diff --git "a/133828/metadata.json" "b/133828/metadata.json" new file mode 100644--- /dev/null +++ "b/133828/metadata.json" @@ -0,0 +1,57767 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "133828", + "quality_score": 0.7734, + "per_segment_quality_scores": [ + { + "start": 55.12, + "end": 56.68, + "probability": 0.1558 + }, + { + "start": 59.8, + "end": 61.08, + "probability": 0.0108 + }, + { + "start": 63.5, + "end": 63.9, + "probability": 0.012 + }, + { + "start": 91.12, + "end": 94.89, + "probability": 0.0095 + }, + { + "start": 95.14, + "end": 96.66, + "probability": 0.0388 + }, + { + "start": 96.66, + "end": 97.52, + "probability": 0.0251 + }, + { + "start": 99.36, + "end": 99.43, + "probability": 0.014 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.08, + "end": 124.5, + "probability": 0.2154 + }, + { + "start": 126.0, + "end": 126.9, + "probability": 0.8254 + }, + { + "start": 127.22, + "end": 130.5, + "probability": 0.9902 + }, + { + "start": 130.5, + "end": 136.28, + "probability": 0.9935 + }, + { + "start": 136.74, + "end": 137.66, + "probability": 0.7251 + }, + { + "start": 137.82, + "end": 140.64, + "probability": 0.8305 + }, + { + "start": 140.64, + "end": 143.4, + "probability": 0.9551 + }, + { + "start": 144.0, + "end": 144.64, + "probability": 0.7852 + }, + { + "start": 145.88, + "end": 146.62, + "probability": 0.9391 + }, + { + "start": 146.96, + "end": 149.62, + "probability": 0.9349 + }, + { + "start": 149.62, + "end": 152.96, + "probability": 0.9313 + }, + { + "start": 153.78, + "end": 157.06, + "probability": 0.6998 + }, + { + "start": 157.5, + "end": 159.04, + "probability": 0.9229 + }, + { + "start": 159.46, + "end": 161.62, + "probability": 0.8888 + }, + { + "start": 162.04, + "end": 164.1, + "probability": 0.9837 + }, + { + "start": 165.08, + "end": 168.7, + "probability": 0.8768 + }, + { + "start": 169.14, + "end": 169.76, + "probability": 0.5951 + }, + { + "start": 170.2, + "end": 173.28, + "probability": 0.8862 + }, + { + "start": 174.0, + "end": 176.24, + "probability": 0.5825 + }, + { + "start": 176.98, + "end": 178.72, + "probability": 0.7512 + }, + { + "start": 179.34, + "end": 180.12, + "probability": 0.8317 + }, + { + "start": 180.3, + "end": 180.72, + "probability": 0.8242 + }, + { + "start": 181.16, + "end": 182.44, + "probability": 0.96 + }, + { + "start": 183.06, + "end": 185.54, + "probability": 0.7965 + }, + { + "start": 186.14, + "end": 186.96, + "probability": 0.984 + }, + { + "start": 187.4, + "end": 190.1, + "probability": 0.8882 + }, + { + "start": 190.1, + "end": 192.5, + "probability": 0.6712 + }, + { + "start": 193.0, + "end": 197.14, + "probability": 0.9902 + }, + { + "start": 197.14, + "end": 201.1, + "probability": 0.9829 + }, + { + "start": 201.88, + "end": 203.96, + "probability": 0.7807 + }, + { + "start": 204.34, + "end": 205.52, + "probability": 0.9438 + }, + { + "start": 205.9, + "end": 206.74, + "probability": 0.81 + }, + { + "start": 207.28, + "end": 208.04, + "probability": 0.8361 + }, + { + "start": 208.5, + "end": 211.52, + "probability": 0.9819 + }, + { + "start": 211.94, + "end": 214.22, + "probability": 0.7498 + }, + { + "start": 214.7, + "end": 218.04, + "probability": 0.9233 + }, + { + "start": 218.32, + "end": 218.58, + "probability": 0.5852 + }, + { + "start": 218.64, + "end": 219.62, + "probability": 0.7559 + }, + { + "start": 219.7, + "end": 221.12, + "probability": 0.7609 + }, + { + "start": 221.32, + "end": 223.02, + "probability": 0.9562 + }, + { + "start": 223.24, + "end": 223.64, + "probability": 0.8403 + }, + { + "start": 229.4, + "end": 230.04, + "probability": 0.4508 + }, + { + "start": 230.12, + "end": 230.92, + "probability": 0.9089 + }, + { + "start": 231.06, + "end": 236.94, + "probability": 0.9874 + }, + { + "start": 237.72, + "end": 242.38, + "probability": 0.989 + }, + { + "start": 244.36, + "end": 248.68, + "probability": 0.9895 + }, + { + "start": 248.68, + "end": 252.6, + "probability": 0.9575 + }, + { + "start": 252.68, + "end": 253.56, + "probability": 0.3091 + }, + { + "start": 254.34, + "end": 256.4, + "probability": 0.87 + }, + { + "start": 256.9, + "end": 262.12, + "probability": 0.9939 + }, + { + "start": 262.12, + "end": 266.74, + "probability": 0.9988 + }, + { + "start": 269.2, + "end": 270.9, + "probability": 0.8382 + }, + { + "start": 271.04, + "end": 271.72, + "probability": 0.4615 + }, + { + "start": 272.54, + "end": 275.3, + "probability": 0.9443 + }, + { + "start": 278.78, + "end": 281.74, + "probability": 0.8864 + }, + { + "start": 282.08, + "end": 283.78, + "probability": 0.9513 + }, + { + "start": 284.32, + "end": 286.06, + "probability": 0.712 + }, + { + "start": 286.16, + "end": 286.38, + "probability": 0.7927 + }, + { + "start": 286.92, + "end": 287.5, + "probability": 0.5618 + }, + { + "start": 287.54, + "end": 289.28, + "probability": 0.6396 + }, + { + "start": 289.54, + "end": 291.4, + "probability": 0.6811 + }, + { + "start": 292.28, + "end": 293.96, + "probability": 0.3334 + }, + { + "start": 294.12, + "end": 295.4, + "probability": 0.681 + }, + { + "start": 295.96, + "end": 297.52, + "probability": 0.8113 + }, + { + "start": 298.36, + "end": 305.9, + "probability": 0.9782 + }, + { + "start": 306.78, + "end": 311.9, + "probability": 0.9756 + }, + { + "start": 312.06, + "end": 313.62, + "probability": 0.871 + }, + { + "start": 314.08, + "end": 319.84, + "probability": 0.8755 + }, + { + "start": 320.08, + "end": 321.88, + "probability": 0.9866 + }, + { + "start": 322.18, + "end": 323.32, + "probability": 0.7844 + }, + { + "start": 324.08, + "end": 328.12, + "probability": 0.9858 + }, + { + "start": 328.16, + "end": 331.48, + "probability": 0.9705 + }, + { + "start": 331.48, + "end": 335.56, + "probability": 0.9922 + }, + { + "start": 335.68, + "end": 337.82, + "probability": 0.9916 + }, + { + "start": 338.54, + "end": 343.58, + "probability": 0.9937 + }, + { + "start": 344.3, + "end": 345.51, + "probability": 0.9225 + }, + { + "start": 345.72, + "end": 349.42, + "probability": 0.9347 + }, + { + "start": 349.82, + "end": 351.62, + "probability": 0.9313 + }, + { + "start": 351.74, + "end": 352.08, + "probability": 0.934 + }, + { + "start": 353.36, + "end": 353.88, + "probability": 0.6042 + }, + { + "start": 354.1, + "end": 356.12, + "probability": 0.8567 + }, + { + "start": 356.12, + "end": 358.56, + "probability": 0.7613 + }, + { + "start": 358.56, + "end": 358.98, + "probability": 0.857 + }, + { + "start": 359.04, + "end": 360.35, + "probability": 0.6563 + }, + { + "start": 360.6, + "end": 361.72, + "probability": 0.7375 + }, + { + "start": 362.44, + "end": 364.02, + "probability": 0.5017 + }, + { + "start": 364.18, + "end": 364.88, + "probability": 0.9762 + }, + { + "start": 365.04, + "end": 366.26, + "probability": 0.8223 + }, + { + "start": 366.32, + "end": 367.16, + "probability": 0.9626 + }, + { + "start": 367.98, + "end": 372.31, + "probability": 0.9715 + }, + { + "start": 372.4, + "end": 374.88, + "probability": 0.9597 + }, + { + "start": 376.38, + "end": 377.02, + "probability": 0.6163 + }, + { + "start": 377.74, + "end": 381.58, + "probability": 0.9897 + }, + { + "start": 382.24, + "end": 386.94, + "probability": 0.9724 + }, + { + "start": 387.4, + "end": 389.36, + "probability": 0.923 + }, + { + "start": 389.4, + "end": 391.18, + "probability": 0.9752 + }, + { + "start": 391.98, + "end": 393.9, + "probability": 0.9976 + }, + { + "start": 394.58, + "end": 397.66, + "probability": 0.9169 + }, + { + "start": 398.3, + "end": 399.06, + "probability": 0.9679 + }, + { + "start": 399.52, + "end": 399.7, + "probability": 0.8735 + }, + { + "start": 399.82, + "end": 402.6, + "probability": 0.6666 + }, + { + "start": 402.62, + "end": 405.1, + "probability": 0.9338 + }, + { + "start": 405.16, + "end": 406.62, + "probability": 0.9049 + }, + { + "start": 407.24, + "end": 408.24, + "probability": 0.6694 + }, + { + "start": 408.3, + "end": 410.48, + "probability": 0.9781 + }, + { + "start": 410.9, + "end": 413.26, + "probability": 0.9579 + }, + { + "start": 413.56, + "end": 414.88, + "probability": 0.7848 + }, + { + "start": 415.8, + "end": 416.37, + "probability": 0.9824 + }, + { + "start": 416.92, + "end": 417.27, + "probability": 0.9966 + }, + { + "start": 417.82, + "end": 418.1, + "probability": 0.9907 + }, + { + "start": 418.76, + "end": 419.77, + "probability": 0.9819 + }, + { + "start": 420.08, + "end": 421.46, + "probability": 0.9813 + }, + { + "start": 421.98, + "end": 422.78, + "probability": 0.9766 + }, + { + "start": 423.26, + "end": 425.82, + "probability": 0.9139 + }, + { + "start": 425.96, + "end": 428.28, + "probability": 0.9604 + }, + { + "start": 428.42, + "end": 429.36, + "probability": 0.9717 + }, + { + "start": 429.78, + "end": 430.98, + "probability": 0.6039 + }, + { + "start": 431.62, + "end": 434.38, + "probability": 0.9814 + }, + { + "start": 434.4, + "end": 435.68, + "probability": 0.881 + }, + { + "start": 435.8, + "end": 436.6, + "probability": 0.7914 + }, + { + "start": 437.02, + "end": 438.24, + "probability": 0.9616 + }, + { + "start": 438.52, + "end": 442.34, + "probability": 0.9943 + }, + { + "start": 442.86, + "end": 446.96, + "probability": 0.8051 + }, + { + "start": 447.06, + "end": 447.56, + "probability": 0.5001 + }, + { + "start": 447.94, + "end": 448.58, + "probability": 0.5161 + }, + { + "start": 448.66, + "end": 450.36, + "probability": 0.8553 + }, + { + "start": 450.5, + "end": 452.24, + "probability": 0.8252 + }, + { + "start": 456.52, + "end": 457.64, + "probability": 0.7982 + }, + { + "start": 459.16, + "end": 460.1, + "probability": 0.3659 + }, + { + "start": 460.2, + "end": 462.18, + "probability": 0.7852 + }, + { + "start": 462.32, + "end": 471.78, + "probability": 0.8943 + }, + { + "start": 472.44, + "end": 474.08, + "probability": 0.8224 + }, + { + "start": 474.4, + "end": 479.78, + "probability": 0.8588 + }, + { + "start": 479.78, + "end": 485.3, + "probability": 0.9214 + }, + { + "start": 486.7, + "end": 489.18, + "probability": 0.7308 + }, + { + "start": 491.22, + "end": 494.7, + "probability": 0.9324 + }, + { + "start": 496.44, + "end": 501.92, + "probability": 0.8905 + }, + { + "start": 502.0, + "end": 509.23, + "probability": 0.9412 + }, + { + "start": 509.9, + "end": 510.34, + "probability": 0.7962 + }, + { + "start": 510.5, + "end": 510.96, + "probability": 0.5969 + }, + { + "start": 511.14, + "end": 511.48, + "probability": 0.6535 + }, + { + "start": 511.66, + "end": 512.58, + "probability": 0.4122 + }, + { + "start": 514.34, + "end": 518.88, + "probability": 0.8393 + }, + { + "start": 518.94, + "end": 520.4, + "probability": 0.8846 + }, + { + "start": 521.38, + "end": 526.34, + "probability": 0.8184 + }, + { + "start": 526.42, + "end": 530.14, + "probability": 0.9894 + }, + { + "start": 530.14, + "end": 533.98, + "probability": 0.9886 + }, + { + "start": 534.14, + "end": 535.18, + "probability": 0.7829 + }, + { + "start": 535.5, + "end": 541.14, + "probability": 0.6562 + }, + { + "start": 541.4, + "end": 546.3, + "probability": 0.9592 + }, + { + "start": 546.74, + "end": 547.18, + "probability": 0.8482 + }, + { + "start": 547.44, + "end": 551.94, + "probability": 0.7734 + }, + { + "start": 551.94, + "end": 554.72, + "probability": 0.9962 + }, + { + "start": 555.4, + "end": 558.79, + "probability": 0.6411 + }, + { + "start": 559.3, + "end": 561.84, + "probability": 0.9709 + }, + { + "start": 561.94, + "end": 563.88, + "probability": 0.8703 + }, + { + "start": 564.2, + "end": 569.08, + "probability": 0.9941 + }, + { + "start": 569.08, + "end": 572.32, + "probability": 0.6639 + }, + { + "start": 572.8, + "end": 578.46, + "probability": 0.9275 + }, + { + "start": 578.56, + "end": 579.14, + "probability": 0.7499 + }, + { + "start": 579.26, + "end": 579.94, + "probability": 0.4894 + }, + { + "start": 580.02, + "end": 581.28, + "probability": 0.9745 + }, + { + "start": 581.98, + "end": 584.24, + "probability": 0.8753 + }, + { + "start": 586.95, + "end": 590.08, + "probability": 0.7637 + }, + { + "start": 590.9, + "end": 593.02, + "probability": 0.9482 + }, + { + "start": 593.66, + "end": 596.72, + "probability": 0.9886 + }, + { + "start": 597.72, + "end": 598.48, + "probability": 0.9884 + }, + { + "start": 599.22, + "end": 600.62, + "probability": 0.8461 + }, + { + "start": 600.7, + "end": 602.16, + "probability": 0.9047 + }, + { + "start": 603.02, + "end": 606.54, + "probability": 0.9988 + }, + { + "start": 607.14, + "end": 608.12, + "probability": 0.9911 + }, + { + "start": 608.84, + "end": 610.58, + "probability": 0.9995 + }, + { + "start": 610.74, + "end": 611.94, + "probability": 0.8811 + }, + { + "start": 613.12, + "end": 615.72, + "probability": 0.988 + }, + { + "start": 616.4, + "end": 620.22, + "probability": 0.9667 + }, + { + "start": 620.48, + "end": 623.44, + "probability": 0.9424 + }, + { + "start": 624.46, + "end": 625.34, + "probability": 0.8387 + }, + { + "start": 625.52, + "end": 628.04, + "probability": 0.9943 + }, + { + "start": 628.76, + "end": 633.48, + "probability": 0.9924 + }, + { + "start": 634.28, + "end": 636.04, + "probability": 0.3003 + }, + { + "start": 636.8, + "end": 638.72, + "probability": 0.616 + }, + { + "start": 638.9, + "end": 641.22, + "probability": 0.9725 + }, + { + "start": 641.84, + "end": 645.02, + "probability": 0.9954 + }, + { + "start": 645.64, + "end": 646.18, + "probability": 0.6637 + }, + { + "start": 646.8, + "end": 649.44, + "probability": 0.9703 + }, + { + "start": 649.58, + "end": 650.84, + "probability": 0.9303 + }, + { + "start": 651.52, + "end": 652.37, + "probability": 0.946 + }, + { + "start": 653.16, + "end": 654.86, + "probability": 0.9954 + }, + { + "start": 655.38, + "end": 657.9, + "probability": 0.9618 + }, + { + "start": 658.44, + "end": 660.56, + "probability": 0.8237 + }, + { + "start": 661.1, + "end": 663.02, + "probability": 0.6881 + }, + { + "start": 663.48, + "end": 663.92, + "probability": 0.5124 + }, + { + "start": 663.96, + "end": 664.48, + "probability": 0.9423 + }, + { + "start": 664.94, + "end": 668.4, + "probability": 0.8429 + }, + { + "start": 668.64, + "end": 669.12, + "probability": 0.7685 + }, + { + "start": 669.96, + "end": 670.68, + "probability": 0.7289 + }, + { + "start": 671.0, + "end": 674.54, + "probability": 0.9316 + }, + { + "start": 674.64, + "end": 676.66, + "probability": 0.7752 + }, + { + "start": 677.16, + "end": 677.7, + "probability": 0.9539 + }, + { + "start": 678.06, + "end": 680.5, + "probability": 0.8828 + }, + { + "start": 681.68, + "end": 686.96, + "probability": 0.9578 + }, + { + "start": 687.82, + "end": 690.44, + "probability": 0.9661 + }, + { + "start": 690.96, + "end": 693.92, + "probability": 0.959 + }, + { + "start": 694.82, + "end": 698.46, + "probability": 0.974 + }, + { + "start": 699.5, + "end": 702.68, + "probability": 0.9893 + }, + { + "start": 703.72, + "end": 709.18, + "probability": 0.991 + }, + { + "start": 710.56, + "end": 713.46, + "probability": 0.9937 + }, + { + "start": 713.98, + "end": 718.7, + "probability": 0.9982 + }, + { + "start": 719.82, + "end": 723.5, + "probability": 0.9876 + }, + { + "start": 724.06, + "end": 724.9, + "probability": 0.7629 + }, + { + "start": 727.78, + "end": 730.84, + "probability": 0.9405 + }, + { + "start": 731.5, + "end": 734.38, + "probability": 0.9749 + }, + { + "start": 735.08, + "end": 738.0, + "probability": 0.9843 + }, + { + "start": 738.82, + "end": 743.86, + "probability": 0.9699 + }, + { + "start": 745.28, + "end": 752.32, + "probability": 0.7851 + }, + { + "start": 753.92, + "end": 755.7, + "probability": 0.9807 + }, + { + "start": 757.46, + "end": 758.79, + "probability": 0.8344 + }, + { + "start": 759.28, + "end": 760.3, + "probability": 0.932 + }, + { + "start": 762.32, + "end": 764.02, + "probability": 0.7379 + }, + { + "start": 764.4, + "end": 765.44, + "probability": 0.9886 + }, + { + "start": 766.44, + "end": 768.4, + "probability": 0.5653 + }, + { + "start": 768.6, + "end": 770.6, + "probability": 0.5202 + }, + { + "start": 770.66, + "end": 773.92, + "probability": 0.7609 + }, + { + "start": 775.12, + "end": 776.96, + "probability": 0.7454 + }, + { + "start": 777.06, + "end": 778.62, + "probability": 0.9849 + }, + { + "start": 780.18, + "end": 781.78, + "probability": 0.9764 + }, + { + "start": 782.1, + "end": 783.84, + "probability": 0.9575 + }, + { + "start": 785.08, + "end": 788.86, + "probability": 0.9519 + }, + { + "start": 789.58, + "end": 792.22, + "probability": 0.9698 + }, + { + "start": 792.24, + "end": 795.68, + "probability": 0.9796 + }, + { + "start": 796.38, + "end": 798.14, + "probability": 0.687 + }, + { + "start": 798.48, + "end": 801.0, + "probability": 0.714 + }, + { + "start": 801.24, + "end": 807.08, + "probability": 0.9836 + }, + { + "start": 807.18, + "end": 808.62, + "probability": 0.7566 + }, + { + "start": 809.08, + "end": 810.1, + "probability": 0.863 + }, + { + "start": 810.8, + "end": 813.44, + "probability": 0.9855 + }, + { + "start": 813.72, + "end": 817.54, + "probability": 0.9923 + }, + { + "start": 817.54, + "end": 821.1, + "probability": 0.9998 + }, + { + "start": 821.22, + "end": 826.32, + "probability": 0.9698 + }, + { + "start": 827.08, + "end": 828.5, + "probability": 0.9967 + }, + { + "start": 828.56, + "end": 829.28, + "probability": 0.853 + }, + { + "start": 841.8, + "end": 845.33, + "probability": 0.9446 + }, + { + "start": 846.5, + "end": 847.18, + "probability": 0.644 + }, + { + "start": 847.72, + "end": 849.22, + "probability": 0.7692 + }, + { + "start": 850.64, + "end": 854.54, + "probability": 0.9893 + }, + { + "start": 855.78, + "end": 857.54, + "probability": 0.9961 + }, + { + "start": 858.22, + "end": 862.12, + "probability": 0.9941 + }, + { + "start": 862.98, + "end": 864.12, + "probability": 0.7962 + }, + { + "start": 864.84, + "end": 868.8, + "probability": 0.9399 + }, + { + "start": 870.06, + "end": 870.88, + "probability": 0.9504 + }, + { + "start": 872.48, + "end": 878.3, + "probability": 0.9722 + }, + { + "start": 879.7, + "end": 882.9, + "probability": 0.9938 + }, + { + "start": 884.34, + "end": 886.36, + "probability": 0.9114 + }, + { + "start": 886.36, + "end": 889.74, + "probability": 0.9713 + }, + { + "start": 890.0, + "end": 891.36, + "probability": 0.9907 + }, + { + "start": 892.94, + "end": 893.4, + "probability": 0.8493 + }, + { + "start": 893.44, + "end": 897.74, + "probability": 0.9963 + }, + { + "start": 898.7, + "end": 901.06, + "probability": 0.989 + }, + { + "start": 901.96, + "end": 905.88, + "probability": 0.9851 + }, + { + "start": 906.42, + "end": 907.36, + "probability": 0.9844 + }, + { + "start": 909.3, + "end": 912.04, + "probability": 0.9827 + }, + { + "start": 913.14, + "end": 914.32, + "probability": 0.8994 + }, + { + "start": 915.38, + "end": 918.5, + "probability": 0.9367 + }, + { + "start": 918.52, + "end": 919.46, + "probability": 0.8054 + }, + { + "start": 920.52, + "end": 921.31, + "probability": 0.7769 + }, + { + "start": 921.94, + "end": 924.74, + "probability": 0.8833 + }, + { + "start": 925.58, + "end": 929.8, + "probability": 0.9879 + }, + { + "start": 931.04, + "end": 931.96, + "probability": 0.9235 + }, + { + "start": 932.56, + "end": 933.38, + "probability": 0.823 + }, + { + "start": 934.64, + "end": 937.78, + "probability": 0.9827 + }, + { + "start": 937.78, + "end": 940.9, + "probability": 0.9819 + }, + { + "start": 942.16, + "end": 945.02, + "probability": 0.9841 + }, + { + "start": 945.86, + "end": 947.76, + "probability": 0.9742 + }, + { + "start": 948.84, + "end": 950.78, + "probability": 0.9986 + }, + { + "start": 951.82, + "end": 955.56, + "probability": 0.9785 + }, + { + "start": 956.08, + "end": 957.58, + "probability": 0.913 + }, + { + "start": 959.48, + "end": 960.04, + "probability": 0.7506 + }, + { + "start": 961.04, + "end": 962.34, + "probability": 0.9772 + }, + { + "start": 964.4, + "end": 967.1, + "probability": 0.9762 + }, + { + "start": 968.46, + "end": 970.0, + "probability": 0.7865 + }, + { + "start": 970.78, + "end": 973.42, + "probability": 0.9893 + }, + { + "start": 974.8, + "end": 976.92, + "probability": 0.9229 + }, + { + "start": 977.44, + "end": 982.76, + "probability": 0.9572 + }, + { + "start": 983.44, + "end": 987.5, + "probability": 0.9502 + }, + { + "start": 988.4, + "end": 990.68, + "probability": 0.8746 + }, + { + "start": 992.58, + "end": 993.14, + "probability": 0.5538 + }, + { + "start": 993.48, + "end": 994.22, + "probability": 0.5906 + }, + { + "start": 994.3, + "end": 995.84, + "probability": 0.8654 + }, + { + "start": 996.68, + "end": 1000.78, + "probability": 0.959 + }, + { + "start": 1002.58, + "end": 1006.6, + "probability": 0.9834 + }, + { + "start": 1006.68, + "end": 1007.24, + "probability": 0.9655 + }, + { + "start": 1009.38, + "end": 1009.92, + "probability": 0.9788 + }, + { + "start": 1011.04, + "end": 1013.86, + "probability": 0.9906 + }, + { + "start": 1013.86, + "end": 1016.74, + "probability": 0.9969 + }, + { + "start": 1017.44, + "end": 1020.5, + "probability": 0.9766 + }, + { + "start": 1021.8, + "end": 1023.18, + "probability": 0.7475 + }, + { + "start": 1023.76, + "end": 1024.58, + "probability": 0.496 + }, + { + "start": 1026.44, + "end": 1030.98, + "probability": 0.9884 + }, + { + "start": 1032.62, + "end": 1036.42, + "probability": 0.9906 + }, + { + "start": 1037.64, + "end": 1040.76, + "probability": 0.9961 + }, + { + "start": 1041.7, + "end": 1043.52, + "probability": 0.9695 + }, + { + "start": 1044.34, + "end": 1045.08, + "probability": 0.6705 + }, + { + "start": 1046.1, + "end": 1046.76, + "probability": 0.9785 + }, + { + "start": 1047.98, + "end": 1053.46, + "probability": 0.9873 + }, + { + "start": 1053.78, + "end": 1054.62, + "probability": 0.8067 + }, + { + "start": 1054.8, + "end": 1056.44, + "probability": 0.6915 + }, + { + "start": 1058.36, + "end": 1062.02, + "probability": 0.9963 + }, + { + "start": 1063.5, + "end": 1065.06, + "probability": 0.9514 + }, + { + "start": 1066.9, + "end": 1068.72, + "probability": 0.9723 + }, + { + "start": 1069.4, + "end": 1072.1, + "probability": 0.7966 + }, + { + "start": 1072.8, + "end": 1076.24, + "probability": 0.9188 + }, + { + "start": 1077.06, + "end": 1079.3, + "probability": 0.9509 + }, + { + "start": 1079.98, + "end": 1080.64, + "probability": 0.6906 + }, + { + "start": 1081.2, + "end": 1085.02, + "probability": 0.7156 + }, + { + "start": 1086.26, + "end": 1090.38, + "probability": 0.9142 + }, + { + "start": 1090.72, + "end": 1091.78, + "probability": 0.8953 + }, + { + "start": 1092.48, + "end": 1093.6, + "probability": 0.791 + }, + { + "start": 1094.48, + "end": 1096.64, + "probability": 0.7992 + }, + { + "start": 1097.66, + "end": 1104.16, + "probability": 0.9943 + }, + { + "start": 1104.84, + "end": 1107.02, + "probability": 0.9296 + }, + { + "start": 1108.38, + "end": 1109.32, + "probability": 0.9518 + }, + { + "start": 1110.3, + "end": 1110.98, + "probability": 0.8534 + }, + { + "start": 1111.6, + "end": 1112.26, + "probability": 0.828 + }, + { + "start": 1113.58, + "end": 1116.44, + "probability": 0.9922 + }, + { + "start": 1118.38, + "end": 1123.3, + "probability": 0.9989 + }, + { + "start": 1124.22, + "end": 1128.78, + "probability": 0.9804 + }, + { + "start": 1129.72, + "end": 1131.04, + "probability": 0.8534 + }, + { + "start": 1132.06, + "end": 1132.46, + "probability": 0.7951 + }, + { + "start": 1133.12, + "end": 1134.76, + "probability": 0.9954 + }, + { + "start": 1135.14, + "end": 1136.68, + "probability": 0.7496 + }, + { + "start": 1137.34, + "end": 1140.14, + "probability": 0.803 + }, + { + "start": 1140.84, + "end": 1143.72, + "probability": 0.9978 + }, + { + "start": 1145.28, + "end": 1145.68, + "probability": 0.8026 + }, + { + "start": 1146.62, + "end": 1148.86, + "probability": 0.6282 + }, + { + "start": 1148.96, + "end": 1151.74, + "probability": 0.8662 + }, + { + "start": 1159.98, + "end": 1162.6, + "probability": 0.865 + }, + { + "start": 1171.5, + "end": 1176.22, + "probability": 0.8141 + }, + { + "start": 1177.14, + "end": 1180.93, + "probability": 0.9502 + }, + { + "start": 1181.44, + "end": 1181.72, + "probability": 0.6295 + }, + { + "start": 1181.76, + "end": 1182.54, + "probability": 0.9185 + }, + { + "start": 1182.74, + "end": 1185.18, + "probability": 0.9985 + }, + { + "start": 1185.96, + "end": 1191.38, + "probability": 0.9478 + }, + { + "start": 1192.46, + "end": 1194.88, + "probability": 0.1175 + }, + { + "start": 1195.3, + "end": 1196.5, + "probability": 0.3485 + }, + { + "start": 1196.7, + "end": 1198.36, + "probability": 0.3907 + }, + { + "start": 1199.48, + "end": 1202.9, + "probability": 0.8125 + }, + { + "start": 1203.38, + "end": 1209.5, + "probability": 0.8015 + }, + { + "start": 1210.08, + "end": 1215.66, + "probability": 0.7291 + }, + { + "start": 1216.32, + "end": 1220.12, + "probability": 0.579 + }, + { + "start": 1220.7, + "end": 1223.96, + "probability": 0.9405 + }, + { + "start": 1225.12, + "end": 1231.16, + "probability": 0.7679 + }, + { + "start": 1231.78, + "end": 1238.0, + "probability": 0.956 + }, + { + "start": 1238.42, + "end": 1241.66, + "probability": 0.9199 + }, + { + "start": 1242.44, + "end": 1243.66, + "probability": 0.871 + }, + { + "start": 1244.06, + "end": 1244.92, + "probability": 0.8477 + }, + { + "start": 1245.42, + "end": 1248.88, + "probability": 0.9752 + }, + { + "start": 1249.54, + "end": 1253.24, + "probability": 0.9855 + }, + { + "start": 1254.24, + "end": 1258.16, + "probability": 0.8983 + }, + { + "start": 1258.88, + "end": 1262.54, + "probability": 0.8118 + }, + { + "start": 1263.56, + "end": 1265.78, + "probability": 0.9104 + }, + { + "start": 1265.88, + "end": 1270.8, + "probability": 0.9628 + }, + { + "start": 1271.36, + "end": 1280.9, + "probability": 0.9286 + }, + { + "start": 1281.18, + "end": 1282.48, + "probability": 0.6354 + }, + { + "start": 1283.02, + "end": 1283.52, + "probability": 0.923 + }, + { + "start": 1283.96, + "end": 1287.46, + "probability": 0.9694 + }, + { + "start": 1288.22, + "end": 1290.26, + "probability": 0.9862 + }, + { + "start": 1291.18, + "end": 1294.3, + "probability": 0.7844 + }, + { + "start": 1294.96, + "end": 1297.62, + "probability": 0.9608 + }, + { + "start": 1298.04, + "end": 1302.26, + "probability": 0.9575 + }, + { + "start": 1302.32, + "end": 1306.1, + "probability": 0.9469 + }, + { + "start": 1306.62, + "end": 1309.7, + "probability": 0.9949 + }, + { + "start": 1310.28, + "end": 1312.16, + "probability": 0.9821 + }, + { + "start": 1312.62, + "end": 1314.06, + "probability": 0.954 + }, + { + "start": 1314.18, + "end": 1315.18, + "probability": 0.8848 + }, + { + "start": 1315.6, + "end": 1318.22, + "probability": 0.8606 + }, + { + "start": 1318.64, + "end": 1319.0, + "probability": 0.7916 + }, + { + "start": 1320.74, + "end": 1324.38, + "probability": 0.9932 + }, + { + "start": 1324.78, + "end": 1327.02, + "probability": 0.8595 + }, + { + "start": 1327.06, + "end": 1332.85, + "probability": 0.9738 + }, + { + "start": 1334.38, + "end": 1335.3, + "probability": 0.7857 + }, + { + "start": 1335.36, + "end": 1336.16, + "probability": 0.8212 + }, + { + "start": 1336.16, + "end": 1341.76, + "probability": 0.9557 + }, + { + "start": 1341.8, + "end": 1342.2, + "probability": 0.8726 + }, + { + "start": 1342.36, + "end": 1345.4, + "probability": 0.9946 + }, + { + "start": 1346.68, + "end": 1348.54, + "probability": 0.8136 + }, + { + "start": 1348.8, + "end": 1349.66, + "probability": 0.835 + }, + { + "start": 1349.74, + "end": 1350.94, + "probability": 0.7685 + }, + { + "start": 1350.98, + "end": 1353.26, + "probability": 0.6291 + }, + { + "start": 1354.42, + "end": 1356.5, + "probability": 0.9276 + }, + { + "start": 1357.7, + "end": 1362.08, + "probability": 0.991 + }, + { + "start": 1362.08, + "end": 1365.02, + "probability": 0.9656 + }, + { + "start": 1365.34, + "end": 1366.97, + "probability": 0.9502 + }, + { + "start": 1367.3, + "end": 1368.82, + "probability": 0.8425 + }, + { + "start": 1369.52, + "end": 1375.3, + "probability": 0.98 + }, + { + "start": 1375.34, + "end": 1380.48, + "probability": 0.9601 + }, + { + "start": 1381.0, + "end": 1381.86, + "probability": 0.9871 + }, + { + "start": 1382.52, + "end": 1383.26, + "probability": 0.4338 + }, + { + "start": 1383.8, + "end": 1385.82, + "probability": 0.9946 + }, + { + "start": 1386.34, + "end": 1392.4, + "probability": 0.9679 + }, + { + "start": 1393.02, + "end": 1394.24, + "probability": 0.6595 + }, + { + "start": 1394.54, + "end": 1399.78, + "probability": 0.9969 + }, + { + "start": 1400.28, + "end": 1402.52, + "probability": 0.9971 + }, + { + "start": 1403.52, + "end": 1405.82, + "probability": 0.6667 + }, + { + "start": 1406.52, + "end": 1414.78, + "probability": 0.9264 + }, + { + "start": 1415.1, + "end": 1417.57, + "probability": 0.9966 + }, + { + "start": 1418.02, + "end": 1420.12, + "probability": 0.9634 + }, + { + "start": 1420.34, + "end": 1421.88, + "probability": 0.8726 + }, + { + "start": 1421.98, + "end": 1423.88, + "probability": 0.903 + }, + { + "start": 1424.4, + "end": 1429.24, + "probability": 0.9629 + }, + { + "start": 1429.48, + "end": 1433.48, + "probability": 0.9677 + }, + { + "start": 1434.02, + "end": 1434.22, + "probability": 0.6351 + }, + { + "start": 1434.48, + "end": 1435.44, + "probability": 0.9935 + }, + { + "start": 1435.76, + "end": 1436.68, + "probability": 0.9283 + }, + { + "start": 1436.86, + "end": 1439.5, + "probability": 0.7312 + }, + { + "start": 1439.62, + "end": 1440.5, + "probability": 0.8302 + }, + { + "start": 1440.6, + "end": 1443.86, + "probability": 0.9155 + }, + { + "start": 1444.28, + "end": 1445.68, + "probability": 0.9885 + }, + { + "start": 1446.38, + "end": 1450.74, + "probability": 0.9897 + }, + { + "start": 1451.62, + "end": 1452.56, + "probability": 0.6403 + }, + { + "start": 1452.66, + "end": 1453.5, + "probability": 0.699 + }, + { + "start": 1453.64, + "end": 1459.1, + "probability": 0.9335 + }, + { + "start": 1459.26, + "end": 1461.48, + "probability": 0.8685 + }, + { + "start": 1462.26, + "end": 1468.44, + "probability": 0.9941 + }, + { + "start": 1468.58, + "end": 1471.08, + "probability": 0.9993 + }, + { + "start": 1471.72, + "end": 1478.24, + "probability": 0.6552 + }, + { + "start": 1479.04, + "end": 1481.88, + "probability": 0.9929 + }, + { + "start": 1482.38, + "end": 1489.4, + "probability": 0.9369 + }, + { + "start": 1489.46, + "end": 1491.4, + "probability": 0.722 + }, + { + "start": 1491.72, + "end": 1497.22, + "probability": 0.9958 + }, + { + "start": 1497.48, + "end": 1498.12, + "probability": 0.8206 + }, + { + "start": 1498.28, + "end": 1499.64, + "probability": 0.7426 + }, + { + "start": 1500.7, + "end": 1503.9, + "probability": 0.8306 + }, + { + "start": 1504.24, + "end": 1505.28, + "probability": 0.5067 + }, + { + "start": 1505.64, + "end": 1508.52, + "probability": 0.5293 + }, + { + "start": 1508.92, + "end": 1509.8, + "probability": 0.843 + }, + { + "start": 1510.04, + "end": 1510.54, + "probability": 0.9813 + }, + { + "start": 1511.12, + "end": 1511.74, + "probability": 0.822 + }, + { + "start": 1511.96, + "end": 1512.4, + "probability": 0.7174 + }, + { + "start": 1512.82, + "end": 1513.42, + "probability": 0.5234 + }, + { + "start": 1513.72, + "end": 1515.8, + "probability": 0.8271 + }, + { + "start": 1516.3, + "end": 1518.84, + "probability": 0.7464 + }, + { + "start": 1537.44, + "end": 1539.96, + "probability": 0.7494 + }, + { + "start": 1540.74, + "end": 1543.46, + "probability": 0.9734 + }, + { + "start": 1544.0, + "end": 1546.32, + "probability": 0.9982 + }, + { + "start": 1547.36, + "end": 1548.22, + "probability": 0.1999 + }, + { + "start": 1548.42, + "end": 1548.7, + "probability": 0.7568 + }, + { + "start": 1549.02, + "end": 1551.8, + "probability": 0.8514 + }, + { + "start": 1552.06, + "end": 1553.12, + "probability": 0.8757 + }, + { + "start": 1554.06, + "end": 1558.44, + "probability": 0.9707 + }, + { + "start": 1558.66, + "end": 1561.08, + "probability": 0.9873 + }, + { + "start": 1561.2, + "end": 1563.22, + "probability": 0.998 + }, + { + "start": 1565.52, + "end": 1569.34, + "probability": 0.999 + }, + { + "start": 1569.72, + "end": 1572.98, + "probability": 0.9893 + }, + { + "start": 1574.1, + "end": 1575.14, + "probability": 0.4956 + }, + { + "start": 1575.54, + "end": 1576.84, + "probability": 0.8776 + }, + { + "start": 1577.28, + "end": 1578.78, + "probability": 0.8661 + }, + { + "start": 1579.2, + "end": 1581.28, + "probability": 0.9984 + }, + { + "start": 1581.51, + "end": 1584.82, + "probability": 0.9944 + }, + { + "start": 1585.26, + "end": 1590.04, + "probability": 0.981 + }, + { + "start": 1591.02, + "end": 1593.52, + "probability": 0.9945 + }, + { + "start": 1593.6, + "end": 1595.64, + "probability": 0.7803 + }, + { + "start": 1595.78, + "end": 1597.52, + "probability": 0.8135 + }, + { + "start": 1598.76, + "end": 1601.34, + "probability": 0.9858 + }, + { + "start": 1601.56, + "end": 1605.12, + "probability": 0.9857 + }, + { + "start": 1605.12, + "end": 1608.46, + "probability": 0.9903 + }, + { + "start": 1609.26, + "end": 1612.88, + "probability": 0.9918 + }, + { + "start": 1613.02, + "end": 1614.02, + "probability": 0.7721 + }, + { + "start": 1614.12, + "end": 1615.82, + "probability": 0.9287 + }, + { + "start": 1616.62, + "end": 1618.16, + "probability": 0.884 + }, + { + "start": 1618.24, + "end": 1619.38, + "probability": 0.9932 + }, + { + "start": 1619.56, + "end": 1621.95, + "probability": 0.9897 + }, + { + "start": 1622.66, + "end": 1625.1, + "probability": 0.9892 + }, + { + "start": 1626.24, + "end": 1629.48, + "probability": 0.9807 + }, + { + "start": 1629.64, + "end": 1632.66, + "probability": 0.9722 + }, + { + "start": 1633.32, + "end": 1636.52, + "probability": 0.9918 + }, + { + "start": 1637.38, + "end": 1639.28, + "probability": 0.9824 + }, + { + "start": 1639.48, + "end": 1640.92, + "probability": 0.6569 + }, + { + "start": 1641.64, + "end": 1643.7, + "probability": 0.9616 + }, + { + "start": 1644.5, + "end": 1645.22, + "probability": 0.9307 + }, + { + "start": 1645.98, + "end": 1648.81, + "probability": 0.998 + }, + { + "start": 1649.04, + "end": 1652.82, + "probability": 0.986 + }, + { + "start": 1654.04, + "end": 1655.62, + "probability": 0.975 + }, + { + "start": 1656.3, + "end": 1658.48, + "probability": 0.9629 + }, + { + "start": 1658.58, + "end": 1662.12, + "probability": 0.9945 + }, + { + "start": 1662.24, + "end": 1664.64, + "probability": 0.9919 + }, + { + "start": 1665.34, + "end": 1670.99, + "probability": 0.9945 + }, + { + "start": 1672.8, + "end": 1678.12, + "probability": 0.9979 + }, + { + "start": 1678.12, + "end": 1682.38, + "probability": 0.7996 + }, + { + "start": 1683.28, + "end": 1687.8, + "probability": 0.9896 + }, + { + "start": 1687.96, + "end": 1689.64, + "probability": 0.8898 + }, + { + "start": 1690.18, + "end": 1692.46, + "probability": 0.9813 + }, + { + "start": 1693.02, + "end": 1695.08, + "probability": 0.9845 + }, + { + "start": 1695.92, + "end": 1697.36, + "probability": 0.9899 + }, + { + "start": 1697.44, + "end": 1699.36, + "probability": 0.9983 + }, + { + "start": 1699.62, + "end": 1701.98, + "probability": 0.9661 + }, + { + "start": 1701.98, + "end": 1705.74, + "probability": 0.9902 + }, + { + "start": 1706.74, + "end": 1709.18, + "probability": 0.8311 + }, + { + "start": 1709.18, + "end": 1712.88, + "probability": 0.9645 + }, + { + "start": 1713.38, + "end": 1716.12, + "probability": 0.9805 + }, + { + "start": 1716.26, + "end": 1721.76, + "probability": 0.9888 + }, + { + "start": 1722.66, + "end": 1726.78, + "probability": 0.8923 + }, + { + "start": 1726.78, + "end": 1730.84, + "probability": 0.9855 + }, + { + "start": 1731.56, + "end": 1733.68, + "probability": 0.9904 + }, + { + "start": 1733.8, + "end": 1737.26, + "probability": 0.998 + }, + { + "start": 1737.6, + "end": 1742.34, + "probability": 0.9968 + }, + { + "start": 1743.06, + "end": 1745.1, + "probability": 0.9958 + }, + { + "start": 1745.1, + "end": 1748.62, + "probability": 0.9945 + }, + { + "start": 1749.42, + "end": 1752.92, + "probability": 0.9813 + }, + { + "start": 1753.62, + "end": 1755.74, + "probability": 0.9906 + }, + { + "start": 1756.18, + "end": 1757.08, + "probability": 0.965 + }, + { + "start": 1757.22, + "end": 1760.48, + "probability": 0.9905 + }, + { + "start": 1761.18, + "end": 1764.32, + "probability": 0.9888 + }, + { + "start": 1764.78, + "end": 1768.32, + "probability": 0.842 + }, + { + "start": 1768.32, + "end": 1772.6, + "probability": 0.9981 + }, + { + "start": 1773.44, + "end": 1774.86, + "probability": 0.524 + }, + { + "start": 1774.92, + "end": 1777.58, + "probability": 0.9966 + }, + { + "start": 1777.58, + "end": 1780.72, + "probability": 0.9773 + }, + { + "start": 1780.84, + "end": 1781.2, + "probability": 0.8828 + }, + { + "start": 1781.34, + "end": 1783.16, + "probability": 0.8725 + }, + { + "start": 1783.66, + "end": 1785.04, + "probability": 0.9094 + }, + { + "start": 1785.74, + "end": 1787.0, + "probability": 0.9583 + }, + { + "start": 1787.16, + "end": 1789.16, + "probability": 0.9985 + }, + { + "start": 1790.16, + "end": 1793.48, + "probability": 0.9648 + }, + { + "start": 1794.66, + "end": 1799.54, + "probability": 0.9903 + }, + { + "start": 1799.78, + "end": 1804.76, + "probability": 0.991 + }, + { + "start": 1805.52, + "end": 1809.08, + "probability": 0.9875 + }, + { + "start": 1809.1, + "end": 1811.48, + "probability": 0.9861 + }, + { + "start": 1812.34, + "end": 1816.34, + "probability": 0.8868 + }, + { + "start": 1817.18, + "end": 1818.44, + "probability": 0.7409 + }, + { + "start": 1818.52, + "end": 1820.3, + "probability": 0.9467 + }, + { + "start": 1820.34, + "end": 1821.35, + "probability": 0.2818 + }, + { + "start": 1822.5, + "end": 1823.94, + "probability": 0.9878 + }, + { + "start": 1824.56, + "end": 1827.1, + "probability": 0.1005 + }, + { + "start": 1827.1, + "end": 1827.66, + "probability": 0.0202 + }, + { + "start": 1827.9, + "end": 1829.48, + "probability": 0.855 + }, + { + "start": 1830.42, + "end": 1834.94, + "probability": 0.9697 + }, + { + "start": 1835.3, + "end": 1837.5, + "probability": 0.9614 + }, + { + "start": 1838.12, + "end": 1839.12, + "probability": 0.8119 + }, + { + "start": 1840.16, + "end": 1844.16, + "probability": 0.9753 + }, + { + "start": 1844.16, + "end": 1848.14, + "probability": 0.9955 + }, + { + "start": 1848.38, + "end": 1848.58, + "probability": 0.6886 + }, + { + "start": 1849.42, + "end": 1849.98, + "probability": 0.5495 + }, + { + "start": 1850.08, + "end": 1852.46, + "probability": 0.8228 + }, + { + "start": 1853.36, + "end": 1855.26, + "probability": 0.7419 + }, + { + "start": 1873.3, + "end": 1873.8, + "probability": 0.0533 + }, + { + "start": 1873.8, + "end": 1873.8, + "probability": 0.3374 + }, + { + "start": 1873.8, + "end": 1873.96, + "probability": 0.2092 + }, + { + "start": 1883.74, + "end": 1884.74, + "probability": 0.6283 + }, + { + "start": 1884.9, + "end": 1886.14, + "probability": 0.8145 + }, + { + "start": 1886.34, + "end": 1889.8, + "probability": 0.919 + }, + { + "start": 1890.08, + "end": 1892.04, + "probability": 0.5133 + }, + { + "start": 1892.58, + "end": 1896.14, + "probability": 0.988 + }, + { + "start": 1896.76, + "end": 1902.38, + "probability": 0.9665 + }, + { + "start": 1903.18, + "end": 1908.18, + "probability": 0.9836 + }, + { + "start": 1908.88, + "end": 1914.08, + "probability": 0.7269 + }, + { + "start": 1914.88, + "end": 1917.32, + "probability": 0.9712 + }, + { + "start": 1917.32, + "end": 1920.88, + "probability": 0.9982 + }, + { + "start": 1921.4, + "end": 1922.56, + "probability": 0.9078 + }, + { + "start": 1923.1, + "end": 1926.6, + "probability": 0.9954 + }, + { + "start": 1927.62, + "end": 1931.16, + "probability": 0.9916 + }, + { + "start": 1931.46, + "end": 1935.06, + "probability": 0.9937 + }, + { + "start": 1935.66, + "end": 1937.96, + "probability": 0.9688 + }, + { + "start": 1938.42, + "end": 1941.7, + "probability": 0.9959 + }, + { + "start": 1942.62, + "end": 1947.28, + "probability": 0.9769 + }, + { + "start": 1948.04, + "end": 1951.46, + "probability": 0.9907 + }, + { + "start": 1952.04, + "end": 1954.56, + "probability": 0.7716 + }, + { + "start": 1955.2, + "end": 1958.86, + "probability": 0.9399 + }, + { + "start": 1959.68, + "end": 1962.52, + "probability": 0.9873 + }, + { + "start": 1963.12, + "end": 1965.44, + "probability": 0.9878 + }, + { + "start": 1965.64, + "end": 1968.12, + "probability": 0.963 + }, + { + "start": 1968.8, + "end": 1971.96, + "probability": 0.6685 + }, + { + "start": 1973.0, + "end": 1976.54, + "probability": 0.9683 + }, + { + "start": 1976.54, + "end": 1979.28, + "probability": 0.982 + }, + { + "start": 1979.92, + "end": 1982.46, + "probability": 0.9964 + }, + { + "start": 1982.86, + "end": 1983.7, + "probability": 0.9752 + }, + { + "start": 1984.06, + "end": 1988.96, + "probability": 0.8705 + }, + { + "start": 1990.22, + "end": 1992.68, + "probability": 0.9784 + }, + { + "start": 1993.18, + "end": 1995.72, + "probability": 0.9756 + }, + { + "start": 1996.44, + "end": 1998.66, + "probability": 0.9942 + }, + { + "start": 1999.12, + "end": 2002.22, + "probability": 0.9873 + }, + { + "start": 2002.22, + "end": 2007.8, + "probability": 0.9927 + }, + { + "start": 2009.18, + "end": 2013.8, + "probability": 0.5159 + }, + { + "start": 2014.56, + "end": 2017.43, + "probability": 0.9955 + }, + { + "start": 2018.48, + "end": 2020.98, + "probability": 0.947 + }, + { + "start": 2021.1, + "end": 2023.8, + "probability": 0.9308 + }, + { + "start": 2023.96, + "end": 2024.96, + "probability": 0.8438 + }, + { + "start": 2025.88, + "end": 2028.32, + "probability": 0.9249 + }, + { + "start": 2028.88, + "end": 2031.4, + "probability": 0.9202 + }, + { + "start": 2031.62, + "end": 2032.94, + "probability": 0.921 + }, + { + "start": 2033.44, + "end": 2035.44, + "probability": 0.8586 + }, + { + "start": 2036.2, + "end": 2038.0, + "probability": 0.9282 + }, + { + "start": 2038.6, + "end": 2041.1, + "probability": 0.9289 + }, + { + "start": 2041.3, + "end": 2043.78, + "probability": 0.9808 + }, + { + "start": 2044.36, + "end": 2048.08, + "probability": 0.9853 + }, + { + "start": 2048.16, + "end": 2049.6, + "probability": 0.9958 + }, + { + "start": 2050.44, + "end": 2052.94, + "probability": 0.9042 + }, + { + "start": 2053.64, + "end": 2057.04, + "probability": 0.9937 + }, + { + "start": 2058.1, + "end": 2058.9, + "probability": 0.463 + }, + { + "start": 2059.04, + "end": 2060.34, + "probability": 0.9731 + }, + { + "start": 2060.48, + "end": 2062.0, + "probability": 0.9146 + }, + { + "start": 2062.68, + "end": 2065.6, + "probability": 0.9357 + }, + { + "start": 2067.6, + "end": 2068.32, + "probability": 0.9216 + }, + { + "start": 2068.46, + "end": 2073.76, + "probability": 0.8901 + }, + { + "start": 2074.34, + "end": 2076.7, + "probability": 0.9863 + }, + { + "start": 2077.64, + "end": 2081.2, + "probability": 0.9873 + }, + { + "start": 2082.32, + "end": 2083.12, + "probability": 0.886 + }, + { + "start": 2083.64, + "end": 2085.44, + "probability": 0.783 + }, + { + "start": 2086.1, + "end": 2090.16, + "probability": 0.8325 + }, + { + "start": 2090.76, + "end": 2094.0, + "probability": 0.9857 + }, + { + "start": 2094.74, + "end": 2095.9, + "probability": 0.9781 + }, + { + "start": 2096.66, + "end": 2098.64, + "probability": 0.7315 + }, + { + "start": 2099.32, + "end": 2102.06, + "probability": 0.9734 + }, + { + "start": 2103.02, + "end": 2106.04, + "probability": 0.991 + }, + { + "start": 2106.48, + "end": 2109.74, + "probability": 0.9635 + }, + { + "start": 2111.24, + "end": 2115.04, + "probability": 0.9658 + }, + { + "start": 2115.74, + "end": 2116.24, + "probability": 0.5809 + }, + { + "start": 2116.34, + "end": 2117.29, + "probability": 0.7258 + }, + { + "start": 2117.46, + "end": 2118.18, + "probability": 0.4918 + }, + { + "start": 2118.56, + "end": 2119.56, + "probability": 0.9132 + }, + { + "start": 2119.68, + "end": 2121.32, + "probability": 0.9579 + }, + { + "start": 2121.66, + "end": 2123.16, + "probability": 0.9619 + }, + { + "start": 2123.68, + "end": 2128.51, + "probability": 0.9756 + }, + { + "start": 2128.92, + "end": 2130.34, + "probability": 0.9744 + }, + { + "start": 2130.44, + "end": 2133.9, + "probability": 0.9901 + }, + { + "start": 2134.38, + "end": 2135.7, + "probability": 0.7951 + }, + { + "start": 2136.24, + "end": 2139.94, + "probability": 0.9891 + }, + { + "start": 2140.88, + "end": 2144.72, + "probability": 0.9883 + }, + { + "start": 2144.9, + "end": 2150.12, + "probability": 0.917 + }, + { + "start": 2150.12, + "end": 2154.54, + "probability": 0.9946 + }, + { + "start": 2155.14, + "end": 2157.38, + "probability": 0.9378 + }, + { + "start": 2158.08, + "end": 2159.0, + "probability": 0.7127 + }, + { + "start": 2159.06, + "end": 2160.9, + "probability": 0.995 + }, + { + "start": 2160.96, + "end": 2162.34, + "probability": 0.8673 + }, + { + "start": 2162.88, + "end": 2167.32, + "probability": 0.5306 + }, + { + "start": 2167.82, + "end": 2172.62, + "probability": 0.9965 + }, + { + "start": 2172.62, + "end": 2177.46, + "probability": 0.9927 + }, + { + "start": 2178.24, + "end": 2178.92, + "probability": 0.8489 + }, + { + "start": 2179.2, + "end": 2182.26, + "probability": 0.7103 + }, + { + "start": 2182.84, + "end": 2184.02, + "probability": 0.6 + }, + { + "start": 2184.72, + "end": 2187.14, + "probability": 0.8354 + }, + { + "start": 2187.26, + "end": 2187.8, + "probability": 0.8535 + }, + { + "start": 2187.94, + "end": 2188.98, + "probability": 0.8807 + }, + { + "start": 2189.04, + "end": 2190.32, + "probability": 0.8958 + }, + { + "start": 2190.96, + "end": 2194.48, + "probability": 0.9854 + }, + { + "start": 2194.96, + "end": 2199.04, + "probability": 0.7321 + }, + { + "start": 2199.5, + "end": 2203.06, + "probability": 0.9407 + }, + { + "start": 2203.52, + "end": 2205.62, + "probability": 0.5851 + }, + { + "start": 2205.84, + "end": 2208.64, + "probability": 0.8178 + }, + { + "start": 2208.64, + "end": 2212.68, + "probability": 0.8983 + }, + { + "start": 2213.24, + "end": 2215.16, + "probability": 0.9639 + }, + { + "start": 2215.26, + "end": 2219.08, + "probability": 0.8951 + }, + { + "start": 2219.14, + "end": 2221.9, + "probability": 0.9043 + }, + { + "start": 2223.24, + "end": 2224.24, + "probability": 0.6367 + }, + { + "start": 2224.36, + "end": 2226.26, + "probability": 0.9922 + }, + { + "start": 2226.42, + "end": 2228.84, + "probability": 0.8522 + }, + { + "start": 2228.9, + "end": 2232.87, + "probability": 0.9314 + }, + { + "start": 2233.52, + "end": 2236.02, + "probability": 0.9928 + }, + { + "start": 2236.28, + "end": 2237.58, + "probability": 0.8999 + }, + { + "start": 2237.66, + "end": 2239.98, + "probability": 0.9846 + }, + { + "start": 2240.24, + "end": 2240.96, + "probability": 0.8591 + }, + { + "start": 2241.04, + "end": 2242.46, + "probability": 0.7951 + }, + { + "start": 2242.52, + "end": 2243.5, + "probability": 0.8035 + }, + { + "start": 2243.86, + "end": 2248.3, + "probability": 0.9976 + }, + { + "start": 2248.82, + "end": 2252.64, + "probability": 0.9945 + }, + { + "start": 2252.82, + "end": 2253.18, + "probability": 0.8146 + }, + { + "start": 2253.32, + "end": 2256.8, + "probability": 0.9448 + }, + { + "start": 2257.22, + "end": 2260.84, + "probability": 0.9947 + }, + { + "start": 2260.84, + "end": 2265.32, + "probability": 0.9956 + }, + { + "start": 2265.98, + "end": 2266.5, + "probability": 0.7548 + }, + { + "start": 2266.62, + "end": 2268.42, + "probability": 0.9868 + }, + { + "start": 2268.56, + "end": 2270.18, + "probability": 0.9712 + }, + { + "start": 2270.66, + "end": 2272.1, + "probability": 0.9949 + }, + { + "start": 2272.18, + "end": 2274.45, + "probability": 0.9678 + }, + { + "start": 2275.0, + "end": 2276.44, + "probability": 0.8626 + }, + { + "start": 2276.78, + "end": 2280.52, + "probability": 0.9724 + }, + { + "start": 2281.58, + "end": 2282.22, + "probability": 0.8132 + }, + { + "start": 2282.5, + "end": 2283.1, + "probability": 0.2573 + }, + { + "start": 2283.1, + "end": 2284.98, + "probability": 0.6575 + }, + { + "start": 2285.1, + "end": 2285.28, + "probability": 0.5472 + }, + { + "start": 2286.0, + "end": 2287.06, + "probability": 0.7831 + }, + { + "start": 2297.32, + "end": 2298.16, + "probability": 0.7807 + }, + { + "start": 2298.92, + "end": 2299.9, + "probability": 0.4477 + }, + { + "start": 2302.0, + "end": 2302.88, + "probability": 0.9007 + }, + { + "start": 2303.4, + "end": 2304.38, + "probability": 0.738 + }, + { + "start": 2307.32, + "end": 2310.08, + "probability": 0.967 + }, + { + "start": 2311.06, + "end": 2322.52, + "probability": 0.9878 + }, + { + "start": 2323.74, + "end": 2323.94, + "probability": 0.6688 + }, + { + "start": 2326.76, + "end": 2328.18, + "probability": 0.7974 + }, + { + "start": 2329.14, + "end": 2336.18, + "probability": 0.9902 + }, + { + "start": 2337.32, + "end": 2338.04, + "probability": 0.7382 + }, + { + "start": 2340.46, + "end": 2343.16, + "probability": 0.9976 + }, + { + "start": 2343.78, + "end": 2344.76, + "probability": 0.8739 + }, + { + "start": 2346.38, + "end": 2347.94, + "probability": 0.7798 + }, + { + "start": 2349.9, + "end": 2350.58, + "probability": 0.7475 + }, + { + "start": 2351.78, + "end": 2353.92, + "probability": 0.99 + }, + { + "start": 2356.68, + "end": 2359.08, + "probability": 0.9009 + }, + { + "start": 2361.02, + "end": 2364.56, + "probability": 0.7303 + }, + { + "start": 2367.7, + "end": 2376.68, + "probability": 0.9818 + }, + { + "start": 2378.12, + "end": 2382.14, + "probability": 0.9877 + }, + { + "start": 2383.2, + "end": 2383.9, + "probability": 0.9682 + }, + { + "start": 2384.86, + "end": 2386.16, + "probability": 0.5835 + }, + { + "start": 2387.32, + "end": 2388.72, + "probability": 0.1927 + }, + { + "start": 2390.08, + "end": 2391.82, + "probability": 0.528 + }, + { + "start": 2393.08, + "end": 2395.87, + "probability": 0.9349 + }, + { + "start": 2398.22, + "end": 2406.84, + "probability": 0.9824 + }, + { + "start": 2408.46, + "end": 2412.7, + "probability": 0.9893 + }, + { + "start": 2412.76, + "end": 2414.98, + "probability": 0.9629 + }, + { + "start": 2416.72, + "end": 2419.26, + "probability": 0.727 + }, + { + "start": 2419.86, + "end": 2420.4, + "probability": 0.6878 + }, + { + "start": 2421.4, + "end": 2423.2, + "probability": 0.8459 + }, + { + "start": 2423.32, + "end": 2424.84, + "probability": 0.9175 + }, + { + "start": 2424.88, + "end": 2425.42, + "probability": 0.6471 + }, + { + "start": 2425.54, + "end": 2426.1, + "probability": 0.6571 + }, + { + "start": 2426.18, + "end": 2427.48, + "probability": 0.967 + }, + { + "start": 2428.32, + "end": 2432.35, + "probability": 0.8312 + }, + { + "start": 2436.18, + "end": 2439.68, + "probability": 0.6838 + }, + { + "start": 2441.22, + "end": 2442.86, + "probability": 0.9197 + }, + { + "start": 2444.44, + "end": 2446.0, + "probability": 0.715 + }, + { + "start": 2446.98, + "end": 2450.56, + "probability": 0.9985 + }, + { + "start": 2452.7, + "end": 2454.0, + "probability": 0.6767 + }, + { + "start": 2454.7, + "end": 2455.94, + "probability": 0.8543 + }, + { + "start": 2456.56, + "end": 2460.26, + "probability": 0.7642 + }, + { + "start": 2463.3, + "end": 2464.66, + "probability": 0.8265 + }, + { + "start": 2466.84, + "end": 2469.58, + "probability": 0.75 + }, + { + "start": 2472.86, + "end": 2473.62, + "probability": 0.9984 + }, + { + "start": 2477.8, + "end": 2480.06, + "probability": 0.9975 + }, + { + "start": 2481.32, + "end": 2482.68, + "probability": 0.6734 + }, + { + "start": 2483.9, + "end": 2485.52, + "probability": 0.7337 + }, + { + "start": 2487.42, + "end": 2488.7, + "probability": 0.9792 + }, + { + "start": 2488.8, + "end": 2492.18, + "probability": 0.9929 + }, + { + "start": 2492.34, + "end": 2492.96, + "probability": 0.7165 + }, + { + "start": 2494.22, + "end": 2498.1, + "probability": 0.9647 + }, + { + "start": 2498.58, + "end": 2502.76, + "probability": 0.963 + }, + { + "start": 2503.94, + "end": 2505.4, + "probability": 0.9715 + }, + { + "start": 2506.5, + "end": 2510.8, + "probability": 0.6769 + }, + { + "start": 2511.02, + "end": 2511.68, + "probability": 0.7491 + }, + { + "start": 2513.42, + "end": 2520.12, + "probability": 0.9886 + }, + { + "start": 2521.06, + "end": 2523.88, + "probability": 0.996 + }, + { + "start": 2524.84, + "end": 2529.1, + "probability": 0.9696 + }, + { + "start": 2531.66, + "end": 2531.78, + "probability": 0.1217 + }, + { + "start": 2531.78, + "end": 2534.17, + "probability": 0.6998 + }, + { + "start": 2534.82, + "end": 2537.0, + "probability": 0.7736 + }, + { + "start": 2537.56, + "end": 2538.46, + "probability": 0.7179 + }, + { + "start": 2539.96, + "end": 2540.0, + "probability": 0.132 + }, + { + "start": 2540.0, + "end": 2546.5, + "probability": 0.1753 + }, + { + "start": 2552.86, + "end": 2552.96, + "probability": 0.0044 + }, + { + "start": 2611.0, + "end": 2611.82, + "probability": 0.0319 + }, + { + "start": 2633.72, + "end": 2634.18, + "probability": 0.0131 + }, + { + "start": 2634.78, + "end": 2634.94, + "probability": 0.5529 + }, + { + "start": 2634.94, + "end": 2634.94, + "probability": 0.2301 + }, + { + "start": 2634.94, + "end": 2635.36, + "probability": 0.7934 + }, + { + "start": 2635.62, + "end": 2636.1, + "probability": 0.82 + }, + { + "start": 2636.22, + "end": 2637.94, + "probability": 0.8216 + }, + { + "start": 2638.64, + "end": 2641.28, + "probability": 0.8781 + }, + { + "start": 2641.36, + "end": 2644.84, + "probability": 0.9873 + }, + { + "start": 2646.62, + "end": 2648.56, + "probability": 0.9792 + }, + { + "start": 2649.32, + "end": 2650.89, + "probability": 0.998 + }, + { + "start": 2652.18, + "end": 2655.94, + "probability": 0.995 + }, + { + "start": 2656.96, + "end": 2660.38, + "probability": 0.9858 + }, + { + "start": 2663.1, + "end": 2664.99, + "probability": 0.991 + }, + { + "start": 2665.82, + "end": 2671.04, + "probability": 0.9366 + }, + { + "start": 2672.54, + "end": 2676.44, + "probability": 0.9887 + }, + { + "start": 2678.08, + "end": 2679.8, + "probability": 0.9688 + }, + { + "start": 2680.96, + "end": 2683.14, + "probability": 0.8887 + }, + { + "start": 2686.04, + "end": 2688.48, + "probability": 0.9813 + }, + { + "start": 2689.48, + "end": 2690.72, + "probability": 0.9691 + }, + { + "start": 2691.28, + "end": 2696.46, + "probability": 0.9866 + }, + { + "start": 2697.62, + "end": 2701.32, + "probability": 0.9992 + }, + { + "start": 2702.56, + "end": 2703.42, + "probability": 0.5529 + }, + { + "start": 2705.16, + "end": 2709.12, + "probability": 0.9949 + }, + { + "start": 2709.2, + "end": 2713.01, + "probability": 0.8607 + }, + { + "start": 2714.14, + "end": 2716.17, + "probability": 0.956 + }, + { + "start": 2716.62, + "end": 2719.4, + "probability": 0.9862 + }, + { + "start": 2719.42, + "end": 2721.08, + "probability": 0.8791 + }, + { + "start": 2722.66, + "end": 2724.84, + "probability": 0.9753 + }, + { + "start": 2726.62, + "end": 2730.32, + "probability": 0.9976 + }, + { + "start": 2731.32, + "end": 2732.86, + "probability": 0.9621 + }, + { + "start": 2732.98, + "end": 2735.9, + "probability": 0.8291 + }, + { + "start": 2737.02, + "end": 2739.52, + "probability": 0.9904 + }, + { + "start": 2739.82, + "end": 2741.82, + "probability": 0.8529 + }, + { + "start": 2742.34, + "end": 2743.26, + "probability": 0.9783 + }, + { + "start": 2743.44, + "end": 2750.1, + "probability": 0.9041 + }, + { + "start": 2750.3, + "end": 2752.7, + "probability": 0.9922 + }, + { + "start": 2753.46, + "end": 2756.42, + "probability": 0.9261 + }, + { + "start": 2757.26, + "end": 2763.22, + "probability": 0.7622 + }, + { + "start": 2763.78, + "end": 2764.76, + "probability": 0.7577 + }, + { + "start": 2764.8, + "end": 2765.44, + "probability": 0.3281 + }, + { + "start": 2765.5, + "end": 2766.26, + "probability": 0.3805 + }, + { + "start": 2766.42, + "end": 2767.84, + "probability": 0.0271 + }, + { + "start": 2768.18, + "end": 2768.78, + "probability": 0.8132 + }, + { + "start": 2769.08, + "end": 2770.8, + "probability": 0.8442 + }, + { + "start": 2772.12, + "end": 2772.8, + "probability": 0.9778 + }, + { + "start": 2773.66, + "end": 2774.1, + "probability": 0.7288 + }, + { + "start": 2775.1, + "end": 2779.64, + "probability": 0.9944 + }, + { + "start": 2781.42, + "end": 2784.32, + "probability": 0.7491 + }, + { + "start": 2784.4, + "end": 2786.34, + "probability": 0.9917 + }, + { + "start": 2787.4, + "end": 2790.48, + "probability": 0.9896 + }, + { + "start": 2791.66, + "end": 2792.76, + "probability": 0.8994 + }, + { + "start": 2793.54, + "end": 2795.28, + "probability": 0.9904 + }, + { + "start": 2795.28, + "end": 2795.96, + "probability": 0.5448 + }, + { + "start": 2796.2, + "end": 2797.0, + "probability": 0.7658 + }, + { + "start": 2798.36, + "end": 2803.94, + "probability": 0.9277 + }, + { + "start": 2805.52, + "end": 2810.28, + "probability": 0.9875 + }, + { + "start": 2811.7, + "end": 2815.94, + "probability": 0.9851 + }, + { + "start": 2817.82, + "end": 2819.52, + "probability": 0.9935 + }, + { + "start": 2819.64, + "end": 2821.9, + "probability": 0.8691 + }, + { + "start": 2822.0, + "end": 2822.66, + "probability": 0.7468 + }, + { + "start": 2824.48, + "end": 2826.0, + "probability": 0.9894 + }, + { + "start": 2826.62, + "end": 2827.04, + "probability": 0.9458 + }, + { + "start": 2827.6, + "end": 2828.03, + "probability": 0.9824 + }, + { + "start": 2829.68, + "end": 2832.68, + "probability": 0.979 + }, + { + "start": 2833.42, + "end": 2834.42, + "probability": 0.9921 + }, + { + "start": 2835.3, + "end": 2837.58, + "probability": 0.9465 + }, + { + "start": 2838.36, + "end": 2840.62, + "probability": 0.98 + }, + { + "start": 2841.64, + "end": 2843.76, + "probability": 0.9717 + }, + { + "start": 2844.62, + "end": 2846.18, + "probability": 0.9532 + }, + { + "start": 2847.12, + "end": 2849.68, + "probability": 0.9725 + }, + { + "start": 2850.44, + "end": 2852.6, + "probability": 0.9978 + }, + { + "start": 2852.72, + "end": 2853.56, + "probability": 0.9783 + }, + { + "start": 2854.66, + "end": 2855.26, + "probability": 0.7527 + }, + { + "start": 2856.44, + "end": 2857.34, + "probability": 0.9553 + }, + { + "start": 2858.28, + "end": 2859.58, + "probability": 0.905 + }, + { + "start": 2860.1, + "end": 2862.74, + "probability": 0.9924 + }, + { + "start": 2862.78, + "end": 2863.76, + "probability": 0.5886 + }, + { + "start": 2864.46, + "end": 2867.8, + "probability": 0.9836 + }, + { + "start": 2868.4, + "end": 2870.86, + "probability": 0.9839 + }, + { + "start": 2871.54, + "end": 2874.8, + "probability": 0.858 + }, + { + "start": 2875.68, + "end": 2877.62, + "probability": 0.936 + }, + { + "start": 2877.7, + "end": 2881.74, + "probability": 0.9738 + }, + { + "start": 2883.8, + "end": 2884.26, + "probability": 0.9497 + }, + { + "start": 2886.16, + "end": 2887.7, + "probability": 0.9783 + }, + { + "start": 2887.88, + "end": 2889.74, + "probability": 0.991 + }, + { + "start": 2890.12, + "end": 2893.54, + "probability": 0.8817 + }, + { + "start": 2893.86, + "end": 2895.3, + "probability": 0.8306 + }, + { + "start": 2896.84, + "end": 2897.9, + "probability": 0.931 + }, + { + "start": 2899.8, + "end": 2901.66, + "probability": 0.9961 + }, + { + "start": 2901.78, + "end": 2904.68, + "probability": 0.9268 + }, + { + "start": 2905.52, + "end": 2908.94, + "probability": 0.8969 + }, + { + "start": 2909.83, + "end": 2913.94, + "probability": 0.9926 + }, + { + "start": 2914.36, + "end": 2916.98, + "probability": 0.9988 + }, + { + "start": 2918.22, + "end": 2922.2, + "probability": 0.9998 + }, + { + "start": 2922.2, + "end": 2924.64, + "probability": 0.9008 + }, + { + "start": 2927.0, + "end": 2930.53, + "probability": 0.9976 + }, + { + "start": 2930.7, + "end": 2932.02, + "probability": 0.999 + }, + { + "start": 2932.58, + "end": 2934.12, + "probability": 0.9948 + }, + { + "start": 2935.02, + "end": 2938.2, + "probability": 0.9646 + }, + { + "start": 2938.46, + "end": 2940.96, + "probability": 0.9342 + }, + { + "start": 2941.68, + "end": 2942.09, + "probability": 0.7622 + }, + { + "start": 2944.0, + "end": 2944.48, + "probability": 0.6473 + }, + { + "start": 2944.54, + "end": 2944.72, + "probability": 0.52 + }, + { + "start": 2944.76, + "end": 2945.6, + "probability": 0.7873 + }, + { + "start": 2945.9, + "end": 2946.34, + "probability": 0.8521 + }, + { + "start": 2946.48, + "end": 2947.25, + "probability": 0.8352 + }, + { + "start": 2947.58, + "end": 2948.66, + "probability": 0.9008 + }, + { + "start": 2948.68, + "end": 2949.34, + "probability": 0.6738 + }, + { + "start": 2949.76, + "end": 2951.62, + "probability": 0.9243 + }, + { + "start": 2954.04, + "end": 2954.94, + "probability": 0.7337 + }, + { + "start": 2955.22, + "end": 2955.22, + "probability": 0.7871 + }, + { + "start": 2955.62, + "end": 2958.84, + "probability": 0.9527 + }, + { + "start": 2958.92, + "end": 2964.12, + "probability": 0.7434 + }, + { + "start": 2964.42, + "end": 2965.16, + "probability": 0.6773 + }, + { + "start": 2965.22, + "end": 2965.84, + "probability": 0.5186 + }, + { + "start": 2967.06, + "end": 2968.72, + "probability": 0.6025 + }, + { + "start": 2968.74, + "end": 2969.46, + "probability": 0.2139 + }, + { + "start": 2969.74, + "end": 2971.44, + "probability": 0.7364 + }, + { + "start": 2971.5, + "end": 2972.14, + "probability": 0.7686 + }, + { + "start": 2972.28, + "end": 2972.56, + "probability": 0.7866 + }, + { + "start": 2973.26, + "end": 2974.08, + "probability": 0.9805 + }, + { + "start": 2975.08, + "end": 2975.3, + "probability": 0.0369 + }, + { + "start": 2975.3, + "end": 2975.3, + "probability": 0.2298 + }, + { + "start": 2975.3, + "end": 2977.64, + "probability": 0.6055 + }, + { + "start": 2978.6, + "end": 2981.82, + "probability": 0.9715 + }, + { + "start": 2983.16, + "end": 2984.12, + "probability": 0.9084 + }, + { + "start": 2985.22, + "end": 2986.0, + "probability": 0.3831 + }, + { + "start": 2986.22, + "end": 2987.24, + "probability": 0.8976 + }, + { + "start": 2987.94, + "end": 2989.86, + "probability": 0.9875 + }, + { + "start": 2989.86, + "end": 2992.76, + "probability": 0.9932 + }, + { + "start": 2993.38, + "end": 2995.57, + "probability": 0.9878 + }, + { + "start": 2996.56, + "end": 2998.68, + "probability": 0.7799 + }, + { + "start": 2998.76, + "end": 3000.58, + "probability": 0.9573 + }, + { + "start": 3002.18, + "end": 3002.68, + "probability": 0.4382 + }, + { + "start": 3003.5, + "end": 3006.32, + "probability": 0.9932 + }, + { + "start": 3006.46, + "end": 3008.68, + "probability": 0.9741 + }, + { + "start": 3008.78, + "end": 3010.24, + "probability": 0.9761 + }, + { + "start": 3011.0, + "end": 3011.94, + "probability": 0.7495 + }, + { + "start": 3011.98, + "end": 3013.4, + "probability": 0.7841 + }, + { + "start": 3013.8, + "end": 3016.0, + "probability": 0.9943 + }, + { + "start": 3016.64, + "end": 3017.6, + "probability": 0.6987 + }, + { + "start": 3018.14, + "end": 3020.54, + "probability": 0.8582 + }, + { + "start": 3020.54, + "end": 3021.82, + "probability": 0.981 + }, + { + "start": 3022.94, + "end": 3023.96, + "probability": 0.8632 + }, + { + "start": 3024.22, + "end": 3028.04, + "probability": 0.9456 + }, + { + "start": 3028.3, + "end": 3028.94, + "probability": 0.7756 + }, + { + "start": 3029.02, + "end": 3030.64, + "probability": 0.8179 + }, + { + "start": 3031.36, + "end": 3033.54, + "probability": 0.8943 + }, + { + "start": 3034.62, + "end": 3036.74, + "probability": 0.8011 + }, + { + "start": 3037.34, + "end": 3039.29, + "probability": 0.9871 + }, + { + "start": 3039.72, + "end": 3041.34, + "probability": 0.8912 + }, + { + "start": 3041.72, + "end": 3043.22, + "probability": 0.6889 + }, + { + "start": 3044.0, + "end": 3050.14, + "probability": 0.994 + }, + { + "start": 3050.14, + "end": 3056.76, + "probability": 0.971 + }, + { + "start": 3057.12, + "end": 3057.54, + "probability": 0.5264 + }, + { + "start": 3057.64, + "end": 3058.2, + "probability": 0.6664 + }, + { + "start": 3058.2, + "end": 3059.44, + "probability": 0.8951 + }, + { + "start": 3059.52, + "end": 3061.72, + "probability": 0.9387 + }, + { + "start": 3061.88, + "end": 3064.22, + "probability": 0.9535 + }, + { + "start": 3064.7, + "end": 3067.6, + "probability": 0.9199 + }, + { + "start": 3067.74, + "end": 3070.52, + "probability": 0.9491 + }, + { + "start": 3071.08, + "end": 3071.96, + "probability": 0.9551 + }, + { + "start": 3072.44, + "end": 3073.44, + "probability": 0.9789 + }, + { + "start": 3073.98, + "end": 3076.88, + "probability": 0.9901 + }, + { + "start": 3077.14, + "end": 3078.14, + "probability": 0.5572 + }, + { + "start": 3078.8, + "end": 3078.94, + "probability": 0.2643 + }, + { + "start": 3078.94, + "end": 3078.94, + "probability": 0.5604 + }, + { + "start": 3078.94, + "end": 3083.38, + "probability": 0.9939 + }, + { + "start": 3085.24, + "end": 3086.72, + "probability": 0.9538 + }, + { + "start": 3099.06, + "end": 3099.88, + "probability": 0.8493 + }, + { + "start": 3127.02, + "end": 3127.9, + "probability": 0.67 + }, + { + "start": 3128.82, + "end": 3131.96, + "probability": 0.8865 + }, + { + "start": 3135.0, + "end": 3137.5, + "probability": 0.9961 + }, + { + "start": 3137.6, + "end": 3139.63, + "probability": 0.9591 + }, + { + "start": 3140.84, + "end": 3142.4, + "probability": 0.9679 + }, + { + "start": 3144.9, + "end": 3148.4, + "probability": 0.9958 + }, + { + "start": 3150.06, + "end": 3153.82, + "probability": 0.9985 + }, + { + "start": 3154.34, + "end": 3159.28, + "probability": 0.9995 + }, + { + "start": 3161.0, + "end": 3165.14, + "probability": 0.9964 + }, + { + "start": 3168.76, + "end": 3172.06, + "probability": 0.7632 + }, + { + "start": 3172.26, + "end": 3173.34, + "probability": 0.9395 + }, + { + "start": 3174.28, + "end": 3177.88, + "probability": 0.9985 + }, + { + "start": 3179.06, + "end": 3184.38, + "probability": 0.9714 + }, + { + "start": 3185.56, + "end": 3188.24, + "probability": 0.9876 + }, + { + "start": 3190.36, + "end": 3193.26, + "probability": 0.8871 + }, + { + "start": 3195.24, + "end": 3196.48, + "probability": 0.6622 + }, + { + "start": 3197.56, + "end": 3199.58, + "probability": 0.8642 + }, + { + "start": 3200.58, + "end": 3204.62, + "probability": 0.9937 + }, + { + "start": 3204.62, + "end": 3210.64, + "probability": 0.9923 + }, + { + "start": 3213.28, + "end": 3218.3, + "probability": 0.9978 + }, + { + "start": 3218.94, + "end": 3220.92, + "probability": 0.9788 + }, + { + "start": 3223.06, + "end": 3225.62, + "probability": 0.9951 + }, + { + "start": 3225.94, + "end": 3227.82, + "probability": 0.9292 + }, + { + "start": 3228.28, + "end": 3230.06, + "probability": 0.9713 + }, + { + "start": 3230.26, + "end": 3234.88, + "probability": 0.9995 + }, + { + "start": 3235.92, + "end": 3238.74, + "probability": 0.9957 + }, + { + "start": 3241.26, + "end": 3243.18, + "probability": 0.7898 + }, + { + "start": 3244.94, + "end": 3253.7, + "probability": 0.9807 + }, + { + "start": 3255.74, + "end": 3260.42, + "probability": 0.9974 + }, + { + "start": 3260.42, + "end": 3266.98, + "probability": 0.9995 + }, + { + "start": 3267.32, + "end": 3268.16, + "probability": 0.948 + }, + { + "start": 3268.88, + "end": 3269.62, + "probability": 0.9928 + }, + { + "start": 3270.48, + "end": 3273.62, + "probability": 0.9431 + }, + { + "start": 3275.88, + "end": 3279.6, + "probability": 0.9985 + }, + { + "start": 3279.6, + "end": 3283.08, + "probability": 0.9961 + }, + { + "start": 3283.84, + "end": 3286.72, + "probability": 0.9993 + }, + { + "start": 3286.72, + "end": 3291.4, + "probability": 0.9959 + }, + { + "start": 3291.64, + "end": 3294.4, + "probability": 0.9806 + }, + { + "start": 3296.72, + "end": 3301.76, + "probability": 0.986 + }, + { + "start": 3302.54, + "end": 3306.68, + "probability": 0.7584 + }, + { + "start": 3306.68, + "end": 3310.5, + "probability": 0.9853 + }, + { + "start": 3311.68, + "end": 3314.12, + "probability": 0.9963 + }, + { + "start": 3314.12, + "end": 3318.44, + "probability": 0.9954 + }, + { + "start": 3322.84, + "end": 3327.24, + "probability": 0.9924 + }, + { + "start": 3328.94, + "end": 3332.68, + "probability": 0.994 + }, + { + "start": 3332.74, + "end": 3335.9, + "probability": 0.9979 + }, + { + "start": 3336.58, + "end": 3349.22, + "probability": 0.9959 + }, + { + "start": 3352.38, + "end": 3358.98, + "probability": 0.9891 + }, + { + "start": 3358.98, + "end": 3362.92, + "probability": 0.999 + }, + { + "start": 3364.0, + "end": 3368.83, + "probability": 0.9656 + }, + { + "start": 3369.54, + "end": 3372.98, + "probability": 0.9844 + }, + { + "start": 3373.78, + "end": 3377.66, + "probability": 0.9826 + }, + { + "start": 3379.12, + "end": 3381.58, + "probability": 0.9745 + }, + { + "start": 3381.58, + "end": 3385.8, + "probability": 0.9943 + }, + { + "start": 3387.92, + "end": 3392.24, + "probability": 0.9964 + }, + { + "start": 3393.14, + "end": 3395.86, + "probability": 0.9983 + }, + { + "start": 3396.48, + "end": 3399.14, + "probability": 0.9862 + }, + { + "start": 3401.52, + "end": 3406.1, + "probability": 0.9951 + }, + { + "start": 3406.92, + "end": 3409.16, + "probability": 0.9969 + }, + { + "start": 3410.7, + "end": 3412.6, + "probability": 0.9923 + }, + { + "start": 3415.52, + "end": 3416.5, + "probability": 0.9124 + }, + { + "start": 3416.86, + "end": 3417.86, + "probability": 0.688 + }, + { + "start": 3419.68, + "end": 3423.64, + "probability": 0.9598 + }, + { + "start": 3424.62, + "end": 3426.78, + "probability": 0.9962 + }, + { + "start": 3426.78, + "end": 3429.58, + "probability": 0.9857 + }, + { + "start": 3431.16, + "end": 3431.66, + "probability": 0.7835 + }, + { + "start": 3431.8, + "end": 3434.14, + "probability": 0.9767 + }, + { + "start": 3434.14, + "end": 3436.62, + "probability": 0.9099 + }, + { + "start": 3437.68, + "end": 3441.34, + "probability": 0.8584 + }, + { + "start": 3442.04, + "end": 3443.38, + "probability": 0.9725 + }, + { + "start": 3444.06, + "end": 3447.26, + "probability": 0.929 + }, + { + "start": 3447.88, + "end": 3448.44, + "probability": 0.316 + }, + { + "start": 3448.98, + "end": 3450.08, + "probability": 0.7112 + }, + { + "start": 3450.76, + "end": 3458.28, + "probability": 0.9673 + }, + { + "start": 3458.28, + "end": 3462.34, + "probability": 0.9893 + }, + { + "start": 3463.04, + "end": 3463.62, + "probability": 0.7471 + }, + { + "start": 3463.7, + "end": 3467.2, + "probability": 0.9718 + }, + { + "start": 3467.3, + "end": 3470.94, + "probability": 0.9627 + }, + { + "start": 3471.58, + "end": 3474.0, + "probability": 0.79 + }, + { + "start": 3474.1, + "end": 3482.06, + "probability": 0.9557 + }, + { + "start": 3482.76, + "end": 3486.82, + "probability": 0.9713 + }, + { + "start": 3490.28, + "end": 3492.0, + "probability": 0.7024 + }, + { + "start": 3492.14, + "end": 3492.8, + "probability": 0.6233 + }, + { + "start": 3492.88, + "end": 3496.22, + "probability": 0.9789 + }, + { + "start": 3497.1, + "end": 3498.36, + "probability": 0.908 + }, + { + "start": 3498.6, + "end": 3500.82, + "probability": 0.9946 + }, + { + "start": 3500.82, + "end": 3504.04, + "probability": 0.9963 + }, + { + "start": 3504.06, + "end": 3506.02, + "probability": 0.9863 + }, + { + "start": 3506.12, + "end": 3507.32, + "probability": 0.9973 + }, + { + "start": 3507.86, + "end": 3508.94, + "probability": 0.78 + }, + { + "start": 3509.74, + "end": 3512.34, + "probability": 0.9892 + }, + { + "start": 3513.7, + "end": 3520.46, + "probability": 0.9929 + }, + { + "start": 3523.04, + "end": 3523.78, + "probability": 0.9574 + }, + { + "start": 3525.22, + "end": 3530.34, + "probability": 0.9812 + }, + { + "start": 3531.36, + "end": 3534.4, + "probability": 0.963 + }, + { + "start": 3535.2, + "end": 3539.26, + "probability": 0.9863 + }, + { + "start": 3539.86, + "end": 3542.02, + "probability": 0.9989 + }, + { + "start": 3542.98, + "end": 3548.44, + "probability": 0.9752 + }, + { + "start": 3549.02, + "end": 3551.14, + "probability": 0.9923 + }, + { + "start": 3553.8, + "end": 3556.04, + "probability": 0.9583 + }, + { + "start": 3556.78, + "end": 3559.5, + "probability": 0.9732 + }, + { + "start": 3560.3, + "end": 3562.44, + "probability": 0.9992 + }, + { + "start": 3562.44, + "end": 3566.14, + "probability": 0.9986 + }, + { + "start": 3566.26, + "end": 3569.64, + "probability": 0.9908 + }, + { + "start": 3570.82, + "end": 3576.1, + "probability": 0.9258 + }, + { + "start": 3577.38, + "end": 3580.56, + "probability": 0.9849 + }, + { + "start": 3580.98, + "end": 3582.22, + "probability": 0.9177 + }, + { + "start": 3583.18, + "end": 3585.64, + "probability": 0.9796 + }, + { + "start": 3585.84, + "end": 3589.02, + "probability": 0.9576 + }, + { + "start": 3590.56, + "end": 3593.46, + "probability": 0.9941 + }, + { + "start": 3593.46, + "end": 3596.32, + "probability": 0.9985 + }, + { + "start": 3597.06, + "end": 3599.04, + "probability": 0.9816 + }, + { + "start": 3599.68, + "end": 3601.86, + "probability": 0.9796 + }, + { + "start": 3602.44, + "end": 3605.22, + "probability": 0.9839 + }, + { + "start": 3605.49, + "end": 3609.16, + "probability": 0.9945 + }, + { + "start": 3610.0, + "end": 3613.18, + "probability": 0.9497 + }, + { + "start": 3613.8, + "end": 3618.26, + "probability": 0.9986 + }, + { + "start": 3619.86, + "end": 3622.48, + "probability": 0.8505 + }, + { + "start": 3622.48, + "end": 3626.88, + "probability": 0.9972 + }, + { + "start": 3627.22, + "end": 3628.1, + "probability": 0.7774 + }, + { + "start": 3628.66, + "end": 3630.82, + "probability": 0.9904 + }, + { + "start": 3631.38, + "end": 3632.56, + "probability": 0.7573 + }, + { + "start": 3633.77, + "end": 3636.4, + "probability": 0.9827 + }, + { + "start": 3636.4, + "end": 3639.02, + "probability": 0.9998 + }, + { + "start": 3639.62, + "end": 3641.56, + "probability": 0.794 + }, + { + "start": 3643.16, + "end": 3647.84, + "probability": 0.9971 + }, + { + "start": 3647.92, + "end": 3649.92, + "probability": 0.9573 + }, + { + "start": 3650.88, + "end": 3653.66, + "probability": 0.8201 + }, + { + "start": 3654.6, + "end": 3656.26, + "probability": 0.9856 + }, + { + "start": 3657.54, + "end": 3662.66, + "probability": 0.9877 + }, + { + "start": 3663.58, + "end": 3666.7, + "probability": 0.9963 + }, + { + "start": 3666.7, + "end": 3669.76, + "probability": 0.9934 + }, + { + "start": 3671.02, + "end": 3675.12, + "probability": 0.9941 + }, + { + "start": 3675.12, + "end": 3679.58, + "probability": 0.9977 + }, + { + "start": 3679.58, + "end": 3683.76, + "probability": 0.9962 + }, + { + "start": 3684.36, + "end": 3685.2, + "probability": 0.8342 + }, + { + "start": 3685.74, + "end": 3686.84, + "probability": 0.9977 + }, + { + "start": 3689.2, + "end": 3694.54, + "probability": 0.9141 + }, + { + "start": 3694.54, + "end": 3699.22, + "probability": 0.9875 + }, + { + "start": 3699.88, + "end": 3702.76, + "probability": 0.9977 + }, + { + "start": 3705.9, + "end": 3709.1, + "probability": 0.9602 + }, + { + "start": 3709.1, + "end": 3711.82, + "probability": 0.9976 + }, + { + "start": 3711.92, + "end": 3717.74, + "probability": 0.9694 + }, + { + "start": 3718.72, + "end": 3722.06, + "probability": 0.9949 + }, + { + "start": 3722.62, + "end": 3723.78, + "probability": 0.9693 + }, + { + "start": 3724.76, + "end": 3725.16, + "probability": 0.5931 + }, + { + "start": 3725.18, + "end": 3728.96, + "probability": 0.9893 + }, + { + "start": 3728.96, + "end": 3733.3, + "probability": 0.9987 + }, + { + "start": 3734.18, + "end": 3738.66, + "probability": 0.9965 + }, + { + "start": 3739.28, + "end": 3742.46, + "probability": 0.8737 + }, + { + "start": 3743.28, + "end": 3745.92, + "probability": 0.9944 + }, + { + "start": 3745.92, + "end": 3748.06, + "probability": 0.9983 + }, + { + "start": 3748.82, + "end": 3752.08, + "probability": 0.9946 + }, + { + "start": 3754.92, + "end": 3756.7, + "probability": 0.6911 + }, + { + "start": 3757.98, + "end": 3760.98, + "probability": 0.9684 + }, + { + "start": 3762.22, + "end": 3765.98, + "probability": 0.9497 + }, + { + "start": 3766.94, + "end": 3770.42, + "probability": 0.9924 + }, + { + "start": 3771.98, + "end": 3777.4, + "probability": 0.9985 + }, + { + "start": 3777.4, + "end": 3783.9, + "probability": 0.9988 + }, + { + "start": 3786.02, + "end": 3786.72, + "probability": 0.6999 + }, + { + "start": 3787.94, + "end": 3791.48, + "probability": 0.8914 + }, + { + "start": 3792.98, + "end": 3797.38, + "probability": 0.985 + }, + { + "start": 3798.44, + "end": 3799.44, + "probability": 0.487 + }, + { + "start": 3800.64, + "end": 3804.76, + "probability": 0.9969 + }, + { + "start": 3805.36, + "end": 3806.78, + "probability": 0.5058 + }, + { + "start": 3807.5, + "end": 3813.12, + "probability": 0.9262 + }, + { + "start": 3813.58, + "end": 3815.44, + "probability": 0.9683 + }, + { + "start": 3815.8, + "end": 3816.24, + "probability": 0.7435 + }, + { + "start": 3817.68, + "end": 3819.24, + "probability": 0.9162 + }, + { + "start": 3819.6, + "end": 3823.2, + "probability": 0.9404 + }, + { + "start": 3823.3, + "end": 