9976 + }, + { + "start": 11917.92, + "end": 11918.68, + "probability": 0.9989 + }, + { + "start": 11919.2, + "end": 11919.92, + "probability": 0.9963 + }, + { + "start": 11920.68, + "end": 11922.24, + "probability": 0.9612 + }, + { + "start": 11923.12, + "end": 11923.66, + "probability": 0.7869 + }, + { + "start": 11924.94, + "end": 11930.62, + "probability": 0.9887 + }, + { + "start": 11931.2, + "end": 11932.5, + "probability": 0.9977 + }, + { + "start": 11933.0, + "end": 11936.04, + "probability": 0.999 + }, + { + "start": 11937.98, + "end": 11939.38, + "probability": 0.9985 + }, + { + "start": 11939.48, + "end": 11943.18, + "probability": 0.976 + }, + { + "start": 11943.24, + "end": 11944.33, + "probability": 0.8257 + }, + { + "start": 11945.56, + "end": 11945.72, + "probability": 0.5381 + }, + { + "start": 11946.72, + "end": 11949.66, + "probability": 0.9832 + }, + { + "start": 11950.44, + "end": 11951.6, + "probability": 0.8734 + }, + { + "start": 11952.26, + "end": 11952.98, + "probability": 0.4878 + }, + { + "start": 11953.64, + "end": 11955.54, + "probability": 0.9866 + }, + { + "start": 11957.24, + "end": 11957.74, + "probability": 0.9228 + }, + { + "start": 11958.7, + "end": 11959.26, + "probability": 0.8829 + }, + { + "start": 11960.08, + "end": 11961.0, + "probability": 0.9757 + }, + { + "start": 11961.84, + "end": 11963.84, + "probability": 0.9895 + }, + { + "start": 11964.6, + "end": 11968.5, + "probability": 0.9794 + }, + { + "start": 11968.6, + "end": 11969.46, + "probability": 0.7674 + }, + { + "start": 11970.7, + "end": 11971.98, + "probability": 0.8825 + }, + { + "start": 11973.14, + "end": 11978.94, + "probability": 0.9488 + }, + { + "start": 11979.8, + "end": 11983.33, + "probability": 0.9983 + }, + { + "start": 11984.0, + "end": 11985.2, + "probability": 0.9897 + }, + { + "start": 11985.54, + "end": 11986.42, + "probability": 0.9559 + }, + { + "start": 11986.42, + "end": 11987.16, + "probability": 0.8824 + }, + { + "start": 11987.96, + "end": 11990.86, + "probability": 0.9995 + }, + { + "start": 11990.98, + "end": 11992.42, + "probability": 0.9584 + }, + { + "start": 11992.42, + "end": 11995.76, + "probability": 0.9346 + }, + { + "start": 11996.2, + "end": 11997.88, + "probability": 0.7091 + }, + { + "start": 11999.58, + "end": 12000.34, + "probability": 0.7871 + }, + { + "start": 12001.42, + "end": 12002.26, + "probability": 0.9492 + }, + { + "start": 12003.96, + "end": 12005.82, + "probability": 0.9752 + }, + { + "start": 12005.96, + "end": 12008.92, + "probability": 0.9971 + }, + { + "start": 12008.92, + "end": 12012.72, + "probability": 0.9988 + }, + { + "start": 12013.6, + "end": 12013.8, + "probability": 0.6405 + }, + { + "start": 12014.04, + "end": 12014.86, + "probability": 0.8588 + }, + { + "start": 12014.98, + "end": 12017.08, + "probability": 0.9983 + }, + { + "start": 12017.54, + "end": 12020.44, + "probability": 0.998 + }, + { + "start": 12020.52, + "end": 12021.22, + "probability": 0.8423 + }, + { + "start": 12021.28, + "end": 12023.36, + "probability": 0.8897 + }, + { + "start": 12024.26, + "end": 12025.46, + "probability": 0.9255 + }, + { + "start": 12025.62, + "end": 12027.9, + "probability": 0.5563 + }, + { + "start": 12027.96, + "end": 12029.5, + "probability": 0.8942 + }, + { + "start": 12030.72, + "end": 12032.68, + "probability": 0.9365 + }, + { + "start": 12032.74, + "end": 12034.08, + "probability": 0.987 + }, + { + "start": 12034.46, + "end": 12035.54, + "probability": 0.8388 + }, + { + "start": 12035.64, + "end": 12038.12, + "probability": 0.9888 + }, + { + "start": 12039.04, + "end": 12041.1, + "probability": 0.9177 + }, + { + "start": 12041.66, + "end": 12043.02, + "probability": 0.9843 + }, + { + "start": 12043.28, + "end": 12043.56, + "probability": 0.7289 + }, + { + "start": 12044.62, + "end": 12045.0, + "probability": 0.2942 + }, + { + "start": 12045.04, + "end": 12046.22, + "probability": 0.9124 + }, + { + "start": 12046.74, + "end": 12047.46, + "probability": 0.751 + }, + { + "start": 12048.02, + "end": 12049.86, + "probability": 0.9386 + }, + { + "start": 12049.88, + "end": 12050.6, + "probability": 0.8551 + }, + { + "start": 12050.7, + "end": 12051.74, + "probability": 0.9515 + }, + { + "start": 12051.8, + "end": 12052.5, + "probability": 0.7447 + }, + { + "start": 12053.06, + "end": 12053.48, + "probability": 0.964 + }, + { + "start": 12078.5, + "end": 12086.16, + "probability": 0.9696 + }, + { + "start": 12086.92, + "end": 12090.4, + "probability": 0.9982 + }, + { + "start": 12091.9, + "end": 12094.3, + "probability": 0.9886 + }, + { + "start": 12094.52, + "end": 12096.56, + "probability": 0.9982 + }, + { + "start": 12097.34, + "end": 12102.42, + "probability": 0.9817 + }, + { + "start": 12102.62, + "end": 12106.74, + "probability": 0.9822 + }, + { + "start": 12107.34, + "end": 12110.74, + "probability": 0.9952 + }, + { + "start": 12112.22, + "end": 12114.38, + "probability": 0.9987 + }, + { + "start": 12115.84, + "end": 12122.58, + "probability": 0.9878 + }, + { + "start": 12123.28, + "end": 12126.52, + "probability": 0.984 + }, + { + "start": 12127.56, + "end": 12130.56, + "probability": 0.4705 + }, + { + "start": 12131.64, + "end": 12134.74, + "probability": 0.9714 + }, + { + "start": 12134.74, + "end": 12138.3, + "probability": 0.9561 + }, + { + "start": 12138.74, + "end": 12140.66, + "probability": 0.548 + }, + { + "start": 12141.96, + "end": 12142.64, + "probability": 0.9611 + }, + { + "start": 12143.84, + "end": 12144.64, + "probability": 0.8856 + }, + { + "start": 12144.94, + "end": 12146.72, + "probability": 0.8456 + }, + { + "start": 12147.1, + "end": 12148.9, + "probability": 0.9938 + }, + { + "start": 12149.3, + "end": 12150.52, + "probability": 0.8927 + }, + { + "start": 12150.82, + "end": 12155.41, + "probability": 0.9794 + }, + { + "start": 12157.08, + "end": 12161.18, + "probability": 0.9487 + }, + { + "start": 12161.98, + "end": 12166.28, + "probability": 0.998 + }, + { + "start": 12166.84, + "end": 12169.0, + "probability": 0.9495 + }, + { + "start": 12169.6, + "end": 12170.9, + "probability": 0.9988 + }, + { + "start": 12171.8, + "end": 12173.0, + "probability": 0.9849 + }, + { + "start": 12173.78, + "end": 12179.42, + "probability": 0.9935 + }, + { + "start": 12180.0, + "end": 12181.26, + "probability": 0.5637 + }, + { + "start": 12181.9, + "end": 12183.18, + "probability": 0.9253 + }, + { + "start": 12183.72, + "end": 12189.34, + "probability": 0.9954 + }, + { + "start": 12190.66, + "end": 12193.68, + "probability": 0.9924 + }, + { + "start": 12193.68, + "end": 12196.96, + "probability": 0.9982 + }, + { + "start": 12197.42, + "end": 12201.62, + "probability": 0.9727 + }, + { + "start": 12201.7, + "end": 12203.52, + "probability": 0.6609 + }, + { + "start": 12204.51, + "end": 12206.08, + "probability": 0.8849 + }, + { + "start": 12206.6, + "end": 12210.92, + "probability": 0.9963 + }, + { + "start": 12211.12, + "end": 12214.88, + "probability": 0.997 + }, + { + "start": 12215.52, + "end": 12218.84, + "probability": 0.7886 + }, + { + "start": 12218.94, + "end": 12219.8, + "probability": 0.8618 + }, + { + "start": 12219.98, + "end": 12220.72, + "probability": 0.8206 + }, + { + "start": 12220.8, + "end": 12221.64, + "probability": 0.9758 + }, + { + "start": 12222.0, + "end": 12222.58, + "probability": 0.9068 + }, + { + "start": 12222.72, + "end": 12224.24, + "probability": 0.9264 + }, + { + "start": 12224.8, + "end": 12227.56, + "probability": 0.9377 + }, + { + "start": 12228.08, + "end": 12232.56, + "probability": 0.9575 + }, + { + "start": 12233.72, + "end": 12238.58, + "probability": 0.9589 + }, + { + "start": 12238.58, + "end": 12242.24, + "probability": 0.9937 + }, + { + "start": 12242.72, + "end": 12245.34, + "probability": 0.9377 + }, + { + "start": 12245.44, + "end": 12246.66, + "probability": 0.6742 + }, + { + "start": 12246.94, + "end": 12250.68, + "probability": 0.8011 + }, + { + "start": 12251.08, + "end": 12254.5, + "probability": 0.9988 + }, + { + "start": 12254.5, + "end": 12260.16, + "probability": 0.6203 + }, + { + "start": 12261.9, + "end": 12262.0, + "probability": 0.0925 + }, + { + "start": 12262.0, + "end": 12263.19, + "probability": 0.9381 + }, + { + "start": 12263.82, + "end": 12266.68, + "probability": 0.5025 + }, + { + "start": 12266.86, + "end": 12266.86, + "probability": 0.6344 + }, + { + "start": 12266.86, + "end": 12267.52, + "probability": 0.573 + }, + { + "start": 12267.72, + "end": 12274.04, + "probability": 0.0323 + }, + { + "start": 12274.04, + "end": 12275.6, + "probability": 0.0477 + }, + { + "start": 12275.62, + "end": 12276.2, + "probability": 0.064 + }, + { + "start": 12276.2, + "end": 12276.4, + "probability": 0.2669 + }, + { + "start": 12276.4, + "end": 12278.1, + "probability": 0.0214 + }, + { + "start": 12278.1, + "end": 12280.26, + "probability": 0.1192 + }, + { + "start": 12281.9, + "end": 12282.0, + "probability": 0.3867 + }, + { + "start": 12293.46, + "end": 12294.5, + "probability": 0.0029 + }, + { + "start": 12294.5, + "end": 12296.4, + "probability": 0.0826 + }, + { + "start": 12296.4, + "end": 12296.98, + "probability": 0.0092 + }, + { + "start": 12297.22, + "end": 12300.44, + "probability": 0.4984 + }, + { + "start": 12301.41, + "end": 12306.16, + "probability": 0.0605 + }, + { + "start": 12307.94, + "end": 12309.17, + "probability": 0.066 + }, + { + "start": 12309.22, + "end": 12309.98, + "probability": 0.2673 + }, + { + "start": 12309.98, + "end": 12312.96, + "probability": 0.152 + }, + { + "start": 12314.32, + "end": 12318.64, + "probability": 0.0391 + }, + { + "start": 12320.66, + "end": 12321.68, + "probability": 0.2502 + }, + { + "start": 12325.9, + "end": 12328.04, + "probability": 0.069 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.0, + "end": 12346.0, + "probability": 0.0 + }, + { + "start": 12346.12, + "end": 12346.16, + "probability": 0.0369 + }, + { + "start": 12346.16, + "end": 12346.86, + "probability": 0.6165 + }, + { + "start": 12347.24, + "end": 12347.58, + "probability": 0.2212 + }, + { + "start": 12347.58, + "end": 12347.96, + "probability": 0.8265 + }, + { + "start": 12348.56, + "end": 12349.0, + "probability": 0.3477 + }, + { + "start": 12363.16, + "end": 12364.26, + "probability": 0.0096 + }, + { + "start": 12368.0, + "end": 12369.0, + "probability": 0.6575 + }, + { + "start": 12370.14, + "end": 12374.9, + "probability": 0.6904 + }, + { + "start": 12375.86, + "end": 12378.12, + "probability": 0.7933 + }, + { + "start": 12379.2, + "end": 12383.34, + "probability": 0.9718 + }, + { + "start": 12384.2, + "end": 12387.42, + "probability": 0.7586 + }, + { + "start": 12390.12, + "end": 12392.26, + "probability": 0.789 + }, + { + "start": 12393.46, + "end": 12395.86, + "probability": 0.7986 + }, + { + "start": 12399.26, + "end": 12401.56, + "probability": 0.8062 + }, + { + "start": 12402.96, + "end": 12405.8, + "probability": 0.5649 + }, + { + "start": 12407.92, + "end": 12408.9, + "probability": 0.3376 + }, + { + "start": 12411.84, + "end": 12413.48, + "probability": 0.9109 + }, + { + "start": 12417.04, + "end": 12418.5, + "probability": 0.8926 + }, + { + "start": 12419.16, + "end": 12420.78, + "probability": 0.8368 + }, + { + "start": 12422.06, + "end": 12423.4, + "probability": 0.9608 + }, + { + "start": 12426.22, + "end": 12427.14, + "probability": 0.5968 + }, + { + "start": 12430.28, + "end": 12433.14, + "probability": 0.986 + }, + { + "start": 12433.98, + "end": 12436.18, + "probability": 0.7866 + }, + { + "start": 12438.44, + "end": 12440.06, + "probability": 0.6987 + }, + { + "start": 12441.08, + "end": 12443.76, + "probability": 0.9347 + }, + { + "start": 12445.56, + "end": 12448.44, + "probability": 0.9619 + }, + { + "start": 12448.72, + "end": 12451.12, + "probability": 0.7747 + }, + { + "start": 12453.44, + "end": 12457.22, + "probability": 0.9507 + }, + { + "start": 12458.48, + "end": 12461.84, + "probability": 0.9746 + }, + { + "start": 12462.16, + "end": 12466.2, + "probability": 0.9814 + }, + { + "start": 12466.96, + "end": 12471.22, + "probability": 0.8312 + }, + { + "start": 12472.0, + "end": 12473.56, + "probability": 0.7006 + }, + { + "start": 12475.52, + "end": 12479.02, + "probability": 0.7629 + }, + { + "start": 12480.58, + "end": 12482.06, + "probability": 0.5638 + }, + { + "start": 12485.32, + "end": 12486.8, + "probability": 0.8025 + }, + { + "start": 12487.9, + "end": 12489.14, + "probability": 0.6988 + }, + { + "start": 12492.16, + "end": 12495.8, + "probability": 0.9874 + }, + { + "start": 12496.98, + "end": 12497.5, + "probability": 0.9857 + }, + { + "start": 12498.36, + "end": 12498.74, + "probability": 0.9331 + }, + { + "start": 12501.06, + "end": 12502.02, + "probability": 0.8875 + }, + { + "start": 12506.12, + "end": 12507.18, + "probability": 0.7961 + }, + { + "start": 12507.36, + "end": 12508.32, + "probability": 0.9443 + }, + { + "start": 12508.42, + "end": 12509.3, + "probability": 0.7748 + }, + { + "start": 12512.3, + "end": 12513.62, + "probability": 0.9432 + }, + { + "start": 12513.7, + "end": 12515.77, + "probability": 0.9858 + }, + { + "start": 12517.26, + "end": 12518.18, + "probability": 0.835 + }, + { + "start": 12519.3, + "end": 12519.88, + "probability": 0.6991 + }, + { + "start": 12520.76, + "end": 12521.86, + "probability": 0.5542 + }, + { + "start": 12522.56, + "end": 12524.3, + "probability": 0.9666 + }, + { + "start": 12524.34, + "end": 12524.74, + "probability": 0.474 + }, + { + "start": 12524.78, + "end": 12525.86, + "probability": 0.5312 + }, + { + "start": 12525.9, + "end": 12526.02, + "probability": 0.4466 + }, + { + "start": 12526.3, + "end": 12527.0, + "probability": 0.9163 + }, + { + "start": 12528.3, + "end": 12528.88, + "probability": 0.4377 + }, + { + "start": 12532.06, + "end": 12532.9, + "probability": 0.8093 + }, + { + "start": 12533.48, + "end": 12534.44, + "probability": 0.7302 + }, + { + "start": 12537.12, + "end": 12540.02, + "probability": 0.9893 + }, + { + "start": 12540.5, + "end": 12541.7, + "probability": 0.9771 + }, + { + "start": 12542.34, + "end": 12542.44, + "probability": 0.8046 + }, + { + "start": 12545.7, + "end": 12548.36, + "probability": 0.678 + }, + { + "start": 12548.52, + "end": 12549.88, + "probability": 0.9458 + }, + { + "start": 12558.56, + "end": 12559.56, + "probability": 0.0269 + }, + { + "start": 12560.64, + "end": 12560.64, + "probability": 0.2011 + }, + { + "start": 12560.64, + "end": 12560.64, + "probability": 0.1547 + }, + { + "start": 12560.64, + "end": 12560.64, + "probability": 0.0856 + }, + { + "start": 12560.64, + "end": 12562.8, + "probability": 0.1342 + }, + { + "start": 12565.92, + "end": 12567.64, + "probability": 0.2813 + }, + { + "start": 12580.27, + "end": 12586.56, + "probability": 0.9443 + }, + { + "start": 12586.56, + "end": 12589.54, + "probability": 0.988 + }, + { + "start": 12591.92, + "end": 12592.86, + "probability": 0.7817 + }, + { + "start": 12595.16, + "end": 12597.4, + "probability": 0.6006 + }, + { + "start": 12599.76, + "end": 12600.92, + "probability": 0.8281 + }, + { + "start": 12603.48, + "end": 12605.46, + "probability": 0.9677 + }, + { + "start": 12607.18, + "end": 12608.12, + "probability": 0.9822 + }, + { + "start": 12609.52, + "end": 12611.32, + "probability": 0.9698 + }, + { + "start": 12612.4, + "end": 12616.44, + "probability": 0.9792 + }, + { + "start": 12618.26, + "end": 12620.3, + "probability": 0.77 + }, + { + "start": 12621.9, + "end": 12622.42, + "probability": 0.6914 + }, + { + "start": 12624.86, + "end": 12626.84, + "probability": 0.6666 + }, + { + "start": 12626.98, + "end": 12627.54, + "probability": 0.6653 + }, + { + "start": 12627.66, + "end": 12628.73, + "probability": 0.7856 + }, + { + "start": 12630.34, + "end": 12631.74, + "probability": 0.6522 + }, + { + "start": 12632.64, + "end": 12635.26, + "probability": 0.8157 + }, + { + "start": 12635.86, + "end": 12637.04, + "probability": 0.867 + }, + { + "start": 12638.28, + "end": 12639.74, + "probability": 0.7954 + }, + { + "start": 12639.98, + "end": 12641.35, + "probability": 0.8653 + }, + { + "start": 12642.12, + "end": 12644.52, + "probability": 0.9499 + }, + { + "start": 12645.08, + "end": 12646.89, + "probability": 0.886 + }, + { + "start": 12648.12, + "end": 12648.64, + "probability": 0.88 + }, + { + "start": 12648.72, + "end": 12649.74, + "probability": 0.9839 + }, + { + "start": 12652.36, + "end": 12653.66, + "probability": 0.9971 + }, + { + "start": 12654.86, + "end": 12655.34, + "probability": 0.6838 + }, + { + "start": 12656.2, + "end": 12656.88, + "probability": 0.9889 + }, + { + "start": 12658.52, + "end": 12660.78, + "probability": 0.9717 + }, + { + "start": 12662.38, + "end": 12663.65, + "probability": 0.9917 + }, + { + "start": 12664.84, + "end": 12667.14, + "probability": 0.6951 + }, + { + "start": 12667.92, + "end": 12669.16, + "probability": 0.8912 + }, + { + "start": 12670.48, + "end": 12671.61, + "probability": 0.5202 + }, + { + "start": 12671.88, + "end": 12672.12, + "probability": 0.8474 + }, + { + "start": 12673.02, + "end": 12675.2, + "probability": 0.9697 + }, + { + "start": 12677.5, + "end": 12678.12, + "probability": 0.6759 + }, + { + "start": 12679.22, + "end": 12680.58, + "probability": 0.9572 + }, + { + "start": 12682.44, + "end": 12684.6, + "probability": 0.9439 + }, + { + "start": 12685.72, + "end": 12687.62, + "probability": 0.6529 + }, + { + "start": 12687.86, + "end": 12689.08, + "probability": 0.9493 + }, + { + "start": 12689.32, + "end": 12690.38, + "probability": 0.7204 + }, + { + "start": 12692.08, + "end": 12693.73, + "probability": 0.6672 + }, + { + "start": 12695.24, + "end": 12697.92, + "probability": 0.9795 + }, + { + "start": 12698.32, + "end": 12701.68, + "probability": 0.9855 + }, + { + "start": 12701.76, + "end": 12702.4, + "probability": 0.7811 + }, + { + "start": 12702.86, + "end": 12703.46, + "probability": 0.7081 + }, + { + "start": 12703.84, + "end": 12705.36, + "probability": 0.9772 + }, + { + "start": 12706.04, + "end": 12708.48, + "probability": 0.997 + }, + { + "start": 12708.88, + "end": 12710.05, + "probability": 0.979 + }, + { + "start": 12710.66, + "end": 12711.98, + "probability": 0.2836 + }, + { + "start": 12711.98, + "end": 12712.42, + "probability": 0.6387 + }, + { + "start": 12713.24, + "end": 12714.0, + "probability": 0.6055 + }, + { + "start": 12714.98, + "end": 12716.7, + "probability": 0.8618 + }, + { + "start": 12716.78, + "end": 12720.44, + "probability": 0.7508 + }, + { + "start": 12721.24, + "end": 12726.08, + "probability": 0.9471 + }, + { + "start": 12726.08, + "end": 12728.84, + "probability": 0.4454 + }, + { + "start": 12730.5, + "end": 12731.58, + "probability": 0.4548 + }, + { + "start": 12733.46, + "end": 12734.8, + "probability": 0.9891 + }, + { + "start": 12736.06, + "end": 12739.54, + "probability": 0.8953 + }, + { + "start": 12739.72, + "end": 12739.9, + "probability": 0.943 + }, + { + "start": 12741.22, + "end": 12742.84, + "probability": 0.9968 + }, + { + "start": 12743.74, + "end": 12744.24, + "probability": 0.9876 + }, + { + "start": 12745.1, + "end": 12748.18, + "probability": 0.3527 + }, + { + "start": 12748.32, + "end": 12748.82, + "probability": 0.106 + }, + { + "start": 12749.62, + "end": 12750.22, + "probability": 0.8047 + }, + { + "start": 12750.9, + "end": 12751.17, + "probability": 0.0245 + }, + { + "start": 12753.16, + "end": 12754.96, + "probability": 0.7401 + }, + { + "start": 12756.44, + "end": 12759.02, + "probability": 0.9675 + }, + { + "start": 12759.7, + "end": 12761.46, + "probability": 0.9515 + }, + { + "start": 12762.28, + "end": 12763.18, + "probability": 0.9387 + }, + { + "start": 12764.12, + "end": 12764.86, + "probability": 0.9696 + }, + { + "start": 12768.92, + "end": 12769.58, + "probability": 0.7121 + }, + { + "start": 12771.4, + "end": 12772.56, + "probability": 0.5849 + }, + { + "start": 12774.18, + "end": 12775.02, + "probability": 0.6731 + }, + { + "start": 12776.9, + "end": 12778.06, + "probability": 0.658 + }, + { + "start": 12778.98, + "end": 12779.56, + "probability": 0.6485 + }, + { + "start": 12780.16, + "end": 12781.38, + "probability": 0.7396 + }, + { + "start": 12781.42, + "end": 12782.0, + "probability": 0.7267 + }, + { + "start": 12782.08, + "end": 12783.14, + "probability": 0.9778 + }, + { + "start": 12783.44, + "end": 12783.98, + "probability": 0.4075 + }, + { + "start": 12784.06, + "end": 12784.88, + "probability": 0.8867 + }, + { + "start": 12784.94, + "end": 12785.46, + "probability": 0.9085 + }, + { + "start": 12785.8, + "end": 12786.94, + "probability": 0.9883 + }, + { + "start": 12788.04, + "end": 12790.6, + "probability": 0.9819 + }, + { + "start": 12791.48, + "end": 12792.28, + "probability": 0.8561 + }, + { + "start": 12792.88, + "end": 12795.4, + "probability": 0.9884 + }, + { + "start": 12796.5, + "end": 12799.06, + "probability": 0.7712 + }, + { + "start": 12800.38, + "end": 12801.2, + "probability": 0.868 + }, + { + "start": 12801.84, + "end": 12804.38, + "probability": 0.9626 + }, + { + "start": 12805.1, + "end": 12806.42, + "probability": 0.8656 + }, + { + "start": 12806.44, + "end": 12807.08, + "probability": 0.9878 + }, + { + "start": 12807.14, + "end": 12808.18, + "probability": 0.9904 + }, + { + "start": 12808.24, + "end": 12808.8, + "probability": 0.9049 + }, + { + "start": 12809.28, + "end": 12810.26, + "probability": 0.8023 + }, + { + "start": 12810.82, + "end": 12811.44, + "probability": 0.6301 + }, + { + "start": 12811.86, + "end": 12812.94, + "probability": 0.935 + }, + { + "start": 12832.12, + "end": 12833.04, + "probability": 0.6215 + }, + { + "start": 12834.16, + "end": 12835.2, + "probability": 0.736 + }, + { + "start": 12837.42, + "end": 12840.78, + "probability": 0.8339 + }, + { + "start": 12842.46, + "end": 12844.66, + "probability": 0.7354 + }, + { + "start": 12845.78, + "end": 12850.56, + "probability": 0.9944 + }, + { + "start": 12851.42, + "end": 12852.66, + "probability": 0.6224 + }, + { + "start": 12853.9, + "end": 12856.46, + "probability": 0.9818 + }, + { + "start": 12857.66, + "end": 12860.02, + "probability": 0.9955 + }, + { + "start": 12860.76, + "end": 12862.24, + "probability": 0.8704 + }, + { + "start": 12863.02, + "end": 12863.84, + "probability": 0.9546 + }, + { + "start": 12865.02, + "end": 12869.46, + "probability": 0.9243 + }, + { + "start": 12871.12, + "end": 12875.66, + "probability": 0.6539 + }, + { + "start": 12876.46, + "end": 12877.0, + "probability": 0.6342 + }, + { + "start": 12877.88, + "end": 12880.94, + "probability": 0.8506 + }, + { + "start": 12882.92, + "end": 12885.14, + "probability": 0.9875 + }, + { + "start": 12886.2, + "end": 12889.22, + "probability": 0.9895 + }, + { + "start": 12890.5, + "end": 12891.7, + "probability": 0.5078 + }, + { + "start": 12892.4, + "end": 12894.54, + "probability": 0.9742 + }, + { + "start": 12895.42, + "end": 12899.14, + "probability": 0.9628 + }, + { + "start": 12900.02, + "end": 12902.4, + "probability": 0.9852 + }, + { + "start": 12902.98, + "end": 12906.58, + "probability": 0.7582 + }, + { + "start": 12907.34, + "end": 12909.56, + "probability": 0.9629 + }, + { + "start": 12910.36, + "end": 12913.1, + "probability": 0.9497 + }, + { + "start": 12913.76, + "end": 12915.18, + "probability": 0.9843 + }, + { + "start": 12915.96, + "end": 12917.56, + "probability": 0.9527 + }, + { + "start": 12917.74, + "end": 12923.52, + "probability": 0.9863 + }, + { + "start": 12924.38, + "end": 12926.56, + "probability": 0.6532 + }, + { + "start": 12927.1, + "end": 12929.3, + "probability": 0.9971 + }, + { + "start": 12929.74, + "end": 12930.0, + "probability": 0.7747 + }, + { + "start": 12931.58, + "end": 12932.1, + "probability": 0.3141 + }, + { + "start": 12932.14, + "end": 12935.26, + "probability": 0.6058 + }, + { + "start": 12935.44, + "end": 12936.6, + "probability": 0.8145 + }, + { + "start": 12947.34, + "end": 12949.02, + "probability": 0.5941 + }, + { + "start": 12949.88, + "end": 12950.72, + "probability": 0.7613 + }, + { + "start": 12950.82, + "end": 12951.78, + "probability": 0.6753 + }, + { + "start": 12951.84, + "end": 12954.64, + "probability": 0.9775 + }, + { + "start": 12954.64, + "end": 12958.04, + "probability": 0.855 + }, + { + "start": 12958.12, + "end": 12959.64, + "probability": 0.7688 + }, + { + "start": 12964.3, + "end": 12967.12, + "probability": 0.6669 + }, + { + "start": 12968.02, + "end": 12977.18, + "probability": 0.9875 + }, + { + "start": 12978.76, + "end": 12984.38, + "probability": 0.9925 + }, + { + "start": 12985.02, + "end": 12986.08, + "probability": 0.9811 + }, + { + "start": 12986.34, + "end": 12991.32, + "probability": 0.9483 + }, + { + "start": 12991.6, + "end": 12992.06, + "probability": 0.9102 + }, + { + "start": 12992.2, + "end": 12992.76, + "probability": 0.9046 + }, + { + "start": 12993.9, + "end": 12997.72, + "probability": 0.9781 + }, + { + "start": 12999.8, + "end": 13003.53, + "probability": 0.9976 + }, + { + "start": 13004.88, + "end": 13007.88, + "probability": 0.7797 + }, + { + "start": 13008.46, + "end": 13010.02, + "probability": 0.9909 + }, + { + "start": 13010.82, + "end": 13018.04, + "probability": 0.988 + }, + { + "start": 13018.04, + "end": 13025.76, + "probability": 0.9955 + }, + { + "start": 13026.74, + "end": 13029.52, + "probability": 0.9418 + }, + { + "start": 13030.16, + "end": 13034.98, + "probability": 0.8151 + }, + { + "start": 13036.69, + "end": 13038.32, + "probability": 0.5291 + }, + { + "start": 13038.32, + "end": 13039.12, + "probability": 0.822 + }, + { + "start": 13039.62, + "end": 13040.58, + "probability": 0.8704 + }, + { + "start": 13040.76, + "end": 13042.68, + "probability": 0.7987 + }, + { + "start": 13042.8, + "end": 13043.62, + "probability": 0.9653 + }, + { + "start": 13043.76, + "end": 13044.98, + "probability": 0.9958 + }, + { + "start": 13045.56, + "end": 13049.7, + "probability": 0.7965 + }, + { + "start": 13049.74, + "end": 13054.46, + "probability": 0.9827 + }, + { + "start": 13056.4, + "end": 13058.7, + "probability": 0.7755 + }, + { + "start": 13059.26, + "end": 13064.56, + "probability": 0.993 + }, + { + "start": 13065.06, + "end": 13068.04, + "probability": 0.8162 + }, + { + "start": 13068.36, + "end": 13071.66, + "probability": 0.9227 + }, + { + "start": 13072.38, + "end": 13076.5, + "probability": 0.9658 + }, + { + "start": 13077.22, + "end": 13079.46, + "probability": 0.9924 + }, + { + "start": 13079.68, + "end": 13081.88, + "probability": 0.9933 + }, + { + "start": 13082.62, + "end": 13089.12, + "probability": 0.978 + }, + { + "start": 13089.98, + "end": 13093.28, + "probability": 0.7888 + }, + { + "start": 13093.48, + "end": 13096.52, + "probability": 0.9937 + }, + { + "start": 13096.52, + "end": 13099.58, + "probability": 0.9869 + }, + { + "start": 13100.04, + "end": 13104.24, + "probability": 0.8563 + }, + { + "start": 13104.5, + "end": 13112.92, + "probability": 0.9849 + }, + { + "start": 13113.38, + "end": 13117.58, + "probability": 0.921 + }, + { + "start": 13117.66, + "end": 13119.34, + "probability": 0.9116 + }, + { + "start": 13119.8, + "end": 13120.76, + "probability": 0.9548 + }, + { + "start": 13120.8, + "end": 13122.84, + "probability": 0.9598 + }, + { + "start": 13123.26, + "end": 13123.76, + "probability": 0.8647 + }, + { + "start": 13124.82, + "end": 13127.82, + "probability": 0.9575 + }, + { + "start": 13127.82, + "end": 13130.7, + "probability": 0.9808 + }, + { + "start": 13130.76, + "end": 13131.42, + "probability": 0.7279 + }, + { + "start": 13131.5, + "end": 13131.86, + "probability": 0.8301 + }, + { + "start": 13131.94, + "end": 13132.56, + "probability": 0.9878 + }, + { + "start": 13132.96, + "end": 13133.54, + "probability": 0.6412 + }, + { + "start": 13133.74, + "end": 13135.78, + "probability": 0.4998 + }, + { + "start": 13135.8, + "end": 13142.0, + "probability": 0.7783 + }, + { + "start": 13142.5, + "end": 13145.42, + "probability": 0.9456 + }, + { + "start": 13146.04, + "end": 13149.18, + "probability": 0.9966 + }, + { + "start": 13149.18, + "end": 13152.52, + "probability": 0.9963 + }, + { + "start": 13152.64, + "end": 13153.72, + "probability": 0.7177 + }, + { + "start": 13154.06, + "end": 13156.78, + "probability": 0.9899 + }, + { + "start": 13156.9, + "end": 13159.8, + "probability": 0.9976 + }, + { + "start": 13160.08, + "end": 13163.3, + "probability": 0.9947 + }, + { + "start": 13163.4, + "end": 13163.82, + "probability": 0.6991 + }, + { + "start": 13165.3, + "end": 13166.38, + "probability": 0.0754 + }, + { + "start": 13166.38, + "end": 13167.16, + "probability": 0.6025 + }, + { + "start": 13168.34, + "end": 13170.36, + "probability": 0.914 + }, + { + "start": 13186.72, + "end": 13192.04, + "probability": 0.9917 + }, + { + "start": 13192.12, + "end": 13194.02, + "probability": 0.5296 + }, + { + "start": 13194.1, + "end": 13195.66, + "probability": 0.7452 + }, + { + "start": 13196.1, + "end": 13197.08, + "probability": 0.9672 + }, + { + "start": 13197.6, + "end": 13199.5, + "probability": 0.9931 + }, + { + "start": 13199.62, + "end": 13201.24, + "probability": 0.7035 + }, + { + "start": 13201.68, + "end": 13201.88, + "probability": 0.5994 + }, + { + "start": 13201.96, + "end": 13202.88, + "probability": 0.9467 + }, + { + "start": 13203.22, + "end": 13204.18, + "probability": 0.8019 + }, + { + "start": 13204.3, + "end": 13204.76, + "probability": 0.6774 + }, + { + "start": 13204.76, + "end": 13204.92, + "probability": 0.3997 + }, + { + "start": 13206.18, + "end": 13212.14, + "probability": 0.9639 + }, + { + "start": 13212.32, + "end": 13213.22, + "probability": 0.9038 + }, + { + "start": 13213.42, + "end": 13214.79, + "probability": 0.9876 + }, + { + "start": 13214.96, + "end": 13215.86, + "probability": 0.9912 + }, + { + "start": 13216.2, + "end": 13219.46, + "probability": 0.9958 + }, + { + "start": 13219.8, + "end": 13221.68, + "probability": 0.8187 + }, + { + "start": 13221.98, + "end": 13224.18, + "probability": 0.7497 + }, + { + "start": 13225.3, + "end": 13228.92, + "probability": 0.9895 + }, + { + "start": 13229.0, + "end": 13231.74, + "probability": 0.9717 + }, + { + "start": 13231.9, + "end": 13232.82, + "probability": 0.8129 + }, + { + "start": 13234.04, + "end": 13235.16, + "probability": 0.9769 + }, + { + "start": 13235.56, + "end": 13236.96, + "probability": 0.7266 + }, + { + "start": 13236.98, + "end": 13237.46, + "probability": 0.4649 + }, + { + "start": 13237.52, + "end": 13238.02, + "probability": 0.9871 + }, + { + "start": 13238.34, + "end": 13239.34, + "probability": 0.8951 + }, + { + "start": 13239.34, + "end": 13239.96, + "probability": 0.9315 + }, + { + "start": 13240.04, + "end": 13241.98, + "probability": 0.9414 + }, + { + "start": 13242.4, + "end": 13243.84, + "probability": 0.8375 + }, + { + "start": 13243.88, + "end": 13245.88, + "probability": 0.9807 + }, + { + "start": 13246.3, + "end": 13249.16, + "probability": 0.972 + }, + { + "start": 13249.24, + "end": 13251.08, + "probability": 0.8252 + }, + { + "start": 13251.34, + "end": 13252.92, + "probability": 0.9769 + }, + { + "start": 13253.3, + "end": 13254.52, + "probability": 0.5555 + }, + { + "start": 13254.7, + "end": 13255.1, + "probability": 0.3376 + }, + { + "start": 13256.18, + "end": 13256.34, + "probability": 0.2683 + }, + { + "start": 13256.34, + "end": 13257.84, + "probability": 0.6037 + }, + { + "start": 13257.84, + "end": 13258.42, + "probability": 0.8843 + }, + { + "start": 13258.52, + "end": 13259.05, + "probability": 0.8027 + }, + { + "start": 13259.12, + "end": 13261.12, + "probability": 0.9728 + }, + { + "start": 13261.34, + "end": 13262.12, + "probability": 0.9583 + }, + { + "start": 13262.2, + "end": 13264.28, + "probability": 0.5667 + }, + { + "start": 13264.4, + "end": 13265.1, + "probability": 0.7236 + }, + { + "start": 13265.38, + "end": 13270.52, + "probability": 0.9062 + }, + { + "start": 13270.88, + "end": 13271.16, + "probability": 0.4356 + }, + { + "start": 13271.2, + "end": 13271.98, + "probability": 0.5246 + }, + { + "start": 13272.08, + "end": 13273.96, + "probability": 0.9932 + }, + { + "start": 13274.12, + "end": 13276.2, + "probability": 0.9988 + }, + { + "start": 13276.34, + "end": 13280.14, + "probability": 0.9912 + }, + { + "start": 13280.28, + "end": 13283.9, + "probability": 0.575 + }, + { + "start": 13285.22, + "end": 13288.5, + "probability": 0.9128 + }, + { + "start": 13288.82, + "end": 13289.92, + "probability": 0.7152 + }, + { + "start": 13290.14, + "end": 13295.8, + "probability": 0.9849 + }, + { + "start": 13295.8, + "end": 13300.74, + "probability": 0.9939 + }, + { + "start": 13301.16, + "end": 13302.4, + "probability": 0.7778 + }, + { + "start": 13302.58, + "end": 13303.12, + "probability": 0.8207 + }, + { + "start": 13303.24, + "end": 13306.22, + "probability": 0.9837 + }, + { + "start": 13306.46, + "end": 13306.84, + "probability": 0.6982 + }, + { + "start": 13307.48, + "end": 13307.96, + "probability": 0.5341 + }, + { + "start": 13308.06, + "end": 13309.5, + "probability": 0.7219 + }, + { + "start": 13310.0, + "end": 13313.6, + "probability": 0.9519 + }, + { + "start": 13316.7, + "end": 13318.0, + "probability": 0.7122 + }, + { + "start": 13318.36, + "end": 13319.62, + "probability": 0.8239 + }, + { + "start": 13320.0, + "end": 13320.26, + "probability": 0.9171 + }, + { + "start": 13320.58, + "end": 13321.06, + "probability": 0.8031 + }, + { + "start": 13321.1, + "end": 13321.8, + "probability": 0.8792 + }, + { + "start": 13322.02, + "end": 13323.34, + "probability": 0.9904 + }, + { + "start": 13324.54, + "end": 13324.74, + "probability": 0.2403 + }, + { + "start": 13324.74, + "end": 13324.74, + "probability": 0.3499 + }, + { + "start": 13324.74, + "end": 13325.76, + "probability": 0.7416 + }, + { + "start": 13325.84, + "end": 13326.6, + "probability": 0.3908 + }, + { + "start": 13327.0, + "end": 13327.22, + "probability": 0.8344 + }, + { + "start": 13327.36, + "end": 13329.86, + "probability": 0.9768 + }, + { + "start": 13330.0, + "end": 13332.79, + "probability": 0.9704 + }, + { + "start": 13332.9, + "end": 13333.32, + "probability": 0.9063 + }, + { + "start": 13333.88, + "end": 13335.14, + "probability": 0.852 + }, + { + "start": 13335.3, + "end": 13336.74, + "probability": 0.9816 + }, + { + "start": 13337.12, + "end": 13337.4, + "probability": 0.2276 + }, + { + "start": 13337.46, + "end": 13337.66, + "probability": 0.7983 + }, + { + "start": 13337.7, + "end": 13338.62, + "probability": 0.7615 + }, + { + "start": 13338.94, + "end": 13339.6, + "probability": 0.486 + }, + { + "start": 13339.72, + "end": 13340.96, + "probability": 0.7727 + }, + { + "start": 13341.04, + "end": 13342.08, + "probability": 0.7135 + }, + { + "start": 13342.14, + "end": 13343.22, + "probability": 0.5269 + }, + { + "start": 13344.74, + "end": 13347.26, + "probability": 0.1858 + }, + { + "start": 13347.28, + "end": 13348.56, + "probability": 0.2518 + }, + { + "start": 13349.5, + "end": 13349.58, + "probability": 0.0657 + }, + { + "start": 13363.0, + "end": 13368.38, + "probability": 0.3801 + }, + { + "start": 13370.2, + "end": 13370.58, + "probability": 0.0168 + }, + { + "start": 13376.47, + "end": 13379.52, + "probability": 0.0708 + }, + { + "start": 13379.52, + "end": 13386.64, + "probability": 0.1288 + }, + { + "start": 13387.62, + "end": 13390.0, + "probability": 0.066 + }, + { + "start": 13390.07, + "end": 13391.85, + "probability": 0.0674 + }, + { + "start": 13392.1, + "end": 13392.7, + "probability": 0.1919 + }, + { + "start": 13393.6, + "end": 13394.16, + "probability": 0.0319 + }, + { + "start": 13394.16, + "end": 13394.84, + "probability": 0.1033 + }, + { + "start": 13394.84, + "end": 13397.86, + "probability": 0.0275 + }, + { + "start": 13398.74, + "end": 13399.72, + "probability": 0.181 + }, + { + "start": 13401.7, + "end": 13402.98, + "probability": 0.0616 + }, + { + "start": 13403.16, + "end": 13407.4, + "probability": 0.2422 + }, + { + "start": 13407.5, + "end": 13410.0, + "probability": 0.0743 + }, + { + "start": 13410.04, + "end": 13411.52, + "probability": 0.2453 + }, + { + "start": 13411.52, + "end": 13411.54, + "probability": 0.0548 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.0, + "end": 13412.0, + "probability": 0.0 + }, + { + "start": 13412.08, + "end": 13412.58, + "probability": 0.248 + }, + { + "start": 13418.24, + "end": 13419.52, + "probability": 0.6316 + }, + { + "start": 13420.62, + "end": 13422.6, + "probability": 0.9706 + }, + { + "start": 13422.82, + "end": 13425.86, + "probability": 0.9212 + }, + { + "start": 13426.52, + "end": 13427.82, + "probability": 0.8006 + }, + { + "start": 13428.34, + "end": 13431.01, + "probability": 0.9937 + }, + { + "start": 13431.3, + "end": 13433.3, + "probability": 0.9495 + }, + { + "start": 13433.74, + "end": 13434.24, + "probability": 0.877 + }, + { + "start": 13435.34, + "end": 13436.78, + "probability": 0.5728 + }, + { + "start": 13437.22, + "end": 13440.88, + "probability": 0.9902 + }, + { + "start": 13441.52, + "end": 13442.48, + "probability": 0.8151 + }, + { + "start": 13443.06, + "end": 13444.12, + "probability": 0.8397 + }, + { + "start": 13444.44, + "end": 13446.08, + "probability": 0.9907 + }, + { + "start": 13446.62, + "end": 13447.84, + "probability": 0.9844 + }, + { + "start": 13448.2, + "end": 13448.84, + "probability": 0.6423 + }, + { + "start": 13448.88, + "end": 13449.08, + "probability": 0.7707 + }, + { + "start": 13449.26, + "end": 13450.0, + "probability": 0.88 + }, + { + "start": 13450.08, + "end": 13450.81, + "probability": 0.7818 + }, + { + "start": 13451.44, + "end": 13453.04, + "probability": 0.946 + }, + { + "start": 13453.74, + "end": 13457.14, + "probability": 0.9857 + }, + { + "start": 13458.42, + "end": 13462.48, + "probability": 0.0404 + }, + { + "start": 13463.54, + "end": 13464.98, + "probability": 0.02 + }, + { + "start": 13467.01, + "end": 13471.73, + "probability": 0.5999 + }, + { + "start": 13472.74, + "end": 13473.76, + "probability": 0.7839 + }, + { + "start": 13474.7, + "end": 13475.26, + "probability": 0.6645 + }, + { + "start": 13476.48, + "end": 13478.14, + "probability": 0.7595 + }, + { + "start": 13478.78, + "end": 13481.84, + "probability": 0.9772 + }, + { + "start": 13482.14, + "end": 13482.72, + "probability": 0.8201 + }, + { + "start": 13482.74, + "end": 13483.32, + "probability": 0.8111 + }, + { + "start": 13483.66, + "end": 13485.24, + "probability": 0.3792 + }, + { + "start": 13485.6, + "end": 13488.16, + "probability": 0.9233 + }, + { + "start": 13488.52, + "end": 13492.26, + "probability": 0.9951 + }, + { + "start": 13492.74, + "end": 13494.58, + "probability": 0.9176 + }, + { + "start": 13495.18, + "end": 13497.78, + "probability": 0.7719 + }, + { + "start": 13498.3, + "end": 13500.52, + "probability": 0.7817 + }, + { + "start": 13500.8, + "end": 13502.3, + "probability": 0.9851 + }, + { + "start": 13502.96, + "end": 13507.52, + "probability": 0.9202 + }, + { + "start": 13508.32, + "end": 13509.78, + "probability": 0.9787 + }, + { + "start": 13510.68, + "end": 13515.26, + "probability": 0.8667 + }, + { + "start": 13515.26, + "end": 13518.88, + "probability": 0.9709 + }, + { + "start": 13519.78, + "end": 13523.42, + "probability": 0.9872 + }, + { + "start": 13524.64, + "end": 13526.26, + "probability": 0.6855 + }, + { + "start": 13526.48, + "end": 13529.86, + "probability": 0.9087 + }, + { + "start": 13530.42, + "end": 13531.34, + "probability": 0.9647 + }, + { + "start": 13531.46, + "end": 13534.1, + "probability": 0.7983 + }, + { + "start": 13534.82, + "end": 13535.54, + "probability": 0.8987 + }, + { + "start": 13536.22, + "end": 13536.86, + "probability": 0.647 + }, + { + "start": 13536.96, + "end": 13537.6, + "probability": 0.5313 + }, + { + "start": 13539.0, + "end": 13539.56, + "probability": 0.9586 + }, + { + "start": 13539.64, + "end": 13540.74, + "probability": 0.9359 + }, + { + "start": 13541.06, + "end": 13542.71, + "probability": 0.9769 + }, + { + "start": 13543.46, + "end": 13546.81, + "probability": 0.968 + }, + { + "start": 13547.54, + "end": 13550.12, + "probability": 0.9969 + }, + { + "start": 13550.62, + "end": 13551.39, + "probability": 0.9494 + }, + { + "start": 13552.1, + "end": 13552.58, + "probability": 0.3982 + }, + { + "start": 13553.16, + "end": 13554.9, + "probability": 0.6285 + }, + { + "start": 13555.34, + "end": 13559.36, + "probability": 0.691 + }, + { + "start": 13560.32, + "end": 13561.6, + "probability": 0.9661 + }, + { + "start": 13561.92, + "end": 13565.72, + "probability": 0.9323 + }, + { + "start": 13565.76, + "end": 13566.38, + "probability": 0.6632 + }, + { + "start": 13567.74, + "end": 13568.3, + "probability": 0.4818 + }, + { + "start": 13568.98, + "end": 13570.3, + "probability": 0.4215 + }, + { + "start": 13570.38, + "end": 13572.5, + "probability": 0.9402 + }, + { + "start": 13572.64, + "end": 13573.88, + "probability": 0.7698 + }, + { + "start": 13573.88, + "end": 13574.84, + "probability": 0.4717 + }, + { + "start": 13574.92, + "end": 13576.36, + "probability": 0.7374 + }, + { + "start": 13576.54, + "end": 13577.4, + "probability": 0.6339 + }, + { + "start": 13577.4, + "end": 13579.52, + "probability": 0.9849 + }, + { + "start": 13579.62, + "end": 13580.66, + "probability": 0.9917 + }, + { + "start": 13580.66, + "end": 13580.68, + "probability": 0.6988 + }, + { + "start": 13580.68, + "end": 13581.64, + "probability": 0.9007 + }, + { + "start": 13582.24, + "end": 13583.32, + "probability": 0.6261 + }, + { + "start": 13583.36, + "end": 13584.82, + "probability": 0.7322 + }, + { + "start": 13585.31, + "end": 13588.94, + "probability": 0.9831 + }, + { + "start": 13589.0, + "end": 13589.08, + "probability": 0.4961 + }, + { + "start": 13589.16, + "end": 13589.78, + "probability": 0.6192 + }, + { + "start": 13590.54, + "end": 13593.12, + "probability": 0.9368 + }, + { + "start": 13593.22, + "end": 13593.98, + "probability": 0.805 + }, + { + "start": 13594.0, + "end": 13594.76, + "probability": 0.8582 + }, + { + "start": 13595.32, + "end": 13596.48, + "probability": 0.9128 + }, + { + "start": 13596.58, + "end": 13599.08, + "probability": 0.9912 + }, + { + "start": 13599.68, + "end": 13602.14, + "probability": 0.9462 + }, + { + "start": 13602.58, + "end": 13604.37, + "probability": 0.9015 + }, + { + "start": 13605.14, + "end": 13606.8, + "probability": 0.6968 + }, + { + "start": 13607.52, + "end": 13608.72, + "probability": 0.9415 + }, + { + "start": 13609.44, + "end": 13612.26, + "probability": 0.7526 + }, + { + "start": 13613.74, + "end": 13616.24, + "probability": 0.7455 + }, + { + "start": 13616.66, + "end": 13618.28, + "probability": 0.7868 + }, + { + "start": 13619.08, + "end": 13622.56, + "probability": 0.8068 + }, + { + "start": 13623.26, + "end": 13624.94, + "probability": 0.9423 + }, + { + "start": 13625.46, + "end": 13627.14, + "probability": 0.8914 + }, + { + "start": 13627.74, + "end": 13629.4, + "probability": 0.9344 + }, + { + "start": 13629.52, + "end": 13629.92, + "probability": 0.9617 + }, + { + "start": 13630.0, + "end": 13630.7, + "probability": 0.8861 + }, + { + "start": 13631.76, + "end": 13633.32, + "probability": 0.7429 + }, + { + "start": 13634.32, + "end": 13635.28, + "probability": 0.6358 + }, + { + "start": 13635.36, + "end": 13636.28, + "probability": 0.622 + }, + { + "start": 13636.64, + "end": 13637.86, + "probability": 0.696 + }, + { + "start": 13639.02, + "end": 13640.64, + "probability": 0.9946 + }, + { + "start": 13641.6, + "end": 13642.32, + "probability": 0.716 + }, + { + "start": 13642.84, + "end": 13644.08, + "probability": 0.9624 + }, + { + "start": 13644.18, + "end": 13645.76, + "probability": 0.9736 + }, + { + "start": 13646.2, + "end": 13647.18, + "probability": 0.531 + }, + { + "start": 13647.8, + "end": 13650.74, + "probability": 0.9915 + }, + { + "start": 13651.44, + "end": 13652.92, + "probability": 0.9902 + }, + { + "start": 13654.04, + "end": 13656.78, + "probability": 0.8366 + }, + { + "start": 13657.76, + "end": 13658.64, + "probability": 0.7603 + }, + { + "start": 13658.92, + "end": 13660.48, + "probability": 0.8708 + }, + { + "start": 13663.79, + "end": 13666.62, + "probability": 0.858 + }, + { + "start": 13666.78, + "end": 13668.06, + "probability": 0.9245 + }, + { + "start": 13668.14, + "end": 13669.28, + "probability": 0.9728 + }, + { + "start": 13669.32, + "end": 13670.16, + "probability": 0.7096 + }, + { + "start": 13670.2, + "end": 13670.5, + "probability": 0.8201 + }, + { + "start": 13670.5, + "end": 13670.52, + "probability": 0.5782 + }, + { + "start": 13670.52, + "end": 13671.14, + "probability": 0.9897 + }, + { + "start": 13671.14, + "end": 13672.94, + "probability": 0.5941 + }, + { + "start": 13673.14, + "end": 13677.3, + "probability": 0.9023 + }, + { + "start": 13677.42, + "end": 13678.34, + "probability": 0.977 + }, + { + "start": 13678.48, + "end": 13680.42, + "probability": 0.9214 + }, + { + "start": 13680.72, + "end": 13682.6, + "probability": 0.326 + }, + { + "start": 13683.62, + "end": 13685.98, + "probability": 0.6653 + }, + { + "start": 13686.18, + "end": 13687.62, + "probability": 0.9666 + }, + { + "start": 13687.62, + "end": 13689.3, + "probability": 0.9928 + }, + { + "start": 13689.44, + "end": 13690.83, + "probability": 0.9883 + }, + { + "start": 13691.12, + "end": 13691.44, + "probability": 0.2792 + }, + { + "start": 13692.0, + "end": 13692.81, + "probability": 0.8318 + }, + { + "start": 13692.94, + "end": 13694.64, + "probability": 0.6226 + }, + { + "start": 13694.66, + "end": 13697.84, + "probability": 0.5234 + }, + { + "start": 13698.4, + "end": 13698.4, + "probability": 0.276 + }, + { + "start": 13698.4, + "end": 13698.4, + "probability": 0.0756 + }, + { + "start": 13698.4, + "end": 13700.88, + "probability": 0.9309 + }, + { + "start": 13700.94, + "end": 13701.92, + "probability": 0.8976 + }, + { + "start": 13702.22, + "end": 13706.18, + "probability": 0.9851 + }, + { + "start": 13706.66, + "end": 13709.5, + "probability": 0.8456 + }, + { + "start": 13709.64, + "end": 13709.72, + "probability": 0.255 + }, + { + "start": 13709.72, + "end": 13711.72, + "probability": 0.9433 + }, + { + "start": 13729.96, + "end": 13730.98, + "probability": 0.8649 + }, + { + "start": 13734.58, + "end": 13737.16, + "probability": 0.9734 + }, + { + "start": 13738.42, + "end": 13738.98, + "probability": 0.7677 + }, + { + "start": 13739.64, + "end": 13741.36, + "probability": 0.9288 + }, + { + "start": 13743.06, + "end": 13747.24, + "probability": 0.6758 + }, + { + "start": 13748.46, + "end": 13752.28, + "probability": 0.9756 + }, + { + "start": 13753.64, + "end": 13758.06, + "probability": 0.9946 + }, + { + "start": 13758.58, + "end": 13760.38, + "probability": 0.9756 + }, + { + "start": 13761.24, + "end": 13762.42, + "probability": 0.9834 + }, + { + "start": 13763.52, + "end": 13765.1, + "probability": 0.9727 + }, + { + "start": 13766.24, + "end": 13769.36, + "probability": 0.9902 + }, + { + "start": 13770.16, + "end": 13771.96, + "probability": 0.9353 + }, + { + "start": 13773.04, + "end": 13775.0, + "probability": 0.9863 + }, + { + "start": 13775.74, + "end": 13776.96, + "probability": 0.8794 + }, + { + "start": 13777.72, + "end": 13780.3, + "probability": 0.9787 + }, + { + "start": 13781.44, + "end": 13783.98, + "probability": 0.9777 + }, + { + "start": 13785.44, + "end": 13790.38, + "probability": 0.9743 + }, + { + "start": 13791.88, + "end": 13794.34, + "probability": 0.9753 + }, + { + "start": 13795.46, + "end": 13797.72, + "probability": 0.8403 + }, + { + "start": 13798.82, + "end": 13802.0, + "probability": 0.8892 + }, + { + "start": 13803.6, + "end": 13805.52, + "probability": 0.6766 + }, + { + "start": 13806.22, + "end": 13806.74, + "probability": 0.9104 + }, + { + "start": 13806.98, + "end": 13808.26, + "probability": 0.8607 + }, + { + "start": 13808.46, + "end": 13810.7, + "probability": 0.6556 + }, + { + "start": 13811.68, + "end": 13812.84, + "probability": 0.8704 + }, + { + "start": 13813.54, + "end": 13814.6, + "probability": 0.817 + }, + { + "start": 13816.34, + "end": 13818.26, + "probability": 0.8069 + }, + { + "start": 13819.9, + "end": 13822.64, + "probability": 0.8334 + }, + { + "start": 13823.24, + "end": 13825.32, + "probability": 0.8018 + }, + { + "start": 13826.48, + "end": 13827.12, + "probability": 0.6603 + }, + { + "start": 13828.84, + "end": 13832.36, + "probability": 0.7503 + }, + { + "start": 13834.28, + "end": 13835.66, + "probability": 0.6374 + }, + { + "start": 13837.06, + "end": 13840.86, + "probability": 0.9441 + }, + { + "start": 13841.9, + "end": 13847.86, + "probability": 0.894 + }, + { + "start": 13848.5, + "end": 13851.32, + "probability": 0.8256 + }, + { + "start": 13852.22, + "end": 13855.4, + "probability": 0.9429 + }, + { + "start": 13855.56, + "end": 13856.94, + "probability": 0.8569 + }, + { + "start": 13857.74, + "end": 13858.68, + "probability": 0.3729 + }, + { + "start": 13859.46, + "end": 13860.58, + "probability": 0.9103 + }, + { + "start": 13861.32, + "end": 13865.32, + "probability": 0.994 + }, + { + "start": 13865.32, + "end": 13869.56, + "probability": 0.9794 + }, + { + "start": 13870.24, + "end": 13873.38, + "probability": 0.8947 + }, + { + "start": 13873.86, + "end": 13875.8, + "probability": 0.6337 + }, + { + "start": 13876.54, + "end": 13877.98, + "probability": 0.9605 + }, + { + "start": 13879.4, + "end": 13879.84, + "probability": 0.7963 + }, + { + "start": 13884.42, + "end": 13887.88, + "probability": 0.5678 + }, + { + "start": 13888.78, + "end": 13891.22, + "probability": 0.771 + }, + { + "start": 13892.28, + "end": 13892.66, + "probability": 0.6569 + }, + { + "start": 13893.24, + "end": 13894.1, + "probability": 0.933 + }, + { + "start": 13894.28, + "end": 13895.6, + "probability": 0.9761 + }, + { + "start": 13898.52, + "end": 13899.44, + "probability": 0.9941 + }, + { + "start": 13900.52, + "end": 13901.74, + "probability": 0.9805 + }, + { + "start": 13901.76, + "end": 13902.5, + "probability": 0.4433 + }, + { + "start": 13903.32, + "end": 13904.02, + "probability": 0.8306 + }, + { + "start": 13905.3, + "end": 13907.58, + "probability": 0.9939 + }, + { + "start": 13908.68, + "end": 13911.44, + "probability": 0.8866 + }, + { + "start": 13911.44, + "end": 13913.8, + "probability": 0.995 + }, + { + "start": 13914.56, + "end": 13917.72, + "probability": 0.9185 + }, + { + "start": 13918.56, + "end": 13922.74, + "probability": 0.9893 + }, + { + "start": 13923.54, + "end": 13926.98, + "probability": 0.9938 + }, + { + "start": 13927.58, + "end": 13932.46, + "probability": 0.9935 + }, + { + "start": 13932.6, + "end": 13934.22, + "probability": 0.7995 + }, + { + "start": 13934.9, + "end": 13937.86, + "probability": 0.9299 + }, + { + "start": 13938.8, + "end": 13940.56, + "probability": 0.9938 + }, + { + "start": 13940.72, + "end": 13940.96, + "probability": 0.7727 + }, + { + "start": 13941.18, + "end": 13941.96, + "probability": 0.6464 + }, + { + "start": 13942.88, + "end": 13945.6, + "probability": 0.8032 + }, + { + "start": 13945.78, + "end": 13947.7, + "probability": 0.7142 + }, + { + "start": 13948.3, + "end": 13948.86, + "probability": 0.7249 + }, + { + "start": 13950.54, + "end": 13951.6, + "probability": 0.1428 + }, + { + "start": 13968.98, + "end": 13971.76, + "probability": 0.7796 + }, + { + "start": 13973.18, + "end": 13975.44, + "probability": 0.8546 + }, + { + "start": 13976.76, + "end": 13984.64, + "probability": 0.9683 + }, + { + "start": 13986.12, + "end": 13989.66, + "probability": 0.9027 + }, + { + "start": 13990.4, + "end": 13995.56, + "probability": 0.9968 + }, + { + "start": 13997.32, + "end": 13998.62, + "probability": 0.4702 + }, + { + "start": 13999.64, + "end": 14002.9, + "probability": 0.9051 + }, + { + "start": 14004.16, + "end": 14005.14, + "probability": 0.7963 + }, + { + "start": 14006.14, + "end": 14007.73, + "probability": 0.9157 + }, + { + "start": 14008.98, + "end": 14010.84, + "probability": 0.9733 + }, + { + "start": 14011.48, + "end": 14012.7, + "probability": 0.8013 + }, + { + "start": 14012.88, + "end": 14018.96, + "probability": 0.8609 + }, + { + "start": 14019.66, + "end": 14021.7, + "probability": 0.8899 + }, + { + "start": 14022.38, + "end": 14023.34, + "probability": 0.7427 + }, + { + "start": 14024.54, + "end": 14027.38, + "probability": 0.9858 + }, + { + "start": 14028.0, + "end": 14028.88, + "probability": 0.9604 + }, + { + "start": 14038.5, + "end": 14041.08, + "probability": 0.7935 + }, + { + "start": 14042.62, + "end": 14043.82, + "probability": 0.8054 + }, + { + "start": 14044.9, + "end": 14049.2, + "probability": 0.9845 + }, + { + "start": 14050.04, + "end": 14051.1, + "probability": 0.9019 + }, + { + "start": 14051.76, + "end": 14053.74, + "probability": 0.967 + }, + { + "start": 14055.34, + "end": 14056.42, + "probability": 0.9937 + }, + { + "start": 14060.16, + "end": 14062.92, + "probability": 0.9463 + }, + { + "start": 14063.64, + "end": 14066.48, + "probability": 0.996 + }, + { + "start": 14067.92, + "end": 14070.58, + "probability": 0.7685 + }, + { + "start": 14070.7, + "end": 14075.7, + "probability": 0.9959 + }, + { + "start": 14076.22, + "end": 14077.66, + "probability": 0.8911 + }, + { + "start": 14078.3, + "end": 14082.62, + "probability": 0.9961 + }, + { + "start": 14083.06, + "end": 14086.08, + "probability": 0.9966 + }, + { + "start": 14087.68, + "end": 14087.98, + "probability": 0.8326 + }, + { + "start": 14088.5, + "end": 14092.14, + "probability": 0.7405 + }, + { + "start": 14092.88, + "end": 14098.14, + "probability": 0.998 + }, + { + "start": 14098.3, + "end": 14098.64, + "probability": 0.7548 + }, + { + "start": 14099.16, + "end": 14099.9, + "probability": 0.7865 + }, + { + "start": 14100.98, + "end": 14101.8, + "probability": 0.8713 + }, + { + "start": 14101.88, + "end": 14106.9, + "probability": 0.9294 + }, + { + "start": 14107.46, + "end": 14110.74, + "probability": 0.4355 + }, + { + "start": 14111.12, + "end": 14114.3, + "probability": 0.7424 + }, + { + "start": 14114.42, + "end": 14114.94, + "probability": 0.5777 + }, + { + "start": 14116.24, + "end": 14117.38, + "probability": 0.8067 + }, + { + "start": 14117.62, + "end": 14119.58, + "probability": 0.3844 + }, + { + "start": 14120.1, + "end": 14121.14, + "probability": 0.3113 + }, + { + "start": 14135.86, + "end": 14138.34, + "probability": 0.7869 + }, + { + "start": 14138.34, + "end": 14141.04, + "probability": 0.4578 + }, + { + "start": 14141.48, + "end": 14145.4, + "probability": 0.9229 + }, + { + "start": 14145.5, + "end": 14146.56, + "probability": 0.4616 + }, + { + "start": 14147.22, + "end": 14149.68, + "probability": 0.3332 + }, + { + "start": 14152.46, + "end": 14155.31, + "probability": 0.1597 + }, + { + "start": 14155.58, + "end": 14156.68, + "probability": 0.0371 + }, + { + "start": 14159.7, + "end": 14160.54, + "probability": 0.0331 + }, + { + "start": 14160.54, + "end": 14162.82, + "probability": 0.0131 + }, + { + "start": 14164.72, + "end": 14166.84, + "probability": 0.0017 + }, + { + "start": 14172.76, + "end": 14174.52, + "probability": 0.1064 + }, + { + "start": 14176.04, + "end": 14176.56, + "probability": 0.0599 + }, + { + "start": 14176.74, + "end": 14180.96, + "probability": 0.0166 + }, + { + "start": 14182.4, + "end": 14183.26, + "probability": 0.0224 + }, + { + "start": 14185.02, + "end": 14189.18, + "probability": 0.0251 + }, + { + "start": 14192.14, + "end": 14197.83, + "probability": 0.083 + }, + { + "start": 14199.56, + "end": 14199.66, + "probability": 0.435 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.0, + "end": 14214.0, + "probability": 0.0 + }, + { + "start": 14214.87, + "end": 14214.94, + "probability": 0.1097 + }, + { + "start": 14215.5, + "end": 14216.54, + "probability": 0.87 + }, + { + "start": 14217.3, + "end": 14218.56, + "probability": 0.7194 + }, + { + "start": 14218.72, + "end": 14221.06, + "probability": 0.9897 + }, + { + "start": 14221.22, + "end": 14221.62, + "probability": 0.0697 + }, + { + "start": 14221.66, + "end": 14221.66, + "probability": 0.5487 + }, + { + "start": 14221.66, + "end": 14226.7, + "probability": 0.8831 + }, + { + "start": 14226.7, + "end": 14230.68, + "probability": 0.7001 + }, + { + "start": 14231.26, + "end": 14233.9, + "probability": 0.8422 + }, + { + "start": 14234.24, + "end": 14236.86, + "probability": 0.8722 + }, + { + "start": 14236.86, + "end": 14240.58, + "probability": 0.8954 + }, + { + "start": 14240.6, + "end": 14243.46, + "probability": 0.9358 + }, + { + "start": 14243.96, + "end": 14245.72, + "probability": 0.6654 + }, + { + "start": 14246.06, + "end": 14249.42, + "probability": 0.889 + }, + { + "start": 14250.26, + "end": 14250.44, + "probability": 0.4836 + }, + { + "start": 14250.44, + "end": 14251.62, + "probability": 0.2852 + }, + { + "start": 14251.62, + "end": 14253.26, + "probability": 0.8522 + }, + { + "start": 14253.64, + "end": 14255.28, + "probability": 0.9409 + }, + { + "start": 14255.34, + "end": 14258.9, + "probability": 0.9372 + }, + { + "start": 14259.54, + "end": 14260.84, + "probability": 0.8022 + }, + { + "start": 14261.46, + "end": 14268.68, + "probability": 0.9994 + }, + { + "start": 14269.86, + "end": 14272.74, + "probability": 0.5506 + }, + { + "start": 14273.34, + "end": 14275.46, + "probability": 0.7817 + }, + { + "start": 14275.8, + "end": 14276.9, + "probability": 0.6209 + }, + { + "start": 14277.16, + "end": 14278.64, + "probability": 0.7808 + }, + { + "start": 14278.68, + "end": 14281.94, + "probability": 0.6299 + }, + { + "start": 14282.04, + "end": 14285.42, + "probability": 0.7651 + }, + { + "start": 14285.48, + "end": 14286.44, + "probability": 0.3474 + }, + { + "start": 14286.44, + "end": 14288.98, + "probability": 0.7635 + }, + { + "start": 14290.2, + "end": 14291.99, + "probability": 0.8889 + }, + { + "start": 14292.4, + "end": 14294.9, + "probability": 0.4613 + }, + { + "start": 14294.9, + "end": 14297.1, + "probability": 0.8061 + }, + { + "start": 14300.55, + "end": 14302.62, + "probability": 0.0909 + }, + { + "start": 14302.62, + "end": 14305.2, + "probability": 0.4917 + }, + { + "start": 14305.2, + "end": 14306.44, + "probability": 0.6901 + }, + { + "start": 14333.78, + "end": 14335.78, + "probability": 0.5885 + }, + { + "start": 14335.9, + "end": 14337.56, + "probability": 0.9377 + }, + { + "start": 14338.47, + "end": 14343.5, + "probability": 0.9917 + }, + { + "start": 14347.54, + "end": 14353.86, + "probability": 0.7766 + }, + { + "start": 14354.66, + "end": 14356.44, + "probability": 0.8514 + }, + { + "start": 14356.56, + "end": 14358.5, + "probability": 0.9797 + }, + { + "start": 14358.66, + "end": 14362.46, + "probability": 0.8554 + }, + { + "start": 14363.14, + "end": 14367.78, + "probability": 0.9887 + }, + { + "start": 14368.3, + "end": 14371.22, + "probability": 0.8993 + }, + { + "start": 14371.8, + "end": 14376.04, + "probability": 0.9907 + }, + { + "start": 14376.04, + "end": 14381.3, + "probability": 0.9965 + }, + { + "start": 14381.46, + "end": 14384.4, + "probability": 0.7904 + }, + { + "start": 14384.56, + "end": 14387.4, + "probability": 0.9785 + }, + { + "start": 14387.8, + "end": 14390.28, + "probability": 0.9981 + }, + { + "start": 14390.28, + "end": 14394.7, + "probability": 0.9915 + }, + { + "start": 14396.1, + "end": 14399.58, + "probability": 0.837 + }, + { + "start": 14400.88, + "end": 14402.34, + "probability": 0.904 + }, + { + "start": 14402.54, + "end": 14406.64, + "probability": 0.8508 + }, + { + "start": 14406.72, + "end": 14407.42, + "probability": 0.6691 + }, + { + "start": 14407.8, + "end": 14408.48, + "probability": 0.4753 + }, + { + "start": 14408.48, + "end": 14411.2, + "probability": 0.9897 + }, + { + "start": 14411.2, + "end": 14414.24, + "probability": 0.9606 + }, + { + "start": 14414.32, + "end": 14417.74, + "probability": 0.9937 + }, + { + "start": 14417.9, + "end": 14423.86, + "probability": 0.9953 + }, + { + "start": 14424.08, + "end": 14428.84, + "probability": 0.9879 + }, + { + "start": 14429.54, + "end": 14431.5, + "probability": 0.9943 + }, + { + "start": 14432.1, + "end": 14435.7, + "probability": 0.995 + }, + { + "start": 14435.7, + "end": 14441.14, + "probability": 0.9965 + }, + { + "start": 14441.86, + "end": 14445.04, + "probability": 0.9927 + }, + { + "start": 14445.28, + "end": 14445.74, + "probability": 0.7312 + }, + { + "start": 14447.08, + "end": 14451.52, + "probability": 0.8994 + }, + { + "start": 14451.98, + "end": 14455.02, + "probability": 0.9237 + }, + { + "start": 14455.6, + "end": 14461.28, + "probability": 0.9877 + }, + { + "start": 14461.36, + "end": 14463.38, + "probability": 0.9977 + }, + { + "start": 14463.96, + "end": 14470.12, + "probability": 0.9888 + }, + { + "start": 14470.88, + "end": 14473.02, + "probability": 0.9532 + }, + { + "start": 14473.82, + "end": 14475.86, + "probability": 0.9411 + }, + { + "start": 14476.74, + "end": 14481.08, + "probability": 0.9701 + }, + { + "start": 14481.18, + "end": 14485.18, + "probability": 0.9956 + }, + { + "start": 14485.72, + "end": 14489.58, + "probability": 0.9842 + }, + { + "start": 14490.16, + "end": 14494.28, + "probability": 0.9977 + }, + { + "start": 14494.28, + "end": 14499.78, + "probability": 0.9935 + }, + { + "start": 14500.32, + "end": 14506.88, + "probability": 0.9952 + }, + { + "start": 14506.96, + "end": 14509.39, + "probability": 0.9899 + }, + { + "start": 14509.8, + "end": 14512.8, + "probability": 0.9674 + }, + { + "start": 14513.22, + "end": 14517.08, + "probability": 0.9346 + }, + { + "start": 14517.26, + "end": 14521.42, + "probability": 0.8839 + }, + { + "start": 14522.1, + "end": 14524.08, + "probability": 0.6426 + }, + { + "start": 14524.2, + "end": 14527.04, + "probability": 0.9853 + }, + { + "start": 14527.24, + "end": 14529.42, + "probability": 0.9425 + }, + { + "start": 14529.64, + "end": 14533.78, + "probability": 0.993 + }, + { + "start": 14534.02, + "end": 14534.7, + "probability": 0.9284 + }, + { + "start": 14535.3, + "end": 14540.44, + "probability": 0.895 + }, + { + "start": 14540.44, + "end": 14544.94, + "probability": 0.9843 + }, + { + "start": 14545.86, + "end": 14550.48, + "probability": 0.9943 + }, + { + "start": 14551.16, + "end": 14555.04, + "probability": 0.9827 + }, + { + "start": 14555.18, + "end": 14559.94, + "probability": 0.8961 + }, + { + "start": 14560.46, + "end": 14565.58, + "probability": 0.9984 + }, + { + "start": 14566.52, + "end": 14568.76, + "probability": 0.9691 + }, + { + "start": 14568.88, + "end": 14570.38, + "probability": 0.9768 + }, + { + "start": 14570.7, + "end": 14571.92, + "probability": 0.8777 + }, + { + "start": 14572.5, + "end": 14579.46, + "probability": 0.9461 + }, + { + "start": 14580.78, + "end": 14582.6, + "probability": 0.7672 + }, + { + "start": 14582.72, + "end": 14586.2, + "probability": 0.9529 + }, + { + "start": 14586.24, + "end": 14586.66, + "probability": 0.8918 + }, + { + "start": 14587.36, + "end": 14587.72, + "probability": 0.5474 + }, + { + "start": 14587.82, + "end": 14589.64, + "probability": 0.7453 + }, + { + "start": 14590.08, + "end": 14590.96, + "probability": 0.7541 + }, + { + "start": 14591.0, + "end": 14592.16, + "probability": 0.965 + }, + { + "start": 14592.28, + "end": 14592.7, + "probability": 0.9139 + }, + { + "start": 14594.99, + "end": 14596.0, + "probability": 0.4982 + }, + { + "start": 14596.0, + "end": 14596.0, + "probability": 0.2456 + }, + { + "start": 14596.0, + "end": 14596.56, + "probability": 0.7285 + }, + { + "start": 14597.4, + "end": 14597.8, + "probability": 0.6429 + }, + { + "start": 14598.9, + "end": 14599.86, + "probability": 0.8856 + }, + { + "start": 14600.0, + "end": 14600.24, + "probability": 0.8089 + }, + { + "start": 14600.26, + "end": 14601.44, + "probability": 0.9631 + }, + { + "start": 14601.5, + "end": 14601.92, + "probability": 0.9824 + }, + { + "start": 14601.98, + "end": 14603.08, + "probability": 0.9469 + }, + { + "start": 14603.74, + "end": 14604.22, + "probability": 0.9675 + }, + { + "start": 14605.28, + "end": 14606.22, + "probability": 0.7801 + }, + { + "start": 14607.02, + "end": 14607.78, + "probability": 0.8425 + }, + { + "start": 14608.44, + "end": 14609.68, + "probability": 0.9876 + }, + { + "start": 14610.7, + "end": 14612.46, + "probability": 0.9769 + }, + { + "start": 14613.0, + "end": 14613.92, + "probability": 0.8279 + }, + { + "start": 14614.2, + "end": 14614.78, + "probability": 0.8914 + }, + { + "start": 14615.66, + "end": 14618.4, + "probability": 0.7861 + }, + { + "start": 14619.08, + "end": 14620.42, + "probability": 0.9392 + }, + { + "start": 14621.16, + "end": 14622.34, + "probability": 0.4182 + }, + { + "start": 14623.26, + "end": 14625.06, + "probability": 0.7288 + }, + { + "start": 14625.76, + "end": 14626.22, + "probability": 0.7327 + }, + { + "start": 14626.32, + "end": 14627.12, + "probability": 0.9399 + }, + { + "start": 14627.24, + "end": 14627.52, + "probability": 0.7502 + }, + { + "start": 14627.56, + "end": 14628.32, + "probability": 0.7686 + }, + { + "start": 14628.4, + "end": 14628.6, + "probability": 0.9604 + }, + { + "start": 14628.7, + "end": 14629.5, + "probability": 0.9206 + }, + { + "start": 14629.54, + "end": 14629.82, + "probability": 0.8092 + }, + { + "start": 14630.2, + "end": 14631.26, + "probability": 0.9354 + }, + { + "start": 14632.7, + "end": 14633.08, + "probability": 0.4273 + }, + { + "start": 14633.66, + "end": 14634.84, + "probability": 0.9115 + }, + { + "start": 14636.08, + "end": 14637.42, + "probability": 0.9179 + }, + { + "start": 14640.74, + "end": 14643.76, + "probability": 0.7866 + }, + { + "start": 14644.12, + "end": 14644.88, + "probability": 0.9954 + }, + { + "start": 14645.74, + "end": 14646.7, + "probability": 0.7216 + }, + { + "start": 14646.76, + "end": 14647.96, + "probability": 0.7871 + }, + { + "start": 14648.12, + "end": 14650.98, + "probability": 0.8264 + }, + { + "start": 14651.0, + "end": 14652.24, + "probability": 0.4375 + }, + { + "start": 14652.24, + "end": 14652.87, + "probability": 0.6873 + }, + { + "start": 14654.3, + "end": 14656.32, + "probability": 0.6476 + }, + { + "start": 14657.46, + "end": 14658.02, + "probability": 0.6099 + }, + { + "start": 14659.72, + "end": 14661.14, + "probability": 0.6324 + }, + { + "start": 14661.78, + "end": 14663.56, + "probability": 0.9533 + }, + { + "start": 14664.74, + "end": 14665.16, + "probability": 0.507 + }, + { + "start": 14665.16, + "end": 14666.6, + "probability": 0.7419 + }, + { + "start": 14683.32, + "end": 14684.54, + "probability": 0.5474 + }, + { + "start": 14684.6, + "end": 14685.91, + "probability": 0.7106 + }, + { + "start": 14686.58, + "end": 14692.18, + "probability": 0.9822 + }, + { + "start": 14694.96, + "end": 14697.24, + "probability": 0.629 + }, + { + "start": 14697.28, + "end": 14702.88, + "probability": 0.9949 + }, + { + "start": 14703.84, + "end": 14704.98, + "probability": 0.9495 + }, + { + "start": 14705.52, + "end": 14706.36, + "probability": 0.4659 + }, + { + "start": 14706.54, + "end": 14707.08, + "probability": 0.5898 + }, + { + "start": 14707.93, + "end": 14710.98, + "probability": 0.8867 + }, + { + "start": 14711.28, + "end": 14712.38, + "probability": 0.6929 + }, + { + "start": 14715.12, + "end": 14718.86, + "probability": 0.925 + }, + { + "start": 14719.56, + "end": 14719.96, + "probability": 0.755 + }, + { + "start": 14721.48, + "end": 14724.46, + "probability": 0.8384 + }, + { + "start": 14725.02, + "end": 14725.9, + "probability": 0.8285 + }, + { + "start": 14726.18, + "end": 14731.82, + "probability": 0.9967 + }, + { + "start": 14732.66, + "end": 14736.04, + "probability": 0.9897 + }, + { + "start": 14736.92, + "end": 14741.74, + "probability": 0.6285 + }, + { + "start": 14742.12, + "end": 14743.16, + "probability": 0.7306 + }, + { + "start": 14743.36, + "end": 14744.42, + "probability": 0.8787 + }, + { + "start": 14744.52, + "end": 14747.74, + "probability": 0.8501 + }, + { + "start": 14747.74, + "end": 14750.4, + "probability": 0.9946 + }, + { + "start": 14752.4, + "end": 14754.22, + "probability": 0.8277 + }, + { + "start": 14754.36, + "end": 14759.72, + "probability": 0.9976 + }, + { + "start": 14759.98, + "end": 14760.44, + "probability": 0.9142 + }, + { + "start": 14760.94, + "end": 14762.82, + "probability": 0.9525 + }, + { + "start": 14763.74, + "end": 14765.73, + "probability": 0.8359 + }, + { + "start": 14767.46, + "end": 14768.72, + "probability": 0.8377 + }, + { + "start": 14768.84, + "end": 14768.94, + "probability": 0.2768 + }, + { + "start": 14769.4, + "end": 14769.94, + "probability": 0.9722 + }, + { + "start": 14770.68, + "end": 14772.32, + "probability": 0.9917 + }, + { + "start": 14772.68, + "end": 14777.41, + "probability": 0.891 + }, + { + "start": 14777.42, + "end": 14779.16, + "probability": 0.4572 + }, + { + "start": 14779.68, + "end": 14783.06, + "probability": 0.8448 + }, + { + "start": 14783.94, + "end": 14785.44, + "probability": 0.9573 + }, + { + "start": 14786.1, + "end": 14789.22, + "probability": 0.915 + }, + { + "start": 14791.12, + "end": 14792.2, + "probability": 0.9957 + }, + { + "start": 14792.34, + "end": 14793.56, + "probability": 0.9827 + }, + { + "start": 14793.66, + "end": 14793.94, + "probability": 0.4992 + }, + { + "start": 14794.34, + "end": 14795.56, + "probability": 0.9603 + }, + { + "start": 14796.56, + "end": 14799.52, + "probability": 0.9883 + }, + { + "start": 14800.48, + "end": 14802.24, + "probability": 0.9585 + }, + { + "start": 14802.62, + "end": 