diff --git "a/103480/metadata.json" "b/103480/metadata.json" new file mode 100644--- /dev/null +++ "b/103480/metadata.json" @@ -0,0 +1,98767 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "103480", + "quality_score": 0.8032, + "per_segment_quality_scores": [ + { + "start": 104.6, + "end": 105.88, + "probability": 0.6563 + }, + { + "start": 105.88, + "end": 107.32, + "probability": 0.6901 + }, + { + "start": 107.42, + "end": 108.94, + "probability": 0.9642 + }, + { + "start": 109.04, + "end": 109.84, + "probability": 0.7254 + }, + { + "start": 110.02, + "end": 110.98, + "probability": 0.7973 + }, + { + "start": 111.8, + "end": 114.72, + "probability": 0.9141 + }, + { + "start": 115.06, + "end": 117.6, + "probability": 0.5846 + }, + { + "start": 119.38, + "end": 121.72, + "probability": 0.8496 + }, + { + "start": 121.9, + "end": 124.5, + "probability": 0.2561 + }, + { + "start": 125.28, + "end": 126.42, + "probability": 0.3353 + }, + { + "start": 129.1, + "end": 130.3, + "probability": 0.7899 + }, + { + "start": 136.32, + "end": 138.58, + "probability": 0.348 + }, + { + "start": 141.28, + "end": 141.38, + "probability": 0.2239 + }, + { + "start": 142.18, + "end": 145.46, + "probability": 0.7835 + }, + { + "start": 145.72, + "end": 147.94, + "probability": 0.804 + }, + { + "start": 148.4, + "end": 152.16, + "probability": 0.8921 + }, + { + "start": 152.22, + "end": 152.74, + "probability": 0.4559 + }, + { + "start": 157.0, + "end": 157.86, + "probability": 0.7794 + }, + { + "start": 165.98, + "end": 166.8, + "probability": 0.668 + }, + { + "start": 168.62, + "end": 169.86, + "probability": 0.4954 + }, + { + "start": 170.82, + "end": 177.18, + "probability": 0.981 + }, + { + "start": 177.84, + "end": 179.1, + "probability": 0.9819 + }, + { + "start": 180.08, + "end": 184.7, + "probability": 0.9934 + }, + { + "start": 185.82, + "end": 190.08, + "probability": 0.9871 + }, + { + "start": 190.92, + "end": 193.6, + "probability": 0.9628 + }, + { + "start": 194.6, + "end": 196.94, + "probability": 0.5924 + }, + { + "start": 198.02, + "end": 198.72, + "probability": 0.8259 + }, + { + "start": 200.12, + "end": 202.46, + "probability": 0.9878 + }, + { + "start": 205.02, + "end": 207.22, + "probability": 0.9638 + }, + { + "start": 207.82, + "end": 208.74, + "probability": 0.8404 + }, + { + "start": 208.86, + "end": 210.04, + "probability": 0.8571 + }, + { + "start": 210.48, + "end": 211.94, + "probability": 0.9615 + }, + { + "start": 212.16, + "end": 212.88, + "probability": 0.6748 + }, + { + "start": 212.92, + "end": 213.34, + "probability": 0.677 + }, + { + "start": 214.44, + "end": 215.4, + "probability": 0.9182 + }, + { + "start": 215.52, + "end": 219.92, + "probability": 0.967 + }, + { + "start": 219.98, + "end": 222.9, + "probability": 0.9678 + }, + { + "start": 222.92, + "end": 223.68, + "probability": 0.5816 + }, + { + "start": 225.17, + "end": 226.24, + "probability": 0.6639 + }, + { + "start": 227.1, + "end": 228.62, + "probability": 0.6625 + }, + { + "start": 228.8, + "end": 231.6, + "probability": 0.7954 + }, + { + "start": 232.26, + "end": 235.1, + "probability": 0.9512 + }, + { + "start": 235.78, + "end": 237.4, + "probability": 0.9717 + }, + { + "start": 237.52, + "end": 241.0, + "probability": 0.8967 + }, + { + "start": 241.22, + "end": 244.42, + "probability": 0.9912 + }, + { + "start": 245.76, + "end": 248.28, + "probability": 0.8818 + }, + { + "start": 249.18, + "end": 251.36, + "probability": 0.5363 + }, + { + "start": 252.95, + "end": 257.12, + "probability": 0.892 + }, + { + "start": 257.3, + "end": 259.52, + "probability": 0.8298 + }, + { + "start": 260.06, + "end": 261.58, + "probability": 0.8818 + }, + { + "start": 261.68, + "end": 263.36, + "probability": 0.7507 + }, + { + "start": 264.08, + "end": 267.28, + "probability": 0.6656 + }, + { + "start": 268.06, + "end": 272.46, + "probability": 0.9878 + }, + { + "start": 272.5, + "end": 273.52, + "probability": 0.8757 + }, + { + "start": 277.38, + "end": 281.66, + "probability": 0.9767 + }, + { + "start": 282.42, + "end": 284.92, + "probability": 0.9302 + }, + { + "start": 285.5, + "end": 286.27, + "probability": 0.9961 + }, + { + "start": 288.16, + "end": 293.14, + "probability": 0.9941 + }, + { + "start": 293.38, + "end": 294.02, + "probability": 0.9429 + }, + { + "start": 295.02, + "end": 297.42, + "probability": 0.8081 + }, + { + "start": 298.84, + "end": 300.32, + "probability": 0.9884 + }, + { + "start": 301.2, + "end": 303.42, + "probability": 0.967 + }, + { + "start": 303.54, + "end": 306.78, + "probability": 0.9533 + }, + { + "start": 308.06, + "end": 312.06, + "probability": 0.9556 + }, + { + "start": 312.94, + "end": 315.02, + "probability": 0.8458 + }, + { + "start": 315.78, + "end": 322.38, + "probability": 0.9954 + }, + { + "start": 322.48, + "end": 322.9, + "probability": 0.9102 + }, + { + "start": 323.02, + "end": 323.52, + "probability": 0.9642 + }, + { + "start": 323.58, + "end": 323.68, + "probability": 0.751 + }, + { + "start": 324.62, + "end": 326.74, + "probability": 0.9968 + }, + { + "start": 328.24, + "end": 330.5, + "probability": 0.9797 + }, + { + "start": 331.54, + "end": 333.98, + "probability": 0.8948 + }, + { + "start": 334.88, + "end": 335.94, + "probability": 0.8657 + }, + { + "start": 336.46, + "end": 336.56, + "probability": 0.9883 + }, + { + "start": 337.7, + "end": 338.66, + "probability": 0.7884 + }, + { + "start": 338.76, + "end": 339.44, + "probability": 0.7085 + }, + { + "start": 340.04, + "end": 341.02, + "probability": 0.9758 + }, + { + "start": 341.84, + "end": 343.12, + "probability": 0.7408 + }, + { + "start": 343.44, + "end": 344.44, + "probability": 0.985 + }, + { + "start": 347.0, + "end": 347.28, + "probability": 0.5197 + }, + { + "start": 347.48, + "end": 348.0, + "probability": 0.7512 + }, + { + "start": 349.82, + "end": 350.7, + "probability": 0.9801 + }, + { + "start": 351.06, + "end": 351.86, + "probability": 0.8499 + }, + { + "start": 352.64, + "end": 352.64, + "probability": 0.1429 + }, + { + "start": 352.64, + "end": 352.64, + "probability": 0.3256 + }, + { + "start": 352.64, + "end": 352.98, + "probability": 0.4518 + }, + { + "start": 353.04, + "end": 356.72, + "probability": 0.9222 + }, + { + "start": 357.14, + "end": 360.22, + "probability": 0.9294 + }, + { + "start": 360.22, + "end": 364.54, + "probability": 0.9445 + }, + { + "start": 364.96, + "end": 365.38, + "probability": 0.5749 + }, + { + "start": 365.8, + "end": 370.24, + "probability": 0.991 + }, + { + "start": 370.62, + "end": 373.96, + "probability": 0.9889 + }, + { + "start": 374.36, + "end": 375.22, + "probability": 0.8026 + }, + { + "start": 376.18, + "end": 378.34, + "probability": 0.9626 + }, + { + "start": 378.6, + "end": 381.34, + "probability": 0.9631 + }, + { + "start": 382.16, + "end": 387.6, + "probability": 0.9901 + }, + { + "start": 387.78, + "end": 389.02, + "probability": 0.8427 + }, + { + "start": 389.18, + "end": 390.12, + "probability": 0.7071 + }, + { + "start": 390.8, + "end": 391.68, + "probability": 0.7496 + }, + { + "start": 392.4, + "end": 393.44, + "probability": 0.817 + }, + { + "start": 393.52, + "end": 396.1, + "probability": 0.8761 + }, + { + "start": 396.4, + "end": 397.38, + "probability": 0.7851 + }, + { + "start": 397.56, + "end": 398.4, + "probability": 0.8941 + }, + { + "start": 398.54, + "end": 398.64, + "probability": 0.7178 + }, + { + "start": 399.76, + "end": 399.86, + "probability": 0.1605 + }, + { + "start": 399.88, + "end": 401.82, + "probability": 0.8157 + }, + { + "start": 402.18, + "end": 405.64, + "probability": 0.972 + }, + { + "start": 406.44, + "end": 407.36, + "probability": 0.9092 + }, + { + "start": 407.94, + "end": 411.34, + "probability": 0.6914 + }, + { + "start": 411.9, + "end": 413.2, + "probability": 0.9479 + }, + { + "start": 413.86, + "end": 418.84, + "probability": 0.9893 + }, + { + "start": 418.88, + "end": 420.68, + "probability": 0.6834 + }, + { + "start": 420.8, + "end": 423.8, + "probability": 0.9582 + }, + { + "start": 424.86, + "end": 427.22, + "probability": 0.9847 + }, + { + "start": 428.38, + "end": 429.37, + "probability": 0.8049 + }, + { + "start": 430.06, + "end": 433.41, + "probability": 0.7992 + }, + { + "start": 433.84, + "end": 434.0, + "probability": 0.0428 + }, + { + "start": 434.1, + "end": 434.74, + "probability": 0.7536 + }, + { + "start": 434.78, + "end": 438.74, + "probability": 0.9667 + }, + { + "start": 439.46, + "end": 440.24, + "probability": 0.7808 + }, + { + "start": 441.0, + "end": 443.6, + "probability": 0.9758 + }, + { + "start": 443.96, + "end": 445.28, + "probability": 0.9958 + }, + { + "start": 445.84, + "end": 446.98, + "probability": 0.9285 + }, + { + "start": 447.94, + "end": 450.92, + "probability": 0.8325 + }, + { + "start": 451.38, + "end": 455.86, + "probability": 0.9684 + }, + { + "start": 455.98, + "end": 456.36, + "probability": 0.6 + }, + { + "start": 456.84, + "end": 459.74, + "probability": 0.9945 + }, + { + "start": 459.84, + "end": 462.92, + "probability": 0.9684 + }, + { + "start": 463.64, + "end": 465.82, + "probability": 0.8784 + }, + { + "start": 466.44, + "end": 468.12, + "probability": 0.9976 + }, + { + "start": 468.76, + "end": 470.7, + "probability": 0.8261 + }, + { + "start": 470.82, + "end": 474.76, + "probability": 0.8091 + }, + { + "start": 475.62, + "end": 479.32, + "probability": 0.9771 + }, + { + "start": 479.88, + "end": 484.72, + "probability": 0.9939 + }, + { + "start": 484.86, + "end": 487.26, + "probability": 0.9365 + }, + { + "start": 487.88, + "end": 488.6, + "probability": 0.8206 + }, + { + "start": 489.48, + "end": 492.34, + "probability": 0.9924 + }, + { + "start": 493.32, + "end": 496.1, + "probability": 0.9681 + }, + { + "start": 496.66, + "end": 499.86, + "probability": 0.9666 + }, + { + "start": 501.02, + "end": 501.24, + "probability": 0.9438 + }, + { + "start": 501.94, + "end": 504.41, + "probability": 0.957 + }, + { + "start": 505.2, + "end": 510.36, + "probability": 0.9916 + }, + { + "start": 510.62, + "end": 512.72, + "probability": 0.8424 + }, + { + "start": 514.6, + "end": 514.98, + "probability": 0.9502 + }, + { + "start": 515.44, + "end": 523.18, + "probability": 0.9197 + }, + { + "start": 525.08, + "end": 532.78, + "probability": 0.7148 + }, + { + "start": 533.84, + "end": 536.46, + "probability": 0.7189 + }, + { + "start": 536.52, + "end": 538.22, + "probability": 0.9441 + }, + { + "start": 538.22, + "end": 538.66, + "probability": 0.7988 + }, + { + "start": 539.4, + "end": 539.96, + "probability": 0.7979 + }, + { + "start": 540.8, + "end": 544.76, + "probability": 0.915 + }, + { + "start": 544.98, + "end": 545.26, + "probability": 0.5601 + }, + { + "start": 546.3, + "end": 546.98, + "probability": 0.2641 + }, + { + "start": 547.54, + "end": 548.6, + "probability": 0.8131 + }, + { + "start": 548.9, + "end": 550.68, + "probability": 0.9875 + }, + { + "start": 551.12, + "end": 553.28, + "probability": 0.8621 + }, + { + "start": 553.36, + "end": 556.44, + "probability": 0.7748 + }, + { + "start": 556.94, + "end": 560.16, + "probability": 0.9917 + }, + { + "start": 561.1, + "end": 562.22, + "probability": 0.9979 + }, + { + "start": 562.86, + "end": 565.64, + "probability": 0.8871 + }, + { + "start": 565.82, + "end": 566.92, + "probability": 0.9637 + }, + { + "start": 567.5, + "end": 569.52, + "probability": 0.9541 + }, + { + "start": 570.5, + "end": 572.1, + "probability": 0.8444 + }, + { + "start": 573.36, + "end": 574.12, + "probability": 0.825 + }, + { + "start": 574.86, + "end": 577.48, + "probability": 0.9202 + }, + { + "start": 578.84, + "end": 579.95, + "probability": 0.9229 + }, + { + "start": 590.98, + "end": 590.98, + "probability": 0.5511 + }, + { + "start": 590.98, + "end": 592.08, + "probability": 0.4882 + }, + { + "start": 592.66, + "end": 595.66, + "probability": 0.6812 + }, + { + "start": 597.34, + "end": 597.98, + "probability": 0.6803 + }, + { + "start": 598.16, + "end": 604.05, + "probability": 0.9241 + }, + { + "start": 605.18, + "end": 607.48, + "probability": 0.9413 + }, + { + "start": 608.4, + "end": 608.92, + "probability": 0.8 + }, + { + "start": 610.96, + "end": 612.04, + "probability": 0.7786 + }, + { + "start": 612.62, + "end": 614.2, + "probability": 0.9332 + }, + { + "start": 614.94, + "end": 617.62, + "probability": 0.9963 + }, + { + "start": 618.28, + "end": 621.14, + "probability": 0.8286 + }, + { + "start": 621.4, + "end": 622.06, + "probability": 0.2014 + }, + { + "start": 622.06, + "end": 625.45, + "probability": 0.9578 + }, + { + "start": 625.8, + "end": 629.58, + "probability": 0.8616 + }, + { + "start": 630.02, + "end": 631.64, + "probability": 0.6153 + }, + { + "start": 632.22, + "end": 635.68, + "probability": 0.9985 + }, + { + "start": 636.28, + "end": 637.76, + "probability": 0.377 + }, + { + "start": 637.98, + "end": 640.12, + "probability": 0.6163 + }, + { + "start": 642.56, + "end": 644.32, + "probability": 0.7379 + }, + { + "start": 645.36, + "end": 647.36, + "probability": 0.998 + }, + { + "start": 648.24, + "end": 650.12, + "probability": 0.9492 + }, + { + "start": 651.92, + "end": 654.86, + "probability": 0.9408 + }, + { + "start": 655.58, + "end": 657.06, + "probability": 0.992 + }, + { + "start": 657.1, + "end": 657.78, + "probability": 0.7996 + }, + { + "start": 657.84, + "end": 661.9, + "probability": 0.9401 + }, + { + "start": 663.52, + "end": 664.38, + "probability": 0.8523 + }, + { + "start": 665.16, + "end": 667.3, + "probability": 0.9956 + }, + { + "start": 667.3, + "end": 671.4, + "probability": 0.9811 + }, + { + "start": 672.88, + "end": 676.3, + "probability": 0.9806 + }, + { + "start": 676.94, + "end": 678.94, + "probability": 0.9637 + }, + { + "start": 680.2, + "end": 683.5, + "probability": 0.9736 + }, + { + "start": 684.68, + "end": 687.1, + "probability": 0.976 + }, + { + "start": 688.5, + "end": 689.24, + "probability": 0.9429 + }, + { + "start": 689.88, + "end": 690.2, + "probability": 0.8276 + }, + { + "start": 691.18, + "end": 692.72, + "probability": 0.8397 + }, + { + "start": 693.16, + "end": 695.2, + "probability": 0.2419 + }, + { + "start": 696.36, + "end": 698.96, + "probability": 0.8885 + }, + { + "start": 700.66, + "end": 701.04, + "probability": 0.3249 + }, + { + "start": 702.61, + "end": 703.56, + "probability": 0.0135 + }, + { + "start": 704.08, + "end": 708.8, + "probability": 0.0372 + }, + { + "start": 709.08, + "end": 709.1, + "probability": 0.3662 + }, + { + "start": 709.1, + "end": 709.1, + "probability": 0.3045 + }, + { + "start": 709.1, + "end": 709.72, + "probability": 0.5185 + }, + { + "start": 709.94, + "end": 709.96, + "probability": 0.1363 + }, + { + "start": 709.96, + "end": 709.96, + "probability": 0.4362 + }, + { + "start": 709.96, + "end": 712.4, + "probability": 0.7905 + }, + { + "start": 712.42, + "end": 713.12, + "probability": 0.7154 + }, + { + "start": 713.24, + "end": 713.54, + "probability": 0.8064 + }, + { + "start": 716.74, + "end": 716.74, + "probability": 0.0337 + }, + { + "start": 716.74, + "end": 720.67, + "probability": 0.7043 + }, + { + "start": 721.78, + "end": 722.9, + "probability": 0.9967 + }, + { + "start": 724.2, + "end": 727.66, + "probability": 0.9606 + }, + { + "start": 729.18, + "end": 729.7, + "probability": 0.9401 + }, + { + "start": 730.28, + "end": 730.76, + "probability": 0.9876 + }, + { + "start": 731.66, + "end": 734.0, + "probability": 0.9977 + }, + { + "start": 735.12, + "end": 736.26, + "probability": 0.9977 + }, + { + "start": 736.92, + "end": 738.94, + "probability": 0.9966 + }, + { + "start": 739.84, + "end": 742.36, + "probability": 0.9966 + }, + { + "start": 743.44, + "end": 744.56, + "probability": 0.9956 + }, + { + "start": 745.34, + "end": 747.02, + "probability": 0.9354 + }, + { + "start": 748.14, + "end": 750.04, + "probability": 0.8352 + }, + { + "start": 752.38, + "end": 756.58, + "probability": 0.9982 + }, + { + "start": 757.6, + "end": 757.76, + "probability": 0.2868 + }, + { + "start": 757.92, + "end": 763.02, + "probability": 0.9407 + }, + { + "start": 763.02, + "end": 767.54, + "probability": 0.9978 + }, + { + "start": 767.98, + "end": 768.58, + "probability": 0.7725 + }, + { + "start": 769.72, + "end": 773.84, + "probability": 0.973 + }, + { + "start": 774.04, + "end": 775.86, + "probability": 0.9308 + }, + { + "start": 775.92, + "end": 776.72, + "probability": 0.959 + }, + { + "start": 778.16, + "end": 780.74, + "probability": 0.939 + }, + { + "start": 781.74, + "end": 782.52, + "probability": 0.8084 + }, + { + "start": 783.48, + "end": 784.49, + "probability": 0.9696 + }, + { + "start": 784.96, + "end": 786.26, + "probability": 0.97 + }, + { + "start": 786.64, + "end": 788.34, + "probability": 0.9172 + }, + { + "start": 788.6, + "end": 789.64, + "probability": 0.8659 + }, + { + "start": 790.22, + "end": 791.54, + "probability": 0.7354 + }, + { + "start": 791.58, + "end": 791.88, + "probability": 0.8276 + }, + { + "start": 791.96, + "end": 792.5, + "probability": 0.8543 + }, + { + "start": 792.92, + "end": 793.82, + "probability": 0.9048 + }, + { + "start": 793.96, + "end": 798.0, + "probability": 0.9232 + }, + { + "start": 798.6, + "end": 799.24, + "probability": 0.83 + }, + { + "start": 800.34, + "end": 802.28, + "probability": 0.9946 + }, + { + "start": 802.84, + "end": 806.02, + "probability": 0.9985 + }, + { + "start": 806.52, + "end": 806.8, + "probability": 0.7095 + }, + { + "start": 807.86, + "end": 809.72, + "probability": 0.6949 + }, + { + "start": 810.58, + "end": 818.42, + "probability": 0.9912 + }, + { + "start": 818.58, + "end": 823.72, + "probability": 0.9563 + }, + { + "start": 823.88, + "end": 824.54, + "probability": 0.7277 + }, + { + "start": 825.26, + "end": 830.16, + "probability": 0.919 + }, + { + "start": 830.64, + "end": 834.1, + "probability": 0.9772 + }, + { + "start": 835.22, + "end": 837.12, + "probability": 0.9956 + }, + { + "start": 838.36, + "end": 839.42, + "probability": 0.7748 + }, + { + "start": 839.94, + "end": 842.0, + "probability": 0.951 + }, + { + "start": 842.58, + "end": 843.56, + "probability": 0.8535 + }, + { + "start": 843.56, + "end": 845.25, + "probability": 0.7402 + }, + { + "start": 845.48, + "end": 847.6, + "probability": 0.765 + }, + { + "start": 847.76, + "end": 850.62, + "probability": 0.8897 + }, + { + "start": 851.22, + "end": 852.66, + "probability": 0.7795 + }, + { + "start": 853.38, + "end": 856.48, + "probability": 0.916 + }, + { + "start": 856.98, + "end": 859.48, + "probability": 0.8969 + }, + { + "start": 860.1, + "end": 863.74, + "probability": 0.9927 + }, + { + "start": 864.12, + "end": 865.44, + "probability": 0.7226 + }, + { + "start": 865.88, + "end": 867.28, + "probability": 0.878 + }, + { + "start": 867.64, + "end": 869.08, + "probability": 0.8632 + }, + { + "start": 869.46, + "end": 873.8, + "probability": 0.9905 + }, + { + "start": 874.3, + "end": 874.88, + "probability": 0.8827 + }, + { + "start": 875.46, + "end": 877.42, + "probability": 0.8343 + }, + { + "start": 877.7, + "end": 879.32, + "probability": 0.4486 + }, + { + "start": 879.42, + "end": 879.52, + "probability": 0.8474 + }, + { + "start": 881.14, + "end": 881.48, + "probability": 0.794 + }, + { + "start": 885.38, + "end": 886.28, + "probability": 0.5572 + }, + { + "start": 886.7, + "end": 888.62, + "probability": 0.9351 + }, + { + "start": 888.7, + "end": 889.28, + "probability": 0.7992 + }, + { + "start": 891.36, + "end": 892.44, + "probability": 0.9852 + }, + { + "start": 893.52, + "end": 894.48, + "probability": 0.7064 + }, + { + "start": 895.06, + "end": 896.78, + "probability": 0.9702 + }, + { + "start": 896.96, + "end": 900.6, + "probability": 0.8372 + }, + { + "start": 900.66, + "end": 905.66, + "probability": 0.9761 + }, + { + "start": 906.04, + "end": 906.68, + "probability": 0.9011 + }, + { + "start": 906.78, + "end": 910.48, + "probability": 0.9969 + }, + { + "start": 910.76, + "end": 913.42, + "probability": 0.9695 + }, + { + "start": 913.46, + "end": 914.72, + "probability": 0.9941 + }, + { + "start": 915.96, + "end": 919.0, + "probability": 0.9036 + }, + { + "start": 919.38, + "end": 921.14, + "probability": 0.9612 + }, + { + "start": 921.3, + "end": 924.72, + "probability": 0.9921 + }, + { + "start": 924.72, + "end": 928.12, + "probability": 0.9827 + }, + { + "start": 928.66, + "end": 932.16, + "probability": 0.9985 + }, + { + "start": 932.16, + "end": 934.96, + "probability": 0.8943 + }, + { + "start": 935.78, + "end": 935.98, + "probability": 0.7163 + }, + { + "start": 936.14, + "end": 939.08, + "probability": 0.7897 + }, + { + "start": 939.1, + "end": 943.5, + "probability": 0.9351 + }, + { + "start": 943.62, + "end": 946.5, + "probability": 0.9213 + }, + { + "start": 947.04, + "end": 948.88, + "probability": 0.9543 + }, + { + "start": 948.94, + "end": 950.74, + "probability": 0.983 + }, + { + "start": 950.74, + "end": 951.9, + "probability": 0.7202 + }, + { + "start": 952.02, + "end": 952.96, + "probability": 0.7362 + }, + { + "start": 953.68, + "end": 954.56, + "probability": 0.7732 + }, + { + "start": 954.72, + "end": 955.62, + "probability": 0.9351 + }, + { + "start": 955.8, + "end": 958.88, + "probability": 0.8037 + }, + { + "start": 959.24, + "end": 962.52, + "probability": 0.9806 + }, + { + "start": 963.12, + "end": 967.62, + "probability": 0.9972 + }, + { + "start": 967.62, + "end": 968.06, + "probability": 0.1442 + }, + { + "start": 968.06, + "end": 971.16, + "probability": 0.9665 + }, + { + "start": 972.04, + "end": 972.66, + "probability": 0.5885 + }, + { + "start": 972.96, + "end": 973.28, + "probability": 0.6909 + }, + { + "start": 974.8, + "end": 976.6, + "probability": 0.6517 + }, + { + "start": 976.82, + "end": 979.6, + "probability": 0.9962 + }, + { + "start": 979.74, + "end": 980.58, + "probability": 0.9995 + }, + { + "start": 982.0, + "end": 983.86, + "probability": 0.9893 + }, + { + "start": 984.12, + "end": 987.58, + "probability": 0.9916 + }, + { + "start": 988.18, + "end": 989.88, + "probability": 0.8301 + }, + { + "start": 990.4, + "end": 992.88, + "probability": 0.9839 + }, + { + "start": 993.88, + "end": 994.62, + "probability": 0.8071 + }, + { + "start": 995.42, + "end": 996.66, + "probability": 0.9106 + }, + { + "start": 997.74, + "end": 1001.78, + "probability": 0.9961 + }, + { + "start": 1001.78, + "end": 1007.12, + "probability": 0.9979 + }, + { + "start": 1007.74, + "end": 1009.18, + "probability": 0.8715 + }, + { + "start": 1009.78, + "end": 1012.94, + "probability": 0.9976 + }, + { + "start": 1013.06, + "end": 1013.14, + "probability": 0.4684 + }, + { + "start": 1013.18, + "end": 1013.9, + "probability": 0.8168 + }, + { + "start": 1014.1, + "end": 1015.16, + "probability": 0.9662 + }, + { + "start": 1015.7, + "end": 1017.58, + "probability": 0.974 + }, + { + "start": 1018.12, + "end": 1020.12, + "probability": 0.9707 + }, + { + "start": 1020.64, + "end": 1026.02, + "probability": 0.9043 + }, + { + "start": 1026.06, + "end": 1026.28, + "probability": 0.6718 + }, + { + "start": 1026.56, + "end": 1026.66, + "probability": 0.7294 + }, + { + "start": 1027.44, + "end": 1027.7, + "probability": 0.4027 + }, + { + "start": 1027.72, + "end": 1028.18, + "probability": 0.3545 + }, + { + "start": 1028.18, + "end": 1028.46, + "probability": 0.0464 + }, + { + "start": 1028.64, + "end": 1029.66, + "probability": 0.4689 + }, + { + "start": 1029.7, + "end": 1030.5, + "probability": 0.8147 + }, + { + "start": 1030.5, + "end": 1035.3, + "probability": 0.9281 + }, + { + "start": 1035.46, + "end": 1038.75, + "probability": 0.6261 + }, + { + "start": 1039.7, + "end": 1041.94, + "probability": 0.8327 + }, + { + "start": 1046.96, + "end": 1048.24, + "probability": 0.7236 + }, + { + "start": 1048.28, + "end": 1050.5, + "probability": 0.883 + }, + { + "start": 1051.32, + "end": 1052.12, + "probability": 0.6838 + }, + { + "start": 1052.24, + "end": 1053.14, + "probability": 0.8986 + }, + { + "start": 1053.18, + "end": 1057.14, + "probability": 0.9213 + }, + { + "start": 1057.22, + "end": 1058.74, + "probability": 0.5945 + }, + { + "start": 1059.26, + "end": 1061.1, + "probability": 0.9833 + }, + { + "start": 1062.02, + "end": 1063.08, + "probability": 0.9449 + }, + { + "start": 1063.14, + "end": 1067.32, + "probability": 0.9515 + }, + { + "start": 1068.16, + "end": 1076.46, + "probability": 0.9377 + }, + { + "start": 1077.08, + "end": 1081.96, + "probability": 0.9902 + }, + { + "start": 1082.46, + "end": 1085.44, + "probability": 0.8541 + }, + { + "start": 1085.96, + "end": 1091.42, + "probability": 0.967 + }, + { + "start": 1091.42, + "end": 1093.78, + "probability": 0.9351 + }, + { + "start": 1095.38, + "end": 1096.64, + "probability": 0.5685 + }, + { + "start": 1098.7, + "end": 1099.66, + "probability": 0.4685 + }, + { + "start": 1099.8, + "end": 1101.18, + "probability": 0.9866 + }, + { + "start": 1101.78, + "end": 1102.86, + "probability": 0.7721 + }, + { + "start": 1102.94, + "end": 1103.56, + "probability": 0.7167 + }, + { + "start": 1105.34, + "end": 1106.84, + "probability": 0.8953 + }, + { + "start": 1107.44, + "end": 1110.46, + "probability": 0.9696 + }, + { + "start": 1111.22, + "end": 1112.66, + "probability": 0.5908 + }, + { + "start": 1113.18, + "end": 1114.98, + "probability": 0.7546 + }, + { + "start": 1116.08, + "end": 1118.8, + "probability": 0.9501 + }, + { + "start": 1118.88, + "end": 1119.7, + "probability": 0.7962 + }, + { + "start": 1120.12, + "end": 1123.6, + "probability": 0.9061 + }, + { + "start": 1125.74, + "end": 1126.42, + "probability": 0.7415 + }, + { + "start": 1126.86, + "end": 1127.46, + "probability": 0.7431 + }, + { + "start": 1127.54, + "end": 1127.63, + "probability": 0.7467 + }, + { + "start": 1128.04, + "end": 1128.58, + "probability": 0.6451 + }, + { + "start": 1128.66, + "end": 1129.2, + "probability": 0.8065 + }, + { + "start": 1129.22, + "end": 1130.35, + "probability": 0.9073 + }, + { + "start": 1135.5, + "end": 1137.66, + "probability": 0.9927 + }, + { + "start": 1137.9, + "end": 1138.74, + "probability": 0.637 + }, + { + "start": 1140.46, + "end": 1141.36, + "probability": 0.6851 + }, + { + "start": 1141.84, + "end": 1142.5, + "probability": 0.8438 + }, + { + "start": 1143.04, + "end": 1144.54, + "probability": 0.9941 + }, + { + "start": 1144.96, + "end": 1145.16, + "probability": 0.4413 + }, + { + "start": 1145.24, + "end": 1146.1, + "probability": 0.9021 + }, + { + "start": 1146.12, + "end": 1147.62, + "probability": 0.7301 + }, + { + "start": 1147.82, + "end": 1147.82, + "probability": 0.2262 + }, + { + "start": 1147.88, + "end": 1147.88, + "probability": 0.0885 + }, + { + "start": 1147.88, + "end": 1149.44, + "probability": 0.9829 + }, + { + "start": 1150.18, + "end": 1150.72, + "probability": 0.4523 + }, + { + "start": 1151.92, + "end": 1153.98, + "probability": 0.8711 + }, + { + "start": 1154.48, + "end": 1155.86, + "probability": 0.6729 + }, + { + "start": 1156.44, + "end": 1161.62, + "probability": 0.8669 + }, + { + "start": 1161.76, + "end": 1162.02, + "probability": 0.9515 + }, + { + "start": 1162.56, + "end": 1166.28, + "probability": 0.9954 + }, + { + "start": 1166.38, + "end": 1167.24, + "probability": 0.9581 + }, + { + "start": 1167.34, + "end": 1167.66, + "probability": 0.7824 + }, + { + "start": 1167.76, + "end": 1170.42, + "probability": 0.9976 + }, + { + "start": 1170.52, + "end": 1172.2, + "probability": 0.9774 + }, + { + "start": 1173.2, + "end": 1174.18, + "probability": 0.6924 + }, + { + "start": 1174.3, + "end": 1175.92, + "probability": 0.9578 + }, + { + "start": 1176.1, + "end": 1178.62, + "probability": 0.846 + }, + { + "start": 1178.86, + "end": 1182.32, + "probability": 0.9961 + }, + { + "start": 1184.1, + "end": 1184.32, + "probability": 0.3644 + }, + { + "start": 1185.28, + "end": 1185.64, + "probability": 0.3456 + }, + { + "start": 1185.64, + "end": 1186.92, + "probability": 0.2226 + }, + { + "start": 1187.02, + "end": 1188.14, + "probability": 0.648 + }, + { + "start": 1189.1, + "end": 1192.06, + "probability": 0.9743 + }, + { + "start": 1192.74, + "end": 1195.42, + "probability": 0.9932 + }, + { + "start": 1195.54, + "end": 1197.8, + "probability": 0.9973 + }, + { + "start": 1198.68, + "end": 1203.94, + "probability": 0.9618 + }, + { + "start": 1204.04, + "end": 1208.18, + "probability": 0.9979 + }, + { + "start": 1209.2, + "end": 1210.16, + "probability": 0.8893 + }, + { + "start": 1210.8, + "end": 1212.66, + "probability": 0.8713 + }, + { + "start": 1212.72, + "end": 1213.54, + "probability": 0.9604 + }, + { + "start": 1213.68, + "end": 1217.44, + "probability": 0.973 + }, + { + "start": 1217.86, + "end": 1220.5, + "probability": 0.9624 + }, + { + "start": 1220.72, + "end": 1224.28, + "probability": 0.7501 + }, + { + "start": 1225.34, + "end": 1227.86, + "probability": 0.9641 + }, + { + "start": 1228.04, + "end": 1229.48, + "probability": 0.8358 + }, + { + "start": 1229.9, + "end": 1230.4, + "probability": 0.6646 + }, + { + "start": 1230.64, + "end": 1232.5, + "probability": 0.9892 + }, + { + "start": 1234.0, + "end": 1237.48, + "probability": 0.9094 + }, + { + "start": 1237.5, + "end": 1240.02, + "probability": 0.7077 + }, + { + "start": 1240.16, + "end": 1243.3, + "probability": 0.9678 + }, + { + "start": 1244.28, + "end": 1245.82, + "probability": 0.5079 + }, + { + "start": 1246.23, + "end": 1249.72, + "probability": 0.2885 + }, + { + "start": 1249.76, + "end": 1253.0, + "probability": 0.8157 + }, + { + "start": 1253.24, + "end": 1253.34, + "probability": 0.7276 + }, + { + "start": 1255.64, + "end": 1258.06, + "probability": 0.9043 + }, + { + "start": 1258.06, + "end": 1260.56, + "probability": 0.9871 + }, + { + "start": 1261.02, + "end": 1263.84, + "probability": 0.515 + }, + { + "start": 1264.12, + "end": 1265.22, + "probability": 0.8609 + }, + { + "start": 1265.82, + "end": 1270.22, + "probability": 0.6409 + }, + { + "start": 1270.44, + "end": 1271.88, + "probability": 0.9408 + }, + { + "start": 1272.0, + "end": 1273.38, + "probability": 0.559 + }, + { + "start": 1273.48, + "end": 1275.66, + "probability": 0.9808 + }, + { + "start": 1275.78, + "end": 1277.56, + "probability": 0.8842 + }, + { + "start": 1277.8, + "end": 1280.74, + "probability": 0.7974 + }, + { + "start": 1281.26, + "end": 1281.95, + "probability": 0.8026 + }, + { + "start": 1282.16, + "end": 1282.82, + "probability": 0.8323 + }, + { + "start": 1282.92, + "end": 1285.42, + "probability": 0.9455 + }, + { + "start": 1285.58, + "end": 1287.73, + "probability": 0.9624 + }, + { + "start": 1287.96, + "end": 1290.18, + "probability": 0.9758 + }, + { + "start": 1291.06, + "end": 1294.88, + "probability": 0.973 + }, + { + "start": 1295.76, + "end": 1299.14, + "probability": 0.8008 + }, + { + "start": 1300.12, + "end": 1300.72, + "probability": 0.9664 + }, + { + "start": 1302.04, + "end": 1304.62, + "probability": 0.9601 + }, + { + "start": 1305.48, + "end": 1308.34, + "probability": 0.9949 + }, + { + "start": 1309.28, + "end": 1312.28, + "probability": 0.9916 + }, + { + "start": 1313.1, + "end": 1315.96, + "probability": 0.9939 + }, + { + "start": 1316.48, + "end": 1319.0, + "probability": 0.8921 + }, + { + "start": 1319.28, + "end": 1321.92, + "probability": 0.9533 + }, + { + "start": 1322.4, + "end": 1327.36, + "probability": 0.9746 + }, + { + "start": 1328.26, + "end": 1329.14, + "probability": 0.9267 + }, + { + "start": 1330.46, + "end": 1330.98, + "probability": 0.7973 + }, + { + "start": 1331.42, + "end": 1336.28, + "probability": 0.9429 + }, + { + "start": 1336.82, + "end": 1339.84, + "probability": 0.9865 + }, + { + "start": 1340.56, + "end": 1342.82, + "probability": 0.9374 + }, + { + "start": 1343.36, + "end": 1343.9, + "probability": 0.9412 + }, + { + "start": 1343.96, + "end": 1345.98, + "probability": 0.988 + }, + { + "start": 1346.98, + "end": 1351.2, + "probability": 0.8942 + }, + { + "start": 1351.52, + "end": 1354.52, + "probability": 0.8739 + }, + { + "start": 1355.46, + "end": 1356.74, + "probability": 0.9831 + }, + { + "start": 1357.32, + "end": 1363.56, + "probability": 0.9941 + }, + { + "start": 1363.84, + "end": 1367.44, + "probability": 0.9958 + }, + { + "start": 1368.68, + "end": 1372.92, + "probability": 0.9757 + }, + { + "start": 1373.54, + "end": 1375.22, + "probability": 0.8771 + }, + { + "start": 1376.24, + "end": 1380.0, + "probability": 0.7518 + }, + { + "start": 1380.12, + "end": 1380.68, + "probability": 0.6602 + }, + { + "start": 1381.3, + "end": 1383.4, + "probability": 0.9762 + }, + { + "start": 1383.96, + "end": 1387.38, + "probability": 0.9937 + }, + { + "start": 1387.98, + "end": 1388.34, + "probability": 0.8118 + }, + { + "start": 1389.16, + "end": 1395.63, + "probability": 0.9886 + }, + { + "start": 1397.08, + "end": 1399.6, + "probability": 0.9845 + }, + { + "start": 1400.14, + "end": 1401.64, + "probability": 0.9985 + }, + { + "start": 1402.42, + "end": 1403.74, + "probability": 0.9771 + }, + { + "start": 1404.62, + "end": 1408.06, + "probability": 0.9679 + }, + { + "start": 1408.24, + "end": 1414.3, + "probability": 0.7204 + }, + { + "start": 1415.12, + "end": 1421.1, + "probability": 0.9875 + }, + { + "start": 1421.9, + "end": 1425.36, + "probability": 0.9815 + }, + { + "start": 1425.36, + "end": 1431.34, + "probability": 0.9707 + }, + { + "start": 1432.48, + "end": 1435.52, + "probability": 0.9147 + }, + { + "start": 1435.54, + "end": 1439.68, + "probability": 0.9279 + }, + { + "start": 1439.76, + "end": 1442.46, + "probability": 0.9067 + }, + { + "start": 1444.01, + "end": 1452.07, + "probability": 0.9164 + }, + { + "start": 1452.64, + "end": 1453.72, + "probability": 0.9346 + }, + { + "start": 1454.06, + "end": 1455.42, + "probability": 0.8631 + }, + { + "start": 1455.44, + "end": 1456.32, + "probability": 0.8936 + }, + { + "start": 1457.08, + "end": 1460.94, + "probability": 0.9616 + }, + { + "start": 1461.5, + "end": 1464.18, + "probability": 0.8053 + }, + { + "start": 1464.3, + "end": 1464.76, + "probability": 0.8473 + }, + { + "start": 1465.42, + "end": 1469.7, + "probability": 0.9895 + }, + { + "start": 1470.24, + "end": 1472.12, + "probability": 0.9922 + }, + { + "start": 1473.4, + "end": 1476.7, + "probability": 0.9903 + }, + { + "start": 1476.78, + "end": 1477.9, + "probability": 0.881 + }, + { + "start": 1478.56, + "end": 1482.02, + "probability": 0.9871 + }, + { + "start": 1483.72, + "end": 1486.28, + "probability": 0.9189 + }, + { + "start": 1487.18, + "end": 1487.58, + "probability": 0.8146 + }, + { + "start": 1487.62, + "end": 1490.46, + "probability": 0.9976 + }, + { + "start": 1490.54, + "end": 1494.2, + "probability": 0.9844 + }, + { + "start": 1494.3, + "end": 1495.84, + "probability": 0.9334 + }, + { + "start": 1496.52, + "end": 1496.88, + "probability": 0.5511 + }, + { + "start": 1497.0, + "end": 1499.46, + "probability": 0.9867 + }, + { + "start": 1499.46, + "end": 1502.3, + "probability": 0.9808 + }, + { + "start": 1503.24, + "end": 1504.38, + "probability": 0.4742 + }, + { + "start": 1505.1, + "end": 1507.52, + "probability": 0.996 + }, + { + "start": 1507.52, + "end": 1509.62, + "probability": 0.9984 + }, + { + "start": 1510.22, + "end": 1513.7, + "probability": 0.8328 + }, + { + "start": 1514.24, + "end": 1517.8, + "probability": 0.9811 + }, + { + "start": 1517.8, + "end": 1521.18, + "probability": 0.9976 + }, + { + "start": 1521.6, + "end": 1522.08, + "probability": 0.7333 + }, + { + "start": 1522.62, + "end": 1523.32, + "probability": 0.7575 + }, + { + "start": 1523.86, + "end": 1524.64, + "probability": 0.8796 + }, + { + "start": 1525.36, + "end": 1527.7, + "probability": 0.7771 + }, + { + "start": 1528.08, + "end": 1532.84, + "probability": 0.9932 + }, + { + "start": 1533.32, + "end": 1537.04, + "probability": 0.831 + }, + { + "start": 1538.04, + "end": 1540.54, + "probability": 0.721 + }, + { + "start": 1541.48, + "end": 1546.28, + "probability": 0.9919 + }, + { + "start": 1547.16, + "end": 1549.78, + "probability": 0.9692 + }, + { + "start": 1549.84, + "end": 1552.84, + "probability": 0.8577 + }, + { + "start": 1553.56, + "end": 1554.74, + "probability": 0.87 + }, + { + "start": 1556.0, + "end": 1558.14, + "probability": 0.9924 + }, + { + "start": 1558.14, + "end": 1561.38, + "probability": 0.9666 + }, + { + "start": 1562.06, + "end": 1565.22, + "probability": 0.998 + }, + { + "start": 1565.76, + "end": 1567.06, + "probability": 0.9971 + }, + { + "start": 1567.66, + "end": 1569.52, + "probability": 0.8743 + }, + { + "start": 1570.04, + "end": 1572.82, + "probability": 0.9978 + }, + { + "start": 1573.02, + "end": 1574.4, + "probability": 0.9838 + }, + { + "start": 1574.96, + "end": 1575.82, + "probability": 0.9867 + }, + { + "start": 1576.3, + "end": 1577.72, + "probability": 0.8875 + }, + { + "start": 1578.18, + "end": 1579.24, + "probability": 0.6371 + }, + { + "start": 1579.74, + "end": 1582.32, + "probability": 0.9424 + }, + { + "start": 1583.66, + "end": 1587.2, + "probability": 0.9576 + }, + { + "start": 1587.84, + "end": 1591.21, + "probability": 0.9171 + }, + { + "start": 1591.34, + "end": 1594.42, + "probability": 0.8988 + }, + { + "start": 1595.24, + "end": 1595.76, + "probability": 0.8057 + }, + { + "start": 1596.7, + "end": 1597.26, + "probability": 0.8416 + }, + { + "start": 1598.16, + "end": 1600.92, + "probability": 0.9958 + }, + { + "start": 1601.5, + "end": 1602.9, + "probability": 0.8607 + }, + { + "start": 1603.92, + "end": 1606.96, + "probability": 0.9363 + }, + { + "start": 1607.64, + "end": 1610.54, + "probability": 0.9742 + }, + { + "start": 1611.3, + "end": 1613.9, + "probability": 0.9444 + }, + { + "start": 1613.98, + "end": 1617.08, + "probability": 0.9966 + }, + { + "start": 1617.24, + "end": 1619.5, + "probability": 0.9762 + }, + { + "start": 1620.4, + "end": 1624.12, + "probability": 0.9762 + }, + { + "start": 1624.24, + "end": 1626.22, + "probability": 0.9432 + }, + { + "start": 1627.04, + "end": 1628.44, + "probability": 0.965 + }, + { + "start": 1629.52, + "end": 1629.94, + "probability": 0.8311 + }, + { + "start": 1631.9, + "end": 1632.6, + "probability": 0.8137 + }, + { + "start": 1633.06, + "end": 1633.16, + "probability": 0.8574 + }, + { + "start": 1636.68, + "end": 1637.72, + "probability": 0.5034 + }, + { + "start": 1638.42, + "end": 1641.92, + "probability": 0.8407 + }, + { + "start": 1642.76, + "end": 1647.98, + "probability": 0.9854 + }, + { + "start": 1649.34, + "end": 1652.72, + "probability": 0.9849 + }, + { + "start": 1652.72, + "end": 1655.68, + "probability": 0.9783 + }, + { + "start": 1656.78, + "end": 1658.1, + "probability": 0.9515 + }, + { + "start": 1658.18, + "end": 1659.48, + "probability": 0.9676 + }, + { + "start": 1659.52, + "end": 1660.64, + "probability": 0.9943 + }, + { + "start": 1660.82, + "end": 1663.44, + "probability": 0.9849 + }, + { + "start": 1664.1, + "end": 1664.84, + "probability": 0.6503 + }, + { + "start": 1666.0, + "end": 1666.82, + "probability": 0.8062 + }, + { + "start": 1667.06, + "end": 1673.76, + "probability": 0.9913 + }, + { + "start": 1673.86, + "end": 1675.58, + "probability": 0.9806 + }, + { + "start": 1677.04, + "end": 1678.52, + "probability": 0.9971 + }, + { + "start": 1678.64, + "end": 1681.8, + "probability": 0.9979 + }, + { + "start": 1681.84, + "end": 1683.54, + "probability": 0.5807 + }, + { + "start": 1684.5, + "end": 1686.94, + "probability": 0.9769 + }, + { + "start": 1687.66, + "end": 1687.86, + "probability": 0.0172 + }, + { + "start": 1687.86, + "end": 1688.44, + "probability": 0.5294 + }, + { + "start": 1688.58, + "end": 1688.98, + "probability": 0.5529 + }, + { + "start": 1689.06, + "end": 1690.66, + "probability": 0.9897 + }, + { + "start": 1690.92, + "end": 1693.38, + "probability": 0.9922 + }, + { + "start": 1693.5, + "end": 1694.26, + "probability": 0.673 + }, + { + "start": 1694.78, + "end": 1697.22, + "probability": 0.9956 + }, + { + "start": 1697.66, + "end": 1699.48, + "probability": 0.9878 + }, + { + "start": 1699.62, + "end": 1700.1, + "probability": 0.4228 + }, + { + "start": 1700.2, + "end": 1700.8, + "probability": 0.7407 + }, + { + "start": 1701.88, + "end": 1705.94, + "probability": 0.7209 + }, + { + "start": 1706.68, + "end": 1708.46, + "probability": 0.9175 + }, + { + "start": 1708.78, + "end": 1715.12, + "probability": 0.9264 + }, + { + "start": 1715.28, + "end": 1715.82, + "probability": 0.7943 + }, + { + "start": 1716.32, + "end": 1717.46, + "probability": 0.9972 + }, + { + "start": 1717.6, + "end": 1719.04, + "probability": 0.9895 + }, + { + "start": 1719.56, + "end": 1722.12, + "probability": 0.9256 + }, + { + "start": 1722.76, + "end": 1724.72, + "probability": 0.9971 + }, + { + "start": 1725.56, + "end": 1726.76, + "probability": 0.7856 + }, + { + "start": 1729.18, + "end": 1729.36, + "probability": 0.414 + }, + { + "start": 1729.36, + "end": 1730.1, + "probability": 0.6775 + }, + { + "start": 1731.12, + "end": 1734.88, + "probability": 0.9782 + }, + { + "start": 1735.44, + "end": 1737.8, + "probability": 0.9797 + }, + { + "start": 1737.96, + "end": 1739.0, + "probability": 0.8943 + }, + { + "start": 1739.48, + "end": 1741.64, + "probability": 0.979 + }, + { + "start": 1741.76, + "end": 1744.24, + "probability": 0.9942 + }, + { + "start": 1744.38, + "end": 1745.24, + "probability": 0.8393 + }, + { + "start": 1745.72, + "end": 1747.34, + "probability": 0.9887 + }, + { + "start": 1747.44, + "end": 1750.7, + "probability": 0.9929 + }, + { + "start": 1751.16, + "end": 1752.46, + "probability": 0.9398 + }, + { + "start": 1752.78, + "end": 1754.28, + "probability": 0.8247 + }, + { + "start": 1754.62, + "end": 1755.24, + "probability": 0.799 + }, + { + "start": 1755.56, + "end": 1756.4, + "probability": 0.7489 + }, + { + "start": 1756.44, + "end": 1758.2, + "probability": 0.954 + }, + { + "start": 1758.26, + "end": 1759.14, + "probability": 0.831 + }, + { + "start": 1759.7, + "end": 1760.86, + "probability": 0.7745 + }, + { + "start": 1762.2, + "end": 1765.94, + "probability": 0.662 + }, + { + "start": 1767.48, + "end": 1769.08, + "probability": 0.9438 + }, + { + "start": 1769.24, + "end": 1775.44, + "probability": 0.9298 + }, + { + "start": 1776.26, + "end": 1779.28, + "probability": 0.9384 + }, + { + "start": 1779.88, + "end": 1781.4, + "probability": 0.9521 + }, + { + "start": 1781.48, + "end": 1783.74, + "probability": 0.9849 + }, + { + "start": 1784.9, + "end": 1785.71, + "probability": 0.9976 + }, + { + "start": 1787.54, + "end": 1789.12, + "probability": 0.6051 + }, + { + "start": 1789.68, + "end": 1792.36, + "probability": 0.9575 + }, + { + "start": 1792.5, + "end": 1798.58, + "probability": 0.9956 + }, + { + "start": 1799.08, + "end": 1801.96, + "probability": 0.9448 + }, + { + "start": 1802.06, + "end": 1803.44, + "probability": 0.7837 + }, + { + "start": 1803.76, + "end": 1805.36, + "probability": 0.4513 + }, + { + "start": 1805.46, + "end": 1808.04, + "probability": 0.9543 + }, + { + "start": 1808.18, + "end": 1808.8, + "probability": 0.818 + }, + { + "start": 1808.88, + "end": 1810.3, + "probability": 0.6387 + }, + { + "start": 1810.4, + "end": 1812.24, + "probability": 0.9566 + }, + { + "start": 1812.34, + "end": 1813.74, + "probability": 0.5611 + }, + { + "start": 1814.44, + "end": 1816.54, + "probability": 0.9871 + }, + { + "start": 1817.56, + "end": 1819.02, + "probability": 0.9957 + }, + { + "start": 1819.72, + "end": 1821.1, + "probability": 0.9631 + }, + { + "start": 1821.68, + "end": 1823.18, + "probability": 0.7858 + }, + { + "start": 1823.3, + "end": 1825.24, + "probability": 0.9948 + }, + { + "start": 1825.78, + "end": 1826.7, + "probability": 0.994 + }, + { + "start": 1827.59, + "end": 1828.18, + "probability": 0.3317 + }, + { + "start": 1828.82, + "end": 1829.7, + "probability": 0.9729 + }, + { + "start": 1830.3, + "end": 1832.94, + "probability": 0.8517 + }, + { + "start": 1834.38, + "end": 1835.38, + "probability": 0.9029 + }, + { + "start": 1835.44, + "end": 1838.8, + "probability": 0.8645 + }, + { + "start": 1839.0, + "end": 1839.76, + "probability": 0.6814 + }, + { + "start": 1840.44, + "end": 1841.61, + "probability": 0.9644 + }, + { + "start": 1842.34, + "end": 1846.86, + "probability": 0.8778 + }, + { + "start": 1847.72, + "end": 1851.42, + "probability": 0.7968 + }, + { + "start": 1851.48, + "end": 1852.26, + "probability": 0.9507 + }, + { + "start": 1852.42, + "end": 1852.76, + "probability": 0.6675 + }, + { + "start": 1852.76, + "end": 1853.28, + "probability": 0.69 + }, + { + "start": 1853.46, + "end": 1857.71, + "probability": 0.9876 + }, + { + "start": 1857.78, + "end": 1860.76, + "probability": 0.7143 + }, + { + "start": 1860.94, + "end": 1860.94, + "probability": 0.3657 + }, + { + "start": 1861.02, + "end": 1863.54, + "probability": 0.8113 + }, + { + "start": 1863.9, + "end": 1865.9, + "probability": 0.9961 + }, + { + "start": 1866.5, + "end": 1868.78, + "probability": 0.9615 + }, + { + "start": 1869.04, + "end": 1869.44, + "probability": 0.8971 + }, + { + "start": 1869.48, + "end": 1871.06, + "probability": 0.9967 + }, + { + "start": 1871.74, + "end": 1874.0, + "probability": 0.7491 + }, + { + "start": 1874.76, + "end": 1876.78, + "probability": 0.9982 + }, + { + "start": 1876.78, + "end": 1879.36, + "probability": 0.9893 + }, + { + "start": 1879.88, + "end": 1881.17, + "probability": 0.9889 + }, + { + "start": 1881.86, + "end": 1883.92, + "probability": 0.8805 + }, + { + "start": 1884.68, + "end": 1884.82, + "probability": 0.6411 + }, + { + "start": 1885.02, + "end": 1885.5, + "probability": 0.8923 + }, + { + "start": 1885.5, + "end": 1891.56, + "probability": 0.6819 + }, + { + "start": 1891.86, + "end": 1894.56, + "probability": 0.8896 + }, + { + "start": 1894.6, + "end": 1894.7, + "probability": 0.3292 + }, + { + "start": 1894.82, + "end": 1895.82, + "probability": 0.9106 + }, + { + "start": 1896.26, + "end": 1897.38, + "probability": 0.7565 + }, + { + "start": 1897.54, + "end": 1899.14, + "probability": 0.9672 + }, + { + "start": 1899.5, + "end": 1899.88, + "probability": 0.7258 + }, + { + "start": 1899.94, + "end": 1900.54, + "probability": 0.8837 + }, + { + "start": 1900.82, + "end": 1903.22, + "probability": 0.9119 + }, + { + "start": 1903.64, + "end": 1906.54, + "probability": 0.9659 + }, + { + "start": 1906.58, + "end": 1909.72, + "probability": 0.9478 + }, + { + "start": 1910.32, + "end": 1913.98, + "probability": 0.8844 + }, + { + "start": 1914.46, + "end": 1916.32, + "probability": 0.9713 + }, + { + "start": 1917.9, + "end": 1918.34, + "probability": 0.7434 + }, + { + "start": 1918.48, + "end": 1918.94, + "probability": 0.8475 + }, + { + "start": 1921.2, + "end": 1921.92, + "probability": 0.7968 + }, + { + "start": 1923.48, + "end": 1924.6, + "probability": 0.9738 + }, + { + "start": 1925.48, + "end": 1926.12, + "probability": 0.0235 + }, + { + "start": 1952.34, + "end": 1953.5, + "probability": 0.179 + }, + { + "start": 1981.94, + "end": 1989.1, + "probability": 0.9743 + }, + { + "start": 1989.1, + "end": 1994.82, + "probability": 0.9969 + }, + { + "start": 1995.62, + "end": 1998.84, + "probability": 0.8212 + }, + { + "start": 1999.58, + "end": 2003.84, + "probability": 0.9974 + }, + { + "start": 2003.84, + "end": 2008.34, + "probability": 0.9949 + }, + { + "start": 2009.42, + "end": 2010.8, + "probability": 0.6043 + }, + { + "start": 2011.34, + "end": 2013.46, + "probability": 0.9906 + }, + { + "start": 2019.54, + "end": 2019.66, + "probability": 0.1045 + }, + { + "start": 2019.66, + "end": 2021.28, + "probability": 0.6681 + }, + { + "start": 2021.36, + "end": 2025.14, + "probability": 0.7844 + }, + { + "start": 2025.28, + "end": 2026.12, + "probability": 0.7319 + }, + { + "start": 2028.08, + "end": 2032.48, + "probability": 0.9741 + }, + { + "start": 2032.8, + "end": 2034.82, + "probability": 0.9242 + }, + { + "start": 2036.64, + "end": 2037.18, + "probability": 0.7481 + }, + { + "start": 2038.2, + "end": 2040.28, + "probability": 0.999 + }, + { + "start": 2040.29, + "end": 2042.78, + "probability": 0.9993 + }, + { + "start": 2043.92, + "end": 2044.9, + "probability": 0.9873 + }, + { + "start": 2045.96, + "end": 2050.54, + "probability": 0.9955 + }, + { + "start": 2051.38, + "end": 2054.6, + "probability": 0.9997 + }, + { + "start": 2055.26, + "end": 2058.28, + "probability": 0.9959 + }, + { + "start": 2059.42, + "end": 2063.44, + "probability": 0.9159 + }, + { + "start": 2063.58, + "end": 2064.92, + "probability": 0.7784 + }, + { + "start": 2065.78, + "end": 2068.81, + "probability": 0.9874 + }, + { + "start": 2069.46, + "end": 2071.78, + "probability": 0.953 + }, + { + "start": 2072.2, + "end": 2073.98, + "probability": 0.9173 + }, + { + "start": 2074.66, + "end": 2079.42, + "probability": 0.2104 + }, + { + "start": 2079.96, + "end": 2082.98, + "probability": 0.728 + }, + { + "start": 2083.56, + "end": 2087.68, + "probability": 0.988 + }, + { + "start": 2088.54, + "end": 2089.96, + "probability": 0.9229 + }, + { + "start": 2090.56, + "end": 2091.68, + "probability": 0.9081 + }, + { + "start": 2092.34, + "end": 2096.32, + "probability": 0.967 + }, + { + "start": 2098.68, + "end": 2102.3, + "probability": 0.9709 + }, + { + "start": 2103.06, + "end": 2105.82, + "probability": 0.9248 + }, + { + "start": 2106.34, + "end": 2108.32, + "probability": 0.9001 + }, + { + "start": 2108.42, + "end": 2111.36, + "probability": 0.999 + }, + { + "start": 2111.48, + "end": 2113.66, + "probability": 0.98 + }, + { + "start": 2113.68, + "end": 2115.16, + "probability": 0.9805 + }, + { + "start": 2116.36, + "end": 2119.12, + "probability": 0.773 + }, + { + "start": 2119.16, + "end": 2119.66, + "probability": 0.5461 + }, + { + "start": 2122.38, + "end": 2124.56, + "probability": 0.7 + }, + { + "start": 2125.02, + "end": 2125.9, + "probability": 0.3233 + }, + { + "start": 2126.1, + "end": 2128.62, + "probability": 0.7436 + }, + { + "start": 2128.92, + "end": 2136.56, + "probability": 0.9484 + }, + { + "start": 2136.78, + "end": 2137.3, + "probability": 0.8389 + }, + { + "start": 2137.82, + "end": 2140.2, + "probability": 0.7271 + }, + { + "start": 2140.62, + "end": 2141.34, + "probability": 0.7514 + }, + { + "start": 2141.4, + "end": 2142.82, + "probability": 0.977 + }, + { + "start": 2142.96, + "end": 2143.1, + "probability": 0.4459 + }, + { + "start": 2143.1, + "end": 2146.74, + "probability": 0.986 + }, + { + "start": 2147.46, + "end": 2147.86, + "probability": 0.7492 + }, + { + "start": 2148.12, + "end": 2149.64, + "probability": 0.9531 + }, + { + "start": 2149.86, + "end": 2152.38, + "probability": 0.509 + }, + { + "start": 2152.88, + "end": 2155.84, + "probability": 0.6841 + }, + { + "start": 2165.4, + "end": 2167.22, + "probability": 0.667 + }, + { + "start": 2167.28, + "end": 2167.9, + "probability": 0.8844 + }, + { + "start": 2168.22, + "end": 2170.86, + "probability": 0.2545 + }, + { + "start": 2179.3, + "end": 2179.66, + "probability": 0.0068 + }, + { + "start": 2179.66, + "end": 2179.82, + "probability": 0.0633 + }, + { + "start": 2370.28, + "end": 2370.38, + "probability": 0.0193 + }, + { + "start": 2370.38, + "end": 2370.38, + "probability": 0.3151 + }, + { + "start": 2370.38, + "end": 2376.38, + "probability": 0.9521 + }, + { + "start": 2376.42, + "end": 2376.52, + "probability": 0.3912 + }, + { + "start": 2381.6, + "end": 2382.18, + "probability": 0.5557 + }, + { + "start": 2389.18, + "end": 2390.96, + "probability": 0.9683 + }, + { + "start": 2395.46, + "end": 2396.38, + "probability": 0.694 + }, + { + "start": 2399.52, + "end": 2400.7, + "probability": 0.6814 + }, + { + "start": 2402.6, + "end": 2404.88, + "probability": 0.9793 + }, + { + "start": 2406.6, + "end": 2406.88, + "probability": 0.451 + }, + { + "start": 2409.46, + "end": 2411.28, + "probability": 0.9821 + }, + { + "start": 2413.84, + "end": 2416.56, + "probability": 0.8824 + }, + { + "start": 2417.96, + "end": 2421.06, + "probability": 0.9695 + }, + { + "start": 2436.14, + "end": 2437.54, + "probability": 0.8662 + }, + { + "start": 2439.48, + "end": 2441.24, + "probability": 0.9423 + }, + { + "start": 2442.62, + "end": 2443.8, + "probability": 0.9412 + }, + { + "start": 2445.84, + "end": 2451.68, + "probability": 0.745 + }, + { + "start": 2452.7, + "end": 2453.7, + "probability": 0.9 + }, + { + "start": 2455.56, + "end": 2457.76, + "probability": 0.9932 + }, + { + "start": 2458.34, + "end": 2460.68, + "probability": 0.961 + }, + { + "start": 2461.92, + "end": 2462.86, + "probability": 0.7704 + }, + { + "start": 2464.14, + "end": 2468.42, + "probability": 0.7559 + }, + { + "start": 2470.22, + "end": 2473.14, + "probability": 0.9967 + }, + { + "start": 2475.96, + "end": 2476.5, + "probability": 0.8177 + }, + { + "start": 2477.44, + "end": 2482.06, + "probability": 0.9774 + }, + { + "start": 2482.94, + "end": 2483.94, + "probability": 0.784 + }, + { + "start": 2484.74, + "end": 2486.02, + "probability": 0.8726 + }, + { + "start": 2487.34, + "end": 2491.76, + "probability": 0.9299 + }, + { + "start": 2492.84, + "end": 2496.36, + "probability": 0.991 + }, + { + "start": 2497.52, + "end": 2500.84, + "probability": 0.947 + }, + { + "start": 2501.82, + "end": 2506.28, + "probability": 0.9878 + }, + { + "start": 2508.4, + "end": 2509.14, + "probability": 0.0351 + }, + { + "start": 2509.14, + "end": 2510.24, + "probability": 0.0486 + }, + { + "start": 2510.82, + "end": 2517.56, + "probability": 0.0462 + }, + { + "start": 2518.06, + "end": 2524.42, + "probability": 0.1745 + }, + { + "start": 2532.1, + "end": 2532.74, + "probability": 0.0261 + }, + { + "start": 2532.74, + "end": 2534.12, + "probability": 0.299 + }, + { + "start": 2534.84, + "end": 2540.94, + "probability": 0.0635 + }, + { + "start": 2542.62, + "end": 2545.82, + "probability": 0.1696 + }, + { + "start": 2548.54, + "end": 2552.44, + "probability": 0.1345 + }, + { + "start": 2552.96, + "end": 2554.46, + "probability": 0.4957 + }, + { + "start": 2555.8, + "end": 2557.26, + "probability": 0.6096 + }, + { + "start": 2558.14, + "end": 2559.9, + "probability": 0.1838 + }, + { + "start": 2562.74, + "end": 2563.64, + "probability": 0.4418 + }, + { + "start": 2565.12, + "end": 2566.7, + "probability": 0.9346 + }, + { + "start": 2568.4, + "end": 2572.02, + "probability": 0.9453 + }, + { + "start": 2573.54, + "end": 2575.6, + "probability": 0.993 + }, + { + "start": 2578.34, + "end": 2579.96, + "probability": 0.6739 + }, + { + "start": 2581.36, + "end": 2581.68, + "probability": 0.9524 + }, + { + "start": 2582.58, + "end": 2586.94, + "probability": 0.9278 + }, + { + "start": 2588.18, + "end": 2589.86, + "probability": 0.9757 + }, + { + "start": 2591.42, + "end": 2592.3, + "probability": 0.8198 + }, + { + "start": 2593.26, + "end": 2594.68, + "probability": 0.9361 + }, + { + "start": 2595.62, + "end": 2597.9, + "probability": 0.7273 + }, + { + "start": 2598.58, + "end": 2599.72, + "probability": 0.9562 + }, + { + "start": 2602.6, + "end": 2603.94, + "probability": 0.9817 + }, + { + "start": 2607.0, + "end": 2608.26, + "probability": 0.5638 + }, + { + "start": 2609.02, + "end": 2611.12, + "probability": 0.9785 + }, + { + "start": 2612.44, + "end": 2613.84, + "probability": 0.995 + }, + { + "start": 2615.68, + "end": 2620.4, + "probability": 0.9639 + }, + { + "start": 2621.36, + "end": 2623.5, + "probability": 0.996 + }, + { + "start": 2624.96, + "end": 2626.48, + "probability": 0.7175 + }, + { + "start": 2627.5, + "end": 2628.68, + "probability": 0.2181 + }, + { + "start": 2632.76, + "end": 2634.8, + "probability": 0.4337 + }, + { + "start": 2635.64, + "end": 2638.04, + "probability": 0.8749 + }, + { + "start": 2639.34, + "end": 2642.14, + "probability": 0.9985 + }, + { + "start": 2642.7, + "end": 2644.34, + "probability": 0.9976 + }, + { + "start": 2645.04, + "end": 2646.14, + "probability": 0.9058 + }, + { + "start": 2647.72, + "end": 2655.64, + "probability": 0.9927 + }, + { + "start": 2657.22, + "end": 2658.3, + "probability": 0.8941 + }, + { + "start": 2659.26, + "end": 2660.16, + "probability": 0.9964 + }, + { + "start": 2661.1, + "end": 2668.98, + "probability": 0.946 + }, + { + "start": 2669.22, + "end": 2669.9, + "probability": 0.6032 + }, + { + "start": 2671.06, + "end": 2672.16, + "probability": 0.9541 + }, + { + "start": 2673.16, + "end": 2677.82, + "probability": 0.965 + }, + { + "start": 2679.08, + "end": 2680.94, + "probability": 0.8944 + }, + { + "start": 2682.36, + "end": 2685.26, + "probability": 0.997 + }, + { + "start": 2686.18, + "end": 2690.28, + "probability": 0.9776 + }, + { + "start": 2691.36, + "end": 2692.92, + "probability": 0.9075 + }, + { + "start": 2694.66, + "end": 2695.14, + "probability": 0.4299 + }, + { + "start": 2696.06, + "end": 2700.42, + "probability": 0.9351 + }, + { + "start": 2701.88, + "end": 2706.14, + "probability": 0.9643 + }, + { + "start": 2706.72, + "end": 2708.1, + "probability": 0.9849 + }, + { + "start": 2710.04, + "end": 2710.86, + "probability": 0.9652 + }, + { + "start": 2712.82, + "end": 2714.04, + "probability": 0.8376 + }, + { + "start": 2715.48, + "end": 2720.38, + "probability": 0.9853 + }, + { + "start": 2721.68, + "end": 2724.2, + "probability": 0.9978 + }, + { + "start": 2725.7, + "end": 2729.6, + "probability": 0.981 + }, + { + "start": 2732.66, + "end": 2735.6, + "probability": 0.9736 + }, + { + "start": 2735.86, + "end": 2736.12, + "probability": 0.3464 + }, + { + "start": 2736.32, + "end": 2737.34, + "probability": 0.915 + }, + { + "start": 2737.38, + "end": 2739.76, + "probability": 0.7593 + }, + { + "start": 2740.74, + "end": 2743.22, + "probability": 0.8642 + }, + { + "start": 2744.0, + "end": 2749.04, + "probability": 0.8588 + }, + { + "start": 2750.12, + "end": 2751.98, + "probability": 0.9661 + }, + { + "start": 2753.02, + "end": 2753.52, + "probability": 0.4778 + }, + { + "start": 2753.7, + "end": 2757.5, + "probability": 0.9958 + }, + { + "start": 2757.52, + "end": 2760.96, + "probability": 0.9947 + }, + { + "start": 2761.74, + "end": 2762.98, + "probability": 0.9357 + }, + { + "start": 2763.5, + "end": 2765.64, + "probability": 0.7044 + }, + { + "start": 2766.32, + "end": 2766.94, + "probability": 0.5385 + }, + { + "start": 2767.68, + "end": 2772.36, + "probability": 0.9316 + }, + { + "start": 2772.96, + "end": 2778.3, + "probability": 0.9917 + }, + { + "start": 2778.3, + "end": 2786.42, + "probability": 0.9905 + }, + { + "start": 2787.0, + "end": 2792.02, + "probability": 0.988 + }, + { + "start": 2792.76, + "end": 2795.58, + "probability": 0.9969 + }, + { + "start": 2796.6, + "end": 2798.32, + "probability": 0.6721 + }, + { + "start": 2799.5, + "end": 2803.2, + "probability": 0.9941 + }, + { + "start": 2803.92, + "end": 2807.1, + "probability": 0.9988 + }, + { + "start": 2807.1, + "end": 2811.54, + "probability": 0.9968 + }, + { + "start": 2812.34, + "end": 2819.12, + "probability": 0.9976 + }, + { + "start": 2819.82, + "end": 2820.8, + "probability": 0.9787 + }, + { + "start": 2821.22, + "end": 2823.38, + "probability": 0.9648 + }, + { + "start": 2824.1, + "end": 2831.83, + "probability": 0.9961 + }, + { + "start": 2832.46, + "end": 2837.14, + "probability": 0.9651 + }, + { + "start": 2839.2, + "end": 2839.82, + "probability": 0.785 + }, + { + "start": 2841.46, + "end": 2844.36, + "probability": 0.9925 + }, + { + "start": 2845.0, + "end": 2846.02, + "probability": 0.7793 + }, + { + "start": 2847.58, + "end": 2849.18, + "probability": 0.9862 + }, + { + "start": 2849.74, + "end": 2850.98, + "probability": 0.7876 + }, + { + "start": 2852.14, + "end": 2855.94, + "probability": 0.967 + }, + { + "start": 2856.6, + "end": 2858.1, + "probability": 0.9409 + }, + { + "start": 2858.84, + "end": 2860.34, + "probability": 0.9706 + }, + { + "start": 2860.92, + "end": 2863.46, + "probability": 0.8154 + }, + { + "start": 2863.6, + "end": 2864.64, + "probability": 0.9197 + }, + { + "start": 2865.06, + "end": 2866.46, + "probability": 0.8402 + }, + { + "start": 2869.84, + "end": 2873.38, + "probability": 0.9607 + }, + { + "start": 2874.02, + "end": 2875.94, + "probability": 0.9935 + }, + { + "start": 2876.96, + "end": 2882.7, + "probability": 0.9963 + }, + { + "start": 2884.18, + "end": 2889.12, + "probability": 0.997 + }, + { + "start": 2889.12, + "end": 2897.72, + "probability": 0.9818 + }, + { + "start": 2899.28, + "end": 2904.68, + "probability": 0.7305 + }, + { + "start": 2905.5, + "end": 2907.72, + "probability": 0.9066 + }, + { + "start": 2908.26, + "end": 2910.74, + "probability": 0.9546 + }, + { + "start": 2911.32, + "end": 2911.96, + "probability": 0.946 + }, + { + "start": 2913.76, + "end": 2915.48, + "probability": 0.9714 + }, + { + "start": 2916.52, + "end": 2917.24, + "probability": 0.7466 + }, + { + "start": 2918.08, + "end": 2921.9, + "probability": 0.469 + }, + { + "start": 2923.02, + "end": 2925.52, + "probability": 0.2723 + }, + { + "start": 2929.94, + "end": 2930.24, + "probability": 0.2941 + }, + { + "start": 2932.24, + "end": 2936.1, + "probability": 0.0828 + }, + { + "start": 2936.3, + "end": 2938.06, + "probability": 0.168 + }, + { + "start": 2938.06, + "end": 2938.14, + "probability": 0.225 + }, + { + "start": 2938.56, + "end": 2940.12, + "probability": 0.0138 + }, + { + "start": 2941.26, + "end": 2944.1, + "probability": 0.1876 + }, + { + "start": 2950.82, + "end": 2951.46, + "probability": 0.1153 + }, + { + "start": 2975.68, + "end": 2977.9, + "probability": 0.3289 + }, + { + "start": 2979.04, + "end": 2981.62, + "probability": 0.9634 + }, + { + "start": 2982.16, + "end": 2982.36, + "probability": 0.7844 + }, + { + "start": 2983.1, + "end": 2986.76, + "probability": 0.8066 + }, + { + "start": 2987.52, + "end": 2989.96, + "probability": 0.8681 + }, + { + "start": 2990.58, + "end": 2994.08, + "probability": 0.9824 + }, + { + "start": 2994.24, + "end": 2994.82, + "probability": 0.7244 + }, + { + "start": 2995.24, + "end": 2995.76, + "probability": 0.9657 + }, + { + "start": 2997.68, + "end": 3000.06, + "probability": 0.9866 + }, + { + "start": 3000.6, + "end": 3005.48, + "probability": 0.9925 + }, + { + "start": 3005.48, + "end": 3009.34, + "probability": 0.9824 + }, + { + "start": 3010.64, + "end": 3011.84, + "probability": 0.6714 + }, + { + "start": 3012.54, + "end": 3016.8, + "probability": 0.9047 + }, + { + "start": 3018.06, + "end": 3018.46, + "probability": 0.3836 + }, + { + "start": 3019.1, + "end": 3020.06, + "probability": 0.5002 + }, + { + "start": 3020.9, + "end": 3023.18, + "probability": 0.9008 + }, + { + "start": 3023.88, + "end": 3027.5, + "probability": 0.9696 + }, + { + "start": 3028.02, + "end": 3032.5, + "probability": 0.9218 + }, + { + "start": 3032.5, + "end": 3037.46, + "probability": 0.9475 + }, + { + "start": 3038.84, + "end": 3039.4, + "probability": 0.6022 + }, + { + "start": 3040.28, + "end": 3044.9, + "probability": 0.9801 + }, + { + "start": 3045.92, + "end": 3049.34, + "probability": 0.2492 + }, + { + "start": 3049.66, + "end": 3056.92, + "probability": 0.9848 + }, + { + "start": 3058.5, + "end": 3062.72, + "probability": 0.9857 + }, + { + "start": 3062.72, + "end": 3065.42, + "probability": 0.9971 + }, + { + "start": 3066.46, + "end": 3066.84, + "probability": 0.8181 + }, + { + "start": 3067.26, + "end": 3068.68, + "probability": 0.5184 + }, + { + "start": 3069.34, + "end": 3069.76, + "probability": 0.879 + }, + { + "start": 3070.24, + "end": 3071.66, + "probability": 0.9672 + }, + { + "start": 3072.24, + "end": 3077.4, + "probability": 0.9473 + }, + { + "start": 3078.9, + "end": 3080.36, + "probability": 0.9599 + }, + { + "start": 3081.38, + "end": 3083.12, + "probability": 0.9401 + }, + { + "start": 3083.8, + "end": 3086.64, + "probability": 0.9797 + }, + { + "start": 3087.18, + "end": 3089.27, + "probability": 0.9808 + }, + { + "start": 3090.56, + "end": 3094.3, + "probability": 0.9722 + }, + { + "start": 3095.12, + "end": 3096.64, + "probability": 0.9253 + }, + { + "start": 3098.66, + "end": 3099.54, + "probability": 0.9155 + }, + { + "start": 3100.32, + "end": 3107.58, + "probability": 0.9976 + }, + { + "start": 3108.82, + "end": 3112.94, + "probability": 0.8171 + }, + { + "start": 3114.44, + "end": 3120.38, + "probability": 0.8444 + }, + { + "start": 3121.9, + "end": 3124.3, + "probability": 0.9522 + }, + { + "start": 3124.96, + "end": 3130.2, + "probability": 0.9707 + }, + { + "start": 3130.32, + "end": 3136.02, + "probability": 0.9473 + }, + { + "start": 3136.68, + "end": 3141.56, + "probability": 0.9886 + }, + { + "start": 3142.18, + "end": 3142.18, + "probability": 0.3522 + }, + { + "start": 3142.34, + "end": 3144.3, + "probability": 0.9988 + }, + { + "start": 3145.38, + "end": 3148.72, + "probability": 0.9922 + }, + { + "start": 3149.62, + "end": 3153.38, + "probability": 0.9686 + }, + { + "start": 3154.26, + "end": 3154.48, + "probability": 0.7804 + }, + { + "start": 3155.36, + "end": 3156.1, + "probability": 0.7763 + }, + { + "start": 3156.72, + "end": 3158.06, + "probability": 0.9602 + }, + { + "start": 3158.58, + "end": 3160.14, + "probability": 0.7 + }, + { + "start": 3161.02, + "end": 3161.56, + "probability": 0.2603 + }, + { + "start": 3165.06, + "end": 3168.5, + "probability": 0.1531 + }, + { + "start": 3170.16, + "end": 3171.24, + "probability": 0.1537 + }, + { + "start": 3171.24, + "end": 3171.24, + "probability": 0.0541 + }, + { + "start": 3171.24, + "end": 3172.32, + "probability": 0.0155 + }, + { + "start": 3194.7, + "end": 3194.9, + "probability": 0.0641 + }, + { + "start": 3194.9, + "end": 3194.9, + "probability": 0.2353 + }, + { + "start": 3224.29, + "end": 3226.46, + "probability": 0.8245 + }, + { + "start": 3226.9, + "end": 3228.2, + "probability": 0.784 + }, + { + "start": 3228.38, + "end": 3228.8, + "probability": 0.9078 + }, + { + "start": 3229.6, + "end": 3230.28, + "probability": 0.9902 + }, + { + "start": 3231.72, + "end": 3231.92, + "probability": 0.9112 + }, + { + "start": 3235.02, + "end": 3236.04, + "probability": 0.9425 + }, + { + "start": 3237.18, + "end": 3242.02, + "probability": 0.9959 + }, + { + "start": 3242.02, + "end": 3247.64, + "probability": 0.9947 + }, + { + "start": 3249.06, + "end": 3253.32, + "probability": 0.9981 + }, + { + "start": 3253.6, + "end": 3256.46, + "probability": 0.9938 + }, + { + "start": 3257.7, + "end": 3261.96, + "probability": 0.9578 + }, + { + "start": 3261.96, + "end": 3266.44, + "probability": 0.9985 + }, + { + "start": 3267.16, + "end": 3269.94, + "probability": 0.842 + }, + { + "start": 3270.86, + "end": 3274.9, + "probability": 0.9379 + }, + { + "start": 3275.02, + "end": 3279.08, + "probability": 0.873 + }, + { + "start": 3280.12, + "end": 3285.64, + "probability": 0.9669 + }, + { + "start": 3286.56, + "end": 3289.48, + "probability": 0.9319 + }, + { + "start": 3290.2, + "end": 3293.2, + "probability": 0.9896 + }, + { + "start": 3293.2, + "end": 3296.92, + "probability": 0.9905 + }, + { + "start": 3297.42, + "end": 3300.12, + "probability": 0.8935 + }, + { + "start": 3300.78, + "end": 3302.92, + "probability": 0.8937 + }, + { + "start": 3303.16, + "end": 3308.02, + "probability": 0.9989 + }, + { + "start": 3308.8, + "end": 3311.76, + "probability": 0.5339 + }, + { + "start": 3314.11, + "end": 3316.38, + "probability": 0.9971 + }, + { + "start": 3317.7, + "end": 3318.22, + "probability": 0.8454 + }, + { + "start": 3318.26, + "end": 3321.32, + "probability": 0.9796 + }, + { + "start": 3321.32, + "end": 3324.74, + "probability": 0.8018 + }, + { + "start": 3324.88, + "end": 3328.2, + "probability": 0.9122 + }, + { + "start": 3328.24, + "end": 3328.58, + "probability": 0.7921 + }, + { + "start": 3329.36, + "end": 3330.02, + "probability": 0.7642 + }, + { + "start": 3331.4, + "end": 3332.88, + "probability": 0.1146 + }, + { + "start": 3332.88, + "end": 3334.41, + "probability": 0.1507 + }, + { + "start": 3334.92, + "end": 3337.16, + "probability": 0.6892 + }, + { + "start": 3337.8, + "end": 3339.0, + "probability": 0.8296 + }, + { + "start": 3340.44, + "end": 3341.68, + "probability": 0.4954 + }, + { + "start": 3366.56, + "end": 3366.88, + "probability": 0.2668 + }, + { + "start": 3369.52, + "end": 3370.1, + "probability": 0.6865 + }, + { + "start": 3370.28, + "end": 3371.18, + "probability": 0.6115 + }, + { + "start": 3371.22, + "end": 3373.35, + "probability": 0.9865 + }, + { + "start": 3374.06, + "end": 3374.76, + "probability": 0.5858 + }, + { + "start": 3374.96, + "end": 3378.22, + "probability": 0.9722 + }, + { + "start": 3378.34, + "end": 3379.74, + "probability": 0.9827 + }, + { + "start": 3381.5, + "end": 3384.3, + "probability": 0.9395 + }, + { + "start": 3384.6, + "end": 3385.62, + "probability": 0.6603 + }, + { + "start": 3386.78, + "end": 3387.76, + "probability": 0.9377 + }, + { + "start": 3389.2, + "end": 3391.6, + "probability": 0.995 + }, + { + "start": 3393.22, + "end": 3394.74, + "probability": 0.9746 + }, + { + "start": 3396.48, + "end": 3398.14, + "probability": 0.6863 + }, + { + "start": 3400.12, + "end": 3401.4, + "probability": 0.5893 + }, + { + "start": 3401.4, + "end": 3402.98, + "probability": 0.8395 + }, + { + "start": 3403.1, + "end": 3403.86, + "probability": 0.8064 + }, + { + "start": 3403.9, + "end": 3405.28, + "probability": 0.9912 + }, + { + "start": 3406.56, + "end": 3407.84, + "probability": 0.6984 + }, + { + "start": 3408.32, + "end": 3409.28, + "probability": 0.3369 + }, + { + "start": 3412.53, + "end": 3414.32, + "probability": 0.5994 + }, + { + "start": 3414.58, + "end": 3415.96, + "probability": 0.8701 + }, + { + "start": 3416.24, + "end": 3417.12, + "probability": 0.8846 + }, + { + "start": 3418.02, + "end": 3418.48, + "probability": 0.7793 + }, + { + "start": 3419.04, + "end": 3422.4, + "probability": 0.9279 + }, + { + "start": 3422.54, + "end": 3424.76, + "probability": 0.6469 + }, + { + "start": 3424.88, + "end": 3426.13, + "probability": 0.8623 + }, + { + "start": 3427.26, + "end": 3427.96, + "probability": 0.6485 + }, + { + "start": 3428.04, + "end": 3428.44, + "probability": 0.7775 + }, + { + "start": 3428.76, + "end": 3429.56, + "probability": 0.7471 + }, + { + "start": 3429.62, + "end": 3430.64, + "probability": 0.9515 + }, + { + "start": 3431.48, + "end": 3433.64, + "probability": 0.7988 + }, + { + "start": 3434.84, + "end": 3436.6, + "probability": 0.834 + }, + { + "start": 3437.38, + "end": 3438.32, + "probability": 0.6301 + }, + { + "start": 3438.56, + "end": 3440.48, + "probability": 0.8086 + }, + { + "start": 3440.58, + "end": 3442.04, + "probability": 0.9958 + }, + { + "start": 3442.7, + "end": 3445.42, + "probability": 0.9563 + }, + { + "start": 3446.08, + "end": 3447.4, + "probability": 0.6794 + }, + { + "start": 3448.48, + "end": 3450.56, + "probability": 0.7082 + }, + { + "start": 3451.69, + "end": 3455.42, + "probability": 0.9197 + }, + { + "start": 3456.38, + "end": 3459.32, + "probability": 0.9984 + }, + { + "start": 3459.32, + "end": 3462.3, + "probability": 0.9933 + }, + { + "start": 3462.5, + "end": 3463.58, + "probability": 0.9767 + }, + { + "start": 3465.72, + "end": 3468.16, + "probability": 0.4523 + }, + { + "start": 3468.28, + "end": 3469.84, + "probability": 0.9917 + }, + { + "start": 3469.88, + "end": 3470.54, + "probability": 0.7436 + }, + { + "start": 3470.76, + "end": 3472.94, + "probability": 0.7929 + }, + { + "start": 3473.56, + "end": 3474.37, + "probability": 0.8467 + }, + { + "start": 3474.64, + "end": 3474.86, + "probability": 0.7512 + }, + { + "start": 3474.96, + "end": 3478.72, + "probability": 0.966 + }, + { + "start": 3479.18, + "end": 3481.24, + "probability": 0.4371 + }, + { + "start": 3482.12, + "end": 3483.14, + "probability": 0.5321 + }, + { + "start": 3483.9, + "end": 3485.3, + "probability": 0.8924 + }, + { + "start": 3486.52, + "end": 3488.72, + "probability": 0.9252 + }, + { + "start": 3488.86, + "end": 3490.06, + "probability": 0.7793 + }, + { + "start": 3490.06, + "end": 3493.66, + "probability": 0.4865 + }, + { + "start": 3493.86, + "end": 3494.38, + "probability": 0.737 + }, + { + "start": 3494.54, + "end": 3495.04, + "probability": 0.871 + }, + { + "start": 3496.32, + "end": 3498.44, + "probability": 0.9292 + }, + { + "start": 3499.3, + "end": 3500.34, + "probability": 0.9679 + }, + { + "start": 3500.48, + "end": 3500.8, + "probability": 0.6287 + }, + { + "start": 3501.12, + "end": 3503.18, + "probability": 0.9687 + }, + { + "start": 3503.3, + "end": 3503.94, + "probability": 0.9229 + }, + { + "start": 3504.78, + "end": 3505.64, + "probability": 0.9143 + }, + { + "start": 3506.02, + "end": 3506.98, + "probability": 0.7433 + }, + { + "start": 3507.08, + "end": 3508.3, + "probability": 0.9355 + }, + { + "start": 3509.36, + "end": 3511.12, + "probability": 0.9556 + }, + { + "start": 3513.42, + "end": 3515.96, + "probability": 0.9826 + }, + { + "start": 3517.94, + "end": 3519.0, + "probability": 0.9858 + }, + { + "start": 3520.46, + "end": 3522.26, + "probability": 0.958 + }, + { + "start": 3523.8, + "end": 3524.98, + "probability": 0.8171 + }, + { + "start": 3529.1, + "end": 3529.1, + "probability": 0.0655 + }, + { + "start": 3529.1, + "end": 3529.1, + "probability": 0.0096 + }, + { + "start": 3529.1, + "end": 3529.73, + "probability": 0.6996 + }, + { + "start": 3530.9, + "end": 3532.33, + "probability": 0.8411 + }, + { + "start": 3533.04, + "end": 3535.26, + "probability": 0.8201 + }, + { + "start": 3536.14, + "end": 3537.56, + "probability": 0.9583 + }, + { + "start": 3538.0, + "end": 3538.88, + "probability": 0.6401 + }, + { + "start": 3539.48, + "end": 3542.72, + "probability": 0.8765 + }, + { + "start": 3542.72, + "end": 3546.7, + "probability": 0.8475 + }, + { + "start": 3547.68, + "end": 3548.02, + "probability": 0.6801 + }, + { + "start": 3548.02, + "end": 3548.76, + "probability": 0.7529 + }, + { + "start": 3548.96, + "end": 3550.74, + "probability": 0.4858 + }, + { + "start": 3551.18, + "end": 3551.71, + "probability": 0.6917 + }, + { + "start": 3551.96, + "end": 3552.42, + "probability": 0.5459 + }, + { + "start": 3552.46, + "end": 3553.04, + "probability": 0.7644 + }, + { + "start": 3553.2, + "end": 3558.94, + "probability": 0.9965 + }, + { + "start": 3559.44, + "end": 3561.78, + "probability": 0.8003 + }, + { + "start": 3561.84, + "end": 3562.26, + "probability": 0.9468 + }, + { + "start": 3562.52, + "end": 3563.86, + "probability": 0.8981 + }, + { + "start": 3563.92, + "end": 3565.61, + "probability": 0.9832 + }, + { + "start": 3566.33, + "end": 3566.54, + "probability": 0.2161 + }, + { + "start": 3566.54, + "end": 3566.54, + "probability": 0.515 + }, + { + "start": 3566.54, + "end": 3567.84, + "probability": 0.7842 + }, + { + "start": 3568.18, + "end": 3572.46, + "probability": 0.9426 + }, + { + "start": 3574.48, + "end": 3574.9, + "probability": 0.4676 + }, + { + "start": 3575.54, + "end": 3576.26, + "probability": 0.3887 + }, + { + "start": 3576.48, + "end": 3576.94, + "probability": 0.7004 + }, + { + "start": 3577.04, + "end": 3577.48, + "probability": 0.8067 + }, + { + "start": 3578.16, + "end": 3578.86, + "probability": 0.6596 + }, + { + "start": 3578.98, + "end": 3579.84, + "probability": 0.7426 + }, + { + "start": 3579.9, + "end": 3580.74, + "probability": 0.4565 + }, + { + "start": 3580.84, + "end": 3580.98, + "probability": 0.5169 + }, + { + "start": 3581.2, + "end": 3581.98, + "probability": 0.4218 + }, + { + "start": 3582.42, + "end": 3586.92, + "probability": 0.8173 + }, + { + "start": 3587.02, + "end": 3590.88, + "probability": 0.9827 + }, + { + "start": 3591.08, + "end": 3591.14, + "probability": 0.6805 + }, + { + "start": 3591.26, + "end": 3593.1, + "probability": 0.9662 + }, + { + "start": 3593.16, + "end": 3594.66, + "probability": 0.8609 + }, + { + "start": 3594.8, + "end": 3596.06, + "probability": 0.6578 + }, + { + "start": 3596.2, + "end": 3596.2, + "probability": 0.6384 + }, + { + "start": 3596.2, + "end": 3596.2, + "probability": 0.4649 + }, + { + "start": 3596.2, + "end": 3597.82, + "probability": 0.932 + }, + { + "start": 3598.16, + "end": 3600.04, + "probability": 0.9011 + }, + { + "start": 3600.04, + "end": 3601.26, + "probability": 0.4891 + }, + { + "start": 3601.28, + "end": 3604.64, + "probability": 0.8113 + }, + { + "start": 3604.68, + "end": 3605.9, + "probability": 0.7403 + }, + { + "start": 3606.04, + "end": 3608.06, + "probability": 0.5293 + }, + { + "start": 3608.22, + "end": 3609.16, + "probability": 0.6896 + }, + { + "start": 3609.16, + "end": 3609.6, + "probability": 0.3556 + }, + { + "start": 3609.6, + "end": 3609.7, + "probability": 0.1277 + }, + { + "start": 3610.58, + "end": 3612.3, + "probability": 0.9519 + }, + { + "start": 3612.42, + "end": 3613.68, + "probability": 0.417 + }, + { + "start": 3613.76, + "end": 3614.36, + "probability": 0.4863 + }, + { + "start": 3614.36, + "end": 3616.94, + "probability": 0.748 + }, + { + "start": 3617.04, + "end": 3618.46, + "probability": 0.437 + }, + { + "start": 3619.12, + "end": 3619.5, + "probability": 0.7454 + }, + { + "start": 3621.32, + "end": 3621.42, + "probability": 0.0763 + }, + { + "start": 3621.42, + "end": 3621.42, + "probability": 0.0523 + }, + { + "start": 3621.42, + "end": 3622.87, + "probability": 0.5121 + }, + { + "start": 3622.96, + "end": 3624.0, + "probability": 0.5917 + }, + { + "start": 3624.08, + "end": 3624.92, + "probability": 0.6647 + }, + { + "start": 3629.36, + "end": 3634.14, + "probability": 0.1303 + }, + { + "start": 3635.18, + "end": 3639.96, + "probability": 0.0767 + }, + { + "start": 3639.96, + "end": 3640.25, + "probability": 0.0314 + }, + { + "start": 3649.98, + "end": 3650.88, + "probability": 0.0966 + }, + { + "start": 3650.88, + "end": 3654.14, + "probability": 0.2993 + }, + { + "start": 3654.14, + "end": 3655.22, + "probability": 0.5592 + }, + { + "start": 3659.68, + "end": 3662.42, + "probability": 0.1107 + }, + { + "start": 3663.06, + "end": 3664.06, + "probability": 0.3267 + }, + { + "start": 3664.08, + "end": 3664.2, + "probability": 0.0234 + }, + { + "start": 3664.2, + "end": 3664.72, + "probability": 0.2061 + }, + { + "start": 3665.04, + "end": 3665.54, + "probability": 0.2532 + }, + { + "start": 3665.98, + "end": 3665.98, + "probability": 0.035 + }, + { + "start": 3665.98, + "end": 3665.98, + "probability": 0.0128 + }, + { + "start": 3665.98, + "end": 3666.6, + "probability": 0.1247 + }, + { + "start": 3667.74, + "end": 3668.12, + "probability": 0.5525 + }, + { + "start": 3668.28, + "end": 3672.15, + "probability": 0.3696 + }, + { + "start": 3673.24, + "end": 3677.5, + "probability": 0.7426 + }, + { + "start": 3678.48, + "end": 3681.74, + "probability": 0.9919 + }, + { + "start": 3681.74, + "end": 3688.44, + "probability": 0.9949 + }, + { + "start": 3689.22, + "end": 3692.08, + "probability": 0.7401 + }, + { + "start": 3692.5, + "end": 3693.1, + "probability": 0.4918 + }, + { + "start": 3693.32, + "end": 3693.96, + "probability": 0.6639 + }, + { + "start": 3694.68, + "end": 3696.72, + "probability": 0.9966 + }, + { + "start": 3697.48, + "end": 3701.22, + "probability": 0.9494 + }, + { + "start": 3701.46, + "end": 3702.0, + "probability": 0.7567 + }, + { + "start": 3703.5, + "end": 3709.86, + "probability": 0.942 + }, + { + "start": 3710.52, + "end": 3713.48, + "probability": 0.8079 + }, + { + "start": 3715.08, + "end": 3716.8, + "probability": 0.7518 + }, + { + "start": 3718.44, + "end": 3720.7, + "probability": 0.8408 + }, + { + "start": 3721.34, + "end": 3722.62, + "probability": 0.9791 + }, + { + "start": 3723.4, + "end": 3724.74, + "probability": 0.9645 + }, + { + "start": 3726.22, + "end": 3728.84, + "probability": 0.98 + }, + { + "start": 3730.0, + "end": 3731.66, + "probability": 0.9544 + }, + { + "start": 3732.22, + "end": 3733.1, + "probability": 0.9976 + }, + { + "start": 3734.36, + "end": 3739.26, + "probability": 0.9784 + }, + { + "start": 3739.32, + "end": 3740.9, + "probability": 0.8037 + }, + { + "start": 3741.34, + "end": 3742.46, + "probability": 0.9956 + }, + { + "start": 3743.58, + "end": 3746.14, + "probability": 0.918 + }, + { + "start": 3747.62, + "end": 3751.16, + "probability": 0.9681 + }, + { + "start": 3752.16, + "end": 3752.89, + "probability": 0.8907 + }, + { + "start": 3753.8, + "end": 3754.7, + "probability": 0.7876 + }, + { + "start": 3756.28, + "end": 3758.82, + "probability": 0.8812 + }, + { + "start": 3759.42, + "end": 3760.3, + "probability": 0.9832 + }, + { + "start": 3761.04, + "end": 3764.92, + "probability": 0.9943 + }, + { + "start": 3766.14, + "end": 3770.38, + "probability": 0.9821 + }, + { + "start": 3771.14, + "end": 3773.92, + "probability": 0.9393 + }, + { + "start": 3774.92, + "end": 3776.44, + "probability": 0.961 + }, + { + "start": 3776.78, + "end": 3778.62, + "probability": 0.8993 + }, + { + "start": 3779.18, + "end": 3779.88, + "probability": 0.855 + }, + { + "start": 3780.74, + "end": 3781.78, + "probability": 0.616 + }, + { + "start": 3783.32, + "end": 3784.28, + "probability": 0.9403 + }, + { + "start": 3784.86, + "end": 3786.02, + "probability": 0.8285 + }, + { + "start": 3786.56, + "end": 3787.22, + "probability": 0.8138 + }, + { + "start": 3787.62, + "end": 3792.3, + "probability": 0.9835 + }, + { + "start": 3792.88, + "end": 3795.44, + "probability": 0.9749 + }, + { + "start": 3795.5, + "end": 3798.72, + "probability": 0.9432 + }, + { + "start": 3799.52, + "end": 3802.78, + "probability": 0.9985 + }, + { + "start": 3802.84, + "end": 3803.26, + "probability": 0.8173 + }, + { + "start": 3803.88, + "end": 3805.38, + "probability": 0.7023 + }, + { + "start": 3805.84, + "end": 3806.32, + "probability": 0.714 + }, + { + "start": 3811.91, + "end": 3814.88, + "probability": 0.9548 + }, + { + "start": 3815.58, + "end": 3816.86, + "probability": 0.9784 + }, + { + "start": 3817.96, + "end": 3821.08, + "probability": 0.8882 + }, + { + "start": 3821.18, + "end": 3822.48, + "probability": 0.5374 + }, + { + "start": 3823.1, + "end": 3824.56, + "probability": 0.7028 + }, + { + "start": 3824.66, + "end": 3830.62, + "probability": 0.4012 + }, + { + "start": 3830.62, + "end": 3830.62, + "probability": 0.0163 + }, + { + "start": 3849.08, + "end": 3849.26, + "probability": 0.2137 + }, + { + "start": 3849.56, + "end": 3852.26, + "probability": 0.3769 + }, + { + "start": 3852.34, + "end": 3852.9, + "probability": 0.152 + }, + { + "start": 3856.07, + "end": 3860.84, + "probability": 0.3486 + }, + { + "start": 3863.34, + "end": 3863.98, + "probability": 0.339 + }, + { + "start": 3864.72, + "end": 3868.14, + "probability": 0.0662 + }, + { + "start": 3869.34, + "end": 3869.64, + "probability": 0.2125 + }, + { + "start": 3890.1, + "end": 3891.36, + "probability": 0.3956 + }, + { + "start": 3891.48, + "end": 3897.68, + "probability": 0.1062 + }, + { + "start": 3902.52, + "end": 3905.3, + "probability": 0.6927 + }, + { + "start": 3906.42, + "end": 3911.49, + "probability": 0.2841 + }, + { + "start": 3911.84, + "end": 3913.12, + "probability": 0.0596 + }, + { + "start": 3914.72, + "end": 3916.02, + "probability": 0.0534 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3917.0, + "end": 3917.0, + "probability": 0.0 + }, + { + "start": 3934.36, + "end": 3940.27, + "probability": 0.1844 + }, + { + "start": 3943.4, + "end": 3945.72, + "probability": 0.1016 + }, + { + "start": 3945.8, + "end": 3947.92, + "probability": 0.0789 + }, + { + "start": 3951.23, + "end": 3954.28, + "probability": 0.072 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4037.0, + "end": 4037.0, + "probability": 0.0 + }, + { + "start": 4038.34, + "end": 4038.44, + "probability": 0.0187 + }, + { + "start": 4038.44, + "end": 4038.7, + "probability": 0.5257 + }, + { + "start": 4040.02, + "end": 4044.0, + "probability": 0.9745 + }, + { + "start": 4044.08, + "end": 4047.42, + "probability": 0.9948 + }, + { + "start": 4047.92, + "end": 4052.46, + "probability": 0.9971 + }, + { + "start": 4052.58, + "end": 4056.26, + "probability": 0.9861 + }, + { + "start": 4056.96, + "end": 4062.14, + "probability": 0.9823 + }, + { + "start": 4062.26, + "end": 4066.9, + "probability": 0.9827 + }, + { + "start": 4068.5, + "end": 4071.08, + "probability": 0.991 + }, + { + "start": 4071.3, + "end": 4074.26, + "probability": 0.7542 + }, + { + "start": 4075.68, + "end": 4076.88, + "probability": 0.9342 + }, + { + "start": 4077.02, + "end": 4079.96, + "probability": 0.9963 + }, + { + "start": 4080.06, + "end": 4084.66, + "probability": 0.9589 + }, + { + "start": 4085.12, + "end": 4087.2, + "probability": 0.9779 + }, + { + "start": 4087.76, + "end": 4088.22, + "probability": 0.5309 + }, + { + "start": 4088.52, + "end": 4089.98, + "probability": 0.8105 + }, + { + "start": 4090.4, + "end": 4093.14, + "probability": 0.9888 + }, + { + "start": 4093.22, + "end": 4097.92, + "probability": 0.9919 + }, + { + "start": 4098.16, + "end": 4099.8, + "probability": 0.942 + }, + { + "start": 4099.88, + "end": 4100.12, + "probability": 0.7258 + }, + { + "start": 4100.4, + "end": 4101.0, + "probability": 0.7216 + }, + { + "start": 4101.1, + "end": 4102.38, + "probability": 0.7856 + }, + { + "start": 4103.28, + "end": 4105.76, + "probability": 0.4751 + }, + { + "start": 4106.22, + "end": 4108.5, + "probability": 0.5642 + }, + { + "start": 4109.44, + "end": 4109.8, + "probability": 0.0306 + }, + { + "start": 4113.22, + "end": 4113.46, + "probability": 0.2894 + }, + { + "start": 4123.14, + "end": 4123.26, + "probability": 0.0119 + }, + { + "start": 4123.26, + "end": 4123.78, + "probability": 0.4888 + }, + { + "start": 4124.28, + "end": 4125.94, + "probability": 0.2118 + }, + { + "start": 4127.15, + "end": 4128.22, + "probability": 0.6489 + }, + { + "start": 4129.28, + "end": 4130.05, + "probability": 0.0617 + }, + { + "start": 4131.0, + "end": 4132.36, + "probability": 0.7566 + }, + { + "start": 4133.8, + "end": 4134.94, + "probability": 0.2276 + }, + { + "start": 4137.53, + "end": 4140.56, + "probability": 0.5321 + }, + { + "start": 4143.78, + "end": 4144.16, + "probability": 0.261 + }, + { + "start": 4149.32, + "end": 4149.66, + "probability": 0.163 + }, + { + "start": 4154.4, + "end": 4154.66, + "probability": 0.0703 + }, + { + "start": 4154.66, + "end": 4155.64, + "probability": 0.3423 + }, + { + "start": 4155.64, + "end": 4156.96, + "probability": 0.8613 + }, + { + "start": 4157.04, + "end": 4158.7, + "probability": 0.2808 + }, + { + "start": 4158.86, + "end": 4160.56, + "probability": 0.5668 + }, + { + "start": 4160.68, + "end": 4161.5, + "probability": 0.4912 + }, + { + "start": 4162.86, + "end": 4164.66, + "probability": 0.1841 + }, + { + "start": 4164.98, + "end": 4168.58, + "probability": 0.6856 + }, + { + "start": 4168.66, + "end": 4169.02, + "probability": 0.8557 + }, + { + "start": 4169.26, + "end": 4169.84, + "probability": 0.629 + }, + { + "start": 4169.96, + "end": 4171.08, + "probability": 0.174 + }, + { + "start": 4172.48, + "end": 4174.32, + "probability": 0.8158 + }, + { + "start": 4175.38, + "end": 4176.52, + "probability": 0.9688 + }, + { + "start": 4177.14, + "end": 4178.02, + "probability": 0.8012 + }, + { + "start": 4178.18, + "end": 4180.84, + "probability": 0.9971 + }, + { + "start": 4180.96, + "end": 4183.3, + "probability": 0.6076 + }, + { + "start": 4183.38, + "end": 4188.4, + "probability": 0.9948 + }, + { + "start": 4188.46, + "end": 4189.96, + "probability": 0.9125 + }, + { + "start": 4190.86, + "end": 4192.84, + "probability": 0.9556 + }, + { + "start": 4197.4, + "end": 4198.92, + "probability": 0.4192 + }, + { + "start": 4199.54, + "end": 4202.06, + "probability": 0.9875 + }, + { + "start": 4202.16, + "end": 4205.64, + "probability": 0.9972 + }, + { + "start": 4205.82, + "end": 4208.4, + "probability": 0.9972 + }, + { + "start": 4208.66, + "end": 4209.46, + "probability": 0.6528 + }, + { + "start": 4210.0, + "end": 4211.66, + "probability": 0.9446 + }, + { + "start": 4212.92, + "end": 4218.56, + "probability": 0.7125 + }, + { + "start": 4219.2, + "end": 4220.4, + "probability": 0.9893 + }, + { + "start": 4221.0, + "end": 4223.62, + "probability": 0.6067 + }, + { + "start": 4224.42, + "end": 4225.24, + "probability": 0.9189 + }, + { + "start": 4225.5, + "end": 4226.92, + "probability": 0.9873 + }, + { + "start": 4227.81, + "end": 4229.58, + "probability": 0.5469 + }, + { + "start": 4229.58, + "end": 4231.34, + "probability": 0.8202 + }, + { + "start": 4231.84, + "end": 4233.04, + "probability": 0.9337 + }, + { + "start": 4234.22, + "end": 4235.48, + "probability": 0.9558 + }, + { + "start": 4235.84, + "end": 4236.82, + "probability": 0.3909 + }, + { + "start": 4238.58, + "end": 4239.38, + "probability": 0.3896 + }, + { + "start": 4240.0, + "end": 4241.04, + "probability": 0.4582 + }, + { + "start": 4241.62, + "end": 4242.32, + "probability": 0.8879 + }, + { + "start": 4243.04, + "end": 4244.22, + "probability": 0.8718 + }, + { + "start": 4244.38, + "end": 4247.06, + "probability": 0.9956 + }, + { + "start": 4247.26, + "end": 4247.84, + "probability": 0.3351 + }, + { + "start": 4248.3, + "end": 4248.42, + "probability": 0.4411 + }, + { + "start": 4248.92, + "end": 4251.12, + "probability": 0.8276 + }, + { + "start": 4252.76, + "end": 4254.68, + "probability": 0.8752 + }, + { + "start": 4255.1, + "end": 4258.02, + "probability": 0.5993 + }, + { + "start": 4258.26, + "end": 4259.12, + "probability": 0.7603 + }, + { + "start": 4259.96, + "end": 4261.48, + "probability": 0.7992 + }, + { + "start": 4262.06, + "end": 4264.88, + "probability": 0.9922 + }, + { + "start": 4265.02, + "end": 4266.04, + "probability": 0.6021 + }, + { + "start": 4267.54, + "end": 4269.38, + "probability": 0.9443 + }, + { + "start": 4269.5, + "end": 4270.54, + "probability": 0.828 + }, + { + "start": 4271.06, + "end": 4271.88, + "probability": 0.8744 + }, + { + "start": 4272.56, + "end": 4273.2, + "probability": 0.4327 + }, + { + "start": 4274.16, + "end": 4276.0, + "probability": 0.9866 + }, + { + "start": 4276.54, + "end": 4277.78, + "probability": 0.9785 + }, + { + "start": 4279.0, + "end": 4280.64, + "probability": 0.9878 + }, + { + "start": 4281.44, + "end": 4283.48, + "probability": 0.8665 + }, + { + "start": 4284.48, + "end": 4285.12, + "probability": 0.8864 + }, + { + "start": 4285.16, + "end": 4288.5, + "probability": 0.9907 + }, + { + "start": 4288.86, + "end": 4295.32, + "probability": 0.9636 + }, + { + "start": 4295.56, + "end": 4297.14, + "probability": 0.7959 + }, + { + "start": 4298.28, + "end": 4298.58, + "probability": 0.4148 + }, + { + "start": 4299.04, + "end": 4300.94, + "probability": 0.9954 + }, + { + "start": 4301.04, + "end": 4304.62, + "probability": 0.9155 + }, + { + "start": 4305.08, + "end": 4305.94, + "probability": 0.9314 + }, + { + "start": 4307.1, + "end": 4308.48, + "probability": 0.9937 + }, + { + "start": 4308.74, + "end": 4309.06, + "probability": 0.7665 + }, + { + "start": 4309.16, + "end": 4310.13, + "probability": 0.8605 + }, + { + "start": 4311.02, + "end": 4312.1, + "probability": 0.719 + }, + { + "start": 4312.34, + "end": 4313.64, + "probability": 0.9283 + }, + { + "start": 4314.64, + "end": 4318.28, + "probability": 0.9585 + }, + { + "start": 4318.74, + "end": 4321.8, + "probability": 0.824 + }, + { + "start": 4322.34, + "end": 4324.18, + "probability": 0.6216 + }, + { + "start": 4325.06, + "end": 4325.78, + "probability": 0.7407 + }, + { + "start": 4326.52, + "end": 4329.8, + "probability": 0.9747 + }, + { + "start": 4330.86, + "end": 4332.08, + "probability": 0.9631 + }, + { + "start": 4332.24, + "end": 4332.64, + "probability": 0.8945 + }, + { + "start": 4333.18, + "end": 4333.9, + "probability": 0.8918 + }, + { + "start": 4334.42, + "end": 4335.72, + "probability": 0.9302 + }, + { + "start": 4336.34, + "end": 4337.66, + "probability": 0.7967 + }, + { + "start": 4338.46, + "end": 4338.9, + "probability": 0.6807 + }, + { + "start": 4339.14, + "end": 4341.52, + "probability": 0.9048 + }, + { + "start": 4341.88, + "end": 4342.08, + "probability": 0.0815 + }, + { + "start": 4343.4, + "end": 4343.96, + "probability": 0.8875 + }, + { + "start": 4344.96, + "end": 4346.42, + "probability": 0.568 + }, + { + "start": 4347.24, + "end": 4349.46, + "probability": 0.7422 + }, + { + "start": 4349.52, + "end": 4350.9, + "probability": 0.9971 + }, + { + "start": 4351.3, + "end": 4353.24, + "probability": 0.5689 + }, + { + "start": 4354.04, + "end": 4355.04, + "probability": 0.4694 + }, + { + "start": 4356.78, + "end": 4359.88, + "probability": 0.7117 + }, + { + "start": 4360.08, + "end": 4360.82, + "probability": 0.6926 + }, + { + "start": 4361.0, + "end": 4361.78, + "probability": 0.9332 + }, + { + "start": 4362.86, + "end": 4364.52, + "probability": 0.9691 + }, + { + "start": 4365.28, + "end": 4368.6, + "probability": 0.8496 + }, + { + "start": 4369.2, + "end": 4372.14, + "probability": 0.9399 + }, + { + "start": 4372.88, + "end": 4374.26, + "probability": 0.7039 + }, + { + "start": 4375.96, + "end": 4380.0, + "probability": 0.9712 + }, + { + "start": 4380.62, + "end": 4381.14, + "probability": 0.7663 + }, + { + "start": 4381.28, + "end": 4381.86, + "probability": 0.8483 + }, + { + "start": 4384.54, + "end": 4387.18, + "probability": 0.0796 + }, + { + "start": 4390.74, + "end": 4394.56, + "probability": 0.8599 + }, + { + "start": 4394.92, + "end": 4396.2, + "probability": 0.8135 + }, + { + "start": 4396.66, + "end": 4398.86, + "probability": 0.8542 + }, + { + "start": 4399.88, + "end": 4401.26, + "probability": 0.984 + }, + { + "start": 4403.0, + "end": 4404.24, + "probability": 0.9398 + }, + { + "start": 4405.52, + "end": 4408.72, + "probability": 0.2861 + }, + { + "start": 4410.8, + "end": 4412.46, + "probability": 0.3354 + }, + { + "start": 4412.5, + "end": 4416.02, + "probability": 0.9599 + }, + { + "start": 4417.12, + "end": 4419.65, + "probability": 0.953 + }, + { + "start": 4419.7, + "end": 4422.24, + "probability": 0.9804 + }, + { + "start": 4422.78, + "end": 4423.54, + "probability": 0.9868 + }, + { + "start": 4424.58, + "end": 4425.6, + "probability": 0.9989 + }, + { + "start": 4426.58, + "end": 4430.2, + "probability": 0.9917 + }, + { + "start": 4430.82, + "end": 4432.06, + "probability": 0.9915 + }, + { + "start": 4432.8, + "end": 4436.42, + "probability": 0.9053 + }, + { + "start": 4437.06, + "end": 4439.18, + "probability": 0.9758 + }, + { + "start": 4439.76, + "end": 4441.46, + "probability": 0.876 + }, + { + "start": 4442.28, + "end": 4445.58, + "probability": 0.9802 + }, + { + "start": 4446.66, + "end": 4447.88, + "probability": 0.6265 + }, + { + "start": 4448.74, + "end": 4448.88, + "probability": 0.6224 + }, + { + "start": 4449.44, + "end": 4450.76, + "probability": 0.7849 + }, + { + "start": 4451.34, + "end": 4453.58, + "probability": 0.9972 + }, + { + "start": 4454.2, + "end": 4457.96, + "probability": 0.9308 + }, + { + "start": 4458.76, + "end": 4459.88, + "probability": 0.5863 + }, + { + "start": 4460.5, + "end": 4462.94, + "probability": 0.8916 + }, + { + "start": 4463.76, + "end": 4468.66, + "probability": 0.976 + }, + { + "start": 4468.9, + "end": 4475.32, + "probability": 0.9917 + }, + { + "start": 4476.08, + "end": 4476.36, + "probability": 0.5793 + }, + { + "start": 4476.46, + "end": 4480.7, + "probability": 0.9865 + }, + { + "start": 4482.1, + "end": 4484.17, + "probability": 0.8674 + }, + { + "start": 4484.82, + "end": 4486.5, + "probability": 0.9328 + }, + { + "start": 4486.58, + "end": 4487.86, + "probability": 0.9554 + }, + { + "start": 4488.94, + "end": 4490.46, + "probability": 0.6779 + }, + { + "start": 4491.18, + "end": 4494.12, + "probability": 0.8153 + }, + { + "start": 4495.22, + "end": 4496.16, + "probability": 0.8051 + }, + { + "start": 4496.8, + "end": 4498.76, + "probability": 0.8088 + }, + { + "start": 4499.96, + "end": 4504.24, + "probability": 0.9346 + }, + { + "start": 4505.22, + "end": 4506.22, + "probability": 0.6689 + }, + { + "start": 4506.98, + "end": 4508.34, + "probability": 0.9992 + }, + { + "start": 4509.3, + "end": 4512.84, + "probability": 0.9862 + }, + { + "start": 4513.9, + "end": 4514.82, + "probability": 0.8821 + }, + { + "start": 4515.68, + "end": 4517.3, + "probability": 0.9808 + }, + { + "start": 4517.86, + "end": 4519.12, + "probability": 0.9948 + }, + { + "start": 4519.84, + "end": 4522.18, + "probability": 0.624 + }, + { + "start": 4522.9, + "end": 4524.28, + "probability": 0.8021 + }, + { + "start": 4524.94, + "end": 4526.98, + "probability": 0.7543 + }, + { + "start": 4528.24, + "end": 4531.06, + "probability": 0.7129 + }, + { + "start": 4533.52, + "end": 4536.92, + "probability": 0.9934 + }, + { + "start": 4537.6, + "end": 4539.78, + "probability": 0.9944 + }, + { + "start": 4539.9, + "end": 4541.26, + "probability": 0.95 + }, + { + "start": 4542.18, + "end": 4543.9, + "probability": 0.9657 + }, + { + "start": 4544.96, + "end": 4547.16, + "probability": 0.8702 + }, + { + "start": 4548.22, + "end": 4553.18, + "probability": 0.9941 + }, + { + "start": 4553.7, + "end": 4554.74, + "probability": 0.8821 + }, + { + "start": 4555.5, + "end": 4556.56, + "probability": 0.8444 + }, + { + "start": 4557.78, + "end": 4558.5, + "probability": 0.6185 + }, + { + "start": 4559.2, + "end": 4561.2, + "probability": 0.7651 + }, + { + "start": 4561.84, + "end": 4563.4, + "probability": 0.909 + }, + { + "start": 4564.22, + "end": 4566.0, + "probability": 0.9939 + }, + { + "start": 4566.9, + "end": 4569.1, + "probability": 0.9793 + }, + { + "start": 4570.04, + "end": 4572.62, + "probability": 0.9851 + }, + { + "start": 4573.34, + "end": 4574.4, + "probability": 0.8342 + }, + { + "start": 4575.0, + "end": 4578.18, + "probability": 0.9661 + }, + { + "start": 4579.08, + "end": 4580.08, + "probability": 0.9841 + }, + { + "start": 4581.1, + "end": 4583.98, + "probability": 0.8063 + }, + { + "start": 4584.68, + "end": 4589.86, + "probability": 0.9978 + }, + { + "start": 4590.5, + "end": 4591.48, + "probability": 0.8861 + }, + { + "start": 4592.46, + "end": 4594.06, + "probability": 0.7969 + }, + { + "start": 4595.04, + "end": 4595.8, + "probability": 0.9481 + }, + { + "start": 4596.8, + "end": 4597.58, + "probability": 0.834 + }, + { + "start": 4598.36, + "end": 4600.54, + "probability": 0.9243 + }, + { + "start": 4601.32, + "end": 4605.1, + "probability": 0.9902 + }, + { + "start": 4605.28, + "end": 4609.18, + "probability": 0.9843 + }, + { + "start": 4609.4, + "end": 4609.82, + "probability": 0.6616 + }, + { + "start": 4612.0, + "end": 4614.42, + "probability": 0.7749 + }, + { + "start": 4614.72, + "end": 4619.68, + "probability": 0.8584 + }, + { + "start": 4623.24, + "end": 4623.6, + "probability": 0.1423 + }, + { + "start": 4625.64, + "end": 4627.16, + "probability": 0.1877 + }, + { + "start": 4627.78, + "end": 4629.54, + "probability": 0.0419 + }, + { + "start": 4636.68, + "end": 4636.68, + "probability": 0.0322 + }, + { + "start": 4636.68, + "end": 4636.7, + "probability": 0.0925 + }, + { + "start": 4659.26, + "end": 4660.12, + "probability": 0.1088 + }, + { + "start": 4673.24, + "end": 4675.14, + "probability": 0.9673 + }, + { + "start": 4677.08, + "end": 4678.26, + "probability": 0.6689 + }, + { + "start": 4678.86, + "end": 4681.06, + "probability": 0.9941 + }, + { + "start": 4681.76, + "end": 4683.9, + "probability": 0.8945 + }, + { + "start": 4684.5, + "end": 4685.38, + "probability": 0.7553 + }, + { + "start": 4685.62, + "end": 4688.9, + "probability": 0.9553 + }, + { + "start": 4689.06, + "end": 4692.14, + "probability": 0.6688 + }, + { + "start": 4693.48, + "end": 4696.06, + "probability": 0.9919 + }, + { + "start": 4696.38, + "end": 4702.42, + "probability": 0.753 + }, + { + "start": 4702.42, + "end": 4707.62, + "probability": 0.9498 + }, + { + "start": 4708.56, + "end": 4711.18, + "probability": 0.9834 + }, + { + "start": 4711.28, + "end": 4714.0, + "probability": 0.9961 + }, + { + "start": 4714.0, + "end": 4717.42, + "probability": 0.9832 + }, + { + "start": 4717.6, + "end": 4719.26, + "probability": 0.9564 + }, + { + "start": 4720.3, + "end": 4725.46, + "probability": 0.7815 + }, + { + "start": 4726.18, + "end": 4727.92, + "probability": 0.3773 + }, + { + "start": 4727.92, + "end": 4732.06, + "probability": 0.9141 + }, + { + "start": 4732.64, + "end": 4734.24, + "probability": 0.8055 + }, + { + "start": 4734.56, + "end": 4736.24, + "probability": 0.9847 + }, + { + "start": 4736.92, + "end": 4738.32, + "probability": 0.9852 + }, + { + "start": 4739.44, + "end": 4741.4, + "probability": 0.8306 + }, + { + "start": 4742.38, + "end": 4744.34, + "probability": 0.9875 + }, + { + "start": 4745.06, + "end": 4749.64, + "probability": 0.9967 + }, + { + "start": 4750.36, + "end": 4751.82, + "probability": 0.999 + }, + { + "start": 4752.98, + "end": 4753.54, + "probability": 0.5972 + }, + { + "start": 4753.7, + "end": 4755.5, + "probability": 0.958 + }, + { + "start": 4755.6, + "end": 4757.14, + "probability": 0.9589 + }, + { + "start": 4758.06, + "end": 4760.04, + "probability": 0.8904 + }, + { + "start": 4761.32, + "end": 4763.64, + "probability": 0.9673 + }, + { + "start": 4764.54, + "end": 4765.9, + "probability": 0.7813 + }, + { + "start": 4767.6, + "end": 4768.76, + "probability": 0.9348 + }, + { + "start": 4769.7, + "end": 4771.3, + "probability": 0.9871 + }, + { + "start": 4771.82, + "end": 4774.96, + "probability": 0.9838 + }, + { + "start": 4776.34, + "end": 4777.24, + "probability": 0.8744 + }, + { + "start": 4778.04, + "end": 4779.1, + "probability": 0.9639 + }, + { + "start": 4779.7, + "end": 4780.58, + "probability": 0.7346 + }, + { + "start": 4782.12, + "end": 4783.07, + "probability": 0.9482 + }, + { + "start": 4784.78, + "end": 4785.9, + "probability": 0.5827 + }, + { + "start": 4785.94, + "end": 4786.58, + "probability": 0.2079 + }, + { + "start": 4788.12, + "end": 4789.07, + "probability": 0.8169 + }, + { + "start": 4790.1, + "end": 4791.64, + "probability": 0.9816 + }, + { + "start": 4792.3, + "end": 4794.3, + "probability": 0.946 + }, + { + "start": 4795.0, + "end": 4798.84, + "probability": 0.9966 + }, + { + "start": 4799.68, + "end": 4803.74, + "probability": 0.9927 + }, + { + "start": 4803.84, + "end": 4807.73, + "probability": 0.9891 + }, + { + "start": 4808.68, + "end": 4811.96, + "probability": 0.9943 + }, + { + "start": 4813.08, + "end": 4815.3, + "probability": 0.9988 + }, + { + "start": 4815.98, + "end": 4817.17, + "probability": 0.6982 + }, + { + "start": 4818.48, + "end": 4819.1, + "probability": 0.5149 + }, + { + "start": 4819.94, + "end": 4821.46, + "probability": 0.8813 + }, + { + "start": 4822.84, + "end": 4827.24, + "probability": 0.9941 + }, + { + "start": 4827.82, + "end": 4828.66, + "probability": 0.4542 + }, + { + "start": 4831.7, + "end": 4833.46, + "probability": 0.8167 + }, + { + "start": 4834.88, + "end": 4837.24, + "probability": 0.9741 + }, + { + "start": 4839.27, + "end": 4841.96, + "probability": 0.9936 + }, + { + "start": 4842.58, + "end": 4842.68, + "probability": 0.1714 + }, + { + "start": 4842.68, + "end": 4843.08, + "probability": 0.6566 + }, + { + "start": 4846.0, + "end": 4848.2, + "probability": 0.8053 + }, + { + "start": 4848.32, + "end": 4848.56, + "probability": 0.1247 + }, + { + "start": 4849.08, + "end": 4849.08, + "probability": 0.0286 + }, + { + "start": 4849.08, + "end": 4849.08, + "probability": 0.2442 + }, + { + "start": 4849.08, + "end": 4849.18, + "probability": 0.1642 + }, + { + "start": 4850.04, + "end": 4850.28, + "probability": 0.0262 + }, + { + "start": 4850.28, + "end": 4851.18, + "probability": 0.343 + }, + { + "start": 4857.02, + "end": 4857.95, + "probability": 0.6287 + }, + { + "start": 4858.26, + "end": 4858.46, + "probability": 0.6369 + }, + { + "start": 4858.54, + "end": 4864.86, + "probability": 0.9428 + }, + { + "start": 4864.9, + "end": 4865.58, + "probability": 0.7962 + }, + { + "start": 4866.12, + "end": 4868.53, + "probability": 0.9922 + }, + { + "start": 4869.18, + "end": 4871.6, + "probability": 0.8981 + }, + { + "start": 4871.82, + "end": 4874.3, + "probability": 0.908 + }, + { + "start": 4874.74, + "end": 4875.98, + "probability": 0.9634 + }, + { + "start": 4876.48, + "end": 4878.45, + "probability": 0.9572 + }, + { + "start": 4879.26, + "end": 4880.22, + "probability": 0.9761 + }, + { + "start": 4880.6, + "end": 4881.08, + "probability": 0.8665 + }, + { + "start": 4881.1, + "end": 4885.21, + "probability": 0.9912 + }, + { + "start": 4885.38, + "end": 4889.02, + "probability": 0.9941 + }, + { + "start": 4889.54, + "end": 4891.58, + "probability": 0.7967 + }, + { + "start": 4891.66, + "end": 4895.13, + "probability": 0.9953 + }, + { + "start": 4895.6, + "end": 4897.02, + "probability": 0.849 + }, + { + "start": 4897.56, + "end": 4899.54, + "probability": 0.999 + }, + { + "start": 4900.02, + "end": 4900.32, + "probability": 0.7916 + }, + { + "start": 4900.5, + "end": 4901.38, + "probability": 0.889 + }, + { + "start": 4901.46, + "end": 4902.56, + "probability": 0.4569 + }, + { + "start": 4902.96, + "end": 4903.36, + "probability": 0.8613 + }, + { + "start": 4903.4, + "end": 4906.96, + "probability": 0.9843 + }, + { + "start": 4907.02, + "end": 4907.62, + "probability": 0.8683 + }, + { + "start": 4907.72, + "end": 4909.02, + "probability": 0.6431 + }, + { + "start": 4909.12, + "end": 4912.38, + "probability": 0.9708 + }, + { + "start": 4912.8, + "end": 4915.94, + "probability": 0.9419 + }, + { + "start": 4916.1, + "end": 4919.0, + "probability": 0.9854 + }, + { + "start": 4919.46, + "end": 4920.78, + "probability": 0.621 + }, + { + "start": 4920.84, + "end": 4923.58, + "probability": 0.9974 + }, + { + "start": 4923.58, + "end": 4926.92, + "probability": 0.9505 + }, + { + "start": 4927.58, + "end": 4928.54, + "probability": 0.8311 + }, + { + "start": 4928.66, + "end": 4931.28, + "probability": 0.8706 + }, + { + "start": 4931.94, + "end": 4934.98, + "probability": 0.993 + }, + { + "start": 4935.5, + "end": 4938.08, + "probability": 0.8328 + }, + { + "start": 4938.16, + "end": 4938.46, + "probability": 0.649 + }, + { + "start": 4938.7, + "end": 4940.4, + "probability": 0.9897 + }, + { + "start": 4940.86, + "end": 4942.82, + "probability": 0.9834 + }, + { + "start": 4943.22, + "end": 4944.44, + "probability": 0.9325 + }, + { + "start": 4944.92, + "end": 4945.84, + "probability": 0.792 + }, + { + "start": 4946.26, + "end": 4948.39, + "probability": 0.9966 + }, + { + "start": 4949.08, + "end": 4953.91, + "probability": 0.9976 + }, + { + "start": 4954.46, + "end": 4957.12, + "probability": 0.9932 + }, + { + "start": 4957.74, + "end": 4958.84, + "probability": 0.6878 + }, + { + "start": 4959.44, + "end": 4961.0, + "probability": 0.7797 + }, + { + "start": 4961.56, + "end": 4962.7, + "probability": 0.9958 + }, + { + "start": 4963.72, + "end": 4967.9, + "probability": 0.9971 + }, + { + "start": 4968.04, + "end": 4969.08, + "probability": 0.9242 + }, + { + "start": 4969.7, + "end": 4970.54, + "probability": 0.7349 + }, + { + "start": 4970.82, + "end": 4972.02, + "probability": 0.7142 + }, + { + "start": 4972.58, + "end": 4975.28, + "probability": 0.9875 + }, + { + "start": 4975.92, + "end": 4978.52, + "probability": 0.9991 + }, + { + "start": 4979.18, + "end": 4980.65, + "probability": 0.9966 + }, + { + "start": 4981.51, + "end": 4982.99, + "probability": 0.8369 + }, + { + "start": 4983.53, + "end": 4984.83, + "probability": 0.9287 + }, + { + "start": 4985.43, + "end": 4986.79, + "probability": 0.9511 + }, + { + "start": 4987.19, + "end": 4987.95, + "probability": 0.9628 + }, + { + "start": 4988.27, + "end": 4991.09, + "probability": 0.8965 + }, + { + "start": 4991.29, + "end": 4992.31, + "probability": 0.9518 + }, + { + "start": 4992.89, + "end": 4996.79, + "probability": 0.9453 + }, + { + "start": 4996.83, + "end": 4998.77, + "probability": 0.9787 + }, + { + "start": 4999.11, + "end": 5000.37, + "probability": 0.8821 + }, + { + "start": 5000.81, + "end": 5003.61, + "probability": 0.9675 + }, + { + "start": 5004.19, + "end": 5004.71, + "probability": 0.9637 + }, + { + "start": 5005.13, + "end": 5010.19, + "probability": 0.992 + }, + { + "start": 5010.57, + "end": 5011.31, + "probability": 0.8989 + }, + { + "start": 5013.27, + "end": 5014.75, + "probability": 0.8854 + }, + { + "start": 5021.09, + "end": 5021.17, + "probability": 0.0211 + }, + { + "start": 5022.13, + "end": 5022.13, + "probability": 0.0012 + }, + { + "start": 5026.19, + "end": 5026.59, + "probability": 0.083 + }, + { + "start": 5031.33, + "end": 5033.43, + "probability": 0.0123 + }, + { + "start": 5033.43, + "end": 5033.75, + "probability": 0.0107 + }, + { + "start": 5034.29, + "end": 5034.45, + "probability": 0.0144 + }, + { + "start": 5034.45, + "end": 5036.91, + "probability": 0.0429 + }, + { + "start": 5037.89, + "end": 5038.71, + "probability": 0.1306 + }, + { + "start": 5039.58, + "end": 5042.39, + "probability": 0.1338 + }, + { + "start": 5042.73, + "end": 5043.47, + "probability": 0.0613 + }, + { + "start": 5044.15, + "end": 5046.29, + "probability": 0.1616 + }, + { + "start": 5047.35, + "end": 5047.35, + "probability": 0.3462 + }, + { + "start": 5047.35, + "end": 5047.95, + "probability": 0.6363 + }, + { + "start": 5048.01, + "end": 5048.11, + "probability": 0.2237 + }, + { + "start": 5048.11, + "end": 5048.11, + "probability": 0.0052 + }, + { + "start": 5048.11, + "end": 5048.41, + "probability": 0.6835 + }, + { + "start": 5049.39, + "end": 5050.17, + "probability": 0.8284 + }, + { + "start": 5051.29, + "end": 5051.49, + "probability": 0.0992 + }, + { + "start": 5051.53, + "end": 5051.85, + "probability": 0.2479 + }, + { + "start": 5052.13, + "end": 5056.71, + "probability": 0.9819 + }, + { + "start": 5056.83, + "end": 5058.77, + "probability": 0.9897 + }, + { + "start": 5058.95, + "end": 5059.17, + "probability": 0.8396 + }, + { + "start": 5059.77, + "end": 5059.77, + "probability": 0.0047 + }, + { + "start": 5059.79, + "end": 5060.35, + "probability": 0.01 + }, + { + "start": 5060.49, + "end": 5061.49, + "probability": 0.6957 + }, + { + "start": 5061.83, + "end": 5061.93, + "probability": 0.4028 + }, + { + "start": 5062.01, + "end": 5062.55, + "probability": 0.8239 + }, + { + "start": 5065.61, + "end": 5065.63, + "probability": 0.0103 + }, + { + "start": 5065.63, + "end": 5065.63, + "probability": 0.1057 + }, + { + "start": 5065.63, + "end": 5067.39, + "probability": 0.8948 + }, + { + "start": 5068.01, + "end": 5069.57, + "probability": 0.7732 + }, + { + "start": 5070.75, + "end": 5075.07, + "probability": 0.0703 + }, + { + "start": 5075.07, + "end": 5076.09, + "probability": 0.0477 + }, + { + "start": 5078.91, + "end": 5078.91, + "probability": 0.0279 + }, + { + "start": 5081.23, + "end": 5082.23, + "probability": 0.0311 + }, + { + "start": 5085.53, + "end": 5085.95, + "probability": 0.0017 + }, + { + "start": 5088.9, + "end": 5089.11, + "probability": 0.1546 + }, + { + "start": 5089.24, + "end": 5090.07, + "probability": 0.0642 + }, + { + "start": 5090.07, + "end": 5091.57, + "probability": 0.0306 + }, + { + "start": 5091.57, + "end": 5091.57, + "probability": 0.0107 + }, + { + "start": 5093.91, + "end": 5098.47, + "probability": 0.0451 + }, + { + "start": 5098.47, + "end": 5098.55, + "probability": 0.0439 + }, + { + "start": 5098.55, + "end": 5098.55, + "probability": 0.1546 + }, + { + "start": 5098.55, + "end": 5098.55, + "probability": 0.0589 + }, + { + "start": 5098.55, + "end": 5098.55, + "probability": 0.1052 + }, + { + "start": 5098.55, + "end": 5098.55, + "probability": 0.1335 + }, + { + "start": 5098.55, + "end": 5099.63, + "probability": 0.1806 + }, + { + "start": 5099.83, + "end": 5100.39, + "probability": 0.016 + }, + { + "start": 5101.31, + "end": 5102.81, + "probability": 0.0603 + }, + { + "start": 5102.81, + "end": 5102.83, + "probability": 0.112 + }, + { + "start": 5103.0, + "end": 5103.0, + "probability": 0.0 + }, + { + "start": 5103.0, + "end": 5103.0, + "probability": 0.0 + }, + { + "start": 5103.0, + "end": 5103.0, + "probability": 0.0 + }, + { + "start": 5103.0, + "end": 5103.52, + "probability": 0.2166 + }, + { + "start": 5104.32, + "end": 5108.0, + "probability": 0.5359 + }, + { + "start": 5108.46, + "end": 5111.3, + "probability": 0.728 + }, + { + "start": 5112.96, + "end": 5116.14, + "probability": 0.4404 + }, + { + "start": 5117.92, + "end": 5118.96, + "probability": 0.0847 + }, + { + "start": 5118.96, + "end": 5120.0, + "probability": 0.056 + }, + { + "start": 5120.1, + "end": 5121.2, + "probability": 0.13 + }, + { + "start": 5121.24, + "end": 5121.66, + "probability": 0.0864 + }, + { + "start": 5121.66, + "end": 5121.66, + "probability": 0.3807 + }, + { + "start": 5121.66, + "end": 5121.74, + "probability": 0.0161 + }, + { + "start": 5121.74, + "end": 5121.94, + "probability": 0.1175 + }, + { + "start": 5121.94, + "end": 5123.68, + "probability": 0.0632 + }, + { + "start": 5124.7, + "end": 5125.38, + "probability": 0.0199 + }, + { + "start": 5125.38, + "end": 5125.42, + "probability": 0.036 + }, + { + "start": 5125.42, + "end": 5125.42, + "probability": 0.0399 + }, + { + "start": 5125.42, + "end": 5125.42, + "probability": 0.0195 + }, + { + "start": 5125.42, + "end": 5125.42, + "probability": 0.0212 + }, + { + "start": 5125.42, + "end": 5128.08, + "probability": 0.0985 + }, + { + "start": 5128.68, + "end": 5129.62, + "probability": 0.3078 + }, + { + "start": 5130.88, + "end": 5131.32, + "probability": 0.4115 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.0, + "end": 5229.0, + "probability": 0.0 + }, + { + "start": 5229.28, + "end": 5229.28, + "probability": 0.0093 + }, + { + "start": 5229.28, + "end": 5229.28, + "probability": 0.0387 + }, + { + "start": 5229.28, + "end": 5229.28, + "probability": 0.1091 + }, + { + "start": 5229.28, + "end": 5229.28, + "probability": 0.243 + }, + { + "start": 5229.28, + "end": 5231.72, + "probability": 0.0391 + }, + { + "start": 5232.66, + "end": 5233.6, + "probability": 0.1618 + }, + { + "start": 5234.04, + "end": 5236.78, + "probability": 0.5006 + }, + { + "start": 5237.24, + "end": 5238.04, + "probability": 0.5664 + }, + { + "start": 5238.68, + "end": 5241.7, + "probability": 0.9784 + }, + { + "start": 5242.52, + "end": 5243.46, + "probability": 0.7154 + }, + { + "start": 5244.14, + "end": 5247.18, + "probability": 0.908 + }, + { + "start": 5247.3, + "end": 5247.42, + "probability": 0.3477 + }, + { + "start": 5247.44, + "end": 5247.72, + "probability": 0.648 + }, + { + "start": 5247.72, + "end": 5252.74, + "probability": 0.9552 + }, + { + "start": 5253.06, + "end": 5254.72, + "probability": 0.9808 + }, + { + "start": 5254.92, + "end": 5255.18, + "probability": 0.513 + }, + { + "start": 5255.7, + "end": 5257.52, + "probability": 0.7352 + }, + { + "start": 5259.52, + "end": 5260.62, + "probability": 0.5188 + }, + { + "start": 5260.94, + "end": 5261.64, + "probability": 0.9048 + }, + { + "start": 5262.3, + "end": 5262.54, + "probability": 0.5357 + }, + { + "start": 5265.9, + "end": 5266.6, + "probability": 0.6561 + }, + { + "start": 5269.84, + "end": 5270.48, + "probability": 0.3976 + }, + { + "start": 5270.48, + "end": 5270.48, + "probability": 0.1353 + }, + { + "start": 5270.48, + "end": 5270.48, + "probability": 0.0761 + }, + { + "start": 5270.48, + "end": 5272.0, + "probability": 0.3869 + }, + { + "start": 5272.08, + "end": 5272.08, + "probability": 0.1333 + }, + { + "start": 5272.08, + "end": 5272.54, + "probability": 0.7213 + }, + { + "start": 5272.76, + "end": 5274.19, + "probability": 0.9647 + }, + { + "start": 5275.24, + "end": 5279.49, + "probability": 0.9868 + }, + { + "start": 5280.76, + "end": 5283.87, + "probability": 0.9905 + }, + { + "start": 5284.03, + "end": 5287.15, + "probability": 0.8404 + }, + { + "start": 5287.97, + "end": 5292.33, + "probability": 0.6314 + }, + { + "start": 5294.65, + "end": 5295.17, + "probability": 0.0862 + }, + { + "start": 5295.17, + "end": 5295.93, + "probability": 0.0387 + }, + { + "start": 5311.27, + "end": 5311.85, + "probability": 0.04 + }, + { + "start": 5311.85, + "end": 5311.85, + "probability": 0.0214 + }, + { + "start": 5311.85, + "end": 5311.85, + "probability": 0.5075 + }, + { + "start": 5311.85, + "end": 5314.61, + "probability": 0.6676 + }, + { + "start": 5314.75, + "end": 5321.37, + "probability": 0.774 + }, + { + "start": 5321.63, + "end": 5323.41, + "probability": 0.7135 + }, + { + "start": 5323.99, + "end": 5325.35, + "probability": 0.9491 + }, + { + "start": 5325.55, + "end": 5332.59, + "probability": 0.9691 + }, + { + "start": 5333.55, + "end": 5334.37, + "probability": 0.5097 + }, + { + "start": 5358.58, + "end": 5361.77, + "probability": 0.1291 + }, + { + "start": 5361.77, + "end": 5361.99, + "probability": 0.0564 + }, + { + "start": 5361.99, + "end": 5361.99, + "probability": 0.0557 + }, + { + "start": 5362.03, + "end": 5363.47, + "probability": 0.5195 + }, + { + "start": 5364.81, + "end": 5365.17, + "probability": 0.3222 + }, + { + "start": 5365.41, + "end": 5368.99, + "probability": 0.7776 + }, + { + "start": 5397.13, + "end": 5398.47, + "probability": 0.6453 + }, + { + "start": 5399.17, + "end": 5400.07, + "probability": 0.4996 + }, + { + "start": 5402.86, + "end": 5407.73, + "probability": 0.993 + }, + { + "start": 5407.96, + "end": 5407.98, + "probability": 0.0079 + }, + { + "start": 5408.0, + "end": 5408.0, + "probability": 0.0 + }, + { + "start": 5408.0, + "end": 5408.0, + "probability": 0.0 + }, + { + "start": 5408.0, + "end": 5408.0, + "probability": 0.0 + }, + { + "start": 5408.0, + "end": 5408.0, + "probability": 0.0 + }, + { + "start": 5408.0, + "end": 5408.0, + "probability": 0.0 + }, + { + "start": 5408.0, + "end": 5408.0, + "probability": 0.0 + }, + { + "start": 5408.0, + "end": 5408.0, + "probability": 0.0 + }, + { + "start": 5408.0, + "end": 5408.0, + "probability": 0.0 + }, + { + "start": 5408.0, + "end": 5408.0, + "probability": 0.0 + }, + { + "start": 5408.08, + "end": 5408.16, + "probability": 0.0707 + }, + { + "start": 5408.16, + "end": 5410.24, + "probability": 0.741 + }, + { + "start": 5411.22, + "end": 5414.84, + "probability": 0.6801 + }, + { + "start": 5416.36, + "end": 5419.32, + "probability": 0.8947 + }, + { + "start": 5427.26, + "end": 5428.96, + "probability": 0.8496 + }, + { + "start": 5432.46, + "end": 5433.54, + "probability": 0.5343 + }, + { + "start": 5443.32, + "end": 5444.28, + "probability": 0.4358 + }, + { + "start": 5447.2, + "end": 5447.96, + "probability": 0.8402 + }, + { + "start": 5448.08, + "end": 5448.86, + "probability": 0.8439 + }, + { + "start": 5449.18, + "end": 5449.86, + "probability": 0.9245 + }, + { + "start": 5450.08, + "end": 5450.76, + "probability": 0.6546 + }, + { + "start": 5451.7, + "end": 5452.96, + "probability": 0.9362 + }, + { + "start": 5453.04, + "end": 5453.92, + "probability": 0.7637 + }, + { + "start": 5454.08, + "end": 5454.6, + "probability": 0.5459 + }, + { + "start": 5454.64, + "end": 5455.25, + "probability": 0.4629 + }, + { + "start": 5456.28, + "end": 5457.58, + "probability": 0.9722 + }, + { + "start": 5458.84, + "end": 5465.6, + "probability": 0.9845 + }, + { + "start": 5467.68, + "end": 5469.14, + "probability": 0.9973 + }, + { + "start": 5469.22, + "end": 5470.34, + "probability": 0.9434 + }, + { + "start": 5471.0, + "end": 5471.94, + "probability": 0.9696 + }, + { + "start": 5472.0, + "end": 5472.74, + "probability": 0.7305 + }, + { + "start": 5473.16, + "end": 5475.44, + "probability": 0.9898 + }, + { + "start": 5475.52, + "end": 5477.4, + "probability": 0.9965 + }, + { + "start": 5477.54, + "end": 5479.48, + "probability": 0.9717 + }, + { + "start": 5479.64, + "end": 5480.32, + "probability": 0.7426 + }, + { + "start": 5481.22, + "end": 5481.64, + "probability": 0.8441 + }, + { + "start": 5481.8, + "end": 5482.76, + "probability": 0.4539 + }, + { + "start": 5483.22, + "end": 5484.94, + "probability": 0.8611 + }, + { + "start": 5487.4, + "end": 5490.0, + "probability": 0.7392 + }, + { + "start": 5491.3, + "end": 5493.7, + "probability": 0.8701 + }, + { + "start": 5494.28, + "end": 5498.78, + "probability": 0.9276 + }, + { + "start": 5499.36, + "end": 5504.16, + "probability": 0.9506 + }, + { + "start": 5504.78, + "end": 5508.84, + "probability": 0.9456 + }, + { + "start": 5508.9, + "end": 5512.98, + "probability": 0.8645 + }, + { + "start": 5513.2, + "end": 5517.72, + "probability": 0.9653 + }, + { + "start": 5518.48, + "end": 5519.52, + "probability": 0.7118 + }, + { + "start": 5519.78, + "end": 5521.62, + "probability": 0.9978 + }, + { + "start": 5521.62, + "end": 5524.58, + "probability": 0.877 + }, + { + "start": 5525.62, + "end": 5527.18, + "probability": 0.9478 + }, + { + "start": 5528.32, + "end": 5530.38, + "probability": 0.9927 + }, + { + "start": 5530.38, + "end": 5532.98, + "probability": 0.9539 + }, + { + "start": 5534.6, + "end": 5538.02, + "probability": 0.9969 + }, + { + "start": 5538.34, + "end": 5540.2, + "probability": 0.9953 + }, + { + "start": 5541.28, + "end": 5542.12, + "probability": 0.6826 + }, + { + "start": 5542.8, + "end": 5544.3, + "probability": 0.5305 + }, + { + "start": 5545.74, + "end": 5546.64, + "probability": 0.7354 + }, + { + "start": 5546.72, + "end": 5550.12, + "probability": 0.8511 + }, + { + "start": 5550.12, + "end": 5551.68, + "probability": 0.6684 + }, + { + "start": 5558.42, + "end": 5562.2, + "probability": 0.7808 + }, + { + "start": 5563.04, + "end": 5569.06, + "probability": 0.76 + }, + { + "start": 5570.26, + "end": 5572.22, + "probability": 0.6943 + }, + { + "start": 5573.2, + "end": 5574.0, + "probability": 0.8867 + }, + { + "start": 5574.08, + "end": 5576.12, + "probability": 0.7609 + }, + { + "start": 5576.82, + "end": 5578.26, + "probability": 0.9517 + }, + { + "start": 5579.86, + "end": 5581.79, + "probability": 0.7356 + }, + { + "start": 5582.18, + "end": 5584.96, + "probability": 0.9525 + }, + { + "start": 5585.7, + "end": 5586.52, + "probability": 0.8792 + }, + { + "start": 5587.06, + "end": 5587.88, + "probability": 0.6482 + }, + { + "start": 5588.72, + "end": 5590.46, + "probability": 0.9904 + }, + { + "start": 5590.88, + "end": 5592.14, + "probability": 0.9939 + }, + { + "start": 5592.94, + "end": 5595.02, + "probability": 0.6942 + }, + { + "start": 5595.14, + "end": 5597.8, + "probability": 0.981 + }, + { + "start": 5599.12, + "end": 5600.38, + "probability": 0.7928 + }, + { + "start": 5600.58, + "end": 5601.94, + "probability": 0.8816 + }, + { + "start": 5602.06, + "end": 5602.7, + "probability": 0.9577 + }, + { + "start": 5602.78, + "end": 5603.78, + "probability": 0.8958 + }, + { + "start": 5604.84, + "end": 5605.4, + "probability": 0.9851 + }, + { + "start": 5605.92, + "end": 5609.94, + "probability": 0.9755 + }, + { + "start": 5610.68, + "end": 5613.66, + "probability": 0.9793 + }, + { + "start": 5613.74, + "end": 5617.88, + "probability": 0.9912 + }, + { + "start": 5618.24, + "end": 5621.2, + "probability": 0.9414 + }, + { + "start": 5622.82, + "end": 5625.16, + "probability": 0.4928 + }, + { + "start": 5626.02, + "end": 5630.32, + "probability": 0.7876 + }, + { + "start": 5631.6, + "end": 5634.32, + "probability": 0.7616 + }, + { + "start": 5635.06, + "end": 5637.44, + "probability": 0.9634 + }, + { + "start": 5637.56, + "end": 5638.98, + "probability": 0.8619 + }, + { + "start": 5639.1, + "end": 5642.9, + "probability": 0.887 + }, + { + "start": 5643.24, + "end": 5644.1, + "probability": 0.643 + }, + { + "start": 5645.0, + "end": 5648.84, + "probability": 0.6746 + }, + { + "start": 5649.14, + "end": 5649.92, + "probability": 0.3838 + }, + { + "start": 5650.04, + "end": 5652.44, + "probability": 0.989 + }, + { + "start": 5652.76, + "end": 5655.76, + "probability": 0.5026 + }, + { + "start": 5655.9, + "end": 5658.6, + "probability": 0.9003 + }, + { + "start": 5658.72, + "end": 5659.52, + "probability": 0.7539 + }, + { + "start": 5660.88, + "end": 5663.22, + "probability": 0.758 + }, + { + "start": 5663.94, + "end": 5666.66, + "probability": 0.8969 + }, + { + "start": 5667.22, + "end": 5669.32, + "probability": 0.8408 + }, + { + "start": 5669.44, + "end": 5670.18, + "probability": 0.7257 + }, + { + "start": 5670.24, + "end": 5672.3, + "probability": 0.9541 + }, + { + "start": 5672.38, + "end": 5673.2, + "probability": 0.5918 + }, + { + "start": 5673.28, + "end": 5674.4, + "probability": 0.439 + }, + { + "start": 5674.48, + "end": 5675.28, + "probability": 0.9443 + }, + { + "start": 5675.34, + "end": 5677.36, + "probability": 0.9749 + }, + { + "start": 5677.48, + "end": 5677.56, + "probability": 0.3272 + }, + { + "start": 5677.84, + "end": 5678.56, + "probability": 0.8687 + }, + { + "start": 5678.64, + "end": 5679.52, + "probability": 0.8895 + }, + { + "start": 5680.42, + "end": 5681.06, + "probability": 0.6636 + }, + { + "start": 5681.68, + "end": 5682.1, + "probability": 0.9368 + }, + { + "start": 5683.82, + "end": 5687.09, + "probability": 0.9943 + }, + { + "start": 5687.9, + "end": 5689.74, + "probability": 0.9688 + }, + { + "start": 5690.46, + "end": 5691.8, + "probability": 0.9935 + }, + { + "start": 5692.5, + "end": 5695.08, + "probability": 0.6895 + }, + { + "start": 5695.62, + "end": 5699.12, + "probability": 0.9795 + }, + { + "start": 5701.08, + "end": 5701.4, + "probability": 0.2883 + }, + { + "start": 5701.5, + "end": 5705.06, + "probability": 0.9303 + }, + { + "start": 5705.08, + "end": 5708.78, + "probability": 0.73 + }, + { + "start": 5709.18, + "end": 5710.44, + "probability": 0.8747 + }, + { + "start": 5711.44, + "end": 5716.05, + "probability": 0.6924 + }, + { + "start": 5717.24, + "end": 5720.24, + "probability": 0.8774 + }, + { + "start": 5721.06, + "end": 5724.06, + "probability": 0.8174 + }, + { + "start": 5724.64, + "end": 5728.1, + "probability": 0.624 + }, + { + "start": 5729.08, + "end": 5732.48, + "probability": 0.7315 + }, + { + "start": 5733.04, + "end": 5734.36, + "probability": 0.9617 + }, + { + "start": 5734.46, + "end": 5735.52, + "probability": 0.9078 + }, + { + "start": 5735.71, + "end": 5742.72, + "probability": 0.9365 + }, + { + "start": 5742.82, + "end": 5744.38, + "probability": 0.8971 + }, + { + "start": 5745.64, + "end": 5748.58, + "probability": 0.804 + }, + { + "start": 5748.62, + "end": 5751.14, + "probability": 0.8305 + }, + { + "start": 5753.24, + "end": 5753.98, + "probability": 0.8274 + }, + { + "start": 5754.18, + "end": 5758.16, + "probability": 0.8529 + }, + { + "start": 5759.74, + "end": 5761.28, + "probability": 0.9812 + }, + { + "start": 5763.04, + "end": 5764.64, + "probability": 0.6028 + }, + { + "start": 5764.78, + "end": 5767.73, + "probability": 0.949 + }, + { + "start": 5768.04, + "end": 5770.2, + "probability": 0.9172 + }, + { + "start": 5770.2, + "end": 5774.56, + "probability": 0.8136 + }, + { + "start": 5774.64, + "end": 5775.35, + "probability": 0.9148 + }, + { + "start": 5775.76, + "end": 5776.42, + "probability": 0.9633 + }, + { + "start": 5776.46, + "end": 5780.42, + "probability": 0.9853 + }, + { + "start": 5782.24, + "end": 5784.04, + "probability": 0.7913 + }, + { + "start": 5785.16, + "end": 5788.88, + "probability": 0.9253 + }, + { + "start": 5789.46, + "end": 5790.32, + "probability": 0.8728 + }, + { + "start": 5790.92, + "end": 5791.92, + "probability": 0.6664 + }, + { + "start": 5792.82, + "end": 5795.66, + "probability": 0.9893 + }, + { + "start": 5796.18, + "end": 5799.08, + "probability": 0.9697 + }, + { + "start": 5799.08, + "end": 5800.6, + "probability": 0.9275 + }, + { + "start": 5802.1, + "end": 5802.1, + "probability": 0.0538 + }, + { + "start": 5802.1, + "end": 5804.82, + "probability": 0.907 + }, + { + "start": 5804.82, + "end": 5807.34, + "probability": 0.8868 + }, + { + "start": 5807.42, + "end": 5811.48, + "probability": 0.9157 + }, + { + "start": 5811.48, + "end": 5815.42, + "probability": 0.9229 + }, + { + "start": 5816.34, + "end": 5817.86, + "probability": 0.7914 + }, + { + "start": 5817.92, + "end": 5822.56, + "probability": 0.8049 + }, + { + "start": 5822.64, + "end": 5825.88, + "probability": 0.8768 + }, + { + "start": 5825.88, + "end": 5830.62, + "probability": 0.9796 + }, + { + "start": 5830.9, + "end": 5832.46, + "probability": 0.9523 + }, + { + "start": 5832.6, + "end": 5832.68, + "probability": 0.3503 + }, + { + "start": 5832.76, + "end": 5833.98, + "probability": 0.8915 + }, + { + "start": 5835.32, + "end": 5838.68, + "probability": 0.8075 + }, + { + "start": 5840.14, + "end": 5845.02, + "probability": 0.7729 + }, + { + "start": 5845.34, + "end": 5846.2, + "probability": 0.6461 + }, + { + "start": 5846.36, + "end": 5848.02, + "probability": 0.9946 + }, + { + "start": 5848.1, + "end": 5848.92, + "probability": 0.8613 + }, + { + "start": 5850.34, + "end": 5854.66, + "probability": 0.9827 + }, + { + "start": 5855.44, + "end": 5857.36, + "probability": 0.8791 + }, + { + "start": 5857.98, + "end": 5859.78, + "probability": 0.9171 + }, + { + "start": 5860.66, + "end": 5862.76, + "probability": 0.9575 + }, + { + "start": 5863.46, + "end": 5864.86, + "probability": 0.711 + }, + { + "start": 5864.92, + "end": 5866.5, + "probability": 0.853 + }, + { + "start": 5867.32, + "end": 5869.46, + "probability": 0.9992 + }, + { + "start": 5869.56, + "end": 5870.3, + "probability": 0.9795 + }, + { + "start": 5870.4, + "end": 5871.6, + "probability": 0.8604 + }, + { + "start": 5872.36, + "end": 5873.64, + "probability": 0.9294 + }, + { + "start": 5874.28, + "end": 5876.12, + "probability": 0.9531 + }, + { + "start": 5877.22, + "end": 5878.94, + "probability": 0.6173 + }, + { + "start": 5879.02, + "end": 5880.92, + "probability": 0.9399 + }, + { + "start": 5881.44, + "end": 5883.96, + "probability": 0.9652 + }, + { + "start": 5884.94, + "end": 5886.76, + "probability": 0.9512 + }, + { + "start": 5888.0, + "end": 5890.18, + "probability": 0.998 + }, + { + "start": 5890.22, + "end": 5891.22, + "probability": 0.8332 + }, + { + "start": 5891.84, + "end": 5895.76, + "probability": 0.9769 + }, + { + "start": 5895.88, + "end": 5899.18, + "probability": 0.9935 + }, + { + "start": 5900.0, + "end": 5901.18, + "probability": 0.9972 + }, + { + "start": 5901.28, + "end": 5901.56, + "probability": 0.6727 + }, + { + "start": 5901.62, + "end": 5904.12, + "probability": 0.9778 + }, + { + "start": 5904.32, + "end": 5906.18, + "probability": 0.9484 + }, + { + "start": 5906.46, + "end": 5908.16, + "probability": 0.9965 + }, + { + "start": 5908.76, + "end": 5910.64, + "probability": 0.9597 + }, + { + "start": 5911.34, + "end": 5913.73, + "probability": 0.5989 + }, + { + "start": 5915.22, + "end": 5917.92, + "probability": 0.6953 + }, + { + "start": 5918.06, + "end": 5920.04, + "probability": 0.8564 + }, + { + "start": 5920.12, + "end": 5921.82, + "probability": 0.6389 + }, + { + "start": 5922.0, + "end": 5924.92, + "probability": 0.9148 + }, + { + "start": 5924.98, + "end": 5925.58, + "probability": 0.7957 + }, + { + "start": 5926.5, + "end": 5928.94, + "probability": 0.9588 + }, + { + "start": 5929.04, + "end": 5930.24, + "probability": 0.957 + }, + { + "start": 5930.84, + "end": 5932.34, + "probability": 0.9512 + }, + { + "start": 5932.48, + "end": 5935.52, + "probability": 0.9512 + }, + { + "start": 5935.68, + "end": 5936.52, + "probability": 0.9036 + }, + { + "start": 5936.7, + "end": 5937.36, + "probability": 0.8134 + }, + { + "start": 5937.98, + "end": 5938.46, + "probability": 0.8549 + }, + { + "start": 5938.9, + "end": 5941.22, + "probability": 0.8508 + }, + { + "start": 5941.42, + "end": 5942.2, + "probability": 0.6849 + }, + { + "start": 5944.65, + "end": 5949.98, + "probability": 0.7124 + }, + { + "start": 5950.88, + "end": 5951.78, + "probability": 0.9477 + }, + { + "start": 5951.94, + "end": 5953.18, + "probability": 0.85 + }, + { + "start": 5953.22, + "end": 5955.44, + "probability": 0.7845 + }, + { + "start": 5955.48, + "end": 5956.61, + "probability": 0.9849 + }, + { + "start": 5957.46, + "end": 5958.2, + "probability": 0.5172 + }, + { + "start": 5958.54, + "end": 5959.02, + "probability": 0.5671 + }, + { + "start": 5959.06, + "end": 5960.8, + "probability": 0.9421 + }, + { + "start": 5960.84, + "end": 5961.78, + "probability": 0.8487 + }, + { + "start": 5961.8, + "end": 5964.54, + "probability": 0.9113 + }, + { + "start": 5965.22, + "end": 5966.04, + "probability": 0.9774 + }, + { + "start": 5966.6, + "end": 5968.56, + "probability": 0.8427 + }, + { + "start": 5969.22, + "end": 5970.78, + "probability": 0.6802 + }, + { + "start": 5970.82, + "end": 5971.36, + "probability": 0.8405 + }, + { + "start": 5972.63, + "end": 5975.26, + "probability": 0.8246 + }, + { + "start": 5976.1, + "end": 5978.68, + "probability": 0.8611 + }, + { + "start": 5978.76, + "end": 5979.56, + "probability": 0.9435 + }, + { + "start": 6001.5, + "end": 6002.56, + "probability": 0.6504 + }, + { + "start": 6003.64, + "end": 6005.12, + "probability": 0.934 + }, + { + "start": 6006.36, + "end": 6007.48, + "probability": 0.9548 + }, + { + "start": 6008.54, + "end": 6011.7, + "probability": 0.5887 + }, + { + "start": 6012.1, + "end": 6014.22, + "probability": 0.9908 + }, + { + "start": 6015.42, + "end": 6016.96, + "probability": 0.17 + }, + { + "start": 6019.85, + "end": 6022.68, + "probability": 0.731 + }, + { + "start": 6022.98, + "end": 6024.8, + "probability": 0.9994 + }, + { + "start": 6025.8, + "end": 6029.12, + "probability": 0.9962 + }, + { + "start": 6029.2, + "end": 6032.94, + "probability": 0.9917 + }, + { + "start": 6033.62, + "end": 6036.98, + "probability": 0.9968 + }, + { + "start": 6037.54, + "end": 6039.56, + "probability": 0.8152 + }, + { + "start": 6040.16, + "end": 6040.82, + "probability": 0.6888 + }, + { + "start": 6040.98, + "end": 6046.66, + "probability": 0.9563 + }, + { + "start": 6046.88, + "end": 6050.02, + "probability": 0.9761 + }, + { + "start": 6050.72, + "end": 6053.4, + "probability": 0.8389 + }, + { + "start": 6053.4, + "end": 6057.24, + "probability": 0.9111 + }, + { + "start": 6058.04, + "end": 6059.14, + "probability": 0.6102 + }, + { + "start": 6059.82, + "end": 6063.9, + "probability": 0.9915 + }, + { + "start": 6064.53, + "end": 6067.4, + "probability": 0.9036 + }, + { + "start": 6068.34, + "end": 6073.02, + "probability": 0.994 + }, + { + "start": 6073.74, + "end": 6076.74, + "probability": 0.9891 + }, + { + "start": 6077.82, + "end": 6081.6, + "probability": 0.9731 + }, + { + "start": 6082.26, + "end": 6086.94, + "probability": 0.9956 + }, + { + "start": 6087.98, + "end": 6094.92, + "probability": 0.9175 + }, + { + "start": 6095.02, + "end": 6096.72, + "probability": 0.9073 + }, + { + "start": 6097.52, + "end": 6098.04, + "probability": 0.9166 + }, + { + "start": 6098.66, + "end": 6100.52, + "probability": 0.8575 + }, + { + "start": 6101.08, + "end": 6105.28, + "probability": 0.9848 + }, + { + "start": 6105.96, + "end": 6108.04, + "probability": 0.8228 + }, + { + "start": 6108.58, + "end": 6109.52, + "probability": 0.8069 + }, + { + "start": 6110.54, + "end": 6116.4, + "probability": 0.985 + }, + { + "start": 6116.74, + "end": 6118.14, + "probability": 0.856 + }, + { + "start": 6118.32, + "end": 6120.08, + "probability": 0.9539 + }, + { + "start": 6121.12, + "end": 6124.22, + "probability": 0.8333 + }, + { + "start": 6125.18, + "end": 6126.34, + "probability": 0.8563 + }, + { + "start": 6126.5, + "end": 6130.2, + "probability": 0.9532 + }, + { + "start": 6130.5, + "end": 6134.52, + "probability": 0.9945 + }, + { + "start": 6134.52, + "end": 6137.98, + "probability": 0.9305 + }, + { + "start": 6138.92, + "end": 6141.16, + "probability": 0.7625 + }, + { + "start": 6141.32, + "end": 6144.04, + "probability": 0.9288 + }, + { + "start": 6144.78, + "end": 6145.28, + "probability": 0.9269 + }, + { + "start": 6146.16, + "end": 6148.54, + "probability": 0.9891 + }, + { + "start": 6148.54, + "end": 6151.16, + "probability": 0.8201 + }, + { + "start": 6151.18, + "end": 6153.5, + "probability": 0.8786 + }, + { + "start": 6154.32, + "end": 6155.88, + "probability": 0.8578 + }, + { + "start": 6156.66, + "end": 6159.92, + "probability": 0.9601 + }, + { + "start": 6160.6, + "end": 6161.28, + "probability": 0.9678 + }, + { + "start": 6162.56, + "end": 6167.78, + "probability": 0.9773 + }, + { + "start": 6168.06, + "end": 6172.06, + "probability": 0.989 + }, + { + "start": 6172.26, + "end": 6174.62, + "probability": 0.9036 + }, + { + "start": 6174.74, + "end": 6176.92, + "probability": 0.9272 + }, + { + "start": 6177.5, + "end": 6178.44, + "probability": 0.6747 + }, + { + "start": 6179.02, + "end": 6182.94, + "probability": 0.97 + }, + { + "start": 6182.94, + "end": 6186.46, + "probability": 0.9769 + }, + { + "start": 6187.34, + "end": 6190.6, + "probability": 0.9741 + }, + { + "start": 6191.24, + "end": 6193.28, + "probability": 0.9529 + }, + { + "start": 6193.92, + "end": 6197.26, + "probability": 0.995 + }, + { + "start": 6197.5, + "end": 6199.52, + "probability": 0.9943 + }, + { + "start": 6200.76, + "end": 6202.42, + "probability": 0.8108 + }, + { + "start": 6203.46, + "end": 6205.64, + "probability": 0.9927 + }, + { + "start": 6207.32, + "end": 6209.2, + "probability": 0.9121 + }, + { + "start": 6209.88, + "end": 6211.48, + "probability": 0.7894 + }, + { + "start": 6212.41, + "end": 6213.02, + "probability": 0.8909 + }, + { + "start": 6213.66, + "end": 6216.18, + "probability": 0.9709 + }, + { + "start": 6216.42, + "end": 6217.38, + "probability": 0.9043 + }, + { + "start": 6218.18, + "end": 6220.56, + "probability": 0.9627 + }, + { + "start": 6221.1, + "end": 6224.98, + "probability": 0.982 + }, + { + "start": 6225.48, + "end": 6230.94, + "probability": 0.988 + }, + { + "start": 6231.94, + "end": 6235.6, + "probability": 0.9865 + }, + { + "start": 6236.16, + "end": 6237.92, + "probability": 0.9556 + }, + { + "start": 6238.46, + "end": 6239.56, + "probability": 0.8792 + }, + { + "start": 6239.84, + "end": 6243.36, + "probability": 0.7372 + }, + { + "start": 6243.36, + "end": 6243.78, + "probability": 0.5973 + }, + { + "start": 6245.44, + "end": 6248.56, + "probability": 0.6995 + }, + { + "start": 6251.42, + "end": 6251.98, + "probability": 0.6241 + }, + { + "start": 6252.06, + "end": 6253.86, + "probability": 0.8691 + }, + { + "start": 6255.58, + "end": 6256.28, + "probability": 0.0002 + }, + { + "start": 6257.72, + "end": 6259.18, + "probability": 0.7382 + }, + { + "start": 6262.82, + "end": 6263.96, + "probability": 0.8732 + }, + { + "start": 6264.68, + "end": 6268.76, + "probability": 0.8118 + }, + { + "start": 6271.5, + "end": 6272.95, + "probability": 0.8132 + }, + { + "start": 6274.04, + "end": 6275.34, + "probability": 0.9395 + }, + { + "start": 6275.48, + "end": 6276.36, + "probability": 0.4379 + }, + { + "start": 6277.96, + "end": 6278.16, + "probability": 0.6648 + }, + { + "start": 6282.58, + "end": 6284.36, + "probability": 0.6074 + }, + { + "start": 6302.94, + "end": 6303.8, + "probability": 0.5713 + }, + { + "start": 6304.7, + "end": 6305.54, + "probability": 0.7292 + }, + { + "start": 6307.98, + "end": 6312.04, + "probability": 0.9716 + }, + { + "start": 6313.24, + "end": 6317.14, + "probability": 0.9351 + }, + { + "start": 6318.0, + "end": 6319.2, + "probability": 0.6682 + }, + { + "start": 6319.78, + "end": 6324.56, + "probability": 0.9862 + }, + { + "start": 6324.96, + "end": 6325.82, + "probability": 0.8931 + }, + { + "start": 6326.3, + "end": 6326.96, + "probability": 0.9966 + }, + { + "start": 6328.28, + "end": 6334.66, + "probability": 0.9802 + }, + { + "start": 6335.06, + "end": 6336.7, + "probability": 0.923 + }, + { + "start": 6337.44, + "end": 6339.18, + "probability": 0.8643 + }, + { + "start": 6340.15, + "end": 6346.94, + "probability": 0.9683 + }, + { + "start": 6347.0, + "end": 6350.4, + "probability": 0.9958 + }, + { + "start": 6350.82, + "end": 6356.68, + "probability": 0.9602 + }, + { + "start": 6357.2, + "end": 6359.14, + "probability": 0.9941 + }, + { + "start": 6359.4, + "end": 6360.82, + "probability": 0.8662 + }, + { + "start": 6361.3, + "end": 6364.22, + "probability": 0.9932 + }, + { + "start": 6364.32, + "end": 6365.96, + "probability": 0.8785 + }, + { + "start": 6366.84, + "end": 6370.48, + "probability": 0.9961 + }, + { + "start": 6370.48, + "end": 6372.88, + "probability": 0.999 + }, + { + "start": 6373.36, + "end": 6375.32, + "probability": 0.6819 + }, + { + "start": 6376.46, + "end": 6382.66, + "probability": 0.9785 + }, + { + "start": 6383.12, + "end": 6385.89, + "probability": 0.9543 + }, + { + "start": 6386.6, + "end": 6386.94, + "probability": 0.7446 + }, + { + "start": 6387.0, + "end": 6391.5, + "probability": 0.9877 + }, + { + "start": 6392.14, + "end": 6394.92, + "probability": 0.9821 + }, + { + "start": 6394.96, + "end": 6395.28, + "probability": 0.7836 + }, + { + "start": 6396.4, + "end": 6398.22, + "probability": 0.8297 + }, + { + "start": 6398.88, + "end": 6398.88, + "probability": 0.0016 + }, + { + "start": 6400.34, + "end": 6404.9, + "probability": 0.2086 + }, + { + "start": 6404.9, + "end": 6404.9, + "probability": 0.0903 + }, + { + "start": 6404.9, + "end": 6404.92, + "probability": 0.0719 + }, + { + "start": 6404.92, + "end": 6406.64, + "probability": 0.6638 + }, + { + "start": 6407.32, + "end": 6409.44, + "probability": 0.9829 + }, + { + "start": 6410.46, + "end": 6411.44, + "probability": 0.7339 + }, + { + "start": 6411.54, + "end": 6414.34, + "probability": 0.9978 + }, + { + "start": 6415.0, + "end": 6416.9, + "probability": 0.6634 + }, + { + "start": 6417.44, + "end": 6420.02, + "probability": 0.9559 + }, + { + "start": 6420.74, + "end": 6421.26, + "probability": 0.7408 + }, + { + "start": 6421.88, + "end": 6426.28, + "probability": 0.9852 + }, + { + "start": 6427.64, + "end": 6427.98, + "probability": 0.8387 + }, + { + "start": 6428.64, + "end": 6433.56, + "probability": 0.9932 + }, + { + "start": 6434.36, + "end": 6435.9, + "probability": 0.9755 + }, + { + "start": 6436.48, + "end": 6440.36, + "probability": 0.7041 + }, + { + "start": 6440.82, + "end": 6443.78, + "probability": 0.9784 + }, + { + "start": 6444.32, + "end": 6446.06, + "probability": 0.9929 + }, + { + "start": 6446.62, + "end": 6451.52, + "probability": 0.9926 + }, + { + "start": 6451.52, + "end": 6455.18, + "probability": 0.9586 + }, + { + "start": 6455.76, + "end": 6457.05, + "probability": 0.8447 + }, + { + "start": 6458.04, + "end": 6459.02, + "probability": 0.4879 + }, + { + "start": 6460.34, + "end": 6464.16, + "probability": 0.9689 + }, + { + "start": 6465.42, + "end": 6467.34, + "probability": 0.9891 + }, + { + "start": 6468.2, + "end": 6472.24, + "probability": 0.9972 + }, + { + "start": 6472.7, + "end": 6474.44, + "probability": 0.9955 + }, + { + "start": 6475.66, + "end": 6477.36, + "probability": 0.8335 + }, + { + "start": 6477.52, + "end": 6479.72, + "probability": 0.9961 + }, + { + "start": 6479.72, + "end": 6482.86, + "probability": 0.9971 + }, + { + "start": 6484.2, + "end": 6486.5, + "probability": 0.9883 + }, + { + "start": 6487.26, + "end": 6488.92, + "probability": 0.9727 + }, + { + "start": 6490.82, + "end": 6492.16, + "probability": 0.3516 + }, + { + "start": 6493.4, + "end": 6495.52, + "probability": 0.998 + }, + { + "start": 6496.34, + "end": 6498.1, + "probability": 0.9621 + }, + { + "start": 6500.12, + "end": 6506.6, + "probability": 0.9855 + }, + { + "start": 6508.42, + "end": 6514.38, + "probability": 0.9609 + }, + { + "start": 6515.2, + "end": 6518.96, + "probability": 0.9747 + }, + { + "start": 6519.82, + "end": 6521.86, + "probability": 0.9927 + }, + { + "start": 6522.3, + "end": 6525.66, + "probability": 0.9293 + }, + { + "start": 6526.2, + "end": 6527.02, + "probability": 0.7866 + }, + { + "start": 6528.38, + "end": 6531.36, + "probability": 0.7379 + }, + { + "start": 6532.18, + "end": 6532.18, + "probability": 0.2567 + }, + { + "start": 6532.18, + "end": 6535.86, + "probability": 0.9964 + }, + { + "start": 6535.86, + "end": 6540.1, + "probability": 0.9705 + }, + { + "start": 6540.24, + "end": 6540.66, + "probability": 0.7206 + }, + { + "start": 6541.34, + "end": 6543.36, + "probability": 0.8401 + }, + { + "start": 6562.3, + "end": 6564.5, + "probability": 0.6616 + }, + { + "start": 6565.54, + "end": 6568.76, + "probability": 0.6356 + }, + { + "start": 6569.8, + "end": 6572.74, + "probability": 0.9743 + }, + { + "start": 6573.42, + "end": 6577.92, + "probability": 0.9498 + }, + { + "start": 6578.7, + "end": 6579.3, + "probability": 0.8502 + }, + { + "start": 6581.12, + "end": 6584.24, + "probability": 0.9801 + }, + { + "start": 6584.34, + "end": 6591.64, + "probability": 0.9897 + }, + { + "start": 6592.58, + "end": 6594.12, + "probability": 0.985 + }, + { + "start": 6594.98, + "end": 6598.98, + "probability": 0.9406 + }, + { + "start": 6599.66, + "end": 6601.08, + "probability": 0.8855 + }, + { + "start": 6601.72, + "end": 6602.56, + "probability": 0.9966 + }, + { + "start": 6603.08, + "end": 6608.7, + "probability": 0.929 + }, + { + "start": 6611.14, + "end": 6612.48, + "probability": 0.6709 + }, + { + "start": 6613.3, + "end": 6618.38, + "probability": 0.9965 + }, + { + "start": 6619.3, + "end": 6620.66, + "probability": 0.9577 + }, + { + "start": 6621.12, + "end": 6622.44, + "probability": 0.9795 + }, + { + "start": 6622.52, + "end": 6623.66, + "probability": 0.9814 + }, + { + "start": 6624.7, + "end": 6626.86, + "probability": 0.9886 + }, + { + "start": 6627.92, + "end": 6629.34, + "probability": 0.9957 + }, + { + "start": 6630.06, + "end": 6631.98, + "probability": 0.9878 + }, + { + "start": 6632.92, + "end": 6635.12, + "probability": 0.7201 + }, + { + "start": 6635.78, + "end": 6639.76, + "probability": 0.9937 + }, + { + "start": 6640.3, + "end": 6641.66, + "probability": 0.9021 + }, + { + "start": 6642.52, + "end": 6645.88, + "probability": 0.996 + }, + { + "start": 6646.68, + "end": 6650.62, + "probability": 0.9958 + }, + { + "start": 6651.2, + "end": 6652.1, + "probability": 0.8165 + }, + { + "start": 6653.58, + "end": 6658.12, + "probability": 0.9456 + }, + { + "start": 6658.32, + "end": 6662.62, + "probability": 0.9661 + }, + { + "start": 6663.46, + "end": 6667.5, + "probability": 0.7334 + }, + { + "start": 6668.28, + "end": 6672.46, + "probability": 0.8401 + }, + { + "start": 6672.5, + "end": 6674.72, + "probability": 0.9898 + }, + { + "start": 6675.58, + "end": 6676.56, + "probability": 0.8343 + }, + { + "start": 6677.12, + "end": 6680.57, + "probability": 0.993 + }, + { + "start": 6681.62, + "end": 6685.72, + "probability": 0.897 + }, + { + "start": 6685.72, + "end": 6686.16, + "probability": 0.6542 + }, + { + "start": 6686.82, + "end": 6688.56, + "probability": 0.9746 + }, + { + "start": 6689.52, + "end": 6690.96, + "probability": 0.8651 + }, + { + "start": 6691.72, + "end": 6693.46, + "probability": 0.9963 + }, + { + "start": 6694.2, + "end": 6696.58, + "probability": 0.995 + }, + { + "start": 6697.12, + "end": 6697.72, + "probability": 0.9591 + }, + { + "start": 6699.46, + "end": 6699.88, + "probability": 0.8667 + }, + { + "start": 6700.48, + "end": 6704.54, + "probability": 0.9321 + }, + { + "start": 6705.18, + "end": 6707.28, + "probability": 0.8209 + }, + { + "start": 6707.82, + "end": 6709.58, + "probability": 0.9547 + }, + { + "start": 6709.7, + "end": 6710.08, + "probability": 0.842 + }, + { + "start": 6711.7, + "end": 6713.1, + "probability": 0.6619 + }, + { + "start": 6713.2, + "end": 6713.76, + "probability": 0.814 + }, + { + "start": 6713.86, + "end": 6717.76, + "probability": 0.9644 + }, + { + "start": 6718.52, + "end": 6721.18, + "probability": 0.7979 + }, + { + "start": 6722.76, + "end": 6723.4, + "probability": 0.5786 + }, + { + "start": 6730.8, + "end": 6732.52, + "probability": 0.1133 + }, + { + "start": 6732.52, + "end": 6736.08, + "probability": 0.0216 + }, + { + "start": 6737.4, + "end": 6742.54, + "probability": 0.1374 + }, + { + "start": 6743.62, + "end": 6745.02, + "probability": 0.8774 + }, + { + "start": 6745.82, + "end": 6748.54, + "probability": 0.9763 + }, + { + "start": 6749.2, + "end": 6750.92, + "probability": 0.9709 + }, + { + "start": 6753.72, + "end": 6756.02, + "probability": 0.8681 + }, + { + "start": 6756.2, + "end": 6759.3, + "probability": 0.7336 + }, + { + "start": 6760.6, + "end": 6760.76, + "probability": 0.7961 + }, + { + "start": 6762.12, + "end": 6763.3, + "probability": 0.5953 + }, + { + "start": 6763.76, + "end": 6767.52, + "probability": 0.953 + }, + { + "start": 6768.5, + "end": 6771.9, + "probability": 0.8519 + }, + { + "start": 6773.34, + "end": 6774.78, + "probability": 0.8667 + }, + { + "start": 6775.24, + "end": 6775.24, + "probability": 0.2479 + }, + { + "start": 6775.24, + "end": 6775.48, + "probability": 0.4696 + }, + { + "start": 6775.66, + "end": 6777.26, + "probability": 0.92 + }, + { + "start": 6778.12, + "end": 6783.03, + "probability": 0.8874 + }, + { + "start": 6785.16, + "end": 6786.96, + "probability": 0.8778 + }, + { + "start": 6791.46, + "end": 6791.46, + "probability": 0.3126 + }, + { + "start": 6791.46, + "end": 6792.9, + "probability": 0.5869 + }, + { + "start": 6797.82, + "end": 6798.82, + "probability": 0.6211 + }, + { + "start": 6803.44, + "end": 6807.56, + "probability": 0.8428 + }, + { + "start": 6808.16, + "end": 6809.84, + "probability": 0.9788 + }, + { + "start": 6810.92, + "end": 6813.48, + "probability": 0.9867 + }, + { + "start": 6814.34, + "end": 6815.88, + "probability": 0.9806 + }, + { + "start": 6816.88, + "end": 6819.88, + "probability": 0.6475 + }, + { + "start": 6820.44, + "end": 6822.41, + "probability": 0.9912 + }, + { + "start": 6823.86, + "end": 6826.18, + "probability": 0.9919 + }, + { + "start": 6826.26, + "end": 6829.36, + "probability": 0.9938 + }, + { + "start": 6830.4, + "end": 6833.51, + "probability": 0.995 + }, + { + "start": 6834.04, + "end": 6837.14, + "probability": 0.8796 + }, + { + "start": 6837.3, + "end": 6837.9, + "probability": 0.6031 + }, + { + "start": 6838.28, + "end": 6839.38, + "probability": 0.867 + }, + { + "start": 6840.08, + "end": 6841.0, + "probability": 0.9718 + }, + { + "start": 6841.8, + "end": 6844.88, + "probability": 0.9029 + }, + { + "start": 6845.9, + "end": 6849.72, + "probability": 0.9693 + }, + { + "start": 6850.28, + "end": 6851.96, + "probability": 0.8477 + }, + { + "start": 6852.14, + "end": 6854.2, + "probability": 0.9608 + }, + { + "start": 6854.84, + "end": 6856.02, + "probability": 0.9772 + }, + { + "start": 6856.28, + "end": 6858.64, + "probability": 0.9963 + }, + { + "start": 6859.1, + "end": 6862.26, + "probability": 0.9669 + }, + { + "start": 6862.78, + "end": 6865.6, + "probability": 0.9333 + }, + { + "start": 6866.1, + "end": 6869.8, + "probability": 0.9951 + }, + { + "start": 6870.26, + "end": 6871.72, + "probability": 0.8598 + }, + { + "start": 6872.26, + "end": 6874.92, + "probability": 0.9012 + }, + { + "start": 6875.34, + "end": 6876.98, + "probability": 0.8673 + }, + { + "start": 6877.38, + "end": 6879.86, + "probability": 0.9696 + }, + { + "start": 6880.86, + "end": 6885.42, + "probability": 0.9966 + }, + { + "start": 6886.1, + "end": 6888.94, + "probability": 0.7986 + }, + { + "start": 6889.34, + "end": 6891.24, + "probability": 0.8125 + }, + { + "start": 6891.8, + "end": 6892.22, + "probability": 0.7859 + }, + { + "start": 6892.46, + "end": 6893.58, + "probability": 0.9762 + }, + { + "start": 6893.8, + "end": 6894.32, + "probability": 0.971 + }, + { + "start": 6894.46, + "end": 6895.02, + "probability": 0.9582 + }, + { + "start": 6895.16, + "end": 6895.62, + "probability": 0.884 + }, + { + "start": 6895.72, + "end": 6897.68, + "probability": 0.5891 + }, + { + "start": 6898.14, + "end": 6899.46, + "probability": 0.8215 + }, + { + "start": 6899.54, + "end": 6900.58, + "probability": 0.9007 + }, + { + "start": 6901.14, + "end": 6902.36, + "probability": 0.9858 + }, + { + "start": 6903.22, + "end": 6910.6, + "probability": 0.8944 + }, + { + "start": 6911.64, + "end": 6913.1, + "probability": 0.7022 + }, + { + "start": 6913.48, + "end": 6919.54, + "probability": 0.9752 + }, + { + "start": 6920.22, + "end": 6921.52, + "probability": 0.8254 + }, + { + "start": 6922.4, + "end": 6924.46, + "probability": 0.9949 + }, + { + "start": 6924.56, + "end": 6926.3, + "probability": 0.9895 + }, + { + "start": 6926.76, + "end": 6929.58, + "probability": 0.9872 + }, + { + "start": 6929.7, + "end": 6931.14, + "probability": 0.7766 + }, + { + "start": 6932.18, + "end": 6936.1, + "probability": 0.9941 + }, + { + "start": 6936.1, + "end": 6938.9, + "probability": 0.9993 + }, + { + "start": 6939.56, + "end": 6943.28, + "probability": 0.881 + }, + { + "start": 6943.86, + "end": 6947.64, + "probability": 0.9513 + }, + { + "start": 6949.66, + "end": 6950.84, + "probability": 0.8936 + }, + { + "start": 6951.22, + "end": 6951.52, + "probability": 0.9097 + }, + { + "start": 6951.82, + "end": 6956.98, + "probability": 0.9661 + }, + { + "start": 6957.8, + "end": 6960.84, + "probability": 0.9982 + }, + { + "start": 6960.94, + "end": 6963.16, + "probability": 0.9932 + }, + { + "start": 6963.72, + "end": 6966.82, + "probability": 0.8927 + }, + { + "start": 6967.22, + "end": 6969.8, + "probability": 0.9746 + }, + { + "start": 6970.4, + "end": 6973.1, + "probability": 0.9719 + }, + { + "start": 6974.34, + "end": 6974.82, + "probability": 0.7018 + }, + { + "start": 6974.9, + "end": 6975.68, + "probability": 0.9012 + }, + { + "start": 6976.1, + "end": 6979.96, + "probability": 0.9767 + }, + { + "start": 6980.28, + "end": 6980.86, + "probability": 0.9078 + }, + { + "start": 6981.64, + "end": 6985.34, + "probability": 0.9668 + }, + { + "start": 6986.08, + "end": 6987.87, + "probability": 0.9985 + }, + { + "start": 6988.32, + "end": 6989.42, + "probability": 0.7462 + }, + { + "start": 6989.8, + "end": 6990.08, + "probability": 0.7324 + }, + { + "start": 6990.24, + "end": 6991.18, + "probability": 0.9103 + }, + { + "start": 6991.46, + "end": 6992.5, + "probability": 0.9871 + }, + { + "start": 6993.3, + "end": 6994.34, + "probability": 0.9655 + }, + { + "start": 6994.8, + "end": 6997.16, + "probability": 0.9901 + }, + { + "start": 6997.7, + "end": 7003.08, + "probability": 0.958 + }, + { + "start": 7003.44, + "end": 7010.2, + "probability": 0.9922 + }, + { + "start": 7010.32, + "end": 7011.18, + "probability": 0.9769 + }, + { + "start": 