3826.48, + "probability": 0.9891 + }, + { + "start": 3826.74, + "end": 3833.98, + "probability": 0.9912 + }, + { + "start": 3834.14, + "end": 3835.42, + "probability": 0.8472 + }, + { + "start": 3847.2, + "end": 3847.2, + "probability": 0.3244 + }, + { + "start": 3847.2, + "end": 3849.66, + "probability": 0.6593 + }, + { + "start": 3852.23, + "end": 3855.72, + "probability": 0.9805 + }, + { + "start": 3857.36, + "end": 3860.64, + "probability": 0.8936 + }, + { + "start": 3862.02, + "end": 3867.75, + "probability": 0.9751 + }, + { + "start": 3869.62, + "end": 3873.44, + "probability": 0.6955 + }, + { + "start": 3874.52, + "end": 3877.82, + "probability": 0.9739 + }, + { + "start": 3879.22, + "end": 3882.72, + "probability": 0.9938 + }, + { + "start": 3885.76, + "end": 3891.1, + "probability": 0.9222 + }, + { + "start": 3894.48, + "end": 3896.6, + "probability": 0.5957 + }, + { + "start": 3898.42, + "end": 3900.68, + "probability": 0.9966 + }, + { + "start": 3901.24, + "end": 3903.88, + "probability": 0.8542 + }, + { + "start": 3905.02, + "end": 3908.58, + "probability": 0.9814 + }, + { + "start": 3910.46, + "end": 3915.48, + "probability": 0.9457 + }, + { + "start": 3916.88, + "end": 3920.54, + "probability": 0.8606 + }, + { + "start": 3920.64, + "end": 3922.3, + "probability": 0.7744 + }, + { + "start": 3923.42, + "end": 3926.98, + "probability": 0.9794 + }, + { + "start": 3929.3, + "end": 3930.94, + "probability": 0.84 + }, + { + "start": 3931.18, + "end": 3934.2, + "probability": 0.5844 + }, + { + "start": 3934.2, + "end": 3938.6, + "probability": 0.9441 + }, + { + "start": 3940.9, + "end": 3941.98, + "probability": 0.9601 + }, + { + "start": 3942.42, + "end": 3945.36, + "probability": 0.9442 + }, + { + "start": 3945.66, + "end": 3947.84, + "probability": 0.9348 + }, + { + "start": 3948.56, + "end": 3949.76, + "probability": 0.8846 + }, + { + "start": 3951.26, + "end": 3954.94, + "probability": 0.9302 + }, + { + "start": 3955.66, + "end": 3957.0, + "probability": 0.9834 + }, + { + "start": 3957.32, + "end": 3960.49, + "probability": 0.9901 + }, + { + "start": 3962.08, + "end": 3967.77, + "probability": 0.9685 + }, + { + "start": 3969.08, + "end": 3975.1, + "probability": 0.7853 + }, + { + "start": 3975.1, + "end": 3977.1, + "probability": 0.8426 + }, + { + "start": 3978.82, + "end": 3980.66, + "probability": 0.8713 + }, + { + "start": 3980.74, + "end": 3984.99, + "probability": 0.9993 + }, + { + "start": 3985.96, + "end": 3991.8, + "probability": 0.9631 + }, + { + "start": 3991.98, + "end": 3992.72, + "probability": 0.8689 + }, + { + "start": 3994.46, + "end": 3995.38, + "probability": 0.9424 + }, + { + "start": 3996.74, + "end": 4001.64, + "probability": 0.988 + }, + { + "start": 4002.12, + "end": 4002.93, + "probability": 0.9551 + }, + { + "start": 4003.46, + "end": 4003.78, + "probability": 0.6891 + }, + { + "start": 4003.98, + "end": 4005.16, + "probability": 0.8807 + }, + { + "start": 4005.7, + "end": 4007.74, + "probability": 0.542 + }, + { + "start": 4008.96, + "end": 4018.56, + "probability": 0.9805 + }, + { + "start": 4020.34, + "end": 4025.62, + "probability": 0.9858 + }, + { + "start": 4026.56, + "end": 4029.08, + "probability": 0.9943 + }, + { + "start": 4030.02, + "end": 4032.24, + "probability": 0.8557 + }, + { + "start": 4033.08, + "end": 4035.84, + "probability": 0.9464 + }, + { + "start": 4036.76, + "end": 4038.62, + "probability": 0.8691 + }, + { + "start": 4038.8, + "end": 4042.48, + "probability": 0.8621 + }, + { + "start": 4043.72, + "end": 4047.38, + "probability": 0.9963 + }, + { + "start": 4047.38, + "end": 4053.44, + "probability": 0.9609 + }, + { + "start": 4053.82, + "end": 4055.82, + "probability": 0.7381 + }, + { + "start": 4056.42, + "end": 4057.8, + "probability": 0.4908 + }, + { + "start": 4058.48, + "end": 4062.24, + "probability": 0.7843 + }, + { + "start": 4063.75, + "end": 4067.82, + "probability": 0.9773 + }, + { + "start": 4068.5, + "end": 4068.96, + "probability": 0.9209 + }, + { + "start": 4069.04, + "end": 4073.44, + "probability": 0.9788 + }, + { + "start": 4073.54, + "end": 4075.82, + "probability": 0.9869 + }, + { + "start": 4075.94, + "end": 4077.36, + "probability": 0.9793 + }, + { + "start": 4077.68, + "end": 4080.29, + "probability": 0.9893 + }, + { + "start": 4082.64, + "end": 4086.1, + "probability": 0.9689 + }, + { + "start": 4086.92, + "end": 4089.62, + "probability": 0.9189 + }, + { + "start": 4090.68, + "end": 4091.58, + "probability": 0.9747 + }, + { + "start": 4094.28, + "end": 4095.18, + "probability": 0.6369 + }, + { + "start": 4096.26, + "end": 4097.5, + "probability": 0.3098 + }, + { + "start": 4098.34, + "end": 4100.26, + "probability": 0.9369 + }, + { + "start": 4101.88, + "end": 4104.48, + "probability": 0.9675 + }, + { + "start": 4104.54, + "end": 4105.62, + "probability": 0.8699 + }, + { + "start": 4105.72, + "end": 4107.12, + "probability": 0.7826 + }, + { + "start": 4108.02, + "end": 4109.1, + "probability": 0.7483 + }, + { + "start": 4109.18, + "end": 4113.66, + "probability": 0.8156 + }, + { + "start": 4114.1, + "end": 4116.0, + "probability": 0.811 + }, + { + "start": 4116.58, + "end": 4118.95, + "probability": 0.9947 + }, + { + "start": 4119.64, + "end": 4124.54, + "probability": 0.8077 + }, + { + "start": 4125.18, + "end": 4126.72, + "probability": 0.9973 + }, + { + "start": 4127.54, + "end": 4129.16, + "probability": 0.8052 + }, + { + "start": 4130.39, + "end": 4136.04, + "probability": 0.9934 + }, + { + "start": 4136.28, + "end": 4138.5, + "probability": 0.6982 + }, + { + "start": 4139.3, + "end": 4141.22, + "probability": 0.9731 + }, + { + "start": 4141.64, + "end": 4143.86, + "probability": 0.9939 + }, + { + "start": 4143.86, + "end": 4147.0, + "probability": 0.9543 + }, + { + "start": 4147.72, + "end": 4149.96, + "probability": 0.9958 + }, + { + "start": 4150.06, + "end": 4151.1, + "probability": 0.868 + }, + { + "start": 4151.22, + "end": 4153.88, + "probability": 0.9686 + }, + { + "start": 4154.56, + "end": 4156.56, + "probability": 0.9974 + }, + { + "start": 4156.66, + "end": 4158.86, + "probability": 0.9602 + }, + { + "start": 4159.22, + "end": 4167.32, + "probability": 0.9933 + }, + { + "start": 4167.32, + "end": 4172.68, + "probability": 0.8835 + }, + { + "start": 4173.8, + "end": 4177.62, + "probability": 0.9204 + }, + { + "start": 4178.26, + "end": 4180.72, + "probability": 0.9973 + }, + { + "start": 4181.2, + "end": 4183.1, + "probability": 0.9968 + }, + { + "start": 4183.3, + "end": 4186.44, + "probability": 0.9864 + }, + { + "start": 4187.26, + "end": 4188.46, + "probability": 0.7687 + }, + { + "start": 4188.54, + "end": 4192.1, + "probability": 0.9724 + }, + { + "start": 4192.72, + "end": 4193.72, + "probability": 0.8034 + }, + { + "start": 4194.6, + "end": 4200.46, + "probability": 0.9875 + }, + { + "start": 4200.6, + "end": 4202.14, + "probability": 0.6463 + }, + { + "start": 4203.06, + "end": 4204.42, + "probability": 0.9322 + }, + { + "start": 4204.84, + "end": 4205.66, + "probability": 0.8311 + }, + { + "start": 4206.54, + "end": 4211.64, + "probability": 0.9887 + }, + { + "start": 4212.22, + "end": 4213.3, + "probability": 0.9041 + }, + { + "start": 4214.78, + "end": 4217.34, + "probability": 0.4896 + }, + { + "start": 4217.53, + "end": 4218.19, + "probability": 0.2993 + }, + { + "start": 4218.84, + "end": 4220.46, + "probability": 0.7939 + }, + { + "start": 4221.04, + "end": 4222.34, + "probability": 0.701 + }, + { + "start": 4223.18, + "end": 4225.06, + "probability": 0.9813 + }, + { + "start": 4225.38, + "end": 4226.0, + "probability": 0.7647 + }, + { + "start": 4226.2, + "end": 4227.44, + "probability": 0.9945 + }, + { + "start": 4228.08, + "end": 4228.7, + "probability": 0.9857 + }, + { + "start": 4228.82, + "end": 4232.34, + "probability": 0.9779 + }, + { + "start": 4232.88, + "end": 4234.96, + "probability": 0.9261 + }, + { + "start": 4235.02, + "end": 4236.02, + "probability": 0.9975 + }, + { + "start": 4236.14, + "end": 4241.06, + "probability": 0.9728 + }, + { + "start": 4241.14, + "end": 4241.92, + "probability": 0.7009 + }, + { + "start": 4241.96, + "end": 4242.92, + "probability": 0.626 + }, + { + "start": 4243.04, + "end": 4244.36, + "probability": 0.9301 + }, + { + "start": 4244.54, + "end": 4245.4, + "probability": 0.8872 + }, + { + "start": 4246.32, + "end": 4249.14, + "probability": 0.9893 + }, + { + "start": 4249.28, + "end": 4251.64, + "probability": 0.9808 + }, + { + "start": 4251.92, + "end": 4252.14, + "probability": 0.6567 + }, + { + "start": 4252.24, + "end": 4253.78, + "probability": 0.9126 + }, + { + "start": 4253.84, + "end": 4255.2, + "probability": 0.9761 + }, + { + "start": 4256.22, + "end": 4260.66, + "probability": 0.8105 + }, + { + "start": 4261.0, + "end": 4263.58, + "probability": 0.9868 + }, + { + "start": 4263.58, + "end": 4268.8, + "probability": 0.9967 + }, + { + "start": 4268.82, + "end": 4268.84, + "probability": 0.2147 + }, + { + "start": 4268.84, + "end": 4269.44, + "probability": 0.3092 + }, + { + "start": 4269.72, + "end": 4270.14, + "probability": 0.49 + }, + { + "start": 4270.42, + "end": 4272.92, + "probability": 0.6817 + }, + { + "start": 4274.08, + "end": 4278.74, + "probability": 0.1163 + }, + { + "start": 4282.66, + "end": 4288.54, + "probability": 0.2189 + }, + { + "start": 4289.3, + "end": 4291.28, + "probability": 0.2798 + }, + { + "start": 4291.28, + "end": 4292.16, + "probability": 0.2809 + }, + { + "start": 4292.9, + "end": 4293.78, + "probability": 0.0566 + }, + { + "start": 4295.84, + "end": 4296.48, + "probability": 0.164 + }, + { + "start": 4296.48, + "end": 4297.16, + "probability": 0.0597 + }, + { + "start": 4297.94, + "end": 4298.76, + "probability": 0.0965 + }, + { + "start": 4298.76, + "end": 4298.76, + "probability": 0.2879 + }, + { + "start": 4298.76, + "end": 4299.8, + "probability": 0.0537 + }, + { + "start": 4299.8, + "end": 4304.08, + "probability": 0.7624 + }, + { + "start": 4305.04, + "end": 4307.9, + "probability": 0.9805 + }, + { + "start": 4308.6, + "end": 4310.54, + "probability": 0.9979 + }, + { + "start": 4311.16, + "end": 4315.52, + "probability": 0.9927 + }, + { + "start": 4315.52, + "end": 4319.44, + "probability": 0.9963 + }, + { + "start": 4320.08, + "end": 4321.36, + "probability": 0.6091 + }, + { + "start": 4322.06, + "end": 4326.76, + "probability": 0.9972 + }, + { + "start": 4327.62, + "end": 4328.7, + "probability": 0.9344 + }, + { + "start": 4328.8, + "end": 4331.32, + "probability": 0.9876 + }, + { + "start": 4331.32, + "end": 4335.66, + "probability": 0.9969 + }, + { + "start": 4336.34, + "end": 4340.8, + "probability": 0.996 + }, + { + "start": 4341.38, + "end": 4343.46, + "probability": 0.9943 + }, + { + "start": 4344.14, + "end": 4344.9, + "probability": 0.7252 + }, + { + "start": 4345.36, + "end": 4346.5, + "probability": 0.8318 + }, + { + "start": 4346.9, + "end": 4350.08, + "probability": 0.7479 + }, + { + "start": 4351.58, + "end": 4353.78, + "probability": 0.9641 + }, + { + "start": 4354.48, + "end": 4357.38, + "probability": 0.9915 + }, + { + "start": 4358.12, + "end": 4360.08, + "probability": 0.972 + }, + { + "start": 4360.78, + "end": 4365.22, + "probability": 0.9857 + }, + { + "start": 4365.62, + "end": 4368.28, + "probability": 0.9508 + }, + { + "start": 4368.78, + "end": 4369.8, + "probability": 0.8008 + }, + { + "start": 4370.42, + "end": 4370.86, + "probability": 0.4454 + }, + { + "start": 4371.04, + "end": 4374.72, + "probability": 0.9847 + }, + { + "start": 4374.86, + "end": 4378.86, + "probability": 0.9946 + }, + { + "start": 4379.72, + "end": 4383.3, + "probability": 0.9696 + }, + { + "start": 4384.08, + "end": 4387.12, + "probability": 0.9515 + }, + { + "start": 4387.74, + "end": 4390.44, + "probability": 0.6393 + }, + { + "start": 4390.52, + "end": 4395.34, + "probability": 0.9813 + }, + { + "start": 4395.78, + "end": 4400.14, + "probability": 0.9915 + }, + { + "start": 4400.74, + "end": 4401.8, + "probability": 0.7822 + }, + { + "start": 4402.66, + "end": 4403.68, + "probability": 0.9381 + }, + { + "start": 4404.58, + "end": 4409.22, + "probability": 0.9497 + }, + { + "start": 4409.96, + "end": 4414.14, + "probability": 0.9342 + }, + { + "start": 4414.68, + "end": 4416.98, + "probability": 0.9972 + }, + { + "start": 4417.68, + "end": 4419.28, + "probability": 0.9718 + }, + { + "start": 4419.5, + "end": 4421.86, + "probability": 0.9255 + }, + { + "start": 4422.52, + "end": 4423.2, + "probability": 0.7039 + }, + { + "start": 4423.7, + "end": 4426.08, + "probability": 0.9972 + }, + { + "start": 4426.64, + "end": 4429.65, + "probability": 0.9766 + }, + { + "start": 4430.46, + "end": 4431.95, + "probability": 0.9951 + }, + { + "start": 4432.4, + "end": 4433.44, + "probability": 0.8683 + }, + { + "start": 4433.96, + "end": 4437.8, + "probability": 0.9814 + }, + { + "start": 4437.8, + "end": 4441.34, + "probability": 0.9987 + }, + { + "start": 4442.18, + "end": 4447.5, + "probability": 0.9973 + }, + { + "start": 4447.9, + "end": 4449.56, + "probability": 0.9941 + }, + { + "start": 4450.22, + "end": 4452.66, + "probability": 0.6802 + }, + { + "start": 4453.26, + "end": 4454.58, + "probability": 0.8781 + }, + { + "start": 4454.66, + "end": 4456.46, + "probability": 0.9974 + }, + { + "start": 4457.0, + "end": 4458.58, + "probability": 0.9892 + }, + { + "start": 4458.6, + "end": 4462.32, + "probability": 0.9974 + }, + { + "start": 4462.88, + "end": 4465.08, + "probability": 0.9927 + }, + { + "start": 4465.16, + "end": 4470.46, + "probability": 0.9896 + }, + { + "start": 4470.92, + "end": 4473.06, + "probability": 0.9617 + }, + { + "start": 4473.06, + "end": 4476.18, + "probability": 0.7873 + }, + { + "start": 4476.34, + "end": 4478.84, + "probability": 0.4646 + }, + { + "start": 4479.26, + "end": 4482.64, + "probability": 0.7826 + }, + { + "start": 4483.38, + "end": 4483.78, + "probability": 0.6933 + }, + { + "start": 4483.96, + "end": 4485.01, + "probability": 0.7544 + }, + { + "start": 4485.54, + "end": 4486.58, + "probability": 0.8646 + }, + { + "start": 4487.08, + "end": 4488.0, + "probability": 0.7056 + }, + { + "start": 4488.42, + "end": 4488.88, + "probability": 0.6047 + }, + { + "start": 4489.14, + "end": 4491.22, + "probability": 0.8143 + }, + { + "start": 4492.06, + "end": 4493.08, + "probability": 0.4099 + }, + { + "start": 4493.26, + "end": 4495.98, + "probability": 0.5251 + }, + { + "start": 4496.38, + "end": 4497.62, + "probability": 0.9198 + }, + { + "start": 4498.18, + "end": 4498.32, + "probability": 0.343 + }, + { + "start": 4498.32, + "end": 4498.88, + "probability": 0.6592 + }, + { + "start": 4498.98, + "end": 4500.08, + "probability": 0.5435 + }, + { + "start": 4500.92, + "end": 4502.7, + "probability": 0.8311 + }, + { + "start": 4503.16, + "end": 4503.9, + "probability": 0.9714 + }, + { + "start": 4504.18, + "end": 4506.5, + "probability": 0.8798 + }, + { + "start": 4507.16, + "end": 4512.82, + "probability": 0.9891 + }, + { + "start": 4513.76, + "end": 4516.6, + "probability": 0.9884 + }, + { + "start": 4517.08, + "end": 4517.56, + "probability": 0.7248 + }, + { + "start": 4517.74, + "end": 4518.38, + "probability": 0.9408 + }, + { + "start": 4518.48, + "end": 4519.3, + "probability": 0.9658 + }, + { + "start": 4519.4, + "end": 4521.36, + "probability": 0.9979 + }, + { + "start": 4521.92, + "end": 4522.34, + "probability": 0.7139 + }, + { + "start": 4522.78, + "end": 4523.4, + "probability": 0.9806 + }, + { + "start": 4523.5, + "end": 4527.72, + "probability": 0.9829 + }, + { + "start": 4528.1, + "end": 4529.84, + "probability": 0.9918 + }, + { + "start": 4530.44, + "end": 4534.92, + "probability": 0.9888 + }, + { + "start": 4537.2, + "end": 4537.74, + "probability": 0.4925 + }, + { + "start": 4537.74, + "end": 4538.8, + "probability": 0.935 + }, + { + "start": 4538.92, + "end": 4541.76, + "probability": 0.9878 + }, + { + "start": 4542.98, + "end": 4543.2, + "probability": 0.3406 + }, + { + "start": 4545.78, + "end": 4546.24, + "probability": 0.4383 + }, + { + "start": 4548.05, + "end": 4549.98, + "probability": 0.6543 + }, + { + "start": 4552.06, + "end": 4552.08, + "probability": 0.2064 + }, + { + "start": 4554.18, + "end": 4557.54, + "probability": 0.6149 + }, + { + "start": 4559.04, + "end": 4561.37, + "probability": 0.092 + }, + { + "start": 4562.64, + "end": 4563.08, + "probability": 0.4143 + }, + { + "start": 4563.26, + "end": 4563.5, + "probability": 0.8119 + }, + { + "start": 4568.82, + "end": 4570.38, + "probability": 0.7961 + }, + { + "start": 4570.48, + "end": 4571.06, + "probability": 0.848 + }, + { + "start": 4572.2, + "end": 4574.46, + "probability": 0.9856 + }, + { + "start": 4574.58, + "end": 4577.17, + "probability": 0.8417 + }, + { + "start": 4577.38, + "end": 4578.74, + "probability": 0.8083 + }, + { + "start": 4578.8, + "end": 4578.8, + "probability": 0.3543 + }, + { + "start": 4578.82, + "end": 4582.3, + "probability": 0.8674 + }, + { + "start": 4583.52, + "end": 4585.78, + "probability": 0.7237 + }, + { + "start": 4585.94, + "end": 4586.29, + "probability": 0.9327 + }, + { + "start": 4586.56, + "end": 4589.72, + "probability": 0.9904 + }, + { + "start": 4589.92, + "end": 4591.54, + "probability": 0.6868 + }, + { + "start": 4593.44, + "end": 4597.9, + "probability": 0.9885 + }, + { + "start": 4597.9, + "end": 4601.32, + "probability": 0.9966 + }, + { + "start": 4602.8, + "end": 4605.49, + "probability": 0.8902 + }, + { + "start": 4606.1, + "end": 4610.46, + "probability": 0.9963 + }, + { + "start": 4610.76, + "end": 4615.24, + "probability": 0.9886 + }, + { + "start": 4616.0, + "end": 4622.36, + "probability": 0.8084 + }, + { + "start": 4622.52, + "end": 4628.46, + "probability": 0.7548 + }, + { + "start": 4628.72, + "end": 4632.26, + "probability": 0.8674 + }, + { + "start": 4632.52, + "end": 4642.14, + "probability": 0.9837 + }, + { + "start": 4643.06, + "end": 4648.86, + "probability": 0.9132 + }, + { + "start": 4649.32, + "end": 4652.94, + "probability": 0.8242 + }, + { + "start": 4653.48, + "end": 4657.5, + "probability": 0.9917 + }, + { + "start": 4657.82, + "end": 4660.02, + "probability": 0.9534 + }, + { + "start": 4661.1, + "end": 4662.6, + "probability": 0.6713 + }, + { + "start": 4662.74, + "end": 4663.3, + "probability": 0.4345 + }, + { + "start": 4663.38, + "end": 4668.26, + "probability": 0.9878 + }, + { + "start": 4668.3, + "end": 4669.84, + "probability": 0.9593 + }, + { + "start": 4669.92, + "end": 4670.44, + "probability": 0.6263 + }, + { + "start": 4670.46, + "end": 4673.14, + "probability": 0.9856 + }, + { + "start": 4675.22, + "end": 4677.1, + "probability": 0.8727 + }, + { + "start": 4677.86, + "end": 4680.48, + "probability": 0.9707 + }, + { + "start": 4680.78, + "end": 4683.96, + "probability": 0.9666 + }, + { + "start": 4684.08, + "end": 4687.16, + "probability": 0.996 + }, + { + "start": 4688.08, + "end": 4692.03, + "probability": 0.9934 + }, + { + "start": 4692.58, + "end": 4696.32, + "probability": 0.8032 + }, + { + "start": 4698.84, + "end": 4702.5, + "probability": 0.9193 + }, + { + "start": 4703.04, + "end": 4704.37, + "probability": 0.7962 + }, + { + "start": 4705.18, + "end": 4707.12, + "probability": 0.8688 + }, + { + "start": 4707.3, + "end": 4710.02, + "probability": 0.9847 + }, + { + "start": 4710.24, + "end": 4711.06, + "probability": 0.9385 + }, + { + "start": 4712.64, + "end": 4715.82, + "probability": 0.9578 + }, + { + "start": 4716.5, + "end": 4718.78, + "probability": 0.9981 + }, + { + "start": 4718.78, + "end": 4721.96, + "probability": 0.996 + }, + { + "start": 4722.1, + "end": 4723.34, + "probability": 0.9728 + }, + { + "start": 4724.28, + "end": 4726.22, + "probability": 0.9175 + }, + { + "start": 4726.92, + "end": 4727.32, + "probability": 0.3732 + }, + { + "start": 4727.52, + "end": 4728.1, + "probability": 0.9205 + }, + { + "start": 4728.2, + "end": 4731.76, + "probability": 0.9925 + }, + { + "start": 4732.38, + "end": 4734.44, + "probability": 0.9838 + }, + { + "start": 4734.58, + "end": 4736.94, + "probability": 0.9937 + }, + { + "start": 4738.1, + "end": 4740.46, + "probability": 0.9154 + }, + { + "start": 4741.4, + "end": 4742.92, + "probability": 0.9082 + }, + { + "start": 4743.82, + "end": 4745.38, + "probability": 0.9839 + }, + { + "start": 4746.22, + "end": 4746.62, + "probability": 0.9869 + }, + { + "start": 4746.7, + "end": 4748.24, + "probability": 0.9072 + }, + { + "start": 4748.88, + "end": 4750.9, + "probability": 0.9937 + }, + { + "start": 4751.68, + "end": 4752.9, + "probability": 0.9463 + }, + { + "start": 4753.54, + "end": 4756.48, + "probability": 0.9603 + }, + { + "start": 4757.26, + "end": 4760.14, + "probability": 0.9507 + }, + { + "start": 4761.42, + "end": 4764.28, + "probability": 0.995 + }, + { + "start": 4765.06, + "end": 4767.68, + "probability": 0.9773 + }, + { + "start": 4768.32, + "end": 4770.96, + "probability": 0.9684 + }, + { + "start": 4772.28, + "end": 4774.94, + "probability": 0.9884 + }, + { + "start": 4775.16, + "end": 4778.13, + "probability": 0.9948 + }, + { + "start": 4778.22, + "end": 4780.42, + "probability": 0.9895 + }, + { + "start": 4780.64, + "end": 4783.28, + "probability": 0.9922 + }, + { + "start": 4783.28, + "end": 4786.64, + "probability": 0.9987 + }, + { + "start": 4786.7, + "end": 4788.4, + "probability": 0.9897 + }, + { + "start": 4788.86, + "end": 4793.22, + "probability": 0.9981 + }, + { + "start": 4793.64, + "end": 4797.54, + "probability": 0.9904 + }, + { + "start": 4797.74, + "end": 4797.84, + "probability": 0.4561 + }, + { + "start": 4797.94, + "end": 4798.58, + "probability": 0.6417 + }, + { + "start": 4798.58, + "end": 4801.47, + "probability": 0.9902 + }, + { + "start": 4802.26, + "end": 4804.1, + "probability": 0.9917 + }, + { + "start": 4804.64, + "end": 4807.84, + "probability": 0.9959 + }, + { + "start": 4807.92, + "end": 4809.28, + "probability": 0.9985 + }, + { + "start": 4809.34, + "end": 4809.96, + "probability": 0.7451 + }, + { + "start": 4810.46, + "end": 4817.28, + "probability": 0.9944 + }, + { + "start": 4818.3, + "end": 4821.11, + "probability": 0.9967 + }, + { + "start": 4821.36, + "end": 4824.98, + "probability": 0.9936 + }, + { + "start": 4825.74, + "end": 4827.98, + "probability": 0.9829 + }, + { + "start": 4827.98, + "end": 4830.6, + "probability": 0.9818 + }, + { + "start": 4831.06, + "end": 4832.29, + "probability": 0.9954 + }, + { + "start": 4832.78, + "end": 4836.54, + "probability": 0.9917 + }, + { + "start": 4837.88, + "end": 4842.62, + "probability": 0.9662 + }, + { + "start": 4843.28, + "end": 4848.84, + "probability": 0.9991 + }, + { + "start": 4849.96, + "end": 4853.98, + "probability": 0.9842 + }, + { + "start": 4854.6, + "end": 4857.16, + "probability": 0.9738 + }, + { + "start": 4857.84, + "end": 4859.4, + "probability": 0.9779 + }, + { + "start": 4859.78, + "end": 4862.52, + "probability": 0.7459 + }, + { + "start": 4863.04, + "end": 4870.12, + "probability": 0.9546 + }, + { + "start": 4870.7, + "end": 4871.24, + "probability": 0.754 + }, + { + "start": 4871.6, + "end": 4872.02, + "probability": 0.7472 + }, + { + "start": 4872.12, + "end": 4873.76, + "probability": 0.8672 + }, + { + "start": 4873.82, + "end": 4874.8, + "probability": 0.9241 + }, + { + "start": 4876.12, + "end": 4882.06, + "probability": 0.9168 + }, + { + "start": 4882.42, + "end": 4884.62, + "probability": 0.9207 + }, + { + "start": 4884.82, + "end": 4889.8, + "probability": 0.9951 + }, + { + "start": 4890.24, + "end": 4895.14, + "probability": 0.9779 + }, + { + "start": 4895.32, + "end": 4896.6, + "probability": 0.6363 + }, + { + "start": 4897.16, + "end": 4897.56, + "probability": 0.2612 + }, + { + "start": 4897.56, + "end": 4897.56, + "probability": 0.515 + }, + { + "start": 4897.56, + "end": 4899.26, + "probability": 0.6623 + }, + { + "start": 4915.28, + "end": 4916.54, + "probability": 0.6774 + }, + { + "start": 4916.7, + "end": 4919.02, + "probability": 0.9276 + }, + { + "start": 4919.02, + "end": 4919.54, + "probability": 0.7668 + }, + { + "start": 4919.86, + "end": 4920.68, + "probability": 0.7618 + }, + { + "start": 4920.96, + "end": 4921.32, + "probability": 0.6653 + }, + { + "start": 4921.32, + "end": 4926.14, + "probability": 0.8665 + }, + { + "start": 4926.86, + "end": 4929.05, + "probability": 0.8719 + }, + { + "start": 4929.78, + "end": 4933.02, + "probability": 0.9962 + }, + { + "start": 4933.78, + "end": 4934.62, + "probability": 0.9613 + }, + { + "start": 4935.26, + "end": 4937.2, + "probability": 0.9417 + }, + { + "start": 4937.72, + "end": 4939.88, + "probability": 0.9787 + }, + { + "start": 4940.96, + "end": 4944.66, + "probability": 0.9854 + }, + { + "start": 4945.84, + "end": 4949.42, + "probability": 0.9812 + }, + { + "start": 4950.14, + "end": 4951.58, + "probability": 0.951 + }, + { + "start": 4952.2, + "end": 4953.55, + "probability": 0.9852 + }, + { + "start": 4953.84, + "end": 4954.92, + "probability": 0.8725 + }, + { + "start": 4955.4, + "end": 4956.48, + "probability": 0.612 + }, + { + "start": 4956.76, + "end": 4958.3, + "probability": 0.9343 + }, + { + "start": 4959.46, + "end": 4962.12, + "probability": 0.9198 + }, + { + "start": 4962.22, + "end": 4964.82, + "probability": 0.8564 + }, + { + "start": 4965.74, + "end": 4967.26, + "probability": 0.9274 + }, + { + "start": 4967.88, + "end": 4969.48, + "probability": 0.7492 + }, + { + "start": 4969.58, + "end": 4972.0, + "probability": 0.9063 + }, + { + "start": 4972.46, + "end": 4973.48, + "probability": 0.9641 + }, + { + "start": 4974.13, + "end": 4975.66, + "probability": 0.9897 + }, + { + "start": 4976.96, + "end": 4978.48, + "probability": 0.9944 + }, + { + "start": 4979.5, + "end": 4982.97, + "probability": 0.929 + }, + { + "start": 4983.86, + "end": 4987.08, + "probability": 0.8816 + }, + { + "start": 4988.36, + "end": 4989.86, + "probability": 0.9119 + }, + { + "start": 4990.78, + "end": 4994.06, + "probability": 0.9961 + }, + { + "start": 4995.16, + "end": 4995.66, + "probability": 0.646 + }, + { + "start": 4995.7, + "end": 4998.94, + "probability": 0.9561 + }, + { + "start": 4998.94, + "end": 5002.84, + "probability": 0.9903 + }, + { + "start": 5003.34, + "end": 5006.38, + "probability": 0.9798 + }, + { + "start": 5006.8, + "end": 5008.88, + "probability": 0.9908 + }, + { + "start": 5009.2, + "end": 5011.54, + "probability": 0.9233 + }, + { + "start": 5012.66, + "end": 5017.72, + "probability": 0.9978 + }, + { + "start": 5017.8, + "end": 5018.86, + "probability": 0.8496 + }, + { + "start": 5019.76, + "end": 5022.68, + "probability": 0.902 + }, + { + "start": 5023.36, + "end": 5026.82, + "probability": 0.9167 + }, + { + "start": 5027.3, + "end": 5030.26, + "probability": 0.9956 + }, + { + "start": 5031.12, + "end": 5032.88, + "probability": 0.9596 + }, + { + "start": 5033.66, + "end": 5038.16, + "probability": 0.946 + }, + { + "start": 5038.7, + "end": 5040.76, + "probability": 0.8346 + }, + { + "start": 5041.82, + "end": 5044.46, + "probability": 0.6503 + }, + { + "start": 5045.4, + "end": 5048.3, + "probability": 0.7976 + }, + { + "start": 5050.2, + "end": 5052.4, + "probability": 0.9716 + }, + { + "start": 5053.48, + "end": 5058.16, + "probability": 0.9258 + }, + { + "start": 5059.12, + "end": 5062.2, + "probability": 0.9913 + }, + { + "start": 5063.16, + "end": 5065.1, + "probability": 0.9971 + }, + { + "start": 5066.6, + "end": 5069.98, + "probability": 0.9153 + }, + { + "start": 5070.08, + "end": 5072.56, + "probability": 0.9948 + }, + { + "start": 5072.56, + "end": 5075.04, + "probability": 0.9943 + }, + { + "start": 5076.28, + "end": 5077.37, + "probability": 0.9962 + }, + { + "start": 5077.76, + "end": 5078.55, + "probability": 0.9271 + }, + { + "start": 5079.04, + "end": 5082.2, + "probability": 0.9972 + }, + { + "start": 5082.54, + "end": 5088.22, + "probability": 0.9877 + }, + { + "start": 5088.92, + "end": 5091.16, + "probability": 0.9986 + }, + { + "start": 5092.4, + "end": 5095.12, + "probability": 0.9935 + }, + { + "start": 5096.1, + "end": 5097.64, + "probability": 0.8549 + }, + { + "start": 5097.86, + "end": 5102.66, + "probability": 0.906 + }, + { + "start": 5102.66, + "end": 5109.86, + "probability": 0.99 + }, + { + "start": 5110.12, + "end": 5111.64, + "probability": 0.9435 + }, + { + "start": 5112.8, + "end": 5113.4, + "probability": 0.6584 + }, + { + "start": 5114.22, + "end": 5115.28, + "probability": 0.8529 + }, + { + "start": 5116.56, + "end": 5117.88, + "probability": 0.9465 + }, + { + "start": 5118.06, + "end": 5118.68, + "probability": 0.7458 + }, + { + "start": 5118.8, + "end": 5119.58, + "probability": 0.9741 + }, + { + "start": 5120.88, + "end": 5123.68, + "probability": 0.9868 + }, + { + "start": 5124.24, + "end": 5126.14, + "probability": 0.8643 + }, + { + "start": 5126.86, + "end": 5129.24, + "probability": 0.7384 + }, + { + "start": 5129.8, + "end": 5130.84, + "probability": 0.9665 + }, + { + "start": 5132.04, + "end": 5133.0, + "probability": 0.7285 + }, + { + "start": 5133.12, + "end": 5133.42, + "probability": 0.981 + }, + { + "start": 5133.52, + "end": 5133.9, + "probability": 0.7302 + }, + { + "start": 5134.3, + "end": 5135.52, + "probability": 0.9149 + }, + { + "start": 5135.64, + "end": 5137.28, + "probability": 0.8917 + }, + { + "start": 5137.32, + "end": 5137.9, + "probability": 0.8087 + }, + { + "start": 5138.38, + "end": 5140.12, + "probability": 0.9644 + }, + { + "start": 5140.58, + "end": 5145.08, + "probability": 0.9855 + }, + { + "start": 5146.04, + "end": 5147.96, + "probability": 0.9245 + }, + { + "start": 5148.36, + "end": 5149.11, + "probability": 0.9814 + }, + { + "start": 5149.62, + "end": 5150.46, + "probability": 0.7489 + }, + { + "start": 5150.56, + "end": 5151.84, + "probability": 0.9914 + }, + { + "start": 5152.7, + "end": 5152.9, + "probability": 0.2426 + }, + { + "start": 5152.98, + "end": 5153.8, + "probability": 0.9984 + }, + { + "start": 5154.5, + "end": 5157.82, + "probability": 0.9968 + }, + { + "start": 5157.82, + "end": 5160.24, + "probability": 1.0 + }, + { + "start": 5161.14, + "end": 5161.93, + "probability": 0.8887 + }, + { + "start": 5162.54, + "end": 5164.14, + "probability": 0.9998 + }, + { + "start": 5164.76, + "end": 5166.42, + "probability": 0.5379 + }, + { + "start": 5166.7, + "end": 5169.64, + "probability": 0.9975 + }, + { + "start": 5169.64, + "end": 5173.62, + "probability": 0.9164 + }, + { + "start": 5174.7, + "end": 5177.18, + "probability": 0.9823 + }, + { + "start": 5178.56, + "end": 5180.9, + "probability": 0.9341 + }, + { + "start": 5180.96, + "end": 5183.04, + "probability": 0.9595 + }, + { + "start": 5183.32, + "end": 5184.52, + "probability": 0.9839 + }, + { + "start": 5185.48, + "end": 5187.07, + "probability": 0.9956 + }, + { + "start": 5187.94, + "end": 5191.13, + "probability": 0.9813 + }, + { + "start": 5191.76, + "end": 5193.66, + "probability": 0.9731 + }, + { + "start": 5194.02, + "end": 5202.16, + "probability": 0.9059 + }, + { + "start": 5203.3, + "end": 5206.32, + "probability": 0.9253 + }, + { + "start": 5206.9, + "end": 5209.9, + "probability": 0.9839 + }, + { + "start": 5210.32, + "end": 5214.7, + "probability": 0.9879 + }, + { + "start": 5215.14, + "end": 5218.12, + "probability": 0.9357 + }, + { + "start": 5218.76, + "end": 5220.44, + "probability": 0.9646 + }, + { + "start": 5221.52, + "end": 5222.52, + "probability": 0.9207 + }, + { + "start": 5222.9, + "end": 5224.82, + "probability": 0.9934 + }, + { + "start": 5224.94, + "end": 5227.39, + "probability": 0.9987 + }, + { + "start": 5227.88, + "end": 5231.86, + "probability": 0.9985 + }, + { + "start": 5232.04, + "end": 5235.44, + "probability": 0.9484 + }, + { + "start": 5235.44, + "end": 5239.88, + "probability": 0.9813 + }, + { + "start": 5240.56, + "end": 5241.36, + "probability": 0.9631 + }, + { + "start": 5241.54, + "end": 5243.38, + "probability": 0.9954 + }, + { + "start": 5243.82, + "end": 5246.74, + "probability": 0.5884 + }, + { + "start": 5246.86, + "end": 5250.4, + "probability": 0.8201 + }, + { + "start": 5250.44, + "end": 5251.72, + "probability": 0.5943 + }, + { + "start": 5252.06, + "end": 5253.98, + "probability": 0.9615 + }, + { + "start": 5254.1, + "end": 5255.82, + "probability": 0.9945 + }, + { + "start": 5255.86, + "end": 5256.98, + "probability": 0.7488 + }, + { + "start": 5257.38, + "end": 5261.56, + "probability": 0.9921 + }, + { + "start": 5261.98, + "end": 5264.22, + "probability": 0.9961 + }, + { + "start": 5264.36, + "end": 5266.54, + "probability": 0.7452 + }, + { + "start": 5266.92, + "end": 5267.82, + "probability": 0.9491 + }, + { + "start": 5268.16, + "end": 5269.32, + "probability": 0.993 + }, + { + "start": 5269.4, + "end": 5271.28, + "probability": 0.9699 + }, + { + "start": 5271.4, + "end": 5272.22, + "probability": 0.915 + }, + { + "start": 5272.84, + "end": 5274.52, + "probability": 0.8394 + }, + { + "start": 5274.6, + "end": 5276.86, + "probability": 0.7706 + }, + { + "start": 5277.2, + "end": 5278.82, + "probability": 0.9937 + }, + { + "start": 5278.92, + "end": 5282.32, + "probability": 0.9576 + }, + { + "start": 5282.32, + "end": 5286.44, + "probability": 0.9406 + }, + { + "start": 5286.48, + "end": 5289.02, + "probability": 0.5771 + }, + { + "start": 5289.46, + "end": 5290.54, + "probability": 0.9744 + }, + { + "start": 5290.84, + "end": 5292.92, + "probability": 0.9489 + }, + { + "start": 5293.38, + "end": 5296.96, + "probability": 0.9473 + }, + { + "start": 5297.48, + "end": 5297.96, + "probability": 0.9607 + }, + { + "start": 5298.16, + "end": 5298.76, + "probability": 0.658 + }, + { + "start": 5298.76, + "end": 5301.26, + "probability": 0.8872 + }, + { + "start": 5318.74, + "end": 5318.76, + "probability": 0.4432 + }, + { + "start": 5318.76, + "end": 5320.12, + "probability": 0.8444 + }, + { + "start": 5320.64, + "end": 5321.62, + "probability": 0.5415 + }, + { + "start": 5321.72, + "end": 5323.58, + "probability": 0.3736 + }, + { + "start": 5324.04, + "end": 5324.94, + "probability": 0.6526 + }, + { + "start": 5326.38, + "end": 5328.46, + "probability": 0.7907 + }, + { + "start": 5329.92, + "end": 5332.44, + "probability": 0.993 + }, + { + "start": 5332.44, + "end": 5335.22, + "probability": 0.9086 + }, + { + "start": 5335.32, + "end": 5339.02, + "probability": 0.903 + }, + { + "start": 5339.64, + "end": 5343.44, + "probability": 0.9961 + }, + { + "start": 5343.86, + "end": 5349.8, + "probability": 0.9859 + }, + { + "start": 5350.8, + "end": 5353.04, + "probability": 0.8674 + }, + { + "start": 5353.16, + "end": 5355.16, + "probability": 0.8979 + }, + { + "start": 5355.88, + "end": 5359.32, + "probability": 0.9946 + }, + { + "start": 5360.16, + "end": 5363.76, + "probability": 0.9894 + }, + { + "start": 5363.76, + "end": 5366.98, + "probability": 0.9976 + }, + { + "start": 5368.0, + "end": 5370.46, + "probability": 0.9969 + }, + { + "start": 5370.46, + "end": 5373.78, + "probability": 0.9938 + }, + { + "start": 5373.92, + "end": 5375.42, + "probability": 0.8514 + }, + { + "start": 5376.72, + "end": 5381.7, + "probability": 0.9948 + }, + { + "start": 5381.92, + "end": 5384.3, + "probability": 0.9666 + }, + { + "start": 5385.0, + "end": 5389.5, + "probability": 0.9549 + }, + { + "start": 5393.16, + "end": 5395.7, + "probability": 0.9964 + }, + { + "start": 5395.7, + "end": 5399.92, + "probability": 0.9985 + }, + { + "start": 5400.82, + "end": 5404.48, + "probability": 0.9927 + }, + { + "start": 5405.36, + "end": 5407.54, + "probability": 0.8156 + }, + { + "start": 5407.7, + "end": 5409.2, + "probability": 0.5205 + }, + { + "start": 5409.36, + "end": 5412.42, + "probability": 0.9993 + }, + { + "start": 5412.42, + "end": 5415.54, + "probability": 0.9954 + }, + { + "start": 5416.94, + "end": 5419.08, + "probability": 0.8617 + }, + { + "start": 5419.08, + "end": 5421.44, + "probability": 0.9988 + }, + { + "start": 5422.26, + "end": 5425.96, + "probability": 0.9956 + }, + { + "start": 5427.14, + "end": 5433.26, + "probability": 0.9794 + }, + { + "start": 5434.6, + "end": 5438.0, + "probability": 0.9922 + }, + { + "start": 5438.74, + "end": 5443.4, + "probability": 0.9638 + }, + { + "start": 5444.14, + "end": 5449.5, + "probability": 0.9976 + }, + { + "start": 5449.98, + "end": 5454.08, + "probability": 0.9594 + }, + { + "start": 5454.8, + "end": 5455.64, + "probability": 0.7373 + }, + { + "start": 5456.72, + "end": 5458.42, + "probability": 0.9646 + }, + { + "start": 5459.18, + "end": 5462.38, + "probability": 0.9956 + }, + { + "start": 5466.82, + "end": 5468.78, + "probability": 0.7239 + }, + { + "start": 5470.0, + "end": 5472.78, + "probability": 0.9902 + }, + { + "start": 5473.54, + "end": 5474.98, + "probability": 0.6419 + }, + { + "start": 5476.22, + "end": 5477.26, + "probability": 0.8573 + }, + { + "start": 5477.96, + "end": 5478.96, + "probability": 0.7516 + }, + { + "start": 5479.74, + "end": 5480.9, + "probability": 0.9946 + }, + { + "start": 5481.92, + "end": 5485.0, + "probability": 0.9705 + }, + { + "start": 5485.86, + "end": 5488.12, + "probability": 0.9617 + }, + { + "start": 5488.84, + "end": 5490.33, + "probability": 0.7122 + }, + { + "start": 5491.18, + "end": 5495.14, + "probability": 0.9731 + }, + { + "start": 5495.64, + "end": 5496.4, + "probability": 0.9524 + }, + { + "start": 5496.68, + "end": 5497.38, + "probability": 0.9642 + }, + { + "start": 5498.02, + "end": 5501.44, + "probability": 0.9704 + }, + { + "start": 5502.22, + "end": 5504.6, + "probability": 0.9823 + }, + { + "start": 5505.92, + "end": 5508.42, + "probability": 0.7521 + }, + { + "start": 5509.34, + "end": 5514.54, + "probability": 0.9839 + }, + { + "start": 5515.22, + "end": 5516.66, + "probability": 0.9884 + }, + { + "start": 5517.56, + "end": 5518.3, + "probability": 0.9788 + }, + { + "start": 5519.36, + "end": 5520.34, + "probability": 0.9656 + }, + { + "start": 5520.76, + "end": 5524.84, + "probability": 0.9929 + }, + { + "start": 5525.06, + "end": 5527.92, + "probability": 0.9217 + }, + { + "start": 5528.7, + "end": 5532.46, + "probability": 0.8753 + }, + { + "start": 5533.0, + "end": 5536.26, + "probability": 0.8616 + }, + { + "start": 5536.46, + "end": 5537.32, + "probability": 0.9071 + }, + { + "start": 5537.42, + "end": 5538.3, + "probability": 0.8805 + }, + { + "start": 5538.8, + "end": 5542.08, + "probability": 0.9627 + }, + { + "start": 5543.06, + "end": 5545.09, + "probability": 0.9813 + }, + { + "start": 5546.48, + "end": 5549.74, + "probability": 0.9988 + }, + { + "start": 5550.58, + "end": 5553.08, + "probability": 0.9889 + }, + { + "start": 5553.66, + "end": 5554.66, + "probability": 0.9839 + }, + { + "start": 5555.4, + "end": 5556.46, + "probability": 0.9844 + }, + { + "start": 5557.14, + "end": 5559.84, + "probability": 0.9978 + }, + { + "start": 5560.42, + "end": 5561.48, + "probability": 0.9637 + }, + { + "start": 5562.14, + "end": 5562.86, + "probability": 0.939 + }, + { + "start": 5563.7, + "end": 5566.06, + "probability": 0.9019 + }, + { + "start": 5566.94, + "end": 5570.02, + "probability": 0.9383 + }, + { + "start": 5570.7, + "end": 5574.6, + "probability": 0.4958 + }, + { + "start": 5575.0, + "end": 5575.94, + "probability": 0.7071 + }, + { + "start": 5577.0, + "end": 5579.58, + "probability": 0.9338 + }, + { + "start": 5579.78, + "end": 5581.48, + "probability": 0.9253 + }, + { + "start": 5609.5, + "end": 5609.98, + "probability": 0.2557 + }, + { + "start": 5609.98, + "end": 5612.24, + "probability": 0.6658 + }, + { + "start": 5615.3, + "end": 5616.16, + "probability": 0.8807 + }, + { + "start": 5617.26, + "end": 5621.14, + "probability": 0.9739 + }, + { + "start": 5621.5, + "end": 5624.3, + "probability": 0.9987 + }, + { + "start": 5624.42, + "end": 5624.76, + "probability": 0.9486 + }, + { + "start": 5626.52, + "end": 5632.26, + "probability": 0.9924 + }, + { + "start": 5634.2, + "end": 5637.0, + "probability": 0.9768 + }, + { + "start": 5638.04, + "end": 5641.7, + "probability": 0.9509 + }, + { + "start": 5642.56, + "end": 5645.74, + "probability": 0.967 + }, + { + "start": 5645.74, + "end": 5649.44, + "probability": 0.9299 + }, + { + "start": 5650.34, + "end": 5652.22, + "probability": 0.6638 + }, + { + "start": 5652.86, + "end": 5653.74, + "probability": 0.8142 + }, + { + "start": 5654.68, + "end": 5658.22, + "probability": 0.9865 + }, + { + "start": 5658.22, + "end": 5662.72, + "probability": 0.9912 + }, + { + "start": 5663.26, + "end": 5670.16, + "probability": 0.9854 + }, + { + "start": 5670.94, + "end": 5675.1, + "probability": 0.9902 + }, + { + "start": 5675.72, + "end": 5680.1, + "probability": 0.907 + }, + { + "start": 5680.88, + "end": 5686.86, + "probability": 0.9475 + }, + { + "start": 5686.92, + "end": 5688.46, + "probability": 0.9096 + }, + { + "start": 5689.32, + "end": 5695.18, + "probability": 0.9698 + }, + { + "start": 5696.98, + "end": 5697.62, + "probability": 0.9273 + }, + { + "start": 5698.02, + "end": 5698.98, + "probability": 0.6625 + }, + { + "start": 5700.02, + "end": 5701.1, + "probability": 0.8436 + }, + { + "start": 5701.82, + "end": 5702.74, + "probability": 0.9236 + }, + { + "start": 5703.92, + "end": 5708.66, + "probability": 0.9916 + }, + { + "start": 5709.84, + "end": 5714.34, + "probability": 0.9939 + }, + { + "start": 5714.34, + "end": 5718.68, + "probability": 0.995 + }, + { + "start": 5719.84, + "end": 5722.46, + "probability": 0.9737 + }, + { + "start": 5723.2, + "end": 5725.62, + "probability": 0.8618 + }, + { + "start": 5726.42, + "end": 5730.28, + "probability": 0.9885 + }, + { + "start": 5731.06, + "end": 5734.96, + "probability": 0.9915 + }, + { + "start": 5734.96, + "end": 5738.86, + "probability": 0.9995 + }, + { + "start": 5739.54, + "end": 5745.22, + "probability": 0.9932 + }, + { + "start": 5745.98, + "end": 5749.16, + "probability": 0.8531 + }, + { + "start": 5749.86, + "end": 5752.96, + "probability": 0.9979 + }, + { + "start": 5753.2, + "end": 5755.78, + "probability": 0.8042 + }, + { + "start": 5755.78, + "end": 5758.9, + "probability": 0.9956 + }, + { + "start": 5759.52, + "end": 5760.68, + "probability": 0.6099 + }, + { + "start": 5760.84, + "end": 5764.08, + "probability": 0.988 + }, + { + "start": 5764.4, + "end": 5766.64, + "probability": 0.9844 + }, + { + "start": 5767.16, + "end": 5768.26, + "probability": 0.964 + }, + { + "start": 5768.44, + "end": 5770.8, + "probability": 0.9744 + }, + { + "start": 5771.58, + "end": 5773.92, + "probability": 0.8655 + }, + { + "start": 5774.66, + "end": 5777.12, + "probability": 0.9908 + }, + { + "start": 5777.32, + "end": 5779.08, + "probability": 0.7894 + }, + { + "start": 5779.66, + "end": 5784.42, + "probability": 0.8843 + }, + { + "start": 5785.0, + "end": 5787.44, + "probability": 0.995 + }, + { + "start": 5787.54, + "end": 5787.56, + "probability": 0.491 + }, + { + "start": 5787.76, + "end": 5790.78, + "probability": 0.9681 + }, + { + "start": 5791.32, + "end": 5793.14, + "probability": 0.9253 + }, + { + "start": 5793.86, + "end": 5797.58, + "probability": 0.9863 + }, + { + "start": 5798.44, + "end": 5799.78, + "probability": 0.9472 + }, + { + "start": 5800.52, + "end": 5803.7, + "probability": 0.9447 + }, + { + "start": 5804.56, + "end": 5807.92, + "probability": 0.9198 + }, + { + "start": 5808.76, + "end": 5811.22, + "probability": 0.9659 + }, + { + "start": 5811.72, + "end": 5816.18, + "probability": 0.9962 + }, + { + "start": 5816.86, + "end": 5820.26, + "probability": 0.9966 + }, + { + "start": 5820.86, + "end": 5823.32, + "probability": 0.9504 + }, + { + "start": 5824.34, + "end": 5828.16, + "probability": 0.9593 + }, + { + "start": 5829.36, + "end": 5830.98, + "probability": 0.9503 + }, + { + "start": 5832.02, + "end": 5833.0, + "probability": 0.8665 + }, + { + "start": 5833.14, + "end": 5833.48, + "probability": 0.9883 + }, + { + "start": 5833.66, + "end": 5837.92, + "probability": 0.9941 + }, + { + "start": 5838.76, + "end": 5841.08, + "probability": 0.9971 + }, + { + "start": 5841.24, + "end": 5845.06, + "probability": 0.8629 + }, + { + "start": 5845.32, + "end": 5846.26, + "probability": 0.9438 + }, + { + "start": 5846.96, + "end": 5848.16, + "probability": 0.9986 + }, + { + "start": 5848.72, + "end": 5850.52, + "probability": 0.9307 + }, + { + "start": 5851.06, + "end": 5851.28, + "probability": 0.717 + }, + { + "start": 5851.82, + "end": 5852.98, + "probability": 0.981 + }, + { + "start": 5854.26, + "end": 5855.94, + "probability": 0.8769 + }, + { + "start": 5856.74, + "end": 5857.38, + "probability": 0.9217 + }, + { + "start": 5858.24, + "end": 5860.02, + "probability": 0.7468 + }, + { + "start": 5860.8, + "end": 5866.06, + "probability": 0.9692 + }, + { + "start": 5867.42, + "end": 5869.18, + "probability": 0.9985 + }, + { + "start": 5870.18, + "end": 5872.54, + "probability": 0.8634 + }, + { + "start": 5873.18, + "end": 5876.66, + "probability": 0.8109 + }, + { + "start": 5877.5, + "end": 5879.32, + "probability": 0.8938 + }, + { + "start": 5879.9, + "end": 5881.62, + "probability": 0.8828 + }, + { + "start": 5882.84, + "end": 5886.39, + "probability": 0.783 + }, + { + "start": 5887.18, + "end": 5890.68, + "probability": 0.9053 + }, + { + "start": 5891.4, + "end": 5893.08, + "probability": 0.6387 + }, + { + "start": 5893.2, + "end": 5896.84, + "probability": 0.8594 + }, + { + "start": 5897.42, + "end": 5901.6, + "probability": 0.937 + }, + { + "start": 5902.36, + "end": 5905.14, + "probability": 0.5897 + }, + { + "start": 5905.38, + "end": 5905.86, + "probability": 0.7519 + }, + { + "start": 5908.04, + "end": 5910.16, + "probability": 0.8547 + }, + { + "start": 5910.28, + "end": 5911.12, + "probability": 0.8289 + }, + { + "start": 5911.28, + "end": 5914.82, + "probability": 0.9757 + }, + { + "start": 5914.88, + "end": 5915.32, + "probability": 0.9007 + }, + { + "start": 5940.66, + "end": 5943.06, + "probability": 0.6904 + }, + { + "start": 5944.66, + "end": 5945.27, + "probability": 0.9264 + }, + { + "start": 5946.08, + "end": 5948.3, + "probability": 0.9387 + }, + { + "start": 5949.32, + "end": 5953.62, + "probability": 0.9932 + }, + { + "start": 5955.0, + "end": 5959.42, + "probability": 0.9888 + }, + { + "start": 5960.26, + "end": 5962.2, + "probability": 0.9355 + }, + { + "start": 5963.46, + "end": 5964.8, + "probability": 0.9785 + }, + { + "start": 5965.96, + "end": 5968.92, + "probability": 0.9893 + }, + { + "start": 5969.72, + "end": 5974.62, + "probability": 0.9577 + }, + { + "start": 5975.78, + "end": 5979.24, + "probability": 0.9694 + }, + { + "start": 5980.28, + "end": 5982.48, + "probability": 0.9172 + }, + { + "start": 5983.64, + "end": 5987.46, + "probability": 0.9933 + }, + { + "start": 5988.54, + "end": 5993.06, + "probability": 0.9685 + }, + { + "start": 5993.66, + "end": 5995.36, + "probability": 0.9429 + }, + { + "start": 5995.96, + "end": 5996.78, + "probability": 0.958 + }, + { + "start": 5998.58, + "end": 5999.62, + "probability": 0.9714 + }, + { + "start": 6000.42, + "end": 6001.36, + "probability": 0.9921 + }, + { + "start": 6002.18, + "end": 6009.56, + "probability": 0.9893 + }, + { + "start": 6012.56, + "end": 6016.84, + "probability": 0.9962 + }, + { + "start": 6017.74, + "end": 6019.02, + "probability": 0.9901 + }, + { + "start": 6019.72, + "end": 6020.44, + "probability": 0.6245 + }, + { + "start": 6021.0, + "end": 6021.6, + "probability": 0.9076 + }, + { + "start": 6022.48, + "end": 6023.12, + "probability": 0.9822 + }, + { + "start": 6023.78, + "end": 6029.82, + "probability": 0.9869 + }, + { + "start": 6031.38, + "end": 6032.5, + "probability": 0.9927 + }, + { + "start": 6033.9, + "end": 6036.52, + "probability": 0.938 + }, + { + "start": 6037.54, + "end": 6042.18, + "probability": 0.9946 + }, + { + "start": 6043.28, + "end": 6046.44, + "probability": 0.9624 + }, + { + "start": 6046.44, + "end": 6049.82, + "probability": 0.9987 + }, + { + "start": 6050.58, + "end": 6053.64, + "probability": 0.7915 + }, + { + "start": 6054.28, + "end": 6055.46, + "probability": 0.9856 + }, + { + "start": 6057.06, + "end": 6059.9, + "probability": 0.9795 + }, + { + "start": 6061.52, + "end": 6062.48, + "probability": 0.8178 + }, + { + "start": 6063.58, + "end": 6066.98, + "probability": 0.991 + }, + { + "start": 6068.24, + "end": 6069.66, + "probability": 0.7748 + }, + { + "start": 6069.8, + "end": 6070.3, + "probability": 0.9398 + }, + { + "start": 6070.44, + "end": 6074.84, + "probability": 0.9545 + }, + { + "start": 6075.64, + "end": 6081.56, + "probability": 0.9935 + }, + { + "start": 6082.62, + "end": 6088.7, + "probability": 0.9656 + }, + { + "start": 6088.8, + "end": 6089.65, + "probability": 0.3625 + }, + { + "start": 6090.44, + "end": 6091.34, + "probability": 0.8812 + }, + { + "start": 6093.22, + "end": 6093.82, + "probability": 0.9064 + }, + { + "start": 6094.76, + "end": 6098.12, + "probability": 0.9897 + }, + { + "start": 6098.74, + "end": 6101.36, + "probability": 0.8738 + }, + { + "start": 6102.28, + "end": 6106.96, + "probability": 0.9472 + }, + { + "start": 6107.36, + "end": 6108.34, + "probability": 0.5799 + }, + { + "start": 6109.22, + "end": 6112.66, + "probability": 0.9941 + }, + { + "start": 6112.66, + "end": 6115.84, + "probability": 0.9951 + }, + { + "start": 6116.38, + "end": 6118.86, + "probability": 0.9511 + }, + { + "start": 6120.22, + "end": 6121.36, + "probability": 0.9434 + }, + { + "start": 6121.88, + "end": 6123.3, + "probability": 0.9673 + }, + { + "start": 6124.08, + "end": 6128.7, + "probability": 0.9819 + }, + { + "start": 6130.1, + "end": 6132.12, + "probability": 0.9191 + }, + { + "start": 6133.32, + "end": 6137.22, + "probability": 0.9688 + }, + { + "start": 6138.38, + "end": 6143.04, + "probability": 0.9748 + }, + { + "start": 6144.0, + "end": 6150.58, + "probability": 0.9637 + }, + { + "start": 6151.38, + "end": 6155.04, + "probability": 0.8807 + }, + { + "start": 6156.04, + "end": 6157.96, + "probability": 0.8385 + }, + { + "start": 6159.46, + "end": 6162.34, + "probability": 0.9331 + }, + { + "start": 6162.82, + "end": 6164.3, + "probability": 0.991 + }, + { + "start": 6165.82, + "end": 6171.98, + "probability": 0.9958 + }, + { + "start": 6172.76, + "end": 6174.32, + "probability": 0.7651 + }, + { + "start": 6175.26, + "end": 6176.88, + "probability": 0.8947 + }, + { + "start": 6177.74, + "end": 6179.96, + "probability": 0.8154 + }, + { + "start": 6180.62, + "end": 6184.06, + "probability": 0.9884 + }, + { + "start": 6185.18, + "end": 6187.15, + "probability": 0.9915 + }, + { + "start": 6188.34, + "end": 6193.66, + "probability": 0.9788 + }, + { + "start": 6194.16, + "end": 6194.79, + "probability": 0.7361 + }, + { + "start": 6195.38, + "end": 6196.5, + "probability": 0.9014 + }, + { + "start": 6197.1, + "end": 6198.36, + "probability": 0.9346 + }, + { + "start": 6200.0, + "end": 6200.4, + "probability": 0.9081 + }, + { + "start": 6201.34, + "end": 6206.08, + "probability": 0.9486 + }, + { + "start": 6206.98, + "end": 6211.6, + "probability": 0.9924 + }, + { + "start": 6211.66, + "end": 6214.6, + "probability": 0.9731 + }, + { + "start": 6214.6, + "end": 6217.62, + "probability": 0.9936 + }, + { + "start": 6219.38, + "end": 6221.38, + "probability": 0.9038 + }, + { + "start": 6222.2, + "end": 6225.62, + "probability": 0.9766 + }, + { + "start": 6226.14, + "end": 6228.7, + "probability": 0.9885 + }, + { + "start": 6229.34, + "end": 6230.72, + "probability": 0.8269 + }, + { + "start": 6231.26, + "end": 6234.24, + "probability": 0.9928 + }, + { + "start": 6234.48, + "end": 6236.84, + "probability": 0.9973 + }, + { + "start": 6236.84, + "end": 6239.1, + "probability": 0.9897 + }, + { + "start": 6239.72, + "end": 6242.34, + "probability": 0.9956 + }, + { + "start": 6242.7, + "end": 6245.92, + "probability": 0.9917 + }, + { + "start": 6246.74, + "end": 6247.84, + "probability": 0.5502 + }, + { + "start": 6248.8, + "end": 6252.36, + "probability": 0.9468 + }, + { + "start": 6252.44, + "end": 6254.92, + "probability": 0.9751 + }, + { + "start": 6255.46, + "end": 6257.34, + "probability": 0.6837 + }, + { + "start": 6257.92, + "end": 6260.96, + "probability": 0.9796 + }, + { + "start": 6261.62, + "end": 6262.48, + "probability": 0.8799 + }, + { + "start": 6262.58, + "end": 6265.26, + "probability": 0.9733 + }, + { + "start": 6265.8, + "end": 6267.96, + "probability": 0.9604 + }, + { + "start": 6268.64, + "end": 6270.88, + "probability": 0.9937 + }, + { + "start": 6271.12, + "end": 6271.94, + "probability": 0.4656 + }, + { + "start": 6272.4, + "end": 6274.66, + "probability": 0.9955 + }, + { + "start": 6276.54, + "end": 6279.64, + "probability": 0.9982 + }, + { + "start": 6280.16, + "end": 6284.4, + "probability": 0.9973 + }, + { + "start": 6285.36, + "end": 6288.36, + "probability": 0.9974 + }, + { + "start": 6289.22, + "end": 6295.04, + "probability": 0.9971 + }, + { + "start": 6295.46, + "end": 6296.44, + "probability": 0.979 + }, + { + "start": 6296.56, + "end": 6300.8, + "probability": 0.9968 + }, + { + "start": 6301.92, + "end": 6306.12, + "probability": 0.9917 + }, + { + "start": 6307.24, + "end": 6309.32, + "probability": 0.9873 + }, + { + "start": 6310.12, + "end": 6314.06, + "probability": 0.9947 + }, + { + "start": 6315.4, + "end": 6320.7, + "probability": 0.9956 + }, + { + "start": 6321.46, + "end": 6322.3, + "probability": 0.958 + }, + { + "start": 6323.08, + "end": 6327.46, + "probability": 0.9927 + }, + { + "start": 6328.24, + "end": 6328.56, + "probability": 0.3651 + }, + { + "start": 6328.68, + "end": 6329.84, + "probability": 0.2805 + }, + { + "start": 6331.02, + "end": 6334.0, + "probability": 0.9917 + }, + { + "start": 6334.82, + "end": 6339.66, + "probability": 0.9359 + }, + { + "start": 6340.1, + "end": 6342.12, + "probability": 0.8853 + }, + { + "start": 6343.54, + "end": 6344.34, + "probability": 0.9993 + }, + { + "start": 6345.4, + "end": 6349.88, + "probability": 0.9922 + }, + { + "start": 6350.64, + "end": 6353.06, + "probability": 0.8778 + }, + { + "start": 6353.86, + "end": 6354.96, + "probability": 0.9691 + }, + { + "start": 6355.6, + "end": 6356.1, + "probability": 0.5596 + }, + { + "start": 6357.8, + "end": 6361.04, + "probability": 0.8508 + }, + { + "start": 6362.24, + "end": 6367.58, + "probability": 0.9762 + }, + { + "start": 6368.12, + "end": 6369.66, + "probability": 0.9584 + }, + { + "start": 6370.0, + "end": 6372.48, + "probability": 0.97 + }, + { + "start": 6373.08, + "end": 6376.04, + "probability": 0.9872 + }, + { + "start": 6376.66, + "end": 6377.48, + "probability": 0.9917 + }, + { + "start": 6378.44, + "end": 6379.64, + "probability": 0.9119 + }, + { + "start": 6380.26, + "end": 6382.02, + "probability": 0.9547 + }, + { + "start": 6382.94, + "end": 6386.32, + "probability": 0.9479 + }, + { + "start": 6386.68, + "end": 6388.1, + "probability": 0.9648 + }, + { + "start": 6388.64, + "end": 6390.1, + "probability": 0.9543 + }, + { + "start": 6391.24, + "end": 6397.6, + "probability": 0.9982 + }, + { + "start": 6398.3, + "end": 6401.26, + "probability": 0.9867 + }, + { + "start": 6402.2, + "end": 6406.96, + "probability": 0.9766 + }, + { + "start": 6407.58, + "end": 6412.88, + "probability": 0.9944 + }, + { + "start": 6413.68, + "end": 6416.33, + "probability": 0.9976 + }, + { + "start": 6417.28, + "end": 6419.86, + "probability": 0.9893 + }, + { + "start": 6420.38, + "end": 6422.86, + "probability": 0.9751 + }, + { + "start": 6423.26, + "end": 6424.58, + "probability": 0.9938 + }, + { + "start": 6425.0, + "end": 6426.2, + "probability": 0.9867 + }, + { + "start": 6427.08, + "end": 6428.86, + "probability": 0.9078 + }, + { + "start": 6429.38, + "end": 6431.62, + "probability": 0.8328 + }, + { + "start": 6432.32, + "end": 6435.6, + "probability": 0.9956 + }, + { + "start": 6436.26, + "end": 6441.26, + "probability": 0.9886 + }, + { + "start": 6441.38, + "end": 6443.72, + "probability": 0.7866 + }, + { + "start": 6443.84, + "end": 6445.26, + "probability": 0.9884 + }, + { + "start": 6446.42, + "end": 6449.14, + "probability": 0.9497 + }, + { + "start": 6450.14, + "end": 6452.16, + "probability": 0.9928 + }, + { + "start": 6453.12, + "end": 6454.1, + "probability": 0.6567 + }, + { + "start": 6454.86, + "end": 6455.32, + "probability": 0.9458 + }, + { + "start": 6456.02, + "end": 6458.4, + "probability": 0.9896 + }, + { + "start": 6459.28, + "end": 6464.8, + "probability": 0.9888 + }, + { + "start": 6465.96, + "end": 6467.37, + "probability": 0.8835 + }, + { + "start": 6467.9, + "end": 6469.78, + "probability": 0.981 + }, + { + "start": 6470.24, + "end": 6471.76, + "probability": 0.9924 + }, + { + "start": 6472.14, + "end": 6472.74, + "probability": 0.9351 + }, + { + "start": 6473.18, + "end": 6473.9, + "probability": 0.6531 + }, + { + "start": 6474.44, + "end": 6477.06, + "probability": 0.9304 + }, + { + "start": 6477.68, + "end": 6480.96, + "probability": 0.9445 + }, + { + "start": 6481.58, + "end": 6482.08, + "probability": 0.6698 + }, + { + "start": 6482.86, + "end": 6486.18, + "probability": 0.9871 + }, + { + "start": 6488.1, + "end": 6489.32, + "probability": 0.627 + }, + { + "start": 6490.48, + "end": 6494.32, + "probability": 0.9923 + }, + { + "start": 6495.4, + "end": 6499.36, + "probability": 0.9766 + }, + { + "start": 6499.36, + "end": 6501.02, + "probability": 0.9572 + }, + { + "start": 6502.56, + "end": 6503.32, + "probability": 0.7951 + }, + { + "start": 6504.14, + "end": 6505.9, + "probability": 0.9843 + }, + { + "start": 6506.5, + "end": 6509.18, + "probability": 0.9922 + }, + { + "start": 6510.46, + "end": 6512.61, + "probability": 0.8176 + }, + { + "start": 6513.26, + "end": 6514.7, + "probability": 0.7623 + }, + { + "start": 6515.56, + "end": 6516.64, + "probability": 0.3004 + }, + { + "start": 6517.32, + "end": 6521.12, + "probability": 0.9644 + }, + { + "start": 6522.5, + "end": 6523.76, + "probability": 0.91 + }, + { + "start": 6523.82, + "end": 6524.42, + "probability": 0.9318 + }, + { + "start": 6524.48, + "end": 6528.36, + "probability": 0.9896 + }, + { + "start": 6528.36, + "end": 6531.98, + "probability": 0.8575 + }, + { + "start": 6533.18, + "end": 6536.0, + "probability": 0.9358 + }, + { + "start": 6537.16, + "end": 6540.4, + "probability": 0.8574 + }, + { + "start": 6541.44, + "end": 6543.16, + "probability": 0.9754 + }, + { + "start": 6543.98, + "end": 6545.86, + "probability": 0.9976 + }, + { + "start": 6546.52, + "end": 6549.5, + "probability": 0.758 + }, + { + "start": 6550.14, + "end": 6551.36, + "probability": 0.9824 + }, + { + "start": 6552.3, + "end": 6555.04, + "probability": 0.9185 + }, + { + "start": 6555.04, + "end": 6559.18, + "probability": 0.9961 + }, + { + "start": 6560.86, + "end": 6563.78, + "probability": 0.9705 + }, + { + "start": 6564.58, + "end": 6567.08, + "probability": 0.9395 + }, + { + "start": 6567.84, + "end": 6570.66, + "probability": 0.9987 + }, + { + "start": 6571.62, + "end": 6573.68, + "probability": 0.9604 + }, + { + "start": 6574.44, + "end": 6577.74, + "probability": 0.9856 + }, + { + "start": 6578.28, + "end": 6578.96, + "probability": 0.9891 + }, + { + "start": 6580.6, + "end": 6581.44, + "probability": 0.7476 + }, + { + "start": 6581.56, + "end": 6582.1, + "probability": 0.8749 + }, + { + "start": 6582.18, + "end": 6585.28, + "probability": 0.9929 + }, + { + "start": 6586.32, + "end": 6589.9, + "probability": 0.9203 + }, + { + "start": 6589.9, + "end": 6592.54, + "probability": 0.9829 + }, + { + "start": 6593.98, + "end": 6594.44, + "probability": 0.688 + }, + { + "start": 6595.08, + "end": 6597.42, + "probability": 0.9624 + }, + { + "start": 6598.3, + "end": 6602.5, + "probability": 0.9884 + }, + { + "start": 6603.52, + "end": 6605.38, + "probability": 0.9642 + }, + { + "start": 6607.34, + "end": 6610.48, + "probability": 0.9903 + }, + { + "start": 6611.86, + "end": 6616.78, + "probability": 0.9965 + }, + { + "start": 6618.64, + "end": 6619.78, + "probability": 0.8528 + }, + { + "start": 6621.5, + "end": 6624.37, + "probability": 0.995 + }, + { + "start": 6625.38, + "end": 6627.38, + "probability": 0.9714 + }, + { + "start": 6627.5, + "end": 6630.4, + "probability": 0.9242 + }, + { + "start": 6630.84, + "end": 6636.98, + "probability": 0.9878 + }, + { + "start": 6637.62, + "end": 6639.22, + "probability": 0.6495 + }, + { + "start": 6639.88, + "end": 6646.36, + "probability": 0.9828 + }, + { + "start": 6646.36, + "end": 6651.72, + "probability": 0.9374 + }, + { + "start": 6652.38, + "end": 6657.76, + "probability": 0.9967 + }, + { + "start": 6658.54, + "end": 6660.6, + "probability": 0.9407 + }, + { + "start": 6661.3, + "end": 6666.0, + "probability": 0.8907 + }, + { + "start": 6666.18, + "end": 6667.24, + "probability": 0.9923 + }, + { + "start": 6667.94, + "end": 6669.02, + "probability": 0.9902 + }, + { + "start": 6669.24, + "end": 6674.4, + "probability": 0.998 + }, + { + "start": 6675.14, + "end": 6682.02, + "probability": 0.989 + }, + { + "start": 6682.16, + "end": 6683.04, + "probability": 0.6418 + }, + { + "start": 6683.14, + "end": 6683.58, + "probability": 0.9706 + }, + { + "start": 6683.68, + "end": 6684.24, + "probability": 0.707 + }, + { + "start": 6684.64, + "end": 6687.24, + "probability": 0.9435 + }, + { + "start": 6688.42, + "end": 6690.08, + "probability": 0.966 + }, + { + "start": 6690.16, + "end": 6694.14, + "probability": 0.972 + }, + { + "start": 6694.62, + "end": 6695.18, + "probability": 0.8429 + }, + { + "start": 6695.32, + "end": 6695.74, + "probability": 0.8978 + }, + { + "start": 6695.8, + "end": 6696.44, + "probability": 0.8086 + }, + { + "start": 6697.78, + "end": 6703.5, + "probability": 0.9841 + }, + { + "start": 6704.68, + "end": 6706.9, + "probability": 0.6408 + }, + { + "start": 6708.36, + "end": 6710.42, + "probability": 0.9995 + }, + { + "start": 6711.42, + "end": 6714.73, + "probability": 0.8408 + }, + { + "start": 6715.5, + "end": 6720.44, + "probability": 0.9852 + }, + { + "start": 6721.22, + "end": 6726.12, + "probability": 0.9261 + }, + { + "start": 6726.96, + "end": 6728.82, + "probability": 0.7609 + }, + { + "start": 6729.84, + "end": 6731.38, + "probability": 0.9215 + }, + { + "start": 6732.5, + "end": 6735.8, + "probability": 0.9465 + }, + { + "start": 6737.28, + "end": 6738.2, + "probability": 0.8221 + }, + { + "start": 6738.36, + "end": 6743.24, + "probability": 0.9458 + }, + { + "start": 6743.4, + "end": 6744.74, + "probability": 0.7154 + }, + { + "start": 6745.04, + "end": 6746.28, + "probability": 0.9635 + }, + { + "start": 6746.38, + "end": 6746.8, + "probability": 0.8344 + }, + { + "start": 6750.56, + "end": 6752.22, + "probability": 0.6812 + }, + { + "start": 6752.32, + "end": 6753.36, + "probability": 0.6731 + }, + { + "start": 6753.48, + "end": 6754.8, + "probability": 0.9765 + }, + { + "start": 6754.9, + "end": 6756.42, + "probability": 0.9859 + }, + { + "start": 6756.68, + "end": 6759.14, + "probability": 0.717 + }, + { + "start": 6759.8, + "end": 6760.64, + "probability": 0.3027 + }, + { + "start": 6761.68, + "end": 6764.42, + "probability": 0.7548 + }, + { + "start": 6764.66, + "end": 6764.92, + "probability": 0.9468 + }, + { + "start": 6766.38, + "end": 6766.38, + "probability": 0.258 + }, + { + "start": 6766.44, + "end": 6766.84, + "probability": 0.5198 + }, + { + "start": 6766.98, + "end": 6770.0, + "probability": 0.8369 + }, + { + "start": 6770.06, + "end": 6774.44, + "probability": 0.9938 + }, + { + "start": 6775.76, + "end": 6777.7, + "probability": 0.7496 + }, + { + "start": 6777.96, + "end": 6779.48, + "probability": 0.1263 + }, + { + "start": 6779.7, + "end": 6780.7, + "probability": 0.7083 + }, + { + "start": 6781.44, + "end": 6783.76, + "probability": 0.9762 + }, + { + "start": 6783.76, + "end": 6786.44, + "probability": 0.9857 + }, + { + "start": 6786.46, + "end": 6786.98, + "probability": 0.8801 + }, + { + "start": 6800.88, + "end": 6801.1, + "probability": 0.6585 + }, + { + "start": 6815.34, + "end": 6816.16, + "probability": 0.6912 + }, + { + "start": 6817.32, + "end": 6821.1, + "probability": 0.9514 + }, + { + "start": 6821.1, + "end": 6825.4, + "probability": 0.8957 + }, + { + "start": 6826.26, + "end": 6830.74, + "probability": 0.5936 + }, + { + "start": 6832.98, + "end": 6833.56, + "probability": 0.4976 + }, + { + "start": 6833.76, + "end": 6834.42, + "probability": 0.5114 + }, + { + "start": 6834.57, + "end": 6836.84, + "probability": 0.9365 + }, + { + "start": 6836.98, + "end": 6837.64, + "probability": 0.9922 + }, + { + "start": 6837.7, + "end": 6839.76, + "probability": 0.4023 + }, + { + "start": 6840.8, + "end": 6844.44, + "probability": 0.1232 + }, + { + "start": 6845.46, + "end": 6846.16, + "probability": 0.0318 + }, + { + "start": 6846.16, + "end": 6846.96, + "probability": 0.1157 + }, + { + "start": 6846.96, + "end": 6847.68, + "probability": 0.6662 + }, + { + "start": 6847.78, + "end": 6848.06, + "probability": 0.768 + }, + { + "start": 6848.14, + "end": 6848.72, + "probability": 0.7668 + }, + { + "start": 6848.9, + "end": 6851.15, + "probability": 0.9842 + }, + { + "start": 6851.82, + "end": 6855.72, + "probability": 0.8752 + }, + { + "start": 6855.96, + "end": 6859.12, + "probability": 0.4558 + }, + { + "start": 6859.36, + "end": 6863.76, + "probability": 0.9918 + }, + { + "start": 6863.8, + "end": 6864.82, + "probability": 0.7863 + }, + { + "start": 6864.82, + "end": 6866.76, + "probability": 0.937 + }, + { + "start": 6866.84, + "end": 6867.16, + "probability": 0.04 + }, + { + "start": 6867.44, + "end": 6869.08, + "probability": 0.2926 + }, + { + "start": 6869.7, + "end": 6870.56, + "probability": 0.4771 + }, + { + "start": 6870.82, + "end": 6876.28, + "probability": 0.9541 + }, + { + "start": 6876.36, + "end": 6877.4, + "probability": 0.9941 + }, + { + "start": 6877.44, + "end": 6878.8, + "probability": 0.9956 + }, + { + "start": 6878.9, + "end": 6883.6, + "probability": 0.8597 + }, + { + "start": 6883.8, + "end": 6884.74, + "probability": 0.9275 + }, + { + "start": 6885.28, + "end": 6887.0, + "probability": 0.9805 + }, + { + "start": 6891.44, + "end": 6892.86, + "probability": 0.9593 + }, + { + "start": 6892.92, + "end": 6893.22, + "probability": 0.0458 + }, + { + "start": 6893.3, + "end": 6894.92, + "probability": 0.6249 + }, + { + "start": 6895.02, + "end": 6895.2, + "probability": 0.0062 + }, + { + "start": 6900.02, + "end": 6903.2, + "probability": 0.8568 + }, + { + "start": 6905.14, + "end": 6908.02, + "probability": 0.9316 + }, + { + "start": 6908.2, + "end": 6909.27, + "probability": 0.9884 + }, + { + "start": 6909.54, + "end": 6913.0, + "probability": 0.98 + }, + { + "start": 6913.88, + "end": 6916.71, + "probability": 0.9929 + }, + { + "start": 6917.26, + "end": 6921.92, + "probability": 0.9944 + }, + { + "start": 6922.4, + "end": 6923.74, + "probability": 0.9995 + }, + { + "start": 6924.9, + "end": 6925.82, + "probability": 0.9966 + }, + { + "start": 6926.98, + "end": 6929.71, + "probability": 0.6442 + }, + { + "start": 6931.02, + "end": 6932.06, + "probability": 0.6797 + }, + { + "start": 6933.34, + "end": 6936.66, + "probability": 0.9123 + }, + { + "start": 6937.26, + "end": 6937.82, + "probability": 0.9358 + }, + { + "start": 6937.94, + "end": 6940.68, + "probability": 0.9961 + }, + { + "start": 6940.8, + "end": 6941.28, + "probability": 0.9133 + }, + { + "start": 6941.3, + "end": 6943.77, + "probability": 0.902 + }, + { + "start": 6944.88, + "end": 6945.98, + "probability": 0.9888 + }, + { + "start": 6946.76, + "end": 6949.58, + "probability": 0.9972 + }, + { + "start": 6950.42, + "end": 6952.18, + "probability": 0.9858 + }, + { + "start": 6953.6, + "end": 6954.4, + "probability": 0.6341 + }, + { + "start": 6955.36, + "end": 6956.54, + "probability": 0.906 + }, + { + "start": 6957.6, + "end": 6959.04, + "probability": 0.9628 + }, + { + "start": 6959.18, + "end": 6960.02, + "probability": 0.9746 + }, + { + "start": 6960.12, + "end": 6961.12, + "probability": 0.7941 + }, + { + "start": 6961.56, + "end": 6962.48, + "probability": 0.973 + }, + { + "start": 6962.54, + "end": 6963.07, + "probability": 0.9596 + }, + { + "start": 6965.98, + "end": 6967.42, + "probability": 0.4987 + }, + { + "start": 6967.68, + "end": 6967.68, + "probability": 0.2927 + }, + { + "start": 6967.68, + "end": 6967.68, + "probability": 0.1814 + }, + { + "start": 6967.68, + "end": 6967.68, + "probability": 0.3082 + }, + { + "start": 6967.68, + "end": 6968.52, + "probability": 0.5827 + }, + { + "start": 6970.36, + "end": 6974.46, + "probability": 0.9292 + }, + { + "start": 6975.58, + "end": 6977.52, + "probability": 0.9167 + }, + { + "start": 6978.04, + "end": 6981.0, + "probability": 0.9966 + }, + { + "start": 6981.84, + "end": 6983.62, + "probability": 0.91 + }, + { + "start": 6984.24, + "end": 6989.32, + "probability": 0.9906 + }, + { + "start": 6989.62, + "end": 6991.76, + "probability": 0.9785 + }, + { + "start": 6991.79, + "end": 6992.77, + "probability": 0.7515 + }, + { + "start": 6993.24, + "end": 6997.96, + "probability": 0.983 + }, + { + "start": 6998.32, + "end": 7000.52, + "probability": 0.9758 + }, + { + "start": 7000.74, + "end": 7001.02, + "probability": 0.4615 + }, + { + "start": 7001.02, + "end": 7002.5, + "probability": 0.9248 + }, + { + "start": 7002.86, + "end": 7004.52, + "probability": 0.9207 + }, + { + "start": 7004.62, + "end": 7005.72, + "probability": 0.9426 + }, + { + "start": 7005.86, + "end": 7006.56, + "probability": 0.2089 + }, + { + "start": 7006.9, + "end": 7007.6, + "probability": 0.7802 + }, + { + "start": 7007.6, + "end": 7008.16, + "probability": 0.9497 + }, + { + "start": 7008.86, + "end": 7009.76, + "probability": 0.3809 + }, + { + "start": 7010.8, + "end": 7011.86, + "probability": 0.9956 + }, + { + "start": 7011.94, + "end": 7012.64, + "probability": 0.5878 + }, + { + "start": 7012.74, + "end": 7013.6, + "probability": 0.9658 + }, + { + "start": 7013.62, + "end": 7016.44, + "probability": 0.2862 + }, + { + "start": 7016.46, + "end": 7018.5, + "probability": 0.6264 + }, + { + "start": 7018.5, + "end": 7019.09, + "probability": 0.9039 + }, + { + "start": 7019.22, + "end": 7020.44, + "probability": 0.621 + }, + { + "start": 7020.58, + "end": 7020.98, + "probability": 0.0521 + }, + { + "start": 7020.98, + "end": 7021.58, + "probability": 0.2054 + }, + { + "start": 7022.86, + "end": 7024.54, + "probability": 0.9785 + }, + { + "start": 7024.86, + "end": 7027.18, + "probability": 0.315 + }, + { + "start": 7027.42, + "end": 7029.26, + "probability": 0.396 + }, + { + "start": 7029.4, + "end": 7033.58, + "probability": 0.4116 + }, + { + "start": 7033.58, + "end": 7034.24, + "probability": 0.3336 + }, + { + "start": 7034.26, + "end": 7037.96, + "probability": 0.9187 + }, + { + "start": 7039.34, + "end": 7040.16, + "probability": 0.9004 + }, + { + "start": 7040.24, + "end": 7042.62, + "probability": 0.9148 + }, + { + "start": 7042.62, + "end": 7042.69, + "probability": 0.1857 + }, + { + "start": 7043.34, + "end": 7044.38, + "probability": 0.6526 + }, + { + "start": 7044.66, + "end": 7044.68, + "probability": 0.1813 + }, + { + "start": 7044.68, + "end": 7045.12, + "probability": 0.6085 + }, + { + "start": 7045.24, + "end": 7046.5, + "probability": 0.5526 + }, + { + "start": 7046.5, + "end": 7047.3, + "probability": 0.7981 + }, + { + "start": 7048.1, + "end": 7050.98, + "probability": 0.3619 + }, + { + "start": 7051.02, + "end": 7056.76, + "probability": 0.8124 + }, + { + "start": 7056.92, + "end": 7057.72, + "probability": 0.806 + }, + { + "start": 7057.84, + "end": 7063.9, + "probability": 0.8892 + }, + { + "start": 7064.62, + "end": 7066.62, + "probability": 0.9747 + }, + { + "start": 7067.56, + "end": 7069.02, + "probability": 0.9498 + }, + { + "start": 7069.36, + "end": 7070.34, + "probability": 0.9412 + }, + { + "start": 7070.42, + "end": 7072.34, + "probability": 0.6993 + }, + { + "start": 7072.74, + "end": 7073.76, + "probability": 0.9531 + }, + { + "start": 7074.12, + "end": 7075.0, + "probability": 0.2964 + }, + { + "start": 7075.12, + "end": 7076.52, + "probability": 0.5876 + }, + { + "start": 7076.54, + "end": 7078.44, + "probability": 0.9455 + }, + { + "start": 7078.72, + "end": 7080.34, + "probability": 0.6385 + }, + { + "start": 7080.54, + "end": 7081.16, + "probability": 0.1745 + }, + { + "start": 7081.28, + "end": 7085.26, + "probability": 0.9854 + }, + { + "start": 7085.68, + "end": 7087.82, + "probability": 0.366 + }, + { + "start": 7087.84, + "end": 7090.04, + "probability": 0.9772 + }, + { + "start": 7090.48, + "end": 7093.33, + "probability": 0.5459 + }, + { + "start": 7093.96, + "end": 7095.97, + "probability": 0.7015 + }, + { + "start": 7096.22, + "end": 7097.26, + "probability": 0.0963 + }, + { + "start": 7097.3, + "end": 7100.48, + "probability": 0.9551 + }, + { + "start": 7101.22, + "end": 7104.62, + "probability": 0.9805 + }, + { + "start": 7104.68, + "end": 7105.26, + "probability": 0.8782 + }, + { + "start": 7105.62, + "end": 7106.38, + "probability": 0.9713 + }, + { + "start": 7107.24, + "end": 7112.04, + "probability": 0.6095 + }, + { + "start": 7112.16, + "end": 7114.88, + "probability": 0.4535 + }, + { + "start": 7115.06, + "end": 7116.9, + "probability": 0.8135 + }, + { + "start": 7116.98, + "end": 7117.34, + "probability": 0.3072 + }, + { + "start": 7117.42, + "end": 7119.66, + "probability": 0.9751 + }, + { + "start": 7120.82, + "end": 7123.22, + "probability": 0.8312 + }, + { + "start": 7123.83, + "end": 7126.34, + "probability": 0.6651 + }, + { + "start": 7126.42, + "end": 7127.84, + "probability": 0.8266 + }, + { + "start": 7128.06, + "end": 7130.04, + "probability": 0.9803 + }, + { + "start": 7130.04, + "end": 7133.34, + "probability": 0.8413 + }, + { + "start": 7134.36, + "end": 7136.76, + "probability": 0.8112 + }, + { + "start": 7136.86, + "end": 7141.14, + "probability": 0.9221 + }, + { + "start": 7141.14, + "end": 7144.6, + "probability": 0.9415 + }, + { + "start": 7146.18, + "end": 7149.66, + "probability": 0.9791 + }, + { + "start": 7149.66, + "end": 7153.02, + "probability": 0.9753 + }, + { + "start": 7153.44, + "end": 7154.94, + "probability": 0.924 + }, + { + "start": 7155.16, + "end": 7159.38, + "probability": 0.9372 + }, + { + "start": 7160.14, + "end": 7160.78, + "probability": 0.6614 + }, + { + "start": 7160.8, + "end": 7166.52, + "probability": 0.9665 + }, + { + "start": 7167.2, + "end": 7170.36, + "probability": 0.9822 + }, + { + "start": 7170.54, + "end": 7173.72, + "probability": 0.9985 + }, + { + "start": 7174.4, + "end": 7177.46, + "probability": 0.9706 + }, + { + "start": 7178.12, + "end": 7179.52, + "probability": 0.6753 + }, + { + "start": 7179.54, + "end": 7181.54, + "probability": 0.9047 + }, + { + "start": 7181.64, + "end": 7184.88, + "probability": 0.9279 + }, + { + "start": 7185.6, + "end": 7186.8, + "probability": 0.8017 + }, + { + "start": 7186.92, + "end": 7187.72, + "probability": 0.7325 + }, + { + "start": 7187.76, + "end": 7189.62, + "probability": 0.7512 + }, + { + "start": 7190.8, + "end": 7197.38, + "probability": 0.8762 + }, + { + "start": 7199.04, + "end": 7202.94, + "probability": 0.9955 + }, + { + "start": 7203.68, + "end": 7206.16, + "probability": 0.9073 + }, + { + "start": 7207.64, + "end": 7208.98, + "probability": 0.5956 + }, + { + "start": 7210.06, + "end": 7210.86, + "probability": 0.6919 + }, + { + "start": 7212.17, + "end": 7214.12, + "probability": 0.6093 + }, + { + "start": 7214.28, + "end": 7217.52, + "probability": 0.7502 + }, + { + "start": 7217.6, + "end": 7219.04, + "probability": 0.3005 + }, + { + "start": 7219.06, + "end": 7221.56, + "probability": 0.9599 + }, + { + "start": 7221.56, + "end": 7225.0, + "probability": 0.9187 + }, + { + "start": 7225.56, + "end": 7227.4, + "probability": 0.8054 + }, + { + "start": 7227.5, + "end": 7227.88, + "probability": 0.8463 + }, + { + "start": 7228.02, + "end": 7230.42, + "probability": 0.775 + }, + { + "start": 7231.46, + "end": 7234.76, + "probability": 0.8813 + }, + { + "start": 7234.76, + "end": 7237.48, + "probability": 0.9495 + }, + { + "start": 7238.36, + "end": 7244.62, + "probability": 0.8827 + }, + { + "start": 7245.2, + "end": 7253.77, + "probability": 0.8908 + }, + { + "start": 7253.82, + "end": 7257.26, + "probability": 0.9679 + }, + { + "start": 7257.38, + "end": 7258.62, + "probability": 0.8842 + }, + { + "start": 7258.86, + "end": 7259.76, + "probability": 0.9456 + }, + { + "start": 7260.86, + "end": 7263.74, + "probability": 0.9412 + }, + { + "start": 7263.74, + "end": 7268.3, + "probability": 0.9822 + }, + { + "start": 7268.4, + "end": 7277.74, + "probability": 0.8262 + }, + { + "start": 7278.68, + "end": 7279.92, + "probability": 0.9943 + }, + { + "start": 7280.54, + "end": 7286.42, + "probability": 0.984 + }, + { + "start": 7286.98, + "end": 7289.34, + "probability": 0.913 + }, + { + "start": 7290.16, + "end": 7292.92, + "probability": 0.9029 + }, + { + "start": 7293.94, + "end": 7295.78, + "probability": 0.9931 + }, + { + "start": 7295.96, + "end": 7298.06, + "probability": 0.8249 + }, + { + "start": 7299.14, + "end": 7301.92, + "probability": 0.9641 + }, + { + "start": 7302.22, + "end": 7305.54, + "probability": 0.9857 + }, + { + "start": 7305.56, + "end": 7306.8, + "probability": 