diff --git "a/116626/metadata.json" "b/116626/metadata.json" new file mode 100644--- /dev/null +++ "b/116626/metadata.json" @@ -0,0 +1,31742 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "116626", + "quality_score": 0.901, + "per_segment_quality_scores": [ + { + "start": 29.18, + "end": 30.3, + "probability": 0.6701 + }, + { + "start": 30.42, + "end": 32.74, + "probability": 0.9921 + }, + { + "start": 32.74, + "end": 35.58, + "probability": 0.7428 + }, + { + "start": 35.74, + "end": 39.5, + "probability": 0.9141 + }, + { + "start": 39.58, + "end": 40.04, + "probability": 0.8745 + }, + { + "start": 40.26, + "end": 41.58, + "probability": 0.8881 + }, + { + "start": 41.7, + "end": 42.66, + "probability": 0.9795 + }, + { + "start": 42.74, + "end": 45.58, + "probability": 0.9966 + }, + { + "start": 45.58, + "end": 49.46, + "probability": 0.9966 + }, + { + "start": 49.46, + "end": 52.82, + "probability": 0.7393 + }, + { + "start": 54.56, + "end": 57.06, + "probability": 0.5838 + }, + { + "start": 57.94, + "end": 58.86, + "probability": 0.7822 + }, + { + "start": 58.86, + "end": 61.02, + "probability": 0.7756 + }, + { + "start": 62.12, + "end": 64.22, + "probability": 0.9917 + }, + { + "start": 64.22, + "end": 67.62, + "probability": 0.9136 + }, + { + "start": 68.24, + "end": 71.12, + "probability": 0.6874 + }, + { + "start": 71.12, + "end": 74.32, + "probability": 0.8118 + }, + { + "start": 82.3, + "end": 83.02, + "probability": 0.5178 + }, + { + "start": 83.1, + "end": 85.28, + "probability": 0.7307 + }, + { + "start": 85.28, + "end": 85.34, + "probability": 0.3958 + }, + { + "start": 85.48, + "end": 86.76, + "probability": 0.7715 + }, + { + "start": 86.84, + "end": 87.94, + "probability": 0.9167 + }, + { + "start": 88.42, + "end": 89.16, + "probability": 0.9225 + }, + { + "start": 89.58, + "end": 90.88, + "probability": 0.8795 + }, + { + "start": 91.18, + "end": 95.1, + "probability": 0.6698 + }, + { + "start": 96.04, + "end": 97.38, + "probability": 0.9866 + }, + { + "start": 97.46, + "end": 101.16, + "probability": 0.9884 + }, + { + "start": 101.8, + "end": 105.44, + "probability": 0.8433 + }, + { + "start": 105.66, + "end": 110.76, + "probability": 0.9789 + }, + { + "start": 110.86, + "end": 111.84, + "probability": 0.9032 + }, + { + "start": 111.84, + "end": 112.16, + "probability": 0.4298 + }, + { + "start": 112.3, + "end": 112.44, + "probability": 0.7384 + }, + { + "start": 112.6, + "end": 113.0, + "probability": 0.9024 + }, + { + "start": 114.08, + "end": 116.34, + "probability": 0.5998 + }, + { + "start": 116.5, + "end": 116.9, + "probability": 0.5111 + }, + { + "start": 116.96, + "end": 118.04, + "probability": 0.4095 + }, + { + "start": 118.26, + "end": 122.16, + "probability": 0.7667 + }, + { + "start": 122.22, + "end": 122.6, + "probability": 0.5828 + }, + { + "start": 122.8, + "end": 124.16, + "probability": 0.716 + }, + { + "start": 125.02, + "end": 128.56, + "probability": 0.8526 + }, + { + "start": 128.8, + "end": 130.14, + "probability": 0.6352 + }, + { + "start": 130.3, + "end": 131.1, + "probability": 0.9425 + }, + { + "start": 131.36, + "end": 135.12, + "probability": 0.708 + }, + { + "start": 135.4, + "end": 135.64, + "probability": 0.5125 + }, + { + "start": 135.72, + "end": 138.44, + "probability": 0.6031 + }, + { + "start": 140.52, + "end": 144.6, + "probability": 0.7694 + }, + { + "start": 146.32, + "end": 154.5, + "probability": 0.9258 + }, + { + "start": 154.58, + "end": 155.35, + "probability": 0.5268 + }, + { + "start": 156.64, + "end": 160.34, + "probability": 0.7457 + }, + { + "start": 160.86, + "end": 163.5, + "probability": 0.7233 + }, + { + "start": 165.46, + "end": 167.1, + "probability": 0.9658 + }, + { + "start": 167.42, + "end": 167.7, + "probability": 0.3498 + }, + { + "start": 167.84, + "end": 168.28, + "probability": 0.959 + }, + { + "start": 169.06, + "end": 172.94, + "probability": 0.902 + }, + { + "start": 173.78, + "end": 175.28, + "probability": 0.8306 + }, + { + "start": 175.44, + "end": 180.9, + "probability": 0.9097 + }, + { + "start": 181.34, + "end": 184.19, + "probability": 0.9175 + }, + { + "start": 184.4, + "end": 190.04, + "probability": 0.9644 + }, + { + "start": 190.04, + "end": 196.81, + "probability": 0.9989 + }, + { + "start": 197.8, + "end": 198.86, + "probability": 0.8942 + }, + { + "start": 199.68, + "end": 199.68, + "probability": 0.3469 + }, + { + "start": 199.68, + "end": 199.88, + "probability": 0.2862 + }, + { + "start": 200.06, + "end": 200.38, + "probability": 0.2522 + }, + { + "start": 200.38, + "end": 201.48, + "probability": 0.3078 + }, + { + "start": 201.68, + "end": 206.35, + "probability": 0.9261 + }, + { + "start": 206.86, + "end": 209.96, + "probability": 0.452 + }, + { + "start": 210.0, + "end": 212.56, + "probability": 0.8347 + }, + { + "start": 212.9, + "end": 216.1, + "probability": 0.9178 + }, + { + "start": 216.22, + "end": 218.46, + "probability": 0.9851 + }, + { + "start": 218.6, + "end": 220.12, + "probability": 0.8988 + }, + { + "start": 221.88, + "end": 222.84, + "probability": 0.4904 + }, + { + "start": 222.94, + "end": 223.48, + "probability": 0.6506 + }, + { + "start": 223.8, + "end": 226.86, + "probability": 0.937 + }, + { + "start": 226.9, + "end": 227.54, + "probability": 0.7197 + }, + { + "start": 227.58, + "end": 228.18, + "probability": 0.2974 + }, + { + "start": 229.18, + "end": 229.66, + "probability": 0.5327 + }, + { + "start": 234.31, + "end": 237.16, + "probability": 0.8398 + }, + { + "start": 237.54, + "end": 238.94, + "probability": 0.3413 + }, + { + "start": 239.06, + "end": 242.96, + "probability": 0.9809 + }, + { + "start": 243.44, + "end": 245.38, + "probability": 0.8674 + }, + { + "start": 245.64, + "end": 248.71, + "probability": 0.9421 + }, + { + "start": 248.84, + "end": 251.88, + "probability": 0.9108 + }, + { + "start": 252.34, + "end": 253.14, + "probability": 0.5011 + }, + { + "start": 253.67, + "end": 257.22, + "probability": 0.6112 + }, + { + "start": 257.8, + "end": 259.48, + "probability": 0.9162 + }, + { + "start": 259.6, + "end": 262.78, + "probability": 0.9829 + }, + { + "start": 263.16, + "end": 265.26, + "probability": 0.8586 + }, + { + "start": 265.38, + "end": 266.16, + "probability": 0.5008 + }, + { + "start": 266.34, + "end": 267.9, + "probability": 0.5871 + }, + { + "start": 267.96, + "end": 268.62, + "probability": 0.8464 + }, + { + "start": 272.88, + "end": 273.69, + "probability": 0.5359 + }, + { + "start": 273.82, + "end": 274.06, + "probability": 0.4746 + }, + { + "start": 274.14, + "end": 274.78, + "probability": 0.7997 + }, + { + "start": 275.24, + "end": 277.62, + "probability": 0.8979 + }, + { + "start": 277.8, + "end": 280.04, + "probability": 0.5256 + }, + { + "start": 280.04, + "end": 280.5, + "probability": 0.4812 + }, + { + "start": 281.14, + "end": 281.14, + "probability": 0.4174 + }, + { + "start": 281.42, + "end": 282.3, + "probability": 0.9466 + }, + { + "start": 282.68, + "end": 284.62, + "probability": 0.9631 + }, + { + "start": 284.78, + "end": 288.64, + "probability": 0.9259 + }, + { + "start": 289.32, + "end": 291.08, + "probability": 0.7656 + }, + { + "start": 291.86, + "end": 293.12, + "probability": 0.897 + }, + { + "start": 294.98, + "end": 295.78, + "probability": 0.6776 + }, + { + "start": 296.38, + "end": 300.4, + "probability": 0.9988 + }, + { + "start": 300.8, + "end": 303.2, + "probability": 0.9775 + }, + { + "start": 303.7, + "end": 307.06, + "probability": 0.7796 + }, + { + "start": 307.76, + "end": 308.68, + "probability": 0.9009 + }, + { + "start": 309.22, + "end": 310.32, + "probability": 0.882 + }, + { + "start": 311.1, + "end": 314.38, + "probability": 0.9962 + }, + { + "start": 314.46, + "end": 314.68, + "probability": 0.7428 + }, + { + "start": 314.96, + "end": 318.26, + "probability": 0.9868 + }, + { + "start": 318.4, + "end": 319.96, + "probability": 0.9172 + }, + { + "start": 320.36, + "end": 321.06, + "probability": 0.72 + }, + { + "start": 321.48, + "end": 322.4, + "probability": 0.7903 + }, + { + "start": 322.76, + "end": 323.22, + "probability": 0.8435 + }, + { + "start": 323.46, + "end": 324.8, + "probability": 0.915 + }, + { + "start": 324.86, + "end": 325.64, + "probability": 0.8629 + }, + { + "start": 325.74, + "end": 327.3, + "probability": 0.6339 + }, + { + "start": 327.36, + "end": 328.62, + "probability": 0.3986 + }, + { + "start": 328.8, + "end": 329.57, + "probability": 0.9336 + }, + { + "start": 330.18, + "end": 335.64, + "probability": 0.9624 + }, + { + "start": 336.2, + "end": 337.52, + "probability": 0.2005 + }, + { + "start": 337.52, + "end": 337.52, + "probability": 0.437 + }, + { + "start": 337.52, + "end": 338.92, + "probability": 0.2559 + }, + { + "start": 339.24, + "end": 342.8, + "probability": 0.175 + }, + { + "start": 342.9, + "end": 342.92, + "probability": 0.4307 + }, + { + "start": 342.92, + "end": 344.1, + "probability": 0.4488 + }, + { + "start": 344.52, + "end": 345.79, + "probability": 0.9629 + }, + { + "start": 346.26, + "end": 349.88, + "probability": 0.2429 + }, + { + "start": 349.88, + "end": 350.28, + "probability": 0.5435 + }, + { + "start": 350.74, + "end": 351.82, + "probability": 0.761 + }, + { + "start": 355.23, + "end": 357.74, + "probability": 0.5293 + }, + { + "start": 357.88, + "end": 358.44, + "probability": 0.0515 + }, + { + "start": 358.9, + "end": 358.9, + "probability": 0.1408 + }, + { + "start": 358.9, + "end": 363.44, + "probability": 0.361 + }, + { + "start": 363.54, + "end": 365.26, + "probability": 0.3953 + }, + { + "start": 365.36, + "end": 365.72, + "probability": 0.2581 + }, + { + "start": 365.94, + "end": 366.84, + "probability": 0.8217 + }, + { + "start": 367.72, + "end": 371.7, + "probability": 0.9284 + }, + { + "start": 371.94, + "end": 373.8, + "probability": 0.8822 + }, + { + "start": 374.52, + "end": 376.04, + "probability": 0.9233 + }, + { + "start": 376.94, + "end": 380.06, + "probability": 0.6695 + }, + { + "start": 380.18, + "end": 382.62, + "probability": 0.6865 + }, + { + "start": 382.72, + "end": 385.02, + "probability": 0.9065 + }, + { + "start": 385.02, + "end": 387.84, + "probability": 0.9904 + }, + { + "start": 387.96, + "end": 390.18, + "probability": 0.9235 + }, + { + "start": 390.66, + "end": 391.28, + "probability": 0.868 + }, + { + "start": 391.34, + "end": 392.95, + "probability": 0.6536 + }, + { + "start": 394.16, + "end": 397.28, + "probability": 0.8608 + }, + { + "start": 397.42, + "end": 400.24, + "probability": 0.6642 + }, + { + "start": 400.62, + "end": 401.84, + "probability": 0.9792 + }, + { + "start": 402.32, + "end": 402.96, + "probability": 0.7476 + }, + { + "start": 403.24, + "end": 405.22, + "probability": 0.8921 + }, + { + "start": 405.32, + "end": 405.98, + "probability": 0.6191 + }, + { + "start": 406.4, + "end": 407.32, + "probability": 0.7869 + }, + { + "start": 407.46, + "end": 409.38, + "probability": 0.9697 + }, + { + "start": 409.52, + "end": 410.28, + "probability": 0.7563 + }, + { + "start": 410.32, + "end": 413.38, + "probability": 0.9822 + }, + { + "start": 413.84, + "end": 416.16, + "probability": 0.8518 + }, + { + "start": 416.22, + "end": 420.36, + "probability": 0.7114 + }, + { + "start": 420.48, + "end": 420.92, + "probability": 0.3018 + }, + { + "start": 421.04, + "end": 421.5, + "probability": 0.66 + }, + { + "start": 421.66, + "end": 422.66, + "probability": 0.6885 + }, + { + "start": 422.72, + "end": 424.18, + "probability": 0.8524 + }, + { + "start": 424.28, + "end": 425.17, + "probability": 0.2654 + }, + { + "start": 425.7, + "end": 427.16, + "probability": 0.6255 + }, + { + "start": 427.26, + "end": 428.3, + "probability": 0.7158 + }, + { + "start": 428.42, + "end": 430.0, + "probability": 0.8022 + }, + { + "start": 430.28, + "end": 433.8, + "probability": 0.9203 + }, + { + "start": 433.94, + "end": 434.88, + "probability": 0.7984 + }, + { + "start": 434.94, + "end": 438.58, + "probability": 0.7568 + }, + { + "start": 438.66, + "end": 440.38, + "probability": 0.8463 + }, + { + "start": 440.46, + "end": 442.75, + "probability": 0.7764 + }, + { + "start": 443.6, + "end": 444.68, + "probability": 0.3537 + }, + { + "start": 444.88, + "end": 447.0, + "probability": 0.896 + }, + { + "start": 448.26, + "end": 449.97, + "probability": 0.9717 + }, + { + "start": 450.4, + "end": 452.68, + "probability": 0.7445 + }, + { + "start": 454.95, + "end": 456.13, + "probability": 0.5749 + }, + { + "start": 456.44, + "end": 464.06, + "probability": 0.7969 + }, + { + "start": 464.18, + "end": 466.05, + "probability": 0.9956 + }, + { + "start": 467.14, + "end": 470.42, + "probability": 0.7667 + }, + { + "start": 470.6, + "end": 474.64, + "probability": 0.921 + }, + { + "start": 474.74, + "end": 478.28, + "probability": 0.9769 + }, + { + "start": 478.94, + "end": 480.52, + "probability": 0.7305 + }, + { + "start": 480.66, + "end": 482.6, + "probability": 0.5533 + }, + { + "start": 482.94, + "end": 486.72, + "probability": 0.9146 + }, + { + "start": 487.97, + "end": 490.38, + "probability": 0.3449 + }, + { + "start": 490.38, + "end": 491.32, + "probability": 0.6633 + }, + { + "start": 491.8, + "end": 492.5, + "probability": 0.8955 + }, + { + "start": 492.98, + "end": 494.2, + "probability": 0.5074 + }, + { + "start": 494.28, + "end": 498.22, + "probability": 0.5115 + }, + { + "start": 498.74, + "end": 500.98, + "probability": 0.9679 + }, + { + "start": 501.06, + "end": 501.48, + "probability": 0.7898 + }, + { + "start": 501.88, + "end": 504.86, + "probability": 0.7961 + }, + { + "start": 504.9, + "end": 507.68, + "probability": 0.9355 + }, + { + "start": 508.66, + "end": 511.58, + "probability": 0.8694 + }, + { + "start": 511.66, + "end": 515.58, + "probability": 0.9916 + }, + { + "start": 515.58, + "end": 520.24, + "probability": 0.8979 + }, + { + "start": 520.92, + "end": 525.47, + "probability": 0.9252 + }, + { + "start": 527.18, + "end": 528.54, + "probability": 0.6048 + }, + { + "start": 528.94, + "end": 529.74, + "probability": 0.2599 + }, + { + "start": 529.82, + "end": 531.46, + "probability": 0.9585 + }, + { + "start": 531.64, + "end": 532.44, + "probability": 0.7275 + }, + { + "start": 532.78, + "end": 534.6, + "probability": 0.9864 + }, + { + "start": 534.7, + "end": 536.72, + "probability": 0.646 + }, + { + "start": 536.78, + "end": 543.32, + "probability": 0.8224 + }, + { + "start": 545.02, + "end": 545.36, + "probability": 0.3988 + }, + { + "start": 545.4, + "end": 545.78, + "probability": 0.7692 + }, + { + "start": 545.82, + "end": 549.32, + "probability": 0.9521 + }, + { + "start": 549.66, + "end": 550.34, + "probability": 0.8509 + }, + { + "start": 551.38, + "end": 551.88, + "probability": 0.9795 + }, + { + "start": 553.7, + "end": 555.94, + "probability": 0.7579 + }, + { + "start": 556.02, + "end": 561.32, + "probability": 0.9559 + }, + { + "start": 561.58, + "end": 562.04, + "probability": 0.8576 + }, + { + "start": 563.12, + "end": 569.12, + "probability": 0.9851 + }, + { + "start": 569.22, + "end": 575.24, + "probability": 0.997 + }, + { + "start": 575.76, + "end": 580.2, + "probability": 0.8225 + }, + { + "start": 580.3, + "end": 582.92, + "probability": 0.8667 + }, + { + "start": 583.16, + "end": 583.84, + "probability": 0.5684 + }, + { + "start": 583.98, + "end": 585.36, + "probability": 0.4822 + }, + { + "start": 585.7, + "end": 586.26, + "probability": 0.3631 + }, + { + "start": 586.32, + "end": 587.7, + "probability": 0.4431 + }, + { + "start": 588.39, + "end": 590.84, + "probability": 0.7425 + }, + { + "start": 590.9, + "end": 591.82, + "probability": 0.8584 + }, + { + "start": 593.98, + "end": 597.12, + "probability": 0.9976 + }, + { + "start": 597.12, + "end": 600.62, + "probability": 0.9709 + }, + { + "start": 600.7, + "end": 605.7, + "probability": 0.5576 + }, + { + "start": 606.56, + "end": 608.12, + "probability": 0.8463 + }, + { + "start": 612.94, + "end": 615.93, + "probability": 0.8009 + }, + { + "start": 617.26, + "end": 619.98, + "probability": 0.9868 + }, + { + "start": 621.56, + "end": 622.06, + "probability": 0.877 + }, + { + "start": 622.14, + "end": 626.74, + "probability": 0.9694 + }, + { + "start": 627.26, + "end": 630.54, + "probability": 0.9776 + }, + { + "start": 632.18, + "end": 636.84, + "probability": 0.9548 + }, + { + "start": 636.84, + "end": 639.66, + "probability": 0.973 + }, + { + "start": 640.22, + "end": 641.3, + "probability": 0.5723 + }, + { + "start": 642.18, + "end": 645.88, + "probability": 0.9705 + }, + { + "start": 647.0, + "end": 647.72, + "probability": 0.8319 + }, + { + "start": 647.98, + "end": 650.64, + "probability": 0.9513 + }, + { + "start": 650.85, + "end": 655.32, + "probability": 0.9458 + }, + { + "start": 655.32, + "end": 658.42, + "probability": 0.937 + }, + { + "start": 659.18, + "end": 661.72, + "probability": 0.8271 + }, + { + "start": 662.24, + "end": 664.38, + "probability": 0.964 + }, + { + "start": 664.64, + "end": 666.08, + "probability": 0.8367 + }, + { + "start": 666.48, + "end": 667.84, + "probability": 0.887 + }, + { + "start": 667.84, + "end": 669.66, + "probability": 0.689 + }, + { + "start": 670.28, + "end": 676.48, + "probability": 0.9541 + }, + { + "start": 676.98, + "end": 678.91, + "probability": 0.9707 + }, + { + "start": 679.8, + "end": 681.62, + "probability": 0.9737 + }, + { + "start": 681.98, + "end": 686.0, + "probability": 0.8211 + }, + { + "start": 687.06, + "end": 689.78, + "probability": 0.8387 + }, + { + "start": 690.38, + "end": 692.56, + "probability": 0.9455 + }, + { + "start": 692.98, + "end": 695.57, + "probability": 0.8489 + }, + { + "start": 696.78, + "end": 698.92, + "probability": 0.9111 + }, + { + "start": 699.18, + "end": 699.68, + "probability": 0.7384 + }, + { + "start": 700.06, + "end": 702.82, + "probability": 0.9839 + }, + { + "start": 702.96, + "end": 703.44, + "probability": 0.384 + }, + { + "start": 703.48, + "end": 706.62, + "probability": 0.9601 + }, + { + "start": 706.76, + "end": 707.62, + "probability": 0.8642 + }, + { + "start": 708.52, + "end": 712.62, + "probability": 0.947 + }, + { + "start": 712.62, + "end": 716.76, + "probability": 0.9933 + }, + { + "start": 717.18, + "end": 721.54, + "probability": 0.8522 + }, + { + "start": 722.3, + "end": 724.68, + "probability": 0.8584 + }, + { + "start": 725.28, + "end": 725.8, + "probability": 0.4627 + }, + { + "start": 728.1, + "end": 732.36, + "probability": 0.8772 + }, + { + "start": 732.36, + "end": 735.54, + "probability": 0.9805 + }, + { + "start": 736.2, + "end": 739.7, + "probability": 0.9146 + }, + { + "start": 740.22, + "end": 745.72, + "probability": 0.9846 + }, + { + "start": 746.26, + "end": 749.92, + "probability": 0.9055 + }, + { + "start": 750.06, + "end": 753.24, + "probability": 0.9284 + }, + { + "start": 754.28, + "end": 756.08, + "probability": 0.9941 + }, + { + "start": 756.08, + "end": 758.96, + "probability": 0.7996 + }, + { + "start": 759.64, + "end": 761.92, + "probability": 0.9174 + }, + { + "start": 762.08, + "end": 764.36, + "probability": 0.6739 + }, + { + "start": 764.72, + "end": 768.62, + "probability": 0.9925 + }, + { + "start": 768.74, + "end": 771.26, + "probability": 0.887 + }, + { + "start": 771.64, + "end": 772.42, + "probability": 0.555 + }, + { + "start": 773.04, + "end": 775.96, + "probability": 0.9723 + }, + { + "start": 776.02, + "end": 779.94, + "probability": 0.7837 + }, + { + "start": 780.46, + "end": 783.28, + "probability": 0.9074 + }, + { + "start": 784.0, + "end": 790.62, + "probability": 0.9726 + }, + { + "start": 790.8, + "end": 793.34, + "probability": 0.9948 + }, + { + "start": 795.16, + "end": 796.76, + "probability": 0.6749 + }, + { + "start": 797.42, + "end": 798.78, + "probability": 0.7739 + }, + { + "start": 798.88, + "end": 799.32, + "probability": 0.5181 + }, + { + "start": 799.34, + "end": 800.44, + "probability": 0.6997 + }, + { + "start": 800.44, + "end": 800.44, + "probability": 0.29 + }, + { + "start": 800.44, + "end": 801.86, + "probability": 0.9276 + }, + { + "start": 802.46, + "end": 802.7, + "probability": 0.6048 + }, + { + "start": 803.12, + "end": 803.66, + "probability": 0.8726 + }, + { + "start": 803.76, + "end": 804.8, + "probability": 0.9827 + }, + { + "start": 804.92, + "end": 807.14, + "probability": 0.9507 + }, + { + "start": 807.62, + "end": 809.68, + "probability": 0.9979 + }, + { + "start": 809.78, + "end": 810.84, + "probability": 0.8846 + }, + { + "start": 813.26, + "end": 820.58, + "probability": 0.975 + }, + { + "start": 821.7, + "end": 824.28, + "probability": 0.9603 + }, + { + "start": 825.76, + "end": 827.86, + "probability": 0.9614 + }, + { + "start": 827.96, + "end": 830.6, + "probability": 0.9433 + }, + { + "start": 831.88, + "end": 833.84, + "probability": 0.493 + }, + { + "start": 834.8, + "end": 835.62, + "probability": 0.9578 + }, + { + "start": 836.6, + "end": 837.8, + "probability": 0.9588 + }, + { + "start": 838.44, + "end": 840.2, + "probability": 0.682 + }, + { + "start": 841.28, + "end": 843.42, + "probability": 0.797 + }, + { + "start": 844.74, + "end": 846.64, + "probability": 0.8895 + }, + { + "start": 847.02, + "end": 847.66, + "probability": 0.8684 + }, + { + "start": 848.22, + "end": 848.56, + "probability": 0.809 + }, + { + "start": 848.66, + "end": 848.96, + "probability": 0.5622 + }, + { + "start": 849.22, + "end": 849.66, + "probability": 0.7817 + }, + { + "start": 849.98, + "end": 850.5, + "probability": 0.8493 + }, + { + "start": 850.6, + "end": 851.58, + "probability": 0.9224 + }, + { + "start": 851.76, + "end": 852.58, + "probability": 0.5532 + }, + { + "start": 852.6, + "end": 854.82, + "probability": 0.7005 + }, + { + "start": 855.54, + "end": 855.72, + "probability": 0.3982 + }, + { + "start": 855.94, + "end": 857.18, + "probability": 0.1778 + }, + { + "start": 857.52, + "end": 860.38, + "probability": 0.2622 + }, + { + "start": 860.56, + "end": 862.72, + "probability": 0.3982 + }, + { + "start": 863.36, + "end": 864.92, + "probability": 0.3343 + }, + { + "start": 866.64, + "end": 868.84, + "probability": 0.0453 + }, + { + "start": 868.84, + "end": 869.14, + "probability": 0.1586 + }, + { + "start": 869.32, + "end": 869.6, + "probability": 0.3358 + }, + { + "start": 869.6, + "end": 869.6, + "probability": 0.0514 + }, + { + "start": 869.6, + "end": 870.88, + "probability": 0.5229 + }, + { + "start": 871.96, + "end": 872.52, + "probability": 0.9357 + }, + { + "start": 872.8, + "end": 873.08, + "probability": 0.7208 + }, + { + "start": 873.54, + "end": 875.3, + "probability": 0.8639 + }, + { + "start": 876.1, + "end": 878.2, + "probability": 0.9354 + }, + { + "start": 878.28, + "end": 881.22, + "probability": 0.8579 + }, + { + "start": 881.9, + "end": 884.98, + "probability": 0.9453 + }, + { + "start": 885.44, + "end": 886.3, + "probability": 0.2613 + }, + { + "start": 888.32, + "end": 890.2, + "probability": 0.3266 + }, + { + "start": 890.2, + "end": 892.14, + "probability": 0.9595 + }, + { + "start": 892.86, + "end": 894.38, + "probability": 0.9375 + }, + { + "start": 894.56, + "end": 898.03, + "probability": 0.7126 + }, + { + "start": 898.64, + "end": 902.92, + "probability": 0.9397 + }, + { + "start": 905.18, + "end": 908.52, + "probability": 0.8302 + }, + { + "start": 908.54, + "end": 909.98, + "probability": 0.8921 + }, + { + "start": 910.0, + "end": 913.38, + "probability": 0.9099 + }, + { + "start": 913.56, + "end": 915.4, + "probability": 0.6287 + }, + { + "start": 916.46, + "end": 917.54, + "probability": 0.7524 + }, + { + "start": 917.62, + "end": 919.74, + "probability": 0.9448 + }, + { + "start": 920.78, + "end": 923.36, + "probability": 0.9459 + }, + { + "start": 924.28, + "end": 928.36, + "probability": 0.9962 + }, + { + "start": 929.34, + "end": 933.68, + "probability": 0.9824 + }, + { + "start": 934.74, + "end": 935.44, + "probability": 0.6346 + }, + { + "start": 936.42, + "end": 939.72, + "probability": 0.737 + }, + { + "start": 939.82, + "end": 940.04, + "probability": 0.7374 + }, + { + "start": 940.72, + "end": 943.47, + "probability": 0.9912 + }, + { + "start": 944.22, + "end": 945.56, + "probability": 0.7575 + }, + { + "start": 946.02, + "end": 951.66, + "probability": 0.9708 + }, + { + "start": 952.22, + "end": 953.25, + "probability": 0.9409 + }, + { + "start": 953.36, + "end": 954.26, + "probability": 0.9784 + }, + { + "start": 954.66, + "end": 956.84, + "probability": 0.6843 + }, + { + "start": 957.58, + "end": 960.3, + "probability": 0.9865 + }, + { + "start": 960.9, + "end": 961.68, + "probability": 0.8428 + }, + { + "start": 962.9, + "end": 964.52, + "probability": 0.9283 + }, + { + "start": 966.26, + "end": 967.8, + "probability": 0.0214 + }, + { + "start": 968.12, + "end": 969.64, + "probability": 0.965 + }, + { + "start": 971.66, + "end": 972.56, + "probability": 0.9325 + }, + { + "start": 972.86, + "end": 978.43, + "probability": 0.9697 + }, + { + "start": 980.36, + "end": 983.28, + "probability": 0.9218 + }, + { + "start": 983.42, + "end": 983.8, + "probability": 0.591 + }, + { + "start": 984.34, + "end": 986.0, + "probability": 0.8459 + }, + { + "start": 986.98, + "end": 991.04, + "probability": 0.795 + }, + { + "start": 991.92, + "end": 994.24, + "probability": 0.6101 + }, + { + "start": 997.24, + "end": 999.62, + "probability": 0.9985 + }, + { + "start": 1000.2, + "end": 1001.76, + "probability": 0.9096 + }, + { + "start": 1002.8, + "end": 1005.62, + "probability": 0.7972 + }, + { + "start": 1005.7, + "end": 1010.04, + "probability": 0.9191 + }, + { + "start": 1010.1, + "end": 1016.4, + "probability": 0.9893 + }, + { + "start": 1016.4, + "end": 1024.34, + "probability": 0.4819 + }, + { + "start": 1024.38, + "end": 1029.24, + "probability": 0.7894 + }, + { + "start": 1029.64, + "end": 1031.94, + "probability": 0.661 + }, + { + "start": 1032.7, + "end": 1034.66, + "probability": 0.9684 + }, + { + "start": 1037.14, + "end": 1044.92, + "probability": 0.9744 + }, + { + "start": 1046.42, + "end": 1047.08, + "probability": 0.7663 + }, + { + "start": 1048.08, + "end": 1048.08, + "probability": 0.5305 + }, + { + "start": 1048.08, + "end": 1050.42, + "probability": 0.8203 + }, + { + "start": 1050.78, + "end": 1053.26, + "probability": 0.9819 + }, + { + "start": 1053.78, + "end": 1055.98, + "probability": 0.6684 + }, + { + "start": 1056.4, + "end": 1061.84, + "probability": 0.9622 + }, + { + "start": 1062.04, + "end": 1063.62, + "probability": 0.8663 + }, + { + "start": 1064.22, + "end": 1066.44, + "probability": 0.7831 + }, + { + "start": 1068.8, + "end": 1069.74, + "probability": 0.2539 + }, + { + "start": 1071.18, + "end": 1074.72, + "probability": 0.9838 + }, + { + "start": 1075.6, + "end": 1080.2, + "probability": 0.7559 + }, + { + "start": 1080.64, + "end": 1084.52, + "probability": 0.741 + }, + { + "start": 1085.92, + "end": 1086.78, + "probability": 0.4421 + }, + { + "start": 1089.58, + "end": 1090.4, + "probability": 0.8728 + }, + { + "start": 1092.43, + "end": 1094.52, + "probability": 0.9321 + }, + { + "start": 1095.74, + "end": 1098.22, + "probability": 0.8558 + }, + { + "start": 1099.04, + "end": 1100.5, + "probability": 0.5136 + }, + { + "start": 1102.82, + "end": 1107.42, + "probability": 0.9736 + }, + { + "start": 1108.94, + "end": 1110.22, + "probability": 0.8302 + }, + { + "start": 1114.18, + "end": 1114.68, + "probability": 0.1583 + }, + { + "start": 1116.46, + "end": 1117.36, + "probability": 0.8391 + }, + { + "start": 1119.58, + "end": 1121.24, + "probability": 0.6575 + }, + { + "start": 1125.62, + "end": 1126.12, + "probability": 0.0054 + }, + { + "start": 1128.76, + "end": 1129.86, + "probability": 0.4999 + }, + { + "start": 1130.04, + "end": 1131.52, + "probability": 0.9197 + }, + { + "start": 1131.74, + "end": 1132.46, + "probability": 0.9507 + }, + { + "start": 1132.62, + "end": 1133.39, + "probability": 0.9941 + }, + { + "start": 1133.8, + "end": 1134.62, + "probability": 0.9495 + }, + { + "start": 1135.2, + "end": 1136.66, + "probability": 0.9764 + }, + { + "start": 1137.1, + "end": 1137.44, + "probability": 0.9097 + }, + { + "start": 1138.6, + "end": 1139.3, + "probability": 0.8852 + }, + { + "start": 1139.98, + "end": 1142.04, + "probability": 0.9839 + }, + { + "start": 1143.72, + "end": 1144.48, + "probability": 0.4783 + }, + { + "start": 1144.98, + "end": 1145.49, + "probability": 0.9786 + }, + { + "start": 1146.56, + "end": 1148.68, + "probability": 0.9382 + }, + { + "start": 1148.74, + "end": 1150.04, + "probability": 0.827 + }, + { + "start": 1152.38, + "end": 1154.44, + "probability": 0.6591 + }, + { + "start": 1155.16, + "end": 1158.32, + "probability": 0.9489 + }, + { + "start": 1160.1, + "end": 1164.84, + "probability": 0.6654 + }, + { + "start": 1165.72, + "end": 1168.4, + "probability": 0.8636 + }, + { + "start": 1168.4, + "end": 1172.22, + "probability": 0.887 + }, + { + "start": 1172.86, + "end": 1173.68, + "probability": 0.9742 + }, + { + "start": 1175.2, + "end": 1176.68, + "probability": 0.7979 + }, + { + "start": 1179.54, + "end": 1180.64, + "probability": 0.9726 + }, + { + "start": 1181.34, + "end": 1182.32, + "probability": 0.9949 + }, + { + "start": 1183.58, + "end": 1188.74, + "probability": 0.9834 + }, + { + "start": 1188.9, + "end": 1192.3, + "probability": 0.9882 + }, + { + "start": 1193.52, + "end": 1195.6, + "probability": 0.9969 + }, + { + "start": 1195.9, + "end": 1197.48, + "probability": 0.9498 + }, + { + "start": 1198.44, + "end": 1199.84, + "probability": 0.9885 + }, + { + "start": 1201.2, + "end": 1201.6, + "probability": 0.7628 + }, + { + "start": 1202.68, + "end": 1204.46, + "probability": 0.978 + }, + { + "start": 1208.18, + "end": 1209.0, + "probability": 0.774 + }, + { + "start": 1209.21, + "end": 1210.9, + "probability": 0.9639 + }, + { + "start": 1211.24, + "end": 1212.58, + "probability": 0.9794 + }, + { + "start": 1213.5, + "end": 1215.96, + "probability": 0.9673 + }, + { + "start": 1218.56, + "end": 1219.24, + "probability": 0.9707 + }, + { + "start": 1219.88, + "end": 1221.18, + "probability": 0.2875 + }, + { + "start": 1221.3, + "end": 1222.02, + "probability": 0.5902 + }, + { + "start": 1223.46, + "end": 1225.98, + "probability": 0.9597 + }, + { + "start": 1226.16, + "end": 1227.54, + "probability": 0.9209 + }, + { + "start": 1227.62, + "end": 1227.76, + "probability": 0.5226 + }, + { + "start": 1228.56, + "end": 1231.04, + "probability": 0.9059 + }, + { + "start": 1231.4, + "end": 1234.32, + "probability": 0.7533 + }, + { + "start": 1234.76, + "end": 1235.53, + "probability": 0.9749 + }, + { + "start": 1237.48, + "end": 1240.14, + "probability": 0.7453 + }, + { + "start": 1240.28, + "end": 1242.58, + "probability": 0.8119 + }, + { + "start": 1245.2, + "end": 1247.89, + "probability": 0.9959 + }, + { + "start": 1249.9, + "end": 1252.94, + "probability": 0.7811 + }, + { + "start": 1253.42, + "end": 1254.28, + "probability": 0.4972 + }, + { + "start": 1255.74, + "end": 1256.8, + "probability": 0.2333 + }, + { + "start": 1257.4, + "end": 1259.64, + "probability": 0.8197 + }, + { + "start": 1260.7, + "end": 1261.72, + "probability": 0.6395 + }, + { + "start": 1261.88, + "end": 1263.87, + "probability": 0.9132 + }, + { + "start": 1264.94, + "end": 1268.86, + "probability": 0.9523 + }, + { + "start": 1269.42, + "end": 1270.4, + "probability": 0.7275 + }, + { + "start": 1270.54, + "end": 1270.89, + "probability": 0.9778 + }, + { + "start": 1271.38, + "end": 1272.44, + "probability": 0.7376 + }, + { + "start": 1272.74, + "end": 1275.16, + "probability": 0.9897 + }, + { + "start": 1275.54, + "end": 1276.62, + "probability": 0.7632 + }, + { + "start": 1277.18, + "end": 1278.64, + "probability": 0.9923 + }, + { + "start": 1279.76, + "end": 1280.36, + "probability": 0.2643 + }, + { + "start": 1280.38, + "end": 1281.6, + "probability": 0.5012 + }, + { + "start": 1282.56, + "end": 1283.3, + "probability": 0.9153 + }, + { + "start": 1283.4, + "end": 1286.88, + "probability": 0.7828 + }, + { + "start": 1287.16, + "end": 1287.71, + "probability": 0.8948 + }, + { + "start": 1287.94, + "end": 1289.34, + "probability": 0.3912 + }, + { + "start": 1289.76, + "end": 1290.46, + "probability": 0.9183 + }, + { + "start": 1292.24, + "end": 1293.54, + "probability": 0.3593 + }, + { + "start": 1294.46, + "end": 1295.46, + "probability": 0.5879 + }, + { + "start": 1296.12, + "end": 1298.78, + "probability": 0.539 + }, + { + "start": 1299.88, + "end": 1300.32, + "probability": 0.9423 + }, + { + "start": 1300.4, + "end": 1300.54, + "probability": 0.4899 + }, + { + "start": 1300.62, + "end": 1301.26, + "probability": 0.8592 + }, + { + "start": 1301.4, + "end": 1304.18, + "probability": 0.7681 + }, + { + "start": 1305.56, + "end": 1306.44, + "probability": 0.9329 + }, + { + "start": 1307.52, + "end": 1309.84, + "probability": 0.8982 + }, + { + "start": 1310.42, + "end": 1310.72, + "probability": 0.719 + }, + { + "start": 1311.02, + "end": 1311.14, + "probability": 0.3874 + }, + { + "start": 1311.28, + "end": 1314.05, + "probability": 0.9124 + }, + { + "start": 1314.78, + "end": 1317.3, + "probability": 0.9295 + }, + { + "start": 1317.68, + "end": 1321.5, + "probability": 0.9214 + }, + { + "start": 1323.0, + "end": 1324.44, + "probability": 0.7266 + }, + { + "start": 1325.66, + "end": 1327.94, + "probability": 0.7814 + }, + { + "start": 1328.54, + "end": 1329.36, + "probability": 0.9963 + }, + { + "start": 1329.92, + "end": 1330.3, + "probability": 0.9428 + }, + { + "start": 1331.06, + "end": 1331.82, + "probability": 0.9541 + }, + { + "start": 1332.0, + "end": 1333.6, + "probability": 0.6041 + }, + { + "start": 1333.94, + "end": 1337.28, + "probability": 0.9424 + }, + { + "start": 1338.0, + "end": 1338.4, + "probability": 0.9225 + }, + { + "start": 1338.5, + "end": 1338.7, + "probability": 0.9832 + }, + { + "start": 1339.56, + "end": 1340.7, + "probability": 0.9258 + }, + { + "start": 1341.68, + "end": 1342.34, + "probability": 0.6329 + }, + { + "start": 1342.34, + "end": 1345.58, + "probability": 0.9966 + }, + { + "start": 1346.26, + "end": 1348.06, + "probability": 0.7909 + }, + { + "start": 1348.76, + "end": 1350.08, + "probability": 0.9283 + }, + { + "start": 1352.0, + "end": 1354.34, + "probability": 0.8898 + }, + { + "start": 1354.94, + "end": 1356.04, + "probability": 0.6365 + }, + { + "start": 1357.02, + "end": 1358.7, + "probability": 0.5662 + }, + { + "start": 1359.12, + "end": 1362.78, + "probability": 0.1229 + }, + { + "start": 1362.94, + "end": 1365.18, + "probability": 0.9756 + }, + { + "start": 1366.1, + "end": 1367.94, + "probability": 0.9869 + }, + { + "start": 1368.53, + "end": 1368.98, + "probability": 0.8604 + }, + { + "start": 1369.06, + "end": 1369.42, + "probability": 0.5323 + }, + { + "start": 1369.5, + "end": 1370.64, + "probability": 0.7866 + }, + { + "start": 1370.8, + "end": 1371.64, + "probability": 0.9014 + }, + { + "start": 1372.84, + "end": 1373.7, + "probability": 0.7287 + }, + { + "start": 1374.28, + "end": 1375.34, + "probability": 0.685 + }, + { + "start": 1375.44, + "end": 1375.74, + "probability": 0.9047 + }, + { + "start": 1377.54, + "end": 1380.88, + "probability": 0.9394 + }, + { + "start": 1381.14, + "end": 1384.72, + "probability": 0.9699 + }, + { + "start": 1385.36, + "end": 1386.04, + "probability": 0.4286 + }, + { + "start": 1386.08, + "end": 1388.48, + "probability": 0.7084 + }, + { + "start": 1388.56, + "end": 1389.42, + "probability": 0.6802 + }, + { + "start": 1389.98, + "end": 1390.24, + "probability": 0.538 + }, + { + "start": 1390.32, + "end": 1391.28, + "probability": 0.8639 + }, + { + "start": 1391.7, + "end": 1397.12, + "probability": 0.9701 + }, + { + "start": 1398.06, + "end": 1399.22, + "probability": 0.743 + }, + { + "start": 1400.88, + "end": 1402.22, + "probability": 0.7774 + }, + { + "start": 1402.74, + "end": 1405.36, + "probability": 0.9818 + }, + { + "start": 1406.32, + "end": 1409.26, + "probability": 0.6685 + }, + { + "start": 1409.56, + "end": 1410.5, + "probability": 0.3283 + }, + { + "start": 1411.3, + "end": 1412.84, + "probability": 0.6122 + }, + { + "start": 1414.02, + "end": 1414.28, + "probability": 0.7169 + }, + { + "start": 1415.3, + "end": 1422.38, + "probability": 0.7477 + }, + { + "start": 1423.18, + "end": 1425.42, + "probability": 0.945 + }, + { + "start": 1425.48, + "end": 1426.28, + "probability": 0.8687 + }, + { + "start": 1426.74, + "end": 1429.74, + "probability": 0.9523 + }, + { + "start": 1430.3, + "end": 1432.24, + "probability": 0.9591 + }, + { + "start": 1432.28, + "end": 1434.98, + "probability": 0.9949 + }, + { + "start": 1435.06, + "end": 1437.62, + "probability": 0.6669 + }, + { + "start": 1437.78, + "end": 1439.44, + "probability": 0.8871 + }, + { + "start": 1440.2, + "end": 1440.74, + "probability": 0.9722 + }, + { + "start": 1441.28, + "end": 1441.72, + "probability": 0.9446 + }, + { + "start": 1442.52, + "end": 1444.36, + "probability": 0.9218 + }, + { + "start": 1444.52, + "end": 1445.9, + "probability": 0.4825 + }, + { + "start": 1445.9, + "end": 1446.12, + "probability": 0.4421 + }, + { + "start": 1446.22, + "end": 1446.78, + "probability": 0.4365 + }, + { + "start": 1446.94, + "end": 1447.84, + "probability": 0.7524 + }, + { + "start": 1447.92, + "end": 1450.38, + "probability": 0.7964 + }, + { + "start": 1450.5, + "end": 1451.44, + "probability": 0.3332 + }, + { + "start": 1451.52, + "end": 1455.76, + "probability": 0.7793 + }, + { + "start": 1456.06, + "end": 1457.36, + "probability": 0.6372 + }, + { + "start": 1457.76, + "end": 1460.1, + "probability": 0.8908 + }, + { + "start": 1460.72, + "end": 1467.82, + "probability": 0.9854 + }, + { + "start": 1468.56, + "end": 1471.22, + "probability": 0.9932 + }, + { + "start": 1471.44, + "end": 1476.07, + "probability": 0.9882 + }, + { + "start": 1476.38, + "end": 1481.62, + "probability": 0.9644 + }, + { + "start": 1481.84, + "end": 1483.46, + "probability": 0.8365 + }, + { + "start": 1484.06, + "end": 1487.84, + "probability": 0.9946 + }, + { + "start": 1488.38, + "end": 1490.66, + "probability": 0.9761 + }, + { + "start": 1491.12, + "end": 1492.42, + "probability": 0.5123 + }, + { + "start": 1493.26, + "end": 1496.54, + "probability": 0.9365 + }, + { + "start": 1496.54, + "end": 1501.98, + "probability": 0.9679 + }, + { + "start": 1502.5, + "end": 1506.36, + "probability": 0.9733 + }, + { + "start": 1506.72, + "end": 1507.24, + "probability": 0.8279 + }, + { + "start": 1507.92, + "end": 1509.11, + "probability": 0.7749 + }, + { + "start": 1509.34, + "end": 1513.06, + "probability": 0.9967 + }, + { + "start": 1513.26, + "end": 1513.54, + "probability": 0.2738 + }, + { + "start": 1513.7, + "end": 1515.12, + "probability": 0.671 + }, + { + "start": 1515.62, + "end": 1523.5, + "probability": 0.9741 + }, + { + "start": 1523.94, + "end": 1527.9, + "probability": 0.9388 + }, + { + "start": 1528.38, + "end": 1534.56, + "probability": 0.9485 + }, + { + "start": 1534.7, + "end": 1538.12, + "probability": 0.8021 + }, + { + "start": 1538.5, + "end": 1540.26, + "probability": 0.9952 + }, + { + "start": 1540.5, + "end": 1544.04, + "probability": 0.7995 + }, + { + "start": 1544.64, + "end": 1548.32, + "probability": 0.8862 + }, + { + "start": 1548.74, + "end": 1555.8, + "probability": 0.9961 + }, + { + "start": 1556.26, + "end": 1560.14, + "probability": 0.9951 + }, + { + "start": 1560.8, + "end": 1563.6, + "probability": 0.9816 + }, + { + "start": 1563.72, + "end": 1564.72, + "probability": 0.8032 + }, + { + "start": 1565.28, + "end": 1567.04, + "probability": 0.9888 + }, + { + "start": 1567.92, + "end": 1570.1, + "probability": 0.6745 + }, + { + "start": 1570.14, + "end": 1571.34, + "probability": 0.8708 + }, + { + "start": 1571.4, + "end": 1575.67, + "probability": 0.9268 + }, + { + "start": 1576.56, + "end": 1580.26, + "probability": 0.7505 + }, + { + "start": 1580.96, + "end": 1584.0, + "probability": 0.9905 + }, + { + "start": 1584.66, + "end": 1585.86, + "probability": 0.749 + }, + { + "start": 1586.0, + "end": 1589.4, + "probability": 0.9961 + }, + { + "start": 1589.78, + "end": 1593.4, + "probability": 0.9826 + }, + { + "start": 1593.62, + "end": 1595.16, + "probability": 0.2125 + }, + { + "start": 1595.8, + "end": 1600.44, + "probability": 0.9888 + }, + { + "start": 1600.44, + "end": 1605.18, + "probability": 0.9705 + }, + { + "start": 1605.8, + "end": 1609.58, + "probability": 0.9795 + }, + { + "start": 1609.7, + "end": 1610.8, + "probability": 0.7206 + }, + { + "start": 1610.84, + "end": 1612.72, + "probability": 0.905 + }, + { + "start": 1613.12, + "end": 1613.53, + "probability": 0.4242 + }, + { + "start": 1614.0, + "end": 1615.44, + "probability": 0.8812 + }, + { + "start": 1620.06, + "end": 1621.74, + "probability": 0.9117 + }, + { + "start": 1623.04, + "end": 1624.46, + "probability": 0.796 + }, + { + "start": 1624.62, + "end": 1625.28, + "probability": 0.7306 + }, + { + "start": 1626.92, + "end": 1627.28, + "probability": 0.818 + }, + { + "start": 1627.38, + "end": 1628.04, + "probability": 0.8261 + }, + { + "start": 1628.46, + "end": 1631.6, + "probability": 0.9931 + }, + { + "start": 1631.98, + "end": 1632.88, + "probability": 0.9581 + }, + { + "start": 1636.14, + "end": 1637.24, + "probability": 0.1607 + }, + { + "start": 1637.24, + "end": 1640.68, + "probability": 0.804 + }, + { + "start": 1642.1, + "end": 1647.46, + "probability": 0.9878 + }, + { + "start": 1648.24, + "end": 1649.56, + "probability": 0.6672 + }, + { + "start": 1651.04, + "end": 1654.52, + "probability": 0.9313 + }, + { + "start": 1654.64, + "end": 1656.78, + "probability": 0.6296 + }, + { + "start": 1656.84, + "end": 1660.06, + "probability": 0.9835 + }, + { + "start": 1660.58, + "end": 1663.02, + "probability": 0.9958 + }, + { + "start": 1663.06, + "end": 1666.86, + "probability": 0.8699 + }, + { + "start": 1667.1, + "end": 1669.98, + "probability": 0.5737 + }, + { + "start": 1670.56, + "end": 1675.48, + "probability": 0.6565 + }, + { + "start": 1675.58, + "end": 1681.5, + "probability": 0.9755 + }, + { + "start": 1682.02, + "end": 1686.88, + "probability": 0.655 + }, + { + "start": 1687.18, + "end": 1689.2, + "probability": 0.6133 + }, + { + "start": 1689.64, + "end": 1695.22, + "probability": 0.9414 + }, + { + "start": 1696.0, + "end": 1698.2, + "probability": 0.8287 + }, + { + "start": 1698.22, + "end": 1700.22, + "probability": 0.9418 + }, + { + "start": 1701.18, + "end": 1703.98, + "probability": 0.9446 + }, + { + "start": 1704.04, + "end": 1705.5, + "probability": 0.735 + }, + { + "start": 1705.94, + "end": 1709.38, + "probability": 0.9965 + }, + { + "start": 1709.54, + "end": 1711.46, + "probability": 0.9995 + }, + { + "start": 1711.94, + "end": 1713.1, + "probability": 0.6763 + }, + { + "start": 1713.14, + "end": 1714.18, + "probability": 0.9139 + }, + { + "start": 1714.66, + "end": 1715.92, + "probability": 0.9584 + }, + { + "start": 1716.02, + "end": 1716.88, + "probability": 0.9849 + }, + { + "start": 1717.36, + "end": 1720.68, + "probability": 0.9629 + }, + { + "start": 1720.84, + "end": 1721.12, + "probability": 0.8502 + }, + { + "start": 1721.28, + "end": 1722.46, + "probability": 0.8151 + }, + { + "start": 1722.58, + "end": 1724.24, + "probability": 0.9141 + }, + { + "start": 1724.36, + "end": 1726.66, + "probability": 0.8211 + }, + { + "start": 1729.24, + "end": 1730.0, + "probability": 0.8539 + }, + { + "start": 1730.26, + "end": 1733.46, + "probability": 0.9919 + }, + { + "start": 1733.46, + "end": 1737.78, + "probability": 0.9952 + }, + { + "start": 1738.28, + "end": 1745.72, + "probability": 0.8278 + }, + { + "start": 1745.88, + "end": 1747.38, + "probability": 0.916 + }, + { + "start": 1747.78, + "end": 1750.28, + "probability": 0.9702 + }, + { + "start": 1751.0, + "end": 1755.14, + "probability": 0.9404 + }, + { + "start": 1755.14, + "end": 1759.22, + "probability": 0.8281 + }, + { + "start": 1759.94, + "end": 1765.58, + "probability": 0.6943 + }, + { + "start": 1766.1, + "end": 1771.62, + "probability": 0.7926 + }, + { + "start": 1771.7, + "end": 1772.62, + "probability": 0.6549 + }, + { + "start": 1773.52, + "end": 1775.86, + "probability": 0.8128 + }, + { + "start": 1776.14, + "end": 1777.26, + "probability": 0.9401 + }, + { + "start": 1777.46, + "end": 1777.9, + "probability": 0.6651 + }, + { + "start": 1777.96, + "end": 1779.16, + "probability": 0.8872 + }, + { + "start": 1780.88, + "end": 1783.06, + "probability": 0.4329 + }, + { + "start": 1784.14, + "end": 1786.56, + "probability": 0.9912 + }, + { + "start": 1787.86, + "end": 1788.48, + "probability": 0.9912 + }, + { + "start": 1788.8, + "end": 1795.14, + "probability": 0.9284 + }, + { + "start": 1795.24, + "end": 1795.96, + "probability": 0.8919 + }, + { + "start": 1796.94, + "end": 1800.34, + "probability": 0.8089 + }, + { + "start": 1801.04, + "end": 1801.7, + "probability": 0.8959 + }, + { + "start": 1802.36, + "end": 1803.12, + "probability": 0.8721 + }, + { + "start": 1804.4, + "end": 1807.76, + "probability": 0.8772 + }, + { + "start": 1808.1, + "end": 1809.12, + "probability": 0.856 + }, + { + "start": 1809.94, + "end": 1813.82, + "probability": 0.918 + }, + { + "start": 1814.72, + "end": 1817.14, + "probability": 0.9587 + }, + { + "start": 1817.64, + "end": 1821.22, + "probability": 0.9907 + }, + { + "start": 1821.88, + "end": 1822.72, + "probability": 0.7741 + }, + { + "start": 1823.78, + "end": 1826.08, + "probability": 0.597 + }, + { + "start": 1826.16, + "end": 1826.56, + "probability": 0.7572 + }, + { + "start": 1826.7, + "end": 1828.3, + "probability": 0.553 + }, + { + "start": 1829.24, + "end": 1831.34, + "probability": 0.9897 + }, + { + "start": 1832.26, + "end": 1833.5, + "probability": 0.877 + }, + { + "start": 1834.1, + "end": 1835.88, + "probability": 0.9152 + }, + { + "start": 1835.94, + "end": 1836.72, + "probability": 0.885 + }, + { + "start": 1837.18, + "end": 1837.48, + "probability": 0.9622 + }, + { + "start": 1838.32, + "end": 1839.7, + "probability": 0.8232 + }, + { + "start": 1840.42, + "end": 1840.88, + "probability": 0.8708 + }, + { + "start": 1842.52, + "end": 1844.86, + "probability": 0.551 + }, + { + "start": 1845.44, + "end": 1848.28, + "probability": 0.9942 + }, + { + "start": 1848.88, + "end": 1849.72, + "probability": 0.7576 + }, + { + "start": 1849.82, + "end": 1853.48, + "probability": 0.9487 + }, + { + "start": 1854.34, + "end": 1854.56, + "probability": 0.5853 + }, + { + "start": 1855.3, + "end": 1859.9, + "probability": 0.9804 + }, + { + "start": 1861.02, + "end": 1864.28, + "probability": 0.3586 + }, + { + "start": 1866.17, + "end": 1867.56, + "probability": 0.9741 + }, + { + "start": 1868.92, + "end": 1869.32, + "probability": 0.5963 + }, + { + "start": 1869.48, + "end": 1877.26, + "probability": 0.904 + }, + { + "start": 1878.19, + "end": 1880.58, + "probability": 0.9595 + }, + { + "start": 1880.64, + "end": 1882.3, + "probability": 0.4947 + }, + { + "start": 1882.7, + "end": 1883.66, + "probability": 0.665 + }, + { + "start": 1883.82, + "end": 1884.16, + "probability": 0.5405 + }, + { + "start": 1884.34, + "end": 1884.42, + "probability": 0.5084 + }, + { + "start": 1884.42, + "end": 1885.18, + "probability": 0.5289 + }, + { + "start": 1885.28, + "end": 1886.6, + "probability": 0.9044 + }, + { + "start": 1887.49, + "end": 1888.92, + "probability": 0.1831 + }, + { + "start": 1888.92, + "end": 1888.94, + "probability": 0.5446 + }, + { + "start": 1888.94, + "end": 1893.58, + "probability": 0.8799 + }, + { + "start": 1895.12, + "end": 1897.38, + "probability": 0.7526 + }, + { + "start": 1897.72, + "end": 1898.6, + "probability": 0.5167 + }, + { + "start": 1899.08, + "end": 1901.56, + "probability": 0.6332 + }, + { + "start": 1902.22, + "end": 1908.36, + "probability": 0.7666 + }, + { + "start": 1911.08, + "end": 1913.68, + "probability": 0.8776 + }, + { + "start": 1913.68, + "end": 1913.88, + "probability": 0.8789 + }, + { + "start": 1914.62, + "end": 1917.36, + "probability": 0.9966 + }, + { + "start": 1917.9, + "end": 1918.98, + "probability": 0.9631 + }, + { + "start": 1919.15, + "end": 1919.61, + "probability": 0.0148 + }, + { + "start": 1920.82, + "end": 1924.32, + "probability": 0.9226 + }, + { + "start": 1924.88, + "end": 1926.08, + "probability": 0.8855 + }, + { + "start": 1926.9, + "end": 1928.74, + "probability": 0.4725 + }, + { + "start": 1928.78, + "end": 1931.64, + "probability": 0.8349 + }, + { + "start": 1932.42, + "end": 1934.94, + "probability": 0.957 + }, + { + "start": 1935.9, + "end": 1941.72, + "probability": 0.9655 + }, + { + "start": 1941.82, + "end": 1943.51, + "probability": 0.5158 + }, + { + "start": 1945.66, + "end": 1948.68, + "probability": 0.7051 + }, + { + "start": 1949.58, + "end": 1952.12, + "probability": 0.9653 + }, + { + "start": 1952.86, + "end": 1953.44, + "probability": 0.6586 + }, + { + "start": 1953.94, + "end": 1954.98, + "probability": 0.9173 + }, + { + "start": 1955.42, + "end": 1955.86, + "probability": 0.0717 + }, + { + "start": 1955.98, + "end": 1957.93, + "probability": 0.8234 + }, + { + "start": 1958.28, + "end": 1960.66, + "probability": 0.7444 + }, + { + "start": 1962.02, + "end": 1962.96, + "probability": 0.8924 + }, + { + "start": 1963.48, + "end": 1965.5, + "probability": 0.8154 + }, + { + "start": 1966.22, + "end": 1966.82, + "probability": 0.5448 + }, + { + "start": 1967.34, + "end": 1969.54, + "probability": 0.7064 + }, + { + "start": 1970.46, + "end": 1973.0, + "probability": 0.7411 + }, + { + "start": 1974.72, + "end": 1975.26, + "probability": 0.5487 + }, + { + "start": 1975.5, + "end": 1975.82, + "probability": 0.3355 + }, + { + "start": 1975.84, + "end": 1976.88, + "probability": 0.902 + }, + { + "start": 1977.08, + "end": 1978.16, + "probability": 0.6404 + }, + { + "start": 1978.3, + "end": 1979.72, + "probability": 0.4976 + }, + { + "start": 1980.44, + "end": 1983.34, + "probability": 0.9979 + }, + { + "start": 1983.94, + "end": 1986.36, + "probability": 0.9946 + }, + { + "start": 1987.0, + "end": 1990.08, + "probability": 0.8012 + }, + { + "start": 1990.34, + "end": 1991.44, + "probability": 0.135 + }, + { + "start": 1991.44, + "end": 1992.6, + "probability": 0.4863 + }, + { + "start": 1993.38, + "end": 1995.34, + "probability": 0.8924 + }, + { + "start": 1996.22, + "end": 1999.0, + "probability": 0.6396 + }, + { + "start": 1999.6, + "end": 2001.41, + "probability": 0.0399 + }, + { + "start": 2002.18, + "end": 2004.16, + "probability": 0.5181 + }, + { + "start": 2004.26, + "end": 2005.48, + "probability": 0.6001 + }, + { + "start": 2005.68, + "end": 2005.98, + "probability": 0.0786 + }, + { + "start": 2006.22, + "end": 2008.26, + "probability": 0.9126 + }, + { + "start": 2010.14, + "end": 2010.76, + "probability": 0.3876 + }, + { + "start": 2010.76, + "end": 2010.8, + "probability": 0.2517 + }, + { + "start": 2011.14, + "end": 2014.62, + "probability": 0.2452 + }, + { + "start": 2014.76, + "end": 2015.34, + "probability": 0.3519 + }, + { + "start": 2015.54, + "end": 2018.9, + "probability": 0.8722 + }, + { + "start": 2019.54, + "end": 2020.56, + "probability": 0.9634 + }, + { + "start": 2020.8, + "end": 2021.79, + "probability": 0.8357 + }, + { + "start": 2022.22, + "end": 2024.86, + "probability": 0.644 + }, + { + "start": 2024.98, + "end": 2025.38, + "probability": 0.8809 + }, + { + "start": 2026.12, + "end": 2027.12, + "probability": 0.7719 + }, + { + "start": 2027.22, + "end": 2029.02, + "probability": 0.8815 + }, + { + "start": 2030.08, + "end": 2030.72, + "probability": 0.9236 + }, + { + "start": 2031.4, + "end": 2032.86, + "probability": 0.3553 + }, + { + "start": 2033.12, + "end": 2034.82, + "probability": 0.5377 + }, + { + "start": 2034.94, + "end": 2038.28, + "probability": 0.9987 + }, + { + "start": 2038.48, + "end": 2038.68, + "probability": 0.4922 + }, + { + "start": 2038.68, + "end": 2041.6, + "probability": 0.4742 + }, + { + "start": 2041.68, + "end": 2043.9, + "probability": 0.1986 + }, + { + "start": 2044.62, + "end": 2046.3, + "probability": 0.9121 + }, + { + "start": 2047.18, + "end": 2049.28, + "probability": 0.6114 + }, + { + "start": 2049.98, + "end": 2053.44, + "probability": 0.939 + }, + { + "start": 2054.3, + "end": 2055.76, + "probability": 0.9424 + }, + { + "start": 2056.54, + "end": 2063.3, + "probability": 0.8974 + }, + { + "start": 2063.72, + "end": 2064.04, + "probability": 0.2651 + }, + { + "start": 2064.84, + "end": 2067.12, + "probability": 0.7512 + }, + { + "start": 2067.92, + "end": 2070.28, + "probability": 0.9889 + }, + { + "start": 2070.36, + "end": 2070.82, + "probability": 0.7759 + }, + { + "start": 2071.42, + "end": 2074.4, + "probability": 0.9138 + }, + { + "start": 2074.78, + "end": 2075.34, + "probability": 0.4273 + }, + { + "start": 2075.48, + "end": 2076.03, + "probability": 0.6587 + }, + { + "start": 2076.78, + "end": 2078.26, + "probability": 0.8094 + }, + { + "start": 2079.66, + "end": 2083.16, + "probability": 0.9011 + }, + { + "start": 2083.44, + "end": 2084.8, + "probability": 0.9268 + }, + { + "start": 2084.88, + "end": 2087.98, + "probability": 0.9725 + }, + { + "start": 2088.46, + "end": 2090.26, + "probability": 0.9839 + }, + { + "start": 2090.44, + "end": 2091.1, + "probability": 0.8704 + }, + { + "start": 2091.54, + "end": 2094.94, + "probability": 0.9913 + }, + { + "start": 2095.54, + "end": 2095.54, + "probability": 0.7168 + }, + { + "start": 2095.6, + "end": 2099.0, + "probability": 0.9747 + }, + { + "start": 2099.3, + "end": 2102.18, + "probability": 0.9985 + }, + { + "start": 2103.38, + "end": 2103.54, + "probability": 0.1286 + }, + { + "start": 2103.54, + "end": 2106.3, + "probability": 0.7231 + }, + { + "start": 2107.02, + "end": 2108.82, + "probability": 0.749 + }, + { + "start": 2109.0, + "end": 2109.9, + "probability": 0.9297 + }, + { + "start": 2110.58, + "end": 2114.44, + "probability": 0.9777 + }, + { + "start": 2114.58, + "end": 2116.42, + "probability": 0.3802 + }, + { + "start": 2117.02, + "end": 2118.6, + "probability": 0.973 + }, + { + "start": 2119.84, + "end": 2120.98, + "probability": 0.7522 + }, + { + "start": 2121.56, + "end": 2122.58, + "probability": 0.8817 + }, + { + "start": 2127.76, + "end": 2131.88, + "probability": 0.8475 + }, + { + "start": 2131.94, + "end": 2133.24, + "probability": 0.8737 + }, + { + "start": 2135.48, + "end": 2136.54, + "probability": 0.7954 + }, + { + "start": 2136.6, + "end": 2137.28, + "probability": 0.7774 + }, + { + "start": 2140.64, + "end": 2144.1, + "probability": 0.7832 + }, + { + "start": 2145.08, + "end": 2150.06, + "probability": 0.9976 + }, + { + "start": 2150.96, + "end": 2155.26, + "probability": 0.9966 + }, + { + "start": 2155.26, + "end": 2159.84, + "probability": 0.9977 + }, + { + "start": 2161.18, + "end": 2166.28, + "probability": 0.999 + }, + { + "start": 2166.66, + "end": 2171.64, + "probability": 0.9993 + }, + { + "start": 2172.66, + "end": 2174.78, + "probability": 0.9993 + }, + { + "start": 2175.38, + "end": 2180.78, + "probability": 0.9976 + }, + { + "start": 2180.78, + "end": 2186.56, + "probability": 0.9957 + }, + { + "start": 2188.56, + "end": 2195.02, + "probability": 0.9976 + }, + { + "start": 2196.3, + "end": 2200.4, + "probability": 0.9929 + }, + { + "start": 2201.2, + "end": 2203.66, + "probability": 0.9985 + }, + { + "start": 2203.66, + "end": 2206.96, + "probability": 0.9966 + }, + { + "start": 2207.5, + "end": 2211.46, + "probability": 0.9871 + }, + { + "start": 2212.62, + "end": 2213.94, + "probability": 0.8686 + }, + { + "start": 2214.18, + "end": 2215.22, + "probability": 0.7755 + }, + { + "start": 2215.32, + "end": 2219.02, + "probability": 0.9984 + }, + { + "start": 2219.02, + "end": 2223.44, + "probability": 0.9276 + }, + { + "start": 2224.0, + "end": 2228.82, + "probability": 0.8887 + }, + { + "start": 2229.02, + "end": 2232.84, + "probability": 0.9799 + }, + { + "start": 2234.9, + "end": 2235.18, + "probability": 0.3434 + }, + { + "start": 2235.22, + "end": 2239.36, + "probability": 0.9817 + }, + { + "start": 2239.9, + "end": 2243.86, + "probability": 0.9873 + }, + { + "start": 2244.7, + "end": 2246.8, + "probability": 0.9899 + }, + { + "start": 2247.6, + "end": 2248.59, + "probability": 0.5002 + }, + { + "start": 2248.82, + "end": 2254.17, + "probability": 0.9794 + }, + { + "start": 2255.16, + "end": 2260.84, + "probability": 0.9836 + }, + { + "start": 2261.3, + "end": 2263.56, + "probability": 0.9946 + }, + { + "start": 2264.28, + "end": 2267.06, + "probability": 0.9645 + }, + { + "start": 2267.64, + "end": 2269.9, + "probability": 0.9949 + }, + { + "start": 2269.9, + "end": 2273.84, + "probability": 0.9828 + }, + { + "start": 2274.24, + "end": 2278.66, + "probability": 0.9984 + }, + { + "start": 2278.66, + "end": 2281.8, + "probability": 0.9369 + }, + { + "start": 2282.48, + "end": 2285.56, + "probability": 0.9947 + }, + { + "start": 2285.56, + "end": 2288.54, + "probability": 0.9926 + }, + { + "start": 2289.1, + "end": 2292.18, + "probability": 0.9961 + }, + { + "start": 2293.2, + "end": 2296.22, + "probability": 0.9954 + }, + { + "start": 2296.3, + "end": 2300.18, + "probability": 0.7697 + }, + { + "start": 2300.94, + "end": 2304.88, + "probability": 0.9442 + }, + { + "start": 2305.64, + "end": 2308.12, + "probability": 0.9543 + }, + { + "start": 2308.58, + "end": 2311.5, + "probability": 0.9956 + }, + { + "start": 2312.72, + "end": 2313.52, + "probability": 0.4993 + }, + { + "start": 2314.18, + "end": 2317.48, + "probability": 0.9979 + }, + { + "start": 2317.64, + "end": 2318.96, + "probability": 0.876 + }, + { + "start": 2319.56, + "end": 2325.08, + "probability": 0.9955 + }, + { + "start": 2325.82, + "end": 2328.12, + "probability": 0.8958 + }, + { + "start": 2328.64, + "end": 2330.0, + "probability": 0.8001 + }, + { + "start": 2330.44, + "end": 2330.54, + "probability": 0.4612 + }, + { + "start": 2330.54, + "end": 2333.24, + "probability": 0.778 + }, + { + "start": 2333.88, + "end": 2336.82, + "probability": 0.6835 + }, + { + "start": 2338.06, + "end": 2340.64, + "probability": 0.9844 + }, + { + "start": 2340.64, + "end": 2345.46, + "probability": 0.9585 + }, + { + "start": 2345.98, + "end": 2349.28, + "probability": 0.3002 + }, + { + "start": 2349.84, + "end": 2352.26, + "probability": 0.9898 + }, + { + "start": 2352.98, + "end": 