7012.34, + "end": 7016.58, + "probability": 0.9768 + }, + { + "start": 7017.1, + "end": 7020.38, + "probability": 0.9733 + }, + { + "start": 7020.94, + "end": 7021.76, + "probability": 0.9855 + }, + { + "start": 7022.62, + "end": 7022.86, + "probability": 0.3616 + }, + { + "start": 7023.02, + "end": 7025.64, + "probability": 0.9933 + }, + { + "start": 7025.64, + "end": 7028.48, + "probability": 0.9927 + }, + { + "start": 7029.0, + "end": 7034.18, + "probability": 0.9975 + }, + { + "start": 7035.18, + "end": 7035.18, + "probability": 0.6321 + }, + { + "start": 7035.18, + "end": 7038.7, + "probability": 0.72 + }, + { + "start": 7038.84, + "end": 7043.06, + "probability": 0.9743 + }, + { + "start": 7043.46, + "end": 7043.9, + "probability": 0.9219 + }, + { + "start": 7044.2, + "end": 7048.56, + "probability": 0.9974 + }, + { + "start": 7049.26, + "end": 7054.16, + "probability": 0.9966 + }, + { + "start": 7055.1, + "end": 7055.26, + "probability": 0.2611 + }, + { + "start": 7055.46, + "end": 7057.82, + "probability": 0.9937 + }, + { + "start": 7057.9, + "end": 7060.7, + "probability": 0.9741 + }, + { + "start": 7061.14, + "end": 7065.82, + "probability": 0.9961 + }, + { + "start": 7066.24, + "end": 7068.44, + "probability": 0.9003 + }, + { + "start": 7068.8, + "end": 7070.04, + "probability": 0.9055 + }, + { + "start": 7071.12, + "end": 7074.52, + "probability": 0.9866 + }, + { + "start": 7074.52, + "end": 7077.88, + "probability": 0.9927 + }, + { + "start": 7078.3, + "end": 7082.88, + "probability": 0.9955 + }, + { + "start": 7083.2, + "end": 7089.0, + "probability": 0.986 + }, + { + "start": 7090.56, + "end": 7092.04, + "probability": 0.9137 + }, + { + "start": 7092.46, + "end": 7095.08, + "probability": 0.9976 + }, + { + "start": 7095.2, + "end": 7097.02, + "probability": 0.9853 + }, + { + "start": 7097.48, + "end": 7099.38, + "probability": 0.9097 + }, + { + "start": 7100.02, + "end": 7101.84, + "probability": 0.9751 + }, + { + "start": 7102.04, + "end": 7102.44, + "probability": 0.8504 + }, + { + "start": 7102.8, + "end": 7105.76, + "probability": 0.9893 + }, + { + "start": 7107.14, + "end": 7112.56, + "probability": 0.9837 + }, + { + "start": 7112.94, + "end": 7113.6, + "probability": 0.9137 + }, + { + "start": 7114.22, + "end": 7117.58, + "probability": 0.9757 + }, + { + "start": 7118.62, + "end": 7121.94, + "probability": 0.9965 + }, + { + "start": 7122.4, + "end": 7123.88, + "probability": 0.8566 + }, + { + "start": 7124.36, + "end": 7126.8, + "probability": 0.6832 + }, + { + "start": 7127.32, + "end": 7130.3, + "probability": 0.9839 + }, + { + "start": 7130.72, + "end": 7134.84, + "probability": 0.9953 + }, + { + "start": 7135.1, + "end": 7137.5, + "probability": 0.7084 + }, + { + "start": 7138.72, + "end": 7140.58, + "probability": 0.9981 + }, + { + "start": 7141.2, + "end": 7145.44, + "probability": 0.9964 + }, + { + "start": 7145.9, + "end": 7149.22, + "probability": 0.9904 + }, + { + "start": 7149.4, + "end": 7152.34, + "probability": 0.9122 + }, + { + "start": 7152.86, + "end": 7154.42, + "probability": 0.9912 + }, + { + "start": 7154.78, + "end": 7157.64, + "probability": 0.9912 + }, + { + "start": 7157.88, + "end": 7162.92, + "probability": 0.9639 + }, + { + "start": 7163.34, + "end": 7166.7, + "probability": 0.9355 + }, + { + "start": 7167.98, + "end": 7169.52, + "probability": 0.9604 + }, + { + "start": 7170.34, + "end": 7174.02, + "probability": 0.7842 + }, + { + "start": 7174.12, + "end": 7176.12, + "probability": 0.9917 + }, + { + "start": 7176.52, + "end": 7176.7, + "probability": 0.9576 + }, + { + "start": 7176.88, + "end": 7177.28, + "probability": 0.637 + }, + { + "start": 7177.34, + "end": 7178.14, + "probability": 0.943 + }, + { + "start": 7178.18, + "end": 7186.0, + "probability": 0.9916 + }, + { + "start": 7186.64, + "end": 7191.02, + "probability": 0.998 + }, + { + "start": 7191.46, + "end": 7193.18, + "probability": 0.9809 + }, + { + "start": 7193.34, + "end": 7195.82, + "probability": 0.9858 + }, + { + "start": 7196.12, + "end": 7197.22, + "probability": 0.9215 + }, + { + "start": 7197.82, + "end": 7201.08, + "probability": 0.7118 + }, + { + "start": 7201.42, + "end": 7202.86, + "probability": 0.9884 + }, + { + "start": 7203.82, + "end": 7206.3, + "probability": 0.9895 + }, + { + "start": 7206.48, + "end": 7206.72, + "probability": 0.7601 + }, + { + "start": 7207.12, + "end": 7210.6, + "probability": 0.9976 + }, + { + "start": 7210.96, + "end": 7214.96, + "probability": 0.9886 + }, + { + "start": 7214.96, + "end": 7217.94, + "probability": 0.9632 + }, + { + "start": 7218.38, + "end": 7219.93, + "probability": 0.9985 + }, + { + "start": 7220.42, + "end": 7224.02, + "probability": 0.9972 + }, + { + "start": 7224.02, + "end": 7228.1, + "probability": 0.9437 + }, + { + "start": 7228.64, + "end": 7231.78, + "probability": 0.9938 + }, + { + "start": 7232.18, + "end": 7234.92, + "probability": 0.9897 + }, + { + "start": 7235.12, + "end": 7235.46, + "probability": 0.7764 + }, + { + "start": 7239.84, + "end": 7241.58, + "probability": 0.7721 + }, + { + "start": 7242.7, + "end": 7247.74, + "probability": 0.7003 + }, + { + "start": 7254.24, + "end": 7255.9, + "probability": 0.092 + }, + { + "start": 7257.24, + "end": 7261.48, + "probability": 0.0578 + }, + { + "start": 7264.7, + "end": 7265.74, + "probability": 0.1176 + }, + { + "start": 7265.76, + "end": 7266.98, + "probability": 0.3884 + }, + { + "start": 7274.0, + "end": 7275.6, + "probability": 0.7409 + }, + { + "start": 7276.48, + "end": 7281.24, + "probability": 0.9863 + }, + { + "start": 7281.86, + "end": 7285.24, + "probability": 0.9483 + }, + { + "start": 7286.4, + "end": 7289.76, + "probability": 0.9922 + }, + { + "start": 7290.74, + "end": 7296.04, + "probability": 0.9506 + }, + { + "start": 7297.04, + "end": 7300.86, + "probability": 0.9984 + }, + { + "start": 7300.86, + "end": 7305.46, + "probability": 0.9994 + }, + { + "start": 7306.14, + "end": 7307.56, + "probability": 0.9073 + }, + { + "start": 7309.44, + "end": 7312.48, + "probability": 0.9963 + }, + { + "start": 7313.2, + "end": 7318.66, + "probability": 0.9686 + }, + { + "start": 7319.36, + "end": 7321.34, + "probability": 0.5074 + }, + { + "start": 7322.38, + "end": 7324.16, + "probability": 0.8086 + }, + { + "start": 7324.86, + "end": 7325.4, + "probability": 0.5899 + }, + { + "start": 7326.12, + "end": 7328.24, + "probability": 0.933 + }, + { + "start": 7328.38, + "end": 7330.92, + "probability": 0.9263 + }, + { + "start": 7331.94, + "end": 7335.44, + "probability": 0.8667 + }, + { + "start": 7336.24, + "end": 7337.46, + "probability": 0.8723 + }, + { + "start": 7338.12, + "end": 7340.92, + "probability": 0.9915 + }, + { + "start": 7342.04, + "end": 7343.92, + "probability": 0.9683 + }, + { + "start": 7344.48, + "end": 7346.16, + "probability": 0.9849 + }, + { + "start": 7347.9, + "end": 7349.06, + "probability": 0.4772 + }, + { + "start": 7349.06, + "end": 7354.14, + "probability": 0.94 + }, + { + "start": 7354.14, + "end": 7358.94, + "probability": 0.9879 + }, + { + "start": 7359.64, + "end": 7363.62, + "probability": 0.9761 + }, + { + "start": 7363.62, + "end": 7369.26, + "probability": 0.9153 + }, + { + "start": 7370.92, + "end": 7372.88, + "probability": 0.9971 + }, + { + "start": 7373.42, + "end": 7377.88, + "probability": 0.9966 + }, + { + "start": 7378.72, + "end": 7381.4, + "probability": 0.9885 + }, + { + "start": 7382.26, + "end": 7386.5, + "probability": 0.9838 + }, + { + "start": 7387.24, + "end": 7390.56, + "probability": 0.9868 + }, + { + "start": 7391.22, + "end": 7394.04, + "probability": 0.9789 + }, + { + "start": 7394.92, + "end": 7395.98, + "probability": 0.9766 + }, + { + "start": 7397.14, + "end": 7399.36, + "probability": 0.8932 + }, + { + "start": 7399.98, + "end": 7404.68, + "probability": 0.8023 + }, + { + "start": 7405.24, + "end": 7407.02, + "probability": 0.9969 + }, + { + "start": 7407.82, + "end": 7413.34, + "probability": 0.9695 + }, + { + "start": 7414.62, + "end": 7416.12, + "probability": 0.8252 + }, + { + "start": 7417.6, + "end": 7423.78, + "probability": 0.9904 + }, + { + "start": 7424.54, + "end": 7428.06, + "probability": 0.9421 + }, + { + "start": 7428.26, + "end": 7435.54, + "probability": 0.9864 + }, + { + "start": 7436.3, + "end": 7438.3, + "probability": 0.9989 + }, + { + "start": 7439.04, + "end": 7440.64, + "probability": 0.9526 + }, + { + "start": 7440.84, + "end": 7444.9, + "probability": 0.9899 + }, + { + "start": 7445.52, + "end": 7449.54, + "probability": 0.8586 + }, + { + "start": 7452.42, + "end": 7458.4, + "probability": 0.9912 + }, + { + "start": 7459.16, + "end": 7464.84, + "probability": 0.9058 + }, + { + "start": 7465.42, + "end": 7469.66, + "probability": 0.963 + }, + { + "start": 7470.24, + "end": 7472.12, + "probability": 0.9617 + }, + { + "start": 7472.98, + "end": 7474.44, + "probability": 0.9668 + }, + { + "start": 7474.86, + "end": 7479.24, + "probability": 0.9917 + }, + { + "start": 7479.94, + "end": 7481.94, + "probability": 0.9993 + }, + { + "start": 7482.96, + "end": 7483.58, + "probability": 0.5229 + }, + { + "start": 7484.24, + "end": 7492.4, + "probability": 0.9612 + }, + { + "start": 7493.02, + "end": 7496.8, + "probability": 0.9976 + }, + { + "start": 7497.74, + "end": 7502.48, + "probability": 0.9429 + }, + { + "start": 7502.64, + "end": 7503.12, + "probability": 0.8189 + }, + { + "start": 7503.74, + "end": 7505.68, + "probability": 0.995 + }, + { + "start": 7506.4, + "end": 7510.02, + "probability": 0.9668 + }, + { + "start": 7510.68, + "end": 7516.62, + "probability": 0.9948 + }, + { + "start": 7517.54, + "end": 7523.8, + "probability": 0.9968 + }, + { + "start": 7524.36, + "end": 7531.02, + "probability": 0.9934 + }, + { + "start": 7532.34, + "end": 7533.62, + "probability": 0.7554 + }, + { + "start": 7534.42, + "end": 7536.32, + "probability": 0.8419 + }, + { + "start": 7536.96, + "end": 7538.36, + "probability": 0.7627 + }, + { + "start": 7538.88, + "end": 7542.02, + "probability": 0.9909 + }, + { + "start": 7542.78, + "end": 7545.98, + "probability": 0.4286 + }, + { + "start": 7545.98, + "end": 7547.14, + "probability": 0.4824 + }, + { + "start": 7547.34, + "end": 7551.72, + "probability": 0.5027 + }, + { + "start": 7552.08, + "end": 7552.52, + "probability": 0.3829 + }, + { + "start": 7553.38, + "end": 7554.4, + "probability": 0.9071 + }, + { + "start": 7563.76, + "end": 7565.86, + "probability": 0.8409 + }, + { + "start": 7574.48, + "end": 7575.48, + "probability": 0.3284 + }, + { + "start": 7576.9, + "end": 7578.8, + "probability": 0.7708 + }, + { + "start": 7579.52, + "end": 7579.96, + "probability": 0.811 + }, + { + "start": 7580.64, + "end": 7582.46, + "probability": 0.9898 + }, + { + "start": 7584.12, + "end": 7591.36, + "probability": 0.9764 + }, + { + "start": 7592.12, + "end": 7595.66, + "probability": 0.9873 + }, + { + "start": 7596.14, + "end": 7598.03, + "probability": 0.6715 + }, + { + "start": 7598.64, + "end": 7599.58, + "probability": 0.8837 + }, + { + "start": 7599.94, + "end": 7600.82, + "probability": 0.8826 + }, + { + "start": 7601.9, + "end": 7603.6, + "probability": 0.9106 + }, + { + "start": 7604.2, + "end": 7606.92, + "probability": 0.9193 + }, + { + "start": 7608.42, + "end": 7609.5, + "probability": 0.9502 + }, + { + "start": 7612.81, + "end": 7615.48, + "probability": 0.9146 + }, + { + "start": 7615.78, + "end": 7618.2, + "probability": 0.9978 + }, + { + "start": 7621.38, + "end": 7622.46, + "probability": 0.7369 + }, + { + "start": 7623.2, + "end": 7624.42, + "probability": 0.9953 + }, + { + "start": 7625.68, + "end": 7626.14, + "probability": 0.915 + }, + { + "start": 7626.78, + "end": 7628.76, + "probability": 0.8908 + }, + { + "start": 7630.0, + "end": 7630.68, + "probability": 0.4829 + }, + { + "start": 7631.22, + "end": 7637.78, + "probability": 0.9981 + }, + { + "start": 7638.6, + "end": 7640.64, + "probability": 0.9524 + }, + { + "start": 7641.82, + "end": 7643.46, + "probability": 0.7104 + }, + { + "start": 7643.54, + "end": 7644.1, + "probability": 0.6304 + }, + { + "start": 7644.26, + "end": 7648.96, + "probability": 0.9827 + }, + { + "start": 7649.58, + "end": 7654.34, + "probability": 0.9449 + }, + { + "start": 7655.54, + "end": 7658.36, + "probability": 0.9155 + }, + { + "start": 7658.94, + "end": 7664.7, + "probability": 0.9974 + }, + { + "start": 7664.7, + "end": 7668.86, + "probability": 0.9903 + }, + { + "start": 7669.82, + "end": 7670.56, + "probability": 0.5728 + }, + { + "start": 7671.52, + "end": 7673.62, + "probability": 0.929 + }, + { + "start": 7675.04, + "end": 7676.22, + "probability": 0.7505 + }, + { + "start": 7676.64, + "end": 7678.0, + "probability": 0.8792 + }, + { + "start": 7678.38, + "end": 7679.72, + "probability": 0.9337 + }, + { + "start": 7680.18, + "end": 7683.8, + "probability": 0.9861 + }, + { + "start": 7683.8, + "end": 7688.48, + "probability": 0.9803 + }, + { + "start": 7689.06, + "end": 7692.14, + "probability": 0.9669 + }, + { + "start": 7692.82, + "end": 7693.44, + "probability": 0.6249 + }, + { + "start": 7694.56, + "end": 7697.54, + "probability": 0.8235 + }, + { + "start": 7698.28, + "end": 7700.44, + "probability": 0.945 + }, + { + "start": 7701.2, + "end": 7701.83, + "probability": 0.6489 + }, + { + "start": 7702.66, + "end": 7703.9, + "probability": 0.8042 + }, + { + "start": 7704.4, + "end": 7709.94, + "probability": 0.9921 + }, + { + "start": 7710.72, + "end": 7712.16, + "probability": 0.8975 + }, + { + "start": 7712.74, + "end": 7713.04, + "probability": 0.7841 + }, + { + "start": 7713.08, + "end": 7715.92, + "probability": 0.9706 + }, + { + "start": 7716.66, + "end": 7719.16, + "probability": 0.7719 + }, + { + "start": 7720.0, + "end": 7723.76, + "probability": 0.7085 + }, + { + "start": 7724.24, + "end": 7726.66, + "probability": 0.9952 + }, + { + "start": 7727.1, + "end": 7728.68, + "probability": 0.9161 + }, + { + "start": 7728.72, + "end": 7735.6, + "probability": 0.9622 + }, + { + "start": 7736.62, + "end": 7739.54, + "probability": 0.9882 + }, + { + "start": 7740.56, + "end": 7741.18, + "probability": 0.9476 + }, + { + "start": 7742.38, + "end": 7746.98, + "probability": 0.9233 + }, + { + "start": 7747.34, + "end": 7748.1, + "probability": 0.8298 + }, + { + "start": 7748.48, + "end": 7751.72, + "probability": 0.9917 + }, + { + "start": 7752.36, + "end": 7753.24, + "probability": 0.5183 + }, + { + "start": 7753.66, + "end": 7756.66, + "probability": 0.993 + }, + { + "start": 7757.14, + "end": 7759.66, + "probability": 0.9663 + }, + { + "start": 7760.1, + "end": 7762.98, + "probability": 0.9982 + }, + { + "start": 7763.48, + "end": 7764.44, + "probability": 0.9301 + }, + { + "start": 7764.88, + "end": 7766.26, + "probability": 0.7706 + }, + { + "start": 7766.76, + "end": 7771.62, + "probability": 0.9674 + }, + { + "start": 7772.1, + "end": 7773.3, + "probability": 0.9629 + }, + { + "start": 7773.8, + "end": 7778.06, + "probability": 0.9061 + }, + { + "start": 7778.58, + "end": 7781.6, + "probability": 0.9627 + }, + { + "start": 7781.8, + "end": 7782.26, + "probability": 0.778 + }, + { + "start": 7782.4, + "end": 7783.58, + "probability": 0.8862 + }, + { + "start": 7784.22, + "end": 7786.04, + "probability": 0.6158 + }, + { + "start": 7786.3, + "end": 7788.26, + "probability": 0.9791 + }, + { + "start": 7788.66, + "end": 7791.88, + "probability": 0.037 + }, + { + "start": 7791.88, + "end": 7792.92, + "probability": 0.0738 + }, + { + "start": 7793.48, + "end": 7793.6, + "probability": 0.6879 + }, + { + "start": 7794.18, + "end": 7794.7, + "probability": 0.8719 + }, + { + "start": 7794.84, + "end": 7795.44, + "probability": 0.9556 + }, + { + "start": 7795.48, + "end": 7800.06, + "probability": 0.9969 + }, + { + "start": 7800.06, + "end": 7802.38, + "probability": 0.6632 + }, + { + "start": 7802.74, + "end": 7802.76, + "probability": 0.1307 + }, + { + "start": 7806.9, + "end": 7808.38, + "probability": 0.0885 + }, + { + "start": 7808.62, + "end": 7810.34, + "probability": 0.2494 + }, + { + "start": 7810.68, + "end": 7811.34, + "probability": 0.0944 + }, + { + "start": 7820.9, + "end": 7829.44, + "probability": 0.1271 + }, + { + "start": 7836.94, + "end": 7839.46, + "probability": 0.6184 + }, + { + "start": 7839.52, + "end": 7840.88, + "probability": 0.2425 + }, + { + "start": 7849.04, + "end": 7849.46, + "probability": 0.1875 + }, + { + "start": 7849.46, + "end": 7850.18, + "probability": 0.0169 + }, + { + "start": 7850.18, + "end": 7850.18, + "probability": 0.0203 + }, + { + "start": 7850.18, + "end": 7850.95, + "probability": 0.038 + }, + { + "start": 7854.42, + "end": 7855.8, + "probability": 0.0156 + }, + { + "start": 7861.6, + "end": 7862.26, + "probability": 0.1392 + }, + { + "start": 7862.26, + "end": 7863.5, + "probability": 0.0452 + }, + { + "start": 7863.69, + "end": 7864.64, + "probability": 0.0861 + }, + { + "start": 7865.66, + "end": 7866.54, + "probability": 0.1078 + }, + { + "start": 7868.55, + "end": 7868.94, + "probability": 0.2151 + }, + { + "start": 7870.96, + "end": 7872.12, + "probability": 0.0369 + }, + { + "start": 7874.08, + "end": 7874.46, + "probability": 0.4697 + }, + { + "start": 7876.12, + "end": 7876.72, + "probability": 0.479 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.0, + "end": 7909.0, + "probability": 0.0 + }, + { + "start": 7909.81, + "end": 7910.16, + "probability": 0.0121 + }, + { + "start": 7914.46, + "end": 7918.08, + "probability": 0.0934 + }, + { + "start": 7918.11, + "end": 7918.81, + "probability": 0.0661 + }, + { + "start": 7929.44, + "end": 7932.24, + "probability": 0.1275 + }, + { + "start": 7933.24, + "end": 7935.72, + "probability": 0.02 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.0, + "end": 8070.0, + "probability": 0.0 + }, + { + "start": 8070.4, + "end": 8073.64, + "probability": 0.0056 + }, + { + "start": 8074.74, + "end": 8077.04, + "probability": 0.087 + }, + { + "start": 8078.04, + "end": 8080.64, + "probability": 0.0577 + }, + { + "start": 8081.16, + "end": 8083.24, + "probability": 0.1044 + }, + { + "start": 8086.15, + "end": 8086.36, + "probability": 0.1405 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8263.7, + "end": 8264.4, + "probability": 0.1411 + }, + { + "start": 8265.26, + "end": 8266.0, + "probability": 0.0178 + }, + { + "start": 8267.76, + "end": 8268.7, + "probability": 0.0063 + }, + { + "start": 8269.86, + "end": 8273.42, + "probability": 0.2619 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8374.0, + "end": 8374.0, + "probability": 0.0 + }, + { + "start": 8378.72, + "end": 8382.22, + "probability": 0.0244 + }, + { + "start": 8382.22, + "end": 8382.22, + "probability": 0.4611 + }, + { + "start": 8386.92, + "end": 8387.9, + "probability": 0.0861 + }, + { + "start": 8396.48, + "end": 8399.48, + "probability": 0.1766 + }, + { + "start": 8401.7, + "end": 8403.66, + "probability": 0.1184 + }, + { + "start": 8403.66, + "end": 8405.46, + "probability": 0.0353 + }, + { + "start": 8405.6, + "end": 8408.43, + "probability": 0.0499 + }, + { + "start": 8410.04, + "end": 8411.02, + "probability": 0.1333 + }, + { + "start": 8411.86, + "end": 8415.1, + "probability": 0.1084 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8522.0, + "end": 8522.0, + "probability": 0.0 + }, + { + "start": 8536.02, + "end": 8536.74, + "probability": 0.0966 + }, + { + "start": 8557.68, + "end": 8558.76, + "probability": 0.0168 + }, + { + "start": 8560.36, + "end": 8560.82, + "probability": 0.068 + }, + { + "start": 8561.86, + "end": 8563.42, + "probability": 0.0374 + }, + { + "start": 8563.52, + "end": 8563.9, + "probability": 0.3767 + }, + { + "start": 8564.5, + "end": 8565.12, + "probability": 0.0684 + }, + { + "start": 8569.52, + "end": 8571.24, + "probability": 0.1198 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8652.0, + "end": 8652.0, + "probability": 0.0 + }, + { + "start": 8659.8, + "end": 8659.8, + "probability": 0.0177 + }, + { + "start": 8659.8, + "end": 8659.8, + "probability": 0.079 + }, + { + "start": 8659.8, + "end": 8659.8, + "probability": 0.1194 + }, + { + "start": 8659.8, + "end": 8659.8, + "probability": 0.1541 + }, + { + "start": 8659.8, + "end": 8659.8, + "probability": 0.1698 + }, + { + "start": 8659.8, + "end": 8659.86, + "probability": 0.0129 + }, + { + "start": 8685.88, + "end": 8693.4, + "probability": 0.0298 + }, + { + "start": 8726.04, + "end": 8726.68, + "probability": 0.1282 + }, + { + "start": 8726.76, + "end": 8727.94, + "probability": 0.0788 + }, + { + "start": 8728.33, + "end": 8729.38, + "probability": 0.2063 + }, + { + "start": 8729.38, + "end": 8730.34, + "probability": 0.42 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.0, + "end": 8772.0, + "probability": 0.0 + }, + { + "start": 8772.8, + "end": 8775.06, + "probability": 0.0209 + }, + { + "start": 8775.9, + "end": 8777.12, + "probability": 0.0331 + }, + { + "start": 8777.64, + "end": 8779.44, + "probability": 0.107 + }, + { + "start": 8779.44, + "end": 8782.16, + "probability": 0.176 + }, + { + "start": 8782.58, + "end": 8782.58, + "probability": 0.2621 + }, + { + "start": 8783.96, + "end": 8785.14, + "probability": 0.0515 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8906.0, + "end": 8906.0, + "probability": 0.0 + }, + { + "start": 8914.7, + "end": 8915.72, + "probability": 0.0402 + }, + { + "start": 8915.72, + "end": 8916.1, + "probability": 0.072 + }, + { + "start": 8917.62, + "end": 8921.08, + "probability": 0.1504 + }, + { + "start": 8921.32, + "end": 8923.5, + "probability": 0.1996 + }, + { + "start": 8923.56, + "end": 8925.12, + "probability": 0.015 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9041.0, + "end": 9041.0, + "probability": 0.0 + }, + { + "start": 9044.84, + "end": 9045.79, + "probability": 0.034 + }, + { + "start": 9049.23, + "end": 9051.63, + "probability": 0.1366 + }, + { + "start": 9052.72, + "end": 9055.22, + "probability": 0.1137 + }, + { + "start": 9055.76, + "end": 9055.76, + "probability": 0.2567 + }, + { + "start": 9055.86, + "end": 9057.3, + "probability": 0.1821 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9171.0, + "end": 9171.0, + "probability": 0.0 + }, + { + "start": 9186.66, + "end": 9188.3, + "probability": 0.1383 + }, + { + "start": 9189.0, + "end": 9191.76, + "probability": 0.01 + }, + { + "start": 9193.56, + "end": 9197.58, + "probability": 0.0546 + }, + { + "start": 9198.12, + "end": 9199.38, + "probability": 0.1012 + }, + { + "start": 9200.46, + "end": 9201.01, + "probability": 0.1504 + }, + { + "start": 9202.7, + "end": 9204.66, + "probability": 0.0217 + }, + { + "start": 9205.18, + "end": 9205.52, + "probability": 0.2939 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.0, + "end": 9313.0, + "probability": 0.0 + }, + { + "start": 9313.14, + "end": 9314.02, + "probability": 0.0725 + }, + { + "start": 9316.54, + "end": 9317.06, + "probability": 0.0521 + }, + { + "start": 9317.06, + "end": 9320.44, + "probability": 0.0147 + }, + { + "start": 9349.54, + "end": 9350.7, + "probability": 0.1528 + }, + { + "start": 9359.32, + "end": 9360.82, + "probability": 0.0081 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9460.0, + "end": 9460.0, + "probability": 0.0 + }, + { + "start": 9463.34, + "end": 9464.06, + "probability": 0.0022 + }, + { + "start": 9473.96, + "end": 9475.58, + "probability": 0.0772 + }, + { + "start": 9480.92, + "end": 9483.38, + "probability": 0.2921 + }, + { + "start": 9483.48, + "end": 9484.3, + "probability": 0.1146 + }, + { + "start": 9484.98, + "end": 9485.56, + "probability": 0.1453 + }, + { + "start": 9485.66, + "end": 9488.78, + "probability": 0.0702 + }, + { + "start": 9488.78, + "end": 9490.74, + "probability": 0.3509 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9582.0, + "end": 9582.0, + "probability": 0.0 + }, + { + "start": 9599.68, + "end": 9603.4, + "probability": 0.0289 + }, + { + "start": 9603.4, + "end": 9603.9, + "probability": 0.0352 + }, + { + "start": 9603.92, + "end": 9604.92, + "probability": 0.5842 + }, + { + "start": 9606.22, + "end": 9607.68, + "probability": 0.0468 + }, + { + "start": 9612.26, + "end": 9614.3, + "probability": 0.2091 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9708.0, + "end": 9708.0, + "probability": 0.0 + }, + { + "start": 9720.3, + "end": 9720.74, + "probability": 0.1682 + }, + { + "start": 9721.61, + "end": 9722.52, + "probability": 0.1368 + }, + { + "start": 9722.54, + "end": 9723.72, + "probability": 0.1028 + }, + { + "start": 9723.72, + "end": 9723.9, + "probability": 0.0389 + }, + { + "start": 9723.9, + "end": 9724.36, + "probability": 0.0617 + }, + { + "start": 9724.4, + "end": 9733.58, + "probability": 0.0331 + }, + { + "start": 9735.38, + "end": 9735.7, + "probability": 0.0392 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9829.0, + "end": 9829.0, + "probability": 0.0 + }, + { + "start": 9831.14, + "end": 9833.26, + "probability": 0.3335 + }, + { + "start": 9834.5, + "end": 9835.56, + "probability": 0.0791 + }, + { + "start": 9844.16, + "end": 9844.82, + "probability": 0.0689 + }, + { + "start": 9844.82, + "end": 9845.0, + "probability": 0.0226 + }, + { + "start": 9849.41, + "end": 9849.86, + "probability": 0.0173 + }, + { + "start": 9850.34, + "end": 9850.96, + "probability": 0.0127 + }, + { + "start": 9850.96, + "end": 9851.12, + "probability": 0.1671 + }, + { + "start": 9852.04, + "end": 9852.46, + "probability": 0.0133 + }, + { + "start": 9855.55, + "end": 9858.0, + "probability": 0.0466 + }, + { + "start": 9858.0, + "end": 9858.8, + "probability": 0.1143 + }, + { + "start": 9858.99, + "end": 9860.08, + "probability": 0.1285 + }, + { + "start": 9860.58, + "end": 9861.38, + "probability": 0.0675 + }, + { + "start": 9861.94, + "end": 9863.26, + "probability": 0.0507 + }, + { + "start": 9864.44, + "end": 9864.54, + "probability": 0.1139 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9952.0, + "end": 9952.0, + "probability": 0.0 + }, + { + "start": 9957.28, + "end": 9957.34, + "probability": 0.0005 + }, + { + "start": 9957.34, + "end": 9959.5, + "probability": 0.0577 + }, + { + "start": 9959.5, + "end": 9962.92, + "probability": 0.1747 + }, + { + "start": 9964.68, + "end": 9965.36, + "probability": 0.1841 + }, + { + "start": 9970.12, + "end": 9970.32, + "probability": 0.041 + }, + { + "start": 9971.58, + "end": 9972.14, + "probability": 0.001 + }, + { + "start": 9980.85, + "end": 9985.6, + "probability": 0.0838 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.0, + "end": 10115.0, + "probability": 0.0 + }, + { + "start": 10115.88, + "end": 10118.64, + "probability": 0.0178 + }, + { + "start": 10122.52, + "end": 10123.94, + "probability": 0.0487 + }, + { + "start": 10125.02, + "end": 10125.4, + "probability": 0.2782 + }, + { + "start": 10131.54, + "end": 10135.02, + "probability": 0.1621 + }, + { + "start": 10135.26, + "end": 10136.62, + "probability": 0.0863 + }, + { + "start": 10136.7, + "end": 10137.18, + "probability": 0.1186 + }, + { + "start": 10137.86, + "end": 10138.88, + "probability": 0.1175 + }, + { + "start": 10139.84, + "end": 10141.9, + "probability": 0.0076 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10243.0, + "end": 10243.0, + "probability": 0.0 + }, + { + "start": 10244.4, + "end": 10246.9, + "probability": 0.0183 + }, + { + "start": 10246.9, + "end": 10247.82, + "probability": 0.139 + }, + { + "start": 10247.82, + "end": 10248.6, + "probability": 0.116 + }, + { + "start": 10248.6, + "end": 10249.44, + "probability": 0.0691 + }, + { + "start": 10250.91, + "end": 10251.5, + "probability": 0.0161 + }, + { + "start": 10251.5, + "end": 10251.92, + "probability": 0.0573 + }, + { + "start": 10254.04, + "end": 10254.16, + "probability": 0.1738 + }, + { + "start": 10256.82, + "end": 10260.48, + "probability": 0.0795 + }, + { + "start": 10261.02, + "end": 10262.1, + "probability": 0.0461 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10366.0, + "end": 10366.0, + "probability": 0.0 + }, + { + "start": 10368.7, + "end": 10369.02, + "probability": 0.0011 + }, + { + "start": 10369.66, + "end": 10370.7, + "probability": 0.0427 + }, + { + "start": 10371.4, + "end": 10371.74, + "probability": 0.4991 + }, + { + "start": 10377.72, + "end": 10378.54, + "probability": 0.0262 + }, + { + "start": 10378.54, + "end": 10380.08, + "probability": 0.0623 + }, + { + "start": 10380.08, + "end": 10382.48, + "probability": 0.023 + }, + { + "start": 10388.7, + "end": 10388.88, + "probability": 0.3882 + }, + { + "start": 10388.88, + "end": 10389.58, + "probability": 0.1468 + }, + { + "start": 10389.68, + "end": 10389.78, + "probability": 0.3229 + }, + { + "start": 10389.78, + "end": 10390.44, + "probability": 0.0634 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.0, + "end": 10491.0, + "probability": 0.0 + }, + { + "start": 10491.18, + "end": 10494.1, + "probability": 0.0443 + }, + { + "start": 10494.1, + "end": 10494.28, + "probability": 0.1498 + }, + { + "start": 10494.28, + "end": 10494.56, + "probability": 0.0155 + }, + { + "start": 10506.56, + "end": 10506.76, + "probability": 0.1912 + }, + { + "start": 10506.94, + "end": 10509.64, + "probability": 0.0247 + }, + { + "start": 10510.46, + "end": 10510.56, + "probability": 0.0062 + }, + { + "start": 10524.42, + "end": 10527.5, + "probability": 0.5279 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10613.0, + "end": 10613.0, + "probability": 0.0 + }, + { + "start": 10625.08, + "end": 10631.0, + "probability": 0.0965 + }, + { + "start": 10632.2, + "end": 10633.72, + "probability": 0.1123 + }, + { + "start": 10634.62, + "end": 10636.28, + "probability": 0.1192 + }, + { + "start": 10638.66, + "end": 10640.0, + "probability": 0.3616 + }, + { + "start": 10641.62, + "end": 10642.8, + "probability": 0.0166 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10737.0, + "end": 10737.0, + "probability": 0.0 + }, + { + "start": 10750.9, + "end": 10752.3, + "probability": 0.0393 + }, + { + "start": 10754.87, + "end": 10756.14, + "probability": 0.0855 + }, + { + "start": 10758.36, + "end": 10761.08, + "probability": 0.2735 + }, + { + "start": 10763.11, + "end": 10765.02, + "probability": 0.1116 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.0, + "end": 10860.0, + "probability": 0.0 + }, + { + "start": 10860.12, + "end": 10861.86, + "probability": 0.1485 + }, + { + "start": 10867.62, + "end": 10868.66, + "probability": 0.2211 + }, + { + "start": 10871.54, + "end": 10876.74, + "probability": 0.0187 + }, + { + "start": 10880.32, + "end": 10880.42, + "probability": 0.1779 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.0, + "end": 10980.0, + "probability": 0.0 + }, + { + "start": 10980.1, + "end": 10982.6, + "probability": 0.0451 + }, + { + "start": 10982.6, + "end": 10982.6, + "probability": 0.0564 + }, + { + "start": 10982.6, + "end": 10982.6, + "probability": 0.0278 + }, + { + "start": 10982.6, + "end": 10982.6, + "probability": 0.0565 + }, + { + "start": 10982.6, + "end": 10982.82, + "probability": 0.0522 + }, + { + "start": 10983.42, + "end": 10983.52, + "probability": 0.0418 + }, + { + "start": 10985.23, + "end": 10985.37, + "probability": 0.1713 + }, + { + "start": 10989.78, + "end": 10991.1, + "probability": 0.2147 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.0, + "end": 11104.0, + "probability": 0.0 + }, + { + "start": 11104.3, + "end": 11104.4, + "probability": 0.0275 + }, + { + "start": 11105.08, + "end": 11107.86, + "probability": 0.0748 + }, + { + "start": 11107.86, + "end": 11108.36, + "probability": 0.076 + }, + { + "start": 11109.72, + "end": 11110.35, + "probability": 0.1304 + }, + { + "start": 11112.24, + "end": 11113.82, + "probability": 0.0573 + }, + { + "start": 11118.8, + "end": 11120.28, + "probability": 0.114 + }, + { + "start": 11120.28, + "end": 11120.58, + "probability": 0.2121 + }, + { + "start": 11120.74, + "end": 11121.46, + "probability": 0.1871 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.0, + "end": 11267.0, + "probability": 0.0 + }, + { + "start": 11267.5, + "end": 11269.5, + "probability": 0.5989 + }, + { + "start": 11271.52, + "end": 11272.32, + "probability": 0.0211 + }, + { + "start": 11272.9, + "end": 11273.48, + "probability": 0.0107 + }, + { + "start": 11276.18, + "end": 11282.9, + "probability": 0.1209 + }, + { + "start": 11600.0, + "end": 11600.0, + "probability": 0.0 + }, + { + "start": 11600.0, + "end": 11600.0, + "probability": 0.0 + }, + { + "start": 11600.0, + "end": 11600.0, + "probability": 0.0 + }, + { + "start": 11600.0, + "end": 11600.0, + "probability": 0.0 + }, + { + "start": 11600.5, + "end": 11601.9, + "probability": 0.0082 + }, + { + "start": 11942.1, + "end": 11942.1, + "probability": 0.0104 + }, + { + "start": 11942.1, + "end": 11942.25, + "probability": 0.1422 + }, + { + "start": 11942.26, + "end": 11942.26, + "probability": 0.2183 + }, + { + "start": 11942.26, + "end": 11942.26, + "probability": 0.2303 + }, + { + "start": 11942.26, + "end": 11943.0, + "probability": 0.3957 + }, + { + "start": 11943.8, + "end": 11947.2, + "probability": 0.6626 + }, + { + "start": 11957.88, + "end": 11958.8, + "probability": 0.1515 + }, + { + "start": 11961.4, + "end": 11961.8, + "probability": 0.4916 + }, + { + "start": 11968.24, + "end": 11968.92, + "probability": 0.5583 + }, + { + "start": 11970.26, + "end": 11974.1, + "probability": 0.6109 + }, + { + "start": 11974.22, + "end": 11977.73, + "probability": 0.8367 + }, + { + "start": 11977.86, + "end": 11979.98, + "probability": 0.3714 + }, + { + "start": 11980.78, + "end": 11981.32, + "probability": 0.8152 + }, + { + "start": 11982.46, + "end": 11983.52, + "probability": 0.1834 + }, + { + "start": 11985.28, + "end": 11986.42, + "probability": 0.5374 + }, + { + "start": 11987.26, + "end": 11988.95, + "probability": 0.5347 + }, + { + "start": 11989.46, + "end": 11990.24, + "probability": 0.6171 + }, + { + "start": 11990.28, + "end": 11994.72, + "probability": 0.1177 + }, + { + "start": 11995.38, + "end": 11999.88, + "probability": 0.276 + }, + { + "start": 11999.88, + "end": 11999.88, + "probability": 0.1171 + }, + { + "start": 11999.88, + "end": 12000.3, + "probability": 0.0207 + }, + { + "start": 12000.38, + "end": 12000.48, + "probability": 0.1682 + }, + { + "start": 12001.48, + "end": 12001.72, + "probability": 0.0541 + }, + { + "start": 12003.32, + "end": 12003.98, + "probability": 0.0731 + }, + { + "start": 12005.01, + "end": 12005.78, + "probability": 0.0474 + }, + { + "start": 12005.9, + "end": 12007.24, + "probability": 0.1794 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.0, + "end": 12144.0, + "probability": 0.0 + }, + { + "start": 12144.14, + "end": 12144.54, + "probability": 0.5358 + }, + { + "start": 12144.58, + "end": 12144.58, + "probability": 0.6435 + }, + { + "start": 12144.58, + "end": 12144.58, + "probability": 0.4903 + }, + { + "start": 12144.58, + "end": 12144.58, + "probability": 0.3218 + }, + { + "start": 12144.58, + "end": 12144.94, + "probability": 0.1995 + }, + { + "start": 12145.22, + "end": 12145.92, + "probability": 0.5305 + }, + { + "start": 12146.04, + "end": 12146.98, + "probability": 0.419 + }, + { + "start": 12147.0, + "end": 12148.12, + "probability": 0.6562 + }, + { + "start": 12148.92, + "end": 12150.62, + "probability": 0.4199 + }, + { + "start": 12151.72, + "end": 12153.66, + "probability": 0.6209 + }, + { + "start": 12154.46, + "end": 12156.04, + "probability": 0.7719 + }, + { + "start": 12160.46, + "end": 12162.84, + "probability": 0.8152 + }, + { + "start": 12169.76, + "end": 12170.26, + "probability": 0.7528 + }, + { + "start": 12171.3, + "end": 12171.95, + "probability": 0.2554 + }, + { + "start": 12173.7, + "end": 12175.56, + "probability": 0.7242 + }, + { + "start": 12176.56, + "end": 12177.84, + "probability": 0.9419 + }, + { + "start": 12179.58, + "end": 12179.96, + "probability": 0.9644 + }, + { + "start": 12181.36, + "end": 12181.7, + "probability": 0.7819 + }, + { + "start": 12182.48, + "end": 12183.94, + "probability": 0.7888 + }, + { + "start": 12184.82, + "end": 12185.56, + "probability": 0.9439 + }, + { + "start": 12186.1, + "end": 12186.84, + "probability": 0.7189 + }, + { + "start": 12188.06, + "end": 12189.82, + "probability": 0.7483 + }, + { + "start": 12190.72, + "end": 12191.74, + "probability": 0.9088 + }, + { + "start": 12193.28, + "end": 12195.84, + "probability": 0.9718 + }, + { + "start": 12196.72, + "end": 12197.94, + "probability": 0.9777 + }, + { + "start": 12199.38, + "end": 12200.12, + "probability": 0.9917 + }, + { + "start": 12201.2, + "end": 12202.36, + "probability": 0.7468 + }, + { + "start": 12203.0, + "end": 12203.4, + "probability": 0.9453 + }, + { + "start": 12204.4, + "end": 12205.2, + "probability": 0.9049 + }, + { + "start": 12206.78, + "end": 12208.6, + "probability": 0.7095 + }, + { + "start": 12209.92, + "end": 12210.24, + "probability": 0.6149 + }, + { + "start": 12211.12, + "end": 12211.84, + "probability": 0.8262 + }, + { + "start": 12213.58, + "end": 12214.24, + "probability": 0.7982 + }, + { + "start": 12215.02, + "end": 12215.82, + "probability": 0.7192 + }, + { + "start": 12216.94, + "end": 12218.86, + "probability": 0.9392 + }, + { + "start": 12220.64, + "end": 12222.42, + "probability": 0.9176 + }, + { + "start": 12223.38, + "end": 12223.76, + "probability": 0.9021 + }, + { + "start": 12224.7, + "end": 12227.54, + "probability": 0.9765 + }, + { + "start": 12228.64, + "end": 12229.48, + "probability": 0.9893 + }, + { + "start": 12230.1, + "end": 12230.94, + "probability": 0.3955 + }, + { + "start": 12234.4, + "end": 12236.62, + "probability": 0.5485 + }, + { + "start": 12244.62, + "end": 12245.3, + "probability": 0.0962 + }, + { + "start": 12248.18, + "end": 12248.9, + "probability": 0.4459 + }, + { + "start": 12251.8, + "end": 12255.58, + "probability": 0.6456 + }, + { + "start": 12256.34, + "end": 12258.5, + "probability": 0.5933 + }, + { + "start": 12259.46, + "end": 12261.16, + "probability": 0.7171 + }, + { + "start": 12263.46, + "end": 12264.96, + "probability": 0.3045 + }, + { + "start": 12265.82, + "end": 12266.5, + "probability": 0.9763 + }, + { + "start": 12267.06, + "end": 12267.6, + "probability": 0.6369 + }, + { + "start": 12268.72, + "end": 12270.94, + "probability": 0.797 + }, + { + "start": 12272.06, + "end": 12272.62, + "probability": 0.7989 + }, + { + "start": 12273.78, + "end": 12274.56, + "probability": 0.9886 + }, + { + "start": 12276.06, + "end": 12276.88, + "probability": 0.8385 + }, + { + "start": 12278.94, + "end": 12281.56, + "probability": 0.9706 + }, + { + "start": 12282.18, + "end": 12282.94, + "probability": 0.9258 + }, + { + "start": 12285.22, + "end": 12285.94, + "probability": 0.9915 + }, + { + "start": 12286.58, + "end": 12287.64, + "probability": 0.3797 + }, + { + "start": 12288.48, + "end": 12288.88, + "probability": 0.9321 + }, + { + "start": 12289.96, + "end": 12290.9, + "probability": 0.9878 + }, + { + "start": 12292.36, + "end": 12293.04, + "probability": 0.8507 + }, + { + "start": 12293.86, + "end": 12294.72, + "probability": 0.5252 + }, + { + "start": 12297.14, + "end": 12298.9, + "probability": 0.8615 + }, + { + "start": 12299.46, + "end": 12300.54, + "probability": 0.7358 + }, + { + "start": 12300.78, + "end": 12304.26, + "probability": 0.8916 + }, + { + "start": 12307.18, + "end": 12308.3, + "probability": 0.4327 + }, + { + "start": 12308.9, + "end": 12309.12, + "probability": 0.6639 + }, + { + "start": 12310.58, + "end": 12311.3, + "probability": 0.6262 + }, + { + "start": 12312.98, + "end": 12314.62, + "probability": 0.7691 + }, + { + "start": 12315.76, + "end": 12318.7, + "probability": 0.739 + }, + { + "start": 12319.3, + "end": 12320.02, + "probability": 0.7982 + }, + { + "start": 12321.18, + "end": 12322.0, + "probability": 0.8295 + }, + { + "start": 12322.54, + "end": 12323.3, + "probability": 0.4255 + }, + { + "start": 12325.04, + "end": 12325.44, + "probability": 0.9543 + }, + { + "start": 12326.1, + "end": 12326.92, + "probability": 0.8114 + }, + { + "start": 12328.06, + "end": 12328.46, + "probability": 0.9312 + }, + { + "start": 12329.36, + "end": 12330.24, + "probability": 0.6173 + }, + { + "start": 12331.74, + "end": 12332.16, + "probability": 0.9651 + }, + { + "start": 12333.34, + "end": 12334.22, + "probability": 0.8614 + }, + { + "start": 12338.2, + "end": 12338.84, + "probability": 0.8146 + }, + { + "start": 12339.58, + "end": 12340.3, + "probability": 0.8172 + }, + { + "start": 12342.4, + "end": 12344.26, + "probability": 0.6258 + }, + { + "start": 12345.42, + "end": 12346.2, + "probability": 0.9845 + }, + { + "start": 12347.8, + "end": 12348.68, + "probability": 0.9678 + }, + { + "start": 12351.66, + "end": 12353.58, + "probability": 0.9379 + }, + { + "start": 12354.62, + "end": 12355.5, + "probability": 0.9642 + }, + { + "start": 12356.38, + "end": 12357.18, + "probability": 0.8719 + }, + { + "start": 12358.52, + "end": 12359.2, + "probability": 0.9876 + }, + { + "start": 12359.74, + "end": 12360.76, + "probability": 0.9151 + }, + { + "start": 12364.06, + "end": 12364.3, + "probability": 0.6564 + }, + { + "start": 12365.16, + "end": 12366.68, + "probability": 0.5267 + }, + { + "start": 12368.2, + "end": 12369.44, + "probability": 0.8106 + }, + { + "start": 12370.14, + "end": 12371.14, + "probability": 0.8001 + }, + { + "start": 12372.14, + "end": 12372.54, + "probability": 0.9102 + }, + { + "start": 12373.46, + "end": 12374.06, + "probability": 0.8994 + }, + { + "start": 12377.06, + "end": 12377.8, + "probability": 0.8794 + }, + { + "start": 12378.32, + "end": 12379.04, + "probability": 0.9251 + }, + { + "start": 12381.28, + "end": 12382.66, + "probability": 0.7131 + }, + { + "start": 12383.36, + "end": 12383.74, + "probability": 0.9539 + }, + { + "start": 12384.48, + "end": 12387.06, + "probability": 0.7917 + }, + { + "start": 12388.24, + "end": 12389.9, + "probability": 0.9624 + }, + { + "start": 12390.8, + "end": 12392.58, + "probability": 0.7283 + }, + { + "start": 12393.9, + "end": 12396.16, + "probability": 0.9563 + }, + { + "start": 12397.0, + "end": 12397.38, + "probability": 0.7273 + }, + { + "start": 12398.42, + "end": 12399.12, + "probability": 0.8364 + }, + { + "start": 12399.88, + "end": 12400.14, + "probability": 0.9463 + }, + { + "start": 12400.7, + "end": 12401.84, + "probability": 0.9409 + }, + { + "start": 12403.16, + "end": 12403.94, + "probability": 0.9959 + }, + { + "start": 12404.64, + "end": 12405.9, + "probability": 0.7861 + }, + { + "start": 12407.28, + "end": 12408.76, + "probability": 0.8134 + }, + { + "start": 12409.34, + "end": 12412.16, + "probability": 0.8281 + }, + { + "start": 12413.5, + "end": 12416.1, + "probability": 0.6335 + }, + { + "start": 12417.02, + "end": 12417.7, + "probability": 0.8767 + }, + { + "start": 12418.48, + "end": 12420.82, + "probability": 0.6629 + }, + { + "start": 12422.74, + "end": 12425.3, + "probability": 0.9641 + }, + { + "start": 12427.44, + "end": 12429.36, + "probability": 0.9235 + }, + { + "start": 12430.76, + "end": 12436.02, + "probability": 0.9364 + }, + { + "start": 12436.76, + "end": 12437.1, + "probability": 0.9836 + }, + { + "start": 12437.9, + "end": 12439.6, + "probability": 0.9541 + }, + { + "start": 12440.38, + "end": 12440.92, + "probability": 0.3979 + }, + { + "start": 12443.22, + "end": 12443.6, + "probability": 0.9172 + }, + { + "start": 12444.62, + "end": 12445.68, + "probability": 0.7288 + }, + { + "start": 12446.74, + "end": 12447.12, + "probability": 0.9795 + }, + { + "start": 12448.2, + "end": 12450.42, + "probability": 0.5073 + }, + { + "start": 12450.68, + "end": 12451.56, + "probability": 0.6214 + }, + { + "start": 12452.0, + "end": 12453.56, + "probability": 0.6318 + }, + { + "start": 12454.44, + "end": 12454.78, + "probability": 0.6461 + }, + { + "start": 12456.16, + "end": 12456.86, + "probability": 0.7132 + }, + { + "start": 12457.74, + "end": 12459.06, + "probability": 0.7675 + }, + { + "start": 12460.2, + "end": 12461.48, + "probability": 0.8096 + }, + { + "start": 12462.98, + "end": 12465.06, + "probability": 0.4061 + }, + { + "start": 12469.06, + "end": 12469.24, + "probability": 0.6196 + }, + { + "start": 12471.32, + "end": 12474.68, + "probability": 0.468 + }, + { + "start": 12476.1, + "end": 12476.78, + "probability": 0.6701 + }, + { + "start": 12478.26, + "end": 12482.5, + "probability": 0.6905 + }, + { + "start": 12483.74, + "end": 12484.4, + "probability": 0.7417 + }, + { + "start": 12485.26, + "end": 12486.24, + "probability": 0.9389 + }, + { + "start": 12487.04, + "end": 12487.5, + "probability": 0.9583 + }, + { + "start": 12489.02, + "end": 12489.86, + "probability": 0.9355 + }, + { + "start": 12490.92, + "end": 12492.66, + "probability": 0.9523 + }, + { + "start": 12494.12, + "end": 12494.96, + "probability": 0.7495 + }, + { + "start": 12496.5, + "end": 12497.28, + "probability": 0.8984 + }, + { + "start": 12500.42, + "end": 12502.64, + "probability": 0.3006 + }, + { + "start": 12503.62, + "end": 12506.28, + "probability": 0.9197 + }, + { + "start": 12507.32, + "end": 12508.96, + "probability": 0.9881 + }, + { + "start": 12509.86, + "end": 12511.62, + "probability": 0.9912 + }, + { + "start": 12512.38, + "end": 12513.94, + "probability": 0.9294 + }, + { + "start": 12513.94, + "end": 12515.5, + "probability": 0.7381 + }, + { + "start": 12516.64, + "end": 12517.12, + "probability": 0.782 + }, + { + "start": 12518.74, + "end": 12519.38, + "probability": 0.613 + }, + { + "start": 12520.62, + "end": 12522.3, + "probability": 0.8865 + }, + { + "start": 12523.96, + "end": 12525.48, + "probability": 0.7455 + }, + { + "start": 12526.34, + "end": 12527.2, + "probability": 0.9685 + }, + { + "start": 12530.16, + "end": 12531.0, + "probability": 0.5991 + }, + { + "start": 12532.94, + "end": 12534.86, + "probability": 0.7413 + }, + { + "start": 12536.06, + "end": 12536.82, + "probability": 0.9744 + }, + { + "start": 12537.62, + "end": 12539.42, + "probability": 0.9415 + }, + { + "start": 12540.12, + "end": 12541.14, + "probability": 0.8994 + }, + { + "start": 12543.92, + "end": 12546.88, + "probability": 0.9794 + }, + { + "start": 12547.6, + "end": 12549.74, + "probability": 0.9469 + }, + { + "start": 12551.48, + "end": 12552.28, + "probability": 0.1482 + }, + { + "start": 12552.28, + "end": 12553.12, + "probability": 0.3414 + }, + { + "start": 12554.16, + "end": 12555.04, + "probability": 0.9582 + }, + { + "start": 12556.44, + "end": 12557.78, + "probability": 0.8572 + }, + { + "start": 12558.92, + "end": 12560.1, + "probability": 0.9017 + }, + { + "start": 12560.94, + "end": 12564.38, + "probability": 0.9378 + }, + { + "start": 12565.38, + "end": 12566.24, + "probability": 0.9845 + }, + { + "start": 12566.8, + "end": 12567.52, + "probability": 0.7449 + }, + { + "start": 12569.2, + "end": 12570.18, + "probability": 0.5283 + }, + { + "start": 12571.92, + "end": 12572.7, + "probability": 0.8179 + }, + { + "start": 12573.86, + "end": 12574.62, + "probability": 0.7887 + }, + { + "start": 12575.6, + "end": 12576.68, + "probability": 0.4691 + }, + { + "start": 12577.62, + "end": 12578.06, + "probability": 0.876 + }, + { + "start": 12579.86, + "end": 12580.46, + "probability": 0.7852 + }, + { + "start": 12581.98, + "end": 12583.6, + "probability": 0.9292 + }, + { + "start": 12585.16, + "end": 12585.6, + "probability": 0.9497 + }, + { + "start": 12587.28, + "end": 12588.44, + "probability": 0.9191 + }, + { + "start": 12590.74, + "end": 12591.2, + "probability": 0.9854 + }, + { + "start": 12593.6, + "end": 12594.44, + "probability": 0.8308 + }, + { + "start": 12595.58, + "end": 12597.04, + "probability": 0.9433 + }, + { + "start": 12598.08, + "end": 12601.1, + "probability": 0.973 + }, + { + "start": 12601.94, + "end": 12603.64, + "probability": 0.7819 + }, + { + "start": 12605.08, + "end": 12608.92, + "probability": 0.7698 + }, + { + "start": 12610.76, + "end": 12611.64, + "probability": 0.9618 + }, + { + "start": 12612.64, + "end": 12613.46, + "probability": 0.8675 + }, + { + "start": 12615.96, + "end": 12617.72, + "probability": 0.8407 + }, + { + "start": 12619.14, + "end": 12621.18, + "probability": 0.9646 + }, + { + "start": 12621.82, + "end": 12623.86, + "probability": 0.9589 + }, + { + "start": 12625.04, + "end": 12628.38, + "probability": 0.9438 + }, + { + "start": 12630.34, + "end": 12630.48, + "probability": 0.6249 + }, + { + "start": 12637.26, + "end": 12638.5, + "probability": 0.36 + }, + { + "start": 12646.88, + "end": 12647.78, + "probability": 0.5002 + }, + { + "start": 12648.78, + "end": 12649.9, + "probability": 0.6284 + }, + { + "start": 12650.64, + "end": 12650.96, + "probability": 0.877 + }, + { + "start": 12653.08, + "end": 12654.08, + "probability": 0.8192 + }, + { + "start": 12655.5, + "end": 12656.98, + "probability": 0.9349 + }, + { + "start": 12658.64, + "end": 12660.54, + "probability": 0.7532 + }, + { + "start": 12663.54, + "end": 12665.5, + "probability": 0.9797 + }, + { + "start": 12667.34, + "end": 12669.14, + "probability": 0.9709 + }, + { + "start": 12671.1, + "end": 12671.72, + "probability": 0.8702 + }, + { + "start": 12672.28, + "end": 12673.3, + "probability": 0.9931 + }, + { + "start": 12674.36, + "end": 12675.2, + "probability": 0.9949 + }, + { + "start": 12676.26, + "end": 12677.14, + "probability": 0.7367 + }, + { + "start": 12678.1, + "end": 12678.48, + "probability": 0.5903 + }, + { + "start": 12680.62, + "end": 12681.64, + "probability": 0.5775 + }, + { + "start": 12682.7, + "end": 12682.8, + "probability": 0.7009 + }, + { + "start": 12687.7, + "end": 12688.42, + "probability": 0.6623 + }, + { + "start": 12689.64, + "end": 12692.04, + "probability": 0.7783 + }, + { + "start": 12693.2, + "end": 12695.34, + "probability": 0.8829 + }, + { + "start": 12696.12, + "end": 12697.82, + "probability": 0.4905 + }, + { + "start": 12698.66, + "end": 12699.62, + "probability": 0.9836 + }, + { + "start": 12700.58, + "end": 12701.46, + "probability": 0.9607 + }, + { + "start": 12702.4, + "end": 12708.1, + "probability": 0.9094 + }, + { + "start": 12708.86, + "end": 12709.74, + "probability": 0.4948 + }, + { + "start": 12711.36, + "end": 12711.78, + "probability": 0.544 + }, + { + "start": 12713.56, + "end": 12715.06, + "probability": 0.8374 + }, + { + "start": 12716.92, + "end": 12717.6, + "probability": 0.9683 + }, + { + "start": 12718.26, + "end": 12718.9, + "probability": 0.5821 + }, + { + "start": 12719.48, + "end": 12721.16, + "probability": 0.8142 + }, + { + "start": 12722.02, + "end": 12724.28, + "probability": 0.7559 + }, + { + "start": 12724.98, + "end": 12728.52, + "probability": 0.6668 + }, + { + "start": 12729.8, + "end": 12730.72, + "probability": 0.9704 + }, + { + "start": 12731.46, + "end": 12732.68, + "probability": 0.4865 + }, + { + "start": 12734.1, + "end": 12736.5, + "probability": 0.6693 + }, + { + "start": 12736.82, + "end": 12738.42, + "probability": 0.9508 + }, + { + "start": 12739.36, + "end": 12741.18, + "probability": 0.7298 + }, + { + "start": 12742.2, + "end": 12745.3, + "probability": 0.9366 + }, + { + "start": 12746.54, + "end": 12752.1, + "probability": 0.9048 + }, + { + "start": 12752.99, + "end": 12754.8, + "probability": 0.5006 + }, + { + "start": 12755.62, + "end": 12757.38, + "probability": 0.2463 + }, + { + "start": 12758.22, + "end": 12758.88, + "probability": 0.6041 + }, + { + "start": 12758.98, + "end": 12760.04, + "probability": 0.6543 + }, + { + "start": 12760.54, + "end": 12761.92, + "probability": 0.639 + }, + { + "start": 12762.42, + "end": 12769.36, + "probability": 0.2231 + }, + { + "start": 12770.14, + "end": 12772.1, + "probability": 0.6893 + }, + { + "start": 12773.06, + "end": 12773.8, + "probability": 0.6701 + }, + { + "start": 12775.86, + "end": 12777.84, + "probability": 0.4597 + }, + { + "start": 12783.34, + "end": 12783.58, + "probability": 0.7047 + }, + { + "start": 12784.38, + "end": 12786.58, + "probability": 0.5937 + }, + { + "start": 12792.08, + "end": 12792.64, + "probability": 0.5788 + }, + { + "start": 12793.84, + "end": 12794.72, + "probability": 0.672 + }, + { + "start": 12800.46, + "end": 12806.76, + "probability": 0.5641 + }, + { + "start": 12808.92, + "end": 12809.04, + "probability": 0.3686 + }, + { + "start": 12809.34, + "end": 12809.96, + "probability": 0.6386 + }, + { + "start": 12810.08, + "end": 12810.74, + "probability": 0.7614 + }, + { + "start": 12811.9, + "end": 12812.95, + "probability": 0.6013 + }, + { + "start": 12813.7, + "end": 12814.24, + "probability": 0.6953 + }, + { + "start": 12814.96, + "end": 12815.3, + "probability": 0.8607 + }, + { + "start": 12817.48, + "end": 12820.26, + "probability": 0.2936 + }, + { + "start": 12820.48, + "end": 12820.66, + "probability": 0.0053 + }, + { + "start": 12873.46, + "end": 12875.12, + "probability": 0.4997 + }, + { + "start": 12875.2, + "end": 12876.02, + "probability": 0.5516 + }, + { + "start": 12876.38, + "end": 12877.08, + "probability": 0.915 + }, + { + "start": 12877.3, + "end": 12877.8, + "probability": 0.679 + }, + { + "start": 12877.94, + "end": 12879.86, + "probability": 0.9513 + }, + { + "start": 12880.06, + "end": 12883.02, + "probability": 0.9734 + }, + { + "start": 12883.76, + "end": 12885.86, + "probability": 0.9797 + }, + { + "start": 12886.4, + "end": 12888.64, + "probability": 0.7015 + }, + { + "start": 12888.74, + "end": 12890.32, + "probability": 0.7887 + }, + { + "start": 12890.36, + "end": 12891.64, + "probability": 0.398 + }, + { + "start": 12891.74, + "end": 12892.66, + "probability": 0.5976 + }, + { + "start": 12893.22, + "end": 12895.78, + "probability": 0.849 + }, + { + "start": 12899.26, + "end": 12900.56, + "probability": 0.6189 + }, + { + "start": 12900.74, + "end": 12904.22, + "probability": 0.5085 + }, + { + "start": 12904.22, + "end": 12905.24, + "probability": 0.4989 + }, + { + "start": 12905.74, + "end": 12906.36, + "probability": 0.7682 + }, + { + "start": 12906.88, + "end": 12907.76, + "probability": 0.9102 + }, + { + "start": 12916.2, + "end": 12917.24, + "probability": 0.587 + }, + { + "start": 12920.94, + "end": 12924.36, + "probability": 0.7408 + }, + { + "start": 12924.94, + "end": 12926.48, + "probability": 0.8552 + }, + { + "start": 12927.0, + "end": 12930.94, + "probability": 0.9484 + }, + { + "start": 12931.46, + "end": 12932.58, + "probability": 0.1572 + }, + { + "start": 12932.76, + "end": 12933.39, + "probability": 0.5033 + }, + { + "start": 12934.22, + "end": 12934.34, + "probability": 0.0105 + }, + { + "start": 12935.5, + "end": 12937.76, + "probability": 0.058 + }, + { + "start": 12943.71, + "end": 12945.41, + "probability": 0.5464 + }, + { + "start": 12945.64, + "end": 12947.86, + "probability": 0.8873 + }, + { + "start": 12947.98, + "end": 12948.63, + "probability": 0.972 + }, + { + "start": 12949.12, + "end": 12950.84, + "probability": 0.9604 + }, + { + "start": 12950.92, + "end": 12951.96, + "probability": 0.9956 + }, + { + "start": 12952.18, + "end": 12953.3, + "probability": 0.9755 + }, + { + "start": 12954.79, + "end": 12956.83, + "probability": 0.9658 + }, + { + "start": 12957.2, + "end": 12958.48, + "probability": 0.7964 + }, + { + "start": 12960.38, + "end": 12962.42, + "probability": 0.5405 + }, + { + "start": 12962.44, + "end": 12965.22, + "probability": 0.9058 + }, + { + "start": 12980.84, + "end": 12983.28, + "probability": 0.9021 + }, + { + "start": 12983.32, + "end": 12984.84, + "probability": 0.9231 + }, + { + "start": 12987.38, + "end": 12989.14, + "probability": 0.9987 + }, + { + "start": 12997.98, + "end": 12999.82, + "probability": 0.6713 + }, + { + "start": 13000.78, + "end": 13001.18, + "probability": 0.9254 + }, + { + "start": 13007.24, + "end": 13010.16, + "probability": 0.6944 + }, + { + "start": 13010.8, + "end": 13013.36, + "probability": 0.066 + }, + { + "start": 13013.56, + "end": 13014.12, + "probability": 0.4331 + }, + { + "start": 13014.44, + "end": 13017.18, + "probability": 0.1294 + }, + { + "start": 13017.28, + "end": 13018.76, + "probability": 0.0857 + }, + { + "start": 13019.48, + "end": 13019.8, + "probability": 0.2285 + }, + { + "start": 13021.62, + "end": 13021.76, + "probability": 0.8313 + }, + { + "start": 13024.28, + "end": 13026.2, + "probability": 0.5178 + }, + { + "start": 13027.08, + "end": 13028.54, + "probability": 0.6722 + }, + { + "start": 13035.12, + "end": 13038.28, + "probability": 0.3998 + }, + { + "start": 13043.18, + "end": 13046.78, + "probability": 0.7771 + }, + { + "start": 13047.5, + "end": 13048.22, + "probability": 0.6197 + }, + { + "start": 13049.96, + "end": 13052.0, + "probability": 0.7756 + }, + { + "start": 13052.62, + "end": 13055.46, + "probability": 0.6836 + }, + { + "start": 13057.72, + "end": 13059.06, + "probability": 0.3136 + }, + { + "start": 13062.82, + "end": 13064.63, + "probability": 0.6194 + }, + { + "start": 13066.6, + "end": 13067.34, + "probability": 0.6323 + }, + { + "start": 13067.9, + "end": 13069.48, + "probability": 0.7784 + }, + { + "start": 13070.1, + "end": 13072.48, + "probability": 0.9301 + }, + { + "start": 13073.44, + "end": 13075.24, + "probability": 0.913 + }, + { + "start": 13076.75, + "end": 13083.62, + "probability": 0.9198 + }, + { + "start": 13085.64, + "end": 13086.6, + "probability": 0.6582 + }, + { + "start": 13086.64, + "end": 13088.18, + "probability": 0.7715 + }, + { + "start": 13089.23, + "end": 13091.98, + "probability": 0.8245 + }, + { + "start": 13093.82, + "end": 13095.54, + "probability": 0.7892 + }, + { + "start": 13096.26, + "end": 13098.4, + "probability": 0.6485 + }, + { + "start": 13099.0, + "end": 13100.86, + "probability": 0.705 + }, + { + "start": 13102.82, + "end": 13103.96, + "probability": 0.0461 + }, + { + "start": 13103.96, + "end": 13104.53, + "probability": 0.7633 + }, + { + "start": 13106.3, + "end": 13107.24, + "probability": 0.9757 + }, + { + "start": 13108.74, + "end": 13110.46, + "probability": 0.908 + }, + { + "start": 13110.52, + "end": 13112.08, + "probability": 0.8361 + }, + { + "start": 13112.7, + "end": 13113.48, + "probability": 0.7625 + }, + { + "start": 13115.02, + "end": 13116.58, + "probability": 0.8561 + }, + { + "start": 13117.12, + "end": 13119.4, + "probability": 0.9473 + }, + { + "start": 13119.84, + "end": 13120.98, + "probability": 0.9432 + }, + { + "start": 13121.06, + "end": 13122.62, + "probability": 0.9019 + }, + { + "start": 13123.32, + "end": 13124.48, + "probability": 0.6964 + }, + { + "start": 13124.84, + "end": 13125.6, + "probability": 0.9334 + }, + { + "start": 13126.93, + "end": 13128.44, + "probability": 0.6943 + }, + { + "start": 13129.26, + "end": 13130.92, + "probability": 0.7821 + }, + { + "start": 13132.18, + "end": 13132.74, + "probability": 0.4787 + }, + { + "start": 13133.28, + "end": 13134.9, + "probability": 0.7352 + }, + { + "start": 13135.6, + "end": 13136.4, + "probability": 0.9161 + }, + { + "start": 13137.48, + "end": 13138.32, + "probability": 0.9964 + }, + { + "start": 13141.18, + "end": 13142.46, + "probability": 0.9977 + }, + { + "start": 13142.54, + "end": 13142.54, + "probability": 0.401 + }, + { + "start": 13142.54, + "end": 13143.38, + "probability": 0.5985 + }, + { + "start": 13143.68, + "end": 13143.68, + "probability": 0.0002 + }, + { + "start": 13146.18, + "end": 13148.24, + "probability": 0.7981 + }, + { + "start": 13155.14, + "end": 13155.14, + "probability": 0.4673 + }, + { + "start": 13155.14, + "end": 13155.14, + "probability": 0.0227 + }, + { + "start": 13155.14, + "end": 13155.92, + "probability": 0.0658 + }, + { + "start": 13157.1, + "end": 13157.52, + "probability": 0.8813 + }, + { + "start": 13159.6, + "end": 13160.8, + "probability": 0.6587 + }, + { + "start": 13164.98, + "end": 13169.12, + "probability": 0.6197 + }, + { + "start": 13170.78, + "end": 13172.46, + "probability": 0.5055 + }, + { + "start": 13172.96, + "end": 13175.2, + "probability": 0.7298 + }, + { + "start": 13175.96, + "end": 13178.62, + "probability": 0.7964 + }, + { + "start": 13179.02, + "end": 13182.44, + "probability": 0.8279 + }, + { + "start": 13182.5, + "end": 13183.69, + "probability": 0.6838 + }, + { + "start": 13184.58, + "end": 13186.83, + "probability": 0.7358 + }, + { + "start": 13188.12, + "end": 13189.78, + "probability": 0.8372 + }, + { + "start": 13189.82, + "end": 13190.46, + "probability": 0.7235 + }, + { + "start": 13194.8, + "end": 13195.54, + "probability": 0.7001 + }, + { + "start": 13198.2, + "end": 13200.88, + "probability": 0.5712 + }, + { + "start": 13201.68, + "end": 13202.82, + "probability": 0.7738 + }, + { + "start": 13203.34, + "end": 13204.28, + "probability": 0.9254 + }, + { + "start": 13206.54, + "end": 13208.8, + "probability": 0.9252 + }, + { + "start": 13209.04, + "end": 13209.98, + "probability": 0.7322 + }, + { + "start": 13212.06, + "end": 13214.38, + "probability": 0.9536 + }, + { + "start": 13214.46, + "end": 13215.82, + "probability": 0.6477 + }, + { + "start": 13220.42, + "end": 13221.38, + "probability": 0.6971 + }, + { + "start": 13221.7, + "end": 13222.82, + "probability": 0.4441 + }, + { + "start": 13224.1, + "end": 13224.5, + "probability": 0.3448 + }, + { + "start": 13226.32, + "end": 13227.28, + "probability": 0.7801 + }, + { + "start": 13227.9, + "end": 13230.52, + "probability": 0.8391 + }, + { + "start": 13233.78, + "end": 13236.14, + "probability": 0.6842 + }, + { + "start": 13236.94, + "end": 13237.38, + "probability": 0.9805 + }, + { + "start": 13239.02, + "end": 13240.02, + "probability": 0.8792 + }, + { + "start": 13241.4, + "end": 13242.42, + "probability": 0.6144 + }, + { + "start": 13243.3, + "end": 13246.12, + "probability": 0.5252 + }, + { + "start": 13247.38, + "end": 13248.2, + "probability": 0.2204 + }, + { + "start": 13248.56, + "end": 13248.72, + "probability": 0.1016 + }, + { + "start": 13249.92, + "end": 13249.92, + "probability": 0.1008 + }, + { + "start": 13249.92, + "end": 13250.56, + "probability": 0.5586 + }, + { + "start": 13251.38, + "end": 13252.06, + "probability": 0.1077 + }, + { + "start": 13252.06, + "end": 13253.24, + "probability": 0.5948 + }, + { + "start": 13253.86, + "end": 13254.74, + "probability": 0.186 + }, + { + "start": 13254.9, + "end": 13258.06, + "probability": 0.6573 + }, + { + "start": 13258.56, + "end": 13261.34, + "probability": 0.5903 + }, + { + "start": 13266.06, + "end": 13266.84, + "probability": 0.3648 + }, + { + "start": 13267.52, + "end": 13268.5, + "probability": 0.6413 + }, + { + "start": 13269.86, + "end": 13272.14, + "probability": 0.1779 + }, + { + "start": 13273.72, + "end": 13274.78, + "probability": 0.7195 + }, + { + "start": 13275.34, + "end": 13276.48, + "probability": 0.8755 + }, + { + "start": 13277.3, + "end": 13279.0, + "probability": 0.9262 + }, + { + "start": 13280.14, + "end": 13280.94, + "probability": 0.6956 + }, + { + "start": 13282.08, + "end": 13284.38, + "probability": 0.8967 + }, + { + "start": 13284.82, + "end": 13285.44, + "probability": 0.3976 + }, + { + "start": 13286.54, + "end": 13287.32, + "probability": 0.7683 + }, + { + "start": 13287.86, + "end": 13288.42, + "probability": 0.33 + }, + { + "start": 13288.88, + "end": 13289.79, + "probability": 0.6571 + }, + { + "start": 13292.44, + "end": 13292.58, + "probability": 0.4069 + }, + { + "start": 13292.58, + "end": 13293.7, + "probability": 0.5508 + }, + { + "start": 13295.38, + "end": 13297.58, + "probability": 0.8888 + }, + { + "start": 13298.28, + "end": 13298.72, + "probability": 0.9556 + }, + { + "start": 13299.76, + "end": 13300.68, + "probability": 0.7902 + }, + { + "start": 13302.64, + "end": 13304.5, + "probability": 0.9425 + }, + { + "start": 13305.48, + "end": 13305.84, + "probability": 0.9773 + }, + { + "start": 13306.78, + "end": 13307.74, + "probability": 0.5704 + }, + { + "start": 13308.3, + "end": 13309.88, + "probability": 0.8135 + }, + { + "start": 13310.16, + "end": 13311.7, + "probability": 0.9405 + }, + { + "start": 13312.08, + "end": 13312.6, + "probability": 0.8615 + }, + { + "start": 13313.4, + "end": 13314.48, + "probability": 0.9808 + }, + { + "start": 13318.74, + "end": 13320.18, + "probability": 0.8833 + }, + { + "start": 13320.76, + "end": 13321.68, + "probability": 0.9847 + }, + { + "start": 13322.44, + "end": 13324.6, + "probability": 0.9932 + }, + { + "start": 13326.18, + "end": 13326.98, + "probability": 0.9886 + }, + { + "start": 13327.62, + "end": 13329.04, + "probability": 0.9817 + }, + { + "start": 13341.14, + "end": 13341.96, + "probability": 0.4977 + }, + { + "start": 13342.88, + "end": 13343.58, + "probability": 0.6465 + }, + { + "start": 13345.04, + "end": 13345.8, + "probability": 0.7654 + }, + { + "start": 13347.42, + "end": 13349.32, + "probability": 0.6467 + }, + { + "start": 13350.1, + "end": 13351.02, + "probability": 0.795 + }, + { + "start": 13352.16, + "end": 13353.1, + "probability": 0.9333 + }, + { + "start": 13355.22, + "end": 13355.64, + "probability": 0.7974 + }, + { + "start": 13356.82, + "end": 13357.7, + "probability": 0.9482 + }, + { + "start": 13359.24, + "end": 13360.36, + "probability": 0.9592 + }, + { + "start": 13361.3, + "end": 13362.22, + "probability": 0.9474 + }, + { + "start": 13366.32, + "end": 13367.06, + "probability": 0.8761 + }, + { + "start": 13367.88, + "end": 13368.5, + "probability": 0.2996 + }, + { + "start": 13369.94, + "end": 13372.7, + "probability": 0.7956 + }, + { + "start": 13373.52, + "end": 13374.42, + "probability": 0.3959 + }, + { + "start": 13375.16, + "end": 13376.03, + "probability": 0.6619 + }, + { + "start": 13377.46, + "end": 13377.9, + "probability": 0.8335 + }, + { + "start": 13378.92, + "end": 13379.78, + "probability": 0.929 + }, + { + "start": 13381.26, + "end": 13382.2, + "probability": 0.9916 + }, + { + "start": 13383.06, + "end": 13384.2, + "probability": 0.7873 + }, + { + "start": 13385.18, + "end": 13385.96, + "probability": 0.9895 + }, + { + "start": 13386.74, + "end": 13389.52, + "probability": 0.9722 + }, + { + "start": 13394.34, + "end": 13396.58, + "probability": 0.6039 + }, + { + "start": 13398.38, + "end": 13399.04, + "probability": 0.9853 + }, + { + "start": 13400.0, + "end": 13400.9, + "probability": 0.8261 + }, + { + "start": 13401.76, + "end": 13402.76, + "probability": 0.5042 + }, + { + "start": 13403.54, + "end": 13406.8, + "probability": 0.4986 + }, + { + "start": 13407.22, + "end": 13409.18, + "probability": 0.5518 + }, + { + "start": 13409.82, + "end": 13411.06, + "probability": 0.8703 + }, + { + "start": 13411.96, + "end": 13412.96, + "probability": 0.8706 + }, + { + "start": 13413.54, + "end": 13414.26, + "probability": 0.6037 + }, + { + "start": 13415.02, + "end": 13415.52, + "probability": 0.5321 + }, + { + "start": 13419.22, + "end": 13420.32, + "probability": 0.6736 + }, + { + "start": 13420.42, + "end": 13421.3, + "probability": 0.8277 + }, + { + "start": 13421.34, + "end": 13421.99, + "probability": 0.9623 + }, + { + "start": 13424.02, + "end": 13425.14, + "probability": 0.423 + }, + { + "start": 13427.14, + "end": 13427.54, + "probability": 0.876 + }, + { + "start": 13429.88, + "end": 13430.58, + "probability": 0.7269 + }, + { + "start": 13431.28, + "end": 13433.52, + "probability": 0.8917 + }, + { + "start": 13436.82, + "end": 13440.1, + "probability": 0.6593 + }, + { + "start": 13440.18, + "end": 13441.2, + "probability": 0.6651 + }, + { + "start": 13441.22, + "end": 13442.28, + "probability": 0.6558 + }, + { + "start": 13443.4, + "end": 13444.64, + "probability": 0.6495 + }, + { + "start": 13445.86, + "end": 13446.42, + "probability": 0.7344 + }, + { + "start": 13446.5, + "end": 13447.27, + "probability": 0.9854 + }, + { + "start": 13447.62, + "end": 13448.66, + "probability": 0.8739 + }, + { + "start": 13449.16, + "end": 13449.58, + "probability": 0.6959 + }, + { + "start": 13449.7, + "end": 13451.04, + "probability": 0.5164 + }, + { + "start": 13451.48, + "end": 13454.15, + "probability": 0.0264 + }, + { + "start": 13455.12, + "end": 13455.92, + "probability": 0.7067 + }, + { + "start": 13458.94, + "end": 13460.98, + "probability": 0.5628 + }, + { + "start": 13461.88, + "end": 13464.2, + "probability": 0.7324 + }, + { + "start": 13465.46, + "end": 13466.22, + "probability": 0.8016 + }, + { + "start": 13467.34, + "end": 13467.92, + "probability": 0.5049 + }, + { + "start": 13468.06, + "end": 13468.88, + "probability": 0.9562 + }, + { + "start": 13469.68, + "end": 13473.04, + "probability": 0.3462 + }, + { + "start": 13474.92, + "end": 13478.58, + "probability": 0.6222 + }, + { + "start": 13479.68, + "end": 13482.38, + "probability": 0.5981 + }, + { + "start": 13484.06, + "end": 13487.68, + "probability": 0.6695 + }, + { + "start": 13488.58, + "end": 13490.76, + "probability": 0.8467 + }, + { + "start": 13491.44, + "end": 13493.52, + "probability": 0.8533 + }, + { + "start": 13494.32, + "end": 13495.02, + "probability": 0.9918 + }, + { + "start": 13495.82, + "end": 13496.38, + "probability": 0.9487 + }, + { + "start": 13498.12, + "end": 13502.12, + "probability": 0.5345 + }, + { + "start": 13504.12, + "end": 13504.88, + "probability": 0.7578 + }, + { + "start": 13506.68, + "end": 13507.56, + "probability": 0.9496 + }, + { + "start": 13508.5, + "end": 13510.36, + "probability": 0.9335 + }, + { + "start": 13511.48, + "end": 13513.26, + "probability": 0.9497 + }, + { + "start": 13514.02, + "end": 13516.46, + "probability": 0.9648 + }, + { + "start": 13517.52, + "end": 13518.28, + "probability": 0.9877 + }, + { + "start": 13518.8, + "end": 13519.64, + "probability": 0.9193 + }, + { + "start": 13520.72, + "end": 13522.28, + "probability": 0.9315 + }, + { + "start": 13524.0, + "end": 13524.38, + "probability": 0.6354 + }, + { + "start": 13524.9, + "end": 13527.14, + "probability": 0.6973 + }, + { + "start": 13529.06, + "end": 13529.78, + "probability": 0.8485 + }, + { + "start": 13530.82, + "end": 13531.4, + "probability": 0.751 + }, + { + "start": 13534.3, + "end": 13534.72, + "probability": 0.9495 + }, + { + "start": 13536.2, + "end": 13537.02, + "probability": 0.9683 + }, + { + "start": 13537.58, + "end": 13538.28, + "probability": 0.9599 + }, + { + "start": 13539.44, + "end": 13542.5, + "probability": 0.8604 + }, + { + "start": 13544.36, + "end": 13545.06, + "probability": 0.9891 + }, + { + "start": 13546.28, + "end": 13547.44, + "probability": 0.9414 + }, + { + "start": 13548.78, + "end": 13549.18, + "probability": 0.9475 + }, + { + "start": 13552.98, + "end": 13553.66, + "probability": 0.8456 + }, + { + "start": 13555.74, + "end": 13558.28, + "probability": 0.53 + }, + { + "start": 13558.84, + "end": 13559.9, + "probability": 0.4644 + }, + { + "start": 13561.22, + "end": 13563.14, + "probability": 0.8655 + }, + { + "start": 13564.58, + "end": 13565.0, + "probability": 0.4326 + }, + { + "start": 13566.16, + "end": 13567.34, + "probability": 0.8637 + }, + { + "start": 13570.24, + "end": 13571.12, + "probability": 0.9871 + }, + { + "start": 13571.88, + "end": 13572.7, + "probability": 0.9412 + }, + { + "start": 13573.4, + "end": 13574.14, + "probability": 0.8822 + }, + { + "start": 13575.58, + "end": 13579.5, + "probability": 0.8834 + }, + { + "start": 13580.46, + "end": 13581.36, + "probability": 0.9828 + }, + { + "start": 13581.92, + "end": 13582.72, + "probability": 0.5106 + }, + { + "start": 13584.5, + "end": 13585.4, + "probability": 0.5654 + }, + { + "start": 13587.52, + "end": 13588.54, + "probability": 0.59 + }, + { + "start": 13589.52, + "end": 13590.72, + "probability": 0.7581 + }, + { + "start": 13591.66, + "end": 13591.66, + "probability": 0.1584 + }, + { + "start": 13591.66, + "end": 13592.62, + "probability": 0.7187 + }, + { + "start": 13592.76, + "end": 13593.68, + "probability": 0.645 + }, + { + "start": 13594.22, + "end": 13594.78, + "probability": 0.5942 + }, + { + "start": 13595.86, + "end": 13598.0, + "probability": 0.5815 + }, + { + "start": 13598.22, + "end": 13599.34, + "probability": 0.5576 + }, + { + "start": 13601.68, + "end": 13602.44, + "probability": 0.5059 + }, + { + "start": 13604.44, + "end": 13606.08, + "probability": 0.6195 + }, + { + "start": 13606.64, + "end": 13607.6, + "probability": 0.7498 + }, + { + "start": 13608.76, + "end": 13610.1, + "probability": 0.2964 + }, + { + "start": 13611.12, + "end": 13612.0, + "probability": 0.9691 + }, + { + "start": 13612.62, + "end": 13613.66, + "probability": 0.4306 + }, + { + "start": 13614.38, + "end": 13618.06, + "probability": 0.8759 + }, + { + "start": 13618.82, + "end": 13619.98, + "probability": 0.5734 + }, + { + "start": 13621.48, + "end": 13623.34, + "probability": 0.7834 + }, + { + "start": 13625.62, + "end": 13626.32, + "probability": 0.8787 + }, + { + "start": 13627.42, + "end": 13629.44, + "probability": 0.9455 + }, + { + "start": 13631.2, + "end": 13633.84, + "probability": 0.6507 + }, + { + "start": 13634.46, + "end": 13636.68, + "probability": 0.9625 + }, + { + "start": 13641.24, + "end": 13641.96, + "probability": 0.6614 + }, + { + "start": 13643.0, + "end": 13645.08, + "probability": 0.9572 + }, + { + "start": 13645.72, + "end": 13646.78, + "probability": 0.861 + }, + { + "start": 13649.9, + "end": 13650.6, + "probability": 0.825 + }, + { + "start": 13651.24, + "end": 13652.18, + "probability": 0.656 + }, + { + "start": 13653.58, + "end": 13655.8, + "probability": 0.9165 + }, + { + "start": 13656.32, + "end": 13656.98, + "probability": 0.8443 + }, + { + "start": 13657.58, + "end": 13658.88, + "probability": 0.94 + }, + { + "start": 13660.04, + "end": 13662.52, + "probability": 0.5502 + }, + { + "start": 13663.68, + "end": 13664.18, + "probability": 0.9387 + }, + { + "start": 13665.42, + "end": 13666.34, + "probability": 0.767 + }, + { + "start": 13667.98, + "end": 13670.1, + "probability": 0.6884 + }, + { + "start": 13673.56, + "end": 13675.48, + "probability": 0.2802 + }, + { + "start": 13675.58, + "end": 13676.26, + "probability": 0.2879 + }, + { + "start": 13676.52, + "end": 13677.04, + "probability": 0.0134 + }, + { + "start": 13677.08, + "end": 13677.82, + "probability": 0.4744 + }, + { + "start": 13678.48, + "end": 13680.94, + "probability": 0.3459 + }, + { + "start": 13681.94, + "end": 13682.92, + "probability": 0.5258 + }, + { + "start": 13687.68, + "end": 13688.16, + "probability": 0.4154 + }, + { + "start": 13691.34, + "end": 13692.06, + "probability": 0.4378 + }, + { + "start": 13692.78, + "end": 13694.8, + "probability": 0.741 + }, + { + "start": 13695.74, + "end": 13696.64, + "probability": 0.5806 + }, + { + "start": 13697.16, + "end": 13697.92, + "probability": 0.8901 + }, + { + "start": 13699.18, + "end": 13700.02, + "probability": 0.2606 + }, + { + "start": 13701.24, + "end": 13701.92, + "probability": 0.8932 + }, + { + "start": 13702.8, + "end": 13703.62, + "probability": 0.8422 + }, + { + "start": 13704.94, + "end": 13705.64, + "probability": 0.9858 + }, + { + "start": 13706.56, + "end": 13707.42, + "probability": 0.8 + }, + { + "start": 13710.74, + "end": 13711.14, + "probability": 0.5884 + }, + { + "start": 13712.26, + "end": 13713.08, + "probability": 0.3112 + }, + { + "start": 13713.94, + "end": 13714.4, + "probability": 0.5564 + }, + { + "start": 13729.42, + "end": 13731.42, + "probability": 0.6726 + }, + { + "start": 13732.34, + "end": 13732.72, + "probability": 0.5629 + }, + { + "start": 13733.82, + "end": 13735.06, + "probability": 0.8479 + }, + { + "start": 13736.02, + "end": 13736.82, + "probability": 0.9022 + }, + { + "start": 13737.38, + "end": 13738.18, + "probability": 0.716 + }, + { + "start": 13739.52, + "end": 13739.96, + "probability": 0.612 + }, + { + "start": 13740.56, + "end": 13741.26, + "probability": 0.8771 + }, + { + "start": 13742.76, + "end": 13745.06, + "probability": 0.9657 + }, + { + "start": 13745.06, + "end": 13745.9, + "probability": 0.1125 + }, + { + "start": 13745.9, + "end": 13745.96, + "probability": 0.1525 + }, + { + "start": 13747.04, + "end": 13747.74, + "probability": 0.4331 + }, + { + "start": 13747.9, + "end": 13747.9, + "probability": 0.8483 + }, + { + "start": 13748.76, + "end": 13748.92, + "probability": 0.0136 + }, + { + "start": 13749.52, + "end": 13751.24, + "probability": 0.6466 + }, + { + "start": 13752.32, + "end": 13753.6, + "probability": 0.538 + }, + { + "start": 13754.44, + "end": 13757.34, + "probability": 0.7024 + }, + { + "start": 13761.16, + "end": 13761.52, + "probability": 0.5928 + }, + { + "start": 13764.5, + "end": 13765.4, + "probability": 0.5508 + }, + { + "start": 13767.54, + "end": 13768.14, + "probability": 0.7556 + }, + { + "start": 13770.02, + "end": 13770.48, + "probability": 0.9486 + }, + { + "start": 13771.32, + "end": 13772.2, + "probability": 0.8884 + }, + { + "start": 13773.42, + "end": 13773.88, + "probability": 0.9812 + }, + { + "start": 13774.88, + "end": 13775.58, + "probability": 0.5733 + }, + { + "start": 13777.64, + "end": 13779.86, + "probability": 0.8452 + }, + { + "start": 13781.82, + "end": 13783.56, + "probability": 0.7193 + }, + { + "start": 13785.48, + "end": 13786.48, + "probability": 0.6232 + }, + { + "start": 13788.0, + "end": 13788.7, + "probability": 0.9453 + }, + { + "start": 13789.34, + "end": 13790.84, + "probability": 0.8746 + }, + { + "start": 13793.34, + "end": 13794.82, + "probability": 0.6841 + }, + { + "start": 13796.2, + "end": 13797.46, + "probability": 0.6899 + }, + { + "start": 13799.15, + "end": 13801.0, + "probability": 0.9406 + }, + { + "start": 13803.76, + "end": 13806.46, + "probability": 0.8079 + }, + { + "start": 13806.48, + "end": 13812.58, + "probability": 0.0258 + }, + { + "start": 13813.0, + "end": 13813.22, + "probability": 0.0697 + }, + { + "start": 13826.5, + "end": 13828.26, + "probability": 0.9867 + }, + { + "start": 13829.8, + "end": 13830.9, + "probability": 0.5 + }, + { + "start": 13831.46, + "end": 13833.62, + "probability": 0.8633 + }, + { + "start": 13834.82, + "end": 13836.44, + "probability": 0.8363 + }, + { + "start": 13837.02, + "end": 13837.84, + "probability": 0.6807 + }, + { + "start": 13838.9, + "end": 13843.1, + "probability": 0.0606 + }, + { + "start": 13854.2, + "end": 13854.54, + "probability": 0.1419 + }, + { + "start": 13856.88, + "end": 13857.34, + "probability": 0.731 + }, + { + "start": 13858.54, + "end": 13859.66, + "probability": 0.6985 + }, + { + "start": 13864.34, + "end": 13865.16, + "probability": 0.8394 + }, + { + "start": 13866.0, + "end": 13867.62, + "probability": 0.6771 + }, + { + "start": 13871.82, + "end": 13872.38, + "probability": 0.4441 + }, + { + "start": 13884.5, + "end": 13885.48, + "probability": 0.3848 + }, + { + "start": 13887.16, + "end": 13888.32, + "probability": 0.6392 + }, + { + "start": 13889.1, + "end": 13889.82, + "probability": 0.4576 + }, + { + "start": 13891.56, + "end": 13892.32, + "probability": 0.9583 + }, + { + "start": 13893.48, + "end": 13894.54, + "probability": 0.5486 + }, + { + "start": 13895.4, + "end": 13895.86, + "probability": 0.6465 + }, + { + "start": 13898.02, + "end": 13899.8, + "probability": 0.7787 + }, + { + "start": 13901.27, + "end": 13901.6, + "probability": 0.4275 + }, + { + "start": 13910.12, + "end": 13911.5, + "probability": 0.3114 + }, + { + "start": 13915.52, + "end": 13916.62, + "probability": 0.6616 + }, + { + "start": 13918.12, + "end": 13918.84, + "probability": 0.9018 + }, + { + "start": 13919.48, + "end": 13920.46, + "probability": 0.6628 + }, + { + "start": 13926.68, + "end": 13928.28, + "probability": 0.3416 + }, + { + "start": 13929.94, + "end": 13933.24, + "probability": 0.3585 + }, + { + "start": 13942.34, + "end": 13943.46, + "probability": 0.3432 + }, + { + "start": 13944.54, + "end": 13944.82, + "probability": 0.5061 + }, + { + "start": 13947.34, + "end": 13947.9, + "probability": 0.5441 + }, + { + "start": 13952.35, + "end": 13955.28, + "probability": 0.7837 + }, + { + "start": 13957.38, + "end": 13962.34, + "probability": 0.0169 + }, + { + "start": 13962.34, + "end": 13963.0, + "probability": 0.1111 + }, + { + "start": 13963.0, + "end": 13963.0, + "probability": 0.4245 + }, + { + "start": 13974.84, + "end": 13975.96, + "probability": 0.8738 + }, + { + "start": 13976.92, + "end": 13977.48, + "probability": 0.6278 + }, + { + "start": 13978.82, + "end": 13979.16, + "probability": 0.8157 + }, + { + "start": 13981.56, + "end": 13982.44, + "probability": 0.9429 + }, + { + "start": 13984.04, + "end": 13985.46, + "probability": 0.3091 + }, + { + "start": 13987.28, + "end": 13990.1, + "probability": 0.3656 + }, + { + "start": 13990.34, + "end": 13990.98, + "probability": 0.0102 + }, + { + "start": 13991.24, + "end": 13992.34, + "probability": 0.1915 + }, + { + "start": 13992.38, + "end": 13994.54, + "probability": 0.4033 + }, + { + "start": 13997.96, + "end": 13998.6, + "probability": 0.1285 + }, + { + "start": 14001.1, + "end": 14002.16, + "probability": 0.0244 + }, + { + "start": 14002.44, + "end": 14002.88, + "probability": 0.1276 + }, + { + "start": 14003.5, + "end": 14004.14, + "probability": 0.0541 + }, + { + "start": 14005.8, + "end": 14007.54, + "probability": 0.2132 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.0, + "end": 14371.0, + "probability": 0.0 + }, + { + "start": 14371.14, + "end": 14371.56, + "probability": 0.6955 + }, + { + "start": 14372.66, + "end": 14373.62, + "probability": 0.6784 + }, + { + "start": 14375.72, + "end": 14376.68, + "probability": 0.5446 + }, + { + "start": 14378.4, + "end": 14379.4, + "probability": 0.5528 + }, + { + "start": 14380.26, + "end": 14381.52, + "probability": 0.9033 + }, + { + "start": 14382.68, + "end": 14383.62, + "probability": 0.9684 + }, + { + "start": 14385.62, + "end": 14387.72, + "probability": 0.9777 + }, + { + "start": 14389.54, + "end": 14392.24, + "probability": 0.9839 + }, + { + "start": 14393.26, + "end": 14394.78, + "probability": 0.9868 + }, + { + "start": 14395.44, + "end": 14396.56, + "probability": 0.8371 + }, + { + "start": 14397.56, + "end": 14399.14, + "probability": 0.9636 + }, + { + "start": 14399.98, + "end": 14401.14, + "probability": 0.8387 + }, + { + "start": 14403.58, + "end": 14404.4, + "probability": 0.4116 + }, + { + "start": 14421.48, + "end": 14423.4, + "probability": 0.3814 + }, + { + "start": 14426.54, + "end": 14427.52, + "probability": 0.5123 + }, + { + "start": 14429.22, + "end": 14430.26, + "probability": 0.391 + }, + { + "start": 14432.24, + "end": 14434.24, + "probability": 0.7918 + }, + { + "start": 14437.06, + "end": 14438.16, + "probability": 0.3782 + }, + { + "start": 14438.82, + "end": 14439.32, + "probability": 0.5922 + }, + { + "start": 14441.54, + "end": 14442.52, + "probability": 0.9761 + }, + { + "start": 14444.64, + "end": 14446.1, + "probability": 0.9294 + }, + { + "start": 14448.0, + "end": 14451.18, + "probability": 0.9739 + }, + { + "start": 14452.86, + "end": 14453.26, + "probability": 0.6194 + }, + { + "start": 14455.84, + "end": 14456.7, + "probability": 0.5311 + }, + { + "start": 14457.99, + "end": 14460.64, + "probability": 0.8245 + }, + { + "start": 14462.39, + "end": 14465.32, + "probability": 0.6653 + }, + { + "start": 14468.19, + "end": 14470.66, + "probability": 0.516 + }, + { + "start": 14472.82, + "end": 14474.74, + "probability": 0.9697 + }, + { + "start": 14477.96, + "end": 14478.84, + "probability": 0.6572 + }, + { + "start": 14487.54, + "end": 14489.96, + "probability": 0.6476 + }, + { + "start": 14490.62, + "end": 14491.3, + "probability": 0.8381 + }, + { + "start": 14492.16, + "end": 14493.72, + "probability": 0.9053 + }, + { + "start": 14494.62, + "end": 14495.44, + "probability": 0.8059 + }, + { + "start": 14497.18, + "end": 14497.92, + "probability": 0.9362 + }, + { + "start": 14499.1, + "end": 14502.38, + "probability": 0.8223 + }, + { + "start": 14503.08, + "end": 14503.6, + "probability": 0.9453 + }, + { + "start": 14505.68, + "end": 14506.5, + "probability": 0.9286 + }, + { + "start": 14507.88, + "end": 14509.92, + "probability": 0.9731 + }, + { + "start": 14510.76, + "end": 14511.7, + "probability": 0.9844 + }, + { + "start": 14513.18, + "end": 14513.86, + "probability": 0.9949 + }, + { + "start": 14515.08, + "end": 14515.86, + "probability": 0.7651 + }, + { + "start": 14517.32, + "end": 14519.9, + "probability": 0.8456 + }, + { + "start": 14520.64, + "end": 14520.9, + "probability": 0.5477 + }, + { + "start": 14524.14, + "end": 14526.4, + "probability": 0.5593 + }, + { + "start": 14526.96, + "end": 14527.88, + "probability": 0.7361 + }, + { + "start": 14528.96, + "end": 14529.74, + "probability": 0.7843 + }, + { + "start": 14530.34, + "end": 14531.08, + "probability": 0.8585 + }, + { + "start": 14532.52, + "end": 14533.82, + "probability": 0.9163 + }, + { + "start": 14534.86, + "end": 14537.46, + "probability": 0.9155 + }, + { + "start": 14539.56, + "end": 14539.66, + "probability": 0.0091 + }, + { + "start": 14540.5, + "end": 14546.72, + "probability": 0.5499 + }, + { + "start": 14549.64, + "end": 14550.16, + "probability": 0.0428 + }, + { + "start": 14551.04, + "end": 14553.18, + "probability": 0.3099 + }, + { + "start": 14553.18, + "end": 14554.3, + "probability": 0.8718 + }, + { + "start": 14589.27, + "end": 14589.31, + "probability": 0.0018 + }, + { + "start": 14597.29, + "end": 14598.03, + "probability": 0.0021 + }, + { + "start": 14603.41, + "end": 14604.89, + "probability": 0.1316 + }, + { + "start": 14640.77, + "end": 14644.81, + "probability": 0.6081 + }, + { + "start": 14644.95, + "end": 14648.45, + "probability": 0.7793 + }, + { + "start": 14648.77, + "end": 14649.91, + "probability": 0.7452 + }, + { + "start": 14649.95, + "end": 14651.35, + "probability": 0.8057 + }, + { + "start": 14652.01, + "end": 14655.39, + "probability": 0.9914 + }, + { + "start": 14656.33, + "end": 14657.71, + "probability": 0.9983 + }, + { + "start": 14661.65, + "end": 14665.19, + "probability": 0.6361 + }, + { + "start": 14665.83, + "end": 14667.31, + "probability": 0.7714 + }, + { + "start": 14667.35, + "end": 14673.49, + "probability": 0.7715 + }, + { + "start": 14673.89, + "end": 14676.18, + "probability": 0.6915 + }, + { + "start": 14678.79, + "end": 14680.73, + "probability": 0.7885 + }, + { + "start": 14690.67, + "end": 14694.49, + "probability": 0.8199 + }, + { + "start": 14694.49, + "end": 14696.28, + "probability": 0.7742 + }, + { + "start": 14696.71, + "end": 14697.39, + "probability": 0.5079 + }, + { + "start": 14697.45, + "end": 14698.13, + "probability": 0.5418 + }, + { + "start": 14728.17, + "end": 14728.97, + "probability": 0.3368 + }, + { + "start": 14729.55, + "end": 14731.87, + "probability": 0.2408 + }, + { + "start": 14732.35, + "end": 14733.43, + "probability": 0.7859 + }, + { + "start": 14733.81, + "end": 14735.17, + "probability": 0.0319 + }, + { + "start": 14735.45, + "end": 14737.05, + "probability": 0.2329 + }, + { + "start": 14755.93, + "end": 14756.19, + "probability": 0.0377 + }, + { + "start": 14756.19, + "end": 14759.43, + "probability": 0.3873 + }, + { + "start": 14760.07, + "end": 14763.79, + "probability": 0.3022 + }, + { + "start": 14770.41, + "end": 14775.03, + "probability": 0.5235 + }, + { + "start": 14775.45, + "end": 14777.72, + "probability": 0.5817 + }, + { + "start": 14778.25, + "end": 14781.69, + "probability": 0.5524 + }, + { + "start": 14782.53, + "end": 14785.53, + "probability": 0.9214 + }, + { + "start": 14786.05, + "end": 14786.05, + "probability": 0.0066 + }, + { + "start": 14786.05, + "end": 14787.03, + "probability": 0.666 + }, + { + "start": 14787.07, + "end": 14788.43, + "probability": 0.5591 + }, + { + "start": 14789.99, + "end": 14791.59, + "probability": 0.4635 + }, + { + "start": 14791.65, + "end": 14792.25, + "probability": 0.4226 + }, + { + "start": 14811.87, + "end": 14813.31, + "probability": 0.1684 + }, + { + "start": 14813.31, + "end": 14817.05, + "probability": 0.1221 + }, + { + "start": 14817.05, + "end": 14817.25, + "probability": 0.2116 + }, + { + "start": 14817.53, + "end": 14817.63, + "probability": 0.0464 + }, + { + "start": 14817.63, + "end": 14819.07, + "probability": 0.7105 + }, + { + "start": 14823.21, + "end": 14823.41, + "probability": 0.1814 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.0, + "end": 14848.0, + "probability": 0.0 + }, + { + "start": 14848.02, + "end": 14849.28, + "probability": 0.7854 + }, + { + "start": 14849.46, + "end": 14851.62, + "probability": 0.7316 + }, + { + "start": 14852.72, + "end": 14856.14, + "probability": 0.9034 + }, + { + "start": 14857.13, + "end": 14859.02, + "probability": 0.9839 + }, + { + "start": 14859.16, + "end": 14861.0, + "probability": 0.939 + }, + { + "start": 14861.7, + "end": 14862.7, + "probability": 0.8004 + }, + { + "start": 14864.12, + "end": 14865.2, + "probability": 0.9454 + }, + { + "start": 14865.54, + "end": 14872.36, + "probability": 0.9884 + }, + { + "start": 14873.44, + "end": 14873.84, + "probability": 0.9694 + }, + { + "start": 14874.36, + "end": 14878.94, + "probability": 0.9872 + }, + { + "start": 14879.64, + "end": 14883.0, + "probability": 0.9994 + }, + { + "start": 14883.0, + "end": 14885.02, + "probability": 0.9998 + }, + { + "start": 14885.64, + "end": 14886.84, + "probability": 0.6411 + }, + { + "start": 14888.18, + "end": 14891.6, + "probability": 0.9833 + }, + { + "start": 14892.1, + "end": 14895.76, + "probability": 0.9827 + }, + { + "start": 14896.1, + "end": 14897.32, + "probability": 0.9084 + }, + { + "start": 14897.8, + "end": 14901.14, + "probability": 0.9966 + }, + { + "start": 14901.8, + "end": 14902.76, + "probability": 0.9897 + }, + { + "start": 14903.38, + "end": 14905.46, + "probability": 0.869 + }, + { + "start": 14906.04, + "end": 14909.4, + "probability": 0.9731 + }, + { + "start": 14910.4, + "end": 14914.74, + "probability": 0.9992 + }, + { + "start": 14915.2, + "end": 14915.62, + "probability": 0.9288 + }, + { + "start": 14916.4, + "end": 14918.08, + "probability": 0.8808 + }, + { + "start": 14918.66, + "end": 14919.84, + "probability": 0.9151 + }, + { + "start": 14919.9, + "end": 14921.34, + "probability": 0.9263 + }, + { + "start": 14921.8, + "end": 14923.22, + "probability": 0.9231 + }, + { + "start": 14923.26, + "end": 14923.96, + "probability": 0.9677 + }, + { + "start": 14924.06, + "end": 14925.72, + "probability": 0.9958 + }, + { + "start": 14927.74, + "end": 14931.46, + "probability": 0.9714 + }, + { + "start": 14932.44, + "end": 14935.46, + "probability": 0.6647 + }, + { + "start": 14936.1, + "end": 14936.9, + "probability": 0.793 + }, + { + "start": 14937.22, + "end": 14938.92, + "probability": 0.9876 + }, + { + "start": 14939.38, + "end": 14940.14, + "probability": 0.5243 + }, + { + "start": 14940.2, + "end": 14940.69, + "probability": 0.6557 + }, + { + "start": 14940.96, + "end": 14941.7, + "probability": 0.9453 + }, + { + "start": 14941.9, + "end": 14943.58, + "probability": 0.8661 + }, + { + "start": 14944.22, + "end": 14944.98, + "probability": 0.7428 + }, + { + "start": 14945.08, + "end": 14947.8, + "probability": 0.9535 + }, + { + "start": 14947.94, + "end": 14951.66, + "probability": 0.96 + }, + { + "start": 14952.38, + "end": 14953.38, + "probability": 0.978 + }, + { + "start": 14953.62, + "end": 14954.24, + "probability": 0.7375 + }, + { + "start": 14954.66, + "end": 14956.0, + "probability": 0.9839 + }, + { + "start": 14956.24, + "end": 14957.36, + "probability": 0.7683 + }, + { + "start": 14957.5, + "end": 14958.54, + "probability": 0.8188 + }, + { + "start": 14959.12, + "end": 14961.03, + "probability": 0.9292 + }, + { + "start": 14961.26, + "end": 14967.78, + "probability": 0.9878 + }, + { + "start": 14968.5, + "end": 14972.08, + "probability": 0.9836 + }, + { + "start": 14972.08, + "end": 14974.62, + "probability": 0.9985 + }, + { + "start": 14975.24, + "end": 14977.54, + "probability": 0.9985 + }, + { + "start": 14978.28, + "end": 14980.9, + "probability": 0.9922 + }, + { + "start": 14982.72, + "end": 14983.9, + "probability": 0.7666 + }, + { + "start": 14984.84, + "end": 14985.88, + "probability": 0.6052 + }, + { + "start": 14985.94, + "end": 14987.94, + "probability": 0.5164 + }, + { + "start": 14987.96, + "end": 14988.38, + "probability": 0.9521 + }, + { + "start": 14988.46, + "end": 14988.64, + "probability": 0.3294 + }, + { + "start": 14988.72, + "end": 14989.36, + "probability": 0.9649 + }, + { + "start": 14989.36, + "end": 14989.68, + "probability": 0.961 + }, + { + "start": 14990.22, + "end": 14990.42, + "probability": 0.5176 + }, + { + "start": 14990.46, + "end": 14990.98, + "probability": 0.3549 + }, + { + "start": 14991.8, + "end": 14992.24, + "probability": 0.6006 + }, + { + "start": 14992.44, + "end": 14993.2, + "probability": 0.5013 + }, + { + "start": 14993.24, + "end": 14994.46, + "probability": 0.925 + }, + { + "start": 14995.2, + "end": 14996.78, + "probability": 0.9366 + }, + { + "start": 14996.94, + "end": 15000.88, + "probability": 0.938 + }, + { + "start": 15001.04, + "end": 15003.48, + "probability": 0.9395 + }, + { + "start": 15004.44, + "end": 15008.0, + "probability": 0.9954 + }, + { + "start": 15008.5, + "end": 15009.86, + "probability": 0.8522 + }, + { + "start": 15010.66, + "end": 15012.58, + "probability": 0.9648 + }, + { + "start": 15012.78, + "end": 15013.32, + "probability": 0.8804 + }, + { + "start": 15013.7, + "end": 15014.1, + "probability": 0.7253 + }, + { + "start": 15015.22, + "end": 15018.1, + "probability": 0.9772 + }, + { + "start": 15019.02, + "end": 15023.44, + "probability": 0.9752 + }, + { + "start": 15023.88, + "end": 15024.02, + "probability": 0.3594 + }, + { + "start": 15024.72, + "end": 15025.54, + "probability": 0.8415 + }, + { + "start": 15026.98, + "end": 15028.4, + "probability": 0.9814 + }, + { + "start": 15029.02, + "end": 15029.98, + "probability": 0.9731 + }, + { + "start": 15030.16, + "end": 15031.63, + "probability": 0.9253 + }, + { + "start": 15031.9, + "end": 15034.46, + "probability": 0.8999 + }, + { + "start": 15034.82, + "end": 15035.92, + "probability": 0.7989 + }, + { + "start": 15036.0, + "end": 15037.08, + "probability": 0.9262 + }, + { + "start": 15037.3, + "end": 15037.72, + "probability": 0.6774 + }, + { + "start": 15038.3, + "end": 15040.5, + "probability": 0.9897 + }, + { + "start": 15040.62, + "end": 15041.32, + "probability": 0.584 + }, + { + "start": 15042.1, + "end": 15043.44, + "probability": 0.8925 + }, + { + "start": 15043.9, + "end": 15044.72, + "probability": 0.835 + }, + { + "start": 15045.88, + "end": 15047.86, + "probability": 0.9202 + }, + { + "start": 15048.54, + "end": 15051.14, + "probability": 0.9717 + }, + { + "start": 15052.42, + "end": 15053.5, + "probability": 0.684 + }, + { + "start": 15054.24, + "end": 15056.2, + "probability": 0.9222 + }, + { + "start": 15056.96, + "end": 15060.48, + "probability": 0.9752 + }, + { + "start": 15061.4, + "end": 15065.2, + "probability": 0.9804 + }, + { + "start": 15065.92, + "end": 15067.32, + "probability": 0.9786 + }, + { + "start": 15067.96, + "end": 15073.16, + "probability": 0.9899 + }, + { + "start": 15073.86, + "end": 15075.98, + "probability": 0.9388 + }, + { + "start": 15076.46, + "end": 15078.52, + "probability": 0.8525 + }, + { + "start": 15079.0, + "end": 15079.86, + "probability": 0.8662 + }, + { + "start": 15080.5, + "end": 15082.22, + "probability": 0.9953 + }, + { + "start": 15082.96, + "end": 15084.98, + "probability": 0.9994 + }, + { + "start": 15085.38, + "end": 15087.4, + "probability": 0.9861 + }, + { + "start": 15087.84, + "end": 15089.01, + "probability": 0.9822 + }, + { + "start": 15089.56, + "end": 15092.12, + "probability": 0.9983 + }, + { + "start": 15092.58, + "end": 15093.88, + "probability": 0.9905 + }, + { + "start": 15094.3, + "end": 15096.14, + "probability": 0.9979 + }, + { + "start": 15096.68, + "end": 15097.28, + "probability": 0.7308 + }, + { + "start": 15097.46, + "end": 15098.48, + "probability": 0.9294 + }, + { + "start": 15098.88, + "end": 15099.74, + "probability": 0.8118 + }, + { + "start": 15099.8, + "end": 15101.44, + "probability": 0.9851 + }, + { + "start": 15101.56, + "end": 15102.64, + "probability": 0.9822 + }, + { + "start": 15104.6, + "end": 15105.4, + "probability": 0.6577 + }, + { + "start": 15106.4, + "end": 15107.34, + "probability": 0.9485 + }, + { + "start": 15107.46, + "end": 15108.26, + "probability": 0.9756 + }, + { + "start": 15108.42, + "end": 15109.58, + "probability": 0.9478 + }, + { + "start": 15111.92, + "end": 15113.26, + "probability": 0.9876 + }, + { + "start": 15114.58, + "end": 15118.24, + "probability": 0.9926 + }, + { + "start": 15119.44, + "end": 15122.9, + "probability": 0.9729 + }, + { + "start": 15123.78, + "end": 15127.26, + "probability": 0.6566 + }, + { + "start": 15128.26, + "end": 15131.52, + "probability": 0.969 + }, + { + "start": 15131.98, + "end": 15133.28, + "probability": 0.9951 + }, + { + "start": 15133.28, + "end": 15135.22, + "probability": 0.9593 + }, + { + "start": 15135.3, + "end": 15135.74, + "probability": 0.8229 + }, + { + "start": 15136.68, + "end": 15138.56, + "probability": 0.9949 + }, + { + "start": 15138.61, + "end": 15142.22, + "probability": 0.964 + }, + { + "start": 15143.1, + "end": 15144.0, + "probability": 0.7873 + }, + { + "start": 15144.58, + "end": 15147.56, + "probability": 0.9795 + }, + { + "start": 15148.12, + "end": 15150.62, + "probability": 0.8022 + }, + { + "start": 15150.76, + "end": 15154.16, + "probability": 0.7408 + }, + { + "start": 15154.7, + "end": 15157.06, + "probability": 0.8765 + }, + { + "start": 15157.48, + "end": 15160.42, + "probability": 0.9841 + }, + { + "start": 15161.2, + "end": 15165.84, + "probability": 0.9771 + }, + { + "start": 15165.94, + "end": 15166.4, + "probability": 0.5307 + }, + { + "start": 15167.78, + "end": 15169.4, + "probability": 0.7775 + }, + { + "start": 15169.98, + "end": 15175.08, + "probability": 0.9685 + }, + { + "start": 15175.88, + "end": 15182.16, + "probability": 0.911 + }, + { + "start": 15183.2, + "end": 15184.36, + "probability": 0.9653 + }, + { + "start": 15184.64, + "end": 15189.5, + "probability": 0.9928 + }, + { + "start": 15190.54, + "end": 15191.26, + "probability": 0.6913 + }, + { + "start": 15192.18, + "end": 15192.84, + "probability": 0.7792 + }, + { + "start": 15192.98, + "end": 15193.56, + "probability": 0.807 + }, + { + "start": 15193.78, + "end": 15194.22, + "probability": 0.6448 + }, + { + "start": 15194.32, + "end": 15197.4, + "probability": 0.9729 + }, + { + "start": 15197.84, + "end": 15202.54, + "probability": 0.9857 + }, + { + "start": 15203.72, + "end": 15205.2, + "probability": 0.6896 + }, + { + "start": 15205.96, + "end": 15210.22, + "probability": 0.9773 + }, + { + "start": 15210.28, + "end": 15210.64, + "probability": 0.8669 + }, + { + "start": 15210.74, + "end": 15211.2, + "probability": 0.8195 + }, + { + "start": 15211.32, + "end": 15212.84, + "probability": 0.9899 + }, + { + "start": 15213.58, + "end": 15214.92, + "probability": 0.9838 + }, + { + "start": 15215.76, + "end": 15217.36, + "probability": 0.9718 + }, + { + "start": 15218.02, + "end": 15219.58, + "probability": 0.8884 + }, + { + "start": 15219.62, + "end": 15223.1, + "probability": 0.9952 + }, + { + "start": 15223.86, + "end": 15224.3, + "probability": 0.8517 + }, + { + "start": 15224.82, + "end": 15226.98, + "probability": 0.7553 + }, + { + "start": 15228.4, + "end": 15230.78, + "probability": 0.9954 + }, + { + "start": 15231.92, + "end": 15233.18, + "probability": 0.6198 + }, + { + "start": 15233.32, + "end": 15236.0, + "probability": 0.9008 + }, + { + "start": 15236.0, + "end": 15239.02, + "probability": 0.9962 + }, + { + "start": 15239.62, + "end": 15243.42, + "probability": 0.9873 + }, + { + "start": 15244.12, + "end": 15244.88, + "probability": 0.9298 + }, + { + "start": 15246.1, + "end": 15247.44, + "probability": 0.9997 + }, + { + "start": 15247.52, + "end": 15248.5, + "probability": 0.9641 + }, + { + "start": 15248.78, + "end": 15249.24, + "probability": 0.3826 + }, + { + "start": 15249.82, + "end": 15253.26, + "probability": 0.8027 + }, + { + "start": 15254.3, + "end": 15258.02, + "probability": 0.9839 + }, + { + "start": 15259.08, + "end": 15261.54, + "probability": 0.9897 + }, + { + "start": 15262.1, + "end": 15264.0, + "probability": 0.9996 + }, + { + "start": 15264.16, + "end": 15265.7, + "probability": 0.9897 + }, + { + "start": 15266.26, + "end": 15267.04, + "probability": 0.7944 + }, + { + "start": 15267.58, + "end": 15271.3, + "probability": 0.9952 + }, + { + "start": 15271.96, + "end": 15275.46, + "probability": 0.9843 + }, + { + "start": 15276.1, + "end": 15276.86, + "probability": 0.6689 + }, + { + "start": 15277.84, + "end": 15279.12, + "probability": 0.631 + }, + { + "start": 15279.58, + "end": 15281.04, + "probability": 0.837 + }, + { + "start": 15281.56, + "end": 15282.16, + "probability": 0.4874 + }, + { + "start": 15282.24, + "end": 15283.6, + "probability": 0.953 + }, + { + "start": 15283.66, + "end": 15284.69, + "probability": 0.9883 + }, + { + "start": 15284.82, + "end": 15285.96, + "probability": 0.9868 + }, + { + "start": 15286.98, + "end": 15287.84, + "probability": 0.6541 + }, + { + "start": 15288.72, + "end": 15289.6, + "probability": 0.892 + }, + { + "start": 15289.7, + "end": 15291.59, + "probability": 0.9922 + }, + { + "start": 15292.22, + "end": 15292.68, + "probability": 0.6363 + }, + { + "start": 15292.9, + "end": 15294.2, + "probability": 0.8893 + }, + { + "start": 15294.34, + "end": 15295.1, + "probability": 0.9175 + }, + { + "start": 15295.26, + "end": 15296.12, + "probability": 0.8466 + }, + { + "start": 15296.6, + "end": 15301.34, + "probability": 0.9917 + }, + { + "start": 15302.04, + "end": 15302.56, + "probability": 0.5035 + }, + { + "start": 15303.44, + "end": 15304.5, + "probability": 0.6115 + }, + { + "start": 15305.06, + "end": 15305.06, + "probability": 0.7917 + }, + { + "start": 15305.06, + "end": 15306.22, + "probability": 0.9447 + }, + { + "start": 15307.22, + "end": 15307.64, + "probability": 0.9381 + }, + { + "start": 15307.78, + "end": 15309.61, + "probability": 0.9756 + }, + { + "start": 15310.16, + "end": 15311.32, + "probability": 0.9856 + }, + { + "start": 15311.4, + "end": 15312.84, + "probability": 0.9592 + }, + { + "start": 15313.36, + "end": 15313.84, + "probability": 0.4833 + }, + { + "start": 15313.92, + "end": 15316.58, + "probability": 0.9824 + }, + { + "start": 15317.02, + "end": 15318.8, + "probability": 0.8777 + }, + { + "start": 15318.8, + "end": 15319.42, + "probability": 0.7274 + }, + { + "start": 15319.7, + "end": 15320.9, + "probability": 0.9645 + }, + { + "start": 15321.16, + "end": 15324.56, + "probability": 0.9937 + }, + { + "start": 15324.56, + "end": 15327.5, + "probability": 0.9949 + }, + { + "start": 15327.6, + "end": 15327.82, + "probability": 0.9429 + }, + { + "start": 15328.46, + "end": 15329.88, + "probability": 0.4913 + }, + { + "start": 15330.58, + "end": 15331.74, + "probability": 0.6394 + }, + { + "start": 15331.84, + "end": 15333.82, + "probability": 0.7626 + }, + { + "start": 15334.62, + "end": 15338.44, + "probability": 0.8726 + }, + { + "start": 15338.96, + "end": 15341.86, + "probability": 0.8861 + }, + { + "start": 15342.1, + "end": 15343.1, + "probability": 0.8411 + }, + { + "start": 15350.66, + "end": 15352.74, + "probability": 0.136 + }, + { + "start": 15364.68, + "end": 15368.88, + "probability": 0.99 + }, + { + "start": 15370.33, + "end": 15371.24, + "probability": 0.8634 + }, + { + "start": 15372.02, + "end": 15373.4, + "probability": 0.755 + }, + { + "start": 15374.46, + "end": 15378.54, + "probability": 0.9785 + }, + { + "start": 15379.22, + "end": 15381.24, + "probability": 0.9563 + }, + { + "start": 15382.34, + "end": 15382.4, + "probability": 0.178 + }, + { + "start": 15383.36, + "end": 15389.7, + "probability": 0.9829 + }, + { + "start": 15393.66, + "end": 15397.3, + "probability": 0.5675 + }, + { + "start": 15397.94, + "end": 15400.4, + "probability": 0.8878 + }, + { + "start": 15400.7, + "end": 15401.24, + "probability": 0.768 + }, + { + "start": 15402.48, + "end": 15402.48, + "probability": 0.0009 + }, + { + "start": 15409.04, + "end": 15410.16, + "probability": 0.0837 + }, + { + "start": 15411.92, + "end": 15412.86, + "probability": 0.7565 + }, + { + "start": 15412.98, + "end": 15413.63, + "probability": 0.9177 + }, + { + "start": 15413.86, + "end": 15414.23, + "probability": 0.5137 + }, + { + "start": 15414.68, + "end": 15419.62, + "probability": 0.0249 + }, + { + "start": 15419.62, + "end": 15423.52, + "probability": 0.7477 + }, + { + "start": 15423.58, + "end": 15425.8, + "probability": 0.5178 + }, + { + "start": 15426.18, + "end": 15427.57, + "probability": 0.1017 + }, + { + "start": 15428.72, + "end": 15431.88, + "probability": 0.211 + }, + { + "start": 15435.3, + "end": 15435.46, + "probability": 0.2497 + }, + { + "start": 15435.46, + "end": 15435.94, + "probability": 0.0679 + }, + { + "start": 15436.8, + "end": 15444.68, + "probability": 0.1482 + }, + { + "start": 15445.16, + "end": 15450.1, + "probability": 0.163 + }, + { + "start": 15450.58, + "end": 15451.74, + "probability": 0.1223 + }, + { + "start": 15451.74, + "end": 15452.55, + "probability": 0.2382 + }, + { + "start": 15453.42, + "end": 15454.48, + "probability": 0.0285 + }, + { + "start": 15454.8, + "end": 15455.68, + "probability": 0.0005 + }, + { + "start": 15458.32, + "end": 15462.64, + "probability": 0.1981 + }, + { + "start": 15462.86, + "end": 15465.46, + "probability": 0.045 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.0, + "end": 15493.0, + "probability": 0.0 + }, + { + "start": 15493.08, + "end": 15493.34, + "probability": 0.1789 + }, + { + "start": 15493.34, + "end": 15493.64, + "probability": 0.0827 + }, + { + "start": 15493.64, + "end": 15494.88, + "probability": 0.8074 + }, + { + "start": 15495.4, + "end": 15496.94, + "probability": 0.9907 + }, + { + "start": 15497.64, + "end": 15500.22, + "probability": 0.5048 + }, + { + "start": 15500.62, + "end": 15504.12, + "probability": 0.9847 + }, + { + "start": 15504.9, + "end": 15505.52, + "probability": 0.1178 + }, + { + "start": 15505.94, + "end": 15506.84, + "probability": 0.5669 + }, + { + "start": 15509.04, + "end": 15512.84, + "probability": 0.8589 + }, + { + "start": 15513.44, + "end": 15513.64, + "probability": 0.0223 + }, + { + "start": 15514.24, + "end": 15517.3, + "probability": 0.1005 + }, + { + "start": 15517.4, + "end": 15517.4, + "probability": 0.2222 + }, + { + "start": 15517.4, + "end": 15519.31, + "probability": 0.1236 + }, + { + "start": 15519.56, + "end": 15520.26, + "probability": 0.0628 + }, + { + "start": 15523.32, + "end": 15525.54, + "probability": 0.1125 + }, + { + "start": 15526.14, + "end": 15530.94, + "probability": 0.1463 + }, + { + "start": 15530.94, + "end": 15530.94, + "probability": 0.0025 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.0, + "end": 15626.0, + "probability": 0.0 + }, + { + "start": 15626.68, + "end": 15627.94, + "probability": 0.0636 + }, + { + "start": 15627.94, + "end": 15630.08, + "probability": 0.8228 + }, + { + "start": 15630.76, + "end": 15634.66, + "probability": 0.3499 + }, + { + "start": 15635.22, + "end": 15638.04, + "probability": 0.7231 + }, + { + "start": 15638.24, + "end": 15638.92, + "probability": 0.9675 + }, + { + "start": 15640.65, + "end": 15641.56, + "probability": 0.5434 + }, + { + "start": 15642.14, + "end": 15643.0, + "probability": 0.4983 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.0, + "end": 15750.0, + "probability": 0.0 + }, + { + "start": 15750.72, + "end": 15750.96, + "probability": 0.0489 + }, + { + "start": 15750.96, + "end": 15750.96, + "probability": 0.0564 + }, + { + "start": 15750.96, + "end": 15750.96, + "probability": 0.3191 + }, + { + "start": 15750.96, + "end": 15751.28, + "probability": 0.1158 + }, + { + "start": 15751.52, + "end": 15753.35, + "probability": 0.896 + }, + { + "start": 15753.98, + "end": 15756.5, + "probability": 0.8294 + }, + { + "start": 15756.76, + "end": 15757.63, + "probability": 0.7072 + }, + { + "start": 15758.0, + "end": 15759.76, + "probability": 0.7725 + }, + { + "start": 15760.76, + "end": 15761.6, + "probability": 0.4074 + }, + { + "start": 15761.6, + "end": 15765.3, + "probability": 0.6777 + }, + { + "start": 15766.32, + "end": 15768.34, + "probability": 0.0158 + }, + { + "start": 15771.18, + "end": 15772.12, + "probability": 0.5532 + }, + { + "start": 15773.84, + "end": 15777.66, + "probability": 0.1029 + }, + { + "start": 15777.66, + "end": 15778.66, + "probability": 0.206 + }, + { + "start": 15778.76, + "end": 15780.79, + "probability": 0.1825 + }, + { + "start": 15781.72, + "end": 15787.32, + "probability": 0.6666 + }, + { + "start": 15788.58, + "end": 15790.6, + "probability": 0.9136 + }, + { + "start": 15791.66, + "end": 15794.78, + "probability": 0.9739 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15874.08, + "end": 15874.36, + "probability": 0.1222 + }, + { + "start": 15874.36, + "end": 15874.62, + "probability": 0.2253 + }, + { + "start": 15874.96, + "end": 15876.45, + "probability": 0.0558 + }, + { + "start": 15878.16, + "end": 15878.94, + "probability": 0.1497 + }, + { + "start": 15878.94, + "end": 15879.62, + "probability": 0.2736 + }, + { + "start": 15879.72, + "end": 15880.5, + "probability": 0.3159 + }, + { + "start": 15880.64, + "end": 15880.88, + "probability": 0.5344 + }, + { + "start": 15880.96, + "end": 15881.2, + "probability": 0.1837 + }, + { + "start": 15882.58, + "end": 15882.72, + "probability": 0.2594 + }, + { + "start": 15882.72, + "end": 15884.28, + "probability": 0.7352 + }, + { + "start": 15884.38, + "end": 15887.0, + "probability": 0.4729 + }, + { + "start": 15887.34, + "end": 15890.22, + "probability": 0.9417 + }, + { + "start": 15891.56, + "end": 15894.5, + "probability": 0.7192 + }, + { + "start": 15898.94, + "end": 15899.62, + "probability": 0.4921 + }, + { + "start": 15903.26, + "end": 15904.36, + "probability": 0.2267 + }, + { + "start": 15904.52, + "end": 15905.12, + "probability": 0.2498 + }, + { + "start": 15905.12, + "end": 15905.62, + "probability": 0.1118 + }, + { + "start": 15907.98, + "end": 15908.16, + "probability": 0.3367 + }, + { + "start": 15908.8, + "end": 15910.48, + "probability": 0.9316 + }, + { + "start": 15910.86, + "end": 15913.38, + "probability": 0.7969 + }, + { + "start": 15913.76, + "end": 15914.72, + "probability": 0.531 + }, + { + "start": 15915.88, + "end": 15917.5, + "probability": 0.3844 + }, + { + "start": 15917.5, + "end": 15918.18, + "probability": 0.2664 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.0, + "end": 16013.0, + "probability": 0.0 + }, + { + "start": 16013.2, + "end": 16016.34, + "probability": 0.8078 + }, + { + "start": 16018.72, + "end": 16023.3, + "probability": 0.9417 + }, + { + "start": 16025.14, + "end": 16027.48, + "probability": 0.9578 + }, + { + "start": 16027.74, + "end": 16029.96, + "probability": 0.7775 + }, + { + "start": 16030.2, + "end": 16032.46, + "probability": 0.9065 + }, + { + "start": 16033.12, + "end": 16034.45, + "probability": 0.8877 + }, + { + "start": 16036.12, + "end": 16038.5, + "probability": 0.9316 + }, + { + "start": 16045.66, + "end": 16045.76, + "probability": 0.5105 + }, + { + "start": 16046.28, + "end": 16049.41, + "probability": 0.7539 + }, + { + "start": 16052.76, + "end": 16052.92, + "probability": 0.1564 + }, + { + "start": 16057.38, + "end": 16059.06, + "probability": 0.5696 + }, + { + "start": 16059.4, + "end": 16059.78, + "probability": 0.5837 + }, + { + "start": 16060.7, + "end": 16063.12, + "probability": 0.9434 + }, + { + "start": 16067.32, + "end": 16067.92, + "probability": 0.9938 + }, + { + "start": 16069.6, + "end": 16071.92, + "probability": 0.8755 + }, + { + "start": 16072.62, + "end": 16075.0, + "probability": 0.3604 + }, + { + "start": 16075.18, + "end": 16078.28, + "probability": 0.1858 + }, + { + "start": 16080.88, + "end": 16081.58, + "probability": 0.6958 + }, + { + "start": 16082.7, + "end": 16084.72, + "probability": 0.0179 + }, + { + "start": 16084.72, + "end": 16085.28, + "probability": 0.145 + }, + { + "start": 16086.54, + "end": 16088.0, + "probability": 0.0151 + }, + { + "start": 16089.6, + "end": 16095.08, + "probability": 0.0626 + }, + { + "start": 16095.36, + "end": 16097.7, + "probability": 0.0565 + }, + { + "start": 16100.32, + "end": 16101.84, + "probability": 0.0469 + }, + { + "start": 16102.42, + "end": 16102.78, + "probability": 0.041 + }, + { + "start": 16104.4, + "end": 16105.45, + "probability": 0.0032 + }, + { + "start": 16136.0, + "end": 16136.8, + "probability": 0.1358 + }, + { + "start": 16139.32, + "end": 16140.6, + "probability": 0.0985 + }, + { + "start": 16140.6, + "end": 16143.08, + "probability": 0.6717 + }, + { + "start": 16143.24, + "end": 16143.54, + "probability": 0.8964 + }, + { + "start": 16144.86, + "end": 16147.26, + "probability": 0.4374 + }, + { + "start": 16147.44, + "end": 16148.72, + "probability": 0.9637 + }, + { + "start": 16148.84, + "end": 16149.74, + "probability": 0.1933 + }, + { + "start": 16150.66, + "end": 16153.32, + "probability": 0.7248 + }, + { + "start": 16153.4, + "end": 16154.52, + "probability": 0.8516 + }, + { + "start": 16155.16, + "end": 16158.38, + "probability": 0.9707 + }, + { + "start": 16159.26, + "end": 16160.52, + "probability": 0.6518 + }, + { + "start": 16165.56, + "end": 16166.22, + "probability": 0.3211 + }, + { + "start": 16166.6, + "end": 16169.08, + "probability": 0.8939 + }, + { + "start": 16170.12, + "end": 16173.18, + "probability": 0.9613 + }, + { + "start": 16173.7, + "end": 16177.06, + "probability": 0.9893 + }, + { + "start": 16177.84, + "end": 16178.94, + "probability": 0.8802 + }, + { + "start": 16179.34, + "end": 16180.98, + "probability": 0.991 + }, + { + "start": 16181.24, + "end": 16182.36, + "probability": 0.9287 + }, + { + "start": 16182.78, + "end": 16184.0, + "probability": 0.6553 + }, + { + "start": 16184.6, + "end": 16185.8, + "probability": 0.5586 + }, + { + "start": 16185.86, + "end": 16190.06, + "probability": 0.9955 + }, + { + "start": 16190.36, + "end": 16191.1, + "probability": 0.8966 + }, + { + "start": 16191.3, + "end": 16191.58, + "probability": 0.8669 + }, + { + "start": 16195.38, + "end": 16197.2, + "probability": 0.1259 + }, + { + "start": 16197.56, + "end": 16199.18, + "probability": 0.0659 + }, + { + "start": 16199.2, + "end": 16199.2, + "probability": 0.0839 + }, + { + "start": 16199.88, + "end": 16200.22, + "probability": 0.2043 + }, + { + "start": 16201.46, + "end": 16205.48, + "probability": 0.2102 + }, + { + "start": 16205.6, + "end": 16207.64, + "probability": 0.4501 + }, + { + "start": 16207.64, + "end": 16208.67, + "probability": 0.3911 + }, + { + "start": 16209.8, + "end": 16210.58, + "probability": 0.0179 + }, + { + "start": 16211.04, + "end": 16211.8, + "probability": 0.0794 + }, + { + "start": 16212.42, + "end": 16214.84, + "probability": 0.2197 + }, + { + "start": 16214.96, + "end": 16218.46, + "probability": 0.112 + }, + { + "start": 16219.02, + "end": 16219.02, + "probability": 0.1689 + }, + { + "start": 16219.02, + "end": 16219.02, + "probability": 0.0734 + }, + { + "start": 16220.24, + "end": 16221.5, + "probability": 0.3134 + }, + { + "start": 16223.56, + "end": 16226.08, + "probability": 0.3765 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.0, + "end": 16299.0, + "probability": 0.0 + }, + { + "start": 16299.9, + "end": 16303.08, + "probability": 0.2513 + }, + { + "start": 16304.18, + "end": 16304.54, + "probability": 0.0769 + }, + { + "start": 16305.36, + "end": 16306.1, + "probability": 0.4915 + }, + { + "start": 16306.1, + "end": 16307.3, + "probability": 0.5752 + }, + { + "start": 16310.14, + "end": 16314.26, + "probability": 0.0616 + }, + { + "start": 16314.5, + "end": 16315.44, + "probability": 0.0949 + }, + { + "start": 16315.44, + "end": 16315.44, + "probability": 0.1533 + }, + { + "start": 16316.26, + "end": 16317.74, + "probability": 0.4434 + }, + { + "start": 16320.08, + "end": 16322.58, + "probability": 0.0261 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16429.0, + "end": 16429.0, + "probability": 0.0 + }, + { + "start": 16449.98, + "end": 16451.54, + "probability": 0.5541 + }, + { + "start": 16452.84, + "end": 16453.22, + "probability": 0.6821 + }, + { + "start": 16457.78, + "end": 16458.8, + "probability": 0.1983 + }, + { + "start": 16459.86, + "end": 16461.36, + "probability": 0.7683 + }, + { + "start": 16462.46, + "end": 16463.4, + "probability": 0.7188 + }, + { + "start": 16465.04, + "end": 16465.48, + "probability": 0.7172 + }, + { + "start": 16467.52, + "end": 16467.82, + "probability": 0.8734 + }, + { + "start": 16471.54, + "end": 16472.22, + "probability": 0.4291 + }, + { + "start": 16474.46, + "end": 16478.76, + "probability": 0.5522 + }, + { + "start": 16479.52, + "end": 16479.94, + "probability": 0.8085 + }, + { + "start": 16482.62, + "end": 16483.42, + "probability": 0.5871 + }, + { + "start": 16485.32, + "end": 16488.68, + "probability": 0.6428 + }, + { + "start": 16488.68, + "end": 16489.93, + "probability": 0.4346 + }, + { + "start": 16490.02, + "end": 16490.18, + "probability": 0.0981 + }, + { + "start": 16490.4, + "end": 16491.12, + "probability": 0.7635 + }, + { + "start": 16493.06, + "end": 16495.7, + "probability": 0.7034 + }, + { + "start": 16496.52, + "end": 16497.56, + "probability": 0.6454 + }, + { + "start": 16497.98, + "end": 16500.18, + "probability": 0.7213 + }, + { + "start": 16500.76, + "end": 16501.5, + "probability": 0.7444 + }, + { + "start": 16501.74, + "end": 16502.44, + "probability": 0.6219 + }, + { + "start": 16502.96, + "end": 16507.32, + "probability": 0.9857 + }, + { + "start": 16507.44, + "end": 16511.8, + "probability": 0.6046 + }, + { + "start": 16512.2, + "end": 16514.14, + "probability": 0.9917 + }, + { + "start": 16514.24, + "end": 16516.08, + "probability": 0.6709 + }, + { + "start": 16516.1, + "end": 16517.66, + "probability": 0.862 + }, + { + "start": 16518.8, + "end": 16519.8, + "probability": 0.5449 + }, + { + "start": 16520.56, + "end": 16523.8, + "probability": 0.9923 + }, + { + "start": 16526.4, + "end": 16530.56, + "probability": 0.8147 + }, + { + "start": 16532.56, + "end": 16538.64, + "probability": 0.0615 + }, + { + "start": 16539.82, + "end": 16540.6, + "probability": 0.6205 + }, + { + "start": 16541.96, + "end": 16543.22, + "probability": 0.6225 + }, + { + "start": 16543.9, + "end": 16545.68, + "probability": 0.1384 + }, + { + "start": 16553.04, + "end": 16554.82, + "probability": 0.2118 + }, + { + "start": 16557.0, + "end": 16558.14, + "probability": 0.0292 + }, + { + "start": 16558.78, + "end": 16559.88, + "probability": 0.599 + }, + { + "start": 16562.12, + "end": 16564.84, + "probability": 0.6405 + }, + { + "start": 16564.84, + "end": 16566.7, + "probability": 0.7368 + }, + { + "start": 16566.76, + "end": 16567.56, + "probability": 0.679 + }, + { + "start": 16568.18, + "end": 16568.96, + "probability": 0.1435 + }, + { + "start": 16568.96, + "end": 16569.08, + "probability": 0.1714 + }, + { + "start": 16569.68, + "end": 16572.28, + "probability": 0.1447 + }, + { + "start": 16573.02, + "end": 16574.54, + "probability": 0.8221 + }, + { + "start": 16574.94, + "end": 16575.4, + "probability": 0.5461 + }, + { + "start": 16575.79, + "end": 16576.95, + "probability": 0.5322 + }, + { + "start": 16577.3, + "end": 16578.48, + "probability": 0.7571 + }, + { + "start": 16578.52, + "end": 16580.62, + "probability": 0.9811 + }, + { + "start": 16580.76, + "end": 16582.26, + "probability": 0.4756 + }, + { + "start": 16583.07, + "end": 16587.19, + "probability": 0.5655 + }, + { + "start": 16588.34, + "end": 16588.72, + "probability": 0.2567 + }, + { + "start": 16589.1, + "end": 16590.86, + "probability": 0.6911 + }, + { + "start": 16591.48, + "end": 16592.46, + "probability": 0.8573 + }, + { + "start": 16593.3, + "end": 16597.22, + "probability": 0.6303 + }, + { + "start": 16597.4, + "end": 16597.81, + "probability": 0.6616 + }, + { + "start": 16599.27, + "end": 16601.7, + "probability": 0.3638 + }, + { + "start": 16601.7, + "end": 16602.76, + "probability": 0.4169 + }, + { + "start": 16603.36, + "end": 16607.16, + "probability": 0.9604 + }, + { + "start": 16607.52, + "end": 16610.7, + "probability": 0.4086 + }, + { + "start": 16610.82, + "end": 16611.7, + "probability": 0.1643 + }, + { + "start": 16611.7, + "end": 16611.85, + "probability": 0.2454 + }, + { + "start": 16614.12, + "end": 16617.68, + "probability": 0.5181 + }, + { + "start": 16617.84, + "end": 16618.22, + "probability": 0.3221 + }, + { + "start": 16618.22, + "end": 16618.22, + "probability": 0.4297 + }, + { + "start": 16618.22, + "end": 16618.92, + "probability": 0.3198 + }, + { + "start": 16620.08, + "end": 16621.2, + "probability": 0.0727 + }, + { + "start": 16622.56, + "end": 16623.28, + "probability": 0.3595 + }, + { + "start": 16624.38, + "end": 16626.48, + "probability": 0.1351 + }, + { + "start": 16626.48, + "end": 16629.22, + "probability": 0.0973 + }, + { + "start": 16643.34, + "end": 16644.94, + "probability": 0.0821 + }, + { + "start": 16645.41, + "end": 16647.32, + "probability": 0.0776 + }, + { + "start": 16647.32, + "end": 16647.78, + "probability": 0.3768 + }, + { + "start": 16647.86, + "end": 16650.16, + "probability": 0.0998 + }, + { + "start": 16650.54, + "end": 16651.3, + "probability": 0.0687 + }, + { + "start": 16653.83, + "end": 16654.46, + "probability": 0.3549 + }, + { + "start": 16654.46, + "end": 16655.82, + "probability": 0.0941 + }, + { + "start": 16657.7, + "end": 16659.52, + "probability": 0.4551 + }, + { + "start": 16660.36, + "end": 16662.26, + "probability": 0.2148 + }, + { + "start": 16662.86, + "end": 16665.08, + "probability": 0.0373 + }, + { + "start": 16665.56, + "end": 16666.56, + "probability": 0.133 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16715.0, + "end": 16715.0, + "probability": 0.0 + }, + { + "start": 16724.32, + "end": 16725.06, + "probability": 0.6701 + }, + { + "start": 16725.62, + "end": 16726.38, + "probability": 0.1445 + }, + { + "start": 16729.3, + "end": 16729.96, + "probability": 0.0116 + }, + { + "start": 16731.96, + "end": 16733.0, + "probability": 0.6809 + }, + { + "start": 16733.82, + "end": 16734.72, + "probability": 0.7692 + }, + { + "start": 16736.0, + "end": 16736.44, + "probability": 0.5502 + }, + { + "start": 16737.52, + "end": 16738.9, + "probability": 0.8579 + }, + { + "start": 16743.8, + "end": 16746.74, + "probability": 0.9201 + }, + { + "start": 16747.54, + "end": 16750.38, + "probability": 0.827 + }, + { + "start": 16753.02, + "end": 16753.32, + "probability": 0.979 + }, + { + "start": 16754.02, + "end": 16754.42, + "probability": 0.3352 + }, + { + "start": 16759.18, + "end": 16760.4, + "probability": 0.4637 + }, + { + "start": 16761.36, + "end": 16763.64, + "probability": 0.6532 + }, + { + "start": 16768.36, + "end": 16769.34, + "probability": 0.6725 + }, + { + "start": 16770.42, + "end": 16770.7, + "probability": 0.8584 + }, + { + "start": 16771.94, + "end": 16772.86, + "probability": 0.9111 + }, + { + "start": 16774.04, + "end": 16774.62, + "probability": 0.9727 + }, + { + "start": 16776.1, + "end": 16776.76, + "probability": 0.7078 + }, + { + "start": 16782.2, + "end": 16783.06, + "probability": 0.8859 + }, + { + "start": 16784.56, + "end": 16785.66, + "probability": 0.593 + }, + { + "start": 16786.78, + "end": 16787.58, + "probability": 0.805 + }, + { + "start": 16788.48, + "end": 16789.36, + "probability": 0.6014 + }, + { + "start": 16791.84, + "end": 16792.94, + "probability": 0.7422 + }, + { + "start": 16793.58, + "end": 16794.44, + "probability": 0.7094 + }, + { + "start": 16797.01, + "end": 16800.16, + "probability": 0.9707 + }, + { + "start": 16801.66, + "end": 16802.14, + "probability": 0.9817 + }, + { + "start": 16803.86, + "end": 16805.18, + "probability": 0.9187 + }, + { + "start": 16806.28, + "end": 16806.72, + "probability": 0.9775 + }, + { + "start": 16807.62, + "end": 16808.5, + "probability": 0.9529 + }, + { + "start": 16809.34, + "end": 16809.7, + "probability": 0.9851 + }, + { + "start": 16810.48, + "end": 16811.32, + "probability": 0.981 + }, + { + "start": 16812.52, + "end": 16812.86, + "probability": 0.9792 + }, + { + "start": 16813.91, + "end": 16814.54, + "probability": 0.8772 + }, + { + "start": 16816.9, + "end": 16817.88, + "probability": 0.7288 + }, + { + "start": 16820.06, + "end": 16823.3, + "probability": 0.6491 + }, + { + "start": 16824.04, + "end": 16827.6, + "probability": 0.9468 + }, + { + "start": 16828.58, + "end": 16829.98, + "probability": 0.908 + }, + { + "start": 16831.92, + "end": 16832.38, + "probability": 0.9937 + }, + { + "start": 16833.04, + "end": 16835.26, + "probability": 0.8223 + }, + { + "start": 16836.7, + "end": 16839.72, + "probability": 0.71 + }, + { + "start": 16841.86, + "end": 16843.96, + "probability": 0.7976 + }, + { + "start": 16844.56, + "end": 16845.02, + "probability": 0.5503 + }, + { + "start": 16845.76, + "end": 16846.74, + "probability": 0.7911 + }, + { + "start": 16848.22, + "end": 16848.66, + "probability": 0.9077 + }, + { + "start": 16849.86, + "end": 16850.64, + "probability": 0.9305 + }, + { + "start": 16853.6, + "end": 16854.36, + "probability": 0.8265 + }, + { + "start": 16855.02, + "end": 16856.1, + "probability": 0.9834 + }, + { + "start": 16856.92, + "end": 16859.34, + "probability": 0.8502 + }, + { + "start": 16860.88, + "end": 16862.16, + "probability": 0.9826 + }, + { + "start": 16863.04, + "end": 16863.92, + "probability": 0.8588 + }, + { + "start": 16865.12, + "end": 16866.48, + "probability": 0.9893 + }, + { + "start": 16867.56, + "end": 16868.98, + "probability": 0.8914 + }, + { + "start": 16870.3, + "end": 16871.32, + "probability": 0.9743 + }, + { + "start": 16871.96, + "end": 16873.04, + "probability": 0.5542 + }, + { + "start": 16875.58, + "end": 16876.62, + "probability": 0.9081 + }, + { + "start": 16877.48, + "end": 16878.78, + "probability": 0.7965 + }, + { + "start": 16880.36, + "end": 16881.42, + "probability": 0.9927 + }, + { + "start": 16882.16, + "end": 16883.74, + "probability": 0.9032 + }, + { + "start": 16884.74, + "end": 16885.18, + "probability": 0.6873 + }, + { + "start": 16886.4, + "end": 16887.2, + "probability": 0.9466 + }, + { + "start": 16888.14, + "end": 16890.36, + "probability": 0.967 + }, + { + "start": 16891.34, + "end": 16894.08, + "probability": 0.7375 + }, + { + "start": 16895.18, + "end": 16896.08, + "probability": 0.9915 + }, + { + "start": 16896.72, + "end": 16898.06, + "probability": 0.976 + }, + { + "start": 16898.96, + "end": 16899.42, + "probability": 0.9863 + }, + { + "start": 16900.62, + "end": 16901.42, + "probability": 0.867 + }, + { + "start": 16901.96, + "end": 16902.14, + "probability": 0.937 + }, + { + "start": 16904.14, + "end": 16905.78, + "probability": 0.6858 + }, + { + "start": 16909.04, + "end": 16912.0, + "probability": 0.558 + }, + { + "start": 16912.58, + "end": 16912.96, + "probability": 0.6909 + }, + { + "start": 16914.7, + "end": 16915.44, + "probability": 0.7942 + }, + { + "start": 16916.1, + "end": 16917.08, + "probability": 0.7164 + }, + { + "start": 16917.64, + "end": 16918.18, + "probability": 0.9294 + }, + { + "start": 16919.12, + "end": 16920.28, + "probability": 0.8028 + }, + { + "start": 16922.34, + "end": 16927.52, + "probability": 0.6747 + }, + { + "start": 16929.16, + "end": 16929.56, + "probability": 0.9727 + }, + { + "start": 16930.66, + "end": 16931.68, + "probability": 0.6223 + }, + { + "start": 16932.92, + "end": 16933.36, + "probability": 0.5603 + }, + { + "start": 16934.74, + "end": 16936.0, + "probability": 0.4451 + }, + { + "start": 16942.62, + "end": 16943.02, + "probability": 0.5912 + }, + { + "start": 16944.52, + "end": 16945.38, + "probability": 0.6443 + }, + { + "start": 16946.4, + "end": 16946.78, + "probability": 0.9453 + }, + { + "start": 16947.72, + "end": 16950.16, + "probability": 0.7861 + }, + { + "start": 16951.02, + "end": 16951.78, + "probability": 0.9686 + }, + { + "start": 16953.34, + "end": 16953.64, + "probability": 0.9675 + }, + { + "start": 16954.56, + "end": 16955.36, + "probability": 0.8494 + }, + { + "start": 16957.38, + "end": 16958.14, + "probability": 0.9481 + }, + { + "start": 16959.02, + "end": 16959.79, + "probability": 0.4973 + }, + { + "start": 16961.72, + "end": 16964.7, + "probability": 0.98 + }, + { + "start": 16966.3, + "end": 16967.3, + "probability": 0.7739 + }, + { + "start": 16968.52, + "end": 16968.92, + "probability": 0.5598 + }, + { + "start": 16969.78, + "end": 16971.92, + "probability": 0.6807 + }, + { + "start": 16972.94, + "end": 16975.48, + "probability": 0.8143 + }, + { + "start": 16976.66, + "end": 16977.76, + "probability": 0.9648 + }, + { + "start": 16978.54, + "end": 16980.76, + "probability": 0.9691 + }, + { + "start": 16983.1, + "end": 16985.02, + "probability": 0.7214 + }, + { + "start": 16985.92, + "end": 16987.1, + "probability": 0.8164 + }, + { + "start": 16990.7, + "end": 16994.04, + "probability": 0.6665 + }, + { + "start": 16994.74, + "end": 16999.02, + "probability": 0.7314 + }, + { + "start": 17000.4, + "end": 17002.38, + "probability": 0.7876 + }, + { + "start": 17003.39, + "end": 17004.94, + "probability": 0.9344 + }, + { + "start": 17006.48, + "end": 17008.26, + "probability": 0.8564 + }, + { + "start": 17013.02, + "end": 17013.54, + "probability": 0.6152 + }, + { + "start": 17015.32, + "end": 17016.2, + "probability": 0.7817 + }, + { + "start": 17017.12, + "end": 17017.7, + "probability": 0.8014 + }, + { + "start": 17018.4, + "end": 17019.72, + "probability": 0.9663 + }, + { + "start": 17020.34, + "end": 17023.98, + "probability": 0.9554 + }, + { + "start": 17024.76, + "end": 17029.06, + "probability": 0.9541 + }, + { + "start": 17029.72, + "end": 17032.98, + "probability": 0.8409 + }, + { + "start": 17034.06, + "end": 17034.9, + "probability": 0.8472 + }, + { + "start": 17036.12, + "end": 17037.84, + "probability": 0.519 + }, + { + "start": 17039.64, + "end": 17040.32, + "probability": 0.9485 + }, + { + "start": 17040.94, + "end": 17041.98, + "probability": 0.7386 + }, + { + "start": 17043.28, + "end": 17043.76, + "probability": 0.8408 + }, + { + "start": 17045.02, + "end": 17045.5, + "probability": 0.5073 + }, + { + "start": 17049.92, + "end": 17051.72, + "probability": 0.3986 + }, + { + "start": 17052.5, + "end": 17053.44, + "probability": 0.7004 + }, + { + "start": 17056.32, + "end": 17058.02, + "probability": 0.468 + }, + { + "start": 17059.62, + "end": 17061.2, + "probability": 0.9568 + }, + { + "start": 17061.9, + "end": 17063.02, + "probability": 0.9177 + }, + { + "start": 17064.16, + "end": 17066.38, + "probability": 0.8913 + }, + { + "start": 17067.22, + "end": 17069.06, + "probability": 0.8192 + }, + { + "start": 17071.3, + "end": 17073.22, + "probability": 0.9449 + }, + { + "start": 17074.24, + "end": 17074.54, + "probability": 0.9861 + }, + { + "start": 17075.16, + "end": 17075.76, + "probability": 0.6283 + }, + { + "start": 17076.96, + "end": 17077.24, + "probability": 0.5332 + }, + { + "start": 17080.32, + "end": 17082.9, + "probability": 0.9437 + }, + { + "start": 17083.72, + "end": 17085.63, + "probability": 0.4567 + }, + { + "start": 17088.32, + "end": 17088.74, + "probability": 0.9382 + }, + { + "start": 17090.38, + "end": 17090.98, + "probability": 0.8448 + }, + { + "start": 17092.4, + "end": 17093.0, + "probability": 0.9585 + }, + { + "start": 17093.54, + "end": 17095.92, + "probability": 0.8891 + }, + { + "start": 17097.78, + "end": 17099.9, + "probability": 0.8255 + }, + { + "start": 17100.62, + "end": 17102.72, + "probability": 0.7752 + }, + { + "start": 17103.68, + "end": 17104.32, + "probability": 0.6773 + }, + { + "start": 17105.98, + "end": 17106.26, + "probability": 0.5685 + }, + { + "start": 17107.26, + "end": 17108.24, + "probability": 0.8934 + }, + { + "start": 17109.26, + "end": 17109.96, + "probability": 0.9218 + }, + { + "start": 17111.8, + "end": 17112.5, + "probability": 0.9601 + }, + { + "start": 17113.98, + "end": 17114.8, + "probability": 0.9515 + }, + { + "start": 17115.58, + "end": 17116.48, + "probability": 0.9089 + }, + { + "start": 17117.92, + "end": 17119.08, + "probability": 0.9858 + }, + { + "start": 17120.04, + "end": 17120.74, + "probability": 0.8695 + }, + { + "start": 17121.54, + "end": 17122.46, + "probability": 0.9958 + }, + { + "start": 17124.06, + "end": 17125.24, + "probability": 0.9392 + }, + { + "start": 17126.78, + "end": 17127.56, + "probability": 0.8663 + }, + { + "start": 17128.44, + "end": 17130.14, + "probability": 0.9274 + }, + { + "start": 17130.9, + "end": 17131.76, + "probability": 0.6329 + }, + { + "start": 17132.82, + "end": 17135.2, + "probability": 0.5868 + }, + { + "start": 17136.28, + "end": 17137.2, + "probability": 0.9192 + }, + { + "start": 17137.76, + "end": 17138.86, + "probability": 0.8237 + }, + { + "start": 17139.58, + "end": 17140.4, + "probability": 0.9651 + }, + { + "start": 17141.48, + "end": 17142.26, + "probability": 0.8748 + }, + { + "start": 17144.28, + "end": 17146.4, + "probability": 0.8379 + }, + { + "start": 17147.64, + "end": 17148.54, + "probability": 0.9908 + }, + { + "start": 17149.58, + "end": 17150.76, + "probability": 0.9663 + }, + { + "start": 17151.78, + "end": 17152.6, + "probability": 0.9814 + }, + { + "start": 17154.02, + "end": 17154.96, + "probability": 0.6994 + }, + { + "start": 17156.24, + "end": 17157.96, + "probability": 0.7613 + }, + { + "start": 17159.06, + "end": 17161.0, + "probability": 0.7467 + }, + { + "start": 17162.44, + "end": 17164.74, + "probability": 0.9544 + }, + { + "start": 17166.3, + "end": 17167.7, + "probability": 0.9774 + }, + { + "start": 17170.92, + "end": 17173.16, + "probability": 0.5063 + }, + { + "start": 17173.24, + "end": 17176.14, + "probability": 0.779 + }, + { + "start": 17176.9, + "end": 17179.42, + "probability": 0.9675 + }, + { + "start": 17179.88, + "end": 17181.78, + "probability": 0.4805 + }, + { + "start": 17182.68, + "end": 17183.88, + "probability": 0.712 + }, + { + "start": 17184.58, + "end": 17185.48, + "probability": 0.9857 + }, + { + "start": 17186.14, + "end": 17187.24, + "probability": 0.9051 + }, + { + "start": 17187.94, + "end": 17188.38, + "probability": 0.8708 + }, + { + "start": 17190.34, + "end": 17191.26, + "probability": 0.8111 + }, + { + "start": 17192.48, + "end": 17193.22, + "probability": 0.9116 + }, + { + "start": 17193.8, + "end": 17194.58, + "probability": 0.7696 + }, + { + "start": 17196.28, + "end": 17197.54, + "probability": 0.7144 + }, + { + "start": 17198.94, + "end": 17199.9, + "probability": 0.9124 + }, + { + "start": 17200.8, + "end": 17201.72, + "probability": 0.9254 + }, + { + "start": 17202.26, + "end": 17202.7, + "probability": 0.866 + }, + { + "start": 17204.46, + "end": 17208.88, + "probability": 0.9341 + }, + { + "start": 17209.4, + "end": 17211.08, + "probability": 0.9658 + }, + { + "start": 17212.04, + "end": 17214.1, + "probability": 0.9485 + }, + { + "start": 17215.18, + "end": 17216.42, + "probability": 0.7582 + }, + { + "start": 17217.98, + "end": 17220.98, + "probability": 0.8377 + }, + { + "start": 17221.7, + "end": 17223.04, + "probability": 0.9534 + }, + { + "start": 17224.88, + "end": 17230.08, + "probability": 0.9692 + }, + { + "start": 17230.76, + "end": 17231.37, + "probability": 0.8828 + }, + { + "start": 17231.9, + "end": 17233.02, + "probability": 0.6527 + }, + { + "start": 17233.08, + "end": 17233.68, + "probability": 0.8626 + }, + { + "start": 17312.02, + "end": 17314.7, + "probability": 0.7237 + }, + { + "start": 17315.04, + "end": 17315.94, + "probability": 0.8047 + }, + { + "start": 17316.2, + "end": 17319.58, + "probability": 0.9025 + }, + { + "start": 17320.32, + "end": 17325.16, + "probability": 0.992 + }, + { + "start": 17326.08, + "end": 17328.6, + "probability": 0.8567 + }, + { + "start": 17329.78, + "end": 17333.32, + "probability": 0.3412 + }, + { + "start": 17335.06, + "end": 17335.22, + "probability": 0.1424 + }, + { + "start": 17335.22, + "end": 17335.22, + "probability": 0.5928 + }, + { + "start": 17335.22, + "end": 17335.22, + "probability": 0.1222 + }, + { + "start": 17335.22, + "end": 17335.38, + "probability": 0.0414 + }, + { + "start": 17335.38, + "end": 17337.04, + "probability": 0.8339 + }, + { + "start": 17337.8, + "end": 17338.04, + "probability": 0.9596 + }, + { + "start": 17339.62, + "end": 17339.72, + "probability": 0.0228 + }, + { + "start": 17339.72, + "end": 17340.82, + "probability": 0.7801 + }, + { + "start": 17340.82, + "end": 17340.92, + "probability": 0.9306 + }, + { + "start": 17344.62, + "end": 17344.88, + "probability": 0.3066 + }, + { + "start": 17344.88, + "end": 17345.1, + "probability": 0.0157 + }, + { + "start": 17346.8, + "end": 17347.0, + "probability": 0.4154 + }, + { + "start": 17348.3, + "end": 17353.7, + "probability": 0.9181 + }, + { + "start": 17354.54, + "end": 17358.06, + "probability": 0.9886 + }, + { + "start": 17358.12, + "end": 17362.14, + "probability": 0.9737 + }, + { + "start": 17362.5, + "end": 17363.22, + "probability": 0.806 + }, + { + "start": 17364.24, + "end": 17367.38, + "probability": 0.9334 + }, + { + "start": 17368.08, + "end": 17372.56, + "probability": 0.9921 + }, + { + "start": 17372.7, + "end": 17373.26, + "probability": 0.7617 + }, + { + "start": 17373.72, + "end": 17376.86, + "probability": 0.9972 + }, + { + "start": 17377.02, + "end": 17378.24, + "probability": 0.7795 + }, + { + "start": 17378.28, + "end": 17378.4, + "probability": 0.9377 + }, + { + "start": 17379.26, + "end": 17380.08, + "probability": 0.8203 + }, + { + "start": 17380.16, + "end": 17385.78, + "probability": 0.9716 + }, + { + "start": 17387.02, + "end": 17388.96, + "probability": 0.6657 + }, + { + "start": 17389.64, + "end": 17390.54, + "probability": 0.6637 + }, + { + "start": 17391.24, + "end": 17396.46, + "probability": 0.9117 + }, + { + "start": 17397.32, + "end": 17400.42, + "probability": 0.9176 + }, + { + "start": 17401.2, + "end": 17406.82, + "probability": 0.9284 + }, + { + "start": 17407.38, + "end": 17408.14, + "probability": 0.8924 + }, + { + "start": 17408.68, + "end": 17410.84, + "probability": 0.0177 + }, + { + "start": 17410.84, + "end": 17411.78, + "probability": 0.8895 + }, + { + "start": 17412.48, + "end": 17415.06, + "probability": 0.7715 + }, + { + "start": 17415.3, + "end": 17415.8, + "probability": 0.7729 + }, + { + "start": 17416.84, + "end": 17418.68, + "probability": 0.8359 + }, + { + "start": 17418.7, + "end": 17419.84, + "probability": 0.5357 + }, + { + "start": 17419.84, + "end": 17422.0, + "probability": 0.8417 + }, + { + "start": 17424.32, + "end": 17426.78, + "probability": 0.262 + }, + { + "start": 17426.78, + "end": 17428.48, + "probability": 0.7816 + }, + { + "start": 17429.14, + "end": 17432.32, + "probability": 0.8737 + }, + { + "start": 17432.86, + "end": 17434.57, + "probability": 0.8842 + }, + { + "start": 17434.84, + "end": 17435.14, + "probability": 0.5 + }, + { + "start": 17436.26, + "end": 17439.22, + "probability": 0.9218 + }, + { + "start": 17439.44, + "end": 17442.16, + "probability": 0.9365 + }, + { + "start": 17442.26, + "end": 17443.3, + "probability": 0.9808 + }, + { + "start": 17443.34, + "end": 17446.48, + "probability": 0.9895 + }, + { + "start": 17446.48, + "end": 17449.64, + "probability": 0.9831 + }, + { + "start": 17450.02, + "end": 17453.01, + "probability": 0.9971 + }, + { + "start": 17453.84, + "end": 17454.5, + "probability": 0.5951 + }, + { + "start": 17454.56, + "end": 17456.84, + "probability": 0.9961 + }, + { + "start": 17458.66, + "end": 17460.44, + "probability": 0.2472 + }, + { + "start": 17460.8, + "end": 17463.25, + "probability": 0.9948 + }, + { + "start": 17463.6, + "end": 17464.56, + "probability": 0.9487 + }, + { + "start": 17465.1, + "end": 17465.37, + "probability": 0.9338 + }, + { + "start": 17466.12, + "end": 17469.96, + "probability": 0.9086 + }, + { + "start": 17471.28, + "end": 17472.38, + "probability": 0.9446 + }, + { + "start": 17472.52, + "end": 17477.7, + "probability": 0.9561 + }, + { + "start": 17477.7, + "end": 17479.85, + "probability": 0.846 + }, + { + "start": 17480.42, + "end": 17483.94, + "probability": 0.9805 + }, + { + "start": 17484.32, + "end": 17485.12, + "probability": 0.9374 + }, + { + "start": 17515.68, + "end": 17516.4, + "probability": 0.6174 + }, + { + "start": 17517.08, + "end": 17518.16, + "probability": 0.7162 + }, + { + "start": 17519.52, + "end": 17524.06, + "probability": 0.8475 + }, + { + "start": 17524.36, + "end": 17531.78, + "probability": 0.9735 + }, + { + "start": 17532.16, + "end": 17533.3, + "probability": 0.9837 + }, + { + "start": 17534.0, + "end": 17537.92, + "probability": 0.9382 + }, + { + "start": 17538.32, + "end": 17541.92, + "probability": 0.9651 + }, + { + "start": 17542.08, + "end": 17543.14, + "probability": 0.9213 + }, + { + "start": 17543.22, + "end": 17543.64, + "probability": 0.9207 + }, + { + "start": 17544.38, + "end": 17544.84, + "probability": 0.2494 + }, + { + "start": 17544.84, + "end": 17545.28, + "probability": 0.8179 + }, + { + "start": 17545.86, + "end": 17547.11, + "probability": 0.6962 + }, + { + "start": 17547.32, + "end": 17549.84, + "probability": 0.5769 + }, + { + "start": 17551.77, + "end": 17552.6, + "probability": 0.8882 + }, + { + "start": 17555.4, + "end": 17557.72, + "probability": 0.7611 + }, + { + "start": 17559.9, + "end": 17562.38, + "probability": 0.9985 + }, + { + "start": 17562.38, + "end": 17565.76, + "probability": 0.942 + }, + { + "start": 17565.84, + "end": 17567.44, + "probability": 0.7948 + }, + { + "start": 17568.32, + "end": 17571.48, + "probability": 0.8891 + }, + { + "start": 17572.08, + "end": 17574.8, + "probability": 0.8228 + }, + { + "start": 17575.58, + "end": 17578.94, + "probability": 0.9874 + }, + { + "start": 17579.74, + "end": 17584.12, + "probability": 0.9401 + }, + { + "start": 17585.76, + "end": 17588.16, + "probability": 0.9321 + }, + { + "start": 17589.0, + "end": 17595.6, + "probability": 0.9882 + }, + { + "start": 17595.6, + "end": 17598.82, + "probability": 0.999 + }, + { + "start": 17600.46, + "end": 17604.0, + "probability": 0.8654 + }, + { + "start": 17605.42, + "end": 17606.12, + "probability": 0.8882 + }, + { + "start": 17607.26, + "end": 17609.18, + "probability": 0.996 + }, + { + "start": 17610.42, + "end": 17612.12, + "probability": 0.6518 + }, + { + "start": 17612.92, + "end": 17613.06, + "probability": 0.1746 + }, + { + "start": 17615.26, + "end": 17617.0, + "probability": 0.2871 + }, + { + "start": 17617.0, + "end": 17617.9, + "probability": 0.7767 + }, + { + "start": 17618.84, + "end": 17619.0, + "probability": 0.3995 + }, + { + "start": 17619.88, + "end": 17622.0, + "probability": 0.9897 + }, + { + "start": 17623.96, + "end": 17625.08, + "probability": 0.8066 + }, + { + "start": 17625.78, + "end": 17626.9, + "probability": 0.5898 + }, + { + "start": 17627.36, + "end": 17632.98, + "probability": 0.993 + }, + { + "start": 17633.38, + "end": 17634.34, + "probability": 0.9742 + }, + { + "start": 17634.42, + "end": 17639.38, + "probability": 0.8584 + }, + { + "start": 17640.24, + "end": 17643.86, + "probability": 0.7776 + }, + { + "start": 17643.94, + "end": 17644.44, + "probability": 0.8874 + }, + { + "start": 17646.34, + "end": 17646.86, + "probability": 0.9155 + }, + { + "start": 17646.86, + "end": 17647.6, + "probability": 0.6534 + }, + { + "start": 17647.66, + "end": 17651.0, + "probability": 0.892 + }, + { + "start": 17652.02, + "end": 17655.09, + "probability": 0.8355 + }, + { + "start": 17655.78, + "end": 17662.34, + "probability": 0.9871 + }, + { + "start": 17664.4, + "end": 17666.65, + "probability": 0.9379 + }, + { + "start": 17668.38, + "end": 17671.68, + "probability": 0.7842 + }, + { + "start": 17673.82, + "end": 17677.32, + "probability": 0.9355 + }, + { + "start": 17678.1, + "end": 17683.12, + "probability": 0.7932 + }, + { + "start": 17683.8, + "end": 17686.98, + "probability": 0.9521 + }, + { + "start": 17687.86, + "end": 17688.6, + "probability": 0.7399 + }, + { + "start": 17688.64, + "end": 17689.62, + "probability": 0.8151 + }, + { + "start": 17690.12, + "end": 17691.9, + "probability": 0.9002 + }, + { + "start": 17693.36, + "end": 17695.5, + "probability": 0.7289 + }, + { + "start": 17696.24, + "end": 17697.86, + "probability": 0.9963 + }, + { + "start": 17698.64, + "end": 17703.4, + "probability": 0.8652 + }, + { + "start": 17704.38, + "end": 17708.72, + "probability": 0.973 + }, + { + "start": 17709.92, + "end": 17710.62, + "probability": 0.4772 + }, + { + "start": 17710.68, + "end": 17711.3, + "probability": 0.5882 + }, + { + "start": 17711.4, + "end": 17712.76, + "probability": 0.9686 + }, + { + "start": 17713.42, + "end": 17716.22, + "probability": 0.9886 + }, + { + "start": 17719.72, + "end": 17721.24, + "probability": 0.9993 + }, + { + "start": 17721.78, + "end": 17723.44, + "probability": 0.9813 + }, + { + "start": 17724.44, + "end": 17725.46, + "probability": 0.7581 + }, + { + "start": 17726.28, + "end": 17732.38, + "probability": 0.9928 + }, + { + "start": 17734.32, + "end": 17735.26, + "probability": 0.3686 + }, + { + "start": 17738.44, + "end": 17742.3, + "probability": 0.9937 + }, + { + "start": 17743.32, + "end": 17746.22, + "probability": 0.9153 + }, + { + "start": 17747.08, + "end": 17749.04, + "probability": 0.9501 + }, + { + "start": 17749.82, + "end": 17751.36, + "probability": 0.9006 + }, + { + "start": 17753.42, + "end": 17754.64, + "probability": 0.6549 + }, + { + "start": 17755.16, + "end": 17760.26, + "probability": 0.6787 + }, + { + "start": 17762.38, + "end": 17765.14, + "probability": 0.9736 + }, + { + "start": 17766.26, + "end": 17768.52, + "probability": 0.9822 + }, + { + "start": 17769.3, + "end": 17771.92, + "probability": 0.6636 + }, + { + "start": 17773.2, + "end": 17775.82, + "probability": 0.7778 + }, + { + "start": 17776.42, + "end": 17777.24, + "probability": 0.9522 + }, + { + "start": 17777.34, + "end": 17781.62, + "probability": 0.8504 + }, + { + "start": 17782.28, + "end": 17787.48, + "probability": 0.9709 + }, + { + "start": 17787.54, + "end": 17789.52, + "probability": 0.9622 + }, + { + "start": 17789.54, + "end": 17791.7, + "probability": 0.7405 + }, + { + "start": 17792.9, + "end": 17796.9, + "probability": 0.9895 + }, + { + "start": 17797.64, + "end": 17799.21, + "probability": 0.9998 + }, + { + "start": 17800.06, + "end": 17801.28, + "probability": 0.992 + }, + { + "start": 17802.52, + "end": 17804.96, + "probability": 0.9136 + }, + { + "start": 17805.9, + "end": 17808.52, + "probability": 0.7042 + }, + { + "start": 17809.82, + "end": 17811.9, + "probability": 0.9971 + }, + { + "start": 17812.68, + "end": 17813.76, + "probability": 0.9331 + }, + { + "start": 17814.44, + "end": 17815.72, + "probability": 0.7725 + }, + { + "start": 17815.82, + "end": 17820.98, + "probability": 0.994 + }, + { + "start": 17821.78, + "end": 17823.26, + "probability": 0.6887 + }, + { + "start": 17823.86, + "end": 17824.4, + "probability": 0.7665 + }, + { + "start": 17825.02, + "end": 17825.86, + "probability": 0.954 + }, + { + "start": 17826.74, + "end": 17829.72, + "probability": 0.9715 + }, + { + "start": 17831.12, + "end": 17833.94, + "probability": 0.9862 + }, + { + "start": 17834.9, + "end": 17839.7, + "probability": 0.9834 + }, + { + "start": 17840.8, + "end": 17841.78, + "probability": 0.8106 + }, + { + "start": 17842.9, + "end": 17847.12, + "probability": 0.9704 + }, + { + "start": 17848.68, + "end": 17849.88, + "probability": 0.0362 + }, + { + "start": 17852.98, + "end": 17853.64, + "probability": 0.111 + }, + { + "start": 17853.64, + "end": 17855.9, + "probability": 0.2541 + }, + { + "start": 17856.44, + "end": 17857.82, + "probability": 0.0339 + }, + { + "start": 17858.06, + "end": 17858.88, + "probability": 0.5385 + }, + { + "start": 17858.88, + "end": 17859.88, + "probability": 0.5781 + }, + { + "start": 17859.98, + "end": 17859.98, + "probability": 0.0408 + }, + { + "start": 17859.98, + "end": 17859.98, + "probability": 0.0961 + }, + { + "start": 17859.98, + "end": 17859.98, + "probability": 0.3464 + }, + { + "start": 17859.98, + "end": 17859.98, + "probability": 0.4529 + }, + { + "start": 17859.98, + "end": 17861.12, + "probability": 0.9307 + }, + { + "start": 17862.16, + "end": 17862.8, + "probability": 0.3794 + }, + { + "start": 17863.12, + "end": 17863.4, + "probability": 0.0426 + }, + { + "start": 17863.4, + "end": 17863.4, + "probability": 0.2274 + }, + { + "start": 17863.4, + "end": 17863.4, + "probability": 0.1482 + }, + { + "start": 17863.4, + "end": 17863.4, + "probability": 0.0244 + }, + { + "start": 17863.4, + "end": 17863.4, + "probability": 0.0255 + }, + { + "start": 17863.4, + "end": 17863.4, + "probability": 0.1549 + }, + { + "start": 17863.4, + "end": 17864.28, + "probability": 0.6981 + }, + { + "start": 17864.32, + "end": 17865.12, + "probability": 0.7814 + }, + { + "start": 17865.96, + "end": 17866.98, + "probability": 0.8942 + }, + { + "start": 17867.42, + "end": 17869.56, + "probability": 0.593 + }, + { + "start": 17870.44, + "end": 17874.36, + "probability": 0.9642 + }, + { + "start": 17875.8, + "end": 17878.04, + "probability": 0.8006 + }, + { + "start": 17878.46, + "end": 17880.3, + "probability": 0.8853 + }, + { + "start": 17881.92, + "end": 17882.72, + "probability": 0.9113 + }, + { + "start": 17883.36, + "end": 17884.55, + "probability": 0.998 + }, + { + "start": 17886.18, + "end": 17886.56, + "probability": 0.2014 + }, + { + "start": 17890.58, + "end": 17892.58, + "probability": 0.6874 + }, + { + "start": 17892.78, + "end": 17893.66, + "probability": 0.8426 + }, + { + "start": 17896.34, + "end": 17901.96, + "probability": 0.6996 + }, + { + "start": 17902.84, + "end": 17904.14, + "probability": 0.9851 + }, + { + "start": 17904.24, + "end": 17907.28, + "probability": 0.9839 + }, + { + "start": 17907.5, + "end": 17907.58, + "probability": 0.1261 + }, + { + "start": 17907.72, + "end": 17908.52, + "probability": 0.7659 + }, + { + "start": 17909.38, + "end": 17909.54, + "probability": 0.3518 + }, + { + "start": 17909.62, + "end": 17910.9, + "probability": 0.9595 + }, + { + "start": 17911.08, + "end": 17913.18, + "probability": 0.7762 + }, + { + "start": 17915.2, + "end": 17915.3, + "probability": 0.0 + }, + { + "start": 17915.3, + "end": 17916.49, + "probability": 0.6084 + }, + { + "start": 17917.14, + "end": 17920.14, + "probability": 0.9488 + }, + { + "start": 17920.68, + "end": 17925.4, + "probability": 0.9495 + }, + { + "start": 17926.14, + "end": 17930.62, + "probability": 0.9918 + }, + { + "start": 17931.9, + "end": 17933.88, + "probability": 0.998 + }, + { + "start": 17934.82, + "end": 17937.44, + "probability": 0.9386 + }, + { + "start": 17937.7, + "end": 17939.06, + "probability": 0.9963 + }, + { + "start": 17939.34, + "end": 17941.44, + "probability": 0.9395 + }, + { + "start": 17942.28, + "end": 17944.96, + "probability": 0.9854 + }, + { + "start": 17944.96, + "end": 17947.98, + "probability": 0.9602 + }, + { + "start": 17948.64, + "end": 17952.04, + "probability": 0.9509 + }, + { + "start": 17952.84, + "end": 17954.24, + "probability": 0.9397 + }, + { + "start": 17954.88, + "end": 17956.56, + "probability": 0.9635 + }, + { + "start": 17957.86, + "end": 17961.27, + "probability": 0.9856 + }, + { + "start": 17962.48, + "end": 17965.2, + "probability": 0.7122 + }, + { + "start": 17966.26, + "end": 17967.06, + "probability": 0.5693 + }, + { + "start": 17967.16, + "end": 17968.42, + "probability": 0.9744 + }, + { + "start": 17969.68, + "end": 17971.16, + "probability": 0.9784 + }, + { + "start": 17971.86, + "end": 17974.34, + "probability": 0.8291 + }, + { + "start": 17974.34, + "end": 17976.5, + "probability": 0.9858 + }, + { + "start": 17976.8, + "end": 17982.72, + "probability": 0.9895 + }, + { + "start": 17982.72, + "end": 17987.36, + "probability": 0.9956 + }, + { + "start": 17988.26, + "end": 17991.2, + "probability": 0.9985 + }, + { + "start": 17991.92, + "end": 17992.02, + "probability": 0.0725 + }, + { + "start": 17992.1, + "end": 17994.1, + "probability": 0.7649 + }, + { + "start": 17994.68, + "end": 17994.84, + "probability": 0.2593 + }, + { + "start": 17995.26, + "end": 17998.16, + "probability": 0.9556 + }, + { + "start": 17999.58, + "end": 18002.2, + "probability": 0.3776 + }, + { + "start": 18002.96, + "end": 18005.2, + "probability": 0.9937 + }, + { + "start": 18005.76, + "end": 18008.68, + "probability": 0.8373 + }, + { + "start": 18008.7, + "end": 18011.38, + "probability": 0.9847 + }, + { + "start": 18011.94, + "end": 18013.76, + "probability": 0.9226 + }, + { + "start": 18014.32, + "end": 18020.16, + "probability": 0.8879 + }, + { + "start": 18020.46, + "end": 18023.22, + "probability": 0.5806 + }, + { + "start": 18024.32, + "end": 18027.04, + "probability": 0.7149 + }, + { + "start": 18027.18, + "end": 18027.48, + "probability": 0.9288 + }, + { + "start": 18037.1, + "end": 18037.16, + "probability": 0.163 + }, + { + "start": 18037.16, + "end": 18037.6, + "probability": 0.1668 + }, + { + "start": 18037.72, + "end": 18037.88, + "probability": 0.0172 + }, + { + "start": 18037.88, + "end": 18038.02, + "probability": 0.015 + }, + { + "start": 18038.1, + "end": 18038.2, + "probability": 0.0209 + }, + { + "start": 18050.08, + "end": 18051.14, + "probability": 0.3932 + }, + { + "start": 18058.66, + "end": 18060.0, + "probability": 0.1326 + }, + { + "start": 18061.56, + "end": 18069.62, + "probability": 0.9778 + }, + { + "start": 18081.9, + "end": 18085.42, + "probability": 0.6665 + }, + { + "start": 18086.36, + "end": 18088.32, + "probability": 0.9979 + }, + { + "start": 18090.44, + "end": 18096.86, + "probability": 0.9907 + }, + { + "start": 18098.22, + "end": 18105.62, + "probability": 0.7359 + }, + { + "start": 18106.68, + "end": 18110.92, + "probability": 0.9746 + }, + { + "start": 18112.24, + "end": 18118.28, + "probability": 0.9833 + }, + { + "start": 18118.5, + "end": 