0.0251 + }, + { + "start": 7307.4, + "end": 7312.78, + "probability": 0.9463 + }, + { + "start": 7313.4, + "end": 7313.92, + "probability": 0.3536 + }, + { + "start": 7314.04, + "end": 7315.4, + "probability": 0.9865 + }, + { + "start": 7315.42, + "end": 7317.18, + "probability": 0.951 + }, + { + "start": 7318.36, + "end": 7321.54, + "probability": 0.9062 + }, + { + "start": 7322.16, + "end": 7328.74, + "probability": 0.9893 + }, + { + "start": 7328.88, + "end": 7329.5, + "probability": 0.9128 + }, + { + "start": 7329.56, + "end": 7330.52, + "probability": 0.5836 + }, + { + "start": 7330.63, + "end": 7334.6, + "probability": 0.9075 + }, + { + "start": 7335.18, + "end": 7336.02, + "probability": 0.9727 + }, + { + "start": 7336.52, + "end": 7337.18, + "probability": 0.9484 + }, + { + "start": 7337.34, + "end": 7339.3, + "probability": 0.6227 + }, + { + "start": 7339.64, + "end": 7340.9, + "probability": 0.6572 + }, + { + "start": 7341.02, + "end": 7341.72, + "probability": 0.8672 + }, + { + "start": 7341.86, + "end": 7342.48, + "probability": 0.6423 + }, + { + "start": 7342.56, + "end": 7343.06, + "probability": 0.628 + }, + { + "start": 7343.06, + "end": 7345.18, + "probability": 0.9741 + }, + { + "start": 7345.26, + "end": 7347.0, + "probability": 0.9921 + }, + { + "start": 7347.12, + "end": 7347.38, + "probability": 0.9222 + }, + { + "start": 7347.46, + "end": 7349.21, + "probability": 0.2179 + }, + { + "start": 7349.4, + "end": 7350.48, + "probability": 0.5971 + }, + { + "start": 7350.6, + "end": 7351.42, + "probability": 0.644 + }, + { + "start": 7351.68, + "end": 7354.12, + "probability": 0.6426 + }, + { + "start": 7354.22, + "end": 7357.54, + "probability": 0.9597 + }, + { + "start": 7357.92, + "end": 7360.56, + "probability": 0.6698 + }, + { + "start": 7360.72, + "end": 7364.98, + "probability": 0.9775 + }, + { + "start": 7365.14, + "end": 7365.86, + "probability": 0.6342 + }, + { + "start": 7365.96, + "end": 7366.52, + "probability": 0.5223 + }, + { + "start": 7366.68, + "end": 7367.38, + "probability": 0.5763 + }, + { + "start": 7367.46, + "end": 7368.1, + "probability": 0.4126 + }, + { + "start": 7368.24, + "end": 7370.42, + "probability": 0.9852 + }, + { + "start": 7371.24, + "end": 7373.76, + "probability": 0.8467 + }, + { + "start": 7373.76, + "end": 7376.64, + "probability": 0.9927 + }, + { + "start": 7376.78, + "end": 7377.68, + "probability": 0.6551 + }, + { + "start": 7378.55, + "end": 7383.16, + "probability": 0.9691 + }, + { + "start": 7383.22, + "end": 7384.5, + "probability": 0.7997 + }, + { + "start": 7390.02, + "end": 7390.04, + "probability": 0.6537 + }, + { + "start": 7390.04, + "end": 7390.9, + "probability": 0.6342 + }, + { + "start": 7397.92, + "end": 7398.36, + "probability": 0.5002 + }, + { + "start": 7398.38, + "end": 7400.6, + "probability": 0.6121 + }, + { + "start": 7401.86, + "end": 7405.76, + "probability": 0.976 + }, + { + "start": 7407.1, + "end": 7409.52, + "probability": 0.8145 + }, + { + "start": 7409.74, + "end": 7412.68, + "probability": 0.9648 + }, + { + "start": 7413.42, + "end": 7416.54, + "probability": 0.9577 + }, + { + "start": 7417.3, + "end": 7419.06, + "probability": 0.9038 + }, + { + "start": 7419.66, + "end": 7423.55, + "probability": 0.7929 + }, + { + "start": 7423.8, + "end": 7428.8, + "probability": 0.8719 + }, + { + "start": 7430.42, + "end": 7431.96, + "probability": 0.6255 + }, + { + "start": 7432.84, + "end": 7434.54, + "probability": 0.6261 + }, + { + "start": 7434.62, + "end": 7436.76, + "probability": 0.6788 + }, + { + "start": 7437.54, + "end": 7440.78, + "probability": 0.9504 + }, + { + "start": 7442.0, + "end": 7443.98, + "probability": 0.9825 + }, + { + "start": 7444.14, + "end": 7447.36, + "probability": 0.981 + }, + { + "start": 7447.36, + "end": 7450.6, + "probability": 0.9837 + }, + { + "start": 7450.68, + "end": 7453.08, + "probability": 0.9102 + }, + { + "start": 7453.1, + "end": 7453.64, + "probability": 0.6862 + }, + { + "start": 7454.42, + "end": 7458.42, + "probability": 0.9655 + }, + { + "start": 7459.2, + "end": 7462.78, + "probability": 0.9093 + }, + { + "start": 7463.32, + "end": 7464.86, + "probability": 0.8336 + }, + { + "start": 7465.42, + "end": 7472.08, + "probability": 0.9957 + }, + { + "start": 7472.24, + "end": 7472.98, + "probability": 0.4869 + }, + { + "start": 7473.12, + "end": 7473.96, + "probability": 0.9532 + }, + { + "start": 7474.6, + "end": 7478.72, + "probability": 0.9064 + }, + { + "start": 7480.16, + "end": 7485.48, + "probability": 0.9839 + }, + { + "start": 7486.2, + "end": 7487.02, + "probability": 0.8533 + }, + { + "start": 7488.02, + "end": 7488.88, + "probability": 0.8827 + }, + { + "start": 7489.98, + "end": 7491.2, + "probability": 0.9868 + }, + { + "start": 7491.24, + "end": 7493.24, + "probability": 0.9114 + }, + { + "start": 7494.02, + "end": 7495.34, + "probability": 0.7659 + }, + { + "start": 7496.5, + "end": 7497.88, + "probability": 0.6578 + }, + { + "start": 7498.66, + "end": 7501.44, + "probability": 0.9297 + }, + { + "start": 7501.6, + "end": 7504.08, + "probability": 0.8032 + }, + { + "start": 7504.56, + "end": 7505.92, + "probability": 0.9902 + }, + { + "start": 7506.18, + "end": 7510.18, + "probability": 0.9446 + }, + { + "start": 7510.34, + "end": 7512.98, + "probability": 0.9395 + }, + { + "start": 7514.08, + "end": 7515.13, + "probability": 0.3718 + }, + { + "start": 7517.06, + "end": 7520.92, + "probability": 0.9814 + }, + { + "start": 7521.6, + "end": 7522.42, + "probability": 0.478 + }, + { + "start": 7523.32, + "end": 7526.28, + "probability": 0.9983 + }, + { + "start": 7527.34, + "end": 7530.78, + "probability": 0.9976 + }, + { + "start": 7530.92, + "end": 7534.04, + "probability": 0.8709 + }, + { + "start": 7534.58, + "end": 7535.64, + "probability": 0.9867 + }, + { + "start": 7537.84, + "end": 7539.92, + "probability": 0.8484 + }, + { + "start": 7540.86, + "end": 7543.06, + "probability": 0.9439 + }, + { + "start": 7545.48, + "end": 7546.48, + "probability": 0.9878 + }, + { + "start": 7547.12, + "end": 7548.1, + "probability": 0.9739 + }, + { + "start": 7548.9, + "end": 7550.18, + "probability": 0.9514 + }, + { + "start": 7551.18, + "end": 7552.12, + "probability": 0.95 + }, + { + "start": 7553.56, + "end": 7556.8, + "probability": 0.6523 + }, + { + "start": 7558.04, + "end": 7558.74, + "probability": 0.8748 + }, + { + "start": 7559.26, + "end": 7559.68, + "probability": 0.8332 + }, + { + "start": 7560.7, + "end": 7561.34, + "probability": 0.6471 + }, + { + "start": 7562.82, + "end": 7569.98, + "probability": 0.6771 + }, + { + "start": 7570.42, + "end": 7572.15, + "probability": 0.3239 + }, + { + "start": 7573.98, + "end": 7575.4, + "probability": 0.871 + }, + { + "start": 7576.74, + "end": 7580.36, + "probability": 0.9517 + }, + { + "start": 7580.36, + "end": 7584.46, + "probability": 0.9856 + }, + { + "start": 7585.24, + "end": 7585.74, + "probability": 0.358 + }, + { + "start": 7585.74, + "end": 7586.54, + "probability": 0.7273 + }, + { + "start": 7586.56, + "end": 7590.9, + "probability": 0.958 + }, + { + "start": 7591.72, + "end": 7592.62, + "probability": 0.3989 + }, + { + "start": 7592.82, + "end": 7596.6, + "probability": 0.9565 + }, + { + "start": 7597.02, + "end": 7597.9, + "probability": 0.8328 + }, + { + "start": 7598.02, + "end": 7599.26, + "probability": 0.0629 + }, + { + "start": 7599.36, + "end": 7600.3, + "probability": 0.8251 + }, + { + "start": 7601.44, + "end": 7605.0, + "probability": 0.9679 + }, + { + "start": 7605.0, + "end": 7610.9, + "probability": 0.9662 + }, + { + "start": 7611.36, + "end": 7614.28, + "probability": 0.972 + }, + { + "start": 7615.36, + "end": 7618.58, + "probability": 0.7598 + }, + { + "start": 7619.68, + "end": 7622.48, + "probability": 0.7655 + }, + { + "start": 7622.74, + "end": 7625.74, + "probability": 0.7316 + }, + { + "start": 7626.72, + "end": 7631.14, + "probability": 0.712 + }, + { + "start": 7631.78, + "end": 7633.06, + "probability": 0.8547 + }, + { + "start": 7633.08, + "end": 7633.52, + "probability": 0.7223 + }, + { + "start": 7634.1, + "end": 7640.34, + "probability": 0.9924 + }, + { + "start": 7640.48, + "end": 7646.43, + "probability": 0.9902 + }, + { + "start": 7646.52, + "end": 7647.48, + "probability": 0.8447 + }, + { + "start": 7647.86, + "end": 7650.94, + "probability": 0.8633 + }, + { + "start": 7651.1, + "end": 7654.61, + "probability": 0.9512 + }, + { + "start": 7654.82, + "end": 7660.41, + "probability": 0.9811 + }, + { + "start": 7661.2, + "end": 7661.78, + "probability": 0.0574 + }, + { + "start": 7662.46, + "end": 7664.88, + "probability": 0.8766 + }, + { + "start": 7667.52, + "end": 7668.4, + "probability": 0.6334 + }, + { + "start": 7669.38, + "end": 7672.64, + "probability": 0.7615 + }, + { + "start": 7673.3, + "end": 7679.06, + "probability": 0.9894 + }, + { + "start": 7680.26, + "end": 7684.98, + "probability": 0.727 + }, + { + "start": 7685.74, + "end": 7687.82, + "probability": 0.8251 + }, + { + "start": 7688.0, + "end": 7690.5, + "probability": 0.9441 + }, + { + "start": 7690.72, + "end": 7691.08, + "probability": 0.4999 + }, + { + "start": 7691.7, + "end": 7695.16, + "probability": 0.9903 + }, + { + "start": 7695.92, + "end": 7696.84, + "probability": 0.6712 + }, + { + "start": 7697.3, + "end": 7701.52, + "probability": 0.9535 + }, + { + "start": 7701.6, + "end": 7702.02, + "probability": 0.8595 + }, + { + "start": 7702.22, + "end": 7703.26, + "probability": 0.8561 + }, + { + "start": 7703.64, + "end": 7704.6, + "probability": 0.8509 + }, + { + "start": 7706.54, + "end": 7707.82, + "probability": 0.932 + }, + { + "start": 7708.08, + "end": 7713.12, + "probability": 0.9465 + }, + { + "start": 7713.3, + "end": 7721.4, + "probability": 0.817 + }, + { + "start": 7722.18, + "end": 7723.32, + "probability": 0.6074 + }, + { + "start": 7724.36, + "end": 7729.26, + "probability": 0.9473 + }, + { + "start": 7730.34, + "end": 7737.22, + "probability": 0.9866 + }, + { + "start": 7737.22, + "end": 7742.4, + "probability": 0.9845 + }, + { + "start": 7743.74, + "end": 7749.34, + "probability": 0.9702 + }, + { + "start": 7749.44, + "end": 7750.34, + "probability": 0.994 + }, + { + "start": 7750.46, + "end": 7751.82, + "probability": 0.8723 + }, + { + "start": 7753.64, + "end": 7753.64, + "probability": 0.7903 + }, + { + "start": 7753.64, + "end": 7754.86, + "probability": 0.7822 + }, + { + "start": 7756.26, + "end": 7757.12, + "probability": 0.8726 + }, + { + "start": 7757.26, + "end": 7758.42, + "probability": 0.9521 + }, + { + "start": 7760.18, + "end": 7763.66, + "probability": 0.8515 + }, + { + "start": 7764.58, + "end": 7768.0, + "probability": 0.9911 + }, + { + "start": 7769.34, + "end": 7770.92, + "probability": 0.8915 + }, + { + "start": 7771.46, + "end": 7772.9, + "probability": 0.7079 + }, + { + "start": 7773.56, + "end": 7774.82, + "probability": 0.7437 + }, + { + "start": 7776.52, + "end": 7778.98, + "probability": 0.8147 + }, + { + "start": 7779.14, + "end": 7780.06, + "probability": 0.702 + }, + { + "start": 7780.1, + "end": 7785.14, + "probability": 0.949 + }, + { + "start": 7785.82, + "end": 7791.1, + "probability": 0.8993 + }, + { + "start": 7792.02, + "end": 7796.96, + "probability": 0.9193 + }, + { + "start": 7797.46, + "end": 7803.98, + "probability": 0.7241 + }, + { + "start": 7804.08, + "end": 7805.32, + "probability": 0.988 + }, + { + "start": 7805.34, + "end": 7807.38, + "probability": 0.983 + }, + { + "start": 7810.1, + "end": 7812.08, + "probability": 0.8794 + }, + { + "start": 7812.88, + "end": 7815.1, + "probability": 0.9827 + }, + { + "start": 7816.18, + "end": 7818.3, + "probability": 0.958 + }, + { + "start": 7819.02, + "end": 7820.44, + "probability": 0.7811 + }, + { + "start": 7821.72, + "end": 7823.32, + "probability": 0.9951 + }, + { + "start": 7824.04, + "end": 7828.2, + "probability": 0.9137 + }, + { + "start": 7828.28, + "end": 7828.84, + "probability": 0.8392 + }, + { + "start": 7829.28, + "end": 7829.38, + "probability": 0.7529 + }, + { + "start": 7829.9, + "end": 7833.56, + "probability": 0.8402 + }, + { + "start": 7833.96, + "end": 7837.98, + "probability": 0.9897 + }, + { + "start": 7838.7, + "end": 7842.84, + "probability": 0.9959 + }, + { + "start": 7842.9, + "end": 7847.7, + "probability": 0.9664 + }, + { + "start": 7848.82, + "end": 7849.8, + "probability": 0.9961 + }, + { + "start": 7851.06, + "end": 7852.38, + "probability": 0.953 + }, + { + "start": 7853.58, + "end": 7855.68, + "probability": 0.9912 + }, + { + "start": 7857.18, + "end": 7859.48, + "probability": 0.9285 + }, + { + "start": 7860.2, + "end": 7861.22, + "probability": 0.8631 + }, + { + "start": 7862.68, + "end": 7865.62, + "probability": 0.8979 + }, + { + "start": 7866.38, + "end": 7868.36, + "probability": 0.9795 + }, + { + "start": 7868.38, + "end": 7874.22, + "probability": 0.9987 + }, + { + "start": 7874.22, + "end": 7878.68, + "probability": 0.9974 + }, + { + "start": 7880.5, + "end": 7883.86, + "probability": 0.9791 + }, + { + "start": 7884.44, + "end": 7886.24, + "probability": 0.8873 + }, + { + "start": 7887.46, + "end": 7888.36, + "probability": 0.8038 + }, + { + "start": 7889.02, + "end": 7889.9, + "probability": 0.7399 + }, + { + "start": 7891.02, + "end": 7891.78, + "probability": 0.7622 + }, + { + "start": 7892.0, + "end": 7897.92, + "probability": 0.9877 + }, + { + "start": 7897.92, + "end": 7902.52, + "probability": 0.7663 + }, + { + "start": 7903.34, + "end": 7910.72, + "probability": 0.9508 + }, + { + "start": 7911.36, + "end": 7911.44, + "probability": 0.4062 + }, + { + "start": 7911.44, + "end": 7914.02, + "probability": 0.9501 + }, + { + "start": 7914.64, + "end": 7918.62, + "probability": 0.8119 + }, + { + "start": 7919.58, + "end": 7919.82, + "probability": 0.6129 + }, + { + "start": 7919.9, + "end": 7922.48, + "probability": 0.9879 + }, + { + "start": 7923.14, + "end": 7923.56, + "probability": 0.5956 + }, + { + "start": 7923.8, + "end": 7926.58, + "probability": 0.9944 + }, + { + "start": 7926.72, + "end": 7929.12, + "probability": 0.9585 + }, + { + "start": 7929.26, + "end": 7933.06, + "probability": 0.9867 + }, + { + "start": 7933.72, + "end": 7938.68, + "probability": 0.9911 + }, + { + "start": 7940.78, + "end": 7942.74, + "probability": 0.7272 + }, + { + "start": 7943.68, + "end": 7946.1, + "probability": 0.9953 + }, + { + "start": 7946.82, + "end": 7952.54, + "probability": 0.9465 + }, + { + "start": 7953.24, + "end": 7954.26, + "probability": 0.8088 + }, + { + "start": 7954.92, + "end": 7962.32, + "probability": 0.9966 + }, + { + "start": 7963.2, + "end": 7965.74, + "probability": 0.9935 + }, + { + "start": 7966.72, + "end": 7969.5, + "probability": 0.9901 + }, + { + "start": 7970.1, + "end": 7975.82, + "probability": 0.9043 + }, + { + "start": 7976.95, + "end": 7978.56, + "probability": 0.572 + }, + { + "start": 7979.0, + "end": 7980.48, + "probability": 0.8293 + }, + { + "start": 7981.32, + "end": 7982.38, + "probability": 0.9797 + }, + { + "start": 7983.02, + "end": 7986.06, + "probability": 0.6579 + }, + { + "start": 7986.92, + "end": 7994.4, + "probability": 0.9861 + }, + { + "start": 7995.0, + "end": 7996.76, + "probability": 0.7405 + }, + { + "start": 7999.26, + "end": 8001.06, + "probability": 0.87 + }, + { + "start": 8001.18, + "end": 8002.93, + "probability": 0.9595 + }, + { + "start": 8017.3, + "end": 8018.44, + "probability": 0.8779 + }, + { + "start": 8019.78, + "end": 8022.64, + "probability": 0.6419 + }, + { + "start": 8034.26, + "end": 8036.84, + "probability": 0.6369 + }, + { + "start": 8051.76, + "end": 8052.88, + "probability": 0.5423 + }, + { + "start": 8053.1, + "end": 8058.1, + "probability": 0.9023 + }, + { + "start": 8061.5, + "end": 8062.88, + "probability": 0.938 + }, + { + "start": 8063.0, + "end": 8063.32, + "probability": 0.6407 + }, + { + "start": 8063.38, + "end": 8065.66, + "probability": 0.8902 + }, + { + "start": 8065.82, + "end": 8066.46, + "probability": 0.5021 + }, + { + "start": 8066.54, + "end": 8067.0, + "probability": 0.9437 + }, + { + "start": 8069.18, + "end": 8069.78, + "probability": 0.6697 + }, + { + "start": 8069.94, + "end": 8070.34, + "probability": 0.4824 + }, + { + "start": 8071.76, + "end": 8077.5, + "probability": 0.9893 + }, + { + "start": 8077.76, + "end": 8078.44, + "probability": 0.3532 + }, + { + "start": 8078.66, + "end": 8078.66, + "probability": 0.0007 + }, + { + "start": 8078.66, + "end": 8080.68, + "probability": 0.5189 + }, + { + "start": 8080.96, + "end": 8081.28, + "probability": 0.5652 + }, + { + "start": 8081.8, + "end": 8085.22, + "probability": 0.7801 + }, + { + "start": 8085.54, + "end": 8088.7, + "probability": 0.5713 + }, + { + "start": 8088.94, + "end": 8089.8, + "probability": 0.6699 + }, + { + "start": 8089.8, + "end": 8090.3, + "probability": 0.7747 + }, + { + "start": 8090.38, + "end": 8093.14, + "probability": 0.9108 + }, + { + "start": 8093.28, + "end": 8096.92, + "probability": 0.5895 + }, + { + "start": 8096.94, + "end": 8098.32, + "probability": 0.5931 + }, + { + "start": 8098.86, + "end": 8100.56, + "probability": 0.7241 + }, + { + "start": 8100.76, + "end": 8103.66, + "probability": 0.8502 + }, + { + "start": 8104.44, + "end": 8105.1, + "probability": 0.3134 + }, + { + "start": 8105.34, + "end": 8108.66, + "probability": 0.4969 + }, + { + "start": 8109.26, + "end": 8109.94, + "probability": 0.8975 + }, + { + "start": 8111.1, + "end": 8111.88, + "probability": 0.9058 + }, + { + "start": 8112.14, + "end": 8119.76, + "probability": 0.8899 + }, + { + "start": 8121.62, + "end": 8123.46, + "probability": 0.9937 + }, + { + "start": 8124.02, + "end": 8126.38, + "probability": 0.949 + }, + { + "start": 8126.78, + "end": 8127.22, + "probability": 0.6658 + }, + { + "start": 8127.32, + "end": 8128.28, + "probability": 0.6062 + }, + { + "start": 8128.34, + "end": 8129.34, + "probability": 0.9413 + }, + { + "start": 8129.84, + "end": 8130.36, + "probability": 0.4383 + }, + { + "start": 8130.74, + "end": 8132.26, + "probability": 0.7475 + }, + { + "start": 8132.68, + "end": 8134.06, + "probability": 0.9474 + }, + { + "start": 8134.34, + "end": 8135.96, + "probability": 0.9861 + }, + { + "start": 8136.16, + "end": 8138.01, + "probability": 0.7566 + }, + { + "start": 8138.78, + "end": 8139.02, + "probability": 0.6188 + }, + { + "start": 8139.08, + "end": 8140.12, + "probability": 0.9951 + }, + { + "start": 8140.18, + "end": 8142.0, + "probability": 0.9972 + }, + { + "start": 8143.13, + "end": 8143.76, + "probability": 0.0469 + }, + { + "start": 8143.78, + "end": 8144.64, + "probability": 0.5915 + }, + { + "start": 8145.65, + "end": 8147.54, + "probability": 0.8983 + }, + { + "start": 8147.68, + "end": 8148.6, + "probability": 0.98 + }, + { + "start": 8150.0, + "end": 8153.7, + "probability": 0.726 + }, + { + "start": 8153.82, + "end": 8155.95, + "probability": 0.967 + }, + { + "start": 8157.38, + "end": 8159.84, + "probability": 0.7891 + }, + { + "start": 8159.9, + "end": 8160.58, + "probability": 0.7039 + }, + { + "start": 8161.69, + "end": 8165.61, + "probability": 0.9795 + }, + { + "start": 8166.5, + "end": 8166.9, + "probability": 0.8781 + }, + { + "start": 8166.98, + "end": 8167.72, + "probability": 0.7542 + }, + { + "start": 8168.26, + "end": 8171.96, + "probability": 0.046 + }, + { + "start": 8171.96, + "end": 8172.64, + "probability": 0.8772 + }, + { + "start": 8172.98, + "end": 8174.56, + "probability": 0.7604 + }, + { + "start": 8174.64, + "end": 8182.08, + "probability": 0.788 + }, + { + "start": 8182.08, + "end": 8185.5, + "probability": 0.9967 + }, + { + "start": 8186.42, + "end": 8189.48, + "probability": 0.918 + }, + { + "start": 8190.3, + "end": 8191.24, + "probability": 0.7344 + }, + { + "start": 8191.84, + "end": 8194.86, + "probability": 0.9155 + }, + { + "start": 8195.04, + "end": 8195.82, + "probability": 0.9126 + }, + { + "start": 8195.9, + "end": 8196.8, + "probability": 0.8701 + }, + { + "start": 8196.94, + "end": 8197.66, + "probability": 0.7806 + }, + { + "start": 8197.68, + "end": 8198.66, + "probability": 0.9672 + }, + { + "start": 8198.86, + "end": 8199.72, + "probability": 0.9696 + }, + { + "start": 8199.86, + "end": 8200.88, + "probability": 0.7789 + }, + { + "start": 8201.18, + "end": 8203.06, + "probability": 0.6738 + }, + { + "start": 8203.28, + "end": 8204.73, + "probability": 0.5131 + }, + { + "start": 8205.66, + "end": 8208.2, + "probability": 0.4546 + }, + { + "start": 8208.72, + "end": 8209.34, + "probability": 0.5163 + }, + { + "start": 8209.64, + "end": 8211.28, + "probability": 0.5872 + }, + { + "start": 8211.36, + "end": 8215.8, + "probability": 0.9515 + }, + { + "start": 8216.02, + "end": 8219.28, + "probability": 0.9347 + }, + { + "start": 8219.74, + "end": 8220.36, + "probability": 0.5616 + }, + { + "start": 8220.46, + "end": 8222.56, + "probability": 0.9639 + }, + { + "start": 8223.78, + "end": 8228.38, + "probability": 0.8039 + }, + { + "start": 8229.04, + "end": 8231.58, + "probability": 0.9946 + }, + { + "start": 8231.72, + "end": 8232.0, + "probability": 0.6671 + }, + { + "start": 8232.08, + "end": 8234.66, + "probability": 0.8931 + }, + { + "start": 8234.66, + "end": 8237.62, + "probability": 0.9646 + }, + { + "start": 8238.06, + "end": 8239.74, + "probability": 0.9463 + }, + { + "start": 8241.38, + "end": 8244.8, + "probability": 0.9469 + }, + { + "start": 8245.24, + "end": 8247.48, + "probability": 0.7452 + }, + { + "start": 8248.06, + "end": 8250.46, + "probability": 0.8413 + }, + { + "start": 8251.04, + "end": 8251.38, + "probability": 0.3891 + }, + { + "start": 8251.54, + "end": 8251.86, + "probability": 0.3548 + }, + { + "start": 8251.88, + "end": 8256.22, + "probability": 0.9628 + }, + { + "start": 8256.26, + "end": 8258.36, + "probability": 0.9958 + }, + { + "start": 8258.86, + "end": 8261.01, + "probability": 0.741 + }, + { + "start": 8262.16, + "end": 8262.88, + "probability": 0.9821 + }, + { + "start": 8263.94, + "end": 8265.44, + "probability": 0.6673 + }, + { + "start": 8266.06, + "end": 8266.92, + "probability": 0.7332 + }, + { + "start": 8267.44, + "end": 8269.4, + "probability": 0.8838 + }, + { + "start": 8269.76, + "end": 8273.52, + "probability": 0.9292 + }, + { + "start": 8274.02, + "end": 8274.92, + "probability": 0.5353 + }, + { + "start": 8277.18, + "end": 8277.58, + "probability": 0.2178 + }, + { + "start": 8277.78, + "end": 8278.84, + "probability": 0.789 + }, + { + "start": 8279.32, + "end": 8281.06, + "probability": 0.9971 + }, + { + "start": 8281.1, + "end": 8281.96, + "probability": 0.5088 + }, + { + "start": 8282.22, + "end": 8282.96, + "probability": 0.2876 + }, + { + "start": 8283.76, + "end": 8286.36, + "probability": 0.8995 + }, + { + "start": 8287.52, + "end": 8289.07, + "probability": 0.8636 + }, + { + "start": 8289.14, + "end": 8289.84, + "probability": 0.8978 + }, + { + "start": 8289.86, + "end": 8290.58, + "probability": 0.9734 + }, + { + "start": 8290.62, + "end": 8291.46, + "probability": 0.9247 + }, + { + "start": 8291.72, + "end": 8292.28, + "probability": 0.4095 + }, + { + "start": 8292.36, + "end": 8293.06, + "probability": 0.5127 + }, + { + "start": 8293.08, + "end": 8293.52, + "probability": 0.7978 + }, + { + "start": 8293.6, + "end": 8298.3, + "probability": 0.9927 + }, + { + "start": 8298.62, + "end": 8299.22, + "probability": 0.7409 + }, + { + "start": 8299.46, + "end": 8301.04, + "probability": 0.8738 + }, + { + "start": 8301.36, + "end": 8304.2, + "probability": 0.9465 + }, + { + "start": 8304.46, + "end": 8308.76, + "probability": 0.9844 + }, + { + "start": 8309.1, + "end": 8309.73, + "probability": 0.7996 + }, + { + "start": 8310.78, + "end": 8310.94, + "probability": 0.5234 + }, + { + "start": 8311.04, + "end": 8311.72, + "probability": 0.9164 + }, + { + "start": 8311.78, + "end": 8314.4, + "probability": 0.7391 + }, + { + "start": 8314.52, + "end": 8320.98, + "probability": 0.748 + }, + { + "start": 8321.42, + "end": 8323.58, + "probability": 0.5011 + }, + { + "start": 8324.26, + "end": 8327.86, + "probability": 0.9683 + }, + { + "start": 8328.7, + "end": 8331.4, + "probability": 0.9712 + }, + { + "start": 8332.66, + "end": 8334.2, + "probability": 0.8284 + }, + { + "start": 8334.4, + "end": 8335.5, + "probability": 0.9453 + }, + { + "start": 8335.8, + "end": 8339.06, + "probability": 0.8481 + }, + { + "start": 8339.12, + "end": 8340.66, + "probability": 0.6313 + }, + { + "start": 8341.36, + "end": 8344.84, + "probability": 0.9829 + }, + { + "start": 8345.0, + "end": 8347.68, + "probability": 0.999 + }, + { + "start": 8348.04, + "end": 8348.44, + "probability": 0.4737 + }, + { + "start": 8348.48, + "end": 8351.2, + "probability": 0.9928 + }, + { + "start": 8351.92, + "end": 8355.46, + "probability": 0.9941 + }, + { + "start": 8355.56, + "end": 8355.9, + "probability": 0.9443 + }, + { + "start": 8356.04, + "end": 8356.56, + "probability": 0.8402 + }, + { + "start": 8356.58, + "end": 8359.86, + "probability": 0.9962 + }, + { + "start": 8360.04, + "end": 8360.72, + "probability": 0.9882 + }, + { + "start": 8361.28, + "end": 8361.78, + "probability": 0.6635 + }, + { + "start": 8362.29, + "end": 8364.34, + "probability": 0.9968 + }, + { + "start": 8367.62, + "end": 8371.06, + "probability": 0.9965 + }, + { + "start": 8371.06, + "end": 8374.12, + "probability": 0.9995 + }, + { + "start": 8374.28, + "end": 8376.22, + "probability": 0.985 + }, + { + "start": 8376.92, + "end": 8378.52, + "probability": 0.9893 + }, + { + "start": 8379.9, + "end": 8382.82, + "probability": 0.8516 + }, + { + "start": 8384.28, + "end": 8385.08, + "probability": 0.4588 + }, + { + "start": 8385.18, + "end": 8387.96, + "probability": 0.0693 + }, + { + "start": 8387.98, + "end": 8390.3, + "probability": 0.771 + }, + { + "start": 8391.18, + "end": 8393.88, + "probability": 0.4612 + }, + { + "start": 8394.6, + "end": 8396.6, + "probability": 0.9199 + }, + { + "start": 8397.26, + "end": 8399.12, + "probability": 0.7359 + }, + { + "start": 8399.72, + "end": 8400.16, + "probability": 0.3861 + }, + { + "start": 8403.86, + "end": 8404.54, + "probability": 0.7367 + }, + { + "start": 8405.38, + "end": 8407.98, + "probability": 0.9979 + }, + { + "start": 8408.34, + "end": 8409.06, + "probability": 0.9881 + }, + { + "start": 8409.76, + "end": 8411.58, + "probability": 0.9775 + }, + { + "start": 8411.64, + "end": 8413.52, + "probability": 0.9933 + }, + { + "start": 8413.64, + "end": 8414.34, + "probability": 0.9937 + }, + { + "start": 8415.0, + "end": 8417.86, + "probability": 0.5982 + }, + { + "start": 8417.88, + "end": 8419.1, + "probability": 0.4378 + }, + { + "start": 8419.62, + "end": 8420.49, + "probability": 0.6113 + }, + { + "start": 8421.42, + "end": 8421.93, + "probability": 0.5536 + }, + { + "start": 8422.18, + "end": 8422.62, + "probability": 0.7719 + }, + { + "start": 8423.24, + "end": 8423.83, + "probability": 0.6041 + }, + { + "start": 8424.1, + "end": 8425.26, + "probability": 0.1977 + }, + { + "start": 8425.26, + "end": 8426.74, + "probability": 0.0621 + }, + { + "start": 8426.88, + "end": 8427.78, + "probability": 0.9607 + }, + { + "start": 8428.48, + "end": 8433.28, + "probability": 0.9738 + }, + { + "start": 8433.7, + "end": 8434.86, + "probability": 0.9109 + }, + { + "start": 8435.04, + "end": 8436.92, + "probability": 0.9937 + }, + { + "start": 8437.04, + "end": 8438.68, + "probability": 0.9748 + }, + { + "start": 8439.18, + "end": 8439.6, + "probability": 0.216 + }, + { + "start": 8440.3, + "end": 8441.32, + "probability": 0.1567 + }, + { + "start": 8441.76, + "end": 8441.9, + "probability": 0.0081 + }, + { + "start": 8441.9, + "end": 8444.04, + "probability": 0.7261 + }, + { + "start": 8444.5, + "end": 8447.48, + "probability": 0.8638 + }, + { + "start": 8447.88, + "end": 8448.48, + "probability": 0.6976 + }, + { + "start": 8449.06, + "end": 8450.56, + "probability": 0.917 + }, + { + "start": 8450.96, + "end": 8454.62, + "probability": 0.9722 + }, + { + "start": 8455.12, + "end": 8457.16, + "probability": 0.9781 + }, + { + "start": 8458.5, + "end": 8459.2, + "probability": 0.5397 + }, + { + "start": 8459.84, + "end": 8463.26, + "probability": 0.9326 + }, + { + "start": 8463.32, + "end": 8463.72, + "probability": 0.8509 + }, + { + "start": 8464.02, + "end": 8470.36, + "probability": 0.9487 + }, + { + "start": 8470.36, + "end": 8474.6, + "probability": 0.9738 + }, + { + "start": 8474.76, + "end": 8479.14, + "probability": 0.9332 + }, + { + "start": 8479.62, + "end": 8480.5, + "probability": 0.6134 + }, + { + "start": 8481.32, + "end": 8482.94, + "probability": 0.9943 + }, + { + "start": 8483.62, + "end": 8485.34, + "probability": 0.2025 + }, + { + "start": 8485.34, + "end": 8487.42, + "probability": 0.4927 + }, + { + "start": 8488.02, + "end": 8488.42, + "probability": 0.9202 + }, + { + "start": 8488.7, + "end": 8488.7, + "probability": 0.39 + }, + { + "start": 8489.16, + "end": 8495.48, + "probability": 0.5503 + }, + { + "start": 8495.64, + "end": 8496.36, + "probability": 0.6002 + }, + { + "start": 8497.28, + "end": 8498.19, + "probability": 0.8692 + }, + { + "start": 8499.16, + "end": 8502.02, + "probability": 0.4934 + }, + { + "start": 8502.28, + "end": 8502.81, + "probability": 0.9878 + }, + { + "start": 8503.3, + "end": 8505.56, + "probability": 0.5763 + }, + { + "start": 8505.58, + "end": 8506.76, + "probability": 0.8243 + }, + { + "start": 8507.76, + "end": 8508.98, + "probability": 0.8167 + }, + { + "start": 8509.2, + "end": 8509.78, + "probability": 0.8918 + }, + { + "start": 8509.92, + "end": 8510.9, + "probability": 0.7422 + }, + { + "start": 8511.18, + "end": 8513.96, + "probability": 0.9307 + }, + { + "start": 8514.16, + "end": 8514.36, + "probability": 0.1927 + }, + { + "start": 8514.48, + "end": 8518.12, + "probability": 0.2006 + }, + { + "start": 8518.26, + "end": 8520.76, + "probability": 0.9426 + }, + { + "start": 8521.34, + "end": 8524.69, + "probability": 0.8827 + }, + { + "start": 8524.92, + "end": 8529.0, + "probability": 0.0508 + }, + { + "start": 8529.34, + "end": 8529.88, + "probability": 0.3268 + }, + { + "start": 8529.96, + "end": 8535.22, + "probability": 0.7593 + }, + { + "start": 8535.26, + "end": 8538.62, + "probability": 0.9565 + }, + { + "start": 8538.74, + "end": 8539.37, + "probability": 0.4847 + }, + { + "start": 8539.8, + "end": 8544.52, + "probability": 0.9292 + }, + { + "start": 8544.52, + "end": 8547.42, + "probability": 0.9991 + }, + { + "start": 8548.08, + "end": 8550.92, + "probability": 0.9978 + }, + { + "start": 8552.4, + "end": 8554.7, + "probability": 0.6135 + }, + { + "start": 8554.84, + "end": 8555.77, + "probability": 0.3421 + }, + { + "start": 8556.6, + "end": 8558.24, + "probability": 0.8791 + }, + { + "start": 8558.56, + "end": 8559.84, + "probability": 0.6496 + }, + { + "start": 8560.6, + "end": 8561.66, + "probability": 0.728 + }, + { + "start": 8562.12, + "end": 8565.28, + "probability": 0.9909 + }, + { + "start": 8566.72, + "end": 8567.8, + "probability": 0.9695 + }, + { + "start": 8568.14, + "end": 8570.28, + "probability": 0.9961 + }, + { + "start": 8570.72, + "end": 8575.36, + "probability": 0.9946 + }, + { + "start": 8575.66, + "end": 8576.64, + "probability": 0.6451 + }, + { + "start": 8577.38, + "end": 8577.56, + "probability": 0.3691 + }, + { + "start": 8577.72, + "end": 8577.92, + "probability": 0.1981 + }, + { + "start": 8578.08, + "end": 8580.22, + "probability": 0.3417 + }, + { + "start": 8582.52, + "end": 8585.46, + "probability": 0.8773 + }, + { + "start": 8585.64, + "end": 8586.2, + "probability": 0.7277 + }, + { + "start": 8586.42, + "end": 8587.94, + "probability": 0.708 + }, + { + "start": 8588.32, + "end": 8589.6, + "probability": 0.866 + }, + { + "start": 8592.44, + "end": 8594.7, + "probability": 0.8745 + }, + { + "start": 8595.68, + "end": 8598.54, + "probability": 0.9203 + }, + { + "start": 8599.92, + "end": 8601.4, + "probability": 0.855 + }, + { + "start": 8601.94, + "end": 8605.32, + "probability": 0.9917 + }, + { + "start": 8607.24, + "end": 8612.32, + "probability": 0.9114 + }, + { + "start": 8612.58, + "end": 8614.08, + "probability": 0.7278 + }, + { + "start": 8614.52, + "end": 8616.8, + "probability": 0.9048 + }, + { + "start": 8617.76, + "end": 8619.0, + "probability": 0.9891 + }, + { + "start": 8619.62, + "end": 8621.28, + "probability": 0.5001 + }, + { + "start": 8622.14, + "end": 8627.16, + "probability": 0.9653 + }, + { + "start": 8629.1, + "end": 8632.88, + "probability": 0.9919 + }, + { + "start": 8633.4, + "end": 8640.22, + "probability": 0.9697 + }, + { + "start": 8641.2, + "end": 8643.86, + "probability": 0.9871 + }, + { + "start": 8645.8, + "end": 8647.18, + "probability": 0.6568 + }, + { + "start": 8647.86, + "end": 8650.14, + "probability": 0.7445 + }, + { + "start": 8651.58, + "end": 8652.72, + "probability": 0.9756 + }, + { + "start": 8653.9, + "end": 8654.96, + "probability": 0.6304 + }, + { + "start": 8655.26, + "end": 8656.46, + "probability": 0.9871 + }, + { + "start": 8656.76, + "end": 8658.02, + "probability": 0.9775 + }, + { + "start": 8658.66, + "end": 8662.96, + "probability": 0.9976 + }, + { + "start": 8663.48, + "end": 8665.23, + "probability": 0.8866 + }, + { + "start": 8665.76, + "end": 8668.28, + "probability": 0.971 + }, + { + "start": 8668.7, + "end": 8669.3, + "probability": 0.8374 + }, + { + "start": 8671.1, + "end": 8674.04, + "probability": 0.9315 + }, + { + "start": 8674.82, + "end": 8676.42, + "probability": 0.6893 + }, + { + "start": 8676.94, + "end": 8678.08, + "probability": 0.9448 + }, + { + "start": 8678.74, + "end": 8682.9, + "probability": 0.9893 + }, + { + "start": 8683.1, + "end": 8684.9, + "probability": 0.7986 + }, + { + "start": 8685.66, + "end": 8687.14, + "probability": 0.9978 + }, + { + "start": 8687.58, + "end": 8688.97, + "probability": 0.7683 + }, + { + "start": 8689.86, + "end": 8693.94, + "probability": 0.9862 + }, + { + "start": 8694.02, + "end": 8696.76, + "probability": 0.9473 + }, + { + "start": 8697.48, + "end": 8698.3, + "probability": 0.442 + }, + { + "start": 8698.4, + "end": 8702.21, + "probability": 0.991 + }, + { + "start": 8702.74, + "end": 8703.46, + "probability": 0.7161 + }, + { + "start": 8704.22, + "end": 8707.6, + "probability": 0.9244 + }, + { + "start": 8707.8, + "end": 8708.24, + "probability": 0.8013 + }, + { + "start": 8709.76, + "end": 8711.7, + "probability": 0.9954 + }, + { + "start": 8712.32, + "end": 8715.26, + "probability": 0.9645 + }, + { + "start": 8716.22, + "end": 8717.2, + "probability": 0.697 + }, + { + "start": 8719.36, + "end": 8721.8, + "probability": 0.996 + }, + { + "start": 8722.34, + "end": 8722.98, + "probability": 0.5845 + }, + { + "start": 8723.78, + "end": 8726.04, + "probability": 0.7134 + }, + { + "start": 8726.66, + "end": 8727.76, + "probability": 0.7648 + }, + { + "start": 8728.56, + "end": 8728.96, + "probability": 0.49 + }, + { + "start": 8729.02, + "end": 8730.58, + "probability": 0.9487 + }, + { + "start": 8730.64, + "end": 8732.62, + "probability": 0.9841 + }, + { + "start": 8732.88, + "end": 8734.82, + "probability": 0.9629 + }, + { + "start": 8735.52, + "end": 8736.13, + "probability": 0.3413 + }, + { + "start": 8736.9, + "end": 8738.4, + "probability": 0.9046 + }, + { + "start": 8739.7, + "end": 8743.92, + "probability": 0.8443 + }, + { + "start": 8744.56, + "end": 8746.88, + "probability": 0.8743 + }, + { + "start": 8747.0, + "end": 8748.75, + "probability": 0.9391 + }, + { + "start": 8749.48, + "end": 8750.66, + "probability": 0.8479 + }, + { + "start": 8750.84, + "end": 8753.0, + "probability": 0.701 + }, + { + "start": 8755.28, + "end": 8759.88, + "probability": 0.8121 + }, + { + "start": 8760.98, + "end": 8763.94, + "probability": 0.9738 + }, + { + "start": 8764.62, + "end": 8767.34, + "probability": 0.9927 + }, + { + "start": 8767.64, + "end": 8770.46, + "probability": 0.9181 + }, + { + "start": 8771.8, + "end": 8774.72, + "probability": 0.973 + }, + { + "start": 8775.3, + "end": 8779.0, + "probability": 0.8721 + }, + { + "start": 8779.44, + "end": 8783.2, + "probability": 0.9769 + }, + { + "start": 8783.92, + "end": 8785.12, + "probability": 0.9196 + }, + { + "start": 8785.66, + "end": 8787.04, + "probability": 0.8706 + }, + { + "start": 8788.46, + "end": 8790.48, + "probability": 0.8645 + }, + { + "start": 8791.18, + "end": 8792.6, + "probability": 0.9912 + }, + { + "start": 8793.98, + "end": 8794.72, + "probability": 0.795 + }, + { + "start": 8794.82, + "end": 8795.52, + "probability": 0.7732 + }, + { + "start": 8795.58, + "end": 8799.82, + "probability": 0.9851 + }, + { + "start": 8799.82, + "end": 8803.7, + "probability": 0.9945 + }, + { + "start": 8803.76, + "end": 8806.2, + "probability": 0.9966 + }, + { + "start": 8808.72, + "end": 8813.54, + "probability": 0.9515 + }, + { + "start": 8814.0, + "end": 8817.18, + "probability": 0.752 + }, + { + "start": 8817.54, + "end": 8819.47, + "probability": 0.682 + }, + { + "start": 8822.62, + "end": 8824.08, + "probability": 0.931 + }, + { + "start": 8824.9, + "end": 8827.28, + "probability": 0.8726 + }, + { + "start": 8828.04, + "end": 8831.12, + "probability": 0.9801 + }, + { + "start": 8831.36, + "end": 8833.12, + "probability": 0.243 + }, + { + "start": 8833.6, + "end": 8836.34, + "probability": 0.9633 + }, + { + "start": 8837.36, + "end": 8838.18, + "probability": 0.6252 + }, + { + "start": 8840.18, + "end": 8843.3, + "probability": 0.8333 + }, + { + "start": 8845.02, + "end": 8845.54, + "probability": 0.5799 + }, + { + "start": 8845.88, + "end": 8847.2, + "probability": 0.9526 + }, + { + "start": 8847.24, + "end": 8847.66, + "probability": 0.9509 + }, + { + "start": 8848.06, + "end": 8850.08, + "probability": 0.2354 + }, + { + "start": 8850.34, + "end": 8850.4, + "probability": 0.153 + }, + { + "start": 8850.4, + "end": 8853.5, + "probability": 0.5091 + }, + { + "start": 8853.62, + "end": 8856.42, + "probability": 0.8361 + }, + { + "start": 8857.16, + "end": 8858.42, + "probability": 0.8453 + }, + { + "start": 8858.54, + "end": 8858.84, + "probability": 0.9771 + }, + { + "start": 8858.84, + "end": 8859.89, + "probability": 0.9614 + }, + { + "start": 8860.24, + "end": 8861.38, + "probability": 0.2423 + }, + { + "start": 8862.54, + "end": 8868.42, + "probability": 0.9941 + }, + { + "start": 8869.1, + "end": 8872.0, + "probability": 0.9822 + }, + { + "start": 8872.0, + "end": 8877.62, + "probability": 0.9413 + }, + { + "start": 8877.92, + "end": 8880.38, + "probability": 0.8999 + }, + { + "start": 8880.94, + "end": 8883.42, + "probability": 0.9908 + }, + { + "start": 8883.96, + "end": 8886.97, + "probability": 0.9272 + }, + { + "start": 8887.44, + "end": 8888.4, + "probability": 0.7357 + }, + { + "start": 8888.88, + "end": 8892.74, + "probability": 0.9907 + }, + { + "start": 8893.52, + "end": 8895.7, + "probability": 0.6845 + }, + { + "start": 8895.76, + "end": 8896.8, + "probability": 0.9744 + }, + { + "start": 8897.36, + "end": 8898.4, + "probability": 0.8864 + }, + { + "start": 8898.9, + "end": 8900.2, + "probability": 0.9225 + }, + { + "start": 8900.64, + "end": 8902.68, + "probability": 0.923 + }, + { + "start": 8903.78, + "end": 8903.8, + "probability": 0.0224 + }, + { + "start": 8904.32, + "end": 8905.64, + "probability": 0.8294 + }, + { + "start": 8906.76, + "end": 8908.86, + "probability": 0.9971 + }, + { + "start": 8909.76, + "end": 8912.52, + "probability": 0.9468 + }, + { + "start": 8913.2, + "end": 8921.45, + "probability": 0.9413 + }, + { + "start": 8923.4, + "end": 8925.16, + "probability": 0.9968 + }, + { + "start": 8925.42, + "end": 8926.08, + "probability": 0.7548 + }, + { + "start": 8926.3, + "end": 8927.76, + "probability": 0.7561 + }, + { + "start": 8928.44, + "end": 8929.6, + "probability": 0.5946 + }, + { + "start": 8931.34, + "end": 8932.76, + "probability": 0.7847 + }, + { + "start": 8933.62, + "end": 8940.12, + "probability": 0.8493 + }, + { + "start": 8940.32, + "end": 8942.1, + "probability": 0.9396 + }, + { + "start": 8947.94, + "end": 8948.0, + "probability": 0.0 + }, + { + "start": 8962.48, + "end": 8964.12, + "probability": 0.6512 + }, + { + "start": 8964.74, + "end": 8965.9, + "probability": 0.764 + }, + { + "start": 8966.44, + "end": 8968.66, + "probability": 0.8057 + }, + { + "start": 8972.38, + "end": 8976.96, + "probability": 0.8197 + }, + { + "start": 8978.98, + "end": 8984.14, + "probability": 0.9561 + }, + { + "start": 8985.48, + "end": 8985.98, + "probability": 0.9592 + }, + { + "start": 8987.5, + "end": 8990.66, + "probability": 0.9961 + }, + { + "start": 8992.04, + "end": 8996.98, + "probability": 0.9434 + }, + { + "start": 8999.36, + "end": 9000.8, + "probability": 0.6888 + }, + { + "start": 9002.68, + "end": 9003.9, + "probability": 0.9988 + }, + { + "start": 9005.04, + "end": 9006.42, + "probability": 0.8657 + }, + { + "start": 9007.22, + "end": 9009.02, + "probability": 0.7468 + }, + { + "start": 9009.68, + "end": 9010.92, + "probability": 0.8818 + }, + { + "start": 9012.02, + "end": 9013.84, + "probability": 0.9895 + }, + { + "start": 9015.06, + "end": 9015.92, + "probability": 0.7895 + }, + { + "start": 9017.42, + "end": 9018.18, + "probability": 0.9421 + }, + { + "start": 9020.64, + "end": 9021.88, + "probability": 0.8926 + }, + { + "start": 9023.22, + "end": 9023.94, + "probability": 0.9618 + }, + { + "start": 9025.76, + "end": 9027.46, + "probability": 0.9521 + }, + { + "start": 9028.2, + "end": 9029.82, + "probability": 0.9951 + }, + { + "start": 9030.92, + "end": 9036.12, + "probability": 0.9896 + }, + { + "start": 9037.26, + "end": 9040.42, + "probability": 0.8372 + }, + { + "start": 9040.94, + "end": 9044.88, + "probability": 0.7672 + }, + { + "start": 9045.88, + "end": 9049.16, + "probability": 0.7549 + }, + { + "start": 9051.02, + "end": 9052.8, + "probability": 0.8251 + }, + { + "start": 9054.02, + "end": 9057.06, + "probability": 0.9251 + }, + { + "start": 9057.74, + "end": 9062.26, + "probability": 0.7047 + }, + { + "start": 9063.4, + "end": 9065.76, + "probability": 0.9067 + }, + { + "start": 9067.54, + "end": 9070.26, + "probability": 0.9763 + }, + { + "start": 9071.3, + "end": 9075.82, + "probability": 0.9832 + }, + { + "start": 9077.82, + "end": 9078.46, + "probability": 0.8928 + }, + { + "start": 9079.56, + "end": 9080.74, + "probability": 0.8037 + }, + { + "start": 9081.36, + "end": 9082.67, + "probability": 0.9838 + }, + { + "start": 9083.74, + "end": 9085.76, + "probability": 0.8804 + }, + { + "start": 9087.48, + "end": 9090.78, + "probability": 0.7129 + }, + { + "start": 9091.96, + "end": 9093.16, + "probability": 0.9803 + }, + { + "start": 9094.9, + "end": 9096.32, + "probability": 0.741 + }, + { + "start": 9097.4, + "end": 9099.1, + "probability": 0.9928 + }, + { + "start": 9100.12, + "end": 9102.54, + "probability": 0.9691 + }, + { + "start": 9102.7, + "end": 9104.5, + "probability": 0.6611 + }, + { + "start": 9105.86, + "end": 9109.66, + "probability": 0.795 + }, + { + "start": 9110.28, + "end": 9115.0, + "probability": 0.9209 + }, + { + "start": 9117.54, + "end": 9118.36, + "probability": 0.1363 + }, + { + "start": 9119.08, + "end": 9120.94, + "probability": 0.9812 + }, + { + "start": 9121.66, + "end": 9122.7, + "probability": 0.914 + }, + { + "start": 9124.28, + "end": 9125.64, + "probability": 0.998 + }, + { + "start": 9126.56, + "end": 9127.82, + "probability": 0.8599 + }, + { + "start": 9128.58, + "end": 9129.46, + "probability": 0.6353 + }, + { + "start": 9130.68, + "end": 9132.1, + "probability": 0.9893 + }, + { + "start": 9133.6, + "end": 9139.02, + "probability": 0.9333 + }, + { + "start": 9139.02, + "end": 9144.28, + "probability": 0.8017 + }, + { + "start": 9144.28, + "end": 9145.82, + "probability": 0.9891 + }, + { + "start": 9146.28, + "end": 9147.94, + "probability": 0.979 + }, + { + "start": 9149.04, + "end": 9149.66, + "probability": 0.9366 + }, + { + "start": 9150.76, + "end": 9154.5, + "probability": 0.9616 + }, + { + "start": 9155.68, + "end": 9158.68, + "probability": 0.7947 + }, + { + "start": 9159.96, + "end": 9162.06, + "probability": 0.9883 + }, + { + "start": 9164.44, + "end": 9165.7, + "probability": 0.5493 + }, + { + "start": 9165.78, + "end": 9169.22, + "probability": 0.8362 + }, + { + "start": 9169.62, + "end": 9172.2, + "probability": 0.7385 + }, + { + "start": 9173.7, + "end": 9174.62, + "probability": 0.9771 + }, + { + "start": 9176.66, + "end": 9178.96, + "probability": 0.8714 + }, + { + "start": 9180.02, + "end": 9181.42, + "probability": 0.9014 + }, + { + "start": 9182.12, + "end": 9184.48, + "probability": 0.9617 + }, + { + "start": 9185.48, + "end": 9189.28, + "probability": 0.2433 + }, + { + "start": 9192.5, + "end": 9193.86, + "probability": 0.3613 + }, + { + "start": 9194.02, + "end": 9196.0, + "probability": 0.7332 + }, + { + "start": 9196.06, + "end": 9196.78, + "probability": 0.1082 + }, + { + "start": 9197.42, + "end": 9198.12, + "probability": 0.7227 + }, + { + "start": 9198.22, + "end": 9198.72, + "probability": 0.7134 + }, + { + "start": 9198.8, + "end": 9201.26, + "probability": 0.9142 + }, + { + "start": 9201.62, + "end": 9202.7, + "probability": 0.7995 + }, + { + "start": 9202.82, + "end": 9204.18, + "probability": 0.9723 + }, + { + "start": 9204.34, + "end": 9208.28, + "probability": 0.9547 + }, + { + "start": 9208.66, + "end": 9216.36, + "probability": 0.733 + }, + { + "start": 9218.14, + "end": 9219.2, + "probability": 0.5856 + }, + { + "start": 9220.12, + "end": 9223.64, + "probability": 0.7349 + }, + { + "start": 9223.94, + "end": 9226.6, + "probability": 0.9956 + }, + { + "start": 9226.66, + "end": 9227.0, + "probability": 0.0634 + }, + { + "start": 9227.82, + "end": 9230.75, + "probability": 0.9757 + }, + { + "start": 9231.74, + "end": 9235.34, + "probability": 0.8036 + }, + { + "start": 9235.88, + "end": 9238.14, + "probability": 0.9917 + }, + { + "start": 9238.84, + "end": 9240.8, + "probability": 0.8999 + }, + { + "start": 9241.28, + "end": 9243.63, + "probability": 0.9976 + }, + { + "start": 9243.94, + "end": 9244.54, + "probability": 0.4488 + }, + { + "start": 9245.52, + "end": 9248.27, + "probability": 0.7919 + }, + { + "start": 9249.28, + "end": 9251.5, + "probability": 0.9817 + }, + { + "start": 9251.76, + "end": 9252.88, + "probability": 0.6565 + }, + { + "start": 9253.24, + "end": 9254.64, + "probability": 0.9032 + }, + { + "start": 9254.72, + "end": 9257.7, + "probability": 0.982 + }, + { + "start": 9257.86, + "end": 9261.4, + "probability": 0.6926 + }, + { + "start": 9261.48, + "end": 9264.46, + "probability": 0.1343 + }, + { + "start": 9265.1, + "end": 9266.14, + "probability": 0.8451 + }, + { + "start": 9266.72, + "end": 9268.0, + "probability": 0.8896 + }, + { + "start": 9269.06, + "end": 9273.32, + "probability": 0.9678 + }, + { + "start": 9274.36, + "end": 9276.73, + "probability": 0.9749 + }, + { + "start": 9277.88, + "end": 9280.42, + "probability": 0.7393 + }, + { + "start": 9281.4, + "end": 9282.42, + "probability": 0.8767 + }, + { + "start": 9282.48, + "end": 9283.72, + "probability": 0.9417 + }, + { + "start": 9285.76, + "end": 9287.94, + "probability": 0.847 + }, + { + "start": 9288.14, + "end": 9291.24, + "probability": 0.4926 + }, + { + "start": 9291.42, + "end": 9292.12, + "probability": 0.5884 + }, + { + "start": 9292.2, + "end": 9300.64, + "probability": 0.7621 + }, + { + "start": 9301.5, + "end": 9304.86, + "probability": 0.6161 + }, + { + "start": 9305.5, + "end": 9305.84, + "probability": 0.611 + }, + { + "start": 9305.96, + "end": 9307.34, + "probability": 0.9888 + }, + { + "start": 9307.44, + "end": 9308.01, + "probability": 0.9177 + }, + { + "start": 9308.92, + "end": 9310.47, + "probability": 0.9895 + }, + { + "start": 9311.22, + "end": 9311.81, + "probability": 0.9828 + }, + { + "start": 9312.18, + "end": 9313.12, + "probability": 0.9902 + }, + { + "start": 9313.6, + "end": 9315.36, + "probability": 0.9917 + }, + { + "start": 9315.48, + "end": 9318.32, + "probability": 0.9443 + }, + { + "start": 9318.56, + "end": 9319.76, + "probability": 0.9795 + }, + { + "start": 9320.06, + "end": 9320.88, + "probability": 0.9507 + }, + { + "start": 9321.22, + "end": 9323.36, + "probability": 0.9897 + }, + { + "start": 9324.16, + "end": 9328.12, + "probability": 0.9337 + }, + { + "start": 9329.28, + "end": 9331.3, + "probability": 0.5411 + }, + { + "start": 9331.96, + "end": 9336.54, + "probability": 0.9927 + }, + { + "start": 9338.34, + "end": 9344.5, + "probability": 0.8195 + }, + { + "start": 9344.74, + "end": 9347.72, + "probability": 0.9971 + }, + { + "start": 9348.38, + "end": 9349.14, + "probability": 0.9528 + }, + { + "start": 9350.68, + "end": 9352.46, + "probability": 0.9945 + }, + { + "start": 9353.74, + "end": 9354.8, + "probability": 0.753 + }, + { + "start": 9354.88, + "end": 9357.4, + "probability": 0.8359 + }, + { + "start": 9358.56, + "end": 9360.14, + "probability": 0.9912 + }, + { + "start": 9360.9, + "end": 9362.84, + "probability": 0.5687 + }, + { + "start": 9363.04, + "end": 9364.82, + "probability": 0.2514 + }, + { + "start": 9365.46, + "end": 9372.36, + "probability": 0.0645 + }, + { + "start": 9372.7, + "end": 9374.12, + "probability": 0.4631 + }, + { + "start": 9374.48, + "end": 9378.76, + "probability": 0.5903 + }, + { + "start": 9378.98, + "end": 9381.75, + "probability": 0.5427 + }, + { + "start": 9382.58, + "end": 9384.65, + "probability": 0.226 + }, + { + "start": 9384.9, + "end": 9386.6, + "probability": 0.3977 + }, + { + "start": 9386.66, + "end": 9389.38, + "probability": 0.554 + }, + { + "start": 9390.2, + "end": 9392.94, + "probability": 0.7049 + }, + { + "start": 9393.0, + "end": 9393.46, + "probability": 0.3206 + }, + { + "start": 9393.56, + "end": 9395.6, + "probability": 0.8679 + }, + { + "start": 9395.78, + "end": 9398.74, + "probability": 0.9604 + }, + { + "start": 9398.74, + "end": 9399.56, + "probability": 0.6184 + }, + { + "start": 9399.6, + "end": 9402.08, + "probability": 0.7843 + }, + { + "start": 9402.82, + "end": 9405.44, + "probability": 0.8114 + }, + { + "start": 9405.5, + "end": 9407.5, + "probability": 0.5197 + }, + { + "start": 9407.9, + "end": 9409.52, + "probability": 0.6649 + }, + { + "start": 9409.78, + "end": 9410.1, + "probability": 0.0452 + }, + { + "start": 9410.1, + "end": 9411.26, + "probability": 0.3796 + }, + { + "start": 9411.8, + "end": 9413.33, + "probability": 0.6333 + }, + { + "start": 9413.72, + "end": 9415.38, + "probability": 0.0844 + }, + { + "start": 9415.38, + "end": 9415.68, + "probability": 0.171 + }, + { + "start": 9415.72, + "end": 9416.1, + "probability": 0.1603 + }, + { + "start": 9416.1, + "end": 9416.1, + "probability": 0.3089 + }, + { + "start": 9416.1, + "end": 9417.39, + "probability": 0.7294 + }, + { + "start": 9418.3, + "end": 9418.7, + "probability": 0.1081 + }, + { + "start": 9418.7, + "end": 9420.3, + "probability": 0.4062 + }, + { + "start": 9420.44, + "end": 9420.94, + "probability": 0.3917 + }, + { + "start": 9421.22, + "end": 9423.68, + "probability": 0.6656 + }, + { + "start": 9423.68, + "end": 9424.88, + "probability": 0.6718 + }, + { + "start": 9425.98, + "end": 9427.68, + "probability": 0.8468 + }, + { + "start": 9429.14, + "end": 9430.22, + "probability": 0.6552 + }, + { + "start": 9431.08, + "end": 9432.52, + "probability": 0.9973 + }, + { + "start": 9433.2, + "end": 9436.1, + "probability": 0.998 + }, + { + "start": 9436.52, + "end": 9439.34, + "probability": 0.9978 + }, + { + "start": 9439.92, + "end": 9441.92, + "probability": 0.9941 + }, + { + "start": 9442.06, + "end": 9443.76, + "probability": 0.8652 + }, + { + "start": 9444.26, + "end": 9447.48, + "probability": 0.8338 + }, + { + "start": 9447.48, + "end": 9451.7, + "probability": 0.8075 + }, + { + "start": 9451.84, + "end": 9452.34, + "probability": 0.4494 + }, + { + "start": 9452.4, + "end": 9453.2, + "probability": 0.4695 + }, + { + "start": 9453.96, + "end": 9454.14, + "probability": 0.5863 + }, + { + "start": 9454.14, + "end": 9456.76, + "probability": 0.6223 + }, + { + "start": 9456.94, + "end": 9457.12, + "probability": 0.0077 + }, + { + "start": 9457.12, + "end": 9457.5, + "probability": 0.5171 + }, + { + "start": 9457.54, + "end": 9459.94, + "probability": 0.3872 + }, + { + "start": 9460.64, + "end": 9461.16, + "probability": 0.7563 + }, + { + "start": 9461.42, + "end": 9461.56, + "probability": 0.0578 + }, + { + "start": 9461.6, + "end": 9465.84, + "probability": 0.6772 + }, + { + "start": 9466.2, + "end": 9469.12, + "probability": 0.9049 + }, + { + "start": 9469.4, + "end": 9470.92, + "probability": 0.7215 + }, + { + "start": 9470.96, + "end": 9470.96, + "probability": 0.1925 + }, + { + "start": 9471.02, + "end": 9471.02, + "probability": 0.3411 + }, + { + "start": 9471.02, + "end": 9473.52, + "probability": 0.9683 + }, + { + "start": 9473.62, + "end": 9474.74, + "probability": 0.7126 + }, + { + "start": 9475.06, + "end": 9478.18, + "probability": 0.4031 + }, + { + "start": 9478.4, + "end": 9479.54, + "probability": 0.2866 + }, + { + "start": 9479.54, + "end": 9480.46, + "probability": 0.4076 + }, + { + "start": 9480.48, + "end": 9483.82, + "probability": 0.9016 + }, + { + "start": 9484.06, + "end": 9486.06, + "probability": 0.4474 + }, + { + "start": 9486.2, + "end": 9487.96, + "probability": 0.7531 + }, + { + "start": 9488.9, + "end": 9491.3, + "probability": 0.7946 + }, + { + "start": 9492.18, + "end": 9494.38, + "probability": 0.9771 + }, + { + "start": 9497.5, + "end": 9498.42, + "probability": 0.6372 + }, + { + "start": 9498.68, + "end": 9499.28, + "probability": 0.7197 + }, + { + "start": 9500.02, + "end": 9503.74, + "probability": 0.6423 + }, + { + "start": 9505.1, + "end": 9508.06, + "probability": 0.936 + }, + { + "start": 9509.58, + "end": 9513.86, + "probability": 0.7674 + }, + { + "start": 9513.86, + "end": 9517.34, + "probability": 0.3532 + }, + { + "start": 9517.6, + "end": 9521.1, + "probability": 0.0748 + }, + { + "start": 9521.22, + "end": 9521.28, + "probability": 0.0038 + }, + { + "start": 9521.28, + "end": 9522.52, + "probability": 0.2633 + }, + { + "start": 9522.72, + "end": 9526.28, + "probability": 0.9383 + }, + { + "start": 9527.16, + "end": 9528.82, + "probability": 0.5273 + }, + { + "start": 9532.13, + "end": 9533.61, + "probability": 0.857 + }, + { + "start": 9534.26, + "end": 9534.3, + "probability": 0.2165 + }, + { + "start": 9534.3, + "end": 9535.0, + "probability": 0.4301 + }, + { + "start": 9536.04, + "end": 9538.52, + "probability": 0.9633 + }, + { + "start": 9539.94, + "end": 9541.28, + "probability": 0.8041 + }, + { + "start": 9542.02, + "end": 9544.56, + "probability": 0.4904 + }, + { + "start": 9544.9, + "end": 9546.69, + "probability": 0.4596 + }, + { + "start": 9547.11, + "end": 9550.9, + "probability": 0.9761 + }, + { + "start": 9551.5, + "end": 9554.1, + "probability": 0.9873 + }, + { + "start": 9554.1, + "end": 9557.64, + "probability": 0.8935 + }, + { + "start": 9558.14, + "end": 9559.05, + "probability": 0.8979 + }, + { + "start": 9559.26, + "end": 9560.14, + "probability": 0.5882 + }, + { + "start": 9560.28, + "end": 9561.14, + "probability": 0.8351 + }, + { + "start": 9561.16, + "end": 9561.82, + "probability": 0.7829 + }, + { + "start": 9562.48, + "end": 9563.02, + "probability": 0.9825 + }, + { + "start": 9563.1, + "end": 9564.28, + "probability": 0.7924 + }, + { + "start": 9564.52, + "end": 9566.56, + "probability": 0.8967 + }, + { + "start": 9566.84, + "end": 9566.84, + "probability": 0.2293 + }, + { + "start": 9566.84, + "end": 9568.74, + "probability": 0.8869 + }, + { + "start": 9569.16, + "end": 9569.16, + "probability": 0.2175 + }, + { + "start": 9569.16, + "end": 9571.24, + "probability": 0.6741 + }, + { + "start": 9571.46, + "end": 9572.0, + "probability": 0.8415 + }, + { + "start": 9572.42, + "end": 9573.24, + "probability": 0.7862 + }, + { + "start": 9573.86, + "end": 9579.78, + "probability": 0.769 + }, + { + "start": 9579.9, + "end": 9581.22, + "probability": 0.4689 + }, + { + "start": 9581.32, + "end": 9584.48, + "probability": 0.6245 + }, + { + "start": 9585.5, + "end": 9590.32, + "probability": 0.7937 + }, + { + "start": 9591.06, + "end": 9597.92, + "probability": 0.8264 + }, + { + "start": 9598.12, + "end": 9598.56, + "probability": 0.9081 + }, + { + "start": 9599.28, + "end": 9602.5, + "probability": 0.8542 + }, + { + "start": 9603.48, + "end": 9605.95, + "probability": 0.9583 + }, + { + "start": 9606.56, + "end": 9608.46, + "probability": 0.9972 + }, + { + "start": 9608.96, + "end": 9611.56, + "probability": 0.9961 + }, + { + "start": 9612.42, + "end": 9614.3, + "probability": 0.6142 + }, + { + "start": 9614.82, + "end": 9615.92, + "probability": 0.7997 + }, + { + "start": 9616.54, + "end": 9618.18, + "probability": 0.8174 + }, + { + "start": 9618.32, + "end": 9618.72, + "probability": 0.4842 + }, + { + "start": 9619.04, + "end": 9620.8, + "probability": 0.5383 + }, + { + "start": 9621.14, + "end": 9621.78, + "probability": 0.6364 + }, + { + "start": 9622.78, + "end": 9624.3, + "probability": 0.8628 + }, + { + "start": 9624.42, + "end": 9627.16, + "probability": 0.8118 + }, + { + "start": 9627.3, + "end": 9627.8, + "probability": 0.4593 + }, + { + "start": 9627.84, + "end": 9629.6, + "probability": 0.9884 + }, + { + "start": 9629.92, + "end": 9632.3, + "probability": 0.7376 + }, + { + "start": 9633.16, + "end": 9634.34, + "probability": 0.8297 + }, + { + "start": 9634.46, + "end": 9635.78, + "probability": 0.8308 + }, + { + "start": 9636.92, + "end": 9641.28, + "probability": 0.7098 + }, + { + "start": 9642.3, + "end": 9643.56, + "probability": 0.7502 + }, + { + "start": 9644.22, + "end": 9644.8, + "probability": 0.9023 + }, + { + "start": 9646.64, + "end": 9648.9, + "probability": 0.9763 + }, + { + "start": 9649.36, + "end": 9649.62, + "probability": 0.5592 + }, + { + "start": 9649.94, + "end": 9650.92, + "probability": 0.6997 + }, + { + "start": 9651.02, + "end": 9654.4, + "probability": 0.9019 + }, + { + "start": 9655.74, + "end": 9656.8, + "probability": 0.9552 + }, + { + "start": 9657.38, + "end": 9661.28, + "probability": 0.7487 + }, + { + "start": 9662.38, + "end": 9663.1, + "probability": 0.9479 + }, + { + "start": 9664.1, + "end": 9671.92, + "probability": 0.9406 + }, + { + "start": 9672.1, + "end": 9673.54, + "probability": 0.8154 + }, + { + "start": 9674.68, + "end": 9677.04, + "probability": 0.9658 + }, + { + "start": 9678.06, + "end": 9678.63, + "probability": 0.8149 + }, + { + "start": 9680.06, + "end": 9682.52, + "probability": 0.7355 + }, + { + "start": 9682.52, + "end": 9682.59, + "probability": 0.6134 + }, + { + "start": 9683.5, + "end": 9686.78, + "probability": 0.281 + }, + { + "start": 9686.78, + "end": 9687.14, + "probability": 0.0012 + }, + { + "start": 9687.14, + "end": 9687.54, + "probability": 0.249 + }, + { + "start": 9687.54, + "end": 9691.32, + "probability": 0.5833 + }, + { + "start": 9691.32, + "end": 9691.36, + "probability": 0.6866 + }, + { + "start": 9691.36, + "end": 9691.42, + "probability": 0.2774 + }, + { + "start": 9691.42, + "end": 9692.89, + "probability": 0.9941 + }, + { + "start": 9695.2, + "end": 9698.16, + "probability": 0.9725 + }, + { + "start": 9699.16, + "end": 9700.24, + "probability": 0.6891 + }, + { + "start": 9700.88, + "end": 9701.76, + "probability": 0.9613 + }, + { + "start": 9702.84, + "end": 9706.78, + "probability": 0.9526 + }, + { + "start": 9707.06, + "end": 9708.3, + "probability": 0.9529 + }, + { + "start": 9709.52, + "end": 9710.5, + "probability": 0.9862 + }, + { + "start": 9710.96, + "end": 9712.12, + "probability": 0.9509 + }, + { + "start": 9714.36, + "end": 9716.98, + "probability": 0.998 + }, + { + "start": 9718.14, + "end": 9719.8, + "probability": 0.9678 + }, + { + "start": 9720.7, + "end": 9722.12, + "probability": 0.9956 + }, + { + "start": 9723.86, + "end": 9726.7, + "probability": 0.9717 + }, + { + "start": 9727.66, + "end": 9729.58, + "probability": 0.8193 + }, + { + "start": 9731.14, + "end": 9732.6, + "probability": 0.8052 + }, + { + "start": 9733.26, + "end": 9736.03, + "probability": 0.9795 + }, + { + "start": 9737.56, + "end": 9739.22, + "probability": 0.9983 + }, + { + "start": 9739.64, + "end": 9740.43, + "probability": 0.9302 + }, + { + "start": 9740.62, + "end": 9743.32, + "probability": 0.6144 + }, + { + "start": 9743.92, + "end": 9744.96, + "probability": 0.9735 + }, + { + "start": 9745.46, + "end": 9747.44, + "probability": 0.9785 + }, + { + "start": 9748.2, + "end": 9751.56, + "probability": 0.9509 + }, + { + "start": 9752.64, + "end": 9755.38, + "probability": 0.8088 + }, + { + "start": 9757.52, + "end": 9759.46, + "probability": 0.984 + }, + { + "start": 9760.9, + "end": 9761.38, + "probability": 0.8152 + }, + { + "start": 9762.28, + "end": 9763.56, + "probability": 0.1706 + }, + { + "start": 9763.7, + "end": 9764.26, + "probability": 0.9186 + }, + { + "start": 9764.32, + "end": 9765.67, + "probability": 0.972 + }, + { + "start": 9766.8, + "end": 9770.12, + "probability": 0.9234 + }, + { + "start": 9770.82, + "end": 9770.96, + "probability": 0.3753 + }, + { + "start": 9771.02, + "end": 9771.98, + "probability": 0.002 + }, + { + "start": 9772.5, + "end": 9775.12, + "probability": 0.9632 + }, + { + "start": 9775.54, + "end": 9777.23, + "probability": 0.9602 + }, + { + "start": 9778.26, + "end": 9780.47, + "probability": 0.9784 + }, + { + "start": 9781.16, + "end": 9782.68, + "probability": 0.9627 + }, + { + "start": 9783.46, + "end": 9785.58, + "probability": 0.8882 + }, + { + "start": 9787.12, + "end": 9791.44, + "probability": 0.7463 + }, + { + "start": 9791.58, + "end": 9793.86, + "probability": 0.9963 + }, + { + "start": 9793.94, + "end": 9794.32, + "probability": 0.0134 + }, + { + "start": 9794.42, + "end": 9795.46, + "probability": 0.7817 + }, + { + "start": 9796.0, + "end": 9796.6, + "probability": 0.915 + }, + { + "start": 9797.6, + "end": 9799.96, + "probability": 0.9945 + }, + { + "start": 9800.5, + "end": 9803.4, + "probability": 0.8465 + }, + { + "start": 9804.3, + "end": 9805.48, + "probability": 0.7195 + }, + { + "start": 9806.16, + "end": 9807.78, + "probability": 0.6266 + }, + { + "start": 9808.86, + "end": 9810.5, + "probability": 0.9976 + }, + { + "start": 9811.18, + "end": 9812.46, + "probability": 0.9754 + }, + { + "start": 9814.22, + "end": 9815.4, + "probability": 0.9926 + }, + { + "start": 9816.78, + "end": 9817.68, + "probability": 0.8649 + }, + { + "start": 9818.48, + "end": 9819.46, + "probability": 0.8624 + }, + { + "start": 9820.28, + "end": 9821.92, + "probability": 0.7973 + }, + { + "start": 9822.34, + "end": 9823.97, + "probability": 0.5715 + }, + { + "start": 9824.28, + "end": 9824.92, + "probability": 0.6078 + }, + { + "start": 9824.98, + "end": 9825.96, + "probability": 0.7899 + }, + { + "start": 9826.24, + "end": 9828.72, + "probability": 0.8251 + }, + { + "start": 9829.24, + "end": 9830.25, + "probability": 0.9791 + }, + { + "start": 9831.02, + "end": 9832.47, + "probability": 0.9121 + }, + { + "start": 9833.54, + "end": 9834.32, + "probability": 0.4719 + }, + { + "start": 9835.24, + "end": 9839.74, + "probability": 0.8831 + }, + { + "start": 9840.22, + "end": 9841.14, + "probability": 0.598 + }, + { + "start": 9841.44, + "end": 9844.1, + "probability": 0.9565 + }, + { + "start": 9844.72, + "end": 9845.56, + "probability": 0.9468 + }, + { + "start": 9847.42, + "end": 9848.1, + "probability": 0.6351 + }, + { + "start": 9848.24, + "end": 9848.79, + "probability": 0.6545 + }, + { + "start": 9849.18, + "end": 9850.24, + "probability": 0.9192 + }, + { + "start": 9851.42, + "end": 9853.4, + "probability": 0.8141 + }, + { + "start": 9854.92, + "end": 9855.96, + "probability": 0.7176 + }, + { + "start": 9857.16, + "end": 9858.62, + "probability": 0.994 + }, + { + "start": 9858.86, + "end": 9863.78, + "probability": 0.7287 + }, + { + "start": 9863.98, + "end": 9865.24, + "probability": 0.8403 + }, + { + "start": 9865.88, + "end": 9866.92, + "probability": 0.8956 + }, + { + "start": 9870.34, + "end": 9871.26, + "probability": 0.6494 + }, + { + "start": 9872.68, + "end": 9874.48, + "probability": 0.9014 + }, + { + "start": 9875.12, + "end": 9878.28, + "probability": 0.7865 + }, + { + "start": 9878.38, + "end": 9878.94, + "probability": 0.7413 + }, + { + "start": 9880.02, + "end": 9880.72, + "probability": 0.7344 + }, + { + "start": 9882.68, + "end": 9884.62, + "probability": 0.7886 + }, + { + "start": 9885.7, + "end": 9887.34, + "probability": 0.9667 + }, + { + "start": 9888.72, + "end": 9889.56, + "probability": 0.881 + }, + { + "start": 9890.96, + "end": 9892.72, + "probability": 0.8971 + }, + { + "start": 9893.84, + "end": 9896.4, + "probability": 0.9346 + }, + { + "start": 9897.78, + "end": 9899.22, + "probability": 0.8503 + }, + { + "start": 9901.12, + "end": 9903.82, + "probability": 0.8869 + }, + { + "start": 9904.66, + "end": 9906.96, + "probability": 0.9475 + }, + { + "start": 9908.48, + "end": 9909.82, + "probability": 0.9593 + }, + { + "start": 9911.52, + "end": 9914.96, + "probability": 0.9307 + }, + { + "start": 9917.02, + "end": 9918.4, + "probability": 0.674 + }, + { + "start": 9918.44, + "end": 9919.54, + "probability": 0.8576 + }, + { + "start": 9919.98, + "end": 9920.94, + "probability": 0.8328 + }, + { + "start": 9922.88, + "end": 9924.82, + "probability": 0.9069 + }, + { + "start": 9927.76, + "end": 9928.58, + "probability": 0.9541 + }, + { + "start": 9930.04, + "end": 9936.66, + "probability": 0.8636 + }, + { + "start": 9937.0, + "end": 9939.55, + "probability": 0.9047 + }, + { + "start": 9940.62, + "end": 9943.72, + "probability": 0.786 + }, + { + "start": 9943.88, + "end": 9944.3, + "probability": 0.0118 + }, + { + "start": 9944.96, + "end": 9946.24, + "probability": 0.8927 + }, + { + "start": 9946.86, + "end": 9949.56, + "probability": 0.9197 + }, + { + "start": 9950.4, + "end": 9952.32, + "probability": 0.6011 + }, + { + "start": 9953.2, + "end": 9954.92, + "probability": 0.9966 + }, + { + "start": 9955.86, + "end": 9957.16, + "probability": 0.6553 + }, + { + "start": 9957.9, + "end": 9959.04, + "probability": 0.7484 + }, + { + "start": 9959.84, + "end": 9960.96, + "probability": 0.9364 + }, + { + "start": 9961.52, + "end": 9962.84, + "probability": 0.7482 + }, + { + "start": 9963.76, + "end": 9965.5, + "probability": 0.8963 + }, + { + "start": 9967.04, + "end": 9967.86, + "probability": 0.8453 + }, + { + "start": 9968.74, + "end": 9970.34, + "probability": 0.9744 + }, + { + "start": 9970.38, + "end": 9971.22, + "probability": 0.9156 + }, + { + "start": 9971.8, + "end": 9972.51, + "probability": 0.5542 + }, + { + "start": 9972.72, + "end": 9976.08, + "probability": 0.8122 + }, + { + "start": 9976.72, + "end": 9979.24, + "probability": 0.9099 + }, + { + "start": 9979.32, + "end": 9980.26, + "probability": 0.8501 + }, + { + "start": 9980.96, + "end": 9981.91, + "probability": 0.0093 + }, + { + "start": 9984.5, + "end": 9986.68, + "probability": 0.8151 + }, + { + "start": 9987.98, + "end": 9989.1, + "probability": 0.8777 + }, + { + "start": 9990.08, + "end": 9991.52, + "probability": 0.8848 + }, + { + "start": 9993.26, + "end": 9998.04, + "probability": 0.9728 + }, + { + "start": 9998.92, + "end": 10000.14, + "probability": 0.9658 + }, + { + "start": 10000.86, + "end": 10006.08, + "probability": 0.771 + }, + { + "start": 10006.16, + "end": 10008.36, + "probability": 0.891 + }, + { + "start": 10008.84, + "end": 10010.62, + "probability": 0.7219 + }, + { + "start": 10010.72, + "end": 10011.24, + "probability": 0.4741 + }, + { + "start": 10012.06, + "end": 10013.34, + "probability": 0.5206 + }, + { + "start": 10013.42, + "end": 10014.04, + "probability": 0.8969 + }, + { + "start": 10015.28, + "end": 10015.96, + "probability": 0.7151 + }, + { + "start": 10016.02, + "end": 10019.44, + "probability": 0.8608 + }, + { + "start": 10020.16, + "end": 10021.58, + "probability": 0.9978 + }, + { + "start": 10024.92, + "end": 10025.5, + "probability": 0.0155 + }, + { + "start": 10025.5, + "end": 10026.05, + "probability": 0.5284 + }, + { + "start": 10027.42, + "end": 10028.78, + "probability": 0.6891 + }, + { + "start": 10030.24, + "end": 10031.38, + "probability": 0.8106 + }, + { + "start": 10032.92, + "end": 10033.56, + "probability": 0.8129 + }, + { + "start": 10033.74, + "end": 10037.24, + "probability": 0.9266 + }, + { + "start": 10037.7, + "end": 10038.84, + "probability": 0.9768 + }, + { + "start": 10040.06, + "end": 10044.46, + "probability": 0.9084 + }, + { + "start": 10047.36, + "end": 10049.94, + "probability": 0.7476 + }, + { + "start": 10051.78, + "end": 10056.1, + "probability": 0.9369 + }, + { + "start": 10057.1, + "end": 10061.26, + "probability": 0.9924 + }, + { + "start": 10061.64, + "end": 10064.0, + "probability": 0.6194 + }, + { + "start": 10065.8, + "end": 10069.46, + "probability": 0.9915 + }, + { + "start": 10069.46, + "end": 10072.84, + "probability": 0.9985 + }, + { + "start": 10073.76, + "end": 10074.34, + "probability": 0.5465 + }, + { + "start": 10075.66, + "end": 10077.56, + "probability": 0.9538 + }, + { + "start": 10078.04, + "end": 10082.42, + "probability": 0.9901 + }, + { + "start": 10083.52, + "end": 10084.42, + "probability": 0.755 + }, + { + "start": 10085.06, + "end": 10086.11, + "probability": 0.5775 + }, + { + "start": 10087.26, + "end": 10090.12, + "probability": 0.8307 + }, + { + "start": 10090.8, + "end": 10094.46, + "probability": 0.9327 + }, + { + "start": 10096.35, + "end": 10099.68, + "probability": 0.9449 + }, + { + "start": 10100.46, + "end": 10103.25, + "probability": 0.9689 + }, + { + "start": 10103.78, + "end": 10104.6, + "probability": 0.647 + }, + { + "start": 10105.0, + "end": 10106.9, + "probability": 0.969 + }, + { + "start": 10107.54, + "end": 10109.03, + "probability": 0.9658 + }, + { + "start": 10109.5, + "end": 10110.56, + "probability": 0.9863 + }, + { + "start": 10110.68, + "end": 10114.06, + "probability": 0.9929 + }, + { + "start": 10114.2, + "end": 10115.13, + "probability": 0.9834 + }, + { + "start": 10115.78, + "end": 10119.7, + "probability": 0.9553 + }, + { + "start": 10120.8, + "end": 10123.58, + "probability": 0.9812 + }, + { + "start": 10124.88, + "end": 10125.26, + "probability": 0.8295 + }, + { + "start": 10125.4, + "end": 10126.84, + "probability": 0.7655 + }, + { + "start": 10127.3, + "end": 10128.62, + "probability": 0.9985 + }, + { + "start": 10130.44, + "end": 10131.23, + "probability": 0.9621 + }, + { + "start": 10133.56, + "end": 10134.82, + "probability": 0.9593 + }, + { + "start": 10135.72, + "end": 10138.38, + "probability": 0.813 + }, + { + "start": 10139.3, + "end": 10141.66, + "probability": 0.93 + }, + { + "start": 10143.04, + "end": 10146.88, + "probability": 0.8396 + }, + { + "start": 10148.16, + "end": 10150.88, + "probability": 0.9675 + }, + { + "start": 10153.64, + "end": 10154.66, + "probability": 0.8174 + }, + { + "start": 10155.92, + "end": 10157.92, + "probability": 0.9512 + }, + { + "start": 10158.68, + "end": 10160.44, + "probability": 0.8266 + }, + { + "start": 10161.18, + "end": 10162.32, + "probability": 0.9707 + }, + { + "start": 10163.52, + "end": 10164.4, + "probability": 0.7401 + }, + { + "start": 10165.96, + "end": 10168.4, + "probability": 0.9637 + }, + { + "start": 10169.62, + "end": 10173.04, + "probability": 0.8954 + }, + { + "start": 10174.48, + "end": 10176.0, + "probability": 0.7821 + }, + { + "start": 10177.42, + "end": 10184.4, + "probability": 0.9097 + }, + { + "start": 10185.4, + "end": 10189.5, + "probability": 0.9634 + }, + { + "start": 10190.66, + "end": 10192.69, + "probability": 0.8793 + }, + { + "start": 10193.6, + "end": 10194.11, + "probability": 0.8491 + }, + { + "start": 10194.4, + "end": 10197.98, + "probability": 0.9744 + }, + { + "start": 10198.58, + "end": 10199.37, + "probability": 0.9932 + }, + { + "start": 10200.22, + "end": 10201.38, + "probability": 0.9978 + }, + { + "start": 10203.1, + "end": 10207.32, + "probability": 0.9564 + }, + { + "start": 10207.66, + "end": 10208.3, + "probability": 0.8483 + }, + { + "start": 10208.64, + "end": 10209.1, + "probability": 0.856 + }, + { + "start": 10209.2, + "end": 10209.68, + "probability": 0.7898 + }, + { + "start": 10210.24, + "end": 10214.54, + "probability": 0.9371 + }, + { + "start": 10215.2, + "end": 10216.0, + "probability": 0.8145 + }, + { + "start": 10216.54, + "end": 10217.14, + "probability": 0.7647 + }, + { + "start": 10218.08, + "end": 10218.7, + "probability": 0.3681 + }, + { + "start": 10219.76, + "end": 10221.52, + "probability": 0.6269 + }, + { + "start": 10221.8, + "end": 10223.88, + "probability": 0.9785 + }, + { + "start": 10224.38, + "end": 10225.9, + "probability": 0.9383 + }, + { + "start": 10227.24, + "end": 10228.66, + "probability": 0.753 + }, + { + "start": 10229.58, + "end": 10230.98, + "probability": 0.9942 + }, + { + "start": 10231.56, + "end": 10234.24, + "probability": 0.5612 + }, + { + "start": 10235.34, + "end": 10235.78, + "probability": 0.6013 + }, + { + "start": 10237.12, + "end": 10241.44, + "probability": 0.8438 + }, + { + "start": 10242.32, + "end": 10244.09, + "probability": 0.9741 + }, + { + "start": 10244.82, + "end": 10245.76, + "probability": 0.7176 + }, + { + "start": 10247.06, + "end": 10253.16, + "probability": 0.123 + }, + { + "start": 10254.94, + "end": 10255.54, + "probability": 0.088 + }, + { + "start": 10256.54, + "end": 10262.24, + "probability": 0.3572 + }, + { + "start": 10263.32, + "end": 10265.1, + "probability": 0.1078 + }, + { + "start": 10272.88, + "end": 10274.16, + "probability": 0.1327 + }, + { + "start": 10276.56, + "end": 10277.64, + "probability": 0.0224 + }, + { + "start": 10277.64, + "end": 10279.12, + "probability": 0.2208 + }, + { + "start": 10279.18, + "end": 10279.82, + "probability": 0.1624 + }, + { + "start": 10281.33, + "end": 10281.54, + "probability": 0.0429 + }, + { + "start": 10282.5, + "end": 10286.64, + "probability": 0.2284 + }, + { + "start": 10295.46, + "end": 10295.94, + "probability": 0.1044 + }, + { + "start": 10297.18, + "end": 10297.72, + "probability": 0.0323 + }, + { + "start": 10297.72, + "end": 10299.76, + "probability": 0.1368 + }, + { + "start": 10299.84, + "end": 10302.6, + "probability": 0.2629 + }, + { + "start": 10303.38, + "end": 10304.78, + "probability": 0.0379 + }, + { + "start": 10305.8, + "end": 10307.8, + "probability": 0.0953 + }, + { + "start": 10307.98, + "end": 10308.26, + "probability": 0.0562 + }, + { + "start": 10308.26, + "end": 10308.36, + "probability": 0.3298 + }, + { + "start": 10309.08, + "end": 10313.06, + "probability": 0.0255 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.0, + "end": 10314.0, + "probability": 0.0 + }, + { + "start": 10314.2, + "end": 10317.56, + "probability": 0.0694 + }, + { + "start": 10318.42, + "end": 10323.11, + "probability": 0.1726 + }, + { + "start": 10324.58, + "end": 10330.22, + "probability": 0.0882 + }, + { + "start": 10332.36, + "end": 10332.64, + "probability": 0.1094 + }, + { + "start": 10334.58, + "end": 10334.7, + "probability": 0.0054 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.0, + "end": 10434.0, + "probability": 0.0 + }, + { + "start": 10434.38, + "end": 10434.38, + "probability": 0.0431 + }, + { + "start": 10434.38, + "end": 10434.9, + "probability": 0.5687 + }, + { + "start": 10436.16, + "end": 10437.52, + "probability": 0.7028 + }, + { + "start": 10438.3, + "end": 10443.36, + "probability": 0.9818 + }, + { + "start": 10444.86, + "end": 10446.74, + "probability": 0.8036 + }, + { + "start": 10447.76, + "end": 10449.76, + "probability": 0.8105 + }, + { + "start": 10451.02, + "end": 10453.4, + "probability": 0.8779 + }, + { + "start": 10453.74, + "end": 10459.16, + "probability": 0.9971 + }, + { + "start": 10460.18, + "end": 10462.1, + "probability": 0.9185 + }, + { + "start": 10462.92, + "end": 10465.02, + "probability": 0.9941 + }, + { + "start": 10467.58, + "end": 10469.36, + "probability": 0.7026 + }, + { + "start": 10470.46, + "end": 10474.48, + "probability": 0.9713 + }, + { + "start": 10475.6, + "end": 10476.48, + "probability": 0.8252 + }, + { + "start": 10476.7, + "end": 10478.16, + "probability": 0.8898 + }, + { + "start": 10479.2, + "end": 10480.86, + "probability": 0.872 + }, + { + "start": 10482.97, + "end": 10484.92, + "probability": 0.6835 + }, + { + "start": 10485.1, + "end": 10487.28, + "probability": 0.9852 + }, + { + "start": 10488.48, + "end": 10490.56, + "probability": 0.7917 + }, + { + "start": 10491.53, + "end": 10495.08, + "probability": 0.9104 + }, + { + "start": 10496.88, + "end": 10499.72, + "probability": 0.8936 + }, + { + "start": 10501.16, + "end": 10501.98, + "probability": 0.163 + }, + { + "start": 10504.74, + "end": 10505.42, + "probability": 0.0205 + }, + { + "start": 10507.36, + "end": 10511.12, + "probability": 0.0888 + }, + { + "start": 10511.4, + "end": 10513.72, + "probability": 0.1255 + }, + { + "start": 10515.18, + "end": 10515.5, + "probability": 0.0054 + }, + { + "start": 10517.07, + "end": 10519.38, + "probability": 0.1551 + }, + { + "start": 10523.48, + "end": 10523.92, + "probability": 0.1311 + }, + { + "start": 10523.92, + "end": 10528.1, + "probability": 0.1554 + }, + { + "start": 10528.75, + "end": 10529.86, + "probability": 0.2962 + }, + { + "start": 10533.14, + "end": 10534.4, + "probability": 0.1315 + }, + { + "start": 10538.26, + "end": 10538.56, + "probability": 0.0196 + }, + { + "start": 10538.56, + "end": 10540.06, + "probability": 0.036 + }, + { + "start": 10541.54, + "end": 10542.52, + "probability": 0.0375 + }, + { + "start": 10543.81, + "end": 10546.06, + "probability": 0.0877 + }, + { + "start": 10546.36, + "end": 10547.2, + "probability": 0.2438 + }, + { + "start": 10548.97, + "end": 10551.54, + "probability": 0.111 + }, + { + "start": 10551.7, + "end": 10553.04, + "probability": 0.098 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10570.0, + "end": 10570.0, + "probability": 0.0 + }, + { + "start": 10574.42, + "end": 10576.58, + "probability": 0.017 + }, + { + "start": 10581.28, + "end": 10582.33, + "probability": 0.3878 + }, + { + "start": 10584.0, + "end": 10586.26, + "probability": 0.0528 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.32, + "end": 10861.58, + "probability": 0.1015 + }, + { + "start": 10861.76, + "end": 10862.44, + "probability": 0.0087 + }, + { + "start": 10863.65, + "end": 10867.56, + "probability": 0.0466 + }, + { + "start": 10868.62, + "end": 10869.2, + "probability": 0.0597 + }, + { + "start": 10869.2, + "end": 10869.2, + "probability": 0.2568 + }, + { + "start": 10869.2, + "end": 10869.2, + "probability": 0.0185 + }, + { + "start": 10869.2, + "end": 10870.14, + "probability": 0.1007 + }, + { + "start": 10871.16, + "end": 10872.9, + "probability": 0.0056 + }, + { + "start": 10872.9, + "end": 10874.4, + "probability": 0.034 + }, + { + "start": 10874.4, + "end": 10877.02, + "probability": 0.0247 + }, + { + "start": 10877.12, + "end": 10877.48, + "probability": 0.115 + }, + { + "start": 10877.48, + "end": 10878.7, + "probability": 0.0567 + }, + { + "start": 10880.29, + "end": 10880.92, + "probability": 0.0745 + }, + { + "start": 10880.92, + "end": 10882.6, + "probability": 0.0533 + }, + { + "start": 10883.28, + "end": 10883.6, + "probability": 0.0173 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10994.0, + "end": 10994.0, + "probability": 0.0 + }, + { + "start": 10995.12, + "end": 10997.02, + "probability": 0.9561 + }, + { + "start": 10998.8, + "end": 11001.16, + "probability": 0.8674 + }, + { + "start": 11003.6, + "end": 11008.82, + "probability": 0.9956 + }, + { + "start": 11008.94, + "end": 11008.96, + "probability": 0.0232 + }, + { + "start": 11008.96, + "end": 11010.14, + "probability": 0.9967 + }, + { + "start": 11010.66, + "end": 11013.6, + "probability": 0.9881 + }, + { + "start": 11014.26, + "end": 11014.98, + "probability": 0.8948 + }, + { + "start": 11016.94, + "end": 11018.44, + "probability": 0.9874 + }, + { + "start": 11019.28, + "end": 11024.54, + "probability": 0.9938 + }, + { + "start": 11025.62, + "end": 11027.26, + "probability": 0.7073 + }, + { + "start": 11029.12, + "end": 11033.5, + "probability": 0.8977 + }, + { + "start": 11034.06, + "end": 11040.7, + "probability": 0.9937 + }, + { + "start": 11041.98, + "end": 11045.12, + "probability": 0.9992 + }, + { + "start": 11047.66, + "end": 11051.02, + "probability": 0.8099 + }, + { + "start": 11051.82, + "end": 11053.76, + "probability": 0.973 + }, + { + "start": 11054.32, + "end": 11055.04, + "probability": 0.8433 + }, + { + "start": 11056.66, + "end": 11059.42, + "probability": 0.693 + }, + { + "start": 11061.64, + "end": 11064.22, + "probability": 0.957 + }, + { + "start": 11064.88, + "end": 11065.86, + "probability": 0.7928 + }, + { + "start": 11066.18, + "end": 11068.32, + "probability": 0.8621 + }, + { + "start": 11068.72, + "end": 11069.74, + "probability": 0.6379 + }, + { + "start": 11073.78, + "end": 11078.24, + "probability": 0.9834 + }, + { + "start": 11079.26, + "end": 11079.64, + "probability": 0.5419 + }, + { + "start": 11081.94, + "end": 11086.24, + "probability": 0.9946 + }, + { + "start": 11086.4, + "end": 11089.76, + "probability": 0.3377 + }, + { + "start": 11090.62, + "end": 11091.62, + "probability": 0.4156 + }, + { + "start": 11092.3, + "end": 11092.96, + "probability": 0.6633 + }, + { + "start": 11093.7, + "end": 11094.44, + "probability": 0.6382 + }, + { + "start": 11094.52, + "end": 11095.82, + "probability": 0.8648 + }, + { + "start": 11095.92, + "end": 11097.14, + "probability": 0.8952 + }, + { + "start": 11097.28, + "end": 11098.52, + "probability": 0.886 + }, + { + "start": 11098.58, + "end": 11099.3, + "probability": 0.7189 + }, + { + "start": 11101.24, + "end": 11102.56, + "probability": 0.8691 + }, + { + "start": 11102.84, + "end": 11103.58, + "probability": 0.8572 + }, + { + "start": 11104.28, + "end": 11109.16, + "probability": 0.9625 + }, + { + "start": 11110.12, + "end": 11113.76, + "probability": 0.9901 + }, + { + "start": 11114.9, + "end": 11118.3, + "probability": 0.9694 + }, + { + "start": 11118.86, + "end": 11121.44, + "probability": 0.8853 + }, + { + "start": 11122.24, + "end": 11126.1, + "probability": 0.9888 + }, + { + "start": 11126.86, + "end": 11127.66, + "probability": 0.5627 + }, + { + "start": 11127.78, + "end": 11128.88, + "probability": 0.9814 + }, + { + "start": 11132.35, + "end": 11134.6, + "probability": 0.192 + }, + { + "start": 11135.48, + "end": 11135.58, + "probability": 0.7117 + }, + { + "start": 11135.58, + "end": 11135.96, + "probability": 0.798 + }, + { + "start": 11136.48, + "end": 11138.0, + "probability": 0.8164 + }, + { + "start": 11138.0, + "end": 11139.84, + "probability": 0.7906 + }, + { + "start": 11139.84, + "end": 11140.2, + "probability": 0.277 + }, + { + "start": 11140.3, + "end": 11142.02, + "probability": 0.8816 + }, + { + "start": 11143.26, + "end": 11143.44, + "probability": 0.3407 + }, + { + "start": 11143.44, + "end": 11144.27, + "probability": 0.5659 + }, + { + "start": 11144.96, + "end": 11147.76, + "probability": 0.5077 + }, + { + "start": 11149.64, + "end": 11150.41, + "probability": 0.1088 + }, + { + "start": 11151.0, + "end": 11151.0, + "probability": 0.4206 + }, + { + "start": 11151.04, + "end": 11151.14, + "probability": 0.4555 + }, + { + "start": 11151.14, + "end": 11151.94, + "probability": 0.734 + }, + { + "start": 11152.34, + "end": 11153.64, + "probability": 0.8751 + }, + { + "start": 11154.86, + "end": 11156.9, + "probability": 0.9824 + }, + { + "start": 11160.14, + "end": 11162.36, + "probability": 0.5822 + }, + { + "start": 11162.74, + "end": 11164.08, + "probability": 0.2461 + }, + { + "start": 11164.18, + "end": 11165.0, + "probability": 0.5198 + }, + { + "start": 11165.28, + "end": 11167.24, + "probability": 0.6855 + }, + { + "start": 11168.41, + "end": 11172.84, + "probability": 0.6647 + }, + { + "start": 11173.86, + "end": 11175.7, + "probability": 0.8105 + }, + { + "start": 11175.88, + "end": 11176.58, + "probability": 0.1542 + }, + { + "start": 11176.94, + "end": 11183.82, + "probability": 0.9933 + }, + { + "start": 11186.02, + "end": 11190.02, + "probability": 0.8662 + }, + { + "start": 11191.56, + "end": 11197.32, + "probability": 0.9625 + }, + { + "start": 11197.42, + "end": 11198.64, + "probability": 0.6261 + }, + { + "start": 11198.74, + "end": 11202.42, + "probability": 0.8719 + }, + { + "start": 11203.14, + "end": 11204.36, + "probability": 0.8447 + }, + { + "start": 11205.84, + "end": 11209.16, + "probability": 0.8644 + }, + { + "start": 11209.9, + "end": 11210.26, + "probability": 0.8813 + }, + { + "start": 11211.38, + "end": 11214.8, + "probability": 0.9332 + }, + { + "start": 11215.58, + "end": 11219.22, + "probability": 0.7942 + }, + { + "start": 11220.64, + "end": 11228.46, + "probability": 0.948 + }, + { + "start": 11229.92, + "end": 11230.76, + "probability": 0.9933 + }, + { + "start": 11231.5, + "end": 11233.7, + "probability": 0.953 + }, + { + "start": 11234.38, + "end": 11236.84, + "probability": 0.8409 + }, + { + "start": 11236.96, + "end": 11238.46, + "probability": 0.418 + }, + { + "start": 11238.52, + "end": 11239.06, + "probability": 0.8776 + }, + { + "start": 11240.1, + "end": 11242.12, + "probability": 0.4006 + }, + { + "start": 11242.92, + "end": 11246.72, + "probability": 0.7524 + }, + { + "start": 11246.78, + "end": 11247.06, + "probability": 0.7013 + }, + { + "start": 11248.06, + "end": 11251.94, + "probability": 0.978 + }, + { + "start": 11252.16, + "end": 11253.86, + "probability": 0.9893 + }, + { + "start": 11254.5, + "end": 11256.48, + "probability": 0.9945 + }, + { + "start": 11258.68, + "end": 11260.48, + "probability": 0.9706 + }, + { + "start": 11261.52, + "end": 11262.12, + "probability": 0.8429 + }, + { + "start": 11262.24, + "end": 11263.94, + "probability": 0.9684 + }, + { + "start": 11264.1, + "end": 11265.34, + "probability": 0.952 + }, + { + "start": 11265.44, + "end": 11266.26, + "probability": 0.5862 + }, + { + "start": 11266.88, + "end": 11267.96, + "probability": 0.9439 + }, + { + "start": 11268.2, + "end": 11268.36, + "probability": 0.7313 + }, + { + "start": 11268.64, + "end": 11270.74, + "probability": 0.3918 + }, + { + "start": 11270.74, + "end": 11270.88, + "probability": 0.4761 + }, + { + "start": 11271.34, + "end": 11271.76, + "probability": 0.5163 + }, + { + "start": 11271.96, + "end": 11278.08, + "probability": 0.9845 + }, + { + "start": 11278.48, + "end": 11284.66, + "probability": 0.7341 + }, + { + "start": 11287.39, + "end": 11290.12, + "probability": 0.8884 + }, + { + "start": 11291.92, + "end": 11297.64, + "probability": 0.7204 + }, + { + "start": 11298.18, + "end": 11300.78, + "probability": 0.84 + }, + { + "start": 11300.88, + "end": 11301.66, + "probability": 0.8784 + }, + { + "start": 11301.86, + "end": 11302.82, + "probability": 0.5589 + }, + { + "start": 11303.56, + "end": 11304.05, + "probability": 0.8632 + }, + { + "start": 11304.56, + "end": 11304.84, + "probability": 0.9594 + }, + { + "start": 11304.96, + "end": 11310.02, + "probability": 0.9827 + }, + { + "start": 11310.64, + "end": 11314.6, + "probability": 0.9868 + }, + { + "start": 11315.06, + "end": 11317.0, + "probability": 0.9613 + }, + { + "start": 11318.68, + "end": 11322.12, + "probability": 0.0321 + }, + { + "start": 11324.2, + "end": 11325.1, + "probability": 0.0126 + }, + { + "start": 11326.58, + "end": 11329.88, + "probability": 0.1364 + }, + { + "start": 11330.09, + "end": 11332.9, + "probability": 0.0646 + }, + { + "start": 11333.78, + "end": 11339.62, + "probability": 0.1141 + }, + { + "start": 11340.44, + "end": 11341.86, + "probability": 0.0592 + }, + { + "start": 11342.4, + "end": 11343.69, + "probability": 0.1999 + }, + { + "start": 11345.04, + "end": 11346.78, + "probability": 0.0336 + }, + { + "start": 11347.66, + "end": 11353.88, + "probability": 0.1001 + }, + { + "start": 11355.0, + "end": 11358.46, + "probability": 0.0405 + }, + { + "start": 11359.26, + "end": 11361.36, + "probability": 0.481 + }, + { + "start": 11381.42, + "end": 11383.39, + "probability": 0.0418 + }, + { + "start": 11385.0, + "end": 11385.5, + "probability": 0.2003 + }, + { + "start": 11385.5, + "end": 11390.16, + "probability": 0.0655 + }, + { + "start": 11390.62, + "end": 11390.74, + "probability": 0.0076 + }, + { + "start": 11391.04, + "end": 11397.16, + "probability": 0.0137 + }, + { + "start": 11399.38, + "end": 11401.18, + "probability": 0.0985 + }, + { + "start": 11402.17, + "end": 11405.06, + "probability": 0.0042 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.32, + "end": 11593.32, + "probability": 0.3565 + }, + { + "start": 11593.32, + "end": 11594.22, + "probability": 0.1045 + }, + { + "start": 11594.22, + "end": 11594.64, + "probability": 0.2298 + }, + { + "start": 11595.34, + "end": 11599.6, + "probability": 0.7683 + }, + { + "start": 11600.44, + "end": 11603.14, + "probability": 0.5999 + }, + { + "start": 11603.8, + "end": 11607.4, + "probability": 0.5685 + }, + { + "start": 11607.5, + "end": 11608.64, + "probability": 0.9844 + }, + { + "start": 11608.88, + "end": 11612.5, + "probability": 0.725 + }, + { + "start": 11620.78, + "end": 11621.26, + "probability": 0.8473 + }, + { + "start": 11631.3, + "end": 11632.74, + "probability": 0.6868 + }, + { + "start": 11636.1, + "end": 11638.28, + "probability": 0.5291 + }, + { + "start": 11641.92, + "end": 11643.36, + "probability": 0.9263 + }, + { + "start": 11643.54, + "end": 11644.3, + "probability": 0.7585 + }, + { + "start": 11644.38, + "end": 11645.64, + "probability": 0.9677 + }, + { + "start": 11645.7, + "end": 11646.42, + "probability": 0.8592 + }, + { + "start": 11647.36, + "end": 11653.08, + "probability": 0.9849 + }, + { + "start": 11653.26, + "end": 11653.94, + "probability": 0.8323 + }, + { + "start": 11654.92, + "end": 11656.4, + "probability": 0.9608 + }, + { + "start": 11657.16, + "end": 11657.54, + "probability": 0.8481 + }, + { + "start": 11657.92, + "end": 11658.56, + "probability": 0.4097 + }, + { + "start": 11658.76, + "end": 11660.14, + "probability": 0.706 + }, + { + "start": 11660.6, + "end": 11662.62, + "probability": 0.99 + }, + { + "start": 11663.3, + "end": 11664.38, + "probability": 0.8481 + }, + { + "start": 11666.66, + "end": 11669.46, + "probability": 0.9236 + }, + { + "start": 11670.24, + "end": 11671.8, + "probability": 0.9138 + }, + { + "start": 11672.7, + "end": 11673.96, + "probability": 0.9741 + }, + { + "start": 11674.04, + "end": 11674.9, + "probability": 0.9324 + }, + { + "start": 11675.04, + "end": 11676.36, + "probability": 0.9468 + }, + { + "start": 11677.98, + "end": 11680.26, + "probability": 0.7822 + }, + { + "start": 11681.52, + "end": 11683.02, + "probability": 0.9171 + }, + { + "start": 11683.66, + "end": 11685.46, + "probability": 0.9929 + }, + { + "start": 11685.54, + "end": 11686.36, + "probability": 0.9901 + }, + { + "start": 11687.88, + "end": 11689.8, + "probability": 0.9629 + }, + { + "start": 11690.7, + "end": 11693.08, + "probability": 0.9485 + }, + { + "start": 11694.16, + "end": 11694.86, + "probability": 0.9463 + }, + { + "start": 11694.86, + "end": 11695.82, + "probability": 0.9973 + }, + { + "start": 11702.5, + "end": 11703.68, + "probability": 0.9144 + }, + { + "start": 11705.4, + "end": 11711.56, + "probability": 0.9359 + }, + { + "start": 11711.58, + "end": 11714.62, + "probability": 0.7607 + }, + { + "start": 11714.92, + "end": 11716.54, + "probability": 0.8581 + }, + { + "start": 11717.92, + "end": 11723.56, + "probability": 0.9838 + }, + { + "start": 11725.1, + "end": 11726.34, + "probability": 0.9502 + }, + { + "start": 11726.44, + "end": 11727.2, + "probability": 0.9678 + }, + { + "start": 11727.5, + "end": 11731.42, + "probability": 0.9657 + }, + { + "start": 11732.04, + "end": 11733.38, + "probability": 0.9324 + }, + { + "start": 11734.28, + "end": 11735.36, + "probability": 0.3576 + }, + { + "start": 11735.58, + "end": 11738.5, + "probability": 0.9719 + }, + { + "start": 11739.28, + "end": 11740.86, + "probability": 0.6428 + }, + { + "start": 11740.94, + "end": 11741.94, + "probability": 0.9628 + }, + { + "start": 11742.76, + "end": 11747.42, + "probability": 0.9692 + }, + { + "start": 11748.13, + "end": 11750.54, + "probability": 0.752 + }, + { + "start": 11750.86, + "end": 11753.04, + "probability": 0.9871 + }, + { + "start": 11753.32, + "end": 11755.5, + "probability": 0.9941 + }, + { + "start": 11756.7, + "end": 11761.12, + "probability": 0.9913 + }, + { + "start": 11761.48, + "end": 11763.7, + "probability": 0.474 + }, + { + "start": 11764.24, + "end": 11768.54, + "probability": 0.2259 + }, + { + "start": 11770.12, + "end": 11771.36, + "probability": 0.1788 + }, + { + "start": 11772.42, + "end": 11774.24, + "probability": 0.9256 + }, + { + "start": 11776.84, + "end": 11778.56, + "probability": 0.9794 + }, + { + "start": 11778.64, + "end": 11781.76, + "probability": 0.6881 + }, + { + "start": 11782.04, + "end": 11784.52, + "probability": 0.7243 + }, + { + "start": 11785.74, + "end": 11788.2, + "probability": 0.9346 + }, + { + "start": 11790.31, + "end": 11793.06, + "probability": 0.9973 + }, + { + "start": 11794.1, + "end": 11799.14, + "probability": 0.9951 + }, + { + "start": 11799.52, + "end": 11801.26, + "probability": 0.9907 + }, + { + "start": 11802.2, + "end": 11805.86, + "probability": 0.9926 + }, + { + "start": 11806.5, + "end": 11810.98, + "probability": 0.8677 + }, + { + "start": 11811.7, + "end": 11813.48, + "probability": 0.9422 + }, + { + "start": 11814.2, + "end": 11819.72, + "probability": 0.9683 + }, + { + "start": 11819.72, + "end": 11823.32, + "probability": 0.9932 + }, + { + "start": 11823.38, + "end": 11824.04, + "probability": 0.8854 + }, + { + "start": 11824.94, + "end": 11826.48, + "probability": 0.9971 + }, + { + "start": 11827.12, + "end": 11828.38, + "probability": 0.9151 + }, + { + "start": 11829.06, + "end": 11830.2, + "probability": 0.7504 + }, + { + "start": 11830.74, + "end": 11831.44, + "probability": 0.5843 + }, + { + "start": 11832.48, + "end": 11834.86, + "probability": 0.9674 + }, + { + "start": 11836.72, + "end": 11839.12, + "probability": 0.9946 + }, + { + "start": 11839.2, + "end": 11840.66, + "probability": 0.9902 + }, + { + "start": 11841.74, + "end": 11842.64, + "probability": 0.9087 + }, + { + "start": 11844.0, + "end": 11844.41, + "probability": 0.9956 + }, + { + "start": 11845.54, + "end": 11846.02, + "probability": 0.5229 + }, + { + "start": 11846.58, + "end": 11847.9, + "probability": 0.9708 + }, + { + "start": 11848.38, + "end": 11849.67, + "probability": 0.9518 + }, + { + "start": 11850.76, + "end": 11851.97, + "probability": 0.9813 + }, + { + "start": 11852.96, + "end": 11853.84, + "probability": 0.5027 + }, + { + "start": 11854.24, + "end": 11855.65, + "probability": 0.9938 + }, + { + "start": 11856.44, + "end": 11857.84, + "probability": 0.7293 + }, + { + "start": 11858.4, + "end": 11859.99, + "probability": 0.9844 + }, + { + "start": 11860.4, + "end": 11862.07, + "probability": 0.9862 + }, + { + "start": 11862.5, + "end": 11863.08, + "probability": 0.5214 + }, + { + "start": 11863.14, + "end": 11864.06, + "probability": 0.8937 + }, + { + "start": 11864.7, + "end": 11868.98, + "probability": 0.9578 + }, + { + "start": 11869.18, + "end": 11870.6, + "probability": 0.8767 + }, + { + "start": 11872.0, + "end": 11874.16, + "probability": 0.9926 + }, + { + "start": 11875.1, + "end": 11878.76, + "probability": 0.9373 + }, + { + "start": 11880.16, + "end": 11882.66, + "probability": 0.7653 + }, + { + "start": 11884.66, + "end": 11887.66, + "probability": 0.7107 + }, + { + "start": 11888.34, + "end": 11890.04, + "probability": 0.9064 + }, + { + "start": 11891.72, + "end": 11892.6, + "probability": 0.9717 + }, + { + "start": 11893.84, + "end": 11898.8, + "probability": 0.9966 + }, + { + "start": 11900.42, + "end": 11901.14, + "probability": 0.4888 + }, + { + "start": 11902.36, + "end": 11905.34, + "probability": 0.917 + }, + { + "start": 11906.44, + "end": 11907.72, + "probability": 0.9724 + }, + { + "start": 11910.14, + "end": 11911.46, + "probability": 0.9832 + }, + { + "start": 11911.66, + "end": 11913.6, + "probability": 0.9172 + }, + { + "start": 11913.64, + "end": 11914.77, + "probability": 0.9156 + }, + { + "start": 11916.32, + "end": 11917.12, + "probability": 0.9827 + }, + { + "start": 11917.2, + "end": 11917.88, + "probability": 0.8474 + }, + { + "start": 11917.98, + "end": 11919.92, + "probability": 0.5827 + }, + { + "start": 11921.3, + "end": 11922.64, + "probability": 0.9879 + }, + { + "start": 11923.62, + "end": 11925.02, + "probability": 0.9909 + }, + { + "start": 11927.22, + "end": 11927.81, + "probability": 0.5194 + }, + { + "start": 11928.5, + "end": 11929.28, + "probability": 0.416 + }, + { + "start": 11930.08, + "end": 11930.99, + "probability": 0.9636 + }, + { + "start": 11932.79, + "end": 11940.26, + "probability": 0.7554 + }, + { + "start": 11940.26, + "end": 11941.16, + "probability": 0.693 + }, + { + "start": 11941.96, + "end": 11945.22, + "probability": 0.9282 + }, + { + "start": 11945.36, + "end": 11945.94, + "probability": 0.6456 + }, + { + "start": 11945.98, + "end": 11947.14, + "probability": 0.9585 + }, + { + "start": 11948.2, + "end": 11948.92, + "probability": 0.9192 + }, + { + "start": 11949.52, + "end": 11951.46, + "probability": 0.7776 + }, + { + "start": 11951.86, + "end": 11952.96, + "probability": 0.7229 + }, + { + "start": 11953.02, + "end": 11955.62, + "probability": 0.9951 + }, + { + "start": 11955.72, + "end": 11956.52, + "probability": 0.6039 + }, + { + "start": 11957.0, + "end": 11958.66, + "probability": 0.9498 + }, + { + "start": 11958.78, + "end": 11962.26, + "probability": 0.5702 + }, + { + "start": 11962.38, + "end": 11965.64, + "probability": 0.9412 + }, + { + "start": 11966.4, + "end": 11967.46, + "probability": 0.8606 + }, + { + "start": 11969.84, + "end": 11969.86, + "probability": 0.462 + }, + { + "start": 11970.02, + "end": 11973.8, + "probability": 0.9834 + }, + { + "start": 11975.44, + "end": 11979.4, + "probability": 0.9579 + }, + { + "start": 11981.61, + "end": 11984.46, + "probability": 0.9915 + }, + { + "start": 11985.16, + "end": 11987.58, + "probability": 0.8943 + }, + { + "start": 11987.66, + "end": 11989.22, + "probability": 0.9955 + }, + { + "start": 11989.38, + "end": 11991.2, + "probability": 0.9702 + }, + { + "start": 11991.8, + "end": 11996.24, + "probability": 0.9858 + }, + { + "start": 11996.28, + "end": 11997.2, + "probability": 0.6427 + }, + { + "start": 11998.1, + "end": 11999.3, + "probability": 0.998 + }, + { + "start": 11999.5, + "end": 12000.88, + "probability": 0.5583 + }, + { + "start": 12001.18, + "end": 12002.6, + "probability": 0.7826 + }, + { + "start": 12003.16, + "end": 12004.27, + "probability": 0.9856 + }, + { + "start": 12005.04, + "end": 12006.04, + "probability": 0.9425 + }, + { + "start": 12006.54, + "end": 12007.17, + "probability": 0.9644 + }, + { + "start": 12008.92, + "end": 12010.35, + "probability": 0.9618 + }, + { + "start": 12010.58, + "end": 12011.94, + "probability": 0.7427 + }, + { + "start": 12012.02, + "end": 12013.83, + "probability": 0.9907 + }, + { + "start": 12014.34, + "end": 12017.84, + "probability": 0.9646 + }, + { + "start": 12018.96, + "end": 12019.12, + "probability": 0.6851 + }, + { + "start": 12019.2, + "end": 12020.68, + "probability": 0.8847 + }, + { + "start": 12020.72, + "end": 12023.66, + "probability": 0.8813 + }, + { + "start": 12024.44, + "end": 12027.46, + "probability": 0.5464 + }, + { + "start": 12027.86, + "end": 12027.86, + "probability": 0.6042 + }, + { + "start": 12027.86, + "end": 12028.38, + "probability": 0.5137 + }, + { + "start": 12028.84, + "end": 12030.24, + "probability": 0.7997 + }, + { + "start": 12030.44, + "end": 12032.1, + "probability": 0.9829 + }, + { + "start": 12032.22, + "end": 12033.12, + "probability": 0.7993 + }, + { + "start": 12033.12, + "end": 12034.22, + "probability": 0.5757 + }, + { + "start": 12034.7, + "end": 12035.76, + "probability": 0.6846 + }, + { + "start": 12035.96, + "end": 12036.22, + "probability": 0.902 + }, + { + "start": 12036.3, + "end": 12037.1, + "probability": 0.8187 + }, + { + "start": 12037.24, + "end": 12038.02, + "probability": 0.6207 + }, + { + "start": 12038.52, + "end": 12040.26, + "probability": 0.9538 + }, + { + "start": 12040.56, + "end": 12042.24, + "probability": 0.9003 + }, + { + "start": 12042.44, + "end": 12046.62, + "probability": 0.988 + }, + { + "start": 12047.06, + "end": 12049.74, + "probability": 0.9945 + }, + { + "start": 12049.9, + "end": 12051.52, + "probability": 0.6123 + }, + { + "start": 12051.72, + "end": 12053.56, + "probability": 0.9297 + }, + { + "start": 12054.56, + "end": 12056.18, + "probability": 0.9385 + }, + { + "start": 12056.42, + "end": 12059.13, + "probability": 0.9259 + }, + { + "start": 12059.16, + "end": 12060.84, + "probability": 0.9133 + }, + { + "start": 12061.1, + "end": 12062.44, + "probability": 0.4222 + }, + { + "start": 12062.58, + "end": 12063.92, + "probability": 0.9646 + }, + { + "start": 12064.5, + "end": 12067.76, + "probability": 0.9951 + }, + { + "start": 12068.24, + "end": 12068.94, + "probability": 0.2247 + }, + { + "start": 12069.06, + "end": 12075.04, + "probability": 0.9561 + }, + { + "start": 12075.42, + "end": 12076.26, + "probability": 0.9033 + }, + { + "start": 12076.4, + "end": 12079.36, + "probability": 0.7675 + }, + { + "start": 12079.64, + "end": 12081.06, + "probability": 0.8765 + }, + { + "start": 12081.06, + "end": 12081.56, + "probability": 0.1307 + }, + { + "start": 12081.56, + "end": 12082.6, + "probability": 0.2517 + }, + { + "start": 12083.0, + "end": 12084.34, + "probability": 0.9656 + }, + { + "start": 12084.9, + "end": 12086.66, + "probability": 0.9554 + }, + { + "start": 12086.66, + "end": 12087.27, + "probability": 0.4068 + }, + { + "start": 12088.04, + "end": 12089.2, + "probability": 0.6214 + }, + { + "start": 12089.78, + "end": 12095.2, + "probability": 0.7439 + }, + { + "start": 12095.2, + "end": 12097.34, + "probability": 0.1659 + }, + { + "start": 12097.56, + "end": 12099.48, + "probability": 0.9561 + }, + { + "start": 12099.72, + "end": 12100.64, + "probability": 0.8033 + }, + { + "start": 12100.82, + "end": 12103.06, + "probability": 0.9131 + }, + { + "start": 12103.58, + "end": 12107.34, + "probability": 0.9119 + }, + { + "start": 12107.56, + "end": 12108.74, + "probability": 0.9095 + }, + { + "start": 12108.76, + "end": 12109.72, + "probability": 0.945 + }, + { + "start": 12109.86, + "end": 12110.59, + "probability": 0.884 + }, + { + "start": 12110.8, + "end": 12113.6, + "probability": 0.9246 + }, + { + "start": 12113.7, + "end": 12114.82, + "probability": 0.7559 + }, + { + "start": 12115.18, + "end": 12117.9, + "probability": 0.7675 + }, + { + "start": 12118.02, + "end": 12119.16, + "probability": 0.6041 + }, + { + "start": 12119.2, + "end": 12121.7, + "probability": 0.9491 + }, + { + "start": 12121.74, + "end": 12122.18, + "probability": 0.2544 + }, + { + "start": 12122.36, + "end": 12123.14, + "probability": 0.1792 + }, + { + "start": 12123.14, + "end": 12123.44, + "probability": 0.0971 + }, + { + "start": 12124.22, + "end": 12126.36, + "probability": 0.6046 + }, + { + "start": 12126.36, + "end": 12126.36, + "probability": 0.2299 + }, + { + "start": 12126.36, + "end": 12128.16, + "probability": 0.6819 + }, + { + "start": 12128.48, + "end": 12131.24, + "probability": 0.7834 + }, + { + "start": 12131.48, + "end": 12132.18, + "probability": 0.4848 + }, + { + "start": 12132.26, + "end": 12133.02, + "probability": 0.7395 + }, + { + "start": 12133.28, + "end": 12135.18, + "probability": 0.9923 + }, + { + "start": 12136.34, + "end": 12138.52, + "probability": 0.951 + }, + { + "start": 12138.8, + "end": 12140.96, + "probability": 0.9969 + }, + { + "start": 12140.98, + "end": 12142.1, + "probability": 0.8243 + }, + { + "start": 12142.14, + "end": 12142.2, + "probability": 0.0091 + }, + { + "start": 12142.34, + "end": 12144.87, + "probability": 0.7059 + }, + { + "start": 12145.26, + "end": 12146.36, + "probability": 0.6679 + }, + { + "start": 12146.82, + "end": 12149.29, + "probability": 0.9204 + }, + { + "start": 12149.82, + "end": 12152.46, + "probability": 0.8881 + }, + { + "start": 12152.82, + "end": 12153.56, + "probability": 0.7506 + }, + { + "start": 12153.8, + "end": 12155.46, + "probability": 0.8518 + }, + { + "start": 12155.98, + "end": 12157.38, + "probability": 0.7426 + }, + { + "start": 12157.4, + "end": 12159.61, + "probability": 0.9912 + }, + { + "start": 12160.64, + "end": 12166.9, + "probability": 0.8384 + }, + { + "start": 12167.76, + "end": 12168.22, + "probability": 0.7883 + }, + { + "start": 12168.3, + "end": 12169.76, + "probability": 0.7881 + }, + { + "start": 12170.04, + "end": 12172.08, + "probability": 0.9333 + }, + { + "start": 12172.3, + "end": 12175.72, + "probability": 0.9467 + }, + { + "start": 12175.72, + "end": 12177.07, + "probability": 0.128 + }, + { + "start": 12179.1, + "end": 12179.62, + "probability": 0.0991 + }, + { + "start": 12179.72, + "end": 12180.28, + "probability": 0.393 + }, + { + "start": 12180.28, + "end": 12180.28, + "probability": 0.0033 + }, + { + "start": 12180.28, + "end": 12180.28, + "probability": 0.0815 + }, + { + "start": 12180.28, + "end": 12180.64, + "probability": 0.4367 + }, + { + "start": 12181.52, + "end": 12183.96, + "probability": 0.4245 + }, + { + "start": 12184.26, + "end": 12185.0, + "probability": 0.2607 + }, + { + "start": 12185.56, + "end": 12187.0, + "probability": 0.3121 + }, + { + "start": 12187.62, + "end": 12191.08, + "probability": 0.0092 + }, + { + "start": 12192.28, + "end": 12198.24, + "probability": 0.1196 + }, + { + "start": 12201.34, + "end": 12202.3, + "probability": 0.0378 + }, + { + "start": 12202.3, + "end": 12202.52, + "probability": 0.0945 + }, + { + "start": 12202.52, + "end": 12205.76, + "probability": 0.0173 + }, + { + "start": 12206.01, + "end": 12207.3, + "probability": 0.1058 + }, + { + "start": 12207.9, + "end": 12209.54, + "probability": 0.0143 + }, + { + "start": 12209.54, + "end": 12209.58, + "probability": 0.0156 + }, + { + "start": 12210.0, + "end": 12213.46, + "probability": 0.101 + }, + { + "start": 12213.46, + "end": 12213.46, + "probability": 0.0498 + }, + { + "start": 12213.46, + "end": 12215.6, + "probability": 0.0567 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.0, + "end": 12262.0, + "probability": 0.0 + }, + { + "start": 12262.22, + "end": 12262.24, + "probability": 0.0377 + }, + { + "start": 12262.24, + "end": 12262.95, + "probability": 0.5267 + }, + { + "start": 12264.1, + "end": 12265.56, + "probability": 0.653 + }, + { + "start": 12266.08, + "end": 12269.28, + "probability": 0.8552 + }, + { + "start": 12270.4, + "end": 12272.06, + "probability": 0.5769 + }, + { + "start": 12272.96, + "end": 12278.52, + "probability": 0.7485 + }, + { + "start": 12279.78, + "end": 12285.02, + "probability": 0.9683 + }, + { + "start": 12285.02, + "end": 12291.4, + "probability": 0.9915 + }, + { + "start": 12292.14, + "end": 12295.08, + "probability": 0.936 + }, + { + "start": 12296.92, + "end": 12302.16, + "probability": 0.9756 + }, + { + "start": 12302.9, + "end": 12304.05, + "probability": 0.8663 + }, + { + "start": 12305.52, + "end": 12308.98, + "probability": 0.9579 + }, + { + "start": 12309.94, + "end": 12311.26, + "probability": 0.9417 + }, + { + "start": 12312.52, + "end": 12322.5, + "probability": 0.913 + }, + { + "start": 12322.9, + "end": 12323.99, + "probability": 0.5361 + }, + { + "start": 12325.86, + "end": 12327.98, + "probability": 0.7623 + }, + { + "start": 12330.42, + "end": 12333.02, + "probability": 0.5564 + }, + { + "start": 12333.58, + "end": 12337.2, + "probability": 0.9584 + }, + { + "start": 12338.56, + "end": 12340.1, + "probability": 0.8215 + }, + { + "start": 12340.4, + "end": 12340.56, + "probability": 0.5408 + }, + { + "start": 12340.76, + "end": 12345.04, + "probability": 0.7698 + }, + { + "start": 12345.58, + "end": 12346.88, + "probability": 0.7397 + }, + { + "start": 12350.78, + "end": 12357.94, + "probability": 0.906 + }, + { + "start": 12360.52, + "end": 12362.78, + "probability": 0.9806 + }, + { + "start": 12363.34, + "end": 12365.8, + "probability": 0.7012 + }, + { + "start": 12367.56, + "end": 12369.98, + "probability": 0.9985 + }, + { + "start": 12372.22, + "end": 12376.04, + "probability": 0.8363 + }, + { + "start": 12376.76, + "end": 12377.75, + "probability": 0.8845 + }, + { + "start": 12378.04, + "end": 12380.26, + "probability": 0.8704 + }, + { + "start": 12380.74, + "end": 12381.8, + "probability": 0.809 + }, + { + "start": 12382.74, + "end": 12389.2, + "probability": 0.9907 + }, + { + "start": 12389.42, + "end": 12389.94, + "probability": 0.8967 + }, + { + "start": 12390.1, + "end": 12390.94, + "probability": 0.9012 + }, + { + "start": 12391.2, + "end": 12392.22, + "probability": 0.8133 + }, + { + "start": 12393.2, + "end": 12396.83, + "probability": 0.7351 + }, + { + "start": 12398.4, + "end": 12401.18, + "probability": 0.9661 + }, + { + "start": 12401.64, + "end": 12406.98, + "probability": 0.7776 + }, + { + "start": 12408.16, + "end": 12412.66, + "probability": 0.8131 + }, + { + "start": 12412.66, + "end": 12418.2, + "probability": 0.9908 + }, + { + "start": 12418.68, + "end": 12421.68, + "probability": 0.9148 + }, + { + "start": 12422.56, + "end": 12426.28, + "probability": 0.9798 + }, + { + "start": 12426.28, + "end": 12430.02, + "probability": 0.9935 + }, + { + "start": 12431.28, + "end": 12435.2, + "probability": 0.9426 + }, + { + "start": 12435.2, + "end": 12439.12, + "probability": 0.9174 + }, + { + "start": 12439.36, + "end": 12440.64, + "probability": 0.4785 + }, + { + "start": 12441.3, + "end": 12443.7, + "probability": 0.8581 + }, + { + "start": 12444.6, + "end": 12446.66, + "probability": 0.665 + }, + { + "start": 12447.44, + "end": 12451.72, + "probability": 0.952 + }, + { + "start": 12451.9, + "end": 12455.88, + "probability": 0.9816 + }, + { + "start": 12457.16, + "end": 12462.38, + "probability": 0.9071 + }, + { + "start": 12463.1, + "end": 12465.58, + "probability": 0.9338 + }, + { + "start": 12466.46, + "end": 12469.52, + "probability": 0.9546 + }, + { + "start": 12469.52, + "end": 12472.58, + "probability": 0.9753 + }, + { + "start": 12473.46, + "end": 12481.64, + "probability": 0.9648 + }, + { + "start": 12483.12, + "end": 12485.76, + "probability": 0.4727 + }, + { + "start": 12486.48, + "end": 12492.26, + "probability": 0.9702 + }, + { + "start": 12492.94, + "end": 12497.08, + "probability": 0.8498 + }, + { + "start": 12497.08, + "end": 12503.42, + "probability": 0.8908 + }, + { + "start": 12503.64, + "end": 12511.64, + "probability": 0.9812 + }, + { + "start": 12512.02, + "end": 12514.18, + "probability": 0.8334 + }, + { + "start": 12514.66, + "end": 12521.16, + "probability": 0.6714 + }, + { + "start": 12521.86, + "end": 12526.44, + "probability": 0.9509 + }, + { + "start": 12527.46, + "end": 12535.32, + "probability": 0.9783 + }, + { + "start": 12536.18, + "end": 12540.3, + "probability": 0.9849 + }, + { + "start": 12540.66, + "end": 12544.64, + "probability": 0.9532 + }, + { + "start": 12544.64, + "end": 12548.22, + "probability": 0.9889 + }, + { + "start": 12549.26, + "end": 12549.94, + "probability": 0.806 + }, + { + "start": 12550.1, + "end": 12552.36, + "probability": 0.884 + }, + { + "start": 12552.6, + "end": 12554.64, + "probability": 0.943 + }, + { + "start": 12555.06, + "end": 12560.1, + "probability": 0.9137 + }, + { + "start": 12560.66, + "end": 12562.64, + "probability": 0.9705 + }, + { + "start": 12563.6, + "end": 12566.86, + "probability": 0.8954 + }, + { + "start": 12567.56, + "end": 12570.58, + "probability": 0.8747 + }, + { + "start": 12570.58, + "end": 12574.18, + "probability": 0.978 + }, + { + "start": 12574.48, + "end": 12577.26, + "probability": 0.8359 + }, + { + "start": 12577.78, + "end": 12581.2, + "probability": 0.7044 + }, + { + "start": 12581.86, + "end": 12587.1, + "probability": 0.9568 + }, + { + "start": 12587.52, + "end": 12593.62, + "probability": 0.9392 + }, + { + "start": 12594.06, + "end": 12600.82, + "probability": 0.96 + }, + { + "start": 12602.57, + "end": 12608.26, + "probability": 0.9948 + }, + { + "start": 12608.4, + "end": 12613.78, + "probability": 0.993 + }, + { + "start": 12614.32, + "end": 12616.18, + "probability": 0.9958 + }, + { + "start": 12616.34, + "end": 12617.18, + "probability": 0.9779 + }, + { + "start": 12617.28, + "end": 12619.37, + "probability": 0.7417 + }, + { + "start": 12619.64, + "end": 12621.0, + "probability": 0.4959 + }, + { + "start": 12621.36, + "end": 12622.86, + "probability": 0.857 + }, + { + "start": 12622.94, + "end": 12623.88, + "probability": 0.891 + }, + { + "start": 12624.02, + "end": 12624.81, + "probability": 0.9052 + }, + { + "start": 12625.36, + "end": 12628.78, + "probability": 0.8831 + }, + { + "start": 12628.78, + "end": 12634.86, + "probability": 0.9768 + }, + { + "start": 12635.2, + "end": 12639.58, + "probability": 0.9606 + }, + { + "start": 12640.16, + "end": 12643.48, + "probability": 0.9958 + }, + { + "start": 12644.2, + "end": 12650.96, + "probability": 0.9839 + }, + { + "start": 12650.96, + "end": 12656.58, + "probability": 0.993 + }, + { + "start": 12656.74, + "end": 12661.66, + "probability": 0.9939 + }, + { + "start": 12661.66, + "end": 12667.56, + "probability": 0.9688 + }, + { + "start": 12668.16, + "end": 12671.98, + "probability": 0.9949 + }, + { + "start": 12671.98, + "end": 12677.02, + "probability": 0.9698 + }, + { + "start": 12677.94, + "end": 12682.96, + "probability": 0.8988 + }, + { + "start": 12682.96, + "end": 12688.58, + "probability": 0.9775 + }, + { + "start": 12689.02, + "end": 12690.18, + "probability": 0.6021 + }, + { + "start": 12690.38, + "end": 12694.2, + "probability": 0.9463 + }, + { + "start": 12695.5, + "end": 12698.99, + "probability": 0.9431 + }, + { + "start": 12699.78, + "end": 12704.72, + "probability": 0.9513 + }, + { + "start": 12705.2, + "end": 12708.38, + "probability": 0.9899 + }, + { + "start": 12708.38, + "end": 12712.92, + "probability": 0.9907 + }, + { + "start": 12714.02, + "end": 12718.78, + "probability": 0.9481 + }, + { + "start": 12719.0, + "end": 12722.7, + "probability": 0.8745 + }, + { + "start": 12722.74, + "end": 12724.54, + "probability": 0.6325 + }, + { + "start": 12725.0, + "end": 12727.44, + "probability": 0.8557 + }, + { + "start": 12728.08, + "end": 12729.1, + "probability": 0.7912 + }, + { + "start": 12729.32, + "end": 12733.66, + "probability": 0.8467 + }, + { + "start": 12734.1, + "end": 12739.34, + "probability": 0.9292 + }, + { + "start": 12740.08, + "end": 12744.34, + "probability": 0.9489 + }, + { + "start": 12744.58, + "end": 12749.46, + "probability": 0.9404 + }, + { + "start": 12749.48, + "end": 12754.2, + "probability": 0.9878 + }, + { + "start": 12754.26, + "end": 12758.68, + "probability": 0.9757 + }, + { + "start": 12759.32, + "end": 12761.5, + "probability": 0.9817 + }, + { + "start": 12761.64, + "end": 12766.5, + "probability": 0.9695 + }, + { + "start": 12766.98, + "end": 12769.84, + "probability": 0.993 + }, + { + "start": 12770.32, + "end": 12774.5, + "probability": 0.919 + }, + { + "start": 12775.22, + "end": 12778.04, + "probability": 0.9721 + }, + { + "start": 12778.78, + "end": 12779.66, + "probability": 0.96 + }, + { + "start": 12780.3, + "end": 12784.76, + "probability": 0.9902 + }, + { + "start": 12784.9, + "end": 12788.56, + "probability": 0.9718 + }, + { + "start": 12788.92, + "end": 12792.8, + "probability": 0.7887 + }, + { + "start": 12793.12, + "end": 12797.04, + "probability": 0.99 + }, + { + "start": 12797.26, + "end": 12800.98, + "probability": 0.9951 + }, + { + "start": 12802.22, + "end": 12806.9, + "probability": 0.9193 + }, + { + "start": 12807.08, + "end": 12808.44, + "probability": 0.9526 + }, + { + "start": 12808.84, + "end": 12813.94, + "probability": 0.9881 + }, + { + "start": 12814.18, + "end": 12821.58, + "probability": 0.9531 + }, + { + "start": 12822.96, + "end": 12826.64, + "probability": 0.9924 + }, + { + "start": 12826.64, + "end": 12830.3, + "probability": 0.999 + }, + { + "start": 12831.0, + "end": 12835.05, + "probability": 0.9879 + }, + { + "start": 12836.45, + "end": 12836.75, + "probability": 0.0288 + }, + { + "start": 12837.13, + "end": 12837.65, + "probability": 0.9637 + }, + { + "start": 12837.77, + "end": 12841.41, + "probability": 0.8351 + }, + { + "start": 12841.41, + "end": 12846.61, + "probability": 0.9834 + }, + { + "start": 12846.75, + "end": 12851.37, + "probability": 0.9595 + }, + { + "start": 12851.37, + "end": 12856.83, + "probability": 0.7789 + }, + { + "start": 12858.79, + "end": 12859.55, + "probability": 0.665 + }, + { + "start": 12859.55, + "end": 12859.81, + "probability": 0.4976 + }, + { + "start": 12860.49, + "end": 12862.37, + "probability": 0.7258 + }, + { + "start": 12881.31, + "end": 12883.31, + "probability": 0.8185 + }, + { + "start": 12886.23, + "end": 12889.81, + "probability": 0.6825 + }, + { + "start": 12894.59, + "end": 12896.33, + "probability": 0.0554 + }, + { + "start": 12896.33, + "end": 12899.34, + "probability": 0.0124 + }, + { + "start": 12908.13, + "end": 12908.33, + "probability": 0.0883 + }, + { + "start": 12911.05, + "end": 12911.19, + "probability": 0.0179 + }, + { + "start": 13146.46, + "end": 13150.98, + "probability": 0.7028 + }, + { + "start": 13153.1, + "end": 13156.03, + "probability": 0.8744 + }, + { + "start": 13157.28, + "end": 13158.22, + "probability": 0.915 + }, + { + "start": 13158.46, + "end": 13164.06, + "probability": 0.9627 + }, + { + "start": 13167.06, + "end": 13168.94, + "probability": 0.9678 + }, + { + "start": 13169.64, + "end": 13170.1, + "probability": 0.4088 + }, + { + "start": 13170.24, + "end": 13175.2, + "probability": 0.736 + }, + { + "start": 13175.84, + "end": 13177.78, + "probability": 0.9968 + }, + { + "start": 13178.58, + "end": 13182.34, + "probability": 0.5198 + }, + { + "start": 13183.92, + "end": 13185.5, + "probability": 0.7183 + }, + { + "start": 13186.42, + "end": 13191.66, + "probability": 0.8244 + }, + { + "start": 13192.88, + "end": 13195.01, + "probability": 0.9485 + }, + { + "start": 13195.42, + "end": 13195.42, + "probability": 0.1072 + }, + { + "start": 13195.42, + "end": 13197.9, + "probability": 0.6065 + }, + { + "start": 13197.98, + "end": 13198.7, + "probability": 0.2679 + }, + { + "start": 13200.22, + "end": 13206.16, + "probability": 0.979 + }, + { + "start": 13207.34, + "end": 13209.56, + "probability": 0.9041 + }, + { + "start": 13210.32, + "end": 13214.58, + "probability": 0.998 + }, + { + "start": 13214.68, + "end": 13220.22, + "probability": 0.9974 + }, + { + "start": 13221.82, + "end": 13222.59, + "probability": 0.9871 + }, + { + "start": 13224.66, + "end": 13227.52, + "probability": 0.8663 + }, + { + "start": 13228.76, + "end": 13231.48, + "probability": 0.8401 + }, + { + "start": 13232.66, + "end": 13238.68, + "probability": 0.9791 + }, + { + "start": 13239.4, + "end": 13240.7, + "probability": 0.8331 + }, + { + "start": 13241.46, + "end": 13243.36, + "probability": 0.9643 + }, + { + "start": 13244.75, + "end": 13251.0, + "probability": 0.936 + }, + { + "start": 13253.65, + "end": 13260.44, + "probability": 0.9473 + }, + { + "start": 13261.24, + "end": 13265.54, + "probability": 0.9946 + }, + { + "start": 13266.64, + "end": 13267.5, + "probability": 0.9131 + }, + { + "start": 13268.28, + "end": 13269.38, + "probability": 0.5411 + }, + { + "start": 13269.56, + "end": 13270.3, + "probability": 0.8354 + }, + { + "start": 13270.52, + "end": 13272.84, + "probability": 0.9225 + }, + { + "start": 13272.94, + "end": 13274.2, + "probability": 0.6886 + }, + { + "start": 13275.0, + "end": 13277.7, + "probability": 0.9806 + }, + { + "start": 13278.02, + "end": 13280.12, + "probability": 0.6933 + }, + { + "start": 13280.8, + "end": 13284.56, + "probability": 0.7053 + }, + { + "start": 13285.64, + "end": 13291.48, + "probability": 0.9929 + }, + { + "start": 13293.3, + "end": 13300.38, + "probability": 0.958 + }, + { + "start": 13301.6, + "end": 13302.24, + "probability": 0.9128 + }, + { + "start": 13302.48, + "end": 13306.22, + "probability": 0.6458 + }, + { + "start": 13307.48, + "end": 13310.9, + "probability": 0.9187 + }, + { + "start": 13310.98, + "end": 13311.8, + "probability": 0.9673 + }, + { + "start": 13313.38, + "end": 13314.72, + "probability": 0.9476 + }, + { + "start": 13315.34, + "end": 13319.04, + "probability": 0.9977 + }, + { + "start": 13320.36, + "end": 13322.7, + "probability": 0.9756 + }, + { + "start": 13322.88, + "end": 13324.06, + "probability": 0.6799 + }, + { + "start": 13324.9, + "end": 13327.96, + "probability": 0.9907 + }, + { + "start": 13328.86, + "end": 13330.6, + "probability": 0.9783 + }, + { + "start": 13332.02, + "end": 13335.6, + "probability": 0.8418 + }, + { + "start": 13338.24, + "end": 13341.1, + "probability": 0.0547 + }, + { + "start": 13343.4, + "end": 13345.3, + "probability": 0.9486 + }, + { + "start": 13347.66, + "end": 13349.7, + "probability": 0.5611 + }, + { + "start": 13351.78, + "end": 13358.0, + "probability": 0.979 + }, + { + "start": 13358.7, + "end": 13360.05, + "probability": 0.9539 + }, + { + "start": 13360.88, + "end": 13365.88, + "probability": 0.9886 + }, + { + "start": 13367.2, + "end": 13374.22, + "probability": 0.8305 + }, + { + "start": 13374.28, + "end": 13376.72, + "probability": 0.9274 + }, + { + "start": 13377.46, + "end": 13388.18, + "probability": 0.9379 + }, + { + "start": 13389.9, + "end": 13394.86, + "probability": 0.9863 + }, + { + "start": 13395.64, + "end": 13399.02, + "probability": 0.8293 + }, + { + "start": 13399.32, + "end": 13404.06, + "probability": 0.894 + }, + { + "start": 13404.9, + "end": 13407.07, + "probability": 0.7589 + }, + { + "start": 13408.38, + "end": 13416.58, + "probability": 0.9044 + }, + { + "start": 13417.58, + "end": 13418.96, + "probability": 0.7895 + }, + { + "start": 13420.32, + "end": 13423.72, + "probability": 0.7701 + }, + { + "start": 13424.04, + "end": 13425.54, + "probability": 0.8006 + }, + { + "start": 13426.1, + "end": 13428.7, + "probability": 0.9978 + }, + { + "start": 13428.9, + "end": 13431.0, + "probability": 0.4791 + }, + { + "start": 13432.42, + "end": 13434.66, + "probability": 0.9884 + }, + { + "start": 13435.2, + "end": 13440.34, + "probability": 0.9827 + }, + { + "start": 13440.5, + "end": 13441.1, + "probability": 0.9794 + }, + { + "start": 13442.12, + "end": 13445.46, + "probability": 0.9351 + }, + { + "start": 13446.14, + "end": 13449.04, + "probability": 0.9961 + }, + { + "start": 13450.34, + "end": 13453.16, + "probability": 0.9863 + }, + { + "start": 13453.72, + "end": 13454.58, + "probability": 0.8918 + }, + { + "start": 13456.8, + "end": 13459.0, + "probability": 0.9893 + }, + { + "start": 13459.08, + "end": 13461.38, + "probability": 0.9971 + }, + { + "start": 13462.36, + "end": 13466.42, + "probability": 0.9617 + }, + { + "start": 13468.08, + "end": 13468.58, + "probability": 0.9539 + }, + { + "start": 13469.44, + "end": 13473.66, + "probability": 0.9928 + }, + { + "start": 13473.9, + "end": 13473.98, + "probability": 0.0224 + }, + { + "start": 13476.62, + "end": 13477.42, + "probability": 0.6107 + }, + { + "start": 13478.34, + "end": 13480.62, + "probability": 0.9946 + }, + { + "start": 13482.68, + "end": 13484.96, + "probability": 0.8468 + }, + { + "start": 13485.6, + "end": 13486.44, + "probability": 0.8309 + }, + { + "start": 13488.32, + "end": 13496.84, + "probability": 0.7733 + }, + { + "start": 13496.84, + "end": 13507.08, + "probability": 0.9488 + }, + { + "start": 13507.34, + "end": 13509.28, + "probability": 0.8042 + }, + { + "start": 13510.16, + "end": 13513.24, + "probability": 0.9906 + }, + { + "start": 13514.34, + "end": 13517.94, + "probability": 0.9479 + }, + { + "start": 13518.7, + "end": 13521.08, + "probability": 0.9604 + }, + { + "start": 13521.86, + "end": 13525.82, + "probability": 0.886 + }, + { + "start": 13527.56, + "end": 13532.52, + "probability": 0.9928 + }, + { + "start": 13533.1, + "end": 13539.42, + "probability": 0.9678 + }, + { + "start": 13540.54, + "end": 13543.24, + "probability": 0.6839 + }, + { + "start": 13544.3, + "end": 13547.34, + "probability": 0.577 + }, + { + "start": 13547.5, + "end": 13552.32, + "probability": 0.7711 + }, + { + "start": 13553.06, + "end": 13556.72, + "probability": 0.9561 + }, + { + "start": 13556.78, + "end": 13557.97, + "probability": 0.3375 + }, + { + "start": 13559.52, + "end": 13562.02, + "probability": 0.9917 + }, + { + "start": 13562.28, + "end": 13566.62, + "probability": 0.9965 + }, + { + "start": 13567.58, + "end": 13568.38, + "probability": 0.5215 + }, + { + "start": 13569.36, + "end": 13571.34, + "probability": 0.9343 + }, + { + "start": 13572.08, + "end": 13575.08, + "probability": 0.9935 + }, + { + "start": 13577.78, + "end": 13579.66, + "probability": 0.9581 + }, + { + "start": 13580.8, + "end": 13583.32, + "probability": 0.8303 + }, + { + "start": 13584.59, + "end": 13587.84, + "probability": 0.7799 + }, + { + "start": 13589.18, + "end": 13591.0, + "probability": 0.9736 + }, + { + "start": 13591.02, + "end": 13593.4, + "probability": 0.5958 + }, + { + "start": 13593.6, + "end": 13594.7, + "probability": 0.9675 + }, + { + "start": 13596.08, + "end": 13599.52, + "probability": 0.9698 + }, + { + "start": 13599.52, + "end": 13603.22, + "probability": 0.9968 + }, + { + "start": 13603.9, + "end": 13606.08, + "probability": 0.9917 + }, + { + "start": 13606.74, + "end": 13609.58, + "probability": 0.9972 + }, + { + "start": 13610.5, + "end": 13611.4, + "probability": 0.7713 + }, + { + "start": 13613.52, + "end": 13619.84, + "probability": 0.9047 + }, + { + "start": 13620.48, + "end": 13621.66, + "probability": 0.9841 + }, + { + "start": 13621.68, + "end": 13629.62, + "probability": 0.9662 + }, + { + "start": 13630.68, + "end": 13631.76, + "probability": 0.6501 + }, + { + "start": 13632.4, + "end": 13636.78, + "probability": 0.932 + }, + { + "start": 13636.78, + "end": 13644.08, + "probability": 0.863 + }, + { + "start": 13645.8, + "end": 13647.6, + "probability": 0.7864 + }, + { + "start": 13648.56, + "end": 13649.06, + "probability": 0.7757 + }, + { + "start": 13650.24, + "end": 13653.18, + "probability": 0.9695 + }, + { + "start": 13654.64, + "end": 13656.66, + "probability": 0.8189 + }, + { + "start": 13656.72, + "end": 13667.4, + "probability": 0.9888 + }, + { + "start": 13668.44, + "end": 13671.34, + "probability": 0.9951 + }, + { + "start": 13671.44, + "end": 13673.74, + "probability": 0.808 + }, + { + "start": 13674.8, + "end": 13678.74, + "probability": 0.939 + }, + { + "start": 13679.12, + "end": 13679.9, + "probability": 0.6062 + }, + { + "start": 13680.48, + "end": 13680.6, + "probability": 0.0014 + }, + { + "start": 13685.42, + "end": 13693.4, + "probability": 0.9927 + }, + { + "start": 13694.2, + "end": 13698.7, + "probability": 0.9116 + }, + { + "start": 13698.7, + "end": 13703.76, + "probability": 0.9966 + }, + { + "start": 13704.24, + "end": 13709.1, + "probability": 0.9797 + }, + { + "start": 13709.1, + "end": 13717.84, + "probability": 0.9968 + }, + { + "start": 13718.06, + "end": 13723.16, + "probability": 0.9743 + }, + { + "start": 13723.24, + "end": 13726.82, + "probability": 0.9966 + }, + { + "start": 13727.98, + "end": 13729.4, + "probability": 0.9302 + }, + { + "start": 13729.5, + "end": 13736.34, + "probability": 0.9885 + }, + { + "start": 13736.34, + "end": 13740.34, + "probability": 0.9988 + }, + { + "start": 13741.32, + "end": 13743.16, + "probability": 0.9982 + }, + { + "start": 13743.94, + "end": 13745.42, + "probability": 0.8206 + }, + { + "start": 13746.32, + "end": 13748.84, + "probability": 0.9476 + }, + { + "start": 13749.04, + "end": 13757.44, + "probability": 0.9801 + }, + { + "start": 13757.62, + "end": 13759.42, + "probability": 0.9243 + }, + { + "start": 13761.0, + "end": 13764.2, + "probability": 0.9862 + }, + { + "start": 13766.76, + "end": 13769.24, + "probability": 0.8117 + }, + { + "start": 13769.54, + "end": 13769.54, + "probability": 0.8367 + }, + { + "start": 13769.54, + "end": 13774.84, + "probability": 0.9157 + }, + { + "start": 13775.42, + "end": 13778.26, + "probability": 0.9806 + }, + { + "start": 13779.52, + "end": 13785.34, + "probability": 0.967 + }, + { + "start": 13785.88, + "end": 13788.59, + "probability": 0.2987 + }, + { + "start": 13789.5, + "end": 13791.48, + "probability": 0.8409 + }, + { + "start": 13791.94, + "end": 13794.7, + "probability": 0.8362 + }, + { + "start": 13794.98, + "end": 13796.88, + "probability": 0.9995 + }, + { + "start": 13797.06, + "end": 13800.88, + "probability": 0.7137 + }, + { + "start": 13801.28, + "end": 13803.1, + "probability": 0.8831 + }, + { + "start": 13803.26, + "end": 13805.58, + "probability": 0.8597 + }, + { + "start": 13805.64, + "end": 13807.06, + "probability": 0.7434 + }, + { + "start": 13807.28, + "end": 13808.44, + "probability": 0.5763 + }, + { + "start": 13808.52, + "end": 13811.12, + "probability": 0.7317 + }, + { + "start": 13811.48, + "end": 13813.62, + "probability": 0.9575 + }, + { + "start": 13814.06, + "end": 13814.66, + "probability": 0.7456 + }, + { + "start": 13815.5, + "end": 13817.05, + "probability": 0.8229 + }, + { + "start": 13817.5, + "end": 13819.28, + "probability": 0.6153 + }, + { + "start": 13821.68, + "end": 13824.12, + "probability": 0.9962 + }, + { + "start": 13827.28, + "end": 13828.14, + "probability": 0.5098 + }, + { + "start": 13833.4, + "end": 13834.04, + "probability": 0.1811 + }, + { + "start": 13834.14, + "end": 13835.72, + "probability": 0.8252 + }, + { + "start": 13839.08, + "end": 13840.88, + "probability": 0.6126 + }, + { + "start": 13841.02, + "end": 13842.86, + "probability": 0.6718 + }, + { + "start": 13843.62, + "end": 13844.26, + "probability": 0.8833 + }, + { + "start": 13844.42, + "end": 13851.18, + "probability": 0.9336 + }, + { + "start": 13851.96, + "end": 13859.02, + "probability": 0.9769 + }, + { + "start": 13859.12, + "end": 13860.28, + "probability": 0.5843 + }, + { + "start": 13860.88, + "end": 13863.04, + "probability": 0.9967 + }, + { + "start": 13863.84, + "end": 13868.0, + "probability": 0.9529 + }, + { + "start": 13868.58, + "end": 13870.42, + "probability": 0.8367 + }, + { + "start": 13871.4, + "end": 13872.8, + "probability": 0.8779 + }, + { + "start": 13873.56, + "end": 13877.78, + "probability": 0.9648 + }, + { + "start": 13879.1, + "end": 13882.02, + "probability": 0.8034 + }, + { + "start": 13882.2, + "end": 13884.5, + "probability": 0.9958 + }, + { + "start": 13885.0, + "end": 13890.06, + "probability": 0.9806 + }, + { + "start": 13890.84, + "end": 13893.36, + "probability": 0.9478 + }, + { + "start": 13893.94, + "end": 13898.1, + "probability": 0.9963 + }, + { + "start": 13898.76, + "end": 13903.54, + "probability": 0.9956 + }, + { + "start": 13904.1, + "end": 13905.42, + "probability": 0.962 + }, + { + "start": 13905.56, + "end": 13907.0, + "probability": 0.9471 + }, + { + "start": 13907.46, + "end": 13909.24, + "probability": 0.9985 + }, + { + "start": 13909.9, + "end": 13911.34, + "probability": 0.8979 + }, + { + "start": 13911.74, + "end": 13911.94, + "probability": 0.1705 + }, + { + "start": 13913.12, + "end": 13913.96, + "probability": 0.8246 + }, + { + "start": 13914.56, + "end": 13915.26, + "probability": 0.8208 + }, + { + "start": 13915.64, + "end": 13916.76, + "probability": 0.9398 + }, + { + "start": 13917.24, + "end": 13919.14, + "probability": 0.693 + }, + { + "start": 13919.9, + "end": 13923.08, + "probability": 0.9395 + }, + { + "start": 13923.58, + "end": 13930.04, + "probability": 0.9683 + }, + { + "start": 13930.5, + "end": 13931.6, + "probability": 0.8692 + }, + { + "start": 13932.14, + "end": 13935.2, + "probability": 0.9974 + }, + { + "start": 13935.38, + "end": 13936.52, + "probability": 0.8784 + }, + { + "start": 13937.42, + "end": 13940.06, + "probability": 0.9927 + }, + { + "start": 13940.78, + "end": 13945.7, + "probability": 0.965 + }, + { + "start": 13945.9, + "end": 13946.6, + "probability": 0.7863 + }, + { + "start": 13947.1, + "end": 13947.76, + "probability": 0.8951 + }, + { + "start": 13948.46, + "end": 13950.26, + "probability": 0.985 + }, + { + "start": 13950.62, + "end": 13951.38, + "probability": 0.6614 + }, + { + "start": 13951.46, + "end": 13952.16, + "probability": 0.5615 + }, + { + "start": 13952.22, + "end": 13953.54, + "probability": 0.7804 + }, + { + "start": 13954.0, + "end": 13955.44, + "probability": 0.9967 + }, + { + "start": 13955.88, + "end": 13956.44, + "probability": 0.7729 + }, + { + "start": 13957.14, + "end": 13958.52, + "probability": 0.9768 + }, + { + "start": 13959.12, + "end": 13961.38, + "probability": 0.9241 + }, + { + "start": 13961.94, + "end": 13965.28, + "probability": 0.9859 + }, + { + "start": 13965.48, + "end": 13966.08, + "probability": 0.8336 + }, + { + "start": 13966.66, + "end": 13968.46, + "probability": 0.8189 + }, + { + "start": 13969.56, + "end": 13971.82, + "probability": 0.9551 + }, + { + "start": 13972.0, + "end": 13973.6, + "probability": 0.9449 + }, + { + "start": 13973.66, + "end": 13979.0, + "probability": 0.9778 + }, + { + "start": 13979.46, + "end": 13981.58, + "probability": 0.8316 + }, + { + "start": 13982.2, + "end": 13983.54, + "probability": 0.9603 + }, + { + "start": 13984.14, + "end": 13987.04, + "probability": 0.9729 + }, + { + "start": 13987.68, + "end": 13992.06, + "probability": 0.9512 + }, + { + "start": 13992.14, + "end": 13994.7, + "probability": 0.9872 + }, + { + "start": 13994.82, + "end": 13995.04, + "probability": 0.067 + }, + { + "start": 13995.62, + "end": 13999.68, + "probability": 0.9711 + }, + { + "start": 14000.08, + "end": 14003.4, + "probability": 0.9905 + }, + { + "start": 14003.86, + "end": 14004.48, + "probability": 0.8564 + }, + { + "start": 14004.64, + "end": 14005.9, + "probability": 0.9695 + }, + { + "start": 14006.52, + "end": 14008.3, + "probability": 0.9648 + }, + { + "start": 14008.8, + "end": 14012.58, + "probability": 0.742 + }, + { + "start": 14012.96, + "end": 14013.82, + "probability": 0.5668 + }, + { + "start": 14014.46, + "end": 14018.96, + "probability": 0.9245 + }, + { + "start": 14019.34, + "end": 14021.96, + "probability": 0.9577 + }, + { + "start": 14022.5, + "end": 14023.92, + "probability": 0.9604 + }, + { + "start": 14024.44, + "end": 14026.41, + "probability": 0.9873 + }, + { + "start": 14026.9, + "end": 14031.24, + "probability": 0.9981 + }, + { + "start": 14031.4, + "end": 14032.42, + "probability": 0.9949 + }, + { + "start": 14032.8, + "end": 14034.3, + "probability": 0.9902 + }, + { + "start": 14034.86, + "end": 14036.4, + "probability": 0.6616 + }, + { + "start": 14036.44, + "end": 14038.64, + "probability": 0.8264 + }, + { + "start": 14039.18, + "end": 14040.32, + "probability": 0.9683 + }, + { + "start": 14040.64, + "end": 14043.58, + "probability": 0.9987 + }, + { + "start": 14043.94, + "end": 14048.1, + "probability": 0.9263 + }, + { + "start": 14048.24, + "end": 14049.04, + "probability": 0.5615 + }, + { + "start": 14049.18, + "end": 14050.68, + "probability": 0.8078 + }, + { + "start": 14051.06, + "end": 14053.7, + "probability": 0.9829 + }, + { + "start": 14054.06, + "end": 14055.48, + "probability": 0.9123 + }, + { + "start": 14055.94, + "end": 14058.62, + "probability": 0.9015 + }, + { + "start": 14059.22, + "end": 14062.76, + "probability": 0.9983 + }, + { + "start": 14062.76, + "end": 14066.28, + "probability": 0.6105 + }, + { + "start": 14066.58, + "end": 14069.4, + "probability": 0.9835 + }, + { + "start": 14069.82, + "end": 14071.34, + "probability": 0.9912 + }, + { + "start": 14071.84, + "end": 14072.1, + "probability": 0.8629 + }, + { + "start": 14072.36, + "end": 14073.64, + "probability": 0.4825 + }, + { + "start": 14073.9, + "end": 14074.8, + "probability": 0.7566 + }, + { + "start": 14075.18, + "end": 14079.34, + "probability": 0.8717 + }, + { + "start": 14079.48, + "end": 14080.36, + "probability": 0.7468 + }, + { + "start": 14080.82, + "end": 14081.62, + "probability": 0.8901 + }, + { + "start": 14081.8, + "end": 14083.76, + "probability": 0.9441 + }, + { + "start": 14083.84, + "end": 14085.64, + "probability": 0.9584 + }, + { + "start": 14086.12, + "end": 14088.0, + "probability": 0.9155 + }, + { + "start": 14088.62, + "end": 14091.66, + "probability": 0.9843 + }, + { + "start": 14091.66, + "end": 14095.36, + "probability": 0.9888 + }, + { + "start": 14095.98, + "end": 14098.03, + "probability": 0.8551 + }, + { + "start": 14098.42, + "end": 14099.86, + "probability": 0.7005 + }, + { + "start": 14100.38, + "end": 14103.62, + "probability": 0.9326 + }, + { + "start": 14104.42, + "end": 14105.0, + "probability": 0.917 + }, + { + "start": 14105.3, + "end": 14106.02, + "probability": 0.9729 + }, + { + "start": 14106.14, + "end": 14109.48, + "probability": 0.6689 + }, + { + "start": 14109.56, + "end": 14110.14, + "probability": 0.3379 + }, + { + "start": 14110.42, + "end": 14111.72, + "probability": 0.9867 + }, + { + "start": 14111.84, + "end": 14112.34, + "probability": 0.6751 + }, + { + "start": 14112.66, + "end": 14113.82, + "probability": 0.5589 + }, + { + "start": 14115.04, + "end": 14118.0, + "probability": 0.9255 + }, + { + "start": 14118.5, + "end": 14119.22, + "probability": 0.9012 + }, + { + "start": 14119.58, + "end": 14121.86, + "probability": 0.8936 + }, + { + "start": 14121.94, + "end": 14123.12, + "probability": 0.7378 + }, + { + "start": 14123.46, + "end": 14124.42, + "probability": 0.734 + }, + { + "start": 14124.94, + "end": 14125.2, + "probability": 0.6771 + }, + { + "start": 14125.22, + "end": 14128.78, + "probability": 0.9368 + }, + { + "start": 14129.38, + "end": 14129.68, + "probability": 0.7263 + }, + { + "start": 14130.2, + "end": 14131.0, + "probability": 0.9259 + }, + { + "start": 14131.1, + "end": 14131.92, + "probability": 0.8611 + }, + { + "start": 14132.06, + "end": 14133.54, + "probability": 0.9141 + }, + { + "start": 14133.82, + "end": 14134.32, + "probability": 0.9558 + }, + { + "start": 14135.08, + "end": 14138.08, + "probability": 0.9463 + }, + { + "start": 14138.78, + "end": 14141.28, + "probability": 0.9751 + }, + { + "start": 14141.74, + "end": 14145.34, + "probability": 0.8521 + }, + { + "start": 14145.34, + "end": 14146.56, + "probability": 0.6979 + }, + { + "start": 14146.92, + "end": 14147.96, + "probability": 0.9299 + }, + { + "start": 14148.56, + "end": 14149.04, + "probability": 0.8727 + }, + { + "start": 14149.64, + "end": 14153.04, + "probability": 0.9215 + }, + { + "start": 14153.04, + "end": 14156.0, + "probability": 0.9658 + }, + { + "start": 14156.38, + "end": 14158.48, + "probability": 0.9035 + }, + { + "start": 14158.9, + "end": 14159.74, + "probability": 0.664 + }, + { + "start": 14160.02, + "end": 14160.88, + "probability": 0.9691 + }, + { + "start": 14161.32, + "end": 14162.58, + "probability": 0.9934 + }, + { + "start": 14163.46, + "end": 14164.58, + "probability": 0.8193 + }, + { + "start": 14165.04, + "end": 14165.2, + "probability": 0.6019 + }, + { + "start": 14165.42, + "end": 14166.86, + "probability": 0.9629 + }, + { + "start": 14167.56, + "end": 14168.14, + "probability": 0.5668 + }, + { + "start": 14168.28, + "end": 14169.58, + "probability": 0.9842 + }, + { + "start": 14169.6, + "end": 14169.96, + "probability": 0.8313 + }, + { + "start": 14170.0, + "end": 14171.96, + "probability": 0.9881 + }, + { + "start": 14172.44, + "end": 14173.56, + "probability": 0.9236 + }, + { + "start": 14174.04, + "end": 14175.17, + "probability": 0.9448 + }, + { + "start": 14175.34, + "end": 14176.06, + "probability": 0.5344 + }, + { + "start": 14176.42, + "end": 14179.52, + "probability": 0.9161 + }, + { + "start": 14180.04, + "end": 14182.08, + "probability": 0.9863 + }, + { + "start": 14182.62, + "end": 14186.14, + "probability": 0.9391 + }, + { + "start": 14186.7, + "end": 14189.26, + "probability": 0.8722 + }, + { + "start": 14189.7, + "end": 14191.78, + "probability": 0.9912 + }, + { + "start": 14192.16, + "end": 14195.3, + "probability": 0.9835 + }, + { + "start": 14195.46, + "end": 14198.22, + "probability": 0.9946 + }, + { + "start": 14198.7, + "end": 14199.58, + "probability": 0.7353 + }, + { + "start": 14200.04, + "end": 14201.56, + "probability": 0.785 + }, + { + "start": 14201.6, + "end": 14202.44, + "probability": 0.9598 + }, + { + "start": 14203.28, + "end": 14206.84, + "probability": 0.6968 + }, + { + "start": 14207.14, + "end": 14209.84, + "probability": 0.9941 + }, + { + "start": 14210.2, + "end": 14211.34, + "probability": 0.9001 + }, + { + "start": 14211.72, + "end": 14212.7, + "probability": 0.9246 + }, + { + "start": 14212.72, + "end": 14213.98, + "probability": 0.9841 + }, + { + "start": 14214.34, + "end": 14215.22, + "probability": 0.689 + }, + { + "start": 14215.98, + "end": 14217.76, + "probability": 0.7475 + }, + { + "start": 14217.9, + "end": 14221.0, + "probability": 0.9695 + }, + { + "start": 14221.2, + "end": 14221.52, + "probability": 0.6645 + }, + { + "start": 14221.9, + "end": 14225.94, + "probability": 0.9883 + }, + { + "start": 14226.42, + "end": 14227.04, + "probability": 0.9615 + }, + { + "start": 14227.4, + "end": 14228.1, + "probability": 0.9852 + }, + { + "start": 14228.48, + "end": 14229.46, + "probability": 0.9902 + }, + { + "start": 14230.22, + "end": 14231.3, + "probability": 0.996 + }, + { + "start": 14231.82, + "end": 14232.95, + "probability": 0.9596 + }, + { + "start": 14233.42, + "end": 14234.63, + "probability": 0.9601 + }, + { + "start": 14235.08, + "end": 14236.94, + "probability": 0.9917 + }, + { + "start": 14237.42, + "end": 14237.82, + "probability": 0.5038 + }, + { + "start": 14238.0, + "end": 14238.26, + "probability": 0.9736 + }, + { + "start": 14238.26, + "end": 14240.02, + "probability": 0.9172 + }, + { + "start": 14240.32, + "end": 14243.68, + "probability": 0.9834 + }, + { + "start": 14244.3, + "end": 14245.14, + "probability": 0.6192 + }, + { + "start": 14245.6, + "end": 14247.42, + "probability": 0.9962 + }, + { + "start": 14247.94, + "end": 14253.22, + "probability": 0.9871 + }, + { + "start": 14254.0, + "end": 14259.12, + "probability": 0.8988 + }, + { + "start": 14260.26, + "end": 14263.08, + "probability": 0.766 + }, + { + "start": 14263.72, + "end": 14265.08, + "probability": 0.8823 + }, + { + "start": 14265.74, + "end": 14268.22, + "probability": 0.9189 + }, + { + "start": 14268.46, + "end": 14272.7, + "probability": 0.984 + }, + { + "start": 14273.24, + "end": 14274.28, + "probability": 0.864 + }, + { + "start": 14274.9, + "end": 14277.28, + "probability": 0.9829 + }, + { + "start": 14277.36, + "end": 14280.44, + "probability": 0.8279 + }, + { + "start": 14281.92, + "end": 14282.96, + "probability": 0.957 + }, + { + "start": 14283.98, + "end": 14285.42, + "probability": 0.9868 + }, + { + "start": 14285.64, + "end": 14288.3, + "probability": 0.9934 + }, + { + "start": 14288.64, + "end": 14289.18, + "probability": 0.9037 + }, + { + "start": 14289.74, + "end": 14291.64, + "probability": 0.6697 + }, + { + "start": 14292.22, + "end": 14293.32, + "probability": 0.9782 + }, + { + "start": 14293.46, + "end": 14294.81, + "probability": 0.8374 + }, + { + "start": 14295.38, + "end": 14297.02, + "probability": 0.844 + }, + { + "start": 14297.08, + "end": 14297.72, + "probability": 0.8855 + }, + { + "start": 14297.82, + "end": 14299.46, + "probability": 0.9641 + }, + { + "start": 14300.12, + "end": 14301.72, + "probability": 0.9581 + }, + { + "start": 14302.18, + "end": 14303.94, + "probability": 0.6502 + }, + { + "start": 14304.54, + "end": 14308.94, + "probability": 0.9087 + }, + { + "start": 14309.48, + "end": 14315.12, + "probability": 0.9816 + }, + { + "start": 14315.78, + "end": 14318.1, + "probability": 0.9644 + }, + { + "start": 14318.32, + "end": 14319.42, + "probability": 0.9713 + }, + { + "start": 14319.82, + "end": 14320.87, + "probability": 0.9912 + }, + { + "start": 14321.97, + "end": 14324.22, + "probability": 0.5488 + }, + { + "start": 14324.28, + "end": 14326.42, + "probability": 0.9062 + }, + { + "start": 14327.28, + "end": 14328.78, + "probability": 0.9536 + }, + { + "start": 14329.78, + "end": 14331.48, + "probability": 0.981 + }, + { + "start": 14332.02, + "end": 14332.91, + "probability": 0.9846 + }, + { + "start": 14333.56, + "end": 14335.46, + "probability": 0.9458 + }, + { + "start": 14336.1, + "end": 14337.8, + "probability": 0.6414 + }, + { + "start": 14338.36, + "end": 14340.9, + "probability": 0.805 + }, + { + "start": 14341.46, + "end": 14342.0, + "probability": 0.6606 + }, + { + "start": 14342.54, + "end": 14349.84, + "probability": 0.8186 + }, + { + "start": 14350.26, + "end": 14352.58, + "probability": 0.6949 + }, + { + "start": 14352.86, + "end": 14353.1, + "probability": 0.5272 + }, + { + "start": 14353.16, + "end": 14353.76, + "probability": 0.6915 + }, + { + "start": 14353.88, + "end": 14355.43, + "probability": 0.8805 + }, + { + "start": 14355.96, + "end": 14358.22, + "probability": 0.9071 + }, + { + "start": 14358.62, + "end": 14360.19, + "probability": 0.9941 + }, + { + "start": 14360.26, + "end": 14360.82, + "probability": 0.7398 + }, + { + "start": 14361.26, + "end": 14366.24, + "probability": 0.9205 + }, + { + "start": 14366.76, + "end": 14368.5, + "probability": 0.5526 + }, + { + "start": 14368.9, + "end": 14369.04, + "probability": 0.4624 + }, + { + "start": 14369.12, + "end": 14370.66, + "probability": 0.9784 + }, + { + "start": 14371.26, + "end": 14373.12, + "probability": 0.8429 + }, + { + "start": 14373.5, + "end": 14374.32, + "probability": 0.5113 + }, + { + "start": 14374.4, + "end": 14375.85, + "probability": 0.9735 + }, + { + "start": 14376.34, + "end": 14377.36, + "probability": 0.6432 + }, + { + "start": 14377.74, + "end": 14378.88, + "probability": 0.9446 + }, + { + "start": 14379.76, + "end": 14382.76, + "probability": 0.9824 + }, + { + "start": 14382.88, + "end": 14384.56, + "probability": 0.7182 + }, + { + "start": 14385.54, + "end": 14388.7, + "probability": 0.8844 + }, + { + "start": 14389.0, + "end": 14391.44, + "probability": 0.8374 + }, + { + "start": 14391.86, + "end": 14391.86, + "probability": 0.0067 + }, + { + "start": 14391.88, + "end": 14396.22, + "probability": 0.8211 + }, + { + "start": 14396.48, + "end": 14398.06, + "probability": 0.7424 + }, + { + "start": 14398.06, + "end": 14398.34, + "probability": 0.8341 + }, + { + "start": 14398.98, + "end": 14401.1, + "probability": 0.8879 + }, + { + "start": 14401.8, + "end": 14406.36, + "probability": 0.8853 + }, + { + "start": 14406.72, + "end": 14408.7, + "probability": 0.9685 + }, + { + "start": 14409.04, + "end": 14410.94, + "probability": 0.9842 + }, + { + "start": 14411.34, + "end": 14412.9, + "probability": 0.958 + }, + { + "start": 14413.72, + "end": 14414.92, + "probability": 0.9409 + }, + { + "start": 14415.44, + "end": 14416.43, + "probability": 0.9952 + }, + { + "start": 14416.96, + "end": 14419.58, + "probability": 0.9941 + }, + { + "start": 14419.76, + "end": 14421.56, + "probability": 0.3773 + }, + { + "start": 14422.2, + "end": 14424.02, + "probability": 0.994 + }, + { + "start": 14425.2, + "end": 14427.8, + "probability": 0.9788 + }, + { + "start": 14428.12, + "end": 14428.56, + "probability": 0.7769 + }, + { + "start": 14429.0, + "end": 14430.08, + "probability": 0.8951 + }, + { + "start": 14430.62, + "end": 14433.84, + "probability": 0.4956 + }, + { + "start": 14434.24, + "end": 14436.2, + "probability": 0.9729 + }, + { + "start": 14436.98, + "end": 14437.34, + "probability": 0.9633 + }, + { + "start": 14437.36, + "end": 14441.34, + "probability": 0.9946 + }, + { + "start": 14441.5, + "end": 14442.86, + "probability": 0.9703 + }, + { + "start": 14443.32, + "end": 14448.22, + "probability": 0.9701 + }, + { + "start": 14448.62, + "end": 14451.8, + "probability": 0.9706 + }, + { + "start": 14452.28, + "end": 14454.34, + "probability": 0.9824 + }, + { + "start": 14454.44, + "end": 14455.92, + "probability": 0.9961 + }, + { + "start": 14456.4, + "end": 14458.28, + "probability": 0.9094 + }, + { + "start": 14458.98, + "end": 14460.96, + "probability": 0.9659 + }, + { + "start": 14461.5, + "end": 14462.74, + "probability": 0.5605 + }, + { + "start": 14463.2, + "end": 14464.06, + "probability": 0.8407 + }, + { + "start": 14464.48, + "end": 14468.44, + "probability": 0.9133 + }, + { + "start": 14468.92, + "end": 14471.4, + "probability": 0.9334 + }, + { + "start": 14471.96, + "end": 14472.47, + "probability": 0.9688 + }, + { + "start": 14472.88, + "end": 14473.36, + "probability": 0.8468 + }, + { + "start": 14473.36, + "end": 14476.06, + "probability": 0.5381 + }, + { + "start": 14476.06, + "end": 14480.3, + "probability": 0.3725 + }, + { + "start": 14481.02, + "end": 14482.62, + "probability": 0.4837 + }, + { + "start": 14482.7, + "end": 14486.6, + "probability": 0.6369 + }, + { + "start": 14487.02, + "end": 14488.64, + "probability": 0.9114 + }, + { + "start": 14488.68, + "end": 14493.02, + "probability": 0.9484 + }, + { + "start": 14493.24, + "end": 14495.84, + "probability": 0.9938 + }, + { + "start": 14495.94, + "end": 14498.74, + "probability": 0.9886 + }, + { + "start": 14498.8, + "end": 14501.59, + "probability": 0.9431 + }, + { + "start": 14502.22, + "end": 14506.64, + "probability": 0.9962 + }, + { + "start": 14507.06, + "end": 14510.08, + "probability": 0.926 + }, + { + "start": 14510.64, + "end": 14512.14, + "probability": 0.9976 + }, + { + "start": 14512.24, + "end": 14513.18, + "probability": 0.9542 + }, + { + "start": 14513.88, + "end": 14516.2, + "probability": 0.9709 + }, + { + "start": 14516.62, + "end": 14519.66, + "probability": 0.9568 + }, + { + "start": 14520.04, + "end": 14520.96, + "probability": 0.8342 + }, + { + "start": 14521.55, + "end": 14525.32, + "probability": 0.6474 + }, + { + "start": 14525.94, + "end": 14528.6, + "probability": 0.6876 + }, + { + "start": 14528.98, + "end": 14529.76, + "probability": 0.877 + }, + { + "start": 14529.86, + "end": 14533.56, + "probability": 0.8829 + }, + { + "start": 14534.1, + "end": 14536.54, + "probability": 0.821 + }, + { + "start": 14536.9, + "end": 14540.04, + "probability": 0.9878 + }, + { + "start": 14540.14, + "end": 14542.88, + "probability": 0.9043 + }, + { + "start": 14543.48, + "end": 14544.5, + "probability": 0.7265 + }, + { + "start": 14545.32, + "end": 14547.38, + "probability": 0.893 + }, + { + "start": 14547.94, + "end": 14549.46, + "probability": 0.973 + }, + { + "start": 14549.88, + "end": 14552.38, + "probability": 0.0784 + }, + { + "start": 14552.38, + "end": 14557.16, + "probability": 0.7674 + }, + { + "start": 14557.52, + "end": 14558.04, + "probability": 0.7638 + }, + { + "start": 14558.14, + "end": 14558.84, + "probability": 0.8822 + }, + { + "start": 14558.92, + "end": 14559.82, + "probability": 0.8628 + }, + { + "start": 14560.3, + "end": 14560.9, + "probability": 0.8381 + }, + { + "start": 14561.36, + "end": 14563.96, + "probability": 0.8229 + }, + { + "start": 14564.42, + "end": 14565.36, + "probability": 0.8889 + }, + { + "start": 14565.68, + "end": 14568.28, + "probability": 0.98 + }, + { + "start": 14568.58, + "end": 14570.02, + "probability": 0.8616 + }, + { + "start": 14570.7, + "end": 14572.54, + "probability": 0.8989 + }, + { + "start": 14573.28, + "end": 14575.08, + "probability": 0.766 + }, + { + "start": 14575.9, + "end": 14580.62, + "probability": 0.9978 + }, + { + "start": 14580.78, + "end": 14584.0, + "probability": 0.9507 + }, + { + "start": 14584.6, + "end": 14586.98, + "probability": 0.9991 + }, + { + "start": 14587.96, + "end": 14588.52, + "probability": 0.6935 + }, + { + "start": 14589.16, + "end": 14591.68, + "probability": 0.8369 + }, + { + "start": 14592.46, + "end": 14595.3, + "probability": 0.9952 + }, + { + "start": 14595.92, + "end": 14599.04, + "probability": 0.9823 + }, + { + "start": 14599.52, + "end": 14601.44, + "probability": 0.9648 + }, + { + "start": 14601.9, + "end": 14603.36, + "probability": 0.851 + }, + { + "start": 14603.82, + "end": 14606.8, + "probability": 0.9884 + }, + { + "start": 14607.4, + "end": 14611.28, + "probability": 0.9788 + }, + { + "start": 14611.86, + "end": 14614.16, + "probability": 0.6275 + }, + { + "start": 14614.7, + "end": 14615.24, + "probability": 0.9834 + }, + { + "start": 14616.32, + "end": 14622.7, + "probability": 0.9966 + }, + { + "start": 14623.2, + "end": 14626.12, + "probability": 0.9732 + }, + { + "start": 14626.56, + "end": 14627.86, + "probability": 0.9341 + }, + { + "start": 14628.22, + "end": 14629.17, + "probability": 0.9856 + }, + { + "start": 14629.74, + "end": 14632.88, + "probability": 0.9871 + }, + { + "start": 14633.24, + "end": 14636.28, + "probability": 0.9871 + }, + { + "start": 14636.54, + "end": 14636.78, + "probability": 0.6599 + }, + { + "start": 14637.22, + "end": 14638.26, + "probability": 0.7039 + }, + { + "start": 14638.4, + "end": 14640.56, + "probability": 0.6985 + }, + { + "start": 14641.42, + "end": 14643.44, + "probability": 0.804 + }, + { + "start": 14653.8, + "end": 14655.14, + "probability": 0.78 + }, + { + "start": 14655.34, + "end": 14657.06, + "probability": 0.7356 + }, + { + "start": 14657.98, + "end": 14661.72, + "probability": 0.9835 + }, + { + "start": 14661.98, + "end": 14663.1, + "probability": 0.676 + }, + { + "start": 14664.06, + "end": 14665.5, + "probability": 0.707 + }, + { + "start": 14666.1, + "end": 14667.92, + "probability": 0.9781 + }, + { + "start": 14668.7, + "end": 14670.22, + "probability": 0.8367 + }, + { + "start": 14670.4, + "end": 14672.08, + "probability": 0.936 + }, + { + "start": 14672.62, + "end": 14675.6, + "probability": 0.9835 + }, + { + "start": 14676.58, + "end": 14678.22, + "probability": 0.9797 + }, + { + "start": 14678.28, + "end": 14681.76, + "probability": 0.9811 + }, + { + "start": 14681.76, + "end": 14684.56, + "probability": 0.9966 + }, + { + "start": 14684.62, + "end": 14685.46, + "probability": 0.7932 + }, + { + "start": 14686.22, + "end": 14688.14, + "probability": 0.8553 + }, + { + "start": 