14804.6, + "probability": 0.9958 + }, + { + "start": 14805.06, + "end": 14807.38, + "probability": 0.9963 + }, + { + "start": 14807.96, + "end": 14808.56, + "probability": 0.5716 + }, + { + "start": 14808.7, + "end": 14809.79, + "probability": 0.8191 + }, + { + "start": 14810.48, + "end": 14811.8, + "probability": 0.9954 + }, + { + "start": 14812.58, + "end": 14813.86, + "probability": 0.9907 + }, + { + "start": 14813.96, + "end": 14817.02, + "probability": 0.9893 + }, + { + "start": 14817.52, + "end": 14822.86, + "probability": 0.9296 + }, + { + "start": 14823.2, + "end": 14824.5, + "probability": 0.8527 + }, + { + "start": 14825.66, + "end": 14826.5, + "probability": 0.9315 + }, + { + "start": 14827.1, + "end": 14828.48, + "probability": 0.9478 + }, + { + "start": 14829.9, + "end": 14833.9, + "probability": 0.9879 + }, + { + "start": 14834.82, + "end": 14839.04, + "probability": 0.8864 + }, + { + "start": 14841.61, + "end": 14843.68, + "probability": 0.818 + }, + { + "start": 14844.08, + "end": 14845.4, + "probability": 0.7743 + }, + { + "start": 14845.96, + "end": 14846.88, + "probability": 0.5477 + }, + { + "start": 14847.0, + "end": 14847.36, + "probability": 0.5962 + }, + { + "start": 14848.66, + "end": 14849.78, + "probability": 0.957 + }, + { + "start": 14851.12, + "end": 14853.64, + "probability": 0.9291 + }, + { + "start": 14854.26, + "end": 14861.1, + "probability": 0.7035 + }, + { + "start": 14861.66, + "end": 14862.08, + "probability": 0.33 + }, + { + "start": 14862.88, + "end": 14865.3, + "probability": 0.9858 + }, + { + "start": 14865.46, + "end": 14866.0, + "probability": 0.854 + }, + { + "start": 14866.06, + "end": 14866.92, + "probability": 0.7277 + }, + { + "start": 14867.48, + "end": 14868.12, + "probability": 0.4934 + }, + { + "start": 14868.54, + "end": 14870.86, + "probability": 0.8506 + }, + { + "start": 14871.54, + "end": 14872.76, + "probability": 0.9185 + }, + { + "start": 14873.76, + "end": 14875.28, + "probability": 0.9941 + }, + { + "start": 14875.32, + "end": 14876.92, + "probability": 0.8784 + }, + { + "start": 14877.28, + "end": 14878.82, + "probability": 0.9001 + }, + { + "start": 14879.18, + "end": 14880.84, + "probability": 0.7885 + }, + { + "start": 14881.36, + "end": 14886.04, + "probability": 0.9197 + }, + { + "start": 14886.58, + "end": 14888.7, + "probability": 0.7959 + }, + { + "start": 14889.36, + "end": 14891.74, + "probability": 0.9889 + }, + { + "start": 14892.9, + "end": 14894.12, + "probability": 0.7382 + }, + { + "start": 14896.46, + "end": 14897.72, + "probability": 0.7195 + }, + { + "start": 14898.42, + "end": 14899.04, + "probability": 0.3787 + }, + { + "start": 14899.18, + "end": 14900.14, + "probability": 0.9473 + }, + { + "start": 14900.22, + "end": 14900.62, + "probability": 0.8736 + }, + { + "start": 14900.7, + "end": 14901.72, + "probability": 0.9323 + }, + { + "start": 14901.78, + "end": 14902.32, + "probability": 0.7202 + }, + { + "start": 14902.74, + "end": 14903.52, + "probability": 0.8588 + }, + { + "start": 14904.7, + "end": 14907.4, + "probability": 0.7244 + }, + { + "start": 14908.12, + "end": 14909.2, + "probability": 0.1527 + }, + { + "start": 14909.84, + "end": 14910.44, + "probability": 0.6001 + }, + { + "start": 14912.98, + "end": 14913.74, + "probability": 0.9061 + }, + { + "start": 14915.32, + "end": 14916.2, + "probability": 0.8844 + }, + { + "start": 14917.83, + "end": 14919.28, + "probability": 0.7843 + }, + { + "start": 14919.5, + "end": 14919.7, + "probability": 0.5936 + }, + { + "start": 14924.78, + "end": 14926.32, + "probability": 0.7177 + }, + { + "start": 14926.7, + "end": 14928.08, + "probability": 0.7497 + }, + { + "start": 14928.08, + "end": 14929.42, + "probability": 0.9418 + }, + { + "start": 14929.48, + "end": 14929.88, + "probability": 0.5737 + }, + { + "start": 14930.02, + "end": 14930.38, + "probability": 0.9582 + }, + { + "start": 14930.62, + "end": 14932.2, + "probability": 0.0455 + }, + { + "start": 14938.06, + "end": 14940.82, + "probability": 0.3365 + }, + { + "start": 14940.82, + "end": 14940.82, + "probability": 0.3438 + }, + { + "start": 14940.82, + "end": 14942.82, + "probability": 0.8148 + }, + { + "start": 14942.82, + "end": 14944.02, + "probability": 0.5864 + }, + { + "start": 14945.3, + "end": 14951.34, + "probability": 0.927 + }, + { + "start": 14952.02, + "end": 14952.48, + "probability": 0.9228 + }, + { + "start": 14952.56, + "end": 14953.26, + "probability": 0.9529 + }, + { + "start": 14953.34, + "end": 14957.96, + "probability": 0.8968 + }, + { + "start": 14959.94, + "end": 14966.16, + "probability": 0.9864 + }, + { + "start": 14966.76, + "end": 14967.7, + "probability": 0.7241 + }, + { + "start": 14968.6, + "end": 14972.26, + "probability": 0.6339 + }, + { + "start": 14973.02, + "end": 14975.52, + "probability": 0.9515 + }, + { + "start": 14975.52, + "end": 14980.18, + "probability": 0.9798 + }, + { + "start": 14980.84, + "end": 14984.54, + "probability": 0.9966 + }, + { + "start": 14985.46, + "end": 14988.2, + "probability": 0.9575 + }, + { + "start": 14988.98, + "end": 14990.18, + "probability": 0.7437 + }, + { + "start": 14990.66, + "end": 14991.56, + "probability": 0.3495 + }, + { + "start": 14991.92, + "end": 14993.32, + "probability": 0.8266 + }, + { + "start": 14993.8, + "end": 14995.02, + "probability": 0.9174 + }, + { + "start": 14995.7, + "end": 15000.2, + "probability": 0.9101 + }, + { + "start": 15000.72, + "end": 15001.46, + "probability": 0.6951 + }, + { + "start": 15002.36, + "end": 15006.16, + "probability": 0.7553 + }, + { + "start": 15007.5, + "end": 15010.88, + "probability": 0.9731 + }, + { + "start": 15010.88, + "end": 15015.72, + "probability": 0.9874 + }, + { + "start": 15016.08, + "end": 15016.74, + "probability": 0.8052 + }, + { + "start": 15017.44, + "end": 15022.26, + "probability": 0.8965 + }, + { + "start": 15023.06, + "end": 15025.66, + "probability": 0.9979 + }, + { + "start": 15025.86, + "end": 15029.76, + "probability": 0.9526 + }, + { + "start": 15030.38, + "end": 15034.18, + "probability": 0.7831 + }, + { + "start": 15036.22, + "end": 15041.32, + "probability": 0.994 + }, + { + "start": 15043.0, + "end": 15046.96, + "probability": 0.9453 + }, + { + "start": 15047.4, + "end": 15050.36, + "probability": 0.9261 + }, + { + "start": 15050.5, + "end": 15053.76, + "probability": 0.8525 + }, + { + "start": 15054.72, + "end": 15056.54, + "probability": 0.7957 + }, + { + "start": 15057.12, + "end": 15061.9, + "probability": 0.9958 + }, + { + "start": 15063.26, + "end": 15066.92, + "probability": 0.8343 + }, + { + "start": 15067.4, + "end": 15069.29, + "probability": 0.8655 + }, + { + "start": 15070.4, + "end": 15073.56, + "probability": 0.9737 + }, + { + "start": 15073.56, + "end": 15078.28, + "probability": 0.9473 + }, + { + "start": 15078.8, + "end": 15084.22, + "probability": 0.9971 + }, + { + "start": 15084.86, + "end": 15090.96, + "probability": 0.9913 + }, + { + "start": 15092.62, + "end": 15094.84, + "probability": 0.8093 + }, + { + "start": 15095.34, + "end": 15097.92, + "probability": 0.9581 + }, + { + "start": 15098.36, + "end": 15102.82, + "probability": 0.9465 + }, + { + "start": 15103.72, + "end": 15107.86, + "probability": 0.9289 + }, + { + "start": 15107.86, + "end": 15112.28, + "probability": 0.981 + }, + { + "start": 15112.64, + "end": 15114.18, + "probability": 0.8111 + }, + { + "start": 15114.72, + "end": 15116.96, + "probability": 0.9 + }, + { + "start": 15117.92, + "end": 15121.06, + "probability": 0.9751 + }, + { + "start": 15122.08, + "end": 15123.06, + "probability": 0.6802 + }, + { + "start": 15123.2, + "end": 15124.6, + "probability": 0.7868 + }, + { + "start": 15125.1, + "end": 15125.5, + "probability": 0.5046 + }, + { + "start": 15125.74, + "end": 15126.92, + "probability": 0.8433 + }, + { + "start": 15127.0, + "end": 15127.32, + "probability": 0.8035 + }, + { + "start": 15127.42, + "end": 15127.88, + "probability": 0.9645 + }, + { + "start": 15128.92, + "end": 15129.78, + "probability": 0.8815 + }, + { + "start": 15132.57, + "end": 15133.62, + "probability": 0.177 + }, + { + "start": 15133.62, + "end": 15133.72, + "probability": 0.6252 + }, + { + "start": 15134.98, + "end": 15135.46, + "probability": 0.7513 + }, + { + "start": 15136.32, + "end": 15137.72, + "probability": 0.5109 + }, + { + "start": 15137.72, + "end": 15139.58, + "probability": 0.8594 + }, + { + "start": 15146.6, + "end": 15149.06, + "probability": 0.4113 + }, + { + "start": 15150.05, + "end": 15152.54, + "probability": 0.022 + }, + { + "start": 15153.1, + "end": 15154.02, + "probability": 0.6324 + }, + { + "start": 15154.42, + "end": 15156.19, + "probability": 0.9226 + }, + { + "start": 15157.74, + "end": 15157.74, + "probability": 0.0008 + }, + { + "start": 15160.36, + "end": 15165.76, + "probability": 0.1488 + }, + { + "start": 15166.3, + "end": 15167.1, + "probability": 0.0382 + }, + { + "start": 15167.12, + "end": 15168.8, + "probability": 0.0461 + }, + { + "start": 15169.2, + "end": 15170.72, + "probability": 0.5246 + }, + { + "start": 15171.6, + "end": 15173.66, + "probability": 0.9876 + }, + { + "start": 15175.1, + "end": 15175.72, + "probability": 0.9854 + }, + { + "start": 15177.66, + "end": 15180.02, + "probability": 0.9462 + }, + { + "start": 15181.04, + "end": 15182.26, + "probability": 0.7952 + }, + { + "start": 15182.92, + "end": 15186.52, + "probability": 0.9979 + }, + { + "start": 15188.54, + "end": 15194.2, + "probability": 0.8563 + }, + { + "start": 15195.38, + "end": 15197.14, + "probability": 0.905 + }, + { + "start": 15198.72, + "end": 15199.8, + "probability": 0.8191 + }, + { + "start": 15200.9, + "end": 15206.2, + "probability": 0.9484 + }, + { + "start": 15207.62, + "end": 15209.14, + "probability": 0.664 + }, + { + "start": 15209.22, + "end": 15213.36, + "probability": 0.762 + }, + { + "start": 15213.66, + "end": 15216.02, + "probability": 0.9751 + }, + { + "start": 15216.16, + "end": 15218.74, + "probability": 0.75 + }, + { + "start": 15219.48, + "end": 15224.18, + "probability": 0.9818 + }, + { + "start": 15225.16, + "end": 15229.7, + "probability": 0.983 + }, + { + "start": 15229.8, + "end": 15230.8, + "probability": 0.729 + }, + { + "start": 15232.42, + "end": 15233.1, + "probability": 0.7566 + }, + { + "start": 15233.24, + "end": 15237.94, + "probability": 0.9775 + }, + { + "start": 15237.94, + "end": 15242.12, + "probability": 0.9305 + }, + { + "start": 15242.32, + "end": 15244.2, + "probability": 0.9979 + }, + { + "start": 15244.88, + "end": 15247.76, + "probability": 0.9871 + }, + { + "start": 15247.76, + "end": 15253.42, + "probability": 0.9977 + }, + { + "start": 15253.48, + "end": 15257.14, + "probability": 0.9878 + }, + { + "start": 15257.14, + "end": 15260.68, + "probability": 0.9072 + }, + { + "start": 15261.36, + "end": 15264.7, + "probability": 0.9964 + }, + { + "start": 15265.44, + "end": 15271.12, + "probability": 0.9979 + }, + { + "start": 15271.44, + "end": 15272.28, + "probability": 0.7504 + }, + { + "start": 15273.02, + "end": 15274.58, + "probability": 0.9954 + }, + { + "start": 15275.3, + "end": 15276.24, + "probability": 0.9312 + }, + { + "start": 15277.18, + "end": 15282.32, + "probability": 0.9966 + }, + { + "start": 15282.8, + "end": 15283.58, + "probability": 0.8343 + }, + { + "start": 15283.76, + "end": 15284.18, + "probability": 0.9053 + }, + { + "start": 15284.68, + "end": 15285.68, + "probability": 0.9424 + }, + { + "start": 15285.98, + "end": 15286.75, + "probability": 0.8926 + }, + { + "start": 15287.54, + "end": 15288.56, + "probability": 0.9949 + }, + { + "start": 15288.74, + "end": 15291.58, + "probability": 0.9214 + }, + { + "start": 15292.12, + "end": 15293.16, + "probability": 0.8173 + }, + { + "start": 15293.26, + "end": 15294.08, + "probability": 0.7544 + }, + { + "start": 15294.26, + "end": 15298.28, + "probability": 0.9648 + }, + { + "start": 15298.98, + "end": 15299.58, + "probability": 0.5658 + }, + { + "start": 15300.4, + "end": 15301.66, + "probability": 0.8693 + }, + { + "start": 15302.36, + "end": 15304.86, + "probability": 0.9081 + }, + { + "start": 15305.32, + "end": 15306.68, + "probability": 0.9713 + }, + { + "start": 15307.48, + "end": 15309.54, + "probability": 0.7585 + }, + { + "start": 15309.62, + "end": 15311.16, + "probability": 0.8625 + }, + { + "start": 15311.74, + "end": 15313.36, + "probability": 0.9946 + }, + { + "start": 15314.54, + "end": 15315.52, + "probability": 0.9518 + }, + { + "start": 15316.08, + "end": 15319.18, + "probability": 0.9992 + }, + { + "start": 15319.84, + "end": 15321.7, + "probability": 0.7971 + }, + { + "start": 15322.36, + "end": 15323.24, + "probability": 0.441 + }, + { + "start": 15323.56, + "end": 15324.09, + "probability": 0.8737 + }, + { + "start": 15327.21, + "end": 15327.84, + "probability": 0.0375 + }, + { + "start": 15327.84, + "end": 15328.19, + "probability": 0.4607 + }, + { + "start": 15328.7, + "end": 15328.92, + "probability": 0.446 + }, + { + "start": 15329.02, + "end": 15329.56, + "probability": 0.904 + }, + { + "start": 15329.68, + "end": 15330.04, + "probability": 0.8771 + }, + { + "start": 15330.64, + "end": 15331.34, + "probability": 0.8538 + }, + { + "start": 15333.48, + "end": 15334.9, + "probability": 0.9717 + }, + { + "start": 15334.98, + "end": 15335.52, + "probability": 0.5183 + }, + { + "start": 15335.52, + "end": 15339.78, + "probability": 0.9348 + }, + { + "start": 15339.86, + "end": 15340.48, + "probability": 0.6195 + }, + { + "start": 15341.28, + "end": 15342.12, + "probability": 0.8292 + }, + { + "start": 15342.94, + "end": 15344.57, + "probability": 0.9955 + }, + { + "start": 15345.28, + "end": 15350.86, + "probability": 0.8757 + }, + { + "start": 15352.58, + "end": 15354.74, + "probability": 0.9378 + }, + { + "start": 15356.74, + "end": 15359.34, + "probability": 0.8332 + }, + { + "start": 15360.02, + "end": 15362.74, + "probability": 0.9993 + }, + { + "start": 15363.1, + "end": 15365.12, + "probability": 0.998 + }, + { + "start": 15365.6, + "end": 15366.5, + "probability": 0.8029 + }, + { + "start": 15366.62, + "end": 15368.44, + "probability": 0.7988 + }, + { + "start": 15368.56, + "end": 15369.24, + "probability": 0.6656 + }, + { + "start": 15370.42, + "end": 15371.48, + "probability": 0.7393 + }, + { + "start": 15372.46, + "end": 15374.92, + "probability": 0.9332 + }, + { + "start": 15376.24, + "end": 15377.78, + "probability": 0.9866 + }, + { + "start": 15378.28, + "end": 15379.38, + "probability": 0.9845 + }, + { + "start": 15379.48, + "end": 15380.1, + "probability": 0.9875 + }, + { + "start": 15380.14, + "end": 15381.86, + "probability": 0.9063 + }, + { + "start": 15382.32, + "end": 15384.34, + "probability": 0.9238 + }, + { + "start": 15384.46, + "end": 15388.38, + "probability": 0.9843 + }, + { + "start": 15388.42, + "end": 15389.33, + "probability": 0.9553 + }, + { + "start": 15389.44, + "end": 15390.16, + "probability": 0.7344 + }, + { + "start": 15390.64, + "end": 15394.36, + "probability": 0.9867 + }, + { + "start": 15394.46, + "end": 15397.46, + "probability": 0.9963 + }, + { + "start": 15397.62, + "end": 15397.84, + "probability": 0.5991 + }, + { + "start": 15398.18, + "end": 15398.96, + "probability": 0.8026 + }, + { + "start": 15400.0, + "end": 15401.56, + "probability": 0.8864 + }, + { + "start": 15402.08, + "end": 15403.44, + "probability": 0.8262 + }, + { + "start": 15404.14, + "end": 15405.02, + "probability": 0.8143 + }, + { + "start": 15407.38, + "end": 15416.24, + "probability": 0.8459 + }, + { + "start": 15416.42, + "end": 15419.16, + "probability": 0.1438 + }, + { + "start": 15422.18, + "end": 15425.48, + "probability": 0.0688 + }, + { + "start": 15425.8, + "end": 15425.9, + "probability": 0.1486 + }, + { + "start": 15425.9, + "end": 15425.92, + "probability": 0.0004 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.0, + "end": 15531.0, + "probability": 0.0 + }, + { + "start": 15531.1, + "end": 15534.9, + "probability": 0.0387 + }, + { + "start": 15536.7, + "end": 15538.42, + "probability": 0.0491 + }, + { + "start": 15538.96, + "end": 15539.36, + "probability": 0.0601 + }, + { + "start": 15539.36, + "end": 15540.93, + "probability": 0.111 + }, + { + "start": 15542.42, + "end": 15543.14, + "probability": 0.3604 + }, + { + "start": 15544.32, + "end": 15545.91, + "probability": 0.4194 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15672.0, + "end": 15672.0, + "probability": 0.0 + }, + { + "start": 15673.06, + "end": 15674.68, + "probability": 0.3209 + }, + { + "start": 15674.84, + "end": 15679.2, + "probability": 0.9819 + }, + { + "start": 15679.2, + "end": 15682.66, + "probability": 0.9871 + }, + { + "start": 15682.78, + "end": 15684.64, + "probability": 0.6431 + }, + { + "start": 15684.88, + "end": 15687.06, + "probability": 0.6651 + }, + { + "start": 15687.16, + "end": 15689.34, + "probability": 0.7303 + }, + { + "start": 15689.4, + "end": 15692.12, + "probability": 0.9827 + }, + { + "start": 15693.18, + "end": 15694.94, + "probability": 0.9412 + }, + { + "start": 15695.54, + "end": 15698.92, + "probability": 0.7072 + }, + { + "start": 15700.96, + "end": 15703.7, + "probability": 0.7932 + }, + { + "start": 15703.88, + "end": 15705.0, + "probability": 0.8857 + }, + { + "start": 15705.42, + "end": 15708.09, + "probability": 0.9914 + }, + { + "start": 15708.38, + "end": 15710.55, + "probability": 0.9872 + }, + { + "start": 15712.62, + "end": 15715.82, + "probability": 0.9 + }, + { + "start": 15716.42, + "end": 15717.48, + "probability": 0.9234 + }, + { + "start": 15718.38, + "end": 15720.72, + "probability": 0.9982 + }, + { + "start": 15721.26, + "end": 15721.98, + "probability": 0.7685 + }, + { + "start": 15723.08, + "end": 15726.0, + "probability": 0.9979 + }, + { + "start": 15726.88, + "end": 15728.82, + "probability": 0.821 + }, + { + "start": 15729.72, + "end": 15731.32, + "probability": 0.5016 + }, + { + "start": 15731.4, + "end": 15731.74, + "probability": 0.8255 + }, + { + "start": 15731.84, + "end": 15733.03, + "probability": 0.503 + }, + { + "start": 15733.14, + "end": 15733.98, + "probability": 0.9756 + }, + { + "start": 15734.04, + "end": 15736.64, + "probability": 0.8508 + }, + { + "start": 15737.14, + "end": 15738.06, + "probability": 0.9082 + }, + { + "start": 15738.14, + "end": 15738.9, + "probability": 0.8711 + }, + { + "start": 15738.94, + "end": 15739.74, + "probability": 0.9033 + }, + { + "start": 15739.84, + "end": 15740.32, + "probability": 0.5324 + }, + { + "start": 15740.34, + "end": 15742.6, + "probability": 0.8561 + }, + { + "start": 15743.18, + "end": 15743.72, + "probability": 0.7727 + }, + { + "start": 15743.84, + "end": 15744.28, + "probability": 0.7876 + }, + { + "start": 15744.3, + "end": 15745.04, + "probability": 0.6147 + }, + { + "start": 15745.1, + "end": 15746.64, + "probability": 0.8895 + }, + { + "start": 15746.74, + "end": 15748.26, + "probability": 0.8093 + }, + { + "start": 15749.53, + "end": 15751.2, + "probability": 0.8174 + }, + { + "start": 15751.76, + "end": 15755.56, + "probability": 0.762 + }, + { + "start": 15756.56, + "end": 15758.7, + "probability": 0.8289 + }, + { + "start": 15760.02, + "end": 15760.28, + "probability": 0.051 + }, + { + "start": 15760.28, + "end": 15760.62, + "probability": 0.459 + }, + { + "start": 15760.76, + "end": 15761.24, + "probability": 0.8211 + }, + { + "start": 15761.26, + "end": 15762.58, + "probability": 0.7461 + }, + { + "start": 15763.16, + "end": 15767.84, + "probability": 0.9297 + }, + { + "start": 15767.9, + "end": 15768.34, + "probability": 0.9037 + }, + { + "start": 15768.42, + "end": 15769.48, + "probability": 0.9262 + }, + { + "start": 15769.5, + "end": 15770.88, + "probability": 0.7073 + }, + { + "start": 15771.78, + "end": 15772.46, + "probability": 0.0282 + }, + { + "start": 15772.88, + "end": 15775.2, + "probability": 0.7876 + }, + { + "start": 15776.06, + "end": 15780.1, + "probability": 0.3042 + }, + { + "start": 15780.1, + "end": 15780.56, + "probability": 0.5511 + }, + { + "start": 15780.64, + "end": 15781.16, + "probability": 0.7837 + }, + { + "start": 15781.22, + "end": 15781.9, + "probability": 0.8916 + }, + { + "start": 15782.88, + "end": 15783.46, + "probability": 0.6177 + }, + { + "start": 15783.5, + "end": 15784.42, + "probability": 0.8413 + }, + { + "start": 15784.46, + "end": 15788.08, + "probability": 0.9886 + }, + { + "start": 15788.84, + "end": 15789.76, + "probability": 0.1332 + }, + { + "start": 15789.76, + "end": 15791.76, + "probability": 0.9023 + }, + { + "start": 15792.86, + "end": 15795.72, + "probability": 0.4231 + }, + { + "start": 15796.38, + "end": 15797.21, + "probability": 0.9386 + }, + { + "start": 15797.9, + "end": 15798.14, + "probability": 0.929 + }, + { + "start": 15798.22, + "end": 15800.84, + "probability": 0.9505 + }, + { + "start": 15801.08, + "end": 15802.14, + "probability": 0.9802 + }, + { + "start": 15803.02, + "end": 15805.42, + "probability": 0.9959 + }, + { + "start": 15805.6, + "end": 15806.2, + "probability": 0.9581 + }, + { + "start": 15807.08, + "end": 15808.78, + "probability": 0.9633 + }, + { + "start": 15809.26, + "end": 15810.38, + "probability": 0.9834 + }, + { + "start": 15810.46, + "end": 15811.06, + "probability": 0.9305 + }, + { + "start": 15811.66, + "end": 15812.94, + "probability": 0.9854 + }, + { + "start": 15813.28, + "end": 15816.62, + "probability": 0.9919 + }, + { + "start": 15817.1, + "end": 15819.42, + "probability": 0.9947 + }, + { + "start": 15820.16, + "end": 15823.44, + "probability": 0.8733 + }, + { + "start": 15823.7, + "end": 15825.3, + "probability": 0.9062 + }, + { + "start": 15826.96, + "end": 15828.9, + "probability": 0.9641 + }, + { + "start": 15828.9, + "end": 15829.5, + "probability": 0.4184 + }, + { + "start": 15829.64, + "end": 15831.64, + "probability": 0.8566 + }, + { + "start": 15831.74, + "end": 15832.36, + "probability": 0.9418 + }, + { + "start": 15832.44, + "end": 15834.22, + "probability": 0.7727 + }, + { + "start": 15834.72, + "end": 15835.12, + "probability": 0.4738 + }, + { + "start": 15835.16, + "end": 15836.38, + "probability": 0.834 + }, + { + "start": 15837.46, + "end": 15840.5, + "probability": 0.9713 + }, + { + "start": 15840.56, + "end": 15841.72, + "probability": 0.8504 + }, + { + "start": 15841.8, + "end": 15844.38, + "probability": 0.8477 + }, + { + "start": 15844.82, + "end": 15849.28, + "probability": 0.998 + }, + { + "start": 15849.8, + "end": 15852.48, + "probability": 0.9897 + }, + { + "start": 15852.56, + "end": 15853.0, + "probability": 0.3253 + }, + { + "start": 15853.18, + "end": 15853.48, + "probability": 0.259 + }, + { + "start": 15853.5, + "end": 15853.94, + "probability": 0.7137 + }, + { + "start": 15854.02, + "end": 15855.0, + "probability": 0.9626 + }, + { + "start": 15856.12, + "end": 15858.06, + "probability": 0.9855 + }, + { + "start": 15858.38, + "end": 15859.34, + "probability": 0.4816 + }, + { + "start": 15859.4, + "end": 15859.9, + "probability": 0.7805 + }, + { + "start": 15860.44, + "end": 15862.58, + "probability": 0.9353 + }, + { + "start": 15862.66, + "end": 15863.49, + "probability": 0.9208 + }, + { + "start": 15864.2, + "end": 15865.5, + "probability": 0.8043 + }, + { + "start": 15865.9, + "end": 15868.68, + "probability": 0.9608 + }, + { + "start": 15869.76, + "end": 15872.86, + "probability": 0.9937 + }, + { + "start": 15873.26, + "end": 15875.12, + "probability": 0.9886 + }, + { + "start": 15878.12, + "end": 15878.26, + "probability": 0.0577 + }, + { + "start": 15878.26, + "end": 15878.86, + "probability": 0.3626 + }, + { + "start": 15878.98, + "end": 15879.96, + "probability": 0.8471 + }, + { + "start": 15880.04, + "end": 15881.26, + "probability": 0.9002 + }, + { + "start": 15881.34, + "end": 15882.14, + "probability": 0.8788 + }, + { + "start": 15883.0, + "end": 15883.72, + "probability": 0.7506 + }, + { + "start": 15883.82, + "end": 15884.66, + "probability": 0.8063 + }, + { + "start": 15884.86, + "end": 15887.32, + "probability": 0.7312 + }, + { + "start": 15887.56, + "end": 15890.86, + "probability": 0.9508 + }, + { + "start": 15891.28, + "end": 15892.34, + "probability": 0.9845 + }, + { + "start": 15892.5, + "end": 15894.84, + "probability": 0.9833 + }, + { + "start": 15895.72, + "end": 15897.06, + "probability": 0.9827 + }, + { + "start": 15898.5, + "end": 15903.64, + "probability": 0.9592 + }, + { + "start": 15904.44, + "end": 15905.94, + "probability": 0.9741 + }, + { + "start": 15907.66, + "end": 15909.2, + "probability": 0.6113 + }, + { + "start": 15909.9, + "end": 15910.76, + "probability": 0.832 + }, + { + "start": 15911.38, + "end": 15912.1, + "probability": 0.8807 + }, + { + "start": 15912.9, + "end": 15915.02, + "probability": 0.9776 + }, + { + "start": 15915.86, + "end": 15917.64, + "probability": 0.9568 + }, + { + "start": 15918.28, + "end": 15919.28, + "probability": 0.8868 + }, + { + "start": 15919.54, + "end": 15920.1, + "probability": 0.6319 + }, + { + "start": 15920.16, + "end": 15920.84, + "probability": 0.7704 + }, + { + "start": 15920.92, + "end": 15921.66, + "probability": 0.8396 + }, + { + "start": 15921.68, + "end": 15923.03, + "probability": 0.9785 + }, + { + "start": 15924.1, + "end": 15925.0, + "probability": 0.7503 + }, + { + "start": 15925.66, + "end": 15926.16, + "probability": 0.8002 + }, + { + "start": 15927.04, + "end": 15927.92, + "probability": 0.7042 + }, + { + "start": 15928.74, + "end": 15929.26, + "probability": 0.5105 + }, + { + "start": 15930.14, + "end": 15931.6, + "probability": 0.9135 + }, + { + "start": 15932.26, + "end": 15933.16, + "probability": 0.9492 + }, + { + "start": 15933.26, + "end": 15934.66, + "probability": 0.7962 + }, + { + "start": 15935.84, + "end": 15936.1, + "probability": 0.3205 + }, + { + "start": 15936.4, + "end": 15936.94, + "probability": 0.3834 + }, + { + "start": 15937.38, + "end": 15939.76, + "probability": 0.7437 + }, + { + "start": 15940.68, + "end": 15944.4, + "probability": 0.9261 + }, + { + "start": 15944.5, + "end": 15945.82, + "probability": 0.927 + }, + { + "start": 15946.74, + "end": 15947.46, + "probability": 0.784 + }, + { + "start": 15947.5, + "end": 15950.94, + "probability": 0.9815 + }, + { + "start": 15951.5, + "end": 15953.22, + "probability": 0.9934 + }, + { + "start": 15953.3, + "end": 15955.3, + "probability": 0.6994 + }, + { + "start": 15957.58, + "end": 15958.48, + "probability": 0.9019 + }, + { + "start": 15959.58, + "end": 15962.5, + "probability": 0.9681 + }, + { + "start": 15962.58, + "end": 15963.54, + "probability": 0.0505 + }, + { + "start": 15964.42, + "end": 15964.64, + "probability": 0.6167 + }, + { + "start": 15964.86, + "end": 15965.3, + "probability": 0.7103 + }, + { + "start": 15965.64, + "end": 15966.42, + "probability": 0.8899 + }, + { + "start": 15966.68, + "end": 15967.64, + "probability": 0.0743 + }, + { + "start": 15967.64, + "end": 15967.76, + "probability": 0.5201 + }, + { + "start": 15967.76, + "end": 15968.66, + "probability": 0.3388 + }, + { + "start": 15969.58, + "end": 15973.49, + "probability": 0.9922 + }, + { + "start": 15973.54, + "end": 15973.78, + "probability": 0.5176 + }, + { + "start": 15973.78, + "end": 15974.72, + "probability": 0.7217 + }, + { + "start": 15974.8, + "end": 15975.34, + "probability": 0.5148 + }, + { + "start": 15975.34, + "end": 15976.8, + "probability": 0.8008 + }, + { + "start": 15977.1, + "end": 15978.26, + "probability": 0.9438 + }, + { + "start": 15978.66, + "end": 15978.66, + "probability": 0.0183 + }, + { + "start": 15978.66, + "end": 15980.32, + "probability": 0.4574 + }, + { + "start": 15980.97, + "end": 15982.99, + "probability": 0.7797 + }, + { + "start": 15983.2, + "end": 15985.98, + "probability": 0.7424 + }, + { + "start": 15986.64, + "end": 15988.44, + "probability": 0.3494 + }, + { + "start": 15988.44, + "end": 15988.86, + "probability": 0.1247 + }, + { + "start": 15989.78, + "end": 15989.78, + "probability": 0.0696 + }, + { + "start": 15991.62, + "end": 15991.78, + "probability": 0.1032 + }, + { + "start": 15991.78, + "end": 15991.78, + "probability": 0.4422 + }, + { + "start": 15991.78, + "end": 15991.78, + "probability": 0.1504 + }, + { + "start": 15991.78, + "end": 15991.78, + "probability": 0.1179 + }, + { + "start": 15991.78, + "end": 15992.72, + "probability": 0.5783 + }, + { + "start": 15993.66, + "end": 15995.18, + "probability": 0.9562 + }, + { + "start": 15995.42, + "end": 15997.54, + "probability": 0.8063 + }, + { + "start": 15998.74, + "end": 16000.32, + "probability": 0.6194 + }, + { + "start": 16000.42, + "end": 16002.16, + "probability": 0.9639 + }, + { + "start": 16003.12, + "end": 16004.48, + "probability": 0.9708 + }, + { + "start": 16005.52, + "end": 16007.36, + "probability": 0.9671 + }, + { + "start": 16008.06, + "end": 16009.32, + "probability": 0.0258 + }, + { + "start": 16010.17, + "end": 16010.24, + "probability": 0.3586 + }, + { + "start": 16010.24, + "end": 16012.8, + "probability": 0.6707 + }, + { + "start": 16012.84, + "end": 16013.26, + "probability": 0.8184 + }, + { + "start": 16013.36, + "end": 16014.38, + "probability": 0.9713 + }, + { + "start": 16014.42, + "end": 16014.48, + "probability": 0.5369 + }, + { + "start": 16014.64, + "end": 16015.8, + "probability": 0.9907 + }, + { + "start": 16016.22, + "end": 16019.98, + "probability": 0.9856 + }, + { + "start": 16020.38, + "end": 16021.76, + "probability": 0.9666 + }, + { + "start": 16022.32, + "end": 16023.34, + "probability": 0.8745 + }, + { + "start": 16023.4, + "end": 16026.9, + "probability": 0.9628 + }, + { + "start": 16026.96, + "end": 16028.29, + "probability": 0.2307 + }, + { + "start": 16028.72, + "end": 16030.32, + "probability": 0.5768 + }, + { + "start": 16030.7, + "end": 16032.1, + "probability": 0.8024 + }, + { + "start": 16032.18, + "end": 16034.3, + "probability": 0.9988 + }, + { + "start": 16034.66, + "end": 16036.02, + "probability": 0.8447 + }, + { + "start": 16036.3, + "end": 16037.78, + "probability": 0.7744 + }, + { + "start": 16038.02, + "end": 16044.92, + "probability": 0.7274 + }, + { + "start": 16046.02, + "end": 16048.2, + "probability": 0.3901 + }, + { + "start": 16048.44, + "end": 16048.96, + "probability": 0.3065 + }, + { + "start": 16048.96, + "end": 16049.72, + "probability": 0.7457 + }, + { + "start": 16050.32, + "end": 16051.04, + "probability": 0.7474 + }, + { + "start": 16051.12, + "end": 16051.8, + "probability": 0.7794 + }, + { + "start": 16051.9, + "end": 16052.7, + "probability": 0.9532 + }, + { + "start": 16052.78, + "end": 16053.5, + "probability": 0.9729 + }, + { + "start": 16053.58, + "end": 16054.36, + "probability": 0.9729 + }, + { + "start": 16054.4, + "end": 16055.04, + "probability": 0.8807 + }, + { + "start": 16055.14, + "end": 16055.71, + "probability": 0.7966 + }, + { + "start": 16056.28, + "end": 16057.02, + "probability": 0.9448 + }, + { + "start": 16057.12, + "end": 16057.84, + "probability": 0.7407 + }, + { + "start": 16057.92, + "end": 16058.66, + "probability": 0.8046 + }, + { + "start": 16058.8, + "end": 16059.16, + "probability": 0.7681 + }, + { + "start": 16059.22, + "end": 16060.14, + "probability": 0.5867 + }, + { + "start": 16060.2, + "end": 16061.0, + "probability": 0.7832 + }, + { + "start": 16061.52, + "end": 16062.04, + "probability": 0.3838 + }, + { + "start": 16062.04, + "end": 16063.04, + "probability": 0.5806 + }, + { + "start": 16063.14, + "end": 16063.84, + "probability": 0.7815 + }, + { + "start": 16063.88, + "end": 16064.56, + "probability": 0.5838 + }, + { + "start": 16064.6, + "end": 16065.22, + "probability": 0.95 + }, + { + "start": 16065.72, + "end": 16066.24, + "probability": 0.4687 + }, + { + "start": 16066.34, + "end": 16067.24, + "probability": 0.8042 + }, + { + "start": 16067.74, + "end": 16070.1, + "probability": 0.7923 + }, + { + "start": 16070.22, + "end": 16071.5, + "probability": 0.7751 + }, + { + "start": 16073.36, + "end": 16075.24, + "probability": 0.9761 + }, + { + "start": 16075.78, + "end": 16076.34, + "probability": 0.8074 + }, + { + "start": 16076.7, + "end": 16078.04, + "probability": 0.9917 + }, + { + "start": 16078.58, + "end": 16079.94, + "probability": 0.2861 + }, + { + "start": 16080.66, + "end": 16080.82, + "probability": 0.0179 + }, + { + "start": 16080.82, + "end": 16080.82, + "probability": 0.4968 + }, + { + "start": 16080.82, + "end": 16081.59, + "probability": 0.5011 + }, + { + "start": 16083.36, + "end": 16083.74, + "probability": 0.2632 + }, + { + "start": 16085.26, + "end": 16087.24, + "probability": 0.9435 + }, + { + "start": 16087.28, + "end": 16088.76, + "probability": 0.8137 + }, + { + "start": 16089.24, + "end": 16091.58, + "probability": 0.4164 + }, + { + "start": 16094.96, + "end": 16097.66, + "probability": 0.4913 + }, + { + "start": 16098.71, + "end": 16100.36, + "probability": 0.8156 + }, + { + "start": 16100.44, + "end": 16101.84, + "probability": 0.9949 + }, + { + "start": 16104.22, + "end": 16110.4, + "probability": 0.9323 + }, + { + "start": 16110.88, + "end": 16113.02, + "probability": 0.9964 + }, + { + "start": 16127.26, + "end": 16128.92, + "probability": 0.8176 + }, + { + "start": 16129.02, + "end": 16129.8, + "probability": 0.7638 + }, + { + "start": 16129.86, + "end": 16130.5, + "probability": 0.8398 + }, + { + "start": 16130.6, + "end": 16131.44, + "probability": 0.3376 + }, + { + "start": 16131.5, + "end": 16132.26, + "probability": 0.48 + }, + { + "start": 16132.34, + "end": 16132.88, + "probability": 0.8118 + }, + { + "start": 16133.0, + "end": 16133.64, + "probability": 0.8122 + }, + { + "start": 16133.7, + "end": 16134.18, + "probability": 0.7618 + }, + { + "start": 16135.72, + "end": 16138.02, + "probability": 0.5303 + }, + { + "start": 16138.36, + "end": 16138.66, + "probability": 0.8293 + }, + { + "start": 16139.62, + "end": 16141.78, + "probability": 0.7617 + }, + { + "start": 16165.6, + "end": 16166.62, + "probability": 0.4735 + }, + { + "start": 16167.94, + "end": 16168.62, + "probability": 0.4487 + }, + { + "start": 16169.14, + "end": 16169.66, + "probability": 0.5175 + }, + { + "start": 16169.76, + "end": 16171.16, + "probability": 0.4882 + }, + { + "start": 16172.6, + "end": 16174.7, + "probability": 0.8512 + }, + { + "start": 16174.86, + "end": 16175.96, + "probability": 0.5256 + }, + { + "start": 16176.76, + "end": 16178.53, + "probability": 0.8943 + }, + { + "start": 16179.7, + "end": 16180.96, + "probability": 0.0364 + }, + { + "start": 16191.36, + "end": 16192.2, + "probability": 0.084 + }, + { + "start": 16192.24, + "end": 16194.56, + "probability": 0.2857 + }, + { + "start": 16203.6, + "end": 16206.22, + "probability": 0.1755 + }, + { + "start": 16206.22, + "end": 16208.06, + "probability": 0.0415 + }, + { + "start": 16209.42, + "end": 16213.64, + "probability": 0.0592 + }, + { + "start": 16215.1, + "end": 16215.52, + "probability": 0.18 + }, + { + "start": 16216.78, + "end": 16216.9, + "probability": 0.0071 + }, + { + "start": 16216.9, + "end": 16217.86, + "probability": 0.2071 + }, + { + "start": 16221.82, + "end": 16223.11, + "probability": 0.1072 + }, + { + "start": 16223.24, + "end": 16224.0, + "probability": 0.1282 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.0, + "end": 16234.0, + "probability": 0.0 + }, + { + "start": 16234.46, + "end": 16234.56, + "probability": 0.0441 + }, + { + "start": 16235.12, + "end": 16238.24, + "probability": 0.6674 + }, + { + "start": 16238.64, + "end": 16240.52, + "probability": 0.8859 + }, + { + "start": 16241.34, + "end": 16244.9, + "probability": 0.9417 + }, + { + "start": 16246.31, + "end": 16249.18, + "probability": 0.9507 + }, + { + "start": 16249.86, + "end": 16253.3, + "probability": 0.8789 + }, + { + "start": 16254.32, + "end": 16256.28, + "probability": 0.9951 + }, + { + "start": 16259.66, + "end": 16261.74, + "probability": 0.7207 + }, + { + "start": 16263.12, + "end": 16266.76, + "probability": 0.9976 + }, + { + "start": 16267.42, + "end": 16268.82, + "probability": 0.6818 + }, + { + "start": 16269.88, + "end": 16272.44, + "probability": 0.918 + }, + { + "start": 16272.96, + "end": 16276.26, + "probability": 0.9664 + }, + { + "start": 16276.82, + "end": 16283.04, + "probability": 0.9774 + }, + { + "start": 16283.74, + "end": 16285.28, + "probability": 0.8885 + }, + { + "start": 16286.44, + "end": 16287.74, + "probability": 0.9863 + }, + { + "start": 16288.84, + "end": 16292.24, + "probability": 0.8054 + }, + { + "start": 16292.32, + "end": 16292.82, + "probability": 0.6003 + }, + { + "start": 16293.76, + "end": 16295.62, + "probability": 0.9836 + }, + { + "start": 16295.68, + "end": 16299.5, + "probability": 0.7501 + }, + { + "start": 16299.5, + "end": 16302.44, + "probability": 0.8612 + }, + { + "start": 16303.52, + "end": 16305.48, + "probability": 0.3509 + }, + { + "start": 16305.5, + "end": 16305.98, + "probability": 0.8914 + }, + { + "start": 16306.06, + "end": 16306.5, + "probability": 0.8027 + }, + { + "start": 16306.68, + "end": 16308.16, + "probability": 0.9556 + }, + { + "start": 16309.56, + "end": 16313.4, + "probability": 0.9471 + }, + { + "start": 16313.44, + "end": 16314.62, + "probability": 0.9923 + }, + { + "start": 16314.76, + "end": 16315.62, + "probability": 0.933 + }, + { + "start": 16316.02, + "end": 16317.22, + "probability": 0.6554 + }, + { + "start": 16317.6, + "end": 16319.26, + "probability": 0.8733 + }, + { + "start": 16320.34, + "end": 16322.28, + "probability": 0.938 + }, + { + "start": 16323.04, + "end": 16323.48, + "probability": 0.6845 + }, + { + "start": 16323.68, + "end": 16324.08, + "probability": 0.9029 + }, + { + "start": 16324.74, + "end": 16326.26, + "probability": 0.988 + }, + { + "start": 16326.38, + "end": 16328.68, + "probability": 0.9788 + }, + { + "start": 16330.1, + "end": 16332.58, + "probability": 0.8672 + }, + { + "start": 16333.14, + "end": 16335.82, + "probability": 0.6643 + }, + { + "start": 16336.84, + "end": 16338.31, + "probability": 0.9688 + }, + { + "start": 16338.44, + "end": 16338.62, + "probability": 0.6586 + }, + { + "start": 16338.7, + "end": 16339.39, + "probability": 0.8408 + }, + { + "start": 16340.04, + "end": 16340.88, + "probability": 0.8089 + }, + { + "start": 16341.54, + "end": 16343.8, + "probability": 0.9365 + }, + { + "start": 16345.24, + "end": 16351.22, + "probability": 0.8911 + }, + { + "start": 16351.32, + "end": 16354.56, + "probability": 0.6658 + }, + { + "start": 16354.74, + "end": 16355.8, + "probability": 0.7572 + }, + { + "start": 16355.86, + "end": 16357.58, + "probability": 0.815 + }, + { + "start": 16357.76, + "end": 16359.68, + "probability": 0.7052 + }, + { + "start": 16360.82, + "end": 16361.94, + "probability": 0.7627 + }, + { + "start": 16362.02, + "end": 16367.46, + "probability": 0.8267 + }, + { + "start": 16367.52, + "end": 16370.96, + "probability": 0.8161 + }, + { + "start": 16371.02, + "end": 16373.02, + "probability": 0.7324 + }, + { + "start": 16375.18, + "end": 16378.78, + "probability": 0.7871 + }, + { + "start": 16378.84, + "end": 16379.77, + "probability": 0.8314 + }, + { + "start": 16381.02, + "end": 16381.36, + "probability": 0.7509 + }, + { + "start": 16381.5, + "end": 16387.84, + "probability": 0.9523 + }, + { + "start": 16389.2, + "end": 16391.82, + "probability": 0.9923 + }, + { + "start": 16394.2, + "end": 16397.6, + "probability": 0.8299 + }, + { + "start": 16398.46, + "end": 16405.68, + "probability": 0.9489 + }, + { + "start": 16406.14, + "end": 16410.18, + "probability": 0.798 + }, + { + "start": 16411.38, + "end": 16414.24, + "probability": 0.9946 + }, + { + "start": 16415.5, + "end": 16419.42, + "probability": 0.9597 + }, + { + "start": 16419.84, + "end": 16422.31, + "probability": 0.819 + }, + { + "start": 16423.16, + "end": 16425.18, + "probability": 0.7963 + }, + { + "start": 16426.22, + "end": 16426.86, + "probability": 0.7557 + }, + { + "start": 16427.02, + "end": 16427.26, + "probability": 0.4263 + }, + { + "start": 16428.08, + "end": 16428.92, + "probability": 0.9618 + }, + { + "start": 16429.18, + "end": 16429.28, + "probability": 0.3868 + }, + { + "start": 16429.96, + "end": 16432.62, + "probability": 0.9962 + }, + { + "start": 16432.72, + "end": 16433.16, + "probability": 0.5587 + }, + { + "start": 16433.86, + "end": 16434.95, + "probability": 0.9226 + }, + { + "start": 16436.26, + "end": 16439.76, + "probability": 0.8756 + }, + { + "start": 16440.96, + "end": 16445.7, + "probability": 0.9912 + }, + { + "start": 16446.7, + "end": 16454.98, + "probability": 0.9716 + }, + { + "start": 16454.98, + "end": 16455.6, + "probability": 0.7539 + }, + { + "start": 16455.94, + "end": 16456.0, + "probability": 0.0183 + }, + { + "start": 16456.0, + "end": 16456.78, + "probability": 0.4523 + }, + { + "start": 16456.94, + "end": 16457.57, + "probability": 0.864 + }, + { + "start": 16459.12, + "end": 16461.64, + "probability": 0.9645 + }, + { + "start": 16462.04, + "end": 16463.82, + "probability": 0.7923 + }, + { + "start": 16464.02, + "end": 16466.18, + "probability": 0.78 + }, + { + "start": 16466.48, + "end": 16468.88, + "probability": 0.8519 + }, + { + "start": 16470.02, + "end": 16475.6, + "probability": 0.9712 + }, + { + "start": 16478.06, + "end": 16478.86, + "probability": 0.3814 + }, + { + "start": 16479.62, + "end": 16481.44, + "probability": 0.9801 + }, + { + "start": 16482.04, + "end": 16484.4, + "probability": 0.7451 + }, + { + "start": 16484.78, + "end": 16489.22, + "probability": 0.8315 + }, + { + "start": 16489.64, + "end": 16491.46, + "probability": 0.6909 + }, + { + "start": 16491.96, + "end": 16492.2, + "probability": 0.8126 + }, + { + "start": 16494.28, + "end": 16495.22, + "probability": 0.6551 + }, + { + "start": 16495.32, + "end": 16496.36, + "probability": 0.6948 + }, + { + "start": 16496.46, + "end": 16497.86, + "probability": 0.8447 + }, + { + "start": 16498.44, + "end": 16499.02, + "probability": 0.2448 + }, + { + "start": 16499.64, + "end": 16501.18, + "probability": 0.7903 + }, + { + "start": 16501.28, + "end": 16502.58, + "probability": 0.9481 + }, + { + "start": 16518.3, + "end": 16523.3, + "probability": 0.9692 + }, + { + "start": 16523.92, + "end": 16527.9, + "probability": 0.6709 + }, + { + "start": 16529.24, + "end": 16534.36, + "probability": 0.9897 + }, + { + "start": 16535.18, + "end": 16536.64, + "probability": 0.8493 + }, + { + "start": 16537.86, + "end": 16539.64, + "probability": 0.6721 + }, + { + "start": 16540.6, + "end": 16542.9, + "probability": 0.7891 + }, + { + "start": 16543.5, + "end": 16545.06, + "probability": 0.9141 + }, + { + "start": 16546.9, + "end": 16549.44, + "probability": 0.986 + }, + { + "start": 16550.32, + "end": 16553.1, + "probability": 0.89 + }, + { + "start": 16554.02, + "end": 16554.02, + "probability": 0.0489 + }, + { + "start": 16554.02, + "end": 16555.66, + "probability": 0.1055 + }, + { + "start": 16555.66, + "end": 16559.62, + "probability": 0.7238 + }, + { + "start": 16560.12, + "end": 16564.0, + "probability": 0.2258 + }, + { + "start": 16564.0, + "end": 16564.76, + "probability": 0.3063 + }, + { + "start": 16564.88, + "end": 16565.0, + "probability": 0.3787 + }, + { + "start": 16565.0, + "end": 16567.3, + "probability": 0.7075 + }, + { + "start": 16567.64, + "end": 16569.36, + "probability": 0.7041 + }, + { + "start": 16571.75, + "end": 16574.36, + "probability": 0.011 + }, + { + "start": 16574.36, + "end": 16574.36, + "probability": 0.294 + }, + { + "start": 16574.36, + "end": 16575.06, + "probability": 0.006 + }, + { + "start": 16575.24, + "end": 16579.92, + "probability": 0.8896 + }, + { + "start": 16580.94, + "end": 16582.64, + "probability": 0.1415 + }, + { + "start": 16582.64, + "end": 16585.38, + "probability": 0.9051 + }, + { + "start": 16586.08, + "end": 16587.6, + "probability": 0.6285 + }, + { + "start": 16587.96, + "end": 16590.52, + "probability": 0.2321 + }, + { + "start": 16592.0, + "end": 16594.06, + "probability": 0.1212 + }, + { + "start": 16594.08, + "end": 16595.3, + "probability": 0.0269 + }, + { + "start": 16597.76, + "end": 16603.64, + "probability": 0.0571 + }, + { + "start": 16603.92, + "end": 16604.88, + "probability": 0.1845 + }, + { + "start": 16604.88, + "end": 16605.28, + "probability": 0.1292 + }, + { + "start": 16605.33, + "end": 16605.88, + "probability": 0.0328 + }, + { + "start": 16605.88, + "end": 16607.64, + "probability": 0.3022 + }, + { + "start": 16607.74, + "end": 16607.74, + "probability": 0.0413 + }, + { + "start": 16607.74, + "end": 16608.12, + "probability": 0.054 + }, + { + "start": 16608.72, + "end": 16609.04, + "probability": 0.0761 + }, + { + "start": 16609.84, + "end": 16611.7, + "probability": 0.2524 + }, + { + "start": 16612.76, + "end": 16615.56, + "probability": 0.4602 + }, + { + "start": 16615.86, + "end": 16617.96, + "probability": 0.2204 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16657.0, + "end": 16657.0, + "probability": 0.0 + }, + { + "start": 16658.21, + "end": 16662.76, + "probability": 0.8408 + }, + { + "start": 16662.84, + "end": 16664.58, + "probability": 0.7327 + }, + { + "start": 16664.82, + "end": 16666.6, + "probability": 0.9835 + }, + { + "start": 16666.74, + "end": 16667.22, + "probability": 0.7314 + }, + { + "start": 16667.44, + "end": 16667.52, + "probability": 0.3907 + }, + { + "start": 16667.52, + "end": 16669.08, + "probability": 0.3144 + }, + { + "start": 16669.1, + "end": 16669.38, + "probability": 0.3341 + }, + { + "start": 16670.44, + "end": 16673.44, + "probability": 0.8676 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.16, + "end": 16781.08, + "probability": 0.42 + }, + { + "start": 16781.78, + "end": 16783.94, + "probability": 0.1144 + }, + { + "start": 16783.94, + "end": 16784.71, + "probability": 0.016 + }, + { + "start": 16788.92, + "end": 16789.7, + "probability": 0.0885 + }, + { + "start": 16789.9, + "end": 16790.22, + "probability": 0.3623 + }, + { + "start": 16790.22, + "end": 16792.78, + "probability": 0.6774 + }, + { + "start": 16793.84, + "end": 16794.7, + "probability": 0.858 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.0, + "end": 16900.0, + "probability": 0.0 + }, + { + "start": 16900.16, + "end": 16900.34, + "probability": 0.188 + }, + { + "start": 16900.34, + "end": 16900.34, + "probability": 0.2685 + }, + { + "start": 16900.34, + "end": 16900.34, + "probability": 0.104 + }, + { + "start": 16900.34, + "end": 16900.84, + "probability": 0.1161 + }, + { + "start": 16900.84, + "end": 16903.26, + "probability": 0.506 + }, + { + "start": 16903.45, + "end": 16906.94, + "probability": 0.6653 + }, + { + "start": 16907.12, + "end": 16908.28, + "probability": 0.9043 + }, + { + "start": 16908.32, + "end": 16910.9, + "probability": 0.5904 + }, + { + "start": 16911.12, + "end": 16913.08, + "probability": 0.3304 + }, + { + "start": 16913.08, + "end": 16913.08, + "probability": 0.0365 + }, + { + "start": 16913.08, + "end": 16913.08, + "probability": 0.2273 + }, + { + "start": 16913.08, + "end": 16914.06, + "probability": 0.21 + }, + { + "start": 16914.26, + "end": 16918.7, + "probability": 0.082 + }, + { + "start": 16919.46, + "end": 16920.84, + "probability": 0.4066 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.0, + "end": 17022.0, + "probability": 0.0 + }, + { + "start": 17022.1, + "end": 17022.64, + "probability": 0.0537 + }, + { + "start": 17025.68, + "end": 17027.9, + "probability": 0.1417 + }, + { + "start": 17029.24, + "end": 17030.5, + "probability": 0.0707 + }, + { + "start": 17030.5, + "end": 17030.62, + "probability": 0.0852 + }, + { + "start": 17030.62, + "end": 17031.22, + "probability": 0.1563 + }, + { + "start": 17033.41, + "end": 17035.3, + "probability": 0.0184 + }, + { + "start": 17035.74, + "end": 17036.8, + "probability": 0.3476 + }, + { + "start": 17037.28, + "end": 17037.98, + "probability": 0.9106 + }, + { + "start": 17038.14, + "end": 17041.32, + "probability": 0.1725 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.0, + "end": 17147.0, + "probability": 0.0 + }, + { + "start": 17147.26, + "end": 17150.9, + "probability": 0.7468 + }, + { + "start": 17151.38, + "end": 17153.1, + "probability": 0.3821 + }, + { + "start": 17153.14, + "end": 17155.2, + "probability": 0.8005 + }, + { + "start": 17156.02, + "end": 17157.38, + "probability": 0.1415 + }, + { + "start": 17157.72, + "end": 17162.86, + "probability": 0.1973 + }, + { + "start": 17162.86, + "end": 17163.78, + "probability": 0.0259 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17269.0, + "end": 17269.0, + "probability": 0.0 + }, + { + "start": 17270.77, + "end": 17275.92, + "probability": 0.0698 + }, + { + "start": 17275.92, + "end": 17276.62, + "probability": 0.101 + }, + { + "start": 17276.7, + "end": 17277.64, + "probability": 0.5539 + }, + { + "start": 17277.94, + "end": 17279.32, + "probability": 0.4608 + }, + { + "start": 17280.87, + "end": 17283.94, + "probability": 0.9553 + }, + { + "start": 17284.52, + "end": 17286.62, + "probability": 0.464 + }, + { + "start": 17292.96, + "end": 17295.96, + "probability": 0.8271 + }, + { + "start": 17299.26, + "end": 17300.48, + "probability": 0.1048 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.0, + "end": 17400.0, + "probability": 0.0 + }, + { + "start": 17400.16, + "end": 17406.76, + "probability": 0.0448 + }, + { + "start": 17408.56, + "end": 17409.24, + "probability": 0.3179 + }, + { + "start": 17409.62, + "end": 17411.38, + "probability": 0.4526 + }, + { + "start": 17411.72, + "end": 17411.72, + "probability": 0.4697 + }, + { + "start": 17411.72, + "end": 17412.72, + "probability": 0.4798 + }, + { + "start": 17413.9, + "end": 17415.96, + "probability": 0.548 + }, + { + "start": 17415.96, + "end": 17416.78, + "probability": 0.6736 + }, + { + "start": 17417.14, + "end": 17421.44, + "probability": 0.8614 + }, + { + "start": 17423.68, + "end": 17427.8, + "probability": 0.9683 + }, + { + "start": 17428.82, + "end": 17430.28, + "probability": 0.8172 + }, + { + "start": 17431.72, + "end": 17439.38, + "probability": 0.9902 + }, + { + "start": 17439.38, + "end": 17443.56, + "probability": 0.9888 + }, + { + "start": 17444.0, + "end": 17445.91, + "probability": 0.3653 + }, + { + "start": 17447.56, + "end": 17452.96, + "probability": 0.9522 + }, + { + "start": 17453.88, + "end": 17453.88, + "probability": 0.167 + }, + { + "start": 17454.52, + "end": 17456.46, + "probability": 0.8161 + }, + { + "start": 17457.32, + "end": 17458.5, + "probability": 0.9075 + }, + { + "start": 17459.12, + "end": 17461.68, + "probability": 0.957 + }, + { + "start": 17462.46, + "end": 17463.56, + "probability": 0.9988 + }, + { + "start": 17464.24, + "end": 17465.68, + "probability": 0.8946 + }, + { + "start": 17466.7, + "end": 17467.34, + "probability": 0.9434 + }, + { + "start": 17467.54, + "end": 17468.8, + "probability": 0.6885 + }, + { + "start": 17469.58, + "end": 17471.48, + "probability": 0.9819 + }, + { + "start": 17472.16, + "end": 17474.8, + "probability": 0.9722 + }, + { + "start": 17475.54, + "end": 17479.86, + "probability": 0.9636 + }, + { + "start": 17480.76, + "end": 17484.02, + "probability": 0.9629 + }, + { + "start": 17485.34, + "end": 17487.12, + "probability": 0.9973 + }, + { + "start": 17487.78, + "end": 17488.4, + "probability": 0.7846 + }, + { + "start": 17489.48, + "end": 17489.84, + "probability": 0.9617 + }, + { + "start": 17490.84, + "end": 17493.5, + "probability": 0.9941 + }, + { + "start": 17494.7, + "end": 17495.02, + "probability": 0.6766 + }, + { + "start": 17496.04, + "end": 17501.6, + "probability": 0.9861 + }, + { + "start": 17501.82, + "end": 17502.12, + "probability": 0.8167 + }, + { + "start": 17503.04, + "end": 17503.94, + "probability": 0.3724 + }, + { + "start": 17506.82, + "end": 17508.02, + "probability": 0.6794 + }, + { + "start": 17508.62, + "end": 17511.1, + "probability": 0.478 + }, + { + "start": 17511.1, + "end": 17511.76, + "probability": 0.5373 + }, + { + "start": 17511.8, + "end": 17512.32, + "probability": 0.9447 + }, + { + "start": 17515.78, + "end": 17516.96, + "probability": 0.9912 + }, + { + "start": 17518.8, + "end": 17519.4, + "probability": 0.7808 + }, + { + "start": 17522.24, + "end": 17524.58, + "probability": 0.2074 + }, + { + "start": 17524.74, + "end": 17525.6, + "probability": 0.7163 + }, + { + "start": 17528.58, + "end": 17529.66, + "probability": 0.2918 + }, + { + "start": 17534.48, + "end": 17536.32, + "probability": 0.0783 + }, + { + "start": 17538.54, + "end": 17540.54, + "probability": 0.088 + }, + { + "start": 17540.84, + "end": 17542.4, + "probability": 0.9989 + }, + { + "start": 17545.18, + "end": 17546.22, + "probability": 0.5858 + }, + { + "start": 17548.58, + "end": 17551.96, + "probability": 0.8009 + }, + { + "start": 17552.36, + "end": 17553.7, + "probability": 0.6393 + }, + { + "start": 17553.9, + "end": 17554.86, + "probability": 0.4455 + }, + { + "start": 17555.32, + "end": 17556.22, + "probability": 0.9536 + }, + { + "start": 17557.08, + "end": 17559.04, + "probability": 0.6059 + }, + { + "start": 17559.3, + "end": 17561.62, + "probability": 0.9673 + }, + { + "start": 17562.28, + "end": 17563.24, + "probability": 0.8074 + }, + { + "start": 17568.44, + "end": 17569.12, + "probability": 0.5286 + }, + { + "start": 17569.24, + "end": 17570.4, + "probability": 0.6444 + }, + { + "start": 17570.92, + "end": 17571.34, + "probability": 0.4878 + }, + { + "start": 17573.43, + "end": 17576.76, + "probability": 0.8732 + }, + { + "start": 17576.84, + "end": 17579.3, + "probability": 0.2383 + }, + { + "start": 17579.98, + "end": 17580.68, + "probability": 0.4525 + }, + { + "start": 17581.64, + "end": 17582.78, + "probability": 0.3192 + }, + { + "start": 17582.78, + "end": 17583.89, + "probability": 0.1402 + }, + { + "start": 17584.46, + "end": 17586.7, + "probability": 0.68 + }, + { + "start": 17586.92, + "end": 17589.52, + "probability": 0.3845 + }, + { + "start": 17590.14, + "end": 17592.06, + "probability": 0.9206 + }, + { + "start": 17593.78, + "end": 17596.16, + "probability": 0.8885 + }, + { + "start": 17597.18, + "end": 17598.36, + "probability": 0.9864 + }, + { + "start": 17598.46, + "end": 17600.02, + "probability": 0.9973 + }, + { + "start": 17600.22, + "end": 17601.52, + "probability": 0.3565 + }, + { + "start": 17601.64, + "end": 17603.32, + "probability": 0.9948 + }, + { + "start": 17603.76, + "end": 17604.5, + "probability": 0.1053 + }, + { + "start": 17604.76, + "end": 17606.26, + "probability": 0.2086 + }, + { + "start": 17606.34, + "end": 17607.92, + "probability": 0.8924 + }, + { + "start": 17608.2, + "end": 17608.4, + "probability": 0.4034 + }, + { + "start": 17608.4, + "end": 17609.34, + "probability": 0.2562 + }, + { + "start": 17609.86, + "end": 17611.86, + "probability": 0.4306 + }, + { + "start": 17612.72, + "end": 17613.88, + "probability": 0.4153 + }, + { + "start": 17614.44, + "end": 17617.52, + "probability": 0.9988 + }, + { + "start": 17619.24, + "end": 17620.22, + "probability": 0.3703 + }, + { + "start": 17620.62, + "end": 17620.76, + "probability": 0.2016 + }, + { + "start": 17620.88, + "end": 17621.3, + "probability": 0.7121 + }, + { + "start": 17622.24, + "end": 17622.56, + "probability": 0.028 + }, + { + "start": 17622.82, + "end": 17623.58, + "probability": 0.1943 + }, + { + "start": 17663.3, + "end": 17669.11, + "probability": 0.9884 + }, + { + "start": 17669.11, + "end": 17672.89, + "probability": 0.8823 + }, + { + "start": 17673.11, + "end": 17674.73, + "probability": 0.677 + }, + { + "start": 17675.05, + "end": 17677.19, + "probability": 0.758 + }, + { + "start": 17679.75, + "end": 17681.03, + "probability": 0.0027 + }, + { + "start": 17689.91, + "end": 17690.47, + "probability": 0.0169 + }, + { + "start": 17690.47, + "end": 17692.53, + "probability": 0.6469 + }, + { + "start": 17692.63, + "end": 17695.15, + "probability": 0.9549 + }, + { + "start": 17695.25, + "end": 17697.97, + "probability": 0.9884 + }, + { + "start": 17697.97, + "end": 17699.77, + "probability": 0.8044 + }, + { + "start": 17700.29, + "end": 17703.83, + "probability": 0.4761 + }, + { + "start": 17705.23, + "end": 17706.73, + "probability": 0.7526 + }, + { + "start": 17707.25, + "end": 17712.23, + "probability": 0.3195 + }, + { + "start": 17717.07, + "end": 17719.83, + "probability": 0.9245 + }, + { + "start": 17720.77, + "end": 17724.27, + "probability": 0.86 + }, + { + "start": 17724.39, + "end": 17725.21, + "probability": 0.5477 + }, + { + "start": 17725.21, + "end": 17729.07, + "probability": 0.973 + }, + { + "start": 17729.19, + "end": 17730.99, + "probability": 0.9233 + }, + { + "start": 17735.95, + "end": 17737.01, + "probability": 0.866 + }, + { + "start": 17737.29, + "end": 17738.49, + "probability": 0.7592 + }, + { + "start": 17738.91, + "end": 17740.51, + "probability": 0.2279 + }, + { + "start": 17740.67, + "end": 17741.51, + "probability": 0.4664 + }, + { + "start": 17741.65, + "end": 17743.86, + "probability": 0.9568 + }, + { + "start": 17744.37, + "end": 17746.77, + "probability": 0.9902 + }, + { + "start": 17746.77, + "end": 17748.89, + "probability": 0.8268 + }, + { + "start": 17748.97, + "end": 17748.97, + "probability": 0.0404 + }, + { + "start": 17748.97, + "end": 17749.27, + "probability": 0.1034 + }, + { + "start": 17749.55, + "end": 17750.49, + "probability": 0.8608 + }, + { + "start": 17750.49, + "end": 17750.75, + "probability": 0.4516 + }, + { + "start": 17750.95, + "end": 17752.03, + "probability": 0.0781 + }, + { + "start": 17752.61, + "end": 17754.37, + "probability": 0.9366 + }, + { + "start": 17754.77, + "end": 17755.41, + "probability": 0.8022 + }, + { + "start": 17762.95, + "end": 17764.27, + "probability": 0.8138 + }, + { + "start": 17764.35, + "end": 17767.47, + "probability": 0.7542 + }, + { + "start": 17767.71, + "end": 17769.39, + "probability": 0.6268 + }, + { + "start": 17769.51, + "end": 17771.37, + "probability": 0.6632 + }, + { + "start": 17771.83, + "end": 17774.33, + "probability": 0.5085 + }, + { + "start": 17774.97, + "end": 17776.67, + "probability": 0.9908 + }, + { + "start": 17776.77, + "end": 17778.09, + "probability": 0.9512 + }, + { + "start": 17778.17, + "end": 17779.39, + "probability": 0.9256 + }, + { + "start": 17779.85, + "end": 17780.69, + "probability": 0.9285 + }, + { + "start": 17782.29, + "end": 17782.39, + "probability": 0.2808 + }, + { + "start": 17805.73, + "end": 17809.19, + "probability": 0.6649 + }, + { + "start": 17810.51, + "end": 17815.33, + "probability": 0.9932 + }, + { + "start": 17815.33, + "end": 17820.97, + "probability": 0.9975 + }, + { + "start": 17821.91, + "end": 17824.57, + "probability": 0.985 + }, + { + "start": 17825.93, + "end": 17830.07, + "probability": 0.9985 + }, + { + "start": 17830.63, + "end": 17834.57, + "probability": 0.7842 + }, + { + "start": 17834.85, + "end": 17836.95, + "probability": 0.4292 + }, + { + "start": 17837.65, + "end": 17842.27, + "probability": 0.9788 + }, + { + "start": 17843.57, + "end": 17847.39, + "probability": 0.9978 + }, + { + "start": 17847.51, + "end": 17848.35, + "probability": 0.7683 + }, + { + "start": 17848.47, + "end": 17849.85, + "probability": 0.9873 + }, + { + "start": 17850.99, + "end": 17852.49, + "probability": 0.9988 + }, + { + "start": 17853.19, + "end": 17855.47, + "probability": 0.9888 + }, + { + "start": 17856.23, + "end": 17863.05, + "probability": 0.9922 + }, + { + "start": 17864.37, + "end": 17864.81, + "probability": 0.6344 + }, + { + "start": 17865.01, + "end": 17866.21, + "probability": 0.7365 + }, + { + "start": 17866.39, + "end": 17872.37, + "probability": 0.9889 + }, + { + "start": 17874.27, + "end": 17876.63, + "probability": 0.8575 + }, + { + "start": 17877.17, + "end": 17878.62, + "probability": 0.9941 + }, + { + "start": 17879.59, + "end": 17880.77, + "probability": 0.9706 + }, + { + "start": 17881.41, + "end": 17885.85, + "probability": 0.9923 + }, + { + "start": 17886.43, + "end": 17891.97, + "probability": 0.9946 + }, + { + "start": 17892.53, + "end": 17893.47, + "probability": 0.8361 + }, + { + "start": 17894.15, + "end": 17895.25, + "probability": 0.8452 + }, + { + "start": 17896.03, + "end": 17898.95, + "probability": 0.9163 + }, + { + "start": 17899.49, + "end": 17901.59, + "probability": 0.9722 + }, + { + "start": 17902.67, + "end": 17904.45, + "probability": 0.8768 + }, + { + "start": 17905.21, + "end": 17906.81, + "probability": 0.9646 + }, + { + "start": 17907.51, + "end": 17909.51, + "probability": 0.9473 + }, + { + "start": 17910.59, + "end": 17918.25, + "probability": 0.9978 + }, + { + "start": 17919.39, + "end": 17924.51, + "probability": 0.9976 + }, + { + "start": 17925.03, + "end": 17928.03, + "probability": 0.9868 + }, + { + "start": 17928.63, + "end": 17930.45, + "probability": 0.9952 + }, + { + "start": 17931.61, + "end": 17932.75, + "probability": 0.8599 + }, + { + "start": 17932.91, + "end": 17940.11, + "probability": 0.9571 + }, + { + "start": 17941.05, + "end": 17943.69, + "probability": 0.9741 + }, + { + "start": 17944.41, + "end": 17945.85, + "probability": 0.9676 + }, + { + "start": 17946.95, + "end": 17951.95, + "probability": 0.9981 + }, + { + "start": 17951.95, + "end": 17957.89, + "probability": 0.8991 + }, + { + "start": 17958.95, + "end": 17965.97, + "probability": 0.9846 + }, + { + "start": 17966.73, + "end": 17972.97, + "probability": 0.9882 + }, + { + "start": 17973.79, + "end": 17975.11, + "probability": 0.5201 + }, + { + "start": 17975.67, + "end": 17979.01, + "probability": 0.9946 + }, + { + "start": 17979.57, + "end": 17983.59, + "probability": 0.9973 + }, + { + "start": 17984.43, + "end": 17984.63, + "probability": 0.636 + }, + { + "start": 17985.29, + "end": 17987.37, + "probability": 0.9971 + }, + { + "start": 17987.89, + "end": 17990.49, + "probability": 0.9946 + }, + { + "start": 17991.31, + "end": 17993.99, + "probability": 0.9985 + }, + { + "start": 17995.27, + "end": 17996.65, + "probability": 0.6172 + }, + { + "start": 17996.77, + "end": 18000.95, + "probability": 0.9932 + }, + { + "start": 18001.57, + "end": 18007.15, + "probability": 0.9867 + }, + { + "start": 18007.77, + "end": 18012.77, + "probability": 0.9673 + }, + { + "start": 18013.57, + "end": 18015.43, + "probability": 0.9801 + }, + { + "start": 18016.23, + "end": 18019.35, + "probability": 0.9732 + }, + { + "start": 18019.89, + "end": 18023.21, + "probability": 0.9488 + }, + { + "start": 18023.77, + "end": 18027.09, + "probability": 0.9892 + }, + { + "start": 18029.03, + "end": 18032.11, + "probability": 0.9646 + }, + { + "start": 18032.33, + "end": 18035.15, + "probability": 0.9292 + }, + { + "start": 18035.15, + "end": 18038.57, + "probability": 0.9499 + }, + { + "start": 18039.23, + "end": 18041.61, + "probability": 0.857 + }, + { + "start": 18042.55, + "end": 18045.41, + "probability": 0.9901 + }, + { + "start": 18046.35, + "end": 18050.81, + "probability": 0.5341 + }, + { + "start": 18051.91, + "end": 18056.79, + "probability": 0.8521 + }, + { + "start": 18057.15, + "end": 18058.35, + "probability": 0.9474 + }, + { + "start": 18059.07, + "end": 18060.51, + "probability": 0.9976 + }, + { + "start": 18061.05, + "end": 18064.03, + "probability": 0.987 + }, + { + "start": 18064.93, + "end": 18067.83, + "probability": 0.9974 + }, + { + "start": 18068.49, + "end": 18072.69, + "probability": 0.9994 + }, + { + "start": 18072.75, + "end": 18080.81, + "probability": 0.999 + }, + { + "start": 18081.71, + "end": 18084.65, + "probability": 0.9949 + }, + { + "start": 18086.49, + "end": 18087.29, + "probability": 0.5989 + }, + { + "start": 18087.41, + "end": 18089.59, + "probability": 0.9194 + }, + { + "start": 18089.85, + "end": 18093.71, + "probability": 0.8107 + }, + { + "start": 18094.65, + "end": 18097.99, + "probability": 0.9946 + }, + { + "start": 18098.59, + "end": 18099.71, + "probability": 0.9335 + }, + { + "start": 18100.63, + "end": 18102.85, + "probability": 0.4976 + }, + { + "start": 18103.09, + "end": 18109.99, + "probability": 0.9204 + }, + { + "start": 18110.13, + "end": 18115.07, + "probability": 0.9029 + }, + { + "start": 18115.73, + "end": 18117.53, + "probability": 0.8805 + }, + { + "start": 18117.77, + "end": 18120.75, + "probability": 0.707 + }, + { + "start": 18121.45, + "end": 18122.27, + "probability": 0.4146 + }, + { + "start": 18122.87, + "end": 18124.23, + "probability": 0.9403 + }, + { + "start": 18124.81, + "end": 18128.23, + "probability": 0.9609 + }, + { + "start": 18128.93, + "end": 18131.31, + "probability": 0.9508 + }, + { + "start": 18132.15, + "end": 18132.75, + "probability": 0.8152 + }, + { + "start": 18132.75, + "end": 18136.95, + "probability": 0.9945 + }, + { + "start": 18136.95, + "end": 18143.63, + "probability": 0.9648 + }, + { + "start": 18144.29, + "end": 18146.65, + "probability": 0.9799 + }, + { + "start": 18147.43, + "end": 18148.11, + "probability": 0.6897 + }, + { + "start": 18149.05, + "end": 18153.21, + "probability": 0.9684 + }, + { + "start": 18153.39, + "end": 18155.63, + "probability": 0.9958 + }, + { + "start": 18156.19, + "end": 18159.49, + "probability": 0.9961 + }, + { + "start": 18160.29, + "end": 18167.25, + "probability": 0.919 + }, + { + "start": 18167.85, + "end": 18171.87, + "probability": 0.9208 + }, + { + "start": 18172.69, + "end": 18176.03, + "probability": 0.8004 + }, + { + "start": 18176.55, + "end": 18179.01, + "probability": 0.9297 + }, + { + "start": 18179.73, + "end": 18184.69, + "probability": 0.98 + }, + { + "start": 18184.69, + "end": 18189.77, + "probability": 0.9942 + }, + { + "start": 18191.11, + "end": 18194.87, + "probability": 0.9775 + }, + { + "start": 18194.87, + "end": 18202.75, + "probability": 0.9529 + }, + { + "start": 18203.29, + "end": 18206.23, + "probability": 0.6003 + }, + { + "start": 18206.97, + "end": 18209.89, + "probability": 0.9498 + }, + { + "start": 18209.89, + "end": 18214.59, + "probability": 0.8939 + }, + { + "start": 18215.15, + "end": 18217.39, + "probability": 0.9466 + }, + { + "start": 18217.85, + "end": 18222.21, + "probability": 0.973 + }, + { + "start": 18222.89, + "end": 18225.97, + "probability": 0.9556 + }, + { + "start": 18226.41, + "end": 18229.21, + "probability": 0.9766 + }, + { + "start": 18231.19, + "end": 18235.03, + "probability": 0.835 + }, + { + "start": 18235.26, + "end": 18238.25, + "probability": 0.9927 + }, + { + "start": 18238.93, + "end": 18240.79, + "probability": 0.8273 + }, + { + "start": 18241.29, + "end": 18244.41, + "probability": 0.9818 + }, + { + "start": 18244.95, + "end": 18246.43, + "probability": 0.7 + }, + { + "start": 18247.07, + "end": 18252.25, + "probability": 0.9255 + }, + { + "start": 18253.39, + "end": 18258.23, + "probability": 0.9985 + }, + { + "start": 18259.01, + "end": 18260.99, + "probability": 0.9163 + }, + { + "start": 18261.81, + "end": 18262.13, + "probability": 0.5435 + }, + { + "start": 18262.21, + "end": 18266.35, + "probability": 0.976 + }, + { + "start": 18266.35, + "end": 18271.59, + "probability": 0.9951 + }, + { + "start": 18271.59, + "end": 18278.67, + "probability": 0.9034 + }, + { + "start": 18279.35, + "end": 18284.39, + "probability": 0.9942 + }, + { + "start": 18284.99, + "end": 18290.95, + "probability": 0.9959 + }, + { + "start": 18291.87, + "end": 18292.31, + "probability": 0.7521 + }, + { + "start": 18292.43, + "end": 18293.23, + "probability": 0.6861 + }, + { + "start": 18293.39, + "end": 18296.75, + "probability": 0.9157 + }, + { + "start": 18298.21, + "end": 18301.13, + "probability": 0.9968 + }, + { + "start": 18301.91, + "end": 18305.05, + "probability": 0.9928 + }, + { + "start": 18305.05, + "end": 18308.45, + "probability": 0.9027 + }, + { + "start": 18309.17, + "end": 18312.91, + "probability": 0.9896 + }, + { + "start": 18312.91, + "end": 18317.61, + "probability": 0.9867 + }, + { + "start": 18318.13, + "end": 18319.57, + "probability": 0.9406 + }, + { + "start": 18320.31, + "end": 18325.21, + "probability": 0.9785 + }, + { + "start": 18325.71, + "end": 18329.77, + "probability": 0.9659 + }, + { + "start": 18330.27, + "end": 18334.25, + "probability": 0.9641 + }, + { + "start": 18334.95, + "end": 18337.99, + "probability": 0.9934 + }, + { + "start": 18338.39, + "end": 18342.69, + "probability": 0.9941 + }, + { + "start": 18343.29, + "end": 18348.33, + "probability": 0.9974 + }, + { + "start": 18349.21, + "end": 18352.57, + "probability": 0.9836 + }, + { + "start": 18354.71, + "end": 18355.87, + "probability": 0.6483 + }, + { + "start": 18356.45, + "end": 18357.71, + "probability": 0.9299 + }, + { + "start": 18358.25, + "end": 18361.73, + "probability": 0.6437 + }, + { + "start": 18362.33, + "end": 18364.27, + "probability": 0.8577 + }, + { + "start": 18364.79, + "end": 18366.97, + "probability": 0.9951 + }, + { + "start": 18367.63, + "end": 18369.79, + "probability": 0.8643 + }, + { + "start": 18370.39, + "end": 18375.31, + "probability": 0.9712 + }, + { + "start": 18376.99, + "end": 18379.85, + "probability": 0.916 + }, + { + "start": 18380.43, + "end": 18382.97, + "probability": 0.9619 + }, + { + "start": 18383.95, + "end": 18388.45, + "probability": 0.9938 + }, + { + "start": 18388.45, + "end": 18394.27, + "probability": 0.9953 + }, + { + "start": 18394.81, + "end": 18399.03, + "probability": 0.9692 + }, + { + "start": 18399.75, + "end": 18407.53, + "probability": 0.9941 + }, + { + "start": 18407.53, + "end": 18414.17, + "probability": 0.993 + }, + { + "start": 18415.93, + "end": 18418.48, + "probability": 0.8541 + }, + { + "start": 18419.35, + "end": 18420.13, + "probability": 0.9116 + }, + { + "start": 