18120.6, + "probability": 0.5282 + }, + { + "start": 18120.64, + "end": 18123.16, + "probability": 0.8505 + }, + { + "start": 18124.16, + "end": 18126.8, + "probability": 0.5684 + }, + { + "start": 18129.08, + "end": 18138.4, + "probability": 0.821 + }, + { + "start": 18139.14, + "end": 18141.14, + "probability": 0.8056 + }, + { + "start": 18142.8, + "end": 18145.94, + "probability": 0.7511 + }, + { + "start": 18146.66, + "end": 18149.58, + "probability": 0.9924 + }, + { + "start": 18150.32, + "end": 18153.22, + "probability": 0.9343 + }, + { + "start": 18154.4, + "end": 18158.62, + "probability": 0.8035 + }, + { + "start": 18159.72, + "end": 18161.72, + "probability": 0.9501 + }, + { + "start": 18162.44, + "end": 18164.54, + "probability": 0.9105 + }, + { + "start": 18164.68, + "end": 18166.1, + "probability": 0.657 + }, + { + "start": 18166.22, + "end": 18168.48, + "probability": 0.968 + }, + { + "start": 18169.28, + "end": 18173.14, + "probability": 0.9401 + }, + { + "start": 18176.08, + "end": 18176.6, + "probability": 0.6718 + }, + { + "start": 18177.3, + "end": 18181.54, + "probability": 0.9729 + }, + { + "start": 18182.0, + "end": 18189.62, + "probability": 0.9893 + }, + { + "start": 18190.66, + "end": 18201.76, + "probability": 0.9726 + }, + { + "start": 18202.56, + "end": 18207.64, + "probability": 0.9619 + }, + { + "start": 18208.7, + "end": 18212.54, + "probability": 0.9727 + }, + { + "start": 18214.88, + "end": 18218.04, + "probability": 0.9053 + }, + { + "start": 18219.12, + "end": 18223.78, + "probability": 0.9121 + }, + { + "start": 18225.0, + "end": 18234.74, + "probability": 0.9382 + }, + { + "start": 18235.82, + "end": 18239.7, + "probability": 0.7306 + }, + { + "start": 18240.16, + "end": 18248.08, + "probability": 0.9913 + }, + { + "start": 18249.66, + "end": 18255.42, + "probability": 0.9127 + }, + { + "start": 18256.28, + "end": 18262.4, + "probability": 0.9866 + }, + { + "start": 18264.56, + "end": 18270.96, + "probability": 0.995 + }, + { + "start": 18270.97, + "end": 18279.72, + "probability": 0.9691 + }, + { + "start": 18280.1, + "end": 18283.46, + "probability": 0.7736 + }, + { + "start": 18284.1, + "end": 18285.56, + "probability": 0.7577 + }, + { + "start": 18287.22, + "end": 18293.86, + "probability": 0.9388 + }, + { + "start": 18295.64, + "end": 18304.0, + "probability": 0.9892 + }, + { + "start": 18304.86, + "end": 18308.28, + "probability": 0.9623 + }, + { + "start": 18309.6, + "end": 18311.4, + "probability": 0.9365 + }, + { + "start": 18312.32, + "end": 18313.94, + "probability": 0.9083 + }, + { + "start": 18314.72, + "end": 18318.9, + "probability": 0.9976 + }, + { + "start": 18318.9, + "end": 18323.61, + "probability": 0.9673 + }, + { + "start": 18324.66, + "end": 18329.32, + "probability": 0.9932 + }, + { + "start": 18329.4, + "end": 18334.88, + "probability": 0.7938 + }, + { + "start": 18335.68, + "end": 18337.72, + "probability": 0.7677 + }, + { + "start": 18338.84, + "end": 18345.56, + "probability": 0.9912 + }, + { + "start": 18348.74, + "end": 18350.56, + "probability": 0.0478 + }, + { + "start": 18350.56, + "end": 18360.52, + "probability": 0.9971 + }, + { + "start": 18361.6, + "end": 18364.85, + "probability": 0.9868 + }, + { + "start": 18365.74, + "end": 18367.56, + "probability": 0.9626 + }, + { + "start": 18368.24, + "end": 18370.48, + "probability": 0.995 + }, + { + "start": 18371.4, + "end": 18372.54, + "probability": 0.9246 + }, + { + "start": 18373.38, + "end": 18378.88, + "probability": 0.8953 + }, + { + "start": 18378.88, + "end": 18381.14, + "probability": 0.9917 + }, + { + "start": 18381.94, + "end": 18390.7, + "probability": 0.9947 + }, + { + "start": 18391.92, + "end": 18393.0, + "probability": 0.9976 + }, + { + "start": 18393.86, + "end": 18397.96, + "probability": 0.8001 + }, + { + "start": 18398.58, + "end": 18402.8, + "probability": 0.9348 + }, + { + "start": 18403.02, + "end": 18403.98, + "probability": 0.6657 + }, + { + "start": 18404.12, + "end": 18408.54, + "probability": 0.8243 + }, + { + "start": 18409.36, + "end": 18410.44, + "probability": 0.8548 + }, + { + "start": 18411.34, + "end": 18413.36, + "probability": 0.8567 + }, + { + "start": 18414.04, + "end": 18418.44, + "probability": 0.6264 + }, + { + "start": 18419.14, + "end": 18424.16, + "probability": 0.8332 + }, + { + "start": 18424.56, + "end": 18430.3, + "probability": 0.984 + }, + { + "start": 18430.42, + "end": 18430.82, + "probability": 0.5025 + }, + { + "start": 18431.88, + "end": 18435.84, + "probability": 0.7282 + }, + { + "start": 18436.44, + "end": 18438.14, + "probability": 0.7725 + }, + { + "start": 18438.64, + "end": 18440.7, + "probability": 0.936 + }, + { + "start": 18441.74, + "end": 18444.04, + "probability": 0.7916 + }, + { + "start": 18446.28, + "end": 18448.7, + "probability": 0.5838 + }, + { + "start": 18449.54, + "end": 18451.64, + "probability": 0.1203 + }, + { + "start": 18451.98, + "end": 18452.86, + "probability": 0.0395 + }, + { + "start": 18453.54, + "end": 18455.78, + "probability": 0.1196 + }, + { + "start": 18458.18, + "end": 18461.44, + "probability": 0.0299 + }, + { + "start": 18462.42, + "end": 18462.52, + "probability": 0.0288 + }, + { + "start": 18464.04, + "end": 18466.86, + "probability": 0.1048 + }, + { + "start": 18468.81, + "end": 18470.7, + "probability": 0.0586 + }, + { + "start": 18470.7, + "end": 18470.7, + "probability": 0.0614 + }, + { + "start": 18471.62, + "end": 18472.46, + "probability": 0.1382 + }, + { + "start": 18474.36, + "end": 18475.2, + "probability": 0.053 + }, + { + "start": 18489.39, + "end": 18489.72, + "probability": 0.5062 + }, + { + "start": 18513.8, + "end": 18516.18, + "probability": 0.8669 + }, + { + "start": 18517.26, + "end": 18520.72, + "probability": 0.9868 + }, + { + "start": 18522.34, + "end": 18523.48, + "probability": 0.8833 + }, + { + "start": 18524.32, + "end": 18526.82, + "probability": 0.8215 + }, + { + "start": 18527.0, + "end": 18528.36, + "probability": 0.8914 + }, + { + "start": 18528.76, + "end": 18529.78, + "probability": 0.6665 + }, + { + "start": 18530.26, + "end": 18531.1, + "probability": 0.8346 + }, + { + "start": 18531.44, + "end": 18532.16, + "probability": 0.8599 + }, + { + "start": 18532.24, + "end": 18533.16, + "probability": 0.7768 + }, + { + "start": 18534.1, + "end": 18536.88, + "probability": 0.9174 + }, + { + "start": 18537.04, + "end": 18539.48, + "probability": 0.994 + }, + { + "start": 18539.48, + "end": 18541.58, + "probability": 0.9992 + }, + { + "start": 18542.78, + "end": 18545.48, + "probability": 0.9518 + }, + { + "start": 18546.46, + "end": 18548.46, + "probability": 0.8396 + }, + { + "start": 18549.1, + "end": 18550.36, + "probability": 0.8629 + }, + { + "start": 18551.18, + "end": 18552.54, + "probability": 0.8383 + }, + { + "start": 18554.28, + "end": 18558.52, + "probability": 0.6644 + }, + { + "start": 18560.82, + "end": 18561.78, + "probability": 0.8188 + }, + { + "start": 18561.92, + "end": 18562.8, + "probability": 0.7694 + }, + { + "start": 18564.38, + "end": 18566.18, + "probability": 0.9928 + }, + { + "start": 18566.76, + "end": 18568.28, + "probability": 0.7832 + }, + { + "start": 18569.2, + "end": 18570.74, + "probability": 0.9604 + }, + { + "start": 18571.02, + "end": 18572.72, + "probability": 0.9846 + }, + { + "start": 18573.24, + "end": 18573.84, + "probability": 0.4807 + }, + { + "start": 18574.64, + "end": 18575.58, + "probability": 0.8989 + }, + { + "start": 18576.58, + "end": 18577.84, + "probability": 0.9807 + }, + { + "start": 18578.36, + "end": 18579.16, + "probability": 0.7882 + }, + { + "start": 18580.94, + "end": 18582.16, + "probability": 0.8647 + }, + { + "start": 18582.88, + "end": 18583.58, + "probability": 0.4378 + }, + { + "start": 18583.62, + "end": 18584.3, + "probability": 0.9106 + }, + { + "start": 18584.68, + "end": 18584.82, + "probability": 0.5952 + }, + { + "start": 18584.82, + "end": 18585.8, + "probability": 0.7833 + }, + { + "start": 18586.72, + "end": 18589.92, + "probability": 0.9883 + }, + { + "start": 18591.48, + "end": 18594.28, + "probability": 0.6696 + }, + { + "start": 18594.86, + "end": 18598.26, + "probability": 0.976 + }, + { + "start": 18601.46, + "end": 18603.72, + "probability": 0.873 + }, + { + "start": 18603.72, + "end": 18606.4, + "probability": 0.9988 + }, + { + "start": 18607.02, + "end": 18608.1, + "probability": 0.8749 + }, + { + "start": 18608.62, + "end": 18610.3, + "probability": 0.98 + }, + { + "start": 18610.8, + "end": 18611.34, + "probability": 0.7637 + }, + { + "start": 18611.64, + "end": 18615.32, + "probability": 0.876 + }, + { + "start": 18615.46, + "end": 18617.1, + "probability": 0.8585 + }, + { + "start": 18617.3, + "end": 18618.09, + "probability": 0.3209 + }, + { + "start": 18618.84, + "end": 18619.74, + "probability": 0.7754 + }, + { + "start": 18620.08, + "end": 18622.86, + "probability": 0.5572 + }, + { + "start": 18623.3, + "end": 18625.12, + "probability": 0.7065 + }, + { + "start": 18625.7, + "end": 18626.7, + "probability": 0.7976 + }, + { + "start": 18627.16, + "end": 18629.22, + "probability": 0.9485 + }, + { + "start": 18629.58, + "end": 18630.32, + "probability": 0.9656 + }, + { + "start": 18630.4, + "end": 18632.07, + "probability": 0.9336 + }, + { + "start": 18632.36, + "end": 18636.02, + "probability": 0.769 + }, + { + "start": 18636.52, + "end": 18638.22, + "probability": 0.9754 + }, + { + "start": 18639.54, + "end": 18640.67, + "probability": 0.7531 + }, + { + "start": 18641.16, + "end": 18642.18, + "probability": 0.9203 + }, + { + "start": 18642.66, + "end": 18643.56, + "probability": 0.5557 + }, + { + "start": 18643.8, + "end": 18645.48, + "probability": 0.5234 + }, + { + "start": 18645.58, + "end": 18646.6, + "probability": 0.9389 + }, + { + "start": 18647.04, + "end": 18647.78, + "probability": 0.7103 + }, + { + "start": 18647.98, + "end": 18648.28, + "probability": 0.4872 + }, + { + "start": 18648.28, + "end": 18648.8, + "probability": 0.3081 + }, + { + "start": 18648.96, + "end": 18653.68, + "probability": 0.1342 + }, + { + "start": 18654.4, + "end": 18654.58, + "probability": 0.1076 + }, + { + "start": 18654.58, + "end": 18655.68, + "probability": 0.1958 + }, + { + "start": 18655.68, + "end": 18656.64, + "probability": 0.4479 + }, + { + "start": 18656.9, + "end": 18658.98, + "probability": 0.8601 + }, + { + "start": 18659.1, + "end": 18659.62, + "probability": 0.9181 + }, + { + "start": 18659.8, + "end": 18660.8, + "probability": 0.9258 + }, + { + "start": 18661.08, + "end": 18664.94, + "probability": 0.9619 + }, + { + "start": 18665.3, + "end": 18665.82, + "probability": 0.6601 + }, + { + "start": 18665.86, + "end": 18667.56, + "probability": 0.9725 + }, + { + "start": 18667.94, + "end": 18669.1, + "probability": 0.8358 + }, + { + "start": 18670.0, + "end": 18671.9, + "probability": 0.8372 + }, + { + "start": 18672.14, + "end": 18673.34, + "probability": 0.8885 + }, + { + "start": 18673.8, + "end": 18674.76, + "probability": 0.9631 + }, + { + "start": 18675.74, + "end": 18678.72, + "probability": 0.0808 + }, + { + "start": 18679.88, + "end": 18680.35, + "probability": 0.4769 + }, + { + "start": 18682.46, + "end": 18683.12, + "probability": 0.0789 + }, + { + "start": 18690.62, + "end": 18692.54, + "probability": 0.6568 + }, + { + "start": 18692.72, + "end": 18695.02, + "probability": 0.2154 + }, + { + "start": 18696.16, + "end": 18697.52, + "probability": 0.7942 + }, + { + "start": 18698.92, + "end": 18699.66, + "probability": 0.6614 + }, + { + "start": 18700.54, + "end": 18701.14, + "probability": 0.966 + }, + { + "start": 18701.76, + "end": 18703.58, + "probability": 0.8474 + }, + { + "start": 18704.24, + "end": 18704.84, + "probability": 0.5282 + }, + { + "start": 18706.29, + "end": 18708.8, + "probability": 0.0405 + }, + { + "start": 18708.84, + "end": 18710.32, + "probability": 0.0208 + }, + { + "start": 18717.26, + "end": 18718.74, + "probability": 0.079 + }, + { + "start": 18719.88, + "end": 18722.72, + "probability": 0.1123 + }, + { + "start": 18723.84, + "end": 18726.22, + "probability": 0.6514 + }, + { + "start": 18726.34, + "end": 18729.26, + "probability": 0.7002 + }, + { + "start": 18729.72, + "end": 18732.06, + "probability": 0.8476 + }, + { + "start": 18732.24, + "end": 18734.18, + "probability": 0.9718 + }, + { + "start": 18737.16, + "end": 18746.68, + "probability": 0.4222 + }, + { + "start": 18748.08, + "end": 18751.26, + "probability": 0.6683 + }, + { + "start": 18752.32, + "end": 18753.8, + "probability": 0.8729 + }, + { + "start": 18754.52, + "end": 18756.54, + "probability": 0.9624 + }, + { + "start": 18756.54, + "end": 18757.94, + "probability": 0.7681 + }, + { + "start": 18758.4, + "end": 18761.68, + "probability": 0.7975 + }, + { + "start": 18761.72, + "end": 18763.8, + "probability": 0.9039 + }, + { + "start": 18764.12, + "end": 18764.42, + "probability": 0.9456 + }, + { + "start": 18766.42, + "end": 18768.94, + "probability": 0.2143 + }, + { + "start": 18772.37, + "end": 18774.64, + "probability": 0.0437 + }, + { + "start": 18776.9, + "end": 18781.22, + "probability": 0.0332 + }, + { + "start": 18784.21, + "end": 18784.9, + "probability": 0.0179 + }, + { + "start": 18839.66, + "end": 18842.54, + "probability": 0.5054 + }, + { + "start": 18843.22, + "end": 18846.74, + "probability": 0.9861 + }, + { + "start": 18847.5, + "end": 18847.76, + "probability": 0.5625 + }, + { + "start": 18848.4, + "end": 18851.54, + "probability": 0.9243 + }, + { + "start": 18852.64, + "end": 18853.26, + "probability": 0.6807 + }, + { + "start": 18854.16, + "end": 18857.36, + "probability": 0.9487 + }, + { + "start": 18857.88, + "end": 18860.64, + "probability": 0.9569 + }, + { + "start": 18860.98, + "end": 18862.66, + "probability": 0.9683 + }, + { + "start": 18863.08, + "end": 18867.12, + "probability": 0.9907 + }, + { + "start": 18867.3, + "end": 18867.74, + "probability": 0.777 + }, + { + "start": 18868.18, + "end": 18869.42, + "probability": 0.9553 + }, + { + "start": 18872.16, + "end": 18873.08, + "probability": 0.8957 + }, + { + "start": 18873.58, + "end": 18875.36, + "probability": 0.8158 + }, + { + "start": 18875.42, + "end": 18876.82, + "probability": 0.8282 + }, + { + "start": 18877.48, + "end": 18882.36, + "probability": 0.9945 + }, + { + "start": 18882.76, + "end": 18884.14, + "probability": 0.8481 + }, + { + "start": 18884.6, + "end": 18886.16, + "probability": 0.985 + }, + { + "start": 18887.5, + "end": 18888.94, + "probability": 0.9823 + }, + { + "start": 18889.5, + "end": 18891.1, + "probability": 0.9888 + }, + { + "start": 18891.22, + "end": 18892.88, + "probability": 0.9857 + }, + { + "start": 18894.58, + "end": 18900.86, + "probability": 0.989 + }, + { + "start": 18902.26, + "end": 18902.46, + "probability": 0.3386 + }, + { + "start": 18902.46, + "end": 18906.28, + "probability": 0.9831 + }, + { + "start": 18906.36, + "end": 18907.3, + "probability": 0.9041 + }, + { + "start": 18907.38, + "end": 18908.14, + "probability": 0.7183 + }, + { + "start": 18908.82, + "end": 18913.74, + "probability": 0.9742 + }, + { + "start": 18913.88, + "end": 18918.12, + "probability": 0.993 + }, + { + "start": 18918.82, + "end": 18920.68, + "probability": 0.9968 + }, + { + "start": 18920.82, + "end": 18921.96, + "probability": 0.781 + }, + { + "start": 18922.14, + "end": 18923.22, + "probability": 0.9727 + }, + { + "start": 18923.96, + "end": 18926.42, + "probability": 0.9326 + }, + { + "start": 18928.94, + "end": 18931.56, + "probability": 0.9732 + }, + { + "start": 18931.74, + "end": 18934.54, + "probability": 0.9756 + }, + { + "start": 18934.56, + "end": 18937.4, + "probability": 0.9937 + }, + { + "start": 18938.4, + "end": 18938.9, + "probability": 0.784 + }, + { + "start": 18938.92, + "end": 18941.06, + "probability": 0.9576 + }, + { + "start": 18941.14, + "end": 18941.56, + "probability": 0.8684 + }, + { + "start": 18941.74, + "end": 18942.74, + "probability": 0.8567 + }, + { + "start": 18944.48, + "end": 18945.56, + "probability": 0.9619 + }, + { + "start": 18945.74, + "end": 18950.28, + "probability": 0.9102 + }, + { + "start": 18950.76, + "end": 18950.76, + "probability": 0.6616 + }, + { + "start": 18950.76, + "end": 18951.66, + "probability": 0.7276 + }, + { + "start": 18951.8, + "end": 18952.64, + "probability": 0.7558 + }, + { + "start": 18953.52, + "end": 18954.3, + "probability": 0.261 + }, + { + "start": 18954.32, + "end": 18958.28, + "probability": 0.9655 + }, + { + "start": 18959.4, + "end": 18959.88, + "probability": 0.7106 + }, + { + "start": 18960.02, + "end": 18963.46, + "probability": 0.9814 + }, + { + "start": 18964.44, + "end": 18964.92, + "probability": 0.8511 + }, + { + "start": 18965.32, + "end": 18970.08, + "probability": 0.9517 + }, + { + "start": 18970.6, + "end": 18977.2, + "probability": 0.9902 + }, + { + "start": 18983.2, + "end": 18984.0, + "probability": 0.844 + }, + { + "start": 18984.94, + "end": 18988.36, + "probability": 0.9515 + }, + { + "start": 18988.48, + "end": 18989.12, + "probability": 0.9419 + }, + { + "start": 18992.5, + "end": 18993.96, + "probability": 0.9401 + }, + { + "start": 18994.04, + "end": 18997.5, + "probability": 0.9766 + }, + { + "start": 18997.86, + "end": 18999.04, + "probability": 0.9782 + }, + { + "start": 18999.2, + "end": 19002.7, + "probability": 0.9698 + }, + { + "start": 19003.24, + "end": 19004.72, + "probability": 0.9634 + }, + { + "start": 19006.1, + "end": 19007.44, + "probability": 0.9922 + }, + { + "start": 19007.6, + "end": 19008.28, + "probability": 0.9258 + }, + { + "start": 19008.4, + "end": 19009.14, + "probability": 0.8342 + }, + { + "start": 19009.46, + "end": 19010.86, + "probability": 0.9719 + }, + { + "start": 19011.62, + "end": 19015.84, + "probability": 0.9945 + }, + { + "start": 19016.64, + "end": 19018.92, + "probability": 0.9944 + }, + { + "start": 19018.92, + "end": 19022.0, + "probability": 0.8901 + }, + { + "start": 19022.64, + "end": 19026.18, + "probability": 0.9784 + }, + { + "start": 19026.4, + "end": 19029.58, + "probability": 0.8765 + }, + { + "start": 19030.46, + "end": 19035.54, + "probability": 0.9981 + }, + { + "start": 19036.04, + "end": 19041.28, + "probability": 0.9933 + }, + { + "start": 19041.9, + "end": 19043.24, + "probability": 0.8393 + }, + { + "start": 19044.28, + "end": 19045.12, + "probability": 0.5947 + }, + { + "start": 19045.84, + "end": 19048.08, + "probability": 0.9058 + }, + { + "start": 19048.42, + "end": 19050.4, + "probability": 0.9735 + }, + { + "start": 19051.22, + "end": 19052.0, + "probability": 0.7946 + }, + { + "start": 19052.84, + "end": 19053.42, + "probability": 0.9901 + }, + { + "start": 19054.0, + "end": 19056.38, + "probability": 0.9427 + }, + { + "start": 19056.8, + "end": 19057.86, + "probability": 0.9607 + }, + { + "start": 19058.0, + "end": 19059.14, + "probability": 0.4525 + }, + { + "start": 19059.18, + "end": 19060.8, + "probability": 0.8757 + }, + { + "start": 19062.12, + "end": 19063.6, + "probability": 0.9316 + }, + { + "start": 19064.26, + "end": 19067.16, + "probability": 0.9912 + }, + { + "start": 19067.6, + "end": 19071.36, + "probability": 0.9927 + }, + { + "start": 19072.52, + "end": 19074.74, + "probability": 0.8028 + }, + { + "start": 19075.3, + "end": 19077.28, + "probability": 0.9415 + }, + { + "start": 19077.48, + "end": 19079.3, + "probability": 0.392 + }, + { + "start": 19080.5, + "end": 19081.51, + "probability": 0.4851 + }, + { + "start": 19081.74, + "end": 19082.44, + "probability": 0.7977 + }, + { + "start": 19082.84, + "end": 19084.04, + "probability": 0.9626 + }, + { + "start": 19085.6, + "end": 19086.68, + "probability": 0.9945 + }, + { + "start": 19087.2, + "end": 19091.06, + "probability": 0.9907 + }, + { + "start": 19091.54, + "end": 19098.34, + "probability": 0.9449 + }, + { + "start": 19099.66, + "end": 19106.49, + "probability": 0.9827 + }, + { + "start": 19106.86, + "end": 19108.38, + "probability": 0.9993 + }, + { + "start": 19108.96, + "end": 19114.18, + "probability": 0.9935 + }, + { + "start": 19115.34, + "end": 19118.56, + "probability": 0.9979 + }, + { + "start": 19119.26, + "end": 19123.26, + "probability": 0.9985 + }, + { + "start": 19123.8, + "end": 19125.04, + "probability": 0.9673 + }, + { + "start": 19125.08, + "end": 19128.56, + "probability": 0.7788 + }, + { + "start": 19128.72, + "end": 19130.94, + "probability": 0.9196 + }, + { + "start": 19131.6, + "end": 19132.32, + "probability": 0.5797 + }, + { + "start": 19133.02, + "end": 19133.22, + "probability": 0.9259 + }, + { + "start": 19134.24, + "end": 19137.16, + "probability": 0.8977 + }, + { + "start": 19137.86, + "end": 19140.3, + "probability": 0.8772 + }, + { + "start": 19162.08, + "end": 19162.08, + "probability": 0.6861 + }, + { + "start": 19162.08, + "end": 19162.72, + "probability": 0.4255 + }, + { + "start": 19174.9, + "end": 19175.32, + "probability": 0.3803 + }, + { + "start": 19175.32, + "end": 19176.9, + "probability": 0.7082 + }, + { + "start": 19179.42, + "end": 19183.52, + "probability": 0.9409 + }, + { + "start": 19184.22, + "end": 19186.74, + "probability": 0.9985 + }, + { + "start": 19186.74, + "end": 19189.44, + "probability": 0.8006 + }, + { + "start": 19189.52, + "end": 19189.68, + "probability": 0.8751 + }, + { + "start": 19194.32, + "end": 19195.08, + "probability": 0.8576 + }, + { + "start": 19195.4, + "end": 19203.46, + "probability": 0.9893 + }, + { + "start": 19204.14, + "end": 19205.64, + "probability": 0.9675 + }, + { + "start": 19207.16, + "end": 19209.66, + "probability": 0.9895 + }, + { + "start": 19210.94, + "end": 19214.72, + "probability": 0.9968 + }, + { + "start": 19215.82, + "end": 19218.6, + "probability": 0.9145 + }, + { + "start": 19220.5, + "end": 19221.5, + "probability": 0.6976 + }, + { + "start": 19222.3, + "end": 19226.0, + "probability": 0.9969 + }, + { + "start": 19226.76, + "end": 19228.84, + "probability": 0.9951 + }, + { + "start": 19229.5, + "end": 19234.0, + "probability": 0.9797 + }, + { + "start": 19235.58, + "end": 19236.4, + "probability": 0.5353 + }, + { + "start": 19237.1, + "end": 19240.42, + "probability": 0.995 + }, + { + "start": 19242.16, + "end": 19247.6, + "probability": 0.9557 + }, + { + "start": 19248.48, + "end": 19252.12, + "probability": 0.9927 + }, + { + "start": 19253.86, + "end": 19256.9, + "probability": 0.9837 + }, + { + "start": 19257.46, + "end": 19261.26, + "probability": 0.9738 + }, + { + "start": 19261.58, + "end": 19265.54, + "probability": 0.9894 + }, + { + "start": 19267.28, + "end": 19270.36, + "probability": 0.9941 + }, + { + "start": 19270.36, + "end": 19274.32, + "probability": 0.9976 + }, + { + "start": 19275.08, + "end": 19279.36, + "probability": 0.9852 + }, + { + "start": 19279.54, + "end": 19280.14, + "probability": 0.9771 + }, + { + "start": 19281.02, + "end": 19284.82, + "probability": 0.9682 + }, + { + "start": 19285.52, + "end": 19287.34, + "probability": 0.9439 + }, + { + "start": 19288.84, + "end": 19290.92, + "probability": 0.9847 + }, + { + "start": 19291.2, + "end": 19293.92, + "probability": 0.9932 + }, + { + "start": 19294.58, + "end": 19295.22, + "probability": 0.9005 + }, + { + "start": 19296.38, + "end": 19299.72, + "probability": 0.9561 + }, + { + "start": 19300.58, + "end": 19302.22, + "probability": 0.9968 + }, + { + "start": 19302.8, + "end": 19303.38, + "probability": 0.9847 + }, + { + "start": 19306.02, + "end": 19311.82, + "probability": 0.9849 + }, + { + "start": 19312.1, + "end": 19315.3, + "probability": 0.9945 + }, + { + "start": 19317.06, + "end": 19317.4, + "probability": 0.4535 + }, + { + "start": 19317.78, + "end": 19320.42, + "probability": 0.9894 + }, + { + "start": 19320.42, + "end": 19323.4, + "probability": 0.9495 + }, + { + "start": 19324.14, + "end": 19326.88, + "probability": 0.9956 + }, + { + "start": 19327.96, + "end": 19329.06, + "probability": 0.5112 + }, + { + "start": 19329.2, + "end": 19333.34, + "probability": 0.8003 + }, + { + "start": 19333.38, + "end": 19334.92, + "probability": 0.7644 + }, + { + "start": 19335.72, + "end": 19341.14, + "probability": 0.9595 + }, + { + "start": 19341.72, + "end": 19344.4, + "probability": 0.9957 + }, + { + "start": 19345.14, + "end": 19346.86, + "probability": 0.9842 + }, + { + "start": 19348.82, + "end": 19349.78, + "probability": 0.5128 + }, + { + "start": 19350.6, + "end": 19352.4, + "probability": 0.913 + }, + { + "start": 19353.0, + "end": 19354.74, + "probability": 0.9831 + }, + { + "start": 19356.26, + "end": 19359.52, + "probability": 0.8728 + }, + { + "start": 19360.36, + "end": 19367.34, + "probability": 0.9956 + }, + { + "start": 19368.18, + "end": 19371.76, + "probability": 0.9319 + }, + { + "start": 19372.52, + "end": 19375.08, + "probability": 0.8926 + }, + { + "start": 19378.02, + "end": 19379.56, + "probability": 0.959 + }, + { + "start": 19380.2, + "end": 19380.38, + "probability": 0.2725 + }, + { + "start": 19380.54, + "end": 19385.66, + "probability": 0.9651 + }, + { + "start": 19385.66, + "end": 19388.6, + "probability": 0.9473 + }, + { + "start": 19389.96, + "end": 19393.22, + "probability": 0.9908 + }, + { + "start": 19393.26, + "end": 19393.8, + "probability": 0.5687 + }, + { + "start": 19394.42, + "end": 19396.6, + "probability": 0.8012 + }, + { + "start": 19397.68, + "end": 19399.36, + "probability": 0.9907 + }, + { + "start": 19399.92, + "end": 19401.88, + "probability": 0.9904 + }, + { + "start": 19402.86, + "end": 19404.2, + "probability": 0.7594 + }, + { + "start": 19405.64, + "end": 19407.4, + "probability": 0.9851 + }, + { + "start": 19407.6, + "end": 19409.23, + "probability": 0.7233 + }, + { + "start": 19434.26, + "end": 19434.98, + "probability": 0.4711 + }, + { + "start": 19436.04, + "end": 19436.48, + "probability": 0.8289 + }, + { + "start": 19438.14, + "end": 19442.28, + "probability": 0.8293 + }, + { + "start": 19442.88, + "end": 19444.68, + "probability": 0.9094 + }, + { + "start": 19444.78, + "end": 19447.2, + "probability": 0.7376 + }, + { + "start": 19447.78, + "end": 19449.12, + "probability": 0.9821 + }, + { + "start": 19449.98, + "end": 19450.44, + "probability": 0.9685 + }, + { + "start": 19451.12, + "end": 19455.1, + "probability": 0.9724 + }, + { + "start": 19455.3, + "end": 19457.48, + "probability": 0.7848 + }, + { + "start": 19457.64, + "end": 19462.66, + "probability": 0.8911 + }, + { + "start": 19463.42, + "end": 19465.37, + "probability": 0.9954 + }, + { + "start": 19466.2, + "end": 19468.72, + "probability": 0.918 + }, + { + "start": 19468.82, + "end": 19471.54, + "probability": 0.9792 + }, + { + "start": 19473.32, + "end": 19477.84, + "probability": 0.9744 + }, + { + "start": 19478.62, + "end": 19479.4, + "probability": 0.7661 + }, + { + "start": 19479.56, + "end": 19481.32, + "probability": 0.9935 + }, + { + "start": 19482.2, + "end": 19485.22, + "probability": 0.9775 + }, + { + "start": 19485.8, + "end": 19488.68, + "probability": 0.8977 + }, + { + "start": 19489.38, + "end": 19492.34, + "probability": 0.9742 + }, + { + "start": 19492.46, + "end": 19493.18, + "probability": 0.8769 + }, + { + "start": 19493.48, + "end": 19494.08, + "probability": 0.9148 + }, + { + "start": 19494.18, + "end": 19499.12, + "probability": 0.9866 + }, + { + "start": 19499.34, + "end": 19503.12, + "probability": 0.9967 + }, + { + "start": 19503.88, + "end": 19507.0, + "probability": 0.9742 + }, + { + "start": 19507.54, + "end": 19508.68, + "probability": 0.7102 + }, + { + "start": 19509.46, + "end": 19512.02, + "probability": 0.5316 + }, + { + "start": 19512.42, + "end": 19515.1, + "probability": 0.9711 + }, + { + "start": 19515.42, + "end": 19515.9, + "probability": 0.7685 + }, + { + "start": 19516.04, + "end": 19519.6, + "probability": 0.9961 + }, + { + "start": 19520.44, + "end": 19523.2, + "probability": 0.9321 + }, + { + "start": 19523.34, + "end": 19523.98, + "probability": 0.7422 + }, + { + "start": 19524.48, + "end": 19527.26, + "probability": 0.9207 + }, + { + "start": 19527.66, + "end": 19531.88, + "probability": 0.9966 + }, + { + "start": 19532.06, + "end": 19533.64, + "probability": 0.7827 + }, + { + "start": 19533.86, + "end": 19535.04, + "probability": 0.9624 + }, + { + "start": 19535.48, + "end": 19537.58, + "probability": 0.9132 + }, + { + "start": 19538.14, + "end": 19541.03, + "probability": 0.8718 + }, + { + "start": 19541.5, + "end": 19542.98, + "probability": 0.9255 + }, + { + "start": 19543.78, + "end": 19547.96, + "probability": 0.9629 + }, + { + "start": 19548.66, + "end": 19552.22, + "probability": 0.7896 + }, + { + "start": 19552.78, + "end": 19558.78, + "probability": 0.96 + }, + { + "start": 19559.18, + "end": 19562.06, + "probability": 0.8492 + }, + { + "start": 19562.62, + "end": 19566.58, + "probability": 0.967 + }, + { + "start": 19566.62, + "end": 19567.86, + "probability": 0.9092 + }, + { + "start": 19567.94, + "end": 19569.08, + "probability": 0.9471 + }, + { + "start": 19569.66, + "end": 19571.92, + "probability": 0.8539 + }, + { + "start": 19572.72, + "end": 19575.06, + "probability": 0.5344 + }, + { + "start": 19575.14, + "end": 19577.1, + "probability": 0.9673 + }, + { + "start": 19577.12, + "end": 19578.1, + "probability": 0.9781 + }, + { + "start": 19578.66, + "end": 19585.08, + "probability": 0.8759 + }, + { + "start": 19586.56, + "end": 19588.18, + "probability": 0.7129 + }, + { + "start": 19588.5, + "end": 19593.78, + "probability": 0.9178 + }, + { + "start": 19594.38, + "end": 19597.48, + "probability": 0.9806 + }, + { + "start": 19597.52, + "end": 19599.08, + "probability": 0.8781 + }, + { + "start": 19599.12, + "end": 19600.54, + "probability": 0.8749 + }, + { + "start": 19605.24, + "end": 19605.24, + "probability": 0.46 + }, + { + "start": 19605.24, + "end": 19606.76, + "probability": 0.5219 + }, + { + "start": 19606.84, + "end": 19607.54, + "probability": 0.8123 + }, + { + "start": 19607.64, + "end": 19611.12, + "probability": 0.9555 + }, + { + "start": 19611.8, + "end": 19613.92, + "probability": 0.8741 + }, + { + "start": 19613.92, + "end": 19616.01, + "probability": 0.3653 + }, + { + "start": 19616.36, + "end": 19617.46, + "probability": 0.9324 + }, + { + "start": 19617.8, + "end": 19622.54, + "probability": 0.9925 + }, + { + "start": 19623.14, + "end": 19626.16, + "probability": 0.9817 + }, + { + "start": 19626.5, + "end": 19629.5, + "probability": 0.9949 + }, + { + "start": 19629.5, + "end": 19629.8, + "probability": 0.6249 + }, + { + "start": 19629.8, + "end": 19630.86, + "probability": 0.5166 + }, + { + "start": 19631.22, + "end": 19636.46, + "probability": 0.9381 + }, + { + "start": 19636.84, + "end": 19637.68, + "probability": 0.4818 + }, + { + "start": 19637.7, + "end": 19640.14, + "probability": 0.5368 + }, + { + "start": 19640.32, + "end": 19640.78, + "probability": 0.9196 + }, + { + "start": 19640.96, + "end": 19642.78, + "probability": 0.9282 + }, + { + "start": 19643.7, + "end": 19645.44, + "probability": 0.7584 + }, + { + "start": 19646.84, + "end": 19648.6, + "probability": 0.9949 + }, + { + "start": 19649.48, + "end": 19650.72, + "probability": 0.4724 + }, + { + "start": 19651.34, + "end": 19653.32, + "probability": 0.7398 + }, + { + "start": 19654.72, + "end": 19657.0, + "probability": 0.8081 + }, + { + "start": 19657.68, + "end": 19660.2, + "probability": 0.4243 + }, + { + "start": 19662.76, + "end": 19663.14, + "probability": 0.0115 + }, + { + "start": 19664.76, + "end": 19665.16, + "probability": 0.7095 + }, + { + "start": 19666.84, + "end": 19667.88, + "probability": 0.8589 + }, + { + "start": 19668.6, + "end": 19670.58, + "probability": 0.7793 + }, + { + "start": 19671.4, + "end": 19676.58, + "probability": 0.6792 + }, + { + "start": 19678.94, + "end": 19679.48, + "probability": 0.9909 + }, + { + "start": 19680.88, + "end": 19681.54, + "probability": 0.8429 + }, + { + "start": 19684.02, + "end": 19685.7, + "probability": 0.9085 + }, + { + "start": 19686.54, + "end": 19687.04, + "probability": 0.9891 + }, + { + "start": 19688.84, + "end": 19689.16, + "probability": 0.6787 + }, + { + "start": 19692.7, + "end": 19694.72, + "probability": 0.5381 + }, + { + "start": 19695.96, + "end": 19697.0, + "probability": 0.5454 + }, + { + "start": 19703.32, + "end": 19703.72, + "probability": 0.7778 + }, + { + "start": 19705.72, + "end": 19706.36, + "probability": 0.5992 + }, + { + "start": 19707.54, + "end": 19708.1, + "probability": 0.9886 + }, + { + "start": 19708.7, + "end": 19709.44, + "probability": 0.8178 + }, + { + "start": 19710.6, + "end": 19711.18, + "probability": 0.9818 + }, + { + "start": 19712.32, + "end": 19713.18, + "probability": 0.9688 + }, + { + "start": 19714.22, + "end": 19716.84, + "probability": 0.9852 + }, + { + "start": 19718.34, + "end": 19718.86, + "probability": 0.9304 + }, + { + "start": 19722.08, + "end": 19722.88, + "probability": 0.6664 + }, + { + "start": 19724.04, + "end": 19724.6, + "probability": 0.8481 + }, + { + "start": 19725.48, + "end": 19726.32, + "probability": 0.8531 + }, + { + "start": 19727.32, + "end": 19727.82, + "probability": 0.967 + }, + { + "start": 19728.9, + "end": 19729.56, + "probability": 0.9457 + }, + { + "start": 19731.66, + "end": 19732.24, + "probability": 0.9829 + }, + { + "start": 19733.46, + "end": 19734.42, + "probability": 0.9111 + }, + { + "start": 19735.28, + "end": 19741.8, + "probability": 0.7969 + }, + { + "start": 19743.54, + "end": 19744.1, + "probability": 0.7306 + }, + { + "start": 19744.9, + "end": 19745.7, + "probability": 0.9712 + }, + { + "start": 19748.26, + "end": 19750.44, + "probability": 0.9749 + }, + { + "start": 19751.48, + "end": 19752.0, + "probability": 0.8955 + }, + { + "start": 19753.2, + "end": 19754.16, + "probability": 0.9882 + }, + { + "start": 19756.16, + "end": 19757.1, + "probability": 0.926 + }, + { + "start": 19759.34, + "end": 19760.22, + "probability": 0.9662 + }, + { + "start": 19761.72, + "end": 19762.62, + "probability": 0.4937 + }, + { + "start": 19763.94, + "end": 19765.98, + "probability": 0.3296 + }, + { + "start": 19767.96, + "end": 19769.84, + "probability": 0.5592 + }, + { + "start": 19770.8, + "end": 19771.3, + "probability": 0.8179 + }, + { + "start": 19772.62, + "end": 19773.38, + "probability": 0.8072 + }, + { + "start": 19775.2, + "end": 19775.8, + "probability": 0.9974 + }, + { + "start": 19776.5, + "end": 19777.3, + "probability": 0.9133 + }, + { + "start": 19778.12, + "end": 19778.72, + "probability": 0.964 + }, + { + "start": 19779.56, + "end": 19780.38, + "probability": 0.9154 + }, + { + "start": 19785.3, + "end": 19786.24, + "probability": 0.8682 + }, + { + "start": 19787.58, + "end": 19788.46, + "probability": 0.8516 + }, + { + "start": 19789.76, + "end": 19791.84, + "probability": 0.5309 + }, + { + "start": 19792.58, + "end": 19792.76, + "probability": 0.5814 + }, + { + "start": 19800.04, + "end": 19800.9, + "probability": 0.55 + }, + { + "start": 19803.56, + "end": 19804.54, + "probability": 0.7417 + }, + { + "start": 19806.94, + "end": 19807.76, + "probability": 0.7954 + }, + { + "start": 19810.52, + "end": 19811.18, + "probability": 0.9757 + }, + { + "start": 19812.06, + "end": 19813.04, + "probability": 0.7652 + }, + { + "start": 19813.62, + "end": 19814.08, + "probability": 0.8855 + }, + { + "start": 19814.98, + "end": 19817.16, + "probability": 0.869 + }, + { + "start": 19818.28, + "end": 19819.14, + "probability": 0.7054 + }, + { + "start": 19820.3, + "end": 19821.2, + "probability": 0.8923 + }, + { + "start": 19822.32, + "end": 19823.62, + "probability": 0.0024 + }, + { + "start": 19825.32, + "end": 19827.54, + "probability": 0.304 + }, + { + "start": 19828.18, + "end": 19829.04, + "probability": 0.7374 + }, + { + "start": 19830.26, + "end": 19830.9, + "probability": 0.9233 + }, + { + "start": 19832.38, + "end": 19833.78, + "probability": 0.8432 + }, + { + "start": 19834.87, + "end": 19837.8, + "probability": 0.9697 + }, + { + "start": 19839.52, + "end": 19840.44, + "probability": 0.9821 + }, + { + "start": 19842.18, + "end": 19842.68, + "probability": 0.9805 + }, + { + "start": 19843.68, + "end": 19844.64, + "probability": 0.9126 + }, + { + "start": 19847.94, + "end": 19848.64, + "probability": 0.9836 + }, + { + "start": 19849.68, + "end": 19850.22, + "probability": 0.4689 + }, + { + "start": 19853.12, + "end": 19854.08, + "probability": 0.8638 + }, + { + "start": 19855.62, + "end": 19856.66, + "probability": 0.579 + }, + { + "start": 19859.04, + "end": 19861.3, + "probability": 0.8856 + }, + { + "start": 19862.44, + "end": 19862.9, + "probability": 0.8547 + }, + { + "start": 19863.76, + "end": 19864.92, + "probability": 0.7903 + }, + { + "start": 19868.98, + "end": 19869.44, + "probability": 0.7502 + }, + { + "start": 19870.95, + "end": 19873.22, + "probability": 0.7248 + }, + { + "start": 19875.08, + "end": 19876.8, + "probability": 0.6606 + }, + { + "start": 19879.9, + "end": 19881.78, + "probability": 0.8274 + }, + { + "start": 19883.1, + "end": 19884.26, + "probability": 0.5046 + }, + { + "start": 19885.22, + "end": 19887.2, + "probability": 0.909 + }, + { + "start": 19890.06, + "end": 19892.26, + "probability": 0.9535 + }, + { + "start": 19894.14, + "end": 19897.22, + "probability": 0.7961 + }, + { + "start": 19899.3, + "end": 19901.36, + "probability": 0.89 + }, + { + "start": 19905.2, + "end": 19907.84, + "probability": 0.9581 + }, + { + "start": 19908.76, + "end": 19909.24, + "probability": 0.9634 + }, + { + "start": 19909.92, + "end": 19910.72, + "probability": 0.8186 + }, + { + "start": 19911.76, + "end": 19911.86, + "probability": 0.9832 + }, + { + "start": 19913.36, + "end": 19914.62, + "probability": 0.7997 + }, + { + "start": 19915.54, + "end": 19915.98, + "probability": 0.884 + }, + { + "start": 19917.7, + "end": 19918.44, + "probability": 0.7353 + }, + { + "start": 19920.54, + "end": 19921.86, + "probability": 0.7939 + }, + { + "start": 19923.24, + "end": 19923.74, + "probability": 0.9862 + }, + { + "start": 19924.98, + "end": 19925.56, + "probability": 0.8975 + }, + { + "start": 19926.84, + "end": 19927.5, + "probability": 0.9945 + }, + { + "start": 19928.62, + "end": 19929.22, + "probability": 0.923 + }, + { + "start": 19938.58, + "end": 19939.14, + "probability": 0.7459 + }, + { + "start": 19940.92, + "end": 19941.48, + "probability": 0.7491 + }, + { + "start": 19942.8, + "end": 19944.72, + "probability": 0.583 + }, + { + "start": 19945.84, + "end": 19947.04, + "probability": 0.7417 + }, + { + "start": 19949.24, + "end": 19949.74, + "probability": 0.9746 + }, + { + "start": 19951.88, + "end": 19952.38, + "probability": 0.9468 + }, + { + "start": 19953.08, + "end": 19955.36, + "probability": 0.9556 + }, + { + "start": 19956.08, + "end": 19956.6, + "probability": 0.9562 + }, + { + "start": 19957.76, + "end": 19958.54, + "probability": 0.8405 + }, + { + "start": 19960.44, + "end": 19961.5, + "probability": 0.0203 + }, + { + "start": 19962.12, + "end": 19962.68, + "probability": 0.086 + }, + { + "start": 19978.08, + "end": 19978.38, + "probability": 0.5234 + }, + { + "start": 19979.14, + "end": 19979.9, + "probability": 0.7722 + }, + { + "start": 19981.67, + "end": 19984.22, + "probability": 0.9274 + }, + { + "start": 19984.94, + "end": 19987.1, + "probability": 0.8158 + }, + { + "start": 19988.38, + "end": 19988.86, + "probability": 0.9497 + }, + { + "start": 19989.54, + "end": 19990.4, + "probability": 0.7492 + }, + { + "start": 19992.45, + "end": 19992.52, + "probability": 0.0156 + }, + { + "start": 19996.78, + "end": 19997.86, + "probability": 0.4668 + }, + { + "start": 19998.56, + "end": 19998.88, + "probability": 0.5541 + }, + { + "start": 20000.4, + "end": 20001.34, + "probability": 0.5694 + }, + { + "start": 20002.94, + "end": 20005.0, + "probability": 0.9583 + }, + { + "start": 20005.8, + "end": 20008.08, + "probability": 0.91 + }, + { + "start": 20013.74, + "end": 20015.92, + "probability": 0.8837 + }, + { + "start": 20017.18, + "end": 20017.7, + "probability": 0.9935 + }, + { + "start": 20020.18, + "end": 20020.82, + "probability": 0.7867 + }, + { + "start": 20021.74, + "end": 20023.68, + "probability": 0.1454 + }, + { + "start": 20026.16, + "end": 20027.68, + "probability": 0.5272 + }, + { + "start": 20029.0, + "end": 20029.86, + "probability": 0.7841 + }, + { + "start": 20030.62, + "end": 20031.14, + "probability": 0.9538 + }, + { + "start": 20031.92, + "end": 20032.78, + "probability": 0.8861 + }, + { + "start": 20033.86, + "end": 20034.36, + "probability": 0.949 + }, + { + "start": 20035.0, + "end": 20036.18, + "probability": 0.9589 + }, + { + "start": 20037.92, + "end": 20038.5, + "probability": 0.9707 + }, + { + "start": 20039.9, + "end": 20043.06, + "probability": 0.9038 + }, + { + "start": 20046.22, + "end": 20049.32, + "probability": 0.9673 + }, + { + "start": 20051.34, + "end": 20051.88, + "probability": 0.9714 + }, + { + "start": 20052.7, + "end": 20053.42, + "probability": 0.7859 + }, + { + "start": 20054.78, + "end": 20057.84, + "probability": 0.662 + }, + { + "start": 20063.42, + "end": 20063.96, + "probability": 0.7551 + }, + { + "start": 20065.3, + "end": 20066.28, + "probability": 0.5129 + }, + { + "start": 20070.64, + "end": 20071.36, + "probability": 0.8089 + }, + { + "start": 20072.62, + "end": 20073.62, + "probability": 0.7981 + }, + { + "start": 20075.54, + "end": 20076.16, + "probability": 0.995 + }, + { + "start": 20077.88, + "end": 20078.88, + "probability": 0.6242 + }, + { + "start": 20079.98, + "end": 20080.44, + "probability": 0.7378 + }, + { + "start": 20081.02, + "end": 20081.68, + "probability": 0.8145 + }, + { + "start": 20084.26, + "end": 20084.56, + "probability": 0.649 + }, + { + "start": 20085.58, + "end": 20086.32, + "probability": 0.6928 + }, + { + "start": 20087.58, + "end": 20089.34, + "probability": 0.5156 + }, + { + "start": 20090.7, + "end": 20091.3, + "probability": 0.9679 + }, + { + "start": 20100.06, + "end": 20100.88, + "probability": 0.6269 + }, + { + "start": 20102.36, + "end": 20102.86, + "probability": 0.9585 + }, + { + "start": 20104.14, + "end": 20107.22, + "probability": 0.7004 + }, + { + "start": 20110.28, + "end": 20111.72, + "probability": 0.9162 + }, + { + "start": 20112.5, + "end": 20113.52, + "probability": 0.9674 + }, + { + "start": 20114.22, + "end": 20115.76, + "probability": 0.7927 + }, + { + "start": 20118.8, + "end": 20119.26, + "probability": 0.9893 + }, + { + "start": 20119.96, + "end": 20120.86, + "probability": 0.8789 + }, + { + "start": 20121.78, + "end": 20122.3, + "probability": 0.97 + }, + { + "start": 20123.68, + "end": 20124.44, + "probability": 0.9718 + }, + { + "start": 20126.58, + "end": 20127.02, + "probability": 0.9886 + }, + { + "start": 20131.14, + "end": 20131.8, + "probability": 0.5013 + }, + { + "start": 20133.32, + "end": 20133.84, + "probability": 0.7307 + }, + { + "start": 20135.14, + "end": 20135.94, + "probability": 0.6224 + }, + { + "start": 20137.3, + "end": 20137.9, + "probability": 0.9614 + }, + { + "start": 20138.96, + "end": 20139.72, + "probability": 0.8311 + }, + { + "start": 20143.4, + "end": 20147.22, + "probability": 0.7624 + }, + { + "start": 20148.34, + "end": 20148.78, + "probability": 0.8047 + }, + { + "start": 20149.58, + "end": 20150.46, + "probability": 0.8687 + }, + { + "start": 20152.26, + "end": 20153.76, + "probability": 0.9601 + }, + { + "start": 20154.44, + "end": 20154.72, + "probability": 0.9165 + }, + { + "start": 20155.42, + "end": 20156.46, + "probability": 0.9836 + }, + { + "start": 20157.52, + "end": 20157.94, + "probability": 0.9839 + }, + { + "start": 20159.38, + "end": 20160.08, + "probability": 0.9713 + }, + { + "start": 20161.28, + "end": 20161.68, + "probability": 0.9929 + }, + { + "start": 20162.7, + "end": 20163.92, + "probability": 0.9443 + }, + { + "start": 20165.2, + "end": 20167.2, + "probability": 0.7349 + }, + { + "start": 20170.7, + "end": 20171.78, + "probability": 0.7889 + }, + { + "start": 20172.54, + "end": 20175.64, + "probability": 0.7549 + }, + { + "start": 20176.84, + "end": 20179.3, + "probability": 0.8481 + }, + { + "start": 20181.02, + "end": 20181.66, + "probability": 0.9543 + }, + { + "start": 20183.3, + "end": 20184.02, + "probability": 0.7214 + }, + { + "start": 20185.08, + "end": 20185.64, + "probability": 0.9525 + }, + { + "start": 20186.3, + "end": 20187.3, + "probability": 0.9554 + }, + { + "start": 20188.74, + "end": 20189.24, + "probability": 0.959 + }, + { + "start": 20190.18, + "end": 20191.02, + "probability": 0.7902 + }, + { + "start": 20192.06, + "end": 20194.2, + "probability": 0.9854 + }, + { + "start": 20195.52, + "end": 20198.52, + "probability": 0.923 + }, + { + "start": 20199.62, + "end": 20200.04, + "probability": 0.8672 + }, + { + "start": 20201.52, + "end": 20202.34, + "probability": 0.7805 + }, + { + "start": 20204.46, + "end": 20206.38, + "probability": 0.9291 + }, + { + "start": 20208.0, + "end": 20210.2, + "probability": 0.8928 + }, + { + "start": 20211.46, + "end": 20211.94, + "probability": 0.9787 + }, + { + "start": 20214.72, + "end": 20217.08, + "probability": 0.8587 + }, + { + "start": 20218.2, + "end": 20219.16, + "probability": 0.4003 + }, + { + "start": 20220.4, + "end": 20221.24, + "probability": 0.9438 + }, + { + "start": 20221.76, + "end": 20222.44, + "probability": 0.6431 + }, + { + "start": 20224.8, + "end": 20226.1, + "probability": 0.686 + }, + { + "start": 20227.66, + "end": 20228.5, + "probability": 0.6624 + }, + { + "start": 20230.0, + "end": 20230.56, + "probability": 0.9657 + }, + { + "start": 20232.96, + "end": 20235.74, + "probability": 0.9138 + }, + { + "start": 20237.22, + "end": 20237.72, + "probability": 0.535 + }, + { + "start": 20239.86, + "end": 20240.9, + "probability": 0.9169 + }, + { + "start": 20243.36, + "end": 20244.94, + "probability": 0.8716 + }, + { + "start": 20246.98, + "end": 20249.1, + "probability": 0.9198 + }, + { + "start": 20250.56, + "end": 20251.92, + "probability": 0.9792 + }, + { + "start": 20255.34, + "end": 20256.0, + "probability": 0.635 + }, + { + "start": 20256.7, + "end": 20257.58, + "probability": 0.8302 + }, + { + "start": 20261.9, + "end": 20262.82, + "probability": 0.6849 + }, + { + "start": 20263.62, + "end": 20263.92, + "probability": 0.5984 + }, + { + "start": 20266.34, + "end": 20267.22, + "probability": 0.6784 + }, + { + "start": 20271.94, + "end": 20272.48, + "probability": 0.8075 + }, + { + "start": 20275.58, + "end": 20276.32, + "probability": 0.1396 + }, + { + "start": 20277.46, + "end": 20277.88, + "probability": 0.8027 + }, + { + "start": 20279.48, + "end": 20280.58, + "probability": 0.7701 + }, + { + "start": 20281.84, + "end": 20282.48, + "probability": 0.981 + }, + { + "start": 20284.46, + "end": 20285.6, + "probability": 0.7565 + }, + { + "start": 20286.9, + "end": 20287.32, + "probability": 0.9651 + }, + { + "start": 20289.36, + "end": 20290.24, + "probability": 0.4003 + }, + { + "start": 20292.98, + "end": 20296.8, + "probability": 0.3479 + }, + { + "start": 20300.14, + "end": 20301.7, + "probability": 0.0123 + }, + { + "start": 20313.48, + "end": 20314.66, + "probability": 0.2777 + }, + { + "start": 20316.36, + "end": 20318.16, + "probability": 0.7616 + }, + { + "start": 20319.64, + "end": 20320.04, + "probability": 0.9494 + }, + { + "start": 20323.28, + "end": 20324.0, + "probability": 0.5164 + }, + { + "start": 20324.58, + "end": 20325.04, + "probability": 0.7122 + }, + { + "start": 20326.84, + "end": 20327.64, + "probability": 0.7032 + }, + { + "start": 20328.92, + "end": 20329.56, + "probability": 0.9873 + }, + { + "start": 20332.04, + "end": 20333.04, + "probability": 0.619 + }, + { + "start": 20334.12, + "end": 20334.74, + "probability": 0.9321 + }, + { + "start": 20337.14, + "end": 20338.06, + "probability": 0.417 + }, + { + "start": 20338.92, + "end": 20339.44, + "probability": 0.908 + }, + { + "start": 20341.96, + "end": 20342.56, + "probability": 0.8794 + }, + { + "start": 20343.2, + "end": 20345.28, + "probability": 0.8922 + }, + { + "start": 20345.76, + "end": 20348.42, + "probability": 0.7919 + }, + { + "start": 20350.44, + "end": 20352.48, + "probability": 0.9381 + }, + { + "start": 20353.68, + "end": 20355.54, + "probability": 0.9792 + }, + { + "start": 20356.5, + "end": 20358.94, + "probability": 0.5341 + }, + { + "start": 20360.34, + "end": 20361.24, + "probability": 0.798 + }, + { + "start": 20362.0, + "end": 20362.6, + "probability": 0.8161 + }, + { + "start": 20365.86, + "end": 20370.0, + "probability": 0.9927 + }, + { + "start": 20371.52, + "end": 20371.62, + "probability": 0.454 + }, + { + "start": 20372.7, + "end": 20372.94, + "probability": 0.4031 + }, + { + "start": 20373.02, + "end": 20373.94, + "probability": 0.6545 + }, + { + "start": 20373.98, + "end": 20375.28, + "probability": 0.6617 + }, + { + "start": 20400.54, + "end": 20402.4, + "probability": 0.0485 + }, + { + "start": 20409.16, + "end": 20411.1, + "probability": 0.0082 + }, + { + "start": 20499.5, + "end": 20503.52, + "probability": 0.9793 + }, + { + "start": 20503.64, + "end": 20504.32, + "probability": 0.6986 + }, + { + "start": 20504.96, + "end": 20506.24, + "probability": 0.9824 + }, + { + "start": 20507.3, + "end": 20508.36, + "probability": 0.1913 + }, + { + "start": 20509.14, + "end": 20509.26, + "probability": 0.224 + }, + { + "start": 20509.26, + "end": 20510.82, + "probability": 0.9347 + }, + { + "start": 20512.98, + "end": 20514.02, + "probability": 0.8249 + }, + { + "start": 20514.28, + "end": 20517.32, + "probability": 0.7188 + }, + { + "start": 20517.56, + "end": 20518.28, + "probability": 0.2381 + }, + { + "start": 20518.46, + "end": 20520.82, + "probability": 0.882 + }, + { + "start": 20520.88, + "end": 20521.96, + "probability": 0.8701 + }, + { + "start": 20522.36, + "end": 20523.62, + "probability": 0.6116 + }, + { + "start": 20524.48, + "end": 20526.48, + "probability": 0.9915 + }, + { + "start": 20527.04, + "end": 20527.56, + "probability": 0.9071 + }, + { + "start": 20527.92, + "end": 20528.94, + "probability": 0.6349 + }, + { + "start": 20529.66, + "end": 20531.02, + "probability": 0.6801 + }, + { + "start": 20531.58, + "end": 20532.6, + "probability": 0.6434 + }, + { + "start": 20532.84, + "end": 20538.04, + "probability": 0.9465 + }, + { + "start": 20538.38, + "end": 20539.04, + "probability": 0.9636 + }, + { + "start": 20539.44, + "end": 20540.3, + "probability": 0.9283 + }, + { + "start": 20540.8, + "end": 20543.0, + "probability": 0.9923 + }, + { + "start": 20543.08, + "end": 20547.38, + "probability": 0.994 + }, + { + "start": 20548.34, + "end": 20554.78, + "probability": 0.9958 + }, + { + "start": 20554.9, + "end": 20555.8, + "probability": 0.9439 + }, + { + "start": 20556.32, + "end": 20560.2, + "probability": 0.844 + }, + { + "start": 20560.46, + "end": 20564.26, + "probability": 0.9563 + }, + { + "start": 20564.84, + "end": 20569.8, + "probability": 0.9687 + }, + { + "start": 20570.24, + "end": 20572.74, + "probability": 0.9309 + }, + { + "start": 20573.64, + "end": 20574.74, + "probability": 0.8015 + }, + { + "start": 20575.26, + "end": 20579.9, + "probability": 0.894 + }, + { + "start": 20579.9, + "end": 20585.44, + "probability": 0.8862 + }, + { + "start": 20586.06, + "end": 20586.94, + "probability": 0.7634 + }, + { + "start": 20587.34, + "end": 20587.7, + "probability": 0.8879 + }, + { + "start": 20587.84, + "end": 20592.9, + "probability": 0.8605 + }, + { + "start": 20594.06, + "end": 20597.16, + "probability": 0.9867 + }, + { + "start": 20597.64, + "end": 20598.88, + "probability": 0.9137 + }, + { + "start": 20599.62, + "end": 20601.94, + "probability": 0.9736 + }, + { + "start": 20602.36, + "end": 20608.0, + "probability": 0.9344 + }, + { + "start": 20608.38, + "end": 20612.72, + "probability": 0.9718 + }, + { + "start": 20612.96, + "end": 20613.8, + "probability": 0.6679 + }, + { + "start": 20614.22, + "end": 20615.69, + "probability": 0.6024 + }, + { + "start": 20616.14, + "end": 20618.46, + "probability": 0.9966 + }, + { + "start": 20618.56, + "end": 20619.6, + "probability": 0.7974 + }, + { + "start": 20619.68, + "end": 20622.42, + "probability": 0.9912 + }, + { + "start": 20622.52, + "end": 20623.16, + "probability": 0.713 + }, + { + "start": 20624.02, + "end": 20624.12, + "probability": 0.4495 + }, + { + "start": 20624.24, + "end": 20626.2, + "probability": 0.9926 + }, + { + "start": 20626.2, + "end": 20629.57, + "probability": 0.96 + }, + { + "start": 20631.4, + "end": 20633.4, + "probability": 0.9738 + }, + { + "start": 20633.8, + "end": 20634.76, + "probability": 0.9926 + }, + { + "start": 20635.18, + "end": 20636.62, + "probability": 0.8658 + }, + { + "start": 20637.0, + "end": 20641.2, + "probability": 0.9741 + }, + { + "start": 20641.66, + "end": 20645.94, + "probability": 0.925 + }, + { + "start": 20646.54, + "end": 20648.08, + "probability": 0.7583 + }, + { + "start": 20648.52, + "end": 20650.58, + "probability": 0.7428 + }, + { + "start": 20650.96, + "end": 20651.58, + "probability": 0.449 + }, + { + "start": 20651.66, + "end": 20654.94, + "probability": 0.9712 + }, + { + "start": 20655.16, + "end": 20655.64, + "probability": 0.7892 + }, + { + "start": 20655.72, + "end": 20657.48, + "probability": 0.7352 + }, + { + "start": 20657.68, + "end": 20659.3, + "probability": 0.6573 + }, + { + "start": 20664.1, + "end": 20664.92, + "probability": 0.3586 + }, + { + "start": 20665.93, + "end": 20668.42, + "probability": 0.6316 + }, + { + "start": 20671.78, + "end": 20673.44, + "probability": 0.6677 + }, + { + "start": 20673.58, + "end": 20675.0, + "probability": 0.9512 + }, + { + "start": 20677.4, + "end": 20677.88, + "probability": 0.6387 + }, + { + "start": 20678.92, + "end": 20679.3, + "probability": 0.5212 + }, + { + "start": 20679.3, + "end": 20680.94, + "probability": 0.9071 + }, + { + "start": 20688.4, + "end": 20688.76, + "probability": 0.965 + }, + { + "start": 20689.6, + "end": 20690.08, + "probability": 0.5446 + }, + { + "start": 20693.08, + "end": 20695.34, + "probability": 0.7808 + }, + { + "start": 20695.84, + "end": 20696.73, + "probability": 0.9075 + }, + { + "start": 20696.98, + "end": 20698.98, + "probability": 0.5897 + }, + { + "start": 20699.68, + "end": 20703.74, + "probability": 0.9946 + }, + { + "start": 20703.88, + "end": 20704.78, + "probability": 0.6331 + }, + { + "start": 20705.24, + "end": 20706.94, + "probability": 0.9684 + }, + { + "start": 20707.86, + "end": 20709.82, + "probability": 0.9761 + }, + { + "start": 20710.38, + "end": 20713.78, + "probability": 0.9843 + }, + { + "start": 20714.0, + "end": 20717.16, + "probability": 0.9029 + }, + { + "start": 20718.22, + "end": 20721.34, + "probability": 0.8483 + }, + { + "start": 20721.38, + "end": 20726.18, + "probability": 0.8819 + }, + { + "start": 20727.44, + "end": 20730.8, + "probability": 0.9796 + }, + { + "start": 20730.9, + "end": 20734.92, + "probability": 0.9966 + }, + { + "start": 20735.0, + "end": 20735.46, + "probability": 0.2042 + }, + { + "start": 20735.98, + "end": 20739.24, + "probability": 0.934 + }, + { + "start": 20739.78, + "end": 20740.92, + "probability": 0.9633 + }, + { + "start": 20741.04, + "end": 20743.94, + "probability": 0.0503 + }, + { + "start": 20743.94, + "end": 20745.68, + "probability": 0.3397 + }, + { + "start": 20746.74, + "end": 20752.9, + "probability": 0.9286 + }, + { + "start": 20753.4, + "end": 20755.5, + "probability": 0.3135 + }, + { + "start": 20756.1, + "end": 20759.66, + "probability": 0.291 + }, + { + "start": 20759.74, + "end": 20760.8, + "probability": 0.8346 + }, + { + "start": 20760.98, + "end": 20762.44, + "probability": 0.9406 + }, + { + "start": 20762.82, + "end": 20764.56, + "probability": 0.7502 + }, + { + "start": 20765.16, + "end": 20769.6, + "probability": 0.9432 + }, + { + "start": 20770.2, + "end": 20771.9, + "probability": 0.8032 + }, + { + "start": 20772.38, + "end": 20776.02, + "probability": 0.8369 + }, + { + "start": 20776.96, + "end": 20779.1, + "probability": 0.9574 + }, + { + "start": 20779.28, + "end": 20783.12, + "probability": 0.9009 + }, + { + "start": 20784.24, + "end": 20787.08, + "probability": 0.9963 + }, + { + "start": 20787.08, + "end": 20792.94, + "probability": 0.9438 + }, + { + "start": 20793.44, + "end": 20794.0, + "probability": 0.5781 + }, + { + "start": 20795.8, + "end": 20798.78, + "probability": 0.979 + }, + { + "start": 20798.8, + "end": 20802.58, + "probability": 0.9678 + }, + { + "start": 20802.58, + "end": 20804.84, + "probability": 0.9902 + }, + { + "start": 20805.54, + "end": 20809.48, + "probability": 0.8076 + }, + { + "start": 20809.48, + "end": 20813.92, + "probability": 0.9943 + }, + { + "start": 20814.08, + "end": 20814.36, + "probability": 0.757 + }, + { + "start": 20815.28, + "end": 20818.36, + "probability": 0.9959 + }, + { + "start": 20818.84, + "end": 20823.42, + "probability": 0.822 + }, + { + "start": 20824.22, + "end": 20824.6, + "probability": 0.478 + }, + { + "start": 20825.12, + "end": 20828.02, + "probability": 0.7117 + }, + { + "start": 20828.02, + "end": 20830.9, + "probability": 0.9125 + }, + { + "start": 20831.2, + "end": 20836.2, + "probability": 0.9862 + }, + { + "start": 20837.32, + "end": 20838.9, + "probability": 0.8386 + }, + { + "start": 20839.12, + "end": 20842.2, + "probability": 0.957 + }, + { + "start": 20843.06, + "end": 20846.86, + "probability": 0.9871 + }, + { + "start": 20848.04, + "end": 20848.3, + "probability": 0.7833 + }, + { + "start": 20850.1, + "end": 20852.26, + "probability": 0.7302 + }, + { + "start": 20852.82, + "end": 20854.52, + "probability": 0.9712 + }, + { + "start": 20854.84, + "end": 20858.48, + "probability": 0.9528 + }, + { + "start": 20860.36, + "end": 20862.82, + "probability": 0.6281 + }, + { + "start": 20864.16, + "end": 20864.52, + "probability": 0.5321 + }, + { + "start": 20867.62, + "end": 20868.66, + "probability": 0.8931 + }, + { + "start": 20871.0, + "end": 20872.46, + "probability": 0.9956 + }, + { + "start": 20873.24, + "end": 20873.34, + "probability": 0.3208 + }, + { + "start": 20874.34, + "end": 20876.5, + "probability": 0.7151 + }, + { + "start": 20876.58, + "end": 20877.82, + "probability": 0.8961 + }, + { + "start": 20879.36, + "end": 20880.44, + "probability": 0.9742 + }, + { + "start": 20881.36, + "end": 20882.6, + "probability": 0.9698 + }, + { + "start": 20883.9, + "end": 20889.94, + "probability": 0.997 + }, + { + "start": 20891.24, + "end": 20892.42, + "probability": 0.7705 + }, + { + "start": 20893.8, + "end": 20894.7, + "probability": 0.9663 + }, + { + "start": 20896.66, + "end": 20897.02, + "probability": 0.5271 + }, + { + "start": 20897.78, + "end": 20903.18, + "probability": 0.9319 + }, + { + "start": 20903.28, + "end": 20905.48, + "probability": 0.7089 + }, + { + "start": 20906.32, + "end": 20911.7, + "probability": 0.9769 + }, + { + "start": 20912.68, + "end": 20913.78, + "probability": 0.866 + }, + { + "start": 20914.74, + "end": 20915.22, + "probability": 0.7637 + }, + { + "start": 20915.32, + "end": 20916.4, + "probability": 0.9705 + }, + { + "start": 20918.1, + "end": 20918.1, + "probability": 0.8394 + }, + { + "start": 20920.7, + "end": 20923.32, + "probability": 0.8169 + }, + { + "start": 20924.04, + "end": 20927.16, + "probability": 0.9197 + }, + { + "start": 20928.2, + "end": 20930.38, + "probability": 0.9669 + }, + { + "start": 20932.62, + "end": 20933.84, + "probability": 0.7077 + }, + { + "start": 20933.86, + "end": 20934.52, + "probability": 0.8569 + }, + { + "start": 20934.56, + "end": 20935.0, + "probability": 0.9865 + }, + { + "start": 20935.08, + "end": 20935.86, + "probability": 0.9729 + }, + { + "start": 20935.92, + "end": 20936.56, + "probability": 0.9886 + }, + { + "start": 20938.0, + "end": 20938.26, + "probability": 0.9653 + }, + { + "start": 20938.78, + "end": 20939.1, + "probability": 0.7336 + }, + { + "start": 20940.98, + "end": 20941.7, + "probability": 0.7396 + }, + { + "start": 20943.86, + "end": 20945.34, + "probability": 0.7915 + }, + { + "start": 20945.8, + "end": 20946.78, + "probability": 0.7048 + }, + { + "start": 20946.92, + "end": 20949.72, + "probability": 0.9624 + }, + { + "start": 20949.86, + "end": 20951.54, + "probability": 0.5551 + }, + { + "start": 20952.4, + "end": 20954.54, + "probability": 0.9977 + }, + { + "start": 20955.24, + "end": 20956.0, + "probability": 0.8127 + }, + { + "start": 20956.9, + "end": 20957.04, + "probability": 0.6472 + }, + { + "start": 20958.08, + "end": 20958.8, + "probability": 0.0101 + }, + { + "start": 20959.58, + "end": 20961.64, + "probability": 0.7572 + }, + { + "start": 20962.58, + "end": 20963.54, + "probability": 0.9062 + }, + { + "start": 20964.74, + "end": 20967.3, + "probability": 0.9884 + }, + { + "start": 20967.34, + "end": 20968.24, + "probability": 0.8584 + }, + { + "start": 20968.32, + "end": 20969.62, + "probability": 0.9546 + }, + { + "start": 20970.74, + "end": 20971.86, + "probability": 0.8239 + }, + { + "start": 20973.5, + "end": 20976.1, + "probability": 0.835 + }, + { + "start": 20976.76, + "end": 20977.44, + "probability": 0.7894 + }, + { + "start": 20977.56, + "end": 20980.05, + "probability": 0.8382 + }, + { + "start": 20981.0, + "end": 20981.48, + "probability": 0.8588 + }, + { + "start": 20981.6, + "end": 20982.22, + "probability": 0.7191 + }, + { + "start": 20982.68, + "end": 20983.1, + "probability": 0.8411 + }, + { + "start": 20983.18, + "end": 20984.16, + "probability": 0.8968 + }, + { + "start": 20985.36, + "end": 20985.4, + "probability": 0.8838 + }, + { + "start": 20986.12, + "end": 20987.6, + "probability": 0.9268 + }, + { + "start": 20987.98, + "end": 20989.46, + "probability": 0.7702 + }, + { + "start": 20989.84, + "end": 20991.38, + "probability": 0.9736 + }, + { + "start": 20992.0, + "end": 20992.78, + "probability": 0.8413 + }, + { + "start": 20993.48, + "end": 20995.9, + "probability": 0.9873 + }, + { + "start": 20995.98, + "end": 20996.98, + "probability": 0.9206 + }, + { + "start": 20997.48, + "end": 20999.2, + "probability": 0.6288 + }, + { + "start": 20999.72, + "end": 21001.94, + "probability": 0.6837 + }, + { + "start": 21002.14, + "end": 21002.6, + "probability": 0.8334 + }, + { + "start": 21004.31, + "end": 21006.78, + "probability": 0.9116 + }, + { + "start": 21007.6, + "end": 21009.0, + "probability": 0.9321 + }, + { + "start": 21010.2, + "end": 21012.56, + "probability": 0.4449 + }, + { + "start": 21013.34, + "end": 21014.36, + "probability": 0.9847 + }, + { + "start": 21014.98, + "end": 21015.86, + "probability": 0.8004 + }, + { + "start": 21018.36, + "end": 21019.96, + "probability": 0.3233 + }, + { + "start": 21020.04, + "end": 21023.4, + "probability": 0.6563 + }, + { + "start": 21025.02, + "end": 21028.48, + "probability": 0.4715 + }, + { + "start": 21031.02, + "end": 21033.26, + "probability": 0.9632 + }, + { + "start": 21034.06, + "end": 21037.82, + "probability": 0.9928 + }, + { + "start": 21037.82, + "end": 21040.4, + "probability": 0.9961 + }, + { + "start": 21040.98, + "end": 21043.96, + "probability": 0.9873 + }, + { + "start": 21044.62, + "end": 21048.58, + "probability": 0.9938 + }, + { + "start": 21048.58, + "end": 21051.66, + "probability": 0.9665 + }, + { + "start": 21052.16, + "end": 21052.96, + "probability": 0.9482 + }, + { + "start": 21053.4, + "end": 21053.84, + "probability": 0.529 + }, + { + "start": 21054.28, + "end": 21056.32, + "probability": 0.9965 + }, + { + "start": 21056.76, + "end": 21060.46, + "probability": 0.9773 + }, + { + "start": 21060.94, + "end": 21061.64, + "probability": 0.3425 + }, + { + "start": 21061.88, + "end": 21062.54, + "probability": 0.8758 + }, + { + "start": 21062.68, + "end": 21063.1, + "probability": 0.8414 + }, + { + "start": 21064.32, + "end": 21064.86, + "probability": 0.7109 + }, + { + "start": 21065.38, + "end": 21066.48, + "probability": 0.964 + }, + { + "start": 21066.78, + "end": 21068.34, + "probability": 0.9528 + }, + { + "start": 21068.38, + "end": 21069.68, + "probability": 0.8635 + }, + { + "start": 21069.78, + "end": 21069.88, + "probability": 0.7802 + }, + { + "start": 21076.22, + "end": 21081.21, + "probability": 0.8727 + }, + { + "start": 21081.38, + "end": 21082.6, + "probability": 0.7742 + }, + { + "start": 21083.06, + "end": 21083.42, + "probability": 0.6407 + }, + { + "start": 21084.94, + "end": 21086.3, + "probability": 0.2323 + }, + { + "start": 21091.18, + "end": 21091.76, + "probability": 0.7685 + }, + { + "start": 21092.66, + "end": 21093.74, + "probability": 0.6973 + }, + { + "start": 21094.92, + "end": 21096.62, + "probability": 0.675 + }, + { + "start": 21097.32, + "end": 21098.96, + "probability": 0.9747 + }, + { + "start": 21099.58, + "end": 21101.42, + "probability": 0.9914 + }, + { + "start": 21102.12, + "end": 21102.56, + "probability": 0.9561 + }, + { + "start": 21103.28, + "end": 21104.12, + "probability": 0.7022 + }, + { + "start": 21105.04, + "end": 21105.64, + "probability": 0.9985 + }, + { + "start": 21106.82, + "end": 21107.82, + "probability": 0.957 + }, + { + "start": 21108.5, + "end": 21110.72, + "probability": 0.9318 + }, + { + "start": 21113.54, + "end": 21114.12, + "probability": 0.737 + }, + { + "start": 21115.38, + "end": 21116.14, + "probability": 0.6097 + }, + { + "start": 21118.5, + "end": 21120.04, + "probability": 0.7487 + }, + { + "start": 21123.34, + "end": 21123.96, + "probability": 0.6853 + }, + { + "start": 21125.04, + "end": 21125.92, + "probability": 0.8577 + }, + { + "start": 21126.52, + "end": 21127.5, + "probability": 0.9839 + }, + { + "start": 21128.28, + "end": 21129.34, + "probability": 0.8844 + }, + { + "start": 21130.1, + "end": 21131.72, + "probability": 0.9096 + }, + { + "start": 21132.74, + "end": 21133.34, + "probability": 0.9956 + }, + { + "start": 21134.14, + "end": 21134.94, + "probability": 0.9701 + }, + { + "start": 21136.14, + "end": 21136.58, + "probability": 0.9675 + }, + { + "start": 21138.7, + "end": 21139.56, + "probability": 0.974 + }, + { + "start": 21140.64, + "end": 21143.72, + "probability": 0.3122 + }, + { + "start": 21147.08, + "end": 21147.52, + "probability": 0.6185 + }, + { + "start": 21148.28, + "end": 21151.28, + "probability": 0.8608 + }, + { + "start": 21151.88, + "end": 21152.34, + "probability": 0.9556 + }, + { + "start": 21153.14, + "end": 21153.98, + "probability": 0.9829 + }, + { + "start": 21155.02, + "end": 21156.44, + "probability": 0.9905 + }, + { + "start": 21157.44, + "end": 21159.54, + "probability": 0.9804 + }, + { + "start": 21163.82, + "end": 21164.36, + "probability": 0.9303 + }, + { + "start": 21165.74, + "end": 21166.72, + "probability": 0.9578 + }, + { + "start": 21167.66, + "end": 21168.18, + "probability": 0.9941 + }, + { + "start": 21168.92, + "end": 21169.78, + "probability": 0.9507 + }, + { + "start": 21171.32, + "end": 21174.34, + "probability": 0.7497 + }, + { + "start": 21175.3, + "end": 21175.58, + "probability": 0.5683 + }, + { + "start": 21176.32, + "end": 21177.14, + "probability": 0.8508 + }, + { + "start": 21177.82, + "end": 21179.52, + "probability": 0.894 + }, + { + "start": 21182.12, + "end": 21182.72, + "probability": 0.9868 + }, + { + "start": 21183.34, + "end": 21184.14, + "probability": 0.9513 + }, + { + "start": 21184.92, + "end": 21186.64, + "probability": 0.9563 + }, + { + "start": 21187.8, + "end": 21188.82, + "probability": 0.8748 + }, + { + "start": 21189.92, + "end": 21190.78, + "probability": 0.9173 + }, + { + "start": 21191.44, + "end": 21192.46, + "probability": 0.9749 + }, + { + "start": 21193.26, + "end": 21194.14, + "probability": 0.9768 + }, + { + "start": 21195.38, + "end": 21195.94, + "probability": 0.9897 + }, + { + "start": 21196.88, + "end": 21197.8, + "probability": 0.9225 + }, + { + "start": 21198.98, + "end": 21199.52, + "probability": 0.7055 + }, + { + "start": 21200.6, + "end": 21201.52, + "probability": 0.5197 + }, + { + "start": 21202.34, + "end": 21202.74, + "probability": 0.8091 + }, + { + "start": 21204.58, + "end": 21206.24, + "probability": 0.9363 + }, + { + "start": 21206.98, + "end": 21207.9, + "probability": 0.7823 + }, + { + "start": 21211.02, + "end": 21211.66, + "probability": 0.9943 + }, + { + "start": 21212.82, + "end": 21213.78, + "probability": 0.897 + }, + { + "start": 21214.4, + "end": 21214.86, + "probability": 0.9893 + }, + { + "start": 21215.62, + "end": 21216.5, + "probability": 0.8843 + }, + { + "start": 21219.44, + "end": 21220.32, + "probability": 0.8741 + }, + { + "start": 21221.44, + "end": 21222.8, + "probability": 0.8358 + }, + { + "start": 21224.64, + "end": 21225.26, + "probability": 0.9959 + }, + { + "start": 21226.58, + "end": 21227.62, + "probability": 0.8865 + }, + { + "start": 21228.84, + "end": 21229.28, + "probability": 0.7511 + }, + { + "start": 21229.96, + "end": 21230.8, + "probability": 0.6839 + }, + { + "start": 21232.1, + "end": 21232.56, + "probability": 0.8015 + }, + { + "start": 21233.62, + "end": 21234.5, + "probability": 0.9262 + }, + { + "start": 21235.38, + "end": 21237.1, + "probability": 0.7384 + }, + { + "start": 21237.84, + "end": 21239.74, + "probability": 0.8999 + }, + { + "start": 21241.0, + "end": 21243.06, + "probability": 0.9038 + }, + { + "start": 21243.94, + "end": 21244.48, + "probability": 0.9688 + }, + { + "start": 21245.0, + "end": 21246.22, + "probability": 0.9639 + }, + { + "start": 21247.22, + "end": 21247.7, + "probability": 0.9941 + }, + { + "start": 21249.98, + "end": 21251.12, + "probability": 0.6523 + }, + { + "start": 21261.96, + "end": 21263.62, + "probability": 0.7043 + }, + { + "start": 21265.74, + "end": 21266.14, + "probability": 0.0747 + }, + { + "start": 21268.84, + "end": 21269.6, + "probability": 0.7656 + }, + { + "start": 21270.28, + "end": 21271.36, + "probability": 0.7348 + }, + { + "start": 21272.68, + "end": 21274.1, + "probability": 0.6978 + }, + { + "start": 21275.28, + "end": 21275.54, + "probability": 0.7739 + }, + { + "start": 21277.64, + "end": 21278.38, + "probability": 0.9143 + }, + { + "start": 21279.72, + "end": 21280.3, + "probability": 0.9723 + }, + { + "start": 21281.24, + "end": 21281.92, + "probability": 0.8478 + }, + { + "start": 21286.28, + "end": 21286.78, + "probability": 0.8125 + }, + { + "start": 21287.6, + "end": 21288.26, + "probability": 0.5555 + }, + { + "start": 21290.84, + "end": 21292.78, + "probability": 0.9642 + }, + { + "start": 21294.28, + "end": 21294.78, + "probability": 0.9797 + }, + { + "start": 21296.68, + "end": 21297.44, + "probability": 0.7365 + }, + { + "start": 21299.76, + "end": 21300.32, + "probability": 0.8052 + }, + { + "start": 21301.46, + "end": 21302.2, + "probability": 0.7492 + }, + { + "start": 21302.78, + "end": 21303.22, + "probability": 0.781 + }, + { + "start": 21303.96, + "end": 21305.16, + "probability": 0.9784 + }, + { + "start": 21306.0, + "end": 21307.88, + "probability": 0.9788 + }, + { + "start": 21309.38, + "end": 21309.96, + "probability": 0.9746 + }, + { + "start": 21310.58, + "end": 21311.32, + "probability": 0.9553 + }, + { + "start": 21314.02, + "end": 21314.46, + "probability": 0.9961 + }, + { + "start": 21316.8, + "end": 21317.36, + "probability": 0.9739 + }, + { + "start": 21318.74, + "end": 21319.34, + "probability": 0.9924 + }, + { + "start": 21320.26, + "end": 21320.98, + "probability": 0.98 + }, + { + "start": 21321.84, + "end": 21322.22, + "probability": 0.9087 + }, + { + "start": 21322.88, + "end": 21323.48, + "probability": 0.9625 + }, + { + "start": 21324.9, + "end": 21325.38, + "probability": 0.0419 + }, + { + "start": 21330.3, + "end": 21331.68, + "probability": 0.0332 + }, + { + "start": 21332.42, + "end": 21332.92, + "probability": 0.528 + }, + { + "start": 21333.98, + "end": 21334.7, + "probability": 0.6647 + }, + { + "start": 21338.88, + "end": 21340.9, + "probability": 0.8351 + }, + { + "start": 21343.56, + "end": 21344.22, + "probability": 0.9788 + }, + { + "start": 21345.4, + "end": 21346.14, + "probability": 0.8458 + }, + { + "start": 21347.3, + "end": 21347.88, + "probability": 0.9878 + }, + { + "start": 21348.98, + "end": 21350.0, + "probability": 0.9368 + }, + { + "start": 21350.74, + "end": 21352.64, + "probability": 0.9755 + }, + { + "start": 21353.3, + "end": 21353.8, + "probability": 0.9349 + }, + { + "start": 21354.5, + "end": 21355.34, + "probability": 0.9499 + }, + { + "start": 21356.26, + "end": 21358.2, + "probability": 0.6707 + }, + { + "start": 21358.8, + "end": 21361.28, + "probability": 0.9384 + }, + { + "start": 21362.1, + "end": 21364.26, + "probability": 0.8557 + }, + { + "start": 21365.72, + "end": 21366.18, + "probability": 0.967 + }, + { + "start": 21366.82, + "end": 21367.66, + "probability": 0.7359 + }, + { + "start": 21369.12, + "end": 21369.72, + "probability": 0.9878 + }, + { + "start": 21370.84, + "end": 21374.26, + "probability": 0.8238 + }, + { + "start": 21378.6, + "end": 21379.06, + "probability": 0.5079 + }, + { + "start": 21380.26, + "end": 21381.28, + "probability": 0.5839 + }, + { + "start": 21383.14, + "end": 21383.84, + "probability": 0.8081 + }, + { + "start": 21384.8, + "end": 21385.72, + "probability": 0.8582 + }, + { + "start": 21386.82, + "end": 21387.38, + "probability": 0.8787 + }, + { + "start": 21388.16, + "end": 21388.94, + "probability": 0.8582 + }, + { + "start": 21391.44, + "end": 21392.06, + "probability": 0.9928 + }, + { + "start": 21393.46, + "end": 21394.14, + "probability": 0.8203 + }, + { + "start": 21395.6, + "end": 21396.08, + "probability": 0.9917 + }, + { + "start": 21398.2, + "end": 21399.4, + "probability": 0.4931 + }, + { + "start": 21401.36, + "end": 21404.32, + "probability": 0.9273 + }, + { + "start": 21409.96, + "end": 21410.5, + "probability": 0.5647 + }, + { + "start": 21411.3, + "end": 21412.4, + "probability": 0.6376 + }, + { + "start": 21415.2, + "end": 21418.72, + "probability": 0.7529 + }, + { + "start": 21419.26, + "end": 21420.1, + "probability": 0.7729 + }, + { + "start": 21420.7, + "end": 21422.4, + "probability": 0.952 + }, + { + "start": 21424.44, + "end": 21425.02, + "probability": 0.9932 + }, + { + "start": 21425.7, + "end": 21426.32, + "probability": 0.7464 + }, + { + "start": 21427.86, + "end": 21428.44, + "probability": 0.9906 + }, + { + "start": 21429.2, + "end": 21430.12, + "probability": 0.9419 + }, + { + "start": 21431.04, + "end": 21431.56, + "probability": 0.9895 + }, + { + "start": 21432.6, + "end": 21433.52, + "probability": 0.5127 + }, + { + "start": 21434.46, + "end": 21434.9, + "probability": 0.988 + }, + { + "start": 21438.36, + "end": 21439.22, + "probability": 0.5424 + }, + { + "start": 21440.58, + "end": 21444.36, + "probability": 0.5851 + }, + { + "start": 21445.4, + "end": 21445.88, + "probability": 0.9557 + }, + { + "start": 21446.4, + "end": 21447.06, + "probability": 0.785 + }, + { + "start": 21448.68, + "end": 21449.3, + "probability": 0.9133 + }, + { + "start": 21450.42, + "end": 21451.38, + "probability": 0.8204 + }, + { + "start": 21453.24, + "end": 21455.92, + "probability": 0.6087 + }, + { + "start": 21457.98, + "end": 21458.64, + "probability": 0.9919 + }, + { + "start": 21462.64, + "end": 21462.78, + "probability": 0.8072 + }, + { + "start": 21467.9, + "end": 21468.84, + "probability": 0.3622 + }, + { + "start": 21470.5, + "end": 21472.26, + "probability": 0.9081 + }, + { + "start": 21473.48, + "end": 21475.02, + "probability": 0.7054 + }, + { + "start": 21476.26, + "end": 21476.82, + "probability": 0.9901 + }, + { + "start": 21478.26, + "end": 21479.22, + "probability": 0.8544 + }, + { + "start": 21479.88, + "end": 21481.56, + "probability": 0.8371 + }, + { + "start": 21485.06, + "end": 21485.58, + "probability": 0.9802 + }, + { + "start": 21486.6, + "end": 21487.56, + "probability": 0.8032 + }, + { + "start": 21491.64, + "end": 21493.16, + "probability": 0.2887 + }, + { + "start": 21495.16, + "end": 21496.96, + "probability": 0.0248 + }, + { + "start": 21498.02, + "end": 21498.58, + "probability": 0.7541 + }, + { + "start": 21499.92, + "end": 21500.66, + "probability": 0.704 + }, + { + "start": 21501.64, + "end": 21502.2, + "probability": 0.5508 + }, + { + "start": 21502.9, + "end": 21503.7, + "probability": 0.7807 + }, + { + "start": 21504.36, + "end": 21508.5, + "probability": 0.9602 + }, + { + "start": 21509.18, + "end": 21510.96, + "probability": 0.8675 + }, + { + "start": 21515.74, + "end": 21517.5, + "probability": 0.5062 + }, + { + "start": 21518.32, + "end": 21519.22, + "probability": 0.7058 + }, + { + "start": 21520.22, + "end": 21521.92, + "probability": 0.703 + }, + { + "start": 21522.78, + "end": 21523.06, + "probability": 0.7399 + }, + { + "start": 21523.76, + "end": 21524.8, + "probability": 0.9745 + }, + { + "start": 21525.92, + "end": 21526.36, + "probability": 0.9041 + }, + { + "start": 21527.24, + "end": 21527.82, + "probability": 0.9268 + }, + { + "start": 21529.08, + "end": 21529.38, + "probability": 0.9871 + }, + { + "start": 21529.94, + "end": 21531.14, + "probability": 0.9379 + }, + { + "start": 21532.76, + "end": 21534.6, + "probability": 0.8156 + }, + { + "start": 21535.36, + "end": 21539.54, + "probability": 0.7442 + }, + { + "start": 21540.58, + "end": 21541.06, + "probability": 0.6987 + }, + { + "start": 21541.96, + "end": 21542.86, + "probability": 0.757 + }, + { + "start": 21544.36, + "end": 21545.04, + "probability": 0.9456 + }, + { + "start": 21546.18, + "end": 21546.9, + "probability": 0.5307 + }, + { + "start": 21550.82, + "end": 21552.4, + "probability": 0.9472 + }, + { + "start": 21553.08, + "end": 21553.38, + "probability": 0.9622 + }, + { + "start": 21554.2, + "end": 21554.96, + "probability": 0.775 + }, + { + "start": 21556.74, + "end": 21557.28, + "probability": 0.9897 + }, + { + "start": 21557.94, + "end": 21558.9, + "probability": 0.9477 + }, + { + "start": 21559.52, + "end": 21561.94, + "probability": 0.8493 + }, + { + "start": 21564.16, + "end": 21564.68, + "probability": 0.9858 + }, + { + "start": 21565.4, + "end": 21565.6, + "probability": 0.7922 + }, + { + "start": 21568.68, + "end": 21569.68, + "probability": 0.3129 + }, + { + "start": 21572.14, + "end": 21572.96, + "probability": 0.792 + }, + { + "start": 21573.8, + "end": 21574.52, + "probability": 0.6093 + }, + { + "start": 21575.82, + "end": 21576.32, + "probability": 0.7803 + }, + { + "start": 21576.9, + "end": 21578.02, + "probability": 0.7612 + }, + { + "start": 21579.24, + "end": 21579.74, + "probability": 0.9647 + }, + { + "start": 21585.46, + "end": 21587.72, + "probability": 0.8534 + }, + { + "start": 21588.94, + "end": 21589.96, + "probability": 0.519 + }, + { + "start": 21591.14, + "end": 21592.54, + "probability": 0.7712 + }, + { + "start": 21597.4, + "end": 21598.68, + "probability": 0.6902 + }, + { + "start": 21600.7, + "end": 21601.56, + "probability": 0.5047 + }, + { + "start": 21602.86, + "end": 21605.02, + "probability": 0.9095 + }, + { + "start": 21606.26, + "end": 21606.86, + "probability": 0.5917 + }, + { + "start": 21608.5, + "end": 21610.64, + "probability": 0.8922 + }, + { + "start": 21612.1, + "end": 21612.96, + "probability": 0.712 + }, + { + "start": 21614.54, + "end": 21615.4, + "probability": 0.9128 + }, + { + "start": 21616.38, + "end": 21617.5, + "probability": 0.5394 + }, + { + "start": 21619.18, + "end": 21619.96, + "probability": 0.7376 + }, + { + "start": 21621.12, + "end": 21621.96, + "probability": 0.2299 + }, + { + "start": 21623.5, + "end": 21625.92, + "probability": 0.8407 + }, + { + "start": 21626.88, + "end": 21627.62, + "probability": 0.7814 + }, + { + "start": 21628.76, + "end": 21629.98, + "probability": 0.3213 + }, + { + "start": 21632.74, + "end": 21633.66, + "probability": 0.9336 + }, + { + "start": 21635.02, + "end": 21636.26, + "probability": 0.7765 + }, + { + "start": 21641.06, + "end": 21641.3, + "probability": 0.6819 + }, + { + "start": 21644.08, + "end": 21644.8, + "probability": 0.6486 + }, + { + "start": 21645.82, + "end": 21646.42, + "probability": 0.9661 + }, + { + "start": 21647.6, + "end": 21648.52, + "probability": 0.8626 + }, + { + "start": 21649.16, + "end": 21650.02, + "probability": 0.7437 + }, + { + "start": 21650.56, + "end": 21651.5, + "probability": 0.9218 + }, + { + "start": 21653.04, + "end": 21654.86, + "probability": 0.9383 + }, + { + "start": 21655.8, + "end": 21657.92, + "probability": 0.9754 + }, + { + "start": 21658.64, + "end": 21659.36, + "probability": 0.9877 + }, + { + "start": 21659.92, + "end": 21660.58, + "probability": 0.6987 + }, + { + "start": 21661.68, + "end": 21662.28, + "probability": 0.9966 + }, + { + "start": 21664.04, + "end": 21666.18, + "probability": 0.8248 + }, + { + "start": 21667.32, + "end": 21668.08, + "probability": 0.3718 + }, + { + "start": 21669.22, + "end": 21669.62, + "probability": 0.6135 + }, + { + "start": 21672.94, + "end": 21676.26, + "probability": 0.9929 + }, + { + "start": 21678.12, + "end": 21680.42, + "probability": 0.3545 + }, + { + "start": 21680.48, + "end": 21680.58, + "probability": 0.8551 + }, + { + "start": 21683.04, + "end": 21684.7, + "probability": 0.0764 + }, + { + "start": 21688.02, + "end": 21690.32, + "probability": 0.4275 + }, + { + "start": 21691.68, + "end": 21692.78, + "probability": 0.1347 + }, + { + "start": 21692.78, + "end": 21694.65, + "probability": 0.0221 + }, + { + "start": 21706.06, + "end": 21710.24, + "probability": 0.0232 + }, + { + "start": 21713.96, + "end": 21713.98, + "probability": 0.2181 + }, + { + "start": 21717.68, + "end": 21718.5, + "probability": 0.0214 + }, + { + "start": 21718.52, + "end": 21719.3, + "probability": 0.126 + }, + { + "start": 21783.24, + "end": 21786.0, + "probability": 0.2603 + }, + { + "start": 21799.0, + "end": 21799.86, + "probability": 0.0096 + }, + { + "start": 21806.3, + "end": 21808.36, + "probability": 0.791 + }, + { + "start": 21809.12, + "end": 21809.6, + "probability": 0.9579 + }, + { + "start": 21811.14, + "end": 21814.84, + "probability": 0.9803 + }, + { + "start": 21814.98, + "end": 21817.84, + "probability": 0.7501 + }, + { + "start": 21819.64, + "end": 21820.98, + "probability": 0.4889 + }, + { + "start": 21821.82, + "end": 21825.0, + "probability": 0.9801 + }, + { + "start": 21825.58, + "end": 21826.48, + "probability": 0.8586 + }, + { + "start": 21826.54, + "end": 21829.14, + "probability": 0.8257 + }, + { + "start": 21839.84, + "end": 21841.04, + "probability": 0.5164 + }, + { + "start": 21841.56, + "end": 21844.62, + "probability": 0.6867 + }, + { + "start": 21845.68, + "end": 21848.32, + "probability": 0.7776 + }, + { + "start": 21849.6, + "end": 21851.6, + "probability": 0.767 + }, + { + "start": 21852.16, + "end": 21852.16, + "probability": 0.0205 + }, + { + "start": 21852.16, + "end": 21856.3, + "probability": 0.8229 + }, + { + "start": 21857.1, + "end": 21860.4, + "probability": 0.6377 + }, + { + "start": 21865.06, + "end": 21867.56, + "probability": 0.6658 + }, + { + "start": 21867.7, + "end": 21871.12, + "probability": 0.9819 + }, + { + "start": 21871.94, + "end": 21873.84, + "probability": 0.7468 + }, + { + "start": 21874.38, + "end": 21880.15, + "probability": 0.9958 + }, + { + "start": 21880.8, + "end": 21882.48, + "probability": 0.7394 + }, + { + "start": 21883.04, + "end": 21887.0, + "probability": 0.8863 + }, + { + "start": 21889.65, + "end": 21892.8, + "probability": 0.9386 + }, + { + "start": 21892.8, + "end": 21896.24, + "probability": 0.9626 + }, + { + "start": 21897.42, + "end": 21901.8, + "probability": 0.0142 + }, + { + "start": 21902.3, + "end": 21906.36, + "probability": 0.8937 + }, + { + "start": 21906.46, + "end": 21908.64, + "probability": 0.9967 + }, + { + "start": 21909.16, + "end": 21911.43, + "probability": 0.9177 + }, + { + "start": 21913.42, + "end": 21917.44, + "probability": 0.9384 + }, + { + "start": 21918.02, + "end": 21921.36, + "probability": 0.9905 + }, + { + "start": 21921.4, + "end": 21923.42, + "probability": 0.9575 + }, + { + "start": 21923.58, + "end": 21924.18, + "probability": 0.5516 + }, + { + "start": 21924.24, + "end": 21926.56, + "probability": 0.8589 + }, + { + "start": 21927.08, + "end": 21931.24, + "probability": 0.6843 + }, + { + "start": 21931.24, + "end": 21931.24, + "probability": 0.1966 + }, + { + "start": 21931.24, + "end": 21934.7, + "probability": 0.6989 + }, + { + "start": 21935.5, + "end": 21941.3, + "probability": 0.9535 + }, + { + "start": 21942.56, + "end": 21944.22, + "probability": 0.5857 + }, + { + "start": 21945.0, + "end": 21946.94, + "probability": 0.7573 + }, + { + "start": 21947.38, + "end": 21948.28, + "probability": 0.8226 + }, + { + "start": 21948.5, + "end": 21952.98, + "probability": 0.9889 + }, + { + "start": 21953.76, + "end": 21955.82, + "probability": 0.9904 + }, + { + "start": 21956.24, + "end": 21959.01, + "probability": 0.9767 + }, + { + "start": 21960.34, + "end": 21963.94, + "probability": 0.8905 + }, + { + "start": 21964.44, + "end": 21966.62, + "probability": 0.999 + }, + { + "start": 21967.0, + "end": 21969.94, + "probability": 0.812 + }, + { + "start": 21970.46, + "end": 21973.98, + "probability": 0.136 + }, + { + "start": 21974.84, + "end": 21977.96, + "probability": 0.5721 + }, + { + "start": 21978.48, + "end": 21987.18, + "probability": 0.8532 + }, + { + "start": 21988.2, + "end": 21988.22, + "probability": 0.1727 + }, + { + "start": 21988.22, + "end": 21988.22, + "probability": 0.6284 + }, + { + "start": 21988.22, + "end": 21989.54, + "probability": 0.9124 + }, + { + "start": 21989.68, + "end": 21995.24, + "probability": 0.9912 + }, + { + "start": 21996.08, + "end": 21998.52, + "probability": 0.9971 + }, + { + "start": 21999.16, + "end": 22002.96, + "probability": 0.9599 + }, + { + "start": 22003.48, + "end": 22004.62, + "probability": 0.9082 + }, + { + "start": 22005.14, + "end": 22005.22, + "probability": 0.1911 + }, + { + "start": 22005.22, + "end": 22006.24, + "probability": 0.6349 + }, + { + "start": 22006.24, + "end": 22007.06, + "probability": 0.7584 + }, + { + "start": 22007.16, + "end": 22009.84, + "probability": 0.76 + }, + { + "start": 22010.73, + "end": 22013.1, + "probability": 0.8486 + }, + { + "start": 22013.6, + "end": 22015.78, + "probability": 0.8855 + }, + { + "start": 22016.0, + "end": 22016.02, + "probability": 0.05 + }, + { + "start": 22016.02, + "end": 22023.78, + "probability": 0.8846 + }, + { + "start": 22024.32, + "end": 22026.58, + "probability": 0.5952 + }, + { + "start": 22027.04, + "end": 22029.8, + "probability": 0.9822 + }, + { + "start": 22030.2, + "end": 22031.79, + "probability": 0.9419 + }, + { + "start": 22032.32, + "end": 22035.78, + "probability": 0.9951 + }, + { + "start": 22036.34, + "end": 22036.94, + "probability": 0.4166 + }, + { + "start": 22037.1, + "end": 22038.02, + "probability": 0.3505 + }, + { + "start": 22038.28, + "end": 22040.52, + "probability": 0.9956 + }, + { + "start": 22040.94, + "end": 22042.98, + "probability": 0.9958 + }, + { + "start": 22043.24, + "end": 22043.92, + "probability": 0.7211 + }, + { + "start": 22044.02, + "end": 22046.94, + "probability": 0.9766 + }, + { + "start": 22047.42, + "end": 22048.18, + "probability": 0.4247 + }, + { + "start": 22048.5, + "end": 22049.58, + "probability": 0.9777 + }, + { + "start": 22050.02, + "end": 22057.84, + "probability": 0.0239 + }, + { + "start": 22058.08, + "end": 22058.7, + "probability": 0.0349 + }, + { + "start": 22059.34, + "end": 22059.34, + "probability": 0.0691 + }, + { + "start": 22059.34, + "end": 22059.54, + "probability": 0.0968 + }, + { + "start": 22059.54, + "end": 22059.54, + "probability": 0.0254 + }, + { + "start": 22059.54, + "end": 22059.54, + "probability": 0.0957 + }, + { + "start": 22059.54, + "end": 22059.54, + "probability": 0.0775 + }, + { + "start": 22059.54, + "end": 22062.46, + "probability": 0.4526 + }, + { + "start": 22062.86, + "end": 22063.76, + "probability": 0.1359 + }, + { + "start": 22064.32, + "end": 22064.34, + "probability": 0.2352 + }, + { + "start": 22064.34, + "end": 22064.34, + "probability": 0.1493 + }, + { + "start": 22064.34, + "end": 22065.12, + "probability": 0.4167 + }, + { + "start": 22065.42, + "end": 22067.88, + "probability": 0.9941 + }, + { + "start": 22068.16, + "end": 22070.14, + "probability": 0.7637 + }, + { + "start": 22070.56, + "end": 22072.54, + "probability": 0.8677 + }, + { + "start": 22072.98, + "end": 22074.44, + "probability": 0.9128 + }, + { + "start": 22074.8, + "end": 22076.2, + "probability": 0.565 + }, + { + "start": 22076.2, + "end": 22077.24, + "probability": 0.2142 + }, + { + "start": 22086.78, + "end": 22089.54, + "probability": 0.8181 + }, + { + "start": 22090.88, + "end": 22092.7, + "probability": 0.2834 + }, + { + "start": 22093.55, + "end": 22095.86, + "probability": 0.8977 + }, + { + "start": 22099.36, + "end": 22103.8, + "probability": 0.7957 + }, + { + "start": 22104.14, + "end": 22104.73, + "probability": 0.2522 + }, + { + "start": 22105.2, + "end": 22107.94, + "probability": 0.849 + }, + { + "start": 22108.1, + "end": 22109.88, + "probability": 0.9668 + }, + { + "start": 22111.46, + "end": 22111.46, + "probability": 0.1153 + }, + { + "start": 22111.46, + "end": 22115.53, + "probability": 0.4342 + }, + { + "start": 22116.34, + "end": 22117.76, + "probability": 0.6522 + }, + { + "start": 22117.94, + "end": 22121.81, + "probability": 0.8711 + }, + { + "start": 22121.88, + "end": 22123.26, + "probability": 0.86 + }, + { + "start": 22123.88, + "end": 22130.74, + "probability": 0.9792 + }, + { + "start": 22131.8, + "end": 22133.94, + "probability": 0.7527 + }, + { + "start": 22133.98, + "end": 22135.36, + "probability": 0.4514 + }, + { + "start": 22135.36, + "end": 22136.16, + "probability": 0.0537 + }, + { + "start": 22136.64, + "end": 22137.7, + "probability": 0.6359 + }, + { + "start": 22137.8, + "end": 22139.66, + "probability": 0.9208 + }, + { + "start": 22139.8, + "end": 22141.74, + "probability": 0.8731 + }, + { + "start": 22142.14, + "end": 22145.8, + "probability": 0.9465 + }, + { + "start": 22147.2, + "end": 22152.06, + "probability": 0.9624 + }, + { + "start": 22152.16, + "end": 22154.64, + "probability": 0.9037 + }, + { + "start": 22155.18, + "end": 22159.44, + "probability": 0.8718 + }, + { + "start": 22159.82, + "end": 22162.02, + "probability": 0.6569 + }, + { + "start": 22162.36, + "end": 22163.58, + "probability": 0.8818 + }, + { + "start": 22163.98, + "end": 22165.9, + "probability": 0.8359 + }, + { + "start": 22166.6, + "end": 22167.36, + "probability": 0.7089 + }, + { + "start": 22168.02, + "end": 22170.64, + "probability": 0.6896 + }, + { + "start": 22171.18, + "end": 22173.6, + "probability": 0.714 + }, + { + "start": 22174.56, + "end": 22177.82, + "probability": 0.7511 + }, + { + "start": 22178.24, + "end": 22182.5, + "probability": 0.8811 + }, + { + "start": 22182.82, + "end": 22184.02, + "probability": 0.7597 + }, + { + "start": 22184.46, + "end": 22185.76, + "probability": 0.6782 + }, + { + "start": 22186.06, + "end": 22188.74, + "probability": 0.9844 + }, + { + "start": 22189.48, + "end": 22191.12, + "probability": 0.74 + }, + { + "start": 22191.72, + "end": 22191.78, + "probability": 0.0989 + }, + { + "start": 22191.78, + "end": 22193.68, + "probability": 0.9839 + }, + { + "start": 22194.2, + "end": 22196.54, + "probability": 0.7692 + }, + { + "start": 22196.96, + "end": 22198.08, + "probability": 0.8611 + }, + { + "start": 22199.12, + "end": 22202.14, + "probability": 0.376 + }, + { + "start": 22202.44, + "end": 22205.66, + "probability": 0.9418 + }, + { + "start": 22205.98, + "end": 22208.44, + "probability": 0.8263 + }, + { + "start": 22209.06, + "end": 22213.91, + "probability": 0.0314 + }, + { + "start": 22214.38, + "end": 22215.62, + "probability": 0.0681 + }, + { + "start": 22216.0, + "end": 22217.38, + "probability": 0.0827 + }, + { + "start": 22217.76, + "end": 22217.9, + "probability": 0.0335 + }, + { + "start": 22217.9, + "end": 22219.44, + "probability": 0.7213 + }, + { + "start": 22221.2, + "end": 22222.62, + "probability": 0.0609 + }, + { + "start": 22223.32, + "end": 22225.02, + "probability": 0.9712 + }, + { + "start": 22226.4, + "end": 22229.06, + "probability": 0.7264 + }, + { + "start": 22229.2, + "end": 22229.66, + "probability": 0.8958 + }, + { + "start": 22229.84, + "end": 22231.06, + "probability": 0.0458 + }, + { + "start": 22232.04, + "end": 22234.72, + "probability": 0.2091 + }, + { + "start": 22235.16, + "end": 22242.22, + "probability": 0.9364 + }, + { + "start": 22242.28, + "end": 22243.84, + "probability": 0.9521 + }, + { + "start": 22243.84, + "end": 22245.86, + "probability": 0.954 + }, + { + "start": 22246.08, + "end": 22249.56, + "probability": 0.7019 + }, + { + "start": 22249.56, + "end": 22251.48, + "probability": 0.7912 + }, + { + "start": 22251.54, + "end": 22253.34, + "probability": 0.7261 + }, + { + "start": 22253.46, + "end": 22255.08, + "probability": 0.1769 + }, + { + "start": 22255.7, + "end": 22257.19, + "probability": 0.0074 + }, + { + "start": 22257.44, + "end": 22259.7, + "probability": 0.7606 + }, + { + "start": 22260.67, + "end": 22262.35, + "probability": 0.9158 + }, + { + "start": 22262.88, + "end": 22265.8, + "probability": 0.6736 + }, + { + "start": 22265.9, + "end": 22266.64, + "probability": 0.9137 + }, + { + "start": 22267.26, + "end": 22271.58, + "probability": 0.4814 + }, + { + "start": 22271.94, + "end": 22273.68, + "probability": 0.9727 + }, + { + "start": 22274.1, + "end": 22275.22, + "probability": 0.2412 + }, + { + "start": 22275.3, + "end": 22276.54, + "probability": 0.82 + }, + { + "start": 22276.62, + "end": 22278.46, + "probability": 0.9365 + }, + { + "start": 22278.7, + "end": 22280.8, + "probability": 0.9423 + }, + { + "start": 22281.49, + "end": 22283.26, + "probability": 0.1688 + }, + { + "start": 22283.82, + "end": 22285.94, + "probability": 0.3345 + }, + { + "start": 22285.94, + "end": 22287.6, + "probability": 0.3928 + }, + { + "start": 22287.64, + "end": 22289.46, + "probability": 0.5516 + }, + { + "start": 22289.46, + "end": 22293.62, + "probability": 0.9392 + }, + { + "start": 22294.1, + "end": 22296.54, + "probability": 0.971 + }, + { + "start": 22296.92, + "end": 22298.56, + "probability": 0.9349 + }, + { + "start": 22298.66, + "end": 22300.62, + "probability": 0.8369 + }, + { + "start": 22301.32, + "end": 22301.52, + "probability": 0.1657 + }, + { + "start": 22301.52, + "end": 22301.52, + "probability": 0.1788 + }, + { + "start": 22301.52, + "end": 22303.26, + "probability": 0.6071 + }, + { + "start": 22303.7, + "end": 22306.32, + "probability": 0.9189 + }, + { + "start": 22307.6, + "end": 22312.38, + "probability": 0.9304 + }, + { + "start": 22312.64, + "end": 22314.26, + "probability": 0.6754 + }, + { + "start": 22314.48, + "end": 22315.46, + "probability": 0.6902 + }, + { + "start": 22315.88, + "end": 22317.22, + "probability": 0.7321 + }, + { + "start": 22317.4, + "end": 22319.82, + "probability": 0.6039 + }, + { + "start": 22319.9, + "end": 22321.92, + "probability": 0.6298 + }, + { + "start": 22324.24, + "end": 22326.8, + "probability": 0.7869 + }, + { + "start": 22327.54, + "end": 22327.54, + "probability": 0.0781 + }, + { + "start": 22327.54, + "end": 22333.68, + "probability": 0.78 + }, + { + "start": 22334.26, + "end": 22335.1, + "probability": 0.9753 + }, + { + "start": 22337.26, + "end": 22341.18, + "probability": 0.8024 + }, + { + "start": 22342.07, + "end": 22345.64, + "probability": 0.5028 + }, + { + "start": 22346.96, + "end": 22351.86, + "probability": 0.625 + }, + { + "start": 22351.86, + "end": 22355.68, + "probability": 0.8763 + }, + { + "start": 22356.62, + "end": 22359.82, + "probability": 0.9993 + }, + { + "start": 22360.76, + "end": 22364.96, + "probability": 0.9663 + }, + { + "start": 22365.98, + "end": 22367.66, + "probability": 0.7524 + }, + { + "start": 22368.02, + "end": 22370.68, + "probability": 0.9912 + }, + { + "start": 22371.12, + "end": 22371.8, + "probability": 0.9506 + }, + { + "start": 22371.86, + "end": 22372.46, + "probability": 0.9064 + }, + { + "start": 22372.54, + "end": 22376.24, + "probability": 0.9352 + }, + { + "start": 22376.76, + "end": 22380.3, + "probability": 0.9831 + }, + { + "start": 22380.5, + "end": 22382.64, + "probability": 0.8971 + }, + { + "start": 22382.68, + "end": 22384.78, + "probability": 0.9552 + }, + { + "start": 22385.38, + "end": 22387.2, + "probability": 0.8089 + }, + { + "start": 22387.54, + "end": 22389.1, + "probability": 0.8859 + }, + { + "start": 22389.14, + "end": 22390.72, + "probability": 0.8158 + }, + { + "start": 22391.0, + "end": 22392.74, + "probability": 0.9902 + }, + { + "start": 22393.12, + "end": 22395.46, + "probability": 0.9502 + }, + { + "start": 22396.08, + "end": 22398.24, + "probability": 0.6354 + }, + { + "start": 22398.26, + "end": 22399.34, + "probability": 0.8966 + }, + { + "start": 22401.27, + "end": 22404.84, + "probability": 0.7183 + }, + { + "start": 22405.8, + "end": 22408.88, + "probability": 0.9899 + }, + { + "start": 22409.32, + "end": 22410.12, + "probability": 0.8829 + }, + { + "start": 22410.16, + "end": 22412.06, + "probability": 0.884 + }, + { + "start": 22412.48, + "end": 22415.2, + "probability": 0.9497 + }, + { + "start": 22416.0, + "end": 22420.36, + "probability": 0.5057 + }, + { + "start": 22420.5, + "end": 22424.56, + "probability": 0.4654 + }, + { + "start": 22424.96, + "end": 22424.98, + "probability": 0.9459 + }, + { + "start": 22424.98, + "end": 22429.88, + "probability": 0.9786 + }, + { + "start": 22430.1, + "end": 22431.2, + "probability": 0.7787 + }, + { + "start": 22431.62, + "end": 22432.5, + "probability": 0.0214 + }, + { + "start": 22432.5, + "end": 22434.68, + "probability": 0.6565 + }, + { + "start": 22434.94, + "end": 22437.04, + "probability": 0.1958 + }, + { + "start": 22437.46, + "end": 22439.18, + "probability": 0.5871 + }, + { + "start": 22439.42, + "end": 22441.4, + "probability": 0.4648 + }, + { + "start": 22441.46, + "end": 22442.14, + "probability": 0.4429 + }, + { + "start": 22442.2, + "end": 22442.69, + "probability": 0.8919 + }, + { + "start": 22443.28, + "end": 22444.05, + "probability": 0.5035 + }, + { + "start": 22445.07, + "end": 22447.83, + "probability": 0.3226 + }, + { + "start": 22447.86, + "end": 22448.02, + "probability": 0.3574 + }, + { + "start": 22448.04, + "end": 22449.42, + "probability": 0.7883 + }, + { + "start": 22450.24, + "end": 22451.88, + "probability": 0.219 + }, + { + "start": 22452.14, + "end": 22456.44, + "probability": 0.6613 + }, + { + "start": 22456.6, + "end": 22457.48, + "probability": 0.862 + }, + { + "start": 22457.6, + "end": 22459.84, + "probability": 0.5534 + }, + { + "start": 22460.28, + "end": 22461.12, + "probability": 0.1829 + }, + { + "start": 22461.12, + "end": 22462.5, + "probability": 0.6563 + }, + { + "start": 22463.64, + "end": 22464.42, + "probability": 0.0254 + }, + { + "start": 22464.42, + "end": 22464.42, + "probability": 0.5512 + }, + { + "start": 22464.42, + "end": 22464.42, + "probability": 0.0619 + }, + { + "start": 22464.42, + "end": 22470.22, + "probability": 0.4968 + }, + { + "start": 22470.62, + "end": 22472.78, + "probability": 0.8927 + }, + { + "start": 22473.16, + "end": 22475.56, + "probability": 0.296 + }, + { + "start": 22475.96, + "end": 22478.48, + "probability": 0.7003 + }, + { + "start": 22478.48, + "end": 22479.24, + "probability": 0.073 + }, + { + "start": 22479.24, + "end": 22480.02, + "probability": 0.6593 + }, + { + "start": 22480.44, + "end": 22480.44, + "probability": 0.4583 + }, + { + "start": 22480.44, + "end": 22484.18, + "probability": 0.4861 + }, + { + "start": 22484.7, + "end": 22485.62, + "probability": 0.23 + }, + { + "start": 22485.78, + "end": 22487.46, + "probability": 0.6723 + }, + { + "start": 22487.46, + "end": 22490.26, + "probability": 0.1647 + }, + { + "start": 22490.54, + "end": 22492.5, + "probability": 0.8684 + }, + { + "start": 22492.82, + "end": 22492.92, + "probability": 0.0482 + }, + { + "start": 22493.6, + "end": 22493.62, + "probability": 0.2075 + }, + { + "start": 22494.06, + "end": 22494.06, + "probability": 0.024 + }, + { + "start": 22494.06, + "end": 22496.02, + "probability": 0.2215 + }, + { + "start": 22496.5, + "end": 22497.58, + "probability": 0.4285 + }, + { + "start": 22497.92, + "end": 22499.86, + "probability": 0.2461 + }, + { + "start": 22500.32, + "end": 22505.34, + "probability": 0.964 + }, + { + "start": 22505.34, + "end": 22507.12, + "probability": 0.2575 + }, + { + "start": 22507.32, + "end": 22507.56, + "probability": 0.599 + }, + { + "start": 22507.68, + "end": 22508.8, + "probability": 0.9897 + }, + { + "start": 22509.68, + "end": 22511.04, + "probability": 0.1575 + }, + { + "start": 22511.04, + "end": 22514.72, + "probability": 0.3538 + }, + { + "start": 22514.96, + "end": 22516.58, + "probability": 0.6454 + }, + { + "start": 22516.98, + "end": 22518.08, + "probability": 0.1631 + }, + { + "start": 22518.32, + "end": 22519.63, + "probability": 0.7052 + }, + { + "start": 22521.18, + "end": 22522.62, + "probability": 0.8521 + }, + { + "start": 22522.9, + "end": 22524.0, + "probability": 0.3993 + }, + { + "start": 22524.24, + "end": 22526.44, + "probability": 0.6081 + }, + { + "start": 22526.58, + "end": 22526.7, + "probability": 0.29 + }, + { + "start": 22526.74, + "end": 22527.96, + "probability": 0.8749 + }, + { + "start": 22528.16, + "end": 22534.56, + "probability": 0.3833 + }, + { + "start": 22534.8, + "end": 22538.22, + "probability": 0.3466 + }, + { + "start": 22538.28, + "end": 22539.76, + "probability": 0.2104 + }, + { + "start": 22540.26, + "end": 22541.76, + "probability": 0.7629 + }, + { + "start": 22542.2, + "end": 22543.72, + "probability": 0.8149 + }, + { + "start": 22544.04, + "end": 22546.72, + "probability": 0.9177 + }, + { + "start": 22546.8, + "end": 22548.48, + "probability": 0.6519 + }, + { + "start": 22548.48, + "end": 22551.9, + "probability": 0.7744 + }, + { + "start": 22551.9, + "end": 22554.5, + "probability": 0.7541 + }, + { + "start": 22554.54, + "end": 22558.56, + "probability": 0.4262 + }, + { + "start": 22559.71, + "end": 22563.01, + "probability": 0.9547 + }, + { + "start": 22563.24, + "end": 22566.68, + "probability": 0.9879 + }, + { + "start": 22567.28, + "end": 22567.28, + "probability": 0.1067 + }, + { + "start": 22567.28, + "end": 22567.28, + "probability": 0.4461 + }, + { + "start": 22567.28, + "end": 22568.97, + "probability": 0.5069 + }, + { + "start": 22570.02, + "end": 22574.28, + "probability": 0.8989 + }, + { + "start": 22575.56, + "end": 22579.1, + "probability": 0.9916 + }, + { + "start": 22579.64, + "end": 22584.86, + "probability": 0.882 + }, + { + "start": 22585.26, + "end": 22588.84, + "probability": 0.9189 + }, + { + "start": 22589.0, + "end": 22593.18, + "probability": 0.9087 + }, + { + "start": 22593.78, + "end": 22595.04, + "probability": 0.7647 + }, + { + "start": 22595.48, + "end": 22596.44, + "probability": 0.8467 + }, + { + "start": 22596.66, + "end": 22597.64, + "probability": 0.6674 + }, + { + "start": 22597.68, + "end": 22599.6, + "probability": 0.9431 + }, + { + "start": 22599.7, + "end": 22601.2, + "probability": 0.8662 + }, + { + "start": 22601.46, + "end": 22604.92, + "probability": 0.7778 + }, + { + "start": 22604.92, + "end": 22608.27, + "probability": 0.5032 + }, + { + "start": 22608.44, + "end": 22610.4, + "probability": 0.5537 + }, + { + "start": 22610.94, + "end": 22610.94, + "probability": 0.0454 + }, + { + "start": 22610.94, + "end": 22613.54, + "probability": 0.9385 + }, + { + "start": 22613.98, + "end": 22616.33, + "probability": 0.7268 + }, + { + "start": 22617.1, + "end": 22622.48, + "probability": 0.5221 + }, + { + "start": 22622.86, + "end": 22626.98, + "probability": 0.9198 + }, + { + "start": 22627.34, + "end": 22627.44, + "probability": 0.0054 + }, + { + "start": 22627.44, + "end": 22628.24, + "probability": 0.3329 + }, + { + "start": 22628.88, + "end": 22630.7, + "probability": 0.7756 + }, + { + "start": 22630.8, + "end": 22630.8, + "probability": 0.4945 + }, + { + "start": 22630.8, + "end": 22634.02, + "probability": 0.7068 + }, + { + "start": 22634.16, + "end": 22638.26, + "probability": 0.9824 + }, + { + "start": 22639.18, + "end": 22640.04, + "probability": 0.9136 + }, + { + "start": 22640.4, + "end": 22642.82, + "probability": 0.9906 + }, + { + "start": 22643.08, + "end": 22644.01, + "probability": 0.7903 + }, + { + "start": 22644.64, + "end": 22645.68, + "probability": 0.8193 + }, + { + "start": 22646.4, + "end": 22647.7, + "probability": 0.8541 + }, + { + "start": 22648.5, + "end": 22648.78, + "probability": 0.2949 + }, + { + "start": 22648.78, + "end": 22648.78, + "probability": 0.5197 + }, + { + "start": 22648.78, + "end": 22650.38, + "probability": 0.1137 + }, + { + "start": 22650.48, + "end": 22652.14, + "probability": 0.9035 + }, + { + "start": 22652.56, + "end": 22653.12, + "probability": 0.9706 + }, + { + "start": 22654.2, + "end": 22656.02, + "probability": 0.9099 + }, + { + "start": 22656.31, + "end": 22658.08, + "probability": 0.6572 + }, + { + "start": 22658.18, + "end": 22660.25, + "probability": 0.4522 + }, + { + "start": 22660.26, + "end": 22662.86, + "probability": 0.6583 + }, + { + "start": 22663.04, + "end": 22663.56, + "probability": 0.5241 + }, + { + "start": 22663.68, + "end": 22664.5, + "probability": 0.7561 + }, + { + "start": 22664.7, + "end": 22666.48, + "probability": 0.1932 + }, + { + "start": 22667.39, + "end": 22669.57, + "probability": 0.4722 + }, + { + "start": 22670.54, + "end": 22670.54, + "probability": 0.069 + }, + { + "start": 22670.54, + "end": 22670.72, + "probability": 0.2407 + }, + { + "start": 22670.72, + "end": 22671.4, + "probability": 0.569 + }, + { + "start": 22671.9, + "end": 22677.82, + "probability": 0.7078 + }, + { + "start": 22677.98, + "end": 22679.0, + "probability": 0.7375 + }, + { + "start": 22680.6, + "end": 22682.48, + "probability": 0.8438 + }, + { + "start": 22682.66, + "end": 22683.2, + "probability": 0.6022 + }, + { + "start": 22684.94, + "end": 22686.4, + "probability": 0.0754 + }, + { + "start": 22690.82, + "end": 22692.96, + "probability": 0.7683 + }, + { + "start": 22694.16, + "end": 22696.08, + "probability": 0.9492 + }, + { + "start": 22696.32, + "end": 22697.32, + "probability": 0.9088 + }, + { + "start": 22697.48, + "end": 22699.96, + "probability": 0.3497 + }, + { + "start": 22700.62, + "end": 22701.8, + "probability": 0.8677 + }, + { + "start": 22701.98, + "end": 22704.26, + "probability": 0.7678 + }, + { + "start": 22704.28, + "end": 22704.52, + "probability": 0.4485 + }, + { + "start": 22705.06, + "end": 22705.68, + "probability": 0.5054 + }, + { + "start": 22706.0, + "end": 22707.36, + "probability": 0.8241 + }, + { + "start": 22707.46, + "end": 22709.85, + "probability": 0.9377 + }, + { + "start": 22710.54, + "end": 22711.58, + "probability": 0.4431 + }, + { + "start": 22711.74, + "end": 22712.66, + "probability": 0.0651 + }, + { + "start": 22719.42, + "end": 22722.36, + "probability": 0.8222 + }, + { + "start": 22723.38, + "end": 22724.9, + "probability": 0.5933 + }, + { + "start": 22725.86, + "end": 22727.22, + "probability": 0.721 + }, + { + "start": 22728.3, + "end": 22731.56, + "probability": 0.9169 + }, + { + "start": 22735.07, + "end": 22740.88, + "probability": 0.7729 + }, + { + "start": 22742.04, + "end": 22743.36, + "probability": 0.9574 + }, + { + "start": 22744.96, + "end": 22747.71, + "probability": 0.9053 + }, + { + "start": 22749.78, + "end": 22751.08, + "probability": 0.0536 + }, + { + "start": 22753.86, + "end": 22754.72, + "probability": 0.953 + }, + { + "start": 22754.98, + "end": 22760.56, + "probability": 0.2977 + }, + { + "start": 22761.4, + "end": 22767.54, + "probability": 0.1141 + }, + { + "start": 22775.62, + "end": 22777.37, + "probability": 0.2091 + }, + { + "start": 22777.5, + "end": 22778.56, + "probability": 0.0319 + }, + { + "start": 22779.14, + "end": 22782.6, + "probability": 0.6604 + }, + { + "start": 22783.58, + "end": 22786.3, + "probability": 0.7845 + }, + { + "start": 22788.7, + "end": 22789.14, + "probability": 0.0183 + }, + { + "start": 22789.14, + "end": 22789.56, + "probability": 0.0157 + }, + { + "start": 22790.26, + "end": 22791.74, + "probability": 0.3541 + }, + { + "start": 22791.92, + "end": 22792.62, + "probability": 0.93 + }, + { + "start": 22793.28, + "end": 22797.08, + "probability": 0.6914 + }, + { + "start": 22797.2, + "end": 22798.48, + "probability": 0.2311 + }, + { + "start": 22798.88, + "end": 22800.78, + "probability": 0.1132 + }, + { + "start": 22800.96, + "end": 22800.96, + "probability": 0.3715 + }, + { + "start": 22800.98, + "end": 22801.56, + "probability": 0.4606 + }, + { + "start": 22802.28, + "end": 22805.04, + "probability": 0.6236 + }, + { + "start": 22806.1, + "end": 22808.48, + "probability": 0.8393 + }, + { + "start": 22809.6, + "end": 22811.42, + "probability": 0.9757 + }, + { + "start": 22811.52, + "end": 22813.32, + "probability": 0.7967 + }, + { + "start": 22814.78, + "end": 22816.46, + "probability": 0.7586 + }, + { + "start": 22816.78, + "end": 22818.5, + "probability": 0.9825 + }, + { + "start": 22818.86, + "end": 22820.62, + "probability": 0.8506 + }, + { + "start": 22821.8, + "end": 22825.32, + "probability": 0.6707 + }, + { + "start": 22827.62, + "end": 22827.84, + "probability": 0.8577 + }, + { + "start": 22828.0, + "end": 22831.46, + "probability": 0.1031 + }, + { + "start": 22832.1, + "end": 22835.1, + "probability": 0.9382 + }, + { + "start": 22837.0, + "end": 22838.26, + "probability": 0.9375 + }, + { + "start": 22838.62, + "end": 22839.86, + "probability": 0.8616 + }, + { + "start": 22840.16, + "end": 22840.86, + "probability": 0.9816 + }, + { + "start": 22841.16, + "end": 22841.74, + "probability": 0.9385 + }, + { + "start": 22841.74, + "end": 22842.68, + "probability": 0.9478 + }, + { + "start": 22842.92, + "end": 22843.16, + "probability": 0.0003 + }, + { + "start": 22844.8, + "end": 22845.62, + "probability": 0.2656 + }, + { + "start": 22845.62, + "end": 22845.68, + "probability": 0.0043 + }, + { + "start": 22845.68, + "end": 22846.12, + "probability": 0.1997 + }, + { + "start": 22846.44, + "end": 22846.93, + "probability": 0.9407 + }, + { + "start": 22847.38, + "end": 22848.34, + "probability": 0.1872 + }, + { + "start": 22850.44, + "end": 22854.42, + "probability": 0.2003 + }, + { + "start": 22854.94, + "end": 22856.26, + "probability": 0.0392 + }, + { + "start": 22862.84, + "end": 22863.24, + "probability": 0.0137 + }, + { + "start": 22863.24, + "end": 22863.24, + "probability": 0.0465 + }, + { + "start": 22863.24, + "end": 22863.24, + "probability": 0.1237 + }, + { + "start": 22863.24, + "end": 22867.1, + "probability": 0.8741 + }, + { + "start": 22867.78, + "end": 22868.76, + "probability": 0.0045 + }, + { + "start": 22870.34, + "end": 22872.98, + "probability": 0.0209 + }, + { + "start": 22873.78, + "end": 22873.94, + "probability": 0.0171 + }, + { + "start": 22873.94, + "end": 22874.48, + "probability": 0.1698 + }, + { + "start": 22874.48, + "end": 22874.7, + "probability": 0.1457 + }, + { + "start": 22874.82, + "end": 22875.48, + "probability": 0.0712 + }, + { + "start": 22875.48, + "end": 22875.96, + "probability": 0.0675 + }, + { + "start": 22877.68, + "end": 22878.42, + "probability": 0.0285 + }, + { + "start": 22878.76, + "end": 22885.22, + "probability": 0.124 + }, + { + "start": 22887.04, + "end": 22887.08, + "probability": 0.0568 + }, + { + "start": 22887.16, + "end": 22888.48, + "probability": 0.1153 + }, + { + "start": 22890.16, + "end": 22890.68, + "probability": 0.4757 + }, + { + "start": 22891.98, + "end": 22892.54, + "probability": 0.131 + }, + { + "start": 22915.0, + "end": 22915.0, + "probability": 0.0 + }, + { + "start": 22915.0, + "end": 22915.0, + "probability": 0.0 + }, + { + "start": 22915.0, + "end": 22915.0, + "probability": 0.0 + }, + { + "start": 22915.0, + "end": 22915.0, + "probability": 0.0 + }, + { + "start": 22915.0, + "end": 22915.0, + "probability": 0.0 + }, + { + "start": 22915.0, + "end": 22915.0, + "probability": 0.0 + }, + { + "start": 22915.0, + "end": 22915.0, + "probability": 0.0 + }, + { + "start": 22915.0, + "end": 22915.0, + "probability": 0.0 + }, + { + "start": 22915.12, + "end": 22915.3, + "probability": 0.1195 + }, + { + "start": 22915.3, + "end": 22915.3, + "probability": 0.1595 + }, + { + "start": 22915.3, + "end": 22915.3, + "probability": 0.0453 + }, + { + "start": 22915.3, + "end": 22915.3, + "probability": 0.0758 + }, + { + "start": 22915.3, + "end": 22915.44, + "probability": 0.1047 + }, + { + "start": 22919.18, + "end": 22922.7, + "probability": 0.9646 + }, + { + "start": 22923.66, + "end": 22925.58, + "probability": 0.6604 + }, + { + "start": 22926.68, + "end": 22928.42, + "probability": 0.8248 + }, + { + "start": 22929.22, + "end": 22932.64, + "probability": 0.9513 + }, + { + "start": 22933.58, + "end": 22934.32, + "probability": 0.8788 + }, + { + "start": 22935.98, + "end": 22939.26, + "probability": 0.9885 + }, + { + "start": 22939.76, + "end": 22944.34, + "probability": 0.9597 + }, + { + "start": 22945.06, + "end": 22947.96, + "probability": 0.9633 + }, + { + "start": 22948.6, + "end": 22949.54, + "probability": 0.9094 + }, + { + "start": 22950.14, + "end": 22951.74, + "probability": 0.8898 + }, + { + "start": 22952.32, + "end": 22954.86, + "probability": 0.89 + }, + { + "start": 22955.38, + "end": 22957.26, + "probability": 0.9017 + }, + { + "start": 22958.36, + "end": 22959.52, + "probability": 0.9224 + }, + { + "start": 22959.62, + "end": 22963.48, + "probability": 0.9784 + }, + { + "start": 22964.24, + "end": 22965.72, + "probability": 0.9621 + }, + { + "start": 22966.86, + "end": 22971.34, + "probability": 0.9866 + }, + { + "start": 22972.18, + "end": 22973.0, + "probability": 0.7694 + }, + { + "start": 22974.62, + "end": 22977.2, + "probability": 0.8991 + }, + { + "start": 22977.48, + "end": 22980.12, + "probability": 0.9941 + }, + { + "start": 22981.32, + "end": 22983.14, + "probability": 0.9983 + }, + { + "start": 22984.02, + "end": 22988.34, + "probability": 0.8964 + }, + { + "start": 22988.46, + "end": 22989.9, + "probability": 0.4995 + }, + { + "start": 22990.74, + "end": 22993.5, + "probability": 0.9275 + }, + { + "start": 22994.08, + "end": 22995.46, + "probability": 0.8406 + }, + { + "start": 22996.14, + "end": 23000.1, + "probability": 0.9858 + }, + { + "start": 23000.78, + "end": 23005.0, + "probability": 0.8134 + }, + { + "start": 23005.7, + "end": 23008.46, + "probability": 0.9604 + }, + { + "start": 23009.44, + "end": 23011.1, + "probability": 0.7288 + }, + { + "start": 23011.66, + "end": 23015.52, + "probability": 0.9969 + }, + { + "start": 23015.62, + "end": 23017.48, + "probability": 0.8887 + }, + { + "start": 23018.24, + "end": 23019.44, + "probability": 0.6209 + }, + { + "start": 23019.94, + "end": 23021.88, + "probability": 0.746 + }, + { + "start": 23022.02, + "end": 23024.7, + "probability": 0.9617 + }, + { + "start": 23025.24, + "end": 23026.4, + "probability": 0.917 + }, + { + "start": 23027.08, + "end": 23028.38, + "probability": 0.9508 + }, + { + "start": 23028.4, + "end": 23033.22, + "probability": 0.7 + }, + { + "start": 23033.4, + "end": 23035.48, + "probability": 0.996 + }, + { + "start": 23036.04, + "end": 23037.16, + "probability": 0.8976 + }, + { + "start": 23037.68, + "end": 23038.54, + "probability": 0.9136 + }, + { + "start": 23039.18, + "end": 23042.14, + "probability": 0.8558 + }, + { + "start": 23042.36, + "end": 23045.48, + "probability": 0.9971 + }, + { + "start": 23046.18, + "end": 23050.22, + "probability": 0.8695 + }, + { + "start": 23050.22, + "end": 23056.18, + "probability": 0.9782 + }, + { + "start": 23056.48, + "end": 23058.52, + "probability": 0.9889 + }, + { + "start": 23059.32, + "end": 23063.54, + "probability": 0.9919 + }, + { + "start": 23064.32, + "end": 23065.9, + "probability": 0.615 + }, + { + "start": 23066.46, + "end": 23068.88, + "probability": 0.9785 + }, + { + "start": 23069.44, + "end": 23074.88, + "probability": 0.9899 + }, + { + "start": 23075.34, + "end": 23077.84, + "probability": 0.8725 + }, + { + "start": 23078.48, + "end": 23081.28, + "probability": 0.8722 + }, + { + "start": 23081.74, + "end": 23085.1, + "probability": 0.9771 + }, + { + "start": 23085.1, + "end": 23088.98, + "probability": 0.9837 + }, + { + "start": 23089.56, + "end": 23093.32, + "probability": 0.8016 + }, + { + "start": 23093.78, + "end": 23098.9, + "probability": 0.9708 + }, + { + "start": 23099.56, + "end": 23104.2, + "probability": 0.9945 + }, + { + "start": 23105.04, + "end": 23105.96, + "probability": 0.8806 + }, + { + "start": 23106.48, + "end": 23110.6, + "probability": 0.9989 + }, + { + "start": 23111.14, + "end": 23113.9, + "probability": 0.8518 + }, + { + "start": 23114.56, + "end": 23114.98, + "probability": 0.5196 + }, + { + "start": 23115.38, + "end": 23119.8, + "probability": 0.9488 + }, + { + "start": 23120.6, + "end": 23126.28, + "probability": 0.9891 + }, + { + "start": 23127.61, + "end": 23130.84, + "probability": 0.8198 + }, + { + "start": 23131.38, + "end": 23136.58, + "probability": 0.9944 + }, + { + "start": 23136.7, + "end": 23139.26, + "probability": 0.8869 + }, + { + "start": 23140.48, + "end": 23142.32, + "probability": 0.8923 + }, + { + "start": 23143.0, + "end": 23145.3, + "probability": 0.9367 + }, + { + "start": 23145.98, + "end": 23147.54, + "probability": 0.5171 + }, + { + "start": 23148.22, + "end": 23155.86, + "probability": 0.8171 + }, + { + "start": 23156.12, + "end": 23158.38, + "probability": 0.9911 + }, + { + "start": 23158.56, + "end": 23160.8, + "probability": 0.9949 + }, + { + "start": 23161.36, + "end": 23164.59, + "probability": 0.6337 + }, + { + "start": 23166.0, + "end": 23171.82, + "probability": 0.9889 + }, + { + "start": 23172.4, + "end": 23176.08, + "probability": 0.8922 + }, + { + "start": 23176.28, + "end": 23177.56, + "probability": 0.9889 + }, + { + "start": 23180.23, + "end": 23181.12, + "probability": 0.1389 + }, + { + "start": 23181.46, + "end": 23185.84, + "probability": 0.9887 + }, + { + "start": 23187.38, + "end": 23191.3, + "probability": 0.9945 + }, + { + "start": 23192.02, + "end": 23194.92, + "probability": 0.9637 + }, + { + "start": 23195.0, + "end": 23196.08, + "probability": 0.7474 + }, + { + "start": 23196.62, + "end": 23199.92, + "probability": 0.9853 + }, + { + "start": 23201.48, + "end": 23204.8, + "probability": 0.9857 + }, + { + "start": 23205.5, + "end": 23206.88, + "probability": 0.9631 + }, + { + "start": 23207.0, + "end": 23210.3, + "probability": 0.9888 + }, + { + "start": 23210.92, + "end": 23213.68, + "probability": 0.9083 + }, + { + "start": 23214.26, + "end": 23214.86, + "probability": 0.8994 + }, + { + "start": 23215.44, + "end": 23216.38, + "probability": 0.9585 + }, + { + "start": 23216.8, + "end": 23217.3, + "probability": 0.9387 + }, + { + "start": 23217.86, + "end": 23219.54, + "probability": 0.6316 + }, + { + "start": 23220.38, + "end": 23221.0, + "probability": 0.9076 + }, + { + "start": 23221.68, + "end": 23223.58, + "probability": 0.7287 + }, + { + "start": 23240.52, + "end": 23244.12, + "probability": 0.8418 + }, + { + "start": 23244.94, + "end": 23249.82, + "probability": 0.9775 + }, + { + "start": 23250.2, + "end": 23252.12, + "probability": 0.9962 + }, + { + "start": 23252.7, + "end": 23254.34, + "probability": 0.5504 + }, + { + "start": 23254.78, + "end": 23256.2, + "probability": 0.1288 + }, + { + "start": 23256.26, + "end": 23258.54, + "probability": 0.9944 + }, + { + "start": 23258.72, + "end": 23261.56, + "probability": 0.9663 + }, + { + "start": 23262.38, + "end": 23266.32, + "probability": 0.9147 + }, + { + "start": 23266.58, + "end": 23268.16, + "probability": 0.9098 + }, + { + "start": 23268.94, + "end": 23269.76, + "probability": 0.8873 + }, + { + "start": 23270.04, + "end": 23274.28, + "probability": 0.7533 + }, + { + "start": 23274.36, + "end": 23276.02, + "probability": 0.962 + }, + { + "start": 23276.4, + "end": 23281.24, + "probability": 0.9749 + }, + { + "start": 23282.26, + "end": 23286.76, + "probability": 0.9915 + }, + { + "start": 23286.76, + "end": 23288.54, + "probability": 0.9958 + }, + { + "start": 23289.36, + "end": 23291.88, + "probability": 0.9782 + }, + { + "start": 23292.36, + "end": 23292.76, + "probability": 0.6096 + }, + { + "start": 23292.92, + "end": 23297.52, + "probability": 0.9776 + }, + { + "start": 23298.62, + "end": 23301.34, + "probability": 0.9958 + }, + { + "start": 23301.34, + "end": 23303.72, + "probability": 0.711 + }, + { + "start": 23304.22, + "end": 23306.92, + "probability": 0.9956 + }, + { + "start": 23307.6, + "end": 23310.96, + "probability": 0.8507 + }, + { + "start": 23311.76, + "end": 23313.96, + "probability": 0.9933 + }, + { + "start": 23314.78, + "end": 23316.38, + "probability": 0.942 + }, + { + "start": 23317.0, + "end": 23320.28, + "probability": 0.7361 + }, + { + "start": 23322.12, + "end": 23329.8, + "probability": 0.9795 + }, + { + "start": 23329.9, + "end": 23330.36, + "probability": 0.7089 + }, + { + "start": 23331.2, + "end": 23334.08, + "probability": 0.8121 + }, + { + "start": 23334.94, + "end": 23337.66, + "probability": 0.9391 + }, + { + "start": 23337.74, + "end": 23338.5, + "probability": 0.8457 + }, + { + "start": 23339.3, + "end": 23340.54, + "probability": 0.9781 + }, + { + "start": 23342.37, + "end": 23342.94, + "probability": 0.4254 + }, + { + "start": 23342.94, + "end": 23343.78, + "probability": 0.6079 + }, + { + "start": 23345.46, + "end": 23349.44, + "probability": 0.9771 + }, + { + "start": 23349.44, + "end": 23352.0, + "probability": 0.8791 + }, + { + "start": 23352.48, + "end": 23355.78, + "probability": 0.9642 + }, + { + "start": 23356.32, + "end": 23357.26, + "probability": 0.7904 + }, + { + "start": 23358.28, + "end": 23360.28, + "probability": 0.9985 + }, + { + "start": 23361.24, + "end": 23364.68, + "probability": 0.9357 + }, + { + "start": 23365.0, + "end": 23367.3, + "probability": 0.9167 + }, + { + "start": 23367.64, + "end": 23369.26, + "probability": 0.9848 + }, + { + "start": 23369.92, + "end": 23371.66, + "probability": 0.9905 + }, + { + "start": 23371.78, + "end": 23373.34, + "probability": 0.9393 + }, + { + "start": 23373.8, + "end": 23376.3, + "probability": 0.9919 + }, + { + "start": 23382.6, + "end": 23390.58, + "probability": 0.4172 + }, + { + "start": 23391.1, + "end": 23394.14, + "probability": 0.8116 + }, + { + "start": 23394.22, + "end": 23394.92, + "probability": 0.791 + }, + { + "start": 23396.32, + "end": 23396.32, + "probability": 0.2755 + }, + { + "start": 23411.58, + "end": 23412.82, + "probability": 0.2018 + }, + { + "start": 23413.56, + "end": 23413.66, + "probability": 0.0905 + }, + { + "start": 23413.66, + "end": 23413.68, + "probability": 0.1105 + }, + { + "start": 23413.68, + "end": 23413.98, + "probability": 0.3128 + }, + { + "start": 23433.14, + "end": 23434.16, + "probability": 0.1461 + }, + { + "start": 23434.78, + "end": 23435.82, + "probability": 0.7688 + }, + { + "start": 23436.74, + "end": 23440.24, + "probability": 0.7838 + }, + { + "start": 23440.34, + "end": 23441.26, + "probability": 0.8858 + }, + { + "start": 23442.46, + "end": 23446.68, + "probability": 0.54 + }, + { + "start": 23447.46, + "end": 23448.84, + "probability": 0.7094 + }, + { + "start": 23451.04, + "end": 23454.44, + "probability": 0.9928 + }, + { + "start": 23455.38, + "end": 23459.84, + "probability": 0.984 + }, + { + "start": 23460.7, + "end": 23461.98, + "probability": 0.7321 + }, + { + "start": 23462.56, + "end": 23464.96, + "probability": 0.8575 + }, + { + "start": 23465.68, + "end": 23467.14, + "probability": 0.8665 + }, + { + "start": 23467.82, + "end": 23468.94, + "probability": 0.9108 + }, + { + "start": 23469.36, + "end": 23471.94, + "probability": 0.8978 + }, + { + "start": 23472.84, + "end": 23478.04, + "probability": 0.7756 + }, + { + "start": 23478.98, + "end": 23483.56, + "probability": 0.9678 + }, + { + "start": 23485.06, + "end": 23486.6, + "probability": 0.9393 + }, + { + "start": 23489.2, + "end": 23489.9, + "probability": 0.6465 + }, + { + "start": 23491.1, + "end": 23491.6, + "probability": 0.6676 + }, + { + "start": 23493.92, + "end": 23495.62, + "probability": 0.8152 + }, + { + "start": 23496.44, + "end": 23498.04, + "probability": 0.9546 + }, + { + "start": 23499.14, + "end": 23503.1, + "probability": 0.9097 + }, + { + "start": 23504.64, + "end": 23504.82, + "probability": 0.6072 + }, + { + "start": 23504.9, + "end": 23506.7, + "probability": 0.8414 + }, + { + "start": 23508.06, + "end": 23509.16, + "probability": 0.5235 + }, + { + "start": 23510.18, + "end": 23510.9, + "probability": 0.9396 + }, + { + "start": 23511.7, + "end": 23513.58, + "probability": 0.9682 + }, + { + "start": 23514.74, + "end": 23516.84, + "probability": 0.4909 + }, + { + "start": 23518.68, + "end": 23520.8, + "probability": 0.6496 + }, + { + "start": 23522.34, + "end": 23527.58, + "probability": 0.9561 + }, + { + "start": 23528.62, + "end": 23530.92, + "probability": 0.9709 + }, + { + "start": 23532.02, + "end": 23534.42, + "probability": 0.9797 + }, + { + "start": 23535.16, + "end": 23537.74, + "probability": 0.999 + }, + { + "start": 23538.48, + "end": 23540.2, + "probability": 0.9965 + }, + { + "start": 23542.32, + "end": 23544.74, + "probability": 0.8194 + }, + { + "start": 23545.42, + "end": 23549.68, + "probability": 0.9955 + }, + { + "start": 23552.34, + "end": 23557.52, + "probability": 0.7333 + }, + { + "start": 23558.46, + "end": 23562.77, + "probability": 0.998 + }, + { + "start": 23564.2, + "end": 23566.34, + "probability": 0.8346 + }, + { + "start": 23566.9, + "end": 23569.22, + "probability": 0.9822 + }, + { + "start": 23570.56, + "end": 23572.56, + "probability": 0.9832 + }, + { + "start": 23573.22, + "end": 23574.26, + "probability": 0.8851 + }, + { + "start": 23575.6, + "end": 23583.0, + "probability": 0.9719 + }, + { + "start": 23583.4, + "end": 23587.04, + "probability": 0.9703 + }, + { + "start": 23587.86, + "end": 23589.86, + "probability": 0.9919 + }, + { + "start": 23590.58, + "end": 23591.64, + "probability": 0.7773 + }, + { + "start": 23592.7, + "end": 23593.6, + "probability": 0.9726 + }, + { + "start": 23595.4, + "end": 23597.1, + "probability": 0.9663 + }, + { + "start": 23597.38, + "end": 23601.12, + "probability": 0.9961 + }, + { + "start": 23601.24, + "end": 23602.78, + "probability": 0.8761 + }, + { + "start": 23603.38, + "end": 23605.1, + "probability": 0.7561 + }, + { + "start": 23605.2, + "end": 23606.34, + "probability": 0.8461 + }, + { + "start": 23607.1, + "end": 23608.62, + "probability": 0.9954 + }, + { + "start": 23609.1, + "end": 23610.53, + "probability": 0.9339 + }, + { + "start": 23611.14, + "end": 23611.98, + "probability": 0.6805 + }, + { + "start": 23612.84, + "end": 23616.88, + "probability": 0.9741 + }, + { + "start": 23617.56, + "end": 23618.92, + "probability": 0.9393 + }, + { + "start": 23619.44, + "end": 23620.69, + "probability": 0.9897 + }, + { + "start": 23621.46, + "end": 23627.74, + "probability": 0.9849 + }, + { + "start": 23628.3, + "end": 23630.12, + "probability": 0.3609 + }, + { + "start": 23630.88, + "end": 23636.4, + "probability": 0.99 + }, + { + "start": 23637.54, + "end": 23638.5, + "probability": 0.621 + }, + { + "start": 23638.74, + "end": 23640.58, + "probability": 0.9541 + }, + { + "start": 23641.54, + "end": 23642.98, + "probability": 0.8311 + }, + { + "start": 23643.8, + "end": 23645.12, + "probability": 0.7103 + }, + { + "start": 23645.66, + "end": 23647.0, + "probability": 0.917 + }, + { + "start": 23648.14, + "end": 23651.4, + "probability": 0.9891 + }, + { + "start": 23652.38, + "end": 23654.56, + "probability": 0.9676 + }, + { + "start": 23654.7, + "end": 23655.18, + "probability": 0.5257 + }, + { + "start": 23655.58, + "end": 23657.36, + "probability": 0.9983 + }, + { + "start": 23657.9, + "end": 23658.42, + "probability": 0.4582 + }, + { + "start": 23658.7, + "end": 23659.72, + "probability": 0.487 + }, + { + "start": 23661.34, + "end": 23663.94, + "probability": 0.9993 + }, + { + "start": 23664.74, + "end": 23669.7, + "probability": 0.9668 + }, + { + "start": 23670.44, + "end": 23672.4, + "probability": 0.9548 + }, + { + "start": 23674.0, + "end": 23676.0, + "probability": 0.5559 + }, + { + "start": 23676.08, + "end": 23678.76, + "probability": 0.3812 + }, + { + "start": 23678.76, + "end": 23679.02, + "probability": 0.5599 + }, + { + "start": 23679.62, + "end": 23680.2, + "probability": 0.6398 + }, + { + "start": 23680.6, + "end": 23682.1, + "probability": 0.7381 + }, + { + "start": 23682.86, + "end": 23683.58, + "probability": 0.5046 + }, + { + "start": 23683.66, + "end": 23684.7, + "probability": 0.4696 + }, + { + "start": 23685.06, + "end": 23685.42, + "probability": 0.4535 + }, + { + "start": 23697.37, + "end": 23697.68, + "probability": 0.0256 + }, + { + "start": 23697.68, + "end": 23697.88, + "probability": 0.0361 + }, + { + "start": 23697.88, + "end": 23698.04, + "probability": 0.0187 + }, + { + "start": 23706.0, + "end": 23706.2, + "probability": 0.176 + }, + { + "start": 23706.2, + "end": 23706.2, + "probability": 0.0295 + }, + { + "start": 23706.2, + "end": 23706.2, + "probability": 0.0777 + }, + { + "start": 23706.2, + "end": 23706.36, + "probability": 0.2202 + }, + { + "start": 23706.7, + "end": 23707.22, + "probability": 0.3859 + }, + { + "start": 23707.34, + "end": 23710.18, + "probability": 0.7277 + }, + { + "start": 23710.86, + "end": 23712.2, + "probability": 0.8746 + }, + { + "start": 23712.32, + "end": 23713.68, + "probability": 0.9043 + }, + { + "start": 23717.28, + "end": 23717.5, + "probability": 0.0074 + }, + { + "start": 23717.5, + "end": 23720.35, + "probability": 0.3662 + }, + { + "start": 23721.38, + "end": 23724.16, + "probability": 0.6834 + }, + { + "start": 23724.64, + "end": 23725.23, + "probability": 0.8289 + }, + { + "start": 23726.86, + "end": 23730.44, + "probability": 0.9914 + }, + { + "start": 23730.44, + "end": 23733.08, + "probability": 0.9924 + }, + { + "start": 23734.56, + "end": 23735.34, + "probability": 0.4952 + }, + { + "start": 23735.78, + "end": 23736.52, + "probability": 0.5317 + }, + { + "start": 23737.12, + "end": 23738.06, + "probability": 0.8539 + }, + { + "start": 23739.0, + "end": 23740.18, + "probability": 0.7282 + }, + { + "start": 23740.3, + "end": 23742.16, + "probability": 0.6886 + }, + { + "start": 23742.22, + "end": 23742.88, + "probability": 0.7525 + }, + { + "start": 23743.44, + "end": 23744.12, + "probability": 0.4194 + }, + { + "start": 23744.64, + "end": 23751.13, + "probability": 0.852 + }, + { + "start": 23752.58, + "end": 23753.34, + "probability": 0.2679 + }, + { + "start": 23753.5, + "end": 23754.04, + "probability": 0.7806 + }, + { + "start": 23754.74, + "end": 23755.06, + "probability": 0.1656 + }, + { + "start": 23755.98, + "end": 23759.94, + "probability": 0.9885 + }, + { + "start": 23761.84, + "end": 23766.32, + "probability": 0.8022 + }, + { + "start": 23767.4, + "end": 23768.0, + "probability": 0.7574 + }, + { + "start": 23778.4, + "end": 23779.0, + "probability": 0.7265 + }, + { + "start": 23779.88, + "end": 23781.76, + "probability": 0.7384 + }, + { + "start": 23783.36, + "end": 23790.1, + "probability": 0.9812 + }, + { + "start": 23791.59, + "end": 23795.08, + "probability": 0.9022 + }, + { + "start": 23795.64, + "end": 23798.68, + "probability": 0.9836 + }, + { + "start": 23799.78, + "end": 23802.88, + "probability": 0.999 + }, + { + "start": 23803.86, + "end": 23807.02, + "probability": 0.9879 + }, + { + "start": 23807.95, + "end": 23809.8, + "probability": 0.8698 + }, + { + "start": 23810.7, + "end": 23815.5, + "probability": 0.9795 + }, + { + "start": 23816.04, + "end": 23818.54, + "probability": 0.9863 + }, + { + "start": 23819.34, + "end": 23823.4, + "probability": 0.945 + }, + { + "start": 23824.18, + "end": 23826.98, + "probability": 0.9628 + }, + { + "start": 23827.84, + "end": 23828.42, + "probability": 0.9762 + }, + { + "start": 23832.18, + "end": 23833.56, + "probability": 0.7448 + }, + { + "start": 23833.72, + "end": 23833.74, + "probability": 0.0993 + }, + { + "start": 23834.26, + "end": 23839.64, + "probability": 0.969 + }, + { + "start": 23840.22, + "end": 23844.06, + "probability": 0.9918 + }, + { + "start": 23844.4, + "end": 23847.7, + "probability": 0.9529 + }, + { + "start": 23848.76, + "end": 23855.18, + "probability": 0.0436 + }, + { + "start": 23857.1, + "end": 23860.84, + "probability": 0.416 + }, + { + "start": 23860.92, + "end": 23863.85, + "probability": 0.9907 + }, + { + "start": 23864.86, + "end": 23867.88, + "probability": 0.983 + }, + { + "start": 23868.28, + "end": 23871.36, + "probability": 0.9743 + }, + { + "start": 23872.24, + "end": 23872.34, + "probability": 0.5284 + }, + { + "start": 23873.2, + "end": 23874.24, + "probability": 0.9696 + }, + { + "start": 23874.32, + "end": 23875.99, + "probability": 0.9683 + }, + { + "start": 23876.28, + "end": 23877.66, + "probability": 0.9261 + }, + { + "start": 23877.78, + "end": 23878.96, + "probability": 0.986 + }, + { + "start": 23879.1, + "end": 23881.2, + "probability": 0.6906 + }, + { + "start": 23881.91, + "end": 23885.28, + "probability": 0.7581 + }, + { + "start": 23885.72, + "end": 23889.58, + "probability": 0.9956 + }, + { + "start": 23890.28, + "end": 23890.7, + "probability": 0.0468 + }, + { + "start": 23890.9, + "end": 23891.12, + "probability": 0.6965 + }, + { + "start": 23891.2, + "end": 23894.5, + "probability": 0.7831 + }, + { + "start": 23894.68, + "end": 23895.18, + "probability": 0.7521 + }, + { + "start": 23902.72, + "end": 23902.72, + "probability": 0.2692 + }, + { + "start": 23902.72, + "end": 23903.81, + "probability": 0.4766 + }, + { + "start": 23905.68, + "end": 23905.78, + "probability": 0.9105 + }, + { + "start": 23906.74, + "end": 23907.7, + "probability": 0.7908 + }, + { + "start": 23908.7, + "end": 23910.0, + "probability": 0.9418 + }, + { + "start": 23910.66, + "end": 23912.5, + "probability": 0.8934 + }, + { + "start": 23913.12, + "end": 23915.5, + "probability": 0.4165 + }, + { + "start": 23916.2, + "end": 23918.36, + "probability": 0.6896 + }, + { + "start": 23919.26, + "end": 23921.4, + "probability": 0.9793 + }, + { + "start": 23921.96, + "end": 23924.44, + "probability": 0.9689 + }, + { + "start": 23925.28, + "end": 23926.82, + "probability": 0.9657 + }, + { + "start": 23927.54, + "end": 23927.88, + "probability": 0.8853 + }, + { + "start": 23928.54, + "end": 23930.54, + "probability": 0.9131 + }, + { + "start": 23931.16, + "end": 23936.02, + "probability": 0.994 + }, + { + "start": 23937.62, + "end": 23938.64, + "probability": 0.6321 + }, + { + "start": 23939.2, + "end": 23942.14, + "probability": 0.9618 + }, + { + "start": 23944.04, + "end": 23945.04, + "probability": 0.7733 + }, + { + "start": 23945.54, + "end": 23951.32, + "probability": 0.9713 + }, + { + "start": 23951.32, + "end": 23955.32, + "probability": 0.9448 + }, + { + "start": 23956.04, + "end": 23957.5, + "probability": 0.9915 + }, + { + "start": 23958.42, + "end": 23962.34, + "probability": 0.9827 + }, + { + "start": 23962.34, + "end": 23965.8, + "probability": 0.9983 + }, + { + "start": 23966.98, + "end": 23968.04, + "probability": 0.9973 + }, + { + "start": 23969.06, + "end": 23971.98, + "probability": 0.9675 + }, + { + "start": 23973.02, + "end": 23978.34, + "probability": 0.9929 + }, + { + "start": 23978.44, + "end": 23979.32, + "probability": 0.8841 + }, + { + "start": 23979.82, + "end": 23981.96, + "probability": 0.8538 + }, + { + "start": 23982.72, + "end": 23987.96, + "probability": 0.9585 + }, + { + "start": 23989.6, + "end": 23996.34, + "probability": 0.981 + }, + { + "start": 23996.34, + "end": 24002.96, + "probability": 0.9211 + }, + { + "start": 24005.0, + "end": 24008.24, + "probability": 0.8649 + }, + { + "start": 24008.86, + "end": 24011.5, + "probability": 0.8762 + }, + { + "start": 24012.8, + "end": 24015.78, + "probability": 0.9789 + }, + { + "start": 24016.76, + "end": 24020.04, + "probability": 0.9508 + }, + { + "start": 24020.56, + "end": 24022.96, + "probability": 0.5332 + }, + { + "start": 24023.68, + "end": 24027.38, + "probability": 0.9865 + }, + { + "start": 24029.12, + "end": 24030.26, + "probability": 0.7056 + }, + { + "start": 24031.12, + "end": 24031.56, + "probability": 0.6307 + }, + { + "start": 24032.62, + "end": 24037.68, + "probability": 0.9244 + }, + { + "start": 24038.14, + "end": 24038.28, + "probability": 0.2601 + }, + { + "start": 24038.34, + "end": 24039.62, + "probability": 0.8525 + }, + { + "start": 24041.06, + "end": 24042.22, + "probability": 0.9964 + }, + { + "start": 24042.86, + "end": 24046.56, + "probability": 0.9429 + }, + { + "start": 24047.98, + "end": 24054.6, + "probability": 0.9563 + }, + { + "start": 24055.04, + "end": 24056.24, + "probability": 0.9069 + }, + { + "start": 24056.48, + "end": 24057.43, + "probability": 0.9577 + }, + { + "start": 24058.92, + "end": 24065.14, + "probability": 0.9939 + }, + { + "start": 24065.66, + "end": 24067.58, + "probability": 0.9931 + }, + { + "start": 24068.12, + "end": 24069.98, + "probability": 0.9746 + }, + { + "start": 24070.96, + "end": 24073.06, + "probability": 0.9888 + }, + { + "start": 24073.82, + "end": 24078.62, + "probability": 0.9966 + }, + { + "start": 24078.62, + "end": 24083.34, + "probability": 0.9889 + }, + { + "start": 24084.1, + "end": 24086.68, + "probability": 0.928 + }, + { + "start": 24087.32, + "end": 24091.44, + "probability": 0.9592 + }, + { + "start": 24091.82, + "end": 24094.44, + "probability": 0.9987 + }, + { + "start": 24095.06, + "end": 24095.74, + "probability": 0.7853 + }, + { + "start": 24098.12, + "end": 24100.48, + "probability": 0.7257 + }, + { + "start": 24100.5, + "end": 24103.0, + "probability": 0.566 + }, + { + "start": 24103.72, + "end": 24104.66, + "probability": 0.5706 + }, + { + "start": 24104.82, + "end": 24104.86, + "probability": 0.8066 + }, + { + "start": 24104.86, + "end": 24105.72, + "probability": 0.924 + }, + { + "start": 24108.92, + "end": 24111.58, + "probability": 0.057 + }, + { + "start": 24112.46, + "end": 24114.1, + "probability": 0.1575 + }, + { + "start": 24115.36, + "end": 24116.2, + "probability": 0.0093 + }, + { + "start": 24116.66, + "end": 24118.84, + "probability": 0.0334 + }, + { + "start": 24118.86, + "end": 24119.24, + "probability": 0.6466 + }, + { + "start": 24119.36, + "end": 24119.46, + "probability": 0.421 + }, + { + "start": 24122.04, + "end": 24122.72, + "probability": 0.7467 + }, + { + "start": 24122.86, + "end": 24123.32, + "probability": 0.9121 + }, + { + "start": 24123.36, + "end": 24124.46, + "probability": 0.8706 + }, + { + "start": 24124.9, + "end": 24130.32, + "probability": 0.9928 + }, + { + "start": 24131.83, + "end": 24133.01, + "probability": 0.6606 + }, + { + "start": 24133.78, + "end": 24137.98, + "probability": 0.9618 + }, + { + "start": 24138.52, + "end": 24143.24, + "probability": 0.9812 + }, + { + "start": 24143.34, + "end": 24144.92, + "probability": 0.9664 + }, + { + "start": 24145.52, + "end": 24148.02, + "probability": 0.9884 + }, + { + "start": 24148.7, + "end": 24156.5, + "probability": 0.9905 + }, + { + "start": 24156.64, + "end": 24159.94, + "probability": 0.8688 + }, + { + "start": 24160.7, + "end": 24163.92, + "probability": 0.8665 + }, + { + "start": 24164.48, + "end": 24165.14, + "probability": 0.989 + }, + { + "start": 24165.56, + "end": 24167.78, + "probability": 0.9406 + }, + { + "start": 24168.68, + "end": 24171.02, + "probability": 0.8018 + }, + { + "start": 24171.5, + "end": 24176.7, + "probability": 0.9931 + }, + { + "start": 24177.54, + "end": 24178.3, + "probability": 0.7707 + }, + { + "start": 24178.4, + "end": 24178.82, + "probability": 0.6268 + }, + { + "start": 24178.82, + "end": 24180.0, + "probability": 0.9853 + }, + { + "start": 24180.12, + "end": 24180.84, + "probability": 0.9989 + }, + { + "start": 24181.7, + "end": 24184.0, + "probability": 0.6997 + }, + { + "start": 24184.9, + "end": 24186.9, + "probability": 0.9473 + }, + { + "start": 24187.38, + "end": 24189.0, + "probability": 0.8693 + }, + { + "start": 24190.2, + "end": 24193.56, + "probability": 0.8089 + }, + { + "start": 24194.44, + "end": 24197.22, + "probability": 0.9961 + }, + { + "start": 24198.22, + "end": 24202.58, + "probability": 0.9126 + }, + { + "start": 24203.44, + "end": 24207.42, + "probability": 0.9691 + }, + { + "start": 24208.42, + "end": 24211.22, + "probability": 0.9897 + }, + { + "start": 24211.62, + "end": 24214.24, + "probability": 0.9725 + }, + { + "start": 24214.78, + "end": 24217.7, + "probability": 0.8283 + }, + { + "start": 24218.38, + "end": 24220.68, + "probability": 0.9015 + }, + { + "start": 24221.24, + "end": 24223.56, + "probability": 0.9921 + }, + { + "start": 24224.1, + "end": 24226.14, + "probability": 0.1186 + }, + { + "start": 24227.68, + "end": 24230.42, + "probability": 0.8778 + }, + { + "start": 24231.52, + "end": 24232.36, + "probability": 0.9805 + }, + { + "start": 24232.68, + "end": 24233.24, + "probability": 0.5277 + }, + { + "start": 24233.6, + "end": 24234.58, + "probability": 0.8718 + }, + { + "start": 24234.68, + "end": 24236.16, + "probability": 0.8751 + }, + { + "start": 24236.8, + "end": 24238.6, + "probability": 0.9484 + }, + { + "start": 24239.36, + "end": 24240.68, + "probability": 0.8081 + }, + { + "start": 24241.74, + "end": 24249.1, + "probability": 0.929 + }, + { + "start": 24249.1, + "end": 24249.8, + "probability": 0.8345 + }, + { + "start": 24250.78, + "end": 24252.5, + "probability": 0.9971 + }, + { + "start": 24252.84, + "end": 24254.5, + "probability": 0.972 + }, + { + "start": 24256.22, + "end": 24258.02, + "probability": 0.9832 + }, + { + "start": 24258.6, + "end": 24262.22, + "probability": 0.9872 + }, + { + "start": 24263.34, + "end": 24266.18, + "probability": 0.6665 + }, + { + "start": 24267.06, + "end": 24268.32, + "probability": 0.7566 + }, + { + "start": 24268.32, + "end": 24268.6, + "probability": 0.8742 + }, + { + "start": 24268.64, + "end": 24269.94, + "probability": 0.9546 + }, + { + "start": 24271.06, + "end": 24273.48, + "probability": 0.8628 + }, + { + "start": 24273.6, + "end": 24274.78, + "probability": 0.9951 + }, + { + "start": 24274.9, + "end": 24276.24, + "probability": 0.9932 + }, + { + "start": 24276.86, + "end": 24280.22, + "probability": 0.9509 + }, + { + "start": 24280.86, + "end": 24284.0, + "probability": 0.998 + }, + { + "start": 24284.58, + "end": 24285.2, + "probability": 0.8296 + }, + { + "start": 24285.32, + "end": 24288.02, + "probability": 0.9979 + }, + { + "start": 24288.88, + "end": 24293.84, + "probability": 0.9886 + }, + { + "start": 24295.1, + "end": 24298.72, + "probability": 0.9921 + }, + { + "start": 24299.36, + "end": 24303.82, + "probability": 0.9918 + }, + { + "start": 24304.3, + "end": 24305.24, + "probability": 0.9916 + }, + { + "start": 24305.86, + "end": 24306.38, + "probability": 0.9024 + }, + { + "start": 24306.98, + "end": 24311.14, + "probability": 0.9919 + }, + { + "start": 24311.22, + "end": 24311.64, + "probability": 0.7558 + }, + { + "start": 24312.7, + "end": 24312.94, + "probability": 0.0113 + }, + { + "start": 24312.94, + "end": 24314.26, + "probability": 0.6164 + }, + { + "start": 24315.28, + "end": 24316.79, + "probability": 0.6021 + }, + { + "start": 24317.12, + "end": 24318.34, + "probability": 0.6646 + }, + { + "start": 24318.94, + "end": 24319.52, + "probability": 0.6696 + }, + { + "start": 24319.6, + "end": 24320.02, + "probability": 0.644 + }, + { + "start": 24320.4, + "end": 24320.88, + "probability": 0.7756 + }, + { + "start": 24329.96, + "end": 24331.38, + "probability": 0.0309 + }, + { + "start": 24331.38, + "end": 24331.48, + "probability": 0.142 + }, + { + "start": 24331.48, + "end": 24331.5, + "probability": 0.0435 + }, + { + "start": 24331.5, + "end": 24331.68, + "probability": 0.0882 + }, + { + "start": 24338.78, + "end": 24341.2, + "probability": 0.5233 + }, + { + "start": 24341.66, + "end": 24342.1, + "probability": 0.0104 + }, + { + "start": 24344.54, + "end": 24345.26, + "probability": 0.4928 + }, + { + "start": 24347.4, + "end": 24350.16, + "probability": 0.9487 + }, + { + "start": 24351.66, + "end": 24352.76, + "probability": 0.8189 + }, + { + "start": 24352.84, + "end": 24353.92, + "probability": 0.9646 + }, + { + "start": 24354.74, + "end": 24356.86, + "probability": 0.9943 + }, + { + "start": 24357.4, + "end": 24360.64, + "probability": 0.808 + }, + { + "start": 24360.76, + "end": 24363.02, + "probability": 0.8579 + }, + { + "start": 24363.04, + "end": 24363.94, + "probability": 0.7043 + }, + { + "start": 24364.98, + "end": 24365.9, + "probability": 0.7318 + }, + { + "start": 24367.4, + "end": 24367.74, + "probability": 0.8696 + }, + { + "start": 24379.28, + "end": 24379.28, + "probability": 0.0098 + }, + { + "start": 24379.28, + "end": 24379.28, + "probability": 0.1345 + }, + { + "start": 24379.28, + "end": 24379.64, + "probability": 0.716 + }, + { + "start": 24380.14, + "end": 24380.6, + "probability": 0.9259 + }, + { + "start": 24393.94, + "end": 24395.46, + "probability": 0.9359 + }, + { + "start": 24396.16, + "end": 24397.96, + "probability": 0.9027 + }, + { + "start": 24398.6, + "end": 24404.44, + "probability": 0.9939 + }, + { + "start": 24404.96, + "end": 24406.36, + "probability": 0.8959 + }, + { + "start": 24407.48, + "end": 24409.58, + "probability": 0.9556 + }, + { + "start": 24410.34, + "end": 24412.0, + "probability": 0.9473 + }, + { + "start": 24412.72, + "end": 24414.34, + "probability": 0.6716 + }, + { + "start": 24414.94, + "end": 24416.02, + "probability": 0.8593 + }, + { + "start": 24416.64, + "end": 24419.06, + "probability": 0.8931 + }, + { + "start": 24419.96, + "end": 24420.88, + "probability": 0.9109 + }, + { + "start": 24421.7, + "end": 24422.95, + "probability": 0.9927 + }, + { + "start": 24423.5, + "end": 24429.66, + "probability": 0.986 + }, + { + "start": 24430.28, + "end": 24432.0, + "probability": 0.9839 + }, + { + "start": 24433.32, + "end": 24436.06, + "probability": 0.9067 + }, + { + "start": 24436.78, + "end": 24437.86, + "probability": 0.9947 + }, + { + "start": 24438.4, + "end": 24439.74, + "probability": 0.9592 + }, + { + "start": 24440.22, + "end": 24440.98, + "probability": 0.9772 + }, + { + "start": 24441.56, + "end": 24446.76, + "probability": 0.9797 + }, + { + "start": 24447.42, + "end": 24447.84, + "probability": 0.9744 + }, + { + "start": 24448.42, + "end": 24449.36, + "probability": 0.9914 + }, + { + "start": 24450.06, + "end": 24454.26, + "probability": 0.8678 + }, + { + "start": 24454.52, + "end": 24458.92, + "probability": 0.985 + }, + { + "start": 24459.64, + "end": 24464.54, + "probability": 0.9858 + }, + { + "start": 24465.36, + "end": 24466.76, + "probability": 0.8702 + }, + { + "start": 24467.28, + "end": 24469.28, + "probability": 0.8943 + }, + { + "start": 24470.08, + "end": 24471.8, + "probability": 0.9962 + }, + { + "start": 24472.34, + "end": 24473.26, + "probability": 0.8955 + }, + { + "start": 24474.16, + "end": 24474.26, + "probability": 0.5118 + }, + { + "start": 24474.92, + "end": 24476.42, + "probability": 0.9963 + }, + { + "start": 24477.02, + "end": 24479.94, + "probability": 0.9907 + }, + { + "start": 24481.08, + "end": 24482.36, + "probability": 0.9571 + }, + { + "start": 24483.08, + "end": 24483.84, + "probability": 0.9064 + }, + { + "start": 24484.76, + "end": 24485.66, + "probability": 0.8918 + }, + { + "start": 24486.58, + "end": 24488.02, + "probability": 0.988 + }, + { + "start": 24488.98, + "end": 24492.6, + "probability": 0.995 + }, + { + "start": 24493.16, + "end": 24495.78, + "probability": 0.9619 + }, + { + "start": 24496.34, + "end": 24500.4, + "probability": 0.9985 + }, + { + "start": 24501.54, + "end": 24504.82, + "probability": 0.9513 + }, + { + "start": 24505.56, + "end": 24506.92, + "probability": 0.9867 + }, + { + "start": 24507.44, + "end": 24509.46, + "probability": 0.9666 + }, + { + "start": 24510.16, + "end": 24510.88, + "probability": 0.7609 + }, + { + "start": 24511.58, + "end": 24516.28, + "probability": 0.9858 + }, + { + "start": 24517.18, + "end": 24520.08, + "probability": 0.9816 + }, + { + "start": 24520.74, + "end": 24524.36, + "probability": 0.9956 + }, + { + "start": 24525.2, + "end": 24527.48, + "probability": 0.9978 + }, + { + "start": 24528.26, + "end": 24529.7, + "probability": 0.9963 + }, + { + "start": 24530.24, + "end": 24530.66, + "probability": 0.9937 + }, + { + "start": 24531.18, + "end": 24531.8, + "probability": 0.9907 + }, + { + "start": 24532.38, + "end": 24533.1, + "probability": 0.8825 + }, + { + "start": 24534.62, + "end": 24536.58, + "probability": 0.73 + }, + { + "start": 24537.28, + "end": 24538.8, + "probability": 0.9989 + }, + { + "start": 24539.68, + "end": 24541.88, + "probability": 0.982 + }, + { + "start": 24542.62, + "end": 24545.54, + "probability": 0.9833 + }, + { + "start": 24546.22, + "end": 24547.48, + "probability": 0.8946 + }, + { + "start": 24548.14, + "end": 24551.4, + "probability": 0.999 + }, + { + "start": 24552.04, + "end": 24553.9, + "probability": 0.9906 + }, + { + "start": 24554.68, + "end": 24556.9, + "probability": 0.974 + }, + { + "start": 24557.76, + "end": 24561.98, + "probability": 0.9857 + }, + { + "start": 24562.44, + "end": 24565.32, + "probability": 0.896 + }, + { + "start": 24566.22, + "end": 24566.32, + "probability": 0.6165 + }, + { + "start": 24567.5, + "end": 24569.36, + "probability": 0.9868 + }, + { + "start": 24570.0, + "end": 24573.44, + "probability": 0.817 + }, + { + "start": 24573.54, + "end": 24574.1, + "probability": 0.6832 + }, + { + "start": 24574.96, + "end": 24576.68, + "probability": 0.9054 + }, + { + "start": 24577.38, + "end": 24578.04, + "probability": 0.9728 + }, + { + "start": 24578.78, + "end": 24579.34, + "probability": 0.9854 + }, + { + "start": 24581.74, + "end": 24586.88, + "probability": 0.8281 + }, + { + "start": 24587.62, + "end": 24588.36, + "probability": 0.8441 + }, + { + "start": 24588.9, + "end": 24590.69, + "probability": 0.998 + }, + { + "start": 24591.62, + "end": 24596.98, + "probability": 0.9248 + }, + { + "start": 24597.64, + "end": 24602.4, + "probability": 0.9893 + }, + { + "start": 24603.5, + "end": 24605.3, + "probability": 0.5328 + }, + { + "start": 24605.92, + "end": 24607.3, + "probability": 0.6966 + }, + { + "start": 24608.9, + "end": 24610.42, + "probability": 0.7641 + }, + { + "start": 24610.94, + "end": 24611.94, + "probability": 0.6184 + }, + { + "start": 24612.64, + "end": 24614.61, + "probability": 0.998 + }, + { + "start": 24616.58, + "end": 24616.96, + "probability": 0.3018 + }, + { + "start": 24617.6, + "end": 24619.94, + "probability": 0.9929 + }, + { + "start": 24620.48, + "end": 24621.68, + "probability": 0.7063 + }, + { + "start": 24623.26, + "end": 24625.56, + "probability": 0.9438 + }, + { + "start": 24626.38, + "end": 24628.1, + "probability": 0.9912 + }, + { + "start": 24628.8, + "end": 24633.06, + "probability": 0.9905 + }, + { + "start": 24634.04, + "end": 24634.4, + "probability": 0.9957 + }, + { + "start": 24635.3, + "end": 24637.65, + "probability": 0.9985 + }, + { + "start": 24638.38, + "end": 24639.62, + "probability": 0.9763 + }, + { + "start": 24640.58, + "end": 24641.82, + "probability": 0.9528 + }, + { + "start": 24642.44, + "end": 24644.48, + "probability": 0.4756 + }, + { + "start": 24645.1, + "end": 24647.22, + "probability": 0.9674 + }, + { + "start": 24648.72, + "end": 24651.14, + "probability": 0.9663 + }, + { + "start": 24651.98, + "end": 24653.4, + "probability": 0.9276 + }, + { + "start": 24663.02, + "end": 24666.1, + "probability": 0.9775 + }, + { + "start": 24667.02, + "end": 24668.28, + "probability": 0.9679 + }, + { + "start": 24668.96, + "end": 24670.08, + "probability": 0.8004 + }, + { + "start": 24670.82, + "end": 24671.56, + "probability": 0.9814 + }, + { + "start": 24673.64, + "end": 24677.24, + "probability": 0.9381 + }, + { + "start": 24678.18, + "end": 24679.0, + "probability": 0.9904 + }, + { + "start": 24679.6, + "end": 24680.34, + "probability": 0.9318 + }, + { + "start": 24681.1, + "end": 24683.96, + "probability": 0.9877 + }, + { + "start": 24684.54, + "end": 24689.34, + "probability": 0.7595 + }, + { + "start": 24689.46, + "end": 24690.8, + "probability": 0.9591 + }, + { + "start": 24691.38, + "end": 24692.96, + "probability": 0.9716 + }, + { + "start": 24693.48, + "end": 24694.58, + "probability": 0.7546 + }, + { + "start": 24695.38, + "end": 24698.2, + "probability": 0.7999 + }, + { + "start": 24698.9, + "end": 24700.36, + "probability": 0.5861 + }, + { + "start": 24701.22, + "end": 24701.72, + "probability": 0.8439 + }, + { + "start": 24703.0, + "end": 24703.68, + "probability": 0.6052 + }, + { + "start": 24704.76, + "end": 24705.0, + "probability": 0.9725 + }, + { + "start": 24705.84, + "end": 24707.8, + "probability": 0.8741 + }, + { + "start": 24708.72, + "end": 24710.06, + "probability": 0.99 + }, + { + "start": 24710.94, + "end": 24712.4, + "probability": 0.9457 + }, + { + "start": 24712.52, + "end": 24714.94, + "probability": 0.679 + }, + { + "start": 24715.06, + "end": 24718.08, + "probability": 0.6746 + }, + { + "start": 24718.74, + "end": 24722.02, + "probability": 0.883 + }, + { + "start": 24722.34, + "end": 24723.92, + "probability": 0.7977 + }, + { + "start": 24727.36, + "end": 24731.64, + "probability": 0.979 + }, + { + "start": 24732.26, + "end": 24735.04, + "probability": 0.7877 + }, + { + "start": 24735.96, + "end": 24741.4, + "probability": 0.952 + }, + { + "start": 24742.38, + "end": 24747.02, + "probability": 0.8636 + }, + { + "start": 24747.76, + "end": 24749.48, + "probability": 0.6557 + }, + { + "start": 24750.06, + "end": 24750.84, + "probability": 0.6979 + }, + { + "start": 24752.0, + "end": 24754.26, + "probability": 0.9779 + }, + { + "start": 24754.6, + "end": 24757.36, + "probability": 0.9299 + }, + { + "start": 24757.36, + "end": 