14688.22, + "end": 14688.86, + "probability": 0.8884 + }, + { + "start": 14688.94, + "end": 14691.22, + "probability": 0.8381 + }, + { + "start": 14691.78, + "end": 14694.6, + "probability": 0.9351 + }, + { + "start": 14695.12, + "end": 14697.24, + "probability": 0.9922 + }, + { + "start": 14697.78, + "end": 14698.54, + "probability": 0.8138 + }, + { + "start": 14699.2, + "end": 14701.46, + "probability": 0.9757 + }, + { + "start": 14702.12, + "end": 14703.8, + "probability": 0.9211 + }, + { + "start": 14704.22, + "end": 14706.22, + "probability": 0.9894 + }, + { + "start": 14706.88, + "end": 14707.34, + "probability": 0.8754 + }, + { + "start": 14707.42, + "end": 14707.68, + "probability": 0.4938 + }, + { + "start": 14707.78, + "end": 14709.0, + "probability": 0.984 + }, + { + "start": 14709.24, + "end": 14711.4, + "probability": 0.9699 + }, + { + "start": 14712.26, + "end": 14714.94, + "probability": 0.9923 + }, + { + "start": 14716.32, + "end": 14717.58, + "probability": 0.9337 + }, + { + "start": 14717.92, + "end": 14720.4, + "probability": 0.9952 + }, + { + "start": 14721.14, + "end": 14723.18, + "probability": 0.9969 + }, + { + "start": 14723.66, + "end": 14725.3, + "probability": 0.992 + }, + { + "start": 14726.0, + "end": 14728.92, + "probability": 0.9771 + }, + { + "start": 14729.46, + "end": 14732.4, + "probability": 0.9466 + }, + { + "start": 14732.96, + "end": 14734.49, + "probability": 0.9561 + }, + { + "start": 14734.68, + "end": 14737.5, + "probability": 0.9969 + }, + { + "start": 14738.12, + "end": 14740.12, + "probability": 0.9965 + }, + { + "start": 14740.3, + "end": 14743.3, + "probability": 0.9903 + }, + { + "start": 14744.38, + "end": 14745.66, + "probability": 0.9786 + }, + { + "start": 14746.04, + "end": 14746.78, + "probability": 0.9839 + }, + { + "start": 14747.12, + "end": 14747.38, + "probability": 0.8503 + }, + { + "start": 14747.76, + "end": 14749.38, + "probability": 0.9505 + }, + { + "start": 14749.98, + "end": 14752.54, + "probability": 0.9714 + }, + { + "start": 14753.06, + "end": 14755.62, + "probability": 0.9978 + }, + { + "start": 14756.1, + "end": 14756.68, + "probability": 0.515 + }, + { + "start": 14756.8, + "end": 14757.24, + "probability": 0.9163 + }, + { + "start": 14758.28, + "end": 14758.46, + "probability": 0.5042 + }, + { + "start": 14759.38, + "end": 14762.2, + "probability": 0.9978 + }, + { + "start": 14762.2, + "end": 14766.02, + "probability": 0.9924 + }, + { + "start": 14766.66, + "end": 14767.88, + "probability": 0.9913 + }, + { + "start": 14768.28, + "end": 14768.72, + "probability": 0.993 + }, + { + "start": 14768.74, + "end": 14769.34, + "probability": 0.5305 + }, + { + "start": 14769.44, + "end": 14770.32, + "probability": 0.8076 + }, + { + "start": 14770.7, + "end": 14772.76, + "probability": 0.8748 + }, + { + "start": 14774.1, + "end": 14775.92, + "probability": 0.9927 + }, + { + "start": 14776.14, + "end": 14777.14, + "probability": 0.9922 + }, + { + "start": 14777.76, + "end": 14781.32, + "probability": 0.9937 + }, + { + "start": 14782.12, + "end": 14785.0, + "probability": 0.9984 + }, + { + "start": 14785.0, + "end": 14788.56, + "probability": 0.9715 + }, + { + "start": 14789.22, + "end": 14792.16, + "probability": 0.9937 + }, + { + "start": 14792.24, + "end": 14794.48, + "probability": 0.9637 + }, + { + "start": 14794.86, + "end": 14798.42, + "probability": 0.9927 + }, + { + "start": 14798.58, + "end": 14798.96, + "probability": 0.9839 + }, + { + "start": 14799.32, + "end": 14799.52, + "probability": 0.9751 + }, + { + "start": 14799.56, + "end": 14802.6, + "probability": 0.987 + }, + { + "start": 14803.16, + "end": 14806.82, + "probability": 0.9977 + }, + { + "start": 14807.12, + "end": 14808.5, + "probability": 0.9919 + }, + { + "start": 14809.26, + "end": 14810.52, + "probability": 0.9861 + }, + { + "start": 14811.14, + "end": 14813.84, + "probability": 0.9958 + }, + { + "start": 14814.34, + "end": 14817.48, + "probability": 0.9871 + }, + { + "start": 14818.22, + "end": 14821.16, + "probability": 0.9966 + }, + { + "start": 14821.86, + "end": 14822.8, + "probability": 0.8897 + }, + { + "start": 14823.28, + "end": 14824.44, + "probability": 0.8806 + }, + { + "start": 14824.54, + "end": 14825.32, + "probability": 0.9732 + }, + { + "start": 14825.38, + "end": 14826.4, + "probability": 0.9423 + }, + { + "start": 14826.78, + "end": 14827.62, + "probability": 0.9872 + }, + { + "start": 14828.54, + "end": 14831.9, + "probability": 0.99 + }, + { + "start": 14832.68, + "end": 14837.22, + "probability": 0.9985 + }, + { + "start": 14837.8, + "end": 14839.24, + "probability": 0.9985 + }, + { + "start": 14839.3, + "end": 14839.86, + "probability": 0.9905 + }, + { + "start": 14839.94, + "end": 14840.5, + "probability": 0.9584 + }, + { + "start": 14840.62, + "end": 14841.4, + "probability": 0.7445 + }, + { + "start": 14841.54, + "end": 14842.44, + "probability": 0.9229 + }, + { + "start": 14843.04, + "end": 14843.55, + "probability": 0.9875 + }, + { + "start": 14844.56, + "end": 14848.0, + "probability": 0.9913 + }, + { + "start": 14848.68, + "end": 14850.38, + "probability": 0.9937 + }, + { + "start": 14850.92, + "end": 14852.4, + "probability": 0.9335 + }, + { + "start": 14852.92, + "end": 14854.72, + "probability": 0.9688 + }, + { + "start": 14855.18, + "end": 14856.22, + "probability": 0.9805 + }, + { + "start": 14856.92, + "end": 14858.13, + "probability": 0.9705 + }, + { + "start": 14858.68, + "end": 14861.36, + "probability": 0.9348 + }, + { + "start": 14861.84, + "end": 14864.81, + "probability": 0.9211 + }, + { + "start": 14865.38, + "end": 14865.88, + "probability": 0.5169 + }, + { + "start": 14866.16, + "end": 14866.5, + "probability": 0.9461 + }, + { + "start": 14867.14, + "end": 14869.84, + "probability": 0.9868 + }, + { + "start": 14870.28, + "end": 14873.74, + "probability": 0.9957 + }, + { + "start": 14874.2, + "end": 14875.48, + "probability": 0.9939 + }, + { + "start": 14876.62, + "end": 14877.78, + "probability": 0.5528 + }, + { + "start": 14877.96, + "end": 14879.76, + "probability": 0.6224 + }, + { + "start": 14904.64, + "end": 14905.96, + "probability": 0.713 + }, + { + "start": 14910.94, + "end": 14913.1, + "probability": 0.6972 + }, + { + "start": 14914.58, + "end": 14915.52, + "probability": 0.704 + }, + { + "start": 14915.58, + "end": 14919.9, + "probability": 0.8613 + }, + { + "start": 14919.9, + "end": 14922.42, + "probability": 0.9644 + }, + { + "start": 14923.34, + "end": 14926.88, + "probability": 0.9727 + }, + { + "start": 14926.88, + "end": 14931.5, + "probability": 0.9977 + }, + { + "start": 14932.4, + "end": 14937.76, + "probability": 0.9968 + }, + { + "start": 14938.8, + "end": 14939.78, + "probability": 0.8004 + }, + { + "start": 14940.66, + "end": 14945.0, + "probability": 0.9843 + }, + { + "start": 14946.34, + "end": 14947.78, + "probability": 0.7842 + }, + { + "start": 14948.66, + "end": 14951.08, + "probability": 0.9897 + }, + { + "start": 14951.42, + "end": 14952.66, + "probability": 0.8338 + }, + { + "start": 14953.86, + "end": 14955.96, + "probability": 0.9823 + }, + { + "start": 14957.06, + "end": 14958.26, + "probability": 0.8245 + }, + { + "start": 14959.32, + "end": 14961.58, + "probability": 0.9759 + }, + { + "start": 14961.64, + "end": 14964.13, + "probability": 0.8606 + }, + { + "start": 14965.2, + "end": 14966.8, + "probability": 0.9405 + }, + { + "start": 14968.1, + "end": 14971.98, + "probability": 0.9956 + }, + { + "start": 14972.6, + "end": 14977.12, + "probability": 0.9695 + }, + { + "start": 14977.5, + "end": 14981.24, + "probability": 0.9072 + }, + { + "start": 14982.14, + "end": 14982.98, + "probability": 0.893 + }, + { + "start": 14985.74, + "end": 14990.56, + "probability": 0.9991 + }, + { + "start": 14991.92, + "end": 14996.04, + "probability": 0.9941 + }, + { + "start": 14998.08, + "end": 15000.6, + "probability": 0.9731 + }, + { + "start": 15001.44, + "end": 15001.82, + "probability": 0.8115 + }, + { + "start": 15002.34, + "end": 15003.48, + "probability": 0.9681 + }, + { + "start": 15004.32, + "end": 15007.12, + "probability": 0.9966 + }, + { + "start": 15007.9, + "end": 15009.1, + "probability": 0.8972 + }, + { + "start": 15009.82, + "end": 15011.08, + "probability": 0.8876 + }, + { + "start": 15011.84, + "end": 15016.04, + "probability": 0.9963 + }, + { + "start": 15016.3, + "end": 15021.44, + "probability": 0.9922 + }, + { + "start": 15022.0, + "end": 15023.96, + "probability": 0.9183 + }, + { + "start": 15024.9, + "end": 15026.2, + "probability": 0.8769 + }, + { + "start": 15028.4, + "end": 15033.08, + "probability": 0.9299 + }, + { + "start": 15033.08, + "end": 15035.76, + "probability": 0.9959 + }, + { + "start": 15037.46, + "end": 15041.48, + "probability": 0.964 + }, + { + "start": 15042.54, + "end": 15047.48, + "probability": 0.9941 + }, + { + "start": 15048.36, + "end": 15053.21, + "probability": 0.9971 + }, + { + "start": 15054.0, + "end": 15056.02, + "probability": 0.996 + }, + { + "start": 15058.0, + "end": 15062.36, + "probability": 0.9351 + }, + { + "start": 15063.14, + "end": 15064.64, + "probability": 0.8223 + }, + { + "start": 15065.48, + "end": 15067.22, + "probability": 0.1286 + }, + { + "start": 15067.22, + "end": 15069.56, + "probability": 0.5171 + }, + { + "start": 15069.7, + "end": 15069.91, + "probability": 0.1571 + }, + { + "start": 15070.22, + "end": 15073.0, + "probability": 0.4919 + }, + { + "start": 15073.0, + "end": 15074.48, + "probability": 0.8896 + }, + { + "start": 15075.06, + "end": 15077.02, + "probability": 0.5099 + }, + { + "start": 15077.24, + "end": 15077.9, + "probability": 0.7018 + }, + { + "start": 15077.98, + "end": 15078.04, + "probability": 0.1291 + }, + { + "start": 15078.04, + "end": 15078.72, + "probability": 0.7893 + }, + { + "start": 15079.34, + "end": 15080.52, + "probability": 0.9897 + }, + { + "start": 15080.54, + "end": 15081.14, + "probability": 0.9092 + }, + { + "start": 15081.7, + "end": 15082.32, + "probability": 0.935 + }, + { + "start": 15082.96, + "end": 15083.66, + "probability": 0.8667 + }, + { + "start": 15084.12, + "end": 15086.42, + "probability": 0.9056 + }, + { + "start": 15087.12, + "end": 15087.5, + "probability": 0.8835 + }, + { + "start": 15087.5, + "end": 15092.98, + "probability": 0.9509 + }, + { + "start": 15093.04, + "end": 15093.14, + "probability": 0.3707 + }, + { + "start": 15093.44, + "end": 15093.78, + "probability": 0.8359 + }, + { + "start": 15094.1, + "end": 15097.56, + "probability": 0.9946 + }, + { + "start": 15097.56, + "end": 15103.0, + "probability": 0.9933 + }, + { + "start": 15103.3, + "end": 15107.02, + "probability": 0.992 + }, + { + "start": 15107.24, + "end": 15108.66, + "probability": 0.9125 + }, + { + "start": 15108.8, + "end": 15110.58, + "probability": 0.9205 + }, + { + "start": 15110.88, + "end": 15113.78, + "probability": 0.8987 + }, + { + "start": 15113.96, + "end": 15116.4, + "probability": 0.9972 + }, + { + "start": 15117.04, + "end": 15119.34, + "probability": 0.9956 + }, + { + "start": 15119.78, + "end": 15120.62, + "probability": 0.9359 + }, + { + "start": 15120.88, + "end": 15121.51, + "probability": 0.9886 + }, + { + "start": 15121.66, + "end": 15122.29, + "probability": 0.9127 + }, + { + "start": 15122.58, + "end": 15123.88, + "probability": 0.7751 + }, + { + "start": 15123.94, + "end": 15125.28, + "probability": 0.9655 + }, + { + "start": 15125.82, + "end": 15127.1, + "probability": 0.9009 + }, + { + "start": 15127.22, + "end": 15127.6, + "probability": 0.9496 + }, + { + "start": 15128.52, + "end": 15129.8, + "probability": 0.9546 + }, + { + "start": 15130.0, + "end": 15136.14, + "probability": 0.9189 + }, + { + "start": 15136.84, + "end": 15139.18, + "probability": 0.7674 + }, + { + "start": 15139.36, + "end": 15139.99, + "probability": 0.9546 + }, + { + "start": 15140.64, + "end": 15143.32, + "probability": 0.9889 + }, + { + "start": 15143.32, + "end": 15146.32, + "probability": 0.9985 + }, + { + "start": 15147.08, + "end": 15147.62, + "probability": 0.3682 + }, + { + "start": 15148.42, + "end": 15152.02, + "probability": 0.9956 + }, + { + "start": 15152.02, + "end": 15154.94, + "probability": 0.991 + }, + { + "start": 15155.4, + "end": 15157.12, + "probability": 0.9854 + }, + { + "start": 15157.4, + "end": 15158.38, + "probability": 0.7114 + }, + { + "start": 15158.7, + "end": 15162.0, + "probability": 0.9955 + }, + { + "start": 15162.46, + "end": 15163.24, + "probability": 0.8618 + }, + { + "start": 15164.38, + "end": 15166.72, + "probability": 0.7975 + }, + { + "start": 15167.66, + "end": 15167.84, + "probability": 0.9023 + }, + { + "start": 15167.9, + "end": 15170.82, + "probability": 0.951 + }, + { + "start": 15171.38, + "end": 15173.02, + "probability": 0.8716 + }, + { + "start": 15173.12, + "end": 15174.45, + "probability": 0.8359 + }, + { + "start": 15175.14, + "end": 15182.04, + "probability": 0.615 + }, + { + "start": 15182.16, + "end": 15183.26, + "probability": 0.7719 + }, + { + "start": 15183.34, + "end": 15190.76, + "probability": 0.9844 + }, + { + "start": 15190.76, + "end": 15191.96, + "probability": 0.9319 + }, + { + "start": 15192.04, + "end": 15194.0, + "probability": 0.8067 + }, + { + "start": 15194.5, + "end": 15197.28, + "probability": 0.9761 + }, + { + "start": 15198.32, + "end": 15200.84, + "probability": 0.9388 + }, + { + "start": 15201.68, + "end": 15203.44, + "probability": 0.9438 + }, + { + "start": 15203.92, + "end": 15206.68, + "probability": 0.9951 + }, + { + "start": 15206.94, + "end": 15208.62, + "probability": 0.9536 + }, + { + "start": 15209.52, + "end": 15210.68, + "probability": 0.8295 + }, + { + "start": 15210.74, + "end": 15214.06, + "probability": 0.9976 + }, + { + "start": 15215.46, + "end": 15218.52, + "probability": 0.9094 + }, + { + "start": 15218.7, + "end": 15220.6, + "probability": 0.9854 + }, + { + "start": 15221.06, + "end": 15222.32, + "probability": 0.8918 + }, + { + "start": 15224.32, + "end": 15225.88, + "probability": 0.895 + }, + { + "start": 15226.96, + "end": 15230.54, + "probability": 0.9714 + }, + { + "start": 15230.54, + "end": 15234.98, + "probability": 0.996 + }, + { + "start": 15236.42, + "end": 15237.76, + "probability": 0.9968 + }, + { + "start": 15237.84, + "end": 15240.7, + "probability": 0.968 + }, + { + "start": 15241.36, + "end": 15242.38, + "probability": 0.7053 + }, + { + "start": 15243.2, + "end": 15245.66, + "probability": 0.8964 + }, + { + "start": 15246.16, + "end": 15248.02, + "probability": 0.9057 + }, + { + "start": 15248.76, + "end": 15254.8, + "probability": 0.987 + }, + { + "start": 15254.9, + "end": 15256.52, + "probability": 0.999 + }, + { + "start": 15256.72, + "end": 15260.06, + "probability": 0.8516 + }, + { + "start": 15260.28, + "end": 15262.46, + "probability": 0.9912 + }, + { + "start": 15263.8, + "end": 15266.0, + "probability": 0.9967 + }, + { + "start": 15267.48, + "end": 15268.8, + "probability": 0.6989 + }, + { + "start": 15269.86, + "end": 15272.88, + "probability": 0.6449 + }, + { + "start": 15273.74, + "end": 15276.22, + "probability": 0.9235 + }, + { + "start": 15277.04, + "end": 15277.42, + "probability": 0.9277 + }, + { + "start": 15277.56, + "end": 15278.81, + "probability": 0.9033 + }, + { + "start": 15279.18, + "end": 15282.9, + "probability": 0.9887 + }, + { + "start": 15283.98, + "end": 15285.86, + "probability": 0.8691 + }, + { + "start": 15286.4, + "end": 15288.5, + "probability": 0.9424 + }, + { + "start": 15289.2, + "end": 15290.9, + "probability": 0.8853 + }, + { + "start": 15291.48, + "end": 15292.12, + "probability": 0.8598 + }, + { + "start": 15293.44, + "end": 15295.1, + "probability": 0.9746 + }, + { + "start": 15296.7, + "end": 15299.08, + "probability": 0.9877 + }, + { + "start": 15299.16, + "end": 15300.65, + "probability": 0.9555 + }, + { + "start": 15300.92, + "end": 15302.01, + "probability": 0.9737 + }, + { + "start": 15302.54, + "end": 15303.18, + "probability": 0.5166 + }, + { + "start": 15304.24, + "end": 15305.8, + "probability": 0.9865 + }, + { + "start": 15306.82, + "end": 15309.66, + "probability": 0.9932 + }, + { + "start": 15309.82, + "end": 15311.49, + "probability": 0.9502 + }, + { + "start": 15312.7, + "end": 15314.12, + "probability": 0.6201 + }, + { + "start": 15314.76, + "end": 15319.92, + "probability": 0.9627 + }, + { + "start": 15319.92, + "end": 15321.01, + "probability": 0.6125 + }, + { + "start": 15323.12, + "end": 15324.72, + "probability": 0.45 + }, + { + "start": 15324.9, + "end": 15326.72, + "probability": 0.8562 + }, + { + "start": 15326.72, + "end": 15327.76, + "probability": 0.6552 + }, + { + "start": 15327.9, + "end": 15331.22, + "probability": 0.7129 + }, + { + "start": 15331.3, + "end": 15331.3, + "probability": 0.2493 + }, + { + "start": 15331.3, + "end": 15331.42, + "probability": 0.7419 + }, + { + "start": 15331.48, + "end": 15331.74, + "probability": 0.9125 + }, + { + "start": 15331.74, + "end": 15332.66, + "probability": 0.4795 + }, + { + "start": 15332.86, + "end": 15333.21, + "probability": 0.1249 + }, + { + "start": 15333.72, + "end": 15335.08, + "probability": 0.8262 + }, + { + "start": 15335.62, + "end": 15339.88, + "probability": 0.8645 + }, + { + "start": 15340.12, + "end": 15341.28, + "probability": 0.9052 + }, + { + "start": 15341.36, + "end": 15344.16, + "probability": 0.8093 + }, + { + "start": 15345.92, + "end": 15348.28, + "probability": 0.9958 + }, + { + "start": 15349.72, + "end": 15350.52, + "probability": 0.9952 + }, + { + "start": 15351.06, + "end": 15354.28, + "probability": 0.7122 + }, + { + "start": 15355.74, + "end": 15357.46, + "probability": 0.887 + }, + { + "start": 15358.06, + "end": 15362.78, + "probability": 0.9641 + }, + { + "start": 15363.4, + "end": 15364.78, + "probability": 0.9845 + }, + { + "start": 15365.58, + "end": 15367.62, + "probability": 0.9678 + }, + { + "start": 15368.2, + "end": 15368.82, + "probability": 0.1599 + }, + { + "start": 15369.98, + "end": 15371.74, + "probability": 0.9737 + }, + { + "start": 15371.88, + "end": 15377.4, + "probability": 0.9814 + }, + { + "start": 15377.62, + "end": 15378.48, + "probability": 0.9609 + }, + { + "start": 15379.6, + "end": 15381.15, + "probability": 0.9977 + }, + { + "start": 15382.26, + "end": 15383.65, + "probability": 0.5297 + }, + { + "start": 15384.98, + "end": 15387.58, + "probability": 0.5386 + }, + { + "start": 15388.58, + "end": 15389.94, + "probability": 0.9957 + }, + { + "start": 15391.32, + "end": 15394.04, + "probability": 0.9194 + }, + { + "start": 15394.96, + "end": 15397.12, + "probability": 0.9829 + }, + { + "start": 15397.98, + "end": 15402.46, + "probability": 0.9222 + }, + { + "start": 15402.9, + "end": 15404.64, + "probability": 0.9423 + }, + { + "start": 15405.96, + "end": 15407.3, + "probability": 0.984 + }, + { + "start": 15408.42, + "end": 15410.76, + "probability": 0.8744 + }, + { + "start": 15410.86, + "end": 15413.22, + "probability": 0.9542 + }, + { + "start": 15413.38, + "end": 15416.64, + "probability": 0.5491 + }, + { + "start": 15417.5, + "end": 15418.82, + "probability": 0.9797 + }, + { + "start": 15419.96, + "end": 15421.3, + "probability": 0.7699 + }, + { + "start": 15422.2, + "end": 15424.04, + "probability": 0.9606 + }, + { + "start": 15424.94, + "end": 15425.32, + "probability": 0.9741 + }, + { + "start": 15425.36, + "end": 15429.38, + "probability": 0.9581 + }, + { + "start": 15430.0, + "end": 15430.78, + "probability": 0.8442 + }, + { + "start": 15431.46, + "end": 15432.29, + "probability": 0.9312 + }, + { + "start": 15433.04, + "end": 15436.06, + "probability": 0.9129 + }, + { + "start": 15436.64, + "end": 15439.42, + "probability": 0.73 + }, + { + "start": 15440.28, + "end": 15444.32, + "probability": 0.9894 + }, + { + "start": 15446.02, + "end": 15448.96, + "probability": 0.9971 + }, + { + "start": 15450.3, + "end": 15452.66, + "probability": 0.9978 + }, + { + "start": 15454.46, + "end": 15454.7, + "probability": 0.5933 + }, + { + "start": 15454.94, + "end": 15455.5, + "probability": 0.7494 + }, + { + "start": 15455.62, + "end": 15458.3, + "probability": 0.75 + }, + { + "start": 15458.3, + "end": 15462.06, + "probability": 0.9985 + }, + { + "start": 15462.92, + "end": 15463.86, + "probability": 0.9189 + }, + { + "start": 15464.8, + "end": 15469.64, + "probability": 0.9125 + }, + { + "start": 15470.6, + "end": 15472.36, + "probability": 0.9197 + }, + { + "start": 15473.12, + "end": 15475.74, + "probability": 0.9541 + }, + { + "start": 15476.74, + "end": 15479.7, + "probability": 0.8131 + }, + { + "start": 15479.78, + "end": 15480.56, + "probability": 0.9239 + }, + { + "start": 15480.64, + "end": 15483.77, + "probability": 0.9812 + }, + { + "start": 15484.96, + "end": 15485.88, + "probability": 0.9536 + }, + { + "start": 15488.2, + "end": 15488.76, + "probability": 0.7457 + }, + { + "start": 15489.56, + "end": 15492.14, + "probability": 0.8957 + }, + { + "start": 15493.1, + "end": 15494.02, + "probability": 0.9869 + }, + { + "start": 15495.96, + "end": 15498.46, + "probability": 0.9675 + }, + { + "start": 15498.7, + "end": 15500.2, + "probability": 0.6799 + }, + { + "start": 15500.26, + "end": 15501.74, + "probability": 0.9174 + }, + { + "start": 15502.24, + "end": 15504.52, + "probability": 0.7993 + }, + { + "start": 15505.58, + "end": 15510.88, + "probability": 0.8301 + }, + { + "start": 15510.96, + "end": 15511.54, + "probability": 0.7685 + }, + { + "start": 15511.56, + "end": 15511.98, + "probability": 0.4812 + }, + { + "start": 15512.0, + "end": 15512.4, + "probability": 0.3834 + }, + { + "start": 15512.74, + "end": 15514.82, + "probability": 0.9368 + }, + { + "start": 15514.9, + "end": 15515.48, + "probability": 0.7066 + }, + { + "start": 15516.2, + "end": 15518.3, + "probability": 0.8248 + }, + { + "start": 15537.8, + "end": 15539.24, + "probability": 0.5236 + }, + { + "start": 15542.06, + "end": 15542.46, + "probability": 0.8722 + }, + { + "start": 15543.78, + "end": 15544.32, + "probability": 0.5648 + }, + { + "start": 15544.48, + "end": 15547.4, + "probability": 0.7856 + }, + { + "start": 15548.48, + "end": 15548.82, + "probability": 0.5838 + }, + { + "start": 15549.08, + "end": 15551.78, + "probability": 0.9712 + }, + { + "start": 15553.28, + "end": 15554.98, + "probability": 0.9927 + }, + { + "start": 15555.02, + "end": 15559.96, + "probability": 0.9948 + }, + { + "start": 15560.76, + "end": 15562.82, + "probability": 0.9013 + }, + { + "start": 15563.5, + "end": 15566.04, + "probability": 0.7833 + }, + { + "start": 15566.62, + "end": 15569.2, + "probability": 0.9781 + }, + { + "start": 15569.38, + "end": 15571.68, + "probability": 0.7847 + }, + { + "start": 15571.76, + "end": 15572.32, + "probability": 0.8894 + }, + { + "start": 15573.22, + "end": 15576.72, + "probability": 0.9553 + }, + { + "start": 15577.87, + "end": 15579.64, + "probability": 0.9967 + }, + { + "start": 15579.74, + "end": 15584.63, + "probability": 0.998 + }, + { + "start": 15586.08, + "end": 15586.46, + "probability": 0.2211 + }, + { + "start": 15587.87, + "end": 15589.36, + "probability": 0.9697 + }, + { + "start": 15589.48, + "end": 15590.0, + "probability": 0.6156 + }, + { + "start": 15590.08, + "end": 15591.36, + "probability": 0.9382 + }, + { + "start": 15591.44, + "end": 15593.8, + "probability": 0.9982 + }, + { + "start": 15593.94, + "end": 15597.74, + "probability": 0.9964 + }, + { + "start": 15597.92, + "end": 15599.96, + "probability": 0.9944 + }, + { + "start": 15601.26, + "end": 15606.32, + "probability": 0.9774 + }, + { + "start": 15606.36, + "end": 15607.54, + "probability": 0.9481 + }, + { + "start": 15608.34, + "end": 15609.37, + "probability": 0.9187 + }, + { + "start": 15610.1, + "end": 15611.36, + "probability": 0.8735 + }, + { + "start": 15611.38, + "end": 15612.78, + "probability": 0.8929 + }, + { + "start": 15613.48, + "end": 15613.82, + "probability": 0.6487 + }, + { + "start": 15613.98, + "end": 15614.84, + "probability": 0.9817 + }, + { + "start": 15614.96, + "end": 15619.42, + "probability": 0.9904 + }, + { + "start": 15621.52, + "end": 15622.04, + "probability": 0.5085 + }, + { + "start": 15622.04, + "end": 15624.34, + "probability": 0.9344 + }, + { + "start": 15624.46, + "end": 15625.16, + "probability": 0.9133 + }, + { + "start": 15626.0, + "end": 15627.76, + "probability": 0.9907 + }, + { + "start": 15628.0, + "end": 15628.78, + "probability": 0.8777 + }, + { + "start": 15628.9, + "end": 15629.08, + "probability": 0.9666 + }, + { + "start": 15629.18, + "end": 15630.74, + "probability": 0.9911 + }, + { + "start": 15631.96, + "end": 15636.28, + "probability": 0.9962 + }, + { + "start": 15636.38, + "end": 15638.96, + "probability": 0.9678 + }, + { + "start": 15638.96, + "end": 15642.44, + "probability": 0.9869 + }, + { + "start": 15643.28, + "end": 15646.7, + "probability": 0.9928 + }, + { + "start": 15647.4, + "end": 15651.04, + "probability": 0.7776 + }, + { + "start": 15651.74, + "end": 15656.4, + "probability": 0.9541 + }, + { + "start": 15657.42, + "end": 15660.58, + "probability": 0.9884 + }, + { + "start": 15660.64, + "end": 15663.0, + "probability": 0.9918 + }, + { + "start": 15664.58, + "end": 15667.68, + "probability": 0.9943 + }, + { + "start": 15667.82, + "end": 15670.68, + "probability": 0.7203 + }, + { + "start": 15671.62, + "end": 15676.82, + "probability": 0.724 + }, + { + "start": 15677.38, + "end": 15680.48, + "probability": 0.9942 + }, + { + "start": 15680.64, + "end": 15682.38, + "probability": 0.969 + }, + { + "start": 15682.96, + "end": 15690.62, + "probability": 0.9606 + }, + { + "start": 15691.4, + "end": 15693.28, + "probability": 0.8321 + }, + { + "start": 15694.34, + "end": 15697.76, + "probability": 0.89 + }, + { + "start": 15698.66, + "end": 15705.22, + "probability": 0.9893 + }, + { + "start": 15705.38, + "end": 15706.52, + "probability": 0.8492 + }, + { + "start": 15707.36, + "end": 15711.6, + "probability": 0.9182 + }, + { + "start": 15712.7, + "end": 15714.02, + "probability": 0.9439 + }, + { + "start": 15714.16, + "end": 15715.38, + "probability": 0.8249 + }, + { + "start": 15715.6, + "end": 15718.2, + "probability": 0.9817 + }, + { + "start": 15719.22, + "end": 15722.28, + "probability": 0.9811 + }, + { + "start": 15723.28, + "end": 15726.16, + "probability": 0.9064 + }, + { + "start": 15727.51, + "end": 15732.76, + "probability": 0.9013 + }, + { + "start": 15733.02, + "end": 15735.14, + "probability": 0.8649 + }, + { + "start": 15735.64, + "end": 15741.86, + "probability": 0.9938 + }, + { + "start": 15742.0, + "end": 15743.68, + "probability": 0.9045 + }, + { + "start": 15744.14, + "end": 15749.51, + "probability": 0.9836 + }, + { + "start": 15749.9, + "end": 15754.1, + "probability": 0.9855 + }, + { + "start": 15754.34, + "end": 15756.06, + "probability": 0.9916 + }, + { + "start": 15756.18, + "end": 15759.82, + "probability": 0.8672 + }, + { + "start": 15760.02, + "end": 15762.52, + "probability": 0.9873 + }, + { + "start": 15763.0, + "end": 15765.18, + "probability": 0.9187 + }, + { + "start": 15765.3, + "end": 15766.06, + "probability": 0.5435 + }, + { + "start": 15766.36, + "end": 15768.08, + "probability": 0.9245 + }, + { + "start": 15768.14, + "end": 15770.39, + "probability": 0.9582 + }, + { + "start": 15770.88, + "end": 15773.66, + "probability": 0.9876 + }, + { + "start": 15773.7, + "end": 15776.62, + "probability": 0.985 + }, + { + "start": 15776.76, + "end": 15777.4, + "probability": 0.9141 + }, + { + "start": 15777.54, + "end": 15777.92, + "probability": 0.7079 + }, + { + "start": 15778.0, + "end": 15778.44, + "probability": 0.926 + }, + { + "start": 15778.52, + "end": 15778.84, + "probability": 0.5763 + }, + { + "start": 15778.88, + "end": 15779.34, + "probability": 0.6152 + }, + { + "start": 15779.46, + "end": 15781.04, + "probability": 0.8835 + }, + { + "start": 15781.92, + "end": 15785.24, + "probability": 0.8499 + }, + { + "start": 15786.02, + "end": 15788.02, + "probability": 0.9664 + }, + { + "start": 15788.1, + "end": 15791.04, + "probability": 0.9927 + }, + { + "start": 15791.64, + "end": 15795.26, + "probability": 0.9318 + }, + { + "start": 15796.5, + "end": 15798.76, + "probability": 0.9585 + }, + { + "start": 15798.88, + "end": 15799.04, + "probability": 0.4612 + }, + { + "start": 15799.08, + "end": 15801.44, + "probability": 0.9663 + }, + { + "start": 15801.9, + "end": 15806.48, + "probability": 0.9972 + }, + { + "start": 15806.54, + "end": 15807.6, + "probability": 0.8972 + }, + { + "start": 15808.04, + "end": 15814.04, + "probability": 0.9903 + }, + { + "start": 15814.84, + "end": 15819.26, + "probability": 0.998 + }, + { + "start": 15819.26, + "end": 15822.22, + "probability": 0.9433 + }, + { + "start": 15822.62, + "end": 15826.58, + "probability": 0.99 + }, + { + "start": 15826.84, + "end": 15827.04, + "probability": 0.8464 + }, + { + "start": 15827.48, + "end": 15828.52, + "probability": 0.9468 + }, + { + "start": 15830.0, + "end": 15833.37, + "probability": 0.9977 + }, + { + "start": 15833.54, + "end": 15837.66, + "probability": 0.9882 + }, + { + "start": 15837.74, + "end": 15843.12, + "probability": 0.9943 + }, + { + "start": 15843.3, + "end": 15845.68, + "probability": 0.9892 + }, + { + "start": 15846.08, + "end": 15846.72, + "probability": 0.7432 + }, + { + "start": 15846.82, + "end": 15847.2, + "probability": 0.7256 + }, + { + "start": 15847.56, + "end": 15849.6, + "probability": 0.579 + }, + { + "start": 15851.66, + "end": 15853.88, + "probability": 0.0478 + }, + { + "start": 15871.6, + "end": 15873.58, + "probability": 0.5942 + }, + { + "start": 15874.9, + "end": 15875.24, + "probability": 0.7913 + }, + { + "start": 15876.22, + "end": 15880.24, + "probability": 0.8057 + }, + { + "start": 15881.14, + "end": 15882.42, + "probability": 0.8588 + }, + { + "start": 15883.14, + "end": 15885.34, + "probability": 0.797 + }, + { + "start": 15886.72, + "end": 15888.56, + "probability": 0.9994 + }, + { + "start": 15889.84, + "end": 15892.4, + "probability": 0.9404 + }, + { + "start": 15894.26, + "end": 15895.32, + "probability": 0.6668 + }, + { + "start": 15896.54, + "end": 15898.98, + "probability": 0.8772 + }, + { + "start": 15900.08, + "end": 15903.4, + "probability": 0.7009 + }, + { + "start": 15904.2, + "end": 15904.62, + "probability": 0.5462 + }, + { + "start": 15905.84, + "end": 15909.02, + "probability": 0.9868 + }, + { + "start": 15909.9, + "end": 15912.13, + "probability": 0.9451 + }, + { + "start": 15914.66, + "end": 15915.36, + "probability": 0.8157 + }, + { + "start": 15916.8, + "end": 15922.28, + "probability": 0.967 + }, + { + "start": 15923.72, + "end": 15925.56, + "probability": 0.8131 + }, + { + "start": 15926.74, + "end": 15927.76, + "probability": 0.6582 + }, + { + "start": 15928.86, + "end": 15929.66, + "probability": 0.7035 + }, + { + "start": 15930.54, + "end": 15931.38, + "probability": 0.9878 + }, + { + "start": 15932.28, + "end": 15935.04, + "probability": 0.9569 + }, + { + "start": 15935.7, + "end": 15937.04, + "probability": 0.5193 + }, + { + "start": 15937.7, + "end": 15940.1, + "probability": 0.9276 + }, + { + "start": 15942.1, + "end": 15942.8, + "probability": 0.8555 + }, + { + "start": 15943.82, + "end": 15948.96, + "probability": 0.982 + }, + { + "start": 15952.14, + "end": 15955.32, + "probability": 0.8228 + }, + { + "start": 15955.36, + "end": 15955.66, + "probability": 0.8866 + }, + { + "start": 15956.92, + "end": 15959.02, + "probability": 0.8661 + }, + { + "start": 15959.36, + "end": 15960.62, + "probability": 0.4808 + }, + { + "start": 15962.28, + "end": 15963.14, + "probability": 0.9469 + }, + { + "start": 15964.02, + "end": 15966.9, + "probability": 0.8107 + }, + { + "start": 15968.14, + "end": 15969.24, + "probability": 0.9933 + }, + { + "start": 15970.16, + "end": 15972.2, + "probability": 0.9884 + }, + { + "start": 15973.46, + "end": 15973.98, + "probability": 0.5133 + }, + { + "start": 15975.08, + "end": 15975.94, + "probability": 0.9974 + }, + { + "start": 15977.74, + "end": 15979.82, + "probability": 0.9284 + }, + { + "start": 15980.34, + "end": 15982.92, + "probability": 0.743 + }, + { + "start": 15983.54, + "end": 15984.44, + "probability": 0.8635 + }, + { + "start": 15986.44, + "end": 15990.04, + "probability": 0.9309 + }, + { + "start": 15991.3, + "end": 15993.98, + "probability": 0.9958 + }, + { + "start": 15996.06, + "end": 15997.0, + "probability": 0.6754 + }, + { + "start": 15998.12, + "end": 15998.16, + "probability": 0.9604 + }, + { + "start": 15999.06, + "end": 16003.36, + "probability": 0.9471 + }, + { + "start": 16004.84, + "end": 16008.62, + "probability": 0.8286 + }, + { + "start": 16009.36, + "end": 16010.94, + "probability": 0.4993 + }, + { + "start": 16011.6, + "end": 16011.96, + "probability": 0.9609 + }, + { + "start": 16012.52, + "end": 16013.16, + "probability": 0.7093 + }, + { + "start": 16017.3, + "end": 16019.2, + "probability": 0.9985 + }, + { + "start": 16020.96, + "end": 16026.9, + "probability": 0.9631 + }, + { + "start": 16027.94, + "end": 16029.48, + "probability": 0.89 + }, + { + "start": 16030.46, + "end": 16031.7, + "probability": 0.9932 + }, + { + "start": 16036.96, + "end": 16038.46, + "probability": 0.8646 + }, + { + "start": 16039.42, + "end": 16040.44, + "probability": 0.9974 + }, + { + "start": 16041.38, + "end": 16042.56, + "probability": 0.9665 + }, + { + "start": 16043.64, + "end": 16046.76, + "probability": 0.9962 + }, + { + "start": 16047.82, + "end": 16048.76, + "probability": 0.9502 + }, + { + "start": 16049.94, + "end": 16051.86, + "probability": 0.8186 + }, + { + "start": 16053.54, + "end": 16055.9, + "probability": 0.7563 + }, + { + "start": 16056.74, + "end": 16057.7, + "probability": 0.9766 + }, + { + "start": 16059.84, + "end": 16065.86, + "probability": 0.8348 + }, + { + "start": 16066.6, + "end": 16067.84, + "probability": 0.9811 + }, + { + "start": 16068.66, + "end": 16072.75, + "probability": 0.9365 + }, + { + "start": 16073.92, + "end": 16075.3, + "probability": 0.9741 + }, + { + "start": 16075.98, + "end": 16077.18, + "probability": 0.5296 + }, + { + "start": 16077.22, + "end": 16079.26, + "probability": 0.997 + }, + { + "start": 16079.48, + "end": 16080.78, + "probability": 0.9971 + }, + { + "start": 16081.7, + "end": 16082.72, + "probability": 0.9858 + }, + { + "start": 16083.54, + "end": 16090.32, + "probability": 0.9236 + }, + { + "start": 16091.36, + "end": 16093.04, + "probability": 0.9893 + }, + { + "start": 16094.38, + "end": 16095.71, + "probability": 0.8716 + }, + { + "start": 16096.14, + "end": 16099.86, + "probability": 0.9668 + }, + { + "start": 16099.96, + "end": 16105.36, + "probability": 0.9792 + }, + { + "start": 16106.0, + "end": 16113.7, + "probability": 0.9825 + }, + { + "start": 16114.34, + "end": 16116.88, + "probability": 0.9943 + }, + { + "start": 16117.98, + "end": 16121.5, + "probability": 0.862 + }, + { + "start": 16122.12, + "end": 16124.31, + "probability": 0.79 + }, + { + "start": 16125.88, + "end": 16130.12, + "probability": 0.9927 + }, + { + "start": 16130.12, + "end": 16134.6, + "probability": 0.9976 + }, + { + "start": 16135.18, + "end": 16135.94, + "probability": 0.9683 + }, + { + "start": 16136.9, + "end": 16141.96, + "probability": 0.9896 + }, + { + "start": 16142.5, + "end": 16146.98, + "probability": 0.9767 + }, + { + "start": 16148.54, + "end": 16149.5, + "probability": 0.7686 + }, + { + "start": 16150.34, + "end": 16153.38, + "probability": 0.9302 + }, + { + "start": 16154.28, + "end": 16158.34, + "probability": 0.991 + }, + { + "start": 16158.6, + "end": 16158.82, + "probability": 0.6927 + }, + { + "start": 16159.48, + "end": 16160.52, + "probability": 0.6292 + }, + { + "start": 16160.56, + "end": 16161.94, + "probability": 0.8366 + }, + { + "start": 16168.76, + "end": 16168.76, + "probability": 0.0492 + }, + { + "start": 16168.76, + "end": 16168.8, + "probability": 0.045 + }, + { + "start": 16168.8, + "end": 16168.8, + "probability": 0.1612 + }, + { + "start": 16168.84, + "end": 16168.96, + "probability": 0.032 + }, + { + "start": 16191.66, + "end": 16194.76, + "probability": 0.7139 + }, + { + "start": 16194.9, + "end": 16196.38, + "probability": 0.3601 + }, + { + "start": 16196.78, + "end": 16199.52, + "probability": 0.9324 + }, + { + "start": 16200.66, + "end": 16202.64, + "probability": 0.8338 + }, + { + "start": 16205.08, + "end": 16209.7, + "probability": 0.8337 + }, + { + "start": 16210.92, + "end": 16215.06, + "probability": 0.9966 + }, + { + "start": 16215.72, + "end": 16217.46, + "probability": 0.9633 + }, + { + "start": 16218.18, + "end": 16219.47, + "probability": 0.9697 + }, + { + "start": 16221.24, + "end": 16226.84, + "probability": 0.9919 + }, + { + "start": 16226.84, + "end": 16230.78, + "probability": 0.7549 + }, + { + "start": 16232.5, + "end": 16238.56, + "probability": 0.998 + }, + { + "start": 16239.38, + "end": 16240.9, + "probability": 0.9977 + }, + { + "start": 16241.44, + "end": 16244.31, + "probability": 0.9988 + }, + { + "start": 16244.66, + "end": 16247.7, + "probability": 0.926 + }, + { + "start": 16247.92, + "end": 16252.1, + "probability": 0.9899 + }, + { + "start": 16252.9, + "end": 16256.52, + "probability": 0.9906 + }, + { + "start": 16256.52, + "end": 16260.02, + "probability": 0.8054 + }, + { + "start": 16260.14, + "end": 16260.44, + "probability": 0.8218 + }, + { + "start": 16261.18, + "end": 16261.52, + "probability": 0.8293 + }, + { + "start": 16263.58, + "end": 16269.7, + "probability": 0.9927 + }, + { + "start": 16270.18, + "end": 16271.38, + "probability": 0.8587 + }, + { + "start": 16272.16, + "end": 16273.26, + "probability": 0.9661 + }, + { + "start": 16273.46, + "end": 16274.46, + "probability": 0.7088 + }, + { + "start": 16274.52, + "end": 16275.14, + "probability": 0.937 + }, + { + "start": 16275.14, + "end": 16276.5, + "probability": 0.5774 + }, + { + "start": 16277.34, + "end": 16280.5, + "probability": 0.9699 + }, + { + "start": 16281.1, + "end": 16285.88, + "probability": 0.9247 + }, + { + "start": 16286.6, + "end": 16288.82, + "probability": 0.9663 + }, + { + "start": 16290.12, + "end": 16291.7, + "probability": 0.9933 + }, + { + "start": 16292.84, + "end": 16296.06, + "probability": 0.9946 + }, + { + "start": 16296.74, + "end": 16301.06, + "probability": 0.9631 + }, + { + "start": 16301.72, + "end": 16304.14, + "probability": 0.8111 + }, + { + "start": 16305.16, + "end": 16306.38, + "probability": 0.9993 + }, + { + "start": 16307.46, + "end": 16308.52, + "probability": 0.9922 + }, + { + "start": 16309.96, + "end": 16312.66, + "probability": 0.9475 + }, + { + "start": 16313.96, + "end": 16319.5, + "probability": 0.9941 + }, + { + "start": 16319.5, + "end": 16325.0, + "probability": 0.9953 + }, + { + "start": 16325.68, + "end": 16328.66, + "probability": 0.9878 + }, + { + "start": 16330.22, + "end": 16336.06, + "probability": 0.9975 + }, + { + "start": 16337.6, + "end": 16338.5, + "probability": 0.9709 + }, + { + "start": 16339.34, + "end": 16346.12, + "probability": 0.9973 + }, + { + "start": 16346.48, + "end": 16347.36, + "probability": 0.8555 + }, + { + "start": 16347.78, + "end": 16351.58, + "probability": 0.9915 + }, + { + "start": 16352.46, + "end": 16354.88, + "probability": 0.8501 + }, + { + "start": 16355.86, + "end": 16364.06, + "probability": 0.9888 + }, + { + "start": 16365.0, + "end": 16366.44, + "probability": 0.9312 + }, + { + "start": 16366.98, + "end": 16367.84, + "probability": 0.7289 + }, + { + "start": 16368.38, + "end": 16369.7, + "probability": 0.9418 + }, + { + "start": 16370.76, + "end": 16373.38, + "probability": 0.8688 + }, + { + "start": 16374.24, + "end": 16375.57, + "probability": 0.9893 + }, + { + "start": 16376.88, + "end": 16379.92, + "probability": 0.9927 + }, + { + "start": 16380.94, + "end": 16385.04, + "probability": 0.9962 + }, + { + "start": 16385.04, + "end": 16389.52, + "probability": 0.9751 + }, + { + "start": 16390.52, + "end": 16393.64, + "probability": 0.9915 + }, + { + "start": 16393.64, + "end": 16396.74, + "probability": 0.995 + }, + { + "start": 16398.78, + "end": 16402.6, + "probability": 0.9964 + }, + { + "start": 16403.26, + "end": 16406.46, + "probability": 0.9928 + }, + { + "start": 16407.1, + "end": 16407.68, + "probability": 0.7466 + }, + { + "start": 16408.08, + "end": 16409.16, + "probability": 0.9782 + }, + { + "start": 16409.6, + "end": 16414.6, + "probability": 0.9889 + }, + { + "start": 16415.2, + "end": 16416.62, + "probability": 0.7661 + }, + { + "start": 16417.14, + "end": 16421.36, + "probability": 0.9156 + }, + { + "start": 16422.7, + "end": 16426.98, + "probability": 0.9861 + }, + { + "start": 16428.12, + "end": 16430.58, + "probability": 0.9952 + }, + { + "start": 16431.02, + "end": 16433.22, + "probability": 0.9896 + }, + { + "start": 16433.52, + "end": 16435.76, + "probability": 0.987 + }, + { + "start": 16436.68, + "end": 16436.72, + "probability": 0.0909 + }, + { + "start": 16437.24, + "end": 16441.9, + "probability": 0.9974 + }, + { + "start": 16441.9, + "end": 16446.56, + "probability": 0.999 + }, + { + "start": 16447.56, + "end": 16451.62, + "probability": 0.9888 + }, + { + "start": 16451.96, + "end": 16453.82, + "probability": 0.9985 + }, + { + "start": 16456.28, + "end": 16457.58, + "probability": 0.6383 + }, + { + "start": 16458.7, + "end": 16460.6, + "probability": 0.9672 + }, + { + "start": 16461.7, + "end": 16463.36, + "probability": 0.9211 + }, + { + "start": 16465.12, + "end": 16467.64, + "probability": 0.9846 + }, + { + "start": 16470.3, + "end": 16474.34, + "probability": 0.9949 + }, + { + "start": 16474.7, + "end": 16476.04, + "probability": 0.7275 + }, + { + "start": 16477.74, + "end": 16482.46, + "probability": 0.9928 + }, + { + "start": 16482.46, + "end": 16486.56, + "probability": 0.9521 + }, + { + "start": 16488.04, + "end": 16492.2, + "probability": 0.9858 + }, + { + "start": 16494.56, + "end": 16495.54, + "probability": 0.905 + }, + { + "start": 16496.32, + "end": 16500.12, + "probability": 0.9253 + }, + { + "start": 16500.86, + "end": 16501.56, + "probability": 0.908 + }, + { + "start": 16501.6, + "end": 16503.1, + "probability": 0.9008 + }, + { + "start": 16503.44, + "end": 16507.1, + "probability": 0.996 + }, + { + "start": 16508.62, + "end": 16513.96, + "probability": 0.9961 + }, + { + "start": 16516.54, + "end": 16522.94, + "probability": 0.9855 + }, + { + "start": 16523.12, + "end": 16526.82, + "probability": 0.9884 + }, + { + "start": 16527.1, + "end": 16528.32, + "probability": 0.6957 + }, + { + "start": 16530.0, + "end": 16534.74, + "probability": 0.9934 + }, + { + "start": 16534.74, + "end": 16540.48, + "probability": 0.995 + }, + { + "start": 16541.4, + "end": 16542.12, + "probability": 0.769 + }, + { + "start": 16543.16, + "end": 16546.24, + "probability": 0.9641 + }, + { + "start": 16548.46, + "end": 16549.28, + "probability": 0.7364 + }, + { + "start": 16551.44, + "end": 16553.36, + "probability": 0.9976 + }, + { + "start": 16555.18, + "end": 16556.58, + "probability": 0.8362 + }, + { + "start": 16557.24, + "end": 16558.12, + "probability": 0.7339 + }, + { + "start": 16560.18, + "end": 16561.62, + "probability": 0.8919 + }, + { + "start": 16561.76, + "end": 16563.16, + "probability": 0.9756 + }, + { + "start": 16563.28, + "end": 16568.78, + "probability": 0.9814 + }, + { + "start": 16569.0, + "end": 16571.08, + "probability": 0.9795 + }, + { + "start": 16572.32, + "end": 16573.2, + "probability": 0.6805 + }, + { + "start": 16575.06, + "end": 16577.14, + "probability": 0.9296 + }, + { + "start": 16578.4, + "end": 16580.72, + "probability": 0.8809 + }, + { + "start": 16582.02, + "end": 16584.34, + "probability": 0.9811 + }, + { + "start": 16585.28, + "end": 16590.74, + "probability": 0.9801 + }, + { + "start": 16592.26, + "end": 16593.64, + "probability": 0.4041 + }, + { + "start": 16594.7, + "end": 16597.46, + "probability": 0.9949 + }, + { + "start": 16598.58, + "end": 16602.46, + "probability": 0.9811 + }, + { + "start": 16605.34, + "end": 16610.68, + "probability": 0.9453 + }, + { + "start": 16610.88, + "end": 16616.08, + "probability": 0.823 + }, + { + "start": 16618.02, + "end": 16619.44, + "probability": 0.9655 + }, + { + "start": 16620.86, + "end": 16624.36, + "probability": 0.9854 + }, + { + "start": 16626.5, + "end": 16633.32, + "probability": 0.9647 + }, + { + "start": 16633.32, + "end": 16640.22, + "probability": 0.9997 + }, + { + "start": 16641.96, + "end": 16642.56, + "probability": 0.9251 + }, + { + "start": 16643.64, + "end": 16647.64, + "probability": 0.9438 + }, + { + "start": 16648.36, + "end": 16650.76, + "probability": 0.7245 + }, + { + "start": 16651.88, + "end": 16657.66, + "probability": 0.99 + }, + { + "start": 16657.66, + "end": 16660.9, + "probability": 0.9988 + }, + { + "start": 16662.3, + "end": 16669.04, + "probability": 0.9341 + }, + { + "start": 16669.04, + "end": 16673.22, + "probability": 0.9957 + }, + { + "start": 16674.1, + "end": 16676.22, + "probability": 0.9575 + }, + { + "start": 16676.56, + "end": 16679.46, + "probability": 0.9928 + }, + { + "start": 16679.82, + "end": 16683.98, + "probability": 0.9978 + }, + { + "start": 16684.4, + "end": 16685.96, + "probability": 0.988 + }, + { + "start": 16686.86, + "end": 16689.44, + "probability": 0.9983 + }, + { + "start": 16690.56, + "end": 16693.02, + "probability": 0.8966 + }, + { + "start": 16693.66, + "end": 16695.9, + "probability": 0.906 + }, + { + "start": 16697.16, + "end": 16702.72, + "probability": 0.9969 + }, + { + "start": 16704.58, + "end": 16710.26, + "probability": 0.9764 + }, + { + "start": 16710.9, + "end": 16713.62, + "probability": 0.9982 + }, + { + "start": 16714.56, + "end": 16716.74, + "probability": 0.999 + }, + { + "start": 16716.74, + "end": 16720.12, + "probability": 0.9546 + }, + { + "start": 16721.22, + "end": 16722.06, + "probability": 0.7605 + }, + { + "start": 16722.58, + "end": 16726.92, + "probability": 0.9457 + }, + { + "start": 16727.94, + "end": 16733.18, + "probability": 0.9988 + }, + { + "start": 16734.78, + "end": 16741.54, + "probability": 0.9985 + }, + { + "start": 16742.58, + "end": 16743.26, + "probability": 0.5082 + }, + { + "start": 16744.1, + "end": 16744.8, + "probability": 0.8726 + }, + { + "start": 16746.24, + "end": 16750.84, + "probability": 0.9855 + }, + { + "start": 16752.46, + "end": 16752.98, + "probability": 0.896 + }, + { + "start": 16753.62, + "end": 16755.32, + "probability": 0.9808 + }, + { + "start": 16755.96, + "end": 16757.44, + "probability": 0.6988 + }, + { + "start": 16758.9, + "end": 16763.28, + "probability": 0.9885 + }, + { + "start": 16764.2, + "end": 16769.3, + "probability": 0.9984 + }, + { + "start": 16769.5, + "end": 16775.24, + "probability": 0.9979 + }, + { + "start": 16777.8, + "end": 16779.74, + "probability": 0.8261 + }, + { + "start": 16779.88, + "end": 16782.48, + "probability": 0.8938 + }, + { + "start": 16782.68, + "end": 16783.24, + "probability": 0.7064 + }, + { + "start": 16784.66, + "end": 16789.98, + "probability": 0.9463 + }, + { + "start": 16790.38, + "end": 16795.12, + "probability": 0.9793 + }, + { + "start": 16797.18, + "end": 16800.38, + "probability": 0.9966 + }, + { + "start": 16801.86, + "end": 16803.22, + "probability": 0.9946 + }, + { + "start": 16804.36, + "end": 16806.96, + "probability": 0.9967 + }, + { + "start": 16808.52, + "end": 16812.56, + "probability": 0.9966 + }, + { + "start": 16812.56, + "end": 16816.22, + "probability": 0.9991 + }, + { + "start": 16816.8, + "end": 16822.16, + "probability": 0.9989 + }, + { + "start": 16822.16, + "end": 16827.94, + "probability": 0.9983 + }, + { + "start": 16828.24, + "end": 16829.88, + "probability": 0.8589 + }, + { + "start": 16831.42, + "end": 16836.96, + "probability": 0.9929 + }, + { + "start": 16836.96, + "end": 16841.84, + "probability": 0.9907 + }, + { + "start": 16843.32, + "end": 16848.8, + "probability": 0.9976 + }, + { + "start": 16849.78, + "end": 16850.64, + "probability": 0.6582 + }, + { + "start": 16851.62, + "end": 16855.6, + "probability": 0.8957 + }, + { + "start": 16857.62, + "end": 16858.2, + "probability": 0.5968 + }, + { + "start": 16859.24, + "end": 16860.76, + "probability": 0.9827 + }, + { + "start": 16862.26, + "end": 16864.34, + "probability": 0.989 + }, + { + "start": 16865.64, + "end": 16868.44, + "probability": 0.99 + }, + { + "start": 16868.44, + "end": 16871.44, + "probability": 0.9971 + }, + { + "start": 16872.04, + "end": 16872.7, + "probability": 0.258 + }, + { + "start": 16874.14, + "end": 16878.38, + "probability": 0.9983 + }, + { + "start": 16878.68, + "end": 16881.82, + "probability": 0.9663 + }, + { + "start": 16881.94, + "end": 16883.96, + "probability": 0.9583 + }, + { + "start": 16884.56, + "end": 16885.5, + "probability": 0.8228 + }, + { + "start": 16886.02, + "end": 16886.52, + "probability": 0.3734 + }, + { + "start": 16886.56, + "end": 16889.1, + "probability": 0.4608 + }, + { + "start": 16889.4, + "end": 16890.26, + "probability": 0.4336 + }, + { + "start": 16890.48, + "end": 16893.98, + "probability": 0.7204 + }, + { + "start": 16894.54, + "end": 16895.26, + "probability": 0.7783 + }, + { + "start": 16895.42, + "end": 16895.83, + "probability": 0.309 + }, + { + "start": 16895.94, + "end": 16896.92, + "probability": 0.9005 + }, + { + "start": 16897.32, + "end": 16899.16, + "probability": 0.7392 + }, + { + "start": 16900.56, + "end": 16903.04, + "probability": 0.8422 + }, + { + "start": 16903.9, + "end": 16908.18, + "probability": 0.8391 + }, + { + "start": 16909.18, + "end": 16911.72, + "probability": 0.8278 + }, + { + "start": 16912.38, + "end": 16915.28, + "probability": 0.9569 + }, + { + "start": 16915.5, + "end": 16915.8, + "probability": 0.2029 + }, + { + "start": 16915.82, + "end": 16919.46, + "probability": 0.9932 + }, + { + "start": 16919.46, + "end": 16923.32, + "probability": 0.9977 + }, + { + "start": 16923.94, + "end": 16928.91, + "probability": 0.9984 + }, + { + "start": 16929.52, + "end": 16933.2, + "probability": 0.996 + }, + { + "start": 16933.62, + "end": 16935.08, + "probability": 0.8683 + }, + { + "start": 16935.94, + "end": 16937.7, + "probability": 0.9946 + }, + { + "start": 16938.0, + "end": 16938.72, + "probability": 0.3922 + }, + { + "start": 16938.8, + "end": 16941.96, + "probability": 0.6602 + }, + { + "start": 16942.4, + "end": 16943.18, + "probability": 0.8288 + }, + { + "start": 16943.22, + "end": 16946.38, + "probability": 0.9176 + }, + { + "start": 16946.7, + "end": 16948.06, + "probability": 0.922 + }, + { + "start": 16948.18, + "end": 16951.44, + "probability": 0.0904 + }, + { + "start": 16951.44, + "end": 16953.16, + "probability": 0.515 + }, + { + "start": 16953.84, + "end": 16959.08, + "probability": 0.9729 + }, + { + "start": 16959.54, + "end": 16963.28, + "probability": 0.9915 + }, + { + "start": 16963.28, + "end": 16966.5, + "probability": 0.9969 + }, + { + "start": 16966.88, + "end": 16973.02, + "probability": 0.9956 + }, + { + "start": 16973.68, + "end": 16977.22, + "probability": 0.9976 + }, + { + "start": 16977.72, + "end": 16978.58, + "probability": 0.9333 + }, + { + "start": 16979.68, + "end": 16982.1, + "probability": 0.9524 + }, + { + "start": 16982.64, + "end": 16985.18, + "probability": 0.9778 + }, + { + "start": 16986.96, + "end": 16988.06, + "probability": 0.8982 + }, + { + "start": 16989.6, + "end": 16992.02, + "probability": 0.9776 + }, + { + "start": 16992.56, + "end": 16995.52, + "probability": 0.9901 + }, + { + "start": 16997.3, + "end": 17000.34, + "probability": 0.9383 + }, + { + "start": 17001.44, + "end": 17002.86, + "probability": 0.9919 + }, + { + "start": 17003.7, + "end": 17006.4, + "probability": 0.8506 + }, + { + "start": 17007.54, + "end": 17015.22, + "probability": 0.9985 + }, + { + "start": 17015.7, + "end": 17017.53, + "probability": 0.9956 + }, + { + "start": 17018.62, + "end": 17019.92, + "probability": 0.9784 + }, + { + "start": 17021.02, + "end": 17023.98, + "probability": 0.8683 + }, + { + "start": 17024.54, + "end": 17026.28, + "probability": 0.9603 + }, + { + "start": 17026.96, + "end": 17031.52, + "probability": 0.9739 + }, + { + "start": 17032.32, + "end": 17034.96, + "probability": 0.9707 + }, + { + "start": 17036.44, + "end": 17040.22, + "probability": 0.9961 + }, + { + "start": 17041.0, + "end": 17041.88, + "probability": 0.905 + }, + { + "start": 17042.84, + "end": 17044.94, + "probability": 0.991 + }, + { + "start": 17046.58, + "end": 17051.58, + "probability": 0.9206 + }, + { + "start": 17053.92, + "end": 17054.53, + "probability": 0.674 + }, + { + "start": 17056.42, + "end": 17059.6, + "probability": 0.9907 + }, + { + "start": 17060.06, + "end": 17061.5, + "probability": 0.7778 + }, + { + "start": 17063.1, + "end": 17067.6, + "probability": 0.9805 + }, + { + "start": 17069.46, + "end": 17074.42, + "probability": 0.9971 + }, + { + "start": 17075.58, + "end": 17076.62, + "probability": 0.773 + }, + { + "start": 17077.64, + "end": 17078.88, + "probability": 0.9812 + }, + { + "start": 17079.52, + "end": 17080.82, + "probability": 0.9834 + }, + { + "start": 17081.46, + "end": 17082.88, + "probability": 0.7645 + }, + { + "start": 17083.62, + "end": 17087.78, + "probability": 0.9565 + }, + { + "start": 17089.96, + "end": 17092.96, + "probability": 0.6826 + }, + { + "start": 17093.82, + "end": 17096.32, + "probability": 0.9945 + }, + { + "start": 17097.22, + "end": 17098.4, + "probability": 0.7359 + }, + { + "start": 17099.94, + "end": 17103.82, + "probability": 0.9878 + }, + { + "start": 17106.28, + "end": 17109.7, + "probability": 0.9885 + }, + { + "start": 17109.76, + "end": 17115.8, + "probability": 0.9022 + }, + { + "start": 17117.34, + "end": 17121.9, + "probability": 0.8503 + }, + { + "start": 17122.42, + "end": 17125.04, + "probability": 0.9887 + }, + { + "start": 17125.54, + "end": 17128.9, + "probability": 0.9945 + }, + { + "start": 17130.24, + "end": 17131.36, + "probability": 0.6402 + }, + { + "start": 17132.5, + "end": 17133.58, + "probability": 0.8018 + }, + { + "start": 17133.64, + "end": 17134.6, + "probability": 0.9337 + }, + { + "start": 17136.18, + "end": 17141.0, + "probability": 0.9707 + }, + { + "start": 17141.2, + "end": 17144.1, + "probability": 0.9955 + }, + { + "start": 17144.74, + "end": 17146.84, + "probability": 0.8702 + }, + { + "start": 17147.46, + "end": 17153.66, + "probability": 0.9899 + }, + { + "start": 17154.9, + "end": 17156.6, + "probability": 0.9913 + }, + { + "start": 17156.96, + "end": 17160.62, + "probability": 0.9882 + }, + { + "start": 17161.16, + "end": 17164.7, + "probability": 0.9944 + }, + { + "start": 17165.72, + "end": 17168.02, + "probability": 0.9988 + }, + { + "start": 17169.64, + "end": 17171.02, + "probability": 0.9873 + }, + { + "start": 17171.78, + "end": 17174.56, + "probability": 0.9421 + }, + { + "start": 17175.84, + "end": 17176.88, + "probability": 0.6234 + }, + { + "start": 17177.78, + "end": 17179.52, + "probability": 0.9922 + }, + { + "start": 17180.16, + "end": 17182.38, + "probability": 0.9993 + }, + { + "start": 17184.24, + "end": 17186.14, + "probability": 0.9976 + }, + { + "start": 17190.8, + "end": 17191.76, + "probability": 0.7097 + }, + { + "start": 17193.04, + "end": 17194.0, + "probability": 0.6336 + }, + { + "start": 17195.22, + "end": 17201.12, + "probability": 0.9982 + }, + { + "start": 17201.58, + "end": 17203.72, + "probability": 0.9303 + }, + { + "start": 17205.22, + "end": 17207.78, + "probability": 0.9561 + }, + { + "start": 17208.3, + "end": 17210.24, + "probability": 0.4943 + }, + { + "start": 17210.9, + "end": 17213.74, + "probability": 0.9171 + }, + { + "start": 17214.88, + "end": 17216.98, + "probability": 0.9762 + }, + { + "start": 17217.66, + "end": 17221.6, + "probability": 0.9855 + }, + { + "start": 17221.86, + "end": 17229.02, + "probability": 0.9526 + }, + { + "start": 17231.08, + "end": 17231.4, + "probability": 0.3949 + }, + { + "start": 17231.62, + "end": 17233.88, + "probability": 0.9055 + }, + { + "start": 17234.94, + "end": 17239.4, + "probability": 0.876 + }, + { + "start": 17240.6, + "end": 17241.94, + "probability": 0.9717 + }, + { + "start": 17243.78, + "end": 17246.28, + "probability": 0.838 + }, + { + "start": 17247.78, + "end": 17248.62, + "probability": 0.9545 + }, + { + "start": 17249.58, + "end": 17250.56, + "probability": 0.908 + }, + { + "start": 17251.22, + "end": 17254.88, + "probability": 0.9732 + }, + { + "start": 17256.06, + "end": 17260.88, + "probability": 0.998 + }, + { + "start": 17261.62, + "end": 17264.3, + "probability": 0.9784 + }, + { + "start": 17264.4, + "end": 17265.02, + "probability": 0.7152 + }, + { + "start": 17265.42, + "end": 17271.64, + "probability": 0.9805 + }, + { + "start": 17273.88, + "end": 17276.52, + "probability": 0.9749 + }, + { + "start": 17277.64, + "end": 17282.2, + "probability": 0.9943 + }, + { + "start": 17283.96, + "end": 17284.14, + "probability": 0.6252 + }, + { + "start": 17284.86, + "end": 17288.88, + "probability": 0.9692 + }, + { + "start": 17289.78, + "end": 17297.76, + "probability": 0.998 + }, + { + "start": 17298.4, + "end": 17300.68, + "probability": 0.8848 + }, + { + "start": 17301.04, + "end": 17302.6, + "probability": 0.9932 + }, + { + "start": 17303.78, + "end": 17306.14, + "probability": 0.7676 + }, + { + "start": 17306.84, + "end": 17309.6, + "probability": 0.997 + }, + { + "start": 17310.38, + "end": 17314.38, + "probability": 0.9477 + }, + { + "start": 17315.02, + "end": 17315.46, + "probability": 0.6799 + }, + { + "start": 17315.96, + "end": 17316.66, + "probability": 0.9719 + }, + { + "start": 17316.84, + "end": 17318.1, + "probability": 0.8213 + }, + { + "start": 17318.18, + "end": 17318.48, + "probability": 0.4668 + }, + { + "start": 17318.98, + "end": 17325.28, + "probability": 0.9915 + }, + { + "start": 17325.56, + "end": 17330.36, + "probability": 0.9819 + }, + { + "start": 17330.52, + "end": 17331.44, + "probability": 0.6924 + }, + { + "start": 17331.72, + "end": 17333.24, + "probability": 0.7872 + }, + { + "start": 17334.0, + "end": 17336.82, + "probability": 0.636 + }, + { + "start": 17337.32, + "end": 17338.36, + "probability": 0.6133 + }, + { + "start": 17339.82, + "end": 17340.04, + "probability": 0.5161 + }, + { + "start": 17340.1, + "end": 17346.92, + "probability": 0.9109 + }, + { + "start": 17347.68, + "end": 17350.2, + "probability": 0.952 + }, + { + "start": 17350.84, + "end": 17356.96, + "probability": 0.9917 + }, + { + "start": 17357.56, + "end": 17362.84, + "probability": 0.9954 + }, + { + "start": 17364.16, + "end": 17365.1, + "probability": 0.6731 + }, + { + "start": 17365.82, + "end": 17373.22, + "probability": 0.9893 + }, + { + "start": 17373.84, + "end": 17376.38, + "probability": 0.9276 + }, + { + "start": 17376.86, + "end": 17379.59, + "probability": 0.991 + }, + { + "start": 17380.3, + "end": 17382.78, + "probability": 0.9639 + }, + { + "start": 17383.64, + "end": 17389.2, + "probability": 0.9777 + }, + { + "start": 17389.6, + "end": 17392.38, + "probability": 0.9951 + }, + { + "start": 17393.78, + "end": 17399.88, + "probability": 0.9779 + }, + { + "start": 17400.82, + "end": 17406.86, + "probability": 0.9917 + }, + { + "start": 17407.04, + "end": 17409.1, + "probability": 0.9883 + }, + { + "start": 17409.66, + "end": 17410.3, + "probability": 0.8261 + }, + { + "start": 17411.14, + "end": 17415.38, + "probability": 0.9843 + }, + { + "start": 17415.6, + "end": 17415.94, + "probability": 0.8007 + }, + { + "start": 17416.22, + "end": 17418.18, + "probability": 0.8632 + }, + { + "start": 17419.04, + "end": 17421.4, + "probability": 0.8464 + }, + { + "start": 17422.16, + "end": 17426.64, + "probability": 0.9941 + }, + { + "start": 17426.64, + "end": 17432.62, + "probability": 0.9973 + }, + { + "start": 17433.18, + "end": 17436.22, + "probability": 0.7291 + }, + { + "start": 17436.38, + "end": 17438.38, + "probability": 0.466 + }, + { + "start": 17439.06, + "end": 17442.56, + "probability": 0.962 + }, + { + "start": 17444.0, + "end": 17444.9, + "probability": 0.4986 + }, + { + "start": 17444.94, + "end": 17447.74, + "probability": 0.8007 + }, + { + "start": 17447.92, + "end": 17450.36, + "probability": 0.6112 + }, + { + "start": 17450.52, + "end": 17452.34, + "probability": 0.651 + }, + { + "start": 17452.58, + "end": 17454.75, + "probability": 0.4043 + }, + { + "start": 17455.1, + "end": 17455.52, + "probability": 0.037 + }, + { + "start": 17455.52, + "end": 17456.44, + "probability": 0.6615 + }, + { + "start": 17456.52, + "end": 17459.06, + "probability": 0.6377 + }, + { + "start": 17460.74, + "end": 17461.4, + "probability": 0.7397 + }, + { + "start": 17461.58, + "end": 17462.0, + "probability": 0.9058 + }, + { + "start": 17462.04, + "end": 17463.33, + "probability": 0.5629 + }, + { + "start": 17463.56, + "end": 17464.9, + "probability": 0.406 + }, + { + "start": 17464.96, + "end": 17466.46, + "probability": 0.0187 + }, + { + "start": 17466.46, + "end": 17468.85, + "probability": 0.0388 + }, + { + "start": 17468.86, + "end": 17470.48, + "probability": 0.6412 + }, + { + "start": 17470.48, + "end": 17470.48, + "probability": 0.7684 + }, + { + "start": 17470.48, + "end": 17471.4, + "probability": 0.1713 + }, + { + "start": 17471.66, + "end": 17473.94, + "probability": 0.5308 + }, + { + "start": 17474.18, + "end": 17474.18, + "probability": 0.3881 + }, + { + "start": 17474.24, + "end": 17478.38, + "probability": 0.5208 + }, + { + "start": 17478.98, + "end": 17479.92, + "probability": 0.2587 + }, + { + "start": 17479.92, + "end": 17484.28, + "probability": 0.7521 + }, + { + "start": 17484.38, + "end": 17485.58, + "probability": 0.5797 + }, + { + "start": 17485.9, + "end": 17486.69, + "probability": 0.5965 + }, + { + "start": 17487.42, + "end": 17493.16, + "probability": 0.4771 + }, + { + "start": 17493.2, + "end": 17493.2, + "probability": 0.0714 + }, + { + "start": 17493.2, + "end": 17493.44, + "probability": 0.1705 + }, + { + "start": 17493.92, + "end": 17493.92, + "probability": 0.0517 + }, + { + "start": 17493.92, + "end": 17494.44, + "probability": 0.6098 + }, + { + "start": 17494.44, + "end": 17496.08, + "probability": 0.8102 + }, + { + "start": 17496.66, + "end": 17503.94, + "probability": 0.7365 + }, + { + "start": 17504.08, + "end": 17505.66, + "probability": 0.5981 + }, + { + "start": 17506.42, + "end": 17508.06, + "probability": 0.7601 + }, + { + "start": 17509.26, + "end": 17509.26, + "probability": 0.3271 + }, + { + "start": 17509.26, + "end": 17510.98, + "probability": 0.5479 + }, + { + "start": 17511.02, + "end": 17512.62, + "probability": 0.4164 + }, + { + "start": 17515.96, + "end": 17517.4, + "probability": 0.7615 + }, + { + "start": 17518.38, + "end": 17523.14, + "probability": 0.9821 + }, + { + "start": 17524.5, + "end": 17525.88, + "probability": 0.9506 + }, + { + "start": 17527.0, + "end": 17530.28, + "probability": 0.8786 + }, + { + "start": 17530.98, + "end": 17532.06, + "probability": 0.9717 + }, + { + "start": 17534.7, + "end": 17535.14, + "probability": 0.9048 + }, + { + "start": 17536.6, + "end": 17538.16, + "probability": 0.7457 + }, + { + "start": 17540.59, + "end": 17542.88, + "probability": 0.8652 + }, + { + "start": 17544.16, + "end": 17546.14, + "probability": 0.7102 + }, + { + "start": 17547.8, + "end": 17551.18, + "probability": 0.8074 + }, + { + "start": 17552.5, + "end": 17553.68, + "probability": 0.8004 + }, + { + "start": 17554.6, + "end": 17556.68, + "probability": 0.945 + }, + { + "start": 17557.44, + "end": 17559.04, + "probability": 0.9911 + }, + { + "start": 17560.58, + "end": 17565.18, + "probability": 0.9875 + }, + { + "start": 17571.25, + "end": 17573.68, + "probability": 0.547 + }, + { + "start": 17573.68, + "end": 17577.78, + "probability": 0.9869 + }, + { + "start": 17578.88, + "end": 17580.36, + "probability": 0.9993 + }, + { + "start": 17581.72, + "end": 17586.4, + "probability": 0.8715 + }, + { + "start": 17588.32, + "end": 17589.0, + "probability": 0.9951 + }, + { + "start": 17590.76, + "end": 17595.98, + "probability": 0.9972 + }, + { + "start": 17597.32, + "end": 17602.42, + "probability": 0.9961 + }, + { + "start": 17603.54, + "end": 17606.54, + "probability": 0.9936 + }, + { + "start": 17607.94, + "end": 17615.5, + "probability": 0.9832 + }, + { + "start": 17617.16, + "end": 17619.18, + "probability": 0.9956 + }, + { + "start": 17621.18, + "end": 17622.8, + "probability": 0.9985 + }, + { + "start": 17623.64, + "end": 17625.98, + "probability": 0.9843 + }, + { + "start": 17627.22, + "end": 17630.28, + "probability": 0.9203 + }, + { + "start": 17631.3, + "end": 17634.16, + "probability": 0.9991 + }, + { + "start": 17635.6, + "end": 17637.36, + "probability": 0.9936 + }, + { + "start": 17638.56, + "end": 17641.68, + "probability": 0.9116 + }, + { + "start": 17643.74, + "end": 17646.28, + "probability": 0.9666 + }, + { + "start": 17648.38, + "end": 17650.64, + "probability": 0.9945 + }, + { + "start": 17650.74, + "end": 17654.22, + "probability": 0.9844 + }, + { + "start": 17655.32, + "end": 17658.54, + "probability": 0.9902 + }, + { + "start": 17660.02, + "end": 17664.44, + "probability": 0.9947 + }, + { + "start": 17665.74, + "end": 17669.1, + "probability": 0.9969 + }, + { + "start": 17670.22, + "end": 17672.32, + "probability": 0.994 + }, + { + "start": 17672.94, + "end": 17675.42, + "probability": 0.9728 + }, + { + "start": 17676.42, + "end": 17682.88, + "probability": 0.9855 + }, + { + "start": 17684.74, + "end": 17688.74, + "probability": 0.9964 + }, + { + "start": 17690.0, + "end": 17692.22, + "probability": 0.936 + }, + { + "start": 17696.68, + "end": 17699.94, + "probability": 0.9954 + }, + { + "start": 17700.9, + "end": 17703.48, + "probability": 0.9227 + }, + { + "start": 17704.06, + "end": 17705.32, + "probability": 0.9706 + }, + { + "start": 17706.0, + "end": 17708.28, + "probability": 0.9603 + }, + { + "start": 17709.66, + "end": 17713.0, + "probability": 0.9986 + }, + { + "start": 17713.0, + "end": 17717.24, + "probability": 0.9919 + }, + { + "start": 17717.92, + "end": 17719.42, + "probability": 0.9592 + }, + { + "start": 17720.0, + "end": 17727.18, + "probability": 0.954 + }, + { + "start": 17728.36, + "end": 17733.74, + "probability": 0.9822 + }, + { + "start": 17734.9, + "end": 17740.86, + "probability": 0.9766 + }, + { + "start": 17742.54, + "end": 17744.78, + "probability": 0.944 + }, + { + "start": 17745.38, + "end": 17748.94, + "probability": 0.9834 + }, + { + "start": 17749.52, + "end": 17752.94, + "probability": 0.9743 + }, + { + "start": 17753.68, + "end": 17756.0, + "probability": 0.9183 + }, + { + "start": 17757.42, + "end": 17760.46, + "probability": 0.9477 + }, + { + "start": 17761.46, + "end": 17763.54, + "probability": 0.9593 + }, + { + "start": 17764.5, + "end": 17766.72, + "probability": 0.9749 + }, + { + "start": 17767.26, + "end": 17770.3, + "probability": 0.9827 + }, + { + "start": 17771.82, + "end": 17775.14, + "probability": 0.9951 + }, + { + "start": 17775.26, + "end": 17775.86, + "probability": 0.9069 + }, + { + "start": 17777.4, + "end": 17781.02, + "probability": 0.9985 + }, + { + "start": 17782.44, + "end": 17786.2, + "probability": 0.9993 + }, + { + "start": 17787.06, + "end": 17788.52, + "probability": 0.9879 + }, + { + "start": 17789.48, + "end": 17790.64, + "probability": 0.7438 + }, + { + "start": 17791.62, + "end": 17795.44, + "probability": 0.9759 + }, + { + "start": 17796.4, + "end": 17799.44, + "probability": 0.9904 + }, + { + "start": 17800.7, + "end": 17802.82, + "probability": 0.9644 + }, + { + "start": 17803.04, + "end": 17804.9, + "probability": 0.8454 + }, + { + "start": 17806.26, + "end": 17808.2, + "probability": 0.9915 + }, + { + "start": 17808.38, + "end": 17811.8, + "probability": 0.999 + }, + { + "start": 17812.62, + "end": 17814.11, + "probability": 0.9912 + }, + { + "start": 17815.08, + "end": 17818.46, + "probability": 0.9978 + }, + { + "start": 17819.68, + "end": 17823.16, + "probability": 0.9984 + }, + { + "start": 17823.78, + "end": 17824.98, + "probability": 0.91 + }, + { + "start": 17826.08, + "end": 17830.98, + "probability": 0.9971 + }, + { + "start": 17831.62, + "end": 17835.38, + "probability": 0.9994 + }, + { + "start": 17836.14, + "end": 17837.63, + "probability": 0.9994 + }, + { + "start": 17839.16, + "end": 17842.86, + "probability": 0.9749 + }, + { + "start": 17843.68, + "end": 17844.68, + "probability": 0.8653 + }, + { + "start": 17845.7, + "end": 17848.2, + "probability": 0.7463 + }, + { + "start": 17848.82, + "end": 17852.88, + "probability": 0.9697 + }, + { + "start": 17852.88, + "end": 17859.42, + "probability": 0.999 + }, + { + "start": 17860.84, + "end": 17863.74, + "probability": 0.9962 + }, + { + "start": 17864.32, + "end": 17867.16, + "probability": 0.9995 + }, + { + "start": 17867.76, + "end": 17870.5, + "probability": 0.9966 + }, + { + "start": 17872.02, + "end": 17873.18, + "probability": 0.8278 + }, + { + "start": 17874.18, + "end": 17878.84, + "probability": 0.9663 + }, + { + "start": 17880.28, + "end": 17883.04, + "probability": 0.9932 + }, + { + "start": 17883.72, + "end": 17887.16, + "probability": 0.9954 + }, + { + "start": 17888.06, + "end": 17891.02, + "probability": 0.9977 + }, + { + "start": 17891.78, + "end": 17892.6, + "probability": 0.5234 + }, + { + "start": 17893.24, + "end": 17894.96, + "probability": 0.9772 + }, + { + "start": 17895.52, + "end": 17896.38, + "probability": 0.9728 + }, + { + "start": 17897.14, + "end": 17898.46, + "probability": 0.9531 + }, + { + "start": 17899.88, + "end": 17901.72, + "probability": 0.881 + }, + { + "start": 17902.38, + "end": 17903.7, + "probability": 0.9876 + }, + { + "start": 17904.72, + "end": 17906.62, + "probability": 0.9255 + }, + { + "start": 17907.3, + "end": 17911.18, + "probability": 0.9951 + }, + { + "start": 17912.14, + "end": 17915.7, + "probability": 0.8447 + }, + { + "start": 17916.38, + "end": 17917.97, + "probability": 0.9658 + }, + { + "start": 17918.96, + "end": 17919.66, + "probability": 0.9 + }, + { + "start": 17919.72, + "end": 17924.9, + "probability": 0.9937 + }, + { + "start": 17925.9, + "end": 17926.99, + "probability": 0.9924 + }, + { + "start": 17927.62, + "end": 17931.98, + "probability": 0.9568 + }, + { + "start": 17933.44, + "end": 17934.54, + "probability": 0.9996 + }, + { + "start": 17935.6, + "end": 17936.88, + "probability": 0.9585 + }, + { + "start": 17938.08, + "end": 17939.12, + "probability": 0.9007 + }, + { + "start": 17940.08, + "end": 17941.26, + "probability": 0.9027 + }, + { + "start": 17942.0, + "end": 17943.98, + "probability": 0.9934 + }, + { + "start": 17944.66, + "end": 17946.0, + "probability": 0.8274 + }, + { + "start": 17947.0, + "end": 17948.38, + "probability": 0.9766 + }, + { + "start": 17949.3, + "end": 17950.72, + "probability": 0.9274 + }, + { + "start": 17951.24, + "end": 17953.08, + "probability": 0.9957 + }, + { + "start": 17953.94, + "end": 17955.74, + "probability": 0.8513 + }, + { + "start": 17956.84, + "end": 17958.64, + "probability": 0.732 + }, + { + "start": 17960.12, + "end": 17961.64, + "probability": 0.8623 + }, + { + "start": 17962.32, + "end": 17964.46, + "probability": 0.9766 + }, + { + "start": 17965.6, + "end": 17967.26, + "probability": 0.9433 + }, + { + "start": 17967.32, + "end": 17969.76, + "probability": 0.9598 + }, + { + "start": 17970.72, + "end": 17972.32, + "probability": 0.9916 + }, + { + "start": 17973.04, + "end": 17975.24, + "probability": 0.8604 + }, + { + "start": 17976.5, + "end": 17979.4, + "probability": 0.8136 + }, + { + "start": 17980.24, + "end": 17983.72, + "probability": 0.9826 + }, + { + "start": 17984.66, + "end": 17986.4, + "probability": 0.9519 + }, + { + "start": 17987.72, + "end": 17990.18, + "probability": 0.96 + }, + { + "start": 17990.94, + "end": 17992.8, + "probability": 0.9683 + }, + { + "start": 17993.6, + "end": 17995.7, + "probability": 0.8763 + }, + { + "start": 17996.46, + "end": 17997.98, + "probability": 0.8701 + }, + { + "start": 17998.94, + "end": 18000.12, + "probability": 0.7333 + }, + { + "start": 18001.96, + "end": 18004.72, + "probability": 0.9771 + }, + { + "start": 18005.52, + "end": 18009.42, + "probability": 0.9656 + }, + { + "start": 18010.18, + "end": 18011.96, + "probability": 0.9885 + }, + { + "start": 18012.98, + "end": 18014.16, + "probability": 0.3794 + }, + { + "start": 18015.34, + "end": 18016.44, + "probability": 0.8182 + }, + { + "start": 18017.34, + "end": 18018.96, + "probability": 0.9709 + }, + { + "start": 18019.82, + "end": 18026.08, + "probability": 0.9793 + }, + { + "start": 18027.84, + "end": 18030.24, + "probability": 0.9644 + }, + { + "start": 18031.14, + "end": 18033.86, + "probability": 0.6898 + }, + { + "start": 18034.76, + "end": 18035.28, + "probability": 0.779 + }, + { + "start": 18035.48, + "end": 18041.6, + "probability": 0.8749 + }, + { + "start": 18042.36, + "end": 18044.52, + "probability": 0.7399 + }, + { + "start": 18045.56, + "end": 18049.72, + "probability": 0.8516 + }, + { + "start": 18050.6, + "end": 18056.88, + "probability": 0.9323 + }, + { + "start": 18058.96, + "end": 18061.6, + "probability": 0.5254 + }, + { + "start": 18062.6, + "end": 18065.98, + "probability": 0.7423 + }, + { + "start": 18066.84, + "end": 18068.46, + "probability": 0.9904 + }, + { + "start": 18069.34, + "end": 18072.76, + "probability": 0.9312 + }, + { + "start": 18073.62, + "end": 18074.9, + "probability": 0.7657 + }, + { + "start": 18076.44, + "end": 18077.06, + "probability": 0.9213 + }, + { + "start": 18079.56, + "end": 18081.2, + "probability": 0.5249 + }, + { + "start": 18082.62, + "end": 18088.0, + "probability": 0.939 + }, + { + "start": 18088.04, + "end": 18091.12, + "probability": 0.9589 + }, + { + "start": 18092.44, + "end": 18096.3, + "probability": 0.9844 + }, + { + "start": 18097.46, + "end": 18099.18, + "probability": 0.9769 + }, + { + "start": 18100.34, + "end": 18102.82, + "probability": 0.9928 + }, + { + "start": 18103.52, + "end": 18104.68, + "probability": 0.9958 + }, + { + "start": 18105.66, + "end": 18107.32, + "probability": 0.8643 + }, + { + "start": 18108.9, + "end": 18110.96, + "probability": 0.9575 + }, + { + "start": 18111.58, + "end": 18113.46, + "probability": 0.9292 + }, + { + "start": 18114.58, + "end": 18117.64, + "probability": 0.9424 + }, + { + "start": 18118.52, + "end": 18123.66, + "probability": 0.9725 + }, + { + "start": 18125.14, + "end": 18127.38, + "probability": 0.8595 + }, + { + "start": 18128.24, + "end": 18131.02, + "probability": 0.9683 + }, + { + "start": 18131.58, + "end": 18136.16, + "probability": 0.8132 + }, + { + "start": 18136.56, + "end": 18138.08, + "probability": 0.7318 + }, + { + "start": 18140.62, + "end": 18145.68, + "probability": 0.9355 + }, + { + "start": 18146.78, + "end": 18149.96, + "probability": 0.9302 + }, + { + "start": 18150.9, + "end": 18153.7, + "probability": 0.9157 + }, + { + "start": 18155.1, + "end": 18157.8, + "probability": 0.8931 + }, + { + "start": 18158.68, + "end": 18161.1, + "probability": 0.9844 + }, + { + "start": 18162.0, + "end": 18166.6, + "probability": 0.9771 + }, + { + "start": 18168.22, + "end": 18169.22, + "probability": 0.6284 + }, + { + "start": 18170.8, + "end": 18173.08, + "probability": 0.8149 + }, + { + "start": 18176.32, + "end": 18177.2, + "probability": 0.77 + }, + { + "start": 18178.06, + "end": 18182.02, + "probability": 0.9236 + }, + { + "start": 18182.88, + "end": 18184.44, + "probability": 0.9248 + }, + { + "start": 18185.42, + "end": 18186.76, + "probability": 0.8748 + }, + { + "start": 18187.46, + "end": 18188.61, + "probability": 0.9512 + }, + { + "start": 18190.88, + "end": 18193.08, + "probability": 0.9951 + }, + { + "start": 18193.96, + "end": 18195.56, + "probability": 0.7639 + }, + { + "start": 18197.06, + "end": 18201.14, + "probability": 0.9517 + }, + { + "start": 18202.38, + "end": 18204.1, + "probability": 0.9024 + }, + { + "start": 18205.1, + "end": 18208.08, + "probability": 0.7227 + }, + { + "start": 18209.82, + "end": 18211.08, + "probability": 0.9287 + }, + { + "start": 18212.62, + "end": 18214.03, + "probability": 0.9657 + }, + { + "start": 18215.36, + "end": 18218.18, + "probability": 0.9799 + }, + { + "start": 18218.78, + "end": 18220.14, + "probability": 0.9935 + }, + { + "start": 18221.5, + "end": 18223.4, + "probability": 0.6722 + }, + { + "start": 18225.94, + "end": 18227.1, + "probability": 0.8096 + }, + { + "start": 18230.32, + "end": 18232.36, + "probability": 0.8561 + }, + { + "start": 18232.64, + "end": 18234.8, + "probability": 0.985 + }, + { + "start": 18235.46, + "end": 18238.96, + "probability": 0.9861 + }, + { + "start": 18240.3, + "end": 18242.28, + "probability": 0.9689 + }, + { + "start": 18243.72, + "end": 18244.88, + "probability": 0.9265 + }, + { + "start": 18246.1, + "end": 18247.36, + "probability": 0.9647 + }, + { + "start": 18248.32, + "end": 18251.18, + "probability": 0.9239 + }, + { + "start": 18252.72, + "end": 18254.14, + "probability": 0.9546 + }, + { + "start": 18255.82, + "end": 18258.32, + "probability": 0.9912 + }, + { + "start": 18262.54, + "end": 