2355.88, + "probability": 0.9951 + }, + { + "start": 2355.88, + "end": 2360.32, + "probability": 0.9961 + }, + { + "start": 2360.98, + "end": 2364.3, + "probability": 0.9902 + }, + { + "start": 2364.3, + "end": 2367.26, + "probability": 0.9962 + }, + { + "start": 2369.66, + "end": 2373.38, + "probability": 0.9989 + }, + { + "start": 2373.38, + "end": 2376.3, + "probability": 0.9992 + }, + { + "start": 2376.7, + "end": 2381.3, + "probability": 0.995 + }, + { + "start": 2382.1, + "end": 2385.61, + "probability": 0.9844 + }, + { + "start": 2385.64, + "end": 2390.92, + "probability": 0.9869 + }, + { + "start": 2391.02, + "end": 2393.8, + "probability": 0.8394 + }, + { + "start": 2394.56, + "end": 2396.68, + "probability": 0.7975 + }, + { + "start": 2398.2, + "end": 2401.68, + "probability": 0.9088 + }, + { + "start": 2402.12, + "end": 2408.5, + "probability": 0.9598 + }, + { + "start": 2409.4, + "end": 2414.2, + "probability": 0.9397 + }, + { + "start": 2415.36, + "end": 2422.5, + "probability": 0.9901 + }, + { + "start": 2423.12, + "end": 2426.78, + "probability": 0.8155 + }, + { + "start": 2427.34, + "end": 2432.58, + "probability": 0.9435 + }, + { + "start": 2434.0, + "end": 2436.64, + "probability": 0.9976 + }, + { + "start": 2436.64, + "end": 2443.44, + "probability": 0.9842 + }, + { + "start": 2444.56, + "end": 2446.58, + "probability": 0.9945 + }, + { + "start": 2447.7, + "end": 2448.22, + "probability": 0.1786 + }, + { + "start": 2448.8, + "end": 2452.4, + "probability": 0.9685 + }, + { + "start": 2452.44, + "end": 2453.96, + "probability": 0.9717 + }, + { + "start": 2454.08, + "end": 2456.18, + "probability": 0.9902 + }, + { + "start": 2457.64, + "end": 2460.56, + "probability": 0.868 + }, + { + "start": 2460.56, + "end": 2464.08, + "probability": 0.9523 + }, + { + "start": 2464.94, + "end": 2470.64, + "probability": 0.9924 + }, + { + "start": 2472.3, + "end": 2475.44, + "probability": 0.95 + }, + { + "start": 2475.44, + "end": 2479.6, + "probability": 0.9896 + }, + { + "start": 2480.62, + "end": 2481.38, + "probability": 0.5948 + }, + { + "start": 2482.72, + "end": 2486.42, + "probability": 0.9879 + }, + { + "start": 2486.42, + "end": 2491.78, + "probability": 0.9915 + }, + { + "start": 2492.4, + "end": 2494.62, + "probability": 0.9979 + }, + { + "start": 2495.24, + "end": 2499.18, + "probability": 0.9897 + }, + { + "start": 2499.82, + "end": 2501.84, + "probability": 0.9928 + }, + { + "start": 2501.94, + "end": 2504.1, + "probability": 0.8385 + }, + { + "start": 2504.44, + "end": 2508.4, + "probability": 0.996 + }, + { + "start": 2508.4, + "end": 2513.38, + "probability": 0.9985 + }, + { + "start": 2514.08, + "end": 2514.64, + "probability": 0.7415 + }, + { + "start": 2514.82, + "end": 2516.72, + "probability": 0.9955 + }, + { + "start": 2516.78, + "end": 2517.2, + "probability": 0.6568 + }, + { + "start": 2517.28, + "end": 2519.04, + "probability": 0.912 + }, + { + "start": 2519.04, + "end": 2521.14, + "probability": 0.8073 + }, + { + "start": 2521.22, + "end": 2524.2, + "probability": 0.9869 + }, + { + "start": 2539.54, + "end": 2541.42, + "probability": 0.9299 + }, + { + "start": 2542.2, + "end": 2543.56, + "probability": 0.4693 + }, + { + "start": 2543.8, + "end": 2545.46, + "probability": 0.9788 + }, + { + "start": 2547.34, + "end": 2554.98, + "probability": 0.9878 + }, + { + "start": 2555.14, + "end": 2563.7, + "probability": 0.9781 + }, + { + "start": 2564.52, + "end": 2569.78, + "probability": 0.9883 + }, + { + "start": 2570.98, + "end": 2571.64, + "probability": 0.6827 + }, + { + "start": 2571.84, + "end": 2577.22, + "probability": 0.9756 + }, + { + "start": 2578.56, + "end": 2581.6, + "probability": 0.7317 + }, + { + "start": 2581.8, + "end": 2589.12, + "probability": 0.9929 + }, + { + "start": 2589.6, + "end": 2592.94, + "probability": 0.9893 + }, + { + "start": 2593.64, + "end": 2596.58, + "probability": 0.9395 + }, + { + "start": 2597.28, + "end": 2600.52, + "probability": 0.9944 + }, + { + "start": 2600.82, + "end": 2604.4, + "probability": 0.9731 + }, + { + "start": 2604.5, + "end": 2607.34, + "probability": 0.8482 + }, + { + "start": 2607.8, + "end": 2609.84, + "probability": 0.9052 + }, + { + "start": 2609.96, + "end": 2611.06, + "probability": 0.8542 + }, + { + "start": 2611.24, + "end": 2612.38, + "probability": 0.8293 + }, + { + "start": 2612.92, + "end": 2614.52, + "probability": 0.5993 + }, + { + "start": 2615.14, + "end": 2616.17, + "probability": 0.9854 + }, + { + "start": 2616.6, + "end": 2619.02, + "probability": 0.9878 + }, + { + "start": 2620.18, + "end": 2622.22, + "probability": 0.6273 + }, + { + "start": 2622.26, + "end": 2623.48, + "probability": 0.9575 + }, + { + "start": 2623.58, + "end": 2628.64, + "probability": 0.98 + }, + { + "start": 2629.16, + "end": 2630.68, + "probability": 0.9974 + }, + { + "start": 2631.94, + "end": 2633.5, + "probability": 0.8081 + }, + { + "start": 2633.62, + "end": 2635.12, + "probability": 0.8184 + }, + { + "start": 2635.3, + "end": 2641.31, + "probability": 0.9795 + }, + { + "start": 2641.6, + "end": 2646.3, + "probability": 0.9744 + }, + { + "start": 2646.76, + "end": 2652.1, + "probability": 0.9821 + }, + { + "start": 2652.84, + "end": 2654.36, + "probability": 0.8849 + }, + { + "start": 2655.76, + "end": 2661.34, + "probability": 0.9947 + }, + { + "start": 2662.34, + "end": 2665.32, + "probability": 0.8294 + }, + { + "start": 2665.92, + "end": 2668.38, + "probability": 0.988 + }, + { + "start": 2669.36, + "end": 2676.7, + "probability": 0.9933 + }, + { + "start": 2676.7, + "end": 2682.54, + "probability": 0.9988 + }, + { + "start": 2683.28, + "end": 2683.5, + "probability": 0.6552 + }, + { + "start": 2684.26, + "end": 2687.42, + "probability": 0.8271 + }, + { + "start": 2687.64, + "end": 2692.3, + "probability": 0.9871 + }, + { + "start": 2693.3, + "end": 2696.16, + "probability": 0.856 + }, + { + "start": 2696.46, + "end": 2697.7, + "probability": 0.6237 + }, + { + "start": 2697.74, + "end": 2703.92, + "probability": 0.9928 + }, + { + "start": 2704.38, + "end": 2706.8, + "probability": 0.9941 + }, + { + "start": 2707.16, + "end": 2711.76, + "probability": 0.9922 + }, + { + "start": 2711.76, + "end": 2716.72, + "probability": 0.9817 + }, + { + "start": 2716.82, + "end": 2717.12, + "probability": 0.6559 + }, + { + "start": 2717.66, + "end": 2718.2, + "probability": 0.7534 + }, + { + "start": 2718.32, + "end": 2722.54, + "probability": 0.9808 + }, + { + "start": 2722.54, + "end": 2726.62, + "probability": 0.9979 + }, + { + "start": 2727.92, + "end": 2728.48, + "probability": 0.8165 + }, + { + "start": 2741.08, + "end": 2743.24, + "probability": 0.6265 + }, + { + "start": 2743.24, + "end": 2744.88, + "probability": 0.6514 + }, + { + "start": 2744.88, + "end": 2746.64, + "probability": 0.6602 + }, + { + "start": 2747.1, + "end": 2748.98, + "probability": 0.9036 + }, + { + "start": 2749.14, + "end": 2750.64, + "probability": 0.9956 + }, + { + "start": 2753.25, + "end": 2755.82, + "probability": 0.9998 + }, + { + "start": 2756.04, + "end": 2758.96, + "probability": 0.9971 + }, + { + "start": 2759.84, + "end": 2764.34, + "probability": 0.8156 + }, + { + "start": 2767.68, + "end": 2772.7, + "probability": 0.7608 + }, + { + "start": 2772.9, + "end": 2775.06, + "probability": 0.9929 + }, + { + "start": 2775.92, + "end": 2781.88, + "probability": 0.9808 + }, + { + "start": 2781.88, + "end": 2788.2, + "probability": 0.9956 + }, + { + "start": 2788.62, + "end": 2791.38, + "probability": 0.999 + }, + { + "start": 2791.94, + "end": 2794.46, + "probability": 0.9728 + }, + { + "start": 2794.88, + "end": 2796.52, + "probability": 0.8797 + }, + { + "start": 2796.72, + "end": 2801.12, + "probability": 0.9614 + }, + { + "start": 2801.44, + "end": 2808.42, + "probability": 0.9404 + }, + { + "start": 2809.12, + "end": 2812.32, + "probability": 0.7397 + }, + { + "start": 2813.02, + "end": 2813.36, + "probability": 0.1257 + }, + { + "start": 2813.36, + "end": 2813.36, + "probability": 0.4014 + }, + { + "start": 2813.48, + "end": 2817.82, + "probability": 0.9451 + }, + { + "start": 2819.06, + "end": 2823.54, + "probability": 0.9883 + }, + { + "start": 2823.58, + "end": 2827.4, + "probability": 0.999 + }, + { + "start": 2827.4, + "end": 2830.56, + "probability": 0.9941 + }, + { + "start": 2830.6, + "end": 2832.9, + "probability": 0.574 + }, + { + "start": 2833.84, + "end": 2838.34, + "probability": 0.1698 + }, + { + "start": 2838.6, + "end": 2839.13, + "probability": 0.1478 + }, + { + "start": 2839.5, + "end": 2839.64, + "probability": 0.0331 + }, + { + "start": 2839.64, + "end": 2841.02, + "probability": 0.377 + }, + { + "start": 2841.22, + "end": 2844.68, + "probability": 0.8092 + }, + { + "start": 2845.32, + "end": 2845.32, + "probability": 0.2247 + }, + { + "start": 2845.32, + "end": 2846.3, + "probability": 0.5586 + }, + { + "start": 2846.74, + "end": 2848.32, + "probability": 0.4439 + }, + { + "start": 2848.42, + "end": 2853.28, + "probability": 0.8982 + }, + { + "start": 2853.42, + "end": 2859.26, + "probability": 0.9785 + }, + { + "start": 2859.8, + "end": 2865.06, + "probability": 0.9653 + }, + { + "start": 2865.16, + "end": 2868.32, + "probability": 0.9973 + }, + { + "start": 2868.46, + "end": 2869.26, + "probability": 0.6702 + }, + { + "start": 2869.8, + "end": 2874.3, + "probability": 0.7717 + }, + { + "start": 2874.42, + "end": 2876.04, + "probability": 0.9692 + }, + { + "start": 2876.52, + "end": 2878.38, + "probability": 0.7904 + }, + { + "start": 2878.56, + "end": 2882.18, + "probability": 0.9878 + }, + { + "start": 2882.18, + "end": 2886.48, + "probability": 0.9613 + }, + { + "start": 2886.96, + "end": 2887.64, + "probability": 0.8232 + }, + { + "start": 2887.8, + "end": 2888.32, + "probability": 0.6372 + }, + { + "start": 2888.42, + "end": 2889.76, + "probability": 0.9757 + }, + { + "start": 2890.0, + "end": 2894.0, + "probability": 0.9012 + }, + { + "start": 2894.24, + "end": 2896.48, + "probability": 0.8904 + }, + { + "start": 2897.16, + "end": 2902.96, + "probability": 0.9653 + }, + { + "start": 2903.78, + "end": 2905.36, + "probability": 0.2918 + }, + { + "start": 2905.62, + "end": 2907.16, + "probability": 0.8602 + }, + { + "start": 2907.24, + "end": 2908.76, + "probability": 0.992 + }, + { + "start": 2909.0, + "end": 2915.14, + "probability": 0.9823 + }, + { + "start": 2916.42, + "end": 2919.54, + "probability": 0.9631 + }, + { + "start": 2920.86, + "end": 2922.44, + "probability": 0.8706 + }, + { + "start": 2922.52, + "end": 2925.18, + "probability": 0.9806 + }, + { + "start": 2925.34, + "end": 2930.46, + "probability": 0.9933 + }, + { + "start": 2930.46, + "end": 2939.26, + "probability": 0.9815 + }, + { + "start": 2939.46, + "end": 2944.54, + "probability": 0.992 + }, + { + "start": 2944.54, + "end": 2947.54, + "probability": 0.9956 + }, + { + "start": 2947.62, + "end": 2952.96, + "probability": 0.9958 + }, + { + "start": 2953.58, + "end": 2955.26, + "probability": 0.932 + }, + { + "start": 2955.42, + "end": 2957.16, + "probability": 0.8819 + }, + { + "start": 2957.18, + "end": 2959.08, + "probability": 0.9222 + }, + { + "start": 2959.44, + "end": 2963.7, + "probability": 0.9251 + }, + { + "start": 2964.56, + "end": 2973.08, + "probability": 0.9824 + }, + { + "start": 2973.08, + "end": 2977.68, + "probability": 0.8749 + }, + { + "start": 2979.36, + "end": 2981.62, + "probability": 0.0474 + }, + { + "start": 2981.82, + "end": 2984.48, + "probability": 0.1304 + }, + { + "start": 2984.66, + "end": 2985.94, + "probability": 0.9968 + }, + { + "start": 2985.98, + "end": 2986.8, + "probability": 0.9149 + }, + { + "start": 2986.98, + "end": 2987.76, + "probability": 0.8149 + }, + { + "start": 2987.8, + "end": 2990.62, + "probability": 0.9839 + }, + { + "start": 2991.16, + "end": 2992.56, + "probability": 0.917 + }, + { + "start": 2992.94, + "end": 2994.08, + "probability": 0.8356 + }, + { + "start": 2994.74, + "end": 2997.94, + "probability": 0.9883 + }, + { + "start": 2998.06, + "end": 3001.82, + "probability": 0.9878 + }, + { + "start": 3002.38, + "end": 3003.92, + "probability": 0.9878 + }, + { + "start": 3004.1, + "end": 3006.22, + "probability": 0.9985 + }, + { + "start": 3006.87, + "end": 3009.8, + "probability": 0.5969 + }, + { + "start": 3010.7, + "end": 3015.5, + "probability": 0.973 + }, + { + "start": 3017.06, + "end": 3022.96, + "probability": 0.9933 + }, + { + "start": 3023.8, + "end": 3029.02, + "probability": 0.9927 + }, + { + "start": 3029.56, + "end": 3032.18, + "probability": 0.9881 + }, + { + "start": 3032.28, + "end": 3032.92, + "probability": 0.9391 + }, + { + "start": 3032.92, + "end": 3033.16, + "probability": 0.8918 + }, + { + "start": 3033.3, + "end": 3037.38, + "probability": 0.9927 + }, + { + "start": 3037.42, + "end": 3038.79, + "probability": 0.9408 + }, + { + "start": 3038.96, + "end": 3039.76, + "probability": 0.3837 + }, + { + "start": 3040.74, + "end": 3040.74, + "probability": 0.1468 + }, + { + "start": 3040.74, + "end": 3042.64, + "probability": 0.9388 + }, + { + "start": 3042.88, + "end": 3046.7, + "probability": 0.416 + }, + { + "start": 3046.8, + "end": 3051.38, + "probability": 0.9949 + }, + { + "start": 3051.66, + "end": 3052.44, + "probability": 0.9863 + }, + { + "start": 3052.5, + "end": 3053.38, + "probability": 0.9849 + }, + { + "start": 3053.5, + "end": 3055.6, + "probability": 0.9961 + }, + { + "start": 3056.26, + "end": 3058.42, + "probability": 0.9961 + }, + { + "start": 3058.58, + "end": 3061.4, + "probability": 0.9077 + }, + { + "start": 3061.92, + "end": 3063.32, + "probability": 0.7159 + }, + { + "start": 3063.42, + "end": 3067.2, + "probability": 0.9968 + }, + { + "start": 3067.28, + "end": 3067.5, + "probability": 0.2806 + }, + { + "start": 3069.22, + "end": 3069.22, + "probability": 0.0824 + }, + { + "start": 3069.22, + "end": 3071.66, + "probability": 0.6235 + }, + { + "start": 3072.0, + "end": 3073.8, + "probability": 0.9281 + }, + { + "start": 3073.86, + "end": 3076.38, + "probability": 0.9916 + }, + { + "start": 3076.56, + "end": 3077.68, + "probability": 0.9597 + }, + { + "start": 3077.7, + "end": 3078.74, + "probability": 0.8281 + }, + { + "start": 3078.88, + "end": 3079.1, + "probability": 0.9049 + }, + { + "start": 3079.2, + "end": 3080.76, + "probability": 0.9518 + }, + { + "start": 3080.8, + "end": 3083.58, + "probability": 0.995 + }, + { + "start": 3083.92, + "end": 3088.34, + "probability": 0.9789 + }, + { + "start": 3088.34, + "end": 3089.83, + "probability": 0.6746 + }, + { + "start": 3090.34, + "end": 3090.9, + "probability": 0.8198 + }, + { + "start": 3090.98, + "end": 3091.22, + "probability": 0.8092 + }, + { + "start": 3091.5, + "end": 3098.12, + "probability": 0.944 + }, + { + "start": 3098.12, + "end": 3101.88, + "probability": 0.9998 + }, + { + "start": 3102.28, + "end": 3105.32, + "probability": 0.9827 + }, + { + "start": 3105.38, + "end": 3106.72, + "probability": 0.9869 + }, + { + "start": 3107.22, + "end": 3109.44, + "probability": 0.9866 + }, + { + "start": 3109.48, + "end": 3111.04, + "probability": 0.7444 + }, + { + "start": 3111.14, + "end": 3112.48, + "probability": 0.9985 + }, + { + "start": 3113.1, + "end": 3118.38, + "probability": 0.9626 + }, + { + "start": 3118.54, + "end": 3120.1, + "probability": 0.7337 + }, + { + "start": 3120.16, + "end": 3121.64, + "probability": 0.5998 + }, + { + "start": 3124.0, + "end": 3127.06, + "probability": 0.9505 + }, + { + "start": 3128.46, + "end": 3129.66, + "probability": 0.8525 + }, + { + "start": 3129.74, + "end": 3133.3, + "probability": 0.996 + }, + { + "start": 3133.4, + "end": 3134.16, + "probability": 0.9286 + }, + { + "start": 3134.22, + "end": 3138.22, + "probability": 0.9473 + }, + { + "start": 3138.22, + "end": 3141.52, + "probability": 0.9912 + }, + { + "start": 3141.58, + "end": 3143.74, + "probability": 0.9907 + }, + { + "start": 3144.36, + "end": 3150.28, + "probability": 0.9803 + }, + { + "start": 3150.66, + "end": 3152.72, + "probability": 0.9963 + }, + { + "start": 3152.72, + "end": 3156.02, + "probability": 0.9543 + }, + { + "start": 3157.06, + "end": 3159.86, + "probability": 0.999 + }, + { + "start": 3159.86, + "end": 3162.87, + "probability": 0.9888 + }, + { + "start": 3163.92, + "end": 3166.24, + "probability": 0.9966 + }, + { + "start": 3166.28, + "end": 3167.22, + "probability": 0.9888 + }, + { + "start": 3167.36, + "end": 3169.5, + "probability": 0.9893 + }, + { + "start": 3170.04, + "end": 3174.58, + "probability": 0.9616 + }, + { + "start": 3174.9, + "end": 3175.4, + "probability": 0.7633 + }, + { + "start": 3175.84, + "end": 3178.66, + "probability": 0.9784 + }, + { + "start": 3179.32, + "end": 3180.98, + "probability": 0.7072 + }, + { + "start": 3182.78, + "end": 3182.88, + "probability": 0.2758 + }, + { + "start": 3183.08, + "end": 3183.92, + "probability": 0.5309 + }, + { + "start": 3184.02, + "end": 3184.54, + "probability": 0.1481 + }, + { + "start": 3184.54, + "end": 3184.54, + "probability": 0.0922 + }, + { + "start": 3184.54, + "end": 3184.98, + "probability": 0.7349 + }, + { + "start": 3184.98, + "end": 3185.3, + "probability": 0.6319 + }, + { + "start": 3188.19, + "end": 3189.81, + "probability": 0.76 + }, + { + "start": 3190.28, + "end": 3191.72, + "probability": 0.9326 + }, + { + "start": 3192.28, + "end": 3193.88, + "probability": 0.9426 + }, + { + "start": 3196.28, + "end": 3198.94, + "probability": 0.1985 + }, + { + "start": 3199.4, + "end": 3200.26, + "probability": 0.5135 + }, + { + "start": 3204.6, + "end": 3205.12, + "probability": 0.4202 + }, + { + "start": 3205.44, + "end": 3206.1, + "probability": 0.0599 + }, + { + "start": 3206.16, + "end": 3207.92, + "probability": 0.3524 + }, + { + "start": 3207.96, + "end": 3207.96, + "probability": 0.3846 + }, + { + "start": 3208.6, + "end": 3208.78, + "probability": 0.0843 + }, + { + "start": 3209.54, + "end": 3209.68, + "probability": 0.3299 + }, + { + "start": 3209.68, + "end": 3210.8, + "probability": 0.7313 + }, + { + "start": 3210.9, + "end": 3211.62, + "probability": 0.8088 + }, + { + "start": 3216.16, + "end": 3217.06, + "probability": 0.4844 + }, + { + "start": 3219.32, + "end": 3220.48, + "probability": 0.2024 + }, + { + "start": 3220.48, + "end": 3221.32, + "probability": 0.5074 + }, + { + "start": 3221.46, + "end": 3228.24, + "probability": 0.9678 + }, + { + "start": 3230.48, + "end": 3235.18, + "probability": 0.7706 + }, + { + "start": 3235.24, + "end": 3236.32, + "probability": 0.8239 + }, + { + "start": 3236.96, + "end": 3243.22, + "probability": 0.2226 + }, + { + "start": 3243.22, + "end": 3248.36, + "probability": 0.1074 + }, + { + "start": 3248.86, + "end": 3249.68, + "probability": 0.0365 + }, + { + "start": 3249.68, + "end": 3249.68, + "probability": 0.7296 + }, + { + "start": 3249.68, + "end": 3249.68, + "probability": 0.5236 + }, + { + "start": 3249.68, + "end": 3250.98, + "probability": 0.4209 + }, + { + "start": 3250.98, + "end": 3254.02, + "probability": 0.939 + }, + { + "start": 3254.14, + "end": 3256.28, + "probability": 0.9714 + }, + { + "start": 3257.06, + "end": 3259.52, + "probability": 0.9418 + }, + { + "start": 3259.6, + "end": 3261.74, + "probability": 0.7295 + }, + { + "start": 3263.0, + "end": 3263.6, + "probability": 0.5596 + }, + { + "start": 3264.28, + "end": 3267.7, + "probability": 0.226 + }, + { + "start": 3270.66, + "end": 3273.22, + "probability": 0.0467 + }, + { + "start": 3273.22, + "end": 3273.22, + "probability": 0.0422 + }, + { + "start": 3276.36, + "end": 3276.96, + "probability": 0.6379 + }, + { + "start": 3277.02, + "end": 3278.52, + "probability": 0.3185 + }, + { + "start": 3279.02, + "end": 3281.58, + "probability": 0.9465 + }, + { + "start": 3281.62, + "end": 3282.86, + "probability": 0.794 + }, + { + "start": 3282.88, + "end": 3284.14, + "probability": 0.5027 + }, + { + "start": 3284.6, + "end": 3287.52, + "probability": 0.9522 + }, + { + "start": 3287.6, + "end": 3291.64, + "probability": 0.9221 + }, + { + "start": 3292.28, + "end": 3294.96, + "probability": 0.6666 + }, + { + "start": 3295.62, + "end": 3299.54, + "probability": 0.9757 + }, + { + "start": 3299.72, + "end": 3302.3, + "probability": 0.8966 + }, + { + "start": 3302.8, + "end": 3305.3, + "probability": 0.572 + }, + { + "start": 3306.5, + "end": 3310.18, + "probability": 0.9597 + }, + { + "start": 3310.54, + "end": 3313.74, + "probability": 0.8175 + }, + { + "start": 3325.42, + "end": 3325.52, + "probability": 0.6993 + }, + { + "start": 3325.52, + "end": 3326.36, + "probability": 0.7262 + }, + { + "start": 3327.82, + "end": 3329.78, + "probability": 0.9314 + }, + { + "start": 3330.08, + "end": 3331.04, + "probability": 0.8889 + }, + { + "start": 3331.5, + "end": 3331.5, + "probability": 0.7019 + }, + { + "start": 3331.78, + "end": 3332.8, + "probability": 0.8566 + }, + { + "start": 3335.0, + "end": 3337.28, + "probability": 0.8815 + }, + { + "start": 3338.06, + "end": 3341.6, + "probability": 0.9852 + }, + { + "start": 3343.2, + "end": 3346.84, + "probability": 0.9878 + }, + { + "start": 3348.1, + "end": 3352.46, + "probability": 0.9043 + }, + { + "start": 3352.46, + "end": 3355.16, + "probability": 0.9878 + }, + { + "start": 3355.64, + "end": 3358.02, + "probability": 0.9946 + }, + { + "start": 3358.6, + "end": 3364.9, + "probability": 0.9832 + }, + { + "start": 3365.5, + "end": 3368.98, + "probability": 0.7656 + }, + { + "start": 3370.76, + "end": 3371.9, + "probability": 0.7981 + }, + { + "start": 3372.8, + "end": 3376.44, + "probability": 0.8413 + }, + { + "start": 3377.44, + "end": 3380.3, + "probability": 0.9944 + }, + { + "start": 3380.3, + "end": 3383.02, + "probability": 0.999 + }, + { + "start": 3383.88, + "end": 3386.18, + "probability": 0.9896 + }, + { + "start": 3387.3, + "end": 3390.18, + "probability": 0.753 + }, + { + "start": 3390.88, + "end": 3393.28, + "probability": 0.6282 + }, + { + "start": 3393.3, + "end": 3394.48, + "probability": 0.5149 + }, + { + "start": 3395.34, + "end": 3396.46, + "probability": 0.8016 + }, + { + "start": 3397.24, + "end": 3400.72, + "probability": 0.9761 + }, + { + "start": 3401.48, + "end": 3404.86, + "probability": 0.9314 + }, + { + "start": 3404.96, + "end": 3409.86, + "probability": 0.7958 + }, + { + "start": 3410.62, + "end": 3413.38, + "probability": 0.9837 + }, + { + "start": 3413.38, + "end": 3415.9, + "probability": 0.9989 + }, + { + "start": 3417.02, + "end": 3419.04, + "probability": 0.9702 + }, + { + "start": 3419.04, + "end": 3422.66, + "probability": 0.8764 + }, + { + "start": 3423.42, + "end": 3426.78, + "probability": 0.998 + }, + { + "start": 3427.38, + "end": 3428.86, + "probability": 0.8494 + }, + { + "start": 3429.56, + "end": 3434.49, + "probability": 0.9894 + }, + { + "start": 3434.5, + "end": 3439.04, + "probability": 0.9943 + }, + { + "start": 3440.02, + "end": 3441.62, + "probability": 0.9902 + }, + { + "start": 3441.9, + "end": 3443.9, + "probability": 0.9845 + }, + { + "start": 3444.94, + "end": 3448.0, + "probability": 0.989 + }, + { + "start": 3448.0, + "end": 3452.74, + "probability": 0.9192 + }, + { + "start": 3453.46, + "end": 3457.64, + "probability": 0.9545 + }, + { + "start": 3457.8, + "end": 3458.44, + "probability": 0.7538 + }, + { + "start": 3458.52, + "end": 3458.88, + "probability": 0.8507 + }, + { + "start": 3458.96, + "end": 3459.64, + "probability": 0.9567 + }, + { + "start": 3460.78, + "end": 3462.44, + "probability": 0.9929 + }, + { + "start": 3463.38, + "end": 3467.9, + "probability": 0.9473 + }, + { + "start": 3467.9, + "end": 3469.68, + "probability": 0.7746 + }, + { + "start": 3470.76, + "end": 3476.26, + "probability": 0.9894 + }, + { + "start": 3476.74, + "end": 3480.98, + "probability": 0.9917 + }, + { + "start": 3481.5, + "end": 3485.04, + "probability": 0.9933 + }, + { + "start": 3485.2, + "end": 3489.02, + "probability": 0.9867 + }, + { + "start": 3490.18, + "end": 3490.66, + "probability": 0.9647 + }, + { + "start": 3491.58, + "end": 3496.02, + "probability": 0.9888 + }, + { + "start": 3496.66, + "end": 3500.64, + "probability": 0.9807 + }, + { + "start": 3501.24, + "end": 3502.64, + "probability": 0.94 + }, + { + "start": 3502.64, + "end": 3505.06, + "probability": 0.9355 + }, + { + "start": 3505.7, + "end": 3508.04, + "probability": 0.7714 + }, + { + "start": 3508.7, + "end": 3512.84, + "probability": 0.9985 + }, + { + "start": 3513.86, + "end": 3518.02, + "probability": 0.9564 + }, + { + "start": 3519.42, + "end": 3523.04, + "probability": 0.9709 + }, + { + "start": 3523.04, + "end": 3525.86, + "probability": 0.998 + }, + { + "start": 3527.34, + "end": 3531.59, + "probability": 0.9486 + }, + { + "start": 3533.16, + "end": 3534.94, + "probability": 0.9922 + }, + { + "start": 3534.94, + "end": 3538.17, + "probability": 0.9925 + }, + { + "start": 3539.02, + "end": 3542.52, + "probability": 0.9022 + }, + { + "start": 3543.78, + "end": 3544.48, + "probability": 0.5102 + }, + { + "start": 3545.24, + "end": 3546.78, + "probability": 0.9111 + }, + { + "start": 3547.4, + "end": 3552.16, + "probability": 0.7185 + }, + { + "start": 3552.2, + "end": 3552.8, + "probability": 0.71 + }, + { + "start": 3553.92, + "end": 3556.54, + "probability": 0.9671 + }, + { + "start": 3556.62, + "end": 3558.66, + "probability": 0.8633 + }, + { + "start": 3559.3, + "end": 3560.64, + "probability": 0.3935 + }, + { + "start": 3561.22, + "end": 3564.0, + "probability": 0.9371 + }, + { + "start": 3564.9, + "end": 3567.04, + "probability": 0.9853 + }, + { + "start": 3567.66, + "end": 3571.02, + "probability": 0.7594 + }, + { + "start": 3571.8, + "end": 3572.28, + "probability": 0.7124 + }, + { + "start": 3572.48, + "end": 3574.48, + "probability": 0.9205 + }, + { + "start": 3574.98, + "end": 3577.24, + "probability": 0.9432 + }, + { + "start": 3579.34, + "end": 3581.96, + "probability": 0.9401 + }, + { + "start": 3582.06, + "end": 3583.7, + "probability": 0.8715 + }, + { + "start": 3584.82, + "end": 3586.44, + "probability": 0.9734 + }, + { + "start": 3587.3, + "end": 3589.22, + "probability": 0.9318 + }, + { + "start": 3589.64, + "end": 3591.92, + "probability": 0.865 + }, + { + "start": 3592.24, + "end": 3596.98, + "probability": 0.6922 + }, + { + "start": 3598.48, + "end": 3601.07, + "probability": 0.9953 + }, + { + "start": 3601.08, + "end": 3603.66, + "probability": 0.999 + }, + { + "start": 3604.24, + "end": 3607.74, + "probability": 0.8328 + }, + { + "start": 3608.52, + "end": 3611.64, + "probability": 0.998 + }, + { + "start": 3612.54, + "end": 3617.5, + "probability": 0.9734 + }, + { + "start": 3617.54, + "end": 3617.54, + "probability": 0.024 + }, + { + "start": 3617.54, + "end": 3619.24, + "probability": 0.7835 + }, + { + "start": 3619.76, + "end": 3620.1, + "probability": 0.6842 + }, + { + "start": 3620.14, + "end": 3622.42, + "probability": 0.9952 + }, + { + "start": 3622.94, + "end": 3624.22, + "probability": 0.7034 + }, + { + "start": 3624.44, + "end": 3626.14, + "probability": 0.9291 + }, + { + "start": 3626.64, + "end": 3629.86, + "probability": 0.9612 + }, + { + "start": 3629.94, + "end": 3630.2, + "probability": 0.7914 + }, + { + "start": 3631.86, + "end": 3632.0, + "probability": 0.0163 + }, + { + "start": 3632.2, + "end": 3632.92, + "probability": 0.6824 + }, + { + "start": 3633.08, + "end": 3635.02, + "probability": 0.8008 + }, + { + "start": 3635.88, + "end": 3638.52, + "probability": 0.96 + }, + { + "start": 3640.1, + "end": 3641.38, + "probability": 0.9419 + }, + { + "start": 3642.0, + "end": 3646.34, + "probability": 0.9526 + }, + { + "start": 3647.22, + "end": 3650.76, + "probability": 0.684 + }, + { + "start": 3650.76, + "end": 3653.5, + "probability": 0.9417 + }, + { + "start": 3662.96, + "end": 3665.42, + "probability": 0.6415 + }, + { + "start": 3665.64, + "end": 3667.69, + "probability": 0.8394 + }, + { + "start": 3668.25, + "end": 3672.06, + "probability": 0.8016 + }, + { + "start": 3672.26, + "end": 3676.18, + "probability": 0.7318 + }, + { + "start": 3676.72, + "end": 3680.16, + "probability": 0.839 + }, + { + "start": 3681.14, + "end": 3682.94, + "probability": 0.7717 + }, + { + "start": 3683.84, + "end": 3684.78, + "probability": 0.6548 + }, + { + "start": 3684.8, + "end": 3685.54, + "probability": 0.4656 + }, + { + "start": 3685.72, + "end": 3686.86, + "probability": 0.914 + }, + { + "start": 3686.9, + "end": 3688.08, + "probability": 0.9597 + }, + { + "start": 3688.1, + "end": 3690.66, + "probability": 0.9647 + }, + { + "start": 3690.86, + "end": 3691.9, + "probability": 0.6167 + }, + { + "start": 3691.9, + "end": 3692.7, + "probability": 0.2985 + }, + { + "start": 3693.12, + "end": 3693.12, + "probability": 0.2925 + }, + { + "start": 3693.12, + "end": 3698.22, + "probability": 0.9009 + }, + { + "start": 3699.74, + "end": 3703.46, + "probability": 0.9911 + }, + { + "start": 3703.46, + "end": 3707.98, + "probability": 0.8496 + }, + { + "start": 3708.36, + "end": 3709.51, + "probability": 0.9924 + }, + { + "start": 3709.84, + "end": 3711.38, + "probability": 0.7175 + }, + { + "start": 3711.47, + "end": 3712.52, + "probability": 0.011 + }, + { + "start": 