18420.69, + "end": 18422.23, + "probability": 0.9525 + }, + { + "start": 18422.93, + "end": 18428.99, + "probability": 0.993 + }, + { + "start": 18429.61, + "end": 18432.95, + "probability": 0.9886 + }, + { + "start": 18433.67, + "end": 18440.89, + "probability": 0.8715 + }, + { + "start": 18441.53, + "end": 18442.13, + "probability": 0.5813 + }, + { + "start": 18442.69, + "end": 18445.43, + "probability": 0.9273 + }, + { + "start": 18446.23, + "end": 18448.41, + "probability": 0.8003 + }, + { + "start": 18448.49, + "end": 18450.75, + "probability": 0.7454 + }, + { + "start": 18451.43, + "end": 18453.85, + "probability": 0.6669 + }, + { + "start": 18454.51, + "end": 18458.25, + "probability": 0.9766 + }, + { + "start": 18458.25, + "end": 18461.11, + "probability": 0.8322 + }, + { + "start": 18461.59, + "end": 18464.99, + "probability": 0.9855 + }, + { + "start": 18465.51, + "end": 18469.45, + "probability": 0.9867 + }, + { + "start": 18470.11, + "end": 18471.79, + "probability": 0.771 + }, + { + "start": 18472.35, + "end": 18476.41, + "probability": 0.975 + }, + { + "start": 18476.41, + "end": 18479.51, + "probability": 0.9956 + }, + { + "start": 18480.33, + "end": 18485.35, + "probability": 0.9836 + }, + { + "start": 18485.35, + "end": 18489.73, + "probability": 0.9768 + }, + { + "start": 18490.59, + "end": 18491.15, + "probability": 0.3872 + }, + { + "start": 18491.19, + "end": 18494.63, + "probability": 0.9945 + }, + { + "start": 18495.19, + "end": 18499.65, + "probability": 0.9886 + }, + { + "start": 18502.07, + "end": 18505.89, + "probability": 0.993 + }, + { + "start": 18506.81, + "end": 18508.01, + "probability": 0.8939 + }, + { + "start": 18508.29, + "end": 18515.19, + "probability": 0.9888 + }, + { + "start": 18515.39, + "end": 18516.45, + "probability": 0.6501 + }, + { + "start": 18516.95, + "end": 18519.73, + "probability": 0.8273 + }, + { + "start": 18520.53, + "end": 18521.91, + "probability": 0.8623 + }, + { + "start": 18522.33, + "end": 18522.85, + "probability": 0.8796 + }, + { + "start": 18523.37, + "end": 18527.89, + "probability": 0.9116 + }, + { + "start": 18528.51, + "end": 18530.31, + "probability": 0.9585 + }, + { + "start": 18530.89, + "end": 18534.15, + "probability": 0.9956 + }, + { + "start": 18534.15, + "end": 18537.57, + "probability": 0.9972 + }, + { + "start": 18538.41, + "end": 18542.23, + "probability": 0.9832 + }, + { + "start": 18542.23, + "end": 18545.61, + "probability": 0.994 + }, + { + "start": 18546.17, + "end": 18549.75, + "probability": 0.9954 + }, + { + "start": 18550.71, + "end": 18554.83, + "probability": 0.5779 + }, + { + "start": 18555.37, + "end": 18561.45, + "probability": 0.9941 + }, + { + "start": 18563.57, + "end": 18564.53, + "probability": 0.719 + }, + { + "start": 18565.65, + "end": 18568.01, + "probability": 0.9966 + }, + { + "start": 18568.77, + "end": 18571.13, + "probability": 0.886 + }, + { + "start": 18571.71, + "end": 18572.97, + "probability": 0.957 + }, + { + "start": 18573.75, + "end": 18578.03, + "probability": 0.8124 + }, + { + "start": 18578.63, + "end": 18582.51, + "probability": 0.9421 + }, + { + "start": 18582.71, + "end": 18586.19, + "probability": 0.9946 + }, + { + "start": 18586.73, + "end": 18588.23, + "probability": 0.98 + }, + { + "start": 18589.13, + "end": 18589.83, + "probability": 0.5419 + }, + { + "start": 18590.49, + "end": 18592.35, + "probability": 0.992 + }, + { + "start": 18592.99, + "end": 18595.27, + "probability": 0.9335 + }, + { + "start": 18595.81, + "end": 18600.41, + "probability": 0.9875 + }, + { + "start": 18600.41, + "end": 18605.19, + "probability": 0.9989 + }, + { + "start": 18605.91, + "end": 18612.59, + "probability": 0.9282 + }, + { + "start": 18614.23, + "end": 18616.69, + "probability": 0.7614 + }, + { + "start": 18617.77, + "end": 18618.53, + "probability": 0.7614 + }, + { + "start": 18619.27, + "end": 18620.35, + "probability": 0.8905 + }, + { + "start": 18620.91, + "end": 18622.25, + "probability": 0.6261 + }, + { + "start": 18622.85, + "end": 18626.65, + "probability": 0.9764 + }, + { + "start": 18627.33, + "end": 18629.13, + "probability": 0.5828 + }, + { + "start": 18630.01, + "end": 18632.81, + "probability": 0.9669 + }, + { + "start": 18632.81, + "end": 18638.41, + "probability": 0.9299 + }, + { + "start": 18638.87, + "end": 18640.39, + "probability": 0.8121 + }, + { + "start": 18640.91, + "end": 18644.49, + "probability": 0.7211 + }, + { + "start": 18645.15, + "end": 18645.69, + "probability": 0.5171 + }, + { + "start": 18646.11, + "end": 18648.31, + "probability": 0.5177 + }, + { + "start": 18648.63, + "end": 18649.21, + "probability": 0.9139 + }, + { + "start": 18649.25, + "end": 18652.27, + "probability": 0.8652 + }, + { + "start": 18652.81, + "end": 18654.21, + "probability": 0.9192 + }, + { + "start": 18654.41, + "end": 18657.23, + "probability": 0.9249 + }, + { + "start": 18658.01, + "end": 18663.49, + "probability": 0.9439 + }, + { + "start": 18664.01, + "end": 18668.17, + "probability": 0.9232 + }, + { + "start": 18668.65, + "end": 18670.47, + "probability": 0.9732 + }, + { + "start": 18672.27, + "end": 18672.97, + "probability": 0.6911 + }, + { + "start": 18673.59, + "end": 18677.69, + "probability": 0.9792 + }, + { + "start": 18678.31, + "end": 18680.17, + "probability": 0.6563 + }, + { + "start": 18680.73, + "end": 18681.77, + "probability": 0.4909 + }, + { + "start": 18682.41, + "end": 18687.79, + "probability": 0.9931 + }, + { + "start": 18688.17, + "end": 18688.39, + "probability": 0.55 + }, + { + "start": 18688.77, + "end": 18689.45, + "probability": 0.5493 + }, + { + "start": 18689.55, + "end": 18691.25, + "probability": 0.5082 + }, + { + "start": 18691.31, + "end": 18692.87, + "probability": 0.7615 + }, + { + "start": 18693.65, + "end": 18695.21, + "probability": 0.6652 + }, + { + "start": 18696.78, + "end": 18700.77, + "probability": 0.8216 + }, + { + "start": 18701.37, + "end": 18702.61, + "probability": 0.8844 + }, + { + "start": 18704.61, + "end": 18709.59, + "probability": 0.684 + }, + { + "start": 18714.41, + "end": 18715.47, + "probability": 0.6423 + }, + { + "start": 18716.49, + "end": 18716.93, + "probability": 0.9347 + }, + { + "start": 18718.09, + "end": 18720.42, + "probability": 0.9062 + }, + { + "start": 18721.39, + "end": 18721.61, + "probability": 0.6464 + }, + { + "start": 18722.33, + "end": 18723.45, + "probability": 0.7796 + }, + { + "start": 18724.67, + "end": 18726.65, + "probability": 0.0661 + }, + { + "start": 18729.93, + "end": 18730.59, + "probability": 0.3872 + }, + { + "start": 18734.21, + "end": 18736.53, + "probability": 0.6727 + }, + { + "start": 18737.45, + "end": 18742.07, + "probability": 0.9883 + }, + { + "start": 18742.73, + "end": 18748.07, + "probability": 0.9319 + }, + { + "start": 18748.51, + "end": 18753.23, + "probability": 0.96 + }, + { + "start": 18753.23, + "end": 18759.47, + "probability": 0.9778 + }, + { + "start": 18759.89, + "end": 18760.71, + "probability": 0.4274 + }, + { + "start": 18761.81, + "end": 18765.29, + "probability": 0.9758 + }, + { + "start": 18766.23, + "end": 18767.51, + "probability": 0.5481 + }, + { + "start": 18767.63, + "end": 18771.75, + "probability": 0.9185 + }, + { + "start": 18772.95, + "end": 18774.33, + "probability": 0.094 + }, + { + "start": 18774.33, + "end": 18779.57, + "probability": 0.0363 + }, + { + "start": 18779.79, + "end": 18780.03, + "probability": 0.0919 + }, + { + "start": 18780.03, + "end": 18780.39, + "probability": 0.0827 + }, + { + "start": 18780.39, + "end": 18780.41, + "probability": 0.5533 + }, + { + "start": 18780.41, + "end": 18786.01, + "probability": 0.6156 + }, + { + "start": 18786.01, + "end": 18792.37, + "probability": 0.8504 + }, + { + "start": 18792.51, + "end": 18795.81, + "probability": 0.64 + }, + { + "start": 18795.85, + "end": 18795.85, + "probability": 0.3006 + }, + { + "start": 18795.85, + "end": 18799.25, + "probability": 0.507 + }, + { + "start": 18799.29, + "end": 18806.13, + "probability": 0.8492 + }, + { + "start": 18806.55, + "end": 18807.95, + "probability": 0.7564 + }, + { + "start": 18808.07, + "end": 18809.74, + "probability": 0.5754 + }, + { + "start": 18810.21, + "end": 18811.85, + "probability": 0.9468 + }, + { + "start": 18812.35, + "end": 18815.97, + "probability": 0.9767 + }, + { + "start": 18816.59, + "end": 18818.41, + "probability": 0.9958 + }, + { + "start": 18818.87, + "end": 18819.43, + "probability": 0.4864 + }, + { + "start": 18820.25, + "end": 18822.15, + "probability": 0.7355 + }, + { + "start": 18822.47, + "end": 18829.53, + "probability": 0.9589 + }, + { + "start": 18829.77, + "end": 18832.61, + "probability": 0.9863 + }, + { + "start": 18832.77, + "end": 18835.17, + "probability": 0.5786 + }, + { + "start": 18835.73, + "end": 18835.73, + "probability": 0.3024 + }, + { + "start": 18836.73, + "end": 18837.07, + "probability": 0.5414 + }, + { + "start": 18837.07, + "end": 18840.21, + "probability": 0.6648 + }, + { + "start": 18840.39, + "end": 18846.65, + "probability": 0.9835 + }, + { + "start": 18847.05, + "end": 18850.39, + "probability": 0.8806 + }, + { + "start": 18850.51, + "end": 18853.43, + "probability": 0.2069 + }, + { + "start": 18853.91, + "end": 18855.74, + "probability": 0.1669 + }, + { + "start": 18856.87, + "end": 18857.59, + "probability": 0.3835 + }, + { + "start": 18858.05, + "end": 18859.2, + "probability": 0.0143 + }, + { + "start": 18860.67, + "end": 18861.39, + "probability": 0.0313 + }, + { + "start": 18863.35, + "end": 18865.07, + "probability": 0.4089 + }, + { + "start": 18865.17, + "end": 18865.55, + "probability": 0.6364 + }, + { + "start": 18865.55, + "end": 18866.57, + "probability": 0.1424 + }, + { + "start": 18866.57, + "end": 18866.76, + "probability": 0.054 + }, + { + "start": 18868.03, + "end": 18868.05, + "probability": 0.0401 + }, + { + "start": 18868.11, + "end": 18868.53, + "probability": 0.1018 + }, + { + "start": 18868.53, + "end": 18869.06, + "probability": 0.2368 + }, + { + "start": 18869.39, + "end": 18871.95, + "probability": 0.8287 + }, + { + "start": 18873.13, + "end": 18880.45, + "probability": 0.1403 + }, + { + "start": 18886.07, + "end": 18886.91, + "probability": 0.0474 + }, + { + "start": 18886.97, + "end": 18887.15, + "probability": 0.004 + }, + { + "start": 18887.15, + "end": 18887.42, + "probability": 0.0654 + }, + { + "start": 18887.65, + "end": 18889.07, + "probability": 0.1161 + }, + { + "start": 18897.04, + "end": 18899.47, + "probability": 0.0939 + }, + { + "start": 18899.47, + "end": 18900.41, + "probability": 0.1578 + }, + { + "start": 18900.43, + "end": 18902.27, + "probability": 0.032 + }, + { + "start": 18909.33, + "end": 18909.75, + "probability": 0.0135 + }, + { + "start": 18910.2, + "end": 18916.93, + "probability": 0.0253 + }, + { + "start": 18917.52, + "end": 18919.72, + "probability": 0.0315 + }, + { + "start": 18920.55, + "end": 18925.15, + "probability": 0.0715 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.0, + "end": 18942.0, + "probability": 0.0 + }, + { + "start": 18942.77, + "end": 18945.1, + "probability": 0.4275 + }, + { + "start": 18945.3, + "end": 18945.76, + "probability": 0.7797 + }, + { + "start": 18945.94, + "end": 18949.16, + "probability": 0.9662 + }, + { + "start": 18949.62, + "end": 18952.84, + "probability": 0.7479 + }, + { + "start": 18952.84, + "end": 18955.34, + "probability": 0.6487 + }, + { + "start": 18955.98, + "end": 18957.42, + "probability": 0.8013 + }, + { + "start": 18957.44, + "end": 18957.44, + "probability": 0.0572 + }, + { + "start": 18957.44, + "end": 18957.44, + "probability": 0.2191 + }, + { + "start": 18957.44, + "end": 18957.72, + "probability": 0.4173 + }, + { + "start": 18958.9, + "end": 18967.72, + "probability": 0.523 + }, + { + "start": 18968.1, + "end": 18972.18, + "probability": 0.3165 + }, + { + "start": 18973.46, + "end": 18974.89, + "probability": 0.3936 + }, + { + "start": 18980.5, + "end": 18982.14, + "probability": 0.0895 + }, + { + "start": 18982.24, + "end": 18982.72, + "probability": 0.1005 + }, + { + "start": 18982.82, + "end": 18984.1, + "probability": 0.0953 + }, + { + "start": 18984.12, + "end": 18986.02, + "probability": 0.3616 + }, + { + "start": 18986.98, + "end": 18987.6, + "probability": 0.0204 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19081.0, + "end": 19081.0, + "probability": 0.0 + }, + { + "start": 19092.3, + "end": 19092.9, + "probability": 0.7879 + }, + { + "start": 19093.02, + "end": 19097.68, + "probability": 0.9303 + }, + { + "start": 19098.6, + "end": 19099.26, + "probability": 0.7489 + }, + { + "start": 19099.7, + "end": 19100.86, + "probability": 0.9582 + }, + { + "start": 19101.94, + "end": 19102.72, + "probability": 0.9656 + }, + { + "start": 19102.88, + "end": 19103.88, + "probability": 0.9409 + }, + { + "start": 19104.04, + "end": 19104.84, + "probability": 0.7883 + }, + { + "start": 19104.88, + "end": 19106.38, + "probability": 0.9292 + }, + { + "start": 19107.1, + "end": 19109.26, + "probability": 0.6503 + }, + { + "start": 19109.88, + "end": 19113.12, + "probability": 0.9034 + }, + { + "start": 19113.4, + "end": 19114.08, + "probability": 0.8558 + }, + { + "start": 19114.16, + "end": 19116.34, + "probability": 0.8462 + }, + { + "start": 19116.68, + "end": 19118.78, + "probability": 0.9941 + }, + { + "start": 19119.54, + "end": 19122.14, + "probability": 0.8718 + }, + { + "start": 19123.04, + "end": 19125.54, + "probability": 0.7545 + }, + { + "start": 19126.6, + "end": 19127.67, + "probability": 0.9667 + }, + { + "start": 19128.04, + "end": 19129.46, + "probability": 0.9376 + }, + { + "start": 19129.58, + "end": 19135.38, + "probability": 0.9814 + }, + { + "start": 19135.9, + "end": 19140.02, + "probability": 0.8364 + }, + { + "start": 19140.26, + "end": 19142.95, + "probability": 0.9883 + }, + { + "start": 19144.56, + "end": 19148.06, + "probability": 0.8792 + }, + { + "start": 19148.12, + "end": 19153.42, + "probability": 0.9973 + }, + { + "start": 19153.96, + "end": 19155.58, + "probability": 0.918 + }, + { + "start": 19155.64, + "end": 19159.54, + "probability": 0.7632 + }, + { + "start": 19160.9, + "end": 19161.72, + "probability": 0.0053 + }, + { + "start": 19161.72, + "end": 19162.08, + "probability": 0.0095 + }, + { + "start": 19162.08, + "end": 19162.26, + "probability": 0.4679 + }, + { + "start": 19162.38, + "end": 19162.38, + "probability": 0.5324 + }, + { + "start": 19162.38, + "end": 19162.38, + "probability": 0.1392 + }, + { + "start": 19162.38, + "end": 19163.32, + "probability": 0.2777 + }, + { + "start": 19164.12, + "end": 19165.81, + "probability": 0.9582 + }, + { + "start": 19166.42, + "end": 19167.92, + "probability": 0.872 + }, + { + "start": 19168.5, + "end": 19172.08, + "probability": 0.4446 + }, + { + "start": 19172.18, + "end": 19172.24, + "probability": 0.0223 + }, + { + "start": 19172.24, + "end": 19172.44, + "probability": 0.053 + }, + { + "start": 19172.44, + "end": 19172.44, + "probability": 0.0566 + }, + { + "start": 19172.44, + "end": 19172.88, + "probability": 0.2198 + }, + { + "start": 19173.78, + "end": 19174.78, + "probability": 0.7604 + }, + { + "start": 19175.3, + "end": 19177.3, + "probability": 0.9709 + }, + { + "start": 19177.78, + "end": 19178.82, + "probability": 0.9219 + }, + { + "start": 19179.8, + "end": 19181.64, + "probability": 0.8779 + }, + { + "start": 19182.16, + "end": 19183.08, + "probability": 0.9793 + }, + { + "start": 19183.8, + "end": 19186.14, + "probability": 0.996 + }, + { + "start": 19187.0, + "end": 19188.18, + "probability": 0.9211 + }, + { + "start": 19188.48, + "end": 19189.0, + "probability": 0.8982 + }, + { + "start": 19189.44, + "end": 19195.56, + "probability": 0.9871 + }, + { + "start": 19196.44, + "end": 19200.22, + "probability": 0.998 + }, + { + "start": 19200.22, + "end": 19205.26, + "probability": 0.9966 + }, + { + "start": 19206.24, + "end": 19208.16, + "probability": 0.0715 + }, + { + "start": 19208.42, + "end": 19210.56, + "probability": 0.1032 + }, + { + "start": 19210.56, + "end": 19210.64, + "probability": 0.099 + }, + { + "start": 19210.66, + "end": 19217.74, + "probability": 0.7197 + }, + { + "start": 19218.02, + "end": 19218.2, + "probability": 0.5142 + }, + { + "start": 19218.2, + "end": 19218.2, + "probability": 0.5008 + }, + { + "start": 19218.2, + "end": 19218.2, + "probability": 0.6163 + }, + { + "start": 19218.2, + "end": 19219.1, + "probability": 0.5356 + }, + { + "start": 19219.32, + "end": 19225.82, + "probability": 0.9062 + }, + { + "start": 19225.84, + "end": 19231.82, + "probability": 0.8775 + }, + { + "start": 19231.82, + "end": 19231.82, + "probability": 0.0494 + }, + { + "start": 19231.82, + "end": 19231.82, + "probability": 0.0738 + }, + { + "start": 19231.82, + "end": 19232.1, + "probability": 0.7191 + }, + { + "start": 19232.66, + "end": 19237.48, + "probability": 0.9447 + }, + { + "start": 19237.48, + "end": 19241.26, + "probability": 0.841 + }, + { + "start": 19241.94, + "end": 19242.96, + "probability": 0.6635 + }, + { + "start": 19243.42, + "end": 19245.94, + "probability": 0.7576 + }, + { + "start": 19245.98, + "end": 19250.18, + "probability": 0.9011 + }, + { + "start": 19250.26, + "end": 19251.58, + "probability": 0.1758 + }, + { + "start": 19251.58, + "end": 19251.58, + "probability": 0.0907 + }, + { + "start": 19251.58, + "end": 19253.04, + "probability": 0.9633 + }, + { + "start": 19253.18, + "end": 19254.68, + "probability": 0.9582 + }, + { + "start": 19256.32, + "end": 19259.0, + "probability": 0.9836 + }, + { + "start": 19259.54, + "end": 19262.1, + "probability": 0.9757 + }, + { + "start": 19263.3, + "end": 19265.68, + "probability": 0.991 + }, + { + "start": 19266.34, + "end": 19271.86, + "probability": 0.9335 + }, + { + "start": 19272.74, + "end": 19277.96, + "probability": 0.9944 + }, + { + "start": 19278.32, + "end": 19280.42, + "probability": 0.7549 + }, + { + "start": 19280.54, + "end": 19280.74, + "probability": 0.06 + }, + { + "start": 19280.74, + "end": 19281.26, + "probability": 0.0669 + }, + { + "start": 19281.26, + "end": 19281.26, + "probability": 0.0639 + }, + { + "start": 19281.26, + "end": 19282.2, + "probability": 0.4513 + }, + { + "start": 19282.66, + "end": 19285.08, + "probability": 0.9602 + }, + { + "start": 19285.8, + "end": 19288.6, + "probability": 0.9803 + }, + { + "start": 19289.52, + "end": 19293.6, + "probability": 0.9734 + }, + { + "start": 19293.6, + "end": 19296.2, + "probability": 0.5145 + }, + { + "start": 19296.68, + "end": 19297.64, + "probability": 0.1527 + }, + { + "start": 19297.64, + "end": 19299.98, + "probability": 0.9717 + }, + { + "start": 19300.02, + "end": 19300.82, + "probability": 0.3463 + }, + { + "start": 19302.22, + "end": 19302.34, + "probability": 0.0659 + }, + { + "start": 19302.34, + "end": 19304.18, + "probability": 0.3241 + }, + { + "start": 19304.3, + "end": 19305.52, + "probability": 0.094 + }, + { + "start": 19305.62, + "end": 19310.48, + "probability": 0.9823 + }, + { + "start": 19311.1, + "end": 19314.6, + "probability": 0.9456 + }, + { + "start": 19315.04, + "end": 19319.33, + "probability": 0.9424 + }, + { + "start": 19319.46, + "end": 19319.72, + "probability": 0.0237 + }, + { + "start": 19319.72, + "end": 19319.8, + "probability": 0.2433 + }, + { + "start": 19319.8, + "end": 19324.84, + "probability": 0.469 + }, + { + "start": 19324.84, + "end": 19330.24, + "probability": 0.8959 + }, + { + "start": 19331.24, + "end": 19332.08, + "probability": 0.3518 + }, + { + "start": 19332.08, + "end": 19332.98, + "probability": 0.0633 + }, + { + "start": 19333.8, + "end": 19335.24, + "probability": 0.6718 + }, + { + "start": 19335.66, + "end": 19339.68, + "probability": 0.9619 + }, + { + "start": 19340.06, + "end": 19342.82, + "probability": 0.9415 + }, + { + "start": 19343.06, + "end": 19343.34, + "probability": 0.386 + }, + { + "start": 19343.46, + "end": 19343.48, + "probability": 0.6075 + }, + { + "start": 19343.48, + "end": 19344.84, + "probability": 0.6141 + }, + { + "start": 19345.4, + "end": 19347.22, + "probability": 0.4803 + }, + { + "start": 19347.98, + "end": 19349.08, + "probability": 0.7994 + }, + { + "start": 19349.14, + "end": 19353.34, + "probability": 0.9574 + }, + { + "start": 19353.5, + "end": 19354.17, + "probability": 0.9131 + }, + { + "start": 19354.58, + "end": 19358.08, + "probability": 0.0863 + }, + { + "start": 19359.2, + "end": 19359.4, + "probability": 0.026 + }, + { + "start": 19359.4, + "end": 19359.4, + "probability": 0.3917 + }, + { + "start": 19359.4, + "end": 19360.04, + "probability": 0.2223 + }, + { + "start": 19360.6, + "end": 19363.48, + "probability": 0.7407 + }, + { + "start": 19363.78, + "end": 19364.22, + "probability": 0.0968 + }, + { + "start": 19364.52, + "end": 19366.0, + "probability": 0.3741 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.0, + "end": 19463.0, + "probability": 0.0 + }, + { + "start": 19463.68, + "end": 19468.8, + "probability": 0.053 + }, + { + "start": 19472.5, + "end": 19476.8, + "probability": 0.5866 + }, + { + "start": 19476.8, + "end": 19477.26, + "probability": 0.2366 + }, + { + "start": 19477.68, + "end": 19477.96, + "probability": 0.5496 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.0, + "end": 19593.0, + "probability": 0.0 + }, + { + "start": 19593.14, + "end": 19594.08, + "probability": 0.1757 + }, + { + "start": 19594.2, + "end": 19594.84, + "probability": 0.1104 + }, + { + "start": 19594.9, + "end": 19595.3, + "probability": 0.9595 + }, + { + "start": 19597.02, + "end": 19599.2, + "probability": 0.0333 + }, + { + "start": 19601.15, + "end": 19602.92, + "probability": 0.2219 + }, + { + "start": 19602.92, + "end": 19605.03, + "probability": 0.7438 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.0, + "end": 19716.0, + "probability": 0.0 + }, + { + "start": 19716.24, + "end": 19716.24, + "probability": 0.0754 + }, + { + "start": 19716.24, + "end": 19716.24, + "probability": 0.0266 + }, + { + "start": 19716.24, + "end": 19718.0, + "probability": 0.077 + }, + { + "start": 19718.42, + "end": 19719.08, + "probability": 0.1767 + }, + { + "start": 19719.08, + "end": 19719.88, + "probability": 0.4826 + }, + { + "start": 19719.88, + "end": 19720.74, + "probability": 0.6765 + }, + { + "start": 19721.22, + "end": 19722.68, + "probability": 0.7288 + }, + { + "start": 19723.74, + "end": 19724.26, + "probability": 0.8768 + }, + { + "start": 19724.58, + "end": 19725.2, + "probability": 0.7885 + }, + { + "start": 19725.8, + "end": 19726.76, + "probability": 0.0589 + }, + { + "start": 19726.76, + "end": 19726.76, + "probability": 0.2712 + }, + { + "start": 19726.76, + "end": 19727.1, + "probability": 0.4908 + }, + { + "start": 19728.2, + "end": 19730.88, + "probability": 0.9696 + }, + { + "start": 19731.4, + "end": 19734.94, + "probability": 0.9823 + }, + { + "start": 19735.86, + "end": 19739.42, + "probability": 0.9182 + }, + { + "start": 19739.84, + "end": 19741.1, + "probability": 0.997 + }, + { + "start": 19741.3, + "end": 19744.82, + "probability": 0.9954 + }, + { + "start": 19745.3, + "end": 19748.84, + "probability": 0.9556 + }, + { + "start": 19749.56, + "end": 19750.36, + "probability": 0.5266 + }, + { + "start": 19750.46, + "end": 19751.96, + "probability": 0.9902 + }, + { + "start": 19752.04, + "end": 19752.62, + "probability": 0.9382 + }, + { + "start": 19753.22, + "end": 19756.9, + "probability": 0.98 + }, + { + "start": 19757.6, + "end": 19759.08, + "probability": 0.9538 + }, + { + "start": 19759.9, + "end": 19762.56, + "probability": 0.9284 + }, + { + "start": 19763.1, + "end": 19764.64, + "probability": 0.9541 + }, + { + "start": 19764.82, + "end": 19766.15, + "probability": 0.9668 + }, + { + "start": 19766.84, + "end": 19770.28, + "probability": 0.6666 + }, + { + "start": 19770.44, + "end": 19771.76, + "probability": 0.9274 + }, + { + "start": 19772.26, + "end": 19774.48, + "probability": 0.7364 + }, + { + "start": 19775.26, + "end": 19776.18, + "probability": 0.9312 + }, + { + "start": 19776.26, + "end": 19777.04, + "probability": 0.886 + }, + { + "start": 19777.4, + "end": 19783.42, + "probability": 0.9779 + }, + { + "start": 19783.96, + "end": 19784.22, + "probability": 0.6466 + }, + { + "start": 19784.84, + "end": 19787.04, + "probability": 0.7759 + }, + { + "start": 19787.66, + "end": 19788.74, + "probability": 0.0745 + }, + { + "start": 19789.22, + "end": 19790.2, + "probability": 0.3155 + }, + { + "start": 19790.36, + "end": 19791.02, + "probability": 0.7181 + }, + { + "start": 19791.14, + "end": 19791.54, + "probability": 0.7032 + }, + { + "start": 19791.62, + "end": 19791.98, + "probability": 0.5149 + }, + { + "start": 19791.98, + "end": 19794.9, + "probability": 0.9353 + }, + { + "start": 19794.96, + "end": 19796.26, + "probability": 0.9531 + }, + { + "start": 19796.3, + "end": 19796.67, + "probability": 0.8105 + }, + { + "start": 19797.18, + "end": 19800.96, + "probability": 0.9963 + }, + { + "start": 19800.96, + "end": 19805.86, + "probability": 0.9988 + }, + { + "start": 19806.14, + "end": 19807.06, + "probability": 0.6286 + }, + { + "start": 19807.8, + "end": 19809.62, + "probability": 0.9174 + }, + { + "start": 19809.66, + "end": 19812.7, + "probability": 0.9929 + }, + { + "start": 19813.52, + "end": 19814.4, + "probability": 0.9733 + }, + { + "start": 19814.52, + "end": 19816.22, + "probability": 0.6798 + }, + { + "start": 19816.36, + "end": 19817.32, + "probability": 0.802 + }, + { + "start": 19817.58, + "end": 19819.02, + "probability": 0.9928 + }, + { + "start": 19819.1, + "end": 19820.74, + "probability": 0.976 + }, + { + "start": 19821.18, + "end": 19825.72, + "probability": 0.4972 + }, + { + "start": 19825.82, + "end": 19825.9, + "probability": 0.3656 + }, + { + "start": 19826.0, + "end": 19827.32, + "probability": 0.8733 + }, + { + "start": 19827.5, + "end": 19828.99, + "probability": 0.8389 + }, + { + "start": 19829.5, + "end": 19830.6, + "probability": 0.833 + }, + { + "start": 19830.78, + "end": 19833.4, + "probability": 0.7232 + }, + { + "start": 19833.48, + "end": 19834.44, + "probability": 0.9587 + }, + { + "start": 19834.52, + "end": 19835.92, + "probability": 0.5479 + }, + { + "start": 19836.14, + "end": 19839.6, + "probability": 0.9926 + }, + { + "start": 19839.68, + "end": 19840.6, + "probability": 0.8794 + }, + { + "start": 19840.72, + "end": 19841.74, + "probability": 0.7795 + }, + { + "start": 19842.28, + "end": 19844.34, + "probability": 0.9985 + }, + { + "start": 19844.42, + "end": 19845.72, + "probability": 0.9285 + }, + { + "start": 19845.98, + "end": 19849.2, + "probability": 0.981 + }, + { + "start": 19849.4, + "end": 19851.96, + "probability": 0.9889 + }, + { + "start": 19852.24, + "end": 19855.24, + "probability": 0.8043 + }, + { + "start": 19855.58, + "end": 19856.86, + "probability": 0.9966 + }, + { + "start": 19856.96, + "end": 19857.42, + "probability": 0.8524 + }, + { + "start": 19859.7, + "end": 19862.76, + "probability": 0.6541 + }, + { + "start": 19863.54, + "end": 19865.44, + "probability": 0.4455 + }, + { + "start": 19866.26, + "end": 19867.96, + "probability": 0.4753 + }, + { + "start": 19868.9, + "end": 19869.1, + "probability": 0.0901 + }, + { + "start": 19869.1, + "end": 19871.46, + "probability": 0.173 + }, + { + "start": 19871.52, + "end": 19873.44, + "probability": 0.6719 + }, + { + "start": 19873.52, + "end": 19875.22, + "probability": 0.7871 + }, + { + "start": 19875.38, + "end": 19876.88, + "probability": 0.3334 + }, + { + "start": 19876.92, + "end": 19877.44, + "probability": 0.9237 + }, + { + "start": 19878.0, + "end": 19878.32, + "probability": 0.0052 + }, + { + "start": 19879.82, + "end": 19880.78, + "probability": 0.2285 + }, + { + "start": 19884.26, + "end": 19887.82, + "probability": 0.115 + }, + { + "start": 19888.5, + "end": 19888.68, + "probability": 0.0014 + }, + { + "start": 19890.8, + "end": 19891.7, + "probability": 0.0334 + }, + { + "start": 19894.08, + "end": 19894.62, + "probability": 0.1924 + }, + { + "start": 19895.92, + "end": 19897.02, + "probability": 0.2127 + }, + { + "start": 19922.36, + "end": 19925.08, + "probability": 0.3236 + }, + { + "start": 19929.54, + "end": 19930.08, + "probability": 0.3884 + }, + { + "start": 19936.5, + "end": 19938.9, + "probability": 0.6588 + }, + { + "start": 19942.04, + "end": 19943.38, + "probability": 0.8331 + }, + { + "start": 19944.02, + "end": 19945.96, + "probability": 0.9926 + }, + { + "start": 19946.7, + "end": 19949.78, + "probability": 0.9894 + }, + { + "start": 19950.3, + "end": 19955.96, + "probability": 0.9978 + }, + { + "start": 19956.76, + "end": 19957.98, + "probability": 0.9958 + }, + { + "start": 19958.68, + "end": 19961.76, + "probability": 0.9961 + }, + { + "start": 19962.66, + "end": 19967.54, + "probability": 0.9775 + }, + { + "start": 19968.1, + "end": 19969.42, + "probability": 0.6052 + }, + { + "start": 19970.66, + "end": 19972.18, + "probability": 0.7584 + }, + { + "start": 19972.86, + "end": 19978.06, + "probability": 0.9028 + }, + { + "start": 19979.98, + "end": 19981.48, + "probability": 0.9851 + }, + { + "start": 19982.9, + "end": 19983.8, + "probability": 0.9321 + }, + { + "start": 19984.74, + "end": 19987.86, + "probability": 0.7647 + }, + { + "start": 19990.72, + "end": 19992.5, + "probability": 0.7415 + }, + { + "start": 19992.78, + "end": 19998.28, + "probability": 0.887 + }, + { + "start": 19999.48, + "end": 20001.98, + "probability": 0.8746 + }, + { + "start": 20002.8, + "end": 20005.32, + "probability": 0.9147 + }, + { + "start": 20006.84, + "end": 20007.74, + "probability": 0.891 + }, + { + "start": 20008.28, + "end": 20011.42, + "probability": 0.7084 + }, + { + "start": 20012.48, + "end": 20014.68, + "probability": 0.8872 + }, + { + "start": 20016.3, + "end": 20022.68, + "probability": 0.6898 + }, + { + "start": 20023.22, + "end": 20024.7, + "probability": 0.4049 + }, + { + "start": 20025.18, + "end": 20032.36, + "probability": 0.8999 + }, + { + "start": 20033.84, + "end": 20036.74, + "probability": 0.7885 + }, + { + "start": 20037.62, + "end": 20038.7, + "probability": 0.6625 + }, + { + "start": 20039.26, + "end": 20044.14, + "probability": 0.9876 + }, + { + "start": 20044.64, + "end": 20045.68, + "probability": 0.8953 + }, + { + "start": 20046.4, + "end": 20048.54, + "probability": 0.7503 + }, + { + "start": 20053.9, + "end": 20056.88, + "probability": 0.0485 + }, + { + "start": 20057.66, + "end": 20058.0, + "probability": 0.0755 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.5422 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.3065 + }, + { + "start": 20058.0, + "end": 20058.0, + "probability": 0.0191 + }, + { + "start": 20058.0, + "end": 20064.0, + "probability": 0.0251 + }, + { + "start": 20064.24, + "end": 20073.44, + "probability": 0.7413 + }, + { + "start": 20074.02, + "end": 20079.84, + "probability": 0.9556 + }, + { + "start": 20080.18, + "end": 20083.62, + "probability": 0.6578 + }, + { + "start": 20084.02, + "end": 20090.62, + "probability": 0.9816 + }, + { + "start": 20091.16, + "end": 20092.24, + "probability": 0.6155 + }, + { + "start": 20092.68, + "end": 20094.58, + "probability": 0.9257 + }, + { + "start": 20094.92, + "end": 20097.0, + "probability": 0.6981 + }, + { + "start": 20097.26, + "end": 20099.86, + "probability": 0.8853 + }, + { + "start": 20100.16, + "end": 20106.38, + "probability": 0.8828 + }, + { + "start": 20106.78, + "end": 20109.32, + "probability": 0.3774 + }, + { + "start": 20109.76, + "end": 20111.96, + "probability": 0.6777 + }, + { + "start": 20112.14, + "end": 20112.74, + "probability": 0.6134 + }, + { + "start": 20113.66, + "end": 20117.56, + "probability": 0.948 + }, + { + "start": 20118.18, + "end": 20122.56, + "probability": 0.9482 + }, + { + "start": 20124.04, + "end": 20129.26, + "probability": 0.9399 + }, + { + "start": 20129.26, + "end": 20135.46, + "probability": 0.9033 + }, + { + "start": 20135.66, + "end": 20136.6, + "probability": 0.5191 + }, + { + "start": 20137.24, + "end": 20144.24, + "probability": 0.7343 + }, + { + "start": 20144.68, + "end": 20149.42, + "probability": 0.9108 + }, + { + "start": 20149.76, + "end": 20152.47, + "probability": 0.7839 + }, + { + "start": 20153.08, + "end": 20159.22, + "probability": 0.7783 + }, + { + "start": 20159.66, + "end": 20165.42, + "probability": 0.974 + }, + { + "start": 20165.86, + "end": 20167.87, + "probability": 0.9534 + }, + { + "start": 20168.56, + "end": 20168.68, + "probability": 0.1494 + }, + { + "start": 20169.0, + "end": 20171.64, + "probability": 0.7663 + }, + { + "start": 20172.36, + "end": 20173.86, + "probability": 0.019 + }, + { + "start": 20173.86, + "end": 20173.86, + "probability": 0.0016 + }, + { + "start": 20173.86, + "end": 20177.94, + "probability": 0.5908 + }, + { + "start": 20178.5, + "end": 20178.64, + "probability": 0.378 + }, + { + "start": 20178.64, + "end": 20179.64, + "probability": 0.5713 + }, + { + "start": 20180.16, + "end": 20183.22, + "probability": 0.8342 + }, + { + "start": 20183.62, + "end": 20183.78, + "probability": 0.0843 + }, + { + "start": 20183.78, + "end": 20185.82, + "probability": 0.0089 + }, + { + "start": 20185.82, + "end": 20187.77, + "probability": 0.8372 + }, + { + "start": 20188.44, + "end": 20188.98, + "probability": 0.8488 + }, + { + "start": 20189.44, + "end": 20192.7, + "probability": 0.9333 + }, + { + "start": 20192.7, + "end": 20195.7, + "probability": 0.8818 + }, + { + "start": 20196.14, + "end": 20196.79, + "probability": 0.5993 + }, + { + "start": 20197.24, + "end": 20198.42, + "probability": 0.903 + }, + { + "start": 20198.76, + "end": 20200.52, + "probability": 0.4502 + }, + { + "start": 20200.9, + "end": 20200.9, + "probability": 0.1661 + }, + { + "start": 20200.9, + "end": 20202.94, + "probability": 0.498 + }, + { + "start": 20203.16, + "end": 20208.22, + "probability": 0.9808 + }, + { + "start": 20208.4, + "end": 20210.02, + "probability": 0.9502 + }, + { + "start": 20210.04, + "end": 20212.78, + "probability": 0.9569 + }, + { + "start": 20212.78, + "end": 20215.18, + "probability": 0.7177 + }, + { + "start": 20215.42, + "end": 20215.96, + "probability": 0.3341 + }, + { + "start": 20215.98, + "end": 20216.16, + "probability": 0.0782 + }, + { + "start": 20216.16, + "end": 20217.7, + "probability": 0.4879 + }, + { + "start": 20218.02, + "end": 20219.44, + "probability": 0.4522 + }, + { + "start": 20219.74, + "end": 20221.44, + "probability": 0.3518 + }, + { + "start": 20221.78, + "end": 20223.02, + "probability": 0.6203 + }, + { + "start": 20223.5, + "end": 20226.76, + "probability": 0.9171 + }, + { + "start": 20227.76, + "end": 20228.52, + "probability": 0.8987 + }, + { + "start": 20228.84, + "end": 20233.5, + "probability": 0.9948 + }, + { + "start": 20233.78, + "end": 20242.7, + "probability": 0.9831 + }, + { + "start": 20243.54, + "end": 20246.48, + "probability": 0.6544 + }, + { + "start": 20247.24, + "end": 20250.6, + "probability": 0.98 + }, + { + "start": 20250.94, + "end": 20254.92, + "probability": 0.979 + }, + { + "start": 20255.62, + "end": 20262.02, + "probability": 0.9714 + }, + { + "start": 20262.08, + "end": 20267.54, + "probability": 0.9463 + }, + { + "start": 20267.92, + "end": 20272.52, + "probability": 0.9956 + }, + { + "start": 20273.2, + "end": 20278.54, + "probability": 0.8864 + }, + { + "start": 20278.86, + "end": 20279.16, + "probability": 0.7424 + }, + { + "start": 20279.76, + "end": 20281.48, + "probability": 0.8784 + }, + { + "start": 20282.5, + "end": 20283.72, + "probability": 0.9389 + }, + { + "start": 20283.78, + "end": 20290.36, + "probability": 0.9845 + }, + { + "start": 20292.02, + "end": 20293.26, + "probability": 0.56 + }, + { + "start": 20293.26, + "end": 20295.9, + "probability": 0.9922 + }, + { + "start": 20295.96, + "end": 20298.8, + "probability": 0.8697 + }, + { + "start": 20299.1, + "end": 20302.16, + "probability": 0.7584 + }, + { + "start": 20302.82, + "end": 20305.64, + "probability": 0.9453 + }, + { + "start": 20306.4, + "end": 20308.92, + "probability": 0.6852 + }, + { + "start": 20316.58, + "end": 20319.06, + "probability": 0.5736 + }, + { + "start": 20319.56, + "end": 20320.04, + "probability": 0.0022 + }, + { + "start": 20321.04, + "end": 20321.26, + "probability": 0.0 + }, + { + "start": 20328.94, + "end": 20331.56, + "probability": 0.0955 + }, + { + "start": 20332.42, + "end": 20336.82, + "probability": 0.8076 + }, + { + "start": 20338.12, + "end": 20343.1, + "probability": 0.9858 + }, + { + "start": 20344.42, + "end": 20350.58, + "probability": 0.9936 + }, + { + "start": 20351.54, + "end": 20353.7, + "probability": 0.8717 + }, + { + "start": 20353.8, + "end": 20355.46, + "probability": 0.9626 + }, + { + "start": 20356.28, + "end": 20357.28, + "probability": 0.021 + }, + { + "start": 20357.71, + "end": 20362.34, + "probability": 0.6374 + }, + { + "start": 20363.98, + "end": 20364.74, + "probability": 0.402 + }, + { + "start": 20366.04, + "end": 20369.18, + "probability": 0.487 + }, + { + "start": 20373.59, + "end": 20374.36, + "probability": 0.0445 + }, + { + "start": 20381.86, + "end": 20383.7, + "probability": 0.1098 + }, + { + "start": 20384.38, + "end": 20389.24, + "probability": 0.8806 + }, + { + "start": 20390.56, + "end": 20396.68, + "probability": 0.9898 + }, + { + "start": 20397.24, + "end": 20398.4, + "probability": 0.5052 + }, + { + "start": 20398.4, + "end": 20401.04, + "probability": 0.9917 + }, + { + "start": 20401.22, + "end": 20403.95, + "probability": 0.8382 + }, + { + "start": 20405.21, + "end": 20411.3, + "probability": 0.9905 + }, + { + "start": 20414.72, + "end": 20417.3, + "probability": 0.4328 + }, + { + "start": 20418.28, + "end": 20422.24, + "probability": 0.9724 + }, + { + "start": 20428.34, + "end": 20431.56, + "probability": 0.7187 + }, + { + "start": 20431.62, + "end": 20433.46, + "probability": 0.9985 + }, + { + "start": 20443.52, + "end": 20444.54, + "probability": 0.4977 + }, + { + "start": 20444.64, + "end": 20449.68, + "probability": 0.9646 + }, + { + "start": 20450.82, + "end": 20455.26, + "probability": 0.9746 + }, + { + "start": 20455.8, + "end": 20458.58, + "probability": 0.945 + }, + { + "start": 20458.72, + "end": 20459.92, + "probability": 0.8303 + }, + { + "start": 20461.28, + "end": 20462.68, + "probability": 0.9065 + }, + { + "start": 20463.42, + "end": 20466.92, + "probability": 0.9927 + }, + { + "start": 20467.86, + "end": 20472.34, + "probability": 0.995 + }, + { + "start": 20472.46, + "end": 20478.08, + "probability": 0.9968 + }, + { + "start": 20478.98, + "end": 20483.08, + "probability": 0.7857 + }, + { + "start": 20483.8, + "end": 20484.52, + "probability": 0.4328 + }, + { + "start": 20484.66, + "end": 20489.29, + "probability": 0.9766 + }, + { + "start": 20489.58, + "end": 20493.54, + "probability": 0.9277 + }, + { + "start": 20494.0, + "end": 20495.54, + "probability": 0.9592 + }, + { + "start": 20495.96, + "end": 20496.48, + "probability": 0.6962 + }, + { + "start": 20496.6, + "end": 20496.98, + "probability": 0.9685 + }, + { + "start": 20497.16, + "end": 20499.04, + "probability": 0.8773 + }, + { + "start": 20499.16, + "end": 20500.98, + "probability": 0.9369 + }, + { + "start": 20501.22, + "end": 20502.22, + "probability": 0.9426 + }, + { + "start": 20502.68, + "end": 20503.72, + "probability": 0.7994 + }, + { + "start": 20503.8, + "end": 20504.6, + "probability": 0.9421 + }, + { + "start": 20504.7, + "end": 20506.18, + "probability": 0.9729 + }, + { + "start": 20506.68, + "end": 20509.1, + "probability": 0.9362 + }, + { + "start": 20509.52, + "end": 20514.12, + "probability": 0.9785 + }, + { + "start": 20514.4, + "end": 20516.56, + "probability": 0.9894 + }, + { + "start": 20517.14, + "end": 20520.74, + "probability": 0.8716 + }, + { + "start": 20521.26, + "end": 20523.6, + "probability": 0.9927 + }, + { + "start": 20524.04, + "end": 20524.68, + "probability": 0.8116 + }, + { + "start": 20528.8, + "end": 20530.42, + "probability": 0.5158 + }, + { + "start": 20530.52, + "end": 20531.1, + "probability": 0.8563 + }, + { + "start": 20531.62, + "end": 20532.9, + "probability": 0.7024 + }, + { + "start": 20533.02, + "end": 20534.16, + "probability": 0.754 + }, + { + "start": 20534.24, + "end": 20536.6, + "probability": 0.9782 + }, + { + "start": 20536.78, + "end": 20542.08, + "probability": 0.7468 + }, + { + "start": 20546.98, + "end": 20548.28, + "probability": 0.1958 + }, + { + "start": 20548.28, + "end": 20548.28, + "probability": 0.012 + }, + { + "start": 20548.28, + "end": 20551.02, + "probability": 0.0752 + }, + { + "start": 20552.1, + "end": 20554.1, + "probability": 0.0171 + }, + { + "start": 20554.96, + "end": 20555.36, + "probability": 0.8122 + }, + { + "start": 20555.98, + "end": 20556.7, + "probability": 0.1617 + }, + { + "start": 20557.05, + "end": 20560.34, + "probability": 0.0315 + }, + { + "start": 20563.48, + "end": 20565.56, + "probability": 0.0725 + }, + { + "start": 20565.98, + "end": 20567.98, + "probability": 0.0245 + }, + { + "start": 20569.04, + "end": 20569.04, + "probability": 0.0374 + }, + { + "start": 20569.06, + "end": 20570.05, + "probability": 0.1944 + }, + { + "start": 20571.27, + "end": 20573.78, + "probability": 0.0667 + }, + { + "start": 20576.02, + "end": 20578.2, + "probability": 0.1028 + }, + { + "start": 20581.24, + "end": 20582.98, + "probability": 0.5171 + }, + { + "start": 20598.38, + "end": 20599.64, + "probability": 0.2752 + }, + { + "start": 20601.26, + "end": 20606.34, + "probability": 0.0199 + }, + { + "start": 20607.02, + "end": 20607.14, + "probability": 0.0686 + }, + { + "start": 20607.14, + "end": 20607.2, + "probability": 0.0128 + }, + { + "start": 20607.2, + "end": 20607.94, + "probability": 0.0721 + }, + { + "start": 20607.94, + "end": 20608.48, + "probability": 0.0413 + }, + { + "start": 20608.66, + "end": 20611.72, + "probability": 0.0456 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.0, + "end": 20613.0, + "probability": 0.0 + }, + { + "start": 20613.24, + "end": 20613.64, + "probability": 0.3807 + }, + { + "start": 20613.64, + "end": 20613.64, + "probability": 0.1137 + }, + { + "start": 20613.64, + "end": 20613.64, + "probability": 0.1028 + }, + { + "start": 20613.64, + "end": 20616.62, + "probability": 0.1431 + }, + { + "start": 20617.06, + "end": 20618.94, + "probability": 0.2628 + }, + { + "start": 20619.36, + "end": 20622.8, + "probability": 0.9962 + }, + { + "start": 20623.38, + "end": 20624.38, + "probability": 0.6978 + }, + { + "start": 20625.22, + "end": 20628.92, + "probability": 0.9977 + }, + { + "start": 20630.36, + "end": 20633.2, + "probability": 0.757 + }, + { + "start": 20634.52, + "end": 20636.6, + "probability": 0.4681 + }, + { + "start": 20650.9, + "end": 20651.68, + "probability": 0.6648 + }, + { + "start": 20653.36, + "end": 20657.06, + "probability": 0.6875 + }, + { + "start": 20658.04, + "end": 20662.68, + "probability": 0.9863 + }, + { + "start": 20663.4, + "end": 20664.52, + "probability": 0.9923 + }, + { + "start": 20664.98, + "end": 20668.24, + "probability": 0.9834 + }, + { + "start": 20668.28, + "end": 20671.3, + "probability": 0.9924 + }, + { + "start": 20672.04, + "end": 20678.44, + "probability": 0.8158 + }, + { + "start": 20679.04, + "end": 20679.14, + "probability": 0.322 + }, + { + "start": 20679.14, + "end": 20681.5, + "probability": 0.9919 + }, + { + "start": 20682.12, + "end": 20685.04, + "probability": 0.8876 + }, + { + "start": 20685.82, + "end": 20689.2, + "probability": 0.9913 + }, + { + "start": 20689.52, + "end": 20693.18, + "probability": 0.9614 + }, + { + "start": 20693.7, + "end": 20695.34, + "probability": 0.9158 + }, + { + "start": 20696.04, + "end": 20700.06, + "probability": 0.9906 + }, + { + "start": 20700.82, + "end": 20703.12, + "probability": 0.8984 + }, + { + "start": 20703.56, + "end": 20708.72, + "probability": 0.9939 + }, + { + "start": 20708.72, + "end": 20715.2, + "probability": 0.9918 + }, + { + "start": 20716.28, + "end": 20719.56, + "probability": 0.9798 + }, + { + "start": 20720.08, + "end": 20723.8, + "probability": 0.9941 + }, + { + "start": 20724.38, + "end": 20726.7, + "probability": 0.638 + }, + { + "start": 20727.3, + "end": 20728.68, + "probability": 0.8519 + }, + { + "start": 20729.1, + "end": 20730.64, + "probability": 0.8455 + }, + { + "start": 20731.36, + "end": 20732.93, + "probability": 0.9368 + }, + { + "start": 20733.46, + "end": 20740.16, + "probability": 0.9644 + }, + { + "start": 20740.82, + "end": 20743.48, + "probability": 0.9938 + }, + { + "start": 20743.56, + "end": 20746.36, + "probability": 0.9762 + }, + { + "start": 20746.94, + "end": 20747.62, + "probability": 0.6183 + }, + { + "start": 20747.72, + "end": 20751.52, + "probability": 0.9315 + }, + { + "start": 20752.08, + "end": 20755.3, + "probability": 0.8483 + }, + { + "start": 20755.78, + "end": 20760.7, + "probability": 0.9342 + }, + { + "start": 20760.7, + "end": 20766.96, + "probability": 0.9888 + }, + { + "start": 20767.68, + "end": 20768.12, + "probability": 0.5847 + }, + { + "start": 20768.14, + "end": 20769.9, + "probability": 0.5677 + }, + { + "start": 20770.3, + "end": 20774.8, + "probability": 0.9775 + }, + { + "start": 20775.46, + "end": 20779.4, + "probability": 0.9822 + }, + { + "start": 20780.36, + "end": 20782.56, + "probability": 0.871 + }, + { + "start": 20783.1, + "end": 20786.16, + "probability": 0.9886 + }, + { + "start": 20786.7, + "end": 20787.98, + "probability": 0.7218 + }, + { + "start": 20788.44, + "end": 20790.66, + "probability": 0.8501 + }, + { + "start": 20791.12, + "end": 20791.58, + "probability": 0.4684 + }, + { + "start": 20792.04, + "end": 20795.12, + "probability": 0.9244 + }, + { + "start": 20795.62, + "end": 20797.8, + "probability": 0.9786 + }, + { + "start": 20798.1, + "end": 20802.44, + "probability": 0.9332 + }, + { + "start": 20802.96, + "end": 20804.24, + "probability": 0.5102 + }, + { + "start": 20805.14, + "end": 20807.92, + "probability": 0.9684 + }, + { + "start": 20808.66, + "end": 20811.62, + "probability": 0.9044 + }, + { + "start": 20812.16, + "end": 20813.18, + "probability": 0.9012 + }, + { + "start": 20813.96, + "end": 20818.78, + "probability": 0.9488 + }, + { + "start": 20819.16, + "end": 20821.08, + "probability": 0.8085 + }, + { + "start": 20821.86, + "end": 20825.44, + "probability": 0.9919 + }, + { + "start": 20826.24, + "end": 20828.56, + "probability": 0.9902 + }, + { + "start": 20829.66, + "end": 20830.98, + "probability": 0.8314 + }, + { + "start": 20831.6, + "end": 20833.16, + "probability": 0.9993 + }, + { + "start": 20833.54, + "end": 20836.32, + "probability": 0.9901 + }, + { + "start": 20837.12, + "end": 20840.38, + "probability": 0.5776 + }, + { + "start": 20841.08, + "end": 20843.42, + "probability": 0.9868 + }, + { + "start": 20843.42, + "end": 20847.92, + "probability": 0.9907 + }, + { + "start": 20848.46, + "end": 20853.7, + "probability": 0.9976 + }, + { + "start": 20854.36, + "end": 20856.76, + "probability": 0.9956 + }, + { + "start": 20857.3, + "end": 20859.66, + "probability": 0.8831 + }, + { + "start": 20860.36, + "end": 20863.04, + "probability": 0.8258 + }, + { + "start": 20863.46, + "end": 20866.5, + "probability": 0.9878 + }, + { + "start": 20867.38, + "end": 20869.45, + "probability": 0.8623 + }, + { + "start": 20870.46, + "end": 20872.58, + "probability": 0.9475 + }, + { + "start": 20873.0, + "end": 20874.06, + "probability": 0.9838 + }, + { + "start": 20874.24, + "end": 20875.37, + "probability": 0.9751 + }, + { + "start": 20876.02, + "end": 20878.0, + "probability": 0.7811 + }, + { + "start": 20878.64, + "end": 20883.52, + "probability": 0.9575 + }, + { + "start": 20883.68, + "end": 20884.14, + "probability": 0.6155 + }, + { + "start": 20884.16, + "end": 20887.78, + "probability": 0.9445 + }, + { + "start": 20888.28, + "end": 20890.42, + "probability": 0.976 + }, + { + "start": 20890.64, + "end": 20894.0, + "probability": 0.8826 + }, + { + "start": 20894.68, + "end": 20897.58, + "probability": 0.9948 + }, + { + "start": 20898.06, + "end": 20900.32, + "probability": 0.9793 + }, + { + "start": 20900.96, + "end": 20903.56, + "probability": 0.9783 + }, + { + "start": 20904.5, + "end": 20907.82, + "probability": 0.9436 + }, + { + "start": 20908.76, + "end": 20913.41, + "probability": 0.9283 + }, + { + "start": 20913.78, + "end": 20917.36, + "probability": 0.9995 + }, + { + "start": 20917.98, + "end": 20921.68, + "probability": 0.9991 + }, + { + "start": 20922.54, + "end": 20924.1, + "probability": 0.9434 + }, + { + "start": 20925.04, + "end": 20928.5, + "probability": 0.748 + }, + { + "start": 20928.58, + "end": 20929.7, + "probability": 0.706 + }, + { + "start": 20929.78, + "end": 20930.34, + "probability": 0.7951 + }, + { + "start": 20930.58, + "end": 20933.0, + "probability": 0.9245 + }, + { + "start": 20933.6, + "end": 20935.42, + "probability": 0.931 + }, + { + "start": 20936.3, + "end": 20940.93, + "probability": 0.97 + }, + { + "start": 20942.0, + "end": 20946.0, + "probability": 0.9976 + }, + { + "start": 20946.0, + "end": 20952.16, + "probability": 0.9977 + }, + { + "start": 20952.26, + "end": 20954.44, + "probability": 0.8085 + }, + { + "start": 20955.42, + "end": 20958.58, + "probability": 0.9984 + }, + { + "start": 20958.68, + "end": 20961.55, + "probability": 0.9956 + }, + { + "start": 20962.58, + "end": 20968.96, + "probability": 0.9822 + }, + { + "start": 20968.96, + "end": 20973.64, + "probability": 0.9941 + }, + { + "start": 20974.32, + "end": 20977.3, + "probability": 0.9933 + }, + { + "start": 20977.4, + "end": 20977.86, + "probability": 0.7527 + }, + { + "start": 20978.32, + "end": 20981.26, + "probability": 0.9841 + }, + { + "start": 20981.32, + "end": 20984.9, + "probability": 0.9947 + }, + { + "start": 20984.9, + "end": 20989.24, + "probability": 0.9953 + }, + { + "start": 20990.14, + "end": 20994.12, + "probability": 0.6755 + }, + { + "start": 20994.6, + "end": 20997.26, + "probability": 0.9918 + }, + { + "start": 20997.26, + "end": 21000.28, + "probability": 0.7939 + }, + { + "start": 21000.82, + "end": 21002.88, + "probability": 0.8982 + }, + { + "start": 21003.7, + "end": 21008.7, + "probability": 0.9912 + }, + { + "start": 21009.3, + "end": 21013.38, + "probability": 0.9707 + }, + { + "start": 21013.8, + "end": 21017.76, + "probability": 0.9878 + }, + { + "start": 21018.54, + "end": 21020.16, + "probability": 0.844 + }, + { + "start": 21020.86, + "end": 21022.82, + "probability": 0.7493 + }, + { + "start": 21022.82, + "end": 21023.4, + "probability": 0.5778 + }, + { + "start": 21023.72, + "end": 21026.78, + "probability": 0.5449 + }, + { + "start": 21026.86, + "end": 21031.36, + "probability": 0.7248 + }, + { + "start": 21031.36, + "end": 21034.86, + "probability": 0.9869 + }, + { + "start": 21034.86, + "end": 21039.76, + "probability": 0.9943 + }, + { + "start": 21039.76, + "end": 21044.16, + "probability": 0.9932 + }, + { + "start": 21045.0, + "end": 21049.04, + "probability": 0.8257 + }, + { + "start": 21049.7, + "end": 21051.22, + "probability": 0.6443 + }, + { + "start": 21052.18, + "end": 21055.08, + "probability": 0.9463 + }, + { + "start": 21055.16, + "end": 21058.04, + "probability": 0.7497 + }, + { + "start": 21058.12, + "end": 21058.78, + "probability": 0.7048 + }, + { + "start": 21059.28, + "end": 21065.0, + "probability": 0.9902 + }, + { + "start": 21065.5, + "end": 21066.02, + "probability": 0.9593 + }, + { + "start": 21066.1, + "end": 21066.52, + "probability": 0.977 + }, + { + "start": 21066.6, + "end": 21067.18, + "probability": 0.9746 + }, + { + "start": 21067.5, + "end": 21068.12, + "probability": 0.8398 + }, + { + "start": 21068.6, + "end": 21072.98, + "probability": 0.9838 + }, + { + "start": 21073.7, + "end": 21074.9, + "probability": 0.8746 + }, + { + "start": 21075.0, + "end": 21078.8, + "probability": 0.9868 + }, + { + "start": 21079.78, + "end": 21082.88, + "probability": 0.9401 + }, + { + "start": 21083.36, + "end": 21085.64, + "probability": 0.9801 + }, + { + "start": 21085.76, + "end": 21086.44, + "probability": 0.5509 + }, + { + "start": 21087.14, + "end": 21090.66, + "probability": 0.9951 + }, + { + "start": 21090.72, + "end": 21094.26, + "probability": 0.9395 + }, + { + "start": 21094.26, + "end": 21097.76, + "probability": 0.984 + }, + { + "start": 21098.32, + "end": 21100.22, + "probability": 0.6527 + }, + { + "start": 21100.4, + "end": 21105.94, + "probability": 0.9915 + }, + { + "start": 21106.6, + "end": 21109.38, + "probability": 0.9937 + }, + { + "start": 21109.38, + "end": 21113.86, + "probability": 0.998 + }, + { + "start": 21114.4, + "end": 21115.64, + "probability": 0.7585 + }, + { + "start": 21115.8, + "end": 21120.26, + "probability": 0.9844 + }, + { + "start": 21121.16, + "end": 21128.34, + "probability": 0.9818 + }, + { + "start": 21128.7, + "end": 21130.64, + "probability": 0.8774 + }, + { + "start": 21131.06, + "end": 21132.85, + "probability": 0.9746 + }, + { + "start": 21133.32, + "end": 21137.0, + "probability": 0.9497 + }, + { + "start": 21137.3, + "end": 21137.84, + "probability": 0.6836 + }, + { + "start": 21140.02, + "end": 21141.7, + "probability": 0.8066 + }, + { + "start": 21142.22, + "end": 21143.54, + "probability": 0.801 + }, + { + "start": 21143.8, + "end": 21146.98, + "probability": 0.9806 + }, + { + "start": 21148.12, + "end": 21149.54, + "probability": 0.7745 + }, + { + "start": 21150.44, + "end": 21151.22, + "probability": 0.9473 + }, + { + "start": 21152.08, + "end": 21154.38, + "probability": 0.9252 + }, + { + "start": 21155.36, + "end": 21157.4, + "probability": 0.8105 + }, + { + "start": 21160.92, + "end": 21162.38, + "probability": 0.9093 + }, + { + "start": 21170.3, + "end": 21173.52, + "probability": 0.7082 + }, + { + "start": 21174.16, + "end": 21175.9, + "probability": 0.6361 + }, + { + "start": 21176.04, + "end": 21178.34, + "probability": 0.927 + }, + { + "start": 21178.98, + "end": 21183.22, + "probability": 0.9932 + }, + { + "start": 21185.04, + "end": 21185.3, + "probability": 0.0504 + }, + { + "start": 21185.3, + "end": 21187.44, + "probability": 0.0245 + }, + { + "start": 21188.4, + "end": 21191.48, + "probability": 0.4664 + }, + { + "start": 21192.2, + "end": 21195.69, + "probability": 0.0128 + }, + { + "start": 21196.92, + "end": 21199.76, + "probability": 0.2232 + }, + { + "start": 21199.88, + "end": 21202.72, + "probability": 0.328 + }, + { + "start": 21204.1, + "end": 21207.34, + "probability": 0.1719 + }, + { + "start": 21207.72, + "end": 21208.5, + "probability": 0.3327 + }, + { + "start": 21209.38, + "end": 21211.28, + "probability": 0.4611 + }, + { + "start": 21212.2, + "end": 21215.28, + "probability": 0.1267 + }, + { + "start": 21216.04, + "end": 21219.1, + "probability": 0.5832 + }, + { + "start": 21219.86, + "end": 21227.84, + "probability": 0.3963 + }, + { + "start": 21228.68, + "end": 21228.86, + "probability": 0.5055 + }, + { + "start": 21230.66, + "end": 21236.02, + "probability": 0.2823 + }, + { + "start": 21236.56, + "end": 21237.74, + "probability": 0.2111 + }, + { + "start": 21238.84, + "end": 21244.68, + "probability": 0.4537 + }, + { + "start": 21245.42, + "end": 21245.6, + "probability": 0.004 + }, + { + "start": 21246.0, + "end": 21246.18, + "probability": 0.0714 + }, + { + "start": 21246.18, + "end": 21246.24, + "probability": 0.0188 + }, + { + "start": 21246.24, + "end": 21250.22, + "probability": 0.0445 + }, + { + "start": 21250.76, + "end": 21252.2, + "probability": 0.0443 + }, + { + "start": 21253.8, + "end": 21256.63, + "probability": 0.0263 + }, + { + "start": 21257.46, + "end": 21263.62, + "probability": 0.3563 + }, + { + "start": 21264.66, + "end": 21266.78, + "probability": 0.1199 + }, + { + "start": 21266.89, + "end": 21266.96, + "probability": 0.0024 + }, + { + "start": 21267.0, + "end": 21267.0, + "probability": 0.0 + }, + { + "start": 21267.0, + "end": 21267.0, + "probability": 0.0 + }, + { + "start": 21267.0, + "end": 21267.0, + "probability": 0.0 + }, + { + "start": 21267.22, + "end": 21267.46, + "probability": 0.0303 + }, + { + "start": 21267.58, + "end": 21268.32, + "probability": 0.0099 + }, + { + "start": 21268.32, + "end": 21268.4, + "probability": 0.157 + }, + { + "start": 21268.4, + "end": 21268.4, + "probability": 0.0306 + }, + { + "start": 21268.4, + "end": 21268.4, + "probability": 0.3589 + }, + { + "start": 21268.4, + "end": 21268.4, + "probability": 0.155 + }, + { + "start": 21268.4, + "end": 21270.14, + "probability": 0.5568 + }, + { + "start": 21270.34, + "end": 21273.96, + "probability": 0.6715 + }, + { + "start": 21274.14, + "end": 21275.6, + "probability": 0.8107 + }, + { + "start": 21275.68, + "end": 21275.86, + "probability": 0.1162 + }, + { + "start": 21275.86, + "end": 21276.5, + "probability": 0.1238 + }, + { + "start": 21277.28, + "end": 21278.32, + "probability": 0.581 + }, + { + "start": 21278.32, + "end": 21281.76, + "probability": 0.4151 + }, + { + "start": 21282.08, + "end": 21285.3, + "probability": 0.8505 + }, + { + "start": 21285.88, + "end": 21286.9, + "probability": 0.733 + }, + { + "start": 21286.9, + "end": 21289.22, + "probability": 0.4801 + }, + { + "start": 21291.22, + "end": 21298.7, + "probability": 0.0248 + }, + { + "start": 21298.7, + "end": 21300.14, + "probability": 0.0926 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.0, + "end": 21407.0, + "probability": 0.0 + }, + { + "start": 21407.28, + "end": 21408.16, + "probability": 0.7269 + }, + { + "start": 21408.68, + "end": 21410.46, + "probability": 0.5534 + }, + { + "start": 21410.72, + "end": 21411.46, + "probability": 0.98 + }, + { + "start": 21411.56, + "end": 21411.8, + "probability": 0.8049 + }, + { + "start": 21412.08, + "end": 21413.4, + "probability": 0.794 + }, + { + "start": 21414.28, + "end": 21416.2, + "probability": 0.8746 + }, + { + "start": 21418.26, + "end": 21419.24, + "probability": 0.8602 + }, + { + "start": 21420.22, + "end": 21421.86, + "probability": 0.9938 + }, + { + "start": 21423.48, + "end": 21424.44, + "probability": 0.9863 + }, + { + "start": 21425.18, + "end": 21426.82, + "probability": 0.9933 + }, + { + "start": 21428.04, + "end": 21428.7, + "probability": 0.578 + }, + { + "start": 21429.58, + "end": 21431.72, + "probability": 0.8401 + }, + { + "start": 21436.94, + "end": 21440.56, + "probability": 0.9362 + }, + { + "start": 21440.68, + "end": 21443.48, + "probability": 0.9395 + }, + { + "start": 21445.5, + "end": 21446.29, + "probability": 0.836 + }, + { + "start": 21450.2, + "end": 21451.66, + "probability": 0.889 + }, + { + "start": 21451.78, + "end": 21452.42, + "probability": 0.6426 + }, + { + "start": 21452.56, + "end": 21454.16, + "probability": 0.9736 + }, + { + "start": 21454.82, + "end": 21455.72, + "probability": 0.7386 + }, + { + "start": 21456.42, + "end": 21457.96, + "probability": 0.954 + }, + { + "start": 21459.86, + "end": 21462.2, + "probability": 0.9813 + }, + { + "start": 21464.06, + "end": 21467.12, + "probability": 0.983 + }, + { + "start": 21467.66, + "end": 21468.58, + "probability": 0.6202 + }, + { + "start": 21468.58, + "end": 21468.58, + "probability": 0.0865 + }, + { + "start": 21468.58, + "end": 21469.28, + "probability": 0.8363 + }, + { + "start": 21469.94, + "end": 21472.84, + "probability": 0.7955 + }, + { + "start": 21473.84, + "end": 21475.44, + "probability": 0.9694 + }, + { + "start": 21476.8, + "end": 21477.96, + "probability": 0.9897 + }, + { + "start": 21480.82, + "end": 21481.76, + "probability": 0.6261 + }, + { + "start": 21482.98, + "end": 21484.8, + "probability": 0.8112 + }, + { + "start": 21487.22, + "end": 21488.16, + "probability": 0.8573 + }, + { + "start": 21489.02, + "end": 21489.78, + "probability": 0.9121 + }, + { + "start": 21489.98, + "end": 21490.56, + "probability": 0.7786 + }, + { + "start": 21491.42, + "end": 21493.72, + "probability": 0.7119 + }, + { + "start": 21493.72, + "end": 21497.5, + "probability": 0.8765 + }, + { + "start": 21505.82, + "end": 21506.34, + "probability": 0.7327 + }, + { + "start": 21506.92, + "end": 21509.36, + "probability": 0.5947 + }, + { + "start": 21510.52, + "end": 21511.84, + "probability": 0.9076 + }, + { + "start": 21513.06, + "end": 21517.08, + "probability": 0.9865 + }, + { + "start": 21518.02, + "end": 21519.06, + "probability": 0.617 + }, + { + "start": 21519.88, + "end": 21520.68, + "probability": 0.9675 + }, + { + "start": 21521.52, + "end": 21522.86, + "probability": 0.9819 + }, + { + "start": 21523.94, + "end": 21524.54, + "probability": 0.8708 + }, + { + "start": 21525.92, + "end": 21528.76, + "probability": 0.9945 + }, + { + "start": 21530.18, + "end": 21533.42, + "probability": 0.9914 + }, + { + "start": 21534.62, + "end": 21536.68, + "probability": 0.6402 + }, + { + "start": 21538.1, + "end": 21540.16, + "probability": 0.4214 + }, + { + "start": 21541.96, + "end": 21544.12, + "probability": 0.2498 + }, + { + "start": 21545.18, + "end": 21547.96, + "probability": 0.6385 + }, + { + "start": 21548.84, + "end": 21549.34, + "probability": 0.2769 + }, + { + "start": 21550.06, + "end": 21550.68, + "probability": 0.3978 + }, + { + "start": 21551.38, + "end": 21554.62, + "probability": 0.7142 + }, + { + "start": 21555.5, + "end": 21556.96, + "probability": 0.8206 + }, + { + "start": 21557.68, + "end": 21560.28, + "probability": 0.4095 + }, + { + "start": 21560.28, + "end": 21563.09, + "probability": 0.9644 + }, + { + "start": 21563.4, + "end": 21566.58, + "probability": 0.7245 + }, + { + "start": 21567.1, + "end": 21569.64, + "probability": 0.9453 + }, + { + "start": 21570.56, + "end": 21572.0, + "probability": 0.8651 + }, + { + "start": 21572.56, + "end": 21578.0, + "probability": 0.9873 + }, + { + "start": 21578.94, + "end": 21580.58, + "probability": 0.5771 + }, + { + "start": 21580.64, + "end": 21583.68, + "probability": 0.9685 + }, + { + "start": 21583.74, + "end": 21584.32, + "probability": 0.6337 + }, + { + "start": 21585.06, + "end": 21587.8, + "probability": 0.9073 + }, + { + "start": 21587.88, + "end": 21590.25, + "probability": 0.9604 + }, + { + "start": 21592.12, + "end": 21592.12, + "probability": 0.0713 + }, + { + "start": 21592.12, + "end": 21593.45, + "probability": 0.5142 + }, + { + "start": 21594.28, + "end": 21596.76, + "probability": 0.7947 + }, + { + "start": 21597.74, + "end": 21600.88, + "probability": 0.8262 + }, + { + "start": 21601.56, + "end": 21604.32, + "probability": 0.8688 + }, + { + "start": 21604.46, + "end": 21608.04, + "probability": 0.8793 + }, + { + "start": 21608.96, + "end": 21612.24, + "probability": 0.9984 + }, + { + "start": 21612.92, + "end": 21614.62, + "probability": 0.88 + }, + { + "start": 21614.88, + "end": 21617.68, + "probability": 0.979 + }, + { + "start": 21619.08, + "end": 21619.68, + "probability": 0.9567 + }, + { + "start": 21620.3, + "end": 21622.66, + "probability": 0.7573 + }, + { + "start": 21623.28, + "end": 21624.66, + "probability": 0.8319 + }, + { + "start": 21625.28, + "end": 21627.34, + "probability": 0.9736 + }, + { + "start": 21627.44, + "end": 21628.21, + "probability": 0.6047 + }, + { + "start": 21629.16, + "end": 21630.86, + "probability": 0.7877 + }, + { + "start": 21631.42, + "end": 21633.92, + "probability": 0.985 + }, + { + "start": 21635.22, + "end": 21636.38, + "probability": 0.1538 + }, + { + "start": 21636.82, + "end": 21637.92, + "probability": 0.4576 + }, + { + "start": 21638.0, + "end": 21641.06, + "probability": 0.9836 + }, + { + "start": 21641.8, + "end": 21645.1, + "probability": 0.796 + }, + { + "start": 21645.9, + "end": 21649.88, + "probability": 0.9826 + }, + { + "start": 21650.74, + "end": 21652.36, + "probability": 0.7828 + }, + { + "start": 21653.1, + "end": 21656.94, + "probability": 0.9854 + }, + { + "start": 21657.64, + "end": 21659.24, + "probability": 0.9939 + }, + { + "start": 21659.86, + "end": 21661.98, + "probability": 0.9396 + }, + { + "start": 21663.62, + "end": 21665.38, + "probability": 0.9981 + }, + { + "start": 21666.36, + "end": 21669.0, + "probability": 0.8345 + }, + { + "start": 21671.08, + "end": 21673.06, + "probability": 0.9731 + }, + { + "start": 21673.82, + "end": 21675.36, + "probability": 0.661 + }, + { + "start": 21675.98, + "end": 21679.44, + "probability": 0.8416 + }, + { + "start": 21680.66, + "end": 21681.59, + "probability": 0.9891 + }, + { + "start": 21682.2, + "end": 21683.92, + "probability": 0.9136 + }, + { + "start": 21684.82, + "end": 21685.28, + "probability": 0.7237 + }, + { + "start": 21685.9, + "end": 21686.94, + "probability": 0.8055 + }, + { + "start": 21687.62, + "end": 21689.66, + "probability": 0.8666 + }, + { + "start": 21690.3, + "end": 21697.18, + "probability": 0.8505 + }, + { + "start": 21698.54, + "end": 21699.18, + "probability": 0.8854 + }, + { + "start": 21700.5, + "end": 21702.58, + "probability": 0.8718 + }, + { + "start": 21703.56, + "end": 21705.34, + "probability": 0.9715 + }, + { + "start": 21706.16, + "end": 21708.66, + "probability": 0.8513 + }, + { + "start": 21709.92, + "end": 21714.06, + "probability": 0.8324 + }, + { + "start": 21714.24, + "end": 21715.56, + "probability": 0.7832 + }, + { + "start": 21735.7, + "end": 21735.92, + "probability": 0.3929 + }, + { + "start": 21735.92, + "end": 21738.32, + "probability": 0.6638 + }, + { + "start": 21739.82, + "end": 21742.38, + "probability": 0.9849 + }, + { + "start": 21742.46, + "end": 21745.28, + "probability": 0.9499 + }, + { + "start": 21745.34, + "end": 21746.56, + "probability": 0.9609 + }, + { + "start": 21747.24, + "end": 21748.08, + "probability": 0.9832 + }, + { + "start": 21749.1, + "end": 21751.66, + "probability": 0.9641 + }, + { + "start": 21752.36, + "end": 21754.66, + "probability": 0.8356 + }, + { + "start": 21755.58, + "end": 21758.06, + "probability": 0.9946 + }, + { + "start": 21758.96, + "end": 21761.44, + "probability": 0.8563 + }, + { + "start": 21762.76, + "end": 21765.68, + "probability": 0.969 + }, + { + "start": 21765.74, + "end": 21766.66, + "probability": 0.9788 + }, + { + "start": 21766.84, + "end": 21768.66, + "probability": 0.9354 + }, + { + "start": 21769.22, + "end": 21771.54, + "probability": 0.991 + }, + { + "start": 21772.5, + "end": 21776.14, + "probability": 0.9911 + }, + { + "start": 21778.76, + "end": 21782.2, + "probability": 0.9351 + }, + { + "start": 21782.2, + "end": 21785.52, + "probability": 0.891 + }, + { + "start": 21786.64, + "end": 21788.88, + "probability": 0.9953 + }, + { + "start": 21789.04, + "end": 21789.94, + "probability": 0.7654 + }, + { + "start": 21790.02, + "end": 21792.06, + "probability": 0.6895 + }, + { + "start": 21793.0, + "end": 21799.64, + "probability": 0.9974 + }, + { + "start": 21800.82, + "end": 21802.18, + "probability": 0.9572 + }, + { + "start": 21802.24, + "end": 21804.12, + "probability": 0.9625 + }, + { + "start": 21805.04, + "end": 21807.44, + "probability": 0.9922 + }, + { + "start": 21808.62, + "end": 21810.28, + "probability": 0.9381 + }, + { + "start": 21810.88, + "end": 21812.12, + "probability": 0.6937 + }, + { + "start": 21813.12, + "end": 21814.62, + "probability": 0.8715 + }, + { + "start": 21814.82, + "end": 21815.54, + "probability": 0.7709 + }, + { + "start": 21815.66, + "end": 21817.32, + "probability": 0.9961 + }, + { + "start": 21818.12, + "end": 21823.1, + "probability": 0.9708 + }, + { + "start": 21823.36, + "end": 21829.5, + "probability": 0.9877 + }, + { + "start": 21829.6, + "end": 21830.6, + "probability": 0.7694 + }, + { + "start": 21832.22, + "end": 21833.54, + "probability": 0.9792 + }, + { + "start": 21834.86, + "end": 21836.72, + "probability": 0.4705 + }, + { + "start": 21838.0, + "end": 21839.24, + "probability": 0.9995 + }, + { + "start": 21840.7, + "end": 21842.92, + "probability": 0.9371 + }, + { + "start": 21844.0, + "end": 21848.04, + "probability": 0.981 + }, + { + "start": 21849.62, + "end": 21852.23, + "probability": 0.9722 + }, + { + "start": 21852.98, + "end": 21854.38, + "probability": 0.9829 + }, + { + "start": 21855.12, + "end": 21856.86, + "probability": 0.9682 + }, + { + "start": 21858.28, + "end": 21859.8, + "probability": 0.9907 + }, + { + "start": 21861.04, + "end": 21862.08, + "probability": 0.7272 + }, + { + "start": 21863.3, + "end": 21865.68, + "probability": 0.9863 + }, + { + "start": 21865.78, + "end": 21866.2, + "probability": 0.4552 + }, + { + "start": 21867.4, + "end": 21869.32, + "probability": 0.9455 + }, + { + "start": 21871.2, + "end": 21872.54, + "probability": 0.8394 + }, + { + "start": 21872.66, + "end": 21873.46, + "probability": 0.585 + }, + { + "start": 21873.52, + "end": 21875.1, + "probability": 0.9391 + }, + { + "start": 21876.12, + "end": 21878.66, + "probability": 0.7292 + }, + { + "start": 21880.12, + "end": 21885.88, + "probability": 0.9963 + }, + { + "start": 21887.16, + "end": 21890.0, + "probability": 0.9982 + }, + { + "start": 21890.96, + "end": 21892.44, + "probability": 0.9727 + }, + { + "start": 21893.34, + "end": 21897.5, + "probability": 0.9723 + }, + { + "start": 21898.2, + "end": 21902.96, + "probability": 0.8154 + }, + { + "start": 21904.7, + "end": 21907.52, + "probability": 0.9717 + }, + { + "start": 21907.62, + "end": 21908.36, + "probability": 0.9434 + }, + { + "start": 21908.96, + "end": 21913.1, + "probability": 0.9966 + }, + { + "start": 21913.52, + "end": 21915.08, + "probability": 0.6172 + }, + { + "start": 21915.8, + "end": 21918.42, + "probability": 0.9963 + }, + { + "start": 21918.96, + "end": 21921.06, + "probability": 0.9795 + }, + { + "start": 21921.78, + "end": 21924.18, + "probability": 