24760.8, + "probability": 0.9907 + }, + { + "start": 24761.28, + "end": 24763.08, + "probability": 0.9615 + }, + { + "start": 24763.72, + "end": 24765.0, + "probability": 0.9726 + }, + { + "start": 24765.64, + "end": 24768.66, + "probability": 0.9902 + }, + { + "start": 24769.44, + "end": 24772.53, + "probability": 0.9578 + }, + { + "start": 24773.66, + "end": 24773.9, + "probability": 0.9193 + }, + { + "start": 24774.5, + "end": 24777.1, + "probability": 0.9835 + }, + { + "start": 24778.42, + "end": 24780.34, + "probability": 0.7415 + }, + { + "start": 24780.88, + "end": 24781.7, + "probability": 0.9813 + }, + { + "start": 24782.88, + "end": 24783.78, + "probability": 0.6145 + }, + { + "start": 24784.58, + "end": 24788.2, + "probability": 0.703 + }, + { + "start": 24788.72, + "end": 24790.46, + "probability": 0.9902 + }, + { + "start": 24790.88, + "end": 24792.57, + "probability": 0.9346 + }, + { + "start": 24793.46, + "end": 24796.06, + "probability": 0.9814 + }, + { + "start": 24796.64, + "end": 24797.22, + "probability": 0.9384 + }, + { + "start": 24797.88, + "end": 24799.84, + "probability": 0.6661 + }, + { + "start": 24800.46, + "end": 24803.28, + "probability": 0.9543 + }, + { + "start": 24803.86, + "end": 24811.02, + "probability": 0.9945 + }, + { + "start": 24811.82, + "end": 24816.08, + "probability": 0.9899 + }, + { + "start": 24817.04, + "end": 24818.02, + "probability": 0.2704 + }, + { + "start": 24818.9, + "end": 24821.52, + "probability": 0.7433 + }, + { + "start": 24822.26, + "end": 24823.42, + "probability": 0.8268 + }, + { + "start": 24823.94, + "end": 24824.34, + "probability": 0.9508 + }, + { + "start": 24825.78, + "end": 24826.22, + "probability": 0.7714 + }, + { + "start": 24826.74, + "end": 24829.4, + "probability": 0.9334 + }, + { + "start": 24830.14, + "end": 24833.7, + "probability": 0.7611 + }, + { + "start": 24834.4, + "end": 24835.66, + "probability": 0.9785 + }, + { + "start": 24836.32, + "end": 24839.0, + "probability": 0.9401 + }, + { + "start": 24839.78, + "end": 24841.18, + "probability": 0.9809 + }, + { + "start": 24842.14, + "end": 24844.24, + "probability": 0.9583 + }, + { + "start": 24844.84, + "end": 24846.68, + "probability": 0.9632 + }, + { + "start": 24847.68, + "end": 24848.38, + "probability": 0.5353 + }, + { + "start": 24848.38, + "end": 24851.98, + "probability": 0.9829 + }, + { + "start": 24852.36, + "end": 24853.62, + "probability": 0.8972 + }, + { + "start": 24853.86, + "end": 24856.06, + "probability": 0.985 + }, + { + "start": 24856.3, + "end": 24856.7, + "probability": 0.7496 + }, + { + "start": 24857.84, + "end": 24858.4, + "probability": 0.873 + }, + { + "start": 24859.86, + "end": 24861.02, + "probability": 0.7641 + }, + { + "start": 24862.34, + "end": 24863.18, + "probability": 0.8469 + }, + { + "start": 24863.84, + "end": 24865.6, + "probability": 0.6029 + }, + { + "start": 24870.0, + "end": 24871.34, + "probability": 0.8749 + }, + { + "start": 24871.8, + "end": 24872.3, + "probability": 0.1663 + }, + { + "start": 24878.64, + "end": 24879.44, + "probability": 0.0996 + }, + { + "start": 24879.46, + "end": 24883.02, + "probability": 0.0658 + }, + { + "start": 24883.81, + "end": 24887.84, + "probability": 0.1259 + }, + { + "start": 24888.02, + "end": 24890.42, + "probability": 0.106 + }, + { + "start": 24890.42, + "end": 24890.42, + "probability": 0.0145 + }, + { + "start": 24936.48, + "end": 24941.5, + "probability": 0.8877 + }, + { + "start": 24946.3, + "end": 24951.6, + "probability": 0.7814 + }, + { + "start": 24952.46, + "end": 24953.58, + "probability": 0.9511 + }, + { + "start": 24953.72, + "end": 24954.18, + "probability": 0.6336 + }, + { + "start": 24954.18, + "end": 24960.1, + "probability": 0.51 + }, + { + "start": 24960.24, + "end": 24962.52, + "probability": 0.9811 + }, + { + "start": 24963.22, + "end": 24964.88, + "probability": 0.7754 + }, + { + "start": 24968.06, + "end": 24969.4, + "probability": 0.6207 + }, + { + "start": 24970.66, + "end": 24974.53, + "probability": 0.9658 + }, + { + "start": 24977.4, + "end": 24978.56, + "probability": 0.8998 + }, + { + "start": 24979.38, + "end": 24982.38, + "probability": 0.8965 + }, + { + "start": 24984.88, + "end": 24988.3, + "probability": 0.9314 + }, + { + "start": 24992.93, + "end": 25002.0, + "probability": 0.9804 + }, + { + "start": 25003.22, + "end": 25007.62, + "probability": 0.9918 + }, + { + "start": 25008.0, + "end": 25009.32, + "probability": 0.8763 + }, + { + "start": 25011.96, + "end": 25019.4, + "probability": 0.9924 + }, + { + "start": 25019.7, + "end": 25020.04, + "probability": 0.7708 + }, + { + "start": 25020.68, + "end": 25026.0, + "probability": 0.9827 + }, + { + "start": 25026.94, + "end": 25029.56, + "probability": 0.3831 + }, + { + "start": 25030.16, + "end": 25036.16, + "probability": 0.9901 + }, + { + "start": 25037.88, + "end": 25041.24, + "probability": 0.9932 + }, + { + "start": 25043.42, + "end": 25044.88, + "probability": 0.814 + }, + { + "start": 25045.42, + "end": 25046.82, + "probability": 0.6465 + }, + { + "start": 25047.0, + "end": 25051.44, + "probability": 0.9551 + }, + { + "start": 25051.5, + "end": 25052.5, + "probability": 0.8903 + }, + { + "start": 25052.64, + "end": 25058.7, + "probability": 0.7708 + }, + { + "start": 25059.64, + "end": 25059.64, + "probability": 0.0032 + }, + { + "start": 25059.64, + "end": 25061.47, + "probability": 0.862 + }, + { + "start": 25061.62, + "end": 25062.84, + "probability": 0.8656 + }, + { + "start": 25063.18, + "end": 25066.7, + "probability": 0.9922 + }, + { + "start": 25066.82, + "end": 25071.52, + "probability": 0.996 + }, + { + "start": 25071.6, + "end": 25072.0, + "probability": 0.342 + }, + { + "start": 25072.22, + "end": 25073.12, + "probability": 0.9401 + }, + { + "start": 25077.12, + "end": 25079.22, + "probability": 0.5786 + }, + { + "start": 25079.62, + "end": 25083.28, + "probability": 0.5034 + }, + { + "start": 25083.3, + "end": 25084.78, + "probability": 0.9941 + }, + { + "start": 25087.0, + "end": 25096.26, + "probability": 0.9701 + }, + { + "start": 25096.26, + "end": 25099.8, + "probability": 0.8411 + }, + { + "start": 25100.7, + "end": 25110.24, + "probability": 0.9876 + }, + { + "start": 25110.31, + "end": 25116.55, + "probability": 0.939 + }, + { + "start": 25117.5, + "end": 25119.0, + "probability": 0.4361 + }, + { + "start": 25119.14, + "end": 25120.16, + "probability": 0.9307 + }, + { + "start": 25120.4, + "end": 25121.66, + "probability": 0.9277 + }, + { + "start": 25122.82, + "end": 25123.78, + "probability": 0.8026 + }, + { + "start": 25124.18, + "end": 25129.56, + "probability": 0.7672 + }, + { + "start": 25130.86, + "end": 25133.26, + "probability": 0.741 + }, + { + "start": 25134.5, + "end": 25135.96, + "probability": 0.9932 + }, + { + "start": 25136.38, + "end": 25137.32, + "probability": 0.7316 + }, + { + "start": 25137.5, + "end": 25137.92, + "probability": 0.6542 + }, + { + "start": 25137.94, + "end": 25139.64, + "probability": 0.9519 + }, + { + "start": 25139.8, + "end": 25140.38, + "probability": 0.8111 + }, + { + "start": 25140.44, + "end": 25141.0, + "probability": 0.9218 + }, + { + "start": 25141.04, + "end": 25141.86, + "probability": 0.8328 + }, + { + "start": 25142.4, + "end": 25142.54, + "probability": 0.3547 + }, + { + "start": 25142.64, + "end": 25147.9, + "probability": 0.991 + }, + { + "start": 25148.3, + "end": 25153.36, + "probability": 0.8617 + }, + { + "start": 25153.86, + "end": 25156.24, + "probability": 0.8016 + }, + { + "start": 25156.3, + "end": 25157.66, + "probability": 0.9229 + }, + { + "start": 25158.02, + "end": 25159.4, + "probability": 0.7065 + }, + { + "start": 25159.68, + "end": 25164.42, + "probability": 0.974 + }, + { + "start": 25164.96, + "end": 25166.14, + "probability": 0.6636 + }, + { + "start": 25168.22, + "end": 25174.96, + "probability": 0.9951 + }, + { + "start": 25175.48, + "end": 25175.94, + "probability": 0.3252 + }, + { + "start": 25176.0, + "end": 25176.22, + "probability": 0.8202 + }, + { + "start": 25176.24, + "end": 25176.86, + "probability": 0.7499 + }, + { + "start": 25177.1, + "end": 25180.12, + "probability": 0.9263 + }, + { + "start": 25180.82, + "end": 25187.26, + "probability": 0.9795 + }, + { + "start": 25187.4, + "end": 25194.0, + "probability": 0.9832 + }, + { + "start": 25194.16, + "end": 25196.5, + "probability": 0.9896 + }, + { + "start": 25197.36, + "end": 25198.14, + "probability": 0.7172 + }, + { + "start": 25198.26, + "end": 25198.7, + "probability": 0.5488 + }, + { + "start": 25198.76, + "end": 25202.54, + "probability": 0.9458 + }, + { + "start": 25203.5, + "end": 25206.9, + "probability": 0.9882 + }, + { + "start": 25212.2, + "end": 25213.16, + "probability": 0.8681 + }, + { + "start": 25213.32, + "end": 25213.78, + "probability": 0.8321 + }, + { + "start": 25213.86, + "end": 25213.98, + "probability": 0.6185 + }, + { + "start": 25214.14, + "end": 25215.36, + "probability": 0.7954 + }, + { + "start": 25215.44, + "end": 25215.92, + "probability": 0.8445 + }, + { + "start": 25216.3, + "end": 25219.54, + "probability": 0.9014 + }, + { + "start": 25220.02, + "end": 25223.18, + "probability": 0.9959 + }, + { + "start": 25223.6, + "end": 25227.38, + "probability": 0.9983 + }, + { + "start": 25228.4, + "end": 25230.08, + "probability": 0.7287 + }, + { + "start": 25230.78, + "end": 25231.44, + "probability": 0.8456 + }, + { + "start": 25232.16, + "end": 25233.96, + "probability": 0.8016 + }, + { + "start": 25234.72, + "end": 25237.08, + "probability": 0.7975 + }, + { + "start": 25237.12, + "end": 25237.93, + "probability": 0.088 + }, + { + "start": 25238.28, + "end": 25239.54, + "probability": 0.9063 + }, + { + "start": 25239.64, + "end": 25242.78, + "probability": 0.9962 + }, + { + "start": 25243.22, + "end": 25246.54, + "probability": 0.9146 + }, + { + "start": 25248.02, + "end": 25249.0, + "probability": 0.9764 + }, + { + "start": 25249.52, + "end": 25252.76, + "probability": 0.8257 + }, + { + "start": 25253.16, + "end": 25253.66, + "probability": 0.5193 + }, + { + "start": 25253.82, + "end": 25254.58, + "probability": 0.0961 + }, + { + "start": 25254.94, + "end": 25256.27, + "probability": 0.304 + }, + { + "start": 25256.9, + "end": 25259.86, + "probability": 0.9889 + }, + { + "start": 25260.6, + "end": 25266.56, + "probability": 0.9738 + }, + { + "start": 25267.02, + "end": 25267.66, + "probability": 0.7834 + }, + { + "start": 25268.24, + "end": 25273.94, + "probability": 0.9783 + }, + { + "start": 25274.06, + "end": 25274.36, + "probability": 0.9167 + }, + { + "start": 25274.44, + "end": 25276.22, + "probability": 0.9258 + }, + { + "start": 25276.34, + "end": 25280.26, + "probability": 0.9629 + }, + { + "start": 25280.34, + "end": 25282.66, + "probability": 0.9847 + }, + { + "start": 25283.04, + "end": 25283.9, + "probability": 0.7453 + }, + { + "start": 25287.06, + "end": 25290.1, + "probability": 0.6662 + }, + { + "start": 25290.48, + "end": 25295.76, + "probability": 0.7664 + }, + { + "start": 25295.92, + "end": 25299.86, + "probability": 0.996 + }, + { + "start": 25299.92, + "end": 25302.26, + "probability": 0.9863 + }, + { + "start": 25303.36, + "end": 25304.86, + "probability": 0.0783 + }, + { + "start": 25305.76, + "end": 25307.1, + "probability": 0.1163 + }, + { + "start": 25307.52, + "end": 25311.16, + "probability": 0.5194 + }, + { + "start": 25313.86, + "end": 25314.02, + "probability": 0.0492 + }, + { + "start": 25314.02, + "end": 25320.68, + "probability": 0.9874 + }, + { + "start": 25320.78, + "end": 25322.16, + "probability": 0.9459 + }, + { + "start": 25322.26, + "end": 25324.72, + "probability": 0.9935 + }, + { + "start": 25325.28, + "end": 25327.3, + "probability": 0.9163 + }, + { + "start": 25327.42, + "end": 25328.2, + "probability": 0.8025 + }, + { + "start": 25328.42, + "end": 25331.5, + "probability": 0.9978 + }, + { + "start": 25332.16, + "end": 25333.3, + "probability": 0.9484 + }, + { + "start": 25334.02, + "end": 25334.72, + "probability": 0.9224 + }, + { + "start": 25335.16, + "end": 25338.18, + "probability": 0.1894 + }, + { + "start": 25338.18, + "end": 25339.62, + "probability": 0.1489 + }, + { + "start": 25339.62, + "end": 25339.69, + "probability": 0.5653 + }, + { + "start": 25340.38, + "end": 25342.64, + "probability": 0.6141 + }, + { + "start": 25342.74, + "end": 25346.86, + "probability": 0.5517 + }, + { + "start": 25347.54, + "end": 25347.62, + "probability": 0.0518 + }, + { + "start": 25347.62, + "end": 25349.0, + "probability": 0.6239 + }, + { + "start": 25349.26, + "end": 25350.0, + "probability": 0.4978 + }, + { + "start": 25350.48, + "end": 25351.14, + "probability": 0.8831 + }, + { + "start": 25351.18, + "end": 25353.92, + "probability": 0.9568 + }, + { + "start": 25354.0, + "end": 25357.28, + "probability": 0.0369 + }, + { + "start": 25357.32, + "end": 25358.82, + "probability": 0.5837 + }, + { + "start": 25359.26, + "end": 25362.2, + "probability": 0.9171 + }, + { + "start": 25362.5, + "end": 25362.76, + "probability": 0.0253 + }, + { + "start": 25362.76, + "end": 25364.28, + "probability": 0.5672 + }, + { + "start": 25364.66, + "end": 25367.82, + "probability": 0.9126 + }, + { + "start": 25368.18, + "end": 25371.54, + "probability": 0.9645 + }, + { + "start": 25371.56, + "end": 25371.92, + "probability": 0.7508 + }, + { + "start": 25371.98, + "end": 25373.26, + "probability": 0.8029 + }, + { + "start": 25373.82, + "end": 25376.22, + "probability": 0.7001 + }, + { + "start": 25376.24, + "end": 25377.4, + "probability": 0.4073 + }, + { + "start": 25377.76, + "end": 25378.9, + "probability": 0.2631 + }, + { + "start": 25379.5, + "end": 25381.72, + "probability": 0.1035 + }, + { + "start": 25381.82, + "end": 25382.44, + "probability": 0.0642 + }, + { + "start": 25382.72, + "end": 25384.14, + "probability": 0.0657 + }, + { + "start": 25384.76, + "end": 25385.95, + "probability": 0.258 + }, + { + "start": 25386.82, + "end": 25389.74, + "probability": 0.1202 + }, + { + "start": 25390.36, + "end": 25391.5, + "probability": 0.271 + }, + { + "start": 25403.74, + "end": 25404.1, + "probability": 0.0533 + }, + { + "start": 25404.56, + "end": 25407.02, + "probability": 0.7605 + }, + { + "start": 25408.14, + "end": 25410.1, + "probability": 0.8228 + }, + { + "start": 25411.14, + "end": 25415.78, + "probability": 0.9849 + }, + { + "start": 25416.64, + "end": 25418.94, + "probability": 0.9763 + }, + { + "start": 25419.8, + "end": 25420.08, + "probability": 0.9784 + }, + { + "start": 25420.62, + "end": 25423.38, + "probability": 0.6747 + }, + { + "start": 25424.1, + "end": 25425.54, + "probability": 0.5134 + }, + { + "start": 25426.32, + "end": 25428.08, + "probability": 0.9852 + }, + { + "start": 25428.74, + "end": 25431.52, + "probability": 0.7276 + }, + { + "start": 25432.14, + "end": 25435.06, + "probability": 0.98 + }, + { + "start": 25435.56, + "end": 25437.3, + "probability": 0.9941 + }, + { + "start": 25438.16, + "end": 25440.28, + "probability": 0.8276 + }, + { + "start": 25448.4, + "end": 25449.58, + "probability": 0.8643 + }, + { + "start": 25450.14, + "end": 25451.16, + "probability": 0.8098 + }, + { + "start": 25452.52, + "end": 25455.52, + "probability": 0.9895 + }, + { + "start": 25457.26, + "end": 25459.86, + "probability": 0.9977 + }, + { + "start": 25460.52, + "end": 25461.14, + "probability": 0.9141 + }, + { + "start": 25462.18, + "end": 25464.54, + "probability": 0.6992 + }, + { + "start": 25465.24, + "end": 25466.02, + "probability": 0.9715 + }, + { + "start": 25467.56, + "end": 25469.84, + "probability": 0.9906 + }, + { + "start": 25470.46, + "end": 25471.26, + "probability": 0.5419 + }, + { + "start": 25472.18, + "end": 25474.64, + "probability": 0.785 + }, + { + "start": 25474.84, + "end": 25475.72, + "probability": 0.6028 + }, + { + "start": 25476.36, + "end": 25477.22, + "probability": 0.4978 + }, + { + "start": 25477.9, + "end": 25478.48, + "probability": 0.763 + }, + { + "start": 25478.9, + "end": 25480.24, + "probability": 0.9886 + }, + { + "start": 25480.68, + "end": 25482.48, + "probability": 0.9213 + }, + { + "start": 25483.06, + "end": 25485.18, + "probability": 0.9322 + }, + { + "start": 25485.98, + "end": 25490.02, + "probability": 0.9465 + }, + { + "start": 25490.7, + "end": 25494.16, + "probability": 0.6331 + }, + { + "start": 25494.98, + "end": 25496.9, + "probability": 0.9051 + }, + { + "start": 25497.66, + "end": 25499.04, + "probability": 0.7441 + }, + { + "start": 25499.6, + "end": 25503.16, + "probability": 0.9961 + }, + { + "start": 25503.76, + "end": 25509.3, + "probability": 0.316 + }, + { + "start": 25509.3, + "end": 25509.7, + "probability": 0.5396 + }, + { + "start": 25510.42, + "end": 25511.42, + "probability": 0.6901 + }, + { + "start": 25512.3, + "end": 25513.54, + "probability": 0.7345 + }, + { + "start": 25514.28, + "end": 25514.52, + "probability": 0.9289 + }, + { + "start": 25515.56, + "end": 25518.62, + "probability": 0.9622 + }, + { + "start": 25519.3, + "end": 25520.6, + "probability": 0.9398 + }, + { + "start": 25521.22, + "end": 25522.44, + "probability": 0.7773 + }, + { + "start": 25523.2, + "end": 25523.9, + "probability": 0.5925 + }, + { + "start": 25525.06, + "end": 25527.57, + "probability": 0.9167 + }, + { + "start": 25527.58, + "end": 25532.3, + "probability": 0.9974 + }, + { + "start": 25532.98, + "end": 25533.86, + "probability": 0.926 + }, + { + "start": 25534.58, + "end": 25535.07, + "probability": 0.9736 + }, + { + "start": 25536.28, + "end": 25538.1, + "probability": 0.917 + }, + { + "start": 25538.68, + "end": 25541.14, + "probability": 0.8661 + }, + { + "start": 25542.03, + "end": 25545.76, + "probability": 0.9463 + }, + { + "start": 25547.86, + "end": 25547.88, + "probability": 0.2388 + }, + { + "start": 25547.88, + "end": 25552.42, + "probability": 0.8976 + }, + { + "start": 25552.92, + "end": 25557.04, + "probability": 0.9936 + }, + { + "start": 25558.34, + "end": 25560.59, + "probability": 0.8843 + }, + { + "start": 25561.52, + "end": 25564.0, + "probability": 0.9946 + }, + { + "start": 25564.62, + "end": 25567.34, + "probability": 0.7697 + }, + { + "start": 25568.02, + "end": 25569.96, + "probability": 0.5876 + }, + { + "start": 25570.52, + "end": 25572.3, + "probability": 0.9553 + }, + { + "start": 25572.88, + "end": 25574.86, + "probability": 0.8668 + }, + { + "start": 25575.14, + "end": 25576.4, + "probability": 0.4731 + }, + { + "start": 25576.78, + "end": 25582.68, + "probability": 0.7815 + }, + { + "start": 25583.24, + "end": 25584.5, + "probability": 0.704 + }, + { + "start": 25585.08, + "end": 25585.12, + "probability": 0.0824 + }, + { + "start": 25585.12, + "end": 25585.12, + "probability": 0.0166 + }, + { + "start": 25585.12, + "end": 25585.12, + "probability": 0.306 + }, + { + "start": 25585.12, + "end": 25586.3, + "probability": 0.3671 + }, + { + "start": 25586.96, + "end": 25589.28, + "probability": 0.6545 + }, + { + "start": 25590.12, + "end": 25591.54, + "probability": 0.1847 + }, + { + "start": 25591.54, + "end": 25592.02, + "probability": 0.0552 + }, + { + "start": 25592.54, + "end": 25594.58, + "probability": 0.319 + }, + { + "start": 25594.58, + "end": 25595.14, + "probability": 0.3882 + }, + { + "start": 25595.78, + "end": 25596.64, + "probability": 0.1888 + }, + { + "start": 25596.66, + "end": 25597.12, + "probability": 0.7764 + }, + { + "start": 25597.8, + "end": 25598.17, + "probability": 0.9125 + }, + { + "start": 25599.14, + "end": 25601.62, + "probability": 0.77 + }, + { + "start": 25602.22, + "end": 25603.2, + "probability": 0.9941 + }, + { + "start": 25604.02, + "end": 25606.36, + "probability": 0.9893 + }, + { + "start": 25607.02, + "end": 25610.7, + "probability": 0.9495 + }, + { + "start": 25610.84, + "end": 25611.52, + "probability": 0.7077 + }, + { + "start": 25612.12, + "end": 25613.58, + "probability": 0.8375 + }, + { + "start": 25613.62, + "end": 25614.16, + "probability": 0.9097 + }, + { + "start": 25614.28, + "end": 25619.5, + "probability": 0.8962 + }, + { + "start": 25619.5, + "end": 25619.5, + "probability": 0.1641 + }, + { + "start": 25619.5, + "end": 25620.0, + "probability": 0.4236 + }, + { + "start": 25620.0, + "end": 25620.1, + "probability": 0.7084 + }, + { + "start": 25620.1, + "end": 25620.92, + "probability": 0.3512 + }, + { + "start": 25620.96, + "end": 25622.38, + "probability": 0.7215 + }, + { + "start": 25622.38, + "end": 25623.0, + "probability": 0.7571 + }, + { + "start": 25623.34, + "end": 25623.36, + "probability": 0.0457 + }, + { + "start": 25623.36, + "end": 25623.36, + "probability": 0.2203 + }, + { + "start": 25623.36, + "end": 25625.92, + "probability": 0.7446 + }, + { + "start": 25626.08, + "end": 25628.74, + "probability": 0.5268 + }, + { + "start": 25629.48, + "end": 25631.16, + "probability": 0.4295 + }, + { + "start": 25631.16, + "end": 25631.16, + "probability": 0.3472 + }, + { + "start": 25631.16, + "end": 25637.24, + "probability": 0.997 + }, + { + "start": 25638.22, + "end": 25640.68, + "probability": 0.8291 + }, + { + "start": 25641.24, + "end": 25643.2, + "probability": 0.9993 + }, + { + "start": 25643.48, + "end": 25645.21, + "probability": 0.9941 + }, + { + "start": 25645.7, + "end": 25645.9, + "probability": 0.0276 + }, + { + "start": 25645.9, + "end": 25647.56, + "probability": 0.9977 + }, + { + "start": 25648.14, + "end": 25648.24, + "probability": 0.4847 + }, + { + "start": 25648.24, + "end": 25651.76, + "probability": 0.6357 + }, + { + "start": 25652.64, + "end": 25652.64, + "probability": 0.112 + }, + { + "start": 25652.64, + "end": 25652.64, + "probability": 0.0497 + }, + { + "start": 25652.64, + "end": 25656.7, + "probability": 0.4105 + }, + { + "start": 25656.7, + "end": 25659.62, + "probability": 0.7232 + }, + { + "start": 25659.62, + "end": 25660.1, + "probability": 0.5962 + }, + { + "start": 25660.2, + "end": 25660.34, + "probability": 0.4549 + }, + { + "start": 25660.54, + "end": 25664.38, + "probability": 0.9225 + }, + { + "start": 25664.5, + "end": 25664.68, + "probability": 0.5744 + }, + { + "start": 25665.34, + "end": 25665.56, + "probability": 0.187 + }, + { + "start": 25665.56, + "end": 25666.08, + "probability": 0.6974 + }, + { + "start": 25667.44, + "end": 25668.24, + "probability": 0.7729 + }, + { + "start": 25668.3, + "end": 25668.78, + "probability": 0.3502 + }, + { + "start": 25669.38, + "end": 25670.0, + "probability": 0.5952 + }, + { + "start": 25670.94, + "end": 25672.44, + "probability": 0.7726 + }, + { + "start": 25678.56, + "end": 25679.02, + "probability": 0.2952 + }, + { + "start": 25679.7, + "end": 25680.22, + "probability": 0.3055 + }, + { + "start": 25683.96, + "end": 25686.12, + "probability": 0.4514 + }, + { + "start": 25686.7, + "end": 25687.6, + "probability": 0.0848 + }, + { + "start": 25688.14, + "end": 25689.78, + "probability": 0.5565 + }, + { + "start": 25690.34, + "end": 25690.46, + "probability": 0.5764 + }, + { + "start": 25692.02, + "end": 25692.64, + "probability": 0.6946 + }, + { + "start": 25692.7, + "end": 25693.24, + "probability": 0.7978 + }, + { + "start": 25693.72, + "end": 25694.48, + "probability": 0.4145 + }, + { + "start": 25701.28, + "end": 25702.84, + "probability": 0.0948 + }, + { + "start": 25702.84, + "end": 25704.28, + "probability": 0.031 + }, + { + "start": 25712.94, + "end": 25713.88, + "probability": 0.0496 + }, + { + "start": 25713.88, + "end": 25715.64, + "probability": 0.4152 + }, + { + "start": 25717.04, + "end": 25724.14, + "probability": 0.5092 + }, + { + "start": 25724.24, + "end": 25725.88, + "probability": 0.9905 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.0, + "end": 25774.0, + "probability": 0.0 + }, + { + "start": 25774.12, + "end": 25774.86, + "probability": 0.3553 + }, + { + "start": 25776.24, + "end": 25777.6, + "probability": 0.8573 + }, + { + "start": 25778.6, + "end": 25781.46, + "probability": 0.9788 + }, + { + "start": 25781.5, + "end": 25782.34, + "probability": 0.2 + }, + { + "start": 25782.5, + "end": 25782.6, + "probability": 0.0089 + }, + { + "start": 25782.6, + "end": 25784.4, + "probability": 0.9909 + }, + { + "start": 25784.62, + "end": 25785.0, + "probability": 0.9761 + }, + { + "start": 25786.06, + "end": 25787.26, + "probability": 0.6513 + }, + { + "start": 25787.66, + "end": 25788.06, + "probability": 0.6688 + }, + { + "start": 25788.06, + "end": 25788.22, + "probability": 0.486 + }, + { + "start": 25788.3, + "end": 25789.34, + "probability": 0.0568 + }, + { + "start": 25790.18, + "end": 25794.86, + "probability": 0.8734 + }, + { + "start": 25796.32, + "end": 25797.78, + "probability": 0.9727 + }, + { + "start": 25797.94, + "end": 25801.31, + "probability": 0.7142 + }, + { + "start": 25802.34, + "end": 25802.34, + "probability": 0.0 + }, + { + "start": 25803.68, + "end": 25806.8, + "probability": 0.1165 + }, + { + "start": 25806.8, + "end": 25806.8, + "probability": 0.1488 + }, + { + "start": 25806.8, + "end": 25806.8, + "probability": 0.0802 + }, + { + "start": 25806.8, + "end": 25810.47, + "probability": 0.0411 + }, + { + "start": 25813.16, + "end": 25816.36, + "probability": 0.2235 + }, + { + "start": 25816.52, + "end": 25816.62, + "probability": 0.2162 + }, + { + "start": 25816.62, + "end": 25817.82, + "probability": 0.2269 + }, + { + "start": 25818.2, + "end": 25819.06, + "probability": 0.442 + }, + { + "start": 25820.88, + "end": 25821.66, + "probability": 0.0131 + }, + { + "start": 25822.24, + "end": 25823.0, + "probability": 0.0817 + }, + { + "start": 25824.38, + "end": 25826.3, + "probability": 0.0612 + }, + { + "start": 25826.3, + "end": 25827.56, + "probability": 0.0879 + }, + { + "start": 25827.56, + "end": 25828.8, + "probability": 0.0402 + }, + { + "start": 25828.8, + "end": 25828.8, + "probability": 0.2651 + }, + { + "start": 25830.76, + "end": 25831.6, + "probability": 0.0268 + }, + { + "start": 25832.48, + "end": 25834.1, + "probability": 0.2318 + }, + { + "start": 25835.16, + "end": 25836.74, + "probability": 0.1589 + }, + { + "start": 25837.78, + "end": 25838.44, + "probability": 0.0329 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25907.0, + "end": 25907.0, + "probability": 0.0 + }, + { + "start": 25918.7, + "end": 25918.92, + "probability": 0.0005 + }, + { + "start": 25925.18, + "end": 25926.64, + "probability": 0.1213 + }, + { + "start": 25926.64, + "end": 25927.86, + "probability": 0.5373 + }, + { + "start": 25928.68, + "end": 25929.0, + "probability": 0.1519 + }, + { + "start": 25929.74, + "end": 25931.4, + "probability": 0.0981 + }, + { + "start": 25932.3, + "end": 25937.44, + "probability": 0.038 + }, + { + "start": 25937.58, + "end": 25939.94, + "probability": 0.1119 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.0, + "probability": 0.0 + }, + { + "start": 26047.0, + "end": 26047.36, + "probability": 0.1406 + }, + { + "start": 26047.36, + "end": 26047.92, + "probability": 0.5601 + }, + { + "start": 26048.64, + "end": 26051.56, + "probability": 0.9579 + }, + { + "start": 26052.66, + "end": 26052.92, + "probability": 0.1188 + }, + { + "start": 26052.92, + "end": 26052.92, + "probability": 0.502 + }, + { + "start": 26052.92, + "end": 26053.56, + "probability": 0.3468 + }, + { + "start": 26054.98, + "end": 26055.68, + "probability": 0.4905 + }, + { + "start": 26057.28, + "end": 26058.2, + "probability": 0.3548 + }, + { + "start": 26058.92, + "end": 26058.92, + "probability": 0.0887 + }, + { + "start": 26058.92, + "end": 26058.92, + "probability": 0.4649 + }, + { + "start": 26058.92, + "end": 26061.68, + "probability": 0.8314 + }, + { + "start": 26061.8, + "end": 26062.88, + "probability": 0.8878 + }, + { + "start": 26063.66, + "end": 26064.56, + "probability": 0.0032 + }, + { + "start": 26064.86, + "end": 26065.84, + "probability": 0.0857 + }, + { + "start": 26066.34, + "end": 26067.18, + "probability": 0.4476 + }, + { + "start": 26067.7, + "end": 26068.68, + "probability": 0.0831 + }, + { + "start": 26068.94, + "end": 26071.2, + "probability": 0.3296 + }, + { + "start": 26072.02, + "end": 26072.6, + "probability": 0.3084 + }, + { + "start": 26074.8, + "end": 26075.22, + "probability": 0.0239 + }, + { + "start": 26076.22, + "end": 26077.4, + "probability": 0.3703 + }, + { + "start": 26077.4, + "end": 26078.2, + "probability": 0.3477 + }, + { + "start": 26079.46, + "end": 26080.38, + "probability": 0.087 + }, + { + "start": 26081.98, + "end": 26083.38, + "probability": 0.0999 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26178.62, + "end": 26178.64, + "probability": 0.0187 + }, + { + "start": 26181.48, + "end": 26183.72, + "probability": 0.4942 + }, + { + "start": 26184.48, + "end": 26186.62, + "probability": 0.9377 + }, + { + "start": 26188.24, + "end": 26190.0, + "probability": 0.9211 + }, + { + "start": 26191.4, + "end": 26193.32, + "probability": 0.8022 + }, + { + "start": 26193.92, + "end": 26196.36, + "probability": 0.7479 + }, + { + "start": 26197.1, + "end": 26200.28, + "probability": 0.8195 + }, + { + "start": 26201.16, + "end": 26202.3, + "probability": 0.6785 + }, + { + "start": 26203.08, + "end": 26203.44, + "probability": 0.5267 + }, + { + "start": 26204.16, + "end": 26205.14, + "probability": 0.7496 + }, + { + "start": 26207.06, + "end": 26207.34, + "probability": 0.9717 + }, + { + "start": 26208.04, + "end": 26209.4, + "probability": 0.8379 + }, + { + "start": 26209.48, + "end": 26210.26, + "probability": 0.9814 + }, + { + "start": 26210.76, + "end": 26213.82, + "probability": 0.946 + }, + { + "start": 26214.46, + "end": 26218.28, + "probability": 0.9542 + }, + { + "start": 26218.42, + "end": 26218.96, + "probability": 0.7645 + }, + { + "start": 26220.0, + "end": 26222.8, + "probability": 0.9638 + }, + { + "start": 26224.22, + "end": 26226.6, + "probability": 0.9958 + }, + { + "start": 26226.64, + "end": 26227.7, + "probability": 0.9261 + }, + { + "start": 26228.0, + "end": 26229.36, + "probability": 0.9121 + }, + { + "start": 26229.72, + "end": 26231.5, + "probability": 0.7988 + }, + { + "start": 26231.56, + "end": 26231.8, + "probability": 0.5169 + }, + { + "start": 26231.9, + "end": 26235.7, + "probability": 0.8524 + }, + { + "start": 26235.94, + "end": 26236.4, + "probability": 0.7414 + }, + { + "start": 26236.66, + "end": 26238.8, + "probability": 0.7154 + }, + { + "start": 26239.44, + "end": 26242.48, + "probability": 0.8689 + }, + { + "start": 26242.78, + "end": 26247.48, + "probability": 0.8856 + }, + { + "start": 26248.34, + "end": 26248.92, + "probability": 0.7422 + }, + { + "start": 26249.58, + "end": 26251.46, + "probability": 0.9807 + }, + { + "start": 26251.82, + "end": 26253.8, + "probability": 0.7481 + }, + { + "start": 26253.84, + "end": 26254.88, + "probability": 0.9888 + }, + { + "start": 26255.52, + "end": 26259.1, + "probability": 0.979 + }, + { + "start": 26260.64, + "end": 26263.6, + "probability": 0.9299 + }, + { + "start": 26264.06, + "end": 26265.16, + "probability": 0.9221 + }, + { + "start": 26265.78, + "end": 26266.08, + "probability": 0.671 + }, + { + "start": 26266.54, + "end": 26267.06, + "probability": 0.7888 + }, + { + "start": 26267.5, + "end": 26269.84, + "probability": 0.9458 + }, + { + "start": 26272.48, + "end": 26274.3, + "probability": 0.9762 + }, + { + "start": 26274.52, + "end": 26275.3, + "probability": 0.9731 + }, + { + "start": 26276.28, + "end": 26278.82, + "probability": 0.9683 + }, + { + "start": 26279.28, + "end": 26281.36, + "probability": 0.9705 + }, + { + "start": 26281.48, + "end": 26282.04, + "probability": 0.9889 + }, + { + "start": 26283.06, + "end": 26284.08, + "probability": 0.8009 + }, + { + "start": 26284.24, + "end": 26284.96, + "probability": 0.983 + }, + { + "start": 26285.32, + "end": 26285.96, + "probability": 0.9482 + }, + { + "start": 26286.42, + "end": 26286.98, + "probability": 0.813 + }, + { + "start": 26287.06, + "end": 26288.72, + "probability": 0.9589 + }, + { + "start": 26289.02, + "end": 26290.8, + "probability": 0.9106 + }, + { + "start": 26291.16, + "end": 26292.8, + "probability": 0.936 + }, + { + "start": 26292.94, + "end": 26293.46, + "probability": 0.6671 + }, + { + "start": 26293.86, + "end": 26295.8, + "probability": 0.9409 + }, + { + "start": 26296.92, + "end": 26297.3, + "probability": 0.8866 + }, + { + "start": 26297.92, + "end": 26299.06, + "probability": 0.981 + }, + { + "start": 26299.36, + "end": 26301.1, + "probability": 0.8274 + }, + { + "start": 26301.78, + "end": 26302.46, + "probability": 0.705 + }, + { + "start": 26303.22, + "end": 26305.12, + "probability": 0.9796 + }, + { + "start": 26305.92, + "end": 26307.44, + "probability": 0.9598 + }, + { + "start": 26309.38, + "end": 26310.8, + "probability": 0.8957 + }, + { + "start": 26311.46, + "end": 26313.88, + "probability": 0.9968 + }, + { + "start": 26314.62, + "end": 26316.36, + "probability": 0.9869 + }, + { + "start": 26316.64, + "end": 26317.98, + "probability": 0.9779 + }, + { + "start": 26318.76, + "end": 26319.86, + "probability": 0.9973 + }, + { + "start": 26320.54, + "end": 26323.0, + "probability": 0.9191 + }, + { + "start": 26323.26, + "end": 26323.86, + "probability": 0.7533 + }, + { + "start": 26324.8, + "end": 26325.66, + "probability": 0.7656 + }, + { + "start": 26326.5, + "end": 26327.33, + "probability": 0.5009 + }, + { + "start": 26327.7, + "end": 26329.44, + "probability": 0.805 + }, + { + "start": 26330.08, + "end": 26330.72, + "probability": 0.8755 + }, + { + "start": 26331.32, + "end": 26334.26, + "probability": 0.9226 + }, + { + "start": 26334.36, + "end": 26334.98, + "probability": 0.9436 + }, + { + "start": 26335.74, + "end": 26336.42, + "probability": 0.952 + }, + { + "start": 26336.92, + "end": 26337.88, + "probability": 0.7996 + }, + { + "start": 26338.32, + "end": 26339.08, + "probability": 0.9355 + }, + { + "start": 26339.14, + "end": 26340.82, + "probability": 0.9889 + }, + { + "start": 26341.52, + "end": 26342.86, + "probability": 0.9668 + }, + { + "start": 26343.58, + "end": 26345.48, + "probability": 0.9062 + }, + { + "start": 26346.58, + "end": 26349.66, + "probability": 0.9601 + }, + { + "start": 26350.18, + "end": 26351.06, + "probability": 0.7274 + }, + { + "start": 26351.9, + "end": 26353.82, + "probability": 0.9521 + }, + { + "start": 26353.9, + "end": 26354.9, + "probability": 0.8972 + }, + { + "start": 26355.12, + "end": 26357.88, + "probability": 0.9771 + }, + { + "start": 26358.7, + "end": 26359.07, + "probability": 0.7546 + }, + { + "start": 26359.94, + "end": 26362.62, + "probability": 0.715 + }, + { + "start": 26364.0, + "end": 26364.44, + "probability": 0.8405 + }, + { + "start": 26365.12, + "end": 26367.14, + "probability": 0.9672 + }, + { + "start": 26367.56, + "end": 26368.64, + "probability": 0.9788 + }, + { + "start": 26369.58, + "end": 26370.52, + "probability": 0.9921 + }, + { + "start": 26371.24, + "end": 26372.44, + "probability": 0.9948 + }, + { + "start": 26372.78, + "end": 26374.02, + "probability": 0.6742 + }, + { + "start": 26374.7, + "end": 26376.54, + "probability": 0.9951 + }, + { + "start": 26377.22, + "end": 26380.48, + "probability": 0.9484 + }, + { + "start": 26381.16, + "end": 26381.86, + "probability": 0.8911 + }, + { + "start": 26382.82, + "end": 26384.3, + "probability": 0.9978 + }, + { + "start": 26385.56, + "end": 26389.38, + "probability": 0.9622 + }, + { + "start": 26389.5, + "end": 26391.46, + "probability": 0.9073 + }, + { + "start": 26392.12, + "end": 26395.44, + "probability": 0.5878 + }, + { + "start": 26396.06, + "end": 26398.46, + "probability": 0.8962 + }, + { + "start": 26399.06, + "end": 26400.34, + "probability": 0.9674 + }, + { + "start": 26400.44, + "end": 26401.62, + "probability": 0.8182 + }, + { + "start": 26402.12, + "end": 26406.62, + "probability": 0.9749 + }, + { + "start": 26406.98, + "end": 26407.2, + "probability": 0.4915 + }, + { + "start": 26408.1, + "end": 26408.46, + "probability": 0.5947 + }, + { + "start": 26409.26, + "end": 26412.74, + "probability": 0.9893 + }, + { + "start": 26412.9, + "end": 26413.9, + "probability": 0.7795 + }, + { + "start": 26414.0, + "end": 26414.34, + "probability": 0.9176 + }, + { + "start": 26415.56, + "end": 26416.86, + "probability": 0.7388 + }, + { + "start": 26417.2, + "end": 26418.94, + "probability": 0.887 + }, + { + "start": 26419.36, + "end": 26421.7, + "probability": 0.8576 + }, + { + "start": 26421.94, + "end": 26423.28, + "probability": 0.9919 + }, + { + "start": 26423.9, + "end": 26424.97, + "probability": 0.5552 + }, + { + "start": 26426.22, + "end": 26428.02, + "probability": 0.8301 + }, + { + "start": 26428.14, + "end": 26430.16, + "probability": 0.987 + }, + { + "start": 26430.86, + "end": 26434.22, + "probability": 0.8706 + }, + { + "start": 26435.04, + "end": 26436.52, + "probability": 0.7625 + }, + { + "start": 26437.44, + "end": 26442.1, + "probability": 0.9521 + }, + { + "start": 26442.26, + "end": 26443.25, + "probability": 0.9438 + }, + { + "start": 26443.74, + "end": 26444.6, + "probability": 0.9385 + }, + { + "start": 26445.52, + "end": 26448.72, + "probability": 0.9253 + }, + { + "start": 26448.98, + "end": 26449.37, + "probability": 0.9607 + }, + { + "start": 26450.1, + "end": 26453.72, + "probability": 0.9866 + }, + { + "start": 26454.46, + "end": 26455.48, + "probability": 0.6395 + }, + { + "start": 26456.0, + "end": 26457.0, + "probability": 0.8647 + }, + { + "start": 26457.6, + "end": 26459.78, + "probability": 0.8291 + }, + { + "start": 26461.78, + "end": 26464.62, + "probability": 0.9708 + }, + { + "start": 26464.78, + "end": 26466.24, + "probability": 0.9912 + }, + { + "start": 26466.66, + "end": 26471.32, + "probability": 0.9986 + }, + { + "start": 26471.8, + "end": 26472.9, + "probability": 0.7712 + }, + { + "start": 26476.4, + "end": 26477.44, + "probability": 0.9419 + }, + { + "start": 26480.0, + "end": 26482.0, + "probability": 0.9377 + }, + { + "start": 26482.9, + "end": 26486.02, + "probability": 0.9969 + }, + { + "start": 26486.68, + "end": 26488.62, + "probability": 0.9685 + }, + { + "start": 26488.7, + "end": 26490.33, + "probability": 0.5583 + }, + { + "start": 26491.18, + "end": 26493.62, + "probability": 0.974 + }, + { + "start": 26494.6, + "end": 26495.4, + "probability": 0.0588 + }, + { + "start": 26495.4, + "end": 26495.9, + "probability": 0.3571 + }, + { + "start": 26496.86, + "end": 26498.81, + "probability": 0.9121 + }, + { + "start": 26499.78, + "end": 26500.0, + "probability": 0.225 + }, + { + "start": 26500.38, + "end": 26501.8, + "probability": 0.2165 + }, + { + "start": 26502.12, + "end": 26503.36, + "probability": 0.5837 + }, + { + "start": 26504.72, + "end": 26504.9, + "probability": 0.2703 + }, + { + "start": 26504.9, + "end": 26505.52, + "probability": 0.6791 + }, + { + "start": 26505.72, + "end": 26507.72, + "probability": 0.4572 + }, + { + "start": 26507.86, + "end": 26509.91, + "probability": 0.2345 + }, + { + "start": 26510.5, + "end": 26512.44, + "probability": 0.0714 + }, + { + "start": 26512.44, + "end": 26512.48, + "probability": 0.0126 + }, + { + "start": 26512.94, + "end": 26513.76, + "probability": 0.5184 + }, + { + "start": 26515.06, + "end": 26517.94, + "probability": 0.9913 + }, + { + "start": 26518.08, + "end": 26518.4, + "probability": 0.2358 + }, + { + "start": 26519.28, + "end": 26520.72, + "probability": 0.9908 + }, + { + "start": 26520.88, + "end": 26523.58, + "probability": 0.8252 + }, + { + "start": 26523.62, + "end": 26523.9, + "probability": 0.1002 + }, + { + "start": 26524.48, + "end": 26525.0, + "probability": 0.1918 + }, + { + "start": 26525.2, + "end": 26526.84, + "probability": 0.5654 + }, + { + "start": 26526.94, + "end": 26527.12, + "probability": 0.3193 + }, + { + "start": 26528.28, + "end": 26529.28, + "probability": 0.0605 + }, + { + "start": 26530.22, + "end": 26530.78, + "probability": 0.1164 + }, + { + "start": 26530.78, + "end": 26531.82, + "probability": 0.6583 + }, + { + "start": 26532.62, + "end": 26533.72, + "probability": 0.6973 + }, + { + "start": 26534.3, + "end": 26536.36, + "probability": 0.8475 + }, + { + "start": 26536.56, + "end": 26538.94, + "probability": 0.8871 + }, + { + "start": 26539.7, + "end": 26542.88, + "probability": 0.8354 + }, + { + "start": 26543.14, + "end": 26543.48, + "probability": 0.7154 + }, + { + "start": 26544.44, + "end": 26546.46, + "probability": 0.7993 + }, + { + "start": 26546.68, + "end": 26548.25, + "probability": 0.4446 + }, + { + "start": 26560.43, + "end": 26561.58, + "probability": 0.0666 + }, + { + "start": 26561.58, + "end": 26561.58, + "probability": 0.012 + }, + { + "start": 26561.58, + "end": 26561.58, + "probability": 0.0989 + }, + { + "start": 26561.58, + "end": 26561.64, + "probability": 0.2619 + }, + { + "start": 26561.64, + "end": 26564.82, + "probability": 0.8912 + }, + { + "start": 26575.24, + "end": 26582.1, + "probability": 0.5441 + }, + { + "start": 26583.68, + "end": 26584.9, + "probability": 0.0318 + }, + { + "start": 26586.54, + "end": 26587.28, + "probability": 0.0222 + }, + { + "start": 26587.46, + "end": 26590.4, + "probability": 0.7086 + }, + { + "start": 26590.98, + "end": 26593.5, + "probability": 0.2065 + }, + { + "start": 26594.68, + "end": 26595.94, + "probability": 0.4174 + }, + { + "start": 26596.26, + "end": 26596.84, + "probability": 0.0983 + }, + { + "start": 26597.2, + "end": 26598.62, + "probability": 0.1349 + }, + { + "start": 26598.62, + "end": 26598.98, + "probability": 0.1589 + }, + { + "start": 26599.1, + "end": 26599.4, + "probability": 0.8854 + }, + { + "start": 26599.4, + "end": 26599.83, + "probability": 0.6565 + }, + { + "start": 26600.54, + "end": 26601.81, + "probability": 0.9348 + }, + { + "start": 26602.72, + "end": 26602.72, + "probability": 0.2178 + }, + { + "start": 26602.72, + "end": 26603.55, + "probability": 0.5805 + }, + { + "start": 26604.44, + "end": 26604.78, + "probability": 0.0088 + }, + { + "start": 26605.08, + "end": 26605.08, + "probability": 0.1422 + }, + { + "start": 26605.08, + "end": 26605.08, + "probability": 0.4019 + }, + { + "start": 26605.08, + "end": 26605.08, + "probability": 0.5827 + }, + { + "start": 26605.08, + "end": 26606.68, + "probability": 0.4809 + }, + { + "start": 26606.7, + "end": 26609.96, + "probability": 0.9612 + }, + { + "start": 26610.02, + "end": 26610.36, + "probability": 0.8216 + }, + { + "start": 26610.46, + "end": 26613.6, + "probability": 0.6837 + }, + { + "start": 26614.0, + "end": 26614.9, + "probability": 0.9263 + }, + { + "start": 26616.04, + "end": 26616.76, + "probability": 0.1564 + }, + { + "start": 26616.76, + "end": 26618.11, + "probability": 0.6626 + }, + { + "start": 26618.84, + "end": 26624.8, + "probability": 0.6862 + }, + { + "start": 26624.94, + "end": 26627.02, + "probability": 0.8007 + }, + { + "start": 26627.2, + "end": 26632.26, + "probability": 0.8843 + }, + { + "start": 26632.86, + "end": 26635.04, + "probability": 0.9208 + }, + { + "start": 26635.04, + "end": 26638.72, + "probability": 0.9958 + }, + { + "start": 26638.88, + "end": 26640.62, + "probability": 0.9832 + }, + { + "start": 26640.74, + "end": 26641.52, + "probability": 0.9254 + }, + { + "start": 26641.56, + "end": 26642.62, + "probability": 0.5669 + }, + { + "start": 26642.62, + "end": 26645.28, + "probability": 0.9976 + }, + { + "start": 26645.44, + "end": 26645.7, + "probability": 0.3109 + }, + { + "start": 26646.14, + "end": 26646.8, + "probability": 0.5807 + }, + { + "start": 26647.74, + "end": 26648.87, + "probability": 0.9827 + }, + { + "start": 26649.42, + "end": 26652.56, + "probability": 0.8836 + }, + { + "start": 26653.38, + "end": 26655.64, + "probability": 0.7759 + }, + { + "start": 26655.7, + "end": 26658.4, + "probability": 0.9766 + }, + { + "start": 26659.64, + "end": 26660.74, + "probability": 0.3671 + }, + { + "start": 26683.12, + "end": 26684.16, + "probability": 0.5677 + }, + { + "start": 26684.94, + "end": 26688.22, + "probability": 0.7263 + }, + { + "start": 26688.96, + "end": 26689.68, + "probability": 0.9689 + }, + { + "start": 26697.86, + "end": 26698.34, + "probability": 0.6813 + }, + { + "start": 26699.72, + "end": 26700.66, + "probability": 0.5049 + }, + { + "start": 26700.8, + "end": 26703.7, + "probability": 0.8011 + }, + { + "start": 26703.88, + "end": 26705.58, + "probability": 0.9472 + }, + { + "start": 26706.12, + "end": 26710.52, + "probability": 0.873 + }, + { + "start": 26710.52, + "end": 26714.02, + "probability": 0.9987 + }, + { + "start": 26715.0, + "end": 26716.92, + "probability": 0.6853 + }, + { + "start": 26717.34, + "end": 26721.82, + "probability": 0.9989 + }, + { + "start": 26721.82, + "end": 26727.54, + "probability": 0.9998 + }, + { + "start": 26728.42, + "end": 26732.5, + "probability": 0.9976 + }, + { + "start": 26733.78, + "end": 26734.74, + "probability": 0.8596 + }, + { + "start": 26735.26, + "end": 26739.72, + "probability": 0.9969 + }, + { + "start": 26739.72, + "end": 26744.4, + "probability": 0.9989 + }, + { + "start": 26744.4, + "end": 26749.06, + "probability": 0.9902 + }, + { + "start": 26750.16, + "end": 26752.64, + "probability": 0.7091 + }, + { + "start": 26753.5, + "end": 26756.94, + "probability": 0.9929 + }, + { + "start": 26757.6, + "end": 26760.0, + "probability": 0.9976 + }, + { + "start": 26761.52, + "end": 26763.93, + "probability": 0.9966 + }, + { + "start": 26764.88, + "end": 26768.68, + "probability": 0.9966 + }, + { + "start": 26768.9, + "end": 26770.64, + "probability": 0.9773 + }, + { + "start": 26772.18, + "end": 26774.02, + "probability": 0.9849 + }, + { + "start": 26774.62, + "end": 26775.44, + "probability": 0.89 + }, + { + "start": 26776.4, + "end": 26781.86, + "probability": 0.9925 + }, + { + "start": 26782.98, + "end": 26786.08, + "probability": 0.8566 + }, + { + "start": 26786.3, + "end": 26787.84, + "probability": 0.7673 + }, + { + "start": 26788.56, + "end": 26790.78, + "probability": 0.9628 + }, + { + "start": 26791.26, + "end": 26796.24, + "probability": 0.9939 + }, + { + "start": 26797.12, + "end": 26797.14, + "probability": 0.2836 + }, + { + "start": 26797.14, + "end": 26803.0, + "probability": 0.9889 + }, + { + "start": 26803.0, + "end": 26808.48, + "probability": 0.9487 + }, + { + "start": 26809.24, + "end": 26810.02, + "probability": 0.572 + }, + { + "start": 26810.52, + "end": 26811.94, + "probability": 0.9214 + }, + { + "start": 26812.2, + "end": 26815.18, + "probability": 0.9819 + }, + { + "start": 26816.78, + "end": 26817.06, + "probability": 0.8663 + }, + { + "start": 26817.56, + "end": 26818.98, + "probability": 0.9648 + }, + { + "start": 26819.12, + "end": 26825.92, + "probability": 0.991 + }, + { + "start": 26826.98, + "end": 26831.78, + "probability": 0.986 + }, + { + "start": 26832.92, + "end": 26836.66, + "probability": 0.9812 + }, + { + "start": 26836.68, + "end": 26840.8, + "probability": 0.9993 + }, + { + "start": 26841.1, + "end": 26841.56, + "probability": 0.8139 + }, + { + "start": 26841.92, + "end": 26845.1, + "probability": 0.998 + }, + { + "start": 26845.88, + "end": 26851.34, + "probability": 0.9907 + }, + { + "start": 26852.32, + "end": 26855.88, + "probability": 0.9937 + }, + { + "start": 26855.88, + "end": 26860.7, + "probability": 0.9953 + }, + { + "start": 26861.68, + "end": 26866.24, + "probability": 0.7317 + }, + { + "start": 26866.84, + "end": 26870.78, + "probability": 0.9285 + }, + { + "start": 26871.3, + "end": 26872.5, + "probability": 0.9311 + }, + { + "start": 26872.98, + "end": 26873.68, + "probability": 0.7525 + }, + { + "start": 26874.4, + "end": 26875.38, + "probability": 0.7897 + }, + { + "start": 26875.56, + "end": 26877.04, + "probability": 0.9388 + }, + { + "start": 26877.34, + "end": 26879.26, + "probability": 0.9884 + }, + { + "start": 26879.26, + "end": 26882.52, + "probability": 0.9885 + }, + { + "start": 26882.98, + "end": 26886.2, + "probability": 0.999 + }, + { + "start": 26886.2, + "end": 26889.44, + "probability": 0.998 + }, + { + "start": 26890.22, + "end": 26892.46, + "probability": 0.9882 + }, + { + "start": 26893.14, + "end": 26897.3, + "probability": 0.999 + }, + { + "start": 26897.3, + "end": 26900.82, + "probability": 0.9977 + }, + { + "start": 26901.48, + "end": 26902.14, + "probability": 0.8012 + }, + { + "start": 26902.58, + "end": 26907.44, + "probability": 0.9917 + }, + { + "start": 26907.95, + "end": 26909.9, + "probability": 0.9795 + }, + { + "start": 26910.2, + "end": 26912.22, + "probability": 0.9855 + }, + { + "start": 26912.3, + "end": 26912.7, + "probability": 0.4405 + }, + { + "start": 26912.7, + "end": 26914.08, + "probability": 0.6663 + }, + { + "start": 26914.58, + "end": 26916.76, + "probability": 0.9143 + }, + { + "start": 26917.88, + "end": 26918.32, + "probability": 0.8 + }, + { + "start": 26923.6, + "end": 26927.08, + "probability": 0.859 + }, + { + "start": 26928.94, + "end": 26930.92, + "probability": 0.7828 + }, + { + "start": 26931.68, + "end": 26934.33, + "probability": 0.8154 + }, + { + "start": 26935.44, + "end": 26936.68, + "probability": 0.51 + }, + { + "start": 26936.86, + "end": 26938.18, + "probability": 0.5161 + }, + { + "start": 26938.3, + "end": 26938.88, + "probability": 0.5411 + }, + { + "start": 26938.92, + "end": 26939.48, + "probability": 0.4454 + }, + { + "start": 26951.06, + "end": 26951.06, + "probability": 0.5417 + }, + { + "start": 26951.58, + "end": 26951.72, + "probability": 0.4009 + }, + { + "start": 26961.05, + "end": 26961.42, + "probability": 0.0699 + }, + { + "start": 26964.24, + "end": 26965.44, + "probability": 0.4058 + }, + { + "start": 26966.02, + "end": 26966.88, + "probability": 0.5724 + }, + { + "start": 26967.08, + "end": 26968.36, + "probability": 0.6625 + }, + { + "start": 26968.44, + "end": 26969.62, + "probability": 0.0247 + }, + { + "start": 26970.26, + "end": 26971.82, + "probability": 0.3502 + }, + { + "start": 26973.55, + "end": 26973.64, + "probability": 0.2809 + }, + { + "start": 26973.64, + "end": 26974.56, + "probability": 0.4945 + }, + { + "start": 26974.56, + "end": 26976.84, + "probability": 0.3844 + }, + { + "start": 26976.88, + "end": 26976.98, + "probability": 0.051 + }, + { + "start": 26976.98, + "end": 26978.94, + "probability": 0.0245 + }, + { + "start": 27002.02, + "end": 27002.12, + "probability": 0.1457 + }, + { + "start": 27007.1, + "end": 27014.64, + "probability": 0.0746 + }, + { + "start": 27014.64, + "end": 27015.92, + "probability": 0.1046 + }, + { + "start": 27015.92, + "end": 27015.92, + "probability": 0.0247 + }, + { + "start": 27020.02, + "end": 27021.38, + "probability": 0.0741 + }, + { + "start": 27021.38, + "end": 27021.42, + "probability": 0.0319 + }, + { + "start": 27021.42, + "end": 27021.62, + "probability": 0.2543 + }, + { + "start": 27022.78, + "end": 27022.78, + "probability": 0.1392 + }, + { + "start": 27022.8, + "end": 27025.22, + "probability": 0.1929 + }, + { + "start": 27025.22, + "end": 27026.26, + "probability": 0.0702 + }, + { + "start": 27026.26, + "end": 27027.98, + "probability": 0.3097 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27028.0, + "end": 27028.0, + "probability": 0.0 + }, + { + "start": 27057.14, + "end": 27058.84, + "probability": 0.5855 + }, + { + "start": 27059.66, + "end": 27063.96, + "probability": 0.9793 + }, + { + "start": 27064.72, + "end": 27067.96, + "probability": 0.6775 + }, + { + "start": 27073.9, + "end": 27075.76, + "probability": 0.463 + }, + { + "start": 27079.66, + "end": 27080.74, + "probability": 0.7916 + }, + { + "start": 27081.56, + "end": 27082.54, + "probability": 0.7852 + }, + { + "start": 27083.16, + "end": 27084.7, + "probability": 0.7133 + }, + { + "start": 27085.54, + "end": 27086.82, + "probability": 0.9595 + }, + { + "start": 27088.62, + "end": 27092.18, + "probability": 0.9264 + }, + { + "start": 27092.18, + "end": 27093.58, + "probability": 0.8684 + }, + { + "start": 27095.02, + "end": 27095.16, + "probability": 0.8948 + }, + { + "start": 27096.04, + "end": 27096.84, + "probability": 0.9126 + }, + { + "start": 27097.6, + "end": 27098.62, + "probability": 0.8741 + }, + { + "start": 27099.6, + "end": 27102.72, + "probability": 0.8218 + }, + { + "start": 27103.46, + "end": 27104.95, + "probability": 0.4226 + }, + { + "start": 27105.58, + "end": 27106.9, + "probability": 0.9017 + }, + { + "start": 27106.96, + "end": 27107.52, + "probability": 0.5681 + }, + { + "start": 27107.64, + "end": 27109.36, + "probability": 0.9609 + }, + { + "start": 27110.34, + "end": 27113.28, + "probability": 0.9929 + }, + { + "start": 27113.86, + "end": 27116.14, + "probability": 0.9751 + }, + { + "start": 27117.74, + "end": 27120.72, + "probability": 0.787 + }, + { + "start": 27121.24, + "end": 27123.98, + "probability": 0.939 + }, + { + "start": 27124.74, + "end": 27126.44, + "probability": 0.9348 + }, + { + "start": 27127.24, + "end": 27130.52, + "probability": 0.848 + }, + { + "start": 27131.18, + "end": 27133.82, + "probability": 0.9669 + }, + { + "start": 27134.38, + "end": 27135.52, + "probability": 0.9633 + }, + { + "start": 27135.62, + "end": 27136.38, + "probability": 0.3903 + }, + { + "start": 27136.72, + "end": 27138.46, + "probability": 0.8488 + }, + { + "start": 27138.9, + "end": 27140.18, + "probability": 0.597 + }, + { + "start": 27142.44, + "end": 27143.54, + "probability": 0.5092 + }, + { + "start": 27143.76, + "end": 27144.52, + "probability": 0.4643 + }, + { + "start": 27144.86, + "end": 27145.7, + "probability": 0.1142 + }, + { + "start": 27145.84, + "end": 27145.88, + "probability": 0.0815 + }, + { + "start": 27145.88, + "end": 27146.78, + "probability": 0.7425 + }, + { + "start": 27147.0, + "end": 27149.4, + "probability": 0.1371 + }, + { + "start": 27150.9, + "end": 27151.28, + "probability": 0.5796 + }, + { + "start": 27152.12, + "end": 27152.42, + "probability": 0.0683 + }, + { + "start": 27152.42, + "end": 27154.36, + "probability": 0.8177 + }, + { + "start": 27154.72, + "end": 27158.68, + "probability": 0.9811 + }, + { + "start": 27160.06, + "end": 27161.88, + "probability": 0.3182 + }, + { + "start": 27162.06, + "end": 27165.34, + "probability": 0.9946 + }, + { + "start": 27165.48, + "end": 27167.46, + "probability": 0.7394 + }, + { + "start": 27168.3, + "end": 27169.76, + "probability": 0.923 + }, + { + "start": 27170.36, + "end": 27173.28, + "probability": 0.9841 + }, + { + "start": 27174.14, + "end": 27177.18, + "probability": 0.6656 + }, + { + "start": 27177.9, + "end": 27179.64, + "probability": 0.9406 + }, + { + "start": 27180.32, + "end": 27182.42, + "probability": 0.762 + }, + { + "start": 27182.48, + "end": 27184.18, + "probability": 0.8495 + }, + { + "start": 27185.0, + "end": 27186.18, + "probability": 0.9474 + }, + { + "start": 27186.96, + "end": 27188.04, + "probability": 0.9206 + }, + { + "start": 27188.76, + "end": 27192.7, + "probability": 0.9858 + }, + { + "start": 27193.22, + "end": 27193.88, + "probability": 0.6519 + }, + { + "start": 27194.5, + "end": 27197.98, + "probability": 0.9827 + }, + { + "start": 27199.1, + "end": 27201.04, + "probability": 0.6882 + }, + { + "start": 27203.62, + "end": 27204.5, + "probability": 0.6083 + }, + { + "start": 27205.5, + "end": 27206.8, + "probability": 0.7527 + }, + { + "start": 27206.88, + "end": 27208.22, + "probability": 0.899 + }, + { + "start": 27208.32, + "end": 27209.52, + "probability": 0.6828 + }, + { + "start": 27210.28, + "end": 27212.08, + "probability": 0.8455 + }, + { + "start": 27213.3, + "end": 27218.04, + "probability": 0.943 + }, + { + "start": 27218.18, + "end": 27220.34, + "probability": 0.9968 + }, + { + "start": 27220.9, + "end": 27222.34, + "probability": 0.9974 + }, + { + "start": 27223.44, + "end": 27224.88, + "probability": 0.9774 + }, + { + "start": 27225.0, + "end": 27230.14, + "probability": 0.9823 + }, + { + "start": 27231.14, + "end": 27234.28, + "probability": 0.9896 + }, + { + "start": 27234.78, + "end": 27235.2, + "probability": 0.3778 + }, + { + "start": 27236.18, + "end": 27237.3, + "probability": 0.8185 + }, + { + "start": 27237.98, + "end": 27240.36, + "probability": 0.962 + }, + { + "start": 27240.9, + "end": 27241.48, + "probability": 0.795 + }, + { + "start": 27242.06, + "end": 27243.14, + "probability": 0.9231 + }, + { + "start": 27243.68, + "end": 27244.92, + "probability": 0.9594 + }, + { + "start": 27245.68, + "end": 27246.7, + "probability": 0.6742 + }, + { + "start": 27248.05, + "end": 27249.94, + "probability": 0.7493 + }, + { + "start": 27251.06, + "end": 27256.72, + "probability": 0.9774 + }, + { + "start": 27257.56, + "end": 27258.4, + "probability": 0.9193 + }, + { + "start": 27260.18, + "end": 27263.76, + "probability": 0.9974 + }, + { + "start": 27264.06, + "end": 27268.6, + "probability": 0.9974 + }, + { + "start": 27268.6, + "end": 27272.26, + "probability": 0.9985 + }, + { + "start": 27273.24, + "end": 27275.4, + "probability": 0.8955 + }, + { + "start": 27275.48, + "end": 27276.2, + "probability": 0.6976 + }, + { + "start": 27277.08, + "end": 27279.4, + "probability": 0.8171 + }, + { + "start": 27280.1, + "end": 27281.64, + "probability": 0.9456 + }, + { + "start": 27282.46, + "end": 27283.78, + "probability": 0.8542 + }, + { + "start": 27284.66, + "end": 27287.06, + "probability": 0.8023 + }, + { + "start": 27287.84, + "end": 27290.08, + "probability": 0.9171 + }, + { + "start": 27290.94, + "end": 27293.74, + "probability": 0.8912 + }, + { + "start": 27294.36, + "end": 27295.5, + "probability": 0.7025 + }, + { + "start": 27296.06, + "end": 27297.88, + "probability": 0.9342 + }, + { + "start": 27298.6, + "end": 27300.32, + "probability": 0.9172 + }, + { + "start": 27300.9, + "end": 27302.2, + "probability": 0.7604 + }, + { + "start": 27302.28, + "end": 27304.68, + "probability": 0.8215 + }, + { + "start": 27305.44, + "end": 27307.46, + "probability": 0.9105 + }, + { + "start": 27308.0, + "end": 27310.6, + "probability": 0.9596 + }, + { + "start": 27312.02, + "end": 27313.08, + "probability": 0.8226 + }, + { + "start": 27313.84, + "end": 27316.3, + "probability": 0.8553 + }, + { + "start": 27316.88, + "end": 27318.56, + "probability": 0.9956 + }, + { + "start": 27319.62, + "end": 27323.18, + "probability": 0.9484 + }, + { + "start": 27323.94, + "end": 27326.08, + "probability": 0.7853 + }, + { + "start": 27326.68, + "end": 27328.6, + "probability": 0.947 + }, + { + "start": 27329.76, + "end": 27331.76, + "probability": 0.9501 + }, + { + "start": 27332.58, + "end": 27333.92, + "probability": 0.9802 + }, + { + "start": 27334.1, + "end": 27336.8, + "probability": 0.9928 + }, + { + "start": 27337.68, + "end": 27339.5, + "probability": 0.9983 + }, + { + "start": 27340.34, + "end": 27343.38, + "probability": 0.9851 + }, + { + "start": 27343.9, + "end": 27345.08, + "probability": 0.8861 + }, + { + "start": 27346.76, + "end": 27347.61, + "probability": 0.9971 + }, + { + "start": 27348.56, + "end": 27350.78, + "probability": 0.9946 + }, + { + "start": 27352.58, + "end": 27353.12, + "probability": 0.7241 + }, + { + "start": 27354.1, + "end": 27356.84, + "probability": 0.8513 + }, + { + "start": 27357.32, + "end": 27359.24, + "probability": 0.6748 + }, + { + "start": 27359.98, + "end": 27362.12, + "probability": 0.9902 + }, + { + "start": 27362.82, + "end": 27363.78, + "probability": 0.9649 + }, + { + "start": 27364.5, + "end": 27367.16, + "probability": 0.9981 + }, + { + "start": 27367.78, + "end": 27371.56, + "probability": 0.9448 + }, + { + "start": 27371.56, + "end": 27375.1, + "probability": 0.9697 + }, + { + "start": 27375.54, + "end": 27377.18, + "probability": 0.9918 + }, + { + "start": 27377.7, + "end": 27379.92, + "probability": 0.9479 + }, + { + "start": 27380.54, + "end": 27384.08, + "probability": 0.9823 + }, + { + "start": 27385.54, + "end": 27390.42, + "probability": 0.9712 + }, + { + "start": 27390.84, + "end": 27391.5, + "probability": 0.6859 + }, + { + "start": 27391.68, + "end": 27393.48, + "probability": 0.9971 + }, + { + "start": 27394.48, + "end": 27395.76, + "probability": 0.8675 + }, + { + "start": 27396.48, + "end": 27399.24, + "probability": 0.9851 + }, + { + "start": 27399.92, + "end": 27401.24, + "probability": 0.9436 + }, + { + "start": 27402.16, + "end": 27404.82, + "probability": 0.9782 + }, + { + "start": 27405.42, + "end": 27406.54, + "probability": 0.8306 + }, + { + "start": 27407.3, + "end": 27408.9, + "probability": 0.9982 + }, + { + "start": 27409.58, + "end": 27413.16, + "probability": 0.9954 + }, + { + "start": 27413.16, + "end": 27415.32, + "probability": 0.9976 + }, + { + "start": 27416.88, + "end": 27421.62, + "probability": 0.9795 + }, + { + "start": 27422.24, + "end": 27428.26, + "probability": 0.9979 + }, + { + "start": 27429.02, + "end": 27431.82, + "probability": 0.9954 + }, + { + "start": 27432.34, + "end": 27433.64, + "probability": 0.8122 + }, + { + "start": 27434.58, + "end": 27439.6, + "probability": 0.9743 + }, + { + "start": 27441.22, + "end": 27442.0, + "probability": 0.8914 + }, + { + "start": 27442.96, + "end": 27445.94, + "probability": 0.9519 + }, + { + "start": 27447.34, + "end": 27450.42, + "probability": 0.9966 + }, + { + "start": 27450.88, + "end": 27454.3, + "probability": 0.9706 + }, + { + "start": 27454.88, + "end": 27456.36, + "probability": 0.7515 + }, + { + "start": 27457.1, + "end": 27463.32, + "probability": 0.9657 + }, + { + "start": 27464.5, + "end": 27465.4, + "probability": 0.9441 + }, + { + "start": 27465.54, + "end": 27467.88, + "probability": 0.9672 + }, + { + "start": 27468.6, + "end": 27472.06, + "probability": 0.9514 + }, + { + "start": 27473.06, + "end": 27477.38, + "probability": 0.8689 + }, + { + "start": 27478.52, + "end": 27481.26, + "probability": 0.8457 + }, + { + "start": 27482.26, + "end": 27486.0, + "probability": 0.9966 + }, + { + "start": 27486.0, + "end": 27490.28, + "probability": 0.9777 + }, + { + "start": 27491.04, + "end": 27491.82, + "probability": 0.8873 + }, + { + "start": 27492.44, + "end": 27493.48, + "probability": 0.7661 + }, + { + "start": 27494.22, + "end": 27500.82, + "probability": 0.9956 + }, + { + "start": 27501.44, + "end": 27508.06, + "probability": 0.9991 + }, + { + "start": 27508.8, + "end": 27509.62, + "probability": 0.9917 + }, + { + "start": 27510.36, + "end": 27512.62, + "probability": 0.9067 + }, + { + "start": 27513.64, + "end": 27515.14, + "probability": 0.9522 + }, + { + "start": 27516.26, + "end": 27520.8, + "probability": 0.9948 + }, + { + "start": 27521.38, + "end": 27526.24, + "probability": 0.9971 + }, + { + "start": 27526.84, + "end": 27528.76, + "probability": 0.9203 + }, + { + "start": 27528.82, + "end": 27529.28, + "probability": 0.8128 + }, + { + "start": 27531.8, + "end": 27532.54, + "probability": 0.646 + }, + { + "start": 27539.3, + "end": 27540.64, + "probability": 0.8148 + }, + { + "start": 27561.26, + "end": 27562.18, + "probability": 0.5909 + }, + { + "start": 27563.84, + "end": 27564.88, + "probability": 0.7932 + }, + { + "start": 27566.72, + "end": 27568.72, + "probability": 0.9221 + }, + { + "start": 27570.62, + "end": 27572.28, + "probability": 0.9884 + }, + { + "start": 27573.7, + "end": 27574.42, + "probability": 0.8151 + }, + { + "start": 27579.36, + "end": 27581.04, + "probability": 0.8449 + }, + { + "start": 27582.36, + "end": 27585.5, + "probability": 0.6878 + }, + { + "start": 27585.7, + "end": 27586.94, + "probability": 0.6918 + }, + { + "start": 27588.52, + "end": 27589.08, + "probability": 0.848 + }, + { + "start": 27589.76, + "end": 27592.84, + "probability": 0.9267 + }, + { + "start": 27594.54, + "end": 27595.66, + "probability": 0.964 + }, + { + "start": 27596.84, + "end": 27599.08, + "probability": 0.9827 + }, + { + "start": 27600.26, + "end": 27601.44, + "probability": 0.969 + }, + { + "start": 27602.88, + "end": 27604.54, + "probability": 0.98 + }, + { + "start": 27605.74, + "end": 27608.06, + "probability": 0.9784 + }, + { + "start": 27608.78, + "end": 27610.9, + "probability": 0.998 + }, + { + "start": 27611.52, + "end": 27614.92, + "probability": 0.9976 + }, + { + "start": 27615.56, + "end": 27617.04, + "probability": 0.8724 + }, + { + "start": 27617.18, + "end": 27618.38, + "probability": 0.7239 + }, + { + "start": 27618.8, + "end": 27621.1, + "probability": 0.9991 + }, + { + "start": 27622.2, + "end": 27626.88, + "probability": 0.8462 + }, + { + "start": 27628.68, + "end": 27631.4, + "probability": 0.8746 + }, + { + "start": 27632.34, + "end": 27635.24, + "probability": 0.9973 + }, + { + "start": 27637.48, + "end": 27638.0, + "probability": 0.9674 + }, + { + "start": 27638.7, + "end": 27643.3, + "probability": 0.9257 + }, + { + "start": 27644.06, + "end": 27646.46, + "probability": 0.9776 + }, + { + "start": 27647.38, + "end": 27649.62, + "probability": 0.982 + }, + { + "start": 27652.16, + "end": 27652.88, + "probability": 0.801 + }, + { + "start": 27653.34, + "end": 27657.04, + "probability": 0.9929 + }, + { + "start": 27657.8, + "end": 27661.6, + "probability": 0.9983 + }, + { + "start": 27662.84, + "end": 27667.42, + "probability": 0.9978 + }, + { + "start": 27668.9, + "end": 27670.86, + "probability": 0.9384 + }, + { + "start": 27671.2, + "end": 27672.18, + "probability": 0.8438 + }, + { + "start": 27672.46, + "end": 27673.16, + "probability": 0.4421 + }, + { + "start": 27673.32, + "end": 27673.52, + "probability": 0.5989 + }, + { + "start": 27673.66, + "end": 27675.24, + "probability": 0.927 + }, + { + "start": 27676.88, + "end": 27679.98, + "probability": 0.9746 + }, + { + "start": 27680.74, + "end": 27682.64, + "probability": 0.9929 + }, + { + "start": 27683.64, + "end": 27685.16, + "probability": 0.5994 + }, + { + "start": 27686.18, + "end": 27688.48, + "probability": 0.9738 + }, + { + "start": 27689.18, + "end": 27693.28, + "probability": 0.9554 + }, + { + "start": 27695.92, + "end": 27696.34, + "probability": 0.7327 + }, + { + "start": 27697.32, + "end": 27698.12, + "probability": 0.998 + }, + { + "start": 27699.22, + "end": 27702.2, + "probability": 0.973 + }, + { + "start": 27703.88, + "end": 27711.2, + "probability": 0.7688 + }, + { + "start": 27712.0, + "end": 27713.86, + "probability": 0.9951 + }, + { + "start": 27714.64, + "end": 27718.62, + "probability": 0.9989 + }, + { + "start": 27720.8, + "end": 27725.66, + "probability": 0.9906 + }, + { + "start": 27726.6, + "end": 27730.34, + "probability": 0.9985 + }, + { + "start": 27730.62, + "end": 27732.06, + "probability": 0.8283 + }, + { + "start": 27732.26, + "end": 27732.74, + "probability": 0.8154 + }, + { + "start": 27734.26, + "end": 27738.02, + "probability": 0.9692 + }, + { + "start": 27738.08, + "end": 27743.6, + "probability": 0.8903 + }, + { + "start": 27745.54, + "end": 27753.44, + "probability": 0.9944 + }, + { + "start": 27754.46, + "end": 27759.02, + "probability": 0.9849 + }, + { + "start": 27759.02, + "end": 27765.66, + "probability": 0.9983 + }, + { + "start": 27768.06, + "end": 27770.58, + "probability": 0.8923 + }, + { + "start": 27772.84, + "end": 27773.9, + "probability": 0.9304 + }, + { + "start": 27775.18, + "end": 27776.26, + "probability": 0.7366 + }, + { + "start": 27777.7, + "end": 27780.36, + "probability": 0.9823 + }, + { + "start": 27780.92, + "end": 27783.96, + "probability": 0.9995 + }, + { + "start": 27786.04, + "end": 27786.86, + "probability": 0.7979 + }, + { + "start": 27787.48, + "end": 27790.36, + "probability": 0.9883 + }, + { + "start": 27791.68, + "end": 27794.94, + "probability": 0.9749 + }, + { + "start": 27794.94, + "end": 27798.98, + "probability": 0.9967 + }, + { + "start": 27800.06, + "end": 27804.16, + "probability": 0.9888 + }, + { + "start": 27804.8, + "end": 27808.8, + "probability": 0.9906 + }, + { + "start": 27810.72, + "end": 27811.36, + "probability": 0.931 + }, + { + "start": 27811.94, + "end": 27815.82, + "probability": 0.9827 + }, + { + "start": 27818.32, + "end": 27823.32, + "probability": 0.9799 + }, + { + "start": 27824.22, + "end": 27826.58, + "probability": 0.998 + }, + { + "start": 27826.58, + "end": 27828.54, + "probability": 0.9983 + }, + { + "start": 27828.62, + "end": 27830.62, + "probability": 0.9942 + }, + { + "start": 27831.62, + "end": 27832.92, + "probability": 0.9777 + }, + { + "start": 27833.78, + "end": 27836.14, + "probability": 0.9494 + }, + { + "start": 27836.26, + "end": 27837.06, + "probability": 0.6837 + }, + { + "start": 27837.76, + "end": 27841.16, + "probability": 0.9808 + }, + { + "start": 27841.16, + "end": 27846.06, + "probability": 0.9903 + }, + { + "start": 27846.9, + "end": 27849.08, + "probability": 0.9727 + }, + { + "start": 27850.04, + "end": 27851.08, + "probability": 0.9717 + }, + { + "start": 27851.68, + "end": 27854.38, + "probability": 0.9902 + }, + { + "start": 27856.28, + "end": 27856.96, + "probability": 0.7229 + }, + { + "start": 27858.4, + "end": 27859.24, + "probability": 0.4889 + }, + { + "start": 27861.98, + "end": 27862.5, + "probability": 0.7439 + }, + { + "start": 27864.28, + "end": 27864.28, + "probability": 0.0767 + }, + { + "start": 27864.28, + "end": 27865.08, + "probability": 0.8017 + }, + { + "start": 27873.68, + "end": 27875.38, + "probability": 0.1277 + }, + { + "start": 27876.38, + "end": 27876.6, + "probability": 0.1242 + }, + { + "start": 27876.6, + "end": 27876.8, + "probability": 0.0188 + }, + { + "start": 27876.8, + "end": 27876.8, + "probability": 0.056 + }, + { + "start": 27899.98, + "end": 27900.52, + "probability": 0.3324 + }, + { + "start": 27900.74, + "end": 27902.48, + "probability": 0.6757 + }, + { + "start": 27902.82, + "end": 27903.34, + "probability": 0.7082 + }, + { + "start": 27903.58, + "end": 27905.43, + "probability": 0.9741 + }, + { + "start": 27906.44, + "end": 27908.14, + "probability": 0.9364 + }, + { + "start": 27908.3, + "end": 27910.66, + "probability": 0.9081 + }, + { + "start": 27910.66, + "end": 27912.4, + "probability": 0.7093 + }, + { + "start": 27912.98, + "end": 27914.1, + "probability": 0.9927 + }, + { + "start": 27914.51, + "end": 27914.92, + "probability": 0.9556 + }, + { + "start": 27915.24, + "end": 27915.86, + "probability": 0.9005 + }, + { + "start": 27915.88, + "end": 27916.56, + "probability": 0.4295 + }, + { + "start": 27917.1, + "end": 27921.48, + "probability": 0.762 + }, + { + "start": 27921.62, + "end": 27924.38, + "probability": 0.9805 + }, + { + "start": 27924.66, + "end": 27926.44, + "probability": 0.9902 + }, + { + "start": 27926.86, + "end": 27929.8, + "probability": 0.4818 + }, + { + "start": 27930.38, + "end": 27931.0, + "probability": 0.9258 + }, + { + "start": 27931.08, + "end": 27932.68, + "probability": 0.6869 + }, + { + "start": 27933.05, + "end": 27934.83, + "probability": 0.7893 + }, + { + "start": 27936.2, + "end": 27943.76, + "probability": 0.3492 + }, + { + "start": 27944.38, + "end": 27946.9, + "probability": 0.7248 + }, + { + "start": 27947.48, + "end": 27948.24, + "probability": 0.3653 + }, + { + "start": 27949.32, + "end": 27950.28, + "probability": 0.1014 + }, + { + "start": 27950.72, + "end": 27950.72, + "probability": 0.1976 + }, + { + "start": 27950.72, + "end": 27950.72, + "probability": 0.1363 + }, + { + "start": 27950.72, + "end": 27954.5, + "probability": 0.5976 + }, + { + "start": 27954.5, + "end": 27958.76, + "probability": 0.4039 + }, + { + "start": 27958.76, + "end": 27960.78, + "probability": 0.6646 + }, + { + "start": 27960.9, + "end": 27963.46, + "probability": 0.9963 + }, + { + "start": 27963.82, + "end": 27964.6, + "probability": 0.647 + }, + { + "start": 27964.6, + "end": 27965.4, + "probability": 0.8303 + }, + { + "start": 27966.04, + "end": 27968.88, + "probability": 0.5227 + }, + { + "start": 27968.96, + "end": 27970.48, + "probability": 0.6633 + }, + { + "start": 27970.66, + "end": 27971.04, + "probability": 0.6923 + }, + { + "start": 27971.72, + "end": 27972.22, + "probability": 0.7749 + }, + { + "start": 27974.65, + "end": 27977.14, + "probability": 0.9779 + }, + { + "start": 27978.0, + "end": 27979.04, + "probability": 0.9839 + }, + { + "start": 27979.72, + "end": 27979.9, + "probability": 0.7564 + }, + { + "start": 27980.58, + "end": 27982.42, + "probability": 0.9476 + }, + { + "start": 27982.8, + "end": 27984.26, + "probability": 0.7516 + }, + { + "start": 27984.38, + "end": 27984.84, + "probability": 0.4939 + }, + { + "start": 27985.0, + "end": 27986.42, + "probability": 0.5201 + }, + { + "start": 27987.02, + "end": 27989.56, + "probability": 0.9975 + }, + { + "start": 27990.08, + "end": 27994.36, + "probability": 0.8499 + }, + { + "start": 27994.88, + "end": 27995.58, + "probability": 0.9746 + }, + { + "start": 27996.34, + "end": 27999.4, + "probability": 0.8477 + }, + { + "start": 27999.68, + "end": 28000.24, + "probability": 0.5429 + }, + { + "start": 28000.98, + "end": 28003.09, + "probability": 0.8798 + }, + { + "start": 28004.28, + "end": 28005.52, + "probability": 0.9103 + }, + { + "start": 28006.32, + "end": 28007.56, + "probability": 0.978 + }, + { + "start": 28008.3, + "end": 28008.82, + "probability": 0.8997 + }, + { + "start": 28009.74, + "end": 28012.36, + "probability": 0.8273 + }, + { + "start": 28013.08, + "end": 28016.29, + "probability": 0.7202 + }, + { + "start": 28017.22, + "end": 28019.28, + "probability": 0.9842 + }, + { + "start": 28019.28, + "end": 28021.52, + "probability": 0.9575 + }, + { + "start": 28022.24, + "end": 28024.64, + "probability": 0.9123 + }, + { + "start": 28025.48, + "end": 28029.06, + "probability": 0.9976 + }, + { + "start": 28029.98, + "end": 28032.42, + "probability": 0.9935 + }, + { + "start": 28033.02, + "end": 28037.12, + "probability": 0.9408 + }, + { + "start": 28037.86, + "end": 28040.84, + "probability": 0.9951 + }, + { + "start": 28041.64, + "end": 28045.48, + "probability": 0.752 + }, + { + "start": 28045.56, + "end": 28046.64, + "probability": 0.7598 + }, + { + "start": 28047.34, + "end": 28049.24, + "probability": 0.6779 + }, + { + "start": 28049.98, + "end": 28052.66, + "probability": 0.9733 + }, + { + "start": 28053.32, + "end": 28054.92, + "probability": 0.8707 + }, + { + "start": 28056.32, + "end": 28056.67, + "probability": 0.8081 + }, + { + "start": 28057.76, + "end": 28059.9, + "probability": 0.8241 + }, + { + "start": 28060.32, + "end": 28062.44, + "probability": 0.9802 + }, + { + "start": 28063.02, + "end": 28067.92, + "probability": 0.9905 + }, + { + "start": 28068.24, + "end": 28072.04, + "probability": 0.9988 + }, + { + "start": 28072.5, + "end": 28073.14, + "probability": 0.4248 + }, + { + "start": 28073.16, + "end": 28074.11, + "probability": 0.8865 + }, + { + "start": 28074.62, + "end": 28075.66, + "probability": 0.8076 + }, + { + "start": 28076.06, + "end": 28077.1, + "probability": 0.6641 + }, + { + "start": 28078.18, + "end": 28080.16, + "probability": 0.8866 + }, + { + "start": 28081.68, + "end": 28082.7, + "probability": 0.7733 + }, + { + "start": 28083.62, + "end": 28090.74, + "probability": 0.6985 + }, + { + "start": 28090.96, + "end": 28093.6, + "probability": 0.8972 + }, + { + "start": 28093.62, + "end": 28095.52, + "probability": 0.8545 + }, + { + "start": 28096.06, + "end": 28096.9, + "probability": 0.0143 + }, + { + "start": 28097.66, + "end": 28097.84, + "probability": 0.7998 + }, + { + "start": 28105.46, + "end": 28111.24, + "probability": 0.6607 + }, + { + "start": 28112.02, + "end": 28114.2, + "probability": 0.6743 + }, + { + "start": 28116.36, + "end": 28117.22, + "probability": 0.8424 + }, + { + "start": 28118.36, + "end": 28119.36, + "probability": 0.9007 + }, + { + "start": 28120.4, + "end": 28122.96, + "probability": 0.9465 + }, + { + "start": 28123.92, + "end": 28126.0, + "probability": 0.8081 + }, + { + "start": 28127.46, + "end": 28128.24, + "probability": 0.2728 + }, + { + "start": 28131.5, + "end": 28132.54, + "probability": 0.1653 + }, + { + "start": 28133.98, + "end": 28134.52, + "probability": 0.5594 + }, + { + "start": 28135.34, + "end": 28136.4, + "probability": 0.7095 + }, + { + "start": 28140.36, + "end": 28141.48, + "probability": 0.9675 + }, + { + "start": 28142.26, + "end": 28143.02, + "probability": 0.9304 + }, + { + "start": 28143.62, + "end": 28145.44, + "probability": 0.9358 + }, + { + "start": 28146.46, + "end": 28148.62, + "probability": 0.9844 + }, + { + "start": 28149.24, + "end": 28151.5, + "probability": 0.9875 + }, + { + "start": 28152.16, + "end": 28152.72, + "probability": 0.8851 + }, + { + "start": 28153.7, + "end": 28154.56, + "probability": 0.965 + }, + { + "start": 28155.8, + "end": 28157.86, + "probability": 0.971 + }, + { + "start": 28158.62, + "end": 28159.0, + "probability": 0.7279 + }, + { + "start": 28160.9, + "end": 28161.62, + "probability": 0.5802 + }, + { + "start": 28164.22, + "end": 28164.74, + "probability": 0.9502 + }, + { + "start": 28165.52, + "end": 28166.46, + "probability": 0.8586 + }, + { + "start": 28166.68, + "end": 28168.88, + "probability": 0.9489 + }, + { + "start": 28169.06, + "end": 28171.44, + "probability": 0.8917 + }, + { + "start": 28172.26, + "end": 28172.88, + "probability": 0.9111 + }, + { + "start": 28175.1, + "end": 28175.94, + "probability": 0.9722 + }, + { + "start": 28176.66, + "end": 28177.3, + "probability": 0.9775 + }, + { + "start": 28178.14, + "end": 28178.84, + "probability": 0.9792 + }, + { + "start": 28180.24, + "end": 28183.68, + "probability": 0.9861 + }, + { + "start": 28184.22, + "end": 28185.08, + "probability": 0.7578 + }, + { + "start": 28189.2, + "end": 28189.66, + "probability": 0.5498 + }, + { + "start": 28190.64, + "end": 28191.54, + "probability": 0.7846 + }, + { + "start": 28192.72, + "end": 28195.74, + "probability": 0.652 + }, + { + "start": 28198.16, + "end": 28198.76, + "probability": 0.9697 + }, + { + "start": 28201.18, + "end": 28201.78, + "probability": 0.8048 + }, + { + "start": 28209.4, + "end": 28209.78, + "probability": 0.603 + }, + { + "start": 28211.56, + "end": 28212.24, + "probability": 0.6287 + }, + { + "start": 28214.8, + "end": 28217.06, + "probability": 0.7987 + }, + { + "start": 28218.24, + "end": 28218.86, + "probability": 0.9741 + }, + { + "start": 28219.5, + "end": 28220.26, + "probability": 0.7818 + }, + { + "start": 28221.44, + "end": 28222.28, + "probability": 0.9388 + }, + { + "start": 28223.44, + "end": 28224.24, + "probability": 0.8796 + }, + { + "start": 28225.34, + "end": 28225.86, + "probability": 0.8799 + }, + { + "start": 28226.88, + "end": 28227.64, + "probability": 0.9267 + }, + { + "start": 28234.44, + "end": 28234.92, + "probability": 0.5257 + }, + { + "start": 28236.18, + "end": 28236.98, + "probability": 0.7699 + }, + { + "start": 28237.82, + "end": 28239.78, + "probability": 0.79 + }, + { + "start": 28241.68, + "end": 28242.18, + "probability": 0.951 + }, + { + "start": 28243.76, + "end": 28244.56, + "probability": 0.9319 + }, + { + "start": 28246.56, + "end": 28248.22, + "probability": 0.7535 + }, + { + "start": 28249.54, + "end": 28250.1, + "probability": 0.9851 + }, + { + "start": 28251.94, + "end": 28252.92, + "probability": 0.8913 + }, + { + "start": 28256.04, + "end": 28256.7, + "probability": 0.0501 + }, + { + "start": 28262.52, + "end": 28263.92, + "probability": 0.5435 + }, + { + "start": 28265.1, + "end": 28266.4, + "probability": 0.471 + }, + { + "start": 28267.08, + "end": 28268.42, + "probability": 0.9365 + }, + { + "start": 28269.1, + "end": 28270.22, + "probability": 0.826 + }, + { + "start": 28273.98, + "end": 28274.4, + "probability": 0.5845 + }, + { + "start": 28276.18, + "end": 28276.98, + "probability": 0.6353 + }, + { + "start": 28277.96, + "end": 28278.6, + "probability": 0.9089 + }, + { + "start": 28279.4, + "end": 28280.22, + "probability": 0.7932 + }, + { + "start": 28281.33, + "end": 28283.38, + "probability": 0.717 + }, + { + "start": 28284.42, + "end": 28285.02, + "probability": 0.9207 + }, + { + "start": 28285.98, + "end": 28287.0, + "probability": 0.9108 + }, + { + "start": 28288.34, + "end": 28288.9, + "probability": 0.9858 + }, + { + "start": 28289.66, + "end": 28290.84, + "probability": 0.7522 + }, + { + "start": 28291.42, + "end": 28291.98, + "probability": 0.9748 + }, + { + "start": 28292.9, + "end": 28294.08, + "probability": 0.9021 + }, + { + "start": 28297.52, + "end": 28298.0, + "probability": 0.9763 + }, + { + "start": 28298.94, + "end": 28300.3, + "probability": 0.7257 + }, + { + "start": 28301.8, + "end": 28302.82, + "probability": 0.822 + }, + { + "start": 28303.58, + "end": 28304.34, + "probability": 0.2453 + }, + { + "start": 28305.48, + "end": 28306.08, + "probability": 0.9351 + }, + { + "start": 28307.86, + "end": 28311.84, + "probability": 0.7817 + }, + { + "start": 28312.86, + "end": 28313.46, + "probability": 0.9727 + }, + { + "start": 28314.54, + "end": 28315.32, + "probability": 0.9277 + }, + { + "start": 28316.66, + "end": 28317.18, + "probability": 0.9526 + }, + { + "start": 28318.8, + "end": 28319.58, + "probability": 0.9391 + }, + { + "start": 28320.7, + "end": 28321.32, + "probability": 0.9806 + }, + { + "start": 28322.46, + "end": 28323.05, + "probability": 0.6826 + }, + { + "start": 28326.62, + "end": 28327.3, + "probability": 0.8823 + }, + { + "start": 28329.02, + "end": 28329.82, + "probability": 0.5069 + }, + { + "start": 28330.38, + "end": 28330.72, + "probability": 0.719 + }, + { + "start": 28331.94, + "end": 28332.72, + "probability": 0.576 + }, + { + "start": 28337.92, + "end": 28338.9, + "probability": 0.7549 + }, + { + "start": 28339.72, + "end": 28339.98, + "probability": 0.5101 + }, + { + "start": 28345.3, + "end": 28347.12, + "probability": 0.5099 + }, + { + "start": 28349.42, + "end": 28350.76, + "probability": 0.9332 + }, + { + "start": 28351.34, + "end": 28353.06, + "probability": 0.8869 + }, + { + "start": 28355.76, + "end": 28356.7, + "probability": 0.9423 + }, + { + "start": 28357.7, + "end": 28358.42, + "probability": 0.9241 + }, + { + "start": 28360.32, + "end": 28360.86, + "probability": 0.9297 + }, + { + "start": 28362.5, + "end": 28363.2, + "probability": 0.9176 + }, + { + "start": 28365.74, + "end": 28367.5, + "probability": 0.9717 + }, + { + "start": 28368.34, + "end": 28370.72, + "probability": 0.9745 + }, + { + "start": 28372.74, + "end": 28374.44, + "probability": 0.4836 + }, + { + "start": 28375.76, + "end": 28377.56, + "probability": 0.9546 + }, + { + "start": 28378.46, + "end": 28379.46, + "probability": 0.9223 + }, + { + "start": 28380.82, + "end": 28381.32, + "probability": 0.8572 + }, + { + "start": 28382.58, + "end": 28383.38, + "probability": 0.933 + }, + { + "start": 28385.1, + "end": 28387.9, + "probability": 0.9504 + }, + { + "start": 28390.08, + "end": 28390.64, + "probability": 0.9842 + }, + { + "start": 28391.6, + "end": 28392.6, + "probability": 0.914 + }, + { + "start": 28393.36, + "end": 28394.46, + "probability": 0.9634 + }, + { + "start": 28395.74, + "end": 28396.7, + "probability": 0.981 + }, + { + "start": 28398.04, + "end": 28398.62, + "probability": 0.9964 + }, + { + "start": 28399.68, + "end": 28400.44, + "probability": 0.8922 + }, + { + "start": 28402.98, + "end": 28406.2, + "probability": 0.6825 + }, + { + "start": 28410.22, + "end": 28410.68, + "probability": 0.7712 + }, + { + "start": 28414.74, + "end": 28415.56, + "probability": 0.289 + }, + { + "start": 28418.58, + "end": 28419.2, + "probability": 0.7533 + }, + { + "start": 28423.26, + "end": 28424.02, + "probability": 0.477 + }, + { + "start": 28426.84, + "end": 28427.32, + "probability": 0.8291 + }, + { + "start": 28432.72, + "end": 28433.76, + "probability": 0.6568 + }, + { + "start": 28434.6, + "end": 28435.06, + "probability": 0.7373 + }, + { + "start": 28436.32, + "end": 28437.16, + "probability": 0.6431 + }, + { + "start": 28438.96, + "end": 28440.78, + "probability": 0.9836 + }, + { + "start": 28442.28, + "end": 28443.26, + "probability": 0.8035 + }, + { + "start": 28444.06, + "end": 28445.32, + "probability": 0.98 + }, + { + "start": 28445.88, + "end": 28446.86, + "probability": 0.9144 + }, + { + "start": 28448.1, + "end": 28448.72, + "probability": 0.9856 + }, + { + "start": 28450.02, + "end": 28450.7, + "probability": 0.8282 + }, + { + "start": 28452.16, + "end": 28452.68, + "probability": 0.9861 + }, + { + "start": 28453.48, + "end": 28454.24, + "probability": 0.8838 + }, + { + "start": 28458.04, + "end": 28458.54, + "probability": 0.8757 + }, + { + "start": 28460.04, + "end": 28460.68, + "probability": 0.1378 + }, + { + "start": 28462.16, + "end": 28462.76, + "probability": 0.7411 + }, + { + "start": 28463.84, + "end": 28464.8, + "probability": 0.8532 + }, + { + "start": 28465.82, + "end": 28466.34, + "probability": 0.8982 + }, + { + "start": 28467.84, + "end": 28468.94, + "probability": 0.8919 + }, + { + "start": 28471.82, + "end": 28475.3, + "probability": 0.9858 + }, + { + "start": 28477.2, + "end": 28479.8, + "probability": 0.7426 + }, + { + "start": 28480.74, + "end": 28481.22, + "probability": 0.9829 + }, + { + "start": 28482.98, + "end": 28483.96, + "probability": 0.8976 + }, + { + "start": 28484.82, + "end": 28485.36, + "probability": 0.9818 + }, + { + "start": 28486.42, + "end": 28487.34, + "probability": 0.9575 + }, + { + "start": 28488.9, + "end": 28489.44, + "probability": 0.9937 + }, + { + "start": 28490.28, + "end": 28490.86, + "probability": 0.2847 + }, + { + "start": 28492.26, + "end": 28492.86, + "probability": 0.9512 + }, + { + "start": 28493.84, + "end": 28494.24, + "probability": 0.762 + }, + { + "start": 28496.14, + "end": 28496.76, + "probability": 0.9484 + }, + { + "start": 28498.06, + "end": 28499.12, + "probability": 0.4833 + }, + { + "start": 28499.84, + "end": 28500.38, + "probability": 0.9085 + }, + { + "start": 28501.98, + "end": 28503.08, + "probability": 0.7871 + }, + { + "start": 28504.24, + "end": 28504.82, + "probability": 0.969 + }, + { + "start": 28506.2, + "end": 28507.28, + "probability": 0.7592 + }, + { + "start": 28509.48, + "end": 28509.94, + "probability": 0.9778 + }, + { + "start": 28510.82, + "end": 28511.76, + "probability": 0.8645 + }, + { + "start": 28513.96, + "end": 28515.08, + "probability": 0.9652 + }, + { + "start": 28515.96, + "end": 28516.78, + "probability": 0.8417 + }, + { + "start": 28517.52, + "end": 28518.14, + "probability": 0.9416 + }, + { + "start": 28518.96, + "end": 28519.46, + "probability": 0.3432 + }, + { + "start": 28520.3, + "end": 28521.2, + "probability": 0.7746 + }, + { + "start": 28525.7, + "end": 28526.5, + "probability": 0.65 + }, + { + "start": 28527.5, + "end": 28532.12, + "probability": 0.7093 + }, + { + "start": 28532.84, + "end": 28535.84, + "probability": 0.9223 + }, + { + "start": 28536.6, + "end": 28537.46, + "probability": 0.76 + }, + { + "start": 28540.18, + "end": 28541.78, + "probability": 0.8045 + }, + { + "start": 28545.98, + "end": 28546.48, + "probability": 0.7516 + }, + { + "start": 28548.12, + "end": 28548.72, + "probability": 0.817 + }, + { + "start": 28549.92, + "end": 28550.46, + "probability": 0.6116 + }, + { + "start": 28551.9, + "end": 28552.7, + "probability": 0.6885 + }, + { + "start": 28556.76, + "end": 28561.9, + "probability": 0.7744 + }, + { + "start": 28563.13, + "end": 28565.2, + "probability": 0.9285 + }, + { + "start": 28569.5, + "end": 28571.06, + "probability": 0.2266 + }, + { + "start": 28571.2, + "end": 28571.52, + "probability": 0.2408 + }, + { + "start": 28571.52, + "end": 28571.7, + "probability": 0.0152 + }, + { + "start": 28579.06, + "end": 28580.08, + "probability": 0.6912 + }, + { + "start": 28582.46, + "end": 28583.3, + "probability": 0.7237 + }, + { + "start": 28584.18, + "end": 28585.54, + "probability": 0.9497 + }, + { + "start": 28586.34, + "end": 28586.8, + "probability": 0.9966 + }, + { + "start": 28587.44, + "end": 28588.62, + "probability": 0.8252 + }, + { + "start": 28590.26, + "end": 28592.34, + "probability": 0.8286 + }, + { + "start": 28593.0, + "end": 28593.66, + "probability": 0.9969 + }, + { + "start": 28594.6, + "end": 28595.76, + "probability": 0.8005 + }, + { + "start": 28596.38, + "end": 28597.94, + "probability": 0.9407 + }, + { + "start": 28598.58, + "end": 28599.06, + "probability": 0.9915 + }, + { + "start": 28600.02, + "end": 28600.34, + "probability": 0.936 + }, + { + "start": 28603.64, + "end": 28604.46, + "probability": 0.6334 + }, + { + "start": 28605.02, + "end": 28605.96, + "probability": 0.6332 + }, + { + "start": 28607.36, + "end": 28608.06, + "probability": 0.4526 + }, + { + "start": 28610.5, + "end": 28611.0, + "probability": 0.6643 + }, + { + "start": 28612.28, + "end": 28613.18, + "probability": 0.8508 + }, + { + "start": 28613.96, + "end": 28614.52, + "probability": 0.9352 + }, + { + "start": 28615.62, + "end": 28616.44, + "probability": 0.7479 + }, + { + "start": 28617.16, + "end": 28617.76, + "probability": 0.9829 + }, + { + "start": 28618.34, + "end": 28619.36, + "probability": 0.9771 + }, + { + "start": 28619.94, + "end": 28620.4, + "probability": 0.9714 + }, + { + "start": 28621.16, + "end": 28622.32, + "probability": 0.8838 + }, + { + "start": 28622.88, + "end": 28623.44, + "probability": 0.9481 + }, + { + "start": 28625.16, + "end": 28626.04, + "probability": 0.861 + }, + { + "start": 28627.06, + "end": 28628.24, + "probability": 0.9875 + }, + { + "start": 28629.78, + "end": 28630.58, + "probability": 0.6095 + }, + { + "start": 28631.52, + "end": 28631.94, + "probability": 0.7684 + }, + { + "start": 28632.88, + "end": 28634.14, + "probability": 0.4947 + }, + { + "start": 28636.24, + "end": 28637.08, + "probability": 0.8795 + }, + { + "start": 28637.96, + "end": 28640.2, + "probability": 0.7716 + }, + { + "start": 28641.42, + "end": 28641.54, + "probability": 0.368 + }, + { + "start": 28642.14, + "end": 28643.14, + "probability": 0.9141 + }, + { + "start": 28643.92, + "end": 28645.52, + "probability": 0.8301 + }, + { + "start": 28646.4, + "end": 28648.78, + "probability": 0.5797 + }, + { + "start": 28649.6, + "end": 28651.7, + "probability": 0.571 + }, + { + "start": 28652.22, + "end": 28654.0, + "probability": 0.932 + }, + { + "start": 28655.14, + "end": 28655.98, + "probability": 0.7804 + }, + { + "start": 28657.14, + "end": 28658.08, + "probability": 0.9144 + }, + { + "start": 28663.46, + "end": 28664.6, + "probability": 0.4996 + }, + { + "start": 28665.56, + "end": 28666.36, + "probability": 0.5441 + }, + { + "start": 28667.26, + "end": 28668.14, + "probability": 0.6126 + }, + { + "start": 28669.58, + "end": 28670.4, + "probability": 0.8412 + }, + { + "start": 28672.1, + "end": 28674.54, + "probability": 0.7319 + }, + { + "start": 28677.22, + "end": 28678.98, + "probability": 0.6761 + }, + { + "start": 28681.5, + "end": 28682.54, + "probability": 0.8706 + }, + { + "start": 28683.1, + "end": 28683.88, + "probability": 0.913 + }, + { + "start": 28685.02, + "end": 28685.82, + "probability": 0.5299 + }, + { + "start": 28687.54, + "end": 28688.98, + "probability": 0.9188 + }, + { + "start": 28696.2, + "end": 28696.68, + "probability": 0.579 + }, + { + "start": 28699.36, + "end": 28700.1, + "probability": 0.7425 + }, + { + "start": 28701.62, + "end": 28704.46, + "probability": 0.8234 + }, + { + "start": 28705.88, + "end": 28706.98, + "probability": 0.9862 + }, + { + "start": 28708.14, + "end": 28709.0, + "probability": 0.866 + }, + { + "start": 28709.48, + "end": 28711.5, + "probability": 0.3863 + }, + { + "start": 28712.1, + "end": 28713.08, + "probability": 0.9368 + }, + { + "start": 28714.84, + "end": 28716.53, + "probability": 0.9797 + }, + { + "start": 28717.36, + "end": 28718.4, + "probability": 0.808 + }, + { + "start": 28720.32, + "end": 28725.82, + "probability": 0.9663 + }, + { + "start": 28727.84, + "end": 28730.6, + "probability": 0.9452 + }, + { + "start": 28731.42, + "end": 28733.02, + "probability": 0.7492 + }, + { + "start": 28734.8, + "end": 28736.06, + "probability": 0.6989 + }, + { + "start": 28737.68, + "end": 28739.08, + "probability": 0.7962 + }, + { + "start": 28739.9, + "end": 28740.62, + "probability": 0.7034 + }, + { + "start": 28741.54, + "end": 28745.7, + "probability": 0.9875 + }, + { + "start": 28746.52, + "end": 28747.42, + "probability": 0.4747 + }, + { + "start": 28747.46, + "end": 28748.04, + "probability": 0.8213 + }, + { + "start": 28750.3, + "end": 28751.32, + "probability": 0.022 + }, + { + "start": 28754.7, + "end": 28757.26, + "probability": 0.1229 + }, + { + "start": 28767.5, + "end": 28769.7, + "probability": 0.078 + }, + { + "start": 28778.26, + "end": 28780.04, + "probability": 0.0559 + }, + { + "start": 28782.94, + "end": 28783.34, + "probability": 0.0578 + }, + { + "start": 28783.38, + "end": 28788.6, + "probability": 0.0411 + }, + { + "start": 28793.4, + "end": 28795.19, + "probability": 0.1937 + }, + { + "start": 28796.48, + "end": 28797.28, + "probability": 0.0544 + }, + { + "start": 28797.92, + "end": 28800.08, + "probability": 0.0471 + }, + { + "start": 28803.15, + "end": 28803.53, + "probability": 0.0444 + }, + { + "start": 28805.12, + "end": 28805.9, + "probability": 0.4755 + }, + { + "start": 28806.86, + "end": 28809.46, + "probability": 0.1216 + }, + { + "start": 28812.96, + "end": 28814.54, + "probability": 0.4773 + }, + { + "start": 28826.26, + "end": 28826.56, + "probability": 0.3 + }, + { + "start": 28826.56, + "end": 28826.72, + "probability": 0.0237 + }, + { + "start": 28829.48, + "end": 28834.6, + "probability": 0.1368 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28848.0, + "end": 28848.0, + "probability": 0.0 + }, + { + "start": 28877.58, + "end": 28879.7, + "probability": 0.2098 + }, + { + "start": 28886.18, + "end": 28887.76, + "probability": 0.0042 + }, + { + "start": 28898.94, + "end": 28899.94, + "probability": 0.0131 + }, + { + "start": 28900.06, + "end": 28900.24, + "probability": 0.0948 + }, + { + "start": 28900.24, + "end": 28900.88, + "probability": 0.0278 + }, + { + "start": 28900.88, + "end": 28902.48, + "probability": 0.0828 + }, + { + "start": 28903.12, + "end": 28906.48, + "probability": 0.0137 + }, + { + "start": 28906.48, + "end": 28908.48, + "probability": 0.1549 + }, + { + "start": 28908.54, + "end": 28913.9, + "probability": 0.0695 + }, + { + "start": 28916.8, + "end": 28917.4, + "probability": 0.072 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28968.0, + "end": 28968.0, + "probability": 0.0 + }, + { + "start": 28981.84, + "end": 28984.64, + "probability": 0.0134 + }, + { + "start": 28985.25, + "end": 28985.66, + "probability": 0.0387 + }, + { + "start": 28985.66, + "end": 28987.22, + "probability": 0.0756 + }, + { + "start": 28987.24, + "end": 28987.46, + "probability": 0.0213 + }, + { + "start": 28987.52, + "end": 28990.06, + "probability": 0.1145 + }, + { + "start": 28993.5, + "end": 28994.0, + "probability": 0.0737 + }, + { + "start": 28994.0, + "end": 28994.12, + "probability": 0.0414 + }, + { + "start": 28995.38, + "end": 28996.72, + "probability": 0.1252 + }, + { + "start": 28997.72, + "end": 29000.7, + "probability": 0.0745 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29091.0, + "end": 29091.0, + "probability": 0.0 + }, + { + "start": 29103.32, + "end": 29106.08, + "probability": 0.0722 + }, + { + "start": 29108.76, + "end": 29110.0, + "probability": 0.1463 + }, + { + "start": 29111.0, + "end": 29114.5, + "probability": 0.1887 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29220.0, + "end": 29220.0, + "probability": 0.0 + }, + { + "start": 29231.08, + "end": 29234.08, + "probability": 0.0286 + }, + { + "start": 29234.74, + "end": 29235.78, + "probability": 0.0551 + }, + { + "start": 29236.42, + "end": 29237.44, + "probability": 0.099 + }, + { + "start": 29237.8, + "end": 29238.24, + "probability": 0.1764 + }, + { + "start": 29238.52, + "end": 29241.16, + "probability": 0.0218 + }, + { + "start": 29255.68, + "end": 29258.48, + "probability": 0.0153 + }, + { + "start": 29258.48, + "end": 29259.32, + "probability": 0.0424 + }, + { + "start": 29259.34, + "end": 29260.42, + "probability": 0.261 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.0, + "end": 29349.0, + "probability": 0.0 + }, + { + "start": 29349.28, + "end": 29350.0, + "probability": 0.0082 + }, + { + "start": 29350.0, + "end": 29350.56, + "probability": 0.2941 + }, + { + "start": 29350.6, + "end": 29353.92, + "probability": 0.0584 + }, + { + "start": 29354.14, + "end": 29354.56, + "probability": 0.0623 + }, + { + "start": 29355.06, + "end": 29355.78, + "probability": 0.2507 + }, + { + "start": 29356.84, + "end": 29365.12, + "probability": 0.028 + }, + { + "start": 29365.76, + "end": 29367.43, + "probability": 0.0114 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.0, + "end": 29676.0, + "probability": 0.0 + }, + { + "start": 29676.56, + "end": 29676.78, + "probability": 0.0625 + }, + { + "start": 29676.8, + "end": 29677.6, + "probability": 0.24 + }, + { + "start": 29677.72, + "end": 29678.66, + "probability": 0.4371 + }, + { + "start": 29679.14, + "end": 29680.22, + "probability": 0.2181 + }, + { + "start": 29680.26, + "end": 29682.12, + "probability": 0.8455 + }, + { + "start": 29682.14, + "end": 29685.7, + "probability": 0.5898 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.0, + "end": 29797.0, + "probability": 0.0 + }, + { + "start": 29797.38, + "end": 29800.06, + "probability": 0.1497 + }, + { + "start": 29800.58, + "end": 29801.92, + "probability": 0.6854 + }, + { + "start": 29802.22, + "end": 29804.96, + "probability": 0.9294 + }, + { + "start": 29805.32, + "end": 29805.82, + "probability": 0.0624 + }, + { + "start": 29805.84, + "end": 29808.96, + "probability": 0.8602 + }, + { + "start": 29809.2, + "end": 29810.32, + "probability": 0.9667 + }, + { + "start": 29810.44, + "end": 29812.8, + "probability": 0.9277 + }, + { + "start": 29813.66, + "end": 29814.84, + "probability": 0.027 + }, + { + "start": 29814.84, + "end": 29815.16, + "probability": 0.4409 + }, + { + "start": 29815.42, + "end": 29816.42, + "probability": 0.3452 + }, + { + "start": 29816.42, + "end": 29816.8, + "probability": 0.0921 + }, + { + "start": 29816.82, + "end": 29818.1, + "probability": 0.9908 + }, + { + "start": 29818.54, + "end": 29820.88, + "probability": 0.9517 + }, + { + "start": 29821.46, + "end": 29823.42, + "probability": 0.7593 + }, + { + "start": 29823.72, + "end": 29823.98, + "probability": 0.7669 + }, + { + "start": 29825.1, + "end": 29825.78, + "probability": 0.8206 + }, + { + "start": 29826.5, + "end": 29828.32, + "probability": 0.9501 + }, + { + "start": 29829.38, + "end": 29831.1, + "probability": 0.727 + }, + { + "start": 29833.06, + "end": 29835.08, + "probability": 0.9455 + }, + { + "start": 29836.9, + "end": 29842.18, + "probability": 0.9956 + }, + { + "start": 29842.4, + "end": 29842.82, + "probability": 0.7796 + }, + { + "start": 29843.54, + "end": 29844.84, + "probability": 0.8641 + }, + { + "start": 29844.98, + "end": 29846.84, + "probability": 0.7849 + }, + { + "start": 29847.06, + "end": 29848.5, + "probability": 0.9387 + }, + { + "start": 29849.48, + "end": 29850.7, + "probability": 0.9798 + }, + { + "start": 29851.88, + "end": 29852.88, + "probability": 0.6241 + }, + { + "start": 29854.72, + "end": 29856.94, + "probability": 0.6415 + }, + { + "start": 29858.06, + "end": 29862.58, + "probability": 0.9881 + }, + { + "start": 29863.34, + "end": 29864.7, + "probability": 0.9507 + }, + { + "start": 29866.02, + "end": 29867.06, + "probability": 0.9974 + }, + { + "start": 29867.86, + "end": 29871.08, + "probability": 0.9963 + }, + { + "start": 29871.6, + "end": 29873.44, + "probability": 0.9971 + }, + { + "start": 29874.06, + "end": 29877.54, + "probability": 0.9987 + }, + { + "start": 29877.54, + "end": 29880.58, + "probability": 0.9862 + }, + { + "start": 29881.26, + "end": 29882.72, + "probability": 0.998 + }, + { + "start": 29885.02, + "end": 29889.96, + "probability": 0.9979 + }, + { + "start": 29890.2, + "end": 29891.66, + "probability": 0.9928 + }, + { + "start": 29893.22, + "end": 29895.12, + "probability": 0.9887 + }, + { + "start": 29896.52, + "end": 29897.06, + "probability": 0.7361 + }, + { + "start": 29897.8, + "end": 29899.84, + "probability": 0.9783 + }, + { + "start": 29901.08, + "end": 29902.4, + "probability": 0.8911 + }, + { + "start": 29902.96, + "end": 29904.24, + "probability": 0.915 + }, + { + "start": 29905.66, + "end": 29906.28, + "probability": 0.9793 + }, + { + "start": 29907.1, + "end": 29910.88, + "probability": 0.9934 + }, + { + "start": 29911.17, + "end": 29913.92, + "probability": 0.9992 + }, + { + "start": 29915.16, + "end": 29916.26, + "probability": 0.9971 + }, + { + "start": 29917.04, + "end": 29918.46, + "probability": 0.964 + }, + { + "start": 29919.2, + "end": 29920.58, + "probability": 0.9784 + }, + { + "start": 29921.12, + "end": 29923.14, + "probability": 0.9712 + }, + { + "start": 29923.9, + "end": 29926.16, + "probability": 0.9886 + }, + { + "start": 29926.28, + "end": 29929.3, + "probability": 0.8563 + }, + { + "start": 29930.62, + "end": 29930.64, + "probability": 0.0858 + }, + { + "start": 29931.16, + "end": 29931.36, + "probability": 0.0163 + }, + { + "start": 29931.36, + "end": 29932.12, + "probability": 0.804 + }, + { + "start": 29932.26, + "end": 29936.12, + "probability": 0.9512 + }, + { + "start": 29936.2, + "end": 29939.1, + "probability": 0.9917 + }, + { + "start": 29942.06, + "end": 29947.86, + "probability": 0.849 + }, + { + "start": 29948.6, + "end": 29951.58, + "probability": 0.9959 + }, + { + "start": 29951.66, + "end": 29952.88, + "probability": 0.8914 + }, + { + "start": 29953.76, + "end": 29955.02, + "probability": 0.9358 + }, + { + "start": 29955.3, + "end": 29957.79, + "probability": 0.9971 + }, + { + "start": 29958.52, + "end": 29962.0, + "probability": 0.9373 + }, + { + "start": 29962.88, + "end": 29963.94, + "probability": 0.7503 + }, + { + "start": 29964.0, + "end": 29964.5, + "probability": 0.9878 + }, + { + "start": 29964.6, + "end": 29967.56, + "probability": 0.9919 + }, + { + "start": 29967.56, + "end": 29971.38, + "probability": 0.9819 + }, + { + "start": 29971.82, + "end": 29973.08, + "probability": 0.8594 + }, + { + "start": 29974.04, + "end": 29975.9, + "probability": 0.9175 + }, + { + "start": 29975.94, + "end": 29975.94, + "probability": 0.1708 + }, + { + "start": 29977.0, + "end": 29979.5, + "probability": 0.1788 + }, + { + "start": 29979.58, + "end": 29979.64, + "probability": 0.2804 + }, + { + "start": 29979.64, + "end": 29981.84, + "probability": 0.7004 + }, + { + "start": 29983.42, + "end": 29987.12, + "probability": 0.9922 + }, + { + "start": 29988.18, + "end": 29991.62, + "probability": 0.9987 + }, + { + "start": 29992.3, + "end": 29993.62, + "probability": 0.8666 + }, + { + "start": 29994.1, + "end": 29996.06, + "probability": 0.9912 + }, + { + "start": 29996.26, + "end": 29997.84, + "probability": 0.7317 + }, + { + "start": 29997.96, + "end": 29998.98, + "probability": 0.8611 + }, + { + "start": 29999.14, + "end": 30002.12, + "probability": 0.9614 + }, + { + "start": 30002.24, + "end": 30004.36, + "probability": 0.9917 + }, + { + "start": 30004.96, + "end": 30006.5, + "probability": 0.9847 + }, + { + "start": 30006.72, + "end": 30008.68, + "probability": 0.988 + }, + { + "start": 30009.82, + "end": 30010.44, + "probability": 0.855 + }, + { + "start": 30011.72, + "end": 30014.2, + "probability": 0.9925 + }, + { + "start": 30017.24, + "end": 30020.42, + "probability": 0.9653 + }, + { + "start": 30020.42, + "end": 30021.04, + "probability": 0.918 + }, + { + "start": 30021.16, + "end": 30024.8, + "probability": 0.99 + }, + { + "start": 30025.32, + "end": 30026.82, + "probability": 0.9993 + }, + { + "start": 30027.52, + "end": 30031.74, + "probability": 0.9938 + }, + { + "start": 30032.12, + "end": 30034.36, + "probability": 0.995 + }, + { + "start": 30036.82, + "end": 30040.42, + "probability": 0.9977 + }, + { + "start": 30041.74, + "end": 30043.5, + "probability": 0.967 + }, + { + "start": 30045.4, + "end": 30045.84, + "probability": 0.461 + }, + { + "start": 30045.96, + "end": 30046.38, + "probability": 0.6772 + }, + { + "start": 30046.42, + "end": 30046.74, + "probability": 0.3525 + }, + { + "start": 30046.84, + "end": 30047.9, + "probability": 0.9332 + }, + { + "start": 30047.96, + "end": 30048.92, + "probability": 0.7367 + }, + { + "start": 30050.42, + "end": 30054.6, + "probability": 0.7815 + }, + { + "start": 30055.24, + "end": 30058.54, + "probability": 0.9785 + }, + { + "start": 30059.26, + "end": 30061.9, + "probability": 0.8948 + }, + { + "start": 30062.48, + "end": 30067.84, + "probability": 0.9134 + }, + { + "start": 30068.46, + "end": 30069.51, + "probability": 0.5091 + }, + { + "start": 30071.24, + "end": 30072.54, + "probability": 0.7517 + }, + { + "start": 30073.36, + "end": 30074.2, + "probability": 0.7243 + }, + { + "start": 30074.88, + "end": 30075.92, + "probability": 0.9571 + }, + { + "start": 30078.68, + "end": 30080.1, + "probability": 0.031 + }, + { + "start": 30081.12, + "end": 30081.58, + "probability": 0.0394 + }, + { + "start": 30081.58, + "end": 30083.76, + "probability": 0.6366 + }, + { + "start": 30084.88, + "end": 30088.66, + "probability": 0.9976 + }, + { + "start": 30089.34, + "end": 30092.26, + "probability": 0.9209 + }, + { + "start": 30092.8, + "end": 30096.48, + "probability": 0.9277 + }, + { + "start": 30097.24, + "end": 30101.72, + "probability": 0.9964 + }, + { + "start": 30103.28, + "end": 30104.72, + "probability": 0.9961 + }, + { + "start": 30104.86, + "end": 30106.42, + "probability": 0.9957 + }, + { + "start": 30107.18, + "end": 30108.72, + "probability": 0.8252 + }, + { + "start": 30109.02, + "end": 30113.28, + "probability": 0.9983 + }, + { + "start": 30113.82, + "end": 30114.02, + "probability": 0.4001 + }, + { + "start": 30114.6, + "end": 30115.84, + "probability": 0.0348 + }, + { + "start": 30116.5, + "end": 30117.06, + "probability": 0.742 + }, + { + "start": 30120.8, + "end": 30125.5, + "probability": 0.992 + }, + { + "start": 30127.54, + "end": 30130.36, + "probability": 0.9154 + }, + { + "start": 30132.64, + "end": 30136.16, + "probability": 0.9698 + }, + { + "start": 30139.02, + "end": 30139.92, + "probability": 0.9636 + }, + { + "start": 30140.52, + "end": 30142.04, + "probability": 0.8345 + }, + { + "start": 30142.18, + "end": 30143.62, + "probability": 0.858 + }, + { + "start": 30144.32, + "end": 30145.64, + "probability": 0.9346 + }, + { + "start": 30146.78, + "end": 30148.24, + "probability": 0.9195 + }, + { + "start": 30149.06, + "end": 30151.94, + "probability": 0.8851 + }, + { + "start": 30154.78, + "end": 30156.34, + "probability": 0.801 + }, + { + "start": 30157.34, + "end": 30161.16, + "probability": 0.8757 + }, + { + "start": 30162.82, + "end": 30168.58, + "probability": 0.9973 + }, + { + "start": 30169.32, + "end": 30175.26, + "probability": 0.9645 + }, + { + "start": 30175.26, + "end": 30177.96, + "probability": 0.9972 + }, + { + "start": 30179.26, + "end": 30180.72, + "probability": 0.8434 + }, + { + "start": 30183.32, + "end": 30184.22, + "probability": 0.7264 + }, + { + "start": 30184.46, + "end": 30185.37, + "probability": 0.211 + }, + { + "start": 30185.58, + "end": 30185.58, + "probability": 0.1649 + }, + { + "start": 30185.58, + "end": 30187.94, + "probability": 0.4978 + }, + { + "start": 30188.0, + "end": 30189.51, + "probability": 0.6552 + }, + { + "start": 30190.44, + "end": 30192.84, + "probability": 0.9971 + }, + { + "start": 30195.48, + "end": 30195.48, + "probability": 0.0109 + }, + { + "start": 30195.48, + "end": 30195.48, + "probability": 0.0617 + }, + { + "start": 30195.48, + "end": 30195.82, + "probability": 0.1439 + }, + { + "start": 30195.82, + "end": 30196.26, + "probability": 0.4863 + }, + { + "start": 30196.26, + "end": 30197.08, + "probability": 0.6543 + }, + { + "start": 30197.4, + "end": 30197.8, + "probability": 0.4211 + }, + { + "start": 30198.18, + "end": 30199.2, + "probability": 0.1104 + }, + { + "start": 30199.2, + "end": 30200.26, + "probability": 0.1213 + }, + { + "start": 30201.56, + "end": 30202.1, + "probability": 0.0597 + }, + { + "start": 30202.1, + "end": 30204.44, + "probability": 0.7472 + }, + { + "start": 30204.44, + "end": 30208.68, + "probability": 0.9758 + }, + { + "start": 30209.58, + "end": 30210.68, + "probability": 0.725 + }, + { + "start": 30211.04, + "end": 30213.94, + "probability": 0.9912 + }, + { + "start": 30215.18, + "end": 30217.8, + "probability": 0.9888 + }, + { + "start": 30218.42, + "end": 30219.78, + "probability": 0.9409 + }, + { + "start": 30220.7, + "end": 30223.62, + "probability": 0.9602 + }, + { + "start": 30223.72, + "end": 30226.8, + "probability": 0.9976 + }, + { + "start": 30227.24, + "end": 30228.0, + "probability": 0.9165 + }, + { + "start": 30228.68, + "end": 30229.04, + "probability": 0.0185 + }, + { + "start": 30229.04, + "end": 30229.04, + "probability": 0.4491 + }, + { + "start": 30229.04, + "end": 30229.04, + "probability": 0.5856 + }, + { + "start": 30229.04, + "end": 30229.04, + "probability": 0.1204 + }, + { + "start": 30229.04, + "end": 30230.33, + "probability": 0.8032 + }, + { + "start": 30231.0, + "end": 30232.36, + "probability": 0.8588 + }, + { + "start": 30232.78, + "end": 30233.44, + "probability": 0.8395 + }, + { + "start": 30233.48, + "end": 30234.76, + "probability": 0.8193 + }, + { + "start": 30234.88, + "end": 30235.68, + "probability": 0.9296 + }, + { + "start": 30239.56, + "end": 30241.84, + "probability": 0.539 + }, + { + "start": 30242.66, + "end": 30243.53, + "probability": 0.075 + }, + { + "start": 30244.78, + "end": 30246.48, + "probability": 0.018 + }, + { + "start": 30246.48, + "end": 30247.68, + "probability": 0.2641 + }, + { + "start": 30248.0, + "end": 30248.97, + "probability": 0.2234 + }, + { + "start": 30249.02, + "end": 30250.44, + "probability": 0.0043 + }, + { + "start": 30250.78, + "end": 30250.98, + "probability": 0.0753 + }, + { + "start": 30251.5, + "end": 30251.68, + "probability": 0.1028 + }, + { + "start": 30251.68, + "end": 30254.7, + "probability": 0.2077 + }, + { + "start": 30254.7, + "end": 30257.22, + "probability": 0.5199 + }, + { + "start": 30257.4, + "end": 30257.9, + "probability": 0.2642 + }, + { + "start": 30261.82, + "end": 30263.02, + "probability": 0.6569 + }, + { + "start": 30263.86, + "end": 30269.84, + "probability": 0.9499 + }, + { + "start": 30271.22, + "end": 30272.7, + "probability": 0.9844 + }, + { + "start": 30273.14, + "end": 30276.06, + "probability": 0.6646 + }, + { + "start": 30276.88, + "end": 30277.94, + "probability": 0.7157 + }, + { + "start": 30280.56, + "end": 30282.86, + "probability": 0.9692 + }, + { + "start": 30283.08, + "end": 30285.42, + "probability": 0.9967 + }, + { + "start": 30285.42, + "end": 30289.12, + "probability": 0.9899 + }, + { + "start": 30289.46, + "end": 30290.18, + "probability": 0.1377 + }, + { + "start": 30290.4, + "end": 30293.52, + "probability": 0.9741 + }, + { + "start": 30296.66, + "end": 30298.88, + "probability": 0.9391 + }, + { + "start": 30300.78, + "end": 30302.14, + "probability": 0.9971 + }, + { + "start": 30302.9, + "end": 30305.18, + "probability": 0.8699 + }, + { + "start": 30306.4, + "end": 30308.94, + "probability": 0.9741 + }, + { + "start": 30311.56, + "end": 30312.22, + "probability": 0.7903 + }, + { + "start": 30313.98, + "end": 30316.48, + "probability": 0.9623 + }, + { + "start": 30317.04, + "end": 30317.14, + "probability": 0.3365 + }, + { + "start": 30320.46, + "end": 30320.86, + "probability": 0.004 + }, + { + "start": 30320.86, + "end": 30320.86, + "probability": 0.2633 + }, + { + "start": 30320.87, + "end": 30323.28, + "probability": 0.039 + }, + { + "start": 30323.58, + "end": 30323.84, + "probability": 0.1694 + }, + { + "start": 30324.5, + "end": 30326.12, + "probability": 0.3906 + }, + { + "start": 30326.16, + "end": 30328.74, + "probability": 0.8903 + }, + { + "start": 30330.8, + "end": 30331.72, + "probability": 0.3158 + }, + { + "start": 30333.46, + "end": 30334.68, + "probability": 0.2503 + }, + { + "start": 30334.68, + "end": 30334.68, + "probability": 0.1524 + }, + { + "start": 30334.68, + "end": 30334.68, + "probability": 0.0766 + }, + { + "start": 30334.68, + "end": 30336.56, + "probability": 0.2832 + }, + { + "start": 30342.56, + "end": 30346.06, + "probability": 0.0086 + }, + { + "start": 30348.38, + "end": 30349.32, + "probability": 0.0918 + }, + { + "start": 30351.68, + "end": 30354.76, + "probability": 0.5564 + }, + { + "start": 30356.42, + "end": 30358.74, + "probability": 0.1466 + }, + { + "start": 30359.38, + "end": 30362.59, + "probability": 0.1087 + }, + { + "start": 30365.62, + "end": 30366.1, + "probability": 0.1625 + }, + { + "start": 30366.1, + "end": 30369.1, + "probability": 0.1916 + }, + { + "start": 30369.1, + "end": 30370.3, + "probability": 0.2374 + }, + { + "start": 30370.9, + "end": 30372.14, + "probability": 0.1088 + }, + { + "start": 30373.84, + "end": 30376.44, + "probability": 0.6854 + }, + { + "start": 30378.84, + "end": 30380.66, + "probability": 0.0162 + }, + { + "start": 30383.35, + "end": 30384.43, + "probability": 0.0517 + }, + { + "start": 30384.64, + "end": 30385.08, + "probability": 0.1446 + }, + { + "start": 30385.08, + "end": 30385.08, + "probability": 0.3994 + }, + { + "start": 30393.0, + "end": 30393.0, + "probability": 0.0 + }, + { + "start": 30393.0, + "end": 30393.0, + "probability": 0.0 + }, + { + "start": 30393.0, + "end": 30393.0, + "probability": 0.0 + }, + { + "start": 30393.0, + "end": 30393.0, + "probability": 0.0 + }, + { + "start": 30393.0, + "end": 30393.0, + "probability": 0.0 + }, + { + "start": 30393.0, + "end": 30393.0, + "probability": 0.0 + }, + { + "start": 30393.0, + "end": 30393.0, + "probability": 0.0 + }, + { + "start": 30393.0, + "end": 30393.0, + "probability": 0.0 + }, + { + "start": 30393.0, + "end": 30393.0, + "probability": 0.0 + }, + { + "start": 30393.16, + "end": 30394.5, + "probability": 0.0048 + }, + { + "start": 30394.5, + "end": 30397.84, + "probability": 0.9835 + }, + { + "start": 30398.54, + "end": 30401.84, + "probability": 0.9736 + }, + { + "start": 30402.56, + "end": 30405.74, + "probability": 0.993 + }, + { + "start": 30406.46, + "end": 30411.44, + "probability": 0.9565 + }, + { + "start": 30411.44, + "end": 30415.04, + "probability": 0.9879 + }, + { + "start": 30415.54, + "end": 30417.74, + "probability": 0.9814 + }, + { + "start": 30418.26, + "end": 30420.44, + "probability": 0.9858 + }, + { + "start": 30421.22, + "end": 30423.52, + "probability": 0.9899 + }, + { + "start": 30423.68, + "end": 30426.52, + "probability": 0.9801 + }, + { + "start": 30427.08, + "end": 30432.24, + "probability": 0.9989 + }, + { + "start": 30432.76, + "end": 30433.86, + "probability": 0.9981 + }, + { + "start": 30435.86, + "end": 30441.72, + "probability": 0.987 + }, + { + "start": 30442.22, + "end": 30445.94, + "probability": 0.9704 + }, + { + "start": 30446.5, + "end": 30447.72, + "probability": 0.9523 + }, + { + "start": 30448.62, + "end": 30449.0, + "probability": 0.5001 + }, + { + "start": 30449.24, + "end": 30451.42, + "probability": 0.9894 + }, + { + "start": 30452.56, + "end": 30453.72, + "probability": 0.764 + }, + { + "start": 30454.16, + "end": 30455.88, + "probability": 0.9705 + }, + { + "start": 30456.88, + "end": 30459.46, + "probability": 0.1189 + }, + { + "start": 30460.5, + "end": 30460.6, + "probability": 0.0533 + }, + { + "start": 30460.6, + "end": 30460.6, + "probability": 0.0221 + }, + { + "start": 30460.6, + "end": 30460.6, + "probability": 0.1785 + }, + { + "start": 30460.6, + "end": 30460.6, + "probability": 0.0724 + }, + { + "start": 30460.6, + "end": 30460.74, + "probability": 0.4634 + }, + { + "start": 30472.72, + "end": 30472.72, + "probability": 0.4296 + }, + { + "start": 30472.74, + "end": 30475.7, + "probability": 0.943 + }, + { + "start": 30476.98, + "end": 30479.2, + "probability": 0.9837 + }, + { + "start": 30480.06, + "end": 30481.98, + "probability": 0.9001 + }, + { + "start": 30482.32, + "end": 30485.22, + "probability": 0.9939 + }, + { + "start": 30485.32, + "end": 30489.86, + "probability": 0.9551 + }, + { + "start": 30489.86, + "end": 30492.8, + "probability": 0.9972 + }, + { + "start": 30493.48, + "end": 30496.54, + "probability": 0.9988 + }, + { + "start": 30497.24, + "end": 30500.45, + "probability": 0.9016 + }, + { + "start": 30500.64, + "end": 30502.36, + "probability": 0.9824 + }, + { + "start": 30502.96, + "end": 30503.72, + "probability": 0.6463 + }, + { + "start": 30505.62, + "end": 30506.92, + "probability": 0.6201 + }, + { + "start": 30507.94, + "end": 30509.92, + "probability": 0.0213 + }, + { + "start": 30509.92, + "end": 30509.92, + "probability": 0.0205 + }, + { + "start": 30509.92, + "end": 30509.92, + "probability": 0.1019 + }, + { + "start": 30509.92, + "end": 30509.92, + "probability": 0.1698 + }, + { + "start": 30509.92, + "end": 30509.92, + "probability": 0.3635 + }, + { + "start": 30509.92, + "end": 30509.92, + "probability": 0.4312 + }, + { + "start": 30509.92, + "end": 30511.98, + "probability": 0.7046 + }, + { + "start": 30512.94, + "end": 30514.12, + "probability": 0.9772 + }, + { + "start": 30514.78, + "end": 30518.36, + "probability": 0.999 + }, + { + "start": 30519.22, + "end": 30522.72, + "probability": 0.855 + }, + { + "start": 30523.34, + "end": 30524.8, + "probability": 0.6843 + }, + { + "start": 30525.42, + "end": 30526.94, + "probability": 0.8813 + }, + { + "start": 30527.02, + "end": 30527.18, + "probability": 0.5113 + }, + { + "start": 30527.38, + "end": 30528.82, + "probability": 0.9937 + }, + { + "start": 30528.92, + "end": 30529.22, + "probability": 0.855 + }, + { + "start": 30529.72, + "end": 30530.92, + "probability": 0.9233 + }, + { + "start": 30531.26, + "end": 30532.5, + "probability": 0.9723 + }, + { + "start": 30533.12, + "end": 30534.85, + "probability": 0.9185 + }, + { + "start": 30536.06, + "end": 30538.22, + "probability": 0.661 + }, + { + "start": 30539.26, + "end": 30541.04, + "probability": 0.5044 + }, + { + "start": 30541.62, + "end": 30544.24, + "probability": 0.9484 + }, + { + "start": 30544.9, + "end": 30546.5, + "probability": 0.9913 + }, + { + "start": 30547.24, + "end": 30550.84, + "probability": 0.9478 + }, + { + "start": 30551.9, + "end": 30552.72, + "probability": 0.6608 + }, + { + "start": 30553.68, + "end": 30554.38, + "probability": 0.9491 + }, + { + "start": 30555.18, + "end": 30556.0, + "probability": 0.9859 + }, + { + "start": 30557.0, + "end": 30561.48, + "probability": 0.9583 + }, + { + "start": 30562.5, + "end": 30565.68, + "probability": 0.8522 + }, + { + "start": 30566.4, + "end": 30567.55, + "probability": 0.9738 + }, + { + "start": 30568.3, + "end": 30570.12, + "probability": 0.9911 + }, + { + "start": 30570.92, + "end": 30571.78, + "probability": 0.6366 + }, + { + "start": 30573.06, + "end": 30573.88, + "probability": 0.7682 + }, + { + "start": 30574.5, + "end": 30575.5, + "probability": 0.9889 + }, + { + "start": 30575.76, + "end": 30575.98, + "probability": 0.802 + }, + { + "start": 30576.44, + "end": 30576.98, + "probability": 0.7372 + }, + { + "start": 30577.12, + "end": 30577.94, + "probability": 0.9377 + }, + { + "start": 30578.04, + "end": 30578.9, + "probability": 0.9247 + }, + { + "start": 30579.72, + "end": 30583.8, + "probability": 0.9784 + }, + { + "start": 30584.42, + "end": 30584.5, + "probability": 0.8579 + }, + { + "start": 30584.62, + "end": 30586.98, + "probability": 0.9786 + }, + { + "start": 30587.64, + "end": 30591.86, + "probability": 0.7617 + }, + { + "start": 30592.42, + "end": 30595.1, + "probability": 0.7812 + }, + { + "start": 30595.84, + "end": 30596.82, + "probability": 0.8183 + }, + { + "start": 30597.36, + "end": 30598.74, + "probability": 0.7593 + }, + { + "start": 30598.8, + "end": 30599.36, + "probability": 0.9057 + }, + { + "start": 30599.62, + "end": 30599.92, + "probability": 0.5807 + }, + { + "start": 30600.66, + "end": 30601.32, + "probability": 0.4515 + }, + { + "start": 30601.98, + "end": 30604.02, + "probability": 0.4969 + }, + { + "start": 30604.14, + "end": 30605.42, + "probability": 0.7329 + }, + { + "start": 30606.04, + "end": 30606.06, + "probability": 0.0817 + }, + { + "start": 30606.66, + "end": 30606.66, + "probability": 0.2653 + }, + { + "start": 30606.66, + "end": 30606.8, + "probability": 0.7755 + }, + { + "start": 30607.0, + "end": 30610.04, + "probability": 0.7161 + }, + { + "start": 30611.14, + "end": 30612.96, + "probability": 0.3668 + }, + { + "start": 30613.5, + "end": 30615.5, + "probability": 0.981 + }, + { + "start": 30615.92, + "end": 30617.72, + "probability": 0.7449 + }, + { + "start": 30617.74, + "end": 30619.16, + "probability": 0.6223 + }, + { + "start": 30619.71, + "end": 30620.29, + "probability": 0.1464 + }, + { + "start": 30621.2, + "end": 30621.32, + "probability": 0.2791 + }, + { + "start": 30621.32, + "end": 30621.94, + "probability": 0.2276 + }, + { + "start": 30621.98, + "end": 30623.56, + "probability": 0.2068 + }, + { + "start": 30623.74, + "end": 30624.62, + "probability": 0.2261 + }, + { + "start": 30624.78, + "end": 30625.88, + "probability": 0.3224 + }, + { + "start": 30626.32, + "end": 30626.32, + "probability": 0.0117 + }, + { + "start": 30626.32, + "end": 30627.8, + "probability": 0.6354 + }, + { + "start": 30628.16, + "end": 30629.76, + "probability": 0.6304 + }, + { + "start": 30629.8, + "end": 30632.58, + "probability": 0.1405 + }, + { + "start": 30632.82, + "end": 30635.08, + "probability": 0.2971 + }, + { + "start": 30635.22, + "end": 30636.54, + "probability": 0.813 + }, + { + "start": 30637.38, + "end": 30637.94, + "probability": 0.8428 + }, + { + "start": 30638.04, + "end": 30643.62, + "probability": 0.8564 + }, + { + "start": 30643.78, + "end": 30647.04, + "probability": 0.9371 + }, + { + "start": 30647.8, + "end": 30651.44, + "probability": 0.9355 + }, + { + "start": 30651.96, + "end": 30652.84, + "probability": 0.709 + }, + { + "start": 30652.9, + "end": 30653.7, + "probability": 0.8212 + }, + { + "start": 30654.0, + "end": 30655.34, + "probability": 0.9842 + }, + { + "start": 30655.72, + "end": 30656.9, + "probability": 0.9871 + }, + { + "start": 30656.98, + "end": 30658.1, + "probability": 0.9343 + }, + { + "start": 30658.1, + "end": 30659.2, + "probability": 0.9222 + }, + { + "start": 30659.2, + "end": 30660.14, + "probability": 0.5816 + }, + { + "start": 30660.44, + "end": 30665.28, + "probability": 0.9939 + }, + { + "start": 30665.94, + "end": 30666.64, + "probability": 0.5981 + }, + { + "start": 30667.02, + "end": 30668.54, + "probability": 0.8251 + }, + { + "start": 30668.6, + "end": 30671.38, + "probability": 0.936 + }, + { + "start": 30671.54, + "end": 30672.84, + "probability": 0.7282 + }, + { + "start": 30673.22, + "end": 30674.62, + "probability": 0.8005 + }, + { + "start": 30674.9, + "end": 30679.6, + "probability": 0.8442 + }, + { + "start": 30679.72, + "end": 30683.36, + "probability": 0.9803 + }, + { + "start": 30683.36, + "end": 30684.1, + "probability": 0.1589 + }, + { + "start": 30684.44, + "end": 30686.58, + "probability": 0.8351 + }, + { + "start": 30687.04, + "end": 30687.96, + "probability": 0.7752 + }, + { + "start": 30688.36, + "end": 30690.24, + "probability": 0.9351 + }, + { + "start": 30691.18, + "end": 30692.62, + "probability": 0.7831 + }, + { + "start": 30693.7, + "end": 30696.66, + "probability": 0.5005 + }, + { + "start": 30698.58, + "end": 30701.66, + "probability": 0.7148 + }, + { + "start": 30708.06, + "end": 30708.6, + "probability": 0.0179 + }, + { + "start": 30709.08, + "end": 30711.26, + "probability": 0.9563 + }, + { + "start": 30711.76, + "end": 30714.98, + "probability": 0.9855 + }, + { + "start": 30716.34, + "end": 30720.5, + "probability": 0.9972 + }, + { + "start": 30742.5, + "end": 30746.28, + "probability": 0.2713 + }, + { + "start": 30746.36, + "end": 30746.82, + "probability": 0.5301 + }, + { + "start": 30746.86, + "end": 30749.36, + "probability": 0.8697 + }, + { + "start": 30749.7, + "end": 30751.09, + "probability": 0.7338 + }, + { + "start": 30751.38, + "end": 30751.74, + "probability": 0.877 + }, + { + "start": 30752.78, + "end": 30753.28, + "probability": 0.5532 + }, + { + "start": 30753.28, + "end": 30755.56, + "probability": 0.4495 + }, + { + "start": 30760.06, + "end": 30762.72, + "probability": 0.7705 + }, + { + "start": 30763.58, + "end": 30764.82, + "probability": 0.5147 + }, + { + "start": 30764.84, + "end": 30765.34, + "probability": 0.872 + }, + { + "start": 30766.18, + "end": 30768.0, + "probability": 0.2024 + }, + { + "start": 30769.1, + "end": 30769.6, + "probability": 0.9268 + }, + { + "start": 30772.04, + "end": 30775.04, + "probability": 0.7403 + }, + { + "start": 30776.16, + "end": 30779.6, + "probability": 0.9652 + }, + { + "start": 30780.24, + "end": 30780.7, + "probability": 0.9917 + }, + { + "start": 30781.32, + "end": 30782.66, + "probability": 0.9397 + }, + { + "start": 30783.58, + "end": 30784.06, + "probability": 0.9806 + }, + { + "start": 30784.6, + "end": 30785.44, + "probability": 0.4344 + }, + { + "start": 30786.5, + "end": 30786.92, + "probability": 0.5749 + }, + { + "start": 30787.84, + "end": 30788.82, + "probability": 0.5706 + }, + { + "start": 30790.64, + "end": 30792.48, + "probability": 0.8517 + }, + { + "start": 30794.5, + "end": 30796.66, + "probability": 0.9053 + }, + { + "start": 30798.72, + "end": 30800.62, + "probability": 0.7822 + }, + { + "start": 30801.48, + "end": 30802.26, + "probability": 0.7212 + }, + { + "start": 30805.16, + "end": 30806.04, + "probability": 0.7708 + }, + { + "start": 30807.54, + "end": 30808.48, + "probability": 0.8757 + }, + { + "start": 30810.32, + "end": 30812.64, + "probability": 0.9479 + }, + { + "start": 30814.2, + "end": 30814.74, + "probability": 0.9871 + }, + { + "start": 30815.72, + "end": 30816.56, + "probability": 0.6588 + }, + { + "start": 30817.4, + "end": 30817.94, + "probability": 0.7473 + }, + { + "start": 30818.98, + "end": 30819.82, + "probability": 0.6892 + }, + { + "start": 30820.76, + "end": 30822.52, + "probability": 0.9662 + }, + { + "start": 30824.86, + "end": 30825.68, + "probability": 0.9636 + }, + { + "start": 30826.64, + "end": 30827.58, + "probability": 0.8739 + }, + { + "start": 30828.82, + "end": 30831.5, + "probability": 0.9409 + }, + { + "start": 30831.88, + "end": 30834.04, + "probability": 0.8804 + }, + { + "start": 30834.92, + "end": 30835.5, + "probability": 0.9899 + }, + { + "start": 30836.58, + "end": 30839.22, + "probability": 0.986 + }, + { + "start": 30839.86, + "end": 30840.28, + "probability": 0.6849 + }, + { + "start": 30840.86, + "end": 30842.76, + "probability": 0.7283 + }, + { + "start": 30843.36, + "end": 30844.18, + "probability": 0.9769 + }, + { + "start": 30845.06, + "end": 30846.96, + "probability": 0.9585 + }, + { + "start": 30848.4, + "end": 30850.44, + "probability": 0.7241 + }, + { + "start": 30855.9, + "end": 30856.28, + "probability": 0.6964 + }, + { + "start": 30858.14, + "end": 30858.72, + "probability": 0.6186 + }, + { + "start": 30859.62, + "end": 30861.6, + "probability": 0.7157 + }, + { + "start": 30863.7, + "end": 30865.78, + "probability": 0.9535 + }, + { + "start": 30866.72, + "end": 30868.54, + "probability": 0.925 + }, + { + "start": 30869.3, + "end": 30870.36, + "probability": 0.9705 + }, + { + "start": 30872.34, + "end": 30873.18, + "probability": 0.9198 + }, + { + "start": 30874.32, + "end": 30874.84, + "probability": 0.9831 + }, + { + "start": 30876.38, + "end": 30877.1, + "probability": 0.9756 + }, + { + "start": 30878.32, + "end": 30880.1, + "probability": 0.9915 + }, + { + "start": 30881.56, + "end": 30882.04, + "probability": 0.9736 + }, + { + "start": 30882.6, + "end": 30884.46, + "probability": 0.8949 + }, + { + "start": 30885.34, + "end": 30886.04, + "probability": 0.6561 + }, + { + "start": 30887.88, + "end": 30888.82, + "probability": 0.8126 + }, + { + "start": 30889.48, + "end": 30890.28, + "probability": 0.7313 + }, + { + "start": 30891.2, + "end": 30891.66, + "probability": 0.9226 + }, + { + "start": 30892.46, + "end": 30894.46, + "probability": 0.915 + }, + { + "start": 30895.24, + "end": 30896.08, + "probability": 0.9497 + }, + { + "start": 30897.02, + "end": 30898.92, + "probability": 0.8229 + }, + { + "start": 30900.04, + "end": 30900.38, + "probability": 0.9954 + }, + { + "start": 30900.98, + "end": 30902.1, + "probability": 0.9252 + }, + { + "start": 30904.8, + "end": 30905.96, + "probability": 0.954 + }, + { + "start": 30907.38, + "end": 30908.18, + "probability": 0.8955 + }, + { + "start": 30908.92, + "end": 30909.54, + "probability": 0.9943 + }, + { + "start": 30910.88, + "end": 30911.74, + "probability": 0.7004 + }, + { + "start": 30912.82, + "end": 30914.72, + "probability": 0.3508 + }, + { + "start": 30917.26, + "end": 30917.88, + "probability": 0.9717 + }, + { + "start": 30920.08, + "end": 30921.16, + "probability": 0.7926 + }, + { + "start": 30922.64, + "end": 30924.64, + "probability": 0.7717 + }, + { + "start": 30927.78, + "end": 30928.38, + "probability": 0.9951 + }, + { + "start": 30929.24, + "end": 30930.34, + "probability": 0.8582 + }, + { + "start": 30932.68, + "end": 30935.38, + "probability": 0.9062 + }, + { + "start": 30936.12, + "end": 30937.26, + "probability": 0.7258 + }, + { + "start": 30939.76, + "end": 30940.18, + "probability": 0.9963 + }, + { + "start": 30941.1, + "end": 30943.32, + "probability": 0.1768 + }, + { + "start": 30943.96, + "end": 30944.38, + "probability": 0.8529 + }, + { + "start": 30945.74, + "end": 30946.88, + "probability": 0.7321 + }, + { + "start": 30947.46, + "end": 30948.26, + "probability": 0.728 + }, + { + "start": 30949.06, + "end": 30949.88, + "probability": 0.7306 + }, + { + "start": 30951.0, + "end": 30951.72, + "probability": 0.9954 + }, + { + "start": 30952.86, + "end": 30953.54, + "probability": 0.968 + }, + { + "start": 30955.44, + "end": 30958.22, + "probability": 0.9623 + }, + { + "start": 30959.48, + "end": 30960.06, + "probability": 0.9842 + }, + { + "start": 30961.1, + "end": 30961.73, + "probability": 0.7533 + }, + { + "start": 30962.86, + "end": 30965.9, + "probability": 0.9441 + }, + { + "start": 30966.86, + "end": 30967.38, + "probability": 0.9801 + }, + { + "start": 30969.14, + "end": 30969.9, + "probability": 0.9583 + }, + { + "start": 30973.74, + "end": 30974.36, + "probability": 0.6004 + }, + { + "start": 30976.1, + "end": 30977.02, + "probability": 0.5778 + }, + { + "start": 30978.34, + "end": 30980.36, + "probability": 0.8562 + }, + { + "start": 30981.78, + "end": 30985.2, + "probability": 0.7992 + }, + { + "start": 30987.68, + "end": 30989.28, + "probability": 0.9291 + }, + { + "start": 30990.06, + "end": 30990.56, + "probability": 0.9685 + }, + { + "start": 30991.74, + "end": 30992.3, + "probability": 0.9716 + }, + { + "start": 30994.0, + "end": 30995.82, + "probability": 0.9485 + }, + { + "start": 30998.66, + "end": 30999.6, + "probability": 0.4263 + }, + { + "start": 31006.42, + "end": 31007.7, + "probability": 0.4242 + }, + { + "start": 31009.42, + "end": 31010.02, + "probability": 0.8289 + }, + { + "start": 31011.34, + "end": 31011.98, + "probability": 0.7743 + }, + { + "start": 31013.14, + "end": 31016.2, + "probability": 0.952 + }, + { + "start": 31016.98, + "end": 31018.2, + "probability": 0.5731 + }, + { + "start": 31019.32, + "end": 31020.14, + "probability": 0.9209 + }, + { + "start": 31022.86, + "end": 31023.24, + "probability": 0.5357 + }, + { + "start": 31024.12, + "end": 31025.04, + "probability": 0.6653 + }, + { + "start": 31025.8, + "end": 31026.36, + "probability": 0.9155 + }, + { + "start": 31027.44, + "end": 31028.38, + "probability": 0.8576 + }, + { + "start": 31030.62, + "end": 31031.54, + "probability": 0.8567 + }, + { + "start": 31032.46, + "end": 31033.3, + "probability": 0.9641 + }, + { + "start": 31034.18, + "end": 31034.9, + "probability": 0.9868 + }, + { + "start": 31036.3, + "end": 31037.14, + "probability": 0.9588 + }, + { + "start": 31039.88, + "end": 31041.76, + "probability": 0.9504 + }, + { + "start": 31046.32, + "end": 31047.34, + "probability": 0.7437 + }, + { + "start": 31049.24, + "end": 31050.08, + "probability": 0.3556 + }, + { + "start": 31051.26, + "end": 31051.86, + "probability": 0.769 + }, + { + "start": 31053.86, + "end": 31054.54, + "probability": 0.6524 + }, + { + "start": 31058.14, + "end": 31059.24, + "probability": 0.5303 + }, + { + "start": 31060.48, + "end": 31061.74, + "probability": 0.8484 + }, + { + "start": 31068.94, + "end": 31069.52, + "probability": 0.7279 + }, + { + "start": 31070.96, + "end": 31071.88, + "probability": 0.5734 + }, + { + "start": 31073.78, + "end": 31076.0, + "probability": 0.9673 + }, + { + "start": 31076.82, + "end": 31077.4, + "probability": 0.9893 + }, + { + "start": 31078.5, + "end": 31079.44, + "probability": 0.9133 + }, + { + "start": 31079.96, + "end": 31080.42, + "probability": 0.9062 + }, + { + "start": 31081.82, + "end": 31082.44, + "probability": 0.9312 + }, + { + "start": 31084.4, + "end": 31086.48, + "probability": 0.9797 + }, + { + "start": 31088.2, + "end": 31090.66, + "probability": 0.7355 + }, + { + "start": 31091.72, + "end": 31093.76, + "probability": 0.7565 + }, + { + "start": 31096.46, + "end": 31098.66, + "probability": 0.6971 + }, + { + "start": 31099.68, + "end": 31100.54, + "probability": 0.8366 + }, + { + "start": 31102.68, + "end": 31103.14, + "probability": 0.7179 + }, + { + "start": 31104.82, + "end": 31106.92, + "probability": 0.6476 + }, + { + "start": 31108.58, + "end": 31110.12, + "probability": 0.6943 + }, + { + "start": 31113.48, + "end": 31115.14, + "probability": 0.7595 + }, + { + "start": 31116.22, + "end": 31118.1, + "probability": 0.685 + }, + { + "start": 31118.96, + "end": 31119.84, + "probability": 0.7832 + }, + { + "start": 31122.2, + "end": 31122.7, + "probability": 0.7617 + }, + { + "start": 31124.04, + "end": 31124.66, + "probability": 0.7122 + }, + { + "start": 31125.78, + "end": 31126.34, + "probability": 0.9827 + }, + { + "start": 31127.2, + "end": 31128.06, + "probability": 0.9 + }, + { + "start": 31130.76, + "end": 31131.32, + "probability": 0.9914 + }, + { + "start": 31132.24, + "end": 31133.2, + "probability": 0.4829 + }, + { + "start": 31134.56, + "end": 31135.12, + "probability": 0.9823 + }, + { + "start": 31136.22, + "end": 31137.18, + "probability": 0.8127 + }, + { + "start": 31138.26, + "end": 31138.66, + "probability": 0.9058 + }, + { + "start": 31140.38, + "end": 31140.88, + "probability": 0.5981 + }, + { + "start": 31144.66, + "end": 31147.08, + "probability": 0.6971 + }, + { + "start": 31149.3, + "end": 31149.9, + "probability": 0.922 + }, + { + "start": 31151.6, + "end": 31152.38, + "probability": 0.8581 + }, + { + "start": 31153.78, + "end": 31155.92, + "probability": 0.6999 + }, + { + "start": 31156.6, + "end": 31157.42, + "probability": 0.9668 + }, + { + "start": 31158.58, + "end": 31159.3, + "probability": 0.9535 + }, + { + "start": 31160.44, + "end": 31160.86, + "probability": 0.958 + }, + { + "start": 31161.92, + "end": 31162.88, + "probability": 0.9435 + }, + { + "start": 31163.44, + "end": 31165.16, + "probability": 0.8695 + }, + { + "start": 31166.4, + "end": 31166.86, + "probability": 0.9741 + }, + { + "start": 31167.68, + "end": 31168.66, + "probability": 0.6889 + }, + { + "start": 31169.58, + "end": 31170.1, + "probability": 0.7466 + }, + { + "start": 31170.88, + "end": 31171.68, + "probability": 0.7664 + }, + { + "start": 31174.54, + "end": 31175.1, + "probability": 0.9897 + }, + { + "start": 31176.0, + "end": 31176.98, + "probability": 0.8361 + }, + { + "start": 31179.6, + "end": 31180.16, + "probability": 0.9909 + }, + { + "start": 31181.5, + "end": 31182.24, + "probability": 0.898 + }, + { + "start": 31183.32, + "end": 31183.74, + "probability": 0.8237 + }, + { + "start": 31184.38, + "end": 31185.14, + "probability": 0.8091 + }, + { + "start": 31188.56, + "end": 31189.14, + "probability": 0.8566 + }, + { + "start": 31189.84, + "end": 31190.68, + "probability": 0.8224 + }, + { + "start": 31192.66, + "end": 31194.3, + "probability": 0.9453 + }, + { + "start": 31195.54, + "end": 31196.02, + "probability": 0.9856 + }, + { + "start": 31196.78, + "end": 31197.68, + "probability": 0.8226 + }, + { + "start": 31199.96, + "end": 31200.38, + "probability": 0.5986 + }, + { + "start": 31201.5, + "end": 31202.46, + "probability": 0.7557 + }, + { + "start": 31203.54, + "end": 31205.52, + "probability": 0.864 + }, + { + "start": 31206.26, + "end": 31206.78, + "probability": 0.986 + }, + { + "start": 31208.68, + "end": 31209.54, + "probability": 0.957 + }, + { + "start": 31210.4, + "end": 31211.78, + "probability": 0.9841 + }, + { + "start": 31213.14, + "end": 31213.66, + "probability": 0.9972 + }, + { + "start": 31214.52, + "end": 31215.72, + "probability": 0.8733 + }, + { + "start": 31216.76, + "end": 31218.84, + "probability": 0.7876 + }, + { + "start": 31219.78, + "end": 31224.26, + "probability": 0.7554 + }, + { + "start": 31225.48, + "end": 31225.98, + "probability": 0.9023 + }, + { + "start": 31227.46, + "end": 31228.38, + "probability": 0.8118 + }, + { + "start": 31230.82, + "end": 31231.44, + "probability": 0.9019 + }, + { + "start": 31232.76, + "end": 31233.44, + "probability": 0.6086 + }, + { + "start": 31236.16, + "end": 31236.68, + "probability": 0.8689 + }, + { + "start": 31237.88, + "end": 31238.72, + "probability": 0.8979 + }, + { + "start": 31239.62, + "end": 31240.16, + "probability": 0.9941 + }, + { + "start": 31241.18, + "end": 31241.9, + "probability": 0.6958 + }, + { + "start": 31242.74, + "end": 31243.4, + "probability": 0.9922 + }, + { + "start": 31244.02, + "end": 31245.0, + "probability": 0.7645 + }, + { + "start": 31247.6, + "end": 31250.4, + "probability": 0.9172 + }, + { + "start": 31252.6, + "end": 31253.3, + "probability": 0.6862 + }, + { + "start": 31254.22, + "end": 31255.0, + "probability": 0.526 + }, + { + "start": 31258.98, + "end": 31260.24, + "probability": 0.6644 + }, + { + "start": 31261.3, + "end": 31263.06, + "probability": 0.7821 + }, + { + "start": 31265.2, + "end": 31265.72, + "probability": 0.9665 + }, + { + "start": 31267.54, + "end": 31270.94, + "probability": 0.8717 + }, + { + "start": 31271.14, + "end": 31272.46, + "probability": 0.7579 + }, + { + "start": 31273.22, + "end": 31275.14, + "probability": 0.8911 + }, + { + "start": 31276.74, + "end": 31278.94, + "probability": 0.5291 + }, + { + "start": 31280.14, + "end": 31280.64, + "probability": 0.7159 + }, + { + "start": 31282.6, + "end": 31283.36, + "probability": 0.785 + }, + { + "start": 31283.88, + "end": 31284.54, + "probability": 0.9647 + }, + { + "start": 31285.24, + "end": 31286.0, + "probability": 0.9644 + }, + { + "start": 31287.0, + "end": 31288.54, + "probability": 0.9418 + }, + { + "start": 31289.56, + "end": 31290.46, + "probability": 0.9803 + }, + { + "start": 31295.42, + "end": 31296.48, + "probability": 0.7987 + }, + { + "start": 31299.1, + "end": 31302.44, + "probability": 0.9619 + }, + { + "start": 31304.26, + "end": 31307.58, + "probability": 0.8355 + }, + { + "start": 31308.66, + "end": 31309.27, + "probability": 0.6248 + }, + { + "start": 31310.52, + "end": 31311.26, + "probability": 0.9855 + }, + { + "start": 31312.16, + "end": 31314.6, + "probability": 0.9719 + }, + { + "start": 31315.92, + "end": 31316.76, + "probability": 0.9773 + }, + { + "start": 31318.72, + "end": 31319.68, + "probability": 0.7954 + }, + { + "start": 31321.9, + "end": 31322.88, + "probability": 0.8098 + }, + { + "start": 31323.48, + "end": 31324.26, + "probability": 0.8168 + }, + { + "start": 31326.32, + "end": 31328.12, + "probability": 0.9414 + }, + { + "start": 31328.94, + "end": 31329.46, + "probability": 0.9855 + }, + { + "start": 31332.1, + "end": 31332.84, + "probability": 0.9362 + }, + { + "start": 31333.7, + "end": 31334.16, + "probability": 0.9099 + }, + { + "start": 31336.16, + "end": 31337.5, + "probability": 0.8894 + }, + { + "start": 31338.54, + "end": 31338.94, + "probability": 0.9783 + }, + { + "start": 31339.5, + "end": 31340.46, + "probability": 0.9979 + }, + { + "start": 31341.72, + "end": 31342.78, + "probability": 0.6805 + }, + { + "start": 31344.74, + "end": 31345.14, + "probability": 0.9889 + }, + { + "start": 31348.3, + "end": 31349.1, + "probability": 0.5175 + }, + { + "start": 31349.78, + "end": 31352.26, + "probability": 0.5999 + }, + { + "start": 31353.44, + "end": 31355.32, + "probability": 0.8391 + }, + { + "start": 31356.36, + "end": 31357.32, + "probability": 0.9411 + }, + { + "start": 31357.88, + "end": 31360.28, + "probability": 0.8792 + }, + { + "start": 31361.46, + "end": 31363.58, + "probability": 0.8611 + }, + { + "start": 31364.08, + "end": 31365.18, + "probability": 0.9571 + }, + { + "start": 31365.56, + "end": 31370.38, + "probability": 0.4287 + }, + { + "start": 31371.58, + "end": 31378.22, + "probability": 0.9623 + }, + { + "start": 31379.08, + "end": 31380.06, + "probability": 0.5673 + }, + { + "start": 31380.12, + "end": 31380.72, + "probability": 0.4328 + }, + { + "start": 31500.44, + "end": 31500.44, + "probability": 0.6244 + }, + { + "start": 31500.52, + "end": 31501.66, + "probability": 0.5646 + }, + { + "start": 31503.44, + "end": 31506.88, + "probability": 0.7474 + }, + { + "start": 31507.04, + "end": 31509.48, + "probability": 0.924 + }, + { + "start": 31510.12, + "end": 31513.3, + "probability": 0.6647 + }, + { + "start": 31513.32, + "end": 31516.78, + "probability": 0.9759 + }, + { + "start": 31516.78, + "end": 31516.88, + "probability": 0.947 + }, + { + "start": 31540.36, + "end": 31541.12, + "probability": 0.5507 + }, + { + "start": 31543.86, + "end": 31545.3, + "probability": 0.8338 + }, + { + "start": 31547.12, + "end": 31549.86, + "probability": 0.986 + }, + { + "start": 31550.26, + "end": 31552.28, + "probability": 0.9497 + }, + { + "start": 31553.82, + "end": 31555.38, + "probability": 0.9854 + }, + { + "start": 31556.42, + "end": 31559.38, + "probability": 0.6553 + }, + { + "start": 31560.44, + "end": 31561.02, + "probability": 0.0726 + }, + { + "start": 31561.02, + "end": 31561.14, + "probability": 0.5543 + }, + { + "start": 31561.4, + "end": 31562.16, + "probability": 0.8388 + }, + { + "start": 31562.2, + "end": 31566.46, + "probability": 0.5114 + }, + { + "start": 31567.12, + "end": 31568.12, + "probability": 0.1215 + }, + { + "start": 31569.1, + "end": 31570.1, + "probability": 0.1459 + }, + { + "start": 31570.1, + "end": 31570.1, + "probability": 0.3318 + }, + { + "start": 31570.1, + "end": 31570.1, + "probability": 0.2788 + }, + { + "start": 31570.1, + "end": 31573.88, + "probability": 0.5732 + }, + { + "start": 31573.88, + "end": 31575.34, + "probability": 0.7019 + }, + { + "start": 31575.48, + "end": 31577.22, + "probability": 0.6428 + }, + { + "start": 31577.68, + "end": 31579.78, + "probability": 0.2462 + }, + { + "start": 31580.06, + "end": 31580.8, + "probability": 0.3675 + }, + { + "start": 31581.72, + "end": 31582.06, + "probability": 0.0235 + }, + { + "start": 31582.06, + "end": 31582.16, + "probability": 0.2661 + }, + { + "start": 31582.2, + "end": 31582.44, + "probability": 0.6397 + }, + { + "start": 31582.44, + "end": 31582.46, + "probability": 0.4108 + }, + { + "start": 31582.46, + "end": 31583.44, + "probability": 0.4671 + }, + { + "start": 31583.46, + "end": 31584.54, + "probability": 0.6359 + }, + { + "start": 31584.56, + "end": 31584.9, + "probability": 0.7932 + }, + { + "start": 31585.06, + "end": 31586.52, + "probability": 0.699 + }, + { + "start": 31586.68, + "end": 31587.32, + "probability": 0.0817 + }, + { + "start": 31587.8, + "end": 31587.8, + "probability": 0.164 + }, + { + "start": 31587.84, + "end": 31589.5, + "probability": 0.6363 + }, + { + "start": 31589.88, + "end": 31590.24, + "probability": 0.256 + }, + { + "start": 31590.48, + "end": 31590.62, + "probability": 0.0857 + }, + { + "start": 31590.62, + "end": 31591.68, + "probability": 0.7139 + }, + { + "start": 31592.02, + "end": 31593.18, + "probability": 0.5063 + }, + { + "start": 31593.28, + "end": 31593.28, + "probability": 0.5341 + }, + { + "start": 31593.52, + "end": 31593.64, + "probability": 0.666 + }, + { + "start": 31593.88, + "end": 31595.24, + "probability": 0.7752 + }, + { + "start": 31595.44, + "end": 31596.09, + "probability": 0.8997 + }, + { + "start": 31596.3, + "end": 31596.3, + "probability": 0.2435 + }, + { + "start": 31596.3, + "end": 31598.72, + "probability": 0.696 + }, + { + "start": 31599.5, + "end": 31600.08, + "probability": 0.3706 + }, + { + "start": 31614.18, + "end": 31616.48, + "probability": 0.3446 + }, + { + "start": 31617.2, + "end": 31617.6, + "probability": 0.4732 + }, + { + "start": 31619.12, + "end": 31619.7, + "probability": 0.1884 + }, + { + "start": 31619.72, + "end": 31620.96, + "probability": 0.322 + }, + { + "start": 31623.47, + "end": 31624.36, + "probability": 0.0339 + }, + { + "start": 31624.38, + "end": 31624.68, + "probability": 0.3726 + }, + { + "start": 31625.44, + "end": 31626.08, + "probability": 0.0183 + }, + { + "start": 31626.08, + "end": 31629.14, + "probability": 0.2408 + }, + { + "start": 31630.2, + "end": 31631.2, + "probability": 0.2986 + }, + { + "start": 31631.84, + "end": 31633.86, + "probability": 0.0563 + }, + { + "start": 31634.3, + "end": 31635.5, + "probability": 0.1502 + }, + { + "start": 31635.98, + "end": 31636.88, + "probability": 0.5017 + }, + { + "start": 31646.58, + "end": 31652.24, + "probability": 0.1752 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.0, + "end": 31722.0, + "probability": 0.0 + }, + { + "start": 31722.1, + "end": 31722.3, + "probability": 0.0987 + }, + { + "start": 31722.3, + "end": 31722.3, + "probability": 0.081 + }, + { + "start": 31722.3, + "end": 31723.16, + "probability": 0.0903 + }, + { + "start": 31723.58, + "end": 31724.78, + "probability": 0.219 + }, + { + "start": 31725.42, + "end": 31727.32, + "probability": 0.4413 + }, + { + "start": 31727.66, + "end": 31729.12, + "probability": 0.6729 + }, + { + "start": 31729.12, + "end": 31730.24, + "probability": 0.5956 + }, + { + "start": 31730.26, + "end": 31731.46, + "probability": 0.8032 + }, + { + "start": 31731.46, + "end": 31733.14, + "probability": 0.3605 + }, + { + "start": 31734.68, + "end": 31737.26, + "probability": 0.9292 + }, + { + "start": 31737.68, + "end": 31740.5, + "probability": 0.9391 + }, + { + "start": 31740.54, + "end": 31742.26, + "probability": 0.9376 + }, + { + "start": 31743.46, + "end": 31744.08, + "probability": 0.8999 + }, + { + "start": 31745.37, + "end": 31747.22, + "probability": 0.8938 + }, + { + "start": 31747.32, + "end": 31748.14, + "probability": 0.367 + }, + { + "start": 31748.56, + "end": 31750.66, + "probability": 0.8696 + }, + { + "start": 31752.18, + "end": 31754.54, + "probability": 0.5206 + }, + { + "start": 31755.56, + "end": 31757.16, + "probability": 0.7936 + }, + { + "start": 31757.56, + "end": 31759.93, + "probability": 0.6215 + }, + { + "start": 31760.22, + "end": 31761.94, + "probability": 0.3907 + }, + { + "start": 31763.4, + "end": 31763.64, + "probability": 0.4628 + }, + { + "start": 31763.64, + "end": 31765.16, + "probability": 0.3321 + }, + { + "start": 31765.34, + "end": 31766.14, + "probability": 0.311 + }, + { + "start": 31766.14, + "end": 31767.82, + "probability": 0.7367 + }, + { + "start": 31768.3, + "end": 31772.7, + "probability": 0.889 + }, + { + "start": 31773.32, + "end": 31778.12, + "probability": 0.9622 + }, + { + "start": 31778.12, + "end": 31781.63, + "probability": 0.996 + }, + { + "start": 31781.98, + "end": 31784.56, + "probability": 0.9951 + }, + { + "start": 31785.02, + "end": 31785.68, + "probability": 0.3248 + }, + { + "start": 31785.86, + "end": 31786.94, + "probability": 0.8288 + }, + { + "start": 31787.42, + "end": 31792.32, + "probability": 0.9485 + }, + { + "start": 31792.54, + "end": 31797.92, + "probability": 0.8731 + }, + { + "start": 31798.02, + "end": 31800.24, + "probability": 0.9703 + }, + { + "start": 31800.64, + "end": 31801.86, + "probability": 0.7368 + }, + { + "start": 31802.02, + "end": 31805.56, + "probability": 0.9656 + }, + { + "start": 31806.14, + "end": 31807.52, + "probability": 0.5893 + }, + { + "start": 31808.04, + "end": 31811.88, + "probability": 0.9761 + }, + { + "start": 31812.36, + "end": 31814.34, + "probability": 0.9768 + }, + { + "start": 31814.6, + "end": 31818.42, + "probability": 0.8231 + }, + { + "start": 31818.8, + "end": 31820.08, + "probability": 0.9873 + }, + { + "start": 31820.46, + "end": 31822.88, + "probability": 0.9238 + }, + { + "start": 31823.48, + "end": 31827.92, + "probability": 0.979 + }, + { + "start": 31828.12, + "end": 31828.99, + "probability": 0.9877 + }, + { + "start": 31829.54, + "end": 31830.28, + "probability": 0.7878 + }, + { + "start": 31833.5, + "end": 31833.5, + "probability": 0.2267 + }, + { + "start": 31833.5, + "end": 31833.5, + "probability": 0.5004 + }, + { + "start": 31833.5, + "end": 31834.62, + "probability": 0.6026 + }, + { + "start": 31834.8, + "end": 31837.6, + "probability": 0.9412 + }, + { + "start": 31838.12, + "end": 31838.5, + "probability": 0.0077 + }, + { + "start": 31838.5, + "end": 31838.5, + "probability": 0.1891 + }, + { + "start": 31838.5, + "end": 31839.34, + "probability": 0.6972 + }, + { + "start": 31841.7, + "end": 31842.66, + "probability": 0.1458 + }, + { + "start": 31842.66, + "end": 31842.66, + "probability": 0.0036 + }, + { + "start": 31842.66, + "end": 31845.0, + "probability": 0.4331 + }, + { + "start": 31845.08, + "end": 31849.9, + "probability": 0.9757 + }, + { + "start": 31850.38, + "end": 31851.88, + "probability": 0.076 + }, + { + "start": 31852.56, + "end": 31853.66, + "probability": 0.3974 + }, + { + "start": 31855.12, + "end": 31855.26, + "probability": 0.5176 + }, + { + "start": 31855.26, + "end": 31855.26, + "probability": 0.2301 + }, + { + "start": 31855.26, + "end": 31855.48, + "probability": 0.2676 + }, + { + "start": 31855.88, + "end": 31857.12, + "probability": 0.4285 + }, + { + "start": 31859.3, + "end": 31859.58, + "probability": 0.4183 + }, + { + "start": 31859.58, + "end": 31859.58, + "probability": 0.321 + }, + { + "start": 31859.58, + "end": 31861.03, + "probability": 0.7155 + }, + { + "start": 31861.64, + "end": 31861.68, + "probability": 0.0233 + }, + { + "start": 31861.68, + "end": 31861.76, + "probability": 0.3275 + }, + { + "start": 31861.76, + "end": 31862.94, + "probability": 0.0227 + }, + { + "start": 31863.46, + "end": 31864.52, + "probability": 0.3198 + }, + { + "start": 31865.02, + "end": 31868.66, + "probability": 0.7339 + }, + { + "start": 31869.32, + "end": 31870.62, + "probability": 0.0228 + }, + { + "start": 31879.92, + "end": 31884.96, + "probability": 0.1852 + }, + { + "start": 31886.52, + "end": 31887.26, + "probability": 0.0086 + }, + { + "start": 31887.56, + "end": 31887.9, + "probability": 0.0451 + }, + { + "start": 31887.9, + "end": 31887.9, + "probability": 0.3129 + }, + { + "start": 31887.9, + "end": 31888.1, + "probability": 0.0387 + }, + { + "start": 31888.1, + "end": 31890.12, + "probability": 0.4221 + }, + { + "start": 31890.26, + "end": 31890.8, + "probability": 0.0225 + }, + { + "start": 31890.8, + "end": 31890.8, + "probability": 0.1917 + }, + { + "start": 31891.6, + "end": 31892.54, + "probability": 0.2324 + }, + { + "start": 31894.98, + "end": 31897.54, + "probability": 0.3484 + }, + { + "start": 31897.84, + "end": 31899.52, + "probability": 0.4005 + }, + { + "start": 31901.32, + "end": 31901.56, + "probability": 0.0165 + }, + { + "start": 31901.98, + "end": 31903.3, + "probability": 0.4566 + }, + { + "start": 31904.28, + "end": 31904.3, + "probability": 0.06 + }, + { + "start": 31904.3, + "end": 31904.3, + "probability": 0.6329 + }, + { + "start": 31904.3, + "end": 31907.2, + "probability": 0.2359 + }, + { + "start": 31909.16, + "end": 31911.6, + "probability": 0.7714 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31949.0, + "end": 31949.0, + "probability": 0.0 + }, + { + "start": 31955.58, + "end": 31957.1, + "probability": 0.1326 + }, + { + "start": 31966.44, + "end": 31971.46, + "probability": 0.0132 + }, + { + "start": 31986.58, + "end": 31987.16, + "probability": 0.0211 + }, + { + "start": 31987.8, + "end": 31988.06, + "probability": 0.0246 + }, + { + "start": 31988.06, + "end": 31988.06, + "probability": 0.0469 + }, + { + "start": 31988.52, + "end": 31988.92, + "probability": 0.0265 + }, + { + "start": 31991.6, + "end": 31992.02, + "probability": 0.56 + }, + { + "start": 31992.2, + "end": 31992.2, + "probability": 0.0523 + }, + { + "start": 31992.2, + "end": 31993.3, + "probability": 0.616 + }, + { + "start": 31994.82, + "end": 31996.18, + "probability": 0.8191 + }, + { + "start": 31998.02, + "end": 31998.68, + "probability": 0.7248 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.0, + "end": 32072.0, + "probability": 0.0 + }, + { + "start": 32072.34, + "end": 32072.34, + "probability": 0.0289 + }, + { + "start": 32072.34, + "end": 32072.84, + "probability": 0.6077 + }, + { + "start": 32072.86, + "end": 32073.56, + "probability": 0.8673 + }, + { + "start": 32073.8, + "end": 32074.56, + "probability": 0.9182 + }, + { + "start": 32074.58, + "end": 32077.96, + "probability": 0.9961 + }, + { + "start": 32079.06, + "end": 32081.58, + "probability": 0.9807 + }, + { + "start": 32082.34, + "end": 32087.28, + "probability": 0.9954 + }, + { + "start": 32088.16, + "end": 32088.82, + "probability": 0.9911 + }, + { + "start": 32089.26, + "end": 32090.16, + "probability": 0.8411 + }, + { + "start": 32090.38, + "end": 32092.58, + "probability": 0.9425 + }, + { + "start": 32093.58, + "end": 32096.02, + "probability": 0.992 + }, + { + "start": 32096.72, + "end": 32098.46, + "probability": 0.9683 + }, + { + "start": 32099.66, + "end": 32101.81, + "probability": 0.9837 + }, + { + "start": 32102.9, + "end": 32104.74, + "probability": 0.9979 + }, + { + "start": 32104.74, + "end": 32107.18, + "probability": 0.9946 + }, + { + "start": 32108.74, + "end": 32112.22, + "probability": 0.9928 + }, + { + "start": 32113.04, + "end": 32114.64, + "probability": 0.9976 + }, + { + "start": 32114.72, + "end": 