3713.92, + "end": 3714.14, + "probability": 0.123 + }, + { + "start": 3716.73, + "end": 3721.24, + "probability": 0.884 + }, + { + "start": 3721.44, + "end": 3725.27, + "probability": 0.9961 + }, + { + "start": 3725.92, + "end": 3728.1, + "probability": 0.5276 + }, + { + "start": 3728.1, + "end": 3729.67, + "probability": 0.9709 + }, + { + "start": 3729.78, + "end": 3731.14, + "probability": 0.8434 + }, + { + "start": 3731.14, + "end": 3731.66, + "probability": 0.1844 + }, + { + "start": 3731.78, + "end": 3733.6, + "probability": 0.6785 + }, + { + "start": 3733.6, + "end": 3733.94, + "probability": 0.3317 + }, + { + "start": 3734.1, + "end": 3736.36, + "probability": 0.5384 + }, + { + "start": 3736.92, + "end": 3740.32, + "probability": 0.9933 + }, + { + "start": 3740.32, + "end": 3744.16, + "probability": 0.9972 + }, + { + "start": 3744.24, + "end": 3744.52, + "probability": 0.4096 + }, + { + "start": 3744.54, + "end": 3744.58, + "probability": 0.0492 + }, + { + "start": 3744.58, + "end": 3745.22, + "probability": 0.9738 + }, + { + "start": 3746.02, + "end": 3747.3, + "probability": 0.767 + }, + { + "start": 3747.68, + "end": 3749.32, + "probability": 0.9562 + }, + { + "start": 3749.8, + "end": 3753.78, + "probability": 0.9966 + }, + { + "start": 3753.96, + "end": 3755.78, + "probability": 0.9506 + }, + { + "start": 3755.92, + "end": 3757.28, + "probability": 0.8561 + }, + { + "start": 3757.28, + "end": 3757.4, + "probability": 0.087 + }, + { + "start": 3757.58, + "end": 3759.34, + "probability": 0.451 + }, + { + "start": 3759.34, + "end": 3760.36, + "probability": 0.1498 + }, + { + "start": 3760.92, + "end": 3761.04, + "probability": 0.4522 + }, + { + "start": 3761.04, + "end": 3761.96, + "probability": 0.2448 + }, + { + "start": 3762.14, + "end": 3765.76, + "probability": 0.7881 + }, + { + "start": 3765.88, + "end": 3768.02, + "probability": 0.7645 + }, + { + "start": 3768.16, + "end": 3770.18, + "probability": 0.8661 + }, + { + "start": 3770.3, + "end": 3773.58, + "probability": 0.9084 + }, + { + "start": 3774.6, + "end": 3775.44, + "probability": 0.7553 + }, + { + "start": 3776.12, + "end": 3778.26, + "probability": 0.9948 + }, + { + "start": 3778.26, + "end": 3780.6, + "probability": 0.9971 + }, + { + "start": 3783.73, + "end": 3790.74, + "probability": 0.9972 + }, + { + "start": 3790.9, + "end": 3796.14, + "probability": 0.938 + }, + { + "start": 3796.5, + "end": 3800.68, + "probability": 0.9727 + }, + { + "start": 3800.74, + "end": 3802.3, + "probability": 0.9543 + }, + { + "start": 3802.46, + "end": 3804.22, + "probability": 0.9463 + }, + { + "start": 3804.72, + "end": 3808.78, + "probability": 0.9861 + }, + { + "start": 3809.7, + "end": 3812.4, + "probability": 0.923 + }, + { + "start": 3813.2, + "end": 3816.06, + "probability": 0.8984 + }, + { + "start": 3816.1, + "end": 3820.36, + "probability": 0.8966 + }, + { + "start": 3821.22, + "end": 3825.05, + "probability": 0.9629 + }, + { + "start": 3826.46, + "end": 3830.1, + "probability": 0.9899 + }, + { + "start": 3830.68, + "end": 3831.3, + "probability": 0.9564 + }, + { + "start": 3831.48, + "end": 3833.04, + "probability": 0.7971 + }, + { + "start": 3833.1, + "end": 3836.52, + "probability": 0.7672 + }, + { + "start": 3837.98, + "end": 3840.78, + "probability": 0.9988 + }, + { + "start": 3840.96, + "end": 3842.28, + "probability": 0.9551 + }, + { + "start": 3842.82, + "end": 3843.58, + "probability": 0.7135 + }, + { + "start": 3843.7, + "end": 3843.9, + "probability": 0.6046 + }, + { + "start": 3843.98, + "end": 3846.92, + "probability": 0.9531 + }, + { + "start": 3847.08, + "end": 3852.6, + "probability": 0.99 + }, + { + "start": 3852.98, + "end": 3853.56, + "probability": 0.6133 + }, + { + "start": 3853.68, + "end": 3854.72, + "probability": 0.7385 + }, + { + "start": 3855.28, + "end": 3858.82, + "probability": 0.8209 + }, + { + "start": 3858.82, + "end": 3862.38, + "probability": 0.9949 + }, + { + "start": 3863.04, + "end": 3866.16, + "probability": 0.9692 + }, + { + "start": 3866.16, + "end": 3870.08, + "probability": 0.9766 + }, + { + "start": 3870.16, + "end": 3871.72, + "probability": 0.6252 + }, + { + "start": 3872.42, + "end": 3874.76, + "probability": 0.9956 + }, + { + "start": 3875.06, + "end": 3878.62, + "probability": 0.8353 + }, + { + "start": 3879.24, + "end": 3883.2, + "probability": 0.9953 + }, + { + "start": 3883.3, + "end": 3886.34, + "probability": 0.8623 + }, + { + "start": 3887.03, + "end": 3888.18, + "probability": 0.4652 + }, + { + "start": 3888.46, + "end": 3889.18, + "probability": 0.7133 + }, + { + "start": 3889.26, + "end": 3890.94, + "probability": 0.4427 + }, + { + "start": 3891.34, + "end": 3895.42, + "probability": 0.8785 + }, + { + "start": 3895.53, + "end": 3897.04, + "probability": 0.9922 + }, + { + "start": 3897.12, + "end": 3899.3, + "probability": 0.9944 + }, + { + "start": 3899.68, + "end": 3903.9, + "probability": 0.9778 + }, + { + "start": 3904.32, + "end": 3904.88, + "probability": 0.7705 + }, + { + "start": 3906.44, + "end": 3910.58, + "probability": 0.9531 + }, + { + "start": 3911.08, + "end": 3912.3, + "probability": 0.8165 + }, + { + "start": 3912.38, + "end": 3915.42, + "probability": 0.7715 + }, + { + "start": 3916.0, + "end": 3916.04, + "probability": 0.0485 + }, + { + "start": 3916.04, + "end": 3917.32, + "probability": 0.5758 + }, + { + "start": 3917.98, + "end": 3919.97, + "probability": 0.6782 + }, + { + "start": 3920.58, + "end": 3923.94, + "probability": 0.7756 + }, + { + "start": 3923.98, + "end": 3926.02, + "probability": 0.7315 + }, + { + "start": 3926.22, + "end": 3927.96, + "probability": 0.6087 + }, + { + "start": 3928.1, + "end": 3930.38, + "probability": 0.7209 + }, + { + "start": 3931.22, + "end": 3932.46, + "probability": 0.6903 + }, + { + "start": 3932.68, + "end": 3934.4, + "probability": 0.9424 + }, + { + "start": 3934.94, + "end": 3936.38, + "probability": 0.7585 + }, + { + "start": 3937.36, + "end": 3939.48, + "probability": 0.7788 + }, + { + "start": 3939.48, + "end": 3941.5, + "probability": 0.0646 + }, + { + "start": 3960.02, + "end": 3961.74, + "probability": 0.4206 + }, + { + "start": 3961.74, + "end": 3963.92, + "probability": 0.6049 + }, + { + "start": 3964.02, + "end": 3965.18, + "probability": 0.3698 + }, + { + "start": 3965.7, + "end": 3969.3, + "probability": 0.2568 + }, + { + "start": 3969.82, + "end": 3973.7, + "probability": 0.3311 + }, + { + "start": 3982.68, + "end": 3983.52, + "probability": 0.0205 + }, + { + "start": 3983.64, + "end": 3986.36, + "probability": 0.0258 + }, + { + "start": 3986.36, + "end": 3989.74, + "probability": 0.0967 + }, + { + "start": 3990.42, + "end": 3993.2, + "probability": 0.0416 + }, + { + "start": 3993.68, + "end": 3993.78, + "probability": 0.0976 + }, + { + "start": 3994.94, + "end": 3995.1, + "probability": 0.0591 + }, + { + "start": 3995.92, + "end": 3996.9, + "probability": 0.0339 + }, + { + "start": 3997.58, + "end": 3999.36, + "probability": 0.0122 + }, + { + "start": 4000.94, + "end": 4002.8, + "probability": 0.0165 + }, + { + "start": 4004.1, + "end": 4004.36, + "probability": 0.0437 + }, + { + "start": 4005.32, + "end": 4006.26, + "probability": 0.0307 + }, + { + "start": 4006.26, + "end": 4010.9, + "probability": 0.0443 + }, + { + "start": 4012.0, + "end": 4012.86, + "probability": 0.0618 + }, + { + "start": 4012.86, + "end": 4012.86, + "probability": 0.0232 + }, + { + "start": 4012.96, + "end": 4013.5, + "probability": 0.1977 + }, + { + "start": 4013.66, + "end": 4013.88, + "probability": 0.3493 + }, + { + "start": 4013.94, + "end": 4014.98, + "probability": 0.0314 + }, + { + "start": 4015.0, + "end": 4015.0, + "probability": 0.0 + }, + { + "start": 4015.0, + "end": 4015.0, + "probability": 0.0 + }, + { + "start": 4015.0, + "end": 4015.0, + "probability": 0.0 + }, + { + "start": 4015.0, + "end": 4015.0, + "probability": 0.0 + }, + { + "start": 4015.0, + "end": 4015.0, + "probability": 0.0 + }, + { + "start": 4015.0, + "end": 4015.0, + "probability": 0.0 + }, + { + "start": 4015.0, + "end": 4015.0, + "probability": 0.0 + }, + { + "start": 4015.0, + "end": 4015.0, + "probability": 0.0 + }, + { + "start": 4015.0, + "end": 4015.0, + "probability": 0.0 + }, + { + "start": 4015.38, + "end": 4016.22, + "probability": 0.3309 + }, + { + "start": 4016.22, + "end": 4016.22, + "probability": 0.1756 + }, + { + "start": 4016.22, + "end": 4016.54, + "probability": 0.6412 + }, + { + "start": 4016.68, + "end": 4017.96, + "probability": 0.8503 + }, + { + "start": 4019.08, + "end": 4021.34, + "probability": 0.9043 + }, + { + "start": 4022.56, + "end": 4022.8, + "probability": 0.0861 + }, + { + "start": 4023.42, + "end": 4025.74, + "probability": 0.2866 + }, + { + "start": 4026.94, + "end": 4027.58, + "probability": 0.7069 + }, + { + "start": 4028.06, + "end": 4031.58, + "probability": 0.9983 + }, + { + "start": 4031.58, + "end": 4034.42, + "probability": 0.9653 + }, + { + "start": 4035.64, + "end": 4038.58, + "probability": 0.9432 + }, + { + "start": 4038.78, + "end": 4042.52, + "probability": 0.9495 + }, + { + "start": 4043.4, + "end": 4044.12, + "probability": 0.677 + }, + { + "start": 4044.2, + "end": 4046.76, + "probability": 0.9844 + }, + { + "start": 4046.86, + "end": 4047.4, + "probability": 0.6825 + }, + { + "start": 4049.66, + "end": 4052.24, + "probability": 0.9973 + }, + { + "start": 4052.4, + "end": 4053.26, + "probability": 0.6997 + }, + { + "start": 4053.36, + "end": 4058.24, + "probability": 0.9418 + }, + { + "start": 4058.5, + "end": 4059.82, + "probability": 0.7603 + }, + { + "start": 4060.88, + "end": 4065.42, + "probability": 0.8935 + }, + { + "start": 4066.08, + "end": 4066.81, + "probability": 0.9788 + }, + { + "start": 4067.8, + "end": 4068.44, + "probability": 0.6794 + }, + { + "start": 4069.74, + "end": 4070.59, + "probability": 0.7501 + }, + { + "start": 4070.9, + "end": 4073.28, + "probability": 0.9982 + }, + { + "start": 4073.64, + "end": 4075.58, + "probability": 0.9148 + }, + { + "start": 4077.42, + "end": 4079.38, + "probability": 0.631 + }, + { + "start": 4079.42, + "end": 4081.4, + "probability": 0.7976 + }, + { + "start": 4081.9, + "end": 4082.84, + "probability": 0.9902 + }, + { + "start": 4085.48, + "end": 4088.2, + "probability": 0.8292 + }, + { + "start": 4088.66, + "end": 4089.08, + "probability": 0.825 + }, + { + "start": 4089.18, + "end": 4090.04, + "probability": 0.8097 + }, + { + "start": 4090.32, + "end": 4091.04, + "probability": 0.8153 + }, + { + "start": 4091.22, + "end": 4094.28, + "probability": 0.9912 + }, + { + "start": 4095.54, + "end": 4096.2, + "probability": 0.8618 + }, + { + "start": 4096.46, + "end": 4097.65, + "probability": 0.7739 + }, + { + "start": 4098.98, + "end": 4100.06, + "probability": 0.5959 + }, + { + "start": 4101.3, + "end": 4105.74, + "probability": 0.9088 + }, + { + "start": 4107.4, + "end": 4108.14, + "probability": 0.55 + }, + { + "start": 4108.18, + "end": 4108.3, + "probability": 0.453 + }, + { + "start": 4108.72, + "end": 4109.02, + "probability": 0.2266 + }, + { + "start": 4109.46, + "end": 4110.44, + "probability": 0.9631 + }, + { + "start": 4110.52, + "end": 4111.96, + "probability": 0.8889 + }, + { + "start": 4113.32, + "end": 4118.18, + "probability": 0.9604 + }, + { + "start": 4118.52, + "end": 4121.1, + "probability": 0.939 + }, + { + "start": 4121.14, + "end": 4122.16, + "probability": 0.3026 + }, + { + "start": 4122.74, + "end": 4123.64, + "probability": 0.0009 + }, + { + "start": 4124.28, + "end": 4125.28, + "probability": 0.3515 + }, + { + "start": 4126.32, + "end": 4127.14, + "probability": 0.905 + }, + { + "start": 4128.2, + "end": 4128.97, + "probability": 0.9836 + }, + { + "start": 4131.24, + "end": 4135.36, + "probability": 0.6064 + }, + { + "start": 4135.92, + "end": 4136.86, + "probability": 0.9117 + }, + { + "start": 4138.78, + "end": 4140.68, + "probability": 0.826 + }, + { + "start": 4140.84, + "end": 4141.32, + "probability": 0.6021 + }, + { + "start": 4141.36, + "end": 4143.84, + "probability": 0.9312 + }, + { + "start": 4145.7, + "end": 4150.72, + "probability": 0.8129 + }, + { + "start": 4150.8, + "end": 4151.28, + "probability": 0.4023 + }, + { + "start": 4152.06, + "end": 4152.68, + "probability": 0.7536 + }, + { + "start": 4154.02, + "end": 4157.22, + "probability": 0.9121 + }, + { + "start": 4157.92, + "end": 4159.24, + "probability": 0.7619 + }, + { + "start": 4160.3, + "end": 4162.44, + "probability": 0.9907 + }, + { + "start": 4162.44, + "end": 4165.06, + "probability": 0.9978 + }, + { + "start": 4165.7, + "end": 4167.28, + "probability": 0.9111 + }, + { + "start": 4168.28, + "end": 4170.92, + "probability": 0.9819 + }, + { + "start": 4172.16, + "end": 4174.14, + "probability": 0.998 + }, + { + "start": 4174.94, + "end": 4177.88, + "probability": 0.9702 + }, + { + "start": 4178.88, + "end": 4181.14, + "probability": 0.962 + }, + { + "start": 4182.62, + "end": 4184.2, + "probability": 0.9382 + }, + { + "start": 4184.4, + "end": 4186.68, + "probability": 0.9956 + }, + { + "start": 4187.6, + "end": 4189.04, + "probability": 0.9843 + }, + { + "start": 4189.34, + "end": 4190.13, + "probability": 0.9375 + }, + { + "start": 4190.84, + "end": 4191.4, + "probability": 0.6943 + }, + { + "start": 4192.0, + "end": 4193.76, + "probability": 0.6975 + }, + { + "start": 4194.9, + "end": 4198.76, + "probability": 0.9873 + }, + { + "start": 4199.02, + "end": 4203.5, + "probability": 0.978 + }, + { + "start": 4204.54, + "end": 4207.94, + "probability": 0.9949 + }, + { + "start": 4207.94, + "end": 4211.32, + "probability": 0.9829 + }, + { + "start": 4211.4, + "end": 4214.83, + "probability": 0.8705 + }, + { + "start": 4215.0, + "end": 4218.54, + "probability": 0.9418 + }, + { + "start": 4218.54, + "end": 4221.8, + "probability": 0.8599 + }, + { + "start": 4221.88, + "end": 4222.58, + "probability": 0.218 + }, + { + "start": 4223.14, + "end": 4224.56, + "probability": 0.1648 + }, + { + "start": 4224.56, + "end": 4225.88, + "probability": 0.7771 + }, + { + "start": 4226.14, + "end": 4227.44, + "probability": 0.8349 + }, + { + "start": 4227.58, + "end": 4228.56, + "probability": 0.7693 + }, + { + "start": 4228.64, + "end": 4230.76, + "probability": 0.993 + }, + { + "start": 4231.04, + "end": 4232.84, + "probability": 0.6026 + }, + { + "start": 4233.62, + "end": 4235.33, + "probability": 0.9258 + }, + { + "start": 4235.68, + "end": 4235.96, + "probability": 0.1631 + }, + { + "start": 4235.96, + "end": 4237.76, + "probability": 0.7167 + }, + { + "start": 4237.8, + "end": 4238.64, + "probability": 0.6467 + }, + { + "start": 4238.64, + "end": 4241.36, + "probability": 0.9524 + }, + { + "start": 4241.52, + "end": 4243.82, + "probability": 0.9857 + }, + { + "start": 4244.08, + "end": 4246.16, + "probability": 0.8835 + }, + { + "start": 4246.68, + "end": 4248.28, + "probability": 0.7929 + }, + { + "start": 4248.52, + "end": 4249.66, + "probability": 0.7564 + }, + { + "start": 4249.92, + "end": 4251.56, + "probability": 0.6028 + }, + { + "start": 4252.18, + "end": 4252.28, + "probability": 0.5513 + }, + { + "start": 4252.56, + "end": 4256.18, + "probability": 0.6921 + }, + { + "start": 4256.76, + "end": 4258.94, + "probability": 0.9976 + }, + { + "start": 4259.1, + "end": 4259.49, + "probability": 0.2556 + }, + { + "start": 4260.06, + "end": 4261.36, + "probability": 0.8391 + }, + { + "start": 4261.6, + "end": 4264.86, + "probability": 0.9805 + }, + { + "start": 4265.1, + "end": 4265.73, + "probability": 0.5683 + }, + { + "start": 4266.64, + "end": 4267.4, + "probability": 0.7604 + }, + { + "start": 4267.74, + "end": 4269.7, + "probability": 0.2331 + }, + { + "start": 4270.2, + "end": 4272.8, + "probability": 0.0463 + }, + { + "start": 4273.04, + "end": 4273.14, + "probability": 0.0208 + }, + { + "start": 4273.14, + "end": 4273.8, + "probability": 0.3136 + }, + { + "start": 4275.22, + "end": 4277.1, + "probability": 0.5418 + }, + { + "start": 4277.28, + "end": 4277.76, + "probability": 0.3987 + }, + { + "start": 4278.12, + "end": 4281.8, + "probability": 0.8756 + }, + { + "start": 4282.42, + "end": 4283.4, + "probability": 0.0831 + }, + { + "start": 4284.36, + "end": 4285.44, + "probability": 0.7096 + }, + { + "start": 4285.74, + "end": 4287.04, + "probability": 0.4502 + }, + { + "start": 4287.04, + "end": 4287.62, + "probability": 0.1085 + }, + { + "start": 4287.62, + "end": 4293.66, + "probability": 0.9878 + }, + { + "start": 4294.14, + "end": 4297.18, + "probability": 0.9236 + }, + { + "start": 4297.18, + "end": 4298.26, + "probability": 0.6459 + }, + { + "start": 4298.48, + "end": 4301.58, + "probability": 0.9003 + }, + { + "start": 4301.76, + "end": 4303.18, + "probability": 0.8938 + }, + { + "start": 4303.18, + "end": 4303.32, + "probability": 0.2919 + }, + { + "start": 4303.46, + "end": 4303.88, + "probability": 0.0294 + }, + { + "start": 4304.48, + "end": 4305.2, + "probability": 0.226 + }, + { + "start": 4305.36, + "end": 4306.5, + "probability": 0.6028 + }, + { + "start": 4306.7, + "end": 4307.36, + "probability": 0.5293 + }, + { + "start": 4307.46, + "end": 4307.81, + "probability": 0.7622 + }, + { + "start": 4308.1, + "end": 4309.68, + "probability": 0.2305 + }, + { + "start": 4309.86, + "end": 4310.76, + "probability": 0.0227 + }, + { + "start": 4310.76, + "end": 4312.2, + "probability": 0.6803 + }, + { + "start": 4313.16, + "end": 4314.94, + "probability": 0.8981 + }, + { + "start": 4315.92, + "end": 4316.62, + "probability": 0.1891 + }, + { + "start": 4316.66, + "end": 4317.48, + "probability": 0.4306 + }, + { + "start": 4317.54, + "end": 4320.8, + "probability": 0.7084 + }, + { + "start": 4320.92, + "end": 4321.58, + "probability": 0.8201 + }, + { + "start": 4322.12, + "end": 4324.54, + "probability": 0.8359 + }, + { + "start": 4324.7, + "end": 4325.81, + "probability": 0.4961 + }, + { + "start": 4327.18, + "end": 4328.48, + "probability": 0.5187 + }, + { + "start": 4330.16, + "end": 4331.02, + "probability": 0.6471 + }, + { + "start": 4331.8, + "end": 4333.49, + "probability": 0.7446 + }, + { + "start": 4334.04, + "end": 4334.56, + "probability": 0.6565 + }, + { + "start": 4334.6, + "end": 4339.28, + "probability": 0.8396 + }, + { + "start": 4339.76, + "end": 4340.48, + "probability": 0.9795 + }, + { + "start": 4340.84, + "end": 4342.96, + "probability": 0.9941 + }, + { + "start": 4344.0, + "end": 4346.58, + "probability": 0.964 + }, + { + "start": 4346.66, + "end": 4348.84, + "probability": 0.9988 + }, + { + "start": 4351.36, + "end": 4354.82, + "probability": 0.5 + }, + { + "start": 4354.98, + "end": 4355.94, + "probability": 0.5455 + }, + { + "start": 4356.14, + "end": 4359.08, + "probability": 0.7236 + }, + { + "start": 4359.36, + "end": 4360.4, + "probability": 0.9846 + }, + { + "start": 4361.04, + "end": 4362.18, + "probability": 0.6682 + }, + { + "start": 4362.93, + "end": 4366.02, + "probability": 0.722 + }, + { + "start": 4366.28, + "end": 4366.67, + "probability": 0.9103 + }, + { + "start": 4367.15, + "end": 4372.04, + "probability": 0.2043 + }, + { + "start": 4372.25, + "end": 4372.94, + "probability": 0.0826 + }, + { + "start": 4372.94, + "end": 4373.5, + "probability": 0.0062 + }, + { + "start": 4374.3, + "end": 4374.72, + "probability": 0.4629 + }, + { + "start": 4374.72, + "end": 4375.72, + "probability": 0.4891 + }, + { + "start": 4376.0, + "end": 4380.14, + "probability": 0.9047 + }, + { + "start": 4380.54, + "end": 4384.78, + "probability": 0.9525 + }, + { + "start": 4384.92, + "end": 4385.72, + "probability": 0.8153 + }, + { + "start": 4385.74, + "end": 4386.42, + "probability": 0.2628 + }, + { + "start": 4386.5, + "end": 4389.5, + "probability": 0.7546 + }, + { + "start": 4390.28, + "end": 4393.88, + "probability": 0.9737 + }, + { + "start": 4395.06, + "end": 4396.3, + "probability": 0.7858 + }, + { + "start": 4397.14, + "end": 4400.12, + "probability": 0.9533 + }, + { + "start": 4400.64, + "end": 4402.34, + "probability": 0.5331 + }, + { + "start": 4402.4, + "end": 4403.46, + "probability": 0.9972 + }, + { + "start": 4403.48, + "end": 4406.52, + "probability": 0.9873 + }, + { + "start": 4407.02, + "end": 4408.92, + "probability": 0.5914 + }, + { + "start": 4409.26, + "end": 4415.88, + "probability": 0.9611 + }, + { + "start": 4415.92, + "end": 4416.38, + "probability": 0.8683 + }, + { + "start": 4416.38, + "end": 4416.76, + "probability": 0.7742 + }, + { + "start": 4418.2, + "end": 4420.76, + "probability": 0.9199 + }, + { + "start": 4421.48, + "end": 4422.98, + "probability": 0.6846 + }, + { + "start": 4424.46, + "end": 4426.2, + "probability": 0.9167 + }, + { + "start": 4427.45, + "end": 4430.57, + "probability": 0.7153 + }, + { + "start": 4431.16, + "end": 4432.5, + "probability": 0.6607 + }, + { + "start": 4432.62, + "end": 4433.4, + "probability": 0.4712 + }, + { + "start": 4433.42, + "end": 4434.44, + "probability": 0.3715 + }, + { + "start": 4434.8, + "end": 4436.82, + "probability": 0.2205 + }, + { + "start": 4450.32, + "end": 4450.44, + "probability": 0.2726 + }, + { + "start": 4451.42, + "end": 4451.9, + "probability": 0.7423 + }, + { + "start": 4453.72, + "end": 4458.2, + "probability": 0.8428 + }, + { + "start": 4459.34, + "end": 4461.74, + "probability": 0.8149 + }, + { + "start": 4463.34, + "end": 4467.48, + "probability": 0.9693 + }, + { + "start": 4467.48, + "end": 4471.82, + "probability": 0.9924 + }, + { + "start": 4472.38, + "end": 4475.84, + "probability": 0.9955 + }, + { + "start": 4477.07, + "end": 4481.66, + "probability": 0.9346 + }, + { + "start": 4481.8, + "end": 4483.06, + "probability": 0.9447 + }, + { + "start": 4483.2, + "end": 4484.96, + "probability": 0.8376 + }, + { + "start": 4485.46, + "end": 4493.8, + "probability": 0.9219 + }, + { + "start": 4493.8, + "end": 4500.78, + "probability": 0.9589 + }, + { + "start": 4501.38, + "end": 4504.52, + "probability": 0.8288 + }, + { + "start": 4504.58, + "end": 4506.08, + "probability": 0.9069 + }, + { + "start": 4507.28, + "end": 4511.1, + "probability": 0.7314 + }, + { + "start": 4511.44, + "end": 4517.44, + "probability": 0.7292 + }, + { + "start": 4518.42, + "end": 4525.5, + "probability": 0.9438 + }, + { + "start": 4526.16, + "end": 4529.42, + "probability": 0.8233 + }, + { + "start": 4529.96, + "end": 4535.16, + "probability": 0.9971 + }, + { + "start": 4535.44, + "end": 4537.8, + "probability": 0.9478 + }, + { + "start": 4537.9, + "end": 4543.16, + "probability": 0.9874 + }, + { + "start": 4543.2, + "end": 4548.22, + "probability": 0.9515 + }, + { + "start": 4548.7, + "end": 4554.66, + "probability": 0.9117 + }, + { + "start": 4555.58, + "end": 4561.88, + "probability": 0.5089 + }, + { + "start": 4561.88, + "end": 4566.28, + "probability": 0.9556 + }, + { + "start": 4566.62, + "end": 4567.76, + "probability": 0.841 + }, + { + "start": 4567.92, + "end": 4569.9, + "probability": 0.9401 + }, + { + "start": 4570.26, + "end": 4576.76, + "probability": 0.9858 + }, + { + "start": 4577.12, + "end": 4577.56, + "probability": 0.4449 + }, + { + "start": 4577.74, + "end": 4579.2, + "probability": 0.6085 + }, + { + "start": 4579.3, + "end": 4580.02, + "probability": 0.7041 + }, + { + "start": 4580.74, + "end": 4582.06, + "probability": 0.7253 + }, + { + "start": 4582.26, + "end": 4583.0, + "probability": 0.9474 + }, + { + "start": 4583.38, + "end": 4587.96, + "probability": 0.9753 + }, + { + "start": 4588.1, + "end": 4590.7, + "probability": 0.7622 + }, + { + "start": 4590.72, + "end": 4594.34, + "probability": 0.9717 + }, + { + "start": 4594.44, + "end": 4598.18, + "probability": 0.9176 + }, + { + "start": 4599.0, + "end": 4602.9, + "probability": 0.9281 + }, + { + "start": 4603.86, + "end": 4604.34, + "probability": 0.9256 + }, + { + "start": 4604.98, + "end": 4608.57, + "probability": 0.8224 + }, + { + "start": 4609.24, + "end": 4613.44, + "probability": 0.7909 + }, + { + "start": 4613.44, + "end": 4616.86, + "probability": 0.9005 + }, + { + "start": 4617.02, + "end": 4617.56, + "probability": 0.739 + }, + { + "start": 4618.86, + "end": 4620.9, + "probability": 0.5196 + }, + { + "start": 4621.58, + "end": 4623.52, + "probability": 0.6614 + }, + { + "start": 4624.2, + "end": 4627.44, + "probability": 0.7402 + }, + { + "start": 4627.96, + "end": 4629.16, + "probability": 0.9914 + }, + { + "start": 4629.28, + "end": 4630.22, + "probability": 0.8434 + }, + { + "start": 4630.6, + "end": 4631.92, + "probability": 0.7928 + }, + { + "start": 4632.28, + "end": 4633.28, + "probability": 0.1386 + }, + { + "start": 4633.78, + "end": 4636.96, + "probability": 0.9174 + }, + { + "start": 4637.78, + "end": 4640.92, + "probability": 0.7547 + }, + { + "start": 4650.42, + "end": 4651.2, + "probability": 0.8253 + }, + { + "start": 4652.56, + "end": 4654.88, + "probability": 0.7261 + }, + { + "start": 4657.68, + "end": 4661.98, + "probability": 0.9784 + }, + { + "start": 4662.3, + "end": 4663.32, + "probability": 0.8864 + }, + { + "start": 4664.48, + "end": 4669.38, + "probability": 0.777 + }, + { + "start": 4670.42, + "end": 4671.16, + "probability": 0.6398 + }, + { + "start": 4671.86, + "end": 4676.28, + "probability": 0.9194 + }, + { + "start": 4677.58, + "end": 4678.6, + "probability": 0.756 + }, + { + "start": 4678.74, + "end": 4680.36, + "probability": 0.9426 + }, + { + "start": 4680.46, + "end": 4684.04, + "probability": 0.9547 + }, + { + "start": 4684.76, + "end": 4686.0, + "probability": 0.8114 + }, + { + "start": 4686.96, + "end": 4689.2, + "probability": 0.5862 + }, + { + "start": 4690.24, + "end": 4690.9, + "probability": 0.7904 + }, + { + "start": 4692.06, + "end": 4697.44, + "probability": 0.9912 + }, + { + "start": 4698.44, + "end": 4703.85, + "probability": 0.9957 + }, + { + "start": 4705.16, + "end": 4706.66, + "probability": 0.8079 + }, + { + "start": 4707.26, + "end": 4710.1, + "probability": 0.926 + }, + { + "start": 4710.8, + "end": 4713.58, + "probability": 0.9954 + }, + { + "start": 4714.18, + "end": 4717.98, + "probability": 0.7677 + }, + { + "start": 4718.8, + "end": 4720.0, + "probability": 0.9819 + }, + { + "start": 4721.12, + "end": 4728.66, + "probability": 0.9434 + }, + { + "start": 4728.66, + "end": 4733.9, + "probability": 0.9937 + }, + { + "start": 4734.64, + "end": 4740.52, + "probability": 0.6715 + }, + { + "start": 4741.42, + "end": 4750.38, + "probability": 0.973 + }, + { + "start": 4751.1, + "end": 4753.86, + "probability": 0.9733 + }, + { + "start": 4753.92, + "end": 4754.48, + "probability": 0.8044 + }, + { + "start": 4756.64, + "end": 4758.86, + "probability": 0.7322 + }, + { + "start": 4758.98, + "end": 4762.32, + "probability": 0.6289 + }, + { + "start": 4762.32, + "end": 4762.7, + "probability": 0.9083 + }, + { + "start": 4777.1, + "end": 4778.2, + "probability": 0.5384 + }, + { + "start": 4778.98, + "end": 4780.46, + "probability": 0.7429 + }, + { + "start": 4781.88, + "end": 4784.48, + "probability": 0.9213 + }, + { + "start": 4784.58, + "end": 4788.12, + "probability": 0.8594 + }, + { + "start": 4789.52, + "end": 4791.52, + "probability": 0.947 + }, + { + "start": 4793.6, + "end": 4798.58, + "probability": 0.8923 + }, + { + "start": 4799.28, + "end": 4802.82, + "probability": 0.9941 + }, + { + "start": 4803.0, + "end": 4804.71, + "probability": 0.9851 + }, + { + "start": 4806.4, + "end": 4808.1, + "probability": 0.7957 + }, + { + "start": 4809.08, + "end": 4812.04, + "probability": 0.9194 + }, + { + "start": 4812.42, + "end": 4813.44, + "probability": 0.9209 + }, + { + "start": 4814.5, + "end": 4817.48, + "probability": 0.8936 + }, + { + "start": 4817.58, + "end": 4818.82, + "probability": 0.849 + }, + { + "start": 4819.54, + "end": 4821.3, + "probability": 0.9946 + }, + { + "start": 4822.0, + "end": 4825.54, + "probability": 0.8906 + }, + { + "start": 4826.46, + "end": 4828.3, + "probability": 0.5176 + }, + { + "start": 4828.34, + "end": 4830.26, + "probability": 0.8607 + }, + { + "start": 4830.38, + "end": 4831.8, + "probability": 0.1916 + }, + { + "start": 4832.36, + "end": 4840.02, + "probability": 0.9753 + }, + { + "start": 4840.86, + "end": 4842.62, + "probability": 0.9598 + }, + { + "start": 4842.78, + "end": 4845.52, + "probability": 0.9902 + }, + { + "start": 4845.52, + "end": 4849.5, + "probability": 0.9989 + }, + { + "start": 4849.62, + "end": 4850.12, + "probability": 0.7497 + }, + { + "start": 4850.82, + "end": 4855.4, + "probability": 0.9958 + }, + { + "start": 4855.4, + "end": 4860.0, + "probability": 0.9989 + }, + { + "start": 4861.0, + "end": 4862.44, + "probability": 0.7748 + }, + { + "start": 4862.96, + "end": 4865.62, + "probability": 0.9927 + }, + { + "start": 4866.34, + "end": 4870.0, + "probability": 0.9969 + }, + { + "start": 4870.58, + "end": 4873.54, + "probability": 0.9946 + }, + { + "start": 4874.02, + "end": 4876.64, + "probability": 0.9989 + }, + { + "start": 4877.1, + "end": 4878.52, + "probability": 0.9214 + }, + { + "start": 4879.1, + "end": 4883.2, + "probability": 0.9966 + }, + { + "start": 4883.2, + "end": 4886.88, + "probability": 0.9985 + }, + { + "start": 4888.04, + "end": 4888.6, + "probability": 0.741 + }, + { + "start": 4889.32, + "end": 4895.3, + "probability": 