0.9992 + }, + { + "start": 21924.58, + "end": 21926.56, + "probability": 0.9916 + }, + { + "start": 21927.34, + "end": 21929.62, + "probability": 0.8165 + }, + { + "start": 21930.18, + "end": 21932.24, + "probability": 0.8311 + }, + { + "start": 21932.96, + "end": 21934.92, + "probability": 0.9503 + }, + { + "start": 21935.52, + "end": 21937.86, + "probability": 0.993 + }, + { + "start": 21938.62, + "end": 21942.22, + "probability": 0.9887 + }, + { + "start": 21943.22, + "end": 21946.48, + "probability": 0.4208 + }, + { + "start": 21947.0, + "end": 21949.7, + "probability": 0.8282 + }, + { + "start": 21950.32, + "end": 21951.6, + "probability": 0.9635 + }, + { + "start": 21951.88, + "end": 21955.18, + "probability": 0.9104 + }, + { + "start": 21955.48, + "end": 21959.44, + "probability": 0.986 + }, + { + "start": 21959.7, + "end": 21959.94, + "probability": 0.6282 + }, + { + "start": 21960.28, + "end": 21963.26, + "probability": 0.8239 + }, + { + "start": 21963.76, + "end": 21964.1, + "probability": 0.6638 + }, + { + "start": 21964.62, + "end": 21967.4, + "probability": 0.9019 + }, + { + "start": 21977.12, + "end": 21979.3, + "probability": 0.5059 + }, + { + "start": 21980.1, + "end": 21982.24, + "probability": 0.9518 + }, + { + "start": 21982.32, + "end": 21983.0, + "probability": 0.8286 + }, + { + "start": 21983.0, + "end": 21984.98, + "probability": 0.5847 + }, + { + "start": 21985.08, + "end": 21986.48, + "probability": 0.8138 + }, + { + "start": 21987.62, + "end": 21991.22, + "probability": 0.9965 + }, + { + "start": 21992.04, + "end": 21992.24, + "probability": 0.9196 + }, + { + "start": 21992.38, + "end": 21993.6, + "probability": 0.9759 + }, + { + "start": 21993.66, + "end": 21995.38, + "probability": 0.9498 + }, + { + "start": 21997.72, + "end": 22000.16, + "probability": 0.9922 + }, + { + "start": 22000.3, + "end": 22001.36, + "probability": 0.9834 + }, + { + "start": 22002.2, + "end": 22004.46, + "probability": 0.9183 + }, + { + "start": 22004.56, + "end": 22007.06, + "probability": 0.9953 + }, + { + "start": 22007.18, + "end": 22010.04, + "probability": 0.9402 + }, + { + "start": 22010.92, + "end": 22014.16, + "probability": 0.7971 + }, + { + "start": 22014.3, + "end": 22015.34, + "probability": 0.7536 + }, + { + "start": 22015.42, + "end": 22020.52, + "probability": 0.853 + }, + { + "start": 22020.52, + "end": 22021.22, + "probability": 0.4734 + }, + { + "start": 22021.22, + "end": 22022.3, + "probability": 0.1438 + }, + { + "start": 22022.3, + "end": 22023.14, + "probability": 0.0694 + }, + { + "start": 22024.08, + "end": 22025.53, + "probability": 0.0544 + }, + { + "start": 22025.76, + "end": 22026.68, + "probability": 0.0395 + }, + { + "start": 22029.5, + "end": 22033.82, + "probability": 0.0198 + }, + { + "start": 22033.9, + "end": 22038.1, + "probability": 0.2257 + }, + { + "start": 22038.1, + "end": 22038.14, + "probability": 0.0965 + }, + { + "start": 22038.14, + "end": 22042.3, + "probability": 0.5461 + }, + { + "start": 22042.94, + "end": 22044.68, + "probability": 0.0954 + }, + { + "start": 22044.68, + "end": 22046.3, + "probability": 0.2546 + }, + { + "start": 22047.46, + "end": 22049.14, + "probability": 0.0272 + }, + { + "start": 22074.44, + "end": 22075.4, + "probability": 0.1404 + }, + { + "start": 22076.32, + "end": 22077.4, + "probability": 0.0365 + }, + { + "start": 22077.4, + "end": 22080.68, + "probability": 0.0628 + }, + { + "start": 22081.44, + "end": 22083.46, + "probability": 0.1218 + }, + { + "start": 22083.46, + "end": 22084.58, + "probability": 0.1006 + }, + { + "start": 22086.54, + "end": 22088.24, + "probability": 0.0443 + }, + { + "start": 22098.16, + "end": 22100.36, + "probability": 0.0846 + }, + { + "start": 22100.36, + "end": 22101.66, + "probability": 0.0482 + }, + { + "start": 22102.62, + "end": 22102.84, + "probability": 0.1605 + }, + { + "start": 22102.94, + "end": 22105.88, + "probability": 0.2924 + }, + { + "start": 22106.32, + "end": 22107.84, + "probability": 0.009 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.24, + "end": 22109.08, + "probability": 0.0004 + }, + { + "start": 22109.52, + "end": 22110.7, + "probability": 0.27 + }, + { + "start": 22110.7, + "end": 22111.26, + "probability": 0.4512 + }, + { + "start": 22111.58, + "end": 22112.26, + "probability": 0.4717 + }, + { + "start": 22112.68, + "end": 22112.68, + "probability": 0.3721 + }, + { + "start": 22112.68, + "end": 22115.4, + "probability": 0.8217 + }, + { + "start": 22115.52, + "end": 22118.46, + "probability": 0.7339 + }, + { + "start": 22118.52, + "end": 22122.72, + "probability": 0.7495 + }, + { + "start": 22122.72, + "end": 22123.14, + "probability": 0.7572 + }, + { + "start": 22123.48, + "end": 22124.84, + "probability": 0.9056 + }, + { + "start": 22125.0, + "end": 22125.62, + "probability": 0.903 + }, + { + "start": 22125.86, + "end": 22130.2, + "probability": 0.9945 + }, + { + "start": 22130.58, + "end": 22131.62, + "probability": 0.9296 + }, + { + "start": 22132.22, + "end": 22132.97, + "probability": 0.8912 + }, + { + "start": 22133.2, + "end": 22135.47, + "probability": 0.9956 + }, + { + "start": 22135.94, + "end": 22139.6, + "probability": 0.9966 + }, + { + "start": 22139.98, + "end": 22143.33, + "probability": 0.9497 + }, + { + "start": 22143.66, + "end": 22144.72, + "probability": 0.9568 + }, + { + "start": 22144.8, + "end": 22145.62, + "probability": 0.987 + }, + { + "start": 22145.9, + "end": 22146.74, + "probability": 0.8422 + }, + { + "start": 22147.04, + "end": 22147.94, + "probability": 0.7698 + }, + { + "start": 22148.22, + "end": 22151.24, + "probability": 0.9531 + }, + { + "start": 22151.46, + "end": 22151.72, + "probability": 0.8704 + }, + { + "start": 22153.16, + "end": 22155.14, + "probability": 0.4973 + }, + { + "start": 22155.26, + "end": 22156.94, + "probability": 0.5563 + }, + { + "start": 22157.0, + "end": 22158.1, + "probability": 0.4708 + }, + { + "start": 22158.62, + "end": 22160.92, + "probability": 0.9948 + }, + { + "start": 22161.04, + "end": 22161.68, + "probability": 0.1393 + }, + { + "start": 22161.68, + "end": 22164.66, + "probability": 0.6221 + }, + { + "start": 22164.7, + "end": 22164.7, + "probability": 0.3369 + }, + { + "start": 22164.86, + "end": 22167.9, + "probability": 0.5546 + }, + { + "start": 22167.96, + "end": 22168.92, + "probability": 0.4207 + }, + { + "start": 22169.0, + "end": 22171.84, + "probability": 0.8921 + }, + { + "start": 22171.84, + "end": 22172.36, + "probability": 0.5956 + }, + { + "start": 22172.54, + "end": 22173.7, + "probability": 0.3224 + }, + { + "start": 22175.32, + "end": 22176.62, + "probability": 0.2678 + }, + { + "start": 22176.82, + "end": 22176.82, + "probability": 0.2295 + }, + { + "start": 22176.82, + "end": 22176.82, + "probability": 0.4269 + }, + { + "start": 22176.82, + "end": 22176.82, + "probability": 0.0449 + }, + { + "start": 22176.82, + "end": 22178.62, + "probability": 0.2299 + }, + { + "start": 22178.72, + "end": 22179.66, + "probability": 0.7977 + }, + { + "start": 22179.86, + "end": 22180.76, + "probability": 0.8584 + }, + { + "start": 22180.98, + "end": 22182.54, + "probability": 0.9738 + }, + { + "start": 22182.62, + "end": 22187.0, + "probability": 0.9121 + }, + { + "start": 22187.2, + "end": 22192.12, + "probability": 0.9424 + }, + { + "start": 22192.4, + "end": 22193.72, + "probability": 0.9248 + }, + { + "start": 22194.06, + "end": 22196.47, + "probability": 0.9933 + }, + { + "start": 22197.14, + "end": 22199.68, + "probability": 0.9921 + }, + { + "start": 22199.84, + "end": 22201.68, + "probability": 0.9985 + }, + { + "start": 22201.68, + "end": 22203.76, + "probability": 0.1422 + }, + { + "start": 22204.1, + "end": 22205.66, + "probability": 0.6096 + }, + { + "start": 22205.95, + "end": 22208.26, + "probability": 0.7692 + }, + { + "start": 22208.4, + "end": 22209.42, + "probability": 0.4089 + }, + { + "start": 22209.78, + "end": 22215.08, + "probability": 0.7673 + }, + { + "start": 22215.3, + "end": 22216.22, + "probability": 0.42 + }, + { + "start": 22216.46, + "end": 22218.2, + "probability": 0.6793 + }, + { + "start": 22218.74, + "end": 22219.44, + "probability": 0.8702 + }, + { + "start": 22219.72, + "end": 22220.56, + "probability": 0.2037 + }, + { + "start": 22220.66, + "end": 22222.82, + "probability": 0.6093 + }, + { + "start": 22222.9, + "end": 22224.48, + "probability": 0.9064 + }, + { + "start": 22227.03, + "end": 22228.68, + "probability": 0.7495 + }, + { + "start": 22228.9, + "end": 22231.04, + "probability": 0.9699 + }, + { + "start": 22231.26, + "end": 22231.52, + "probability": 0.2654 + }, + { + "start": 22231.56, + "end": 22232.4, + "probability": 0.3003 + }, + { + "start": 22232.64, + "end": 22234.74, + "probability": 0.9805 + }, + { + "start": 22234.86, + "end": 22236.38, + "probability": 0.9595 + }, + { + "start": 22237.06, + "end": 22241.18, + "probability": 0.9922 + }, + { + "start": 22241.84, + "end": 22244.76, + "probability": 0.9976 + }, + { + "start": 22244.76, + "end": 22246.6, + "probability": 0.9977 + }, + { + "start": 22246.72, + "end": 22247.98, + "probability": 0.9655 + }, + { + "start": 22248.28, + "end": 22253.28, + "probability": 0.9723 + }, + { + "start": 22253.68, + "end": 22253.68, + "probability": 0.0799 + }, + { + "start": 22253.68, + "end": 22256.04, + "probability": 0.9975 + }, + { + "start": 22256.44, + "end": 22258.86, + "probability": 0.9993 + }, + { + "start": 22259.24, + "end": 22262.78, + "probability": 0.9343 + }, + { + "start": 22262.78, + "end": 22266.16, + "probability": 0.9969 + }, + { + "start": 22266.32, + "end": 22267.42, + "probability": 0.8381 + }, + { + "start": 22267.64, + "end": 22273.04, + "probability": 0.2234 + }, + { + "start": 22273.18, + "end": 22275.22, + "probability": 0.6452 + }, + { + "start": 22275.82, + "end": 22277.12, + "probability": 0.8663 + }, + { + "start": 22280.26, + "end": 22283.26, + "probability": 0.3669 + }, + { + "start": 22283.26, + "end": 22283.88, + "probability": 0.8723 + }, + { + "start": 22284.14, + "end": 22286.21, + "probability": 0.5661 + }, + { + "start": 22287.86, + "end": 22296.12, + "probability": 0.8156 + }, + { + "start": 22296.12, + "end": 22300.28, + "probability": 0.991 + }, + { + "start": 22301.88, + "end": 22303.34, + "probability": 0.745 + }, + { + "start": 22303.98, + "end": 22304.5, + "probability": 0.2129 + }, + { + "start": 22304.54, + "end": 22308.22, + "probability": 0.9524 + }, + { + "start": 22308.22, + "end": 22311.1, + "probability": 0.9992 + }, + { + "start": 22311.96, + "end": 22317.38, + "probability": 0.8543 + }, + { + "start": 22317.78, + "end": 22320.42, + "probability": 0.993 + }, + { + "start": 22321.38, + "end": 22323.52, + "probability": 0.9934 + }, + { + "start": 22325.92, + "end": 22329.68, + "probability": 0.7689 + }, + { + "start": 22329.68, + "end": 22334.76, + "probability": 0.9557 + }, + { + "start": 22335.58, + "end": 22341.7, + "probability": 0.9735 + }, + { + "start": 22342.28, + "end": 22349.14, + "probability": 0.9727 + }, + { + "start": 22349.82, + "end": 22354.34, + "probability": 0.7282 + }, + { + "start": 22354.88, + "end": 22358.18, + "probability": 0.8492 + }, + { + "start": 22359.0, + "end": 22361.4, + "probability": 0.0342 + }, + { + "start": 22362.3, + "end": 22362.32, + "probability": 0.0383 + }, + { + "start": 22362.32, + "end": 22362.32, + "probability": 0.1141 + }, + { + "start": 22362.32, + "end": 22362.32, + "probability": 0.0702 + }, + { + "start": 22362.32, + "end": 22362.32, + "probability": 0.0339 + }, + { + "start": 22362.32, + "end": 22366.3, + "probability": 0.8743 + }, + { + "start": 22366.4, + "end": 22370.06, + "probability": 0.9789 + }, + { + "start": 22371.08, + "end": 22377.1, + "probability": 0.998 + }, + { + "start": 22377.82, + "end": 22379.36, + "probability": 0.6925 + }, + { + "start": 22379.5, + "end": 22380.08, + "probability": 0.6948 + }, + { + "start": 22380.74, + "end": 22384.74, + "probability": 0.9712 + }, + { + "start": 22385.32, + "end": 22388.38, + "probability": 0.9924 + }, + { + "start": 22389.04, + "end": 22393.1, + "probability": 0.9248 + }, + { + "start": 22394.42, + "end": 22397.46, + "probability": 0.998 + }, + { + "start": 22397.48, + "end": 22401.18, + "probability": 0.983 + }, + { + "start": 22401.8, + "end": 22404.74, + "probability": 0.7756 + }, + { + "start": 22405.48, + "end": 22407.04, + "probability": 0.9448 + }, + { + "start": 22407.14, + "end": 22410.16, + "probability": 0.9733 + }, + { + "start": 22411.0, + "end": 22413.44, + "probability": 0.998 + }, + { + "start": 22413.44, + "end": 22414.66, + "probability": 0.8433 + }, + { + "start": 22415.5, + "end": 22415.54, + "probability": 0.0163 + }, + { + "start": 22415.54, + "end": 22416.84, + "probability": 0.5084 + }, + { + "start": 22417.92, + "end": 22427.92, + "probability": 0.8408 + }, + { + "start": 22428.2, + "end": 22431.52, + "probability": 0.0738 + }, + { + "start": 22431.84, + "end": 22432.68, + "probability": 0.0193 + }, + { + "start": 22432.98, + "end": 22439.12, + "probability": 0.7899 + }, + { + "start": 22439.12, + "end": 22443.2, + "probability": 0.619 + }, + { + "start": 22444.34, + "end": 22447.86, + "probability": 0.6858 + }, + { + "start": 22448.45, + "end": 22448.72, + "probability": 0.0817 + }, + { + "start": 22448.72, + "end": 22448.72, + "probability": 0.1226 + }, + { + "start": 22448.72, + "end": 22448.72, + "probability": 0.0488 + }, + { + "start": 22448.72, + "end": 22448.76, + "probability": 0.0546 + }, + { + "start": 22448.76, + "end": 22448.96, + "probability": 0.224 + }, + { + "start": 22448.96, + "end": 22450.56, + "probability": 0.6326 + }, + { + "start": 22450.66, + "end": 22451.26, + "probability": 0.7495 + }, + { + "start": 22451.66, + "end": 22452.1, + "probability": 0.2324 + }, + { + "start": 22452.58, + "end": 22454.68, + "probability": 0.4763 + }, + { + "start": 22455.17, + "end": 22456.98, + "probability": 0.9814 + }, + { + "start": 22457.08, + "end": 22458.72, + "probability": 0.7903 + }, + { + "start": 22458.78, + "end": 22461.16, + "probability": 0.5615 + }, + { + "start": 22461.86, + "end": 22463.02, + "probability": 0.8423 + }, + { + "start": 22463.04, + "end": 22463.8, + "probability": 0.8993 + }, + { + "start": 22463.84, + "end": 22465.58, + "probability": 0.8959 + }, + { + "start": 22466.48, + "end": 22467.22, + "probability": 0.5132 + }, + { + "start": 22467.42, + "end": 22467.74, + "probability": 0.6234 + }, + { + "start": 22468.98, + "end": 22471.88, + "probability": 0.8913 + }, + { + "start": 22472.02, + "end": 22473.02, + "probability": 0.1461 + }, + { + "start": 22473.04, + "end": 22475.96, + "probability": 0.7213 + }, + { + "start": 22477.4, + "end": 22481.3, + "probability": 0.406 + }, + { + "start": 22481.76, + "end": 22483.02, + "probability": 0.6771 + }, + { + "start": 22483.02, + "end": 22483.46, + "probability": 0.1661 + }, + { + "start": 22484.7, + "end": 22486.02, + "probability": 0.4154 + }, + { + "start": 22487.82, + "end": 22492.16, + "probability": 0.1224 + }, + { + "start": 22493.12, + "end": 22493.62, + "probability": 0.466 + }, + { + "start": 22493.62, + "end": 22493.78, + "probability": 0.0608 + }, + { + "start": 22494.78, + "end": 22497.86, + "probability": 0.0812 + }, + { + "start": 22499.1, + "end": 22502.1, + "probability": 0.3135 + }, + { + "start": 22502.32, + "end": 22504.74, + "probability": 0.1235 + }, + { + "start": 22507.64, + "end": 22509.88, + "probability": 0.3351 + }, + { + "start": 22510.72, + "end": 22513.88, + "probability": 0.7421 + }, + { + "start": 22516.81, + "end": 22517.04, + "probability": 0.0324 + }, + { + "start": 22517.36, + "end": 22517.6, + "probability": 0.1562 + }, + { + "start": 22517.6, + "end": 22517.7, + "probability": 0.0511 + }, + { + "start": 22517.7, + "end": 22517.7, + "probability": 0.0455 + }, + { + "start": 22517.7, + "end": 22518.62, + "probability": 0.0521 + }, + { + "start": 22518.62, + "end": 22518.88, + "probability": 0.1702 + }, + { + "start": 22518.94, + "end": 22518.94, + "probability": 0.0288 + }, + { + "start": 22519.2, + "end": 22519.28, + "probability": 0.023 + }, + { + "start": 22519.28, + "end": 22519.66, + "probability": 0.021 + }, + { + "start": 22519.66, + "end": 22519.98, + "probability": 0.4222 + }, + { + "start": 22520.0, + "end": 22520.0, + "probability": 0.0 + }, + { + "start": 22520.7, + "end": 22522.0, + "probability": 0.5712 + }, + { + "start": 22522.16, + "end": 22524.14, + "probability": 0.552 + }, + { + "start": 22524.69, + "end": 22526.44, + "probability": 0.0247 + }, + { + "start": 22527.69, + "end": 22528.3, + "probability": 0.1737 + }, + { + "start": 22528.3, + "end": 22529.86, + "probability": 0.1108 + }, + { + "start": 22531.64, + "end": 22531.8, + "probability": 0.1518 + }, + { + "start": 22531.8, + "end": 22531.8, + "probability": 0.0257 + }, + { + "start": 22531.8, + "end": 22531.8, + "probability": 0.2185 + }, + { + "start": 22531.8, + "end": 22531.8, + "probability": 0.0422 + }, + { + "start": 22531.8, + "end": 22531.8, + "probability": 0.066 + }, + { + "start": 22531.8, + "end": 22535.74, + "probability": 0.5948 + }, + { + "start": 22535.9, + "end": 22536.98, + "probability": 0.8037 + }, + { + "start": 22537.08, + "end": 22537.62, + "probability": 0.5272 + }, + { + "start": 22538.62, + "end": 22541.38, + "probability": 0.3406 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.0, + "end": 22663.0, + "probability": 0.0 + }, + { + "start": 22663.22, + "end": 22663.86, + "probability": 0.0543 + }, + { + "start": 22663.86, + "end": 22663.86, + "probability": 0.0077 + }, + { + "start": 22663.86, + "end": 22669.16, + "probability": 0.9788 + }, + { + "start": 22669.64, + "end": 22673.92, + "probability": 0.9853 + }, + { + "start": 22674.46, + "end": 22677.21, + "probability": 0.9157 + }, + { + "start": 22678.04, + "end": 22683.14, + "probability": 0.938 + }, + { + "start": 22683.14, + "end": 22689.34, + "probability": 0.9889 + }, + { + "start": 22689.34, + "end": 22694.56, + "probability": 0.9919 + }, + { + "start": 22695.16, + "end": 22697.0, + "probability": 0.9306 + }, + { + "start": 22697.74, + "end": 22701.26, + "probability": 0.9659 + }, + { + "start": 22701.36, + "end": 22702.34, + "probability": 0.8946 + }, + { + "start": 22702.38, + "end": 22702.58, + "probability": 0.8854 + }, + { + "start": 22704.04, + "end": 22706.04, + "probability": 0.9265 + }, + { + "start": 22706.36, + "end": 22709.26, + "probability": 0.7035 + }, + { + "start": 22709.66, + "end": 22711.76, + "probability": 0.9971 + }, + { + "start": 22712.96, + "end": 22714.72, + "probability": 0.97 + }, + { + "start": 22714.82, + "end": 22715.74, + "probability": 0.9556 + }, + { + "start": 22715.86, + "end": 22717.0, + "probability": 0.903 + }, + { + "start": 22717.42, + "end": 22719.58, + "probability": 0.9823 + }, + { + "start": 22720.3, + "end": 22723.42, + "probability": 0.9957 + }, + { + "start": 22724.14, + "end": 22729.9, + "probability": 0.998 + }, + { + "start": 22729.98, + "end": 22732.38, + "probability": 0.9961 + }, + { + "start": 22732.82, + "end": 22737.22, + "probability": 0.9886 + }, + { + "start": 22737.22, + "end": 22740.78, + "probability": 0.9971 + }, + { + "start": 22741.78, + "end": 22744.72, + "probability": 0.9858 + }, + { + "start": 22745.24, + "end": 22748.02, + "probability": 0.9963 + }, + { + "start": 22748.42, + "end": 22749.64, + "probability": 0.9278 + }, + { + "start": 22750.1, + "end": 22751.7, + "probability": 0.7148 + }, + { + "start": 22751.76, + "end": 22752.8, + "probability": 0.8302 + }, + { + "start": 22753.36, + "end": 22756.56, + "probability": 0.9819 + }, + { + "start": 22756.94, + "end": 22759.1, + "probability": 0.9017 + }, + { + "start": 22759.86, + "end": 22762.74, + "probability": 0.8486 + }, + { + "start": 22763.24, + "end": 22764.78, + "probability": 0.9746 + }, + { + "start": 22765.86, + "end": 22766.72, + "probability": 0.5388 + }, + { + "start": 22767.38, + "end": 22768.28, + "probability": 0.8942 + }, + { + "start": 22769.28, + "end": 22770.64, + "probability": 0.9797 + }, + { + "start": 22770.76, + "end": 22776.54, + "probability": 0.9833 + }, + { + "start": 22776.68, + "end": 22780.56, + "probability": 0.9941 + }, + { + "start": 22781.72, + "end": 22783.46, + "probability": 0.5826 + }, + { + "start": 22784.56, + "end": 22788.36, + "probability": 0.9681 + }, + { + "start": 22788.78, + "end": 22790.04, + "probability": 0.9197 + }, + { + "start": 22790.5, + "end": 22794.86, + "probability": 0.9728 + }, + { + "start": 22795.62, + "end": 22796.92, + "probability": 0.8479 + }, + { + "start": 22797.64, + "end": 22799.26, + "probability": 0.9974 + }, + { + "start": 22800.0, + "end": 22803.34, + "probability": 0.9952 + }, + { + "start": 22803.92, + "end": 22809.1, + "probability": 0.9828 + }, + { + "start": 22809.6, + "end": 22811.02, + "probability": 0.993 + }, + { + "start": 22811.78, + "end": 22814.34, + "probability": 0.9958 + }, + { + "start": 22815.88, + "end": 22819.08, + "probability": 0.9961 + }, + { + "start": 22819.7, + "end": 22823.28, + "probability": 0.9382 + }, + { + "start": 22824.68, + "end": 22826.16, + "probability": 0.9866 + }, + { + "start": 22827.04, + "end": 22828.34, + "probability": 0.9546 + }, + { + "start": 22828.92, + "end": 22832.36, + "probability": 0.9966 + }, + { + "start": 22832.98, + "end": 22837.42, + "probability": 0.8792 + }, + { + "start": 22837.98, + "end": 22841.48, + "probability": 0.7786 + }, + { + "start": 22841.78, + "end": 22841.78, + "probability": 0.6811 + }, + { + "start": 22841.86, + "end": 22846.9, + "probability": 0.8489 + }, + { + "start": 22847.6, + "end": 22849.5, + "probability": 0.9517 + }, + { + "start": 22850.68, + "end": 22852.3, + "probability": 0.9966 + }, + { + "start": 22855.39, + "end": 22860.71, + "probability": 0.9869 + }, + { + "start": 22861.24, + "end": 22864.92, + "probability": 0.996 + }, + { + "start": 22865.3, + "end": 22868.04, + "probability": 0.9984 + }, + { + "start": 22868.14, + "end": 22869.54, + "probability": 0.8961 + }, + { + "start": 22871.28, + "end": 22872.16, + "probability": 0.662 + }, + { + "start": 22872.26, + "end": 22873.6, + "probability": 0.9164 + }, + { + "start": 22874.34, + "end": 22875.84, + "probability": 0.8138 + }, + { + "start": 22887.8, + "end": 22889.38, + "probability": 0.5251 + }, + { + "start": 22889.42, + "end": 22890.34, + "probability": 0.7351 + }, + { + "start": 22890.88, + "end": 22891.88, + "probability": 0.9353 + }, + { + "start": 22891.96, + "end": 22893.86, + "probability": 0.969 + }, + { + "start": 22894.02, + "end": 22897.0, + "probability": 0.8888 + }, + { + "start": 22897.58, + "end": 22901.1, + "probability": 0.9868 + }, + { + "start": 22901.18, + "end": 22902.42, + "probability": 0.9097 + }, + { + "start": 22902.5, + "end": 22903.74, + "probability": 0.9934 + }, + { + "start": 22903.84, + "end": 22908.18, + "probability": 0.998 + }, + { + "start": 22909.12, + "end": 22914.76, + "probability": 0.9959 + }, + { + "start": 22914.9, + "end": 22918.82, + "probability": 0.9969 + }, + { + "start": 22919.14, + "end": 22921.06, + "probability": 0.9924 + }, + { + "start": 22921.62, + "end": 22923.54, + "probability": 0.9887 + }, + { + "start": 22923.68, + "end": 22924.84, + "probability": 0.9109 + }, + { + "start": 22925.46, + "end": 22927.82, + "probability": 0.884 + }, + { + "start": 22927.98, + "end": 22929.4, + "probability": 0.9024 + }, + { + "start": 22929.52, + "end": 22930.96, + "probability": 0.9958 + }, + { + "start": 22931.36, + "end": 22936.14, + "probability": 0.9459 + }, + { + "start": 22936.14, + "end": 22942.14, + "probability": 0.9939 + }, + { + "start": 22942.68, + "end": 22943.7, + "probability": 0.5419 + }, + { + "start": 22944.24, + "end": 22945.86, + "probability": 0.7885 + }, + { + "start": 22946.44, + "end": 22949.08, + "probability": 0.9679 + }, + { + "start": 22949.22, + "end": 22950.3, + "probability": 0.9028 + }, + { + "start": 22950.34, + "end": 22953.86, + "probability": 0.9075 + }, + { + "start": 22954.04, + "end": 22959.14, + "probability": 0.9507 + }, + { + "start": 22959.14, + "end": 22962.3, + "probability": 0.9973 + }, + { + "start": 22962.8, + "end": 22964.08, + "probability": 0.8716 + }, + { + "start": 22964.62, + "end": 22967.16, + "probability": 0.9985 + }, + { + "start": 22967.62, + "end": 22971.32, + "probability": 0.9982 + }, + { + "start": 22971.72, + "end": 22972.16, + "probability": 0.5588 + }, + { + "start": 22972.26, + "end": 22973.58, + "probability": 0.8129 + }, + { + "start": 22973.74, + "end": 22974.24, + "probability": 0.7119 + }, + { + "start": 22974.96, + "end": 22977.47, + "probability": 0.988 + }, + { + "start": 22977.6, + "end": 22979.58, + "probability": 0.9989 + }, + { + "start": 22979.9, + "end": 22983.3, + "probability": 0.9849 + }, + { + "start": 22983.76, + "end": 22984.96, + "probability": 0.9977 + }, + { + "start": 22985.1, + "end": 22987.04, + "probability": 0.8665 + }, + { + "start": 22987.42, + "end": 22989.08, + "probability": 0.8423 + }, + { + "start": 22989.26, + "end": 22990.86, + "probability": 0.9543 + }, + { + "start": 22991.08, + "end": 22991.9, + "probability": 0.8153 + }, + { + "start": 22992.08, + "end": 22993.64, + "probability": 0.6805 + }, + { + "start": 22993.92, + "end": 22994.8, + "probability": 0.3478 + }, + { + "start": 22994.86, + "end": 22995.22, + "probability": 0.8919 + }, + { + "start": 22995.94, + "end": 22997.54, + "probability": 0.9944 + }, + { + "start": 22997.88, + "end": 22999.64, + "probability": 0.9661 + }, + { + "start": 22999.82, + "end": 23002.08, + "probability": 0.2862 + }, + { + "start": 23002.82, + "end": 23006.68, + "probability": 0.6994 + }, + { + "start": 23006.78, + "end": 23007.94, + "probability": 0.6121 + }, + { + "start": 23008.52, + "end": 23010.83, + "probability": 0.8696 + }, + { + "start": 23011.26, + "end": 23013.99, + "probability": 0.9863 + }, + { + "start": 23014.46, + "end": 23016.97, + "probability": 0.981 + }, + { + "start": 23017.32, + "end": 23019.82, + "probability": 0.8585 + }, + { + "start": 23020.06, + "end": 23021.26, + "probability": 0.7647 + }, + { + "start": 23021.5, + "end": 23023.72, + "probability": 0.9128 + }, + { + "start": 23023.86, + "end": 23025.22, + "probability": 0.9873 + }, + { + "start": 23025.38, + "end": 23026.68, + "probability": 0.9313 + }, + { + "start": 23027.06, + "end": 23029.98, + "probability": 0.9541 + }, + { + "start": 23030.14, + "end": 23032.42, + "probability": 0.9968 + }, + { + "start": 23032.52, + "end": 23035.82, + "probability": 0.9297 + }, + { + "start": 23035.98, + "end": 23035.98, + "probability": 0.7249 + }, + { + "start": 23036.14, + "end": 23036.9, + "probability": 0.6276 + }, + { + "start": 23037.14, + "end": 23037.84, + "probability": 0.6316 + }, + { + "start": 23037.94, + "end": 23039.78, + "probability": 0.8737 + }, + { + "start": 23040.54, + "end": 23042.4, + "probability": 0.8948 + }, + { + "start": 23043.48, + "end": 23046.42, + "probability": 0.7625 + }, + { + "start": 23047.54, + "end": 23050.9, + "probability": 0.8444 + }, + { + "start": 23051.5, + "end": 23053.02, + "probability": 0.9906 + }, + { + "start": 23053.56, + "end": 23054.32, + "probability": 0.8424 + }, + { + "start": 23069.84, + "end": 23070.56, + "probability": 0.5522 + }, + { + "start": 23070.64, + "end": 23071.3, + "probability": 0.9097 + }, + { + "start": 23071.38, + "end": 23073.98, + "probability": 0.9726 + }, + { + "start": 23074.48, + "end": 23077.44, + "probability": 0.918 + }, + { + "start": 23078.04, + "end": 23079.22, + "probability": 0.6287 + }, + { + "start": 23079.38, + "end": 23080.5, + "probability": 0.9053 + }, + { + "start": 23080.56, + "end": 23081.88, + "probability": 0.9968 + }, + { + "start": 23082.74, + "end": 23083.84, + "probability": 0.9953 + }, + { + "start": 23084.56, + "end": 23088.56, + "probability": 0.952 + }, + { + "start": 23088.6, + "end": 23091.1, + "probability": 0.8765 + }, + { + "start": 23091.1, + "end": 23091.76, + "probability": 0.3444 + }, + { + "start": 23091.92, + "end": 23093.04, + "probability": 0.5652 + }, + { + "start": 23093.2, + "end": 23097.98, + "probability": 0.9751 + }, + { + "start": 23098.5, + "end": 23100.05, + "probability": 0.9897 + }, + { + "start": 23100.8, + "end": 23103.0, + "probability": 0.9953 + }, + { + "start": 23103.5, + "end": 23104.86, + "probability": 0.7354 + }, + { + "start": 23106.6, + "end": 23109.41, + "probability": 0.9737 + }, + { + "start": 23110.48, + "end": 23112.4, + "probability": 0.9979 + }, + { + "start": 23113.04, + "end": 23114.82, + "probability": 0.9253 + }, + { + "start": 23115.38, + "end": 23119.32, + "probability": 0.9966 + }, + { + "start": 23120.36, + "end": 23123.42, + "probability": 0.9884 + }, + { + "start": 23124.26, + "end": 23125.58, + "probability": 0.967 + }, + { + "start": 23126.76, + "end": 23127.73, + "probability": 0.9767 + }, + { + "start": 23128.68, + "end": 23132.42, + "probability": 0.9976 + }, + { + "start": 23133.06, + "end": 23134.94, + "probability": 0.9781 + }, + { + "start": 23136.4, + "end": 23141.66, + "probability": 0.9858 + }, + { + "start": 23142.66, + "end": 23146.98, + "probability": 0.9897 + }, + { + "start": 23147.46, + "end": 23152.36, + "probability": 0.9866 + }, + { + "start": 23153.08, + "end": 23155.5, + "probability": 0.9972 + }, + { + "start": 23156.28, + "end": 23160.5, + "probability": 0.9938 + }, + { + "start": 23160.5, + "end": 23164.92, + "probability": 0.9968 + }, + { + "start": 23165.96, + "end": 23167.42, + "probability": 0.9718 + }, + { + "start": 23169.36, + "end": 23170.5, + "probability": 0.6753 + }, + { + "start": 23173.62, + "end": 23178.32, + "probability": 0.9579 + }, + { + "start": 23179.66, + "end": 23180.94, + "probability": 0.8356 + }, + { + "start": 23181.62, + "end": 23186.72, + "probability": 0.9943 + }, + { + "start": 23187.74, + "end": 23194.64, + "probability": 0.9812 + }, + { + "start": 23198.7, + "end": 23200.54, + "probability": 0.7604 + }, + { + "start": 23204.8, + "end": 23208.46, + "probability": 0.9988 + }, + { + "start": 23209.78, + "end": 23210.52, + "probability": 0.7871 + }, + { + "start": 23211.9, + "end": 23212.62, + "probability": 0.8586 + }, + { + "start": 23213.82, + "end": 23214.62, + "probability": 0.9531 + }, + { + "start": 23215.6, + "end": 23216.14, + "probability": 0.8939 + }, + { + "start": 23219.64, + "end": 23222.34, + "probability": 0.991 + }, + { + "start": 23226.68, + "end": 23228.54, + "probability": 0.9668 + }, + { + "start": 23229.5, + "end": 23230.76, + "probability": 0.8114 + }, + { + "start": 23234.34, + "end": 23235.24, + "probability": 0.7322 + }, + { + "start": 23236.46, + "end": 23238.26, + "probability": 0.8292 + }, + { + "start": 23239.66, + "end": 23241.36, + "probability": 0.7416 + }, + { + "start": 23242.98, + "end": 23246.08, + "probability": 0.988 + }, + { + "start": 23246.9, + "end": 23247.78, + "probability": 0.7827 + }, + { + "start": 23248.8, + "end": 23250.02, + "probability": 0.7501 + }, + { + "start": 23251.2, + "end": 23252.44, + "probability": 0.8228 + }, + { + "start": 23253.36, + "end": 23254.32, + "probability": 0.8305 + }, + { + "start": 23255.08, + "end": 23257.34, + "probability": 0.9995 + }, + { + "start": 23257.34, + "end": 23260.92, + "probability": 0.9944 + }, + { + "start": 23261.96, + "end": 23262.98, + "probability": 0.7917 + }, + { + "start": 23263.58, + "end": 23264.26, + "probability": 0.9111 + }, + { + "start": 23265.12, + "end": 23267.04, + "probability": 0.6852 + }, + { + "start": 23267.76, + "end": 23269.46, + "probability": 0.998 + }, + { + "start": 23271.28, + "end": 23271.7, + "probability": 0.4149 + }, + { + "start": 23271.8, + "end": 23272.66, + "probability": 0.8099 + }, + { + "start": 23272.88, + "end": 23273.9, + "probability": 0.9956 + }, + { + "start": 23280.96, + "end": 23282.48, + "probability": 0.5016 + }, + { + "start": 23291.06, + "end": 23293.34, + "probability": 0.7774 + }, + { + "start": 23293.46, + "end": 23295.04, + "probability": 0.6813 + }, + { + "start": 23295.16, + "end": 23296.06, + "probability": 0.8941 + }, + { + "start": 23296.16, + "end": 23296.98, + "probability": 0.6487 + }, + { + "start": 23297.26, + "end": 23298.64, + "probability": 0.9639 + }, + { + "start": 23298.72, + "end": 23300.7, + "probability": 0.8581 + }, + { + "start": 23301.98, + "end": 23304.76, + "probability": 0.9822 + }, + { + "start": 23304.78, + "end": 23305.36, + "probability": 0.9806 + }, + { + "start": 23307.38, + "end": 23310.5, + "probability": 0.7881 + }, + { + "start": 23310.56, + "end": 23315.52, + "probability": 0.965 + }, + { + "start": 23315.72, + "end": 23320.0, + "probability": 0.9876 + }, + { + "start": 23321.22, + "end": 23322.28, + "probability": 0.948 + }, + { + "start": 23322.36, + "end": 23325.94, + "probability": 0.7896 + }, + { + "start": 23326.0, + "end": 23326.86, + "probability": 0.9898 + }, + { + "start": 23328.38, + "end": 23332.12, + "probability": 0.9319 + }, + { + "start": 23332.42, + "end": 23336.98, + "probability": 0.9647 + }, + { + "start": 23337.6, + "end": 23339.9, + "probability": 0.9661 + }, + { + "start": 23340.4, + "end": 23342.2, + "probability": 0.9861 + }, + { + "start": 23342.36, + "end": 23344.48, + "probability": 0.9873 + }, + { + "start": 23344.84, + "end": 23350.06, + "probability": 0.9858 + }, + { + "start": 23350.5, + "end": 23351.12, + "probability": 0.5237 + }, + { + "start": 23351.5, + "end": 23352.34, + "probability": 0.6826 + }, + { + "start": 23352.6, + "end": 23353.92, + "probability": 0.9766 + }, + { + "start": 23354.1, + "end": 23356.76, + "probability": 0.9944 + }, + { + "start": 23357.8, + "end": 23363.42, + "probability": 0.6694 + }, + { + "start": 23363.8, + "end": 23367.6, + "probability": 0.9829 + }, + { + "start": 23367.6, + "end": 23371.86, + "probability": 0.9878 + }, + { + "start": 23372.3, + "end": 23373.08, + "probability": 0.7958 + }, + { + "start": 23373.16, + "end": 23374.04, + "probability": 0.8629 + }, + { + "start": 23375.1, + "end": 23377.62, + "probability": 0.9943 + }, + { + "start": 23377.62, + "end": 23381.82, + "probability": 0.9043 + }, + { + "start": 23383.08, + "end": 23386.2, + "probability": 0.9969 + }, + { + "start": 23386.68, + "end": 23387.24, + "probability": 0.6295 + }, + { + "start": 23387.32, + "end": 23387.9, + "probability": 0.9457 + }, + { + "start": 23388.12, + "end": 23389.22, + "probability": 0.896 + }, + { + "start": 23389.26, + "end": 23393.9, + "probability": 0.9806 + }, + { + "start": 23394.28, + "end": 23396.5, + "probability": 0.9918 + }, + { + "start": 23396.62, + "end": 23397.72, + "probability": 0.9867 + }, + { + "start": 23399.06, + "end": 23399.84, + "probability": 0.9611 + }, + { + "start": 23399.96, + "end": 23402.1, + "probability": 0.9854 + }, + { + "start": 23402.1, + "end": 23404.24, + "probability": 0.9989 + }, + { + "start": 23404.72, + "end": 23407.78, + "probability": 0.9949 + }, + { + "start": 23407.78, + "end": 23411.16, + "probability": 0.9983 + }, + { + "start": 23411.76, + "end": 23413.7, + "probability": 0.9998 + }, + { + "start": 23413.88, + "end": 23417.52, + "probability": 0.988 + }, + { + "start": 23417.6, + "end": 23419.1, + "probability": 0.9966 + }, + { + "start": 23420.0, + "end": 23421.28, + "probability": 0.9355 + }, + { + "start": 23421.5, + "end": 23422.12, + "probability": 0.8868 + }, + { + "start": 23422.42, + "end": 23422.92, + "probability": 0.5467 + }, + { + "start": 23423.0, + "end": 23423.38, + "probability": 0.7267 + }, + { + "start": 23423.48, + "end": 23424.11, + "probability": 0.9946 + }, + { + "start": 23424.44, + "end": 23427.22, + "probability": 0.7834 + }, + { + "start": 23428.12, + "end": 23434.3, + "probability": 0.8901 + }, + { + "start": 23435.08, + "end": 23437.84, + "probability": 0.9913 + }, + { + "start": 23439.26, + "end": 23442.08, + "probability": 0.8818 + }, + { + "start": 23442.8, + "end": 23447.2, + "probability": 0.9855 + }, + { + "start": 23447.92, + "end": 23449.22, + "probability": 0.8545 + }, + { + "start": 23449.76, + "end": 23451.48, + "probability": 0.6777 + }, + { + "start": 23451.9, + "end": 23454.58, + "probability": 0.9778 + }, + { + "start": 23455.04, + "end": 23458.88, + "probability": 0.9922 + }, + { + "start": 23459.72, + "end": 23460.56, + "probability": 0.6884 + }, + { + "start": 23460.68, + "end": 23462.12, + "probability": 0.9823 + }, + { + "start": 23462.36, + "end": 23463.54, + "probability": 0.6064 + }, + { + "start": 23463.62, + "end": 23464.82, + "probability": 0.9517 + }, + { + "start": 23465.1, + "end": 23467.27, + "probability": 0.8673 + }, + { + "start": 23467.72, + "end": 23468.84, + "probability": 0.6773 + }, + { + "start": 23469.1, + "end": 23471.66, + "probability": 0.9309 + }, + { + "start": 23471.84, + "end": 23474.14, + "probability": 0.991 + }, + { + "start": 23474.2, + "end": 23474.8, + "probability": 0.0362 + }, + { + "start": 23474.8, + "end": 23475.3, + "probability": 0.7145 + }, + { + "start": 23475.58, + "end": 23476.64, + "probability": 0.6311 + }, + { + "start": 23476.74, + "end": 23482.48, + "probability": 0.5923 + }, + { + "start": 23482.48, + "end": 23482.48, + "probability": 0.1044 + }, + { + "start": 23482.76, + "end": 23484.06, + "probability": 0.5652 + }, + { + "start": 23484.16, + "end": 23487.56, + "probability": 0.8022 + }, + { + "start": 23487.6, + "end": 23488.48, + "probability": 0.5444 + }, + { + "start": 23489.06, + "end": 23489.66, + "probability": 0.9151 + }, + { + "start": 23489.88, + "end": 23491.98, + "probability": 0.9701 + }, + { + "start": 23492.64, + "end": 23496.12, + "probability": 0.8845 + }, + { + "start": 23496.96, + "end": 23501.06, + "probability": 0.9255 + }, + { + "start": 23501.1, + "end": 23501.5, + "probability": 0.7805 + }, + { + "start": 23501.82, + "end": 23501.82, + "probability": 0.6108 + }, + { + "start": 23502.14, + "end": 23504.0, + "probability": 0.9539 + }, + { + "start": 23506.7, + "end": 23508.56, + "probability": 0.7249 + }, + { + "start": 23508.62, + "end": 23509.32, + "probability": 0.7448 + }, + { + "start": 23509.64, + "end": 23510.98, + "probability": 0.727 + }, + { + "start": 23513.14, + "end": 23515.04, + "probability": 0.8831 + }, + { + "start": 23525.46, + "end": 23525.46, + "probability": 0.4805 + }, + { + "start": 23525.46, + "end": 23527.26, + "probability": 0.6966 + }, + { + "start": 23532.96, + "end": 23535.16, + "probability": 0.6909 + }, + { + "start": 23535.26, + "end": 23538.74, + "probability": 0.9502 + }, + { + "start": 23539.44, + "end": 23546.22, + "probability": 0.9922 + }, + { + "start": 23546.26, + "end": 23547.44, + "probability": 0.9833 + }, + { + "start": 23547.44, + "end": 23547.74, + "probability": 0.5694 + }, + { + "start": 23548.12, + "end": 23551.06, + "probability": 0.9974 + }, + { + "start": 23551.84, + "end": 23554.26, + "probability": 0.991 + }, + { + "start": 23554.86, + "end": 23555.7, + "probability": 0.8563 + }, + { + "start": 23556.56, + "end": 23558.66, + "probability": 0.9921 + }, + { + "start": 23559.08, + "end": 23562.22, + "probability": 0.9619 + }, + { + "start": 23563.54, + "end": 23568.88, + "probability": 0.9791 + }, + { + "start": 23569.78, + "end": 23572.14, + "probability": 0.7373 + }, + { + "start": 23572.14, + "end": 23572.62, + "probability": 0.0626 + }, + { + "start": 23572.74, + "end": 23572.84, + "probability": 0.2236 + }, + { + "start": 23572.94, + "end": 23572.98, + "probability": 0.6226 + }, + { + "start": 23573.2, + "end": 23573.38, + "probability": 0.2181 + }, + { + "start": 23574.0, + "end": 23576.36, + "probability": 0.9734 + }, + { + "start": 23577.14, + "end": 23584.68, + "probability": 0.9222 + }, + { + "start": 23584.92, + "end": 23585.62, + "probability": 0.9951 + }, + { + "start": 23586.16, + "end": 23587.91, + "probability": 0.4905 + }, + { + "start": 23589.18, + "end": 23590.64, + "probability": 0.9725 + }, + { + "start": 23590.9, + "end": 23591.2, + "probability": 0.7039 + }, + { + "start": 23591.24, + "end": 23591.56, + "probability": 0.8611 + }, + { + "start": 23591.64, + "end": 23596.74, + "probability": 0.9718 + }, + { + "start": 23596.74, + "end": 23599.2, + "probability": 0.9661 + }, + { + "start": 23599.32, + "end": 23599.74, + "probability": 0.6851 + }, + { + "start": 23600.36, + "end": 23601.5, + "probability": 0.738 + }, + { + "start": 23602.0, + "end": 23609.18, + "probability": 0.8784 + }, + { + "start": 23609.6, + "end": 23613.86, + "probability": 0.9961 + }, + { + "start": 23613.96, + "end": 23619.26, + "probability": 0.9893 + }, + { + "start": 23619.56, + "end": 23623.48, + "probability": 0.9448 + }, + { + "start": 23623.84, + "end": 23626.82, + "probability": 0.9979 + }, + { + "start": 23627.76, + "end": 23630.2, + "probability": 0.7512 + }, + { + "start": 23630.8, + "end": 23633.44, + "probability": 0.9785 + }, + { + "start": 23634.3, + "end": 23638.46, + "probability": 0.8416 + }, + { + "start": 23638.46, + "end": 23643.22, + "probability": 0.5051 + }, + { + "start": 23643.76, + "end": 23646.72, + "probability": 0.6411 + }, + { + "start": 23647.08, + "end": 23648.28, + "probability": 0.9512 + }, + { + "start": 23649.04, + "end": 23650.04, + "probability": 0.7643 + }, + { + "start": 23650.12, + "end": 23653.98, + "probability": 0.8042 + }, + { + "start": 23654.5, + "end": 23654.82, + "probability": 0.0672 + }, + { + "start": 23655.42, + "end": 23658.26, + "probability": 0.8585 + }, + { + "start": 23658.72, + "end": 23661.64, + "probability": 0.8525 + }, + { + "start": 23662.02, + "end": 23664.34, + "probability": 0.9701 + }, + { + "start": 23664.52, + "end": 23666.1, + "probability": 0.9451 + }, + { + "start": 23666.64, + "end": 23667.8, + "probability": 0.4993 + }, + { + "start": 23667.9, + "end": 23670.48, + "probability": 0.8646 + }, + { + "start": 23670.8, + "end": 23672.7, + "probability": 0.922 + }, + { + "start": 23673.12, + "end": 23675.04, + "probability": 0.8303 + }, + { + "start": 23675.44, + "end": 23676.36, + "probability": 0.7304 + }, + { + "start": 23676.5, + "end": 23677.88, + "probability": 0.9106 + }, + { + "start": 23678.3, + "end": 23681.3, + "probability": 0.9956 + }, + { + "start": 23681.6, + "end": 23681.9, + "probability": 0.6762 + }, + { + "start": 23681.92, + "end": 23682.94, + "probability": 0.8189 + }, + { + "start": 23682.98, + "end": 23684.1, + "probability": 0.7887 + }, + { + "start": 23684.26, + "end": 23685.0, + "probability": 0.4537 + }, + { + "start": 23685.42, + "end": 23687.26, + "probability": 0.8951 + }, + { + "start": 23687.34, + "end": 23689.34, + "probability": 0.9869 + }, + { + "start": 23690.04, + "end": 23690.76, + "probability": 0.8333 + }, + { + "start": 23691.02, + "end": 23693.42, + "probability": 0.7428 + }, + { + "start": 23693.44, + "end": 23694.8, + "probability": 0.7615 + }, + { + "start": 23694.96, + "end": 23696.5, + "probability": 0.7781 + }, + { + "start": 23696.56, + "end": 23699.16, + "probability": 0.74 + }, + { + "start": 23700.56, + "end": 23700.56, + "probability": 0.0042 + }, + { + "start": 23703.84, + "end": 23703.84, + "probability": 0.0565 + }, + { + "start": 23703.84, + "end": 23704.41, + "probability": 0.0905 + }, + { + "start": 23705.4, + "end": 23706.38, + "probability": 0.0371 + }, + { + "start": 23708.74, + "end": 23712.08, + "probability": 0.0967 + }, + { + "start": 23712.08, + "end": 23713.18, + "probability": 0.0374 + }, + { + "start": 23715.14, + "end": 23717.02, + "probability": 0.5072 + }, + { + "start": 23717.78, + "end": 23719.42, + "probability": 0.5252 + }, + { + "start": 23720.36, + "end": 23721.06, + "probability": 0.6907 + }, + { + "start": 23722.34, + "end": 23725.62, + "probability": 0.7044 + }, + { + "start": 23726.48, + "end": 23727.12, + "probability": 0.9648 + }, + { + "start": 23727.46, + "end": 23728.7, + "probability": 0.5885 + }, + { + "start": 23728.82, + "end": 23733.08, + "probability": 0.9697 + }, + { + "start": 23733.18, + "end": 23734.3, + "probability": 0.9183 + }, + { + "start": 23734.78, + "end": 23737.64, + "probability": 0.8461 + }, + { + "start": 23738.04, + "end": 23739.94, + "probability": 0.9706 + }, + { + "start": 23740.63, + "end": 23742.08, + "probability": 0.7837 + }, + { + "start": 23742.32, + "end": 23746.24, + "probability": 0.0563 + }, + { + "start": 23746.44, + "end": 23746.56, + "probability": 0.0088 + }, + { + "start": 23746.56, + "end": 23747.54, + "probability": 0.2173 + }, + { + "start": 23747.7, + "end": 23748.18, + "probability": 0.2737 + }, + { + "start": 23748.34, + "end": 23748.78, + "probability": 0.6803 + }, + { + "start": 23748.8, + "end": 23752.46, + "probability": 0.7521 + }, + { + "start": 23752.88, + "end": 23754.3, + "probability": 0.9279 + }, + { + "start": 23754.84, + "end": 23757.96, + "probability": 0.6772 + }, + { + "start": 23758.34, + "end": 23759.02, + "probability": 0.0488 + }, + { + "start": 23759.28, + "end": 23760.98, + "probability": 0.5683 + }, + { + "start": 23761.38, + "end": 23763.06, + "probability": 0.837 + }, + { + "start": 23763.56, + "end": 23763.96, + "probability": 0.8707 + }, + { + "start": 23764.24, + "end": 23765.54, + "probability": 0.6556 + }, + { + "start": 23766.04, + "end": 23766.72, + "probability": 0.0 + }, + { + "start": 23767.92, + "end": 23770.9, + "probability": 0.7259 + }, + { + "start": 23771.3, + "end": 23773.7, + "probability": 0.9229 + }, + { + "start": 23774.16, + "end": 23774.68, + "probability": 0.0899 + }, + { + "start": 23775.04, + "end": 23776.48, + "probability": 0.5778 + }, + { + "start": 23776.72, + "end": 23778.12, + "probability": 0.7908 + }, + { + "start": 23778.24, + "end": 23778.56, + "probability": 0.9083 + }, + { + "start": 23778.72, + "end": 23780.34, + "probability": 0.9971 + }, + { + "start": 23780.48, + "end": 23781.9, + "probability": 0.7724 + }, + { + "start": 23783.04, + "end": 23785.86, + "probability": 0.7107 + }, + { + "start": 23786.24, + "end": 23788.94, + "probability": 0.8916 + }, + { + "start": 23789.38, + "end": 23789.92, + "probability": 0.1214 + }, + { + "start": 23791.06, + "end": 23794.74, + "probability": 0.9199 + }, + { + "start": 23795.62, + "end": 23796.43, + "probability": 0.0082 + }, + { + "start": 23797.52, + "end": 23798.12, + "probability": 0.0703 + }, + { + "start": 23799.3, + "end": 23803.26, + "probability": 0.8104 + }, + { + "start": 23803.26, + "end": 23806.44, + "probability": 0.735 + }, + { + "start": 23806.76, + "end": 23808.1, + "probability": 0.4847 + }, + { + "start": 23808.52, + "end": 23809.84, + "probability": 0.8445 + }, + { + "start": 23809.98, + "end": 23810.3, + "probability": 0.9356 + }, + { + "start": 23810.52, + "end": 23811.96, + "probability": 0.9761 + }, + { + "start": 23812.54, + "end": 23816.36, + "probability": 0.6182 + }, + { + "start": 23816.7, + "end": 23820.06, + "probability": 0.7802 + }, + { + "start": 23820.5, + "end": 23821.02, + "probability": 0.2395 + }, + { + "start": 23821.94, + "end": 23823.3, + "probability": 0.5558 + }, + { + "start": 23824.04, + "end": 23826.42, + "probability": 0.8534 + }, + { + "start": 23826.8, + "end": 23828.62, + "probability": 0.7552 + }, + { + "start": 23828.98, + "end": 23830.32, + "probability": 0.9058 + }, + { + "start": 23831.0, + "end": 23831.38, + "probability": 0.4892 + }, + { + "start": 23832.18, + "end": 23835.36, + "probability": 0.9961 + }, + { + "start": 23836.2, + "end": 23839.14, + "probability": 0.1438 + }, + { + "start": 23839.14, + "end": 23839.4, + "probability": 0.2557 + }, + { + "start": 23839.62, + "end": 23840.04, + "probability": 0.3232 + }, + { + "start": 23840.04, + "end": 23840.68, + "probability": 0.731 + }, + { + "start": 23841.12, + "end": 23842.32, + "probability": 0.4516 + }, + { + "start": 23843.16, + "end": 23843.44, + "probability": 0.3067 + }, + { + "start": 23843.44, + "end": 23843.87, + "probability": 0.2378 + }, + { + "start": 23844.64, + "end": 23845.56, + "probability": 0.1335 + }, + { + "start": 23845.6, + "end": 23847.5, + "probability": 0.8687 + }, + { + "start": 23847.5, + "end": 23852.34, + "probability": 0.9974 + }, + { + "start": 23852.86, + "end": 23854.71, + "probability": 0.8994 + }, + { + "start": 23855.14, + "end": 23857.12, + "probability": 0.8586 + }, + { + "start": 23857.6, + "end": 23858.12, + "probability": 0.4975 + }, + { + "start": 23858.18, + "end": 23862.12, + "probability": 0.7183 + }, + { + "start": 23862.28, + "end": 23862.28, + "probability": 0.296 + }, + { + "start": 23862.28, + "end": 23863.57, + "probability": 0.8163 + }, + { + "start": 23864.22, + "end": 23865.74, + "probability": 0.9885 + }, + { + "start": 23865.82, + "end": 23868.84, + "probability": 0.9083 + }, + { + "start": 23869.14, + "end": 23870.06, + "probability": 0.7588 + }, + { + "start": 23870.64, + "end": 23872.74, + "probability": 0.9142 + }, + { + "start": 23873.06, + "end": 23873.12, + "probability": 0.1198 + }, + { + "start": 23873.12, + "end": 23877.68, + "probability": 0.5747 + }, + { + "start": 23878.04, + "end": 23879.36, + "probability": 0.8474 + }, + { + "start": 23879.52, + "end": 23880.14, + "probability": 0.4073 + }, + { + "start": 23880.5, + "end": 23881.34, + "probability": 0.9545 + }, + { + "start": 23881.54, + "end": 23882.54, + "probability": 0.9477 + }, + { + "start": 23882.6, + "end": 23883.6, + "probability": 0.9497 + }, + { + "start": 23883.66, + "end": 23884.46, + "probability": 0.6244 + }, + { + "start": 23884.52, + "end": 23885.44, + "probability": 0.9409 + }, + { + "start": 23885.6, + "end": 23886.86, + "probability": 0.6976 + }, + { + "start": 23887.06, + "end": 23887.84, + "probability": 0.8998 + }, + { + "start": 23887.86, + "end": 23890.58, + "probability": 0.9529 + }, + { + "start": 23891.46, + "end": 23893.91, + "probability": 0.9176 + }, + { + "start": 23894.3, + "end": 23895.08, + "probability": 0.4724 + }, + { + "start": 23895.12, + "end": 23896.88, + "probability": 0.9686 + }, + { + "start": 23897.08, + "end": 23899.02, + "probability": 0.8509 + }, + { + "start": 23899.4, + "end": 23900.98, + "probability": 0.9857 + }, + { + "start": 23901.04, + "end": 23901.82, + "probability": 0.8399 + }, + { + "start": 23902.72, + "end": 23903.96, + "probability": 0.9477 + }, + { + "start": 23904.24, + "end": 23906.98, + "probability": 0.9977 + }, + { + "start": 23907.58, + "end": 23908.18, + "probability": 0.6167 + }, + { + "start": 23909.0, + "end": 23909.3, + "probability": 0.6018 + }, + { + "start": 23909.94, + "end": 23912.28, + "probability": 0.7113 + }, + { + "start": 23912.42, + "end": 23912.58, + "probability": 0.3811 + }, + { + "start": 23912.68, + "end": 23913.64, + "probability": 0.3389 + }, + { + "start": 23913.64, + "end": 23916.26, + "probability": 0.162 + }, + { + "start": 23916.26, + "end": 23916.28, + "probability": 0.3361 + }, + { + "start": 23916.28, + "end": 23918.14, + "probability": 0.386 + }, + { + "start": 23918.14, + "end": 23923.3, + "probability": 0.8947 + }, + { + "start": 23923.38, + "end": 23924.1, + "probability": 0.6397 + }, + { + "start": 23924.1, + "end": 23924.22, + "probability": 0.802 + }, + { + "start": 23924.34, + "end": 23926.86, + "probability": 0.791 + }, + { + "start": 23927.22, + "end": 23929.12, + "probability": 0.9541 + }, + { + "start": 23929.26, + "end": 23931.36, + "probability": 0.4682 + }, + { + "start": 23932.28, + "end": 23932.48, + "probability": 0.3407 + }, + { + "start": 23932.54, + "end": 23935.78, + "probability": 0.2045 + }, + { + "start": 23936.16, + "end": 23937.2, + "probability": 0.3072 + }, + { + "start": 23937.86, + "end": 23938.66, + "probability": 0.0594 + }, + { + "start": 23939.2, + "end": 23939.94, + "probability": 0.1818 + }, + { + "start": 23944.28, + "end": 23945.0, + "probability": 0.2345 + }, + { + "start": 23945.0, + "end": 23946.72, + "probability": 0.6681 + }, + { + "start": 23950.22, + "end": 23951.96, + "probability": 0.5974 + }, + { + "start": 23952.06, + "end": 23955.68, + "probability": 0.9806 + }, + { + "start": 23956.55, + "end": 23959.52, + "probability": 0.9202 + }, + { + "start": 23959.96, + "end": 23962.02, + "probability": 0.9071 + }, + { + "start": 23962.6, + "end": 23963.42, + "probability": 0.6843 + }, + { + "start": 23963.52, + "end": 23965.06, + "probability": 0.9961 + }, + { + "start": 23965.74, + "end": 23966.16, + "probability": 0.3116 + }, + { + "start": 23966.2, + "end": 23966.55, + "probability": 0.9593 + }, + { + "start": 23966.76, + "end": 23967.57, + "probability": 0.6047 + }, + { + "start": 23968.3, + "end": 23969.62, + "probability": 0.2977 + }, + { + "start": 23969.84, + "end": 23971.86, + "probability": 0.888 + }, + { + "start": 23973.3, + "end": 23974.24, + "probability": 0.9698 + }, + { + "start": 23974.32, + "end": 23976.93, + "probability": 0.9637 + }, + { + "start": 23977.6, + "end": 23983.18, + "probability": 0.9927 + }, + { + "start": 23983.3, + "end": 23985.22, + "probability": 0.9468 + }, + { + "start": 23985.6, + "end": 23986.8, + "probability": 0.5059 + }, + { + "start": 23986.82, + "end": 23987.98, + "probability": 0.7814 + }, + { + "start": 23989.0, + "end": 23989.14, + "probability": 0.217 + }, + { + "start": 23989.38, + "end": 23990.28, + "probability": 0.6217 + }, + { + "start": 23990.6, + "end": 23991.92, + "probability": 0.7218 + }, + { + "start": 23992.08, + "end": 23993.52, + "probability": 0.9691 + }, + { + "start": 23993.58, + "end": 23994.64, + "probability": 0.967 + }, + { + "start": 23996.2, + "end": 23996.71, + "probability": 0.9346 + }, + { + "start": 23997.46, + "end": 23998.0, + "probability": 0.2796 + }, + { + "start": 23998.34, + "end": 23999.44, + "probability": 0.2255 + }, + { + "start": 23999.56, + "end": 24000.84, + "probability": 0.5358 + }, + { + "start": 24001.14, + "end": 24001.36, + "probability": 0.6028 + }, + { + "start": 24001.62, + "end": 24004.28, + "probability": 0.953 + }, + { + "start": 24004.36, + "end": 24005.34, + "probability": 0.9753 + }, + { + "start": 24005.68, + "end": 24006.92, + "probability": 0.0894 + }, + { + "start": 24007.02, + "end": 24007.54, + "probability": 0.5335 + }, + { + "start": 24007.76, + "end": 24009.62, + "probability": 0.7107 + }, + { + "start": 24010.02, + "end": 24011.94, + "probability": 0.8647 + }, + { + "start": 24012.02, + "end": 24013.64, + "probability": 0.3586 + }, + { + "start": 24013.72, + "end": 24014.52, + "probability": 0.9886 + }, + { + "start": 24014.54, + "end": 24017.88, + "probability": 0.8551 + }, + { + "start": 24017.98, + "end": 24019.14, + "probability": 0.9908 + }, + { + "start": 24019.92, + "end": 24023.84, + "probability": 0.9801 + }, + { + "start": 24024.64, + "end": 24029.52, + "probability": 0.9684 + }, + { + "start": 24029.82, + "end": 24032.84, + "probability": 0.8429 + }, + { + "start": 24034.04, + "end": 24036.0, + "probability": 0.9881 + }, + { + "start": 24036.62, + "end": 24040.54, + "probability": 0.8751 + }, + { + "start": 24041.5, + "end": 24042.48, + "probability": 0.9543 + }, + { + "start": 24044.06, + "end": 24045.36, + "probability": 0.9837 + }, + { + "start": 24045.52, + "end": 24047.5, + "probability": 0.9594 + }, + { + "start": 24047.98, + "end": 24049.52, + "probability": 0.7515 + }, + { + "start": 24049.66, + "end": 24050.38, + "probability": 0.5283 + }, + { + "start": 24051.77, + "end": 24055.76, + "probability": 0.9705 + }, + { + "start": 24055.84, + "end": 24056.56, + "probability": 0.0972 + }, + { + "start": 24058.18, + "end": 24058.18, + "probability": 0.0423 + }, + { + "start": 24058.18, + "end": 24058.36, + "probability": 0.1452 + }, + { + "start": 24058.36, + "end": 24058.86, + "probability": 0.19 + }, + { + "start": 24059.0, + "end": 24059.58, + "probability": 0.3305 + }, + { + "start": 24059.76, + "end": 24060.48, + "probability": 0.353 + }, + { + "start": 24060.58, + "end": 24062.92, + "probability": 0.7559 + }, + { + "start": 24063.24, + "end": 24063.94, + "probability": 0.5403 + }, + { + "start": 24064.69, + "end": 24066.4, + "probability": 0.8066 + }, + { + "start": 24066.48, + "end": 24066.6, + "probability": 0.1661 + }, + { + "start": 24066.78, + "end": 24067.46, + "probability": 0.6767 + }, + { + "start": 24067.72, + "end": 24067.92, + "probability": 0.6556 + }, + { + "start": 24067.96, + "end": 24069.4, + "probability": 0.9117 + }, + { + "start": 24069.44, + "end": 24070.22, + "probability": 0.6479 + }, + { + "start": 24070.28, + "end": 24071.05, + "probability": 0.6072 + }, + { + "start": 24071.66, + "end": 24073.98, + "probability": 0.9657 + }, + { + "start": 24074.08, + "end": 24075.02, + "probability": 0.8229 + }, + { + "start": 24075.58, + "end": 24076.64, + "probability": 0.9716 + }, + { + "start": 24077.26, + "end": 24078.74, + "probability": 0.3574 + }, + { + "start": 24078.82, + "end": 24079.03, + "probability": 0.6662 + }, + { + "start": 24079.36, + "end": 24079.98, + "probability": 0.5892 + }, + { + "start": 24080.06, + "end": 24080.06, + "probability": 0.3481 + }, + { + "start": 24080.12, + "end": 24081.18, + "probability": 0.5502 + }, + { + "start": 24081.33, + "end": 24086.51, + "probability": 0.8656 + }, + { + "start": 24087.66, + "end": 24088.98, + "probability": 0.0212 + }, + { + "start": 24089.35, + "end": 24090.18, + "probability": 0.077 + }, + { + "start": 24090.18, + "end": 24090.52, + "probability": 0.3223 + }, + { + "start": 24090.84, + "end": 24094.33, + "probability": 0.6519 + }, + { + "start": 24094.34, + "end": 24100.98, + "probability": 0.854 + }, + { + "start": 24101.1, + "end": 24102.12, + "probability": 0.9689 + }, + { + "start": 24102.44, + "end": 24103.42, + "probability": 0.5207 + }, + { + "start": 24103.54, + "end": 24105.22, + "probability": 0.9953 + }, + { + "start": 24105.42, + "end": 24105.84, + "probability": 0.012 + }, + { + "start": 24105.92, + "end": 24108.24, + "probability": 0.7811 + }, + { + "start": 24108.32, + "end": 24110.86, + "probability": 0.9961 + }, + { + "start": 24111.12, + "end": 24116.58, + "probability": 0.9804 + }, + { + "start": 24116.84, + "end": 24118.45, + "probability": 0.989 + }, + { + "start": 24118.7, + "end": 24119.18, + "probability": 0.1387 + }, + { + "start": 24119.18, + "end": 24119.18, + "probability": 0.0462 + }, + { + "start": 24119.18, + "end": 24120.02, + "probability": 0.3516 + }, + { + "start": 24120.68, + "end": 24121.74, + "probability": 0.7038 + }, + { + "start": 24124.31, + "end": 24128.16, + "probability": 0.9781 + }, + { + "start": 24128.92, + "end": 24133.14, + "probability": 0.7723 + }, + { + "start": 24134.1, + "end": 24135.74, + "probability": 0.7936 + }, + { + "start": 24136.76, + "end": 24140.26, + "probability": 0.992 + }, + { + "start": 24140.32, + "end": 24142.06, + "probability": 0.9293 + }, + { + "start": 24142.98, + "end": 24143.72, + "probability": 0.4814 + }, + { + "start": 24144.38, + "end": 24145.42, + "probability": 0.4096 + }, + { + "start": 24145.94, + "end": 24147.38, + "probability": 0.5021 + }, + { + "start": 24147.96, + "end": 24151.14, + "probability": 0.6532 + }, + { + "start": 24151.52, + "end": 24154.22, + "probability": 0.9284 + }, + { + "start": 24157.74, + "end": 24159.84, + "probability": 0.4839 + }, + { + "start": 24164.24, + "end": 24164.98, + "probability": 0.2274 + }, + { + "start": 24173.36, + "end": 24176.22, + "probability": 0.424 + }, + { + "start": 24178.2, + "end": 24182.14, + "probability": 0.4617 + }, + { + "start": 24182.82, + "end": 24183.6, + "probability": 0.4045 + }, + { + "start": 24184.18, + "end": 24185.46, + "probability": 0.5207 + }, + { + "start": 24186.02, + "end": 24187.42, + "probability": 0.2358 + }, + { + "start": 24189.4, + "end": 24193.18, + "probability": 0.6833 + }, + { + "start": 24193.18, + "end": 24193.72, + "probability": 0.0143 + }, + { + "start": 24194.42, + "end": 24195.46, + "probability": 0.1792 + }, + { + "start": 24196.76, + "end": 24198.64, + "probability": 0.0981 + }, + { + "start": 24201.72, + "end": 24203.88, + "probability": 0.0905 + }, + { + "start": 24204.42, + "end": 24205.44, + "probability": 0.0885 + }, + { + "start": 24206.46, + "end": 24207.04, + "probability": 0.0017 + }, + { + "start": 24212.74, + "end": 24217.38, + "probability": 0.0367 + }, + { + "start": 24218.64, + "end": 24221.38, + "probability": 0.189 + }, + { + "start": 24224.18, + "end": 24225.4, + "probability": 0.0948 + }, + { + "start": 24233.76, + "end": 24233.76, + "probability": 0.0978 + }, + { + "start": 24240.8, + "end": 24241.0, + "probability": 0.2055 + }, + { + "start": 24241.0, + "end": 24241.0, + "probability": 0.1337 + }, + { + "start": 24241.0, + "end": 24241.0, + "probability": 0.3876 + }, + { + "start": 24241.0, + "end": 24241.0, + "probability": 0.5708 + }, + { + "start": 24241.0, + "end": 24241.0, + "probability": 0.0799 + }, + { + "start": 24241.0, + "end": 24241.0, + "probability": 0.0 + }, + { + "start": 24241.0, + "end": 24241.0, + "probability": 0.0 + }, + { + "start": 24241.0, + "end": 24241.0, + "probability": 0.0 + }, + { + "start": 24241.0, + "end": 24241.0, + "probability": 0.0 + }, + { + "start": 24241.0, + "end": 24241.0, + "probability": 0.0 + }, + { + "start": 24241.0, + "end": 24241.0, + "probability": 0.0 + }, + { + "start": 24241.12, + "end": 24241.98, + "probability": 0.261 + }, + { + "start": 24243.16, + "end": 24244.62, + "probability": 0.8161 + }, + { + "start": 24247.64, + "end": 24250.82, + "probability": 0.9946 + }, + { + "start": 24250.82, + "end": 24254.46, + "probability": 0.7101 + }, + { + "start": 24254.56, + "end": 24257.16, + "probability": 0.1036 + }, + { + "start": 24257.4, + "end": 24258.14, + "probability": 0.9692 + }, + { + "start": 24259.12, + "end": 24260.22, + "probability": 0.8878 + }, + { + "start": 24261.8, + "end": 24263.34, + "probability": 0.9966 + }, + { + "start": 24264.2, + "end": 24266.8, + "probability": 0.8564 + }, + { + "start": 24268.02, + "end": 24268.76, + "probability": 0.9239 + }, + { + "start": 24269.44, + "end": 24271.08, + "probability": 0.9907 + }, + { + "start": 24271.66, + "end": 24277.98, + "probability": 0.9791 + }, + { + "start": 24280.12, + "end": 24280.8, + "probability": 0.3141 + }, + { + "start": 24281.86, + "end": 24282.88, + "probability": 0.7571 + }, + { + "start": 24283.57, + "end": 24286.21, + "probability": 0.8508 + }, + { + "start": 24286.78, + "end": 24289.38, + "probability": 0.9351 + }, + { + "start": 24290.0, + "end": 24292.5, + "probability": 0.8457 + }, + { + "start": 24292.64, + "end": 24292.86, + "probability": 0.7762 + }, + { + "start": 24293.76, + "end": 24295.96, + "probability": 0.9796 + }, + { + "start": 24300.18, + "end": 24303.4, + "probability": 0.9973 + }, + { + "start": 24304.1, + "end": 24307.94, + "probability": 0.9929 + }, + { + "start": 24307.94, + "end": 24310.5, + "probability": 0.9452 + }, + { + "start": 24310.84, + "end": 24313.08, + "probability": 0.9521 + }, + { + "start": 24314.0, + "end": 24319.3, + "probability": 0.9926 + }, + { + "start": 24320.3, + "end": 24321.74, + "probability": 0.7142 + }, + { + "start": 24323.24, + "end": 24326.08, + "probability": 0.9815 + }, + { + "start": 24328.53, + "end": 24333.64, + "probability": 0.9829 + }, + { + "start": 24334.54, + "end": 24337.1, + "probability": 0.9961 + }, + { + "start": 24337.78, + "end": 24339.36, + "probability": 0.9779 + }, + { + "start": 24339.56, + "end": 24343.12, + "probability": 0.9598 + }, + { + "start": 24343.8, + "end": 24347.34, + "probability": 0.9662 + }, + { + "start": 24347.94, + "end": 24348.8, + "probability": 0.9803 + }, + { + "start": 24349.8, + "end": 24352.12, + "probability": 0.8084 + }, + { + "start": 24352.64, + "end": 24356.08, + "probability": 0.9843 + }, + { + "start": 24356.74, + "end": 24357.66, + "probability": 0.9987 + }, + { + "start": 24357.78, + "end": 24360.42, + "probability": 0.9481 + }, + { + "start": 24360.6, + "end": 24361.44, + "probability": 0.7079 + }, + { + "start": 24361.52, + "end": 24362.94, + "probability": 0.915 + }, + { + "start": 24363.64, + "end": 24364.27, + "probability": 0.9591 + }, + { + "start": 24365.02, + "end": 24369.38, + "probability": 0.9792 + }, + { + "start": 24371.3, + "end": 24372.66, + "probability": 0.9627 + }, + { + "start": 24375.1, + "end": 24375.32, + "probability": 0.0094 + }, + { + "start": 24375.32, + "end": 24377.68, + "probability": 0.9019 + }, + { + "start": 24377.8, + "end": 24378.98, + "probability": 0.745 + }, + { + "start": 24379.76, + "end": 24383.42, + "probability": 0.9868 + }, + { + "start": 24386.56, + "end": 24389.32, + "probability": 0.8735 + }, + { + "start": 24390.64, + "end": 24392.16, + "probability": 0.9846 + }, + { + "start": 24392.7, + "end": 24396.48, + "probability": 0.8293 + }, + { + "start": 24397.74, + "end": 24400.46, + "probability": 0.862 + }, + { + "start": 24401.32, + "end": 24405.98, + "probability": 0.835 + }, + { + "start": 24406.76, + "end": 24409.38, + "probability": 0.9298 + }, + { + "start": 24410.38, + "end": 24413.46, + "probability": 0.8475 + }, + { + "start": 24413.46, + "end": 24417.1, + "probability": 0.9397 + }, + { + "start": 24418.86, + "end": 24421.38, + "probability": 0.9316 + }, + { + "start": 24421.98, + "end": 24426.0, + "probability": 0.9011 + }, + { + "start": 24426.0, + "end": 24429.08, + "probability": 0.9672 + }, + { + "start": 24429.96, + "end": 24434.46, + "probability": 0.9973 + }, + { + "start": 24435.06, + "end": 24436.0, + "probability": 0.9767 + }, + { + "start": 24438.48, + "end": 24442.22, + "probability": 0.8801 + }, + { + "start": 24443.6, + "end": 24445.44, + "probability": 0.799 + }, + { + "start": 24446.0, + "end": 24451.74, + "probability": 0.9793 + }, + { + "start": 24452.84, + "end": 24458.22, + "probability": 0.9473 + }, + { + "start": 24459.06, + "end": 24462.18, + "probability": 0.9879 + }, + { + "start": 24462.3, + "end": 24463.85, + "probability": 0.9947 + }, + { + "start": 24464.32, + "end": 24465.51, + "probability": 0.9978 + }, + { + "start": 24466.16, + "end": 24467.56, + "probability": 0.9965 + }, + { + "start": 24468.02, + "end": 24469.33, + "probability": 0.9119 + }, + { + "start": 24470.24, + "end": 24471.72, + "probability": 0.9995 + }, + { + "start": 24472.34, + "end": 24477.76, + "probability": 0.9974 + }, + { + "start": 24478.32, + "end": 24481.04, + "probability": 0.5358 + }, + { + "start": 24481.76, + "end": 24483.24, + "probability": 0.9827 + }, + { + "start": 24485.56, + "end": 24489.74, + "probability": 0.9674 + }, + { + "start": 24490.26, + "end": 24491.86, + "probability": 0.9961 + }, + { + "start": 24493.2, + "end": 24498.26, + "probability": 0.9097 + }, + { + "start": 24498.28, + "end": 24504.28, + "probability": 0.9803 + }, + { + "start": 24504.8, + "end": 24506.98, + "probability": 0.9819 + }, + { + "start": 24508.36, + "end": 24513.4, + "probability": 0.7523 + }, + { + "start": 24513.76, + "end": 24514.1, + "probability": 0.2702 + }, + { + "start": 24514.76, + "end": 24515.76, + "probability": 0.6746 + }, + { + "start": 24517.64, + "end": 24519.54, + "probability": 0.7451 + }, + { + "start": 24519.54, + "end": 24522.8, + "probability": 0.9449 + }, + { + "start": 24522.92, + "end": 24523.56, + "probability": 0.9071 + }, + { + "start": 24524.1, + "end": 24530.04, + "probability": 0.9941 + }, + { + "start": 24530.9, + "end": 24533.84, + "probability": 0.9683 + }, + { + "start": 24535.52, + "end": 24536.32, + "probability": 0.8918 + }, + { + "start": 24536.96, + "end": 24538.26, + "probability": 0.9816 + }, + { + "start": 24538.98, + "end": 24541.42, + "probability": 0.9292 + }, + { + "start": 24542.26, + "end": 24543.44, + "probability": 0.8197 + }, + { + "start": 24545.26, + "end": 24549.38, + "probability": 0.985 + }, + { + "start": 24549.98, + "end": 24553.72, + "probability": 0.9725 + }, + { + "start": 24554.24, + "end": 24556.52, + "probability": 0.974 + }, + { + "start": 24557.4, + "end": 24559.32, + "probability": 0.9717 + }, + { + "start": 24560.66, + "end": 24561.22, + "probability": 0.8719 + }, + { + "start": 24561.7, + "end": 24566.88, + "probability": 0.9897 + }, + { + "start": 24567.46, + "end": 24570.42, + "probability": 0.4664 + }, + { + "start": 24571.3, + "end": 24571.84, + "probability": 0.7408 + }, + { + "start": 24572.42, + "end": 24577.46, + "probability": 0.7389 + }, + { + "start": 24578.54, + "end": 24581.81, + "probability": 0.8015 + }, + { + "start": 24582.78, + "end": 24585.22, + "probability": 0.8187 + }, + { + "start": 24586.1, + "end": 24587.6, + "probability": 0.7251 + }, + { + "start": 24592.22, + "end": 24594.62, + "probability": 0.687 + }, + { + "start": 24596.22, + "end": 24597.16, + "probability": 0.5753 + }, + { + "start": 24599.68, + "end": 24599.68, + "probability": 0.6224 + }, + { + "start": 24599.68, + "end": 24603.1, + "probability": 0.8481 + }, + { + "start": 24603.84, + "end": 24610.5, + "probability": 0.9922 + }, + { + "start": 24611.2, + "end": 24614.48, + "probability": 0.8105 + }, + { + "start": 24615.2, + "end": 24616.56, + "probability": 0.9989 + }, + { + "start": 24617.08, + "end": 24622.06, + "probability": 0.9989 + }, + { + "start": 24622.06, + "end": 24625.86, + "probability": 0.9972 + }, + { + "start": 24626.76, + "end": 24629.86, + "probability": 0.8594 + }, + { + "start": 24630.66, + "end": 24632.72, + "probability": 0.938 + }, + { + "start": 24633.54, + "end": 24635.48, + "probability": 0.6802 + }, + { + "start": 24636.26, + "end": 24638.2, + "probability": 0.8595 + }, + { + "start": 24638.26, + "end": 24642.04, + "probability": 0.9506 + }, + { + "start": 24642.6, + "end": 24646.26, + "probability": 0.9922 + }, + { + "start": 24646.96, + "end": 24651.14, + "probability": 0.9526 + }, + { + "start": 24651.78, + "end": 24652.74, + "probability": 