diff --git "a/17990/metadata.json" "b/17990/metadata.json" new file mode 100644--- /dev/null +++ "b/17990/metadata.json" @@ -0,0 +1,26527 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "17990", + "quality_score": 0.9014, + "per_segment_quality_scores": [ + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 143.98, + "end": 145.55, + "probability": 0.7987 + }, + { + "start": 146.4, + "end": 148.06, + "probability": 0.9087 + }, + { + "start": 148.86, + "end": 149.83, + "probability": 0.3269 + }, + { + "start": 151.34, + "end": 154.48, + "probability": 0.6722 + }, + { + "start": 155.54, + "end": 158.32, + "probability": 0.99 + }, + { + "start": 159.24, + "end": 161.16, + "probability": 0.8582 + }, + { + "start": 162.5, + "end": 163.96, + "probability": 0.9431 + }, + { + "start": 164.08, + "end": 165.44, + "probability": 0.834 + }, + { + "start": 165.5, + "end": 167.09, + "probability": 0.912 + }, + { + "start": 167.5, + "end": 168.66, + "probability": 0.7367 + }, + { + "start": 169.36, + "end": 172.7, + "probability": 0.9412 + }, + { + "start": 174.04, + "end": 176.88, + "probability": 0.8344 + }, + { + "start": 177.56, + "end": 181.84, + "probability": 0.9105 + }, + { + "start": 181.96, + "end": 183.5, + "probability": 0.6905 + }, + { + "start": 183.66, + "end": 185.26, + "probability": 0.9822 + }, + { + "start": 185.7, + "end": 187.34, + "probability": 0.646 + }, + { + "start": 187.88, + "end": 191.22, + "probability": 0.9808 + }, + { + "start": 191.8, + "end": 194.86, + "probability": 0.4003 + }, + { + "start": 194.92, + "end": 196.74, + "probability": 0.9747 + }, + { + "start": 197.3, + "end": 197.94, + "probability": 0.4358 + }, + { + "start": 198.88, + "end": 202.0, + "probability": 0.7446 + }, + { + "start": 202.74, + "end": 206.18, + "probability": 0.9058 + }, + { + "start": 206.76, + "end": 207.68, + "probability": 0.1407 + }, + { + "start": 208.38, + "end": 210.02, + "probability": 0.6371 + }, + { + "start": 210.12, + "end": 212.4, + "probability": 0.9813 + }, + { + "start": 212.98, + "end": 214.5, + "probability": 0.4052 + }, + { + "start": 214.72, + "end": 216.84, + "probability": 0.9469 + }, + { + "start": 217.64, + "end": 221.4, + "probability": 0.9526 + }, + { + "start": 221.96, + "end": 222.24, + "probability": 0.1064 + }, + { + "start": 223.54, + "end": 226.16, + "probability": 0.8308 + }, + { + "start": 226.94, + "end": 229.7, + "probability": 0.7333 + }, + { + "start": 231.62, + "end": 234.24, + "probability": 0.915 + }, + { + "start": 234.92, + "end": 236.39, + "probability": 0.9666 + }, + { + "start": 237.18, + "end": 240.36, + "probability": 0.9653 + }, + { + "start": 240.94, + "end": 243.56, + "probability": 0.5328 + }, + { + "start": 243.62, + "end": 249.92, + "probability": 0.9194 + }, + { + "start": 250.54, + "end": 253.06, + "probability": 0.9971 + }, + { + "start": 253.06, + "end": 256.42, + "probability": 0.9803 + }, + { + "start": 256.96, + "end": 259.04, + "probability": 0.9944 + }, + { + "start": 259.12, + "end": 261.82, + "probability": 0.991 + }, + { + "start": 262.36, + "end": 263.18, + "probability": 0.8239 + }, + { + "start": 263.9, + "end": 266.66, + "probability": 0.9983 + }, + { + "start": 266.72, + "end": 269.32, + "probability": 0.9691 + }, + { + "start": 270.43, + "end": 276.52, + "probability": 0.6558 + }, + { + "start": 276.98, + "end": 279.22, + "probability": 0.6022 + }, + { + "start": 279.4, + "end": 280.04, + "probability": 0.7984 + }, + { + "start": 280.44, + "end": 281.6, + "probability": 0.6743 + }, + { + "start": 281.84, + "end": 283.52, + "probability": 0.9042 + }, + { + "start": 283.82, + "end": 286.68, + "probability": 0.9596 + }, + { + "start": 287.56, + "end": 292.34, + "probability": 0.9971 + }, + { + "start": 297.84, + "end": 298.62, + "probability": 0.714 + }, + { + "start": 300.12, + "end": 303.04, + "probability": 0.7048 + }, + { + "start": 303.94, + "end": 305.36, + "probability": 0.9077 + }, + { + "start": 305.48, + "end": 308.84, + "probability": 0.8459 + }, + { + "start": 309.18, + "end": 313.18, + "probability": 0.8556 + }, + { + "start": 313.34, + "end": 316.6, + "probability": 0.9951 + }, + { + "start": 316.6, + "end": 320.3, + "probability": 0.9911 + }, + { + "start": 321.42, + "end": 325.54, + "probability": 0.9186 + }, + { + "start": 329.18, + "end": 330.22, + "probability": 0.6556 + }, + { + "start": 330.38, + "end": 330.38, + "probability": 0.3156 + }, + { + "start": 330.38, + "end": 333.1, + "probability": 0.813 + }, + { + "start": 333.28, + "end": 333.58, + "probability": 0.9253 + }, + { + "start": 333.9, + "end": 334.54, + "probability": 0.6003 + }, + { + "start": 335.22, + "end": 337.46, + "probability": 0.9774 + }, + { + "start": 337.6, + "end": 338.44, + "probability": 0.9323 + }, + { + "start": 339.19, + "end": 342.22, + "probability": 0.9121 + }, + { + "start": 342.3, + "end": 346.72, + "probability": 0.9775 + }, + { + "start": 347.3, + "end": 348.42, + "probability": 0.7246 + }, + { + "start": 348.82, + "end": 349.4, + "probability": 0.7648 + }, + { + "start": 349.78, + "end": 351.94, + "probability": 0.7383 + }, + { + "start": 352.32, + "end": 353.82, + "probability": 0.8157 + }, + { + "start": 354.62, + "end": 356.02, + "probability": 0.6294 + }, + { + "start": 356.62, + "end": 358.82, + "probability": 0.9438 + }, + { + "start": 363.84, + "end": 364.64, + "probability": 0.8887 + }, + { + "start": 364.92, + "end": 365.35, + "probability": 0.9844 + }, + { + "start": 365.5, + "end": 366.24, + "probability": 0.9771 + }, + { + "start": 366.32, + "end": 366.9, + "probability": 0.5948 + }, + { + "start": 366.94, + "end": 367.32, + "probability": 0.7296 + }, + { + "start": 367.92, + "end": 368.41, + "probability": 0.9968 + }, + { + "start": 370.1, + "end": 371.66, + "probability": 0.7458 + }, + { + "start": 372.92, + "end": 374.3, + "probability": 0.8094 + }, + { + "start": 374.84, + "end": 376.24, + "probability": 0.5142 + }, + { + "start": 376.74, + "end": 376.8, + "probability": 0.5692 + }, + { + "start": 376.8, + "end": 379.66, + "probability": 0.9332 + }, + { + "start": 379.98, + "end": 383.64, + "probability": 0.994 + }, + { + "start": 383.78, + "end": 384.92, + "probability": 0.7455 + }, + { + "start": 385.34, + "end": 387.3, + "probability": 0.9624 + }, + { + "start": 387.68, + "end": 391.22, + "probability": 0.763 + }, + { + "start": 391.84, + "end": 394.26, + "probability": 0.9589 + }, + { + "start": 394.62, + "end": 397.56, + "probability": 0.9459 + }, + { + "start": 397.96, + "end": 398.96, + "probability": 0.5993 + }, + { + "start": 399.38, + "end": 403.12, + "probability": 0.9266 + }, + { + "start": 403.24, + "end": 404.92, + "probability": 0.9438 + }, + { + "start": 405.24, + "end": 409.8, + "probability": 0.9935 + }, + { + "start": 409.8, + "end": 414.08, + "probability": 0.9958 + }, + { + "start": 414.54, + "end": 417.06, + "probability": 0.9907 + }, + { + "start": 417.38, + "end": 421.06, + "probability": 0.9867 + }, + { + "start": 421.46, + "end": 421.98, + "probability": 0.7468 + }, + { + "start": 422.12, + "end": 424.5, + "probability": 0.9954 + }, + { + "start": 424.86, + "end": 426.32, + "probability": 0.8391 + }, + { + "start": 426.7, + "end": 428.46, + "probability": 0.9401 + }, + { + "start": 428.8, + "end": 429.26, + "probability": 0.8392 + }, + { + "start": 429.74, + "end": 431.56, + "probability": 0.9554 + }, + { + "start": 431.84, + "end": 433.5, + "probability": 0.9738 + }, + { + "start": 433.58, + "end": 434.22, + "probability": 0.3507 + }, + { + "start": 434.48, + "end": 435.8, + "probability": 0.5045 + }, + { + "start": 436.4, + "end": 437.8, + "probability": 0.6586 + }, + { + "start": 438.34, + "end": 438.94, + "probability": 0.7047 + }, + { + "start": 439.16, + "end": 439.58, + "probability": 0.8409 + }, + { + "start": 439.78, + "end": 440.14, + "probability": 0.5304 + }, + { + "start": 440.16, + "end": 441.76, + "probability": 0.8403 + }, + { + "start": 442.36, + "end": 443.18, + "probability": 0.7189 + }, + { + "start": 446.16, + "end": 446.7, + "probability": 0.9113 + }, + { + "start": 446.8, + "end": 447.5, + "probability": 0.8469 + }, + { + "start": 447.66, + "end": 450.24, + "probability": 0.9717 + }, + { + "start": 450.3, + "end": 450.96, + "probability": 0.8 + }, + { + "start": 451.0, + "end": 452.24, + "probability": 0.9977 + }, + { + "start": 452.32, + "end": 453.84, + "probability": 0.919 + }, + { + "start": 454.56, + "end": 455.1, + "probability": 0.3376 + }, + { + "start": 455.46, + "end": 457.74, + "probability": 0.9271 + }, + { + "start": 457.74, + "end": 459.27, + "probability": 0.8163 + }, + { + "start": 460.42, + "end": 461.18, + "probability": 0.7078 + }, + { + "start": 461.46, + "end": 462.0, + "probability": 0.4615 + }, + { + "start": 462.22, + "end": 462.36, + "probability": 0.1227 + }, + { + "start": 462.76, + "end": 464.62, + "probability": 0.9483 + }, + { + "start": 464.7, + "end": 465.56, + "probability": 0.8615 + }, + { + "start": 465.96, + "end": 466.84, + "probability": 0.242 + }, + { + "start": 466.84, + "end": 469.78, + "probability": 0.7045 + }, + { + "start": 470.44, + "end": 476.62, + "probability": 0.9796 + }, + { + "start": 477.22, + "end": 481.4, + "probability": 0.997 + }, + { + "start": 481.98, + "end": 483.78, + "probability": 0.9951 + }, + { + "start": 484.72, + "end": 487.7, + "probability": 0.9875 + }, + { + "start": 488.02, + "end": 489.76, + "probability": 0.8687 + }, + { + "start": 490.36, + "end": 493.62, + "probability": 0.9749 + }, + { + "start": 493.72, + "end": 494.38, + "probability": 0.9961 + }, + { + "start": 494.9, + "end": 497.22, + "probability": 0.995 + }, + { + "start": 497.76, + "end": 498.5, + "probability": 0.683 + }, + { + "start": 498.6, + "end": 501.06, + "probability": 0.9799 + }, + { + "start": 501.66, + "end": 503.8, + "probability": 0.9417 + }, + { + "start": 504.58, + "end": 508.18, + "probability": 0.8487 + }, + { + "start": 508.26, + "end": 510.26, + "probability": 0.9944 + }, + { + "start": 510.8, + "end": 513.98, + "probability": 0.9482 + }, + { + "start": 514.06, + "end": 515.32, + "probability": 0.8671 + }, + { + "start": 515.5, + "end": 515.5, + "probability": 0.4357 + }, + { + "start": 515.5, + "end": 519.64, + "probability": 0.623 + }, + { + "start": 520.86, + "end": 521.12, + "probability": 0.8324 + }, + { + "start": 521.26, + "end": 521.74, + "probability": 0.6399 + }, + { + "start": 522.1, + "end": 522.9, + "probability": 0.886 + }, + { + "start": 523.26, + "end": 525.02, + "probability": 0.9045 + }, + { + "start": 525.22, + "end": 527.84, + "probability": 0.9813 + }, + { + "start": 527.94, + "end": 528.88, + "probability": 0.754 + }, + { + "start": 529.5, + "end": 530.76, + "probability": 0.9301 + }, + { + "start": 531.34, + "end": 532.06, + "probability": 0.7593 + }, + { + "start": 532.52, + "end": 533.18, + "probability": 0.7686 + }, + { + "start": 533.22, + "end": 536.74, + "probability": 0.9966 + }, + { + "start": 536.75, + "end": 539.42, + "probability": 0.9196 + }, + { + "start": 540.04, + "end": 541.62, + "probability": 0.9649 + }, + { + "start": 542.2, + "end": 543.84, + "probability": 0.9873 + }, + { + "start": 544.58, + "end": 546.26, + "probability": 0.9897 + }, + { + "start": 546.8, + "end": 548.34, + "probability": 0.8502 + }, + { + "start": 548.54, + "end": 549.92, + "probability": 0.9171 + }, + { + "start": 550.28, + "end": 551.52, + "probability": 0.9653 + }, + { + "start": 552.08, + "end": 556.12, + "probability": 0.9795 + }, + { + "start": 556.58, + "end": 557.42, + "probability": 0.8777 + }, + { + "start": 558.08, + "end": 561.44, + "probability": 0.9581 + }, + { + "start": 562.1, + "end": 563.0, + "probability": 0.9218 + }, + { + "start": 563.68, + "end": 566.32, + "probability": 0.9445 + }, + { + "start": 566.94, + "end": 568.56, + "probability": 0.9828 + }, + { + "start": 568.7, + "end": 569.6, + "probability": 0.9526 + }, + { + "start": 570.28, + "end": 573.42, + "probability": 0.8794 + }, + { + "start": 574.52, + "end": 576.34, + "probability": 0.9888 + }, + { + "start": 576.88, + "end": 579.76, + "probability": 0.9935 + }, + { + "start": 580.0, + "end": 580.18, + "probability": 0.6093 + }, + { + "start": 580.34, + "end": 581.12, + "probability": 0.7055 + }, + { + "start": 581.98, + "end": 582.6, + "probability": 0.6179 + }, + { + "start": 582.74, + "end": 583.74, + "probability": 0.9794 + }, + { + "start": 584.22, + "end": 585.05, + "probability": 0.9932 + }, + { + "start": 585.86, + "end": 590.98, + "probability": 0.9951 + }, + { + "start": 591.52, + "end": 593.18, + "probability": 0.9919 + }, + { + "start": 593.6, + "end": 597.42, + "probability": 0.9165 + }, + { + "start": 597.42, + "end": 598.8, + "probability": 0.8553 + }, + { + "start": 599.4, + "end": 600.96, + "probability": 0.8057 + }, + { + "start": 601.04, + "end": 605.92, + "probability": 0.9883 + }, + { + "start": 606.34, + "end": 606.38, + "probability": 0.3448 + }, + { + "start": 606.5, + "end": 607.12, + "probability": 0.1912 + }, + { + "start": 607.28, + "end": 607.54, + "probability": 0.2271 + }, + { + "start": 607.54, + "end": 611.98, + "probability": 0.979 + }, + { + "start": 612.06, + "end": 613.0, + "probability": 0.7692 + }, + { + "start": 613.48, + "end": 614.74, + "probability": 0.8501 + }, + { + "start": 615.42, + "end": 617.72, + "probability": 0.7779 + }, + { + "start": 618.58, + "end": 618.86, + "probability": 0.8414 + }, + { + "start": 619.62, + "end": 624.86, + "probability": 0.8628 + }, + { + "start": 625.54, + "end": 628.48, + "probability": 0.9365 + }, + { + "start": 628.6, + "end": 631.22, + "probability": 0.8115 + }, + { + "start": 631.42, + "end": 633.38, + "probability": 0.8476 + }, + { + "start": 634.24, + "end": 635.04, + "probability": 0.7525 + }, + { + "start": 635.14, + "end": 639.24, + "probability": 0.9898 + }, + { + "start": 639.72, + "end": 641.34, + "probability": 0.939 + }, + { + "start": 641.4, + "end": 645.9, + "probability": 0.8951 + }, + { + "start": 646.6, + "end": 650.2, + "probability": 0.9219 + }, + { + "start": 650.84, + "end": 653.34, + "probability": 0.8968 + }, + { + "start": 654.28, + "end": 655.96, + "probability": 0.9482 + }, + { + "start": 656.18, + "end": 658.16, + "probability": 0.9979 + }, + { + "start": 659.0, + "end": 660.3, + "probability": 0.946 + }, + { + "start": 660.52, + "end": 661.48, + "probability": 0.845 + }, + { + "start": 661.98, + "end": 663.04, + "probability": 0.4986 + }, + { + "start": 663.68, + "end": 667.94, + "probability": 0.9121 + }, + { + "start": 667.94, + "end": 671.98, + "probability": 0.9763 + }, + { + "start": 672.48, + "end": 675.06, + "probability": 0.9409 + }, + { + "start": 675.69, + "end": 679.52, + "probability": 0.9473 + }, + { + "start": 680.02, + "end": 681.28, + "probability": 0.9472 + }, + { + "start": 681.94, + "end": 683.55, + "probability": 0.98 + }, + { + "start": 683.8, + "end": 684.66, + "probability": 0.7964 + }, + { + "start": 684.76, + "end": 685.6, + "probability": 0.7482 + }, + { + "start": 685.98, + "end": 687.94, + "probability": 0.9325 + }, + { + "start": 687.98, + "end": 690.05, + "probability": 0.9487 + }, + { + "start": 691.04, + "end": 693.98, + "probability": 0.9883 + }, + { + "start": 694.23, + "end": 697.59, + "probability": 0.9463 + }, + { + "start": 697.82, + "end": 697.92, + "probability": 0.5915 + }, + { + "start": 697.92, + "end": 701.1, + "probability": 0.6585 + }, + { + "start": 701.36, + "end": 701.36, + "probability": 0.3826 + }, + { + "start": 701.36, + "end": 701.36, + "probability": 0.051 + }, + { + "start": 701.42, + "end": 701.66, + "probability": 0.5848 + }, + { + "start": 701.68, + "end": 703.36, + "probability": 0.7954 + }, + { + "start": 703.68, + "end": 704.42, + "probability": 0.4219 + }, + { + "start": 704.64, + "end": 705.74, + "probability": 0.866 + }, + { + "start": 705.8, + "end": 709.42, + "probability": 0.9484 + }, + { + "start": 709.42, + "end": 713.02, + "probability": 0.9416 + }, + { + "start": 713.08, + "end": 713.6, + "probability": 0.7917 + }, + { + "start": 713.88, + "end": 715.55, + "probability": 0.8506 + }, + { + "start": 719.02, + "end": 719.08, + "probability": 0.015 + }, + { + "start": 719.08, + "end": 719.56, + "probability": 0.4703 + }, + { + "start": 720.08, + "end": 722.9, + "probability": 0.9109 + }, + { + "start": 723.58, + "end": 724.88, + "probability": 0.9455 + }, + { + "start": 724.94, + "end": 726.6, + "probability": 0.7009 + }, + { + "start": 727.06, + "end": 728.4, + "probability": 0.9878 + }, + { + "start": 728.52, + "end": 729.28, + "probability": 0.9357 + }, + { + "start": 729.72, + "end": 733.78, + "probability": 0.9912 + }, + { + "start": 733.94, + "end": 734.8, + "probability": 0.6272 + }, + { + "start": 735.28, + "end": 738.0, + "probability": 0.9345 + }, + { + "start": 739.0, + "end": 742.36, + "probability": 0.9921 + }, + { + "start": 742.92, + "end": 744.86, + "probability": 0.9985 + }, + { + "start": 745.04, + "end": 748.4, + "probability": 0.8415 + }, + { + "start": 748.78, + "end": 751.76, + "probability": 0.9897 + }, + { + "start": 752.26, + "end": 754.32, + "probability": 0.9836 + }, + { + "start": 755.62, + "end": 756.38, + "probability": 0.8289 + }, + { + "start": 757.0, + "end": 759.42, + "probability": 0.926 + }, + { + "start": 759.88, + "end": 762.94, + "probability": 0.9666 + }, + { + "start": 763.6, + "end": 766.82, + "probability": 0.9935 + }, + { + "start": 767.52, + "end": 770.58, + "probability": 0.9014 + }, + { + "start": 770.92, + "end": 774.24, + "probability": 0.9777 + }, + { + "start": 775.36, + "end": 775.96, + "probability": 0.4692 + }, + { + "start": 776.36, + "end": 777.02, + "probability": 0.8788 + }, + { + "start": 777.3, + "end": 778.74, + "probability": 0.761 + }, + { + "start": 779.32, + "end": 780.4, + "probability": 0.559 + }, + { + "start": 782.18, + "end": 785.0, + "probability": 0.72 + }, + { + "start": 788.38, + "end": 788.66, + "probability": 0.8069 + }, + { + "start": 789.6, + "end": 790.42, + "probability": 0.6635 + }, + { + "start": 790.58, + "end": 791.91, + "probability": 0.6919 + }, + { + "start": 793.42, + "end": 794.04, + "probability": 0.6726 + }, + { + "start": 794.18, + "end": 795.18, + "probability": 0.848 + }, + { + "start": 795.42, + "end": 796.82, + "probability": 0.9941 + }, + { + "start": 798.18, + "end": 800.48, + "probability": 0.5603 + }, + { + "start": 801.9, + "end": 804.3, + "probability": 0.9736 + }, + { + "start": 804.84, + "end": 806.39, + "probability": 0.9962 + }, + { + "start": 807.14, + "end": 808.02, + "probability": 0.8281 + }, + { + "start": 808.84, + "end": 811.9, + "probability": 0.9695 + }, + { + "start": 812.84, + "end": 814.12, + "probability": 0.7872 + }, + { + "start": 814.68, + "end": 816.04, + "probability": 0.9875 + }, + { + "start": 816.76, + "end": 820.04, + "probability": 0.9117 + }, + { + "start": 820.58, + "end": 822.2, + "probability": 0.8931 + }, + { + "start": 822.94, + "end": 824.14, + "probability": 0.9713 + }, + { + "start": 825.06, + "end": 827.54, + "probability": 0.9034 + }, + { + "start": 827.7, + "end": 830.72, + "probability": 0.9222 + }, + { + "start": 831.38, + "end": 836.16, + "probability": 0.8011 + }, + { + "start": 836.76, + "end": 839.34, + "probability": 0.9944 + }, + { + "start": 839.72, + "end": 839.92, + "probability": 0.5359 + }, + { + "start": 840.28, + "end": 840.88, + "probability": 0.6873 + }, + { + "start": 841.16, + "end": 843.12, + "probability": 0.8948 + }, + { + "start": 843.78, + "end": 848.0, + "probability": 0.9751 + }, + { + "start": 848.22, + "end": 848.98, + "probability": 0.9232 + }, + { + "start": 851.34, + "end": 854.54, + "probability": 0.7282 + }, + { + "start": 854.58, + "end": 855.44, + "probability": 0.4424 + }, + { + "start": 856.9, + "end": 858.46, + "probability": 0.6815 + }, + { + "start": 858.66, + "end": 861.12, + "probability": 0.9915 + }, + { + "start": 861.12, + "end": 864.84, + "probability": 0.9526 + }, + { + "start": 864.9, + "end": 865.28, + "probability": 0.6964 + }, + { + "start": 865.9, + "end": 867.72, + "probability": 0.9111 + }, + { + "start": 868.08, + "end": 870.64, + "probability": 0.7077 + }, + { + "start": 871.24, + "end": 875.58, + "probability": 0.9854 + }, + { + "start": 875.8, + "end": 876.4, + "probability": 0.6237 + }, + { + "start": 876.56, + "end": 876.96, + "probability": 0.3447 + }, + { + "start": 878.4, + "end": 883.4, + "probability": 0.9243 + }, + { + "start": 884.48, + "end": 885.08, + "probability": 0.5757 + }, + { + "start": 885.16, + "end": 887.34, + "probability": 0.958 + }, + { + "start": 887.74, + "end": 891.66, + "probability": 0.9906 + }, + { + "start": 892.16, + "end": 897.08, + "probability": 0.9962 + }, + { + "start": 897.98, + "end": 899.54, + "probability": 0.7877 + }, + { + "start": 899.72, + "end": 901.62, + "probability": 0.9494 + }, + { + "start": 901.78, + "end": 902.34, + "probability": 0.977 + }, + { + "start": 902.46, + "end": 903.38, + "probability": 0.9261 + }, + { + "start": 903.8, + "end": 904.44, + "probability": 0.7107 + }, + { + "start": 904.6, + "end": 905.14, + "probability": 0.91 + }, + { + "start": 905.2, + "end": 905.8, + "probability": 0.9219 + }, + { + "start": 905.9, + "end": 906.46, + "probability": 0.9437 + }, + { + "start": 906.52, + "end": 907.34, + "probability": 0.9029 + }, + { + "start": 907.4, + "end": 908.12, + "probability": 0.7509 + }, + { + "start": 908.16, + "end": 908.98, + "probability": 0.8535 + }, + { + "start": 909.1, + "end": 911.12, + "probability": 0.7792 + }, + { + "start": 911.26, + "end": 912.36, + "probability": 0.8274 + }, + { + "start": 912.5, + "end": 912.92, + "probability": 0.8357 + }, + { + "start": 913.0, + "end": 913.2, + "probability": 0.9093 + }, + { + "start": 913.32, + "end": 914.4, + "probability": 0.8289 + }, + { + "start": 914.86, + "end": 916.06, + "probability": 0.5995 + }, + { + "start": 916.08, + "end": 916.46, + "probability": 0.7166 + }, + { + "start": 916.58, + "end": 918.32, + "probability": 0.7286 + }, + { + "start": 918.9, + "end": 924.02, + "probability": 0.9417 + }, + { + "start": 924.02, + "end": 929.42, + "probability": 0.9897 + }, + { + "start": 929.9, + "end": 935.02, + "probability": 0.8361 + }, + { + "start": 935.54, + "end": 939.38, + "probability": 0.9939 + }, + { + "start": 939.38, + "end": 944.12, + "probability": 0.9987 + }, + { + "start": 944.72, + "end": 947.02, + "probability": 0.9792 + }, + { + "start": 947.14, + "end": 948.84, + "probability": 0.8105 + }, + { + "start": 948.94, + "end": 949.24, + "probability": 0.7386 + }, + { + "start": 949.26, + "end": 950.44, + "probability": 0.6058 + }, + { + "start": 950.62, + "end": 952.1, + "probability": 0.838 + }, + { + "start": 952.8, + "end": 954.34, + "probability": 0.7564 + }, + { + "start": 954.88, + "end": 955.72, + "probability": 0.9163 + }, + { + "start": 957.06, + "end": 960.76, + "probability": 0.9812 + }, + { + "start": 961.12, + "end": 962.26, + "probability": 0.7385 + }, + { + "start": 962.96, + "end": 964.78, + "probability": 0.0493 + }, + { + "start": 964.96, + "end": 968.08, + "probability": 0.9307 + }, + { + "start": 968.1, + "end": 968.5, + "probability": 0.73 + }, + { + "start": 968.92, + "end": 973.96, + "probability": 0.9602 + }, + { + "start": 974.02, + "end": 975.56, + "probability": 0.835 + }, + { + "start": 976.56, + "end": 980.2, + "probability": 0.8981 + }, + { + "start": 982.37, + "end": 985.42, + "probability": 0.8527 + }, + { + "start": 985.56, + "end": 987.36, + "probability": 0.9708 + }, + { + "start": 988.0, + "end": 992.67, + "probability": 0.9653 + }, + { + "start": 993.24, + "end": 994.74, + "probability": 0.5804 + }, + { + "start": 994.9, + "end": 995.26, + "probability": 0.809 + }, + { + "start": 995.36, + "end": 997.38, + "probability": 0.9443 + }, + { + "start": 998.1, + "end": 999.1, + "probability": 0.8541 + }, + { + "start": 999.2, + "end": 1000.01, + "probability": 0.9854 + }, + { + "start": 1000.38, + "end": 1001.36, + "probability": 0.6025 + }, + { + "start": 1002.0, + "end": 1003.08, + "probability": 0.6255 + }, + { + "start": 1003.16, + "end": 1009.38, + "probability": 0.9689 + }, + { + "start": 1009.56, + "end": 1011.14, + "probability": 0.8722 + }, + { + "start": 1011.6, + "end": 1012.83, + "probability": 0.9068 + }, + { + "start": 1013.82, + "end": 1015.82, + "probability": 0.9473 + }, + { + "start": 1016.18, + "end": 1017.16, + "probability": 0.7053 + }, + { + "start": 1017.44, + "end": 1019.14, + "probability": 0.9749 + }, + { + "start": 1019.44, + "end": 1022.98, + "probability": 0.8418 + }, + { + "start": 1022.98, + "end": 1022.98, + "probability": 0.0549 + }, + { + "start": 1022.98, + "end": 1023.0, + "probability": 0.0144 + }, + { + "start": 1023.0, + "end": 1025.92, + "probability": 0.8306 + }, + { + "start": 1026.1, + "end": 1027.32, + "probability": 0.4968 + }, + { + "start": 1028.28, + "end": 1032.3, + "probability": 0.9591 + }, + { + "start": 1032.48, + "end": 1036.7, + "probability": 0.9985 + }, + { + "start": 1036.84, + "end": 1037.24, + "probability": 0.8548 + }, + { + "start": 1038.12, + "end": 1040.62, + "probability": 0.892 + }, + { + "start": 1041.0, + "end": 1042.1, + "probability": 0.908 + }, + { + "start": 1042.8, + "end": 1044.28, + "probability": 0.9893 + }, + { + "start": 1045.34, + "end": 1048.2, + "probability": 0.984 + }, + { + "start": 1048.72, + "end": 1050.22, + "probability": 0.989 + }, + { + "start": 1051.06, + "end": 1051.72, + "probability": 0.7932 + }, + { + "start": 1052.5, + "end": 1053.0, + "probability": 0.8868 + }, + { + "start": 1053.32, + "end": 1054.02, + "probability": 0.7956 + }, + { + "start": 1055.3, + "end": 1058.04, + "probability": 0.0096 + }, + { + "start": 1058.63, + "end": 1061.28, + "probability": 0.8274 + }, + { + "start": 1064.26, + "end": 1064.68, + "probability": 0.074 + }, + { + "start": 1064.68, + "end": 1065.38, + "probability": 0.6218 + }, + { + "start": 1065.46, + "end": 1067.62, + "probability": 0.6221 + }, + { + "start": 1068.42, + "end": 1068.66, + "probability": 0.2132 + }, + { + "start": 1068.66, + "end": 1069.69, + "probability": 0.1439 + }, + { + "start": 1070.38, + "end": 1074.54, + "probability": 0.775 + }, + { + "start": 1075.12, + "end": 1076.32, + "probability": 0.4898 + }, + { + "start": 1077.32, + "end": 1079.82, + "probability": 0.9774 + }, + { + "start": 1079.96, + "end": 1083.48, + "probability": 0.4425 + }, + { + "start": 1083.88, + "end": 1085.54, + "probability": 0.906 + }, + { + "start": 1086.6, + "end": 1088.07, + "probability": 0.9316 + }, + { + "start": 1088.82, + "end": 1090.18, + "probability": 0.1458 + }, + { + "start": 1090.18, + "end": 1091.1, + "probability": 0.4945 + }, + { + "start": 1091.66, + "end": 1093.34, + "probability": 0.4468 + }, + { + "start": 1093.82, + "end": 1094.58, + "probability": 0.8816 + }, + { + "start": 1094.64, + "end": 1097.24, + "probability": 0.9638 + }, + { + "start": 1097.62, + "end": 1099.32, + "probability": 0.6391 + }, + { + "start": 1100.46, + "end": 1100.46, + "probability": 0.0542 + }, + { + "start": 1100.46, + "end": 1101.79, + "probability": 0.6594 + }, + { + "start": 1102.26, + "end": 1104.42, + "probability": 0.9931 + }, + { + "start": 1104.48, + "end": 1107.9, + "probability": 0.9985 + }, + { + "start": 1108.72, + "end": 1111.82, + "probability": 0.957 + }, + { + "start": 1111.82, + "end": 1116.32, + "probability": 0.9951 + }, + { + "start": 1116.34, + "end": 1117.36, + "probability": 0.8281 + }, + { + "start": 1118.12, + "end": 1120.4, + "probability": 0.7287 + }, + { + "start": 1120.56, + "end": 1124.42, + "probability": 0.9772 + }, + { + "start": 1125.08, + "end": 1126.66, + "probability": 0.9398 + }, + { + "start": 1126.92, + "end": 1129.76, + "probability": 0.8677 + }, + { + "start": 1130.22, + "end": 1131.9, + "probability": 0.9917 + }, + { + "start": 1132.36, + "end": 1134.18, + "probability": 0.9966 + }, + { + "start": 1134.3, + "end": 1135.74, + "probability": 0.8575 + }, + { + "start": 1136.1, + "end": 1139.95, + "probability": 0.6755 + }, + { + "start": 1141.22, + "end": 1147.44, + "probability": 0.9816 + }, + { + "start": 1148.52, + "end": 1154.4, + "probability": 0.9907 + }, + { + "start": 1155.14, + "end": 1157.74, + "probability": 0.9897 + }, + { + "start": 1158.44, + "end": 1164.36, + "probability": 0.9708 + }, + { + "start": 1164.36, + "end": 1167.94, + "probability": 0.9983 + }, + { + "start": 1168.18, + "end": 1172.0, + "probability": 0.9947 + }, + { + "start": 1172.08, + "end": 1177.48, + "probability": 0.9938 + }, + { + "start": 1178.52, + "end": 1182.34, + "probability": 0.9957 + }, + { + "start": 1182.34, + "end": 1186.2, + "probability": 0.9891 + }, + { + "start": 1186.74, + "end": 1187.54, + "probability": 0.6342 + }, + { + "start": 1187.58, + "end": 1189.35, + "probability": 0.3337 + }, + { + "start": 1190.02, + "end": 1190.18, + "probability": 0.0162 + }, + { + "start": 1190.18, + "end": 1190.6, + "probability": 0.4628 + }, + { + "start": 1190.68, + "end": 1192.8, + "probability": 0.8217 + }, + { + "start": 1193.0, + "end": 1195.72, + "probability": 0.92 + }, + { + "start": 1195.86, + "end": 1197.52, + "probability": 0.6261 + }, + { + "start": 1197.54, + "end": 1198.16, + "probability": 0.4993 + }, + { + "start": 1198.34, + "end": 1202.16, + "probability": 0.8974 + }, + { + "start": 1202.34, + "end": 1204.4, + "probability": 0.9882 + }, + { + "start": 1204.72, + "end": 1205.78, + "probability": 0.9655 + }, + { + "start": 1206.24, + "end": 1206.78, + "probability": 0.6063 + }, + { + "start": 1207.02, + "end": 1208.7, + "probability": 0.9963 + }, + { + "start": 1209.62, + "end": 1213.84, + "probability": 0.9876 + }, + { + "start": 1214.36, + "end": 1217.84, + "probability": 0.9375 + }, + { + "start": 1220.58, + "end": 1225.08, + "probability": 0.9107 + }, + { + "start": 1227.06, + "end": 1228.62, + "probability": 0.4714 + }, + { + "start": 1229.98, + "end": 1231.73, + "probability": 0.8296 + }, + { + "start": 1231.82, + "end": 1232.4, + "probability": 0.7992 + }, + { + "start": 1232.82, + "end": 1234.94, + "probability": 0.9635 + }, + { + "start": 1235.02, + "end": 1237.04, + "probability": 0.9912 + }, + { + "start": 1237.3, + "end": 1239.6, + "probability": 0.8773 + }, + { + "start": 1239.98, + "end": 1240.4, + "probability": 0.724 + }, + { + "start": 1240.78, + "end": 1243.6, + "probability": 0.8192 + }, + { + "start": 1244.02, + "end": 1244.66, + "probability": 0.4755 + }, + { + "start": 1244.74, + "end": 1246.32, + "probability": 0.8967 + }, + { + "start": 1246.62, + "end": 1248.82, + "probability": 0.6583 + }, + { + "start": 1252.42, + "end": 1254.04, + "probability": 0.9546 + }, + { + "start": 1255.2, + "end": 1255.56, + "probability": 0.5442 + }, + { + "start": 1255.72, + "end": 1256.08, + "probability": 0.521 + }, + { + "start": 1256.08, + "end": 1256.88, + "probability": 0.5747 + }, + { + "start": 1256.96, + "end": 1258.0, + "probability": 0.7624 + }, + { + "start": 1259.04, + "end": 1264.36, + "probability": 0.7334 + }, + { + "start": 1264.98, + "end": 1266.5, + "probability": 0.9323 + }, + { + "start": 1267.16, + "end": 1271.62, + "probability": 0.9661 + }, + { + "start": 1272.12, + "end": 1276.16, + "probability": 0.9846 + }, + { + "start": 1277.04, + "end": 1278.34, + "probability": 0.9244 + }, + { + "start": 1278.98, + "end": 1280.96, + "probability": 0.8088 + }, + { + "start": 1281.88, + "end": 1284.24, + "probability": 0.8228 + }, + { + "start": 1285.83, + "end": 1295.88, + "probability": 0.9438 + }, + { + "start": 1296.96, + "end": 1300.93, + "probability": 0.9852 + }, + { + "start": 1301.54, + "end": 1302.96, + "probability": 0.9972 + }, + { + "start": 1304.44, + "end": 1306.19, + "probability": 0.9937 + }, + { + "start": 1307.16, + "end": 1309.34, + "probability": 0.8023 + }, + { + "start": 1309.92, + "end": 1311.54, + "probability": 0.9919 + }, + { + "start": 1312.24, + "end": 1315.24, + "probability": 0.9786 + }, + { + "start": 1317.46, + "end": 1318.42, + "probability": 0.9417 + }, + { + "start": 1318.82, + "end": 1321.06, + "probability": 0.9821 + }, + { + "start": 1321.48, + "end": 1327.04, + "probability": 0.9732 + }, + { + "start": 1327.48, + "end": 1329.84, + "probability": 0.9964 + }, + { + "start": 1330.48, + "end": 1337.16, + "probability": 0.9953 + }, + { + "start": 1337.68, + "end": 1340.98, + "probability": 0.8298 + }, + { + "start": 1341.58, + "end": 1345.92, + "probability": 0.9609 + }, + { + "start": 1346.14, + "end": 1347.12, + "probability": 0.9074 + }, + { + "start": 1347.34, + "end": 1347.68, + "probability": 0.742 + }, + { + "start": 1347.68, + "end": 1348.08, + "probability": 0.4612 + }, + { + "start": 1348.14, + "end": 1349.52, + "probability": 0.4524 + }, + { + "start": 1350.08, + "end": 1350.9, + "probability": 0.8713 + }, + { + "start": 1351.88, + "end": 1352.72, + "probability": 0.4494 + }, + { + "start": 1352.8, + "end": 1353.58, + "probability": 0.1405 + }, + { + "start": 1354.02, + "end": 1354.48, + "probability": 0.4972 + }, + { + "start": 1354.52, + "end": 1355.72, + "probability": 0.7557 + }, + { + "start": 1356.02, + "end": 1358.06, + "probability": 0.7972 + }, + { + "start": 1358.84, + "end": 1360.8, + "probability": 0.9932 + }, + { + "start": 1361.0, + "end": 1362.4, + "probability": 0.802 + }, + { + "start": 1362.68, + "end": 1363.6, + "probability": 0.9475 + }, + { + "start": 1364.04, + "end": 1366.4, + "probability": 0.9333 + }, + { + "start": 1366.5, + "end": 1367.92, + "probability": 0.978 + }, + { + "start": 1368.44, + "end": 1370.94, + "probability": 0.9795 + }, + { + "start": 1371.92, + "end": 1374.0, + "probability": 0.9554 + }, + { + "start": 1374.24, + "end": 1377.28, + "probability": 0.9666 + }, + { + "start": 1377.48, + "end": 1378.74, + "probability": 0.9337 + }, + { + "start": 1379.28, + "end": 1381.52, + "probability": 0.9819 + }, + { + "start": 1382.16, + "end": 1385.58, + "probability": 0.8582 + }, + { + "start": 1386.9, + "end": 1388.08, + "probability": 0.7378 + }, + { + "start": 1388.22, + "end": 1389.46, + "probability": 0.8042 + }, + { + "start": 1389.8, + "end": 1392.36, + "probability": 0.9712 + }, + { + "start": 1392.96, + "end": 1394.26, + "probability": 0.9162 + }, + { + "start": 1394.84, + "end": 1396.16, + "probability": 0.9877 + }, + { + "start": 1396.2, + "end": 1400.84, + "probability": 0.8397 + }, + { + "start": 1401.48, + "end": 1401.76, + "probability": 0.6025 + }, + { + "start": 1402.74, + "end": 1406.78, + "probability": 0.7042 + }, + { + "start": 1407.34, + "end": 1408.74, + "probability": 0.8752 + }, + { + "start": 1409.14, + "end": 1412.1, + "probability": 0.9734 + }, + { + "start": 1412.96, + "end": 1415.38, + "probability": 0.8961 + }, + { + "start": 1415.82, + "end": 1419.04, + "probability": 0.75 + }, + { + "start": 1419.62, + "end": 1420.18, + "probability": 0.6858 + }, + { + "start": 1421.22, + "end": 1422.68, + "probability": 0.917 + }, + { + "start": 1422.7, + "end": 1426.24, + "probability": 0.9341 + }, + { + "start": 1426.6, + "end": 1432.74, + "probability": 0.9656 + }, + { + "start": 1432.74, + "end": 1438.3, + "probability": 0.9939 + }, + { + "start": 1438.74, + "end": 1438.94, + "probability": 0.7081 + }, + { + "start": 1439.04, + "end": 1439.42, + "probability": 0.5723 + }, + { + "start": 1440.2, + "end": 1441.5, + "probability": 0.8615 + }, + { + "start": 1441.74, + "end": 1442.26, + "probability": 0.3493 + }, + { + "start": 1442.72, + "end": 1443.38, + "probability": 0.511 + }, + { + "start": 1443.52, + "end": 1444.04, + "probability": 0.4736 + }, + { + "start": 1444.14, + "end": 1444.8, + "probability": 0.7191 + }, + { + "start": 1445.06, + "end": 1445.58, + "probability": 0.8124 + }, + { + "start": 1447.4, + "end": 1449.5, + "probability": 0.8188 + }, + { + "start": 1450.2, + "end": 1450.92, + "probability": 0.7925 + }, + { + "start": 1452.06, + "end": 1452.32, + "probability": 0.3839 + }, + { + "start": 1452.46, + "end": 1453.96, + "probability": 0.7695 + }, + { + "start": 1454.16, + "end": 1456.01, + "probability": 0.8698 + }, + { + "start": 1458.22, + "end": 1462.18, + "probability": 0.9468 + }, + { + "start": 1462.9, + "end": 1463.52, + "probability": 0.9042 + }, + { + "start": 1463.62, + "end": 1464.32, + "probability": 0.9858 + }, + { + "start": 1465.44, + "end": 1470.74, + "probability": 0.9777 + }, + { + "start": 1472.28, + "end": 1474.64, + "probability": 0.9354 + }, + { + "start": 1475.28, + "end": 1479.92, + "probability": 0.9919 + }, + { + "start": 1481.29, + "end": 1483.54, + "probability": 0.9677 + }, + { + "start": 1484.18, + "end": 1487.38, + "probability": 0.9203 + }, + { + "start": 1488.04, + "end": 1488.38, + "probability": 0.4594 + }, + { + "start": 1488.94, + "end": 1489.78, + "probability": 0.8761 + }, + { + "start": 1489.96, + "end": 1490.94, + "probability": 0.9658 + }, + { + "start": 1491.3, + "end": 1492.04, + "probability": 0.8848 + }, + { + "start": 1492.5, + "end": 1495.98, + "probability": 0.9901 + }, + { + "start": 1496.74, + "end": 1499.58, + "probability": 0.5052 + }, + { + "start": 1499.82, + "end": 1499.84, + "probability": 0.1597 + }, + { + "start": 1499.84, + "end": 1507.46, + "probability": 0.8588 + }, + { + "start": 1508.36, + "end": 1509.54, + "probability": 0.8477 + }, + { + "start": 1510.18, + "end": 1513.38, + "probability": 0.9883 + }, + { + "start": 1513.9, + "end": 1516.36, + "probability": 0.9232 + }, + { + "start": 1516.92, + "end": 1518.64, + "probability": 0.9501 + }, + { + "start": 1518.86, + "end": 1519.98, + "probability": 0.9881 + }, + { + "start": 1520.32, + "end": 1521.64, + "probability": 0.8444 + }, + { + "start": 1522.04, + "end": 1523.48, + "probability": 0.9896 + }, + { + "start": 1523.86, + "end": 1528.54, + "probability": 0.9734 + }, + { + "start": 1528.88, + "end": 1531.02, + "probability": 0.9765 + }, + { + "start": 1531.94, + "end": 1534.78, + "probability": 0.9388 + }, + { + "start": 1535.3, + "end": 1536.2, + "probability": 0.4242 + }, + { + "start": 1536.64, + "end": 1538.09, + "probability": 0.8519 + }, + { + "start": 1538.96, + "end": 1542.64, + "probability": 0.8798 + }, + { + "start": 1543.44, + "end": 1546.26, + "probability": 0.9035 + }, + { + "start": 1546.9, + "end": 1547.3, + "probability": 0.1238 + }, + { + "start": 1547.3, + "end": 1547.86, + "probability": 0.5018 + }, + { + "start": 1547.92, + "end": 1548.38, + "probability": 0.9694 + }, + { + "start": 1548.62, + "end": 1549.5, + "probability": 0.8083 + }, + { + "start": 1549.98, + "end": 1553.78, + "probability": 0.9897 + }, + { + "start": 1554.68, + "end": 1555.02, + "probability": 0.3018 + }, + { + "start": 1555.82, + "end": 1558.12, + "probability": 0.9408 + }, + { + "start": 1558.4, + "end": 1560.24, + "probability": 0.8636 + }, + { + "start": 1560.36, + "end": 1562.76, + "probability": 0.6185 + }, + { + "start": 1563.3, + "end": 1564.9, + "probability": 0.909 + }, + { + "start": 1565.62, + "end": 1568.3, + "probability": 0.4976 + }, + { + "start": 1569.12, + "end": 1572.02, + "probability": 0.7145 + }, + { + "start": 1573.22, + "end": 1575.9, + "probability": 0.8135 + }, + { + "start": 1576.66, + "end": 1576.74, + "probability": 0.1463 + }, + { + "start": 1576.74, + "end": 1576.74, + "probability": 0.2792 + }, + { + "start": 1576.74, + "end": 1578.46, + "probability": 0.7307 + }, + { + "start": 1578.58, + "end": 1582.46, + "probability": 0.8584 + }, + { + "start": 1582.46, + "end": 1583.98, + "probability": 0.7555 + }, + { + "start": 1584.74, + "end": 1585.72, + "probability": 0.2531 + }, + { + "start": 1585.72, + "end": 1589.26, + "probability": 0.239 + }, + { + "start": 1589.26, + "end": 1589.78, + "probability": 0.6988 + }, + { + "start": 1589.88, + "end": 1590.3, + "probability": 0.6649 + }, + { + "start": 1590.62, + "end": 1591.24, + "probability": 0.0561 + }, + { + "start": 1591.26, + "end": 1592.58, + "probability": 0.9756 + }, + { + "start": 1593.5, + "end": 1593.78, + "probability": 0.5472 + }, + { + "start": 1593.78, + "end": 1594.86, + "probability": 0.2774 + }, + { + "start": 1594.86, + "end": 1595.64, + "probability": 0.0436 + }, + { + "start": 1596.28, + "end": 1599.32, + "probability": 0.9435 + }, + { + "start": 1599.9, + "end": 1601.58, + "probability": 0.4924 + }, + { + "start": 1601.88, + "end": 1603.32, + "probability": 0.9292 + }, + { + "start": 1603.36, + "end": 1606.42, + "probability": 0.9562 + }, + { + "start": 1606.52, + "end": 1608.42, + "probability": 0.7472 + }, + { + "start": 1608.92, + "end": 1609.48, + "probability": 0.4578 + }, + { + "start": 1609.66, + "end": 1610.01, + "probability": 0.9379 + }, + { + "start": 1610.32, + "end": 1610.9, + "probability": 0.0986 + }, + { + "start": 1610.9, + "end": 1611.36, + "probability": 0.6599 + }, + { + "start": 1611.44, + "end": 1614.1, + "probability": 0.4835 + }, + { + "start": 1614.16, + "end": 1615.04, + "probability": 0.7433 + }, + { + "start": 1615.16, + "end": 1615.98, + "probability": 0.7625 + }, + { + "start": 1615.98, + "end": 1621.68, + "probability": 0.9692 + }, + { + "start": 1621.74, + "end": 1624.46, + "probability": 0.4771 + }, + { + "start": 1624.46, + "end": 1626.0, + "probability": 0.5772 + }, + { + "start": 1626.0, + "end": 1629.1, + "probability": 0.5282 + }, + { + "start": 1629.1, + "end": 1631.36, + "probability": 0.8211 + }, + { + "start": 1631.36, + "end": 1638.7, + "probability": 0.3331 + }, + { + "start": 1639.48, + "end": 1643.12, + "probability": 0.843 + }, + { + "start": 1643.34, + "end": 1645.5, + "probability": 0.927 + }, + { + "start": 1646.44, + "end": 1648.04, + "probability": 0.3296 + }, + { + "start": 1648.38, + "end": 1649.52, + "probability": 0.039 + }, + { + "start": 1649.52, + "end": 1649.82, + "probability": 0.095 + }, + { + "start": 1649.82, + "end": 1654.44, + "probability": 0.8354 + }, + { + "start": 1658.22, + "end": 1658.82, + "probability": 0.4081 + }, + { + "start": 1660.39, + "end": 1664.96, + "probability": 0.8193 + }, + { + "start": 1665.08, + "end": 1668.12, + "probability": 0.7376 + }, + { + "start": 1668.96, + "end": 1673.1, + "probability": 0.8345 + }, + { + "start": 1673.92, + "end": 1674.14, + "probability": 0.8785 + }, + { + "start": 1674.32, + "end": 1675.58, + "probability": 0.6875 + }, + { + "start": 1675.62, + "end": 1677.72, + "probability": 0.5344 + }, + { + "start": 1678.5, + "end": 1680.14, + "probability": 0.2769 + }, + { + "start": 1680.36, + "end": 1681.28, + "probability": 0.1955 + }, + { + "start": 1681.36, + "end": 1681.7, + "probability": 0.181 + }, + { + "start": 1681.9, + "end": 1682.66, + "probability": 0.5231 + }, + { + "start": 1682.68, + "end": 1683.49, + "probability": 0.4279 + }, + { + "start": 1683.6, + "end": 1685.06, + "probability": 0.8362 + }, + { + "start": 1685.06, + "end": 1685.78, + "probability": 0.0834 + }, + { + "start": 1686.74, + "end": 1688.4, + "probability": 0.477 + }, + { + "start": 1688.92, + "end": 1692.34, + "probability": 0.7902 + }, + { + "start": 1692.52, + "end": 1694.46, + "probability": 0.8986 + }, + { + "start": 1694.98, + "end": 1697.18, + "probability": 0.2924 + }, + { + "start": 1698.26, + "end": 1700.26, + "probability": 0.1018 + }, + { + "start": 1700.46, + "end": 1701.02, + "probability": 0.0303 + }, + { + "start": 1702.34, + "end": 1703.66, + "probability": 0.6317 + }, + { + "start": 1704.66, + "end": 1705.26, + "probability": 0.5208 + }, + { + "start": 1705.26, + "end": 1709.54, + "probability": 0.737 + }, + { + "start": 1709.68, + "end": 1710.52, + "probability": 0.7905 + }, + { + "start": 1710.76, + "end": 1710.88, + "probability": 0.6318 + }, + { + "start": 1710.94, + "end": 1711.86, + "probability": 0.6189 + }, + { + "start": 1712.87, + "end": 1714.7, + "probability": 0.6018 + }, + { + "start": 1714.82, + "end": 1716.99, + "probability": 0.4999 + }, + { + "start": 1717.74, + "end": 1718.16, + "probability": 0.1477 + }, + { + "start": 1718.58, + "end": 1720.02, + "probability": 0.3728 + }, + { + "start": 1720.14, + "end": 1721.48, + "probability": 0.6643 + }, + { + "start": 1721.48, + "end": 1723.1, + "probability": 0.0468 + }, + { + "start": 1723.54, + "end": 1725.74, + "probability": 0.767 + }, + { + "start": 1725.74, + "end": 1727.18, + "probability": 0.8561 + }, + { + "start": 1727.26, + "end": 1728.11, + "probability": 0.762 + }, + { + "start": 1728.36, + "end": 1729.08, + "probability": 0.3238 + }, + { + "start": 1729.2, + "end": 1730.48, + "probability": 0.4554 + }, + { + "start": 1734.3, + "end": 1736.02, + "probability": 0.5156 + }, + { + "start": 1736.7, + "end": 1738.24, + "probability": 0.8158 + }, + { + "start": 1738.38, + "end": 1741.16, + "probability": 0.8303 + }, + { + "start": 1741.16, + "end": 1741.24, + "probability": 0.8607 + }, + { + "start": 1741.24, + "end": 1741.24, + "probability": 0.2996 + }, + { + "start": 1741.24, + "end": 1741.26, + "probability": 0.0158 + }, + { + "start": 1741.26, + "end": 1741.8, + "probability": 0.146 + }, + { + "start": 1741.88, + "end": 1744.12, + "probability": 0.7268 + }, + { + "start": 1744.34, + "end": 1744.9, + "probability": 0.0258 + }, + { + "start": 1744.94, + "end": 1746.6, + "probability": 0.7849 + }, + { + "start": 1746.6, + "end": 1748.64, + "probability": 0.7222 + }, + { + "start": 1749.02, + "end": 1752.12, + "probability": 0.5546 + }, + { + "start": 1752.12, + "end": 1752.12, + "probability": 0.0142 + }, + { + "start": 1752.12, + "end": 1753.84, + "probability": 0.1914 + }, + { + "start": 1753.84, + "end": 1755.38, + "probability": 0.4651 + }, + { + "start": 1755.96, + "end": 1756.24, + "probability": 0.7998 + }, + { + "start": 1756.28, + "end": 1756.64, + "probability": 0.8008 + }, + { + "start": 1756.86, + "end": 1757.9, + "probability": 0.639 + }, + { + "start": 1758.3, + "end": 1761.44, + "probability": 0.7527 + }, + { + "start": 1761.68, + "end": 1762.88, + "probability": 0.9725 + }, + { + "start": 1763.32, + "end": 1763.82, + "probability": 0.6154 + }, + { + "start": 1764.0, + "end": 1765.06, + "probability": 0.9697 + }, + { + "start": 