0.9932 + }, + { + "start": 4895.3, + "end": 4902.42, + "probability": 0.9935 + }, + { + "start": 4903.12, + "end": 4905.06, + "probability": 0.9901 + }, + { + "start": 4905.72, + "end": 4907.28, + "probability": 0.7159 + }, + { + "start": 4907.8, + "end": 4912.94, + "probability": 0.9958 + }, + { + "start": 4912.94, + "end": 4918.02, + "probability": 0.9949 + }, + { + "start": 4918.72, + "end": 4925.22, + "probability": 0.9933 + }, + { + "start": 4925.74, + "end": 4930.02, + "probability": 0.9943 + }, + { + "start": 4930.76, + "end": 4936.24, + "probability": 0.9663 + }, + { + "start": 4936.86, + "end": 4942.76, + "probability": 0.9276 + }, + { + "start": 4944.0, + "end": 4948.06, + "probability": 0.6626 + }, + { + "start": 4948.56, + "end": 4949.24, + "probability": 0.0017 + }, + { + "start": 4949.24, + "end": 4949.7, + "probability": 0.5734 + }, + { + "start": 4949.86, + "end": 4950.62, + "probability": 0.2053 + }, + { + "start": 4950.74, + "end": 4952.04, + "probability": 0.7994 + }, + { + "start": 4953.78, + "end": 4959.8, + "probability": 0.9299 + }, + { + "start": 4960.64, + "end": 4961.16, + "probability": 0.2972 + }, + { + "start": 4961.68, + "end": 4962.4, + "probability": 0.955 + }, + { + "start": 4963.42, + "end": 4968.38, + "probability": 0.9873 + }, + { + "start": 4969.56, + "end": 4975.46, + "probability": 0.8263 + }, + { + "start": 4975.96, + "end": 4978.68, + "probability": 0.9084 + }, + { + "start": 4978.68, + "end": 4983.85, + "probability": 0.9959 + }, + { + "start": 4984.46, + "end": 4988.54, + "probability": 0.9437 + }, + { + "start": 4989.46, + "end": 4992.72, + "probability": 0.9602 + }, + { + "start": 4992.72, + "end": 4996.58, + "probability": 0.9973 + }, + { + "start": 4996.98, + "end": 5002.64, + "probability": 0.9349 + }, + { + "start": 5003.2, + "end": 5004.04, + "probability": 0.7501 + }, + { + "start": 5005.04, + "end": 5006.0, + "probability": 0.7815 + }, + { + "start": 5006.88, + "end": 5013.0, + "probability": 0.9798 + }, + { + "start": 5013.62, + "end": 5014.08, + "probability": 0.856 + }, + { + "start": 5014.62, + "end": 5017.06, + "probability": 0.9973 + }, + { + "start": 5018.2, + "end": 5023.86, + "probability": 0.9872 + }, + { + "start": 5024.54, + "end": 5027.66, + "probability": 0.9067 + }, + { + "start": 5028.26, + "end": 5031.02, + "probability": 0.9677 + }, + { + "start": 5031.08, + "end": 5033.16, + "probability": 0.9771 + }, + { + "start": 5033.38, + "end": 5033.88, + "probability": 0.8176 + }, + { + "start": 5035.58, + "end": 5039.12, + "probability": 0.9823 + }, + { + "start": 5039.3, + "end": 5041.06, + "probability": 0.7585 + }, + { + "start": 5041.84, + "end": 5043.64, + "probability": 0.4813 + }, + { + "start": 5044.22, + "end": 5047.64, + "probability": 0.9342 + }, + { + "start": 5048.34, + "end": 5049.58, + "probability": 0.7317 + }, + { + "start": 5049.66, + "end": 5050.1, + "probability": 0.7996 + }, + { + "start": 5050.88, + "end": 5055.16, + "probability": 0.5981 + }, + { + "start": 5056.12, + "end": 5060.76, + "probability": 0.4887 + }, + { + "start": 5061.32, + "end": 5062.36, + "probability": 0.6958 + }, + { + "start": 5062.44, + "end": 5068.7, + "probability": 0.9379 + }, + { + "start": 5068.82, + "end": 5069.64, + "probability": 0.78 + }, + { + "start": 5070.3, + "end": 5073.3, + "probability": 0.6515 + }, + { + "start": 5073.98, + "end": 5074.9, + "probability": 0.2997 + }, + { + "start": 5075.36, + "end": 5075.94, + "probability": 0.6893 + }, + { + "start": 5076.04, + "end": 5077.28, + "probability": 0.9751 + }, + { + "start": 5077.42, + "end": 5078.19, + "probability": 0.3429 + }, + { + "start": 5078.7, + "end": 5080.92, + "probability": 0.697 + }, + { + "start": 5081.34, + "end": 5085.48, + "probability": 0.7561 + }, + { + "start": 5085.54, + "end": 5087.66, + "probability": 0.9232 + }, + { + "start": 5088.0, + "end": 5089.46, + "probability": 0.8184 + }, + { + "start": 5090.24, + "end": 5092.56, + "probability": 0.9865 + }, + { + "start": 5092.56, + "end": 5094.36, + "probability": 0.7595 + }, + { + "start": 5094.42, + "end": 5095.88, + "probability": 0.6542 + }, + { + "start": 5095.92, + "end": 5096.76, + "probability": 0.4129 + }, + { + "start": 5096.84, + "end": 5097.92, + "probability": 0.5848 + }, + { + "start": 5098.28, + "end": 5099.78, + "probability": 0.1003 + }, + { + "start": 5099.78, + "end": 5101.44, + "probability": 0.8021 + }, + { + "start": 5101.64, + "end": 5102.28, + "probability": 0.5638 + }, + { + "start": 5103.5, + "end": 5103.8, + "probability": 0.4669 + }, + { + "start": 5104.48, + "end": 5104.84, + "probability": 0.2227 + }, + { + "start": 5120.2, + "end": 5124.8, + "probability": 0.6284 + }, + { + "start": 5124.8, + "end": 5125.72, + "probability": 0.0411 + }, + { + "start": 5126.16, + "end": 5126.74, + "probability": 0.0295 + }, + { + "start": 5126.74, + "end": 5131.04, + "probability": 0.4518 + }, + { + "start": 5131.4, + "end": 5132.12, + "probability": 0.1876 + }, + { + "start": 5133.22, + "end": 5134.24, + "probability": 0.3148 + }, + { + "start": 5135.17, + "end": 5136.64, + "probability": 0.0793 + }, + { + "start": 5136.64, + "end": 5136.72, + "probability": 0.1176 + }, + { + "start": 5136.72, + "end": 5137.1, + "probability": 0.0965 + }, + { + "start": 5138.2, + "end": 5141.14, + "probability": 0.3018 + }, + { + "start": 5142.72, + "end": 5143.4, + "probability": 0.0187 + }, + { + "start": 5143.94, + "end": 5146.12, + "probability": 0.0994 + }, + { + "start": 5146.12, + "end": 5146.59, + "probability": 0.1679 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5215.0, + "end": 5215.0, + "probability": 0.0 + }, + { + "start": 5229.3, + "end": 5230.66, + "probability": 0.111 + }, + { + "start": 5230.66, + "end": 5233.9, + "probability": 0.1338 + }, + { + "start": 5234.33, + "end": 5235.68, + "probability": 0.0618 + }, + { + "start": 5239.28, + "end": 5240.12, + "probability": 0.1137 + }, + { + "start": 5240.16, + "end": 5242.86, + "probability": 0.0673 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.3, + "end": 5336.76, + "probability": 0.1985 + }, + { + "start": 5336.76, + "end": 5336.76, + "probability": 0.0942 + }, + { + "start": 5336.76, + "end": 5336.96, + "probability": 0.0463 + }, + { + "start": 5336.96, + "end": 5339.48, + "probability": 0.0375 + }, + { + "start": 5339.64, + "end": 5341.74, + "probability": 0.9316 + }, + { + "start": 5342.66, + "end": 5349.32, + "probability": 0.9602 + }, + { + "start": 5350.18, + "end": 5357.24, + "probability": 0.9544 + }, + { + "start": 5357.52, + "end": 5363.6, + "probability": 0.9836 + }, + { + "start": 5363.86, + "end": 5364.78, + "probability": 0.4505 + }, + { + "start": 5366.2, + "end": 5370.24, + "probability": 0.8535 + }, + { + "start": 5370.48, + "end": 5372.54, + "probability": 0.9889 + }, + { + "start": 5372.96, + "end": 5375.48, + "probability": 0.9303 + }, + { + "start": 5376.54, + "end": 5378.76, + "probability": 0.8901 + }, + { + "start": 5378.76, + "end": 5383.4, + "probability": 0.8759 + }, + { + "start": 5384.72, + "end": 5388.58, + "probability": 0.9628 + }, + { + "start": 5389.12, + "end": 5391.98, + "probability": 0.9827 + }, + { + "start": 5392.86, + "end": 5395.92, + "probability": 0.9926 + }, + { + "start": 5395.92, + "end": 5400.58, + "probability": 0.9733 + }, + { + "start": 5404.38, + "end": 5408.04, + "probability": 0.9905 + }, + { + "start": 5408.04, + "end": 5411.66, + "probability": 0.9959 + }, + { + "start": 5412.3, + "end": 5416.58, + "probability": 0.9922 + }, + { + "start": 5417.84, + "end": 5425.66, + "probability": 0.9322 + }, + { + "start": 5425.88, + "end": 5426.2, + "probability": 0.7743 + }, + { + "start": 5426.76, + "end": 5427.32, + "probability": 0.9886 + }, + { + "start": 5427.96, + "end": 5428.58, + "probability": 0.7676 + }, + { + "start": 5428.86, + "end": 5435.86, + "probability": 0.9707 + }, + { + "start": 5435.86, + "end": 5443.5, + "probability": 0.9969 + }, + { + "start": 5444.28, + "end": 5447.54, + "probability": 0.9862 + }, + { + "start": 5448.5, + "end": 5449.08, + "probability": 0.7722 + }, + { + "start": 5449.42, + "end": 5455.08, + "probability": 0.9921 + }, + { + "start": 5455.08, + "end": 5459.68, + "probability": 0.9409 + }, + { + "start": 5459.9, + "end": 5462.62, + "probability": 0.9906 + }, + { + "start": 5464.3, + "end": 5466.8, + "probability": 0.7461 + }, + { + "start": 5467.54, + "end": 5469.1, + "probability": 0.8659 + }, + { + "start": 5469.52, + "end": 5475.28, + "probability": 0.918 + }, + { + "start": 5475.76, + "end": 5476.3, + "probability": 0.8774 + }, + { + "start": 5476.84, + "end": 5478.92, + "probability": 0.9326 + }, + { + "start": 5480.12, + "end": 5485.46, + "probability": 0.8699 + }, + { + "start": 5485.46, + "end": 5489.64, + "probability": 0.9977 + }, + { + "start": 5490.28, + "end": 5494.12, + "probability": 0.9979 + }, + { + "start": 5494.62, + "end": 5500.4, + "probability": 0.9937 + }, + { + "start": 5501.02, + "end": 5501.58, + "probability": 0.8744 + }, + { + "start": 5502.28, + "end": 5506.02, + "probability": 0.99 + }, + { + "start": 5506.66, + "end": 5512.66, + "probability": 0.9179 + }, + { + "start": 5513.28, + "end": 5518.34, + "probability": 0.9886 + }, + { + "start": 5519.56, + "end": 5523.26, + "probability": 0.796 + }, + { + "start": 5523.62, + "end": 5527.94, + "probability": 0.9458 + }, + { + "start": 5530.14, + "end": 5535.3, + "probability": 0.9969 + }, + { + "start": 5536.78, + "end": 5538.2, + "probability": 0.8948 + }, + { + "start": 5538.92, + "end": 5543.68, + "probability": 0.9932 + }, + { + "start": 5543.84, + "end": 5545.08, + "probability": 0.9095 + }, + { + "start": 5546.02, + "end": 5548.66, + "probability": 0.9168 + }, + { + "start": 5549.1, + "end": 5550.1, + "probability": 0.8675 + }, + { + "start": 5550.14, + "end": 5556.48, + "probability": 0.9753 + }, + { + "start": 5556.6, + "end": 5558.0, + "probability": 0.665 + }, + { + "start": 5558.9, + "end": 5560.3, + "probability": 0.7142 + }, + { + "start": 5561.58, + "end": 5567.94, + "probability": 0.9691 + }, + { + "start": 5569.34, + "end": 5570.22, + "probability": 0.7727 + }, + { + "start": 5570.46, + "end": 5574.68, + "probability": 0.9822 + }, + { + "start": 5575.04, + "end": 5577.46, + "probability": 0.9926 + }, + { + "start": 5577.46, + "end": 5579.6, + "probability": 0.9985 + }, + { + "start": 5580.78, + "end": 5583.14, + "probability": 0.9951 + }, + { + "start": 5583.68, + "end": 5586.14, + "probability": 0.9986 + }, + { + "start": 5586.6, + "end": 5590.76, + "probability": 0.9984 + }, + { + "start": 5590.76, + "end": 5595.96, + "probability": 0.9951 + }, + { + "start": 5596.32, + "end": 5599.52, + "probability": 0.9894 + }, + { + "start": 5600.4, + "end": 5600.94, + "probability": 0.785 + }, + { + "start": 5601.58, + "end": 5603.32, + "probability": 0.9678 + }, + { + "start": 5604.06, + "end": 5608.52, + "probability": 0.9927 + }, + { + "start": 5608.98, + "end": 5611.27, + "probability": 0.9793 + }, + { + "start": 5611.54, + "end": 5612.62, + "probability": 0.8367 + }, + { + "start": 5613.1, + "end": 5615.96, + "probability": 0.9902 + }, + { + "start": 5616.6, + "end": 5617.48, + "probability": 0.6997 + }, + { + "start": 5617.96, + "end": 5620.9, + "probability": 0.9849 + }, + { + "start": 5620.9, + "end": 5623.92, + "probability": 0.989 + }, + { + "start": 5625.12, + "end": 5628.1, + "probability": 0.9961 + }, + { + "start": 5628.1, + "end": 5631.14, + "probability": 0.8696 + }, + { + "start": 5631.68, + "end": 5635.38, + "probability": 0.9954 + }, + { + "start": 5635.98, + "end": 5640.62, + "probability": 0.9653 + }, + { + "start": 5640.7, + "end": 5643.62, + "probability": 0.4684 + }, + { + "start": 5644.26, + "end": 5646.56, + "probability": 0.8476 + }, + { + "start": 5647.3, + "end": 5652.82, + "probability": 0.943 + }, + { + "start": 5653.1, + "end": 5654.16, + "probability": 0.7863 + }, + { + "start": 5654.62, + "end": 5659.82, + "probability": 0.9863 + }, + { + "start": 5660.22, + "end": 5664.96, + "probability": 0.9945 + }, + { + "start": 5665.92, + "end": 5667.08, + "probability": 0.864 + }, + { + "start": 5667.18, + "end": 5670.1, + "probability": 0.9973 + }, + { + "start": 5670.6, + "end": 5674.9, + "probability": 0.981 + }, + { + "start": 5674.9, + "end": 5680.18, + "probability": 0.9909 + }, + { + "start": 5681.5, + "end": 5682.66, + "probability": 0.8374 + }, + { + "start": 5682.7, + "end": 5685.14, + "probability": 0.7744 + }, + { + "start": 5685.36, + "end": 5686.76, + "probability": 0.9047 + }, + { + "start": 5687.1, + "end": 5690.74, + "probability": 0.962 + }, + { + "start": 5691.14, + "end": 5695.78, + "probability": 0.9834 + }, + { + "start": 5696.7, + "end": 5700.82, + "probability": 0.9644 + }, + { + "start": 5700.82, + "end": 5707.26, + "probability": 0.9027 + }, + { + "start": 5711.06, + "end": 5713.24, + "probability": 0.1312 + }, + { + "start": 5714.46, + "end": 5716.7, + "probability": 0.2753 + }, + { + "start": 5717.34, + "end": 5721.26, + "probability": 0.1088 + }, + { + "start": 5721.66, + "end": 5721.76, + "probability": 0.0884 + }, + { + "start": 5721.76, + "end": 5721.76, + "probability": 0.0308 + }, + { + "start": 5721.76, + "end": 5721.76, + "probability": 0.1194 + }, + { + "start": 5721.76, + "end": 5721.76, + "probability": 0.0107 + }, + { + "start": 5721.76, + "end": 5721.76, + "probability": 0.0768 + }, + { + "start": 5721.76, + "end": 5723.48, + "probability": 0.2617 + }, + { + "start": 5723.86, + "end": 5726.78, + "probability": 0.2086 + }, + { + "start": 5728.66, + "end": 5728.92, + "probability": 0.015 + }, + { + "start": 5730.68, + "end": 5731.18, + "probability": 0.2583 + }, + { + "start": 5731.18, + "end": 5731.5, + "probability": 0.3265 + }, + { + "start": 5731.68, + "end": 5732.98, + "probability": 0.1517 + }, + { + "start": 5732.98, + "end": 5733.12, + "probability": 0.3963 + }, + { + "start": 5733.12, + "end": 5734.4, + "probability": 0.1749 + }, + { + "start": 5734.72, + "end": 5738.1, + "probability": 0.3196 + }, + { + "start": 5738.18, + "end": 5738.48, + "probability": 0.401 + }, + { + "start": 5738.7, + "end": 5740.22, + "probability": 0.8776 + }, + { + "start": 5740.82, + "end": 5742.08, + "probability": 0.0186 + }, + { + "start": 5742.18, + "end": 5742.18, + "probability": 0.2188 + }, + { + "start": 5742.36, + "end": 5742.94, + "probability": 0.3091 + }, + { + "start": 5743.04, + "end": 5744.28, + "probability": 0.3599 + }, + { + "start": 5744.38, + "end": 5745.96, + "probability": 0.3668 + }, + { + "start": 5745.96, + "end": 5749.56, + "probability": 0.3178 + }, + { + "start": 5749.56, + "end": 5750.96, + "probability": 0.2594 + }, + { + "start": 5751.36, + "end": 5751.78, + "probability": 0.0251 + }, + { + "start": 5751.78, + "end": 5752.54, + "probability": 0.2999 + }, + { + "start": 5752.78, + "end": 5755.16, + "probability": 0.7355 + }, + { + "start": 5755.3, + "end": 5755.4, + "probability": 0.0254 + }, + { + "start": 5758.18, + "end": 5759.3, + "probability": 0.1048 + }, + { + "start": 5760.54, + "end": 5761.28, + "probability": 0.2013 + }, + { + "start": 5762.98, + "end": 5765.64, + "probability": 0.2234 + }, + { + "start": 5768.4, + "end": 5769.92, + "probability": 0.0227 + }, + { + "start": 5770.28, + "end": 5772.48, + "probability": 0.0801 + }, + { + "start": 5772.48, + "end": 5773.72, + "probability": 0.1224 + }, + { + "start": 5774.0, + "end": 5776.02, + "probability": 0.1596 + }, + { + "start": 5776.08, + "end": 5776.26, + "probability": 0.1189 + }, + { + "start": 5776.26, + "end": 5778.4, + "probability": 0.0015 + }, + { + "start": 5779.48, + "end": 5783.14, + "probability": 0.0968 + }, + { + "start": 5792.0, + "end": 5792.0, + "probability": 0.0 + }, + { + "start": 5792.0, + "end": 5792.0, + "probability": 0.0 + }, + { + "start": 5792.0, + "end": 5792.0, + "probability": 0.0 + }, + { + "start": 5792.0, + "end": 5792.0, + "probability": 0.0 + }, + { + "start": 5792.0, + "end": 5792.0, + "probability": 0.0 + }, + { + "start": 5792.0, + "end": 5792.0, + "probability": 0.0 + }, + { + "start": 5792.0, + "end": 5792.0, + "probability": 0.0 + }, + { + "start": 5792.0, + "end": 5792.0, + "probability": 0.0 + }, + { + "start": 5792.0, + "end": 5792.0, + "probability": 0.0 + }, + { + "start": 5792.14, + "end": 5792.32, + "probability": 0.0337 + }, + { + "start": 5792.32, + "end": 5794.12, + "probability": 0.7705 + }, + { + "start": 5794.24, + "end": 5798.46, + "probability": 0.7682 + }, + { + "start": 5800.08, + "end": 5804.9, + "probability": 0.932 + }, + { + "start": 5805.4, + "end": 5808.1, + "probability": 0.9909 + }, + { + "start": 5808.1, + "end": 5811.69, + "probability": 0.9948 + }, + { + "start": 5812.44, + "end": 5817.14, + "probability": 0.9934 + }, + { + "start": 5817.54, + "end": 5826.76, + "probability": 0.8052 + }, + { + "start": 5826.86, + "end": 5829.66, + "probability": 0.6878 + }, + { + "start": 5829.72, + "end": 5834.14, + "probability": 0.694 + }, + { + "start": 5835.38, + "end": 5838.04, + "probability": 0.6864 + }, + { + "start": 5838.22, + "end": 5842.92, + "probability": 0.9891 + }, + { + "start": 5843.14, + "end": 5848.18, + "probability": 0.9117 + }, + { + "start": 5848.52, + "end": 5851.08, + "probability": 0.657 + }, + { + "start": 5851.2, + "end": 5852.92, + "probability": 0.9765 + }, + { + "start": 5852.96, + "end": 5856.3, + "probability": 0.7495 + }, + { + "start": 5856.38, + "end": 5857.32, + "probability": 0.7432 + }, + { + "start": 5857.4, + "end": 5860.12, + "probability": 0.9971 + }, + { + "start": 5860.12, + "end": 5863.9, + "probability": 0.9994 + }, + { + "start": 5864.4, + "end": 5865.86, + "probability": 0.9285 + }, + { + "start": 5866.4, + "end": 5869.6, + "probability": 0.8413 + }, + { + "start": 5869.74, + "end": 5872.98, + "probability": 0.9131 + }, + { + "start": 5872.98, + "end": 5876.64, + "probability": 0.8756 + }, + { + "start": 5877.32, + "end": 5880.74, + "probability": 0.8147 + }, + { + "start": 5881.06, + "end": 5882.52, + "probability": 0.718 + }, + { + "start": 5882.64, + "end": 5883.42, + "probability": 0.9644 + }, + { + "start": 5884.78, + "end": 5886.68, + "probability": 0.7108 + }, + { + "start": 5886.78, + "end": 5888.64, + "probability": 0.9038 + }, + { + "start": 5888.74, + "end": 5890.14, + "probability": 0.9071 + }, + { + "start": 5890.36, + "end": 5892.26, + "probability": 0.9873 + }, + { + "start": 5892.7, + "end": 5894.98, + "probability": 0.9663 + }, + { + "start": 5895.3, + "end": 5897.28, + "probability": 0.9945 + }, + { + "start": 5899.02, + "end": 5901.04, + "probability": 0.4968 + }, + { + "start": 5901.04, + "end": 5901.78, + "probability": 0.7686 + }, + { + "start": 5902.02, + "end": 5904.8, + "probability": 0.7096 + }, + { + "start": 5904.94, + "end": 5910.46, + "probability": 0.973 + }, + { + "start": 5910.86, + "end": 5912.3, + "probability": 0.7023 + }, + { + "start": 5912.78, + "end": 5916.48, + "probability": 0.9883 + }, + { + "start": 5916.48, + "end": 5920.46, + "probability": 0.9933 + }, + { + "start": 5920.94, + "end": 5923.58, + "probability": 0.9938 + }, + { + "start": 5924.24, + "end": 5926.62, + "probability": 0.8997 + }, + { + "start": 5926.98, + "end": 5932.54, + "probability": 0.9972 + }, + { + "start": 5933.16, + "end": 5937.68, + "probability": 0.9858 + }, + { + "start": 5938.04, + "end": 5939.22, + "probability": 0.9006 + }, + { + "start": 5939.62, + "end": 5942.76, + "probability": 0.9969 + }, + { + "start": 5943.2, + "end": 5948.86, + "probability": 0.9973 + }, + { + "start": 5948.86, + "end": 5954.86, + "probability": 0.9155 + }, + { + "start": 5955.02, + "end": 5955.52, + "probability": 0.6527 + }, + { + "start": 5956.22, + "end": 5959.55, + "probability": 0.8323 + }, + { + "start": 5960.32, + "end": 5963.06, + "probability": 0.8335 + }, + { + "start": 5963.06, + "end": 5966.7, + "probability": 0.9598 + }, + { + "start": 5967.38, + "end": 5969.2, + "probability": 0.7552 + }, + { + "start": 5989.86, + "end": 5991.14, + "probability": 0.7607 + }, + { + "start": 5991.78, + "end": 5992.22, + "probability": 0.8405 + }, + { + "start": 5992.9, + "end": 5994.12, + "probability": 0.7605 + }, + { + "start": 5995.21, + "end": 6000.57, + "probability": 0.9243 + }, + { + "start": 6001.76, + "end": 6011.64, + "probability": 0.9398 + }, + { + "start": 6012.1, + "end": 6013.72, + "probability": 0.9751 + }, + { + "start": 6016.1, + "end": 6017.86, + "probability": 0.999 + }, + { + "start": 6018.92, + "end": 6024.42, + "probability": 0.8316 + }, + { + "start": 6025.34, + "end": 6027.44, + "probability": 0.9061 + }, + { + "start": 6031.3, + "end": 6033.92, + "probability": 0.9796 + }, + { + "start": 6034.52, + "end": 6035.24, + "probability": 0.8137 + }, + { + "start": 6035.36, + "end": 6041.2, + "probability": 0.9202 + }, + { + "start": 6043.16, + "end": 6044.88, + "probability": 0.9395 + }, + { + "start": 6045.48, + "end": 6045.86, + "probability": 0.8256 + }, + { + "start": 6045.94, + "end": 6046.76, + "probability": 0.9509 + }, + { + "start": 6047.16, + "end": 6048.86, + "probability": 0.8722 + }, + { + "start": 6049.44, + "end": 6052.74, + "probability": 0.9614 + }, + { + "start": 6052.82, + "end": 6055.88, + "probability": 0.9548 + }, + { + "start": 6056.08, + "end": 6062.88, + "probability": 0.9429 + }, + { + "start": 6064.02, + "end": 6067.78, + "probability": 0.9982 + }, + { + "start": 6068.24, + "end": 6070.45, + "probability": 0.9569 + }, + { + "start": 6071.5, + "end": 6074.94, + "probability": 0.9654 + }, + { + "start": 6075.8, + "end": 6075.98, + "probability": 0.393 + }, + { + "start": 6076.06, + "end": 6077.48, + "probability": 0.7158 + }, + { + "start": 6077.96, + "end": 6078.95, + "probability": 0.7949 + }, + { + "start": 6079.02, + "end": 6082.34, + "probability": 0.9961 + }, + { + "start": 6082.5, + "end": 6083.68, + "probability": 0.5766 + }, + { + "start": 6083.82, + "end": 6089.3, + "probability": 0.8931 + }, + { + "start": 6089.4, + "end": 6091.8, + "probability": 0.9451 + }, + { + "start": 6092.38, + "end": 6096.54, + "probability": 0.9857 + }, + { + "start": 6096.64, + "end": 6100.94, + "probability": 0.931 + }, + { + "start": 6101.92, + "end": 6105.14, + "probability": 0.9873 + }, + { + "start": 6108.08, + "end": 6110.74, + "probability": 0.8859 + }, + { + "start": 6111.3, + "end": 6114.68, + "probability": 0.6931 + }, + { + "start": 6115.18, + "end": 6117.06, + "probability": 0.9855 + }, + { + "start": 6117.24, + "end": 6120.22, + "probability": 0.9865 + }, + { + "start": 6120.72, + "end": 6123.62, + "probability": 0.9579 + }, + { + "start": 6123.7, + "end": 6125.28, + "probability": 0.7628 + }, + { + "start": 6126.04, + "end": 6127.58, + "probability": 0.8161 + }, + { + "start": 6127.94, + "end": 6130.34, + "probability": 0.6834 + }, + { + "start": 6130.42, + "end": 6134.2, + "probability": 0.9875 + }, + { + "start": 6135.42, + "end": 6135.42, + "probability": 0.3171 + }, + { + "start": 6135.42, + "end": 6135.7, + "probability": 0.8204 + }, + { + "start": 6135.76, + "end": 6138.64, + "probability": 0.9224 + }, + { + "start": 6138.68, + "end": 6140.68, + "probability": 0.8265 + }, + { + "start": 6141.46, + "end": 6145.7, + "probability": 0.9872 + }, + { + "start": 6146.36, + "end": 6152.38, + "probability": 0.9829 + }, + { + "start": 6152.82, + "end": 6154.11, + "probability": 0.6757 + }, + { + "start": 6154.56, + "end": 6155.68, + "probability": 0.8896 + }, + { + "start": 6156.06, + "end": 6159.54, + "probability": 0.7529 + }, + { + "start": 6159.78, + "end": 6163.08, + "probability": 0.7271 + }, + { + "start": 6163.08, + "end": 6163.54, + "probability": 0.798 + }, + { + "start": 6177.08, + "end": 6179.72, + "probability": 0.6385 + }, + { + "start": 6180.0, + "end": 6181.52, + "probability": 0.8543 + }, + { + "start": 6183.08, + "end": 6188.1, + "probability": 0.9868 + }, + { + "start": 6188.1, + "end": 6195.72, + "probability": 0.9678 + }, + { + "start": 6195.92, + "end": 6204.62, + "probability": 0.9976 + }, + { + "start": 6204.62, + "end": 6210.06, + "probability": 0.9993 + }, + { + "start": 6210.56, + "end": 6214.3, + "probability": 0.7865 + }, + { + "start": 6214.66, + "end": 6215.14, + "probability": 0.8885 + }, + { + "start": 6215.2, + "end": 6216.38, + "probability": 0.6671 + }, + { + "start": 6218.28, + "end": 6218.28, + "probability": 0.1384 + }, + { + "start": 6218.28, + "end": 6218.84, + "probability": 0.1131 + }, + { + "start": 6218.84, + "end": 6221.62, + "probability": 0.9868 + }, + { + "start": 6221.74, + "end": 6222.14, + "probability": 0.5897 + }, + { + "start": 6222.16, + "end": 6226.12, + "probability": 0.9805 + }, + { + "start": 6226.62, + "end": 6227.04, + "probability": 0.8851 + }, + { + "start": 6227.16, + "end": 6230.22, + "probability": 0.9668 + }, + { + "start": 6230.26, + "end": 6233.0, + "probability": 0.9968 + }, + { + "start": 6233.86, + "end": 6240.94, + "probability": 0.9666 + }, + { + "start": 6241.16, + "end": 6245.36, + "probability": 0.9822 + }, + { + "start": 6245.42, + "end": 6249.12, + "probability": 0.95 + }, + { + "start": 6249.32, + "end": 6250.9, + "probability": 0.9798 + }, + { + "start": 6251.06, + "end": 6252.96, + "probability": 0.9917 + }, + { + "start": 6254.09, + "end": 6257.18, + "probability": 0.9722 + }, + { + "start": 6257.32, + "end": 6264.31, + "probability": 0.9784 + }, + { + "start": 6265.02, + "end": 6267.44, + "probability": 0.9224 + }, + { + "start": 6268.86, + "end": 6274.86, + "probability": 0.9902 + }, + { + "start": 6274.86, + "end": 6278.78, + "probability": 0.9929 + }, + { + "start": 6279.0, + "end": 6281.82, + "probability": 0.9935 + }, + { + "start": 6282.56, + "end": 6289.98, + "probability": 0.936 + }, + { + "start": 6291.18, + "end": 6294.52, + "probability": 0.9956 + }, + { + "start": 6294.62, + "end": 6298.34, + "probability": 0.9974 + }, + { + "start": 6299.46, + "end": 6303.22, + "probability": 0.9893 + }, + { + "start": 6303.6, + "end": 6310.82, + "probability": 0.8875 + }, + { + "start": 6310.82, + "end": 6315.08, + "probability": 0.9974 + }, + { + "start": 6315.24, + "end": 6315.66, + "probability": 0.6867 + }, + { + "start": 6316.7, + "end": 6320.6, + "probability": 0.916 + }, + { + "start": 6320.84, + "end": 6322.46, + "probability": 0.6757 + }, + { + "start": 6323.48, + "end": 6327.02, + "probability": 0.8309 + }, + { + "start": 6328.06, + "end": 6330.83, + "probability": 0.9285 + }, + { + "start": 6331.08, + "end": 6332.5, + "probability": 0.99 + }, + { + "start": 6332.68, + "end": 6333.56, + "probability": 0.6581 + }, + { + "start": 6333.82, + "end": 6335.72, + "probability": 0.9077 + }, + { + "start": 6335.8, + "end": 6340.48, + "probability": 0.8305 + }, + { + "start": 6340.62, + "end": 6342.02, + "probability": 0.6763 + }, + { + "start": 6342.64, + "end": 6344.54, + "probability": 0.1672 + }, + { + "start": 6344.56, + "end": 6348.3, + "probability": 0.9779 + }, + { + "start": 6348.66, + "end": 6350.18, + "probability": 0.6807 + }, + { + "start": 6350.42, + "end": 6351.16, + "probability": 0.5374 + }, + { + "start": 6356.3, + "end": 6356.74, + "probability": 0.7652 + }, + { + "start": 6356.78, + "end": 6359.54, + "probability": 0.9963 + }, + { + "start": 6360.02, + "end": 6360.82, + "probability": 0.4091 + }, + { + "start": 6360.98, + "end": 6361.42, + "probability": 0.5008 + }, + { + "start": 6362.28, + "end": 6363.98, + "probability": 0.7272 + }, + { + "start": 6364.44, + "end": 6365.34, + "probability": 0.377 + }, + { + "start": 6366.34, + "end": 6367.72, + "probability": 0.1641 + }, + { + "start": 6368.48, + "end": 6369.74, + "probability": 0.273 + }, + { + "start": 6370.32, + "end": 6371.6, + "probability": 0.0199 + }, + { + "start": 6376.96, + "end": 6380.54, + "probability": 0.1508 + }, + { + "start": 6381.76, + "end": 6390.74, + "probability": 0.4183 + }, + { + "start": 6391.08, + "end": 6397.56, + "probability": 0.0737 + }, + { + "start": 6400.52, + "end": 6404.2, + "probability": 0.0956 + }, + { + "start": 6406.28, + "end": 6410.76, + "probability": 0.0153 + }, + { + "start": 6410.76, + "end": 6411.22, + "probability": 0.0442 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.0, + "end": 6476.0, + "probability": 0.0 + }, + { + "start": 6476.26, + "end": 6476.26, + "probability": 0.0151 + }, + { + "start": 6476.26, + "end": 6477.82, + "probability": 0.3127 + }, + { + "start": 6478.22, + "end": 6481.86, + "probability": 0.9336 + }, + { + "start": 6482.3, + "end": 6485.0, + "probability": 0.9814 + }, + { + "start": 6485.0, + "end": 6488.3, + "probability": 0.9965 + }, + { + "start": 6488.36, + "end": 6489.1, + "probability": 0.8669 + }, + { + "start": 6489.18, + "end": 6490.0, + "probability": 0.7791 + }, + { + "start": 6490.06, + "end": 6491.02, + "probability": 0.6469 + }, + { + "start": 6491.02, + "end": 6493.58, + "probability": 0.8224 + }, + { + "start": 6493.7, + "end": 6494.18, + "probability": 0.4675 + }, + { + "start": 6494.62, + "end": 6496.76, + "probability": 0.4265 + }, + { + "start": 6497.74, + "end": 6502.5, + "probability": 0.9935 + }, + { + "start": 6502.62, + "end": 6503.68, + "probability": 0.4125 + }, + { + "start": 6503.98, + "end": 