32116.4, + "probability": 0.7653 + }, + { + "start": 32118.14, + "end": 32120.64, + "probability": 0.8696 + }, + { + "start": 32121.68, + "end": 32123.14, + "probability": 0.8045 + }, + { + "start": 32123.7, + "end": 32128.46, + "probability": 0.9941 + }, + { + "start": 32129.74, + "end": 32131.78, + "probability": 0.9946 + }, + { + "start": 32132.02, + "end": 32135.14, + "probability": 0.9982 + }, + { + "start": 32136.32, + "end": 32138.52, + "probability": 0.9952 + }, + { + "start": 32139.02, + "end": 32140.94, + "probability": 0.837 + }, + { + "start": 32141.56, + "end": 32142.18, + "probability": 0.9932 + }, + { + "start": 32142.84, + "end": 32143.86, + "probability": 0.7824 + }, + { + "start": 32144.94, + "end": 32147.24, + "probability": 0.9786 + }, + { + "start": 32147.3, + "end": 32151.54, + "probability": 0.9657 + }, + { + "start": 32153.1, + "end": 32157.12, + "probability": 0.9323 + }, + { + "start": 32157.7, + "end": 32158.92, + "probability": 0.9658 + }, + { + "start": 32159.9, + "end": 32164.92, + "probability": 0.9912 + }, + { + "start": 32165.7, + "end": 32167.82, + "probability": 0.6036 + }, + { + "start": 32168.98, + "end": 32170.12, + "probability": 0.9581 + }, + { + "start": 32170.88, + "end": 32172.66, + "probability": 0.8281 + }, + { + "start": 32172.86, + "end": 32174.04, + "probability": 0.8727 + }, + { + "start": 32174.16, + "end": 32174.32, + "probability": 0.7111 + }, + { + "start": 32174.4, + "end": 32175.08, + "probability": 0.8952 + }, + { + "start": 32175.14, + "end": 32176.18, + "probability": 0.9937 + }, + { + "start": 32177.16, + "end": 32179.72, + "probability": 0.9984 + }, + { + "start": 32180.28, + "end": 32181.34, + "probability": 0.999 + }, + { + "start": 32182.2, + "end": 32186.04, + "probability": 0.9987 + }, + { + "start": 32187.16, + "end": 32191.18, + "probability": 0.9974 + }, + { + "start": 32192.18, + "end": 32194.22, + "probability": 0.9929 + }, + { + "start": 32194.78, + "end": 32197.18, + "probability": 0.7296 + }, + { + "start": 32198.5, + "end": 32199.04, + "probability": 0.7754 + }, + { + "start": 32199.12, + "end": 32200.42, + "probability": 0.9664 + }, + { + "start": 32201.5, + "end": 32201.86, + "probability": 0.5979 + }, + { + "start": 32202.82, + "end": 32205.8, + "probability": 0.9371 + }, + { + "start": 32206.46, + "end": 32207.44, + "probability": 0.6532 + }, + { + "start": 32208.59, + "end": 32213.76, + "probability": 0.9971 + }, + { + "start": 32214.58, + "end": 32215.24, + "probability": 0.5847 + }, + { + "start": 32216.76, + "end": 32218.14, + "probability": 0.8766 + }, + { + "start": 32218.84, + "end": 32220.22, + "probability": 0.9995 + }, + { + "start": 32221.4, + "end": 32222.14, + "probability": 0.9761 + }, + { + "start": 32223.2, + "end": 32225.86, + "probability": 0.9997 + }, + { + "start": 32227.2, + "end": 32231.54, + "probability": 0.9998 + }, + { + "start": 32231.54, + "end": 32236.07, + "probability": 0.8948 + }, + { + "start": 32236.14, + "end": 32239.9, + "probability": 0.8875 + }, + { + "start": 32239.98, + "end": 32240.59, + "probability": 0.8521 + }, + { + "start": 32243.0, + "end": 32246.7, + "probability": 0.8731 + }, + { + "start": 32246.86, + "end": 32249.88, + "probability": 0.91 + }, + { + "start": 32250.56, + "end": 32250.64, + "probability": 0.9121 + }, + { + "start": 32250.7, + "end": 32253.36, + "probability": 0.9943 + }, + { + "start": 32254.06, + "end": 32255.51, + "probability": 0.5279 + }, + { + "start": 32256.52, + "end": 32258.78, + "probability": 0.8389 + }, + { + "start": 32259.4, + "end": 32262.28, + "probability": 0.8824 + }, + { + "start": 32263.36, + "end": 32264.82, + "probability": 0.9701 + }, + { + "start": 32265.76, + "end": 32266.93, + "probability": 0.8804 + }, + { + "start": 32268.54, + "end": 32272.58, + "probability": 0.8328 + }, + { + "start": 32273.48, + "end": 32275.0, + "probability": 0.5326 + }, + { + "start": 32276.08, + "end": 32277.86, + "probability": 0.9886 + }, + { + "start": 32278.78, + "end": 32279.44, + "probability": 0.666 + }, + { + "start": 32280.18, + "end": 32282.62, + "probability": 0.9852 + }, + { + "start": 32283.2, + "end": 32283.66, + "probability": 0.6461 + }, + { + "start": 32283.72, + "end": 32291.12, + "probability": 0.973 + }, + { + "start": 32292.14, + "end": 32294.2, + "probability": 0.8955 + }, + { + "start": 32297.2, + "end": 32299.76, + "probability": 0.8924 + }, + { + "start": 32300.22, + "end": 32300.98, + "probability": 0.6776 + }, + { + "start": 32301.82, + "end": 32303.88, + "probability": 0.9498 + }, + { + "start": 32304.82, + "end": 32305.16, + "probability": 0.9768 + }, + { + "start": 32306.48, + "end": 32311.72, + "probability": 0.9935 + }, + { + "start": 32311.72, + "end": 32316.02, + "probability": 0.9824 + }, + { + "start": 32317.04, + "end": 32318.42, + "probability": 0.4519 + }, + { + "start": 32319.56, + "end": 32322.44, + "probability": 0.9341 + }, + { + "start": 32322.74, + "end": 32324.8, + "probability": 0.7255 + }, + { + "start": 32324.8, + "end": 32325.24, + "probability": 0.2536 + }, + { + "start": 32325.26, + "end": 32325.66, + "probability": 0.484 + }, + { + "start": 32328.14, + "end": 32329.36, + "probability": 0.9609 + }, + { + "start": 32330.2, + "end": 32330.7, + "probability": 0.0118 + }, + { + "start": 32331.42, + "end": 32332.36, + "probability": 0.0488 + }, + { + "start": 32333.57, + "end": 32336.84, + "probability": 0.9131 + }, + { + "start": 32337.58, + "end": 32338.98, + "probability": 0.5067 + }, + { + "start": 32341.18, + "end": 32347.68, + "probability": 0.9395 + }, + { + "start": 32349.24, + "end": 32352.22, + "probability": 0.9777 + }, + { + "start": 32352.76, + "end": 32353.8, + "probability": 0.9305 + }, + { + "start": 32355.6, + "end": 32357.36, + "probability": 0.6731 + }, + { + "start": 32357.42, + "end": 32360.96, + "probability": 0.9341 + }, + { + "start": 32361.6, + "end": 32369.6, + "probability": 0.9355 + }, + { + "start": 32369.74, + "end": 32371.02, + "probability": 0.7467 + }, + { + "start": 32372.34, + "end": 32373.4, + "probability": 0.9312 + }, + { + "start": 32374.74, + "end": 32374.74, + "probability": 0.897 + }, + { + "start": 32375.44, + "end": 32378.88, + "probability": 0.9937 + }, + { + "start": 32380.02, + "end": 32386.22, + "probability": 0.9126 + }, + { + "start": 32386.9, + "end": 32388.48, + "probability": 0.9148 + }, + { + "start": 32390.1, + "end": 32392.66, + "probability": 0.9644 + }, + { + "start": 32392.7, + "end": 32398.52, + "probability": 0.9518 + }, + { + "start": 32399.34, + "end": 32400.3, + "probability": 0.2955 + }, + { + "start": 32401.04, + "end": 32401.8, + "probability": 0.6451 + }, + { + "start": 32401.88, + "end": 32403.3, + "probability": 0.8193 + }, + { + "start": 32403.72, + "end": 32405.4, + "probability": 0.7944 + }, + { + "start": 32405.9, + "end": 32407.98, + "probability": 0.7856 + }, + { + "start": 32408.22, + "end": 32412.5, + "probability": 0.9964 + }, + { + "start": 32414.48, + "end": 32415.72, + "probability": 0.1937 + }, + { + "start": 32416.18, + "end": 32416.18, + "probability": 0.1666 + }, + { + "start": 32416.18, + "end": 32416.36, + "probability": 0.0479 + }, + { + "start": 32416.36, + "end": 32418.52, + "probability": 0.5363 + }, + { + "start": 32418.64, + "end": 32420.84, + "probability": 0.6768 + }, + { + "start": 32423.56, + "end": 32430.78, + "probability": 0.4763 + }, + { + "start": 32431.66, + "end": 32433.26, + "probability": 0.7791 + }, + { + "start": 32434.06, + "end": 32434.06, + "probability": 0.639 + }, + { + "start": 32434.4, + "end": 32436.62, + "probability": 0.7612 + }, + { + "start": 32437.44, + "end": 32443.05, + "probability": 0.9877 + }, + { + "start": 32443.2, + "end": 32444.88, + "probability": 0.976 + }, + { + "start": 32444.92, + "end": 32446.66, + "probability": 0.2389 + }, + { + "start": 32446.66, + "end": 32448.46, + "probability": 0.8544 + }, + { + "start": 32449.22, + "end": 32449.7, + "probability": 0.6959 + }, + { + "start": 32450.1, + "end": 32451.22, + "probability": 0.9929 + }, + { + "start": 32451.98, + "end": 32453.32, + "probability": 0.8707 + }, + { + "start": 32453.62, + "end": 32454.86, + "probability": 0.0954 + }, + { + "start": 32455.6, + "end": 32456.54, + "probability": 0.046 + }, + { + "start": 32464.06, + "end": 32466.42, + "probability": 0.015 + }, + { + "start": 32467.8, + "end": 32471.6, + "probability": 0.5534 + }, + { + "start": 32471.94, + "end": 32473.3, + "probability": 0.7527 + }, + { + "start": 32473.32, + "end": 32474.42, + "probability": 0.7569 + }, + { + "start": 32474.68, + "end": 32476.18, + "probability": 0.7042 + }, + { + "start": 32476.22, + "end": 32480.02, + "probability": 0.9944 + }, + { + "start": 32480.12, + "end": 32481.64, + "probability": 0.9874 + }, + { + "start": 32482.56, + "end": 32488.5, + "probability": 0.9884 + }, + { + "start": 32489.54, + "end": 32491.62, + "probability": 0.9941 + }, + { + "start": 32492.64, + "end": 32495.32, + "probability": 0.9814 + }, + { + "start": 32496.68, + "end": 32497.46, + "probability": 0.262 + }, + { + "start": 32497.92, + "end": 32498.98, + "probability": 0.6657 + }, + { + "start": 32499.1, + "end": 32500.5, + "probability": 0.9256 + }, + { + "start": 32501.04, + "end": 32502.82, + "probability": 0.7024 + }, + { + "start": 32503.24, + "end": 32505.8, + "probability": 0.5577 + }, + { + "start": 32506.3, + "end": 32507.38, + "probability": 0.8104 + }, + { + "start": 32507.44, + "end": 32508.3, + "probability": 0.7469 + }, + { + "start": 32508.56, + "end": 32510.04, + "probability": 0.9976 + }, + { + "start": 32511.22, + "end": 32512.44, + "probability": 0.9842 + }, + { + "start": 32513.16, + "end": 32516.28, + "probability": 0.7169 + }, + { + "start": 32516.92, + "end": 32521.3, + "probability": 0.9807 + }, + { + "start": 32521.58, + "end": 32522.2, + "probability": 0.8151 + }, + { + "start": 32522.36, + "end": 32526.42, + "probability": 0.9962 + }, + { + "start": 32527.18, + "end": 32528.14, + "probability": 0.9914 + }, + { + "start": 32529.5, + "end": 32531.14, + "probability": 0.9741 + }, + { + "start": 32533.26, + "end": 32533.5, + "probability": 0.1095 + }, + { + "start": 32533.5, + "end": 32534.55, + "probability": 0.2655 + }, + { + "start": 32534.98, + "end": 32536.44, + "probability": 0.6208 + }, + { + "start": 32537.08, + "end": 32537.66, + "probability": 0.1331 + }, + { + "start": 32537.66, + "end": 32539.34, + "probability": 0.7132 + }, + { + "start": 32539.54, + "end": 32542.94, + "probability": 0.5233 + }, + { + "start": 32543.36, + "end": 32543.36, + "probability": 0.1488 + }, + { + "start": 32543.36, + "end": 32543.36, + "probability": 0.018 + }, + { + "start": 32543.36, + "end": 32544.67, + "probability": 0.6971 + }, + { + "start": 32545.3, + "end": 32547.76, + "probability": 0.4909 + }, + { + "start": 32548.5, + "end": 32548.7, + "probability": 0.0582 + }, + { + "start": 32548.82, + "end": 32550.94, + "probability": 0.9371 + }, + { + "start": 32550.98, + "end": 32552.1, + "probability": 0.9209 + }, + { + "start": 32552.7, + "end": 32555.06, + "probability": 0.6466 + }, + { + "start": 32555.58, + "end": 32557.94, + "probability": 0.8618 + }, + { + "start": 32558.84, + "end": 32563.0, + "probability": 0.9954 + }, + { + "start": 32563.66, + "end": 32565.68, + "probability": 0.9918 + }, + { + "start": 32566.16, + "end": 32567.52, + "probability": 0.9554 + }, + { + "start": 32567.56, + "end": 32568.14, + "probability": 0.813 + }, + { + "start": 32568.48, + "end": 32569.28, + "probability": 0.9043 + }, + { + "start": 32569.3, + "end": 32569.88, + "probability": 0.9622 + }, + { + "start": 32570.12, + "end": 32570.84, + "probability": 0.6613 + }, + { + "start": 32570.92, + "end": 32571.24, + "probability": 0.7532 + }, + { + "start": 32571.58, + "end": 32572.46, + "probability": 0.9377 + }, + { + "start": 32572.9, + "end": 32573.6, + "probability": 0.7707 + }, + { + "start": 32574.06, + "end": 32576.8, + "probability": 0.9433 + }, + { + "start": 32576.8, + "end": 32583.88, + "probability": 0.9594 + }, + { + "start": 32583.92, + "end": 32583.96, + "probability": 0.0501 + }, + { + "start": 32583.96, + "end": 32584.9, + "probability": 0.9491 + }, + { + "start": 32585.4, + "end": 32586.12, + "probability": 0.9756 + }, + { + "start": 32587.2, + "end": 32588.64, + "probability": 0.8606 + }, + { + "start": 32589.24, + "end": 32589.48, + "probability": 0.3068 + }, + { + "start": 32589.76, + "end": 32591.08, + "probability": 0.9889 + }, + { + "start": 32591.7, + "end": 32593.36, + "probability": 0.8 + }, + { + "start": 32594.08, + "end": 32595.98, + "probability": 0.8582 + }, + { + "start": 32596.52, + "end": 32597.92, + "probability": 0.861 + }, + { + "start": 32599.53, + "end": 32603.0, + "probability": 0.5879 + }, + { + "start": 32603.26, + "end": 32603.44, + "probability": 0.0106 + }, + { + "start": 32603.44, + "end": 32603.44, + "probability": 0.3573 + }, + { + "start": 32603.44, + "end": 32603.92, + "probability": 0.0983 + }, + { + "start": 32604.06, + "end": 32605.78, + "probability": 0.6801 + }, + { + "start": 32606.36, + "end": 32608.72, + "probability": 0.9849 + }, + { + "start": 32609.76, + "end": 32613.86, + "probability": 0.215 + }, + { + "start": 32614.14, + "end": 32617.88, + "probability": 0.9214 + }, + { + "start": 32617.94, + "end": 32618.76, + "probability": 0.5595 + }, + { + "start": 32619.7, + "end": 32622.62, + "probability": 0.7432 + }, + { + "start": 32623.22, + "end": 32626.12, + "probability": 0.9934 + }, + { + "start": 32626.78, + "end": 32628.66, + "probability": 0.9332 + }, + { + "start": 32629.18, + "end": 32630.38, + "probability": 0.7016 + }, + { + "start": 32630.38, + "end": 32630.62, + "probability": 0.5463 + }, + { + "start": 32630.7, + "end": 32630.94, + "probability": 0.3168 + }, + { + "start": 32630.96, + "end": 32633.16, + "probability": 0.6671 + }, + { + "start": 32633.16, + "end": 32634.04, + "probability": 0.7659 + }, + { + "start": 32634.2, + "end": 32634.92, + "probability": 0.2652 + }, + { + "start": 32634.92, + "end": 32635.7, + "probability": 0.5832 + }, + { + "start": 32635.94, + "end": 32636.94, + "probability": 0.8328 + }, + { + "start": 32637.9, + "end": 32641.5, + "probability": 0.85 + }, + { + "start": 32642.45, + "end": 32642.84, + "probability": 0.2011 + }, + { + "start": 32642.84, + "end": 32644.1, + "probability": 0.7103 + }, + { + "start": 32644.2, + "end": 32645.38, + "probability": 0.7386 + }, + { + "start": 32645.83, + "end": 32646.34, + "probability": 0.5107 + }, + { + "start": 32646.34, + "end": 32647.16, + "probability": 0.6885 + }, + { + "start": 32647.18, + "end": 32648.02, + "probability": 0.8887 + }, + { + "start": 32648.1, + "end": 32648.8, + "probability": 0.9685 + }, + { + "start": 32648.98, + "end": 32652.72, + "probability": 0.748 + }, + { + "start": 32652.72, + "end": 32652.98, + "probability": 0.2602 + }, + { + "start": 32652.98, + "end": 32653.42, + "probability": 0.5796 + }, + { + "start": 32653.84, + "end": 32656.96, + "probability": 0.9475 + }, + { + "start": 32657.54, + "end": 32659.76, + "probability": 0.9982 + }, + { + "start": 32660.3, + "end": 32664.06, + "probability": 0.9749 + }, + { + "start": 32664.42, + "end": 32666.46, + "probability": 0.8193 + }, + { + "start": 32666.74, + "end": 32667.08, + "probability": 0.7573 + }, + { + "start": 32668.24, + "end": 32671.02, + "probability": 0.1667 + }, + { + "start": 32671.72, + "end": 32671.72, + "probability": 0.007 + }, + { + "start": 32671.72, + "end": 32673.76, + "probability": 0.6484 + }, + { + "start": 32674.74, + "end": 32677.3, + "probability": 0.8479 + }, + { + "start": 32678.33, + "end": 32680.96, + "probability": 0.9938 + }, + { + "start": 32684.04, + "end": 32684.28, + "probability": 0.5594 + }, + { + "start": 32698.88, + "end": 32698.98, + "probability": 0.0132 + }, + { + "start": 32699.22, + "end": 32700.02, + "probability": 0.5996 + }, + { + "start": 32700.04, + "end": 32701.01, + "probability": 0.5403 + }, + { + "start": 32703.32, + "end": 32706.86, + "probability": 0.989 + }, + { + "start": 32707.68, + "end": 32709.84, + "probability": 0.9051 + }, + { + "start": 32710.92, + "end": 32714.62, + "probability": 0.9863 + }, + { + "start": 32715.16, + "end": 32717.22, + "probability": 0.9863 + }, + { + "start": 32717.8, + "end": 32719.68, + "probability": 0.983 + }, + { + "start": 32720.54, + "end": 32721.84, + "probability": 0.7522 + }, + { + "start": 32729.2, + "end": 32734.34, + "probability": 0.9904 + }, + { + "start": 32735.66, + "end": 32737.5, + "probability": 0.9882 + }, + { + "start": 32737.72, + "end": 32738.98, + "probability": 0.9479 + }, + { + "start": 32739.98, + "end": 32742.86, + "probability": 0.9662 + }, + { + "start": 32743.82, + "end": 32745.44, + "probability": 0.9927 + }, + { + "start": 32745.62, + "end": 32747.92, + "probability": 0.9728 + }, + { + "start": 32748.46, + "end": 32749.64, + "probability": 0.9671 + }, + { + "start": 32750.14, + "end": 32752.66, + "probability": 0.9517 + }, + { + "start": 32754.52, + "end": 32758.02, + "probability": 0.9761 + }, + { + "start": 32759.12, + "end": 32763.3, + "probability": 0.9516 + }, + { + "start": 32763.84, + "end": 32766.38, + "probability": 0.978 + }, + { + "start": 32767.34, + "end": 32770.9, + "probability": 0.9752 + }, + { + "start": 32771.0, + "end": 32771.58, + "probability": 0.8613 + }, + { + "start": 32772.02, + "end": 32773.31, + "probability": 0.9351 + }, + { + "start": 32773.82, + "end": 32777.2, + "probability": 0.9905 + }, + { + "start": 32777.38, + "end": 32778.5, + "probability": 0.6269 + }, + { + "start": 32779.38, + "end": 32779.8, + "probability": 0.6084 + }, + { + "start": 32780.3, + "end": 32782.54, + "probability": 0.7493 + }, + { + "start": 32782.74, + "end": 32785.1, + "probability": 0.824 + }, + { + "start": 32790.26, + "end": 32791.34, + "probability": 0.7667 + }, + { + "start": 32791.94, + "end": 32795.56, + "probability": 0.8627 + }, + { + "start": 32795.76, + "end": 32804.7, + "probability": 0.8095 + }, + { + "start": 32804.88, + "end": 32805.78, + "probability": 0.7604 + }, + { + "start": 32807.08, + "end": 32809.66, + "probability": 0.9973 + }, + { + "start": 32813.32, + "end": 32814.12, + "probability": 0.785 + }, + { + "start": 32814.44, + "end": 32818.0, + "probability": 0.5822 + }, + { + "start": 32818.78, + "end": 32822.5, + "probability": 0.7189 + }, + { + "start": 32822.56, + "end": 32825.13, + "probability": 0.8575 + }, + { + "start": 32825.7, + "end": 32826.3, + "probability": 0.5727 + }, + { + "start": 32827.62, + "end": 32833.44, + "probability": 0.9121 + }, + { + "start": 32834.14, + "end": 32838.3, + "probability": 0.8747 + }, + { + "start": 32838.92, + "end": 32839.8, + "probability": 0.5083 + }, + { + "start": 32840.12, + "end": 32841.59, + "probability": 0.8202 + }, + { + "start": 32842.76, + "end": 32844.6, + "probability": 0.8912 + }, + { + "start": 32844.72, + "end": 32845.98, + "probability": 0.9929 + }, + { + "start": 32850.58, + "end": 32855.04, + "probability": 0.9956 + }, + { + "start": 32856.84, + "end": 32860.8, + "probability": 0.7487 + }, + { + "start": 32861.44, + "end": 32862.88, + "probability": 0.5872 + }, + { + "start": 32863.84, + "end": 32865.82, + "probability": 0.765 + }, + { + "start": 32865.94, + "end": 32866.86, + "probability": 0.7821 + }, + { + "start": 32867.06, + "end": 32867.52, + "probability": 0.9006 + }, + { + "start": 32867.58, + "end": 32871.08, + "probability": 0.9683 + }, + { + "start": 32871.48, + "end": 32877.36, + "probability": 0.7614 + }, + { + "start": 32877.4, + "end": 32881.18, + "probability": 0.6567 + }, + { + "start": 32881.26, + "end": 32885.84, + "probability": 0.9116 + }, + { + "start": 32886.5, + "end": 32888.02, + "probability": 0.937 + }, + { + "start": 32888.76, + "end": 32889.4, + "probability": 0.9505 + }, + { + "start": 32890.2, + "end": 32893.28, + "probability": 0.9884 + }, + { + "start": 32894.14, + "end": 32895.34, + "probability": 0.7405 + }, + { + "start": 32896.3, + "end": 32898.96, + "probability": 0.9706 + }, + { + "start": 32900.16, + "end": 32905.84, + "probability": 0.6051 + }, + { + "start": 32906.82, + "end": 32909.74, + "probability": 0.9674 + }, + { + "start": 32910.52, + "end": 32912.38, + "probability": 0.9929 + }, + { + "start": 32913.22, + "end": 32915.1, + "probability": 0.9361 + }, + { + "start": 32916.76, + "end": 32921.48, + "probability": 0.9549 + }, + { + "start": 32922.48, + "end": 32926.76, + "probability": 0.9961 + }, + { + "start": 32928.34, + "end": 32930.0, + "probability": 0.9946 + }, + { + "start": 32932.38, + "end": 32936.6, + "probability": 0.9894 + }, + { + "start": 32939.08, + "end": 32941.8, + "probability": 0.4228 + }, + { + "start": 32942.5, + "end": 32942.8, + "probability": 0.5829 + }, + { + "start": 32943.12, + "end": 32946.66, + "probability": 0.9836 + }, + { + "start": 32946.86, + "end": 32948.94, + "probability": 0.9871 + }, + { + "start": 32949.46, + "end": 32954.42, + "probability": 0.9599 + }, + { + "start": 32955.24, + "end": 32956.72, + "probability": 0.8831 + }, + { + "start": 32956.98, + "end": 32960.98, + "probability": 0.9849 + }, + { + "start": 32961.22, + "end": 32963.88, + "probability": 0.7792 + }, + { + "start": 32964.78, + "end": 32971.42, + "probability": 0.9937 + }, + { + "start": 32972.8, + "end": 32978.4, + "probability": 0.9152 + }, + { + "start": 32979.62, + "end": 32980.0, + "probability": 0.6673 + }, + { + "start": 32980.56, + "end": 32980.66, + "probability": 0.9969 + }, + { + "start": 32981.76, + "end": 32983.22, + "probability": 0.8934 + }, + { + "start": 32984.06, + "end": 32988.02, + "probability": 0.9116 + }, + { + "start": 32988.12, + "end": 32993.24, + "probability": 0.7806 + }, + { + "start": 32994.74, + "end": 32994.94, + "probability": 0.4271 + }, + { + "start": 32996.0, + "end": 32998.06, + "probability": 0.9492 + }, + { + "start": 32998.14, + "end": 32999.95, + "probability": 0.9851 + }, + { + "start": 33000.72, + "end": 33003.98, + "probability": 0.9717 + }, + { + "start": 33004.82, + "end": 33006.92, + "probability": 0.776 + }, + { + "start": 33009.34, + "end": 33010.05, + "probability": 0.5228 + }, + { + "start": 33010.44, + "end": 33011.46, + "probability": 0.7249 + }, + { + "start": 33014.62, + "end": 33016.02, + "probability": 0.552 + }, + { + "start": 33017.72, + "end": 33018.78, + "probability": 0.5186 + }, + { + "start": 33018.78, + "end": 33018.78, + "probability": 0.0461 + }, + { + "start": 33018.78, + "end": 33018.78, + "probability": 0.5033 + }, + { + "start": 33018.78, + "end": 33019.09, + "probability": 0.6623 + }, + { + "start": 33019.86, + "end": 33020.74, + "probability": 0.932 + }, + { + "start": 33021.38, + "end": 33021.94, + "probability": 0.813 + }, + { + "start": 33024.48, + "end": 33025.36, + "probability": 0.7239 + }, + { + "start": 33025.52, + "end": 33030.74, + "probability": 0.9614 + }, + { + "start": 33030.78, + "end": 33031.74, + "probability": 0.7637 + }, + { + "start": 33031.84, + "end": 33035.05, + "probability": 0.9152 + }, + { + "start": 33035.98, + "end": 33036.5, + "probability": 0.8991 + }, + { + "start": 33036.58, + "end": 33036.9, + "probability": 0.4931 + }, + { + "start": 33037.81, + "end": 33040.08, + "probability": 0.9863 + }, + { + "start": 33040.3, + "end": 33045.92, + "probability": 0.9419 + }, + { + "start": 33046.26, + "end": 33048.94, + "probability": 0.9809 + }, + { + "start": 33049.32, + "end": 33052.36, + "probability": 0.9547 + }, + { + "start": 33052.56, + "end": 33055.3, + "probability": 0.9847 + }, + { + "start": 33056.04, + "end": 33058.56, + "probability": 0.998 + }, + { + "start": 33058.72, + "end": 33063.2, + "probability": 0.9971 + }, + { + "start": 33065.28, + "end": 33067.24, + "probability": 0.9949 + }, + { + "start": 33068.0, + "end": 33073.92, + "probability": 0.931 + }, + { + "start": 33073.94, + "end": 33077.66, + "probability": 0.9905 + }, + { + "start": 33077.78, + "end": 33078.28, + "probability": 0.8676 + }, + { + "start": 33079.36, + "end": 33082.16, + "probability": 0.6785 + }, + { + "start": 33086.74, + "end": 33088.8, + "probability": 0.5204 + }, + { + "start": 33092.74, + "end": 33093.32, + "probability": 0.3748 + }, + { + "start": 33093.7, + "end": 33093.8, + "probability": 0.2814 + }, + { + "start": 33095.42, + "end": 33097.48, + "probability": 0.3355 + }, + { + "start": 33110.48, + "end": 33110.5, + "probability": 0.14 + }, + { + "start": 33110.5, + "end": 33110.5, + "probability": 0.1074 + }, + { + "start": 33110.5, + "end": 33111.52, + "probability": 0.5553 + }, + { + "start": 33113.05, + "end": 33118.48, + "probability": 0.9545 + }, + { + "start": 33121.36, + "end": 33122.96, + "probability": 0.989 + }, + { + "start": 33125.02, + "end": 33130.66, + "probability": 0.6968 + }, + { + "start": 33131.78, + "end": 33136.34, + "probability": 0.9827 + }, + { + "start": 33137.52, + "end": 33139.12, + "probability": 0.8002 + }, + { + "start": 33140.26, + "end": 33145.22, + "probability": 0.9986 + }, + { + "start": 33145.92, + "end": 33150.14, + "probability": 0.928 + }, + { + "start": 33150.64, + "end": 33152.24, + "probability": 0.9991 + }, + { + "start": 33152.8, + "end": 33155.67, + "probability": 0.9917 + }, + { + "start": 33156.46, + "end": 33157.26, + "probability": 0.953 + }, + { + "start": 33157.9, + "end": 33158.4, + "probability": 0.9517 + }, + { + "start": 33158.82, + "end": 33160.04, + "probability": 0.9251 + }, + { + "start": 33160.34, + "end": 33161.66, + "probability": 0.9928 + }, + { + "start": 33162.02, + "end": 33164.22, + "probability": 0.9694 + }, + { + "start": 33164.28, + "end": 33167.08, + "probability": 0.9702 + }, + { + "start": 33167.3, + "end": 33168.84, + "probability": 0.9947 + }, + { + "start": 33169.8, + "end": 33174.32, + "probability": 0.9296 + }, + { + "start": 33175.08, + "end": 33178.82, + "probability": 0.9108 + }, + { + "start": 33179.24, + "end": 33181.22, + "probability": 0.6136 + }, + { + "start": 33181.88, + "end": 33184.86, + "probability": 0.701 + }, + { + "start": 33185.84, + "end": 33189.3, + "probability": 0.8113 + }, + { + "start": 33189.96, + "end": 33190.94, + "probability": 0.989 + }, + { + "start": 33191.62, + "end": 33194.35, + "probability": 0.9885 + }, + { + "start": 33195.64, + "end": 33196.88, + "probability": 0.649 + }, + { + "start": 33196.9, + "end": 33200.98, + "probability": 0.7672 + }, + { + "start": 33201.28, + "end": 33203.86, + "probability": 0.7096 + }, + { + "start": 33203.96, + "end": 33205.1, + "probability": 0.9954 + }, + { + "start": 33205.3, + "end": 33206.04, + "probability": 0.6768 + }, + { + "start": 33206.52, + "end": 33207.92, + "probability": 0.9092 + }, + { + "start": 33208.5, + "end": 33212.68, + "probability": 0.9766 + }, + { + "start": 33213.1, + "end": 33213.72, + "probability": 0.9562 + }, + { + "start": 33214.0, + "end": 33214.72, + "probability": 0.6348 + }, + { + "start": 33215.86, + "end": 33216.42, + "probability": 0.551 + }, + { + "start": 33217.52, + "end": 33220.68, + "probability": 0.9946 + }, + { + "start": 33220.68, + "end": 33224.08, + "probability": 0.9743 + }, + { + "start": 33225.76, + "end": 33227.16, + "probability": 0.9586 + }, + { + "start": 33227.82, + "end": 33229.74, + "probability": 0.9633 + }, + { + "start": 33230.32, + "end": 33231.4, + "probability": 0.768 + }, + { + "start": 33231.44, + "end": 33236.4, + "probability": 0.9868 + }, + { + "start": 33237.04, + "end": 33239.6, + "probability": 0.8173 + }, + { + "start": 33239.82, + "end": 33240.98, + "probability": 0.8406 + }, + { + "start": 33241.0, + "end": 33244.54, + "probability": 0.8466 + }, + { + "start": 33244.72, + "end": 33249.92, + "probability": 0.9968 + }, + { + "start": 33250.72, + "end": 33253.08, + "probability": 0.8546 + }, + { + "start": 33254.18, + "end": 33255.82, + "probability": 0.7601 + }, + { + "start": 33257.28, + "end": 33258.98, + "probability": 0.938 + }, + { + "start": 33259.68, + "end": 33261.02, + "probability": 0.4969 + }, + { + "start": 33264.22, + "end": 33270.3, + "probability": 0.9978 + }, + { + "start": 33270.88, + "end": 33272.46, + "probability": 0.8742 + }, + { + "start": 33272.46, + "end": 33273.62, + "probability": 0.7372 + }, + { + "start": 33274.3, + "end": 33276.82, + "probability": 0.7996 + }, + { + "start": 33279.28, + "end": 33279.7, + "probability": 0.4733 + }, + { + "start": 33280.46, + "end": 33282.16, + "probability": 0.9674 + }, + { + "start": 33282.74, + "end": 33283.88, + "probability": 0.8134 + }, + { + "start": 33284.92, + "end": 33287.43, + "probability": 0.7383 + }, + { + "start": 33288.38, + "end": 33289.9, + "probability": 0.9943 + }, + { + "start": 33290.68, + "end": 33293.0, + "probability": 0.9468 + }, + { + "start": 33293.2, + "end": 33295.95, + "probability": 0.8997 + }, + { + "start": 33296.76, + "end": 33301.1, + "probability": 0.6196 + }, + { + "start": 33301.7, + "end": 33302.1, + "probability": 0.6651 + }, + { + "start": 33302.64, + "end": 33302.82, + "probability": 0.1233 + }, + { + "start": 33302.82, + "end": 33304.42, + "probability": 0.814 + }, + { + "start": 33304.42, + "end": 33306.44, + "probability": 0.5963 + }, + { + "start": 33306.92, + "end": 33307.7, + "probability": 0.9132 + }, + { + "start": 33308.34, + "end": 33310.68, + "probability": 0.9006 + }, + { + "start": 33310.8, + "end": 33312.2, + "probability": 0.6901 + }, + { + "start": 33312.72, + "end": 33312.72, + "probability": 0.3847 + }, + { + "start": 33312.9, + "end": 33315.58, + "probability": 0.6129 + }, + { + "start": 33316.6, + "end": 33316.7, + "probability": 0.1943 + }, + { + "start": 33316.7, + "end": 33318.5, + "probability": 0.7513 + }, + { + "start": 33318.56, + "end": 33319.78, + "probability": 0.8959 + }, + { + "start": 33320.52, + "end": 33323.0, + "probability": 0.9749 + }, + { + "start": 33323.14, + "end": 33323.96, + "probability": 0.6249 + }, + { + "start": 33324.96, + "end": 33325.48, + "probability": 0.6821 + }, + { + "start": 33325.5, + "end": 33325.8, + "probability": 0.3846 + }, + { + "start": 33325.84, + "end": 33327.71, + "probability": 0.6026 + }, + { + "start": 33328.12, + "end": 33330.86, + "probability": 0.9697 + }, + { + "start": 33331.58, + "end": 33331.66, + "probability": 0.0671 + }, + { + "start": 33331.66, + "end": 33331.66, + "probability": 0.6212 + }, + { + "start": 33331.66, + "end": 33336.64, + "probability": 0.8732 + }, + { + "start": 33337.24, + "end": 33342.48, + "probability": 0.6848 + }, + { + "start": 33343.22, + "end": 33344.84, + "probability": 0.0102 + }, + { + "start": 33345.04, + "end": 33348.02, + "probability": 0.0116 + }, + { + "start": 33348.02, + "end": 33348.38, + "probability": 0.2511 + }, + { + "start": 33348.76, + "end": 33350.18, + "probability": 0.0385 + }, + { + "start": 33350.48, + "end": 33350.48, + "probability": 0.2297 + }, + { + "start": 33350.56, + "end": 33350.56, + "probability": 0.223 + }, + { + "start": 33350.56, + "end": 33351.64, + "probability": 0.1638 + }, + { + "start": 33352.76, + "end": 33354.02, + "probability": 0.9185 + }, + { + "start": 33355.12, + "end": 33356.06, + "probability": 0.6502 + }, + { + "start": 33357.98, + "end": 33358.76, + "probability": 0.807 + }, + { + "start": 33360.0, + "end": 33360.96, + "probability": 0.5507 + }, + { + "start": 33361.8, + "end": 33362.18, + "probability": 0.8896 + }, + { + "start": 33363.32, + "end": 33364.14, + "probability": 0.8518 + }, + { + "start": 33365.36, + "end": 33365.74, + "probability": 0.981 + }, + { + "start": 33366.7, + "end": 33367.3, + "probability": 0.9243 + }, + { + "start": 33368.96, + "end": 33369.4, + "probability": 0.9878 + }, + { + "start": 33370.26, + "end": 33371.16, + "probability": 0.6889 + }, + { + "start": 33372.32, + "end": 33372.72, + "probability": 0.9924 + }, + { + "start": 33373.9, + "end": 33374.8, + "probability": 0.9013 + }, + { + "start": 33375.88, + "end": 33376.58, + "probability": 0.9893 + }, + { + "start": 33377.22, + "end": 33378.06, + "probability": 0.9042 + }, + { + "start": 33383.18, + "end": 33383.96, + "probability": 0.4256 + }, + { + "start": 33385.2, + "end": 33386.24, + "probability": 0.194 + }, + { + "start": 33387.6, + "end": 33388.3, + "probability": 0.7773 + }, + { + "start": 33389.58, + "end": 33390.34, + "probability": 0.7429 + }, + { + "start": 33391.8, + "end": 33392.54, + "probability": 0.9811 + }, + { + "start": 33393.32, + "end": 33394.32, + "probability": 0.9376 + }, + { + "start": 33395.82, + "end": 33398.22, + "probability": 0.9282 + }, + { + "start": 33401.64, + "end": 33402.22, + "probability": 0.9884 + }, + { + "start": 33403.58, + "end": 33404.58, + "probability": 0.9272 + }, + { + "start": 33406.34, + "end": 33406.74, + "probability": 0.8862 + }, + { + "start": 33407.76, + "end": 33408.54, + "probability": 0.9026 + }, + { + "start": 33409.4, + "end": 33409.8, + "probability": 0.9175 + }, + { + "start": 33410.62, + "end": 33411.42, + "probability": 0.8941 + }, + { + "start": 33414.6, + "end": 33414.84, + "probability": 0.559 + }, + { + "start": 33415.92, + "end": 33416.8, + "probability": 0.4763 + }, + { + "start": 33418.12, + "end": 33418.82, + "probability": 0.7809 + }, + { + "start": 33419.72, + "end": 33420.58, + "probability": 0.792 + }, + { + "start": 33421.44, + "end": 33423.62, + "probability": 0.8072 + }, + { + "start": 33424.9, + "end": 33425.36, + "probability": 0.9141 + }, + { + "start": 33426.98, + "end": 33427.8, + "probability": 0.9712 + }, + { + "start": 33429.22, + "end": 33430.02, + "probability": 0.9419 + }, + { + "start": 33430.54, + "end": 33431.24, + "probability": 0.9812 + }, + { + "start": 33432.82, + "end": 33433.3, + "probability": 0.9818 + }, + { + "start": 33434.2, + "end": 33435.14, + "probability": 0.9825 + }, + { + "start": 33436.1, + "end": 33436.5, + "probability": 0.8726 + }, + { + "start": 33437.42, + "end": 33438.36, + "probability": 0.9676 + }, + { + "start": 33440.92, + "end": 33441.32, + "probability": 0.9802 + }, + { + "start": 33442.56, + "end": 33443.16, + "probability": 0.8254 + }, + { + "start": 33444.54, + "end": 33445.18, + "probability": 0.8745 + }, + { + "start": 33445.94, + "end": 33447.18, + "probability": 0.4958 + }, + { + "start": 33448.14, + "end": 33448.4, + "probability": 0.4969 + }, + { + "start": 33449.2, + "end": 33449.88, + "probability": 0.8267 + }, + { + "start": 33451.74, + "end": 33452.16, + "probability": 0.9092 + }, + { + "start": 33453.02, + "end": 33453.7, + "probability": 0.9137 + }, + { + "start": 33457.04, + "end": 33457.74, + "probability": 0.7411 + }, + { + "start": 33458.56, + "end": 33459.3, + "probability": 0.9493 + }, + { + "start": 33460.88, + "end": 33461.3, + "probability": 0.9181 + }, + { + "start": 33462.08, + "end": 33462.86, + "probability": 0.9492 + }, + { + "start": 33464.18, + "end": 33465.04, + "probability": 0.9113 + }, + { + "start": 33465.86, + "end": 33466.74, + "probability": 0.9293 + }, + { + "start": 33468.58, + "end": 33469.32, + "probability": 0.995 + }, + { + "start": 33470.02, + "end": 33470.68, + "probability": 0.915 + }, + { + "start": 33471.92, + "end": 33472.14, + "probability": 0.5422 + }, + { + "start": 33473.32, + "end": 33474.1, + "probability": 0.6518 + }, + { + "start": 33476.22, + "end": 33477.12, + "probability": 0.8096 + }, + { + "start": 33477.82, + "end": 33478.62, + "probability": 0.6704 + }, + { + "start": 33479.62, + "end": 33481.08, + "probability": 0.0175 + }, + { + "start": 33482.18, + "end": 33482.89, + "probability": 0.1697 + }, + { + "start": 33483.7, + "end": 33484.4, + "probability": 0.9018 + }, + { + "start": 33485.36, + "end": 33486.28, + "probability": 0.7609 + }, + { + "start": 33487.52, + "end": 33487.96, + "probability": 0.9839 + }, + { + "start": 33489.22, + "end": 33490.14, + "probability": 0.8755 + }, + { + "start": 33490.82, + "end": 33491.22, + "probability": 0.9854 + }, + { + "start": 33491.98, + "end": 33492.86, + "probability": 0.6174 + }, + { + "start": 33493.66, + "end": 33494.04, + "probability": 0.5426 + }, + { + "start": 33494.84, + "end": 33496.14, + "probability": 0.677 + }, + { + "start": 33502.32, + "end": 33506.18, + "probability": 0.7274 + }, + { + "start": 33508.1, + "end": 33508.82, + "probability": 0.7737 + }, + { + "start": 33510.1, + "end": 33510.82, + "probability": 0.879 + }, + { + "start": 33511.84, + "end": 33512.38, + "probability": 0.9386 + }, + { + "start": 33513.42, + "end": 33514.26, + "probability": 0.7678 + }, + { + "start": 33517.32, + "end": 33517.98, + "probability": 0.8524 + }, + { + "start": 33519.02, + "end": 33519.72, + "probability": 0.4946 + }, + { + "start": 33522.82, + "end": 33523.28, + "probability": 0.9754 + }, + { + "start": 33524.72, + "end": 33525.9, + "probability": 0.91 + }, + { + "start": 33526.64, + "end": 33527.04, + "probability": 0.8682 + }, + { + "start": 33527.92, + "end": 33529.1, + "probability": 0.877 + }, + { + "start": 33531.56, + "end": 33531.86, + "probability": 0.6573 + }, + { + "start": 33538.95, + "end": 33539.74, + "probability": 0.7639 + }, + { + "start": 33541.34, + "end": 33541.74, + "probability": 0.5335 + }, + { + "start": 33542.76, + "end": 33544.0, + "probability": 0.7905 + }, + { + "start": 33546.66, + "end": 33547.04, + "probability": 0.9411 + }, + { + "start": 33548.66, + "end": 33549.46, + "probability": 0.5262 + }, + { + "start": 33550.5, + "end": 33550.84, + "probability": 0.8034 + }, + { + "start": 33551.92, + "end": 33552.96, + "probability": 0.8292 + }, + { + "start": 33553.72, + "end": 33555.6, + "probability": 0.7546 + }, + { + "start": 33557.22, + "end": 33557.64, + "probability": 0.9886 + }, + { + "start": 33558.52, + "end": 33559.34, + "probability": 0.9761 + }, + { + "start": 33560.9, + "end": 33561.62, + "probability": 0.9725 + }, + { + "start": 33562.32, + "end": 33563.0, + "probability": 0.7424 + }, + { + "start": 33567.2, + "end": 33567.7, + "probability": 0.807 + }, + { + "start": 33568.96, + "end": 33570.48, + "probability": 0.5909 + }, + { + "start": 33572.08, + "end": 33574.0, + "probability": 0.8157 + }, + { + "start": 33575.0, + "end": 33575.4, + "probability": 0.9541 + }, + { + "start": 33576.66, + "end": 33577.42, + "probability": 0.9574 + }, + { + "start": 33579.06, + "end": 33579.4, + "probability": 0.957 + }, + { + "start": 33580.5, + "end": 33580.9, + "probability": 0.9762 + }, + { + "start": 33583.02, + "end": 33583.76, + "probability": 0.9827 + }, + { + "start": 33584.38, + "end": 33585.6, + "probability": 0.9674 + }, + { + "start": 33587.26, + "end": 33589.18, + "probability": 0.9669 + }, + { + "start": 33590.96, + "end": 33591.7, + "probability": 0.9977 + }, + { + "start": 33595.96, + "end": 33596.24, + "probability": 0.8461 + }, + { + "start": 33596.98, + "end": 33599.0, + "probability": 0.6272 + }, + { + "start": 33599.8, + "end": 33600.4, + "probability": 0.733 + }, + { + "start": 33601.83, + "end": 33603.74, + "probability": 0.9266 + }, + { + "start": 33606.68, + "end": 33608.68, + "probability": 0.9507 + }, + { + "start": 33609.48, + "end": 33609.82, + "probability": 0.8804 + }, + { + "start": 33611.22, + "end": 33612.32, + "probability": 0.7432 + }, + { + "start": 33613.72, + "end": 33614.2, + "probability": 0.9906 + }, + { + "start": 33614.74, + "end": 33615.54, + "probability": 0.9274 + }, + { + "start": 33617.26, + "end": 33617.7, + "probability": 0.9741 + }, + { + "start": 33618.82, + "end": 33619.92, + "probability": 0.9534 + }, + { + "start": 33621.1, + "end": 33621.36, + "probability": 0.906 + }, + { + "start": 33622.18, + "end": 33622.56, + "probability": 0.8679 + }, + { + "start": 33624.46, + "end": 33624.88, + "probability": 0.6313 + }, + { + "start": 33625.72, + "end": 33626.5, + "probability": 0.71 + }, + { + "start": 33628.46, + "end": 33628.84, + "probability": 0.9411 + }, + { + "start": 33629.64, + "end": 33630.68, + "probability": 0.971 + }, + { + "start": 33631.54, + "end": 33631.96, + "probability": 0.9807 + }, + { + "start": 33632.74, + "end": 33633.56, + "probability": 0.98 + }, + { + "start": 33634.46, + "end": 33636.26, + "probability": 0.966 + }, + { + "start": 33638.22, + "end": 33639.0, + "probability": 0.9761 + }, + { + "start": 33640.14, + "end": 33641.28, + "probability": 0.9749 + }, + { + "start": 33642.34, + "end": 33642.84, + "probability": 0.992 + }, + { + "start": 33644.06, + "end": 33645.28, + "probability": 0.9218 + }, + { + "start": 33647.9, + "end": 33648.38, + "probability": 0.9951 + }, + { + "start": 33649.58, + "end": 33650.4, + "probability": 0.8749 + }, + { + "start": 33656.48, + "end": 33656.9, + "probability": 0.71 + }, + { + "start": 33658.42, + "end": 33659.78, + "probability": 0.8707 + }, + { + "start": 33661.52, + "end": 33661.92, + "probability": 0.91 + }, + { + "start": 33663.18, + "end": 33664.28, + "probability": 0.7353 + }, + { + "start": 33666.54, + "end": 33667.42, + "probability": 0.9245 + }, + { + "start": 33668.5, + "end": 33669.64, + "probability": 0.8677 + }, + { + "start": 33670.46, + "end": 33670.9, + "probability": 0.9741 + }, + { + "start": 33671.96, + "end": 33673.04, + "probability": 0.9454 + }, + { + "start": 33673.62, + "end": 33674.02, + "probability": 0.9749 + }, + { + "start": 33674.62, + "end": 33675.34, + "probability": 0.9718 + }, + { + "start": 33676.78, + "end": 33677.22, + "probability": 0.9648 + }, + { + "start": 33678.22, + "end": 33678.92, + "probability": 0.9068 + }, + { + "start": 33680.74, + "end": 33680.94, + "probability": 0.9893 + }, + { + "start": 33682.24, + "end": 33683.32, + "probability": 0.3945 + }, + { + "start": 33684.66, + "end": 33684.98, + "probability": 0.9767 + }, + { + "start": 33685.94, + "end": 33686.9, + "probability": 0.9174 + }, + { + "start": 33688.44, + "end": 33688.8, + "probability": 0.9695 + }, + { + "start": 33689.92, + "end": 33690.62, + "probability": 0.9513 + }, + { + "start": 33691.8, + "end": 33692.14, + "probability": 0.9347 + }, + { + "start": 33693.44, + "end": 33694.54, + "probability": 0.953 + }, + { + "start": 33700.84, + "end": 33701.26, + "probability": 0.7045 + }, + { + "start": 33703.48, + "end": 33704.34, + "probability": 0.7867 + }, + { + "start": 33705.28, + "end": 33705.64, + "probability": 0.9945 + }, + { + "start": 33706.74, + "end": 33707.7, + "probability": 0.8504 + }, + { + "start": 33708.78, + "end": 33709.06, + "probability": 0.0231 + }, + { + "start": 33711.1, + "end": 33711.68, + "probability": 0.46 + }, + { + "start": 33713.82, + "end": 33715.64, + "probability": 0.5762 + }, + { + "start": 33720.32, + "end": 33720.98, + "probability": 0.3275 + }, + { + "start": 33722.8, + "end": 33723.18, + "probability": 0.6282 + }, + { + "start": 33726.0, + "end": 33726.7, + "probability": 0.6803 + }, + { + "start": 33729.1, + "end": 33729.58, + "probability": 0.9743 + }, + { + "start": 33731.22, + "end": 33732.2, + "probability": 0.4479 + }, + { + "start": 33734.2, + "end": 33734.92, + "probability": 0.8084 + }, + { + "start": 33735.74, + "end": 33736.52, + "probability": 0.7133 + }, + { + "start": 33737.96, + "end": 33738.32, + "probability": 0.9316 + }, + { + "start": 33739.64, + "end": 33740.38, + "probability": 0.7853 + }, + { + "start": 33742.38, + "end": 33743.08, + "probability": 0.9338 + }, + { + "start": 33743.88, + "end": 33744.58, + "probability": 0.9136 + }, + { + "start": 33745.4, + "end": 33748.9, + "probability": 0.9136 + }, + { + "start": 33750.2, + "end": 33750.82, + "probability": 0.969 + }, + { + "start": 33751.9, + "end": 33752.42, + "probability": 0.3087 + }, + { + "start": 33753.16, + "end": 33753.94, + "probability": 0.8018 + }, + { + "start": 33754.6, + "end": 33755.1, + "probability": 0.7469 + }, + { + "start": 33757.54, + "end": 33757.9, + "probability": 0.7615 + }, + { + "start": 33758.76, + "end": 33759.84, + "probability": 0.9433 + }, + { + "start": 33760.36, + "end": 33761.08, + "probability": 0.9058 + }, + { + "start": 33761.6, + "end": 33762.0, + "probability": 0.8381 + }, + { + "start": 33763.54, + "end": 33763.98, + "probability": 0.9634 + }, + { + "start": 33765.44, + "end": 33766.06, + "probability": 0.9736 + }, + { + "start": 33767.2, + "end": 33767.66, + "probability": 0.9725 + }, + { + "start": 33768.54, + "end": 33769.34, + "probability": 0.8918 + }, + { + "start": 33771.66, + "end": 33772.18, + "probability": 0.9896 + }, + { + "start": 33772.98, + "end": 33773.92, + "probability": 0.8896 + }, + { + "start": 33775.78, + "end": 33776.24, + "probability": 0.9784 + }, + { + "start": 33777.1, + "end": 33777.88, + "probability": 0.973 + }, + { + "start": 33779.24, + "end": 33779.5, + "probability": 0.6187 + }, + { + "start": 33780.76, + "end": 33781.18, + "probability": 0.6587 + }, + { + "start": 33782.88, + "end": 33783.24, + "probability": 0.952 + }, + { + "start": 33784.02, + "end": 33784.8, + "probability": 0.7649 + }, + { + "start": 33788.68, + "end": 33789.1, + "probability": 0.9827 + }, + { + "start": 33790.32, + "end": 33791.08, + "probability": 0.9496 + }, + { + "start": 33792.08, + "end": 33792.94, + "probability": 0.9871 + }, + { + "start": 33794.16, + "end": 33794.8, + "probability": 0.956 + }, + { + "start": 33796.18, + "end": 33796.64, + "probability": 0.9741 + }, + { + "start": 33797.4, + "end": 33798.36, + "probability": 0.9193 + }, + { + "start": 33799.34, + "end": 33800.06, + "probability": 0.8666 + }, + { + "start": 33800.76, + "end": 33802.0, + "probability": 0.9788 + }, + { + "start": 33803.36, + "end": 33803.76, + "probability": 0.9438 + }, + { + "start": 33804.7, + "end": 33805.8, + "probability": 0.9789 + }, + { + "start": 33807.16, + "end": 33807.54, + "probability": 0.9958 + }, + { + "start": 33808.48, + "end": 33809.26, + "probability": 0.8822 + }, + { + "start": 33810.42, + "end": 33810.7, + "probability": 0.7572 + }, + { + "start": 33811.66, + "end": 33812.7, + "probability": 0.7503 + }, + { + "start": 33813.92, + "end": 33814.76, + "probability": 0.8992 + }, + { + "start": 33815.52, + "end": 33816.86, + "probability": 0.8041 + }, + { + "start": 33817.76, + "end": 33818.34, + "probability": 0.9896 + }, + { + "start": 33819.88, + "end": 33820.58, + "probability": 0.8766 + }, + { + "start": 33821.54, + "end": 33823.36, + "probability": 0.9863 + }, + { + "start": 33824.16, + "end": 33824.68, + "probability": 0.9777 + }, + { + "start": 33825.48, + "end": 33826.36, + "probability": 0.9099 + }, + { + "start": 33831.46, + "end": 33831.82, + "probability": 0.5637 + }, + { + "start": 33832.7, + "end": 33833.48, + "probability": 0.7833 + }, + { + "start": 33834.54, + "end": 33834.76, + "probability": 0.4814 + }, + { + "start": 33835.48, + "end": 33836.36, + "probability": 0.641 + }, + { + "start": 33837.7, + "end": 33838.0, + "probability": 0.9601 + }, + { + "start": 33838.88, + "end": 33839.52, + "probability": 0.5916 + }, + { + "start": 33842.16, + "end": 33842.68, + "probability": 0.9928 + }, + { + "start": 33843.5, + "end": 33844.52, + "probability": 0.7113 + }, + { + "start": 33845.66, + "end": 33846.38, + "probability": 0.8459 + }, + { + "start": 33847.18, + "end": 33848.38, + "probability": 0.9465 + }, + { + "start": 33850.72, + "end": 33851.14, + "probability": 0.9899 + }, + { + "start": 33853.02, + "end": 33854.12, + "probability": 0.8161 + }, + { + "start": 33855.62, + "end": 33856.1, + "probability": 0.9956 + }, + { + "start": 33856.92, + "end": 33857.7, + "probability": 0.7474 + }, + { + "start": 33858.92, + "end": 33859.38, + "probability": 0.9899 + }, + { + "start": 33860.16, + "end": 33861.28, + "probability": 0.6697 + }, + { + "start": 33863.64, + "end": 33865.92, + "probability": 0.6851 + }, + { + "start": 33869.5, + "end": 33872.24, + "probability": 0.9769 + }, + { + "start": 33872.24, + "end": 33872.52, + "probability": 0.8104 + }, + { + "start": 33873.64, + "end": 33874.54, + "probability": 0.4086 + }, + { + "start": 33875.62, + "end": 33876.06, + "probability": 0.7101 + }, + { + "start": 33878.08, + "end": 33879.14, + "probability": 0.8542 + }, + { + "start": 33880.52, + "end": 33882.58, + "probability": 0.9222 + }, + { + "start": 33884.4, + "end": 33885.2, + "probability": 0.9963 + }, + { + "start": 33886.04, + "end": 33886.72, + "probability": 0.574 + }, + { + "start": 33891.92, + "end": 33892.64, + "probability": 0.8213 + }, + { + "start": 33893.4, + "end": 33894.38, + "probability": 0.8326 + }, + { + "start": 33895.28, + "end": 33896.28, + "probability": 0.7119 + }, + { + "start": 33897.6, + "end": 33898.58, + "probability": 0.8796 + }, + { + "start": 33899.52, + "end": 33900.24, + "probability": 0.8629 + }, + { + "start": 33900.96, + "end": 33901.84, + "probability": 0.8858 + }, + { + "start": 33902.48, + "end": 33903.38, + "probability": 0.9803 + }, + { + "start": 33904.04, + "end": 33904.82, + "probability": 0.9805 + }, + { + "start": 33905.74, + "end": 33906.52, + "probability": 0.9618 + }, + { + "start": 33907.04, + "end": 33907.68, + "probability": 0.9644 + }, + { + "start": 33908.62, + "end": 33909.36, + "probability": 0.9684 + }, + { + "start": 33909.94, + "end": 33910.7, + "probability": 0.9742 + }, + { + "start": 33913.2, + "end": 33913.98, + "probability": 0.975 + }, + { + "start": 33914.9, + "end": 33915.7, + "probability": 0.7067 + }, + { + "start": 33917.22, + "end": 33918.18, + "probability": 0.8536 + }, + { + "start": 33919.26, + "end": 33920.28, + "probability": 0.7092 + }, + { + "start": 33921.9, + "end": 33923.04, + "probability": 0.8468 + }, + { + "start": 33923.76, + "end": 33924.64, + "probability": 0.8761 + }, + { + "start": 33926.38, + "end": 33926.86, + "probability": 0.7402 + }, + { + "start": 33928.04, + "end": 33928.9, + "probability": 0.9299 + }, + { + "start": 33929.96, + "end": 33930.6, + "probability": 0.9596 + }, + { + "start": 33931.64, + "end": 33932.8, + "probability": 0.9233 + }, + { + "start": 33934.0, + "end": 33934.48, + "probability": 0.9553 + }, + { + "start": 33936.16, + "end": 33937.1, + "probability": 0.9294 + }, + { + "start": 33937.84, + "end": 33939.54, + "probability": 0.9729 + }, + { + "start": 33940.38, + "end": 33941.46, + "probability": 0.932 + }, + { + "start": 33942.26, + "end": 33943.98, + "probability": 0.9858 + }, + { + "start": 33945.76, + "end": 33947.36, + "probability": 0.8066 + }, + { + "start": 33947.98, + "end": 33948.94, + "probability": 0.4669 + }, + { + "start": 33950.44, + "end": 33952.4, + "probability": 0.9595 + }, + { + "start": 33953.94, + "end": 33954.72, + "probability": 0.7848 + }, + { + "start": 33955.28, + "end": 33956.46, + "probability": 0.6022 + }, + { + "start": 33957.5, + "end": 33958.9, + "probability": 0.7312 + }, + { + "start": 33960.24, + "end": 33961.12, + "probability": 0.7395 + }, + { + "start": 33962.4, + "end": 33963.2, + "probability": 0.9845 + }, + { + "start": 33966.46, + "end": 33967.18, + "probability": 0.6319 + }, + { + "start": 33968.46, + "end": 33969.24, + "probability": 0.7881 + }, + { + "start": 33969.8, + "end": 33970.78, + "probability": 0.7828 + }, + { + "start": 33972.0, + "end": 33972.86, + "probability": 0.9523 + }, + { + "start": 33973.74, + "end": 33974.44, + "probability": 0.8301 + }, + { + "start": 33975.28, + "end": 33975.78, + "probability": 0.9694 + }, + { + "start": 33978.76, + "end": 33979.58, + "probability": 0.3851 + }, + { + "start": 33981.74, + "end": 33982.3, + "probability": 0.9347 + }, + { + "start": 33984.26, + "end": 33985.3, + "probability": 0.6833 + }, + { + "start": 33986.48, + "end": 33986.92, + "probability": 0.9187 + }, + { + "start": 33989.04, + "end": 33989.92, + "probability": 0.6957 + }, + { + "start": 33991.64, + "end": 33992.86, + "probability": 0.9028 + }, + { + "start": 33993.7, + "end": 33996.0, + "probability": 0.6479 + }, + { + "start": 33997.22, + "end": 33999.48, + "probability": 0.9417 + }, + { + "start": 34000.02, + "end": 34000.74, + "probability": 0.8134 + }, + { + "start": 34006.28, + "end": 34008.88, + "probability": 0.5277 + }, + { + "start": 34010.06, + "end": 34011.02, + "probability": 0.7301 + }, + { + "start": 34011.72, + "end": 34012.5, + "probability": 0.9822 + }, + { + "start": 34013.02, + "end": 34013.83, + "probability": 0.8314 + }, + { + "start": 34014.7, + "end": 34016.6, + "probability": 0.9479 + }, + { + "start": 34017.8, + "end": 34019.76, + "probability": 0.5584 + }, + { + "start": 34021.54, + "end": 34030.46, + "probability": 0.8083 + }, + { + "start": 34030.84, + "end": 34031.68, + "probability": 0.5031 + }, + { + "start": 34033.48, + "end": 34033.62, + "probability": 0.7053 + }, + { + "start": 34034.42, + "end": 34035.22, + "probability": 0.5391 + }, + { + "start": 34035.52, + "end": 34036.0, + "probability": 0.6365 + }, + { + "start": 34036.52, + "end": 34037.4, + "probability": 0.4539 + }, + { + "start": 34065.86, + "end": 34066.7, + "probability": 0.0352 + }, + { + "start": 34071.54, + "end": 34074.1, + "probability": 0.0333 + }, + { + "start": 34083.72, + "end": 34084.94, + "probability": 0.098 + }, + { + "start": 34084.94, + "end": 34088.3, + "probability": 0.0211 + }, + { + "start": 34088.3, + "end": 34088.4, + "probability": 0.0479 + }, + { + "start": 34088.4, + "end": 34088.46, + "probability": 0.0569 + }, + { + "start": 34089.1, + "end": 34095.24, + "probability": 0.0515 + }, + { + "start": 34096.92, + "end": 34098.84, + "probability": 0.0084 + }, + { + "start": 34101.78, + "end": 34102.28, + "probability": 0.0052 + }, + { + "start": 34102.66, + "end": 34104.0, + "probability": 0.033 + }, + { + "start": 34104.0, + "end": 34108.42, + "probability": 0.0394 + }, + { + "start": 34108.98, + "end": 34110.04, + "probability": 0.0377 + }, + { + "start": 34110.06, + "end": 34112.72, + "probability": 0.2518 + }, + { + "start": 34112.76, + "end": 34114.62, + "probability": 0.135 + }, + { + "start": 34114.62, + "end": 34116.13, + "probability": 0.3789 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34119.86, + "end": 34121.22, + "probability": 0.0662 + }, + { + "start": 34127.56, + "end": 34128.64, + "probability": 0.2184 + }, + { + "start": 34128.64, + "end": 34132.06, + "probability": 0.1615 + }, + { + "start": 34132.76, + "end": 34132.88, + "probability": 0.0725 + }, + { + "start": 34132.88, + "end": 34133.2, + "probability": 0.1885 + }, + { + "start": 34133.5, + "end": 34135.74, + "probability": 0.166 + }, + { + "start": 34137.18, + "end": 34139.78, + "probability": 0.109 + }, + { + "start": 34140.5, + "end": 34143.62, + "probability": 0.0448 + }, + { + "start": 34143.62, + "end": 34145.34, + "probability": 0.0317 + }, + { + "start": 34146.17, + "end": 34146.74, + "probability": 0.0674 + }, + { + "start": 34146.74, + "end": 34147.16, + "probability": 0.0319 + }, + { + "start": 34148.6, + "end": 34150.46, + "probability": 0.0355 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34241.0, + "end": 34241.0, + "probability": 0.0 + }, + { + "start": 34248.54, + "end": 34249.16, + "probability": 0.0889 + }, + { + "start": 34257.16, + "end": 34261.04, + "probability": 0.0036 + }, + { + "start": 34261.52, + "end": 34264.08, + "probability": 0.1023 + }, + { + "start": 34264.24, + "end": 34264.92, + "probability": 0.081 + }, + { + "start": 34264.96, + "end": 34266.74, + "probability": 0.0663 + }, + { + "start": 34266.74, + "end": 34267.28, + "probability": 0.1386 + }, + { + "start": 34267.28, + "end": 34270.48, + "probability": 0.0874 + }, + { + "start": 34273.5, + "end": 34275.66, + "probability": 0.1573 + }, + { + "start": 34277.44, + "end": 34284.0, + "probability": 0.0825 + }, + { + "start": 34285.02, + "end": 34285.36, + "probability": 0.1434 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34379.0, + "end": 34379.0, + "probability": 0.0 + }, + { + "start": 34390.44, + "end": 34391.96, + "probability": 0.0277 + }, + { + "start": 34392.82, + "end": 34395.46, + "probability": 0.1904 + }, + { + "start": 34395.46, + "end": 34397.14, + "probability": 0.03 + }, + { + "start": 34406.86, + "end": 34407.66, + "probability": 0.1542 + }, + { + "start": 34410.9, + "end": 34411.78, + "probability": 0.0058 + }, + { + "start": 34417.4, + "end": 34417.78, + "probability": 0.0228 + }, + { + "start": 34417.78, + "end": 34418.02, + "probability": 0.2198 + }, + { + "start": 34418.02, + "end": 34419.38, + "probability": 0.128 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.0, + "end": 34499.0, + "probability": 0.0 + }, + { + "start": 34499.22, + "end": 34499.8, + "probability": 0.02 + }, + { + "start": 34502.42, + "end": 34504.22, + "probability": 0.0426 + }, + { + "start": 34505.92, + "end": 34506.7, + "probability": 0.1295 + }, + { + "start": 34506.7, + "end": 34508.2, + "probability": 0.1022 + }, + { + "start": 34508.2, + "end": 34511.12, + "probability": 0.2908 + }, + { + "start": 34516.28, + "end": 34516.28, + "probability": 0.0517 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34628.0, + "end": 34628.0, + "probability": 0.0 + }, + { + "start": 34629.34, + "end": 34629.48, + "probability": 0.0726 + }, + { + "start": 34629.48, + "end": 34629.55, + "probability": 0.1886 + }, + { + "start": 34630.98, + "end": 34631.38, + "probability": 0.2791 + }, + { + "start": 34631.52, + "end": 34634.23, + "probability": 0.1488 + }, + { + "start": 34635.32, + "end": 34636.96, + "probability": 0.1109 + }, + { + "start": 34643.42, + "end": 34645.06, + "probability": 0.0345 + }, + { + "start": 34647.38, + "end": 34647.8, + "probability": 0.1592 + }, + { + "start": 34648.38, + "end": 34649.28, + "probability": 0.0664 + }, + { + "start": 34649.28, + "end": 34649.81, + "probability": 0.0922 + }, + { + "start": 34654.42, + "end": 34655.48, + "probability": 0.1126 + }, + { + "start": 34665.71, + "end": 34666.79, + "probability": 0.0088 + }, + { + "start": 34667.78, + "end": 34671.18, + "probability": 0.102 + }, + { + "start": 34672.25, + "end": 34674.8, + "probability": 0.1151 + }, + { + "start": 34675.83, + "end": 34675.94, + "probability": 0.025 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.0, + "end": 34754.0, + "probability": 0.0 + }, + { + "start": 34754.1, + "end": 34756.08, + "probability": 0.0132 + }, + { + "start": 34756.08, + "end": 34759.64, + "probability": 0.0442 + }, + { + "start": 34759.66, + "end": 34760.18, + "probability": 0.0529 + }, + { + "start": 34760.18, + "end": 34762.14, + "probability": 0.1863 + }, + { + "start": 34762.9, + "end": 34764.81, + "probability": 0.2056 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34878.0, + "end": 34878.0, + "probability": 0.0 + }, + { + "start": 34885.72, + "end": 34886.39, + "probability": 0.0355 + }, + { + "start": 34886.92, + "end": 34889.06, + "probability": 0.0933 + }, + { + "start": 34890.44, + "end": 34890.44, + "probability": 0.0806 + }, + { + "start": 34890.44, + "end": 34890.46, + "probability": 0.0142 + }, + { + "start": 35037.43, + "end": 35040.96, + "probability": 0.1343 + }, + { + "start": 35044.88, + "end": 35047.66, + "probability": 0.0301 + }, + { + "start": 35047.66, + "end": 35047.88, + "probability": 0.0624 + }, + { + "start": 35049.32, + "end": 35050.38, + "probability": 0.0831 + }, + { + "start": 35050.38, + "end": 35052.58, + "probability": 0.4305 + }, + { + "start": 35052.74, + "end": 35052.86, + "probability": 0.0318 + }, + { + "start": 35052.86, + "end": 35057.21, + "probability": 0.0258 + }, + { + "start": 35060.28, + "end": 35062.65, + "probability": 0.1947 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.0, + "end": 35178.0, + "probability": 0.0 + }, + { + "start": 35178.14, + "end": 35178.42, + "probability": 0.1168 + }, + { + "start": 35178.42, + "end": 35178.42, + "probability": 0.0631 + }, + { + "start": 35178.42, + "end": 35181.72, + "probability": 0.9778 + }, + { + "start": 35182.28, + "end": 35183.0, + "probability": 0.8981 + }, + { + "start": 35184.24, + "end": 35184.9, + "probability": 0.9814 + }, + { + "start": 35185.18, + "end": 35186.38, + "probability": 0.9722 + }, + { + "start": 35186.42, + "end": 35188.36, + "probability": 0.9548 + }, + { + "start": 35188.84, + "end": 35190.08, + "probability": 0.9927 + }, + { + "start": 35190.18, + "end": 35191.76, + "probability": 0.9904 + }, + { + "start": 35192.12, + "end": 35194.3, + "probability": 0.9429 + }, + { + "start": 35194.72, + "end": 35197.18, + "probability": 0.9974 + }, + { + "start": 35197.18, + "end": 35201.04, + "probability": 0.998 + }, + { + "start": 35202.24, + "end": 35206.44, + "probability": 0.9954 + }, + { + "start": 35206.44, + "end": 35210.3, + "probability": 0.9992 + }, + { + "start": 35210.86, + "end": 35213.38, + "probability": 0.9979 + }, + { + "start": 35213.76, + "end": 35217.36, + "probability": 0.9863 + }, + { + "start": 35218.08, + "end": 35220.84, + "probability": 0.7667 + }, + { + "start": 35223.31, + "end": 35226.56, + "probability": 0.8184 + }, + { + "start": 35232.34, + "end": 35233.12, + "probability": 0.8145 + }, + { + "start": 35249.88, + "end": 35252.42, + "probability": 0.9668 + }, + { + "start": 35253.18, + "end": 35257.64, + "probability": 0.9913 + }, + { + "start": 35259.54, + "end": 35261.96, + "probability": 0.8631 + }, + { + "start": 35263.28, + "end": 35265.02, + "probability": 0.9692 + }, + { + "start": 35265.66, + "end": 35268.5, + "probability": 0.8437 + }, + { + "start": 35268.94, + "end": 35273.64, + "probability": 0.9433 + }, + { + "start": 35273.86, + "end": 35275.0, + "probability": 0.742 + }, + { + "start": 35275.32, + "end": 35275.8, + "probability": 0.9961 + }, + { + "start": 35276.56, + "end": 35279.48, + "probability": 0.9756 + }, + { + "start": 35279.9, + "end": 35282.42, + "probability": 0.9897 + }, + { + "start": 35282.68, + "end": 35284.28, + "probability": 0.8828 + }, + { + "start": 35284.34, + "end": 35284.86, + "probability": 0.834 + }, + { + "start": 35285.08, + "end": 35285.96, + "probability": 0.8821 + }, + { + "start": 35285.98, + "end": 35286.8, + "probability": 0.8167 + }, + { + "start": 35287.16, + "end": 35288.68, + "probability": 0.9868 + }, + { + "start": 35289.66, + "end": 35291.98, + "probability": 0.912 + }, + { + "start": 35292.12, + "end": 35295.3, + "probability": 0.7668 + }, + { + "start": 35295.56, + "end": 35296.3, + "probability": 0.9834 + }, + { + "start": 35297.24, + "end": 35299.22, + "probability": 0.9776 + }, + { + "start": 35299.94, + "end": 35303.06, + "probability": 0.9395 + }, + { + "start": 35303.06, + "end": 35307.78, + "probability": 0.948 + }, + { + "start": 35308.0, + "end": 35308.7, + "probability": 0.8202 + }, + { + "start": 35309.2, + "end": 35309.56, + "probability": 0.4104 + }, + { + "start": 35309.62, + "end": 35310.88, + "probability": 0.9328 + }, + { + "start": 35311.0, + "end": 35312.34, + "probability": 0.9722 + }, + { + "start": 35312.72, + "end": 35313.46, + "probability": 0.6646 + }, + { + "start": 35313.5, + "end": 35314.4, + "probability": 0.5712 + }, + { + "start": 35314.82, + "end": 35315.68, + "probability": 0.7717 + }, + { + "start": 35315.78, + "end": 35315.98, + "probability": 0.8312 + }, + { + "start": 35315.98, + "end": 35317.08, + "probability": 0.8317 + }, + { + "start": 35317.62, + "end": 35318.22, + "probability": 0.4891 + }, + { + "start": 35318.66, + "end": 35319.78, + "probability": 0.3831 + }, + { + "start": 35320.5, + "end": 35321.06, + "probability": 0.9031 + }, + { + "start": 35321.6, + "end": 35324.82, + "probability": 0.7734 + }, + { + "start": 35325.46, + "end": 35326.41, + "probability": 0.9697 + }, + { + "start": 35326.64, + "end": 35327.03, + "probability": 0.9093 + }, + { + "start": 35327.38, + "end": 35328.68, + "probability": 0.9199 + }, + { + "start": 35329.08, + "end": 35331.15, + "probability": 0.6516 + }, + { + "start": 35331.86, + "end": 35332.88, + "probability": 0.6403 + }, + { + "start": 35333.24, + "end": 35333.56, + "probability": 0.8869 + }, + { + "start": 35333.88, + "end": 35336.22, + "probability": 0.6113 + }, + { + "start": 35337.28, + "end": 35339.76, + "probability": 0.8813 + }, + { + "start": 35340.36, + "end": 35341.18, + "probability": 0.9763 + }, + { + "start": 35341.28, + "end": 35342.02, + "probability": 0.9771 + }, + { + "start": 35342.64, + "end": 35345.18, + "probability": 0.967 + }, + { + "start": 35345.88, + "end": 35347.36, + "probability": 0.5429 + }, + { + "start": 35347.96, + "end": 35348.18, + "probability": 0.3298 + }, + { + "start": 35348.28, + "end": 35349.58, + "probability": 0.9545 + }, + { + "start": 35349.6, + "end": 35349.97, + "probability": 0.701 + }, + { + "start": 35350.8, + "end": 35351.94, + "probability": 0.905 + }, + { + "start": 35352.46, + "end": 35353.2, + "probability": 0.4731 + }, + { + "start": 35353.78, + "end": 35356.14, + "probability": 0.895 + }, + { + "start": 35356.6, + "end": 35359.9, + "probability": 0.6973 + }, + { + "start": 35359.98, + "end": 35361.18, + "probability": 0.6047 + }, + { + "start": 35361.98, + "end": 35363.12, + "probability": 0.9131 + }, + { + "start": 35363.58, + "end": 35365.34, + "probability": 0.991 + }, + { + "start": 35365.34, + "end": 35367.86, + "probability": 0.8844 + }, + { + "start": 35367.96, + "end": 35368.7, + "probability": 0.8479 + }, + { + "start": 35369.04, + "end": 35370.1, + "probability": 0.7476 + }, + { + "start": 35370.82, + "end": 35373.93, + "probability": 0.8621 + }, + { + "start": 35375.1, + "end": 35377.0, + "probability": 0.958 + }, + { + "start": 35377.36, + "end": 35378.14, + "probability": 0.0113 + }, + { + "start": 35378.48, + "end": 35379.48, + "probability": 0.9609 + }, + { + "start": 35380.42, + "end": 35383.06, + "probability": 0.8727 + }, + { + "start": 35383.36, + "end": 35385.69, + "probability": 0.979 + }, + { + "start": 35386.26, + "end": 35388.44, + "probability": 0.9468 + }, + { + "start": 35389.1, + "end": 35389.52, + "probability": 0.5531 + }, + { + "start": 35390.06, + "end": 35390.52, + "probability": 0.3661 + }, + { + "start": 35390.94, + "end": 35393.66, + "probability": 0.7759 + }, + { + "start": 35394.64, + "end": 35396.46, + "probability": 0.7499 + }, + { + "start": 35396.88, + "end": 35399.68, + "probability": 0.9312 + }, + { + "start": 35399.84, + "end": 35402.86, + "probability": 0.8581 + }, + { + "start": 35403.38, + "end": 35407.7, + "probability": 0.9233 + }, + { + "start": 35408.4, + "end": 35408.7, + "probability": 0.709 + }, + { + "start": 35408.78, + "end": 35409.52, + "probability": 0.7324 + }, + { + "start": 35409.68, + "end": 35411.38, + "probability": 0.8181 + }, + { + "start": 35411.96, + "end": 35413.02, + "probability": 0.5334 + }, + { + "start": 35413.42, + "end": 35414.6, + "probability": 0.9716 + }, + { + "start": 35415.04, + "end": 35416.13, + "probability": 0.9824 + }, + { + "start": 35418.28, + "end": 35419.12, + "probability": 0.5273 + }, + { + "start": 35419.12, + "end": 35419.36, + "probability": 0.3785 + }, + { + "start": 35419.46, + "end": 35420.16, + "probability": 0.6528 + }, + { + "start": 35420.48, + "end": 35421.8, + "probability": 0.9779 + }, + { + "start": 35421.94, + "end": 35423.16, + "probability": 0.9005 + }, + { + "start": 35423.54, + "end": 35424.23, + "probability": 0.9966 + }, + { + "start": 35425.18, + "end": 35427.0, + "probability": 0.9961 + }, + { + "start": 35427.42, + "end": 35428.16, + "probability": 0.9437 + }, + { + "start": 35428.2, + "end": 35428.82, + "probability": 0.6307 + }, + { + "start": 35429.3, + "end": 35430.92, + "probability": 0.7629 + }, + { + "start": 35431.36, + "end": 35432.51, + "probability": 0.9609 + }, + { + "start": 35433.44, + "end": 35435.98, + "probability": 0.6273 + }, + { + "start": 35435.98, + "end": 35438.42, + "probability": 0.7808 + }, + { + "start": 35438.74, + "end": 35440.88, + "probability": 0.9203 + }, + { + "start": 35441.28, + "end": 35442.96, + "probability": 0.8882 + }, + { + "start": 35442.96, + "end": 35445.22, + "probability": 0.9683 + }, + { + "start": 35445.3, + "end": 35446.78, + "probability": 0.9888 + }, + { + "start": 35447.2, + "end": 35449.28, + "probability": 0.9314 + }, + { + "start": 35449.62, + "end": 35450.72, + "probability": 0.8199 + }, + { + "start": 35450.76, + "end": 35452.22, + "probability": 0.7389 + }, + { + "start": 35452.58, + "end": 35452.84, + "probability": 0.7887 + }, + { + "start": 35453.68, + "end": 35456.02, + "probability": 0.705 + }, + { + "start": 35456.18, + "end": 35457.66, + "probability": 0.4987 + }, + { + "start": 35457.82, + "end": 35459.98, + "probability": 0.9491 + }, + { + "start": 35460.58, + "end": 35464.26, + "probability": 0.6405 + }, + { + "start": 35464.34, + "end": 35465.24, + "probability": 0.9265 + }, + { + "start": 35466.96, + "end": 35467.84, + "probability": 0.4014 + }, + { + "start": 35471.4, + "end": 35472.56, + "probability": 0.2526 + }, + { + "start": 35488.28, + "end": 35489.2, + "probability": 0.0129 + }, + { + "start": 35489.78, + "end": 35490.0, + "probability": 0.0252 + }, + { + "start": 35490.76, + "end": 35493.02, + "probability": 0.6949 + }, + { + "start": 35493.64, + "end": 35493.9, + "probability": 0.3928 + }, + { + "start": 35494.84, + "end": 35495.56, + "probability": 0.7149 + }, + { + "start": 35499.42, + "end": 35501.04, + "probability": 0.7687 + }, + { + "start": 35501.76, + "end": 35505.94, + "probability": 0.8185 + }, + { + "start": 35506.8, + "end": 35507.28, + "probability": 0.9017 + }, + { + "start": 35511.78, + "end": 35513.04, + "probability": 0.2076 + }, + { + "start": 35513.82, + "end": 35515.42, + "probability": 0.7006 + }, + { + "start": 35516.54, + "end": 35518.2, + "probability": 0.9756 + }, + { + "start": 35520.56, + "end": 35520.84, + "probability": 0.3965 + }, + { + "start": 35520.84, + "end": 35522.5, + "probability": 0.8235 + }, + { + "start": 35525.46, + "end": 35528.9, + "probability": 0.1554 + }, + { + "start": 35535.7, + "end": 35538.54, + "probability": 0.7477 + }, + { + "start": 35539.14, + "end": 35545.1, + "probability": 0.984 + }, + { + "start": 35546.18, + "end": 35548.58, + "probability": 0.8328 + }, + { + "start": 35576.44, + "end": 35578.5, + "probability": 0.0802 + }, + { + "start": 35578.62, + "end": 35578.98, + "probability": 0.4359 + }, + { + "start": 35595.26, + "end": 35597.36, + "probability": 0.8037 + }, + { + "start": 35598.6, + "end": 35600.78, + "probability": 0.785 + }, + { + "start": 35601.92, + "end": 35603.34, + "probability": 0.9941 + }, + { + "start": 35604.42, + "end": 35606.1, + "probability": 0.9935 + }, + { + "start": 35608.58, + "end": 35611.34, + "probability": 0.8582 + }, + { + "start": 35616.1, + "end": 35617.32, + "probability": 0.658 + }, + { + "start": 35617.5, + "end": 35617.64, + "probability": 0.4398 + }, + { + "start": 35617.78, + "end": 35619.5, + "probability": 0.9783 + }, + { + "start": 35620.22, + "end": 35622.62, + "probability": 0.9806 + }, + { + "start": 35624.02, + "end": 35629.58, + "probability": 0.9821 + }, + { + "start": 35630.78, + "end": 35632.6, + "probability": 0.9403 + }, + { + "start": 35633.14, + "end": 35635.2, + "probability": 0.9136 + }, + { + "start": 35635.84, + "end": 35641.2, + "probability": 0.9843 + }, + { + "start": 35641.36, + "end": 35646.78, + "probability": 0.9885 + }, + { + "start": 35647.86, + "end": 35653.42, + "probability": 0.9238 + }, + { + "start": 35654.4, + "end": 35657.4, + "probability": 0.9991 + }, + { + "start": 35658.02, + "end": 35659.62, + "probability": 0.9488 + }, + { + "start": 35660.86, + "end": 35663.36, + "probability": 0.9604 + }, + { + "start": 35663.92, + "end": 35670.56, + "probability": 0.9929 + }, + { + "start": 35671.1, + "end": 35672.4, + "probability": 0.4357 + }, + { + "start": 35673.56, + "end": 35675.54, + "probability": 0.9137 + }, + { + "start": 35676.88, + "end": 35679.64, + "probability": 0.9828 + }, + { + "start": 35680.36, + "end": 35683.94, + "probability": 0.9441 + }, + { + "start": 35684.82, + "end": 35688.72, + "probability": 0.9209 + }, + { + "start": 35689.26, + "end": 35690.24, + "probability": 0.8875 + }, + { + "start": 35691.58, + "end": 35693.68, + "probability": 0.9378 + }, + { + "start": 35694.34, + "end": 35695.6, + "probability": 0.8989 + }, + { + "start": 35696.72, + "end": 35697.04, + "probability": 0.687 + }, + { + "start": 35697.18, + "end": 35700.94, + "probability": 0.9819 + }, + { + "start": 35700.94, + "end": 35705.0, + "probability": 0.948 + }, + { + "start": 35705.94, + "end": 35707.92, + "probability": 0.9954 + }, + { + "start": 35708.8, + "end": 35710.9, + "probability": 0.7855 + }, + { + "start": 35711.9, + "end": 35717.62, + "probability": 0.9935 + }, + { + "start": 35718.32, + "end": 35720.12, + "probability": 0.378 + }, + { + "start": 35720.28, + "end": 35723.18, + "probability": 0.8426 + }, + { + "start": 35724.08, + "end": 35726.2, + "probability": 0.9835 + }, + { + "start": 35729.2, + "end": 35730.76, + "probability": 0.7853 + }, + { + "start": 35736.86, + "end": 35740.12, + "probability": 0.9924 + }, + { + "start": 35741.06, + "end": 35744.38, + "probability": 0.9082 + }, + { + "start": 35744.38, + "end": 35748.76, + "probability": 0.9883 + }, + { + "start": 35749.9, + "end": 35752.78, + "probability": 0.9937 + }, + { + "start": 35754.38, + "end": 35758.52, + "probability": 0.7944 + }, + { + "start": 35759.56, + "end": 35761.66, + "probability": 0.7509 + }, + { + "start": 35762.88, + "end": 35767.22, + "probability": 0.9897 + }, + { + "start": 35767.74, + "end": 35769.94, + "probability": 0.9583 + }, + { + "start": 35771.18, + "end": 35774.22, + "probability": 0.7881 + }, + { + "start": 35774.4, + "end": 35777.56, + "probability": 0.5379 + }, + { + "start": 35778.74, + "end": 35785.58, + "probability": 0.9951 + }, + { + "start": 35786.5, + "end": 35791.1, + "probability": 0.8161 + }, + { + "start": 35792.02, + "end": 35794.8, + "probability": 0.9511 + }, + { + "start": 35796.12, + "end": 35797.76, + "probability": 0.8207 + }, + { + "start": 35798.52, + "end": 35804.5, + "probability": 0.9851 + }, + { + "start": 35806.16, + "end": 35809.52, + "probability": 0.9913 + }, + { + "start": 35810.28, + "end": 35814.9, + "probability": 0.9893 + }, + { + "start": 35815.56, + "end": 35818.58, + "probability": 0.9976 + }, + { + "start": 35819.76, + "end": 35821.76, + "probability": 0.9115 + }, + { + "start": 35821.84, + "end": 35822.84, + "probability": 0.8439 + }, + { + "start": 35822.94, + "end": 35823.3, + "probability": 0.9043 + }, + { + "start": 35824.88, + "end": 35827.16, + "probability": 0.8498 + }, + { + "start": 35828.06, + "end": 35830.86, + "probability": 0.9704 + }, + { + "start": 35831.64, + "end": 35832.92, + "probability": 0.7506 + }, + { + "start": 35834.28, + "end": 35840.02, + "probability": 0.9902 + }, + { + "start": 35840.78, + "end": 35842.3, + "probability": 0.9974 + }, + { + "start": 35842.96, + "end": 35846.88, + "probability": 0.9851 + }, + { + "start": 35848.24, + "end": 35849.58, + "probability": 0.6637 + }, + { + "start": 35850.2, + "end": 35851.64, + "probability": 0.969 + }, + { + "start": 35852.5, + "end": 35854.12, + "probability": 0.9819 + }, + { + "start": 35854.8, + "end": 35858.1, + "probability": 0.8953 + }, + { + "start": 35858.66, + "end": 35860.48, + "probability": 0.9639 + }, + { + "start": 35861.72, + "end": 35865.24, + "probability": 0.7805 + }, + { + "start": 35866.1, + "end": 35867.62, + "probability": 0.8778 + }, + { + "start": 35869.0, + "end": 35871.2, + "probability": 0.9524 + }, + { + "start": 35871.8, + "end": 35875.16, + "probability": 0.9542 + }, + { + "start": 35876.06, + "end": 35878.07, + "probability": 0.4676 + }, + { + "start": 35878.76, + "end": 35879.26, + "probability": 0.8728 + }, + { + "start": 35880.32, + "end": 35881.76, + "probability": 0.8826 + }, + { + "start": 35882.32, + "end": 35883.0, + "probability": 0.8271 + }, + { + "start": 35883.42, + "end": 35885.02, + "probability": 0.9894 + }, + { + "start": 35885.4, + "end": 35888.54, + "probability": 0.9712 + }, + { + "start": 35890.22, + "end": 35895.06, + "probability": 0.8938 + }, + { + "start": 35895.64, + "end": 35900.4, + "probability": 0.9894 + }, + { + "start": 35900.4, + "end": 35904.32, + "probability": 0.8726 + }, + { + "start": 35905.06, + "end": 35909.42, + "probability": 0.7134 + }, + { + "start": 35909.42, + "end": 35914.22, + "probability": 0.9678 + }, + { + "start": 35915.8, + "end": 35917.4, + "probability": 0.9916 + }, + { + "start": 35918.66, + "end": 35920.5, + "probability": 0.8831 + }, + { + "start": 35921.16, + "end": 35927.26, + "probability": 0.9887 + }, + { + "start": 35928.32, + "end": 35931.2, + "probability": 0.9905 + }, + { + "start": 35932.02, + "end": 35934.18, + "probability": 0.6925 + }, + { + "start": 35934.54, + "end": 35937.04, + "probability": 0.8501 + }, + { + "start": 35938.22, + "end": 35939.44, + "probability": 0.9012 + }, + { + "start": 35940.64, + "end": 35945.54, + "probability": 0.8555 + }, + { + "start": 35946.5, + "end": 35950.4, + "probability": 0.7148 + }, + { + "start": 35951.06, + "end": 35952.96, + "probability": 0.981 + }, + { + "start": 35953.7, + "end": 35958.12, + "probability": 0.8796 + }, + { + "start": 35958.84, + "end": 35963.3, + "probability": 0.8361 + }, + { + "start": 35965.22, + "end": 35972.6, + "probability": 0.7295 + }, + { + "start": 35973.4, + "end": 35977.34, + "probability": 0.9898 + }, + { + "start": 35977.98, + "end": 35981.48, + "probability": 0.9906 + }, + { + "start": 35982.76, + "end": 35984.04, + "probability": 0.8515 + }, + { + "start": 35984.76, + "end": 35986.4, + "probability": 0.9402 + }, + { + "start": 35986.98, + "end": 35988.3, + "probability": 0.7169 + }, + { + "start": 35989.62, + "end": 35990.1, + "probability": 0.6768 + }, + { + "start": 35990.68, + "end": 35994.9, + "probability": 0.9975 + }, + { + "start": 35995.46, + "end": 35998.02, + "probability": 0.8817 + }, + { + "start": 35998.64, + "end": 36000.36, + "probability": 0.6877 + }, + { + "start": 36001.24, + "end": 36001.98, + "probability": 0.7704 + }, + { + "start": 36002.54, + "end": 36006.4, + "probability": 0.9693 + }, + { + "start": 36007.44, + "end": 36012.92, + "probability": 0.9921 + }, + { + "start": 36015.14, + "end": 36017.0, + "probability": 0.8254 + }, + { + "start": 36017.72, + "end": 36019.02, + "probability": 0.8619 + }, + { + "start": 36020.18, + "end": 36024.14, + "probability": 0.9346 + }, + { + "start": 36024.14, + "end": 36029.0, + "probability": 0.9927 + }, + { + "start": 36029.52, + "end": 36032.08, + "probability": 0.9865 + }, + { + "start": 36032.6, + "end": 36033.98, + "probability": 0.9964 + }, + { + "start": 36034.52, + "end": 36040.6, + "probability": 0.9679 + }, + { + "start": 36041.32, + "end": 36043.88, + "probability": 0.9709 + }, + { + "start": 36044.5, + "end": 36049.62, + "probability": 0.9754 + }, + { + "start": 36050.68, + "end": 36051.76, + "probability": 0.5349 + }, + { + "start": 36051.88, + "end": 36054.14, + "probability": 0.9465 + }, + { + "start": 36054.7, + "end": 36055.86, + "probability": 0.9116 + }, + { + "start": 36057.18, + "end": 36059.9, + "probability": 0.9814 + }, + { + "start": 36060.84, + "end": 36066.38, + "probability": 0.9814 + }, + { + "start": 36067.46, + "end": 36070.66, + "probability": 0.9918 + }, + { + "start": 36071.64, + "end": 36073.38, + "probability": 0.9939 + }, + { + "start": 36074.64, + "end": 36076.52, + "probability": 0.9951 + }, + { + "start": 36077.32, + "end": 36082.12, + "probability": 0.9891 + }, + { + "start": 36082.56, + "end": 36085.5, + "probability": 0.9175 + }, + { + "start": 36086.24, + "end": 36090.94, + "probability": 0.9925 + }, + { + "start": 36091.46, + "end": 36094.98, + "probability": 0.895 + }, + { + "start": 36095.82, + "end": 36102.22, + "probability": 0.9949 + }, + { + "start": 36103.32, + "end": 36103.86, + "probability": 0.6793 + }, + { + "start": 36103.86, + "end": 36110.66, + "probability": 0.9655 + }, + { + "start": 36110.9, + "end": 36114.73, + "probability": 0.989 + }, + { + "start": 36115.56, + "end": 36118.94, + "probability": 0.9992 + }, + { + "start": 36119.74, + "end": 36124.42, + "probability": 0.9929 + }, + { + "start": 36125.92, + "end": 36130.1, + "probability": 0.8679 + }, + { + "start": 36131.24, + "end": 36133.86, + "probability": 0.9854 + }, + { + "start": 36133.86, + "end": 36138.34, + "probability": 0.8943 + }, + { + "start": 36139.46, + "end": 36142.6, + "probability": 0.8748 + }, + { + "start": 36143.16, + "end": 36146.62, + "probability": 0.5524 + }, + { + "start": 36147.06, + "end": 36152.48, + "probability": 0.991 + }, + { + "start": 36153.12, + "end": 36156.64, + "probability": 0.938 + }, + { + "start": 36157.78, + "end": 36158.82, + "probability": 0.8523 + }, + { + "start": 36159.58, + "end": 36161.88, + "probability": 0.8514 + }, + { + "start": 36162.8, + "end": 36166.8, + "probability": 0.9893 + }, + { + "start": 36166.8, + "end": 36172.04, + "probability": 0.9983 + }, + { + "start": 36172.5, + "end": 36177.62, + "probability": 0.9936 + }, + { + "start": 36178.94, + "end": 36180.74, + "probability": 0.9932 + }, + { + "start": 36181.44, + "end": 36182.46, + "probability": 0.5963 + }, + { + "start": 36183.18, + "end": 36185.78, + "probability": 0.8588 + }, + { + "start": 36186.26, + "end": 36189.78, + "probability": 0.9816 + }, + { + "start": 36190.82, + "end": 36194.78, + "probability": 0.9494 + }, + { + "start": 36194.78, + "end": 36198.72, + "probability": 0.9356 + }, + { + "start": 36199.3, + "end": 36205.28, + "probability": 0.9912 + }, + { + "start": 36205.66, + "end": 36211.49, + "probability": 0.991 + }, + { + "start": 36213.23, + "end": 36218.18, + "probability": 0.9914 + }, + { + "start": 36218.8, + "end": 36221.32, + "probability": 0.8258 + }, + { + "start": 36221.9, + "end": 36224.12, + "probability": 0.4736 + }, + { + "start": 36224.28, + "end": 36226.8, + "probability": 0.9944 + }, + { + "start": 36226.8, + "end": 36230.72, + "probability": 0.9436 + }, + { + "start": 36231.06, + "end": 36231.98, + "probability": 0.5177 + }, + { + "start": 36232.08, + "end": 36232.52, + "probability": 0.8516 + }, + { + "start": 36233.72, + "end": 36233.94, + "probability": 0.4364 + }, + { + "start": 36233.96, + "end": 36235.86, + "probability": 0.507 + }, + { + "start": 36235.86, + "end": 36236.84, + "probability": 0.478 + }, + { + "start": 36237.5, + "end": 36238.2, + "probability": 0.6302 + }, + { + "start": 36238.34, + "end": 36238.94, + "probability": 0.9316 + }, + { + "start": 36239.72, + "end": 36240.78, + "probability": 0.9147 + }, + { + "start": 36240.84, + "end": 36241.14, + "probability": 0.4438 + }, + { + "start": 36241.14, + "end": 36241.92, + "probability": 0.9795 + }, + { + "start": 36241.92, + "end": 36243.76, + "probability": 0.938 + }, + { + "start": 36243.94, + "end": 36246.1, + "probability": 0.5659 + }, + { + "start": 36246.56, + "end": 36247.52, + "probability": 0.9419 + }, + { + "start": 36247.52, + "end": 36248.22, + "probability": 0.6712 + }, + { + "start": 36248.62, + "end": 36252.32, + "probability": 0.98 + }, + { + "start": 36253.22, + "end": 36254.38, + "probability": 0.872 + }, + { + "start": 36255.2, + "end": 36255.92, + "probability": 0.943 + }, + { + "start": 36256.36, + "end": 36258.2, + "probability": 0.7317 + }, + { + "start": 36258.6, + "end": 36260.66, + "probability": 0.9812 + }, + { + "start": 36261.34, + "end": 36262.56, + "probability": 0.7476 + }, + { + "start": 36263.34, + "end": 36263.34, + "probability": 0.5662 + }, + { + "start": 36263.88, + "end": 36264.62, + "probability": 0.6447 + }, + { + "start": 36265.1, + "end": 36268.2, + "probability": 0.8988 + }, + { + "start": 36268.32, + "end": 36271.08, + "probability": 0.9485 + }, + { + "start": 36272.86, + "end": 36276.18, + "probability": 0.9908 + }, + { + "start": 36276.54, + "end": 36276.96, + "probability": 0.7647 + }, + { + "start": 36277.62, + "end": 36279.98, + "probability": 0.9418 + }, + { + "start": 36281.6, + "end": 36283.12, + "probability": 0.92 + }, + { + "start": 36284.16, + "end": 36285.0, + "probability": 0.5695 + }, + { + "start": 36287.12, + "end": 36290.9, + "probability": 0.9158 + }, + { + "start": 36293.06, + "end": 36296.04, + "probability": 0.6567 + }, + { + "start": 36296.86, + "end": 36299.77, + "probability": 0.9683 + }, + { + "start": 36300.8, + "end": 36305.5, + "probability": 0.6288 + }, + { + "start": 36306.58, + "end": 36307.32, + "probability": 0.7143 + }, + { + "start": 36311.16, + "end": 36314.02, + "probability": 0.4928 + }, + { + "start": 36326.96, + "end": 36330.52, + "probability": 0.7869 + }, + { + "start": 36331.68, + "end": 36334.7, + "probability": 0.8075 + }, + { + "start": 36334.88, + "end": 36337.8, + "probability": 0.3061 + }, + { + "start": 36338.0, + "end": 36339.8, + "probability": 0.5637 + }, + { + "start": 36343.88, + "end": 36345.68, + "probability": 0.9047 + }, + { + "start": 36346.18, + "end": 36346.32, + "probability": 0.6751 + }, + { + "start": 36348.96, + "end": 36350.9, + "probability": 0.694 + }, + { + "start": 36351.78, + "end": 36354.04, + "probability": 0.8809 + }, + { + "start": 36355.28, + "end": 36356.64, + "probability": 0.6345 + }, + { + "start": 36356.78, + "end": 36359.9, + "probability": 0.8055 + }, + { + "start": 36361.72, + "end": 36362.68, + "probability": 0.559 + }, + { + "start": 36363.74, + "end": 36365.36, + "probability": 0.9424 + }, + { + "start": 36366.8, + "end": 36369.82, + "probability": 0.5841 + }, + { + "start": 36372.9, + "end": 36373.26, + "probability": 0.3326 + }, + { + "start": 36373.58, + "end": 36374.46, + "probability": 0.6919 + }, + { + "start": 36374.78, + "end": 36376.08, + "probability": 0.8832 + }, + { + "start": 36377.16, + "end": 36381.86, + "probability": 0.7378 + }, + { + "start": 36383.14, + "end": 36383.54, + "probability": 0.0668 + }, + { + "start": 36383.54, + "end": 36385.16, + "probability": 0.8057 + }, + { + "start": 36395.44, + "end": 36395.44, + "probability": 0.2846 + }, + { + "start": 36415.16, + "end": 36417.04, + "probability": 0.3463 + }, + { + "start": 36418.18, + "end": 36420.32, + "probability": 0.4583 + }, + { + "start": 36422.06, + "end": 36424.53, + "probability": 0.3444 + }, + { + "start": 36424.88, + "end": 36426.12, + "probability": 0.982 + }, + { + "start": 36426.9, + "end": 36427.76, + "probability": 0.7181 + }, + { + "start": 36428.72, + "end": 36432.56, + "probability": 0.9517 + }, + { + "start": 36432.8, + "end": 36433.96, + "probability": 0.7594 + }, + { + "start": 36434.88, + "end": 36437.08, + "probability": 0.9927 + }, + { + "start": 36437.94, + "end": 36439.84, + "probability": 0.9912 + }, + { + "start": 36440.92, + "end": 36444.76, + "probability": 0.9566 + }, + { + "start": 36445.16, + "end": 36446.0, + "probability": 0.9183 + }, + { + "start": 36446.08, + "end": 36446.82, + "probability": 0.9944 + }, + { + "start": 36446.88, + "end": 36448.0, + "probability": 0.9099 + }, + { + "start": 36449.0, + "end": 36451.8, + "probability": 0.999 + }, + { + "start": 36452.34, + "end": 36454.08, + "probability": 0.9383 + }, + { + "start": 36454.88, + "end": 36457.09, + "probability": 0.9871 + }, + { + "start": 36457.56, + "end": 36458.02, + "probability": 0.5776 + }, + { + "start": 36459.84, + "end": 36463.66, + "probability": 0.9939 + }, + { + "start": 36464.52, + "end": 36467.08, + "probability": 0.9789 + }, + { + "start": 36467.74, + "end": 36471.88, + "probability": 0.9873 + }, + { + "start": 36472.86, + "end": 36474.34, + "probability": 0.95 + }, + { + "start": 36474.64, + "end": 36475.3, + "probability": 0.7358 + }, + { + "start": 36475.36, + "end": 36476.1, + "probability": 0.9536 + }, + { + "start": 36477.08, + "end": 36479.42, + "probability": 0.9932 + }, + { + "start": 36481.12, + "end": 36483.26, + "probability": 0.9703 + }, + { + "start": 36483.9, + "end": 36485.79, + "probability": 0.9663 + }, + { + "start": 36485.96, + "end": 36488.16, + "probability": 0.8848 + }, + { + "start": 36488.8, + "end": 36494.5, + "probability": 0.8312 + }, + { + "start": 36495.58, + "end": 36498.1, + "probability": 0.9902 + }, + { + "start": 36499.2, + "end": 36500.44, + "probability": 0.7713 + }, + { + "start": 36501.48, + "end": 36503.29, + "probability": 0.9678 + }, + { + "start": 36504.1, + "end": 36505.42, + "probability": 0.9824 + }, + { + "start": 36506.8, + "end": 36509.54, + "probability": 0.9829 + }, + { + "start": 36510.28, + "end": 36513.9, + "probability": 0.994 + }, + { + "start": 36515.04, + "end": 36517.28, + "probability": 0.8945 + }, + { + "start": 36517.46, + "end": 36517.9, + "probability": 0.8431 + }, + { + "start": 36518.22, + "end": 36520.76, + "probability": 0.8314 + }, + { + "start": 36521.94, + "end": 36525.02, + "probability": 0.9647 + }, + { + "start": 36525.14, + "end": 36529.24, + "probability": 0.9916 + }, + { + "start": 36529.78, + "end": 36530.86, + "probability": 0.9875 + }, + { + "start": 36531.46, + "end": 36535.22, + "probability": 0.8197 + }, + { + "start": 36535.76, + "end": 36537.16, + "probability": 0.7844 + }, + { + "start": 36538.12, + "end": 36541.12, + "probability": 0.9948 + }, + { + "start": 36542.9, + "end": 36543.78, + "probability": 0.966 + }, + { + "start": 36544.42, + "end": 36547.0, + "probability": 0.9785 + }, + { + "start": 36547.14, + "end": 36547.92, + "probability": 0.7732 + }, + { + "start": 36548.12, + "end": 36549.32, + "probability": 0.9453 + }, + { + "start": 36550.08, + "end": 36550.9, + "probability": 0.7155 + }, + { + "start": 36551.98, + "end": 36555.98, + "probability": 0.9911 + }, + { + "start": 36556.56, + "end": 36557.7, + "probability": 0.8928 + }, + { + "start": 36558.58, + "end": 36562.46, + "probability": 0.9917 + }, + { + "start": 36563.58, + "end": 36564.22, + "probability": 0.7203 + }, + { + "start": 36564.76, + "end": 36568.18, + "probability": 0.9936 + }, + { + "start": 36568.48, + "end": 36569.84, + "probability": 0.6801 + }, + { + "start": 36570.56, + "end": 36574.4, + "probability": 0.6869 + }, + { + "start": 36576.56, + "end": 36579.82, + "probability": 0.9806 + }, + { + "start": 36580.76, + "end": 36584.1, + "probability": 0.9846 + }, + { + "start": 36584.56, + "end": 36589.22, + "probability": 0.9091 + }, + { + "start": 36589.22, + "end": 36593.54, + "probability": 0.9279 + }, + { + "start": 36595.92, + "end": 36598.46, + "probability": 0.993 + }, + { + "start": 36599.28, + "end": 36602.46, + "probability": 0.9651 + }, + { + "start": 36603.04, + "end": 36604.56, + "probability": 0.9228 + }, + { + "start": 36604.66, + "end": 36610.52, + "probability": 0.9512 + }, + { + "start": 36610.62, + "end": 36611.34, + "probability": 0.6191 + }, + { + "start": 36611.54, + "end": 36612.86, + "probability": 0.9007 + }, + { + "start": 36612.92, + "end": 36614.4, + "probability": 0.8518 + }, + { + "start": 36615.38, + "end": 36618.33, + "probability": 0.9964 + }, + { + "start": 36619.18, + "end": 36622.68, + "probability": 0.9341 + }, + { + "start": 36623.98, + "end": 36624.95, + "probability": 0.9594 + }, + { + "start": 36625.76, + "end": 36628.66, + "probability": 0.9711 + }, + { + "start": 36629.42, + "end": 36634.26, + "probability": 0.9689 + }, + { + "start": 36634.7, + "end": 36635.2, + "probability": 0.837 + }, + { + "start": 36635.78, + "end": 36637.44, + "probability": 0.8301 + }, + { + "start": 36637.9, + "end": 36637.9, + "probability": 0.5763 + }, + { + "start": 36637.96, + "end": 36639.34, + "probability": 0.5764 + }, + { + "start": 36639.88, + "end": 36641.62, + "probability": 0.9682 + }, + { + "start": 36642.3, + "end": 36642.46, + "probability": 0.5309 + }, + { + "start": 36642.58, + "end": 36646.1, + "probability": 0.6176 + }, + { + "start": 36646.1, + "end": 36646.66, + "probability": 0.5507 + }, + { + "start": 36659.76, + "end": 36659.86, + "probability": 0.4897 + }, + { + "start": 36660.72, + "end": 36660.78, + "probability": 0.1654 + }, + { + "start": 36660.78, + "end": 36660.78, + "probability": 0.1124 + }, + { + "start": 36660.78, + "end": 36661.46, + "probability": 0.1405 + }, + { + "start": 36661.64, + "end": 36661.8, + "probability": 0.0439 + }, + { + "start": 36661.8, + "end": 36661.88, + "probability": 0.0003 + }, + { + "start": 36662.12, + "end": 36662.44, + "probability": 0.087 + }, + { + "start": 36662.44, + "end": 36662.54, + "probability": 0.1699 + }, + { + "start": 36687.28, + "end": 36688.52, + "probability": 0.6004 + }, + { + "start": 36689.9, + "end": 36695.12, + "probability": 0.8865 + }, + { + "start": 36696.22, + "end": 36697.64, + "probability": 0.5659 + }, + { + "start": 36698.72, + "end": 36699.9, + "probability": 0.6387 + }, + { + "start": 36700.62, + "end": 36705.94, + "probability": 0.9973 + }, + { + "start": 36705.94, + "end": 36709.24, + "probability": 0.972 + }, + { + "start": 36710.2, + "end": 36711.9, + "probability": 0.9387 + }, + { + "start": 36712.78, + "end": 36715.02, + "probability": 0.778 + }, + { + "start": 36715.1, + "end": 36717.5, + "probability": 0.9065 + }, + { + "start": 36718.2, + "end": 36719.56, + "probability": 0.8095 + }, + { + "start": 36719.7, + "end": 36720.7, + "probability": 0.6617 + }, + { + "start": 36720.76, + "end": 36722.9, + "probability": 0.9333 + }, + { + "start": 36723.02, + "end": 36723.94, + "probability": 0.8157 + }, + { + "start": 36725.38, + "end": 36728.66, + "probability": 0.9517 + }, + { + "start": 36730.1, + "end": 36730.9, + "probability": 0.735 + }, + { + "start": 36731.4, + "end": 36731.94, + "probability": 0.4274 + }, + { + "start": 36732.02, + "end": 36734.3, + "probability": 0.8311 + }, + { + "start": 36734.64, + "end": 36737.46, + "probability": 0.896 + }, + { + "start": 36737.96, + "end": 36739.38, + "probability": 0.6702 + }, + { + "start": 36739.48, + "end": 36745.22, + "probability": 0.9656 + }, + { + "start": 36745.44, + "end": 36749.02, + "probability": 0.834 + }, + { + "start": 36749.14, + "end": 36752.33, + "probability": 0.957 + }, + { + "start": 36754.36, + "end": 36757.44, + "probability": 0.9368 + }, + { + "start": 36757.44, + "end": 36761.6, + "probability": 0.9478 + }, + { + "start": 36761.9, + "end": 36763.24, + "probability": 0.9736 + }, + { + "start": 36764.28, + "end": 36768.28, + "probability": 0.9588 + }, + { + "start": 36768.86, + "end": 36775.06, + "probability": 0.9719 + }, + { + "start": 36775.48, + "end": 36776.26, + "probability": 0.7006 + }, + { + "start": 36777.04, + "end": 36782.4, + "probability": 0.8435 + }, + { + "start": 36782.78, + "end": 36787.9, + "probability": 0.9061 + }, + { + "start": 36788.3, + "end": 36790.8, + "probability": 0.9634 + }, + { + "start": 36790.86, + "end": 36791.8, + "probability": 0.9832 + }, + { + "start": 36792.0, + "end": 36792.38, + "probability": 0.8974 + }, + { + "start": 36792.54, + "end": 36793.5, + "probability": 0.7965 + }, + { + "start": 36794.56, + "end": 36798.38, + "probability": 0.908 + }, + { + "start": 36799.08, + "end": 36802.54, + "probability": 0.8824 + }, + { + "start": 36803.06, + "end": 36804.38, + "probability": 0.7625 + }, + { + "start": 36804.82, + "end": 36810.01, + "probability": 0.9915 + }, + { + "start": 36810.68, + "end": 36812.44, + "probability": 0.9824 + }, + { + "start": 36813.04, + "end": 36814.6, + "probability": 0.0728 + }, + { + "start": 36814.74, + "end": 36815.06, + "probability": 0.2648 + }, + { + "start": 36815.06, + "end": 36817.86, + "probability": 0.8495 + }, + { + "start": 36817.98, + "end": 36821.9, + "probability": 0.98 + }, + { + "start": 36821.9, + "end": 36824.8, + "probability": 0.9622 + }, + { + "start": 36825.86, + "end": 36826.9, + "probability": 0.8387 + }, + { + "start": 36827.74, + "end": 36829.3, + "probability": 0.9611 + }, + { + "start": 36829.82, + "end": 36833.29, + "probability": 0.9686 + }, + { + "start": 36833.88, + "end": 36838.24, + "probability": 0.8462 + }, + { + "start": 36838.76, + "end": 36840.62, + "probability": 0.9788 + }, + { + "start": 36841.14, + "end": 36843.64, + "probability": 0.9949 + }, + { + "start": 36844.4, + "end": 36844.48, + "probability": 0.1959 + }, + { + "start": 36844.48, + "end": 36847.12, + "probability": 0.8287 + }, + { + "start": 36847.7, + "end": 36848.18, + "probability": 0.8068 + }, + { + "start": 36850.52, + "end": 36851.26, + "probability": 0.7799 + }, + { + "start": 36852.06, + "end": 36854.34, + "probability": 0.9871 + }, + { + "start": 36855.54, + "end": 36857.32, + "probability": 0.0798 + }, + { + "start": 36874.6, + "end": 36874.84, + "probability": 0.3502 + }, + { + "start": 36876.2, + "end": 36877.58, + "probability": 0.738 + }, + { + "start": 36878.94, + "end": 36879.82, + "probability": 0.6776 + }, + { + "start": 36879.96, + "end": 36881.86, + "probability": 0.6668 + }, + { + "start": 36881.98, + "end": 36882.84, + "probability": 0.911 + }, + { + "start": 36882.92, + "end": 36883.2, + "probability": 0.6707 + }, + { + "start": 36884.24, + "end": 36889.44, + "probability": 0.9563 + }, + { + "start": 36889.86, + "end": 36892.64, + "probability": 0.998 + }, + { + "start": 36893.2, + "end": 36894.86, + "probability": 0.7134 + }, + { + "start": 36895.4, + "end": 36898.78, + "probability": 0.9914 + }, + { + "start": 36898.78, + "end": 36902.28, + "probability": 0.999 + }, + { + "start": 36903.04, + "end": 36909.0, + "probability": 0.9979 + }, + { + "start": 36910.02, + "end": 36913.5, + "probability": 0.9194 + }, + { + "start": 36914.04, + "end": 36919.66, + "probability": 0.9827 + }, + { + "start": 36920.46, + "end": 36922.32, + "probability": 0.8694 + }, + { + "start": 36922.96, + "end": 36924.12, + "probability": 0.7325 + }, + { + "start": 36924.64, + "end": 36928.18, + "probability": 0.9624 + }, + { + "start": 36928.18, + "end": 36932.72, + "probability": 0.729 + }, + { + "start": 36933.32, + "end": 36934.54, + "probability": 0.8515 + }, + { + "start": 36935.38, + "end": 36939.02, + "probability": 0.9705 + }, + { + "start": 36939.02, + "end": 36942.88, + "probability": 0.9854 + }, + { + "start": 36943.48, + "end": 36947.44, + "probability": 0.993 + }, + { + "start": 36948.0, + "end": 36952.2, + "probability": 0.9668 + }, + { + "start": 36953.02, + "end": 36954.32, + "probability": 0.759 + }, + { + "start": 36954.76, + "end": 36955.1, + "probability": 0.8303 + }, + { + "start": 36955.74, + "end": 36958.34, + "probability": 0.9969 + }, + { + "start": 36958.96, + "end": 36961.64, + "probability": 0.9868 + }, + { + "start": 36961.64, + "end": 36964.8, + "probability": 0.9984 + }, + { + "start": 36965.38, + "end": 36966.8, + "probability": 0.7474 + }, + { + "start": 36967.54, + "end": 36971.58, + "probability": 0.9677 + }, + { + "start": 36972.16, + "end": 36973.72, + "probability": 0.9171 + }, + { + "start": 36974.4, + "end": 36976.72, + "probability": 0.91 + }, + { + "start": 36977.82, + "end": 36982.42, + "probability": 0.9719 + }, + { + "start": 36982.44, + "end": 36985.46, + "probability": 0.9967 + }, + { + "start": 36986.26, + "end": 36988.84, + "probability": 0.9512 + }, + { + "start": 36989.7, + "end": 36993.52, + "probability": 0.7991 + }, + { + "start": 36993.52, + "end": 36994.92, + "probability": 0.7534 + }, + { + "start": 36998.46, + "end": 37004.96, + "probability": 0.9934 + }, + { + "start": 37005.76, + "end": 37009.34, + "probability": 0.8899 + }, + { + "start": 37009.9, + "end": 37010.4, + "probability": 0.0656 + }, + { + "start": 37010.4, + "end": 37015.58, + "probability": 0.9746 + }, + { + "start": 37015.58, + "end": 37019.84, + "probability": 0.998 + }, + { + "start": 37022.6, + "end": 37025.98, + "probability": 0.9228 + }, + { + "start": 37026.66, + "end": 37031.6, + "probability": 0.982 + }, + { + "start": 37032.32, + "end": 37036.32, + "probability": 0.986 + }, + { + "start": 37037.02, + "end": 37039.72, + "probability": 0.982 + }, + { + "start": 37040.64, + "end": 37044.86, + "probability": 0.9365 + }, + { + "start": 37045.48, + "end": 37050.06, + "probability": 0.9985 + }, + { + "start": 37050.06, + "end": 37054.42, + "probability": 0.9718 + }, + { + "start": 37055.18, + "end": 37057.16, + "probability": 0.8595 + }, + { + "start": 37057.82, + "end": 37059.36, + "probability": 0.6158 + }, + { + "start": 37060.02, + "end": 37061.3, + "probability": 0.8049 + }, + { + "start": 37062.1, + "end": 37064.78, + "probability": 0.9585 + }, + { + "start": 37065.52, + "end": 37066.32, + "probability": 0.7881 + }, + { + "start": 37066.66, + "end": 37069.48, + "probability": 0.96 + }, + { + "start": 37069.86, + "end": 37073.34, + "probability": 0.9813 + }, + { + "start": 37073.76, + "end": 37074.5, + "probability": 0.8275 + }, + { + "start": 37075.6, + "end": 37078.34, + "probability": 0.998 + }, + { + "start": 37079.0, + "end": 37082.28, + "probability": 0.9912 + }, + { + "start": 37082.5, + "end": 37083.28, + "probability": 0.5888 + }, + { + "start": 37083.62, + "end": 37085.58, + "probability": 0.7571 + }, + { + "start": 37085.86, + "end": 37087.36, + "probability": 0.8191 + }, + { + "start": 37087.88, + "end": 37087.98, + "probability": 0.7335 + }, + { + "start": 37088.56, + "end": 37089.24, + "probability": 0.8388 + }, + { + "start": 37119.52, + "end": 37122.02, + "probability": 0.7295 + }, + { + "start": 37122.84, + "end": 37126.0, + "probability": 0.917 + }, + { + "start": 37126.56, + "end": 37129.02, + "probability": 0.9555 + }, + { + "start": 37129.08, + "end": 37132.22, + "probability": 0.9635 + }, + { + "start": 37132.22, + "end": 37135.7, + "probability": 0.9655 + }, + { + "start": 37136.36, + "end": 37137.0, + "probability": 0.9403 + }, + { + "start": 37137.47, + "end": 37143.9, + "probability": 0.9929 + }, + { + "start": 37143.98, + "end": 37144.84, + "probability": 0.8767 + }, + { + "start": 37144.96, + "end": 37150.68, + "probability": 0.9851 + }, + { + "start": 37151.2, + "end": 37155.54, + "probability": 0.6576 + }, + { + "start": 37156.32, + "end": 37159.88, + "probability": 0.9612 + }, + { + "start": 37160.01, + "end": 37162.66, + "probability": 0.9993 + }, + { + "start": 37162.82, + "end": 37163.6, + "probability": 0.6235 + }, + { + "start": 37164.14, + "end": 37167.48, + "probability": 0.9536 + }, + { + "start": 37168.02, + "end": 37173.24, + "probability": 0.9991 + }, + { + "start": 37173.24, + "end": 37176.34, + "probability": 0.9985 + }, + { + "start": 37176.88, + "end": 37178.4, + "probability": 0.7687 + }, + { + "start": 37179.0, + "end": 37182.94, + "probability": 0.7916 + }, + { + "start": 37183.46, + "end": 37185.44, + "probability": 0.721 + }, + { + "start": 37185.98, + "end": 37189.66, + "probability": 0.9677 + }, + { + "start": 37190.0, + "end": 37192.24, + "probability": 0.9126 + }, + { + "start": 37192.78, + "end": 37194.94, + "probability": 0.9792 + }, + { + "start": 37195.56, + "end": 37199.16, + "probability": 0.9797 + }, + { + "start": 37201.08, + "end": 37204.36, + "probability": 0.9985 + }, + { + "start": 37204.36, + "end": 37207.86, + "probability": 0.9395 + }, + { + "start": 37208.44, + "end": 37210.9, + "probability": 0.7738 + }, + { + "start": 37211.34, + "end": 37213.06, + "probability": 0.9987 + }, + { + "start": 37214.2, + "end": 37215.48, + "probability": 0.8301 + }, + { + "start": 37215.62, + "end": 37218.58, + "probability": 0.9853 + }, + { + "start": 37219.14, + "end": 37221.86, + "probability": 0.9822 + }, + { + "start": 37222.42, + "end": 37224.7, + "probability": 0.9631 + }, + { + "start": 37225.12, + "end": 37229.1, + "probability": 0.996 + }, + { + "start": 37229.1, + "end": 37232.78, + "probability": 0.9985 + }, + { + "start": 37233.2, + "end": 37235.76, + "probability": 0.9961 + }, + { + "start": 37236.14, + "end": 37238.16, + "probability": 0.996 + }, + { + "start": 37238.22, + "end": 37241.62, + "probability": 0.9995 + }, + { + "start": 37242.1, + "end": 37244.76, + "probability": 0.9911 + }, + { + "start": 37245.28, + "end": 37249.52, + "probability": 0.9796 + }, + { + "start": 37250.6, + "end": 37250.78, + "probability": 0.7274 + }, + { + "start": 37250.84, + "end": 37252.34, + "probability": 0.9784 + }, + { + "start": 37252.5, + "end": 37254.8, + "probability": 0.9783 + }, + { + "start": 37255.88, + "end": 37260.48, + "probability": 0.9634 + }, + { + "start": 37261.16, + "end": 37263.76, + "probability": 0.9964 + }, + { + "start": 37263.76, + "end": 37267.88, + "probability": 0.9933 + }, + { + "start": 37268.06, + "end": 37272.6, + "probability": 0.9095 + }, + { + "start": 37272.98, + "end": 37273.36, + "probability": 0.4024 + }, + { + "start": 37273.48, + "end": 37275.48, + "probability": 0.9423 + }, + { + "start": 37275.9, + "end": 37276.6, + "probability": 0.9252 + }, + { + "start": 37276.68, + "end": 37280.72, + "probability": 0.9819 + }, + { + "start": 37280.72, + "end": 37285.78, + "probability": 0.9819 + }, + { + "start": 37285.78, + "end": 37291.28, + "probability": 0.9992 + }, + { + "start": 37292.64, + "end": 37293.74, + "probability": 0.7884 + }, + { + "start": 37293.96, + "end": 37295.62, + "probability": 0.6931 + }, + { + "start": 37295.7, + "end": 37297.39, + "probability": 0.9197 + }, + { + "start": 37297.82, + "end": 37300.24, + "probability": 0.9934 + }, + { + "start": 37300.46, + "end": 37301.72, + "probability": 0.855 + }, + { + "start": 37302.98, + "end": 37306.64, + "probability": 0.9937 + }, + { + "start": 37307.28, + "end": 37312.8, + "probability": 0.9857 + }, + { + "start": 37313.68, + "end": 37317.9, + "probability": 0.998 + }, + { + "start": 37318.52, + "end": 37322.04, + "probability": 0.9919 + }, + { + "start": 37322.68, + "end": 37325.08, + "probability": 0.9697 + }, + { + "start": 37325.98, + "end": 37329.4, + "probability": 0.9855 + }, + { + "start": 37329.88, + "end": 37332.96, + "probability": 0.9959 + }, + { + "start": 37333.48, + "end": 37335.68, + "probability": 0.9189 + }, + { + "start": 37335.7, + "end": 37336.3, + "probability": 0.8053 + }, + { + "start": 37336.66, + "end": 37337.71, + "probability": 0.9928 + }, + { + "start": 37338.4, + "end": 37340.34, + "probability": 0.7891 + }, + { + "start": 37340.98, + "end": 37342.8, + "probability": 0.7559 + }, + { + "start": 37343.0, + "end": 37344.92, + "probability": 0.2509 + }, + { + "start": 37345.82, + "end": 37346.41, + "probability": 0.9111 + }, + { + "start": 37348.29, + "end": 37353.76, + "probability": 0.9781 + }, + { + "start": 37353.98, + "end": 37355.66, + "probability": 0.9405 + }, + { + "start": 37355.8, + "end": 37358.56, + "probability": 0.9979 + }, + { + "start": 37358.56, + "end": 37360.84, + "probability": 0.9965 + }, + { + "start": 37361.42, + "end": 37366.29, + "probability": 0.9897 + }, + { + "start": 37367.12, + "end": 37368.1, + "probability": 0.9105 + }, + { + "start": 37368.96, + "end": 37370.56, + "probability": 0.6362 + }, + { + "start": 37370.66, + "end": 37373.44, + "probability": 0.8742 + }, + { + "start": 37374.12, + "end": 37377.4, + "probability": 0.9753 + }, + { + "start": 37378.04, + "end": 37381.46, + "probability": 0.9946 + }, + { + "start": 37382.06, + "end": 37388.2, + "probability": 0.9985 + }, + { + "start": 37388.64, + "end": 37390.04, + "probability": 0.9692 + }, + { + "start": 37390.88, + "end": 37391.38, + "probability": 0.7708 + }, + { + "start": 37391.46, + "end": 37393.7, + "probability": 0.6831 + }, + { + "start": 37395.14, + "end": 37396.8, + "probability": 0.975 + }, + { + "start": 37398.58, + "end": 37398.96, + "probability": 0.7579 + }, + { + "start": 37400.06, + "end": 37400.46, + "probability": 0.3633 + }, + { + "start": 37400.52, + "end": 37401.15, + "probability": 0.7722 + }, + { + "start": 37402.38, + "end": 37403.26, + "probability": 0.5087 + }, + { + "start": 37403.9, + "end": 37407.0, + "probability": 0.8945 + }, + { + "start": 37407.0, + "end": 37408.2, + "probability": 0.0917 + }, + { + "start": 37410.8, + "end": 37414.16, + "probability": 0.8871 + }, + { + "start": 37415.3, + "end": 37415.88, + "probability": 0.5191 + }, + { + "start": 37418.39, + "end": 37424.06, + "probability": 0.6406 + }, + { + "start": 37424.64, + "end": 37425.54, + "probability": 0.5809 + }, + { + "start": 37426.32, + "end": 37428.06, + "probability": 0.7722 + }, + { + "start": 37435.36, + "end": 37437.48, + "probability": 0.3538 + }, + { + "start": 37441.38, + "end": 37444.06, + "probability": 0.5817 + }, + { + "start": 37444.78, + "end": 37445.46, + "probability": 0.1464 + }, + { + "start": 37445.46, + "end": 37449.96, + "probability": 0.6288 + }, + { + "start": 37450.78, + "end": 37456.02, + "probability": 0.5454 + }, + { + "start": 37456.36, + "end": 37458.2, + "probability": 0.0084 + }, + { + "start": 37471.48, + "end": 37471.5, + "probability": 0.1156 + }, + { + "start": 37478.8, + "end": 37478.9, + "probability": 0.0238 + }, + { + "start": 37478.9, + "end": 37478.9, + "probability": 0.1713 + }, + { + "start": 37478.9, + "end": 37478.9, + "probability": 0.048 + }, + { + "start": 37478.9, + "end": 37478.9, + "probability": 0.3258 + }, + { + "start": 37478.9, + "end": 37478.9, + "probability": 0.4119 + }, + { + "start": 37478.9, + "end": 37478.9, + "probability": 0.2126 + }, + { + "start": 37478.9, + "end": 37478.9, + "probability": 0.0727 + }, + { + "start": 37478.9, + "end": 37478.9, + "probability": 0.225 + }, + { + "start": 37478.9, + "end": 37479.6, + "probability": 0.5126 + }, + { + "start": 37480.2, + "end": 37480.28, + "probability": 0.3586 + }, + { + "start": 37487.2, + "end": 37488.08, + "probability": 0.805 + }, + { + "start": 37488.36, + "end": 37493.44, + "probability": 0.6387 + }, + { + "start": 37494.95, + "end": 37495.44, + "probability": 0.9062 + }, + { + "start": 37497.62, + "end": 37498.98, + "probability": 0.0035 + }, + { + "start": 37500.84, + "end": 37505.86, + "probability": 0.5663 + }, + { + "start": 37506.96, + "end": 37511.42, + "probability": 0.9839 + }, + { + "start": 37511.96, + "end": 37513.3, + "probability": 0.6745 + }, + { + "start": 37514.34, + "end": 37519.48, + "probability": 0.6662 + }, + { + "start": 37521.16, + "end": 37523.3, + "probability": 0.9917 + }, + { + "start": 37523.5, + "end": 37525.0, + "probability": 0.9987 + }, + { + "start": 37525.0, + "end": 37528.88, + "probability": 0.8115 + }, + { + "start": 37530.37, + "end": 37534.02, + "probability": 0.9867 + }, + { + "start": 37534.66, + "end": 37538.24, + "probability": 0.9026 + }, + { + "start": 37538.82, + "end": 37543.74, + "probability": 0.5838 + }, + { + "start": 37543.74, + "end": 37544.66, + "probability": 0.6797 + }, + { + "start": 37544.96, + "end": 37548.08, + "probability": 0.783 + }, + { + "start": 37549.62, + "end": 37550.57, + "probability": 0.2945 + }, + { + "start": 37551.6, + "end": 37555.5, + "probability": 0.9825 + }, + { + "start": 37555.92, + "end": 37557.24, + "probability": 0.8987 + }, + { + "start": 37557.38, + "end": 37558.3, + "probability": 0.9816 + }, + { + "start": 37558.44, + "end": 37558.9, + "probability": 0.5599 + }, + { + "start": 37559.44, + "end": 37562.42, + "probability": 0.9646 + }, + { + "start": 37563.1, + "end": 37566.54, + "probability": 0.9891 + }, + { + "start": 37567.24, + "end": 37569.46, + "probability": 0.4816 + }, + { + "start": 37571.31, + "end": 37574.02, + "probability": 0.9871 + }, + { + "start": 37575.68, + "end": 37577.68, + "probability": 0.7633 + }, + { + "start": 37578.33, + "end": 37580.95, + "probability": 0.7438 + }, + { + "start": 37582.3, + "end": 37585.71, + "probability": 0.6328 + }, + { + "start": 37586.12, + "end": 37588.17, + "probability": 0.6159 + }, + { + "start": 37589.96, + "end": 37592.1, + "probability": 0.9865 + }, + { + "start": 37592.74, + "end": 37594.66, + "probability": 0.9992 + }, + { + "start": 37596.46, + "end": 37598.08, + "probability": 0.669 + }, + { + "start": 37598.46, + "end": 37602.08, + "probability": 0.9441 + }, + { + "start": 37603.4, + "end": 37604.88, + "probability": 0.9647 + }, + { + "start": 37605.64, + "end": 37607.14, + "probability": 0.925 + }, + { + "start": 37607.84, + "end": 37608.82, + "probability": 0.8523 + }, + { + "start": 37609.58, + "end": 37610.54, + "probability": 0.7539 + }, + { + "start": 37611.06, + "end": 37612.62, + "probability": 0.6903 + }, + { + "start": 37612.96, + "end": 37614.72, + "probability": 0.8195 + }, + { + "start": 37614.8, + "end": 37616.32, + "probability": 0.9723 + }, + { + "start": 37616.94, + "end": 37618.34, + "probability": 0.9292 + }, + { + "start": 37618.8, + "end": 37619.58, + "probability": 0.4926 + }, + { + "start": 37620.08, + "end": 37623.6, + "probability": 0.8774 + }, + { + "start": 37624.24, + "end": 37625.8, + "probability": 0.9102 + }, + { + "start": 37626.84, + "end": 37627.5, + "probability": 0.8418 + }, + { + "start": 37627.94, + "end": 37630.26, + "probability": 0.9966 + }, + { + "start": 37630.34, + "end": 37630.84, + "probability": 0.7424 + }, + { + "start": 37630.98, + "end": 37631.3, + "probability": 0.6176 + }, + { + "start": 37631.76, + "end": 37633.34, + "probability": 0.8787 + }, + { + "start": 37633.42, + "end": 37635.24, + "probability": 0.6125 + }, + { + "start": 37635.24, + "end": 37635.72, + "probability": 0.5607 + }, + { + "start": 37636.58, + "end": 37638.88, + "probability": 0.8296 + }, + { + "start": 37639.64, + "end": 37642.3, + "probability": 0.982 + }, + { + "start": 37642.34, + "end": 37643.89, + "probability": 0.8451 + }, + { + "start": 37644.18, + "end": 37644.68, + "probability": 0.7512 + }, + { + "start": 37644.74, + "end": 37644.94, + "probability": 0.6239 + }, + { + "start": 37645.52, + "end": 37646.94, + "probability": 0.6555 + }, + { + "start": 37647.06, + "end": 37648.62, + "probability": 0.9521 + }, + { + "start": 37649.9, + "end": 37650.8, + "probability": 0.8312 + }, + { + "start": 37650.98, + "end": 37653.9, + "probability": 0.9025 + }, + { + "start": 37654.3, + "end": 37654.68, + "probability": 0.9667 + }, + { + "start": 37655.5, + "end": 37657.66, + "probability": 0.9413 + }, + { + "start": 37658.38, + "end": 37660.72, + "probability": 0.9141 + }, + { + "start": 37660.76, + "end": 37664.62, + "probability": 0.5607 + }, + { + "start": 37664.77, + "end": 37666.8, + "probability": 0.9929 + }, + { + "start": 37667.1, + "end": 37669.24, + "probability": 0.8309 + }, + { + "start": 37669.88, + "end": 37670.6, + "probability": 0.8317 + }, + { + "start": 37671.14, + "end": 37673.8, + "probability": 0.9966 + }, + { + "start": 37674.32, + "end": 37675.54, + "probability": 0.6194 + }, + { + "start": 37676.18, + "end": 37677.72, + "probability": 0.8455 + }, + { + "start": 37678.56, + "end": 37682.36, + "probability": 0.9781 + }, + { + "start": 37682.52, + "end": 37684.34, + "probability": 0.9174 + }, + { + "start": 37687.04, + "end": 37688.52, + "probability": 0.879 + }, + { + "start": 37688.64, + "end": 37690.96, + "probability": 0.3756 + }, + { + "start": 37691.08, + "end": 37692.66, + "probability": 0.7135 + }, + { + "start": 37692.8, + "end": 37695.16, + "probability": 0.9 + }, + { + "start": 37695.52, + "end": 37698.36, + "probability": 0.8144 + }, + { + "start": 37698.88, + "end": 37700.34, + "probability": 0.8597 + }, + { + "start": 37700.84, + "end": 37702.68, + "probability": 0.2618 + }, + { + "start": 37704.24, + "end": 37705.22, + "probability": 0.2421 + }, + { + "start": 37705.68, + "end": 37711.2, + "probability": 0.7827 + }, + { + "start": 37711.2, + "end": 37713.66, + "probability": 0.9937 + }, + { + "start": 37713.66, + "end": 37719.46, + "probability": 0.391 + }, + { + "start": 37719.88, + "end": 37719.88, + "probability": 0.3886 + }, + { + "start": 37720.06, + "end": 37722.32, + "probability": 0.8252 + }, + { + "start": 37722.32, + "end": 37723.74, + "probability": 0.6668 + }, + { + "start": 37723.8, + "end": 37724.1, + "probability": 0.5662 + }, + { + "start": 37724.88, + "end": 37725.78, + "probability": 0.5208 + }, + { + "start": 37729.12, + "end": 37730.08, + "probability": 0.3796 + }, + { + "start": 37730.68, + "end": 37731.5, + "probability": 0.6184 + }, + { + "start": 37731.58, + "end": 37734.7, + "probability": 0.6647 + }, + { + "start": 37735.24, + "end": 37736.34, + "probability": 0.8721 + }, + { + "start": 37736.59, + "end": 37738.92, + "probability": 0.8851 + }, + { + "start": 37739.16, + "end": 37741.08, + "probability": 0.4543 + }, + { + "start": 37741.22, + "end": 37741.72, + "probability": 0.4601 + }, + { + "start": 37742.95, + "end": 37744.9, + "probability": 0.7043 + }, + { + "start": 37745.34, + "end": 37745.58, + "probability": 0.7801 + }, + { + "start": 37748.93, + "end": 37751.28, + "probability": 0.9648 + }, + { + "start": 37752.34, + "end": 37753.62, + "probability": 0.954 + }, + { + "start": 37753.72, + "end": 37756.48, + "probability": 0.9838 + }, + { + "start": 37756.7, + "end": 37758.36, + "probability": 0.7697 + }, + { + "start": 37758.94, + "end": 37760.13, + "probability": 0.9863 + }, + { + "start": 37760.26, + "end": 37760.82, + "probability": 0.8965 + }, + { + "start": 37761.08, + "end": 37763.22, + "probability": 0.6851 + }, + { + "start": 37764.78, + "end": 37767.1, + "probability": 0.8145 + }, + { + "start": 37767.22, + "end": 37770.26, + "probability": 0.7582 + }, + { + "start": 37770.84, + "end": 37771.04, + "probability": 0.3118 + }, + { + "start": 37772.12, + "end": 37773.94, + "probability": 0.8849 + }, + { + "start": 37774.82, + "end": 37776.1, + "probability": 0.8772 + }, + { + "start": 37776.66, + "end": 37777.78, + "probability": 0.9812 + }, + { + "start": 37778.74, + "end": 37780.98, + "probability": 0.6628 + }, + { + "start": 37781.55, + "end": 37782.7, + "probability": 0.4624 + }, + { + "start": 37782.86, + "end": 37783.43, + "probability": 0.5605 + }, + { + "start": 37783.96, + "end": 37788.9, + "probability": 0.8674 + }, + { + "start": 37789.02, + "end": 37791.08, + "probability": 0.6537 + }, + { + "start": 37791.52, + "end": 37794.36, + "probability": 0.7631 + }, + { + "start": 37794.54, + "end": 37797.98, + "probability": 0.8051 + }, + { + "start": 37798.08, + "end": 37798.18, + "probability": 0.3706 + }, + { + "start": 37798.9, + "end": 37799.64, + "probability": 0.1051 + }, + { + "start": 37800.24, + "end": 37804.56, + "probability": 0.7256 + }, + { + "start": 37804.62, + "end": 37806.4, + "probability": 0.8994 + }, + { + "start": 37806.5, + "end": 37809.34, + "probability": 0.7512 + }, + { + "start": 37810.1, + "end": 37812.96, + "probability": 0.9592 + }, + { + "start": 37813.04, + "end": 37813.7, + "probability": 0.8553 + }, + { + "start": 37813.74, + "end": 37814.66, + "probability": 0.9897 + }, + { + "start": 37814.98, + "end": 37817.03, + "probability": 0.9032 + }, + { + "start": 37817.16, + "end": 37818.68, + "probability": 0.9855 + }, + { + "start": 37819.5, + "end": 37820.24, + "probability": 0.7808 + }, + { + "start": 37820.4, + "end": 37823.94, + "probability": 0.4586 + }, + { + "start": 37823.94, + "end": 37824.43, + "probability": 0.6027 + }, + { + "start": 37824.64, + "end": 37825.26, + "probability": 0.4806 + }, + { + "start": 37825.77, + "end": 37827.44, + "probability": 0.8274 + }, + { + "start": 37829.04, + "end": 37830.36, + "probability": 0.9837 + }, + { + "start": 37830.56, + "end": 37831.12, + "probability": 0.8863 + }, + { + "start": 37831.26, + "end": 37832.52, + "probability": 0.7892 + }, + { + "start": 37832.72, + "end": 37833.2, + "probability": 0.5936 + }, + { + "start": 37833.38, + "end": 37833.62, + "probability": 0.4338 + }, + { + "start": 37834.64, + "end": 37842.12, + "probability": 0.7836 + }, + { + "start": 37842.24, + "end": 37844.34, + "probability": 0.2263 + }, + { + "start": 37847.18, + "end": 37847.38, + "probability": 0.7677 + }, + { + "start": 37848.66, + "end": 37850.02, + "probability": 0.861 + }, + { + "start": 37850.58, + "end": 37854.94, + "probability": 0.9671 + }, + { + "start": 37856.38, + "end": 37857.96, + "probability": 0.9795 + }, + { + "start": 37858.06, + "end": 37858.42, + "probability": 0.6928 + }, + { + "start": 37858.54, + "end": 37864.9, + "probability": 0.9858 + }, + { + "start": 37864.9, + "end": 37869.96, + "probability": 0.9981 + }, + { + "start": 37870.8, + "end": 37871.64, + "probability": 0.901 + }, + { + "start": 37872.24, + "end": 37875.04, + "probability": 0.9673 + }, + { + "start": 37875.04, + "end": 37879.88, + "probability": 0.9734 + }, + { + "start": 37880.66, + "end": 37884.28, + "probability": 0.9614 + }, + { + "start": 37884.28, + "end": 37886.7, + "probability": 0.9692 + }, + { + "start": 37888.14, + "end": 37888.66, + "probability": 0.5027 + }, + { + "start": 37888.84, + "end": 37892.26, + "probability": 0.7807 + }, + { + "start": 37892.72, + "end": 37896.26, + "probability": 0.9757 + }, + { + "start": 37896.38, + "end": 37898.32, + "probability": 0.7784 + }, + { + "start": 37899.38, + "end": 37901.64, + "probability": 0.9874 + }, + { + "start": 37901.82, + "end": 37901.92, + "probability": 0.8065 + }, + { + "start": 37902.34, + "end": 37904.34, + "probability": 0.6666 + }, + { + "start": 37905.04, + "end": 37907.46, + "probability": 0.9932 + }, + { + "start": 37907.46, + "end": 37909.94, + "probability": 0.9703 + }, + { + "start": 37910.44, + "end": 37914.08, + "probability": 0.9834 + }, + { + "start": 37914.7, + "end": 37917.74, + "probability": 0.8629 + }, + { + "start": 37918.5, + "end": 37920.88, + "probability": 0.6733 + }, + { + "start": 37921.44, + "end": 37925.68, + "probability": 0.9763 + }, + { + "start": 37925.82, + "end": 37928.02, + "probability": 0.9169 + }, + { + "start": 37929.66, + "end": 37933.84, + "probability": 0.9943 + }, + { + "start": 37934.32, + "end": 37935.98, + "probability": 0.8632 + }, + { + "start": 37936.5, + "end": 37938.9, + "probability": 0.9688 + }, + { + "start": 37938.9, + "end": 37941.68, + "probability": 0.9949 + }, + { + "start": 37942.22, + "end": 37946.74, + "probability": 0.9662 + }, + { + "start": 37947.74, + "end": 37948.92, + "probability": 0.6431 + }, + { + "start": 37949.46, + "end": 37950.48, + "probability": 0.6016 + }, + { + "start": 37950.5, + "end": 37950.82, + "probability": 0.89 + }, + { + "start": 37950.86, + "end": 37956.5, + "probability": 0.9761 + }, + { + "start": 37958.64, + "end": 37959.7, + "probability": 0.9323 + }, + { + "start": 37961.42, + "end": 37965.34, + "probability": 0.995 + }, + { + "start": 37965.92, + "end": 37970.66, + "probability": 0.9924 + }, + { + "start": 37971.24, + "end": 37975.02, + "probability": 0.9159 + }, + { + "start": 37975.5, + "end": 37978.36, + "probability": 0.8542 + }, + { + "start": 37978.84, + "end": 37980.28, + "probability": 0.9668 + }, + { + "start": 37981.22, + "end": 37985.06, + "probability": 0.9176 + }, + { + "start": 37985.06, + "end": 37988.74, + "probability": 0.9805 + }, + { + "start": 37989.62, + "end": 37991.46, + "probability": 0.9502 + }, + { + "start": 37992.38, + "end": 37993.42, + "probability": 0.7427 + }, + { + "start": 37993.5, + "end": 37994.34, + "probability": 0.7826 + }, + { + "start": 37994.48, + "end": 37996.22, + "probability": 0.9948 + }, + { + "start": 37997.06, + "end": 37998.58, + "probability": 0.9299 + }, + { + "start": 37998.8, + "end": 38001.66, + "probability": 0.9052 + }, + { + "start": 38002.28, + "end": 38006.86, + "probability": 0.933 + }, + { + "start": 38007.8, + "end": 38010.32, + "probability": 0.9761 + }, + { + "start": 38010.68, + "end": 38013.24, + "probability": 0.9989 + }, + { + "start": 38013.78, + "end": 38014.7, + "probability": 0.8096 + }, + { + "start": 38014.82, + "end": 38016.58, + "probability": 0.7669 + }, + { + "start": 38017.02, + "end": 38020.16, + "probability": 0.9763 + }, + { + "start": 38020.88, + "end": 38023.88, + "probability": 0.9976 + }, + { + "start": 38024.32, + "end": 38025.26, + "probability": 0.5508 + }, + { + "start": 38025.5, + "end": 38026.26, + "probability": 0.6059 + }, + { + "start": 38026.44, + "end": 38027.18, + "probability": 0.914 + }, + { + "start": 38027.28, + "end": 38027.68, + "probability": 0.7573 + }, + { + "start": 38027.78, + "end": 38028.64, + "probability": 0.9474 + }, + { + "start": 38030.04, + "end": 38031.34, + "probability": 0.6713 + }, + { + "start": 38033.06, + "end": 38033.22, + "probability": 0.4763 + }, + { + "start": 38033.22, + "end": 38033.7, + "probability": 0.0696 + }, + { + "start": 38034.2, + "end": 38037.36, + "probability": 0.9606 + }, + { + "start": 38037.96, + "end": 38040.16, + "probability": 0.9343 + }, + { + "start": 38040.56, + "end": 38041.48, + "probability": 0.5563 + }, + { + "start": 38041.58, + "end": 38043.16, + "probability": 0.9055 + }, + { + "start": 38044.02, + "end": 38046.96, + "probability": 0.9932 + }, + { + "start": 38051.16, + "end": 38055.0, + "probability": 0.9971 + }, + { + "start": 38055.0, + "end": 38061.68, + "probability": 0.986 + }, + { + "start": 38062.76, + "end": 38063.54, + "probability": 0.4291 + }, + { + "start": 38063.66, + "end": 38065.08, + "probability": 0.8514 + }, + { + "start": 38065.54, + "end": 38070.94, + "probability": 0.9847 + }, + { + "start": 38072.32, + "end": 38073.88, + "probability": 0.3647 + }, + { + "start": 38074.66, + "end": 38075.46, + "probability": 0.6218 + }, + { + "start": 38075.64, + "end": 38076.15, + "probability": 0.2905 + }, + { + "start": 38076.72, + "end": 38082.54, + "probability": 0.9562 + }, + { + "start": 38083.4, + "end": 38083.48, + "probability": 0.1419 + }, + { + "start": 38083.48, + "end": 38084.28, + "probability": 0.8333 + }, + { + "start": 38085.04, + "end": 38085.14, + "probability": 0.3469 + }, + { + "start": 38088.96, + "end": 38088.96, + "probability": 0.2639 + }, + { + "start": 38088.96, + "end": 38093.62, + "probability": 0.7753 + }, + { + "start": 38094.2, + "end": 38095.84, + "probability": 0.8132 + }, + { + "start": 38095.92, + "end": 38096.0, + "probability": 0.3857 + }, + { + "start": 38096.04, + "end": 38096.2, + "probability": 0.8523 + }, + { + "start": 38096.26, + "end": 38096.82, + "probability": 0.6759 + }, + { + "start": 38097.16, + "end": 38098.84, + "probability": 0.9917 + }, + { + "start": 38098.88, + "end": 38100.64, + "probability": 0.9948 + }, + { + "start": 38101.26, + "end": 38105.56, + "probability": 0.0483 + }, + { + "start": 38105.56, + "end": 38105.9, + "probability": 0.0858 + }, + { + "start": 38106.88, + "end": 38108.94, + "probability": 0.8164 + }, + { + "start": 38109.42, + "end": 38110.8, + "probability": 0.7449 + }, + { + "start": 38111.14, + "end": 38111.9, + "probability": 0.6551 + }, + { + "start": 38112.44, + "end": 38117.46, + "probability": 0.8486 + }, + { + "start": 38118.46, + "end": 38119.3, + "probability": 0.6438 + }, + { + "start": 38125.68, + "end": 38125.74, + "probability": 0.1062 + }, + { + "start": 38125.74, + "end": 38125.9, + "probability": 0.0682 + }, + { + "start": 38125.9, + "end": 38126.2, + "probability": 0.1786 + }, + { + "start": 38126.2, + "end": 38126.74, + "probability": 0.1378 + }, + { + "start": 38150.16, + "end": 38154.78, + "probability": 0.9595 + }, + { + "start": 38156.04, + "end": 38160.92, + "probability": 0.8356 + }, + { + "start": 38161.92, + "end": 38163.44, + "probability": 0.5751 + }, + { + "start": 38163.58, + "end": 38164.38, + "probability": 0.8188 + }, + { + "start": 38182.08, + "end": 38183.56, + "probability": 0.7003 + }, + { + "start": 38185.84, + "end": 38187.44, + "probability": 0.8981 + }, + { + "start": 38189.96, + "end": 38190.64, + "probability": 0.884 + }, + { + "start": 38191.3, + "end": 38192.12, + "probability": 0.8294 + }, + { + "start": 38193.62, + "end": 38195.44, + "probability": 0.9249 + }, + { + "start": 38196.08, + "end": 38196.84, + "probability": 0.9067 + }, + { + "start": 38197.36, + "end": 38197.71, + "probability": 0.3495 + }, + { + "start": 38198.28, + "end": 38201.66, + "probability": 0.7339 + }, + { + "start": 38201.8, + "end": 38203.82, + "probability": 0.7968 + }, + { + "start": 38204.36, + "end": 38207.2, + "probability": 0.6932 + }, + { + "start": 38207.8, + "end": 38209.94, + "probability": 0.7657 + }, + { + "start": 38209.98, + "end": 38210.26, + "probability": 0.4102 + }, + { + "start": 38210.36, + "end": 38210.8, + "probability": 0.362 + }, + { + "start": 38210.9, + "end": 38214.64, + "probability": 0.7906 + }, + { + "start": 38214.76, + "end": 38216.7, + "probability": 0.8913 + }, + { + "start": 38216.82, + "end": 38217.24, + "probability": 0.3896 + }, + { + "start": 38218.08, + "end": 38218.76, + "probability": 0.4928 + }, + { + "start": 38219.8, + "end": 38222.58, + "probability": 0.8835 + }, + { + "start": 38222.72, + "end": 38223.52, + "probability": 0.9163 + }, + { + "start": 38224.26, + "end": 38224.64, + "probability": 0.9788 + }, + { + "start": 38226.06, + "end": 38226.86, + "probability": 0.0682 + }, + { + "start": 38229.96, + "end": 38231.24, + "probability": 0.5509 + }, + { + "start": 38231.82, + "end": 38232.72, + "probability": 0.6694 + }, + { + "start": 38232.8, + "end": 38232.8, + "probability": 0.0994 + }, + { + "start": 38232.94, + "end": 38233.68, + "probability": 0.5567 + }, + { + "start": 38233.96, + "end": 38234.38, + "probability": 0.4461 + }, + { + "start": 38234.8, + "end": 38236.36, + "probability": 0.9536 + }, + { + "start": 38242.7, + "end": 38242.7, + "probability": 0.3236 + }, + { + "start": 38242.7, + "end": 38244.45, + "probability": 0.6912 + }, + { + "start": 38246.22, + "end": 38246.89, + "probability": 0.0706 + }, + { + "start": 38248.12, + "end": 38249.0, + "probability": 0.8618 + }, + { + "start": 38249.22, + "end": 38249.68, + "probability": 0.2823 + }, + { + "start": 38250.68, + "end": 38252.58, + "probability": 0.3998 + }, + { + "start": 38253.02, + "end": 38253.88, + "probability": 0.943 + }, + { + "start": 38254.64, + "end": 38254.92, + "probability": 0.9705 + }, + { + "start": 38255.12, + "end": 38256.02, + "probability": 0.6873 + }, + { + "start": 38256.65, + "end": 38261.24, + "probability": 0.8213 + }, + { + "start": 38261.5, + "end": 38263.42, + "probability": 0.9272 + }, + { + "start": 38263.6, + "end": 38264.3, + "probability": 0.6431 + }, + { + "start": 38265.78, + "end": 38269.87, + "probability": 0.9829 + }, + { + "start": 38270.52, + "end": 38275.52, + "probability": 0.9978 + }, + { + "start": 38277.18, + "end": 38279.84, + "probability": 0.9945 + }, + { + "start": 38280.28, + "end": 38282.48, + "probability": 0.8565 + }, + { + "start": 38283.52, + "end": 38285.7, + "probability": 0.996 + }, + { + "start": 38286.34, + "end": 38288.6, + "probability": 0.9961 + }, + { + "start": 38289.4, + "end": 38293.28, + "probability": 0.9956 + }, + { + "start": 38294.02, + "end": 38296.0, + "probability": 0.9972 + }, + { + "start": 38296.98, + "end": 38299.76, + "probability": 0.9976 + }, + { + "start": 38300.1, + "end": 38303.94, + "probability": 0.9533 + }, + { + "start": 38305.0, + "end": 38305.14, + "probability": 0.4844 + }, + { + "start": 38305.54, + "end": 38309.32, + "probability": 0.9832 + }, + { + "start": 38310.28, + "end": 38310.64, + "probability": 0.5459 + }, + { + "start": 38310.78, + "end": 38313.32, + "probability": 0.9944 + }, + { + "start": 38313.94, + "end": 38315.7, + "probability": 0.9899 + }, + { + "start": 38316.26, + "end": 38318.54, + "probability": 0.9658 + }, + { + "start": 38319.16, + "end": 38321.78, + "probability": 0.9949 + }, + { + "start": 38322.28, + "end": 38324.62, + "probability": 0.9972 + }, + { + "start": 38325.64, + "end": 38330.38, + "probability": 0.9897 + }, + { + "start": 38341.9, + "end": 38344.34, + "probability": 0.8461 + }, + { + "start": 38345.58, + "end": 38351.22, + "probability": 0.9754 + }, + { + "start": 38352.1, + "end": 38355.57, + "probability": 0.9984 + }, + { + "start": 38356.18, + "end": 38357.24, + "probability": 0.9484 + }, + { + "start": 38358.66, + "end": 38359.16, + "probability": 0.5806 + }, + { + "start": 38359.26, + "end": 38362.42, + "probability": 0.9616 + }, + { + "start": 38363.0, + "end": 38364.7, + "probability": 0.9834 + }, + { + "start": 38365.72, + "end": 38368.74, + "probability": 0.9918 + }, + { + "start": 38369.44, + "end": 38372.16, + "probability": 0.9759 + }, + { + "start": 38372.16, + "end": 38374.44, + "probability": 0.7449 + }, + { + "start": 38375.38, + "end": 38377.39, + "probability": 0.9876 + }, + { + "start": 38378.4, + "end": 38381.22, + "probability": 0.9797 + }, + { + "start": 38381.64, + "end": 38384.74, + "probability": 0.9834 + }, + { + "start": 38385.14, + "end": 38386.54, + "probability": 0.9742 + }, + { + "start": 38387.56, + "end": 38391.1, + "probability": 0.9746 + }, + { + "start": 38391.54, + "end": 38392.84, + "probability": 0.9308 + }, + { + "start": 38393.64, + "end": 38395.92, + "probability": 0.9155 + }, + { + "start": 38396.44, + "end": 38398.14, + "probability": 0.9961 + }, + { + "start": 38398.68, + "end": 38400.66, + "probability": 0.5925 + }, + { + "start": 38402.12, + "end": 38403.94, + "probability": 0.9716 + }, + { + "start": 38404.5, + "end": 38408.92, + "probability": 0.9839 + }, + { + "start": 38409.5, + "end": 38410.64, + "probability": 0.958 + }, + { + "start": 38411.12, + "end": 38412.88, + "probability": 0.9953 + }, + { + "start": 38413.08, + "end": 38413.94, + "probability": 0.9529 + }, + { + "start": 38414.36, + "end": 38416.98, + "probability": 0.9896 + }, + { + "start": 38417.56, + "end": 38419.24, + "probability": 0.9881 + }, + { + "start": 38420.42, + "end": 38420.86, + "probability": 0.9478 + }, + { + "start": 38421.28, + "end": 38424.38, + "probability": 0.9756 + }, + { + "start": 38424.9, + "end": 38428.14, + "probability": 0.8511 + }, + { + "start": 38428.78, + "end": 38429.52, + "probability": 0.7628 + }, + { + "start": 38430.14, + "end": 38434.2, + "probability": 0.958 + }, + { + "start": 38434.9, + "end": 38438.08, + "probability": 0.9905 + }, + { + "start": 38438.66, + "end": 38439.74, + "probability": 0.995 + }, + { + "start": 38440.32, + "end": 38442.92, + "probability": 0.9005 + }, + { + "start": 38443.88, + "end": 38446.54, + "probability": 0.9912 + }, + { + "start": 38447.06, + "end": 38450.48, + "probability": 0.9632 + }, + { + "start": 38451.7, + "end": 38452.06, + "probability": 0.5476 + }, + { + "start": 38452.2, + "end": 38455.5, + "probability": 0.9819 + }, + { + "start": 38455.9, + "end": 38459.86, + "probability": 0.9904 + }, + { + "start": 38460.84, + "end": 38464.76, + "probability": 0.9868 + }, + { + "start": 38465.86, + "end": 38467.12, + "probability": 0.6037 + }, + { + "start": 38467.62, + "end": 38471.38, + "probability": 0.9929 + }, + { + "start": 38472.16, + "end": 38473.12, + "probability": 0.9752 + }, + { + "start": 38474.54, + "end": 38476.52, + "probability": 0.9958 + }, + { + "start": 38476.6, + "end": 38480.08, + "probability": 0.9111 + }, + { + "start": 38480.7, + "end": 38483.98, + "probability": 0.998 + }, + { + "start": 38484.46, + "end": 38486.18, + "probability": 0.9732 + }, + { + "start": 38486.9, + "end": 38491.42, + "probability": 0.9675 + }, + { + "start": 38492.0, + "end": 38495.76, + "probability": 0.9806 + }, + { + "start": 38496.36, + "end": 38499.26, + "probability": 0.9988 + }, + { + "start": 38499.9, + "end": 38500.66, + "probability": 0.8818 + }, + { + "start": 38501.44, + "end": 38503.42, + "probability": 0.9971 + }, + { + "start": 38503.88, + "end": 38504.8, + "probability": 0.9287 + }, + { + "start": 38505.22, + "end": 38505.84, + "probability": 0.8803 + }, + { + "start": 38505.96, + "end": 38506.78, + "probability": 0.8059 + }, + { + "start": 38507.18, + "end": 38509.6, + "probability": 0.9922 + }, + { + "start": 38510.04, + "end": 38512.02, + "probability": 0.946 + }, + { + "start": 38512.4, + "end": 38514.3, + "probability": 0.9038 + }, + { + "start": 38514.92, + "end": 38517.52, + "probability": 0.9923 + }, + { + "start": 38517.52, + "end": 38520.44, + "probability": 0.9989 + }, + { + "start": 38521.06, + "end": 38523.76, + "probability": 0.9707 + }, + { + "start": 38523.76, + "end": 38525.44, + "probability": 0.7778 + }, + { + "start": 38526.16, + "end": 38528.4, + "probability": 0.9846 + }, + { + "start": 38528.92, + "end": 38529.12, + "probability": 0.7012 + }, + { + "start": 38529.9, + "end": 38531.65, + "probability": 0.9919 + }, + { + "start": 38532.2, + "end": 38532.62, + "probability": 0.5567 + }, + { + "start": 38532.66, + "end": 38533.04, + "probability": 0.8142 + }, + { + "start": 38533.14, + "end": 38533.64, + "probability": 0.5907 + }, + { + "start": 38533.76, + "end": 38534.74, + "probability": 0.9464 + }, + { + "start": 38535.18, + "end": 38535.46, + "probability": 0.4478 + }, + { + "start": 38535.46, + "end": 38535.6, + "probability": 0.3776 + }, + { + "start": 38535.64, + "end": 38537.82, + "probability": 0.9375 + }, + { + "start": 38538.12, + "end": 38538.38, + "probability": 0.5652 + }, + { + "start": 38539.24, + "end": 38539.94, + "probability": 0.8272 + }, + { + "start": 38540.52, + "end": 38541.32, + "probability": 0.828 + }, + { + "start": 38557.52, + "end": 38557.54, + "probability": 0.2465 + }, + { + "start": 38557.54, + "end": 38559.48, + "probability": 0.6272 + }, + { + "start": 38560.42, + "end": 38562.44, + "probability": 0.9021 + }, + { + "start": 38562.54, + "end": 38566.7, + "probability": 0.9792 + }, + { + "start": 38567.74, + "end": 38571.02, + "probability": 0.9902 + }, + { + "start": 38572.86, + "end": 38574.56, + "probability": 0.9239 + }, + { + "start": 38576.2, + "end": 38576.52, + "probability": 0.705 + }, + { + "start": 38577.9, + "end": 38579.42, + "probability": 0.9102 + }, + { + "start": 38579.94, + "end": 38581.26, + "probability": 0.9899 + }, + { + "start": 38582.22, + "end": 38584.0, + "probability": 0.8697 + }, + { + "start": 38584.76, + "end": 38587.48, + "probability": 0.9725 + }, + { + "start": 38588.32, + "end": 38591.32, + "probability": 0.9947 + }, + { + "start": 38593.34, + "end": 38595.36, + "probability": 0.9386 + }, + { + "start": 38595.94, + "end": 38598.36, + "probability": 0.9978 + }, + { + "start": 38599.94, + "end": 38602.2, + "probability": 0.9688 + }, + { + "start": 38603.74, + "end": 38609.14, + "probability": 0.9211 + }, + { + "start": 38609.14, + "end": 38612.42, + "probability": 0.9968 + }, + { + "start": 38612.58, + "end": 38616.2, + "probability": 0.9672 + }, + { + "start": 38618.7, + "end": 38619.56, + "probability": 0.7868 + }, + { + "start": 38620.84, + "end": 38623.02, + "probability": 0.9344 + }, + { + "start": 38623.6, + "end": 38627.82, + "probability": 0.9061 + }, + { + "start": 38628.46, + "end": 38631.46, + "probability": 0.9934 + }, + { + "start": 38632.1, + "end": 38633.34, + "probability": 0.9639 + }, + { + "start": 38637.34, + "end": 38637.56, + "probability": 0.9507 + }, + { + "start": 38638.46, + "end": 38639.46, + "probability": 0.7738 + }, + { + "start": 38639.84, + "end": 38642.5, + "probability": 0.9195 + }, + { + "start": 38643.48, + "end": 38646.44, + "probability": 0.8459 + }, + { + "start": 38647.3, + "end": 38648.94, + "probability": 0.9846 + }, + { + "start": 38650.5, + "end": 38654.92, + "probability": 0.9599 + }, + { + "start": 38657.78, + "end": 38658.76, + "probability": 0.7594 + }, + { + "start": 38660.2, + "end": 38660.88, + "probability": 0.998 + }, + { + "start": 38661.6, + "end": 38664.68, + "probability": 0.9728 + }, + { + "start": 38665.96, + "end": 38669.28, + "probability": 0.9822 + }, + { + "start": 38670.7, + "end": 38674.92, + "probability": 0.989 + }, + { + "start": 38674.92, + "end": 38680.02, + "probability": 0.9942 + }, + { + "start": 38681.44, + "end": 38684.62, + "probability": 0.9587 + }, + { + "start": 38685.24, + "end": 38687.04, + "probability": 0.8859 + }, + { + "start": 38687.24, + "end": 38688.14, + "probability": 0.9864 + }, + { + "start": 38688.46, + "end": 38692.7, + "probability": 0.9908 + }, + { + "start": 38693.6, + "end": 38694.02, + "probability": 0.0692 + }, + { + "start": 38694.04, + "end": 38694.3, + "probability": 0.5283 + }, + { + "start": 38695.38, + "end": 38699.9, + "probability": 0.9596 + }, + { + "start": 38701.38, + "end": 38707.18, + "probability": 0.9918 + }, + { + "start": 38707.78, + "end": 38710.84, + "probability": 0.9556 + }, + { + "start": 38711.22, + "end": 38711.98, + "probability": 0.0209 + }, + { + "start": 38713.58, + "end": 38714.48, + "probability": 0.6007 + }, + { + "start": 38716.54, + "end": 38716.54, + "probability": 0.0691 + }, + { + "start": 38716.68, + "end": 38716.82, + "probability": 0.0783 + }, + { + "start": 38716.82, + "end": 38718.98, + "probability": 0.1175 + }, + { + "start": 38719.34, + "end": 38720.06, + "probability": 0.4119 + }, + { + "start": 38720.38, + "end": 38722.26, + "probability": 0.8972 + }, + { + "start": 38722.78, + "end": 38724.84, + "probability": 0.6213 + }, + { + "start": 38725.3, + "end": 38726.34, + "probability": 0.8413 + }, + { + "start": 38726.4, + "end": 38727.22, + "probability": 0.8889 + }, + { + "start": 38727.76, + "end": 38728.26, + "probability": 0.3656 + }, + { + "start": 38728.34, + "end": 38729.12, + "probability": 0.5127 + }, + { + "start": 38729.16, + "end": 38730.12, + "probability": 0.8683 + }, + { + "start": 38730.24, + "end": 38730.58, + "probability": 0.8944 + }, + { + "start": 38730.76, + "end": 38733.66, + "probability": 0.772 + }, + { + "start": 38733.96, + "end": 38735.48, + "probability": 0.8338 + }, + { + "start": 38735.88, + "end": 38736.1, + "probability": 0.1191 + }, + { + "start": 38736.1, + "end": 38738.88, + "probability": 0.8239 + }, + { + "start": 38739.64, + "end": 38742.14, + "probability": 0.9315 + }, + { + "start": 38742.54, + "end": 38742.86, + "probability": 0.1596 + }, + { + "start": 38743.34, + "end": 38745.06, + "probability": 0.1529 + }, + { + "start": 38745.16, + "end": 38745.72, + "probability": 0.3618 + }, + { + "start": 38746.04, + "end": 38746.38, + "probability": 0.6999 + }, + { + "start": 38746.46, + "end": 38748.84, + "probability": 0.9429 + }, + { + "start": 38748.98, + "end": 38749.6, + "probability": 0.5655 + }, + { + "start": 38750.64, + "end": 38752.76, + "probability": 0.9958 + }, + { + "start": 38752.94, + "end": 38754.56, + "probability": 0.9914 + }, + { + "start": 38756.16, + "end": 38759.1, + "probability": 0.9875 + }, + { + "start": 38759.1, + "end": 38762.24, + "probability": 0.9915 + }, + { + "start": 38762.78, + "end": 38767.58, + "probability": 0.8661 + }, + { + "start": 38768.1, + "end": 38772.48, + "probability": 0.9458 + }, + { + "start": 38773.84, + "end": 38774.44, + "probability": 0.6746 + }, + { + "start": 38774.52, + "end": 38779.76, + "probability": 0.9723 + }, + { + "start": 38780.44, + "end": 38783.24, + "probability": 0.6912 + }, + { + "start": 38783.34, + "end": 38786.28, + "probability": 0.9866 + }, + { + "start": 38787.38, + "end": 38791.3, + "probability": 0.8375 + }, + { + "start": 38793.43, + "end": 38801.18, + "probability": 0.9689 + }, + { + "start": 38802.22, + "end": 38802.94, + "probability": 0.8795 + }, + { + "start": 38803.66, + "end": 38806.22, + "probability": 0.9825 + }, + { + "start": 38807.16, + "end": 38809.26, + "probability": 0.9803 + }, + { + "start": 38809.5, + "end": 38812.92, + "probability": 0.9854 + }, + { + "start": 38813.14, + "end": 38817.28, + "probability": 0.9966 + }, + { + "start": 38817.88, + "end": 38820.7, + "probability": 0.9688 + }, + { + "start": 38823.33, + "end": 38826.24, + "probability": 0.9976 + }, + { + "start": 38826.82, + "end": 38827.9, + "probability": 0.9204 + }, + { + "start": 38828.7, + "end": 38829.78, + "probability": 0.9993 + }, + { + "start": 38831.04, + "end": 38831.52, + "probability": 0.9984 + }, + { + "start": 38832.62, + "end": 38835.82, + "probability": 1.0 + }, + { + "start": 38836.9, + "end": 38840.12, + "probability": 0.9523 + }, + { + "start": 38840.86, + "end": 38842.08, + "probability": 0.9849 + }, + { + "start": 38843.34, + "end": 38843.42, + "probability": 0.109 + }, + { + "start": 38843.42, + "end": 38843.42, + "probability": 0.1588 + }, + { + "start": 38843.42, + "end": 38843.84, + "probability": 0.637 + }, + { + "start": 38844.16, + "end": 38844.82, + "probability": 0.7747 + }, + { + "start": 38844.88, + "end": 38845.26, + "probability": 0.4098 + }, + { + "start": 38846.3, + "end": 38847.04, + "probability": 0.7783 + }, + { + "start": 38848.14, + "end": 38850.9, + "probability": 0.8988 + }, + { + "start": 38851.38, + "end": 38853.26, + "probability": 0.9937 + }, + { + "start": 38853.66, + "end": 38856.82, + "probability": 0.8207 + }, + { + "start": 38857.02, + "end": 38860.36, + "probability": 0.9959 + }, + { + "start": 38861.4, + "end": 38862.6, + "probability": 0.034 + }, + { + "start": 38862.98, + "end": 38863.12, + "probability": 0.0363 + }, + { + "start": 38863.12, + "end": 38865.1, + "probability": 0.987 + }, + { + "start": 38867.78, + "end": 38868.06, + "probability": 0.1513 + }, + { + "start": 38868.12, + "end": 38870.84, + "probability": 0.8102 + }, + { + "start": 38873.04, + "end": 38877.22, + "probability": 0.0642 + }, + { + "start": 38877.46, + "end": 38878.74, + "probability": 0.1718 + }, + { + "start": 38878.76, + "end": 38879.26, + "probability": 0.1425 + }, + { + "start": 38880.1, + "end": 38880.1, + "probability": 0.3561 + }, + { + "start": 38880.14, + "end": 38880.14, + "probability": 0.2364 + }, + { + "start": 38880.14, + "end": 38880.14, + "probability": 0.0188 + }, + { + "start": 38880.14, + "end": 38882.36, + "probability": 0.4493 + }, + { + "start": 38887.0, + "end": 38888.4, + "probability": 0.0562 + }, + { + "start": 38888.4, + "end": 38888.4, + "probability": 0.0121 + }, + { + "start": 38888.4, + "end": 38888.56, + "probability": 0.1001 + }, + { + "start": 38888.82, + "end": 38890.66, + "probability": 0.7878 + }, + { + "start": 38890.86, + "end": 38892.26, + "probability": 0.9116 + }, + { + "start": 38892.32, + "end": 38892.98, + "probability": 0.6649 + }, + { + "start": 38893.06, + "end": 38894.12, + "probability": 0.8901 + }, + { + "start": 38894.12, + "end": 38895.98, + "probability": 0.9113 + }, + { + "start": 38896.7, + "end": 38898.28, + "probability": 0.998 + }, + { + "start": 38899.12, + "end": 38902.44, + "probability": 0.9906 + }, + { + "start": 38902.54, + "end": 38908.82, + "probability": 0.9982 + }, + { + "start": 38909.98, + "end": 38912.84, + "probability": 0.9733 + }, + { + "start": 38913.62, + "end": 38915.02, + "probability": 0.9912 + }, + { + "start": 38915.82, + "end": 38918.12, + "probability": 0.9881 + }, + { + "start": 38918.8, + "end": 38921.16, + "probability": 0.9902 + }, + { + "start": 38921.48, + "end": 38921.74, + "probability": 0.8043 + }, + { + "start": 38922.38, + "end": 38924.28, + "probability": 0.6705 + }, + { + "start": 38924.98, + "end": 38926.48, + "probability": 0.5483 + }, + { + "start": 38927.9, + "end": 38931.04, + "probability": 0.6506 + }, + { + "start": 38931.1, + "end": 38932.34, + "probability": 0.3842 + }, + { + "start": 38932.92, + "end": 38933.66, + "probability": 0.3338 + }, + { + "start": 38934.32, + "end": 38934.98, + "probability": 0.6916 + }, + { + "start": 38935.06, + "end": 38935.06, + "probability": 0.6586 + }, + { + "start": 38935.06, + "end": 38935.32, + "probability": 0.8788 + }, + { + "start": 38935.74, + "end": 38936.84, + "probability": 0.3513 + }, + { + "start": 38942.72, + "end": 38944.12, + "probability": 0.5361 + }, + { + "start": 38944.66, + "end": 38947.21, + "probability": 0.7054 + }, + { + "start": 38952.99, + "end": 38955.92, + "probability": 0.5737 + }, + { + "start": 38956.36, + "end": 38961.04, + "probability": 0.9259 + }, + { + "start": 38962.72, + "end": 38965.78, + "probability": 0.8666 + }, + { + "start": 38967.6, + "end": 38968.02, + "probability": 0.884 + }, + { + "start": 38969.18, + "end": 38971.7, + "probability": 0.5164 + }, + { + "start": 38973.14, + "end": 38976.06, + "probability": 0.9971 + }, + { + "start": 38977.46, + "end": 38979.9, + "probability": 0.9732 + }, + { + "start": 38980.18, + "end": 38985.04, + "probability": 0.5719 + }, + { + "start": 38986.5, + "end": 38992.52, + "probability": 0.5204 + }, + { + "start": 38993.26, + "end": 38996.92, + "probability": 0.9648 + }, + { + "start": 38997.92, + "end": 39000.48, + "probability": 0.8582 + }, + { + "start": 39004.14, + "end": 39006.08, + "probability": 0.7466 + }, + { + "start": 39006.6, + "end": 39009.22, + "probability": 0.7211 + }, + { + "start": 39009.68, + "end": 39012.76, + "probability": 0.4695 + }, + { + "start": 39012.92, + "end": 39014.48, + "probability": 0.5676 + }, + { + "start": 39014.48, + "end": 39016.0, + "probability": 0.5956 + }, + { + "start": 39016.1, + "end": 39016.84, + "probability": 0.8176 + }, + { + "start": 39016.96, + "end": 39017.32, + "probability": 0.2259 + }, + { + "start": 39018.16, + "end": 39018.8, + "probability": 0.3483 + }, + { + "start": 39019.44, + "end": 39019.5, + "probability": 0.8993 + }, + { + "start": 39019.5, + "end": 39019.82, + "probability": 0.6284 + }, + { + "start": 39020.66, + "end": 39021.1, + "probability": 0.4372 + }, + { + "start": 39021.74, + "end": 39025.08, + "probability": 0.6936 + }, + { + "start": 39025.54, + "end": 39028.39, + "probability": 0.6288 + }, + { + "start": 39031.14, + "end": 39035.84, + "probability": 0.9564 + }, + { + "start": 39036.66, + "end": 39039.28, + "probability": 0.8776 + }, + { + "start": 39040.6, + "end": 39043.52, + "probability": 0.9973 + }, + { + "start": 39045.32, + "end": 39046.82, + "probability": 0.9592 + }, + { + "start": 39047.94, + "end": 39050.62, + "probability": 0.9946 + }, + { + "start": 39051.38, + "end": 39055.7, + "probability": 0.9932 + }, + { + "start": 39055.86, + "end": 39055.94, + "probability": 0.0059 + }, + { + "start": 39057.04, + "end": 39058.74, + "probability": 0.6488 + }, + { + "start": 39058.84, + "end": 39060.08, + "probability": 0.9557 + }, + { + "start": 39060.18, + "end": 39063.12, + "probability": 0.9907 + }, + { + "start": 39063.64, + "end": 39065.1, + "probability": 0.9985 + }, + { + "start": 39066.38, + "end": 39067.6, + "probability": 0.6948 + }, + { + "start": 39068.32, + "end": 39069.0, + "probability": 0.9503 + }, + { + "start": 39070.5, + "end": 39073.08, + "probability": 0.8996 + }, + { + "start": 39074.24, + "end": 39077.64, + "probability": 0.9741 + }, + { + "start": 39078.48, + "end": 39079.24, + "probability": 0.9307 + }, + { + "start": 39080.63, + "end": 39082.84, + "probability": 0.9683 + }, + { + "start": 39084.16, + "end": 39086.32, + "probability": 0.9989 + }, + { + "start": 39087.46, + "end": 39090.4, + "probability": 0.8518 + }, + { + "start": 39090.4, + "end": 39095.04, + "probability": 0.9851 + }, + { + "start": 39096.62, + "end": 39100.3, + "probability": 0.9941 + }, + { + "start": 39100.48, + "end": 39102.86, + "probability": 0.5903 + }, + { + "start": 39104.36, + "end": 39106.22, + "probability": 0.8655 + }, + { + "start": 39107.64, + "end": 39109.56, + "probability": 0.9624 + }, + { + "start": 39110.12, + "end": 39111.2, + "probability": 0.5932 + }, + { + "start": 39111.3, + "end": 39112.96, + "probability": 0.9291 + }, + { + "start": 39113.28, + "end": 39115.36, + "probability": 0.8098 + }, + { + "start": 39116.18, + "end": 39116.96, + "probability": 0.9803 + }, + { + "start": 39117.3, + "end": 39117.74, + "probability": 0.7851 + }, + { + "start": 39118.58, + "end": 39119.74, + "probability": 0.9224 + }, + { + "start": 39119.82, + "end": 39120.72, + "probability": 0.8657 + }, + { + "start": 39121.58, + "end": 39121.96, + "probability": 0.9787 + }, + { + "start": 39123.63, + "end": 39125.86, + "probability": 0.6383 + }, + { + "start": 39126.06, + "end": 39128.12, + "probability": 0.7305 + }, + { + "start": 39129.44, + "end": 39130.38, + "probability": 0.9727 + }, + { + "start": 39130.8, + "end": 39133.16, + "probability": 0.8092 + }, + { + "start": 39134.02, + "end": 39135.16, + "probability": 0.9863 + }, + { + "start": 39137.64, + "end": 39140.8, + "probability": 0.77 + }, + { + "start": 39141.44, + "end": 39143.8, + "probability": 0.9365 + }, + { + "start": 39144.32, + "end": 39144.96, + "probability": 0.8987 + }, + { + "start": 39145.86, + "end": 39147.88, + "probability": 0.9395 + }, + { + "start": 39148.0, + "end": 39149.39, + "probability": 0.9797 + }, + { + "start": 39149.58, + "end": 39150.87, + "probability": 0.9804 + }, + { + "start": 39151.56, + "end": 39154.94, + "probability": 0.9848 + }, + { + "start": 39155.6, + "end": 39157.86, + "probability": 0.993 + }, + { + "start": 39158.0, + "end": 39159.02, + "probability": 0.9862 + }, + { + "start": 39159.88, + "end": 39160.78, + "probability": 0.182 + }, + { + "start": 39160.96, + "end": 39161.72, + "probability": 0.5823 + }, + { + "start": 39162.42, + "end": 39166.2, + "probability": 0.9984 + }, + { + "start": 39166.86, + "end": 39168.64, + "probability": 0.8444 + }, + { + "start": 39169.3, + "end": 39173.08, + "probability": 0.9983 + }, + { + "start": 39173.26, + "end": 39178.02, + "probability": 0.7992 + }, + { + "start": 39178.62, + "end": 39180.68, + "probability": 0.8652 + }, + { + "start": 39182.04, + "end": 39184.8, + "probability": 0.9965 + }, + { + "start": 39184.8, + "end": 39190.28, + "probability": 0.7199 + }, + { + "start": 39191.02, + "end": 39194.18, + "probability": 0.9941 + }, + { + "start": 39194.82, + "end": 39196.98, + "probability": 0.9939 + }, + { + "start": 39197.88, + "end": 39201.2, + "probability": 0.9972 + }, + { + "start": 39201.5, + "end": 39205.94, + "probability": 0.9935 + }, + { + "start": 39205.94, + "end": 39208.62, + "probability": 0.9989 + }, + { + "start": 39209.62, + "end": 39213.6, + "probability": 0.7716 + }, + { + "start": 39215.18, + "end": 39217.4, + "probability": 0.9972 + }, + { + "start": 39218.02, + "end": 39221.72, + "probability": 0.9839 + }, + { + "start": 39222.52, + "end": 39223.68, + "probability": 0.5195 + }, + { + "start": 39223.76, + "end": 39229.36, + "probability": 0.9804 + }, + { + "start": 39229.56, + "end": 39233.68, + "probability": 0.9968 + }, + { + "start": 39234.16, + "end": 39236.54, + "probability": 0.7349 + }, + { + "start": 39236.76, + "end": 39237.69, + "probability": 0.6611 + }, + { + "start": 39237.7, + "end": 39239.18, + "probability": 0.6816 + }, + { + "start": 39239.42, + "end": 39240.16, + "probability": 0.7939 + }, + { + "start": 39240.26, + "end": 39243.7, + "probability": 0.107 + }, + { + "start": 39244.0, + "end": 39244.92, + "probability": 0.3383 + }, + { + "start": 39245.32, + "end": 39248.56, + "probability": 0.215 + }, + { + "start": 39248.72, + "end": 39250.62, + "probability": 0.7401 + }, + { + "start": 39250.94, + "end": 39252.79, + "probability": 0.6466 + }, + { + "start": 39254.58, + "end": 39254.58, + "probability": 0.0639 + }, + { + "start": 39254.58, + "end": 39257.28, + "probability": 0.4429 + }, + { + "start": 39258.2, + "end": 39258.2, + "probability": 0.0942 + }, + { + "start": 39258.2, + "end": 39260.38, + "probability": 0.4699 + }, + { + "start": 39260.92, + "end": 39261.98, + "probability": 0.7891 + }, + { + "start": 39266.94, + "end": 39269.74, + "probability": 0.6001 + }, + { + "start": 39270.36, + "end": 39274.28, + "probability": 0.8628 + }, + { + "start": 39274.28, + "end": 39278.82, + "probability": 0.8687 + }, + { + "start": 39279.46, + "end": 39280.92, + "probability": 0.8056 + }, + { + "start": 39281.44, + "end": 39285.96, + "probability": 0.8971 + }, + { + "start": 39285.96, + "end": 39290.56, + "probability": 0.9924 + }, + { + "start": 39290.56, + "end": 39295.28, + "probability": 0.9502 + }, + { + "start": 39295.62, + "end": 39298.96, + "probability": 0.9212 + }, + { + "start": 39299.0, + "end": 39303.16, + "probability": 0.8752 + }, + { + "start": 39303.24, + "end": 39304.0, + "probability": 0.6302 + }, + { + "start": 39304.44, + "end": 39306.72, + "probability": 0.9975 + }, + { + "start": 39306.72, + "end": 39310.08, + "probability": 0.9 + }, + { + "start": 39310.76, + "end": 39315.5, + "probability": 0.9108 + }, + { + "start": 39316.42, + "end": 39318.34, + "probability": 0.6724 + }, + { + "start": 39318.6, + "end": 39321.1, + "probability": 0.9303 + }, + { + "start": 39321.92, + "end": 39325.26, + "probability": 0.9174 + }, + { + "start": 39325.32, + "end": 39326.0, + "probability": 0.8933 + }, + { + "start": 39326.64, + "end": 39328.3, + "probability": 0.9067 + }, + { + "start": 39328.8, + "end": 39331.32, + "probability": 0.7792 + }, + { + "start": 39331.82, + "end": 39334.5, + "probability": 0.9312 + }, + { + "start": 39334.82, + "end": 39339.02, + "probability": 0.8975 + }, + { + "start": 39339.14, + "end": 39340.44, + "probability": 0.7932 + }, + { + "start": 39340.94, + "end": 39342.56, + "probability": 0.8732 + }, + { + "start": 39342.64, + "end": 39347.0, + "probability": 0.9766 + }, + { + "start": 39347.52, + "end": 39350.59, + "probability": 0.9969 + }, + { + "start": 39350.88, + "end": 39355.92, + "probability": 0.9961 + }, + { + "start": 39356.02, + "end": 39357.08, + "probability": 0.5008 + }, + { + "start": 39359.12, + "end": 39361.98, + "probability": 0.5999 + }, + { + "start": 39362.74, + "end": 39366.64, + "probability": 0.6601 + }, + { + "start": 39367.42, + "end": 39369.98, + "probability": 0.9287 + }, + { + "start": 39370.7, + "end": 39374.24, + "probability": 0.9969 + }, + { + "start": 39375.18, + "end": 39376.7, + "probability": 0.7747 + }, + { + "start": 39376.88, + "end": 39379.3, + "probability": 0.9885 + }, + { + "start": 39379.3, + "end": 39381.28, + "probability": 0.9583 + }, + { + "start": 39381.38, + "end": 39384.68, + "probability": 0.9824 + }, + { + "start": 39386.24, + "end": 39387.62, + "probability": 0.7966 + }, + { + "start": 39387.78, + "end": 39389.45, + "probability": 0.8574 + }, + { + "start": 39389.6, + "end": 39392.12, + "probability": 0.9951 + }, + { + "start": 39392.12, + "end": 39395.26, + "probability": 0.9873 + }, + { + "start": 39395.44, + "end": 39395.64, + "probability": 0.8884 + }, + { + "start": 39396.56, + "end": 39398.84, + "probability": 0.665 + }, + { + "start": 39398.92, + "end": 39402.24, + "probability": 0.8913 + }, + { + "start": 39403.28, + "end": 39405.98, + "probability": 0.8859 + }, + { + "start": 39421.17, + "end": 39427.8, + "probability": 0.742 + }, + { + "start": 39428.52, + "end": 39428.72, + "probability": 0.0545 + }, + { + "start": 39429.54, + "end": 39430.14, + "probability": 0.64 + }, + { + "start": 39435.32, + "end": 39438.0, + "probability": 0.7379 + }, + { + "start": 39438.94, + "end": 39439.34, + "probability": 0.9149 + }, + { + "start": 39439.98, + "end": 39443.36, + "probability": 0.8462 + }, + { + "start": 39445.36, + "end": 39446.96, + "probability": 0.8628 + }, + { + "start": 39447.1, + "end": 39448.6, + "probability": 0.9966 + }, + { + "start": 39448.9, + "end": 39449.78, + "probability": 0.8872 + }, + { + "start": 39450.89, + "end": 39455.84, + "probability": 0.7981 + }, + { + "start": 39456.66, + "end": 39457.42, + "probability": 0.936 + }, + { + "start": 39458.82, + "end": 39459.3, + "probability": 0.4707 + }, + { + "start": 39460.09, + "end": 39462.54, + "probability": 0.839 + }, + { + "start": 39463.44, + "end": 39466.72, + "probability": 0.1967 + }, + { + "start": 39466.84, + "end": 39469.88, + "probability": 0.9633 + }, + { + "start": 39470.38, + "end": 39471.44, + "probability": 0.4913 + }, + { + "start": 39472.02, + "end": 39474.5, + "probability": 0.4804 + }, + { + "start": 39474.5, + "end": 39474.82, + "probability": 0.4083 + }, + { + "start": 39474.86, + "end": 39475.74, + "probability": 0.3467 + }, + { + "start": 39475.78, + "end": 39478.48, + "probability": 0.8917 + }, + { + "start": 39478.66, + "end": 39480.9, + "probability": 0.9811 + }, + { + "start": 39480.94, + "end": 39481.76, + "probability": 0.8218 + }, + { + "start": 39482.15, + "end": 39484.62, + "probability": 0.7918 + }, + { + "start": 39484.92, + "end": 39486.14, + "probability": 0.7443 + }, + { + "start": 39486.56, + "end": 39486.72, + "probability": 0.155 + }, + { + "start": 39487.44, + "end": 39489.22, + "probability": 0.9507 + }, + { + "start": 39489.32, + "end": 39489.9, + "probability": 0.4334 + }, + { + "start": 39490.22, + "end": 39490.36, + "probability": 0.2533 + }, + { + "start": 39490.4, + "end": 39491.82, + "probability": 0.7765 + }, + { + "start": 39491.86, + "end": 39492.3, + "probability": 0.9442 + }, + { + "start": 39492.74, + "end": 39493.2, + "probability": 0.9646 + }, + { + "start": 39494.22, + "end": 39494.58, + "probability": 0.4062 + }, + { + "start": 39494.84, + "end": 39497.22, + "probability": 0.8992 + }, + { + "start": 39497.6, + "end": 39498.42, + "probability": 0.8504 + }, + { + "start": 39498.6, + "end": 39500.15, + "probability": 0.9976 + }, + { + "start": 39501.24, + "end": 39501.94, + "probability": 0.8747 + }, + { + "start": 39502.6, + "end": 39504.58, + "probability": 0.7382 + }, + { + "start": 39505.2, + "end": 39506.68, + "probability": 0.9254 + }, + { + "start": 39506.8, + "end": 39507.0, + "probability": 0.7415 + }, + { + "start": 39508.26, + "end": 39510.7, + "probability": 0.9929 + }, + { + "start": 39511.62, + "end": 39513.7, + "probability": 0.8857 + }, + { + "start": 39514.48, + "end": 39516.7, + "probability": 0.9673 + }, + { + "start": 39517.6, + "end": 39518.76, + "probability": 0.8789 + }, + { + "start": 39519.3, + "end": 39520.94, + "probability": 0.9561 + }, + { + "start": 39521.08, + "end": 39522.94, + "probability": 0.9298 + }, + { + "start": 39523.34, + "end": 39524.08, + "probability": 0.6179 + }, + { + "start": 39524.2, + "end": 39525.16, + "probability": 0.7439 + }, + { + "start": 39525.48, + "end": 39526.09, + "probability": 0.5926 + }, + { + "start": 39527.26, + "end": 39529.12, + "probability": 0.9832 + }, + { + "start": 39529.78, + "end": 39531.7, + "probability": 0.9855 + }, + { + "start": 39532.64, + "end": 39534.42, + "probability": 0.9327 + }, + { + "start": 39535.3, + "end": 39535.84, + "probability": 0.9467 + }, + { + "start": 39536.54, + "end": 39538.8, + "probability": 0.9169 + }, + { + "start": 39538.84, + "end": 39539.64, + "probability": 0.9838 + }, + { + "start": 39539.8, + "end": 39540.5, + "probability": 0.5068 + }, + { + "start": 39541.44, + "end": 39543.04, + "probability": 0.9915 + }, + { + "start": 39543.22, + "end": 39546.54, + "probability": 0.9971 + }, + { + "start": 39546.6, + "end": 39547.88, + "probability": 0.9988 + }, + { + "start": 39548.3, + "end": 39550.44, + "probability": 0.9941 + }, + { + "start": 39550.68, + "end": 39551.64, + "probability": 0.9634 + }, + { + "start": 39551.9, + "end": 39552.44, + "probability": 0.8106 + }, + { + "start": 39553.08, + "end": 39554.74, + "probability": 0.8369 + }, + { + "start": 39554.8, + "end": 39555.76, + "probability": 0.8177 + }, + { + "start": 39556.18, + "end": 39557.14, + "probability": 0.8096 + }, + { + "start": 39558.46, + "end": 39560.08, + "probability": 0.6578 + }, + { + "start": 39560.86, + "end": 39564.82, + "probability": 0.9472 + }, + { + "start": 39565.34, + "end": 39567.32, + "probability": 0.9767 + }, + { + "start": 39567.92, + "end": 39570.58, + "probability": 0.9848 + }, + { + "start": 39570.6, + "end": 39571.28, + "probability": 0.8024 + }, + { + "start": 39571.36, + "end": 39571.58, + "probability": 0.7698 + }, + { + "start": 39571.66, + "end": 39573.2, + "probability": 0.8549 + }, + { + "start": 39573.48, + "end": 39574.56, + "probability": 0.1161 + }, + { + "start": 39574.9, + "end": 39577.26, + "probability": 0.4402 + }, + { + "start": 39578.12, + "end": 39579.94, + "probability": 0.7777 + }, + { + "start": 39580.24, + "end": 39582.52, + "probability": 0.9012 + }, + { + "start": 39582.6, + "end": 39583.1, + "probability": 0.8683 + }, + { + "start": 39583.68, + "end": 39584.79, + "probability": 0.9225 + }, + { + "start": 39585.54, + "end": 39586.12, + "probability": 0.6833 + }, + { + "start": 39586.34, + "end": 39587.32, + "probability": 0.9553 + }, + { + "start": 39587.6, + "end": 39594.06, + "probability": 0.9474 + }, + { + "start": 39594.24, + "end": 39595.12, + "probability": 0.9103 + }, + { + "start": 39595.82, + "end": 39598.5, + "probability": 0.9615 + }, + { + "start": 39598.78, + "end": 39600.34, + "probability": 0.77 + }, + { + "start": 39600.98, + "end": 39601.66, + "probability": 0.6196 + }, + { + "start": 39601.86, + "end": 39606.04, + "probability": 0.9944 + }, + { + "start": 39606.34, + "end": 39608.62, + "probability": 0.9922 + }, + { + "start": 39609.24, + "end": 39613.06, + "probability": 0.9922 + }, + { + "start": 39614.0, + "end": 39618.02, + "probability": 0.7258 + }, + { + "start": 39618.62, + "end": 39619.7, + "probability": 0.9565 + }, + { + "start": 39620.04, + "end": 39623.78, + "probability": 0.7617 + }, + { + "start": 39625.28, + "end": 39625.62, + "probability": 0.6289 + }, + { + "start": 39626.74, + "end": 39628.1, + "probability": 0.9083 + }, + { + "start": 39628.18, + "end": 39630.61, + "probability": 0.6013 + }, + { + "start": 39631.3, + "end": 39637.02, + "probability": 0.8906 + }, + { + "start": 39638.31, + "end": 39640.56, + "probability": 0.776 + }, + { + "start": 39641.78, + "end": 39646.46, + "probability": 0.9775 + }, + { + "start": 39646.58, + "end": 39648.04, + "probability": 0.9536 + }, + { + "start": 39648.66, + "end": 39650.52, + "probability": 0.9849 + }, + { + "start": 39650.64, + "end": 39653.06, + "probability": 0.6382 + }, + { + "start": 39653.66, + "end": 39656.28, + "probability": 0.9639 + }, + { + "start": 39656.36, + "end": 39656.9, + "probability": 0.8097 + }, + { + "start": 39657.34, + "end": 39658.48, + "probability": 0.8335 + }, + { + "start": 39659.54, + "end": 39661.33, + "probability": 0.937 + }, + { + "start": 39662.58, + "end": 39663.19, + "probability": 0.9903 + }, + { + "start": 39663.48, + "end": 39664.4, + "probability": 0.9883 + }, + { + "start": 39664.52, + "end": 39665.3, + "probability": 0.9636 + }, + { + "start": 39665.42, + "end": 39666.26, + "probability": 0.9966 + }, + { + "start": 39667.22, + "end": 39671.36, + "probability": 0.9544 + }, + { + "start": 39671.9, + "end": 39673.14, + "probability": 0.9083 + }, + { + "start": 39673.26, + "end": 39676.12, + "probability": 0.972 + }, + { + "start": 39677.14, + "end": 39677.68, + "probability": 0.9927 + }, + { + "start": 39678.32, + "end": 39679.54, + "probability": 0.9613 + }, + { + "start": 39679.54, + "end": 39683.8, + "probability": 0.9956 + }, + { + "start": 39684.56, + "end": 39687.8, + "probability": 0.9892 + }, + { + "start": 39688.64, + "end": 39691.58, + "probability": 0.9992 + }, + { + "start": 39692.28, + "end": 39693.76, + "probability": 0.8805 + }, + { + "start": 39695.12, + "end": 39699.4, + "probability": 0.9752 + }, + { + "start": 39700.34, + "end": 39701.54, + "probability": 0.6488 + }, + { + "start": 39702.32, + "end": 39703.06, + "probability": 0.9712 + }, + { + "start": 39705.74, + "end": 39708.96, + "probability": 0.9785 + }, + { + "start": 39709.7, + "end": 39710.48, + "probability": 0.9309 + }, + { + "start": 39710.7, + "end": 39712.06, + "probability": 0.7348 + }, + { + "start": 39712.78, + "end": 39714.14, + "probability": 0.9959 + }, + { + "start": 39715.2, + "end": 39718.24, + "probability": 0.9567 + }, + { + "start": 39719.72, + "end": 39721.74, + "probability": 0.9958 + }, + { + "start": 39723.46, + "end": 39729.78, + "probability": 0.9966 + }, + { + "start": 39730.42, + "end": 39731.88, + "probability": 0.9541 + }, + { + "start": 39733.26, + "end": 39737.28, + "probability": 0.9907 + }, + { + "start": 39738.0, + "end": 39738.22, + "probability": 0.738 + }, + { + "start": 39739.3, + "end": 39740.04, + "probability": 0.8415 + }, + { + "start": 39740.16, + "end": 39743.06, + "probability": 0.877 + }, + { + "start": 39743.56, + "end": 39744.66, + "probability": 0.9723 + }, + { + "start": 39745.2, + "end": 39746.56, + "probability": 0.7932 + }, + { + "start": 39747.68, + "end": 39749.16, + "probability": 0.8905 + }, + { + "start": 39750.88, + "end": 39753.52, + "probability": 0.8397 + }, + { + "start": 39753.84, + "end": 39755.08, + "probability": 0.9912 + }, + { + "start": 39756.62, + "end": 39757.36, + "probability": 0.757 + }, + { + "start": 39758.38, + "end": 39760.04, + "probability": 0.9982 + }, + { + "start": 39761.08, + "end": 39762.44, + "probability": 0.7357 + }, + { + "start": 39763.44, + "end": 39766.14, + "probability": 0.9686 + }, + { + "start": 39766.28, + "end": 39766.5, + "probability": 0.8017 + }, + { + "start": 39767.56, + "end": 39768.94, + "probability": 0.982 + }, + { + "start": 39769.74, + "end": 39770.92, + "probability": 0.9512 + }, + { + "start": 39771.06, + "end": 39772.32, + "probability": 0.9383 + }, + { + "start": 39773.34, + "end": 39777.64, + "probability": 0.9944 + }, + { + "start": 39779.54, + "end": 39780.98, + "probability": 0.9895 + }, + { + "start": 39781.06, + "end": 39782.9, + "probability": 0.9496 + }, + { + "start": 39783.14, + "end": 39783.16, + "probability": 0.1947 + }, + { + "start": 39783.82, + "end": 39785.34, + "probability": 0.9976 + }, + { + "start": 39785.68, + "end": 39787.24, + "probability": 0.542 + }, + { + "start": 39789.38, + "end": 39789.92, + "probability": 0.9778 + }, + { + "start": 39791.0, + "end": 39793.06, + "probability": 0.9417 + }, + { + "start": 39794.1, + "end": 39796.18, + "probability": 0.9988 + }, + { + "start": 39796.34, + "end": 39799.76, + "probability": 0.9542 + }, + { + "start": 39799.92, + "end": 39801.09, + "probability": 0.9966 + }, + { + "start": 39801.46, + "end": 39802.57, + "probability": 0.7615 + }, + { + "start": 39803.12, + "end": 39803.57, + "probability": 0.9971 + }, + { + "start": 39804.66, + "end": 39807.54, + "probability": 0.978 + }, + { + "start": 39808.16, + "end": 39810.18, + "probability": 0.8226 + }, + { + "start": 39811.08, + "end": 39812.66, + "probability": 0.9906 + }, + { + "start": 39813.46, + "end": 39815.38, + "probability": 0.8381 + }, + { + "start": 39816.34, + "end": 39816.82, + "probability": 0.6011 + }, + { + "start": 39817.84, + "end": 39819.31, + "probability": 0.5959 + }, + { + "start": 39820.66, + "end": 39821.06, + "probability": 0.7969 + }, + { + "start": 39821.96, + "end": 39823.78, + "probability": 0.9781 + }, + { + "start": 39825.28, + "end": 39826.0, + "probability": 0.9842 + }, + { + "start": 39827.1, + "end": 39827.79, + "probability": 0.933 + }, + { + "start": 39828.5, + "end": 39832.36, + "probability": 0.9805 + }, + { + "start": 39832.92, + "end": 39833.59, + "probability": 0.6953 + }, + { + "start": 39834.9, + "end": 39835.82, + "probability": 0.3927 + }, + { + "start": 39836.5, + "end": 39836.72, + "probability": 0.6982 + }, + { + "start": 39838.44, + "end": 39840.78, + "probability": 0.959 + }, + { + "start": 39840.88, + "end": 39841.9, + "probability": 0.8555 + }, + { + "start": 39843.3, + "end": 39846.28, + "probability": 0.955 + }, + { + "start": 39848.53, + "end": 39851.36, + "probability": 0.9417 + }, + { + "start": 39852.38, + "end": 39854.06, + "probability": 0.5931 + }, + { + "start": 39854.2, + "end": 39855.92, + "probability": 0.9902 + }, + { + "start": 39857.28, + "end": 39857.94, + "probability": 0.4814 + }, + { + "start": 39859.22, + "end": 39861.22, + "probability": 0.993 + }, + { + "start": 39862.74, + "end": 39865.18, + "probability": 0.9834 + }, + { + "start": 39866.98, + "end": 39868.4, + "probability": 0.9583 + }, + { + "start": 39869.38, + "end": 39870.94, + "probability": 0.9492 + }, + { + "start": 39871.52, + "end": 39873.06, + "probability": 0.6913 + }, + { + "start": 39874.82, + "end": 39878.4, + "probability": 0.9707 + }, + { + "start": 39880.07, + "end": 39882.82, + "probability": 0.8357 + }, + { + "start": 39884.28, + "end": 39885.52, + "probability": 0.9604 + }, + { + "start": 39886.02, + "end": 39887.87, + "probability": 0.9668 + }, + { + "start": 39888.68, + "end": 39889.22, + "probability": 0.4517 + }, + { + "start": 39890.08, + "end": 39890.94, + "probability": 0.6798 + }, + { + "start": 39891.6, + "end": 39894.06, + "probability": 0.9865 + }, + { + "start": 39894.08, + "end": 39894.29, + "probability": 0.5719 + }, + { + "start": 39894.74, + "end": 39895.96, + "probability": 0.9824 + }, + { + "start": 39898.02, + "end": 39900.56, + "probability": 0.9746 + }, + { + "start": 39901.5, + "end": 39902.82, + "probability": 0.9652 + }, + { + "start": 39903.92, + "end": 39905.72, + "probability": 0.9864 + }, + { + "start": 39906.18, + "end": 39908.02, + "probability": 0.9915 + }, + { + "start": 39908.7, + "end": 39910.22, + "probability": 0.7856 + }, + { + "start": 39911.54, + "end": 39913.6, + "probability": 0.9895 + }, + { + "start": 39913.7, + "end": 39913.92, + "probability": 0.8964 + }, + { + "start": 39914.26, + "end": 39915.8, + "probability": 0.9827 + }, + { + "start": 39916.72, + "end": 39917.96, + "probability": 0.976 + }, + { + "start": 39918.14, + "end": 39919.72, + "probability": 0.988 + }, + { + "start": 39920.06, + "end": 39923.03, + "probability": 0.9899 + }, + { + "start": 39923.58, + "end": 39925.58, + "probability": 0.9731 + }, + { + "start": 39926.1, + "end": 39928.36, + "probability": 0.981 + }, + { + "start": 39929.36, + "end": 39930.42, + "probability": 0.9968 + }, + { + "start": 39933.74, + "end": 39934.5, + "probability": 0.9775 + }, + { + "start": 39936.66, + "end": 39938.82, + "probability": 0.9383 + }, + { + "start": 39939.72, + "end": 39940.3, + "probability": 0.8779 + }, + { + "start": 39942.36, + "end": 39943.84, + "probability": 0.9648 + }, + { + "start": 39945.08, + "end": 39946.46, + "probability": 0.9469 + }, + { + "start": 39947.18, + "end": 39948.4, + "probability": 0.9197 + }, + { + "start": 39949.7, + "end": 39951.29, + "probability": 0.9958 + }, + { + "start": 39951.44, + "end": 39952.54, + "probability": 0.9665 + }, + { + "start": 39952.66, + "end": 39954.96, + "probability": 0.9835 + }, + { + "start": 39955.52, + "end": 39956.6, + "probability": 0.9976 + }, + { + "start": 39957.16, + "end": 39958.26, + "probability": 0.9388 + }, + { + "start": 39958.34, + "end": 39960.18, + "probability": 0.9062 + }, + { + "start": 39961.32, + "end": 39962.92, + "probability": 0.9039 + }, + { + "start": 39964.08, + "end": 39965.58, + "probability": 0.8465 + }, + { + "start": 39966.1, + "end": 39967.56, + "probability": 0.6833 + }, + { + "start": 39968.22, + "end": 39969.18, + "probability": 0.983 + }, + { + "start": 39970.36, + "end": 39971.16, + "probability": 0.665 + }, + { + "start": 39972.02, + "end": 39975.58, + "probability": 0.9908 + }, + { + "start": 39975.7, + "end": 39976.98, + "probability": 0.97 + }, + { + "start": 39978.64, + "end": 39981.54, + "probability": 0.9479 + }, + { + "start": 39982.5, + "end": 39986.78, + "probability": 0.6827 + }, + { + "start": 39987.52, + "end": 39991.52, + "probability": 0.9778 + }, + { + "start": 39991.68, + "end": 39992.74, + "probability": 0.7377 + }, + { + "start": 39992.94, + "end": 39996.65, + "probability": 0.9391 + }, + { + "start": 39997.92, + "end": 39999.28, + "probability": 0.8762 + }, + { + "start": 39999.38, + "end": 40000.62, + "probability": 0.9861 + }, + { + "start": 40000.7, + "end": 40001.8, + "probability": 0.9954 + }, + { + "start": 40001.86, + "end": 40002.44, + "probability": 0.9587 + }, + { + "start": 40002.78, + "end": 40003.36, + "probability": 0.3735 + }, + { + "start": 40003.46, + "end": 40004.12, + "probability": 0.9684 + }, + { + "start": 40005.32, + "end": 40008.16, + "probability": 0.9641 + }, + { + "start": 40008.4, + "end": 40009.48, + "probability": 0.93 + }, + { + "start": 40009.58, + "end": 40010.14, + "probability": 0.8885 + }, + { + "start": 40010.84, + "end": 40011.96, + "probability": 0.8976 + }, + { + "start": 40013.24, + "end": 40018.24, + "probability": 0.9974 + }, + { + "start": 40018.46, + "end": 40019.28, + "probability": 0.9541 + }, + { + "start": 40019.98, + "end": 40020.72, + "probability": 0.9663 + }, + { + "start": 40022.62, + "end": 40023.78, + "probability": 0.9803 + }, + { + "start": 40024.46, + "end": 40025.22, + "probability": 0.9954 + }, + { + "start": 40026.0, + "end": 40031.58, + "probability": 0.9973 + }, + { + "start": 40032.38, + "end": 40032.82, + "probability": 0.8619 + }, + { + "start": 40033.52, + "end": 40035.72, + "probability": 0.9924 + }, + { + "start": 40036.18, + "end": 40038.78, + "probability": 0.908 + }, + { + "start": 40039.0, + "end": 40040.7, + "probability": 0.9144 + }, + { + "start": 40041.1, + "end": 40042.06, + "probability": 0.9874 + }, + { + "start": 40043.48, + "end": 40046.65, + "probability": 0.7626 + }, + { + "start": 40047.6, + "end": 40049.3, + "probability": 0.8364 + }, + { + "start": 40049.56, + "end": 40051.2, + "probability": 0.9546 + }, + { + "start": 40051.3, + "end": 40052.1, + "probability": 0.9727 + }, + { + "start": 40052.3, + "end": 40056.24, + "probability": 0.97 + }, + { + "start": 40056.92, + "end": 40059.56, + "probability": 0.9033 + }, + { + "start": 40061.38, + "end": 40063.0, + "probability": 0.9928 + }, + { + "start": 40064.4, + "end": 40067.08, + "probability": 0.9977 + }, + { + "start": 40068.92, + "end": 40070.56, + "probability": 0.7335 + }, + { + "start": 40071.96, + "end": 40073.18, + "probability": 0.301 + }, + { + "start": 40073.28, + "end": 40075.1, + "probability": 0.9941 + }, + { + "start": 40075.96, + "end": 40076.96, + "probability": 0.789 + }, + { + "start": 40078.26, + "end": 40079.33, + "probability": 0.8303 + }, + { + "start": 40081.06, + "end": 40083.1, + "probability": 0.9952 + }, + { + "start": 40084.98, + "end": 40085.43, + "probability": 0.9924 + }, + { + "start": 40086.82, + "end": 40088.74, + "probability": 0.8296 + }, + { + "start": 40088.76, + "end": 40089.48, + "probability": 0.8188 + }, + { + "start": 40090.36, + "end": 40095.76, + "probability": 0.9951 + }, + { + "start": 40095.9, + "end": 40096.1, + "probability": 0.3873 + }, + { + "start": 40096.12, + "end": 40096.76, + "probability": 0.8798 + }, + { + "start": 40096.82, + "end": 40098.28, + "probability": 0.9985 + }, + { + "start": 40099.5, + "end": 40101.93, + "probability": 0.9929 + }, + { + "start": 40105.36, + "end": 40106.3, + "probability": 0.8545 + }, + { + "start": 40106.56, + "end": 40110.04, + "probability": 0.842 + }, + { + "start": 40111.16, + "end": 40112.88, + "probability": 0.8722 + }, + { + "start": 40113.44, + "end": 40114.04, + "probability": 0.943 + }, + { + "start": 40114.94, + "end": 40119.2, + "probability": 0.8966 + }, + { + "start": 40120.02, + "end": 40122.74, + "probability": 0.7981 + }, + { + "start": 40123.88, + "end": 40125.38, + "probability": 0.901 + }, + { + "start": 40126.72, + "end": 40128.56, + "probability": 0.9546 + }, + { + "start": 40128.76, + "end": 40133.7, + "probability": 0.9795 + }, + { + "start": 40134.34, + "end": 40137.24, + "probability": 0.8911 + }, + { + "start": 40137.32, + "end": 40140.18, + "probability": 0.9899 + }, + { + "start": 40141.6, + "end": 40145.48, + "probability": 0.7461 + }, + { + "start": 40146.18, + "end": 40147.32, + "probability": 0.9866 + }, + { + "start": 40148.68, + "end": 40150.22, + "probability": 0.991 + }, + { + "start": 40151.6, + "end": 40156.12, + "probability": 0.9907 + }, + { + "start": 40159.0, + "end": 40160.94, + "probability": 0.9292 + }, + { + "start": 40162.94, + "end": 40165.28, + "probability": 0.9686 + }, + { + "start": 40167.86, + "end": 40168.96, + "probability": 0.7811 + }, + { + "start": 40170.26, + "end": 40171.14, + "probability": 0.834 + }, + { + "start": 40172.8, + "end": 40176.02, + "probability": 0.7937 + }, + { + "start": 40177.12, + "end": 40178.18, + "probability": 0.9826 + }, + { + "start": 40179.26, + "end": 40182.12, + "probability": 0.9962 + }, + { + "start": 40183.78, + "end": 40185.72, + "probability": 0.9976 + }, + { + "start": 40186.38, + "end": 40188.96, + "probability": 0.9663 + }, + { + "start": 40194.04, + "end": 40194.86, + "probability": 0.7071 + }, + { + "start": 40195.76, + "end": 40196.8, + "probability": 0.791 + }, + { + "start": 40197.9, + "end": 40200.0, + "probability": 0.9922 + }, + { + "start": 40200.3, + "end": 40201.0, + "probability": 0.8578 + }, + { + "start": 40201.86, + "end": 40202.88, + "probability": 0.6581 + }, + { + "start": 40205.58, + "end": 40207.08, + "probability": 0.9047 + }, + { + "start": 40208.44, + "end": 40211.64, + "probability": 0.9968 + }, + { + "start": 40212.3, + "end": 40213.14, + "probability": 0.685 + }, + { + "start": 40213.6, + "end": 40216.38, + "probability": 0.8971 + }, + { + "start": 40217.06, + "end": 40218.04, + "probability": 0.9563 + }, + { + "start": 40218.14, + "end": 40221.84, + "probability": 0.8818 + }, + { + "start": 40222.44, + "end": 40223.98, + "probability": 0.9695 + }, + { + "start": 40224.1, + "end": 40226.48, + "probability": 0.9834 + }, + { + "start": 40227.08, + "end": 40230.66, + "probability": 0.9874 + }, + { + "start": 40231.96, + "end": 40234.52, + "probability": 0.9917 + }, + { + "start": 40234.96, + "end": 40235.64, + "probability": 0.963 + }, + { + "start": 40237.46, + "end": 40239.38, + "probability": 0.9917 + }, + { + "start": 40240.42, + "end": 40241.98, + "probability": 0.8798 + }, + { + "start": 40244.02, + "end": 40244.79, + "probability": 0.9824 + }, + { + "start": 40246.0, + "end": 40246.76, + "probability": 0.967 + }, + { + "start": 40249.06, + "end": 40249.92, + "probability": 0.7953 + }, + { + "start": 40251.22, + "end": 40253.44, + "probability": 0.7358 + }, + { + "start": 40253.66, + "end": 40254.04, + "probability": 0.4535 + }, + { + "start": 40255.02, + "end": 40255.6, + "probability": 0.7556 + }, + { + "start": 40256.66, + "end": 40261.02, + "probability": 0.9583 + }, + { + "start": 40262.34, + "end": 40263.42, + "probability": 0.793 + }, + { + "start": 40265.06, + "end": 40265.68, + "probability": 0.9272 + }, + { + "start": 40266.66, + "end": 40268.76, + "probability": 0.8175 + }, + { + "start": 40269.84, + "end": 40270.8, + "probability": 0.832 + }, + { + "start": 40273.22, + "end": 40275.1, + "probability": 0.7373 + }, + { + "start": 40276.9, + "end": 40278.84, + "probability": 0.8156 + }, + { + "start": 40282.2, + "end": 40283.04, + "probability": 0.8788 + }, + { + "start": 40285.58, + "end": 40286.05, + "probability": 0.9517 + }, + { + "start": 40287.2, + "end": 40289.34, + "probability": 0.9323 + }, + { + "start": 40290.92, + "end": 40292.44, + "probability": 0.9333 + }, + { + "start": 40292.6, + "end": 40294.0, + "probability": 0.8542 + }, + { + "start": 40295.4, + "end": 40300.41, + "probability": 0.9748 + }, + { + "start": 40300.7, + "end": 40303.7, + "probability": 0.9976 + }, + { + "start": 40303.82, + "end": 40304.38, + "probability": 0.8795 + }, + { + "start": 40305.18, + "end": 40308.3, + "probability": 0.999 + }, + { + "start": 40308.46, + "end": 40309.06, + "probability": 0.9386 + }, + { + "start": 40309.8, + "end": 40311.08, + "probability": 0.6949 + }, + { + "start": 40312.96, + "end": 40316.26, + "probability": 0.8609 + }, + { + "start": 40316.8, + "end": 40320.26, + "probability": 0.7696 + }, + { + "start": 40320.94, + "end": 40322.47, + "probability": 0.9646 + }, + { + "start": 40323.62, + "end": 40327.7, + "probability": 0.9894 + }, + { + "start": 40327.7, + "end": 40332.26, + "probability": 0.9989 + }, + { + "start": 40333.12, + "end": 40333.84, + "probability": 0.9995 + }, + { + "start": 40334.42, + "end": 40336.48, + "probability": 0.9083 + }, + { + "start": 40338.12, + "end": 40341.6, + "probability": 0.9604 + }, + { + "start": 40342.82, + "end": 40346.54, + "probability": 0.9883 + }, + { + "start": 40347.8, + "end": 40351.02, + "probability": 0.976 + }, + { + "start": 40351.46, + "end": 40351.96, + "probability": 0.5445 + }, + { + "start": 40352.5, + "end": 40352.9, + "probability": 0.919 + }, + { + "start": 40353.78, + "end": 40356.22, + "probability": 0.9795 + }, + { + "start": 40356.5, + "end": 40357.0, + "probability": 0.9479 + }, + { + "start": 40357.44, + "end": 40358.24, + "probability": 0.9663 + }, + { + "start": 40359.24, + "end": 40359.8, + "probability": 0.9203 + }, + { + "start": 40360.68, + "end": 40363.68, + "probability": 0.7977 + }, + { + "start": 40364.62, + "end": 40365.6, + "probability": 0.9588 + }, + { + "start": 40366.06, + "end": 40366.7, + "probability": 0.6037 + }, + { + "start": 40366.82, + "end": 40367.42, + "probability": 0.8468 + }, + { + "start": 40367.52, + "end": 40368.28, + "probability": 0.9565 + }, + { + "start": 40369.34, + "end": 40373.26, + "probability": 0.9455 + }, + { + "start": 40374.54, + "end": 40375.1, + "probability": 0.9572 + }, + { + "start": 40375.18, + "end": 40375.86, + "probability": 0.7882 + }, + { + "start": 40376.18, + "end": 40378.44, + "probability": 0.946 + }, + { + "start": 40378.64, + "end": 40379.66, + "probability": 0.9767 + }, + { + "start": 40379.9, + "end": 40380.28, + "probability": 0.8666 + }, + { + "start": 40381.3, + "end": 40383.52, + "probability": 0.986 + }, + { + "start": 40384.08, + "end": 40389.45, + "probability": 0.948 + }, + { + "start": 40390.4, + "end": 40392.48, + "probability": 0.9278 + }, + { + "start": 40392.6, + "end": 40393.4, + "probability": 0.9489 + }, + { + "start": 40393.9, + "end": 40395.0, + "probability": 0.9329 + }, + { + "start": 40395.14, + "end": 40396.44, + "probability": 0.9765 + }, + { + "start": 40396.56, + "end": 40398.16, + "probability": 0.8934 + }, + { + "start": 40399.02, + "end": 40399.76, + "probability": 0.6315 + }, + { + "start": 40400.38, + "end": 40401.58, + "probability": 0.9501 + }, + { + "start": 40401.96, + "end": 40403.6, + "probability": 0.9604 + }, + { + "start": 40404.16, + "end": 40406.46, + "probability": 0.7806 + }, + { + "start": 40406.74, + "end": 40407.58, + "probability": 0.6255 + }, + { + "start": 40408.5, + "end": 40409.36, + "probability": 0.8009 + }, + { + "start": 40409.46, + "end": 40413.36, + "probability": 0.8654 + }, + { + "start": 40413.52, + "end": 40414.8, + "probability": 0.9952 + }, + { + "start": 40415.04, + "end": 40416.77, + "probability": 0.9917 + }, + { + "start": 40418.14, + "end": 40420.9, + "probability": 0.817 + }, + { + "start": 40421.04, + "end": 40422.56, + "probability": 0.7791 + }, + { + "start": 40422.82, + "end": 40423.36, + "probability": 0.6824 + }, + { + "start": 40423.56, + "end": 40425.72, + "probability": 0.9875 + }, + { + "start": 40425.84, + "end": 40427.3, + "probability": 0.8301 + }, + { + "start": 40427.62, + "end": 40428.16, + "probability": 0.9199 + }, + { + "start": 40429.28, + "end": 40430.98, + "probability": 0.9766 + }, + { + "start": 40431.26, + "end": 40433.6, + "probability": 0.9321 + }, + { + "start": 40435.48, + "end": 40438.16, + "probability": 0.992 + }, + { + "start": 40439.04, + "end": 40443.84, + "probability": 0.9799 + }, + { + "start": 40445.2, + "end": 40446.22, + "probability": 0.8889 + }, + { + "start": 40447.12, + "end": 40450.0, + "probability": 0.981 + }, + { + "start": 40450.0, + "end": 40452.56, + "probability": 0.9987 + }, + { + "start": 40453.72, + "end": 40455.4, + "probability": 0.9904 + }, + { + "start": 40457.16, + "end": 40460.34, + "probability": 0.8236 + }, + { + "start": 40461.86, + "end": 40462.6, + "probability": 0.7551 + }, + { + "start": 40465.82, + "end": 40467.68, + "probability": 0.9929 + }, + { + "start": 40470.78, + "end": 40473.66, + "probability": 0.981 + }, + { + "start": 40475.04, + "end": 40475.94, + "probability": 0.9722 + }, + { + "start": 40476.1, + "end": 40476.47, + "probability": 0.9268 + }, + { + "start": 40476.8, + "end": 40478.02, + "probability": 0.9034 + }, + { + "start": 40478.56, + "end": 40480.34, + "probability": 0.9611 + }, + { + "start": 40480.8, + "end": 40483.18, + "probability": 0.7824 + }, + { + "start": 40484.76, + "end": 40485.62, + "probability": 0.8438 + }, + { + "start": 40487.0, + "end": 40487.66, + "probability": 0.7772 + }, + { + "start": 40488.9, + "end": 40491.54, + "probability": 0.9778 + }, + { + "start": 40493.74, + "end": 40494.6, + "probability": 0.8356 + }, + { + "start": 40498.16, + "end": 40499.12, + "probability": 0.9175 + }, + { + "start": 40500.94, + "end": 40501.84, + "probability": 0.669 + }, + { + "start": 40502.68, + "end": 40503.2, + "probability": 0.9868 + }, + { + "start": 40504.08, + "end": 40504.72, + "probability": 0.6312 + }, + { + "start": 40505.6, + "end": 40505.84, + "probability": 0.5818 + }, + { + "start": 40507.74, + "end": 40508.28, + "probability": 0.9565 + }, + { + "start": 40509.38, + "end": 40510.28, + "probability": 0.9577 + }, + { + "start": 40512.02, + "end": 40514.46, + "probability": 0.8293 + }, + { + "start": 40514.58, + "end": 40516.48, + "probability": 0.9162 + }, + { + "start": 40517.48, + "end": 40520.8, + "probability": 0.9136 + }, + { + "start": 40520.86, + "end": 40522.52, + "probability": 0.9966 + }, + { + "start": 40522.54, + "end": 40523.52, + "probability": 0.7246 + }, + { + "start": 40523.58, + "end": 40525.22, + "probability": 0.9586 + }, + { + "start": 40525.7, + "end": 40526.68, + "probability": 0.9083 + }, + { + "start": 40526.7, + "end": 40529.7, + "probability": 0.9825 + }, + { + "start": 40530.16, + "end": 40532.36, + "probability": 0.8969 + }, + { + "start": 40532.56, + "end": 40535.08, + "probability": 0.9371 + }, + { + "start": 40536.0, + "end": 40538.8, + "probability": 0.9991 + }, + { + "start": 40539.16, + "end": 40540.58, + "probability": 0.966 + }, + { + "start": 40541.26, + "end": 40542.92, + "probability": 0.9662 + }, + { + "start": 40543.34, + "end": 40544.1, + "probability": 0.9782 + }, + { + "start": 40545.32, + "end": 40548.42, + "probability": 0.9919 + }, + { + "start": 40549.96, + "end": 40551.02, + "probability": 0.9858 + }, + { + "start": 40551.64, + "end": 40555.52, + "probability": 0.8995 + }, + { + "start": 40556.04, + "end": 40556.64, + "probability": 0.9924 + }, + { + "start": 40557.38, + "end": 40558.28, + "probability": 0.6994 + }, + { + "start": 40558.48, + "end": 40558.62, + "probability": 0.832 + }, + { + "start": 40560.44, + "end": 40563.01, + "probability": 0.9945 + }, + { + "start": 40563.44, + "end": 40566.02, + "probability": 0.8855 + }, + { + "start": 40566.74, + "end": 40570.64, + "probability": 0.9838 + }, + { + "start": 40571.0, + "end": 40572.64, + "probability": 0.5067 + }, + { + "start": 40573.32, + "end": 40575.16, + "probability": 0.998 + }, + { + "start": 40575.3, + "end": 40577.0, + "probability": 0.9766 + }, + { + "start": 40579.0, + "end": 40580.32, + "probability": 0.9152 + }, + { + "start": 40581.0, + "end": 40581.8, + "probability": 0.9786 + }, + { + "start": 40582.14, + "end": 40584.8, + "probability": 0.9446 + }, + { + "start": 40585.36, + "end": 40586.1, + "probability": 0.55 + }, + { + "start": 40588.78, + "end": 40591.5, + "probability": 0.9749 + }, + { + "start": 40592.1, + "end": 40595.22, + "probability": 0.9961 + }, + { + "start": 40596.34, + "end": 40599.4, + "probability": 0.9878 + }, + { + "start": 40600.08, + "end": 40602.68, + "probability": 0.9233 + }, + { + "start": 40603.62, + "end": 40604.72, + "probability": 0.8157 + }, + { + "start": 40606.1, + "end": 40607.76, + "probability": 0.9333 + }, + { + "start": 40610.02, + "end": 40611.22, + "probability": 0.9911 + }, + { + "start": 40611.9, + "end": 40612.68, + "probability": 0.9954 + }, + { + "start": 40613.68, + "end": 40614.82, + "probability": 0.9951 + }, + { + "start": 40615.82, + "end": 40619.7, + "probability": 0.9965 + }, + { + "start": 40619.82, + "end": 40621.28, + "probability": 0.7772 + }, + { + "start": 40623.68, + "end": 40626.48, + "probability": 0.785 + }, + { + "start": 40627.14, + "end": 40628.48, + "probability": 0.8127 + }, + { + "start": 40629.74, + "end": 40632.48, + "probability": 0.983 + }, + { + "start": 40633.78, + "end": 40634.98, + "probability": 0.862 + }, + { + "start": 40636.44, + "end": 40640.4, + "probability": 0.994 + }, + { + "start": 40640.78, + "end": 40643.22, + "probability": 0.9719 + }, + { + "start": 40644.02, + "end": 40647.48, + "probability": 0.9741 + }, + { + "start": 40648.5, + "end": 40651.46, + "probability": 0.9961 + }, + { + "start": 40652.26, + "end": 40653.36, + "probability": 0.7061 + }, + { + "start": 40653.7, + "end": 40655.56, + "probability": 0.9882 + }, + { + "start": 40656.34, + "end": 40658.06, + "probability": 0.6035 + }, + { + "start": 40658.18, + "end": 40658.67, + "probability": 0.4482 + }, + { + "start": 40659.02, + "end": 40661.6, + "probability": 0.9788 + }, + { + "start": 40662.56, + "end": 40664.38, + "probability": 0.9846 + }, + { + "start": 40665.36, + "end": 40666.46, + "probability": 0.9752 + }, + { + "start": 40667.66, + "end": 40671.6, + "probability": 0.9958 + }, + { + "start": 40671.68, + "end": 40672.22, + "probability": 0.9773 + }, + { + "start": 40673.7, + "end": 40674.82, + "probability": 0.9688 + }, + { + "start": 40677.54, + "end": 40678.0, + "probability": 0.1697 + }, + { + "start": 40678.0, + "end": 40679.63, + "probability": 0.7435 + }, + { + "start": 40680.42, + "end": 40686.04, + "probability": 0.8552 + }, + { + "start": 40686.32, + "end": 40688.4, + "probability": 0.9744 + }, + { + "start": 40688.58, + "end": 40688.98, + "probability": 0.7891 + }, + { + "start": 40690.06, + "end": 40691.56, + "probability": 0.7387 + }, + { + "start": 40691.7, + "end": 40692.76, + "probability": 0.5211 + }, + { + "start": 40692.9, + "end": 40694.02, + "probability": 0.6552 + }, + { + "start": 40694.54, + "end": 40697.96, + "probability": 0.9908 + }, + { + "start": 40699.0, + "end": 40700.5, + "probability": 0.6536 + }, + { + "start": 40701.76, + "end": 40703.52, + "probability": 0.9409 + }, + { + "start": 40704.1, + "end": 40705.39, + "probability": 0.9077 + }, + { + "start": 40706.44, + "end": 40710.18, + "probability": 0.9111 + }, + { + "start": 40710.24, + "end": 40710.58, + "probability": 0.3099 + }, + { + "start": 40710.66, + "end": 40710.76, + "probability": 0.6046 + }, + { + "start": 40710.86, + "end": 40711.3, + "probability": 0.7735 + }, + { + "start": 40711.44, + "end": 40711.72, + "probability": 0.6642 + }, + { + "start": 40711.82, + "end": 40712.74, + "probability": 0.9817 + }, + { + "start": 40712.92, + "end": 40713.49, + "probability": 0.8765 + }, + { + "start": 40714.3, + "end": 40715.88, + "probability": 0.9697 + }, + { + "start": 40716.24, + "end": 40716.48, + "probability": 0.8167 + }, + { + "start": 40717.66, + "end": 40719.04, + "probability": 0.8052 + }, + { + "start": 40720.0, + "end": 40721.94, + "probability": 0.8485 + }, + { + "start": 40722.84, + "end": 40725.08, + "probability": 0.9121 + }, + { + "start": 40725.2, + "end": 40725.76, + "probability": 0.8635 + }, + { + "start": 40727.28, + "end": 40728.1, + "probability": 0.5875 + }, + { + "start": 40728.2, + "end": 40728.68, + "probability": 0.75 + }, + { + "start": 40730.28, + "end": 40731.42, + "probability": 0.9495 + }, + { + "start": 40731.5, + "end": 40732.18, + "probability": 0.9653 + }, + { + "start": 40732.52, + "end": 40734.48, + "probability": 0.7064 + }, + { + "start": 40735.14, + "end": 40737.36, + "probability": 0.9218 + }, + { + "start": 40738.16, + "end": 40739.78, + "probability": 0.9422 + }, + { + "start": 40740.64, + "end": 40741.66, + "probability": 0.7835 + }, + { + "start": 40743.48, + "end": 40747.18, + "probability": 0.9729 + }, + { + "start": 40749.0, + "end": 40749.96, + "probability": 0.9207 + }, + { + "start": 40750.3, + "end": 40750.4, + "probability": 0.6814 + }, + { + "start": 40753.04, + "end": 40753.75, + "probability": 0.8643 + }, + { + "start": 40754.62, + "end": 40755.02, + "probability": 0.7328 + }, + { + "start": 40755.12, + "end": 40755.58, + "probability": 0.8006 + }, + { + "start": 40755.66, + "end": 40756.75, + "probability": 0.9492 + }, + { + "start": 40757.16, + "end": 40757.76, + "probability": 0.9669 + }, + { + "start": 40757.92, + "end": 40758.5, + "probability": 0.9627 + }, + { + "start": 40758.8, + "end": 40759.18, + "probability": 0.6692 + }, + { + "start": 40760.8, + "end": 40761.72, + "probability": 0.8993 + }, + { + "start": 40762.94, + "end": 40765.32, + "probability": 0.8869 + }, + { + "start": 40765.94, + "end": 40768.3, + "probability": 0.9861 + }, + { + "start": 40769.56, + "end": 40770.56, + "probability": 0.9311 + }, + { + "start": 40771.5, + "end": 40772.6, + "probability": 0.9589 + }, + { + "start": 40773.32, + "end": 40776.26, + "probability": 0.9954 + }, + { + "start": 40776.76, + "end": 40780.04, + "probability": 0.9888 + }, + { + "start": 40780.7, + "end": 40782.66, + "probability": 0.8892 + }, + { + "start": 40782.94, + "end": 40783.64, + "probability": 0.7042 + }, + { + "start": 40784.34, + "end": 40785.76, + "probability": 0.5174 + }, + { + "start": 40786.06, + "end": 40788.84, + "probability": 0.9023 + }, + { + "start": 40789.22, + "end": 40789.42, + "probability": 0.8391 + }, + { + "start": 40790.3, + "end": 40792.4, + "probability": 0.9904 + }, + { + "start": 40793.34, + "end": 40793.58, + "probability": 0.5069 + }, + { + "start": 40793.82, + "end": 40794.82, + "probability": 0.8203 + }, + { + "start": 40795.0, + "end": 40796.0, + "probability": 0.8383 + }, + { + "start": 40796.04, + "end": 40797.48, + "probability": 0.985 + }, + { + "start": 40797.6, + "end": 40797.9, + "probability": 0.9819 + }, + { + "start": 40799.0, + "end": 40799.43, + "probability": 0.9954 + }, + { + "start": 40800.62, + "end": 40804.56, + "probability": 0.9928 + }, + { + "start": 40804.6, + "end": 40805.08, + "probability": 0.9814 + }, + { + "start": 40805.84, + "end": 40807.14, + "probability": 0.5512 + }, + { + "start": 40807.76, + "end": 40811.56, + "probability": 0.7616 + }, + { + "start": 40811.56, + "end": 40812.3, + "probability": 0.6313 + }, + { + "start": 40822.66, + "end": 40824.08, + "probability": 0.446 + }, + { + "start": 40824.12, + "end": 40824.28, + "probability": 0.0304 + }, + { + "start": 40824.28, + "end": 40824.38, + "probability": 0.1535 + }, + { + "start": 40824.38, + "end": 40824.44, + "probability": 0.0486 + }, + { + "start": 40824.44, + "end": 40824.44, + "probability": 0.1548 + }, + { + "start": 40835.16, + "end": 40835.26, + "probability": 0.3078 + }, + { + "start": 40836.48, + "end": 40839.34, + "probability": 0.2149 + }, + { + "start": 40844.02, + "end": 40846.28, + "probability": 0.9973 + }, + { + "start": 40847.16, + "end": 40847.64, + "probability": 0.8067 + }, + { + "start": 40848.56, + "end": 40850.76, + "probability": 0.9976 + }, + { + "start": 40851.0, + "end": 40852.4, + "probability": 0.98 + }, + { + "start": 40854.35, + "end": 40858.26, + "probability": 0.9613 + }, + { + "start": 40859.74, + "end": 40861.12, + "probability": 0.9895 + }, + { + "start": 40861.82, + "end": 40862.4, + "probability": 0.8702 + }, + { + "start": 40863.12, + "end": 40865.52, + "probability": 0.9716 + }, + { + "start": 40866.48, + "end": 40868.34, + "probability": 0.984 + }, + { + "start": 40869.64, + "end": 40870.56, + "probability": 0.7037 + }, + { + "start": 40871.7, + "end": 40873.46, + "probability": 0.894 + }, + { + "start": 40874.86, + "end": 40878.76, + "probability": 0.9868 + }, + { + "start": 40879.3, + "end": 40882.8, + "probability": 0.9933 + }, + { + "start": 40884.0, + "end": 40885.04, + "probability": 0.9257 + }, + { + "start": 40886.22, + "end": 40888.02, + "probability": 0.7127 + }, + { + "start": 40888.1, + "end": 40890.86, + "probability": 0.9947 + }, + { + "start": 40890.96, + "end": 40893.3, + "probability": 0.9009 + }, + { + "start": 40894.84, + "end": 40897.84, + "probability": 0.9954 + }, + { + "start": 40899.14, + "end": 40902.5, + "probability": 0.9475 + }, + { + "start": 40903.64, + "end": 40906.62, + "probability": 0.974 + }, + { + "start": 40906.72, + "end": 40908.78, + "probability": 0.9531 + }, + { + "start": 40909.08, + "end": 40909.58, + "probability": 0.7569 + }, + { + "start": 40910.68, + "end": 40913.12, + "probability": 0.9622 + }, + { + "start": 40913.64, + "end": 40918.62, + "probability": 0.6886 + }, + { + "start": 40919.28, + "end": 40919.92, + "probability": 0.9897 + }, + { + "start": 40920.58, + "end": 40921.24, + "probability": 0.998 + }, + { + "start": 40922.16, + "end": 40922.98, + "probability": 0.5786 + }, + { + "start": 40923.92, + "end": 40926.06, + "probability": 0.9363 + }, + { + "start": 40926.2, + "end": 40928.26, + "probability": 0.9836 + }, + { + "start": 40928.48, + "end": 40930.2, + "probability": 0.9626 + }, + { + "start": 40930.84, + "end": 40932.74, + "probability": 0.8134 + }, + { + "start": 40935.28, + "end": 40936.5, + "probability": 0.923 + }, + { + "start": 40937.06, + "end": 40940.4, + "probability": 0.9989 + }, + { + "start": 40941.14, + "end": 40945.1, + "probability": 0.9602 + }, + { + "start": 40945.14, + "end": 40948.08, + "probability": 0.5221 + }, + { + "start": 40948.86, + "end": 40949.42, + "probability": 0.7378 + }, + { + "start": 40950.16, + "end": 40953.27, + "probability": 0.9978 + }, + { + "start": 40953.46, + "end": 40956.9, + "probability": 0.9939 + }, + { + "start": 40956.96, + "end": 40957.9, + "probability": 0.9167 + }, + { + "start": 40958.32, + "end": 40959.3, + "probability": 0.8101 + }, + { + "start": 40960.12, + "end": 40960.63, + "probability": 0.9277 + }, + { + "start": 40961.6, + "end": 40962.42, + "probability": 0.9736 + }, + { + "start": 40964.44, + "end": 40967.34, + "probability": 0.9729 + }, + { + "start": 40969.54, + "end": 40971.44, + "probability": 0.9893 + }, + { + "start": 40972.64, + "end": 40975.4, + "probability": 0.8792 + }, + { + "start": 40975.58, + "end": 40977.18, + "probability": 0.9348 + }, + { + "start": 40978.06, + "end": 40979.16, + "probability": 0.879 + }, + { + "start": 40980.84, + "end": 40981.84, + "probability": 0.9885 + }, + { + "start": 40981.88, + "end": 40985.86, + "probability": 0.8785 + }, + { + "start": 40986.88, + "end": 40988.5, + "probability": 0.9547 + }, + { + "start": 40989.22, + "end": 40989.62, + "probability": 0.5394 + }, + { + "start": 40989.9, + "end": 40991.34, + "probability": 0.8259 + }, + { + "start": 40991.44, + "end": 40991.84, + "probability": 0.9241 + }, + { + "start": 40992.48, + "end": 40994.02, + "probability": 0.9678 + }, + { + "start": 40994.72, + "end": 40997.02, + "probability": 0.5484 + }, + { + "start": 40998.0, + "end": 41000.74, + "probability": 0.9023 + }, + { + "start": 41001.9, + "end": 41005.4, + "probability": 0.8835 + }, + { + "start": 41006.16, + "end": 41007.2, + "probability": 0.993 + }, + { + "start": 41008.02, + "end": 41011.28, + "probability": 0.9783 + }, + { + "start": 41012.28, + "end": 41012.4, + "probability": 0.9491 + }, + { + "start": 41012.86, + "end": 41013.24, + "probability": 0.7031 + }, + { + "start": 41013.68, + "end": 41014.14, + "probability": 0.9918 + }, + { + "start": 41014.74, + "end": 41015.36, + "probability": 0.9444 + }, + { + "start": 41016.16, + "end": 41017.4, + "probability": 0.6609 + }, + { + "start": 41018.14, + "end": 41019.26, + "probability": 0.9166 + }, + { + "start": 41019.98, + "end": 41020.62, + "probability": 0.9708 + }, + { + "start": 41021.48, + "end": 41022.94, + "probability": 0.8657 + }, + { + "start": 41023.68, + "end": 41024.72, + "probability": 0.9456 + }, + { + "start": 41025.44, + "end": 41025.44, + "probability": 0.0056 + }, + { + "start": 41025.44, + "end": 41026.78, + "probability": 0.8218 + }, + { + "start": 41027.0, + "end": 41030.38, + "probability": 0.8912 + }, + { + "start": 41030.44, + "end": 41031.34, + "probability": 0.6993 + }, + { + "start": 41032.12, + "end": 41035.12, + "probability": 0.7483 + }, + { + "start": 41036.3, + "end": 41036.96, + "probability": 0.9718 + }, + { + "start": 41037.12, + "end": 41038.32, + "probability": 0.9882 + }, + { + "start": 41038.9, + "end": 41040.72, + "probability": 0.8367 + }, + { + "start": 41041.7, + "end": 41044.08, + "probability": 0.973 + }, + { + "start": 41044.32, + "end": 41045.05, + "probability": 0.5469 + }, + { + "start": 41046.22, + "end": 41047.1, + "probability": 0.9966 + }, + { + "start": 41047.34, + "end": 41048.06, + "probability": 0.8255 + }, + { + "start": 41049.04, + "end": 41049.44, + "probability": 0.5024 + }, + { + "start": 41050.82, + "end": 41051.43, + "probability": 0.9244 + }, + { + "start": 41052.14, + "end": 41053.42, + "probability": 0.9519 + }, + { + "start": 41054.28, + "end": 41056.98, + "probability": 0.9836 + }, + { + "start": 41057.12, + "end": 41057.64, + "probability": 0.9644 + }, + { + "start": 41057.84, + "end": 41058.78, + "probability": 0.9521 + }, + { + "start": 41058.92, + "end": 41059.78, + "probability": 0.8073 + }, + { + "start": 41059.98, + "end": 41060.62, + "probability": 0.8083 + }, + { + "start": 41060.74, + "end": 41062.4, + "probability": 0.9585 + }, + { + "start": 41063.66, + "end": 41064.51, + "probability": 0.9122 + }, + { + "start": 41065.22, + "end": 41066.48, + "probability": 0.9622 + }, + { + "start": 41066.58, + "end": 41070.56, + "probability": 0.988 + }, + { + "start": 41071.08, + "end": 41071.74, + "probability": 0.9967 + }, + { + "start": 41073.3, + "end": 41073.88, + "probability": 0.532 + }, + { + "start": 41073.96, + "end": 41074.85, + "probability": 0.92 + }, + { + "start": 41075.98, + "end": 41077.26, + "probability": 0.9634 + }, + { + "start": 41077.36, + "end": 41079.22, + "probability": 0.8872 + }, + { + "start": 41079.38, + "end": 41080.74, + "probability": 0.9484 + }, + { + "start": 41080.8, + "end": 41083.18, + "probability": 0.8581 + }, + { + "start": 41083.58, + "end": 41084.24, + "probability": 0.9824 + }, + { + "start": 41084.76, + "end": 41085.76, + "probability": 0.7789 + }, + { + "start": 41086.36, + "end": 41087.84, + "probability": 0.8045 + }, + { + "start": 41088.9, + "end": 41089.54, + "probability": 0.8941 + }, + { + "start": 41090.36, + "end": 41091.66, + "probability": 0.9116 + }, + { + "start": 41091.86, + "end": 41092.56, + "probability": 0.768 + }, + { + "start": 41092.66, + "end": 41093.43, + "probability": 0.9365 + }, + { + "start": 41093.72, + "end": 41094.38, + "probability": 0.8765 + }, + { + "start": 41094.58, + "end": 41096.2, + "probability": 0.7292 + }, + { + "start": 41096.38, + "end": 41097.36, + "probability": 0.9929 + }, + { + "start": 41097.7, + "end": 41098.07, + "probability": 0.8893 + }, + { + "start": 41098.66, + "end": 41099.56, + "probability": 0.7425 + }, + { + "start": 41100.5, + "end": 41103.37, + "probability": 0.9773 + }, + { + "start": 41113.92, + "end": 41116.5, + "probability": 0.6212 + }, + { + "start": 41117.46, + "end": 41120.16, + "probability": 0.2899 + }, + { + "start": 41120.68, + "end": 41121.44, + "probability": 0.4003 + }, + { + "start": 41121.54, + "end": 41122.46, + "probability": 0.5847 + }, + { + "start": 41122.56, + "end": 41123.12, + "probability": 0.3141 + }, + { + "start": 41123.3, + "end": 41124.66, + "probability": 0.5488 + }, + { + "start": 41124.78, + "end": 41127.32, + "probability": 0.479 + }, + { + "start": 41128.4, + "end": 41129.31, + "probability": 0.4893 + }, + { + "start": 41129.36, + "end": 41131.3, + "probability": 0.5647 + }, + { + "start": 41131.36, + "end": 41133.88, + "probability": 0.8754 + }, + { + "start": 41134.58, + "end": 41135.98, + "probability": 0.6794 + }, + { + "start": 41137.84, + "end": 41140.04, + "probability": 0.9709 + }, + { + "start": 41140.94, + "end": 41143.1, + "probability": 0.9458 + }, + { + "start": 41143.56, + "end": 41146.1, + "probability": 0.777 + }, + { + "start": 41147.1, + "end": 41149.96, + "probability": 0.9648 + }, + { + "start": 41150.1, + "end": 41151.22, + "probability": 0.9971 + }, + { + "start": 41152.98, + "end": 41153.61, + "probability": 0.9985 + }, + { + "start": 41154.62, + "end": 41156.7, + "probability": 0.9807 + }, + { + "start": 41157.2, + "end": 41157.38, + "probability": 0.5127 + }, + { + "start": 41157.5, + "end": 41158.2, + "probability": 0.7024 + }, + { + "start": 41158.34, + "end": 41158.64, + "probability": 0.9234 + }, + { + "start": 41159.2, + "end": 41159.98, + "probability": 0.984 + }, + { + "start": 41161.04, + "end": 41162.48, + "probability": 0.9821 + }, + { + "start": 41163.38, + "end": 41165.08, + "probability": 0.6539 + }, + { + "start": 41166.1, + "end": 41167.4, + "probability": 0.945 + }, + { + "start": 41168.12, + "end": 41170.08, + "probability": 0.9505 + }, + { + "start": 41170.88, + "end": 41171.88, + "probability": 0.9901 + }, + { + "start": 41172.46, + "end": 41173.34, + "probability": 0.9832 + }, + { + "start": 41173.86, + "end": 41174.78, + "probability": 0.6319 + }, + { + "start": 41176.06, + "end": 41177.58, + "probability": 0.641 + }, + { + "start": 41178.24, + "end": 41178.92, + "probability": 0.9233 + }, + { + "start": 41179.68, + "end": 41181.18, + "probability": 0.9946 + }, + { + "start": 41182.76, + "end": 41183.56, + "probability": 0.8616 + }, + { + "start": 41184.72, + "end": 41186.48, + "probability": 0.8251 + }, + { + "start": 41186.48, + "end": 41187.98, + "probability": 0.9363 + }, + { + "start": 41188.02, + "end": 41188.22, + "probability": 0.4649 + }, + { + "start": 41188.34, + "end": 41188.84, + "probability": 0.5274 + }, + { + "start": 41190.26, + "end": 41191.68, + "probability": 0.8465 + }, + { + "start": 41192.44, + "end": 41193.03, + "probability": 0.8477 + }, + { + "start": 41193.62, + "end": 41194.8, + "probability": 0.9872 + }, + { + "start": 41195.36, + "end": 41198.22, + "probability": 0.9955 + }, + { + "start": 41200.36, + "end": 41201.28, + "probability": 0.97 + }, + { + "start": 41202.8, + "end": 41204.52, + "probability": 0.7807 + }, + { + "start": 41206.08, + "end": 41207.56, + "probability": 0.998 + }, + { + "start": 41208.3, + "end": 41210.3, + "probability": 0.9232 + }, + { + "start": 41210.76, + "end": 41212.72, + "probability": 0.8469 + }, + { + "start": 41213.24, + "end": 41213.72, + "probability": 0.8231 + }, + { + "start": 41214.46, + "end": 41217.38, + "probability": 0.993 + }, + { + "start": 41218.18, + "end": 41220.61, + "probability": 0.966 + }, + { + "start": 41221.82, + "end": 41223.42, + "probability": 0.9373 + }, + { + "start": 41223.92, + "end": 41226.96, + "probability": 0.7498 + }, + { + "start": 41227.08, + "end": 41228.68, + "probability": 0.901 + }, + { + "start": 41228.84, + "end": 41229.35, + "probability": 0.7121 + }, + { + "start": 41229.84, + "end": 41230.34, + "probability": 0.9522 + }, + { + "start": 41231.74, + "end": 41232.98, + "probability": 0.9873 + }, + { + "start": 41233.18, + "end": 41234.46, + "probability": 0.4575 + }, + { + "start": 41235.1, + "end": 41236.08, + "probability": 0.8219 + }, + { + "start": 41237.44, + "end": 41237.88, + "probability": 0.9904 + }, + { + "start": 41238.48, + "end": 41238.92, + "probability": 0.9706 + }, + { + "start": 41239.02, + "end": 41240.54, + "probability": 0.9849 + }, + { + "start": 41241.62, + "end": 41244.05, + "probability": 0.9922 + }, + { + "start": 41245.02, + "end": 41248.96, + "probability": 0.9296 + }, + { + "start": 41249.48, + "end": 41252.22, + "probability": 0.7961 + }, + { + "start": 41253.2, + "end": 41257.18, + "probability": 0.8297 + }, + { + "start": 41257.26, + "end": 41259.9, + "probability": 0.9771 + }, + { + "start": 41260.06, + "end": 41260.46, + "probability": 0.2729 + }, + { + "start": 41261.86, + "end": 41262.56, + "probability": 0.6924 + }, + { + "start": 41262.76, + "end": 41262.98, + "probability": 0.1257 + }, + { + "start": 41262.98, + "end": 41262.98, + "probability": 0.687 + }, + { + "start": 41262.98, + "end": 41264.02, + "probability": 0.1544 + }, + { + "start": 41264.18, + "end": 41265.53, + "probability": 0.8267 + }, + { + "start": 41266.46, + "end": 41269.04, + "probability": 0.4907 + }, + { + "start": 41269.06, + "end": 41269.6, + "probability": 0.0839 + }, + { + "start": 41269.6, + "end": 41272.82, + "probability": 0.9174 + }, + { + "start": 41273.02, + "end": 41274.22, + "probability": 0.59 + }, + { + "start": 41275.14, + "end": 41279.14, + "probability": 0.9869 + }, + { + "start": 41279.92, + "end": 41281.06, + "probability": 0.9856 + }, + { + "start": 41281.12, + "end": 41281.57, + "probability": 0.9749 + }, + { + "start": 41282.46, + "end": 41282.96, + "probability": 0.6282 + }, + { + "start": 41283.9, + "end": 41286.28, + "probability": 0.9722 + }, + { + "start": 41286.96, + "end": 41288.9, + "probability": 0.9889 + }, + { + "start": 41290.12, + "end": 41292.56, + "probability": 0.7217 + }, + { + "start": 41292.56, + "end": 41294.86, + "probability": 0.6011 + }, + { + "start": 41295.26, + "end": 41297.28, + "probability": 0.9984 + }, + { + "start": 41298.8, + "end": 41300.82, + "probability": 0.9312 + }, + { + "start": 41301.38, + "end": 41302.34, + "probability": 0.9494 + }, + { + "start": 41302.82, + "end": 41303.56, + "probability": 0.9674 + }, + { + "start": 41304.3, + "end": 41306.08, + "probability": 0.9283 + }, + { + "start": 41306.16, + "end": 41306.8, + "probability": 0.7153 + }, + { + "start": 41307.6, + "end": 41308.82, + "probability": 0.9674 + }, + { + "start": 41309.72, + "end": 41312.7, + "probability": 0.9808 + }, + { + "start": 41312.86, + "end": 41314.1, + "probability": 0.9797 + }, + { + "start": 41314.2, + "end": 41314.76, + "probability": 0.9945 + }, + { + "start": 41316.0, + "end": 41317.28, + "probability": 0.8619 + }, + { + "start": 41317.86, + "end": 41319.54, + "probability": 0.6313 + }, + { + "start": 41319.76, + "end": 41321.8, + "probability": 0.927 + }, + { + "start": 41322.38, + "end": 41323.42, + "probability": 0.8989 + }, + { + "start": 41323.86, + "end": 41326.36, + "probability": 0.9168 + }, + { + "start": 41326.42, + "end": 41327.44, + "probability": 0.7017 + }, + { + "start": 41327.64, + "end": 41328.5, + "probability": 0.7485 + }, + { + "start": 41329.18, + "end": 41332.42, + "probability": 0.95 + }, + { + "start": 41333.82, + "end": 41335.88, + "probability": 0.984 + }, + { + "start": 41337.14, + "end": 41339.72, + "probability": 0.9968 + }, + { + "start": 41339.84, + "end": 41340.5, + "probability": 0.7707 + }, + { + "start": 41341.24, + "end": 41341.8, + "probability": 0.4762 + }, + { + "start": 41342.06, + "end": 41342.44, + "probability": 0.8501 + }, + { + "start": 41342.62, + "end": 41343.56, + "probability": 0.9931 + }, + { + "start": 41344.68, + "end": 41347.52, + "probability": 0.8166 + }, + { + "start": 41349.52, + "end": 41350.8, + "probability": 0.8077 + }, + { + "start": 41351.32, + "end": 41351.58, + "probability": 0.7384 + }, + { + "start": 41352.48, + "end": 41353.94, + "probability": 0.9934 + }, + { + "start": 41354.22, + "end": 41355.8, + "probability": 0.9865 + }, + { + "start": 41355.84, + "end": 41357.42, + "probability": 0.8588 + }, + { + "start": 41358.66, + "end": 41359.98, + "probability": 0.9194 + }, + { + "start": 41360.88, + "end": 41362.42, + "probability": 0.9388 + }, + { + "start": 41363.4, + "end": 41366.5, + "probability": 0.9832 + }, + { + "start": 41366.92, + "end": 41367.22, + "probability": 0.782 + }, + { + "start": 41367.54, + "end": 41369.04, + "probability": 0.6629 + }, + { + "start": 41370.48, + "end": 41371.46, + "probability": 0.5718 + }, + { + "start": 41371.6, + "end": 41372.28, + "probability": 0.4804 + }, + { + "start": 41372.42, + "end": 41373.34, + "probability": 0.528 + }, + { + "start": 41373.82, + "end": 41374.48, + "probability": 0.5467 + }, + { + "start": 41374.96, + "end": 41379.86, + "probability": 0.9863 + }, + { + "start": 41380.72, + "end": 41381.9, + "probability": 0.9863 + }, + { + "start": 41382.44, + "end": 41384.02, + "probability": 0.96 + }, + { + "start": 41385.12, + "end": 41386.58, + "probability": 0.829 + }, + { + "start": 41387.08, + "end": 41391.08, + "probability": 0.8704 + }, + { + "start": 41391.18, + "end": 41394.56, + "probability": 0.8201 + }, + { + "start": 41395.44, + "end": 41396.8, + "probability": 0.9705 + }, + { + "start": 41399.14, + "end": 41399.94, + "probability": 0.9521 + }, + { + "start": 41402.44, + "end": 41403.28, + "probability": 0.8233 + }, + { + "start": 41403.38, + "end": 41403.82, + "probability": 0.6106 + }, + { + "start": 41403.9, + "end": 41404.46, + "probability": 0.0147 + }, + { + "start": 41404.54, + "end": 41405.32, + "probability": 0.5023 + }, + { + "start": 41405.42, + "end": 41407.02, + "probability": 0.9656 + }, + { + "start": 41407.84, + "end": 41408.58, + "probability": 0.8672 + }, + { + "start": 41409.56, + "end": 41414.44, + "probability": 0.7837 + }, + { + "start": 41414.66, + "end": 41415.38, + "probability": 0.8372 + }, + { + "start": 41415.78, + "end": 41418.8, + "probability": 0.8476 + }, + { + "start": 41420.46, + "end": 41421.16, + "probability": 0.6855 + }, + { + "start": 41422.88, + "end": 41424.44, + "probability": 0.9963 + }, + { + "start": 41424.66, + "end": 41426.06, + "probability": 0.8618 + }, + { + "start": 41426.24, + "end": 41427.32, + "probability": 0.9546 + }, + { + "start": 41427.96, + "end": 41429.34, + "probability": 0.9976 + }, + { + "start": 41429.4, + "end": 41430.82, + "probability": 0.9863 + }, + { + "start": 41431.44, + "end": 41432.84, + "probability": 0.8363 + }, + { + "start": 41434.52, + "end": 41436.14, + "probability": 0.9888 + }, + { + "start": 41436.4, + "end": 41437.62, + "probability": 0.918 + }, + { + "start": 41438.78, + "end": 41439.83, + "probability": 0.9087 + }, + { + "start": 41440.24, + "end": 41441.0, + "probability": 0.8337 + }, + { + "start": 41441.08, + "end": 41441.66, + "probability": 0.8902 + }, + { + "start": 41441.68, + "end": 41443.32, + "probability": 0.6326 + }, + { + "start": 41444.12, + "end": 41447.18, + "probability": 0.6563 + }, + { + "start": 41447.34, + "end": 41448.64, + "probability": 0.9781 + }, + { + "start": 41448.78, + "end": 41449.98, + "probability": 0.8282 + }, + { + "start": 41450.68, + "end": 41451.2, + "probability": 0.8953 + }, + { + "start": 41452.38, + "end": 41453.46, + "probability": 0.9816 + }, + { + "start": 41453.78, + "end": 41455.22, + "probability": 0.9707 + }, + { + "start": 41455.34, + "end": 41455.84, + "probability": 0.5365 + }, + { + "start": 41456.14, + "end": 41458.8, + "probability": 0.6726 + }, + { + "start": 41459.0, + "end": 41460.32, + "probability": 0.4681 + }, + { + "start": 41460.54, + "end": 41460.58, + "probability": 0.4235 + }, + { + "start": 41460.66, + "end": 41461.98, + "probability": 0.6957 + }, + { + "start": 41461.98, + "end": 41462.76, + "probability": 0.4515 + }, + { + "start": 41462.92, + "end": 41463.4, + "probability": 0.8241 + }, + { + "start": 41463.66, + "end": 41463.7, + "probability": 0.1961 + }, + { + "start": 41463.86, + "end": 41465.88, + "probability": 0.9314 + }, + { + "start": 41465.88, + "end": 41466.1, + "probability": 0.7305 + }, + { + "start": 41466.74, + "end": 41469.12, + "probability": 0.7767 + }, + { + "start": 41469.26, + "end": 41469.76, + "probability": 0.5781 + }, + { + "start": 41469.9, + "end": 41470.66, + "probability": 0.9414 + }, + { + "start": 41471.02, + "end": 41471.56, + "probability": 0.903 + }, + { + "start": 41471.84, + "end": 41472.5, + "probability": 0.9729 + }, + { + "start": 41472.94, + "end": 41474.48, + "probability": 0.9946 + }, + { + "start": 41475.34, + "end": 41476.68, + "probability": 0.8679 + }, + { + "start": 41477.28, + "end": 41477.86, + "probability": 0.5014 + }, + { + "start": 41478.38, + "end": 41479.96, + "probability": 0.9454 + }, + { + "start": 41480.98, + "end": 41482.01, + "probability": 0.555 + }, + { + "start": 41482.54, + "end": 41483.82, + "probability": 0.9966 + }, + { + "start": 41484.36, + "end": 41485.52, + "probability": 0.7917 + }, + { + "start": 41486.12, + "end": 41489.16, + "probability": 0.9946 + }, + { + "start": 41489.68, + "end": 41490.48, + "probability": 0.7108 + }, + { + "start": 41490.66, + "end": 41491.12, + "probability": 0.5099 + }, + { + "start": 41491.24, + "end": 41492.14, + "probability": 0.9517 + }, + { + "start": 41492.5, + "end": 41497.74, + "probability": 0.9854 + }, + { + "start": 41498.4, + "end": 41503.32, + "probability": 0.9192 + }, + { + "start": 41505.3, + "end": 41510.7, + "probability": 0.9199 + }, + { + "start": 41511.1, + "end": 41511.82, + "probability": 0.7801 + }, + { + "start": 41511.96, + "end": 41513.58, + "probability": 0.9526 + }, + { + "start": 41514.88, + "end": 41516.06, + "probability": 0.8417 + }, + { + "start": 41517.4, + "end": 41520.26, + "probability": 0.9375 + }, + { + "start": 41551.9, + "end": 41554.3, + "probability": 0.7517 + }, + { + "start": 41556.42, + "end": 41560.6, + "probability": 0.9752 + }, + { + "start": 41561.96, + "end": 41563.43, + "probability": 0.9133 + }, + { + "start": 41564.52, + "end": 41565.72, + "probability": 0.6887 + }, + { + "start": 41565.86, + "end": 41566.1, + "probability": 0.2267 + }, + { + "start": 41567.28, + "end": 41568.74, + "probability": 0.5734 + }, + { + "start": 41569.86, + "end": 41570.98, + "probability": 0.9964 + }, + { + "start": 41572.08, + "end": 41573.98, + "probability": 0.4823 + }, + { + "start": 41574.08, + "end": 41575.86, + "probability": 0.7378 + }, + { + "start": 41577.38, + "end": 41580.62, + "probability": 0.8921 + }, + { + "start": 41582.98, + "end": 41584.3, + "probability": 0.9354 + }, + { + "start": 41585.84, + "end": 41587.42, + "probability": 0.9719 + }, + { + "start": 41588.94, + "end": 41590.84, + "probability": 0.7833 + }, + { + "start": 41592.06, + "end": 41595.76, + "probability": 0.9969 + }, + { + "start": 41596.22, + "end": 41598.4, + "probability": 0.8518 + }, + { + "start": 41598.5, + "end": 41601.3, + "probability": 0.9958 + }, + { + "start": 41601.38, + "end": 41601.8, + "probability": 0.8286 + }, + { + "start": 41602.72, + "end": 41604.36, + "probability": 0.8324 + }, + { + "start": 41604.42, + "end": 41605.42, + "probability": 0.7819 + }, + { + "start": 41605.52, + "end": 41607.12, + "probability": 0.8128 + }, + { + "start": 41609.32, + "end": 41609.9, + "probability": 0.7522 + }, + { + "start": 41610.82, + "end": 41612.62, + "probability": 0.8475 + }, + { + "start": 41612.7, + "end": 41615.72, + "probability": 0.9488 + }, + { + "start": 41615.9, + "end": 41616.32, + "probability": 0.9667 + }, + { + "start": 41617.42, + "end": 41619.78, + "probability": 0.8275 + }, + { + "start": 41621.34, + "end": 41622.9, + "probability": 0.7595 + }, + { + "start": 41623.94, + "end": 41624.92, + "probability": 0.9351 + }, + { + "start": 41625.76, + "end": 41626.3, + "probability": 0.4448 + }, + { + "start": 41626.3, + "end": 41626.4, + "probability": 0.3405 + }, + { + "start": 41626.74, + "end": 41628.88, + "probability": 0.9897 + }, + { + "start": 41629.0, + "end": 41630.06, + "probability": 0.9966 + }, + { + "start": 41631.26, + "end": 41631.8, + "probability": 0.4809 + }, + { + "start": 41632.68, + "end": 41635.34, + "probability": 0.6991 + }, + { + "start": 41637.2, + "end": 41640.62, + "probability": 0.9918 + }, + { + "start": 41640.62, + "end": 41643.76, + "probability": 0.4238 + }, + { + "start": 41645.26, + "end": 41646.1, + "probability": 0.6857 + }, + { + "start": 41648.1, + "end": 41650.34, + "probability": 0.9958 + }, + { + "start": 41651.88, + "end": 41652.9, + "probability": 0.7351 + }, + { + "start": 41654.62, + "end": 41656.02, + "probability": 0.4843 + }, + { + "start": 41658.62, + "end": 41661.14, + "probability": 0.8217 + }, + { + "start": 41661.9, + "end": 41663.08, + "probability": 0.8667 + }, + { + "start": 41664.76, + "end": 41667.84, + "probability": 0.9094 + }, + { + "start": 41668.5, + "end": 41669.66, + "probability": 0.497 + }, + { + "start": 41669.74, + "end": 41670.16, + "probability": 0.9005 + }, + { + "start": 41670.26, + "end": 41671.28, + "probability": 0.8976 + }, + { + "start": 41671.62, + "end": 41672.48, + "probability": 0.8844 + }, + { + "start": 41673.36, + "end": 41676.68, + "probability": 0.873 + }, + { + "start": 41677.26, + "end": 41678.28, + "probability": 0.8821 + }, + { + "start": 41680.04, + "end": 41681.28, + "probability": 0.9561 + }, + { + "start": 41682.34, + "end": 41684.98, + "probability": 0.6302 + }, + { + "start": 41685.46, + "end": 41687.5, + "probability": 0.9383 + }, + { + "start": 41687.6, + "end": 41688.54, + "probability": 0.9818 + }, + { + "start": 41689.8, + "end": 41690.84, + "probability": 0.8532 + }, + { + "start": 41693.36, + "end": 41696.98, + "probability": 0.8947 + }, + { + "start": 41697.56, + "end": 41699.36, + "probability": 0.5481 + }, + { + "start": 41700.12, + "end": 41701.14, + "probability": 0.7776 + }, + { + "start": 41703.5, + "end": 41705.7, + "probability": 0.9648 + }, + { + "start": 41707.24, + "end": 41708.34, + "probability": 0.9285 + }, + { + "start": 41708.48, + "end": 41709.16, + "probability": 0.9219 + }, + { + "start": 41709.5, + "end": 41711.1, + "probability": 0.8647 + }, + { + "start": 41711.9, + "end": 41714.34, + "probability": 0.5617 + }, + { + "start": 41714.44, + "end": 41715.76, + "probability": 0.8286 + }, + { + "start": 41716.7, + "end": 41717.12, + "probability": 0.5411 + }, + { + "start": 41717.24, + "end": 41718.54, + "probability": 0.824 + }, + { + "start": 41719.04, + "end": 41720.24, + "probability": 0.7709 + }, + { + "start": 41720.94, + "end": 41721.68, + "probability": 0.9751 + }, + { + "start": 41722.6, + "end": 41723.32, + "probability": 0.0468 + }, + { + "start": 41723.32, + "end": 41725.46, + "probability": 0.7155 + }, + { + "start": 41725.86, + "end": 41726.44, + "probability": 0.9431 + }, + { + "start": 41727.24, + "end": 41728.92, + "probability": 0.9707 + }, + { + "start": 41729.1, + "end": 41729.32, + "probability": 0.3557 + }, + { + "start": 41729.36, + "end": 41729.56, + "probability": 0.4229 + }, + { + "start": 41731.36, + "end": 41732.24, + "probability": 0.7352 + }, + { + "start": 41732.78, + "end": 41733.42, + "probability": 0.9732 + }, + { + "start": 41734.16, + "end": 41736.36, + "probability": 0.9734 + }, + { + "start": 41736.42, + "end": 41738.33, + "probability": 0.9624 + }, + { + "start": 41739.0, + "end": 41740.94, + "probability": 0.9367 + }, + { + "start": 41741.7, + "end": 41743.22, + "probability": 0.5185 + }, + { + "start": 41743.46, + "end": 41745.96, + "probability": 0.7391 + }, + { + "start": 41747.14, + "end": 41747.7, + "probability": 0.7935 + }, + { + "start": 41748.88, + "end": 41753.58, + "probability": 0.96 + }, + { + "start": 41755.02, + "end": 41757.44, + "probability": 0.9121 + }, + { + "start": 41760.63, + "end": 41761.48, + "probability": 0.1342 + }, + { + "start": 41761.48, + "end": 41761.48, + "probability": 0.0392 + }, + { + "start": 41761.48, + "end": 41762.26, + "probability": 0.2294 + }, + { + "start": 41762.26, + "end": 41765.12, + "probability": 0.8287 + }, + { + "start": 41766.6, + "end": 41767.22, + "probability": 0.8711 + }, + { + "start": 41767.3, + "end": 41770.84, + "probability": 0.9945 + }, + { + "start": 41770.84, + "end": 41774.8, + "probability": 0.9846 + }, + { + "start": 41775.78, + "end": 41776.64, + "probability": 0.7432 + }, + { + "start": 41777.64, + "end": 41778.7, + "probability": 0.8114 + }, + { + "start": 41779.46, + "end": 41782.84, + "probability": 0.9757 + }, + { + "start": 41783.88, + "end": 41784.16, + "probability": 0.9453 + }, + { + "start": 41785.26, + "end": 41785.74, + "probability": 0.9512 + }, + { + "start": 41787.38, + "end": 41788.28, + "probability": 0.9958 + }, + { + "start": 41789.38, + "end": 41790.16, + "probability": 0.6591 + }, + { + "start": 41790.52, + "end": 41794.62, + "probability": 0.866 + }, + { + "start": 41796.1, + "end": 41800.72, + "probability": 0.931 + }, + { + "start": 41803.88, + "end": 41805.7, + "probability": 0.7265 + }, + { + "start": 41806.44, + "end": 41808.82, + "probability": 0.9407 + }, + { + "start": 41809.02, + "end": 41809.61, + "probability": 0.9819 + }, + { + "start": 41810.46, + "end": 41813.58, + "probability": 0.7064 + }, + { + "start": 41814.36, + "end": 41815.3, + "probability": 0.5086 + }, + { + "start": 41816.78, + "end": 41821.14, + "probability": 0.9386 + }, + { + "start": 41821.78, + "end": 41825.14, + "probability": 0.9925 + }, + { + "start": 41826.04, + "end": 41828.62, + "probability": 0.8183 + }, + { + "start": 41828.76, + "end": 41834.12, + "probability": 0.8851 + }, + { + "start": 41835.18, + "end": 41838.62, + "probability": 0.8999 + }, + { + "start": 41839.74, + "end": 41840.36, + "probability": 0.4382 + }, + { + "start": 41840.44, + "end": 41840.86, + "probability": 0.9391 + }, + { + "start": 41840.98, + "end": 41844.58, + "probability": 0.7142 + }, + { + "start": 41844.83, + "end": 41846.26, + "probability": 0.8956 + }, + { + "start": 41847.08, + "end": 41849.48, + "probability": 0.979 + }, + { + "start": 41849.65, + "end": 41850.42, + "probability": 0.9215 + }, + { + "start": 41851.64, + "end": 41854.22, + "probability": 0.9513 + }, + { + "start": 41854.76, + "end": 41854.98, + "probability": 0.4789 + }, + { + "start": 41856.08, + "end": 41856.91, + "probability": 0.8345 + }, + { + "start": 41857.9, + "end": 41858.43, + "probability": 0.8213 + }, + { + "start": 41859.68, + "end": 41861.94, + "probability": 0.9888 + }, + { + "start": 41863.2, + "end": 41864.16, + "probability": 0.9565 + }, + { + "start": 41867.47, + "end": 41868.67, + "probability": 0.1918 + }, + { + "start": 41869.0, + "end": 41870.4, + "probability": 0.7961 + }, + { + "start": 41870.8, + "end": 41871.32, + "probability": 0.0933 + }, + { + "start": 41871.52, + "end": 41873.77, + "probability": 0.9873 + }, + { + "start": 41873.92, + "end": 41875.12, + "probability": 0.799 + }, + { + "start": 41876.6, + "end": 41878.2, + "probability": 0.873 + }, + { + "start": 41879.08, + "end": 41881.1, + "probability": 0.7793 + }, + { + "start": 41881.9, + "end": 41885.08, + "probability": 0.9532 + }, + { + "start": 41885.14, + "end": 41886.5, + "probability": 0.9781 + }, + { + "start": 41889.12, + "end": 41894.68, + "probability": 0.9551 + }, + { + "start": 41895.22, + "end": 41897.46, + "probability": 0.988 + }, + { + "start": 41897.9, + "end": 41899.92, + "probability": 0.9564 + }, + { + "start": 41900.76, + "end": 41901.12, + "probability": 0.7776 + }, + { + "start": 41901.88, + "end": 41904.98, + "probability": 0.6538 + }, + { + "start": 41905.54, + "end": 41906.58, + "probability": 0.9408 + }, + { + "start": 41907.28, + "end": 41909.16, + "probability": 0.9896 + }, + { + "start": 41910.08, + "end": 41913.52, + "probability": 0.9547 + }, + { + "start": 41916.34, + "end": 41917.11, + "probability": 0.9531 + }, + { + "start": 41918.78, + "end": 41920.1, + "probability": 0.9924 + }, + { + "start": 41922.6, + "end": 41923.48, + "probability": 0.8657 + }, + { + "start": 41923.52, + "end": 41923.98, + "probability": 0.8536 + }, + { + "start": 41924.08, + "end": 41926.06, + "probability": 0.9559 + }, + { + "start": 41926.1, + "end": 41926.67, + "probability": 0.7085 + }, + { + "start": 41928.28, + "end": 41929.68, + "probability": 0.2378 + }, + { + "start": 41929.68, + "end": 41931.52, + "probability": 0.8929 + }, + { + "start": 41931.68, + "end": 41932.28, + "probability": 0.7757 + }, + { + "start": 41932.32, + "end": 41932.84, + "probability": 0.5005 + }, + { + "start": 41934.52, + "end": 41936.24, + "probability": 0.998 + }, + { + "start": 41937.38, + "end": 41939.06, + "probability": 0.999 + }, + { + "start": 41940.08, + "end": 41941.06, + "probability": 0.5599 + }, + { + "start": 41942.4, + "end": 41945.44, + "probability": 0.9285 + }, + { + "start": 41946.2, + "end": 41946.3, + "probability": 0.9043 + }, + { + "start": 41947.7, + "end": 41948.54, + "probability": 0.8203 + }, + { + "start": 41948.64, + "end": 41949.5, + "probability": 0.7759 + }, + { + "start": 41949.68, + "end": 41951.96, + "probability": 0.6753 + }, + { + "start": 41953.1, + "end": 41955.56, + "probability": 0.9072 + }, + { + "start": 41956.5, + "end": 41957.4, + "probability": 0.9846 + }, + { + "start": 41957.46, + "end": 41959.79, + "probability": 0.9288 + }, + { + "start": 41961.6, + "end": 41963.6, + "probability": 0.5447 + }, + { + "start": 41963.84, + "end": 41965.46, + "probability": 0.7403 + }, + { + "start": 41967.12, + "end": 41968.48, + "probability": 0.8589 + }, + { + "start": 41970.8, + "end": 41973.02, + "probability": 0.9082 + }, + { + "start": 41974.66, + "end": 41977.74, + "probability": 0.8571 + }, + { + "start": 41978.96, + "end": 41980.2, + "probability": 0.8519 + }, + { + "start": 41982.86, + "end": 41984.78, + "probability": 0.9291 + }, + { + "start": 41985.16, + "end": 41987.86, + "probability": 0.984 + }, + { + "start": 41987.86, + "end": 41990.8, + "probability": 0.9643 + }, + { + "start": 41992.54, + "end": 41993.2, + "probability": 0.8529 + }, + { + "start": 41994.16, + "end": 41996.96, + "probability": 0.9551 + }, + { + "start": 41997.1, + "end": 41997.24, + "probability": 0.7642 + }, + { + "start": 41997.66, + "end": 41998.18, + "probability": 0.3091 + }, + { + "start": 41998.32, + "end": 41998.96, + "probability": 0.9401 + }, + { + "start": 41999.64, + "end": 42000.74, + "probability": 0.9985 + }, + { + "start": 42000.84, + "end": 42001.44, + "probability": 0.9397 + }, + { + "start": 42001.54, + "end": 42002.62, + "probability": 0.9907 + }, + { + "start": 42002.66, + "end": 42004.66, + "probability": 0.9912 + }, + { + "start": 42007.0, + "end": 42009.74, + "probability": 0.938 + }, + { + "start": 42010.82, + "end": 42012.23, + "probability": 0.958 + }, + { + "start": 42012.52, + "end": 42014.66, + "probability": 0.9061 + }, + { + "start": 42016.64, + "end": 42018.38, + "probability": 0.9719 + }, + { + "start": 42019.26, + "end": 42021.7, + "probability": 0.8643 + }, + { + "start": 42021.7, + "end": 42022.78, + "probability": 0.7473 + }, + { + "start": 42022.9, + "end": 42023.66, + "probability": 0.7551 + }, + { + "start": 42023.8, + "end": 42024.86, + "probability": 0.9377 + }, + { + "start": 42026.9, + "end": 42027.69, + "probability": 0.9746 + }, + { + "start": 42027.86, + "end": 42030.66, + "probability": 0.5635 + }, + { + "start": 42030.68, + "end": 42031.22, + "probability": 0.1417 + }, + { + "start": 42031.86, + "end": 42032.1, + "probability": 0.6425 + }, + { + "start": 42033.08, + "end": 42033.91, + "probability": 0.5558 + }, + { + "start": 42034.46, + "end": 42034.58, + "probability": 0.4214 + }, + { + "start": 42038.32, + "end": 42041.14, + "probability": 0.9316 + }, + { + "start": 42041.22, + "end": 42045.62, + "probability": 0.9849 + }, + { + "start": 42047.0, + "end": 42049.22, + "probability": 0.8458 + }, + { + "start": 42049.64, + "end": 42051.46, + "probability": 0.8376 + }, + { + "start": 42051.54, + "end": 42052.71, + "probability": 0.925 + }, + { + "start": 42054.74, + "end": 42057.22, + "probability": 0.9818 + }, + { + "start": 42057.3, + "end": 42058.42, + "probability": 0.7713 + }, + { + "start": 42059.44, + "end": 42060.4, + "probability": 0.8094 + }, + { + "start": 42060.88, + "end": 42062.12, + "probability": 0.989 + }, + { + "start": 42062.74, + "end": 42064.28, + "probability": 0.9433 + }, + { + "start": 42064.8, + "end": 42065.52, + "probability": 0.9457 + }, + { + "start": 42066.96, + "end": 42067.72, + "probability": 0.8047 + }, + { + "start": 42068.44, + "end": 42070.33, + "probability": 0.991 + }, + { + "start": 42070.62, + "end": 42073.5, + "probability": 0.9378 + }, + { + "start": 42073.68, + "end": 42073.92, + "probability": 0.4908 + }, + { + "start": 42073.98, + "end": 42076.28, + "probability": 0.8423 + }, + { + "start": 42076.86, + "end": 42077.3, + "probability": 0.576 + }, + { + "start": 42077.94, + "end": 42081.04, + "probability": 0.936 + }, + { + "start": 42081.42, + "end": 42083.5, + "probability": 0.9958 + }, + { + "start": 42084.48, + "end": 42086.5, + "probability": 0.9424 + }, + { + "start": 42088.02, + "end": 42090.8, + "probability": 0.9575 + }, + { + "start": 42091.96, + "end": 42094.02, + "probability": 0.9715 + }, + { + "start": 42095.04, + "end": 42095.88, + "probability": 0.7341 + }, + { + "start": 42097.0, + "end": 42098.62, + "probability": 0.9697 + }, + { + "start": 42098.82, + "end": 42100.49, + "probability": 0.949 + }, + { + "start": 42101.28, + "end": 42104.18, + "probability": 0.8099 + }, + { + "start": 42104.54, + "end": 42105.42, + "probability": 0.9508 + }, + { + "start": 42105.82, + "end": 42108.02, + "probability": 0.9741 + }, + { + "start": 42108.18, + "end": 42109.1, + "probability": 0.9329 + }, + { + "start": 42109.92, + "end": 42113.08, + "probability": 0.8481 + }, + { + "start": 42113.68, + "end": 42116.36, + "probability": 0.9771 + }, + { + "start": 42116.94, + "end": 42118.0, + "probability": 0.8429 + }, + { + "start": 42118.98, + "end": 42120.2, + "probability": 0.9837 + }, + { + "start": 42120.78, + "end": 42123.34, + "probability": 0.8704 + }, + { + "start": 42124.5, + "end": 42127.8, + "probability": 0.9275 + }, + { + "start": 42128.8, + "end": 42130.74, + "probability": 0.9421 + }, + { + "start": 42131.7, + "end": 42135.3, + "probability": 0.9073 + }, + { + "start": 42135.78, + "end": 42143.42, + "probability": 0.9403 + }, + { + "start": 42145.56, + "end": 42148.0, + "probability": 0.6612 + }, + { + "start": 42151.08, + "end": 42152.86, + "probability": 0.9614 + }, + { + "start": 42153.1, + "end": 42155.12, + "probability": 0.8438 + }, + { + "start": 42155.7, + "end": 42157.12, + "probability": 0.8903 + }, + { + "start": 42157.26, + "end": 42161.98, + "probability": 0.9956 + }, + { + "start": 42162.12, + "end": 42162.89, + "probability": 0.9736 + }, + { + "start": 42163.22, + "end": 42163.7, + "probability": 0.6372 + }, + { + "start": 42165.04, + "end": 42166.08, + "probability": 0.664 + }, + { + "start": 42166.68, + "end": 42169.84, + "probability": 0.9852 + }, + { + "start": 42170.88, + "end": 42170.98, + "probability": 0.2281 + }, + { + "start": 42171.0, + "end": 42172.14, + "probability": 0.8236 + }, + { + "start": 42172.3, + "end": 42174.95, + "probability": 0.9604 + }, + { + "start": 42178.6, + "end": 42179.02, + "probability": 0.3247 + }, + { + "start": 42181.88, + "end": 42184.48, + "probability": 0.9751 + }, + { + "start": 42184.56, + "end": 42185.46, + "probability": 0.9888 + }, + { + "start": 42186.08, + "end": 42189.12, + "probability": 0.8211 + }, + { + "start": 42189.98, + "end": 42191.26, + "probability": 0.9204 + }, + { + "start": 42191.26, + "end": 42191.5, + "probability": 0.7843 + }, + { + "start": 42193.64, + "end": 42197.52, + "probability": 0.9837 + }, + { + "start": 42197.68, + "end": 42201.54, + "probability": 0.826 + }, + { + "start": 42201.64, + "end": 42202.92, + "probability": 0.9977 + }, + { + "start": 42204.0, + "end": 42206.92, + "probability": 0.747 + }, + { + "start": 42208.46, + "end": 42210.62, + "probability": 0.8434 + }, + { + "start": 42211.34, + "end": 42212.62, + "probability": 0.8785 + }, + { + "start": 42213.24, + "end": 42218.2, + "probability": 0.9916 + }, + { + "start": 42219.28, + "end": 42221.54, + "probability": 0.9624 + }, + { + "start": 42222.46, + "end": 42227.38, + "probability": 0.9879 + }, + { + "start": 42227.48, + "end": 42231.12, + "probability": 0.9921 + }, + { + "start": 42231.18, + "end": 42231.84, + "probability": 0.4411 + }, + { + "start": 42232.96, + "end": 42234.12, + "probability": 0.9014 + }, + { + "start": 42235.08, + "end": 42238.58, + "probability": 0.9678 + }, + { + "start": 42239.3, + "end": 42241.66, + "probability": 0.9764 + }, + { + "start": 42242.3, + "end": 42243.84, + "probability": 0.8983 + }, + { + "start": 42244.3, + "end": 42244.88, + "probability": 0.9829 + }, + { + "start": 42244.96, + "end": 42245.54, + "probability": 0.5316 + }, + { + "start": 42245.64, + "end": 42246.64, + "probability": 0.8249 + }, + { + "start": 42247.28, + "end": 42248.02, + "probability": 0.7605 + }, + { + "start": 42248.44, + "end": 42251.86, + "probability": 0.9815 + }, + { + "start": 42252.7, + "end": 42254.1, + "probability": 0.9563 + }, + { + "start": 42254.62, + "end": 42258.04, + "probability": 0.9966 + }, + { + "start": 42258.92, + "end": 42262.78, + "probability": 0.9692 + }, + { + "start": 42263.42, + "end": 42265.92, + "probability": 0.9717 + }, + { + "start": 42266.5, + "end": 42270.68, + "probability": 0.9941 + }, + { + "start": 42271.36, + "end": 42272.96, + "probability": 0.9219 + }, + { + "start": 42273.62, + "end": 42276.6, + "probability": 0.7668 + }, + { + "start": 42277.36, + "end": 42279.28, + "probability": 0.6803 + }, + { + "start": 42280.2, + "end": 42283.1, + "probability": 0.9851 + }, + { + "start": 42283.52, + "end": 42284.22, + "probability": 0.5408 + }, + { + "start": 42285.18, + "end": 42287.8, + "probability": 0.9958 + }, + { + "start": 42288.62, + "end": 42289.8, + "probability": 0.9865 + }, + { + "start": 42290.22, + "end": 42292.88, + "probability": 0.9564 + }, + { + "start": 42293.84, + "end": 42294.24, + "probability": 0.892 + }, + { + "start": 42294.28, + "end": 42298.94, + "probability": 0.8924 + }, + { + "start": 42299.34, + "end": 42301.0, + "probability": 0.5153 + }, + { + "start": 42302.26, + "end": 42303.98, + "probability": 0.0208 + }, + { + "start": 42303.98, + "end": 42303.98, + "probability": 0.1243 + }, + { + "start": 42303.98, + "end": 42304.36, + "probability": 0.396 + }, + { + "start": 42304.98, + "end": 42307.28, + "probability": 0.7881 + }, + { + "start": 42307.84, + "end": 42307.98, + "probability": 0.0909 + }, + { + "start": 42307.98, + "end": 42310.36, + "probability": 0.9022 + }, + { + "start": 42310.78, + "end": 42311.64, + "probability": 0.8137 + }, + { + "start": 42312.12, + "end": 42315.02, + "probability": 0.9813 + }, + { + "start": 42315.12, + "end": 42315.64, + "probability": 0.8483 + }, + { + "start": 42316.12, + "end": 42316.71, + "probability": 0.6934 + }, + { + "start": 42316.98, + "end": 42317.37, + "probability": 0.9658 + }, + { + "start": 42318.0, + "end": 42318.38, + "probability": 0.3264 + }, + { + "start": 42318.48, + "end": 42320.06, + "probability": 0.7894 + }, + { + "start": 42320.32, + "end": 42321.84, + "probability": 0.9551 + }, + { + "start": 42322.8, + "end": 42324.2, + "probability": 0.9621 + }, + { + "start": 42325.0, + "end": 42328.04, + "probability": 0.7686 + }, + { + "start": 42328.82, + "end": 42332.98, + "probability": 0.8963 + }, + { + "start": 42333.58, + "end": 42337.46, + "probability": 0.9807 + }, + { + "start": 42337.7, + "end": 42337.94, + "probability": 0.3756 + }, + { + "start": 42339.08, + "end": 42340.24, + "probability": 0.4998 + }, + { + "start": 42340.65, + "end": 42340.72, + "probability": 0.6417 + }, + { + "start": 42341.26, + "end": 42343.18, + "probability": 0.9858 + }, + { + "start": 42343.38, + "end": 42345.38, + "probability": 0.8456 + }, + { + "start": 42345.58, + "end": 42346.06, + "probability": 0.4872 + }, + { + "start": 42346.9, + "end": 42348.2, + "probability": 0.9068 + }, + { + "start": 42348.96, + "end": 42350.5, + "probability": 0.9239 + }, + { + "start": 42351.84, + "end": 42354.98, + "probability": 0.9952 + }, + { + "start": 42355.68, + "end": 42356.92, + "probability": 0.866 + }, + { + "start": 42357.08, + "end": 42360.16, + "probability": 0.9402 + }, + { + "start": 42363.84, + "end": 42364.72, + "probability": 0.6942 + }, + { + "start": 42364.84, + "end": 42365.48, + "probability": 0.375 + }, + { + "start": 42365.72, + "end": 42368.8, + "probability": 0.9324 + }, + { + "start": 42370.3, + "end": 42371.24, + "probability": 0.9097 + }, + { + "start": 42372.22, + "end": 42373.94, + "probability": 0.9725 + }, + { + "start": 42374.72, + "end": 42375.78, + "probability": 0.8817 + }, + { + "start": 42376.5, + "end": 42378.0, + "probability": 0.614 + }, + { + "start": 42379.16, + "end": 42379.86, + "probability": 0.9098 + }, + { + "start": 42380.46, + "end": 42381.12, + "probability": 0.6789 + }, + { + "start": 42381.12, + "end": 42382.62, + "probability": 0.8905 + }, + { + "start": 42382.84, + "end": 42384.06, + "probability": 0.9204 + }, + { + "start": 42384.24, + "end": 42384.97, + "probability": 0.9017 + }, + { + "start": 42385.5, + "end": 42388.7, + "probability": 0.9971 + }, + { + "start": 42389.94, + "end": 42391.82, + "probability": 0.4984 + }, + { + "start": 42392.06, + "end": 42392.34, + "probability": 0.9836 + }, + { + "start": 42393.08, + "end": 42395.52, + "probability": 0.9917 + }, + { + "start": 42396.12, + "end": 42397.58, + "probability": 0.7693 + }, + { + "start": 42398.3, + "end": 42399.02, + "probability": 0.5376 + }, + { + "start": 42399.22, + "end": 42400.28, + "probability": 0.9541 + }, + { + "start": 42400.44, + "end": 42401.6, + "probability": 0.9198 + }, + { + "start": 42402.36, + "end": 42404.0, + "probability": 0.9046 + }, + { + "start": 42405.1, + "end": 42406.85, + "probability": 0.9478 + }, + { + "start": 42409.56, + "end": 42412.48, + "probability": 0.9081 + }, + { + "start": 42414.28, + "end": 42417.6, + "probability": 0.6774 + }, + { + "start": 42417.86, + "end": 42418.72, + "probability": 0.6234 + }, + { + "start": 42419.92, + "end": 42420.84, + "probability": 0.9957 + }, + { + "start": 42422.68, + "end": 42423.38, + "probability": 0.7956 + }, + { + "start": 42424.1, + "end": 42428.12, + "probability": 0.998 + }, + { + "start": 42428.46, + "end": 42429.0, + "probability": 0.8247 + }, + { + "start": 42430.36, + "end": 42431.3, + "probability": 0.592 + }, + { + "start": 42432.28, + "end": 42433.7, + "probability": 0.7408 + }, + { + "start": 42434.3, + "end": 42435.7, + "probability": 0.6864 + }, + { + "start": 42436.74, + "end": 42440.14, + "probability": 0.9279 + }, + { + "start": 42442.02, + "end": 42442.36, + "probability": 0.8565 + }, + { + "start": 42442.84, + "end": 42443.92, + "probability": 0.9395 + }, + { + "start": 42444.48, + "end": 42446.9, + "probability": 0.8016 + }, + { + "start": 42446.9, + "end": 42448.46, + "probability": 0.7826 + }, + { + "start": 42449.38, + "end": 42449.82, + "probability": 0.3684 + }, + { + "start": 42451.68, + "end": 42455.52, + "probability": 0.9607 + }, + { + "start": 42456.16, + "end": 42457.6, + "probability": 0.7827 + }, + { + "start": 42459.38, + "end": 42460.36, + "probability": 0.9053 + }, + { + "start": 42460.46, + "end": 42461.56, + "probability": 0.9747 + }, + { + "start": 42462.1, + "end": 42466.4, + "probability": 0.9919 + }, + { + "start": 42467.82, + "end": 42469.64, + "probability": 0.8445 + }, + { + "start": 42470.48, + "end": 42471.62, + "probability": 0.9814 + }, + { + "start": 42472.54, + "end": 42473.62, + "probability": 0.9459 + }, + { + "start": 42475.02, + "end": 42475.9, + "probability": 0.4896 + }, + { + "start": 42476.66, + "end": 42478.22, + "probability": 0.9655 + }, + { + "start": 42478.76, + "end": 42481.7, + "probability": 0.9478 + }, + { + "start": 42482.6, + "end": 42483.48, + "probability": 0.6511 + }, + { + "start": 42483.6, + "end": 42486.27, + "probability": 0.9785 + }, + { + "start": 42487.68, + "end": 42489.82, + "probability": 0.9932 + }, + { + "start": 42490.9, + "end": 42491.64, + "probability": 0.9961 + }, + { + "start": 42492.38, + "end": 42493.82, + "probability": 0.613 + }, + { + "start": 42493.92, + "end": 42494.34, + "probability": 0.8284 + }, + { + "start": 42494.82, + "end": 42495.26, + "probability": 0.7414 + }, + { + "start": 42495.64, + "end": 42496.24, + "probability": 0.7914 + }, + { + "start": 42497.56, + "end": 42500.16, + "probability": 0.8539 + }, + { + "start": 42501.02, + "end": 42502.04, + "probability": 0.9581 + }, + { + "start": 42503.36, + "end": 42508.34, + "probability": 0.9387 + }, + { + "start": 42508.86, + "end": 42509.78, + "probability": 0.6364 + }, + { + "start": 42510.34, + "end": 42511.9, + "probability": 0.4025 + }, + { + "start": 42512.6, + "end": 42515.36, + "probability": 0.9893 + }, + { + "start": 42516.04, + "end": 42516.24, + "probability": 0.7568 + }, + { + "start": 42516.64, + "end": 42517.02, + "probability": 0.9884 + }, + { + "start": 42517.4, + "end": 42519.62, + "probability": 0.9906 + }, + { + "start": 42519.82, + "end": 42520.14, + "probability": 0.8457 + }, + { + "start": 42520.44, + "end": 42522.16, + "probability": 0.9954 + }, + { + "start": 42522.46, + "end": 42523.32, + "probability": 0.9056 + }, + { + "start": 42523.64, + "end": 42524.72, + "probability": 0.9011 + }, + { + "start": 42524.88, + "end": 42525.96, + "probability": 0.9816 + }, + { + "start": 42526.56, + "end": 42527.78, + "probability": 0.8028 + }, + { + "start": 42528.7, + "end": 42531.9, + "probability": 0.7638 + }, + { + "start": 42532.98, + "end": 42535.46, + "probability": 0.9948 + }, + { + "start": 42536.1, + "end": 42537.76, + "probability": 0.9961 + }, + { + "start": 42539.14, + "end": 42542.22, + "probability": 0.9952 + }, + { + "start": 42542.78, + "end": 42546.06, + "probability": 0.7127 + }, + { + "start": 42547.44, + "end": 42548.9, + "probability": 0.7989 + }, + { + "start": 42550.94, + "end": 42552.56, + "probability": 0.8232 + }, + { + "start": 42553.24, + "end": 42554.44, + "probability": 0.92 + }, + { + "start": 42555.22, + "end": 42556.24, + "probability": 0.9714 + }, + { + "start": 42557.56, + "end": 42557.96, + "probability": 0.7462 + }, + { + "start": 42558.12, + "end": 42561.98, + "probability": 0.9525 + }, + { + "start": 42563.44, + "end": 42564.86, + "probability": 0.7399 + }, + { + "start": 42565.78, + "end": 42567.22, + "probability": 0.8636 + }, + { + "start": 42568.16, + "end": 42570.64, + "probability": 0.9434 + }, + { + "start": 42571.94, + "end": 42572.84, + "probability": 0.9353 + }, + { + "start": 42573.54, + "end": 42575.4, + "probability": 0.9733 + }, + { + "start": 42575.54, + "end": 42576.0, + "probability": 0.6224 + }, + { + "start": 42576.62, + "end": 42577.1, + "probability": 0.7762 + }, + { + "start": 42577.3, + "end": 42578.68, + "probability": 0.6134 + }, + { + "start": 42579.08, + "end": 42579.92, + "probability": 0.8334 + }, + { + "start": 42580.36, + "end": 42580.88, + "probability": 0.8561 + }, + { + "start": 42581.32, + "end": 42581.81, + "probability": 0.6482 + }, + { + "start": 42582.14, + "end": 42582.4, + "probability": 0.4614 + }, + { + "start": 42583.08, + "end": 42584.44, + "probability": 0.9097 + }, + { + "start": 42584.48, + "end": 42588.38, + "probability": 0.9216 + }, + { + "start": 42588.78, + "end": 42592.28, + "probability": 0.7384 + }, + { + "start": 42592.82, + "end": 42594.99, + "probability": 0.9492 + }, + { + "start": 42611.34, + "end": 42612.42, + "probability": 0.5668 + }, + { + "start": 42612.44, + "end": 42613.66, + "probability": 0.8395 + }, + { + "start": 42614.78, + "end": 42617.14, + "probability": 0.6779 + }, + { + "start": 42618.74, + "end": 42621.3, + "probability": 0.9617 + }, + { + "start": 42621.84, + "end": 42622.5, + "probability": 0.8394 + }, + { + "start": 42624.12, + "end": 42624.3, + "probability": 0.4919 + }, + { + "start": 42624.34, + "end": 42626.44, + "probability": 0.9816 + }, + { + "start": 42626.58, + "end": 42628.98, + "probability": 0.9493 + }, + { + "start": 42629.02, + "end": 42630.73, + "probability": 0.5401 + }, + { + "start": 42631.86, + "end": 42633.6, + "probability": 0.8863 + }, + { + "start": 42635.26, + "end": 42640.84, + "probability": 0.918 + }, + { + "start": 42641.86, + "end": 42644.86, + "probability": 0.9873 + }, + { + "start": 42645.0, + "end": 42645.94, + "probability": 0.9966 + }, + { + "start": 42647.16, + "end": 42648.1, + "probability": 0.9033 + }, + { + "start": 42648.24, + "end": 42652.18, + "probability": 0.7929 + }, + { + "start": 42652.34, + "end": 42653.84, + "probability": 0.9651 + }, + { + "start": 42655.0, + "end": 42662.5, + "probability": 0.9935 + }, + { + "start": 42663.4, + "end": 42664.67, + "probability": 0.9971 + }, + { + "start": 42665.62, + "end": 42667.9, + "probability": 0.9587 + }, + { + "start": 42669.34, + "end": 42670.87, + "probability": 0.9937 + }, + { + "start": 42672.0, + "end": 42674.05, + "probability": 0.9971 + }, + { + "start": 42675.42, + "end": 42676.08, + "probability": 0.5745 + }, + { + "start": 42676.2, + "end": 42677.23, + "probability": 0.9976 + }, + { + "start": 42679.48, + "end": 42683.06, + "probability": 0.9776 + }, + { + "start": 42683.98, + "end": 42685.1, + "probability": 0.9272 + }, + { + "start": 42686.12, + "end": 42689.32, + "probability": 0.9954 + }, + { + "start": 42690.78, + "end": 42694.14, + "probability": 0.9946 + }, + { + "start": 42695.2, + "end": 42697.64, + "probability": 0.9963 + }, + { + "start": 42698.64, + "end": 42699.58, + "probability": 0.7923 + }, + { + "start": 42700.16, + "end": 42701.1, + "probability": 0.8462 + }, + { + "start": 42701.86, + "end": 42702.62, + "probability": 0.8407 + }, + { + "start": 42703.58, + "end": 42704.5, + "probability": 0.8949 + }, + { + "start": 42705.72, + "end": 42706.62, + "probability": 0.9641 + }, + { + "start": 42706.66, + "end": 42707.94, + "probability": 0.9578 + }, + { + "start": 42708.04, + "end": 42708.63, + "probability": 0.9578 + }, + { + "start": 42709.22, + "end": 42710.1, + "probability": 0.8171 + }, + { + "start": 42710.18, + "end": 42710.52, + "probability": 0.7706 + }, + { + "start": 42710.6, + "end": 42711.36, + "probability": 0.9722 + }, + { + "start": 42711.96, + "end": 42712.36, + "probability": 0.6617 + }, + { + "start": 42713.74, + "end": 42719.12, + "probability": 0.9529 + }, + { + "start": 42720.48, + "end": 42721.7, + "probability": 0.8918 + }, + { + "start": 42722.92, + "end": 42723.92, + "probability": 0.8247 + }, + { + "start": 42724.86, + "end": 42726.42, + "probability": 0.9565 + }, + { + "start": 42727.14, + "end": 42728.05, + "probability": 0.9639 + }, + { + "start": 42728.38, + "end": 42729.78, + "probability": 0.9086 + }, + { + "start": 42730.24, + "end": 42731.2, + "probability": 0.994 + }, + { + "start": 42731.5, + "end": 42731.88, + "probability": 0.7772 + }, + { + "start": 42731.98, + "end": 42733.72, + "probability": 0.9923 + }, + { + "start": 42736.32, + "end": 42737.92, + "probability": 0.9784 + }, + { + "start": 42738.18, + "end": 42744.3, + "probability": 0.9973 + }, + { + "start": 42745.16, + "end": 42750.6, + "probability": 0.9902 + }, + { + "start": 42750.66, + "end": 42751.44, + "probability": 0.8658 + }, + { + "start": 42752.52, + "end": 42753.84, + "probability": 0.9467 + }, + { + "start": 42753.88, + "end": 42755.28, + "probability": 0.7356 + }, + { + "start": 42756.36, + "end": 42757.0, + "probability": 0.7235 + }, + { + "start": 42757.28, + "end": 42758.88, + "probability": 0.9966 + }, + { + "start": 42761.24, + "end": 42763.64, + "probability": 0.9385 + }, + { + "start": 42764.04, + "end": 42766.26, + "probability": 0.9876 + }, + { + "start": 42767.2, + "end": 42769.24, + "probability": 0.9253 + }, + { + "start": 42771.82, + "end": 42773.96, + "probability": 0.9819 + }, + { + "start": 42776.1, + "end": 42776.94, + "probability": 0.998 + }, + { + "start": 42779.08, + "end": 42779.75, + "probability": 0.7486 + }, + { + "start": 42781.04, + "end": 42782.2, + "probability": 0.9985 + }, + { + "start": 42783.18, + "end": 42785.72, + "probability": 0.9869 + }, + { + "start": 42786.6, + "end": 42787.42, + "probability": 0.8328 + }, + { + "start": 42788.0, + "end": 42789.98, + "probability": 0.9889 + }, + { + "start": 42791.16, + "end": 42792.42, + "probability": 0.9412 + }, + { + "start": 42793.92, + "end": 42796.02, + "probability": 0.9984 + }, + { + "start": 42796.92, + "end": 42798.96, + "probability": 0.85 + }, + { + "start": 42799.0, + "end": 42799.72, + "probability": 0.9066 + }, + { + "start": 42801.04, + "end": 42804.48, + "probability": 0.9976 + }, + { + "start": 42805.0, + "end": 42806.42, + "probability": 0.9988 + }, + { + "start": 42809.54, + "end": 42811.32, + "probability": 0.9924 + }, + { + "start": 42811.94, + "end": 42813.46, + "probability": 0.9929 + }, + { + "start": 42814.36, + "end": 42816.58, + "probability": 0.7182 + }, + { + "start": 42817.7, + "end": 42818.96, + "probability": 0.9305 + }, + { + "start": 42819.72, + "end": 42822.92, + "probability": 0.9931 + }, + { + "start": 42823.8, + "end": 42828.9, + "probability": 0.9848 + }, + { + "start": 42831.66, + "end": 42833.94, + "probability": 0.9929 + }, + { + "start": 42835.06, + "end": 42837.5, + "probability": 0.8239 + }, + { + "start": 42838.66, + "end": 42840.02, + "probability": 0.8952 + }, + { + "start": 42841.3, + "end": 42842.94, + "probability": 0.9917 + }, + { + "start": 42844.48, + "end": 42848.72, + "probability": 0.9873 + }, + { + "start": 42849.71, + "end": 42855.46, + "probability": 0.992 + }, + { + "start": 42856.82, + "end": 42857.4, + "probability": 0.9993 + }, + { + "start": 42858.68, + "end": 42859.6, + "probability": 0.9905 + }, + { + "start": 42860.28, + "end": 42861.38, + "probability": 0.9775 + }, + { + "start": 42863.28, + "end": 42863.68, + "probability": 0.9313 + }, + { + "start": 42866.88, + "end": 42869.3, + "probability": 0.9951 + }, + { + "start": 42870.02, + "end": 42872.0, + "probability": 0.9906 + }, + { + "start": 42872.96, + "end": 42874.48, + "probability": 0.9531 + }, + { + "start": 42875.2, + "end": 42877.64, + "probability": 0.9905 + }, + { + "start": 42879.5, + "end": 42883.82, + "probability": 0.9963 + }, + { + "start": 42884.62, + "end": 42885.34, + "probability": 0.7793 + }, + { + "start": 42886.0, + "end": 42886.82, + "probability": 0.9971 + }, + { + "start": 42887.94, + "end": 42889.08, + "probability": 0.6761 + }, + { + "start": 42890.76, + "end": 42891.35, + "probability": 0.9304 + }, + { + "start": 42893.46, + "end": 42894.82, + "probability": 0.8521 + }, + { + "start": 42894.96, + "end": 42895.82, + "probability": 0.9993 + }, + { + "start": 42896.66, + "end": 42898.32, + "probability": 0.9629 + }, + { + "start": 42898.44, + "end": 42899.78, + "probability": 0.9447 + }, + { + "start": 42900.42, + "end": 42901.24, + "probability": 0.8462 + }, + { + "start": 42902.56, + "end": 42904.08, + "probability": 0.9142 + }, + { + "start": 42904.88, + "end": 42905.66, + "probability": 0.8095 + }, + { + "start": 42907.64, + "end": 42910.18, + "probability": 0.9895 + }, + { + "start": 42911.42, + "end": 42912.6, + "probability": 0.7122 + }, + { + "start": 42913.24, + "end": 42913.74, + "probability": 0.3443 + }, + { + "start": 42913.76, + "end": 42914.9, + "probability": 0.5647 + }, + { + "start": 42915.22, + "end": 42917.16, + "probability": 0.926 + }, + { + "start": 42918.0, + "end": 42919.36, + "probability": 0.7444 + }, + { + "start": 42920.12, + "end": 42920.6, + "probability": 0.8877 + }, + { + "start": 42922.66, + "end": 42925.65, + "probability": 0.9893 + }, + { + "start": 42926.9, + "end": 42928.2, + "probability": 0.9893 + }, + { + "start": 42929.64, + "end": 42932.64, + "probability": 0.7446 + }, + { + "start": 42934.92, + "end": 42936.86, + "probability": 0.8936 + }, + { + "start": 42937.9, + "end": 42945.28, + "probability": 0.9082 + }, + { + "start": 42946.68, + "end": 42948.92, + "probability": 0.7848 + }, + { + "start": 42949.1, + "end": 42950.42, + "probability": 0.4645 + }, + { + "start": 42951.06, + "end": 42952.0, + "probability": 0.7102 + }, + { + "start": 42954.24, + "end": 42956.06, + "probability": 0.8615 + }, + { + "start": 42957.22, + "end": 42961.4, + "probability": 0.834 + }, + { + "start": 42964.54, + "end": 42968.22, + "probability": 0.9727 + }, + { + "start": 42969.12, + "end": 42973.14, + "probability": 0.9673 + }, + { + "start": 42974.18, + "end": 42982.1, + "probability": 0.9896 + }, + { + "start": 42982.52, + "end": 42983.3, + "probability": 0.8867 + }, + { + "start": 42984.42, + "end": 42990.78, + "probability": 0.8865 + }, + { + "start": 42991.72, + "end": 42996.58, + "probability": 0.5609 + }, + { + "start": 42996.58, + "end": 43000.36, + "probability": 0.9039 + }, + { + "start": 43001.3, + "end": 43002.98, + "probability": 0.7854 + }, + { + "start": 43004.14, + "end": 43005.74, + "probability": 0.9629 + }, + { + "start": 43007.5, + "end": 43010.04, + "probability": 0.9168 + }, + { + "start": 43018.62, + "end": 43022.76, + "probability": 0.157 + }, + { + "start": 43023.55, + "end": 43024.38, + "probability": 0.0633 + }, + { + "start": 43027.66, + "end": 43027.68, + "probability": 0.0007 + }, + { + "start": 43027.68, + "end": 43027.78, + "probability": 0.1426 + }, + { + "start": 43027.78, + "end": 43027.78, + "probability": 0.0068 + }, + { + "start": 43027.78, + "end": 43027.78, + "probability": 0.3068 + }, + { + "start": 43027.78, + "end": 43027.78, + "probability": 0.0221 + }, + { + "start": 43027.78, + "end": 43027.78, + "probability": 0.0099 + }, + { + "start": 43027.78, + "end": 43028.3, + "probability": 0.0143 + }, + { + "start": 43028.32, + "end": 43030.69, + "probability": 0.9795 + }, + { + "start": 43032.08, + "end": 43032.98, + "probability": 0.458 + }, + { + "start": 43040.66, + "end": 43043.42, + "probability": 0.5771 + }, + { + "start": 43045.46, + "end": 43046.3, + "probability": 0.3846 + }, + { + "start": 43046.84, + "end": 43047.28, + "probability": 0.0276 + }, + { + "start": 43047.95, + "end": 43048.58, + "probability": 0.0456 + }, + { + "start": 43048.58, + "end": 43048.58, + "probability": 0.041 + }, + { + "start": 43048.58, + "end": 43048.58, + "probability": 0.0358 + }, + { + "start": 43048.58, + "end": 43049.48, + "probability": 0.1192 + }, + { + "start": 43050.9, + "end": 43051.78, + "probability": 0.1077 + }, + { + "start": 43053.52, + "end": 43054.44, + "probability": 0.6493 + }, + { + "start": 43054.74, + "end": 43056.68, + "probability": 0.6679 + }, + { + "start": 43056.74, + "end": 43056.98, + "probability": 0.3961 + }, + { + "start": 43057.04, + "end": 43058.48, + "probability": 0.9749 + }, + { + "start": 43059.38, + "end": 43061.56, + "probability": 0.984 + }, + { + "start": 43061.92, + "end": 43063.04, + "probability": 0.9678 + }, + { + "start": 43063.62, + "end": 43065.12, + "probability": 0.9285 + }, + { + "start": 43065.86, + "end": 43067.76, + "probability": 0.6804 + }, + { + "start": 43068.46, + "end": 43069.68, + "probability": 0.8849 + }, + { + "start": 43069.78, + "end": 43074.08, + "probability": 0.9974 + }, + { + "start": 43075.38, + "end": 43075.93, + "probability": 0.9875 + }, + { + "start": 43077.14, + "end": 43080.7, + "probability": 0.9951 + }, + { + "start": 43081.38, + "end": 43083.08, + "probability": 0.9349 + }, + { + "start": 43084.8, + "end": 43088.17, + "probability": 0.9661 + }, + { + "start": 43088.42, + "end": 43089.44, + "probability": 0.7577 + }, + { + "start": 43090.04, + "end": 43091.9, + "probability": 0.9556 + }, + { + "start": 43092.16, + "end": 43093.93, + "probability": 0.9705 + }, + { + "start": 43094.92, + "end": 43097.38, + "probability": 0.9798 + }, + { + "start": 43098.66, + "end": 43100.9, + "probability": 0.9846 + }, + { + "start": 43100.96, + "end": 43103.78, + "probability": 0.8918 + }, + { + "start": 43104.22, + "end": 43106.56, + "probability": 0.7926 + }, + { + "start": 43107.26, + "end": 43109.26, + "probability": 0.9661 + }, + { + "start": 43110.84, + "end": 43111.74, + "probability": 0.1432 + }, + { + "start": 43112.24, + "end": 43113.1, + "probability": 0.5929 + }, + { + "start": 43113.36, + "end": 43114.22, + "probability": 0.9978 + }, + { + "start": 43114.86, + "end": 43115.94, + "probability": 0.9053 + }, + { + "start": 43116.0, + "end": 43117.18, + "probability": 0.8933 + }, + { + "start": 43117.6, + "end": 43118.82, + "probability": 0.494 + }, + { + "start": 43121.7, + "end": 43122.08, + "probability": 0.3523 + }, + { + "start": 43127.24, + "end": 43128.92, + "probability": 0.6361 + }, + { + "start": 43129.32, + "end": 43129.98, + "probability": 0.8898 + }, + { + "start": 43130.88, + "end": 43133.56, + "probability": 0.6482 + }, + { + "start": 43135.04, + "end": 43136.48, + "probability": 0.9927 + }, + { + "start": 43139.28, + "end": 43140.48, + "probability": 0.9973 + }, + { + "start": 43140.56, + "end": 43145.34, + "probability": 0.9636 + }, + { + "start": 43145.34, + "end": 43147.41, + "probability": 0.9883 + }, + { + "start": 43147.68, + "end": 43148.84, + "probability": 0.8215 + }, + { + "start": 43148.84, + "end": 43149.7, + "probability": 0.7786 + }, + { + "start": 43150.26, + "end": 43151.44, + "probability": 0.9575 + }, + { + "start": 43151.5, + "end": 43152.87, + "probability": 0.9961 + }, + { + "start": 43153.72, + "end": 43156.34, + "probability": 0.6343 + }, + { + "start": 43158.12, + "end": 43160.58, + "probability": 0.9395 + }, + { + "start": 43161.32, + "end": 43162.78, + "probability": 0.6815 + }, + { + "start": 43163.94, + "end": 43164.92, + "probability": 0.529 + }, + { + "start": 43165.78, + "end": 43166.88, + "probability": 0.8889 + }, + { + "start": 43167.62, + "end": 43168.78, + "probability": 0.4717 + }, + { + "start": 43170.52, + "end": 43172.28, + "probability": 0.8669 + }, + { + "start": 43172.62, + "end": 43174.28, + "probability": 0.855 + }, + { + "start": 43175.1, + "end": 43175.76, + "probability": 0.4752 + }, + { + "start": 43175.88, + "end": 43179.08, + "probability": 0.8594 + }, + { + "start": 43179.5, + "end": 43181.18, + "probability": 0.9854 + }, + { + "start": 43183.0, + "end": 43184.78, + "probability": 0.819 + }, + { + "start": 43186.28, + "end": 43187.48, + "probability": 0.8593 + }, + { + "start": 43190.0, + "end": 43190.54, + "probability": 0.8304 + }, + { + "start": 43191.28, + "end": 43192.42, + "probability": 0.7267 + }, + { + "start": 43192.56, + "end": 43195.9, + "probability": 0.952 + }, + { + "start": 43196.6, + "end": 43199.88, + "probability": 0.9622 + }, + { + "start": 43200.44, + "end": 43203.48, + "probability": 0.9347 + }, + { + "start": 43204.48, + "end": 43206.12, + "probability": 0.9016 + }, + { + "start": 43206.92, + "end": 43208.55, + "probability": 0.9976 + }, + { + "start": 43208.94, + "end": 43209.74, + "probability": 0.9683 + }, + { + "start": 43209.84, + "end": 43210.5, + "probability": 0.9781 + }, + { + "start": 43210.68, + "end": 43211.76, + "probability": 0.9317 + }, + { + "start": 43212.26, + "end": 43213.28, + "probability": 0.9617 + }, + { + "start": 43214.34, + "end": 43216.38, + "probability": 0.9944 + }, + { + "start": 43216.88, + "end": 43219.96, + "probability": 0.9836 + }, + { + "start": 43220.02, + "end": 43220.9, + "probability": 0.9799 + }, + { + "start": 43221.84, + "end": 43223.02, + "probability": 0.7713 + }, + { + "start": 43224.14, + "end": 43225.5, + "probability": 0.9266 + }, + { + "start": 43226.12, + "end": 43227.86, + "probability": 0.9884 + }, + { + "start": 43228.52, + "end": 43230.02, + "probability": 0.8528 + }, + { + "start": 43231.18, + "end": 43232.32, + "probability": 0.615 + }, + { + "start": 43234.38, + "end": 43236.34, + "probability": 0.4216 + }, + { + "start": 43236.36, + "end": 43236.56, + "probability": 0.8486 + }, + { + "start": 43236.86, + "end": 43238.3, + "probability": 0.7935 + }, + { + "start": 43238.36, + "end": 43239.86, + "probability": 0.889 + }, + { + "start": 43241.08, + "end": 43243.22, + "probability": 0.9971 + }, + { + "start": 43244.82, + "end": 43247.2, + "probability": 0.9677 + }, + { + "start": 43248.18, + "end": 43251.9, + "probability": 0.9961 + }, + { + "start": 43252.74, + "end": 43254.07, + "probability": 0.9922 + }, + { + "start": 43254.98, + "end": 43257.2, + "probability": 0.9516 + }, + { + "start": 43257.82, + "end": 43259.9, + "probability": 0.941 + }, + { + "start": 43260.1, + "end": 43260.34, + "probability": 0.6944 + }, + { + "start": 43260.5, + "end": 43262.4, + "probability": 0.9883 + }, + { + "start": 43262.92, + "end": 43264.26, + "probability": 0.9614 + }, + { + "start": 43264.38, + "end": 43269.72, + "probability": 0.9879 + }, + { + "start": 43269.86, + "end": 43270.25, + "probability": 0.8938 + }, + { + "start": 43270.74, + "end": 43271.23, + "probability": 0.6971 + }, + { + "start": 43272.6, + "end": 43273.82, + "probability": 0.9851 + }, + { + "start": 43273.88, + "end": 43274.64, + "probability": 0.8135 + }, + { + "start": 43274.76, + "end": 43276.4, + "probability": 0.9914 + }, + { + "start": 43276.98, + "end": 43279.16, + "probability": 0.728 + }, + { + "start": 43279.28, + "end": 43281.4, + "probability": 0.7747 + }, + { + "start": 43281.58, + "end": 43282.8, + "probability": 0.5497 + }, + { + "start": 43282.98, + "end": 43282.98, + "probability": 0.5809 + }, + { + "start": 43283.42, + "end": 43284.26, + "probability": 0.9033 + }, + { + "start": 43284.92, + "end": 43285.66, + "probability": 0.8822 + }, + { + "start": 43286.54, + "end": 43289.28, + "probability": 0.7877 + }, + { + "start": 43290.18, + "end": 43294.3, + "probability": 0.945 + }, + { + "start": 43294.48, + "end": 43295.66, + "probability": 0.4088 + }, + { + "start": 43296.93, + "end": 43298.66, + "probability": 0.8097 + }, + { + "start": 43299.76, + "end": 43299.9, + "probability": 0.0135 + }, + { + "start": 43319.86, + "end": 43320.81, + "probability": 0.0881 + }, + { + "start": 43320.81, + "end": 43320.83, + "probability": 0.1426 + }, + { + "start": 43320.83, + "end": 43321.52, + "probability": 0.4328 + }, + { + "start": 43324.03, + "end": 43325.47, + "probability": 0.6181 + }, + { + "start": 43325.67, + "end": 43327.39, + "probability": 0.801 + }, + { + "start": 43327.75, + "end": 43330.17, + "probability": 0.8748 + }, + { + "start": 43331.43, + "end": 43334.33, + "probability": 0.8268 + }, + { + "start": 43335.71, + "end": 43336.29, + "probability": 0.8677 + }, + { + "start": 43337.63, + "end": 43338.29, + "probability": 0.9625 + }, + { + "start": 43338.93, + "end": 43341.37, + "probability": 0.9269 + }, + { + "start": 43343.09, + "end": 43344.16, + "probability": 0.9662 + }, + { + "start": 43345.97, + "end": 43346.87, + "probability": 0.8362 + }, + { + "start": 43348.05, + "end": 43348.39, + "probability": 0.9836 + }, + { + "start": 43349.73, + "end": 43353.01, + "probability": 0.8377 + }, + { + "start": 43354.65, + "end": 43360.57, + "probability": 0.7271 + }, + { + "start": 43361.55, + "end": 43362.59, + "probability": 0.8566 + }, + { + "start": 43363.85, + "end": 43364.85, + "probability": 0.8868 + }, + { + "start": 43365.75, + "end": 43368.57, + "probability": 0.985 + }, + { + "start": 43369.21, + "end": 43370.21, + "probability": 0.8651 + }, + { + "start": 43371.17, + "end": 43371.65, + "probability": 0.9437 + }, + { + "start": 43372.67, + "end": 43374.89, + "probability": 0.9924 + }, + { + "start": 43375.89, + "end": 43377.35, + "probability": 0.9943 + }, + { + "start": 43378.23, + "end": 43380.57, + "probability": 0.9793 + }, + { + "start": 43383.69, + "end": 43385.09, + "probability": 0.7403 + }, + { + "start": 43386.47, + "end": 43389.59, + "probability": 0.797 + }, + { + "start": 43390.27, + "end": 43391.35, + "probability": 0.8604 + }, + { + "start": 43392.23, + "end": 43393.37, + "probability": 0.7712 + }, + { + "start": 43394.21, + "end": 43394.69, + "probability": 0.6543 + }, + { + "start": 43395.77, + "end": 43395.79, + "probability": 0.1311 + }, + { + "start": 43395.97, + "end": 43396.83, + "probability": 0.7686 + }, + { + "start": 43397.39, + "end": 43397.85, + "probability": 0.5007 + }, + { + "start": 43399.23, + "end": 43400.71, + "probability": 0.9013 + }, + { + "start": 43401.11, + "end": 43401.61, + "probability": 0.9193 + }, + { + "start": 43402.97, + "end": 43404.77, + "probability": 0.8838 + }, + { + "start": 43404.89, + "end": 43407.29, + "probability": 0.9467 + }, + { + "start": 43407.99, + "end": 43409.17, + "probability": 0.5661 + }, + { + "start": 43411.39, + "end": 43412.89, + "probability": 0.8572 + }, + { + "start": 43413.51, + "end": 43415.07, + "probability": 0.9372 + }, + { + "start": 43416.49, + "end": 43418.53, + "probability": 0.9716 + }, + { + "start": 43419.13, + "end": 43420.33, + "probability": 0.9839 + }, + { + "start": 43422.33, + "end": 43425.85, + "probability": 0.194 + }, + { + "start": 43426.41, + "end": 43427.25, + "probability": 0.7885 + }, + { + "start": 43427.67, + "end": 43427.69, + "probability": 0.2084 + }, + { + "start": 43428.29, + "end": 43429.33, + "probability": 0.7769 + }, + { + "start": 43429.59, + "end": 43430.59, + "probability": 0.9807 + }, + { + "start": 43431.19, + "end": 43432.45, + "probability": 0.9922 + }, + { + "start": 43434.33, + "end": 43434.93, + "probability": 0.9443 + }, + { + "start": 43435.99, + "end": 43437.89, + "probability": 0.9286 + }, + { + "start": 43439.23, + "end": 43441.71, + "probability": 0.5373 + }, + { + "start": 43442.99, + "end": 43448.19, + "probability": 0.9148 + }, + { + "start": 43448.93, + "end": 43450.79, + "probability": 0.8384 + }, + { + "start": 43452.57, + "end": 43453.67, + "probability": 0.9272 + }, + { + "start": 43455.65, + "end": 43462.65, + "probability": 0.989 + }, + { + "start": 43462.65, + "end": 43467.65, + "probability": 0.9971 + }, + { + "start": 43469.09, + "end": 43471.03, + "probability": 0.9974 + }, + { + "start": 43471.97, + "end": 43473.59, + "probability": 0.9555 + }, + { + "start": 43475.23, + "end": 43477.89, + "probability": 0.9829 + }, + { + "start": 43479.57, + "end": 43481.51, + "probability": 0.9375 + }, + { + "start": 43482.61, + "end": 43489.43, + "probability": 0.9939 + }, + { + "start": 43489.83, + "end": 43492.49, + "probability": 0.9956 + }, + { + "start": 43493.61, + "end": 43494.96, + "probability": 0.8789 + }, + { + "start": 43495.49, + "end": 43495.83, + "probability": 0.3089 + }, + { + "start": 43496.77, + "end": 43499.07, + "probability": 0.8707 + }, + { + "start": 43499.93, + "end": 43502.91, + "probability": 0.7869 + }, + { + "start": 43503.89, + "end": 43504.37, + "probability": 0.9639 + }, + { + "start": 43505.07, + "end": 43506.97, + "probability": 0.8279 + }, + { + "start": 43507.15, + "end": 43508.45, + "probability": 0.8495 + }, + { + "start": 43508.61, + "end": 43512.61, + "probability": 0.8927 + }, + { + "start": 43513.37, + "end": 43513.99, + "probability": 0.9375 + }, + { + "start": 43514.83, + "end": 43517.57, + "probability": 0.8854 + }, + { + "start": 43517.67, + "end": 43518.91, + "probability": 0.7376 + }, + { + "start": 43519.15, + "end": 43520.31, + "probability": 0.9472 + }, + { + "start": 43520.53, + "end": 43521.31, + "probability": 0.5386 + }, + { + "start": 43522.63, + "end": 43524.69, + "probability": 0.8512 + }, + { + "start": 43525.59, + "end": 43526.71, + "probability": 0.8262 + }, + { + "start": 43527.49, + "end": 43529.59, + "probability": 0.9797 + }, + { + "start": 43530.15, + "end": 43533.37, + "probability": 0.8133 + }, + { + "start": 43533.89, + "end": 43540.77, + "probability": 0.98 + }, + { + "start": 43541.83, + "end": 43544.59, + "probability": 0.978 + }, + { + "start": 43545.21, + "end": 43546.33, + "probability": 0.9586 + }, + { + "start": 43547.37, + "end": 43551.31, + "probability": 0.8641 + }, + { + "start": 43553.19, + "end": 43555.33, + "probability": 0.8084 + }, + { + "start": 43555.85, + "end": 43559.73, + "probability": 0.9141 + }, + { + "start": 43560.67, + "end": 43561.27, + "probability": 0.9181 + }, + { + "start": 43562.23, + "end": 43566.25, + "probability": 0.9701 + }, + { + "start": 43566.91, + "end": 43570.39, + "probability": 0.6506 + }, + { + "start": 43570.81, + "end": 43574.25, + "probability": 0.9856 + }, + { + "start": 43575.23, + "end": 43576.85, + "probability": 0.9863 + }, + { + "start": 43577.47, + "end": 43578.09, + "probability": 0.6745 + }, + { + "start": 43578.25, + "end": 43582.77, + "probability": 0.9707 + }, + { + "start": 43582.97, + "end": 43583.71, + "probability": 0.6809 + }, + { + "start": 43583.87, + "end": 43584.13, + "probability": 0.8122 + }, + { + "start": 43585.05, + "end": 43585.75, + "probability": 0.5548 + }, + { + "start": 43587.01, + "end": 43590.49, + "probability": 0.9652 + }, + { + "start": 43591.01, + "end": 43592.71, + "probability": 0.9453 + }, + { + "start": 43593.01, + "end": 43594.05, + "probability": 0.8987 + }, + { + "start": 43594.29, + "end": 43596.71, + "probability": 0.995 + }, + { + "start": 43596.75, + "end": 43597.79, + "probability": 0.7437 + }, + { + "start": 43598.45, + "end": 43599.1, + "probability": 0.7698 + }, + { + "start": 43599.37, + "end": 43600.68, + "probability": 0.5977 + }, + { + "start": 43601.53, + "end": 43603.49, + "probability": 0.9479 + }, + { + "start": 43604.37, + "end": 43605.79, + "probability": 0.9092 + }, + { + "start": 43605.87, + "end": 43609.13, + "probability": 0.9676 + }, + { + "start": 43609.17, + "end": 43609.67, + "probability": 0.8057 + }, + { + "start": 43609.67, + "end": 43611.43, + "probability": 0.98 + }, + { + "start": 43612.23, + "end": 43613.81, + "probability": 0.7582 + }, + { + "start": 43614.23, + "end": 43618.47, + "probability": 0.9131 + }, + { + "start": 43618.51, + "end": 43619.49, + "probability": 0.7769 + }, + { + "start": 43619.89, + "end": 43621.24, + "probability": 0.9212 + }, + { + "start": 43622.07, + "end": 43625.41, + "probability": 0.9844 + }, + { + "start": 43628.11, + "end": 43634.03, + "probability": 0.9921 + }, + { + "start": 43634.39, + "end": 43636.95, + "probability": 0.9882 + }, + { + "start": 43637.83, + "end": 43640.31, + "probability": 0.9777 + }, + { + "start": 43641.49, + "end": 43644.57, + "probability": 0.9287 + }, + { + "start": 43645.43, + "end": 43647.01, + "probability": 0.9994 + }, + { + "start": 43647.59, + "end": 43648.67, + "probability": 0.9709 + }, + { + "start": 43649.65, + "end": 43654.33, + "probability": 0.9879 + }, + { + "start": 43654.65, + "end": 43660.89, + "probability": 0.7446 + }, + { + "start": 43661.81, + "end": 43663.47, + "probability": 0.23 + }, + { + "start": 43663.49, + "end": 43665.0, + "probability": 0.9803 + }, + { + "start": 43665.77, + "end": 43666.41, + "probability": 0.8873 + }, + { + "start": 43666.71, + "end": 43667.49, + "probability": 0.9294 + }, + { + "start": 43667.65, + "end": 43668.55, + "probability": 0.9596 + }, + { + "start": 43668.93, + "end": 43670.71, + "probability": 0.9189 + }, + { + "start": 43671.73, + "end": 43674.29, + "probability": 0.9987 + }, + { + "start": 43675.13, + "end": 43678.13, + "probability": 0.8425 + }, + { + "start": 43678.85, + "end": 43680.51, + "probability": 0.9958 + }, + { + "start": 43681.81, + "end": 43683.73, + "probability": 0.8427 + }, + { + "start": 43684.81, + "end": 43688.03, + "probability": 0.9684 + }, + { + "start": 43688.23, + "end": 43689.83, + "probability": 0.8503 + }, + { + "start": 43691.59, + "end": 43692.91, + "probability": 0.9478 + }, + { + "start": 43693.43, + "end": 43694.63, + "probability": 0.839 + }, + { + "start": 43694.71, + "end": 43697.85, + "probability": 0.9346 + }, + { + "start": 43698.33, + "end": 43698.97, + "probability": 0.3823 + }, + { + "start": 43699.77, + "end": 43704.29, + "probability": 0.9855 + }, + { + "start": 43704.43, + "end": 43705.27, + "probability": 0.9766 + }, + { + "start": 43706.27, + "end": 43709.14, + "probability": 0.9451 + }, + { + "start": 43710.45, + "end": 43712.45, + "probability": 0.936 + }, + { + "start": 43713.17, + "end": 43715.37, + "probability": 0.9688 + }, + { + "start": 43715.57, + "end": 43716.51, + "probability": 0.8735 + }, + { + "start": 43717.17, + "end": 43718.53, + "probability": 0.8579 + }, + { + "start": 43719.25, + "end": 43721.59, + "probability": 0.8732 + }, + { + "start": 43722.59, + "end": 43723.21, + "probability": 0.8113 + }, + { + "start": 43723.73, + "end": 43726.95, + "probability": 0.9886 + }, + { + "start": 43727.97, + "end": 43728.93, + "probability": 0.6906 + }, + { + "start": 43732.41, + "end": 43735.15, + "probability": 0.6129 + }, + { + "start": 43735.25, + "end": 43736.21, + "probability": 0.9485 + }, + { + "start": 43736.55, + "end": 43737.91, + "probability": 0.689 + }, + { + "start": 43738.27, + "end": 43740.85, + "probability": 0.9821 + }, + { + "start": 43740.89, + "end": 43741.51, + "probability": 0.603 + }, + { + "start": 43742.09, + "end": 43742.65, + "probability": 0.8044 + }, + { + "start": 43743.39, + "end": 43745.67, + "probability": 0.7598 + }, + { + "start": 43746.75, + "end": 43748.57, + "probability": 0.9283 + }, + { + "start": 43749.31, + "end": 43749.65, + "probability": 0.874 + }, + { + "start": 43750.33, + "end": 43753.13, + "probability": 0.9603 + }, + { + "start": 43754.13, + "end": 43754.61, + "probability": 0.9775 + }, + { + "start": 43754.75, + "end": 43755.01, + "probability": 0.932 + }, + { + "start": 43755.11, + "end": 43756.19, + "probability": 0.9824 + }, + { + "start": 43756.57, + "end": 43757.65, + "probability": 0.9794 + }, + { + "start": 43757.87, + "end": 43762.59, + "probability": 0.9373 + }, + { + "start": 43763.97, + "end": 43764.17, + "probability": 0.5153 + }, + { + "start": 43764.75, + "end": 43765.95, + "probability": 0.8413 + }, + { + "start": 43766.83, + "end": 43769.63, + "probability": 0.9805 + }, + { + "start": 43769.81, + "end": 43773.35, + "probability": 0.9989 + }, + { + "start": 43774.19, + "end": 43776.21, + "probability": 0.9961 + }, + { + "start": 43777.17, + "end": 43779.31, + "probability": 0.9919 + }, + { + "start": 43780.09, + "end": 43781.83, + "probability": 0.7266 + }, + { + "start": 43782.49, + "end": 43784.23, + "probability": 0.984 + }, + { + "start": 43784.95, + "end": 43786.99, + "probability": 0.9691 + }, + { + "start": 43787.09, + "end": 43788.44, + "probability": 0.9214 + }, + { + "start": 43790.13, + "end": 43791.51, + "probability": 0.8005 + }, + { + "start": 43791.81, + "end": 43793.77, + "probability": 0.9775 + }, + { + "start": 43793.77, + "end": 43799.71, + "probability": 0.9307 + }, + { + "start": 43800.03, + "end": 43801.13, + "probability": 0.7061 + }, + { + "start": 43801.31, + "end": 43802.75, + "probability": 0.767 + }, + { + "start": 43803.87, + "end": 43805.59, + "probability": 0.9437 + }, + { + "start": 43806.05, + "end": 43806.33, + "probability": 0.7084 + }, + { + "start": 43806.39, + "end": 43807.23, + "probability": 0.5123 + }, + { + "start": 43807.41, + "end": 43810.05, + "probability": 0.9815 + }, + { + "start": 43810.81, + "end": 43812.47, + "probability": 0.9126 + }, + { + "start": 43812.55, + "end": 43813.34, + "probability": 0.9956 + }, + { + "start": 43814.81, + "end": 43816.54, + "probability": 0.8579 + }, + { + "start": 43817.51, + "end": 43819.73, + "probability": 0.989 + }, + { + "start": 43820.51, + "end": 43823.95, + "probability": 0.9925 + }, + { + "start": 43824.75, + "end": 43825.43, + "probability": 0.8903 + }, + { + "start": 43826.37, + "end": 43827.17, + "probability": 0.9485 + }, + { + "start": 43828.15, + "end": 43829.93, + "probability": 0.8532 + }, + { + "start": 43830.05, + "end": 43832.86, + "probability": 0.9933 + }, + { + "start": 43833.87, + "end": 43834.09, + "probability": 0.7375 + }, + { + "start": 43838.33, + "end": 43839.91, + "probability": 0.8195 + }, + { + "start": 43840.53, + "end": 43841.41, + "probability": 0.8699 + }, + { + "start": 43842.55, + "end": 43845.85, + "probability": 0.8853 + }, + { + "start": 43846.49, + "end": 43849.18, + "probability": 0.9254 + }, + { + "start": 43849.75, + "end": 43855.91, + "probability": 0.9881 + }, + { + "start": 43856.43, + "end": 43857.33, + "probability": 0.7662 + }, + { + "start": 43858.01, + "end": 43858.69, + "probability": 0.8436 + }, + { + "start": 43859.77, + "end": 43865.85, + "probability": 0.9143 + }, + { + "start": 43866.37, + "end": 43868.67, + "probability": 0.6386 + }, + { + "start": 43871.31, + "end": 43874.81, + "probability": 0.9959 + }, + { + "start": 43875.73, + "end": 43881.35, + "probability": 0.9731 + }, + { + "start": 43882.51, + "end": 43886.17, + "probability": 0.7762 + }, + { + "start": 43886.17, + "end": 43887.77, + "probability": 0.9351 + }, + { + "start": 43888.19, + "end": 43889.79, + "probability": 0.8906 + }, + { + "start": 43890.81, + "end": 43896.37, + "probability": 0.998 + }, + { + "start": 43897.01, + "end": 43897.43, + "probability": 0.9465 + }, + { + "start": 43898.97, + "end": 43900.67, + "probability": 0.5466 + }, + { + "start": 43900.75, + "end": 43902.87, + "probability": 0.9795 + }, + { + "start": 43903.95, + "end": 43904.97, + "probability": 0.8458 + }, + { + "start": 43905.61, + "end": 43907.27, + "probability": 0.8786 + }, + { + "start": 43908.33, + "end": 43910.89, + "probability": 0.8208 + }, + { + "start": 43911.97, + "end": 43913.39, + "probability": 0.9615 + }, + { + "start": 43913.81, + "end": 43915.18, + "probability": 0.9949 + }, + { + "start": 43916.25, + "end": 43919.69, + "probability": 0.8828 + }, + { + "start": 43919.79, + "end": 43920.5, + "probability": 0.9985 + }, + { + "start": 43921.43, + "end": 43923.81, + "probability": 0.985 + }, + { + "start": 43924.39, + "end": 43925.58, + "probability": 0.9651 + }, + { + "start": 43926.49, + "end": 43928.75, + "probability": 0.9484 + }, + { + "start": 43929.41, + "end": 43929.69, + "probability": 0.9377 + }, + { + "start": 43930.13, + "end": 43934.07, + "probability": 0.9863 + }, + { + "start": 43934.73, + "end": 43936.51, + "probability": 0.7554 + }, + { + "start": 43937.53, + "end": 43939.43, + "probability": 0.9513 + }, + { + "start": 43939.81, + "end": 43941.85, + "probability": 0.771 + }, + { + "start": 43942.29, + "end": 43943.41, + "probability": 0.9431 + }, + { + "start": 43943.93, + "end": 43947.11, + "probability": 0.894 + }, + { + "start": 43947.21, + "end": 43948.23, + "probability": 0.5676 + }, + { + "start": 43948.65, + "end": 43949.79, + "probability": 0.5638 + }, + { + "start": 43949.95, + "end": 43950.55, + "probability": 0.546 + }, + { + "start": 43950.59, + "end": 43951.43, + "probability": 0.6844 + }, + { + "start": 43951.47, + "end": 43952.33, + "probability": 0.9207 + }, + { + "start": 43953.01, + "end": 43954.25, + "probability": 0.8368 + }, + { + "start": 43955.49, + "end": 43957.51, + "probability": 0.8588 + }, + { + "start": 43958.67, + "end": 43963.43, + "probability": 0.7231 + }, + { + "start": 43964.31, + "end": 43965.99, + "probability": 0.9635 + }, + { + "start": 43966.79, + "end": 43968.48, + "probability": 0.989 + }, + { + "start": 43969.39, + "end": 43971.39, + "probability": 0.9982 + }, + { + "start": 43971.89, + "end": 43972.85, + "probability": 0.9995 + }, + { + "start": 43974.13, + "end": 43980.53, + "probability": 0.6895 + }, + { + "start": 43980.75, + "end": 43981.38, + "probability": 0.7142 + }, + { + "start": 43982.13, + "end": 43982.59, + "probability": 0.7988 + }, + { + "start": 43982.97, + "end": 43983.95, + "probability": 0.9771 + }, + { + "start": 43985.99, + "end": 43990.37, + "probability": 0.8516 + }, + { + "start": 43990.99, + "end": 43992.23, + "probability": 0.9844 + }, + { + "start": 43994.11, + "end": 43997.09, + "probability": 0.9268 + }, + { + "start": 43997.85, + "end": 43999.49, + "probability": 0.9963 + }, + { + "start": 44000.21, + "end": 44001.37, + "probability": 0.7971 + }, + { + "start": 44001.45, + "end": 44001.81, + "probability": 0.4897 + }, + { + "start": 44002.73, + "end": 44003.27, + "probability": 0.9297 + }, + { + "start": 44003.43, + "end": 44006.13, + "probability": 0.9313 + }, + { + "start": 44006.25, + "end": 44008.23, + "probability": 0.9094 + }, + { + "start": 44008.69, + "end": 44011.43, + "probability": 0.9226 + }, + { + "start": 44011.51, + "end": 44013.15, + "probability": 0.8909 + }, + { + "start": 44014.29, + "end": 44017.03, + "probability": 0.8928 + }, + { + "start": 44017.07, + "end": 44018.71, + "probability": 0.9562 + }, + { + "start": 44019.29, + "end": 44020.71, + "probability": 0.7966 + }, + { + "start": 44022.09, + "end": 44023.83, + "probability": 0.9875 + }, + { + "start": 44024.37, + "end": 44028.73, + "probability": 0.9128 + }, + { + "start": 44028.77, + "end": 44030.09, + "probability": 0.8711 + }, + { + "start": 44030.17, + "end": 44031.69, + "probability": 0.972 + }, + { + "start": 44032.39, + "end": 44036.23, + "probability": 0.9844 + }, + { + "start": 44036.67, + "end": 44038.64, + "probability": 0.9919 + }, + { + "start": 44039.53, + "end": 44041.63, + "probability": 0.9794 + }, + { + "start": 44042.23, + "end": 44046.99, + "probability": 0.9907 + }, + { + "start": 44047.39, + "end": 44049.61, + "probability": 0.9984 + }, + { + "start": 44051.25, + "end": 44053.29, + "probability": 0.9146 + }, + { + "start": 44053.37, + "end": 44061.27, + "probability": 0.9762 + }, + { + "start": 44061.99, + "end": 44066.49, + "probability": 0.9875 + }, + { + "start": 44066.71, + "end": 44069.73, + "probability": 0.9507 + }, + { + "start": 44070.29, + "end": 44073.61, + "probability": 0.9961 + }, + { + "start": 44073.71, + "end": 44074.09, + "probability": 0.6776 + }, + { + "start": 44074.11, + "end": 44078.3, + "probability": 0.9844 + }, + { + "start": 44078.51, + "end": 44079.07, + "probability": 0.6912 + }, + { + "start": 44079.23, + "end": 44079.71, + "probability": 0.5888 + }, + { + "start": 44080.05, + "end": 44082.71, + "probability": 0.7642 + }, + { + "start": 44083.35, + "end": 44084.03, + "probability": 0.9219 + }, + { + "start": 44085.81, + "end": 44089.57, + "probability": 0.8054 + }, + { + "start": 44089.75, + "end": 44092.09, + "probability": 0.998 + }, + { + "start": 44094.37, + "end": 44096.65, + "probability": 0.9582 + }, + { + "start": 44097.19, + "end": 44099.57, + "probability": 0.9735 + }, + { + "start": 44102.21, + "end": 44102.8, + "probability": 0.7695 + }, + { + "start": 44104.01, + "end": 44105.53, + "probability": 0.3288 + }, + { + "start": 44107.19, + "end": 44110.75, + "probability": 0.9929 + }, + { + "start": 44112.21, + "end": 44114.59, + "probability": 0.9682 + }, + { + "start": 44114.79, + "end": 44117.89, + "probability": 0.8994 + }, + { + "start": 44118.61, + "end": 44120.67, + "probability": 0.6598 + }, + { + "start": 44120.87, + "end": 44122.73, + "probability": 0.9658 + }, + { + "start": 44123.01, + "end": 44124.33, + "probability": 0.8933 + }, + { + "start": 44125.19, + "end": 44128.99, + "probability": 0.9534 + }, + { + "start": 44130.23, + "end": 44131.05, + "probability": 0.9941 + }, + { + "start": 44132.69, + "end": 44133.85, + "probability": 0.3869 + }, + { + "start": 44134.85, + "end": 44137.77, + "probability": 0.8095 + }, + { + "start": 44138.39, + "end": 44146.35, + "probability": 0.9948 + }, + { + "start": 44146.37, + "end": 44152.13, + "probability": 0.9971 + }, + { + "start": 44153.61, + "end": 44156.63, + "probability": 0.9414 + }, + { + "start": 44157.03, + "end": 44158.49, + "probability": 0.9961 + }, + { + "start": 44159.09, + "end": 44160.09, + "probability": 0.8943 + }, + { + "start": 44160.69, + "end": 44161.43, + "probability": 0.9097 + }, + { + "start": 44162.55, + "end": 44163.23, + "probability": 0.9829 + }, + { + "start": 44163.31, + "end": 44169.61, + "probability": 0.9927 + }, + { + "start": 44169.73, + "end": 44170.67, + "probability": 0.9832 + }, + { + "start": 44172.05, + "end": 44172.93, + "probability": 0.5601 + }, + { + "start": 44173.75, + "end": 44174.09, + "probability": 0.8042 + }, + { + "start": 44175.01, + "end": 44176.88, + "probability": 0.9312 + }, + { + "start": 44177.43, + "end": 44178.09, + "probability": 0.6352 + }, + { + "start": 44178.45, + "end": 44180.25, + "probability": 0.6569 + }, + { + "start": 44181.17, + "end": 44181.43, + "probability": 0.7524 + }, + { + "start": 44181.89, + "end": 44183.47, + "probability": 0.9536 + }, + { + "start": 44184.51, + "end": 44185.51, + "probability": 0.9972 + }, + { + "start": 44186.21, + "end": 44187.51, + "probability": 0.9822 + }, + { + "start": 44187.55, + "end": 44188.83, + "probability": 0.9171 + }, + { + "start": 44189.45, + "end": 44189.99, + "probability": 0.7012 + }, + { + "start": 44190.63, + "end": 44194.29, + "probability": 0.994 + }, + { + "start": 44194.29, + "end": 44197.53, + "probability": 0.9355 + }, + { + "start": 44198.21, + "end": 44198.95, + "probability": 0.9218 + }, + { + "start": 44199.75, + "end": 44201.31, + "probability": 0.9635 + }, + { + "start": 44202.35, + "end": 44205.49, + "probability": 0.9925 + }, + { + "start": 44206.35, + "end": 44208.75, + "probability": 0.8489 + }, + { + "start": 44209.73, + "end": 44210.91, + "probability": 0.7653 + }, + { + "start": 44212.27, + "end": 44214.93, + "probability": 0.9409 + }, + { + "start": 44215.43, + "end": 44217.15, + "probability": 0.9361 + }, + { + "start": 44217.21, + "end": 44221.57, + "probability": 0.9785 + }, + { + "start": 44221.73, + "end": 44222.71, + "probability": 0.9789 + }, + { + "start": 44222.87, + "end": 44224.59, + "probability": 0.9866 + }, + { + "start": 44224.85, + "end": 44225.87, + "probability": 0.925 + }, + { + "start": 44227.23, + "end": 44227.51, + "probability": 0.7117 + }, + { + "start": 44229.09, + "end": 44230.24, + "probability": 0.6675 + }, + { + "start": 44230.43, + "end": 44231.59, + "probability": 0.9583 + }, + { + "start": 44232.81, + "end": 44236.77, + "probability": 0.9409 + }, + { + "start": 44236.91, + "end": 44238.79, + "probability": 0.7404 + }, + { + "start": 44240.11, + "end": 44240.29, + "probability": 0.256 + }, + { + "start": 44240.45, + "end": 44245.67, + "probability": 0.9893 + }, + { + "start": 44245.75, + "end": 44247.03, + "probability": 0.6586 + }, + { + "start": 44248.33, + "end": 44248.73, + "probability": 0.5993 + }, + { + "start": 44248.81, + "end": 44250.39, + "probability": 0.8044 + }, + { + "start": 44253.75, + "end": 44258.33, + "probability": 0.8427 + }, + { + "start": 44259.01, + "end": 44263.25, + "probability": 0.6668 + }, + { + "start": 44263.81, + "end": 44265.81, + "probability": 0.9982 + }, + { + "start": 44267.09, + "end": 44269.15, + "probability": 0.9775 + }, + { + "start": 44272.43, + "end": 44275.51, + "probability": 0.9701 + }, + { + "start": 44279.18, + "end": 44282.87, + "probability": 0.994 + }, + { + "start": 44284.57, + "end": 44286.27, + "probability": 0.9631 + }, + { + "start": 44287.25, + "end": 44288.57, + "probability": 0.7032 + }, + { + "start": 44289.19, + "end": 44290.47, + "probability": 0.8831 + }, + { + "start": 44290.97, + "end": 44295.63, + "probability": 0.9781 + }, + { + "start": 44295.73, + "end": 44296.13, + "probability": 0.7008 + }, + { + "start": 44296.47, + "end": 44296.95, + "probability": 0.3114 + }, + { + "start": 44297.87, + "end": 44300.15, + "probability": 0.8705 + }, + { + "start": 44300.63, + "end": 44301.89, + "probability": 0.9436 + }, + { + "start": 44302.31, + "end": 44305.73, + "probability": 0.9801 + }, + { + "start": 44306.37, + "end": 44308.61, + "probability": 0.5008 + }, + { + "start": 44309.75, + "end": 44313.19, + "probability": 0.7953 + }, + { + "start": 44313.87, + "end": 44316.99, + "probability": 0.9441 + }, + { + "start": 44318.25, + "end": 44320.59, + "probability": 0.7662 + }, + { + "start": 44321.35, + "end": 44327.39, + "probability": 0.9454 + }, + { + "start": 44327.85, + "end": 44330.37, + "probability": 0.9861 + }, + { + "start": 44331.21, + "end": 44332.61, + "probability": 0.7445 + }, + { + "start": 44333.39, + "end": 44337.79, + "probability": 0.9878 + }, + { + "start": 44338.67, + "end": 44340.95, + "probability": 0.6208 + }, + { + "start": 44341.55, + "end": 44345.88, + "probability": 0.9554 + }, + { + "start": 44346.67, + "end": 44347.29, + "probability": 0.9693 + }, + { + "start": 44347.65, + "end": 44347.65, + "probability": 0.0 + }, + { + "start": 44349.31, + "end": 44353.83, + "probability": 0.7836 + }, + { + "start": 44353.83, + "end": 44358.25, + "probability": 0.928 + }, + { + "start": 44358.41, + "end": 44359.91, + "probability": 0.9138 + }, + { + "start": 44360.71, + "end": 44361.73, + "probability": 0.8423 + }, + { + "start": 44362.25, + "end": 44363.41, + "probability": 0.8019 + }, + { + "start": 44364.05, + "end": 44365.83, + "probability": 0.8389 + }, + { + "start": 44366.63, + "end": 44368.73, + "probability": 0.9528 + }, + { + "start": 44369.09, + "end": 44370.43, + "probability": 0.9274 + }, + { + "start": 44370.81, + "end": 44374.39, + "probability": 0.7336 + }, + { + "start": 44375.69, + "end": 44378.37, + "probability": 0.5939 + }, + { + "start": 44379.03, + "end": 44380.15, + "probability": 0.6156 + }, + { + "start": 44380.83, + "end": 44383.53, + "probability": 0.7802 + }, + { + "start": 44384.21, + "end": 44385.65, + "probability": 0.9194 + }, + { + "start": 44386.57, + "end": 44390.73, + "probability": 0.9678 + }, + { + "start": 44391.29, + "end": 44395.71, + "probability": 0.9815 + }, + { + "start": 44397.43, + "end": 44397.81, + "probability": 0.2587 + }, + { + "start": 44398.01, + "end": 44398.33, + "probability": 0.684 + }, + { + "start": 44398.39, + "end": 44399.11, + "probability": 0.9265 + }, + { + "start": 44399.57, + "end": 44399.71, + "probability": 0.2622 + }, + { + "start": 44400.07, + "end": 44400.39, + "probability": 0.7966 + }, + { + "start": 44400.53, + "end": 44400.95, + "probability": 0.8611 + }, + { + "start": 44401.33, + "end": 44409.01, + "probability": 0.8883 + }, + { + "start": 44409.25, + "end": 44409.85, + "probability": 0.6759 + }, + { + "start": 44410.73, + "end": 44411.19, + "probability": 0.4472 + }, + { + "start": 44411.27, + "end": 44416.03, + "probability": 0.9961 + }, + { + "start": 44416.53, + "end": 44418.69, + "probability": 0.9988 + }, + { + "start": 44419.05, + "end": 44419.41, + "probability": 0.2001 + }, + { + "start": 44420.59, + "end": 44422.62, + "probability": 0.5065 + }, + { + "start": 44423.89, + "end": 44424.83, + "probability": 0.8477 + }, + { + "start": 44425.59, + "end": 44428.01, + "probability": 0.924 + }, + { + "start": 44428.67, + "end": 44430.25, + "probability": 0.8846 + }, + { + "start": 44430.73, + "end": 44434.41, + "probability": 0.9806 + }, + { + "start": 44436.71, + "end": 44439.67, + "probability": 0.8679 + }, + { + "start": 44441.11, + "end": 44443.55, + "probability": 0.9963 + }, + { + "start": 44444.31, + "end": 44444.97, + "probability": 0.8356 + }, + { + "start": 44445.59, + "end": 44447.43, + "probability": 0.5714 + }, + { + "start": 44447.59, + "end": 44448.51, + "probability": 0.9343 + }, + { + "start": 44449.89, + "end": 44453.93, + "probability": 0.9943 + }, + { + "start": 44454.59, + "end": 44455.53, + "probability": 0.7744 + }, + { + "start": 44456.11, + "end": 44459.07, + "probability": 0.9868 + }, + { + "start": 44459.81, + "end": 44460.91, + "probability": 0.875 + }, + { + "start": 44461.01, + "end": 44462.47, + "probability": 0.7764 + }, + { + "start": 44463.15, + "end": 44468.49, + "probability": 0.9924 + }, + { + "start": 44469.07, + "end": 44469.63, + "probability": 0.9249 + }, + { + "start": 44470.35, + "end": 44470.89, + "probability": 0.6968 + }, + { + "start": 44471.93, + "end": 44474.69, + "probability": 0.9883 + }, + { + "start": 44474.93, + "end": 44476.53, + "probability": 0.9633 + }, + { + "start": 44476.69, + "end": 44477.69, + "probability": 0.8572 + }, + { + "start": 44478.79, + "end": 44484.71, + "probability": 0.8761 + }, + { + "start": 44485.21, + "end": 44486.41, + "probability": 0.7881 + }, + { + "start": 44486.93, + "end": 44488.27, + "probability": 0.8759 + }, + { + "start": 44488.51, + "end": 44489.59, + "probability": 0.9713 + }, + { + "start": 44489.81, + "end": 44492.99, + "probability": 0.9824 + }, + { + "start": 44494.85, + "end": 44497.01, + "probability": 0.9799 + }, + { + "start": 44497.47, + "end": 44500.23, + "probability": 0.9502 + }, + { + "start": 44500.41, + "end": 44501.39, + "probability": 0.9536 + }, + { + "start": 44502.25, + "end": 44502.83, + "probability": 0.8944 + }, + { + "start": 44503.63, + "end": 44506.61, + "probability": 0.9798 + }, + { + "start": 44506.81, + "end": 44509.01, + "probability": 0.9948 + }, + { + "start": 44509.85, + "end": 44510.63, + "probability": 0.623 + }, + { + "start": 44510.93, + "end": 44514.63, + "probability": 0.9976 + }, + { + "start": 44514.63, + "end": 44518.25, + "probability": 0.9827 + }, + { + "start": 44518.89, + "end": 44522.37, + "probability": 0.9902 + }, + { + "start": 44522.65, + "end": 44525.75, + "probability": 0.9333 + }, + { + "start": 44526.27, + "end": 44529.15, + "probability": 0.9928 + }, + { + "start": 44529.49, + "end": 44531.47, + "probability": 0.7223 + }, + { + "start": 44532.37, + "end": 44537.95, + "probability": 0.9976 + }, + { + "start": 44538.49, + "end": 44543.57, + "probability": 0.9824 + }, + { + "start": 44543.99, + "end": 44549.05, + "probability": 0.9499 + }, + { + "start": 44549.47, + "end": 44550.47, + "probability": 0.9617 + }, + { + "start": 44551.03, + "end": 44553.17, + "probability": 0.8548 + }, + { + "start": 44554.07, + "end": 44555.71, + "probability": 0.8322 + }, + { + "start": 44588.77, + "end": 44589.63, + "probability": 0.6721 + }, + { + "start": 44589.77, + "end": 44590.53, + "probability": 0.9314 + }, + { + "start": 44590.99, + "end": 44591.75, + "probability": 0.7748 + }, + { + "start": 44592.25, + "end": 44596.14, + "probability": 0.9908 + }, + { + "start": 44596.89, + "end": 44597.87, + "probability": 0.4684 + }, + { + "start": 44597.99, + "end": 44599.71, + "probability": 0.9672 + }, + { + "start": 44599.77, + "end": 44600.89, + "probability": 0.9985 + }, + { + "start": 44602.87, + "end": 44604.27, + "probability": 0.8254 + }, + { + "start": 44605.03, + "end": 44605.89, + "probability": 0.6179 + }, + { + "start": 44606.63, + "end": 44607.07, + "probability": 0.8961 + }, + { + "start": 44608.93, + "end": 44609.27, + "probability": 0.7356 + }, + { + "start": 44610.11, + "end": 44610.81, + "probability": 0.7402 + }, + { + "start": 44611.87, + "end": 44612.59, + "probability": 0.7486 + }, + { + "start": 44613.89, + "end": 44614.69, + "probability": 0.9838 + }, + { + "start": 44615.37, + "end": 44616.99, + "probability": 0.9945 + }, + { + "start": 44617.77, + "end": 44619.27, + "probability": 0.9912 + }, + { + "start": 44619.69, + "end": 44622.13, + "probability": 0.9854 + }, + { + "start": 44622.69, + "end": 44623.87, + "probability": 0.9871 + }, + { + "start": 44625.49, + "end": 44625.89, + "probability": 0.6344 + }, + { + "start": 44626.61, + "end": 44627.13, + "probability": 0.5677 + }, + { + "start": 44628.13, + "end": 44628.8, + "probability": 0.908 + }, + { + "start": 44630.23, + "end": 44632.81, + "probability": 0.9293 + }, + { + "start": 44634.15, + "end": 44637.11, + "probability": 0.9705 + }, + { + "start": 44638.91, + "end": 44642.33, + "probability": 0.9227 + }, + { + "start": 44642.97, + "end": 44643.59, + "probability": 0.7718 + }, + { + "start": 44644.71, + "end": 44645.91, + "probability": 0.8299 + }, + { + "start": 44647.53, + "end": 44650.77, + "probability": 0.8827 + }, + { + "start": 44651.35, + "end": 44651.91, + "probability": 0.9921 + }, + { + "start": 44652.95, + "end": 44654.31, + "probability": 0.9834 + }, + { + "start": 44655.71, + "end": 44657.32, + "probability": 0.6958 + }, + { + "start": 44658.53, + "end": 44662.67, + "probability": 0.9874 + }, + { + "start": 44663.77, + "end": 44665.43, + "probability": 0.9786 + }, + { + "start": 44667.35, + "end": 44670.49, + "probability": 0.9747 + }, + { + "start": 44671.49, + "end": 44676.31, + "probability": 0.9715 + }, + { + "start": 44678.73, + "end": 44681.51, + "probability": 0.9726 + }, + { + "start": 44682.43, + "end": 44683.57, + "probability": 0.9867 + }, + { + "start": 44685.31, + "end": 44686.41, + "probability": 0.9733 + }, + { + "start": 44687.05, + "end": 44687.77, + "probability": 0.5032 + }, + { + "start": 44688.47, + "end": 44688.81, + "probability": 0.9635 + }, + { + "start": 44689.45, + "end": 44691.53, + "probability": 0.9886 + }, + { + "start": 44692.39, + "end": 44693.97, + "probability": 0.9544 + }, + { + "start": 44694.65, + "end": 44695.65, + "probability": 0.783 + }, + { + "start": 44696.65, + "end": 44696.91, + "probability": 0.5679 + }, + { + "start": 44697.89, + "end": 44700.67, + "probability": 0.8298 + }, + { + "start": 44701.33, + "end": 44704.75, + "probability": 0.9942 + }, + { + "start": 44705.41, + "end": 44707.02, + "probability": 0.7148 + }, + { + "start": 44708.81, + "end": 44710.17, + "probability": 0.7851 + }, + { + "start": 44710.71, + "end": 44711.27, + "probability": 0.3891 + }, + { + "start": 44711.69, + "end": 44712.11, + "probability": 0.7905 + }, + { + "start": 44713.51, + "end": 44714.41, + "probability": 0.7134 + }, + { + "start": 44714.51, + "end": 44717.59, + "probability": 0.9896 + }, + { + "start": 44717.59, + "end": 44720.17, + "probability": 0.995 + }, + { + "start": 44721.17, + "end": 44722.29, + "probability": 0.9399 + }, + { + "start": 44722.41, + "end": 44726.25, + "probability": 0.6019 + }, + { + "start": 44726.83, + "end": 44727.41, + "probability": 0.8395 + }, + { + "start": 44727.51, + "end": 44728.17, + "probability": 0.5856 + }, + { + "start": 44728.17, + "end": 44728.43, + "probability": 0.6663 + }, + { + "start": 44728.75, + "end": 44728.99, + "probability": 0.0156 + }, + { + "start": 44729.28, + "end": 44731.17, + "probability": 0.941 + }, + { + "start": 44731.33, + "end": 44734.01, + "probability": 0.6306 + }, + { + "start": 44734.07, + "end": 44735.45, + "probability": 0.6573 + }, + { + "start": 44736.19, + "end": 44736.69, + "probability": 0.5504 + }, + { + "start": 44736.83, + "end": 44737.25, + "probability": 0.2118 + }, + { + "start": 44737.25, + "end": 44738.07, + "probability": 0.7508 + }, + { + "start": 44738.51, + "end": 44741.59, + "probability": 0.9193 + }, + { + "start": 44742.25, + "end": 44742.99, + "probability": 0.9971 + }, + { + "start": 44743.89, + "end": 44745.75, + "probability": 0.6244 + }, + { + "start": 44746.17, + "end": 44749.97, + "probability": 0.878 + }, + { + "start": 44750.41, + "end": 44752.64, + "probability": 0.9893 + }, + { + "start": 44752.89, + "end": 44753.33, + "probability": 0.8581 + }, + { + "start": 44753.53, + "end": 44754.21, + "probability": 0.7143 + }, + { + "start": 44754.61, + "end": 44755.47, + "probability": 0.8203 + }, + { + "start": 44755.83, + "end": 44756.59, + "probability": 0.8877 + }, + { + "start": 44756.65, + "end": 44756.75, + "probability": 0.762 + }, + { + "start": 44756.77, + "end": 44757.5, + "probability": 0.8988 + }, + { + "start": 44757.71, + "end": 44758.37, + "probability": 0.7266 + }, + { + "start": 44758.39, + "end": 44759.15, + "probability": 0.986 + }, + { + "start": 44760.31, + "end": 44761.09, + "probability": 0.9845 + }, + { + "start": 44762.05, + "end": 44763.95, + "probability": 0.9733 + }, + { + "start": 44765.07, + "end": 44768.23, + "probability": 0.9701 + }, + { + "start": 44770.51, + "end": 44772.49, + "probability": 0.668 + }, + { + "start": 44773.29, + "end": 44774.21, + "probability": 0.8303 + }, + { + "start": 44774.97, + "end": 44776.08, + "probability": 0.9829 + }, + { + "start": 44776.81, + "end": 44779.33, + "probability": 0.9944 + }, + { + "start": 44780.39, + "end": 44781.75, + "probability": 0.9966 + }, + { + "start": 44782.29, + "end": 44784.49, + "probability": 0.856 + }, + { + "start": 44786.37, + "end": 44787.79, + "probability": 0.9531 + }, + { + "start": 44788.53, + "end": 44789.41, + "probability": 0.9876 + }, + { + "start": 44790.09, + "end": 44791.38, + "probability": 0.973 + }, + { + "start": 44791.87, + "end": 44792.51, + "probability": 0.9893 + }, + { + "start": 44793.31, + "end": 44793.77, + "probability": 0.5682 + }, + { + "start": 44793.81, + "end": 44794.99, + "probability": 0.8575 + }, + { + "start": 44795.53, + "end": 44798.41, + "probability": 0.9812 + }, + { + "start": 44799.35, + "end": 44801.13, + "probability": 0.9579 + }, + { + "start": 44802.35, + "end": 44803.05, + "probability": 0.7418 + }, + { + "start": 44803.11, + "end": 44803.89, + "probability": 0.8857 + }, + { + "start": 44804.31, + "end": 44805.25, + "probability": 0.9883 + }, + { + "start": 44805.37, + "end": 44806.23, + "probability": 0.9742 + }, + { + "start": 44806.55, + "end": 44807.15, + "probability": 0.6024 + }, + { + "start": 44807.37, + "end": 44807.93, + "probability": 0.3938 + }, + { + "start": 44808.67, + "end": 44809.39, + "probability": 0.9799 + }, + { + "start": 44810.47, + "end": 44811.91, + "probability": 0.7434 + }, + { + "start": 44813.03, + "end": 44813.87, + "probability": 0.9554 + }, + { + "start": 44814.89, + "end": 44816.63, + "probability": 0.9191 + }, + { + "start": 44818.83, + "end": 44822.85, + "probability": 0.9857 + }, + { + "start": 44824.09, + "end": 44824.77, + "probability": 0.7923 + }, + { + "start": 44825.45, + "end": 44827.39, + "probability": 0.9941 + }, + { + "start": 44828.31, + "end": 44830.71, + "probability": 0.9895 + }, + { + "start": 44832.79, + "end": 44834.59, + "probability": 0.8399 + }, + { + "start": 44834.99, + "end": 44836.55, + "probability": 0.7998 + }, + { + "start": 44837.03, + "end": 44838.21, + "probability": 0.6932 + }, + { + "start": 44838.21, + "end": 44840.25, + "probability": 0.8985 + }, + { + "start": 44840.47, + "end": 44841.34, + "probability": 0.7957 + }, + { + "start": 44842.11, + "end": 44843.97, + "probability": 0.5486 + }, + { + "start": 44845.17, + "end": 44846.93, + "probability": 0.9314 + }, + { + "start": 44847.55, + "end": 44851.37, + "probability": 0.878 + }, + { + "start": 44852.07, + "end": 44852.45, + "probability": 0.5437 + }, + { + "start": 44853.37, + "end": 44853.71, + "probability": 0.8648 + }, + { + "start": 44853.85, + "end": 44856.13, + "probability": 0.9884 + }, + { + "start": 44856.69, + "end": 44859.57, + "probability": 0.8801 + }, + { + "start": 44860.23, + "end": 44861.23, + "probability": 0.9724 + }, + { + "start": 