1765.6, + "end": 1766.04, + "probability": 0.7337 + }, + { + "start": 1767.08, + "end": 1770.86, + "probability": 0.9605 + }, + { + "start": 1770.86, + "end": 1774.52, + "probability": 0.992 + }, + { + "start": 1774.8, + "end": 1775.56, + "probability": 0.9883 + }, + { + "start": 1775.82, + "end": 1777.75, + "probability": 0.98 + }, + { + "start": 1778.66, + "end": 1781.48, + "probability": 0.978 + }, + { + "start": 1782.36, + "end": 1782.92, + "probability": 0.6011 + }, + { + "start": 1783.2, + "end": 1789.24, + "probability": 0.9674 + }, + { + "start": 1789.8, + "end": 1790.84, + "probability": 0.3699 + }, + { + "start": 1791.04, + "end": 1792.58, + "probability": 0.2597 + }, + { + "start": 1792.74, + "end": 1794.58, + "probability": 0.3985 + }, + { + "start": 1794.64, + "end": 1796.82, + "probability": 0.7686 + }, + { + "start": 1797.14, + "end": 1798.66, + "probability": 0.9268 + }, + { + "start": 1798.78, + "end": 1800.76, + "probability": 0.5538 + }, + { + "start": 1801.36, + "end": 1802.16, + "probability": 0.8177 + }, + { + "start": 1802.4, + "end": 1804.2, + "probability": 0.9316 + }, + { + "start": 1804.56, + "end": 1807.16, + "probability": 0.9446 + }, + { + "start": 1807.6, + "end": 1808.94, + "probability": 0.8719 + }, + { + "start": 1809.04, + "end": 1812.38, + "probability": 0.9849 + }, + { + "start": 1812.38, + "end": 1814.03, + "probability": 0.5908 + }, + { + "start": 1815.72, + "end": 1816.46, + "probability": 0.352 + }, + { + "start": 1816.76, + "end": 1819.28, + "probability": 0.6978 + }, + { + "start": 1819.5, + "end": 1820.2, + "probability": 0.9013 + }, + { + "start": 1820.36, + "end": 1820.95, + "probability": 0.8892 + }, + { + "start": 1821.92, + "end": 1828.54, + "probability": 0.9504 + }, + { + "start": 1828.64, + "end": 1829.16, + "probability": 0.6732 + }, + { + "start": 1829.72, + "end": 1831.52, + "probability": 0.9356 + }, + { + "start": 1831.9, + "end": 1834.64, + "probability": 0.9807 + }, + { + "start": 1835.1, + "end": 1840.16, + "probability": 0.9893 + }, + { + "start": 1840.44, + "end": 1841.32, + "probability": 0.5417 + }, + { + "start": 1841.34, + "end": 1843.68, + "probability": 0.5909 + }, + { + "start": 1844.12, + "end": 1844.38, + "probability": 0.7104 + }, + { + "start": 1845.46, + "end": 1846.5, + "probability": 0.8246 + }, + { + "start": 1846.62, + "end": 1847.22, + "probability": 0.7603 + }, + { + "start": 1848.04, + "end": 1849.26, + "probability": 0.9769 + }, + { + "start": 1849.76, + "end": 1851.78, + "probability": 0.7746 + }, + { + "start": 1852.58, + "end": 1853.48, + "probability": 0.9694 + }, + { + "start": 1853.66, + "end": 1854.42, + "probability": 0.5698 + }, + { + "start": 1854.44, + "end": 1857.34, + "probability": 0.9048 + }, + { + "start": 1857.36, + "end": 1859.16, + "probability": 0.8668 + }, + { + "start": 1859.4, + "end": 1860.89, + "probability": 0.5533 + }, + { + "start": 1861.04, + "end": 1861.64, + "probability": 0.6976 + }, + { + "start": 1861.68, + "end": 1862.12, + "probability": 0.777 + }, + { + "start": 1862.2, + "end": 1863.02, + "probability": 0.786 + }, + { + "start": 1863.22, + "end": 1865.56, + "probability": 0.9172 + }, + { + "start": 1865.74, + "end": 1867.56, + "probability": 0.9888 + }, + { + "start": 1868.0, + "end": 1868.38, + "probability": 0.286 + }, + { + "start": 1868.46, + "end": 1868.76, + "probability": 0.8508 + }, + { + "start": 1868.84, + "end": 1870.24, + "probability": 0.814 + }, + { + "start": 1870.26, + "end": 1873.6, + "probability": 0.8261 + }, + { + "start": 1874.02, + "end": 1875.06, + "probability": 0.7243 + }, + { + "start": 1875.08, + "end": 1879.78, + "probability": 0.9882 + }, + { + "start": 1881.76, + "end": 1881.76, + "probability": 0.0287 + }, + { + "start": 1881.76, + "end": 1883.68, + "probability": 0.757 + }, + { + "start": 1883.74, + "end": 1884.24, + "probability": 0.7005 + }, + { + "start": 1884.86, + "end": 1886.38, + "probability": 0.5002 + }, + { + "start": 1886.56, + "end": 1887.92, + "probability": 0.9531 + }, + { + "start": 1888.38, + "end": 1889.56, + "probability": 0.9139 + }, + { + "start": 1890.02, + "end": 1892.54, + "probability": 0.9617 + }, + { + "start": 1893.28, + "end": 1893.48, + "probability": 0.9824 + }, + { + "start": 1894.4, + "end": 1895.32, + "probability": 0.6282 + }, + { + "start": 1895.4, + "end": 1897.38, + "probability": 0.919 + }, + { + "start": 1897.38, + "end": 1902.22, + "probability": 0.9914 + }, + { + "start": 1902.46, + "end": 1902.94, + "probability": 0.4893 + }, + { + "start": 1903.56, + "end": 1904.36, + "probability": 0.9917 + }, + { + "start": 1905.84, + "end": 1907.1, + "probability": 0.5203 + }, + { + "start": 1907.14, + "end": 1908.48, + "probability": 0.877 + }, + { + "start": 1908.6, + "end": 1911.54, + "probability": 0.7338 + }, + { + "start": 1911.98, + "end": 1914.22, + "probability": 0.8657 + }, + { + "start": 1915.02, + "end": 1917.9, + "probability": 0.9594 + }, + { + "start": 1917.96, + "end": 1920.62, + "probability": 0.9653 + }, + { + "start": 1921.12, + "end": 1921.58, + "probability": 0.9592 + }, + { + "start": 1922.26, + "end": 1924.0, + "probability": 0.8793 + }, + { + "start": 1924.96, + "end": 1931.56, + "probability": 0.4507 + }, + { + "start": 1931.7, + "end": 1934.18, + "probability": 0.8259 + }, + { + "start": 1934.56, + "end": 1935.08, + "probability": 0.9324 + }, + { + "start": 1935.08, + "end": 1935.42, + "probability": 0.9194 + }, + { + "start": 1936.06, + "end": 1936.98, + "probability": 0.9581 + }, + { + "start": 1937.04, + "end": 1937.7, + "probability": 0.6694 + }, + { + "start": 1937.88, + "end": 1938.24, + "probability": 0.777 + }, + { + "start": 1938.86, + "end": 1939.42, + "probability": 0.8032 + }, + { + "start": 1939.96, + "end": 1940.22, + "probability": 0.5332 + }, + { + "start": 1940.62, + "end": 1944.26, + "probability": 0.7753 + }, + { + "start": 1944.64, + "end": 1946.82, + "probability": 0.7922 + }, + { + "start": 1947.02, + "end": 1948.58, + "probability": 0.6261 + }, + { + "start": 1948.96, + "end": 1948.96, + "probability": 0.4436 + }, + { + "start": 1948.96, + "end": 1950.9, + "probability": 0.7153 + }, + { + "start": 1951.16, + "end": 1952.06, + "probability": 0.4321 + }, + { + "start": 1952.82, + "end": 1953.96, + "probability": 0.7334 + }, + { + "start": 1954.38, + "end": 1954.74, + "probability": 0.562 + }, + { + "start": 1954.78, + "end": 1959.48, + "probability": 0.8705 + }, + { + "start": 1959.54, + "end": 1959.8, + "probability": 0.6285 + }, + { + "start": 1960.22, + "end": 1960.84, + "probability": 0.8259 + }, + { + "start": 1961.9, + "end": 1968.92, + "probability": 0.9788 + }, + { + "start": 1969.38, + "end": 1973.82, + "probability": 0.7683 + }, + { + "start": 1974.26, + "end": 1975.18, + "probability": 0.9797 + }, + { + "start": 1977.68, + "end": 1980.72, + "probability": 0.9689 + }, + { + "start": 1980.78, + "end": 1981.04, + "probability": 0.8692 + }, + { + "start": 1981.14, + "end": 1983.12, + "probability": 0.9847 + }, + { + "start": 1983.6, + "end": 1985.3, + "probability": 0.9427 + }, + { + "start": 1985.3, + "end": 1987.48, + "probability": 0.9155 + }, + { + "start": 1988.6, + "end": 1991.56, + "probability": 0.9209 + }, + { + "start": 1991.7, + "end": 1995.9, + "probability": 0.9956 + }, + { + "start": 1996.42, + "end": 1997.64, + "probability": 0.9692 + }, + { + "start": 1998.3, + "end": 1999.9, + "probability": 0.9944 + }, + { + "start": 2000.94, + "end": 2004.56, + "probability": 0.9971 + }, + { + "start": 2005.54, + "end": 2010.4, + "probability": 0.985 + }, + { + "start": 2011.52, + "end": 2016.56, + "probability": 0.8434 + }, + { + "start": 2017.14, + "end": 2020.92, + "probability": 0.9929 + }, + { + "start": 2021.28, + "end": 2024.44, + "probability": 0.9988 + }, + { + "start": 2025.0, + "end": 2030.76, + "probability": 0.9979 + }, + { + "start": 2030.9, + "end": 2035.0, + "probability": 0.9981 + }, + { + "start": 2035.28, + "end": 2035.64, + "probability": 0.7349 + }, + { + "start": 2035.7, + "end": 2036.38, + "probability": 0.5777 + }, + { + "start": 2036.38, + "end": 2038.82, + "probability": 0.6304 + }, + { + "start": 2038.86, + "end": 2039.22, + "probability": 0.7165 + }, + { + "start": 2039.28, + "end": 2041.1, + "probability": 0.8652 + }, + { + "start": 2041.46, + "end": 2043.92, + "probability": 0.8139 + }, + { + "start": 2044.48, + "end": 2045.3, + "probability": 0.4988 + }, + { + "start": 2045.74, + "end": 2047.9, + "probability": 0.8646 + }, + { + "start": 2048.04, + "end": 2051.12, + "probability": 0.9922 + }, + { + "start": 2051.4, + "end": 2052.92, + "probability": 0.7359 + }, + { + "start": 2053.08, + "end": 2055.8, + "probability": 0.7815 + }, + { + "start": 2055.82, + "end": 2056.32, + "probability": 0.7821 + }, + { + "start": 2056.44, + "end": 2057.24, + "probability": 0.8441 + }, + { + "start": 2057.4, + "end": 2057.92, + "probability": 0.8791 + }, + { + "start": 2058.0, + "end": 2058.82, + "probability": 0.9212 + }, + { + "start": 2058.98, + "end": 2061.92, + "probability": 0.9935 + }, + { + "start": 2062.62, + "end": 2064.98, + "probability": 0.9864 + }, + { + "start": 2065.12, + "end": 2067.3, + "probability": 0.952 + }, + { + "start": 2067.92, + "end": 2069.32, + "probability": 0.7416 + }, + { + "start": 2069.94, + "end": 2073.94, + "probability": 0.9941 + }, + { + "start": 2074.46, + "end": 2076.9, + "probability": 0.8525 + }, + { + "start": 2076.9, + "end": 2079.68, + "probability": 0.9819 + }, + { + "start": 2080.4, + "end": 2084.08, + "probability": 0.9237 + }, + { + "start": 2084.92, + "end": 2086.04, + "probability": 0.8392 + }, + { + "start": 2086.66, + "end": 2091.88, + "probability": 0.9888 + }, + { + "start": 2092.5, + "end": 2094.6, + "probability": 0.9743 + }, + { + "start": 2095.14, + "end": 2098.04, + "probability": 0.9819 + }, + { + "start": 2098.3, + "end": 2099.94, + "probability": 0.9968 + }, + { + "start": 2100.5, + "end": 2101.4, + "probability": 0.9548 + }, + { + "start": 2101.88, + "end": 2105.68, + "probability": 0.9896 + }, + { + "start": 2106.38, + "end": 2107.1, + "probability": 0.948 + }, + { + "start": 2107.86, + "end": 2109.52, + "probability": 0.717 + }, + { + "start": 2109.64, + "end": 2111.01, + "probability": 0.9736 + }, + { + "start": 2111.58, + "end": 2116.46, + "probability": 0.9333 + }, + { + "start": 2116.98, + "end": 2118.98, + "probability": 0.9954 + }, + { + "start": 2119.46, + "end": 2121.68, + "probability": 0.9846 + }, + { + "start": 2121.76, + "end": 2124.06, + "probability": 0.8317 + }, + { + "start": 2124.2, + "end": 2126.56, + "probability": 0.9424 + }, + { + "start": 2127.32, + "end": 2129.28, + "probability": 0.8162 + }, + { + "start": 2129.98, + "end": 2133.14, + "probability": 0.9956 + }, + { + "start": 2134.14, + "end": 2134.68, + "probability": 0.8198 + }, + { + "start": 2135.0, + "end": 2140.72, + "probability": 0.9777 + }, + { + "start": 2141.1, + "end": 2141.86, + "probability": 0.7258 + }, + { + "start": 2143.02, + "end": 2143.64, + "probability": 0.7293 + }, + { + "start": 2143.72, + "end": 2143.98, + "probability": 0.838 + }, + { + "start": 2144.12, + "end": 2144.86, + "probability": 0.8283 + }, + { + "start": 2144.96, + "end": 2147.38, + "probability": 0.9889 + }, + { + "start": 2147.38, + "end": 2152.48, + "probability": 0.9795 + }, + { + "start": 2154.44, + "end": 2156.2, + "probability": 0.8052 + }, + { + "start": 2157.16, + "end": 2158.05, + "probability": 0.9658 + }, + { + "start": 2159.32, + "end": 2161.92, + "probability": 0.9103 + }, + { + "start": 2162.66, + "end": 2167.38, + "probability": 0.9974 + }, + { + "start": 2167.84, + "end": 2169.98, + "probability": 0.9979 + }, + { + "start": 2170.42, + "end": 2171.68, + "probability": 0.8693 + }, + { + "start": 2171.96, + "end": 2174.4, + "probability": 0.9531 + }, + { + "start": 2174.68, + "end": 2175.56, + "probability": 0.5265 + }, + { + "start": 2175.6, + "end": 2175.88, + "probability": 0.7401 + }, + { + "start": 2176.78, + "end": 2179.88, + "probability": 0.9917 + }, + { + "start": 2180.48, + "end": 2180.86, + "probability": 0.1815 + }, + { + "start": 2181.56, + "end": 2182.62, + "probability": 0.8042 + }, + { + "start": 2183.62, + "end": 2184.34, + "probability": 0.8957 + }, + { + "start": 2184.66, + "end": 2190.62, + "probability": 0.8976 + }, + { + "start": 2190.94, + "end": 2192.08, + "probability": 0.3161 + }, + { + "start": 2192.76, + "end": 2193.22, + "probability": 0.0514 + }, + { + "start": 2194.3, + "end": 2196.27, + "probability": 0.9924 + }, + { + "start": 2196.32, + "end": 2197.68, + "probability": 0.9845 + }, + { + "start": 2197.92, + "end": 2202.66, + "probability": 0.987 + }, + { + "start": 2203.12, + "end": 2204.26, + "probability": 0.5663 + }, + { + "start": 2204.38, + "end": 2204.96, + "probability": 0.6944 + }, + { + "start": 2205.32, + "end": 2209.08, + "probability": 0.9828 + }, + { + "start": 2209.16, + "end": 2209.55, + "probability": 0.835 + }, + { + "start": 2210.5, + "end": 2213.6, + "probability": 0.9042 + }, + { + "start": 2213.62, + "end": 2214.42, + "probability": 0.9135 + }, + { + "start": 2214.56, + "end": 2215.66, + "probability": 0.7281 + }, + { + "start": 2216.2, + "end": 2222.26, + "probability": 0.9922 + }, + { + "start": 2222.58, + "end": 2223.8, + "probability": 0.7652 + }, + { + "start": 2224.3, + "end": 2226.56, + "probability": 0.9071 + }, + { + "start": 2227.14, + "end": 2230.06, + "probability": 0.9704 + }, + { + "start": 2230.14, + "end": 2232.22, + "probability": 0.6815 + }, + { + "start": 2232.68, + "end": 2234.08, + "probability": 0.4071 + }, + { + "start": 2235.1, + "end": 2241.22, + "probability": 0.9485 + }, + { + "start": 2241.78, + "end": 2244.58, + "probability": 0.9715 + }, + { + "start": 2244.74, + "end": 2245.4, + "probability": 0.3662 + }, + { + "start": 2245.82, + "end": 2246.22, + "probability": 0.4934 + }, + { + "start": 2246.46, + "end": 2248.88, + "probability": 0.7883 + }, + { + "start": 2249.06, + "end": 2249.91, + "probability": 0.1781 + }, + { + "start": 2250.32, + "end": 2254.38, + "probability": 0.999 + }, + { + "start": 2255.06, + "end": 2255.98, + "probability": 0.7504 + }, + { + "start": 2256.56, + "end": 2258.08, + "probability": 0.8864 + }, + { + "start": 2258.22, + "end": 2261.12, + "probability": 0.958 + }, + { + "start": 2261.22, + "end": 2262.4, + "probability": 0.7612 + }, + { + "start": 2263.0, + "end": 2266.26, + "probability": 0.9868 + }, + { + "start": 2266.78, + "end": 2267.26, + "probability": 0.3607 + }, + { + "start": 2267.38, + "end": 2267.96, + "probability": 0.5077 + }, + { + "start": 2267.98, + "end": 2272.1, + "probability": 0.9098 + }, + { + "start": 2272.68, + "end": 2276.08, + "probability": 0.9844 + }, + { + "start": 2276.12, + "end": 2278.0, + "probability": 0.7388 + }, + { + "start": 2278.04, + "end": 2278.88, + "probability": 0.4986 + }, + { + "start": 2278.96, + "end": 2280.66, + "probability": 0.9639 + }, + { + "start": 2281.26, + "end": 2282.34, + "probability": 0.6917 + }, + { + "start": 2282.46, + "end": 2285.46, + "probability": 0.7975 + }, + { + "start": 2285.98, + "end": 2286.34, + "probability": 0.6849 + }, + { + "start": 2286.4, + "end": 2287.16, + "probability": 0.8656 + }, + { + "start": 2287.36, + "end": 2288.82, + "probability": 0.6531 + }, + { + "start": 2289.38, + "end": 2292.1, + "probability": 0.929 + }, + { + "start": 2292.72, + "end": 2294.72, + "probability": 0.8027 + }, + { + "start": 2294.82, + "end": 2296.32, + "probability": 0.021 + }, + { + "start": 2296.44, + "end": 2297.11, + "probability": 0.6088 + }, + { + "start": 2297.48, + "end": 2298.52, + "probability": 0.9521 + }, + { + "start": 2298.92, + "end": 2300.86, + "probability": 0.7488 + }, + { + "start": 2300.98, + "end": 2301.28, + "probability": 0.9088 + }, + { + "start": 2301.36, + "end": 2305.22, + "probability": 0.9464 + }, + { + "start": 2305.36, + "end": 2306.54, + "probability": 0.9059 + }, + { + "start": 2306.82, + "end": 2307.84, + "probability": 0.9842 + }, + { + "start": 2308.1, + "end": 2313.18, + "probability": 0.9893 + }, + { + "start": 2314.08, + "end": 2316.36, + "probability": 0.7504 + }, + { + "start": 2316.46, + "end": 2317.62, + "probability": 0.3869 + }, + { + "start": 2317.72, + "end": 2318.08, + "probability": 0.9209 + }, + { + "start": 2318.68, + "end": 2320.54, + "probability": 0.9617 + }, + { + "start": 2321.14, + "end": 2323.44, + "probability": 0.8559 + }, + { + "start": 2323.76, + "end": 2325.96, + "probability": 0.8476 + }, + { + "start": 2327.02, + "end": 2328.74, + "probability": 0.0235 + }, + { + "start": 2328.74, + "end": 2330.86, + "probability": 0.8511 + }, + { + "start": 2332.28, + "end": 2332.78, + "probability": 0.1256 + }, + { + "start": 2334.36, + "end": 2336.08, + "probability": 0.9485 + }, + { + "start": 2336.52, + "end": 2338.24, + "probability": 0.356 + }, + { + "start": 2338.58, + "end": 2338.68, + "probability": 0.3699 + }, + { + "start": 2341.18, + "end": 2342.44, + "probability": 0.2676 + }, + { + "start": 2342.54, + "end": 2343.74, + "probability": 0.7513 + }, + { + "start": 2344.82, + "end": 2345.56, + "probability": 0.8831 + }, + { + "start": 2347.0, + "end": 2348.66, + "probability": 0.6377 + }, + { + "start": 2349.0, + "end": 2349.66, + "probability": 0.9936 + }, + { + "start": 2350.38, + "end": 2352.78, + "probability": 0.9558 + }, + { + "start": 2353.48, + "end": 2355.88, + "probability": 0.9204 + }, + { + "start": 2357.26, + "end": 2362.7, + "probability": 0.7484 + }, + { + "start": 2363.7, + "end": 2368.1, + "probability": 0.7188 + }, + { + "start": 2369.06, + "end": 2374.24, + "probability": 0.7861 + }, + { + "start": 2375.2, + "end": 2379.16, + "probability": 0.7399 + }, + { + "start": 2379.26, + "end": 2379.82, + "probability": 0.7933 + }, + { + "start": 2380.0, + "end": 2381.26, + "probability": 0.6855 + }, + { + "start": 2381.72, + "end": 2382.3, + "probability": 0.6629 + }, + { + "start": 2382.66, + "end": 2384.5, + "probability": 0.6842 + }, + { + "start": 2385.72, + "end": 2387.58, + "probability": 0.6375 + }, + { + "start": 2387.64, + "end": 2389.76, + "probability": 0.735 + }, + { + "start": 2390.02, + "end": 2390.68, + "probability": 0.6593 + }, + { + "start": 2390.96, + "end": 2391.7, + "probability": 0.4061 + }, + { + "start": 2392.16, + "end": 2394.74, + "probability": 0.6309 + }, + { + "start": 2395.5, + "end": 2398.98, + "probability": 0.7149 + }, + { + "start": 2399.24, + "end": 2401.38, + "probability": 0.9797 + }, + { + "start": 2402.06, + "end": 2404.22, + "probability": 0.7685 + }, + { + "start": 2405.86, + "end": 2406.92, + "probability": 0.5485 + }, + { + "start": 2407.52, + "end": 2407.98, + "probability": 0.4578 + }, + { + "start": 2408.08, + "end": 2409.34, + "probability": 0.8856 + }, + { + "start": 2409.38, + "end": 2412.06, + "probability": 0.8433 + }, + { + "start": 2412.12, + "end": 2413.84, + "probability": 0.75 + }, + { + "start": 2415.16, + "end": 2415.7, + "probability": 0.9143 + }, + { + "start": 2416.3, + "end": 2418.92, + "probability": 0.8455 + }, + { + "start": 2419.92, + "end": 2421.46, + "probability": 0.9746 + }, + { + "start": 2422.1, + "end": 2422.94, + "probability": 0.2394 + }, + { + "start": 2423.08, + "end": 2424.3, + "probability": 0.6145 + }, + { + "start": 2424.46, + "end": 2425.66, + "probability": 0.7797 + }, + { + "start": 2425.76, + "end": 2427.7, + "probability": 0.81 + }, + { + "start": 2428.6, + "end": 2430.28, + "probability": 0.9357 + }, + { + "start": 2432.58, + "end": 2434.16, + "probability": 0.7502 + }, + { + "start": 2434.24, + "end": 2437.88, + "probability": 0.6988 + }, + { + "start": 2438.24, + "end": 2439.18, + "probability": 0.797 + }, + { + "start": 2439.26, + "end": 2440.34, + "probability": 0.8517 + }, + { + "start": 2440.42, + "end": 2441.5, + "probability": 0.922 + }, + { + "start": 2442.04, + "end": 2445.02, + "probability": 0.9937 + }, + { + "start": 2445.74, + "end": 2447.34, + "probability": 0.9868 + }, + { + "start": 2448.1, + "end": 2448.72, + "probability": 0.4496 + }, + { + "start": 2448.72, + "end": 2449.28, + "probability": 0.7945 + }, + { + "start": 2450.0, + "end": 2454.08, + "probability": 0.55 + }, + { + "start": 2454.58, + "end": 2455.08, + "probability": 0.5906 + }, + { + "start": 2455.2, + "end": 2455.94, + "probability": 0.6927 + }, + { + "start": 2456.0, + "end": 2457.24, + "probability": 0.8387 + }, + { + "start": 2458.02, + "end": 2460.64, + "probability": 0.993 + }, + { + "start": 2461.62, + "end": 2463.2, + "probability": 0.971 + }, + { + "start": 2463.2, + "end": 2465.36, + "probability": 0.9589 + }, + { + "start": 2465.94, + "end": 2467.96, + "probability": 0.7601 + }, + { + "start": 2468.74, + "end": 2469.7, + "probability": 0.88 + }, + { + "start": 2469.82, + "end": 2470.34, + "probability": 0.7855 + }, + { + "start": 2471.06, + "end": 2472.1, + "probability": 0.3421 + }, + { + "start": 2473.3, + "end": 2476.16, + "probability": 0.9977 + }, + { + "start": 2476.56, + "end": 2477.64, + "probability": 0.9424 + }, + { + "start": 2478.06, + "end": 2479.1, + "probability": 0.9775 + }, + { + "start": 2479.82, + "end": 2481.48, + "probability": 0.904 + }, + { + "start": 2481.84, + "end": 2483.66, + "probability": 0.9645 + }, + { + "start": 2484.04, + "end": 2488.04, + "probability": 0.9515 + }, + { + "start": 2488.54, + "end": 2491.82, + "probability": 0.8835 + }, + { + "start": 2491.88, + "end": 2493.24, + "probability": 0.9829 + }, + { + "start": 2494.02, + "end": 2498.18, + "probability": 0.9695 + }, + { + "start": 2498.46, + "end": 2499.56, + "probability": 0.9989 + }, + { + "start": 2500.62, + "end": 2501.84, + "probability": 0.7483 + }, + { + "start": 2503.12, + "end": 2505.12, + "probability": 0.9746 + }, + { + "start": 2505.22, + "end": 2506.0, + "probability": 0.7326 + }, + { + "start": 2506.64, + "end": 2508.74, + "probability": 0.9954 + }, + { + "start": 2509.44, + "end": 2510.74, + "probability": 0.9217 + }, + { + "start": 2511.38, + "end": 2512.58, + "probability": 0.9141 + }, + { + "start": 2512.98, + "end": 2515.15, + "probability": 0.9961 + }, + { + "start": 2515.9, + "end": 2517.52, + "probability": 0.9824 + }, + { + "start": 2518.1, + "end": 2518.5, + "probability": 0.5663 + }, + { + "start": 2518.58, + "end": 2519.84, + "probability": 0.9943 + }, + { + "start": 2520.2, + "end": 2523.58, + "probability": 0.9932 + }, + { + "start": 2524.12, + "end": 2526.36, + "probability": 0.9964 + }, + { + "start": 2526.94, + "end": 2528.72, + "probability": 0.9993 + }, + { + "start": 2529.08, + "end": 2530.82, + "probability": 0.9981 + }, + { + "start": 2531.2, + "end": 2531.58, + "probability": 0.5952 + }, + { + "start": 2531.68, + "end": 2534.24, + "probability": 0.6844 + }, + { + "start": 2535.68, + "end": 2537.96, + "probability": 0.8514 + }, + { + "start": 2538.92, + "end": 2541.22, + "probability": 0.3719 + }, + { + "start": 2541.44, + "end": 2542.58, + "probability": 0.6196 + }, + { + "start": 2542.78, + "end": 2543.34, + "probability": 0.6489 + }, + { + "start": 2543.56, + "end": 2543.94, + "probability": 0.6933 + }, + { + "start": 2544.14, + "end": 2546.04, + "probability": 0.9266 + }, + { + "start": 2546.14, + "end": 2546.72, + "probability": 0.5271 + }, + { + "start": 2546.94, + "end": 2547.98, + "probability": 0.169 + }, + { + "start": 2548.54, + "end": 2549.2, + "probability": 0.7372 + }, + { + "start": 2549.4, + "end": 2549.79, + "probability": 0.4597 + }, + { + "start": 2549.88, + "end": 2551.88, + "probability": 0.9232 + }, + { + "start": 2552.4, + "end": 2553.46, + "probability": 0.9932 + }, + { + "start": 2553.58, + "end": 2554.8, + "probability": 0.932 + }, + { + "start": 2555.16, + "end": 2557.92, + "probability": 0.9912 + }, + { + "start": 2558.44, + "end": 2560.68, + "probability": 0.8077 + }, + { + "start": 2562.28, + "end": 2563.62, + "probability": 0.9734 + }, + { + "start": 2568.02, + "end": 2571.92, + "probability": 0.9399 + }, + { + "start": 2572.26, + "end": 2573.06, + "probability": 0.6425 + }, + { + "start": 2573.42, + "end": 2574.24, + "probability": 0.9624 + }, + { + "start": 2575.14, + "end": 2579.5, + "probability": 0.9287 + }, + { + "start": 2579.98, + "end": 2581.9, + "probability": 0.8127 + }, + { + "start": 2581.92, + "end": 2582.6, + "probability": 0.7917 + }, + { + "start": 2583.4, + "end": 2586.64, + "probability": 0.8919 + }, + { + "start": 2587.58, + "end": 2589.88, + "probability": 0.8436 + }, + { + "start": 2589.96, + "end": 2592.4, + "probability": 0.8925 + }, + { + "start": 2592.46, + "end": 2593.0, + "probability": 0.6121 + }, + { + "start": 2593.06, + "end": 2593.92, + "probability": 0.9135 + }, + { + "start": 2594.48, + "end": 2595.36, + "probability": 0.7632 + }, + { + "start": 2595.4, + "end": 2596.34, + "probability": 0.6923 + }, + { + "start": 2596.74, + "end": 2598.3, + "probability": 0.836 + }, + { + "start": 2598.34, + "end": 2598.93, + "probability": 0.9314 + }, + { + "start": 2599.0, + "end": 2600.0, + "probability": 0.7269 + }, + { + "start": 2600.14, + "end": 2603.4, + "probability": 0.9476 + }, + { + "start": 2603.46, + "end": 2604.54, + "probability": 0.9177 + }, + { + "start": 2604.98, + "end": 2605.96, + "probability": 0.9572 + }, + { + "start": 2606.04, + "end": 2607.24, + "probability": 0.9059 + }, + { + "start": 2607.34, + "end": 2610.48, + "probability": 0.9875 + }, + { + "start": 2611.36, + "end": 2616.14, + "probability": 0.992 + }, + { + "start": 2616.92, + "end": 2617.64, + "probability": 0.3844 + }, + { + "start": 2618.12, + "end": 2620.76, + "probability": 0.9656 + }, + { + "start": 2621.4, + "end": 2621.54, + "probability": 0.3203 + }, + { + "start": 2621.64, + "end": 2622.22, + "probability": 0.5984 + }, + { + "start": 2622.6, + "end": 2623.06, + "probability": 0.946 + }, + { + "start": 2623.16, + "end": 2623.54, + "probability": 0.9777 + }, + { + "start": 2623.64, + "end": 2628.48, + "probability": 0.8232 + }, + { + "start": 2628.94, + "end": 2630.32, + "probability": 0.8557 + }, + { + "start": 2630.42, + "end": 2631.5, + "probability": 0.941 + }, + { + "start": 2631.9, + "end": 2633.9, + "probability": 0.979 + }, + { + "start": 2634.42, + "end": 2635.52, + "probability": 0.7228 + }, + { + "start": 2636.1, + "end": 2638.7, + "probability": 0.9259 + }, + { + "start": 2639.14, + "end": 2642.12, + "probability": 0.8543 + }, + { + "start": 2642.14, + "end": 2643.2, + "probability": 0.8119 + }, + { + "start": 2643.22, + "end": 2644.24, + "probability": 0.9636 + }, + { + "start": 2644.84, + "end": 2648.26, + "probability": 0.7764 + }, + { + "start": 2648.32, + "end": 2651.02, + "probability": 0.9924 + }, + { + "start": 2651.36, + "end": 2654.88, + "probability": 0.8457 + }, + { + "start": 2655.16, + "end": 2655.98, + "probability": 0.6876 + }, + { + "start": 2656.72, + "end": 2659.52, + "probability": 0.9836 + }, + { + "start": 2659.78, + "end": 2660.98, + "probability": 0.8121 + }, + { + "start": 2661.24, + "end": 2664.06, + "probability": 0.9373 + }, + { + "start": 2664.44, + "end": 2665.74, + "probability": 0.9048 + }, + { + "start": 2665.8, + "end": 2668.96, + "probability": 0.9827 + }, + { + "start": 2669.44, + "end": 2672.86, + "probability": 0.8333 + }, + { + "start": 2676.0, + "end": 2676.22, + "probability": 0.0699 + }, + { + "start": 2676.22, + "end": 2677.88, + "probability": 0.7805 + }, + { + "start": 2678.46, + "end": 2679.42, + "probability": 0.8374 + }, + { + "start": 2679.94, + "end": 2683.64, + "probability": 0.7347 + }, + { + "start": 2683.68, + "end": 2685.08, + "probability": 0.8237 + }, + { + "start": 2685.82, + "end": 2687.52, + "probability": 0.7846 + }, + { + "start": 2687.84, + "end": 2688.7, + "probability": 0.7232 + }, + { + "start": 2689.18, + "end": 2691.5, + "probability": 0.9814 + }, + { + "start": 2691.86, + "end": 2692.51, + "probability": 0.811 + }, + { + "start": 2693.0, + "end": 2693.44, + "probability": 0.4228 + }, + { + "start": 2693.96, + "end": 2695.9, + "probability": 0.6039 + }, + { + "start": 2695.94, + "end": 2699.2, + "probability": 0.7025 + }, + { + "start": 2699.32, + "end": 2699.46, + "probability": 0.8898 + }, + { + "start": 2699.58, + "end": 2700.94, + "probability": 0.8787 + }, + { + "start": 2700.96, + "end": 2702.82, + "probability": 0.9885 + }, + { + "start": 2702.9, + "end": 2704.54, + "probability": 0.8524 + }, + { + "start": 2704.96, + "end": 2708.28, + "probability": 0.9784 + }, + { + "start": 2708.44, + "end": 2709.76, + "probability": 0.954 + }, + { + "start": 2710.18, + "end": 2711.68, + "probability": 0.7773 + }, + { + "start": 2711.78, + "end": 2712.28, + "probability": 0.6493 + }, + { + "start": 2712.74, + "end": 2715.06, + "probability": 0.5594 + }, + { + "start": 2715.6, + "end": 2717.52, + "probability": 0.8545 + }, + { + "start": 2717.9, + "end": 2720.31, + "probability": 0.9774 + }, + { + "start": 2720.62, + "end": 2723.08, + "probability": 0.6424 + }, + { + "start": 2723.2, + "end": 2724.32, + "probability": 0.9902 + }, + { + "start": 2724.88, + "end": 2727.88, + "probability": 0.9814 + }, + { + "start": 2728.61, + "end": 2729.76, + "probability": 0.7751 + }, + { + "start": 2729.82, + "end": 2733.42, + "probability": 0.984 + }, + { + "start": 2733.5, + "end": 2735.64, + "probability": 0.9538 + }, + { + "start": 2735.74, + "end": 2737.26, + "probability": 0.8354 + }, + { + "start": 2737.82, + "end": 2741.02, + "probability": 0.9674 + }, + { + "start": 2741.38, + "end": 2743.46, + "probability": 0.9805 + }, + { + "start": 2743.6, + "end": 2746.58, + "probability": 0.9612 + }, + { + "start": 2746.84, + "end": 2747.96, + "probability": 0.9537 + }, + { + "start": 2748.1, + "end": 2752.44, + "probability": 0.8698 + }, + { + "start": 2752.6, + "end": 2755.04, + "probability": 0.8616 + }, + { + "start": 2755.18, + "end": 2755.93, + "probability": 0.9587 + }, + { + "start": 2756.68, + "end": 2757.88, + "probability": 0.9937 + }, + { + "start": 2758.28, + "end": 2761.58, + "probability": 0.9646 + }, + { + "start": 2761.7, + "end": 2762.3, + "probability": 0.9598 + }, + { + "start": 2762.84, + "end": 2763.5, + "probability": 0.83 + }, + { + "start": 2763.92, + "end": 2765.36, + "probability": 0.637 + }, + { + "start": 2765.48, + "end": 2766.28, + "probability": 0.9622 + }, + { + "start": 2766.32, + "end": 2767.1, + "probability": 0.9655 + }, + { + "start": 2767.14, + "end": 2767.48, + "probability": 0.7377 + }, + { + "start": 2767.74, + "end": 2768.28, + "probability": 0.6916 + }, + { + "start": 2768.36, + "end": 2769.88, + "probability": 0.8318 + }, + { + "start": 2770.12, + "end": 2771.45, + "probability": 0.9614 + }, + { + "start": 2772.28, + "end": 2773.24, + "probability": 0.9756 + }, + { + "start": 2773.28, + "end": 2773.98, + "probability": 0.9345 + }, + { + "start": 2774.04, + "end": 2774.79, + "probability": 0.5909 + }, + { + "start": 2775.4, + "end": 2777.38, + "probability": 0.7722 + }, + { + "start": 2777.44, + "end": 2777.66, + "probability": 0.5299 + }, + { + "start": 2777.66, + "end": 2778.9, + "probability": 0.9058 + }, + { + "start": 2779.58, + "end": 2782.06, + "probability": 0.7151 + }, + { + "start": 2782.44, + "end": 2783.18, + "probability": 0.2565 + }, + { + "start": 2783.56, + "end": 2786.38, + "probability": 0.9198 + }, + { + "start": 2786.5, + "end": 2788.18, + "probability": 0.6489 + }, + { + "start": 2788.22, + "end": 2790.0, + "probability": 0.9185 + }, + { + "start": 2790.26, + "end": 2791.74, + "probability": 0.942 + }, + { + "start": 2792.28, + "end": 2793.72, + "probability": 0.7666 + }, + { + "start": 2794.36, + "end": 2795.22, + "probability": 0.6254 + }, + { + "start": 2795.24, + "end": 2797.16, + "probability": 0.8799 + }, + { + "start": 2797.58, + "end": 2798.88, + "probability": 0.7374 + }, + { + "start": 2798.98, + "end": 2803.24, + "probability": 0.5069 + }, + { + "start": 2803.3, + "end": 2805.8, + "probability": 0.7323 + }, + { + "start": 2806.06, + "end": 2806.2, + "probability": 0.0763 + }, + { + "start": 2806.98, + "end": 2808.1, + "probability": 0.9301 + }, + { + "start": 2808.54, + "end": 2810.28, + "probability": 0.6908 + }, + { + "start": 2811.38, + "end": 2812.42, + "probability": 0.5446 + }, + { + "start": 2812.42, + "end": 2813.9, + "probability": 0.9563 + }, + { + "start": 2814.02, + "end": 2817.32, + "probability": 0.7401 + }, + { + "start": 2817.72, + "end": 2818.38, + "probability": 0.98 + }, + { + "start": 2819.04, + "end": 2820.18, + "probability": 0.8447 + }, + { + "start": 2820.18, + "end": 2820.46, + "probability": 0.9641 + }, + { + "start": 2820.62, + "end": 2824.68, + "probability": 0.6924 + }, + { + "start": 2824.68, + "end": 2824.68, + "probability": 0.028 + }, + { + "start": 2824.68, + "end": 2824.68, + "probability": 0.0785 + }, + { + "start": 2824.68, + "end": 2825.64, + "probability": 0.2161 + }, + { + "start": 2826.24, + "end": 2828.66, + "probability": 0.6975 + }, + { + "start": 2828.66, + "end": 2828.72, + "probability": 0.1433 + }, + { + "start": 2828.72, + "end": 2829.46, + "probability": 0.4932 + }, + { + "start": 2829.84, + "end": 2831.04, + "probability": 0.5332 + }, + { + "start": 2831.48, + "end": 2832.42, + "probability": 0.7064 + }, + { + "start": 2832.52, + "end": 2832.7, + "probability": 0.7898 + }, + { + "start": 2832.8, + "end": 2832.94, + "probability": 0.7707 + }, + { + "start": 2832.96, + "end": 2833.04, + "probability": 0.5259 + }, + { + "start": 2833.04, + "end": 2833.8, + "probability": 0.6791 + }, + { + "start": 2833.94, + "end": 2836.16, + "probability": 0.9685 + }, + { + "start": 2836.72, + "end": 2836.92, + "probability": 0.36 + }, + { + "start": 2836.92, + "end": 2837.42, + "probability": 0.3854 + }, + { + "start": 2837.48, + "end": 2839.82, + "probability": 0.9926 + }, + { + "start": 2839.94, + "end": 2841.64, + "probability": 0.9333 + }, + { + "start": 2841.68, + "end": 2842.14, + "probability": 0.7546 + }, + { + "start": 2842.28, + "end": 2844.26, + "probability": 0.7122 + }, + { + "start": 2846.38, + "end": 2849.32, + "probability": 0.3813 + }, + { + "start": 2849.38, + "end": 2850.88, + "probability": 0.8991 + }, + { + "start": 2851.9, + "end": 2852.48, + "probability": 0.8653 + }, + { + "start": 2853.06, + "end": 2856.62, + "probability": 0.9918 + }, + { + "start": 2856.76, + "end": 2856.92, + "probability": 0.8116 + }, + { + "start": 2856.94, + "end": 2858.95, + "probability": 0.9252 + }, + { + "start": 2859.06, + "end": 2859.83, + "probability": 0.9973 + }, + { + "start": 2859.9, + "end": 2860.53, + "probability": 0.9731 + }, + { + "start": 2861.18, + "end": 2862.66, + "probability": 0.4806 + }, + { + "start": 2862.66, + "end": 2867.76, + "probability": 0.9217 + }, + { + "start": 2868.16, + "end": 2870.86, + "probability": 0.7416 + }, + { + "start": 2871.42, + "end": 2872.62, + "probability": 0.6327 + }, + { + "start": 2872.92, + "end": 2873.34, + "probability": 0.9221 + }, + { + "start": 2873.4, + "end": 2875.56, + "probability": 0.6728 + }, + { + "start": 2875.7, + "end": 2877.46, + "probability": 0.9106 + }, + { + "start": 2877.76, + "end": 2880.36, + "probability": 0.8858 + }, + { + "start": 2880.88, + "end": 2882.96, + "probability": 0.661 + }, + { + "start": 2883.06, + "end": 2884.88, + "probability": 0.7149 + }, + { + "start": 2885.0, + "end": 2887.02, + "probability": 0.7728 + }, + { + "start": 2887.18, + "end": 2890.02, + "probability": 0.85 + }, + { + "start": 2890.62, + "end": 2896.76, + "probability": 0.9684 + }, + { + "start": 2897.4, + "end": 2897.86, + "probability": 0.7144 + }, + { + "start": 2898.16, + "end": 2898.84, + "probability": 0.8229 + }, + { + "start": 2899.0, + "end": 2901.4, + "probability": 0.9038 + }, + { + "start": 2901.56, + "end": 2902.6, + "probability": 0.9141 + }, + { + "start": 2903.08, + "end": 2903.66, + "probability": 0.5392 + }, + { + "start": 2903.76, + "end": 2905.44, + "probability": 0.7052 + }, + { + "start": 2906.0, + "end": 2906.64, + "probability": 0.4116 + }, + { + "start": 2906.66, + "end": 2907.9, + "probability": 0.6203 + }, + { + "start": 2908.32, + "end": 2910.76, + "probability": 0.9397 + }, + { + "start": 2910.9, + "end": 2911.1, + "probability": 0.8728 + }, + { + "start": 2913.14, + "end": 2915.06, + "probability": 0.7517 + }, + { + "start": 2916.4, + "end": 2919.02, + "probability": 0.9814 + }, + { + "start": 2919.62, + "end": 2922.24, + "probability": 0.9928 + }, + { + "start": 2923.16, + "end": 2924.9, + "probability": 0.7335 + }, + { + "start": 2925.8, + "end": 2930.72, + "probability": 0.7335 + }, + { + "start": 2931.32, + "end": 2934.12, + "probability": 0.8138 + }, + { + "start": 2935.66, + "end": 2936.9, + "probability": 0.74 + }, + { + "start": 2937.08, + "end": 2943.76, + "probability": 0.9683 + }, + { + "start": 2944.42, + "end": 2954.93, + "probability": 0.9659 + }, + { + "start": 2955.82, + "end": 2957.21, + "probability": 0.6429 + }, + { + "start": 2958.06, + "end": 2959.44, + "probability": 0.9106 + }, + { + "start": 2960.06, + "end": 2961.96, + "probability": 0.988 + }, + { + "start": 2962.62, + "end": 2964.2, + "probability": 0.9502 + }, + { + "start": 2964.9, + "end": 2965.58, + "probability": 0.5448 + }, + { + "start": 2966.08, + "end": 2969.72, + "probability": 0.8996 + }, + { + "start": 2970.3, + "end": 2973.38, + "probability": 0.9927 + }, + { + "start": 2973.48, + "end": 2974.66, + "probability": 0.756 + }, + { + "start": 2974.76, + "end": 2976.34, + "probability": 0.8301 + }, + { + "start": 2977.8, + "end": 2979.8, + "probability": 0.8073 + }, + { + "start": 2980.4, + "end": 2981.55, + "probability": 0.9146 + }, + { + "start": 2982.56, + "end": 2982.76, + "probability": 0.8735 + }, + { + "start": 2982.84, + "end": 2983.14, + "probability": 0.3836 + }, + { + "start": 2983.14, + "end": 2985.18, + "probability": 0.6048 + }, + { + "start": 2986.1, + "end": 2986.58, + "probability": 0.4886 + }, + { + "start": 2987.34, + "end": 2987.6, + "probability": 0.0261 + }, + { + "start": 2987.78, + "end": 2987.78, + "probability": 0.1708 + }, + { + "start": 2987.78, + "end": 2990.82, + "probability": 0.7539 + }, + { + "start": 2991.32, + "end": 2993.48, + "probability": 0.9558 + }, + { + "start": 2993.62, + "end": 2994.46, + "probability": 0.6298 + }, + { + "start": 2994.5, + "end": 2995.22, + "probability": 0.9025 + }, + { + "start": 2995.48, + "end": 2999.22, + "probability": 0.8523 + }, + { + "start": 2999.46, + "end": 3001.4, + "probability": 0.9836 + }, + { + "start": 3002.0, + "end": 3004.14, + "probability": 0.9915 + }, + { + "start": 3004.44, + "end": 3005.86, + "probability": 0.8113 + }, + { + "start": 3006.08, + "end": 3006.74, + "probability": 0.8642 + }, + { + "start": 3006.92, + "end": 3007.86, + "probability": 0.9549 + }, + { + "start": 3007.92, + "end": 3008.68, + "probability": 0.0461 + }, + { + "start": 3008.94, + "end": 3012.62, + "probability": 0.992 + }, + { + "start": 3014.7, + "end": 3014.7, + "probability": 0.2885 + }, + { + "start": 3014.7, + "end": 3016.84, + "probability": 0.6487 + }, + { + "start": 3018.12, + "end": 3022.76, + "probability": 0.9287 + }, + { + "start": 3024.66, + "end": 3027.96, + "probability": 0.9963 + }, + { + "start": 3028.9, + "end": 3032.72, + "probability": 0.9907 + }, + { + "start": 3034.8, + "end": 3035.02, + "probability": 0.8623 + }, + { + "start": 3035.44, + "end": 3039.69, + "probability": 0.9841 + }, + { + "start": 3041.62, + "end": 3042.46, + "probability": 0.8708 + }, + { + "start": 3043.14, + "end": 3043.82, + "probability": 0.783 + }, + { + "start": 3044.46, + "end": 3046.56, + "probability": 0.993 + }, + { + "start": 3047.3, + "end": 3052.54, + "probability": 0.9854 + }, + { + "start": 3052.96, + "end": 3055.5, + "probability": 0.5161 + }, + { + "start": 3056.0, + "end": 3058.28, + "probability": 0.9751 + }, + { + "start": 3058.98, + "end": 3061.78, + "probability": 0.9502 + }, + { + "start": 3062.42, + "end": 3067.74, + "probability": 0.8473 + }, + { + "start": 3068.44, + "end": 3069.66, + "probability": 0.9582 + }, + { + "start": 3070.64, + "end": 3073.98, + "probability": 0.8517 + }, + { + "start": 3074.6, + "end": 3076.16, + "probability": 0.8972 + }, + { + "start": 3076.3, + "end": 3079.62, + "probability": 0.9922 + }, + { + "start": 3080.26, + "end": 3081.6, + "probability": 0.9492 + }, + { + "start": 3082.38, + "end": 3085.06, + "probability": 0.9658 + }, + { + "start": 3085.42, + "end": 3086.64, + "probability": 0.9159 + }, + { + "start": 3086.9, + "end": 3087.66, + "probability": 0.5138 + }, + { + "start": 3087.9, + "end": 3089.68, + "probability": 0.779 + }, + { + "start": 3090.12, + "end": 3091.46, + "probability": 0.5458 + }, + { + "start": 3092.66, + "end": 3094.2, + "probability": 0.917 + }, + { + "start": 3095.88, + "end": 3098.64, + "probability": 0.7699 + }, + { + "start": 3098.7, + "end": 3100.74, + "probability": 0.8882 + }, + { + "start": 3101.26, + "end": 3103.7, + "probability": 0.8815 + }, + { + "start": 3104.04, + "end": 3105.4, + "probability": 0.7184 + }, + { + "start": 3105.64, + "end": 3109.32, + "probability": 0.9817 + }, + { + "start": 3109.36, + "end": 3113.38, + "probability": 0.9957 + }, + { + "start": 3114.08, + "end": 3117.98, + "probability": 0.9978 + }, + { + "start": 3117.98, + "end": 3122.76, + "probability": 0.9971 + }, + { + "start": 3123.8, + "end": 3124.9, + "probability": 0.7181 + }, + { + "start": 3125.22, + "end": 3127.84, + "probability": 0.9739 + }, + { + "start": 3127.84, + "end": 3130.6, + "probability": 0.9526 + }, + { + "start": 3130.7, + "end": 3132.56, + "probability": 0.7488 + }, + { + "start": 3133.16, + "end": 3133.62, + "probability": 0.7585 + }, + { + "start": 3133.78, + "end": 3134.46, + "probability": 0.7548 + }, + { + "start": 3134.6, + "end": 3138.88, + "probability": 0.9866 + }, + { + "start": 3139.38, + "end": 3140.0, + "probability": 0.8928 + }, + { + "start": 3140.26, + "end": 3143.38, + "probability": 0.9875 + }, + { + "start": 3143.86, + "end": 3145.26, + "probability": 0.9008 + }, + { + "start": 3145.36, + "end": 3146.04, + "probability": 0.6936 + }, + { + "start": 3146.2, + "end": 3146.9, + "probability": 0.7007 + }, + { + "start": 3147.84, + "end": 3148.56, + "probability": 0.9889 + }, + { + "start": 3148.78, + "end": 3151.86, + "probability": 0.8735 + }, + { + "start": 3151.88, + "end": 3152.6, + "probability": 0.6546 + }, + { + "start": 3152.72, + "end": 3153.14, + "probability": 0.6662 + }, + { + "start": 3153.76, + "end": 3155.85, + "probability": 0.5044 + }, + { + "start": 3156.9, + "end": 3161.94, + "probability": 0.9923 + }, + { + "start": 3161.94, + "end": 3168.32, + "probability": 0.9971 + }, + { + "start": 3168.78, + "end": 3169.41, + "probability": 0.9323 + }, + { + "start": 3170.14, + "end": 3170.72, + "probability": 0.9659 + }, + { + "start": 3171.72, + "end": 3172.51, + "probability": 0.9272 + }, + { + "start": 3173.22, + "end": 3175.88, + "probability": 0.9555 + }, + { + "start": 3176.46, + "end": 3177.68, + "probability": 0.9829 + }, + { + "start": 3178.46, + "end": 3179.94, + "probability": 0.9917 + }, + { + "start": 3180.54, + "end": 3181.06, + "probability": 0.6729 + }, + { + "start": 3181.28, + "end": 3183.8, + "probability": 0.9606 + }, + { + "start": 3184.32, + "end": 3187.44, + "probability": 0.9486 + }, + { + "start": 3188.22, + "end": 3188.54, + "probability": 0.9852 + }, + { + "start": 3189.22, + "end": 3191.72, + "probability": 0.2747 + }, + { + "start": 3192.62, + "end": 3196.66, + "probability": 0.7264 + }, + { + "start": 3197.56, + "end": 3198.6, + "probability": 0.1053 + }, + { + "start": 3199.32, + "end": 3199.84, + "probability": 0.2159 + }, + { + "start": 3200.0, + "end": 3201.1, + "probability": 0.7048 + }, + { + "start": 3201.36, + "end": 3202.94, + "probability": 0.7089 + }, + { + "start": 3203.7, + "end": 3205.9, + "probability": 0.7928 + }, + { + "start": 3206.64, + "end": 3207.38, + "probability": 0.873 + }, + { + "start": 3208.02, + "end": 3211.26, + "probability": 0.7543 + }, + { + "start": 3211.9, + "end": 3213.32, + "probability": 0.9764 + }, + { + "start": 3214.3, + "end": 3217.06, + "probability": 0.9558 + }, + { + "start": 3217.7, + "end": 3219.22, + "probability": 0.4538 + }, + { + "start": 3220.08, + "end": 3225.78, + "probability": 0.9469 + }, + { + "start": 3226.7, + "end": 3228.52, + "probability": 0.9761 + }, + { + "start": 3229.46, + "end": 3231.23, + "probability": 0.7632 + }, + { + "start": 3232.46, + "end": 3235.74, + "probability": 0.8086 + }, + { + "start": 3235.82, + "end": 3236.44, + "probability": 0.5453 + }, + { + "start": 3236.66, + "end": 3240.98, + "probability": 0.7737 + }, + { + "start": 3241.24, + "end": 3245.64, + "probability": 0.776 + }, + { + "start": 3246.18, + "end": 3250.49, + "probability": 0.9343 + }, + { + "start": 3252.76, + "end": 3255.78, + "probability": 0.6925 + }, + { + "start": 3256.38, + "end": 3259.1, + "probability": 0.9401 + }, + { + "start": 3259.54, + "end": 3260.14, + "probability": 0.9644 + }, + { + "start": 3260.22, + "end": 3260.9, + "probability": 0.5799 + }, + { + "start": 3261.02, + "end": 3262.2, + "probability": 0.8623 + }, + { + "start": 3262.32, + "end": 3263.72, + "probability": 0.6814 + }, + { + "start": 3263.76, + "end": 3264.48, + "probability": 0.4711 + }, + { + "start": 3264.48, + "end": 3266.44, + "probability": 0.7038 + }, + { + "start": 3266.64, + "end": 3267.5, + "probability": 0.3697 + }, + { + "start": 3267.74, + "end": 3270.4, + "probability": 0.7894 + }, + { + "start": 3271.08, + "end": 3272.36, + "probability": 0.931 + }, + { + "start": 3272.7, + "end": 3273.16, + "probability": 0.7331 + }, + { + "start": 3273.22, + "end": 3276.64, + "probability": 0.9396 + }, + { + "start": 3277.68, + "end": 3279.72, + "probability": 0.9311 + }, + { + "start": 3280.16, + "end": 3283.2, + "probability": 0.9294 + }, + { + "start": 3283.7, + "end": 3284.7, + "probability": 0.8745 + }, + { + "start": 3285.62, + "end": 3287.24, + "probability": 0.9593 + }, + { + "start": 3287.3, + "end": 3287.86, + "probability": 0.9248 + }, + { + "start": 3287.94, + "end": 3288.46, + "probability": 0.5788 + }, + { + "start": 