0.8305 + }, + { + "start": 24653.8, + "end": 24657.86, + "probability": 0.9819 + }, + { + "start": 24657.9, + "end": 24660.8, + "probability": 0.7949 + }, + { + "start": 24663.6, + "end": 24667.9, + "probability": 0.9204 + }, + { + "start": 24668.2, + "end": 24669.28, + "probability": 0.95 + }, + { + "start": 24669.34, + "end": 24670.24, + "probability": 0.9844 + }, + { + "start": 24671.02, + "end": 24674.42, + "probability": 0.9946 + }, + { + "start": 24675.4, + "end": 24677.31, + "probability": 0.6792 + }, + { + "start": 24678.42, + "end": 24679.84, + "probability": 0.7386 + }, + { + "start": 24681.36, + "end": 24684.18, + "probability": 0.9394 + }, + { + "start": 24685.52, + "end": 24688.22, + "probability": 0.9963 + }, + { + "start": 24688.82, + "end": 24690.2, + "probability": 0.9965 + }, + { + "start": 24691.86, + "end": 24696.64, + "probability": 0.7675 + }, + { + "start": 24697.34, + "end": 24700.14, + "probability": 0.9788 + }, + { + "start": 24700.68, + "end": 24702.54, + "probability": 0.9219 + }, + { + "start": 24703.38, + "end": 24710.6, + "probability": 0.989 + }, + { + "start": 24711.12, + "end": 24711.98, + "probability": 0.9973 + }, + { + "start": 24712.78, + "end": 24715.28, + "probability": 0.9739 + }, + { + "start": 24715.48, + "end": 24716.62, + "probability": 0.8467 + }, + { + "start": 24716.68, + "end": 24717.98, + "probability": 0.6844 + }, + { + "start": 24718.72, + "end": 24720.9, + "probability": 0.9805 + }, + { + "start": 24722.72, + "end": 24725.64, + "probability": 0.9841 + }, + { + "start": 24726.18, + "end": 24728.46, + "probability": 0.9699 + }, + { + "start": 24729.18, + "end": 24735.26, + "probability": 0.9847 + }, + { + "start": 24736.84, + "end": 24738.6, + "probability": 0.7408 + }, + { + "start": 24739.76, + "end": 24743.38, + "probability": 0.9956 + }, + { + "start": 24743.42, + "end": 24745.2, + "probability": 0.9922 + }, + { + "start": 24745.8, + "end": 24750.34, + "probability": 0.916 + }, + { + "start": 24750.5, + "end": 24751.64, + "probability": 0.5222 + }, + { + "start": 24752.16, + "end": 24755.58, + "probability": 0.8816 + }, + { + "start": 24756.16, + "end": 24760.04, + "probability": 0.6969 + }, + { + "start": 24760.82, + "end": 24762.02, + "probability": 0.5561 + }, + { + "start": 24762.68, + "end": 24764.58, + "probability": 0.838 + }, + { + "start": 24765.82, + "end": 24767.22, + "probability": 0.9858 + }, + { + "start": 24767.7, + "end": 24768.86, + "probability": 0.9937 + }, + { + "start": 24769.52, + "end": 24771.84, + "probability": 0.9947 + }, + { + "start": 24772.36, + "end": 24773.34, + "probability": 0.4136 + }, + { + "start": 24774.0, + "end": 24775.98, + "probability": 0.7028 + }, + { + "start": 24777.3, + "end": 24779.06, + "probability": 0.8608 + }, + { + "start": 24779.66, + "end": 24783.8, + "probability": 0.9797 + }, + { + "start": 24785.28, + "end": 24788.94, + "probability": 0.9544 + }, + { + "start": 24789.46, + "end": 24790.78, + "probability": 0.9166 + }, + { + "start": 24791.56, + "end": 24794.04, + "probability": 0.8016 + }, + { + "start": 24794.95, + "end": 24798.06, + "probability": 0.7827 + }, + { + "start": 24798.58, + "end": 24803.88, + "probability": 0.8604 + }, + { + "start": 24804.76, + "end": 24807.52, + "probability": 0.9078 + }, + { + "start": 24808.82, + "end": 24812.56, + "probability": 0.9882 + }, + { + "start": 24813.46, + "end": 24816.1, + "probability": 0.8747 + }, + { + "start": 24816.64, + "end": 24824.74, + "probability": 0.9932 + }, + { + "start": 24825.68, + "end": 24826.7, + "probability": 0.9769 + }, + { + "start": 24826.76, + "end": 24827.76, + "probability": 0.9438 + }, + { + "start": 24827.82, + "end": 24828.98, + "probability": 0.9908 + }, + { + "start": 24830.44, + "end": 24832.82, + "probability": 0.9977 + }, + { + "start": 24833.36, + "end": 24835.26, + "probability": 0.9987 + }, + { + "start": 24836.16, + "end": 24836.7, + "probability": 0.7975 + }, + { + "start": 24837.36, + "end": 24838.16, + "probability": 0.6246 + }, + { + "start": 24838.34, + "end": 24842.08, + "probability": 0.9634 + }, + { + "start": 24842.8, + "end": 24847.38, + "probability": 0.7431 + }, + { + "start": 24847.46, + "end": 24848.24, + "probability": 0.6149 + }, + { + "start": 24848.76, + "end": 24851.08, + "probability": 0.8946 + }, + { + "start": 24851.64, + "end": 24854.06, + "probability": 0.8615 + }, + { + "start": 24854.78, + "end": 24856.82, + "probability": 0.7649 + }, + { + "start": 24857.72, + "end": 24860.64, + "probability": 0.8397 + }, + { + "start": 24861.72, + "end": 24867.44, + "probability": 0.9949 + }, + { + "start": 24867.44, + "end": 24875.1, + "probability": 0.9902 + }, + { + "start": 24876.0, + "end": 24878.76, + "probability": 0.9311 + }, + { + "start": 24879.6, + "end": 24881.46, + "probability": 0.9109 + }, + { + "start": 24882.14, + "end": 24885.18, + "probability": 0.7076 + }, + { + "start": 24886.94, + "end": 24889.02, + "probability": 0.9468 + }, + { + "start": 24891.15, + "end": 24894.42, + "probability": 0.7722 + }, + { + "start": 24895.26, + "end": 24897.76, + "probability": 0.8368 + }, + { + "start": 24898.74, + "end": 24900.36, + "probability": 0.7803 + }, + { + "start": 24900.98, + "end": 24904.08, + "probability": 0.9625 + }, + { + "start": 24905.1, + "end": 24908.04, + "probability": 0.9963 + }, + { + "start": 24908.64, + "end": 24909.14, + "probability": 0.9348 + }, + { + "start": 24909.24, + "end": 24912.24, + "probability": 0.9863 + }, + { + "start": 24912.7, + "end": 24914.01, + "probability": 0.9873 + }, + { + "start": 24914.06, + "end": 24918.44, + "probability": 0.9908 + }, + { + "start": 24918.92, + "end": 24919.62, + "probability": 0.9056 + }, + { + "start": 24920.0, + "end": 24920.82, + "probability": 0.8703 + }, + { + "start": 24921.34, + "end": 24922.56, + "probability": 0.9071 + }, + { + "start": 24923.04, + "end": 24928.98, + "probability": 0.9961 + }, + { + "start": 24929.6, + "end": 24930.5, + "probability": 0.7647 + }, + { + "start": 24931.0, + "end": 24933.5, + "probability": 0.8341 + }, + { + "start": 24934.06, + "end": 24936.48, + "probability": 0.7488 + }, + { + "start": 24937.22, + "end": 24940.52, + "probability": 0.9484 + }, + { + "start": 24940.52, + "end": 24943.42, + "probability": 0.9971 + }, + { + "start": 24943.94, + "end": 24945.6, + "probability": 0.8702 + }, + { + "start": 24945.72, + "end": 24946.34, + "probability": 0.465 + }, + { + "start": 24946.84, + "end": 24948.28, + "probability": 0.6686 + }, + { + "start": 24948.98, + "end": 24951.44, + "probability": 0.9147 + }, + { + "start": 24952.34, + "end": 24958.7, + "probability": 0.8968 + }, + { + "start": 24958.84, + "end": 24960.26, + "probability": 0.9377 + }, + { + "start": 24960.98, + "end": 24964.74, + "probability": 0.0962 + }, + { + "start": 24964.84, + "end": 24964.84, + "probability": 0.5461 + }, + { + "start": 24964.84, + "end": 24964.84, + "probability": 0.0188 + }, + { + "start": 24964.84, + "end": 24965.26, + "probability": 0.7278 + }, + { + "start": 24965.86, + "end": 24969.78, + "probability": 0.7049 + }, + { + "start": 24971.82, + "end": 24975.34, + "probability": 0.9893 + }, + { + "start": 24975.98, + "end": 24976.76, + "probability": 0.7003 + }, + { + "start": 24983.18, + "end": 24984.64, + "probability": 0.6472 + }, + { + "start": 24985.22, + "end": 24987.26, + "probability": 0.9953 + }, + { + "start": 24988.1, + "end": 24991.86, + "probability": 0.9578 + }, + { + "start": 24992.84, + "end": 24994.72, + "probability": 0.9858 + }, + { + "start": 24996.24, + "end": 24999.16, + "probability": 0.6795 + }, + { + "start": 25000.28, + "end": 25003.34, + "probability": 0.9929 + }, + { + "start": 25004.28, + "end": 25005.42, + "probability": 0.4707 + }, + { + "start": 25006.5, + "end": 25011.66, + "probability": 0.9776 + }, + { + "start": 25012.48, + "end": 25014.36, + "probability": 0.9684 + }, + { + "start": 25015.36, + "end": 25019.96, + "probability": 0.9212 + }, + { + "start": 25021.54, + "end": 25022.88, + "probability": 0.77 + }, + { + "start": 25023.92, + "end": 25026.99, + "probability": 0.9972 + }, + { + "start": 25028.1, + "end": 25029.54, + "probability": 0.967 + }, + { + "start": 25030.42, + "end": 25034.38, + "probability": 0.9937 + }, + { + "start": 25035.34, + "end": 25036.92, + "probability": 0.9619 + }, + { + "start": 25037.36, + "end": 25039.96, + "probability": 0.9986 + }, + { + "start": 25040.06, + "end": 25044.38, + "probability": 0.9939 + }, + { + "start": 25045.2, + "end": 25046.9, + "probability": 0.9319 + }, + { + "start": 25048.16, + "end": 25051.04, + "probability": 0.9916 + }, + { + "start": 25051.04, + "end": 25054.38, + "probability": 0.9942 + }, + { + "start": 25055.14, + "end": 25057.8, + "probability": 0.9551 + }, + { + "start": 25058.82, + "end": 25060.58, + "probability": 0.9356 + }, + { + "start": 25061.94, + "end": 25062.85, + "probability": 0.8491 + }, + { + "start": 25063.68, + "end": 25065.34, + "probability": 0.978 + }, + { + "start": 25065.5, + "end": 25068.1, + "probability": 0.9821 + }, + { + "start": 25069.52, + "end": 25071.0, + "probability": 0.9802 + }, + { + "start": 25071.06, + "end": 25072.2, + "probability": 0.9859 + }, + { + "start": 25072.3, + "end": 25073.6, + "probability": 0.8721 + }, + { + "start": 25073.68, + "end": 25074.7, + "probability": 0.951 + }, + { + "start": 25074.88, + "end": 25076.24, + "probability": 0.9859 + }, + { + "start": 25077.98, + "end": 25078.46, + "probability": 0.9592 + }, + { + "start": 25078.68, + "end": 25080.53, + "probability": 0.9565 + }, + { + "start": 25080.6, + "end": 25082.4, + "probability": 0.959 + }, + { + "start": 25082.5, + "end": 25085.08, + "probability": 0.9893 + }, + { + "start": 25085.14, + "end": 25086.01, + "probability": 0.9336 + }, + { + "start": 25087.22, + "end": 25091.92, + "probability": 0.9593 + }, + { + "start": 25092.52, + "end": 25093.54, + "probability": 0.8853 + }, + { + "start": 25095.3, + "end": 25099.74, + "probability": 0.9969 + }, + { + "start": 25100.74, + "end": 25101.54, + "probability": 0.9484 + }, + { + "start": 25103.04, + "end": 25106.04, + "probability": 0.9949 + }, + { + "start": 25106.04, + "end": 25109.12, + "probability": 0.993 + }, + { + "start": 25109.72, + "end": 25112.36, + "probability": 0.9912 + }, + { + "start": 25113.38, + "end": 25115.98, + "probability": 0.9478 + }, + { + "start": 25116.7, + "end": 25120.16, + "probability": 0.7963 + }, + { + "start": 25120.78, + "end": 25121.44, + "probability": 0.5622 + }, + { + "start": 25122.24, + "end": 25123.98, + "probability": 0.8659 + }, + { + "start": 25124.4, + "end": 25126.78, + "probability": 0.8024 + }, + { + "start": 25126.92, + "end": 25127.74, + "probability": 0.6778 + }, + { + "start": 25128.74, + "end": 25132.08, + "probability": 0.9844 + }, + { + "start": 25133.1, + "end": 25137.26, + "probability": 0.971 + }, + { + "start": 25138.44, + "end": 25143.34, + "probability": 0.946 + }, + { + "start": 25143.68, + "end": 25144.6, + "probability": 0.7257 + }, + { + "start": 25145.56, + "end": 25150.18, + "probability": 0.9921 + }, + { + "start": 25150.66, + "end": 25151.48, + "probability": 0.7286 + }, + { + "start": 25152.06, + "end": 25153.82, + "probability": 0.9699 + }, + { + "start": 25154.5, + "end": 25156.36, + "probability": 0.9389 + }, + { + "start": 25156.44, + "end": 25158.12, + "probability": 0.9341 + }, + { + "start": 25158.44, + "end": 25161.5, + "probability": 0.9893 + }, + { + "start": 25161.92, + "end": 25164.16, + "probability": 0.9539 + }, + { + "start": 25165.52, + "end": 25167.36, + "probability": 0.9743 + }, + { + "start": 25167.48, + "end": 25170.92, + "probability": 0.9644 + }, + { + "start": 25171.28, + "end": 25172.42, + "probability": 0.9868 + }, + { + "start": 25173.28, + "end": 25174.86, + "probability": 0.9114 + }, + { + "start": 25175.6, + "end": 25177.32, + "probability": 0.9974 + }, + { + "start": 25178.04, + "end": 25179.61, + "probability": 0.9741 + }, + { + "start": 25180.38, + "end": 25182.76, + "probability": 0.9837 + }, + { + "start": 25183.14, + "end": 25184.16, + "probability": 0.9385 + }, + { + "start": 25184.44, + "end": 25185.6, + "probability": 0.8841 + }, + { + "start": 25186.52, + "end": 25189.06, + "probability": 0.9585 + }, + { + "start": 25189.38, + "end": 25191.24, + "probability": 0.942 + }, + { + "start": 25192.18, + "end": 25196.3, + "probability": 0.9228 + }, + { + "start": 25197.26, + "end": 25199.52, + "probability": 0.9781 + }, + { + "start": 25200.02, + "end": 25204.12, + "probability": 0.953 + }, + { + "start": 25204.94, + "end": 25208.64, + "probability": 0.977 + }, + { + "start": 25209.24, + "end": 25211.6, + "probability": 0.8441 + }, + { + "start": 25212.46, + "end": 25213.45, + "probability": 0.9903 + }, + { + "start": 25214.56, + "end": 25215.89, + "probability": 0.998 + }, + { + "start": 25216.86, + "end": 25218.38, + "probability": 0.9807 + }, + { + "start": 25220.74, + "end": 25223.3, + "probability": 0.9666 + }, + { + "start": 25223.68, + "end": 25226.94, + "probability": 0.8534 + }, + { + "start": 25227.82, + "end": 25230.84, + "probability": 0.9844 + }, + { + "start": 25232.08, + "end": 25233.56, + "probability": 0.9992 + }, + { + "start": 25234.22, + "end": 25239.34, + "probability": 0.8647 + }, + { + "start": 25239.84, + "end": 25241.76, + "probability": 0.9647 + }, + { + "start": 25242.5, + "end": 25243.22, + "probability": 0.9954 + }, + { + "start": 25244.42, + "end": 25246.24, + "probability": 0.9885 + }, + { + "start": 25246.3, + "end": 25252.12, + "probability": 0.9803 + }, + { + "start": 25252.88, + "end": 25256.14, + "probability": 0.8322 + }, + { + "start": 25256.92, + "end": 25259.48, + "probability": 0.9856 + }, + { + "start": 25260.24, + "end": 25262.62, + "probability": 0.8566 + }, + { + "start": 25263.3, + "end": 25266.09, + "probability": 0.7631 + }, + { + "start": 25266.86, + "end": 25269.5, + "probability": 0.886 + }, + { + "start": 25270.22, + "end": 25273.5, + "probability": 0.912 + }, + { + "start": 25274.06, + "end": 25276.64, + "probability": 0.8877 + }, + { + "start": 25277.54, + "end": 25280.32, + "probability": 0.8911 + }, + { + "start": 25281.18, + "end": 25285.9, + "probability": 0.951 + }, + { + "start": 25286.82, + "end": 25288.42, + "probability": 0.7034 + }, + { + "start": 25288.82, + "end": 25290.32, + "probability": 0.9738 + }, + { + "start": 25290.7, + "end": 25291.42, + "probability": 0.7284 + }, + { + "start": 25292.2, + "end": 25300.18, + "probability": 0.9819 + }, + { + "start": 25303.46, + "end": 25306.34, + "probability": 0.7223 + }, + { + "start": 25306.82, + "end": 25308.76, + "probability": 0.9086 + }, + { + "start": 25308.86, + "end": 25312.18, + "probability": 0.9855 + }, + { + "start": 25313.29, + "end": 25315.64, + "probability": 0.8948 + }, + { + "start": 25315.64, + "end": 25316.2, + "probability": 0.8427 + }, + { + "start": 25318.99, + "end": 25320.74, + "probability": 0.7188 + }, + { + "start": 25322.08, + "end": 25327.36, + "probability": 0.9949 + }, + { + "start": 25328.0, + "end": 25330.24, + "probability": 0.9954 + }, + { + "start": 25330.24, + "end": 25333.0, + "probability": 0.9995 + }, + { + "start": 25334.14, + "end": 25336.92, + "probability": 0.9886 + }, + { + "start": 25337.84, + "end": 25340.74, + "probability": 0.9541 + }, + { + "start": 25341.3, + "end": 25345.42, + "probability": 0.9977 + }, + { + "start": 25346.14, + "end": 25350.5, + "probability": 0.9921 + }, + { + "start": 25350.5, + "end": 25353.7, + "probability": 0.9871 + }, + { + "start": 25354.4, + "end": 25359.4, + "probability": 0.9841 + }, + { + "start": 25359.88, + "end": 25363.26, + "probability": 0.9958 + }, + { + "start": 25364.72, + "end": 25367.3, + "probability": 0.9453 + }, + { + "start": 25368.22, + "end": 25369.64, + "probability": 0.8923 + }, + { + "start": 25371.22, + "end": 25374.82, + "probability": 0.9453 + }, + { + "start": 25375.86, + "end": 25377.66, + "probability": 0.6682 + }, + { + "start": 25377.76, + "end": 25379.16, + "probability": 0.7393 + }, + { + "start": 25379.32, + "end": 25381.76, + "probability": 0.9836 + }, + { + "start": 25382.4, + "end": 25385.94, + "probability": 0.9176 + }, + { + "start": 25386.66, + "end": 25387.56, + "probability": 0.7744 + }, + { + "start": 25387.56, + "end": 25390.68, + "probability": 0.969 + }, + { + "start": 25391.5, + "end": 25393.04, + "probability": 0.7096 + }, + { + "start": 25394.3, + "end": 25399.44, + "probability": 0.993 + }, + { + "start": 25401.08, + "end": 25403.6, + "probability": 0.9995 + }, + { + "start": 25403.6, + "end": 25405.76, + "probability": 0.9991 + }, + { + "start": 25406.16, + "end": 25407.48, + "probability": 0.8336 + }, + { + "start": 25408.3, + "end": 25411.99, + "probability": 0.8807 + }, + { + "start": 25412.96, + "end": 25415.68, + "probability": 0.9868 + }, + { + "start": 25416.52, + "end": 25419.38, + "probability": 0.936 + }, + { + "start": 25422.16, + "end": 25428.96, + "probability": 0.9986 + }, + { + "start": 25429.3, + "end": 25430.32, + "probability": 0.4989 + }, + { + "start": 25430.84, + "end": 25434.14, + "probability": 0.9758 + }, + { + "start": 25434.14, + "end": 25437.7, + "probability": 0.9917 + }, + { + "start": 25438.12, + "end": 25439.62, + "probability": 0.8836 + }, + { + "start": 25440.24, + "end": 25444.12, + "probability": 0.7992 + }, + { + "start": 25444.88, + "end": 25446.98, + "probability": 0.9893 + }, + { + "start": 25447.72, + "end": 25450.57, + "probability": 0.9402 + }, + { + "start": 25451.56, + "end": 25453.56, + "probability": 0.9596 + }, + { + "start": 25453.92, + "end": 25455.46, + "probability": 0.9741 + }, + { + "start": 25455.9, + "end": 25457.94, + "probability": 0.9849 + }, + { + "start": 25458.32, + "end": 25462.7, + "probability": 0.9766 + }, + { + "start": 25463.18, + "end": 25464.22, + "probability": 0.9685 + }, + { + "start": 25464.64, + "end": 25466.14, + "probability": 0.7374 + }, + { + "start": 25466.32, + "end": 25466.74, + "probability": 0.4454 + }, + { + "start": 25467.34, + "end": 25468.78, + "probability": 0.7557 + }, + { + "start": 25469.08, + "end": 25471.58, + "probability": 0.9792 + }, + { + "start": 25473.66, + "end": 25475.68, + "probability": 0.949 + }, + { + "start": 25476.22, + "end": 25479.98, + "probability": 0.8743 + }, + { + "start": 25480.06, + "end": 25481.14, + "probability": 0.729 + }, + { + "start": 25481.64, + "end": 25482.62, + "probability": 0.8613 + }, + { + "start": 25482.74, + "end": 25483.54, + "probability": 0.8081 + }, + { + "start": 25484.12, + "end": 25487.98, + "probability": 0.9478 + }, + { + "start": 25488.78, + "end": 25490.84, + "probability": 0.9788 + }, + { + "start": 25492.56, + "end": 25495.06, + "probability": 0.9951 + }, + { + "start": 25495.4, + "end": 25499.46, + "probability": 0.9977 + }, + { + "start": 25500.18, + "end": 25504.88, + "probability": 0.979 + }, + { + "start": 25504.88, + "end": 25509.7, + "probability": 0.9971 + }, + { + "start": 25510.16, + "end": 25515.2, + "probability": 0.9952 + }, + { + "start": 25516.1, + "end": 25520.5, + "probability": 0.9735 + }, + { + "start": 25520.5, + "end": 25525.91, + "probability": 0.9956 + }, + { + "start": 25527.06, + "end": 25531.98, + "probability": 0.9885 + }, + { + "start": 25532.48, + "end": 25536.98, + "probability": 0.9941 + }, + { + "start": 25537.6, + "end": 25539.94, + "probability": 0.9708 + }, + { + "start": 25541.14, + "end": 25543.54, + "probability": 0.9482 + }, + { + "start": 25543.56, + "end": 25546.72, + "probability": 0.974 + }, + { + "start": 25547.06, + "end": 25551.36, + "probability": 0.993 + }, + { + "start": 25552.44, + "end": 25554.22, + "probability": 0.7806 + }, + { + "start": 25554.24, + "end": 25556.1, + "probability": 0.752 + }, + { + "start": 25556.44, + "end": 25557.14, + "probability": 0.7506 + }, + { + "start": 25557.52, + "end": 25559.8, + "probability": 0.7415 + }, + { + "start": 25560.46, + "end": 25560.92, + "probability": 0.4652 + }, + { + "start": 25561.44, + "end": 25565.82, + "probability": 0.9556 + }, + { + "start": 25566.78, + "end": 25568.34, + "probability": 0.9856 + }, + { + "start": 25568.78, + "end": 25569.94, + "probability": 0.8148 + }, + { + "start": 25570.72, + "end": 25572.24, + "probability": 0.9933 + }, + { + "start": 25573.94, + "end": 25578.68, + "probability": 0.8198 + }, + { + "start": 25578.68, + "end": 25579.22, + "probability": 0.2615 + }, + { + "start": 25579.26, + "end": 25581.8, + "probability": 0.595 + }, + { + "start": 25581.8, + "end": 25584.32, + "probability": 0.9673 + }, + { + "start": 25584.32, + "end": 25587.5, + "probability": 0.9897 + }, + { + "start": 25588.02, + "end": 25588.92, + "probability": 0.5577 + }, + { + "start": 25589.28, + "end": 25591.68, + "probability": 0.9843 + }, + { + "start": 25592.74, + "end": 25593.8, + "probability": 0.619 + }, + { + "start": 25594.02, + "end": 25597.56, + "probability": 0.8287 + }, + { + "start": 25597.78, + "end": 25598.16, + "probability": 0.4537 + }, + { + "start": 25598.78, + "end": 25599.76, + "probability": 0.7146 + }, + { + "start": 25599.86, + "end": 25600.8, + "probability": 0.5815 + }, + { + "start": 25600.82, + "end": 25602.02, + "probability": 0.9359 + }, + { + "start": 25602.04, + "end": 25602.6, + "probability": 0.7258 + }, + { + "start": 25602.68, + "end": 25603.48, + "probability": 0.767 + }, + { + "start": 25604.1, + "end": 25606.92, + "probability": 0.7734 + }, + { + "start": 25606.92, + "end": 25609.2, + "probability": 0.6787 + }, + { + "start": 25609.88, + "end": 25610.86, + "probability": 0.4538 + }, + { + "start": 25611.0, + "end": 25612.74, + "probability": 0.9351 + }, + { + "start": 25612.82, + "end": 25613.08, + "probability": 0.7739 + }, + { + "start": 25613.94, + "end": 25614.54, + "probability": 0.5631 + }, + { + "start": 25614.64, + "end": 25617.74, + "probability": 0.6559 + }, + { + "start": 25633.28, + "end": 25634.32, + "probability": 0.0176 + }, + { + "start": 25636.82, + "end": 25638.58, + "probability": 0.715 + }, + { + "start": 25638.64, + "end": 25640.74, + "probability": 0.6727 + }, + { + "start": 25641.44, + "end": 25644.32, + "probability": 0.8198 + }, + { + "start": 25648.74, + "end": 25650.48, + "probability": 0.9976 + }, + { + "start": 25650.7, + "end": 25653.14, + "probability": 0.9987 + }, + { + "start": 25654.42, + "end": 25656.98, + "probability": 0.8502 + }, + { + "start": 25657.54, + "end": 25660.74, + "probability": 0.7764 + }, + { + "start": 25661.28, + "end": 25662.78, + "probability": 0.7871 + }, + { + "start": 25662.88, + "end": 25663.23, + "probability": 0.8753 + }, + { + "start": 25664.5, + "end": 25667.54, + "probability": 0.9413 + }, + { + "start": 25668.14, + "end": 25671.76, + "probability": 0.9826 + }, + { + "start": 25673.14, + "end": 25673.86, + "probability": 0.4396 + }, + { + "start": 25673.86, + "end": 25677.0, + "probability": 0.8201 + }, + { + "start": 25677.52, + "end": 25679.82, + "probability": 0.9659 + }, + { + "start": 25680.7, + "end": 25685.74, + "probability": 0.9928 + }, + { + "start": 25686.94, + "end": 25689.86, + "probability": 0.9956 + }, + { + "start": 25690.94, + "end": 25693.84, + "probability": 0.9355 + }, + { + "start": 25695.3, + "end": 25701.96, + "probability": 0.9967 + }, + { + "start": 25702.16, + "end": 25703.14, + "probability": 0.6592 + }, + { + "start": 25703.22, + "end": 25704.86, + "probability": 0.8566 + }, + { + "start": 25704.96, + "end": 25706.3, + "probability": 0.9579 + }, + { + "start": 25706.86, + "end": 25707.98, + "probability": 0.6412 + }, + { + "start": 25708.2, + "end": 25710.7, + "probability": 0.9224 + }, + { + "start": 25712.34, + "end": 25713.24, + "probability": 0.9149 + }, + { + "start": 25713.3, + "end": 25714.2, + "probability": 0.601 + }, + { + "start": 25714.26, + "end": 25718.04, + "probability": 0.9436 + }, + { + "start": 25718.04, + "end": 25721.88, + "probability": 0.9963 + }, + { + "start": 25722.54, + "end": 25724.82, + "probability": 0.7978 + }, + { + "start": 25724.88, + "end": 25728.98, + "probability": 0.986 + }, + { + "start": 25729.58, + "end": 25733.42, + "probability": 0.9865 + }, + { + "start": 25737.92, + "end": 25740.54, + "probability": 0.9824 + }, + { + "start": 25740.54, + "end": 25742.14, + "probability": 0.8608 + }, + { + "start": 25742.48, + "end": 25748.46, + "probability": 0.9456 + }, + { + "start": 25749.18, + "end": 25751.4, + "probability": 0.9597 + }, + { + "start": 25752.5, + "end": 25756.24, + "probability": 0.9884 + }, + { + "start": 25756.42, + "end": 25759.66, + "probability": 0.9936 + }, + { + "start": 25759.66, + "end": 25762.02, + "probability": 0.9996 + }, + { + "start": 25762.42, + "end": 25765.24, + "probability": 0.9978 + }, + { + "start": 25765.24, + "end": 25766.22, + "probability": 0.8948 + }, + { + "start": 25766.22, + "end": 25766.62, + "probability": 0.8327 + }, + { + "start": 25767.08, + "end": 25768.62, + "probability": 0.9993 + }, + { + "start": 25769.14, + "end": 25770.24, + "probability": 0.9628 + }, + { + "start": 25771.4, + "end": 25774.46, + "probability": 0.9968 + }, + { + "start": 25775.22, + "end": 25776.16, + "probability": 0.9768 + }, + { + "start": 25776.74, + "end": 25780.36, + "probability": 0.9712 + }, + { + "start": 25780.36, + "end": 25783.46, + "probability": 0.9995 + }, + { + "start": 25784.16, + "end": 25788.1, + "probability": 0.9956 + }, + { + "start": 25789.06, + "end": 25789.46, + "probability": 0.9097 + }, + { + "start": 25790.3, + "end": 25792.42, + "probability": 0.9962 + }, + { + "start": 25792.52, + "end": 25796.74, + "probability": 0.995 + }, + { + "start": 25797.26, + "end": 25801.84, + "probability": 0.9966 + }, + { + "start": 25801.84, + "end": 25806.4, + "probability": 0.9921 + }, + { + "start": 25807.36, + "end": 25808.96, + "probability": 0.7792 + }, + { + "start": 25810.96, + "end": 25811.8, + "probability": 0.9274 + }, + { + "start": 25812.04, + "end": 25813.1, + "probability": 0.9489 + }, + { + "start": 25813.16, + "end": 25816.66, + "probability": 0.9777 + }, + { + "start": 25817.26, + "end": 25820.88, + "probability": 0.9966 + }, + { + "start": 25822.26, + "end": 25827.72, + "probability": 0.9706 + }, + { + "start": 25827.9, + "end": 25829.3, + "probability": 0.979 + }, + { + "start": 25829.38, + "end": 25830.02, + "probability": 0.9117 + }, + { + "start": 25830.42, + "end": 25832.14, + "probability": 0.959 + }, + { + "start": 25832.22, + "end": 25833.2, + "probability": 0.9552 + }, + { + "start": 25837.24, + "end": 25839.25, + "probability": 0.9961 + }, + { + "start": 25840.04, + "end": 25841.48, + "probability": 0.9949 + }, + { + "start": 25842.7, + "end": 25843.56, + "probability": 0.7813 + }, + { + "start": 25843.68, + "end": 25850.04, + "probability": 0.9879 + }, + { + "start": 25850.16, + "end": 25853.0, + "probability": 0.9556 + }, + { + "start": 25853.64, + "end": 25855.5, + "probability": 0.9907 + }, + { + "start": 25855.86, + "end": 25858.56, + "probability": 0.998 + }, + { + "start": 25858.56, + "end": 25862.2, + "probability": 0.9852 + }, + { + "start": 25863.16, + "end": 25869.32, + "probability": 0.9592 + }, + { + "start": 25869.46, + "end": 25873.62, + "probability": 0.9907 + }, + { + "start": 25874.18, + "end": 25876.78, + "probability": 0.9878 + }, + { + "start": 25877.34, + "end": 25878.76, + "probability": 0.6714 + }, + { + "start": 25879.04, + "end": 25882.46, + "probability": 0.9968 + }, + { + "start": 25882.46, + "end": 25885.72, + "probability": 0.981 + }, + { + "start": 25885.8, + "end": 25891.38, + "probability": 0.9861 + }, + { + "start": 25892.72, + "end": 25895.9, + "probability": 0.9792 + }, + { + "start": 25895.94, + "end": 25898.76, + "probability": 0.9988 + }, + { + "start": 25899.58, + "end": 25902.6, + "probability": 0.999 + }, + { + "start": 25902.76, + "end": 25903.76, + "probability": 0.9804 + }, + { + "start": 25904.38, + "end": 25910.98, + "probability": 0.9928 + }, + { + "start": 25911.64, + "end": 25915.48, + "probability": 0.9966 + }, + { + "start": 25916.1, + "end": 25918.58, + "probability": 0.9939 + }, + { + "start": 25919.28, + "end": 25921.08, + "probability": 0.9502 + }, + { + "start": 25922.54, + "end": 25925.14, + "probability": 0.9003 + }, + { + "start": 25925.96, + "end": 25929.32, + "probability": 0.9409 + }, + { + "start": 25929.72, + "end": 25933.2, + "probability": 0.7411 + }, + { + "start": 25933.26, + "end": 25936.64, + "probability": 0.9706 + }, + { + "start": 25937.38, + "end": 25940.4, + "probability": 0.907 + }, + { + "start": 25940.56, + "end": 25941.94, + "probability": 0.6243 + }, + { + "start": 25942.84, + "end": 25948.82, + "probability": 0.994 + }, + { + "start": 25948.82, + "end": 25953.4, + "probability": 0.9987 + }, + { + "start": 25954.24, + "end": 25956.64, + "probability": 0.9438 + }, + { + "start": 25956.7, + "end": 25962.74, + "probability": 0.9681 + }, + { + "start": 25963.56, + "end": 25967.22, + "probability": 0.9432 + }, + { + "start": 25967.84, + "end": 25969.94, + "probability": 0.9135 + }, + { + "start": 25970.94, + "end": 25972.06, + "probability": 0.9866 + }, + { + "start": 25973.54, + "end": 25975.32, + "probability": 0.9726 + }, + { + "start": 25975.48, + "end": 25977.3, + "probability": 0.9468 + }, + { + "start": 25978.18, + "end": 25982.68, + "probability": 0.9657 + }, + { + "start": 25982.7, + "end": 25983.42, + "probability": 0.932 + }, + { + "start": 25983.56, + "end": 25987.16, + "probability": 0.995 + }, + { + "start": 25987.16, + "end": 25990.72, + "probability": 0.995 + }, + { + "start": 25991.36, + "end": 25992.66, + "probability": 0.9148 + }, + { + "start": 25993.44, + "end": 26000.76, + "probability": 0.9776 + }, + { + "start": 26001.68, + "end": 26005.66, + "probability": 0.9811 + }, + { + "start": 26006.44, + "end": 26012.28, + "probability": 0.9927 + }, + { + "start": 26013.66, + "end": 26015.94, + "probability": 0.9317 + }, + { + "start": 26017.08, + "end": 26018.68, + "probability": 0.9951 + }, + { + "start": 26019.12, + "end": 26022.08, + "probability": 0.9941 + }, + { + "start": 26022.08, + "end": 26024.68, + "probability": 0.9618 + }, + { + "start": 26025.52, + "end": 26028.58, + "probability": 0.9761 + }, + { + "start": 26028.58, + "end": 26032.78, + "probability": 0.9904 + }, + { + "start": 26033.4, + "end": 26034.56, + "probability": 0.7305 + }, + { + "start": 26035.28, + "end": 26035.86, + "probability": 0.7577 + }, + { + "start": 26036.82, + "end": 26038.32, + "probability": 0.9745 + }, + { + "start": 26039.54, + "end": 26041.04, + "probability": 0.7702 + }, + { + "start": 26041.94, + "end": 26043.64, + "probability": 0.9932 + }, + { + "start": 26043.78, + "end": 26043.94, + "probability": 0.9495 + }, + { + "start": 26044.0, + "end": 26046.26, + "probability": 0.8873 + }, + { + "start": 26046.78, + "end": 26049.72, + "probability": 0.9458 + }, + { + "start": 26050.54, + "end": 26051.76, + "probability": 0.79 + }, + { + "start": 26052.52, + "end": 26055.82, + "probability": 0.9939 + }, + { + "start": 26055.9, + "end": 26060.12, + "probability": 0.9714 + }, + { + "start": 26060.2, + "end": 26060.64, + "probability": 0.8619 + }, + { + "start": 26061.16, + "end": 26061.9, + "probability": 0.9568 + }, + { + "start": 26062.74, + "end": 26063.84, + "probability": 0.9557 + }, + { + "start": 26064.36, + "end": 26070.32, + "probability": 0.9516 + }, + { + "start": 26070.56, + "end": 26070.56, + "probability": 0.0736 + }, + { + "start": 26070.56, + "end": 26071.1, + "probability": 0.415 + }, + { + "start": 26071.88, + "end": 26073.04, + "probability": 0.8713 + }, + { + "start": 26073.16, + "end": 26074.78, + "probability": 0.7914 + }, + { + "start": 26075.94, + "end": 26078.4, + "probability": 0.85 + }, + { + "start": 26079.34, + "end": 26083.0, + "probability": 0.9391 + }, + { + "start": 26083.74, + "end": 26084.68, + "probability": 0.2615 + }, + { + "start": 26085.12, + "end": 26087.58, + "probability": 0.8704 + }, + { + "start": 26087.76, + "end": 26090.42, + "probability": 0.9313 + }, + { + "start": 26091.0, + "end": 26094.12, + "probability": 0.7394 + }, + { + "start": 26094.84, + "end": 26095.6, + "probability": 0.6011 + }, + { + "start": 26096.04, + "end": 26101.52, + "probability": 0.9293 + }, + { + "start": 26102.36, + "end": 26105.56, + "probability": 0.9878 + }, + { + "start": 26106.66, + "end": 26110.58, + "probability": 0.9656 + }, + { + "start": 26110.96, + "end": 26111.76, + "probability": 0.8103 + }, + { + "start": 26112.58, + "end": 26114.48, + "probability": 0.9947 + }, + { + "start": 26114.9, + "end": 26116.84, + "probability": 0.9952 + }, + { + "start": 26117.08, + "end": 26119.92, + "probability": 0.998 + }, + { + "start": 26120.82, + "end": 26123.97, + "probability": 0.8097 + }, + { + "start": 26125.86, + "end": 26127.82, + "probability": 0.8958 + }, + { + "start": 26127.92, + "end": 26132.04, + "probability": 0.9969 + }, + { + "start": 26132.12, + "end": 26136.44, + "probability": 0.9534 + }, + { + "start": 26136.44, + "end": 26138.0, + "probability": 0.9968 + }, + { + "start": 26138.42, + "end": 26141.18, + "probability": 0.8979 + }, + { + "start": 26141.86, + "end": 26142.6, + "probability": 0.9845 + }, + { + "start": 26143.2, + "end": 26144.8, + "probability": 0.9613 + }, + { + "start": 26145.28, + "end": 26146.76, + "probability": 0.6831 + }, + { + "start": 26146.78, + "end": 26152.06, + "probability": 0.9829 + }, + { + "start": 26152.46, + "end": 26153.66, + "probability": 0.9614 + }, + { + "start": 26154.16, + "end": 26160.52, + "probability": 0.9669 + }, + { + "start": 26160.58, + "end": 26161.14, + "probability": 0.7113 + }, + { + "start": 26162.28, + "end": 26164.2, + "probability": 0.9492 + }, + { + "start": 26164.26, + "end": 26167.78, + "probability": 0.8604 + }, + { + "start": 26168.28, + "end": 26170.94, + "probability": 0.9614 + }, + { + "start": 26171.3, + "end": 26177.72, + "probability": 0.9313 + }, + { + "start": 26180.02, + "end": 26181.5, + "probability": 0.7972 + }, + { + "start": 26181.58, + "end": 26183.5, + "probability": 0.9946 + }, + { + "start": 26183.66, + "end": 26187.12, + "probability": 0.9937 + }, + { + "start": 26187.32, + "end": 26187.78, + "probability": 0.7792 + }, + { + "start": 26188.46, + "end": 26188.88, + "probability": 0.6352 + }, + { + "start": 26189.88, + "end": 26193.26, + "probability": 0.7755 + }, + { + "start": 26194.02, + "end": 26198.5, + "probability": 0.5411 + }, + { + "start": 26199.78, + "end": 26200.26, + "probability": 0.7778 + }, + { + "start": 26200.58, + "end": 26201.0, + "probability": 0.7284 + }, + { + "start": 26201.02, + "end": 26202.94, + "probability": 0.458 + }, + { + "start": 26203.84, + "end": 26206.42, + "probability": 0.8159 + }, + { + "start": 26206.58, + "end": 26208.81, + "probability": 0.779 + }, + { + "start": 26209.48, + "end": 26210.48, + "probability": 0.8025 + }, + { + "start": 26210.86, + "end": 26212.36, + "probability": 0.9814 + }, + { + "start": 26212.8, + "end": 26213.78, + "probability": 0.9648 + }, + { + "start": 26214.12, + "end": 26216.01, + "probability": 0.9697 + }, + { + "start": 26216.56, + "end": 26217.52, + "probability": 0.2909 + }, + { + "start": 26218.52, + "end": 26220.7, + "probability": 0.8395 + }, + { + "start": 26221.42, + "end": 26222.26, + "probability": 0.7265 + }, + { + "start": 26222.78, + "end": 26224.08, + "probability": 0.8794 + }, + { + "start": 26225.86, + "end": 26228.48, + "probability": 0.9736 + }, + { + "start": 26229.42, + "end": 26230.04, + "probability": 0.9355 + }, + { + "start": 26230.6, + "end": 26232.4, + "probability": 0.8283 + }, + { + "start": 26232.92, + "end": 26233.52, + "probability": 0.5063 + }, + { + "start": 26234.1, + "end": 26238.64, + "probability": 0.9522 + }, + { + "start": 26239.34, + "end": 26240.46, + "probability": 0.8998 + }, + { + "start": 26240.9, + "end": 26241.6, + "probability": 0.9364 + }, + { + "start": 26241.74, + "end": 26242.94, + "probability": 0.9932 + }, + { + "start": 26243.02, + "end": 26243.56, + "probability": 0.9401 + }, + { + "start": 26244.24, + "end": 26246.54, + "probability": 0.982 + }, + { + "start": 26247.16, + "end": 26248.36, + "probability": 0.7968 + }, + { + "start": 26249.2, + "end": 26249.96, + "probability": 0.5782 + }, + { + "start": 26251.24, + "end": 26253.62, + "probability": 0.7603 + }, + { + "start": 26254.7, + "end": 26256.44, + "probability": 0.9869 + }, + { + "start": 26256.6, + "end": 26257.32, + "probability": 0.6531 + }, + { + "start": 26257.68, + "end": 26259.48, + "probability": 0.9458 + }, + { + "start": 26259.56, + "end": 26260.22, + "probability": 0.78 + }, + { + "start": 26261.1, + "end": 26263.69, + "probability": 0.6204 + }, + { + "start": 26265.12, + "end": 26266.34, + "probability": 0.548 + }, + { + "start": 26268.64, + "end": 26271.2, + "probability": 0.6812 + }, + { + "start": 26271.2, + "end": 26271.56, + "probability": 0.6708 + }, + { + "start": 26277.96, + "end": 26278.82, + "probability": 0.8917 + }, + { + "start": 26283.94, + "end": 26287.54, + "probability": 0.9199 + }, + { + "start": 26287.74, + "end": 26290.52, + "probability": 0.5741 + }, + { + "start": 26303.84, + "end": 26306.36, + "probability": 0.7206 + }, + { + "start": 26308.0, + "end": 26309.08, + "probability": 0.8557 + }, + { + "start": 26312.66, + "end": 26314.18, + "probability": 0.1874 + }, + { + "start": 26314.18, + "end": 26315.62, + "probability": 0.7692 + }, + { + "start": 26316.16, + "end": 26320.62, + "probability": 0.6601 + }, + { + "start": 26321.64, + "end": 26323.34, + "probability": 0.9591 + }, + { + "start": 26324.1, + "end": 26324.22, + "probability": 0.9563 + }, + { + "start": 26324.22, + "end": 26327.06, + "probability": 0.9907 + }, + { + "start": 26327.06, + "end": 26331.26, + "probability": 0.9802 + }, + { + "start": 26331.3, + "end": 26332.92, + "probability": 0.5577 + }, + { + "start": 26333.56, + "end": 26337.06, + "probability": 0.9558 + }, + { + "start": 26337.5, + "end": 26338.68, + "probability": 0.7322 + }, + { + "start": 26339.06, + "end": 26341.24, + "probability": 0.9858 + }, + { + "start": 26341.68, + "end": 26342.98, + "probability": 0.9981 + }, + { + "start": 26342.98, + "end": 26343.44, + "probability": 0.558 + }, + { + "start": 26343.5, + "end": 26344.28, + "probability": 0.6701 + }, + { + "start": 26344.8, + "end": 26345.38, + "probability": 0.9751 + }, + { + "start": 26345.5, + "end": 26346.7, + "probability": 0.7623 + }, + { + "start": 26346.82, + "end": 26351.06, + "probability": 0.9868 + }, + { + "start": 26351.06, + "end": 26355.88, + "probability": 0.9972 + }, + { + "start": 26356.28, + "end": 26359.02, + "probability": 0.984 + }, + { + "start": 26359.12, + "end": 26360.6, + "probability": 0.8973 + }, + { + "start": 26361.0, + "end": 26367.28, + "probability": 0.9655 + }, + { + "start": 26368.16, + "end": 26370.98, + "probability": 0.9813 + }, + { + "start": 26371.66, + "end": 26374.08, + "probability": 0.9832 + }, + { + "start": 26374.1, + "end": 26378.74, + "probability": 0.9988 + }, + { + "start": 26378.96, + "end": 26381.66, + "probability": 0.9615 + }, + { + "start": 26382.2, + "end": 26384.84, + "probability": 0.9562 + }, + { + "start": 26385.44, + "end": 26387.42, + "probability": 0.9806 + }, + { + "start": 26387.86, + "end": 26389.04, + "probability": 0.938 + }, + { + "start": 26389.56, + "end": 26390.52, + "probability": 0.906 + }, + { + "start": 26391.06, + "end": 26392.32, + "probability": 0.7715 + }, + { + "start": 26393.02, + "end": 26395.14, + "probability": 0.7529 + }, + { + "start": 26395.3, + "end": 26399.58, + "probability": 0.9083 + }, + { + "start": 26399.74, + "end": 26402.1, + "probability": 0.8423 + }, + { + "start": 26402.64, + "end": 26405.26, + "probability": 0.9893 + }, + { + "start": 26405.76, + "end": 26407.98, + "probability": 0.9949 + }, + { + "start": 26408.52, + "end": 26411.4, + "probability": 0.9926 + }, + { + "start": 26412.4, + "end": 26416.78, + "probability": 0.9863 + }, + { + "start": 26416.9, + "end": 26419.24, + "probability": 0.9367 + }, + { + "start": 26419.24, + "end": 26422.9, + "probability": 0.9941 + }, + { + "start": 26423.38, + "end": 26427.58, + "probability": 0.9958 + }, + { + "start": 26427.58, + "end": 26430.72, + "probability": 0.9974 + }, + { + "start": 26431.1, + "end": 26432.17, + "probability": 0.9115 + }, + { + "start": 26432.48, + "end": 26434.02, + "probability": 0.8258 + }, + { + "start": 26434.38, + "end": 26435.86, + "probability": 0.756 + }, + { + "start": 26435.9, + "end": 26436.86, + "probability": 0.8653 + }, + { + "start": 26437.38, + "end": 26441.56, + "probability": 0.9938 + }, + { + "start": 26441.82, + "end": 26442.14, + "probability": 0.706 + }, + { + "start": 26442.28, + "end": 26442.72, + "probability": 0.8716 + }, + { + "start": 26442.82, + "end": 26445.68, + "probability": 0.9971 + }, + { + "start": 26445.84, + "end": 26450.28, + "probability": 0.9478 + }, + { + "start": 26450.64, + "end": 26452.6, + "probability": 0.9435 + }, + { + "start": 26452.98, + "end": 26457.58, + "probability": 0.9977 + }, + { + "start": 26457.98, + "end": 26458.8, + "probability": 0.9577 + }, + { + "start": 26458.88, + "end": 26461.58, + "probability": 0.9883 + }, + { + "start": 26461.82, + "end": 26466.18, + "probability": 0.75 + }, + { + "start": 26466.62, + "end": 26467.18, + "probability": 0.3131 + }, + { + "start": 26467.62, + "end": 26470.08, + "probability": 0.9762 + }, + { + "start": 26470.46, + "end": 26472.52, + "probability": 0.9871 + }, + { + "start": 26472.9, + "end": 26474.64, + "probability": 0.9995 + }, + { + "start": 26475.18, + "end": 26478.54, + "probability": 0.8936 + }, + { + "start": 26478.72, + "end": 26484.7, + "probability": 0.9326 + }, + { + "start": 26485.1, + "end": 26486.14, + "probability": 0.7276 + }, + { + "start": 26486.24, + "end": 26489.22, + "probability": 0.9983 + }, + { + "start": 26489.34, + "end": 26490.18, + "probability": 0.9149 + }, + { + "start": 26490.18, + "end": 26490.64, + "probability": 0.6737 + }, + { + "start": 26490.74, + "end": 26493.3, + "probability": 0.9966 + }, + { + "start": 26493.64, + "end": 26494.3, + "probability": 0.8699 + }, + { + "start": 26494.4, + "end": 26495.7, + "probability": 0.9915 + }, + { + "start": 26496.9, + "end": 26497.96, + "probability": 0.7503 + }, + { + "start": 26498.76, + "end": 26500.0, + "probability": 0.7484 + }, + { + "start": 26500.48, + "end": 26500.92, + "probability": 0.7695 + }, + { + "start": 26501.36, + "end": 26502.34, + "probability": 0.9644 + }, + { + "start": 26502.44, + "end": 26502.98, + "probability": 0.9026 + }, + { + "start": 26503.06, + "end": 26505.08, + "probability": 0.9695 + }, + { + "start": 26505.88, + "end": 26509.0, + "probability": 0.8936 + }, + { + "start": 26509.18, + "end": 26514.68, + "probability": 0.9988 + }, + { + "start": 26514.88, + "end": 26515.5, + "probability": 0.9132 + }, + { + "start": 26516.4, + "end": 26517.54, + "probability": 0.5372 + }, + { + "start": 26517.54, + "end": 26521.3, + "probability": 0.7053 + }, + { + "start": 26521.34, + "end": 26522.76, + "probability": 0.9553 + }, + { + "start": 26523.28, + "end": 26524.16, + "probability": 0.4295 + }, + { + "start": 26527.06, + "end": 26530.9, + "probability": 0.1243 + }, + { + "start": 26536.22, + "end": 26539.72, + "probability": 0.5174 + }, + { + "start": 26539.84, + "end": 26542.88, + "probability": 0.7651 + }, + { + "start": 26543.4, + "end": 26543.78, + "probability": 0.3927 + }, + { + "start": 26544.48, + "end": 26546.92, + "probability": 0.8767 + }, + { + "start": 26547.32, + "end": 26550.22, + "probability": 0.0504 + }, + { + "start": 26561.24, + "end": 26562.84, + "probability": 0.8071 + }, + { + "start": 26563.38, + "end": 26563.5, + "probability": 0.333 + }, + { + "start": 26563.5, + "end": 26565.34, + "probability": 0.8481 + }, + { + "start": 26565.78, + "end": 26570.26, + "probability": 0.356 + }, + { + "start": 26570.3, + "end": 26571.78, + "probability": 0.4023 + }, + { + "start": 26572.58, + "end": 26577.4, + "probability": 0.3091 + }, + { + "start": 26578.76, + "end": 26580.62, + "probability": 0.0425 + }, + { + "start": 26588.82, + "end": 26592.54, + "probability": 0.8438 + }, + { + "start": 26595.04, + "end": 26603.26, + "probability": 0.5088 + }, + { + "start": 26603.36, + "end": 26605.78, + "probability": 0.7463 + }, + { + "start": 26606.12, + "end": 26607.5, + "probability": 0.8497 + }, + { + "start": 26608.78, + "end": 26611.2, + "probability": 0.9565 + }, + { + "start": 26612.26, + "end": 26621.02, + "probability": 0.5011 + }, + { + "start": 26624.44, + "end": 26624.76, + "probability": 0.0245 + }, + { + "start": 26626.6, + "end": 26629.48, + "probability": 0.3181 + }, + { + "start": 26629.98, + "end": 26633.5, + "probability": 0.4363 + }, + { + "start": 26635.06, + "end": 26637.86, + "probability": 0.8211 + }, + { + "start": 26638.42, + "end": 26643.48, + "probability": 0.2249 + }, + { + "start": 26645.12, + "end": 26647.82, + "probability": 0.6055 + }, + { + "start": 26647.84, + "end": 26653.96, + "probability": 0.6843 + }, + { + "start": 26663.96, + "end": 26664.66, + "probability": 0.0725 + }, + { + "start": 26664.98, + "end": 26670.38, + "probability": 0.8304 + }, + { + "start": 26670.42, + "end": 26678.8, + "probability": 0.8003 + }, + { + "start": 26678.82, + "end": 26683.98, + "probability": 0.8401 + }, + { + "start": 26684.18, + "end": 26685.2, + "probability": 0.0905 + }, + { + "start": 26685.86, + "end": 26685.98, + "probability": 0.0001 + }, + { + "start": 26693.78, + "end": 26694.86, + "probability": 0.2749 + }, + { + "start": 26696.12, + "end": 26699.48, + "probability": 0.7426 + }, + { + "start": 26699.52, + "end": 26700.72, + "probability": 0.7263 + }, + { + "start": 26702.14, + "end": 26706.22, + "probability": 0.2933 + }, + { + "start": 26706.98, + "end": 26708.7, + "probability": 0.5724 + }, + { + "start": 26710.02, + "end": 26712.66, + "probability": 0.0889 + }, + { + "start": 26713.1, + "end": 26713.1, + "probability": 0.0385 + }, + { + "start": 26713.4, + "end": 26715.16, + "probability": 0.4131 + }, + { + "start": 26716.02, + "end": 26716.6, + "probability": 0.1577 + }, + { + "start": 26717.7, + "end": 26717.94, + "probability": 0.4848 + }, + { + "start": 26725.36, + "end": 26726.16, + "probability": 0.2358 + }, + { + "start": 26730.64, + "end": 26732.36, + "probability": 0.2553 + }, + { + "start": 26732.92, + "end": 26735.86, + "probability": 0.765 + }, + { + "start": 26736.08, + "end": 26738.12, + "probability": 0.8965 + }, + { + "start": 26738.34, + "end": 26738.76, + "probability": 0.5555 + }, + { + "start": 26738.96, + "end": 26739.9, + "probability": 0.803 + }, + { + "start": 26740.4, + "end": 26742.38, + "probability": 0.7342 + }, + { + "start": 26742.88, + "end": 26745.14, + "probability": 0.3893 + }, + { + "start": 26745.48, + "end": 26746.68, + "probability": 0.0519 + }, + { + "start": 26754.02, + "end": 26755.26, + "probability": 0.0194 + }, + { + "start": 26759.14, + "end": 26760.26, + "probability": 0.1315 + }, + { + "start": 26760.26, + "end": 26763.36, + "probability": 0.7039 + }, + { + "start": 26764.72, + "end": 26768.1, + "probability": 0.6426 + }, + { + "start": 26769.94, + "end": 26773.6, + "probability": 0.6823 + }, + { + "start": 26776.02, + "end": 26776.72, + "probability": 0.2406 + }, + { + "start": 26778.22, + "end": 26779.72, + "probability": 0.0872 + }, + { + "start": 26780.32, + "end": 26783.7, + "probability": 0.7246 + }, + { + "start": 26783.78, + "end": 26786.18, + "probability": 0.7422 + }, + { + "start": 26786.22, + "end": 26787.26, + "probability": 0.46 + }, + { + "start": 26787.26, + "end": 26791.52, + "probability": 0.2167 + }, + { + "start": 26795.28, + "end": 26795.62, + "probability": 0.0015 + }, + { + "start": 26805.92, + "end": 26807.86, + "probability": 0.6317 + }, + { + "start": 26808.54, + "end": 26812.68, + "probability": 0.7207 + }, + { + "start": 26813.38, + "end": 26815.14, + "probability": 0.5464 + }, + { + "start": 26815.66, + "end": 26816.46, + "probability": 0.7948 + }, + { + "start": 26817.38, + "end": 26817.9, + "probability": 0.6372 + }, + { + "start": 26821.42, + "end": 26823.9, + "probability": 0.9756 + }, + { + "start": 26823.96, + "end": 26825.06, + "probability": 0.6573 + }, + { + "start": 26826.04, + "end": 26827.46, + "probability": 0.5621 + }, + { + "start": 26828.2, + "end": 26828.6, + "probability": 0.753 + }, + { + "start": 26829.86, + "end": 26838.38, + "probability": 0.0232 + }, + { + "start": 26843.94, + "end": 26844.7, + "probability": 0.0642 + }, + { + "start": 26845.38, + "end": 26845.9, + "probability": 0.06 + }, + { + "start": 26845.9, + "end": 26848.1, + "probability": 0.7426 + }, + { + "start": 26848.28, + "end": 26850.45, + "probability": 0.9787 + }, + { + "start": 26851.88, + "end": 26855.38, + "probability": 0.6672 + }, + { + "start": 26856.2, + "end": 26857.74, + "probability": 0.9921 + }, + { + "start": 26860.16, + "end": 26860.66, + "probability": 0.5629 + }, + { + "start": 26860.74, + "end": 26863.24, + "probability": 0.9119 + }, + { + "start": 26863.42, + "end": 26863.68, + "probability": 0.8145 + }, + { + "start": 26864.36, + "end": 26865.28, + "probability": 0.611 + }, + { + "start": 26865.36, + "end": 26866.28, + "probability": 0.7056 + }, + { + "start": 26866.34, + "end": 26867.08, + "probability": 0.9943 + }, + { + "start": 26867.6, + "end": 26870.98, + "probability": 0.8885 + }, + { + "start": 26870.98, + "end": 26874.08, + "probability": 0.9977 + }, + { + "start": 26874.3, + "end": 26875.76, + "probability": 0.8782 + }, + { + "start": 26875.88, + "end": 26876.84, + "probability": 0.6485 + }, + { + "start": 26877.04, + "end": 26879.52, + "probability": 0.6431 + }, + { + "start": 26880.06, + "end": 26880.32, + "probability": 0.7454 + }, + { + "start": 26884.68, + "end": 26885.32, + "probability": 0.7016 + }, + { + "start": 26885.34, + "end": 26886.96, + "probability": 0.7435 + }, + { + "start": 26887.14, + "end": 26889.42, + "probability": 0.7869 + }, + { + "start": 26889.42, + "end": 26892.88, + "probability": 0.4567 + }, + { + "start": 26893.48, + "end": 26897.08, + "probability": 0.6778 + }, + { + "start": 26897.82, + "end": 26901.38, + "probability": 0.9475 + }, + { + "start": 26903.94, + "end": 26908.88, + "probability": 0.9972 + }, + { + "start": 26921.22, + "end": 26923.38, + "probability": 0.695 + }, + { + "start": 26924.04, + "end": 26925.82, + "probability": 0.7117 + }, + { + "start": 26926.62, + "end": 26930.16, + "probability": 0.9823 + }, + { + "start": 26930.38, + "end": 26931.4, + "probability": 0.8679 + }, + { + "start": 26932.16, + "end": 26935.2, + "probability": 0.8737 + }, + { + "start": 26935.2, + "end": 26937.8, + "probability": 0.511 + }, + { + "start": 26938.36, + "end": 26942.22, + "probability": 0.7042 + }, + { + "start": 26942.22, + "end": 26944.48, + "probability": 0.9768 + }, + { + "start": 26945.12, + "end": 26946.24, + "probability": 0.4605 + }, + { + "start": 26946.52, + "end": 26950.32, + "probability": 0.9962 + }, + { + "start": 26950.32, + "end": 26954.42, + "probability": 0.9966 + }, + { + "start": 26955.16, + "end": 26957.1, + "probability": 0.6555 + }, + { + "start": 26957.72, + "end": 26959.72, + "probability": 0.9813 + }, + { + "start": 26959.72, + "end": 26962.97, + "probability": 0.9964 + }, + { + "start": 26963.2, + "end": 26967.46, + "probability": 0.9984 + }, + { + "start": 26967.46, + "end": 26971.88, + "probability": 0.9954 + }, + { + "start": 26971.88, + "end": 26975.58, + "probability": 0.998 + }, + { + "start": 26976.18, + "end": 26977.06, + "probability": 0.722 + }, + { + "start": 26977.18, + "end": 26979.6, + "probability": 0.9802 + }, + { + "start": 26979.75, + "end": 26982.6, + "probability": 0.9918 + }, + { + "start": 26983.86, + "end": 26984.54, + "probability": 0.8807 + }, + { + "start": 26985.02, + "end": 26986.58, + "probability": 0.9808 + }, + { + "start": 26986.68, + "end": 26987.9, + "probability": 0.8625 + }, + { + "start": 26987.94, + "end": 26992.12, + "probability": 0.9939 + }, + { + "start": 26992.22, + "end": 26995.66, + "probability": 0.9822 + }, + { + "start": 26995.66, + "end": 26998.68, + "probability": 0.9951 + }, + { + "start": 26998.86, + "end": 26999.78, + "probability": 0.4732 + }, + { + "start": 27000.16, + "end": 27003.28, + "probability": 0.8966 + }, + { + "start": 27003.7, + "end": 27005.84, + "probability": 0.7231 + }, + { + "start": 27006.2, + "end": 27008.88, + "probability": 0.4666 + }, + { + "start": 27009.0, + "end": 27013.82, + "probability": 0.9973 + }, + { + "start": 27014.16, + "end": 27017.14, + "probability": 0.9344 + }, + { + "start": 27017.58, + "end": 27022.78, + "probability": 0.9675 + }, + { + "start": 27023.32, + "end": 27028.0, + "probability": 0.9907 + }, + { + "start": 27028.18, + "end": 27028.56, + "probability": 0.2646 + }, + { + "start": 27029.8, + "end": 27030.82, + "probability": 0.6425 + }, + { + "start": 27030.96, + "end": 27032.68, + "probability": 0.6059 + }, + { + "start": 27033.04, + "end": 27035.86, + "probability": 0.719 + }, + { + "start": 27036.8, + "end": 27039.72, + "probability": 0.7294 + }, + { + "start": 27041.28, + "end": 27042.42, + "probability": 0.9263 + }, + { + "start": 27043.04, + "end": 27043.41, + "probability": 0.7857 + }, + { + "start": 27044.68, + "end": 27045.48, + "probability": 0.8127 + }, + { + "start": 27046.24, + "end": 27048.24, + "probability": 0.9641 + }, + { + "start": 27048.58, + "end": 27049.3, + "probability": 0.9459 + }, + { + "start": 27049.7, + "end": 27051.12, + "probability": 0.7652 + }, + { + "start": 27052.2, + "end": 27053.24, + "probability": 0.7326 + }, + { + "start": 27053.82, + "end": 27055.3, + "probability": 0.7304 + }, + { + "start": 27055.38, + "end": 27056.2, + "probability": 0.7109 + }, + { + "start": 27056.28, + "end": 27057.92, + "probability": 0.9893 + }, + { + "start": 27058.62, + "end": 27059.44, + "probability": 0.702 + }, + { + "start": 27060.1, + "end": 27062.41, + "probability": 0.9862 + }, + { + "start": 27066.84, + "end": 27066.84, + "probability": 0.0903 + }, + { + "start": 27066.84, + "end": 27067.54, + "probability": 0.1957 + }, + { + "start": 27067.54, + "end": 27067.54, + "probability": 0.3471 + }, + { + "start": 27067.54, + "end": 27067.68, + "probability": 0.4966 + }, + { + "start": 27068.28, + "end": 27068.8, + "probability": 0.487 + }, + { + "start": 27068.96, + "end": 27070.46, + "probability": 0.8763 + }, + { + "start": 27071.5, + "end": 27072.26, + "probability": 0.8267 + }, + { + "start": 27073.22, + "end": 27074.7, + "probability": 0.9642 + }, + { + "start": 27075.7, + "end": 27078.46, + "probability": 0.7286 + }, + { + "start": 27079.34, + "end": 27081.98, + "probability": 0.4891 + }, + { + "start": 27081.98, + "end": 27082.84, + "probability": 0.2739 + }, + { + "start": 27084.1, + "end": 27084.92, + "probability": 0.7964 + }, + { + "start": 27085.38, + "end": 27086.77, + "probability": 0.604 + }, + { + "start": 27087.66, + "end": 27088.14, + "probability": 0.4392 + }, + { + "start": 27088.16, + "end": 27090.0, + "probability": 0.5123 + }, + { + "start": 27090.44, + "end": 27091.06, + "probability": 0.9615 + }, + { + "start": 27093.74, + "end": 27097.1, + "probability": 0.7777 + }, + { + "start": 27097.92, + "end": 27098.98, + "probability": 0.4342 + }, + { + "start": 27099.48, + "end": 27102.75, + "probability": 0.713 + }, + { + "start": 27103.96, + "end": 27103.96, + "probability": 0.2707 + }, + { + "start": 27108.69, + "end": 27112.8, + "probability": 0.0251 + }, + { + "start": 27114.32, + "end": 27114.38, + "probability": 0.1043 + }, + { + "start": 27115.66, + "end": 27117.54, + "probability": 0.195 + }, + { + "start": 27117.78, + "end": 27118.4, + "probability": 0.0509 + }, + { + "start": 27120.63, + "end": 27126.32, + "probability": 0.1199 + }, + { + "start": 27139.22, + "end": 27140.52, + "probability": 0.4417 + }, + { + "start": 27140.9, + "end": 27142.98, + "probability": 0.764 + }, + { + "start": 27143.86, + "end": 27146.84, + "probability": 0.8155 + }, + { + "start": 27147.58, + "end": 27149.68, + "probability": 0.9973 + }, + { + "start": 27149.68, + "end": 27153.04, + "probability": 0.9971 + }, + { + "start": 27153.14, + "end": 27155.04, + "probability": 0.841 + }, + { + "start": 27155.84, + "end": 27162.0, + "probability": 0.8288 + }, + { + "start": 27163.34, + "end": 27163.9, + "probability": 0.1523 + }, + { + "start": 27163.92, + "end": 27164.41, + "probability": 0.982 + }, + { + "start": 27166.28, + "end": 27170.82, + "probability": 0.9809 + }, + { + "start": 27171.74, + "end": 27174.18, + "probability": 0.7829 + }, + { + "start": 27174.7, + "end": 27175.46, + "probability": 0.9639 + }, + { + "start": 27176.48, + "end": 27178.18, + "probability": 0.981 + }, + { + "start": 27180.24, + "end": 27181.4, + "probability": 0.8801 + }, + { + "start": 27181.76, + "end": 27184.39, + "probability": 0.8488 + }, + { + "start": 27185.32, + "end": 27189.12, + "probability": 0.9504 + }, + { + "start": 27189.44, + "end": 27190.5, + "probability": 0.5221 + }, + { + "start": 27192.12, + "end": 27194.02, + "probability": 0.995 + }, + { + "start": 27194.08, + "end": 27194.6, + "probability": 0.7896 + }, + { + "start": 27194.74, + "end": 27195.08, + "probability": 0.9028 + }, + { + "start": 27196.28, + "end": 27197.76, + "probability": 0.9932 + }, + { + "start": 27198.78, + "end": 27199.44, + "probability": 0.7845 + }, + { + "start": 27199.54, + "end": 27200.2, + "probability": 0.8496 + }, + { + "start": 27200.28, + "end": 27200.87, + "probability": 0.5072 + }, + { + "start": 27201.3, + "end": 27202.62, + "probability": 0.9214 + }, + { + "start": 27204.02, + "end": 27206.8, + "probability": 0.9659 + }, + { + "start": 27207.6, + "end": 27212.08, + "probability": 0.9196 + }, + { + "start": 27212.76, + "end": 27214.26, + "probability": 0.9721 + }, + { + "start": 27214.92, + "end": 27216.54, + "probability": 0.9777 + }, + { + "start": 27217.7, + "end": 27219.22, + "probability": 0.9993 + }, + { + "start": 27220.02, + "end": 27220.84, + "probability": 0.6917 + }, + { + "start": 27221.74, + "end": 27221.88, + "probability": 0.455 + }, + { + "start": 27221.88, + "end": 27223.5, + "probability": 0.1081 + }, + { + "start": 27223.5, + "end": 27224.78, + "probability": 0.3487 + }, + { + "start": 27225.7, + "end": 27227.3, + "probability": 0.9908 + }, + { + "start": 27227.32, + "end": 27228.28, + "probability": 0.5352 + }, + { + "start": 27228.28, + "end": 27229.9, + "probability": 0.9413 + }, + { + "start": 27230.3, + "end": 27230.78, + "probability": 0.4803 + }, + { + "start": 27230.8, + "end": 27232.9, + "probability": 0.9851 + }, + { + "start": 27232.96, + "end": 27236.16, + "probability": 0.8999 + }, + { + "start": 27236.32, + "end": 27236.92, + "probability": 0.5705 + }, + { + "start": 27237.08, + "end": 27241.92, + "probability": 0.9813 + }, + { + "start": 27243.14, + "end": 27243.92, + "probability": 0.6816 + }, + { + "start": 27243.98, + "end": 27244.57, + "probability": 0.96 + }, + { + "start": 27246.16, + "end": 27247.04, + "probability": 0.4334 + }, + { + "start": 27247.22, + "end": 27250.82, + "probability": 0.8901 + }, + { + "start": 27251.56, + "end": 27254.0, + "probability": 0.9751 + }, + { + "start": 27255.98, + "end": 27260.38, + "probability": 0.9868 + }, + { + "start": 27261.4, + "end": 27265.06, + "probability": 0.986 + }, + { + "start": 27266.88, + "end": 27269.66, + "probability": 0.9775 + }, + { + "start": 27271.36, + "end": 27272.66, + "probability": 0.9868 + }, + { + "start": 27274.04, + "end": 27274.58, + "probability": 0.6268 + }, + { + "start": 27275.86, + "end": 27277.24, + "probability": 0.8563 + }, + { + "start": 27278.44, + "end": 27279.84, + "probability": 0.9753 + }, + { + "start": 27281.38, + "end": 27283.84, + "probability": 0.8824 + }, + { + "start": 27284.86, + "end": 27286.24, + "probability": 0.9966 + }, + { + "start": 27286.8, + "end": 27287.92, + "probability": 0.9927 + }, + { + "start": 27288.54, + "end": 27289.7, + "probability": 0.6182 + }, + { + "start": 27289.84, + "end": 27290.26, + "probability": 0.899 + }, + { + "start": 27291.5, + "end": 27291.96, + "probability": 0.4758 + }, + { + "start": 27292.02, + "end": 27292.76, + "probability": 0.8271 + }, + { + "start": 27293.24, + "end": 27295.72, + "probability": 0.6289 + }, + { + "start": 27296.68, + "end": 27299.34, + "probability": 0.743 + }, + { + "start": 27300.04, + "end": 27301.86, + "probability": 0.8544 + }, + { + "start": 27302.56, + "end": 27305.04, + "probability": 0.9077 + }, + { + "start": 27305.1, + "end": 27307.91, + "probability": 0.9485 + }, + { + "start": 27330.8, + "end": 27331.28, + "probability": 0.111 + }, + { + "start": 27331.28, + "end": 27331.28, + "probability": 0.0064 + }, + { + "start": 27331.28, + "end": 27331.62, + "probability": 0.7026 + }, + { + "start": 27331.62, + "end": 27332.3, + "probability": 0.5563 + }, + { + "start": 27336.58, + "end": 27338.02, + "probability": 0.8174 + }, + { + "start": 27341.08, + "end": 27344.24, + "probability": 0.9897 + }, + { + "start": 27346.56, + "end": 27347.1, + "probability": 0.5901 + }, + { + "start": 27347.84, + "end": 27348.96, + "probability": 0.9913 + }, + { + "start": 27349.22, + "end": 27350.66, + "probability": 0.9902 + }, + { + "start": 27350.8, + "end": 27351.22, + "probability": 0.673 + }, + { + "start": 27352.7, + "end": 27355.1, + "probability": 0.951 + }, + { + "start": 27355.82, + "end": 27358.7, + "probability": 0.8072 + }, + { + "start": 27359.28, + "end": 27360.86, + "probability": 0.9774 + }, + { + "start": 27362.86, + "end": 27364.9, + "probability": 0.9791 + }, + { + "start": 27364.9, + "end": 27366.98, + "probability": 0.9934 + }, + { + "start": 27367.92, + "end": 27370.9, + "probability": 0.9764 + }, + { + "start": 27372.3, + "end": 27374.06, + "probability": 0.7342 + }, + { + "start": 27375.54, + "end": 27380.88, + "probability": 0.9896 + }, + { + "start": 27381.56, + "end": 27383.26, + "probability": 0.7463 + }, + { + "start": 27385.18, + "end": 27386.38, + "probability": 0.9844 + }, + { + "start": 27390.34, + "end": 27394.86, + "probability": 0.9907 + }, + { + "start": 27395.06, + "end": 27396.6, + "probability": 0.979 + }, + { + "start": 27396.7, + "end": 27397.74, + "probability": 0.6561 + }, + { + "start": 27397.78, + "end": 27398.86, + "probability": 0.4551 + }, + { + "start": 27399.82, + "end": 27402.64, + "probability": 0.9775 + }, + { + "start": 27403.48, + "end": 27404.28, + "probability": 0.7859 + }, + { + "start": 27406.64, + "end": 27407.52, + "probability": 0.7827 + }, + { + "start": 27408.92, + "end": 27412.58, + "probability": 0.9917 + }, + { + "start": 27413.96, + "end": 27415.68, + "probability": 0.998 + }, + { + "start": 27417.26, + "end": 27419.0, + "probability": 0.4774 + }, + { + "start": 27419.74, + "end": 27424.56, + "probability": 0.9902 + }, + { + "start": 27425.76, + "end": 27428.4, + "probability": 0.8493 + }, + { + "start": 27429.42, + "end": 27433.94, + "probability": 0.6973 + }, + { + "start": 27435.3, + "end": 27436.81, + "probability": 0.9282 + }, + { + "start": 27438.04, + "end": 27439.36, + "probability": 0.4994 + }, + { + "start": 27441.1, + "end": 27443.0, + "probability": 0.9912 + }, + { + "start": 27444.3, + "end": 27447.76, + "probability": 0.9528 + }, + { + "start": 27448.82, + "end": 27450.72, + "probability": 0.8594 + }, + { + "start": 27451.78, + "end": 27455.26, + "probability": 0.9976 + }, + { + "start": 27456.88, + "end": 27459.02, + "probability": 0.8473 + }, + { + "start": 27459.14, + "end": 27459.7, + "probability": 0.9596 + }, + { + "start": 27461.6, + "end": 27462.64, + "probability": 0.6895 + }, + { + "start": 27462.68, + "end": 27465.82, + "probability": 0.707 + }, + { + "start": 27467.22, + "end": 27469.42, + "probability": 0.8764 + }, + { + "start": 27470.44, + "end": 27472.68, + "probability": 0.8518 + }, + { + "start": 27473.26, + "end": 27474.1, + "probability": 0.6785 + }, + { + "start": 27474.64, + "end": 27476.18, + "probability": 0.9867 + }, + { + "start": 27476.28, + "end": 27477.04, + "probability": 0.7823 + }, + { + "start": 27477.26, + "end": 27479.02, + "probability": 0.7578 + }, + { + "start": 27480.18, + "end": 27481.26, + "probability": 0.9323 + }, + { + "start": 27484.08, + "end": 27485.06, + "probability": 0.5356 + }, + { + "start": 27485.06, + "end": 27485.06, + "probability": 0.3952 + }, + { + "start": 27485.06, + "end": 27485.34, + "probability": 0.7789 + }, + { + "start": 27486.24, + "end": 27486.96, + "probability": 0.8003 + }, + { + "start": 27487.28, + "end": 27489.0, + "probability": 0.7656 + }, + { + "start": 27489.36, + "end": 27490.26, + "probability": 0.6622 + }, + { + "start": 27490.86, + "end": 27494.12, + "probability": 0.8628 + }, + { + "start": 27494.86, + "end": 27497.76, + "probability": 0.7185 + }, + { + "start": 27498.46, + "end": 27499.78, + "probability": 0.5077 + }, + { + "start": 27501.08, + "end": 27502.54, + "probability": 0.6101 + }, + { + "start": 27502.74, + "end": 27503.34, + "probability": 0.7021 + }, + { + "start": 27503.42, + "end": 27505.08, + "probability": 0.7044 + }, + { + "start": 27505.38, + "end": 27507.16, + "probability": 0.9357 + }, + { + "start": 27507.16, + "end": 27508.44, + "probability": 0.9693 + }, + { + "start": 27509.66, + "end": 27510.48, + "probability": 0.8477 + }, + { + "start": 27511.08, + "end": 27513.18, + "probability": 0.7067 + }, + { + "start": 27513.84, + "end": 27515.42, + "probability": 0.9399 + }, + { + "start": 27516.48, + "end": 27520.16, + "probability": 0.966 + }, + { + "start": 27520.8, + "end": 27522.22, + "probability": 0.9517 + }, + { + "start": 27523.24, + "end": 27524.22, + "probability": 0.6384 + }, + { + "start": 27525.44, + "end": 27526.56, + "probability": 0.0107 + }, + { + "start": 27528.64, + "end": 27530.58, + "probability": 0.1415 + }, + { + "start": 27530.94, + "end": 27530.98, + "probability": 0.1521 + }, + { + "start": 27530.98, + "end": 27531.82, + "probability": 0.4013 + }, + { + "start": 27531.9, + "end": 27532.38, + "probability": 0.5731 + }, + { + "start": 27532.48, + "end": 27532.78, + "probability": 0.8417 + }, + { + "start": 27532.78, + "end": 27535.42, + "probability": 0.4749 + }, + { + "start": 27535.5, + "end": 27538.2, + "probability": 0.6972 + }, + { + "start": 27553.0, + "end": 27553.1, + "probability": 0.7723 + }, + { + "start": 27554.24, + "end": 27555.28, + "probability": 0.804 + }, + { + "start": 27555.4, + "end": 27555.54, + "probability": 0.6077 + }, + { + "start": 27555.54, + "end": 27555.88, + "probability": 0.5091 + }, + { + "start": 27555.94, + "end": 27557.74, + "probability": 0.715 + }, + { + "start": 27558.76, + "end": 27559.6, + "probability": 0.9619 + }, + { + "start": 27560.62, + "end": 27565.68, + "probability": 0.9636 + }, + { + "start": 27566.86, + "end": 27570.6, + "probability": 0.9624 + }, + { + "start": 27571.64, + "end": 27572.84, + "probability": 0.9184 + }, + { + "start": 27573.52, + "end": 27577.22, + "probability": 0.9868 + }, + { + "start": 27577.92, + "end": 27581.26, + "probability": 0.9875 + }, + { + "start": 27581.34, + "end": 27584.62, + "probability": 0.9189 + }, + { + "start": 27585.92, + "end": 27587.58, + "probability": 0.3601 + }, + { + "start": 27588.2, + "end": 27590.34, + "probability": 0.9933 + }, + { + "start": 27590.96, + "end": 27593.45, + "probability": 0.99 + }, + { + "start": 27594.36, + "end": 27598.52, + "probability": 0.9993 + }, + { + "start": 27599.32, + "end": 27603.24, + "probability": 0.9985 + }, + { + "start": 27604.58, + "end": 27605.68, + "probability": 0.654 + }, + { + "start": 27607.16, + "end": 27608.12, + "probability": 0.9922 + }, + { + "start": 27608.22, + "end": 27612.62, + "probability": 0.9995 + }, + { + "start": 27614.0, + "end": 27615.82, + "probability": 0.9961 + }, + { + "start": 27616.2, + "end": 27617.54, + "probability": 0.7396 + }, + { + "start": 27617.58, + "end": 27618.98, + "probability": 0.9933 + }, + { + "start": 27620.14, + "end": 27623.36, + "probability": 0.9988 + }, + { + "start": 27624.3, + "end": 27626.1, + "probability": 0.6828 + }, + { + "start": 27626.78, + "end": 27628.92, + "probability": 0.9974 + }, + { + "start": 27629.0, + "end": 27630.1, + "probability": 0.9919 + }, + { + "start": 27631.3, + "end": 27636.68, + "probability": 0.9957 + }, + { + "start": 27637.56, + "end": 27641.26, + "probability": 0.9877 + }, + { + "start": 27641.84, + "end": 27647.02, + "probability": 0.9906 + }, + { + "start": 27648.22, + "end": 27653.46, + "probability": 0.998 + }, + { + "start": 27654.44, + "end": 27657.44, + "probability": 0.6047 + }, + { + "start": 27657.58, + "end": 27661.2, + "probability": 0.7505 + }, + { + "start": 27661.98, + "end": 27663.64, + "probability": 0.7979 + }, + { + "start": 27664.54, + "end": 27671.14, + "probability": 0.9699 + }, + { + "start": 27671.82, + "end": 27673.98, + "probability": 0.9926 + }, + { + "start": 27674.06, + "end": 27675.1, + "probability": 0.9877 + }, + { + "start": 27675.64, + "end": 27679.06, + "probability": 0.9958 + }, + { + "start": 27679.76, + "end": 27681.96, + "probability": 0.9658 + }, + { + "start": 27682.56, + "end": 27685.04, + "probability": 0.9925 + }, + { + "start": 27686.02, + "end": 27687.24, + "probability": 0.999 + }, + { + "start": 27687.66, + "end": 27689.36, + "probability": 0.9628 + }, + { + "start": 27690.0, + "end": 27693.46, + "probability": 0.9899 + }, + { + "start": 27694.14, + "end": 27695.52, + "probability": 0.9824 + }, + { + "start": 27696.42, + "end": 27697.48, + "probability": 0.8206 + }, + { + "start": 