44861.87, + "end": 44863.23, + "probability": 0.9493 + }, + { + "start": 44863.83, + "end": 44865.03, + "probability": 0.9717 + }, + { + "start": 44866.75, + "end": 44868.53, + "probability": 0.9483 + }, + { + "start": 44869.09, + "end": 44870.11, + "probability": 0.8406 + }, + { + "start": 44870.65, + "end": 44872.17, + "probability": 0.8384 + }, + { + "start": 44873.23, + "end": 44874.34, + "probability": 0.9956 + }, + { + "start": 44877.23, + "end": 44878.61, + "probability": 0.9689 + }, + { + "start": 44879.29, + "end": 44880.77, + "probability": 0.9601 + }, + { + "start": 44880.83, + "end": 44883.63, + "probability": 0.9966 + }, + { + "start": 44884.87, + "end": 44884.87, + "probability": 0.0284 + }, + { + "start": 44885.63, + "end": 44886.99, + "probability": 0.9624 + }, + { + "start": 44887.59, + "end": 44887.99, + "probability": 0.6642 + }, + { + "start": 44888.09, + "end": 44889.41, + "probability": 0.9236 + }, + { + "start": 44889.85, + "end": 44892.45, + "probability": 0.9531 + }, + { + "start": 44892.51, + "end": 44894.53, + "probability": 0.9962 + }, + { + "start": 44895.15, + "end": 44896.35, + "probability": 0.8854 + }, + { + "start": 44896.81, + "end": 44897.25, + "probability": 0.3875 + }, + { + "start": 44897.75, + "end": 44898.43, + "probability": 0.4962 + }, + { + "start": 44898.73, + "end": 44901.01, + "probability": 0.9578 + }, + { + "start": 44901.77, + "end": 44902.41, + "probability": 0.8981 + }, + { + "start": 44903.33, + "end": 44903.57, + "probability": 0.9754 + }, + { + "start": 44905.03, + "end": 44910.39, + "probability": 0.9004 + }, + { + "start": 44911.19, + "end": 44914.29, + "probability": 0.9233 + }, + { + "start": 44916.19, + "end": 44918.05, + "probability": 0.9724 + }, + { + "start": 44918.31, + "end": 44919.47, + "probability": 0.8185 + }, + { + "start": 44920.33, + "end": 44921.05, + "probability": 0.8482 + }, + { + "start": 44922.15, + "end": 44924.45, + "probability": 0.9847 + }, + { + "start": 44924.97, + "end": 44926.43, + "probability": 0.9933 + }, + { + "start": 44926.97, + "end": 44930.71, + "probability": 0.9972 + }, + { + "start": 44931.61, + "end": 44933.09, + "probability": 0.9724 + }, + { + "start": 44934.19, + "end": 44934.97, + "probability": 0.8558 + }, + { + "start": 44935.57, + "end": 44936.57, + "probability": 0.9973 + }, + { + "start": 44936.75, + "end": 44936.93, + "probability": 0.8193 + }, + { + "start": 44937.05, + "end": 44938.37, + "probability": 0.9977 + }, + { + "start": 44938.59, + "end": 44941.95, + "probability": 0.9756 + }, + { + "start": 44942.45, + "end": 44943.09, + "probability": 0.9489 + }, + { + "start": 44943.65, + "end": 44945.67, + "probability": 0.9597 + }, + { + "start": 44945.79, + "end": 44946.33, + "probability": 0.8195 + }, + { + "start": 44946.47, + "end": 44947.99, + "probability": 0.9539 + }, + { + "start": 44948.17, + "end": 44948.69, + "probability": 0.5169 + }, + { + "start": 44949.55, + "end": 44950.47, + "probability": 0.9478 + }, + { + "start": 44950.93, + "end": 44952.71, + "probability": 0.9957 + }, + { + "start": 44953.57, + "end": 44954.97, + "probability": 0.9568 + }, + { + "start": 44955.45, + "end": 44956.39, + "probability": 0.9258 + }, + { + "start": 44956.89, + "end": 44957.87, + "probability": 0.9863 + }, + { + "start": 44957.95, + "end": 44958.85, + "probability": 0.9504 + }, + { + "start": 44959.35, + "end": 44961.19, + "probability": 0.9849 + }, + { + "start": 44962.12, + "end": 44965.49, + "probability": 0.7494 + }, + { + "start": 44966.07, + "end": 44969.81, + "probability": 0.8742 + }, + { + "start": 44970.63, + "end": 44975.35, + "probability": 0.9261 + }, + { + "start": 44976.15, + "end": 44976.17, + "probability": 0.1711 + }, + { + "start": 44977.99, + "end": 44978.53, + "probability": 0.0017 + }, + { + "start": 44979.41, + "end": 44979.65, + "probability": 0.185 + }, + { + "start": 44979.65, + "end": 44980.45, + "probability": 0.3392 + }, + { + "start": 44980.73, + "end": 44981.39, + "probability": 0.7527 + }, + { + "start": 44981.53, + "end": 44985.53, + "probability": 0.9572 + }, + { + "start": 44985.69, + "end": 44986.67, + "probability": 0.9561 + }, + { + "start": 44986.75, + "end": 44990.15, + "probability": 0.9824 + }, + { + "start": 44990.49, + "end": 44992.25, + "probability": 0.8068 + }, + { + "start": 44992.79, + "end": 44996.43, + "probability": 0.8178 + }, + { + "start": 44996.49, + "end": 44996.89, + "probability": 0.4819 + }, + { + "start": 44996.89, + "end": 44998.63, + "probability": 0.8758 + }, + { + "start": 44999.43, + "end": 45001.37, + "probability": 0.9862 + }, + { + "start": 45002.21, + "end": 45002.49, + "probability": 0.9127 + }, + { + "start": 45003.09, + "end": 45003.55, + "probability": 0.9285 + }, + { + "start": 45004.13, + "end": 45008.18, + "probability": 0.8853 + }, + { + "start": 45008.63, + "end": 45009.47, + "probability": 0.816 + }, + { + "start": 45010.25, + "end": 45010.97, + "probability": 0.9537 + }, + { + "start": 45011.47, + "end": 45014.53, + "probability": 0.8952 + }, + { + "start": 45014.97, + "end": 45016.57, + "probability": 0.4411 + }, + { + "start": 45016.59, + "end": 45017.45, + "probability": 0.9226 + }, + { + "start": 45018.51, + "end": 45022.29, + "probability": 0.98 + }, + { + "start": 45022.69, + "end": 45022.89, + "probability": 0.0333 + }, + { + "start": 45022.89, + "end": 45023.49, + "probability": 0.5087 + }, + { + "start": 45025.71, + "end": 45026.29, + "probability": 0.6127 + }, + { + "start": 45026.37, + "end": 45028.47, + "probability": 0.7655 + }, + { + "start": 45028.71, + "end": 45028.95, + "probability": 0.5588 + }, + { + "start": 45029.49, + "end": 45032.65, + "probability": 0.2674 + }, + { + "start": 45032.95, + "end": 45033.46, + "probability": 0.0807 + }, + { + "start": 45033.83, + "end": 45034.18, + "probability": 0.0037 + }, + { + "start": 45036.12, + "end": 45038.95, + "probability": 0.6818 + }, + { + "start": 45039.49, + "end": 45040.13, + "probability": 0.9121 + }, + { + "start": 45040.61, + "end": 45043.99, + "probability": 0.99 + }, + { + "start": 45045.37, + "end": 45048.79, + "probability": 0.7827 + }, + { + "start": 45049.51, + "end": 45050.91, + "probability": 0.7708 + }, + { + "start": 45051.77, + "end": 45054.63, + "probability": 0.9116 + }, + { + "start": 45055.59, + "end": 45058.83, + "probability": 0.9917 + }, + { + "start": 45058.83, + "end": 45061.99, + "probability": 0.9979 + }, + { + "start": 45062.75, + "end": 45064.57, + "probability": 0.8658 + }, + { + "start": 45065.71, + "end": 45071.13, + "probability": 0.9937 + }, + { + "start": 45073.03, + "end": 45074.67, + "probability": 0.7551 + }, + { + "start": 45074.87, + "end": 45075.83, + "probability": 0.9548 + }, + { + "start": 45076.41, + "end": 45077.43, + "probability": 0.7751 + }, + { + "start": 45077.87, + "end": 45078.95, + "probability": 0.9916 + }, + { + "start": 45079.31, + "end": 45079.69, + "probability": 0.6406 + }, + { + "start": 45079.77, + "end": 45082.13, + "probability": 0.9889 + }, + { + "start": 45082.77, + "end": 45083.11, + "probability": 0.851 + }, + { + "start": 45083.67, + "end": 45084.33, + "probability": 0.921 + }, + { + "start": 45084.69, + "end": 45085.82, + "probability": 0.98 + }, + { + "start": 45086.61, + "end": 45089.47, + "probability": 0.9722 + }, + { + "start": 45090.03, + "end": 45092.67, + "probability": 0.9744 + }, + { + "start": 45093.13, + "end": 45094.17, + "probability": 0.8726 + }, + { + "start": 45094.33, + "end": 45095.03, + "probability": 0.8068 + }, + { + "start": 45095.35, + "end": 45096.03, + "probability": 0.9473 + }, + { + "start": 45096.37, + "end": 45096.97, + "probability": 0.9558 + }, + { + "start": 45097.21, + "end": 45097.99, + "probability": 0.9822 + }, + { + "start": 45098.01, + "end": 45098.85, + "probability": 0.9923 + }, + { + "start": 45099.45, + "end": 45100.79, + "probability": 0.9672 + }, + { + "start": 45101.35, + "end": 45103.69, + "probability": 0.8425 + }, + { + "start": 45104.43, + "end": 45105.63, + "probability": 0.6848 + }, + { + "start": 45105.81, + "end": 45106.47, + "probability": 0.928 + }, + { + "start": 45106.57, + "end": 45107.1, + "probability": 0.9507 + }, + { + "start": 45107.97, + "end": 45112.41, + "probability": 0.988 + }, + { + "start": 45114.23, + "end": 45115.63, + "probability": 0.1559 + }, + { + "start": 45116.25, + "end": 45116.79, + "probability": 0.8365 + }, + { + "start": 45117.13, + "end": 45122.19, + "probability": 0.781 + }, + { + "start": 45122.33, + "end": 45123.35, + "probability": 0.9251 + }, + { + "start": 45123.41, + "end": 45124.48, + "probability": 0.4653 + }, + { + "start": 45125.37, + "end": 45126.11, + "probability": 0.7155 + }, + { + "start": 45126.39, + "end": 45126.59, + "probability": 0.2178 + }, + { + "start": 45126.81, + "end": 45127.26, + "probability": 0.8511 + }, + { + "start": 45127.41, + "end": 45128.69, + "probability": 0.9688 + }, + { + "start": 45129.23, + "end": 45129.51, + "probability": 0.4826 + }, + { + "start": 45130.27, + "end": 45133.99, + "probability": 0.8432 + }, + { + "start": 45134.49, + "end": 45135.35, + "probability": 0.9895 + }, + { + "start": 45135.61, + "end": 45136.97, + "probability": 0.9867 + }, + { + "start": 45137.45, + "end": 45139.15, + "probability": 0.8815 + }, + { + "start": 45139.73, + "end": 45142.19, + "probability": 0.9946 + }, + { + "start": 45142.77, + "end": 45143.27, + "probability": 0.8839 + }, + { + "start": 45143.69, + "end": 45145.59, + "probability": 0.9383 + }, + { + "start": 45146.11, + "end": 45148.43, + "probability": 0.8308 + }, + { + "start": 45148.73, + "end": 45152.49, + "probability": 0.9843 + }, + { + "start": 45152.89, + "end": 45154.43, + "probability": 0.9932 + }, + { + "start": 45155.75, + "end": 45156.81, + "probability": 0.986 + }, + { + "start": 45157.29, + "end": 45159.63, + "probability": 0.997 + }, + { + "start": 45160.55, + "end": 45162.21, + "probability": 0.9875 + }, + { + "start": 45162.59, + "end": 45165.13, + "probability": 0.7489 + }, + { + "start": 45165.63, + "end": 45166.37, + "probability": 0.99 + }, + { + "start": 45166.85, + "end": 45169.29, + "probability": 0.9917 + }, + { + "start": 45171.15, + "end": 45171.19, + "probability": 0.6364 + }, + { + "start": 45171.19, + "end": 45171.19, + "probability": 0.3648 + }, + { + "start": 45171.19, + "end": 45176.35, + "probability": 0.9628 + }, + { + "start": 45177.21, + "end": 45178.77, + "probability": 0.8333 + }, + { + "start": 45179.21, + "end": 45181.83, + "probability": 0.6701 + }, + { + "start": 45182.51, + "end": 45183.4, + "probability": 0.9755 + }, + { + "start": 45184.17, + "end": 45184.57, + "probability": 0.2468 + }, + { + "start": 45184.57, + "end": 45184.79, + "probability": 0.2385 + }, + { + "start": 45185.41, + "end": 45186.93, + "probability": 0.5645 + }, + { + "start": 45187.47, + "end": 45188.56, + "probability": 0.9844 + }, + { + "start": 45189.53, + "end": 45189.99, + "probability": 0.9917 + }, + { + "start": 45190.35, + "end": 45191.47, + "probability": 0.8097 + }, + { + "start": 45191.57, + "end": 45192.61, + "probability": 0.8359 + }, + { + "start": 45192.77, + "end": 45194.37, + "probability": 0.8799 + }, + { + "start": 45194.91, + "end": 45195.73, + "probability": 0.4109 + }, + { + "start": 45195.79, + "end": 45196.65, + "probability": 0.9596 + }, + { + "start": 45196.95, + "end": 45200.73, + "probability": 0.9509 + }, + { + "start": 45201.39, + "end": 45201.39, + "probability": 0.2192 + }, + { + "start": 45201.47, + "end": 45202.49, + "probability": 0.3158 + }, + { + "start": 45202.97, + "end": 45205.69, + "probability": 0.9733 + }, + { + "start": 45206.35, + "end": 45206.65, + "probability": 0.3881 + }, + { + "start": 45206.73, + "end": 45207.84, + "probability": 0.6726 + }, + { + "start": 45208.27, + "end": 45211.23, + "probability": 0.0565 + }, + { + "start": 45211.77, + "end": 45212.55, + "probability": 0.1042 + }, + { + "start": 45212.57, + "end": 45212.99, + "probability": 0.1212 + }, + { + "start": 45213.41, + "end": 45213.99, + "probability": 0.2057 + }, + { + "start": 45214.13, + "end": 45215.95, + "probability": 0.7424 + }, + { + "start": 45216.87, + "end": 45219.91, + "probability": 0.4935 + }, + { + "start": 45221.03, + "end": 45222.04, + "probability": 0.6283 + }, + { + "start": 45223.09, + "end": 45224.21, + "probability": 0.7302 + }, + { + "start": 45226.17, + "end": 45232.87, + "probability": 0.9807 + }, + { + "start": 45233.67, + "end": 45234.07, + "probability": 0.9095 + }, + { + "start": 45235.77, + "end": 45235.77, + "probability": 0.0446 + }, + { + "start": 45235.77, + "end": 45236.05, + "probability": 0.3105 + }, + { + "start": 45236.05, + "end": 45237.01, + "probability": 0.7942 + }, + { + "start": 45237.43, + "end": 45240.09, + "probability": 0.8309 + }, + { + "start": 45240.79, + "end": 45241.83, + "probability": 0.6482 + }, + { + "start": 45242.57, + "end": 45245.01, + "probability": 0.9928 + }, + { + "start": 45245.43, + "end": 45247.79, + "probability": 0.9016 + }, + { + "start": 45248.13, + "end": 45248.63, + "probability": 0.5332 + }, + { + "start": 45249.19, + "end": 45250.33, + "probability": 0.9536 + }, + { + "start": 45250.73, + "end": 45254.13, + "probability": 0.9019 + }, + { + "start": 45254.57, + "end": 45257.67, + "probability": 0.8214 + }, + { + "start": 45257.97, + "end": 45258.89, + "probability": 0.9346 + }, + { + "start": 45258.99, + "end": 45260.59, + "probability": 0.9344 + }, + { + "start": 45261.19, + "end": 45261.83, + "probability": 0.6589 + }, + { + "start": 45261.93, + "end": 45263.47, + "probability": 0.9867 + }, + { + "start": 45263.79, + "end": 45266.13, + "probability": 0.8985 + }, + { + "start": 45266.21, + "end": 45267.91, + "probability": 0.9547 + }, + { + "start": 45268.27, + "end": 45272.99, + "probability": 0.9937 + }, + { + "start": 45273.83, + "end": 45276.69, + "probability": 0.9888 + }, + { + "start": 45277.23, + "end": 45278.05, + "probability": 0.9192 + }, + { + "start": 45278.97, + "end": 45281.63, + "probability": 0.9749 + }, + { + "start": 45282.13, + "end": 45287.37, + "probability": 0.9949 + }, + { + "start": 45287.91, + "end": 45288.27, + "probability": 0.5838 + }, + { + "start": 45289.31, + "end": 45291.61, + "probability": 0.9771 + }, + { + "start": 45292.09, + "end": 45292.31, + "probability": 0.7095 + }, + { + "start": 45292.47, + "end": 45294.47, + "probability": 0.797 + }, + { + "start": 45294.63, + "end": 45296.03, + "probability": 0.9276 + }, + { + "start": 45301.53, + "end": 45302.61, + "probability": 0.2523 + }, + { + "start": 45302.91, + "end": 45302.91, + "probability": 0.0492 + }, + { + "start": 45304.17, + "end": 45304.19, + "probability": 0.1503 + }, + { + "start": 45304.19, + "end": 45305.52, + "probability": 0.3633 + }, + { + "start": 45310.55, + "end": 45318.26, + "probability": 0.5954 + }, + { + "start": 45325.57, + "end": 45328.63, + "probability": 0.87 + }, + { + "start": 45329.63, + "end": 45330.23, + "probability": 0.3942 + }, + { + "start": 45331.43, + "end": 45331.83, + "probability": 0.2984 + }, + { + "start": 45332.37, + "end": 45332.63, + "probability": 0.8407 + }, + { + "start": 45334.77, + "end": 45335.51, + "probability": 0.79 + }, + { + "start": 45335.61, + "end": 45337.01, + "probability": 0.9508 + }, + { + "start": 45337.23, + "end": 45338.35, + "probability": 0.9474 + }, + { + "start": 45338.45, + "end": 45341.36, + "probability": 0.8677 + }, + { + "start": 45343.35, + "end": 45346.37, + "probability": 0.8956 + }, + { + "start": 45348.05, + "end": 45348.78, + "probability": 0.988 + }, + { + "start": 45349.45, + "end": 45350.13, + "probability": 0.9807 + }, + { + "start": 45351.29, + "end": 45352.93, + "probability": 0.888 + }, + { + "start": 45353.55, + "end": 45355.21, + "probability": 0.9705 + }, + { + "start": 45356.47, + "end": 45358.65, + "probability": 0.9674 + }, + { + "start": 45361.73, + "end": 45362.43, + "probability": 0.9513 + }, + { + "start": 45363.23, + "end": 45366.21, + "probability": 0.9036 + }, + { + "start": 45366.83, + "end": 45367.69, + "probability": 0.8733 + }, + { + "start": 45368.29, + "end": 45369.41, + "probability": 0.8962 + }, + { + "start": 45370.73, + "end": 45372.35, + "probability": 0.9971 + }, + { + "start": 45373.13, + "end": 45376.97, + "probability": 0.9683 + }, + { + "start": 45376.97, + "end": 45379.79, + "probability": 0.9921 + }, + { + "start": 45381.83, + "end": 45382.23, + "probability": 0.7024 + }, + { + "start": 45383.13, + "end": 45384.63, + "probability": 0.9684 + }, + { + "start": 45386.35, + "end": 45388.63, + "probability": 0.9783 + }, + { + "start": 45389.87, + "end": 45393.99, + "probability": 0.9868 + }, + { + "start": 45395.09, + "end": 45398.47, + "probability": 0.9702 + }, + { + "start": 45402.45, + "end": 45405.44, + "probability": 0.9796 + }, + { + "start": 45409.17, + "end": 45412.73, + "probability": 0.9114 + }, + { + "start": 45415.19, + "end": 45421.07, + "probability": 0.9701 + }, + { + "start": 45423.51, + "end": 45425.97, + "probability": 0.9927 + }, + { + "start": 45427.53, + "end": 45428.49, + "probability": 0.9686 + }, + { + "start": 45430.85, + "end": 45434.38, + "probability": 0.9989 + }, + { + "start": 45436.25, + "end": 45438.49, + "probability": 0.9619 + }, + { + "start": 45442.89, + "end": 45446.01, + "probability": 0.995 + }, + { + "start": 45448.39, + "end": 45449.49, + "probability": 0.9889 + }, + { + "start": 45449.65, + "end": 45452.57, + "probability": 0.9976 + }, + { + "start": 45454.37, + "end": 45458.79, + "probability": 0.9956 + }, + { + "start": 45463.45, + "end": 45464.01, + "probability": 0.9694 + }, + { + "start": 45465.31, + "end": 45466.64, + "probability": 0.9956 + }, + { + "start": 45467.55, + "end": 45470.14, + "probability": 0.9993 + }, + { + "start": 45471.33, + "end": 45474.71, + "probability": 0.9984 + }, + { + "start": 45478.19, + "end": 45480.45, + "probability": 0.999 + }, + { + "start": 45481.05, + "end": 45482.41, + "probability": 0.902 + }, + { + "start": 45482.49, + "end": 45487.91, + "probability": 0.8746 + }, + { + "start": 45488.77, + "end": 45492.75, + "probability": 0.9973 + }, + { + "start": 45493.37, + "end": 45496.39, + "probability": 0.7472 + }, + { + "start": 45499.11, + "end": 45502.19, + "probability": 0.9958 + }, + { + "start": 45505.71, + "end": 45507.27, + "probability": 0.9964 + }, + { + "start": 45508.35, + "end": 45513.35, + "probability": 0.9622 + }, + { + "start": 45513.93, + "end": 45516.45, + "probability": 0.9996 + }, + { + "start": 45517.17, + "end": 45519.87, + "probability": 0.9526 + }, + { + "start": 45521.01, + "end": 45524.29, + "probability": 0.4815 + }, + { + "start": 45524.29, + "end": 45528.65, + "probability": 0.4652 + }, + { + "start": 45530.99, + "end": 45532.15, + "probability": 0.7745 + }, + { + "start": 45533.25, + "end": 45535.37, + "probability": 0.8145 + }, + { + "start": 45537.03, + "end": 45541.29, + "probability": 0.9308 + }, + { + "start": 45543.11, + "end": 45545.97, + "probability": 0.9979 + }, + { + "start": 45547.83, + "end": 45548.88, + "probability": 0.8583 + }, + { + "start": 45551.41, + "end": 45551.85, + "probability": 0.9107 + }, + { + "start": 45551.97, + "end": 45552.65, + "probability": 0.7614 + }, + { + "start": 45552.83, + "end": 45553.7, + "probability": 0.9845 + }, + { + "start": 45554.01, + "end": 45554.83, + "probability": 0.8622 + }, + { + "start": 45555.39, + "end": 45558.53, + "probability": 0.9688 + }, + { + "start": 45559.83, + "end": 45562.47, + "probability": 0.8875 + }, + { + "start": 45563.43, + "end": 45569.41, + "probability": 0.9963 + }, + { + "start": 45572.91, + "end": 45573.29, + "probability": 0.9576 + }, + { + "start": 45573.31, + "end": 45580.81, + "probability": 0.8185 + }, + { + "start": 45581.15, + "end": 45581.67, + "probability": 0.4489 + }, + { + "start": 45581.87, + "end": 45582.95, + "probability": 0.7815 + }, + { + "start": 45584.37, + "end": 45587.63, + "probability": 0.9922 + }, + { + "start": 45588.05, + "end": 45589.96, + "probability": 0.6386 + }, + { + "start": 45590.35, + "end": 45592.35, + "probability": 0.9927 + }, + { + "start": 45592.75, + "end": 45594.56, + "probability": 0.9914 + }, + { + "start": 45596.01, + "end": 45597.81, + "probability": 0.9942 + }, + { + "start": 45599.61, + "end": 45600.91, + "probability": 0.7877 + }, + { + "start": 45603.69, + "end": 45604.39, + "probability": 0.0071 + }, + { + "start": 45606.17, + "end": 45606.75, + "probability": 0.3758 + }, + { + "start": 45607.37, + "end": 45608.53, + "probability": 0.9568 + }, + { + "start": 45612.31, + "end": 45617.19, + "probability": 0.9866 + }, + { + "start": 45617.35, + "end": 45618.37, + "probability": 0.654 + }, + { + "start": 45619.19, + "end": 45622.03, + "probability": 0.9924 + }, + { + "start": 45623.37, + "end": 45624.27, + "probability": 0.9468 + }, + { + "start": 45626.67, + "end": 45630.47, + "probability": 0.869 + }, + { + "start": 45634.2, + "end": 45637.38, + "probability": 0.7506 + }, + { + "start": 45638.65, + "end": 45639.15, + "probability": 0.6234 + }, + { + "start": 45639.23, + "end": 45639.43, + "probability": 0.8412 + }, + { + "start": 45640.23, + "end": 45644.51, + "probability": 0.9946 + }, + { + "start": 45645.31, + "end": 45646.65, + "probability": 0.7343 + }, + { + "start": 45647.39, + "end": 45649.25, + "probability": 0.9831 + }, + { + "start": 45649.81, + "end": 45652.71, + "probability": 0.9563 + }, + { + "start": 45653.23, + "end": 45653.89, + "probability": 0.8857 + }, + { + "start": 45654.43, + "end": 45655.35, + "probability": 0.6598 + }, + { + "start": 45655.61, + "end": 45656.17, + "probability": 0.7983 + }, + { + "start": 45656.63, + "end": 45658.41, + "probability": 0.8788 + }, + { + "start": 45666.21, + "end": 45666.49, + "probability": 0.0275 + }, + { + "start": 45684.09, + "end": 45685.49, + "probability": 0.4229 + }, + { + "start": 45694.55, + "end": 45694.79, + "probability": 0.334 + }, + { + "start": 45694.85, + "end": 45695.91, + "probability": 0.7639 + }, + { + "start": 45697.55, + "end": 45698.65, + "probability": 0.8186 + }, + { + "start": 45704.07, + "end": 45705.54, + "probability": 0.998 + }, + { + "start": 45705.75, + "end": 45709.13, + "probability": 0.8387 + }, + { + "start": 45712.03, + "end": 45713.91, + "probability": 0.7976 + }, + { + "start": 45715.79, + "end": 45716.81, + "probability": 0.502 + }, + { + "start": 45718.37, + "end": 45720.39, + "probability": 0.927 + }, + { + "start": 45721.83, + "end": 45722.81, + "probability": 0.7737 + }, + { + "start": 45723.97, + "end": 45725.09, + "probability": 0.9724 + }, + { + "start": 45726.05, + "end": 45726.81, + "probability": 0.7199 + }, + { + "start": 45727.93, + "end": 45730.03, + "probability": 0.5166 + }, + { + "start": 45731.71, + "end": 45737.43, + "probability": 0.9434 + }, + { + "start": 45738.31, + "end": 45740.91, + "probability": 0.9416 + }, + { + "start": 45743.33, + "end": 45743.98, + "probability": 0.9561 + }, + { + "start": 45746.47, + "end": 45747.77, + "probability": 0.4295 + }, + { + "start": 45748.93, + "end": 45750.25, + "probability": 0.9977 + }, + { + "start": 45754.25, + "end": 45755.79, + "probability": 0.6018 + }, + { + "start": 45756.51, + "end": 45757.19, + "probability": 0.8304 + }, + { + "start": 45758.89, + "end": 45762.45, + "probability": 0.9485 + }, + { + "start": 45763.09, + "end": 45763.83, + "probability": 0.7801 + }, + { + "start": 45765.33, + "end": 45769.49, + "probability": 0.9632 + }, + { + "start": 45769.91, + "end": 45771.13, + "probability": 0.0913 + }, + { + "start": 45771.13, + "end": 45773.93, + "probability": 0.9639 + }, + { + "start": 45776.99, + "end": 45778.51, + "probability": 0.8025 + }, + { + "start": 45779.43, + "end": 45785.17, + "probability": 0.8199 + }, + { + "start": 45785.99, + "end": 45787.65, + "probability": 0.3164 + }, + { + "start": 45787.95, + "end": 45790.35, + "probability": 0.6183 + }, + { + "start": 45792.55, + "end": 45794.27, + "probability": 0.4019 + }, + { + "start": 45797.49, + "end": 45800.61, + "probability": 0.9633 + }, + { + "start": 45801.95, + "end": 45806.75, + "probability": 0.8167 + }, + { + "start": 45807.65, + "end": 45809.65, + "probability": 0.9799 + }, + { + "start": 45810.39, + "end": 45812.11, + "probability": 0.6989 + }, + { + "start": 45813.25, + "end": 45813.39, + "probability": 0.916 + }, + { + "start": 45814.31, + "end": 45816.05, + "probability": 0.986 + }, + { + "start": 45817.57, + "end": 45822.77, + "probability": 0.9722 + }, + { + "start": 45824.37, + "end": 45826.25, + "probability": 0.8072 + }, + { + "start": 45827.23, + "end": 45828.07, + "probability": 0.9312 + }, + { + "start": 45828.83, + "end": 45830.23, + "probability": 0.8135 + }, + { + "start": 45831.07, + "end": 45832.15, + "probability": 0.9764 + }, + { + "start": 45833.21, + "end": 45835.55, + "probability": 0.9839 + }, + { + "start": 45836.93, + "end": 45841.53, + "probability": 0.9884 + }, + { + "start": 45842.53, + "end": 45844.27, + "probability": 0.7594 + }, + { + "start": 45850.61, + "end": 45855.47, + "probability": 0.9406 + }, + { + "start": 45856.63, + "end": 45858.83, + "probability": 0.9088 + }, + { + "start": 45860.13, + "end": 45864.51, + "probability": 0.9565 + }, + { + "start": 45866.51, + "end": 45867.83, + "probability": 0.9984 + }, + { + "start": 45868.45, + "end": 45870.35, + "probability": 0.766 + }, + { + "start": 45872.01, + "end": 45875.11, + "probability": 0.9914 + }, + { + "start": 45875.89, + "end": 45878.99, + "probability": 0.9929 + }, + { + "start": 45880.01, + "end": 45886.51, + "probability": 0.9535 + }, + { + "start": 45888.01, + "end": 45891.93, + "probability": 0.9956 + }, + { + "start": 45894.23, + "end": 45897.77, + "probability": 0.9988 + }, + { + "start": 45898.95, + "end": 45902.13, + "probability": 0.9482 + }, + { + "start": 45903.65, + "end": 45907.59, + "probability": 0.9427 + }, + { + "start": 45908.79, + "end": 45911.55, + "probability": 0.9774 + }, + { + "start": 45912.37, + "end": 45914.33, + "probability": 0.9572 + }, + { + "start": 45915.27, + "end": 45916.41, + "probability": 0.9266 + }, + { + "start": 45917.23, + "end": 45919.37, + "probability": 0.9926 + }, + { + "start": 45920.23, + "end": 45924.55, + "probability": 0.9836 + }, + { + "start": 45926.63, + "end": 45927.57, + "probability": 0.8677 + }, + { + "start": 45928.81, + "end": 45930.63, + "probability": 0.9518 + }, + { + "start": 45931.89, + "end": 45936.35, + "probability": 0.9924 + }, + { + "start": 45937.31, + "end": 45937.79, + "probability": 0.9806 + }, + { + "start": 45939.23, + "end": 45939.97, + "probability": 0.6744 + }, + { + "start": 45940.93, + "end": 45941.59, + "probability": 0.9875 + }, + { + "start": 45942.67, + "end": 45944.25, + "probability": 0.9701 + }, + { + "start": 45945.75, + "end": 45946.55, + "probability": 0.9582 + }, + { + "start": 45949.13, + "end": 45951.15, + "probability": 0.4832 + }, + { + "start": 45951.35, + "end": 45952.65, + "probability": 0.8484 + }, + { + "start": 45954.95, + "end": 45957.67, + "probability": 0.8125 + }, + { + "start": 45958.33, + "end": 45960.63, + "probability": 0.9983 + }, + { + "start": 45962.85, + "end": 45963.87, + "probability": 0.7834 + }, + { + "start": 45966.07, + "end": 45966.99, + "probability": 0.9203 + }, + { + "start": 45967.75, + "end": 45970.95, + "probability": 0.9892 + }, + { + "start": 45973.59, + "end": 45974.07, + "probability": 0.9781 + }, + { + "start": 45975.85, + "end": 45978.65, + "probability": 0.7143 + }, + { + "start": 45980.03, + "end": 45981.48, + "probability": 0.9385 + }, + { + "start": 45982.27, + "end": 45983.99, + "probability": 0.9673 + }, + { + "start": 45985.81, + "end": 45987.41, + "probability": 0.8457 + }, + { + "start": 45991.65, + "end": 45992.81, + "probability": 0.7284 + }, + { + "start": 45993.93, + "end": 45994.75, + "probability": 0.7196 + }, + { + "start": 45998.31, + "end": 46000.83, + "probability": 0.9571 + }, + { + "start": 46003.17, + "end": 46005.44, + "probability": 0.4983 + }, + { + "start": 46007.37, + "end": 46009.61, + "probability": 0.9989 + }, + { + "start": 46010.33, + "end": 46012.67, + "probability": 0.9919 + }, + { + "start": 46015.09, + "end": 46017.33, + "probability": 0.9973 + }, + { + "start": 46018.85, + "end": 46020.49, + "probability": 0.9951 + }, + { + "start": 46022.35, + "end": 46023.93, + "probability": 0.9961 + }, + { + "start": 46026.21, + "end": 46030.47, + "probability": 0.9409 + }, + { + "start": 46033.11, + "end": 46034.81, + "probability": 0.7841 + }, + { + "start": 46036.27, + "end": 46042.95, + "probability": 0.9817 + }, + { + "start": 46043.77, + "end": 46045.17, + "probability": 0.3779 + }, + { + "start": 46046.23, + "end": 46052.01, + "probability": 0.9951 + }, + { + "start": 46053.07, + "end": 46056.07, + "probability": 0.7511 + }, + { + "start": 46056.71, + "end": 46057.27, + "probability": 0.9502 + }, + { + "start": 46057.89, + "end": 46060.33, + "probability": 0.9284 + }, + { + "start": 46063.73, + "end": 46064.65, + "probability": 0.8543 + }, + { + "start": 46065.23, + "end": 46066.41, + "probability": 0.7197 + }, + { + "start": 46068.41, + "end": 46069.41, + "probability": 0.7631 + }, + { + "start": 46071.35, + "end": 46073.33, + "probability": 0.9571 + }, + { + "start": 46075.41, + "end": 46076.21, + "probability": 0.6069 + }, + { + "start": 46077.77, + "end": 46082.85, + "probability": 0.8073 + }, + { + "start": 46083.85, + "end": 46084.85, + "probability": 0.8873 + }, + { + "start": 46086.57, + "end": 46089.63, + "probability": 0.9893 + }, + { + "start": 46090.53, + "end": 46092.35, + "probability": 0.9503 + }, + { + "start": 46093.39, + "end": 46095.85, + "probability": 0.9949 + }, + { + "start": 46096.45, + "end": 46099.13, + "probability": 0.9861 + }, + { + "start": 46100.05, + "end": 46102.45, + "probability": 0.9882 + }, + { + "start": 46104.45, + "end": 46106.27, + "probability": 0.9729 + }, + { + "start": 46108.41, + "end": 46109.49, + "probability": 0.8963 + }, + { + "start": 46112.07, + "end": 46116.29, + "probability": 0.763 + }, + { + "start": 46119.53, + "end": 46120.25, + "probability": 0.7232 + }, + { + "start": 46120.83, + "end": 46123.33, + "probability": 0.7278 + }, + { + "start": 46125.23, + "end": 46128.31, + "probability": 0.9855 + }, + { + "start": 46128.31, + "end": 46135.38, + "probability": 0.9847 + }, + { + "start": 46136.69, + "end": 46137.57, + "probability": 0.9449 + }, + { + "start": 46138.69, + "end": 46144.05, + "probability": 0.9941 + }, + { + "start": 46144.45, + "end": 46148.31, + "probability": 0.7566 + }, + { + "start": 46150.67, + "end": 46151.53, + "probability": 0.6702 + }, + { + "start": 46155.53, + "end": 46157.03, + "probability": 0.8909 + }, + { + "start": 46157.87, + "end": 46158.33, + "probability": 0.9338 + }, + { + "start": 46159.29, + "end": 46161.07, + "probability": 0.8822 + }, + { + "start": 46162.37, + "end": 46164.37, + "probability": 0.8395 + }, + { + "start": 46164.67, + "end": 46165.41, + "probability": 0.9854 + }, + { + "start": 46166.53, + "end": 46168.43, + "probability": 0.614 + }, + { + "start": 46168.83, + "end": 46170.87, + "probability": 0.6898 + }, + { + "start": 46171.43, + "end": 46171.85, + "probability": 0.8837 + }, + { + "start": 46172.11, + "end": 46175.92, + "probability": 0.9714 + }, + { + "start": 46176.07, + "end": 46177.69, + "probability": 0.9524 + }, + { + "start": 46177.79, + "end": 46182.35, + "probability": 0.8674 + }, + { + "start": 46182.63, + "end": 46182.89, + "probability": 0.1347 + }, + { + "start": 46182.89, + "end": 46184.81, + "probability": 0.8944 + }, + { + "start": 46185.57, + "end": 46186.39, + "probability": 0.6303 + }, + { + "start": 46186.73, + "end": 46189.39, + "probability": 0.8016 + }, + { + "start": 46189.89, + "end": 46190.87, + "probability": 0.9912 + }, + { + "start": 46191.47, + "end": 46192.44, + "probability": 0.0301 + }, + { + "start": 46195.6, + "end": 46202.37, + "probability": 0.2875 + }, + { + "start": 46203.53, + "end": 46207.03, + "probability": 0.5089 + }, + { + "start": 46207.33, + "end": 46208.19, + "probability": 0.1621 + }, + { + "start": 46208.19, + "end": 46210.99, + "probability": 0.362 + }, + { + "start": 46211.03, + "end": 46214.43, + "probability": 0.0055 + }, + { + "start": 46214.87, + "end": 46214.95, + "probability": 0.1442 + }, + { + "start": 46214.95, + "end": 46217.09, + "probability": 0.4201 + }, + { + "start": 46217.53, + "end": 46218.13, + "probability": 0.844 + }, + { + "start": 46218.55, + "end": 46220.09, + "probability": 0.6813 + }, + { + "start": 46220.29, + "end": 46221.89, + "probability": 0.7344 + }, + { + "start": 46223.39, + "end": 46224.01, + "probability": 0.6481 + }, + { + "start": 46224.35, + "end": 46224.67, + "probability": 0.7935 + }, + { + "start": 46225.73, + "end": 46228.12, + "probability": 0.5302 + }, + { + "start": 46229.05, + "end": 46230.69, + "probability": 0.8009 + }, + { + "start": 46232.99, + "end": 46234.63, + "probability": 0.2407 + }, + { + "start": 46234.99, + "end": 46235.05, + "probability": 0.624 + }, + { + "start": 46235.71, + "end": 46235.97, + "probability": 0.3691 + }, + { + "start": 46238.55, + "end": 46240.25, + "probability": 0.7973 + }, + { + "start": 46240.49, + "end": 46241.77, + "probability": 0.8471 + }, + { + "start": 46242.37, + "end": 46245.09, + "probability": 0.5845 + }, + { + "start": 46245.15, + "end": 46249.39, + "probability": 0.6935 + }, + { + "start": 46250.33, + "end": 46250.79, + "probability": 0.9085 + }, + { + "start": 46250.93, + "end": 46251.19, + "probability": 0.7874 + }, + { + "start": 46252.83, + "end": 46255.13, + "probability": 0.8904 + }, + { + "start": 46256.45, + "end": 46257.31, + "probability": 0.7397 + }, + { + "start": 46262.63, + "end": 46263.55, + "probability": 0.9468 + }, + { + "start": 46266.75, + "end": 46267.37, + "probability": 0.973 + }, + { + "start": 46268.61, + "end": 46269.87, + "probability": 0.5155 + }, + { + "start": 46271.45, + "end": 46273.59, + "probability": 0.9953 + }, + { + "start": 46274.19, + "end": 46275.91, + "probability": 0.8591 + }, + { + "start": 46278.19, + "end": 46279.53, + "probability": 0.9986 + }, + { + "start": 46280.91, + "end": 46282.05, + "probability": 0.8923 + }, + { + "start": 46283.75, + "end": 46286.63, + "probability": 0.9409 + }, + { + "start": 46286.67, + "end": 46287.63, + "probability": 0.6223 + }, + { + "start": 46289.17, + "end": 46292.68, + "probability": 0.9367 + }, + { + "start": 46295.51, + "end": 46296.01, + "probability": 0.9946 + }, + { + "start": 46297.15, + "end": 46299.33, + "probability": 0.9969 + }, + { + "start": 46300.39, + "end": 46302.45, + "probability": 0.9785 + }, + { + "start": 46303.27, + "end": 46305.11, + "probability": 0.9985 + }, + { + "start": 46306.11, + "end": 46308.01, + "probability": 0.9936 + }, + { + "start": 46309.79, + "end": 46310.29, + "probability": 0.8179 + }, + { + "start": 46310.91, + "end": 46313.27, + "probability": 0.6766 + }, + { + "start": 46315.87, + "end": 46319.47, + "probability": 0.6503 + }, + { + "start": 46320.67, + "end": 46321.09, + "probability": 0.866 + }, + { + "start": 46322.55, + "end": 46323.51, + "probability": 0.8901 + }, + { + "start": 46325.13, + "end": 46328.83, + "probability": 0.9563 + }, + { + "start": 46330.85, + "end": 46332.39, + "probability": 0.9491 + }, + { + "start": 46333.17, + "end": 46336.95, + "probability": 0.8779 + }, + { + "start": 46337.29, + "end": 46340.83, + "probability": 0.998 + }, + { + "start": 46341.81, + "end": 46342.47, + "probability": 0.9708 + }, + { + "start": 46343.53, + "end": 46346.55, + "probability": 0.9804 + }, + { + "start": 46347.43, + "end": 46347.81, + "probability": 0.5131 + }, + { + "start": 46348.13, + "end": 46348.93, + "probability": 0.5135 + }, + { + "start": 46349.27, + "end": 46352.79, + "probability": 0.9052 + }, + { + "start": 46353.85, + "end": 46357.31, + "probability": 0.9911 + }, + { + "start": 46357.99, + "end": 46363.77, + "probability": 0.9977 + }, + { + "start": 46364.47, + "end": 46365.19, + "probability": 0.6372 + }, + { + "start": 46365.35, + "end": 46371.87, + "probability": 0.9026 + }, + { + "start": 46372.45, + "end": 46378.67, + "probability": 0.9911 + }, + { + "start": 46378.79, + "end": 46380.77, + "probability": 0.9302 + }, + { + "start": 46382.49, + "end": 46385.83, + "probability": 0.7763 + }, + { + "start": 46386.65, + "end": 46389.37, + "probability": 0.7617 + }, + { + "start": 46390.13, + "end": 46394.35, + "probability": 0.687 + }, + { + "start": 46394.65, + "end": 46395.83, + "probability": 0.6897 + }, + { + "start": 46396.69, + "end": 46398.89, + "probability": 0.8261 + }, + { + "start": 46399.81, + "end": 46401.67, + "probability": 0.9281 + }, + { + "start": 46403.13, + "end": 46404.11, + "probability": 0.9705 + }, + { + "start": 46405.61, + "end": 46408.17, + "probability": 0.9966 + }, + { + "start": 46408.17, + "end": 46412.59, + "probability": 0.9347 + }, + { + "start": 46413.97, + "end": 46416.85, + "probability": 0.8502 + }, + { + "start": 46418.19, + "end": 46420.03, + "probability": 0.8745 + }, + { + "start": 46421.27, + "end": 46427.73, + "probability": 0.9287 + }, + { + "start": 46427.93, + "end": 46430.51, + "probability": 0.9952 + }, + { + "start": 46433.03, + "end": 46435.61, + "probability": 0.9109 + }, + { + "start": 46436.33, + "end": 46437.15, + "probability": 0.554 + }, + { + "start": 46438.61, + "end": 46442.57, + "probability": 0.9967 + }, + { + "start": 46443.35, + "end": 46445.55, + "probability": 0.9365 + }, + { + "start": 46446.29, + "end": 46448.55, + "probability": 0.6006 + }, + { + "start": 46450.41, + "end": 46451.33, + "probability": 0.8042 + }, + { + "start": 46453.09, + "end": 46453.73, + "probability": 0.9053 + }, + { + "start": 46454.61, + "end": 46456.01, + "probability": 0.9987 + }, + { + "start": 46456.83, + "end": 46459.27, + "probability": 0.991 + }, + { + "start": 46460.49, + "end": 46460.49, + "probability": 0.9062 + }, + { + "start": 46461.21, + "end": 46466.21, + "probability": 0.825 + }, + { + "start": 46466.87, + "end": 46468.51, + "probability": 0.5951 + }, + { + "start": 46469.51, + "end": 46470.87, + "probability": 0.6715 + }, + { + "start": 46471.77, + "end": 46473.77, + "probability": 0.9956 + }, + { + "start": 46474.29, + "end": 46476.11, + "probability": 0.988 + }, + { + "start": 46476.25, + "end": 46476.73, + "probability": 0.9325 + }, + { + "start": 46477.37, + "end": 46481.57, + "probability": 0.9944 + }, + { + "start": 46484.03, + "end": 46484.89, + "probability": 0.9236 + }, + { + "start": 46487.27, + "end": 46489.49, + "probability": 0.9982 + }, + { + "start": 46491.63, + "end": 46493.75, + "probability": 0.9875 + }, + { + "start": 46495.09, + "end": 46496.55, + "probability": 0.9565 + }, + { + "start": 46498.03, + "end": 46501.39, + "probability": 0.9977 + }, + { + "start": 46502.63, + "end": 46503.05, + "probability": 0.3705 + }, + { + "start": 46504.51, + "end": 46505.11, + "probability": 0.5669 + }, + { + "start": 46505.87, + "end": 46509.59, + "probability": 0.9958 + }, + { + "start": 46509.59, + "end": 46513.63, + "probability": 0.9988 + }, + { + "start": 46518.13, + "end": 46519.11, + "probability": 0.9858 + }, + { + "start": 46520.63, + "end": 46522.17, + "probability": 0.9399 + }, + { + "start": 46523.97, + "end": 46526.91, + "probability": 0.9971 + }, + { + "start": 46527.49, + "end": 46529.49, + "probability": 0.9788 + }, + { + "start": 46530.49, + "end": 46532.07, + "probability": 0.9762 + }, + { + "start": 46532.85, + "end": 46534.77, + "probability": 0.7911 + }, + { + "start": 46537.75, + "end": 46540.73, + "probability": 0.8493 + }, + { + "start": 46547.29, + "end": 46548.13, + "probability": 0.6511 + }, + { + "start": 46548.75, + "end": 46549.59, + "probability": 0.6792 + }, + { + "start": 46550.85, + "end": 46553.09, + "probability": 0.9774 + }, + { + "start": 46555.25, + "end": 46562.65, + "probability": 0.9967 + }, + { + "start": 46562.65, + "end": 46566.73, + "probability": 0.9344 + }, + { + "start": 46571.09, + "end": 46571.75, + "probability": 0.6373 + }, + { + "start": 46573.53, + "end": 46574.49, + "probability": 0.9755 + }, + { + "start": 46575.59, + "end": 46577.09, + "probability": 0.8989 + }, + { + "start": 46578.41, + "end": 46580.35, + "probability": 0.9731 + }, + { + "start": 46581.67, + "end": 46584.71, + "probability": 0.5734 + }, + { + "start": 46587.53, + "end": 46590.11, + "probability": 0.9941 + }, + { + "start": 46590.11, + "end": 46593.03, + "probability": 0.9919 + }, + { + "start": 46595.23, + "end": 46599.53, + "probability": 0.9977 + }, + { + "start": 46615.75, + "end": 46618.95, + "probability": 0.9583 + }, + { + "start": 46621.19, + "end": 46625.61, + "probability": 0.9963 + }, + { + "start": 46626.63, + "end": 46628.53, + "probability": 0.9949 + }, + { + "start": 46630.69, + "end": 46633.03, + "probability": 0.698 + }, + { + "start": 46633.63, + "end": 46636.31, + "probability": 0.999 + }, + { + "start": 46636.45, + "end": 46640.89, + "probability": 0.9975 + }, + { + "start": 46641.57, + "end": 46645.85, + "probability": 0.999 + }, + { + "start": 46647.45, + "end": 46648.15, + "probability": 0.9159 + }, + { + "start": 46649.59, + "end": 46650.55, + "probability": 0.9116 + }, + { + "start": 46652.85, + "end": 46654.33, + "probability": 0.6912 + }, + { + "start": 46655.39, + "end": 46657.51, + "probability": 0.9756 + }, + { + "start": 46658.13, + "end": 46658.53, + "probability": 0.5005 + }, + { + "start": 46659.33, + "end": 46664.99, + "probability": 0.9971 + }, + { + "start": 46665.23, + "end": 46669.15, + "probability": 0.9399 + }, + { + "start": 46670.49, + "end": 46673.5, + "probability": 0.9636 + }, + { + "start": 46674.43, + "end": 46675.83, + "probability": 0.7327 + }, + { + "start": 46676.75, + "end": 46677.55, + "probability": 0.4848 + }, + { + "start": 46678.61, + "end": 46682.21, + "probability": 0.9888 + }, + { + "start": 46683.89, + "end": 46689.93, + "probability": 0.9596 + }, + { + "start": 46690.79, + "end": 46693.01, + "probability": 0.996 + }, + { + "start": 46694.71, + "end": 46694.75, + "probability": 0.7647 + }, + { + "start": 46694.77, + "end": 46701.35, + "probability": 0.9897 + }, + { + "start": 46701.35, + "end": 46707.63, + "probability": 0.9972 + }, + { + "start": 46709.05, + "end": 46712.31, + "probability": 0.9991 + }, + { + "start": 46713.41, + "end": 46719.29, + "probability": 0.9855 + }, + { + "start": 46720.09, + "end": 46721.97, + "probability": 0.9803 + }, + { + "start": 46722.77, + "end": 46723.21, + "probability": 0.9536 + }, + { + "start": 46724.23, + "end": 46729.17, + "probability": 0.9924 + }, + { + "start": 46729.97, + "end": 46735.29, + "probability": 0.9867 + }, + { + "start": 46737.11, + "end": 46738.01, + "probability": 0.6713 + }, + { + "start": 46740.19, + "end": 46741.17, + "probability": 0.9228 + }, + { + "start": 46742.39, + "end": 46745.39, + "probability": 0.9966 + }, + { + "start": 46746.43, + "end": 46750.81, + "probability": 0.9761 + }, + { + "start": 46751.83, + "end": 46754.27, + "probability": 0.9885 + }, + { + "start": 46754.97, + "end": 46756.41, + "probability": 0.8188 + }, + { + "start": 46757.95, + "end": 46764.81, + "probability": 0.9856 + }, + { + "start": 46764.81, + "end": 46770.33, + "probability": 0.9958 + }, + { + "start": 46771.23, + "end": 46777.07, + "probability": 0.9995 + }, + { + "start": 46777.73, + "end": 46779.49, + "probability": 0.9561 + }, + { + "start": 46784.27, + "end": 46784.97, + "probability": 0.8487 + }, + { + "start": 46786.97, + "end": 46793.19, + "probability": 0.996 + }, + { + "start": 46794.43, + "end": 46797.61, + "probability": 0.9986 + }, + { + "start": 46797.61, + "end": 46802.11, + "probability": 0.9954 + }, + { + "start": 46803.43, + "end": 46805.81, + "probability": 0.8438 + }, + { + "start": 46806.77, + "end": 46809.45, + "probability": 0.9193 + }, + { + "start": 46810.19, + "end": 46815.03, + "probability": 0.9968 + }, + { + "start": 46815.77, + "end": 46818.35, + "probability": 0.995 + }, + { + "start": 46819.31, + "end": 46825.1, + "probability": 0.9798 + }, + { + "start": 46825.21, + "end": 46830.73, + "probability": 0.9993 + }, + { + "start": 46831.25, + "end": 46832.53, + "probability": 0.75 + }, + { + "start": 46833.25, + "end": 46834.25, + "probability": 0.8296 + }, + { + "start": 46835.05, + "end": 46835.85, + "probability": 0.7545 + }, + { + "start": 46837.35, + "end": 46837.61, + "probability": 0.1075 + }, + { + "start": 46838.11, + "end": 46839.05, + "probability": 0.9929 + }, + { + "start": 46839.63, + "end": 46840.29, + "probability": 0.6257 + }, + { + "start": 46841.19, + "end": 46841.71, + "probability": 0.8409 + }, + { + "start": 46842.37, + "end": 46846.47, + "probability": 0.9902 + }, + { + "start": 46846.99, + "end": 46851.41, + "probability": 0.9501 + }, + { + "start": 46852.15, + "end": 46854.45, + "probability": 0.9993 + }, + { + "start": 46855.07, + "end": 46856.72, + "probability": 0.9204 + }, + { + "start": 46857.75, + "end": 46858.25, + "probability": 0.8056 + }, + { + "start": 46859.07, + "end": 46864.49, + "probability": 0.8595 + }, + { + "start": 46864.51, + "end": 46867.29, + "probability": 0.8315 + }, + { + "start": 46868.59, + "end": 46872.43, + "probability": 0.9958 + }, + { + "start": 46873.17, + "end": 46879.31, + "probability": 0.9976 + }, + { + "start": 46879.91, + "end": 46881.41, + "probability": 0.9918 + }, + { + "start": 46883.51, + "end": 46883.75, + "probability": 0.02 + }, + { + "start": 46884.73, + "end": 46886.81, + "probability": 0.5013 + }, + { + "start": 46887.73, + "end": 46888.07, + "probability": 0.7576 + }, + { + "start": 46888.21, + "end": 46892.45, + "probability": 0.9958 + }, + { + "start": 46893.01, + "end": 46894.25, + "probability": 0.9028 + }, + { + "start": 46894.71, + "end": 46897.69, + "probability": 0.9962 + }, + { + "start": 46898.31, + "end": 46901.47, + "probability": 0.7217 + }, + { + "start": 46902.17, + "end": 46905.39, + "probability": 0.9682 + }, + { + "start": 46906.67, + "end": 46906.69, + "probability": 0.0012 + }, + { + "start": 46906.69, + "end": 46909.41, + "probability": 0.9197 + }, + { + "start": 46910.03, + "end": 46912.45, + "probability": 0.8505 + }, + { + "start": 46913.23, + "end": 46918.39, + "probability": 0.8797 + }, + { + "start": 46918.51, + "end": 46919.57, + "probability": 0.4112 + }, + { + "start": 46919.75, + "end": 46920.87, + "probability": 0.9756 + }, + { + "start": 46921.75, + "end": 46922.49, + "probability": 0.8505 + }, + { + "start": 46923.17, + "end": 46925.69, + "probability": 0.9736 + }, + { + "start": 46925.83, + "end": 46928.41, + "probability": 0.965 + }, + { + "start": 46929.15, + "end": 46932.53, + "probability": 0.9655 + }, + { + "start": 46933.49, + "end": 46937.21, + "probability": 0.9756 + }, + { + "start": 46937.93, + "end": 46940.35, + "probability": 0.9789 + }, + { + "start": 46941.03, + "end": 46941.71, + "probability": 0.9731 + }, + { + "start": 46942.87, + "end": 46945.11, + "probability": 0.9512 + }, + { + "start": 46945.21, + "end": 46946.97, + "probability": 0.9932 + }, + { + "start": 46947.67, + "end": 46952.83, + "probability": 0.9767 + }, + { + "start": 46955.15, + "end": 46955.15, + "probability": 0.0088 + }, + { + "start": 46955.21, + "end": 46956.31, + "probability": 0.6954 + }, + { + "start": 46957.41, + "end": 46959.31, + "probability": 0.7901 + }, + { + "start": 46960.17, + "end": 46965.87, + "probability": 0.952 + }, + { + "start": 46965.87, + "end": 46969.99, + "probability": 0.9602 + }, + { + "start": 46971.07, + "end": 46971.51, + "probability": 0.759 + }, + { + "start": 46971.67, + "end": 46975.55, + "probability": 0.9968 + }, + { + "start": 46976.31, + "end": 46980.29, + "probability": 0.9912 + }, + { + "start": 46981.29, + "end": 46982.31, + "probability": 0.9349 + }, + { + "start": 46983.09, + "end": 46985.75, + "probability": 0.9944 + }, + { + "start": 46986.29, + "end": 46987.93, + "probability": 0.991 + }, + { + "start": 46996.01, + "end": 47000.81, + "probability": 0.9967 + }, + { + "start": 47003.49, + "end": 47008.05, + "probability": 0.976 + }, + { + "start": 47009.15, + "end": 47011.13, + "probability": 0.9912 + }, + { + "start": 47011.85, + "end": 47013.61, + "probability": 0.8819 + }, + { + "start": 47015.19, + "end": 47017.73, + "probability": 0.8467 + }, + { + "start": 47018.35, + "end": 47022.61, + "probability": 0.9956 + }, + { + "start": 47025.01, + "end": 47027.13, + "probability": 0.8334 + }, + { + "start": 47027.25, + "end": 47027.95, + "probability": 0.4368 + }, + { + "start": 47028.09, + "end": 47030.25, + "probability": 0.9882 + }, + { + "start": 47030.93, + "end": 47033.51, + "probability": 0.9946 + }, + { + "start": 47034.55, + "end": 47037.11, + "probability": 0.6102 + }, + { + "start": 47037.73, + "end": 47039.95, + "probability": 0.9258 + }, + { + "start": 47039.95, + "end": 47047.07, + "probability": 0.777 + }, + { + "start": 47047.19, + "end": 47049.31, + "probability": 0.998 + }, + { + "start": 47049.47, + "end": 47051.37, + "probability": 0.9969 + }, + { + "start": 47052.13, + "end": 47056.93, + "probability": 0.9843 + }, + { + "start": 47058.73, + "end": 47062.53, + "probability": 0.913 + }, + { + "start": 47063.25, + "end": 47067.27, + "probability": 0.9809 + }, + { + "start": 47067.71, + "end": 47070.69, + "probability": 0.9395 + }, + { + "start": 47071.35, + "end": 47074.01, + "probability": 0.9745 + }, + { + "start": 47074.71, + "end": 47080.65, + "probability": 0.9871 + }, + { + "start": 47081.45, + "end": 47082.57, + "probability": 0.9757 + }, + { + "start": 47083.19, + "end": 47088.03, + "probability": 0.9946 + }, + { + "start": 47088.85, + "end": 47088.87, + "probability": 0.5321 + }, + { + "start": 47088.87, + "end": 47093.03, + "probability": 0.9327 + }, + { + "start": 47093.79, + "end": 47096.53, + "probability": 0.9392 + }, + { + "start": 47097.21, + "end": 47101.49, + "probability": 0.9853 + }, + { + "start": 47102.07, + "end": 47104.65, + "probability": 0.9897 + }, + { + "start": 47106.29, + "end": 47110.77, + "probability": 0.9732 + }, + { + "start": 47110.77, + "end": 47115.01, + "probability": 0.9965 + }, + { + "start": 47115.95, + "end": 47118.07, + "probability": 0.4578 + }, + { + "start": 47118.75, + "end": 47119.31, + "probability": 0.9922 + }, + { + "start": 47121.93, + "end": 47126.73, + "probability": 0.9977 + }, + { + "start": 47126.73, + "end": 47131.82, + "probability": 0.985 + }, + { + "start": 47132.47, + "end": 47135.79, + "probability": 0.855 + }, + { + "start": 47136.41, + "end": 47137.03, + "probability": 0.5981 + }, + { + "start": 47137.21, + "end": 47138.19, + "probability": 0.5342 + }, + { + "start": 47138.39, + "end": 47139.39, + "probability": 0.5109 + }, + { + "start": 47140.39, + "end": 47144.59, + "probability": 0.6908 + }, + { + "start": 47145.43, + "end": 47146.75, + "probability": 0.935 + }, + { + "start": 47148.13, + "end": 47150.49, + "probability": 0.915 + }, + { + "start": 47151.33, + "end": 47153.41, + "probability": 0.9775 + }, + { + "start": 47155.47, + "end": 47159.15, + "probability": 0.9912 + }, + { + "start": 47159.77, + "end": 47165.57, + "probability": 0.9674 + }, + { + "start": 47166.49, + "end": 47169.49, + "probability": 0.9814 + }, + { + "start": 47170.23, + "end": 47172.23, + "probability": 0.9842 + }, + { + "start": 47173.31, + "end": 47175.27, + "probability": 0.9906 + }, + { + "start": 47175.85, + "end": 47178.09, + "probability": 0.8518 + }, + { + "start": 47179.65, + "end": 47181.15, + "probability": 0.9819 + }, + { + "start": 47182.05, + "end": 47185.95, + "probability": 0.9401 + }, + { + "start": 47187.01, + "end": 47190.17, + "probability": 0.9144 + }, + { + "start": 47191.05, + "end": 47192.47, + "probability": 0.9676 + }, + { + "start": 47193.01, + "end": 47194.57, + "probability": 0.9821 + }, + { + "start": 47195.23, + "end": 47197.03, + "probability": 0.9956 + }, + { + "start": 47199.35, + "end": 47201.42, + "probability": 0.5707 + }, + { + "start": 47202.05, + "end": 47205.43, + "probability": 0.5309 + }, + { + "start": 47206.41, + "end": 47207.65, + "probability": 0.9632 + }, + { + "start": 47208.85, + "end": 47210.11, + "probability": 0.5352 + }, + { + "start": 47210.85, + "end": 47215.43, + "probability": 0.8318 + }, + { + "start": 47216.55, + "end": 47220.25, + "probability": 0.8021 + }, + { + "start": 47220.91, + "end": 47223.89, + "probability": 0.7794 + }, + { + "start": 47224.67, + "end": 47227.67, + "probability": 0.8665 + }, + { + "start": 47228.67, + "end": 47230.23, + "probability": 0.7068 + }, + { + "start": 47230.33, + "end": 47235.83, + "probability": 0.9395 + }, + { + "start": 47237.07, + "end": 47242.57, + "probability": 0.9946 + }, + { + "start": 47243.53, + "end": 47246.37, + "probability": 0.8853 + }, + { + "start": 47247.03, + "end": 47252.95, + "probability": 0.4577 + }, + { + "start": 47255.63, + "end": 47257.55, + "probability": 0.6108 + }, + { + "start": 47258.67, + "end": 47262.09, + "probability": 0.7867 + }, + { + "start": 47262.73, + "end": 47263.87, + "probability": 0.9187 + }, + { + "start": 47264.15, + "end": 47265.66, + "probability": 0.9773 + }, + { + "start": 47266.79, + "end": 47268.63, + "probability": 0.9523 + }, + { + "start": 47268.87, + "end": 47269.73, + "probability": 0.907 + }, + { + "start": 47270.39, + "end": 47272.41, + "probability": 0.7496 + }, + { + "start": 47273.27, + "end": 47276.29, + "probability": 0.7561 + }, + { + "start": 47277.01, + "end": 47282.99, + "probability": 0.8388 + }, + { + "start": 47284.05, + "end": 47287.83, + "probability": 0.8569 + }, + { + "start": 47288.51, + "end": 47292.37, + "probability": 0.9446 + }, + { + "start": 47292.89, + "end": 47294.33, + "probability": 0.8282 + }, + { + "start": 47294.91, + "end": 47296.43, + "probability": 0.9703 + }, + { + "start": 47297.53, + "end": 47298.35, + "probability": 0.6825 + }, + { + "start": 47298.41, + "end": 47299.53, + "probability": 0.8503 + }, + { + "start": 47299.57, + "end": 47301.85, + "probability": 0.6919 + }, + { + "start": 47302.89, + "end": 47306.41, + "probability": 0.9629 + }, + { + "start": 47306.41, + "end": 47310.29, + "probability": 0.9711 + }, + { + "start": 47311.33, + "end": 47311.91, + "probability": 0.8483 + }, + { + "start": 47312.57, + "end": 47314.75, + "probability": 0.9517 + }, + { + "start": 47315.81, + "end": 47318.15, + "probability": 0.7175 + }, + { + "start": 47318.97, + "end": 47322.51, + "probability": 0.9673 + }, + { + "start": 47323.19, + "end": 47326.47, + "probability": 0.9962 + }, + { + "start": 47327.39, + "end": 47328.27, + "probability": 0.8362 + }, + { + "start": 47328.97, + "end": 47333.73, + "probability": 0.9639 + }, + { + "start": 47335.87, + "end": 47338.45, + "probability": 0.8978 + }, + { + "start": 47339.43, + "end": 47341.87, + "probability": 0.9697 + }, + { + "start": 47345.11, + "end": 47347.25, + "probability": 0.999 + }, + { + "start": 47347.91, + "end": 47352.03, + "probability": 0.8193 + }, + { + "start": 47353.55, + "end": 47354.77, + "probability": 0.927 + }, + { + "start": 47356.09, + "end": 47357.39, + "probability": 0.9989 + }, + { + "start": 47358.33, + "end": 47359.41, + "probability": 0.9654 + }, + { + "start": 47360.31, + "end": 47361.11, + "probability": 0.9055 + }, + { + "start": 47362.41, + "end": 47365.31, + "probability": 0.9939 + }, + { + "start": 47366.13, + "end": 47367.91, + "probability": 0.9557 + }, + { + "start": 47368.95, + "end": 47369.91, + "probability": 0.3476 + }, + { + "start": 47370.13, + "end": 47370.51, + "probability": 0.9417 + }, + { + "start": 47371.99, + "end": 47374.26, + "probability": 0.8772 + }, + { + "start": 47375.99, + "end": 47376.71, + "probability": 0.8308 + }, + { + "start": 47378.09, + "end": 47378.97, + "probability": 0.8224 + }, + { + "start": 47382.27, + "end": 47383.33, + "probability": 0.8125 + }, + { + "start": 47384.07, + "end": 47387.94, + "probability": 0.9204 + }, + { + "start": 47389.99, + "end": 47393.43, + "probability": 0.9866 + }, + { + "start": 47394.71, + "end": 47397.39, + "probability": 0.8476 + }, + { + "start": 47398.41, + "end": 47401.07, + "probability": 0.7666 + }, + { + "start": 47401.57, + "end": 47404.57, + "probability": 0.9543 + }, + { + "start": 47404.79, + "end": 47405.66, + "probability": 0.7424 + }, + { + "start": 47406.27, + "end": 47407.88, + "probability": 0.8308 + }, + { + "start": 47409.17, + "end": 47411.69, + "probability": 0.9785 + }, + { + "start": 47414.03, + "end": 47416.71, + "probability": 0.9327 + }, + { + "start": 47417.71, + "end": 47418.98, + "probability": 0.8682 + }, + { + "start": 47419.79, + "end": 47421.51, + "probability": 0.8975 + }, + { + "start": 47421.93, + "end": 47422.91, + "probability": 0.9946 + }, + { + "start": 47423.81, + "end": 47427.11, + "probability": 0.9651 + }, + { + "start": 47427.97, + "end": 47431.23, + "probability": 0.9252 + }, + { + "start": 47431.61, + "end": 47432.49, + "probability": 0.9561 + }, + { + "start": 47433.25, + "end": 47433.87, + "probability": 0.8062 + }, + { + "start": 47434.83, + "end": 47435.53, + "probability": 0.7596 + }, + { + "start": 47436.43, + "end": 47440.65, + "probability": 0.9875 + }, + { + "start": 47441.29, + "end": 47445.91, + "probability": 0.9973 + }, + { + "start": 47446.99, + "end": 47448.03, + "probability": 0.8079 + }, + { + "start": 47448.83, + "end": 47451.61, + "probability": 0.8914 + }, + { + "start": 47453.07, + "end": 47457.83, + "probability": 0.9952 + }, + { + "start": 47458.47, + "end": 47463.75, + "probability": 0.9424 + }, + { + "start": 47464.39, + "end": 47467.79, + "probability": 0.9992 + }, + { + "start": 47468.47, + "end": 47471.33, + "probability": 0.9949 + }, + { + "start": 47473.15, + "end": 47473.99, + "probability": 0.8664 + }, + { + "start": 47475.01, + "end": 47476.15, + "probability": 0.8313 + }, + { + "start": 47478.93, + "end": 47479.75, + "probability": 0.9417 + }, + { + "start": 47480.67, + "end": 47483.93, + "probability": 0.9789 + }, + { + "start": 47484.25, + "end": 47485.97, + "probability": 0.6951 + }, + { + "start": 47486.69, + "end": 47489.53, + "probability": 0.9443 + }, + { + "start": 47489.53, + "end": 47492.95, + "probability": 0.9936 + }, + { + "start": 47493.65, + "end": 47498.33, + "probability": 0.9977 + }, + { + "start": 47499.21, + "end": 47500.79, + "probability": 0.9546 + }, + { + "start": 47518.19, + "end": 47519.03, + "probability": 0.5373 + }, + { + "start": 47519.65, + "end": 47523.87, + "probability": 0.9952 + }, + { + "start": 47524.91, + "end": 47526.15, + "probability": 0.6089 + }, + { + "start": 47527.05, + "end": 47530.23, + "probability": 0.7841 + }, + { + "start": 47530.87, + "end": 47532.65, + "probability": 0.9937 + }, + { + "start": 47533.21, + "end": 47533.95, + "probability": 0.7844 + }, + { + "start": 47535.35, + "end": 47537.83, + "probability": 0.8042 + }, + { + "start": 47538.19, + "end": 47539.11, + "probability": 0.6776 + }, + { + "start": 47539.45, + "end": 47539.99, + "probability": 0.8763 + }, + { + "start": 47540.39, + "end": 47541.25, + "probability": 0.7375 + }, + { + "start": 47542.53, + "end": 47543.73, + "probability": 0.8921 + }, + { + "start": 47544.57, + "end": 47545.75, + "probability": 0.9623 + }, + { + "start": 47545.81, + "end": 47546.15, + "probability": 0.9352 + }, + { + "start": 47546.93, + "end": 47547.93, + "probability": 0.9829 + }, + { + "start": 47549.59, + "end": 47553.59, + "probability": 0.9981 + }, + { + "start": 47553.65, + "end": 47559.45, + "probability": 0.999 + }, + { + "start": 47560.09, + "end": 47560.75, + "probability": 0.9866 + }, + { + "start": 47562.29, + "end": 47563.25, + "probability": 0.7383 + }, + { + "start": 47564.13, + "end": 47565.73, + "probability": 0.9907 + }, + { + "start": 47567.01, + "end": 47570.55, + "probability": 0.9905 + }, + { + "start": 47571.63, + "end": 47573.28, + "probability": 0.9683 + }, + { + "start": 47576.13, + "end": 47579.99, + "probability": 0.978 + }, + { + "start": 47580.85, + "end": 47585.67, + "probability": 0.9103 + }, + { + "start": 47586.73, + "end": 47590.87, + "probability": 0.9377 + }, + { + "start": 47591.85, + "end": 47594.53, + "probability": 0.9721 + }, + { + "start": 47595.21, + "end": 47596.75, + "probability": 0.8898 + }, + { + "start": 47597.15, + "end": 47597.97, + "probability": 0.474 + }, + { + "start": 47598.57, + "end": 47602.24, + "probability": 0.7445 + }, + { + "start": 47602.67, + "end": 47602.97, + "probability": 0.6886 + }, + { + "start": 47603.15, + "end": 47604.66, + "probability": 0.9928 + }, + { + "start": 47605.51, + "end": 47606.39, + "probability": 0.528 + }, + { + "start": 47606.77, + "end": 47610.95, + "probability": 0.5382 + }, + { + "start": 47611.01, + "end": 47611.73, + "probability": 0.1211 + }, + { + "start": 47612.35, + "end": 47613.09, + "probability": 0.7155 + }, + { + "start": 47613.3, + "end": 47613.75, + "probability": 0.731 + }, + { + "start": 47614.59, + "end": 47615.49, + "probability": 0.7321 + }, + { + "start": 47615.51, + "end": 47618.53, + "probability": 0.2389 + }, + { + "start": 47618.67, + "end": 47618.73, + "probability": 0.307 + }, + { + "start": 47618.73, + "end": 47619.75, + "probability": 0.8143 + }, + { + "start": 47622.19, + "end": 47625.13, + "probability": 0.6434 + }, + { + "start": 47625.39, + "end": 47628.33, + "probability": 0.6279 + }, + { + "start": 47628.43, + "end": 47628.51, + "probability": 0.0429 + }, + { + "start": 47628.51, + "end": 47630.43, + "probability": 0.9553 + }, + { + "start": 47631.39, + "end": 47631.93, + "probability": 0.7465 + }, + { + "start": 47632.93, + "end": 47632.95, + "probability": 0.855 + }, + { + "start": 47633.73, + "end": 47635.07, + "probability": 0.9216 + }, + { + "start": 47636.29, + "end": 47636.97, + "probability": 0.7847 + }, + { + "start": 47637.53, + "end": 47639.31, + "probability": 0.78 + }, + { + "start": 47639.53, + "end": 47640.75, + "probability": 0.5282 + }, + { + "start": 47643.69, + "end": 47647.49, + "probability": 0.9967 + }, + { + "start": 47648.21, + "end": 47649.73, + "probability": 0.9817 + }, + { + "start": 47651.47, + "end": 47656.41, + "probability": 0.9982 + }, + { + "start": 47656.41, + "end": 47659.03, + "probability": 0.7146 + }, + { + "start": 47659.67, + "end": 47661.07, + "probability": 0.7729 + }, + { + "start": 47661.81, + "end": 47665.35, + "probability": 0.9655 + }, + { + "start": 47665.99, + "end": 47669.31, + "probability": 0.9133 + }, + { + "start": 47670.01, + "end": 47670.51, + "probability": 0.7771 + }, + { + "start": 47671.25, + "end": 47674.15, + "probability": 0.96 + }, + { + "start": 47676.62, + "end": 47680.49, + "probability": 0.6852 + }, + { + "start": 47683.03, + "end": 47685.75, + "probability": 0.8492 + }, + { + "start": 47686.53, + "end": 47690.51, + "probability": 0.8069 + }, + { + "start": 47690.77, + "end": 47692.31, + "probability": 0.5193 + }, + { + "start": 47693.65, + "end": 47694.97, + "probability": 0.9951 + }, + { + "start": 47695.71, + "end": 47696.51, + "probability": 0.9225 + }, + { + "start": 47697.41, + "end": 47698.35, + "probability": 0.8887 + }, + { + "start": 47699.27, + "end": 47702.09, + "probability": 0.9951 + }, + { + "start": 47702.99, + "end": 47704.69, + "probability": 0.8804 + }, + { + "start": 47705.41, + "end": 47706.31, + "probability": 0.7978 + }, + { + "start": 47707.83, + "end": 47708.65, + "probability": 0.9907 + }, + { + "start": 47709.87, + "end": 47711.71, + "probability": 0.9906 + }, + { + "start": 47712.89, + "end": 47713.75, + "probability": 0.3614 + }, + { + "start": 47714.57, + "end": 47719.51, + "probability": 0.9942 + }, + { + "start": 47720.15, + "end": 47722.79, + "probability": 0.9953 + }, + { + "start": 47723.67, + "end": 47727.99, + "probability": 0.9966 + }, + { + "start": 47727.99, + "end": 47733.39, + "probability": 0.9965 + }, + { + "start": 47734.49, + "end": 47737.61, + "probability": 0.9351 + }, + { + "start": 47738.73, + "end": 47739.39, + "probability": 0.854 + }, + { + "start": 47740.73, + "end": 47742.17, + "probability": 0.9178 + }, + { + "start": 47743.21, + "end": 47746.59, + "probability": 0.9651 + }, + { + "start": 47747.73, + "end": 47754.79, + "probability": 0.9971 + }, + { + "start": 47755.73, + "end": 47756.53, + "probability": 0.7933 + }, + { + "start": 47757.51, + "end": 47758.63, + "probability": 0.9398 + }, + { + "start": 47759.67, + "end": 47761.81, + "probability": 0.9658 + }, + { + "start": 47763.11, + "end": 47765.45, + "probability": 0.9824 + }, + { + "start": 47766.15, + "end": 47768.37, + "probability": 0.9814 + }, + { + "start": 47769.61, + "end": 47779.39, + "probability": 0.9844 + }, + { + "start": 47780.43, + "end": 47783.03, + "probability": 0.9872 + }, + { + "start": 47783.85, + "end": 47785.75, + "probability": 0.9892 + }, + { + "start": 47785.85, + "end": 47786.71, + "probability": 0.7216 + }, + { + "start": 47786.75, + "end": 47787.63, + "probability": 0.007 + }, + { + "start": 47787.71, + "end": 47788.61, + "probability": 0.5545 + }, + { + "start": 47789.99, + "end": 47789.99, + "probability": 0.0622 + }, + { + "start": 47789.99, + "end": 47792.97, + "probability": 0.9944 + }, + { + "start": 47793.77, + "end": 47798.19, + "probability": 0.9842 + }, + { + "start": 47799.53, + "end": 47801.71, + "probability": 0.8293 + }, + { + "start": 47803.67, + "end": 47804.23, + "probability": 0.3874 + }, + { + "start": 47805.47, + "end": 47805.47, + "probability": 0.3229 + }, + { + "start": 47805.53, + "end": 47806.25, + "probability": 0.7921 + }, + { + "start": 47807.37, + "end": 47808.27, + "probability": 0.71 + }, + { + "start": 47808.99, + "end": 47810.13, + "probability": 0.9951 + }, + { + "start": 47811.05, + "end": 47813.17, + "probability": 0.9717 + }, + { + "start": 47814.21, + "end": 47819.67, + "probability": 0.8714 + }, + { + "start": 47820.12, + "end": 47820.47, + "probability": 0.4316 + }, + { + "start": 47820.47, + "end": 47821.73, + "probability": 0.8706 + }, + { + "start": 47822.11, + "end": 47822.67, + "probability": 0.5188 + }, + { + "start": 47823.15, + "end": 47824.09, + "probability": 0.8864 + }, + { + "start": 47824.61, + "end": 47825.53, + "probability": 0.8603 + }, + { + "start": 47825.53, + "end": 47825.95, + "probability": 0.4081 + }, + { + "start": 47826.01, + "end": 47828.77, + "probability": 0.7554 + }, + { + "start": 47829.83, + "end": 47829.97, + "probability": 0.0046 + }, + { + "start": 47829.97, + "end": 47834.25, + "probability": 0.6399 + }, + { + "start": 47835.09, + "end": 47835.81, + "probability": 0.871 + }, + { + "start": 47836.97, + "end": 47837.27, + "probability": 0.5358 + }, + { + "start": 47837.33, + "end": 47838.17, + "probability": 0.7585 + }, + { + "start": 47838.81, + "end": 47839.79, + "probability": 0.7847 + }, + { + "start": 47840.93, + "end": 47842.91, + "probability": 0.1248 + }, + { + "start": 47842.91, + "end": 47842.91, + "probability": 0.0464 + }, + { + "start": 47842.91, + "end": 47846.01, + "probability": 0.436 + }, + { + "start": 47847.79, + "end": 47849.05, + "probability": 0.2116 + }, + { + "start": 47849.91, + "end": 47850.11, + "probability": 0.0234 + }, + { + "start": 47851.17, + "end": 47851.27, + "probability": 0.1167 + }, + { + "start": 47851.27, + "end": 47853.47, + "probability": 0.4235 + }, + { + "start": 47854.11, + "end": 47854.83, + "probability": 0.2693 + }, + { + "start": 47855.41, + "end": 47856.21, + "probability": 0.367 + }, + { + "start": 47856.33, + "end": 47857.63, + "probability": 0.5223 + }, + { + "start": 47857.75, + "end": 47858.63, + "probability": 0.8218 + }, + { + "start": 47858.73, + "end": 47862.49, + "probability": 0.2572 + }, + { + "start": 47862.49, + "end": 47864.39, + "probability": 0.6571 + }, + { + "start": 47864.73, + "end": 47865.32, + "probability": 0.0597 + }, + { + "start": 47865.99, + "end": 47867.19, + "probability": 0.6827 + }, + { + "start": 47867.19, + "end": 47868.67, + "probability": 0.0672 + }, + { + "start": 47868.67, + "end": 47869.29, + "probability": 0.5388 + }, + { + "start": 47869.69, + "end": 47870.37, + "probability": 0.8276 + }, + { + "start": 47871.17, + "end": 47873.71, + "probability": 0.9629 + }, + { + "start": 47873.81, + "end": 47877.71, + "probability": 0.3722 + }, + { + "start": 47877.85, + "end": 47878.73, + "probability": 0.8729 + }, + { + "start": 47878.79, + "end": 47878.97, + "probability": 0.3444 + }, + { + "start": 47880.45, + "end": 47881.03, + "probability": 0.0659 + }, + { + "start": 47881.55, + "end": 47881.73, + "probability": 0.4069 + }, + { + "start": 47881.83, + "end": 47882.61, + "probability": 0.6309 + }, + { + "start": 47883.23, + "end": 47883.55, + "probability": 0.4977 + }, + { + "start": 47883.73, + "end": 47887.31, + "probability": 0.754 + }, + { + "start": 47887.95, + "end": 47889.47, + "probability": 0.9341 + }, + { + "start": 47890.35, + "end": 47890.94, + "probability": 0.9348 + }, + { + "start": 47891.75, + "end": 47895.37, + "probability": 0.846 + }, + { + "start": 47896.03, + "end": 47896.74, + "probability": 0.6996 + }, + { + "start": 47897.51, + "end": 47899.75, + "probability": 0.8546 + }, + { + "start": 47899.89, + "end": 47901.83, + "probability": 0.6616 + }, + { + "start": 47902.59, + "end": 47903.71, + "probability": 0.822 + }, + { + "start": 47905.97, + "end": 47907.19, + "probability": 0.7587 + }, + { + "start": 47907.97, + "end": 47911.81, + "probability": 0.95 + }, + { + "start": 47912.55, + "end": 47913.13, + "probability": 0.2483 + }, + { + "start": 47913.13, + "end": 47915.04, + "probability": 0.2124 + }, + { + "start": 47915.73, + "end": 47916.41, + "probability": 0.5681 + }, + { + "start": 47916.97, + "end": 47920.01, + "probability": 0.6 + }, + { + "start": 47920.09, + "end": 47920.74, + "probability": 0.0159 + }, + { + "start": 47925.31, + "end": 47925.57, + "probability": 0.2048 + }, + { + "start": 47927.55, + "end": 47927.75, + "probability": 0.0577 + }, + { + "start": 47927.75, + "end": 47927.75, + "probability": 0.3123 + }, + { + "start": 47927.75, + "end": 47927.75, + "probability": 0.0229 + }, + { + "start": 47927.75, + "end": 47929.05, + "probability": 0.1118 + }, + { + "start": 47931.45, + "end": 47931.75, + "probability": 0.008 + }, + { + "start": 47931.75, + "end": 47934.09, + "probability": 0.0307 + }, + { + "start": 47934.09, + "end": 47935.35, + "probability": 0.6205 + }, + { + "start": 47935.67, + "end": 47937.03, + "probability": 0.9398 + }, + { + "start": 47938.09, + "end": 47939.37, + "probability": 0.8272 + }, + { + "start": 47940.19, + "end": 47946.15, + "probability": 0.9917 + }, + { + "start": 47946.67, + "end": 47951.55, + "probability": 0.9565 + }, + { + "start": 47952.49, + "end": 47953.29, + "probability": 0.0402 + }, + { + "start": 47953.67, + "end": 47953.95, + "probability": 0.6343 + }, + { + "start": 47954.25, + "end": 47957.87, + "probability": 0.7349 + }, + { + "start": 47958.29, + "end": 47959.01, + "probability": 0.813 + }, + { + "start": 47959.59, + "end": 47962.33, + "probability": 0.5216 + }, + { + "start": 47962.33, + "end": 47964.99, + "probability": 0.562 + }, + { + "start": 47965.09, + "end": 47965.95, + "probability": 0.6274 + }, + { + "start": 47966.21, + "end": 47968.07, + "probability": 0.8524 + }, + { + "start": 47968.25, + "end": 47972.73, + "probability": 0.9468 + }, + { + "start": 47972.73, + "end": 47975.97, + "probability": 0.7633 + }, + { + "start": 47976.43, + "end": 47976.97, + "probability": 0.3561 + }, + { + "start": 47977.69, + "end": 47978.15, + "probability": 0.5355 + }, + { + "start": 47978.23, + "end": 47978.71, + "probability": 0.7153 + }, + { + "start": 47978.79, + "end": 47983.63, + "probability": 0.5849 + }, + { + "start": 47983.63, + "end": 47985.77, + "probability": 0.8767 + }, + { + "start": 47987.97, + "end": 47996.77, + "probability": 0.9074 + }, + { + "start": 47997.05, + "end": 47998.75, + "probability": 0.7344 + }, + { + "start": 48000.15, + "end": 48002.8, + "probability": 0.6032 + }, + { + "start": 48003.23, + "end": 48004.39, + "probability": 0.247 + }, + { + "start": 48005.23, + "end": 48007.15, + "probability": 0.0264 + }, + { + "start": 48009.55, + "end": 48012.03, + "probability": 0.7627 + }, + { + "start": 48012.95, + "end": 48015.65, + "probability": 0.889 + }, + { + "start": 48016.53, + "end": 48017.53, + "probability": 0.3516 + }, + { + "start": 48017.53, + "end": 48017.99, + "probability": 0.4587 + }, + { + "start": 48018.11, + "end": 48018.65, + "probability": 0.0127 + }, + { + "start": 48019.69, + "end": 48019.79, + "probability": 0.0384 + }, + { + "start": 48019.79, + "end": 48020.19, + "probability": 0.2445 + }, + { + "start": 48021.45, + "end": 48022.11, + "probability": 0.7571 + }, + { + "start": 48022.17, + "end": 48023.02, + "probability": 0.0323 + }, + { + "start": 48023.53, + "end": 48026.21, + "probability": 0.2568 + }, + { + "start": 48041.41, + "end": 48042.93, + "probability": 0.3109 + }, + { + "start": 48043.25, + "end": 48043.31, + "probability": 0.0381 + }, + { + "start": 48044.51, + "end": 48044.83, + "probability": 0.118 + }, + { + "start": 48045.21, + "end": 48047.15, + "probability": 0.0718 + }, + { + "start": 48047.19, + "end": 48047.88, + "probability": 0.1907 + }, + { + "start": 48049.35, + "end": 48051.31, + "probability": 0.0598 + }, + { + "start": 48051.99, + "end": 48057.27, + "probability": 0.0775 + }, + { + "start": 48057.27, + "end": 48058.33, + "probability": 0.0907 + }, + { + "start": 48061.97, + "end": 48063.97, + "probability": 0.0818 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.0, + "end": 48085.0, + "probability": 0.0 + }, + { + "start": 48085.26, + "end": 48085.44, + "probability": 0.2907 + }, + { + "start": 48086.14, + "end": 48087.11, + "probability": 0.8247 + }, + { + "start": 48087.7, + "end": 48089.06, + "probability": 0.503 + }, + { + "start": 48089.06, + "end": 48091.56, + "probability": 0.5723 + }, + { + "start": 48092.4, + "end": 48093.9, + "probability": 0.7948 + }, + { + "start": 48094.52, + "end": 48096.72, + "probability": 0.7093 + }, + { + "start": 48098.3, + "end": 48098.98, + "probability": 0.6085 + }, + { + "start": 48100.22, + "end": 48106.04, + "probability": 0.9838 + }, + { + "start": 48106.16, + "end": 48108.74, + "probability": 0.601 + }, + { + "start": 48108.86, + "end": 48112.3, + "probability": 0.9945 + }, + { + "start": 48113.46, + "end": 48117.54, + "probability": 0.9761 + }, + { + "start": 48118.46, + "end": 48123.04, + "probability": 0.991 + }, + { + "start": 48123.34, + "end": 48123.44, + "probability": 0.0148 + }, + { + "start": 48123.46, + "end": 48123.8, + "probability": 0.8153 + }, + { + "start": 48124.0, + "end": 48125.1, + "probability": 0.7825 + }, + { + "start": 48126.44, + "end": 48131.8, + "probability": 0.9814 + }, + { + "start": 48133.16, + "end": 48134.28, + "probability": 0.8239 + }, + { + "start": 48134.86, + "end": 48136.74, + "probability": 0.9697 + }, + { + "start": 48137.48, + "end": 48138.72, + "probability": 0.8236 + }, + { + "start": 48140.4, + "end": 48144.3, + "probability": 0.7104 + }, + { + "start": 48145.54, + "end": 48147.64, + "probability": 0.7374 + }, + { + "start": 48148.34, + "end": 48150.74, + "probability": 0.9883 + }, + { + "start": 48151.32, + "end": 48152.36, + "probability": 0.8091 + }, + { + "start": 48153.04, + "end": 48156.6, + "probability": 0.9746 + }, + { + "start": 48158.4, + "end": 48161.0, + "probability": 0.8751 + }, + { + "start": 48163.08, + "end": 48166.9, + "probability": 0.8029 + }, + { + "start": 48168.3, + "end": 48169.94, + "probability": 0.9917 + }, + { + "start": 48170.06, + "end": 48173.44, + "probability": 0.9805 + }, + { + "start": 48174.16, + "end": 48174.92, + "probability": 0.8911 + }, + { + "start": 48176.06, + "end": 48178.18, + "probability": 0.7119 + }, + { + "start": 48179.38, + "end": 48181.2, + "probability": 0.8232 + }, + { + "start": 48181.32, + "end": 48183.02, + "probability": 0.762 + }, + { + "start": 48183.1, + "end": 48185.76, + "probability": 0.5807 + }, + { + "start": 48187.2, + "end": 48187.96, + "probability": 0.7243 + }, + { + "start": 48188.02, + "end": 48189.4, + "probability": 0.8665 + }, + { + "start": 48189.84, + "end": 48191.72, + "probability": 0.9941 + }, + { + "start": 48193.12, + "end": 48195.3, + "probability": 0.9061 + }, + { + "start": 48195.36, + "end": 48198.06, + "probability": 0.5433 + }, + { + "start": 48198.06, + "end": 48199.0, + "probability": 0.9818 + }, + { + "start": 48200.9, + "end": 48205.48, + "probability": 0.9559 + }, + { + "start": 48205.62, + "end": 48206.64, + "probability": 0.9146 + }, + { + "start": 48207.46, + "end": 48209.92, + "probability": 0.939 + }, + { + "start": 48211.08, + "end": 48212.92, + "probability": 0.9795 + }, + { + "start": 48214.28, + "end": 48215.6, + "probability": 0.8137 + }, + { + "start": 48216.82, + "end": 48220.56, + "probability": 0.9871 + }, + { + "start": 48221.88, + "end": 48222.68, + "probability": 0.9514 + }, + { + "start": 48223.86, + "end": 48226.84, + "probability": 0.9676 + }, + { + "start": 48227.78, + "end": 48229.5, + "probability": 0.9761 + }, + { + "start": 48231.06, + "end": 48232.68, + "probability": 0.8331 + }, + { + "start": 48234.14, + "end": 48236.04, + "probability": 0.9873 + }, + { + "start": 48238.06, + "end": 48239.16, + "probability": 0.6832 + }, + { + "start": 48240.78, + "end": 48246.74, + "probability": 0.9815 + }, + { + "start": 48247.96, + "end": 48249.78, + "probability": 0.7362 + }, + { + "start": 48250.58, + "end": 48252.72, + "probability": 0.8592 + }, + { + "start": 48254.18, + "end": 48255.18, + "probability": 0.8926 + }, + { + "start": 48255.76, + "end": 48258.74, + "probability": 0.9946 + }, + { + "start": 48259.26, + "end": 48261.24, + "probability": 0.9943 + }, + { + "start": 48261.24, + "end": 48265.12, + "probability": 0.8938 + }, + { + "start": 48265.79, + "end": 48269.36, + "probability": 0.8292 + }, + { + "start": 48270.66, + "end": 48271.58, + "probability": 0.9573 + }, + { + "start": 48271.64, + "end": 48273.24, + "probability": 0.9763 + }, + { + "start": 48273.46, + "end": 48275.3, + "probability": 0.7826 + }, + { + "start": 48275.38, + "end": 48276.36, + "probability": 0.9504 + }, + { + "start": 48278.26, + "end": 48279.32, + "probability": 0.2647 + }, + { + "start": 48279.5, + "end": 48281.36, + "probability": 0.5226 + }, + { + "start": 48282.4, + "end": 48284.24, + "probability": 0.9307 + }, + { + "start": 48285.12, + "end": 48285.9, + "probability": 0.5339 + }, + { + "start": 48285.9, + "end": 48288.58, + "probability": 0.9018 + }, + { + "start": 48288.64, + "end": 48290.18, + "probability": 0.7825 + }, + { + "start": 48290.26, + "end": 48291.56, + "probability": 0.9819 + }, + { + "start": 48292.12, + "end": 48296.08, + "probability": 0.7431 + }, + { + "start": 48296.66, + "end": 48298.03, + "probability": 0.9854 + }, + { + "start": 48299.32, + "end": 48300.58, + "probability": 0.585 + }, + { + "start": 48301.38, + "end": 48302.24, + "probability": 0.7433 + }, + { + "start": 48303.4, + "end": 48304.08, + "probability": 0.8164 + }, + { + "start": 48305.66, + "end": 48307.44, + "probability": 0.9437 + }, + { + "start": 48308.9, + "end": 48311.44, + "probability": 0.797 + }, + { + "start": 48312.18, + "end": 48314.38, + "probability": 0.7387 + }, + { + "start": 48316.06, + "end": 48316.48, + "probability": 0.817 + }, + { + "start": 48317.92, + "end": 48319.8, + "probability": 0.9485 + }, + { + "start": 48320.04, + "end": 48321.08, + "probability": 0.7393 + }, + { + "start": 48321.32, + "end": 48321.58, + "probability": 0.5037 + }, + { + "start": 48321.58, + "end": 48322.96, + "probability": 0.9059 + }, + { + "start": 48323.4, + "end": 48324.26, + "probability": 0.8135 + }, + { + "start": 48325.32, + "end": 48327.16, + "probability": 0.5085 + }, + { + "start": 48328.04, + "end": 48328.72, + "probability": 0.2344 + }, + { + "start": 48328.92, + "end": 48329.63, + "probability": 0.9298 + }, + { + "start": 48331.06, + "end": 48332.34, + "probability": 0.8725 + }, + { + "start": 48332.4, + "end": 48333.32, + "probability": 0.9436 + }, + { + "start": 48333.42, + "end": 48337.14, + "probability": 0.9749 + }, + { + "start": 48337.22, + "end": 48338.36, + "probability": 0.9829 + }, + { + "start": 48339.22, + "end": 48340.62, + "probability": 0.9056 + }, + { + "start": 48341.4, + "end": 48343.74, + "probability": 0.7684 + }, + { + "start": 48344.54, + "end": 48347.32, + "probability": 0.8563 + }, + { + "start": 48347.84, + "end": 48349.12, + "probability": 0.9788 + }, + { + "start": 48349.68, + "end": 48352.96, + "probability": 0.9456 + }, + { + "start": 48353.08, + "end": 48353.42, + "probability": 0.8922 + }, + { + "start": 48353.92, + "end": 48355.62, + "probability": 0.5356 + }, + { + "start": 48356.54, + "end": 48358.16, + "probability": 0.9304 + }, + { + "start": 48359.08, + "end": 48359.28, + "probability": 0.6758 + }, + { + "start": 48382.34, + "end": 48383.12, + "probability": 0.6067 + }, + { + "start": 48384.32, + "end": 48385.1, + "probability": 0.4618 + }, + { + "start": 48385.32, + "end": 48386.14, + "probability": 0.449 + }, + { + "start": 48387.24, + "end": 48388.84, + "probability": 0.7983 + }, + { + "start": 48390.1, + "end": 48390.5, + "probability": 0.73 + }, + { + "start": 48393.2, + "end": 48395.14, + "probability": 0.6748 + }, + { + "start": 48396.52, + "end": 48400.04, + "probability": 0.9741 + }, + { + "start": 48400.82, + "end": 48401.8, + "probability": 0.9993 + }, + { + "start": 48403.08, + "end": 48406.04, + "probability": 0.9906 + }, + { + "start": 48406.92, + "end": 48408.24, + "probability": 0.679 + }, + { + "start": 48409.8, + "end": 48410.64, + "probability": 0.8481 + }, + { + "start": 48411.84, + "end": 48414.5, + "probability": 0.8733 + }, + { + "start": 48415.28, + "end": 48417.64, + "probability": 0.6537 + }, + { + "start": 48418.98, + "end": 48423.9, + "probability": 0.6655 + }, + { + "start": 48425.16, + "end": 48430.3, + "probability": 0.9615 + }, + { + "start": 48431.54, + "end": 48432.92, + "probability": 0.894 + }, + { + "start": 48433.88, + "end": 48442.36, + "probability": 0.952 + }, + { + "start": 48443.86, + "end": 48444.92, + "probability": 0.9613 + }, + { + "start": 48447.14, + "end": 48448.5, + "probability": 0.6215 + }, + { + "start": 48449.52, + "end": 48451.32, + "probability": 0.991 + }, + { + "start": 48452.68, + "end": 48456.1, + "probability": 0.9051 + }, + { + "start": 48456.84, + "end": 48458.34, + "probability": 0.8292 + }, + { + "start": 48459.44, + "end": 48462.26, + "probability": 0.8618 + }, + { + "start": 48462.8, + "end": 48463.78, + "probability": 0.9474 + }, + { + "start": 48466.06, + "end": 48467.78, + "probability": 0.94 + }, + { + "start": 48467.92, + "end": 48468.84, + "probability": 0.8274 + }, + { + "start": 48469.2, + "end": 48470.12, + "probability": 0.8975 + }, + { + "start": 48470.7, + "end": 48472.1, + "probability": 0.9584 + }, + { + "start": 48472.84, + "end": 48474.72, + "probability": 0.969 + }, + { + "start": 48476.06, + "end": 48478.96, + "probability": 0.9723 + }, + { + "start": 48480.32, + "end": 48482.84, + "probability": 0.8552 + }, + { + "start": 48483.5, + "end": 48486.57, + "probability": 0.8113 + }, + { + "start": 48486.72, + "end": 48487.08, + "probability": 0.9454 + }, + { + "start": 48487.24, + "end": 48487.74, + "probability": 0.9713 + }, + { + "start": 48488.1, + "end": 48489.36, + "probability": 0.9636 + }, + { + "start": 48489.76, + "end": 48490.14, + "probability": 0.9635 + }, + { + "start": 48490.82, + "end": 48492.74, + "probability": 0.982 + }, + { + "start": 48494.08, + "end": 48494.8, + "probability": 0.993 + }, + { + "start": 48495.12, + "end": 48496.62, + "probability": 0.9253 + }, + { + "start": 48496.76, + "end": 48497.76, + "probability": 0.3352 + }, + { + "start": 48499.1, + "end": 48501.2, + "probability": 0.8652 + }, + { + "start": 48502.14, + "end": 48505.56, + "probability": 0.9093 + }, + { + "start": 48506.44, + "end": 48507.28, + "probability": 0.8092 + }, + { + "start": 48509.6, + "end": 48511.9, + "probability": 0.9956 + }, + { + "start": 48512.4, + "end": 48515.82, + "probability": 0.9883 + }, + { + "start": 48516.18, + "end": 48519.3, + "probability": 0.9823 + }, + { + "start": 48520.32, + "end": 48522.18, + "probability": 0.751 + }, + { + "start": 48523.24, + "end": 48525.22, + "probability": 0.8767 + }, + { + "start": 48526.06, + "end": 48527.24, + "probability": 0.7539 + }, + { + "start": 48527.46, + "end": 48529.18, + "probability": 0.8092 + }, + { + "start": 48529.96, + "end": 48532.72, + "probability": 0.8598 + }, + { + "start": 48533.38, + "end": 48537.44, + "probability": 0.9927 + }, + { + "start": 48537.6, + "end": 48538.09, + "probability": 0.9629 + }, + { + "start": 48539.28, + "end": 48543.2, + "probability": 0.9481 + }, + { + "start": 48544.1, + "end": 48546.2, + "probability": 0.8955 + }, + { + "start": 48546.84, + "end": 48550.82, + "probability": 0.9941 + }, + { + "start": 48551.6, + "end": 48553.08, + "probability": 0.9755 + }, + { + "start": 48553.36, + "end": 48555.1, + "probability": 0.7246 + }, + { + "start": 48557.02, + "end": 48559.42, + "probability": 0.6432 + }, + { + "start": 48560.48, + "end": 48561.64, + "probability": 0.8769 + }, + { + "start": 48562.52, + "end": 48567.4, + "probability": 0.9917 + }, + { + "start": 48568.36, + "end": 48574.7, + "probability": 0.7575 + }, + { + "start": 48576.22, + "end": 48581.26, + "probability": 0.9985 + }, + { + "start": 48582.06, + "end": 48583.42, + "probability": 0.9973 + }, + { + "start": 48587.58, + "end": 48594.27, + "probability": 0.8284 + }, + { + "start": 48595.6, + "end": 48600.6, + "probability": 0.9963 + }, + { + "start": 48601.66, + "end": 48605.08, + "probability": 0.524 + }, + { + "start": 48606.04, + "end": 48608.22, + "probability": 0.7234 + }, + { + "start": 48608.86, + "end": 48610.5, + "probability": 0.994 + }, + { + "start": 48611.32, + "end": 48616.28, + "probability": 0.9211 + }, + { + "start": 48617.1, + "end": 48624.26, + "probability": 0.7748 + }, + { + "start": 48624.9, + "end": 48626.84, + "probability": 0.772 + }, + { + "start": 48627.44, + "end": 48629.8, + "probability": 0.9355 + }, + { + "start": 48630.4, + "end": 48634.08, + "probability": 0.7279 + }, + { + "start": 48634.68, + "end": 48635.58, + "probability": 0.6726 + }, + { + "start": 48636.4, + "end": 48637.26, + "probability": 0.9419 + }, + { + "start": 48638.24, + "end": 48642.5, + "probability": 0.7693 + }, + { + "start": 48643.16, + "end": 48644.54, + "probability": 0.8853 + }, + { + "start": 48645.72, + "end": 48649.62, + "probability": 0.6996 + }, + { + "start": 48650.6, + "end": 48651.24, + "probability": 0.9728 + }, + { + "start": 48652.18, + "end": 48656.04, + "probability": 0.9632 + }, + { + "start": 48656.96, + "end": 48657.32, + "probability": 0.6087 + }, + { + "start": 48658.3, + "end": 48659.4, + "probability": 0.9389 + }, + { + "start": 48660.16, + "end": 48661.85, + "probability": 0.7479 + }, + { + "start": 48662.68, + "end": 48664.38, + "probability": 0.9192 + }, + { + "start": 48665.5, + "end": 48667.06, + "probability": 0.9622 + }, + { + "start": 48667.98, + "end": 48669.38, + "probability": 0.9713 + }, + { + "start": 48669.98, + "end": 48670.86, + "probability": 0.7871 + }, + { + "start": 48671.24, + "end": 48671.66, + "probability": 0.5815 + }, + { + "start": 48672.74, + "end": 48674.52, + "probability": 0.8243 + }, + { + "start": 48675.34, + "end": 48676.5, + "probability": 0.7931 + }, + { + "start": 48678.16, + "end": 48679.78, + "probability": 0.8511 + }, + { + "start": 48680.5, + "end": 48682.54, + "probability": 0.8994 + }, + { + "start": 48683.22, + "end": 48684.96, + "probability": 0.898 + }, + { + "start": 48685.52, + "end": 48686.36, + "probability": 0.5779 + }, + { + "start": 48687.72, + "end": 48689.28, + "probability": 0.9326 + }, + { + "start": 48690.14, + "end": 48692.16, + "probability": 0.9713 + }, + { + "start": 48693.24, + "end": 48695.74, + "probability": 0.6854 + }, + { + "start": 48696.66, + "end": 48699.6, + "probability": 0.868 + }, + { + "start": 48700.34, + "end": 48702.54, + "probability": 0.8318 + }, + { + "start": 48703.32, + "end": 48708.22, + "probability": 0.9468 + }, + { + "start": 48708.94, + "end": 48709.74, + "probability": 0.8916 + }, + { + "start": 48710.26, + "end": 48712.32, + "probability": 0.732 + }, + { + "start": 48713.66, + "end": 48717.42, + "probability": 0.8001 + }, + { + "start": 48718.34, + "end": 48718.7, + "probability": 0.8805 + }, + { + "start": 48721.7, + "end": 48723.15, + "probability": 0.9014 + }, + { + "start": 48724.68, + "end": 48727.92, + "probability": 0.9062 + }, + { + "start": 48727.92, + "end": 48730.0, + "probability": 0.0569 + }, + { + "start": 48743.94, + "end": 48743.94, + "probability": 0.383 + }, + { + "start": 48743.94, + "end": 48744.52, + "probability": 0.3847 + }, + { + "start": 48747.7, + "end": 48748.54, + "probability": 0.6442 + }, + { + "start": 48749.4, + "end": 48750.12, + "probability": 0.8655 + }, + { + "start": 48750.86, + "end": 48752.66, + "probability": 0.6369 + }, + { + "start": 48753.66, + "end": 48755.2, + "probability": 0.858 + }, + { + "start": 48756.22, + "end": 48758.48, + "probability": 0.9665 + }, + { + "start": 48759.66, + "end": 48760.76, + "probability": 0.7556 + }, + { + "start": 48761.16, + "end": 48761.54, + "probability": 0.0504 + }, + { + "start": 48762.16, + "end": 48762.65, + "probability": 0.8829 + }, + { + "start": 48762.96, + "end": 48763.72, + "probability": 0.2623 + }, + { + "start": 48763.86, + "end": 48767.02, + "probability": 0.9897 + }, + { + "start": 48767.36, + "end": 48769.02, + "probability": 0.692 + }, + { + "start": 48769.02, + "end": 48771.4, + "probability": 0.8846 + }, + { + "start": 48772.3, + "end": 48773.12, + "probability": 0.1126 + }, + { + "start": 48773.12, + "end": 48773.26, + "probability": 0.1838 + }, + { + "start": 48773.26, + "end": 48774.46, + "probability": 0.7473 + }, + { + "start": 48775.77, + "end": 48777.16, + "probability": 0.8134 + }, + { + "start": 48778.94, + "end": 48781.96, + "probability": 0.2364 + }, + { + "start": 48783.58, + "end": 48784.82, + "probability": 0.4819 + }, + { + "start": 48785.58, + "end": 48786.3, + "probability": 0.9019 + }, + { + "start": 48786.52, + "end": 48787.39, + "probability": 0.9756 + }, + { + "start": 48787.52, + "end": 48789.98, + "probability": 0.9526 + }, + { + "start": 48790.8, + "end": 48796.54, + "probability": 0.9849 + }, + { + "start": 48797.12, + "end": 48797.94, + "probability": 0.5413 + }, + { + "start": 48798.42, + "end": 48802.18, + "probability": 0.7759 + }, + { + "start": 48803.94, + "end": 48806.6, + "probability": 0.5841 + }, + { + "start": 48807.02, + "end": 48807.68, + "probability": 0.8512 + }, + { + "start": 48808.18, + "end": 48809.7, + "probability": 0.9639 + }, + { + "start": 48811.1, + "end": 48811.6, + "probability": 0.8019 + }, + { + "start": 48812.24, + "end": 48813.26, + "probability": 0.9238 + }, + { + "start": 48814.38, + "end": 48816.58, + "probability": 0.7468 + }, + { + "start": 48816.78, + "end": 48817.9, + "probability": 0.7882 + }, + { + "start": 48819.46, + "end": 48821.54, + "probability": 0.5803 + }, + { + "start": 48821.9, + "end": 48824.42, + "probability": 0.9945 + }, + { + "start": 48825.42, + "end": 48827.46, + "probability": 0.7087 + }, + { + "start": 48828.1, + "end": 48830.41, + "probability": 0.9979 + }, + { + "start": 48830.94, + "end": 48834.3, + "probability": 0.9401 + }, + { + "start": 48835.3, + "end": 48837.68, + "probability": 0.936 + }, + { + "start": 48838.12, + "end": 48839.28, + "probability": 0.9977 + }, + { + "start": 48840.2, + "end": 48841.38, + "probability": 0.6565 + }, + { + "start": 48842.34, + "end": 48843.66, + "probability": 0.9847 + }, + { + "start": 48844.38, + "end": 48845.12, + "probability": 0.6086 + }, + { + "start": 48845.64, + "end": 48846.26, + "probability": 0.6065 + }, + { + "start": 48846.88, + "end": 48848.12, + "probability": 0.9666 + }, + { + "start": 48849.0, + "end": 48851.82, + "probability": 0.9417 + }, + { + "start": 48853.15, + "end": 48855.16, + "probability": 0.3601 + }, + { + "start": 48855.46, + "end": 48856.56, + "probability": 0.304 + }, + { + "start": 48857.8, + "end": 48858.78, + "probability": 0.7503 + }, + { + "start": 48859.14, + "end": 48861.38, + "probability": 0.7286 + }, + { + "start": 48862.24, + "end": 48863.04, + "probability": 0.5468 + }, + { + "start": 48864.56, + "end": 48865.26, + "probability": 0.5228 + }, + { + "start": 48866.1, + "end": 48869.56, + "probability": 0.4021 + }, + { + "start": 48870.98, + "end": 48874.54, + "probability": 0.9844 + }, + { + "start": 48875.34, + "end": 48876.82, + "probability": 0.9098 + }, + { + "start": 48877.1, + "end": 48880.98, + "probability": 0.9564 + }, + { + "start": 48882.36, + "end": 48883.98, + "probability": 0.8755 + }, + { + "start": 48885.46, + "end": 48887.36, + "probability": 0.8286 + }, + { + "start": 48888.24, + "end": 48892.98, + "probability": 0.8145 + }, + { + "start": 48894.22, + "end": 48896.36, + "probability": 0.9443 + }, + { + "start": 48897.18, + "end": 48900.0, + "probability": 0.9865 + }, + { + "start": 48900.86, + "end": 48902.58, + "probability": 0.8981 + }, + { + "start": 48903.32, + "end": 48904.18, + "probability": 0.9478 + }, + { + "start": 48905.12, + "end": 48906.4, + "probability": 0.9438 + }, + { + "start": 48908.26, + "end": 48910.44, + "probability": 0.7433 + }, + { + "start": 48911.14, + "end": 48913.7, + "probability": 0.9559 + }, + { + "start": 48914.58, + "end": 48919.04, + "probability": 0.7957 + }, + { + "start": 48919.92, + "end": 48925.26, + "probability": 0.8729 + }, + { + "start": 48927.78, + "end": 48931.4, + "probability": 0.8639 + }, + { + "start": 48932.84, + "end": 48933.42, + "probability": 0.851 + }, + { + "start": 48934.08, + "end": 48938.26, + "probability": 0.9952 + }, + { + "start": 48940.42, + "end": 48943.02, + "probability": 0.8049 + }, + { + "start": 48944.12, + "end": 48944.52, + "probability": 0.9934 + }, + { + "start": 48945.44, + "end": 48949.6, + "probability": 0.9937 + }, + { + "start": 48950.6, + "end": 48954.12, + "probability": 0.9742 + }, + { + "start": 48955.02, + "end": 48958.58, + "probability": 0.99 + }, + { + "start": 48958.74, + "end": 48960.6, + "probability": 0.9606 + }, + { + "start": 48963.04, + "end": 48967.28, + "probability": 0.9967 + }, + { + "start": 48968.18, + "end": 48969.58, + "probability": 0.9944 + }, + { + "start": 48970.42, + "end": 48972.16, + "probability": 0.9633 + }, + { + "start": 48973.54, + "end": 48975.0, + "probability": 0.6233 + }, + { + "start": 48975.1, + "end": 48976.7, + "probability": 0.8987 + }, + { + "start": 48976.78, + "end": 48977.5, + "probability": 0.6625 + }, + { + "start": 48979.23, + "end": 48981.94, + "probability": 0.7633 + }, + { + "start": 48983.62, + "end": 48986.14, + "probability": 0.9711 + }, + { + "start": 48986.88, + "end": 48988.74, + "probability": 0.7717 + }, + { + "start": 48989.2, + "end": 48991.44, + "probability": 0.9962 + }, + { + "start": 48993.04, + "end": 48993.8, + "probability": 0.8184 + }, + { + "start": 48994.04, + "end": 48995.14, + "probability": 0.9075 + }, + { + "start": 48996.0, + "end": 48996.62, + "probability": 0.4811 + }, + { + "start": 48997.48, + "end": 48999.6, + "probability": 0.8499 + }, + { + "start": 48999.66, + "end": 49001.34, + "probability": 0.8106 + }, + { + "start": 49001.42, + "end": 49002.59, + "probability": 0.9575 + }, + { + "start": 49003.86, + "end": 49005.56, + "probability": 0.9967 + }, + { + "start": 49006.5, + "end": 49009.1, + "probability": 0.7993 + }, + { + "start": 49009.1, + "end": 49010.16, + "probability": 0.6569 + }, + { + "start": 49010.24, + "end": 49011.14, + "probability": 0.3082 + }, + { + "start": 49011.82, + "end": 49012.4, + "probability": 0.6626 + }, + { + "start": 49013.5, + "end": 49014.56, + "probability": 0.9727 + }, + { + "start": 49015.44, + "end": 49017.8, + "probability": 0.8323 + }, + { + "start": 49018.44, + "end": 49020.24, + "probability": 0.6839 + }, + { + "start": 49022.08, + "end": 49023.32, + "probability": 0.894 + }, + { + "start": 49023.4, + "end": 49025.12, + "probability": 0.9392 + }, + { + "start": 49025.44, + "end": 49026.94, + "probability": 0.9227 + }, + { + "start": 49027.66, + "end": 49028.09, + "probability": 0.7113 + }, + { + "start": 49028.44, + "end": 49029.24, + "probability": 0.9856 + }, + { + "start": 49030.94, + "end": 49031.5, + "probability": 0.6881 + }, + { + "start": 49031.72, + "end": 49035.31, + "probability": 0.9379 + }, + { + "start": 49036.54, + "end": 49040.26, + "probability": 0.895 + }, + { + "start": 49040.54, + "end": 49041.74, + "probability": 0.9849 + }, + { + "start": 49043.48, + "end": 49044.08, + "probability": 0.9579 + }, + { + "start": 49044.8, + "end": 49047.88, + "probability": 0.7603 + }, + { + "start": 49048.3, + "end": 49049.24, + "probability": 0.7189 + }, + { + "start": 49050.48, + "end": 49051.08, + "probability": 0.8732 + }, + { + "start": 49051.32, + "end": 49052.1, + "probability": 0.832 + }, + { + "start": 49052.54, + "end": 49054.4, + "probability": 0.951 + }, + { + "start": 49055.36, + "end": 49055.5, + "probability": 0.501 + }, + { + "start": 49056.28, + "end": 49056.86, + "probability": 0.8929 + }, + { + "start": 49057.5, + "end": 49060.4, + "probability": 0.8961 + }, + { + "start": 49060.48, + "end": 49063.6, + "probability": 0.9277 + }, + { + "start": 49064.2, + "end": 49067.98, + "probability": 0.8223 + }, + { + "start": 49068.42, + "end": 49068.94, + "probability": 0.9163 + }, + { + "start": 49069.36, + "end": 49070.32, + "probability": 0.9543 + }, + { + "start": 49070.5, + "end": 49073.14, + "probability": 0.8838 + }, + { + "start": 49073.96, + "end": 49074.86, + "probability": 0.9578 + }, + { + "start": 49075.14, + "end": 49075.62, + "probability": 0.6004 + }, + { + "start": 49075.76, + "end": 49077.48, + "probability": 0.7532 + }, + { + "start": 49077.66, + "end": 49078.72, + "probability": 0.3519 + }, + { + "start": 49078.72, + "end": 49079.22, + "probability": 0.5535 + }, + { + "start": 49079.28, + "end": 49079.62, + "probability": 0.698 + }, + { + "start": 49080.18, + "end": 49081.48, + "probability": 0.6266 + }, + { + "start": 49081.98, + "end": 49086.14, + "probability": 0.976 + }, + { + "start": 49087.32, + "end": 49088.3, + "probability": 0.8338 + }, + { + "start": 49088.86, + "end": 49089.56, + "probability": 0.7059 + }, + { + "start": 49090.36, + "end": 49092.32, + "probability": 0.9358 + }, + { + "start": 49092.92, + "end": 49094.86, + "probability": 0.9011 + }, + { + "start": 49096.1, + "end": 49098.22, + "probability": 0.9947 + }, + { + "start": 49099.66, + "end": 49100.52, + "probability": 0.4743 + }, + { + "start": 49100.88, + "end": 49103.72, + "probability": 0.9407 + }, + { + "start": 49103.88, + "end": 49104.24, + "probability": 0.9473 + }, + { + "start": 49104.86, + "end": 49105.2, + "probability": 0.4558 + }, + { + "start": 49106.74, + "end": 49108.64, + "probability": 0.6923 + }, + { + "start": 49109.06, + "end": 49111.28, + "probability": 0.9194 + }, + { + "start": 49112.48, + "end": 49113.66, + "probability": 0.9678 + }, + { + "start": 49114.92, + "end": 49117.86, + "probability": 0.9943 + }, + { + "start": 49117.96, + "end": 49118.42, + "probability": 0.7727 + }, + { + "start": 49118.56, + "end": 49119.2, + "probability": 0.7518 + }, + { + "start": 49119.3, + "end": 49122.58, + "probability": 0.9863 + }, + { + "start": 49123.1, + "end": 49123.6, + "probability": 0.7743 + }, + { + "start": 49124.36, + "end": 49125.24, + "probability": 0.8791 + }, + { + "start": 49125.94, + "end": 49126.42, + "probability": 0.4909 + }, + { + "start": 49126.76, + "end": 49130.16, + "probability": 0.5438 + }, + { + "start": 49130.42, + "end": 49133.26, + "probability": 0.8604 + }, + { + "start": 49134.28, + "end": 49135.45, + "probability": 0.9321 + }, + { + "start": 49136.46, + "end": 49136.94, + "probability": 0.7697 + }, + { + "start": 49137.22, + "end": 49139.76, + "probability": 0.9563 + }, + { + "start": 49140.16, + "end": 49145.78, + "probability": 0.9512 + }, + { + "start": 49145.86, + "end": 49147.08, + "probability": 0.9885 + }, + { + "start": 49147.92, + "end": 49149.74, + "probability": 0.8033 + }, + { + "start": 49149.86, + "end": 49153.38, + "probability": 0.9491 + }, + { + "start": 49154.08, + "end": 49156.78, + "probability": 0.936 + }, + { + "start": 49157.48, + "end": 49158.64, + "probability": 0.8209 + }, + { + "start": 49159.18, + "end": 49161.5, + "probability": 0.9757 + }, + { + "start": 49162.22, + "end": 49163.14, + "probability": 0.8514 + }, + { + "start": 49163.68, + "end": 49164.52, + "probability": 0.6428 + }, + { + "start": 49164.58, + "end": 49166.86, + "probability": 0.9797 + }, + { + "start": 49166.88, + "end": 49169.36, + "probability": 0.8113 + }, + { + "start": 49170.3, + "end": 49170.98, + "probability": 0.8835 + }, + { + "start": 49172.8, + "end": 49174.42, + "probability": 0.8778 + }, + { + "start": 49175.06, + "end": 49175.3, + "probability": 0.5724 + }, + { + "start": 49175.5, + "end": 49178.9, + "probability": 0.9037 + }, + { + "start": 49179.02, + "end": 49183.0, + "probability": 0.9719 + }, + { + "start": 49183.0, + "end": 49185.48, + "probability": 0.8532 + }, + { + "start": 49186.12, + "end": 49190.16, + "probability": 0.8796 + }, + { + "start": 49190.76, + "end": 49194.5, + "probability": 0.9791 + }, + { + "start": 49195.16, + "end": 49195.52, + "probability": 0.9471 + }, + { + "start": 49196.54, + "end": 49198.74, + "probability": 0.9818 + }, + { + "start": 49200.59, + "end": 49204.2, + "probability": 0.9941 + }, + { + "start": 49204.2, + "end": 49208.44, + "probability": 0.9985 + }, + { + "start": 49209.44, + "end": 49211.76, + "probability": 0.9591 + }, + { + "start": 49212.1, + "end": 49213.5, + "probability": 0.9017 + }, + { + "start": 49214.18, + "end": 49215.92, + "probability": 0.8649 + }, + { + "start": 49216.16, + "end": 49218.6, + "probability": 0.9631 + }, + { + "start": 49218.68, + "end": 49219.88, + "probability": 0.8325 + }, + { + "start": 49221.2, + "end": 49222.08, + "probability": 0.6653 + }, + { + "start": 49222.48, + "end": 49225.23, + "probability": 0.76 + }, + { + "start": 49225.84, + "end": 49229.56, + "probability": 0.908 + }, + { + "start": 49230.3, + "end": 49233.16, + "probability": 0.8323 + }, + { + "start": 49234.06, + "end": 49237.12, + "probability": 0.9575 + }, + { + "start": 49237.68, + "end": 49238.12, + "probability": 0.8773 + }, + { + "start": 49239.95, + "end": 49241.14, + "probability": 0.9292 + }, + { + "start": 49241.22, + "end": 49242.9, + "probability": 0.9751 + }, + { + "start": 49243.6, + "end": 49246.02, + "probability": 0.8975 + }, + { + "start": 49247.06, + "end": 49249.42, + "probability": 0.9425 + }, + { + "start": 49250.96, + "end": 49252.58, + "probability": 0.9749 + }, + { + "start": 49252.72, + "end": 49255.0, + "probability": 0.9529 + }, + { + "start": 49255.8, + "end": 49258.92, + "probability": 0.9971 + }, + { + "start": 49259.98, + "end": 49260.74, + "probability": 0.2642 + }, + { + "start": 49261.04, + "end": 49262.22, + "probability": 0.9542 + }, + { + "start": 49262.26, + "end": 49262.98, + "probability": 0.8224 + }, + { + "start": 49263.06, + "end": 49263.26, + "probability": 0.4221 + }, + { + "start": 49263.4, + "end": 49264.34, + "probability": 0.7512 + }, + { + "start": 49264.82, + "end": 49265.52, + "probability": 0.6878 + }, + { + "start": 49266.12, + "end": 49268.98, + "probability": 0.9366 + }, + { + "start": 49269.96, + "end": 49276.16, + "probability": 0.9858 + }, + { + "start": 49277.3, + "end": 49278.2, + "probability": 0.7455 + }, + { + "start": 49278.36, + "end": 49278.54, + "probability": 0.7596 + }, + { + "start": 49279.42, + "end": 49280.87, + "probability": 0.199 + }, + { + "start": 49282.12, + "end": 49283.38, + "probability": 0.9005 + }, + { + "start": 49283.56, + "end": 49286.52, + "probability": 0.8847 + }, + { + "start": 49286.9, + "end": 49288.48, + "probability": 0.847 + }, + { + "start": 49288.9, + "end": 49289.62, + "probability": 0.9467 + }, + { + "start": 49289.76, + "end": 49293.04, + "probability": 0.9947 + }, + { + "start": 49293.12, + "end": 49295.26, + "probability": 0.8667 + }, + { + "start": 49295.38, + "end": 49296.04, + "probability": 0.8625 + }, + { + "start": 49296.62, + "end": 49299.28, + "probability": 0.9927 + }, + { + "start": 49299.74, + "end": 49300.48, + "probability": 0.8771 + }, + { + "start": 49300.6, + "end": 49301.28, + "probability": 0.8179 + }, + { + "start": 49301.56, + "end": 49302.8, + "probability": 0.3971 + }, + { + "start": 49303.08, + "end": 49307.42, + "probability": 0.7628 + }, + { + "start": 49308.32, + "end": 49309.7, + "probability": 0.8895 + }, + { + "start": 49310.24, + "end": 49312.9, + "probability": 0.9004 + }, + { + "start": 49313.52, + "end": 49316.16, + "probability": 0.5758 + }, + { + "start": 49316.58, + "end": 49317.02, + "probability": 0.7771 + }, + { + "start": 49317.04, + "end": 49317.58, + "probability": 0.9102 + }, + { + "start": 49317.68, + "end": 49319.1, + "probability": 0.8196 + }, + { + "start": 49320.34, + "end": 49320.72, + "probability": 0.5892 + }, + { + "start": 49320.84, + "end": 49322.63, + "probability": 0.901 + }, + { + "start": 49322.72, + "end": 49324.3, + "probability": 0.6939 + }, + { + "start": 49325.54, + "end": 49327.72, + "probability": 0.8812 + }, + { + "start": 49327.76, + "end": 49328.68, + "probability": 0.7802 + }, + { + "start": 49328.78, + "end": 49329.6, + "probability": 0.9949 + }, + { + "start": 49330.68, + "end": 49331.76, + "probability": 0.91 + }, + { + "start": 49331.96, + "end": 49332.68, + "probability": 0.9005 + }, + { + "start": 49332.76, + "end": 49333.34, + "probability": 0.412 + }, + { + "start": 49334.18, + "end": 49336.82, + "probability": 0.9865 + }, + { + "start": 49336.86, + "end": 49337.66, + "probability": 0.7915 + }, + { + "start": 49338.76, + "end": 49340.84, + "probability": 0.88 + }, + { + "start": 49342.02, + "end": 49346.22, + "probability": 0.9828 + }, + { + "start": 49346.38, + "end": 49347.31, + "probability": 0.8755 + }, + { + "start": 49348.08, + "end": 49352.0, + "probability": 0.9673 + }, + { + "start": 49353.34, + "end": 49355.14, + "probability": 0.7334 + }, + { + "start": 49355.4, + "end": 49356.08, + "probability": 0.9328 + }, + { + "start": 49356.34, + "end": 49358.46, + "probability": 0.9937 + }, + { + "start": 49359.42, + "end": 49359.86, + "probability": 0.8661 + }, + { + "start": 49359.92, + "end": 49360.22, + "probability": 0.8892 + }, + { + "start": 49360.34, + "end": 49360.82, + "probability": 0.9268 + }, + { + "start": 49361.37, + "end": 49366.8, + "probability": 0.9731 + }, + { + "start": 49367.08, + "end": 49370.77, + "probability": 0.8768 + }, + { + "start": 49370.92, + "end": 49371.42, + "probability": 0.6477 + }, + { + "start": 49371.94, + "end": 49372.82, + "probability": 0.9895 + }, + { + "start": 49373.4, + "end": 49373.64, + "probability": 0.8251 + }, + { + "start": 49374.46, + "end": 49376.3, + "probability": 0.7507 + }, + { + "start": 49376.92, + "end": 49377.82, + "probability": 0.5022 + }, + { + "start": 49380.1, + "end": 49381.26, + "probability": 0.8832 + }, + { + "start": 49381.34, + "end": 49381.56, + "probability": 0.0583 + }, + { + "start": 49382.63, + "end": 49383.26, + "probability": 0.712 + }, + { + "start": 49383.42, + "end": 49384.14, + "probability": 0.8822 + }, + { + "start": 49385.12, + "end": 49387.31, + "probability": 0.3489 + }, + { + "start": 49391.44, + "end": 49391.92, + "probability": 0.4644 + }, + { + "start": 49393.48, + "end": 49395.12, + "probability": 0.665 + }, + { + "start": 49395.7, + "end": 49396.05, + "probability": 0.0162 + }, + { + "start": 49404.42, + "end": 49406.1, + "probability": 0.8037 + }, + { + "start": 49407.86, + "end": 49408.5, + "probability": 0.8257 + }, + { + "start": 49408.98, + "end": 49411.72, + "probability": 0.8574 + }, + { + "start": 49412.06, + "end": 49414.38, + "probability": 0.8312 + }, + { + "start": 49416.18, + "end": 49417.56, + "probability": 0.701 + }, + { + "start": 49417.76, + "end": 49422.7, + "probability": 0.9879 + }, + { + "start": 49423.02, + "end": 49423.7, + "probability": 0.8303 + }, + { + "start": 49424.86, + "end": 49429.6, + "probability": 0.9917 + }, + { + "start": 49429.98, + "end": 49431.3, + "probability": 0.7648 + }, + { + "start": 49431.86, + "end": 49433.42, + "probability": 0.7049 + }, + { + "start": 49433.5, + "end": 49434.84, + "probability": 0.6864 + }, + { + "start": 49435.28, + "end": 49435.58, + "probability": 0.6478 + }, + { + "start": 49435.72, + "end": 49438.32, + "probability": 0.9749 + }, + { + "start": 49438.8, + "end": 49440.4, + "probability": 0.9301 + }, + { + "start": 49440.86, + "end": 49444.24, + "probability": 0.9329 + }, + { + "start": 49445.78, + "end": 49449.96, + "probability": 0.994 + }, + { + "start": 49451.23, + "end": 49452.74, + "probability": 0.1578 + }, + { + "start": 49453.36, + "end": 49453.68, + "probability": 0.0103 + }, + { + "start": 49453.68, + "end": 49458.16, + "probability": 0.4046 + }, + { + "start": 49458.3, + "end": 49461.62, + "probability": 0.8984 + }, + { + "start": 49463.45, + "end": 49465.7, + "probability": 0.0374 + }, + { + "start": 49466.14, + "end": 49466.38, + "probability": 0.1698 + }, + { + "start": 49466.38, + "end": 49466.38, + "probability": 0.027 + }, + { + "start": 49466.38, + "end": 49471.86, + "probability": 0.8473 + }, + { + "start": 49472.84, + "end": 49480.06, + "probability": 0.9949 + }, + { + "start": 49480.38, + "end": 49480.86, + "probability": 0.3221 + }, + { + "start": 49481.62, + "end": 49483.94, + "probability": 0.7964 + }, + { + "start": 49484.84, + "end": 49486.36, + "probability": 0.6553 + }, + { + "start": 49487.8, + "end": 49488.98, + "probability": 0.8855 + }, + { + "start": 49490.18, + "end": 49490.18, + "probability": 0.1215 + }, + { + "start": 49490.18, + "end": 49491.0, + "probability": 0.5834 + }, + { + "start": 49491.22, + "end": 49494.78, + "probability": 0.9663 + }, + { + "start": 49494.78, + "end": 49497.8, + "probability": 0.9809 + }, + { + "start": 49499.16, + "end": 49511.28, + "probability": 0.8622 + }, + { + "start": 49511.44, + "end": 49512.64, + "probability": 0.999 + }, + { + "start": 49513.52, + "end": 49520.68, + "probability": 0.9844 + }, + { + "start": 49520.68, + "end": 49524.2, + "probability": 0.9674 + }, + { + "start": 49526.4, + "end": 49533.12, + "probability": 0.8171 + }, + { + "start": 49534.38, + "end": 49540.18, + "probability": 0.9985 + }, + { + "start": 49541.18, + "end": 49541.78, + "probability": 0.9539 + }, + { + "start": 49542.34, + "end": 49546.81, + "probability": 0.9948 + }, + { + "start": 49548.58, + "end": 49549.5, + "probability": 0.819 + }, + { + "start": 49550.72, + "end": 49551.22, + "probability": 0.8211 + }, + { + "start": 49552.8, + "end": 49554.34, + "probability": 0.588 + }, + { + "start": 49554.36, + "end": 49556.06, + "probability": 0.9959 + }, + { + "start": 49556.38, + "end": 49558.28, + "probability": 0.7075 + }, + { + "start": 49559.4, + "end": 49566.21, + "probability": 0.9912 + }, + { + "start": 49567.66, + "end": 49568.88, + "probability": 0.5805 + }, + { + "start": 49568.96, + "end": 49571.24, + "probability": 0.8074 + }, + { + "start": 49572.18, + "end": 49572.9, + "probability": 0.8569 + }, + { + "start": 49573.3, + "end": 49576.86, + "probability": 0.983 + }, + { + "start": 49576.86, + "end": 49579.52, + "probability": 0.9994 + }, + { + "start": 49579.7, + "end": 49584.54, + "probability": 0.9853 + }, + { + "start": 49585.28, + "end": 49586.84, + "probability": 0.8159 + }, + { + "start": 49587.0, + "end": 49589.52, + "probability": 0.9166 + }, + { + "start": 49589.9, + "end": 49592.7, + "probability": 0.9932 + }, + { + "start": 49593.44, + "end": 49596.02, + "probability": 0.9902 + }, + { + "start": 49596.98, + "end": 49598.56, + "probability": 0.9907 + }, + { + "start": 49598.74, + "end": 49605.62, + "probability": 0.9935 + }, + { + "start": 49605.76, + "end": 49608.3, + "probability": 0.8572 + }, + { + "start": 49608.48, + "end": 49612.16, + "probability": 0.9756 + }, + { + "start": 49612.24, + "end": 49612.45, + "probability": 0.0161 + }, + { + "start": 49612.7, + "end": 49613.36, + "probability": 0.7429 + }, + { + "start": 49613.88, + "end": 49619.78, + "probability": 0.9229 + }, + { + "start": 49619.98, + "end": 49620.34, + "probability": 0.4372 + }, + { + "start": 49620.46, + "end": 49621.18, + "probability": 0.68 + }, + { + "start": 49621.44, + "end": 49622.47, + "probability": 0.7493 + }, + { + "start": 49623.42, + "end": 49625.82, + "probability": 0.9932 + }, + { + "start": 49625.94, + "end": 49628.6, + "probability": 0.8189 + }, + { + "start": 49629.62, + "end": 49632.5, + "probability": 0.9986 + }, + { + "start": 49633.28, + "end": 49635.74, + "probability": 0.9867 + }, + { + "start": 49636.79, + "end": 49640.74, + "probability": 0.9731 + }, + { + "start": 49640.74, + "end": 49645.76, + "probability": 0.9937 + }, + { + "start": 49645.92, + "end": 49647.92, + "probability": 0.7291 + }, + { + "start": 49648.18, + "end": 49650.46, + "probability": 0.789 + }, + { + "start": 49650.6, + "end": 49651.44, + "probability": 0.5606 + }, + { + "start": 49653.02, + "end": 49658.9, + "probability": 0.9673 + }, + { + "start": 49659.14, + "end": 49659.5, + "probability": 0.7903 + }, + { + "start": 49659.52, + "end": 49663.88, + "probability": 0.8613 + }, + { + "start": 49664.58, + "end": 49671.34, + "probability": 0.9904 + }, + { + "start": 49671.46, + "end": 49672.61, + "probability": 0.9746 + }, + { + "start": 49672.72, + "end": 49673.82, + "probability": 0.9849 + }, + { + "start": 49674.98, + "end": 49678.78, + "probability": 0.9981 + }, + { + "start": 49680.12, + "end": 49680.62, + "probability": 0.3916 + }, + { + "start": 49680.68, + "end": 49682.34, + "probability": 0.654 + }, + { + "start": 49682.52, + "end": 49688.24, + "probability": 0.945 + }, + { + "start": 49689.76, + "end": 49693.64, + "probability": 0.9746 + }, + { + "start": 49694.36, + "end": 49696.16, + "probability": 0.9955 + }, + { + "start": 49696.9, + "end": 49698.44, + "probability": 0.968 + }, + { + "start": 49699.3, + "end": 49706.42, + "probability": 0.983 + }, + { + "start": 49706.54, + "end": 49708.66, + "probability": 0.9902 + }, + { + "start": 49709.2, + "end": 49709.86, + "probability": 0.3055 + }, + { + "start": 49709.86, + "end": 49709.86, + "probability": 0.0701 + }, + { + "start": 49710.18, + "end": 49710.36, + "probability": 0.1584 + }, + { + "start": 49710.54, + "end": 49710.6, + "probability": 0.0014 + }, + { + "start": 49711.34, + "end": 49717.22, + "probability": 0.8401 + }, + { + "start": 49717.32, + "end": 49722.38, + "probability": 0.961 + }, + { + "start": 49722.54, + "end": 49726.76, + "probability": 0.8491 + }, + { + "start": 49726.98, + "end": 49727.34, + "probability": 0.6513 + }, + { + "start": 49728.94, + "end": 49730.54, + "probability": 0.9927 + }, + { + "start": 49730.68, + "end": 49731.42, + "probability": 0.1265 + }, + { + "start": 49731.42, + "end": 49732.52, + "probability": 0.7744 + }, + { + "start": 49732.72, + "end": 49734.14, + "probability": 0.8491 + }, + { + "start": 49734.22, + "end": 49734.8, + "probability": 0.3633 + }, + { + "start": 49736.74, + "end": 49740.1, + "probability": 0.8202 + }, + { + "start": 49740.14, + "end": 49741.63, + "probability": 0.9391 + }, + { + "start": 49742.42, + "end": 49745.8, + "probability": 0.9954 + }, + { + "start": 49746.56, + "end": 49748.72, + "probability": 0.999 + }, + { + "start": 49748.92, + "end": 49753.76, + "probability": 0.9824 + }, + { + "start": 49754.12, + "end": 49754.98, + "probability": 0.9344 + }, + { + "start": 49755.14, + "end": 49756.34, + "probability": 0.9971 + }, + { + "start": 49756.56, + "end": 49759.82, + "probability": 0.9929 + }, + { + "start": 49760.14, + "end": 49763.76, + "probability": 0.9971 + }, + { + "start": 49767.86, + "end": 49769.24, + "probability": 0.6843 + }, + { + "start": 49769.5, + "end": 49776.1, + "probability": 0.9961 + }, + { + "start": 49776.68, + "end": 49781.38, + "probability": 0.998 + }, + { + "start": 49781.72, + "end": 49782.58, + "probability": 0.6744 + }, + { + "start": 49789.47, + "end": 49792.32, + "probability": 0.2281 + }, + { + "start": 49793.64, + "end": 49798.62, + "probability": 0.9455 + }, + { + "start": 49798.62, + "end": 49802.48, + "probability": 0.9982 + }, + { + "start": 49804.26, + "end": 49806.66, + "probability": 0.9798 + }, + { + "start": 49806.88, + "end": 49808.44, + "probability": 0.9924 + }, + { + "start": 49808.44, + "end": 49809.18, + "probability": 0.6699 + }, + { + "start": 49809.54, + "end": 49810.42, + "probability": 0.7526 + }, + { + "start": 49811.08, + "end": 49813.22, + "probability": 0.9258 + }, + { + "start": 49813.34, + "end": 49815.0, + "probability": 0.9854 + }, + { + "start": 49815.72, + "end": 49817.62, + "probability": 0.9814 + }, + { + "start": 49817.94, + "end": 49818.3, + "probability": 0.6289 + }, + { + "start": 49819.0, + "end": 49821.0, + "probability": 0.6007 + }, + { + "start": 49821.52, + "end": 49822.42, + "probability": 0.4861 + }, + { + "start": 49823.04, + "end": 49824.64, + "probability": 0.3843 + }, + { + "start": 49824.64, + "end": 49824.64, + "probability": 0.5413 + }, + { + "start": 49824.64, + "end": 49826.76, + "probability": 0.4307 + }, + { + "start": 49826.88, + "end": 49826.9, + "probability": 0.3338 + }, + { + "start": 49827.04, + "end": 49827.5, + "probability": 0.1779 + }, + { + "start": 49827.5, + "end": 49829.58, + "probability": 0.1743 + }, + { + "start": 49829.6, + "end": 49832.92, + "probability": 0.7299 + }, + { + "start": 49833.0, + "end": 49835.48, + "probability": 0.9645 + }, + { + "start": 49835.48, + "end": 49838.28, + "probability": 0.9912 + }, + { + "start": 49838.6, + "end": 49840.54, + "probability": 0.9089 + }, + { + "start": 49840.96, + "end": 49847.12, + "probability": 0.9885 + }, + { + "start": 49847.12, + "end": 49847.14, + "probability": 0.5355 + }, + { + "start": 49847.14, + "end": 49847.72, + "probability": 0.2559 + }, + { + "start": 49847.74, + "end": 49848.92, + "probability": 0.4953 + }, + { + "start": 49848.92, + "end": 49850.3, + "probability": 0.6863 + }, + { + "start": 49850.3, + "end": 49850.8, + "probability": 0.6543 + }, + { + "start": 49850.8, + "end": 49850.84, + "probability": 0.11 + }, + { + "start": 49850.96, + "end": 49853.68, + "probability": 0.984 + }, + { + "start": 49853.68, + "end": 49856.72, + "probability": 0.978 + }, + { + "start": 49857.3, + "end": 49859.66, + "probability": 0.2814 + }, + { + "start": 49859.88, + "end": 49861.4, + "probability": 0.5943 + }, + { + "start": 49861.5, + "end": 49861.86, + "probability": 0.486 + }, + { + "start": 49861.88, + "end": 49863.62, + "probability": 0.5763 + }, + { + "start": 49863.94, + "end": 49865.16, + "probability": 0.7376 + }, + { + "start": 49865.24, + "end": 49867.88, + "probability": 0.9406 + }, + { + "start": 49867.98, + "end": 49869.1, + "probability": 0.9285 + }, + { + "start": 49869.6, + "end": 49872.18, + "probability": 0.9901 + }, + { + "start": 49872.32, + "end": 49872.42, + "probability": 0.0172 + }, + { + "start": 49872.88, + "end": 49878.02, + "probability": 0.9887 + }, + { + "start": 49878.3, + "end": 49883.7, + "probability": 0.9972 + }, + { + "start": 49884.14, + "end": 49887.76, + "probability": 0.9686 + }, + { + "start": 49887.76, + "end": 49887.85, + "probability": 0.4267 + }, + { + "start": 49888.08, + "end": 49888.42, + "probability": 0.5902 + }, + { + "start": 49888.42, + "end": 49891.04, + "probability": 0.8017 + }, + { + "start": 49891.12, + "end": 49894.28, + "probability": 0.9899 + }, + { + "start": 49894.28, + "end": 49898.14, + "probability": 0.848 + }, + { + "start": 49898.44, + "end": 49898.66, + "probability": 0.133 + }, + { + "start": 49898.76, + "end": 49902.48, + "probability": 0.9971 + }, + { + "start": 49902.48, + "end": 49906.64, + "probability": 0.7526 + }, + { + "start": 49907.32, + "end": 49909.92, + "probability": 0.1879 + }, + { + "start": 49909.92, + "end": 49909.92, + "probability": 0.1329 + }, + { + "start": 49909.92, + "end": 49910.7, + "probability": 0.1455 + }, + { + "start": 49911.72, + "end": 49914.7, + "probability": 0.8644 + }, + { + "start": 49915.62, + "end": 49916.65, + "probability": 0.9775 + }, + { + "start": 49916.92, + "end": 49918.58, + "probability": 0.9604 + }, + { + "start": 49918.78, + "end": 49920.12, + "probability": 0.8388 + }, + { + "start": 49920.84, + "end": 49924.38, + "probability": 0.9426 + }, + { + "start": 49925.08, + "end": 49927.2, + "probability": 0.9949 + }, + { + "start": 49927.28, + "end": 49927.44, + "probability": 0.8073 + }, + { + "start": 49927.62, + "end": 49929.38, + "probability": 0.8931 + }, + { + "start": 49930.12, + "end": 49931.42, + "probability": 0.9581 + }, + { + "start": 49931.6, + "end": 49931.8, + "probability": 0.0739 + }, + { + "start": 49932.08, + "end": 49934.06, + "probability": 0.2807 + }, + { + "start": 49934.06, + "end": 49937.52, + "probability": 0.96 + }, + { + "start": 49937.92, + "end": 49939.26, + "probability": 0.9706 + }, + { + "start": 49939.84, + "end": 49942.5, + "probability": 0.9771 + }, + { + "start": 49942.56, + "end": 49945.08, + "probability": 0.9893 + }, + { + "start": 49945.08, + "end": 49946.4, + "probability": 0.1655 + }, + { + "start": 49946.4, + "end": 49946.4, + "probability": 0.2902 + }, + { + "start": 49946.4, + "end": 49946.56, + "probability": 0.2574 + }, + { + "start": 49946.56, + "end": 49947.1, + "probability": 0.279 + }, + { + "start": 49947.86, + "end": 49949.82, + "probability": 0.9851 + }, + { + "start": 49952.52, + "end": 49953.4, + "probability": 0.4823 + }, + { + "start": 49953.5, + "end": 49956.1, + "probability": 0.966 + }, + { + "start": 49956.6, + "end": 49958.82, + "probability": 0.9671 + }, + { + "start": 49959.48, + "end": 49960.84, + "probability": 0.8383 + }, + { + "start": 49961.6, + "end": 49962.72, + "probability": 0.9858 + }, + { + "start": 49962.96, + "end": 49964.74, + "probability": 0.9878 + }, + { + "start": 49965.5, + "end": 49966.56, + "probability": 0.9512 + }, + { + "start": 49967.92, + "end": 49968.76, + "probability": 0.9705 + }, + { + "start": 49968.94, + "end": 49969.92, + "probability": 0.8731 + }, + { + "start": 49970.08, + "end": 49972.88, + "probability": 0.9919 + }, + { + "start": 49973.5, + "end": 49977.58, + "probability": 0.9591 + }, + { + "start": 49978.06, + "end": 49979.36, + "probability": 0.9607 + }, + { + "start": 49979.36, + "end": 49980.98, + "probability": 0.4111 + }, + { + "start": 49980.98, + "end": 49981.8, + "probability": 0.0153 + }, + { + "start": 49981.8, + "end": 49985.6, + "probability": 0.9171 + }, + { + "start": 49985.6, + "end": 49988.92, + "probability": 0.999 + }, + { + "start": 49989.44, + "end": 49990.78, + "probability": 0.9533 + }, + { + "start": 49990.86, + "end": 49992.36, + "probability": 0.9021 + }, + { + "start": 49993.8, + "end": 49997.7, + "probability": 0.9935 + }, + { + "start": 49998.5, + "end": 50003.9, + "probability": 0.9716 + }, + { + "start": 50004.22, + "end": 50006.2, + "probability": 0.7853 + }, + { + "start": 50006.34, + "end": 50006.34, + "probability": 0.1844 + }, + { + "start": 50006.34, + "end": 50010.64, + "probability": 0.9137 + }, + { + "start": 50011.2, + "end": 50011.96, + "probability": 0.7266 + }, + { + "start": 50012.12, + "end": 50013.68, + "probability": 0.8823 + }, + { + "start": 50014.18, + "end": 50016.64, + "probability": 0.9801 + }, + { + "start": 50017.78, + "end": 50018.7, + "probability": 0.979 + }, + { + "start": 50018.76, + "end": 50020.28, + "probability": 0.9836 + }, + { + "start": 50020.4, + "end": 50021.2, + "probability": 0.5246 + }, + { + "start": 50021.54, + "end": 50021.64, + "probability": 0.536 + }, + { + "start": 50022.9, + "end": 50027.8, + "probability": 0.9937 + }, + { + "start": 50028.18, + "end": 50031.0, + "probability": 0.9884 + }, + { + "start": 50031.66, + "end": 50032.22, + "probability": 0.777 + }, + { + "start": 50032.78, + "end": 50033.34, + "probability": 0.8557 + }, + { + "start": 50034.24, + "end": 50036.06, + "probability": 0.1873 + }, + { + "start": 50036.1, + "end": 50038.98, + "probability": 0.6937 + }, + { + "start": 50039.18, + "end": 50041.34, + "probability": 0.9234 + }, + { + "start": 50042.04, + "end": 50042.68, + "probability": 0.9703 + }, + { + "start": 50043.18, + "end": 50044.38, + "probability": 0.8296 + }, + { + "start": 50044.52, + "end": 50049.24, + "probability": 0.9619 + }, + { + "start": 50050.04, + "end": 50053.18, + "probability": 0.99 + }, + { + "start": 50053.58, + "end": 50056.12, + "probability": 0.9915 + }, + { + "start": 50057.9, + "end": 50058.46, + "probability": 0.3099 + }, + { + "start": 50058.46, + "end": 50059.12, + "probability": 0.4398 + }, + { + "start": 50060.16, + "end": 50064.42, + "probability": 0.981 + }, + { + "start": 50064.56, + "end": 50066.0, + "probability": 0.9484 + }, + { + "start": 50066.58, + "end": 50068.96, + "probability": 0.9971 + }, + { + "start": 50069.54, + "end": 50071.22, + "probability": 0.9663 + }, + { + "start": 50071.8, + "end": 50072.96, + "probability": 0.9096 + }, + { + "start": 50073.36, + "end": 50079.2, + "probability": 0.8602 + }, + { + "start": 50079.64, + "end": 50081.16, + "probability": 0.9305 + }, + { + "start": 50083.42, + "end": 50085.72, + "probability": 0.6436 + }, + { + "start": 50086.12, + "end": 50088.03, + "probability": 0.6114 + }, + { + "start": 50090.42, + "end": 50092.54, + "probability": 0.019 + }, + { + "start": 50094.04, + "end": 50094.7, + "probability": 0.6865 + }, + { + "start": 50095.94, + "end": 50098.04, + "probability": 0.5566 + }, + { + "start": 50113.02, + "end": 50115.14, + "probability": 0.6507 + }, + { + "start": 50115.18, + "end": 50116.06, + "probability": 0.7376 + }, + { + "start": 50117.12, + "end": 50119.26, + "probability": 0.6469 + }, + { + "start": 50120.12, + "end": 50121.02, + "probability": 0.9655 + }, + { + "start": 50123.32, + "end": 50128.56, + "probability": 0.9778 + }, + { + "start": 50128.64, + "end": 50131.28, + "probability": 0.6973 + }, + { + "start": 50131.42, + "end": 50132.42, + "probability": 0.8776 + }, + { + "start": 50133.3, + "end": 50134.28, + "probability": 0.9903 + }, + { + "start": 50135.02, + "end": 50136.68, + "probability": 0.9335 + }, + { + "start": 50138.1, + "end": 50138.58, + "probability": 0.7098 + }, + { + "start": 50139.04, + "end": 50139.54, + "probability": 0.8526 + }, + { + "start": 50139.66, + "end": 50141.48, + "probability": 0.9659 + }, + { + "start": 50141.66, + "end": 50142.52, + "probability": 0.8937 + }, + { + "start": 50144.1, + "end": 50146.72, + "probability": 0.9937 + }, + { + "start": 50147.6, + "end": 50150.1, + "probability": 0.9955 + }, + { + "start": 50150.94, + "end": 50152.18, + "probability": 0.9969 + }, + { + "start": 50152.9, + "end": 50153.48, + "probability": 0.9244 + }, + { + "start": 50154.16, + "end": 50158.14, + "probability": 0.945 + }, + { + "start": 50159.46, + "end": 50161.6, + "probability": 0.9194 + }, + { + "start": 50162.52, + "end": 50164.5, + "probability": 0.3267 + }, + { + "start": 50164.82, + "end": 50166.32, + "probability": 0.7347 + }, + { + "start": 50166.48, + "end": 50169.1, + "probability": 0.9849 + }, + { + "start": 50169.72, + "end": 50172.86, + "probability": 0.9935 + }, + { + "start": 50173.12, + "end": 50174.2, + "probability": 0.8662 + }, + { + "start": 50174.28, + "end": 50176.94, + "probability": 0.7874 + }, + { + "start": 50177.52, + "end": 50179.22, + "probability": 0.6585 + }, + { + "start": 50179.98, + "end": 50180.76, + "probability": 0.7765 + }, + { + "start": 50181.98, + "end": 50183.52, + "probability": 0.9954 + }, + { + "start": 50183.66, + "end": 50184.16, + "probability": 0.9161 + }, + { + "start": 50184.9, + "end": 50186.04, + "probability": 0.9915 + }, + { + "start": 50186.1, + "end": 50186.7, + "probability": 0.8114 + }, + { + "start": 50187.84, + "end": 50190.88, + "probability": 0.9979 + }, + { + "start": 50191.32, + "end": 50191.98, + "probability": 0.9697 + }, + { + "start": 50192.08, + "end": 50192.74, + "probability": 0.8737 + }, + { + "start": 50193.32, + "end": 50196.26, + "probability": 0.9527 + }, + { + "start": 50196.44, + "end": 50197.16, + "probability": 0.9651 + }, + { + "start": 50197.22, + "end": 50198.9, + "probability": 0.9305 + }, + { + "start": 50199.38, + "end": 50201.41, + "probability": 0.9731 + }, + { + "start": 50201.54, + "end": 50201.9, + "probability": 0.6421 + }, + { + "start": 50202.06, + "end": 50203.96, + "probability": 0.73 + }, + { + "start": 50204.4, + "end": 50206.16, + "probability": 0.9968 + }, + { + "start": 50206.32, + "end": 50207.34, + "probability": 0.9355 + }, + { + "start": 50207.4, + "end": 50210.26, + "probability": 0.6246 + }, + { + "start": 50210.58, + "end": 50211.82, + "probability": 0.959 + }, + { + "start": 50212.58, + "end": 50217.34, + "probability": 0.878 + }, + { + "start": 50218.72, + "end": 50220.78, + "probability": 0.7011 + }, + { + "start": 50221.32, + "end": 50222.0, + "probability": 0.8925 + }, + { + "start": 50222.1, + "end": 50222.98, + "probability": 0.9642 + }, + { + "start": 50223.36, + "end": 50223.94, + "probability": 0.2025 + }, + { + "start": 50224.08, + "end": 50226.76, + "probability": 0.9517 + }, + { + "start": 50226.92, + "end": 50227.9, + "probability": 0.8536 + }, + { + "start": 50230.26, + "end": 50235.74, + "probability": 0.9692 + }, + { + "start": 50236.7, + "end": 50238.71, + "probability": 0.8273 + }, + { + "start": 50239.06, + "end": 50240.51, + "probability": 0.9829 + }, + { + "start": 50240.92, + "end": 50241.64, + "probability": 0.137 + }, + { + "start": 50242.62, + "end": 50242.9, + "probability": 0.5378 + }, + { + "start": 50243.06, + "end": 50246.42, + "probability": 0.9285 + }, + { + "start": 50251.8, + "end": 50256.94, + "probability": 0.8514 + }, + { + "start": 50257.76, + "end": 50258.74, + "probability": 0.9303 + }, + { + "start": 50259.26, + "end": 50263.12, + "probability": 0.9832 + }, + { + "start": 50263.34, + "end": 50264.84, + "probability": 0.9106 + }, + { + "start": 50264.9, + "end": 50265.64, + "probability": 0.9856 + }, + { + "start": 50266.56, + "end": 50268.48, + "probability": 0.8217 + }, + { + "start": 50269.22, + "end": 50269.9, + "probability": 0.9519 + }, + { + "start": 50270.56, + "end": 50274.36, + "probability": 0.797 + }, + { + "start": 50274.86, + "end": 50275.58, + "probability": 0.8155 + }, + { + "start": 50275.74, + "end": 50276.31, + "probability": 0.8501 + }, + { + "start": 50277.04, + "end": 50280.3, + "probability": 0.9971 + }, + { + "start": 50280.9, + "end": 50284.48, + "probability": 0.8936 + }, + { + "start": 50285.38, + "end": 50287.56, + "probability": 0.9895 + }, + { + "start": 50288.2, + "end": 50289.9, + "probability": 1.0 + }, + { + "start": 50293.1, + "end": 50296.15, + "probability": 0.9346 + }, + { + "start": 50299.3, + "end": 50299.96, + "probability": 0.9015 + }, + { + "start": 50300.64, + "end": 50303.68, + "probability": 0.9751 + }, + { + "start": 50303.74, + "end": 50304.2, + "probability": 0.7993 + }, + { + "start": 50304.3, + "end": 50305.34, + "probability": 0.8632 + }, + { + "start": 50306.32, + "end": 50308.36, + "probability": 0.8123 + }, + { + "start": 50309.14, + "end": 50312.9, + "probability": 0.9955 + }, + { + "start": 50314.36, + "end": 50316.83, + "probability": 0.8239 + }, + { + "start": 50317.7, + "end": 50319.17, + "probability": 0.9629 + }, + { + "start": 50319.94, + "end": 50320.69, + "probability": 0.9306 + }, + { + "start": 50321.66, + "end": 50322.61, + "probability": 0.9993 + }, + { + "start": 50323.78, + "end": 50324.9, + "probability": 0.6266 + }, + { + "start": 50325.62, + "end": 50328.16, + "probability": 0.8887 + }, + { + "start": 50329.14, + "end": 50330.38, + "probability": 0.876 + }, + { + "start": 50330.56, + "end": 50332.94, + "probability": 0.9912 + }, + { + "start": 50333.58, + "end": 50334.66, + "probability": 0.9542 + }, + { + "start": 50335.6, + "end": 50336.92, + "probability": 0.9728 + }, + { + "start": 50337.68, + "end": 50338.74, + "probability": 0.8348 + }, + { + "start": 50339.6, + "end": 50341.24, + "probability": 0.9917 + }, + { + "start": 50342.58, + "end": 50345.4, + "probability": 0.9866 + }, + { + "start": 50345.48, + "end": 50346.0, + "probability": 0.5681 + }, + { + "start": 50346.16, + "end": 50346.64, + "probability": 0.7728 + }, + { + "start": 50346.8, + "end": 50347.38, + "probability": 0.7002 + }, + { + "start": 50347.44, + "end": 50349.5, + "probability": 0.9526 + }, + { + "start": 50349.58, + "end": 50352.82, + "probability": 0.987 + }, + { + "start": 50352.9, + "end": 50354.5, + "probability": 0.9811 + }, + { + "start": 50356.76, + "end": 50361.66, + "probability": 0.9854 + }, + { + "start": 50362.6, + "end": 50363.52, + "probability": 0.8845 + }, + { + "start": 50364.36, + "end": 50365.36, + "probability": 0.9928 + }, + { + "start": 50365.44, + "end": 50365.72, + "probability": 0.9343 + }, + { + "start": 50365.84, + "end": 50366.62, + "probability": 0.9345 + }, + { + "start": 50367.4, + "end": 50370.08, + "probability": 0.8337 + }, + { + "start": 50370.28, + "end": 50371.2, + "probability": 0.9096 + }, + { + "start": 50371.32, + "end": 50372.58, + "probability": 0.9764 + }, + { + "start": 50372.7, + "end": 50373.44, + "probability": 0.3524 + }, + { + "start": 50373.78, + "end": 50374.24, + "probability": 0.891 + }, + { + "start": 50374.34, + "end": 50374.46, + "probability": 0.6237 + }, + { + "start": 50375.62, + "end": 50377.88, + "probability": 0.9451 + }, + { + "start": 50378.52, + "end": 50379.59, + "probability": 0.9569 + }, + { + "start": 50380.26, + "end": 50383.94, + "probability": 0.7639 + }, + { + "start": 50384.12, + "end": 50385.08, + "probability": 0.5469 + }, + { + "start": 50386.18, + "end": 50388.94, + "probability": 0.1811 + }, + { + "start": 50388.94, + "end": 50389.64, + "probability": 0.0159 + }, + { + "start": 50389.86, + "end": 50390.34, + "probability": 0.7084 + }, + { + "start": 50390.4, + "end": 50390.66, + "probability": 0.5286 + }, + { + "start": 50390.76, + "end": 50391.8, + "probability": 0.9208 + }, + { + "start": 50392.62, + "end": 50393.79, + "probability": 0.9266 + }, + { + "start": 50393.92, + "end": 50394.8, + "probability": 0.6821 + }, + { + "start": 50395.04, + "end": 50396.2, + "probability": 0.0511 + }, + { + "start": 50397.15, + "end": 50405.8, + "probability": 0.8533 + }, + { + "start": 50406.62, + "end": 50406.62, + "probability": 0.003 + }, + { + "start": 50406.62, + "end": 50407.71, + "probability": 0.5031 + }, + { + "start": 50409.54, + "end": 50412.36, + "probability": 0.688 + }, + { + "start": 50412.8, + "end": 50415.42, + "probability": 0.6652 + }, + { + "start": 50416.06, + "end": 50418.12, + "probability": 0.7127 + }, + { + "start": 50418.76, + "end": 50420.75, + "probability": 0.937 + }, + { + "start": 50421.74, + "end": 50423.92, + "probability": 0.7991 + }, + { + "start": 50424.72, + "end": 50429.16, + "probability": 0.9634 + }, + { + "start": 50429.22, + "end": 50430.94, + "probability": 0.9976 + }, + { + "start": 50431.96, + "end": 50433.4, + "probability": 0.7596 + }, + { + "start": 50434.28, + "end": 50435.88, + "probability": 0.8297 + }, + { + "start": 50436.64, + "end": 50441.74, + "probability": 0.9969 + }, + { + "start": 50442.26, + "end": 50442.89, + "probability": 0.7865 + }, + { + "start": 50443.5, + "end": 50445.74, + "probability": 0.9985 + }, + { + "start": 50446.46, + "end": 50448.94, + "probability": 0.9085 + }, + { + "start": 50449.08, + "end": 50449.22, + "probability": 0.5844 + }, + { + "start": 50449.34, + "end": 50449.7, + "probability": 0.8498 + }, + { + "start": 50449.84, + "end": 50451.96, + "probability": 0.6504 + }, + { + "start": 50452.02, + "end": 50453.56, + "probability": 0.8253 + }, + { + "start": 50453.64, + "end": 50455.86, + "probability": 0.7441 + }, + { + "start": 50456.66, + "end": 50459.12, + "probability": 0.9803 + }, + { + "start": 50459.16, + "end": 50460.57, + "probability": 0.8009 + }, + { + "start": 50461.16, + "end": 50463.48, + "probability": 0.9209 + }, + { + "start": 50464.0, + "end": 50465.54, + "probability": 0.9935 + }, + { + "start": 50466.2, + "end": 50467.88, + "probability": 0.8663 + }, + { + "start": 50468.66, + "end": 50472.8, + "probability": 0.8545 + }, + { + "start": 50473.38, + "end": 50475.3, + "probability": 0.8428 + }, + { + "start": 50476.28, + "end": 50478.48, + "probability": 0.9855 + }, + { + "start": 50479.1, + "end": 50479.1, + "probability": 0.0199 + }, + { + "start": 50479.54, + "end": 50479.54, + "probability": 0.2972 + }, + { + "start": 50479.54, + "end": 50480.17, + "probability": 0.4128 + }, + { + "start": 50480.92, + "end": 50481.04, + "probability": 0.0065 + }, + { + "start": 50481.44, + "end": 50482.75, + "probability": 0.3624 + }, + { + "start": 50482.92, + "end": 50483.84, + "probability": 0.2053 + }, + { + "start": 50484.46, + "end": 50485.1, + "probability": 0.6414 + }, + { + "start": 50485.28, + "end": 50488.08, + "probability": 0.7709 + }, + { + "start": 50488.32, + "end": 50491.76, + "probability": 0.9839 + }, + { + "start": 50492.26, + "end": 50493.88, + "probability": 0.9929 + }, + { + "start": 50494.46, + "end": 50495.88, + "probability": 0.9834 + }, + { + "start": 50495.98, + "end": 50496.86, + "probability": 0.9922 + }, + { + "start": 50497.22, + "end": 50499.36, + "probability": 0.7627 + }, + { + "start": 50499.98, + "end": 50502.02, + "probability": 0.9368 + }, + { + "start": 50502.74, + "end": 50507.2, + "probability": 0.9979 + }, + { + "start": 50508.96, + "end": 50510.66, + "probability": 0.7795 + }, + { + "start": 50511.34, + "end": 50512.4, + "probability": 0.9851 + }, + { + "start": 50513.06, + "end": 50514.08, + "probability": 0.9668 + }, + { + "start": 50514.96, + "end": 50516.66, + "probability": 0.9897 + }, + { + "start": 50517.04, + "end": 50518.18, + "probability": 0.9484 + }, + { + "start": 50518.74, + "end": 50519.79, + "probability": 0.9034 + }, + { + "start": 50520.34, + "end": 50522.44, + "probability": 0.7319 + }, + { + "start": 50522.94, + "end": 50524.44, + "probability": 0.9861 + }, + { + "start": 50527.78, + "end": 50530.24, + "probability": 0.9976 + }, + { + "start": 50530.82, + "end": 50532.62, + "probability": 0.9985 + }, + { + "start": 50532.64, + "end": 50537.32, + "probability": 0.9941 + }, + { + "start": 50538.34, + "end": 50539.08, + "probability": 0.9076 + }, + { + "start": 50540.08, + "end": 50541.15, + "probability": 0.9736 + }, + { + "start": 50542.2, + "end": 50543.32, + "probability": 0.86 + }, + { + "start": 50544.0, + "end": 50545.42, + "probability": 0.9736 + }, + { + "start": 50546.6, + "end": 50547.9, + "probability": 0.9312 + }, + { + "start": 50548.62, + "end": 50550.58, + "probability": 0.8944 + }, + { + "start": 50550.74, + "end": 50552.86, + "probability": 0.97 + }, + { + "start": 50553.76, + "end": 50558.58, + "probability": 0.9661 + }, + { + "start": 50558.92, + "end": 50560.38, + "probability": 0.9907 + }, + { + "start": 50561.22, + "end": 50562.71, + "probability": 0.9985 + }, + { + "start": 50563.74, + "end": 50567.38, + "probability": 0.9966 + }, + { + "start": 50569.72, + "end": 50575.32, + "probability": 0.9841 + }, + { + "start": 50575.98, + "end": 50578.42, + "probability": 0.9837 + }, + { + "start": 50579.36, + "end": 50583.24, + "probability": 0.7678 + }, + { + "start": 50583.86, + "end": 50588.52, + "probability": 0.9966 + }, + { + "start": 50589.86, + "end": 50591.24, + "probability": 0.7078 + }, + { + "start": 50591.6, + "end": 50592.6, + "probability": 0.9897 + }, + { + "start": 50593.3, + "end": 50595.56, + "probability": 0.773 + }, + { + "start": 50595.98, + "end": 50599.2, + "probability": 0.9922 + }, + { + "start": 50600.2, + "end": 50601.58, + "probability": 0.9956 + }, + { + "start": 50602.2, + "end": 50603.3, + "probability": 0.8783 + }, + { + "start": 50603.38, + "end": 50608.8, + "probability": 0.9337 + }, + { + "start": 50608.8, + "end": 50612.96, + "probability": 0.7798 + }, + { + "start": 50613.82, + "end": 50615.68, + "probability": 0.778 + }, + { + "start": 50615.94, + "end": 50616.42, + "probability": 0.8107 + }, + { + "start": 50616.52, + "end": 50617.32, + "probability": 0.8044 + }, + { + "start": 50617.5, + "end": 50618.94, + "probability": 0.9384 + }, + { + "start": 50619.02, + "end": 50620.16, + "probability": 0.6576 + }, + { + "start": 50620.68, + "end": 50621.02, + "probability": 0.9399 + }, + { + "start": 50621.44, + "end": 50623.22, + "probability": 0.9313 + }, + { + "start": 50623.32, + "end": 50624.26, + "probability": 0.9603 + }, + { + "start": 50625.78, + "end": 50626.12, + "probability": 0.6842 + }, + { + "start": 50627.06, + "end": 50630.04, + "probability": 0.7053 + }, + { + "start": 50630.36, + "end": 50631.22, + "probability": 0.6108 + }, + { + "start": 50631.3, + "end": 50631.96, + "probability": 0.795 + }, + { + "start": 50632.06, + "end": 50632.88, + "probability": 0.474 + }, + { + "start": 50632.98, + "end": 50634.32, + "probability": 0.6199 + }, + { + "start": 50634.82, + "end": 50636.28, + "probability": 0.9751 + }, + { + "start": 50636.3, + "end": 50637.7, + "probability": 0.9967 + }, + { + "start": 50638.36, + "end": 50638.38, + "probability": 0.0003 + }, + { + "start": 50639.24, + "end": 50641.86, + "probability": 0.2443 + }, + { + "start": 50641.86, + "end": 50643.46, + "probability": 0.3431 + }, + { + "start": 50643.46, + "end": 50644.74, + "probability": 0.1182 + }, + { + "start": 50644.74, + "end": 50645.9, + "probability": 0.3353 + }, + { + "start": 50646.48, + "end": 50650.88, + "probability": 0.236 + }, + { + "start": 50651.0, + "end": 50651.68, + "probability": 0.1264 + }, + { + "start": 50652.98, + "end": 50655.4, + "probability": 0.9601 + }, + { + "start": 50655.92, + "end": 50662.02, + "probability": 0.9224 + }, + { + "start": 50662.22, + "end": 50663.08, + "probability": 0.9742 + }, + { + "start": 50664.09, + "end": 50669.92, + "probability": 0.9918 + }, + { + "start": 50670.48, + "end": 50673.78, + "probability": 0.9961 + }, + { + "start": 50674.36, + "end": 50675.46, + "probability": 0.5996 + }, + { + "start": 50676.3, + "end": 50678.34, + "probability": 0.7679 + }, + { + "start": 50678.92, + "end": 50679.71, + "probability": 0.9573 + }, + { + "start": 50680.42, + "end": 50682.18, + "probability": 0.8481 + }, + { + "start": 50682.64, + "end": 50686.98, + "probability": 0.9712 + }, + { + "start": 50687.5, + "end": 50688.7, + "probability": 0.999 + }, + { + "start": 50689.16, + "end": 50690.32, + "probability": 0.9843 + }, + { + "start": 50690.6, + "end": 50691.46, + "probability": 0.9846 + }, + { + "start": 50691.56, + "end": 50692.16, + "probability": 0.8292 + }, + { + "start": 50692.4, + "end": 50694.46, + "probability": 0.8973 + }, + { + "start": 50695.08, + "end": 50696.98, + "probability": 0.9194 + }, + { + "start": 50697.52, + "end": 50698.94, + "probability": 0.6975 + }, + { + "start": 50727.36, + "end": 50728.06, + "probability": 0.7459 + }, + { + "start": 50728.94, + "end": 50730.05, + "probability": 0.8023 + }, + { + "start": 50730.88, + "end": 50734.34, + "probability": 0.8029 + }, + { + "start": 50734.82, + "end": 50734.86, + "probability": 0.0025 + }, + { + "start": 50735.16, + "end": 50735.7, + "probability": 0.6856 + }, + { + "start": 50736.38, + "end": 50736.68, + "probability": 0.5579 + }, + { + "start": 50736.92, + "end": 50737.84, + "probability": 0.7961 + }, + { + "start": 50737.88, + "end": 50738.64, + "probability": 0.5601 + }, + { + "start": 50738.76, + "end": 50739.6, + "probability": 0.4198 + }, + { + "start": 50740.4, + "end": 50741.4, + "probability": 0.7575 + }, + { + "start": 50742.08, + "end": 50743.38, + "probability": 0.2999 + }, + { + "start": 50743.4, + "end": 50743.88, + "probability": 0.5242 + }, + { + "start": 50744.0, + "end": 50744.37, + "probability": 0.9722 + }, + { + "start": 50744.96, + "end": 50746.56, + "probability": 0.8611 + }, + { + "start": 50747.8, + "end": 50749.18, + "probability": 0.5089 + }, + { + "start": 50749.76, + "end": 50751.58, + "probability": 0.6719 + }, + { + "start": 50752.04, + "end": 50752.7, + "probability": 0.6483 + }, + { + "start": 50752.78, + "end": 50753.88, + "probability": 0.4808 + }, + { + "start": 50755.04, + "end": 50757.34, + "probability": 0.6825 + }, + { + "start": 50758.36, + "end": 50758.58, + "probability": 0.2192 + }, + { + "start": 50758.78, + "end": 50761.32, + "probability": 0.9862 + }, + { + "start": 50762.14, + "end": 50763.78, + "probability": 0.6902 + }, + { + "start": 50764.0, + "end": 50765.21, + "probability": 0.3365 + }, + { + "start": 50767.2, + "end": 50767.32, + "probability": 0.601 + }, + { + "start": 50768.14, + "end": 50770.46, + "probability": 0.9971 + }, + { + "start": 50771.38, + "end": 50773.07, + "probability": 0.978 + }, + { + "start": 50774.36, + "end": 50775.18, + "probability": 0.7602 + }, + { + "start": 50775.22, + "end": 50779.54, + "probability": 0.9968 + }, + { + "start": 50780.42, + "end": 50781.24, + "probability": 0.9803 + }, + { + "start": 50782.12, + "end": 50783.62, + "probability": 0.9448 + }, + { + "start": 50784.76, + "end": 50786.2, + "probability": 0.6941 + }, + { + "start": 50786.28, + "end": 50789.4, + "probability": 0.9474 + }, + { + "start": 50789.52, + "end": 50790.46, + "probability": 0.8988 + }, + { + "start": 50790.52, + "end": 50792.32, + "probability": 0.2908 + }, + { + "start": 50793.66, + "end": 50794.58, + "probability": 0.6237 + }, + { + "start": 50795.42, + "end": 50796.3, + "probability": 0.8203 + }, + { + "start": 50796.48, + "end": 50796.9, + "probability": 0.3644 + }, + { + "start": 50797.3, + "end": 50798.14, + "probability": 0.9221 + }, + { + "start": 50798.28, + "end": 50800.84, + "probability": 0.985 + }, + { + "start": 50800.9, + "end": 50801.82, + "probability": 0.7898 + }, + { + "start": 50801.96, + "end": 50802.44, + "probability": 0.8309 + }, + { + "start": 50802.64, + "end": 50803.56, + "probability": 0.6227 + }, + { + "start": 50803.68, + "end": 50804.06, + "probability": 0.883 + }, + { + "start": 50804.16, + "end": 50804.32, + "probability": 0.329 + }, + { + "start": 50804.32, + "end": 50805.53, + "probability": 0.7888 + }, + { + "start": 50806.5, + "end": 50807.62, + "probability": 0.8306 + }, + { + "start": 50808.4, + "end": 50809.15, + "probability": 0.6079 + }, + { + "start": 50809.88, + "end": 50811.16, + "probability": 0.8153 + }, + { + "start": 50811.98, + "end": 50813.06, + "probability": 0.6559 + }, + { + "start": 50814.1, + "end": 50816.0, + "probability": 0.7225 + }, + { + "start": 50816.0, + "end": 50817.72, + "probability": 0.7456 + }, + { + "start": 50817.72, + "end": 50817.92, + "probability": 0.547 + }, + { + "start": 50819.5, + "end": 50820.13, + "probability": 0.6182 + }, + { + "start": 50820.46, + "end": 50821.26, + "probability": 0.3234 + }, + { + "start": 50821.74, + "end": 50824.62, + "probability": 0.9161 + }, + { + "start": 50825.08, + "end": 50827.1, + "probability": 0.9702 + }, + { + "start": 50827.92, + "end": 50828.42, + "probability": 0.8531 + }, + { + "start": 50828.86, + "end": 50829.42, + "probability": 0.9748 + }, + { + "start": 50830.54, + "end": 50831.94, + "probability": 0.9271 + }, + { + "start": 50833.42, + "end": 50834.32, + "probability": 0.53 + }, + { + "start": 50834.38, + "end": 50837.18, + "probability": 0.9323 + }, + { + "start": 50838.1, + "end": 50840.58, + "probability": 0.9532 + }, + { + "start": 50841.68, + "end": 50843.08, + "probability": 0.5802 + }, + { + "start": 50844.42, + "end": 50846.16, + "probability": 0.9806 + }, + { + "start": 50846.16, + "end": 50849.26, + "probability": 0.7827 + }, + { + "start": 50849.34, + "end": 50850.08, + "probability": 0.6925 + }, + { + "start": 50850.76, + "end": 50851.84, + "probability": 0.3378 + }, + { + "start": 50853.24, + "end": 50855.6, + "probability": 0.6912 + }, + { + "start": 50856.28, + "end": 50859.52, + "probability": 0.7539 + }, + { + "start": 50860.78, + "end": 50863.1, + "probability": 0.9856 + }, + { + "start": 50863.78, + "end": 50867.62, + "probability": 0.9103 + }, + { + "start": 50869.22, + "end": 50874.24, + "probability": 0.8621 + }, + { + "start": 50875.06, + "end": 50875.34, + "probability": 0.1895 + }, + { + "start": 50876.48, + "end": 50876.76, + "probability": 0.279 + }, + { + "start": 50877.64, + "end": 50878.78, + "probability": 0.2633 + }, + { + "start": 50878.96, + "end": 50879.6, + "probability": 0.35 + }, + { + "start": 50879.64, + "end": 50880.08, + "probability": 0.5241 + }, + { + "start": 50880.08, + "end": 50880.98, + "probability": 0.7915 + }, + { + "start": 50881.06, + "end": 50883.78, + "probability": 0.6197 + }, + { + "start": 50883.9, + "end": 50885.89, + "probability": 0.2919 + }, + { + "start": 50886.18, + "end": 50889.6, + "probability": 0.5717 + }, + { + "start": 50889.78, + "end": 50891.88, + "probability": 0.0932 + }, + { + "start": 50892.16, + "end": 50897.84, + "probability": 0.1449 + }, + { + "start": 50898.68, + "end": 50900.0, + "probability": 0.2159 + }, + { + "start": 50901.36, + "end": 50902.96, + "probability": 0.3966 + }, + { + "start": 50904.3, + "end": 50905.44, + "probability": 0.0129 + }, + { + "start": 50906.84, + "end": 50907.23, + "probability": 0.539 + }, + { + "start": 50908.22, + "end": 50910.02, + "probability": 0.978 + }, + { + "start": 50910.3, + "end": 50911.6, + "probability": 0.3154 + }, + { + "start": 50912.3, + "end": 50913.74, + "probability": 0.8421 + }, + { + "start": 50914.32, + "end": 50915.78, + "probability": 0.5954 + }, + { + "start": 50916.4, + "end": 50917.5, + "probability": 0.6715 + }, + { + "start": 50918.64, + "end": 50919.56, + "probability": 0.677 + }, + { + "start": 50920.32, + "end": 50921.76, + "probability": 0.3827 + }, + { + "start": 50921.76, + "end": 50922.36, + "probability": 0.2854 + }, + { + "start": 50924.2, + "end": 50928.78, + "probability": 0.4806 + }, + { + "start": 50928.88, + "end": 50930.1, + "probability": 0.705 + }, + { + "start": 50930.8, + "end": 50931.26, + "probability": 0.8001 + }, + { + "start": 50932.14, + "end": 50933.06, + "probability": 0.774 + }, + { + "start": 50935.05, + "end": 50939.58, + "probability": 0.8742 + }, + { + "start": 50940.22, + "end": 50940.54, + "probability": 0.6667 + }, + { + "start": 50940.58, + "end": 50943.28, + "probability": 0.7521 + }, + { + "start": 50943.28, + "end": 50944.8, + "probability": 0.9177 + }, + { + "start": 50944.9, + "end": 50946.01, + "probability": 0.9402 + }, + { + "start": 50946.36, + "end": 50947.1, + "probability": 0.8984 + }, + { + "start": 50947.24, + "end": 50949.82, + "probability": 0.9515 + }, + { + "start": 50950.7, + "end": 50950.76, + "probability": 0.2052 + }, + { + "start": 50950.9, + "end": 50952.08, + "probability": 0.9847 + }, + { + "start": 50952.16, + "end": 50953.12, + "probability": 0.6121 + }, + { + "start": 50953.14, + "end": 50953.58, + "probability": 0.8612 + }, + { + "start": 50953.68, + "end": 50954.48, + "probability": 0.9344 + }, + { + "start": 50955.68, + "end": 50958.58, + "probability": 0.9751 + }, + { + "start": 50959.12, + "end": 50959.96, + "probability": 0.4779 + }, + { + "start": 50960.56, + "end": 50961.28, + "probability": 0.9287 + }, + { + "start": 50962.0, + "end": 50962.46, + "probability": 0.6886 + }, + { + "start": 50962.54, + "end": 50965.64, + "probability": 0.9358 + }, + { + "start": 50965.72, + "end": 50966.28, + "probability": 0.7083 + }, + { + "start": 50967.3, + "end": 50968.86, + "probability": 0.8335 + }, + { + "start": 50969.92, + "end": 50971.09, + "probability": 0.9146 + }, + { + "start": 50971.66, + "end": 50974.56, + "probability": 0.8366 + }, + { + "start": 50975.0, + "end": 50976.7, + "probability": 0.8334 + }, + { + "start": 50977.34, + "end": 50978.46, + "probability": 0.9455 + }, + { + "start": 50979.74, + "end": 50984.24, + "probability": 0.8395 + }, + { + "start": 50985.56, + "end": 50986.02, + "probability": 0.8369 + }, + { + "start": 50986.62, + "end": 50987.24, + "probability": 0.8542 + }, + { + "start": 50988.16, + "end": 50988.78, + "probability": 0.9723 + }, + { + "start": 50989.7, + "end": 50990.74, + "probability": 0.9731 + }, + { + "start": 50991.88, + "end": 50992.28, + "probability": 0.5517 + }, + { + "start": 50992.38, + "end": 50992.88, + "probability": 0.9123 + }, + { + "start": 50993.16, + "end": 50997.94, + "probability": 0.854 + }, + { + "start": 50998.8, + "end": 50999.26, + "probability": 0.95 + }, + { + "start": 50999.46, + "end": 51000.52, + "probability": 0.5327 + }, + { + "start": 51000.52, + "end": 51000.84, + "probability": 0.3793 + }, + { + "start": 51001.26, + "end": 51003.72, + "probability": 0.9728 + }, + { + "start": 51004.76, + "end": 51008.52, + "probability": 0.9346 + }, + { + "start": 51009.22, + "end": 51011.94, + "probability": 0.7792 + }, + { + "start": 51012.44, + "end": 51012.74, + "probability": 0.225 + }, + { + "start": 51012.78, + "end": 51013.16, + "probability": 0.3202 + }, + { + "start": 51013.44, + "end": 51016.59, + "probability": 0.8931 + }, + { + "start": 51018.72, + "end": 51020.22, + "probability": 0.6717 + }, + { + "start": 51020.6, + "end": 51024.16, + "probability": 0.7761 + }, + { + "start": 51024.26, + "end": 51024.4, + "probability": 0.4113 + }, + { + "start": 51025.18, + "end": 51025.52, + "probability": 0.1565 + }, + { + "start": 51025.6, + "end": 51026.48, + "probability": 0.2205 + }, + { + "start": 51026.48, + "end": 51028.18, + "probability": 0.954 + }, + { + "start": 51028.94, + "end": 51030.94, + "probability": 0.8172 + }, + { + "start": 51031.6, + "end": 51036.72, + "probability": 0.9527 + }, + { + "start": 51036.76, + "end": 51039.92, + "probability": 0.9158 + }, + { + "start": 51040.12, + "end": 51041.62, + "probability": 