3288.84, + "end": 3290.82, + "probability": 0.9691 + }, + { + "start": 3291.5, + "end": 3294.22, + "probability": 0.8228 + }, + { + "start": 3294.22, + "end": 3296.76, + "probability": 0.6378 + }, + { + "start": 3297.08, + "end": 3298.66, + "probability": 0.8843 + }, + { + "start": 3298.86, + "end": 3299.16, + "probability": 0.6851 + }, + { + "start": 3299.18, + "end": 3301.74, + "probability": 0.6819 + }, + { + "start": 3301.9, + "end": 3302.98, + "probability": 0.6705 + }, + { + "start": 3303.06, + "end": 3305.03, + "probability": 0.9883 + }, + { + "start": 3305.14, + "end": 3305.52, + "probability": 0.6978 + }, + { + "start": 3305.66, + "end": 3306.12, + "probability": 0.7686 + }, + { + "start": 3306.62, + "end": 3308.7, + "probability": 0.9019 + }, + { + "start": 3309.2, + "end": 3310.46, + "probability": 0.9081 + }, + { + "start": 3310.64, + "end": 3312.92, + "probability": 0.9897 + }, + { + "start": 3313.64, + "end": 3314.44, + "probability": 0.9275 + }, + { + "start": 3315.68, + "end": 3317.22, + "probability": 0.7284 + }, + { + "start": 3317.64, + "end": 3320.48, + "probability": 0.8926 + }, + { + "start": 3321.16, + "end": 3321.64, + "probability": 0.8818 + }, + { + "start": 3322.52, + "end": 3322.8, + "probability": 0.9668 + }, + { + "start": 3323.04, + "end": 3323.94, + "probability": 0.8567 + }, + { + "start": 3324.6, + "end": 3327.94, + "probability": 0.9951 + }, + { + "start": 3328.38, + "end": 3330.92, + "probability": 0.8091 + }, + { + "start": 3331.16, + "end": 3332.62, + "probability": 0.9841 + }, + { + "start": 3333.46, + "end": 3335.26, + "probability": 0.9927 + }, + { + "start": 3335.32, + "end": 3339.74, + "probability": 0.9031 + }, + { + "start": 3339.86, + "end": 3341.2, + "probability": 0.9553 + }, + { + "start": 3342.5, + "end": 3345.3, + "probability": 0.8543 + }, + { + "start": 3345.4, + "end": 3349.84, + "probability": 0.9816 + }, + { + "start": 3350.6, + "end": 3352.61, + "probability": 0.9567 + }, + { + "start": 3353.78, + "end": 3354.64, + "probability": 0.9772 + }, + { + "start": 3354.74, + "end": 3359.38, + "probability": 0.9606 + }, + { + "start": 3359.82, + "end": 3364.26, + "probability": 0.9959 + }, + { + "start": 3364.32, + "end": 3365.44, + "probability": 0.9966 + }, + { + "start": 3365.54, + "end": 3367.46, + "probability": 0.7641 + }, + { + "start": 3367.64, + "end": 3369.74, + "probability": 0.9754 + }, + { + "start": 3370.92, + "end": 3372.74, + "probability": 0.8311 + }, + { + "start": 3372.82, + "end": 3373.64, + "probability": 0.9146 + }, + { + "start": 3373.76, + "end": 3375.92, + "probability": 0.9927 + }, + { + "start": 3376.06, + "end": 3377.28, + "probability": 0.6594 + }, + { + "start": 3377.62, + "end": 3378.5, + "probability": 0.8031 + }, + { + "start": 3378.54, + "end": 3380.86, + "probability": 0.869 + }, + { + "start": 3381.32, + "end": 3385.58, + "probability": 0.9507 + }, + { + "start": 3385.9, + "end": 3387.69, + "probability": 0.7776 + }, + { + "start": 3388.5, + "end": 3389.36, + "probability": 0.8086 + }, + { + "start": 3389.4, + "end": 3391.04, + "probability": 0.9269 + }, + { + "start": 3391.2, + "end": 3393.52, + "probability": 0.9983 + }, + { + "start": 3393.6, + "end": 3396.08, + "probability": 0.9123 + }, + { + "start": 3396.36, + "end": 3397.08, + "probability": 0.8861 + }, + { + "start": 3397.12, + "end": 3397.62, + "probability": 0.7578 + }, + { + "start": 3397.78, + "end": 3400.66, + "probability": 0.9508 + }, + { + "start": 3400.8, + "end": 3403.2, + "probability": 0.9935 + }, + { + "start": 3403.36, + "end": 3404.34, + "probability": 0.9709 + }, + { + "start": 3404.68, + "end": 3407.1, + "probability": 0.9688 + }, + { + "start": 3407.48, + "end": 3408.28, + "probability": 0.9014 + }, + { + "start": 3408.34, + "end": 3413.92, + "probability": 0.9357 + }, + { + "start": 3414.04, + "end": 3416.86, + "probability": 0.9818 + }, + { + "start": 3416.86, + "end": 3420.2, + "probability": 0.9967 + }, + { + "start": 3420.72, + "end": 3421.0, + "probability": 0.5091 + }, + { + "start": 3421.06, + "end": 3428.26, + "probability": 0.9652 + }, + { + "start": 3428.72, + "end": 3431.2, + "probability": 0.0888 + }, + { + "start": 3431.2, + "end": 3432.0, + "probability": 0.0039 + }, + { + "start": 3432.7, + "end": 3432.78, + "probability": 0.0203 + }, + { + "start": 3432.78, + "end": 3432.78, + "probability": 0.029 + }, + { + "start": 3432.78, + "end": 3433.28, + "probability": 0.0548 + }, + { + "start": 3433.34, + "end": 3437.38, + "probability": 0.9822 + }, + { + "start": 3437.46, + "end": 3440.82, + "probability": 0.9847 + }, + { + "start": 3441.68, + "end": 3442.38, + "probability": 0.6243 + }, + { + "start": 3442.72, + "end": 3442.98, + "probability": 0.1553 + }, + { + "start": 3443.02, + "end": 3443.02, + "probability": 0.0322 + }, + { + "start": 3443.02, + "end": 3447.34, + "probability": 0.6114 + }, + { + "start": 3447.34, + "end": 3452.64, + "probability": 0.9373 + }, + { + "start": 3456.72, + "end": 3458.92, + "probability": 0.738 + }, + { + "start": 3460.36, + "end": 3464.14, + "probability": 0.8911 + }, + { + "start": 3465.2, + "end": 3471.5, + "probability": 0.9336 + }, + { + "start": 3471.74, + "end": 3473.05, + "probability": 0.9856 + }, + { + "start": 3474.34, + "end": 3483.06, + "probability": 0.8342 + }, + { + "start": 3483.64, + "end": 3484.68, + "probability": 0.9893 + }, + { + "start": 3486.6, + "end": 3488.14, + "probability": 0.5936 + }, + { + "start": 3489.08, + "end": 3493.84, + "probability": 0.9809 + }, + { + "start": 3496.88, + "end": 3498.3, + "probability": 0.9582 + }, + { + "start": 3500.12, + "end": 3503.96, + "probability": 0.9773 + }, + { + "start": 3505.8, + "end": 3508.42, + "probability": 0.9223 + }, + { + "start": 3510.54, + "end": 3512.26, + "probability": 0.7891 + }, + { + "start": 3512.36, + "end": 3517.76, + "probability": 0.9505 + }, + { + "start": 3519.5, + "end": 3521.94, + "probability": 0.9969 + }, + { + "start": 3522.74, + "end": 3529.42, + "probability": 0.9993 + }, + { + "start": 3530.18, + "end": 3531.34, + "probability": 0.8801 + }, + { + "start": 3532.38, + "end": 3534.72, + "probability": 0.9966 + }, + { + "start": 3535.96, + "end": 3539.48, + "probability": 0.9989 + }, + { + "start": 3540.34, + "end": 3543.92, + "probability": 0.9976 + }, + { + "start": 3544.6, + "end": 3548.64, + "probability": 0.8868 + }, + { + "start": 3550.22, + "end": 3553.26, + "probability": 0.9977 + }, + { + "start": 3554.32, + "end": 3565.06, + "probability": 0.9829 + }, + { + "start": 3566.08, + "end": 3571.46, + "probability": 0.9858 + }, + { + "start": 3573.1, + "end": 3573.64, + "probability": 0.5886 + }, + { + "start": 3574.64, + "end": 3577.04, + "probability": 0.9509 + }, + { + "start": 3578.12, + "end": 3579.46, + "probability": 0.7884 + }, + { + "start": 3579.7, + "end": 3586.34, + "probability": 0.9833 + }, + { + "start": 3587.38, + "end": 3591.78, + "probability": 0.9885 + }, + { + "start": 3591.86, + "end": 3593.8, + "probability": 0.9908 + }, + { + "start": 3594.44, + "end": 3597.0, + "probability": 0.9985 + }, + { + "start": 3597.6, + "end": 3602.58, + "probability": 0.9919 + }, + { + "start": 3603.1, + "end": 3607.48, + "probability": 0.998 + }, + { + "start": 3608.14, + "end": 3608.82, + "probability": 0.8837 + }, + { + "start": 3609.44, + "end": 3611.32, + "probability": 0.9915 + }, + { + "start": 3611.92, + "end": 3613.22, + "probability": 0.9976 + }, + { + "start": 3614.4, + "end": 3615.3, + "probability": 0.9697 + }, + { + "start": 3615.38, + "end": 3616.38, + "probability": 0.9817 + }, + { + "start": 3617.28, + "end": 3622.26, + "probability": 0.9497 + }, + { + "start": 3622.6, + "end": 3626.96, + "probability": 0.9692 + }, + { + "start": 3628.18, + "end": 3636.56, + "probability": 0.9722 + }, + { + "start": 3636.86, + "end": 3641.94, + "probability": 0.9634 + }, + { + "start": 3641.94, + "end": 3648.0, + "probability": 0.9915 + }, + { + "start": 3648.62, + "end": 3652.52, + "probability": 0.7711 + }, + { + "start": 3652.7, + "end": 3655.01, + "probability": 0.9323 + }, + { + "start": 3656.2, + "end": 3656.88, + "probability": 0.7811 + }, + { + "start": 3657.44, + "end": 3657.44, + "probability": 0.2266 + }, + { + "start": 3657.44, + "end": 3658.68, + "probability": 0.9779 + }, + { + "start": 3658.92, + "end": 3659.7, + "probability": 0.8434 + }, + { + "start": 3659.9, + "end": 3663.18, + "probability": 0.9701 + }, + { + "start": 3663.5, + "end": 3664.34, + "probability": 0.92 + }, + { + "start": 3665.36, + "end": 3667.46, + "probability": 0.9807 + }, + { + "start": 3667.82, + "end": 3670.96, + "probability": 0.9598 + }, + { + "start": 3671.46, + "end": 3672.66, + "probability": 0.6014 + }, + { + "start": 3674.22, + "end": 3674.78, + "probability": 0.9976 + }, + { + "start": 3676.12, + "end": 3679.44, + "probability": 0.9055 + }, + { + "start": 3680.4, + "end": 3683.46, + "probability": 0.9878 + }, + { + "start": 3683.56, + "end": 3684.9, + "probability": 0.9501 + }, + { + "start": 3685.54, + "end": 3686.38, + "probability": 0.7205 + }, + { + "start": 3687.54, + "end": 3688.48, + "probability": 0.8477 + }, + { + "start": 3688.6, + "end": 3690.4, + "probability": 0.9861 + }, + { + "start": 3690.78, + "end": 3694.7, + "probability": 0.9823 + }, + { + "start": 3694.7, + "end": 3698.28, + "probability": 0.9814 + }, + { + "start": 3706.47, + "end": 3712.02, + "probability": 0.8784 + }, + { + "start": 3712.16, + "end": 3713.69, + "probability": 0.5409 + }, + { + "start": 3717.06, + "end": 3718.94, + "probability": 0.317 + }, + { + "start": 3719.52, + "end": 3723.24, + "probability": 0.8316 + }, + { + "start": 3723.32, + "end": 3725.32, + "probability": 0.8494 + }, + { + "start": 3725.4, + "end": 3725.92, + "probability": 0.6635 + }, + { + "start": 3726.5, + "end": 3727.04, + "probability": 0.267 + }, + { + "start": 3728.58, + "end": 3730.88, + "probability": 0.7485 + }, + { + "start": 3731.56, + "end": 3732.66, + "probability": 0.6332 + }, + { + "start": 3733.67, + "end": 3735.12, + "probability": 0.5116 + }, + { + "start": 3735.32, + "end": 3736.12, + "probability": 0.3559 + }, + { + "start": 3736.72, + "end": 3737.96, + "probability": 0.6621 + }, + { + "start": 3738.7, + "end": 3740.74, + "probability": 0.9789 + }, + { + "start": 3741.3, + "end": 3743.0, + "probability": 0.5394 + }, + { + "start": 3743.82, + "end": 3745.8, + "probability": 0.931 + }, + { + "start": 3745.8, + "end": 3746.5, + "probability": 0.621 + }, + { + "start": 3746.5, + "end": 3746.6, + "probability": 0.683 + }, + { + "start": 3746.6, + "end": 3750.32, + "probability": 0.6961 + }, + { + "start": 3750.92, + "end": 3751.86, + "probability": 0.3785 + }, + { + "start": 3752.78, + "end": 3753.06, + "probability": 0.2778 + }, + { + "start": 3753.06, + "end": 3753.66, + "probability": 0.5877 + }, + { + "start": 3753.82, + "end": 3756.86, + "probability": 0.7557 + }, + { + "start": 3756.92, + "end": 3757.77, + "probability": 0.9 + }, + { + "start": 3757.94, + "end": 3758.16, + "probability": 0.5031 + }, + { + "start": 3758.16, + "end": 3758.56, + "probability": 0.5678 + }, + { + "start": 3758.66, + "end": 3758.78, + "probability": 0.7805 + }, + { + "start": 3758.92, + "end": 3759.14, + "probability": 0.36 + }, + { + "start": 3759.18, + "end": 3760.0, + "probability": 0.6934 + }, + { + "start": 3760.18, + "end": 3761.27, + "probability": 0.8306 + }, + { + "start": 3761.78, + "end": 3764.66, + "probability": 0.9922 + }, + { + "start": 3764.92, + "end": 3766.68, + "probability": 0.92 + }, + { + "start": 3768.0, + "end": 3770.36, + "probability": 0.6714 + }, + { + "start": 3771.14, + "end": 3774.66, + "probability": 0.882 + }, + { + "start": 3777.3, + "end": 3778.1, + "probability": 0.8529 + }, + { + "start": 3779.42, + "end": 3781.04, + "probability": 0.9903 + }, + { + "start": 3781.2, + "end": 3782.22, + "probability": 0.8802 + }, + { + "start": 3783.34, + "end": 3783.74, + "probability": 0.6486 + }, + { + "start": 3784.44, + "end": 3787.35, + "probability": 0.9932 + }, + { + "start": 3788.1, + "end": 3789.24, + "probability": 0.4025 + }, + { + "start": 3789.42, + "end": 3791.16, + "probability": 0.9884 + }, + { + "start": 3793.08, + "end": 3794.22, + "probability": 0.7933 + }, + { + "start": 3795.5, + "end": 3797.36, + "probability": 0.9482 + }, + { + "start": 3797.52, + "end": 3798.34, + "probability": 0.9424 + }, + { + "start": 3798.42, + "end": 3799.04, + "probability": 0.9712 + }, + { + "start": 3799.1, + "end": 3802.7, + "probability": 0.4079 + }, + { + "start": 3803.0, + "end": 3803.88, + "probability": 0.949 + }, + { + "start": 3803.9, + "end": 3804.22, + "probability": 0.2883 + }, + { + "start": 3804.44, + "end": 3805.32, + "probability": 0.6826 + }, + { + "start": 3805.64, + "end": 3809.64, + "probability": 0.8138 + }, + { + "start": 3809.84, + "end": 3811.78, + "probability": 0.849 + }, + { + "start": 3812.84, + "end": 3814.59, + "probability": 0.9946 + }, + { + "start": 3815.12, + "end": 3815.74, + "probability": 0.764 + }, + { + "start": 3815.9, + "end": 3817.38, + "probability": 0.9893 + }, + { + "start": 3817.82, + "end": 3818.78, + "probability": 0.5951 + }, + { + "start": 3818.78, + "end": 3819.46, + "probability": 0.2317 + }, + { + "start": 3819.46, + "end": 3820.14, + "probability": 0.8065 + }, + { + "start": 3820.62, + "end": 3821.34, + "probability": 0.3907 + }, + { + "start": 3821.72, + "end": 3824.32, + "probability": 0.7969 + }, + { + "start": 3824.98, + "end": 3828.7, + "probability": 0.9368 + }, + { + "start": 3828.86, + "end": 3833.12, + "probability": 0.9788 + }, + { + "start": 3833.34, + "end": 3834.11, + "probability": 0.6531 + }, + { + "start": 3834.86, + "end": 3835.86, + "probability": 0.9206 + }, + { + "start": 3836.56, + "end": 3837.46, + "probability": 0.8057 + }, + { + "start": 3837.78, + "end": 3842.32, + "probability": 0.9952 + }, + { + "start": 3842.94, + "end": 3846.34, + "probability": 0.9761 + }, + { + "start": 3846.78, + "end": 3848.72, + "probability": 0.1271 + }, + { + "start": 3850.1, + "end": 3850.56, + "probability": 0.0639 + }, + { + "start": 3850.56, + "end": 3850.56, + "probability": 0.0593 + }, + { + "start": 3850.56, + "end": 3851.16, + "probability": 0.2002 + }, + { + "start": 3852.9, + "end": 3853.42, + "probability": 0.7126 + }, + { + "start": 3853.84, + "end": 3856.08, + "probability": 0.803 + }, + { + "start": 3856.28, + "end": 3857.4, + "probability": 0.9583 + }, + { + "start": 3857.62, + "end": 3858.08, + "probability": 0.8748 + }, + { + "start": 3858.68, + "end": 3863.2, + "probability": 0.9778 + }, + { + "start": 3863.94, + "end": 3865.82, + "probability": 0.9196 + }, + { + "start": 3865.96, + "end": 3866.56, + "probability": 0.8718 + }, + { + "start": 3867.02, + "end": 3869.4, + "probability": 0.6055 + }, + { + "start": 3869.8, + "end": 3873.58, + "probability": 0.9928 + }, + { + "start": 3873.94, + "end": 3875.08, + "probability": 0.8972 + }, + { + "start": 3875.18, + "end": 3878.62, + "probability": 0.977 + }, + { + "start": 3878.7, + "end": 3880.14, + "probability": 0.9832 + }, + { + "start": 3880.26, + "end": 3886.94, + "probability": 0.9174 + }, + { + "start": 3887.5, + "end": 3890.16, + "probability": 0.8501 + }, + { + "start": 3890.7, + "end": 3895.37, + "probability": 0.7522 + }, + { + "start": 3895.7, + "end": 3898.7, + "probability": 0.9992 + }, + { + "start": 3899.02, + "end": 3903.26, + "probability": 0.9243 + }, + { + "start": 3904.1, + "end": 3905.56, + "probability": 0.7498 + }, + { + "start": 3905.9, + "end": 3908.43, + "probability": 0.9546 + }, + { + "start": 3909.54, + "end": 3915.84, + "probability": 0.9928 + }, + { + "start": 3917.16, + "end": 3920.3, + "probability": 0.8579 + }, + { + "start": 3922.36, + "end": 3926.64, + "probability": 0.705 + }, + { + "start": 3928.02, + "end": 3930.76, + "probability": 0.6908 + }, + { + "start": 3931.93, + "end": 3935.9, + "probability": 0.7923 + }, + { + "start": 3935.9, + "end": 3939.76, + "probability": 0.9081 + }, + { + "start": 3941.52, + "end": 3947.02, + "probability": 0.9937 + }, + { + "start": 3947.57, + "end": 3950.64, + "probability": 0.8066 + }, + { + "start": 3951.36, + "end": 3953.72, + "probability": 0.6725 + }, + { + "start": 3954.94, + "end": 3955.4, + "probability": 0.504 + }, + { + "start": 3956.68, + "end": 3958.33, + "probability": 0.982 + }, + { + "start": 3959.9, + "end": 3960.76, + "probability": 0.9319 + }, + { + "start": 3961.46, + "end": 3965.66, + "probability": 0.9574 + }, + { + "start": 3965.66, + "end": 3965.76, + "probability": 0.3074 + }, + { + "start": 3965.76, + "end": 3966.62, + "probability": 0.8403 + }, + { + "start": 3967.36, + "end": 3973.08, + "probability": 0.9896 + }, + { + "start": 3973.4, + "end": 3976.06, + "probability": 0.4419 + }, + { + "start": 3976.94, + "end": 3980.34, + "probability": 0.9868 + }, + { + "start": 3980.84, + "end": 3981.8, + "probability": 0.5929 + }, + { + "start": 3982.26, + "end": 3983.2, + "probability": 0.9106 + }, + { + "start": 3983.32, + "end": 3984.38, + "probability": 0.9329 + }, + { + "start": 3984.48, + "end": 3985.84, + "probability": 0.9777 + }, + { + "start": 3986.46, + "end": 3988.46, + "probability": 0.7712 + }, + { + "start": 3989.52, + "end": 3990.24, + "probability": 0.7229 + }, + { + "start": 3990.56, + "end": 3993.42, + "probability": 0.9014 + }, + { + "start": 3993.54, + "end": 3994.52, + "probability": 0.954 + }, + { + "start": 3994.58, + "end": 3995.24, + "probability": 0.7467 + }, + { + "start": 3995.5, + "end": 3998.42, + "probability": 0.9862 + }, + { + "start": 3998.98, + "end": 4003.74, + "probability": 0.7499 + }, + { + "start": 4004.22, + "end": 4007.36, + "probability": 0.8453 + }, + { + "start": 4008.02, + "end": 4008.74, + "probability": 0.8806 + }, + { + "start": 4010.32, + "end": 4015.92, + "probability": 0.9903 + }, + { + "start": 4016.58, + "end": 4021.12, + "probability": 0.939 + }, + { + "start": 4021.68, + "end": 4023.46, + "probability": 0.9907 + }, + { + "start": 4023.7, + "end": 4027.32, + "probability": 0.9331 + }, + { + "start": 4027.4, + "end": 4027.91, + "probability": 0.5121 + }, + { + "start": 4028.76, + "end": 4031.46, + "probability": 0.853 + }, + { + "start": 4031.54, + "end": 4032.4, + "probability": 0.9906 + }, + { + "start": 4033.16, + "end": 4033.91, + "probability": 0.8893 + }, + { + "start": 4034.78, + "end": 4037.92, + "probability": 0.6391 + }, + { + "start": 4037.94, + "end": 4038.82, + "probability": 0.687 + }, + { + "start": 4039.04, + "end": 4040.2, + "probability": 0.8526 + }, + { + "start": 4040.32, + "end": 4042.66, + "probability": 0.8087 + }, + { + "start": 4042.82, + "end": 4043.28, + "probability": 0.6558 + }, + { + "start": 4043.98, + "end": 4045.9, + "probability": 0.991 + }, + { + "start": 4045.9, + "end": 4049.28, + "probability": 0.9977 + }, + { + "start": 4049.82, + "end": 4052.16, + "probability": 0.6323 + }, + { + "start": 4052.24, + "end": 4056.06, + "probability": 0.9775 + }, + { + "start": 4056.9, + "end": 4059.58, + "probability": 0.992 + }, + { + "start": 4059.68, + "end": 4062.71, + "probability": 0.8623 + }, + { + "start": 4063.5, + "end": 4068.84, + "probability": 0.976 + }, + { + "start": 4069.46, + "end": 4071.18, + "probability": 0.8804 + }, + { + "start": 4071.85, + "end": 4073.84, + "probability": 0.4983 + }, + { + "start": 4074.82, + "end": 4075.34, + "probability": 0.6792 + }, + { + "start": 4075.54, + "end": 4076.32, + "probability": 0.7919 + }, + { + "start": 4076.94, + "end": 4078.56, + "probability": 0.9012 + }, + { + "start": 4079.62, + "end": 4080.94, + "probability": 0.9375 + }, + { + "start": 4081.76, + "end": 4082.66, + "probability": 0.7327 + }, + { + "start": 4083.34, + "end": 4084.42, + "probability": 0.9422 + }, + { + "start": 4085.04, + "end": 4087.0, + "probability": 0.6346 + }, + { + "start": 4087.42, + "end": 4089.78, + "probability": 0.9708 + }, + { + "start": 4090.72, + "end": 4092.62, + "probability": 0.0062 + }, + { + "start": 4093.35, + "end": 4097.54, + "probability": 0.8194 + }, + { + "start": 4097.54, + "end": 4098.04, + "probability": 0.3506 + }, + { + "start": 4098.69, + "end": 4100.7, + "probability": 0.822 + }, + { + "start": 4100.92, + "end": 4104.72, + "probability": 0.6549 + }, + { + "start": 4104.72, + "end": 4105.42, + "probability": 0.7925 + }, + { + "start": 4105.5, + "end": 4106.3, + "probability": 0.841 + }, + { + "start": 4106.34, + "end": 4107.86, + "probability": 0.9681 + }, + { + "start": 4107.86, + "end": 4108.2, + "probability": 0.5311 + }, + { + "start": 4108.24, + "end": 4110.28, + "probability": 0.8061 + }, + { + "start": 4110.4, + "end": 4111.02, + "probability": 0.5598 + }, + { + "start": 4111.28, + "end": 4113.76, + "probability": 0.1886 + }, + { + "start": 4114.06, + "end": 4115.88, + "probability": 0.613 + }, + { + "start": 4116.44, + "end": 4117.6, + "probability": 0.8417 + }, + { + "start": 4118.32, + "end": 4120.94, + "probability": 0.8611 + }, + { + "start": 4120.94, + "end": 4121.34, + "probability": 0.5742 + }, + { + "start": 4121.42, + "end": 4124.68, + "probability": 0.8438 + }, + { + "start": 4125.16, + "end": 4129.08, + "probability": 0.9894 + }, + { + "start": 4129.28, + "end": 4129.8, + "probability": 0.6837 + }, + { + "start": 4130.46, + "end": 4130.58, + "probability": 0.6523 + }, + { + "start": 4131.94, + "end": 4133.98, + "probability": 0.5042 + }, + { + "start": 4133.98, + "end": 4133.98, + "probability": 0.5107 + }, + { + "start": 4134.13, + "end": 4136.0, + "probability": 0.9211 + }, + { + "start": 4137.12, + "end": 4139.3, + "probability": 0.4731 + }, + { + "start": 4140.84, + "end": 4147.62, + "probability": 0.9609 + }, + { + "start": 4147.72, + "end": 4148.22, + "probability": 0.0886 + }, + { + "start": 4148.28, + "end": 4148.95, + "probability": 0.7781 + }, + { + "start": 4149.4, + "end": 4153.2, + "probability": 0.8281 + }, + { + "start": 4153.44, + "end": 4159.6, + "probability": 0.7213 + }, + { + "start": 4159.82, + "end": 4160.54, + "probability": 0.4186 + }, + { + "start": 4160.68, + "end": 4161.13, + "probability": 0.0366 + }, + { + "start": 4162.26, + "end": 4163.74, + "probability": 0.0299 + }, + { + "start": 4164.32, + "end": 4164.88, + "probability": 0.5234 + }, + { + "start": 4165.2, + "end": 4166.52, + "probability": 0.7787 + }, + { + "start": 4166.8, + "end": 4169.6, + "probability": 0.8866 + }, + { + "start": 4169.88, + "end": 4173.28, + "probability": 0.8602 + }, + { + "start": 4173.9, + "end": 4176.14, + "probability": 0.8364 + }, + { + "start": 4178.66, + "end": 4182.96, + "probability": 0.9712 + }, + { + "start": 4184.14, + "end": 4185.78, + "probability": 0.872 + }, + { + "start": 4186.02, + "end": 4188.36, + "probability": 0.9771 + }, + { + "start": 4189.74, + "end": 4195.44, + "probability": 0.9897 + }, + { + "start": 4196.9, + "end": 4200.78, + "probability": 0.9843 + }, + { + "start": 4201.42, + "end": 4202.32, + "probability": 0.9941 + }, + { + "start": 4203.04, + "end": 4204.06, + "probability": 0.946 + }, + { + "start": 4204.18, + "end": 4206.56, + "probability": 0.9949 + }, + { + "start": 4207.42, + "end": 4208.58, + "probability": 0.9548 + }, + { + "start": 4210.3, + "end": 4212.16, + "probability": 0.834 + }, + { + "start": 4212.96, + "end": 4220.8, + "probability": 0.9538 + }, + { + "start": 4221.7, + "end": 4222.96, + "probability": 0.8902 + }, + { + "start": 4223.78, + "end": 4225.87, + "probability": 0.9935 + }, + { + "start": 4226.82, + "end": 4231.86, + "probability": 0.9584 + }, + { + "start": 4231.96, + "end": 4232.7, + "probability": 0.7606 + }, + { + "start": 4233.34, + "end": 4235.72, + "probability": 0.971 + }, + { + "start": 4236.44, + "end": 4239.06, + "probability": 0.9895 + }, + { + "start": 4239.58, + "end": 4241.56, + "probability": 0.9185 + }, + { + "start": 4245.62, + "end": 4247.14, + "probability": 0.6535 + }, + { + "start": 4247.76, + "end": 4252.02, + "probability": 0.9874 + }, + { + "start": 4253.92, + "end": 4260.28, + "probability": 0.9954 + }, + { + "start": 4261.08, + "end": 4267.84, + "probability": 0.9862 + }, + { + "start": 4269.1, + "end": 4271.14, + "probability": 0.9321 + }, + { + "start": 4271.92, + "end": 4276.58, + "probability": 0.991 + }, + { + "start": 4277.24, + "end": 4280.0, + "probability": 0.9932 + }, + { + "start": 4280.82, + "end": 4283.46, + "probability": 0.9923 + }, + { + "start": 4284.56, + "end": 4287.56, + "probability": 0.9976 + }, + { + "start": 4289.06, + "end": 4290.02, + "probability": 0.7614 + }, + { + "start": 4290.96, + "end": 4292.88, + "probability": 0.9838 + }, + { + "start": 4293.66, + "end": 4295.5, + "probability": 0.723 + }, + { + "start": 4296.04, + "end": 4296.62, + "probability": 0.7584 + }, + { + "start": 4299.19, + "end": 4304.7, + "probability": 0.9875 + }, + { + "start": 4305.82, + "end": 4310.22, + "probability": 0.707 + }, + { + "start": 4310.86, + "end": 4312.98, + "probability": 0.967 + }, + { + "start": 4314.0, + "end": 4314.38, + "probability": 0.4825 + }, + { + "start": 4314.48, + "end": 4320.14, + "probability": 0.9283 + }, + { + "start": 4321.1, + "end": 4323.46, + "probability": 0.9085 + }, + { + "start": 4323.56, + "end": 4330.08, + "probability": 0.847 + }, + { + "start": 4331.4, + "end": 4334.0, + "probability": 0.896 + }, + { + "start": 4334.58, + "end": 4335.08, + "probability": 0.9936 + }, + { + "start": 4336.28, + "end": 4336.99, + "probability": 0.9692 + }, + { + "start": 4337.84, + "end": 4341.2, + "probability": 0.9826 + }, + { + "start": 4343.1, + "end": 4344.42, + "probability": 0.9984 + }, + { + "start": 4345.26, + "end": 4352.8, + "probability": 0.9964 + }, + { + "start": 4352.9, + "end": 4355.44, + "probability": 0.9677 + }, + { + "start": 4355.98, + "end": 4359.66, + "probability": 0.9983 + }, + { + "start": 4359.66, + "end": 4365.82, + "probability": 0.9902 + }, + { + "start": 4366.96, + "end": 4368.12, + "probability": 0.8031 + }, + { + "start": 4369.38, + "end": 4370.94, + "probability": 0.8491 + }, + { + "start": 4371.62, + "end": 4372.42, + "probability": 0.8552 + }, + { + "start": 4373.6, + "end": 4374.44, + "probability": 0.8594 + }, + { + "start": 4375.94, + "end": 4379.96, + "probability": 0.9338 + }, + { + "start": 4380.7, + "end": 4384.1, + "probability": 0.9583 + }, + { + "start": 4384.22, + "end": 4385.06, + "probability": 0.7446 + }, + { + "start": 4385.46, + "end": 4390.38, + "probability": 0.9624 + }, + { + "start": 4390.44, + "end": 4391.52, + "probability": 0.981 + }, + { + "start": 4392.44, + "end": 4396.06, + "probability": 0.9285 + }, + { + "start": 4397.06, + "end": 4400.52, + "probability": 0.9854 + }, + { + "start": 4400.58, + "end": 4402.4, + "probability": 0.9741 + }, + { + "start": 4403.66, + "end": 4408.94, + "probability": 0.9734 + }, + { + "start": 4409.52, + "end": 4415.1, + "probability": 0.9921 + }, + { + "start": 4415.18, + "end": 4418.04, + "probability": 0.9661 + }, + { + "start": 4418.72, + "end": 4420.92, + "probability": 0.9921 + }, + { + "start": 4422.36, + "end": 4423.84, + "probability": 0.7859 + }, + { + "start": 4424.04, + "end": 4426.76, + "probability": 0.8861 + }, + { + "start": 4427.54, + "end": 4428.76, + "probability": 0.9824 + }, + { + "start": 4430.06, + "end": 4431.62, + "probability": 0.8297 + }, + { + "start": 4432.14, + "end": 4434.42, + "probability": 0.9922 + }, + { + "start": 4435.3, + "end": 4437.08, + "probability": 0.9847 + }, + { + "start": 4438.42, + "end": 4445.1, + "probability": 0.8567 + }, + { + "start": 4446.4, + "end": 4448.44, + "probability": 0.9905 + }, + { + "start": 4448.56, + "end": 4451.52, + "probability": 0.9584 + }, + { + "start": 4451.7, + "end": 4452.34, + "probability": 0.6878 + }, + { + "start": 4452.38, + "end": 4455.28, + "probability": 0.9673 + }, + { + "start": 4458.28, + "end": 4458.93, + "probability": 0.9349 + }, + { + "start": 4460.7, + "end": 4461.52, + "probability": 0.9204 + }, + { + "start": 4461.6, + "end": 4462.16, + "probability": 0.6294 + }, + { + "start": 4462.94, + "end": 4465.72, + "probability": 0.9683 + }, + { + "start": 4465.9, + "end": 4468.94, + "probability": 0.9715 + }, + { + "start": 4469.52, + "end": 4470.66, + "probability": 0.9614 + }, + { + "start": 4470.88, + "end": 4473.46, + "probability": 0.7695 + }, + { + "start": 4473.82, + "end": 4474.6, + "probability": 0.6498 + }, + { + "start": 4474.68, + "end": 4478.2, + "probability": 0.9838 + }, + { + "start": 4478.94, + "end": 4480.35, + "probability": 0.9715 + }, + { + "start": 4481.24, + "end": 4482.92, + "probability": 0.99 + }, + { + "start": 4483.34, + "end": 4483.96, + "probability": 0.9761 + }, + { + "start": 4484.08, + "end": 4484.6, + "probability": 0.9761 + }, + { + "start": 4486.1, + "end": 4488.82, + "probability": 0.9376 + }, + { + "start": 4489.74, + "end": 4493.64, + "probability": 0.9883 + }, + { + "start": 4495.0, + "end": 4497.46, + "probability": 0.962 + }, + { + "start": 4498.32, + "end": 4501.1, + "probability": 0.9834 + }, + { + "start": 4501.1, + "end": 4506.04, + "probability": 0.994 + }, + { + "start": 4506.2, + "end": 4506.94, + "probability": 0.5735 + }, + { + "start": 4507.6, + "end": 4508.56, + "probability": 0.8841 + }, + { + "start": 4509.5, + "end": 4510.92, + "probability": 0.8893 + }, + { + "start": 4512.42, + "end": 4513.96, + "probability": 0.9167 + }, + { + "start": 4514.1, + "end": 4517.96, + "probability": 0.9247 + }, + { + "start": 4518.28, + "end": 4521.62, + "probability": 0.9443 + }, + { + "start": 4521.74, + "end": 4524.48, + "probability": 0.9692 + }, + { + "start": 4525.56, + "end": 4527.92, + "probability": 0.6995 + }, + { + "start": 4528.44, + "end": 4530.08, + "probability": 0.9789 + }, + { + "start": 4530.56, + "end": 4531.72, + "probability": 0.9889 + }, + { + "start": 4531.84, + "end": 4532.2, + "probability": 0.8555 + }, + { + "start": 4532.8, + "end": 4534.04, + "probability": 0.9358 + }, + { + "start": 4534.62, + "end": 4538.54, + "probability": 0.9881 + }, + { + "start": 4539.2, + "end": 4545.5, + "probability": 0.9935 + }, + { + "start": 4547.24, + "end": 4550.36, + "probability": 0.9975 + }, + { + "start": 4550.36, + "end": 4555.38, + "probability": 0.9989 + }, + { + "start": 4555.92, + "end": 4557.22, + "probability": 0.9551 + }, + { + "start": 4558.44, + "end": 4558.94, + "probability": 0.6274 + }, + { + "start": 4560.62, + "end": 4561.04, + "probability": 0.7326 + }, + { + "start": 4563.98, + "end": 4564.79, + "probability": 0.8456 + }, + { + "start": 4565.76, + "end": 4566.76, + "probability": 0.9038 + }, + { + "start": 4567.26, + "end": 4572.74, + "probability": 0.971 + }, + { + "start": 4573.2, + "end": 4573.66, + "probability": 0.6528 + }, + { + "start": 4574.32, + "end": 4575.98, + "probability": 0.9955 + }, + { + "start": 4576.56, + "end": 4578.56, + "probability": 0.9095 + }, + { + "start": 4579.08, + "end": 4582.7, + "probability": 0.8667 + }, + { + "start": 4583.66, + "end": 4589.88, + "probability": 0.9975 + }, + { + "start": 4590.98, + "end": 4596.96, + "probability": 0.946 + }, + { + "start": 4597.6, + "end": 4605.4, + "probability": 0.8802 + }, + { + "start": 4606.56, + "end": 4607.82, + "probability": 0.833 + }, + { + "start": 4608.96, + "end": 4613.1, + "probability": 0.9978 + }, + { + "start": 4613.62, + "end": 4616.24, + "probability": 0.9888 + }, + { + "start": 4616.26, + "end": 4619.52, + "probability": 0.9005 + }, + { + "start": 4619.84, + "end": 4621.5, + "probability": 0.8118 + }, + { + "start": 4622.06, + "end": 4625.14, + "probability": 0.8647 + }, + { + "start": 4625.8, + "end": 4627.98, + "probability": 0.6762 + }, + { + "start": 4629.12, + "end": 4630.34, + "probability": 0.4854 + }, + { + "start": 4631.32, + "end": 4639.58, + "probability": 0.9632 + }, + { + "start": 4639.92, + "end": 4640.97, + "probability": 0.8313 + }, + { + "start": 4641.32, + "end": 4643.14, + "probability": 0.993 + }, + { + "start": 4644.94, + "end": 4646.34, + "probability": 0.8837 + }, + { + "start": 4646.98, + "end": 4647.56, + "probability": 0.8082 + }, + { + "start": 4648.26, + "end": 4650.54, + "probability": 0.8863 + }, + { + "start": 4652.28, + "end": 4653.98, + "probability": 0.7863 + }, + { + "start": 4654.02, + "end": 4657.18, + "probability": 0.975 + }, + { + "start": 4657.18, + "end": 4662.06, + "probability": 0.9966 + }, + { + "start": 4662.46, + "end": 4665.26, + "probability": 0.9421 + }, + { + "start": 4666.64, + "end": 4673.7, + "probability": 0.9979 + }, + { + "start": 4673.7, + "end": 4679.98, + "probability": 0.9977 + }, + { + "start": 4680.46, + "end": 4683.42, + "probability": 0.9983 + }, + { + "start": 4683.94, + "end": 4685.48, + "probability": 0.8566 + }, + { + "start": 4685.98, + "end": 4688.72, + "probability": 0.9458 + }, + { + "start": 4688.76, + "end": 4689.87, + "probability": 0.8594 + }, + { + "start": 4691.26, + "end": 4696.04, + "probability": 0.999 + }, + { + "start": 4697.04, + "end": 4697.46, + "probability": 0.849 + }, + { + "start": 4697.54, + "end": 4701.64, + "probability": 0.9976 + }, + { + "start": 4703.0, + "end": 4704.14, + "probability": 0.649 + }, + { + "start": 4705.64, + "end": 4706.1, + "probability": 0.9634 + }, + { + "start": 4707.08, + "end": 4708.84, + "probability": 0.9775 + }, + { + "start": 4709.72, + "end": 4710.14, + "probability": 0.8735 + }, + { + "start": 4711.3, + "end": 4716.06, + "probability": 0.9568 + }, + { + "start": 4716.88, + "end": 4717.72, + "probability": 0.6861 + }, + { + "start": 4717.88, + "end": 4721.7, + "probability": 0.9728 + }, + { + "start": 4724.22, + "end": 4726.72, + "probability": 0.9965 + }, + { + "start": 4727.8, + "end": 4729.14, + "probability": 0.7833 + }, + { + "start": 4730.26, + "end": 4731.73, + "probability": 0.778 + }, + { + "start": 4732.54, + "end": 4738.42, + "probability": 0.9811 + }, + { + "start": 4738.5, + "end": 4739.2, + "probability": 0.6017 + }, + { + "start": 4739.98, + "end": 4741.5, + "probability": 0.9932 + }, + { + "start": 4742.56, + "end": 4746.64, + "probability": 0.8848 + }, + { + "start": 4748.1, + "end": 4751.56, + "probability": 0.9874 + }, + { + "start": 4752.22, + "end": 4757.42, + "probability": 0.9893 + }, + { + "start": 4757.5, + "end": 4762.9, + "probability": 0.9988 + }, + { + "start": 4762.9, + "end": 4769.02, + "probability": 0.826 + }, + { + "start": 4769.54, + "end": 4769.74, + "probability": 0.2731 + }, + { + "start": 4769.82, + "end": 4773.58, + "probability": 0.9116 + }, + { + "start": 4773.7, + "end": 4776.08, + "probability": 0.9739 + }, + { + "start": 4776.42, + "end": 4779.84, + "probability": 0.9624 + }, + { + "start": 4780.56, + "end": 4781.44, + "probability": 0.821 + }, + { + "start": 4781.76, + "end": 4782.54, + "probability": 0.6849 + }, + { + "start": 4782.84, + "end": 4787.96, + "probability": 0.9902 + }, + { + "start": 4788.5, + "end": 4790.2, + "probability": 0.9899 + }, + { + "start": 4790.96, + "end": 4798.36, + "probability": 0.9141 + }, + { + "start": 4799.3, + "end": 4801.68, + "probability": 0.9952 + }, + { + "start": 4802.44, + "end": 4806.98, + "probability": 0.9699 + }, + { + "start": 4807.44, + "end": 4809.12, + "probability": 0.9188 + }, + { + "start": 4809.7, + "end": 4811.92, + "probability": 0.9784 + }, + { + "start": 4812.38, + "end": 4814.98, + "probability": 0.9966 + }, + { + "start": 4815.56, + "end": 4821.4, + "probability": 0.9902 + }, + { + "start": 4821.56, + "end": 4821.98, + "probability": 0.6438 + }, + { + "start": 4822.5, + "end": 4829.48, + "probability": 0.8601 + }, + { + "start": 4830.27, + "end": 4833.46, + "probability": 0.9462 + }, + { + "start": 4834.06, + "end": 4835.46, + "probability": 0.8775 + }, + { + "start": 4836.06, + "end": 4837.69, + "probability": 0.8418 + }, + { + "start": 4838.12, + "end": 4838.96, + "probability": 0.4397 + }, + { + "start": 4839.92, + "end": 4841.44, + "probability": 0.7886 + }, + { + "start": 4842.06, + "end": 4844.44, + "probability": 0.9519 + }, + { + "start": 4845.12, + "end": 4848.8, + "probability": 0.9509 + }, + { + "start": 4849.44, + "end": 4853.8, + "probability": 0.9854 + }, + { + "start": 4854.56, + "end": 4856.92, + "probability": 0.9912 + }, + { + "start": 4857.26, + "end": 4857.96, + "probability": 0.8907 + }, + { + "start": 4859.36, + "end": 4862.72, + "probability": 0.9281 + }, + { + "start": 4863.32, + "end": 4870.26, + "probability": 0.9834 + }, + { + "start": 4871.28, + "end": 4873.76, + "probability": 0.7266 + }, + { + "start": 4874.48, + "end": 4877.52, + "probability": 0.8968 + }, + { + "start": 4878.18, + "end": 4879.76, + "probability": 0.986 + }, + { + "start": 4880.58, + "end": 4882.84, + "probability": 0.9942 + }, + { + "start": 4883.94, + "end": 4885.02, + "probability": 0.8635 + }, + { + "start": 4885.66, + "end": 4887.96, + "probability": 0.6648 + }, + { + "start": 4889.32, + "end": 4892.24, + "probability": 0.8225 + }, + { + "start": 4892.72, + "end": 4896.5, + "probability": 0.9601 + }, + { + "start": 4897.04, + "end": 4898.96, + "probability": 0.9844 + }, + { + "start": 4899.54, + "end": 4901.26, + "probability": 0.9982 + }, + { + "start": 4901.86, + "end": 4904.04, + "probability": 0.9609 + }, + { + "start": 4904.26, + "end": 4906.42, + "probability": 0.9811 + }, + { + "start": 4906.76, + "end": 4914.1, + "probability": 0.9902 + }, + { + "start": 4915.54, + "end": 4918.82, + "probability": 0.6017 + }, + { + "start": 4919.24, + "end": 4924.42, + "probability": 0.7619 + }, + { + "start": 4925.66, + "end": 4929.62, + "probability": 0.7384 + }, + { + "start": 4930.54, + "end": 4931.86, + "probability": 0.9319 + }, + { + "start": 4932.58, + "end": 4934.74, + "probability": 0.9154 + }, + { + "start": 4936.52, + "end": 4940.6, + "probability": 0.8438 + }, + { + "start": 4940.82, + "end": 4947.14, + "probability": 0.8674 + }, + { + "start": 4947.82, + "end": 4949.62, + "probability": 0.1045 + }, + { + "start": 4950.8, + "end": 4953.68, + "probability": 0.8193 + }, + { + "start": 4954.98, + "end": 4955.32, + "probability": 0.0002 + }, + { + "start": 4957.6, + "end": 4961.64, + "probability": 0.1074 + }, + { + "start": 4963.02, + "end": 4966.58, + "probability": 0.1207 + }, + { + "start": 4967.92, + "end": 4969.0, + "probability": 0.5199 + }, + { + "start": 4969.0, + "end": 4971.93, + "probability": 0.8833 + }, + { + "start": 4972.6, + "end": 4973.08, + "probability": 0.1216 + }, + { + "start": 4974.85, + "end": 4977.14, + "probability": 0.0701 + }, + { + "start": 4977.84, + "end": 4977.84, + "probability": 0.0711 + }, + { + "start": 4977.84, + "end": 4977.84, + "probability": 0.0647 + }, + { + "start": 4977.84, + "end": 4980.16, + "probability": 0.9587 + }, + { + "start": 4980.86, + "end": 4983.14, + "probability": 0.9218 + }, + { + "start": 4983.82, + "end": 4984.56, + "probability": 0.907 + }, + { + "start": 4985.58, + "end": 4988.3, + "probability": 0.9355 + }, + { + "start": 4989.5, + "end": 4993.02, + "probability": 0.9888 + }, + { + "start": 4995.56, + "end": 4999.44, + "probability": 0.9811 + }, + { + "start": 5000.26, + "end": 5001.84, + "probability": 0.7315 + }, + { + "start": 5002.86, + "end": 5004.5, + "probability": 0.8746 + }, + { + "start": 5005.3, + "end": 5010.28, + "probability": 0.9711 + }, + { + "start": 5011.12, + "end": 5013.34, + "probability": 0.992 + }, + { + "start": 5014.0, + "end": 5014.7, + "probability": 0.945 + }, + { + "start": 5015.08, + "end": 5017.26, + "probability": 0.9964 + }, + { + "start": 5017.8, + "end": 5018.44, + "probability": 0.9441 + }, + { + "start": 5019.28, + "end": 5023.22, + "probability": 0.9959 + }, + { + "start": 5024.0, + "end": 5027.44, + "probability": 0.9974 + }, + { + "start": 5027.44, + "end": 5030.7, + "probability": 0.9919 + }, + { + "start": 5031.24, + "end": 5033.82, + "probability": 0.9371 + }, + { + "start": 5034.9, + "end": 5036.6, + "probability": 0.9914 + }, + { + "start": 5037.2, + "end": 5041.36, + "probability": 0.976 + }, + { + "start": 5042.1, + "end": 5044.56, + "probability": 0.9531 + }, + { + "start": 5045.04, + "end": 5045.66, + "probability": 0.9606 + }, + { + "start": 5045.84, + "end": 5046.84, + "probability": 0.9706 + }, + { + "start": 5047.48, + "end": 5050.5, + "probability": 0.9979 + }, + { + "start": 5052.22, + "end": 5052.42, + "probability": 0.253 + }, + { + "start": 5052.56, + "end": 5057.46, + "probability": 0.9249 + }, + { + "start": 5058.28, + "end": 5059.46, + "probability": 0.99 + }, + { + "start": 5062.54, + "end": 5064.68, + "probability": 0.5618 + }, + { + "start": 5065.32, + "end": 5067.62, + "probability": 0.9809 + }, + { + "start": 5068.74, + "end": 5073.22, + "probability": 0.9579 + }, + { + "start": 5073.86, + "end": 5074.86, + "probability": 0.857 + }, + { + "start": 5075.38, + "end": 5078.88, + "probability": 0.9607 + }, + { + "start": 5081.76, + "end": 5082.74, + "probability": 0.3473 + }, + { + "start": 5083.48, + "end": 5084.62, + "probability": 0.8049 + }, + { + "start": 5085.54, + "end": 5088.98, + "probability": 0.9937 + }, + { + "start": 5089.0, + "end": 5091.9, + "probability": 0.9569 + }, + { + "start": 5092.92, + "end": 5094.94, + "probability": 0.9863 + }, + { + "start": 5095.58, + "end": 5096.56, + "probability": 0.9846 + }, + { + "start": 5097.36, + "end": 5100.46, + "probability": 0.8394 + }, + { + "start": 5101.16, + "end": 5104.16, + "probability": 0.9812 + }, + { + "start": 5104.78, + "end": 5107.3, + "probability": 0.9527 + }, + { + "start": 5108.22, + "end": 5111.34, + "probability": 0.8673 + }, + { + "start": 5112.06, + "end": 5115.48, + "probability": 0.9137 + }, + { + "start": 5116.08, + "end": 5117.74, + "probability": 0.9105 + }, + { + "start": 5118.56, + "end": 5121.1, + "probability": 0.901 + }, + { + "start": 5122.18, + "end": 5126.24, + "probability": 0.7357 + }, + { + "start": 5127.92, + "end": 5129.96, + "probability": 0.6509 + }, + { + "start": 5130.88, + "end": 5133.86, + "probability": 0.8776 + }, + { + "start": 5159.98, + "end": 5163.8, + "probability": 0.8319 + }, + { + "start": 5163.8, + "end": 5164.28, + "probability": 0.8037 + }, + { + "start": 5164.42, + "end": 5169.32, + "probability": 0.9453 + }, + { + "start": 5169.66, + "end": 5170.16, + "probability": 0.9177 + }, + { + "start": 5170.44, + "end": 5171.51, + "probability": 0.6681 + }, + { + "start": 5171.84, + "end": 5173.66, + "probability": 0.6473 + }, + { + "start": 5175.82, + "end": 5176.8, + "probability": 0.8671 + }, + { + "start": 5177.14, + "end": 5180.76, + "probability": 0.9978 + }, + { + "start": 5182.1, + "end": 5183.54, + "probability": 0.7646 + }, + { + "start": 5188.16, + "end": 5190.48, + "probability": 0.8434 + }, + { + "start": 5191.48, + "end": 5195.52, + "probability": 0.8372 + }, + { + "start": 5197.26, + "end": 5202.52, + "probability": 0.9992 + }, + { + "start": 5202.52, + "end": 5207.16, + "probability": 0.9966 + }, + { + "start": 5207.74, + "end": 5212.66, + "probability": 0.9676 + }, + { + "start": 5212.84, + "end": 5215.13, + "probability": 0.9856 + }, + { + "start": 5216.22, + "end": 5217.36, + "probability": 0.7883 + }, + { + "start": 5218.5, + "end": 5221.88, + "probability": 0.9014 + }, + { + "start": 5224.78, + "end": 5227.88, + "probability": 0.9993 + }, + { + "start": 5230.44, + "end": 5231.2, + "probability": 0.9025 + }, + { + "start": 5231.3, + "end": 5231.46, + "probability": 0.7756 + }, + { + "start": 5231.58, + "end": 5231.96, + "probability": 0.9423 + }, + { + "start": 5232.16, + "end": 5232.54, + "probability": 0.3198 + }, + { + "start": 5232.86, + "end": 5234.88, + "probability": 0.7515 + }, + { + "start": 5235.26, + "end": 5239.1, + "probability": 0.6291 + }, + { + "start": 5240.8, + "end": 5243.18, + "probability": 0.9658 + }, + { + "start": 5246.0, + "end": 5248.34, + "probability": 0.9576 + }, + { + "start": 5250.68, + "end": 5252.7, + "probability": 0.9001 + }, + { + "start": 5252.84, + "end": 5255.69, + "probability": 0.8582 + }, + { + "start": 5255.9, + "end": 5256.34, + "probability": 0.6497 + }, + { + "start": 5256.36, + "end": 5256.88, + "probability": 0.8578 + }, + { + "start": 5257.02, + "end": 5258.12, + "probability": 0.9072 + }, + { + "start": 5259.0, + "end": 5260.64, + "probability": 0.8485 + }, + { + "start": 5261.42, + "end": 5264.74, + "probability": 0.9929 + }, + { + "start": 5269.68, + "end": 5272.22, + "probability": 0.9778 + }, + { + "start": 5275.76, + "end": 5282.44, + "probability": 0.9956 + }, + { + "start": 5282.66, + "end": 5283.24, + "probability": 0.7989 + }, + { + "start": 5283.28, + "end": 5284.74, + "probability": 0.9354 + }, + { + "start": 5284.92, + "end": 5286.58, + "probability": 0.9554 + }, + { + "start": 5286.7, + "end": 5287.06, + "probability": 0.8119 + }, + { + "start": 5288.42, + "end": 5290.66, + "probability": 0.9946 + }, + { + "start": 5291.58, + "end": 5295.56, + "probability": 0.937 + }, + { + "start": 5297.1, + "end": 5298.64, + "probability": 0.7984 + }, + { + "start": 5301.0, + "end": 5306.76, + "probability": 0.9963 + }, + { + "start": 5308.44, + "end": 5309.46, + "probability": 0.9711 + }, + { + "start": 5310.38, + "end": 5311.1, + "probability": 0.9631 + }, + { + "start": 5311.68, + "end": 5312.66, + "probability": 0.9724 + }, + { + "start": 5313.72, + "end": 5314.76, + "probability": 0.8086 + }, + { + "start": 5316.0, + "end": 5317.02, + "probability": 0.8047 + }, + { + "start": 5318.7, + "end": 5320.7, + "probability": 0.8996 + }, + { + "start": 5321.6, + "end": 5322.58, + "probability": 0.9213 + }, + { + "start": 5325.54, + "end": 5329.05, + "probability": 0.8144 + }, + { + "start": 5330.24, + "end": 5331.46, + "probability": 0.903 + }, + { + "start": 5332.68, + "end": 5333.44, + "probability": 0.9621 + }, + { + "start": 5335.64, + "end": 5338.42, + "probability": 0.9317 + }, + { + "start": 5338.56, + "end": 5340.05, + "probability": 0.8574 + }, + { + "start": 5340.84, + "end": 5341.46, + "probability": 0.8572 + }, + { + "start": 5342.0, + "end": 5343.18, + "probability": 0.5418 + }, + { + "start": 5343.84, + "end": 5345.9, + "probability": 0.5835 + }, + { + "start": 5347.76, + "end": 5348.78, + "probability": 0.9189 + }, + { + "start": 5349.62, + "end": 5351.64, + "probability": 0.99 + }, + { + "start": 5353.06, + "end": 5353.4, + "probability": 0.704 + }, + { + "start": 5353.52, + "end": 5354.9, + "probability": 0.9923 + }, + { + "start": 5355.02, + "end": 5357.06, + "probability": 0.9973 + }, + { + "start": 5358.58, + "end": 5359.64, + "probability": 0.5915 + }, + { + "start": 5361.2, + "end": 5362.52, + "probability": 0.9395 + }, + { + "start": 5363.6, + "end": 5364.14, + "probability": 0.7576 + }, + { + "start": 5365.04, + "end": 5367.86, + "probability": 0.9787 + }, + { + "start": 5368.62, + "end": 5371.76, + "probability": 0.9695 + }, + { + "start": 5372.78, + "end": 5373.92, + "probability": 0.9717 + }, + { + "start": 5374.82, + "end": 5377.64, + "probability": 0.9954 + }, + { + "start": 5377.94, + "end": 5380.9, + "probability": 0.9793 + }, + { + "start": 5383.02, + "end": 5385.86, + "probability": 0.9976 + }, + { + "start": 5385.98, + "end": 5386.94, + "probability": 0.6149 + }, + { + "start": 5388.86, + "end": 5390.4, + "probability": 0.9572 + }, + { + "start": 5391.34, + "end": 5392.66, + "probability": 0.9453 + }, + { + "start": 5394.12, + "end": 5394.98, + "probability": 0.7417 + }, + { + "start": 5396.0, + "end": 5397.24, + "probability": 0.9924 + }, + { + "start": 5400.48, + "end": 5401.28, + "probability": 0.9559 + }, + { + "start": 5403.04, + "end": 5403.86, + "probability": 0.6725 + }, + { + "start": 5405.7, + "end": 5407.62, + "probability": 0.9475 + }, + { + "start": 5409.08, + "end": 5411.65, + "probability": 0.9812 + }, + { + "start": 5412.08, + "end": 5413.8, + "probability": 0.998 + }, + { + "start": 5415.3, + "end": 5416.42, + "probability": 0.8335 + }, + { + "start": 5417.12, + "end": 5419.56, + "probability": 0.9347 + }, + { + "start": 5421.22, + "end": 5423.38, + "probability": 0.9994 + }, + { + "start": 5424.14, + "end": 5425.22, + "probability": 0.8335 + }, + { + "start": 5425.5, + "end": 5427.24, + "probability": 0.7869 + }, + { + "start": 5427.94, + "end": 5432.1, + "probability": 0.7325 + }, + { + "start": 5432.18, + "end": 5434.0, + "probability": 0.9925 + }, + { + "start": 5435.3, + "end": 5436.38, + "probability": 0.9696 + }, + { + "start": 5437.44, + "end": 5438.06, + "probability": 0.7164 + }, + { + "start": 5440.28, + "end": 5441.46, + "probability": 0.9493 + }, + { + "start": 5442.5, + "end": 5444.1, + "probability": 0.9702 + }, + { + "start": 5444.3, + "end": 5445.24, + "probability": 0.7836 + }, + { + "start": 5445.28, + "end": 5446.34, + "probability": 0.79 + }, + { + "start": 5451.84, + "end": 5453.0, + "probability": 0.7581 + }, + { + "start": 5453.58, + "end": 5455.36, + "probability": 0.9874 + }, + { + "start": 5455.68, + "end": 5456.92, + "probability": 0.9946 + }, + { + "start": 5457.52, + "end": 5458.11, + "probability": 0.9202 + }, + { + "start": 5458.38, + "end": 5460.52, + "probability": 0.9663 + }, + { + "start": 5461.06, + "end": 5461.48, + "probability": 0.87 + }, + { + "start": 5462.42, + "end": 5462.9, + "probability": 0.7485 + }, + { + "start": 5463.66, + "end": 5464.42, + "probability": 0.9459 + }, + { + "start": 5466.8, + "end": 5469.96, + "probability": 0.8931 + }, + { + "start": 5470.04, + "end": 5471.9, + "probability": 0.8585 + }, + { + "start": 5472.96, + "end": 5474.3, + "probability": 0.888 + }, + { + "start": 5475.12, + "end": 5475.36, + "probability": 0.6476 + }, + { + "start": 5475.7, + "end": 5478.24, + "probability": 0.7808 + }, + { + "start": 5478.74, + "end": 5481.25, + "probability": 0.9956 + }, + { + "start": 5483.38, + "end": 5483.87, + "probability": 0.7025 + }, + { + "start": 5484.8, + "end": 5486.72, + "probability": 0.6594 + }, + { + "start": 5487.72, + "end": 5489.94, + "probability": 0.8354 + }, + { + "start": 5491.16, + "end": 5492.05, + "probability": 0.9106 + }, + { + "start": 5492.18, + "end": 5492.84, + "probability": 0.8077 + }, + { + "start": 5492.86, + "end": 5493.64, + "probability": 0.8936 + }, + { + "start": 5493.66, + "end": 5494.46, + "probability": 0.9698 + }, + { + "start": 5494.46, + "end": 5495.94, + "probability": 0.9627 + }, + { + "start": 5495.98, + "end": 5496.84, + "probability": 0.7462 + }, + { + "start": 5496.88, + "end": 5497.78, + "probability": 0.9036 + }, + { + "start": 5497.88, + "end": 5498.46, + "probability": 0.7742 + }, + { + "start": 5500.26, + "end": 5502.06, + "probability": 0.4888 + }, + { + "start": 5502.16, + "end": 5503.62, + "probability": 0.9265 + }, + { + "start": 5503.7, + "end": 5504.02, + "probability": 0.8945 + }, + { + "start": 5505.14, + "end": 5507.16, + "probability": 0.9948 + }, + { + "start": 5507.2, + "end": 5510.44, + "probability": 0.9401 + }, + { + "start": 5511.22, + "end": 5512.98, + "probability": 0.5582 + }, + { + "start": 5513.36, + "end": 5515.12, + "probability": 0.9563 + }, + { + "start": 5516.0, + "end": 5516.36, + "probability": 0.1185 + }, + { + "start": 5518.58, + "end": 5519.22, + "probability": 0.1625 + }, + { + "start": 5519.3, + "end": 5521.77, + "probability": 0.5828 + }, + { + "start": 5523.02, + "end": 5523.28, + "probability": 0.592 + }, + { + "start": 5523.76, + "end": 5526.14, + "probability": 0.9995 + }, + { + "start": 5527.28, + "end": 5528.52, + "probability": 0.9786 + }, + { + "start": 5529.3, + "end": 5530.34, + "probability": 0.5749 + }, + { + "start": 5530.76, + "end": 5532.76, + "probability": 0.8606 + }, + { + "start": 5532.86, + "end": 5533.84, + "probability": 0.8865 + }, + { + "start": 5533.96, + "end": 5535.58, + "probability": 0.5898 + }, + { + "start": 5536.46, + "end": 5539.18, + "probability": 0.8898 + }, + { + "start": 5539.74, + "end": 5540.64, + "probability": 0.9832 + }, + { + "start": 5541.12, + "end": 5542.16, + "probability": 0.9594 + }, + { + "start": 5542.56, + "end": 5543.58, + "probability": 0.6953 + }, + { + "start": 5543.64, + "end": 5548.5, + "probability": 0.9919 + }, + { + "start": 5548.58, + "end": 5550.64, + "probability": 0.9822 + }, + { + "start": 5551.24, + "end": 5553.96, + "probability": 0.9981 + }, + { + "start": 5553.96, + "end": 5557.38, + "probability": 0.9997 + }, + { + "start": 5557.4, + "end": 5557.76, + "probability": 0.7547 + }, + { + "start": 5559.34, + "end": 5563.08, + "probability": 0.9747 + }, + { + "start": 5563.54, + "end": 5563.56, + "probability": 0.6138 + }, + { + "start": 5564.54, + "end": 5566.84, + "probability": 0.6939 + }, + { + "start": 5567.7, + "end": 5568.88, + "probability": 0.8672 + }, + { + "start": 5585.2, + "end": 5585.3, + "probability": 0.043 + }, + { + "start": 5586.64, + "end": 5589.66, + "probability": 0.7361 + }, + { + "start": 5592.4, + "end": 5594.32, + "probability": 0.9982 + }, + { + "start": 5595.74, + "end": 5598.28, + "probability": 0.8908 + }, + { + "start": 5599.58, + "end": 5601.12, + "probability": 0.6623 + }, + { + "start": 5601.96, + "end": 5602.06, + "probability": 0.5114 + }, + { + "start": 5602.06, + "end": 5605.48, + "probability": 0.9924 + }, + { + "start": 5607.06, + "end": 5608.72, + "probability": 0.9485 + }, + { + "start": 5610.7, + "end": 5616.32, + "probability": 0.9989 + }, + { + "start": 5616.5, + "end": 5619.28, + "probability": 0.9844 + }, + { + "start": 5620.22, + "end": 5621.38, + "probability": 0.8722 + }, + { + "start": 5621.64, + "end": 5625.26, + "probability": 0.9361 + }, + { + "start": 5625.52, + "end": 5628.14, + "probability": 0.9972 + }, + { + "start": 5628.28, + "end": 5628.8, + "probability": 0.9409 + }, + { + "start": 5629.72, + "end": 5629.9, + "probability": 0.7936 + }, + { + "start": 5630.06, + "end": 5632.26, + "probability": 0.9978 + }, + { + "start": 5632.38, + "end": 5633.5, + "probability": 0.9965 + }, + { + "start": 5634.02, + "end": 5634.61, + "probability": 0.5598 + }, + { + "start": 5634.98, + "end": 5641.02, + "probability": 0.9788 + }, + { + "start": 5641.14, + "end": 5641.72, + "probability": 0.9812 + }, + { + "start": 5643.0, + "end": 5645.58, + "probability": 0.7756 + }, + { + "start": 5646.26, + "end": 5649.88, + "probability": 0.9371 + }, + { + "start": 5650.93, + "end": 5656.32, + "probability": 0.9896 + }, + { + "start": 5657.58, + "end": 5658.96, + "probability": 0.9576 + }, + { + "start": 5659.1, + "end": 5660.7, + "probability": 0.8951 + }, + { + "start": 5660.76, + "end": 5664.44, + "probability": 0.9445 + }, + { + "start": 5664.46, + "end": 5665.64, + "probability": 0.6383 + }, + { + "start": 5666.18, + "end": 5667.6, + "probability": 0.9195 + }, + { + "start": 5670.52, + "end": 5676.5, + "probability": 0.8374 + }, + { + "start": 5676.64, + "end": 5679.62, + "probability": 0.7194 + }, + { + "start": 5681.8, + "end": 5684.1, + "probability": 0.4986 + }, + { + "start": 5684.32, + "end": 5687.22, + "probability": 0.8605 + }, + { + "start": 5688.9, + "end": 5692.36, + "probability": 0.9887 + }, + { + "start": 5692.36, + "end": 5696.6, + "probability": 0.9136 + }, + { + "start": 5696.86, + "end": 5701.64, + "probability": 0.9972 + }, + { + "start": 5703.49, + "end": 5708.02, + "probability": 0.9829 + }, + { + "start": 5708.08, + "end": 5710.48, + "probability": 0.9878 + }, + { + "start": 5710.92, + "end": 5715.02, + "probability": 0.7997 + }, + { + "start": 5715.46, + "end": 5718.2, + "probability": 0.8184 + }, + { + "start": 5718.8, + "end": 5720.7, + "probability": 0.9115 + }, + { + "start": 5721.2, + "end": 5723.28, + "probability": 0.8687 + }, + { + "start": 5725.3, + "end": 5729.52, + "probability": 0.9948 + }, + { + "start": 5729.62, + "end": 5730.62, + "probability": 0.8352 + }, + { + "start": 5731.36, + "end": 5734.06, + "probability": 0.7171 + }, + { + "start": 5734.26, + "end": 5735.84, + "probability": 0.7329 + }, + { + "start": 5736.5, + "end": 5739.86, + "probability": 0.861 + }, + { + "start": 5740.73, + "end": 5743.24, + "probability": 0.9546 + }, + { + "start": 5743.88, + "end": 5746.04, + "probability": 0.9069 + }, + { + "start": 5746.9, + "end": 5747.3, + "probability": 0.4676 + }, + { + "start": 5747.44, + "end": 5749.74, + "probability": 0.4369 + }, + { + "start": 5750.64, + "end": 5753.88, + "probability": 0.9554 + }, + { + "start": 5754.86, + "end": 5756.26, + "probability": 0.3952 + }, + { + "start": 5757.06, + "end": 5757.28, + "probability": 0.0226 + }, + { + "start": 5757.28, + "end": 5758.5, + "probability": 0.3265 + }, + { + "start": 5758.86, + "end": 5762.72, + "probability": 0.6653 + }, + { + "start": 5763.2, + "end": 5767.56, + "probability": 0.9518 + }, + { + "start": 5768.22, + "end": 5774.06, + "probability": 0.947 + }, + { + "start": 5774.12, + "end": 5774.52, + "probability": 0.6884 + }, + { + "start": 5774.66, + "end": 5778.42, + "probability": 0.464 + }, + { + "start": 5779.8, + "end": 5785.92, + "probability": 0.6848 + }, + { + "start": 5785.92, + "end": 5787.94, + "probability": 0.7858 + }, + { + "start": 5788.42, + "end": 5790.9, + "probability": 0.9733 + }, + { + "start": 5791.5, + "end": 5793.9, + "probability": 0.6224 + }, + { + "start": 5794.75, + "end": 5798.47, + "probability": 0.8244 + }, + { + "start": 5798.8, + "end": 5802.32, + "probability": 0.6517 + }, + { + "start": 5803.26, + "end": 5804.86, + "probability": 0.8896 + }, + { + "start": 5804.9, + "end": 5806.74, + "probability": 0.8895 + }, + { + "start": 5807.6, + "end": 5809.82, + "probability": 0.7417 + }, + { + "start": 5809.96, + "end": 5812.57, + "probability": 0.4914 + }, + { + "start": 5813.4, + "end": 5820.16, + "probability": 0.9235 + }, + { + "start": 5820.62, + "end": 5825.02, + "probability": 0.9717 + }, + { + "start": 5825.44, + "end": 5827.34, + "probability": 0.9738 + }, + { + "start": 5828.1, + "end": 5830.42, + "probability": 0.8406 + }, + { + "start": 5830.68, + "end": 5831.08, + "probability": 0.4502 + }, + { + "start": 5831.28, + "end": 5832.56, + "probability": 0.9575 + }, + { + "start": 5833.06, + "end": 5835.6, + "probability": 0.9608 + }, + { + "start": 5836.38, + "end": 5838.72, + "probability": 0.9981 + }, + { + "start": 5839.1, + "end": 5839.94, + "probability": 0.9371 + }, + { + "start": 5840.04, + "end": 5841.0, + "probability": 0.8865 + }, + { + "start": 5841.42, + "end": 5842.0, + "probability": 0.425 + }, + { + "start": 5842.06, + "end": 5842.52, + "probability": 0.4359 + }, + { + "start": 5842.64, + "end": 5843.26, + "probability": 0.5554 + }, + { + "start": 5843.32, + "end": 5844.84, + "probability": 0.6297 + }, + { + "start": 5845.38, + "end": 5853.36, + "probability": 0.9111 + }, + { + "start": 5853.7, + "end": 5854.86, + "probability": 0.9051 + }, + { + "start": 5855.36, + "end": 5856.76, + "probability": 0.8735 + }, + { + "start": 5857.32, + "end": 5857.8, + "probability": 0.4923 + }, + { + "start": 5857.9, + "end": 5858.6, + "probability": 0.8956 + }, + { + "start": 5858.8, + "end": 5861.6, + "probability": 0.7915 + }, + { + "start": 5862.22, + "end": 5866.54, + "probability": 0.9939 + }, + { + "start": 5867.46, + "end": 5868.46, + "probability": 0.5753 + }, + { + "start": 5869.98, + "end": 5869.98, + "probability": 0.397 + }, + { + "start": 5869.98, + "end": 5872.72, + "probability": 0.9733 + }, + { + "start": 5872.76, + "end": 5874.04, + "probability": 0.5892 + }, + { + "start": 5874.62, + "end": 5877.46, + "probability": 0.78 + }, + { + "start": 5879.08, + "end": 5880.22, + "probability": 0.8165 + }, + { + "start": 5881.56, + "end": 5881.66, + "probability": 0.2556 + }, + { + "start": 5881.66, + "end": 5883.64, + "probability": 0.9922 + }, + { + "start": 5884.18, + "end": 5885.74, + "probability": 0.8185 + }, + { + "start": 5885.98, + "end": 5889.64, + "probability": 0.788 + }, + { + "start": 5889.78, + "end": 5891.18, + "probability": 0.9154 + }, + { + "start": 5891.18, + "end": 5894.12, + "probability": 0.8565 + }, + { + "start": 5894.72, + "end": 5897.48, + "probability": 0.5884 + }, + { + "start": 5897.48, + "end": 5899.36, + "probability": 0.8166 + }, + { + "start": 5899.98, + "end": 5902.52, + "probability": 0.9656 + }, + { + "start": 5904.78, + "end": 5906.56, + "probability": 0.6676 + }, + { + "start": 5906.64, + "end": 5908.14, + "probability": 0.2263 + }, + { + "start": 5908.58, + "end": 5909.6, + "probability": 0.5688 + }, + { + "start": 5909.64, + "end": 5910.6, + "probability": 0.0946 + }, + { + "start": 5910.68, + "end": 5911.2, + "probability": 0.2046 + }, + { + "start": 5912.24, + "end": 5913.52, + "probability": 0.6833 + }, + { + "start": 5914.18, + "end": 5916.6, + "probability": 0.7006 + }, + { + "start": 5916.74, + "end": 5917.72, + "probability": 0.4922 + }, + { + "start": 5917.78, + "end": 5919.34, + "probability": 0.7859 + }, + { + "start": 5920.06, + "end": 5921.06, + "probability": 0.5966 + }, + { + "start": 5921.28, + "end": 5922.64, + "probability": 0.821 + }, + { + "start": 5948.88, + "end": 5949.04, + "probability": 0.0004 + }, + { + "start": 5949.04, + "end": 5950.5, + "probability": 0.6165 + }, + { + "start": 5950.9, + "end": 5950.9, + "probability": 0.3567 + }, + { + "start": 5950.9, + "end": 5951.84, + "probability": 0.7525 + }, + { + "start": 5952.0, + "end": 5958.5, + "probability": 0.9966 + }, + { + "start": 5959.78, + "end": 5960.52, + "probability": 0.819 + }, + { + "start": 5960.66, + "end": 5963.12, + "probability": 0.995 + }, + { + "start": 5963.12, + "end": 5965.62, + "probability": 0.9995 + }, + { + "start": 5967.3, + "end": 5971.3, + "probability": 0.9969 + }, + { + "start": 5972.22, + "end": 5975.17, + "probability": 0.9977 + }, + { + "start": 5975.38, + "end": 5977.06, + "probability": 0.9901 + }, + { + "start": 5977.86, + "end": 5979.88, + "probability": 0.8394 + }, + { + "start": 5980.66, + "end": 5984.6, + "probability": 0.8654 + }, + { + "start": 5985.2, + "end": 5990.28, + "probability": 0.6378 + }, + { + "start": 5991.18, + "end": 5993.1, + "probability": 0.9937 + }, + { + "start": 5994.36, + "end": 5996.46, + "probability": 0.8861 + }, + { + "start": 5996.52, + "end": 5999.92, + "probability": 0.96 + }, + { + "start": 6000.42, + "end": 6001.8, + "probability": 0.9901 + }, + { + "start": 6003.26, + "end": 6003.26, + "probability": 0.4449 + }, + { + "start": 6003.44, + "end": 6004.14, + "probability": 0.7894 + }, + { + "start": 6004.22, + "end": 6006.72, + "probability": 0.9849 + }, + { + "start": 6006.72, + "end": 6010.22, + "probability": 0.9985 + }, + { + "start": 6010.4, + "end": 6011.74, + "probability": 0.8114 + }, + { + "start": 6012.7, + "end": 6016.6, + "probability": 0.9387 + }, + { + "start": 6017.9, + "end": 6020.14, + "probability": 0.8891 + }, + { + "start": 6020.8, + "end": 6022.1, + "probability": 0.6579 + }, + { + "start": 6022.3, + "end": 6023.96, + "probability": 0.906 + }, + { + "start": 6024.4, + "end": 6026.04, + "probability": 0.9697 + }, + { + "start": 6026.52, + "end": 6027.44, + "probability": 0.7701 + }, + { + "start": 6027.66, + "end": 6031.38, + "probability": 0.7819 + }, + { + "start": 6031.82, + "end": 6032.66, + "probability": 0.7033 + }, + { + "start": 6032.74, + "end": 6034.86, + "probability": 0.729 + }, + { + "start": 6035.68, + "end": 6036.82, + "probability": 0.8573 + }, + { + "start": 6036.9, + "end": 6037.94, + "probability": 0.8872 + }, + { + "start": 6038.0, + "end": 6040.78, + "probability": 0.9462 + }, + { + "start": 6040.92, + "end": 6041.62, + "probability": 0.9871 + }, + { + "start": 6042.26, + "end": 6042.56, + "probability": 0.4125 + }, + { + "start": 6043.26, + "end": 6048.22, + "probability": 0.9921 + }, + { + "start": 6049.04, + "end": 6051.68, + "probability": 0.996 + }, + { + "start": 6051.68, + "end": 6055.42, + "probability": 0.8303 + }, + { + "start": 6056.28, + "end": 6061.26, + "probability": 0.9881 + }, + { + "start": 6062.12, + "end": 6065.8, + "probability": 0.9911 + }, + { + "start": 6066.32, + "end": 6068.24, + "probability": 0.9953 + }, + { + "start": 6068.92, + "end": 6069.54, + "probability": 0.9229 + }, + { + "start": 6070.14, + "end": 6072.22, + "probability": 0.8972 + }, + { + "start": 6072.86, + "end": 6074.08, + "probability": 0.7427 + }, + { + "start": 6074.16, + "end": 6079.26, + "probability": 0.9932 + }, + { + "start": 6079.64, + "end": 6084.5, + "probability": 0.9937 + }, + { + "start": 6085.82, + "end": 6089.24, + "probability": 0.9586 + }, + { + "start": 6089.24, + "end": 6093.3, + "probability": 0.9971 + }, + { + "start": 6093.9, + "end": 6094.98, + "probability": 0.6243 + }, + { + "start": 6095.02, + "end": 6095.6, + "probability": 0.4014 + }, + { + "start": 6095.6, + "end": 6096.22, + "probability": 0.6467 + }, + { + "start": 6096.26, + "end": 6097.38, + "probability": 0.8959 + }, + { + "start": 6098.3, + "end": 6102.5, + "probability": 0.9983 + }, + { + "start": 6102.5, + "end": 6105.86, + "probability": 0.9995 + }, + { + "start": 6106.18, + "end": 6110.84, + "probability": 0.9787 + }, + { + "start": 6111.86, + "end": 6118.3, + "probability": 0.9971 + }, + { + "start": 6119.3, + "end": 6123.16, + "probability": 0.9985 + }, + { + "start": 6123.16, + "end": 6128.34, + "probability": 0.9925 + }, + { + "start": 6128.96, + "end": 6131.04, + "probability": 0.9928 + }, + { + "start": 6131.24, + "end": 6134.78, + "probability": 0.9939 + }, + { + "start": 6136.6, + "end": 6137.87, + "probability": 0.9932 + }, + { + "start": 6138.3, + "end": 6139.12, + "probability": 0.6679 + }, + { + "start": 6139.24, + "end": 6140.82, + "probability": 0.9361 + }, + { + "start": 6141.2, + "end": 6144.24, + "probability": 0.997 + }, + { + "start": 6144.64, + "end": 6146.9, + "probability": 0.9956 + }, + { + "start": 6147.54, + "end": 6151.84, + "probability": 0.9887 + }, + { + "start": 6152.51, + "end": 6155.88, + "probability": 0.9888 + }, + { + "start": 6157.16, + "end": 6157.72, + "probability": 0.5938 + }, + { + "start": 6157.96, + "end": 6163.04, + "probability": 0.9925 + }, + { + "start": 6163.04, + "end": 6166.02, + "probability": 0.9971 + }, + { + "start": 6166.52, + "end": 6168.06, + "probability": 0.9543 + }, + { + "start": 6168.96, + "end": 6170.74, + "probability": 0.992 + }, + { + "start": 6171.6, + "end": 6173.86, + "probability": 0.9722 + }, + { + "start": 6174.02, + "end": 6178.12, + "probability": 0.9962 + }, + { + "start": 6179.14, + "end": 6180.5, + "probability": 0.7117 + }, + { + "start": 6181.04, + "end": 6182.46, + "probability": 0.4819 + }, + { + "start": 6183.14, + "end": 6186.38, + "probability": 0.9966 + }, + { + "start": 6186.38, + "end": 6189.68, + "probability": 0.9891 + }, + { + "start": 6189.82, + "end": 6190.8, + "probability": 0.4953 + }, + { + "start": 6191.44, + "end": 6193.12, + "probability": 0.9932 + }, + { + "start": 6193.64, + "end": 6196.62, + "probability": 0.9358 + }, + { + "start": 6197.1, + "end": 6201.7, + "probability": 0.9969 + }, + { + "start": 6202.56, + "end": 6203.54, + "probability": 0.441 + }, + { + "start": 6204.06, + "end": 6207.5, + "probability": 0.9988 + }, + { + "start": 6207.9, + "end": 6209.76, + "probability": 0.9699 + }, + { + "start": 6210.38, + "end": 6213.76, + "probability": 0.994 + }, + { + "start": 6213.76, + "end": 6216.54, + "probability": 0.9999 + }, + { + "start": 6218.12, + "end": 6223.08, + "probability": 0.9359 + }, + { + "start": 6223.54, + "end": 6225.18, + "probability": 0.9979 + }, + { + "start": 6225.24, + "end": 6226.08, + "probability": 0.6794 + }, + { + "start": 6226.64, + "end": 6230.06, + "probability": 0.9983 + }, + { + "start": 6230.06, + "end": 6234.58, + "probability": 0.965 + }, + { + "start": 6235.0, + "end": 6235.64, + "probability": 0.7747 + }, + { + "start": 6236.24, + "end": 6236.74, + "probability": 0.8557 + }, + { + "start": 6236.84, + "end": 6237.8, + "probability": 0.9517 + }, + { + "start": 6237.96, + "end": 6242.2, + "probability": 0.9915 + }, + { + "start": 6242.3, + "end": 6246.4, + "probability": 0.9865 + }, + { + "start": 6247.02, + "end": 6248.48, + "probability": 0.9411 + }, + { + "start": 6248.66, + "end": 6251.36, + "probability": 0.9837 + }, + { + "start": 6251.98, + "end": 6254.84, + "probability": 0.9968 + }, + { + "start": 6255.62, + "end": 6259.14, + "probability": 0.9794 + }, + { + "start": 6260.14, + "end": 6262.82, + "probability": 0.988 + }, + { + "start": 6262.82, + "end": 6266.2, + "probability": 0.9966 + }, + { + "start": 6266.9, + "end": 6267.62, + "probability": 0.9517 + }, + { + "start": 6267.76, + "end": 6270.94, + "probability": 0.886 + }, + { + "start": 6271.1, + "end": 6272.36, + "probability": 0.8301 + }, + { + "start": 6273.08, + "end": 6273.4, + "probability": 0.9191 + }, + { + "start": 6273.56, + "end": 6275.96, + "probability": 0.8999 + }, + { + "start": 6276.08, + "end": 6279.86, + "probability": 0.9254 + }, + { + "start": 6280.52, + "end": 6282.02, + "probability": 0.98 + }, + { + "start": 6282.68, + "end": 6286.14, + "probability": 0.9412 + }, + { + "start": 6286.4, + "end": 6289.75, + "probability": 0.9961 + }, + { + "start": 6289.84, + "end": 6293.36, + "probability": 0.9825 + }, + { + "start": 6294.1, + "end": 6297.12, + "probability": 0.9684 + }, + { + "start": 6297.26, + "end": 6299.48, + "probability": 0.8665 + }, + { + "start": 6300.28, + "end": 6303.92, + "probability": 0.9898 + }, + { + "start": 6304.46, + "end": 6305.38, + "probability": 0.9956 + }, + { + "start": 6306.08, + "end": 6308.18, + "probability": 0.9978 + }, + { + "start": 6308.38, + "end": 6309.28, + "probability": 0.9566 + }, + { + "start": 6309.7, + "end": 6312.12, + "probability": 0.9774 + }, + { + "start": 6312.48, + "end": 6312.84, + "probability": 0.7811 + }, + { + "start": 6313.42, + "end": 6315.94, + "probability": 0.6149 + }, + { + "start": 6316.06, + "end": 6318.56, + "probability": 0.8779 + }, + { + "start": 6319.14, + "end": 6324.22, + "probability": 0.8873 + }, + { + "start": 6327.94, + "end": 6329.86, + "probability": 0.7606 + }, + { + "start": 6334.68, + "end": 6335.58, + "probability": 0.6992 + }, + { + "start": 6336.32, + "end": 6337.32, + "probability": 0.7257 + }, + { + "start": 6338.28, + "end": 6339.56, + "probability": 0.6714 + }, + { + "start": 6341.04, + "end": 6344.74, + "probability": 0.9149 + }, + { + "start": 6346.06, + "end": 6348.66, + "probability": 0.9973 + }, + { + "start": 6350.84, + "end": 6354.48, + "probability": 0.8808 + }, + { + "start": 6356.24, + "end": 6357.32, + "probability": 0.4417 + }, + { + "start": 6359.5, + "end": 6364.78, + "probability": 0.7074 + }, + { + "start": 6365.74, + "end": 6366.44, + "probability": 0.9308 + }, + { + "start": 6367.4, + "end": 6372.16, + "probability": 0.9515 + }, + { + "start": 6374.0, + "end": 6374.38, + "probability": 0.6551 + }, + { + "start": 6374.44, + "end": 6376.66, + "probability": 0.9958 + }, + { + "start": 6377.1, + "end": 6377.55, + "probability": 0.9338 + }, + { + "start": 6380.76, + "end": 6382.62, + "probability": 0.934 + }, + { + "start": 6383.44, + "end": 6385.6, + "probability": 0.9597 + }, + { + "start": 6386.82, + "end": 6388.38, + "probability": 0.7104 + }, + { + "start": 6390.78, + "end": 6398.3, + "probability": 0.9831 + }, + { + "start": 6399.66, + "end": 6401.16, + "probability": 0.9687 + }, + { + "start": 6404.34, + "end": 6408.12, + "probability": 0.3009 + }, + { + "start": 6409.06, + "end": 6413.16, + "probability": 0.7555 + }, + { + "start": 6414.04, + "end": 6414.88, + "probability": 0.7408 + }, + { + "start": 6415.94, + "end": 6419.66, + "probability": 0.9296 + }, + { + "start": 6421.18, + "end": 6426.14, + "probability": 0.9872 + }, + { + "start": 6426.86, + "end": 6427.56, + "probability": 0.9644 + }, + { + "start": 6428.58, + "end": 6429.46, + "probability": 0.9892 + }, + { + "start": 6430.58, + "end": 6432.84, + "probability": 0.9836 + }, + { + "start": 6435.74, + "end": 6439.18, + "probability": 0.9902 + }, + { + "start": 6440.82, + "end": 6441.54, + "probability": 0.8193 + }, + { + "start": 6442.34, + "end": 6443.06, + "probability": 0.9824 + }, + { + "start": 6443.98, + "end": 6444.88, + "probability": 0.9944 + }, + { + "start": 6445.92, + "end": 6446.84, + "probability": 0.8877 + }, + { + "start": 6447.9, + "end": 6451.04, + "probability": 0.9451 + }, + { + "start": 6453.78, + "end": 6460.36, + "probability": 0.7342 + }, + { + "start": 6461.4, + "end": 6463.12, + "probability": 0.9994 + }, + { + "start": 6463.94, + "end": 6465.0, + "probability": 0.9966 + }, + { + "start": 6465.52, + "end": 6466.94, + "probability": 0.9685 + }, + { + "start": 6468.24, + "end": 6470.26, + "probability": 0.9219 + }, + { + "start": 6472.34, + "end": 6473.18, + "probability": 0.7581 + }, + { + "start": 6474.3, + "end": 6474.36, + "probability": 0.9683 + }, + { + "start": 6474.96, + "end": 6477.64, + "probability": 0.8223 + }, + { + "start": 6478.86, + "end": 6480.62, + "probability": 0.9967 + }, + { + "start": 6481.58, + "end": 6483.3, + "probability": 0.7505 + }, + { + "start": 6484.24, + "end": 6485.18, + "probability": 0.8345 + }, + { + "start": 6486.34, + "end": 6489.52, + "probability": 0.9937 + }, + { + "start": 6492.46, + "end": 6497.06, + "probability": 0.9931 + }, + { + "start": 6497.94, + "end": 6499.78, + "probability": 0.9753 + }, + { + "start": 6500.94, + "end": 6504.04, + "probability": 0.7474 + }, + { + "start": 6505.2, + "end": 6507.84, + "probability": 0.979 + }, + { + "start": 6509.6, + "end": 6511.96, + "probability": 0.9993 + }, + { + "start": 6513.66, + "end": 6516.2, + "probability": 0.8632 + }, + { + "start": 6518.4, + "end": 6521.84, + "probability": 0.9924 + }, + { + "start": 6523.26, + "end": 6524.84, + "probability": 0.8958 + }, + { + "start": 6526.04, + "end": 6528.2, + "probability": 0.8188 + }, + { + "start": 6528.98, + "end": 6533.06, + "probability": 0.9237 + }, + { + "start": 6533.74, + "end": 6539.48, + "probability": 0.9103 + }, + { + "start": 6540.94, + "end": 6543.68, + "probability": 0.98 + }, + { + "start": 6544.32, + "end": 6548.0, + "probability": 0.9937 + }, + { + "start": 6551.1, + "end": 6553.28, + "probability": 0.9966 + }, + { + "start": 6553.36, + "end": 6554.22, + "probability": 0.7609 + }, + { + "start": 6554.42, + "end": 6555.04, + "probability": 0.8428 + }, + { + "start": 6555.54, + "end": 6557.9, + "probability": 0.9915 + }, + { + "start": 6559.16, + "end": 6561.86, + "probability": 0.7119 + }, + { + "start": 6561.96, + "end": 6564.59, + "probability": 0.8179 + }, + { + "start": 6565.38, + "end": 6565.38, + "probability": 0.6726 + }, + { + "start": 6565.38, + "end": 6566.42, + "probability": 0.7991 + }, + { + "start": 6566.64, + "end": 6567.62, + "probability": 0.7819 + }, + { + "start": 6567.72, + "end": 6571.88, + "probability": 0.8771 + }, + { + "start": 6572.12, + "end": 6575.66, + "probability": 0.9912 + }, + { + "start": 6576.22, + "end": 6577.38, + "probability": 0.988 + }, + { + "start": 6577.78, + "end": 6578.28, + "probability": 0.5561 + }, + { + "start": 6578.7, + "end": 6579.26, + "probability": 0.9005 + }, + { + "start": 6579.38, + "end": 6583.26, + "probability": 0.9478 + }, + { + "start": 6583.34, + "end": 6586.2, + "probability": 0.9344 + }, + { + "start": 6586.58, + "end": 6587.58, + "probability": 0.6866 + }, + { + "start": 6589.82, + "end": 6590.94, + "probability": 0.0678 + }, + { + "start": 6591.12, + "end": 6591.56, + "probability": 0.9185 + }, + { + "start": 6591.74, + "end": 6592.84, + "probability": 0.5379 + }, + { + "start": 6592.9, + "end": 6594.26, + "probability": 0.9746 + }, + { + "start": 6594.4, + "end": 6595.72, + "probability": 0.8548 + }, + { + "start": 6598.02, + "end": 6599.67, + "probability": 0.9819 + }, + { + "start": 6599.84, + "end": 6601.78, + "probability": 0.9928 + }, + { + "start": 6601.92, + "end": 6604.36, + "probability": 0.9788 + }, + { + "start": 6604.52, + "end": 6607.54, + "probability": 0.9583 + }, + { + "start": 6607.92, + "end": 6609.78, + "probability": 0.9922 + }, + { + "start": 6610.1, + "end": 6611.54, + "probability": 0.911 + }, + { + "start": 6612.02, + "end": 6612.82, + "probability": 0.6413 + }, + { + "start": 6613.44, + "end": 6614.9, + "probability": 0.9693 + }, + { + "start": 6615.52, + "end": 6617.2, + "probability": 0.8917 + }, + { + "start": 6617.96, + "end": 6619.06, + "probability": 0.9353 + }, + { + "start": 6620.16, + "end": 6625.36, + "probability": 0.8547 + }, + { + "start": 6625.9, + "end": 6628.66, + "probability": 0.9681 + }, + { + "start": 6629.62, + "end": 6630.5, + "probability": 0.603 + }, + { + "start": 6631.42, + "end": 6632.64, + "probability": 0.9399 + }, + { + "start": 6632.76, + "end": 6633.82, + "probability": 0.9767 + }, + { + "start": 6633.94, + "end": 6635.02, + "probability": 0.731 + }, + { + "start": 6635.68, + "end": 6637.66, + "probability": 0.9614 + }, + { + "start": 6638.38, + "end": 6643.72, + "probability": 0.9841 + }, + { + "start": 6644.2, + "end": 6646.62, + "probability": 0.8443 + }, + { + "start": 6646.8, + "end": 6647.68, + "probability": 0.551 + }, + { + "start": 6648.48, + "end": 6652.72, + "probability": 0.8281 + }, + { + "start": 6652.72, + "end": 6655.58, + "probability": 0.9949 + }, + { + "start": 6656.2, + "end": 6661.52, + "probability": 0.995 + }, + { + "start": 6661.62, + "end": 6665.78, + "probability": 0.9802 + }, + { + "start": 6666.34, + "end": 6667.76, + "probability": 0.9971 + }, + { + "start": 6668.3, + "end": 6668.84, + "probability": 0.5266 + }, + { + "start": 6669.2, + "end": 6672.24, + "probability": 0.4974 + }, + { + "start": 6672.44, + "end": 6675.54, + "probability": 0.9304 + }, + { + "start": 6687.14, + "end": 6688.34, + "probability": 0.6137 + }, + { + "start": 6688.6, + "end": 6688.7, + "probability": 0.9019 + }, + { + "start": 6688.7, + "end": 6690.8, + "probability": 0.6647 + }, + { + "start": 6691.86, + "end": 6696.76, + "probability": 0.9474 + }, + { + "start": 6696.86, + "end": 6701.34, + "probability": 0.7074 + }, + { + "start": 6701.44, + "end": 6703.34, + "probability": 0.9843 + }, + { + "start": 6704.16, + "end": 6709.68, + "probability": 0.9956 + }, + { + "start": 6710.24, + "end": 6713.2, + "probability": 0.9983 + }, + { + "start": 6713.36, + "end": 6715.12, + "probability": 0.5021 + }, + { + "start": 6715.18, + "end": 6715.96, + "probability": 0.7197 + }, + { + "start": 6716.12, + "end": 6716.92, + "probability": 0.984 + }, + { + "start": 6716.98, + "end": 6717.86, + "probability": 0.9828 + }, + { + "start": 6717.98, + "end": 6718.96, + "probability": 0.8226 + }, + { + "start": 6719.5, + "end": 6722.98, + "probability": 0.9724 + }, + { + "start": 6724.28, + "end": 6727.24, + "probability": 0.9646 + }, + { + "start": 6727.84, + "end": 6731.42, + "probability": 0.895 + }, + { + "start": 6731.98, + "end": 6737.32, + "probability": 0.9961 + }, + { + "start": 6738.0, + "end": 6741.62, + "probability": 0.8329 + }, + { + "start": 6742.22, + "end": 6745.88, + "probability": 0.987 + }, + { + "start": 6747.58, + "end": 6750.67, + "probability": 0.9751 + }, + { + "start": 6750.9, + "end": 6755.66, + "probability": 0.9802 + }, + { + "start": 6756.4, + "end": 6760.42, + "probability": 0.854 + }, + { + "start": 6761.16, + "end": 6765.24, + "probability": 0.9916 + }, + { + "start": 6766.68, + "end": 6767.8, + "probability": 0.924 + }, + { + "start": 6769.0, + "end": 6772.9, + "probability": 0.9959 + }, + { + "start": 6772.9, + "end": 6777.3, + "probability": 0.9976 + }, + { + "start": 6778.34, + "end": 6781.8, + "probability": 0.9873 + }, + { + "start": 6782.72, + "end": 6786.98, + "probability": 0.993 + }, + { + "start": 6788.0, + "end": 6791.84, + "probability": 0.9596 + }, + { + "start": 6792.46, + "end": 6795.63, + "probability": 0.979 + }, + { + "start": 6796.3, + "end": 6800.62, + "probability": 0.9929 + }, + { + "start": 6801.26, + "end": 6802.6, + "probability": 0.9001 + }, + { + "start": 6803.26, + "end": 6804.86, + "probability": 0.8164 + }, + { + "start": 6805.88, + "end": 6806.92, + "probability": 0.8326 + }, + { + "start": 6808.2, + "end": 6814.0, + "probability": 0.9962 + }, + { + "start": 6814.6, + "end": 6817.06, + "probability": 0.8516 + }, + { + "start": 6817.94, + "end": 6819.92, + "probability": 0.9854 + }, + { + "start": 6821.26, + "end": 6823.7, + "probability": 0.9976 + }, + { + "start": 6824.34, + "end": 6826.38, + "probability": 0.9562 + }, + { + "start": 6826.88, + "end": 6828.62, + "probability": 0.9902 + }, + { + "start": 6830.28, + "end": 6832.98, + "probability": 0.9905 + }, + { + "start": 6833.2, + "end": 6833.76, + "probability": 0.7887 + }, + { + "start": 6833.86, + "end": 6836.5, + "probability": 0.8982 + }, + { + "start": 6837.06, + "end": 6840.32, + "probability": 0.8642 + }, + { + "start": 6841.22, + "end": 6843.48, + "probability": 0.9775 + }, + { + "start": 6844.5, + "end": 6845.86, + "probability": 0.9982 + }, + { + "start": 6846.88, + "end": 6848.46, + "probability": 0.7195 + }, + { + "start": 6849.22, + "end": 6852.4, + "probability": 0.9579 + }, + { + "start": 6852.72, + "end": 6854.1, + "probability": 0.9912 + }, + { + "start": 6854.68, + "end": 6857.22, + "probability": 0.9891 + }, + { + "start": 6858.24, + "end": 6861.14, + "probability": 0.9797 + }, + { + "start": 6861.34, + "end": 6862.32, + "probability": 0.959 + }, + { + "start": 6862.78, + "end": 6863.55, + "probability": 0.5898 + }, + { + "start": 6863.98, + "end": 6865.16, + "probability": 0.9052 + }, + { + "start": 6865.32, + "end": 6867.98, + "probability": 0.9537 + }, + { + "start": 6868.8, + "end": 6871.92, + "probability": 0.9813 + }, + { + "start": 6872.32, + "end": 6872.56, + "probability": 0.4778 + }, + { + "start": 6872.7, + "end": 6874.34, + "probability": 0.7566 + }, + { + "start": 6874.8, + "end": 6876.74, + "probability": 0.681 + }, + { + "start": 6877.44, + "end": 6879.04, + "probability": 0.7655 + }, + { + "start": 6879.16, + "end": 6880.18, + "probability": 0.846 + }, + { + "start": 6881.3, + "end": 6882.0, + "probability": 0.8369 + }, + { + "start": 6882.18, + "end": 6883.88, + "probability": 0.9821 + }, + { + "start": 6884.66, + "end": 6889.4, + "probability": 0.8531 + }, + { + "start": 6890.01, + "end": 6893.74, + "probability": 0.7896 + }, + { + "start": 6894.56, + "end": 6895.08, + "probability": 0.9077 + }, + { + "start": 6895.8, + "end": 6897.46, + "probability": 0.9869 + }, + { + "start": 6897.62, + "end": 6898.5, + "probability": 0.9719 + }, + { + "start": 6898.7, + "end": 6899.26, + "probability": 0.9832 + }, + { + "start": 6899.38, + "end": 6900.7, + "probability": 0.997 + }, + { + "start": 6901.22, + "end": 6902.8, + "probability": 0.7945 + }, + { + "start": 6903.38, + "end": 6907.74, + "probability": 0.9704 + }, + { + "start": 6908.3, + "end": 6909.92, + "probability": 0.6508 + }, + { + "start": 6909.98, + "end": 6910.76, + "probability": 0.7491 + }, + { + "start": 6911.0, + "end": 6911.24, + "probability": 0.3203 + }, + { + "start": 6911.5, + "end": 6913.55, + "probability": 0.9927 + }, + { + "start": 6914.38, + "end": 6915.68, + "probability": 0.9984 + }, + { + "start": 6916.38, + "end": 6917.06, + "probability": 0.9797 + }, + { + "start": 6917.28, + "end": 6920.33, + "probability": 0.9961 + }, + { + "start": 6921.32, + "end": 6924.46, + "probability": 0.9868 + }, + { + "start": 6925.62, + "end": 6927.72, + "probability": 0.9959 + }, + { + "start": 6928.46, + "end": 6933.18, + "probability": 0.9994 + }, + { + "start": 6933.18, + "end": 6938.48, + "probability": 0.9994 + }, + { + "start": 6940.0, + "end": 6943.98, + "probability": 0.9944 + }, + { + "start": 6944.58, + "end": 6946.88, + "probability": 0.9972 + }, + { + "start": 6947.96, + "end": 6948.94, + "probability": 0.8741 + }, + { + "start": 6949.56, + "end": 6952.0, + "probability": 0.9958 + }, + { + "start": 6952.14, + "end": 6954.76, + "probability": 0.9065 + }, + { + "start": 6955.34, + "end": 6957.06, + "probability": 0.8797 + }, + { + "start": 6957.86, + "end": 6961.96, + "probability": 0.9893 + }, + { + "start": 6962.9, + "end": 6965.76, + "probability": 0.9768 + }, + { + "start": 6966.34, + "end": 6970.02, + "probability": 0.9974 + }, + { + "start": 6970.62, + "end": 6971.66, + "probability": 0.9918 + }, + { + "start": 6972.28, + "end": 6974.82, + "probability": 0.7505 + }, + { + "start": 6976.3, + "end": 6981.24, + "probability": 0.9363 + }, + { + "start": 6981.6, + "end": 6982.99, + "probability": 0.9658 + }, + { + "start": 6983.7, + "end": 6985.68, + "probability": 0.9873 + }, + { + "start": 6986.28, + "end": 6987.68, + "probability": 0.7535 + }, + { + "start": 6989.5, + "end": 6994.82, + "probability": 0.915 + }, + { + "start": 6995.02, + "end": 6995.52, + "probability": 0.8165 + }, + { + "start": 6996.04, + "end": 6998.52, + "probability": 0.9929 + }, + { + "start": 6998.82, + "end": 7000.91, + "probability": 0.8606 + }, + { + "start": 7001.8, + "end": 7004.26, + "probability": 0.9985 + }, + { + "start": 7005.08, + "end": 7008.42, + "probability": 0.9653 + }, + { + "start": 7009.88, + "end": 7012.9, + "probability": 0.9985 + }, + { + "start": 7014.24, + "end": 7015.4, + "probability": 0.9951 + }, + { + "start": 7016.5, + "end": 7021.9, + "probability": 0.99 + }, + { + "start": 7022.06, + "end": 7023.98, + "probability": 0.8464 + }, + { + "start": 7025.24, + "end": 7029.94, + "probability": 0.9537 + }, + { + "start": 7029.94, + "end": 7034.12, + "probability": 0.7226 + }, + { + "start": 7035.08, + "end": 7035.68, + "probability": 0.7992 + }, + { + "start": 7036.38, + "end": 7037.84, + "probability": 0.4993 + }, + { + "start": 7040.28, + "end": 7044.64, + "probability": 0.847 + }, + { + "start": 7045.56, + "end": 7046.78, + "probability": 0.9847 + }, + { + "start": 7047.52, + "end": 7049.56, + "probability": 0.9981 + }, + { + "start": 7051.04, + "end": 7053.42, + "probability": 0.56 + }, + { + "start": 7053.46, + "end": 7053.64, + "probability": 0.8299 + }, + { + "start": 7053.78, + "end": 7054.94, + "probability": 0.706 + }, + { + "start": 7055.0, + "end": 7055.84, + "probability": 0.4997 + }, + { + "start": 7055.9, + "end": 7057.48, + "probability": 0.9175 + }, + { + "start": 7057.72, + "end": 7058.86, + "probability": 0.8316 + }, + { + "start": 7059.44, + "end": 7062.1, + "probability": 0.6942 + }, + { + "start": 7062.54, + "end": 7064.8, + "probability": 0.2419 + }, + { + "start": 7065.12, + "end": 7066.2, + "probability": 0.7136 + }, + { + "start": 7066.3, + "end": 7066.84, + "probability": 0.6114 + }, + { + "start": 7066.92, + "end": 7067.14, + "probability": 0.9047 + }, + { + "start": 7069.92, + "end": 7072.22, + "probability": 0.7891 + }, + { + "start": 7073.6, + "end": 7079.78, + "probability": 0.9815 + }, + { + "start": 7080.64, + "end": 7092.44, + "probability": 0.75 + }, + { + "start": 7093.92, + "end": 7099.32, + "probability": 0.9956 + }, + { + "start": 7100.8, + "end": 7101.16, + "probability": 0.5698 + }, + { + "start": 7102.92, + "end": 7105.66, + "probability": 0.9961 + }, + { + "start": 7106.46, + "end": 7108.94, + "probability": 0.9162 + }, + { + "start": 7109.72, + "end": 7112.24, + "probability": 0.9943 + }, + { + "start": 7114.04, + "end": 7115.24, + "probability": 0.9631 + }, + { + "start": 7116.4, + "end": 7120.8, + "probability": 0.9928 + }, + { + "start": 7121.98, + "end": 7126.4, + "probability": 0.8932 + }, + { + "start": 7127.4, + "end": 7129.14, + "probability": 0.973 + }, + { + "start": 7129.98, + "end": 7131.4, + "probability": 0.9864 + }, + { + "start": 7132.38, + "end": 7144.78, + "probability": 0.9541 + }, + { + "start": 7145.3, + "end": 7146.56, + "probability": 0.9547 + }, + { + "start": 7146.82, + "end": 7148.9, + "probability": 0.9745 + }, + { + "start": 7149.16, + "end": 7153.18, + "probability": 0.9875 + }, + { + "start": 7156.06, + "end": 7160.92, + "probability": 0.942 + }, + { + "start": 7164.18, + "end": 7165.32, + "probability": 0.9944 + }, + { + "start": 7165.44, + "end": 7165.9, + "probability": 0.6639 + }, + { + "start": 7166.0, + "end": 7166.56, + "probability": 0.9976 + }, + { + "start": 7166.56, + "end": 7167.48, + "probability": 0.9139 + }, + { + "start": 7167.58, + "end": 7172.82, + "probability": 0.9785 + }, + { + "start": 7172.82, + "end": 7178.84, + "probability": 0.993 + }, + { + "start": 7180.0, + "end": 7182.28, + "probability": 0.8893 + }, + { + "start": 7182.82, + "end": 7183.5, + "probability": 0.9429 + }, + { + "start": 7183.96, + "end": 7184.26, + "probability": 0.6739 + }, + { + "start": 7184.46, + "end": 7186.85, + "probability": 0.9688 + }, + { + "start": 7188.88, + "end": 7192.16, + "probability": 0.9932 + }, + { + "start": 7192.28, + "end": 7195.82, + "probability": 0.7538 + }, + { + "start": 7196.08, + "end": 7199.12, + "probability": 0.9012 + }, + { + "start": 7199.34, + "end": 7201.96, + "probability": 0.9743 + }, + { + "start": 7204.6, + "end": 7208.36, + "probability": 0.7972 + }, + { + "start": 7208.36, + "end": 7212.76, + "probability": 0.9792 + }, + { + "start": 7213.66, + "end": 7216.58, + "probability": 0.9032 + }, + { + "start": 7216.58, + "end": 7219.94, + "probability": 0.999 + }, + { + "start": 7220.66, + "end": 7222.52, + "probability": 0.9561 + }, + { + "start": 7223.96, + "end": 7224.64, + "probability": 0.6613 + }, + { + "start": 7225.4, + "end": 7229.46, + "probability": 0.9612 + }, + { + "start": 7230.16, + "end": 7233.44, + "probability": 0.998 + }, + { + "start": 7234.22, + "end": 7235.56, + "probability": 0.9998 + }, + { + "start": 7236.2, + "end": 7241.52, + "probability": 0.9416 + }, + { + "start": 7242.12, + "end": 7243.34, + "probability": 0.9553 + }, + { + "start": 7243.94, + "end": 7247.46, + "probability": 0.9936 + }, + { + "start": 7248.66, + "end": 7253.66, + "probability": 0.9387 + }, + { + "start": 7254.38, + "end": 7255.8, + "probability": 0.7901 + }, + { + "start": 7256.0, + "end": 7256.86, + "probability": 0.6156 + }, + { + "start": 7257.18, + "end": 7258.98, + "probability": 0.984 + }, + { + "start": 7259.16, + "end": 7261.54, + "probability": 0.958 + }, + { + "start": 7262.2, + "end": 7263.88, + "probability": 0.8208 + }, + { + "start": 7264.56, + "end": 7268.54, + "probability": 0.9536 + }, + { + "start": 7269.06, + "end": 7270.96, + "probability": 0.9824 + }, + { + "start": 7273.46, + "end": 7278.8, + "probability": 0.9968 + }, + { + "start": 7278.8, + "end": 7285.7, + "probability": 0.9888 + }, + { + "start": 7286.88, + "end": 7290.76, + "probability": 0.999 + }, + { + "start": 7290.76, + "end": 7293.82, + "probability": 0.992 + }, + { + "start": 7295.04, + "end": 7300.52, + "probability": 0.9982 + }, + { + "start": 7300.52, + "end": 7306.3, + "probability": 0.9988 + }, + { + "start": 7306.68, + "end": 7307.32, + "probability": 0.9145 + }, + { + "start": 7307.6, + "end": 7309.82, + "probability": 0.9919 + }, + { + "start": 7311.14, + "end": 7312.7, + "probability": 0.9951 + }, + { + "start": 7314.1, + "end": 7318.86, + "probability": 0.9879 + }, + { + "start": 7319.56, + "end": 7322.56, + "probability": 0.9193 + }, + { + "start": 7323.16, + "end": 7327.12, + "probability": 0.9973 + }, + { + "start": 7328.48, + "end": 7329.36, + "probability": 0.9971 + }, + { + "start": 7331.08, + "end": 7331.66, + "probability": 0.7223 + }, + { + "start": 7333.02, + "end": 7337.78, + "probability": 0.8633 + }, + { + "start": 7338.05, + "end": 7342.24, + "probability": 0.9467 + }, + { + "start": 7342.7, + "end": 7344.52, + "probability": 0.9135 + }, + { + "start": 7345.02, + "end": 7345.96, + "probability": 0.9253 + }, + { + "start": 7346.06, + "end": 7348.48, + "probability": 0.9611 + }, + { + "start": 7349.76, + "end": 7351.12, + "probability": 0.9338 + }, + { + "start": 7357.1, + "end": 7357.22, + "probability": 0.0313 + }, + { + "start": 7357.22, + "end": 7357.22, + "probability": 0.0157 + }, + { + "start": 7357.22, + "end": 7357.32, + "probability": 0.6532 + }, + { + "start": 7358.24, + "end": 7359.66, + "probability": 0.03 + }, + { + "start": 7362.0, + "end": 7362.4, + "probability": 0.7207 + }, + { + "start": 7362.76, + "end": 7366.39, + "probability": 0.9842 + }, + { + "start": 7366.42, + "end": 7370.06, + "probability": 0.8925 + }, + { + "start": 7370.84, + "end": 7372.28, + "probability": 0.2995 + }, + { + "start": 7372.7, + "end": 7375.28, + "probability": 0.8282 + }, + { + "start": 7375.74, + "end": 7381.68, + "probability": 0.8965 + }, + { + "start": 7382.3, + "end": 7385.62, + "probability": 0.9378 + }, + { + "start": 