18265.7, + "probability": 0.9647 + }, + { + "start": 18266.86, + "end": 18270.42, + "probability": 0.9529 + }, + { + "start": 18271.48, + "end": 18273.24, + "probability": 0.9842 + }, + { + "start": 18274.4, + "end": 18277.22, + "probability": 0.9278 + }, + { + "start": 18279.6, + "end": 18281.54, + "probability": 0.8229 + }, + { + "start": 18284.22, + "end": 18285.26, + "probability": 0.9596 + }, + { + "start": 18285.96, + "end": 18287.94, + "probability": 0.4778 + }, + { + "start": 18288.94, + "end": 18291.04, + "probability": 0.99 + }, + { + "start": 18291.98, + "end": 18293.32, + "probability": 0.6801 + }, + { + "start": 18295.52, + "end": 18297.98, + "probability": 0.6114 + }, + { + "start": 18299.0, + "end": 18304.92, + "probability": 0.8872 + }, + { + "start": 18306.7, + "end": 18309.06, + "probability": 0.9697 + }, + { + "start": 18309.82, + "end": 18310.58, + "probability": 0.7306 + }, + { + "start": 18311.18, + "end": 18311.94, + "probability": 0.4955 + }, + { + "start": 18314.51, + "end": 18317.3, + "probability": 0.4965 + }, + { + "start": 18318.44, + "end": 18320.26, + "probability": 0.8422 + }, + { + "start": 18321.94, + "end": 18324.68, + "probability": 0.7062 + }, + { + "start": 18325.68, + "end": 18328.54, + "probability": 0.9631 + }, + { + "start": 18330.06, + "end": 18332.14, + "probability": 0.8669 + }, + { + "start": 18333.0, + "end": 18334.24, + "probability": 0.6519 + }, + { + "start": 18334.5, + "end": 18335.66, + "probability": 0.6266 + }, + { + "start": 18336.96, + "end": 18340.62, + "probability": 0.8956 + }, + { + "start": 18341.54, + "end": 18342.88, + "probability": 0.9958 + }, + { + "start": 18344.16, + "end": 18346.2, + "probability": 0.9986 + }, + { + "start": 18347.24, + "end": 18348.36, + "probability": 0.7868 + }, + { + "start": 18349.28, + "end": 18350.7, + "probability": 0.8221 + }, + { + "start": 18352.28, + "end": 18353.9, + "probability": 0.9873 + }, + { + "start": 18354.5, + "end": 18357.82, + "probability": 0.8933 + }, + { + "start": 18358.66, + "end": 18359.42, + "probability": 0.9956 + }, + { + "start": 18361.52, + "end": 18365.68, + "probability": 0.957 + }, + { + "start": 18366.84, + "end": 18367.89, + "probability": 0.9922 + }, + { + "start": 18369.1, + "end": 18371.72, + "probability": 0.9883 + }, + { + "start": 18373.78, + "end": 18374.5, + "probability": 0.9244 + }, + { + "start": 18375.26, + "end": 18376.52, + "probability": 0.9633 + }, + { + "start": 18378.64, + "end": 18381.84, + "probability": 0.9908 + }, + { + "start": 18382.84, + "end": 18384.02, + "probability": 0.8088 + }, + { + "start": 18386.9, + "end": 18388.94, + "probability": 0.9201 + }, + { + "start": 18391.4, + "end": 18393.18, + "probability": 0.3243 + }, + { + "start": 18394.3, + "end": 18400.4, + "probability": 0.9954 + }, + { + "start": 18401.8, + "end": 18403.44, + "probability": 0.85 + }, + { + "start": 18404.9, + "end": 18407.34, + "probability": 0.8098 + }, + { + "start": 18408.76, + "end": 18410.88, + "probability": 0.8204 + }, + { + "start": 18412.28, + "end": 18415.95, + "probability": 0.9873 + }, + { + "start": 18416.8, + "end": 18417.48, + "probability": 0.4909 + }, + { + "start": 18418.8, + "end": 18420.18, + "probability": 0.669 + }, + { + "start": 18421.54, + "end": 18424.06, + "probability": 0.4089 + }, + { + "start": 18426.12, + "end": 18428.02, + "probability": 0.4847 + }, + { + "start": 18428.44, + "end": 18434.34, + "probability": 0.9815 + }, + { + "start": 18434.52, + "end": 18438.1, + "probability": 0.7751 + }, + { + "start": 18439.34, + "end": 18440.96, + "probability": 0.9569 + }, + { + "start": 18449.96, + "end": 18451.9, + "probability": 0.9413 + }, + { + "start": 18452.44, + "end": 18454.28, + "probability": 0.7797 + }, + { + "start": 18455.3, + "end": 18458.85, + "probability": 0.8975 + }, + { + "start": 18458.9, + "end": 18464.04, + "probability": 0.9487 + }, + { + "start": 18464.62, + "end": 18466.04, + "probability": 0.9769 + }, + { + "start": 18466.64, + "end": 18468.42, + "probability": 0.9824 + }, + { + "start": 18469.62, + "end": 18473.14, + "probability": 0.8892 + }, + { + "start": 18474.96, + "end": 18477.74, + "probability": 0.9929 + }, + { + "start": 18479.12, + "end": 18482.16, + "probability": 0.9043 + }, + { + "start": 18483.26, + "end": 18485.14, + "probability": 0.9779 + }, + { + "start": 18485.86, + "end": 18487.7, + "probability": 0.9583 + }, + { + "start": 18490.24, + "end": 18493.72, + "probability": 0.7545 + }, + { + "start": 18494.94, + "end": 18498.52, + "probability": 0.8729 + }, + { + "start": 18499.32, + "end": 18500.76, + "probability": 0.9671 + }, + { + "start": 18501.56, + "end": 18503.4, + "probability": 0.8449 + }, + { + "start": 18505.68, + "end": 18509.14, + "probability": 0.8934 + }, + { + "start": 18510.02, + "end": 18511.24, + "probability": 0.8807 + }, + { + "start": 18512.26, + "end": 18513.08, + "probability": 0.9748 + }, + { + "start": 18514.44, + "end": 18515.32, + "probability": 0.6986 + }, + { + "start": 18516.0, + "end": 18517.62, + "probability": 0.9811 + }, + { + "start": 18519.46, + "end": 18521.0, + "probability": 0.9137 + }, + { + "start": 18521.74, + "end": 18522.56, + "probability": 0.7194 + }, + { + "start": 18523.1, + "end": 18523.84, + "probability": 0.4251 + }, + { + "start": 18525.08, + "end": 18526.44, + "probability": 0.7904 + }, + { + "start": 18527.44, + "end": 18530.48, + "probability": 0.8506 + }, + { + "start": 18531.26, + "end": 18532.16, + "probability": 0.7583 + }, + { + "start": 18533.32, + "end": 18535.96, + "probability": 0.9519 + }, + { + "start": 18538.16, + "end": 18541.56, + "probability": 0.8839 + }, + { + "start": 18541.56, + "end": 18545.28, + "probability": 0.9868 + }, + { + "start": 18545.48, + "end": 18547.58, + "probability": 0.9932 + }, + { + "start": 18549.6, + "end": 18552.46, + "probability": 0.7882 + }, + { + "start": 18553.38, + "end": 18555.68, + "probability": 0.8693 + }, + { + "start": 18556.5, + "end": 18557.24, + "probability": 0.9014 + }, + { + "start": 18557.82, + "end": 18559.06, + "probability": 0.8385 + }, + { + "start": 18559.76, + "end": 18562.02, + "probability": 0.9854 + }, + { + "start": 18563.0, + "end": 18564.64, + "probability": 0.9844 + }, + { + "start": 18566.26, + "end": 18569.54, + "probability": 0.8198 + }, + { + "start": 18570.22, + "end": 18571.84, + "probability": 0.9902 + }, + { + "start": 18573.36, + "end": 18575.96, + "probability": 0.9403 + }, + { + "start": 18577.22, + "end": 18578.54, + "probability": 0.787 + }, + { + "start": 18579.62, + "end": 18581.76, + "probability": 0.9793 + }, + { + "start": 18583.88, + "end": 18586.78, + "probability": 0.9255 + }, + { + "start": 18587.46, + "end": 18588.3, + "probability": 0.8394 + }, + { + "start": 18589.2, + "end": 18590.71, + "probability": 0.9891 + }, + { + "start": 18591.86, + "end": 18593.24, + "probability": 0.9646 + }, + { + "start": 18594.12, + "end": 18596.28, + "probability": 0.9712 + }, + { + "start": 18597.66, + "end": 18599.88, + "probability": 0.9536 + }, + { + "start": 18601.76, + "end": 18605.12, + "probability": 0.9618 + }, + { + "start": 18606.1, + "end": 18612.34, + "probability": 0.9827 + }, + { + "start": 18613.34, + "end": 18614.76, + "probability": 0.864 + }, + { + "start": 18617.08, + "end": 18619.4, + "probability": 0.998 + }, + { + "start": 18620.46, + "end": 18623.48, + "probability": 0.9979 + }, + { + "start": 18624.92, + "end": 18625.48, + "probability": 0.9689 + }, + { + "start": 18627.3, + "end": 18629.66, + "probability": 0.6041 + }, + { + "start": 18629.66, + "end": 18629.66, + "probability": 0.0525 + }, + { + "start": 18629.66, + "end": 18629.66, + "probability": 0.2746 + }, + { + "start": 18629.66, + "end": 18629.66, + "probability": 0.2462 + }, + { + "start": 18629.66, + "end": 18629.66, + "probability": 0.1124 + }, + { + "start": 18629.66, + "end": 18632.8, + "probability": 0.4029 + }, + { + "start": 18633.98, + "end": 18636.44, + "probability": 0.7879 + }, + { + "start": 18637.46, + "end": 18639.02, + "probability": 0.8219 + }, + { + "start": 18640.46, + "end": 18642.9, + "probability": 0.9805 + }, + { + "start": 18643.92, + "end": 18645.58, + "probability": 0.9751 + }, + { + "start": 18646.4, + "end": 18647.52, + "probability": 0.7181 + }, + { + "start": 18648.2, + "end": 18650.12, + "probability": 0.7492 + }, + { + "start": 18651.08, + "end": 18653.56, + "probability": 0.9889 + }, + { + "start": 18654.26, + "end": 18656.18, + "probability": 0.9883 + }, + { + "start": 18656.98, + "end": 18658.38, + "probability": 0.9722 + }, + { + "start": 18659.5, + "end": 18662.26, + "probability": 0.978 + }, + { + "start": 18668.6, + "end": 18669.42, + "probability": 0.6538 + }, + { + "start": 18675.4, + "end": 18677.96, + "probability": 0.7535 + }, + { + "start": 18679.24, + "end": 18679.76, + "probability": 0.9278 + }, + { + "start": 18681.74, + "end": 18682.06, + "probability": 0.761 + }, + { + "start": 18683.96, + "end": 18687.3, + "probability": 0.9757 + }, + { + "start": 18688.3, + "end": 18690.96, + "probability": 0.9209 + }, + { + "start": 18691.76, + "end": 18693.66, + "probability": 0.7831 + }, + { + "start": 18695.1, + "end": 18696.84, + "probability": 0.9126 + }, + { + "start": 18698.74, + "end": 18701.18, + "probability": 0.7771 + }, + { + "start": 18702.82, + "end": 18702.82, + "probability": 0.0 + }, + { + "start": 18709.74, + "end": 18711.46, + "probability": 0.0427 + }, + { + "start": 18720.26, + "end": 18720.98, + "probability": 0.0943 + }, + { + "start": 18724.01, + "end": 18724.37, + "probability": 0.0353 + }, + { + "start": 18725.78, + "end": 18728.06, + "probability": 0.0413 + }, + { + "start": 18731.43, + "end": 18731.84, + "probability": 0.7408 + }, + { + "start": 18734.65, + "end": 18736.62, + "probability": 0.0867 + }, + { + "start": 18739.0, + "end": 18742.12, + "probability": 0.0969 + }, + { + "start": 18745.22, + "end": 18746.74, + "probability": 0.0075 + }, + { + "start": 18748.34, + "end": 18749.28, + "probability": 0.29 + }, + { + "start": 18749.3, + "end": 18752.72, + "probability": 0.0032 + }, + { + "start": 18752.72, + "end": 18753.84, + "probability": 0.0426 + }, + { + "start": 18753.84, + "end": 18753.84, + "probability": 0.011 + }, + { + "start": 18753.84, + "end": 18753.84, + "probability": 0.1129 + }, + { + "start": 18753.84, + "end": 18753.84, + "probability": 0.0739 + }, + { + "start": 18753.84, + "end": 18754.12, + "probability": 0.048 + }, + { + "start": 18754.72, + "end": 18756.34, + "probability": 0.0862 + }, + { + "start": 18757.08, + "end": 18758.5, + "probability": 0.3504 + }, + { + "start": 18760.54, + "end": 18761.36, + "probability": 0.0542 + }, + { + "start": 18761.36, + "end": 18761.72, + "probability": 0.0094 + }, + { + "start": 18761.72, + "end": 18761.9, + "probability": 0.0905 + }, + { + "start": 18762.08, + "end": 18762.3, + "probability": 0.2782 + }, + { + "start": 18762.3, + "end": 18762.66, + "probability": 0.0527 + }, + { + "start": 18762.66, + "end": 18762.66, + "probability": 0.0037 + }, + { + "start": 18762.66, + "end": 18762.8, + "probability": 0.1987 + }, + { + "start": 18762.8, + "end": 18762.8, + "probability": 0.0211 + }, + { + "start": 18762.8, + "end": 18762.8, + "probability": 0.1349 + }, + { + "start": 18762.8, + "end": 18762.89, + "probability": 0.0365 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.0, + "end": 18763.0, + "probability": 0.0 + }, + { + "start": 18763.26, + "end": 18763.8, + "probability": 0.1219 + }, + { + "start": 18764.74, + "end": 18768.02, + "probability": 0.9924 + }, + { + "start": 18768.02, + "end": 18772.5, + "probability": 0.9553 + }, + { + "start": 18774.0, + "end": 18777.76, + "probability": 0.9308 + }, + { + "start": 18778.54, + "end": 18781.14, + "probability": 0.9828 + }, + { + "start": 18781.72, + "end": 18783.0, + "probability": 0.7531 + }, + { + "start": 18783.86, + "end": 18785.1, + "probability": 0.9423 + }, + { + "start": 18785.86, + "end": 18787.2, + "probability": 0.995 + }, + { + "start": 18788.0, + "end": 18789.38, + "probability": 0.9969 + }, + { + "start": 18791.22, + "end": 18792.7, + "probability": 0.9762 + }, + { + "start": 18792.88, + "end": 18794.68, + "probability": 0.8501 + }, + { + "start": 18794.96, + "end": 18796.28, + "probability": 0.9128 + }, + { + "start": 18796.72, + "end": 18797.96, + "probability": 0.8961 + }, + { + "start": 18799.2, + "end": 18800.22, + "probability": 0.8948 + }, + { + "start": 18801.48, + "end": 18806.84, + "probability": 0.9473 + }, + { + "start": 18810.32, + "end": 18814.1, + "probability": 0.8782 + }, + { + "start": 18815.0, + "end": 18817.22, + "probability": 0.9801 + }, + { + "start": 18818.32, + "end": 18822.46, + "probability": 0.9473 + }, + { + "start": 18823.08, + "end": 18824.36, + "probability": 0.6268 + }, + { + "start": 18825.92, + "end": 18828.04, + "probability": 0.8872 + }, + { + "start": 18829.06, + "end": 18831.52, + "probability": 0.8574 + }, + { + "start": 18831.6, + "end": 18838.34, + "probability": 0.9948 + }, + { + "start": 18839.04, + "end": 18840.42, + "probability": 0.6722 + }, + { + "start": 18841.88, + "end": 18848.52, + "probability": 0.9097 + }, + { + "start": 18849.22, + "end": 18850.68, + "probability": 0.9768 + }, + { + "start": 18851.88, + "end": 18852.9, + "probability": 0.831 + }, + { + "start": 18853.8, + "end": 18858.04, + "probability": 0.9622 + }, + { + "start": 18859.16, + "end": 18861.82, + "probability": 0.9908 + }, + { + "start": 18863.0, + "end": 18865.56, + "probability": 0.9339 + }, + { + "start": 18866.32, + "end": 18867.72, + "probability": 0.8736 + }, + { + "start": 18868.82, + "end": 18871.32, + "probability": 0.7556 + }, + { + "start": 18873.34, + "end": 18874.64, + "probability": 0.8044 + }, + { + "start": 18876.5, + "end": 18879.0, + "probability": 0.9805 + }, + { + "start": 18879.2, + "end": 18882.12, + "probability": 0.9866 + }, + { + "start": 18883.26, + "end": 18884.54, + "probability": 0.9951 + }, + { + "start": 18885.88, + "end": 18886.5, + "probability": 0.9663 + }, + { + "start": 18887.82, + "end": 18889.5, + "probability": 0.9943 + }, + { + "start": 18894.04, + "end": 18896.16, + "probability": 0.8032 + }, + { + "start": 18897.66, + "end": 18899.3, + "probability": 0.9102 + }, + { + "start": 18900.48, + "end": 18902.5, + "probability": 0.9742 + }, + { + "start": 18903.22, + "end": 18904.72, + "probability": 0.9869 + }, + { + "start": 18906.54, + "end": 18908.62, + "probability": 0.5727 + }, + { + "start": 18909.42, + "end": 18911.5, + "probability": 0.9648 + }, + { + "start": 18912.78, + "end": 18915.26, + "probability": 0.9982 + }, + { + "start": 18916.16, + "end": 18918.64, + "probability": 0.6821 + }, + { + "start": 18919.98, + "end": 18922.3, + "probability": 0.7977 + }, + { + "start": 18923.26, + "end": 18924.4, + "probability": 0.9037 + }, + { + "start": 18925.56, + "end": 18927.7, + "probability": 0.9904 + }, + { + "start": 18928.74, + "end": 18930.16, + "probability": 0.9822 + }, + { + "start": 18932.04, + "end": 18935.84, + "probability": 0.8064 + }, + { + "start": 18936.9, + "end": 18939.18, + "probability": 0.7648 + }, + { + "start": 18940.18, + "end": 18941.48, + "probability": 0.7272 + }, + { + "start": 18943.14, + "end": 18945.4, + "probability": 0.9214 + }, + { + "start": 18945.98, + "end": 18948.24, + "probability": 0.8666 + }, + { + "start": 18948.6, + "end": 18950.34, + "probability": 0.8367 + }, + { + "start": 18950.5, + "end": 18955.02, + "probability": 0.7946 + }, + { + "start": 18956.2, + "end": 18958.64, + "probability": 0.9252 + }, + { + "start": 18960.52, + "end": 18962.48, + "probability": 0.9917 + }, + { + "start": 18962.62, + "end": 18964.68, + "probability": 0.9512 + }, + { + "start": 18965.34, + "end": 18967.68, + "probability": 0.9897 + }, + { + "start": 18968.2, + "end": 18969.56, + "probability": 0.6621 + }, + { + "start": 18970.82, + "end": 18972.58, + "probability": 0.8521 + }, + { + "start": 18972.62, + "end": 18974.4, + "probability": 0.923 + }, + { + "start": 18975.06, + "end": 18978.02, + "probability": 0.9659 + }, + { + "start": 18978.8, + "end": 18982.14, + "probability": 0.5622 + }, + { + "start": 18983.28, + "end": 18984.58, + "probability": 0.8468 + }, + { + "start": 18985.2, + "end": 18986.32, + "probability": 0.6007 + }, + { + "start": 18986.94, + "end": 18990.58, + "probability": 0.8549 + }, + { + "start": 18991.22, + "end": 18992.62, + "probability": 0.9974 + }, + { + "start": 18993.22, + "end": 18994.46, + "probability": 0.821 + }, + { + "start": 18995.42, + "end": 18997.88, + "probability": 0.0167 + }, + { + "start": 19006.84, + "end": 19008.52, + "probability": 0.0354 + }, + { + "start": 19011.42, + "end": 19012.24, + "probability": 0.0241 + }, + { + "start": 19021.54, + "end": 19022.02, + "probability": 0.0348 + }, + { + "start": 19022.02, + "end": 19022.14, + "probability": 0.1553 + }, + { + "start": 19022.14, + "end": 19023.82, + "probability": 0.0174 + }, + { + "start": 19024.02, + "end": 19024.72, + "probability": 0.1019 + }, + { + "start": 19028.18, + "end": 19029.74, + "probability": 0.0959 + }, + { + "start": 19030.62, + "end": 19032.34, + "probability": 0.205 + }, + { + "start": 19034.96, + "end": 19036.78, + "probability": 0.0092 + }, + { + "start": 19037.24, + "end": 19037.31, + "probability": 0.0163 + }, + { + "start": 19037.48, + "end": 19038.14, + "probability": 0.2992 + }, + { + "start": 19038.17, + "end": 19038.66, + "probability": 0.2002 + }, + { + "start": 19052.9, + "end": 19053.86, + "probability": 0.0752 + }, + { + "start": 19056.02, + "end": 19059.26, + "probability": 0.0388 + }, + { + "start": 19059.26, + "end": 19059.7, + "probability": 0.1101 + }, + { + "start": 19060.52, + "end": 19061.04, + "probability": 0.1104 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.0, + "end": 19072.0, + "probability": 0.0 + }, + { + "start": 19072.18, + "end": 19074.14, + "probability": 0.2738 + }, + { + "start": 19074.78, + "end": 19076.58, + "probability": 0.6759 + }, + { + "start": 19077.24, + "end": 19078.44, + "probability": 0.6809 + }, + { + "start": 19079.06, + "end": 19082.62, + "probability": 0.9728 + }, + { + "start": 19083.7, + "end": 19086.0, + "probability": 0.9028 + }, + { + "start": 19087.62, + "end": 19089.28, + "probability": 0.9582 + }, + { + "start": 19090.12, + "end": 19092.74, + "probability": 0.9068 + }, + { + "start": 19094.1, + "end": 19097.69, + "probability": 0.9563 + }, + { + "start": 19098.82, + "end": 19101.02, + "probability": 0.0156 + }, + { + "start": 19119.58, + "end": 19120.08, + "probability": 0.0193 + }, + { + "start": 19121.18, + "end": 19124.34, + "probability": 0.0679 + }, + { + "start": 19126.04, + "end": 19127.56, + "probability": 0.6066 + }, + { + "start": 19128.66, + "end": 19130.42, + "probability": 0.0257 + }, + { + "start": 19131.14, + "end": 19135.96, + "probability": 0.1014 + }, + { + "start": 19136.68, + "end": 19137.78, + "probability": 0.039 + }, + { + "start": 19138.92, + "end": 19139.04, + "probability": 0.8521 + }, + { + "start": 19148.75, + "end": 19150.45, + "probability": 0.1017 + }, + { + "start": 19151.34, + "end": 19151.84, + "probability": 0.0986 + }, + { + "start": 19151.84, + "end": 19152.98, + "probability": 0.0311 + }, + { + "start": 19153.66, + "end": 19154.35, + "probability": 0.0707 + }, + { + "start": 19156.12, + "end": 19158.0, + "probability": 0.0667 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.0, + "end": 19195.0, + "probability": 0.0 + }, + { + "start": 19195.16, + "end": 19195.16, + "probability": 0.3764 + }, + { + "start": 19195.16, + "end": 19195.48, + "probability": 0.4231 + }, + { + "start": 19195.94, + "end": 19197.14, + "probability": 0.6581 + }, + { + "start": 19197.14, + "end": 19198.36, + "probability": 0.7673 + }, + { + "start": 19199.18, + "end": 19201.16, + "probability": 0.962 + }, + { + "start": 19201.22, + "end": 19202.44, + "probability": 0.9546 + }, + { + "start": 19203.78, + "end": 19204.96, + "probability": 0.8802 + }, + { + "start": 19205.12, + "end": 19208.46, + "probability": 0.8876 + }, + { + "start": 19209.0, + "end": 19210.72, + "probability": 0.9427 + }, + { + "start": 19212.48, + "end": 19212.48, + "probability": 0.0281 + }, + { + "start": 19212.48, + "end": 19212.48, + "probability": 0.0365 + }, + { + "start": 19212.48, + "end": 19213.88, + "probability": 0.4138 + }, + { + "start": 19213.96, + "end": 19215.68, + "probability": 0.1376 + }, + { + "start": 19216.26, + "end": 19218.83, + "probability": 0.0804 + }, + { + "start": 19223.58, + "end": 19225.22, + "probability": 0.0228 + }, + { + "start": 19227.75, + "end": 19227.82, + "probability": 0.0339 + }, + { + "start": 19228.0, + "end": 19229.74, + "probability": 0.1326 + }, + { + "start": 19229.86, + "end": 19231.52, + "probability": 0.0839 + }, + { + "start": 19237.18, + "end": 19238.52, + "probability": 0.0603 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19315.0, + "end": 19315.0, + "probability": 0.0 + }, + { + "start": 19316.5, + "end": 19317.02, + "probability": 0.0003 + }, + { + "start": 19317.88, + "end": 19321.66, + "probability": 0.573 + }, + { + "start": 19322.64, + "end": 19325.34, + "probability": 0.7435 + }, + { + "start": 19326.04, + "end": 19327.28, + "probability": 0.9067 + }, + { + "start": 19327.3, + "end": 19328.26, + "probability": 0.9457 + }, + { + "start": 19328.3, + "end": 19329.86, + "probability": 0.9832 + }, + { + "start": 19330.32, + "end": 19331.3, + "probability": 0.984 + }, + { + "start": 19331.76, + "end": 19333.94, + "probability": 0.9717 + }, + { + "start": 19334.58, + "end": 19336.5, + "probability": 0.9304 + }, + { + "start": 19337.48, + "end": 19341.58, + "probability": 0.9585 + }, + { + "start": 19342.24, + "end": 19345.42, + "probability": 0.976 + }, + { + "start": 19346.26, + "end": 19348.36, + "probability": 0.9551 + }, + { + "start": 19348.86, + "end": 19350.78, + "probability": 0.9697 + }, + { + "start": 19351.16, + "end": 19352.1, + "probability": 0.8364 + }, + { + "start": 19352.24, + "end": 19353.44, + "probability": 0.8846 + }, + { + "start": 19354.1, + "end": 19355.58, + "probability": 0.8735 + }, + { + "start": 19356.2, + "end": 19357.86, + "probability": 0.9899 + }, + { + "start": 19358.6, + "end": 19362.14, + "probability": 0.8955 + }, + { + "start": 19362.66, + "end": 19365.86, + "probability": 0.9833 + }, + { + "start": 19366.68, + "end": 19368.2, + "probability": 0.9171 + }, + { + "start": 19368.8, + "end": 19370.76, + "probability": 0.9296 + }, + { + "start": 19371.46, + "end": 19371.88, + "probability": 0.5044 + }, + { + "start": 19372.08, + "end": 19373.14, + "probability": 0.9388 + }, + { + "start": 19373.64, + "end": 19375.62, + "probability": 0.9857 + }, + { + "start": 19375.66, + "end": 19376.96, + "probability": 0.852 + }, + { + "start": 19377.44, + "end": 19381.0, + "probability": 0.989 + }, + { + "start": 19381.94, + "end": 19385.24, + "probability": 0.9585 + }, + { + "start": 19386.18, + "end": 19388.8, + "probability": 0.987 + }, + { + "start": 19389.46, + "end": 19391.76, + "probability": 0.6893 + }, + { + "start": 19392.92, + "end": 19395.98, + "probability": 0.9768 + }, + { + "start": 19397.5, + "end": 19401.3, + "probability": 0.9576 + }, + { + "start": 19401.9, + "end": 19405.0, + "probability": 0.7868 + }, + { + "start": 19405.82, + "end": 19408.16, + "probability": 0.9746 + }, + { + "start": 19409.52, + "end": 19412.48, + "probability": 0.901 + }, + { + "start": 19413.24, + "end": 19415.08, + "probability": 0.9784 + }, + { + "start": 19415.98, + "end": 19419.44, + "probability": 0.825 + }, + { + "start": 19420.58, + "end": 19428.85, + "probability": 0.9937 + }, + { + "start": 19429.86, + "end": 19430.74, + "probability": 0.7973 + }, + { + "start": 19431.44, + "end": 19436.62, + "probability": 0.9993 + }, + { + "start": 19437.5, + "end": 19439.04, + "probability": 0.9986 + }, + { + "start": 19439.8, + "end": 19442.7, + "probability": 0.9617 + }, + { + "start": 19445.8, + "end": 19448.76, + "probability": 0.9941 + }, + { + "start": 19449.3, + "end": 19450.4, + "probability": 0.6876 + }, + { + "start": 19453.2, + "end": 19454.58, + "probability": 0.7456 + }, + { + "start": 19455.0, + "end": 19459.08, + "probability": 0.9205 + }, + { + "start": 19461.14, + "end": 19463.74, + "probability": 0.9462 + }, + { + "start": 19464.22, + "end": 19464.72, + "probability": 0.1009 + }, + { + "start": 19464.88, + "end": 19465.7, + "probability": 0.8683 + }, + { + "start": 19466.6, + "end": 19468.12, + "probability": 0.81 + }, + { + "start": 19468.64, + "end": 19470.04, + "probability": 0.716 + }, + { + "start": 19471.2, + "end": 19473.64, + "probability": 0.9284 + }, + { + "start": 19474.4, + "end": 19476.3, + "probability": 0.98 + }, + { + "start": 19477.04, + "end": 19479.9, + "probability": 0.9601 + }, + { + "start": 19480.58, + "end": 19483.18, + "probability": 0.8296 + }, + { + "start": 19484.1, + "end": 19485.54, + "probability": 0.6261 + }, + { + "start": 19487.1, + "end": 19487.4, + "probability": 0.8463 + }, + { + "start": 19487.92, + "end": 19490.48, + "probability": 0.9839 + }, + { + "start": 19491.46, + "end": 19494.8, + "probability": 0.9547 + }, + { + "start": 19495.74, + "end": 19500.0, + "probability": 0.8963 + }, + { + "start": 19500.38, + "end": 19501.82, + "probability": 0.7488 + }, + { + "start": 19509.78, + "end": 19513.42, + "probability": 0.5315 + }, + { + "start": 19514.36, + "end": 19515.34, + "probability": 0.8907 + }, + { + "start": 19516.0, + "end": 19517.66, + "probability": 0.8942 + }, + { + "start": 19519.62, + "end": 19521.62, + "probability": 0.9465 + }, + { + "start": 19522.64, + "end": 19527.16, + "probability": 0.8276 + }, + { + "start": 19527.7, + "end": 19529.5, + "probability": 0.9961 + }, + { + "start": 19530.24, + "end": 19533.04, + "probability": 0.9653 + }, + { + "start": 19535.68, + "end": 19539.7, + "probability": 0.9014 + }, + { + "start": 19540.92, + "end": 19545.42, + "probability": 0.7395 + }, + { + "start": 19546.12, + "end": 19547.22, + "probability": 0.9758 + }, + { + "start": 19548.5, + "end": 19550.32, + "probability": 0.7501 + }, + { + "start": 19553.14, + "end": 19555.91, + "probability": 0.9948 + }, + { + "start": 19557.7, + "end": 19560.1, + "probability": 0.9586 + }, + { + "start": 19561.18, + "end": 19564.21, + "probability": 0.9777 + }, + { + "start": 19565.14, + "end": 19566.8, + "probability": 0.8293 + }, + { + "start": 19569.38, + "end": 19572.74, + "probability": 0.8528 + }, + { + "start": 19574.22, + "end": 19575.98, + "probability": 0.8042 + }, + { + "start": 19577.16, + "end": 19579.19, + "probability": 0.9888 + }, + { + "start": 19580.5, + "end": 19582.92, + "probability": 0.9612 + }, + { + "start": 19584.06, + "end": 19586.26, + "probability": 0.9719 + }, + { + "start": 19587.94, + "end": 19592.78, + "probability": 0.916 + }, + { + "start": 19593.7, + "end": 19597.44, + "probability": 0.8156 + }, + { + "start": 19598.82, + "end": 19599.62, + "probability": 0.8413 + }, + { + "start": 19602.68, + "end": 19604.34, + "probability": 0.9586 + }, + { + "start": 19606.06, + "end": 19607.64, + "probability": 0.8021 + }, + { + "start": 19608.86, + "end": 19610.42, + "probability": 0.7603 + }, + { + "start": 19611.84, + "end": 19614.4, + "probability": 0.9461 + }, + { + "start": 19616.96, + "end": 19618.5, + "probability": 0.989 + }, + { + "start": 19619.96, + "end": 19620.96, + "probability": 0.8496 + }, + { + "start": 19625.0, + "end": 19628.06, + "probability": 0.9615 + }, + { + "start": 19628.78, + "end": 19630.9, + "probability": 0.7785 + }, + { + "start": 19632.12, + "end": 19633.26, + "probability": 0.9826 + }, + { + "start": 19634.16, + "end": 19635.34, + "probability": 0.9872 + }, + { + "start": 19636.22, + "end": 19637.56, + "probability": 0.9836 + }, + { + "start": 19638.56, + "end": 19639.9, + "probability": 0.8077 + }, + { + "start": 19641.3, + "end": 19644.08, + "probability": 0.9665 + }, + { + "start": 19646.0, + "end": 19648.04, + "probability": 0.9946 + }, + { + "start": 19651.38, + "end": 19652.46, + "probability": 0.926 + }, + { + "start": 19653.66, + "end": 19655.14, + "probability": 0.9602 + }, + { + "start": 19656.6, + "end": 19659.67, + "probability": 0.9646 + }, + { + "start": 19661.26, + "end": 19662.04, + "probability": 0.986 + }, + { + "start": 19663.28, + "end": 19664.54, + "probability": 0.9088 + }, + { + "start": 19667.84, + "end": 19671.02, + "probability": 0.6596 + }, + { + "start": 19671.14, + "end": 19674.86, + "probability": 0.912 + }, + { + "start": 19675.52, + "end": 19678.6, + "probability": 0.8214 + }, + { + "start": 19679.96, + "end": 19683.94, + "probability": 0.9559 + }, + { + "start": 19685.98, + "end": 19688.12, + "probability": 0.9739 + }, + { + "start": 19688.9, + "end": 19690.16, + "probability": 0.9961 + }, + { + "start": 19691.74, + "end": 19695.86, + "probability": 0.9463 + }, + { + "start": 19697.0, + "end": 19699.4, + "probability": 0.775 + }, + { + "start": 19700.74, + "end": 19702.18, + "probability": 0.9954 + }, + { + "start": 19703.52, + "end": 19707.64, + "probability": 0.993 + }, + { + "start": 19708.66, + "end": 19709.56, + "probability": 0.9847 + }, + { + "start": 19710.96, + "end": 19713.22, + "probability": 0.9966 + }, + { + "start": 19714.24, + "end": 19715.6, + "probability": 0.9285 + }, + { + "start": 19717.84, + "end": 19719.8, + "probability": 0.9994 + }, + { + "start": 19721.56, + "end": 19724.1, + "probability": 0.9976 + }, + { + "start": 19726.08, + "end": 19728.8, + "probability": 0.9958 + }, + { + "start": 19729.72, + "end": 19731.76, + "probability": 0.9608 + }, + { + "start": 19732.98, + "end": 19735.38, + "probability": 0.9991 + }, + { + "start": 19736.64, + "end": 19740.26, + "probability": 0.9984 + }, + { + "start": 19741.82, + "end": 19745.4, + "probability": 0.9797 + }, + { + "start": 19746.82, + "end": 19748.7, + "probability": 0.8798 + }, + { + "start": 19750.76, + "end": 19753.68, + "probability": 0.9966 + }, + { + "start": 19756.3, + "end": 19762.62, + "probability": 0.9964 + }, + { + "start": 19763.14, + "end": 19763.98, + "probability": 0.8458 + }, + { + "start": 19765.3, + "end": 19766.3, + "probability": 0.3565 + }, + { + "start": 19769.9, + "end": 19775.81, + "probability": 0.9938 + }, + { + "start": 19775.82, + "end": 19778.68, + "probability": 0.9982 + }, + { + "start": 19781.06, + "end": 19787.2, + "probability": 0.8519 + }, + { + "start": 19788.92, + "end": 19791.32, + "probability": 0.7167 + }, + { + "start": 19793.84, + "end": 19795.81, + "probability": 0.742 + }, + { + "start": 19796.98, + "end": 19801.8, + "probability": 0.9878 + }, + { + "start": 19804.16, + "end": 19808.36, + "probability": 0.9814 + }, + { + "start": 19811.04, + "end": 19813.62, + "probability": 0.7593 + }, + { + "start": 19813.78, + "end": 19814.56, + "probability": 0.6997 + }, + { + "start": 19817.16, + "end": 19817.7, + "probability": 0.6674 + }, + { + "start": 19817.84, + "end": 19818.32, + "probability": 0.6027 + }, + { + "start": 19818.48, + "end": 19825.48, + "probability": 0.9681 + }, + { + "start": 19827.46, + "end": 19829.8, + "probability": 0.7351 + }, + { + "start": 19831.64, + "end": 19834.14, + "probability": 0.9717 + }, + { + "start": 19834.76, + "end": 19836.92, + "probability": 0.9802 + }, + { + "start": 19838.52, + "end": 19840.8, + "probability": 0.7906 + }, + { + "start": 19842.36, + "end": 19846.0, + "probability": 0.9667 + }, + { + "start": 19847.42, + "end": 19849.24, + "probability": 0.9976 + }, + { + "start": 19850.46, + "end": 19852.12, + "probability": 0.89 + }, + { + "start": 19853.5, + "end": 19855.9, + "probability": 0.9971 + }, + { + "start": 19858.3, + "end": 19860.24, + "probability": 0.9968 + }, + { + "start": 19861.02, + "end": 19861.42, + "probability": 0.4562 + }, + { + "start": 19862.62, + "end": 19864.44, + "probability": 0.9946 + }, + { + "start": 19865.44, + "end": 19867.58, + "probability": 0.9915 + }, + { + "start": 19869.26, + "end": 19873.58, + "probability": 0.9938 + }, + { + "start": 19873.58, + "end": 19877.86, + "probability": 0.999 + }, + { + "start": 19878.7, + "end": 19883.68, + "probability": 0.9978 + }, + { + "start": 19887.12, + "end": 19888.54, + "probability": 0.8813 + }, + { + "start": 19888.66, + "end": 19889.17, + "probability": 0.7148 + }, + { + "start": 19890.36, + "end": 19892.02, + "probability": 0.9345 + }, + { + "start": 19892.88, + "end": 19894.9, + "probability": 0.9575 + }, + { + "start": 19895.44, + "end": 19899.66, + "probability": 0.9688 + }, + { + "start": 19900.74, + "end": 19902.03, + "probability": 0.9502 + }, + { + "start": 19903.42, + "end": 19905.22, + "probability": 0.6671 + }, + { + "start": 19906.28, + "end": 19908.17, + "probability": 0.9934 + }, + { + "start": 19908.76, + "end": 19911.26, + "probability": 0.9979 + }, + { + "start": 19911.72, + "end": 19913.6, + "probability": 0.9963 + }, + { + "start": 19914.08, + "end": 19915.0, + "probability": 0.7997 + }, + { + "start": 19916.36, + "end": 19916.82, + "probability": 0.81 + }, + { + "start": 19917.9, + "end": 19918.57, + "probability": 0.7429 + }, + { + "start": 19924.76, + "end": 19924.9, + "probability": 0.0059 + }, + { + "start": 19924.9, + "end": 19924.9, + "probability": 0.1644 + }, + { + "start": 19924.9, + "end": 19924.9, + "probability": 0.0745 + }, + { + "start": 19924.9, + "end": 19925.66, + "probability": 0.1139 + }, + { + "start": 19925.91, + "end": 19929.76, + "probability": 0.873 + }, + { + "start": 19929.9, + "end": 19931.2, + "probability": 0.9198 + }, + { + "start": 19931.92, + "end": 19932.7, + "probability": 0.8352 + }, + { + "start": 19933.16, + "end": 19934.04, + "probability": 0.8108 + }, + { + "start": 19934.52, + "end": 19937.08, + "probability": 0.8343 + }, + { + "start": 19937.58, + "end": 19938.76, + "probability": 0.6648 + }, + { + "start": 19939.52, + "end": 19940.46, + "probability": 0.9467 + }, + { + "start": 19941.2, + "end": 19941.71, + "probability": 0.7673 + }, + { + "start": 19942.04, + "end": 19943.6, + "probability": 0.9941 + }, + { + "start": 19943.7, + "end": 19944.4, + "probability": 0.8956 + }, + { + "start": 19944.44, + "end": 19946.32, + "probability": 0.9673 + }, + { + "start": 19947.16, + "end": 19950.62, + "probability": 0.9907 + }, + { + "start": 19951.96, + "end": 19953.88, + "probability": 0.5053 + }, + { + "start": 19954.1, + "end": 19957.92, + "probability": 0.9949 + }, + { + "start": 19959.8, + "end": 19961.54, + "probability": 0.0515 + }, + { + "start": 19961.78, + "end": 19962.74, + "probability": 0.9003 + }, + { + "start": 19962.9, + "end": 19969.02, + "probability": 0.9407 + }, + { + "start": 19970.1, + "end": 19977.76, + "probability": 0.979 + }, + { + "start": 19978.92, + "end": 19985.22, + "probability": 0.8396 + }, + { + "start": 19986.04, + "end": 19987.84, + "probability": 0.8161 + }, + { + "start": 19988.9, + "end": 19993.0, + "probability": 0.9928 + }, + { + "start": 19993.2, + "end": 19993.86, + "probability": 0.7747 + }, + { + "start": 19993.98, + "end": 19995.54, + "probability": 0.7864 + }, + { + "start": 19996.3, + "end": 19999.14, + "probability": 0.9893 + }, + { + "start": 20000.24, + "end": 20001.58, + "probability": 0.7491 + }, + { + "start": 20001.64, + "end": 20008.9, + "probability": 0.8681 + }, + { + "start": 20009.1, + "end": 20015.86, + "probability": 0.9887 + }, + { + "start": 20015.94, + "end": 20017.38, + "probability": 0.6296 + }, + { + "start": 20019.1, + "end": 20022.48, + "probability": 0.9867 + }, + { + "start": 20024.14, + "end": 20027.24, + "probability": 0.8833 + }, + { + "start": 20028.32, + "end": 20031.88, + "probability": 0.9469 + }, + { + "start": 20032.62, + "end": 20034.16, + "probability": 0.9933 + }, + { + "start": 20037.88, + "end": 20041.56, + "probability": 0.9912 + }, + { + "start": 20042.9, + "end": 20046.36, + "probability": 0.9692 + }, + { + "start": 20047.1, + "end": 20049.9, + "probability": 0.993 + }, + { + "start": 20050.82, + "end": 20054.4, + "probability": 0.9687 + }, + { + "start": 20054.68, + "end": 20055.2, + "probability": 0.9321 + }, + { + "start": 20056.16, + "end": 20058.36, + "probability": 0.9964 + }, + { + "start": 20059.8, + "end": 20064.18, + "probability": 0.7264 + }, + { + "start": 20065.18, + "end": 20065.76, + "probability": 0.5527 + }, + { + "start": 20066.96, + "end": 20069.74, + "probability": 0.9932 + }, + { + "start": 20070.52, + "end": 20072.14, + "probability": 0.8911 + }, + { + "start": 20072.92, + "end": 20075.0, + "probability": 0.8829 + }, + { + "start": 20076.1, + "end": 20079.06, + "probability": 0.9896 + }, + { + "start": 20080.36, + "end": 20085.6, + "probability": 0.9121 + }, + { + "start": 20090.0, + "end": 20098.94, + "probability": 0.9779 + }, + { + "start": 20100.06, + "end": 20102.52, + "probability": 0.9517 + }, + { + "start": 20103.58, + "end": 20114.62, + "probability": 0.9868 + }, + { + "start": 20116.04, + "end": 20118.38, + "probability": 0.7042 + }, + { + "start": 20119.26, + "end": 20127.48, + "probability": 0.9738 + }, + { + "start": 20128.92, + "end": 20132.64, + "probability": 0.9324 + }, + { + "start": 20133.54, + "end": 20137.3, + "probability": 0.8996 + }, + { + "start": 20137.48, + "end": 20139.98, + "probability": 0.9889 + }, + { + "start": 20141.32, + "end": 20149.02, + "probability": 0.9882 + }, + { + "start": 20150.4, + "end": 20153.84, + "probability": 0.9928 + }, + { + "start": 20155.16, + "end": 20159.12, + "probability": 0.995 + }, + { + "start": 20160.16, + "end": 20161.74, + "probability": 0.7681 + }, + { + "start": 20162.74, + "end": 20170.48, + "probability": 0.986 + }, + { + "start": 20171.5, + "end": 20172.39, + "probability": 0.4393 + }, + { + "start": 20173.78, + "end": 20174.36, + "probability": 0.9717 + }, + { + "start": 20176.06, + "end": 20178.98, + "probability": 0.953 + }, + { + "start": 20180.52, + "end": 20187.6, + "probability": 0.9775 + }, + { + "start": 20188.56, + "end": 20191.82, + "probability": 0.998 + }, + { + "start": 20192.54, + "end": 20197.24, + "probability": 0.9932 + }, + { + "start": 20198.3, + "end": 20199.07, + "probability": 0.9222 + }, + { + "start": 20200.26, + "end": 20202.78, + "probability": 0.853 + }, + { + "start": 20203.72, + "end": 20206.08, + "probability": 0.6667 + }, + { + "start": 20209.29, + "end": 20215.28, + "probability": 0.8652 + }, + { + "start": 20215.8, + "end": 20219.6, + "probability": 0.9945 + }, + { + "start": 20220.82, + "end": 20223.7, + "probability": 0.9696 + }, + { + "start": 20223.82, + "end": 20227.66, + "probability": 0.9794 + }, + { + "start": 20228.1, + "end": 20229.96, + "probability": 0.9978 + }, + { + "start": 20232.42, + "end": 20236.52, + "probability": 0.9982 + }, + { + "start": 20238.08, + "end": 20240.04, + "probability": 0.9777 + }, + { + "start": 20240.62, + "end": 20243.18, + "probability": 0.9188 + }, + { + "start": 20244.6, + "end": 20253.86, + "probability": 0.987 + }, + { + "start": 20255.06, + "end": 20259.76, + "probability": 0.9961 + }, + { + "start": 20260.92, + "end": 20263.4, + "probability": 0.7446 + }, + { + "start": 20264.5, + "end": 20266.16, + "probability": 0.9119 + }, + { + "start": 20266.98, + "end": 20267.74, + "probability": 0.7791 + }, + { + "start": 20268.88, + "end": 20271.7, + "probability": 0.9612 + }, + { + "start": 20272.44, + "end": 20274.42, + "probability": 0.9588 + }, + { + "start": 20275.78, + "end": 20279.54, + "probability": 0.9873 + }, + { + "start": 20280.54, + "end": 20284.64, + "probability": 0.9912 + }, + { + "start": 20285.52, + "end": 20287.7, + "probability": 0.8985 + }, + { + "start": 20288.36, + "end": 20291.44, + "probability": 0.9653 + }, + { + "start": 20291.62, + "end": 20292.2, + "probability": 0.7751 + }, + { + "start": 20292.82, + "end": 20293.88, + "probability": 0.981 + }, + { + "start": 20295.24, + "end": 20298.5, + "probability": 0.99 + }, + { + "start": 20298.64, + "end": 20301.01, + "probability": 0.8999 + }, + { + "start": 20301.46, + "end": 20305.6, + "probability": 0.9901 + }, + { + "start": 20306.02, + "end": 20307.88, + "probability": 0.874 + }, + { + "start": 20309.04, + "end": 20313.6, + "probability": 0.9961 + }, + { + "start": 20314.32, + "end": 20318.7, + "probability": 0.9744 + }, + { + "start": 20318.88, + "end": 20320.38, + "probability": 0.7815 + }, + { + "start": 20320.48, + "end": 20323.92, + "probability": 0.836 + }, + { + "start": 20324.5, + "end": 20326.52, + "probability": 0.859 + }, + { + "start": 20327.1, + "end": 20328.1, + "probability": 0.7173 + }, + { + "start": 20328.68, + "end": 20330.43, + "probability": 0.9112 + }, + { + "start": 20331.4, + "end": 20332.56, + "probability": 0.9855 + }, + { + "start": 20333.66, + "end": 20338.24, + "probability": 0.9929 + }, + { + "start": 20339.2, + "end": 20343.68, + "probability": 0.9956 + }, + { + "start": 20344.88, + "end": 20345.26, + "probability": 0.9028 + }, + { + "start": 20346.18, + "end": 20352.62, + "probability": 0.9947 + }, + { + "start": 20353.18, + "end": 20360.46, + "probability": 0.9977 + }, + { + "start": 20360.84, + "end": 20363.2, + "probability": 0.9785 + }, + { + "start": 20363.82, + "end": 20364.6, + "probability": 0.7413 + }, + { + "start": 20365.04, + "end": 20370.28, + "probability": 0.7803 + }, + { + "start": 20371.88, + "end": 20373.54, + "probability": 0.9423 + }, + { + "start": 20375.18, + "end": 20383.84, + "probability": 0.9563 + }, + { + "start": 20383.94, + "end": 20384.62, + "probability": 0.7749 + }, + { + "start": 20385.8, + "end": 20387.08, + "probability": 0.8931 + }, + { + "start": 20387.92, + "end": 20391.72, + "probability": 0.7941 + }, + { + "start": 20393.24, + "end": 20396.18, + "probability": 0.8152 + }, + { + "start": 20396.18, + "end": 20396.6, + "probability": 0.3295 + }, + { + "start": 20397.52, + "end": 20399.78, + "probability": 0.8584 + }, + { + "start": 20400.42, + "end": 20403.02, + "probability": 0.9844 + }, + { + "start": 20403.62, + "end": 20406.04, + "probability": 0.9055 + }, + { + "start": 20406.12, + "end": 20407.84, + "probability": 0.9089 + }, + { + "start": 20408.08, + "end": 20408.58, + "probability": 0.8648 + }, + { + "start": 20408.68, + "end": 20409.32, + "probability": 0.865 + }, + { + "start": 20409.8, + "end": 20411.9, + "probability": 0.8437 + }, + { + "start": 20412.16, + "end": 20413.48, + "probability": 0.0775 + }, + { + "start": 20413.48, + "end": 20413.64, + "probability": 0.6376 + }, + { + "start": 20413.7, + "end": 20421.18, + "probability": 0.9616 + }, + { + "start": 20422.1, + "end": 20425.78, + "probability": 0.8469 + }, + { + "start": 20426.1, + "end": 20427.24, + "probability": 0.9832 + }, + { + "start": 20428.04, + "end": 20432.08, + "probability": 0.8251 + }, + { + "start": 20432.74, + "end": 20437.68, + "probability": 0.9788 + }, + { + "start": 20437.82, + "end": 20442.7, + "probability": 0.9571 + }, + { + "start": 20443.18, + "end": 20445.72, + "probability": 0.99 + }, + { + "start": 20446.94, + "end": 20448.88, + "probability": 0.621 + }, + { + "start": 20449.7, + "end": 20452.18, + "probability": 0.5278 + }, + { + "start": 20453.16, + "end": 20455.7, + "probability": 0.824 + }, + { + "start": 20456.86, + "end": 20459.38, + "probability": 0.7092 + }, + { + "start": 20459.68, + "end": 20462.78, + "probability": 0.8601 + }, + { + "start": 20463.08, + "end": 20464.68, + "probability": 0.7592 + }, + { + "start": 20464.86, + "end": 20466.94, + "probability": 0.9273 + }, + { + "start": 20467.08, + "end": 20471.02, + "probability": 0.7294 + }, + { + "start": 20471.72, + "end": 20477.34, + "probability": 0.783 + }, + { + "start": 20477.9, + "end": 20480.86, + "probability": 0.9285 + }, + { + "start": 20480.92, + "end": 20481.98, + "probability": 0.9477 + }, + { + "start": 20482.16, + "end": 20482.92, + "probability": 0.9646 + }, + { + "start": 20482.96, + "end": 20484.26, + "probability": 0.6425 + }, + { + "start": 20484.8, + "end": 20485.76, + "probability": 0.7781 + }, + { + "start": 20486.32, + "end": 20489.26, + "probability": 0.9031 + }, + { + "start": 20489.46, + "end": 20492.24, + "probability": 0.6581 + }, + { + "start": 20492.6, + "end": 20493.92, + "probability": 0.5208 + }, + { + "start": 20494.18, + "end": 20494.86, + "probability": 0.5153 + }, + { + "start": 20494.9, + "end": 20496.86, + "probability": 0.2422 + }, + { + "start": 20496.86, + "end": 20499.66, + "probability": 0.8391 + }, + { + "start": 20500.06, + "end": 20500.32, + "probability": 0.4441 + }, + { + "start": 20500.36, + "end": 20506.2, + "probability": 0.9977 + }, + { + "start": 20507.2, + "end": 20510.34, + "probability": 0.8 + }, + { + "start": 20510.46, + "end": 20511.04, + "probability": 0.9853 + }, + { + "start": 20511.68, + "end": 20517.3, + "probability": 0.7997 + }, + { + "start": 20517.48, + "end": 20522.54, + "probability": 0.8724 + }, + { + "start": 20523.1, + "end": 20526.82, + "probability": 0.9904 + }, + { + "start": 20527.62, + "end": 20528.9, + "probability": 0.6428 + }, + { + "start": 20529.78, + "end": 20531.42, + "probability": 0.9814 + }, + { + "start": 20532.7, + "end": 20534.14, + "probability": 0.3144 + }, + { + "start": 20534.66, + "end": 20537.66, + "probability": 0.9545 + }, + { + "start": 20538.58, + "end": 20539.7, + "probability": 0.534 + }, + { + "start": 20540.18, + "end": 20543.12, + "probability": 0.8774 + }, + { + "start": 20543.22, + "end": 20544.18, + "probability": 0.8452 + }, + { + "start": 20544.38, + "end": 20546.94, + "probability": 0.6734 + }, + { + "start": 20547.12, + "end": 20548.82, + "probability": 0.9165 + }, + { + "start": 20548.92, + "end": 20550.7, + "probability": 0.5725 + }, + { + "start": 20551.16, + "end": 20554.46, + "probability": 0.9937 + }, + { + "start": 20555.28, + "end": 20560.47, + "probability": 0.9961 + }, + { + "start": 20561.34, + "end": 20562.32, + "probability": 0.9759 + }, + { + "start": 20562.4, + "end": 20563.36, + "probability": 0.4822 + }, + { + "start": 20564.08, + "end": 20568.42, + "probability": 0.9937 + }, + { + "start": 20568.86, + "end": 20570.66, + "probability": 0.9269 + }, + { + "start": 20571.22, + "end": 20575.84, + "probability": 0.946 + }, + { + "start": 20576.36, + "end": 20578.16, + "probability": 0.9963 + }, + { + "start": 20578.28, + "end": 20578.82, + "probability": 0.7917 + }, + { + "start": 20579.92, + "end": 20580.46, + "probability": 0.7907 + }, + { + "start": 20581.0, + "end": 20581.94, + "probability": 0.7913 + }, + { + "start": 20582.02, + "end": 20584.44, + "probability": 0.9897 + }, + { + "start": 20585.54, + "end": 20586.64, + "probability": 0.9232 + }, + { + "start": 20587.92, + "end": 20588.22, + "probability": 0.5872 + }, + { + "start": 20592.68, + "end": 20594.52, + "probability": 0.7256 + }, + { + "start": 20606.1, + "end": 20607.86, + "probability": 0.7612 + }, + { + "start": 20607.98, + "end": 20609.56, + "probability": 0.7029 + }, + { + "start": 20609.62, + "end": 20610.66, + "probability": 0.8185 + }, + { + "start": 20611.2, + "end": 20612.26, + "probability": 0.9287 + }, + { + "start": 20612.92, + "end": 20613.24, + "probability": 0.883 + }, + { + "start": 20614.42, + "end": 20617.42, + "probability": 0.9622 + }, + { + "start": 20617.46, + "end": 20617.82, + "probability": 0.7429 + }, + { + "start": 20618.38, + "end": 20621.84, + "probability": 0.923 + }, + { + "start": 20622.4, + "end": 20622.96, + "probability": 0.7372 + }, + { + "start": 20624.21, + "end": 20627.46, + "probability": 0.7419 + }, + { + "start": 20627.58, + "end": 20627.86, + "probability": 0.4199 + }, + { + "start": 20627.86, + "end": 20627.86, + "probability": 0.1219 + }, + { + "start": 20627.86, + "end": 20628.1, + "probability": 0.1207 + }, + { + "start": 20628.1, + "end": 20629.04, + "probability": 0.6267 + }, + { + "start": 20629.08, + "end": 20631.94, + "probability": 0.7253 + }, + { + "start": 20632.5, + "end": 20634.78, + "probability": 0.5278 + }, + { + "start": 20634.88, + "end": 20635.8, + "probability": 0.6212 + }, + { + "start": 20635.84, + "end": 20641.06, + "probability": 0.9133 + }, + { + "start": 20641.82, + "end": 20644.48, + "probability": 0.9646 + }, + { + "start": 20645.14, + "end": 20647.1, + "probability": 0.936 + }, + { + "start": 20647.68, + "end": 20648.86, + "probability": 0.6643 + }, + { + "start": 20649.92, + "end": 20651.46, + "probability": 0.9753 + }, + { + "start": 20651.54, + "end": 20653.02, + "probability": 0.5726 + }, + { + "start": 20653.94, + "end": 20657.24, + "probability": 0.9544 + }, + { + "start": 20658.21, + "end": 20661.02, + "probability": 0.9015 + }, + { + "start": 20661.16, + "end": 20661.16, + "probability": 0.2132 + }, + { + "start": 20661.16, + "end": 20664.04, + "probability": 0.9922 + }, + { + "start": 20664.38, + "end": 20664.58, + "probability": 0.8915 + }, + { + "start": 20664.64, + "end": 20665.99, + "probability": 0.8168 + }, + { + "start": 20666.2, + "end": 20667.3, + "probability": 0.986 + }, + { + "start": 20668.24, + "end": 20670.82, + "probability": 0.99 + }, + { + "start": 20671.44, + "end": 20674.68, + "probability": 0.9969 + }, + { + "start": 20675.38, + "end": 20677.48, + "probability": 0.9579 + }, + { + "start": 20678.3, + "end": 20680.44, + "probability": 0.9895 + }, + { + "start": 20680.56, + "end": 20682.56, + "probability": 0.9707 + }, + { + "start": 20682.6, + "end": 20684.48, + "probability": 0.6725 + }, + { + "start": 20684.8, + "end": 20685.8, + "probability": 0.9969 + }, + { + "start": 20686.7, + "end": 20687.73, + "probability": 0.8894 + }, + { + "start": 20688.76, + "end": 20692.5, + "probability": 0.9954 + }, + { + "start": 20693.4, + "end": 20693.8, + "probability": 0.634 + }, + { + "start": 20694.92, + "end": 20695.6, + "probability": 0.9433 + }, + { + "start": 20695.68, + "end": 20700.06, + "probability": 0.8388 + }, + { + "start": 20700.06, + "end": 20702.42, + "probability": 0.9997 + }, + { + "start": 20703.16, + "end": 20704.68, + "probability": 0.8343 + }, + { + "start": 20704.78, + "end": 20706.14, + "probability": 0.9061 + }, + { + "start": 20707.0, + "end": 20710.53, + "probability": 0.9745 + }, + { + "start": 20711.4, + "end": 20712.3, + "probability": 0.9883 + }, + { + "start": 20712.34, + "end": 20713.18, + "probability": 0.9163 + }, + { + "start": 20713.58, + "end": 20714.36, + "probability": 0.9891 + }, + { + "start": 20714.98, + "end": 20716.26, + "probability": 0.9773 + }, + { + "start": 20716.72, + "end": 20720.34, + "probability": 0.9975 + }, + { + "start": 20720.34, + "end": 20727.36, + "probability": 0.9858 + }, + { + "start": 20727.98, + "end": 20730.72, + "probability": 0.998 + }, + { + "start": 20730.86, + "end": 20731.91, + "probability": 0.8845 + }, + { + "start": 20731.98, + "end": 20732.96, + "probability": 0.7775 + }, + { + "start": 20733.7, + "end": 20735.7, + "probability": 0.9779 + }, + { + "start": 20736.22, + "end": 20738.0, + "probability": 0.9569 + }, + { + "start": 20739.42, + "end": 20740.71, + "probability": 0.9883 + }, + { + "start": 20740.98, + "end": 20746.78, + "probability": 0.7455 + }, + { + "start": 20747.74, + "end": 20749.24, + "probability": 0.9867 + }, + { + "start": 20749.84, + "end": 20751.54, + "probability": 0.9965 + }, + { + "start": 20752.22, + "end": 20759.62, + "probability": 0.9803 + }, + { + "start": 20760.58, + "end": 20763.4, + "probability": 0.8923 + }, + { + "start": 20764.82, + "end": 20765.8, + "probability": 0.8252 + }, + { + "start": 20766.38, + "end": 20769.22, + "probability": 0.6604 + }, + { + "start": 20770.56, + "end": 20771.4, + "probability": 0.9168 + }, + { + "start": 20772.58, + "end": 20777.38, + "probability": 0.9529 + }, + { + "start": 20778.6, + "end": 20780.24, + "probability": 0.9407 + }, + { + "start": 20781.44, + "end": 20784.2, + "probability": 0.6882 + }, + { + "start": 20785.14, + "end": 20786.38, + "probability": 0.5343 + }, + { + "start": 20786.48, + "end": 20787.05, + "probability": 0.9149 + }, + { + "start": 20787.96, + "end": 20790.4, + "probability": 0.8792 + }, + { + "start": 20790.4, + "end": 20793.42, + "probability": 0.9892 + }, + { + "start": 20795.56, + "end": 20799.6, + "probability": 0.9659 + }, + { + "start": 20800.4, + "end": 20801.6, + "probability": 0.9866 + }, + { + "start": 20803.0, + "end": 20807.37, + "probability": 0.978 + }, + { + "start": 20808.82, + "end": 20811.53, + "probability": 0.9793 + }, + { + "start": 20813.74, + "end": 20819.54, + "probability": 0.9983 + }, + { + "start": 20820.42, + "end": 20827.48, + "probability": 0.9902 + }, + { + "start": 20828.12, + "end": 20830.56, + "probability": 0.9917 + }, + { + "start": 20831.64, + "end": 20833.44, + "probability": 0.855 + }, + { + "start": 20834.08, + "end": 20834.96, + "probability": 0.9753 + }, + { + "start": 20835.58, + "end": 20838.44, + "probability": 0.965 + }, + { + "start": 20839.02, + "end": 20843.42, + "probability": 0.9965 + }, + { + "start": 20844.3, + "end": 20845.36, + "probability": 0.9956 + }, + { + "start": 20846.04, + "end": 20847.16, + "probability": 0.9968 + }, + { + "start": 20848.28, + "end": 20851.42, + "probability": 0.9916 + }, + { + "start": 20852.26, + "end": 20854.24, + "probability": 0.9858 + }, + { + "start": 20854.68, + "end": 20857.18, + "probability": 0.9688 + }, + { + "start": 20857.32, + "end": 20861.86, + "probability": 0.9917 + }, + { + "start": 20862.78, + "end": 20867.94, + "probability": 0.9571 + }, + { + "start": 20868.38, + "end": 20871.18, + "probability": 0.8122 + }, + { + "start": 20871.94, + "end": 20875.78, + "probability": 0.8838 + }, + { + "start": 20875.9, + "end": 20878.24, + "probability": 0.9683 + }, + { + "start": 20878.34, + "end": 20879.72, + "probability": 0.7766 + }, + { + "start": 20880.1, + "end": 20881.84, + "probability": 0.8643 + }, + { + "start": 20882.38, + "end": 20883.36, + "probability": 0.4724 + }, + { + "start": 20884.52, + "end": 20886.48, + "probability": 0.8651 + }, + { + "start": 20887.62, + "end": 20890.24, + "probability": 0.8697 + }, + { + "start": 20891.66, + "end": 20893.54, + "probability": 0.9609 + }, + { + "start": 20894.42, + "end": 20896.76, + "probability": 0.8955 + }, + { + "start": 20897.98, + "end": 20901.6, + "probability": 0.897 + }, + { + "start": 20902.76, + "end": 20903.4, + "probability": 0.5856 + }, + { + "start": 20904.02, + "end": 20907.74, + "probability": 0.9401 + }, + { + "start": 20908.36, + "end": 20913.78, + "probability": 0.9772 + }, + { + "start": 20913.96, + "end": 20915.0, + "probability": 0.7594 + }, + { + "start": 20915.38, + "end": 20916.1, + "probability": 0.6853 + }, + { + "start": 20916.18, + "end": 20917.32, + "probability": 0.9446 + }, + { + "start": 20918.06, + "end": 20919.32, + "probability": 0.7551 + }, + { + "start": 20920.34, + "end": 20923.02, + "probability": 0.9394 + }, + { + "start": 20924.44, + "end": 20926.16, + "probability": 0.9452 + }, + { + "start": 20926.3, + "end": 20927.62, + "probability": 0.9937 + }, + { + "start": 20928.08, + "end": 20930.07, + "probability": 0.6326 + }, + { + "start": 20930.64, + "end": 20930.74, + "probability": 0.0881 + }, + { + "start": 20930.74, + "end": 20932.26, + "probability": 0.6673 + }, + { + "start": 20932.26, + "end": 20932.26, + "probability": 0.422 + }, + { + "start": 20932.26, + "end": 20932.76, + "probability": 0.7238 + }, + { + "start": 20932.9, + "end": 20933.39, + "probability": 0.8768 + }, + { + "start": 20933.86, + "end": 20935.61, + "probability": 0.9035 + }, + { + "start": 20936.34, + "end": 20936.92, + "probability": 0.94 + }, + { + "start": 20937.78, + "end": 20940.0, + "probability": 0.6224 + }, + { + "start": 20940.76, + "end": 20941.28, + "probability": 0.702 + }, + { + "start": 20941.44, + "end": 20942.12, + "probability": 0.9779 + }, + { + "start": 20942.92, + "end": 20946.64, + "probability": 0.9082 + }, + { + "start": 20947.52, + "end": 20949.78, + "probability": 0.9404 + }, + { + "start": 20950.18, + "end": 20951.92, + "probability": 0.9533 + }, + { + "start": 20952.38, + "end": 20953.3, + "probability": 0.9907 + }, + { + "start": 20954.46, + "end": 20955.32, + "probability": 0.8204 + }, + { + "start": 20955.96, + "end": 20958.32, + "probability": 0.9963 + }, + { + "start": 20959.5, + "end": 20960.12, + "probability": 0.896 + }, + { + "start": 20961.28, + "end": 20961.94, + "probability": 0.8313 + }, + { + "start": 20962.9, + "end": 20963.54, + "probability": 0.9385 + }, + { + "start": 20964.08, + "end": 20965.64, + "probability": 0.9546 + }, + { + "start": 20967.22, + "end": 20969.22, + "probability": 0.5995 + }, + { + "start": 20969.28, + "end": 20972.42, + "probability": 0.9963 + }, + { + "start": 20972.66, + "end": 20975.2, + "probability": 0.9653 + }, + { + "start": 20975.92, + "end": 20982.22, + "probability": 0.9951 + }, + { + "start": 20982.3, + "end": 20982.8, + "probability": 0.9457 + }, + { + "start": 20983.36, + "end": 20987.12, + "probability": 0.9889 + }, + { + "start": 20989.06, + "end": 20990.82, + "probability": 0.9902 + }, + { + "start": 20992.04, + "end": 20994.0, + "probability": 0.662 + }, + { + "start": 20994.94, + "end": 20995.4, + "probability": 0.6424 + }, + { + "start": 20995.64, + "end": 20996.5, + "probability": 0.9896 + }, + { + "start": 20996.92, + "end": 21003.68, + "probability": 0.9377 + }, + { + "start": 21004.72, + "end": 21005.28, + "probability": 0.8595 + }, + { + "start": 21006.28, + "end": 21010.1, + "probability": 0.9507 + }, + { + "start": 21011.12, + "end": 21014.18, + "probability": 0.9537 + }, + { + "start": 21015.26, + "end": 21017.8, + "probability": 0.9363 + }, + { + "start": 21017.92, + "end": 21020.26, + "probability": 0.8136 + }, + { + "start": 21021.04, + "end": 21021.91, + "probability": 0.68 + }, + { + "start": 21023.26, + "end": 21025.7, + "probability": 0.9265 + }, + { + "start": 21027.18, + "end": 21029.24, + "probability": 0.8118 + }, + { + "start": 21030.08, + "end": 21031.98, + "probability": 0.555 + }, + { + "start": 21033.18, + "end": 21034.22, + "probability": 0.9358 + }, + { + "start": 21034.38, + "end": 21035.6, + "probability": 0.9468 + }, + { + "start": 21036.06, + "end": 21037.9, + "probability": 0.9927 + }, + { + "start": 21038.28, + "end": 21040.64, + "probability": 0.9484 + }, + { + "start": 21041.66, + "end": 21043.66, + "probability": 0.9409 + }, + { + "start": 21044.3, + "end": 21045.8, + "probability": 0.9535 + }, + { + "start": 21046.54, + "end": 21048.29, + "probability": 0.643 + }, + { + "start": 21049.12, + "end": 21051.1, + "probability": 0.9737 + }, + { + "start": 21052.2, + "end": 21052.5, + "probability": 0.8527 + }, + { + "start": 21054.6, + "end": 21055.02, + "probability": 0.3227 + }, + { + "start": 21055.04, + "end": 21055.16, + "probability": 0.3066 + }, + { + "start": 21055.26, + "end": 21056.98, + "probability": 0.6645 + }, + { + "start": 21056.98, + "end": 21058.6, + "probability": 0.3461 + }, + { + "start": 21059.14, + "end": 21059.8, + "probability": 0.7296 + }, + { + "start": 21059.9, + "end": 21060.58, + "probability": 0.5074 + }, + { + "start": 21061.34, + "end": 21061.78, + "probability": 0.9551 + }, + { + "start": 21062.12, + "end": 21062.54, + "probability": 0.928 + }, + { + "start": 21062.62, + "end": 21063.26, + "probability": 0.9084 + }, + { + "start": 21063.32, + "end": 21063.72, + "probability": 0.9056 + }, + { + "start": 21063.88, + "end": 21065.72, + "probability": 0.7096 + }, + { + "start": 21066.04, + "end": 21066.56, + "probability": 0.6241 + }, + { + "start": 21067.9, + "end": 21069.28, + "probability": 0.7801 + }, + { + "start": 21069.58, + "end": 21069.72, + "probability": 0.3793 + }, + { + "start": 21070.08, + "end": 21073.66, + "probability": 0.4929 + }, + { + "start": 21074.06, + "end": 21074.98, + "probability": 0.9854 + }, + { + "start": 21075.8, + "end": 21076.76, + "probability": 0.9666 + }, + { + "start": 21077.6, + "end": 21081.02, + "probability": 0.2583 + }, + { + "start": 21081.02, + "end": 21081.54, + "probability": 0.6147 + }, + { + "start": 21082.52, + "end": 21084.02, + "probability": 0.8109 + }, + { + "start": 21084.36, + "end": 21085.36, + "probability": 0.6693 + }, + { + "start": 21086.04, + "end": 21088.74, + "probability": 0.9272 + }, + { + "start": 21089.3, + "end": 21090.12, + "probability": 0.7617 + }, + { + "start": 21090.42, + "end": 21091.34, + "probability": 0.788 + }, + { + "start": 21092.2, + "end": 21093.14, + "probability": 0.6694 + }, + { + "start": 21093.88, + "end": 21094.36, + "probability": 0.8995 + }, + { + "start": 21094.44, + "end": 21096.04, + "probability": 0.9718 + }, + { + "start": 21096.4, + "end": 21098.58, + "probability": 0.9004 + }, + { + "start": 21099.1, + "end": 21099.76, + "probability": 0.7028 + }, + { + "start": 21099.88, + "end": 21100.14, + "probability": 0.6324 + }, + { + "start": 21100.28, + "end": 21100.52, + "probability": 0.9634 + }, + { + "start": 21101.36, + "end": 21102.1, + "probability": 0.9484 + }, + { + "start": 21102.72, + "end": 21103.4, + "probability": 0.2114 + }, + { + "start": 21103.68, + "end": 21103.7, + "probability": 0.1424 + }, + { + "start": 21103.7, + "end": 21104.31, + "probability": 0.8564 + }, + { + "start": 21104.56, + "end": 21105.38, + "probability": 0.9023 + }, + { + "start": 21105.54, + "end": 21106.34, + "probability": 0.5707 + }, + { + "start": 21106.42, + "end": 21108.2, + "probability": 0.6771 + }, + { + "start": 21108.24, + "end": 21108.68, + "probability": 0.7511 + }, + { + "start": 21108.8, + "end": 21109.82, + "probability": 0.9794 + }, + { + "start": 21110.78, + "end": 21113.48, + "probability": 0.3321 + }, + { + "start": 21114.08, + "end": 21114.44, + "probability": 0.0413 + }, + { + "start": 21114.44, + "end": 21114.86, + "probability": 0.4527 + }, + { + "start": 21114.86, + "end": 21115.85, + "probability": 0.5373 + }, + { + "start": 21116.38, + "end": 21118.4, + "probability": 0.7798 + }, + { + "start": 21118.74, + "end": 21120.38, + "probability": 0.6828 + }, + { + "start": 21120.46, + "end": 21121.12, + "probability": 0.6286 + }, + { + "start": 21121.16, + "end": 21121.64, + "probability": 0.8352 + }, + { + "start": 21121.68, + "end": 21122.56, + "probability": 0.9329 + }, + { + "start": 21122.56, + "end": 21124.18, + "probability": 0.6231 + }, + { + "start": 21124.72, + "end": 21125.08, + "probability": 0.4276 + }, + { + "start": 21125.08, + "end": 21126.39, + "probability": 0.5099 + }, + { + "start": 21126.56, + "end": 21127.96, + "probability": 0.904 + }, + { + "start": 21128.52, + "end": 21130.66, + "probability": 0.7341 + }, + { + "start": 21131.22, + "end": 21133.3, + "probability": 0.9441 + }, + { + "start": 21133.56, + "end": 21134.2, + "probability": 0.6933 + }, + { + "start": 21134.42, + "end": 21135.12, + "probability": 0.9316 + }, + { + "start": 21135.46, + "end": 21136.46, + "probability": 0.8619 + }, + { + "start": 21136.46, + "end": 21137.09, + "probability": 0.8901 + }, + { + "start": 21138.5, + "end": 21139.7, + "probability": 0.9434 + }, + { + "start": 21139.82, + "end": 21140.93, + "probability": 0.891 + }, + { + "start": 21141.54, + "end": 21141.86, + "probability": 0.4303 + }, + { + "start": 21141.94, + "end": 21143.6, + "probability": 0.78 + }, + { + "start": 21143.62, + "end": 21145.38, + "probability": 0.4063 + }, + { + "start": 21145.66, + "end": 21146.92, + "probability": 0.9923 + }, + { + "start": 21147.9, + "end": 21149.14, + "probability": 0.9648 + }, + { + "start": 21150.1, + "end": 21150.76, + "probability": 0.5421 + }, + { + "start": 21151.9, + "end": 21152.26, + "probability": 0.9357 + }, + { + "start": 21153.1, + "end": 21154.38, + "probability": 0.9751 + }, + { + "start": 21155.22, + "end": 21157.26, + "probability": 0.5154 + }, + { + "start": 21158.38, + "end": 21160.92, + "probability": 0.9618 + }, + { + "start": 21161.5, + "end": 21165.36, + "probability": 0.9614 + }, + { + "start": 21166.06, + "end": 21167.77, + "probability": 0.9734 + }, + { + "start": 21169.2, + "end": 21170.38, + "probability": 0.9116 + }, + { + "start": 21170.8, + "end": 21172.02, + "probability": 0.9868 + }, + { + "start": 21172.7, + "end": 21173.7, + "probability": 0.8232 + }, + { + "start": 21174.52, + "end": 21175.84, + "probability": 0.9896 + }, + { + "start": 21176.5, + "end": 21177.44, + "probability": 0.9712 + }, + { + "start": 21177.9, + "end": 21179.06, + "probability": 0.949 + }, + { + "start": 21179.62, + "end": 21180.6, + "probability": 0.716 + }, + { + "start": 21181.2, + "end": 21185.86, + "probability": 0.5415 + }, + { + "start": 21186.3, + "end": 21186.62, + "probability": 0.8398 + }, + { + "start": 21187.66, + "end": 21188.88, + "probability": 0.896 + }, + { + "start": 21189.44, + "end": 21191.74, + "probability": 0.9919 + }, + { + "start": 21192.52, + "end": 21193.44, + "probability": 0.4521 + }, + { + "start": 21193.94, + "end": 21195.38, + "probability": 0.9555 + }, + { + "start": 21195.54, + "end": 21199.84, + "probability": 0.9432 + }, + { + "start": 21200.46, + "end": 21201.18, + "probability": 0.746 + }, + { + "start": 21202.14, + "end": 21202.9, + "probability": 0.6073 + }, + { + "start": 21202.94, + "end": 21205.92, + "probability": 0.8787 + }, + { + "start": 21206.08, + "end": 21207.1, + "probability": 0.816 + }, + { + "start": 21207.64, + "end": 21209.1, + "probability": 0.9219 + }, + { + "start": 21209.38, + "end": 21212.54, + "probability": 0.6396 + }, + { + "start": 21213.44, + "end": 21214.84, + "probability": 0.8345 + }, + { + "start": 21215.0, + "end": 21215.92, + "probability": 0.9806 + }, + { + "start": 21216.94, + "end": 21219.94, + "probability": 0.8784 + }, + { + "start": 21221.58, + "end": 21223.26, + "probability": 0.9092 + }, + { + "start": 21224.14, + "end": 21225.39, + "probability": 0.8399 + }, + { + "start": 21226.14, + "end": 21227.26, + "probability": 0.9597 + }, + { + "start": 21228.86, + "end": 21232.66, + "probability": 0.9969 + }, + { + "start": 21233.42, + "end": 21234.6, + "probability": 0.9739 + }, + { + "start": 21235.46, + "end": 21235.99, + "probability": 0.8984 + }, + { + "start": 21237.14, + "end": 21239.12, + "probability": 0.983 + }, + { + "start": 21239.8, + "end": 21244.5, + "probability": 0.9084 + }, + { + "start": 21244.62, + "end": 21247.88, + "probability": 0.989 + }, + { + "start": 21248.5, + "end": 21252.54, + "probability": 0.9914 + }, + { + "start": 21253.1, + "end": 21254.14, + "probability": 0.9834 + }, + { + "start": 21254.28, + "end": 21255.18, + "probability": 0.9539 + }, + { + "start": 21255.58, + "end": 21257.2, + "probability": 0.6674 + }, + { + "start": 21260.9, + "end": 21261.0, + "probability": 0.287 + }, + { + "start": 21261.0, + "end": 21261.84, + "probability": 0.473 + }, + { + "start": 21262.12, + "end": 21262.86, + "probability": 0.8588 + }, + { + "start": 21262.98, + "end": 21264.13, + "probability": 0.8658 + }, + { + "start": 21264.4, + "end": 21265.2, + "probability": 0.8438 + }, + { + "start": 21265.34, + "end": 21265.7, + "probability": 0.8298 + }, + { + "start": 21265.96, + "end": 21266.8, + "probability": 0.9412 + }, + { + "start": 21267.04, + "end": 21267.4, + "probability": 0.5113 + }, + { + "start": 21267.88, + "end": 21269.04, + "probability": 0.9792 + }, + { + "start": 21269.62, + "end": 21270.06, + "probability": 0.7713 + }, + { + "start": 21271.1, + "end": 21272.78, + "probability": 0.8301 + }, + { + "start": 21273.38, + "end": 21274.92, + "probability": 0.9078 + }, + { + "start": 21275.56, + "end": 21276.34, + "probability": 0.639 + }, + { + "start": 21277.28, + "end": 21279.04, + "probability": 0.9777 + }, + { + "start": 21279.53, + "end": 21281.0, + "probability": 0.6771 + }, + { + "start": 21281.02, + "end": 21282.52, + "probability": 0.9185 + }, + { + "start": 21282.74, + "end": 21283.1, + "probability": 0.5811 + }, + { + "start": 21283.52, + "end": 21283.9, + "probability": 0.3801 + }, + { + "start": 21284.38, + "end": 21286.26, + "probability": 0.821 + }, + { + "start": 21287.14, + "end": 21288.18, + "probability": 0.9404 + }, + { + "start": 21289.7, + "end": 21290.38, + "probability": 0.954 + }, + { + "start": 21292.02, + "end": 21293.78, + "probability": 0.9835 + }, + { + "start": 21294.44, + "end": 21295.46, + "probability": 0.9958 + }, + { + "start": 21296.02, + "end": 21297.5, + "probability": 0.9933 + }, + { + "start": 21298.04, + "end": 21299.86, + "probability": 0.9731 + }, + { + "start": 21300.86, + "end": 21302.52, + "probability": 0.96 + }, + { + "start": 21302.6, + "end": 21304.18, + "probability": 0.9953 + }, + { + "start": 21304.64, + "end": 21305.54, + "probability": 0.6605 + }, + { + "start": 21306.4, + "end": 21306.98, + "probability": 0.6733 + }, + { + "start": 21307.34, + "end": 21308.88, + "probability": 0.776 + }, + { + "start": 21308.98, + "end": 21310.2, + "probability": 0.7952 + }, + { + "start": 21310.32, + "end": 21311.26, + "probability": 0.989 + }, + { + "start": 21312.06, + "end": 21313.26, + "probability": 0.9802 + }, + { + "start": 21314.38, + "end": 21315.34, + "probability": 0.7036 + }, + { + "start": 21315.62, + "end": 21316.16, + "probability": 0.5343 + }, + { + "start": 21316.94, + "end": 21319.72, + "probability": 0.8651 + }, + { + "start": 21320.32, + "end": 21323.92, + "probability": 0.9437 + }, + { + "start": 21324.58, + "end": 21326.72, + "probability": 0.8467 + }, + { + "start": 21326.8, + "end": 21327.44, + "probability": 0.623 + }, + { + "start": 21328.18, + "end": 21331.81, + "probability": 0.8335 + }, + { + "start": 21332.06, + "end": 21332.36, + "probability": 0.5588 + }, + { + "start": 21332.44, + "end": 21333.82, + "probability": 0.7429 + }, + { + "start": 21334.38, + "end": 21335.4, + "probability": 0.3851 + }, + { + "start": 21335.94, + "end": 21337.44, + "probability": 0.7897 + }, + { + "start": 21338.06, + "end": 21339.35, + "probability": 0.9975 + }, + { + "start": 21340.8, + "end": 21344.22, + "probability": 0.9966 + }, + { + "start": 21344.84, + "end": 21345.78, + "probability": 0.9909 + }, + { + "start": 21346.58, + "end": 21348.7, + "probability": 0.9634 + }, + { + "start": 21349.12, + "end": 21349.56, + "probability": 0.8341 + }, + { + "start": 21350.26, + "end": 21350.74, + "probability": 0.8057 + }, + { + "start": 21350.78, + "end": 21352.06, + "probability": 0.8826 + }, + { + "start": 21352.3, + "end": 21354.5, + "probability": 0.753 + }, + { + "start": 21355.48, + "end": 21356.98, + "probability": 0.7659 + }, + { + "start": 21359.4, + "end": 21359.56, + "probability": 0.0598 + }, + { + "start": 21359.56, + "end": 21359.56, + "probability": 0.0475 + }, + { + "start": 21359.56, + "end": 21359.7, + "probability": 0.012 + }, + { + "start": 21359.7, + "end": 21360.2, + "probability": 0.1808 + }, + { + "start": 21360.32, + "end": 21362.44, + "probability": 0.8258 + }, + { + "start": 21362.52, + "end": 21362.94, + "probability": 0.1235 + }, + { + "start": 21362.96, + "end": 21364.44, + "probability": 0.7758 + }, + { + "start": 21365.27, + "end": 21368.2, + "probability": 0.7389 + }, + { + "start": 21370.12, + "end": 21371.48, + "probability": 0.9685 + }, + { + "start": 21374.12, + "end": 21375.88, + "probability": 0.9789 + }, + { + "start": 21376.39, + "end": 21378.31, + "probability": 0.7734 + }, + { + "start": 21379.94, + "end": 21383.02, + "probability": 0.8789 + }, + { + "start": 21383.5, + "end": 21385.0, + "probability": 0.849 + }, + { + "start": 21386.92, + "end": 21387.7, + "probability": 0.6439 + }, + { + "start": 21387.72, + "end": 21388.44, + "probability": 0.6937 + }, + { + "start": 21388.88, + "end": 21392.38, + "probability": 0.3517 + }, + { + "start": 21392.38, + "end": 21393.1, + "probability": 0.3138 + }, + { + "start": 21393.16, + "end": 21393.84, + "probability": 0.2978 + }, + { + "start": 21393.84, + "end": 21395.28, + "probability": 0.3123 + }, + { + "start": 21395.28, + "end": 21395.28, + "probability": 0.2317 + }, + { + "start": 21395.28, + "end": 21395.28, + "probability": 0.2046 + }, + { + "start": 21395.28, + "end": 21397.18, + "probability": 0.5559 + }, + { + "start": 21397.48, + "end": 21398.9, + "probability": 0.2466 + }, + { + "start": 21399.06, + "end": 21402.24, + "probability": 0.7026 + }, + { + "start": 21402.42, + "end": 21404.32, + "probability": 0.4534 + }, + { + "start": 21404.32, + "end": 21404.42, + "probability": 0.752 + }, + { + "start": 21405.22, + "end": 21408.38, + "probability": 0.1322 + }, + { + "start": 21408.42, + "end": 21409.78, + "probability": 0.621 + }, + { + "start": 21409.78, + "end": 21410.8, + "probability": 0.9522 + }, + { + "start": 21411.98, + "end": 21412.54, + "probability": 0.0145 + }, + { + "start": 21413.26, + "end": 21414.94, + "probability": 0.5918 + }, + { + "start": 21415.86, + "end": 21415.86, + "probability": 0.1578 + }, + { + "start": 21415.86, + "end": 21417.34, + "probability": 0.5089 + }, + { + "start": 21417.4, + "end": 21417.78, + "probability": 0.9017 + }, + { + "start": 21417.84, + "end": 21418.36, + "probability": 0.6079 + }, + { + "start": 21418.44, + "end": 21419.34, + "probability": 0.9526 + }, + { + "start": 21419.82, + "end": 21420.82, + "probability": 0.6453 + }, + { + "start": 21420.82, + "end": 21422.26, + "probability": 0.7988 + }, + { + "start": 21422.32, + "end": 21423.0, + "probability": 0.8634 + }, + { + "start": 21423.2, + "end": 21427.58, + "probability": 0.879 + }, + { + "start": 21428.16, + "end": 21428.5, + "probability": 0.3322 + }, + { + "start": 21428.5, + "end": 21429.9, + "probability": 0.9018 + }, + { + "start": 21431.69, + "end": 21434.96, + "probability": 0.9897 + }, + { + "start": 21435.56, + "end": 21437.6, + "probability": 0.7797 + }, + { + "start": 21438.44, + "end": 21441.2, + "probability": 0.9893 + }, + { + "start": 21441.84, + "end": 21443.7, + "probability": 0.8726 + }, + { + "start": 21445.34, + "end": 21449.56, + "probability": 0.9965 + }, + { + "start": 21449.78, + "end": 21451.98, + "probability": 0.9807 + }, + { + "start": 21452.78, + "end": 21456.52, + "probability": 0.9811 + }, + { + "start": 21457.0, + "end": 21458.69, + "probability": 0.9935 + }, + { + "start": 21460.27, + "end": 21461.04, + "probability": 0.2654 + }, + { + "start": 21461.04, + "end": 21463.44, + "probability": 0.7747 + }, + { + "start": 21464.0, + "end": 21469.22, + "probability": 0.9907 + }, + { + "start": 21470.12, + "end": 21470.12, + "probability": 0.2166 + }, + { + "start": 21470.12, + "end": 21474.8, + "probability": 0.9725 + }, + { + "start": 21475.9, + "end": 21480.36, + "probability": 0.9988 + }, + { + "start": 21481.34, + "end": 21487.88, + "probability": 0.9138 + }, + { + "start": 21488.06, + "end": 21489.5, + "probability": 0.9796 + }, + { + "start": 21489.62, + "end": 21490.46, + "probability": 0.6496 + }, + { + "start": 21491.54, + "end": 21495.82, + "probability": 0.9941 + }, + { + "start": 21496.22, + "end": 21501.02, + "probability": 0.9918 + }, + { + "start": 21501.74, + "end": 21503.64, + "probability": 0.9028 + }, + { + "start": 21504.36, + "end": 21506.58, + "probability": 0.9976 + }, + { + "start": 21506.76, + "end": 21508.2, + "probability": 0.9294 + }, + { + "start": 21508.38, + "end": 21511.46, + "probability": 0.9665 + }, + { + "start": 21513.58, + "end": 21517.82, + "probability": 0.9933 + }, + { + "start": 21518.34, + "end": 21520.74, + "probability": 0.9987 + }, + { + "start": 21520.84, + "end": 21521.86, + "probability": 0.7537 + }, + { + "start": 21522.16, + "end": 21525.26, + "probability": 0.7832 + }, + { + "start": 21526.56, + "end": 21528.14, + "probability": 0.9914 + }, + { + "start": 21529.86, + "end": 21534.46, + "probability": 0.9847 + }, + { + "start": 21535.82, + "end": 21539.2, + "probability": 0.9983 + }, + { + "start": 21539.2, + "end": 21543.58, + "probability": 0.9994 + }, + { + "start": 21544.52, + "end": 21545.76, + "probability": 0.4808 + }, + { + "start": 21546.44, + "end": 21549.56, + "probability": 0.8494 + }, + { + "start": 21550.62, + "end": 21554.5, + "probability": 0.8873 + }, + { + "start": 21555.02, + "end": 21557.48, + "probability": 0.9799 + }, + { + "start": 21557.74, + "end": 21561.56, + "probability": 0.9453 + }, + { + "start": 21561.76, + "end": 21565.52, + "probability": 0.9652 + }, + { + "start": 21568.04, + "end": 21575.2, + "probability": 0.9976 + }, + { + "start": 21575.24, + "end": 21576.16, + "probability": 0.8533 + }, + { + "start": 21576.88, + "end": 21577.72, + "probability": 0.994 + }, + { + "start": 21578.68, + "end": 21580.44, + "probability": 0.9756 + }, + { + "start": 21581.3, + "end": 21583.72, + "probability": 0.9786 + }, + { + "start": 21584.88, + "end": 21587.06, + "probability": 0.9813 + }, + { + "start": 21587.12, + "end": 21589.28, + "probability": 0.9868 + }, + { + "start": 21589.34, + "end": 21590.66, + "probability": 0.9666 + }, + { + "start": 21592.48, + "end": 21596.54, + "probability": 0.9958 + }, + { + "start": 21597.06, + "end": 21599.84, + "probability": 0.9935 + }, + { + "start": 21599.98, + "end": 21600.38, + "probability": 0.7685 + }, + { + "start": 21600.5, + "end": 21601.4, + "probability": 0.5709 + }, + { + "start": 21602.2, + "end": 21607.92, + "probability": 0.9977 + }, + { + "start": 21608.58, + "end": 21611.44, + "probability": 0.9895 + }, + { + "start": 21611.74, + "end": 21617.22, + "probability": 0.9943 + }, + { + "start": 21619.28, + "end": 