6506.84, + "probability": 0.9653 + }, + { + "start": 6508.2, + "end": 6510.8, + "probability": 0.6187 + }, + { + "start": 6510.84, + "end": 6512.74, + "probability": 0.9285 + }, + { + "start": 6512.98, + "end": 6516.02, + "probability": 0.7404 + }, + { + "start": 6516.4, + "end": 6517.7, + "probability": 0.9296 + }, + { + "start": 6518.12, + "end": 6522.58, + "probability": 0.977 + }, + { + "start": 6522.98, + "end": 6523.76, + "probability": 0.899 + }, + { + "start": 6523.88, + "end": 6527.52, + "probability": 0.9386 + }, + { + "start": 6527.52, + "end": 6529.96, + "probability": 0.9907 + }, + { + "start": 6530.06, + "end": 6531.58, + "probability": 0.973 + }, + { + "start": 6532.0, + "end": 6533.98, + "probability": 0.8518 + }, + { + "start": 6535.6, + "end": 6539.2, + "probability": 0.9342 + }, + { + "start": 6539.62, + "end": 6540.62, + "probability": 0.5248 + }, + { + "start": 6540.98, + "end": 6543.46, + "probability": 0.9261 + }, + { + "start": 6543.52, + "end": 6544.2, + "probability": 0.5903 + }, + { + "start": 6544.34, + "end": 6544.88, + "probability": 0.9626 + }, + { + "start": 6545.28, + "end": 6545.98, + "probability": 0.4785 + }, + { + "start": 6546.72, + "end": 6551.16, + "probability": 0.9962 + }, + { + "start": 6552.5, + "end": 6556.5, + "probability": 0.9827 + }, + { + "start": 6557.12, + "end": 6560.82, + "probability": 0.9888 + }, + { + "start": 6561.86, + "end": 6569.25, + "probability": 0.9685 + }, + { + "start": 6570.56, + "end": 6573.62, + "probability": 0.9755 + }, + { + "start": 6574.16, + "end": 6578.16, + "probability": 0.9124 + }, + { + "start": 6578.16, + "end": 6581.7, + "probability": 0.9971 + }, + { + "start": 6581.82, + "end": 6582.14, + "probability": 0.5975 + }, + { + "start": 6582.28, + "end": 6582.98, + "probability": 0.8543 + }, + { + "start": 6583.6, + "end": 6584.26, + "probability": 0.9373 + }, + { + "start": 6584.38, + "end": 6587.44, + "probability": 0.968 + }, + { + "start": 6587.52, + "end": 6589.82, + "probability": 0.9302 + }, + { + "start": 6589.9, + "end": 6590.56, + "probability": 0.7325 + }, + { + "start": 6590.64, + "end": 6591.4, + "probability": 0.9602 + }, + { + "start": 6591.74, + "end": 6593.1, + "probability": 0.8028 + }, + { + "start": 6593.66, + "end": 6599.74, + "probability": 0.959 + }, + { + "start": 6600.04, + "end": 6600.8, + "probability": 0.684 + }, + { + "start": 6600.94, + "end": 6601.4, + "probability": 0.3147 + }, + { + "start": 6601.76, + "end": 6601.96, + "probability": 0.3806 + }, + { + "start": 6602.24, + "end": 6602.76, + "probability": 0.5834 + }, + { + "start": 6602.88, + "end": 6603.68, + "probability": 0.8722 + }, + { + "start": 6604.56, + "end": 6605.52, + "probability": 0.7601 + }, + { + "start": 6606.18, + "end": 6607.06, + "probability": 0.7822 + }, + { + "start": 6607.12, + "end": 6609.7, + "probability": 0.8361 + }, + { + "start": 6611.04, + "end": 6611.26, + "probability": 0.536 + }, + { + "start": 6611.8, + "end": 6612.1, + "probability": 0.819 + }, + { + "start": 6613.36, + "end": 6614.82, + "probability": 0.3914 + }, + { + "start": 6614.84, + "end": 6619.26, + "probability": 0.939 + }, + { + "start": 6619.54, + "end": 6623.06, + "probability": 0.9954 + }, + { + "start": 6623.17, + "end": 6626.48, + "probability": 0.9724 + }, + { + "start": 6626.64, + "end": 6628.98, + "probability": 0.9932 + }, + { + "start": 6629.22, + "end": 6632.74, + "probability": 0.9993 + }, + { + "start": 6633.16, + "end": 6636.2, + "probability": 0.8967 + }, + { + "start": 6636.2, + "end": 6640.68, + "probability": 0.9902 + }, + { + "start": 6641.18, + "end": 6643.26, + "probability": 0.9796 + }, + { + "start": 6643.38, + "end": 6644.0, + "probability": 0.9447 + }, + { + "start": 6644.76, + "end": 6648.0, + "probability": 0.9956 + }, + { + "start": 6648.0, + "end": 6653.56, + "probability": 0.9582 + }, + { + "start": 6654.32, + "end": 6655.42, + "probability": 0.9114 + }, + { + "start": 6655.74, + "end": 6661.22, + "probability": 0.994 + }, + { + "start": 6661.22, + "end": 6667.22, + "probability": 0.9989 + }, + { + "start": 6667.92, + "end": 6670.58, + "probability": 0.897 + }, + { + "start": 6671.44, + "end": 6675.36, + "probability": 0.9609 + }, + { + "start": 6675.58, + "end": 6677.32, + "probability": 0.9561 + }, + { + "start": 6677.96, + "end": 6680.56, + "probability": 0.977 + }, + { + "start": 6680.56, + "end": 6686.54, + "probability": 0.9124 + }, + { + "start": 6687.26, + "end": 6691.66, + "probability": 0.9945 + }, + { + "start": 6692.12, + "end": 6696.18, + "probability": 0.9958 + }, + { + "start": 6696.68, + "end": 6698.36, + "probability": 0.9901 + }, + { + "start": 6698.82, + "end": 6700.52, + "probability": 0.9132 + }, + { + "start": 6700.96, + "end": 6704.66, + "probability": 0.9917 + }, + { + "start": 6704.78, + "end": 6707.96, + "probability": 0.9977 + }, + { + "start": 6708.46, + "end": 6709.86, + "probability": 0.8721 + }, + { + "start": 6710.26, + "end": 6713.02, + "probability": 0.9976 + }, + { + "start": 6713.4, + "end": 6714.82, + "probability": 0.9451 + }, + { + "start": 6715.3, + "end": 6717.38, + "probability": 0.9702 + }, + { + "start": 6717.7, + "end": 6720.3, + "probability": 0.9395 + }, + { + "start": 6720.62, + "end": 6720.98, + "probability": 0.6143 + }, + { + "start": 6722.34, + "end": 6725.94, + "probability": 0.9471 + }, + { + "start": 6726.92, + "end": 6730.12, + "probability": 0.7066 + }, + { + "start": 6730.2, + "end": 6731.38, + "probability": 0.7508 + }, + { + "start": 6731.4, + "end": 6731.84, + "probability": 0.9354 + }, + { + "start": 6747.4, + "end": 6748.94, + "probability": 0.4423 + }, + { + "start": 6750.1, + "end": 6752.98, + "probability": 0.759 + }, + { + "start": 6755.08, + "end": 6760.42, + "probability": 0.9972 + }, + { + "start": 6760.42, + "end": 6765.4, + "probability": 0.9771 + }, + { + "start": 6767.3, + "end": 6768.24, + "probability": 0.8576 + }, + { + "start": 6768.9, + "end": 6772.32, + "probability": 0.9321 + }, + { + "start": 6773.42, + "end": 6776.9, + "probability": 0.9802 + }, + { + "start": 6777.78, + "end": 6781.38, + "probability": 0.9837 + }, + { + "start": 6783.5, + "end": 6789.52, + "probability": 0.9941 + }, + { + "start": 6789.7, + "end": 6791.93, + "probability": 0.9985 + }, + { + "start": 6792.94, + "end": 6796.06, + "probability": 0.9865 + }, + { + "start": 6796.06, + "end": 6799.3, + "probability": 0.9966 + }, + { + "start": 6799.5, + "end": 6800.34, + "probability": 0.808 + }, + { + "start": 6801.46, + "end": 6807.28, + "probability": 0.9708 + }, + { + "start": 6808.46, + "end": 6811.14, + "probability": 0.377 + }, + { + "start": 6811.22, + "end": 6811.62, + "probability": 0.1649 + }, + { + "start": 6812.16, + "end": 6816.74, + "probability": 0.8822 + }, + { + "start": 6817.24, + "end": 6818.12, + "probability": 0.675 + }, + { + "start": 6818.56, + "end": 6819.66, + "probability": 0.5348 + }, + { + "start": 6820.08, + "end": 6821.98, + "probability": 0.5838 + }, + { + "start": 6823.52, + "end": 6826.1, + "probability": 0.8614 + }, + { + "start": 6826.36, + "end": 6828.12, + "probability": 0.8157 + }, + { + "start": 6828.42, + "end": 6831.04, + "probability": 0.9744 + }, + { + "start": 6831.24, + "end": 6831.88, + "probability": 0.9513 + }, + { + "start": 6831.94, + "end": 6837.32, + "probability": 0.9828 + }, + { + "start": 6837.32, + "end": 6841.66, + "probability": 0.9981 + }, + { + "start": 6841.72, + "end": 6848.0, + "probability": 0.9576 + }, + { + "start": 6849.64, + "end": 6850.76, + "probability": 0.9976 + }, + { + "start": 6851.4, + "end": 6856.62, + "probability": 0.9904 + }, + { + "start": 6857.38, + "end": 6857.92, + "probability": 0.4568 + }, + { + "start": 6858.02, + "end": 6858.52, + "probability": 0.8732 + }, + { + "start": 6858.6, + "end": 6860.7, + "probability": 0.8309 + }, + { + "start": 6861.1, + "end": 6867.04, + "probability": 0.9806 + }, + { + "start": 6870.0, + "end": 6872.88, + "probability": 0.9977 + }, + { + "start": 6873.24, + "end": 6874.82, + "probability": 0.9873 + }, + { + "start": 6876.3, + "end": 6876.92, + "probability": 0.5728 + }, + { + "start": 6878.22, + "end": 6879.92, + "probability": 0.8807 + }, + { + "start": 6880.66, + "end": 6881.18, + "probability": 0.1931 + }, + { + "start": 6881.18, + "end": 6881.6, + "probability": 0.2427 + }, + { + "start": 6881.66, + "end": 6882.35, + "probability": 0.948 + }, + { + "start": 6883.73, + "end": 6887.0, + "probability": 0.9651 + }, + { + "start": 6887.56, + "end": 6890.14, + "probability": 0.7429 + }, + { + "start": 6890.18, + "end": 6891.6, + "probability": 0.9738 + }, + { + "start": 6892.6, + "end": 6896.28, + "probability": 0.8218 + }, + { + "start": 6897.02, + "end": 6901.6, + "probability": 0.9791 + }, + { + "start": 6902.66, + "end": 6903.26, + "probability": 0.8289 + }, + { + "start": 6903.38, + "end": 6909.1, + "probability": 0.9692 + }, + { + "start": 6909.82, + "end": 6910.96, + "probability": 0.9492 + }, + { + "start": 6911.6, + "end": 6912.58, + "probability": 0.8006 + }, + { + "start": 6913.38, + "end": 6915.88, + "probability": 0.963 + }, + { + "start": 6915.88, + "end": 6918.26, + "probability": 0.9775 + }, + { + "start": 6919.52, + "end": 6923.24, + "probability": 0.9559 + }, + { + "start": 6930.28, + "end": 6931.64, + "probability": 0.7241 + }, + { + "start": 6932.24, + "end": 6934.78, + "probability": 0.9893 + }, + { + "start": 6936.24, + "end": 6942.88, + "probability": 0.7486 + }, + { + "start": 6944.38, + "end": 6948.42, + "probability": 0.8047 + }, + { + "start": 6953.32, + "end": 6955.22, + "probability": 0.8813 + }, + { + "start": 6955.42, + "end": 6957.72, + "probability": 0.9948 + }, + { + "start": 6958.44, + "end": 6962.82, + "probability": 0.9925 + }, + { + "start": 6963.1, + "end": 6963.72, + "probability": 0.9559 + }, + { + "start": 6964.58, + "end": 6970.16, + "probability": 0.9509 + }, + { + "start": 6970.16, + "end": 6974.54, + "probability": 0.9924 + }, + { + "start": 6976.3, + "end": 6978.48, + "probability": 0.988 + }, + { + "start": 6978.48, + "end": 6982.7, + "probability": 0.9976 + }, + { + "start": 6982.84, + "end": 6985.14, + "probability": 0.9951 + }, + { + "start": 6985.82, + "end": 6989.24, + "probability": 0.98 + }, + { + "start": 6989.86, + "end": 6994.38, + "probability": 0.999 + }, + { + "start": 6995.0, + "end": 6996.72, + "probability": 0.9915 + }, + { + "start": 6998.0, + "end": 6999.42, + "probability": 0.7346 + }, + { + "start": 7000.38, + "end": 7001.98, + "probability": 0.8294 + }, + { + "start": 7002.14, + "end": 7004.62, + "probability": 0.8326 + }, + { + "start": 7004.98, + "end": 7006.98, + "probability": 0.8506 + }, + { + "start": 7007.66, + "end": 7010.48, + "probability": 0.9555 + }, + { + "start": 7011.28, + "end": 7013.24, + "probability": 0.9982 + }, + { + "start": 7013.8, + "end": 7015.96, + "probability": 0.9875 + }, + { + "start": 7016.62, + "end": 7018.94, + "probability": 0.9854 + }, + { + "start": 7020.46, + "end": 7023.62, + "probability": 0.1529 + }, + { + "start": 7024.04, + "end": 7026.99, + "probability": 0.6075 + }, + { + "start": 7027.54, + "end": 7030.52, + "probability": 0.731 + }, + { + "start": 7030.98, + "end": 7031.78, + "probability": 0.7262 + }, + { + "start": 7031.86, + "end": 7032.98, + "probability": 0.9571 + }, + { + "start": 7033.1, + "end": 7036.76, + "probability": 0.9729 + }, + { + "start": 7037.58, + "end": 7038.88, + "probability": 0.9077 + }, + { + "start": 7039.06, + "end": 7045.54, + "probability": 0.9931 + }, + { + "start": 7046.46, + "end": 7048.4, + "probability": 0.9695 + }, + { + "start": 7050.0, + "end": 7053.7, + "probability": 0.9041 + }, + { + "start": 7053.78, + "end": 7057.72, + "probability": 0.9866 + }, + { + "start": 7057.72, + "end": 7060.22, + "probability": 0.8492 + }, + { + "start": 7061.2, + "end": 7065.18, + "probability": 0.9964 + }, + { + "start": 7065.18, + "end": 7071.04, + "probability": 0.9983 + }, + { + "start": 7071.94, + "end": 7072.28, + "probability": 0.6358 + }, + { + "start": 7072.44, + "end": 7076.08, + "probability": 0.9613 + }, + { + "start": 7076.08, + "end": 7078.96, + "probability": 0.9981 + }, + { + "start": 7079.46, + "end": 7081.24, + "probability": 0.7912 + }, + { + "start": 7081.8, + "end": 7083.84, + "probability": 0.9846 + }, + { + "start": 7084.68, + "end": 7086.8, + "probability": 0.9094 + }, + { + "start": 7087.36, + "end": 7089.9, + "probability": 0.9807 + }, + { + "start": 7094.19, + "end": 7097.0, + "probability": 0.988 + }, + { + "start": 7097.34, + "end": 7098.26, + "probability": 0.7157 + }, + { + "start": 7098.52, + "end": 7107.38, + "probability": 0.9948 + }, + { + "start": 7109.04, + "end": 7111.82, + "probability": 0.9967 + }, + { + "start": 7113.08, + "end": 7114.64, + "probability": 0.7298 + }, + { + "start": 7114.78, + "end": 7115.94, + "probability": 0.9053 + }, + { + "start": 7116.26, + "end": 7119.44, + "probability": 0.9189 + }, + { + "start": 7119.68, + "end": 7120.82, + "probability": 0.1471 + }, + { + "start": 7121.02, + "end": 7122.2, + "probability": 0.0276 + }, + { + "start": 7122.2, + "end": 7125.04, + "probability": 0.9064 + }, + { + "start": 7125.24, + "end": 7132.82, + "probability": 0.9182 + }, + { + "start": 7133.0, + "end": 7134.18, + "probability": 0.929 + }, + { + "start": 7134.38, + "end": 7136.52, + "probability": 0.5481 + }, + { + "start": 7137.24, + "end": 7141.36, + "probability": 0.9277 + }, + { + "start": 7142.01, + "end": 7148.74, + "probability": 0.9045 + }, + { + "start": 7149.86, + "end": 7153.22, + "probability": 0.999 + }, + { + "start": 7153.92, + "end": 7155.38, + "probability": 0.9963 + }, + { + "start": 7156.68, + "end": 7159.18, + "probability": 0.9967 + }, + { + "start": 7159.62, + "end": 7164.02, + "probability": 0.7869 + }, + { + "start": 7164.58, + "end": 7165.26, + "probability": 0.796 + }, + { + "start": 7165.9, + "end": 7167.9, + "probability": 0.6514 + }, + { + "start": 7168.86, + "end": 7170.54, + "probability": 0.9779 + }, + { + "start": 7171.48, + "end": 7173.12, + "probability": 0.934 + }, + { + "start": 7173.82, + "end": 7177.7, + "probability": 0.9635 + }, + { + "start": 7178.46, + "end": 7181.52, + "probability": 0.9832 + }, + { + "start": 7183.06, + "end": 7186.12, + "probability": 0.9959 + }, + { + "start": 7186.76, + "end": 7188.46, + "probability": 0.7785 + }, + { + "start": 7189.04, + "end": 7189.88, + "probability": 0.6182 + }, + { + "start": 7190.72, + "end": 7192.74, + "probability": 0.9803 + }, + { + "start": 7193.2, + "end": 7194.1, + "probability": 0.9113 + }, + { + "start": 7194.42, + "end": 7194.92, + "probability": 0.9367 + }, + { + "start": 7195.64, + "end": 7197.74, + "probability": 0.9536 + }, + { + "start": 7198.96, + "end": 7198.96, + "probability": 0.274 + }, + { + "start": 7199.1, + "end": 7201.5, + "probability": 0.9934 + }, + { + "start": 7201.64, + "end": 7204.04, + "probability": 0.8289 + }, + { + "start": 7205.46, + "end": 7207.98, + "probability": 0.4443 + }, + { + "start": 7208.12, + "end": 7210.04, + "probability": 0.6671 + }, + { + "start": 7210.1, + "end": 7210.48, + "probability": 0.5098 + }, + { + "start": 7210.54, + "end": 7211.51, + "probability": 0.629 + }, + { + "start": 7212.0, + "end": 7212.94, + "probability": 0.7788 + }, + { + "start": 7214.58, + "end": 7216.76, + "probability": 0.9979 + }, + { + "start": 7217.36, + "end": 7218.98, + "probability": 0.8941 + }, + { + "start": 7219.5, + "end": 7223.14, + "probability": 0.9344 + }, + { + "start": 7223.72, + "end": 7230.24, + "probability": 0.7917 + }, + { + "start": 7230.38, + "end": 7230.78, + "probability": 0.6081 + }, + { + "start": 7230.84, + "end": 7232.26, + "probability": 0.9977 + }, + { + "start": 7232.84, + "end": 7234.78, + "probability": 0.8385 + }, + { + "start": 7234.92, + "end": 7236.04, + "probability": 0.2256 + }, + { + "start": 7237.08, + "end": 7238.36, + "probability": 0.1844 + }, + { + "start": 7238.6, + "end": 7241.86, + "probability": 0.4008 + }, + { + "start": 7241.88, + "end": 7241.9, + "probability": 0.0072 + }, + { + "start": 7241.9, + "end": 7242.72, + "probability": 0.309 + }, + { + "start": 7244.42, + "end": 7245.76, + "probability": 0.5165 + }, + { + "start": 7245.9, + "end": 7247.5, + "probability": 0.9026 + }, + { + "start": 7248.64, + "end": 7251.3, + "probability": 0.9735 + }, + { + "start": 7252.8, + "end": 7256.04, + "probability": 0.8248 + }, + { + "start": 7256.96, + "end": 7262.82, + "probability": 0.9869 + }, + { + "start": 7264.36, + "end": 7268.42, + "probability": 0.9934 + }, + { + "start": 7269.28, + "end": 7271.47, + "probability": 0.999 + }, + { + "start": 7273.52, + "end": 7274.81, + "probability": 0.7417 + }, + { + "start": 7274.98, + "end": 7276.82, + "probability": 0.6434 + }, + { + "start": 7276.92, + "end": 7281.16, + "probability": 0.97 + }, + { + "start": 7281.16, + "end": 7285.92, + "probability": 0.9966 + }, + { + "start": 7285.92, + "end": 7287.48, + "probability": 0.9169 + }, + { + "start": 7288.92, + "end": 7292.44, + "probability": 0.9977 + }, + { + "start": 7293.18, + "end": 7294.13, + "probability": 0.7299 + }, + { + "start": 7294.98, + "end": 7295.48, + "probability": 0.9858 + }, + { + "start": 7296.04, + "end": 7300.08, + "probability": 0.9976 + }, + { + "start": 7300.74, + "end": 7304.96, + "probability": 0.9173 + }, + { + "start": 7306.34, + "end": 7311.74, + "probability": 0.938 + }, + { + "start": 7312.54, + "end": 7312.84, + "probability": 0.6357 + }, + { + "start": 7313.82, + "end": 7315.36, + "probability": 0.7878 + }, + { + "start": 7316.32, + "end": 7320.04, + "probability": 0.9983 + }, + { + "start": 7321.08, + "end": 7322.74, + "probability": 0.9966 + }, + { + "start": 7324.86, + "end": 7328.92, + "probability": 0.9913 + }, + { + "start": 7329.88, + "end": 7334.48, + "probability": 0.9979 + }, + { + "start": 7335.42, + "end": 7337.88, + "probability": 0.999 + }, + { + "start": 7339.36, + "end": 7339.94, + "probability": 0.2808 + }, + { + "start": 7340.06, + "end": 7345.44, + "probability": 0.9512 + }, + { + "start": 7347.68, + "end": 7350.3, + "probability": 0.9921 + }, + { + "start": 7350.68, + "end": 7351.22, + "probability": 0.7531 + }, + { + "start": 7351.42, + "end": 7353.18, + "probability": 0.9478 + }, + { + "start": 7355.42, + "end": 7357.76, + "probability": 0.8619 + }, + { + "start": 7357.84, + "end": 7357.84, + "probability": 0.0073 + }, + { + "start": 7357.84, + "end": 7357.84, + "probability": 0.1113 + }, + { + "start": 7357.84, + "end": 7360.18, + "probability": 0.9622 + }, + { + "start": 7360.34, + "end": 7367.06, + "probability": 0.9847 + }, + { + "start": 7367.72, + "end": 7370.14, + "probability": 0.7488 + }, + { + "start": 7370.42, + "end": 7371.5, + "probability": 0.6625 + }, + { + "start": 7371.98, + "end": 7373.22, + "probability": 0.6727 + }, + { + "start": 7373.3, + "end": 7374.19, + "probability": 0.8374 + }, + { + "start": 7374.9, + "end": 7378.7, + "probability": 0.9611 + }, + { + "start": 7378.9, + "end": 7379.48, + "probability": 0.5823 + }, + { + "start": 7379.66, + "end": 7386.34, + "probability": 0.7867 + }, + { + "start": 7395.86, + "end": 7397.28, + "probability": 0.1066 + }, + { + "start": 7397.28, + "end": 7397.28, + "probability": 0.0374 + }, + { + "start": 7397.28, + "end": 7397.28, + "probability": 0.0198 + }, + { + "start": 7397.28, + "end": 7397.98, + "probability": 0.0815 + }, + { + "start": 7398.24, + "end": 7399.78, + "probability": 0.4983 + }, + { + "start": 7399.9, + "end": 7401.48, + "probability": 0.688 + }, + { + "start": 7402.52, + "end": 7405.2, + "probability": 0.5715 + }, + { + "start": 7405.3, + "end": 7406.44, + "probability": 0.9897 + }, + { + "start": 7407.0, + "end": 7407.93, + "probability": 0.936 + }, + { + "start": 7408.98, + "end": 7411.54, + "probability": 0.8622 + }, + { + "start": 7411.92, + "end": 7415.98, + "probability": 0.9189 + }, + { + "start": 7417.16, + "end": 7418.42, + "probability": 0.729 + }, + { + "start": 7419.8, + "end": 7424.9, + "probability": 0.6997 + }, + { + "start": 7426.32, + "end": 7432.1, + "probability": 0.9397 + }, + { + "start": 7432.74, + "end": 7435.98, + "probability": 0.9141 + }, + { + "start": 7436.7, + "end": 7439.26, + "probability": 0.9302 + }, + { + "start": 7439.88, + "end": 7443.22, + "probability": 0.9903 + }, + { + "start": 7444.18, + "end": 7449.94, + "probability": 0.9496 + }, + { + "start": 7450.1, + "end": 7454.92, + "probability": 0.9974 + }, + { + "start": 7455.96, + "end": 7457.26, + "probability": 0.5926 + }, + { + "start": 7458.24, + "end": 7461.06, + "probability": 0.9623 + }, + { + "start": 7461.7, + "end": 7471.23, + "probability": 0.9731 + }, + { + "start": 7472.16, + "end": 7476.12, + "probability": 0.9875 + }, + { + "start": 7476.9, + "end": 7484.72, + "probability": 0.8881 + }, + { + "start": 7485.68, + "end": 7489.52, + "probability": 0.9912 + }, + { + "start": 7490.36, + "end": 7494.84, + "probability": 0.9089 + }, + { + "start": 7495.96, + "end": 7498.34, + "probability": 0.9919 + }, + { + "start": 7498.88, + "end": 7502.2, + "probability": 0.9429 + }, + { + "start": 7503.12, + "end": 7508.52, + "probability": 0.9875 + }, + { + "start": 7509.92, + "end": 7512.42, + "probability": 0.9542 + }, + { + "start": 7513.14, + "end": 7515.2, + "probability": 0.7701 + }, + { + "start": 7515.32, + "end": 7518.93, + "probability": 0.8579 + }, + { + "start": 7520.34, + "end": 7522.16, + "probability": 0.9517 + }, + { + "start": 7522.9, + "end": 7527.28, + "probability": 0.9559 + }, + { + "start": 7528.54, + "end": 7537.06, + "probability": 0.7849 + }, + { + "start": 7537.66, + "end": 7540.66, + "probability": 0.5664 + }, + { + "start": 7540.88, + "end": 7548.94, + "probability": 0.9705 + }, + { + "start": 7549.8, + "end": 7550.56, + "probability": 0.8169 + }, + { + "start": 7550.94, + "end": 7553.66, + "probability": 0.8363 + }, + { + "start": 7553.96, + "end": 7556.66, + "probability": 0.9987 + }, + { + "start": 7556.76, + "end": 7557.32, + "probability": 0.7778 + }, + { + "start": 7558.32, + "end": 7561.08, + "probability": 0.8616 + }, + { + "start": 7561.34, + "end": 7561.56, + "probability": 0.3938 + }, + { + "start": 7561.58, + "end": 7562.81, + "probability": 0.7795 + }, + { + "start": 7563.34, + "end": 7568.94, + "probability": 0.7716 + }, + { + "start": 7569.22, + "end": 7571.42, + "probability": 0.4817 + }, + { + "start": 7571.42, + "end": 7572.58, + "probability": 0.2437 + }, + { + "start": 7572.6, + "end": 7574.52, + "probability": 0.9614 + }, + { + "start": 7574.86, + "end": 7577.34, + "probability": 0.868 + }, + { + "start": 7578.84, + "end": 7579.7, + "probability": 0.596 + }, + { + "start": 7580.62, + "end": 7588.7, + "probability": 0.0961 + }, + { + "start": 7593.08, + "end": 7595.98, + "probability": 0.0254 + }, + { + "start": 7596.48, + "end": 7596.48, + "probability": 0.2447 + }, + { + "start": 7596.48, + "end": 7596.48, + "probability": 0.0522 + }, + { + "start": 7596.48, + "end": 7596.64, + "probability": 0.347 + }, + { + "start": 7596.72, + "end": 7597.6, + "probability": 0.4367 + }, + { + "start": 7597.7, + "end": 7599.78, + "probability": 0.1837 + }, + { + "start": 7600.26, + "end": 7601.36, + "probability": 0.6556 + }, + { + "start": 7601.48, + "end": 7603.62, + "probability": 0.8839 + }, + { + "start": 7604.24, + "end": 7605.4, + "probability": 0.8156 + }, + { + "start": 7605.78, + "end": 7607.08, + "probability": 0.621 + }, + { + "start": 7607.24, + "end": 7609.0, + "probability": 0.6976 + }, + { + "start": 7609.52, + "end": 7610.82, + "probability": 0.7335 + }, + { + "start": 7611.24, + "end": 7612.4, + "probability": 0.4309 + }, + { + "start": 7612.52, + "end": 7615.36, + "probability": 0.9521 + }, + { + "start": 7615.42, + "end": 7616.08, + "probability": 0.7667 + }, + { + "start": 7617.37, + "end": 7619.82, + "probability": 0.8201 + }, + { + "start": 7619.84, + "end": 7623.6, + "probability": 0.7525 + }, + { + "start": 7623.96, + "end": 7629.86, + "probability": 0.6052 + }, + { + "start": 7641.54, + "end": 7642.74, + "probability": 0.9295 + }, + { + "start": 7643.84, + "end": 7647.34, + "probability": 0.8452 + }, + { + "start": 7648.46, + "end": 7652.06, + "probability": 0.9725 + }, + { + "start": 7652.42, + "end": 7652.74, + "probability": 0.8469 + }, + { + "start": 7652.74, + "end": 7660.0, + "probability": 0.9902 + }, + { + "start": 7660.98, + "end": 7661.92, + "probability": 0.8657 + }, + { + "start": 7662.22, + "end": 7662.24, + "probability": 0.0228 + }, + { + "start": 7662.24, + "end": 7663.1, + "probability": 0.5963 + }, + { + "start": 7664.0, + "end": 7664.52, + "probability": 0.9225 + }, + { + "start": 7665.2, + "end": 7666.4, + "probability": 0.9332 + }, + { + "start": 7666.86, + "end": 7669.28, + "probability": 0.4713 + }, + { + "start": 7670.76, + "end": 7674.52, + "probability": 0.9887 + }, + { + "start": 7675.46, + "end": 7677.36, + "probability": 0.512 + }, + { + "start": 7678.22, + "end": 7679.14, + "probability": 0.9893 + }, + { + "start": 7679.78, + "end": 7683.0, + "probability": 0.9971 + }, + { + "start": 7683.92, + "end": 7686.62, + "probability": 0.9928 + }, + { + "start": 7687.84, + "end": 7691.56, + "probability": 0.968 + }, + { + "start": 7692.68, + "end": 7694.52, + "probability": 0.4033 + }, + { + "start": 7698.38, + "end": 7698.72, + "probability": 0.2334 + }, + { + "start": 7700.4, + "end": 7700.76, + "probability": 0.4161 + }, + { + "start": 7708.66, + "end": 7709.06, + "probability": 0.6847 + }, + { + "start": 7710.8, + "end": 7711.48, + "probability": 0.7511 + }, + { + "start": 7711.56, + "end": 7715.54, + "probability": 0.6679 + }, + { + "start": 7715.62, + "end": 7715.96, + "probability": 0.7287 + }, + { + "start": 7717.2, + "end": 7724.42, + "probability": 0.9976 + }, + { + "start": 7727.06, + "end": 7729.8, + "probability": 0.5981 + }, + { + "start": 7730.42, + "end": 7733.46, + "probability": 0.9966 + }, + { + "start": 7734.36, + "end": 7739.34, + "probability": 0.9797 + }, + { + "start": 7740.06, + "end": 7742.86, + "probability": 0.9985 + }, + { + "start": 7743.92, + "end": 7747.56, + "probability": 0.8888 + }, + { + "start": 7747.88, + "end": 7749.27, + "probability": 0.9722 + }, + { + "start": 7749.42, + "end": 7755.36, + "probability": 0.9841 + }, + { + "start": 7755.54, + "end": 7758.56, + "probability": 0.9902 + }, + { + "start": 7759.4, + "end": 7760.16, + "probability": 0.9064 + }, + { + "start": 7760.22, + "end": 7765.7, + "probability": 0.9999 + }, + { + "start": 7766.66, + "end": 7767.44, + "probability": 0.7474 + }, + { + "start": 7767.52, + "end": 7771.86, + "probability": 0.9931 + }, + { + "start": 7772.9, + "end": 7778.62, + "probability": 0.9899 + }, + { + "start": 7779.8, + "end": 7781.86, + "probability": 0.999 + }, + { + "start": 7782.56, + "end": 7786.54, + "probability": 0.9979 + }, + { + "start": 7786.54, + "end": 7790.78, + "probability": 0.9963 + }, + { + "start": 7792.04, + "end": 7796.16, + "probability": 0.9958 + }, + { + "start": 7796.9, + "end": 7800.5, + "probability": 0.835 + }, + { + "start": 7801.24, + "end": 7804.46, + "probability": 0.9918 + }, + { + "start": 7804.46, + "end": 7808.5, + "probability": 0.9941 + }, + { + "start": 7809.2, + "end": 7813.22, + "probability": 0.9707 + }, + { + "start": 7813.28, + "end": 7816.22, + "probability": 0.9919 + }, + { + "start": 7816.98, + "end": 7822.9, + "probability": 0.9531 + }, + { + "start": 7823.48, + "end": 7825.84, + "probability": 0.8901 + }, + { + "start": 7826.5, + "end": 7828.2, + "probability": 0.7786 + }, + { + "start": 7828.32, + "end": 7830.82, + "probability": 0.6002 + }, + { + "start": 7830.98, + "end": 7831.94, + "probability": 0.9714 + }, + { + "start": 7832.36, + "end": 7835.5, + "probability": 0.937 + }, + { + "start": 7836.02, + "end": 7837.0, + "probability": 0.7531 + }, + { + "start": 7837.12, + "end": 7837.88, + "probability": 0.9938 + }, + { + "start": 7838.26, + "end": 7839.32, + "probability": 0.9746 + }, + { + "start": 7839.78, + "end": 7841.08, + "probability": 0.9906 + }, + { + "start": 7841.14, + "end": 7842.08, + "probability": 0.8768 + }, + { + "start": 7842.66, + "end": 7845.86, + "probability": 0.9888 + }, + { + "start": 7846.04, + "end": 7847.17, + "probability": 0.947 + }, + { + "start": 7848.44, + "end": 7851.7, + "probability": 0.9424 + }, + { + "start": 7852.44, + "end": 7857.94, + "probability": 0.9981 + }, + { + "start": 7859.84, + "end": 7863.08, + "probability": 0.9978 + }, + { + "start": 7864.12, + "end": 7866.66, + "probability": 0.9873 + }, + { + "start": 7867.48, + "end": 7873.48, + "probability": 0.9877 + }, + { + "start": 7873.68, + "end": 7875.12, + "probability": 0.9988 + }, + { + "start": 7875.94, + "end": 7877.48, + "probability": 0.9966 + }, + { + "start": 7877.54, + "end": 7882.18, + "probability": 0.9817 + }, + { + "start": 7882.36, + "end": 7884.08, + "probability": 0.5433 + }, + { + "start": 7885.82, + "end": 7886.1, + "probability": 0.3158 + }, + { + "start": 7886.72, + "end": 7888.08, + "probability": 0.451 + }, + { + "start": 7888.5, + "end": 7889.04, + "probability": 0.7181 + }, + { + "start": 7889.04, + "end": 7890.2, + "probability": 0.9989 + }, + { + "start": 