7386.32, + "end": 7388.0, + "probability": 0.7474 + }, + { + "start": 7389.18, + "end": 7392.64, + "probability": 0.4533 + }, + { + "start": 7394.08, + "end": 7395.18, + "probability": 0.9481 + }, + { + "start": 7396.82, + "end": 7400.6, + "probability": 0.9958 + }, + { + "start": 7401.14, + "end": 7403.0, + "probability": 0.8752 + }, + { + "start": 7403.56, + "end": 7408.24, + "probability": 0.9673 + }, + { + "start": 7409.18, + "end": 7411.06, + "probability": 0.9199 + }, + { + "start": 7411.14, + "end": 7412.96, + "probability": 0.9861 + }, + { + "start": 7413.56, + "end": 7418.08, + "probability": 0.9758 + }, + { + "start": 7418.3, + "end": 7418.84, + "probability": 0.891 + }, + { + "start": 7419.4, + "end": 7422.64, + "probability": 0.9872 + }, + { + "start": 7423.22, + "end": 7427.62, + "probability": 0.9878 + }, + { + "start": 7429.4, + "end": 7432.72, + "probability": 0.9943 + }, + { + "start": 7433.36, + "end": 7434.46, + "probability": 0.8602 + }, + { + "start": 7435.78, + "end": 7441.88, + "probability": 0.9042 + }, + { + "start": 7443.18, + "end": 7447.8, + "probability": 0.9987 + }, + { + "start": 7447.8, + "end": 7452.9, + "probability": 0.9995 + }, + { + "start": 7453.5, + "end": 7457.66, + "probability": 0.9962 + }, + { + "start": 7458.4, + "end": 7463.58, + "probability": 0.9217 + }, + { + "start": 7464.38, + "end": 7468.76, + "probability": 0.8905 + }, + { + "start": 7469.32, + "end": 7472.38, + "probability": 0.9751 + }, + { + "start": 7474.04, + "end": 7475.48, + "probability": 0.6399 + }, + { + "start": 7476.3, + "end": 7477.48, + "probability": 0.2158 + }, + { + "start": 7478.83, + "end": 7478.9, + "probability": 0.1303 + }, + { + "start": 7478.9, + "end": 7481.38, + "probability": 0.6683 + }, + { + "start": 7482.1, + "end": 7490.06, + "probability": 0.9412 + }, + { + "start": 7490.06, + "end": 7494.18, + "probability": 0.9816 + }, + { + "start": 7494.98, + "end": 7497.18, + "probability": 0.9714 + }, + { + "start": 7497.62, + "end": 7498.62, + "probability": 0.8723 + }, + { + "start": 7498.8, + "end": 7499.63, + "probability": 0.9636 + }, + { + "start": 7499.78, + "end": 7501.08, + "probability": 0.9915 + }, + { + "start": 7501.9, + "end": 7504.74, + "probability": 0.9673 + }, + { + "start": 7506.58, + "end": 7510.78, + "probability": 0.9939 + }, + { + "start": 7511.45, + "end": 7516.68, + "probability": 0.7481 + }, + { + "start": 7517.26, + "end": 7519.98, + "probability": 0.5036 + }, + { + "start": 7520.48, + "end": 7522.36, + "probability": 0.8492 + }, + { + "start": 7523.0, + "end": 7526.78, + "probability": 0.976 + }, + { + "start": 7527.32, + "end": 7530.94, + "probability": 0.932 + }, + { + "start": 7531.58, + "end": 7537.62, + "probability": 0.989 + }, + { + "start": 7538.34, + "end": 7540.83, + "probability": 0.9707 + }, + { + "start": 7542.34, + "end": 7544.32, + "probability": 0.9912 + }, + { + "start": 7544.98, + "end": 7549.58, + "probability": 0.968 + }, + { + "start": 7549.58, + "end": 7555.82, + "probability": 0.9925 + }, + { + "start": 7556.38, + "end": 7557.9, + "probability": 0.7663 + }, + { + "start": 7558.78, + "end": 7558.98, + "probability": 0.7478 + }, + { + "start": 7559.5, + "end": 7560.72, + "probability": 0.7285 + }, + { + "start": 7562.72, + "end": 7566.92, + "probability": 0.8184 + }, + { + "start": 7566.96, + "end": 7566.96, + "probability": 0.131 + }, + { + "start": 7567.0, + "end": 7568.37, + "probability": 0.9727 + }, + { + "start": 7568.44, + "end": 7570.04, + "probability": 0.9079 + }, + { + "start": 7570.58, + "end": 7571.38, + "probability": 0.8749 + }, + { + "start": 7572.88, + "end": 7575.48, + "probability": 0.9736 + }, + { + "start": 7575.7, + "end": 7577.32, + "probability": 0.9647 + }, + { + "start": 7579.14, + "end": 7582.06, + "probability": 0.9898 + }, + { + "start": 7583.1, + "end": 7587.3, + "probability": 0.98 + }, + { + "start": 7587.92, + "end": 7591.1, + "probability": 0.9883 + }, + { + "start": 7591.18, + "end": 7592.24, + "probability": 0.9744 + }, + { + "start": 7592.38, + "end": 7595.44, + "probability": 0.9338 + }, + { + "start": 7597.34, + "end": 7601.06, + "probability": 0.9927 + }, + { + "start": 7601.6, + "end": 7605.04, + "probability": 0.6448 + }, + { + "start": 7605.04, + "end": 7608.2, + "probability": 0.9927 + }, + { + "start": 7608.72, + "end": 7611.92, + "probability": 0.6151 + }, + { + "start": 7612.46, + "end": 7614.45, + "probability": 0.9959 + }, + { + "start": 7615.7, + "end": 7619.12, + "probability": 0.9383 + }, + { + "start": 7619.68, + "end": 7622.24, + "probability": 0.6275 + }, + { + "start": 7632.88, + "end": 7633.62, + "probability": 0.694 + }, + { + "start": 7633.98, + "end": 7639.1, + "probability": 0.9884 + }, + { + "start": 7639.22, + "end": 7640.38, + "probability": 0.8017 + }, + { + "start": 7641.98, + "end": 7642.76, + "probability": 0.6849 + }, + { + "start": 7643.86, + "end": 7646.16, + "probability": 0.5902 + }, + { + "start": 7647.12, + "end": 7648.32, + "probability": 0.975 + }, + { + "start": 7648.5, + "end": 7652.36, + "probability": 0.9058 + }, + { + "start": 7652.98, + "end": 7655.46, + "probability": 0.8941 + }, + { + "start": 7656.54, + "end": 7657.68, + "probability": 0.8023 + }, + { + "start": 7658.2, + "end": 7658.9, + "probability": 0.8714 + }, + { + "start": 7659.88, + "end": 7661.11, + "probability": 0.9702 + }, + { + "start": 7662.48, + "end": 7664.3, + "probability": 0.9835 + }, + { + "start": 7664.3, + "end": 7666.48, + "probability": 0.9548 + }, + { + "start": 7667.24, + "end": 7668.34, + "probability": 0.2643 + }, + { + "start": 7668.9, + "end": 7673.76, + "probability": 0.8855 + }, + { + "start": 7673.9, + "end": 7677.46, + "probability": 0.5549 + }, + { + "start": 7678.22, + "end": 7678.76, + "probability": 0.5639 + }, + { + "start": 7679.68, + "end": 7682.92, + "probability": 0.8891 + }, + { + "start": 7684.64, + "end": 7686.1, + "probability": 0.9918 + }, + { + "start": 7686.34, + "end": 7690.44, + "probability": 0.9504 + }, + { + "start": 7690.52, + "end": 7692.8, + "probability": 0.9937 + }, + { + "start": 7693.38, + "end": 7693.64, + "probability": 0.92 + }, + { + "start": 7694.78, + "end": 7698.38, + "probability": 0.9973 + }, + { + "start": 7699.04, + "end": 7700.32, + "probability": 0.9736 + }, + { + "start": 7701.1, + "end": 7702.52, + "probability": 0.9222 + }, + { + "start": 7703.04, + "end": 7704.48, + "probability": 0.9435 + }, + { + "start": 7704.62, + "end": 7707.98, + "probability": 0.9469 + }, + { + "start": 7708.38, + "end": 7710.38, + "probability": 0.9924 + }, + { + "start": 7711.14, + "end": 7712.78, + "probability": 0.9818 + }, + { + "start": 7714.1, + "end": 7716.62, + "probability": 0.9338 + }, + { + "start": 7717.46, + "end": 7723.6, + "probability": 0.9447 + }, + { + "start": 7723.66, + "end": 7724.44, + "probability": 0.8857 + }, + { + "start": 7724.56, + "end": 7725.86, + "probability": 0.8792 + }, + { + "start": 7726.66, + "end": 7731.28, + "probability": 0.991 + }, + { + "start": 7731.72, + "end": 7733.58, + "probability": 0.8303 + }, + { + "start": 7733.58, + "end": 7735.68, + "probability": 0.9922 + }, + { + "start": 7735.92, + "end": 7736.42, + "probability": 0.7572 + }, + { + "start": 7737.1, + "end": 7739.08, + "probability": 0.9434 + }, + { + "start": 7739.9, + "end": 7743.42, + "probability": 0.9959 + }, + { + "start": 7743.74, + "end": 7744.66, + "probability": 0.8145 + }, + { + "start": 7745.06, + "end": 7745.76, + "probability": 0.8553 + }, + { + "start": 7746.3, + "end": 7747.26, + "probability": 0.8881 + }, + { + "start": 7747.4, + "end": 7750.04, + "probability": 0.9062 + }, + { + "start": 7750.56, + "end": 7751.54, + "probability": 0.9685 + }, + { + "start": 7752.24, + "end": 7755.32, + "probability": 0.9917 + }, + { + "start": 7755.4, + "end": 7756.52, + "probability": 0.8578 + }, + { + "start": 7757.08, + "end": 7760.84, + "probability": 0.8509 + }, + { + "start": 7761.56, + "end": 7763.98, + "probability": 0.9598 + }, + { + "start": 7764.72, + "end": 7766.66, + "probability": 0.9948 + }, + { + "start": 7766.96, + "end": 7767.5, + "probability": 0.7031 + }, + { + "start": 7767.6, + "end": 7769.06, + "probability": 0.9399 + }, + { + "start": 7769.82, + "end": 7770.4, + "probability": 0.805 + }, + { + "start": 7771.58, + "end": 7772.3, + "probability": 0.9689 + }, + { + "start": 7772.94, + "end": 7773.84, + "probability": 0.9729 + }, + { + "start": 7774.7, + "end": 7775.56, + "probability": 0.805 + }, + { + "start": 7776.5, + "end": 7778.26, + "probability": 0.9401 + }, + { + "start": 7778.26, + "end": 7781.6, + "probability": 0.8805 + }, + { + "start": 7782.54, + "end": 7785.96, + "probability": 0.9895 + }, + { + "start": 7786.66, + "end": 7787.68, + "probability": 0.8329 + }, + { + "start": 7788.14, + "end": 7788.38, + "probability": 0.2618 + }, + { + "start": 7788.52, + "end": 7789.46, + "probability": 0.8826 + }, + { + "start": 7789.48, + "end": 7790.04, + "probability": 0.9417 + }, + { + "start": 7790.12, + "end": 7791.38, + "probability": 0.7808 + }, + { + "start": 7791.46, + "end": 7793.54, + "probability": 0.8166 + }, + { + "start": 7794.2, + "end": 7796.06, + "probability": 0.9681 + }, + { + "start": 7796.3, + "end": 7797.72, + "probability": 0.6715 + }, + { + "start": 7797.76, + "end": 7798.2, + "probability": 0.6875 + }, + { + "start": 7798.94, + "end": 7804.0, + "probability": 0.9785 + }, + { + "start": 7804.56, + "end": 7805.94, + "probability": 0.7359 + }, + { + "start": 7806.5, + "end": 7807.48, + "probability": 0.8579 + }, + { + "start": 7807.56, + "end": 7810.62, + "probability": 0.8961 + }, + { + "start": 7810.72, + "end": 7810.72, + "probability": 0.168 + }, + { + "start": 7810.72, + "end": 7813.6, + "probability": 0.5753 + }, + { + "start": 7815.28, + "end": 7816.72, + "probability": 0.9321 + }, + { + "start": 7817.3, + "end": 7818.12, + "probability": 0.9536 + }, + { + "start": 7819.12, + "end": 7819.75, + "probability": 0.8149 + }, + { + "start": 7820.28, + "end": 7824.72, + "probability": 0.965 + }, + { + "start": 7825.72, + "end": 7828.2, + "probability": 0.9086 + }, + { + "start": 7828.62, + "end": 7829.38, + "probability": 0.9268 + }, + { + "start": 7829.98, + "end": 7831.0, + "probability": 0.4426 + }, + { + "start": 7831.16, + "end": 7833.18, + "probability": 0.9714 + }, + { + "start": 7834.28, + "end": 7836.58, + "probability": 0.9516 + }, + { + "start": 7837.9, + "end": 7840.72, + "probability": 0.5529 + }, + { + "start": 7840.88, + "end": 7841.96, + "probability": 0.8774 + }, + { + "start": 7842.92, + "end": 7847.14, + "probability": 0.8755 + }, + { + "start": 7847.2, + "end": 7848.02, + "probability": 0.7901 + }, + { + "start": 7848.62, + "end": 7849.18, + "probability": 0.7531 + }, + { + "start": 7849.58, + "end": 7849.9, + "probability": 0.9068 + }, + { + "start": 7850.28, + "end": 7851.96, + "probability": 0.9881 + }, + { + "start": 7852.4, + "end": 7852.66, + "probability": 0.8886 + }, + { + "start": 7852.76, + "end": 7853.9, + "probability": 0.819 + }, + { + "start": 7854.0, + "end": 7854.2, + "probability": 0.428 + }, + { + "start": 7854.5, + "end": 7854.85, + "probability": 0.3106 + }, + { + "start": 7855.44, + "end": 7855.72, + "probability": 0.131 + }, + { + "start": 7856.3, + "end": 7859.62, + "probability": 0.9832 + }, + { + "start": 7859.62, + "end": 7863.6, + "probability": 0.9966 + }, + { + "start": 7864.4, + "end": 7865.42, + "probability": 0.5554 + }, + { + "start": 7866.42, + "end": 7867.5, + "probability": 0.9749 + }, + { + "start": 7868.38, + "end": 7871.42, + "probability": 0.9024 + }, + { + "start": 7871.92, + "end": 7874.54, + "probability": 0.7261 + }, + { + "start": 7875.06, + "end": 7877.0, + "probability": 0.8326 + }, + { + "start": 7877.78, + "end": 7880.62, + "probability": 0.8862 + }, + { + "start": 7881.78, + "end": 7883.06, + "probability": 0.9671 + }, + { + "start": 7883.6, + "end": 7887.38, + "probability": 0.9692 + }, + { + "start": 7887.92, + "end": 7889.46, + "probability": 0.9659 + }, + { + "start": 7889.54, + "end": 7891.04, + "probability": 0.9833 + }, + { + "start": 7891.32, + "end": 7891.98, + "probability": 0.8584 + }, + { + "start": 7892.44, + "end": 7895.06, + "probability": 0.9237 + }, + { + "start": 7895.18, + "end": 7895.6, + "probability": 0.8257 + }, + { + "start": 7896.14, + "end": 7896.78, + "probability": 0.8857 + }, + { + "start": 7898.46, + "end": 7899.08, + "probability": 0.9852 + }, + { + "start": 7900.46, + "end": 7902.9, + "probability": 0.972 + }, + { + "start": 7903.46, + "end": 7903.84, + "probability": 0.9767 + }, + { + "start": 7903.92, + "end": 7905.52, + "probability": 0.9806 + }, + { + "start": 7905.92, + "end": 7908.94, + "probability": 0.9866 + }, + { + "start": 7909.6, + "end": 7910.46, + "probability": 0.8765 + }, + { + "start": 7910.64, + "end": 7911.62, + "probability": 0.9528 + }, + { + "start": 7911.86, + "end": 7912.34, + "probability": 0.7434 + }, + { + "start": 7912.68, + "end": 7914.94, + "probability": 0.639 + }, + { + "start": 7915.18, + "end": 7915.84, + "probability": 0.8172 + }, + { + "start": 7916.58, + "end": 7917.62, + "probability": 0.8963 + }, + { + "start": 7918.18, + "end": 7920.82, + "probability": 0.838 + }, + { + "start": 7921.54, + "end": 7924.86, + "probability": 0.9964 + }, + { + "start": 7925.54, + "end": 7926.12, + "probability": 0.8533 + }, + { + "start": 7926.24, + "end": 7927.64, + "probability": 0.6958 + }, + { + "start": 7928.5, + "end": 7929.66, + "probability": 0.9961 + }, + { + "start": 7930.4, + "end": 7930.74, + "probability": 0.889 + }, + { + "start": 7930.76, + "end": 7933.52, + "probability": 0.9971 + }, + { + "start": 7934.02, + "end": 7937.86, + "probability": 0.9807 + }, + { + "start": 7938.44, + "end": 7941.78, + "probability": 0.998 + }, + { + "start": 7943.05, + "end": 7945.3, + "probability": 0.9961 + }, + { + "start": 7945.82, + "end": 7947.4, + "probability": 0.9141 + }, + { + "start": 7948.14, + "end": 7951.98, + "probability": 0.9676 + }, + { + "start": 7952.12, + "end": 7952.24, + "probability": 0.9032 + }, + { + "start": 7952.34, + "end": 7955.18, + "probability": 0.8787 + }, + { + "start": 7955.54, + "end": 7957.14, + "probability": 0.926 + }, + { + "start": 7960.52, + "end": 7960.68, + "probability": 0.2204 + }, + { + "start": 7960.68, + "end": 7960.68, + "probability": 0.0321 + }, + { + "start": 7960.68, + "end": 7960.92, + "probability": 0.2159 + }, + { + "start": 7961.0, + "end": 7964.28, + "probability": 0.8426 + }, + { + "start": 7964.36, + "end": 7964.62, + "probability": 0.7052 + }, + { + "start": 7964.76, + "end": 7964.9, + "probability": 0.6904 + }, + { + "start": 7965.18, + "end": 7966.66, + "probability": 0.9136 + }, + { + "start": 7967.38, + "end": 7971.24, + "probability": 0.9877 + }, + { + "start": 7971.44, + "end": 7972.46, + "probability": 0.8592 + }, + { + "start": 7973.54, + "end": 7974.96, + "probability": 0.9889 + }, + { + "start": 7975.36, + "end": 7976.5, + "probability": 0.9893 + }, + { + "start": 7976.6, + "end": 7979.32, + "probability": 0.8411 + }, + { + "start": 7979.62, + "end": 7980.68, + "probability": 0.9534 + }, + { + "start": 7980.76, + "end": 7981.52, + "probability": 0.6032 + }, + { + "start": 7981.56, + "end": 7981.8, + "probability": 0.4244 + }, + { + "start": 7981.8, + "end": 7983.22, + "probability": 0.9847 + }, + { + "start": 7983.88, + "end": 7985.98, + "probability": 0.9897 + }, + { + "start": 7986.06, + "end": 7986.84, + "probability": 0.7959 + }, + { + "start": 7987.8, + "end": 7990.58, + "probability": 0.8118 + }, + { + "start": 7991.72, + "end": 7997.96, + "probability": 0.9678 + }, + { + "start": 7998.76, + "end": 7999.34, + "probability": 0.9419 + }, + { + "start": 8000.64, + "end": 8003.74, + "probability": 0.9786 + }, + { + "start": 8004.7, + "end": 8008.06, + "probability": 0.9893 + }, + { + "start": 8009.1, + "end": 8009.76, + "probability": 0.3397 + }, + { + "start": 8009.88, + "end": 8010.02, + "probability": 0.3456 + }, + { + "start": 8011.04, + "end": 8012.74, + "probability": 0.9784 + }, + { + "start": 8012.84, + "end": 8013.44, + "probability": 0.8513 + }, + { + "start": 8013.76, + "end": 8017.3, + "probability": 0.9752 + }, + { + "start": 8017.48, + "end": 8018.02, + "probability": 0.7709 + }, + { + "start": 8018.28, + "end": 8018.64, + "probability": 0.5315 + }, + { + "start": 8018.88, + "end": 8019.72, + "probability": 0.8274 + }, + { + "start": 8020.32, + "end": 8021.6, + "probability": 0.8101 + }, + { + "start": 8022.12, + "end": 8022.8, + "probability": 0.9666 + }, + { + "start": 8023.46, + "end": 8024.24, + "probability": 0.9784 + }, + { + "start": 8024.36, + "end": 8025.38, + "probability": 0.8693 + }, + { + "start": 8025.4, + "end": 8027.38, + "probability": 0.9808 + }, + { + "start": 8027.8, + "end": 8029.66, + "probability": 0.8462 + }, + { + "start": 8030.46, + "end": 8031.34, + "probability": 0.7449 + }, + { + "start": 8031.9, + "end": 8034.82, + "probability": 0.9313 + }, + { + "start": 8035.46, + "end": 8035.82, + "probability": 0.9243 + }, + { + "start": 8036.34, + "end": 8037.98, + "probability": 0.9342 + }, + { + "start": 8038.8, + "end": 8041.2, + "probability": 0.821 + }, + { + "start": 8041.62, + "end": 8043.16, + "probability": 0.9971 + }, + { + "start": 8043.5, + "end": 8046.78, + "probability": 0.9907 + }, + { + "start": 8046.88, + "end": 8049.08, + "probability": 0.9524 + }, + { + "start": 8049.22, + "end": 8049.94, + "probability": 0.5142 + }, + { + "start": 8050.06, + "end": 8051.2, + "probability": 0.5636 + }, + { + "start": 8051.4, + "end": 8052.7, + "probability": 0.79 + }, + { + "start": 8052.76, + "end": 8053.78, + "probability": 0.9731 + }, + { + "start": 8054.32, + "end": 8055.14, + "probability": 0.8661 + }, + { + "start": 8056.82, + "end": 8058.3, + "probability": 0.9393 + }, + { + "start": 8060.42, + "end": 8064.02, + "probability": 0.9359 + }, + { + "start": 8074.04, + "end": 8075.84, + "probability": 0.0022 + }, + { + "start": 8076.04, + "end": 8076.84, + "probability": 0.4387 + }, + { + "start": 8077.62, + "end": 8078.76, + "probability": 0.6873 + }, + { + "start": 8079.66, + "end": 8080.52, + "probability": 0.8344 + }, + { + "start": 8080.68, + "end": 8082.94, + "probability": 0.9526 + }, + { + "start": 8083.0, + "end": 8084.18, + "probability": 0.6264 + }, + { + "start": 8084.7, + "end": 8085.04, + "probability": 0.6588 + }, + { + "start": 8085.8, + "end": 8088.96, + "probability": 0.9452 + }, + { + "start": 8090.02, + "end": 8092.08, + "probability": 0.9465 + }, + { + "start": 8092.16, + "end": 8092.74, + "probability": 0.8327 + }, + { + "start": 8092.94, + "end": 8095.98, + "probability": 0.8848 + }, + { + "start": 8096.02, + "end": 8097.12, + "probability": 0.9296 + }, + { + "start": 8097.96, + "end": 8101.08, + "probability": 0.9748 + }, + { + "start": 8101.08, + "end": 8102.44, + "probability": 0.8141 + }, + { + "start": 8102.94, + "end": 8103.98, + "probability": 0.9932 + }, + { + "start": 8104.84, + "end": 8106.92, + "probability": 0.7089 + }, + { + "start": 8108.82, + "end": 8111.42, + "probability": 0.7753 + }, + { + "start": 8111.54, + "end": 8112.96, + "probability": 0.9893 + }, + { + "start": 8114.0, + "end": 8114.74, + "probability": 0.7081 + }, + { + "start": 8115.44, + "end": 8117.82, + "probability": 0.967 + }, + { + "start": 8118.38, + "end": 8119.61, + "probability": 0.9731 + }, + { + "start": 8120.74, + "end": 8121.78, + "probability": 0.9965 + }, + { + "start": 8121.8, + "end": 8122.54, + "probability": 0.9469 + }, + { + "start": 8122.94, + "end": 8124.8, + "probability": 0.9927 + }, + { + "start": 8125.94, + "end": 8129.52, + "probability": 0.8464 + }, + { + "start": 8129.54, + "end": 8130.58, + "probability": 0.9146 + }, + { + "start": 8130.72, + "end": 8130.98, + "probability": 0.7572 + }, + { + "start": 8131.64, + "end": 8132.92, + "probability": 0.6593 + }, + { + "start": 8133.0, + "end": 8134.0, + "probability": 0.6933 + }, + { + "start": 8134.5, + "end": 8136.1, + "probability": 0.9433 + }, + { + "start": 8137.1, + "end": 8140.26, + "probability": 0.9928 + }, + { + "start": 8142.34, + "end": 8145.98, + "probability": 0.8193 + }, + { + "start": 8146.98, + "end": 8150.6, + "probability": 0.9961 + }, + { + "start": 8151.36, + "end": 8152.94, + "probability": 0.9834 + }, + { + "start": 8153.06, + "end": 8154.92, + "probability": 0.9814 + }, + { + "start": 8155.78, + "end": 8157.84, + "probability": 0.9951 + }, + { + "start": 8158.84, + "end": 8159.47, + "probability": 0.9778 + }, + { + "start": 8160.24, + "end": 8160.74, + "probability": 0.9315 + }, + { + "start": 8160.8, + "end": 8161.58, + "probability": 0.4081 + }, + { + "start": 8161.66, + "end": 8162.64, + "probability": 0.9614 + }, + { + "start": 8163.42, + "end": 8164.96, + "probability": 0.9325 + }, + { + "start": 8166.12, + "end": 8167.6, + "probability": 0.8829 + }, + { + "start": 8169.08, + "end": 8172.9, + "probability": 0.9089 + }, + { + "start": 8173.5, + "end": 8174.88, + "probability": 0.8323 + }, + { + "start": 8177.0, + "end": 8180.58, + "probability": 0.8093 + }, + { + "start": 8180.76, + "end": 8182.06, + "probability": 0.1872 + }, + { + "start": 8182.26, + "end": 8182.76, + "probability": 0.6375 + }, + { + "start": 8183.1, + "end": 8184.18, + "probability": 0.8682 + }, + { + "start": 8184.36, + "end": 8185.26, + "probability": 0.7301 + }, + { + "start": 8185.32, + "end": 8186.64, + "probability": 0.9119 + }, + { + "start": 8186.68, + "end": 8187.42, + "probability": 0.7569 + }, + { + "start": 8187.5, + "end": 8187.89, + "probability": 0.8921 + }, + { + "start": 8188.02, + "end": 8188.72, + "probability": 0.9697 + }, + { + "start": 8188.72, + "end": 8190.9, + "probability": 0.7131 + }, + { + "start": 8192.0, + "end": 8193.8, + "probability": 0.8804 + }, + { + "start": 8194.84, + "end": 8199.9, + "probability": 0.9741 + }, + { + "start": 8200.46, + "end": 8202.08, + "probability": 0.8616 + }, + { + "start": 8202.8, + "end": 8206.26, + "probability": 0.7424 + }, + { + "start": 8206.26, + "end": 8210.34, + "probability": 0.6898 + }, + { + "start": 8210.96, + "end": 8213.76, + "probability": 0.8184 + }, + { + "start": 8214.02, + "end": 8216.92, + "probability": 0.9666 + }, + { + "start": 8217.52, + "end": 8218.7, + "probability": 0.837 + }, + { + "start": 8218.82, + "end": 8220.6, + "probability": 0.8866 + }, + { + "start": 8221.04, + "end": 8223.26, + "probability": 0.9139 + }, + { + "start": 8223.48, + "end": 8231.26, + "probability": 0.8318 + }, + { + "start": 8231.58, + "end": 8232.76, + "probability": 0.9566 + }, + { + "start": 8235.47, + "end": 8236.33, + "probability": 0.163 + }, + { + "start": 8236.88, + "end": 8242.86, + "probability": 0.6632 + }, + { + "start": 8242.98, + "end": 8243.5, + "probability": 0.2524 + }, + { + "start": 8244.1, + "end": 8244.4, + "probability": 0.5013 + }, + { + "start": 8244.56, + "end": 8249.86, + "probability": 0.5898 + }, + { + "start": 8250.42, + "end": 8252.96, + "probability": 0.9705 + }, + { + "start": 8253.3, + "end": 8254.34, + "probability": 0.9857 + }, + { + "start": 8255.54, + "end": 8255.89, + "probability": 0.7051 + }, + { + "start": 8256.56, + "end": 8257.32, + "probability": 0.5388 + }, + { + "start": 8257.64, + "end": 8258.8, + "probability": 0.9907 + }, + { + "start": 8259.22, + "end": 8264.22, + "probability": 0.9927 + }, + { + "start": 8264.94, + "end": 8266.8, + "probability": 0.7398 + }, + { + "start": 8267.12, + "end": 8268.88, + "probability": 0.9523 + }, + { + "start": 8269.26, + "end": 8272.62, + "probability": 0.9792 + }, + { + "start": 8272.66, + "end": 8272.98, + "probability": 0.6456 + }, + { + "start": 8273.06, + "end": 8276.04, + "probability": 0.8304 + }, + { + "start": 8276.24, + "end": 8276.98, + "probability": 0.7431 + }, + { + "start": 8277.06, + "end": 8277.16, + "probability": 0.3705 + }, + { + "start": 8277.42, + "end": 8277.92, + "probability": 0.7148 + }, + { + "start": 8278.22, + "end": 8278.8, + "probability": 0.6775 + }, + { + "start": 8279.14, + "end": 8280.34, + "probability": 0.9346 + }, + { + "start": 8280.72, + "end": 8282.51, + "probability": 0.9973 + }, + { + "start": 8282.62, + "end": 8285.46, + "probability": 0.0011 + }, + { + "start": 8285.52, + "end": 8286.56, + "probability": 0.3004 + }, + { + "start": 8286.56, + "end": 8286.56, + "probability": 0.268 + }, + { + "start": 8286.56, + "end": 8288.0, + "probability": 0.9987 + }, + { + "start": 8288.66, + "end": 8293.98, + "probability": 0.9948 + }, + { + "start": 8294.14, + "end": 8296.42, + "probability": 0.967 + }, + { + "start": 8296.54, + "end": 8297.38, + "probability": 0.7838 + }, + { + "start": 8297.76, + "end": 8299.06, + "probability": 0.7624 + }, + { + "start": 8299.16, + "end": 8299.54, + "probability": 0.9344 + }, + { + "start": 8299.72, + "end": 8300.22, + "probability": 0.5125 + }, + { + "start": 8301.34, + "end": 8301.7, + "probability": 0.3079 + }, + { + "start": 8301.96, + "end": 8305.1, + "probability": 0.9471 + }, + { + "start": 8305.84, + "end": 8307.16, + "probability": 0.9541 + }, + { + "start": 8307.28, + "end": 8307.52, + "probability": 0.4807 + }, + { + "start": 8307.64, + "end": 8308.7, + "probability": 0.9941 + }, + { + "start": 8308.72, + "end": 8309.5, + "probability": 0.788 + }, + { + "start": 8309.58, + "end": 8310.18, + "probability": 0.6864 + }, + { + "start": 8311.46, + "end": 8312.8, + "probability": 0.6083 + }, + { + "start": 8315.55, + "end": 8316.14, + "probability": 0.5272 + }, + { + "start": 8316.24, + "end": 8317.36, + "probability": 0.8413 + }, + { + "start": 8318.8, + "end": 8320.72, + "probability": 0.9749 + }, + { + "start": 8321.18, + "end": 8322.2, + "probability": 0.2822 + }, + { + "start": 8322.66, + "end": 8323.74, + "probability": 0.6258 + }, + { + "start": 8324.82, + "end": 8325.34, + "probability": 0.6155 + }, + { + "start": 8325.8, + "end": 8327.54, + "probability": 0.1999 + }, + { + "start": 8329.08, + "end": 8330.16, + "probability": 0.165 + }, + { + "start": 8330.44, + "end": 8331.3, + "probability": 0.0151 + }, + { + "start": 8331.5, + "end": 8333.18, + "probability": 0.099 + }, + { + "start": 8334.08, + "end": 8334.68, + "probability": 0.2848 + }, + { + "start": 8335.28, + "end": 8336.3, + "probability": 0.068 + }, + { + "start": 8337.14, + "end": 8339.24, + "probability": 0.4013 + }, + { + "start": 8339.9, + "end": 8342.48, + "probability": 0.6662 + }, + { + "start": 8343.0, + "end": 8343.54, + "probability": 0.8362 + }, + { + "start": 8344.3, + "end": 8345.8, + "probability": 0.98 + }, + { + "start": 8348.24, + "end": 8351.73, + "probability": 0.9531 + }, + { + "start": 8353.52, + "end": 8355.0, + "probability": 0.9014 + }, + { + "start": 8356.2, + "end": 8360.94, + "probability": 0.9814 + }, + { + "start": 8361.26, + "end": 8364.9, + "probability": 0.9741 + }, + { + "start": 8367.44, + "end": 8368.34, + "probability": 0.9662 + }, + { + "start": 8368.62, + "end": 8373.86, + "probability": 0.9909 + }, + { + "start": 8374.32, + "end": 8376.38, + "probability": 0.998 + }, + { + "start": 8378.1, + "end": 8382.06, + "probability": 0.7732 + }, + { + "start": 8383.16, + "end": 8385.32, + "probability": 0.8391 + }, + { + "start": 8386.04, + "end": 8387.6, + "probability": 0.9925 + }, + { + "start": 8391.42, + "end": 8392.72, + "probability": 0.7458 + }, + { + "start": 8392.84, + "end": 8393.48, + "probability": 0.9216 + }, + { + "start": 8393.5, + "end": 8395.6, + "probability": 0.9963 + }, + { + "start": 8395.84, + "end": 8397.9, + "probability": 0.9885 + }, + { + "start": 8398.38, + "end": 8400.02, + "probability": 0.5515 + }, + { + "start": 8400.08, + "end": 8401.12, + "probability": 0.9863 + }, + { + "start": 8401.7, + "end": 8402.82, + "probability": 0.2232 + }, + { + "start": 8404.56, + "end": 8405.78, + "probability": 0.2873 + }, + { + "start": 8405.78, + "end": 8405.78, + "probability": 0.096 + }, + { + "start": 8405.78, + "end": 8405.78, + "probability": 0.0372 + }, + { + "start": 8405.9, + "end": 8406.74, + "probability": 0.8713 + }, + { + "start": 8407.22, + "end": 8409.26, + "probability": 0.9854 + }, + { + "start": 8409.5, + "end": 8409.8, + "probability": 0.1632 + }, + { + "start": 8410.72, + "end": 8411.36, + "probability": 0.1459 + }, + { + "start": 8411.58, + "end": 8414.88, + "probability": 0.8357 + }, + { + "start": 8415.78, + "end": 8417.04, + "probability": 0.6636 + }, + { + "start": 8417.06, + "end": 8418.68, + "probability": 0.5709 + }, + { + "start": 8419.7, + "end": 8421.48, + "probability": 0.7472 + }, + { + "start": 8422.82, + "end": 8423.88, + "probability": 0.5247 + }, + { + "start": 8429.44, + "end": 8430.7, + "probability": 0.8699 + }, + { + "start": 8430.88, + "end": 8432.4, + "probability": 0.8757 + }, + { + "start": 8432.92, + "end": 8434.14, + "probability": 0.7912 + }, + { + "start": 8434.36, + "end": 8435.6, + "probability": 0.8567 + }, + { + "start": 8436.28, + "end": 8437.82, + "probability": 0.9758 + }, + { + "start": 8437.92, + "end": 8439.16, + "probability": 0.8868 + }, + { + "start": 8439.28, + "end": 8441.1, + "probability": 0.9543 + }, + { + "start": 8441.72, + "end": 8442.66, + "probability": 0.3848 + }, + { + "start": 8442.78, + "end": 8443.82, + "probability": 0.979 + }, + { + "start": 8444.04, + "end": 8444.46, + "probability": 0.9265 + }, + { + "start": 8445.22, + "end": 8445.59, + "probability": 0.9528 + }, + { + "start": 8446.68, + "end": 8447.84, + "probability": 0.9956 + }, + { + "start": 8448.1, + "end": 8449.0, + "probability": 0.9609 + }, + { + "start": 8450.34, + "end": 8451.08, + "probability": 0.7458 + }, + { + "start": 8451.94, + "end": 8453.34, + "probability": 0.9629 + }, + { + "start": 8454.48, + "end": 8457.14, + "probability": 0.995 + }, + { + "start": 8457.42, + "end": 8458.85, + "probability": 0.8081 + }, + { + "start": 8460.22, + "end": 8461.74, + "probability": 0.8882 + }, + { + "start": 8462.64, + "end": 8463.49, + "probability": 0.9717 + }, + { + "start": 8464.92, + "end": 8470.12, + "probability": 0.9475 + }, + { + "start": 8470.8, + "end": 8473.62, + "probability": 0.9642 + }, + { + "start": 8474.06, + "end": 8476.76, + "probability": 0.9447 + }, + { + "start": 8477.62, + "end": 8480.62, + "probability": 0.643 + }, + { + "start": 8481.34, + "end": 8482.74, + "probability": 0.9902 + }, + { + "start": 8483.92, + "end": 8484.68, + "probability": 0.9213 + }, + { + "start": 8485.1, + "end": 8485.94, + "probability": 0.8791 + }, + { + "start": 8486.26, + "end": 8487.5, + "probability": 0.9929 + }, + { + "start": 8487.94, + "end": 8488.94, + "probability": 0.8998 + }, + { + "start": 8489.4, + "end": 8491.56, + "probability": 0.7488 + }, + { + "start": 8492.18, + "end": 8493.3, + "probability": 0.0797 + }, + { + "start": 8493.6, + "end": 8493.76, + "probability": 0.1317 + }, + { + "start": 8494.58, + "end": 8495.7, + "probability": 0.5419 + }, + { + "start": 8495.7, + "end": 8497.18, + "probability": 0.9418 + }, + { + "start": 8497.46, + "end": 8499.96, + "probability": 0.5704 + }, + { + "start": 8500.1, + "end": 8500.54, + "probability": 0.3239 + }, + { + "start": 8501.1, + "end": 8505.8, + "probability": 0.9501 + }, + { + "start": 8506.06, + "end": 8507.76, + "probability": 0.8904 + }, + { + "start": 8508.2, + "end": 8510.42, + "probability": 0.9969 + }, + { + "start": 8511.08, + "end": 8512.56, + "probability": 0.5292 + }, + { + "start": 8513.24, + "end": 8514.38, + "probability": 0.9148 + }, + { + "start": 8517.1, + "end": 8518.22, + "probability": 0.7188 + }, + { + "start": 8518.26, + "end": 8523.7, + "probability": 0.8541 + }, + { + "start": 8524.88, + "end": 8527.12, + "probability": 0.7217 + }, + { + "start": 8527.76, + "end": 8530.04, + "probability": 0.9297 + }, + { + "start": 8530.38, + "end": 8532.7, + "probability": 0.8745 + }, + { + "start": 8532.76, + "end": 8533.24, + "probability": 0.9322 + }, + { + "start": 8534.7, + "end": 8537.96, + "probability": 0.8017 + }, + { + "start": 8539.12, + "end": 8542.23, + "probability": 0.7745 + }, + { + "start": 8560.94, + "end": 8561.72, + "probability": 0.5843 + }, + { + "start": 8563.28, + "end": 8564.54, + "probability": 0.8333 + }, + { + "start": 8566.6, + "end": 8574.34, + "probability": 0.9824 + }, + { + "start": 8576.36, + "end": 8579.1, + "probability": 0.8694 + }, + { + "start": 8579.7, + "end": 8580.98, + "probability": 0.9281 + }, + { + "start": 8582.88, + "end": 8584.08, + "probability": 0.9286 + }, + { + "start": 8584.34, + "end": 8586.0, + "probability": 0.9842 + }, + { + "start": 8586.0, + "end": 8588.46, + "probability": 0.6407 + }, + { + "start": 8588.56, + "end": 8589.24, + "probability": 0.7136 + }, + { + "start": 8590.58, + "end": 8594.08, + "probability": 0.9956 + }, + { + "start": 8595.4, + "end": 8599.62, + "probability": 0.996 + }, + { + "start": 8600.86, + "end": 8603.2, + "probability": 0.7891 + }, + { + "start": 8603.68, + "end": 8604.7, + "probability": 0.9853 + }, + { + "start": 8605.24, + "end": 8608.56, + "probability": 0.9472 + }, + { + "start": 8609.68, + "end": 8610.98, + "probability": 0.7323 + }, + { + "start": 8611.92, + "end": 8613.42, + "probability": 0.8765 + }, + { + "start": 8614.54, + "end": 8615.22, + "probability": 0.7812 + }, + { + "start": 8616.28, + "end": 8616.74, + "probability": 0.9675 + }, + { + "start": 8617.36, + "end": 8622.74, + "probability": 0.8447 + }, + { + "start": 8623.62, + "end": 8625.54, + "probability": 0.8817 + }, + { + "start": 8626.5, + "end": 8631.14, + "probability": 0.9512 + }, + { + "start": 8631.72, + "end": 8632.8, + "probability": 0.9418 + }, + { + "start": 8633.72, + "end": 8636.28, + "probability": 0.9277 + }, + { + "start": 8637.06, + "end": 8640.68, + "probability": 0.8818 + }, + { + "start": 8640.9, + "end": 8643.22, + "probability": 0.9927 + }, + { + "start": 8643.9, + "end": 8646.58, + "probability": 0.9496 + }, + { + "start": 8647.16, + "end": 8647.88, + "probability": 0.7892 + }, + { + "start": 8648.48, + "end": 8650.98, + "probability": 0.7443 + }, + { + "start": 8651.64, + "end": 8654.16, + "probability": 0.9656 + }, + { + "start": 8654.38, + "end": 8654.82, + "probability": 0.8255 + }, + { + "start": 8656.14, + "end": 8657.18, + "probability": 0.6353 + }, + { + "start": 8657.58, + "end": 8659.42, + "probability": 0.6762 + }, + { + "start": 8659.5, + "end": 8660.16, + "probability": 0.8848 + }, + { + "start": 8661.1, + "end": 8662.7, + "probability": 0.3027 + }, + { + "start": 8663.48, + "end": 8664.58, + "probability": 0.7624 + }, + { + "start": 8665.6, + "end": 8666.5, + "probability": 0.4133 + }, + { + "start": 8667.66, + "end": 8667.86, + "probability": 0.4082 + }, + { + "start": 8667.86, + "end": 8668.74, + "probability": 0.7908 + }, + { + "start": 8669.26, + "end": 8669.38, + "probability": 0.1081 + }, + { + "start": 8669.62, + "end": 8670.08, + "probability": 0.6105 + }, + { + "start": 8682.46, + "end": 8684.58, + "probability": 0.5461 + }, + { + "start": 8684.84, + "end": 8685.0, + "probability": 0.1709 + }, + { + "start": 8685.5, + "end": 8686.64, + "probability": 0.9047 + }, + { + "start": 8686.68, + "end": 8687.24, + "probability": 0.404 + }, + { + "start": 8687.46, + "end": 8688.16, + "probability": 0.9684 + }, + { + "start": 8688.9, + "end": 8690.38, + "probability": 0.0878 + }, + { + "start": 8690.82, + "end": 8691.06, + "probability": 0.9196 + }, + { + "start": 8696.04, + "end": 8697.82, + "probability": 0.6292 + }, + { + "start": 8699.62, + "end": 8702.4, + "probability": 0.8525 + }, + { + "start": 8704.18, + "end": 8705.08, + "probability": 0.9971 + }, + { + "start": 8706.06, + "end": 8708.88, + "probability": 0.9806 + }, + { + "start": 8710.02, + "end": 8711.52, + "probability": 0.9874 + }, + { + "start": 8712.56, + "end": 8713.26, + "probability": 0.9102 + }, + { + "start": 8713.54, + "end": 8714.66, + "probability": 0.6941 + }, + { + "start": 8716.7, + "end": 8718.4, + "probability": 0.9376 + }, + { + "start": 8719.48, + "end": 8720.86, + "probability": 0.8701 + }, + { + "start": 8722.36, + "end": 8722.66, + "probability": 0.8823 + }, + { + "start": 8723.22, + "end": 8723.56, + "probability": 0.8602 + }, + { + "start": 8723.78, + "end": 8727.54, + "probability": 0.939 + }, + { + "start": 8728.28, + "end": 8730.52, + "probability": 0.6973 + }, + { + "start": 8730.86, + "end": 8732.5, + "probability": 0.6584 + }, + { + "start": 8735.44, + "end": 8736.56, + "probability": 0.6641 + }, + { + "start": 8736.74, + "end": 8737.42, + "probability": 0.6172 + }, + { + "start": 8737.76, + "end": 8739.96, + "probability": 0.5933 + }, + { + "start": 8740.74, + "end": 8741.46, + "probability": 0.7429 + }, + { + "start": 8741.88, + "end": 8742.76, + "probability": 0.4876 + }, + { + "start": 8742.82, + "end": 8745.22, + "probability": 0.8845 + }, + { + "start": 8746.28, + "end": 8747.36, + "probability": 0.7051 + }, + { + "start": 8748.42, + "end": 8749.74, + "probability": 0.833 + }, + { + "start": 8750.5, + "end": 8753.38, + "probability": 0.9492 + }, + { + "start": 8754.52, + "end": 8755.16, + "probability": 0.9782 + }, + { + "start": 8756.04, + "end": 8760.24, + "probability": 0.887 + }, + { + "start": 8761.24, + "end": 8761.88, + "probability": 0.9863 + }, + { + "start": 8762.64, + "end": 8766.22, + "probability": 0.9888 + }, + { + "start": 8767.02, + "end": 8768.34, + "probability": 0.7083 + }, + { + "start": 8769.06, + "end": 8769.64, + "probability": 0.8243 + }, + { + "start": 8770.16, + "end": 8771.58, + "probability": 0.9678 + }, + { + "start": 8772.36, + "end": 8773.22, + "probability": 0.91 + }, + { + "start": 8773.88, + "end": 8774.2, + "probability": 0.914 + }, + { + "start": 8774.36, + "end": 8775.12, + "probability": 0.9341 + }, + { + "start": 8775.2, + "end": 8778.1, + "probability": 0.8262 + }, + { + "start": 8778.88, + "end": 8780.56, + "probability": 0.8389 + }, + { + "start": 8781.44, + "end": 8782.06, + "probability": 0.5891 + }, + { + "start": 8782.58, + "end": 8786.38, + "probability": 0.7807 + }, + { + "start": 8787.1, + "end": 8789.06, + "probability": 0.7959 + }, + { + "start": 8790.16, + "end": 8791.88, + "probability": 0.9079 + }, + { + "start": 8792.88, + "end": 8793.7, + "probability": 0.6507 + }, + { + "start": 8794.2, + "end": 8794.86, + "probability": 0.9399 + }, + { + "start": 8794.94, + "end": 8796.02, + "probability": 0.8946 + }, + { + "start": 8797.14, + "end": 8798.14, + "probability": 0.9727 + }, + { + "start": 8798.88, + "end": 8800.54, + "probability": 0.9981 + }, + { + "start": 8800.66, + "end": 8804.94, + "probability": 0.9724 + }, + { + "start": 8805.46, + "end": 8811.46, + "probability": 0.9929 + }, + { + "start": 8811.98, + "end": 8814.9, + "probability": 0.9509 + }, + { + "start": 8815.22, + "end": 8816.26, + "probability": 0.9041 + }, + { + "start": 8816.64, + "end": 8818.58, + "probability": 0.7287 + }, + { + "start": 8819.68, + "end": 8825.92, + "probability": 0.993 + }, + { + "start": 8826.46, + "end": 8831.68, + "probability": 0.9922 + }, + { + "start": 8832.1, + "end": 8833.2, + "probability": 0.7976 + }, + { + "start": 8834.28, + "end": 8834.96, + "probability": 0.9468 + }, + { + "start": 8835.56, + "end": 8836.42, + "probability": 0.9539 + }, + { + "start": 8837.36, + "end": 8839.64, + "probability": 0.673 + }, + { + "start": 8840.32, + "end": 8844.04, + "probability": 0.9782 + }, + { + "start": 8844.92, + "end": 8847.34, + "probability": 0.9427 + }, + { + "start": 8847.96, + "end": 8850.62, + "probability": 0.9825 + }, + { + "start": 8851.32, + "end": 8851.64, + "probability": 0.2912 + }, + { + "start": 8852.44, + "end": 8853.32, + "probability": 0.7605 + }, + { + "start": 8853.42, + "end": 8854.18, + "probability": 0.9208 + }, + { + "start": 8854.3, + "end": 8857.5, + "probability": 0.4745 + }, + { + "start": 8857.96, + "end": 8859.78, + "probability": 0.9254 + }, + { + "start": 8859.88, + "end": 8863.64, + "probability": 0.6969 + }, + { + "start": 8864.68, + "end": 8866.64, + "probability": 0.8956 + }, + { + "start": 8867.18, + "end": 8868.33, + "probability": 0.8761 + }, + { + "start": 8869.44, + "end": 8871.26, + "probability": 0.7812 + }, + { + "start": 8872.4, + "end": 8876.1, + "probability": 0.5628 + }, + { + "start": 8876.68, + "end": 8879.15, + "probability": 0.8588 + }, + { + "start": 8879.26, + "end": 8879.74, + "probability": 0.8977 + }, + { + "start": 8880.48, + "end": 8880.62, + "probability": 0.9851 + }, + { + "start": 8881.4, + "end": 8885.14, + "probability": 0.8118 + }, + { + "start": 8885.62, + "end": 8886.68, + "probability": 0.6918 + }, + { + "start": 8887.32, + "end": 8890.36, + "probability": 0.8049 + }, + { + "start": 8890.38, + "end": 8890.76, + "probability": 0.8721 + }, + { + "start": 8891.52, + "end": 8892.55, + "probability": 0.7168 + }, + { + "start": 8893.26, + "end": 8895.22, + "probability": 0.981 + }, + { + "start": 8895.8, + "end": 8896.82, + "probability": 0.8455 + }, + { + "start": 8897.26, + "end": 8899.32, + "probability": 0.8187 + }, + { + "start": 8900.28, + "end": 8901.26, + "probability": 0.9222 + }, + { + "start": 8902.04, + "end": 8902.32, + "probability": 0.6274 + }, + { + "start": 8902.36, + "end": 8903.16, + "probability": 0.7276 + }, + { + "start": 8903.28, + "end": 8904.3, + "probability": 0.757 + }, + { + "start": 8905.9, + "end": 8908.38, + "probability": 0.9812 + }, + { + "start": 8909.06, + "end": 8910.93, + "probability": 0.9332 + }, + { + "start": 8911.66, + "end": 8914.54, + "probability": 0.9772 + }, + { + "start": 8915.08, + "end": 8916.5, + "probability": 0.9014 + }, + { + "start": 8916.88, + "end": 8918.88, + "probability": 0.9612 + }, + { + "start": 8919.26, + "end": 8920.23, + "probability": 0.9922 + }, + { + "start": 8920.52, + "end": 8921.86, + "probability": 0.8012 + }, + { + "start": 8922.2, + "end": 8924.88, + "probability": 0.9824 + }, + { + "start": 8925.46, + "end": 8925.84, + "probability": 0.5847 + }, + { + "start": 8926.64, + "end": 8927.92, + "probability": 0.0176 + }, + { + "start": 8927.92, + "end": 8928.04, + "probability": 0.4708 + }, + { + "start": 8928.58, + "end": 8929.68, + "probability": 0.2234 + }, + { + "start": 8929.84, + "end": 8930.48, + "probability": 0.5056 + }, + { + "start": 8930.58, + "end": 8933.78, + "probability": 0.8397 + }, + { + "start": 8933.8, + "end": 8934.9, + "probability": 0.8616 + }, + { + "start": 8935.95, + "end": 8937.04, + "probability": 0.4575 + }, + { + "start": 8937.04, + "end": 8937.36, + "probability": 0.5135 + }, + { + "start": 8937.36, + "end": 8938.82, + "probability": 0.8796 + }, + { + "start": 8938.96, + "end": 8939.24, + "probability": 0.2562 + }, + { + "start": 8939.26, + "end": 8941.2, + "probability": 0.9727 + }, + { + "start": 8941.26, + "end": 8941.34, + "probability": 0.6982 + }, + { + "start": 8941.6, + "end": 8942.78, + "probability": 0.945 + }, + { + "start": 8943.06, + "end": 8944.02, + "probability": 0.7336 + }, + { + "start": 8944.64, + "end": 8944.86, + "probability": 0.821 + }, + { + "start": 8946.72, + "end": 8950.68, + "probability": 0.9746 + }, + { + "start": 8950.84, + "end": 8952.32, + "probability": 0.8385 + }, + { + "start": 8953.1, + "end": 8954.64, + "probability": 0.6931 + }, + { + "start": 8956.62, + "end": 8958.24, + "probability": 0.6679 + }, + { + "start": 8958.92, + "end": 8959.04, + "probability": 0.6987 + }, + { + "start": 8959.56, + "end": 8960.84, + "probability": 0.2586 + }, + { + "start": 8961.3, + "end": 8964.05, + "probability": 0.4851 + }, + { + "start": 8965.72, + "end": 8966.72, + "probability": 0.0518 + }, + { + "start": 8967.08, + "end": 8967.08, + "probability": 0.1815 + }, + { + "start": 8967.08, + "end": 8967.08, + "probability": 0.4751 + }, + { + "start": 8967.08, + "end": 8967.45, + "probability": 0.1157 + }, + { + "start": 8967.92, + "end": 8970.22, + "probability": 0.5989 + }, + { + "start": 8970.3, + "end": 8971.06, + "probability": 0.2593 + }, + { + "start": 8971.96, + "end": 8973.98, + "probability": 0.6438 + }, + { + "start": 8973.98, + "end": 8977.9, + "probability": 0.5966 + }, + { + "start": 8979.28, + "end": 8980.06, + "probability": 0.6613 + }, + { + "start": 8980.26, + "end": 8984.58, + "probability": 0.7534 + }, + { + "start": 8985.32, + "end": 8991.98, + "probability": 0.9775 + }, + { + "start": 8992.84, + "end": 8995.54, + "probability": 0.9927 + }, + { + "start": 8996.82, + "end": 9000.1, + "probability": 0.6636 + }, + { + "start": 9001.16, + "end": 9003.06, + "probability": 0.9698 + }, + { + "start": 9003.46, + "end": 9005.0, + "probability": 0.6468 + }, + { + "start": 9005.1, + "end": 9005.62, + "probability": 0.4926 + }, + { + "start": 9006.76, + "end": 9009.1, + "probability": 0.9142 + }, + { + "start": 9010.08, + "end": 9015.1, + "probability": 0.9923 + }, + { + "start": 9016.04, + "end": 9022.68, + "probability": 0.9769 + }, + { + "start": 9023.98, + "end": 9024.86, + "probability": 0.7271 + }, + { + "start": 9025.1, + "end": 9025.88, + "probability": 0.9595 + }, + { + "start": 9026.66, + "end": 9027.96, + "probability": 0.8218 + }, + { + "start": 9028.46, + "end": 9030.84, + "probability": 0.8 + }, + { + "start": 9031.84, + "end": 9033.74, + "probability": 0.9931 + }, + { + "start": 9036.94, + "end": 9040.5, + "probability": 0.97 + }, + { + "start": 9041.82, + "end": 9043.18, + "probability": 0.8303 + }, + { + "start": 9044.0, + "end": 9049.78, + "probability": 0.9705 + }, + { + "start": 9050.02, + "end": 9055.74, + "probability": 0.9464 + }, + { + "start": 9056.54, + "end": 9058.44, + "probability": 0.7253 + }, + { + "start": 9058.68, + "end": 9059.06, + "probability": 0.7796 + }, + { + "start": 9059.12, + "end": 9061.18, + "probability": 0.9707 + }, + { + "start": 9062.38, + "end": 9065.88, + "probability": 0.9839 + }, + { + "start": 9066.12, + "end": 9068.04, + "probability": 0.6788 + }, + { + "start": 9068.14, + "end": 9069.66, + "probability": 0.7745 + }, + { + "start": 9069.78, + "end": 9072.4, + "probability": 0.9292 + }, + { + "start": 9073.9, + "end": 9075.16, + "probability": 0.9199 + }, + { + "start": 9076.02, + "end": 9078.94, + "probability": 0.4259 + }, + { + "start": 9078.98, + "end": 9079.06, + "probability": 0.0978 + }, + { + "start": 9079.06, + "end": 9079.83, + "probability": 0.8088 + }, + { + "start": 9080.12, + "end": 9080.58, + "probability": 0.7207 + }, + { + "start": 9080.86, + "end": 9081.48, + "probability": 0.5015 + }, + { + "start": 9081.54, + "end": 9083.0, + "probability": 0.9613 + }, + { + "start": 9083.12, + "end": 9085.06, + "probability": 0.2216 + }, + { + "start": 9085.48, + "end": 9087.82, + "probability": 0.1532 + }, + { + "start": 9088.22, + "end": 9090.46, + "probability": 0.3612 + }, + { + "start": 9094.38, + "end": 9095.46, + "probability": 0.0146 + }, + { + "start": 9095.46, + "end": 9095.46, + "probability": 0.0468 + }, + { + "start": 9095.46, + "end": 9096.04, + "probability": 0.3276 + }, + { + "start": 9096.76, + "end": 9100.2, + "probability": 0.7506 + }, + { + "start": 9100.92, + "end": 9105.1, + "probability": 0.7966 + }, + { + "start": 9106.04, + "end": 9106.98, + "probability": 0.5464 + }, + { + "start": 9107.28, + "end": 9107.82, + "probability": 0.0217 + }, + { + "start": 9107.82, + "end": 9108.88, + "probability": 0.1908 + }, + { + "start": 9110.0, + "end": 9110.82, + "probability": 0.5687 + }, + { + "start": 9111.02, + "end": 9112.02, + "probability": 0.8945 + }, + { + "start": 9112.92, + "end": 9113.58, + "probability": 0.6929 + }, + { + "start": 9114.5, + "end": 9115.38, + "probability": 0.0341 + }, + { + "start": 9115.38, + "end": 9116.48, + "probability": 0.4535 + }, + { + "start": 9117.32, + "end": 9119.36, + "probability": 0.3306 + }, + { + "start": 9119.92, + "end": 9121.3, + "probability": 0.4896 + }, + { + "start": 9121.64, + "end": 9122.36, + "probability": 0.433 + }, + { + "start": 9122.76, + "end": 9123.29, + "probability": 0.8984 + }, + { + "start": 9123.56, + "end": 9123.84, + "probability": 0.7871 + }, + { + "start": 9123.98, + "end": 9124.44, + "probability": 0.4851 + }, + { + "start": 9125.7, + "end": 9128.44, + "probability": 0.7184 + }, + { + "start": 9129.02, + "end": 9132.0, + "probability": 0.8925 + }, + { + "start": 9132.78, + "end": 9135.04, + "probability": 0.6725 + }, + { + "start": 9135.18, + "end": 9137.92, + "probability": 0.9301 + }, + { + "start": 9138.06, + "end": 9138.2, + "probability": 0.1697 + }, + { + "start": 9139.32, + "end": 9139.42, + "probability": 0.0109 + }, + { + "start": 9139.42, + "end": 9140.96, + "probability": 0.4632 + }, + { + "start": 9141.32, + "end": 9142.78, + "probability": 0.4316 + }, + { + "start": 9142.86, + "end": 9142.86, + "probability": 0.4354 + }, + { + "start": 9142.86, + "end": 9145.16, + "probability": 0.9008 + }, + { + "start": 9145.48, + "end": 9149.28, + "probability": 0.9839 + }, + { + "start": 9149.64, + "end": 9150.5, + "probability": 0.5918 + }, + { + "start": 9150.64, + "end": 9152.95, + "probability": 0.6817 + }, + { + "start": 9153.88, + "end": 9154.74, + "probability": 0.8599 + }, + { + "start": 9154.8, + "end": 9156.14, + "probability": 0.5646 + }, + { + "start": 9156.46, + "end": 9159.5, + "probability": 0.9521 + }, + { + "start": 9159.98, + "end": 9160.84, + "probability": 0.8906 + }, + { + "start": 9161.74, + "end": 9161.86, + "probability": 0.0009 + }, + { + "start": 9162.44, + "end": 9163.02, + "probability": 0.007 + }, + { + "start": 9163.02, + "end": 9168.64, + "probability": 0.8422 + }, + { + "start": 9169.2, + "end": 9171.66, + "probability": 0.8691 + }, + { + "start": 9171.82, + "end": 9173.8, + "probability": 0.5696 + }, + { + "start": 9174.38, + "end": 9174.84, + "probability": 0.3336 + }, + { + "start": 9175.62, + "end": 9179.62, + "probability": 0.9337 + }, + { + "start": 9179.84, + "end": 9187.94, + "probability": 0.3653 + }, + { + "start": 9187.96, + "end": 9190.1, + "probability": 0.6991 + }, + { + "start": 9191.5, + "end": 9192.96, + "probability": 0.2627 + }, + { + "start": 9196.68, + "end": 9197.16, + "probability": 0.2739 + }, + { + "start": 9204.08, + "end": 9209.04, + "probability": 0.5001 + }, + { + "start": 9214.78, + "end": 9216.5, + "probability": 0.0184 + }, + { + "start": 9217.04, + "end": 9217.32, + "probability": 0.0624 + }, + { + "start": 9220.7, + "end": 9221.78, + "probability": 0.0514 + }, + { + "start": 9222.08, + "end": 9222.38, + "probability": 0.1141 + }, + { + "start": 9223.16, + "end": 9223.98, + "probability": 0.084 + }, + { + "start": 9225.34, + "end": 9225.66, + "probability": 0.0581 + }, + { + "start": 9236.54, + "end": 9238.32, + "probability": 0.2993 + }, + { + "start": 9254.22, + "end": 9255.36, + "probability": 0.0014 + }, + { + "start": 9255.36, + "end": 9257.8, + "probability": 0.148 + }, + { + "start": 9257.95, + "end": 9260.04, + "probability": 0.2549 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.0, + "end": 9287.0, + "probability": 0.0 + }, + { + "start": 9287.48, + "end": 9287.48, + "probability": 0.0361 + }, + { + "start": 9287.48, + "end": 9287.48, + "probability": 0.0526 + }, + { + "start": 9287.48, + "end": 9287.48, + "probability": 0.1416 + }, + { + "start": 9287.48, + "end": 9287.48, + "probability": 0.379 + }, + { + "start": 9287.48, + "end": 9291.16, + "probability": 0.8277 + }, + { + "start": 9292.08, + "end": 9293.73, + "probability": 0.7194 + }, + { + "start": 9300.18, + "end": 9302.68, + "probability": 0.8754 + }, + { + "start": 9303.58, + "end": 9305.18, + "probability": 0.2635 + }, + { + "start": 9306.1, + "end": 9309.15, + "probability": 0.4462 + }, + { + "start": 9310.12, + "end": 9310.44, + "probability": 0.031 + }, + { + "start": 9310.44, + "end": 9310.44, + "probability": 0.0437 + }, + { + "start": 9310.44, + "end": 9310.44, + "probability": 0.1453 + }, + { + "start": 9310.44, + "end": 9311.52, + "probability": 0.3186 + }, + { + "start": 9312.34, + "end": 9312.88, + "probability": 0.2845 + }, + { + "start": 9314.16, + "end": 9320.62, + "probability": 0.6551 + }, + { + "start": 9322.68, + "end": 9323.62, + "probability": 0.6384 + }, + { + "start": 9323.88, + "end": 9325.34, + "probability": 0.7497 + }, + { + "start": 9325.46, + "end": 9328.04, + "probability": 0.9471 + }, + { + "start": 9328.18, + "end": 9328.18, + "probability": 0.0052 + }, + { + "start": 9328.18, + "end": 9329.02, + "probability": 0.9326 + }, + { + "start": 9329.42, + "end": 9330.3, + "probability": 0.9333 + }, + { + "start": 9330.64, + "end": 9333.56, + "probability": 0.9818 + }, + { + "start": 9333.7, + "end": 9334.7, + "probability": 0.3335 + }, + { + "start": 9334.78, + "end": 9335.1, + "probability": 0.6383 + }, + { + "start": 9335.76, + "end": 9338.2, + "probability": 0.9611 + }, + { + "start": 9338.4, + "end": 9341.24, + "probability": 0.9889 + }, + { + "start": 9341.5, + "end": 9345.66, + "probability": 0.6337 + }, + { + "start": 9348.36, + "end": 9348.36, + "probability": 0.0032 + }, + { + "start": 9348.36, + "end": 9348.4, + "probability": 0.067 + }, + { + "start": 9349.02, + "end": 9350.12, + "probability": 0.8813 + }, + { + "start": 9350.28, + "end": 9351.62, + "probability": 0.7229 + }, + { + "start": 9352.62, + "end": 9354.36, + "probability": 0.7896 + }, + { + "start": 9356.6, + "end": 9357.24, + "probability": 0.5119 + }, + { + "start": 9358.68, + "end": 9360.5, + "probability": 0.8888 + }, + { + "start": 9361.94, + "end": 9363.42, + "probability": 0.7767 + }, + { + "start": 9364.64, + "end": 9364.78, + "probability": 0.6664 + }, + { + "start": 9365.44, + "end": 9367.15, + "probability": 0.9683 + }, + { + "start": 9368.58, + "end": 9370.84, + "probability": 0.5039 + }, + { + "start": 9371.62, + "end": 9373.08, + "probability": 0.9282 + }, + { + "start": 9373.08, + "end": 9374.94, + "probability": 0.6717 + }, + { + "start": 9375.68, + "end": 9377.78, + "probability": 0.4837 + }, + { + "start": 9378.62, + "end": 9378.84, + "probability": 0.9111 + }, + { + "start": 9378.9, + "end": 9379.78, + "probability": 0.6818 + }, + { + "start": 9379.94, + "end": 9381.42, + "probability": 0.5798 + }, + { + "start": 9381.56, + "end": 9381.78, + "probability": 0.8537 + }, + { + "start": 9381.86, + "end": 9382.34, + "probability": 0.9137 + }, + { + "start": 9383.84, + "end": 9390.5, + "probability": 0.8822 + }, + { + "start": 9391.38, + "end": 9392.16, + "probability": 0.9988 + }, + { + "start": 9393.98, + "end": 9394.22, + "probability": 0.1452 + }, + { + "start": 9394.22, + "end": 9395.12, + "probability": 0.6328 + }, + { + "start": 9395.22, + "end": 9396.54, + "probability": 0.9466 + }, + { + "start": 9398.04, + "end": 9401.36, + "probability": 0.9644 + }, + { + "start": 9401.92, + "end": 9403.76, + "probability": 0.95 + }, + { + "start": 9405.56, + "end": 9406.22, + "probability": 0.7574 + }, + { + "start": 9407.18, + "end": 9412.5, + "probability": 0.9462 + }, + { + "start": 9413.08, + "end": 9414.92, + "probability": 0.8178 + }, + { + "start": 9415.24, + "end": 9415.99, + "probability": 0.9779 + }, + { + "start": 9416.22, + "end": 9416.72, + "probability": 0.6638 + }, + { + "start": 9416.82, + "end": 9417.02, + "probability": 0.4031 + }, + { + "start": 9417.14, + "end": 9417.44, + "probability": 0.4875 + }, + { + "start": 9417.94, + "end": 9418.98, + "probability": 0.9789 + }, + { + "start": 9419.58, + "end": 9421.8, + "probability": 0.9673 + }, + { + "start": 9422.54, + "end": 9423.42, + "probability": 0.876 + }, + { + "start": 9423.52, + "end": 9426.48, + "probability": 0.7489 + }, + { + "start": 9427.44, + "end": 9430.12, + "probability": 0.9138 + }, + { + "start": 9430.78, + "end": 9432.56, + "probability": 0.903 + }, + { + "start": 9433.6, + "end": 9437.54, + "probability": 0.3264 + }, + { + "start": 9437.98, + "end": 9440.02, + "probability": 0.3583 + }, + { + "start": 9440.22, + "end": 9442.58, + "probability": 0.576 + }, + { + "start": 9442.86, + "end": 9444.04, + "probability": 0.3557 + }, + { + "start": 9444.3, + "end": 9445.52, + "probability": 0.7947 + }, + { + "start": 9445.6, + "end": 9446.96, + "probability": 0.7559 + }, + { + "start": 9447.02, + "end": 9447.88, + "probability": 0.7009 + }, + { + "start": 9447.96, + "end": 9450.24, + "probability": 0.5112 + }, + { + "start": 9450.4, + "end": 9451.1, + "probability": 0.7992 + }, + { + "start": 9451.3, + "end": 9455.28, + "probability": 0.6491 + }, + { + "start": 9455.65, + "end": 9459.56, + "probability": 0.3511 + }, + { + "start": 9459.96, + "end": 9460.34, + "probability": 0.2408 + }, + { + "start": 9460.54, + "end": 9461.62, + "probability": 0.7864 + }, + { + "start": 9461.64, + "end": 9465.86, + "probability": 0.6938 + }, + { + "start": 9466.0, + "end": 9467.88, + "probability": 0.985 + }, + { + "start": 9467.96, + "end": 9468.4, + "probability": 0.7941 + }, + { + "start": 9468.52, + "end": 9469.34, + "probability": 0.5859 + }, + { + "start": 9469.88, + "end": 9474.96, + "probability": 0.9336 + }, + { + "start": 9475.46, + "end": 9475.88, + "probability": 0.8002 + }, + { + "start": 9477.08, + "end": 9478.04, + "probability": 0.4237 + }, + { + "start": 9478.18, + "end": 9478.48, + "probability": 0.7053 + }, + { + "start": 9478.6, + "end": 9479.04, + "probability": 0.7051 + }, + { + "start": 9479.4, + "end": 9481.8, + "probability": 0.954 + }, + { + "start": 9483.12, + "end": 9484.14, + "probability": 0.8358 + }, + { + "start": 9484.28, + "end": 9485.68, + "probability": 0.8975 + }, + { + "start": 9486.74, + "end": 9487.12, + "probability": 0.4122 + }, + { + "start": 9488.18, + "end": 9488.54, + "probability": 0.7172 + }, + { + "start": 9488.62, + "end": 9490.44, + "probability": 0.9553 + }, + { + "start": 9490.44, + "end": 9492.44, + "probability": 0.7813 + }, + { + "start": 9492.94, + "end": 9493.04, + "probability": 0.3661 + }, + { + "start": 9493.12, + "end": 9494.6, + "probability": 0.9697 + }, + { + "start": 9494.8, + "end": 9495.6, + "probability": 0.6788 + }, + { + "start": 9496.18, + "end": 9496.9, + "probability": 0.3847 + }, + { + "start": 9497.14, + "end": 9500.36, + "probability": 0.9023 + }, + { + "start": 9500.42, + "end": 9501.0, + "probability": 0.873 + }, + { + "start": 9501.48, + "end": 9507.56, + "probability": 0.9717 + }, + { + "start": 9508.68, + "end": 9510.44, + "probability": 0.9471 + }, + { + "start": 9511.06, + "end": 9511.46, + "probability": 0.9392 + }, + { + "start": 9512.16, + "end": 9514.18, + "probability": 0.8824 + }, + { + "start": 9514.7, + "end": 9518.46, + "probability": 0.8226 + }, + { + "start": 9519.14, + "end": 9520.38, + "probability": 0.7148 + }, + { + "start": 9521.5, + "end": 9522.38, + "probability": 0.9829 + }, + { + "start": 9522.4, + "end": 9523.58, + "probability": 0.9634 + }, + { + "start": 9524.0, + "end": 9524.96, + "probability": 0.5876 + }, + { + "start": 9525.28, + "end": 9528.18, + "probability": 0.8893 + }, + { + "start": 9528.66, + "end": 9529.28, + "probability": 0.7893 + }, + { + "start": 9529.36, + "end": 9530.64, + "probability": 0.9133 + }, + { + "start": 9531.06, + "end": 9531.82, + "probability": 0.947 + }, + { + "start": 9532.22, + "end": 9535.03, + "probability": 0.9147 + }, + { + "start": 9535.66, + "end": 9541.28, + "probability": 0.9535 + }, + { + "start": 9541.42, + "end": 9543.6, + "probability": 0.7912 + }, + { + "start": 9544.04, + "end": 9545.32, + "probability": 0.7469 + }, + { + "start": 9545.46, + "end": 9546.96, + "probability": 0.676 + }, + { + "start": 9547.38, + "end": 9548.86, + "probability": 0.9858 + }, + { + "start": 9549.26, + "end": 9549.88, + "probability": 0.9755 + }, + { + "start": 9549.92, + "end": 9552.8, + "probability": 0.9138 + }, + { + "start": 9553.34, + "end": 9557.44, + "probability": 0.9946 + }, + { + "start": 9557.56, + "end": 9558.6, + "probability": 0.7549 + }, + { + "start": 9559.0, + "end": 9559.64, + "probability": 0.9118 + }, + { + "start": 9559.82, + "end": 9560.78, + "probability": 0.9411 + }, + { + "start": 9561.24, + "end": 9563.04, + "probability": 0.9604 + }, + { + "start": 9563.46, + "end": 9563.76, + "probability": 0.9077 + }, + { + "start": 9564.46, + "end": 9567.7, + "probability": 0.0304 + }, + { + "start": 9568.26, + "end": 9568.96, + "probability": 0.1812 + }, + { + "start": 9569.48, + "end": 9569.48, + "probability": 0.1614 + }, + { + "start": 9569.48, + "end": 9569.48, + "probability": 0.219 + }, + { + "start": 9569.48, + "end": 9569.68, + "probability": 0.0719 + }, + { + "start": 9570.3, + "end": 9573.38, + "probability": 0.823 + }, + { + "start": 9574.72, + "end": 9577.02, + "probability": 0.9831 + }, + { + "start": 9578.16, + "end": 9581.86, + "probability": 0.9661 + }, + { + "start": 9582.02, + "end": 9582.78, + "probability": 0.8522 + }, + { + "start": 9583.02, + "end": 9585.48, + "probability": 0.9033 + }, + { + "start": 9596.64, + "end": 9597.64, + "probability": 0.7497 + }, + { + "start": 9597.82, + "end": 9600.06, + "probability": 0.9509 + }, + { + "start": 9600.18, + "end": 9602.66, + "probability": 0.9883 + }, + { + "start": 9604.17, + "end": 9609.52, + "probability": 0.9579 + }, + { + "start": 9609.68, + "end": 9610.2, + "probability": 0.5451 + }, + { + "start": 9610.42, + "end": 9611.02, + "probability": 0.4728 + }, + { + "start": 9611.82, + "end": 9614.16, + "probability": 0.544 + }, + { + "start": 9614.4, + "end": 9615.32, + "probability": 0.5589 + }, + { + "start": 9616.1, + "end": 9618.6, + "probability": 0.9887 + }, + { + "start": 9620.28, + "end": 9624.14, + "probability": 0.9425 + }, + { + "start": 9625.36, + "end": 9629.14, + "probability": 0.9833 + }, + { + "start": 9629.71, + "end": 9632.38, + "probability": 0.196 + }, + { + "start": 9633.39, + "end": 9635.74, + "probability": 0.2325 + }, + { + "start": 9638.0, + "end": 9640.86, + "probability": 0.9877 + }, + { + "start": 9640.9, + "end": 9642.7, + "probability": 0.8672 + }, + { + "start": 9643.84, + "end": 9644.86, + "probability": 0.9611 + }, + { + "start": 9645.74, + "end": 9646.66, + "probability": 0.97 + }, + { + "start": 9646.84, + "end": 9648.69, + "probability": 0.7687 + }, + { + "start": 9649.34, + "end": 9651.6, + "probability": 0.9891 + }, + { + "start": 9651.64, + "end": 9652.3, + "probability": 0.8295 + }, + { + "start": 9652.62, + "end": 9653.72, + "probability": 0.9272 + }, + { + "start": 9653.8, + "end": 9654.3, + "probability": 0.8547 + }, + { + "start": 9655.04, + "end": 9656.36, + "probability": 0.9964 + }, + { + "start": 9657.24, + "end": 9659.8, + "probability": 0.9921 + }, + { + "start": 9659.98, + "end": 9662.04, + "probability": 0.7964 + }, + { + "start": 9662.08, + "end": 9663.74, + "probability": 0.8984 + }, + { + "start": 9664.56, + "end": 9666.88, + "probability": 0.962 + }, + { + "start": 9667.4, + "end": 9668.56, + "probability": 0.8592 + }, + { + "start": 9669.06, + "end": 9672.06, + "probability": 0.9781 + }, + { + "start": 9672.14, + "end": 9674.42, + "probability": 0.9393 + }, + { + "start": 9674.94, + "end": 9680.14, + "probability": 0.9971 + }, + { + "start": 9681.46, + "end": 9686.46, + "probability": 0.9967 + }, + { + "start": 9686.86, + "end": 9687.87, + "probability": 0.5376 + }, + { + "start": 9688.9, + "end": 9689.82, + "probability": 0.9917 + }, + { + "start": 9690.32, + "end": 9693.18, + "probability": 0.9611 + }, + { + "start": 9693.18, + "end": 9695.88, + "probability": 0.9985 + }, + { + "start": 9696.26, + "end": 9698.22, + "probability": 0.9093 + }, + { + "start": 9699.0, + "end": 9705.2, + "probability": 0.9423 + }, + { + "start": 9705.2, + "end": 9707.0, + "probability": 0.8702 + }, + { + "start": 9707.76, + "end": 9708.44, + "probability": 0.6263 + }, + { + "start": 9708.86, + "end": 9709.38, + "probability": 0.7262 + }, + { + "start": 9709.56, + "end": 9710.36, + "probability": 0.9761 + }, + { + "start": 9710.48, + "end": 9711.24, + "probability": 0.52 + }, + { + "start": 9711.24, + "end": 9716.86, + "probability": 0.7945 + }, + { + "start": 9717.38, + "end": 9721.4, + "probability": 0.9915 + }, + { + "start": 9721.6, + "end": 9722.92, + "probability": 0.8598 + }, + { + "start": 9723.66, + "end": 9729.3, + "probability": 0.9863 + }, + { + "start": 9730.06, + "end": 9730.98, + "probability": 0.9988 + }, + { + "start": 9731.1, + "end": 9733.32, + "probability": 0.9932 + }, + { + "start": 9733.94, + "end": 9734.92, + "probability": 0.9722 + }, + { + "start": 9735.88, + "end": 9737.62, + "probability": 0.9214 + }, + { + "start": 9737.74, + "end": 9740.57, + "probability": 0.9105 + }, + { + "start": 9741.98, + "end": 9743.72, + "probability": 0.7591 + }, + { + "start": 9744.2, + "end": 9745.12, + "probability": 0.922 + }, + { + "start": 9745.36, + "end": 9745.74, + "probability": 0.0855 + }, + { + "start": 9745.88, + "end": 9749.86, + "probability": 0.7872 + }, + { + "start": 9750.0, + "end": 9751.46, + "probability": 0.8468 + }, + { + "start": 9751.6, + "end": 9752.48, + "probability": 0.7467 + }, + { + "start": 9752.62, + "end": 9753.98, + "probability": 0.8563 + }, + { + "start": 9754.04, + "end": 9754.78, + "probability": 0.4335 + }, + { + "start": 9755.4, + "end": 9756.4, + "probability": 0.7416 + }, + { + "start": 9756.56, + "end": 9757.05, + "probability": 0.9863 + }, + { + "start": 9757.32, + "end": 9757.9, + "probability": 0.9369 + }, + { + "start": 9759.02, + "end": 9759.52, + "probability": 0.9873 + }, + { + "start": 9759.6, + "end": 9762.46, + "probability": 0.8998 + }, + { + "start": 9762.6, + "end": 9764.16, + "probability": 0.6155 + }, + { + "start": 9764.54, + "end": 9765.7, + "probability": 0.6299 + }, + { + "start": 9765.82, + "end": 9765.96, + "probability": 0.551 + }, + { + "start": 9765.96, + "end": 9766.66, + "probability": 0.6213 + }, + { + "start": 9767.04, + "end": 9768.14, + "probability": 0.6672 + }, + { + "start": 9769.1, + "end": 9771.0, + "probability": 0.8889 + }, + { + "start": 9771.1, + "end": 9772.72, + "probability": 0.6125 + }, + { + "start": 9773.1, + "end": 9773.36, + "probability": 0.484 + }, + { + "start": 9773.48, + "end": 9774.32, + "probability": 0.6697 + }, + { + "start": 9774.48, + "end": 9778.4, + "probability": 0.8101 + }, + { + "start": 9778.46, + "end": 9778.98, + "probability": 0.8615 + }, + { + "start": 9779.82, + "end": 9782.44, + "probability": 0.9863 + }, + { + "start": 9783.06, + "end": 9784.18, + "probability": 0.5778 + }, + { + "start": 9784.8, + "end": 9785.92, + "probability": 0.7208 + }, + { + "start": 9786.46, + "end": 9789.6, + "probability": 0.8612 + }, + { + "start": 9790.14, + "end": 9793.88, + "probability": 0.8619 + }, + { + "start": 9794.24, + "end": 9797.82, + "probability": 0.9573 + }, + { + "start": 9798.32, + "end": 9802.9, + "probability": 0.992 + }, + { + "start": 9803.32, + "end": 9806.13, + "probability": 0.7834 + }, + { + "start": 9806.76, + "end": 9808.84, + "probability": 0.7906 + }, + { + "start": 9809.14, + "end": 9810.12, + "probability": 0.5596 + }, + { + "start": 9811.02, + "end": 9811.96, + "probability": 0.7589 + }, + { + "start": 9812.42, + "end": 9814.08, + "probability": 0.9109 + }, + { + "start": 9814.42, + "end": 9815.19, + "probability": 0.905 + }, + { + "start": 9815.66, + "end": 9816.56, + "probability": 0.9406 + }, + { + "start": 9816.88, + "end": 9817.98, + "probability": 0.924 + }, + { + "start": 9818.42, + "end": 9821.28, + "probability": 0.8809 + }, + { + "start": 9821.52, + "end": 9822.88, + "probability": 0.8292 + }, + { + "start": 9823.02, + "end": 9826.06, + "probability": 0.949 + }, + { + "start": 9826.1, + "end": 9827.8, + "probability": 0.73 + }, + { + "start": 9827.84, + "end": 9829.2, + "probability": 0.846 + }, + { + "start": 9829.42, + "end": 9829.66, + "probability": 0.7053 + }, + { + "start": 9829.9, + "end": 9831.6, + "probability": 0.4903 + }, + { + "start": 9831.68, + "end": 9832.48, + "probability": 0.6256 + }, + { + "start": 9832.48, + "end": 9834.3, + "probability": 0.9624 + }, + { + "start": 9834.54, + "end": 9835.04, + "probability": 0.8751 + }, + { + "start": 9835.4, + "end": 9836.22, + "probability": 0.8984 + }, + { + "start": 9836.74, + "end": 9838.92, + "probability": 0.9712 + }, + { + "start": 9841.05, + "end": 9841.94, + "probability": 0.229 + }, + { + "start": 9841.96, + "end": 9841.96, + "probability": 0.1757 + }, + { + "start": 9841.96, + "end": 9842.14, + "probability": 0.543 + }, + { + "start": 9845.92, + "end": 9847.96, + "probability": 0.9375 + }, + { + "start": 9859.82, + "end": 9863.92, + "probability": 0.663 + }, + { + "start": 9869.74, + "end": 9873.22, + "probability": 0.9725 + }, + { + "start": 9873.86, + "end": 9874.86, + "probability": 0.5852 + }, + { + "start": 9875.54, + "end": 9883.34, + "probability": 0.8763 + }, + { + "start": 9883.48, + "end": 9885.44, + "probability": 0.9658 + }, + { + "start": 9886.86, + "end": 9888.62, + "probability": 0.9478 + }, + { + "start": 9888.92, + "end": 9889.9, + "probability": 0.5287 + }, + { + "start": 9890.04, + "end": 9890.62, + "probability": 0.6096 + }, + { + "start": 9892.02, + "end": 9894.94, + "probability": 0.9706 + }, + { + "start": 9895.94, + "end": 9900.18, + "probability": 0.9707 + }, + { + "start": 9900.26, + "end": 9903.28, + "probability": 0.9706 + }, + { + "start": 9904.08, + "end": 9906.32, + "probability": 0.901 + }, + { + "start": 9906.38, + "end": 9913.92, + "probability": 0.9302 + }, + { + "start": 9914.82, + "end": 9915.9, + "probability": 0.8939 + }, + { + "start": 9916.16, + "end": 9919.44, + "probability": 0.9689 + }, + { + "start": 9920.3, + "end": 9921.92, + "probability": 0.8265 + }, + { + "start": 9922.04, + "end": 9924.8, + "probability": 0.9939 + }, + { + "start": 9925.6, + "end": 9926.02, + "probability": 0.5729 + }, + { + "start": 9926.6, + "end": 9928.36, + "probability": 0.8726 + }, + { + "start": 9929.84, + "end": 9930.52, + "probability": 0.5549 + }, + { + "start": 9930.86, + "end": 9932.34, + "probability": 0.8989 + }, + { + "start": 9932.38, + "end": 9936.64, + "probability": 0.9722 + }, + { + "start": 9936.74, + "end": 9937.5, + "probability": 0.7719 + }, + { + "start": 9939.28, + "end": 9939.34, + "probability": 0.0061 + }, + { + "start": 9939.48, + "end": 9939.58, + "probability": 0.5107 + }, + { + "start": 9939.88, + "end": 9945.38, + "probability": 0.9663 + }, + { + "start": 9947.8, + "end": 9948.26, + "probability": 0.6169 + }, + { + "start": 9948.44, + "end": 9949.14, + "probability": 0.734 + }, + { + "start": 9949.58, + "end": 9955.0, + "probability": 0.9839 + }, + { + "start": 9955.9, + "end": 9958.82, + "probability": 0.9539 + }, + { + "start": 9960.18, + "end": 9963.56, + "probability": 0.9943 + }, + { + "start": 9965.1, + "end": 9969.38, + "probability": 0.9939 + }, + { + "start": 9969.38, + "end": 9973.92, + "probability": 0.9881 + }, + { + "start": 9975.34, + "end": 9983.24, + "probability": 0.8362 + }, + { + "start": 9984.64, + "end": 9986.04, + "probability": 0.6209 + }, + { + "start": 9988.0, + "end": 9988.56, + "probability": 0.8579 + }, + { + "start": 9990.84, + "end": 9992.14, + "probability": 0.6609 + }, + { + "start": 9992.28, + "end": 9994.72, + "probability": 0.8533 + }, + { + "start": 9995.04, + "end": 9995.3, + "probability": 0.103 + }, + { + "start": 9995.58, + "end": 9995.58, + "probability": 0.2437 + }, + { + "start": 9995.58, + "end": 9995.58, + "probability": 0.0656 + }, + { + "start": 9996.1, + "end": 9999.66, + "probability": 0.7599 + }, + { + "start": 10001.16, + "end": 10004.28, + "probability": 0.5127 + }, + { + "start": 10004.94, + "end": 10004.98, + "probability": 0.06 + }, + { + "start": 10004.98, + "end": 10007.7, + "probability": 0.5173 + }, + { + "start": 10008.0, + "end": 10008.78, + "probability": 0.1534 + }, + { + "start": 10009.04, + "end": 10013.12, + "probability": 0.8647 + }, + { + "start": 10013.36, + "end": 10015.6, + "probability": 0.7813 + }, + { + "start": 10016.04, + "end": 10016.98, + "probability": 0.8691 + }, + { + "start": 10018.62, + "end": 10018.92, + "probability": 0.3913 + }, + { + "start": 10019.06, + "end": 10019.7, + "probability": 0.7843 + }, + { + "start": 10020.28, + "end": 10021.68, + "probability": 0.9385 + }, + { + "start": 10022.26, + "end": 10024.9, + "probability": 0.9302 + }, + { + "start": 10025.7, + "end": 10027.06, + "probability": 0.984 + }, + { + "start": 10027.9, + "end": 10029.65, + "probability": 0.9473 + }, + { + "start": 10032.18, + "end": 10033.54, + "probability": 0.9966 + }, + { + "start": 10033.72, + "end": 10035.02, + "probability": 0.9645 + }, + { + "start": 10035.16, + "end": 10035.74, + "probability": 0.756 + }, + { + "start": 10035.98, + "end": 10036.6, + "probability": 0.9449 + }, + { + "start": 10036.84, + "end": 10038.62, + "probability": 0.8616 + }, + { + "start": 10039.4, + "end": 10041.26, + "probability": 0.68 + }, + { + "start": 10041.26, + "end": 10042.28, + "probability": 0.8178 + }, + { + "start": 10042.68, + "end": 10043.58, + "probability": 0.8037 + }, + { + "start": 10044.16, + "end": 10044.66, + "probability": 0.988 + }, + { + "start": 10045.06, + "end": 10046.3, + "probability": 0.7864 + }, + { + "start": 10046.74, + "end": 10047.44, + "probability": 0.8724 + }, + { + "start": 10049.14, + "end": 10051.64, + "probability": 0.9845 + }, + { + "start": 10053.04, + "end": 10055.9, + "probability": 0.9741 + }, + { + "start": 10056.46, + "end": 10058.1, + "probability": 0.9382 + }, + { + "start": 10058.28, + "end": 10061.63, + "probability": 0.9751 + }, + { + "start": 10062.26, + "end": 10066.0, + "probability": 0.9559 + }, + { + "start": 10066.2, + "end": 10068.71, + "probability": 0.9986 + }, + { + "start": 10069.82, + "end": 10072.14, + "probability": 0.8884 + }, + { + "start": 10072.92, + "end": 10080.08, + "probability": 0.9927 + }, + { + "start": 10080.9, + "end": 10084.16, + "probability": 0.9479 + }, + { + "start": 10084.24, + "end": 10085.84, + "probability": 0.9536 + }, + { + "start": 10086.44, + "end": 10089.14, + "probability": 0.986 + }, + { + "start": 10089.76, + "end": 10091.48, + "probability": 0.9042 + }, + { + "start": 10091.62, + "end": 10091.82, + "probability": 0.744 + }, + { + "start": 10092.54, + "end": 10093.4, + "probability": 0.3149 + }, + { + "start": 10093.46, + "end": 10093.56, + "probability": 0.0068 + }, + { + "start": 10093.56, + "end": 10096.12, + "probability": 0.5041 + }, + { + "start": 10096.12, + "end": 10099.12, + "probability": 0.9044 + }, + { + "start": 10099.64, + "end": 10101.63, + "probability": 0.5566 + }, + { + "start": 10103.02, + "end": 10105.34, + "probability": 0.4641 + }, + { + "start": 10105.46, + "end": 10107.2, + "probability": 0.7277 + }, + { + "start": 10107.24, + "end": 10107.86, + "probability": 0.1556 + }, + { + "start": 10107.86, + "end": 10111.96, + "probability": 0.9224 + }, + { + "start": 10112.52, + "end": 10114.94, + "probability": 0.7041 + }, + { + "start": 10116.2, + "end": 10117.8, + "probability": 0.0082 + }, + { + "start": 10121.82, + "end": 10125.08, + "probability": 0.2702 + }, + { + "start": 10137.18, + "end": 10137.88, + "probability": 0.3136 + }, + { + "start": 10138.0, + "end": 10140.12, + "probability": 0.8223 + }, + { + "start": 10140.6, + "end": 10142.4, + "probability": 0.7528 + }, + { + "start": 10142.58, + "end": 10144.3, + "probability": 0.6118 + }, + { + "start": 10144.3, + "end": 10145.56, + "probability": 0.8108 + }, + { + "start": 10146.06, + "end": 10147.56, + "probability": 0.9339 + }, + { + "start": 10148.1, + "end": 10149.4, + "probability": 0.8052 + }, + { + "start": 10149.4, + "end": 10149.74, + "probability": 0.166 + }, + { + "start": 10149.74, + "end": 10149.74, + "probability": 0.3361 + }, + { + "start": 10149.74, + "end": 10152.66, + "probability": 0.8023 + }, + { + "start": 10152.66, + "end": 10156.28, + "probability": 0.8502 + }, + { + "start": 10157.02, + "end": 10158.78, + "probability": 0.5655 + }, + { + "start": 10162.33, + "end": 10163.68, + "probability": 0.9091 + }, + { + "start": 10164.44, + "end": 10168.14, + "probability": 0.6676 + }, + { + "start": 10169.48, + "end": 10170.14, + "probability": 0.7672 + }, + { + "start": 10171.24, + "end": 10173.32, + "probability": 0.9808 + }, + { + "start": 10174.46, + "end": 10176.08, + "probability": 0.9944 + }, + { + "start": 10176.22, + "end": 10176.86, + "probability": 0.6214 + }, + { + "start": 10176.98, + "end": 10178.22, + "probability": 0.5753 + }, + { + "start": 10178.68, + "end": 10179.88, + "probability": 0.9627 + }, + { + "start": 10179.96, + "end": 10182.34, + "probability": 0.8795 + }, + { + "start": 10182.98, + "end": 10184.24, + "probability": 0.9668 + }, + { + "start": 10185.12, + "end": 10187.96, + "probability": 0.9485 + }, + { + "start": 10188.06, + "end": 10190.68, + "probability": 0.9679 + }, + { + "start": 10190.98, + "end": 10192.48, + "probability": 0.8609 + }, + { + "start": 10192.88, + "end": 10195.98, + "probability": 0.8243 + }, + { + "start": 10196.06, + "end": 10196.56, + "probability": 0.2499 + }, + { + "start": 10197.04, + "end": 10199.04, + "probability": 0.9301 + }, + { + "start": 10199.58, + "end": 10200.48, + "probability": 0.9399 + }, + { + "start": 10200.5, + "end": 10201.92, + "probability": 0.6519 + }, + { + "start": 10202.38, + "end": 10205.2, + "probability": 0.6331 + }, + { + "start": 10205.28, + "end": 10206.83, + "probability": 0.9902 + }, + { + "start": 10206.86, + "end": 10210.2, + "probability": 0.9917 + }, + { + "start": 10210.88, + "end": 10211.6, + "probability": 0.7135 + }, + { + "start": 10212.44, + "end": 10214.9, + "probability": 0.8909 + }, + { + "start": 10215.68, + "end": 10216.72, + "probability": 0.9928 + }, + { + "start": 10217.22, + "end": 10220.56, + "probability": 0.9454 + }, + { + "start": 10220.62, + "end": 10221.45, + "probability": 0.9725 + }, + { + "start": 10222.22, + "end": 10226.8, + "probability": 0.7973 + }, + { + "start": 10226.98, + "end": 10227.64, + "probability": 0.6644 + }, + { + "start": 10227.78, + "end": 10228.0, + "probability": 0.6393 + }, + { + "start": 10229.38, + "end": 10231.34, + "probability": 0.991 + }, + { + "start": 10232.56, + "end": 10234.1, + "probability": 0.9718 + }, + { + "start": 10234.1, + "end": 10236.98, + "probability": 0.9658 + }, + { + "start": 10237.86, + "end": 10240.26, + "probability": 0.9476 + }, + { + "start": 10241.0, + "end": 10244.16, + "probability": 0.9562 + }, + { + "start": 10244.82, + "end": 10245.74, + "probability": 0.8122 + }, + { + "start": 10245.74, + "end": 10246.76, + "probability": 0.4194 + }, + { + "start": 10246.82, + "end": 10250.3, + "probability": 0.9435 + }, + { + "start": 10250.84, + "end": 10251.42, + "probability": 0.7485 + }, + { + "start": 10251.44, + "end": 10252.12, + "probability": 0.9006 + }, + { + "start": 10252.44, + "end": 10257.74, + "probability": 0.9917 + }, + { + "start": 10257.8, + "end": 10258.66, + "probability": 0.501 + }, + { + "start": 10258.7, + "end": 10259.64, + "probability": 0.9386 + }, + { + "start": 10260.98, + "end": 10262.42, + "probability": 0.976 + }, + { + "start": 10263.0, + "end": 10265.4, + "probability": 0.9908 + }, + { + "start": 10266.08, + "end": 10269.37, + "probability": 0.8994 + }, + { + "start": 10270.06, + "end": 10273.46, + "probability": 0.9003 + }, + { + "start": 10273.58, + "end": 10273.94, + "probability": 0.8541 + }, + { + "start": 10274.42, + "end": 10276.58, + "probability": 0.8893 + }, + { + "start": 10278.62, + "end": 10282.56, + "probability": 0.8574 + }, + { + "start": 10283.3, + "end": 10285.84, + "probability": 0.658 + }, + { + "start": 10286.58, + "end": 10287.16, + "probability": 0.7923 + }, + { + "start": 10287.68, + "end": 10289.44, + "probability": 0.6164 + }, + { + "start": 10290.1, + "end": 10292.66, + "probability": 0.9126 + }, + { + "start": 10293.26, + "end": 10293.78, + "probability": 0.6565 + }, + { + "start": 10295.92, + "end": 10298.12, + "probability": 0.9785 + }, + { + "start": 10300.42, + "end": 10305.78, + "probability": 0.9287 + }, + { + "start": 10305.88, + "end": 10306.93, + "probability": 0.9648 + }, + { + "start": 10307.04, + "end": 10307.55, + "probability": 0.6659 + }, + { + "start": 10308.56, + "end": 10311.16, + "probability": 0.9559 + }, + { + "start": 10311.78, + "end": 10314.88, + "probability": 0.9893 + }, + { + "start": 10315.06, + "end": 10315.88, + "probability": 0.7212 + }, + { + "start": 10316.5, + "end": 10318.18, + "probability": 0.9817 + }, + { + "start": 10318.64, + "end": 10319.26, + "probability": 0.9453 + }, + { + "start": 10319.38, + "end": 10319.74, + "probability": 0.7148 + }, + { + "start": 10323.31, + "end": 10327.04, + "probability": 0.6382 + }, + { + "start": 10327.48, + "end": 10328.1, + "probability": 0.2496 + }, + { + "start": 10352.06, + "end": 10354.12, + "probability": 0.3063 + }, + { + "start": 10355.66, + "end": 10357.24, + "probability": 0.5933 + }, + { + "start": 10357.42, + "end": 10360.64, + "probability": 0.7219 + }, + { + "start": 10360.76, + "end": 10365.84, + "probability": 0.8991 + }, + { + "start": 10367.04, + "end": 10368.74, + "probability": 0.9839 + }, + { + "start": 10370.4, + "end": 10373.11, + "probability": 0.8945 + }, + { + "start": 10375.04, + "end": 10378.4, + "probability": 0.9762 + }, + { + "start": 10380.46, + "end": 10381.88, + "probability": 0.7836 + }, + { + "start": 10382.34, + "end": 10385.94, + "probability": 0.9878 + }, + { + "start": 10386.98, + "end": 10390.9, + "probability": 0.9932 + }, + { + "start": 10392.72, + "end": 10394.42, + "probability": 0.97 + }, + { + "start": 10394.86, + "end": 10396.5, + "probability": 0.9539 + }, + { + "start": 10397.14, + "end": 10399.64, + "probability": 0.8186 + }, + { + "start": 10400.5, + "end": 10402.74, + "probability": 0.7992 + }, + { + "start": 10403.44, + "end": 10405.06, + "probability": 0.9768 + }, + { + "start": 10405.66, + "end": 10406.28, + "probability": 0.9246 + }, + { + "start": 10408.18, + "end": 10412.32, + "probability": 0.5887 + }, + { + "start": 10413.2, + "end": 10415.04, + "probability": 0.6752 + }, + { + "start": 10415.94, + "end": 10417.5, + "probability": 0.9164 + }, + { + "start": 10418.42, + "end": 10422.88, + "probability": 0.9969 + }, + { + "start": 10422.96, + "end": 10423.64, + "probability": 0.9407 + }, + { + "start": 10424.48, + "end": 10427.14, + "probability": 0.8506 + }, + { + "start": 10427.78, + "end": 10430.42, + "probability": 0.9792 + }, + { + "start": 10431.62, + "end": 10433.4, + "probability": 0.9985 + }, + { + "start": 10434.32, + "end": 10437.06, + "probability": 0.9906 + }, + { + "start": 10438.44, + "end": 10440.74, + "probability": 0.9893 + }, + { + "start": 10441.76, + "end": 10443.66, + "probability": 0.816 + }, + { + "start": 10444.36, + "end": 10445.08, + "probability": 0.7506 + }, + { + "start": 10445.82, + "end": 10447.66, + "probability": 0.9718 + }, + { + "start": 10449.04, + "end": 10453.08, + "probability": 0.9644 + }, + { + "start": 10453.44, + "end": 10454.72, + "probability": 0.9231 + }, + { + "start": 10455.04, + "end": 10456.66, + "probability": 0.9446 + }, + { + "start": 10457.58, + "end": 10459.6, + "probability": 0.9708 + }, + { + "start": 10460.3, + "end": 10464.1, + "probability": 0.7939 + }, + { + "start": 10464.26, + "end": 10469.68, + "probability": 0.98 + }, + { + "start": 10469.68, + "end": 10476.68, + "probability": 0.9912 + }, + { + "start": 10477.2, + "end": 10479.58, + "probability": 0.9938 + }, + { + "start": 10480.08, + "end": 10481.96, + "probability": 0.708 + }, + { + "start": 10483.02, + "end": 10483.12, + "probability": 0.8713 + }, + { + "start": 10483.72, + "end": 10484.96, + "probability": 0.3847 + }, + { + "start": 10485.46, + "end": 10486.26, + "probability": 0.7251 + }, + { + "start": 10486.36, + "end": 10489.82, + "probability": 0.8094 + }, + { + "start": 10490.18, + "end": 10491.58, + "probability": 0.6573 + }, + { + "start": 10492.04, + "end": 10492.24, + "probability": 0.9103 + }, + { + "start": 10492.72, + "end": 10493.28, + "probability": 0.295 + }, + { + "start": 10493.28, + "end": 10494.76, + "probability": 0.6688 + }, + { + "start": 10494.84, + "end": 10495.22, + "probability": 0.1017 + }, + { + "start": 10495.44, + "end": 10497.3, + "probability": 0.7087 + }, + { + "start": 10498.0, + "end": 10498.5, + "probability": 0.7088 + }, + { + "start": 10499.04, + "end": 10500.14, + "probability": 0.8029 + }, + { + "start": 10500.38, + "end": 10502.4, + "probability": 0.6749 + }, + { + "start": 10502.52, + "end": 10503.04, + "probability": 0.0984 + }, + { + "start": 10503.04, + "end": 10503.14, + "probability": 0.0288 + }, + { + "start": 10503.26, + "end": 10503.26, + "probability": 0.345 + }, + { + "start": 10503.32, + "end": 10505.38, + "probability": 0.9433 + }, + { + "start": 10505.4, + "end": 10507.46, + "probability": 0.9587 + }, + { + "start": 10507.9, + "end": 10509.44, + "probability": 0.8931 + }, + { + "start": 10510.14, + "end": 10514.04, + "probability": 0.811 + }, + { + "start": 10514.46, + "end": 10515.52, + "probability": 0.6278 + }, + { + "start": 10515.62, + "end": 10517.7, + "probability": 0.7285 + }, + { + "start": 10518.0, + "end": 10518.14, + "probability": 0.3385 + }, + { + "start": 10518.48, + "end": 10519.14, + "probability": 0.6897 + }, + { + "start": 10519.48, + "end": 10520.12, + "probability": 0.4707 + }, + { + "start": 10520.52, + "end": 10521.96, + "probability": 0.0946 + }, + { + "start": 10522.8, + "end": 10524.86, + "probability": 0.4718 + }, + { + "start": 10525.01, + "end": 10529.26, + "probability": 0.9512 + }, + { + "start": 10530.2, + "end": 10530.86, + "probability": 0.5889 + }, + { + "start": 10531.52, + "end": 10534.2, + "probability": 0.7554 + }, + { + "start": 10534.32, + "end": 10536.15, + "probability": 0.689 + }, + { + "start": 10536.68, + "end": 10537.8, + "probability": 0.8959 + }, + { + "start": 10538.06, + "end": 10540.9, + "probability": 0.9021 + }, + { + "start": 10541.1, + "end": 10543.34, + "probability": 0.7063 + }, + { + "start": 10543.62, + "end": 10543.9, + "probability": 0.7463 + }, + { + "start": 10544.04, + "end": 10545.6, + "probability": 0.9912 + }, + { + "start": 10546.0, + "end": 10546.68, + "probability": 0.1383 + }, + { + "start": 10546.78, + "end": 10549.82, + "probability": 0.9844 + }, + { + "start": 10550.34, + "end": 10552.44, + "probability": 0.918 + }, + { + "start": 10553.08, + "end": 10555.42, + "probability": 0.8714 + }, + { + "start": 10555.68, + "end": 10556.24, + "probability": 0.7735 + }, + { + "start": 10556.35, + "end": 10557.16, + "probability": 0.2397 + }, + { + "start": 10557.5, + "end": 10560.0, + "probability": 0.8101 + }, + { + "start": 10560.02, + "end": 10560.32, + "probability": 0.5761 + }, + { + "start": 10560.4, + "end": 10562.22, + "probability": 0.9849 + }, + { + "start": 10562.44, + "end": 10563.92, + "probability": 0.045 + }, + { + "start": 10564.18, + "end": 10565.5, + "probability": 0.9713 + }, + { + "start": 10565.88, + "end": 10567.57, + "probability": 0.2423 + }, + { + "start": 10568.26, + "end": 10570.04, + "probability": 0.7954 + }, + { + "start": 10570.98, + "end": 10573.22, + "probability": 0.9341 + }, + { + "start": 10574.42, + "end": 10575.8, + "probability": 0.9072 + }, + { + "start": 10576.7, + "end": 10579.48, + "probability": 0.9878 + }, + { + "start": 10580.2, + "end": 10583.8, + "probability": 0.9882 + }, + { + "start": 10584.56, + "end": 10585.78, + "probability": 0.9892 + }, + { + "start": 10585.98, + "end": 10586.26, + "probability": 0.536 + }, + { + "start": 10586.52, + "end": 10587.33, + "probability": 0.8807 + }, + { + "start": 10588.24, + "end": 10588.9, + "probability": 0.9805 + }, + { + "start": 10589.38, + "end": 10589.86, + "probability": 0.9603 + }, + { + "start": 10589.92, + "end": 10590.46, + "probability": 0.9698 + }, + { + "start": 10590.56, + "end": 10591.18, + "probability": 0.8579 + }, + { + "start": 10592.22, + "end": 10595.1, + "probability": 0.9697 + }, + { + "start": 10595.74, + "end": 10600.9, + "probability": 0.9968 + }, + { + "start": 10600.9, + "end": 10603.55, + "probability": 0.7576 + }, + { + "start": 10604.22, + "end": 10605.52, + "probability": 0.7759 + }, + { + "start": 10605.58, + "end": 10606.24, + "probability": 0.8578 + }, + { + "start": 10606.68, + "end": 10611.64, + "probability": 0.8789 + }, + { + "start": 10612.26, + "end": 10613.04, + "probability": 0.7952 + }, + { + "start": 10613.5, + "end": 10614.48, + "probability": 0.8573 + }, + { + "start": 10615.28, + "end": 10616.68, + "probability": 0.9856 + }, + { + "start": 10617.54, + "end": 10619.17, + "probability": 0.9531 + }, + { + "start": 10619.6, + "end": 10622.5, + "probability": 0.4268 + }, + { + "start": 10623.14, + "end": 10623.18, + "probability": 0.205 + }, + { + "start": 10623.18, + "end": 10625.82, + "probability": 0.9127 + }, + { + "start": 10626.2, + "end": 10629.64, + "probability": 0.9334 + }, + { + "start": 10630.0, + "end": 10631.18, + "probability": 0.7883 + }, + { + "start": 10631.58, + "end": 10634.68, + "probability": 0.9648 + }, + { + "start": 10637.06, + "end": 10640.78, + "probability": 0.522 + }, + { + "start": 10641.38, + "end": 10646.54, + "probability": 0.5872 + }, + { + "start": 10647.52, + "end": 10648.58, + "probability": 0.5031 + }, + { + "start": 10649.12, + "end": 10649.58, + "probability": 0.6973 + }, + { + "start": 10649.74, + "end": 10650.24, + "probability": 0.6034 + }, + { + "start": 10650.26, + "end": 10650.76, + "probability": 0.8808 + }, + { + "start": 10655.6, + "end": 10658.5, + "probability": 0.7892 + }, + { + "start": 10658.5, + "end": 10659.44, + "probability": 0.4438 + }, + { + "start": 10659.54, + "end": 10661.76, + "probability": 0.1974 + }, + { + "start": 10662.32, + "end": 10665.22, + "probability": 0.0766 + }, + { + "start": 10668.58, + "end": 10671.6, + "probability": 0.078 + }, + { + "start": 10671.74, + "end": 10672.24, + "probability": 0.0776 + }, + { + "start": 10672.24, + "end": 10672.36, + "probability": 0.4825 + }, + { + "start": 10672.44, + "end": 10672.44, + "probability": 0.4295 + }, + { + "start": 10672.44, + "end": 10672.44, + "probability": 0.0031 + }, + { + "start": 10672.44, + "end": 10674.28, + "probability": 0.6697 + }, + { + "start": 10674.4, + "end": 10678.22, + "probability": 0.9685 + }, + { + "start": 10678.26, + "end": 10678.92, + "probability": 0.7073 + }, + { + "start": 10679.54, + "end": 10683.26, + "probability": 0.9573 + }, + { + "start": 10683.6, + "end": 10685.46, + "probability": 0.7625 + }, + { + "start": 10686.24, + "end": 10690.02, + "probability": 0.9263 + }, + { + "start": 10690.1, + "end": 10694.72, + "probability": 0.974 + }, + { + "start": 10695.44, + "end": 10697.18, + "probability": 0.8217 + }, + { + "start": 10697.6, + "end": 10699.72, + "probability": 0.8562 + }, + { + "start": 10699.82, + "end": 10700.42, + "probability": 0.7427 + }, + { + "start": 10700.8, + "end": 10702.14, + "probability": 0.8463 + }, + { + "start": 10702.32, + "end": 10703.8, + "probability": 0.8079 + }, + { + "start": 10703.98, + "end": 10705.6, + "probability": 0.387 + }, + { + "start": 10705.98, + "end": 10707.08, + "probability": 0.9232 + }, + { + "start": 10707.86, + "end": 10710.86, + "probability": 0.7475 + }, + { + "start": 10711.48, + "end": 10715.6, + "probability": 0.76 + }, + { + "start": 10715.84, + "end": 10716.54, + "probability": 0.7105 + }, + { + "start": 10718.42, + "end": 10720.42, + "probability": 0.8901 + }, + { + "start": 10720.42, + "end": 10723.38, + "probability": 0.5591 + }, + { + "start": 10723.5, + "end": 10725.38, + "probability": 0.3304 + }, + { + "start": 10726.04, + "end": 10728.74, + "probability": 0.9572 + }, + { + "start": 10729.2, + "end": 10729.9, + "probability": 0.3644 + }, + { + "start": 10730.06, + "end": 10731.13, + "probability": 0.3188 + }, + { + "start": 10731.7, + "end": 10732.46, + "probability": 0.6143 + }, + { + "start": 10733.08, + "end": 10733.8, + "probability": 0.6013 + }, + { + "start": 10749.5, + "end": 10751.62, + "probability": 0.736 + }, + { + "start": 10752.68, + "end": 10757.16, + "probability": 0.7327 + }, + { + "start": 10757.3, + "end": 10760.76, + "probability": 0.9902 + }, + { + "start": 10761.3, + "end": 10761.89, + "probability": 0.843 + }, + { + "start": 10763.14, + "end": 10764.8, + "probability": 0.9884 + }, + { + "start": 10765.9, + "end": 10769.5, + "probability": 0.9855 + }, + { + "start": 10770.8, + "end": 