0.8696 + }, + { + "start": 51042.84, + "end": 51043.94, + "probability": 0.5346 + }, + { + "start": 51044.54, + "end": 51046.55, + "probability": 0.6031 + }, + { + "start": 51046.86, + "end": 51048.92, + "probability": 0.6855 + }, + { + "start": 51049.32, + "end": 51051.16, + "probability": 0.8905 + }, + { + "start": 51051.26, + "end": 51051.7, + "probability": 0.959 + }, + { + "start": 51052.16, + "end": 51052.76, + "probability": 0.9284 + }, + { + "start": 51053.74, + "end": 51055.94, + "probability": 0.6058 + }, + { + "start": 51057.22, + "end": 51057.92, + "probability": 0.0365 + }, + { + "start": 51058.6, + "end": 51058.88, + "probability": 0.263 + }, + { + "start": 51059.6, + "end": 51061.15, + "probability": 0.9263 + }, + { + "start": 51061.28, + "end": 51061.92, + "probability": 0.8134 + }, + { + "start": 51062.16, + "end": 51062.88, + "probability": 0.9194 + }, + { + "start": 51063.76, + "end": 51066.6, + "probability": 0.9653 + }, + { + "start": 51067.46, + "end": 51071.6, + "probability": 0.9184 + }, + { + "start": 51072.04, + "end": 51074.86, + "probability": 0.7855 + }, + { + "start": 51075.12, + "end": 51075.44, + "probability": 0.6702 + }, + { + "start": 51076.5, + "end": 51081.58, + "probability": 0.9924 + }, + { + "start": 51082.08, + "end": 51084.72, + "probability": 0.2184 + }, + { + "start": 51084.98, + "end": 51085.82, + "probability": 0.4081 + }, + { + "start": 51086.8, + "end": 51091.24, + "probability": 0.036 + }, + { + "start": 51092.44, + "end": 51095.5, + "probability": 0.0946 + }, + { + "start": 51096.32, + "end": 51100.38, + "probability": 0.1786 + }, + { + "start": 51101.4, + "end": 51102.1, + "probability": 0.0607 + }, + { + "start": 51102.18, + "end": 51107.2, + "probability": 0.4546 + }, + { + "start": 51107.46, + "end": 51108.48, + "probability": 0.8883 + }, + { + "start": 51108.94, + "end": 51110.64, + "probability": 0.415 + }, + { + "start": 51111.32, + "end": 51112.36, + "probability": 0.7664 + }, + { + "start": 51113.18, + "end": 51113.24, + "probability": 0.2753 + }, + { + "start": 51113.4, + "end": 51117.6, + "probability": 0.9769 + }, + { + "start": 51118.52, + "end": 51121.38, + "probability": 0.8717 + }, + { + "start": 51122.14, + "end": 51124.8, + "probability": 0.9364 + }, + { + "start": 51125.42, + "end": 51128.7, + "probability": 0.7907 + }, + { + "start": 51129.32, + "end": 51133.08, + "probability": 0.9552 + }, + { + "start": 51133.26, + "end": 51133.96, + "probability": 0.7895 + }, + { + "start": 51134.5, + "end": 51135.4, + "probability": 0.6572 + }, + { + "start": 51136.54, + "end": 51137.26, + "probability": 0.2209 + }, + { + "start": 51137.61, + "end": 51138.51, + "probability": 0.9443 + }, + { + "start": 51139.44, + "end": 51141.3, + "probability": 0.5638 + }, + { + "start": 51141.54, + "end": 51141.84, + "probability": 0.4623 + }, + { + "start": 51142.4, + "end": 51144.5, + "probability": 0.2256 + }, + { + "start": 51144.52, + "end": 51145.15, + "probability": 0.0449 + }, + { + "start": 51145.92, + "end": 51147.72, + "probability": 0.9026 + }, + { + "start": 51148.38, + "end": 51151.46, + "probability": 0.7561 + }, + { + "start": 51152.38, + "end": 51156.32, + "probability": 0.902 + }, + { + "start": 51156.74, + "end": 51158.18, + "probability": 0.4995 + }, + { + "start": 51158.38, + "end": 51160.34, + "probability": 0.9449 + }, + { + "start": 51160.58, + "end": 51162.14, + "probability": 0.9949 + }, + { + "start": 51163.0, + "end": 51163.88, + "probability": 0.7333 + }, + { + "start": 51164.92, + "end": 51166.32, + "probability": 0.8081 + }, + { + "start": 51166.94, + "end": 51168.14, + "probability": 0.8945 + }, + { + "start": 51169.48, + "end": 51171.78, + "probability": 0.859 + }, + { + "start": 51172.12, + "end": 51174.4, + "probability": 0.6694 + }, + { + "start": 51174.76, + "end": 51175.68, + "probability": 0.3007 + }, + { + "start": 51176.0, + "end": 51177.14, + "probability": 0.7355 + }, + { + "start": 51177.26, + "end": 51177.6, + "probability": 0.684 + }, + { + "start": 51177.72, + "end": 51178.12, + "probability": 0.8665 + }, + { + "start": 51178.24, + "end": 51178.64, + "probability": 0.4393 + }, + { + "start": 51178.7, + "end": 51179.38, + "probability": 0.9628 + }, + { + "start": 51180.58, + "end": 51181.1, + "probability": 0.4859 + }, + { + "start": 51181.18, + "end": 51181.7, + "probability": 0.7548 + }, + { + "start": 51181.76, + "end": 51182.44, + "probability": 0.9707 + }, + { + "start": 51183.5, + "end": 51185.7, + "probability": 0.727 + }, + { + "start": 51185.9, + "end": 51188.38, + "probability": 0.6793 + }, + { + "start": 51189.62, + "end": 51191.64, + "probability": 0.9921 + }, + { + "start": 51192.0, + "end": 51192.8, + "probability": 0.9022 + }, + { + "start": 51193.08, + "end": 51194.34, + "probability": 0.9493 + }, + { + "start": 51194.92, + "end": 51195.46, + "probability": 0.7533 + }, + { + "start": 51195.52, + "end": 51195.86, + "probability": 0.5673 + }, + { + "start": 51196.14, + "end": 51196.32, + "probability": 0.4216 + }, + { + "start": 51196.34, + "end": 51198.16, + "probability": 0.9265 + }, + { + "start": 51198.28, + "end": 51198.8, + "probability": 0.0924 + }, + { + "start": 51199.08, + "end": 51200.18, + "probability": 0.8334 + }, + { + "start": 51200.8, + "end": 51200.8, + "probability": 0.0005 + }, + { + "start": 51200.8, + "end": 51200.9, + "probability": 0.5999 + }, + { + "start": 51201.2, + "end": 51203.1, + "probability": 0.6087 + }, + { + "start": 51203.22, + "end": 51203.88, + "probability": 0.218 + }, + { + "start": 51204.52, + "end": 51205.98, + "probability": 0.9357 + }, + { + "start": 51206.4, + "end": 51208.56, + "probability": 0.7029 + }, + { + "start": 51209.38, + "end": 51209.86, + "probability": 0.5656 + }, + { + "start": 51209.88, + "end": 51210.78, + "probability": 0.6109 + }, + { + "start": 51211.34, + "end": 51212.42, + "probability": 0.8486 + }, + { + "start": 51213.86, + "end": 51216.04, + "probability": 0.9958 + }, + { + "start": 51216.98, + "end": 51220.96, + "probability": 0.9814 + }, + { + "start": 51221.64, + "end": 51223.14, + "probability": 0.7916 + }, + { + "start": 51223.88, + "end": 51225.06, + "probability": 0.9165 + }, + { + "start": 51226.62, + "end": 51228.24, + "probability": 0.264 + }, + { + "start": 51228.38, + "end": 51233.54, + "probability": 0.8782 + }, + { + "start": 51234.04, + "end": 51236.16, + "probability": 0.4864 + }, + { + "start": 51237.16, + "end": 51238.74, + "probability": 0.5507 + }, + { + "start": 51239.52, + "end": 51240.02, + "probability": 0.7196 + }, + { + "start": 51240.54, + "end": 51242.0, + "probability": 0.6998 + }, + { + "start": 51242.52, + "end": 51243.68, + "probability": 0.1087 + }, + { + "start": 51244.26, + "end": 51245.52, + "probability": 0.6808 + }, + { + "start": 51245.94, + "end": 51246.7, + "probability": 0.6681 + }, + { + "start": 51246.8, + "end": 51247.58, + "probability": 0.7866 + }, + { + "start": 51248.2, + "end": 51249.68, + "probability": 0.5262 + }, + { + "start": 51252.94, + "end": 51256.4, + "probability": 0.6428 + }, + { + "start": 51257.02, + "end": 51257.82, + "probability": 0.9462 + }, + { + "start": 51258.02, + "end": 51260.12, + "probability": 0.9424 + }, + { + "start": 51260.74, + "end": 51262.2, + "probability": 0.8866 + }, + { + "start": 51263.23, + "end": 51266.94, + "probability": 0.9804 + }, + { + "start": 51267.88, + "end": 51268.36, + "probability": 0.6318 + }, + { + "start": 51269.02, + "end": 51270.3, + "probability": 0.5089 + }, + { + "start": 51270.52, + "end": 51271.68, + "probability": 0.5173 + }, + { + "start": 51272.66, + "end": 51276.5, + "probability": 0.9092 + }, + { + "start": 51276.58, + "end": 51277.92, + "probability": 0.8992 + }, + { + "start": 51278.66, + "end": 51279.9, + "probability": 0.9407 + }, + { + "start": 51280.38, + "end": 51284.08, + "probability": 0.992 + }, + { + "start": 51284.88, + "end": 51288.42, + "probability": 0.9964 + }, + { + "start": 51289.14, + "end": 51290.62, + "probability": 0.9964 + }, + { + "start": 51291.32, + "end": 51292.04, + "probability": 0.8048 + }, + { + "start": 51292.56, + "end": 51294.06, + "probability": 0.7993 + }, + { + "start": 51294.74, + "end": 51297.96, + "probability": 0.9917 + }, + { + "start": 51298.52, + "end": 51301.88, + "probability": 0.9891 + }, + { + "start": 51302.38, + "end": 51304.22, + "probability": 0.9957 + }, + { + "start": 51305.14, + "end": 51307.74, + "probability": 0.9841 + }, + { + "start": 51308.18, + "end": 51311.56, + "probability": 0.9801 + }, + { + "start": 51311.96, + "end": 51312.8, + "probability": 0.4471 + }, + { + "start": 51313.16, + "end": 51315.0, + "probability": 0.7087 + }, + { + "start": 51315.78, + "end": 51318.28, + "probability": 0.9392 + }, + { + "start": 51318.32, + "end": 51319.19, + "probability": 0.7532 + }, + { + "start": 51319.86, + "end": 51320.28, + "probability": 0.5384 + }, + { + "start": 51320.62, + "end": 51322.04, + "probability": 0.9893 + }, + { + "start": 51323.0, + "end": 51324.86, + "probability": 0.884 + }, + { + "start": 51325.58, + "end": 51326.4, + "probability": 0.9333 + }, + { + "start": 51327.52, + "end": 51328.52, + "probability": 0.9866 + }, + { + "start": 51329.02, + "end": 51329.3, + "probability": 0.9293 + }, + { + "start": 51329.36, + "end": 51329.9, + "probability": 0.7245 + }, + { + "start": 51330.08, + "end": 51330.44, + "probability": 0.5906 + }, + { + "start": 51330.46, + "end": 51331.7, + "probability": 0.9966 + }, + { + "start": 51332.22, + "end": 51333.42, + "probability": 0.9543 + }, + { + "start": 51333.84, + "end": 51334.71, + "probability": 0.9585 + }, + { + "start": 51335.12, + "end": 51337.18, + "probability": 0.9564 + }, + { + "start": 51337.32, + "end": 51338.34, + "probability": 0.9586 + }, + { + "start": 51338.78, + "end": 51339.73, + "probability": 0.8698 + }, + { + "start": 51340.62, + "end": 51343.99, + "probability": 0.9722 + }, + { + "start": 51344.44, + "end": 51344.66, + "probability": 0.8406 + }, + { + "start": 51344.86, + "end": 51345.72, + "probability": 0.9518 + }, + { + "start": 51346.36, + "end": 51348.44, + "probability": 0.9661 + }, + { + "start": 51349.2, + "end": 51351.64, + "probability": 0.9437 + }, + { + "start": 51352.42, + "end": 51353.4, + "probability": 0.899 + }, + { + "start": 51353.92, + "end": 51354.71, + "probability": 0.5761 + }, + { + "start": 51355.3, + "end": 51356.82, + "probability": 0.8933 + }, + { + "start": 51356.98, + "end": 51358.13, + "probability": 0.9821 + }, + { + "start": 51358.74, + "end": 51359.94, + "probability": 0.6475 + }, + { + "start": 51361.06, + "end": 51363.98, + "probability": 0.922 + }, + { + "start": 51365.02, + "end": 51366.32, + "probability": 0.9744 + }, + { + "start": 51367.22, + "end": 51368.74, + "probability": 0.653 + }, + { + "start": 51369.52, + "end": 51372.46, + "probability": 0.8622 + }, + { + "start": 51372.54, + "end": 51373.4, + "probability": 0.9746 + }, + { + "start": 51373.86, + "end": 51376.06, + "probability": 0.9895 + }, + { + "start": 51376.56, + "end": 51378.88, + "probability": 0.9655 + }, + { + "start": 51379.62, + "end": 51383.26, + "probability": 0.97 + }, + { + "start": 51383.86, + "end": 51388.32, + "probability": 0.9343 + }, + { + "start": 51388.58, + "end": 51390.2, + "probability": 0.9852 + }, + { + "start": 51390.66, + "end": 51394.18, + "probability": 0.9744 + }, + { + "start": 51395.06, + "end": 51396.14, + "probability": 0.9779 + }, + { + "start": 51396.58, + "end": 51398.74, + "probability": 0.9885 + }, + { + "start": 51399.24, + "end": 51399.5, + "probability": 0.6379 + }, + { + "start": 51399.64, + "end": 51402.2, + "probability": 0.8622 + }, + { + "start": 51402.62, + "end": 51405.62, + "probability": 0.9819 + }, + { + "start": 51406.24, + "end": 51408.02, + "probability": 0.9634 + }, + { + "start": 51408.56, + "end": 51409.85, + "probability": 0.9805 + }, + { + "start": 51410.34, + "end": 51412.26, + "probability": 0.894 + }, + { + "start": 51412.36, + "end": 51412.88, + "probability": 0.7623 + }, + { + "start": 51413.3, + "end": 51417.56, + "probability": 0.9031 + }, + { + "start": 51417.56, + "end": 51421.6, + "probability": 0.9852 + }, + { + "start": 51422.84, + "end": 51425.5, + "probability": 0.8766 + }, + { + "start": 51426.42, + "end": 51428.6, + "probability": 0.8468 + }, + { + "start": 51429.18, + "end": 51430.38, + "probability": 0.9949 + }, + { + "start": 51431.4, + "end": 51437.28, + "probability": 0.9679 + }, + { + "start": 51437.94, + "end": 51439.18, + "probability": 0.998 + }, + { + "start": 51439.74, + "end": 51442.82, + "probability": 0.9714 + }, + { + "start": 51443.68, + "end": 51449.08, + "probability": 0.99 + }, + { + "start": 51449.42, + "end": 51450.28, + "probability": 0.8213 + }, + { + "start": 51450.92, + "end": 51453.68, + "probability": 0.998 + }, + { + "start": 51453.68, + "end": 51456.82, + "probability": 0.9983 + }, + { + "start": 51457.3, + "end": 51457.94, + "probability": 0.2577 + }, + { + "start": 51460.76, + "end": 51463.06, + "probability": 0.3257 + }, + { + "start": 51463.36, + "end": 51464.66, + "probability": 0.8535 + }, + { + "start": 51464.72, + "end": 51466.12, + "probability": 0.7513 + }, + { + "start": 51466.64, + "end": 51471.56, + "probability": 0.9547 + }, + { + "start": 51472.1, + "end": 51473.1, + "probability": 0.9274 + }, + { + "start": 51473.52, + "end": 51475.92, + "probability": 0.0724 + }, + { + "start": 51476.14, + "end": 51478.7, + "probability": 0.3097 + }, + { + "start": 51478.7, + "end": 51481.6, + "probability": 0.7983 + }, + { + "start": 51482.2, + "end": 51484.62, + "probability": 0.9905 + }, + { + "start": 51485.38, + "end": 51489.2, + "probability": 0.9705 + }, + { + "start": 51489.74, + "end": 51492.81, + "probability": 0.9953 + }, + { + "start": 51493.16, + "end": 51495.46, + "probability": 0.9945 + }, + { + "start": 51495.58, + "end": 51497.5, + "probability": 0.4627 + }, + { + "start": 51497.58, + "end": 51499.58, + "probability": 0.181 + }, + { + "start": 51500.1, + "end": 51501.22, + "probability": 0.3755 + }, + { + "start": 51501.4, + "end": 51503.96, + "probability": 0.6546 + }, + { + "start": 51504.32, + "end": 51506.17, + "probability": 0.3037 + }, + { + "start": 51506.72, + "end": 51507.81, + "probability": 0.758 + }, + { + "start": 51508.34, + "end": 51509.72, + "probability": 0.55 + }, + { + "start": 51509.82, + "end": 51510.9, + "probability": 0.9541 + }, + { + "start": 51511.58, + "end": 51512.78, + "probability": 0.3425 + }, + { + "start": 51512.86, + "end": 51516.08, + "probability": 0.9527 + }, + { + "start": 51517.18, + "end": 51517.92, + "probability": 0.5416 + }, + { + "start": 51518.5, + "end": 51519.14, + "probability": 0.5112 + }, + { + "start": 51519.64, + "end": 51520.74, + "probability": 0.8624 + }, + { + "start": 51520.9, + "end": 51521.44, + "probability": 0.8536 + }, + { + "start": 51522.28, + "end": 51526.14, + "probability": 0.9806 + }, + { + "start": 51526.14, + "end": 51530.16, + "probability": 0.9824 + }, + { + "start": 51530.58, + "end": 51532.62, + "probability": 0.752 + }, + { + "start": 51534.29, + "end": 51537.9, + "probability": 0.4027 + }, + { + "start": 51538.52, + "end": 51539.02, + "probability": 0.5637 + }, + { + "start": 51539.1, + "end": 51540.74, + "probability": 0.6562 + }, + { + "start": 51540.98, + "end": 51542.68, + "probability": 0.7423 + }, + { + "start": 51543.7, + "end": 51544.2, + "probability": 0.4668 + }, + { + "start": 51544.98, + "end": 51545.68, + "probability": 0.2591 + }, + { + "start": 51546.62, + "end": 51547.16, + "probability": 0.7607 + }, + { + "start": 51547.7, + "end": 51551.64, + "probability": 0.8887 + }, + { + "start": 51551.9, + "end": 51552.46, + "probability": 0.1767 + }, + { + "start": 51553.52, + "end": 51554.2, + "probability": 0.533 + }, + { + "start": 51555.36, + "end": 51556.48, + "probability": 0.3761 + }, + { + "start": 51560.4, + "end": 51561.16, + "probability": 0.0005 + }, + { + "start": 51564.38, + "end": 51564.68, + "probability": 0.1716 + }, + { + "start": 51568.65, + "end": 51570.02, + "probability": 0.095 + }, + { + "start": 51572.34, + "end": 51573.2, + "probability": 0.7403 + }, + { + "start": 51574.32, + "end": 51578.44, + "probability": 0.9554 + }, + { + "start": 51579.02, + "end": 51581.42, + "probability": 0.7332 + }, + { + "start": 51584.42, + "end": 51585.68, + "probability": 0.0606 + }, + { + "start": 51585.68, + "end": 51586.44, + "probability": 0.256 + }, + { + "start": 51587.78, + "end": 51589.88, + "probability": 0.8998 + }, + { + "start": 51590.7, + "end": 51591.62, + "probability": 0.5994 + }, + { + "start": 51591.66, + "end": 51591.66, + "probability": 0.6396 + }, + { + "start": 51591.76, + "end": 51593.16, + "probability": 0.6663 + }, + { + "start": 51593.62, + "end": 51596.34, + "probability": 0.4374 + }, + { + "start": 51596.76, + "end": 51597.38, + "probability": 0.4719 + }, + { + "start": 51597.58, + "end": 51599.48, + "probability": 0.6523 + }, + { + "start": 51599.6, + "end": 51601.38, + "probability": 0.7611 + }, + { + "start": 51601.58, + "end": 51606.12, + "probability": 0.6849 + }, + { + "start": 51606.96, + "end": 51610.08, + "probability": 0.9328 + }, + { + "start": 51611.46, + "end": 51613.9, + "probability": 0.9214 + }, + { + "start": 51615.82, + "end": 51620.28, + "probability": 0.5352 + }, + { + "start": 51621.52, + "end": 51623.36, + "probability": 0.0977 + }, + { + "start": 51624.36, + "end": 51624.48, + "probability": 0.0957 + }, + { + "start": 51624.48, + "end": 51625.56, + "probability": 0.8653 + }, + { + "start": 51625.66, + "end": 51626.9, + "probability": 0.918 + }, + { + "start": 51627.26, + "end": 51630.92, + "probability": 0.7774 + }, + { + "start": 51632.2, + "end": 51634.68, + "probability": 0.9101 + }, + { + "start": 51634.86, + "end": 51636.52, + "probability": 0.165 + }, + { + "start": 51636.78, + "end": 51639.92, + "probability": 0.2474 + }, + { + "start": 51640.38, + "end": 51641.71, + "probability": 0.5497 + }, + { + "start": 51643.68, + "end": 51646.07, + "probability": 0.1085 + }, + { + "start": 51647.02, + "end": 51648.38, + "probability": 0.1726 + }, + { + "start": 51648.53, + "end": 51652.16, + "probability": 0.6828 + }, + { + "start": 51654.02, + "end": 51655.38, + "probability": 0.9895 + }, + { + "start": 51656.48, + "end": 51663.46, + "probability": 0.9562 + }, + { + "start": 51664.02, + "end": 51664.74, + "probability": 0.2017 + }, + { + "start": 51664.74, + "end": 51666.06, + "probability": 0.7612 + }, + { + "start": 51666.16, + "end": 51667.48, + "probability": 0.0205 + }, + { + "start": 51668.66, + "end": 51668.66, + "probability": 0.018 + }, + { + "start": 51668.66, + "end": 51672.12, + "probability": 0.9902 + }, + { + "start": 51673.26, + "end": 51675.76, + "probability": 0.9961 + }, + { + "start": 51676.88, + "end": 51682.22, + "probability": 0.9174 + }, + { + "start": 51682.66, + "end": 51684.38, + "probability": 0.98 + }, + { + "start": 51685.86, + "end": 51688.26, + "probability": 0.9904 + }, + { + "start": 51688.32, + "end": 51689.72, + "probability": 0.9774 + }, + { + "start": 51690.58, + "end": 51692.37, + "probability": 0.9983 + }, + { + "start": 51693.9, + "end": 51697.12, + "probability": 0.8408 + }, + { + "start": 51699.2, + "end": 51702.36, + "probability": 0.9809 + }, + { + "start": 51703.14, + "end": 51704.64, + "probability": 0.8069 + }, + { + "start": 51705.56, + "end": 51706.46, + "probability": 0.268 + }, + { + "start": 51706.46, + "end": 51706.81, + "probability": 0.0065 + }, + { + "start": 51708.36, + "end": 51708.44, + "probability": 0.0541 + }, + { + "start": 51708.44, + "end": 51711.8, + "probability": 0.9401 + }, + { + "start": 51711.94, + "end": 51712.84, + "probability": 0.9421 + }, + { + "start": 51713.06, + "end": 51713.84, + "probability": 0.6922 + }, + { + "start": 51714.28, + "end": 51714.94, + "probability": 0.2821 + }, + { + "start": 51715.22, + "end": 51716.56, + "probability": 0.988 + }, + { + "start": 51716.62, + "end": 51718.8, + "probability": 0.9014 + }, + { + "start": 51723.44, + "end": 51725.16, + "probability": 0.1398 + }, + { + "start": 51727.46, + "end": 51732.44, + "probability": 0.6656 + }, + { + "start": 51733.54, + "end": 51735.52, + "probability": 0.9985 + }, + { + "start": 51736.78, + "end": 51738.16, + "probability": 0.7366 + }, + { + "start": 51738.5, + "end": 51739.2, + "probability": 0.972 + }, + { + "start": 51739.34, + "end": 51742.58, + "probability": 0.9823 + }, + { + "start": 51743.24, + "end": 51745.72, + "probability": 0.8408 + }, + { + "start": 51746.28, + "end": 51747.78, + "probability": 0.804 + }, + { + "start": 51748.54, + "end": 51750.16, + "probability": 0.7954 + }, + { + "start": 51751.46, + "end": 51753.48, + "probability": 0.0202 + }, + { + "start": 51755.28, + "end": 51759.26, + "probability": 0.98 + }, + { + "start": 51760.86, + "end": 51766.24, + "probability": 0.9497 + }, + { + "start": 51766.88, + "end": 51768.14, + "probability": 0.328 + }, + { + "start": 51769.8, + "end": 51770.88, + "probability": 0.5318 + }, + { + "start": 51770.88, + "end": 51773.28, + "probability": 0.9417 + }, + { + "start": 51775.48, + "end": 51779.15, + "probability": 0.9937 + }, + { + "start": 51780.56, + "end": 51781.94, + "probability": 0.5788 + }, + { + "start": 51782.58, + "end": 51784.39, + "probability": 0.541 + }, + { + "start": 51785.68, + "end": 51789.3, + "probability": 0.9492 + }, + { + "start": 51790.46, + "end": 51792.42, + "probability": 0.8608 + }, + { + "start": 51794.66, + "end": 51795.94, + "probability": 0.7743 + }, + { + "start": 51797.04, + "end": 51799.32, + "probability": 0.5071 + }, + { + "start": 51799.82, + "end": 51802.1, + "probability": 0.8506 + }, + { + "start": 51802.8, + "end": 51805.06, + "probability": 0.975 + }, + { + "start": 51806.06, + "end": 51810.42, + "probability": 0.9542 + }, + { + "start": 51811.88, + "end": 51813.3, + "probability": 0.8747 + }, + { + "start": 51814.72, + "end": 51821.62, + "probability": 0.9666 + }, + { + "start": 51821.62, + "end": 51826.18, + "probability": 0.9961 + }, + { + "start": 51826.38, + "end": 51828.09, + "probability": 0.8898 + }, + { + "start": 51829.6, + "end": 51830.88, + "probability": 0.847 + }, + { + "start": 51830.98, + "end": 51835.32, + "probability": 0.9706 + }, + { + "start": 51835.54, + "end": 51836.56, + "probability": 0.8354 + }, + { + "start": 51837.16, + "end": 51838.71, + "probability": 0.8889 + }, + { + "start": 51838.9, + "end": 51842.28, + "probability": 0.957 + }, + { + "start": 51842.9, + "end": 51843.86, + "probability": 0.8858 + }, + { + "start": 51844.46, + "end": 51846.32, + "probability": 0.9526 + }, + { + "start": 51846.54, + "end": 51848.8, + "probability": 0.9749 + }, + { + "start": 51849.6, + "end": 51851.08, + "probability": 0.9381 + }, + { + "start": 51852.08, + "end": 51854.24, + "probability": 0.8984 + }, + { + "start": 51854.56, + "end": 51860.78, + "probability": 0.9935 + }, + { + "start": 51861.58, + "end": 51862.82, + "probability": 0.9734 + }, + { + "start": 51863.61, + "end": 51864.84, + "probability": 0.9875 + }, + { + "start": 51865.58, + "end": 51867.18, + "probability": 0.0721 + }, + { + "start": 51867.18, + "end": 51869.32, + "probability": 0.4607 + }, + { + "start": 51871.0, + "end": 51871.84, + "probability": 0.8405 + }, + { + "start": 51872.94, + "end": 51874.3, + "probability": 0.991 + }, + { + "start": 51875.5, + "end": 51877.7, + "probability": 0.9366 + }, + { + "start": 51879.12, + "end": 51882.74, + "probability": 0.9458 + }, + { + "start": 51883.8, + "end": 51885.18, + "probability": 0.9404 + }, + { + "start": 51886.32, + "end": 51887.96, + "probability": 0.9076 + }, + { + "start": 51888.92, + "end": 51891.04, + "probability": 0.9722 + }, + { + "start": 51891.64, + "end": 51892.76, + "probability": 0.9902 + }, + { + "start": 51894.16, + "end": 51897.24, + "probability": 0.9823 + }, + { + "start": 51898.42, + "end": 51900.58, + "probability": 0.8793 + }, + { + "start": 51901.46, + "end": 51902.4, + "probability": 0.7948 + }, + { + "start": 51903.26, + "end": 51904.6, + "probability": 0.994 + }, + { + "start": 51906.12, + "end": 51907.24, + "probability": 0.9648 + }, + { + "start": 51909.38, + "end": 51912.74, + "probability": 0.997 + }, + { + "start": 51913.86, + "end": 51916.1, + "probability": 0.8542 + }, + { + "start": 51916.7, + "end": 51920.36, + "probability": 0.9984 + }, + { + "start": 51921.12, + "end": 51922.17, + "probability": 0.9548 + }, + { + "start": 51923.3, + "end": 51924.12, + "probability": 0.2523 + }, + { + "start": 51924.2, + "end": 51927.74, + "probability": 0.9773 + }, + { + "start": 51928.04, + "end": 51931.46, + "probability": 0.795 + }, + { + "start": 51931.72, + "end": 51932.68, + "probability": 0.9976 + }, + { + "start": 51933.84, + "end": 51937.72, + "probability": 0.9763 + }, + { + "start": 51939.04, + "end": 51940.5, + "probability": 0.6645 + }, + { + "start": 51941.3, + "end": 51941.98, + "probability": 0.8899 + }, + { + "start": 51943.1, + "end": 51947.34, + "probability": 0.9984 + }, + { + "start": 51947.98, + "end": 51950.92, + "probability": 0.9185 + }, + { + "start": 51952.24, + "end": 51955.8, + "probability": 0.8613 + }, + { + "start": 51957.2, + "end": 51959.24, + "probability": 0.9708 + }, + { + "start": 51959.88, + "end": 51960.31, + "probability": 0.8179 + }, + { + "start": 51960.5, + "end": 51964.14, + "probability": 0.4936 + }, + { + "start": 51964.88, + "end": 51965.44, + "probability": 0.971 + }, + { + "start": 51966.4, + "end": 51970.0, + "probability": 0.7912 + }, + { + "start": 51970.88, + "end": 51975.3, + "probability": 0.5291 + }, + { + "start": 51976.5, + "end": 51978.62, + "probability": 0.7226 + }, + { + "start": 51978.96, + "end": 51979.9, + "probability": 0.3761 + }, + { + "start": 51980.26, + "end": 51983.66, + "probability": 0.6196 + }, + { + "start": 51983.8, + "end": 51985.8, + "probability": 0.5419 + }, + { + "start": 51986.64, + "end": 51988.66, + "probability": 0.564 + }, + { + "start": 51990.06, + "end": 51991.34, + "probability": 0.6045 + }, + { + "start": 51991.34, + "end": 51992.16, + "probability": 0.724 + }, + { + "start": 51993.5, + "end": 51995.18, + "probability": 0.1814 + }, + { + "start": 51995.28, + "end": 51995.6, + "probability": 0.4326 + }, + { + "start": 51995.6, + "end": 51996.74, + "probability": 0.9099 + }, + { + "start": 51998.2, + "end": 52001.68, + "probability": 0.4585 + }, + { + "start": 52001.74, + "end": 52003.88, + "probability": 0.766 + }, + { + "start": 52004.68, + "end": 52005.88, + "probability": 0.4492 + }, + { + "start": 52006.62, + "end": 52006.62, + "probability": 0.0229 + }, + { + "start": 52006.62, + "end": 52006.62, + "probability": 0.504 + }, + { + "start": 52006.62, + "end": 52010.07, + "probability": 0.9673 + }, + { + "start": 52011.06, + "end": 52014.54, + "probability": 0.8319 + }, + { + "start": 52014.54, + "end": 52016.44, + "probability": 0.6947 + }, + { + "start": 52017.06, + "end": 52019.16, + "probability": 0.6677 + }, + { + "start": 52019.76, + "end": 52021.5, + "probability": 0.7939 + }, + { + "start": 52022.04, + "end": 52022.12, + "probability": 0.2866 + }, + { + "start": 52022.12, + "end": 52025.74, + "probability": 0.8316 + }, + { + "start": 52025.78, + "end": 52028.44, + "probability": 0.7857 + }, + { + "start": 52028.96, + "end": 52030.65, + "probability": 0.5501 + }, + { + "start": 52031.16, + "end": 52033.0, + "probability": 0.9191 + }, + { + "start": 52033.08, + "end": 52033.7, + "probability": 0.5317 + }, + { + "start": 52033.98, + "end": 52036.1, + "probability": 0.7733 + }, + { + "start": 52036.3, + "end": 52036.34, + "probability": 0.0407 + }, + { + "start": 52036.34, + "end": 52037.18, + "probability": 0.1557 + }, + { + "start": 52037.56, + "end": 52040.94, + "probability": 0.534 + }, + { + "start": 52041.4, + "end": 52042.4, + "probability": 0.8059 + }, + { + "start": 52042.4, + "end": 52045.0, + "probability": 0.3893 + }, + { + "start": 52047.86, + "end": 52050.7, + "probability": 0.7888 + }, + { + "start": 52051.22, + "end": 52053.44, + "probability": 0.9888 + }, + { + "start": 52053.98, + "end": 52055.3, + "probability": 0.6916 + }, + { + "start": 52056.16, + "end": 52057.84, + "probability": 0.9635 + }, + { + "start": 52058.74, + "end": 52060.24, + "probability": 0.8271 + }, + { + "start": 52060.48, + "end": 52063.1, + "probability": 0.9634 + }, + { + "start": 52064.54, + "end": 52065.62, + "probability": 0.9297 + }, + { + "start": 52067.08, + "end": 52069.76, + "probability": 0.9951 + }, + { + "start": 52071.48, + "end": 52075.08, + "probability": 0.4413 + }, + { + "start": 52075.46, + "end": 52078.22, + "probability": 0.9498 + }, + { + "start": 52078.9, + "end": 52083.64, + "probability": 0.9844 + }, + { + "start": 52084.24, + "end": 52085.6, + "probability": 0.8955 + }, + { + "start": 52085.8, + "end": 52087.2, + "probability": 0.7334 + }, + { + "start": 52088.24, + "end": 52089.52, + "probability": 0.8511 + }, + { + "start": 52090.06, + "end": 52090.94, + "probability": 0.9051 + }, + { + "start": 52091.7, + "end": 52093.12, + "probability": 0.6364 + }, + { + "start": 52093.46, + "end": 52093.86, + "probability": 0.3629 + }, + { + "start": 52094.32, + "end": 52094.42, + "probability": 0.7999 + }, + { + "start": 52095.56, + "end": 52099.5, + "probability": 0.9193 + }, + { + "start": 52099.5, + "end": 52099.84, + "probability": 0.2639 + }, + { + "start": 52100.02, + "end": 52100.3, + "probability": 0.686 + }, + { + "start": 52100.54, + "end": 52101.54, + "probability": 0.9021 + }, + { + "start": 52101.68, + "end": 52102.94, + "probability": 0.8706 + }, + { + "start": 52102.94, + "end": 52103.58, + "probability": 0.712 + }, + { + "start": 52104.18, + "end": 52104.74, + "probability": 0.876 + }, + { + "start": 52105.96, + "end": 52112.06, + "probability": 0.7752 + }, + { + "start": 52112.22, + "end": 52116.54, + "probability": 0.9971 + }, + { + "start": 52117.56, + "end": 52119.04, + "probability": 0.9731 + }, + { + "start": 52119.16, + "end": 52123.08, + "probability": 0.9828 + }, + { + "start": 52123.74, + "end": 52126.88, + "probability": 0.9009 + }, + { + "start": 52127.68, + "end": 52130.12, + "probability": 0.9761 + }, + { + "start": 52130.58, + "end": 52133.08, + "probability": 0.9805 + }, + { + "start": 52133.92, + "end": 52134.68, + "probability": 0.9509 + }, + { + "start": 52135.48, + "end": 52136.76, + "probability": 0.9081 + }, + { + "start": 52138.04, + "end": 52141.94, + "probability": 0.9893 + }, + { + "start": 52143.48, + "end": 52148.82, + "probability": 0.9978 + }, + { + "start": 52148.92, + "end": 52150.06, + "probability": 0.8076 + }, + { + "start": 52151.74, + "end": 52152.66, + "probability": 0.876 + }, + { + "start": 52153.74, + "end": 52155.7, + "probability": 0.9478 + }, + { + "start": 52156.82, + "end": 52160.46, + "probability": 0.9897 + }, + { + "start": 52161.78, + "end": 52163.0, + "probability": 0.9357 + }, + { + "start": 52164.44, + "end": 52165.72, + "probability": 0.9441 + }, + { + "start": 52166.98, + "end": 52169.76, + "probability": 0.9863 + }, + { + "start": 52170.86, + "end": 52171.14, + "probability": 0.0736 + }, + { + "start": 52171.14, + "end": 52171.26, + "probability": 0.2986 + }, + { + "start": 52172.58, + "end": 52172.98, + "probability": 0.5941 + }, + { + "start": 52174.24, + "end": 52174.24, + "probability": 0.4444 + }, + { + "start": 52174.28, + "end": 52174.32, + "probability": 0.4294 + }, + { + "start": 52174.32, + "end": 52176.02, + "probability": 0.8849 + }, + { + "start": 52178.44, + "end": 52181.12, + "probability": 0.9588 + }, + { + "start": 52182.16, + "end": 52185.64, + "probability": 0.6869 + }, + { + "start": 52186.6, + "end": 52188.18, + "probability": 0.5861 + }, + { + "start": 52189.48, + "end": 52191.78, + "probability": 0.9893 + }, + { + "start": 52192.86, + "end": 52194.55, + "probability": 0.9282 + }, + { + "start": 52195.66, + "end": 52199.6, + "probability": 0.8581 + }, + { + "start": 52200.26, + "end": 52203.22, + "probability": 0.937 + }, + { + "start": 52203.84, + "end": 52205.14, + "probability": 0.662 + }, + { + "start": 52206.08, + "end": 52207.08, + "probability": 0.8979 + }, + { + "start": 52207.64, + "end": 52208.69, + "probability": 0.5879 + }, + { + "start": 52209.16, + "end": 52212.06, + "probability": 0.8467 + }, + { + "start": 52213.64, + "end": 52215.29, + "probability": 0.6167 + }, + { + "start": 52216.06, + "end": 52216.48, + "probability": 0.8201 + }, + { + "start": 52217.2, + "end": 52222.36, + "probability": 0.7349 + }, + { + "start": 52223.64, + "end": 52229.04, + "probability": 0.9995 + }, + { + "start": 52229.84, + "end": 52232.74, + "probability": 0.9409 + }, + { + "start": 52233.74, + "end": 52235.06, + "probability": 0.9596 + }, + { + "start": 52236.24, + "end": 52238.88, + "probability": 0.7084 + }, + { + "start": 52241.02, + "end": 52241.12, + "probability": 0.4541 + }, + { + "start": 52241.12, + "end": 52241.94, + "probability": 0.6312 + }, + { + "start": 52241.98, + "end": 52243.48, + "probability": 0.8356 + }, + { + "start": 52244.1, + "end": 52246.18, + "probability": 0.5978 + }, + { + "start": 52247.52, + "end": 52248.44, + "probability": 0.9343 + }, + { + "start": 52248.54, + "end": 52249.58, + "probability": 0.6581 + }, + { + "start": 52249.66, + "end": 52251.76, + "probability": 0.9317 + }, + { + "start": 52252.6, + "end": 52254.14, + "probability": 0.9617 + }, + { + "start": 52255.06, + "end": 52256.9, + "probability": 0.8512 + }, + { + "start": 52257.88, + "end": 52260.06, + "probability": 0.7863 + }, + { + "start": 52262.26, + "end": 52264.08, + "probability": 0.8422 + }, + { + "start": 52264.76, + "end": 52267.82, + "probability": 0.9979 + }, + { + "start": 52268.02, + "end": 52268.96, + "probability": 0.781 + }, + { + "start": 52269.62, + "end": 52271.26, + "probability": 0.9955 + }, + { + "start": 52272.12, + "end": 52274.62, + "probability": 0.9194 + }, + { + "start": 52275.84, + "end": 52277.64, + "probability": 0.9759 + }, + { + "start": 52278.66, + "end": 52280.8, + "probability": 0.9836 + }, + { + "start": 52281.58, + "end": 52281.86, + "probability": 0.3375 + }, + { + "start": 52283.36, + "end": 52285.28, + "probability": 0.9628 + }, + { + "start": 52287.1, + "end": 52289.54, + "probability": 0.9954 + }, + { + "start": 52290.04, + "end": 52291.76, + "probability": 0.9905 + }, + { + "start": 52292.88, + "end": 52294.56, + "probability": 0.998 + }, + { + "start": 52295.36, + "end": 52295.94, + "probability": 0.9614 + }, + { + "start": 52296.96, + "end": 52298.06, + "probability": 0.9863 + }, + { + "start": 52299.62, + "end": 52301.76, + "probability": 0.9973 + }, + { + "start": 52302.68, + "end": 52304.14, + "probability": 0.9653 + }, + { + "start": 52305.28, + "end": 52306.58, + "probability": 0.9712 + }, + { + "start": 52306.86, + "end": 52307.72, + "probability": 0.8397 + }, + { + "start": 52309.1, + "end": 52310.44, + "probability": 0.9943 + }, + { + "start": 52311.26, + "end": 52315.68, + "probability": 0.9514 + }, + { + "start": 52316.2, + "end": 52320.9, + "probability": 0.8312 + }, + { + "start": 52321.22, + "end": 52322.62, + "probability": 0.8975 + }, + { + "start": 52322.74, + "end": 52323.7, + "probability": 0.8525 + }, + { + "start": 52324.46, + "end": 52327.22, + "probability": 0.6615 + }, + { + "start": 52327.52, + "end": 52328.26, + "probability": 0.1267 + }, + { + "start": 52328.26, + "end": 52329.34, + "probability": 0.668 + }, + { + "start": 52329.5, + "end": 52330.12, + "probability": 0.9224 + }, + { + "start": 52330.14, + "end": 52331.88, + "probability": 0.5001 + }, + { + "start": 52331.96, + "end": 52333.08, + "probability": 0.9669 + }, + { + "start": 52333.94, + "end": 52335.38, + "probability": 0.7128 + }, + { + "start": 52337.66, + "end": 52338.22, + "probability": 0.0383 + }, + { + "start": 52338.22, + "end": 52338.68, + "probability": 0.2585 + }, + { + "start": 52339.18, + "end": 52339.94, + "probability": 0.7532 + }, + { + "start": 52340.2, + "end": 52341.6, + "probability": 0.5128 + }, + { + "start": 52341.64, + "end": 52343.26, + "probability": 0.4951 + }, + { + "start": 52343.34, + "end": 52348.92, + "probability": 0.9534 + }, + { + "start": 52349.64, + "end": 52351.6, + "probability": 0.9312 + }, + { + "start": 52351.64, + "end": 52352.62, + "probability": 0.8809 + }, + { + "start": 52353.56, + "end": 52354.82, + "probability": 0.9634 + }, + { + "start": 52355.42, + "end": 52358.0, + "probability": 0.9675 + }, + { + "start": 52359.48, + "end": 52360.46, + "probability": 0.7898 + }, + { + "start": 52360.56, + "end": 52362.24, + "probability": 0.9318 + }, + { + "start": 52362.34, + "end": 52367.37, + "probability": 0.9544 + }, + { + "start": 52367.54, + "end": 52368.44, + "probability": 0.8383 + }, + { + "start": 52368.72, + "end": 52369.74, + "probability": 0.8485 + }, + { + "start": 52370.7, + "end": 52371.74, + "probability": 0.9727 + }, + { + "start": 52373.06, + "end": 52373.44, + "probability": 0.9442 + }, + { + "start": 52374.12, + "end": 52375.06, + "probability": 0.8442 + }, + { + "start": 52375.8, + "end": 52377.04, + "probability": 0.8932 + }, + { + "start": 52377.9, + "end": 52379.54, + "probability": 0.9858 + }, + { + "start": 52380.72, + "end": 52382.4, + "probability": 0.9317 + }, + { + "start": 52382.62, + "end": 52382.99, + "probability": 0.0194 + }, + { + "start": 52383.72, + "end": 52384.8, + "probability": 0.7879 + }, + { + "start": 52384.94, + "end": 52387.92, + "probability": 0.9697 + }, + { + "start": 52388.62, + "end": 52388.66, + "probability": 0.0117 + }, + { + "start": 52388.66, + "end": 52393.46, + "probability": 0.7586 + }, + { + "start": 52394.04, + "end": 52397.48, + "probability": 0.6695 + }, + { + "start": 52398.44, + "end": 52401.48, + "probability": 0.94 + }, + { + "start": 52402.46, + "end": 52407.88, + "probability": 0.9354 + }, + { + "start": 52408.06, + "end": 52409.04, + "probability": 0.7432 + }, + { + "start": 52409.18, + "end": 52410.27, + "probability": 0.998 + }, + { + "start": 52411.04, + "end": 52411.93, + "probability": 0.965 + }, + { + "start": 52412.78, + "end": 52416.33, + "probability": 0.6497 + }, + { + "start": 52416.58, + "end": 52417.0, + "probability": 0.0044 + }, + { + "start": 52418.82, + "end": 52420.06, + "probability": 0.2831 + }, + { + "start": 52420.2, + "end": 52420.2, + "probability": 0.0287 + }, + { + "start": 52420.2, + "end": 52421.26, + "probability": 0.9697 + }, + { + "start": 52421.52, + "end": 52426.84, + "probability": 0.9921 + }, + { + "start": 52427.2, + "end": 52427.68, + "probability": 0.1464 + }, + { + "start": 52429.06, + "end": 52431.33, + "probability": 0.508 + }, + { + "start": 52432.54, + "end": 52434.8, + "probability": 0.9732 + }, + { + "start": 52435.74, + "end": 52436.93, + "probability": 0.98 + }, + { + "start": 52437.88, + "end": 52439.52, + "probability": 0.995 + }, + { + "start": 52439.62, + "end": 52440.06, + "probability": 0.5978 + }, + { + "start": 52440.74, + "end": 52441.58, + "probability": 0.8891 + }, + { + "start": 52441.82, + "end": 52442.44, + "probability": 0.6978 + }, + { + "start": 52442.52, + "end": 52443.28, + "probability": 0.2821 + }, + { + "start": 52443.9, + "end": 52445.22, + "probability": 0.9915 + }, + { + "start": 52445.24, + "end": 52445.85, + "probability": 0.1169 + }, + { + "start": 52446.48, + "end": 52448.98, + "probability": 0.8853 + }, + { + "start": 52449.82, + "end": 52451.72, + "probability": 0.9947 + }, + { + "start": 52451.84, + "end": 52454.44, + "probability": 0.9798 + }, + { + "start": 52455.52, + "end": 52458.0, + "probability": 0.9487 + }, + { + "start": 52458.84, + "end": 52460.34, + "probability": 0.9828 + }, + { + "start": 52461.68, + "end": 52464.74, + "probability": 0.9897 + }, + { + "start": 52465.84, + "end": 52468.4, + "probability": 0.8772 + }, + { + "start": 52468.98, + "end": 52471.54, + "probability": 0.9902 + }, + { + "start": 52472.06, + "end": 52474.64, + "probability": 0.992 + }, + { + "start": 52475.28, + "end": 52477.76, + "probability": 0.9888 + }, + { + "start": 52478.32, + "end": 52481.76, + "probability": 0.9955 + }, + { + "start": 52483.16, + "end": 52486.42, + "probability": 0.9632 + }, + { + "start": 52487.82, + "end": 52490.38, + "probability": 0.9916 + }, + { + "start": 52491.48, + "end": 52494.24, + "probability": 0.9927 + }, + { + "start": 52495.06, + "end": 52498.08, + "probability": 0.9091 + }, + { + "start": 52498.16, + "end": 52499.4, + "probability": 0.8646 + }, + { + "start": 52499.52, + "end": 52501.36, + "probability": 0.7867 + }, + { + "start": 52502.7, + "end": 52505.68, + "probability": 0.971 + }, + { + "start": 52505.76, + "end": 52507.09, + "probability": 0.6909 + }, + { + "start": 52508.36, + "end": 52512.2, + "probability": 0.9464 + }, + { + "start": 52512.7, + "end": 52514.06, + "probability": 0.9395 + }, + { + "start": 52516.56, + "end": 52518.56, + "probability": 0.7804 + }, + { + "start": 52519.92, + "end": 52522.02, + "probability": 0.9966 + }, + { + "start": 52523.12, + "end": 52525.7, + "probability": 0.8966 + }, + { + "start": 52527.6, + "end": 52533.96, + "probability": 0.9955 + }, + { + "start": 52535.1, + "end": 52536.88, + "probability": 0.7622 + }, + { + "start": 52538.28, + "end": 52539.27, + "probability": 0.9019 + }, + { + "start": 52539.56, + "end": 52540.28, + "probability": 0.9801 + }, + { + "start": 52541.78, + "end": 52543.08, + "probability": 0.9038 + }, + { + "start": 52544.66, + "end": 52545.64, + "probability": 0.4505 + }, + { + "start": 52545.68, + "end": 52546.54, + "probability": 0.7567 + }, + { + "start": 52548.24, + "end": 52550.08, + "probability": 0.9385 + }, + { + "start": 52551.08, + "end": 52554.08, + "probability": 0.835 + }, + { + "start": 52555.26, + "end": 52557.44, + "probability": 0.9205 + }, + { + "start": 52557.7, + "end": 52559.48, + "probability": 0.881 + }, + { + "start": 52559.56, + "end": 52563.72, + "probability": 0.853 + }, + { + "start": 52563.86, + "end": 52564.68, + "probability": 0.8394 + }, + { + "start": 52565.64, + "end": 52567.96, + "probability": 0.9963 + }, + { + "start": 52568.82, + "end": 52571.24, + "probability": 0.9967 + }, + { + "start": 52572.24, + "end": 52575.42, + "probability": 0.976 + }, + { + "start": 52576.32, + "end": 52579.24, + "probability": 0.9888 + }, + { + "start": 52580.12, + "end": 52581.62, + "probability": 0.9208 + }, + { + "start": 52583.06, + "end": 52587.5, + "probability": 0.997 + }, + { + "start": 52588.78, + "end": 52591.04, + "probability": 0.8227 + }, + { + "start": 52591.56, + "end": 52594.36, + "probability": 0.9341 + }, + { + "start": 52595.46, + "end": 52596.86, + "probability": 0.9956 + }, + { + "start": 52597.52, + "end": 52599.04, + "probability": 0.8647 + }, + { + "start": 52600.66, + "end": 52603.24, + "probability": 0.968 + }, + { + "start": 52603.86, + "end": 52606.29, + "probability": 0.9868 + }, + { + "start": 52607.4, + "end": 52609.74, + "probability": 0.9968 + }, + { + "start": 52610.72, + "end": 52613.2, + "probability": 0.9932 + }, + { + "start": 52614.12, + "end": 52614.82, + "probability": 0.7604 + }, + { + "start": 52615.02, + "end": 52617.72, + "probability": 0.6278 + }, + { + "start": 52618.46, + "end": 52621.76, + "probability": 0.9949 + }, + { + "start": 52621.76, + "end": 52624.38, + "probability": 0.9497 + }, + { + "start": 52625.4, + "end": 52627.24, + "probability": 0.9416 + }, + { + "start": 52628.1, + "end": 52628.9, + "probability": 0.752 + }, + { + "start": 52629.66, + "end": 52630.56, + "probability": 0.9488 + }, + { + "start": 52630.68, + "end": 52631.62, + "probability": 0.9192 + }, + { + "start": 52631.72, + "end": 52633.92, + "probability": 0.8311 + }, + { + "start": 52635.2, + "end": 52637.36, + "probability": 0.9903 + }, + { + "start": 52638.52, + "end": 52638.98, + "probability": 0.9301 + }, + { + "start": 52640.14, + "end": 52640.9, + "probability": 0.8622 + }, + { + "start": 52641.24, + "end": 52641.24, + "probability": 0.6682 + }, + { + "start": 52641.56, + "end": 52644.68, + "probability": 0.9905 + }, + { + "start": 52646.44, + "end": 52649.54, + "probability": 0.9451 + }, + { + "start": 52650.9, + "end": 52654.62, + "probability": 0.936 + }, + { + "start": 52655.22, + "end": 52656.92, + "probability": 0.8704 + }, + { + "start": 52657.7, + "end": 52659.52, + "probability": 0.9592 + }, + { + "start": 52660.88, + "end": 52664.1, + "probability": 0.9865 + }, + { + "start": 52665.38, + "end": 52667.46, + "probability": 0.9966 + }, + { + "start": 52668.48, + "end": 52669.21, + "probability": 0.8987 + }, + { + "start": 52671.98, + "end": 52674.98, + "probability": 0.9553 + }, + { + "start": 52676.58, + "end": 52680.22, + "probability": 0.9972 + }, + { + "start": 52681.22, + "end": 52681.91, + "probability": 0.9761 + }, + { + "start": 52683.76, + "end": 52687.01, + "probability": 0.9878 + }, + { + "start": 52689.26, + "end": 52691.38, + "probability": 0.7804 + }, + { + "start": 52691.42, + "end": 52692.22, + "probability": 0.8368 + }, + { + "start": 52692.44, + "end": 52693.18, + "probability": 0.9456 + }, + { + "start": 52693.26, + "end": 52693.86, + "probability": 0.9271 + }, + { + "start": 52694.42, + "end": 52695.96, + "probability": 0.954 + }, + { + "start": 52698.16, + "end": 52701.78, + "probability": 0.8604 + }, + { + "start": 52701.8, + "end": 52702.3, + "probability": 0.8906 + }, + { + "start": 52703.64, + "end": 52707.82, + "probability": 0.9778 + }, + { + "start": 52709.12, + "end": 52712.08, + "probability": 0.8132 + }, + { + "start": 52713.72, + "end": 52719.48, + "probability": 0.9417 + }, + { + "start": 52720.4, + "end": 52722.32, + "probability": 0.9833 + }, + { + "start": 52723.78, + "end": 52724.82, + "probability": 0.9651 + }, + { + "start": 52727.71, + "end": 52728.34, + "probability": 0.9624 + }, + { + "start": 52728.34, + "end": 52728.83, + "probability": 0.8034 + }, + { + "start": 52730.06, + "end": 52732.96, + "probability": 0.8093 + }, + { + "start": 52733.56, + "end": 52734.92, + "probability": 0.8901 + }, + { + "start": 52736.38, + "end": 52736.96, + "probability": 0.8844 + }, + { + "start": 52738.52, + "end": 52741.6, + "probability": 0.8664 + }, + { + "start": 52743.36, + "end": 52747.4, + "probability": 0.9567 + }, + { + "start": 52748.76, + "end": 52753.86, + "probability": 0.8299 + }, + { + "start": 52762.26, + "end": 52762.86, + "probability": 0.2064 + }, + { + "start": 52762.92, + "end": 52764.52, + "probability": 0.0873 + }, + { + "start": 52765.24, + "end": 52765.24, + "probability": 0.3368 + }, + { + "start": 52765.24, + "end": 52765.24, + "probability": 0.0172 + }, + { + "start": 52765.24, + "end": 52766.9, + "probability": 0.3256 + }, + { + "start": 52770.9, + "end": 52771.68, + "probability": 0.8262 + }, + { + "start": 52775.54, + "end": 52779.1, + "probability": 0.9788 + }, + { + "start": 52779.9, + "end": 52781.08, + "probability": 0.7232 + }, + { + "start": 52782.16, + "end": 52784.82, + "probability": 0.8141 + }, + { + "start": 52786.44, + "end": 52788.92, + "probability": 0.9948 + }, + { + "start": 52790.18, + "end": 52791.96, + "probability": 0.8347 + }, + { + "start": 52794.24, + "end": 52797.54, + "probability": 0.9906 + }, + { + "start": 52799.66, + "end": 52800.26, + "probability": 0.8646 + }, + { + "start": 52801.9, + "end": 52804.36, + "probability": 0.7449 + }, + { + "start": 52807.32, + "end": 52810.24, + "probability": 0.988 + }, + { + "start": 52811.94, + "end": 52813.62, + "probability": 0.9951 + }, + { + "start": 52813.68, + "end": 52815.12, + "probability": 0.8728 + }, + { + "start": 52815.28, + "end": 52817.54, + "probability": 0.8686 + }, + { + "start": 52818.54, + "end": 52820.4, + "probability": 0.9915 + }, + { + "start": 52821.38, + "end": 52822.54, + "probability": 0.8466 + }, + { + "start": 52823.44, + "end": 52824.78, + "probability": 0.8225 + }, + { + "start": 52825.58, + "end": 52826.86, + "probability": 0.7724 + }, + { + "start": 52827.48, + "end": 52828.38, + "probability": 0.7205 + }, + { + "start": 52829.74, + "end": 52830.38, + "probability": 0.9692 + }, + { + "start": 52831.18, + "end": 52833.56, + "probability": 0.9247 + }, + { + "start": 52834.8, + "end": 52837.78, + "probability": 0.9432 + }, + { + "start": 52839.14, + "end": 52841.1, + "probability": 0.9867 + }, + { + "start": 52841.34, + "end": 52845.56, + "probability": 0.9901 + }, + { + "start": 52845.6, + "end": 52846.3, + "probability": 0.2555 + }, + { + "start": 52846.96, + "end": 52847.59, + "probability": 0.8579 + }, + { + "start": 52848.24, + "end": 52850.46, + "probability": 0.9854 + }, + { + "start": 52851.74, + "end": 52854.16, + "probability": 0.9294 + }, + { + "start": 52854.98, + "end": 52859.58, + "probability": 0.9404 + }, + { + "start": 52861.06, + "end": 52862.86, + "probability": 0.9927 + }, + { + "start": 52864.42, + "end": 52869.28, + "probability": 0.8295 + }, + { + "start": 52869.56, + "end": 52871.7, + "probability": 0.9497 + }, + { + "start": 52873.18, + "end": 52876.54, + "probability": 0.8888 + }, + { + "start": 52877.16, + "end": 52879.6, + "probability": 0.5352 + }, + { + "start": 52880.52, + "end": 52882.78, + "probability": 0.9968 + }, + { + "start": 52883.38, + "end": 52888.7, + "probability": 0.9744 + }, + { + "start": 52889.76, + "end": 52890.5, + "probability": 0.9741 + }, + { + "start": 52893.12, + "end": 52895.48, + "probability": 0.9403 + }, + { + "start": 52895.68, + "end": 52899.72, + "probability": 0.9756 + }, + { + "start": 52900.18, + "end": 52901.09, + "probability": 0.7815 + }, + { + "start": 52902.88, + "end": 52906.02, + "probability": 0.98 + }, + { + "start": 52907.14, + "end": 52908.28, + "probability": 0.7919 + }, + { + "start": 52908.7, + "end": 52913.18, + "probability": 0.9217 + }, + { + "start": 52914.2, + "end": 52916.52, + "probability": 0.9963 + }, + { + "start": 52917.84, + "end": 52919.28, + "probability": 0.9771 + }, + { + "start": 52920.32, + "end": 52922.26, + "probability": 0.9888 + }, + { + "start": 52923.24, + "end": 52924.2, + "probability": 0.5658 + }, + { + "start": 52924.28, + "end": 52926.7, + "probability": 0.9817 + }, + { + "start": 52927.18, + "end": 52928.77, + "probability": 0.9648 + }, + { + "start": 52929.82, + "end": 52932.04, + "probability": 0.6887 + }, + { + "start": 52933.1, + "end": 52935.92, + "probability": 0.8782 + }, + { + "start": 52936.24, + "end": 52938.74, + "probability": 0.9571 + }, + { + "start": 52941.64, + "end": 52943.0, + "probability": 0.7083 + }, + { + "start": 52944.12, + "end": 52945.96, + "probability": 0.9626 + }, + { + "start": 52946.12, + "end": 52946.36, + "probability": 0.0222 + }, + { + "start": 52946.36, + "end": 52946.36, + "probability": 0.0426 + }, + { + "start": 52946.36, + "end": 52947.18, + "probability": 0.6053 + }, + { + "start": 52949.3, + "end": 52950.46, + "probability": 0.0363 + }, + { + "start": 52951.42, + "end": 52952.3, + "probability": 0.2723 + }, + { + "start": 52952.3, + "end": 52952.68, + "probability": 0.2588 + }, + { + "start": 52953.2, + "end": 52953.42, + "probability": 0.0825 + }, + { + "start": 52953.42, + "end": 52954.84, + "probability": 0.67 + }, + { + "start": 52955.42, + "end": 52955.86, + "probability": 0.1126 + }, + { + "start": 52956.3, + "end": 52957.1, + "probability": 0.7684 + }, + { + "start": 52957.52, + "end": 52958.62, + "probability": 0.0701 + }, + { + "start": 52959.1, + "end": 52959.68, + "probability": 0.4269 + }, + { + "start": 52961.16, + "end": 52963.78, + "probability": 0.5537 + }, + { + "start": 52963.98, + "end": 52966.0, + "probability": 0.5063 + }, + { + "start": 52966.14, + "end": 52967.1, + "probability": 0.6417 + }, + { + "start": 52968.44, + "end": 52968.54, + "probability": 0.6433 + }, + { + "start": 52970.54, + "end": 52971.58, + "probability": 0.9683 + }, + { + "start": 52972.64, + "end": 52973.6, + "probability": 0.6331 + }, + { + "start": 52975.0, + "end": 52976.42, + "probability": 0.7622 + }, + { + "start": 52977.02, + "end": 52977.58, + "probability": 0.3928 + }, + { + "start": 52978.01, + "end": 52980.18, + "probability": 0.4977 + }, + { + "start": 52980.18, + "end": 52980.32, + "probability": 0.6946 + }, + { + "start": 52980.42, + "end": 52981.46, + "probability": 0.8777 + }, + { + "start": 52981.54, + "end": 52981.92, + "probability": 0.2222 + }, + { + "start": 52982.68, + "end": 52984.52, + "probability": 0.5787 + }, + { + "start": 52984.8, + "end": 52984.82, + "probability": 0.4317 + }, + { + "start": 52984.82, + "end": 52985.38, + "probability": 0.7327 + }, + { + "start": 52985.6, + "end": 52986.26, + "probability": 0.6211 + }, + { + "start": 52987.28, + "end": 52988.18, + "probability": 0.2168 + }, + { + "start": 52988.18, + "end": 52988.87, + "probability": 0.5726 + }, + { + "start": 52990.02, + "end": 52990.62, + "probability": 0.0392 + }, + { + "start": 52990.62, + "end": 52990.88, + "probability": 0.0126 + }, + { + "start": 52991.54, + "end": 52992.44, + "probability": 0.7113 + }, + { + "start": 52992.6, + "end": 52994.44, + "probability": 0.9761 + }, + { + "start": 52994.44, + "end": 52994.73, + "probability": 0.1121 + }, + { + "start": 52996.12, + "end": 53000.12, + "probability": 0.9685 + }, + { + "start": 53000.88, + "end": 53002.4, + "probability": 0.9612 + }, + { + "start": 53003.18, + "end": 53004.16, + "probability": 0.8775 + }, + { + "start": 53005.18, + "end": 53008.96, + "probability": 0.8471 + }, + { + "start": 53009.59, + "end": 53010.84, + "probability": 0.8559 + }, + { + "start": 53011.0, + "end": 53011.76, + "probability": 0.945 + }, + { + "start": 53011.86, + "end": 53012.76, + "probability": 0.9437 + }, + { + "start": 53013.56, + "end": 53015.72, + "probability": 0.9684 + }, + { + "start": 53016.98, + "end": 53018.16, + "probability": 0.9845 + }, + { + "start": 53019.1, + "end": 53022.49, + "probability": 0.9806 + }, + { + "start": 53023.6, + "end": 53025.88, + "probability": 0.9747 + }, + { + "start": 53026.78, + "end": 53028.4, + "probability": 0.9783 + }, + { + "start": 53030.24, + "end": 53031.3, + "probability": 0.9642 + }, + { + "start": 53031.68, + "end": 53032.5, + "probability": 0.363 + }, + { + "start": 53033.06, + "end": 53034.51, + "probability": 0.9756 + }, + { + "start": 53035.72, + "end": 53037.74, + "probability": 0.9507 + }, + { + "start": 53039.22, + "end": 53040.42, + "probability": 0.9692 + }, + { + "start": 53040.7, + "end": 53043.08, + "probability": 0.996 + }, + { + "start": 53043.78, + "end": 53045.9, + "probability": 0.9991 + }, + { + "start": 53046.96, + "end": 53050.66, + "probability": 0.9906 + }, + { + "start": 53051.44, + "end": 53052.46, + "probability": 0.8598 + }, + { + "start": 53052.6, + "end": 53053.02, + "probability": 0.8317 + }, + { + "start": 53053.86, + "end": 53055.58, + "probability": 0.9018 + }, + { + "start": 53055.68, + "end": 53057.44, + "probability": 0.9549 + }, + { + "start": 53057.46, + "end": 53058.42, + "probability": 0.8472 + }, + { + "start": 53059.22, + "end": 53059.62, + "probability": 0.6091 + }, + { + "start": 53061.26, + "end": 53063.34, + "probability": 0.7645 + }, + { + "start": 53063.42, + "end": 53067.88, + "probability": 0.9944 + }, + { + "start": 53068.9, + "end": 53074.22, + "probability": 0.9982 + }, + { + "start": 53075.4, + "end": 53077.66, + "probability": 0.9954 + }, + { + "start": 53079.02, + "end": 53081.1, + "probability": 0.7951 + }, + { + "start": 53081.18, + "end": 53083.02, + "probability": 0.9934 + }, + { + "start": 53084.0, + "end": 53085.46, + "probability": 0.9292 + }, + { + "start": 53085.64, + "end": 53087.0, + "probability": 0.9529 + }, + { + "start": 53087.48, + "end": 53090.28, + "probability": 0.9451 + }, + { + "start": 53091.6, + "end": 53095.26, + "probability": 0.9793 + }, + { + "start": 53096.26, + "end": 53097.7, + "probability": 0.8687 + }, + { + "start": 53097.84, + "end": 53098.82, + "probability": 0.9848 + }, + { + "start": 53103.34, + "end": 53109.4, + "probability": 0.9896 + }, + { + "start": 53110.38, + "end": 53111.68, + "probability": 0.9801 + }, + { + "start": 53112.94, + "end": 53116.68, + "probability": 0.9859 + }, + { + "start": 53117.86, + "end": 53119.66, + "probability": 0.9971 + }, + { + "start": 53120.88, + "end": 53123.42, + "probability": 0.957 + }, + { + "start": 53124.6, + "end": 53128.6, + "probability": 0.9545 + }, + { + "start": 53130.04, + "end": 53133.38, + "probability": 0.9971 + }, + { + "start": 53134.68, + "end": 53140.64, + "probability": 0.9946 + }, + { + "start": 53141.62, + "end": 53143.92, + "probability": 0.9622 + }, + { + "start": 53145.3, + "end": 53147.22, + "probability": 0.7269 + }, + { + "start": 53148.36, + "end": 53151.34, + "probability": 0.9891 + }, + { + "start": 53152.62, + "end": 53153.88, + "probability": 0.6165 + }, + { + "start": 53155.6, + "end": 53158.04, + "probability": 0.9739 + }, + { + "start": 53158.18, + "end": 53160.0, + "probability": 0.9263 + }, + { + "start": 53160.76, + "end": 53162.58, + "probability": 0.5104 + }, + { + "start": 53164.12, + "end": 53166.9, + "probability": 0.9012 + }, + { + "start": 53167.62, + "end": 53169.92, + "probability": 0.997 + }, + { + "start": 53171.0, + "end": 53174.22, + "probability": 0.9745 + }, + { + "start": 53175.02, + "end": 53175.96, + "probability": 0.7241 + }, + { + "start": 53176.1, + "end": 53177.92, + "probability": 0.9936 + }, + { + "start": 53178.56, + "end": 53180.0, + "probability": 0.8266 + }, + { + "start": 53180.53, + "end": 53182.88, + "probability": 0.8941 + }, + { + "start": 53183.02, + "end": 53184.0, + "probability": 0.9388 + }, + { + "start": 53184.88, + "end": 53185.84, + "probability": 0.9264 + }, + { + "start": 53185.96, + "end": 53187.58, + "probability": 0.9321 + }, + { + "start": 53188.82, + "end": 53189.22, + "probability": 0.6947 + }, + { + "start": 53190.66, + "end": 53192.72, + "probability": 0.2686 + }, + { + "start": 53194.8, + "end": 53195.0, + "probability": 0.1661 + }, + { + "start": 53195.78, + "end": 53203.2, + "probability": 0.9885 + }, + { + "start": 53203.3, + "end": 53204.12, + "probability": 0.6872 + }, + { + "start": 53205.18, + "end": 53206.4, + "probability": 0.8979 + }, + { + "start": 53206.58, + "end": 53210.4, + "probability": 0.9962 + }, + { + "start": 53211.12, + "end": 53212.44, + "probability": 0.8901 + }, + { + "start": 53213.62, + "end": 53217.64, + "probability": 0.9573 + }, + { + "start": 53218.9, + "end": 53220.46, + "probability": 0.9408 + }, + { + "start": 53221.3, + "end": 53223.3, + "probability": 0.918 + }, + { + "start": 53224.32, + "end": 53227.84, + "probability": 0.9717 + }, + { + "start": 53230.98, + "end": 53232.47, + "probability": 0.6878 + }, + { + "start": 53234.52, + "end": 53238.48, + "probability": 0.1023 + }, + { + "start": 53238.48, + "end": 53239.48, + "probability": 0.9821 + }, + { + "start": 53240.78, + "end": 53242.12, + "probability": 0.6686 + }, + { + "start": 53242.12, + "end": 53243.1, + "probability": 0.3703 + }, + { + "start": 53243.7, + "end": 53244.05, + "probability": 0.2243 + }, + { + "start": 53244.06, + "end": 53248.06, + "probability": 0.075 + }, + { + "start": 53248.86, + "end": 53249.2, + "probability": 0.2104 + }, + { + "start": 53249.2, + "end": 53249.58, + "probability": 0.0045 + }, + { + "start": 53250.46, + "end": 53253.66, + "probability": 0.4058 + }, + { + "start": 53254.48, + "end": 53254.52, + "probability": 0.017 + }, + { + "start": 53255.26, + "end": 53256.1, + "probability": 0.769 + }, + { + "start": 53256.24, + "end": 53256.64, + "probability": 0.0226 + }, + { + "start": 53257.68, + "end": 53257.86, + "probability": 0.4291 + }, + { + "start": 53258.76, + "end": 53260.82, + "probability": 0.1337 + }, + { + "start": 53261.84, + "end": 53263.2, + "probability": 0.8706 + }, + { + "start": 53265.58, + "end": 53268.74, + "probability": 0.9729 + }, + { + "start": 53269.5, + "end": 53270.72, + "probability": 0.3528 + }, + { + "start": 53271.33, + "end": 53276.44, + "probability": 0.7709 + }, + { + "start": 53277.2, + "end": 53279.04, + "probability": 0.9937 + }, + { + "start": 53281.28, + "end": 53282.26, + "probability": 0.0007 + }, + { + "start": 53282.88, + "end": 53282.88, + "probability": 0.3547 + }, + { + "start": 53283.76, + "end": 53286.3, + "probability": 0.1617 + }, + { + "start": 53287.32, + "end": 53287.5, + "probability": 0.0113 + }, + { + "start": 53289.0, + "end": 53290.3, + "probability": 0.0605 + }, + { + "start": 53292.14, + "end": 53293.12, + "probability": 0.0257 + }, + { + "start": 53296.48, + "end": 53297.25, + "probability": 0.1993 + }, + { + "start": 53297.38, + "end": 53297.38, + "probability": 0.0275 + }, + { + "start": 53297.98, + "end": 53298.02, + "probability": 0.0111 + }, + { + "start": 53298.02, + "end": 53298.4, + "probability": 0.0805 + }, + { + "start": 53298.4, + "end": 53298.86, + "probability": 0.1015 + }, + { + "start": 53299.72, + "end": 53300.9, + "probability": 0.279 + }, + { + "start": 53302.82, + "end": 53303.68, + "probability": 0.0194 + }, + { + "start": 53309.05, + "end": 53312.4, + "probability": 0.0216 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.0, + "end": 53389.0, + "probability": 0.0 + }, + { + "start": 53389.18, + "end": 53389.84, + "probability": 0.0716 + }, + { + "start": 53391.38, + "end": 53393.36, + "probability": 0.6217 + }, + { + "start": 53394.12, + "end": 53394.66, + "probability": 0.8589 + }, + { + "start": 53394.8, + "end": 53395.36, + "probability": 0.8656 + }, + { + "start": 53396.68, + "end": 53398.06, + "probability": 0.7651 + }, + { + "start": 53398.18, + "end": 53399.01, + "probability": 0.8037 + }, + { + "start": 53401.3, + "end": 53403.46, + "probability": 0.0337 + }, + { + "start": 53403.54, + "end": 53405.16, + "probability": 0.3015 + }, + { + "start": 53405.64, + "end": 53405.88, + "probability": 0.625 + }, + { + "start": 53405.88, + "end": 53408.42, + "probability": 0.3272 + }, + { + "start": 53414.12, + "end": 53414.54, + "probability": 0.047 + }, + { + "start": 53414.54, + "end": 53414.54, + "probability": 0.022 + }, + { + "start": 53414.54, + "end": 53414.54, + "probability": 0.0675 + }, + { + "start": 53414.54, + "end": 53414.54, + "probability": 0.02 + }, + { + "start": 53414.54, + "end": 53414.54, + "probability": 0.3073 + }, + { + "start": 53414.54, + "end": 53414.54, + "probability": 0.2861 + }, + { + "start": 53414.54, + "end": 53415.0, + "probability": 0.7061 + }, + { + "start": 53415.84, + "end": 53417.94, + "probability": 0.8516 + }, + { + "start": 53419.34, + "end": 53421.1, + "probability": 0.7618 + }, + { + "start": 53422.44, + "end": 53425.26, + "probability": 0.6614 + }, + { + "start": 53425.92, + "end": 53427.3, + "probability": 0.924 + }, + { + "start": 53428.22, + "end": 53429.38, + "probability": 0.9287 + }, + { + "start": 53429.72, + "end": 53433.34, + "probability": 0.8794 + }, + { + "start": 53433.82, + "end": 53434.1, + "probability": 0.8155 + }, + { + "start": 53434.24, + "end": 53434.62, + "probability": 0.6149 + }, + { + "start": 53434.94, + "end": 53436.36, + "probability": 0.055 + }, + { + "start": 53436.92, + "end": 53437.3, + "probability": 0.0766 + }, + { + "start": 53437.94, + "end": 53438.16, + "probability": 0.0073 + }, + { + "start": 53438.16, + "end": 53438.16, + "probability": 0.0162 + }, + { + "start": 53438.16, + "end": 53439.94, + "probability": 0.639 + }, + { + "start": 53440.74, + "end": 53440.78, + "probability": 0.0926 + }, + { + "start": 53440.78, + "end": 53442.44, + "probability": 0.9832 + }, + { + "start": 53443.94, + "end": 53444.26, + "probability": 0.7728 + }, + { + "start": 53444.56, + "end": 53448.1, + "probability": 0.1917 + }, + { + "start": 53449.12, + "end": 53450.96, + "probability": 0.4041 + }, + { + "start": 53451.24, + "end": 53452.92, + "probability": 0.6998 + }, + { + "start": 53453.36, + "end": 53456.62, + "probability": 0.1148 + }, + { + "start": 53458.54, + "end": 53459.04, + "probability": 0.3706 + }, + { + "start": 53461.73, + "end": 53463.48, + "probability": 0.7996 + }, + { + "start": 53464.26, + "end": 53465.74, + "probability": 0.5605 + }, + { + "start": 53469.86, + "end": 53474.6, + "probability": 0.6008 + }, + { + "start": 53476.6, + "end": 53477.68, + "probability": 0.1303 + }, + { + "start": 53477.92, + "end": 53480.36, + "probability": 0.7281 + }, + { + "start": 53480.36, + "end": 53481.26, + "probability": 0.946 + }, + { + "start": 53481.26, + "end": 53485.22, + "probability": 0.6679 + }, + { + "start": 53487.8, + "end": 53488.16, + "probability": 0.466 + }, + { + "start": 53489.14, + "end": 53489.58, + "probability": 0.3678 + }, + { + "start": 53490.28, + "end": 53491.77, + "probability": 0.9603 + }, + { + "start": 53493.24, + "end": 53494.08, + "probability": 0.0167 + }, + { + "start": 53494.78, + "end": 53495.42, + "probability": 0.0113 + }, + { + "start": 53495.42, + "end": 53495.63, + "probability": 0.0353 + }, + { + "start": 53496.68, + "end": 53498.38, + "probability": 0.4606 + }, + { + "start": 53498.66, + "end": 53498.84, + "probability": 0.3822 + }, + { + "start": 53499.02, + "end": 53499.76, + "probability": 0.3855 + }, + { + "start": 53500.5, + "end": 53502.12, + "probability": 0.039 + }, + { + "start": 53502.66, + "end": 53502.76, + "probability": 0.0905 + }, + { + "start": 53502.92, + "end": 53504.16, + "probability": 0.2834 + }, + { + "start": 53508.86, + "end": 53516.48, + "probability": 0.4179 + }, + { + "start": 53516.88, + "end": 53518.16, + "probability": 0.3999 + }, + { + "start": 53519.21, + "end": 53519.56, + "probability": 0.667 + }, + { + "start": 53519.56, + "end": 53520.54, + "probability": 0.276 + }, + { + "start": 53520.82, + "end": 53523.02, + "probability": 0.6538 + }, + { + "start": 53524.6, + "end": 53529.72, + "probability": 0.4722 + }, + { + "start": 53531.04, + "end": 53532.28, + "probability": 0.5952 + }, + { + "start": 53532.38, + "end": 53534.12, + "probability": 0.2265 + }, + { + "start": 53534.32, + "end": 53536.56, + "probability": 0.0556 + }, + { + "start": 53536.58, + "end": 53538.81, + "probability": 0.4299 + }, + { + "start": 53539.2, + "end": 53541.38, + "probability": 0.8638 + }, + { + "start": 53541.52, + "end": 53543.9, + "probability": 0.9913 + }, + { + "start": 53545.22, + "end": 53546.88, + "probability": 0.8596 + }, + { + "start": 53547.76, + "end": 53548.29, + "probability": 0.4392 + }, + { + "start": 53549.12, + "end": 53551.92, + "probability": 0.66 + }, + { + "start": 53552.26, + "end": 53556.22, + "probability": 0.5304 + }, + { + "start": 53556.44, + "end": 53559.6, + "probability": 0.3749 + }, + { + "start": 53559.6, + "end": 53560.65, + "probability": 0.0754 + }, + { + "start": 53562.12, + "end": 53563.66, + "probability": 0.7156 + }, + { + "start": 53563.82, + "end": 53565.94, + "probability": 0.9717 + }, + { + "start": 53566.14, + "end": 53571.14, + "probability": 0.9553 + }, + { + "start": 53571.56, + "end": 53573.96, + "probability": 0.9863 + }, + { + "start": 53574.34, + "end": 53576.24, + "probability": 0.9801 + }, + { + "start": 53577.34, + "end": 53578.44, + "probability": 0.9549 + }, + { + "start": 53578.66, + "end": 53579.98, + "probability": 0.9902 + }, + { + "start": 53580.48, + "end": 53581.12, + "probability": 0.9741 + }, + { + "start": 53583.54, + "end": 53587.98, + "probability": 0.9924 + }, + { + "start": 53588.74, + "end": 53589.8, + "probability": 0.8429 + }, + { + "start": 53591.44, + "end": 53592.96, + "probability": 0.8461 + }, + { + "start": 53593.04, + "end": 53593.53, + "probability": 0.7031 + }, + { + "start": 53593.78, + "end": 53598.56, + "probability": 0.8111 + }, + { + "start": 53598.76, + "end": 53599.34, + "probability": 0.8531 + }, + { + "start": 53599.74, + "end": 53602.63, + "probability": 0.9902 + }, + { + "start": 53605.04, + "end": 53605.84, + "probability": 0.3237 + }, + { + "start": 53607.38, + "end": 53608.28, + "probability": 0.6967 + }, + { + "start": 53610.99, + "end": 53613.52, + "probability": 0.5468 + }, + { + "start": 53613.68, + "end": 53616.72, + "probability": 0.7778 + }, + { + "start": 53617.8, + "end": 53621.82, + "probability": 0.9738 + }, + { + "start": 53624.14, + "end": 53625.52, + "probability": 0.7202 + }, + { + "start": 53626.5, + "end": 53629.14, + "probability": 0.6143 + }, + { + "start": 53629.5, + "end": 53632.52, + "probability": 0.735 + }, + { + "start": 53632.52, + "end": 53633.64, + "probability": 0.3391 + }, + { + "start": 53634.2, + "end": 53634.52, + "probability": 0.7808 + }, + { + "start": 53634.56, + "end": 53635.17, + "probability": 0.9263 + }, + { + "start": 53636.0, + "end": 53636.62, + "probability": 0.0332 + }, + { + "start": 53637.52, + "end": 53639.07, + "probability": 0.9845 + }, + { + "start": 53639.3, + "end": 53641.38, + "probability": 0.8147 + }, + { + "start": 53642.32, + "end": 53646.48, + "probability": 0.6532 + }, + { + "start": 53647.0, + "end": 53649.78, + "probability": 0.4541 + }, + { + "start": 53650.34, + "end": 53650.86, + "probability": 0.4912 + }, + { + "start": 53652.56, + "end": 53655.24, + "probability": 0.7598 + }, + { + "start": 53661.77, + "end": 53664.0, + "probability": 0.2142 + }, + { + "start": 53669.5, + "end": 53670.12, + "probability": 0.1143 + }, + { + "start": 53673.05, + "end": 53675.62, + "probability": 0.712 + }, + { + "start": 53676.64, + "end": 53679.4, + "probability": 0.8681 + }, + { + "start": 53680.28, + "end": 53683.2, + "probability": 0.9907 + }, + { + "start": 53683.88, + "end": 53689.5, + "probability": 0.8763 + }, + { + "start": 53690.22, + "end": 53691.56, + "probability": 0.978 + }, + { + "start": 53691.88, + "end": 53692.86, + "probability": 0.5289 + }, + { + "start": 53693.96, + "end": 53696.96, + "probability": 0.8003 + }, + { + "start": 53697.5, + "end": 53698.98, + "probability": 0.6664 + }, + { + "start": 53699.26, + "end": 53699.88, + "probability": 0.8447 + }, + { + "start": 53700.58, + "end": 53701.88, + "probability": 0.7632 + }, + { + "start": 53701.88, + "end": 53702.72, + "probability": 0.0242 + }, + { + "start": 53703.08, + "end": 53704.34, + "probability": 0.3337 + }, + { + "start": 53704.38, + "end": 53706.84, + "probability": 0.6089 + }, + { + "start": 53706.92, + "end": 53710.72, + "probability": 0.0437 + }, + { + "start": 53713.38, + "end": 53713.94, + "probability": 0.0432 + }, + { + "start": 53717.54, + "end": 53722.0, + "probability": 0.039 + }, + { + "start": 53724.1, + "end": 53726.66, + "probability": 0.1232 + }, + { + "start": 53727.14, + "end": 53727.26, + "probability": 0.258 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.0, + "end": 53815.0, + "probability": 0.0 + }, + { + "start": 53815.52, + "end": 53819.04, + "probability": 0.4861 + }, + { + "start": 53819.62, + "end": 53824.44, + "probability": 0.8142 + }, + { + "start": 53824.92, + "end": 53828.6, + "probability": 0.2238 + }, + { + "start": 53829.6, + "end": 53829.6, + "probability": 0.4409 + }, + { + "start": 53829.6, + "end": 53829.8, + "probability": 0.0646 + }, + { + "start": 53829.88, + "end": 53831.34, + "probability": 0.3721 + }, + { + "start": 53832.12, + "end": 53834.18, + "probability": 0.0814 + }, + { + "start": 53834.88, + "end": 53836.14, + "probability": 0.2594 + }, + { + "start": 53836.88, + "end": 53837.92, + "probability": 0.0242 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.0, + "end": 53937.0, + "probability": 0.0 + }, + { + "start": 53937.7, + "end": 53938.12, + "probability": 0.0291 + }, + { + "start": 53938.12, + "end": 53938.12, + "probability": 0.5251 + }, + { + "start": 53938.12, + "end": 53939.9, + "probability": 0.348 + }, + { + "start": 53941.27, + "end": 53944.0, + "probability": 0.8529 + }, + { + "start": 53944.42, + "end": 53945.58, + "probability": 0.5722 + }, + { + "start": 53945.78, + "end": 53948.1, + "probability": 0.6292 + }, + { + "start": 53948.58, + "end": 53949.98, + "probability": 0.0164 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.0, + "end": 54068.0, + "probability": 0.0 + }, + { + "start": 54068.28, + "end": 54068.9, + "probability": 0.0105 + }, + { + "start": 54074.33, + "end": 54077.58, + "probability": 0.125 + }, + { + "start": 54077.82, + "end": 54077.82, + "probability": 0.0468 + }, + { + "start": 54079.34, + "end": 54081.07, + "probability": 0.0173 + }, + { + "start": 54084.42, + "end": 54088.6, + "probability": 0.0524 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.0, + "end": 54188.0, + "probability": 0.0 + }, + { + "start": 54188.14, + "end": 54189.2, + "probability": 0.2441 + }, + { + "start": 54189.22, + "end": 54194.42, + "probability": 0.5526 + }, + { + "start": 54194.64, + "end": 54197.62, + "probability": 0.4775 + }, + { + "start": 54198.08, + "end": 54199.3, + "probability": 0.6652 + }, + { + "start": 54200.86, + "end": 54201.49, + "probability": 0.028 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.0, + "end": 54308.0, + "probability": 0.0 + }, + { + "start": 54308.13, + "end": 54308.38, + "probability": 0.1232 + }, + { + "start": 54308.38, + "end": 54308.78, + "probability": 0.0511 + }, + { + "start": 54309.78, + "end": 54311.4, + "probability": 0.864 + }, + { + "start": 54311.6, + "end": 54313.78, + "probability": 0.457 + }, + { + "start": 54314.8, + "end": 54316.46, + "probability": 0.9769 + }, + { + "start": 54317.08, + "end": 54320.28, + "probability": 0.8597 + }, + { + "start": 54321.42, + "end": 54323.04, + "probability": 0.8651 + }, + { + "start": 54324.48, + "end": 54325.82, + "probability": 0.632 + }, + { + "start": 54326.44, + "end": 54328.42, + "probability": 0.5645 + }, + { + "start": 54328.42, + "end": 54333.0, + "probability": 0.4574 + }, + { + "start": 54334.98, + "end": 54339.68, + "probability": 0.7027 + }, + { + "start": 54340.72, + "end": 54342.18, + "probability": 0.4258 + }, + { + "start": 54342.2, + "end": 54343.94, + "probability": 0.8146 + }, + { + "start": 54344.38, + "end": 54346.28, + "probability": 0.6976 + }, + { + "start": 54347.34, + "end": 54348.34, + "probability": 0.8955 + }, + { + "start": 54348.5, + "end": 54351.68, + "probability": 0.8591 + }, + { + "start": 54352.74, + "end": 54358.6, + "probability": 0.6947 + }, + { + "start": 54359.76, + "end": 54361.58, + "probability": 0.9794 + }, + { + "start": 54361.94, + "end": 54366.42, + "probability": 0.8739 + }, + { + "start": 54368.02, + "end": 54370.92, + "probability": 0.9193 + }, + { + "start": 54371.58, + "end": 54373.86, + "probability": 0.0618 + }, + { + "start": 54374.22, + "end": 54376.14, + "probability": 0.7409 + }, + { + "start": 54376.26, + "end": 54378.16, + "probability": 0.6027 + }, + { + "start": 54378.34, + "end": 54379.74, + "probability": 0.7904 + }, + { + "start": 54379.74, + "end": 54382.52, + "probability": 0.2241 + }, + { + "start": 54389.9, + "end": 54392.14, + "probability": 0.6465 + }, + { + "start": 54392.72, + "end": 54393.8, + "probability": 0.6397 + }, + { + "start": 54393.8, + "end": 54394.68, + "probability": 0.5771 + }, + { + "start": 54395.69, + "end": 54399.22, + "probability": 0.8494 + }, + { + "start": 54404.37, + "end": 54406.88, + "probability": 0.4208 + }, + { + "start": 54406.98, + "end": 54407.32, + "probability": 0.1505 + }, + { + "start": 54407.42, + "end": 54410.24, + "probability": 0.9292 + }, + { + "start": 54410.64, + "end": 54412.4, + "probability": 0.3967 + }, + { + "start": 54419.7, + "end": 54421.38, + "probability": 0.399 + }, + { + "start": 54421.38, + "end": 54422.58, + "probability": 0.4793 + }, + { + "start": 54423.5, + "end": 54424.84, + "probability": 0.2027 + }, + { + "start": 54424.84, + "end": 54425.54, + "probability": 0.481 + }, + { + "start": 54432.35, + "end": 54435.0, + "probability": 0.2359 + }, + { + "start": 54435.56, + "end": 54437.92, + "probability": 0.404 + }, + { + "start": 54438.24, + "end": 54441.7, + "probability": 0.2105 + }, + { + "start": 54442.02, + "end": 54444.18, + "probability": 0.6791 + }, + { + "start": 54445.3, + "end": 54448.96, + "probability": 0.8499 + }, + { + "start": 54450.28, + "end": 54452.8, + "probability": 0.9639 + }, + { + "start": 54452.8, + "end": 54454.48, + "probability": 0.9917 + }, + { + "start": 54455.88, + "end": 54459.57, + "probability": 0.9409 + }, + { + "start": 54461.0, + "end": 54465.3, + "probability": 0.9449 + }, + { + "start": 54466.1, + "end": 54469.02, + "probability": 0.9989 + }, + { + "start": 54470.18, + "end": 54471.2, + "probability": 0.9851 + }, + { + "start": 54471.58, + "end": 54472.48, + "probability": 0.2556 + }, + { + "start": 54472.58, + "end": 54473.32, + "probability": 0.2438 + }, + { + "start": 54473.62, + "end": 54474.91, + "probability": 0.5441 + }, + { + "start": 54475.16, + "end": 54475.92, + "probability": 0.3499 + }, + { + "start": 54476.02, + "end": 54476.48, + "probability": 0.1497 + }, + { + "start": 54476.62, + "end": 54477.04, + "probability": 0.6209 + }, + { + "start": 54477.36, + "end": 54480.2, + "probability": 0.3724 + }, + { + "start": 54480.26, + "end": 54481.98, + "probability": 0.4387 + }, + { + "start": 54482.54, + "end": 54483.36, + "probability": 0.7312 + }, + { + "start": 54484.96, + "end": 54487.52, + "probability": 0.8201 + }, + { + "start": 54487.62, + "end": 54488.68, + "probability": 0.6489 + }, + { + "start": 54489.1, + "end": 54489.84, + "probability": 0.4785 + }, + { + "start": 54490.3, + "end": 54491.04, + "probability": 0.1801 + }, + { + "start": 54491.04, + "end": 54492.54, + "probability": 0.5303 + }, + { + "start": 54495.96, + "end": 54501.54, + "probability": 0.5758 + }, + { + "start": 54502.74, + "end": 54506.8, + "probability": 0.6359 + }, + { + "start": 54508.02, + "end": 54513.78, + "probability": 0.3455 + }, + { + "start": 54514.02, + "end": 54515.5, + "probability": 0.7584 + }, + { + "start": 54515.64, + "end": 54516.52, + "probability": 0.7528 + }, + { + "start": 54517.7, + "end": 54519.58, + "probability": 0.8162 + }, + { + "start": 54519.68, + "end": 54520.62, + "probability": 0.101 + }, + { + "start": 54520.86, + "end": 54521.94, + "probability": 0.5866 + }, + { + "start": 54522.16, + "end": 54523.64, + "probability": 0.3714 + }, + { + "start": 54524.12, + "end": 54527.06, + "probability": 0.9067 + }, + { + "start": 54527.74, + "end": 54529.08, + "probability": 0.9185 + }, + { + "start": 54529.82, + "end": 54530.5, + "probability": 0.242 + }, + { + "start": 54531.26, + "end": 54536.28, + "probability": 0.9943 + }, + { + "start": 54537.08, + "end": 54541.26, + "probability": 0.1137 + }, + { + "start": 54541.26, + "end": 54541.26, + "probability": 0.0709 + }, + { + "start": 54541.26, + "end": 54542.2, + "probability": 0.1503 + }, + { + "start": 54542.24, + "end": 54544.36, + "probability": 0.5798 + }, + { + "start": 54544.74, + "end": 54547.6, + "probability": 0.0511 + }, + { + "start": 54548.78, + "end": 54549.08, + "probability": 0.0726 + }, + { + "start": 54552.05, + "end": 54555.16, + "probability": 0.4029 + }, + { + "start": 54555.34, + "end": 54559.72, + "probability": 0.965 + }, + { + "start": 54563.36, + "end": 54566.78, + "probability": 0.4879 + }, + { + "start": 54566.78, + "end": 54566.78, + "probability": 0.5036 + }, + { + "start": 54566.78, + "end": 54568.54, + "probability": 0.9233 + }, + { + "start": 54568.88, + "end": 54571.44, + "probability": 0.8149 + }, + { + "start": 54572.3, + "end": 54574.78, + "probability": 0.5342 + }, + { + "start": 54575.34, + "end": 54578.52, + "probability": 0.4399 + }, + { + "start": 54578.7, + "end": 54581.78, + "probability": 0.9121 + }, + { + "start": 54582.7, + "end": 54582.94, + "probability": 0.1131 + }, + { + "start": 54584.6, + "end": 54585.92, + "probability": 0.0412 + }, + { + "start": 54588.45, + "end": 54590.24, + "probability": 0.6116 + }, + { + "start": 54592.58, + "end": 54596.52, + "probability": 0.9343 + }, + { + "start": 54597.3, + "end": 54598.58, + "probability": 0.977 + }, + { + "start": 54599.08, + "end": 54599.24, + "probability": 0.6885 + }, + { + "start": 54600.64, + "end": 54602.22, + "probability": 0.7417 + }, + { + "start": 54604.5, + "end": 54606.4, + "probability": 0.887 + }, + { + "start": 54606.5, + "end": 54607.24, + "probability": 0.6312 + }, + { + "start": 54607.94, + "end": 54609.68, + "probability": 0.9728 + }, + { + "start": 54610.34, + "end": 54613.66, + "probability": 0.8026 + }, + { + "start": 54614.38, + "end": 54615.02, + "probability": 0.4263 + }, + { + "start": 54615.8, + "end": 54617.58, + "probability": 0.6559 + }, + { + "start": 54618.6, + "end": 54620.92, + "probability": 0.9761 + }, + { + "start": 54621.76, + "end": 54625.4, + "probability": 0.9423 + }, + { + "start": 54626.44, + "end": 54627.82, + "probability": 0.8927 + }, + { + "start": 54629.98, + "end": 54632.58, + "probability": 0.9058 + }, + { + "start": 54633.4, + "end": 54635.0, + "probability": 0.6804 + }, + { + "start": 54635.22, + "end": 54637.5, + "probability": 0.9639 + }, + { + "start": 54637.56, + "end": 54640.92, + "probability": 0.9949 + }, + { + "start": 54641.64, + "end": 54644.28, + "probability": 0.9993 + }, + { + "start": 54644.28, + "end": 54647.54, + "probability": 0.9856 + }, + { + "start": 54648.74, + "end": 54651.76, + "probability": 0.9934 + }, + { + "start": 54653.2, + "end": 54657.12, + "probability": 0.6726 + }, + { + "start": 54658.72, + "end": 54659.51, + "probability": 0.4703 + }, + { + "start": 54661.3, + "end": 54663.3, + "probability": 0.9761 + }, + { + "start": 54663.68, + "end": 54664.88, + "probability": 0.3051 + }, + { + "start": 54665.3, + "end": 54669.02, + "probability": 0.5013 + }, + { + "start": 54669.02, + "end": 54671.26, + "probability": 0.1416 + }, + { + "start": 54671.32, + "end": 54672.68, + "probability": 0.7504 + }, + { + "start": 54673.52, + "end": 54675.64, + "probability": 0.9683 + }, + { + "start": 54676.6, + "end": 54677.22, + "probability": 0.3712 + }, + { + "start": 54678.24, + "end": 54680.16, + "probability": 0.7903 + }, + { + "start": 54683.6, + "end": 54686.88, + "probability": 0.6455 + }, + { + "start": 54687.04, + "end": 54687.42, + "probability": 0.8512 + }, + { + "start": 54687.76, + "end": 54689.02, + "probability": 0.8917 + }, + { + "start": 54689.52, + "end": 54689.62, + "probability": 0.1522 + }, + { + "start": 54689.98, + "end": 54693.52, + "probability": 0.2544 + }, + { + "start": 54693.62, + "end": 54696.76, + "probability": 0.1332 + }, + { + "start": 54696.88, + "end": 54699.76, + "probability": 0.7723 + }, + { + "start": 54701.04, + "end": 54702.84, + "probability": 0.9756 + }, + { + "start": 54703.08, + "end": 54705.18, + "probability": 0.2506 + }, + { + "start": 54705.9, + "end": 54709.36, + "probability": 0.9833 + }, + { + "start": 54710.66, + "end": 54713.06, + "probability": 0.8451 + }, + { + "start": 54713.32, + "end": 54716.14, + "probability": 0.8491 + }, + { + "start": 54717.52, + "end": 54720.26, + "probability": 0.9561 + }, + { + "start": 54721.54, + "end": 54726.26, + "probability": 0.9824 + }, + { + "start": 54726.62, + "end": 54729.2, + "probability": 0.9199 + }, + { + "start": 54730.24, + "end": 54734.32, + "probability": 0.9394 + }, + { + "start": 54735.42, + "end": 54737.78, + "probability": 0.8273 + }, + { + "start": 54739.02, + "end": 54741.9, + "probability": 0.9819 + }, + { + "start": 54742.46, + "end": 54744.54, + "probability": 0.9868 + }, + { + "start": 54745.36, + "end": 54750.24, + "probability": 0.9564 + }, + { + "start": 54750.8, + "end": 54752.4, + "probability": 0.9469 + }, + { + "start": 54753.9, + "end": 54756.98, + "probability": 0.8462 + }, + { + "start": 54759.0, + "end": 54760.26, + "probability": 0.874 + }, + { + "start": 54761.54, + "end": 54764.74, + "probability": 0.8928 + }, + { + "start": 54766.26, + "end": 54767.62, + "probability": 0.7477 + }, + { + "start": 54769.04, + "end": 54771.16, + "probability": 0.9263 + }, + { + "start": 54772.22, + "end": 54774.98, + "probability": 0.7849 + }, + { + "start": 54775.08, + "end": 54776.42, + "probability": 0.3722 + }, + { + "start": 54778.02, + "end": 54781.2, + "probability": 0.4488 + }, + { + "start": 54781.88, + "end": 54786.18, + "probability": 0.4951 + }, + { + "start": 54786.18, + "end": 54788.22, + "probability": 0.1872 + }, + { + "start": 54788.46, + "end": 54791.62, + "probability": 0.5568 + }, + { + "start": 54792.17, + "end": 54797.82, + "probability": 0.9831 + }, + { + "start": 54798.5, + "end": 54803.94, + "probability": 0.9445 + }, + { + "start": 54804.8, + "end": 54809.3, + "probability": 0.5007 + }, + { + "start": 54809.56, + "end": 54813.5, + "probability": 0.1307 + }, + { + "start": 54815.57, + "end": 54818.94, + "probability": 0.823 + }, + { + "start": 54823.76, + "end": 54823.76, + "probability": 0.1715 + }, + { + "start": 54825.9, + "end": 54827.5, + "probability": 0.0031 + }, + { + "start": 54828.18, + "end": 54830.18, + "probability": 0.0781 + }, + { + "start": 54831.96, + "end": 54834.22, + "probability": 0.6503 + }, + { + "start": 54834.76, + "end": 54836.08, + "probability": 0.726 + }, + { + "start": 54844.84, + "end": 54847.5, + "probability": 0.7291 + }, + { + "start": 54848.38, + "end": 54850.4, + "probability": 0.7894 + }, + { + "start": 54853.32, + "end": 54858.08, + "probability": 0.9954 + }, + { + "start": 54860.0, + "end": 54862.52, + "probability": 0.6688 + }, + { + "start": 54863.94, + "end": 54868.42, + "probability": 0.9858 + }, + { + "start": 54868.98, + "end": 54870.46, + "probability": 0.9048 + }, + { + "start": 54871.22, + "end": 54871.76, + "probability": 0.7337 + }, + { + "start": 54874.34, + "end": 54878.58, + "probability": 0.9862 + }, + { + "start": 54879.22, + "end": 54883.16, + "probability": 0.9048 + }, + { + "start": 54883.74, + "end": 54888.86, + "probability": 0.9937 + }, + { + "start": 54889.08, + "end": 54890.24, + "probability": 0.9968 + }, + { + "start": 54892.22, + "end": 54893.44, + "probability": 0.443 + }, + { + "start": 54895.06, + "end": 54901.26, + "probability": 0.9837 + }, + { + "start": 54903.9, + "end": 54904.46, + "probability": 0.9549 + }, + { + "start": 54904.5, + "end": 54905.82, + "probability": 0.2828 + }, + { + "start": 54906.72, + "end": 54911.96, + "probability": 0.9883 + }, + { + "start": 54912.02, + "end": 54912.74, + "probability": 0.4554 + }, + { + "start": 54912.94, + "end": 54915.84, + "probability": 0.9943 + }, + { + "start": 54916.52, + "end": 54918.04, + "probability": 0.85 + }, + { + "start": 54919.4, + "end": 54922.36, + "probability": 0.9866 + }, + { + "start": 54922.36, + "end": 54929.3, + "probability": 0.9333 + }, + { + "start": 54931.84, + "end": 54934.3, + "probability": 0.9985 + }, + { + "start": 54934.5, + "end": 54934.68, + "probability": 0.3528 + }, + { + "start": 54935.58, + "end": 54936.52, + "probability": 0.9437 + }, + { + "start": 54938.66, + "end": 54943.32, + "probability": 0.9937 + }, + { + "start": 54944.3, + "end": 54945.94, + "probability": 0.9024 + }, + { + "start": 54947.86, + "end": 54951.38, + "probability": 0.999 + }, + { + "start": 54951.38, + "end": 54955.46, + "probability": 0.83 + }, + { + "start": 54957.04, + "end": 54958.42, + "probability": 0.9878 + }, + { + "start": 54959.62, + "end": 54962.98, + "probability": 0.9985 + }, + { + "start": 54963.9, + "end": 54965.18, + "probability": 0.8524 + }, + { + "start": 54966.52, + "end": 54969.5, + "probability": 0.9772 + }, + { + "start": 54972.22, + "end": 54974.64, + "probability": 0.9889 + }, + { + "start": 54976.5, + "end": 54979.96, + "probability": 0.9988 + }, + { + "start": 54981.7, + "end": 54984.68, + "probability": 0.999 + }, + { + "start": 54985.54, + "end": 54986.16, + "probability": 0.6713 + }, + { + "start": 54987.48, + "end": 54990.06, + "probability": 0.9782 + }, + { + "start": 54991.0, + "end": 54993.84, + "probability": 0.9372 + }, + { + "start": 54997.58, + "end": 54999.42, + "probability": 0.3453 + }, + { + "start": 54999.42, + "end": 54999.64, + "probability": 0.4918 + }, + { + "start": 55000.4, + "end": 55002.94, + "probability": 0.8378 + }, + { + "start": 55005.14, + "end": 55009.2, + "probability": 0.8031 + }, + { + "start": 55011.48, + "end": 55012.74, + "probability": 0.9966 + }, + { + "start": 55013.64, + "end": 55014.98, + "probability": 0.9933 + }, + { + "start": 55015.96, + "end": 55018.18, + "probability": 0.6303 + }, + { + "start": 55019.16, + "end": 55019.96, + "probability": 0.5645 + }, + { + "start": 55020.54, + "end": 55024.9, + "probability": 0.9427 + }, + { + "start": 55025.54, + "end": 55028.06, + "probability": 0.8682 + }, + { + "start": 55029.28, + "end": 55031.38, + "probability": 0.9729 + }, + { + "start": 55032.14, + "end": 55034.4, + "probability": 0.9363 + }, + { + "start": 55036.24, + "end": 55036.87, + "probability": 0.7709 + }, + { + "start": 55040.22, + "end": 55041.46, + "probability": 0.708 + }, + { + "start": 55042.2, + "end": 55044.42, + "probability": 0.8375 + }, + { + "start": 55046.48, + "end": 55047.74, + "probability": 0.4269 + }, + { + "start": 55050.0, + "end": 55059.58, + "probability": 0.9871 + }, + { + "start": 55059.72, + "end": 55061.38, + "probability": 0.9142 + }, + { + "start": 55062.7, + "end": 55067.05, + "probability": 0.8292 + }, + { + "start": 55068.22, + "end": 55072.7, + "probability": 0.96 + }, + { + "start": 55072.92, + "end": 55077.52, + "probability": 0.8232 + }, + { + "start": 55077.86, + "end": 55079.58, + "probability": 0.9719 + }, + { + "start": 55080.82, + "end": 55083.42, + "probability": 0.9683 + }, + { + "start": 55084.16, + "end": 55085.9, + "probability": 0.8208 + }, + { + "start": 55087.14, + "end": 55087.76, + "probability": 0.2389 + }, + { + "start": 55090.3, + "end": 55091.84, + "probability": 0.1196 + }, + { + "start": 55091.92, + "end": 55092.84, + "probability": 0.6509 + }, + { + "start": 55094.92, + "end": 55098.5, + "probability": 0.1156 + }, + { + "start": 55101.02, + "end": 55103.28, + "probability": 0.6382 + }, + { + "start": 55104.7, + "end": 55104.84, + "probability": 0.015 + }, + { + "start": 55105.74, + "end": 55110.5, + "probability": 0.4922 + }, + { + "start": 55111.88, + "end": 55117.98, + "probability": 0.3664 + }, + { + "start": 55118.46, + "end": 55118.58, + "probability": 0.3611 + }, + { + "start": 55118.58, + "end": 55118.68, + "probability": 0.3541 + }, + { + "start": 55119.52, + "end": 55121.1, + "probability": 0.9111 + }, + { + "start": 55121.1, + "end": 55123.76, + "probability": 0.2072 + }, + { + "start": 55124.16, + "end": 55125.98, + "probability": 0.5019 + }, + { + "start": 55127.97, + "end": 55130.44, + "probability": 0.5126 + }, + { + "start": 55130.62, + "end": 55132.12, + "probability": 0.3874 + }, + { + "start": 55132.62, + "end": 55134.8, + "probability": 0.8683 + }, + { + "start": 55134.9, + "end": 55136.32, + "probability": 0.7425 + }, + { + "start": 55136.82, + "end": 55139.59, + "probability": 0.4058 + }, + { + "start": 55140.98, + "end": 55142.38, + "probability": 0.9502 + }, + { + "start": 55143.96, + "end": 55146.08, + "probability": 0.3307 + }, + { + "start": 55146.9, + "end": 55149.1, + "probability": 0.3328 + }, + { + "start": 55150.78, + "end": 55155.02, + "probability": 0.3731 + }, + { + "start": 55155.24, + "end": 55157.36, + "probability": 0.399 + }, + { + "start": 55157.36, + "end": 55157.36, + "probability": 0.0168 + }, + { + "start": 55157.36, + "end": 55162.94, + "probability": 0.7893 + }, + { + "start": 55163.88, + "end": 55166.26, + "probability": 0.9302 + }, + { + "start": 55166.8, + "end": 55167.96, + "probability": 0.7488 + }, + { + "start": 55168.56, + "end": 55169.02, + "probability": 0.4157 + }, + { + "start": 55169.4, + "end": 55171.92, + "probability": 0.5439 + }, + { + "start": 55172.18, + "end": 55172.66, + "probability": 0.4316 + }, + { + "start": 55172.84, + "end": 55174.74, + "probability": 0.9253 + }, + { + "start": 55174.88, + "end": 55175.12, + "probability": 0.4373 + }, + { + "start": 55175.12, + "end": 55176.46, + "probability": 0.3039 + }, + { + "start": 55176.52, + "end": 55177.88, + "probability": 0.393 + }, + { + "start": 55178.4, + "end": 55179.72, + "probability": 0.6032 + }, + { + "start": 55179.74, + "end": 55180.98, + "probability": 0.7628 + }, + { + "start": 55181.46, + "end": 55185.92, + "probability": 0.4744 + }, + { + "start": 55185.92, + "end": 55187.5, + "probability": 0.6016 + }, + { + "start": 55187.76, + "end": 55190.34, + "probability": 0.7335 + }, + { + "start": 55191.12, + "end": 55192.56, + "probability": 0.393 + }, + { + "start": 55192.8, + "end": 55193.76, + "probability": 0.551 + }, + { + "start": 55195.06, + "end": 55202.46, + "probability": 0.9439 + }, + { + "start": 55202.46, + "end": 55206.6, + "probability": 0.9953 + }, + { + "start": 55208.16, + "end": 55212.0, + "probability": 0.4269 + }, + { + "start": 55212.82, + "end": 55212.84, + "probability": 0.0736 + }, + { + "start": 55212.84, + "end": 55214.2, + "probability": 0.2178 + }, + { + "start": 55215.0, + "end": 55217.23, + "probability": 0.6172 + }, + { + "start": 55222.72, + "end": 55227.22, + "probability": 0.2912 + }, + { + "start": 55228.0, + "end": 55231.3, + "probability": 0.7532 + }, + { + "start": 55231.4, + "end": 55232.68, + "probability": 0.6241 + }, + { + "start": 55233.1, + "end": 55235.62, + "probability": 0.686 + }, + { + "start": 55235.68, + "end": 55238.82, + "probability": 0.9433 + }, + { + "start": 55239.66, + "end": 55239.92, + "probability": 0.8386 + }, + { + "start": 55241.22, + "end": 55244.42, + "probability": 0.9504 + }, + { + "start": 55245.41, + "end": 55249.22, + "probability": 0.9285 + }, + { + "start": 55249.96, + "end": 55252.14, + "probability": 0.2778 + }, + { + "start": 55253.4, + "end": 55256.22, + "probability": 0.8105 + }, + { + "start": 55257.44, + "end": 55259.92, + "probability": 0.6849 + }, + { + "start": 55261.5, + "end": 55264.39, + "probability": 0.576 + }, + { + "start": 55265.16, + "end": 55266.2, + "probability": 0.0189 + }, + { + "start": 55267.16, + "end": 55269.34, + "probability": 0.1674 + }, + { + "start": 55269.5, + "end": 55270.26, + "probability": 0.2631 + }, + { + "start": 55270.54, + "end": 55274.21, + "probability": 0.0174 + }, + { + "start": 55275.2, + "end": 55276.76, + "probability": 0.0564 + }, + { + "start": 55278.3, + "end": 55280.2, + "probability": 0.0255 + }, + { + "start": 55280.74, + "end": 55282.26, + "probability": 0.0838 + }, + { + "start": 55282.6, + "end": 55284.84, + "probability": 0.1753 + }, + { + "start": 55285.44, + "end": 55287.2, + "probability": 0.3995 + }, + { + "start": 55291.25, + "end": 55291.61, + "probability": 0.0395 + }, + { + "start": 55293.56, + "end": 55295.44, + "probability": 0.2891 + }, + { + "start": 55295.58, + "end": 55298.32, + "probability": 0.6427 + }, + { + "start": 55299.29, + "end": 55302.22, + "probability": 0.2372 + }, + { + "start": 55305.94, + "end": 55308.56, + "probability": 0.9666 + }, + { + "start": 55311.86, + "end": 55318.44, + "probability": 0.968 + }, + { + "start": 55318.5, + "end": 55319.6, + "probability": 0.9788 + }, + { + "start": 55320.54, + "end": 55321.4, + "probability": 0.8813 + }, + { + "start": 55322.4, + "end": 55323.08, + "probability": 0.8589 + }, + { + "start": 55324.16, + "end": 55326.1, + "probability": 0.9342 + }, + { + "start": 55326.94, + "end": 55328.66, + "probability": 0.9796 + }, + { + "start": 55328.84, + "end": 55330.24, + "probability": 0.9954 + }, + { + "start": 55331.56, + "end": 55335.72, + "probability": 0.8268 + }, + { + "start": 55337.14, + "end": 55338.72, + "probability": 0.8212 + }, + { + "start": 55339.8, + "end": 55342.36, + "probability": 0.9961 + }, + { + "start": 55342.88, + "end": 55346.78, + "probability": 0.9451 + }, + { + "start": 55346.98, + "end": 55349.36, + "probability": 0.6769 + }, + { + "start": 55350.18, + "end": 55351.84, + "probability": 0.9951 + }, + { + "start": 55352.4, + "end": 55353.66, + "probability": 0.5518 + }, + { + "start": 55357.8, + "end": 55358.52, + "probability": 0.0811 + }, + { + "start": 55359.18, + "end": 55361.64, + "probability": 0.6335 + }, + { + "start": 55362.1, + "end": 55363.81, + "probability": 0.232 + }, + { + "start": 55364.62, + "end": 55367.2, + "probability": 0.1662 + }, + { + "start": 55367.46, + "end": 55370.08, + "probability": 0.8571 + }, + { + "start": 55370.2, + "end": 55371.62, + "probability": 0.2686 + }, + { + "start": 55372.44, + "end": 55372.44, + "probability": 0.0144 + }, + { + "start": 55372.44, + "end": 55373.62, + "probability": 0.9087 + }, + { + "start": 55374.18, + "end": 55377.16, + "probability": 0.5612 + }, + { + "start": 55377.36, + "end": 55377.99, + "probability": 0.9633 + }, + { + "start": 55378.6, + "end": 55378.98, + "probability": 0.0354 + }, + { + "start": 55384.0, + "end": 55386.72, + "probability": 0.2234 + }, + { + "start": 55387.72, + "end": 55387.72, + "probability": 0.1892 + }, + { + "start": 55387.72, + "end": 55388.5, + "probability": 0.5722 + }, + { + "start": 55388.52, + "end": 55389.16, + "probability": 0.0949 + }, + { + "start": 55389.36, + "end": 55390.22, + "probability": 0.5845 + }, + { + "start": 55390.56, + "end": 55392.16, + "probability": 0.8921 + }, + { + "start": 55393.76, + "end": 55394.36, + "probability": 0.9646 + }, + { + "start": 55394.94, + "end": 55395.72, + "probability": 0.8632 + }, + { + "start": 55395.82, + "end": 55397.98, + "probability": 0.3984 + }, + { + "start": 55399.08, + "end": 55399.96, + "probability": 0.8151 + }, + { + "start": 55400.22, + "end": 55401.7, + "probability": 0.1309 + }, + { + "start": 55402.04, + "end": 55403.88, + "probability": 0.985 + }, + { + "start": 55404.31, + "end": 55404.78, + "probability": 0.1372 + }, + { + "start": 55405.34, + "end": 55406.62, + "probability": 0.1853 + }, + { + "start": 55407.62, + "end": 55407.8, + "probability": 0.4873 + }, + { + "start": 55407.82, + "end": 55407.82, + "probability": 0.5278 + }, + { + "start": 55407.9, + "end": 55410.22, + "probability": 0.9692 + }, + { + "start": 55413.9, + "end": 55420.84, + "probability": 0.9214 + }, + { + "start": 55420.96, + "end": 55421.44, + "probability": 0.843 + }, + { + "start": 55422.2, + "end": 55423.28, + "probability": 0.5492 + }, + { + "start": 55424.04, + "end": 55426.18, + "probability": 0.9237 + }, + { + "start": 55426.22, + "end": 55428.56, + "probability": 0.6277 + }, + { + "start": 55428.58, + "end": 55431.02, + "probability": 0.0561 + }, + { + "start": 55431.56, + "end": 55431.82, + "probability": 0.438 + }, + { + "start": 55440.54, + "end": 55441.36, + "probability": 0.2595 + }, + { + "start": 55441.85, + "end": 55445.12, + "probability": 0.7926 + }, + { + "start": 55446.2, + "end": 55448.28, + "probability": 0.9922 + }, + { + "start": 55448.8, + "end": 55452.42, + "probability": 0.7639 + }, + { + "start": 55453.18, + "end": 55455.5, + "probability": 0.9864 + }, + { + "start": 55456.66, + "end": 55458.6, + "probability": 0.8652 + }, + { + "start": 55465.45, + "end": 55470.66, + "probability": 0.9634 + }, + { + "start": 55471.28, + "end": 55475.07, + "probability": 0.8726 + }, + { + "start": 55475.72, + "end": 55476.88, + "probability": 0.0214 + }, + { + "start": 55478.28, + "end": 55478.66, + "probability": 0.6051 + }, + { + "start": 55479.04, + "end": 55480.54, + "probability": 0.7254 + }, + { + "start": 55480.8, + "end": 55482.04, + "probability": 0.7441 + }, + { + "start": 55483.24, + "end": 55489.7, + "probability": 0.8032 + }, + { + "start": 55490.46, + "end": 55493.04, + "probability": 0.9787 + }, + { + "start": 55493.66, + "end": 55496.72, + "probability": 0.8413 + }, + { + "start": 55497.72, + "end": 55500.54, + "probability": 0.6936 + }, + { + "start": 55500.98, + "end": 55504.42, + "probability": 0.6094 + }, + { + "start": 55504.6, + "end": 55506.64, + "probability": 0.5883 + }, + { + "start": 55506.96, + "end": 55509.78, + "probability": 0.9455 + }, + { + "start": 55510.26, + "end": 55511.64, + "probability": 0.0511 + }, + { + "start": 55512.62, + "end": 55514.52, + "probability": 0.7738 + }, + { + "start": 55514.54, + "end": 55518.9, + "probability": 0.981 + }, + { + "start": 55519.42, + "end": 55522.68, + "probability": 0.5437 + }, + { + "start": 55523.5, + "end": 55524.78, + "probability": 0.926 + }, + { + "start": 55526.37, + "end": 55528.4, + "probability": 0.7085 + }, + { + "start": 55528.54, + "end": 55529.4, + "probability": 0.7994 + }, + { + "start": 55529.5, + "end": 55531.08, + "probability": 0.5734 + }, + { + "start": 55531.26, + "end": 55532.96, + "probability": 0.9874 + }, + { + "start": 55533.46, + "end": 55535.34, + "probability": 0.5469 + }, + { + "start": 55536.96, + "end": 55537.5, + "probability": 0.5111 + }, + { + "start": 55549.92, + "end": 55551.84, + "probability": 0.6265 + }, + { + "start": 55552.2, + "end": 55555.72, + "probability": 0.6805 + }, + { + "start": 55556.08, + "end": 55559.86, + "probability": 0.8814 + }, + { + "start": 55560.58, + "end": 55562.16, + "probability": 0.5034 + }, + { + "start": 55563.52, + "end": 55566.36, + "probability": 0.8095 + }, + { + "start": 55566.44, + "end": 55567.74, + "probability": 0.9275 + }, + { + "start": 55569.2, + "end": 55570.94, + "probability": 0.9893 + }, + { + "start": 55571.92, + "end": 55573.14, + "probability": 0.7496 + }, + { + "start": 55573.32, + "end": 55574.7, + "probability": 0.9608 + }, + { + "start": 55574.76, + "end": 55575.52, + "probability": 0.7778 + }, + { + "start": 55575.58, + "end": 55577.48, + "probability": 0.8789 + }, + { + "start": 55577.84, + "end": 55580.1, + "probability": 0.7771 + }, + { + "start": 55580.22, + "end": 55581.84, + "probability": 0.936 + }, + { + "start": 55583.0, + "end": 55583.58, + "probability": 0.5678 + }, + { + "start": 55585.2, + "end": 55585.32, + "probability": 0.5067 + }, + { + "start": 55585.44, + "end": 55587.52, + "probability": 0.6518 + }, + { + "start": 55587.78, + "end": 55588.42, + "probability": 0.599 + }, + { + "start": 55588.6, + "end": 55590.36, + "probability": 0.9225 + }, + { + "start": 55590.98, + "end": 55592.3, + "probability": 0.7912 + }, + { + "start": 55593.38, + "end": 55595.4, + "probability": 0.9305 + }, + { + "start": 55596.66, + "end": 55599.28, + "probability": 0.9919 + }, + { + "start": 55600.16, + "end": 55603.36, + "probability": 0.9847 + }, + { + "start": 55604.2, + "end": 55606.6, + "probability": 0.8369 + }, + { + "start": 55615.59, + "end": 55621.4, + "probability": 0.5004 + }, + { + "start": 55621.48, + "end": 55623.26, + "probability": 0.9673 + }, + { + "start": 55623.8, + "end": 55624.62, + "probability": 0.704 + }, + { + "start": 55624.96, + "end": 55628.34, + "probability": 0.6641 + }, + { + "start": 55629.4, + "end": 55632.78, + "probability": 0.8156 + }, + { + "start": 55633.68, + "end": 55635.6, + "probability": 0.7832 + }, + { + "start": 55636.96, + "end": 55638.07, + "probability": 0.9518 + }, + { + "start": 55639.39, + "end": 55641.95, + "probability": 0.9808 + }, + { + "start": 55643.44, + "end": 55644.92, + "probability": 0.6454 + }, + { + "start": 55645.02, + "end": 55647.5, + "probability": 0.9744 + }, + { + "start": 55648.96, + "end": 55651.12, + "probability": 0.9447 + }, + { + "start": 55651.38, + "end": 55652.2, + "probability": 0.6445 + }, + { + "start": 55652.26, + "end": 55653.38, + "probability": 0.9961 + }, + { + "start": 55655.08, + "end": 55658.41, + "probability": 0.9333 + }, + { + "start": 55658.88, + "end": 55660.94, + "probability": 0.9975 + }, + { + "start": 55661.12, + "end": 55662.7, + "probability": 0.5295 + }, + { + "start": 55663.34, + "end": 55665.66, + "probability": 0.9812 + }, + { + "start": 55666.26, + "end": 55667.42, + "probability": 0.917 + }, + { + "start": 55668.06, + "end": 55671.74, + "probability": 0.8695 + }, + { + "start": 55672.44, + "end": 55675.62, + "probability": 0.7618 + }, + { + "start": 55676.56, + "end": 55677.94, + "probability": 0.8953 + }, + { + "start": 55680.5, + "end": 55681.62, + "probability": 0.0838 + }, + { + "start": 55683.52, + "end": 55685.3, + "probability": 0.0152 + }, + { + "start": 55698.96, + "end": 55699.4, + "probability": 0.1172 + }, + { + "start": 55705.14, + "end": 55710.28, + "probability": 0.5606 + }, + { + "start": 55711.14, + "end": 55713.64, + "probability": 0.7354 + }, + { + "start": 55714.7, + "end": 55714.7, + "probability": 0.0057 + }, + { + "start": 55716.26, + "end": 55719.18, + "probability": 0.0009 + }, + { + "start": 55720.62, + "end": 55721.04, + "probability": 0.0218 + }, + { + "start": 55721.48, + "end": 55722.26, + "probability": 0.6259 + }, + { + "start": 55726.18, + "end": 55727.18, + "probability": 0.4267 + }, + { + "start": 55728.1, + "end": 55729.66, + "probability": 0.0658 + }, + { + "start": 55729.66, + "end": 55731.98, + "probability": 0.476 + }, + { + "start": 55741.66, + "end": 55745.4, + "probability": 0.7101 + }, + { + "start": 55746.34, + "end": 55749.48, + "probability": 0.9942 + }, + { + "start": 55749.9, + "end": 55751.56, + "probability": 0.9927 + }, + { + "start": 55753.04, + "end": 55755.42, + "probability": 0.9987 + }, + { + "start": 55756.6, + "end": 55763.66, + "probability": 0.9738 + }, + { + "start": 55769.56, + "end": 55771.02, + "probability": 0.6424 + }, + { + "start": 55771.4, + "end": 55776.28, + "probability": 0.8266 + }, + { + "start": 55776.96, + "end": 55780.06, + "probability": 0.8549 + }, + { + "start": 55780.94, + "end": 55782.7, + "probability": 0.9373 + }, + { + "start": 55783.68, + "end": 55786.54, + "probability": 0.9971 + }, + { + "start": 55789.79, + "end": 55796.58, + "probability": 0.9912 + }, + { + "start": 55796.58, + "end": 55803.34, + "probability": 0.9986 + }, + { + "start": 55804.88, + "end": 55809.72, + "probability": 0.9915 + }, + { + "start": 55812.08, + "end": 55814.62, + "probability": 0.9741 + }, + { + "start": 55814.62, + "end": 55820.36, + "probability": 0.953 + }, + { + "start": 55821.7, + "end": 55822.48, + "probability": 0.685 + }, + { + "start": 55823.94, + "end": 55824.72, + "probability": 0.7922 + }, + { + "start": 55828.26, + "end": 55831.68, + "probability": 0.9921 + }, + { + "start": 55832.6, + "end": 55833.78, + "probability": 0.4363 + }, + { + "start": 55835.46, + "end": 55837.63, + "probability": 0.9878 + }, + { + "start": 55837.84, + "end": 55839.52, + "probability": 0.9234 + }, + { + "start": 55839.58, + "end": 55840.04, + "probability": 0.9771 + }, + { + "start": 55846.0, + "end": 55847.2, + "probability": 0.3334 + }, + { + "start": 55849.56, + "end": 55849.92, + "probability": 0.8469 + }, + { + "start": 55851.36, + "end": 55852.2, + "probability": 0.7908 + }, + { + "start": 55860.72, + "end": 55861.9, + "probability": 0.6132 + }, + { + "start": 55863.54, + "end": 55864.58, + "probability": 0.7386 + }, + { + "start": 55865.26, + "end": 55866.7, + "probability": 0.6667 + }, + { + "start": 55867.66, + "end": 55868.74, + "probability": 0.9406 + }, + { + "start": 55884.1, + "end": 55884.82, + "probability": 0.3548 + }, + { + "start": 55885.66, + "end": 55886.11, + "probability": 0.598 + }, + { + "start": 55886.56, + "end": 55888.22, + "probability": 0.7666 + }, + { + "start": 55892.56, + "end": 55894.99, + "probability": 0.8486 + }, + { + "start": 55895.88, + "end": 55897.72, + "probability": 0.8788 + }, + { + "start": 55899.56, + "end": 55900.2, + "probability": 0.4874 + }, + { + "start": 55903.5, + "end": 55905.14, + "probability": 0.7901 + }, + { + "start": 55905.98, + "end": 55908.2, + "probability": 0.9871 + }, + { + "start": 55908.88, + "end": 55910.22, + "probability": 0.2176 + }, + { + "start": 55910.8, + "end": 55912.06, + "probability": 0.5045 + }, + { + "start": 55912.58, + "end": 55914.48, + "probability": 0.5132 + }, + { + "start": 55915.42, + "end": 55915.94, + "probability": 0.28 + }, + { + "start": 55916.42, + "end": 55916.96, + "probability": 0.518 + }, + { + "start": 55918.98, + "end": 55919.28, + "probability": 0.0537 + }, + { + "start": 55919.28, + "end": 55919.51, + "probability": 0.3264 + }, + { + "start": 55920.28, + "end": 55922.12, + "probability": 0.0862 + }, + { + "start": 55922.84, + "end": 55923.22, + "probability": 0.3553 + }, + { + "start": 55923.9, + "end": 55924.82, + "probability": 0.2215 + }, + { + "start": 55926.8, + "end": 55927.18, + "probability": 0.1014 + }, + { + "start": 55927.82, + "end": 55928.88, + "probability": 0.0736 + }, + { + "start": 55929.46, + "end": 55929.94, + "probability": 0.5646 + }, + { + "start": 55930.6, + "end": 55931.2, + "probability": 0.7605 + }, + { + "start": 55931.54, + "end": 55932.1, + "probability": 0.3671 + }, + { + "start": 55932.38, + "end": 55932.6, + "probability": 0.222 + }, + { + "start": 55932.84, + "end": 55933.14, + "probability": 0.3707 + }, + { + "start": 55933.3, + "end": 55933.78, + "probability": 0.342 + }, + { + "start": 55933.94, + "end": 55934.38, + "probability": 0.3227 + }, + { + "start": 55934.48, + "end": 55934.96, + "probability": 0.3264 + }, + { + "start": 55935.28, + "end": 55935.9, + "probability": 0.9084 + }, + { + "start": 55936.68, + "end": 55938.36, + "probability": 0.3548 + }, + { + "start": 55939.12, + "end": 55939.54, + "probability": 0.226 + }, + { + "start": 55942.98, + "end": 55942.98, + "probability": 0.0104 + }, + { + "start": 55942.98, + "end": 55943.06, + "probability": 0.0721 + }, + { + "start": 55943.06, + "end": 55943.06, + "probability": 0.0245 + }, + { + "start": 55943.06, + "end": 55943.06, + "probability": 0.081 + }, + { + "start": 55943.06, + "end": 55944.82, + "probability": 0.1345 + }, + { + "start": 55945.56, + "end": 55947.64, + "probability": 0.4078 + }, + { + "start": 55948.48, + "end": 55948.96, + "probability": 0.2769 + }, + { + "start": 55949.16, + "end": 55949.48, + "probability": 0.4565 + }, + { + "start": 55949.7, + "end": 55949.88, + "probability": 0.2988 + }, + { + "start": 55950.34, + "end": 55950.76, + "probability": 0.3121 + }, + { + "start": 55951.42, + "end": 55951.7, + "probability": 0.3025 + }, + { + "start": 55951.82, + "end": 55952.28, + "probability": 0.2102 + }, + { + "start": 55952.3, + "end": 55953.64, + "probability": 0.3343 + }, + { + "start": 55953.8, + "end": 55954.88, + "probability": 0.686 + }, + { + "start": 55955.44, + "end": 55956.54, + "probability": 0.5364 + }, + { + "start": 55958.5, + "end": 55958.72, + "probability": 0.0161 + }, + { + "start": 55958.72, + "end": 55958.72, + "probability": 0.0736 + }, + { + "start": 55958.72, + "end": 55958.82, + "probability": 0.2141 + }, + { + "start": 55958.92, + "end": 55959.32, + "probability": 0.1474 + }, + { + "start": 55959.5, + "end": 55960.34, + "probability": 0.1414 + }, + { + "start": 55961.68, + "end": 55964.65, + "probability": 0.752 + }, + { + "start": 55964.85, + "end": 55966.88, + "probability": 0.8881 + }, + { + "start": 55967.56, + "end": 55973.44, + "probability": 0.9524 + }, + { + "start": 55973.9, + "end": 55974.46, + "probability": 0.5953 + }, + { + "start": 55974.96, + "end": 55977.36, + "probability": 0.7655 + }, + { + "start": 55978.74, + "end": 55979.34, + "probability": 0.4367 + }, + { + "start": 55979.62, + "end": 55983.08, + "probability": 0.6051 + }, + { + "start": 55983.94, + "end": 55984.78, + "probability": 0.5242 + }, + { + "start": 55986.6, + "end": 55987.7, + "probability": 0.5424 + }, + { + "start": 55989.66, + "end": 55990.42, + "probability": 0.8238 + }, + { + "start": 55991.44, + "end": 55993.98, + "probability": 0.5294 + }, + { + "start": 55994.68, + "end": 55997.14, + "probability": 0.8361 + }, + { + "start": 55997.9, + "end": 56000.06, + "probability": 0.9316 + }, + { + "start": 56000.94, + "end": 56001.46, + "probability": 0.9871 + }, + { + "start": 56002.38, + "end": 56003.36, + "probability": 0.6613 + }, + { + "start": 56004.26, + "end": 56007.28, + "probability": 0.9795 + }, + { + "start": 56009.16, + "end": 56009.84, + "probability": 0.9862 + }, + { + "start": 56011.16, + "end": 56012.08, + "probability": 0.9336 + }, + { + "start": 56013.18, + "end": 56015.3, + "probability": 0.958 + }, + { + "start": 56016.7, + "end": 56018.58, + "probability": 0.7748 + }, + { + "start": 56020.6, + "end": 56023.9, + "probability": 0.9428 + }, + { + "start": 56024.8, + "end": 56027.16, + "probability": 0.843 + }, + { + "start": 56029.08, + "end": 56029.76, + "probability": 0.7759 + }, + { + "start": 56030.38, + "end": 56031.42, + "probability": 0.9199 + }, + { + "start": 56032.12, + "end": 56034.1, + "probability": 0.9546 + }, + { + "start": 56035.44, + "end": 56035.94, + "probability": 0.9896 + }, + { + "start": 56036.82, + "end": 56037.72, + "probability": 0.9339 + }, + { + "start": 56038.4, + "end": 56040.4, + "probability": 0.9011 + }, + { + "start": 56042.7, + "end": 56043.16, + "probability": 0.9886 + }, + { + "start": 56044.1, + "end": 56044.4, + "probability": 0.7839 + }, + { + "start": 56045.9, + "end": 56048.44, + "probability": 0.7288 + }, + { + "start": 56049.58, + "end": 56049.94, + "probability": 0.9321 + }, + { + "start": 56050.84, + "end": 56052.2, + "probability": 0.9599 + }, + { + "start": 56054.14, + "end": 56054.78, + "probability": 0.9793 + }, + { + "start": 56055.96, + "end": 56056.68, + "probability": 0.9795 + }, + { + "start": 56057.72, + "end": 56059.74, + "probability": 0.9877 + }, + { + "start": 56060.38, + "end": 56060.76, + "probability": 0.7949 + }, + { + "start": 56061.78, + "end": 56062.78, + "probability": 0.9822 + }, + { + "start": 56064.18, + "end": 56066.26, + "probability": 0.9773 + }, + { + "start": 56067.32, + "end": 56069.7, + "probability": 0.6671 + }, + { + "start": 56070.7, + "end": 56071.04, + "probability": 0.7087 + }, + { + "start": 56073.98, + "end": 56074.6, + "probability": 0.6234 + }, + { + "start": 56085.04, + "end": 56085.34, + "probability": 0.5623 + }, + { + "start": 56087.68, + "end": 56088.32, + "probability": 0.6335 + }, + { + "start": 56089.6, + "end": 56091.6, + "probability": 0.8486 + }, + { + "start": 56092.62, + "end": 56093.08, + "probability": 0.8809 + }, + { + "start": 56093.94, + "end": 56094.48, + "probability": 0.8284 + }, + { + "start": 56096.04, + "end": 56096.88, + "probability": 0.8858 + }, + { + "start": 56097.94, + "end": 56098.72, + "probability": 0.8699 + }, + { + "start": 56099.5, + "end": 56099.92, + "probability": 0.9471 + }, + { + "start": 56100.84, + "end": 56101.52, + "probability": 0.9105 + }, + { + "start": 56102.5, + "end": 56102.88, + "probability": 0.9905 + }, + { + "start": 56103.8, + "end": 56104.52, + "probability": 0.9335 + }, + { + "start": 56105.64, + "end": 56107.64, + "probability": 0.8312 + }, + { + "start": 56109.92, + "end": 56110.54, + "probability": 0.9773 + }, + { + "start": 56111.68, + "end": 56112.42, + "probability": 0.844 + }, + { + "start": 56114.62, + "end": 56115.04, + "probability": 0.6874 + }, + { + "start": 56116.4, + "end": 56117.0, + "probability": 0.5276 + }, + { + "start": 56118.92, + "end": 56119.68, + "probability": 0.9573 + }, + { + "start": 56120.34, + "end": 56121.16, + "probability": 0.8676 + }, + { + "start": 56121.9, + "end": 56122.34, + "probability": 0.9948 + }, + { + "start": 56123.02, + "end": 56123.88, + "probability": 0.9686 + }, + { + "start": 56124.74, + "end": 56125.2, + "probability": 0.9216 + }, + { + "start": 56126.1, + "end": 56127.4, + "probability": 0.7614 + }, + { + "start": 56128.38, + "end": 56128.78, + "probability": 0.9954 + }, + { + "start": 56129.4, + "end": 56130.44, + "probability": 0.9552 + }, + { + "start": 56130.98, + "end": 56132.04, + "probability": 0.9919 + }, + { + "start": 56132.6, + "end": 56133.48, + "probability": 0.9778 + }, + { + "start": 56134.42, + "end": 56134.96, + "probability": 0.9845 + }, + { + "start": 56135.76, + "end": 56136.64, + "probability": 0.8043 + }, + { + "start": 56137.88, + "end": 56139.64, + "probability": 0.4849 + }, + { + "start": 56140.54, + "end": 56140.98, + "probability": 0.7493 + }, + { + "start": 56141.98, + "end": 56142.94, + "probability": 0.6896 + }, + { + "start": 56144.26, + "end": 56144.66, + "probability": 0.9314 + }, + { + "start": 56145.5, + "end": 56146.68, + "probability": 0.8559 + }, + { + "start": 56147.82, + "end": 56148.24, + "probability": 0.9919 + }, + { + "start": 56148.98, + "end": 56152.94, + "probability": 0.7701 + }, + { + "start": 56154.32, + "end": 56156.44, + "probability": 0.8186 + }, + { + "start": 56158.24, + "end": 56160.18, + "probability": 0.8308 + }, + { + "start": 56161.6, + "end": 56163.3, + "probability": 0.6831 + }, + { + "start": 56165.1, + "end": 56166.5, + "probability": 0.759 + }, + { + "start": 56167.08, + "end": 56167.86, + "probability": 0.8043 + }, + { + "start": 56169.24, + "end": 56170.66, + "probability": 0.9637 + }, + { + "start": 56172.56, + "end": 56173.34, + "probability": 0.9775 + }, + { + "start": 56174.0, + "end": 56174.88, + "probability": 0.47 + }, + { + "start": 56176.32, + "end": 56178.32, + "probability": 0.9785 + }, + { + "start": 56179.3, + "end": 56179.74, + "probability": 0.9839 + }, + { + "start": 56180.54, + "end": 56181.36, + "probability": 0.9283 + }, + { + "start": 56182.24, + "end": 56182.62, + "probability": 0.9832 + }, + { + "start": 56183.46, + "end": 56184.22, + "probability": 0.86 + }, + { + "start": 56185.36, + "end": 56185.82, + "probability": 0.9831 + }, + { + "start": 56186.36, + "end": 56187.43, + "probability": 0.9373 + }, + { + "start": 56188.48, + "end": 56188.78, + "probability": 0.9917 + }, + { + "start": 56189.66, + "end": 56190.32, + "probability": 0.746 + }, + { + "start": 56191.9, + "end": 56192.6, + "probability": 0.8784 + }, + { + "start": 56193.42, + "end": 56193.92, + "probability": 0.8123 + }, + { + "start": 56194.84, + "end": 56195.26, + "probability": 0.8215 + }, + { + "start": 56196.44, + "end": 56197.3, + "probability": 0.8668 + }, + { + "start": 56199.0, + "end": 56200.76, + "probability": 0.7852 + }, + { + "start": 56201.74, + "end": 56202.22, + "probability": 0.9646 + }, + { + "start": 56203.76, + "end": 56205.16, + "probability": 0.8435 + }, + { + "start": 56208.82, + "end": 56211.66, + "probability": 0.5544 + }, + { + "start": 56213.86, + "end": 56214.88, + "probability": 0.6658 + }, + { + "start": 56217.06, + "end": 56218.12, + "probability": 0.0386 + }, + { + "start": 56228.14, + "end": 56228.46, + "probability": 0.5693 + }, + { + "start": 56229.34, + "end": 56230.14, + "probability": 0.654 + }, + { + "start": 56231.0, + "end": 56232.88, + "probability": 0.8789 + }, + { + "start": 56233.8, + "end": 56234.18, + "probability": 0.9526 + }, + { + "start": 56234.84, + "end": 56235.62, + "probability": 0.9602 + }, + { + "start": 56236.44, + "end": 56238.64, + "probability": 0.9814 + }, + { + "start": 56239.8, + "end": 56240.24, + "probability": 0.9603 + }, + { + "start": 56240.82, + "end": 56241.48, + "probability": 0.9813 + }, + { + "start": 56242.36, + "end": 56244.6, + "probability": 0.9656 + }, + { + "start": 56245.38, + "end": 56245.86, + "probability": 0.984 + }, + { + "start": 56246.74, + "end": 56247.88, + "probability": 0.8497 + }, + { + "start": 56248.98, + "end": 56249.44, + "probability": 0.9827 + }, + { + "start": 56250.22, + "end": 56251.0, + "probability": 0.8567 + }, + { + "start": 56251.82, + "end": 56252.04, + "probability": 0.5153 + }, + { + "start": 56253.16, + "end": 56254.1, + "probability": 0.73 + }, + { + "start": 56255.6, + "end": 56255.98, + "probability": 0.9178 + }, + { + "start": 56256.92, + "end": 56257.84, + "probability": 0.6915 + }, + { + "start": 56259.72, + "end": 56261.92, + "probability": 0.9264 + }, + { + "start": 56262.54, + "end": 56262.94, + "probability": 0.9473 + }, + { + "start": 56263.7, + "end": 56264.6, + "probability": 0.9302 + }, + { + "start": 56265.12, + "end": 56265.52, + "probability": 0.9919 + }, + { + "start": 56266.26, + "end": 56266.92, + "probability": 0.9838 + }, + { + "start": 56267.98, + "end": 56268.4, + "probability": 0.9888 + }, + { + "start": 56269.2, + "end": 56269.9, + "probability": 0.9092 + }, + { + "start": 56271.04, + "end": 56272.04, + "probability": 0.9868 + }, + { + "start": 56272.76, + "end": 56273.4, + "probability": 0.4296 + }, + { + "start": 56274.44, + "end": 56274.72, + "probability": 0.7142 + }, + { + "start": 56275.48, + "end": 56276.3, + "probability": 0.6432 + }, + { + "start": 56277.7, + "end": 56278.06, + "probability": 0.7998 + }, + { + "start": 56278.92, + "end": 56279.7, + "probability": 0.8087 + }, + { + "start": 56280.9, + "end": 56281.28, + "probability": 0.9787 + }, + { + "start": 56282.06, + "end": 56283.14, + "probability": 0.9133 + }, + { + "start": 56287.0, + "end": 56287.36, + "probability": 0.6635 + }, + { + "start": 56288.64, + "end": 56289.36, + "probability": 0.5678 + }, + { + "start": 56290.24, + "end": 56290.7, + "probability": 0.9909 + }, + { + "start": 56291.46, + "end": 56292.28, + "probability": 0.8394 + }, + { + "start": 56292.9, + "end": 56293.32, + "probability": 0.9824 + }, + { + "start": 56294.12, + "end": 56294.82, + "probability": 0.9412 + }, + { + "start": 56296.12, + "end": 56296.56, + "probability": 0.907 + }, + { + "start": 56297.38, + "end": 56298.08, + "probability": 0.8715 + }, + { + "start": 56298.72, + "end": 56299.12, + "probability": 0.9365 + }, + { + "start": 56299.92, + "end": 56300.88, + "probability": 0.9688 + }, + { + "start": 56302.04, + "end": 56302.42, + "probability": 0.687 + }, + { + "start": 56303.2, + "end": 56304.16, + "probability": 0.3105 + }, + { + "start": 56305.82, + "end": 56306.16, + "probability": 0.9881 + }, + { + "start": 56306.74, + "end": 56307.8, + "probability": 0.7305 + }, + { + "start": 56308.8, + "end": 56310.96, + "probability": 0.5937 + }, + { + "start": 56313.96, + "end": 56314.68, + "probability": 0.8217 + }, + { + "start": 56315.64, + "end": 56316.54, + "probability": 0.8134 + }, + { + "start": 56319.3, + "end": 56319.74, + "probability": 0.9941 + }, + { + "start": 56321.04, + "end": 56321.68, + "probability": 0.8851 + }, + { + "start": 56324.18, + "end": 56324.94, + "probability": 0.9627 + }, + { + "start": 56325.76, + "end": 56327.31, + "probability": 0.407 + }, + { + "start": 56328.32, + "end": 56329.1, + "probability": 0.9044 + }, + { + "start": 56330.68, + "end": 56330.94, + "probability": 0.9858 + }, + { + "start": 56331.92, + "end": 56332.96, + "probability": 0.863 + }, + { + "start": 56334.02, + "end": 56335.56, + "probability": 0.6591 + }, + { + "start": 56336.92, + "end": 56337.32, + "probability": 0.9614 + }, + { + "start": 56338.0, + "end": 56338.94, + "probability": 0.8997 + }, + { + "start": 56339.68, + "end": 56339.98, + "probability": 0.9312 + }, + { + "start": 56340.7, + "end": 56341.54, + "probability": 0.9032 + }, + { + "start": 56343.28, + "end": 56346.08, + "probability": 0.9878 + }, + { + "start": 56349.4, + "end": 56350.18, + "probability": 0.8753 + }, + { + "start": 56351.18, + "end": 56351.9, + "probability": 0.5897 + }, + { + "start": 56352.78, + "end": 56353.12, + "probability": 0.5841 + }, + { + "start": 56354.32, + "end": 56355.04, + "probability": 0.6989 + }, + { + "start": 56357.08, + "end": 56357.54, + "probability": 0.9134 + }, + { + "start": 56358.4, + "end": 56359.16, + "probability": 0.8873 + }, + { + "start": 56360.48, + "end": 56362.26, + "probability": 0.9698 + }, + { + "start": 56363.68, + "end": 56365.62, + "probability": 0.8584 + }, + { + "start": 56367.78, + "end": 56368.6, + "probability": 0.9682 + }, + { + "start": 56369.28, + "end": 56370.04, + "probability": 0.9037 + }, + { + "start": 56371.32, + "end": 56371.96, + "probability": 0.9655 + }, + { + "start": 56372.48, + "end": 56373.72, + "probability": 0.9753 + }, + { + "start": 56374.94, + "end": 56375.72, + "probability": 0.9906 + }, + { + "start": 56376.24, + "end": 56377.16, + "probability": 0.6688 + }, + { + "start": 56378.18, + "end": 56378.46, + "probability": 0.8174 + }, + { + "start": 56379.46, + "end": 56380.02, + "probability": 0.8451 + }, + { + "start": 56380.86, + "end": 56381.34, + "probability": 0.9847 + }, + { + "start": 56382.24, + "end": 56383.3, + "probability": 0.9275 + }, + { + "start": 56384.18, + "end": 56386.36, + "probability": 0.937 + }, + { + "start": 56387.32, + "end": 56387.84, + "probability": 0.9922 + }, + { + "start": 56389.8, + "end": 56393.22, + "probability": 0.8812 + }, + { + "start": 56395.64, + "end": 56396.13, + "probability": 0.5535 + }, + { + "start": 56398.08, + "end": 56398.4, + "probability": 0.8425 + }, + { + "start": 56399.3, + "end": 56400.04, + "probability": 0.7298 + }, + { + "start": 56401.32, + "end": 56403.32, + "probability": 0.9323 + }, + { + "start": 56404.38, + "end": 56406.38, + "probability": 0.6901 + }, + { + "start": 56407.4, + "end": 56407.86, + "probability": 0.9863 + }, + { + "start": 56408.48, + "end": 56409.38, + "probability": 0.9772 + }, + { + "start": 56410.32, + "end": 56410.72, + "probability": 0.9878 + }, + { + "start": 56411.7, + "end": 56412.72, + "probability": 0.8882 + }, + { + "start": 56413.62, + "end": 56414.1, + "probability": 0.9474 + }, + { + "start": 56414.9, + "end": 56415.62, + "probability": 0.8368 + }, + { + "start": 56416.58, + "end": 56417.08, + "probability": 0.9948 + }, + { + "start": 56417.84, + "end": 56418.42, + "probability": 0.6957 + }, + { + "start": 56422.84, + "end": 56423.04, + "probability": 0.6858 + }, + { + "start": 56424.44, + "end": 56425.56, + "probability": 0.4986 + }, + { + "start": 56427.22, + "end": 56430.28, + "probability": 0.6362 + }, + { + "start": 56430.32, + "end": 56430.42, + "probability": 0.4876 + }, + { + "start": 56434.38, + "end": 56434.38, + "probability": 0.0136 + }, + { + "start": 56434.96, + "end": 56435.48, + "probability": 0.6684 + }, + { + "start": 56436.4, + "end": 56437.04, + "probability": 0.9677 + }, + { + "start": 56437.78, + "end": 56438.24, + "probability": 0.6587 + }, + { + "start": 56439.42, + "end": 56440.08, + "probability": 0.9196 + }, + { + "start": 56440.78, + "end": 56441.8, + "probability": 0.9409 + }, + { + "start": 56443.0, + "end": 56443.64, + "probability": 0.9759 + }, + { + "start": 56444.16, + "end": 56444.84, + "probability": 0.8517 + }, + { + "start": 56445.5, + "end": 56446.16, + "probability": 0.8857 + }, + { + "start": 56446.78, + "end": 56447.36, + "probability": 0.9321 + }, + { + "start": 56451.46, + "end": 56452.08, + "probability": 0.9041 + }, + { + "start": 56453.18, + "end": 56453.67, + "probability": 0.3846 + }, + { + "start": 56455.14, + "end": 56456.76, + "probability": 0.7668 + }, + { + "start": 56458.32, + "end": 56459.0, + "probability": 0.9434 + }, + { + "start": 56460.02, + "end": 56463.52, + "probability": 0.7911 + }, + { + "start": 56464.62, + "end": 56466.16, + "probability": 0.894 + }, + { + "start": 56467.4, + "end": 56468.96, + "probability": 0.985 + }, + { + "start": 56470.28, + "end": 56471.64, + "probability": 0.6407 + }, + { + "start": 56472.98, + "end": 56473.64, + "probability": 0.7776 + }, + { + "start": 56474.28, + "end": 56475.12, + "probability": 0.2529 + }, + { + "start": 56476.3, + "end": 56477.8, + "probability": 0.9073 + }, + { + "start": 56478.78, + "end": 56479.46, + "probability": 0.9396 + }, + { + "start": 56480.12, + "end": 56480.66, + "probability": 0.9125 + }, + { + "start": 56481.92, + "end": 56482.52, + "probability": 0.8387 + }, + { + "start": 56483.92, + "end": 56484.84, + "probability": 0.7397 + }, + { + "start": 56486.16, + "end": 56487.1, + "probability": 0.9914 + }, + { + "start": 56488.0, + "end": 56488.38, + "probability": 0.5511 + }, + { + "start": 56490.02, + "end": 56491.56, + "probability": 0.8517 + }, + { + "start": 56492.88, + "end": 56493.46, + "probability": 0.6832 + }, + { + "start": 56494.16, + "end": 56495.64, + "probability": 0.4541 + }, + { + "start": 56496.6, + "end": 56499.52, + "probability": 0.9205 + }, + { + "start": 56500.94, + "end": 56501.64, + "probability": 0.9848 + }, + { + "start": 56502.3, + "end": 56503.12, + "probability": 0.9613 + }, + { + "start": 56504.12, + "end": 56505.96, + "probability": 0.9901 + }, + { + "start": 56506.72, + "end": 56508.88, + "probability": 0.9712 + }, + { + "start": 56509.76, + "end": 56511.78, + "probability": 0.8472 + }, + { + "start": 56512.8, + "end": 56513.56, + "probability": 0.8381 + }, + { + "start": 56514.52, + "end": 56515.66, + "probability": 0.8483 + }, + { + "start": 56516.66, + "end": 56517.8, + "probability": 0.9835 + }, + { + "start": 56518.34, + "end": 56519.26, + "probability": 0.5193 + }, + { + "start": 56520.52, + "end": 56523.89, + "probability": 0.9089 + }, + { + "start": 56528.18, + "end": 56529.72, + "probability": 0.7483 + }, + { + "start": 56529.92, + "end": 56530.1, + "probability": 0.4919 + }, + { + "start": 56530.66, + "end": 56531.8, + "probability": 0.4006 + }, + { + "start": 56531.86, + "end": 56533.14, + "probability": 0.6985 + }, + { + "start": 56548.28, + "end": 56549.78, + "probability": 0.0157 + }, + { + "start": 56550.12, + "end": 56550.34, + "probability": 0.111 + }, + { + "start": 56550.84, + "end": 56550.98, + "probability": 0.116 + }, + { + "start": 56550.98, + "end": 56553.14, + "probability": 0.034 + }, + { + "start": 56554.72, + "end": 56557.64, + "probability": 0.0831 + }, + { + "start": 56558.31, + "end": 56559.14, + "probability": 0.1281 + }, + { + "start": 56559.68, + "end": 56560.4, + "probability": 0.0862 + }, + { + "start": 56561.44, + "end": 56561.92, + "probability": 0.4665 + }, + { + "start": 56567.2, + "end": 56568.4, + "probability": 0.099 + }, + { + "start": 56591.7, + "end": 56593.76, + "probability": 0.2274 + }, + { + "start": 56593.76, + "end": 56595.4, + "probability": 0.0553 + }, + { + "start": 56607.0, + "end": 56607.0, + "probability": 0.0228 + }, + { + "start": 56607.0, + "end": 56607.07, + "probability": 0.0407 + }, + { + "start": 56608.9, + "end": 56614.1, + "probability": 0.0157 + }, + { + "start": 56614.1, + "end": 56614.54, + "probability": 0.0301 + }, + { + "start": 56614.79, + "end": 56615.03, + "probability": 0.029 + }, + { + "start": 56615.26, + "end": 56615.26, + "probability": 0.0909 + }, + { + "start": 56615.26, + "end": 56615.4, + "probability": 0.2864 + }, + { + "start": 56615.64, + "end": 56616.38, + "probability": 0.0609 + }, + { + "start": 56616.54, + "end": 56616.82, + "probability": 0.0041 + }, + { + "start": 56617.0, + "end": 56617.0, + "probability": 0.0 + }, + { + "start": 56617.0, + "end": 56617.0, + "probability": 0.0 + }, + { + "start": 56617.0, + "end": 56617.0, + "probability": 0.0 + }, + { + "start": 56617.0, + "end": 56617.0, + "probability": 0.0 + }, + { + "start": 56617.0, + "end": 56617.0, + "probability": 0.0 + }, + { + "start": 56617.0, + "end": 56617.0, + "probability": 0.0 + }, + { + "start": 56617.0, + "end": 56617.0, + "probability": 0.0 + }, + { + "start": 56617.0, + "end": 56617.0, + "probability": 0.0 + }, + { + "start": 56617.08, + "end": 56619.3, + "probability": 0.682 + }, + { + "start": 56620.02, + "end": 56620.82, + "probability": 0.3268 + }, + { + "start": 56621.4, + "end": 56621.4, + "probability": 0.0837 + }, + { + "start": 56621.4, + "end": 56621.6, + "probability": 0.706 + }, + { + "start": 56621.8, + "end": 56622.36, + "probability": 0.4336 + }, + { + "start": 56622.46, + "end": 56622.82, + "probability": 0.0462 + }, + { + "start": 56622.82, + "end": 56624.44, + "probability": 0.6965 + }, + { + "start": 56625.54, + "end": 56626.54, + "probability": 0.2235 + }, + { + "start": 56629.08, + "end": 56631.02, + "probability": 0.0318 + }, + { + "start": 56742.0, + "end": 56742.0, + "probability": 0.0 + }, + { + "start": 56742.0, + "end": 56742.0, + "probability": 0.0 + }, + { + "start": 56742.0, + "end": 56742.0, + "probability": 0.0 + }, + { + "start": 56742.0, + "end": 56742.0, + "probability": 0.0 + }, + { + "start": 56742.0, + "end": 56742.0, + "probability": 0.0 + }, + { + "start": 56742.0, + "end": 56742.0, + "probability": 0.0 + }, + { + "start": 56742.0, + "end": 56742.0, + "probability": 0.0 + }, + { + "start": 56742.0, + "end": 56742.0, + "probability": 0.0 + }, + { + "start": 56742.0, + "end": 56742.0, + "probability": 0.0 + }, + { + "start": 56742.0, + "end": 56742.0, + "probability": 0.0 + }, + { + "start": 56742.64, + "end": 56742.66, + "probability": 0.2212 + }, + { + "start": 56742.66, + "end": 56742.66, + "probability": 0.0711 + }, + { + "start": 56742.66, + "end": 56743.54, + "probability": 0.1279 + }, + { + "start": 56744.58, + "end": 56745.82, + "probability": 0.6061 + }, + { + "start": 56746.02, + "end": 56748.42, + "probability": 0.804 + }, + { + "start": 56749.16, + "end": 56749.96, + "probability": 0.9451 + }, + { + "start": 56750.48, + "end": 56753.04, + "probability": 0.6361 + }, + { + "start": 56753.62, + "end": 56755.88, + "probability": 0.8556 + }, + { + "start": 56755.88, + "end": 56756.26, + "probability": 0.8533 + }, + { + "start": 56756.4, + "end": 56757.1, + "probability": 0.5411 + }, + { + "start": 56758.06, + "end": 56758.48, + "probability": 0.6414 + }, + { + "start": 56758.48, + "end": 56760.4, + "probability": 0.398 + }, + { + "start": 56763.88, + "end": 56765.04, + "probability": 0.5619 + }, + { + "start": 56765.14, + "end": 56770.12, + "probability": 0.4622 + }, + { + "start": 56770.66, + "end": 56771.94, + "probability": 0.4302 + }, + { + "start": 56772.4, + "end": 56774.38, + "probability": 0.8367 + }, + { + "start": 56775.96, + "end": 56781.8, + "probability": 0.2246 + }, + { + "start": 56783.02, + "end": 56783.5, + "probability": 0.8774 + }, + { + "start": 56784.28, + "end": 56785.04, + "probability": 0.6962 + }, + { + "start": 56786.3, + "end": 56788.14, + "probability": 0.8558 + }, + { + "start": 56788.82, + "end": 56789.28, + "probability": 0.7872 + }, + { + "start": 56790.32, + "end": 56791.06, + "probability": 0.8212 + }, + { + "start": 56791.6, + "end": 56793.66, + "probability": 0.9846 + }, + { + "start": 56794.26, + "end": 56794.7, + "probability": 0.9666 + }, + { + "start": 56796.16, + "end": 56797.16, + "probability": 0.7011 + }, + { + "start": 56798.12, + "end": 56800.42, + "probability": 0.988 + }, + { + "start": 56801.66, + "end": 56804.1, + "probability": 0.9272 + }, + { + "start": 56805.84, + "end": 56809.66, + "probability": 0.9527 + }, + { + "start": 56810.52, + "end": 56811.64, + "probability": 0.995 + }, + { + "start": 56812.4, + "end": 56813.1, + "probability": 0.9915 + }, + { + "start": 56813.88, + "end": 56814.28, + "probability": 0.9661 + }, + { + "start": 56815.0, + "end": 56815.8, + "probability": 0.8059 + }, + { + "start": 56817.2, + "end": 56817.68, + "probability": 0.7482 + }, + { + "start": 56818.44, + "end": 56819.6, + "probability": 0.9298 + }, + { + "start": 56820.28, + "end": 56821.96, + "probability": 0.8897 + }, + { + "start": 56825.46, + "end": 56826.26, + "probability": 0.7234 + }, + { + "start": 56826.78, + "end": 56827.52, + "probability": 0.9636 + }, + { + "start": 56828.8, + "end": 56829.24, + "probability": 0.9407 + }, + { + "start": 56830.58, + "end": 56831.26, + "probability": 0.9738 + }, + { + "start": 56832.14, + "end": 56832.64, + "probability": 0.9857 + }, + { + "start": 56833.36, + "end": 56834.26, + "probability": 0.8622 + }, + { + "start": 56835.2, + "end": 56837.24, + "probability": 0.9546 + }, + { + "start": 56837.78, + "end": 56839.76, + "probability": 0.8339 + }, + { + "start": 56840.94, + "end": 56841.3, + "probability": 0.5404 + }, + { + "start": 56842.38, + "end": 56843.1, + "probability": 0.9687 + }, + { + "start": 56843.8, + "end": 56845.24, + "probability": 0.9724 + }, + { + "start": 56846.17, + "end": 56848.08, + "probability": 0.9742 + }, + { + "start": 56849.08, + "end": 56849.74, + "probability": 0.9622 + }, + { + "start": 56850.98, + "end": 56851.96, + "probability": 0.9875 + }, + { + "start": 56853.66, + "end": 56855.56, + "probability": 0.972 + }, + { + "start": 56856.14, + "end": 56858.2, + "probability": 0.7463 + }, + { + "start": 56859.28, + "end": 56859.6, + "probability": 0.8738 + }, + { + "start": 56862.5, + "end": 56863.12, + "probability": 0.5944 + }, + { + "start": 56864.12, + "end": 56864.58, + "probability": 0.8542 + }, + { + "start": 56865.1, + "end": 56865.78, + "probability": 0.7667 + }, + { + "start": 56866.58, + "end": 56868.4, + "probability": 0.9769 + }, + { + "start": 56869.34, + "end": 56870.96, + "probability": 0.9389 + }, + { + "start": 56871.8, + "end": 56872.6, + "probability": 0.8464 + }, + { + "start": 56873.48, + "end": 56875.64, + "probability": 0.9234 + }, + { + "start": 56876.6, + "end": 56877.32, + "probability": 0.9405 + }, + { + "start": 56878.3, + "end": 56878.76, + "probability": 0.9945 + }, + { + "start": 56879.38, + "end": 56880.16, + "probability": 0.9241 + }, + { + "start": 56881.1, + "end": 56881.5, + "probability": 0.9811 + }, + { + "start": 56882.08, + "end": 56882.94, + "probability": 0.7577 + }, + { + "start": 56883.58, + "end": 56885.3, + "probability": 0.9595 + }, + { + "start": 56886.14, + "end": 56886.38, + "probability": 0.5099 + }, + { + "start": 56888.02, + "end": 56888.82, + "probability": 0.7243 + }, + { + "start": 56889.7, + "end": 56890.38, + "probability": 0.8409 + }, + { + "start": 56891.16, + "end": 56892.04, + "probability": 0.8903 + }, + { + "start": 56892.86, + "end": 56893.24, + "probability": 0.9648 + }, + { + "start": 56894.16, + "end": 56894.92, + "probability": 0.9575 + }, + { + "start": 56895.78, + "end": 56897.72, + "probability": 0.7613 + }, + { + "start": 56898.46, + "end": 56898.88, + "probability": 0.98 + }, + { + "start": 56899.4, + "end": 56900.42, + "probability": 0.8551 + }, + { + "start": 56902.04, + "end": 56904.8, + "probability": 0.876 + }, + { + "start": 56905.38, + "end": 56906.14, + "probability": 0.9544 + }, + { + "start": 56909.02, + "end": 56909.46, + "probability": 0.9932 + }, + { + "start": 56910.82, + "end": 56911.64, + "probability": 0.5425 + }, + { + "start": 56913.44, + "end": 56913.92, + "probability": 0.7411 + }, + { + "start": 56914.64, + "end": 56915.18, + "probability": 0.5013 + }, + { + "start": 56916.64, + "end": 56917.0, + "probability": 0.8896 + }, + { + "start": 56917.66, + "end": 56918.66, + "probability": 0.854 + }, + { + "start": 56919.38, + "end": 56919.82, + "probability": 0.9674 + }, + { + "start": 56920.4, + "end": 56921.48, + "probability": 0.7938 + }, + { + "start": 56922.96, + "end": 56923.36, + "probability": 0.9824 + }, + { + "start": 56924.9, + "end": 56925.76, + "probability": 0.7213 + }, + { + "start": 56926.58, + "end": 56927.02, + "probability": 0.9818 + }, + { + "start": 56927.9, + "end": 56930.88, + "probability": 0.7212 + }, + { + "start": 56932.38, + "end": 56932.78, + "probability": 0.9883 + }, + { + "start": 56934.3, + "end": 56935.2, + "probability": 0.6848 + }, + { + "start": 56935.96, + "end": 56937.5, + "probability": 0.68 + }, + { + "start": 56938.58, + "end": 56940.56, + "probability": 0.9617 + }, + { + "start": 56941.7, + "end": 56943.34, + "probability": 0.9764 + }, + { + "start": 56944.38, + "end": 56945.1, + "probability": 0.9901 + }, + { + "start": 56945.68, + "end": 56946.5, + "probability": 0.4865 + }, + { + "start": 56947.64, + "end": 56949.46, + "probability": 0.9604 + }, + { + "start": 56951.2, + "end": 56951.62, + "probability": 0.9666 + }, + { + "start": 56953.94, + "end": 56954.64, + "probability": 0.8545 + }, + { + "start": 56957.24, + "end": 56959.5, + "probability": 0.8931 + }, + { + "start": 56960.34, + "end": 56960.7, + "probability": 0.5602 + }, + { + "start": 56961.52, + "end": 56962.55, + "probability": 0.7362 + }, + { + "start": 56963.34, + "end": 56963.72, + "probability": 0.7605 + }, + { + "start": 56964.52, + "end": 56964.84, + "probability": 0.7932 + }, + { + "start": 56966.38, + "end": 56968.0, + "probability": 0.9112 + }, + { + "start": 56969.0, + "end": 56969.42, + "probability": 0.9818 + }, + { + "start": 56970.14, + "end": 56970.72, + "probability": 0.9811 + }, + { + "start": 56971.42, + "end": 56972.1, + "probability": 0.8744 + }, + { + "start": 56972.76, + "end": 56973.2, + "probability": 0.9619 + }, + { + "start": 56974.08, + "end": 56974.4, + "probability": 0.9167 + }, + { + "start": 56975.14, + "end": 56975.66, + "probability": 0.9467 + }, + { + "start": 56976.48, + "end": 56976.94, + "probability": 0.9863 + }, + { + "start": 56978.58, + "end": 56979.72, + "probability": 0.889 + }, + { + "start": 56980.38, + "end": 56980.78, + "probability": 0.9941 + }, + { + "start": 56981.7, + "end": 56982.48, + "probability": 0.9706 + }, + { + "start": 56983.44, + "end": 56985.64, + "probability": 0.9686 + }, + { + "start": 56986.58, + "end": 56987.02, + "probability": 0.7065 + }, + { + "start": 56987.74, + "end": 56988.48, + "probability": 0.5685 + }, + { + "start": 56989.42, + "end": 56989.76, + "probability": 0.9691 + }, + { + "start": 56990.44, + "end": 56991.32, + "probability": 0.8675 + }, + { + "start": 56992.22, + "end": 56992.58, + "probability": 0.8345 + }, + { + "start": 56993.82, + "end": 56994.7, + "probability": 0.934 + }, + { + "start": 56996.6, + "end": 56996.96, + "probability": 0.9513 + }, + { + "start": 56997.82, + "end": 56998.56, + "probability": 0.9694 + }, + { + "start": 56999.42, + "end": 56999.82, + "probability": 0.9856 + }, + { + "start": 57000.36, + "end": 57001.12, + "probability": 0.9777 + }, + { + "start": 57001.8, + "end": 57003.94, + "probability": 0.9818 + }, + { + "start": 57004.68, + "end": 57004.96, + "probability": 0.9963 + }, + { + "start": 57005.7, + "end": 57006.84, + "probability": 0.8665 + }, + { + "start": 57007.76, + "end": 57008.04, + "probability": 0.9836 + }, + { + "start": 57008.9, + "end": 57009.56, + "probability": 0.8158 + }, + { + "start": 57010.52, + "end": 57010.98, + "probability": 0.9958 + }, + { + "start": 57011.78, + "end": 57012.28, + "probability": 0.7228 + }, + { + "start": 57013.48, + "end": 57013.72, + "probability": 0.5178 + }, + { + "start": 57014.64, + "end": 57015.46, + "probability": 0.5817 + }, + { + "start": 57016.62, + "end": 57018.9, + "probability": 0.8896 + }, + { + "start": 57019.6, + "end": 57020.0, + "probability": 0.9824 + }, + { + "start": 57020.78, + "end": 57021.98, + "probability": 0.8454 + }, + { + "start": 57025.68, + "end": 57026.2, + "probability": 0.984 + }, + { + "start": 57027.6, + "end": 57028.32, + "probability": 0.9409 + }, + { + "start": 57029.5, + "end": 57030.18, + "probability": 0.9827 + }, + { + "start": 57031.24, + "end": 57033.16, + "probability": 0.726 + }, + { + "start": 57034.04, + "end": 57034.48, + "probability": 0.9002 + }, + { + "start": 57035.0, + "end": 57036.0, + "probability": 0.5155 + }, + { + "start": 57036.72, + "end": 57037.14, + "probability": 0.9751 + }, + { + "start": 57037.92, + "end": 57038.76, + "probability": 0.9766 + }, + { + "start": 57039.92, + "end": 57040.2, + "probability": 0.7026 + }, + { + "start": 57041.86, + "end": 57042.74, + "probability": 0.5633 + }, + { + "start": 57044.88, + "end": 57045.3, + "probability": 0.937 + }, + { + "start": 57046.68, + "end": 57047.72, + "probability": 0.8493 + }, + { + "start": 57048.98, + "end": 57049.5, + "probability": 0.9889 + }, + { + "start": 57050.62, + "end": 57051.44, + "probability": 0.7914 + }, + { + "start": 57052.2, + "end": 57052.6, + "probability": 0.9155 + }, + { + "start": 57053.78, + "end": 57056.94, + "probability": 0.9627 + }, + { + "start": 57058.36, + "end": 57058.8, + "probability": 0.9915 + }, + { + "start": 57059.56, + "end": 57060.26, + "probability": 0.8525 + }, + { + "start": 57062.18, + "end": 57062.64, + "probability": 0.9875 + }, + { + "start": 57063.38, + "end": 57064.26, + "probability": 0.9027 + }, + { + "start": 57066.22, + "end": 57066.32, + "probability": 0.4382 + }, + { + "start": 57071.18, + "end": 57072.24, + "probability": 0.1981 + }, + { + "start": 57073.38, + "end": 57073.78, + "probability": 0.5764 + }, + { + "start": 57074.52, + "end": 57075.3, + "probability": 0.6525 + }, + { + "start": 57076.16, + "end": 57076.6, + "probability": 0.9767 + }, + { + "start": 57077.42, + "end": 57078.44, + "probability": 0.6617 + }, + { + "start": 57080.08, + "end": 57080.48, + "probability": 0.9756 + }, + { + "start": 57081.1, + "end": 57083.76, + "probability": 0.6781 + }, + { + "start": 57088.14, + "end": 57088.56, + "probability": 0.9707 + }, + { + "start": 57089.68, + "end": 57090.48, + "probability": 0.8201 + }, + { + "start": 57093.94, + "end": 57094.56, + "probability": 0.9427 + }, + { + "start": 57095.4, + "end": 57097.86, + "probability": 0.2226 + }, + { + "start": 57099.54, + "end": 57100.5, + "probability": 0.2714 + }, + { + "start": 57102.56, + "end": 57102.98, + "probability": 0.7587 + }, + { + "start": 57104.02, + "end": 57107.44, + "probability": 0.7546 + }, + { + "start": 57119.78, + "end": 57123.46, + "probability": 0.6207 + }, + { + "start": 57124.88, + "end": 57125.16, + "probability": 0.5079 + }, + { + "start": 57126.12, + "end": 57126.96, + "probability": 0.8589 + }, + { + "start": 57128.08, + "end": 57130.0, + "probability": 0.8218 + }, + { + "start": 57131.5, + "end": 57132.12, + "probability": 0.8885 + }, + { + "start": 57132.8, + "end": 57134.84, + "probability": 0.9015 + }, + { + "start": 57136.72, + "end": 57137.64, + "probability": 0.6418 + }, + { + "start": 57138.22, + "end": 57140.32, + "probability": 0.7668 + }, + { + "start": 57141.4, + "end": 57141.82, + "probability": 0.9852 + }, + { + "start": 57142.72, + "end": 57143.52, + "probability": 0.8613 + }, + { + "start": 57144.9, + "end": 57145.52, + "probability": 0.3071 + }, + { + "start": 57146.24, + "end": 57149.72, + "probability": 0.5976 + }, + { + "start": 57150.6, + "end": 57151.26, + "probability": 0.7591 + }, + { + "start": 57151.84, + "end": 57153.0, + "probability": 0.9233 + }, + { + "start": 57154.74, + "end": 57156.5, + "probability": 0.9565 + }, + { + "start": 57157.66, + "end": 57159.76, + "probability": 0.8342 + }, + { + "start": 57160.6, + "end": 57163.6, + "probability": 0.9038 + }, + { + "start": 57164.36, + "end": 57165.1, + "probability": 0.9799 + }, + { + "start": 57165.62, + "end": 57169.62, + "probability": 0.7443 + }, + { + "start": 57171.12, + "end": 57173.06, + "probability": 0.6782 + }, + { + "start": 57174.34, + "end": 57174.72, + "probability": 0.7001 + }, + { + "start": 57175.8, + "end": 57176.74, + "probability": 0.8497 + }, + { + "start": 57178.62, + "end": 57179.84, + "probability": 0.8765 + }, + { + "start": 57180.62, + "end": 57181.38, + "probability": 0.6742 + }, + { + "start": 57182.4, + "end": 57182.84, + "probability": 0.8389 + }, + { + "start": 57183.5, + "end": 57184.6, + "probability": 0.9764 + }, + { + "start": 57185.64, + "end": 57187.62, + "probability": 0.7862 + }, + { + "start": 57189.0, + "end": 57189.38, + "probability": 0.9919 + }, + { + "start": 57190.82, + "end": 57191.66, + "probability": 0.9074 + }, + { + "start": 57192.38, + "end": 57192.82, + "probability": 0.896 + }, + { + "start": 57194.1, + "end": 57195.22, + "probability": 0.7058 + }, + { + "start": 57196.28, + "end": 57198.18, + "probability": 0.9495 + }, + { + "start": 57199.54, + "end": 57199.9, + "probability": 0.5516 + }, + { + "start": 57200.72, + "end": 57201.32, + "probability": 0.5335 + }, + { + "start": 57203.66, + "end": 57205.6, + "probability": 0.9463 + }, + { + "start": 57207.02, + "end": 57208.12, + "probability": 0.66 + }, + { + "start": 57210.54, + "end": 57211.72, + "probability": 0.7407 + }, + { + "start": 57212.58, + "end": 57214.6, + "probability": 0.6172 + }, + { + "start": 57215.96, + "end": 57216.84, + "probability": 0.627 + }, + { + "start": 57217.56, + "end": 57219.28, + "probability": 0.7386 + }, + { + "start": 57220.3, + "end": 57222.36, + "probability": 0.9592 + }, + { + "start": 57223.28, + "end": 57225.64, + "probability": 0.9332 + }, + { + "start": 57226.46, + "end": 57228.98, + "probability": 0.9757 + }, + { + "start": 57229.64, + "end": 57229.78, + "probability": 0.978 + }, + { + "start": 57232.84, + "end": 57235.14, + "probability": 0.5918 + }, + { + "start": 57235.94, + "end": 57237.7, + "probability": 0.6622 + }, + { + "start": 57238.86, + "end": 57239.52, + "probability": 0.9746 + }, + { + "start": 57240.18, + "end": 57241.82, + "probability": 0.9103 + }, + { + "start": 57247.28, + "end": 57248.38, + "probability": 0.6849 + }, + { + "start": 57251.42, + "end": 57252.84, + "probability": 0.2954 + }, + { + "start": 57254.58, + "end": 57255.46, + "probability": 0.9282 + }, + { + "start": 57256.22, + "end": 57257.14, + "probability": 0.4292 + }, + { + "start": 57257.86, + "end": 57259.8, + "probability": 0.8672 + }, + { + "start": 57260.8, + "end": 57262.34, + "probability": 0.6125 + }, + { + "start": 57263.28, + "end": 57263.96, + "probability": 0.985 + }, + { + "start": 57264.92, + "end": 57265.22, + "probability": 0.577 + }, + { + "start": 57266.28, + "end": 57266.98, + "probability": 0.9542 + }, + { + "start": 57267.62, + "end": 57268.56, + "probability": 0.3242 + }, + { + "start": 57271.34, + "end": 57272.72, + "probability": 0.7033 + }, + { + "start": 57276.4, + "end": 57277.08, + "probability": 0.5393 + }, + { + "start": 57279.02, + "end": 57280.36, + "probability": 0.8083 + }, + { + "start": 57281.38, + "end": 57281.98, + "probability": 0.7323 + }, + { + "start": 57283.74, + "end": 57284.46, + "probability": 0.9402 + }, + { + "start": 57286.74, + "end": 57287.86, + "probability": 0.6348 + }, + { + "start": 57289.18, + "end": 57290.48, + "probability": 0.9793 + }, + { + "start": 57291.5, + "end": 57292.34, + "probability": 0.8809 + }, + { + "start": 57293.84, + "end": 57296.44, + "probability": 0.8162 + }, + { + "start": 57297.62, + "end": 57298.66, + "probability": 0.9076 + }, + { + "start": 57299.48, + "end": 57301.3, + "probability": 0.9735 + }, + { + "start": 57302.48, + "end": 57304.4, + "probability": 0.6005 + }, + { + "start": 57305.14, + "end": 57306.86, + "probability": 0.9369 + }, + { + "start": 57307.44, + "end": 57308.08, + "probability": 0.9482 + }, + { + "start": 57308.68, + "end": 57310.02, + "probability": 0.9619 + }, + { + "start": 57310.94, + "end": 57312.9, + "probability": 0.9585 + }, + { + "start": 57314.12, + "end": 57316.04, + "probability": 0.9707 + }, + { + "start": 57316.72, + "end": 57318.76, + "probability": 0.9122 + }, + { + "start": 57320.04, + "end": 57320.96, + "probability": 0.9304 + }, + { + "start": 57324.7, + "end": 57326.98, + "probability": 0.9655 + }, + { + "start": 57329.2, + "end": 57329.42, + "probability": 0.0676 + }, + { + "start": 57331.16, + "end": 57332.5, + "probability": 0.1216 + }, + { + "start": 57332.96, + "end": 57334.07, + "probability": 0.7015 + }, + { + "start": 57334.34, + "end": 57334.94, + "probability": 0.0991 + }, + { + "start": 57336.36, + "end": 57337.2, + "probability": 0.0119 + }, + { + "start": 57337.72, + "end": 57342.5, + "probability": 0.7386 + }, + { + "start": 57343.0, + "end": 57343.08, + "probability": 0.0 + }, + { + "start": 57344.44, + "end": 57344.54, + "probability": 0.2291 + }, + { + "start": 57344.56, + "end": 57345.51, + "probability": 0.321 + }, + { + "start": 57347.2, + "end": 57350.94, + "probability": 0.335 + }, + { + "start": 57351.72, + "end": 57352.68, + "probability": 0.1736 + }, + { + "start": 57353.18, + "end": 57353.58, + "probability": 0.219 + }, + { + "start": 57353.58, + "end": 57354.76, + "probability": 0.0751 + }, + { + "start": 57365.16, + "end": 57368.22, + "probability": 0.2112 + }, + { + "start": 57369.7, + "end": 57372.24, + "probability": 0.6769 + }, + { + "start": 57374.87, + "end": 57379.78, + "probability": 0.2082 + }, + { + "start": 57379.8, + "end": 57379.96, + "probability": 0.0196 + }, + { + "start": 57379.96, + "end": 57380.45, + "probability": 0.0542 + }, + { + "start": 57381.58, + "end": 57383.14, + "probability": 0.4811 + }, + { + "start": 57383.14, + "end": 57383.48, + "probability": 0.158 + }, + { + "start": 57383.64, + "end": 57384.4, + "probability": 0.0747 + }, + { + "start": 57384.8, + "end": 57384.96, + "probability": 0.0089 + }, + { + "start": 57384.96, + "end": 57384.98, + "probability": 0.0052 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57385.0, + "end": 57385.0, + "probability": 0.0 + }, + { + "start": 57386.18, + "end": 57387.66, + "probability": 0.0614 + }, + { + "start": 57389.42, + "end": 57391.56, + "probability": 0.0876 + }, + { + "start": 57391.88, + "end": 57391.88, + "probability": 0.0251 + }, + { + "start": 57396.46, + "end": 57397.88, + "probability": 0.0487 + }, + { + "start": 57593.0, + "end": 57593.0, + "probability": 0.0 + }, + { + "start": 57593.0, + "end": 57593.0, + "probability": 0.0 + }, + { + "start": 57594.02, + "end": 57596.7, + "probability": 0.1339 + }, + { + "start": 57596.88, + "end": 57597.26, + "probability": 0.0748 + }, + { + "start": 57597.78, + "end": 57597.86, + "probability": 0.1224 + }, + { + "start": 57608.84, + "end": 57609.56, + "probability": 0.0891 + }, + { + "start": 57612.81, + "end": 57613.44, + "probability": 0.0963 + }, + { + "start": 57613.59, + "end": 57615.76, + "probability": 0.0152 + }, + { + "start": 57615.76, + "end": 57616.4, + "probability": 0.0611 + }, + { + "start": 57616.87, + "end": 57620.88, + "probability": 0.2628 + }, + { + "start": 57621.32, + "end": 57622.98, + "probability": 0.0075 + }, + { + "start": 57723.0, + "end": 57723.0, + "probability": 0.0 + }, + { + "start": 57723.0, + "end": 57723.0, + "probability": 0.0 + }, + { + "start": 57723.0, + "end": 57723.0, + "probability": 0.0 + }, + { + "start": 57723.0, + "end": 57723.0, + "probability": 0.0 + }, + { + "start": 57743.63, + "end": 57744.08, + "probability": 0.0246 + }, + { + "start": 57745.2, + "end": 57745.48, + "probability": 0.0118 + }, + { + "start": 57745.6, + "end": 57748.24, + "probability": 0.109 + }, + { + "start": 57748.84, + "end": 57748.84, + "probability": 0.0621 + }, + { + "start": 57751.04, + "end": 57752.5, + "probability": 0.113 + }, + { + "start": 57752.82, + "end": 57753.96, + "probability": 0.1677 + }, + { + "start": 57754.72, + "end": 57757.14, + "probability": 0.0996 + }, + { + "start": 57758.34, + "end": 57758.4, + "probability": 0.0097 + }, + { + "start": 57888.0, + "end": 57888.6, + "probability": 0.0029 + } + ], + "segments_count": 19750, + "words_count": 87643, + "avg_words_per_segment": 4.4376, + "avg_segment_duration": 1.5994, + "avg_words_per_minute": 90.5504, + "plenum_id": "103480", + "duration": 58073.52, + "title": null, + "plenum_date": "2021-12-29" +} \ No newline at end of file