27697.9, + "end": 27698.88, + "probability": 0.8234 + }, + { + "start": 27699.5, + "end": 27701.22, + "probability": 0.9914 + }, + { + "start": 27701.3, + "end": 27703.2, + "probability": 0.9973 + }, + { + "start": 27703.62, + "end": 27706.94, + "probability": 0.9943 + }, + { + "start": 27708.12, + "end": 27709.28, + "probability": 0.9978 + }, + { + "start": 27709.88, + "end": 27710.84, + "probability": 0.9998 + }, + { + "start": 27710.86, + "end": 27716.02, + "probability": 0.9977 + }, + { + "start": 27716.22, + "end": 27717.26, + "probability": 0.9893 + }, + { + "start": 27717.32, + "end": 27717.98, + "probability": 0.9492 + }, + { + "start": 27718.64, + "end": 27720.1, + "probability": 0.9974 + }, + { + "start": 27720.88, + "end": 27724.3, + "probability": 0.9979 + }, + { + "start": 27724.66, + "end": 27726.58, + "probability": 0.9897 + }, + { + "start": 27726.98, + "end": 27731.86, + "probability": 0.9984 + }, + { + "start": 27732.28, + "end": 27733.1, + "probability": 0.9373 + }, + { + "start": 27733.38, + "end": 27733.76, + "probability": 0.7983 + }, + { + "start": 27733.9, + "end": 27734.38, + "probability": 0.852 + }, + { + "start": 27734.44, + "end": 27734.98, + "probability": 0.9318 + }, + { + "start": 27736.1, + "end": 27737.44, + "probability": 0.8804 + }, + { + "start": 27738.0, + "end": 27740.56, + "probability": 0.9903 + }, + { + "start": 27740.6, + "end": 27741.12, + "probability": 0.843 + }, + { + "start": 27741.46, + "end": 27742.5, + "probability": 0.7104 + }, + { + "start": 27743.08, + "end": 27745.96, + "probability": 0.6607 + }, + { + "start": 27746.2, + "end": 27746.44, + "probability": 0.0343 + }, + { + "start": 27747.16, + "end": 27747.26, + "probability": 0.0343 + }, + { + "start": 27747.26, + "end": 27748.56, + "probability": 0.0433 + }, + { + "start": 27750.26, + "end": 27750.62, + "probability": 0.5251 + }, + { + "start": 27751.3, + "end": 27751.86, + "probability": 0.4722 + }, + { + "start": 27752.6, + "end": 27754.44, + "probability": 0.498 + }, + { + "start": 27754.98, + "end": 27757.3, + "probability": 0.6162 + }, + { + "start": 27759.2, + "end": 27760.12, + "probability": 0.3194 + }, + { + "start": 27760.12, + "end": 27761.02, + "probability": 0.1237 + }, + { + "start": 27761.84, + "end": 27764.16, + "probability": 0.7383 + }, + { + "start": 27765.0, + "end": 27766.76, + "probability": 0.9635 + }, + { + "start": 27768.34, + "end": 27769.64, + "probability": 0.9896 + }, + { + "start": 27790.4, + "end": 27792.5, + "probability": 0.463 + }, + { + "start": 27792.5, + "end": 27794.88, + "probability": 0.8701 + }, + { + "start": 27795.16, + "end": 27797.5, + "probability": 0.9411 + }, + { + "start": 27797.6, + "end": 27798.6, + "probability": 0.9383 + }, + { + "start": 27801.74, + "end": 27802.08, + "probability": 0.2893 + }, + { + "start": 27802.88, + "end": 27804.61, + "probability": 0.9758 + }, + { + "start": 27805.52, + "end": 27807.02, + "probability": 0.7417 + }, + { + "start": 27809.1, + "end": 27812.3, + "probability": 0.9002 + }, + { + "start": 27813.08, + "end": 27816.54, + "probability": 0.6564 + }, + { + "start": 27816.56, + "end": 27821.02, + "probability": 0.9411 + }, + { + "start": 27821.06, + "end": 27821.78, + "probability": 0.7146 + }, + { + "start": 27822.64, + "end": 27825.2, + "probability": 0.9645 + }, + { + "start": 27825.3, + "end": 27826.34, + "probability": 0.8415 + }, + { + "start": 27826.46, + "end": 27829.2, + "probability": 0.9857 + }, + { + "start": 27829.34, + "end": 27830.2, + "probability": 0.8171 + }, + { + "start": 27830.62, + "end": 27832.06, + "probability": 0.939 + }, + { + "start": 27832.56, + "end": 27833.34, + "probability": 0.8844 + }, + { + "start": 27833.48, + "end": 27834.62, + "probability": 0.8098 + }, + { + "start": 27835.76, + "end": 27839.8, + "probability": 0.8319 + }, + { + "start": 27840.16, + "end": 27843.1, + "probability": 0.98 + }, + { + "start": 27843.72, + "end": 27845.66, + "probability": 0.7998 + }, + { + "start": 27845.76, + "end": 27846.52, + "probability": 0.9985 + }, + { + "start": 27847.2, + "end": 27847.42, + "probability": 0.6807 + }, + { + "start": 27848.2, + "end": 27850.08, + "probability": 0.4743 + }, + { + "start": 27851.44, + "end": 27854.2, + "probability": 0.8573 + }, + { + "start": 27855.8, + "end": 27856.58, + "probability": 0.2642 + }, + { + "start": 27858.2, + "end": 27862.66, + "probability": 0.8057 + }, + { + "start": 27864.38, + "end": 27865.74, + "probability": 0.9463 + }, + { + "start": 27866.1, + "end": 27867.5, + "probability": 0.6914 + }, + { + "start": 27867.68, + "end": 27871.44, + "probability": 0.9849 + }, + { + "start": 27871.44, + "end": 27875.22, + "probability": 0.9993 + }, + { + "start": 27875.82, + "end": 27878.42, + "probability": 0.9971 + }, + { + "start": 27879.18, + "end": 27882.44, + "probability": 0.995 + }, + { + "start": 27883.0, + "end": 27885.26, + "probability": 0.9962 + }, + { + "start": 27885.42, + "end": 27886.0, + "probability": 0.2145 + }, + { + "start": 27886.0, + "end": 27887.24, + "probability": 0.8362 + }, + { + "start": 27887.72, + "end": 27888.56, + "probability": 0.4248 + }, + { + "start": 27889.12, + "end": 27889.76, + "probability": 0.4696 + }, + { + "start": 27889.84, + "end": 27892.9, + "probability": 0.9294 + }, + { + "start": 27892.94, + "end": 27893.82, + "probability": 0.0249 + }, + { + "start": 27894.5, + "end": 27895.78, + "probability": 0.754 + }, + { + "start": 27896.34, + "end": 27900.52, + "probability": 0.9335 + }, + { + "start": 27901.46, + "end": 27903.26, + "probability": 0.956 + }, + { + "start": 27903.5, + "end": 27904.26, + "probability": 0.6697 + }, + { + "start": 27904.36, + "end": 27905.67, + "probability": 0.9115 + }, + { + "start": 27906.34, + "end": 27909.48, + "probability": 0.9853 + }, + { + "start": 27910.02, + "end": 27913.08, + "probability": 0.9778 + }, + { + "start": 27913.32, + "end": 27917.88, + "probability": 0.8226 + }, + { + "start": 27918.06, + "end": 27919.0, + "probability": 0.8678 + }, + { + "start": 27919.46, + "end": 27921.06, + "probability": 0.9956 + }, + { + "start": 27921.32, + "end": 27922.73, + "probability": 0.981 + }, + { + "start": 27923.26, + "end": 27925.3, + "probability": 0.9766 + }, + { + "start": 27925.58, + "end": 27926.54, + "probability": 0.9006 + }, + { + "start": 27927.24, + "end": 27929.92, + "probability": 0.9725 + }, + { + "start": 27930.2, + "end": 27933.54, + "probability": 0.9769 + }, + { + "start": 27934.0, + "end": 27938.3, + "probability": 0.871 + }, + { + "start": 27939.08, + "end": 27940.88, + "probability": 0.8865 + }, + { + "start": 27941.48, + "end": 27942.5, + "probability": 0.9389 + }, + { + "start": 27942.8, + "end": 27943.94, + "probability": 0.5762 + }, + { + "start": 27944.5, + "end": 27945.1, + "probability": 0.6041 + }, + { + "start": 27945.18, + "end": 27945.68, + "probability": 0.8596 + }, + { + "start": 27945.76, + "end": 27948.2, + "probability": 0.9926 + }, + { + "start": 27949.76, + "end": 27955.78, + "probability": 0.8539 + }, + { + "start": 27956.0, + "end": 27956.6, + "probability": 0.8073 + }, + { + "start": 27957.76, + "end": 27961.5, + "probability": 0.9629 + }, + { + "start": 27962.02, + "end": 27962.58, + "probability": 0.7007 + }, + { + "start": 27962.74, + "end": 27962.96, + "probability": 0.897 + }, + { + "start": 27963.46, + "end": 27966.34, + "probability": 0.9836 + }, + { + "start": 27967.06, + "end": 27968.4, + "probability": 0.9291 + }, + { + "start": 27968.44, + "end": 27970.22, + "probability": 0.8234 + }, + { + "start": 27970.34, + "end": 27972.54, + "probability": 0.9848 + }, + { + "start": 27973.22, + "end": 27974.3, + "probability": 0.6376 + }, + { + "start": 27974.44, + "end": 27977.78, + "probability": 0.7391 + }, + { + "start": 27978.16, + "end": 27978.82, + "probability": 0.7132 + }, + { + "start": 27979.04, + "end": 27980.18, + "probability": 0.7929 + }, + { + "start": 27980.24, + "end": 27980.87, + "probability": 0.6986 + }, + { + "start": 27982.66, + "end": 27983.86, + "probability": 0.981 + }, + { + "start": 27985.16, + "end": 27987.84, + "probability": 0.9159 + }, + { + "start": 27988.28, + "end": 27992.1, + "probability": 0.6819 + }, + { + "start": 27992.7, + "end": 27993.52, + "probability": 0.9956 + }, + { + "start": 27994.12, + "end": 27997.02, + "probability": 0.9949 + }, + { + "start": 27997.5, + "end": 28000.52, + "probability": 0.8186 + }, + { + "start": 28000.94, + "end": 28001.7, + "probability": 0.9828 + }, + { + "start": 28001.9, + "end": 28002.56, + "probability": 0.7185 + }, + { + "start": 28002.98, + "end": 28004.26, + "probability": 0.8182 + }, + { + "start": 28004.74, + "end": 28005.1, + "probability": 0.9766 + }, + { + "start": 28005.38, + "end": 28009.3, + "probability": 0.9867 + }, + { + "start": 28009.76, + "end": 28011.56, + "probability": 0.94 + }, + { + "start": 28011.76, + "end": 28012.45, + "probability": 0.9753 + }, + { + "start": 28013.24, + "end": 28016.04, + "probability": 0.9745 + }, + { + "start": 28016.56, + "end": 28019.8, + "probability": 0.8461 + }, + { + "start": 28020.44, + "end": 28022.92, + "probability": 0.9125 + }, + { + "start": 28023.12, + "end": 28024.02, + "probability": 0.8159 + }, + { + "start": 28024.02, + "end": 28025.44, + "probability": 0.7757 + }, + { + "start": 28025.76, + "end": 28030.64, + "probability": 0.7936 + }, + { + "start": 28031.04, + "end": 28033.86, + "probability": 0.9908 + }, + { + "start": 28035.46, + "end": 28038.94, + "probability": 0.9915 + }, + { + "start": 28039.42, + "end": 28040.78, + "probability": 0.8394 + }, + { + "start": 28041.9, + "end": 28046.86, + "probability": 0.9984 + }, + { + "start": 28047.46, + "end": 28048.02, + "probability": 0.7228 + }, + { + "start": 28048.36, + "end": 28051.1, + "probability": 0.9974 + }, + { + "start": 28051.54, + "end": 28052.88, + "probability": 0.9333 + }, + { + "start": 28053.26, + "end": 28054.36, + "probability": 0.9167 + }, + { + "start": 28054.76, + "end": 28055.22, + "probability": 0.4764 + }, + { + "start": 28055.66, + "end": 28058.88, + "probability": 0.9844 + }, + { + "start": 28058.96, + "end": 28059.2, + "probability": 0.7993 + }, + { + "start": 28059.44, + "end": 28060.48, + "probability": 0.6213 + }, + { + "start": 28060.52, + "end": 28062.66, + "probability": 0.5082 + }, + { + "start": 28066.4, + "end": 28067.28, + "probability": 0.2529 + }, + { + "start": 28082.64, + "end": 28083.08, + "probability": 0.3821 + }, + { + "start": 28083.18, + "end": 28084.5, + "probability": 0.8092 + }, + { + "start": 28084.72, + "end": 28087.56, + "probability": 0.9941 + }, + { + "start": 28090.1, + "end": 28091.52, + "probability": 0.7139 + }, + { + "start": 28091.66, + "end": 28092.94, + "probability": 0.6295 + }, + { + "start": 28094.72, + "end": 28098.24, + "probability": 0.9884 + }, + { + "start": 28098.24, + "end": 28101.7, + "probability": 0.9966 + }, + { + "start": 28103.02, + "end": 28104.52, + "probability": 0.9219 + }, + { + "start": 28104.68, + "end": 28107.74, + "probability": 0.9181 + }, + { + "start": 28108.54, + "end": 28109.82, + "probability": 0.5532 + }, + { + "start": 28109.84, + "end": 28109.94, + "probability": 0.5424 + }, + { + "start": 28110.32, + "end": 28112.58, + "probability": 0.9979 + }, + { + "start": 28113.94, + "end": 28116.64, + "probability": 0.9212 + }, + { + "start": 28116.7, + "end": 28120.0, + "probability": 0.9689 + }, + { + "start": 28120.38, + "end": 28124.54, + "probability": 0.9966 + }, + { + "start": 28125.66, + "end": 28126.4, + "probability": 0.9527 + }, + { + "start": 28126.82, + "end": 28127.88, + "probability": 0.9814 + }, + { + "start": 28127.94, + "end": 28135.16, + "probability": 0.9955 + }, + { + "start": 28136.02, + "end": 28140.1, + "probability": 0.9917 + }, + { + "start": 28140.1, + "end": 28144.32, + "probability": 0.9956 + }, + { + "start": 28144.84, + "end": 28145.5, + "probability": 0.5697 + }, + { + "start": 28145.64, + "end": 28145.9, + "probability": 0.4549 + }, + { + "start": 28145.98, + "end": 28146.26, + "probability": 0.3293 + }, + { + "start": 28146.28, + "end": 28146.36, + "probability": 0.2108 + }, + { + "start": 28146.36, + "end": 28147.62, + "probability": 0.808 + }, + { + "start": 28149.52, + "end": 28149.52, + "probability": 0.3361 + }, + { + "start": 28149.52, + "end": 28151.45, + "probability": 0.6343 + }, + { + "start": 28153.56, + "end": 28155.1, + "probability": 0.1752 + }, + { + "start": 28155.8, + "end": 28161.88, + "probability": 0.1273 + }, + { + "start": 28162.5, + "end": 28163.46, + "probability": 0.0494 + }, + { + "start": 28164.04, + "end": 28164.84, + "probability": 0.1747 + }, + { + "start": 28165.02, + "end": 28165.88, + "probability": 0.3656 + }, + { + "start": 28166.16, + "end": 28167.0, + "probability": 0.03 + }, + { + "start": 28167.0, + "end": 28168.0, + "probability": 0.2051 + }, + { + "start": 28168.86, + "end": 28173.24, + "probability": 0.1979 + }, + { + "start": 28173.24, + "end": 28175.06, + "probability": 0.0108 + }, + { + "start": 28178.72, + "end": 28180.94, + "probability": 0.0413 + }, + { + "start": 28197.44, + "end": 28198.54, + "probability": 0.1667 + }, + { + "start": 28198.58, + "end": 28198.96, + "probability": 0.0158 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.0, + "end": 28241.0, + "probability": 0.0 + }, + { + "start": 28241.14, + "end": 28241.14, + "probability": 0.0918 + }, + { + "start": 28241.14, + "end": 28241.14, + "probability": 0.0644 + }, + { + "start": 28241.14, + "end": 28243.9, + "probability": 0.9272 + }, + { + "start": 28244.7, + "end": 28245.26, + "probability": 0.8199 + }, + { + "start": 28245.34, + "end": 28247.88, + "probability": 0.9871 + }, + { + "start": 28248.3, + "end": 28251.52, + "probability": 0.9785 + }, + { + "start": 28251.82, + "end": 28255.42, + "probability": 0.952 + }, + { + "start": 28255.82, + "end": 28257.06, + "probability": 0.8469 + }, + { + "start": 28257.26, + "end": 28258.72, + "probability": 0.9277 + }, + { + "start": 28260.06, + "end": 28265.22, + "probability": 0.9726 + }, + { + "start": 28265.36, + "end": 28267.2, + "probability": 0.9605 + }, + { + "start": 28267.56, + "end": 28267.91, + "probability": 0.7613 + }, + { + "start": 28268.58, + "end": 28269.0, + "probability": 0.7277 + }, + { + "start": 28269.42, + "end": 28274.54, + "probability": 0.989 + }, + { + "start": 28274.86, + "end": 28275.66, + "probability": 0.7743 + }, + { + "start": 28275.76, + "end": 28278.28, + "probability": 0.9587 + }, + { + "start": 28278.32, + "end": 28279.06, + "probability": 0.9861 + }, + { + "start": 28279.88, + "end": 28281.24, + "probability": 0.5507 + }, + { + "start": 28281.28, + "end": 28283.22, + "probability": 0.7732 + }, + { + "start": 28283.46, + "end": 28284.92, + "probability": 0.5535 + }, + { + "start": 28285.62, + "end": 28286.9, + "probability": 0.7832 + }, + { + "start": 28287.74, + "end": 28288.56, + "probability": 0.9172 + }, + { + "start": 28289.64, + "end": 28291.48, + "probability": 0.9746 + }, + { + "start": 28291.48, + "end": 28294.06, + "probability": 0.9778 + }, + { + "start": 28294.12, + "end": 28295.84, + "probability": 0.9716 + }, + { + "start": 28296.98, + "end": 28299.0, + "probability": 0.9285 + }, + { + "start": 28299.06, + "end": 28301.28, + "probability": 0.9427 + }, + { + "start": 28301.3, + "end": 28302.34, + "probability": 0.9507 + }, + { + "start": 28303.4, + "end": 28306.16, + "probability": 0.9944 + }, + { + "start": 28306.26, + "end": 28307.14, + "probability": 0.9976 + }, + { + "start": 28307.28, + "end": 28307.62, + "probability": 0.7396 + }, + { + "start": 28307.7, + "end": 28308.58, + "probability": 0.5474 + }, + { + "start": 28308.6, + "end": 28310.4, + "probability": 0.8403 + }, + { + "start": 28310.98, + "end": 28313.78, + "probability": 0.7128 + }, + { + "start": 28314.36, + "end": 28315.24, + "probability": 0.7314 + }, + { + "start": 28315.98, + "end": 28318.91, + "probability": 0.9844 + }, + { + "start": 28338.48, + "end": 28340.42, + "probability": 0.7854 + }, + { + "start": 28340.9, + "end": 28342.72, + "probability": 0.6625 + }, + { + "start": 28343.72, + "end": 28347.76, + "probability": 0.894 + }, + { + "start": 28357.94, + "end": 28360.02, + "probability": 0.7129 + }, + { + "start": 28360.7, + "end": 28365.26, + "probability": 0.5783 + }, + { + "start": 28366.52, + "end": 28372.9, + "probability": 0.9921 + }, + { + "start": 28372.98, + "end": 28374.96, + "probability": 0.9475 + }, + { + "start": 28375.66, + "end": 28379.04, + "probability": 0.7185 + }, + { + "start": 28379.62, + "end": 28383.1, + "probability": 0.973 + }, + { + "start": 28383.22, + "end": 28384.84, + "probability": 0.969 + }, + { + "start": 28386.16, + "end": 28388.78, + "probability": 0.8921 + }, + { + "start": 28388.88, + "end": 28390.02, + "probability": 0.9761 + }, + { + "start": 28390.26, + "end": 28391.96, + "probability": 0.9297 + }, + { + "start": 28392.0, + "end": 28394.42, + "probability": 0.7959 + }, + { + "start": 28396.16, + "end": 28398.06, + "probability": 0.9993 + }, + { + "start": 28398.76, + "end": 28400.96, + "probability": 0.9998 + }, + { + "start": 28401.54, + "end": 28405.52, + "probability": 0.9883 + }, + { + "start": 28408.24, + "end": 28409.33, + "probability": 0.8191 + }, + { + "start": 28409.4, + "end": 28412.2, + "probability": 0.8532 + }, + { + "start": 28412.86, + "end": 28415.22, + "probability": 0.8136 + }, + { + "start": 28415.86, + "end": 28417.7, + "probability": 0.9161 + }, + { + "start": 28418.28, + "end": 28421.4, + "probability": 0.8479 + }, + { + "start": 28422.14, + "end": 28424.0, + "probability": 0.9841 + }, + { + "start": 28424.94, + "end": 28424.94, + "probability": 0.6308 + }, + { + "start": 28424.94, + "end": 28427.34, + "probability": 0.5679 + }, + { + "start": 28427.82, + "end": 28431.16, + "probability": 0.8691 + }, + { + "start": 28431.24, + "end": 28431.8, + "probability": 0.7891 + }, + { + "start": 28431.88, + "end": 28432.42, + "probability": 0.9381 + }, + { + "start": 28432.52, + "end": 28434.76, + "probability": 0.6965 + }, + { + "start": 28434.8, + "end": 28437.38, + "probability": 0.6699 + }, + { + "start": 28437.84, + "end": 28441.46, + "probability": 0.9629 + }, + { + "start": 28441.46, + "end": 28444.36, + "probability": 0.9755 + }, + { + "start": 28445.58, + "end": 28449.56, + "probability": 0.9683 + }, + { + "start": 28449.56, + "end": 28451.72, + "probability": 0.9252 + }, + { + "start": 28451.9, + "end": 28453.28, + "probability": 0.9131 + }, + { + "start": 28453.4, + "end": 28454.88, + "probability": 0.9004 + }, + { + "start": 28455.12, + "end": 28455.54, + "probability": 0.9602 + }, + { + "start": 28455.7, + "end": 28455.7, + "probability": 0.2427 + }, + { + "start": 28455.7, + "end": 28457.25, + "probability": 0.8138 + }, + { + "start": 28458.22, + "end": 28458.66, + "probability": 0.9708 + }, + { + "start": 28458.72, + "end": 28459.1, + "probability": 0.8632 + }, + { + "start": 28459.1, + "end": 28460.38, + "probability": 0.8854 + }, + { + "start": 28460.92, + "end": 28461.94, + "probability": 0.9966 + }, + { + "start": 28462.48, + "end": 28463.71, + "probability": 0.9561 + }, + { + "start": 28463.92, + "end": 28464.63, + "probability": 0.723 + }, + { + "start": 28465.4, + "end": 28466.34, + "probability": 0.9172 + }, + { + "start": 28466.4, + "end": 28467.92, + "probability": 0.9453 + }, + { + "start": 28469.5, + "end": 28471.64, + "probability": 0.9893 + }, + { + "start": 28472.16, + "end": 28474.54, + "probability": 0.9921 + }, + { + "start": 28474.7, + "end": 28477.78, + "probability": 0.9627 + }, + { + "start": 28478.52, + "end": 28479.52, + "probability": 0.7439 + }, + { + "start": 28479.6, + "end": 28482.34, + "probability": 0.9963 + }, + { + "start": 28483.84, + "end": 28484.4, + "probability": 0.553 + }, + { + "start": 28484.44, + "end": 28487.64, + "probability": 0.9907 + }, + { + "start": 28488.14, + "end": 28490.2, + "probability": 0.9967 + }, + { + "start": 28490.78, + "end": 28495.1, + "probability": 0.9821 + }, + { + "start": 28495.46, + "end": 28499.4, + "probability": 0.9535 + }, + { + "start": 28499.94, + "end": 28503.02, + "probability": 0.9902 + }, + { + "start": 28503.21, + "end": 28505.42, + "probability": 0.7791 + }, + { + "start": 28505.82, + "end": 28507.64, + "probability": 0.9929 + }, + { + "start": 28507.64, + "end": 28507.64, + "probability": 0.489 + }, + { + "start": 28507.64, + "end": 28508.1, + "probability": 0.7052 + }, + { + "start": 28508.16, + "end": 28508.6, + "probability": 0.4211 + }, + { + "start": 28509.8, + "end": 28515.58, + "probability": 0.9912 + }, + { + "start": 28515.68, + "end": 28516.6, + "probability": 0.917 + }, + { + "start": 28518.89, + "end": 28520.36, + "probability": 0.0738 + }, + { + "start": 28520.36, + "end": 28521.81, + "probability": 0.4729 + }, + { + "start": 28522.24, + "end": 28523.22, + "probability": 0.8521 + }, + { + "start": 28523.74, + "end": 28524.88, + "probability": 0.7415 + }, + { + "start": 28524.88, + "end": 28525.8, + "probability": 0.4353 + }, + { + "start": 28526.26, + "end": 28528.06, + "probability": 0.9626 + }, + { + "start": 28528.44, + "end": 28530.08, + "probability": 0.7114 + }, + { + "start": 28530.22, + "end": 28530.5, + "probability": 0.814 + }, + { + "start": 28530.58, + "end": 28530.9, + "probability": 0.9889 + }, + { + "start": 28530.94, + "end": 28531.26, + "probability": 0.9876 + }, + { + "start": 28531.38, + "end": 28531.52, + "probability": 0.5015 + }, + { + "start": 28531.68, + "end": 28534.15, + "probability": 0.9247 + }, + { + "start": 28534.42, + "end": 28535.52, + "probability": 0.9915 + }, + { + "start": 28535.62, + "end": 28535.82, + "probability": 0.6357 + }, + { + "start": 28536.44, + "end": 28537.12, + "probability": 0.5987 + }, + { + "start": 28537.24, + "end": 28539.48, + "probability": 0.8911 + }, + { + "start": 28540.14, + "end": 28543.66, + "probability": 0.9174 + }, + { + "start": 28544.38, + "end": 28547.0, + "probability": 0.9061 + }, + { + "start": 28547.98, + "end": 28549.16, + "probability": 0.7755 + }, + { + "start": 28549.64, + "end": 28551.52, + "probability": 0.8799 + }, + { + "start": 28552.74, + "end": 28553.32, + "probability": 0.1688 + }, + { + "start": 28566.47, + "end": 28569.44, + "probability": 0.0247 + }, + { + "start": 28569.8, + "end": 28573.0, + "probability": 0.9956 + }, + { + "start": 28575.2, + "end": 28577.68, + "probability": 0.5666 + }, + { + "start": 28578.49, + "end": 28581.34, + "probability": 0.7117 + }, + { + "start": 28584.48, + "end": 28586.28, + "probability": 0.6408 + }, + { + "start": 28586.38, + "end": 28587.75, + "probability": 0.825 + }, + { + "start": 28587.84, + "end": 28588.56, + "probability": 0.509 + }, + { + "start": 28588.74, + "end": 28589.72, + "probability": 0.7625 + }, + { + "start": 28591.48, + "end": 28594.12, + "probability": 0.9941 + }, + { + "start": 28603.24, + "end": 28604.44, + "probability": 0.5343 + }, + { + "start": 28604.54, + "end": 28604.72, + "probability": 0.283 + }, + { + "start": 28605.64, + "end": 28606.76, + "probability": 0.6235 + }, + { + "start": 28607.7, + "end": 28609.86, + "probability": 0.938 + }, + { + "start": 28610.66, + "end": 28614.94, + "probability": 0.9538 + }, + { + "start": 28616.88, + "end": 28618.98, + "probability": 0.8004 + }, + { + "start": 28619.74, + "end": 28620.92, + "probability": 0.7124 + }, + { + "start": 28622.1, + "end": 28622.98, + "probability": 0.8613 + }, + { + "start": 28625.18, + "end": 28626.46, + "probability": 0.6379 + }, + { + "start": 28627.38, + "end": 28629.36, + "probability": 0.9631 + }, + { + "start": 28629.88, + "end": 28631.34, + "probability": 0.9683 + }, + { + "start": 28631.96, + "end": 28633.12, + "probability": 0.904 + }, + { + "start": 28634.36, + "end": 28635.27, + "probability": 0.9917 + }, + { + "start": 28636.62, + "end": 28638.66, + "probability": 0.9933 + }, + { + "start": 28639.1, + "end": 28642.76, + "probability": 0.91 + }, + { + "start": 28644.16, + "end": 28644.82, + "probability": 0.6499 + }, + { + "start": 28645.22, + "end": 28648.02, + "probability": 0.6481 + }, + { + "start": 28648.06, + "end": 28649.36, + "probability": 0.873 + }, + { + "start": 28651.52, + "end": 28653.6, + "probability": 0.992 + }, + { + "start": 28656.04, + "end": 28657.84, + "probability": 0.8464 + }, + { + "start": 28657.94, + "end": 28658.66, + "probability": 0.8105 + }, + { + "start": 28658.7, + "end": 28663.46, + "probability": 0.69 + }, + { + "start": 28664.94, + "end": 28666.86, + "probability": 0.9797 + }, + { + "start": 28668.1, + "end": 28669.54, + "probability": 0.8752 + }, + { + "start": 28669.6, + "end": 28672.92, + "probability": 0.9685 + }, + { + "start": 28673.36, + "end": 28675.0, + "probability": 0.994 + }, + { + "start": 28675.26, + "end": 28676.88, + "probability": 0.9875 + }, + { + "start": 28676.98, + "end": 28678.28, + "probability": 0.9949 + }, + { + "start": 28679.52, + "end": 28681.32, + "probability": 0.9669 + }, + { + "start": 28682.18, + "end": 28683.85, + "probability": 0.8455 + }, + { + "start": 28685.08, + "end": 28688.22, + "probability": 0.8063 + }, + { + "start": 28688.6, + "end": 28690.23, + "probability": 0.9858 + }, + { + "start": 28691.22, + "end": 28693.15, + "probability": 0.9951 + }, + { + "start": 28693.66, + "end": 28695.04, + "probability": 0.9224 + }, + { + "start": 28695.18, + "end": 28695.34, + "probability": 0.5706 + }, + { + "start": 28695.86, + "end": 28699.94, + "probability": 0.9927 + }, + { + "start": 28700.76, + "end": 28702.84, + "probability": 0.8819 + }, + { + "start": 28704.6, + "end": 28709.16, + "probability": 0.9926 + }, + { + "start": 28709.22, + "end": 28711.5, + "probability": 0.891 + }, + { + "start": 28711.58, + "end": 28712.08, + "probability": 0.4226 + }, + { + "start": 28712.34, + "end": 28713.96, + "probability": 0.3303 + }, + { + "start": 28714.44, + "end": 28714.54, + "probability": 0.0235 + }, + { + "start": 28714.54, + "end": 28715.7, + "probability": 0.9185 + }, + { + "start": 28717.66, + "end": 28718.66, + "probability": 0.7365 + }, + { + "start": 28721.18, + "end": 28723.56, + "probability": 0.9819 + }, + { + "start": 28724.26, + "end": 28725.12, + "probability": 0.6268 + }, + { + "start": 28726.2, + "end": 28728.52, + "probability": 0.892 + }, + { + "start": 28729.16, + "end": 28732.72, + "probability": 0.967 + }, + { + "start": 28733.24, + "end": 28735.26, + "probability": 0.9564 + }, + { + "start": 28735.74, + "end": 28740.48, + "probability": 0.9653 + }, + { + "start": 28740.62, + "end": 28741.54, + "probability": 0.9958 + }, + { + "start": 28742.08, + "end": 28748.22, + "probability": 0.991 + }, + { + "start": 28748.7, + "end": 28749.47, + "probability": 0.9972 + }, + { + "start": 28750.66, + "end": 28752.7, + "probability": 0.9905 + }, + { + "start": 28753.04, + "end": 28755.46, + "probability": 0.9916 + }, + { + "start": 28756.16, + "end": 28757.24, + "probability": 0.8364 + }, + { + "start": 28757.86, + "end": 28758.62, + "probability": 0.8467 + }, + { + "start": 28760.02, + "end": 28761.22, + "probability": 0.8937 + }, + { + "start": 28761.76, + "end": 28763.22, + "probability": 0.998 + }, + { + "start": 28763.92, + "end": 28766.48, + "probability": 0.9204 + }, + { + "start": 28766.6, + "end": 28767.96, + "probability": 0.8023 + }, + { + "start": 28768.36, + "end": 28771.1, + "probability": 0.988 + }, + { + "start": 28771.3, + "end": 28772.74, + "probability": 0.6406 + }, + { + "start": 28773.18, + "end": 28773.98, + "probability": 0.6792 + }, + { + "start": 28774.1, + "end": 28776.44, + "probability": 0.7695 + }, + { + "start": 28776.44, + "end": 28776.92, + "probability": 0.8522 + }, + { + "start": 28789.46, + "end": 28790.44, + "probability": 0.5786 + }, + { + "start": 28790.48, + "end": 28794.24, + "probability": 0.989 + }, + { + "start": 28794.62, + "end": 28796.82, + "probability": 0.8619 + }, + { + "start": 28796.96, + "end": 28798.58, + "probability": 0.9948 + }, + { + "start": 28801.3, + "end": 28808.74, + "probability": 0.9756 + }, + { + "start": 28810.96, + "end": 28813.18, + "probability": 0.8452 + }, + { + "start": 28815.4, + "end": 28817.74, + "probability": 0.7997 + }, + { + "start": 28819.54, + "end": 28822.14, + "probability": 0.9928 + }, + { + "start": 28823.66, + "end": 28825.66, + "probability": 0.7904 + }, + { + "start": 28826.18, + "end": 28829.18, + "probability": 0.9587 + }, + { + "start": 28830.78, + "end": 28835.94, + "probability": 0.9797 + }, + { + "start": 28837.44, + "end": 28838.82, + "probability": 0.9872 + }, + { + "start": 28840.68, + "end": 28844.42, + "probability": 0.9382 + }, + { + "start": 28846.26, + "end": 28849.86, + "probability": 0.8641 + }, + { + "start": 28850.44, + "end": 28851.26, + "probability": 0.7415 + }, + { + "start": 28853.02, + "end": 28854.08, + "probability": 0.2504 + }, + { + "start": 28854.76, + "end": 28855.78, + "probability": 0.7283 + }, + { + "start": 28856.8, + "end": 28858.68, + "probability": 0.9919 + }, + { + "start": 28859.02, + "end": 28859.8, + "probability": 0.5492 + }, + { + "start": 28859.88, + "end": 28860.38, + "probability": 0.6039 + }, + { + "start": 28861.38, + "end": 28863.78, + "probability": 0.992 + }, + { + "start": 28864.8, + "end": 28871.0, + "probability": 0.9703 + }, + { + "start": 28871.6, + "end": 28872.94, + "probability": 0.7128 + }, + { + "start": 28874.4, + "end": 28875.36, + "probability": 0.9094 + }, + { + "start": 28876.16, + "end": 28877.46, + "probability": 0.4207 + }, + { + "start": 28877.6, + "end": 28878.58, + "probability": 0.9341 + }, + { + "start": 28879.52, + "end": 28884.88, + "probability": 0.9387 + }, + { + "start": 28887.52, + "end": 28890.22, + "probability": 0.9967 + }, + { + "start": 28891.46, + "end": 28895.82, + "probability": 0.9468 + }, + { + "start": 28896.02, + "end": 28897.67, + "probability": 0.9558 + }, + { + "start": 28898.84, + "end": 28900.54, + "probability": 0.9341 + }, + { + "start": 28901.2, + "end": 28902.14, + "probability": 0.6535 + }, + { + "start": 28903.12, + "end": 28907.72, + "probability": 0.9869 + }, + { + "start": 28908.02, + "end": 28913.06, + "probability": 0.9925 + }, + { + "start": 28914.3, + "end": 28915.35, + "probability": 0.2366 + }, + { + "start": 28917.86, + "end": 28921.36, + "probability": 0.7803 + }, + { + "start": 28924.5, + "end": 28925.72, + "probability": 0.8394 + }, + { + "start": 28926.04, + "end": 28928.28, + "probability": 0.9227 + }, + { + "start": 28928.52, + "end": 28928.74, + "probability": 0.7927 + }, + { + "start": 28928.82, + "end": 28929.5, + "probability": 0.7992 + }, + { + "start": 28930.7, + "end": 28932.72, + "probability": 0.9941 + }, + { + "start": 28935.14, + "end": 28937.58, + "probability": 0.9813 + }, + { + "start": 28937.84, + "end": 28939.08, + "probability": 0.9618 + }, + { + "start": 28939.3, + "end": 28941.28, + "probability": 0.9907 + }, + { + "start": 28942.9, + "end": 28945.2, + "probability": 0.998 + }, + { + "start": 28946.22, + "end": 28947.94, + "probability": 0.9393 + }, + { + "start": 28949.02, + "end": 28950.58, + "probability": 0.856 + }, + { + "start": 28950.94, + "end": 28954.92, + "probability": 0.9611 + }, + { + "start": 28955.7, + "end": 28957.1, + "probability": 0.9993 + }, + { + "start": 28958.6, + "end": 28959.7, + "probability": 0.8466 + }, + { + "start": 28960.94, + "end": 28962.24, + "probability": 0.8384 + }, + { + "start": 28963.04, + "end": 28967.0, + "probability": 0.9868 + }, + { + "start": 28968.46, + "end": 28970.92, + "probability": 0.9614 + }, + { + "start": 28972.32, + "end": 28977.18, + "probability": 0.9856 + }, + { + "start": 28977.22, + "end": 28978.4, + "probability": 0.936 + }, + { + "start": 28978.52, + "end": 28980.68, + "probability": 0.9849 + }, + { + "start": 28980.68, + "end": 28981.64, + "probability": 0.9696 + }, + { + "start": 28981.98, + "end": 28983.62, + "probability": 0.9523 + }, + { + "start": 28983.76, + "end": 28984.46, + "probability": 0.9749 + }, + { + "start": 28988.06, + "end": 28991.1, + "probability": 0.7655 + }, + { + "start": 28991.98, + "end": 28993.98, + "probability": 0.9379 + }, + { + "start": 28994.62, + "end": 28995.72, + "probability": 0.917 + }, + { + "start": 28996.56, + "end": 28997.66, + "probability": 0.7796 + }, + { + "start": 28998.42, + "end": 29002.2, + "probability": 0.9249 + }, + { + "start": 29002.62, + "end": 29003.48, + "probability": 0.9187 + }, + { + "start": 29003.64, + "end": 29004.64, + "probability": 0.6401 + }, + { + "start": 29005.5, + "end": 29009.46, + "probability": 0.995 + }, + { + "start": 29010.4, + "end": 29013.6, + "probability": 0.9956 + }, + { + "start": 29014.3, + "end": 29017.16, + "probability": 0.8726 + }, + { + "start": 29018.04, + "end": 29019.3, + "probability": 0.9364 + }, + { + "start": 29021.04, + "end": 29026.84, + "probability": 0.9407 + }, + { + "start": 29027.6, + "end": 29027.6, + "probability": 0.0347 + }, + { + "start": 29027.6, + "end": 29028.82, + "probability": 0.8745 + }, + { + "start": 29029.96, + "end": 29033.48, + "probability": 0.9865 + }, + { + "start": 29034.08, + "end": 29035.9, + "probability": 0.8181 + }, + { + "start": 29036.82, + "end": 29038.0, + "probability": 0.2489 + }, + { + "start": 29038.14, + "end": 29039.29, + "probability": 0.9893 + }, + { + "start": 29039.98, + "end": 29041.72, + "probability": 0.9762 + }, + { + "start": 29042.28, + "end": 29044.66, + "probability": 0.9935 + }, + { + "start": 29045.28, + "end": 29047.42, + "probability": 0.8258 + }, + { + "start": 29047.48, + "end": 29049.64, + "probability": 0.8903 + }, + { + "start": 29049.68, + "end": 29050.98, + "probability": 0.969 + }, + { + "start": 29051.3, + "end": 29055.5, + "probability": 0.9823 + }, + { + "start": 29055.96, + "end": 29056.42, + "probability": 0.5945 + }, + { + "start": 29057.12, + "end": 29058.42, + "probability": 0.7013 + }, + { + "start": 29058.52, + "end": 29060.12, + "probability": 0.7407 + }, + { + "start": 29061.65, + "end": 29065.26, + "probability": 0.7233 + }, + { + "start": 29065.84, + "end": 29066.18, + "probability": 0.1664 + }, + { + "start": 29067.12, + "end": 29067.84, + "probability": 0.9185 + }, + { + "start": 29067.94, + "end": 29069.0, + "probability": 0.7524 + }, + { + "start": 29069.12, + "end": 29073.0, + "probability": 0.896 + }, + { + "start": 29073.0, + "end": 29076.32, + "probability": 0.5228 + }, + { + "start": 29077.0, + "end": 29080.24, + "probability": 0.4768 + }, + { + "start": 29081.2, + "end": 29081.98, + "probability": 0.7382 + }, + { + "start": 29083.02, + "end": 29085.44, + "probability": 0.2501 + }, + { + "start": 29087.62, + "end": 29088.96, + "probability": 0.0422 + }, + { + "start": 29089.86, + "end": 29090.92, + "probability": 0.1895 + }, + { + "start": 29090.92, + "end": 29094.34, + "probability": 0.0299 + }, + { + "start": 29097.9, + "end": 29098.22, + "probability": 0.0933 + }, + { + "start": 29098.22, + "end": 29100.08, + "probability": 0.5703 + }, + { + "start": 29101.22, + "end": 29103.82, + "probability": 0.7012 + }, + { + "start": 29103.92, + "end": 29105.44, + "probability": 0.7887 + }, + { + "start": 29106.34, + "end": 29107.62, + "probability": 0.635 + }, + { + "start": 29111.16, + "end": 29112.7, + "probability": 0.4469 + }, + { + "start": 29113.88, + "end": 29116.34, + "probability": 0.5395 + }, + { + "start": 29116.56, + "end": 29119.96, + "probability": 0.875 + }, + { + "start": 29119.96, + "end": 29122.48, + "probability": 0.1714 + }, + { + "start": 29123.14, + "end": 29124.64, + "probability": 0.3334 + }, + { + "start": 29124.78, + "end": 29128.26, + "probability": 0.9308 + }, + { + "start": 29128.26, + "end": 29131.32, + "probability": 0.9934 + }, + { + "start": 29133.44, + "end": 29134.04, + "probability": 0.5787 + }, + { + "start": 29134.04, + "end": 29135.94, + "probability": 0.7758 + }, + { + "start": 29136.14, + "end": 29138.2, + "probability": 0.6849 + }, + { + "start": 29138.82, + "end": 29142.07, + "probability": 0.1071 + }, + { + "start": 29143.14, + "end": 29144.12, + "probability": 0.6838 + }, + { + "start": 29145.66, + "end": 29148.94, + "probability": 0.9917 + }, + { + "start": 29148.94, + "end": 29151.94, + "probability": 0.998 + }, + { + "start": 29158.18, + "end": 29159.64, + "probability": 0.6431 + }, + { + "start": 29159.76, + "end": 29160.84, + "probability": 0.6409 + }, + { + "start": 29161.16, + "end": 29162.0, + "probability": 0.895 + }, + { + "start": 29162.06, + "end": 29166.86, + "probability": 0.9754 + }, + { + "start": 29166.86, + "end": 29170.48, + "probability": 0.4163 + }, + { + "start": 29170.58, + "end": 29176.62, + "probability": 0.9263 + }, + { + "start": 29176.62, + "end": 29185.78, + "probability": 0.9903 + }, + { + "start": 29186.46, + "end": 29190.1, + "probability": 0.9847 + }, + { + "start": 29191.42, + "end": 29195.02, + "probability": 0.9977 + }, + { + "start": 29195.02, + "end": 29198.94, + "probability": 0.996 + }, + { + "start": 29199.02, + "end": 29200.36, + "probability": 0.88 + }, + { + "start": 29201.04, + "end": 29203.23, + "probability": 0.9971 + }, + { + "start": 29204.04, + "end": 29206.8, + "probability": 0.9938 + }, + { + "start": 29206.92, + "end": 29210.3, + "probability": 0.9282 + }, + { + "start": 29210.86, + "end": 29213.76, + "probability": 0.929 + }, + { + "start": 29214.22, + "end": 29216.5, + "probability": 0.9849 + }, + { + "start": 29216.5, + "end": 29219.36, + "probability": 0.9919 + }, + { + "start": 29220.28, + "end": 29221.42, + "probability": 0.768 + }, + { + "start": 29222.54, + "end": 29223.4, + "probability": 0.9138 + }, + { + "start": 29223.7, + "end": 29224.04, + "probability": 0.9439 + }, + { + "start": 29226.23, + "end": 29228.52, + "probability": 0.9067 + }, + { + "start": 29230.54, + "end": 29232.08, + "probability": 0.9351 + }, + { + "start": 29233.36, + "end": 29233.66, + "probability": 0.5948 + }, + { + "start": 29233.7, + "end": 29234.6, + "probability": 0.506 + }, + { + "start": 29234.66, + "end": 29238.88, + "probability": 0.9898 + }, + { + "start": 29239.28, + "end": 29240.46, + "probability": 0.9098 + }, + { + "start": 29240.7, + "end": 29243.0, + "probability": 0.9954 + }, + { + "start": 29243.04, + "end": 29243.06, + "probability": 0.2662 + }, + { + "start": 29243.08, + "end": 29244.54, + "probability": 0.6096 + }, + { + "start": 29244.64, + "end": 29245.99, + "probability": 0.8874 + }, + { + "start": 29250.74, + "end": 29250.74, + "probability": 0.4017 + }, + { + "start": 29250.74, + "end": 29252.9, + "probability": 0.8579 + }, + { + "start": 29253.12, + "end": 29254.56, + "probability": 0.9833 + }, + { + "start": 29255.22, + "end": 29258.1, + "probability": 0.9922 + }, + { + "start": 29258.1, + "end": 29262.14, + "probability": 0.7983 + }, + { + "start": 29262.54, + "end": 29264.88, + "probability": 0.9944 + }, + { + "start": 29265.54, + "end": 29268.94, + "probability": 0.9642 + }, + { + "start": 29269.28, + "end": 29272.0, + "probability": 0.8648 + }, + { + "start": 29272.0, + "end": 29274.68, + "probability": 0.9952 + }, + { + "start": 29276.14, + "end": 29277.94, + "probability": 0.9858 + }, + { + "start": 29278.2, + "end": 29280.6, + "probability": 0.5786 + }, + { + "start": 29280.94, + "end": 29282.78, + "probability": 0.9928 + }, + { + "start": 29283.32, + "end": 29286.86, + "probability": 0.9804 + }, + { + "start": 29287.22, + "end": 29288.9, + "probability": 0.9061 + }, + { + "start": 29288.98, + "end": 29290.76, + "probability": 0.9337 + }, + { + "start": 29291.44, + "end": 29294.96, + "probability": 0.9922 + }, + { + "start": 29295.5, + "end": 29299.26, + "probability": 0.9961 + }, + { + "start": 29299.74, + "end": 29301.98, + "probability": 0.9905 + }, + { + "start": 29301.98, + "end": 29305.34, + "probability": 0.7619 + }, + { + "start": 29305.48, + "end": 29306.0, + "probability": 0.6062 + }, + { + "start": 29306.1, + "end": 29308.56, + "probability": 0.9771 + }, + { + "start": 29309.16, + "end": 29312.22, + "probability": 0.9972 + }, + { + "start": 29312.52, + "end": 29315.56, + "probability": 0.9851 + }, + { + "start": 29315.74, + "end": 29315.94, + "probability": 0.6452 + }, + { + "start": 29316.0, + "end": 29322.44, + "probability": 0.8676 + }, + { + "start": 29322.54, + "end": 29322.9, + "probability": 0.7936 + }, + { + "start": 29323.4, + "end": 29324.2, + "probability": 0.5872 + }, + { + "start": 29324.28, + "end": 29326.04, + "probability": 0.7113 + }, + { + "start": 29326.92, + "end": 29327.94, + "probability": 0.3757 + }, + { + "start": 29327.98, + "end": 29330.1, + "probability": 0.7457 + }, + { + "start": 29330.26, + "end": 29332.12, + "probability": 0.6353 + }, + { + "start": 29332.7, + "end": 29333.2, + "probability": 0.8383 + }, + { + "start": 29352.16, + "end": 29353.24, + "probability": 0.7527 + }, + { + "start": 29354.62, + "end": 29356.96, + "probability": 0.7392 + }, + { + "start": 29357.58, + "end": 29358.58, + "probability": 0.9546 + }, + { + "start": 29359.46, + "end": 29362.26, + "probability": 0.9916 + }, + { + "start": 29362.26, + "end": 29365.74, + "probability": 0.9974 + }, + { + "start": 29366.84, + "end": 29371.26, + "probability": 0.977 + }, + { + "start": 29371.78, + "end": 29375.56, + "probability": 0.9909 + }, + { + "start": 29376.64, + "end": 29379.0, + "probability": 0.991 + }, + { + "start": 29380.16, + "end": 29381.34, + "probability": 0.9812 + }, + { + "start": 29382.1, + "end": 29384.26, + "probability": 0.9412 + }, + { + "start": 29385.86, + "end": 29388.04, + "probability": 0.9954 + }, + { + "start": 29388.36, + "end": 29390.9, + "probability": 0.9082 + }, + { + "start": 29391.64, + "end": 29394.94, + "probability": 0.979 + }, + { + "start": 29395.14, + "end": 29399.88, + "probability": 0.9972 + }, + { + "start": 29400.88, + "end": 29407.46, + "probability": 0.9724 + }, + { + "start": 29408.18, + "end": 29409.12, + "probability": 0.8677 + }, + { + "start": 29409.9, + "end": 29411.58, + "probability": 0.7795 + }, + { + "start": 29412.32, + "end": 29414.48, + "probability": 0.9722 + }, + { + "start": 29415.46, + "end": 29420.82, + "probability": 0.9022 + }, + { + "start": 29421.86, + "end": 29423.86, + "probability": 0.924 + }, + { + "start": 29425.4, + "end": 29429.1, + "probability": 0.9604 + }, + { + "start": 29430.28, + "end": 29432.34, + "probability": 0.9468 + }, + { + "start": 29432.72, + "end": 29433.92, + "probability": 0.9785 + }, + { + "start": 29434.24, + "end": 29435.18, + "probability": 0.9708 + }, + { + "start": 29435.62, + "end": 29436.84, + "probability": 0.9098 + }, + { + "start": 29437.8, + "end": 29440.62, + "probability": 0.9487 + }, + { + "start": 29441.54, + "end": 29445.16, + "probability": 0.9193 + }, + { + "start": 29446.44, + "end": 29448.32, + "probability": 0.7977 + }, + { + "start": 29448.92, + "end": 29450.42, + "probability": 0.9665 + }, + { + "start": 29451.7, + "end": 29452.94, + "probability": 0.9668 + }, + { + "start": 29453.26, + "end": 29454.8, + "probability": 0.9631 + }, + { + "start": 29454.88, + "end": 29455.36, + "probability": 0.8988 + }, + { + "start": 29455.48, + "end": 29455.82, + "probability": 0.7211 + }, + { + "start": 29455.9, + "end": 29456.38, + "probability": 0.8573 + }, + { + "start": 29456.84, + "end": 29457.32, + "probability": 0.999 + }, + { + "start": 29458.82, + "end": 29463.62, + "probability": 0.5001 + }, + { + "start": 29464.56, + "end": 29464.74, + "probability": 0.5822 + }, + { + "start": 29465.54, + "end": 29468.44, + "probability": 0.8598 + }, + { + "start": 29469.18, + "end": 29469.54, + "probability": 0.7537 + }, + { + "start": 29470.82, + "end": 29471.92, + "probability": 0.9043 + }, + { + "start": 29473.42, + "end": 29477.04, + "probability": 0.9465 + }, + { + "start": 29477.04, + "end": 29484.23, + "probability": 0.4915 + }, + { + "start": 29485.44, + "end": 29492.15, + "probability": 0.6043 + }, + { + "start": 29493.06, + "end": 29494.72, + "probability": 0.6242 + }, + { + "start": 29495.44, + "end": 29498.8, + "probability": 0.9618 + }, + { + "start": 29499.86, + "end": 29502.04, + "probability": 0.8706 + }, + { + "start": 29502.96, + "end": 29503.2, + "probability": 0.5593 + }, + { + "start": 29504.04, + "end": 29505.26, + "probability": 0.6375 + }, + { + "start": 29505.74, + "end": 29508.56, + "probability": 0.9781 + }, + { + "start": 29509.96, + "end": 29511.88, + "probability": 0.9586 + }, + { + "start": 29512.84, + "end": 29514.38, + "probability": 0.9897 + }, + { + "start": 29514.92, + "end": 29516.68, + "probability": 0.9974 + }, + { + "start": 29517.06, + "end": 29519.36, + "probability": 0.9665 + }, + { + "start": 29520.54, + "end": 29522.4, + "probability": 0.9042 + }, + { + "start": 29522.96, + "end": 29525.66, + "probability": 0.8229 + }, + { + "start": 29526.24, + "end": 29528.78, + "probability": 0.7048 + }, + { + "start": 29529.42, + "end": 29530.76, + "probability": 0.8849 + }, + { + "start": 29531.16, + "end": 29532.16, + "probability": 0.8861 + }, + { + "start": 29532.5, + "end": 29533.84, + "probability": 0.99 + }, + { + "start": 29534.52, + "end": 29538.54, + "probability": 0.9165 + }, + { + "start": 29538.94, + "end": 29539.2, + "probability": 0.6231 + }, + { + "start": 29539.86, + "end": 29542.18, + "probability": 0.7705 + }, + { + "start": 29542.38, + "end": 29543.78, + "probability": 0.6433 + }, + { + "start": 29544.58, + "end": 29547.06, + "probability": 0.8683 + }, + { + "start": 29547.8, + "end": 29548.54, + "probability": 0.9338 + }, + { + "start": 29549.58, + "end": 29551.0, + "probability": 0.796 + }, + { + "start": 29551.16, + "end": 29552.32, + "probability": 0.6977 + }, + { + "start": 29552.38, + "end": 29553.92, + "probability": 0.9665 + }, + { + "start": 29554.34, + "end": 29555.24, + "probability": 0.6669 + }, + { + "start": 29555.7, + "end": 29557.02, + "probability": 0.6943 + }, + { + "start": 29557.26, + "end": 29557.96, + "probability": 0.8041 + }, + { + "start": 29558.62, + "end": 29562.16, + "probability": 0.9753 + }, + { + "start": 29563.2, + "end": 29563.78, + "probability": 0.9694 + }, + { + "start": 29564.46, + "end": 29566.6, + "probability": 0.9899 + }, + { + "start": 29567.5, + "end": 29568.88, + "probability": 0.7908 + }, + { + "start": 29568.98, + "end": 29571.46, + "probability": 0.6839 + }, + { + "start": 29572.28, + "end": 29575.04, + "probability": 0.8356 + }, + { + "start": 29575.88, + "end": 29576.94, + "probability": 0.8304 + }, + { + "start": 29577.68, + "end": 29579.14, + "probability": 0.8498 + }, + { + "start": 29579.22, + "end": 29580.04, + "probability": 0.8788 + }, + { + "start": 29580.14, + "end": 29581.44, + "probability": 0.8753 + }, + { + "start": 29581.5, + "end": 29582.16, + "probability": 0.8082 + }, + { + "start": 29586.36, + "end": 29588.92, + "probability": 0.5721 + }, + { + "start": 29589.66, + "end": 29591.54, + "probability": 0.516 + }, + { + "start": 29592.14, + "end": 29593.7, + "probability": 0.6965 + }, + { + "start": 29593.8, + "end": 29594.64, + "probability": 0.9762 + }, + { + "start": 29595.04, + "end": 29595.94, + "probability": 0.7659 + }, + { + "start": 29596.0, + "end": 29596.5, + "probability": 0.7338 + }, + { + "start": 29601.34, + "end": 29604.3, + "probability": 0.8362 + }, + { + "start": 29605.08, + "end": 29608.66, + "probability": 0.2533 + }, + { + "start": 29609.18, + "end": 29612.94, + "probability": 0.6985 + }, + { + "start": 29621.24, + "end": 29623.94, + "probability": 0.8542 + }, + { + "start": 29625.42, + "end": 29626.58, + "probability": 0.5326 + }, + { + "start": 29626.68, + "end": 29627.1, + "probability": 0.4523 + }, + { + "start": 29627.3, + "end": 29628.6, + "probability": 0.515 + }, + { + "start": 29628.6, + "end": 29629.8, + "probability": 0.6523 + }, + { + "start": 29629.82, + "end": 29631.1, + "probability": 0.71 + }, + { + "start": 29632.28, + "end": 29633.38, + "probability": 0.6041 + }, + { + "start": 29636.34, + "end": 29637.08, + "probability": 0.6813 + }, + { + "start": 29646.5, + "end": 29647.64, + "probability": 0.8238 + }, + { + "start": 29647.96, + "end": 29650.44, + "probability": 0.6739 + }, + { + "start": 29650.64, + "end": 29651.26, + "probability": 0.3505 + }, + { + "start": 29653.26, + "end": 29654.9, + "probability": 0.4474 + }, + { + "start": 29655.7, + "end": 29659.04, + "probability": 0.5598 + }, + { + "start": 29659.78, + "end": 29663.38, + "probability": 0.7838 + }, + { + "start": 29664.7, + "end": 29667.8, + "probability": 0.6083 + }, + { + "start": 29668.5, + "end": 29670.08, + "probability": 0.5765 + }, + { + "start": 29672.02, + "end": 29674.48, + "probability": 0.4545 + }, + { + "start": 29674.6, + "end": 29674.88, + "probability": 0.184 + }, + { + "start": 29674.88, + "end": 29674.88, + "probability": 0.3851 + }, + { + "start": 29674.88, + "end": 29674.88, + "probability": 0.1785 + }, + { + "start": 29674.88, + "end": 29674.88, + "probability": 0.3237 + }, + { + "start": 29674.88, + "end": 29675.86, + "probability": 0.315 + }, + { + "start": 29680.14, + "end": 29682.94, + "probability": 0.3103 + }, + { + "start": 29686.44, + "end": 29689.96, + "probability": 0.3528 + }, + { + "start": 29690.9, + "end": 29693.42, + "probability": 0.3792 + }, + { + "start": 29746.54, + "end": 29747.4, + "probability": 0.023 + }, + { + "start": 29749.7, + "end": 29750.8, + "probability": 0.4581 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.0, + "end": 29759.0, + "probability": 0.0 + }, + { + "start": 29759.26, + "end": 29759.42, + "probability": 0.665 + }, + { + "start": 29762.46, + "end": 29764.18, + "probability": 0.0712 + }, + { + "start": 29766.82, + "end": 29769.22, + "probability": 0.3874 + }, + { + "start": 29794.18, + "end": 29796.21, + "probability": 0.0307 + }, + { + "start": 29796.34, + "end": 29799.46, + "probability": 0.3391 + }, + { + "start": 29800.04, + "end": 29800.96, + "probability": 0.1429 + }, + { + "start": 29801.02, + "end": 29802.62, + "probability": 0.0967 + }, + { + "start": 29802.74, + "end": 29803.34, + "probability": 0.0292 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.0, + "end": 29887.0, + "probability": 0.0 + }, + { + "start": 29887.14, + "end": 29889.46, + "probability": 0.1287 + }, + { + "start": 29890.86, + "end": 29892.54, + "probability": 0.3171 + }, + { + "start": 29892.54, + "end": 29894.6, + "probability": 0.4887 + }, + { + "start": 29897.24, + "end": 29902.74, + "probability": 0.91 + }, + { + "start": 29902.78, + "end": 29909.1, + "probability": 0.9187 + }, + { + "start": 29909.2, + "end": 29909.64, + "probability": 0.3209 + }, + { + "start": 29910.0, + "end": 29915.8, + "probability": 0.9857 + }, + { + "start": 29916.36, + "end": 29920.12, + "probability": 0.8723 + }, + { + "start": 29923.72, + "end": 29924.5, + "probability": 0.4193 + }, + { + "start": 29924.88, + "end": 29927.64, + "probability": 0.8577 + }, + { + "start": 29928.94, + "end": 29929.98, + "probability": 0.9067 + }, + { + "start": 29930.06, + "end": 29930.52, + "probability": 0.7915 + }, + { + "start": 29930.54, + "end": 29933.76, + "probability": 0.8712 + }, + { + "start": 29933.76, + "end": 29937.84, + "probability": 0.4772 + }, + { + "start": 29938.7, + "end": 29939.42, + "probability": 0.7748 + }, + { + "start": 29941.82, + "end": 29944.62, + "probability": 0.6848 + }, + { + "start": 29945.16, + "end": 29947.48, + "probability": 0.6891 + }, + { + "start": 29948.14, + "end": 29949.68, + "probability": 0.9689 + }, + { + "start": 29953.04, + "end": 29954.8, + "probability": 0.2525 + }, + { + "start": 29956.06, + "end": 29956.28, + "probability": 0.3272 + }, + { + "start": 29956.28, + "end": 29956.94, + "probability": 0.4985 + }, + { + "start": 29957.55, + "end": 29959.86, + "probability": 0.3493 + }, + { + "start": 29959.86, + "end": 29962.96, + "probability": 0.9187 + }, + { + "start": 29964.0, + "end": 29968.64, + "probability": 0.9894 + }, + { + "start": 29969.56, + "end": 29974.04, + "probability": 0.9873 + }, + { + "start": 29974.22, + "end": 29981.2, + "probability": 0.8021 + }, + { + "start": 29981.4, + "end": 29981.98, + "probability": 0.8669 + }, + { + "start": 29982.48, + "end": 29988.2, + "probability": 0.9781 + }, + { + "start": 29988.36, + "end": 29990.76, + "probability": 0.9877 + }, + { + "start": 29990.88, + "end": 29991.68, + "probability": 0.7344 + }, + { + "start": 29991.82, + "end": 29995.98, + "probability": 0.9723 + }, + { + "start": 29996.36, + "end": 29999.44, + "probability": 0.945 + }, + { + "start": 29999.64, + "end": 30003.02, + "probability": 0.9666 + }, + { + "start": 30003.02, + "end": 30006.46, + "probability": 0.9638 + }, + { + "start": 30006.52, + "end": 30010.5, + "probability": 0.8929 + }, + { + "start": 30011.38, + "end": 30013.0, + "probability": 0.9382 + }, + { + "start": 30013.36, + "end": 30015.82, + "probability": 0.9792 + }, + { + "start": 30016.16, + "end": 30017.46, + "probability": 0.6656 + }, + { + "start": 30017.54, + "end": 30020.78, + "probability": 0.7941 + }, + { + "start": 30021.64, + "end": 30024.52, + "probability": 0.6242 + }, + { + "start": 30024.84, + "end": 30029.06, + "probability": 0.7314 + }, + { + "start": 30030.12, + "end": 30033.6, + "probability": 0.398 + }, + { + "start": 30033.76, + "end": 30036.8, + "probability": 0.9443 + }, + { + "start": 30037.1, + "end": 30037.98, + "probability": 0.8481 + }, + { + "start": 30038.04, + "end": 30038.82, + "probability": 0.9718 + }, + { + "start": 30038.86, + "end": 30039.56, + "probability": 0.9738 + }, + { + "start": 30039.68, + "end": 30040.83, + "probability": 0.8438 + }, + { + "start": 30041.64, + "end": 30045.06, + "probability": 0.8754 + }, + { + "start": 30045.22, + "end": 30050.64, + "probability": 0.9221 + }, + { + "start": 30051.0, + "end": 30056.26, + "probability": 0.9645 + }, + { + "start": 30056.34, + "end": 30057.14, + "probability": 0.9878 + }, + { + "start": 30057.56, + "end": 30058.02, + "probability": 0.9165 + }, + { + "start": 30060.6, + "end": 30064.66, + "probability": 0.9897 + }, + { + "start": 30064.66, + "end": 30065.6, + "probability": 0.4304 + }, + { + "start": 30066.1, + "end": 30068.36, + "probability": 0.876 + }, + { + "start": 30068.7, + "end": 30070.32, + "probability": 0.9766 + }, + { + "start": 30070.44, + "end": 30071.28, + "probability": 0.9961 + }, + { + "start": 30071.5, + "end": 30075.95, + "probability": 0.924 + }, + { + "start": 30076.46, + "end": 30077.54, + "probability": 0.8062 + }, + { + "start": 30077.62, + "end": 30081.42, + "probability": 0.9561 + }, + { + "start": 30081.96, + "end": 30088.1, + "probability": 0.9915 + }, + { + "start": 30091.08, + "end": 30095.48, + "probability": 0.8057 + }, + { + "start": 30096.28, + "end": 30098.2, + "probability": 0.638 + }, + { + "start": 30098.88, + "end": 30099.74, + "probability": 0.9701 + }, + { + "start": 30099.84, + "end": 30102.68, + "probability": 0.7719 + }, + { + "start": 30102.72, + "end": 30107.46, + "probability": 0.995 + }, + { + "start": 30112.72, + "end": 30113.8, + "probability": 0.729 + }, + { + "start": 30114.34, + "end": 30114.74, + "probability": 0.8277 + }, + { + "start": 30116.16, + "end": 30121.14, + "probability": 0.9841 + }, + { + "start": 30121.32, + "end": 30122.68, + "probability": 0.5897 + }, + { + "start": 30123.2, + "end": 30125.66, + "probability": 0.9636 + }, + { + "start": 30126.08, + "end": 30127.06, + "probability": 0.7176 + }, + { + "start": 30127.7, + "end": 30130.32, + "probability": 0.7981 + }, + { + "start": 30130.94, + "end": 30134.12, + "probability": 0.9778 + }, + { + "start": 30134.68, + "end": 30135.3, + "probability": 0.5131 + }, + { + "start": 30135.76, + "end": 30137.38, + "probability": 0.9722 + }, + { + "start": 30137.38, + "end": 30138.35, + "probability": 0.6949 + }, + { + "start": 30138.42, + "end": 30139.62, + "probability": 0.7955 + }, + { + "start": 30139.88, + "end": 30140.7, + "probability": 0.9622 + }, + { + "start": 30140.82, + "end": 30143.68, + "probability": 0.6651 + }, + { + "start": 30143.9, + "end": 30148.54, + "probability": 0.9869 + }, + { + "start": 30148.7, + "end": 30154.8, + "probability": 0.9431 + }, + { + "start": 30156.04, + "end": 30158.8, + "probability": 0.9993 + }, + { + "start": 30158.9, + "end": 30160.02, + "probability": 0.9296 + }, + { + "start": 30160.14, + "end": 30161.08, + "probability": 0.6421 + }, + { + "start": 30161.86, + "end": 30166.76, + "probability": 0.8565 + }, + { + "start": 30167.2, + "end": 30169.94, + "probability": 0.9358 + }, + { + "start": 30169.98, + "end": 30170.42, + "probability": 0.831 + }, + { + "start": 30170.54, + "end": 30176.34, + "probability": 0.6658 + }, + { + "start": 30176.46, + "end": 30183.38, + "probability": 0.9987 + }, + { + "start": 30183.78, + "end": 30184.48, + "probability": 0.7884 + }, + { + "start": 30184.52, + "end": 30185.01, + "probability": 0.5315 + }, + { + "start": 30185.46, + "end": 30186.45, + "probability": 0.4588 + }, + { + "start": 30186.96, + "end": 30190.56, + "probability": 0.881 + }, + { + "start": 30190.62, + "end": 30196.32, + "probability": 0.7162 + }, + { + "start": 30196.72, + "end": 30197.12, + "probability": 0.682 + }, + { + "start": 30197.46, + "end": 30198.56, + "probability": 0.9549 + }, + { + "start": 30200.28, + "end": 30201.3, + "probability": 0.5232 + }, + { + "start": 30201.66, + "end": 30205.68, + "probability": 0.98 + }, + { + "start": 30206.11, + "end": 30207.9, + "probability": 0.9854 + }, + { + "start": 30207.96, + "end": 30210.16, + "probability": 0.9452 + }, + { + "start": 30210.56, + "end": 30212.34, + "probability": 0.9771 + }, + { + "start": 30212.74, + "end": 30214.17, + "probability": 0.9748 + }, + { + "start": 30214.46, + "end": 30217.2, + "probability": 0.9756 + }, + { + "start": 30217.38, + "end": 30218.71, + "probability": 0.9041 + }, + { + "start": 30219.48, + "end": 30220.19, + "probability": 0.9909 + }, + { + "start": 30220.64, + "end": 30221.15, + "probability": 0.9697 + }, + { + "start": 30221.62, + "end": 30222.82, + "probability": 0.6193 + }, + { + "start": 30222.96, + "end": 30224.42, + "probability": 0.5708 + }, + { + "start": 30224.46, + "end": 30224.92, + "probability": 0.8567 + }, + { + "start": 30225.0, + "end": 30226.9, + "probability": 0.3913 + }, + { + "start": 30227.52, + "end": 30230.29, + "probability": 0.6976 + }, + { + "start": 30230.74, + "end": 30232.12, + "probability": 0.9876 + }, + { + "start": 30232.32, + "end": 30235.04, + "probability": 0.9423 + }, + { + "start": 30235.52, + "end": 30238.44, + "probability": 0.9951 + }, + { + "start": 30238.7, + "end": 30239.14, + "probability": 0.9475 + }, + { + "start": 30239.64, + "end": 30242.2, + "probability": 0.9932 + }, + { + "start": 30242.8, + "end": 30244.58, + "probability": 0.7356 + }, + { + "start": 30244.66, + "end": 30247.38, + "probability": 0.8555 + }, + { + "start": 30247.84, + "end": 30250.88, + "probability": 0.9904 + }, + { + "start": 30251.0, + "end": 30254.34, + "probability": 0.7062 + }, + { + "start": 30254.34, + "end": 30255.02, + "probability": 0.2294 + }, + { + "start": 30255.24, + "end": 30256.12, + "probability": 0.9316 + }, + { + "start": 30256.16, + "end": 30256.82, + "probability": 0.5982 + }, + { + "start": 30256.92, + "end": 30261.66, + "probability": 0.9947 + }, + { + "start": 30262.76, + "end": 30266.62, + "probability": 0.3378 + }, + { + "start": 30266.78, + "end": 30268.4, + "probability": 0.9551 + }, + { + "start": 30268.4, + "end": 30271.54, + "probability": 0.8947 + }, + { + "start": 30271.68, + "end": 30276.7, + "probability": 0.9548 + }, + { + "start": 30276.94, + "end": 30278.4, + "probability": 0.7989 + }, + { + "start": 30278.48, + "end": 30279.9, + "probability": 0.9521 + }, + { + "start": 30280.16, + "end": 30283.98, + "probability": 0.8523 + }, + { + "start": 30284.32, + "end": 30289.58, + "probability": 0.9 + }, + { + "start": 30289.64, + "end": 30290.44, + "probability": 0.8977 + }, + { + "start": 30290.54, + "end": 30290.86, + "probability": 0.4457 + }, + { + "start": 30291.06, + "end": 30291.62, + "probability": 0.5976 + }, + { + "start": 30291.68, + "end": 30292.74, + "probability": 0.4412 + }, + { + "start": 30293.18, + "end": 30294.74, + "probability": 0.1972 + }, + { + "start": 30294.82, + "end": 30295.5, + "probability": 0.6361 + }, + { + "start": 30295.62, + "end": 30297.56, + "probability": 0.9902 + }, + { + "start": 30298.28, + "end": 30300.38, + "probability": 0.6719 + }, + { + "start": 30300.4, + "end": 30302.2, + "probability": 0.9954 + }, + { + "start": 30303.04, + "end": 30306.82, + "probability": 0.9915 + }, + { + "start": 30307.02, + "end": 30309.78, + "probability": 0.9901 + }, + { + "start": 30310.2, + "end": 30310.56, + "probability": 0.281 + }, + { + "start": 30310.62, + "end": 30312.18, + "probability": 0.6867 + }, + { + "start": 30312.34, + "end": 30317.22, + "probability": 0.9526 + }, + { + "start": 30317.88, + "end": 30322.26, + "probability": 0.9234 + }, + { + "start": 30322.78, + "end": 30323.78, + "probability": 0.9345 + }, + { + "start": 30324.68, + "end": 30329.19, + "probability": 0.7073 + }, + { + "start": 30329.72, + "end": 30334.98, + "probability": 0.9917 + }, + { + "start": 30334.98, + "end": 30338.26, + "probability": 0.7463 + }, + { + "start": 30339.58, + "end": 30340.76, + "probability": 0.8696 + }, + { + "start": 30340.86, + "end": 30342.96, + "probability": 0.7795 + }, + { + "start": 30343.14, + "end": 30343.36, + "probability": 0.6156 + }, + { + "start": 30343.84, + "end": 30346.1, + "probability": 0.9306 + }, + { + "start": 30346.3, + "end": 30347.48, + "probability": 0.8838 + }, + { + "start": 30347.68, + "end": 30349.0, + "probability": 0.4581 + }, + { + "start": 30349.1, + "end": 30351.72, + "probability": 0.4842 + }, + { + "start": 30351.72, + "end": 30353.69, + "probability": 0.3914 + }, + { + "start": 30354.66, + "end": 30355.4, + "probability": 0.8318 + }, + { + "start": 30355.5, + "end": 30359.1, + "probability": 0.4851 + }, + { + "start": 30359.68, + "end": 30362.3, + "probability": 0.5211 + }, + { + "start": 30362.76, + "end": 30363.4, + "probability": 0.4927 + }, + { + "start": 30363.44, + "end": 30365.48, + "probability": 0.9822 + }, + { + "start": 30365.54, + "end": 30366.66, + "probability": 0.9825 + }, + { + "start": 30367.22, + "end": 30372.72, + "probability": 0.7811 + }, + { + "start": 30372.82, + "end": 30374.38, + "probability": 0.5496 + }, + { + "start": 30374.94, + "end": 30377.22, + "probability": 0.9595 + }, + { + "start": 30377.28, + "end": 30378.44, + "probability": 0.8053 + }, + { + "start": 30378.68, + "end": 30380.84, + "probability": 0.8283 + }, + { + "start": 30381.06, + "end": 30383.28, + "probability": 0.8139 + }, + { + "start": 30384.89, + "end": 30389.9, + "probability": 0.9691 + }, + { + "start": 30390.88, + "end": 30392.3, + "probability": 0.8706 + }, + { + "start": 30394.6, + "end": 30402.48, + "probability": 0.9139 + }, + { + "start": 30405.14, + "end": 30405.14, + "probability": 0.239 + }, + { + "start": 30405.14, + "end": 30406.52, + "probability": 0.9268 + }, + { + "start": 30411.54, + "end": 30412.46, + "probability": 0.6064 + }, + { + "start": 30412.56, + "end": 30414.18, + "probability": 0.7851 + }, + { + "start": 30414.88, + "end": 30419.8, + "probability": 0.9827 + }, + { + "start": 30419.98, + "end": 30422.52, + "probability": 0.9247 + }, + { + "start": 30422.58, + "end": 30427.9, + "probability": 0.9662 + }, + { + "start": 30428.38, + "end": 30432.14, + "probability": 0.9535 + }, + { + "start": 30433.04, + "end": 30435.82, + "probability": 0.9867 + }, + { + "start": 30435.96, + "end": 30437.12, + "probability": 0.9373 + }, + { + "start": 30437.72, + "end": 30438.12, + "probability": 0.4086 + }, + { + "start": 30438.78, + "end": 30440.62, + "probability": 0.565 + }, + { + "start": 30440.76, + "end": 30443.1, + "probability": 0.8775 + }, + { + "start": 30443.6, + "end": 30446.36, + "probability": 0.8906 + }, + { + "start": 30446.4, + "end": 30449.98, + "probability": 0.9763 + }, + { + "start": 30450.58, + "end": 30453.28, + "probability": 0.8557 + }, + { + "start": 30454.26, + "end": 30455.9, + "probability": 0.446 + }, + { + "start": 30456.12, + "end": 30456.62, + "probability": 0.532 + }, + { + "start": 30456.68, + "end": 30459.72, + "probability": 0.9512 + }, + { + "start": 30459.72, + "end": 30463.24, + "probability": 0.9976 + }, + { + "start": 30463.8, + "end": 30465.46, + "probability": 0.9875 + }, + { + "start": 30465.98, + "end": 30469.66, + "probability": 0.9845 + }, + { + "start": 30470.52, + "end": 30473.26, + "probability": 0.9961 + }, + { + "start": 30473.94, + "end": 30477.24, + "probability": 0.9953 + }, + { + "start": 30477.76, + "end": 30478.48, + "probability": 0.7601 + }, + { + "start": 30478.98, + "end": 30479.44, + "probability": 0.827 + }, + { + "start": 30479.78, + "end": 30482.82, + "probability": 0.9878 + }, + { + "start": 30484.0, + "end": 30486.33, + "probability": 0.9954 + }, + { + "start": 30486.66, + "end": 30490.8, + "probability": 0.9917 + }, + { + "start": 30490.8, + "end": 30494.58, + "probability": 0.9774 + }, + { + "start": 30495.2, + "end": 30496.22, + "probability": 0.8441 + }, + { + "start": 30496.54, + "end": 30497.64, + "probability": 0.9779 + }, + { + "start": 30497.86, + "end": 30502.2, + "probability": 0.9971 + }, + { + "start": 30502.94, + "end": 30507.04, + "probability": 0.9971 + }, + { + "start": 30507.04, + "end": 30510.0, + "probability": 0.9987 + }, + { + "start": 30510.58, + "end": 30516.36, + "probability": 0.9966 + }, + { + "start": 30516.8, + "end": 30517.5, + "probability": 0.833 + }, + { + "start": 30518.06, + "end": 30519.5, + "probability": 0.991 + }, + { + "start": 30519.6, + "end": 30520.37, + "probability": 0.9851 + }, + { + "start": 30520.42, + "end": 30524.16, + "probability": 0.9821 + }, + { + "start": 30524.54, + "end": 30529.36, + "probability": 0.9946 + }, + { + "start": 30529.46, + "end": 30531.72, + "probability": 0.9988 + }, + { + "start": 30532.24, + "end": 30535.34, + "probability": 0.9647 + }, + { + "start": 30535.34, + "end": 30539.54, + "probability": 0.9352 + }, + { + "start": 30539.54, + "end": 30543.18, + "probability": 0.9947 + }, + { + "start": 30543.7, + "end": 30546.06, + "probability": 0.9749 + }, + { + "start": 30546.58, + "end": 30547.62, + "probability": 0.803 + }, + { + "start": 30548.2, + "end": 30549.16, + "probability": 0.7842 + }, + { + "start": 30549.72, + "end": 30552.26, + "probability": 0.9886 + }, + { + "start": 30552.88, + "end": 30556.46, + "probability": 0.987 + }, + { + "start": 30557.64, + "end": 30558.8, + "probability": 0.9893 + }, + { + "start": 30559.38, + "end": 30560.42, + "probability": 0.7784 + }, + { + "start": 30560.66, + "end": 30562.72, + "probability": 0.7066 + }, + { + "start": 30566.2, + "end": 30567.6, + "probability": 0.6953 + }, + { + "start": 30584.19, + "end": 30585.7, + "probability": 0.8992 + }, + { + "start": 30587.4, + "end": 30588.46, + "probability": 0.7028 + }, + { + "start": 30589.3, + "end": 30590.74, + "probability": 0.6425 + }, + { + "start": 30592.06, + "end": 30595.9, + "probability": 0.9918 + }, + { + "start": 30596.82, + "end": 30597.34, + "probability": 0.9771 + }, + { + "start": 30598.0, + "end": 30599.82, + "probability": 0.9506 + }, + { + "start": 30600.76, + "end": 30602.58, + "probability": 0.8965 + }, + { + "start": 30603.82, + "end": 30604.56, + "probability": 0.9673 + }, + { + "start": 30605.36, + "end": 30609.06, + "probability": 0.9913 + }, + { + "start": 30609.42, + "end": 30610.38, + "probability": 0.8318 + }, + { + "start": 30611.26, + "end": 30614.76, + "probability": 0.9897 + }, + { + "start": 30615.8, + "end": 30617.72, + "probability": 0.9985 + }, + { + "start": 30619.14, + "end": 30621.12, + "probability": 0.998 + }, + { + "start": 30622.68, + "end": 30624.94, + "probability": 0.6404 + }, + { + "start": 30625.8, + "end": 30627.04, + "probability": 0.9609 + }, + { + "start": 30628.08, + "end": 30632.16, + "probability": 0.7507 + }, + { + "start": 30632.62, + "end": 30635.76, + "probability": 0.9472 + }, + { + "start": 30636.82, + "end": 30637.32, + "probability": 0.8224 + }, + { + "start": 30638.94, + "end": 30639.84, + "probability": 0.8974 + }, + { + "start": 30639.9, + "end": 30640.96, + "probability": 0.8188 + }, + { + "start": 30641.1, + "end": 30641.7, + "probability": 0.7317 + }, + { + "start": 30641.74, + "end": 30644.62, + "probability": 0.9873 + }, + { + "start": 30645.48, + "end": 30648.22, + "probability": 0.9725 + }, + { + "start": 30649.32, + "end": 30653.02, + "probability": 0.9688 + }, + { + "start": 30653.62, + "end": 30655.06, + "probability": 0.9795 + }, + { + "start": 30656.14, + "end": 30657.58, + "probability": 0.7407 + }, + { + "start": 30658.44, + "end": 30661.96, + "probability": 0.9907 + }, + { + "start": 30662.76, + "end": 30664.5, + "probability": 0.902 + }, + { + "start": 30665.64, + "end": 30670.07, + "probability": 0.9863 + }, + { + "start": 30670.9, + "end": 30673.0, + "probability": 0.9302 + }, + { + "start": 30673.58, + "end": 30675.16, + "probability": 0.7413 + }, + { + "start": 30676.12, + "end": 30678.12, + "probability": 0.995 + }, + { + "start": 30678.94, + "end": 30681.84, + "probability": 0.9213 + }, + { + "start": 30682.74, + "end": 30684.02, + "probability": 0.9978 + }, + { + "start": 30685.38, + "end": 30687.48, + "probability": 0.9919 + }, + { + "start": 30687.94, + "end": 30690.88, + "probability": 0.9846 + }, + { + "start": 30692.04, + "end": 30694.86, + "probability": 0.9888 + }, + { + "start": 30695.78, + "end": 30700.04, + "probability": 0.9925 + }, + { + "start": 30701.14, + "end": 30703.04, + "probability": 0.8664 + }, + { + "start": 30703.76, + "end": 30707.86, + "probability": 0.9952 + }, + { + "start": 30707.94, + "end": 30708.22, + "probability": 0.6453 + }, + { + "start": 30708.94, + "end": 30709.8, + "probability": 0.9697 + }, + { + "start": 30710.74, + "end": 30711.36, + "probability": 0.8389 + }, + { + "start": 30711.48, + "end": 30715.5, + "probability": 0.9664 + }, + { + "start": 30715.82, + "end": 30718.72, + "probability": 0.9915 + }, + { + "start": 30719.7, + "end": 30722.5, + "probability": 0.9817 + }, + { + "start": 30723.86, + "end": 30724.1, + "probability": 0.5398 + }, + { + "start": 30724.42, + "end": 30724.94, + "probability": 0.5722 + }, + { + "start": 30724.96, + "end": 30727.24, + "probability": 0.9116 + }, + { + "start": 30728.02, + "end": 30732.8, + "probability": 0.9937 + }, + { + "start": 30732.96, + "end": 30734.49, + "probability": 0.8232 + }, + { + "start": 30735.32, + "end": 30739.1, + "probability": 0.9827 + }, + { + "start": 30739.1, + "end": 30742.18, + "probability": 0.9933 + }, + { + "start": 30742.96, + "end": 30745.0, + "probability": 0.9895 + }, + { + "start": 30745.48, + "end": 30746.56, + "probability": 0.6816 + }, + { + "start": 30747.1, + "end": 30750.04, + "probability": 0.3106 + }, + { + "start": 30750.12, + "end": 30752.14, + "probability": 0.9922 + }, + { + "start": 30753.16, + "end": 30755.26, + "probability": 0.9792 + }, + { + "start": 30755.36, + "end": 30756.1, + "probability": 0.9629 + }, + { + "start": 30756.22, + "end": 30756.8, + "probability": 0.956 + }, + { + "start": 30757.64, + "end": 30760.56, + "probability": 0.9933 + }, + { + "start": 30761.12, + "end": 30762.74, + "probability": 0.7646 + }, + { + "start": 30763.28, + "end": 30764.02, + "probability": 0.6249 + }, + { + "start": 30764.84, + "end": 30767.66, + "probability": 0.9804 + }, + { + "start": 30768.48, + "end": 30770.46, + "probability": 0.9928 + }, + { + "start": 30770.5, + "end": 30773.42, + "probability": 0.8667 + }, + { + "start": 30773.44, + "end": 30775.26, + "probability": 0.9324 + }, + { + "start": 30775.36, + "end": 30775.56, + "probability": 0.4857 + }, + { + "start": 30775.56, + "end": 30776.38, + "probability": 0.4866 + }, + { + "start": 30776.4, + "end": 30777.48, + "probability": 0.7701 + }, + { + "start": 30793.38, + "end": 30795.54, + "probability": 0.7583 + }, + { + "start": 30795.94, + "end": 30797.5, + "probability": 0.7853 + }, + { + "start": 30798.25, + "end": 30801.32, + "probability": 0.6558 + }, + { + "start": 30803.92, + "end": 30807.84, + "probability": 0.9668 + }, + { + "start": 30809.86, + "end": 30810.38, + "probability": 0.9922 + }, + { + "start": 30811.24, + "end": 30814.7, + "probability": 0.9995 + }, + { + "start": 30816.54, + "end": 30822.26, + "probability": 0.9956 + }, + { + "start": 30826.92, + "end": 30830.48, + "probability": 0.9956 + }, + { + "start": 30830.94, + "end": 30833.24, + "probability": 0.8031 + }, + { + "start": 30834.86, + "end": 30837.92, + "probability": 0.9147 + }, + { + "start": 30838.22, + "end": 30839.24, + "probability": 0.9497 + }, + { + "start": 30840.78, + "end": 30844.24, + "probability": 0.9712 + }, + { + "start": 30846.34, + "end": 30850.54, + "probability": 0.9967 + }, + { + "start": 30851.18, + "end": 30852.46, + "probability": 0.9714 + }, + { + "start": 30853.2, + "end": 30854.66, + "probability": 0.7129 + }, + { + "start": 30854.66, + "end": 30858.51, + "probability": 0.9912 + }, + { + "start": 30860.14, + "end": 30864.42, + "probability": 0.9938 + }, + { + "start": 30864.42, + "end": 30866.76, + "probability": 0.7759 + }, + { + "start": 30868.18, + "end": 30871.06, + "probability": 0.9757 + }, + { + "start": 30871.12, + "end": 30872.02, + "probability": 0.6998 + }, + { + "start": 30872.32, + "end": 30875.74, + "probability": 0.9976 + }, + { + "start": 30876.2, + "end": 30878.52, + "probability": 0.8313 + }, + { + "start": 30879.36, + "end": 30879.84, + "probability": 0.2435 + }, + { + "start": 30879.84, + "end": 30880.29, + "probability": 0.5567 + }, + { + "start": 30881.66, + "end": 30883.08, + "probability": 0.668 + }, + { + "start": 30883.26, + "end": 30883.66, + "probability": 0.3995 + }, + { + "start": 30883.96, + "end": 30885.66, + "probability": 0.0142 + }, + { + "start": 30886.2, + "end": 30887.14, + "probability": 0.0365 + }, + { + "start": 30888.97, + "end": 30889.44, + "probability": 0.2556 + }, + { + "start": 30889.44, + "end": 30890.16, + "probability": 0.1081 + }, + { + "start": 30890.16, + "end": 30892.44, + "probability": 0.1228 + }, + { + "start": 30892.78, + "end": 30895.56, + "probability": 0.9622 + }, + { + "start": 30896.28, + "end": 30901.28, + "probability": 0.9938 + }, + { + "start": 30901.6, + "end": 30902.9, + "probability": 0.8927 + }, + { + "start": 30903.74, + "end": 30907.82, + "probability": 0.9974 + }, + { + "start": 30908.64, + "end": 30910.48, + "probability": 0.7493 + }, + { + "start": 30911.04, + "end": 30912.42, + "probability": 0.5944 + }, + { + "start": 30912.96, + "end": 30914.24, + "probability": 0.8933 + }, + { + "start": 30914.28, + "end": 30914.68, + "probability": 0.5105 + }, + { + "start": 30914.74, + "end": 30917.86, + "probability": 0.8731 + }, + { + "start": 30918.78, + "end": 30923.66, + "probability": 0.9983 + }, + { + "start": 30923.66, + "end": 30927.02, + "probability": 0.9937 + }, + { + "start": 30927.26, + "end": 30927.74, + "probability": 0.5961 + }, + { + "start": 30927.9, + "end": 30928.22, + "probability": 0.6678 + }, + { + "start": 30928.22, + "end": 30929.44, + "probability": 0.4037 + }, + { + "start": 30930.46, + "end": 30934.22, + "probability": 0.9893 + }, + { + "start": 30935.22, + "end": 30941.44, + "probability": 0.9749 + }, + { + "start": 30941.8, + "end": 30948.08, + "probability": 0.9926 + }, + { + "start": 30950.32, + "end": 30951.16, + "probability": 0.5659 + }, + { + "start": 30952.02, + "end": 30954.18, + "probability": 0.818 + }, + { + "start": 30954.7, + "end": 30957.76, + "probability": 0.9823 + }, + { + "start": 30958.26, + "end": 30961.52, + "probability": 0.9921 + }, + { + "start": 30962.4, + "end": 30964.86, + "probability": 0.9767 + }, + { + "start": 30965.18, + "end": 30968.42, + "probability": 0.9837 + }, + { + "start": 30969.56, + "end": 30973.78, + "probability": 0.9741 + }, + { + "start": 30974.3, + "end": 30976.18, + "probability": 0.5687 + }, + { + "start": 30977.14, + "end": 30978.38, + "probability": 0.9534 + }, + { + "start": 30978.84, + "end": 30980.4, + "probability": 0.9448 + }, + { + "start": 30980.78, + "end": 30984.44, + "probability": 0.9972 + }, + { + "start": 30986.42, + "end": 30990.02, + "probability": 0.9985 + }, + { + "start": 30990.52, + "end": 30994.5, + "probability": 0.9791 + }, + { + "start": 30994.6, + "end": 30994.98, + "probability": 0.1488 + }, + { + "start": 30994.98, + "end": 30996.38, + "probability": 0.9529 + }, + { + "start": 30997.26, + "end": 30998.22, + "probability": 0.9017 + }, + { + "start": 30998.74, + "end": 31002.06, + "probability": 0.803 + }, + { + "start": 31002.98, + "end": 31007.04, + "probability": 0.997 + }, + { + "start": 31007.52, + "end": 31008.38, + "probability": 0.7154 + }, + { + "start": 31008.46, + "end": 31009.52, + "probability": 0.7074 + }, + { + "start": 31009.58, + "end": 31011.78, + "probability": 0.9905 + }, + { + "start": 31012.04, + "end": 31012.72, + "probability": 0.6306 + }, + { + "start": 31012.88, + "end": 31014.78, + "probability": 0.7789 + }, + { + "start": 31022.48, + "end": 31023.78, + "probability": 0.8127 + }, + { + "start": 31024.04, + "end": 31025.06, + "probability": 0.751 + }, + { + "start": 31025.06, + "end": 31026.46, + "probability": 0.8316 + }, + { + "start": 31029.86, + "end": 31030.92, + "probability": 0.6757 + }, + { + "start": 31031.0, + "end": 31032.7, + "probability": 0.494 + }, + { + "start": 31032.78, + "end": 31033.56, + "probability": 0.6324 + }, + { + "start": 31033.7, + "end": 31037.24, + "probability": 0.9946 + }, + { + "start": 31037.38, + "end": 31039.66, + "probability": 0.9869 + }, + { + "start": 31039.66, + "end": 31043.04, + "probability": 0.9988 + }, + { + "start": 31043.98, + "end": 31046.92, + "probability": 0.9481 + }, + { + "start": 31047.5, + "end": 31050.16, + "probability": 0.991 + }, + { + "start": 31050.16, + "end": 31055.0, + "probability": 0.9905 + }, + { + "start": 31056.54, + "end": 31060.4, + "probability": 0.9981 + }, + { + "start": 31061.08, + "end": 31062.72, + "probability": 0.9834 + }, + { + "start": 31063.38, + "end": 31065.58, + "probability": 0.9985 + }, + { + "start": 31065.6, + "end": 31066.14, + "probability": 0.99 + }, + { + "start": 31066.86, + "end": 31067.54, + "probability": 0.9902 + }, + { + "start": 31067.56, + "end": 31071.28, + "probability": 0.9376 + }, + { + "start": 31072.4, + "end": 31076.54, + "probability": 0.9629 + }, + { + "start": 31077.12, + "end": 31080.3, + "probability": 0.9886 + }, + { + "start": 31081.44, + "end": 31083.92, + "probability": 0.9632 + }, + { + "start": 31084.08, + "end": 31085.04, + "probability": 0.8707 + }, + { + "start": 31085.08, + "end": 31090.04, + "probability": 0.9971 + }, + { + "start": 31090.16, + "end": 31094.12, + "probability": 0.5801 + }, + { + "start": 31094.76, + "end": 31097.04, + "probability": 0.993 + }, + { + "start": 31097.74, + "end": 31103.96, + "probability": 0.9834 + }, + { + "start": 31104.54, + "end": 31106.22, + "probability": 0.9551 + }, + { + "start": 31106.74, + "end": 31108.9, + "probability": 0.6578 + }, + { + "start": 31109.54, + "end": 31112.88, + "probability": 0.9146 + }, + { + "start": 31113.6, + "end": 31115.32, + "probability": 0.8809 + }, + { + "start": 31115.7, + "end": 31120.18, + "probability": 0.9617 + }, + { + "start": 31120.44, + "end": 31121.88, + "probability": 0.6906 + }, + { + "start": 31122.14, + "end": 31123.42, + "probability": 0.9018 + }, + { + "start": 31123.58, + "end": 31124.04, + "probability": 0.9301 + }, + { + "start": 31124.4, + "end": 31125.48, + "probability": 0.811 + }, + { + "start": 31126.04, + "end": 31129.96, + "probability": 0.7983 + }, + { + "start": 31130.84, + "end": 31131.96, + "probability": 0.8079 + }, + { + "start": 31132.4, + "end": 31135.4, + "probability": 0.9854 + }, + { + "start": 31136.28, + "end": 31139.36, + "probability": 0.9073 + }, + { + "start": 31139.36, + "end": 31143.24, + "probability": 0.9293 + }, + { + "start": 31143.44, + "end": 31145.26, + "probability": 0.1487 + }, + { + "start": 31145.92, + "end": 31147.42, + "probability": 0.7488 + }, + { + "start": 31148.62, + "end": 31149.38, + "probability": 0.7403 + }, + { + "start": 31149.8, + "end": 31150.06, + "probability": 0.2004 + }, + { + "start": 31165.98, + "end": 31169.94, + "probability": 0.4518 + }, + { + "start": 31169.94, + "end": 31174.02, + "probability": 0.9375 + }, + { + "start": 31174.24, + "end": 31175.34, + "probability": 0.258 + }, + { + "start": 31176.78, + "end": 31181.66, + "probability": 0.702 + }, + { + "start": 31186.15, + "end": 31186.36, + "probability": 0.0377 + }, + { + "start": 31186.36, + "end": 31188.52, + "probability": 0.0657 + }, + { + "start": 31188.52, + "end": 31188.86, + "probability": 0.1462 + }, + { + "start": 31189.62, + "end": 31192.32, + "probability": 0.118 + }, + { + "start": 31192.96, + "end": 31194.58, + "probability": 0.0629 + }, + { + "start": 31195.68, + "end": 31201.46, + "probability": 0.13 + }, + { + "start": 31206.4, + "end": 31211.92, + "probability": 0.1115 + }, + { + "start": 31214.86, + "end": 31215.36, + "probability": 0.0214 + }, + { + "start": 31216.24, + "end": 31216.52, + "probability": 0.0032 + }, + { + "start": 31217.74, + "end": 31218.62, + "probability": 0.0281 + }, + { + "start": 31219.48, + "end": 31220.78, + "probability": 0.0604 + }, + { + "start": 31220.78, + "end": 31225.76, + "probability": 0.047 + }, + { + "start": 31225.76, + "end": 31227.28, + "probability": 0.5729 + }, + { + "start": 31248.0, + "end": 31248.0, + "probability": 0.0 + }, + { + "start": 31248.0, + "end": 31248.0, + "probability": 0.0 + }, + { + "start": 31248.0, + "end": 31248.0, + "probability": 0.0 + }, + { + "start": 31248.0, + "end": 31248.0, + "probability": 0.0 + }, + { + "start": 31248.0, + "end": 31248.0, + "probability": 0.0 + }, + { + "start": 31248.0, + "end": 31248.0, + "probability": 0.0 + }, + { + "start": 31248.0, + "end": 31248.0, + "probability": 0.0 + }, + { + "start": 31248.0, + "end": 31248.0, + "probability": 0.0 + }, + { + "start": 31258.32, + "end": 31261.2, + "probability": 0.047 + }, + { + "start": 31261.2, + "end": 31261.2, + "probability": 0.0272 + }, + { + "start": 31261.2, + "end": 31262.1, + "probability": 0.0145 + }, + { + "start": 31262.24, + "end": 31267.06, + "probability": 0.1895 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.0, + "end": 31378.0, + "probability": 0.0 + }, + { + "start": 31378.1, + "end": 31380.64, + "probability": 0.7505 + }, + { + "start": 31381.52, + "end": 31382.52, + "probability": 0.2082 + }, + { + "start": 31384.8, + "end": 31385.34, + "probability": 0.5874 + }, + { + "start": 31386.6, + "end": 31389.14, + "probability": 0.3742 + }, + { + "start": 31389.3, + "end": 31390.76, + "probability": 0.2376 + }, + { + "start": 31390.96, + "end": 31393.46, + "probability": 0.8248 + }, + { + "start": 31393.46, + "end": 31396.58, + "probability": 0.8763 + }, + { + "start": 31398.38, + "end": 31398.9, + "probability": 0.5342 + }, + { + "start": 31398.98, + "end": 31399.91, + "probability": 0.4089 + }, + { + "start": 31400.26, + "end": 31405.22, + "probability": 0.8361 + }, + { + "start": 31405.34, + "end": 31406.1, + "probability": 0.8505 + }, + { + "start": 31407.12, + "end": 31408.66, + "probability": 0.3389 + }, + { + "start": 31410.4, + "end": 31412.22, + "probability": 0.7501 + }, + { + "start": 31412.5, + "end": 31413.04, + "probability": 0.5242 + }, + { + "start": 31416.28, + "end": 31417.92, + "probability": 0.4764 + }, + { + "start": 31418.12, + "end": 31420.78, + "probability": 0.7612 + }, + { + "start": 31420.88, + "end": 31422.38, + "probability": 0.9785 + }, + { + "start": 31446.52, + "end": 31448.04, + "probability": 0.5136 + }, + { + "start": 31448.04, + "end": 31448.4, + "probability": 0.6542 + }, + { + "start": 31450.02, + "end": 31451.62, + "probability": 0.6001 + }, + { + "start": 31452.69, + "end": 31456.26, + "probability": 0.9812 + }, + { + "start": 31456.26, + "end": 31460.92, + "probability": 0.9785 + }, + { + "start": 31461.44, + "end": 31464.62, + "probability": 0.6347 + }, + { + "start": 31466.0, + "end": 31467.54, + "probability": 0.6837 + }, + { + "start": 31468.12, + "end": 31473.02, + "probability": 0.9287 + }, + { + "start": 31473.2, + "end": 31475.3, + "probability": 0.9853 + }, + { + "start": 31476.88, + "end": 31477.34, + "probability": 0.1009 + }, + { + "start": 31477.34, + "end": 31480.72, + "probability": 0.8536 + }, + { + "start": 31481.2, + "end": 31484.35, + "probability": 0.7273 + }, + { + "start": 31485.3, + "end": 31487.24, + "probability": 0.702 + }, + { + "start": 31488.68, + "end": 31488.68, + "probability": 0.0977 + }, + { + "start": 31488.68, + "end": 31489.92, + "probability": 0.422 + }, + { + "start": 31490.2, + "end": 31493.8, + "probability": 0.9729 + }, + { + "start": 31493.8, + "end": 31497.92, + "probability": 0.9974 + }, + { + "start": 31497.92, + "end": 31502.52, + "probability": 0.7725 + }, + { + "start": 31503.08, + "end": 31506.34, + "probability": 0.9273 + }, + { + "start": 31507.58, + "end": 31511.66, + "probability": 0.9875 + }, + { + "start": 31512.64, + "end": 31513.8, + "probability": 0.9677 + }, + { + "start": 31513.9, + "end": 31514.72, + "probability": 0.987 + }, + { + "start": 31515.2, + "end": 31516.22, + "probability": 0.3472 + }, + { + "start": 31516.36, + "end": 31518.76, + "probability": 0.9414 + }, + { + "start": 31518.92, + "end": 31519.38, + "probability": 0.8434 + }, + { + "start": 31520.06, + "end": 31524.78, + "probability": 0.9947 + }, + { + "start": 31525.66, + "end": 31526.32, + "probability": 0.9817 + }, + { + "start": 31526.44, + "end": 31529.72, + "probability": 0.9746 + }, + { + "start": 31529.72, + "end": 31532.16, + "probability": 0.9308 + }, + { + "start": 31532.72, + "end": 31533.24, + "probability": 0.8598 + }, + { + "start": 31534.2, + "end": 31535.0, + "probability": 0.7962 + }, + { + "start": 31535.4, + "end": 31536.78, + "probability": 0.6973 + }, + { + "start": 31537.24, + "end": 31540.26, + "probability": 0.9929 + }, + { + "start": 31541.32, + "end": 31543.16, + "probability": 0.8766 + }, + { + "start": 31543.94, + "end": 31548.14, + "probability": 0.9954 + }, + { + "start": 31548.64, + "end": 31549.06, + "probability": 0.7656 + }, + { + "start": 31549.4, + "end": 31549.9, + "probability": 0.9564 + }, + { + "start": 31550.48, + "end": 31550.78, + "probability": 0.5777 + }, + { + "start": 31551.3, + "end": 31555.02, + "probability": 0.8325 + }, + { + "start": 31555.62, + "end": 31556.98, + "probability": 0.9506 + }, + { + "start": 31557.92, + "end": 31558.98, + "probability": 0.6334 + }, + { + "start": 31559.04, + "end": 31561.72, + "probability": 0.9609 + }, + { + "start": 31562.88, + "end": 31564.62, + "probability": 0.9802 + }, + { + "start": 31565.26, + "end": 31565.6, + "probability": 0.4073 + }, + { + "start": 31565.68, + "end": 31568.16, + "probability": 0.9527 + }, + { + "start": 31568.54, + "end": 31571.46, + "probability": 0.9901 + }, + { + "start": 31571.46, + "end": 31574.5, + "probability": 0.9983 + }, + { + "start": 31575.84, + "end": 31576.46, + "probability": 0.676 + }, + { + "start": 31577.24, + "end": 31581.6, + "probability": 0.9665 + }, + { + "start": 31581.6, + "end": 31590.5, + "probability": 0.9949 + }, + { + "start": 31591.5, + "end": 31592.18, + "probability": 0.9666 + }, + { + "start": 31592.9, + "end": 31598.68, + "probability": 0.7469 + }, + { + "start": 31599.46, + "end": 31603.14, + "probability": 0.998 + }, + { + "start": 31603.14, + "end": 31606.94, + "probability": 0.9877 + }, + { + "start": 31607.66, + "end": 31609.54, + "probability": 0.7365 + }, + { + "start": 31609.6, + "end": 31609.94, + "probability": 0.3727 + }, + { + "start": 31610.0, + "end": 31613.22, + "probability": 0.9235 + }, + { + "start": 31613.84, + "end": 31616.52, + "probability": 0.8694 + }, + { + "start": 31616.62, + "end": 31617.1, + "probability": 0.6175 + }, + { + "start": 31619.72, + "end": 31621.16, + "probability": 0.5776 + }, + { + "start": 31621.46, + "end": 31622.16, + "probability": 0.4504 + }, + { + "start": 31622.38, + "end": 31623.3, + "probability": 0.0726 + }, + { + "start": 31623.42, + "end": 31625.02, + "probability": 0.9203 + }, + { + "start": 31625.16, + "end": 31628.72, + "probability": 0.2733 + }, + { + "start": 31629.46, + "end": 31631.24, + "probability": 0.0836 + }, + { + "start": 31632.88, + "end": 31633.2, + "probability": 0.6853 + }, + { + "start": 31633.56, + "end": 31634.28, + "probability": 0.7619 + }, + { + "start": 31634.38, + "end": 31637.68, + "probability": 0.9746 + }, + { + "start": 31637.76, + "end": 31639.16, + "probability": 0.989 + }, + { + "start": 31639.66, + "end": 31640.96, + "probability": 0.8333 + }, + { + "start": 31641.08, + "end": 31642.16, + "probability": 0.562 + }, + { + "start": 31642.24, + "end": 31643.74, + "probability": 0.8322 + }, + { + "start": 31644.0, + "end": 31646.34, + "probability": 0.9841 + }, + { + "start": 31646.58, + "end": 31647.82, + "probability": 0.9341 + }, + { + "start": 31648.16, + "end": 31649.54, + "probability": 0.8523 + }, + { + "start": 31649.78, + "end": 31652.44, + "probability": 0.7767 + }, + { + "start": 31652.46, + "end": 31654.84, + "probability": 0.9295 + }, + { + "start": 31655.36, + "end": 31657.78, + "probability": 0.9807 + }, + { + "start": 31658.24, + "end": 31658.7, + "probability": 0.5037 + }, + { + "start": 31659.38, + "end": 31661.5, + "probability": 0.9709 + }, + { + "start": 31661.98, + "end": 31664.48, + "probability": 0.9989 + }, + { + "start": 31664.48, + "end": 31667.8, + "probability": 0.978 + }, + { + "start": 31668.22, + "end": 31672.24, + "probability": 0.9832 + }, + { + "start": 31673.38, + "end": 31673.54, + "probability": 0.0662 + }, + { + "start": 31673.54, + "end": 31676.16, + "probability": 0.9728 + }, + { + "start": 31676.16, + "end": 31679.2, + "probability": 0.9948 + }, + { + "start": 31679.74, + "end": 31684.3, + "probability": 0.9986 + }, + { + "start": 31686.14, + "end": 31686.6, + "probability": 0.6083 + }, + { + "start": 31686.64, + "end": 31687.98, + "probability": 0.8964 + }, + { + "start": 31688.04, + "end": 31690.34, + "probability": 0.9891 + }, + { + "start": 31691.08, + "end": 31693.92, + "probability": 0.9968 + }, + { + "start": 31694.88, + "end": 31695.54, + "probability": 0.8362 + }, + { + "start": 31696.5, + "end": 31699.12, + "probability": 0.9863 + }, + { + "start": 31699.7, + "end": 31702.22, + "probability": 0.9421 + }, + { + "start": 31702.32, + "end": 31703.9, + "probability": 0.9983 + }, + { + "start": 31704.44, + "end": 31704.64, + "probability": 0.6438 + }, + { + "start": 31704.78, + "end": 31706.96, + "probability": 0.9681 + }, + { + "start": 31706.96, + "end": 31710.5, + "probability": 0.8315 + }, + { + "start": 31710.56, + "end": 31712.92, + "probability": 0.6493 + }, + { + "start": 31713.96, + "end": 31715.92, + "probability": 0.6418 + }, + { + "start": 31716.0, + "end": 31717.5, + "probability": 0.9316 + }, + { + "start": 31717.8, + "end": 31720.02, + "probability": 0.9064 + }, + { + "start": 31721.06, + "end": 31722.8, + "probability": 0.6586 + }, + { + "start": 31723.24, + "end": 31728.02, + "probability": 0.8855 + }, + { + "start": 31728.02, + "end": 31733.5, + "probability": 0.9557 + }, + { + "start": 31733.98, + "end": 31734.4, + "probability": 0.6109 + }, + { + "start": 31735.12, + "end": 31739.02, + "probability": 0.9918 + }, + { + "start": 31739.5, + "end": 31740.94, + "probability": 0.7935 + }, + { + "start": 31741.14, + "end": 31747.44, + "probability": 0.9965 + }, + { + "start": 31748.1, + "end": 31752.1, + "probability": 0.997 + }, + { + "start": 31752.24, + "end": 31756.9, + "probability": 0.965 + }, + { + "start": 31757.32, + "end": 31758.4, + "probability": 0.6855 + }, + { + "start": 31758.92, + "end": 31761.7, + "probability": 0.6272 + }, + { + "start": 31761.94, + "end": 31766.02, + "probability": 0.937 + }, + { + "start": 31766.4, + "end": 31768.84, + "probability": 0.9967 + }, + { + "start": 31768.84, + "end": 31770.96, + "probability": 0.9998 + }, + { + "start": 31771.64, + "end": 31774.2, + "probability": 0.9805 + }, + { + "start": 31774.2, + "end": 31777.08, + "probability": 0.9974 + }, + { + "start": 31777.36, + "end": 31780.04, + "probability": 0.9987 + }, + { + "start": 31781.0, + "end": 31783.5, + "probability": 0.9862 + }, + { + "start": 31783.92, + "end": 31784.02, + "probability": 0.5301 + }, + { + "start": 31784.02, + "end": 31789.58, + "probability": 0.9371 + }, + { + "start": 31789.7, + "end": 31793.22, + "probability": 0.8625 + }, + { + "start": 31793.36, + "end": 31794.7, + "probability": 0.8768 + }, + { + "start": 31795.18, + "end": 31798.52, + "probability": 0.8035 + }, + { + "start": 31800.34, + "end": 31800.36, + "probability": 0.0039 + }, + { + "start": 31802.72, + "end": 31802.94, + "probability": 0.0002 + }, + { + "start": 31804.14, + "end": 31807.14, + "probability": 0.1362 + }, + { + "start": 31817.52, + "end": 31819.14, + "probability": 0.1311 + }, + { + "start": 31819.72, + "end": 31821.7, + "probability": 0.1883 + }, + { + "start": 31824.5, + "end": 31824.9, + "probability": 0.0015 + }, + { + "start": 31827.52, + "end": 31827.84, + "probability": 0.2517 + }, + { + "start": 31830.8, + "end": 31832.62, + "probability": 0.1786 + }, + { + "start": 31832.62, + "end": 31833.36, + "probability": 0.043 + }, + { + "start": 31833.84, + "end": 31837.52, + "probability": 0.0713 + }, + { + "start": 31851.2, + "end": 31851.92, + "probability": 0.0344 + }, + { + "start": 31852.32, + "end": 31853.42, + "probability": 0.0682 + }, + { + "start": 31853.64, + "end": 31854.98, + "probability": 0.0623 + }, + { + "start": 31855.2, + "end": 31855.2, + "probability": 0.0634 + }, + { + "start": 31855.2, + "end": 31855.2, + "probability": 0.0974 + }, + { + "start": 31855.2, + "end": 31856.96, + "probability": 0.2899 + }, + { + "start": 31857.7, + "end": 31857.7, + "probability": 0.375 + }, + { + "start": 31857.7, + "end": 31857.7, + "probability": 0.6136 + }, + { + "start": 31857.7, + "end": 31857.7, + "probability": 0.0347 + }, + { + "start": 31857.7, + "end": 31857.7, + "probability": 0.0325 + }, + { + "start": 31857.7, + "end": 31859.22, + "probability": 0.1595 + }, + { + "start": 31859.22, + "end": 31862.94, + "probability": 0.4478 + }, + { + "start": 31863.02, + "end": 31863.86, + "probability": 0.6886 + }, + { + "start": 31864.54, + "end": 31866.58, + "probability": 0.2472 + }, + { + "start": 31867.62, + "end": 31867.72, + "probability": 0.1325 + }, + { + "start": 31867.74, + "end": 31867.74, + "probability": 0.1382 + }, + { + "start": 31867.74, + "end": 31868.46, + "probability": 0.6686 + }, + { + "start": 31871.98, + "end": 31872.94, + "probability": 0.0057 + }, + { + "start": 31874.1, + "end": 31874.42, + "probability": 0.0145 + }, + { + "start": 31875.66, + "end": 31876.3, + "probability": 0.1471 + }, + { + "start": 31878.31, + "end": 31879.22, + "probability": 0.0245 + }, + { + "start": 31880.81, + "end": 31881.14, + "probability": 0.0208 + }, + { + "start": 31881.14, + "end": 31881.98, + "probability": 0.0366 + }, + { + "start": 31882.0, + "end": 31882.0, + "probability": 0.0 + }, + { + "start": 31882.0, + "end": 31882.0, + "probability": 0.0 + }, + { + "start": 31882.0, + "end": 31882.0, + "probability": 0.0 + }, + { + "start": 31882.0, + "end": 31882.0, + "probability": 0.0 + }, + { + "start": 31882.0, + "end": 31882.0, + "probability": 0.0 + }, + { + "start": 31882.0, + "end": 31882.0, + "probability": 0.0 + }, + { + "start": 31882.0, + "end": 31882.0, + "probability": 0.0 + }, + { + "start": 31882.0, + "end": 31882.0, + "probability": 0.0 + }, + { + "start": 31883.04, + "end": 31884.56, + "probability": 0.3689 + }, + { + "start": 31884.74, + "end": 31886.56, + "probability": 0.9674 + }, + { + "start": 31886.56, + "end": 31889.5, + "probability": 0.5032 + }, + { + "start": 31889.58, + "end": 31890.5, + "probability": 0.4945 + }, + { + "start": 31890.5, + "end": 31891.72, + "probability": 0.1702 + }, + { + "start": 31892.64, + "end": 31895.28, + "probability": 0.9784 + }, + { + "start": 31895.8, + "end": 31896.88, + "probability": 0.971 + }, + { + "start": 31898.18, + "end": 31899.06, + "probability": 0.8063 + }, + { + "start": 31899.22, + "end": 31900.64, + "probability": 0.8274 + }, + { + "start": 31900.84, + "end": 31904.92, + "probability": 0.7752 + }, + { + "start": 31905.56, + "end": 31908.14, + "probability": 0.7773 + }, + { + "start": 31908.32, + "end": 31909.94, + "probability": 0.2074 + }, + { + "start": 31910.6, + "end": 31912.4, + "probability": 0.9569 + }, + { + "start": 31912.56, + "end": 31915.22, + "probability": 0.6613 + }, + { + "start": 31916.06, + "end": 31917.14, + "probability": 0.8562 + }, + { + "start": 31918.18, + "end": 31922.34, + "probability": 0.9893 + }, + { + "start": 31935.8, + "end": 31936.34, + "probability": 0.6584 + }, + { + "start": 31938.94, + "end": 31940.4, + "probability": 0.0649 + }, + { + "start": 31940.4, + "end": 31940.74, + "probability": 0.8705 + }, + { + "start": 31941.08, + "end": 31942.66, + "probability": 0.784 + }, + { + "start": 31942.92, + "end": 31944.33, + "probability": 0.7886 + }, + { + "start": 31944.88, + "end": 31947.08, + "probability": 0.7139 + }, + { + "start": 31947.3, + "end": 31949.64, + "probability": 0.9926 + }, + { + "start": 31950.42, + "end": 31954.52, + "probability": 0.9902 + }, + { + "start": 31955.74, + "end": 31964.0, + "probability": 0.9992 + }, + { + "start": 31964.84, + "end": 31971.06, + "probability": 0.9784 + }, + { + "start": 31972.36, + "end": 31978.64, + "probability": 0.7795 + }, + { + "start": 31979.34, + "end": 31982.3, + "probability": 0.845 + }, + { + "start": 31982.76, + "end": 31985.88, + "probability": 0.8265 + }, + { + "start": 31989.14, + "end": 31990.78, + "probability": 0.9935 + }, + { + "start": 31991.24, + "end": 31992.93, + "probability": 0.9968 + }, + { + "start": 31994.04, + "end": 31995.32, + "probability": 0.9629 + }, + { + "start": 31995.52, + "end": 32001.96, + "probability": 0.9944 + }, + { + "start": 32002.6, + "end": 32011.36, + "probability": 0.9949 + }, + { + "start": 32012.04, + "end": 32017.68, + "probability": 0.9937 + }, + { + "start": 32017.68, + "end": 32024.0, + "probability": 0.9877 + }, + { + "start": 32024.9, + "end": 32032.28, + "probability": 0.9973 + }, + { + "start": 32033.38, + "end": 32038.9, + "probability": 0.9878 + }, + { + "start": 32039.34, + "end": 32041.06, + "probability": 0.8498 + }, + { + "start": 32041.06, + "end": 32043.72, + "probability": 0.9896 + }, + { + "start": 32044.24, + "end": 32046.44, + "probability": 0.9953 + }, + { + "start": 32046.84, + "end": 32047.34, + "probability": 0.8688 + }, + { + "start": 32047.72, + "end": 32049.78, + "probability": 0.9467 + }, + { + "start": 32049.82, + "end": 32052.4, + "probability": 0.7661 + }, + { + "start": 32052.94, + "end": 32056.74, + "probability": 0.9817 + }, + { + "start": 32058.52, + "end": 32062.12, + "probability": 0.9993 + }, + { + "start": 32062.68, + "end": 32064.84, + "probability": 0.7004 + }, + { + "start": 32064.9, + "end": 32067.8, + "probability": 0.9902 + }, + { + "start": 32067.84, + "end": 32068.78, + "probability": 0.8347 + }, + { + "start": 32068.86, + "end": 32069.14, + "probability": 0.724 + }, + { + "start": 32069.78, + "end": 32070.84, + "probability": 0.7463 + }, + { + "start": 32071.14, + "end": 32073.54, + "probability": 0.8529 + }, + { + "start": 32085.24, + "end": 32087.18, + "probability": 0.7537 + }, + { + "start": 32087.42, + "end": 32088.7, + "probability": 0.172 + }, + { + "start": 32089.32, + "end": 32090.2, + "probability": 0.8598 + }, + { + "start": 32090.3, + "end": 32091.62, + "probability": 0.8875 + }, + { + "start": 32091.94, + "end": 32094.3, + "probability": 0.8914 + }, + { + "start": 32094.86, + "end": 32095.96, + "probability": 0.9551 + }, + { + "start": 32096.86, + "end": 32097.64, + "probability": 0.8711 + }, + { + "start": 32098.49, + "end": 32100.6, + "probability": 0.9875 + }, + { + "start": 32100.8, + "end": 32104.24, + "probability": 0.9934 + }, + { + "start": 32104.34, + "end": 32105.52, + "probability": 0.6769 + }, + { + "start": 32105.64, + "end": 32107.16, + "probability": 0.7364 + }, + { + "start": 32108.36, + "end": 32108.8, + "probability": 0.656 + }, + { + "start": 32109.52, + "end": 32112.24, + "probability": 0.9826 + }, + { + "start": 32112.24, + "end": 32115.74, + "probability": 0.7596 + }, + { + "start": 32115.74, + "end": 32118.36, + "probability": 0.9907 + }, + { + "start": 32119.14, + "end": 32122.24, + "probability": 0.9854 + }, + { + "start": 32124.76, + "end": 32125.8, + "probability": 0.8325 + }, + { + "start": 32127.26, + "end": 32129.04, + "probability": 0.9976 + }, + { + "start": 32129.36, + "end": 32131.74, + "probability": 0.9902 + }, + { + "start": 32132.3, + "end": 32133.88, + "probability": 0.9991 + }, + { + "start": 32134.62, + "end": 32136.78, + "probability": 0.903 + }, + { + "start": 32137.55, + "end": 32142.5, + "probability": 0.9346 + }, + { + "start": 32142.76, + "end": 32143.68, + "probability": 0.5104 + }, + { + "start": 32143.92, + "end": 32147.2, + "probability": 0.8014 + }, + { + "start": 32148.24, + "end": 32150.56, + "probability": 0.9708 + }, + { + "start": 32151.1, + "end": 32151.98, + "probability": 0.9453 + }, + { + "start": 32152.12, + "end": 32155.22, + "probability": 0.9952 + }, + { + "start": 32155.92, + "end": 32160.54, + "probability": 0.9803 + }, + { + "start": 32161.1, + "end": 32164.34, + "probability": 0.8571 + }, + { + "start": 32164.78, + "end": 32168.32, + "probability": 0.8141 + }, + { + "start": 32168.92, + "end": 32170.62, + "probability": 0.4999 + }, + { + "start": 32170.82, + "end": 32173.96, + "probability": 0.95 + }, + { + "start": 32174.56, + "end": 32174.78, + "probability": 0.7848 + }, + { + "start": 32176.76, + "end": 32177.82, + "probability": 0.6893 + }, + { + "start": 32177.98, + "end": 32179.84, + "probability": 0.677 + }, + { + "start": 32180.48, + "end": 32182.86, + "probability": 0.9756 + }, + { + "start": 32183.06, + "end": 32184.84, + "probability": 0.8114 + }, + { + "start": 32185.32, + "end": 32188.62, + "probability": 0.9268 + }, + { + "start": 32189.42, + "end": 32190.64, + "probability": 0.5705 + }, + { + "start": 32192.62, + "end": 32195.0, + "probability": 0.5701 + }, + { + "start": 32195.56, + "end": 32196.18, + "probability": 0.4519 + }, + { + "start": 32197.2, + "end": 32198.49, + "probability": 0.8858 + }, + { + "start": 32199.34, + "end": 32199.86, + "probability": 0.6637 + }, + { + "start": 32204.44, + "end": 32205.96, + "probability": 0.7615 + }, + { + "start": 32206.81, + "end": 32208.72, + "probability": 0.6533 + }, + { + "start": 32209.54, + "end": 32210.38, + "probability": 0.8062 + }, + { + "start": 32210.54, + "end": 32211.42, + "probability": 0.7803 + }, + { + "start": 32211.48, + "end": 32213.72, + "probability": 0.1977 + }, + { + "start": 32214.26, + "end": 32216.2, + "probability": 0.407 + }, + { + "start": 32216.24, + "end": 32217.14, + "probability": 0.5406 + }, + { + "start": 32217.76, + "end": 32220.3, + "probability": 0.8395 + }, + { + "start": 32220.42, + "end": 32222.26, + "probability": 0.6073 + }, + { + "start": 32222.28, + "end": 32225.66, + "probability": 0.3796 + }, + { + "start": 32225.74, + "end": 32227.32, + "probability": 0.7739 + }, + { + "start": 32238.08, + "end": 32239.84, + "probability": 0.8516 + }, + { + "start": 32240.16, + "end": 32240.7, + "probability": 0.6107 + }, + { + "start": 32241.84, + "end": 32242.92, + "probability": 0.6962 + }, + { + "start": 32242.98, + "end": 32245.66, + "probability": 0.946 + }, + { + "start": 32245.9, + "end": 32249.04, + "probability": 0.9841 + }, + { + "start": 32249.04, + "end": 32250.32, + "probability": 0.7075 + }, + { + "start": 32250.4, + "end": 32253.32, + "probability": 0.9943 + }, + { + "start": 32253.8, + "end": 32253.8, + "probability": 0.0205 + }, + { + "start": 32254.04, + "end": 32254.52, + "probability": 0.8014 + }, + { + "start": 32254.68, + "end": 32257.36, + "probability": 0.9649 + }, + { + "start": 32258.34, + "end": 32258.72, + "probability": 0.7754 + }, + { + "start": 32258.76, + "end": 32259.28, + "probability": 0.8241 + }, + { + "start": 32259.38, + "end": 32261.38, + "probability": 0.8978 + }, + { + "start": 32262.16, + "end": 32264.08, + "probability": 0.9095 + }, + { + "start": 32264.24, + "end": 32264.94, + "probability": 0.6401 + }, + { + "start": 32265.14, + "end": 32268.76, + "probability": 0.9883 + }, + { + "start": 32269.08, + "end": 32269.3, + "probability": 0.4744 + }, + { + "start": 32269.34, + "end": 32269.88, + "probability": 0.6462 + }, + { + "start": 32270.24, + "end": 32274.28, + "probability": 0.9668 + }, + { + "start": 32274.4, + "end": 32276.18, + "probability": 0.78 + }, + { + "start": 32276.88, + "end": 32278.32, + "probability": 0.7481 + }, + { + "start": 32278.72, + "end": 32279.29, + "probability": 0.6714 + }, + { + "start": 32280.22, + "end": 32281.8, + "probability": 0.9601 + }, + { + "start": 32281.88, + "end": 32285.66, + "probability": 0.9713 + }, + { + "start": 32286.08, + "end": 32287.18, + "probability": 0.7124 + }, + { + "start": 32287.62, + "end": 32291.84, + "probability": 0.9971 + }, + { + "start": 32291.84, + "end": 32294.92, + "probability": 0.9988 + }, + { + "start": 32296.12, + "end": 32301.74, + "probability": 0.9749 + }, + { + "start": 32301.74, + "end": 32305.86, + "probability": 0.9967 + }, + { + "start": 32306.26, + "end": 32306.86, + "probability": 0.3548 + }, + { + "start": 32306.98, + "end": 32307.62, + "probability": 0.7634 + }, + { + "start": 32308.28, + "end": 32312.06, + "probability": 0.9297 + }, + { + "start": 32312.67, + "end": 32315.96, + "probability": 0.9398 + }, + { + "start": 32316.2, + "end": 32317.44, + "probability": 0.9094 + }, + { + "start": 32318.02, + "end": 32318.86, + "probability": 0.6727 + }, + { + "start": 32318.86, + "end": 32320.63, + "probability": 0.4914 + }, + { + "start": 32341.56, + "end": 32345.66, + "probability": 0.6739 + }, + { + "start": 32346.18, + "end": 32347.04, + "probability": 0.754 + }, + { + "start": 32347.76, + "end": 32348.34, + "probability": 0.4356 + }, + { + "start": 32348.46, + "end": 32351.24, + "probability": 0.9376 + }, + { + "start": 32351.54, + "end": 32351.68, + "probability": 0.5302 + }, + { + "start": 32352.36, + "end": 32353.36, + "probability": 0.6534 + }, + { + "start": 32353.52, + "end": 32353.94, + "probability": 0.338 + }, + { + "start": 32354.69, + "end": 32356.15, + "probability": 0.5464 + }, + { + "start": 32356.94, + "end": 32357.74, + "probability": 0.7776 + }, + { + "start": 32357.86, + "end": 32359.56, + "probability": 0.1924 + }, + { + "start": 32359.7, + "end": 32361.14, + "probability": 0.9933 + }, + { + "start": 32361.92, + "end": 32362.4, + "probability": 0.0917 + }, + { + "start": 32362.94, + "end": 32364.16, + "probability": 0.9523 + }, + { + "start": 32364.82, + "end": 32367.7, + "probability": 0.9956 + }, + { + "start": 32368.22, + "end": 32369.04, + "probability": 0.9973 + }, + { + "start": 32369.72, + "end": 32369.92, + "probability": 0.8479 + }, + { + "start": 32371.3, + "end": 32375.48, + "probability": 0.9961 + }, + { + "start": 32376.62, + "end": 32377.74, + "probability": 0.9459 + }, + { + "start": 32377.84, + "end": 32378.28, + "probability": 0.8112 + }, + { + "start": 32378.48, + "end": 32378.78, + "probability": 0.7948 + }, + { + "start": 32379.22, + "end": 32380.98, + "probability": 0.6933 + }, + { + "start": 32381.82, + "end": 32383.4, + "probability": 0.7512 + }, + { + "start": 32384.2, + "end": 32385.8, + "probability": 0.06 + }, + { + "start": 32386.02, + "end": 32386.88, + "probability": 0.0516 + }, + { + "start": 32387.0, + "end": 32388.16, + "probability": 0.4141 + }, + { + "start": 32389.1, + "end": 32389.94, + "probability": 0.7079 + }, + { + "start": 32391.1, + "end": 32395.14, + "probability": 0.9626 + }, + { + "start": 32395.96, + "end": 32397.18, + "probability": 0.9383 + }, + { + "start": 32397.32, + "end": 32398.0, + "probability": 0.3447 + }, + { + "start": 32398.04, + "end": 32401.56, + "probability": 0.8829 + }, + { + "start": 32402.3, + "end": 32408.54, + "probability": 0.9958 + }, + { + "start": 32408.7, + "end": 32410.62, + "probability": 0.991 + }, + { + "start": 32410.9, + "end": 32412.7, + "probability": 0.9971 + }, + { + "start": 32413.22, + "end": 32413.8, + "probability": 0.7231 + }, + { + "start": 32413.98, + "end": 32417.84, + "probability": 0.9207 + }, + { + "start": 32417.96, + "end": 32419.68, + "probability": 0.7779 + }, + { + "start": 32420.1, + "end": 32420.86, + "probability": 0.564 + }, + { + "start": 32420.92, + "end": 32421.56, + "probability": 0.7907 + }, + { + "start": 32421.88, + "end": 32423.66, + "probability": 0.9921 + }, + { + "start": 32423.8, + "end": 32424.22, + "probability": 0.8417 + }, + { + "start": 32425.12, + "end": 32425.72, + "probability": 0.5081 + }, + { + "start": 32425.86, + "end": 32427.62, + "probability": 0.8157 + }, + { + "start": 32438.26, + "end": 32441.14, + "probability": 0.6421 + }, + { + "start": 32441.36, + "end": 32444.28, + "probability": 0.7936 + }, + { + "start": 32445.2, + "end": 32449.08, + "probability": 0.9911 + }, + { + "start": 32450.22, + "end": 32450.68, + "probability": 0.4274 + }, + { + "start": 32451.74, + "end": 32454.88, + "probability": 0.9649 + }, + { + "start": 32456.46, + "end": 32457.62, + "probability": 0.9897 + }, + { + "start": 32458.08, + "end": 32460.44, + "probability": 0.8166 + }, + { + "start": 32460.58, + "end": 32462.54, + "probability": 0.9109 + }, + { + "start": 32462.58, + "end": 32463.66, + "probability": 0.8444 + }, + { + "start": 32464.36, + "end": 32465.58, + "probability": 0.8989 + }, + { + "start": 32466.1, + "end": 32469.64, + "probability": 0.8783 + }, + { + "start": 32469.98, + "end": 32471.34, + "probability": 0.7576 + }, + { + "start": 32471.36, + "end": 32474.72, + "probability": 0.8473 + }, + { + "start": 32475.56, + "end": 32478.11, + "probability": 0.99 + }, + { + "start": 32479.3, + "end": 32482.86, + "probability": 0.9663 + }, + { + "start": 32483.7, + "end": 32485.35, + "probability": 0.9727 + }, + { + "start": 32486.62, + "end": 32488.44, + "probability": 0.9956 + }, + { + "start": 32489.06, + "end": 32490.2, + "probability": 0.9399 + }, + { + "start": 32490.52, + "end": 32491.32, + "probability": 0.6945 + }, + { + "start": 32491.46, + "end": 32493.08, + "probability": 0.952 + }, + { + "start": 32493.3, + "end": 32494.12, + "probability": 0.3991 + }, + { + "start": 32494.84, + "end": 32496.04, + "probability": 0.8885 + }, + { + "start": 32496.1, + "end": 32497.92, + "probability": 0.4407 + }, + { + "start": 32498.1, + "end": 32498.74, + "probability": 0.7898 + }, + { + "start": 32498.94, + "end": 32499.92, + "probability": 0.6787 + }, + { + "start": 32500.48, + "end": 32501.68, + "probability": 0.9967 + }, + { + "start": 32501.9, + "end": 32504.82, + "probability": 0.6721 + }, + { + "start": 32506.2, + "end": 32506.98, + "probability": 0.6292 + }, + { + "start": 32507.5, + "end": 32507.5, + "probability": 0.4109 + }, + { + "start": 32507.5, + "end": 32508.42, + "probability": 0.8002 + }, + { + "start": 32508.66, + "end": 32511.62, + "probability": 0.8623 + }, + { + "start": 32512.56, + "end": 32512.66, + "probability": 0.3036 + }, + { + "start": 32512.66, + "end": 32513.68, + "probability": 0.8854 + }, + { + "start": 32514.12, + "end": 32515.1, + "probability": 0.9758 + }, + { + "start": 32515.14, + "end": 32518.86, + "probability": 0.9235 + }, + { + "start": 32518.9, + "end": 32524.8, + "probability": 0.9971 + }, + { + "start": 32524.9, + "end": 32528.04, + "probability": 0.9829 + }, + { + "start": 32529.19, + "end": 32531.52, + "probability": 0.9939 + }, + { + "start": 32531.62, + "end": 32534.45, + "probability": 0.7319 + }, + { + "start": 32535.94, + "end": 32537.22, + "probability": 0.9896 + }, + { + "start": 32539.64, + "end": 32540.86, + "probability": 0.1701 + }, + { + "start": 32547.44, + "end": 32548.96, + "probability": 0.804 + }, + { + "start": 32564.46, + "end": 32565.86, + "probability": 0.8982 + }, + { + "start": 32569.74, + "end": 32570.66, + "probability": 0.5124 + }, + { + "start": 32570.66, + "end": 32575.34, + "probability": 0.7161 + }, + { + "start": 32575.5, + "end": 32576.62, + "probability": 0.4451 + }, + { + "start": 32577.2, + "end": 32580.12, + "probability": 0.9163 + }, + { + "start": 32580.76, + "end": 32583.5, + "probability": 0.9614 + }, + { + "start": 32584.56, + "end": 32586.06, + "probability": 0.9521 + }, + { + "start": 32593.77, + "end": 32603.52, + "probability": 0.8271 + }, + { + "start": 32605.16, + "end": 32605.92, + "probability": 0.6077 + }, + { + "start": 32606.12, + "end": 32609.02, + "probability": 0.9907 + }, + { + "start": 32610.28, + "end": 32612.24, + "probability": 0.9954 + }, + { + "start": 32614.33, + "end": 32617.74, + "probability": 0.5906 + }, + { + "start": 32618.58, + "end": 32620.48, + "probability": 0.7497 + }, + { + "start": 32621.1, + "end": 32621.96, + "probability": 0.341 + }, + { + "start": 32622.52, + "end": 32623.04, + "probability": 0.6721 + }, + { + "start": 32623.36, + "end": 32624.76, + "probability": 0.5399 + }, + { + "start": 32624.8, + "end": 32625.78, + "probability": 0.6664 + }, + { + "start": 32626.24, + "end": 32626.76, + "probability": 0.635 + }, + { + "start": 32627.06, + "end": 32627.5, + "probability": 0.3205 + }, + { + "start": 32628.46, + "end": 32629.48, + "probability": 0.9507 + }, + { + "start": 32629.76, + "end": 32632.36, + "probability": 0.8174 + }, + { + "start": 32632.78, + "end": 32633.58, + "probability": 0.7195 + }, + { + "start": 32634.02, + "end": 32636.12, + "probability": 0.7952 + }, + { + "start": 32636.36, + "end": 32637.4, + "probability": 0.4826 + }, + { + "start": 32638.12, + "end": 32639.48, + "probability": 0.9341 + }, + { + "start": 32640.02, + "end": 32643.34, + "probability": 0.9487 + }, + { + "start": 32645.44, + "end": 32645.78, + "probability": 0.8608 + }, + { + "start": 32646.7, + "end": 32654.0, + "probability": 0.7793 + }, + { + "start": 32656.06, + "end": 32659.38, + "probability": 0.9271 + }, + { + "start": 32659.96, + "end": 32663.42, + "probability": 0.9857 + }, + { + "start": 32664.26, + "end": 32667.74, + "probability": 0.9709 + }, + { + "start": 32668.66, + "end": 32670.32, + "probability": 0.9279 + }, + { + "start": 32671.0, + "end": 32672.46, + "probability": 0.9941 + }, + { + "start": 32673.28, + "end": 32674.8, + "probability": 0.9885 + }, + { + "start": 32675.62, + "end": 32677.03, + "probability": 0.8483 + }, + { + "start": 32677.86, + "end": 32679.1, + "probability": 0.9323 + }, + { + "start": 32679.74, + "end": 32682.22, + "probability": 0.8587 + }, + { + "start": 32682.42, + "end": 32687.5, + "probability": 0.9932 + }, + { + "start": 32688.2, + "end": 32689.83, + "probability": 0.8875 + }, + { + "start": 32690.72, + "end": 32691.0, + "probability": 0.6944 + }, + { + "start": 32691.48, + "end": 32694.74, + "probability": 0.9983 + }, + { + "start": 32695.34, + "end": 32699.3, + "probability": 0.8735 + }, + { + "start": 32700.92, + "end": 32702.08, + "probability": 0.5633 + }, + { + "start": 32703.64, + "end": 32705.02, + "probability": 0.8754 + }, + { + "start": 32705.28, + "end": 32705.88, + "probability": 0.5415 + }, + { + "start": 32705.9, + "end": 32706.2, + "probability": 0.6151 + }, + { + "start": 32706.26, + "end": 32710.78, + "probability": 0.8883 + }, + { + "start": 32710.94, + "end": 32711.76, + "probability": 0.7966 + }, + { + "start": 32712.28, + "end": 32713.38, + "probability": 0.7367 + }, + { + "start": 32714.08, + "end": 32716.32, + "probability": 0.7893 + }, + { + "start": 32717.97, + "end": 32721.92, + "probability": 0.934 + }, + { + "start": 32723.0, + "end": 32724.16, + "probability": 0.5962 + }, + { + "start": 32724.3, + "end": 32726.88, + "probability": 0.6703 + }, + { + "start": 32727.12, + "end": 32729.08, + "probability": 0.9231 + }, + { + "start": 32729.78, + "end": 32733.32, + "probability": 0.9993 + }, + { + "start": 32733.86, + "end": 32735.5, + "probability": 0.6647 + }, + { + "start": 32736.54, + "end": 32738.24, + "probability": 0.9843 + }, + { + "start": 32738.72, + "end": 32741.34, + "probability": 0.8865 + }, + { + "start": 32741.44, + "end": 32742.38, + "probability": 0.8545 + }, + { + "start": 32743.38, + "end": 32743.86, + "probability": 0.6895 + }, + { + "start": 32744.38, + "end": 32745.16, + "probability": 0.7083 + }, + { + "start": 32745.42, + "end": 32748.64, + "probability": 0.967 + }, + { + "start": 32748.78, + "end": 32750.42, + "probability": 0.902 + }, + { + "start": 32750.6, + "end": 32752.3, + "probability": 0.852 + }, + { + "start": 32752.98, + "end": 32757.44, + "probability": 0.916 + }, + { + "start": 32757.96, + "end": 32758.64, + "probability": 0.1902 + }, + { + "start": 32759.16, + "end": 32762.14, + "probability": 0.7468 + }, + { + "start": 32762.84, + "end": 32764.32, + "probability": 0.7487 + }, + { + "start": 32765.12, + "end": 32766.38, + "probability": 0.7088 + }, + { + "start": 32767.4, + "end": 32767.88, + "probability": 0.5834 + }, + { + "start": 32768.5, + "end": 32771.16, + "probability": 0.0568 + }, + { + "start": 32784.66, + "end": 32789.0, + "probability": 0.1688 + }, + { + "start": 32789.54, + "end": 32789.68, + "probability": 0.0848 + }, + { + "start": 32790.73, + "end": 32791.92, + "probability": 0.0253 + }, + { + "start": 32792.08, + "end": 32792.58, + "probability": 0.0466 + }, + { + "start": 32792.58, + "end": 32793.68, + "probability": 0.5726 + }, + { + "start": 32793.9, + "end": 32796.94, + "probability": 0.5867 + }, + { + "start": 32800.1, + "end": 32801.44, + "probability": 0.2341 + }, + { + "start": 32801.44, + "end": 32804.0, + "probability": 0.0683 + }, + { + "start": 32805.44, + "end": 32805.92, + "probability": 0.0022 + }, + { + "start": 32807.38, + "end": 32812.5, + "probability": 0.1011 + }, + { + "start": 32823.16, + "end": 32823.64, + "probability": 0.2266 + }, + { + "start": 32824.8, + "end": 32829.2, + "probability": 0.0683 + }, + { + "start": 32830.48, + "end": 32831.56, + "probability": 0.0646 + }, + { + "start": 32836.32, + "end": 32836.96, + "probability": 0.1456 + }, + { + "start": 32841.71, + "end": 32844.3, + "probability": 0.0364 + }, + { + "start": 32845.98, + "end": 32847.25, + "probability": 0.0209 + }, + { + "start": 32848.08, + "end": 32849.96, + "probability": 0.0399 + }, + { + "start": 32850.12, + "end": 32851.81, + "probability": 0.0304 + }, + { + "start": 32868.0, + "end": 32868.0, + "probability": 0.0 + }, + { + "start": 32868.0, + "end": 32868.0, + "probability": 0.0 + }, + { + "start": 32868.0, + "end": 32868.0, + "probability": 0.0 + }, + { + "start": 32868.0, + "end": 32868.0, + "probability": 0.0 + }, + { + "start": 32868.0, + "end": 32868.0, + "probability": 0.0 + }, + { + "start": 32868.0, + "end": 32868.0, + "probability": 0.0 + }, + { + "start": 32868.0, + "end": 32868.0, + "probability": 0.0 + }, + { + "start": 32868.0, + "end": 32868.0, + "probability": 0.0 + }, + { + "start": 32868.16, + "end": 32871.2, + "probability": 0.0677 + }, + { + "start": 32871.2, + "end": 32874.96, + "probability": 0.0395 + }, + { + "start": 32874.96, + "end": 32875.29, + "probability": 0.0352 + }, + { + "start": 32884.15, + "end": 32885.52, + "probability": 0.038 + }, + { + "start": 32885.52, + "end": 32886.1, + "probability": 0.0594 + }, + { + "start": 32886.1, + "end": 32890.4, + "probability": 0.0792 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.0, + "end": 32988.0, + "probability": 0.0 + }, + { + "start": 32988.26, + "end": 32988.56, + "probability": 0.0475 + }, + { + "start": 32988.56, + "end": 32991.76, + "probability": 0.9888 + }, + { + "start": 32991.76, + "end": 32995.46, + "probability": 0.9883 + }, + { + "start": 32996.02, + "end": 33000.84, + "probability": 0.9429 + }, + { + "start": 33001.28, + "end": 33001.52, + "probability": 0.3508 + }, + { + "start": 33001.62, + "end": 33006.18, + "probability": 0.9895 + }, + { + "start": 33006.22, + "end": 33010.16, + "probability": 0.9219 + }, + { + "start": 33010.16, + "end": 33014.32, + "probability": 0.9845 + }, + { + "start": 33014.32, + "end": 33018.22, + "probability": 0.945 + }, + { + "start": 33018.87, + "end": 33025.2, + "probability": 0.9969 + }, + { + "start": 33025.2, + "end": 33031.26, + "probability": 0.9973 + }, + { + "start": 33031.8, + "end": 33034.84, + "probability": 0.9968 + }, + { + "start": 33034.84, + "end": 33038.66, + "probability": 0.997 + }, + { + "start": 33039.28, + "end": 33042.1, + "probability": 0.6501 + }, + { + "start": 33043.22, + "end": 33044.68, + "probability": 0.8921 + }, + { + "start": 33047.32, + "end": 33048.48, + "probability": 0.9075 + }, + { + "start": 33048.62, + "end": 33049.46, + "probability": 0.2273 + }, + { + "start": 33049.88, + "end": 33050.36, + "probability": 0.2664 + }, + { + "start": 33050.6, + "end": 33051.38, + "probability": 0.5912 + }, + { + "start": 33051.46, + "end": 33052.6, + "probability": 0.8058 + }, + { + "start": 33053.14, + "end": 33053.28, + "probability": 0.0532 + }, + { + "start": 33053.54, + "end": 33056.24, + "probability": 0.9905 + }, + { + "start": 33056.24, + "end": 33058.84, + "probability": 0.9955 + }, + { + "start": 33059.3, + "end": 33063.12, + "probability": 0.9878 + }, + { + "start": 33063.56, + "end": 33065.27, + "probability": 0.6965 + }, + { + "start": 33067.88, + "end": 33068.2, + "probability": 0.1804 + }, + { + "start": 33068.2, + "end": 33068.96, + "probability": 0.434 + }, + { + "start": 33069.02, + "end": 33070.18, + "probability": 0.8029 + }, + { + "start": 33070.66, + "end": 33073.34, + "probability": 0.9257 + }, + { + "start": 33073.34, + "end": 33075.9, + "probability": 0.9904 + }, + { + "start": 33076.32, + "end": 33077.36, + "probability": 0.9878 + }, + { + "start": 33077.88, + "end": 33081.56, + "probability": 0.9987 + }, + { + "start": 33081.56, + "end": 33085.46, + "probability": 0.9974 + }, + { + "start": 33086.64, + "end": 33087.78, + "probability": 0.7927 + }, + { + "start": 33088.68, + "end": 33091.04, + "probability": 0.9395 + }, + { + "start": 33091.74, + "end": 33095.22, + "probability": 0.998 + }, + { + "start": 33095.78, + "end": 33100.32, + "probability": 0.9891 + }, + { + "start": 33101.06, + "end": 33103.12, + "probability": 0.9409 + }, + { + "start": 33103.26, + "end": 33106.22, + "probability": 0.9631 + }, + { + "start": 33106.22, + "end": 33109.74, + "probability": 0.9986 + }, + { + "start": 33110.42, + "end": 33113.92, + "probability": 0.956 + }, + { + "start": 33113.92, + "end": 33118.03, + "probability": 0.9967 + }, + { + "start": 33118.74, + "end": 33122.9, + "probability": 0.9772 + }, + { + "start": 33123.54, + "end": 33127.22, + "probability": 0.9609 + }, + { + "start": 33127.76, + "end": 33133.42, + "probability": 0.9335 + }, + { + "start": 33133.52, + "end": 33137.34, + "probability": 0.9946 + }, + { + "start": 33137.34, + "end": 33140.64, + "probability": 0.9975 + }, + { + "start": 33141.2, + "end": 33141.68, + "probability": 0.6995 + }, + { + "start": 33141.8, + "end": 33144.55, + "probability": 0.8535 + }, + { + "start": 33145.15, + "end": 33145.96, + "probability": 0.2471 + }, + { + "start": 33146.28, + "end": 33146.28, + "probability": 0.0465 + }, + { + "start": 33146.28, + "end": 33146.76, + "probability": 0.4966 + }, + { + "start": 33146.78, + "end": 33151.13, + "probability": 0.9875 + }, + { + "start": 33151.94, + "end": 33154.92, + "probability": 0.0823 + }, + { + "start": 33155.14, + "end": 33156.02, + "probability": 0.1158 + }, + { + "start": 33156.08, + "end": 33156.42, + "probability": 0.0545 + }, + { + "start": 33156.42, + "end": 33157.25, + "probability": 0.1565 + }, + { + "start": 33157.34, + "end": 33157.9, + "probability": 0.7228 + }, + { + "start": 33158.56, + "end": 33162.12, + "probability": 0.9893 + }, + { + "start": 33162.56, + "end": 33165.34, + "probability": 0.9959 + }, + { + "start": 33165.9, + "end": 33170.2, + "probability": 0.8999 + }, + { + "start": 33170.78, + "end": 33175.26, + "probability": 0.8983 + }, + { + "start": 33175.52, + "end": 33177.52, + "probability": 0.3339 + }, + { + "start": 33179.54, + "end": 33181.38, + "probability": 0.6689 + }, + { + "start": 33182.48, + "end": 33183.14, + "probability": 0.5817 + }, + { + "start": 33183.26, + "end": 33184.46, + "probability": 0.0781 + }, + { + "start": 33184.62, + "end": 33185.26, + "probability": 0.7377 + }, + { + "start": 33186.18, + "end": 33189.48, + "probability": 0.9779 + }, + { + "start": 33189.48, + "end": 33194.46, + "probability": 0.9841 + }, + { + "start": 33194.96, + "end": 33195.4, + "probability": 0.5672 + }, + { + "start": 33195.48, + "end": 33196.94, + "probability": 0.9919 + }, + { + "start": 33197.08, + "end": 33201.24, + "probability": 0.9947 + }, + { + "start": 33201.76, + "end": 33206.62, + "probability": 0.9907 + }, + { + "start": 33207.08, + "end": 33210.94, + "probability": 0.9879 + }, + { + "start": 33210.94, + "end": 33214.9, + "probability": 0.9979 + }, + { + "start": 33215.48, + "end": 33220.46, + "probability": 0.9927 + }, + { + "start": 33220.46, + "end": 33224.72, + "probability": 0.9996 + }, + { + "start": 33225.22, + "end": 33228.84, + "probability": 0.9968 + }, + { + "start": 33229.04, + "end": 33231.82, + "probability": 0.9758 + }, + { + "start": 33232.36, + "end": 33237.02, + "probability": 0.9183 + }, + { + "start": 33237.12, + "end": 33237.56, + "probability": 0.7296 + }, + { + "start": 33238.26, + "end": 33240.16, + "probability": 0.9919 + }, + { + "start": 33240.3, + "end": 33242.94, + "probability": 0.8512 + }, + { + "start": 33243.0, + "end": 33246.54, + "probability": 0.6155 + }, + { + "start": 33246.54, + "end": 33247.0, + "probability": 0.715 + }, + { + "start": 33248.67, + "end": 33250.18, + "probability": 0.9765 + }, + { + "start": 33250.54, + "end": 33251.5, + "probability": 0.918 + }, + { + "start": 33251.58, + "end": 33252.82, + "probability": 0.998 + }, + { + "start": 33254.42, + "end": 33256.3, + "probability": 0.8493 + }, + { + "start": 33256.5, + "end": 33262.58, + "probability": 0.8599 + }, + { + "start": 33262.66, + "end": 33264.08, + "probability": 0.7118 + }, + { + "start": 33264.68, + "end": 33265.98, + "probability": 0.7589 + }, + { + "start": 33266.3, + "end": 33266.78, + "probability": 0.5308 + }, + { + "start": 33267.78, + "end": 33267.98, + "probability": 0.2848 + }, + { + "start": 33278.48, + "end": 33279.24, + "probability": 0.121 + }, + { + "start": 33280.0, + "end": 33285.2, + "probability": 0.6872 + }, + { + "start": 33285.36, + "end": 33286.34, + "probability": 0.1637 + }, + { + "start": 33286.36, + "end": 33287.66, + "probability": 0.3217 + }, + { + "start": 33290.2, + "end": 33293.65, + "probability": 0.5108 + }, + { + "start": 33296.82, + "end": 33296.98, + "probability": 0.0103 + }, + { + "start": 33301.76, + "end": 33308.92, + "probability": 0.4809 + }, + { + "start": 33309.96, + "end": 33314.42, + "probability": 0.0337 + }, + { + "start": 33316.62, + "end": 33317.7, + "probability": 0.0336 + }, + { + "start": 33319.52, + "end": 33319.78, + "probability": 0.0273 + }, + { + "start": 33322.74, + "end": 33323.78, + "probability": 0.0761 + }, + { + "start": 33326.72, + "end": 33330.04, + "probability": 0.0407 + }, + { + "start": 33330.04, + "end": 33335.62, + "probability": 0.1227 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.0, + "end": 33359.0, + "probability": 0.0 + }, + { + "start": 33359.14, + "end": 33359.94, + "probability": 0.0426 + }, + { + "start": 33360.62, + "end": 33361.78, + "probability": 0.9919 + }, + { + "start": 33361.92, + "end": 33362.22, + "probability": 0.9131 + }, + { + "start": 33362.28, + "end": 33362.7, + "probability": 0.9797 + }, + { + "start": 33362.74, + "end": 33363.28, + "probability": 0.622 + }, + { + "start": 33363.3, + "end": 33366.86, + "probability": 0.9879 + }, + { + "start": 33368.18, + "end": 33369.68, + "probability": 0.9814 + }, + { + "start": 33369.88, + "end": 33374.44, + "probability": 0.9844 + }, + { + "start": 33374.88, + "end": 33376.7, + "probability": 0.9906 + }, + { + "start": 33377.56, + "end": 33381.14, + "probability": 0.9967 + }, + { + "start": 33381.92, + "end": 33382.44, + "probability": 0.9034 + }, + { + "start": 33383.96, + "end": 33386.46, + "probability": 0.9925 + }, + { + "start": 33386.46, + "end": 33388.68, + "probability": 0.9953 + }, + { + "start": 33389.3, + "end": 33391.3, + "probability": 0.974 + }, + { + "start": 33391.36, + "end": 33394.6, + "probability": 0.9977 + }, + { + "start": 33395.32, + "end": 33397.12, + "probability": 0.9049 + }, + { + "start": 33397.26, + "end": 33399.18, + "probability": 0.797 + }, + { + "start": 33400.88, + "end": 33401.16, + "probability": 0.6324 + }, + { + "start": 33401.88, + "end": 33405.44, + "probability": 0.9969 + }, + { + "start": 33405.88, + "end": 33407.38, + "probability": 0.9775 + }, + { + "start": 33407.64, + "end": 33408.3, + "probability": 0.8557 + }, + { + "start": 33408.96, + "end": 33409.5, + "probability": 0.8734 + }, + { + "start": 33409.62, + "end": 33412.78, + "probability": 0.9918 + }, + { + "start": 33412.78, + "end": 33416.98, + "probability": 0.9948 + }, + { + "start": 33417.32, + "end": 33421.32, + "probability": 0.9971 + }, + { + "start": 33423.36, + "end": 33425.56, + "probability": 0.9945 + }, + { + "start": 33425.64, + "end": 33427.94, + "probability": 0.9948 + }, + { + "start": 33428.5, + "end": 33432.02, + "probability": 0.9966 + }, + { + "start": 33432.58, + "end": 33435.12, + "probability": 0.9971 + }, + { + "start": 33435.12, + "end": 33438.02, + "probability": 0.9998 + }, + { + "start": 33438.4, + "end": 33441.84, + "probability": 0.9974 + }, + { + "start": 33441.84, + "end": 33445.76, + "probability": 0.9928 + }, + { + "start": 33446.06, + "end": 33449.14, + "probability": 0.9901 + }, + { + "start": 33453.16, + "end": 33456.36, + "probability": 0.9937 + }, + { + "start": 33456.36, + "end": 33459.9, + "probability": 0.9929 + }, + { + "start": 33460.28, + "end": 33464.82, + "probability": 0.9907 + }, + { + "start": 33466.46, + "end": 33468.68, + "probability": 0.985 + }, + { + "start": 33468.68, + "end": 33470.76, + "probability": 0.9065 + }, + { + "start": 33470.84, + "end": 33473.06, + "probability": 0.968 + }, + { + "start": 33473.72, + "end": 33476.86, + "probability": 0.9989 + }, + { + "start": 33476.86, + "end": 33479.7, + "probability": 0.9967 + }, + { + "start": 33479.8, + "end": 33483.08, + "probability": 0.9997 + }, + { + "start": 33484.48, + "end": 33485.96, + "probability": 0.9926 + }, + { + "start": 33489.72, + "end": 33493.02, + "probability": 0.9912 + }, + { + "start": 33493.02, + "end": 33495.74, + "probability": 0.984 + }, + { + "start": 33495.86, + "end": 33499.7, + "probability": 0.9951 + }, + { + "start": 33500.14, + "end": 33502.76, + "probability": 0.9123 + }, + { + "start": 33503.24, + "end": 33506.12, + "probability": 0.9976 + }, + { + "start": 33506.6, + "end": 33509.36, + "probability": 0.9736 + }, + { + "start": 33509.36, + "end": 33511.84, + "probability": 0.9973 + }, + { + "start": 33513.24, + "end": 33513.66, + "probability": 0.5571 + }, + { + "start": 33513.7, + "end": 33517.38, + "probability": 0.9969 + }, + { + "start": 33517.38, + "end": 33522.18, + "probability": 0.9963 + }, + { + "start": 33522.18, + "end": 33525.98, + "probability": 0.9889 + }, + { + "start": 33525.98, + "end": 33529.16, + "probability": 0.9947 + }, + { + "start": 33529.16, + "end": 33532.58, + "probability": 0.9743 + }, + { + "start": 33533.7, + "end": 33536.2, + "probability": 0.9954 + }, + { + "start": 33536.2, + "end": 33538.8, + "probability": 0.997 + }, + { + "start": 33539.22, + "end": 33542.63, + "probability": 0.9717 + }, + { + "start": 33544.36, + "end": 33546.06, + "probability": 0.9338 + }, + { + "start": 33546.9, + "end": 33547.86, + "probability": 0.7403 + }, + { + "start": 33548.3, + "end": 33550.08, + "probability": 0.6519 + }, + { + "start": 33550.1, + "end": 33554.06, + "probability": 0.9909 + }, + { + "start": 33554.2, + "end": 33561.98, + "probability": 0.9925 + }, + { + "start": 33562.24, + "end": 33566.84, + "probability": 0.9795 + }, + { + "start": 33566.94, + "end": 33567.72, + "probability": 0.5534 + }, + { + "start": 33568.16, + "end": 33569.47, + "probability": 0.9861 + }, + { + "start": 33570.48, + "end": 33572.44, + "probability": 0.2338 + }, + { + "start": 33572.56, + "end": 33574.0, + "probability": 0.479 + }, + { + "start": 33574.42, + "end": 33576.3, + "probability": 0.5749 + }, + { + "start": 33576.9, + "end": 33577.46, + "probability": 0.3052 + }, + { + "start": 33577.56, + "end": 33580.1, + "probability": 0.3275 + }, + { + "start": 33580.66, + "end": 33580.66, + "probability": 0.439 + }, + { + "start": 33580.66, + "end": 33580.66, + "probability": 0.3218 + }, + { + "start": 33580.78, + "end": 33581.74, + "probability": 0.5071 + }, + { + "start": 33581.82, + "end": 33582.18, + "probability": 0.4035 + }, + { + "start": 33585.1, + "end": 33586.16, + "probability": 0.037 + }, + { + "start": 33586.16, + "end": 33586.32, + "probability": 0.1236 + }, + { + "start": 33586.34, + "end": 33589.72, + "probability": 0.5414 + }, + { + "start": 33589.82, + "end": 33590.42, + "probability": 0.5694 + }, + { + "start": 33590.58, + "end": 33591.5, + "probability": 0.7212 + }, + { + "start": 33591.62, + "end": 33591.98, + "probability": 0.6304 + }, + { + "start": 33592.18, + "end": 33592.84, + "probability": 0.8942 + }, + { + "start": 33592.9, + "end": 33593.58, + "probability": 0.7828 + }, + { + "start": 33593.7, + "end": 33594.1, + "probability": 0.8328 + }, + { + "start": 33594.5, + "end": 33594.94, + "probability": 0.3717 + }, + { + "start": 33594.94, + "end": 33598.42, + "probability": 0.8504 + }, + { + "start": 33598.68, + "end": 33600.36, + "probability": 0.9102 + }, + { + "start": 33600.4, + "end": 33600.86, + "probability": 0.3986 + }, + { + "start": 33600.94, + "end": 33601.3, + "probability": 0.6807 + }, + { + "start": 33601.42, + "end": 33602.44, + "probability": 0.9474 + }, + { + "start": 33602.64, + "end": 33602.98, + "probability": 0.726 + }, + { + "start": 33603.28, + "end": 33604.0, + "probability": 0.6557 + }, + { + "start": 33604.0, + "end": 33605.42, + "probability": 0.9437 + }, + { + "start": 33605.74, + "end": 33607.76, + "probability": 0.9976 + }, + { + "start": 33607.82, + "end": 33608.66, + "probability": 0.6934 + }, + { + "start": 33609.58, + "end": 33611.39, + "probability": 0.7231 + }, + { + "start": 33611.68, + "end": 33617.46, + "probability": 0.8724 + }, + { + "start": 33617.72, + "end": 33619.2, + "probability": 0.7607 + }, + { + "start": 33621.84, + "end": 33622.6, + "probability": 0.4914 + }, + { + "start": 33622.68, + "end": 33626.3, + "probability": 0.9305 + }, + { + "start": 33626.8, + "end": 33627.68, + "probability": 0.6017 + }, + { + "start": 33628.22, + "end": 33632.34, + "probability": 0.9574 + }, + { + "start": 33632.52, + "end": 33636.54, + "probability": 0.989 + }, + { + "start": 33636.8, + "end": 33639.54, + "probability": 0.9252 + }, + { + "start": 33640.16, + "end": 33641.97, + "probability": 0.9839 + }, + { + "start": 33642.34, + "end": 33643.1, + "probability": 0.9907 + }, + { + "start": 33643.9, + "end": 33645.2, + "probability": 0.9927 + }, + { + "start": 33645.3, + "end": 33651.04, + "probability": 0.989 + }, + { + "start": 33651.26, + "end": 33653.62, + "probability": 0.9163 + }, + { + "start": 33653.7, + "end": 33658.27, + "probability": 0.9951 + }, + { + "start": 33659.6, + "end": 33660.18, + "probability": 0.9751 + }, + { + "start": 33660.98, + "end": 33661.56, + "probability": 0.8659 + }, + { + "start": 33661.76, + "end": 33663.57, + "probability": 0.9893 + }, + { + "start": 33663.82, + "end": 33665.69, + "probability": 0.8067 + }, + { + "start": 33666.12, + "end": 33667.16, + "probability": 0.8605 + }, + { + "start": 33667.58, + "end": 33669.2, + "probability": 0.7458 + }, + { + "start": 33669.92, + "end": 33671.92, + "probability": 0.8145 + }, + { + "start": 33672.08, + "end": 33673.84, + "probability": 0.9072 + }, + { + "start": 33673.96, + "end": 33677.04, + "probability": 0.9779 + }, + { + "start": 33677.4, + "end": 33681.61, + "probability": 0.8297 + }, + { + "start": 33682.98, + "end": 33685.6, + "probability": 0.9628 + }, + { + "start": 33686.08, + "end": 33688.8, + "probability": 0.9535 + }, + { + "start": 33689.28, + "end": 33690.86, + "probability": 0.7363 + }, + { + "start": 33690.96, + "end": 33692.24, + "probability": 0.8104 + }, + { + "start": 33692.32, + "end": 33692.52, + "probability": 0.6625 + }, + { + "start": 33692.54, + "end": 33694.16, + "probability": 0.8652 + }, + { + "start": 33694.26, + "end": 33696.4, + "probability": 0.6713 + }, + { + "start": 33696.98, + "end": 33699.7, + "probability": 0.9004 + }, + { + "start": 33700.78, + "end": 33706.02, + "probability": 0.9706 + }, + { + "start": 33708.18, + "end": 33711.38, + "probability": 0.9995 + }, + { + "start": 33711.46, + "end": 33714.2, + "probability": 0.9975 + }, + { + "start": 33714.76, + "end": 33717.06, + "probability": 0.8617 + }, + { + "start": 33717.78, + "end": 33719.36, + "probability": 0.8469 + }, + { + "start": 33719.88, + "end": 33720.42, + "probability": 0.8147 + }, + { + "start": 33720.54, + "end": 33724.92, + "probability": 0.9954 + }, + { + "start": 33725.62, + "end": 33725.84, + "probability": 0.7268 + }, + { + "start": 33726.68, + "end": 33728.16, + "probability": 0.9629 + }, + { + "start": 33728.22, + "end": 33730.84, + "probability": 0.9675 + }, + { + "start": 33739.48, + "end": 33741.58, + "probability": 0.7107 + }, + { + "start": 33741.7, + "end": 33744.48, + "probability": 0.9575 + }, + { + "start": 33745.26, + "end": 33747.18, + "probability": 0.9863 + }, + { + "start": 33747.98, + "end": 33749.34, + "probability": 0.5941 + }, + { + "start": 33749.46, + "end": 33750.11, + "probability": 0.8584 + }, + { + "start": 33750.82, + "end": 33752.2, + "probability": 0.9181 + }, + { + "start": 33752.26, + "end": 33752.78, + "probability": 0.9351 + }, + { + "start": 33752.84, + "end": 33753.88, + "probability": 0.9135 + }, + { + "start": 33754.0, + "end": 33757.42, + "probability": 0.9956 + }, + { + "start": 33757.66, + "end": 33762.06, + "probability": 0.983 + }, + { + "start": 33762.06, + "end": 33767.22, + "probability": 0.8985 + }, + { + "start": 33767.34, + "end": 33769.06, + "probability": 0.439 + }, + { + "start": 33770.21, + "end": 33774.96, + "probability": 0.9723 + }, + { + "start": 33775.44, + "end": 33778.14, + "probability": 0.3054 + }, + { + "start": 33778.34, + "end": 33779.04, + "probability": 0.1754 + }, + { + "start": 33779.34, + "end": 33780.98, + "probability": 0.7474 + }, + { + "start": 33781.12, + "end": 33781.54, + "probability": 0.7971 + }, + { + "start": 33781.62, + "end": 33783.18, + "probability": 0.531 + }, + { + "start": 33783.44, + "end": 33783.6, + "probability": 0.3538 + }, + { + "start": 33783.8, + "end": 33786.9, + "probability": 