21621.44, + "probability": 0.9969 + }, + { + "start": 21622.8, + "end": 21624.38, + "probability": 0.9192 + }, + { + "start": 21625.4, + "end": 21626.83, + "probability": 0.9951 + }, + { + "start": 21628.94, + "end": 21633.58, + "probability": 0.987 + }, + { + "start": 21634.18, + "end": 21639.12, + "probability": 0.9952 + }, + { + "start": 21640.1, + "end": 21647.38, + "probability": 0.9957 + }, + { + "start": 21648.3, + "end": 21651.74, + "probability": 0.9985 + }, + { + "start": 21653.12, + "end": 21654.2, + "probability": 0.8529 + }, + { + "start": 21654.38, + "end": 21656.94, + "probability": 0.9969 + }, + { + "start": 21659.2, + "end": 21660.04, + "probability": 0.9891 + }, + { + "start": 21662.06, + "end": 21665.46, + "probability": 0.9939 + }, + { + "start": 21666.58, + "end": 21668.32, + "probability": 0.9454 + }, + { + "start": 21669.74, + "end": 21673.2, + "probability": 0.9418 + }, + { + "start": 21674.28, + "end": 21678.7, + "probability": 0.8786 + }, + { + "start": 21679.2, + "end": 21680.46, + "probability": 0.9933 + }, + { + "start": 21681.06, + "end": 21681.78, + "probability": 0.8819 + }, + { + "start": 21682.2, + "end": 21685.58, + "probability": 0.9879 + }, + { + "start": 21686.04, + "end": 21689.16, + "probability": 0.976 + }, + { + "start": 21690.68, + "end": 21693.28, + "probability": 0.9877 + }, + { + "start": 21694.46, + "end": 21695.92, + "probability": 0.9559 + }, + { + "start": 21697.22, + "end": 21700.24, + "probability": 0.915 + }, + { + "start": 21700.32, + "end": 21702.42, + "probability": 0.8736 + }, + { + "start": 21702.48, + "end": 21705.04, + "probability": 0.9902 + }, + { + "start": 21706.42, + "end": 21707.34, + "probability": 0.9872 + }, + { + "start": 21707.46, + "end": 21709.04, + "probability": 0.9903 + }, + { + "start": 21709.1, + "end": 21715.92, + "probability": 0.9905 + }, + { + "start": 21717.48, + "end": 21718.04, + "probability": 0.555 + }, + { + "start": 21719.04, + "end": 21719.56, + "probability": 0.5839 + }, + { + "start": 21720.2, + "end": 21721.82, + "probability": 0.9966 + }, + { + "start": 21722.42, + "end": 21723.14, + "probability": 0.9869 + }, + { + "start": 21723.7, + "end": 21727.02, + "probability": 0.9961 + }, + { + "start": 21730.6, + "end": 21731.38, + "probability": 0.6288 + }, + { + "start": 21731.62, + "end": 21733.34, + "probability": 0.9006 + }, + { + "start": 21735.74, + "end": 21737.52, + "probability": 0.0306 + }, + { + "start": 21738.46, + "end": 21739.36, + "probability": 0.3296 + }, + { + "start": 21758.08, + "end": 21759.38, + "probability": 0.4242 + }, + { + "start": 21760.72, + "end": 21761.92, + "probability": 0.9248 + }, + { + "start": 21762.2, + "end": 21762.58, + "probability": 0.915 + }, + { + "start": 21762.94, + "end": 21763.08, + "probability": 0.0046 + }, + { + "start": 21764.76, + "end": 21765.56, + "probability": 0.7949 + }, + { + "start": 21765.66, + "end": 21767.42, + "probability": 0.5959 + }, + { + "start": 21768.16, + "end": 21769.4, + "probability": 0.9703 + }, + { + "start": 21770.7, + "end": 21775.22, + "probability": 0.8704 + }, + { + "start": 21776.9, + "end": 21779.6, + "probability": 0.5521 + }, + { + "start": 21780.94, + "end": 21780.94, + "probability": 0.0655 + }, + { + "start": 21780.98, + "end": 21782.82, + "probability": 0.9855 + }, + { + "start": 21783.72, + "end": 21787.88, + "probability": 0.9622 + }, + { + "start": 21788.72, + "end": 21789.32, + "probability": 0.9651 + }, + { + "start": 21790.1, + "end": 21790.82, + "probability": 0.4877 + }, + { + "start": 21795.84, + "end": 21801.76, + "probability": 0.9595 + }, + { + "start": 21801.76, + "end": 21806.64, + "probability": 0.975 + }, + { + "start": 21808.26, + "end": 21808.88, + "probability": 0.7537 + }, + { + "start": 21809.76, + "end": 21813.4, + "probability": 0.8984 + }, + { + "start": 21814.62, + "end": 21816.96, + "probability": 0.8127 + }, + { + "start": 21817.24, + "end": 21818.16, + "probability": 0.8825 + }, + { + "start": 21818.3, + "end": 21819.04, + "probability": 0.9099 + }, + { + "start": 21819.18, + "end": 21819.92, + "probability": 0.7817 + }, + { + "start": 21820.54, + "end": 21824.72, + "probability": 0.9215 + }, + { + "start": 21826.12, + "end": 21831.58, + "probability": 0.9327 + }, + { + "start": 21833.56, + "end": 21835.14, + "probability": 0.9635 + }, + { + "start": 21836.14, + "end": 21837.3, + "probability": 0.75 + }, + { + "start": 21837.9, + "end": 21841.64, + "probability": 0.9766 + }, + { + "start": 21842.6, + "end": 21842.82, + "probability": 0.1461 + }, + { + "start": 21844.64, + "end": 21848.66, + "probability": 0.8848 + }, + { + "start": 21849.2, + "end": 21850.26, + "probability": 0.6933 + }, + { + "start": 21851.46, + "end": 21855.4, + "probability": 0.9842 + }, + { + "start": 21856.04, + "end": 21857.98, + "probability": 0.9534 + }, + { + "start": 21858.92, + "end": 21865.14, + "probability": 0.9914 + }, + { + "start": 21865.14, + "end": 21871.68, + "probability": 0.9942 + }, + { + "start": 21872.44, + "end": 21880.52, + "probability": 0.9413 + }, + { + "start": 21881.38, + "end": 21883.02, + "probability": 0.6617 + }, + { + "start": 21883.78, + "end": 21884.6, + "probability": 0.6443 + }, + { + "start": 21884.96, + "end": 21886.06, + "probability": 0.8592 + }, + { + "start": 21886.54, + "end": 21892.8, + "probability": 0.9769 + }, + { + "start": 21893.42, + "end": 21900.5, + "probability": 0.9565 + }, + { + "start": 21901.1, + "end": 21904.94, + "probability": 0.9539 + }, + { + "start": 21905.76, + "end": 21909.24, + "probability": 0.9836 + }, + { + "start": 21909.66, + "end": 21915.9, + "probability": 0.8075 + }, + { + "start": 21916.7, + "end": 21920.56, + "probability": 0.9829 + }, + { + "start": 21921.56, + "end": 21924.36, + "probability": 0.9578 + }, + { + "start": 21926.24, + "end": 21927.54, + "probability": 0.7801 + }, + { + "start": 21928.34, + "end": 21929.45, + "probability": 0.9873 + }, + { + "start": 21930.84, + "end": 21932.62, + "probability": 0.8781 + }, + { + "start": 21936.35, + "end": 21940.66, + "probability": 0.7693 + }, + { + "start": 21941.48, + "end": 21949.78, + "probability": 0.907 + }, + { + "start": 21950.4, + "end": 21951.22, + "probability": 0.8489 + }, + { + "start": 21951.94, + "end": 21953.0, + "probability": 0.6931 + }, + { + "start": 21953.66, + "end": 21955.0, + "probability": 0.5629 + }, + { + "start": 21955.56, + "end": 21957.74, + "probability": 0.9548 + }, + { + "start": 21958.2, + "end": 21960.9, + "probability": 0.9727 + }, + { + "start": 21960.96, + "end": 21969.6, + "probability": 0.7556 + }, + { + "start": 21970.42, + "end": 21973.08, + "probability": 0.9587 + }, + { + "start": 21973.86, + "end": 21977.18, + "probability": 0.8816 + }, + { + "start": 21977.7, + "end": 21983.76, + "probability": 0.9461 + }, + { + "start": 21984.28, + "end": 21986.64, + "probability": 0.9927 + }, + { + "start": 21988.44, + "end": 21995.06, + "probability": 0.9294 + }, + { + "start": 21995.68, + "end": 21999.04, + "probability": 0.9342 + }, + { + "start": 22000.34, + "end": 22001.8, + "probability": 0.6224 + }, + { + "start": 22003.04, + "end": 22004.2, + "probability": 0.8268 + }, + { + "start": 22006.56, + "end": 22007.74, + "probability": 0.8163 + }, + { + "start": 22008.58, + "end": 22013.7, + "probability": 0.636 + }, + { + "start": 22014.42, + "end": 22021.54, + "probability": 0.8298 + }, + { + "start": 22022.3, + "end": 22023.66, + "probability": 0.8822 + }, + { + "start": 22024.38, + "end": 22032.9, + "probability": 0.9862 + }, + { + "start": 22033.34, + "end": 22036.65, + "probability": 0.7976 + }, + { + "start": 22039.36, + "end": 22046.0, + "probability": 0.7302 + }, + { + "start": 22046.62, + "end": 22047.38, + "probability": 0.4736 + }, + { + "start": 22048.14, + "end": 22050.6, + "probability": 0.9604 + }, + { + "start": 22050.76, + "end": 22054.42, + "probability": 0.8552 + }, + { + "start": 22054.84, + "end": 22061.96, + "probability": 0.9293 + }, + { + "start": 22062.74, + "end": 22068.94, + "probability": 0.9873 + }, + { + "start": 22070.68, + "end": 22076.84, + "probability": 0.995 + }, + { + "start": 22077.64, + "end": 22081.32, + "probability": 0.977 + }, + { + "start": 22082.32, + "end": 22086.96, + "probability": 0.962 + }, + { + "start": 22087.76, + "end": 22093.64, + "probability": 0.9773 + }, + { + "start": 22095.08, + "end": 22096.62, + "probability": 0.8266 + }, + { + "start": 22097.92, + "end": 22100.78, + "probability": 0.8398 + }, + { + "start": 22101.9, + "end": 22102.4, + "probability": 0.9063 + }, + { + "start": 22102.56, + "end": 22103.1, + "probability": 0.6596 + }, + { + "start": 22103.1, + "end": 22108.72, + "probability": 0.9597 + }, + { + "start": 22108.72, + "end": 22112.8, + "probability": 0.9289 + }, + { + "start": 22113.6, + "end": 22121.44, + "probability": 0.9702 + }, + { + "start": 22122.34, + "end": 22123.92, + "probability": 0.9563 + }, + { + "start": 22124.26, + "end": 22125.98, + "probability": 0.9429 + }, + { + "start": 22126.5, + "end": 22128.18, + "probability": 0.77 + }, + { + "start": 22128.74, + "end": 22131.74, + "probability": 0.9513 + }, + { + "start": 22132.62, + "end": 22136.4, + "probability": 0.9622 + }, + { + "start": 22137.12, + "end": 22141.7, + "probability": 0.9928 + }, + { + "start": 22141.7, + "end": 22147.06, + "probability": 0.9648 + }, + { + "start": 22148.38, + "end": 22150.64, + "probability": 0.9632 + }, + { + "start": 22151.06, + "end": 22152.74, + "probability": 0.7143 + }, + { + "start": 22153.06, + "end": 22159.08, + "probability": 0.9267 + }, + { + "start": 22159.88, + "end": 22164.98, + "probability": 0.8555 + }, + { + "start": 22165.8, + "end": 22166.66, + "probability": 0.4595 + }, + { + "start": 22166.7, + "end": 22168.0, + "probability": 0.8462 + }, + { + "start": 22168.2, + "end": 22179.3, + "probability": 0.8 + }, + { + "start": 22179.78, + "end": 22183.08, + "probability": 0.982 + }, + { + "start": 22183.54, + "end": 22186.18, + "probability": 0.9792 + }, + { + "start": 22186.18, + "end": 22191.88, + "probability": 0.9566 + }, + { + "start": 22192.26, + "end": 22195.9, + "probability": 0.9828 + }, + { + "start": 22197.14, + "end": 22206.52, + "probability": 0.9176 + }, + { + "start": 22207.34, + "end": 22211.96, + "probability": 0.9064 + }, + { + "start": 22212.28, + "end": 22214.4, + "probability": 0.6601 + }, + { + "start": 22214.6, + "end": 22219.76, + "probability": 0.9844 + }, + { + "start": 22219.98, + "end": 22222.76, + "probability": 0.9327 + }, + { + "start": 22223.12, + "end": 22226.28, + "probability": 0.9051 + }, + { + "start": 22226.6, + "end": 22227.62, + "probability": 0.9883 + }, + { + "start": 22227.7, + "end": 22229.64, + "probability": 0.4992 + }, + { + "start": 22230.02, + "end": 22237.8, + "probability": 0.6879 + }, + { + "start": 22238.42, + "end": 22240.02, + "probability": 0.6436 + }, + { + "start": 22240.1, + "end": 22244.18, + "probability": 0.9282 + }, + { + "start": 22244.18, + "end": 22249.78, + "probability": 0.1479 + }, + { + "start": 22250.78, + "end": 22255.18, + "probability": 0.4592 + }, + { + "start": 22255.78, + "end": 22258.46, + "probability": 0.0103 + }, + { + "start": 22259.64, + "end": 22259.84, + "probability": 0.0544 + }, + { + "start": 22269.82, + "end": 22271.34, + "probability": 0.1241 + }, + { + "start": 22271.7, + "end": 22274.34, + "probability": 0.7197 + }, + { + "start": 22274.44, + "end": 22278.38, + "probability": 0.9971 + }, + { + "start": 22278.38, + "end": 22280.9, + "probability": 0.607 + }, + { + "start": 22281.42, + "end": 22285.28, + "probability": 0.8802 + }, + { + "start": 22285.64, + "end": 22291.46, + "probability": 0.955 + }, + { + "start": 22292.3, + "end": 22293.26, + "probability": 0.6833 + }, + { + "start": 22293.96, + "end": 22299.92, + "probability": 0.9505 + }, + { + "start": 22300.7, + "end": 22302.84, + "probability": 0.937 + }, + { + "start": 22303.34, + "end": 22308.48, + "probability": 0.9103 + }, + { + "start": 22308.48, + "end": 22312.38, + "probability": 0.9807 + }, + { + "start": 22313.02, + "end": 22317.76, + "probability": 0.8234 + }, + { + "start": 22318.16, + "end": 22318.8, + "probability": 0.9097 + }, + { + "start": 22318.96, + "end": 22320.88, + "probability": 0.9719 + }, + { + "start": 22321.44, + "end": 22324.76, + "probability": 0.9928 + }, + { + "start": 22325.2, + "end": 22327.98, + "probability": 0.9785 + }, + { + "start": 22328.42, + "end": 22331.5, + "probability": 0.9236 + }, + { + "start": 22331.5, + "end": 22334.04, + "probability": 0.5543 + }, + { + "start": 22334.54, + "end": 22336.24, + "probability": 0.5208 + }, + { + "start": 22336.88, + "end": 22341.62, + "probability": 0.9268 + }, + { + "start": 22342.04, + "end": 22342.96, + "probability": 0.6898 + }, + { + "start": 22343.6, + "end": 22345.82, + "probability": 0.926 + }, + { + "start": 22346.16, + "end": 22346.74, + "probability": 0.95 + }, + { + "start": 22346.98, + "end": 22348.14, + "probability": 0.88 + }, + { + "start": 22348.42, + "end": 22350.22, + "probability": 0.9471 + }, + { + "start": 22350.36, + "end": 22351.64, + "probability": 0.7381 + }, + { + "start": 22351.88, + "end": 22353.32, + "probability": 0.9435 + }, + { + "start": 22353.98, + "end": 22361.26, + "probability": 0.9934 + }, + { + "start": 22361.84, + "end": 22363.06, + "probability": 0.9731 + }, + { + "start": 22363.58, + "end": 22364.54, + "probability": 0.9031 + }, + { + "start": 22365.08, + "end": 22373.34, + "probability": 0.9601 + }, + { + "start": 22373.48, + "end": 22373.96, + "probability": 0.7569 + }, + { + "start": 22375.7, + "end": 22377.29, + "probability": 0.9394 + }, + { + "start": 22379.04, + "end": 22382.62, + "probability": 0.9862 + }, + { + "start": 22382.78, + "end": 22383.92, + "probability": 0.5869 + }, + { + "start": 22383.92, + "end": 22385.28, + "probability": 0.6309 + }, + { + "start": 22385.78, + "end": 22386.32, + "probability": 0.1556 + }, + { + "start": 22386.32, + "end": 22386.32, + "probability": 0.3015 + }, + { + "start": 22386.32, + "end": 22387.38, + "probability": 0.9709 + }, + { + "start": 22387.84, + "end": 22389.04, + "probability": 0.946 + }, + { + "start": 22389.04, + "end": 22392.62, + "probability": 0.0644 + }, + { + "start": 22392.62, + "end": 22393.26, + "probability": 0.4507 + }, + { + "start": 22393.26, + "end": 22394.17, + "probability": 0.5629 + }, + { + "start": 22396.57, + "end": 22397.72, + "probability": 0.2495 + }, + { + "start": 22397.72, + "end": 22397.76, + "probability": 0.2412 + }, + { + "start": 22397.76, + "end": 22398.76, + "probability": 0.2657 + }, + { + "start": 22399.12, + "end": 22400.74, + "probability": 0.3713 + }, + { + "start": 22401.14, + "end": 22401.5, + "probability": 0.7649 + }, + { + "start": 22401.5, + "end": 22401.84, + "probability": 0.1976 + }, + { + "start": 22401.92, + "end": 22402.94, + "probability": 0.7303 + }, + { + "start": 22403.0, + "end": 22404.06, + "probability": 0.7304 + }, + { + "start": 22404.16, + "end": 22404.96, + "probability": 0.755 + }, + { + "start": 22404.98, + "end": 22405.78, + "probability": 0.8376 + }, + { + "start": 22406.24, + "end": 22406.88, + "probability": 0.8697 + }, + { + "start": 22407.02, + "end": 22409.12, + "probability": 0.978 + }, + { + "start": 22409.2, + "end": 22410.26, + "probability": 0.7998 + }, + { + "start": 22410.52, + "end": 22411.42, + "probability": 0.8496 + }, + { + "start": 22411.42, + "end": 22412.52, + "probability": 0.8382 + }, + { + "start": 22412.72, + "end": 22412.82, + "probability": 0.0666 + }, + { + "start": 22413.36, + "end": 22414.92, + "probability": 0.9436 + }, + { + "start": 22416.24, + "end": 22417.44, + "probability": 0.8767 + }, + { + "start": 22417.44, + "end": 22417.51, + "probability": 0.3303 + }, + { + "start": 22417.66, + "end": 22418.76, + "probability": 0.9943 + }, + { + "start": 22418.84, + "end": 22419.96, + "probability": 0.9536 + }, + { + "start": 22420.4, + "end": 22421.22, + "probability": 0.8745 + }, + { + "start": 22421.88, + "end": 22423.02, + "probability": 0.8701 + }, + { + "start": 22424.18, + "end": 22426.46, + "probability": 0.5857 + }, + { + "start": 22427.51, + "end": 22434.44, + "probability": 0.9703 + }, + { + "start": 22434.44, + "end": 22437.5, + "probability": 0.9675 + }, + { + "start": 22437.56, + "end": 22438.3, + "probability": 0.6331 + }, + { + "start": 22438.3, + "end": 22438.7, + "probability": 0.7996 + }, + { + "start": 22438.7, + "end": 22439.02, + "probability": 0.7926 + }, + { + "start": 22439.04, + "end": 22440.06, + "probability": 0.8647 + }, + { + "start": 22440.12, + "end": 22444.26, + "probability": 0.1382 + }, + { + "start": 22444.26, + "end": 22444.39, + "probability": 0.2019 + }, + { + "start": 22444.82, + "end": 22445.56, + "probability": 0.508 + }, + { + "start": 22445.86, + "end": 22447.74, + "probability": 0.9334 + }, + { + "start": 22448.38, + "end": 22452.38, + "probability": 0.9056 + }, + { + "start": 22452.46, + "end": 22455.26, + "probability": 0.9742 + }, + { + "start": 22455.96, + "end": 22457.92, + "probability": 0.8187 + }, + { + "start": 22458.38, + "end": 22460.48, + "probability": 0.9604 + }, + { + "start": 22460.54, + "end": 22463.58, + "probability": 0.9285 + }, + { + "start": 22464.34, + "end": 22466.1, + "probability": 0.8735 + }, + { + "start": 22466.1, + "end": 22466.16, + "probability": 0.2586 + }, + { + "start": 22466.66, + "end": 22469.54, + "probability": 0.8781 + }, + { + "start": 22470.1, + "end": 22473.74, + "probability": 0.9529 + }, + { + "start": 22474.38, + "end": 22474.48, + "probability": 0.3385 + }, + { + "start": 22474.52, + "end": 22474.64, + "probability": 0.303 + }, + { + "start": 22474.64, + "end": 22474.64, + "probability": 0.4359 + }, + { + "start": 22474.64, + "end": 22475.74, + "probability": 0.6351 + }, + { + "start": 22475.9, + "end": 22477.68, + "probability": 0.8054 + }, + { + "start": 22478.34, + "end": 22479.03, + "probability": 0.864 + }, + { + "start": 22480.16, + "end": 22480.82, + "probability": 0.8411 + }, + { + "start": 22481.1, + "end": 22481.58, + "probability": 0.5478 + }, + { + "start": 22481.76, + "end": 22490.82, + "probability": 0.88 + }, + { + "start": 22490.92, + "end": 22491.48, + "probability": 0.6963 + }, + { + "start": 22492.22, + "end": 22493.02, + "probability": 0.3946 + }, + { + "start": 22493.06, + "end": 22497.92, + "probability": 0.9586 + }, + { + "start": 22498.66, + "end": 22504.32, + "probability": 0.885 + }, + { + "start": 22504.32, + "end": 22509.7, + "probability": 0.9856 + }, + { + "start": 22510.86, + "end": 22513.1, + "probability": 0.5777 + }, + { + "start": 22514.84, + "end": 22519.36, + "probability": 0.9034 + }, + { + "start": 22521.06, + "end": 22526.3, + "probability": 0.979 + }, + { + "start": 22527.02, + "end": 22529.78, + "probability": 0.6992 + }, + { + "start": 22530.64, + "end": 22534.06, + "probability": 0.9385 + }, + { + "start": 22534.16, + "end": 22534.66, + "probability": 0.8864 + }, + { + "start": 22535.68, + "end": 22537.1, + "probability": 0.5707 + }, + { + "start": 22537.84, + "end": 22539.98, + "probability": 0.9456 + }, + { + "start": 22541.12, + "end": 22544.88, + "probability": 0.9448 + }, + { + "start": 22545.68, + "end": 22550.14, + "probability": 0.9777 + }, + { + "start": 22551.5, + "end": 22553.3, + "probability": 0.6173 + }, + { + "start": 22554.12, + "end": 22557.38, + "probability": 0.9888 + }, + { + "start": 22557.52, + "end": 22564.16, + "probability": 0.8896 + }, + { + "start": 22564.28, + "end": 22566.26, + "probability": 0.5046 + }, + { + "start": 22566.74, + "end": 22568.9, + "probability": 0.9763 + }, + { + "start": 22569.44, + "end": 22572.58, + "probability": 0.9027 + }, + { + "start": 22573.02, + "end": 22574.31, + "probability": 0.9066 + }, + { + "start": 22575.58, + "end": 22576.94, + "probability": 0.9329 + }, + { + "start": 22577.04, + "end": 22582.19, + "probability": 0.9775 + }, + { + "start": 22582.66, + "end": 22583.62, + "probability": 0.9234 + }, + { + "start": 22583.98, + "end": 22584.88, + "probability": 0.9712 + }, + { + "start": 22584.94, + "end": 22585.7, + "probability": 0.6919 + }, + { + "start": 22585.8, + "end": 22586.24, + "probability": 0.5943 + }, + { + "start": 22586.46, + "end": 22586.54, + "probability": 0.548 + }, + { + "start": 22586.78, + "end": 22588.84, + "probability": 0.9509 + }, + { + "start": 22589.26, + "end": 22591.78, + "probability": 0.9554 + }, + { + "start": 22591.84, + "end": 22592.71, + "probability": 0.7277 + }, + { + "start": 22592.86, + "end": 22593.34, + "probability": 0.5664 + }, + { + "start": 22593.38, + "end": 22594.13, + "probability": 0.5506 + }, + { + "start": 22594.66, + "end": 22594.66, + "probability": 0.0734 + }, + { + "start": 22594.66, + "end": 22594.96, + "probability": 0.3698 + }, + { + "start": 22595.02, + "end": 22596.1, + "probability": 0.9507 + }, + { + "start": 22596.2, + "end": 22597.08, + "probability": 0.8092 + }, + { + "start": 22597.46, + "end": 22598.44, + "probability": 0.998 + }, + { + "start": 22598.48, + "end": 22600.6, + "probability": 0.9748 + }, + { + "start": 22601.1, + "end": 22601.94, + "probability": 0.503 + }, + { + "start": 22602.0, + "end": 22602.76, + "probability": 0.6753 + }, + { + "start": 22602.88, + "end": 22604.14, + "probability": 0.5638 + }, + { + "start": 22604.14, + "end": 22604.74, + "probability": 0.3765 + }, + { + "start": 22604.74, + "end": 22605.32, + "probability": 0.1859 + }, + { + "start": 22605.4, + "end": 22606.46, + "probability": 0.8154 + }, + { + "start": 22606.62, + "end": 22607.81, + "probability": 0.7443 + }, + { + "start": 22608.86, + "end": 22609.36, + "probability": 0.7441 + }, + { + "start": 22609.4, + "end": 22610.02, + "probability": 0.529 + }, + { + "start": 22610.12, + "end": 22612.38, + "probability": 0.5059 + }, + { + "start": 22612.98, + "end": 22613.08, + "probability": 0.3144 + }, + { + "start": 22613.08, + "end": 22615.04, + "probability": 0.7623 + }, + { + "start": 22615.16, + "end": 22617.04, + "probability": 0.7719 + }, + { + "start": 22617.04, + "end": 22617.66, + "probability": 0.5638 + }, + { + "start": 22617.72, + "end": 22618.58, + "probability": 0.8341 + }, + { + "start": 22618.66, + "end": 22619.16, + "probability": 0.304 + }, + { + "start": 22620.38, + "end": 22622.02, + "probability": 0.5935 + }, + { + "start": 22622.22, + "end": 22623.8, + "probability": 0.7833 + }, + { + "start": 22623.94, + "end": 22626.7, + "probability": 0.8628 + }, + { + "start": 22626.82, + "end": 22627.52, + "probability": 0.7503 + }, + { + "start": 22628.96, + "end": 22631.8, + "probability": 0.8562 + }, + { + "start": 22633.18, + "end": 22635.86, + "probability": 0.8992 + }, + { + "start": 22636.5, + "end": 22639.0, + "probability": 0.9701 + }, + { + "start": 22639.84, + "end": 22642.7, + "probability": 0.7527 + }, + { + "start": 22644.44, + "end": 22647.56, + "probability": 0.9584 + }, + { + "start": 22648.02, + "end": 22649.16, + "probability": 0.9751 + }, + { + "start": 22650.48, + "end": 22651.82, + "probability": 0.8737 + }, + { + "start": 22652.48, + "end": 22654.92, + "probability": 0.9546 + }, + { + "start": 22657.14, + "end": 22657.32, + "probability": 0.2671 + }, + { + "start": 22657.32, + "end": 22657.32, + "probability": 0.0341 + }, + { + "start": 22657.32, + "end": 22658.69, + "probability": 0.5158 + }, + { + "start": 22658.88, + "end": 22660.06, + "probability": 0.8198 + }, + { + "start": 22660.1, + "end": 22662.12, + "probability": 0.8906 + }, + { + "start": 22662.18, + "end": 22662.34, + "probability": 0.3435 + }, + { + "start": 22662.34, + "end": 22664.46, + "probability": 0.8321 + }, + { + "start": 22664.98, + "end": 22664.98, + "probability": 0.479 + }, + { + "start": 22665.96, + "end": 22667.36, + "probability": 0.8971 + }, + { + "start": 22669.1, + "end": 22670.96, + "probability": 0.9903 + }, + { + "start": 22670.96, + "end": 22673.78, + "probability": 0.9738 + }, + { + "start": 22674.2, + "end": 22674.8, + "probability": 0.7493 + }, + { + "start": 22675.46, + "end": 22676.99, + "probability": 0.4393 + }, + { + "start": 22679.36, + "end": 22680.82, + "probability": 0.7686 + }, + { + "start": 22682.16, + "end": 22683.74, + "probability": 0.3892 + }, + { + "start": 22683.8, + "end": 22684.16, + "probability": 0.5219 + }, + { + "start": 22684.44, + "end": 22687.45, + "probability": 0.8503 + }, + { + "start": 22687.68, + "end": 22691.32, + "probability": 0.9932 + }, + { + "start": 22691.58, + "end": 22692.9, + "probability": 0.9595 + }, + { + "start": 22694.66, + "end": 22694.9, + "probability": 0.4724 + }, + { + "start": 22695.04, + "end": 22696.4, + "probability": 0.9763 + }, + { + "start": 22696.44, + "end": 22697.76, + "probability": 0.3999 + }, + { + "start": 22697.92, + "end": 22699.58, + "probability": 0.7246 + }, + { + "start": 22699.68, + "end": 22701.76, + "probability": 0.7466 + }, + { + "start": 22702.56, + "end": 22702.96, + "probability": 0.9303 + }, + { + "start": 22703.28, + "end": 22707.0, + "probability": 0.9295 + }, + { + "start": 22707.06, + "end": 22707.82, + "probability": 0.8752 + }, + { + "start": 22708.66, + "end": 22711.98, + "probability": 0.9121 + }, + { + "start": 22712.84, + "end": 22715.62, + "probability": 0.9785 + }, + { + "start": 22715.72, + "end": 22717.12, + "probability": 0.5713 + }, + { + "start": 22717.2, + "end": 22717.76, + "probability": 0.7538 + }, + { + "start": 22718.34, + "end": 22719.96, + "probability": 0.9857 + }, + { + "start": 22721.36, + "end": 22725.5, + "probability": 0.9567 + }, + { + "start": 22726.34, + "end": 22727.48, + "probability": 0.9958 + }, + { + "start": 22728.38, + "end": 22730.32, + "probability": 0.987 + }, + { + "start": 22731.47, + "end": 22733.74, + "probability": 0.9786 + }, + { + "start": 22734.32, + "end": 22735.68, + "probability": 0.6969 + }, + { + "start": 22736.34, + "end": 22739.18, + "probability": 0.9868 + }, + { + "start": 22739.42, + "end": 22740.28, + "probability": 0.6641 + }, + { + "start": 22740.78, + "end": 22741.76, + "probability": 0.9074 + }, + { + "start": 22742.42, + "end": 22744.48, + "probability": 0.8701 + }, + { + "start": 22746.02, + "end": 22749.26, + "probability": 0.9034 + }, + { + "start": 22749.34, + "end": 22749.74, + "probability": 0.8357 + }, + { + "start": 22749.8, + "end": 22750.0, + "probability": 0.8108 + }, + { + "start": 22750.12, + "end": 22751.38, + "probability": 0.6501 + }, + { + "start": 22751.44, + "end": 22755.94, + "probability": 0.9767 + }, + { + "start": 22756.78, + "end": 22757.96, + "probability": 0.876 + }, + { + "start": 22758.78, + "end": 22760.48, + "probability": 0.9256 + }, + { + "start": 22761.36, + "end": 22762.62, + "probability": 0.6576 + }, + { + "start": 22763.4, + "end": 22767.48, + "probability": 0.9386 + }, + { + "start": 22768.06, + "end": 22770.48, + "probability": 0.6585 + }, + { + "start": 22770.5, + "end": 22773.0, + "probability": 0.988 + }, + { + "start": 22773.76, + "end": 22774.08, + "probability": 0.6038 + }, + { + "start": 22774.24, + "end": 22775.92, + "probability": 0.7822 + }, + { + "start": 22777.14, + "end": 22780.16, + "probability": 0.9702 + }, + { + "start": 22781.16, + "end": 22781.5, + "probability": 0.0009 + }, + { + "start": 22784.1, + "end": 22784.54, + "probability": 0.0204 + }, + { + "start": 22784.54, + "end": 22784.64, + "probability": 0.048 + }, + { + "start": 22784.64, + "end": 22784.94, + "probability": 0.0175 + }, + { + "start": 22785.64, + "end": 22786.24, + "probability": 0.4639 + }, + { + "start": 22788.02, + "end": 22794.32, + "probability": 0.6772 + }, + { + "start": 22794.98, + "end": 22796.26, + "probability": 0.5799 + }, + { + "start": 22797.16, + "end": 22799.56, + "probability": 0.8129 + }, + { + "start": 22800.42, + "end": 22801.62, + "probability": 0.825 + }, + { + "start": 22802.02, + "end": 22802.5, + "probability": 0.9942 + }, + { + "start": 22803.54, + "end": 22807.04, + "probability": 0.7814 + }, + { + "start": 22807.68, + "end": 22809.22, + "probability": 0.9794 + }, + { + "start": 22811.18, + "end": 22813.2, + "probability": 0.9875 + }, + { + "start": 22814.04, + "end": 22817.22, + "probability": 0.9183 + }, + { + "start": 22817.52, + "end": 22818.39, + "probability": 0.9805 + }, + { + "start": 22820.62, + "end": 22821.64, + "probability": 0.5954 + }, + { + "start": 22822.96, + "end": 22823.62, + "probability": 0.7456 + }, + { + "start": 22823.98, + "end": 22829.93, + "probability": 0.9927 + }, + { + "start": 22831.31, + "end": 22834.85, + "probability": 0.9884 + }, + { + "start": 22835.03, + "end": 22835.95, + "probability": 0.8485 + }, + { + "start": 22836.03, + "end": 22837.93, + "probability": 0.9688 + }, + { + "start": 22838.49, + "end": 22842.81, + "probability": 0.9454 + }, + { + "start": 22845.19, + "end": 22846.19, + "probability": 0.5738 + }, + { + "start": 22849.91, + "end": 22851.81, + "probability": 0.9638 + }, + { + "start": 22852.83, + "end": 22854.45, + "probability": 0.8852 + }, + { + "start": 22855.75, + "end": 22858.03, + "probability": 0.9624 + }, + { + "start": 22858.89, + "end": 22859.48, + "probability": 0.8427 + }, + { + "start": 22862.51, + "end": 22863.75, + "probability": 0.8621 + }, + { + "start": 22863.89, + "end": 22871.53, + "probability": 0.9395 + }, + { + "start": 22873.33, + "end": 22875.35, + "probability": 0.9468 + }, + { + "start": 22876.41, + "end": 22878.27, + "probability": 0.8472 + }, + { + "start": 22878.35, + "end": 22881.85, + "probability": 0.9443 + }, + { + "start": 22882.05, + "end": 22884.43, + "probability": 0.9963 + }, + { + "start": 22884.99, + "end": 22886.51, + "probability": 0.8101 + }, + { + "start": 22887.61, + "end": 22891.97, + "probability": 0.0773 + }, + { + "start": 22894.13, + "end": 22894.85, + "probability": 0.0329 + }, + { + "start": 23009.18, + "end": 23011.9, + "probability": 0.6219 + }, + { + "start": 23012.0, + "end": 23015.12, + "probability": 0.9395 + }, + { + "start": 23017.18, + "end": 23021.88, + "probability": 0.9866 + }, + { + "start": 23022.14, + "end": 23024.24, + "probability": 0.9281 + }, + { + "start": 23024.52, + "end": 23027.42, + "probability": 0.7479 + }, + { + "start": 23027.5, + "end": 23027.72, + "probability": 0.7388 + }, + { + "start": 23027.86, + "end": 23028.58, + "probability": 0.7055 + }, + { + "start": 23029.52, + "end": 23031.26, + "probability": 0.622 + }, + { + "start": 23031.4, + "end": 23031.86, + "probability": 0.8824 + }, + { + "start": 23033.44, + "end": 23035.28, + "probability": 0.8945 + }, + { + "start": 23036.1, + "end": 23037.72, + "probability": 0.9897 + }, + { + "start": 23039.02, + "end": 23039.78, + "probability": 0.5627 + }, + { + "start": 23040.74, + "end": 23042.86, + "probability": 0.9738 + }, + { + "start": 23044.6, + "end": 23045.82, + "probability": 0.6312 + }, + { + "start": 23047.68, + "end": 23050.88, + "probability": 0.99 + }, + { + "start": 23051.06, + "end": 23053.96, + "probability": 0.7873 + }, + { + "start": 23054.8, + "end": 23057.34, + "probability": 0.9878 + }, + { + "start": 23057.6, + "end": 23058.96, + "probability": 0.5661 + }, + { + "start": 23059.04, + "end": 23060.82, + "probability": 0.9912 + }, + { + "start": 23061.74, + "end": 23064.16, + "probability": 0.7328 + }, + { + "start": 23067.2, + "end": 23069.84, + "probability": 0.9842 + }, + { + "start": 23070.46, + "end": 23073.36, + "probability": 0.9307 + }, + { + "start": 23073.94, + "end": 23078.38, + "probability": 0.9917 + }, + { + "start": 23079.44, + "end": 23080.58, + "probability": 0.9705 + }, + { + "start": 23080.7, + "end": 23082.92, + "probability": 0.9932 + }, + { + "start": 23082.94, + "end": 23083.14, + "probability": 0.8016 + }, + { + "start": 23083.14, + "end": 23083.62, + "probability": 0.8777 + }, + { + "start": 23083.94, + "end": 23084.82, + "probability": 0.8896 + }, + { + "start": 23085.52, + "end": 23086.59, + "probability": 0.9858 + }, + { + "start": 23087.36, + "end": 23089.82, + "probability": 0.9883 + }, + { + "start": 23090.98, + "end": 23091.61, + "probability": 0.7124 + }, + { + "start": 23092.86, + "end": 23094.8, + "probability": 0.8781 + }, + { + "start": 23096.02, + "end": 23099.52, + "probability": 0.9134 + }, + { + "start": 23101.0, + "end": 23105.54, + "probability": 0.9966 + }, + { + "start": 23106.06, + "end": 23108.3, + "probability": 0.9966 + }, + { + "start": 23108.8, + "end": 23110.3, + "probability": 0.9888 + }, + { + "start": 23111.62, + "end": 23114.72, + "probability": 0.9912 + }, + { + "start": 23114.82, + "end": 23117.68, + "probability": 0.9735 + }, + { + "start": 23118.16, + "end": 23118.42, + "probability": 0.8367 + }, + { + "start": 23120.14, + "end": 23120.24, + "probability": 0.0837 + }, + { + "start": 23120.24, + "end": 23122.96, + "probability": 0.8995 + }, + { + "start": 23124.23, + "end": 23127.7, + "probability": 0.6977 + }, + { + "start": 23127.98, + "end": 23129.1, + "probability": 0.8971 + }, + { + "start": 23129.48, + "end": 23131.4, + "probability": 0.9148 + }, + { + "start": 23133.24, + "end": 23136.34, + "probability": 0.9839 + }, + { + "start": 23137.64, + "end": 23140.6, + "probability": 0.9976 + }, + { + "start": 23141.07, + "end": 23145.14, + "probability": 0.8745 + }, + { + "start": 23145.86, + "end": 23147.32, + "probability": 0.9809 + }, + { + "start": 23148.3, + "end": 23151.06, + "probability": 0.9938 + }, + { + "start": 23151.6, + "end": 23152.08, + "probability": 0.6041 + }, + { + "start": 23152.14, + "end": 23153.66, + "probability": 0.8009 + }, + { + "start": 23154.06, + "end": 23155.15, + "probability": 0.751 + }, + { + "start": 23155.6, + "end": 23157.52, + "probability": 0.7983 + }, + { + "start": 23158.14, + "end": 23160.58, + "probability": 0.967 + }, + { + "start": 23161.38, + "end": 23164.92, + "probability": 0.9312 + }, + { + "start": 23165.14, + "end": 23167.36, + "probability": 0.9961 + }, + { + "start": 23167.66, + "end": 23168.98, + "probability": 0.998 + }, + { + "start": 23169.1, + "end": 23169.32, + "probability": 0.6991 + }, + { + "start": 23169.74, + "end": 23171.56, + "probability": 0.981 + }, + { + "start": 23172.52, + "end": 23172.72, + "probability": 0.4428 + }, + { + "start": 23173.36, + "end": 23173.92, + "probability": 0.5803 + }, + { + "start": 23175.3, + "end": 23177.54, + "probability": 0.9858 + }, + { + "start": 23179.16, + "end": 23183.8, + "probability": 0.9957 + }, + { + "start": 23184.1, + "end": 23185.44, + "probability": 0.98 + }, + { + "start": 23185.5, + "end": 23186.4, + "probability": 0.882 + }, + { + "start": 23186.56, + "end": 23187.7, + "probability": 0.9359 + }, + { + "start": 23187.92, + "end": 23188.84, + "probability": 0.728 + }, + { + "start": 23189.16, + "end": 23192.86, + "probability": 0.9975 + }, + { + "start": 23193.28, + "end": 23194.46, + "probability": 0.7661 + }, + { + "start": 23194.56, + "end": 23195.88, + "probability": 0.5607 + }, + { + "start": 23195.94, + "end": 23200.36, + "probability": 0.9655 + }, + { + "start": 23200.8, + "end": 23202.9, + "probability": 0.9634 + }, + { + "start": 23203.04, + "end": 23203.74, + "probability": 0.9461 + }, + { + "start": 23205.48, + "end": 23206.32, + "probability": 0.8863 + }, + { + "start": 23207.36, + "end": 23208.5, + "probability": 0.9981 + }, + { + "start": 23209.02, + "end": 23211.92, + "probability": 0.9932 + }, + { + "start": 23212.24, + "end": 23214.66, + "probability": 0.9458 + }, + { + "start": 23215.92, + "end": 23216.84, + "probability": 0.7111 + }, + { + "start": 23216.94, + "end": 23217.12, + "probability": 0.9469 + }, + { + "start": 23217.14, + "end": 23219.48, + "probability": 0.9983 + }, + { + "start": 23220.42, + "end": 23223.36, + "probability": 0.9994 + }, + { + "start": 23223.66, + "end": 23225.4, + "probability": 0.9933 + }, + { + "start": 23226.8, + "end": 23228.26, + "probability": 0.9636 + }, + { + "start": 23228.5, + "end": 23231.22, + "probability": 0.9985 + }, + { + "start": 23232.1, + "end": 23233.46, + "probability": 0.9868 + }, + { + "start": 23234.12, + "end": 23236.55, + "probability": 0.9901 + }, + { + "start": 23238.4, + "end": 23238.4, + "probability": 0.2985 + }, + { + "start": 23238.4, + "end": 23241.24, + "probability": 0.9772 + }, + { + "start": 23241.74, + "end": 23242.36, + "probability": 0.8282 + }, + { + "start": 23243.76, + "end": 23245.12, + "probability": 0.9305 + }, + { + "start": 23245.32, + "end": 23248.36, + "probability": 0.9904 + }, + { + "start": 23249.18, + "end": 23251.02, + "probability": 0.938 + }, + { + "start": 23251.24, + "end": 23253.28, + "probability": 0.7071 + }, + { + "start": 23253.3, + "end": 23253.3, + "probability": 0.159 + }, + { + "start": 23253.3, + "end": 23253.84, + "probability": 0.6452 + }, + { + "start": 23254.82, + "end": 23255.64, + "probability": 0.9839 + }, + { + "start": 23255.74, + "end": 23260.06, + "probability": 0.9757 + }, + { + "start": 23260.52, + "end": 23261.8, + "probability": 0.9819 + }, + { + "start": 23261.94, + "end": 23265.0, + "probability": 0.9878 + }, + { + "start": 23265.54, + "end": 23266.44, + "probability": 0.5145 + }, + { + "start": 23266.62, + "end": 23266.96, + "probability": 0.6721 + }, + { + "start": 23267.32, + "end": 23268.82, + "probability": 0.9758 + }, + { + "start": 23269.26, + "end": 23271.6, + "probability": 0.9912 + }, + { + "start": 23271.68, + "end": 23272.52, + "probability": 0.9853 + }, + { + "start": 23272.64, + "end": 23273.3, + "probability": 0.9862 + }, + { + "start": 23274.46, + "end": 23275.14, + "probability": 0.9724 + }, + { + "start": 23275.2, + "end": 23278.62, + "probability": 0.9945 + }, + { + "start": 23279.1, + "end": 23280.25, + "probability": 0.7587 + }, + { + "start": 23281.48, + "end": 23287.12, + "probability": 0.999 + }, + { + "start": 23287.42, + "end": 23288.84, + "probability": 0.998 + }, + { + "start": 23289.28, + "end": 23292.2, + "probability": 0.9878 + }, + { + "start": 23292.6, + "end": 23295.8, + "probability": 0.9974 + }, + { + "start": 23296.04, + "end": 23297.46, + "probability": 0.8896 + }, + { + "start": 23297.52, + "end": 23297.94, + "probability": 0.7397 + }, + { + "start": 23299.44, + "end": 23300.06, + "probability": 0.6607 + }, + { + "start": 23301.52, + "end": 23303.03, + "probability": 0.9268 + }, + { + "start": 23303.61, + "end": 23309.89, + "probability": 0.7277 + }, + { + "start": 23312.08, + "end": 23314.88, + "probability": 0.9284 + }, + { + "start": 23321.66, + "end": 23322.28, + "probability": 0.6607 + }, + { + "start": 23330.24, + "end": 23333.0, + "probability": 0.5305 + }, + { + "start": 23333.12, + "end": 23334.88, + "probability": 0.7846 + }, + { + "start": 23335.04, + "end": 23337.96, + "probability": 0.9866 + }, + { + "start": 23338.08, + "end": 23341.92, + "probability": 0.9946 + }, + { + "start": 23342.02, + "end": 23343.56, + "probability": 0.9982 + }, + { + "start": 23343.7, + "end": 23344.5, + "probability": 0.9296 + }, + { + "start": 23345.06, + "end": 23347.9, + "probability": 0.7635 + }, + { + "start": 23347.96, + "end": 23351.36, + "probability": 0.6562 + }, + { + "start": 23351.8, + "end": 23352.52, + "probability": 0.7861 + }, + { + "start": 23352.6, + "end": 23354.54, + "probability": 0.9865 + }, + { + "start": 23354.7, + "end": 23355.52, + "probability": 0.9465 + }, + { + "start": 23355.52, + "end": 23356.06, + "probability": 0.5083 + }, + { + "start": 23356.86, + "end": 23357.3, + "probability": 0.0449 + }, + { + "start": 23357.32, + "end": 23359.6, + "probability": 0.4933 + }, + { + "start": 23359.68, + "end": 23360.44, + "probability": 0.0794 + }, + { + "start": 23360.54, + "end": 23361.7, + "probability": 0.5462 + }, + { + "start": 23361.78, + "end": 23364.46, + "probability": 0.9719 + }, + { + "start": 23364.46, + "end": 23364.7, + "probability": 0.4961 + }, + { + "start": 23364.86, + "end": 23365.96, + "probability": 0.7217 + }, + { + "start": 23365.96, + "end": 23366.7, + "probability": 0.3185 + }, + { + "start": 23366.96, + "end": 23369.64, + "probability": 0.5582 + }, + { + "start": 23369.76, + "end": 23370.84, + "probability": 0.8502 + }, + { + "start": 23370.94, + "end": 23372.5, + "probability": 0.6394 + }, + { + "start": 23372.66, + "end": 23374.88, + "probability": 0.8072 + }, + { + "start": 23374.88, + "end": 23375.36, + "probability": 0.3688 + }, + { + "start": 23375.36, + "end": 23375.92, + "probability": 0.1833 + }, + { + "start": 23376.64, + "end": 23377.96, + "probability": 0.4576 + }, + { + "start": 23378.64, + "end": 23379.48, + "probability": 0.5537 + }, + { + "start": 23390.26, + "end": 23391.36, + "probability": 0.3041 + }, + { + "start": 23391.36, + "end": 23391.62, + "probability": 0.1227 + }, + { + "start": 23391.62, + "end": 23392.76, + "probability": 0.1057 + }, + { + "start": 23392.84, + "end": 23395.28, + "probability": 0.2366 + }, + { + "start": 23395.5, + "end": 23395.74, + "probability": 0.0474 + }, + { + "start": 23395.74, + "end": 23395.86, + "probability": 0.0856 + }, + { + "start": 23395.92, + "end": 23396.86, + "probability": 0.0971 + }, + { + "start": 23397.82, + "end": 23400.79, + "probability": 0.0342 + }, + { + "start": 23401.54, + "end": 23402.74, + "probability": 0.1194 + }, + { + "start": 23404.2, + "end": 23404.2, + "probability": 0.0464 + }, + { + "start": 23407.54, + "end": 23408.7, + "probability": 0.0667 + }, + { + "start": 23409.42, + "end": 23411.74, + "probability": 0.0917 + }, + { + "start": 23412.08, + "end": 23412.08, + "probability": 0.0183 + }, + { + "start": 23413.78, + "end": 23416.26, + "probability": 0.0412 + }, + { + "start": 23416.94, + "end": 23418.38, + "probability": 0.1867 + }, + { + "start": 23418.82, + "end": 23421.16, + "probability": 0.0958 + }, + { + "start": 23422.82, + "end": 23424.52, + "probability": 0.1786 + }, + { + "start": 23424.79, + "end": 23426.06, + "probability": 0.0295 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.0, + "end": 23440.0, + "probability": 0.0 + }, + { + "start": 23440.16, + "end": 23440.46, + "probability": 0.0485 + }, + { + "start": 23440.58, + "end": 23441.86, + "probability": 0.5241 + }, + { + "start": 23441.9, + "end": 23443.32, + "probability": 0.7618 + }, + { + "start": 23445.38, + "end": 23448.56, + "probability": 0.9583 + }, + { + "start": 23450.2, + "end": 23453.34, + "probability": 0.8116 + }, + { + "start": 23454.68, + "end": 23456.64, + "probability": 0.8796 + }, + { + "start": 23456.74, + "end": 23459.8, + "probability": 0.9049 + }, + { + "start": 23460.26, + "end": 23462.18, + "probability": 0.9435 + }, + { + "start": 23462.68, + "end": 23463.68, + "probability": 0.9599 + }, + { + "start": 23463.78, + "end": 23467.88, + "probability": 0.9839 + }, + { + "start": 23467.92, + "end": 23471.0, + "probability": 0.9702 + }, + { + "start": 23471.06, + "end": 23472.31, + "probability": 0.9915 + }, + { + "start": 23473.12, + "end": 23473.5, + "probability": 0.854 + }, + { + "start": 23474.36, + "end": 23475.64, + "probability": 0.8076 + }, + { + "start": 23475.82, + "end": 23479.16, + "probability": 0.0747 + }, + { + "start": 23479.38, + "end": 23479.46, + "probability": 0.2901 + }, + { + "start": 23479.46, + "end": 23481.17, + "probability": 0.981 + }, + { + "start": 23481.88, + "end": 23482.44, + "probability": 0.8089 + }, + { + "start": 23482.44, + "end": 23485.7, + "probability": 0.8798 + }, + { + "start": 23485.78, + "end": 23486.66, + "probability": 0.8861 + }, + { + "start": 23487.96, + "end": 23490.2, + "probability": 0.9962 + }, + { + "start": 23490.3, + "end": 23491.72, + "probability": 0.9162 + }, + { + "start": 23492.72, + "end": 23496.64, + "probability": 0.973 + }, + { + "start": 23496.7, + "end": 23498.19, + "probability": 0.9476 + }, + { + "start": 23498.52, + "end": 23499.62, + "probability": 0.8565 + }, + { + "start": 23499.72, + "end": 23500.6, + "probability": 0.9371 + }, + { + "start": 23501.14, + "end": 23506.46, + "probability": 0.9191 + }, + { + "start": 23507.42, + "end": 23510.2, + "probability": 0.9399 + }, + { + "start": 23510.34, + "end": 23512.12, + "probability": 0.7398 + }, + { + "start": 23512.18, + "end": 23514.46, + "probability": 0.7406 + }, + { + "start": 23515.8, + "end": 23519.36, + "probability": 0.9877 + }, + { + "start": 23519.36, + "end": 23521.9, + "probability": 0.9592 + }, + { + "start": 23522.24, + "end": 23523.66, + "probability": 0.9648 + }, + { + "start": 23523.76, + "end": 23525.14, + "probability": 0.9618 + }, + { + "start": 23525.16, + "end": 23527.78, + "probability": 0.8456 + }, + { + "start": 23528.0, + "end": 23530.44, + "probability": 0.8329 + }, + { + "start": 23530.52, + "end": 23531.5, + "probability": 0.9967 + }, + { + "start": 23531.6, + "end": 23532.44, + "probability": 0.9945 + }, + { + "start": 23532.52, + "end": 23534.1, + "probability": 0.8589 + }, + { + "start": 23535.02, + "end": 23537.64, + "probability": 0.9732 + }, + { + "start": 23537.92, + "end": 23543.38, + "probability": 0.8633 + }, + { + "start": 23545.04, + "end": 23549.86, + "probability": 0.6919 + }, + { + "start": 23550.64, + "end": 23553.7, + "probability": 0.9969 + }, + { + "start": 23553.88, + "end": 23555.58, + "probability": 0.4667 + }, + { + "start": 23555.7, + "end": 23561.88, + "probability": 0.995 + }, + { + "start": 23561.94, + "end": 23562.36, + "probability": 0.736 + }, + { + "start": 23562.78, + "end": 23562.94, + "probability": 0.7728 + }, + { + "start": 23563.0, + "end": 23563.58, + "probability": 0.9863 + }, + { + "start": 23563.68, + "end": 23566.86, + "probability": 0.7103 + }, + { + "start": 23567.52, + "end": 23568.44, + "probability": 0.8597 + }, + { + "start": 23569.8, + "end": 23570.84, + "probability": 0.9953 + }, + { + "start": 23571.46, + "end": 23575.76, + "probability": 0.9357 + }, + { + "start": 23576.28, + "end": 23578.5, + "probability": 0.9977 + }, + { + "start": 23579.2, + "end": 23581.24, + "probability": 0.4679 + }, + { + "start": 23582.6, + "end": 23582.94, + "probability": 0.4884 + }, + { + "start": 23583.36, + "end": 23587.34, + "probability": 0.9841 + }, + { + "start": 23587.76, + "end": 23588.4, + "probability": 0.7536 + }, + { + "start": 23588.54, + "end": 23589.84, + "probability": 0.7988 + }, + { + "start": 23590.94, + "end": 23594.54, + "probability": 0.8359 + }, + { + "start": 23602.28, + "end": 23606.86, + "probability": 0.472 + }, + { + "start": 23606.9, + "end": 23609.52, + "probability": 0.9984 + }, + { + "start": 23609.98, + "end": 23616.06, + "probability": 0.9976 + }, + { + "start": 23616.34, + "end": 23617.02, + "probability": 0.7668 + }, + { + "start": 23619.2, + "end": 23619.96, + "probability": 0.9373 + }, + { + "start": 23620.36, + "end": 23621.32, + "probability": 0.9258 + }, + { + "start": 23621.62, + "end": 23622.98, + "probability": 0.5055 + }, + { + "start": 23624.22, + "end": 23625.66, + "probability": 0.6501 + }, + { + "start": 23634.07, + "end": 23638.94, + "probability": 0.6261 + }, + { + "start": 23639.02, + "end": 23640.3, + "probability": 0.9504 + }, + { + "start": 23641.84, + "end": 23642.82, + "probability": 0.8794 + }, + { + "start": 23644.73, + "end": 23647.94, + "probability": 0.7769 + }, + { + "start": 23649.3, + "end": 23650.46, + "probability": 0.9484 + }, + { + "start": 23652.34, + "end": 23655.96, + "probability": 0.9823 + }, + { + "start": 23656.88, + "end": 23657.98, + "probability": 0.8822 + }, + { + "start": 23659.02, + "end": 23663.88, + "probability": 0.984 + }, + { + "start": 23664.8, + "end": 23668.88, + "probability": 0.9971 + }, + { + "start": 23669.76, + "end": 23671.78, + "probability": 0.9978 + }, + { + "start": 23672.08, + "end": 23673.48, + "probability": 0.8994 + }, + { + "start": 23673.94, + "end": 23675.86, + "probability": 0.9956 + }, + { + "start": 23676.02, + "end": 23676.62, + "probability": 0.8488 + }, + { + "start": 23677.64, + "end": 23678.24, + "probability": 0.4646 + }, + { + "start": 23680.0, + "end": 23682.14, + "probability": 0.9778 + }, + { + "start": 23684.86, + "end": 23688.06, + "probability": 0.7006 + }, + { + "start": 23688.22, + "end": 23690.44, + "probability": 0.2003 + }, + { + "start": 23690.9, + "end": 23692.22, + "probability": 0.4716 + }, + { + "start": 23692.32, + "end": 23692.74, + "probability": 0.6791 + }, + { + "start": 23692.86, + "end": 23696.36, + "probability": 0.7636 + }, + { + "start": 23696.44, + "end": 23698.14, + "probability": 0.0643 + }, + { + "start": 23698.28, + "end": 23701.26, + "probability": 0.593 + }, + { + "start": 23701.74, + "end": 23704.78, + "probability": 0.5501 + }, + { + "start": 23704.92, + "end": 23708.8, + "probability": 0.6675 + }, + { + "start": 23708.9, + "end": 23710.18, + "probability": 0.6119 + }, + { + "start": 23710.6, + "end": 23714.48, + "probability": 0.9417 + }, + { + "start": 23714.54, + "end": 23715.24, + "probability": 0.7316 + }, + { + "start": 23715.72, + "end": 23718.78, + "probability": 0.0983 + }, + { + "start": 23718.96, + "end": 23719.62, + "probability": 0.5403 + }, + { + "start": 23719.7, + "end": 23720.84, + "probability": 0.4043 + }, + { + "start": 23720.92, + "end": 23723.68, + "probability": 0.6262 + }, + { + "start": 23723.94, + "end": 23725.78, + "probability": 0.9131 + }, + { + "start": 23726.2, + "end": 23727.5, + "probability": 0.953 + }, + { + "start": 23727.92, + "end": 23730.16, + "probability": 0.6422 + }, + { + "start": 23730.3, + "end": 23732.43, + "probability": 0.9119 + }, + { + "start": 23732.96, + "end": 23736.12, + "probability": 0.9664 + }, + { + "start": 23736.28, + "end": 23740.14, + "probability": 0.9521 + }, + { + "start": 23740.6, + "end": 23741.84, + "probability": 0.7751 + }, + { + "start": 23742.32, + "end": 23743.48, + "probability": 0.6683 + }, + { + "start": 23743.5, + "end": 23743.72, + "probability": 0.4963 + }, + { + "start": 23743.76, + "end": 23744.74, + "probability": 0.7675 + }, + { + "start": 23744.76, + "end": 23746.1, + "probability": 0.826 + }, + { + "start": 23746.2, + "end": 23746.96, + "probability": 0.757 + }, + { + "start": 23747.46, + "end": 23748.3, + "probability": 0.9941 + }, + { + "start": 23749.08, + "end": 23750.6, + "probability": 0.9641 + }, + { + "start": 23751.22, + "end": 23752.18, + "probability": 0.9809 + }, + { + "start": 23752.36, + "end": 23754.82, + "probability": 0.9816 + }, + { + "start": 23755.6, + "end": 23757.26, + "probability": 0.9316 + }, + { + "start": 23757.88, + "end": 23760.2, + "probability": 0.8531 + }, + { + "start": 23760.36, + "end": 23762.48, + "probability": 0.7469 + }, + { + "start": 23762.94, + "end": 23764.34, + "probability": 0.988 + }, + { + "start": 23766.48, + "end": 23767.66, + "probability": 0.8604 + }, + { + "start": 23768.16, + "end": 23769.28, + "probability": 0.6674 + }, + { + "start": 23769.44, + "end": 23770.5, + "probability": 0.9222 + }, + { + "start": 23770.66, + "end": 23771.6, + "probability": 0.6688 + }, + { + "start": 23771.7, + "end": 23774.94, + "probability": 0.9957 + }, + { + "start": 23775.23, + "end": 23778.28, + "probability": 0.9993 + }, + { + "start": 23778.38, + "end": 23779.26, + "probability": 0.7471 + }, + { + "start": 23779.26, + "end": 23781.87, + "probability": 0.9224 + }, + { + "start": 23783.78, + "end": 23785.7, + "probability": 0.9985 + }, + { + "start": 23785.86, + "end": 23788.06, + "probability": 0.9543 + }, + { + "start": 23788.6, + "end": 23789.92, + "probability": 0.9759 + }, + { + "start": 23790.08, + "end": 23792.24, + "probability": 0.9789 + }, + { + "start": 23792.7, + "end": 23800.5, + "probability": 0.9917 + }, + { + "start": 23800.6, + "end": 23804.86, + "probability": 0.9875 + }, + { + "start": 23805.28, + "end": 23808.72, + "probability": 0.9968 + }, + { + "start": 23809.24, + "end": 23812.9, + "probability": 0.8714 + }, + { + "start": 23813.04, + "end": 23814.2, + "probability": 0.9858 + }, + { + "start": 23814.74, + "end": 23818.44, + "probability": 0.9899 + }, + { + "start": 23819.04, + "end": 23821.08, + "probability": 0.7986 + }, + { + "start": 23821.7, + "end": 23823.96, + "probability": 0.5008 + }, + { + "start": 23824.88, + "end": 23827.36, + "probability": 0.7673 + }, + { + "start": 23827.98, + "end": 23830.44, + "probability": 0.5007 + }, + { + "start": 23830.76, + "end": 23832.06, + "probability": 0.6813 + }, + { + "start": 23833.58, + "end": 23836.7, + "probability": 0.8641 + }, + { + "start": 23836.76, + "end": 23838.04, + "probability": 0.1724 + }, + { + "start": 23839.52, + "end": 23839.86, + "probability": 0.6274 + }, + { + "start": 23841.97, + "end": 23846.78, + "probability": 0.3767 + }, + { + "start": 23846.98, + "end": 23846.98, + "probability": 0.0727 + }, + { + "start": 23846.98, + "end": 23847.98, + "probability": 0.3338 + }, + { + "start": 23848.64, + "end": 23848.64, + "probability": 0.2334 + }, + { + "start": 23848.64, + "end": 23849.12, + "probability": 0.5004 + }, + { + "start": 23849.32, + "end": 23849.76, + "probability": 0.852 + }, + { + "start": 23849.88, + "end": 23851.6, + "probability": 0.9958 + }, + { + "start": 23851.7, + "end": 23852.96, + "probability": 0.9902 + }, + { + "start": 23853.16, + "end": 23854.66, + "probability": 0.9874 + }, + { + "start": 23854.66, + "end": 23857.92, + "probability": 0.709 + }, + { + "start": 23858.08, + "end": 23859.08, + "probability": 0.9692 + }, + { + "start": 23859.2, + "end": 23861.25, + "probability": 0.9576 + }, + { + "start": 23861.98, + "end": 23863.08, + "probability": 0.9683 + }, + { + "start": 23863.14, + "end": 23865.8, + "probability": 0.9949 + }, + { + "start": 23865.92, + "end": 23868.4, + "probability": 0.9885 + }, + { + "start": 23868.86, + "end": 23870.22, + "probability": 0.959 + }, + { + "start": 23870.88, + "end": 23872.42, + "probability": 0.962 + }, + { + "start": 23872.5, + "end": 23873.3, + "probability": 0.8049 + }, + { + "start": 23873.64, + "end": 23875.73, + "probability": 0.917 + }, + { + "start": 23876.08, + "end": 23876.22, + "probability": 0.4208 + }, + { + "start": 23876.22, + "end": 23876.96, + "probability": 0.9854 + }, + { + "start": 23877.08, + "end": 23878.52, + "probability": 0.8204 + }, + { + "start": 23878.62, + "end": 23879.28, + "probability": 0.537 + }, + { + "start": 23880.0, + "end": 23880.75, + "probability": 0.7131 + }, + { + "start": 23881.36, + "end": 23884.42, + "probability": 0.699 + }, + { + "start": 23886.08, + "end": 23888.54, + "probability": 0.9303 + }, + { + "start": 23889.25, + "end": 23891.0, + "probability": 0.6945 + }, + { + "start": 23891.52, + "end": 23895.6, + "probability": 0.9878 + }, + { + "start": 23895.92, + "end": 23896.86, + "probability": 0.6868 + }, + { + "start": 23897.36, + "end": 23898.18, + "probability": 0.7892 + }, + { + "start": 23898.26, + "end": 23899.84, + "probability": 0.959 + }, + { + "start": 23900.1, + "end": 23902.2, + "probability": 0.5298 + }, + { + "start": 23902.35, + "end": 23904.62, + "probability": 0.4939 + }, + { + "start": 23904.68, + "end": 23905.0, + "probability": 0.8118 + }, + { + "start": 23905.18, + "end": 23905.96, + "probability": 0.8994 + }, + { + "start": 23906.04, + "end": 23910.9, + "probability": 0.9795 + }, + { + "start": 23911.0, + "end": 23914.06, + "probability": 0.9868 + }, + { + "start": 23914.32, + "end": 23916.36, + "probability": 0.9834 + }, + { + "start": 23916.62, + "end": 23918.64, + "probability": 0.9914 + }, + { + "start": 23918.84, + "end": 23921.51, + "probability": 0.9441 + }, + { + "start": 23926.3, + "end": 23927.1, + "probability": 0.6265 + }, + { + "start": 23927.28, + "end": 23928.76, + "probability": 0.9879 + }, + { + "start": 23929.18, + "end": 23934.58, + "probability": 0.9773 + }, + { + "start": 23934.64, + "end": 23935.84, + "probability": 0.9946 + }, + { + "start": 23936.62, + "end": 23936.88, + "probability": 0.8385 + }, + { + "start": 23937.06, + "end": 23938.36, + "probability": 0.6505 + }, + { + "start": 23938.42, + "end": 23939.3, + "probability": 0.9961 + }, + { + "start": 23940.0, + "end": 23940.7, + "probability": 0.8459 + }, + { + "start": 23940.92, + "end": 23941.56, + "probability": 0.8734 + }, + { + "start": 23941.56, + "end": 23944.52, + "probability": 0.9814 + }, + { + "start": 23945.02, + "end": 23947.74, + "probability": 0.9468 + }, + { + "start": 23948.32, + "end": 23950.72, + "probability": 0.4728 + }, + { + "start": 23950.9, + "end": 23951.95, + "probability": 0.9662 + }, + { + "start": 23952.92, + "end": 23954.3, + "probability": 0.9798 + }, + { + "start": 23954.38, + "end": 23955.59, + "probability": 0.9587 + }, + { + "start": 23956.32, + "end": 23958.58, + "probability": 0.7897 + }, + { + "start": 23958.68, + "end": 23959.64, + "probability": 0.8894 + }, + { + "start": 23959.98, + "end": 23961.46, + "probability": 0.9946 + }, + { + "start": 23962.14, + "end": 23963.56, + "probability": 0.8918 + }, + { + "start": 23963.6, + "end": 23964.78, + "probability": 0.9981 + }, + { + "start": 23965.6, + "end": 23967.04, + "probability": 0.8347 + }, + { + "start": 23967.64, + "end": 23969.14, + "probability": 0.7987 + }, + { + "start": 23969.64, + "end": 23970.86, + "probability": 0.9623 + }, + { + "start": 23971.1, + "end": 23973.22, + "probability": 0.8984 + }, + { + "start": 23973.56, + "end": 23974.58, + "probability": 0.6001 + }, + { + "start": 23974.78, + "end": 23980.3, + "probability": 0.9706 + }, + { + "start": 23982.54, + "end": 23984.42, + "probability": 0.6212 + }, + { + "start": 23985.72, + "end": 23988.04, + "probability": 0.0186 + }, + { + "start": 23988.86, + "end": 23989.92, + "probability": 0.244 + }, + { + "start": 23990.08, + "end": 23991.64, + "probability": 0.7591 + }, + { + "start": 23991.72, + "end": 23993.38, + "probability": 0.9728 + }, + { + "start": 23993.38, + "end": 23996.76, + "probability": 0.9868 + }, + { + "start": 23996.86, + "end": 23997.14, + "probability": 0.7126 + }, + { + "start": 23997.2, + "end": 23999.36, + "probability": 0.7309 + }, + { + "start": 23999.98, + "end": 24002.48, + "probability": 0.9848 + }, + { + "start": 24003.14, + "end": 24004.78, + "probability": 0.9946 + }, + { + "start": 24006.64, + "end": 24008.18, + "probability": 0.9688 + }, + { + "start": 24008.24, + "end": 24009.48, + "probability": 0.9663 + }, + { + "start": 24009.72, + "end": 24012.36, + "probability": 0.9611 + }, + { + "start": 24012.46, + "end": 24012.66, + "probability": 0.2286 + }, + { + "start": 24012.74, + "end": 24013.32, + "probability": 0.5592 + }, + { + "start": 24013.46, + "end": 24015.44, + "probability": 0.9973 + }, + { + "start": 24015.58, + "end": 24016.4, + "probability": 0.674 + }, + { + "start": 24016.74, + "end": 24019.32, + "probability": 0.8936 + }, + { + "start": 24020.04, + "end": 24022.96, + "probability": 0.9937 + }, + { + "start": 24023.5, + "end": 24029.04, + "probability": 0.9956 + }, + { + "start": 24029.16, + "end": 24030.9, + "probability": 0.9972 + }, + { + "start": 24031.18, + "end": 24034.02, + "probability": 0.9974 + }, + { + "start": 24034.4, + "end": 24038.98, + "probability": 0.9743 + }, + { + "start": 24039.94, + "end": 24041.14, + "probability": 0.5101 + }, + { + "start": 24041.32, + "end": 24042.6, + "probability": 0.8113 + }, + { + "start": 24043.16, + "end": 24044.38, + "probability": 0.5628 + }, + { + "start": 24044.46, + "end": 24046.09, + "probability": 0.9943 + }, + { + "start": 24046.66, + "end": 24047.94, + "probability": 0.7906 + }, + { + "start": 24048.06, + "end": 24049.95, + "probability": 0.9403 + }, + { + "start": 24050.32, + "end": 24051.2, + "probability": 0.9907 + }, + { + "start": 24052.08, + "end": 24052.9, + "probability": 0.7947 + }, + { + "start": 24053.28, + "end": 24054.17, + "probability": 0.9822 + }, + { + "start": 24054.7, + "end": 24057.06, + "probability": 0.9956 + }, + { + "start": 24057.48, + "end": 24058.65, + "probability": 0.9932 + }, + { + "start": 24059.38, + "end": 24063.28, + "probability": 0.9518 + }, + { + "start": 24063.42, + "end": 24064.3, + "probability": 0.9297 + }, + { + "start": 24064.76, + "end": 24066.92, + "probability": 0.9869 + }, + { + "start": 24067.02, + "end": 24068.48, + "probability": 0.9558 + }, + { + "start": 24068.94, + "end": 24069.46, + "probability": 0.7945 + }, + { + "start": 24069.62, + "end": 24070.01, + "probability": 0.9722 + }, + { + "start": 24070.36, + "end": 24073.4, + "probability": 0.1026 + }, + { + "start": 24073.4, + "end": 24074.24, + "probability": 0.6892 + }, + { + "start": 24074.26, + "end": 24075.18, + "probability": 0.5906 + }, + { + "start": 24075.26, + "end": 24076.1, + "probability": 0.4782 + }, + { + "start": 24076.24, + "end": 24077.4, + "probability": 0.9556 + }, + { + "start": 24077.88, + "end": 24079.94, + "probability": 0.9729 + }, + { + "start": 24080.12, + "end": 24081.42, + "probability": 0.9905 + }, + { + "start": 24081.8, + "end": 24087.8, + "probability": 0.9958 + }, + { + "start": 24089.74, + "end": 24091.12, + "probability": 0.1093 + }, + { + "start": 24091.14, + "end": 24091.77, + "probability": 0.6082 + }, + { + "start": 24096.08, + "end": 24098.2, + "probability": 0.9949 + }, + { + "start": 24098.26, + "end": 24098.72, + "probability": 0.5597 + }, + { + "start": 24098.8, + "end": 24099.96, + "probability": 0.4082 + }, + { + "start": 24099.98, + "end": 24100.24, + "probability": 0.1981 + }, + { + "start": 24100.26, + "end": 24100.52, + "probability": 0.6643 + }, + { + "start": 24100.52, + "end": 24102.28, + "probability": 0.9588 + }, + { + "start": 24102.32, + "end": 24104.06, + "probability": 0.9876 + }, + { + "start": 24104.32, + "end": 24107.3, + "probability": 0.9801 + }, + { + "start": 24107.4, + "end": 24108.32, + "probability": 0.8691 + }, + { + "start": 24108.4, + "end": 24109.72, + "probability": 0.993 + }, + { + "start": 24110.88, + "end": 24115.96, + "probability": 0.8223 + }, + { + "start": 24116.5, + "end": 24116.52, + "probability": 0.2191 + }, + { + "start": 24116.52, + "end": 24117.94, + "probability": 0.6683 + }, + { + "start": 24118.1, + "end": 24120.54, + "probability": 0.6908 + }, + { + "start": 24121.3, + "end": 24122.36, + "probability": 0.8587 + }, + { + "start": 24122.68, + "end": 24124.56, + "probability": 0.8098 + }, + { + "start": 24125.26, + "end": 24128.4, + "probability": 0.925 + }, + { + "start": 24128.56, + "end": 24129.86, + "probability": 0.7383 + }, + { + "start": 24130.66, + "end": 24133.92, + "probability": 0.9938 + }, + { + "start": 24134.18, + "end": 24135.22, + "probability": 0.9637 + }, + { + "start": 24135.72, + "end": 24137.02, + "probability": 0.7827 + }, + { + "start": 24137.1, + "end": 24140.4, + "probability": 0.9355 + }, + { + "start": 24140.84, + "end": 24143.7, + "probability": 0.9889 + }, + { + "start": 24143.7, + "end": 24147.2, + "probability": 0.8338 + }, + { + "start": 24147.82, + "end": 24147.82, + "probability": 0.7906 + }, + { + "start": 24147.82, + "end": 24149.34, + "probability": 0.9456 + }, + { + "start": 24149.68, + "end": 24150.86, + "probability": 0.8046 + }, + { + "start": 24151.16, + "end": 24154.52, + "probability": 0.8818 + }, + { + "start": 24154.52, + "end": 24156.81, + "probability": 0.7944 + }, + { + "start": 24157.52, + "end": 24163.62, + "probability": 0.9932 + }, + { + "start": 24163.92, + "end": 24164.2, + "probability": 0.5837 + }, + { + "start": 24164.24, + "end": 24165.24, + "probability": 0.873 + }, + { + "start": 24165.4, + "end": 24166.5, + "probability": 0.978 + }, + { + "start": 24166.76, + "end": 24172.26, + "probability": 0.9849 + }, + { + "start": 24172.32, + "end": 24174.71, + "probability": 0.7588 + }, + { + "start": 24175.12, + "end": 24175.96, + "probability": 0.6711 + }, + { + "start": 24176.0, + "end": 24179.82, + "probability": 0.9949 + }, + { + "start": 24180.1, + "end": 24181.7, + "probability": 0.9635 + }, + { + "start": 24182.06, + "end": 24185.32, + "probability": 0.8618 + }, + { + "start": 24185.48, + "end": 24186.7, + "probability": 0.4884 + }, + { + "start": 24186.8, + "end": 24187.48, + "probability": 0.5767 + }, + { + "start": 24187.88, + "end": 24193.1, + "probability": 0.9277 + }, + { + "start": 24193.26, + "end": 24194.0, + "probability": 0.5896 + }, + { + "start": 24194.52, + "end": 24196.8, + "probability": 0.9897 + }, + { + "start": 24197.14, + "end": 24199.36, + "probability": 0.9769 + }, + { + "start": 24199.58, + "end": 24201.54, + "probability": 0.9937 + }, + { + "start": 24201.78, + "end": 24203.54, + "probability": 0.9948 + }, + { + "start": 24203.84, + "end": 24205.2, + "probability": 0.5637 + }, + { + "start": 24205.72, + "end": 24207.92, + "probability": 0.6957 + }, + { + "start": 24208.18, + "end": 24209.17, + "probability": 0.8456 + }, + { + "start": 24210.04, + "end": 24216.88, + "probability": 0.9805 + }, + { + "start": 24217.32, + "end": 24218.58, + "probability": 0.7822 + }, + { + "start": 24219.78, + "end": 24223.12, + "probability": 0.8685 + }, + { + "start": 24223.52, + "end": 24225.38, + "probability": 0.9564 + }, + { + "start": 24226.26, + "end": 24229.22, + "probability": 0.9156 + }, + { + "start": 24229.52, + "end": 24231.98, + "probability": 0.9736 + }, + { + "start": 24232.62, + "end": 24234.94, + "probability": 0.9355 + }, + { + "start": 24235.04, + "end": 24235.46, + "probability": 0.6644 + }, + { + "start": 24235.88, + "end": 24238.32, + "probability": 0.9796 + }, + { + "start": 24238.4, + "end": 24239.92, + "probability": 0.995 + }, + { + "start": 24240.12, + "end": 24241.8, + "probability": 0.9891 + }, + { + "start": 24242.26, + "end": 24244.64, + "probability": 0.3678 + }, + { + "start": 24245.28, + "end": 24248.8, + "probability": 0.7275 + }, + { + "start": 24249.0, + "end": 24251.64, + "probability": 0.9028 + }, + { + "start": 24251.78, + "end": 24253.86, + "probability": 0.9834 + }, + { + "start": 24253.92, + "end": 24254.2, + "probability": 0.4718 + }, + { + "start": 24254.6, + "end": 24258.38, + "probability": 0.902 + }, + { + "start": 24258.7, + "end": 24260.1, + "probability": 0.9626 + }, + { + "start": 24260.18, + "end": 24262.12, + "probability": 0.9659 + }, + { + "start": 24262.2, + "end": 24265.47, + "probability": 0.7573 + }, + { + "start": 24266.24, + "end": 24266.66, + "probability": 0.2219 + }, + { + "start": 24271.18, + "end": 24274.74, + "probability": 0.7846 + }, + { + "start": 24274.84, + "end": 24277.94, + "probability": 0.0403 + }, + { + "start": 24278.62, + "end": 24281.0, + "probability": 0.8887 + }, + { + "start": 24281.04, + "end": 24282.58, + "probability": 0.9984 + }, + { + "start": 24282.96, + "end": 24284.51, + "probability": 0.9474 + }, + { + "start": 24284.98, + "end": 24288.36, + "probability": 0.8124 + }, + { + "start": 24290.46, + "end": 24294.96, + "probability": 0.7518 + }, + { + "start": 24296.95, + "end": 24298.76, + "probability": 0.9055 + }, + { + "start": 24301.38, + "end": 24302.22, + "probability": 0.8375 + }, + { + "start": 24302.8, + "end": 24303.48, + "probability": 0.6895 + }, + { + "start": 24303.92, + "end": 24307.98, + "probability": 0.9891 + }, + { + "start": 24308.38, + "end": 24309.16, + "probability": 0.5916 + }, + { + "start": 24309.64, + "end": 24314.96, + "probability": 0.9899 + }, + { + "start": 24315.2, + "end": 24317.14, + "probability": 0.9829 + }, + { + "start": 24318.12, + "end": 24323.52, + "probability": 0.7533 + }, + { + "start": 24323.6, + "end": 24324.98, + "probability": 0.8172 + }, + { + "start": 24325.58, + "end": 24327.04, + "probability": 0.8908 + }, + { + "start": 24327.26, + "end": 24328.36, + "probability": 0.9587 + }, + { + "start": 24328.4, + "end": 24331.14, + "probability": 0.9683 + }, + { + "start": 24331.68, + "end": 24333.82, + "probability": 0.9907 + }, + { + "start": 24333.92, + "end": 24334.4, + "probability": 0.7801 + }, + { + "start": 24335.36, + "end": 24336.98, + "probability": 0.7072 + }, + { + "start": 24337.5, + "end": 24338.68, + "probability": 0.4016 + }, + { + "start": 24338.72, + "end": 24339.52, + "probability": 0.9528 + }, + { + "start": 24339.64, + "end": 24343.64, + "probability": 0.9848 + }, + { + "start": 24343.64, + "end": 24347.88, + "probability": 0.9962 + }, + { + "start": 24349.14, + "end": 24352.2, + "probability": 0.8736 + }, + { + "start": 24352.5, + "end": 24357.14, + "probability": 0.984 + }, + { + "start": 24357.18, + "end": 24361.42, + "probability": 0.9843 + }, + { + "start": 24362.0, + "end": 24367.3, + "probability": 0.9469 + }, + { + "start": 24368.4, + "end": 24369.58, + "probability": 0.9121 + }, + { + "start": 24372.28, + "end": 24376.04, + "probability": 0.229 + }, + { + "start": 24376.16, + "end": 24377.37, + "probability": 0.8423 + }, + { + "start": 24377.8, + "end": 24381.44, + "probability": 0.8964 + }, + { + "start": 24381.54, + "end": 24382.28, + "probability": 0.9799 + }, + { + "start": 24386.82, + "end": 24387.66, + "probability": 0.647 + }, + { + "start": 24387.66, + "end": 24393.34, + "probability": 0.6702 + }, + { + "start": 24393.86, + "end": 24394.26, + "probability": 0.7798 + }, + { + "start": 24401.18, + "end": 24402.64, + "probability": 0.0008 + }, + { + "start": 24406.9, + "end": 24408.94, + "probability": 0.2697 + }, + { + "start": 24409.0, + "end": 24410.64, + "probability": 0.9717 + }, + { + "start": 24410.7, + "end": 24412.02, + "probability": 0.7557 + }, + { + "start": 24413.46, + "end": 24414.62, + "probability": 0.0501 + }, + { + "start": 24416.64, + "end": 24421.0, + "probability": 0.7012 + }, + { + "start": 24421.08, + "end": 24421.74, + "probability": 0.9143 + }, + { + "start": 24435.02, + "end": 24438.54, + "probability": 0.0224 + }, + { + "start": 24438.6, + "end": 24439.98, + "probability": 0.9003 + }, + { + "start": 24440.06, + "end": 24441.86, + "probability": 0.5116 + }, + { + "start": 24442.24, + "end": 24444.66, + "probability": 0.6813 + }, + { + "start": 24444.66, + "end": 24447.54, + "probability": 0.0547 + }, + { + "start": 24455.6, + "end": 24457.66, + "probability": 0.491 + }, + { + "start": 24458.4, + "end": 24459.44, + "probability": 0.832 + }, + { + "start": 24459.44, + "end": 24460.04, + "probability": 0.7129 + }, + { + "start": 24460.14, + "end": 24469.67, + "probability": 0.8604 + }, + { + "start": 24471.4, + "end": 24475.93, + "probability": 0.4387 + }, + { + "start": 24475.93, + "end": 24479.84, + "probability": 0.4729 + }, + { + "start": 24480.71, + "end": 24480.9, + "probability": 0.4604 + }, + { + "start": 24481.49, + "end": 24484.57, + "probability": 0.2379 + }, + { + "start": 24485.31, + "end": 24486.43, + "probability": 0.4656 + }, + { + "start": 24486.49, + "end": 24487.5, + "probability": 0.7988 + }, + { + "start": 24487.63, + "end": 24488.04, + "probability": 0.7154 + }, + { + "start": 24488.73, + "end": 24497.21, + "probability": 0.7982 + }, + { + "start": 24503.77, + "end": 24508.71, + "probability": 0.1394 + }, + { + "start": 24508.71, + "end": 24509.67, + "probability": 0.8367 + }, + { + "start": 24509.79, + "end": 24510.15, + "probability": 0.8369 + }, + { + "start": 24510.91, + "end": 24517.71, + "probability": 0.7125 + }, + { + "start": 24517.83, + "end": 24522.09, + "probability": 0.228 + }, + { + "start": 24522.09, + "end": 24523.55, + "probability": 0.6735 + }, + { + "start": 24523.77, + "end": 24526.64, + "probability": 0.0123 + }, + { + "start": 24533.17, + "end": 24536.85, + "probability": 0.4918 + }, + { + "start": 24537.21, + "end": 24540.11, + "probability": 0.6282 + }, + { + "start": 24540.87, + "end": 24541.89, + "probability": 0.7436 + }, + { + "start": 24541.99, + "end": 24544.89, + "probability": 0.5836 + }, + { + "start": 24551.39, + "end": 24556.23, + "probability": 0.1173 + }, + { + "start": 24556.23, + "end": 24557.27, + "probability": 0.8323 + }, + { + "start": 24557.27, + "end": 24557.69, + "probability": 0.5853 + }, + { + "start": 24558.25, + "end": 24563.73, + "probability": 0.7986 + }, + { + "start": 24566.84, + "end": 24567.39, + "probability": 0.3633 + }, + { + "start": 24567.39, + "end": 24569.25, + "probability": 0.5505 + }, + { + "start": 24581.73, + "end": 24583.61, + "probability": 0.6119 + }, + { + "start": 24583.99, + "end": 24586.69, + "probability": 0.8599 + }, + { + "start": 24601.85, + "end": 24603.55, + "probability": 0.4671 + }, + { + "start": 24603.55, + "end": 24604.67, + "probability": 0.8809 + }, + { + "start": 24604.69, + "end": 24605.03, + "probability": 0.4649 + }, + { + "start": 24605.65, + "end": 24608.25, + "probability": 0.5967 + }, + { + "start": 24608.25, + "end": 24613.71, + "probability": 0.7742 + }, + { + "start": 24614.45, + "end": 24615.33, + "probability": 0.183 + }, + { + "start": 24616.07, + "end": 24617.91, + "probability": 0.0096 + }, + { + "start": 24625.69, + "end": 24627.61, + "probability": 0.3145 + }, + { + "start": 24627.83, + "end": 24631.95, + "probability": 0.4691 + }, + { + "start": 24632.31, + "end": 24633.63, + "probability": 0.608 + }, + { + "start": 24634.57, + "end": 24638.71, + "probability": 0.5688 + }, + { + "start": 24647.67, + "end": 24649.85, + "probability": 0.2123 + }, + { + "start": 24649.85, + "end": 24650.95, + "probability": 0.5571 + }, + { + "start": 24650.95, + "end": 24651.25, + "probability": 0.3815 + }, + { + "start": 24651.73, + "end": 24656.53, + "probability": 0.7172 + }, + { + "start": 24667.15, + "end": 24669.33, + "probability": 0.1641 + }, + { + "start": 24670.97, + "end": 24672.87, + "probability": 0.4643 + }, + { + "start": 24672.87, + "end": 24673.99, + "probability": 0.6367 + }, + { + "start": 24673.99, + "end": 24674.31, + "probability": 0.217 + }, + { + "start": 24674.51, + "end": 24683.57, + "probability": 0.7992 + }, + { + "start": 24684.58, + "end": 24686.65, + "probability": 0.7057 + }, + { + "start": 24692.87, + "end": 24694.15, + "probability": 0.0495 + }, + { + "start": 24694.95, + "end": 24698.51, + "probability": 0.6348 + }, + { + "start": 24698.59, + "end": 24700.15, + "probability": 0.8591 + }, + { + "start": 24700.15, + "end": 24700.53, + "probability": 0.4635 + }, + { + "start": 24700.73, + "end": 24706.63, + "probability": 0.9169 + }, + { + "start": 24706.69, + "end": 24710.91, + "probability": 0.3896 + }, + { + "start": 24710.93, + "end": 24715.71, + "probability": 0.0037 + }, + { + "start": 24721.33, + "end": 24721.97, + "probability": 0.2605 + }, + { + "start": 24721.97, + "end": 24726.63, + "probability": 0.4114 + }, + { + "start": 24727.19, + "end": 24729.47, + "probability": 0.7776 + }, + { + "start": 24729.47, + "end": 24733.75, + "probability": 0.5375 + }, + { + "start": 24743.0, + "end": 24747.09, + "probability": 0.4111 + }, + { + "start": 24747.33, + "end": 24748.03, + "probability": 0.9944 + }, + { + "start": 24748.87, + "end": 24752.49, + "probability": 0.6747 + }, + { + "start": 24753.07, + "end": 24758.07, + "probability": 0.5946 + }, + { + "start": 24767.11, + "end": 24767.13, + "probability": 0.034 + }, + { + "start": 24767.13, + "end": 24768.79, + "probability": 0.3127 + }, + { + "start": 24768.79, + "end": 24769.97, + "probability": 0.8569 + }, + { + "start": 24769.99, + "end": 24770.55, + "probability": 0.3667 + }, + { + "start": 24771.21, + "end": 24775.95, + "probability": 0.7727 + }, + { + "start": 24776.93, + "end": 24778.79, + "probability": 0.5031 + }, + { + "start": 24779.45, + "end": 24781.99, + "probability": 0.0001 + }, + { + "start": 24789.09, + "end": 24789.89, + "probability": 0.3315 + }, + { + "start": 24791.21, + "end": 24793.59, + "probability": 0.807 + }, + { + "start": 24793.59, + "end": 24794.17, + "probability": 0.4478 + }, + { + "start": 24794.43, + "end": 24797.05, + "probability": 0.7959 + }, + { + "start": 24799.27, + "end": 24805.67, + "probability": 0.7742 + }, + { + "start": 24806.69, + "end": 24809.01, + "probability": 0.6876 + }, + { + "start": 24812.29, + "end": 24813.21, + "probability": 0.1146 + }, + { + "start": 24819.79, + "end": 24821.63, + "probability": 0.6306 + }, + { + "start": 24821.75, + "end": 24823.77, + "probability": 0.7119 + }, + { + "start": 24823.83, + "end": 24824.19, + "probability": 0.694 + }, + { + "start": 24825.79, + "end": 24826.69, + "probability": 0.9048 + }, + { + "start": 24827.39, + "end": 24831.39, + "probability": 0.4099 + }, + { + "start": 24831.39, + "end": 24833.77, + "probability": 0.4371 + }, + { + "start": 24845.17, + "end": 24846.83, + "probability": 0.4244 + }, + { + "start": 24846.95, + "end": 24847.39, + "probability": 0.3563 + }, + { + "start": 24847.39, + "end": 24849.31, + "probability": 0.4547 + }, + { + "start": 24849.45, + "end": 24852.65, + "probability": 0.9355 + }, + { + "start": 24852.73, + "end": 24854.19, + "probability": 0.9129 + }, + { + "start": 24861.23, + "end": 24864.05, + "probability": 0.6836 + }, + { + "start": 24864.21, + "end": 24865.89, + "probability": 0.791 + }, + { + "start": 24866.15, + "end": 24871.15, + "probability": 0.3382 + }, + { + "start": 24881.09, + "end": 24882.51, + "probability": 0.5003 + }, + { + "start": 24882.51, + "end": 24884.97, + "probability": 0.5568 + }, + { + "start": 24884.97, + "end": 24887.93, + "probability": 0.6099 + }, + { + "start": 24890.27, + "end": 24894.75, + "probability": 0.753 + }, + { + "start": 24894.75, + "end": 24895.31, + "probability": 0.7191 + }, + { + "start": 24899.85, + "end": 24902.45, + "probability": 0.0246 + }, + { + "start": 24905.25, + "end": 24908.65, + "probability": 0.4659 + }, + { + "start": 24908.75, + "end": 24910.29, + "probability": 0.8652 + }, + { + "start": 24910.33, + "end": 