7891.12, + "end": 7892.72, + "probability": 0.9832 + }, + { + "start": 7894.26, + "end": 7899.3, + "probability": 0.9855 + }, + { + "start": 7899.42, + "end": 7900.56, + "probability": 0.7883 + }, + { + "start": 7901.42, + "end": 7902.14, + "probability": 0.3088 + }, + { + "start": 7902.96, + "end": 7903.86, + "probability": 0.5255 + }, + { + "start": 7905.1, + "end": 7907.78, + "probability": 0.9932 + }, + { + "start": 7907.9, + "end": 7909.24, + "probability": 0.9622 + }, + { + "start": 7909.82, + "end": 7913.4, + "probability": 0.9862 + }, + { + "start": 7913.98, + "end": 7915.08, + "probability": 0.8572 + }, + { + "start": 7915.6, + "end": 7916.94, + "probability": 0.7509 + }, + { + "start": 7917.88, + "end": 7921.0, + "probability": 0.9962 + }, + { + "start": 7921.54, + "end": 7924.16, + "probability": 0.9518 + }, + { + "start": 7925.12, + "end": 7931.6, + "probability": 0.9809 + }, + { + "start": 7931.68, + "end": 7932.78, + "probability": 0.9198 + }, + { + "start": 7932.9, + "end": 7933.56, + "probability": 0.5653 + }, + { + "start": 7934.2, + "end": 7935.54, + "probability": 0.9897 + }, + { + "start": 7935.74, + "end": 7937.48, + "probability": 0.5498 + }, + { + "start": 7937.54, + "end": 7937.78, + "probability": 0.0649 + }, + { + "start": 7937.78, + "end": 7939.2, + "probability": 0.7421 + }, + { + "start": 7939.54, + "end": 7943.14, + "probability": 0.9664 + }, + { + "start": 7943.16, + "end": 7944.66, + "probability": 0.3943 + }, + { + "start": 7944.7, + "end": 7947.1, + "probability": 0.9012 + }, + { + "start": 7948.26, + "end": 7950.46, + "probability": 0.8829 + }, + { + "start": 7950.64, + "end": 7953.54, + "probability": 0.9211 + }, + { + "start": 7954.26, + "end": 7956.46, + "probability": 0.9893 + }, + { + "start": 7957.02, + "end": 7959.48, + "probability": 0.988 + }, + { + "start": 7960.48, + "end": 7960.5, + "probability": 0.3229 + }, + { + "start": 7960.5, + "end": 7962.74, + "probability": 0.8016 + }, + { + "start": 7963.4, + "end": 7965.32, + "probability": 0.9566 + }, + { + "start": 7965.48, + "end": 7967.8, + "probability": 0.9978 + }, + { + "start": 7968.56, + "end": 7972.46, + "probability": 0.993 + }, + { + "start": 7973.26, + "end": 7974.78, + "probability": 0.9883 + }, + { + "start": 7975.46, + "end": 7979.54, + "probability": 0.9981 + }, + { + "start": 7979.54, + "end": 7983.86, + "probability": 0.9817 + }, + { + "start": 7984.04, + "end": 7988.26, + "probability": 0.9946 + }, + { + "start": 7989.1, + "end": 7991.96, + "probability": 0.9985 + }, + { + "start": 7992.86, + "end": 7993.42, + "probability": 0.3204 + }, + { + "start": 7993.74, + "end": 7997.26, + "probability": 0.9172 + }, + { + "start": 7997.92, + "end": 7999.7, + "probability": 0.7854 + }, + { + "start": 8002.56, + "end": 8006.78, + "probability": 0.9382 + }, + { + "start": 8007.54, + "end": 8009.53, + "probability": 0.9937 + }, + { + "start": 8009.62, + "end": 8013.22, + "probability": 0.998 + }, + { + "start": 8013.7, + "end": 8016.14, + "probability": 0.6323 + }, + { + "start": 8016.28, + "end": 8019.27, + "probability": 0.9617 + }, + { + "start": 8020.52, + "end": 8024.26, + "probability": 0.9509 + }, + { + "start": 8024.78, + "end": 8026.84, + "probability": 0.2188 + }, + { + "start": 8027.02, + "end": 8027.64, + "probability": 0.881 + }, + { + "start": 8028.36, + "end": 8029.92, + "probability": 0.9291 + }, + { + "start": 8030.02, + "end": 8030.02, + "probability": 0.7228 + }, + { + "start": 8030.02, + "end": 8032.82, + "probability": 0.3228 + }, + { + "start": 8033.09, + "end": 8036.08, + "probability": 0.2529 + }, + { + "start": 8036.08, + "end": 8037.86, + "probability": 0.182 + }, + { + "start": 8037.86, + "end": 8040.56, + "probability": 0.1047 + }, + { + "start": 8040.56, + "end": 8041.04, + "probability": 0.1299 + }, + { + "start": 8041.84, + "end": 8042.98, + "probability": 0.8232 + }, + { + "start": 8043.24, + "end": 8044.88, + "probability": 0.9541 + }, + { + "start": 8045.08, + "end": 8049.48, + "probability": 0.7794 + }, + { + "start": 8049.8, + "end": 8052.48, + "probability": 0.9812 + }, + { + "start": 8053.02, + "end": 8054.44, + "probability": 0.2597 + }, + { + "start": 8055.4, + "end": 8061.98, + "probability": 0.968 + }, + { + "start": 8062.6, + "end": 8065.92, + "probability": 0.9937 + }, + { + "start": 8065.92, + "end": 8070.92, + "probability": 0.9314 + }, + { + "start": 8071.0, + "end": 8071.96, + "probability": 0.8877 + }, + { + "start": 8072.04, + "end": 8073.28, + "probability": 0.755 + }, + { + "start": 8073.38, + "end": 8073.86, + "probability": 0.8491 + }, + { + "start": 8074.08, + "end": 8078.24, + "probability": 0.995 + }, + { + "start": 8078.64, + "end": 8079.36, + "probability": 0.7159 + }, + { + "start": 8079.44, + "end": 8081.48, + "probability": 0.9569 + }, + { + "start": 8082.14, + "end": 8085.2, + "probability": 0.8979 + }, + { + "start": 8085.72, + "end": 8091.84, + "probability": 0.988 + }, + { + "start": 8092.36, + "end": 8094.58, + "probability": 0.9191 + }, + { + "start": 8094.98, + "end": 8097.2, + "probability": 0.9985 + }, + { + "start": 8097.64, + "end": 8099.72, + "probability": 0.9951 + }, + { + "start": 8100.26, + "end": 8101.08, + "probability": 0.859 + }, + { + "start": 8101.88, + "end": 8104.7, + "probability": 0.9838 + }, + { + "start": 8105.84, + "end": 8108.86, + "probability": 0.9932 + }, + { + "start": 8109.56, + "end": 8111.08, + "probability": 0.1741 + }, + { + "start": 8111.7, + "end": 8113.48, + "probability": 0.9902 + }, + { + "start": 8114.12, + "end": 8116.57, + "probability": 0.7896 + }, + { + "start": 8117.1, + "end": 8118.54, + "probability": 0.9976 + }, + { + "start": 8119.06, + "end": 8120.84, + "probability": 0.8321 + }, + { + "start": 8120.92, + "end": 8123.48, + "probability": 0.9987 + }, + { + "start": 8123.6, + "end": 8124.3, + "probability": 0.3818 + }, + { + "start": 8124.98, + "end": 8128.04, + "probability": 0.9297 + }, + { + "start": 8128.72, + "end": 8129.88, + "probability": 0.4241 + }, + { + "start": 8129.88, + "end": 8134.04, + "probability": 0.9789 + }, + { + "start": 8134.56, + "end": 8136.6, + "probability": 0.932 + }, + { + "start": 8137.18, + "end": 8138.8, + "probability": 0.9174 + }, + { + "start": 8139.3, + "end": 8144.72, + "probability": 0.995 + }, + { + "start": 8144.82, + "end": 8145.56, + "probability": 0.9416 + }, + { + "start": 8145.96, + "end": 8147.84, + "probability": 0.69 + }, + { + "start": 8148.4, + "end": 8149.48, + "probability": 0.2287 + }, + { + "start": 8149.48, + "end": 8150.66, + "probability": 0.7572 + }, + { + "start": 8150.96, + "end": 8153.06, + "probability": 0.9751 + }, + { + "start": 8153.6, + "end": 8155.4, + "probability": 0.6886 + }, + { + "start": 8157.46, + "end": 8161.42, + "probability": 0.828 + }, + { + "start": 8161.92, + "end": 8162.4, + "probability": 0.5061 + }, + { + "start": 8162.6, + "end": 8163.29, + "probability": 0.9131 + }, + { + "start": 8163.54, + "end": 8166.28, + "probability": 0.7106 + }, + { + "start": 8166.84, + "end": 8166.84, + "probability": 0.0229 + }, + { + "start": 8166.84, + "end": 8169.26, + "probability": 0.8984 + }, + { + "start": 8169.74, + "end": 8171.36, + "probability": 0.9383 + }, + { + "start": 8171.74, + "end": 8175.84, + "probability": 0.9388 + }, + { + "start": 8175.94, + "end": 8176.36, + "probability": 0.5833 + }, + { + "start": 8177.42, + "end": 8180.96, + "probability": 0.9905 + }, + { + "start": 8181.16, + "end": 8184.32, + "probability": 0.9893 + }, + { + "start": 8184.72, + "end": 8186.72, + "probability": 0.9783 + }, + { + "start": 8187.1, + "end": 8189.44, + "probability": 0.9702 + }, + { + "start": 8189.6, + "end": 8193.42, + "probability": 0.9905 + }, + { + "start": 8194.72, + "end": 8196.7, + "probability": 0.5583 + }, + { + "start": 8197.38, + "end": 8199.16, + "probability": 0.8433 + }, + { + "start": 8199.68, + "end": 8203.66, + "probability": 0.9913 + }, + { + "start": 8204.02, + "end": 8205.28, + "probability": 0.8457 + }, + { + "start": 8205.64, + "end": 8208.08, + "probability": 0.9729 + }, + { + "start": 8208.7, + "end": 8212.24, + "probability": 0.9959 + }, + { + "start": 8212.78, + "end": 8214.54, + "probability": 0.9927 + }, + { + "start": 8215.26, + "end": 8218.96, + "probability": 0.9693 + }, + { + "start": 8219.58, + "end": 8223.72, + "probability": 0.9589 + }, + { + "start": 8224.14, + "end": 8226.08, + "probability": 0.9885 + }, + { + "start": 8227.04, + "end": 8228.97, + "probability": 0.958 + }, + { + "start": 8229.82, + "end": 8230.42, + "probability": 0.2722 + }, + { + "start": 8230.66, + "end": 8235.96, + "probability": 0.9912 + }, + { + "start": 8236.02, + "end": 8237.24, + "probability": 0.9932 + }, + { + "start": 8237.86, + "end": 8238.82, + "probability": 0.5781 + }, + { + "start": 8238.96, + "end": 8242.92, + "probability": 0.9876 + }, + { + "start": 8243.4, + "end": 8245.98, + "probability": 0.9865 + }, + { + "start": 8246.6, + "end": 8248.26, + "probability": 0.9986 + }, + { + "start": 8248.84, + "end": 8251.78, + "probability": 0.9865 + }, + { + "start": 8251.98, + "end": 8256.46, + "probability": 0.984 + }, + { + "start": 8257.02, + "end": 8260.3, + "probability": 0.9222 + }, + { + "start": 8260.44, + "end": 8264.42, + "probability": 0.7996 + }, + { + "start": 8264.96, + "end": 8266.32, + "probability": 0.9855 + }, + { + "start": 8266.9, + "end": 8269.56, + "probability": 0.9422 + }, + { + "start": 8270.38, + "end": 8272.42, + "probability": 0.9432 + }, + { + "start": 8273.12, + "end": 8277.21, + "probability": 0.9858 + }, + { + "start": 8278.12, + "end": 8282.14, + "probability": 0.903 + }, + { + "start": 8282.58, + "end": 8285.42, + "probability": 0.977 + }, + { + "start": 8285.76, + "end": 8286.34, + "probability": 0.8224 + }, + { + "start": 8289.68, + "end": 8292.46, + "probability": 0.8968 + }, + { + "start": 8293.06, + "end": 8295.64, + "probability": 0.9686 + }, + { + "start": 8295.78, + "end": 8298.33, + "probability": 0.7252 + }, + { + "start": 8298.88, + "end": 8300.5, + "probability": 0.976 + }, + { + "start": 8301.34, + "end": 8302.5, + "probability": 0.7544 + }, + { + "start": 8303.14, + "end": 8304.74, + "probability": 0.4235 + }, + { + "start": 8305.26, + "end": 8312.24, + "probability": 0.431 + }, + { + "start": 8317.08, + "end": 8320.2, + "probability": 0.742 + }, + { + "start": 8327.52, + "end": 8329.48, + "probability": 0.6504 + }, + { + "start": 8330.62, + "end": 8331.54, + "probability": 0.9476 + }, + { + "start": 8333.39, + "end": 8337.44, + "probability": 0.7483 + }, + { + "start": 8339.36, + "end": 8342.06, + "probability": 0.9728 + }, + { + "start": 8342.06, + "end": 8344.72, + "probability": 0.9937 + }, + { + "start": 8345.24, + "end": 8348.2, + "probability": 0.7908 + }, + { + "start": 8350.08, + "end": 8352.99, + "probability": 0.7207 + }, + { + "start": 8354.96, + "end": 8359.48, + "probability": 0.9382 + }, + { + "start": 8359.72, + "end": 8362.7, + "probability": 0.9714 + }, + { + "start": 8364.5, + "end": 8370.06, + "probability": 0.9853 + }, + { + "start": 8370.3, + "end": 8372.34, + "probability": 0.8724 + }, + { + "start": 8372.9, + "end": 8375.92, + "probability": 0.8857 + }, + { + "start": 8377.28, + "end": 8379.16, + "probability": 0.9823 + }, + { + "start": 8379.24, + "end": 8380.18, + "probability": 0.99 + }, + { + "start": 8381.66, + "end": 8383.34, + "probability": 0.7183 + }, + { + "start": 8383.98, + "end": 8385.06, + "probability": 0.9657 + }, + { + "start": 8385.08, + "end": 8387.88, + "probability": 0.9233 + }, + { + "start": 8388.14, + "end": 8393.86, + "probability": 0.9768 + }, + { + "start": 8394.4, + "end": 8395.88, + "probability": 0.6653 + }, + { + "start": 8397.2, + "end": 8400.52, + "probability": 0.9824 + }, + { + "start": 8402.6, + "end": 8406.2, + "probability": 0.937 + }, + { + "start": 8406.94, + "end": 8413.1, + "probability": 0.9934 + }, + { + "start": 8413.8, + "end": 8417.42, + "probability": 0.9871 + }, + { + "start": 8418.3, + "end": 8422.2, + "probability": 0.9963 + }, + { + "start": 8422.86, + "end": 8425.62, + "probability": 0.7602 + }, + { + "start": 8426.76, + "end": 8428.0, + "probability": 0.809 + }, + { + "start": 8428.86, + "end": 8430.32, + "probability": 0.8564 + }, + { + "start": 8431.86, + "end": 8438.92, + "probability": 0.9496 + }, + { + "start": 8439.4, + "end": 8446.88, + "probability": 0.9946 + }, + { + "start": 8447.34, + "end": 8450.86, + "probability": 0.9971 + }, + { + "start": 8451.74, + "end": 8452.92, + "probability": 0.7029 + }, + { + "start": 8453.32, + "end": 8458.34, + "probability": 0.9846 + }, + { + "start": 8459.18, + "end": 8463.96, + "probability": 0.9925 + }, + { + "start": 8464.62, + "end": 8468.9, + "probability": 0.8345 + }, + { + "start": 8469.32, + "end": 8470.34, + "probability": 0.7659 + }, + { + "start": 8470.44, + "end": 8471.62, + "probability": 0.9632 + }, + { + "start": 8476.72, + "end": 8479.66, + "probability": 0.9568 + }, + { + "start": 8479.82, + "end": 8480.4, + "probability": 0.6237 + }, + { + "start": 8480.56, + "end": 8481.42, + "probability": 0.7163 + }, + { + "start": 8482.2, + "end": 8486.4, + "probability": 0.9983 + }, + { + "start": 8486.4, + "end": 8490.3, + "probability": 0.9956 + }, + { + "start": 8491.84, + "end": 8494.96, + "probability": 0.998 + }, + { + "start": 8495.0, + "end": 8499.46, + "probability": 0.9859 + }, + { + "start": 8499.46, + "end": 8504.0, + "probability": 0.7903 + }, + { + "start": 8504.38, + "end": 8506.32, + "probability": 0.9014 + }, + { + "start": 8506.66, + "end": 8508.72, + "probability": 0.9735 + }, + { + "start": 8510.08, + "end": 8511.82, + "probability": 0.6903 + }, + { + "start": 8512.62, + "end": 8512.64, + "probability": 0.1756 + }, + { + "start": 8512.64, + "end": 8516.24, + "probability": 0.9233 + }, + { + "start": 8516.96, + "end": 8522.78, + "probability": 0.9832 + }, + { + "start": 8523.46, + "end": 8529.96, + "probability": 0.8638 + }, + { + "start": 8530.62, + "end": 8533.96, + "probability": 0.9983 + }, + { + "start": 8533.96, + "end": 8538.04, + "probability": 0.9989 + }, + { + "start": 8539.18, + "end": 8539.96, + "probability": 0.6782 + }, + { + "start": 8540.7, + "end": 8542.18, + "probability": 0.8541 + }, + { + "start": 8542.68, + "end": 8544.1, + "probability": 0.9543 + }, + { + "start": 8544.2, + "end": 8545.46, + "probability": 0.725 + }, + { + "start": 8545.46, + "end": 8546.56, + "probability": 0.8207 + }, + { + "start": 8546.56, + "end": 8548.92, + "probability": 0.9956 + }, + { + "start": 8549.58, + "end": 8551.26, + "probability": 0.8981 + }, + { + "start": 8552.22, + "end": 8554.1, + "probability": 0.8548 + }, + { + "start": 8555.0, + "end": 8559.8, + "probability": 0.928 + }, + { + "start": 8560.38, + "end": 8565.7, + "probability": 0.9719 + }, + { + "start": 8565.7, + "end": 8571.4, + "probability": 0.9983 + }, + { + "start": 8572.58, + "end": 8573.22, + "probability": 0.6678 + }, + { + "start": 8573.7, + "end": 8575.56, + "probability": 0.6577 + }, + { + "start": 8575.58, + "end": 8577.64, + "probability": 0.7468 + }, + { + "start": 8578.2, + "end": 8579.38, + "probability": 0.7716 + }, + { + "start": 8579.6, + "end": 8581.62, + "probability": 0.6725 + }, + { + "start": 8581.76, + "end": 8583.06, + "probability": 0.4828 + }, + { + "start": 8583.56, + "end": 8585.76, + "probability": 0.3264 + }, + { + "start": 8586.14, + "end": 8587.94, + "probability": 0.8665 + }, + { + "start": 8591.14, + "end": 8592.58, + "probability": 0.7522 + }, + { + "start": 8592.8, + "end": 8594.14, + "probability": 0.7122 + }, + { + "start": 8594.4, + "end": 8597.18, + "probability": 0.9916 + }, + { + "start": 8597.3, + "end": 8598.44, + "probability": 0.9963 + }, + { + "start": 8598.8, + "end": 8603.42, + "probability": 0.8995 + }, + { + "start": 8603.6, + "end": 8604.73, + "probability": 0.8766 + }, + { + "start": 8605.72, + "end": 8607.5, + "probability": 0.7716 + }, + { + "start": 8608.22, + "end": 8609.74, + "probability": 0.7304 + }, + { + "start": 8609.92, + "end": 8613.9, + "probability": 0.9866 + }, + { + "start": 8614.62, + "end": 8618.68, + "probability": 0.9033 + }, + { + "start": 8618.74, + "end": 8623.0, + "probability": 0.9873 + }, + { + "start": 8623.04, + "end": 8626.6, + "probability": 0.9883 + }, + { + "start": 8626.7, + "end": 8626.84, + "probability": 0.7783 + }, + { + "start": 8626.86, + "end": 8629.08, + "probability": 0.7307 + }, + { + "start": 8629.2, + "end": 8630.66, + "probability": 0.9663 + }, + { + "start": 8630.68, + "end": 8631.07, + "probability": 0.8104 + }, + { + "start": 8632.18, + "end": 8632.94, + "probability": 0.9609 + }, + { + "start": 8633.46, + "end": 8637.88, + "probability": 0.9769 + }, + { + "start": 8638.38, + "end": 8639.3, + "probability": 0.8511 + }, + { + "start": 8639.44, + "end": 8644.88, + "probability": 0.9918 + }, + { + "start": 8644.88, + "end": 8649.3, + "probability": 0.9998 + }, + { + "start": 8649.5, + "end": 8650.36, + "probability": 0.7735 + }, + { + "start": 8650.46, + "end": 8651.8, + "probability": 0.9818 + }, + { + "start": 8651.86, + "end": 8652.54, + "probability": 0.9499 + }, + { + "start": 8653.16, + "end": 8654.06, + "probability": 0.996 + }, + { + "start": 8654.6, + "end": 8655.46, + "probability": 0.9753 + }, + { + "start": 8655.68, + "end": 8656.78, + "probability": 0.6427 + }, + { + "start": 8657.58, + "end": 8657.9, + "probability": 0.4535 + }, + { + "start": 8657.9, + "end": 8658.69, + "probability": 0.7498 + }, + { + "start": 8658.78, + "end": 8660.06, + "probability": 0.7498 + }, + { + "start": 8660.3, + "end": 8662.38, + "probability": 0.944 + }, + { + "start": 8663.06, + "end": 8666.9, + "probability": 0.9697 + }, + { + "start": 8667.08, + "end": 8668.72, + "probability": 0.9539 + }, + { + "start": 8669.18, + "end": 8673.74, + "probability": 0.9915 + }, + { + "start": 8674.16, + "end": 8674.38, + "probability": 0.7043 + }, + { + "start": 8674.46, + "end": 8674.94, + "probability": 0.8166 + }, + { + "start": 8675.0, + "end": 8676.12, + "probability": 0.9946 + }, + { + "start": 8676.22, + "end": 8677.1, + "probability": 0.978 + }, + { + "start": 8678.4, + "end": 8682.0, + "probability": 0.9333 + }, + { + "start": 8682.26, + "end": 8684.68, + "probability": 0.9976 + }, + { + "start": 8685.28, + "end": 8691.38, + "probability": 0.9883 + }, + { + "start": 8691.94, + "end": 8694.84, + "probability": 0.5145 + }, + { + "start": 8695.12, + "end": 8696.92, + "probability": 0.77 + }, + { + "start": 8697.34, + "end": 8701.14, + "probability": 0.989 + }, + { + "start": 8701.22, + "end": 8703.44, + "probability": 0.9906 + }, + { + "start": 8703.82, + "end": 8708.54, + "probability": 0.9952 + }, + { + "start": 8709.0, + "end": 8710.6, + "probability": 0.823 + }, + { + "start": 8710.76, + "end": 8714.24, + "probability": 0.9727 + }, + { + "start": 8714.76, + "end": 8716.66, + "probability": 0.9592 + }, + { + "start": 8717.04, + "end": 8718.72, + "probability": 0.94 + }, + { + "start": 8718.84, + "end": 8720.32, + "probability": 0.9921 + }, + { + "start": 8720.48, + "end": 8726.14, + "probability": 0.9954 + }, + { + "start": 8726.56, + "end": 8729.6, + "probability": 0.9888 + }, + { + "start": 8729.6, + "end": 8733.5, + "probability": 0.9904 + }, + { + "start": 8733.96, + "end": 8735.24, + "probability": 0.9925 + }, + { + "start": 8735.94, + "end": 8736.72, + "probability": 0.8876 + }, + { + "start": 8737.14, + "end": 8740.04, + "probability": 0.9393 + }, + { + "start": 8740.16, + "end": 8742.45, + "probability": 0.988 + }, + { + "start": 8742.7, + "end": 8743.4, + "probability": 0.5854 + }, + { + "start": 8743.5, + "end": 8748.42, + "probability": 0.9927 + }, + { + "start": 8749.92, + "end": 8754.24, + "probability": 0.8114 + }, + { + "start": 8754.42, + "end": 8756.24, + "probability": 0.9948 + }, + { + "start": 8756.38, + "end": 8756.87, + "probability": 0.9803 + }, + { + "start": 8757.0, + "end": 8757.53, + "probability": 0.9796 + }, + { + "start": 8758.06, + "end": 8761.18, + "probability": 0.9763 + }, + { + "start": 8761.54, + "end": 8765.4, + "probability": 0.7781 + }, + { + "start": 8766.2, + "end": 8770.72, + "probability": 0.8032 + }, + { + "start": 8770.86, + "end": 8772.62, + "probability": 0.9906 + }, + { + "start": 8773.04, + "end": 8776.58, + "probability": 0.9878 + }, + { + "start": 8777.14, + "end": 8778.84, + "probability": 0.7439 + }, + { + "start": 8778.96, + "end": 8779.64, + "probability": 0.7144 + }, + { + "start": 8779.76, + "end": 8781.54, + "probability": 0.9974 + }, + { + "start": 8781.68, + "end": 8783.0, + "probability": 0.849 + }, + { + "start": 8783.16, + "end": 8783.92, + "probability": 0.96 + }, + { + "start": 8784.12, + "end": 8787.68, + "probability": 0.5952 + }, + { + "start": 8788.02, + "end": 8788.14, + "probability": 0.6658 + }, + { + "start": 8788.26, + "end": 8789.6, + "probability": 0.9722 + }, + { + "start": 8789.74, + "end": 8790.96, + "probability": 0.8075 + }, + { + "start": 8791.02, + "end": 8792.48, + "probability": 0.8732 + }, + { + "start": 8792.56, + "end": 8795.02, + "probability": 0.9306 + }, + { + "start": 8795.08, + "end": 8796.5, + "probability": 0.7596 + }, + { + "start": 8796.92, + "end": 8797.74, + "probability": 0.957 + }, + { + "start": 8797.8, + "end": 8800.16, + "probability": 0.6703 + }, + { + "start": 8800.36, + "end": 8804.9, + "probability": 0.9948 + }, + { + "start": 8805.24, + "end": 8808.6, + "probability": 0.8561 + }, + { + "start": 8809.38, + "end": 8812.66, + "probability": 0.9858 + }, + { + "start": 8813.2, + "end": 8815.54, + "probability": 0.9829 + }, + { + "start": 8815.82, + "end": 8817.14, + "probability": 0.9937 + }, + { + "start": 8817.2, + "end": 8818.12, + "probability": 0.9547 + }, + { + "start": 8818.4, + "end": 8820.34, + "probability": 0.823 + }, + { + "start": 8820.64, + "end": 8823.32, + "probability": 0.9956 + }, + { + "start": 8823.4, + "end": 8823.92, + "probability": 0.7676 + }, + { + "start": 8824.84, + "end": 8826.76, + "probability": 0.6313 + }, + { + "start": 8826.88, + "end": 8827.36, + "probability": 0.7856 + }, + { + "start": 8827.44, + "end": 8830.7, + "probability": 0.965 + }, + { + "start": 8831.18, + "end": 8833.22, + "probability": 0.81 + }, + { + "start": 8833.22, + "end": 8835.96, + "probability": 0.8059 + }, + { + "start": 8836.12, + "end": 8837.22, + "probability": 0.4238 + }, + { + "start": 8837.7, + "end": 8840.6, + "probability": 0.841 + }, + { + "start": 8840.66, + "end": 8841.24, + "probability": 0.8919 + }, + { + "start": 8856.98, + "end": 8858.4, + "probability": 0.6393 + }, + { + "start": 8859.26, + "end": 8860.62, + "probability": 0.6758 + }, + { + "start": 8861.96, + "end": 8868.46, + "probability": 0.9873 + }, + { + "start": 8869.42, + "end": 8872.52, + "probability": 0.9978 + }, + { + "start": 8873.04, + "end": 8875.56, + "probability": 0.9226 + }, + { + "start": 8876.84, + "end": 8883.4, + "probability": 0.9912 + }, + { + "start": 8884.42, + "end": 8888.68, + "probability": 0.9565 + }, + { + "start": 8889.4, + "end": 8893.3, + "probability": 0.9801 + }, + { + "start": 8893.84, + "end": 8896.04, + "probability": 0.9973 + }, + { + "start": 8897.02, + "end": 8898.06, + "probability": 0.894 + }, + { + "start": 8898.94, + "end": 8903.9, + "probability": 0.9961 + }, + { + "start": 8904.48, + "end": 8908.98, + "probability": 0.9851 + }, + { + "start": 8910.34, + "end": 8910.96, + "probability": 0.9407 + }, + { + "start": 8911.7, + "end": 8912.24, + "probability": 0.9047 + }, + { + "start": 8913.4, + "end": 8918.5, + "probability": 0.9954 + }, + { + "start": 8919.9, + "end": 8920.32, + "probability": 0.772 + }, + { + "start": 8921.48, + "end": 8922.54, + "probability": 0.9821 + }, + { + "start": 8922.7, + "end": 8924.08, + "probability": 0.9805 + }, + { + "start": 8924.74, + "end": 8928.0, + "probability": 0.7976 + }, + { + "start": 8929.26, + "end": 8932.4, + "probability": 0.9958 + }, + { + "start": 8932.44, + "end": 8937.54, + "probability": 0.9823 + }, + { + "start": 8937.54, + "end": 8940.88, + "probability": 0.9912 + }, + { + "start": 8942.28, + "end": 8943.4, + "probability": 0.8741 + }, + { + "start": 8943.44, + "end": 8949.58, + "probability": 0.9723 + }, + { + "start": 8949.58, + "end": 8954.44, + "probability": 0.9984 + }, + { + "start": 8955.26, + "end": 8959.2, + "probability": 0.9942 + }, + { + "start": 8959.3, + "end": 8962.6, + "probability": 0.9922 + }, + { + "start": 8963.14, + "end": 8968.7, + "probability": 0.986 + }, + { + "start": 8969.1, + "end": 8971.92, + "probability": 0.9768 + }, + { + "start": 8972.76, + "end": 8973.26, + "probability": 0.8019 + }, + { + "start": 8974.0, + "end": 8976.44, + "probability": 0.9927 + }, + { + "start": 8976.62, + "end": 8979.56, + "probability": 0.9543 + }, + { + "start": 8979.56, + "end": 8982.8, + "probability": 0.9912 + }, + { + "start": 8982.9, + "end": 8984.82, + "probability": 0.9956 + }, + { + "start": 8985.18, + "end": 8990.48, + "probability": 0.9917 + }, + { + "start": 8992.38, + "end": 8993.92, + "probability": 0.8283 + }, + { + "start": 8994.98, + "end": 8998.48, + "probability": 0.9801 + }, + { + "start": 8999.78, + "end": 9001.82, + "probability": 0.8514 + }, + { + "start": 9002.92, + "end": 9009.3, + "probability": 0.9924 + }, + { + "start": 9011.0, + "end": 9014.68, + "probability": 0.9992 + }, + { + "start": 9014.68, + "end": 9018.68, + "probability": 0.9928 + }, + { + "start": 9019.08, + "end": 9022.38, + "probability": 0.9459 + }, + { + "start": 9023.02, + "end": 9025.82, + "probability": 0.9885 + }, + { + "start": 9027.44, + "end": 9028.74, + "probability": 0.8575 + }, + { + "start": 9029.44, + "end": 9035.18, + "probability": 0.9933 + }, + { + "start": 9035.8, + "end": 9041.78, + "probability": 0.9946 + }, + { + "start": 9043.48, + "end": 9048.12, + "probability": 0.9753 + }, + { + "start": 9048.12, + "end": 9052.94, + "probability": 0.9928 + }, + { + "start": 9054.08, + "end": 9055.84, + "probability": 0.8492 + }, + { + "start": 9055.92, + "end": 9057.5, + "probability": 0.8495 + }, + { + "start": 9057.94, + "end": 9064.92, + "probability": 0.9831 + }, + { + "start": 9065.64, + "end": 9067.4, + "probability": 0.9693 + }, + { + "start": 9068.56, + "end": 9072.56, + "probability": 0.9879 + }, + { + "start": 9073.16, + "end": 9079.9, + "probability": 0.9925 + }, + { + "start": 9080.98, + "end": 9085.18, + "probability": 0.8809 + }, + { + "start": 9085.74, + "end": 9090.66, + "probability": 0.9178 + }, + { + "start": 9091.48, + "end": 9092.0, + "probability": 0.7738 + }, + { + "start": 9094.34, + "end": 9096.31, + "probability": 0.759 + }, + { + "start": 9097.06, + "end": 9098.52, + "probability": 0.784 + }, + { + "start": 9102.8, + "end": 9103.54, + "probability": 0.4286 + }, + { + "start": 9104.2, + "end": 9107.84, + "probability": 0.7597 + }, + { + "start": 9110.74, + "end": 9114.6, + "probability": 0.308 + }, + { + "start": 9116.06, + "end": 9117.84, + "probability": 0.3069 + }, + { + "start": 9118.26, + "end": 9118.38, + "probability": 0.4077 + }, + { + "start": 9118.42, + "end": 9119.24, + "probability": 0.8155 + }, + { + "start": 9119.7, + "end": 9123.48, + "probability": 0.795 + }, + { + "start": 9124.4, + "end": 9126.2, + "probability": 0.6218 + }, + { + "start": 9126.64, + "end": 9127.8, + "probability": 0.7979 + }, + { + "start": 9128.02, + "end": 9132.96, + "probability": 0.9105 + }, + { + "start": 9133.2, + "end": 9133.28, + "probability": 0.651 + }, + { + "start": 9133.42, + "end": 9136.34, + "probability": 0.9303 + }, + { + "start": 9136.54, + "end": 9139.14, + "probability": 0.6687 + }, + { + "start": 9139.84, + "end": 9141.84, + "probability": 0.8891 + }, + { + "start": 9142.5, + "end": 9143.68, + "probability": 0.8547 + }, + { + "start": 9145.32, + "end": 9151.58, + "probability": 0.9763 + }, + { + "start": 9152.58, + "end": 9153.1, + "probability": 0.9684 + }, + { + "start": 9153.72, + "end": 9157.26, + "probability": 0.9691 + }, + { + "start": 9157.82, + "end": 9160.76, + "probability": 0.9189 + }, + { + "start": 9161.26, + "end": 9164.08, + "probability": 0.9565 + }, + { + "start": 9164.12, + "end": 9170.69, + "probability": 0.6342 + }, + { + "start": 9171.84, + "end": 9173.28, + "probability": 0.4851 + }, + { + "start": 9173.72, + "end": 9175.04, + "probability": 0.9095 + }, + { + "start": 9176.14, + "end": 9176.88, + "probability": 0.5649 + }, + { + "start": 9177.7, + "end": 9180.52, + "probability": 0.8384 + }, + { + "start": 9181.38, + "end": 9183.68, + "probability": 0.4922 + }, + { + "start": 9185.16, + "end": 9188.28, + "probability": 0.9666 + }, + { + "start": 9188.78, + "end": 9189.44, + "probability": 0.8253 + }, + { + "start": 9189.48, + "end": 9190.7, + "probability": 0.96 + }, + { + "start": 9191.1, + "end": 9192.28, + "probability": 0.6641 + }, + { + "start": 9192.96, + "end": 9198.1, + "probability": 0.9906 + }, + { + "start": 9198.1, + "end": 9205.6, + "probability": 0.9909 + }, + { + "start": 9206.6, + "end": 9208.82, + "probability": 0.9971 + }, + { + "start": 9209.58, + "end": 9211.56, + "probability": 0.8159 + }, + { + "start": 9212.24, + "end": 9215.58, + "probability": 0.9722 + }, + { + "start": 