0.6426 + }, + { + "start": 33787.02, + "end": 33788.72, + "probability": 0.8749 + }, + { + "start": 33790.08, + "end": 33791.58, + "probability": 0.9102 + }, + { + "start": 33793.14, + "end": 33795.98, + "probability": 0.9332 + }, + { + "start": 33796.5, + "end": 33797.34, + "probability": 0.9547 + }, + { + "start": 33798.36, + "end": 33800.72, + "probability": 0.9919 + }, + { + "start": 33801.38, + "end": 33803.3, + "probability": 0.9897 + }, + { + "start": 33804.22, + "end": 33806.76, + "probability": 0.9485 + }, + { + "start": 33807.86, + "end": 33808.86, + "probability": 0.5635 + }, + { + "start": 33809.04, + "end": 33817.08, + "probability": 0.9718 + }, + { + "start": 33817.88, + "end": 33822.78, + "probability": 0.9041 + }, + { + "start": 33822.96, + "end": 33824.0, + "probability": 0.9842 + }, + { + "start": 33824.12, + "end": 33825.0, + "probability": 0.8989 + }, + { + "start": 33825.06, + "end": 33826.2, + "probability": 0.9708 + }, + { + "start": 33826.52, + "end": 33827.08, + "probability": 0.9242 + }, + { + "start": 33828.12, + "end": 33830.42, + "probability": 0.9906 + }, + { + "start": 33831.46, + "end": 33835.1, + "probability": 0.9685 + }, + { + "start": 33836.08, + "end": 33836.08, + "probability": 0.9546 + }, + { + "start": 33836.62, + "end": 33839.9, + "probability": 0.988 + }, + { + "start": 33840.52, + "end": 33842.1, + "probability": 0.8517 + }, + { + "start": 33843.0, + "end": 33844.68, + "probability": 0.7576 + }, + { + "start": 33844.78, + "end": 33845.6, + "probability": 0.6441 + }, + { + "start": 33846.02, + "end": 33847.1, + "probability": 0.979 + }, + { + "start": 33847.34, + "end": 33851.96, + "probability": 0.9984 + }, + { + "start": 33852.34, + "end": 33853.56, + "probability": 0.9644 + }, + { + "start": 33853.64, + "end": 33854.46, + "probability": 0.9019 + }, + { + "start": 33854.96, + "end": 33856.8, + "probability": 0.94 + }, + { + "start": 33857.26, + "end": 33858.12, + "probability": 0.9442 + }, + { + "start": 33858.2, + "end": 33860.48, + "probability": 0.9966 + }, + { + "start": 33860.98, + "end": 33862.46, + "probability": 0.703 + }, + { + "start": 33862.8, + "end": 33865.4, + "probability": 0.9886 + }, + { + "start": 33866.1, + "end": 33868.54, + "probability": 0.7511 + }, + { + "start": 33868.54, + "end": 33871.28, + "probability": 0.8409 + }, + { + "start": 33871.4, + "end": 33872.04, + "probability": 0.8302 + }, + { + "start": 33872.42, + "end": 33874.06, + "probability": 0.9903 + }, + { + "start": 33875.1, + "end": 33876.0, + "probability": 0.6483 + }, + { + "start": 33877.1, + "end": 33878.5, + "probability": 0.9919 + }, + { + "start": 33878.5, + "end": 33879.32, + "probability": 0.79 + }, + { + "start": 33879.32, + "end": 33881.28, + "probability": 0.9979 + }, + { + "start": 33881.34, + "end": 33885.48, + "probability": 0.7329 + }, + { + "start": 33885.8, + "end": 33887.96, + "probability": 0.5264 + }, + { + "start": 33889.08, + "end": 33889.99, + "probability": 0.0952 + }, + { + "start": 33891.12, + "end": 33891.84, + "probability": 0.3277 + }, + { + "start": 33893.04, + "end": 33893.24, + "probability": 0.3702 + }, + { + "start": 33917.58, + "end": 33920.56, + "probability": 0.8109 + }, + { + "start": 33920.68, + "end": 33921.14, + "probability": 0.6481 + }, + { + "start": 33922.32, + "end": 33924.56, + "probability": 0.6603 + }, + { + "start": 33924.78, + "end": 33926.02, + "probability": 0.707 + }, + { + "start": 33926.06, + "end": 33930.74, + "probability": 0.879 + }, + { + "start": 33930.88, + "end": 33932.7, + "probability": 0.2713 + }, + { + "start": 33932.74, + "end": 33933.16, + "probability": 0.6895 + }, + { + "start": 33934.9, + "end": 33936.24, + "probability": 0.4593 + }, + { + "start": 33938.02, + "end": 33938.6, + "probability": 0.6474 + }, + { + "start": 33939.72, + "end": 33939.94, + "probability": 0.2449 + }, + { + "start": 33951.46, + "end": 33952.02, + "probability": 0.0891 + }, + { + "start": 33954.7, + "end": 33956.88, + "probability": 0.7485 + }, + { + "start": 33957.84, + "end": 33959.86, + "probability": 0.1543 + }, + { + "start": 33959.98, + "end": 33960.94, + "probability": 0.5083 + }, + { + "start": 33961.57, + "end": 33964.08, + "probability": 0.7318 + }, + { + "start": 33965.38, + "end": 33965.94, + "probability": 0.0386 + }, + { + "start": 33965.94, + "end": 33967.22, + "probability": 0.0292 + }, + { + "start": 33969.02, + "end": 33970.14, + "probability": 0.1376 + }, + { + "start": 33970.16, + "end": 33971.92, + "probability": 0.0959 + }, + { + "start": 33972.52, + "end": 33973.4, + "probability": 0.0005 + }, + { + "start": 33976.45, + "end": 33977.3, + "probability": 0.0195 + }, + { + "start": 33978.12, + "end": 33981.12, + "probability": 0.4001 + }, + { + "start": 33981.98, + "end": 33985.6, + "probability": 0.4598 + }, + { + "start": 33986.38, + "end": 33988.5, + "probability": 0.102 + }, + { + "start": 33988.5, + "end": 33988.62, + "probability": 0.2582 + }, + { + "start": 33988.86, + "end": 33992.79, + "probability": 0.1057 + }, + { + "start": 33996.42, + "end": 33999.66, + "probability": 0.0434 + }, + { + "start": 34000.0, + "end": 34000.0, + "probability": 0.0 + }, + { + "start": 34000.0, + "end": 34000.0, + "probability": 0.0 + }, + { + "start": 34000.0, + "end": 34000.0, + "probability": 0.0 + }, + { + "start": 34000.0, + "end": 34000.0, + "probability": 0.0 + }, + { + "start": 34000.0, + "end": 34000.0, + "probability": 0.0 + }, + { + "start": 34000.0, + "end": 34000.0, + "probability": 0.0 + }, + { + "start": 34000.0, + "end": 34000.0, + "probability": 0.0 + }, + { + "start": 34000.0, + "end": 34000.0, + "probability": 0.0 + }, + { + "start": 34000.0, + "end": 34000.0, + "probability": 0.0 + }, + { + "start": 34000.58, + "end": 34001.32, + "probability": 0.6201 + }, + { + "start": 34001.86, + "end": 34004.04, + "probability": 0.6691 + }, + { + "start": 34004.8, + "end": 34006.62, + "probability": 0.8719 + }, + { + "start": 34011.46, + "end": 34012.32, + "probability": 0.8236 + }, + { + "start": 34013.16, + "end": 34015.98, + "probability": 0.9904 + }, + { + "start": 34016.78, + "end": 34020.32, + "probability": 0.9677 + }, + { + "start": 34021.36, + "end": 34021.74, + "probability": 0.7502 + }, + { + "start": 34021.92, + "end": 34023.26, + "probability": 0.9846 + }, + { + "start": 34023.44, + "end": 34025.92, + "probability": 0.9844 + }, + { + "start": 34026.86, + "end": 34029.48, + "probability": 0.9887 + }, + { + "start": 34030.24, + "end": 34034.18, + "probability": 0.8803 + }, + { + "start": 34034.64, + "end": 34037.56, + "probability": 0.9741 + }, + { + "start": 34039.26, + "end": 34039.48, + "probability": 0.6887 + }, + { + "start": 34040.6, + "end": 34041.18, + "probability": 0.8275 + }, + { + "start": 34041.36, + "end": 34043.9, + "probability": 0.9959 + }, + { + "start": 34044.82, + "end": 34046.84, + "probability": 0.992 + }, + { + "start": 34047.9, + "end": 34051.12, + "probability": 0.9636 + }, + { + "start": 34051.56, + "end": 34054.36, + "probability": 0.9519 + }, + { + "start": 34055.64, + "end": 34058.1, + "probability": 0.8979 + }, + { + "start": 34058.18, + "end": 34061.28, + "probability": 0.9725 + }, + { + "start": 34063.28, + "end": 34066.6, + "probability": 0.8169 + }, + { + "start": 34066.74, + "end": 34069.16, + "probability": 0.9507 + }, + { + "start": 34069.92, + "end": 34071.9, + "probability": 0.9676 + }, + { + "start": 34073.1, + "end": 34076.9, + "probability": 0.9917 + }, + { + "start": 34076.98, + "end": 34079.0, + "probability": 0.9882 + }, + { + "start": 34079.72, + "end": 34081.96, + "probability": 0.9368 + }, + { + "start": 34081.96, + "end": 34084.04, + "probability": 0.9972 + }, + { + "start": 34085.64, + "end": 34089.38, + "probability": 0.9427 + }, + { + "start": 34089.38, + "end": 34094.38, + "probability": 0.9938 + }, + { + "start": 34095.22, + "end": 34096.36, + "probability": 0.8728 + }, + { + "start": 34098.46, + "end": 34102.92, + "probability": 0.9868 + }, + { + "start": 34103.14, + "end": 34106.38, + "probability": 0.9044 + }, + { + "start": 34106.92, + "end": 34108.98, + "probability": 0.5403 + }, + { + "start": 34109.14, + "end": 34112.02, + "probability": 0.9336 + }, + { + "start": 34112.74, + "end": 34116.08, + "probability": 0.9463 + }, + { + "start": 34116.08, + "end": 34118.46, + "probability": 0.9722 + }, + { + "start": 34118.84, + "end": 34121.16, + "probability": 0.9433 + }, + { + "start": 34121.74, + "end": 34123.06, + "probability": 0.8896 + }, + { + "start": 34123.18, + "end": 34125.64, + "probability": 0.8484 + }, + { + "start": 34126.16, + "end": 34129.14, + "probability": 0.9973 + }, + { + "start": 34129.32, + "end": 34129.78, + "probability": 0.4013 + }, + { + "start": 34129.82, + "end": 34132.22, + "probability": 0.9696 + }, + { + "start": 34132.22, + "end": 34133.42, + "probability": 0.9406 + }, + { + "start": 34133.52, + "end": 34135.7, + "probability": 0.9302 + }, + { + "start": 34135.8, + "end": 34136.66, + "probability": 0.9362 + }, + { + "start": 34137.0, + "end": 34139.44, + "probability": 0.98 + }, + { + "start": 34140.74, + "end": 34143.54, + "probability": 0.9902 + }, + { + "start": 34143.62, + "end": 34147.82, + "probability": 0.9961 + }, + { + "start": 34148.9, + "end": 34152.1, + "probability": 0.8537 + }, + { + "start": 34153.3, + "end": 34156.7, + "probability": 0.9957 + }, + { + "start": 34157.38, + "end": 34159.04, + "probability": 0.883 + }, + { + "start": 34159.7, + "end": 34161.94, + "probability": 0.999 + }, + { + "start": 34162.1, + "end": 34164.08, + "probability": 0.9982 + }, + { + "start": 34164.46, + "end": 34164.94, + "probability": 0.9889 + }, + { + "start": 34166.56, + "end": 34171.2, + "probability": 0.9122 + }, + { + "start": 34171.2, + "end": 34175.94, + "probability": 0.9943 + }, + { + "start": 34176.84, + "end": 34182.82, + "probability": 0.9818 + }, + { + "start": 34183.3, + "end": 34185.56, + "probability": 0.9146 + }, + { + "start": 34185.68, + "end": 34187.46, + "probability": 0.7772 + }, + { + "start": 34187.94, + "end": 34191.6, + "probability": 0.938 + }, + { + "start": 34192.78, + "end": 34194.12, + "probability": 0.9494 + }, + { + "start": 34194.18, + "end": 34196.82, + "probability": 0.7616 + }, + { + "start": 34196.9, + "end": 34197.4, + "probability": 0.6592 + }, + { + "start": 34197.6, + "end": 34203.04, + "probability": 0.9965 + }, + { + "start": 34205.22, + "end": 34209.58, + "probability": 0.7518 + }, + { + "start": 34211.86, + "end": 34212.86, + "probability": 0.9882 + }, + { + "start": 34213.06, + "end": 34213.34, + "probability": 0.8655 + }, + { + "start": 34213.6, + "end": 34217.28, + "probability": 0.952 + }, + { + "start": 34217.34, + "end": 34219.46, + "probability": 0.9483 + }, + { + "start": 34219.88, + "end": 34221.38, + "probability": 0.7629 + }, + { + "start": 34222.2, + "end": 34225.1, + "probability": 0.9302 + }, + { + "start": 34225.58, + "end": 34227.45, + "probability": 0.9807 + }, + { + "start": 34227.86, + "end": 34233.5, + "probability": 0.979 + }, + { + "start": 34233.5, + "end": 34235.9, + "probability": 0.996 + }, + { + "start": 34236.08, + "end": 34238.11, + "probability": 0.9961 + }, + { + "start": 34238.64, + "end": 34243.69, + "probability": 0.9883 + }, + { + "start": 34244.3, + "end": 34245.52, + "probability": 0.9541 + }, + { + "start": 34245.62, + "end": 34246.14, + "probability": 0.783 + }, + { + "start": 34246.24, + "end": 34248.28, + "probability": 0.8654 + }, + { + "start": 34248.28, + "end": 34250.5, + "probability": 0.9993 + }, + { + "start": 34250.56, + "end": 34253.18, + "probability": 0.7695 + }, + { + "start": 34253.5, + "end": 34254.0, + "probability": 0.8789 + }, + { + "start": 34254.16, + "end": 34254.64, + "probability": 0.6675 + }, + { + "start": 34255.06, + "end": 34257.48, + "probability": 0.9806 + }, + { + "start": 34257.54, + "end": 34258.24, + "probability": 0.9585 + }, + { + "start": 34258.78, + "end": 34261.48, + "probability": 0.9917 + }, + { + "start": 34261.64, + "end": 34262.52, + "probability": 0.834 + }, + { + "start": 34262.98, + "end": 34263.82, + "probability": 0.9162 + }, + { + "start": 34263.98, + "end": 34264.26, + "probability": 0.7217 + }, + { + "start": 34264.3, + "end": 34264.64, + "probability": 0.5792 + }, + { + "start": 34265.58, + "end": 34269.44, + "probability": 0.9552 + }, + { + "start": 34269.48, + "end": 34273.06, + "probability": 0.9083 + }, + { + "start": 34273.64, + "end": 34273.88, + "probability": 0.6811 + }, + { + "start": 34273.9, + "end": 34274.11, + "probability": 0.2028 + }, + { + "start": 34275.28, + "end": 34276.52, + "probability": 0.2211 + }, + { + "start": 34276.52, + "end": 34278.16, + "probability": 0.958 + }, + { + "start": 34278.42, + "end": 34280.88, + "probability": 0.9145 + }, + { + "start": 34281.14, + "end": 34283.14, + "probability": 0.2949 + }, + { + "start": 34305.22, + "end": 34307.96, + "probability": 0.6293 + }, + { + "start": 34307.96, + "end": 34308.46, + "probability": 0.8234 + }, + { + "start": 34309.24, + "end": 34309.46, + "probability": 0.7031 + }, + { + "start": 34309.54, + "end": 34310.38, + "probability": 0.6267 + }, + { + "start": 34310.44, + "end": 34311.18, + "probability": 0.9655 + }, + { + "start": 34311.32, + "end": 34311.58, + "probability": 0.6957 + }, + { + "start": 34311.66, + "end": 34313.44, + "probability": 0.7026 + }, + { + "start": 34313.44, + "end": 34313.62, + "probability": 0.0275 + }, + { + "start": 34315.78, + "end": 34318.86, + "probability": 0.4149 + }, + { + "start": 34319.18, + "end": 34321.28, + "probability": 0.9621 + }, + { + "start": 34322.3, + "end": 34323.86, + "probability": 0.8759 + }, + { + "start": 34323.92, + "end": 34325.88, + "probability": 0.9937 + }, + { + "start": 34327.02, + "end": 34330.38, + "probability": 0.9902 + }, + { + "start": 34331.28, + "end": 34333.18, + "probability": 0.6496 + }, + { + "start": 34333.68, + "end": 34335.7, + "probability": 0.567 + }, + { + "start": 34335.98, + "end": 34335.98, + "probability": 0.0645 + }, + { + "start": 34335.98, + "end": 34335.98, + "probability": 0.2835 + }, + { + "start": 34335.98, + "end": 34339.48, + "probability": 0.9307 + }, + { + "start": 34339.76, + "end": 34345.16, + "probability": 0.9657 + }, + { + "start": 34345.32, + "end": 34346.88, + "probability": 0.9872 + }, + { + "start": 34347.56, + "end": 34348.52, + "probability": 0.6856 + }, + { + "start": 34348.62, + "end": 34351.49, + "probability": 0.9411 + }, + { + "start": 34352.12, + "end": 34352.72, + "probability": 0.2394 + }, + { + "start": 34352.9, + "end": 34353.62, + "probability": 0.6976 + }, + { + "start": 34353.96, + "end": 34354.89, + "probability": 0.8296 + }, + { + "start": 34355.34, + "end": 34358.6, + "probability": 0.9648 + }, + { + "start": 34359.16, + "end": 34362.34, + "probability": 0.9891 + }, + { + "start": 34362.48, + "end": 34363.61, + "probability": 0.9859 + }, + { + "start": 34364.12, + "end": 34369.78, + "probability": 0.6875 + }, + { + "start": 34370.08, + "end": 34372.73, + "probability": 0.8734 + }, + { + "start": 34373.52, + "end": 34374.72, + "probability": 0.5701 + }, + { + "start": 34375.72, + "end": 34378.74, + "probability": 0.8441 + }, + { + "start": 34379.56, + "end": 34380.92, + "probability": 0.9946 + }, + { + "start": 34380.98, + "end": 34382.59, + "probability": 0.5798 + }, + { + "start": 34382.8, + "end": 34383.3, + "probability": 0.952 + }, + { + "start": 34383.98, + "end": 34385.75, + "probability": 0.8056 + }, + { + "start": 34386.54, + "end": 34389.6, + "probability": 0.813 + }, + { + "start": 34390.12, + "end": 34392.84, + "probability": 0.9233 + }, + { + "start": 34393.28, + "end": 34395.49, + "probability": 0.9917 + }, + { + "start": 34396.62, + "end": 34398.12, + "probability": 0.9956 + }, + { + "start": 34398.86, + "end": 34401.34, + "probability": 0.8848 + }, + { + "start": 34401.68, + "end": 34402.36, + "probability": 0.8352 + }, + { + "start": 34402.42, + "end": 34402.86, + "probability": 0.7775 + }, + { + "start": 34402.88, + "end": 34405.37, + "probability": 0.9141 + }, + { + "start": 34407.02, + "end": 34407.6, + "probability": 0.7404 + }, + { + "start": 34407.92, + "end": 34408.86, + "probability": 0.9857 + }, + { + "start": 34409.38, + "end": 34412.28, + "probability": 0.5523 + }, + { + "start": 34413.4, + "end": 34417.36, + "probability": 0.998 + }, + { + "start": 34417.36, + "end": 34420.5, + "probability": 0.9683 + }, + { + "start": 34420.66, + "end": 34421.26, + "probability": 0.7152 + }, + { + "start": 34421.36, + "end": 34422.94, + "probability": 0.6793 + }, + { + "start": 34423.48, + "end": 34424.48, + "probability": 0.9845 + }, + { + "start": 34424.78, + "end": 34425.46, + "probability": 0.8151 + }, + { + "start": 34425.66, + "end": 34430.35, + "probability": 0.9246 + }, + { + "start": 34431.66, + "end": 34433.74, + "probability": 0.9144 + }, + { + "start": 34434.38, + "end": 34439.16, + "probability": 0.9842 + }, + { + "start": 34440.26, + "end": 34445.14, + "probability": 0.9782 + }, + { + "start": 34445.62, + "end": 34446.78, + "probability": 0.4698 + }, + { + "start": 34446.86, + "end": 34447.47, + "probability": 0.9086 + }, + { + "start": 34448.2, + "end": 34453.32, + "probability": 0.901 + }, + { + "start": 34453.52, + "end": 34454.48, + "probability": 0.757 + }, + { + "start": 34454.84, + "end": 34457.06, + "probability": 0.9487 + }, + { + "start": 34458.32, + "end": 34461.82, + "probability": 0.974 + }, + { + "start": 34462.18, + "end": 34463.32, + "probability": 0.9374 + }, + { + "start": 34463.42, + "end": 34464.06, + "probability": 0.9696 + }, + { + "start": 34464.08, + "end": 34465.52, + "probability": 0.7528 + }, + { + "start": 34466.62, + "end": 34469.66, + "probability": 0.8105 + }, + { + "start": 34470.06, + "end": 34472.34, + "probability": 0.9123 + }, + { + "start": 34472.36, + "end": 34472.5, + "probability": 0.3405 + }, + { + "start": 34473.7, + "end": 34473.96, + "probability": 0.4386 + }, + { + "start": 34476.46, + "end": 34476.62, + "probability": 0.0605 + }, + { + "start": 34476.62, + "end": 34479.29, + "probability": 0.4246 + }, + { + "start": 34480.12, + "end": 34481.76, + "probability": 0.995 + }, + { + "start": 34481.76, + "end": 34484.56, + "probability": 0.7511 + }, + { + "start": 34485.52, + "end": 34488.0, + "probability": 0.9086 + }, + { + "start": 34488.84, + "end": 34490.04, + "probability": 0.8359 + }, + { + "start": 34490.22, + "end": 34493.32, + "probability": 0.9929 + }, + { + "start": 34493.84, + "end": 34495.18, + "probability": 0.6956 + }, + { + "start": 34495.96, + "end": 34497.04, + "probability": 0.9839 + }, + { + "start": 34497.16, + "end": 34498.52, + "probability": 0.9882 + }, + { + "start": 34498.8, + "end": 34498.94, + "probability": 0.0076 + }, + { + "start": 34499.82, + "end": 34501.82, + "probability": 0.7364 + }, + { + "start": 34501.86, + "end": 34502.78, + "probability": 0.6666 + }, + { + "start": 34503.46, + "end": 34504.98, + "probability": 0.9753 + }, + { + "start": 34505.46, + "end": 34508.12, + "probability": 0.7474 + }, + { + "start": 34508.38, + "end": 34509.86, + "probability": 0.7352 + }, + { + "start": 34510.48, + "end": 34515.86, + "probability": 0.926 + }, + { + "start": 34516.36, + "end": 34518.57, + "probability": 0.7474 + }, + { + "start": 34519.38, + "end": 34520.2, + "probability": 0.7165 + }, + { + "start": 34520.32, + "end": 34521.57, + "probability": 0.6017 + }, + { + "start": 34521.82, + "end": 34522.94, + "probability": 0.2253 + }, + { + "start": 34523.42, + "end": 34523.52, + "probability": 0.3577 + }, + { + "start": 34523.52, + "end": 34526.72, + "probability": 0.9871 + }, + { + "start": 34527.18, + "end": 34529.82, + "probability": 0.7668 + }, + { + "start": 34529.94, + "end": 34531.06, + "probability": 0.6918 + }, + { + "start": 34531.62, + "end": 34534.26, + "probability": 0.6249 + }, + { + "start": 34534.36, + "end": 34534.7, + "probability": 0.8179 + }, + { + "start": 34535.08, + "end": 34536.68, + "probability": 0.9021 + }, + { + "start": 34537.16, + "end": 34538.54, + "probability": 0.6114 + }, + { + "start": 34538.64, + "end": 34538.84, + "probability": 0.7617 + }, + { + "start": 34538.96, + "end": 34539.33, + "probability": 0.9262 + }, + { + "start": 34539.6, + "end": 34540.22, + "probability": 0.5835 + }, + { + "start": 34540.24, + "end": 34544.99, + "probability": 0.9741 + }, + { + "start": 34545.96, + "end": 34550.08, + "probability": 0.8772 + }, + { + "start": 34550.68, + "end": 34555.12, + "probability": 0.6848 + }, + { + "start": 34556.18, + "end": 34557.82, + "probability": 0.9613 + }, + { + "start": 34557.9, + "end": 34558.84, + "probability": 0.6387 + }, + { + "start": 34559.1, + "end": 34559.42, + "probability": 0.1657 + }, + { + "start": 34559.42, + "end": 34559.91, + "probability": 0.2148 + }, + { + "start": 34559.94, + "end": 34560.87, + "probability": 0.8425 + }, + { + "start": 34561.52, + "end": 34562.78, + "probability": 0.6386 + }, + { + "start": 34562.84, + "end": 34564.58, + "probability": 0.6474 + }, + { + "start": 34565.04, + "end": 34565.4, + "probability": 0.847 + }, + { + "start": 34565.52, + "end": 34566.42, + "probability": 0.893 + }, + { + "start": 34566.54, + "end": 34569.66, + "probability": 0.9973 + }, + { + "start": 34569.74, + "end": 34571.56, + "probability": 0.7602 + }, + { + "start": 34571.84, + "end": 34574.72, + "probability": 0.8769 + }, + { + "start": 34575.24, + "end": 34576.88, + "probability": 0.9436 + }, + { + "start": 34576.98, + "end": 34578.7, + "probability": 0.6159 + }, + { + "start": 34578.74, + "end": 34579.76, + "probability": 0.6297 + }, + { + "start": 34580.36, + "end": 34580.9, + "probability": 0.6892 + }, + { + "start": 34581.58, + "end": 34582.3, + "probability": 0.1444 + }, + { + "start": 34593.66, + "end": 34600.48, + "probability": 0.0506 + }, + { + "start": 34600.48, + "end": 34600.82, + "probability": 0.0148 + }, + { + "start": 34600.82, + "end": 34604.7, + "probability": 0.3285 + }, + { + "start": 34604.7, + "end": 34606.64, + "probability": 0.4514 + }, + { + "start": 34607.5, + "end": 34611.5, + "probability": 0.5012 + }, + { + "start": 34614.58, + "end": 34617.7, + "probability": 0.0493 + }, + { + "start": 34624.74, + "end": 34627.7, + "probability": 0.0875 + }, + { + "start": 34628.36, + "end": 34630.04, + "probability": 0.1299 + }, + { + "start": 34630.04, + "end": 34630.39, + "probability": 0.0189 + }, + { + "start": 34630.77, + "end": 34632.68, + "probability": 0.0301 + }, + { + "start": 34632.68, + "end": 34632.75, + "probability": 0.0229 + }, + { + "start": 34634.5, + "end": 34639.48, + "probability": 0.0051 + }, + { + "start": 34640.08, + "end": 34641.16, + "probability": 0.0494 + }, + { + "start": 34643.03, + "end": 34644.18, + "probability": 0.0817 + }, + { + "start": 34644.18, + "end": 34645.78, + "probability": 0.1163 + }, + { + "start": 34646.52, + "end": 34655.2, + "probability": 0.0233 + }, + { + "start": 34657.0, + "end": 34657.0, + "probability": 0.0 + }, + { + "start": 34657.0, + "end": 34657.0, + "probability": 0.0 + }, + { + "start": 34657.0, + "end": 34657.0, + "probability": 0.0 + }, + { + "start": 34657.0, + "end": 34657.0, + "probability": 0.0 + }, + { + "start": 34657.0, + "end": 34657.0, + "probability": 0.0 + }, + { + "start": 34657.0, + "end": 34657.0, + "probability": 0.0 + }, + { + "start": 34657.0, + "end": 34657.0, + "probability": 0.0 + }, + { + "start": 34657.0, + "end": 34657.0, + "probability": 0.0 + }, + { + "start": 34657.0, + "end": 34657.0, + "probability": 0.0 + }, + { + "start": 34657.98, + "end": 34657.98, + "probability": 0.0624 + }, + { + "start": 34657.98, + "end": 34657.98, + "probability": 0.0157 + }, + { + "start": 34657.98, + "end": 34657.98, + "probability": 0.0466 + }, + { + "start": 34657.98, + "end": 34660.6, + "probability": 0.617 + }, + { + "start": 34661.38, + "end": 34668.1, + "probability": 0.8427 + }, + { + "start": 34668.96, + "end": 34673.34, + "probability": 0.992 + }, + { + "start": 34674.6, + "end": 34679.62, + "probability": 0.995 + }, + { + "start": 34680.86, + "end": 34684.4, + "probability": 0.8643 + }, + { + "start": 34685.7, + "end": 34689.86, + "probability": 0.995 + }, + { + "start": 34690.68, + "end": 34694.96, + "probability": 0.9539 + }, + { + "start": 34695.48, + "end": 34700.72, + "probability": 0.9881 + }, + { + "start": 34701.32, + "end": 34706.52, + "probability": 0.9938 + }, + { + "start": 34707.56, + "end": 34711.83, + "probability": 0.9658 + }, + { + "start": 34712.12, + "end": 34716.66, + "probability": 0.9804 + }, + { + "start": 34717.9, + "end": 34718.42, + "probability": 0.9046 + }, + { + "start": 34719.18, + "end": 34722.74, + "probability": 0.9837 + }, + { + "start": 34723.4, + "end": 34728.62, + "probability": 0.9925 + }, + { + "start": 34729.86, + "end": 34733.34, + "probability": 0.9897 + }, + { + "start": 34733.34, + "end": 34737.34, + "probability": 0.9873 + }, + { + "start": 34737.74, + "end": 34738.28, + "probability": 0.7585 + }, + { + "start": 34738.34, + "end": 34739.9, + "probability": 0.9864 + }, + { + "start": 34740.48, + "end": 34743.88, + "probability": 0.997 + }, + { + "start": 34744.5, + "end": 34748.04, + "probability": 0.9956 + }, + { + "start": 34748.04, + "end": 34752.52, + "probability": 0.9987 + }, + { + "start": 34753.3, + "end": 34754.34, + "probability": 0.97 + }, + { + "start": 34755.06, + "end": 34755.76, + "probability": 0.3467 + }, + { + "start": 34756.36, + "end": 34759.58, + "probability": 0.9241 + }, + { + "start": 34761.48, + "end": 34766.92, + "probability": 0.9852 + }, + { + "start": 34767.6, + "end": 34770.04, + "probability": 0.9943 + }, + { + "start": 34770.56, + "end": 34773.66, + "probability": 0.9756 + }, + { + "start": 34774.28, + "end": 34776.74, + "probability": 0.9954 + }, + { + "start": 34777.32, + "end": 34779.06, + "probability": 0.9829 + }, + { + "start": 34779.46, + "end": 34784.4, + "probability": 0.9616 + }, + { + "start": 34784.4, + "end": 34788.36, + "probability": 0.9987 + }, + { + "start": 34789.1, + "end": 34789.72, + "probability": 0.7223 + }, + { + "start": 34790.0, + "end": 34792.96, + "probability": 0.9048 + }, + { + "start": 34793.24, + "end": 34794.96, + "probability": 0.7978 + }, + { + "start": 34795.96, + "end": 34798.8, + "probability": 0.9933 + }, + { + "start": 34798.8, + "end": 34801.5, + "probability": 0.9954 + }, + { + "start": 34802.12, + "end": 34803.48, + "probability": 0.7529 + }, + { + "start": 34804.7, + "end": 34807.34, + "probability": 0.9622 + }, + { + "start": 34808.26, + "end": 34812.18, + "probability": 0.9888 + }, + { + "start": 34812.72, + "end": 34817.78, + "probability": 0.8547 + }, + { + "start": 34818.3, + "end": 34820.28, + "probability": 0.6481 + }, + { + "start": 34820.38, + "end": 34822.86, + "probability": 0.9641 + }, + { + "start": 34822.94, + "end": 34824.46, + "probability": 0.5023 + }, + { + "start": 34824.82, + "end": 34825.8, + "probability": 0.9434 + }, + { + "start": 34826.18, + "end": 34826.5, + "probability": 0.3683 + }, + { + "start": 34826.52, + "end": 34827.78, + "probability": 0.6155 + }, + { + "start": 34828.36, + "end": 34829.84, + "probability": 0.9045 + }, + { + "start": 34830.82, + "end": 34835.64, + "probability": 0.8879 + }, + { + "start": 34835.8, + "end": 34836.22, + "probability": 0.9101 + }, + { + "start": 34836.3, + "end": 34836.88, + "probability": 0.9467 + }, + { + "start": 34837.04, + "end": 34837.54, + "probability": 0.5005 + }, + { + "start": 34837.92, + "end": 34838.64, + "probability": 0.8864 + }, + { + "start": 34839.06, + "end": 34843.16, + "probability": 0.9738 + }, + { + "start": 34844.08, + "end": 34845.68, + "probability": 0.9941 + }, + { + "start": 34845.78, + "end": 34847.74, + "probability": 0.9552 + }, + { + "start": 34850.26, + "end": 34852.16, + "probability": 0.1583 + }, + { + "start": 34853.66, + "end": 34856.42, + "probability": 0.1908 + }, + { + "start": 34868.28, + "end": 34868.28, + "probability": 0.1645 + }, + { + "start": 34868.28, + "end": 34868.3, + "probability": 0.0269 + }, + { + "start": 34868.3, + "end": 34868.3, + "probability": 0.2342 + }, + { + "start": 34890.74, + "end": 34894.1, + "probability": 0.7092 + }, + { + "start": 34896.8, + "end": 34897.82, + "probability": 0.7213 + }, + { + "start": 34900.64, + "end": 34903.32, + "probability": 0.9934 + }, + { + "start": 34905.42, + "end": 34908.3, + "probability": 0.9929 + }, + { + "start": 34909.54, + "end": 34911.84, + "probability": 0.9973 + }, + { + "start": 34913.46, + "end": 34916.54, + "probability": 0.9272 + }, + { + "start": 34918.36, + "end": 34919.42, + "probability": 0.9781 + }, + { + "start": 34920.26, + "end": 34923.64, + "probability": 0.9917 + }, + { + "start": 34924.6, + "end": 34929.88, + "probability": 0.8506 + }, + { + "start": 34930.62, + "end": 34931.7, + "probability": 0.5437 + }, + { + "start": 34932.9, + "end": 34935.04, + "probability": 0.9315 + }, + { + "start": 34935.62, + "end": 34936.94, + "probability": 0.9015 + }, + { + "start": 34938.28, + "end": 34941.12, + "probability": 0.9917 + }, + { + "start": 34942.36, + "end": 34945.2, + "probability": 0.9862 + }, + { + "start": 34946.02, + "end": 34947.26, + "probability": 0.9758 + }, + { + "start": 34947.94, + "end": 34952.62, + "probability": 0.984 + }, + { + "start": 34952.7, + "end": 34954.06, + "probability": 0.824 + }, + { + "start": 34954.58, + "end": 34957.68, + "probability": 0.9811 + }, + { + "start": 34958.68, + "end": 34963.66, + "probability": 0.996 + }, + { + "start": 34963.66, + "end": 34967.76, + "probability": 0.9849 + }, + { + "start": 34968.98, + "end": 34973.32, + "probability": 0.9971 + }, + { + "start": 34974.22, + "end": 34976.36, + "probability": 0.924 + }, + { + "start": 34977.24, + "end": 34980.04, + "probability": 0.9758 + }, + { + "start": 34980.56, + "end": 34984.5, + "probability": 0.8741 + }, + { + "start": 34985.36, + "end": 34991.7, + "probability": 0.9931 + }, + { + "start": 34992.3, + "end": 34993.54, + "probability": 0.9332 + }, + { + "start": 34994.32, + "end": 34995.86, + "probability": 0.9909 + }, + { + "start": 34997.84, + "end": 35001.54, + "probability": 0.9634 + }, + { + "start": 35002.52, + "end": 35004.02, + "probability": 0.9451 + }, + { + "start": 35005.06, + "end": 35008.64, + "probability": 0.9991 + }, + { + "start": 35009.28, + "end": 35014.68, + "probability": 0.9871 + }, + { + "start": 35014.74, + "end": 35019.58, + "probability": 0.9987 + }, + { + "start": 35020.14, + "end": 35023.12, + "probability": 0.9795 + }, + { + "start": 35023.68, + "end": 35029.54, + "probability": 0.9986 + }, + { + "start": 35030.5, + "end": 35030.82, + "probability": 0.2836 + }, + { + "start": 35031.0, + "end": 35038.12, + "probability": 0.9986 + }, + { + "start": 35038.9, + "end": 35040.52, + "probability": 0.9902 + }, + { + "start": 35041.14, + "end": 35046.12, + "probability": 0.9998 + }, + { + "start": 35052.2, + "end": 35057.18, + "probability": 0.9993 + }, + { + "start": 35057.18, + "end": 35062.26, + "probability": 0.9945 + }, + { + "start": 35063.32, + "end": 35066.04, + "probability": 0.9965 + }, + { + "start": 35066.66, + "end": 35070.56, + "probability": 0.9948 + }, + { + "start": 35070.56, + "end": 35074.42, + "probability": 0.9942 + }, + { + "start": 35074.94, + "end": 35077.8, + "probability": 0.9844 + }, + { + "start": 35079.12, + "end": 35084.42, + "probability": 0.9679 + }, + { + "start": 35085.26, + "end": 35089.84, + "probability": 0.9604 + }, + { + "start": 35089.92, + "end": 35092.82, + "probability": 0.9875 + }, + { + "start": 35093.7, + "end": 35096.76, + "probability": 0.9877 + }, + { + "start": 35097.36, + "end": 35101.9, + "probability": 0.8344 + }, + { + "start": 35102.02, + "end": 35106.8, + "probability": 0.9658 + }, + { + "start": 35107.62, + "end": 35110.9, + "probability": 0.9988 + }, + { + "start": 35111.64, + "end": 35112.44, + "probability": 0.9462 + }, + { + "start": 35113.34, + "end": 35114.62, + "probability": 0.8989 + }, + { + "start": 35115.54, + "end": 35118.28, + "probability": 0.9388 + }, + { + "start": 35119.1, + "end": 35120.06, + "probability": 0.6481 + }, + { + "start": 35120.98, + "end": 35124.32, + "probability": 0.994 + }, + { + "start": 35124.38, + "end": 35126.72, + "probability": 0.9852 + }, + { + "start": 35126.96, + "end": 35127.48, + "probability": 0.808 + }, + { + "start": 35128.08, + "end": 35128.62, + "probability": 0.5628 + }, + { + "start": 35128.68, + "end": 35131.3, + "probability": 0.9783 + }, + { + "start": 35154.18, + "end": 35156.58, + "probability": 0.7404 + }, + { + "start": 35157.44, + "end": 35159.76, + "probability": 0.9114 + }, + { + "start": 35160.5, + "end": 35161.82, + "probability": 0.682 + }, + { + "start": 35162.48, + "end": 35164.96, + "probability": 0.9863 + }, + { + "start": 35165.48, + "end": 35167.76, + "probability": 0.9554 + }, + { + "start": 35168.78, + "end": 35171.52, + "probability": 0.9803 + }, + { + "start": 35171.66, + "end": 35172.5, + "probability": 0.493 + }, + { + "start": 35173.16, + "end": 35174.64, + "probability": 0.9735 + }, + { + "start": 35175.04, + "end": 35178.58, + "probability": 0.9917 + }, + { + "start": 35179.3, + "end": 35180.92, + "probability": 0.9613 + }, + { + "start": 35181.46, + "end": 35183.52, + "probability": 0.9556 + }, + { + "start": 35184.22, + "end": 35187.42, + "probability": 0.9917 + }, + { + "start": 35188.48, + "end": 35191.54, + "probability": 0.9976 + }, + { + "start": 35192.06, + "end": 35193.06, + "probability": 0.9879 + }, + { + "start": 35194.06, + "end": 35195.48, + "probability": 0.9517 + }, + { + "start": 35195.58, + "end": 35200.7, + "probability": 0.807 + }, + { + "start": 35201.18, + "end": 35202.92, + "probability": 0.9937 + }, + { + "start": 35203.46, + "end": 35206.02, + "probability": 0.9108 + }, + { + "start": 35207.28, + "end": 35209.8, + "probability": 0.712 + }, + { + "start": 35210.02, + "end": 35210.82, + "probability": 0.6019 + }, + { + "start": 35211.42, + "end": 35213.5, + "probability": 0.9883 + }, + { + "start": 35214.02, + "end": 35215.16, + "probability": 0.7898 + }, + { + "start": 35215.72, + "end": 35218.76, + "probability": 0.6451 + }, + { + "start": 35219.48, + "end": 35223.26, + "probability": 0.9932 + }, + { + "start": 35224.08, + "end": 35226.24, + "probability": 0.972 + }, + { + "start": 35226.74, + "end": 35228.56, + "probability": 0.953 + }, + { + "start": 35229.12, + "end": 35232.8, + "probability": 0.991 + }, + { + "start": 35233.48, + "end": 35235.8, + "probability": 0.8515 + }, + { + "start": 35237.12, + "end": 35241.26, + "probability": 0.9978 + }, + { + "start": 35241.84, + "end": 35242.82, + "probability": 0.8262 + }, + { + "start": 35243.0, + "end": 35243.61, + "probability": 0.9898 + }, + { + "start": 35243.94, + "end": 35246.16, + "probability": 0.9595 + }, + { + "start": 35247.36, + "end": 35250.48, + "probability": 0.9921 + }, + { + "start": 35251.46, + "end": 35254.94, + "probability": 0.961 + }, + { + "start": 35255.46, + "end": 35260.06, + "probability": 0.9348 + }, + { + "start": 35260.68, + "end": 35262.42, + "probability": 0.9901 + }, + { + "start": 35263.06, + "end": 35263.96, + "probability": 0.817 + }, + { + "start": 35264.5, + "end": 35265.1, + "probability": 0.847 + }, + { + "start": 35265.74, + "end": 35268.8, + "probability": 0.9934 + }, + { + "start": 35269.8, + "end": 35274.2, + "probability": 0.9934 + }, + { + "start": 35274.86, + "end": 35276.24, + "probability": 0.9924 + }, + { + "start": 35276.56, + "end": 35279.66, + "probability": 0.999 + }, + { + "start": 35280.58, + "end": 35282.36, + "probability": 0.7385 + }, + { + "start": 35283.88, + "end": 35284.86, + "probability": 0.7133 + }, + { + "start": 35285.38, + "end": 35286.22, + "probability": 0.8471 + }, + { + "start": 35286.7, + "end": 35287.2, + "probability": 0.6827 + }, + { + "start": 35287.32, + "end": 35290.9, + "probability": 0.9576 + }, + { + "start": 35290.9, + "end": 35294.94, + "probability": 0.9966 + }, + { + "start": 35295.96, + "end": 35296.86, + "probability": 0.6113 + }, + { + "start": 35297.86, + "end": 35304.14, + "probability": 0.9653 + }, + { + "start": 35304.94, + "end": 35309.94, + "probability": 0.9956 + }, + { + "start": 35310.12, + "end": 35310.42, + "probability": 0.7775 + }, + { + "start": 35311.46, + "end": 35315.56, + "probability": 0.9828 + }, + { + "start": 35315.64, + "end": 35315.74, + "probability": 0.8947 + }, + { + "start": 35316.16, + "end": 35316.98, + "probability": 0.936 + }, + { + "start": 35317.82, + "end": 35319.86, + "probability": 0.9688 + }, + { + "start": 35320.22, + "end": 35321.76, + "probability": 0.9334 + }, + { + "start": 35322.14, + "end": 35326.72, + "probability": 0.9193 + }, + { + "start": 35327.28, + "end": 35331.56, + "probability": 0.9298 + }, + { + "start": 35331.56, + "end": 35334.34, + "probability": 0.9875 + }, + { + "start": 35335.48, + "end": 35338.96, + "probability": 0.9937 + }, + { + "start": 35339.46, + "end": 35341.48, + "probability": 0.9471 + }, + { + "start": 35342.02, + "end": 35345.42, + "probability": 0.99 + }, + { + "start": 35346.16, + "end": 35348.84, + "probability": 0.8027 + }, + { + "start": 35348.84, + "end": 35352.0, + "probability": 0.9991 + }, + { + "start": 35352.66, + "end": 35352.82, + "probability": 0.4625 + }, + { + "start": 35353.66, + "end": 35355.36, + "probability": 0.9657 + }, + { + "start": 35356.34, + "end": 35361.0, + "probability": 0.9961 + }, + { + "start": 35361.7, + "end": 35366.44, + "probability": 0.9905 + }, + { + "start": 35367.08, + "end": 35372.02, + "probability": 0.9651 + }, + { + "start": 35373.02, + "end": 35376.74, + "probability": 0.9954 + }, + { + "start": 35376.74, + "end": 35380.38, + "probability": 0.9799 + }, + { + "start": 35380.78, + "end": 35384.1, + "probability": 0.9871 + }, + { + "start": 35384.58, + "end": 35387.98, + "probability": 0.9945 + }, + { + "start": 35389.28, + "end": 35392.38, + "probability": 0.9961 + }, + { + "start": 35392.74, + "end": 35393.7, + "probability": 0.7053 + }, + { + "start": 35394.16, + "end": 35396.2, + "probability": 0.9955 + }, + { + "start": 35396.76, + "end": 35399.58, + "probability": 0.9388 + }, + { + "start": 35399.98, + "end": 35401.18, + "probability": 0.9563 + }, + { + "start": 35401.66, + "end": 35404.44, + "probability": 0.9891 + }, + { + "start": 35404.44, + "end": 35408.04, + "probability": 0.8847 + }, + { + "start": 35408.24, + "end": 35411.44, + "probability": 0.9857 + }, + { + "start": 35412.64, + "end": 35415.2, + "probability": 0.7456 + }, + { + "start": 35415.78, + "end": 35420.3, + "probability": 0.9936 + }, + { + "start": 35420.38, + "end": 35421.44, + "probability": 0.7588 + }, + { + "start": 35422.06, + "end": 35424.6, + "probability": 0.8148 + }, + { + "start": 35424.88, + "end": 35427.34, + "probability": 0.973 + }, + { + "start": 35427.68, + "end": 35429.34, + "probability": 0.9681 + }, + { + "start": 35429.74, + "end": 35432.42, + "probability": 0.9954 + }, + { + "start": 35432.42, + "end": 35435.7, + "probability": 0.9769 + }, + { + "start": 35436.36, + "end": 35438.44, + "probability": 0.9929 + }, + { + "start": 35438.72, + "end": 35440.2, + "probability": 0.6842 + }, + { + "start": 35440.72, + "end": 35441.66, + "probability": 0.7722 + }, + { + "start": 35442.06, + "end": 35444.9, + "probability": 0.9613 + }, + { + "start": 35445.2, + "end": 35446.1, + "probability": 0.9629 + }, + { + "start": 35446.16, + "end": 35447.3, + "probability": 0.9016 + }, + { + "start": 35447.86, + "end": 35449.84, + "probability": 0.807 + }, + { + "start": 35450.24, + "end": 35451.7, + "probability": 0.9525 + }, + { + "start": 35452.06, + "end": 35453.88, + "probability": 0.8854 + }, + { + "start": 35453.96, + "end": 35456.0, + "probability": 0.8774 + }, + { + "start": 35456.36, + "end": 35458.72, + "probability": 0.6665 + }, + { + "start": 35459.72, + "end": 35462.96, + "probability": 0.9719 + }, + { + "start": 35463.5, + "end": 35466.4, + "probability": 0.8818 + }, + { + "start": 35466.86, + "end": 35467.9, + "probability": 0.8472 + }, + { + "start": 35468.48, + "end": 35471.06, + "probability": 0.8906 + }, + { + "start": 35471.44, + "end": 35473.72, + "probability": 0.9904 + }, + { + "start": 35473.8, + "end": 35474.68, + "probability": 0.8508 + }, + { + "start": 35475.16, + "end": 35475.42, + "probability": 0.7664 + }, + { + "start": 35476.06, + "end": 35477.18, + "probability": 0.8816 + }, + { + "start": 35477.5, + "end": 35479.08, + "probability": 0.986 + }, + { + "start": 35479.58, + "end": 35481.82, + "probability": 0.7835 + }, + { + "start": 35482.54, + "end": 35485.42, + "probability": 0.9507 + }, + { + "start": 35485.56, + "end": 35486.35, + "probability": 0.9808 + }, + { + "start": 35487.36, + "end": 35491.74, + "probability": 0.9775 + }, + { + "start": 35491.74, + "end": 35497.1, + "probability": 0.9932 + }, + { + "start": 35497.68, + "end": 35501.3, + "probability": 0.986 + }, + { + "start": 35501.54, + "end": 35504.54, + "probability": 0.9503 + }, + { + "start": 35505.42, + "end": 35508.78, + "probability": 0.8165 + }, + { + "start": 35508.84, + "end": 35510.18, + "probability": 0.863 + }, + { + "start": 35510.7, + "end": 35514.02, + "probability": 0.9085 + }, + { + "start": 35514.72, + "end": 35518.8, + "probability": 0.9964 + }, + { + "start": 35519.16, + "end": 35521.2, + "probability": 0.9434 + }, + { + "start": 35522.02, + "end": 35526.18, + "probability": 0.928 + }, + { + "start": 35526.92, + "end": 35528.72, + "probability": 0.9094 + }, + { + "start": 35529.22, + "end": 35530.12, + "probability": 0.7609 + }, + { + "start": 35530.58, + "end": 35532.14, + "probability": 0.9857 + }, + { + "start": 35532.46, + "end": 35536.16, + "probability": 0.9979 + }, + { + "start": 35536.62, + "end": 35540.34, + "probability": 0.841 + }, + { + "start": 35540.9, + "end": 35541.76, + "probability": 0.7755 + }, + { + "start": 35542.02, + "end": 35546.94, + "probability": 0.9827 + }, + { + "start": 35547.32, + "end": 35549.1, + "probability": 0.9794 + }, + { + "start": 35549.5, + "end": 35550.74, + "probability": 0.8536 + }, + { + "start": 35551.1, + "end": 35552.64, + "probability": 0.8096 + }, + { + "start": 35553.26, + "end": 35555.66, + "probability": 0.9956 + }, + { + "start": 35555.82, + "end": 35557.5, + "probability": 0.8992 + }, + { + "start": 35558.0, + "end": 35559.26, + "probability": 0.8481 + }, + { + "start": 35559.84, + "end": 35563.26, + "probability": 0.9774 + }, + { + "start": 35563.54, + "end": 35564.2, + "probability": 0.891 + }, + { + "start": 35564.62, + "end": 35565.14, + "probability": 0.8738 + }, + { + "start": 35565.24, + "end": 35565.62, + "probability": 0.9332 + }, + { + "start": 35566.58, + "end": 35567.28, + "probability": 0.7274 + }, + { + "start": 35567.64, + "end": 35568.76, + "probability": 0.9211 + }, + { + "start": 35569.1, + "end": 35570.34, + "probability": 0.7558 + }, + { + "start": 35570.42, + "end": 35570.98, + "probability": 0.7314 + }, + { + "start": 35571.32, + "end": 35572.74, + "probability": 0.9921 + }, + { + "start": 35573.16, + "end": 35577.8, + "probability": 0.7655 + }, + { + "start": 35579.06, + "end": 35580.04, + "probability": 0.6104 + }, + { + "start": 35580.04, + "end": 35582.88, + "probability": 0.6885 + }, + { + "start": 35583.16, + "end": 35584.72, + "probability": 0.7783 + }, + { + "start": 35584.86, + "end": 35586.9, + "probability": 0.9102 + }, + { + "start": 35587.26, + "end": 35589.92, + "probability": 0.8993 + }, + { + "start": 35590.44, + "end": 35591.38, + "probability": 0.7227 + }, + { + "start": 35591.64, + "end": 35593.12, + "probability": 0.6366 + }, + { + "start": 35593.54, + "end": 35596.14, + "probability": 0.6125 + }, + { + "start": 35596.68, + "end": 35597.16, + "probability": 0.0186 + }, + { + "start": 35597.16, + "end": 35597.16, + "probability": 0.0463 + }, + { + "start": 35597.16, + "end": 35597.32, + "probability": 0.3457 + }, + { + "start": 35597.6, + "end": 35599.06, + "probability": 0.9275 + }, + { + "start": 35599.14, + "end": 35602.36, + "probability": 0.9894 + }, + { + "start": 35602.5, + "end": 35604.16, + "probability": 0.9832 + }, + { + "start": 35605.26, + "end": 35606.52, + "probability": 0.7854 + }, + { + "start": 35606.58, + "end": 35606.9, + "probability": 0.8769 + }, + { + "start": 35607.06, + "end": 35608.7, + "probability": 0.9812 + }, + { + "start": 35608.94, + "end": 35609.64, + "probability": 0.9771 + }, + { + "start": 35610.22, + "end": 35610.96, + "probability": 0.8994 + }, + { + "start": 35611.02, + "end": 35611.34, + "probability": 0.9181 + }, + { + "start": 35611.36, + "end": 35614.28, + "probability": 0.9884 + }, + { + "start": 35614.76, + "end": 35616.78, + "probability": 0.9597 + }, + { + "start": 35617.48, + "end": 35618.34, + "probability": 0.3885 + }, + { + "start": 35618.54, + "end": 35620.06, + "probability": 0.766 + }, + { + "start": 35620.46, + "end": 35620.8, + "probability": 0.3465 + }, + { + "start": 35620.8, + "end": 35620.8, + "probability": 0.3679 + }, + { + "start": 35620.8, + "end": 35620.8, + "probability": 0.0631 + }, + { + "start": 35620.8, + "end": 35625.24, + "probability": 0.9653 + }, + { + "start": 35625.24, + "end": 35629.12, + "probability": 0.9897 + }, + { + "start": 35629.9, + "end": 35633.38, + "probability": 0.9084 + }, + { + "start": 35633.58, + "end": 35634.54, + "probability": 0.9429 + }, + { + "start": 35635.58, + "end": 35638.6, + "probability": 0.1863 + }, + { + "start": 35638.74, + "end": 35642.56, + "probability": 0.5345 + }, + { + "start": 35644.26, + "end": 35644.66, + "probability": 0.8041 + }, + { + "start": 35647.02, + "end": 35647.78, + "probability": 0.7542 + }, + { + "start": 35648.56, + "end": 35649.52, + "probability": 0.0161 + }, + { + "start": 35650.88, + "end": 35652.82, + "probability": 0.1188 + }, + { + "start": 35654.29, + "end": 35654.62, + "probability": 0.0697 + }, + { + "start": 35654.62, + "end": 35654.62, + "probability": 0.095 + }, + { + "start": 35654.62, + "end": 35655.38, + "probability": 0.0105 + }, + { + "start": 35655.38, + "end": 35655.52, + "probability": 0.0199 + }, + { + "start": 35655.56, + "end": 35656.5, + "probability": 0.0289 + }, + { + "start": 35656.5, + "end": 35657.52, + "probability": 0.4906 + }, + { + "start": 35660.94, + "end": 35662.8, + "probability": 0.5583 + }, + { + "start": 35663.3, + "end": 35663.82, + "probability": 0.396 + }, + { + "start": 35670.62, + "end": 35671.0, + "probability": 0.0003 + }, + { + "start": 35685.1, + "end": 35686.42, + "probability": 0.2407 + }, + { + "start": 35687.5, + "end": 35688.44, + "probability": 0.0889 + }, + { + "start": 35690.0, + "end": 35692.8, + "probability": 0.2789 + }, + { + "start": 35696.3, + "end": 35698.62, + "probability": 0.0573 + }, + { + "start": 35700.66, + "end": 35701.66, + "probability": 0.9968 + }, + { + "start": 35723.94, + "end": 35728.58, + "probability": 0.0763 + }, + { + "start": 35730.16, + "end": 35732.38, + "probability": 0.0355 + }, + { + "start": 35732.38, + "end": 35733.82, + "probability": 0.1231 + }, + { + "start": 35733.82, + "end": 35736.62, + "probability": 0.0341 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.0, + "end": 35737.0, + "probability": 0.0 + }, + { + "start": 35737.28, + "end": 35737.92, + "probability": 0.0769 + }, + { + "start": 35737.92, + "end": 35738.87, + "probability": 0.517 + }, + { + "start": 35739.88, + "end": 35743.7, + "probability": 0.9429 + }, + { + "start": 35744.24, + "end": 35749.36, + "probability": 0.9773 + }, + { + "start": 35749.86, + "end": 35753.56, + "probability": 0.9963 + }, + { + "start": 35753.56, + "end": 35758.66, + "probability": 0.9974 + }, + { + "start": 35759.2, + "end": 35761.59, + "probability": 0.8337 + }, + { + "start": 35762.34, + "end": 35764.48, + "probability": 0.8389 + }, + { + "start": 35764.88, + "end": 35767.54, + "probability": 0.8774 + }, + { + "start": 35767.96, + "end": 35769.88, + "probability": 0.9731 + }, + { + "start": 35770.2, + "end": 35775.14, + "probability": 0.8554 + }, + { + "start": 35776.1, + "end": 35779.32, + "probability": 0.9596 + }, + { + "start": 35779.52, + "end": 35782.6, + "probability": 0.9731 + }, + { + "start": 35783.18, + "end": 35783.46, + "probability": 0.8225 + }, + { + "start": 35783.58, + "end": 35783.78, + "probability": 0.9123 + }, + { + "start": 35783.92, + "end": 35786.9, + "probability": 0.9633 + }, + { + "start": 35787.2, + "end": 35788.32, + "probability": 0.9226 + }, + { + "start": 35788.44, + "end": 35791.78, + "probability": 0.8707 + }, + { + "start": 35791.78, + "end": 35795.08, + "probability": 0.9975 + }, + { + "start": 35795.72, + "end": 35796.36, + "probability": 0.5529 + }, + { + "start": 35796.74, + "end": 35797.54, + "probability": 0.7511 + }, + { + "start": 35797.64, + "end": 35800.6, + "probability": 0.9085 + }, + { + "start": 35800.86, + "end": 35801.56, + "probability": 0.9915 + }, + { + "start": 35801.98, + "end": 35805.62, + "probability": 0.9688 + }, + { + "start": 35805.98, + "end": 35807.18, + "probability": 0.9758 + }, + { + "start": 35807.76, + "end": 35811.32, + "probability": 0.8876 + }, + { + "start": 35811.74, + "end": 35813.0, + "probability": 0.8724 + }, + { + "start": 35813.4, + "end": 35816.18, + "probability": 0.8518 + }, + { + "start": 35816.62, + "end": 35819.68, + "probability": 0.9974 + }, + { + "start": 35819.68, + "end": 35824.08, + "probability": 0.9904 + }, + { + "start": 35824.8, + "end": 35827.54, + "probability": 0.8481 + }, + { + "start": 35828.32, + "end": 35830.6, + "probability": 0.9725 + }, + { + "start": 35830.94, + "end": 35833.22, + "probability": 0.9976 + }, + { + "start": 35834.02, + "end": 35840.48, + "probability": 0.413 + }, + { + "start": 35840.48, + "end": 35840.5, + "probability": 0.2069 + }, + { + "start": 35840.5, + "end": 35841.32, + "probability": 0.5587 + }, + { + "start": 35841.42, + "end": 35842.7, + "probability": 0.7502 + }, + { + "start": 35842.76, + "end": 35843.84, + "probability": 0.7279 + }, + { + "start": 35844.34, + "end": 35845.7, + "probability": 0.7298 + }, + { + "start": 35846.44, + "end": 35847.1, + "probability": 0.8233 + }, + { + "start": 35847.76, + "end": 35851.66, + "probability": 0.9905 + }, + { + "start": 35852.18, + "end": 35854.44, + "probability": 0.7049 + }, + { + "start": 35855.2, + "end": 35855.94, + "probability": 0.5009 + }, + { + "start": 35856.5, + "end": 35860.02, + "probability": 0.9763 + }, + { + "start": 35860.54, + "end": 35863.8, + "probability": 0.9983 + }, + { + "start": 35864.42, + "end": 35869.26, + "probability": 0.9918 + }, + { + "start": 35869.7, + "end": 35870.22, + "probability": 0.3381 + }, + { + "start": 35870.72, + "end": 35871.6, + "probability": 0.8687 + }, + { + "start": 35872.02, + "end": 35872.92, + "probability": 0.6481 + }, + { + "start": 35873.0, + "end": 35875.2, + "probability": 0.8905 + }, + { + "start": 35875.58, + "end": 35879.38, + "probability": 0.9845 + }, + { + "start": 35879.68, + "end": 35880.44, + "probability": 0.9562 + }, + { + "start": 35880.96, + "end": 35881.5, + "probability": 0.6998 + }, + { + "start": 35881.54, + "end": 35882.32, + "probability": 0.9757 + }, + { + "start": 35882.36, + "end": 35886.56, + "probability": 0.9869 + }, + { + "start": 35887.1, + "end": 35890.52, + "probability": 0.8564 + }, + { + "start": 35890.98, + "end": 35892.44, + "probability": 0.9901 + }, + { + "start": 35892.64, + "end": 35893.2, + "probability": 0.8508 + }, + { + "start": 35894.8, + "end": 35897.64, + "probability": 0.981 + }, + { + "start": 35898.6, + "end": 35899.92, + "probability": 0.8317 + }, + { + "start": 35899.98, + "end": 35901.7, + "probability": 0.9971 + }, + { + "start": 35903.66, + "end": 35908.76, + "probability": 0.6966 + }, + { + "start": 35909.54, + "end": 35914.4, + "probability": 0.8426 + }, + { + "start": 35915.06, + "end": 35915.74, + "probability": 0.0364 + }, + { + "start": 35915.84, + "end": 35917.42, + "probability": 0.5112 + }, + { + "start": 35917.98, + "end": 35919.5, + "probability": 0.6753 + }, + { + "start": 35921.56, + "end": 35922.06, + "probability": 0.6474 + }, + { + "start": 35922.78, + "end": 35922.78, + "probability": 0.47 + }, + { + "start": 35934.5, + "end": 35943.12, + "probability": 0.2549 + }, + { + "start": 35953.36, + "end": 35954.28, + "probability": 0.031 + }, + { + "start": 35978.04, + "end": 35981.52, + "probability": 0.0673 + }, + { + "start": 35981.52, + "end": 35982.01, + "probability": 0.0476 + }, + { + "start": 35987.5, + "end": 35987.84, + "probability": 0.1222 + }, + { + "start": 35989.08, + "end": 35993.34, + "probability": 0.0196 + }, + { + "start": 35998.28, + "end": 36003.46, + "probability": 0.0909 + }, + { + "start": 36003.73, + "end": 36004.96, + "probability": 0.0692 + }, + { + "start": 36004.96, + "end": 36011.64, + "probability": 0.0462 + }, + { + "start": 36012.68, + "end": 36013.14, + "probability": 0.0058 + }, + { + "start": 37339.0, + "end": 37339.0, + "probability": 0.0 + }, + { + "start": 37339.0, + "end": 37339.0, + "probability": 0.0 + }, + { + "start": 37339.0, + "end": 37339.0, + "probability": 0.0 + }, + { + "start": 37399.42, + "end": 37400.2, + "probability": 0.1921 + }, + { + "start": 37400.64, + "end": 37401.94, + "probability": 0.7571 + }, + { + "start": 37402.6, + "end": 37404.5, + "probability": 0.8496 + }, + { + "start": 37405.24, + "end": 37410.26, + "probability": 0.9399 + }, + { + "start": 37410.86, + "end": 37413.26, + "probability": 0.7558 + }, + { + "start": 37414.1, + "end": 37417.08, + "probability": 0.9976 + }, + { + "start": 37423.56, + "end": 37424.66, + "probability": 0.7034 + }, + { + "start": 37440.3, + "end": 37441.88, + "probability": 0.6805 + }, + { + "start": 37442.7, + "end": 37448.06, + "probability": 0.9783 + }, + { + "start": 37449.04, + "end": 37453.04, + "probability": 0.7499 + }, + { + "start": 37453.04, + "end": 37455.9, + "probability": 0.9877 + }, + { + "start": 37456.46, + "end": 37460.92, + "probability": 0.9945 + }, + { + "start": 37461.02, + "end": 37462.52, + "probability": 0.8096 + }, + { + "start": 37463.66, + "end": 37465.06, + "probability": 0.9964 + }, + { + "start": 37465.82, + "end": 37467.98, + "probability": 0.913 + }, + { + "start": 37468.46, + "end": 37469.44, + "probability": 0.773 + }, + { + "start": 37469.46, + "end": 37471.98, + "probability": 0.9021 + }, + { + "start": 37472.12, + "end": 37473.14, + "probability": 0.8925 + }, + { + "start": 37475.58, + "end": 37476.62, + "probability": 0.5869 + }, + { + "start": 37477.56, + "end": 37481.5, + "probability": 0.9341 + }, + { + "start": 37482.1, + "end": 37483.24, + "probability": 0.8236 + }, + { + "start": 37483.82, + "end": 37485.72, + "probability": 0.9612 + }, + { + "start": 37486.48, + "end": 37489.54, + "probability": 0.9731 + }, + { + "start": 37490.38, + "end": 37492.7, + "probability": 0.947 + }, + { + "start": 37493.54, + "end": 37495.07, + "probability": 0.9669 + }, + { + "start": 37495.78, + "end": 37500.08, + "probability": 0.9902 + }, + { + "start": 37500.08, + "end": 37505.7, + "probability": 0.9747 + }, + { + "start": 37507.14, + "end": 37507.46, + "probability": 0.4431 + }, + { + "start": 37507.54, + "end": 37511.24, + "probability": 0.8701 + }, + { + "start": 37512.0, + "end": 37514.54, + "probability": 0.9861 + }, + { + "start": 37515.22, + "end": 37519.65, + "probability": 0.9933 + }, + { + "start": 37520.24, + "end": 37524.62, + "probability": 0.9861 + }, + { + "start": 37525.28, + "end": 37525.92, + "probability": 0.8403 + }, + { + "start": 37526.74, + "end": 37528.7, + "probability": 0.9967 + }, + { + "start": 37529.22, + "end": 37531.26, + "probability": 0.9715 + }, + { + "start": 37532.5, + "end": 37537.36, + "probability": 0.83 + }, + { + "start": 37537.92, + "end": 37541.12, + "probability": 0.9514 + }, + { + "start": 37541.12, + "end": 37546.14, + "probability": 0.9957 + }, + { + "start": 37546.72, + "end": 37547.06, + "probability": 0.5003 + }, + { + "start": 37547.08, + "end": 37550.82, + "probability": 0.9056 + }, + { + "start": 37551.4, + "end": 37555.12, + "probability": 0.9966 + }, + { + "start": 37555.84, + "end": 37557.84, + "probability": 0.9895 + }, + { + "start": 37558.36, + "end": 37560.54, + "probability": 0.7983 + }, + { + "start": 37561.4, + "end": 37565.96, + "probability": 0.9874 + }, + { + "start": 37566.48, + "end": 37570.24, + "probability": 0.963 + }, + { + "start": 37570.82, + "end": 37576.3, + "probability": 0.9897 + }, + { + "start": 37577.06, + "end": 37577.98, + "probability": 0.8053 + }, + { + "start": 37578.5, + "end": 37579.02, + "probability": 0.6002 + }, + { + "start": 37579.7, + "end": 37582.22, + "probability": 0.9888 + }, + { + "start": 37582.8, + "end": 37583.32, + "probability": 0.7802 + }, + { + "start": 37583.9, + "end": 37584.2, + "probability": 0.8795 + }, + { + "start": 37584.8, + "end": 37586.08, + "probability": 0.6886 + }, + { + "start": 37586.2, + "end": 37587.44, + "probability": 0.9852 + }, + { + "start": 37588.68, + "end": 37590.06, + "probability": 0.9577 + }, + { + "start": 37601.08, + "end": 37602.12, + "probability": 0.7934 + }, + { + "start": 37604.77, + "end": 37607.46, + "probability": 0.6634 + }, + { + "start": 37607.68, + "end": 37608.44, + "probability": 0.7649 + }, + { + "start": 37608.56, + "end": 37609.34, + "probability": 0.7905 + }, + { + "start": 37609.42, + "end": 37610.96, + "probability": 0.8354 + }, + { + "start": 37611.04, + "end": 37614.92, + "probability": 0.9851 + }, + { + "start": 37616.12, + "end": 37617.72, + "probability": 0.9812 + }, + { + "start": 37618.66, + "end": 37621.84, + "probability": 0.937 + }, + { + "start": 37622.56, + "end": 37623.64, + "probability": 0.9618 + }, + { + "start": 37624.44, + "end": 37625.68, + "probability": 0.032 + }, + { + "start": 37625.68, + "end": 37626.17, + "probability": 0.8057 + }, + { + "start": 37627.4, + "end": 37630.04, + "probability": 0.9775 + }, + { + "start": 37631.16, + "end": 37631.16, + "probability": 0.0637 + }, + { + "start": 37631.16, + "end": 37636.9, + "probability": 0.9886 + }, + { + "start": 37637.56, + "end": 37639.72, + "probability": 0.9136 + }, + { + "start": 37640.58, + "end": 37641.6, + "probability": 0.9961 + }, + { + "start": 37642.14, + "end": 37646.6, + "probability": 0.9893 + }, + { + "start": 37648.11, + "end": 37651.64, + "probability": 0.9938 + }, + { + "start": 37652.4, + "end": 37653.7, + "probability": 0.9944 + }, + { + "start": 37654.2, + "end": 37658.14, + "probability": 0.9924 + }, + { + "start": 37658.7, + "end": 37661.88, + "probability": 0.9595 + }, + { + "start": 37662.6, + "end": 37663.36, + "probability": 0.7021 + }, + { + "start": 37663.98, + "end": 37667.82, + "probability": 0.943 + }, + { + "start": 37668.46, + "end": 37669.16, + "probability": 0.9845 + }, + { + "start": 37669.24, + "end": 37671.08, + "probability": 0.9269 + }, + { + "start": 37671.52, + "end": 37675.44, + "probability": 0.9976 + }, + { + "start": 37676.0, + "end": 37678.66, + "probability": 0.9917 + }, + { + "start": 37679.3, + "end": 37682.54, + "probability": 0.9696 + }, + { + "start": 37682.92, + "end": 37683.46, + "probability": 0.5698 + }, + { + "start": 37683.54, + "end": 37686.04, + "probability": 0.9948 + }, + { + "start": 37686.6, + "end": 37689.08, + "probability": 0.6203 + }, + { + "start": 37689.14, + "end": 37693.12, + "probability": 0.9619 + }, + { + "start": 37693.78, + "end": 37695.88, + "probability": 0.9829 + }, + { + "start": 37696.92, + "end": 37698.9, + "probability": 0.9976 + }, + { + "start": 37699.2, + "end": 37700.8, + "probability": 0.9961 + }, + { + "start": 37701.18, + "end": 37702.54, + "probability": 0.9844 + }, + { + "start": 37703.22, + "end": 37705.4, + "probability": 0.952 + }, + { + "start": 37706.04, + "end": 37707.72, + "probability": 0.8685 + }, + { + "start": 37708.6, + "end": 37711.64, + "probability": 0.9937 + }, + { + "start": 37712.44, + "end": 37712.98, + "probability": 0.879 + }, + { + "start": 37713.06, + "end": 37714.86, + "probability": 0.9333 + }, + { + "start": 37715.32, + "end": 37718.14, + "probability": 0.9938 + }, + { + "start": 37718.48, + "end": 37720.28, + "probability": 0.985 + }, + { + "start": 37721.14, + "end": 37722.84, + "probability": 0.9024 + }, + { + "start": 37723.24, + "end": 37725.64, + "probability": 0.7806 + }, + { + "start": 37725.86, + "end": 37726.1, + "probability": 0.711 + }, + { + "start": 37726.36, + "end": 37728.24, + "probability": 0.6632 + }, + { + "start": 37728.38, + "end": 37729.12, + "probability": 0.9077 + }, + { + "start": 37729.36, + "end": 37729.88, + "probability": 0.967 + }, + { + "start": 37730.66, + "end": 37732.88, + "probability": 0.9844 + }, + { + "start": 37733.02, + "end": 37736.78, + "probability": 0.975 + }, + { + "start": 37737.14, + "end": 37741.62, + "probability": 0.9146 + }, + { + "start": 37743.04, + "end": 37745.52, + "probability": 0.9892 + }, + { + "start": 37746.1, + "end": 37748.98, + "probability": 0.8424 + }, + { + "start": 37749.58, + "end": 37752.01, + "probability": 0.7496 + }, + { + "start": 37752.66, + "end": 37756.52, + "probability": 0.9521 + }, + { + "start": 37757.24, + "end": 37757.86, + "probability": 0.1217 + }, + { + "start": 37758.44, + "end": 37759.5, + "probability": 0.1059 + }, + { + "start": 37761.06, + "end": 37762.62, + "probability": 0.9419 + }, + { + "start": 37763.78, + "end": 37765.64, + "probability": 0.9038 + }, + { + "start": 37766.46, + "end": 37771.54, + "probability": 0.9834 + }, + { + "start": 37771.64, + "end": 37772.52, + "probability": 0.8644 + }, + { + "start": 37772.56, + "end": 37772.82, + "probability": 0.8976 + }, + { + "start": 37773.52, + "end": 37774.88, + "probability": 0.6689 + }, + { + "start": 37775.0, + "end": 37777.12, + "probability": 0.757 + }, + { + "start": 37777.4, + "end": 37778.56, + "probability": 0.2185 + }, + { + "start": 37778.56, + "end": 37778.66, + "probability": 0.4624 + }, + { + "start": 37778.96, + "end": 37779.42, + "probability": 0.6446 + }, + { + "start": 37779.58, + "end": 37780.8, + "probability": 0.9041 + }, + { + "start": 37780.88, + "end": 37784.7, + "probability": 0.9819 + }, + { + "start": 37784.7, + "end": 37787.5, + "probability": 0.9746 + }, + { + "start": 37787.64, + "end": 37789.02, + "probability": 0.7857 + }, + { + "start": 37789.52, + "end": 37790.7, + "probability": 0.695 + }, + { + "start": 37791.38, + "end": 37791.88, + "probability": 0.8648 + }, + { + "start": 37793.34, + "end": 37793.84, + "probability": 0.4382 + }, + { + "start": 37807.04, + "end": 37809.94, + "probability": 0.6371 + }, + { + "start": 37809.94, + "end": 37811.84, + "probability": 0.6928 + }, + { + "start": 37811.92, + "end": 37813.6, + "probability": 0.4756 + }, + { + "start": 37813.88, + "end": 37816.02, + "probability": 0.6549 + }, + { + "start": 37816.66, + "end": 37818.6, + "probability": 0.8553 + }, + { + "start": 37820.84, + "end": 37824.46, + "probability": 0.1057 + }, + { + "start": 37838.8, + "end": 37843.5, + "probability": 0.0171 + }, + { + "start": 37843.5, + "end": 37846.84, + "probability": 0.0507 + }, + { + "start": 37847.16, + "end": 37852.5, + "probability": 0.0461 + }, + { + "start": 37854.28, + "end": 37857.42, + "probability": 0.0598 + }, + { + "start": 37857.84, + "end": 37859.98, + "probability": 0.0897 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.0, + "end": 37860.0, + "probability": 0.0 + }, + { + "start": 37860.1, + "end": 37860.94, + "probability": 0.0086 + }, + { + "start": 37860.94, + "end": 37860.94, + "probability": 0.18 + }, + { + "start": 37860.94, + "end": 37861.28, + "probability": 0.2756 + }, + { + "start": 37861.32, + "end": 37864.9, + "probability": 0.9066 + }, + { + "start": 37866.58, + "end": 37867.79, + "probability": 0.9938 + }, + { + "start": 37868.98, + "end": 37874.04, + "probability": 0.9346 + }, + { + "start": 37874.14, + "end": 37877.02, + "probability": 0.9688 + }, + { + "start": 37877.74, + "end": 37878.7, + "probability": 0.9119 + }, + { + "start": 37879.36, + "end": 37880.98, + "probability": 0.9385 + }, + { + "start": 37881.78, + "end": 37883.46, + "probability": 0.9425 + }, + { + "start": 37884.0, + "end": 37886.34, + "probability": 0.7508 + }, + { + "start": 37887.0, + "end": 37891.26, + "probability": 0.9934 + }, + { + "start": 37891.48, + "end": 37891.88, + "probability": 0.8802 + }, + { + "start": 37891.96, + "end": 37893.88, + "probability": 0.9209 + }, + { + "start": 37894.72, + "end": 37897.18, + "probability": 0.8945 + }, + { + "start": 37897.84, + "end": 37901.64, + "probability": 0.9419 + }, + { + "start": 37902.2, + "end": 37905.72, + "probability": 0.9861 + }, + { + "start": 37906.6, + "end": 37909.72, + "probability": 0.98 + }, + { + "start": 37910.64, + "end": 37910.88, + "probability": 0.5218 + }, + { + "start": 37911.22, + "end": 37911.92, + "probability": 0.8488 + }, + { + "start": 37912.0, + "end": 37915.0, + "probability": 0.7375 + }, + { + "start": 37915.18, + "end": 37916.22, + "probability": 0.9922 + }, + { + "start": 37917.04, + "end": 37918.34, + "probability": 0.821 + }, + { + "start": 37918.38, + "end": 37921.04, + "probability": 0.9691 + }, + { + "start": 37921.94, + "end": 37924.76, + "probability": 0.8837 + }, + { + "start": 37925.28, + "end": 37926.74, + "probability": 0.953 + }, + { + "start": 37926.84, + "end": 37928.82, + "probability": 0.5118 + }, + { + "start": 37928.94, + "end": 37930.18, + "probability": 0.9706 + }, + { + "start": 37930.34, + "end": 37931.24, + "probability": 0.9883 + }, + { + "start": 37931.9, + "end": 37932.28, + "probability": 0.5269 + }, + { + "start": 37933.33, + "end": 37936.38, + "probability": 0.979 + }, + { + "start": 37936.38, + "end": 37939.54, + "probability": 0.8721 + }, + { + "start": 37939.6, + "end": 37943.3, + "probability": 0.9285 + }, + { + "start": 37943.3, + "end": 37946.26, + "probability": 0.9237 + }, + { + "start": 37946.4, + "end": 37947.52, + "probability": 0.635 + }, + { + "start": 37947.58, + "end": 37949.02, + "probability": 0.2505 + }, + { + "start": 37949.12, + "end": 37951.38, + "probability": 0.9904 + }, + { + "start": 37951.48, + "end": 37954.54, + "probability": 0.5901 + }, + { + "start": 37954.84, + "end": 37957.82, + "probability": 0.9805 + }, + { + "start": 37958.06, + "end": 37959.04, + "probability": 0.591 + }, + { + "start": 37959.42, + "end": 37960.94, + "probability": 0.4856 + }, + { + "start": 37961.12, + "end": 37961.3, + "probability": 0.8056 + }, + { + "start": 37961.7, + "end": 37963.98, + "probability": 0.9944 + }, + { + "start": 37964.08, + "end": 37965.12, + "probability": 0.9635 + }, + { + "start": 37965.36, + "end": 37966.66, + "probability": 0.9092 + }, + { + "start": 37967.06, + "end": 37967.48, + "probability": 0.892 + }, + { + "start": 37967.56, + "end": 37971.22, + "probability": 0.9645 + }, + { + "start": 37971.34, + "end": 37971.74, + "probability": 0.671 + }, + { + "start": 37972.36, + "end": 37973.62, + "probability": 0.9808 + }, + { + "start": 37974.3, + "end": 37976.68, + "probability": 0.9782 + }, + { + "start": 37977.86, + "end": 37982.3, + "probability": 0.9496 + }, + { + "start": 37983.0, + "end": 37984.04, + "probability": 0.8684 + }, + { + "start": 37984.14, + "end": 37986.68, + "probability": 0.9931 + }, + { + "start": 37987.16, + "end": 37988.74, + "probability": 0.8136 + }, + { + "start": 37989.3, + "end": 37991.02, + "probability": 0.9187 + }, + { + "start": 37991.7, + "end": 37996.18, + "probability": 0.9829 + }, + { + "start": 37996.18, + "end": 38000.76, + "probability": 0.9939 + }, + { + "start": 38001.6, + "end": 38002.68, + "probability": 0.9978 + }, + { + "start": 38003.28, + "end": 38004.02, + "probability": 0.9572 + }, + { + "start": 38004.62, + "end": 38008.1, + "probability": 0.8947 + }, + { + "start": 38008.86, + "end": 38011.08, + "probability": 0.9324 + }, + { + "start": 38012.18, + "end": 38016.86, + "probability": 0.9041 + }, + { + "start": 38017.72, + "end": 38019.94, + "probability": 0.949 + }, + { + "start": 38020.82, + "end": 38026.96, + "probability": 0.8516 + }, + { + "start": 38027.58, + "end": 38030.32, + "probability": 0.7573 + }, + { + "start": 38030.96, + "end": 38031.12, + "probability": 0.5765 + }, + { + "start": 38031.6, + "end": 38032.4, + "probability": 0.3676 + }, + { + "start": 38032.62, + "end": 38034.42, + "probability": 0.9717 + }, + { + "start": 38034.56, + "end": 38035.4, + "probability": 0.6572 + }, + { + "start": 38035.72, + "end": 38039.56, + "probability": 0.9741 + }, + { + "start": 38039.56, + "end": 38042.6, + "probability": 0.9957 + }, + { + "start": 38043.22, + "end": 38043.46, + "probability": 0.4748 + }, + { + "start": 38043.5, + "end": 38044.07, + "probability": 0.6134 + }, + { + "start": 38044.36, + "end": 38045.66, + "probability": 0.7096 + }, + { + "start": 38045.9, + "end": 38047.34, + "probability": 0.9875 + }, + { + "start": 38048.12, + "end": 38054.52, + "probability": 0.9928 + }, + { + "start": 38055.34, + "end": 38057.68, + "probability": 0.5825 + }, + { + "start": 38057.8, + "end": 38061.86, + "probability": 0.98 + }, + { + "start": 38062.24, + "end": 38064.33, + "probability": 0.4361 + }, + { + "start": 38064.9, + "end": 38068.3, + "probability": 0.943 + }, + { + "start": 38069.82, + "end": 38069.98, + "probability": 0.0045 + } + ], + "segments_count": 13004, + "words_count": 64308, + "avg_words_per_segment": 4.9452, + "avg_segment_duration": 1.8953, + "avg_words_per_minute": 101.1702, + "plenum_id": "126119", + "duration": 38138.51, + "title": null, + "plenum_date": "2024-04-03" +} \ No newline at end of file