24910.71, + "probability": 0.7206 + }, + { + "start": 24910.93, + "end": 24932.01, + "probability": 0.6666 + }, + { + "start": 24932.81, + "end": 24935.11, + "probability": 0.542 + }, + { + "start": 24935.21, + "end": 24936.31, + "probability": 0.5011 + }, + { + "start": 24936.31, + "end": 24936.83, + "probability": 0.4659 + }, + { + "start": 24937.37, + "end": 24941.95, + "probability": 0.7137 + }, + { + "start": 24942.53, + "end": 24945.35, + "probability": 0.4546 + }, + { + "start": 24945.35, + "end": 24947.93, + "probability": 0.1776 + }, + { + "start": 24958.91, + "end": 24960.35, + "probability": 0.8288 + }, + { + "start": 24960.43, + "end": 24962.36, + "probability": 0.6523 + }, + { + "start": 24963.11, + "end": 24965.99, + "probability": 0.6481 + }, + { + "start": 24966.01, + "end": 24970.03, + "probability": 0.3866 + }, + { + "start": 24979.17, + "end": 24982.15, + "probability": 0.398 + }, + { + "start": 24982.15, + "end": 24983.25, + "probability": 0.931 + }, + { + "start": 24983.25, + "end": 24983.91, + "probability": 0.3765 + }, + { + "start": 24984.17, + "end": 24989.79, + "probability": 0.7299 + }, + { + "start": 24989.91, + "end": 24991.01, + "probability": 0.6348 + }, + { + "start": 24996.09, + "end": 24996.89, + "probability": 0.0031 + }, + { + "start": 25000.93, + "end": 25001.79, + "probability": 0.1058 + }, + { + "start": 25002.49, + "end": 25005.37, + "probability": 0.5025 + }, + { + "start": 25005.37, + "end": 25006.69, + "probability": 0.8686 + }, + { + "start": 25006.69, + "end": 25007.05, + "probability": 0.6488 + }, + { + "start": 25007.39, + "end": 25013.05, + "probability": 0.8089 + }, + { + "start": 25013.55, + "end": 25018.13, + "probability": 0.5256 + }, + { + "start": 25018.15, + "end": 25018.91, + "probability": 0.2669 + }, + { + "start": 25028.59, + "end": 25030.19, + "probability": 0.8233 + }, + { + "start": 25030.25, + "end": 25030.59, + "probability": 0.7931 + }, + { + "start": 25031.01, + "end": 25035.19, + "probability": 0.8259 + }, + { + "start": 25049.43, + "end": 25049.65, + "probability": 0.3582 + }, + { + "start": 25049.65, + "end": 25051.29, + "probability": 0.1397 + }, + { + "start": 25051.29, + "end": 25052.31, + "probability": 0.5318 + }, + { + "start": 25052.31, + "end": 25052.65, + "probability": 0.5479 + }, + { + "start": 25053.48, + "end": 25056.97, + "probability": 0.739 + }, + { + "start": 25058.91, + "end": 25061.17, + "probability": 0.5958 + }, + { + "start": 25061.53, + "end": 25061.71, + "probability": 0.0121 + }, + { + "start": 25062.65, + "end": 25063.05, + "probability": 0.1369 + }, + { + "start": 25070.01, + "end": 25070.53, + "probability": 0.02 + }, + { + "start": 25071.67, + "end": 25073.47, + "probability": 0.5572 + }, + { + "start": 25073.49, + "end": 25074.91, + "probability": 0.4988 + }, + { + "start": 25074.95, + "end": 25075.51, + "probability": 0.453 + }, + { + "start": 25075.77, + "end": 25083.75, + "probability": 0.8386 + }, + { + "start": 25093.31, + "end": 25094.17, + "probability": 0.0723 + }, + { + "start": 25094.73, + "end": 25097.17, + "probability": 0.3171 + }, + { + "start": 25097.17, + "end": 25098.21, + "probability": 0.6704 + }, + { + "start": 25098.21, + "end": 25098.57, + "probability": 0.3443 + }, + { + "start": 25099.0, + "end": 25102.57, + "probability": 0.802 + }, + { + "start": 25102.81, + "end": 25104.43, + "probability": 0.5013 + }, + { + "start": 25104.43, + "end": 25108.19, + "probability": 0.3622 + }, + { + "start": 25108.87, + "end": 25112.07, + "probability": 0.2622 + }, + { + "start": 25119.47, + "end": 25121.96, + "probability": 0.7146 + }, + { + "start": 25123.97, + "end": 25125.31, + "probability": 0.4488 + }, + { + "start": 25126.09, + "end": 25128.93, + "probability": 0.9929 + }, + { + "start": 25129.51, + "end": 25130.77, + "probability": 0.9068 + }, + { + "start": 25130.85, + "end": 25134.33, + "probability": 0.959 + }, + { + "start": 25135.01, + "end": 25135.49, + "probability": 0.7347 + }, + { + "start": 25145.61, + "end": 25148.41, + "probability": 0.1682 + }, + { + "start": 25149.23, + "end": 25151.79, + "probability": 0.7566 + }, + { + "start": 25151.83, + "end": 25154.55, + "probability": 0.6164 + }, + { + "start": 25155.21, + "end": 25157.57, + "probability": 0.5466 + }, + { + "start": 25158.11, + "end": 25158.63, + "probability": 0.7911 + }, + { + "start": 25158.75, + "end": 25164.91, + "probability": 0.8731 + }, + { + "start": 25168.53, + "end": 25169.45, + "probability": 0.7687 + }, + { + "start": 25176.41, + "end": 25178.83, + "probability": 0.0057 + }, + { + "start": 25178.83, + "end": 25181.95, + "probability": 0.2529 + }, + { + "start": 25181.95, + "end": 25183.21, + "probability": 0.9321 + }, + { + "start": 25183.21, + "end": 25183.91, + "probability": 0.417 + }, + { + "start": 25185.06, + "end": 25190.45, + "probability": 0.7411 + }, + { + "start": 25190.87, + "end": 25197.47, + "probability": 0.5206 + }, + { + "start": 25199.08, + "end": 25199.43, + "probability": 0.4286 + }, + { + "start": 25204.27, + "end": 25205.21, + "probability": 0.0762 + }, + { + "start": 25205.21, + "end": 25208.05, + "probability": 0.6065 + }, + { + "start": 25208.25, + "end": 25209.35, + "probability": 0.8442 + }, + { + "start": 25209.35, + "end": 25212.07, + "probability": 0.6604 + }, + { + "start": 25212.09, + "end": 25212.79, + "probability": 0.7994 + }, + { + "start": 25212.91, + "end": 25215.31, + "probability": 0.7293 + }, + { + "start": 25215.31, + "end": 25215.93, + "probability": 0.6658 + }, + { + "start": 25216.57, + "end": 25223.11, + "probability": 0.796 + }, + { + "start": 25223.39, + "end": 25224.89, + "probability": 0.8968 + }, + { + "start": 25226.49, + "end": 25231.59, + "probability": 0.2168 + }, + { + "start": 25235.53, + "end": 25236.33, + "probability": 0.0001 + }, + { + "start": 25236.33, + "end": 25238.13, + "probability": 0.8281 + }, + { + "start": 25239.19, + "end": 25241.03, + "probability": 0.9895 + }, + { + "start": 25241.17, + "end": 25242.07, + "probability": 0.5389 + }, + { + "start": 25242.59, + "end": 25245.89, + "probability": 0.9876 + }, + { + "start": 25246.59, + "end": 25248.81, + "probability": 0.4928 + }, + { + "start": 25257.77, + "end": 25262.09, + "probability": 0.9919 + }, + { + "start": 25262.09, + "end": 25264.47, + "probability": 0.8883 + }, + { + "start": 25264.55, + "end": 25265.25, + "probability": 0.6785 + }, + { + "start": 25265.63, + "end": 25266.99, + "probability": 0.8535 + }, + { + "start": 25267.53, + "end": 25273.64, + "probability": 0.9933 + }, + { + "start": 25275.49, + "end": 25278.31, + "probability": 0.1608 + }, + { + "start": 25278.47, + "end": 25279.03, + "probability": 0.4012 + }, + { + "start": 25279.87, + "end": 25279.93, + "probability": 0.4395 + }, + { + "start": 25279.93, + "end": 25280.53, + "probability": 0.6626 + }, + { + "start": 25280.97, + "end": 25284.89, + "probability": 0.9044 + }, + { + "start": 25285.41, + "end": 25289.49, + "probability": 0.9663 + }, + { + "start": 25289.49, + "end": 25294.43, + "probability": 0.6335 + }, + { + "start": 25294.51, + "end": 25298.77, + "probability": 0.4425 + }, + { + "start": 25299.71, + "end": 25301.65, + "probability": 0.8993 + }, + { + "start": 25301.75, + "end": 25303.33, + "probability": 0.7101 + }, + { + "start": 25303.35, + "end": 25306.17, + "probability": 0.903 + }, + { + "start": 25307.75, + "end": 25308.82, + "probability": 0.2454 + }, + { + "start": 25309.65, + "end": 25312.67, + "probability": 0.7978 + }, + { + "start": 25313.55, + "end": 25317.09, + "probability": 0.7903 + }, + { + "start": 25317.91, + "end": 25319.91, + "probability": 0.8992 + }, + { + "start": 25320.55, + "end": 25323.23, + "probability": 0.8993 + }, + { + "start": 25323.91, + "end": 25327.65, + "probability": 0.9184 + }, + { + "start": 25329.97, + "end": 25336.65, + "probability": 0.559 + }, + { + "start": 25337.83, + "end": 25340.59, + "probability": 0.7404 + }, + { + "start": 25341.31, + "end": 25347.73, + "probability": 0.9854 + }, + { + "start": 25348.79, + "end": 25351.27, + "probability": 0.9913 + }, + { + "start": 25351.99, + "end": 25355.35, + "probability": 0.8853 + }, + { + "start": 25355.97, + "end": 25358.51, + "probability": 0.9915 + }, + { + "start": 25358.83, + "end": 25361.27, + "probability": 0.9766 + }, + { + "start": 25362.39, + "end": 25364.79, + "probability": 0.6753 + }, + { + "start": 25365.71, + "end": 25368.81, + "probability": 0.9793 + }, + { + "start": 25369.55, + "end": 25371.91, + "probability": 0.9893 + }, + { + "start": 25372.59, + "end": 25376.15, + "probability": 0.9486 + }, + { + "start": 25377.11, + "end": 25378.57, + "probability": 0.9521 + }, + { + "start": 25379.09, + "end": 25382.33, + "probability": 0.9685 + }, + { + "start": 25383.07, + "end": 25386.03, + "probability": 0.9394 + }, + { + "start": 25387.81, + "end": 25390.31, + "probability": 0.9009 + }, + { + "start": 25393.25, + "end": 25394.19, + "probability": 0.7546 + }, + { + "start": 25395.31, + "end": 25398.53, + "probability": 0.8748 + }, + { + "start": 25399.15, + "end": 25402.39, + "probability": 0.9412 + }, + { + "start": 25402.91, + "end": 25409.47, + "probability": 0.9602 + }, + { + "start": 25410.07, + "end": 25413.65, + "probability": 0.9714 + }, + { + "start": 25414.87, + "end": 25417.93, + "probability": 0.9655 + }, + { + "start": 25419.41, + "end": 25419.69, + "probability": 0.0045 + }, + { + "start": 25421.77, + "end": 25426.39, + "probability": 0.5146 + }, + { + "start": 25427.49, + "end": 25430.39, + "probability": 0.9707 + }, + { + "start": 25430.97, + "end": 25434.79, + "probability": 0.9539 + }, + { + "start": 25436.57, + "end": 25439.93, + "probability": 0.9362 + }, + { + "start": 25440.29, + "end": 25442.69, + "probability": 0.9893 + }, + { + "start": 25442.95, + "end": 25445.59, + "probability": 0.817 + }, + { + "start": 25446.13, + "end": 25448.45, + "probability": 0.9265 + }, + { + "start": 25449.03, + "end": 25449.43, + "probability": 0.9873 + }, + { + "start": 25450.69, + "end": 25451.51, + "probability": 0.679 + }, + { + "start": 25452.41, + "end": 25455.39, + "probability": 0.8197 + }, + { + "start": 25456.03, + "end": 25459.21, + "probability": 0.969 + }, + { + "start": 25459.69, + "end": 25462.89, + "probability": 0.9685 + }, + { + "start": 25463.36, + "end": 25466.71, + "probability": 0.9699 + }, + { + "start": 25467.59, + "end": 25468.13, + "probability": 0.9956 + }, + { + "start": 25469.65, + "end": 25471.43, + "probability": 0.9952 + }, + { + "start": 25471.99, + "end": 25475.61, + "probability": 0.9511 + }, + { + "start": 25476.83, + "end": 25478.85, + "probability": 0.3491 + }, + { + "start": 25480.55, + "end": 25482.77, + "probability": 0.6491 + }, + { + "start": 25486.33, + "end": 25486.87, + "probability": 0.8201 + }, + { + "start": 25488.71, + "end": 25489.93, + "probability": 0.7071 + }, + { + "start": 25493.59, + "end": 25495.81, + "probability": 0.9788 + }, + { + "start": 25496.47, + "end": 25499.77, + "probability": 0.5046 + }, + { + "start": 25500.81, + "end": 25501.95, + "probability": 0.8816 + }, + { + "start": 25504.65, + "end": 25509.33, + "probability": 0.8044 + }, + { + "start": 25510.29, + "end": 25510.67, + "probability": 0.6728 + }, + { + "start": 25515.83, + "end": 25516.93, + "probability": 0.2098 + }, + { + "start": 25517.87, + "end": 25518.35, + "probability": 0.7838 + }, + { + "start": 25520.09, + "end": 25521.55, + "probability": 0.7999 + }, + { + "start": 25523.23, + "end": 25525.13, + "probability": 0.9707 + }, + { + "start": 25526.11, + "end": 25528.77, + "probability": 0.9855 + }, + { + "start": 25529.47, + "end": 25531.87, + "probability": 0.9507 + }, + { + "start": 25538.11, + "end": 25539.35, + "probability": 0.6537 + }, + { + "start": 25555.31, + "end": 25562.93, + "probability": 0.1909 + }, + { + "start": 25564.31, + "end": 25564.59, + "probability": 0.8973 + }, + { + "start": 25566.59, + "end": 25567.45, + "probability": 0.8918 + }, + { + "start": 25568.51, + "end": 25571.99, + "probability": 0.97 + }, + { + "start": 25572.51, + "end": 25575.91, + "probability": 0.9686 + }, + { + "start": 25576.55, + "end": 25577.29, + "probability": 0.9455 + }, + { + "start": 25577.99, + "end": 25578.97, + "probability": 0.9661 + }, + { + "start": 25579.91, + "end": 25582.47, + "probability": 0.9817 + }, + { + "start": 25583.55, + "end": 25585.23, + "probability": 0.5187 + }, + { + "start": 25586.69, + "end": 25593.49, + "probability": 0.8678 + }, + { + "start": 25594.21, + "end": 25598.11, + "probability": 0.9927 + }, + { + "start": 25598.75, + "end": 25600.71, + "probability": 0.9489 + }, + { + "start": 25601.51, + "end": 25601.97, + "probability": 0.9766 + }, + { + "start": 25602.73, + "end": 25603.55, + "probability": 0.8308 + }, + { + "start": 25604.45, + "end": 25606.97, + "probability": 0.9865 + }, + { + "start": 25609.13, + "end": 25611.53, + "probability": 0.9938 + }, + { + "start": 25613.79, + "end": 25614.56, + "probability": 0.657 + }, + { + "start": 25616.09, + "end": 25616.51, + "probability": 0.7563 + }, + { + "start": 25617.49, + "end": 25618.71, + "probability": 0.8622 + }, + { + "start": 25619.37, + "end": 25620.55, + "probability": 0.9797 + }, + { + "start": 25621.69, + "end": 25622.85, + "probability": 0.7558 + }, + { + "start": 25624.89, + "end": 25627.43, + "probability": 0.943 + }, + { + "start": 25628.59, + "end": 25631.09, + "probability": 0.9707 + }, + { + "start": 25631.87, + "end": 25635.05, + "probability": 0.9506 + }, + { + "start": 25635.57, + "end": 25637.85, + "probability": 0.9894 + }, + { + "start": 25639.11, + "end": 25642.93, + "probability": 0.7831 + }, + { + "start": 25647.17, + "end": 25651.27, + "probability": 0.8488 + }, + { + "start": 25652.05, + "end": 25652.49, + "probability": 0.7917 + }, + { + "start": 25653.83, + "end": 25654.87, + "probability": 0.8782 + }, + { + "start": 25655.79, + "end": 25657.91, + "probability": 0.9673 + }, + { + "start": 25659.27, + "end": 25662.03, + "probability": 0.9927 + }, + { + "start": 25662.65, + "end": 25664.99, + "probability": 0.9899 + }, + { + "start": 25665.93, + "end": 25668.89, + "probability": 0.9831 + }, + { + "start": 25670.13, + "end": 25673.19, + "probability": 0.7645 + }, + { + "start": 25673.51, + "end": 25676.01, + "probability": 0.844 + }, + { + "start": 25676.49, + "end": 25680.19, + "probability": 0.8904 + }, + { + "start": 25682.05, + "end": 25685.69, + "probability": 0.6217 + }, + { + "start": 25689.35, + "end": 25691.49, + "probability": 0.4974 + }, + { + "start": 25694.99, + "end": 25695.93, + "probability": 0.5559 + }, + { + "start": 25696.79, + "end": 25705.67, + "probability": 0.917 + }, + { + "start": 25706.4, + "end": 25708.71, + "probability": 0.964 + }, + { + "start": 25714.49, + "end": 25719.09, + "probability": 0.7637 + }, + { + "start": 25721.41, + "end": 25724.17, + "probability": 0.856 + }, + { + "start": 25727.57, + "end": 25734.33, + "probability": 0.6979 + }, + { + "start": 25736.23, + "end": 25738.85, + "probability": 0.6556 + }, + { + "start": 25741.33, + "end": 25744.43, + "probability": 0.9409 + }, + { + "start": 25745.01, + "end": 25747.95, + "probability": 0.9657 + }, + { + "start": 25748.61, + "end": 25752.41, + "probability": 0.9375 + }, + { + "start": 25753.45, + "end": 25753.85, + "probability": 0.9966 + }, + { + "start": 25755.11, + "end": 25756.15, + "probability": 0.7075 + }, + { + "start": 25756.71, + "end": 25760.47, + "probability": 0.7449 + }, + { + "start": 25762.03, + "end": 25765.91, + "probability": 0.9844 + }, + { + "start": 25766.61, + "end": 25769.69, + "probability": 0.9225 + }, + { + "start": 25770.01, + "end": 25773.99, + "probability": 0.9322 + }, + { + "start": 25774.37, + "end": 25776.81, + "probability": 0.9963 + }, + { + "start": 25777.15, + "end": 25779.47, + "probability": 0.9873 + }, + { + "start": 25782.81, + "end": 25785.57, + "probability": 0.755 + }, + { + "start": 25787.97, + "end": 25789.25, + "probability": 0.2864 + }, + { + "start": 25791.27, + "end": 25795.83, + "probability": 0.6843 + }, + { + "start": 25796.61, + "end": 25798.87, + "probability": 0.7399 + }, + { + "start": 25800.39, + "end": 25807.61, + "probability": 0.935 + }, + { + "start": 25809.99, + "end": 25811.55, + "probability": 0.9482 + }, + { + "start": 25817.35, + "end": 25818.03, + "probability": 0.5086 + }, + { + "start": 25821.17, + "end": 25824.47, + "probability": 0.8823 + }, + { + "start": 25825.13, + "end": 25827.33, + "probability": 0.8962 + }, + { + "start": 25828.33, + "end": 25830.51, + "probability": 0.9496 + }, + { + "start": 25833.07, + "end": 25840.43, + "probability": 0.9755 + }, + { + "start": 25841.89, + "end": 25842.55, + "probability": 0.998 + }, + { + "start": 25843.39, + "end": 25844.19, + "probability": 0.9869 + }, + { + "start": 25846.57, + "end": 25847.31, + "probability": 0.646 + }, + { + "start": 25847.83, + "end": 25850.23, + "probability": 0.8137 + }, + { + "start": 25852.93, + "end": 25858.57, + "probability": 0.6489 + }, + { + "start": 25865.53, + "end": 25866.07, + "probability": 0.5008 + }, + { + "start": 25866.19, + "end": 25868.91, + "probability": 0.8837 + }, + { + "start": 25870.03, + "end": 25871.39, + "probability": 0.5219 + }, + { + "start": 25871.93, + "end": 25875.11, + "probability": 0.9056 + }, + { + "start": 25875.95, + "end": 25878.55, + "probability": 0.9805 + }, + { + "start": 25879.55, + "end": 25880.49, + "probability": 0.9782 + }, + { + "start": 25883.67, + "end": 25885.29, + "probability": 0.8261 + }, + { + "start": 25885.97, + "end": 25891.81, + "probability": 0.9199 + }, + { + "start": 25893.09, + "end": 25895.99, + "probability": 0.974 + }, + { + "start": 25897.39, + "end": 25901.89, + "probability": 0.9804 + }, + { + "start": 25905.83, + "end": 25910.09, + "probability": 0.8469 + }, + { + "start": 25910.43, + "end": 25914.25, + "probability": 0.7364 + }, + { + "start": 25915.43, + "end": 25921.67, + "probability": 0.9706 + }, + { + "start": 25922.7, + "end": 25926.45, + "probability": 0.6736 + }, + { + "start": 25928.47, + "end": 25929.49, + "probability": 0.9222 + }, + { + "start": 25934.01, + "end": 25934.77, + "probability": 0.545 + }, + { + "start": 25935.39, + "end": 25939.47, + "probability": 0.8831 + }, + { + "start": 25940.37, + "end": 25948.29, + "probability": 0.9566 + }, + { + "start": 25949.77, + "end": 25950.35, + "probability": 0.8911 + }, + { + "start": 25950.87, + "end": 25951.77, + "probability": 0.4962 + }, + { + "start": 25952.03, + "end": 25953.65, + "probability": 0.9194 + }, + { + "start": 25954.43, + "end": 25954.99, + "probability": 0.4671 + }, + { + "start": 25955.05, + "end": 25955.25, + "probability": 0.7385 + }, + { + "start": 25957.07, + "end": 25957.13, + "probability": 0.024 + }, + { + "start": 25973.61, + "end": 25975.01, + "probability": 0.0315 + }, + { + "start": 25975.55, + "end": 25976.69, + "probability": 0.0365 + }, + { + "start": 25985.77, + "end": 25987.42, + "probability": 0.0083 + }, + { + "start": 25990.27, + "end": 25991.59, + "probability": 0.1627 + }, + { + "start": 26030.43, + "end": 26032.57, + "probability": 0.221 + }, + { + "start": 26033.31, + "end": 26035.03, + "probability": 0.0106 + }, + { + "start": 26067.14, + "end": 26067.54, + "probability": 0.1276 + }, + { + "start": 26068.2, + "end": 26070.16, + "probability": 0.7692 + }, + { + "start": 26073.04, + "end": 26076.42, + "probability": 0.0746 + }, + { + "start": 26081.94, + "end": 26082.1, + "probability": 0.036 + }, + { + "start": 26082.1, + "end": 26082.44, + "probability": 0.1481 + }, + { + "start": 26082.6, + "end": 26082.82, + "probability": 0.1342 + }, + { + "start": 26085.18, + "end": 26086.18, + "probability": 0.0306 + }, + { + "start": 26088.28, + "end": 26088.38, + "probability": 0.0673 + }, + { + "start": 26089.02, + "end": 26094.4, + "probability": 0.0954 + }, + { + "start": 26094.58, + "end": 26095.0, + "probability": 0.0615 + }, + { + "start": 26097.71, + "end": 26100.14, + "probability": 0.125 + }, + { + "start": 26100.88, + "end": 26103.56, + "probability": 0.0001 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26191.0, + "end": 26191.0, + "probability": 0.0 + }, + { + "start": 26192.06, + "end": 26196.08, + "probability": 0.0156 + }, + { + "start": 26196.08, + "end": 26196.28, + "probability": 0.2342 + }, + { + "start": 26197.58, + "end": 26198.14, + "probability": 0.6433 + }, + { + "start": 26200.12, + "end": 26201.42, + "probability": 0.6965 + }, + { + "start": 26202.62, + "end": 26205.6, + "probability": 0.8394 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.0, + "end": 26312.0, + "probability": 0.0 + }, + { + "start": 26312.52, + "end": 26313.7, + "probability": 0.205 + }, + { + "start": 26313.7, + "end": 26318.34, + "probability": 0.0249 + }, + { + "start": 26331.0, + "end": 26336.5, + "probability": 0.1156 + }, + { + "start": 26336.5, + "end": 26340.64, + "probability": 0.0921 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.0, + "end": 26437.0, + "probability": 0.0 + }, + { + "start": 26437.16, + "end": 26437.78, + "probability": 0.2044 + }, + { + "start": 26437.96, + "end": 26440.88, + "probability": 0.7092 + }, + { + "start": 26441.08, + "end": 26442.2, + "probability": 0.4994 + }, + { + "start": 26442.88, + "end": 26445.4, + "probability": 0.8241 + }, + { + "start": 26446.0, + "end": 26448.38, + "probability": 0.6885 + }, + { + "start": 26448.68, + "end": 26449.44, + "probability": 0.4372 + }, + { + "start": 26452.16, + "end": 26452.48, + "probability": 0.134 + }, + { + "start": 26452.48, + "end": 26452.98, + "probability": 0.0812 + }, + { + "start": 26453.08, + "end": 26454.06, + "probability": 0.7315 + }, + { + "start": 26455.56, + "end": 26461.58, + "probability": 0.7413 + }, + { + "start": 26463.18, + "end": 26468.78, + "probability": 0.7432 + }, + { + "start": 26469.22, + "end": 26471.2, + "probability": 0.8364 + }, + { + "start": 26473.82, + "end": 26476.58, + "probability": 0.4913 + }, + { + "start": 26476.58, + "end": 26477.72, + "probability": 0.8063 + }, + { + "start": 26479.08, + "end": 26481.8, + "probability": 0.9189 + }, + { + "start": 26485.98, + "end": 26489.0, + "probability": 0.7501 + }, + { + "start": 26490.04, + "end": 26491.53, + "probability": 0.9457 + }, + { + "start": 26492.22, + "end": 26497.82, + "probability": 0.9812 + }, + { + "start": 26498.24, + "end": 26499.44, + "probability": 0.9971 + }, + { + "start": 26500.5, + "end": 26501.66, + "probability": 0.9914 + }, + { + "start": 26501.82, + "end": 26503.64, + "probability": 0.6372 + }, + { + "start": 26503.78, + "end": 26504.36, + "probability": 0.3433 + }, + { + "start": 26504.46, + "end": 26506.16, + "probability": 0.7051 + }, + { + "start": 26506.88, + "end": 26512.66, + "probability": 0.9894 + }, + { + "start": 26512.66, + "end": 26519.7, + "probability": 0.9979 + }, + { + "start": 26521.0, + "end": 26523.22, + "probability": 0.8776 + }, + { + "start": 26523.74, + "end": 26526.32, + "probability": 0.9867 + }, + { + "start": 26527.18, + "end": 26529.76, + "probability": 0.9921 + }, + { + "start": 26530.28, + "end": 26535.72, + "probability": 0.9843 + }, + { + "start": 26536.28, + "end": 26539.2, + "probability": 0.9648 + }, + { + "start": 26539.86, + "end": 26542.46, + "probability": 0.8769 + }, + { + "start": 26542.84, + "end": 26543.54, + "probability": 0.7225 + }, + { + "start": 26543.66, + "end": 26544.14, + "probability": 0.811 + }, + { + "start": 26544.24, + "end": 26545.38, + "probability": 0.8659 + }, + { + "start": 26545.72, + "end": 26550.1, + "probability": 0.9794 + }, + { + "start": 26550.66, + "end": 26553.58, + "probability": 0.9633 + }, + { + "start": 26553.84, + "end": 26555.9, + "probability": 0.9489 + }, + { + "start": 26556.38, + "end": 26558.08, + "probability": 0.9971 + }, + { + "start": 26558.78, + "end": 26561.74, + "probability": 0.9799 + }, + { + "start": 26562.04, + "end": 26569.18, + "probability": 0.9885 + }, + { + "start": 26569.54, + "end": 26574.78, + "probability": 0.9969 + }, + { + "start": 26574.98, + "end": 26575.84, + "probability": 0.7102 + }, + { + "start": 26576.82, + "end": 26578.58, + "probability": 0.4727 + }, + { + "start": 26578.68, + "end": 26584.84, + "probability": 0.9599 + }, + { + "start": 26585.84, + "end": 26587.56, + "probability": 0.9988 + }, + { + "start": 26588.58, + "end": 26590.6, + "probability": 0.9604 + }, + { + "start": 26591.08, + "end": 26591.88, + "probability": 0.5843 + }, + { + "start": 26592.38, + "end": 26595.16, + "probability": 0.9696 + }, + { + "start": 26595.6, + "end": 26596.7, + "probability": 0.8423 + }, + { + "start": 26596.86, + "end": 26602.8, + "probability": 0.9981 + }, + { + "start": 26603.36, + "end": 26607.48, + "probability": 0.9888 + }, + { + "start": 26607.94, + "end": 26608.72, + "probability": 0.6455 + }, + { + "start": 26608.88, + "end": 26610.08, + "probability": 0.9747 + }, + { + "start": 26610.46, + "end": 26616.62, + "probability": 0.9743 + }, + { + "start": 26616.86, + "end": 26618.66, + "probability": 0.9219 + }, + { + "start": 26619.14, + "end": 26619.7, + "probability": 0.8247 + }, + { + "start": 26619.92, + "end": 26620.58, + "probability": 0.8537 + }, + { + "start": 26620.68, + "end": 26624.72, + "probability": 0.9697 + }, + { + "start": 26624.78, + "end": 26625.6, + "probability": 0.7816 + }, + { + "start": 26625.66, + "end": 26629.3, + "probability": 0.9018 + }, + { + "start": 26629.96, + "end": 26630.87, + "probability": 0.7623 + }, + { + "start": 26631.64, + "end": 26633.6, + "probability": 0.7581 + }, + { + "start": 26633.6, + "end": 26636.24, + "probability": 0.7384 + }, + { + "start": 26636.36, + "end": 26637.49, + "probability": 0.5134 + }, + { + "start": 26639.16, + "end": 26640.24, + "probability": 0.6962 + }, + { + "start": 26640.72, + "end": 26641.72, + "probability": 0.7996 + }, + { + "start": 26642.2, + "end": 26644.0, + "probability": 0.9871 + }, + { + "start": 26644.8, + "end": 26646.74, + "probability": 0.765 + }, + { + "start": 26647.28, + "end": 26649.44, + "probability": 0.9869 + }, + { + "start": 26649.54, + "end": 26655.9, + "probability": 0.8242 + }, + { + "start": 26655.94, + "end": 26656.46, + "probability": 0.7014 + }, + { + "start": 26657.22, + "end": 26657.94, + "probability": 0.7163 + }, + { + "start": 26658.76, + "end": 26660.92, + "probability": 0.6823 + }, + { + "start": 26661.26, + "end": 26663.16, + "probability": 0.8008 + }, + { + "start": 26663.44, + "end": 26665.66, + "probability": 0.8774 + }, + { + "start": 26665.8, + "end": 26666.54, + "probability": 0.7436 + }, + { + "start": 26666.64, + "end": 26669.11, + "probability": 0.7634 + }, + { + "start": 26669.7, + "end": 26670.28, + "probability": 0.7523 + }, + { + "start": 26670.54, + "end": 26670.98, + "probability": 0.4088 + }, + { + "start": 26671.24, + "end": 26671.24, + "probability": 0.4271 + }, + { + "start": 26671.46, + "end": 26673.98, + "probability": 0.3194 + }, + { + "start": 26674.08, + "end": 26675.16, + "probability": 0.7213 + }, + { + "start": 26675.44, + "end": 26675.9, + "probability": 0.3036 + }, + { + "start": 26676.68, + "end": 26679.08, + "probability": 0.4796 + }, + { + "start": 26679.34, + "end": 26680.34, + "probability": 0.647 + }, + { + "start": 26682.13, + "end": 26686.76, + "probability": 0.8928 + }, + { + "start": 26686.76, + "end": 26689.36, + "probability": 0.8566 + }, + { + "start": 26689.5, + "end": 26693.76, + "probability": 0.9586 + }, + { + "start": 26696.07, + "end": 26697.78, + "probability": 0.1447 + }, + { + "start": 26698.1, + "end": 26699.78, + "probability": 0.1377 + }, + { + "start": 26700.06, + "end": 26701.82, + "probability": 0.6426 + }, + { + "start": 26703.14, + "end": 26705.32, + "probability": 0.777 + }, + { + "start": 26705.5, + "end": 26706.22, + "probability": 0.0251 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26817.0, + "end": 26817.0, + "probability": 0.0 + }, + { + "start": 26824.92, + "end": 26829.38, + "probability": 0.9958 + }, + { + "start": 26829.38, + "end": 26833.26, + "probability": 0.9977 + }, + { + "start": 26834.34, + "end": 26834.82, + "probability": 0.8211 + }, + { + "start": 26834.98, + "end": 26838.34, + "probability": 0.9941 + }, + { + "start": 26838.34, + "end": 26844.62, + "probability": 0.9974 + }, + { + "start": 26845.12, + "end": 26846.8, + "probability": 0.9761 + }, + { + "start": 26847.62, + "end": 26848.48, + "probability": 0.9261 + }, + { + "start": 26848.68, + "end": 26854.08, + "probability": 0.955 + }, + { + "start": 26855.32, + "end": 26856.4, + "probability": 0.9371 + }, + { + "start": 26856.56, + "end": 26863.9, + "probability": 0.9819 + }, + { + "start": 26864.52, + "end": 26869.28, + "probability": 0.9867 + }, + { + "start": 26869.98, + "end": 26872.76, + "probability": 0.9886 + }, + { + "start": 26873.82, + "end": 26878.9, + "probability": 0.9365 + }, + { + "start": 26879.38, + "end": 26879.92, + "probability": 0.8056 + }, + { + "start": 26880.04, + "end": 26884.62, + "probability": 0.9977 + }, + { + "start": 26884.62, + "end": 26887.8, + "probability": 0.9985 + }, + { + "start": 26888.38, + "end": 26893.3, + "probability": 0.997 + }, + { + "start": 26894.12, + "end": 26895.2, + "probability": 0.6729 + }, + { + "start": 26895.42, + "end": 26899.72, + "probability": 0.9864 + }, + { + "start": 26899.72, + "end": 26904.32, + "probability": 0.9873 + }, + { + "start": 26904.84, + "end": 26908.8, + "probability": 0.9429 + }, + { + "start": 26909.3, + "end": 26912.6, + "probability": 0.9935 + }, + { + "start": 26913.26, + "end": 26915.28, + "probability": 0.7738 + }, + { + "start": 26915.9, + "end": 26920.68, + "probability": 0.969 + }, + { + "start": 26920.68, + "end": 26924.84, + "probability": 0.9981 + }, + { + "start": 26925.28, + "end": 26931.1, + "probability": 0.9903 + }, + { + "start": 26931.74, + "end": 26935.46, + "probability": 0.9106 + }, + { + "start": 26936.0, + "end": 26937.52, + "probability": 0.7494 + }, + { + "start": 26937.94, + "end": 26941.85, + "probability": 0.9657 + }, + { + "start": 26943.16, + "end": 26945.2, + "probability": 0.9966 + }, + { + "start": 26945.56, + "end": 26947.12, + "probability": 0.8551 + }, + { + "start": 26947.18, + "end": 26950.86, + "probability": 0.9862 + }, + { + "start": 26951.38, + "end": 26953.18, + "probability": 0.513 + }, + { + "start": 26953.36, + "end": 26955.78, + "probability": 0.8932 + }, + { + "start": 26955.98, + "end": 26956.64, + "probability": 0.9058 + }, + { + "start": 26956.98, + "end": 26959.36, + "probability": 0.9671 + }, + { + "start": 26959.74, + "end": 26960.42, + "probability": 0.7274 + }, + { + "start": 26960.78, + "end": 26964.2, + "probability": 0.853 + }, + { + "start": 26964.2, + "end": 26967.06, + "probability": 0.9943 + }, + { + "start": 26967.66, + "end": 26971.68, + "probability": 0.9891 + }, + { + "start": 26971.68, + "end": 26976.68, + "probability": 0.8831 + }, + { + "start": 26977.2, + "end": 26979.76, + "probability": 0.9993 + }, + { + "start": 26980.26, + "end": 26982.58, + "probability": 0.1815 + }, + { + "start": 26983.18, + "end": 26989.54, + "probability": 0.8484 + }, + { + "start": 26989.86, + "end": 26992.32, + "probability": 0.7933 + }, + { + "start": 26992.86, + "end": 26997.7, + "probability": 0.9839 + }, + { + "start": 26997.7, + "end": 27004.6, + "probability": 0.9364 + }, + { + "start": 27005.96, + "end": 27007.44, + "probability": 0.9312 + }, + { + "start": 27008.24, + "end": 27010.42, + "probability": 0.9968 + }, + { + "start": 27010.42, + "end": 27014.14, + "probability": 0.9878 + }, + { + "start": 27014.78, + "end": 27019.86, + "probability": 0.9957 + }, + { + "start": 27020.36, + "end": 27023.01, + "probability": 0.8458 + }, + { + "start": 27023.62, + "end": 27027.92, + "probability": 0.9885 + }, + { + "start": 27027.92, + "end": 27032.28, + "probability": 0.9846 + }, + { + "start": 27033.22, + "end": 27038.56, + "probability": 0.8005 + }, + { + "start": 27038.74, + "end": 27044.08, + "probability": 0.8891 + }, + { + "start": 27044.6, + "end": 27047.84, + "probability": 0.9343 + }, + { + "start": 27048.66, + "end": 27054.18, + "probability": 0.9939 + }, + { + "start": 27054.72, + "end": 27056.0, + "probability": 0.993 + }, + { + "start": 27056.54, + "end": 27056.54, + "probability": 0.5837 + }, + { + "start": 27056.54, + "end": 27057.9, + "probability": 0.8844 + }, + { + "start": 27058.16, + "end": 27062.06, + "probability": 0.9944 + }, + { + "start": 27062.06, + "end": 27066.06, + "probability": 0.7474 + }, + { + "start": 27066.34, + "end": 27067.78, + "probability": 0.8381 + }, + { + "start": 27073.72, + "end": 27076.72, + "probability": 0.9453 + }, + { + "start": 27078.28, + "end": 27079.56, + "probability": 0.0043 + }, + { + "start": 27080.2, + "end": 27081.55, + "probability": 0.2944 + }, + { + "start": 27082.68, + "end": 27086.44, + "probability": 0.0244 + }, + { + "start": 27087.76, + "end": 27087.86, + "probability": 0.2616 + }, + { + "start": 27087.86, + "end": 27087.86, + "probability": 0.0623 + }, + { + "start": 27087.86, + "end": 27091.74, + "probability": 0.1745 + }, + { + "start": 27091.78, + "end": 27094.84, + "probability": 0.3579 + }, + { + "start": 27095.18, + "end": 27096.65, + "probability": 0.7618 + }, + { + "start": 27097.14, + "end": 27097.86, + "probability": 0.7118 + }, + { + "start": 27097.88, + "end": 27100.0, + "probability": 0.9093 + }, + { + "start": 27100.76, + "end": 27104.4, + "probability": 0.9639 + }, + { + "start": 27104.4, + "end": 27109.1, + "probability": 0.9436 + }, + { + "start": 27109.58, + "end": 27112.2, + "probability": 0.9822 + }, + { + "start": 27113.0, + "end": 27119.02, + "probability": 0.9684 + }, + { + "start": 27119.86, + "end": 27122.92, + "probability": 0.9614 + }, + { + "start": 27123.8, + "end": 27124.1, + "probability": 0.6734 + }, + { + "start": 27124.68, + "end": 27128.16, + "probability": 0.9924 + }, + { + "start": 27128.8, + "end": 27136.14, + "probability": 0.9658 + }, + { + "start": 27136.14, + "end": 27143.34, + "probability": 0.9893 + }, + { + "start": 27143.34, + "end": 27149.38, + "probability": 0.9954 + }, + { + "start": 27150.24, + "end": 27150.84, + "probability": 0.5664 + }, + { + "start": 27150.88, + "end": 27155.3, + "probability": 0.9844 + }, + { + "start": 27155.72, + "end": 27159.72, + "probability": 0.9832 + }, + { + "start": 27159.72, + "end": 27163.86, + "probability": 0.9878 + }, + { + "start": 27164.34, + "end": 27168.68, + "probability": 0.9972 + }, + { + "start": 27169.4, + "end": 27172.24, + "probability": 0.9917 + }, + { + "start": 27172.42, + "end": 27175.58, + "probability": 0.9968 + }, + { + "start": 27175.72, + "end": 27176.4, + "probability": 0.9509 + }, + { + "start": 27176.58, + "end": 27180.42, + "probability": 0.9552 + }, + { + "start": 27181.04, + "end": 27186.16, + "probability": 0.9381 + }, + { + "start": 27186.8, + "end": 27189.27, + "probability": 0.9424 + }, + { + "start": 27189.86, + "end": 27192.86, + "probability": 0.9985 + }, + { + "start": 27193.42, + "end": 27194.34, + "probability": 0.56 + }, + { + "start": 27194.88, + "end": 27199.58, + "probability": 0.9628 + }, + { + "start": 27199.62, + "end": 27200.26, + "probability": 0.8424 + }, + { + "start": 27200.32, + "end": 27204.87, + "probability": 0.9899 + }, + { + "start": 27206.08, + "end": 27206.96, + "probability": 0.87 + }, + { + "start": 27207.08, + "end": 27208.54, + "probability": 0.7252 + }, + { + "start": 27208.64, + "end": 27212.26, + "probability": 0.9949 + }, + { + "start": 27212.44, + "end": 27213.68, + "probability": 0.4866 + }, + { + "start": 27213.68, + "end": 27219.2, + "probability": 0.8878 + }, + { + "start": 27223.08, + "end": 27228.3, + "probability": 0.6099 + }, + { + "start": 27234.3, + "end": 27237.12, + "probability": 0.1568 + }, + { + "start": 27240.92, + "end": 27245.62, + "probability": 0.8644 + }, + { + "start": 27246.26, + "end": 27250.58, + "probability": 0.8235 + }, + { + "start": 27250.8, + "end": 27250.9, + "probability": 0.1691 + }, + { + "start": 27250.9, + "end": 27252.16, + "probability": 0.3934 + }, + { + "start": 27252.64, + "end": 27253.82, + "probability": 0.9437 + }, + { + "start": 27253.84, + "end": 27258.08, + "probability": 0.9908 + }, + { + "start": 27259.1, + "end": 27260.62, + "probability": 0.8766 + }, + { + "start": 27261.44, + "end": 27264.42, + "probability": 0.9307 + }, + { + "start": 27265.32, + "end": 27267.36, + "probability": 0.9761 + }, + { + "start": 27267.42, + "end": 27268.84, + "probability": 0.9655 + }, + { + "start": 27269.52, + "end": 27269.94, + "probability": 0.8578 + }, + { + "start": 27270.04, + "end": 27273.74, + "probability": 0.9901 + }, + { + "start": 27274.42, + "end": 27275.6, + "probability": 0.8505 + }, + { + "start": 27276.08, + "end": 27280.9, + "probability": 0.9973 + }, + { + "start": 27281.3, + "end": 27284.36, + "probability": 0.9985 + }, + { + "start": 27284.96, + "end": 27286.12, + "probability": 0.7573 + }, + { + "start": 27286.7, + "end": 27288.48, + "probability": 0.8214 + }, + { + "start": 27290.42, + "end": 27291.74, + "probability": 0.903 + }, + { + "start": 27291.84, + "end": 27299.34, + "probability": 0.9972 + }, + { + "start": 27300.36, + "end": 27301.54, + "probability": 0.8105 + }, + { + "start": 27302.2, + "end": 27305.46, + "probability": 0.8543 + }, + { + "start": 27305.46, + "end": 27309.2, + "probability": 0.9948 + }, + { + "start": 27309.54, + "end": 27313.38, + "probability": 0.9929 + }, + { + "start": 27314.26, + "end": 27314.76, + "probability": 0.4769 + }, + { + "start": 27314.92, + "end": 27316.12, + "probability": 0.6923 + }, + { + "start": 27316.4, + "end": 27319.1, + "probability": 0.9743 + }, + { + "start": 27319.66, + "end": 27321.38, + "probability": 0.9424 + }, + { + "start": 27321.92, + "end": 27324.46, + "probability": 0.9445 + }, + { + "start": 27324.96, + "end": 27329.46, + "probability": 0.9879 + }, + { + "start": 27330.0, + "end": 27330.64, + "probability": 0.6517 + }, + { + "start": 27331.46, + "end": 27334.82, + "probability": 0.8921 + }, + { + "start": 27335.34, + "end": 27336.4, + "probability": 0.5546 + }, + { + "start": 27336.92, + "end": 27337.46, + "probability": 0.2396 + }, + { + "start": 27338.44, + "end": 27340.08, + "probability": 0.5025 + }, + { + "start": 27340.36, + "end": 27340.92, + "probability": 0.7489 + }, + { + "start": 27341.54, + "end": 27342.36, + "probability": 0.5123 + }, + { + "start": 27343.02, + "end": 27344.02, + "probability": 0.7538 + }, + { + "start": 27344.4, + "end": 27345.78, + "probability": 0.9548 + }, + { + "start": 27346.02, + "end": 27346.66, + "probability": 0.7576 + }, + { + "start": 27346.78, + "end": 27347.58, + "probability": 0.2721 + }, + { + "start": 27347.74, + "end": 27354.58, + "probability": 0.1682 + }, + { + "start": 27354.92, + "end": 27354.92, + "probability": 0.4063 + }, + { + "start": 27354.92, + "end": 27355.72, + "probability": 0.6036 + }, + { + "start": 27357.06, + "end": 27360.74, + "probability": 0.4152 + }, + { + "start": 27361.36, + "end": 27362.7, + "probability": 0.3384 + }, + { + "start": 27364.16, + "end": 27365.02, + "probability": 0.346 + }, + { + "start": 27365.14, + "end": 27366.92, + "probability": 0.7048 + }, + { + "start": 27366.96, + "end": 27368.72, + "probability": 0.2346 + }, + { + "start": 27369.08, + "end": 27371.15, + "probability": 0.3615 + }, + { + "start": 27378.2, + "end": 27379.42, + "probability": 0.8515 + }, + { + "start": 27379.6, + "end": 27380.75, + "probability": 0.9836 + }, + { + "start": 27382.08, + "end": 27384.68, + "probability": 0.6592 + }, + { + "start": 27385.24, + "end": 27386.72, + "probability": 0.806 + }, + { + "start": 27387.5, + "end": 27392.3, + "probability": 0.9126 + }, + { + "start": 27392.82, + "end": 27396.42, + "probability": 0.6977 + }, + { + "start": 27397.08, + "end": 27400.79, + "probability": 0.9344 + }, + { + "start": 27401.66, + "end": 27406.94, + "probability": 0.9758 + }, + { + "start": 27407.18, + "end": 27408.65, + "probability": 0.8531 + }, + { + "start": 27409.34, + "end": 27416.52, + "probability": 0.9139 + }, + { + "start": 27416.58, + "end": 27419.7, + "probability": 0.9003 + }, + { + "start": 27420.39, + "end": 27424.36, + "probability": 0.4997 + }, + { + "start": 27424.48, + "end": 27424.72, + "probability": 0.3258 + }, + { + "start": 27424.84, + "end": 27426.38, + "probability": 0.8801 + }, + { + "start": 27426.76, + "end": 27429.02, + "probability": 0.9419 + }, + { + "start": 27429.6, + "end": 27430.6, + "probability": 0.9713 + }, + { + "start": 27431.6, + "end": 27438.58, + "probability": 0.9809 + }, + { + "start": 27439.14, + "end": 27442.8, + "probability": 0.9967 + }, + { + "start": 27443.5, + "end": 27446.84, + "probability": 0.9893 + }, + { + "start": 27446.84, + "end": 27451.28, + "probability": 0.9627 + }, + { + "start": 27452.46, + "end": 27455.88, + "probability": 0.9897 + }, + { + "start": 27456.14, + "end": 27457.36, + "probability": 0.8989 + }, + { + "start": 27457.74, + "end": 27459.06, + "probability": 0.9661 + }, + { + "start": 27459.14, + "end": 27461.64, + "probability": 0.8138 + }, + { + "start": 27462.26, + "end": 27463.96, + "probability": 0.9719 + }, + { + "start": 27465.26, + "end": 27472.58, + "probability": 0.9854 + }, + { + "start": 27472.72, + "end": 27473.12, + "probability": 0.9363 + }, + { + "start": 27473.38, + "end": 27477.2, + "probability": 0.9938 + }, + { + "start": 27477.86, + "end": 27478.84, + "probability": 0.7975 + }, + { + "start": 27478.96, + "end": 27480.26, + "probability": 0.7526 + }, + { + "start": 27480.44, + "end": 27481.4, + "probability": 0.9029 + }, + { + "start": 27481.86, + "end": 27484.0, + "probability": 0.9805 + }, + { + "start": 27485.48, + "end": 27489.6, + "probability": 0.8904 + }, + { + "start": 27490.7, + "end": 27492.64, + "probability": 0.9844 + }, + { + "start": 27493.0, + "end": 27498.02, + "probability": 0.976 + }, + { + "start": 27498.36, + "end": 27500.38, + "probability": 0.6582 + }, + { + "start": 27501.04, + "end": 27503.24, + "probability": 0.8432 + }, + { + "start": 27504.0, + "end": 27506.92, + "probability": 0.9933 + }, + { + "start": 27507.38, + "end": 27508.94, + "probability": 0.998 + }, + { + "start": 27510.74, + "end": 27514.68, + "probability": 0.9985 + }, + { + "start": 27515.28, + "end": 27521.22, + "probability": 0.9965 + }, + { + "start": 27521.5, + "end": 27522.08, + "probability": 0.879 + }, + { + "start": 27522.18, + "end": 27522.84, + "probability": 0.6066 + }, + { + "start": 27523.14, + "end": 27526.36, + "probability": 0.9934 + }, + { + "start": 27527.0, + "end": 27534.8, + "probability": 0.9794 + }, + { + "start": 27535.04, + "end": 27537.81, + "probability": 0.7607 + }, + { + "start": 27538.46, + "end": 27539.42, + "probability": 0.9559 + }, + { + "start": 27539.66, + "end": 27545.1, + "probability": 0.998 + }, + { + "start": 27545.5, + "end": 27546.48, + "probability": 0.759 + }, + { + "start": 27546.58, + "end": 27548.36, + "probability": 0.6706 + }, + { + "start": 27549.24, + "end": 27551.88, + "probability": 0.9673 + }, + { + "start": 27552.52, + "end": 27556.92, + "probability": 0.6739 + }, + { + "start": 27557.76, + "end": 27562.7, + "probability": 0.9287 + }, + { + "start": 27563.0, + "end": 27564.33, + "probability": 0.8776 + }, + { + "start": 27565.16, + "end": 27567.36, + "probability": 0.932 + }, + { + "start": 27567.7, + "end": 27571.6, + "probability": 0.9935 + }, + { + "start": 27571.6, + "end": 27575.26, + "probability": 0.8967 + }, + { + "start": 27575.58, + "end": 27576.86, + "probability": 0.9794 + }, + { + "start": 27577.44, + "end": 27579.04, + "probability": 0.9548 + }, + { + "start": 27579.18, + "end": 27583.48, + "probability": 0.201 + }, + { + "start": 27583.48, + "end": 27584.66, + "probability": 0.5007 + }, + { + "start": 27584.66, + "end": 27584.66, + "probability": 0.1653 + }, + { + "start": 27584.66, + "end": 27585.08, + "probability": 0.5596 + }, + { + "start": 27586.1, + "end": 27587.26, + "probability": 0.9146 + }, + { + "start": 27587.8, + "end": 27590.26, + "probability": 0.9446 + }, + { + "start": 27590.78, + "end": 27591.5, + "probability": 0.8085 + }, + { + "start": 27591.7, + "end": 27592.06, + "probability": 0.7969 + }, + { + "start": 27592.82, + "end": 27593.48, + "probability": 0.8135 + }, + { + "start": 27595.78, + "end": 27597.2, + "probability": 0.7816 + }, + { + "start": 27597.28, + "end": 27597.9, + "probability": 0.6414 + }, + { + "start": 27598.38, + "end": 27599.38, + "probability": 0.2681 + }, + { + "start": 27599.54, + "end": 27599.54, + "probability": 0.326 + }, + { + "start": 27599.58, + "end": 27600.3, + "probability": 0.8743 + }, + { + "start": 27601.7, + "end": 27607.0, + "probability": 0.6382 + }, + { + "start": 27607.42, + "end": 27610.3, + "probability": 0.8467 + }, + { + "start": 27612.8, + "end": 27614.14, + "probability": 0.6439 + }, + { + "start": 27614.14, + "end": 27614.14, + "probability": 0.296 + }, + { + "start": 27614.14, + "end": 27615.3, + "probability": 0.5189 + }, + { + "start": 27615.3, + "end": 27616.52, + "probability": 0.5431 + }, + { + "start": 27616.74, + "end": 27619.22, + "probability": 0.9032 + }, + { + "start": 27619.7, + "end": 27620.76, + "probability": 0.388 + }, + { + "start": 27620.82, + "end": 27622.27, + "probability": 0.8015 + }, + { + "start": 27634.22, + "end": 27634.82, + "probability": 0.3045 + }, + { + "start": 27634.92, + "end": 27636.12, + "probability": 0.8361 + }, + { + "start": 27642.0, + "end": 27643.12, + "probability": 0.6662 + }, + { + "start": 27643.22, + "end": 27644.22, + "probability": 0.7964 + }, + { + "start": 27644.32, + "end": 27647.48, + "probability": 0.9976 + }, + { + "start": 27648.24, + "end": 27650.32, + "probability": 0.9819 + }, + { + "start": 27651.34, + "end": 27657.06, + "probability": 0.9875 + }, + { + "start": 27657.16, + "end": 27658.16, + "probability": 0.873 + }, + { + "start": 27659.1, + "end": 27659.1, + "probability": 0.3307 + }, + { + "start": 27659.5, + "end": 27663.86, + "probability": 0.8148 + }, + { + "start": 27664.92, + "end": 27671.59, + "probability": 0.8989 + }, + { + "start": 27671.68, + "end": 27672.26, + "probability": 0.8822 + }, + { + "start": 27672.28, + "end": 27678.9, + "probability": 0.9657 + }, + { + "start": 27679.4, + "end": 27686.7, + "probability": 0.9883 + }, + { + "start": 27687.36, + "end": 27688.76, + "probability": 0.9926 + }, + { + "start": 27689.08, + "end": 27691.24, + "probability": 0.9961 + }, + { + "start": 27692.06, + "end": 27694.25, + "probability": 0.9447 + }, + { + "start": 27695.24, + "end": 27695.8, + "probability": 0.9061 + }, + { + "start": 27695.82, + "end": 27701.48, + "probability": 0.9277 + }, + { + "start": 27703.01, + "end": 27704.78, + "probability": 0.401 + }, + { + "start": 27704.9, + "end": 27709.7, + "probability": 0.6523 + }, + { + "start": 27709.7, + "end": 27713.98, + "probability": 0.9822 + }, + { + "start": 27713.98, + "end": 27717.16, + "probability": 0.9842 + }, + { + "start": 27717.76, + "end": 27721.26, + "probability": 0.9648 + }, + { + "start": 27721.3, + "end": 27724.12, + "probability": 0.8277 + }, + { + "start": 27725.0, + "end": 27728.04, + "probability": 0.9728 + }, + { + "start": 27728.9, + "end": 27730.34, + "probability": 0.7824 + }, + { + "start": 27730.82, + "end": 27731.82, + "probability": 0.9771 + }, + { + "start": 27731.92, + "end": 27732.98, + "probability": 0.8535 + }, + { + "start": 27733.14, + "end": 27734.1, + "probability": 0.7298 + }, + { + "start": 27734.58, + "end": 27737.46, + "probability": 0.9407 + }, + { + "start": 27738.38, + "end": 27741.84, + "probability": 0.9424 + }, + { + "start": 27742.84, + "end": 27744.84, + "probability": 0.9783 + }, + { + "start": 27745.38, + "end": 27750.12, + "probability": 0.9897 + }, + { + "start": 27750.8, + "end": 27751.56, + "probability": 0.9344 + }, + { + "start": 27752.98, + "end": 27756.32, + "probability": 0.8467 + }, + { + "start": 27757.06, + "end": 27759.5, + "probability": 0.8874 + }, + { + "start": 27759.66, + "end": 27766.34, + "probability": 0.9714 + }, + { + "start": 27766.82, + "end": 27767.78, + "probability": 0.7368 + }, + { + "start": 27767.88, + "end": 27770.56, + "probability": 0.8188 + }, + { + "start": 27770.58, + "end": 27772.36, + "probability": 0.8117 + }, + { + "start": 27772.98, + "end": 27776.56, + "probability": 0.9843 + }, + { + "start": 27776.7, + "end": 27780.0, + "probability": 0.9935 + }, + { + "start": 27780.58, + "end": 27781.74, + "probability": 0.9365 + }, + { + "start": 27782.24, + "end": 27784.9, + "probability": 0.8828 + }, + { + "start": 27785.0, + "end": 27787.04, + "probability": 0.9487 + }, + { + "start": 27788.16, + "end": 27790.42, + "probability": 0.9795 + }, + { + "start": 27790.58, + "end": 27792.6, + "probability": 0.9673 + }, + { + "start": 27793.08, + "end": 27796.2, + "probability": 0.793 + }, + { + "start": 27797.12, + "end": 27800.86, + "probability": 0.8014 + }, + { + "start": 27801.74, + "end": 27805.4, + "probability": 0.9609 + }, + { + "start": 27807.28, + "end": 27808.32, + "probability": 0.5968 + }, + { + "start": 27808.8, + "end": 27811.4, + "probability": 0.9459 + }, + { + "start": 27811.4, + "end": 27815.1, + "probability": 0.9723 + }, + { + "start": 27815.86, + "end": 27824.2, + "probability": 0.965 + }, + { + "start": 27824.34, + "end": 27825.28, + "probability": 0.8211 + }, + { + "start": 27825.38, + "end": 27827.12, + "probability": 0.9084 + }, + { + "start": 27828.8, + "end": 27832.42, + "probability": 0.9878 + }, + { + "start": 27833.28, + "end": 27838.56, + "probability": 0.9807 + }, + { + "start": 27839.98, + "end": 27846.42, + "probability": 0.8515 + }, + { + "start": 27847.28, + "end": 27852.26, + "probability": 0.6353 + }, + { + "start": 27852.88, + "end": 27853.48, + "probability": 0.4929 + }, + { + "start": 27854.1, + "end": 27855.66, + "probability": 0.9496 + }, + { + "start": 27856.32, + "end": 27857.9, + "probability": 0.9235 + }, + { + "start": 27858.62, + "end": 27861.32, + "probability": 0.978 + }, + { + "start": 27861.84, + "end": 27865.7, + "probability": 0.9742 + }, + { + "start": 27867.0, + "end": 27869.06, + "probability": 0.5393 + }, + { + "start": 27870.14, + "end": 27873.58, + "probability": 0.9446 + }, + { + "start": 27875.58, + "end": 27876.64, + "probability": 0.9401 + }, + { + "start": 27876.8, + "end": 27881.37, + "probability": 0.9624 + }, + { + "start": 27882.82, + "end": 27887.5, + "probability": 0.7309 + }, + { + "start": 27888.52, + "end": 27893.22, + "probability": 0.8672 + }, + { + "start": 27894.12, + "end": 27898.26, + "probability": 0.9214 + }, + { + "start": 27898.36, + "end": 27903.14, + "probability": 0.9041 + }, + { + "start": 27903.38, + "end": 27906.82, + "probability": 0.8394 + }, + { + "start": 27906.86, + "end": 27912.56, + "probability": 0.9961 + }, + { + "start": 27913.38, + "end": 27915.7, + "probability": 0.999 + }, + { + "start": 27917.2, + "end": 27920.36, + "probability": 0.9853 + }, + { + "start": 27920.36, + "end": 27923.5, + "probability": 0.9988 + }, + { + "start": 27924.14, + "end": 27927.92, + "probability": 0.9426 + }, + { + "start": 27928.64, + "end": 27934.05, + "probability": 0.9219 + }, + { + "start": 27935.54, + "end": 27938.44, + "probability": 0.9239 + }, + { + "start": 27938.96, + "end": 27941.04, + "probability": 0.5496 + }, + { + "start": 27941.06, + "end": 27948.86, + "probability": 0.9816 + }, + { + "start": 27949.38, + "end": 27949.88, + "probability": 0.6842 + }, + { + "start": 27949.88, + "end": 27950.32, + "probability": 0.8016 + }, + { + "start": 27950.7, + "end": 27952.18, + "probability": 0.354 + }, + { + "start": 27952.94, + "end": 27956.76, + "probability": 0.7636 + }, + { + "start": 27957.52, + "end": 27958.96, + "probability": 0.7494 + }, + { + "start": 27959.1, + "end": 27959.68, + "probability": 0.2799 + }, + { + "start": 27959.8, + "end": 27961.54, + "probability": 0.9065 + }, + { + "start": 27961.92, + "end": 27962.46, + "probability": 0.487 + }, + { + "start": 27962.88, + "end": 27965.68, + "probability": 0.6582 + }, + { + "start": 27969.62, + "end": 27970.2, + "probability": 0.3543 + }, + { + "start": 27970.22, + "end": 27975.34, + "probability": 0.8674 + }, + { + "start": 27975.42, + "end": 27975.8, + "probability": 0.2152 + }, + { + "start": 27975.92, + "end": 27976.82, + "probability": 0.7171 + }, + { + "start": 27977.48, + "end": 27979.5, + "probability": 0.4658 + }, + { + "start": 27980.52, + "end": 27982.76, + "probability": 0.4233 + }, + { + "start": 27985.38, + "end": 27986.08, + "probability": 0.7804 + }, + { + "start": 27986.98, + "end": 27988.08, + "probability": 0.0096 + }, + { + "start": 27989.22, + "end": 27990.22, + "probability": 0.0303 + }, + { + "start": 27999.72, + "end": 28002.04, + "probability": 0.4552 + }, + { + "start": 28002.22, + "end": 28004.28, + "probability": 0.7566 + }, + { + "start": 28004.38, + "end": 28009.89, + "probability": 0.9665 + }, + { + "start": 28011.24, + "end": 28011.24, + "probability": 0.0356 + }, + { + "start": 28011.24, + "end": 28011.76, + "probability": 0.4128 + }, + { + "start": 28012.0, + "end": 28014.84, + "probability": 0.4754 + }, + { + "start": 28014.88, + "end": 28016.76, + "probability": 0.3428 + }, + { + "start": 28016.86, + "end": 28018.28, + "probability": 0.5918 + }, + { + "start": 28018.62, + "end": 28019.28, + "probability": 0.7023 + }, + { + "start": 28037.54, + "end": 28041.52, + "probability": 0.2332 + }, + { + "start": 28041.7, + "end": 28042.2, + "probability": 0.2841 + }, + { + "start": 28042.4, + "end": 28045.42, + "probability": 0.609 + }, + { + "start": 28045.74, + "end": 28047.2, + "probability": 0.2731 + }, + { + "start": 28047.94, + "end": 28048.78, + "probability": 0.2652 + }, + { + "start": 28053.3, + "end": 28054.4, + "probability": 0.0882 + }, + { + "start": 28054.9, + "end": 28055.82, + "probability": 0.2063 + }, + { + "start": 28057.18, + "end": 28057.64, + "probability": 0.3665 + }, + { + "start": 28060.06, + "end": 28062.98, + "probability": 0.0227 + }, + { + "start": 28063.28, + "end": 28066.14, + "probability": 0.0328 + }, + { + "start": 28066.76, + "end": 28067.84, + "probability": 0.0076 + }, + { + "start": 28068.5, + "end": 28070.66, + "probability": 0.0308 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28109.0, + "end": 28109.0, + "probability": 0.0 + }, + { + "start": 28122.76, + "end": 28125.96, + "probability": 0.0481 + }, + { + "start": 28126.46, + "end": 28129.42, + "probability": 0.0685 + }, + { + "start": 28129.48, + "end": 28136.54, + "probability": 0.676 + }, + { + "start": 28136.82, + "end": 28138.98, + "probability": 0.7837 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28245.0, + "end": 28245.0, + "probability": 0.0 + }, + { + "start": 28307.36, + "end": 28307.98, + "probability": 0.2586 + }, + { + "start": 28311.54, + "end": 28324.01, + "probability": 0.1278 + }, + { + "start": 28325.9, + "end": 28331.36, + "probability": 0.0206 + }, + { + "start": 28345.04, + "end": 28345.84, + "probability": 0.0877 + }, + { + "start": 28345.9, + "end": 28352.58, + "probability": 0.1256 + }, + { + "start": 28352.58, + "end": 28352.58, + "probability": 0.3487 + }, + { + "start": 28352.58, + "end": 28355.46, + "probability": 0.0953 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.0, + "end": 28385.0, + "probability": 0.0 + }, + { + "start": 28385.2, + "end": 28386.7, + "probability": 0.308 + }, + { + "start": 28388.07, + "end": 28390.17, + "probability": 0.104 + }, + { + "start": 28390.8, + "end": 28391.5, + "probability": 0.2609 + }, + { + "start": 28393.74, + "end": 28394.2, + "probability": 0.017 + }, + { + "start": 28401.41, + "end": 28401.65, + "probability": 0.0782 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.0, + "end": 28507.0, + "probability": 0.0 + }, + { + "start": 28507.12, + "end": 28507.24, + "probability": 0.186 + }, + { + "start": 28507.34, + "end": 28509.32, + "probability": 0.974 + }, + { + "start": 28509.4, + "end": 28510.06, + "probability": 0.9868 + }, + { + "start": 28510.8, + "end": 28511.06, + "probability": 0.8071 + }, + { + "start": 28511.18, + "end": 28512.2, + "probability": 0.8134 + }, + { + "start": 28512.7, + "end": 28518.11, + "probability": 0.9955 + }, + { + "start": 28518.4, + "end": 28524.16, + "probability": 0.9992 + }, + { + "start": 28524.36, + "end": 28527.44, + "probability": 0.9946 + }, + { + "start": 28527.82, + "end": 28530.72, + "probability": 0.9006 + }, + { + "start": 28531.04, + "end": 28531.94, + "probability": 0.9183 + }, + { + "start": 28533.52, + "end": 28535.24, + "probability": 0.1066 + }, + { + "start": 28535.68, + "end": 28536.56, + "probability": 0.3824 + }, + { + "start": 28536.66, + "end": 28538.18, + "probability": 0.65 + }, + { + "start": 28538.46, + "end": 28542.48, + "probability": 0.9854 + }, + { + "start": 28542.68, + "end": 28544.42, + "probability": 0.5276 + }, + { + "start": 28557.62, + "end": 28559.56, + "probability": 0.1594 + }, + { + "start": 28560.06, + "end": 28563.64, + "probability": 0.0588 + }, + { + "start": 28564.04, + "end": 28566.82, + "probability": 0.0743 + }, + { + "start": 28566.9, + "end": 28571.7, + "probability": 0.2911 + }, + { + "start": 28571.76, + "end": 28574.26, + "probability": 0.2442 + }, + { + "start": 28581.92, + "end": 28584.06, + "probability": 0.1951 + }, + { + "start": 28585.08, + "end": 28590.32, + "probability": 0.2914 + }, + { + "start": 28590.56, + "end": 28591.22, + "probability": 0.0782 + }, + { + "start": 28591.22, + "end": 28592.78, + "probability": 0.06 + }, + { + "start": 28593.18, + "end": 28594.98, + "probability": 0.0743 + }, + { + "start": 28594.98, + "end": 28596.16, + "probability": 0.0134 + }, + { + "start": 28598.42, + "end": 28599.8, + "probability": 0.0501 + }, + { + "start": 28599.8, + "end": 28602.38, + "probability": 0.0605 + }, + { + "start": 28602.38, + "end": 28603.2, + "probability": 0.028 + }, + { + "start": 28603.2, + "end": 28605.52, + "probability": 0.1207 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.0, + "end": 28630.0, + "probability": 0.0 + }, + { + "start": 28630.32, + "end": 28631.8, + "probability": 0.2583 + }, + { + "start": 28631.84, + "end": 28632.46, + "probability": 0.024 + }, + { + "start": 28632.74, + "end": 28633.24, + "probability": 0.2143 + }, + { + "start": 28633.24, + "end": 28636.46, + "probability": 0.0379 + }, + { + "start": 28636.46, + "end": 28637.58, + "probability": 0.0701 + }, + { + "start": 28637.92, + "end": 28641.26, + "probability": 0.0718 + }, + { + "start": 28641.72, + "end": 28647.82, + "probability": 0.2239 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.0, + "end": 28751.0, + "probability": 0.0 + }, + { + "start": 28751.1, + "end": 28751.78, + "probability": 0.0705 + }, + { + "start": 28753.0, + "end": 28758.32, + "probability": 0.9613 + }, + { + "start": 28758.42, + "end": 28759.56, + "probability": 0.9325 + }, + { + "start": 28760.26, + "end": 28760.88, + "probability": 0.6141 + }, + { + "start": 28761.86, + "end": 28763.22, + "probability": 0.7367 + }, + { + "start": 28763.66, + "end": 28764.42, + "probability": 0.8843 + }, + { + "start": 28764.46, + "end": 28764.97, + "probability": 0.9404 + }, + { + "start": 28765.5, + "end": 28767.24, + "probability": 0.8376 + }, + { + "start": 28768.06, + "end": 28773.44, + "probability": 0.9959 + }, + { + "start": 28774.18, + "end": 28774.9, + "probability": 0.8485 + }, + { + "start": 28775.52, + "end": 28779.88, + "probability": 0.9897 + }, + { + "start": 28779.88, + "end": 28783.16, + "probability": 0.8795 + }, + { + "start": 28783.58, + "end": 28784.86, + "probability": 0.9872 + }, + { + "start": 28785.22, + "end": 28787.6, + "probability": 0.8812 + }, + { + "start": 28787.7, + "end": 28788.66, + "probability": 0.9865 + }, + { + "start": 28789.24, + "end": 28793.0, + "probability": 0.9683 + }, + { + "start": 28793.1, + "end": 28793.5, + "probability": 0.7505 + }, + { + "start": 28795.5, + "end": 28796.26, + "probability": 0.7921 + }, + { + "start": 28796.78, + "end": 28798.04, + "probability": 0.6315 + }, + { + "start": 28798.16, + "end": 28799.5, + "probability": 0.9094 + }, + { + "start": 28799.6, + "end": 28801.92, + "probability": 0.6963 + }, + { + "start": 28804.66, + "end": 28807.3, + "probability": 0.061 + }, + { + "start": 28807.3, + "end": 28808.04, + "probability": 0.5465 + }, + { + "start": 28808.52, + "end": 28812.26, + "probability": 0.5005 + }, + { + "start": 28812.6, + "end": 28815.59, + "probability": 0.9821 + }, + { + "start": 28822.56, + "end": 28825.76, + "probability": 0.7273 + }, + { + "start": 28825.84, + "end": 28827.16, + "probability": 0.8719 + }, + { + "start": 28827.28, + "end": 28830.12, + "probability": 0.9543 + }, + { + "start": 28830.28, + "end": 28830.86, + "probability": 0.7355 + }, + { + "start": 28831.48, + "end": 28836.22, + "probability": 0.9765 + }, + { + "start": 28837.18, + "end": 28838.66, + "probability": 0.9897 + }, + { + "start": 28838.78, + "end": 28840.16, + "probability": 0.9956 + }, + { + "start": 28840.34, + "end": 28842.7, + "probability": 0.9251 + }, + { + "start": 28843.06, + "end": 28845.04, + "probability": 0.9922 + }, + { + "start": 28846.18, + "end": 28847.48, + "probability": 0.9644 + }, + { + "start": 28847.68, + "end": 28851.48, + "probability": 0.9268 + }, + { + "start": 28851.6, + "end": 28852.34, + "probability": 0.9489 + }, + { + "start": 28852.46, + "end": 28854.4, + "probability": 0.7474 + }, + { + "start": 28855.88, + "end": 28859.3, + "probability": 0.5 + }, + { + "start": 28859.34, + "end": 28860.24, + "probability": 0.8878 + }, + { + "start": 28860.94, + "end": 28861.86, + "probability": 0.9775 + }, + { + "start": 28862.8, + "end": 28864.2, + "probability": 0.9935 + }, + { + "start": 28865.32, + "end": 28871.26, + "probability": 0.9008 + }, + { + "start": 28872.02, + "end": 28873.1, + "probability": 0.8399 + }, + { + "start": 28874.2, + "end": 28875.35, + "probability": 0.9648 + }, + { + "start": 28876.0, + "end": 28878.88, + "probability": 0.9877 + }, + { + "start": 28879.06, + "end": 28880.46, + "probability": 0.7931 + }, + { + "start": 28880.96, + "end": 28882.26, + "probability": 0.9542 + }, + { + "start": 28882.88, + "end": 28888.08, + "probability": 0.8161 + }, + { + "start": 28888.68, + "end": 28890.9, + "probability": 0.7704 + }, + { + "start": 28891.34, + "end": 28893.26, + "probability": 0.8492 + }, + { + "start": 28893.84, + "end": 28897.98, + "probability": 0.9019 + }, + { + "start": 28898.56, + "end": 28900.24, + "probability": 0.0592 + }, + { + "start": 28900.24, + "end": 28901.48, + "probability": 0.4276 + }, + { + "start": 28901.48, + "end": 28904.82, + "probability": 0.938 + }, + { + "start": 28905.06, + "end": 28907.18, + "probability": 0.994 + }, + { + "start": 28908.2, + "end": 28909.0, + "probability": 0.3377 + }, + { + "start": 28909.0, + "end": 28909.0, + "probability": 0.0136 + }, + { + "start": 28909.0, + "end": 28909.0, + "probability": 0.0297 + }, + { + "start": 28909.0, + "end": 28909.0, + "probability": 0.201 + }, + { + "start": 28909.0, + "end": 28912.06, + "probability": 0.9146 + }, + { + "start": 28912.58, + "end": 28915.04, + "probability": 0.8869 + }, + { + "start": 28915.42, + "end": 28917.54, + "probability": 0.9933 + }, + { + "start": 28918.36, + "end": 28919.18, + "probability": 0.8891 + }, + { + "start": 28920.28, + "end": 28925.14, + "probability": 0.983 + }, + { + "start": 28925.5, + "end": 28930.12, + "probability": 0.9957 + }, + { + "start": 28930.62, + "end": 28933.96, + "probability": 0.8057 + }, + { + "start": 28934.14, + "end": 28934.82, + "probability": 0.9309 + }, + { + "start": 28935.08, + "end": 28935.6, + "probability": 0.9167 + }, + { + "start": 28935.68, + "end": 28936.82, + "probability": 0.9846 + }, + { + "start": 28936.82, + "end": 28938.0, + "probability": 0.2497 + }, + { + "start": 28938.0, + "end": 28938.48, + "probability": 0.3169 + }, + { + "start": 28938.78, + "end": 28943.64, + "probability": 0.9976 + }, + { + "start": 28944.18, + "end": 28946.13, + "probability": 0.9885 + }, + { + "start": 28946.86, + "end": 28952.33, + "probability": 0.9722 + }, + { + "start": 28952.62, + "end": 28952.84, + "probability": 0.0166 + }, + { + "start": 28952.84, + "end": 28956.32, + "probability": 0.7498 + }, + { + "start": 28956.72, + "end": 28958.22, + "probability": 0.2027 + }, + { + "start": 28958.82, + "end": 28959.5, + "probability": 0.2817 + }, + { + "start": 28959.5, + "end": 28959.5, + "probability": 0.1557 + }, + { + "start": 28959.5, + "end": 28961.3, + "probability": 0.9972 + }, + { + "start": 28961.68, + "end": 28963.4, + "probability": 0.9982 + }, + { + "start": 28964.16, + "end": 28967.86, + "probability": 0.5512 + }, + { + "start": 28967.86, + "end": 28967.86, + "probability": 0.1263 + }, + { + "start": 28967.86, + "end": 28972.88, + "probability": 0.7316 + }, + { + "start": 28973.28, + "end": 28974.32, + "probability": 0.7978 + }, + { + "start": 28974.32, + "end": 28976.1, + "probability": 0.9099 + }, + { + "start": 28976.64, + "end": 28977.6, + "probability": 0.7392 + }, + { + "start": 28977.66, + "end": 28980.7, + "probability": 0.9751 + }, + { + "start": 28980.9, + "end": 28983.22, + "probability": 0.9916 + }, + { + "start": 28983.48, + "end": 28989.12, + "probability": 0.9593 + }, + { + "start": 28989.74, + "end": 28990.54, + "probability": 0.0779 + }, + { + "start": 28992.22, + "end": 28992.38, + "probability": 0.2751 + }, + { + "start": 28993.56, + "end": 28994.46, + "probability": 0.0543 + }, + { + "start": 28995.5, + "end": 28996.14, + "probability": 0.1134 + }, + { + "start": 28997.08, + "end": 28998.38, + "probability": 0.147 + }, + { + "start": 28999.8, + "end": 29000.5, + "probability": 0.254 + }, + { + "start": 29000.68, + "end": 29001.0, + "probability": 0.4273 + }, + { + "start": 29001.14, + "end": 29001.96, + "probability": 0.2791 + }, + { + "start": 29001.96, + "end": 29002.34, + "probability": 0.6552 + }, + { + "start": 29003.14, + "end": 29005.16, + "probability": 0.3867 + }, + { + "start": 29005.36, + "end": 29006.66, + "probability": 0.094 + }, + { + "start": 29009.18, + "end": 29010.18, + "probability": 0.0395 + }, + { + "start": 29010.84, + "end": 29011.58, + "probability": 0.0195 + }, + { + "start": 29012.16, + "end": 29013.1, + "probability": 0.1109 + }, + { + "start": 29013.26, + "end": 29013.26, + "probability": 0.0365 + }, + { + "start": 29013.26, + "end": 29013.7, + "probability": 0.0298 + }, + { + "start": 29014.06, + "end": 29014.06, + "probability": 0.2472 + }, + { + "start": 29014.4, + "end": 29014.4, + "probability": 0.0178 + }, + { + "start": 29014.4, + "end": 29014.4, + "probability": 0.0156 + }, + { + "start": 29014.4, + "end": 29017.0, + "probability": 0.5021 + }, + { + "start": 29019.63, + "end": 29019.75, + "probability": 0.031 + }, + { + "start": 29020.9, + "end": 29029.4, + "probability": 0.3165 + }, + { + "start": 29030.4, + "end": 29030.58, + "probability": 0.1061 + }, + { + "start": 29031.08, + "end": 29031.16, + "probability": 0.3127 + }, + { + "start": 29031.32, + "end": 29031.64, + "probability": 0.3087 + }, + { + "start": 29031.64, + "end": 29031.64, + "probability": 0.2921 + }, + { + "start": 29031.64, + "end": 29031.64, + "probability": 0.0521 + }, + { + "start": 29031.64, + "end": 29031.64, + "probability": 0.2907 + }, + { + "start": 29031.64, + "end": 29031.82, + "probability": 0.0636 + }, + { + "start": 29031.82, + "end": 29036.84, + "probability": 0.948 + }, + { + "start": 29036.84, + "end": 29040.01, + "probability": 0.9826 + }, + { + "start": 29040.76, + "end": 29046.42, + "probability": 0.9066 + }, + { + "start": 29046.48, + "end": 29048.6, + "probability": 0.9937 + }, + { + "start": 29049.1, + "end": 29049.56, + "probability": 0.6741 + }, + { + "start": 29050.28, + "end": 29053.98, + "probability": 0.9865 + }, + { + "start": 29054.9, + "end": 29060.28, + "probability": 0.9983 + }, + { + "start": 29060.98, + "end": 29063.56, + "probability": 0.712 + }, + { + "start": 29064.22, + "end": 29065.14, + "probability": 0.5985 + }, + { + "start": 29065.38, + "end": 29066.02, + "probability": 0.6829 + }, + { + "start": 29066.14, + "end": 29072.28, + "probability": 0.9635 + }, + { + "start": 29072.84, + "end": 29076.3, + "probability": 0.5289 + }, + { + "start": 29076.66, + "end": 29080.3, + "probability": 0.9941 + }, + { + "start": 29081.92, + "end": 29088.2, + "probability": 0.7806 + }, + { + "start": 29088.72, + "end": 29092.24, + "probability": 0.7531 + }, + { + "start": 29092.74, + "end": 29093.28, + "probability": 0.8311 + }, + { + "start": 29094.34, + "end": 29097.56, + "probability": 0.8337 + }, + { + "start": 29098.24, + "end": 29099.06, + "probability": 0.5118 + }, + { + "start": 29099.24, + "end": 29101.9, + "probability": 0.7401 + }, + { + "start": 29102.44, + "end": 29103.82, + "probability": 0.9612 + }, + { + "start": 29104.1, + "end": 29105.44, + "probability": 0.9951 + }, + { + "start": 29105.5, + "end": 29106.66, + "probability": 0.7282 + }, + { + "start": 29106.9, + "end": 29108.7, + "probability": 0.9565 + }, + { + "start": 29109.16, + "end": 29111.52, + "probability": 0.881 + }, + { + "start": 29112.42, + "end": 29119.26, + "probability": 0.9982 + }, + { + "start": 29120.28, + "end": 29121.3, + "probability": 0.582 + }, + { + "start": 29122.52, + "end": 29126.96, + "probability": 0.8868 + }, + { + "start": 29127.98, + "end": 29129.2, + "probability": 0.8268 + }, + { + "start": 29130.66, + "end": 29136.6, + "probability": 0.7404 + }, + { + "start": 29137.2, + "end": 29138.1, + "probability": 0.8125 + }, + { + "start": 29138.76, + "end": 29141.2, + "probability": 0.7798 + }, + { + "start": 29141.6, + "end": 29143.96, + "probability": 0.9875 + }, + { + "start": 29145.02, + "end": 29148.61, + "probability": 0.7782 + }, + { + "start": 29149.12, + "end": 29149.94, + "probability": 0.4266 + }, + { + "start": 29150.32, + "end": 29151.76, + "probability": 0.8748 + }, + { + "start": 29152.26, + "end": 29154.1, + "probability": 0.8113 + }, + { + "start": 29154.14, + "end": 29156.34, + "probability": 0.9438 + }, + { + "start": 29156.66, + "end": 29158.92, + "probability": 0.8538 + }, + { + "start": 29159.18, + "end": 29164.9, + "probability": 0.9714 + }, + { + "start": 29165.8, + "end": 29167.78, + "probability": 0.7456 + }, + { + "start": 29168.3, + "end": 29171.54, + "probability": 0.9855 + }, + { + "start": 29171.86, + "end": 29172.96, + "probability": 0.6321 + }, + { + "start": 29172.96, + "end": 29174.26, + "probability": 0.5537 + }, + { + "start": 29174.78, + "end": 29178.69, + "probability": 0.8027 + }, + { + "start": 29179.12, + "end": 29183.4, + "probability": 0.6936 + }, + { + "start": 29183.7, + "end": 29184.42, + "probability": 0.6502 + }, + { + "start": 29184.42, + "end": 29184.42, + "probability": 0.739 + }, + { + "start": 29184.42, + "end": 29184.94, + "probability": 0.2508 + }, + { + "start": 29185.12, + "end": 29187.58, + "probability": 0.835 + }, + { + "start": 29187.9, + "end": 29189.74, + "probability": 0.7734 + }, + { + "start": 29190.28, + "end": 29190.74, + "probability": 0.0859 + }, + { + "start": 29190.74, + "end": 29192.44, + "probability": 0.4721 + }, + { + "start": 29192.44, + "end": 29197.2, + "probability": 0.8464 + }, + { + "start": 29197.76, + "end": 29199.28, + "probability": 0.8718 + }, + { + "start": 29199.78, + "end": 29201.66, + "probability": 0.6966 + }, + { + "start": 29201.7, + "end": 29202.76, + "probability": 0.6289 + }, + { + "start": 29203.1, + "end": 29206.6, + "probability": 0.9574 + }, + { + "start": 29206.6, + "end": 29206.6, + "probability": 0.1517 + }, + { + "start": 29206.6, + "end": 29207.3, + "probability": 0.2416 + }, + { + "start": 29207.38, + "end": 29207.84, + "probability": 0.5269 + }, + { + "start": 29208.38, + "end": 29210.12, + "probability": 0.543 + }, + { + "start": 29210.2, + "end": 29211.14, + "probability": 0.3104 + }, + { + "start": 29211.14, + "end": 29212.16, + "probability": 0.6902 + }, + { + "start": 29212.4, + "end": 29214.0, + "probability": 0.9014 + }, + { + "start": 29214.6, + "end": 29217.82, + "probability": 0.8752 + }, + { + "start": 29218.38, + "end": 29221.46, + "probability": 0.775 + }, + { + "start": 29221.8, + "end": 29228.04, + "probability": 0.9679 + }, + { + "start": 29228.16, + "end": 29228.38, + "probability": 0.584 + }, + { + "start": 29228.4, + "end": 29230.4, + "probability": 0.479 + }, + { + "start": 29230.68, + "end": 29233.92, + "probability": 0.9661 + }, + { + "start": 29234.5, + "end": 29234.94, + "probability": 0.5993 + }, + { + "start": 29235.02, + "end": 29236.14, + "probability": 0.52 + }, + { + "start": 29236.3, + "end": 29238.9, + "probability": 0.673 + }, + { + "start": 29239.02, + "end": 29239.7, + "probability": 0.8153 + }, + { + "start": 29240.21, + "end": 29243.54, + "probability": 0.8137 + }, + { + "start": 29243.76, + "end": 29244.24, + "probability": 0.7203 + }, + { + "start": 29244.26, + "end": 29247.44, + "probability": 0.9876 + }, + { + "start": 29247.54, + "end": 29248.52, + "probability": 0.6232 + }, + { + "start": 29248.54, + "end": 29250.52, + "probability": 0.9462 + }, + { + "start": 29250.52, + "end": 29254.52, + "probability": 0.9524 + }, + { + "start": 29254.8, + "end": 29255.5, + "probability": 0.7994 + }, + { + "start": 29256.68, + "end": 29260.26, + "probability": 0.7609 + }, + { + "start": 29260.32, + "end": 29261.0, + "probability": 0.8861 + }, + { + "start": 29261.16, + "end": 29263.62, + "probability": 0.5061 + }, + { + "start": 29263.8, + "end": 29265.6, + "probability": 0.8096 + }, + { + "start": 29265.68, + "end": 29266.78, + "probability": 0.8387 + }, + { + "start": 29266.86, + "end": 29268.6, + "probability": 0.8747 + }, + { + "start": 29268.6, + "end": 29271.32, + "probability": 0.8192 + }, + { + "start": 29271.34, + "end": 29274.88, + "probability": 0.3641 + }, + { + "start": 29275.02, + "end": 29277.42, + "probability": 0.6116 + }, + { + "start": 29277.52, + "end": 29279.2, + "probability": 0.9844 + }, + { + "start": 29280.02, + "end": 29280.96, + "probability": 0.814 + }, + { + "start": 29281.0, + "end": 29286.92, + "probability": 0.8532 + }, + { + "start": 29287.34, + "end": 29288.64, + "probability": 0.9073 + }, + { + "start": 29289.44, + "end": 29290.98, + "probability": 0.8387 + }, + { + "start": 29291.06, + "end": 29292.88, + "probability": 0.4071 + }, + { + "start": 29292.88, + "end": 29297.7, + "probability": 0.9855 + }, + { + "start": 29298.02, + "end": 29298.6, + "probability": 0.3093 + }, + { + "start": 29301.48, + "end": 29303.4, + "probability": 0.1132 + }, + { + "start": 29306.22, + "end": 29306.82, + "probability": 0.2183 + }, + { + "start": 29322.8, + "end": 29327.88, + "probability": 0.9795 + }, + { + "start": 29328.14, + "end": 29329.32, + "probability": 0.3109 + }, + { + "start": 29329.68, + "end": 29334.44, + "probability": 0.3949 + }, + { + "start": 29334.44, + "end": 29335.16, + "probability": 0.0646 + }, + { + "start": 29340.96, + "end": 29344.54, + "probability": 0.6568 + }, + { + "start": 29344.54, + "end": 29346.82, + "probability": 0.0135 + }, + { + "start": 29346.82, + "end": 29347.0, + "probability": 0.1174 + }, + { + "start": 29347.04, + "end": 29350.0, + "probability": 0.2181 + }, + { + "start": 29350.84, + "end": 29351.36, + "probability": 0.0262 + }, + { + "start": 29354.4, + "end": 29356.24, + "probability": 0.11 + }, + { + "start": 29359.94, + "end": 29362.54, + "probability": 0.1468 + }, + { + "start": 29362.54, + "end": 29364.29, + "probability": 0.0326 + }, + { + "start": 29364.64, + "end": 29364.74, + "probability": 0.335 + }, + { + "start": 29364.74, + "end": 29365.8, + "probability": 0.0699 + }, + { + "start": 29365.8, + "end": 29367.02, + "probability": 0.0505 + }, + { + "start": 29367.02, + "end": 29368.1, + "probability": 0.051 + }, + { + "start": 29368.54, + "end": 29369.38, + "probability": 0.0304 + }, + { + "start": 29369.92, + "end": 29369.98, + "probability": 0.1874 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.14, + "end": 29372.25, + "probability": 0.2302 + }, + { + "start": 29372.56, + "end": 29374.6, + "probability": 0.3231 + }, + { + "start": 29374.88, + "end": 29376.41, + "probability": 0.0996 + }, + { + "start": 29385.42, + "end": 29386.06, + "probability": 0.0103 + }, + { + "start": 29386.24, + "end": 29386.58, + "probability": 0.1652 + }, + { + "start": 29389.82, + "end": 29390.76, + "probability": 0.0149 + }, + { + "start": 29390.76, + "end": 29390.76, + "probability": 0.0576 + }, + { + "start": 29390.76, + "end": 29392.36, + "probability": 0.0498 + }, + { + "start": 29392.68, + "end": 29393.62, + "probability": 0.0554 + }, + { + "start": 29393.62, + "end": 29394.97, + "probability": 0.1177 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + }, + { + "start": 29828.22, + "end": 29828.22, + "probability": 0.0 + } + ], + "segments_count": 11550, + "words_count": 56737, + "avg_words_per_segment": 4.9123, + "avg_segment_duration": 1.721, + "avg_words_per_minute": 114.1275, + "plenum_id": "133828", + "duration": 29828.22, + "title": null, + "plenum_date": "2024-12-24" +} \ No newline at end of file