10773.62, + "probability": 0.9875 + }, + { + "start": 10773.74, + "end": 10776.74, + "probability": 0.8306 + }, + { + "start": 10777.8, + "end": 10780.36, + "probability": 0.8653 + }, + { + "start": 10780.58, + "end": 10782.06, + "probability": 0.5125 + }, + { + "start": 10782.06, + "end": 10783.9, + "probability": 0.3326 + }, + { + "start": 10784.16, + "end": 10784.38, + "probability": 0.8313 + }, + { + "start": 10784.64, + "end": 10785.52, + "probability": 0.5908 + }, + { + "start": 10785.58, + "end": 10786.34, + "probability": 0.6541 + }, + { + "start": 10786.56, + "end": 10787.52, + "probability": 0.8184 + }, + { + "start": 10787.62, + "end": 10789.3, + "probability": 0.8016 + }, + { + "start": 10789.66, + "end": 10792.14, + "probability": 0.5099 + }, + { + "start": 10792.38, + "end": 10793.06, + "probability": 0.2853 + }, + { + "start": 10793.22, + "end": 10793.56, + "probability": 0.8699 + }, + { + "start": 10793.58, + "end": 10799.1, + "probability": 0.9943 + }, + { + "start": 10799.82, + "end": 10800.02, + "probability": 0.3929 + }, + { + "start": 10800.06, + "end": 10801.86, + "probability": 0.9432 + }, + { + "start": 10802.02, + "end": 10802.44, + "probability": 0.6345 + }, + { + "start": 10802.56, + "end": 10806.12, + "probability": 0.8345 + }, + { + "start": 10806.42, + "end": 10811.48, + "probability": 0.9761 + }, + { + "start": 10811.56, + "end": 10814.14, + "probability": 0.9969 + }, + { + "start": 10814.68, + "end": 10818.46, + "probability": 0.9526 + }, + { + "start": 10819.44, + "end": 10820.14, + "probability": 0.8464 + }, + { + "start": 10820.74, + "end": 10821.78, + "probability": 0.67 + }, + { + "start": 10821.86, + "end": 10825.9, + "probability": 0.9695 + }, + { + "start": 10826.78, + "end": 10830.63, + "probability": 0.9976 + }, + { + "start": 10831.06, + "end": 10834.66, + "probability": 0.9783 + }, + { + "start": 10835.2, + "end": 10837.02, + "probability": 0.9588 + }, + { + "start": 10837.08, + "end": 10837.56, + "probability": 0.6197 + }, + { + "start": 10837.98, + "end": 10839.14, + "probability": 0.6265 + }, + { + "start": 10839.42, + "end": 10839.62, + "probability": 0.3789 + }, + { + "start": 10839.72, + "end": 10839.98, + "probability": 0.1995 + }, + { + "start": 10840.18, + "end": 10841.18, + "probability": 0.7979 + }, + { + "start": 10841.36, + "end": 10844.26, + "probability": 0.9214 + }, + { + "start": 10844.8, + "end": 10845.02, + "probability": 0.4975 + }, + { + "start": 10845.28, + "end": 10845.96, + "probability": 0.4857 + }, + { + "start": 10846.66, + "end": 10850.84, + "probability": 0.8604 + }, + { + "start": 10851.26, + "end": 10851.38, + "probability": 0.3688 + }, + { + "start": 10852.08, + "end": 10853.52, + "probability": 0.9893 + }, + { + "start": 10853.62, + "end": 10854.74, + "probability": 0.937 + }, + { + "start": 10855.36, + "end": 10856.72, + "probability": 0.9095 + }, + { + "start": 10856.92, + "end": 10857.54, + "probability": 0.9412 + }, + { + "start": 10857.66, + "end": 10860.48, + "probability": 0.9704 + }, + { + "start": 10860.98, + "end": 10862.74, + "probability": 0.9939 + }, + { + "start": 10863.38, + "end": 10864.32, + "probability": 0.8538 + }, + { + "start": 10864.38, + "end": 10867.9, + "probability": 0.9499 + }, + { + "start": 10868.84, + "end": 10869.38, + "probability": 0.5933 + }, + { + "start": 10869.42, + "end": 10870.08, + "probability": 0.6325 + }, + { + "start": 10870.22, + "end": 10872.12, + "probability": 0.8457 + }, + { + "start": 10872.6, + "end": 10875.24, + "probability": 0.9973 + }, + { + "start": 10875.44, + "end": 10877.68, + "probability": 0.9275 + }, + { + "start": 10877.84, + "end": 10878.75, + "probability": 0.7391 + }, + { + "start": 10880.04, + "end": 10881.48, + "probability": 0.9618 + }, + { + "start": 10882.16, + "end": 10885.98, + "probability": 0.9254 + }, + { + "start": 10886.28, + "end": 10888.32, + "probability": 0.98 + }, + { + "start": 10888.5, + "end": 10890.98, + "probability": 0.9927 + }, + { + "start": 10891.54, + "end": 10893.66, + "probability": 0.8688 + }, + { + "start": 10894.42, + "end": 10894.86, + "probability": 0.696 + }, + { + "start": 10895.0, + "end": 10896.38, + "probability": 0.9175 + }, + { + "start": 10896.5, + "end": 10897.85, + "probability": 0.9034 + }, + { + "start": 10898.48, + "end": 10899.84, + "probability": 0.6652 + }, + { + "start": 10899.96, + "end": 10900.39, + "probability": 0.6434 + }, + { + "start": 10901.0, + "end": 10902.06, + "probability": 0.9359 + }, + { + "start": 10902.14, + "end": 10903.22, + "probability": 0.9937 + }, + { + "start": 10903.3, + "end": 10904.24, + "probability": 0.8835 + }, + { + "start": 10904.84, + "end": 10908.76, + "probability": 0.9595 + }, + { + "start": 10908.82, + "end": 10911.3, + "probability": 0.7695 + }, + { + "start": 10911.4, + "end": 10913.44, + "probability": 0.9919 + }, + { + "start": 10914.12, + "end": 10917.95, + "probability": 0.6691 + }, + { + "start": 10919.32, + "end": 10920.46, + "probability": 0.9115 + }, + { + "start": 10920.94, + "end": 10927.82, + "probability": 0.9382 + }, + { + "start": 10927.94, + "end": 10929.04, + "probability": 0.9634 + }, + { + "start": 10929.38, + "end": 10929.74, + "probability": 0.7071 + }, + { + "start": 10929.76, + "end": 10937.22, + "probability": 0.9555 + }, + { + "start": 10937.72, + "end": 10939.9, + "probability": 0.9038 + }, + { + "start": 10939.96, + "end": 10941.2, + "probability": 0.9612 + }, + { + "start": 10941.56, + "end": 10943.88, + "probability": 0.8559 + }, + { + "start": 10944.76, + "end": 10950.1, + "probability": 0.8055 + }, + { + "start": 10950.26, + "end": 10951.52, + "probability": 0.9637 + }, + { + "start": 10951.7, + "end": 10953.2, + "probability": 0.9616 + }, + { + "start": 10953.46, + "end": 10954.7, + "probability": 0.8969 + }, + { + "start": 10954.78, + "end": 10955.48, + "probability": 0.9295 + }, + { + "start": 10955.64, + "end": 10956.8, + "probability": 0.9192 + }, + { + "start": 10957.34, + "end": 10958.7, + "probability": 0.8926 + }, + { + "start": 10959.54, + "end": 10961.29, + "probability": 0.8774 + }, + { + "start": 10961.82, + "end": 10962.64, + "probability": 0.9126 + }, + { + "start": 10962.76, + "end": 10963.26, + "probability": 0.9287 + }, + { + "start": 10964.36, + "end": 10965.62, + "probability": 0.6969 + }, + { + "start": 10966.78, + "end": 10970.52, + "probability": 0.8604 + }, + { + "start": 10971.12, + "end": 10972.86, + "probability": 0.9868 + }, + { + "start": 10973.02, + "end": 10974.52, + "probability": 0.9012 + }, + { + "start": 10974.72, + "end": 10979.5, + "probability": 0.9733 + }, + { + "start": 10980.48, + "end": 10983.76, + "probability": 0.957 + }, + { + "start": 10983.92, + "end": 10985.76, + "probability": 0.5507 + }, + { + "start": 10986.28, + "end": 10987.68, + "probability": 0.7494 + }, + { + "start": 10987.82, + "end": 10988.3, + "probability": 0.9442 + }, + { + "start": 10988.38, + "end": 10989.28, + "probability": 0.9707 + }, + { + "start": 10989.36, + "end": 10991.3, + "probability": 0.8774 + }, + { + "start": 10991.98, + "end": 10994.74, + "probability": 0.7093 + }, + { + "start": 10995.56, + "end": 10996.2, + "probability": 0.9176 + }, + { + "start": 10996.28, + "end": 10998.2, + "probability": 0.9318 + }, + { + "start": 10998.7, + "end": 11000.72, + "probability": 0.9846 + }, + { + "start": 11000.8, + "end": 11001.22, + "probability": 0.898 + }, + { + "start": 11001.32, + "end": 11004.0, + "probability": 0.9689 + }, + { + "start": 11004.34, + "end": 11006.14, + "probability": 0.9749 + }, + { + "start": 11006.18, + "end": 11011.38, + "probability": 0.9252 + }, + { + "start": 11012.38, + "end": 11013.32, + "probability": 0.473 + }, + { + "start": 11013.5, + "end": 11014.84, + "probability": 0.8203 + }, + { + "start": 11014.9, + "end": 11016.96, + "probability": 0.8974 + }, + { + "start": 11017.0, + "end": 11020.42, + "probability": 0.9684 + }, + { + "start": 11020.94, + "end": 11022.62, + "probability": 0.9128 + }, + { + "start": 11023.18, + "end": 11023.56, + "probability": 0.967 + }, + { + "start": 11026.0, + "end": 11026.12, + "probability": 0.0832 + }, + { + "start": 11026.12, + "end": 11026.16, + "probability": 0.0316 + }, + { + "start": 11026.22, + "end": 11029.8, + "probability": 0.8429 + }, + { + "start": 11030.22, + "end": 11033.76, + "probability": 0.9205 + }, + { + "start": 11034.04, + "end": 11034.44, + "probability": 0.9235 + }, + { + "start": 11034.52, + "end": 11034.98, + "probability": 0.9801 + }, + { + "start": 11035.06, + "end": 11035.42, + "probability": 0.9129 + }, + { + "start": 11035.42, + "end": 11036.16, + "probability": 0.9868 + }, + { + "start": 11036.28, + "end": 11037.22, + "probability": 0.9523 + }, + { + "start": 11037.46, + "end": 11038.24, + "probability": 0.9926 + }, + { + "start": 11038.36, + "end": 11038.94, + "probability": 0.6876 + }, + { + "start": 11039.36, + "end": 11040.02, + "probability": 0.4547 + }, + { + "start": 11040.76, + "end": 11043.86, + "probability": 0.9937 + }, + { + "start": 11043.86, + "end": 11047.2, + "probability": 0.9757 + }, + { + "start": 11048.62, + "end": 11049.3, + "probability": 0.8225 + }, + { + "start": 11049.8, + "end": 11058.24, + "probability": 0.9333 + }, + { + "start": 11059.06, + "end": 11060.18, + "probability": 0.7889 + }, + { + "start": 11060.8, + "end": 11063.34, + "probability": 0.9705 + }, + { + "start": 11063.6, + "end": 11064.84, + "probability": 0.9745 + }, + { + "start": 11065.3, + "end": 11066.42, + "probability": 0.98 + }, + { + "start": 11066.88, + "end": 11067.7, + "probability": 0.9401 + }, + { + "start": 11068.0, + "end": 11068.86, + "probability": 0.9898 + }, + { + "start": 11069.32, + "end": 11070.92, + "probability": 0.9526 + }, + { + "start": 11071.24, + "end": 11072.26, + "probability": 0.9813 + }, + { + "start": 11072.58, + "end": 11073.18, + "probability": 0.9553 + }, + { + "start": 11073.22, + "end": 11073.6, + "probability": 0.8123 + }, + { + "start": 11073.66, + "end": 11073.94, + "probability": 0.9169 + }, + { + "start": 11074.14, + "end": 11074.4, + "probability": 0.6603 + }, + { + "start": 11074.48, + "end": 11074.98, + "probability": 0.8446 + }, + { + "start": 11075.08, + "end": 11075.58, + "probability": 0.8702 + }, + { + "start": 11075.62, + "end": 11076.12, + "probability": 0.5929 + }, + { + "start": 11076.2, + "end": 11076.82, + "probability": 0.4765 + }, + { + "start": 11076.98, + "end": 11077.34, + "probability": 0.957 + }, + { + "start": 11078.62, + "end": 11081.06, + "probability": 0.9845 + }, + { + "start": 11081.5, + "end": 11082.76, + "probability": 0.9484 + }, + { + "start": 11083.14, + "end": 11086.78, + "probability": 0.9414 + }, + { + "start": 11087.28, + "end": 11087.64, + "probability": 0.8035 + }, + { + "start": 11087.68, + "end": 11092.48, + "probability": 0.9829 + }, + { + "start": 11092.9, + "end": 11097.02, + "probability": 0.8231 + }, + { + "start": 11097.16, + "end": 11099.38, + "probability": 0.9893 + }, + { + "start": 11099.38, + "end": 11102.9, + "probability": 0.9801 + }, + { + "start": 11103.16, + "end": 11104.88, + "probability": 0.7067 + }, + { + "start": 11105.18, + "end": 11109.84, + "probability": 0.9971 + }, + { + "start": 11111.46, + "end": 11113.42, + "probability": 0.5033 + }, + { + "start": 11114.04, + "end": 11117.2, + "probability": 0.9668 + }, + { + "start": 11118.16, + "end": 11121.26, + "probability": 0.9505 + }, + { + "start": 11121.84, + "end": 11124.02, + "probability": 0.7731 + }, + { + "start": 11125.2, + "end": 11127.28, + "probability": 0.776 + }, + { + "start": 11128.12, + "end": 11130.22, + "probability": 0.6133 + }, + { + "start": 11130.3, + "end": 11135.88, + "probability": 0.8 + }, + { + "start": 11135.94, + "end": 11137.3, + "probability": 0.7352 + }, + { + "start": 11137.4, + "end": 11138.44, + "probability": 0.7791 + }, + { + "start": 11138.56, + "end": 11138.68, + "probability": 0.7194 + }, + { + "start": 11138.72, + "end": 11139.2, + "probability": 0.5549 + }, + { + "start": 11139.32, + "end": 11141.64, + "probability": 0.9872 + }, + { + "start": 11142.16, + "end": 11144.28, + "probability": 0.7835 + }, + { + "start": 11144.64, + "end": 11145.8, + "probability": 0.8212 + }, + { + "start": 11146.1, + "end": 11149.76, + "probability": 0.7966 + }, + { + "start": 11149.88, + "end": 11150.64, + "probability": 0.9969 + }, + { + "start": 11151.24, + "end": 11152.02, + "probability": 0.9041 + }, + { + "start": 11152.62, + "end": 11154.46, + "probability": 0.942 + }, + { + "start": 11154.56, + "end": 11156.16, + "probability": 0.9803 + }, + { + "start": 11156.72, + "end": 11158.42, + "probability": 0.7177 + }, + { + "start": 11158.54, + "end": 11164.28, + "probability": 0.9683 + }, + { + "start": 11164.36, + "end": 11168.92, + "probability": 0.9967 + }, + { + "start": 11169.44, + "end": 11170.84, + "probability": 0.7999 + }, + { + "start": 11171.14, + "end": 11173.62, + "probability": 0.9409 + }, + { + "start": 11173.68, + "end": 11175.46, + "probability": 0.9495 + }, + { + "start": 11175.62, + "end": 11176.9, + "probability": 0.9576 + }, + { + "start": 11176.92, + "end": 11177.44, + "probability": 0.7939 + }, + { + "start": 11178.3, + "end": 11181.44, + "probability": 0.9864 + }, + { + "start": 11181.86, + "end": 11182.8, + "probability": 0.9571 + }, + { + "start": 11183.22, + "end": 11184.0, + "probability": 0.4804 + }, + { + "start": 11184.32, + "end": 11185.32, + "probability": 0.9421 + }, + { + "start": 11185.58, + "end": 11187.83, + "probability": 0.8419 + }, + { + "start": 11188.7, + "end": 11189.64, + "probability": 0.6434 + }, + { + "start": 11189.88, + "end": 11192.5, + "probability": 0.9911 + }, + { + "start": 11192.6, + "end": 11195.7, + "probability": 0.9827 + }, + { + "start": 11196.44, + "end": 11198.42, + "probability": 0.9785 + }, + { + "start": 11198.52, + "end": 11201.64, + "probability": 0.9313 + }, + { + "start": 11202.34, + "end": 11204.2, + "probability": 0.9512 + }, + { + "start": 11204.32, + "end": 11207.75, + "probability": 0.9918 + }, + { + "start": 11209.4, + "end": 11209.58, + "probability": 0.2736 + }, + { + "start": 11209.66, + "end": 11217.1, + "probability": 0.9113 + }, + { + "start": 11217.66, + "end": 11220.88, + "probability": 0.984 + }, + { + "start": 11221.2, + "end": 11221.3, + "probability": 0.4041 + }, + { + "start": 11221.34, + "end": 11222.54, + "probability": 0.9778 + }, + { + "start": 11222.92, + "end": 11225.99, + "probability": 0.9176 + }, + { + "start": 11226.84, + "end": 11227.28, + "probability": 0.8995 + }, + { + "start": 11227.88, + "end": 11228.38, + "probability": 0.4647 + }, + { + "start": 11228.52, + "end": 11228.6, + "probability": 0.6604 + }, + { + "start": 11228.68, + "end": 11230.28, + "probability": 0.9692 + }, + { + "start": 11230.36, + "end": 11231.86, + "probability": 0.6205 + }, + { + "start": 11231.94, + "end": 11232.1, + "probability": 0.5513 + }, + { + "start": 11232.38, + "end": 11234.64, + "probability": 0.9235 + }, + { + "start": 11234.96, + "end": 11235.4, + "probability": 0.8449 + }, + { + "start": 11235.52, + "end": 11236.56, + "probability": 0.7637 + }, + { + "start": 11236.66, + "end": 11243.26, + "probability": 0.8774 + }, + { + "start": 11244.0, + "end": 11247.28, + "probability": 0.8968 + }, + { + "start": 11248.2, + "end": 11250.04, + "probability": 0.834 + }, + { + "start": 11250.5, + "end": 11252.04, + "probability": 0.7192 + }, + { + "start": 11252.82, + "end": 11253.44, + "probability": 0.528 + }, + { + "start": 11253.66, + "end": 11257.74, + "probability": 0.9317 + }, + { + "start": 11257.92, + "end": 11264.64, + "probability": 0.9277 + }, + { + "start": 11264.86, + "end": 11269.92, + "probability": 0.8967 + }, + { + "start": 11270.0, + "end": 11271.24, + "probability": 0.8772 + }, + { + "start": 11271.32, + "end": 11272.82, + "probability": 0.946 + }, + { + "start": 11273.32, + "end": 11279.62, + "probability": 0.9834 + }, + { + "start": 11280.02, + "end": 11283.28, + "probability": 0.7824 + }, + { + "start": 11283.88, + "end": 11286.96, + "probability": 0.933 + }, + { + "start": 11287.02, + "end": 11290.88, + "probability": 0.9756 + }, + { + "start": 11290.88, + "end": 11296.3, + "probability": 0.9788 + }, + { + "start": 11296.64, + "end": 11296.96, + "probability": 0.3473 + }, + { + "start": 11297.0, + "end": 11301.04, + "probability": 0.8779 + }, + { + "start": 11301.52, + "end": 11304.16, + "probability": 0.9933 + }, + { + "start": 11304.24, + "end": 11304.98, + "probability": 0.7012 + }, + { + "start": 11305.1, + "end": 11306.74, + "probability": 0.942 + }, + { + "start": 11306.74, + "end": 11310.02, + "probability": 0.9946 + }, + { + "start": 11310.16, + "end": 11313.76, + "probability": 0.9922 + }, + { + "start": 11314.28, + "end": 11315.44, + "probability": 0.6708 + }, + { + "start": 11315.66, + "end": 11315.9, + "probability": 0.824 + }, + { + "start": 11316.94, + "end": 11317.76, + "probability": 0.7859 + }, + { + "start": 11319.16, + "end": 11320.52, + "probability": 0.9192 + }, + { + "start": 11322.0, + "end": 11324.06, + "probability": 0.9578 + }, + { + "start": 11324.74, + "end": 11325.58, + "probability": 0.6606 + }, + { + "start": 11325.94, + "end": 11328.08, + "probability": 0.9907 + }, + { + "start": 11328.7, + "end": 11330.14, + "probability": 0.7478 + }, + { + "start": 11330.3, + "end": 11330.76, + "probability": 0.7736 + }, + { + "start": 11330.84, + "end": 11332.2, + "probability": 0.751 + }, + { + "start": 11332.22, + "end": 11332.88, + "probability": 0.9675 + }, + { + "start": 11335.22, + "end": 11336.76, + "probability": 0.8374 + }, + { + "start": 11337.84, + "end": 11339.64, + "probability": 0.9023 + }, + { + "start": 11343.18, + "end": 11343.18, + "probability": 0.3051 + }, + { + "start": 11356.6, + "end": 11359.34, + "probability": 0.5265 + }, + { + "start": 11359.42, + "end": 11359.68, + "probability": 0.3626 + }, + { + "start": 11359.76, + "end": 11361.0, + "probability": 0.482 + }, + { + "start": 11361.62, + "end": 11364.94, + "probability": 0.9159 + }, + { + "start": 11365.8, + "end": 11368.82, + "probability": 0.9836 + }, + { + "start": 11368.82, + "end": 11371.27, + "probability": 0.832 + }, + { + "start": 11372.32, + "end": 11375.16, + "probability": 0.5958 + }, + { + "start": 11375.32, + "end": 11380.94, + "probability": 0.9845 + }, + { + "start": 11382.92, + "end": 11383.4, + "probability": 0.0989 + }, + { + "start": 11383.62, + "end": 11383.76, + "probability": 0.0631 + }, + { + "start": 11383.76, + "end": 11384.14, + "probability": 0.1506 + }, + { + "start": 11384.26, + "end": 11386.18, + "probability": 0.9032 + }, + { + "start": 11387.51, + "end": 11391.12, + "probability": 0.8971 + }, + { + "start": 11391.12, + "end": 11392.54, + "probability": 0.3997 + }, + { + "start": 11392.68, + "end": 11392.7, + "probability": 0.2271 + }, + { + "start": 11392.72, + "end": 11394.08, + "probability": 0.7942 + }, + { + "start": 11394.22, + "end": 11397.24, + "probability": 0.8373 + }, + { + "start": 11397.5, + "end": 11397.66, + "probability": 0.1572 + }, + { + "start": 11397.74, + "end": 11398.64, + "probability": 0.9622 + }, + { + "start": 11398.84, + "end": 11399.18, + "probability": 0.709 + }, + { + "start": 11399.26, + "end": 11399.72, + "probability": 0.9235 + }, + { + "start": 11399.82, + "end": 11403.38, + "probability": 0.9629 + }, + { + "start": 11404.5, + "end": 11407.02, + "probability": 0.9782 + }, + { + "start": 11408.0, + "end": 11409.18, + "probability": 0.7473 + }, + { + "start": 11409.36, + "end": 11409.96, + "probability": 0.6287 + }, + { + "start": 11410.02, + "end": 11412.0, + "probability": 0.8721 + }, + { + "start": 11412.16, + "end": 11414.44, + "probability": 0.8026 + }, + { + "start": 11414.98, + "end": 11417.94, + "probability": 0.7939 + }, + { + "start": 11418.68, + "end": 11423.96, + "probability": 0.8268 + }, + { + "start": 11424.04, + "end": 11424.82, + "probability": 0.9241 + }, + { + "start": 11424.88, + "end": 11425.98, + "probability": 0.9707 + }, + { + "start": 11426.1, + "end": 11427.44, + "probability": 0.9337 + }, + { + "start": 11427.56, + "end": 11428.12, + "probability": 0.8809 + }, + { + "start": 11428.88, + "end": 11429.82, + "probability": 0.9641 + }, + { + "start": 11429.88, + "end": 11432.02, + "probability": 0.9766 + }, + { + "start": 11432.18, + "end": 11433.76, + "probability": 0.7483 + }, + { + "start": 11434.4, + "end": 11435.12, + "probability": 0.8147 + }, + { + "start": 11435.26, + "end": 11435.8, + "probability": 0.4241 + }, + { + "start": 11435.96, + "end": 11436.54, + "probability": 0.8841 + }, + { + "start": 11436.66, + "end": 11441.96, + "probability": 0.995 + }, + { + "start": 11442.5, + "end": 11445.06, + "probability": 0.8431 + }, + { + "start": 11445.7, + "end": 11448.5, + "probability": 0.7916 + }, + { + "start": 11448.96, + "end": 11450.94, + "probability": 0.9885 + }, + { + "start": 11450.94, + "end": 11454.24, + "probability": 0.9976 + }, + { + "start": 11455.26, + "end": 11457.4, + "probability": 0.6534 + }, + { + "start": 11457.6, + "end": 11459.46, + "probability": 0.9553 + }, + { + "start": 11459.54, + "end": 11460.36, + "probability": 0.9807 + }, + { + "start": 11461.32, + "end": 11462.78, + "probability": 0.9302 + }, + { + "start": 11463.26, + "end": 11468.26, + "probability": 0.9922 + }, + { + "start": 11468.38, + "end": 11468.84, + "probability": 0.8674 + }, + { + "start": 11469.08, + "end": 11470.76, + "probability": 0.9636 + }, + { + "start": 11470.88, + "end": 11472.18, + "probability": 0.7601 + }, + { + "start": 11472.42, + "end": 11475.2, + "probability": 0.9869 + }, + { + "start": 11475.84, + "end": 11476.02, + "probability": 0.2737 + }, + { + "start": 11476.5, + "end": 11477.2, + "probability": 0.9752 + }, + { + "start": 11477.84, + "end": 11478.38, + "probability": 0.5526 + }, + { + "start": 11478.48, + "end": 11480.38, + "probability": 0.7596 + }, + { + "start": 11480.88, + "end": 11485.54, + "probability": 0.8741 + }, + { + "start": 11485.64, + "end": 11486.1, + "probability": 0.6729 + }, + { + "start": 11486.18, + "end": 11486.78, + "probability": 0.6093 + }, + { + "start": 11487.28, + "end": 11488.31, + "probability": 0.6838 + }, + { + "start": 11489.4, + "end": 11490.08, + "probability": 0.6759 + }, + { + "start": 11490.14, + "end": 11491.24, + "probability": 0.8923 + }, + { + "start": 11491.38, + "end": 11495.14, + "probability": 0.6642 + }, + { + "start": 11495.14, + "end": 11499.34, + "probability": 0.9922 + }, + { + "start": 11500.18, + "end": 11502.54, + "probability": 0.9087 + }, + { + "start": 11503.12, + "end": 11504.08, + "probability": 0.9077 + }, + { + "start": 11504.14, + "end": 11505.78, + "probability": 0.4045 + }, + { + "start": 11505.9, + "end": 11507.84, + "probability": 0.889 + }, + { + "start": 11508.04, + "end": 11511.04, + "probability": 0.9946 + }, + { + "start": 11512.1, + "end": 11513.93, + "probability": 0.9924 + }, + { + "start": 11514.52, + "end": 11516.64, + "probability": 0.9086 + }, + { + "start": 11516.96, + "end": 11516.96, + "probability": 0.4458 + }, + { + "start": 11516.96, + "end": 11517.38, + "probability": 0.458 + }, + { + "start": 11517.9, + "end": 11518.54, + "probability": 0.4723 + }, + { + "start": 11518.9, + "end": 11520.34, + "probability": 0.9523 + }, + { + "start": 11520.4, + "end": 11521.0, + "probability": 0.7954 + }, + { + "start": 11522.0, + "end": 11527.88, + "probability": 0.9543 + }, + { + "start": 11528.2, + "end": 11528.7, + "probability": 0.743 + }, + { + "start": 11528.74, + "end": 11529.18, + "probability": 0.9604 + }, + { + "start": 11529.34, + "end": 11529.62, + "probability": 0.3808 + }, + { + "start": 11529.78, + "end": 11530.02, + "probability": 0.4787 + }, + { + "start": 11530.1, + "end": 11531.2, + "probability": 0.7986 + }, + { + "start": 11531.2, + "end": 11532.26, + "probability": 0.5811 + }, + { + "start": 11532.56, + "end": 11537.52, + "probability": 0.6921 + }, + { + "start": 11537.66, + "end": 11538.16, + "probability": 0.8761 + }, + { + "start": 11538.16, + "end": 11538.38, + "probability": 0.7107 + }, + { + "start": 11538.78, + "end": 11541.46, + "probability": 0.6706 + }, + { + "start": 11541.86, + "end": 11544.86, + "probability": 0.8052 + }, + { + "start": 11545.3, + "end": 11545.76, + "probability": 0.8783 + }, + { + "start": 11545.94, + "end": 11546.12, + "probability": 0.8086 + }, + { + "start": 11546.26, + "end": 11547.5, + "probability": 0.9409 + }, + { + "start": 11547.78, + "end": 11550.84, + "probability": 0.9807 + }, + { + "start": 11550.84, + "end": 11553.6, + "probability": 0.9777 + }, + { + "start": 11554.3, + "end": 11555.82, + "probability": 0.9974 + }, + { + "start": 11556.04, + "end": 11558.66, + "probability": 0.8477 + }, + { + "start": 11558.7, + "end": 11559.5, + "probability": 0.8933 + }, + { + "start": 11559.88, + "end": 11562.72, + "probability": 0.8712 + }, + { + "start": 11562.82, + "end": 11564.38, + "probability": 0.9956 + }, + { + "start": 11564.64, + "end": 11565.14, + "probability": 0.9656 + }, + { + "start": 11566.4, + "end": 11566.68, + "probability": 0.3671 + }, + { + "start": 11566.68, + "end": 11567.08, + "probability": 0.4025 + }, + { + "start": 11567.26, + "end": 11569.28, + "probability": 0.9473 + }, + { + "start": 11569.3, + "end": 11571.66, + "probability": 0.9734 + }, + { + "start": 11571.72, + "end": 11572.54, + "probability": 0.6931 + }, + { + "start": 11572.68, + "end": 11574.5, + "probability": 0.6894 + }, + { + "start": 11574.9, + "end": 11576.39, + "probability": 0.9779 + }, + { + "start": 11577.06, + "end": 11578.84, + "probability": 0.8555 + }, + { + "start": 11579.28, + "end": 11584.48, + "probability": 0.8717 + }, + { + "start": 11585.7, + "end": 11585.72, + "probability": 0.0181 + }, + { + "start": 11585.72, + "end": 11585.72, + "probability": 0.4969 + }, + { + "start": 11585.72, + "end": 11586.5, + "probability": 0.576 + }, + { + "start": 11587.04, + "end": 11588.26, + "probability": 0.7568 + }, + { + "start": 11588.36, + "end": 11591.52, + "probability": 0.8466 + }, + { + "start": 11591.56, + "end": 11593.32, + "probability": 0.7383 + }, + { + "start": 11593.88, + "end": 11597.52, + "probability": 0.9973 + }, + { + "start": 11598.78, + "end": 11600.78, + "probability": 0.9922 + }, + { + "start": 11601.4, + "end": 11604.06, + "probability": 0.9825 + }, + { + "start": 11604.7, + "end": 11605.44, + "probability": 0.5133 + }, + { + "start": 11605.86, + "end": 11613.94, + "probability": 0.9711 + }, + { + "start": 11613.98, + "end": 11617.9, + "probability": 0.9889 + }, + { + "start": 11617.9, + "end": 11622.28, + "probability": 0.9253 + }, + { + "start": 11623.16, + "end": 11623.59, + "probability": 0.9504 + }, + { + "start": 11624.62, + "end": 11626.8, + "probability": 0.8646 + }, + { + "start": 11626.94, + "end": 11627.78, + "probability": 0.9111 + }, + { + "start": 11628.04, + "end": 11629.76, + "probability": 0.8794 + }, + { + "start": 11629.9, + "end": 11631.8, + "probability": 0.985 + }, + { + "start": 11632.2, + "end": 11633.66, + "probability": 0.9967 + }, + { + "start": 11634.26, + "end": 11637.44, + "probability": 0.9883 + }, + { + "start": 11638.04, + "end": 11639.5, + "probability": 0.4825 + }, + { + "start": 11639.82, + "end": 11640.58, + "probability": 0.9824 + }, + { + "start": 11641.34, + "end": 11643.37, + "probability": 0.6511 + }, + { + "start": 11644.3, + "end": 11646.92, + "probability": 0.945 + }, + { + "start": 11647.02, + "end": 11647.62, + "probability": 0.8265 + }, + { + "start": 11647.86, + "end": 11651.26, + "probability": 0.9919 + }, + { + "start": 11651.6, + "end": 11654.52, + "probability": 0.9966 + }, + { + "start": 11654.52, + "end": 11657.84, + "probability": 0.9188 + }, + { + "start": 11658.34, + "end": 11660.2, + "probability": 0.9687 + }, + { + "start": 11660.52, + "end": 11661.24, + "probability": 0.7104 + }, + { + "start": 11661.34, + "end": 11662.7, + "probability": 0.6841 + }, + { + "start": 11662.84, + "end": 11663.88, + "probability": 0.8269 + }, + { + "start": 11664.22, + "end": 11665.88, + "probability": 0.8563 + }, + { + "start": 11666.7, + "end": 11669.92, + "probability": 0.936 + }, + { + "start": 11670.82, + "end": 11675.94, + "probability": 0.9955 + }, + { + "start": 11679.8, + "end": 11683.38, + "probability": 0.9056 + }, + { + "start": 11684.44, + "end": 11685.22, + "probability": 0.3927 + }, + { + "start": 11686.8, + "end": 11689.2, + "probability": 0.2001 + }, + { + "start": 11689.48, + "end": 11692.06, + "probability": 0.6682 + }, + { + "start": 11695.78, + "end": 11696.34, + "probability": 0.0243 + }, + { + "start": 11696.34, + "end": 11696.7, + "probability": 0.1977 + }, + { + "start": 11696.7, + "end": 11698.66, + "probability": 0.5047 + }, + { + "start": 11698.82, + "end": 11701.62, + "probability": 0.2412 + }, + { + "start": 11702.0, + "end": 11707.7, + "probability": 0.981 + }, + { + "start": 11707.8, + "end": 11707.94, + "probability": 0.7105 + }, + { + "start": 11707.98, + "end": 11710.58, + "probability": 0.7329 + }, + { + "start": 11711.22, + "end": 11712.94, + "probability": 0.5064 + }, + { + "start": 11713.0, + "end": 11713.0, + "probability": 0.4132 + }, + { + "start": 11713.0, + "end": 11713.04, + "probability": 0.2216 + }, + { + "start": 11713.04, + "end": 11714.52, + "probability": 0.7021 + }, + { + "start": 11714.62, + "end": 11715.74, + "probability": 0.4353 + }, + { + "start": 11716.18, + "end": 11720.62, + "probability": 0.1646 + }, + { + "start": 11721.64, + "end": 11721.7, + "probability": 0.0404 + }, + { + "start": 11721.7, + "end": 11721.7, + "probability": 0.0581 + }, + { + "start": 11721.7, + "end": 11721.7, + "probability": 0.0211 + }, + { + "start": 11721.7, + "end": 11723.66, + "probability": 0.6711 + }, + { + "start": 11724.88, + "end": 11726.52, + "probability": 0.6025 + }, + { + "start": 11726.58, + "end": 11727.7, + "probability": 0.6796 + }, + { + "start": 11730.74, + "end": 11730.74, + "probability": 0.2905 + }, + { + "start": 11730.74, + "end": 11730.74, + "probability": 0.4163 + }, + { + "start": 11730.82, + "end": 11734.04, + "probability": 0.5666 + }, + { + "start": 11737.12, + "end": 11741.16, + "probability": 0.6093 + }, + { + "start": 11751.6, + "end": 11751.8, + "probability": 0.8459 + }, + { + "start": 11752.54, + "end": 11753.54, + "probability": 0.7403 + }, + { + "start": 11753.7, + "end": 11754.32, + "probability": 0.9117 + }, + { + "start": 11754.52, + "end": 11755.9, + "probability": 0.7695 + }, + { + "start": 11756.02, + "end": 11758.12, + "probability": 0.8856 + }, + { + "start": 11758.3, + "end": 11759.92, + "probability": 0.981 + }, + { + "start": 11760.76, + "end": 11762.03, + "probability": 0.8435 + }, + { + "start": 11764.1, + "end": 11768.22, + "probability": 0.8781 + }, + { + "start": 11768.48, + "end": 11770.2, + "probability": 0.6694 + }, + { + "start": 11771.72, + "end": 11773.42, + "probability": 0.9855 + }, + { + "start": 11774.56, + "end": 11778.48, + "probability": 0.6907 + }, + { + "start": 11779.2, + "end": 11780.53, + "probability": 0.8483 + }, + { + "start": 11781.98, + "end": 11784.78, + "probability": 0.8241 + }, + { + "start": 11785.76, + "end": 11788.3, + "probability": 0.968 + }, + { + "start": 11789.24, + "end": 11792.32, + "probability": 0.7578 + }, + { + "start": 11794.14, + "end": 11797.04, + "probability": 0.8397 + }, + { + "start": 11799.02, + "end": 11799.12, + "probability": 0.0224 + }, + { + "start": 11799.12, + "end": 11804.36, + "probability": 0.941 + }, + { + "start": 11805.22, + "end": 11807.1, + "probability": 0.6217 + }, + { + "start": 11808.14, + "end": 11811.44, + "probability": 0.1335 + }, + { + "start": 11811.78, + "end": 11812.94, + "probability": 0.5838 + }, + { + "start": 11813.02, + "end": 11814.38, + "probability": 0.8317 + }, + { + "start": 11814.38, + "end": 11814.58, + "probability": 0.0872 + }, + { + "start": 11817.68, + "end": 11819.62, + "probability": 0.1243 + }, + { + "start": 11820.06, + "end": 11823.08, + "probability": 0.6973 + }, + { + "start": 11824.06, + "end": 11827.84, + "probability": 0.8952 + }, + { + "start": 11829.72, + "end": 11831.62, + "probability": 0.9202 + }, + { + "start": 11831.8, + "end": 11833.76, + "probability": 0.9246 + }, + { + "start": 11833.88, + "end": 11834.49, + "probability": 0.8978 + }, + { + "start": 11835.48, + "end": 11838.46, + "probability": 0.9563 + }, + { + "start": 11839.38, + "end": 11841.48, + "probability": 0.9214 + }, + { + "start": 11841.7, + "end": 11847.7, + "probability": 0.9801 + }, + { + "start": 11847.9, + "end": 11852.04, + "probability": 0.902 + }, + { + "start": 11852.7, + "end": 11854.84, + "probability": 0.669 + }, + { + "start": 11856.08, + "end": 11858.1, + "probability": 0.6864 + }, + { + "start": 11858.22, + "end": 11860.06, + "probability": 0.7484 + }, + { + "start": 11860.16, + "end": 11863.5, + "probability": 0.9674 + }, + { + "start": 11863.68, + "end": 11865.0, + "probability": 0.9041 + }, + { + "start": 11865.42, + "end": 11867.74, + "probability": 0.9915 + }, + { + "start": 11868.78, + "end": 11869.16, + "probability": 0.6084 + }, + { + "start": 11869.24, + "end": 11871.4, + "probability": 0.9791 + }, + { + "start": 11871.7, + "end": 11872.94, + "probability": 0.7921 + }, + { + "start": 11873.62, + "end": 11876.16, + "probability": 0.9172 + }, + { + "start": 11876.94, + "end": 11880.53, + "probability": 0.9871 + }, + { + "start": 11880.74, + "end": 11881.28, + "probability": 0.9716 + }, + { + "start": 11881.44, + "end": 11882.1, + "probability": 0.9531 + }, + { + "start": 11882.98, + "end": 11885.32, + "probability": 0.9927 + }, + { + "start": 11886.48, + "end": 11890.4, + "probability": 0.9395 + }, + { + "start": 11891.02, + "end": 11893.2, + "probability": 0.8472 + }, + { + "start": 11893.84, + "end": 11896.52, + "probability": 0.9061 + }, + { + "start": 11896.6, + "end": 11896.88, + "probability": 0.8558 + }, + { + "start": 11897.8, + "end": 11898.44, + "probability": 0.7377 + }, + { + "start": 11900.04, + "end": 11903.3, + "probability": 0.8496 + }, + { + "start": 11904.52, + "end": 11905.02, + "probability": 0.4411 + }, + { + "start": 11906.62, + "end": 11908.22, + "probability": 0.4514 + }, + { + "start": 11909.8, + "end": 11912.66, + "probability": 0.8658 + }, + { + "start": 11913.52, + "end": 11914.24, + "probability": 0.6934 + }, + { + "start": 11914.76, + "end": 11918.38, + "probability": 0.7383 + }, + { + "start": 11928.22, + "end": 11929.5, + "probability": 0.0454 + }, + { + "start": 11930.06, + "end": 11932.7, + "probability": 0.7647 + }, + { + "start": 11934.24, + "end": 11936.72, + "probability": 0.3953 + }, + { + "start": 11940.24, + "end": 11943.76, + "probability": 0.5705 + }, + { + "start": 11943.98, + "end": 11944.54, + "probability": 0.8498 + }, + { + "start": 11944.66, + "end": 11946.1, + "probability": 0.7616 + }, + { + "start": 11946.54, + "end": 11949.58, + "probability": 0.8177 + }, + { + "start": 11950.32, + "end": 11952.12, + "probability": 0.9919 + }, + { + "start": 11952.82, + "end": 11955.66, + "probability": 0.9839 + }, + { + "start": 11957.34, + "end": 11958.5, + "probability": 0.9597 + }, + { + "start": 11960.06, + "end": 11961.22, + "probability": 0.9574 + }, + { + "start": 11962.48, + "end": 11962.78, + "probability": 0.6239 + }, + { + "start": 11962.92, + "end": 11964.68, + "probability": 0.7532 + }, + { + "start": 11965.02, + "end": 11967.18, + "probability": 0.9917 + }, + { + "start": 11967.32, + "end": 11968.18, + "probability": 0.9285 + }, + { + "start": 11969.22, + "end": 11971.54, + "probability": 0.9736 + }, + { + "start": 11972.22, + "end": 11972.96, + "probability": 0.9507 + }, + { + "start": 11973.6, + "end": 11979.96, + "probability": 0.7762 + }, + { + "start": 11980.2, + "end": 11981.01, + "probability": 0.9933 + }, + { + "start": 11981.6, + "end": 11982.48, + "probability": 0.6817 + }, + { + "start": 11982.56, + "end": 11984.5, + "probability": 0.9319 + }, + { + "start": 11985.06, + "end": 11986.02, + "probability": 0.7768 + }, + { + "start": 11986.12, + "end": 11987.0, + "probability": 0.9809 + }, + { + "start": 11987.48, + "end": 11990.0, + "probability": 0.4929 + }, + { + "start": 11990.62, + "end": 11991.84, + "probability": 0.7907 + }, + { + "start": 11992.82, + "end": 11997.36, + "probability": 0.8741 + }, + { + "start": 11997.44, + "end": 11999.71, + "probability": 0.9046 + }, + { + "start": 12001.44, + "end": 12002.58, + "probability": 0.9071 + }, + { + "start": 12002.74, + "end": 12005.56, + "probability": 0.9474 + }, + { + "start": 12005.66, + "end": 12008.64, + "probability": 0.9165 + }, + { + "start": 12009.22, + "end": 12010.0, + "probability": 0.9961 + }, + { + "start": 12010.78, + "end": 12012.44, + "probability": 0.9717 + }, + { + "start": 12012.54, + "end": 12013.74, + "probability": 0.7939 + }, + { + "start": 12013.78, + "end": 12013.98, + "probability": 0.007 + }, + { + "start": 12014.04, + "end": 12014.16, + "probability": 0.0238 + }, + { + "start": 12014.16, + "end": 12014.78, + "probability": 0.082 + }, + { + "start": 12014.78, + "end": 12015.42, + "probability": 0.5834 + }, + { + "start": 12015.42, + "end": 12016.88, + "probability": 0.9718 + }, + { + "start": 12017.22, + "end": 12017.34, + "probability": 0.6385 + }, + { + "start": 12018.28, + "end": 12019.96, + "probability": 0.976 + }, + { + "start": 12020.58, + "end": 12021.53, + "probability": 0.8293 + }, + { + "start": 12023.1, + "end": 12026.2, + "probability": 0.985 + }, + { + "start": 12027.28, + "end": 12030.04, + "probability": 0.8941 + }, + { + "start": 12030.56, + "end": 12032.8, + "probability": 0.5581 + }, + { + "start": 12034.96, + "end": 12037.98, + "probability": 0.7943 + }, + { + "start": 12038.52, + "end": 12040.24, + "probability": 0.9962 + }, + { + "start": 12040.32, + "end": 12043.52, + "probability": 0.998 + }, + { + "start": 12044.38, + "end": 12046.78, + "probability": 0.7241 + }, + { + "start": 12047.42, + "end": 12047.84, + "probability": 0.8046 + }, + { + "start": 12047.86, + "end": 12050.58, + "probability": 0.9297 + }, + { + "start": 12051.02, + "end": 12055.8, + "probability": 0.9649 + }, + { + "start": 12055.92, + "end": 12057.26, + "probability": 0.778 + }, + { + "start": 12057.86, + "end": 12059.14, + "probability": 0.9268 + }, + { + "start": 12059.24, + "end": 12061.06, + "probability": 0.9792 + }, + { + "start": 12061.16, + "end": 12063.56, + "probability": 0.7198 + }, + { + "start": 12063.66, + "end": 12064.34, + "probability": 0.71 + }, + { + "start": 12065.32, + "end": 12067.2, + "probability": 0.7562 + }, + { + "start": 12068.14, + "end": 12070.18, + "probability": 0.8774 + }, + { + "start": 12070.28, + "end": 12070.9, + "probability": 0.4082 + }, + { + "start": 12071.4, + "end": 12072.18, + "probability": 0.5593 + }, + { + "start": 12072.3, + "end": 12072.86, + "probability": 0.8447 + }, + { + "start": 12072.96, + "end": 12073.7, + "probability": 0.9116 + }, + { + "start": 12073.76, + "end": 12074.81, + "probability": 0.5885 + }, + { + "start": 12076.94, + "end": 12077.6, + "probability": 0.952 + }, + { + "start": 12077.84, + "end": 12079.2, + "probability": 0.9448 + }, + { + "start": 12079.32, + "end": 12080.92, + "probability": 0.708 + }, + { + "start": 12081.28, + "end": 12081.42, + "probability": 0.474 + }, + { + "start": 12081.42, + "end": 12082.69, + "probability": 0.6797 + }, + { + "start": 12082.82, + "end": 12083.06, + "probability": 0.1644 + }, + { + "start": 12083.06, + "end": 12083.59, + "probability": 0.6546 + }, + { + "start": 12084.42, + "end": 12085.48, + "probability": 0.8972 + }, + { + "start": 12086.08, + "end": 12087.06, + "probability": 0.8692 + }, + { + "start": 12087.06, + "end": 12087.29, + "probability": 0.0583 + }, + { + "start": 12087.66, + "end": 12088.72, + "probability": 0.8381 + }, + { + "start": 12088.9, + "end": 12090.12, + "probability": 0.5123 + }, + { + "start": 12095.58, + "end": 12096.18, + "probability": 0.0372 + }, + { + "start": 12096.26, + "end": 12100.7, + "probability": 0.0743 + }, + { + "start": 12101.06, + "end": 12105.62, + "probability": 0.271 + }, + { + "start": 12110.12, + "end": 12110.8, + "probability": 0.2472 + }, + { + "start": 12110.8, + "end": 12112.56, + "probability": 0.1085 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12194.0, + "end": 12194.0, + "probability": 0.0 + }, + { + "start": 12196.86, + "end": 12197.42, + "probability": 0.1065 + }, + { + "start": 12197.98, + "end": 12198.2, + "probability": 0.0377 + }, + { + "start": 12198.2, + "end": 12199.32, + "probability": 0.8318 + }, + { + "start": 12199.68, + "end": 12200.58, + "probability": 0.733 + }, + { + "start": 12200.84, + "end": 12201.4, + "probability": 0.4623 + }, + { + "start": 12201.44, + "end": 12201.6, + "probability": 0.6823 + }, + { + "start": 12201.62, + "end": 12202.08, + "probability": 0.8188 + }, + { + "start": 12202.18, + "end": 12203.36, + "probability": 0.8594 + }, + { + "start": 12203.6, + "end": 12204.16, + "probability": 0.0018 + }, + { + "start": 12204.24, + "end": 12204.78, + "probability": 0.7063 + }, + { + "start": 12204.9, + "end": 12207.4, + "probability": 0.4997 + }, + { + "start": 12207.4, + "end": 12209.24, + "probability": 0.7632 + }, + { + "start": 12209.58, + "end": 12209.96, + "probability": 0.868 + }, + { + "start": 12210.04, + "end": 12212.66, + "probability": 0.976 + }, + { + "start": 12212.82, + "end": 12213.06, + "probability": 0.8764 + }, + { + "start": 12213.28, + "end": 12214.12, + "probability": 0.8149 + }, + { + "start": 12214.34, + "end": 12215.54, + "probability": 0.9956 + }, + { + "start": 12215.74, + "end": 12216.12, + "probability": 0.856 + }, + { + "start": 12216.64, + "end": 12218.9, + "probability": 0.7692 + }, + { + "start": 12219.0, + "end": 12222.8, + "probability": 0.8999 + }, + { + "start": 12222.96, + "end": 12224.05, + "probability": 0.9382 + }, + { + "start": 12224.78, + "end": 12224.78, + "probability": 0.284 + }, + { + "start": 12224.78, + "end": 12225.62, + "probability": 0.6523 + }, + { + "start": 12225.82, + "end": 12226.43, + "probability": 0.9141 + }, + { + "start": 12227.3, + "end": 12228.96, + "probability": 0.9842 + }, + { + "start": 12229.44, + "end": 12231.19, + "probability": 0.9873 + }, + { + "start": 12231.34, + "end": 12232.08, + "probability": 0.9812 + }, + { + "start": 12232.36, + "end": 12236.54, + "probability": 0.9839 + }, + { + "start": 12237.04, + "end": 12238.96, + "probability": 0.9847 + }, + { + "start": 12239.12, + "end": 12239.86, + "probability": 0.8266 + }, + { + "start": 12240.16, + "end": 12241.26, + "probability": 0.6592 + }, + { + "start": 12241.36, + "end": 12242.31, + "probability": 0.9146 + }, + { + "start": 12242.78, + "end": 12244.24, + "probability": 0.9749 + }, + { + "start": 12244.84, + "end": 12245.78, + "probability": 0.8245 + }, + { + "start": 12245.9, + "end": 12249.12, + "probability": 0.9192 + }, + { + "start": 12249.12, + "end": 12251.7, + "probability": 0.993 + }, + { + "start": 12252.26, + "end": 12256.5, + "probability": 0.9995 + }, + { + "start": 12257.32, + "end": 12259.7, + "probability": 0.9917 + }, + { + "start": 12260.42, + "end": 12265.48, + "probability": 0.9981 + }, + { + "start": 12265.48, + "end": 12269.86, + "probability": 0.9971 + }, + { + "start": 12270.02, + "end": 12270.36, + "probability": 0.3401 + }, + { + "start": 12270.4, + "end": 12271.55, + "probability": 0.7926 + }, + { + "start": 12272.02, + "end": 12272.6, + "probability": 0.7191 + }, + { + "start": 12272.68, + "end": 12273.36, + "probability": 0.7384 + }, + { + "start": 12273.78, + "end": 12274.54, + "probability": 0.7535 + }, + { + "start": 12274.9, + "end": 12276.78, + "probability": 0.9112 + }, + { + "start": 12277.9, + "end": 12278.7, + "probability": 0.6417 + }, + { + "start": 12278.72, + "end": 12281.62, + "probability": 0.9843 + }, + { + "start": 12282.26, + "end": 12283.32, + "probability": 0.9963 + }, + { + "start": 12283.84, + "end": 12286.74, + "probability": 0.9801 + }, + { + "start": 12287.28, + "end": 12288.92, + "probability": 0.7255 + }, + { + "start": 12289.64, + "end": 12290.98, + "probability": 0.8174 + }, + { + "start": 12292.16, + "end": 12294.62, + "probability": 0.9688 + }, + { + "start": 12294.96, + "end": 12296.56, + "probability": 0.9229 + }, + { + "start": 12296.9, + "end": 12297.92, + "probability": 0.8867 + }, + { + "start": 12298.12, + "end": 12301.14, + "probability": 0.9829 + }, + { + "start": 12301.54, + "end": 12302.36, + "probability": 0.959 + }, + { + "start": 12302.54, + "end": 12303.42, + "probability": 0.7967 + }, + { + "start": 12303.76, + "end": 12305.09, + "probability": 0.998 + }, + { + "start": 12305.1, + "end": 12305.34, + "probability": 0.7905 + }, + { + "start": 12305.82, + "end": 12306.62, + "probability": 0.7773 + }, + { + "start": 12307.44, + "end": 12308.64, + "probability": 0.6391 + }, + { + "start": 12308.72, + "end": 12309.34, + "probability": 0.4605 + }, + { + "start": 12309.42, + "end": 12309.66, + "probability": 0.7064 + }, + { + "start": 12309.78, + "end": 12310.84, + "probability": 0.7326 + }, + { + "start": 12311.12, + "end": 12311.84, + "probability": 0.8503 + }, + { + "start": 12313.64, + "end": 12315.44, + "probability": 0.381 + }, + { + "start": 12317.54, + "end": 12317.64, + "probability": 0.3178 + }, + { + "start": 12317.64, + "end": 12318.98, + "probability": 0.4185 + }, + { + "start": 12320.12, + "end": 12321.12, + "probability": 0.1072 + }, + { + "start": 12321.94, + "end": 12324.48, + "probability": 0.6076 + }, + { + "start": 12325.92, + "end": 12326.38, + "probability": 0.6098 + }, + { + "start": 12327.12, + "end": 12327.9, + "probability": 0.6435 + }, + { + "start": 12328.48, + "end": 12330.68, + "probability": 0.6682 + }, + { + "start": 12330.74, + "end": 12333.28, + "probability": 0.6783 + }, + { + "start": 12334.16, + "end": 12337.54, + "probability": 0.9907 + }, + { + "start": 12338.8, + "end": 12344.34, + "probability": 0.9776 + }, + { + "start": 12345.1, + "end": 12348.68, + "probability": 0.9928 + }, + { + "start": 12349.74, + "end": 12352.2, + "probability": 0.9882 + }, + { + "start": 12353.22, + "end": 12356.2, + "probability": 0.953 + }, + { + "start": 12356.66, + "end": 12357.18, + "probability": 0.6973 + }, + { + "start": 12357.34, + "end": 12358.62, + "probability": 0.8941 + }, + { + "start": 12359.96, + "end": 12361.96, + "probability": 0.6806 + }, + { + "start": 12362.92, + "end": 12365.0, + "probability": 0.9149 + }, + { + "start": 12365.52, + "end": 12366.42, + "probability": 0.9359 + }, + { + "start": 12367.32, + "end": 12369.06, + "probability": 0.9872 + }, + { + "start": 12369.8, + "end": 12371.32, + "probability": 0.9353 + }, + { + "start": 12372.2, + "end": 12377.26, + "probability": 0.9931 + }, + { + "start": 12377.4, + "end": 12378.42, + "probability": 0.7808 + }, + { + "start": 12379.02, + "end": 12382.8, + "probability": 0.9019 + }, + { + "start": 12383.36, + "end": 12385.04, + "probability": 0.9697 + }, + { + "start": 12385.66, + "end": 12386.56, + "probability": 0.7844 + }, + { + "start": 12387.94, + "end": 12390.7, + "probability": 0.9911 + }, + { + "start": 12390.88, + "end": 12397.38, + "probability": 0.9876 + }, + { + "start": 12397.64, + "end": 12399.8, + "probability": 0.6725 + }, + { + "start": 12401.0, + "end": 12401.36, + "probability": 0.7227 + }, + { + "start": 12401.5, + "end": 12403.88, + "probability": 0.8441 + }, + { + "start": 12403.94, + "end": 12405.0, + "probability": 0.9021 + }, + { + "start": 12405.14, + "end": 12406.42, + "probability": 0.98 + }, + { + "start": 12407.24, + "end": 12409.54, + "probability": 0.9832 + }, + { + "start": 12410.04, + "end": 12413.06, + "probability": 0.8714 + }, + { + "start": 12413.7, + "end": 12417.36, + "probability": 0.9314 + }, + { + "start": 12417.56, + "end": 12421.36, + "probability": 0.9795 + }, + { + "start": 12422.16, + "end": 12425.32, + "probability": 0.8879 + }, + { + "start": 12425.86, + "end": 12428.09, + "probability": 0.9703 + }, + { + "start": 12429.46, + "end": 12429.78, + "probability": 0.0145 + }, + { + "start": 12429.78, + "end": 12431.58, + "probability": 0.8495 + }, + { + "start": 12432.64, + "end": 12437.36, + "probability": 0.9896 + }, + { + "start": 12437.84, + "end": 12440.6, + "probability": 0.9995 + }, + { + "start": 12441.18, + "end": 12442.56, + "probability": 0.751 + }, + { + "start": 12442.56, + "end": 12446.82, + "probability": 0.99 + }, + { + "start": 12447.38, + "end": 12449.46, + "probability": 0.9653 + }, + { + "start": 12450.04, + "end": 12451.0, + "probability": 0.8434 + }, + { + "start": 12451.66, + "end": 12454.62, + "probability": 0.9626 + }, + { + "start": 12454.66, + "end": 12455.48, + "probability": 0.9214 + }, + { + "start": 12455.56, + "end": 12456.26, + "probability": 0.7168 + }, + { + "start": 12457.18, + "end": 12458.96, + "probability": 0.9273 + }, + { + "start": 12459.68, + "end": 12463.42, + "probability": 0.8732 + }, + { + "start": 12464.16, + "end": 12466.96, + "probability": 0.9964 + }, + { + "start": 12467.82, + "end": 12470.3, + "probability": 0.8991 + }, + { + "start": 12470.5, + "end": 12472.82, + "probability": 0.9851 + }, + { + "start": 12473.4, + "end": 12474.4, + "probability": 0.8267 + }, + { + "start": 12474.94, + "end": 12477.48, + "probability": 0.939 + }, + { + "start": 12477.98, + "end": 12482.12, + "probability": 0.9385 + }, + { + "start": 12482.86, + "end": 12486.24, + "probability": 0.9166 + }, + { + "start": 12486.76, + "end": 12488.18, + "probability": 0.8831 + }, + { + "start": 12488.24, + "end": 12489.78, + "probability": 0.9832 + }, + { + "start": 12489.86, + "end": 12493.02, + "probability": 0.885 + }, + { + "start": 12493.04, + "end": 12495.62, + "probability": 0.963 + }, + { + "start": 12496.26, + "end": 12496.36, + "probability": 0.1795 + }, + { + "start": 12497.04, + "end": 12497.16, + "probability": 0.4257 + }, + { + "start": 12497.7, + "end": 12498.56, + "probability": 0.939 + }, + { + "start": 12498.78, + "end": 12500.54, + "probability": 0.9814 + }, + { + "start": 12500.66, + "end": 12501.96, + "probability": 0.8251 + }, + { + "start": 12502.16, + "end": 12510.64, + "probability": 0.9663 + }, + { + "start": 12510.76, + "end": 12511.98, + "probability": 0.9285 + }, + { + "start": 12512.12, + "end": 12519.38, + "probability": 0.9904 + }, + { + "start": 12519.44, + "end": 12525.04, + "probability": 0.9933 + }, + { + "start": 12525.34, + "end": 12526.3, + "probability": 0.8187 + }, + { + "start": 12526.66, + "end": 12527.72, + "probability": 0.8042 + }, + { + "start": 12528.0, + "end": 12529.44, + "probability": 0.9414 + }, + { + "start": 12530.28, + "end": 12531.04, + "probability": 0.7555 + }, + { + "start": 12531.72, + "end": 12533.64, + "probability": 0.5381 + }, + { + "start": 12534.3, + "end": 12536.64, + "probability": 0.7083 + }, + { + "start": 12536.8, + "end": 12537.5, + "probability": 0.9239 + }, + { + "start": 12539.62, + "end": 12543.42, + "probability": 0.4707 + }, + { + "start": 12544.9, + "end": 12546.6, + "probability": 0.9663 + }, + { + "start": 12550.32, + "end": 12551.06, + "probability": 0.8862 + }, + { + "start": 12551.08, + "end": 12551.74, + "probability": 0.6056 + }, + { + "start": 12551.94, + "end": 12552.9, + "probability": 0.872 + }, + { + "start": 12552.9, + "end": 12552.9, + "probability": 0.0415 + }, + { + "start": 12553.06, + "end": 12555.4, + "probability": 0.8716 + }, + { + "start": 12555.48, + "end": 12557.52, + "probability": 0.9528 + }, + { + "start": 12559.14, + "end": 12560.12, + "probability": 0.9182 + }, + { + "start": 12561.14, + "end": 12563.06, + "probability": 0.9891 + }, + { + "start": 12564.42, + "end": 12567.26, + "probability": 0.6929 + }, + { + "start": 12569.08, + "end": 12569.74, + "probability": 0.6008 + }, + { + "start": 12570.92, + "end": 12571.48, + "probability": 0.7881 + }, + { + "start": 12572.84, + "end": 12574.1, + "probability": 0.9773 + }, + { + "start": 12575.08, + "end": 12575.22, + "probability": 0.0469 + }, + { + "start": 12577.36, + "end": 12579.44, + "probability": 0.5919 + }, + { + "start": 12580.17, + "end": 12583.11, + "probability": 0.8173 + }, + { + "start": 12584.06, + "end": 12584.92, + "probability": 0.7073 + }, + { + "start": 12585.8, + "end": 12589.43, + "probability": 0.5395 + }, + { + "start": 12591.04, + "end": 12591.86, + "probability": 0.5046 + }, + { + "start": 12593.0, + "end": 12594.06, + "probability": 0.9907 + }, + { + "start": 12595.58, + "end": 12599.36, + "probability": 0.9458 + }, + { + "start": 12600.9, + "end": 12607.0, + "probability": 0.9796 + }, + { + "start": 12607.62, + "end": 12608.88, + "probability": 0.6697 + }, + { + "start": 12608.96, + "end": 12609.92, + "probability": 0.8636 + }, + { + "start": 12610.62, + "end": 12612.5, + "probability": 0.9937 + }, + { + "start": 12613.42, + "end": 12618.7, + "probability": 0.945 + }, + { + "start": 12619.48, + "end": 12623.42, + "probability": 0.9795 + }, + { + "start": 12624.0, + "end": 12625.0, + "probability": 0.9891 + }, + { + "start": 12627.0, + "end": 12627.28, + "probability": 0.5428 + }, + { + "start": 12627.4, + "end": 12629.34, + "probability": 0.9692 + }, + { + "start": 12629.8, + "end": 12633.36, + "probability": 0.9458 + }, + { + "start": 12633.7, + "end": 12635.08, + "probability": 0.7492 + }, + { + "start": 12635.84, + "end": 12637.8, + "probability": 0.7827 + }, + { + "start": 12638.72, + "end": 12639.86, + "probability": 0.8468 + }, + { + "start": 12641.1, + "end": 12642.76, + "probability": 0.9978 + }, + { + "start": 12644.0, + "end": 12647.92, + "probability": 0.8643 + }, + { + "start": 12648.64, + "end": 12652.04, + "probability": 0.9292 + }, + { + "start": 12653.76, + "end": 12654.72, + "probability": 0.9966 + }, + { + "start": 12655.36, + "end": 12656.44, + "probability": 0.5957 + }, + { + "start": 12657.58, + "end": 12658.6, + "probability": 0.7386 + }, + { + "start": 12659.78, + "end": 12662.42, + "probability": 0.995 + }, + { + "start": 12663.76, + "end": 12665.59, + "probability": 0.8979 + }, + { + "start": 12666.86, + "end": 12669.36, + "probability": 0.7317 + }, + { + "start": 12670.02, + "end": 12670.2, + "probability": 0.4671 + }, + { + "start": 12671.64, + "end": 12675.32, + "probability": 0.8887 + }, + { + "start": 12675.86, + "end": 12677.5, + "probability": 0.9663 + }, + { + "start": 12679.38, + "end": 12680.82, + "probability": 0.8419 + }, + { + "start": 12681.58, + "end": 12682.88, + "probability": 0.8761 + }, + { + "start": 12684.12, + "end": 12685.64, + "probability": 0.7798 + }, + { + "start": 12686.54, + "end": 12689.68, + "probability": 0.9753 + }, + { + "start": 12690.64, + "end": 12693.68, + "probability": 0.9873 + }, + { + "start": 12695.12, + "end": 12695.8, + "probability": 0.9675 + }, + { + "start": 12696.82, + "end": 12699.3, + "probability": 0.9985 + }, + { + "start": 12700.18, + "end": 12704.6, + "probability": 0.9985 + }, + { + "start": 12704.8, + "end": 12707.12, + "probability": 0.7067 + }, + { + "start": 12707.54, + "end": 12710.12, + "probability": 0.96 + }, + { + "start": 12710.72, + "end": 12711.78, + "probability": 0.5516 + }, + { + "start": 12712.02, + "end": 12713.26, + "probability": 0.7935 + }, + { + "start": 12713.94, + "end": 12715.6, + "probability": 0.9217 + }, + { + "start": 12716.8, + "end": 12720.16, + "probability": 0.7092 + }, + { + "start": 12720.88, + "end": 12723.16, + "probability": 0.9449 + }, + { + "start": 12725.02, + "end": 12727.72, + "probability": 0.9964 + }, + { + "start": 12728.7, + "end": 12731.08, + "probability": 0.978 + }, + { + "start": 12731.76, + "end": 12735.7, + "probability": 0.8985 + }, + { + "start": 12736.28, + "end": 12737.94, + "probability": 0.9814 + }, + { + "start": 12738.46, + "end": 12740.46, + "probability": 0.8138 + }, + { + "start": 12741.94, + "end": 12743.58, + "probability": 0.8932 + }, + { + "start": 12744.72, + "end": 12749.06, + "probability": 0.9513 + }, + { + "start": 12749.64, + "end": 12751.36, + "probability": 0.7647 + }, + { + "start": 12752.02, + "end": 12752.24, + "probability": 0.7095 + }, + { + "start": 12752.28, + "end": 12753.88, + "probability": 0.6254 + }, + { + "start": 12754.76, + "end": 12758.48, + "probability": 0.7787 + }, + { + "start": 12758.52, + "end": 12758.64, + "probability": 0.5128 + }, + { + "start": 12758.64, + "end": 12764.04, + "probability": 0.8923 + }, + { + "start": 12764.36, + "end": 12764.72, + "probability": 0.7807 + }, + { + "start": 12764.88, + "end": 12769.32, + "probability": 0.9265 + }, + { + "start": 12769.76, + "end": 12771.52, + "probability": 0.7097 + }, + { + "start": 12772.3, + "end": 12773.26, + "probability": 0.9996 + }, + { + "start": 12774.16, + "end": 12775.6, + "probability": 0.9119 + }, + { + "start": 12776.52, + "end": 12778.14, + "probability": 0.6979 + }, + { + "start": 12779.06, + "end": 12782.33, + "probability": 0.9971 + }, + { + "start": 12782.99, + "end": 12789.03, + "probability": 0.743 + }, + { + "start": 12790.73, + "end": 12792.55, + "probability": 0.939 + }, + { + "start": 12793.51, + "end": 12795.53, + "probability": 0.9685 + }, + { + "start": 12796.21, + "end": 12796.77, + "probability": 0.7568 + }, + { + "start": 12796.91, + "end": 12797.29, + "probability": 0.8345 + }, + { + "start": 12797.33, + "end": 12798.43, + "probability": 0.9622 + }, + { + "start": 12800.76, + "end": 12801.07, + "probability": 0.0173 + }, + { + "start": 12801.07, + "end": 12802.27, + "probability": 0.6557 + }, + { + "start": 12802.43, + "end": 12803.89, + "probability": 0.5901 + }, + { + "start": 12803.89, + "end": 12805.52, + "probability": 0.8242 + }, + { + "start": 12806.01, + "end": 12808.07, + "probability": 0.8638 + }, + { + "start": 12808.71, + "end": 12811.43, + "probability": 0.9551 + }, + { + "start": 12811.95, + "end": 12812.71, + "probability": 0.9527 + }, + { + "start": 12812.79, + "end": 12815.27, + "probability": 0.9832 + }, + { + "start": 12816.33, + "end": 12819.33, + "probability": 0.5526 + }, + { + "start": 12820.03, + "end": 12821.67, + "probability": 0.8418 + }, + { + "start": 12822.35, + "end": 12823.31, + "probability": 0.8918 + }, + { + "start": 12824.01, + "end": 12825.19, + "probability": 0.9263 + }, + { + "start": 12827.29, + "end": 12828.25, + "probability": 0.7524 + }, + { + "start": 12829.09, + "end": 12830.38, + "probability": 0.9888 + }, + { + "start": 12859.79, + "end": 12863.23, + "probability": 0.3391 + }, + { + "start": 12863.85, + "end": 12868.51, + "probability": 0.5397 + }, + { + "start": 12872.97, + "end": 12878.29, + "probability": 0.5276 + }, + { + "start": 12880.05, + "end": 12881.25, + "probability": 0.1048 + }, + { + "start": 12887.17, + "end": 12890.59, + "probability": 0.0123 + }, + { + "start": 12892.77, + "end": 12893.97, + "probability": 0.0776 + }, + { + "start": 12894.49, + "end": 12895.91, + "probability": 0.2069 + }, + { + "start": 12896.56, + "end": 12900.77, + "probability": 0.0494 + }, + { + "start": 12900.77, + "end": 12902.01, + "probability": 0.0388 + }, + { + "start": 12902.01, + "end": 12902.39, + "probability": 0.0875 + }, + { + "start": 12902.39, + "end": 12902.45, + "probability": 0.527 + }, + { + "start": 12902.45, + "end": 12903.54, + "probability": 0.0864 + }, + { + "start": 12905.0, + "end": 12905.0, + "probability": 0.0 + }, + { + "start": 12906.66, + "end": 12906.9, + "probability": 0.0 + }, + { + "start": 12910.05, + "end": 12910.96, + "probability": 0.0354 + }, + { + "start": 12911.34, + "end": 12912.48, + "probability": 0.0304 + }, + { + "start": 12912.48, + "end": 12912.48, + "probability": 0.0192 + }, + { + "start": 12912.48, + "end": 12912.48, + "probability": 0.1078 + }, + { + "start": 12912.66, + "end": 12917.18, + "probability": 0.2011 + }, + { + "start": 12918.84, + "end": 12920.05, + "probability": 0.5142 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.0, + "end": 13033.0, + "probability": 0.0 + }, + { + "start": 13033.58, + "end": 13035.06, + "probability": 0.0256 + }, + { + "start": 13035.06, + "end": 13035.06, + "probability": 0.0481 + }, + { + "start": 13035.06, + "end": 13035.06, + "probability": 0.0948 + }, + { + "start": 13035.06, + "end": 13036.82, + "probability": 0.6289 + }, + { + "start": 13037.0, + "end": 13038.56, + "probability": 0.7242 + }, + { + "start": 13039.32, + "end": 13043.14, + "probability": 0.8977 + }, + { + "start": 13043.14, + "end": 13043.5, + "probability": 0.5255 + }, + { + "start": 13043.9, + "end": 13045.62, + "probability": 0.92 + }, + { + "start": 13046.2, + "end": 13050.8, + "probability": 0.9839 + }, + { + "start": 13050.8, + "end": 13055.82, + "probability": 0.9951 + }, + { + "start": 13056.24, + "end": 13059.8, + "probability": 0.9265 + }, + { + "start": 13060.68, + "end": 13062.04, + "probability": 0.8535 + }, + { + "start": 13062.26, + "end": 13063.34, + "probability": 0.9614 + }, + { + "start": 13064.12, + "end": 13064.88, + "probability": 0.1396 + }, + { + "start": 13067.52, + "end": 13068.84, + "probability": 0.4217 + }, + { + "start": 13068.84, + "end": 13068.86, + "probability": 0.5963 + }, + { + "start": 13069.18, + "end": 13074.6, + "probability": 0.9689 + }, + { + "start": 13075.1, + "end": 13081.0, + "probability": 0.9884 + }, + { + "start": 13081.46, + "end": 13082.94, + "probability": 0.8479 + }, + { + "start": 13083.18, + "end": 13083.66, + "probability": 0.9367 + }, + { + "start": 13083.7, + "end": 13084.02, + "probability": 0.5708 + }, + { + "start": 13084.1, + "end": 13085.84, + "probability": 0.9624 + }, + { + "start": 13085.96, + "end": 13088.0, + "probability": 0.9961 + }, + { + "start": 13088.12, + "end": 13091.68, + "probability": 0.994 + }, + { + "start": 13092.14, + "end": 13096.28, + "probability": 0.9932 + }, + { + "start": 13096.28, + "end": 13100.84, + "probability": 0.9834 + }, + { + "start": 13101.36, + "end": 13102.96, + "probability": 0.5921 + }, + { + "start": 13103.28, + "end": 13106.0, + "probability": 0.981 + }, + { + "start": 13106.26, + "end": 13109.18, + "probability": 0.9971 + }, + { + "start": 13109.32, + "end": 13111.5, + "probability": 0.9866 + }, + { + "start": 13111.84, + "end": 13115.44, + "probability": 0.9507 + }, + { + "start": 13116.0, + "end": 13120.38, + "probability": 0.9711 + }, + { + "start": 13120.48, + "end": 13121.22, + "probability": 0.2846 + }, + { + "start": 13121.38, + "end": 13125.66, + "probability": 0.4669 + }, + { + "start": 13125.66, + "end": 13125.86, + "probability": 0.4849 + }, + { + "start": 13126.34, + "end": 13126.72, + "probability": 0.4929 + }, + { + "start": 13126.72, + "end": 13129.41, + "probability": 0.9934 + }, + { + "start": 13130.0, + "end": 13132.18, + "probability": 0.9552 + }, + { + "start": 13132.86, + "end": 13134.86, + "probability": 0.9941 + }, + { + "start": 13134.86, + "end": 13137.56, + "probability": 0.9805 + }, + { + "start": 13138.16, + "end": 13138.48, + "probability": 0.7604 + }, + { + "start": 13138.86, + "end": 13142.2, + "probability": 0.6251 + }, + { + "start": 13144.18, + "end": 13144.9, + "probability": 0.8996 + }, + { + "start": 13147.52, + "end": 13152.14, + "probability": 0.9135 + }, + { + "start": 13153.04, + "end": 13156.24, + "probability": 0.9656 + }, + { + "start": 13156.6, + "end": 13157.08, + "probability": 0.7933 + }, + { + "start": 13158.3, + "end": 13160.68, + "probability": 0.9634 + }, + { + "start": 13161.24, + "end": 13161.46, + "probability": 0.9983 + }, + { + "start": 13162.44, + "end": 13165.86, + "probability": 0.9219 + }, + { + "start": 13166.54, + "end": 13168.0, + "probability": 0.9989 + }, + { + "start": 13168.68, + "end": 13170.14, + "probability": 0.6843 + }, + { + "start": 13172.36, + "end": 13173.02, + "probability": 0.9438 + }, + { + "start": 13174.58, + "end": 13178.44, + "probability": 0.9773 + }, + { + "start": 13180.94, + "end": 13182.88, + "probability": 0.5702 + }, + { + "start": 13183.38, + "end": 13185.28, + "probability": 0.9467 + }, + { + "start": 13186.46, + "end": 13187.76, + "probability": 0.977 + }, + { + "start": 13187.86, + "end": 13188.62, + "probability": 0.9202 + }, + { + "start": 13188.9, + "end": 13189.86, + "probability": 0.9015 + }, + { + "start": 13190.0, + "end": 13191.04, + "probability": 0.8575 + }, + { + "start": 13191.04, + "end": 13191.78, + "probability": 0.9307 + }, + { + "start": 13192.04, + "end": 13192.32, + "probability": 0.9194 + }, + { + "start": 13192.74, + "end": 13194.7, + "probability": 0.9461 + }, + { + "start": 13195.22, + "end": 13198.74, + "probability": 0.9985 + }, + { + "start": 13198.74, + "end": 13202.72, + "probability": 0.9995 + }, + { + "start": 13203.32, + "end": 13205.76, + "probability": 0.994 + }, + { + "start": 13206.32, + "end": 13207.16, + "probability": 0.7229 + }, + { + "start": 13207.5, + "end": 13207.82, + "probability": 0.5642 + }, + { + "start": 13212.22, + "end": 13212.22, + "probability": 0.2657 + }, + { + "start": 13212.22, + "end": 13212.22, + "probability": 0.0248 + }, + { + "start": 13212.22, + "end": 13212.22, + "probability": 0.0549 + }, + { + "start": 13212.22, + "end": 13212.38, + "probability": 0.2379 + }, + { + "start": 13212.38, + "end": 13212.38, + "probability": 0.4417 + }, + { + "start": 13212.38, + "end": 13217.03, + "probability": 0.721 + }, + { + "start": 13217.26, + "end": 13222.02, + "probability": 0.898 + }, + { + "start": 13222.58, + "end": 13222.96, + "probability": 0.5994 + }, + { + "start": 13223.0, + "end": 13225.58, + "probability": 0.6769 + }, + { + "start": 13225.78, + "end": 13226.34, + "probability": 0.8984 + }, + { + "start": 13226.44, + "end": 13227.36, + "probability": 0.7946 + }, + { + "start": 13227.88, + "end": 13229.28, + "probability": 0.9275 + }, + { + "start": 13229.68, + "end": 13232.74, + "probability": 0.9888 + }, + { + "start": 13233.16, + "end": 13237.2, + "probability": 0.9925 + }, + { + "start": 13238.38, + "end": 13241.06, + "probability": 0.9912 + }, + { + "start": 13241.06, + "end": 13243.86, + "probability": 0.9838 + }, + { + "start": 13244.38, + "end": 13247.8, + "probability": 0.9227 + }, + { + "start": 13248.18, + "end": 13249.82, + "probability": 0.9951 + }, + { + "start": 13249.92, + "end": 13251.28, + "probability": 0.9952 + }, + { + "start": 13251.84, + "end": 13254.5, + "probability": 0.9958 + }, + { + "start": 13255.06, + "end": 13256.04, + "probability": 0.9448 + }, + { + "start": 13256.58, + "end": 13258.71, + "probability": 0.9927 + }, + { + "start": 13259.22, + "end": 13262.84, + "probability": 0.9604 + }, + { + "start": 13263.3, + "end": 13264.1, + "probability": 0.6531 + }, + { + "start": 13264.6, + "end": 13266.6, + "probability": 0.9907 + }, + { + "start": 13266.82, + "end": 13267.34, + "probability": 0.8338 + }, + { + "start": 13268.78, + "end": 13272.13, + "probability": 0.952 + }, + { + "start": 13273.88, + "end": 13276.98, + "probability": 0.9849 + }, + { + "start": 13277.88, + "end": 13279.36, + "probability": 0.9806 + }, + { + "start": 13281.06, + "end": 13283.8, + "probability": 0.9085 + }, + { + "start": 13283.9, + "end": 13284.78, + "probability": 0.2821 + }, + { + "start": 13286.7, + "end": 13286.92, + "probability": 0.0382 + }, + { + "start": 13286.96, + "end": 13288.02, + "probability": 0.5878 + }, + { + "start": 13288.12, + "end": 13290.86, + "probability": 0.7756 + }, + { + "start": 13290.86, + "end": 13293.94, + "probability": 0.9749 + }, + { + "start": 13294.14, + "end": 13295.54, + "probability": 0.7161 + }, + { + "start": 13295.72, + "end": 13297.14, + "probability": 0.9618 + }, + { + "start": 13297.8, + "end": 13299.02, + "probability": 0.7939 + }, + { + "start": 13299.62, + "end": 13304.16, + "probability": 0.9002 + }, + { + "start": 13304.36, + "end": 13305.08, + "probability": 0.864 + }, + { + "start": 13305.38, + "end": 13310.26, + "probability": 0.9546 + }, + { + "start": 13310.48, + "end": 13311.6, + "probability": 0.8764 + }, + { + "start": 13312.2, + "end": 13314.36, + "probability": 0.8689 + }, + { + "start": 13314.48, + "end": 13315.33, + "probability": 0.978 + }, + { + "start": 13316.1, + "end": 13317.16, + "probability": 0.7548 + }, + { + "start": 13317.54, + "end": 13317.62, + "probability": 0.108 + }, + { + "start": 13317.62, + "end": 13319.94, + "probability": 0.8427 + }, + { + "start": 13320.36, + "end": 13321.32, + "probability": 0.9822 + }, + { + "start": 13321.66, + "end": 13322.1, + "probability": 0.7673 + }, + { + "start": 13322.46, + "end": 13323.59, + "probability": 0.939 + }, + { + "start": 13324.12, + "end": 13326.88, + "probability": 0.8552 + }, + { + "start": 13327.74, + "end": 13333.1, + "probability": 0.9351 + }, + { + "start": 13333.56, + "end": 13337.7, + "probability": 0.9767 + }, + { + "start": 13338.12, + "end": 13343.44, + "probability": 0.992 + }, + { + "start": 13344.06, + "end": 13344.76, + "probability": 0.6774 + }, + { + "start": 13345.06, + "end": 13345.42, + "probability": 0.8647 + }, + { + "start": 13345.6, + "end": 13348.9, + "probability": 0.9837 + }, + { + "start": 13350.56, + "end": 13354.16, + "probability": 0.9967 + }, + { + "start": 13357.22, + "end": 13357.74, + "probability": 0.065 + }, + { + "start": 13357.74, + "end": 13358.81, + "probability": 0.3464 + }, + { + "start": 13359.14, + "end": 13362.2, + "probability": 0.0447 + }, + { + "start": 13362.54, + "end": 13362.88, + "probability": 0.3362 + }, + { + "start": 13362.92, + "end": 13371.98, + "probability": 0.9855 + }, + { + "start": 13372.86, + "end": 13374.32, + "probability": 0.8367 + }, + { + "start": 13375.54, + "end": 13376.52, + "probability": 0.6851 + }, + { + "start": 13377.36, + "end": 13379.32, + "probability": 0.8448 + }, + { + "start": 13380.16, + "end": 13380.44, + "probability": 0.7 + }, + { + "start": 13380.96, + "end": 13382.4, + "probability": 0.9302 + }, + { + "start": 13382.76, + "end": 13383.1, + "probability": 0.9787 + }, + { + "start": 13383.6, + "end": 13390.1, + "probability": 0.986 + }, + { + "start": 13390.84, + "end": 13395.18, + "probability": 0.9757 + }, + { + "start": 13418.36, + "end": 13424.66, + "probability": 0.4012 + }, + { + "start": 13425.36, + "end": 13429.06, + "probability": 0.2121 + }, + { + "start": 13429.84, + "end": 13430.36, + "probability": 0.1067 + }, + { + "start": 13433.5, + "end": 13434.7, + "probability": 0.0418 + }, + { + "start": 13434.7, + "end": 13437.62, + "probability": 0.0121 + }, + { + "start": 13439.86, + "end": 13440.52, + "probability": 0.0725 + }, + { + "start": 13443.04, + "end": 13445.62, + "probability": 0.5281 + }, + { + "start": 13447.82, + "end": 13452.44, + "probability": 0.0392 + }, + { + "start": 13456.82, + "end": 13457.86, + "probability": 0.0923 + }, + { + "start": 13458.46, + "end": 13459.16, + "probability": 0.5156 + }, + { + "start": 13459.26, + "end": 13461.62, + "probability": 0.2797 + }, + { + "start": 13462.04, + "end": 13462.74, + "probability": 0.0723 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.0, + "probability": 0.0 + }, + { + "start": 13496.0, + "end": 13496.22, + "probability": 0.1142 + }, + { + "start": 13496.22, + "end": 13498.46, + "probability": 0.645 + }, + { + "start": 13498.52, + "end": 13499.88, + "probability": 0.6374 + }, + { + "start": 13499.96, + "end": 13499.96, + "probability": 0.2769 + }, + { + "start": 13499.98, + "end": 13500.3, + "probability": 0.8447 + }, + { + "start": 13500.42, + "end": 13504.22, + "probability": 0.9924 + }, + { + "start": 13504.36, + "end": 13504.74, + "probability": 0.7543 + }, + { + "start": 13505.38, + "end": 13509.74, + "probability": 0.7847 + }, + { + "start": 13509.94, + "end": 13510.64, + "probability": 0.8141 + }, + { + "start": 13511.06, + "end": 13515.12, + "probability": 0.9521 + }, + { + "start": 13515.2, + "end": 13516.52, + "probability": 0.8387 + }, + { + "start": 13517.06, + "end": 13518.68, + "probability": 0.9956 + }, + { + "start": 13518.76, + "end": 13519.74, + "probability": 0.7409 + }, + { + "start": 13520.08, + "end": 13521.14, + "probability": 0.939 + }, + { + "start": 13521.32, + "end": 13522.3, + "probability": 0.7844 + }, + { + "start": 13522.9, + "end": 13524.58, + "probability": 0.981 + }, + { + "start": 13525.92, + "end": 13528.2, + "probability": 0.1641 + }, + { + "start": 13528.2, + "end": 13528.7, + "probability": 0.4688 + }, + { + "start": 13528.7, + "end": 13529.59, + "probability": 0.7628 + }, + { + "start": 13529.78, + "end": 13531.3, + "probability": 0.9937 + }, + { + "start": 13531.98, + "end": 13532.7, + "probability": 0.963 + }, + { + "start": 13532.8, + "end": 13535.2, + "probability": 0.9932 + }, + { + "start": 13535.2, + "end": 13536.56, + "probability": 0.9966 + }, + { + "start": 13536.92, + "end": 13541.06, + "probability": 0.701 + }, + { + "start": 13541.1, + "end": 13541.28, + "probability": 0.686 + }, + { + "start": 13541.38, + "end": 13542.24, + "probability": 0.3896 + }, + { + "start": 13542.28, + "end": 13543.02, + "probability": 0.584 + }, + { + "start": 13543.04, + "end": 13545.58, + "probability": 0.1821 + }, + { + "start": 13545.68, + "end": 13546.46, + "probability": 0.9073 + }, + { + "start": 13546.6, + "end": 13548.1, + "probability": 0.9985 + }, + { + "start": 13548.18, + "end": 13548.96, + "probability": 0.8401 + }, + { + "start": 13549.46, + "end": 13551.94, + "probability": 0.9977 + }, + { + "start": 13551.94, + "end": 13555.22, + "probability": 0.9927 + }, + { + "start": 13555.28, + "end": 13556.28, + "probability": 0.9549 + }, + { + "start": 13556.34, + "end": 13560.26, + "probability": 0.9458 + }, + { + "start": 13560.78, + "end": 13563.84, + "probability": 0.9209 + }, + { + "start": 13564.7, + "end": 13565.56, + "probability": 0.189 + }, + { + "start": 13566.5, + "end": 13567.18, + "probability": 0.2344 + }, + { + "start": 13567.18, + "end": 13567.48, + "probability": 0.2657 + }, + { + "start": 13568.1, + "end": 13568.6, + "probability": 0.3017 + }, + { + "start": 13569.34, + "end": 13570.1, + "probability": 0.3428 + }, + { + "start": 13570.48, + "end": 13575.76, + "probability": 0.7585 + }, + { + "start": 13576.82, + "end": 13577.24, + "probability": 0.23 + }, + { + "start": 13577.44, + "end": 13578.44, + "probability": 0.108 + }, + { + "start": 13578.58, + "end": 13581.62, + "probability": 0.776 + }, + { + "start": 13583.0, + "end": 13584.77, + "probability": 0.8184 + }, + { + "start": 13585.5, + "end": 13586.78, + "probability": 0.881 + }, + { + "start": 13587.54, + "end": 13587.56, + "probability": 0.212 + }, + { + "start": 13587.56, + "end": 13588.78, + "probability": 0.7474 + }, + { + "start": 13590.02, + "end": 13590.16, + "probability": 0.0086 + }, + { + "start": 13590.16, + "end": 13590.74, + "probability": 0.6641 + }, + { + "start": 13590.8, + "end": 13590.8, + "probability": 0.6788 + }, + { + "start": 13590.84, + "end": 13591.08, + "probability": 0.4954 + }, + { + "start": 13591.16, + "end": 13595.4, + "probability": 0.9567 + }, + { + "start": 13595.58, + "end": 13595.74, + "probability": 0.448 + }, + { + "start": 13595.88, + "end": 13596.44, + "probability": 0.9179 + }, + { + "start": 13596.6, + "end": 13597.18, + "probability": 0.8807 + }, + { + "start": 13597.26, + "end": 13597.94, + "probability": 0.5543 + }, + { + "start": 13598.22, + "end": 13598.92, + "probability": 0.7621 + }, + { + "start": 13599.12, + "end": 13600.24, + "probability": 0.7939 + }, + { + "start": 13600.48, + "end": 13600.86, + "probability": 0.4759 + }, + { + "start": 13600.9, + "end": 13601.24, + "probability": 0.9492 + }, + { + "start": 13601.44, + "end": 13604.86, + "probability": 0.8995 + }, + { + "start": 13604.98, + "end": 13606.03, + "probability": 0.5145 + }, + { + "start": 13606.52, + "end": 13608.06, + "probability": 0.8286 + }, + { + "start": 13608.26, + "end": 13610.96, + "probability": 0.6023 + }, + { + "start": 13611.62, + "end": 13615.9, + "probability": 0.6832 + }, + { + "start": 13616.72, + "end": 13616.72, + "probability": 0.0 + }, + { + "start": 13617.56, + "end": 13618.24, + "probability": 0.3929 + }, + { + "start": 13618.62, + "end": 13619.54, + "probability": 0.2857 + }, + { + "start": 13620.46, + "end": 13622.4, + "probability": 0.1856 + }, + { + "start": 13622.92, + "end": 13623.48, + "probability": 0.6825 + }, + { + "start": 13623.8, + "end": 13626.54, + "probability": 0.5322 + }, + { + "start": 13627.18, + "end": 13628.66, + "probability": 0.4307 + }, + { + "start": 13628.72, + "end": 13630.49, + "probability": 0.8059 + }, + { + "start": 13630.76, + "end": 13633.4, + "probability": 0.9382 + }, + { + "start": 13633.4, + "end": 13634.12, + "probability": 0.8466 + }, + { + "start": 13634.18, + "end": 13636.66, + "probability": 0.9795 + }, + { + "start": 13637.58, + "end": 13639.94, + "probability": 0.98 + }, + { + "start": 13640.0, + "end": 13641.1, + "probability": 0.8635 + }, + { + "start": 13642.54, + "end": 13642.85, + "probability": 0.3709 + }, + { + "start": 13643.18, + "end": 13644.98, + "probability": 0.9346 + }, + { + "start": 13646.56, + "end": 13647.5, + "probability": 0.9736 + }, + { + "start": 13649.18, + "end": 13649.74, + "probability": 0.5868 + }, + { + "start": 13650.08, + "end": 13650.42, + "probability": 0.8757 + }, + { + "start": 13650.42, + "end": 13651.14, + "probability": 0.8662 + }, + { + "start": 13651.68, + "end": 13652.08, + "probability": 0.4838 + }, + { + "start": 13652.36, + "end": 13654.2, + "probability": 0.9408 + }, + { + "start": 13654.24, + "end": 13655.38, + "probability": 0.6054 + }, + { + "start": 13655.48, + "end": 13656.4, + "probability": 0.9915 + }, + { + "start": 13656.72, + "end": 13656.94, + "probability": 0.3781 + }, + { + "start": 13658.02, + "end": 13662.2, + "probability": 0.7928 + }, + { + "start": 13662.82, + "end": 13667.9, + "probability": 0.7825 + }, + { + "start": 13668.32, + "end": 13673.26, + "probability": 0.9763 + }, + { + "start": 13673.26, + "end": 13677.12, + "probability": 0.6509 + }, + { + "start": 13677.18, + "end": 13678.98, + "probability": 0.8489 + }, + { + "start": 13679.42, + "end": 13681.42, + "probability": 0.9806 + }, + { + "start": 13682.4, + "end": 13686.5, + "probability": 0.9793 + }, + { + "start": 13686.54, + "end": 13688.41, + "probability": 0.8842 + }, + { + "start": 13688.64, + "end": 13689.56, + "probability": 0.9953 + }, + { + "start": 13690.08, + "end": 13691.86, + "probability": 0.8176 + }, + { + "start": 13692.06, + "end": 13695.7, + "probability": 0.539 + }, + { + "start": 13696.08, + "end": 13700.02, + "probability": 0.8267 + }, + { + "start": 13700.52, + "end": 13703.28, + "probability": 0.9971 + }, + { + "start": 13703.3, + "end": 13706.68, + "probability": 0.9995 + }, + { + "start": 13706.8, + "end": 13710.04, + "probability": 0.9964 + }, + { + "start": 13710.04, + "end": 13711.82, + "probability": 0.8942 + }, + { + "start": 13712.08, + "end": 13716.82, + "probability": 0.7315 + }, + { + "start": 13717.42, + "end": 13719.1, + "probability": 0.7366 + }, + { + "start": 13719.2, + "end": 13721.32, + "probability": 0.9747 + }, + { + "start": 13721.84, + "end": 13723.36, + "probability": 0.7483 + }, + { + "start": 13724.9, + "end": 13729.8, + "probability": 0.9531 + }, + { + "start": 13729.8, + "end": 13731.66, + "probability": 0.9479 + }, + { + "start": 13731.68, + "end": 13733.08, + "probability": 0.9432 + }, + { + "start": 13733.16, + "end": 13735.32, + "probability": 0.9806 + }, + { + "start": 13735.32, + "end": 13738.52, + "probability": 0.9823 + }, + { + "start": 13739.12, + "end": 13742.98, + "probability": 0.8463 + }, + { + "start": 13743.08, + "end": 13743.6, + "probability": 0.5678 + }, + { + "start": 13743.7, + "end": 13745.12, + "probability": 0.7549 + }, + { + "start": 13745.22, + "end": 13746.3, + "probability": 0.8483 + }, + { + "start": 13747.38, + "end": 13749.3, + "probability": 0.6843 + }, + { + "start": 13750.28, + "end": 13755.39, + "probability": 0.9935 + }, + { + "start": 13756.58, + "end": 13757.82, + "probability": 0.9998 + }, + { + "start": 13758.36, + "end": 13759.67, + "probability": 0.9973 + }, + { + "start": 13760.1, + "end": 13762.34, + "probability": 0.9959 + }, + { + "start": 13762.44, + "end": 13763.1, + "probability": 0.913 + }, + { + "start": 13763.18, + "end": 13763.28, + "probability": 0.782 + }, + { + "start": 13763.48, + "end": 13764.26, + "probability": 0.8688 + }, + { + "start": 13764.86, + "end": 13768.78, + "probability": 0.998 + }, + { + "start": 13768.86, + "end": 13770.78, + "probability": 0.9843 + }, + { + "start": 13770.98, + "end": 13774.24, + "probability": 0.9985 + }, + { + "start": 13774.4, + "end": 13775.6, + "probability": 0.8784 + }, + { + "start": 13776.32, + "end": 13779.76, + "probability": 0.952 + }, + { + "start": 13780.38, + "end": 13782.92, + "probability": 0.9831 + }, + { + "start": 13783.44, + "end": 13784.86, + "probability": 0.8112 + }, + { + "start": 13785.42, + "end": 13786.1, + "probability": 0.9297 + }, + { + "start": 13786.16, + "end": 13786.68, + "probability": 0.7812 + }, + { + "start": 13786.72, + "end": 13790.2, + "probability": 0.8402 + }, + { + "start": 13790.66, + "end": 13794.14, + "probability": 0.8724 + }, + { + "start": 13794.26, + "end": 13796.13, + "probability": 0.9973 + }, + { + "start": 13796.76, + "end": 13799.78, + "probability": 0.7114 + }, + { + "start": 13799.88, + "end": 13801.34, + "probability": 0.7167 + }, + { + "start": 13801.72, + "end": 13802.52, + "probability": 0.6218 + }, + { + "start": 13803.34, + "end": 13806.9, + "probability": 0.9556 + }, + { + "start": 13807.32, + "end": 13807.9, + "probability": 0.918 + }, + { + "start": 13809.04, + "end": 13811.34, + "probability": 0.7491 + }, + { + "start": 13812.0, + "end": 13813.18, + "probability": 0.9285 + }, + { + "start": 13813.38, + "end": 13813.38, + "probability": 0.6821 + }, + { + "start": 13814.08, + "end": 13814.68, + "probability": 0.9958 + }, + { + "start": 13815.32, + "end": 13816.26, + "probability": 0.9539 + }, + { + "start": 13816.4, + "end": 13819.14, + "probability": 0.9939 + }, + { + "start": 13819.22, + "end": 13819.54, + "probability": 0.5126 + }, + { + "start": 13819.88, + "end": 13820.94, + "probability": 0.9845 + }, + { + "start": 13821.64, + "end": 13823.62, + "probability": 0.9375 + }, + { + "start": 13824.34, + "end": 13824.88, + "probability": 0.3798 + }, + { + "start": 13825.08, + "end": 13825.48, + "probability": 0.9164 + }, + { + "start": 13825.54, + "end": 13826.52, + "probability": 0.8356 + }, + { + "start": 13826.74, + "end": 13830.5, + "probability": 0.7457 + }, + { + "start": 13830.54, + "end": 13831.14, + "probability": 0.8338 + }, + { + "start": 13831.82, + "end": 13832.98, + "probability": 0.8315 + }, + { + "start": 13833.1, + "end": 13834.0, + "probability": 0.9277 + }, + { + "start": 13834.04, + "end": 13834.94, + "probability": 0.9504 + }, + { + "start": 13835.68, + "end": 13838.28, + "probability": 0.8145 + }, + { + "start": 13838.36, + "end": 13839.58, + "probability": 0.7704 + }, + { + "start": 13839.68, + "end": 13841.76, + "probability": 0.8127 + }, + { + "start": 13842.94, + "end": 13844.82, + "probability": 0.8098 + }, + { + "start": 13844.92, + "end": 13847.98, + "probability": 0.9841 + }, + { + "start": 13848.06, + "end": 13848.98, + "probability": 0.8689 + }, + { + "start": 13848.98, + "end": 13849.22, + "probability": 0.4191 + }, + { + "start": 13849.3, + "end": 13850.56, + "probability": 0.9895 + }, + { + "start": 13850.96, + "end": 13852.56, + "probability": 0.9624 + }, + { + "start": 13852.62, + "end": 13855.92, + "probability": 0.855 + }, + { + "start": 13856.56, + "end": 13857.1, + "probability": 0.9253 + }, + { + "start": 13857.46, + "end": 13861.46, + "probability": 0.9629 + }, + { + "start": 13862.2, + "end": 13863.14, + "probability": 0.6851 + }, + { + "start": 13863.68, + "end": 13865.04, + "probability": 0.9681 + }, + { + "start": 13865.2, + "end": 13866.18, + "probability": 0.8681 + }, + { + "start": 13867.22, + "end": 13868.24, + "probability": 0.8593 + }, + { + "start": 13868.3, + "end": 13869.04, + "probability": 0.8934 + }, + { + "start": 13869.24, + "end": 13870.96, + "probability": 0.8586 + }, + { + "start": 13871.0, + "end": 13872.52, + "probability": 0.9956 + }, + { + "start": 13873.74, + "end": 13875.4, + "probability": 0.9774 + }, + { + "start": 13876.36, + "end": 13877.44, + "probability": 0.1205 + }, + { + "start": 13877.44, + "end": 13877.44, + "probability": 0.5959 + }, + { + "start": 13877.44, + "end": 13877.44, + "probability": 0.0149 + }, + { + "start": 13877.44, + "end": 13879.86, + "probability": 0.9134 + }, + { + "start": 13880.46, + "end": 13881.14, + "probability": 0.7839 + }, + { + "start": 13881.8, + "end": 13882.72, + "probability": 0.8633 + }, + { + "start": 13882.84, + "end": 13883.38, + "probability": 0.7173 + }, + { + "start": 13883.82, + "end": 13885.08, + "probability": 0.937 + }, + { + "start": 13885.78, + "end": 13887.52, + "probability": 0.8574 + }, + { + "start": 13887.92, + "end": 13889.75, + "probability": 0.7493 + }, + { + "start": 13890.34, + "end": 13894.4, + "probability": 0.9504 + }, + { + "start": 13894.44, + "end": 13897.1, + "probability": 0.6503 + }, + { + "start": 13897.18, + "end": 13903.44, + "probability": 0.8229 + }, + { + "start": 13904.54, + "end": 13905.16, + "probability": 0.497 + }, + { + "start": 13905.16, + "end": 13907.24, + "probability": 0.877 + }, + { + "start": 13907.92, + "end": 13910.0, + "probability": 0.9296 + }, + { + "start": 13910.16, + "end": 13910.96, + "probability": 0.8062 + }, + { + "start": 13911.2, + "end": 13912.02, + "probability": 0.9655 + }, + { + "start": 13912.88, + "end": 13914.14, + "probability": 0.9769 + }, + { + "start": 13914.58, + "end": 13915.84, + "probability": 0.5694 + }, + { + "start": 13916.12, + "end": 13919.42, + "probability": 0.6661 + }, + { + "start": 13926.16, + "end": 13927.92, + "probability": 0.8465 + }, + { + "start": 13928.02, + "end": 13928.84, + "probability": 0.8134 + }, + { + "start": 13929.02, + "end": 13930.48, + "probability": 0.957 + }, + { + "start": 13930.72, + "end": 13931.92, + "probability": 0.6979 + }, + { + "start": 13932.54, + "end": 13937.4, + "probability": 0.9017 + }, + { + "start": 13938.1, + "end": 13940.76, + "probability": 0.9878 + }, + { + "start": 13942.18, + "end": 13942.66, + "probability": 0.888 + }, + { + "start": 13943.12, + "end": 13943.64, + "probability": 0.7892 + }, + { + "start": 13943.74, + "end": 13946.3, + "probability": 0.9434 + }, + { + "start": 13948.22, + "end": 13948.78, + "probability": 0.1204 + }, + { + "start": 13948.78, + "end": 13950.6, + "probability": 0.6093 + }, + { + "start": 13951.28, + "end": 13955.3, + "probability": 0.9937 + }, + { + "start": 13955.98, + "end": 13958.2, + "probability": 0.9449 + }, + { + "start": 13958.98, + "end": 13961.12, + "probability": 0.9176 + }, + { + "start": 13961.76, + "end": 13964.5, + "probability": 0.9993 + }, + { + "start": 13965.16, + "end": 13966.36, + "probability": 0.9929 + }, + { + "start": 13966.66, + "end": 13969.48, + "probability": 0.9011 + }, + { + "start": 13969.48, + "end": 13973.22, + "probability": 0.9937 + }, + { + "start": 13973.82, + "end": 13976.46, + "probability": 0.9626 + }, + { + "start": 13976.98, + "end": 13977.78, + "probability": 0.9711 + }, + { + "start": 13978.62, + "end": 13981.2, + "probability": 0.9344 + }, + { + "start": 13984.06, + "end": 13986.58, + "probability": 0.6429 + }, + { + "start": 13987.18, + "end": 13988.3, + "probability": 0.8457 + }, + { + "start": 13988.36, + "end": 13991.34, + "probability": 0.9926 + }, + { + "start": 13991.48, + "end": 13993.22, + "probability": 0.9927 + }, + { + "start": 13993.8, + "end": 13994.72, + "probability": 0.6067 + }, + { + "start": 13995.82, + "end": 13999.84, + "probability": 0.7815 + }, + { + "start": 14000.24, + "end": 14006.84, + "probability": 0.9945 + }, + { + "start": 14006.88, + "end": 14007.79, + "probability": 0.8141 + }, + { + "start": 14008.1, + "end": 14010.3, + "probability": 0.5859 + }, + { + "start": 14010.78, + "end": 14013.42, + "probability": 0.8856 + }, + { + "start": 14013.66, + "end": 14016.22, + "probability": 0.9958 + }, + { + "start": 14016.78, + "end": 14020.3, + "probability": 0.9911 + }, + { + "start": 14020.7, + "end": 14022.78, + "probability": 0.6983 + }, + { + "start": 14023.24, + "end": 14024.1, + "probability": 0.7649 + }, + { + "start": 14024.18, + "end": 14025.86, + "probability": 0.7263 + }, + { + "start": 14026.7, + "end": 14028.12, + "probability": 0.9644 + }, + { + "start": 14028.22, + "end": 14028.78, + "probability": 0.9653 + }, + { + "start": 14029.04, + "end": 14030.06, + "probability": 0.915 + }, + { + "start": 14030.26, + "end": 14033.62, + "probability": 0.9609 + }, + { + "start": 14034.6, + "end": 14040.52, + "probability": 0.8244 + }, + { + "start": 14041.18, + "end": 14046.76, + "probability": 0.983 + }, + { + "start": 14047.5, + "end": 14049.64, + "probability": 0.9608 + }, + { + "start": 14049.92, + "end": 14050.42, + "probability": 0.6595 + }, + { + "start": 14051.04, + "end": 14053.08, + "probability": 0.8086 + }, + { + "start": 14054.34, + "end": 14056.2, + "probability": 0.8477 + }, + { + "start": 14057.56, + "end": 14058.74, + "probability": 0.2069 + }, + { + "start": 14059.08, + "end": 14059.32, + "probability": 0.832 + }, + { + "start": 14062.1, + "end": 14063.48, + "probability": 0.1642 + }, + { + "start": 14063.48, + "end": 14063.68, + "probability": 0.0275 + }, + { + "start": 14063.68, + "end": 14064.6, + "probability": 0.0399 + }, + { + "start": 14064.68, + "end": 14067.98, + "probability": 0.4233 + }, + { + "start": 14068.14, + "end": 14068.86, + "probability": 0.0338 + }, + { + "start": 14068.96, + "end": 14070.32, + "probability": 0.217 + }, + { + "start": 14070.92, + "end": 14071.91, + "probability": 0.2776 + }, + { + "start": 14072.98, + "end": 14075.74, + "probability": 0.9927 + }, + { + "start": 14075.94, + "end": 14080.8, + "probability": 0.7867 + }, + { + "start": 14081.43, + "end": 14084.92, + "probability": 0.9848 + }, + { + "start": 14085.14, + "end": 14086.9, + "probability": 0.8802 + }, + { + "start": 14087.52, + "end": 14091.8, + "probability": 0.8801 + }, + { + "start": 14092.62, + "end": 14094.64, + "probability": 0.9863 + }, + { + "start": 14095.34, + "end": 14096.28, + "probability": 0.8662 + }, + { + "start": 14115.8, + "end": 14116.62, + "probability": 0.2712 + }, + { + "start": 14117.5, + "end": 14124.16, + "probability": 0.6482 + }, + { + "start": 14125.48, + "end": 14126.22, + "probability": 0.3109 + }, + { + "start": 14138.68, + "end": 14141.26, + "probability": 0.5002 + }, + { + "start": 14141.86, + "end": 14142.88, + "probability": 0.3092 + }, + { + "start": 14147.18, + "end": 14149.5, + "probability": 0.0234 + }, + { + "start": 14150.9, + "end": 14153.3, + "probability": 0.132 + }, + { + "start": 14155.26, + "end": 14156.16, + "probability": 0.0076 + }, + { + "start": 14156.48, + "end": 14156.66, + "probability": 0.028 + }, + { + "start": 14156.66, + "end": 14157.96, + "probability": 0.0498 + }, + { + "start": 14157.96, + "end": 14157.96, + "probability": 0.1423 + }, + { + "start": 14159.08, + "end": 14161.14, + "probability": 0.0515 + }, + { + "start": 14164.52, + "end": 14165.2, + "probability": 0.0416 + }, + { + "start": 14279.44, + "end": 14279.44, + "probability": 0.0 + }, + { + "start": 14279.44, + "end": 14279.44, + "probability": 0.0 + }, + { + "start": 14279.44, + "end": 14279.44, + "probability": 0.0 + }, + { + "start": 14279.44, + "end": 14279.44, + "probability": 0.0 + }, + { + "start": 14279.44, + "end": 14279.44, + "probability": 0.0 + }, + { + "start": 14279.44, + "end": 14279.44, + "probability": 0.0 + }, + { + "start": 14279.44, + "end": 14279.44, + "probability": 0.0 + }, + { + "start": 14279.44, + "end": 14279.44, + "probability": 0.0 + }, + { + "start": 14279.44, + "end": 14279.44, + "probability": 0.0 + } + ], + "segments_count": 5302, + "words_count": 25757, + "avg_words_per_segment": 4.858, + "avg_segment_duration": 1.9552, + "avg_words_per_minute": 108.2269, + "plenum_id": "17990", + "duration": 14279.44, + "title": null, + "plenum_date": "2012-01-03" +} \ No newline at end of file