9215.72, + "end": 9221.96, + "probability": 0.991 + }, + { + "start": 9222.36, + "end": 9224.34, + "probability": 0.991 + }, + { + "start": 9225.14, + "end": 9226.54, + "probability": 0.8353 + }, + { + "start": 9226.68, + "end": 9227.92, + "probability": 0.8466 + }, + { + "start": 9228.34, + "end": 9230.02, + "probability": 0.9831 + }, + { + "start": 9230.24, + "end": 9231.06, + "probability": 0.8998 + }, + { + "start": 9231.38, + "end": 9238.5, + "probability": 0.9882 + }, + { + "start": 9239.32, + "end": 9239.6, + "probability": 0.6384 + }, + { + "start": 9239.72, + "end": 9243.96, + "probability": 0.9951 + }, + { + "start": 9244.06, + "end": 9244.87, + "probability": 0.4283 + }, + { + "start": 9245.74, + "end": 9248.68, + "probability": 0.9191 + }, + { + "start": 9250.1, + "end": 9252.5, + "probability": 0.6875 + }, + { + "start": 9253.1, + "end": 9257.83, + "probability": 0.9351 + }, + { + "start": 9258.76, + "end": 9259.62, + "probability": 0.6546 + }, + { + "start": 9260.88, + "end": 9264.26, + "probability": 0.8714 + }, + { + "start": 9264.88, + "end": 9266.18, + "probability": 0.9018 + }, + { + "start": 9266.74, + "end": 9269.4, + "probability": 0.9974 + }, + { + "start": 9269.48, + "end": 9275.96, + "probability": 0.9895 + }, + { + "start": 9276.38, + "end": 9277.58, + "probability": 0.7677 + }, + { + "start": 9277.8, + "end": 9279.4, + "probability": 0.6745 + }, + { + "start": 9279.48, + "end": 9279.9, + "probability": 0.3626 + }, + { + "start": 9280.1, + "end": 9280.74, + "probability": 0.6982 + }, + { + "start": 9280.78, + "end": 9281.98, + "probability": 0.9827 + }, + { + "start": 9282.2, + "end": 9283.2, + "probability": 0.8174 + }, + { + "start": 9283.34, + "end": 9286.04, + "probability": 0.9644 + }, + { + "start": 9286.08, + "end": 9287.76, + "probability": 0.9838 + }, + { + "start": 9288.5, + "end": 9290.02, + "probability": 0.9932 + }, + { + "start": 9290.14, + "end": 9292.29, + "probability": 0.9884 + }, + { + "start": 9292.88, + "end": 9293.4, + "probability": 0.3708 + }, + { + "start": 9293.42, + "end": 9294.66, + "probability": 0.4286 + }, + { + "start": 9294.74, + "end": 9297.14, + "probability": 0.4579 + }, + { + "start": 9297.22, + "end": 9298.74, + "probability": 0.1363 + }, + { + "start": 9298.92, + "end": 9298.92, + "probability": 0.0504 + }, + { + "start": 9298.92, + "end": 9302.24, + "probability": 0.8708 + }, + { + "start": 9302.46, + "end": 9307.16, + "probability": 0.8716 + }, + { + "start": 9307.72, + "end": 9309.88, + "probability": 0.7445 + }, + { + "start": 9310.52, + "end": 9311.88, + "probability": 0.8676 + }, + { + "start": 9311.94, + "end": 9316.02, + "probability": 0.9782 + }, + { + "start": 9316.02, + "end": 9320.5, + "probability": 0.9998 + }, + { + "start": 9321.44, + "end": 9324.66, + "probability": 0.9946 + }, + { + "start": 9325.04, + "end": 9325.88, + "probability": 0.9135 + }, + { + "start": 9325.94, + "end": 9326.56, + "probability": 0.7887 + }, + { + "start": 9326.72, + "end": 9327.98, + "probability": 0.8578 + }, + { + "start": 9328.36, + "end": 9331.36, + "probability": 0.9919 + }, + { + "start": 9331.36, + "end": 9333.8, + "probability": 0.9972 + }, + { + "start": 9334.67, + "end": 9336.7, + "probability": 0.1832 + }, + { + "start": 9336.82, + "end": 9337.34, + "probability": 0.3706 + }, + { + "start": 9337.46, + "end": 9338.38, + "probability": 0.8802 + }, + { + "start": 9338.8, + "end": 9342.64, + "probability": 0.9644 + }, + { + "start": 9342.9, + "end": 9343.82, + "probability": 0.9608 + }, + { + "start": 9343.86, + "end": 9345.72, + "probability": 0.9839 + }, + { + "start": 9345.72, + "end": 9347.4, + "probability": 0.5677 + }, + { + "start": 9348.7, + "end": 9349.64, + "probability": 0.8035 + }, + { + "start": 9350.02, + "end": 9351.3, + "probability": 0.8501 + }, + { + "start": 9351.38, + "end": 9355.88, + "probability": 0.9568 + }, + { + "start": 9356.3, + "end": 9360.53, + "probability": 0.9771 + }, + { + "start": 9361.8, + "end": 9363.86, + "probability": 0.9972 + }, + { + "start": 9365.82, + "end": 9366.7, + "probability": 0.5066 + }, + { + "start": 9366.72, + "end": 9366.96, + "probability": 0.0093 + }, + { + "start": 9366.96, + "end": 9366.96, + "probability": 0.0147 + }, + { + "start": 9366.96, + "end": 9366.96, + "probability": 0.1153 + }, + { + "start": 9366.96, + "end": 9370.98, + "probability": 0.984 + }, + { + "start": 9371.12, + "end": 9371.44, + "probability": 0.9581 + }, + { + "start": 9371.88, + "end": 9374.32, + "probability": 0.9795 + }, + { + "start": 9374.82, + "end": 9375.86, + "probability": 0.9916 + }, + { + "start": 9376.1, + "end": 9377.3, + "probability": 0.9946 + }, + { + "start": 9392.92, + "end": 9393.62, + "probability": 0.1088 + }, + { + "start": 9393.62, + "end": 9393.62, + "probability": 0.0614 + }, + { + "start": 9393.62, + "end": 9393.62, + "probability": 0.0343 + }, + { + "start": 9393.62, + "end": 9393.62, + "probability": 0.142 + }, + { + "start": 9393.62, + "end": 9395.58, + "probability": 0.0773 + }, + { + "start": 9396.6, + "end": 9397.24, + "probability": 0.4971 + }, + { + "start": 9398.08, + "end": 9398.74, + "probability": 0.7189 + }, + { + "start": 9399.3, + "end": 9403.34, + "probability": 0.7858 + }, + { + "start": 9404.02, + "end": 9407.46, + "probability": 0.9282 + }, + { + "start": 9409.46, + "end": 9410.38, + "probability": 0.955 + }, + { + "start": 9410.46, + "end": 9414.86, + "probability": 0.9978 + }, + { + "start": 9415.32, + "end": 9417.04, + "probability": 0.9989 + }, + { + "start": 9417.84, + "end": 9418.96, + "probability": 0.7544 + }, + { + "start": 9419.02, + "end": 9419.42, + "probability": 0.94 + }, + { + "start": 9419.44, + "end": 9422.22, + "probability": 0.9567 + }, + { + "start": 9422.3, + "end": 9425.28, + "probability": 0.7605 + }, + { + "start": 9425.36, + "end": 9427.54, + "probability": 0.9896 + }, + { + "start": 9427.94, + "end": 9431.36, + "probability": 0.6813 + }, + { + "start": 9431.52, + "end": 9432.6, + "probability": 0.3345 + }, + { + "start": 9432.72, + "end": 9436.72, + "probability": 0.996 + }, + { + "start": 9436.72, + "end": 9439.98, + "probability": 0.9956 + }, + { + "start": 9440.36, + "end": 9445.1, + "probability": 0.255 + }, + { + "start": 9445.28, + "end": 9445.28, + "probability": 0.0056 + }, + { + "start": 9445.28, + "end": 9445.28, + "probability": 0.1989 + }, + { + "start": 9445.28, + "end": 9445.28, + "probability": 0.168 + }, + { + "start": 9445.28, + "end": 9446.0, + "probability": 0.4156 + }, + { + "start": 9446.0, + "end": 9446.61, + "probability": 0.5224 + }, + { + "start": 9447.18, + "end": 9448.18, + "probability": 0.477 + }, + { + "start": 9448.7, + "end": 9450.34, + "probability": 0.7309 + }, + { + "start": 9450.34, + "end": 9451.02, + "probability": 0.3732 + }, + { + "start": 9451.54, + "end": 9454.14, + "probability": 0.8546 + }, + { + "start": 9454.68, + "end": 9460.7, + "probability": 0.9789 + }, + { + "start": 9461.2, + "end": 9461.96, + "probability": 0.6984 + }, + { + "start": 9462.1, + "end": 9463.96, + "probability": 0.9889 + }, + { + "start": 9464.02, + "end": 9465.16, + "probability": 0.7998 + }, + { + "start": 9465.58, + "end": 9467.14, + "probability": 0.8316 + }, + { + "start": 9469.61, + "end": 9472.36, + "probability": 0.8441 + }, + { + "start": 9473.1, + "end": 9473.7, + "probability": 0.9856 + }, + { + "start": 9474.46, + "end": 9480.26, + "probability": 0.8425 + }, + { + "start": 9480.32, + "end": 9486.12, + "probability": 0.9691 + }, + { + "start": 9487.28, + "end": 9487.7, + "probability": 0.0287 + }, + { + "start": 9487.76, + "end": 9489.92, + "probability": 0.2971 + }, + { + "start": 9489.94, + "end": 9489.94, + "probability": 0.6714 + }, + { + "start": 9490.18, + "end": 9491.97, + "probability": 0.9288 + }, + { + "start": 9492.14, + "end": 9493.1, + "probability": 0.3532 + }, + { + "start": 9493.1, + "end": 9494.32, + "probability": 0.7793 + }, + { + "start": 9494.5, + "end": 9497.34, + "probability": 0.3045 + }, + { + "start": 9497.56, + "end": 9498.86, + "probability": 0.9304 + }, + { + "start": 9498.96, + "end": 9500.02, + "probability": 0.9149 + }, + { + "start": 9500.8, + "end": 9505.4, + "probability": 0.986 + }, + { + "start": 9506.02, + "end": 9507.82, + "probability": 0.9186 + }, + { + "start": 9508.1, + "end": 9513.16, + "probability": 0.9912 + }, + { + "start": 9513.16, + "end": 9519.44, + "probability": 0.9248 + }, + { + "start": 9520.12, + "end": 9522.12, + "probability": 0.9676 + }, + { + "start": 9523.3, + "end": 9523.78, + "probability": 0.8799 + }, + { + "start": 9524.52, + "end": 9529.94, + "probability": 0.9517 + }, + { + "start": 9532.2, + "end": 9532.32, + "probability": 0.0243 + }, + { + "start": 9532.32, + "end": 9536.56, + "probability": 0.9919 + }, + { + "start": 9538.22, + "end": 9542.19, + "probability": 0.98 + }, + { + "start": 9542.76, + "end": 9545.3, + "probability": 0.8276 + }, + { + "start": 9545.84, + "end": 9548.58, + "probability": 0.88 + }, + { + "start": 9548.98, + "end": 9553.12, + "probability": 0.9846 + }, + { + "start": 9554.78, + "end": 9556.5, + "probability": 0.9773 + }, + { + "start": 9556.56, + "end": 9558.82, + "probability": 0.9988 + }, + { + "start": 9559.28, + "end": 9564.4, + "probability": 0.9951 + }, + { + "start": 9565.49, + "end": 9568.42, + "probability": 0.9989 + }, + { + "start": 9568.42, + "end": 9574.06, + "probability": 0.9933 + }, + { + "start": 9574.1, + "end": 9581.52, + "probability": 0.8543 + }, + { + "start": 9582.12, + "end": 9586.32, + "probability": 0.999 + }, + { + "start": 9588.08, + "end": 9589.6, + "probability": 0.7548 + }, + { + "start": 9590.12, + "end": 9593.14, + "probability": 0.9884 + }, + { + "start": 9593.72, + "end": 9594.78, + "probability": 0.9762 + }, + { + "start": 9595.34, + "end": 9596.64, + "probability": 0.9786 + }, + { + "start": 9596.8, + "end": 9597.96, + "probability": 0.9918 + }, + { + "start": 9598.0, + "end": 9598.6, + "probability": 0.8433 + }, + { + "start": 9598.76, + "end": 9601.8, + "probability": 0.9826 + }, + { + "start": 9602.18, + "end": 9602.64, + "probability": 0.5492 + }, + { + "start": 9602.64, + "end": 9608.44, + "probability": 0.9924 + }, + { + "start": 9608.66, + "end": 9615.02, + "probability": 0.8954 + }, + { + "start": 9615.3, + "end": 9617.5, + "probability": 0.8745 + }, + { + "start": 9618.14, + "end": 9620.5, + "probability": 0.9522 + }, + { + "start": 9620.98, + "end": 9621.92, + "probability": 0.5003 + }, + { + "start": 9622.1, + "end": 9622.56, + "probability": 0.9272 + }, + { + "start": 9623.02, + "end": 9626.36, + "probability": 0.9679 + }, + { + "start": 9627.2, + "end": 9629.18, + "probability": 0.9598 + }, + { + "start": 9629.72, + "end": 9631.1, + "probability": 0.9944 + }, + { + "start": 9631.86, + "end": 9638.02, + "probability": 0.8436 + }, + { + "start": 9638.42, + "end": 9639.36, + "probability": 0.6614 + }, + { + "start": 9640.28, + "end": 9642.6, + "probability": 0.749 + }, + { + "start": 9642.68, + "end": 9643.72, + "probability": 0.91 + }, + { + "start": 9644.14, + "end": 9644.78, + "probability": 0.9739 + }, + { + "start": 9645.04, + "end": 9645.68, + "probability": 0.8908 + }, + { + "start": 9646.06, + "end": 9648.39, + "probability": 0.9901 + }, + { + "start": 9649.38, + "end": 9651.36, + "probability": 0.9946 + }, + { + "start": 9651.84, + "end": 9652.14, + "probability": 0.8815 + }, + { + "start": 9652.18, + "end": 9653.2, + "probability": 0.6731 + }, + { + "start": 9653.48, + "end": 9657.72, + "probability": 0.9975 + }, + { + "start": 9659.16, + "end": 9666.36, + "probability": 0.9885 + }, + { + "start": 9667.98, + "end": 9668.61, + "probability": 0.504 + }, + { + "start": 9668.84, + "end": 9670.7, + "probability": 0.8486 + }, + { + "start": 9671.1, + "end": 9672.1, + "probability": 0.7091 + }, + { + "start": 9672.18, + "end": 9673.04, + "probability": 0.9509 + }, + { + "start": 9673.12, + "end": 9673.92, + "probability": 0.6998 + }, + { + "start": 9674.28, + "end": 9679.92, + "probability": 0.7697 + }, + { + "start": 9680.72, + "end": 9681.0, + "probability": 0.7099 + }, + { + "start": 9681.08, + "end": 9681.84, + "probability": 0.807 + }, + { + "start": 9682.24, + "end": 9683.0, + "probability": 0.942 + }, + { + "start": 9683.38, + "end": 9685.92, + "probability": 0.9771 + }, + { + "start": 9686.32, + "end": 9688.08, + "probability": 0.9251 + }, + { + "start": 9688.34, + "end": 9688.56, + "probability": 0.8945 + }, + { + "start": 9689.48, + "end": 9690.54, + "probability": 0.8478 + }, + { + "start": 9690.6, + "end": 9691.28, + "probability": 0.7771 + }, + { + "start": 9691.68, + "end": 9693.18, + "probability": 0.9808 + }, + { + "start": 9693.68, + "end": 9694.84, + "probability": 0.8611 + }, + { + "start": 9695.42, + "end": 9695.8, + "probability": 0.9185 + }, + { + "start": 9697.14, + "end": 9700.28, + "probability": 0.9841 + }, + { + "start": 9701.06, + "end": 9701.64, + "probability": 0.9034 + }, + { + "start": 9701.74, + "end": 9702.38, + "probability": 0.934 + }, + { + "start": 9702.46, + "end": 9703.3, + "probability": 0.9016 + }, + { + "start": 9703.6, + "end": 9704.66, + "probability": 0.9285 + }, + { + "start": 9704.8, + "end": 9705.22, + "probability": 0.7167 + }, + { + "start": 9705.3, + "end": 9706.05, + "probability": 0.7428 + }, + { + "start": 9707.0, + "end": 9710.94, + "probability": 0.8944 + }, + { + "start": 9711.02, + "end": 9717.44, + "probability": 0.9878 + }, + { + "start": 9718.3, + "end": 9719.24, + "probability": 0.9685 + }, + { + "start": 9719.88, + "end": 9724.98, + "probability": 0.9978 + }, + { + "start": 9725.88, + "end": 9728.88, + "probability": 0.8452 + }, + { + "start": 9729.0, + "end": 9730.26, + "probability": 0.9888 + }, + { + "start": 9730.6, + "end": 9733.12, + "probability": 0.8117 + }, + { + "start": 9733.58, + "end": 9734.7, + "probability": 0.9084 + }, + { + "start": 9735.16, + "end": 9736.36, + "probability": 0.9039 + }, + { + "start": 9736.44, + "end": 9736.86, + "probability": 0.7391 + }, + { + "start": 9736.88, + "end": 9737.12, + "probability": 0.6692 + }, + { + "start": 9737.16, + "end": 9740.48, + "probability": 0.9943 + }, + { + "start": 9740.92, + "end": 9742.46, + "probability": 0.9525 + }, + { + "start": 9742.68, + "end": 9744.26, + "probability": 0.9827 + }, + { + "start": 9744.7, + "end": 9745.26, + "probability": 0.8143 + }, + { + "start": 9745.46, + "end": 9746.1, + "probability": 0.7479 + }, + { + "start": 9747.38, + "end": 9750.56, + "probability": 0.998 + }, + { + "start": 9751.42, + "end": 9753.92, + "probability": 0.1114 + }, + { + "start": 9756.6, + "end": 9759.58, + "probability": 0.024 + }, + { + "start": 9760.18, + "end": 9760.2, + "probability": 0.2382 + }, + { + "start": 9760.2, + "end": 9760.44, + "probability": 0.3975 + }, + { + "start": 9760.52, + "end": 9760.9, + "probability": 0.0988 + }, + { + "start": 9760.9, + "end": 9760.9, + "probability": 0.0406 + }, + { + "start": 9760.9, + "end": 9760.9, + "probability": 0.1092 + }, + { + "start": 9760.9, + "end": 9764.96, + "probability": 0.8715 + }, + { + "start": 9764.98, + "end": 9768.26, + "probability": 0.9922 + }, + { + "start": 9768.26, + "end": 9771.1, + "probability": 0.998 + }, + { + "start": 9771.98, + "end": 9773.96, + "probability": 0.9884 + }, + { + "start": 9774.42, + "end": 9776.48, + "probability": 0.9729 + }, + { + "start": 9776.58, + "end": 9776.98, + "probability": 0.7887 + }, + { + "start": 9777.0, + "end": 9779.32, + "probability": 0.9886 + }, + { + "start": 9779.36, + "end": 9779.64, + "probability": 0.8821 + }, + { + "start": 9780.84, + "end": 9782.16, + "probability": 0.6483 + }, + { + "start": 9782.32, + "end": 9784.58, + "probability": 0.9874 + }, + { + "start": 9785.32, + "end": 9786.88, + "probability": 0.9091 + }, + { + "start": 9788.56, + "end": 9791.62, + "probability": 0.8607 + }, + { + "start": 9791.76, + "end": 9793.8, + "probability": 0.9149 + }, + { + "start": 9795.03, + "end": 9798.7, + "probability": 0.8587 + }, + { + "start": 9798.84, + "end": 9799.94, + "probability": 0.4495 + }, + { + "start": 9800.42, + "end": 9802.14, + "probability": 0.5917 + }, + { + "start": 9802.48, + "end": 9803.12, + "probability": 0.7125 + }, + { + "start": 9803.54, + "end": 9804.02, + "probability": 0.2303 + }, + { + "start": 9809.26, + "end": 9814.5, + "probability": 0.0312 + }, + { + "start": 9814.5, + "end": 9814.5, + "probability": 0.033 + }, + { + "start": 9817.14, + "end": 9817.28, + "probability": 0.0421 + }, + { + "start": 9818.54, + "end": 9819.82, + "probability": 0.2914 + }, + { + "start": 9819.84, + "end": 9820.95, + "probability": 0.5891 + }, + { + "start": 9821.88, + "end": 9823.66, + "probability": 0.3152 + }, + { + "start": 9823.72, + "end": 9824.52, + "probability": 0.6544 + }, + { + "start": 9824.6, + "end": 9828.42, + "probability": 0.9835 + }, + { + "start": 9829.3, + "end": 9830.66, + "probability": 0.5503 + }, + { + "start": 9830.88, + "end": 9831.7, + "probability": 0.6566 + }, + { + "start": 9832.08, + "end": 9832.78, + "probability": 0.8558 + }, + { + "start": 9833.66, + "end": 9834.73, + "probability": 0.9108 + }, + { + "start": 9835.72, + "end": 9836.7, + "probability": 0.9609 + }, + { + "start": 9837.12, + "end": 9840.1, + "probability": 0.7658 + }, + { + "start": 9840.66, + "end": 9842.28, + "probability": 0.8636 + }, + { + "start": 9842.5, + "end": 9843.14, + "probability": 0.5846 + }, + { + "start": 9843.56, + "end": 9847.68, + "probability": 0.8931 + }, + { + "start": 9848.24, + "end": 9850.0, + "probability": 0.9187 + }, + { + "start": 9850.12, + "end": 9854.88, + "probability": 0.9458 + }, + { + "start": 9855.58, + "end": 9860.12, + "probability": 0.7048 + }, + { + "start": 9860.68, + "end": 9861.96, + "probability": 0.8719 + }, + { + "start": 9862.58, + "end": 9863.72, + "probability": 0.7667 + }, + { + "start": 9863.8, + "end": 9866.16, + "probability": 0.9406 + }, + { + "start": 9866.22, + "end": 9868.12, + "probability": 0.5807 + }, + { + "start": 9868.52, + "end": 9870.7, + "probability": 0.7361 + }, + { + "start": 9871.34, + "end": 9872.04, + "probability": 0.4617 + }, + { + "start": 9872.6, + "end": 9875.74, + "probability": 0.0345 + }, + { + "start": 9876.98, + "end": 9877.92, + "probability": 0.5098 + }, + { + "start": 9910.32, + "end": 9912.02, + "probability": 0.6021 + }, + { + "start": 9913.18, + "end": 9914.34, + "probability": 0.7323 + }, + { + "start": 9917.35, + "end": 9918.3, + "probability": 0.2267 + }, + { + "start": 9923.4, + "end": 9927.46, + "probability": 0.8165 + }, + { + "start": 9928.38, + "end": 9937.02, + "probability": 0.981 + }, + { + "start": 9937.74, + "end": 9939.59, + "probability": 0.9988 + }, + { + "start": 9940.1, + "end": 9941.8, + "probability": 0.8082 + }, + { + "start": 9943.22, + "end": 9947.24, + "probability": 0.4993 + }, + { + "start": 9947.38, + "end": 9951.16, + "probability": 0.9897 + }, + { + "start": 9951.84, + "end": 9953.06, + "probability": 0.8599 + }, + { + "start": 9953.2, + "end": 9956.54, + "probability": 0.8337 + }, + { + "start": 9956.82, + "end": 9957.54, + "probability": 0.4854 + }, + { + "start": 9957.64, + "end": 9961.04, + "probability": 0.9652 + }, + { + "start": 9961.2, + "end": 9961.98, + "probability": 0.793 + }, + { + "start": 9962.18, + "end": 9963.68, + "probability": 0.868 + }, + { + "start": 9964.32, + "end": 9968.51, + "probability": 0.9878 + }, + { + "start": 9969.94, + "end": 9977.92, + "probability": 0.9816 + }, + { + "start": 9978.36, + "end": 9983.36, + "probability": 0.6616 + }, + { + "start": 9983.56, + "end": 9988.2, + "probability": 0.9966 + }, + { + "start": 9989.04, + "end": 9991.64, + "probability": 0.9761 + }, + { + "start": 9991.78, + "end": 9996.82, + "probability": 0.9984 + }, + { + "start": 9999.44, + "end": 10000.56, + "probability": 0.6689 + }, + { + "start": 10001.4, + "end": 10003.82, + "probability": 0.9634 + }, + { + "start": 10005.06, + "end": 10007.18, + "probability": 0.5222 + }, + { + "start": 10008.22, + "end": 10008.22, + "probability": 0.6067 + }, + { + "start": 10008.22, + "end": 10012.18, + "probability": 0.9632 + }, + { + "start": 10014.24, + "end": 10019.92, + "probability": 0.6795 + }, + { + "start": 10021.18, + "end": 10022.11, + "probability": 0.7007 + }, + { + "start": 10023.0, + "end": 10024.8, + "probability": 0.9765 + }, + { + "start": 10025.94, + "end": 10028.5, + "probability": 0.7817 + }, + { + "start": 10029.3, + "end": 10030.02, + "probability": 0.5417 + }, + { + "start": 10030.24, + "end": 10034.27, + "probability": 0.9772 + }, + { + "start": 10034.72, + "end": 10035.86, + "probability": 0.7051 + }, + { + "start": 10035.94, + "end": 10036.78, + "probability": 0.9877 + }, + { + "start": 10039.6, + "end": 10044.18, + "probability": 0.9735 + }, + { + "start": 10046.62, + "end": 10047.82, + "probability": 0.8289 + }, + { + "start": 10048.9, + "end": 10051.98, + "probability": 0.9799 + }, + { + "start": 10052.58, + "end": 10054.5, + "probability": 0.9965 + }, + { + "start": 10054.62, + "end": 10059.56, + "probability": 0.9948 + }, + { + "start": 10059.72, + "end": 10061.44, + "probability": 0.9868 + }, + { + "start": 10062.3, + "end": 10065.86, + "probability": 0.9941 + }, + { + "start": 10065.92, + "end": 10066.83, + "probability": 0.9467 + }, + { + "start": 10067.74, + "end": 10070.44, + "probability": 0.9971 + }, + { + "start": 10071.82, + "end": 10074.24, + "probability": 0.8379 + }, + { + "start": 10075.26, + "end": 10076.08, + "probability": 0.2552 + }, + { + "start": 10077.72, + "end": 10078.8, + "probability": 0.7724 + }, + { + "start": 10079.5, + "end": 10082.44, + "probability": 0.9937 + }, + { + "start": 10084.2, + "end": 10084.66, + "probability": 0.5624 + }, + { + "start": 10085.6, + "end": 10087.44, + "probability": 0.9873 + }, + { + "start": 10088.1, + "end": 10092.02, + "probability": 0.9858 + }, + { + "start": 10093.98, + "end": 10095.64, + "probability": 0.9333 + }, + { + "start": 10096.04, + "end": 10101.04, + "probability": 0.8701 + }, + { + "start": 10102.12, + "end": 10103.52, + "probability": 0.9197 + }, + { + "start": 10110.24, + "end": 10113.58, + "probability": 0.79 + }, + { + "start": 10116.02, + "end": 10117.82, + "probability": 0.9526 + }, + { + "start": 10117.86, + "end": 10119.81, + "probability": 0.9878 + }, + { + "start": 10120.06, + "end": 10121.3, + "probability": 0.98 + }, + { + "start": 10122.22, + "end": 10124.28, + "probability": 0.5458 + }, + { + "start": 10125.0, + "end": 10125.72, + "probability": 0.726 + }, + { + "start": 10127.44, + "end": 10130.34, + "probability": 0.7624 + }, + { + "start": 10132.12, + "end": 10134.1, + "probability": 0.525 + }, + { + "start": 10135.18, + "end": 10136.08, + "probability": 0.7682 + }, + { + "start": 10136.18, + "end": 10137.1, + "probability": 0.905 + }, + { + "start": 10137.14, + "end": 10141.14, + "probability": 0.9697 + }, + { + "start": 10141.6, + "end": 10142.68, + "probability": 0.8457 + }, + { + "start": 10143.38, + "end": 10146.12, + "probability": 0.9954 + }, + { + "start": 10148.36, + "end": 10149.82, + "probability": 0.9944 + }, + { + "start": 10152.34, + "end": 10153.22, + "probability": 0.456 + }, + { + "start": 10153.42, + "end": 10156.66, + "probability": 0.6398 + }, + { + "start": 10156.68, + "end": 10158.22, + "probability": 0.645 + }, + { + "start": 10160.36, + "end": 10164.4, + "probability": 0.9775 + }, + { + "start": 10167.92, + "end": 10170.62, + "probability": 0.617 + }, + { + "start": 10171.24, + "end": 10173.48, + "probability": 0.9858 + }, + { + "start": 10175.54, + "end": 10178.58, + "probability": 0.7834 + }, + { + "start": 10181.48, + "end": 10182.62, + "probability": 0.5734 + }, + { + "start": 10183.06, + "end": 10184.44, + "probability": 0.7738 + }, + { + "start": 10184.46, + "end": 10187.46, + "probability": 0.9478 + }, + { + "start": 10187.58, + "end": 10189.16, + "probability": 0.9958 + }, + { + "start": 10191.26, + "end": 10194.24, + "probability": 0.9856 + }, + { + "start": 10195.02, + "end": 10196.28, + "probability": 0.7646 + }, + { + "start": 10196.34, + "end": 10196.76, + "probability": 0.8253 + }, + { + "start": 10196.78, + "end": 10197.56, + "probability": 0.3376 + }, + { + "start": 10197.84, + "end": 10197.94, + "probability": 0.3107 + }, + { + "start": 10199.06, + "end": 10202.0, + "probability": 0.9984 + }, + { + "start": 10203.2, + "end": 10205.26, + "probability": 0.8854 + }, + { + "start": 10206.56, + "end": 10208.86, + "probability": 0.8338 + }, + { + "start": 10209.56, + "end": 10212.76, + "probability": 0.9648 + }, + { + "start": 10214.72, + "end": 10216.48, + "probability": 0.4405 + }, + { + "start": 10217.46, + "end": 10222.42, + "probability": 0.9951 + }, + { + "start": 10222.66, + "end": 10224.76, + "probability": 0.8773 + }, + { + "start": 10226.46, + "end": 10228.54, + "probability": 0.9771 + }, + { + "start": 10231.44, + "end": 10232.58, + "probability": 0.7441 + }, + { + "start": 10233.52, + "end": 10236.22, + "probability": 0.9912 + }, + { + "start": 10237.22, + "end": 10239.74, + "probability": 0.9288 + }, + { + "start": 10240.4, + "end": 10242.0, + "probability": 0.9929 + }, + { + "start": 10242.8, + "end": 10244.76, + "probability": 0.991 + }, + { + "start": 10245.82, + "end": 10248.26, + "probability": 0.9825 + }, + { + "start": 10249.36, + "end": 10250.72, + "probability": 0.6419 + }, + { + "start": 10251.32, + "end": 10251.94, + "probability": 0.8703 + }, + { + "start": 10252.72, + "end": 10254.94, + "probability": 0.9482 + }, + { + "start": 10255.54, + "end": 10259.08, + "probability": 0.9463 + }, + { + "start": 10260.08, + "end": 10260.54, + "probability": 0.7222 + }, + { + "start": 10260.58, + "end": 10263.66, + "probability": 0.967 + }, + { + "start": 10264.95, + "end": 10268.7, + "probability": 0.9888 + }, + { + "start": 10269.16, + "end": 10270.08, + "probability": 0.5304 + }, + { + "start": 10280.16, + "end": 10283.28, + "probability": 0.8384 + }, + { + "start": 10283.28, + "end": 10286.26, + "probability": 0.9924 + }, + { + "start": 10286.28, + "end": 10287.5, + "probability": 0.9256 + }, + { + "start": 10287.8, + "end": 10289.76, + "probability": 0.9651 + }, + { + "start": 10290.02, + "end": 10291.52, + "probability": 0.9921 + }, + { + "start": 10292.06, + "end": 10293.0, + "probability": 0.9723 + }, + { + "start": 10293.12, + "end": 10294.54, + "probability": 0.9981 + }, + { + "start": 10297.66, + "end": 10300.92, + "probability": 0.7413 + }, + { + "start": 10301.8, + "end": 10302.94, + "probability": 0.8621 + }, + { + "start": 10303.1, + "end": 10306.0, + "probability": 0.7887 + }, + { + "start": 10306.78, + "end": 10308.24, + "probability": 0.9368 + }, + { + "start": 10309.24, + "end": 10310.84, + "probability": 0.7593 + }, + { + "start": 10312.46, + "end": 10315.93, + "probability": 0.8645 + }, + { + "start": 10316.72, + "end": 10320.16, + "probability": 0.9559 + }, + { + "start": 10320.88, + "end": 10324.64, + "probability": 0.9766 + }, + { + "start": 10325.62, + "end": 10328.2, + "probability": 0.9309 + }, + { + "start": 10328.2, + "end": 10331.62, + "probability": 0.9802 + }, + { + "start": 10332.66, + "end": 10335.22, + "probability": 0.9852 + }, + { + "start": 10335.92, + "end": 10340.56, + "probability": 0.9979 + }, + { + "start": 10340.56, + "end": 10344.98, + "probability": 0.9956 + }, + { + "start": 10345.88, + "end": 10346.36, + "probability": 0.342 + }, + { + "start": 10347.58, + "end": 10351.0, + "probability": 0.9854 + }, + { + "start": 10352.16, + "end": 10356.6, + "probability": 0.987 + }, + { + "start": 10357.5, + "end": 10362.04, + "probability": 0.7221 + }, + { + "start": 10363.22, + "end": 10364.5, + "probability": 0.3595 + }, + { + "start": 10365.2, + "end": 10366.96, + "probability": 0.7498 + }, + { + "start": 10368.48, + "end": 10370.68, + "probability": 0.9583 + }, + { + "start": 10371.5, + "end": 10373.1, + "probability": 0.7723 + }, + { + "start": 10374.5, + "end": 10376.3, + "probability": 0.9974 + }, + { + "start": 10376.3, + "end": 10378.44, + "probability": 0.9709 + }, + { + "start": 10379.32, + "end": 10381.8, + "probability": 0.9987 + }, + { + "start": 10393.3, + "end": 10397.58, + "probability": 0.9714 + }, + { + "start": 10398.54, + "end": 10403.04, + "probability": 0.9985 + }, + { + "start": 10403.04, + "end": 10407.58, + "probability": 0.9888 + }, + { + "start": 10408.74, + "end": 10409.28, + "probability": 0.0015 + }, + { + "start": 10409.28, + "end": 10409.84, + "probability": 0.2161 + }, + { + "start": 10416.84, + "end": 10417.46, + "probability": 0.0345 + }, + { + "start": 10417.46, + "end": 10418.06, + "probability": 0.4836 + }, + { + "start": 10419.0, + "end": 10421.64, + "probability": 0.8182 + }, + { + "start": 10422.24, + "end": 10426.08, + "probability": 0.9932 + }, + { + "start": 10427.49, + "end": 10429.78, + "probability": 0.9839 + }, + { + "start": 10429.9, + "end": 10431.54, + "probability": 0.6128 + }, + { + "start": 10431.82, + "end": 10434.12, + "probability": 0.0435 + }, + { + "start": 10448.7, + "end": 10450.24, + "probability": 0.0548 + }, + { + "start": 10450.8, + "end": 10454.3, + "probability": 0.6918 + }, + { + "start": 10454.98, + "end": 10456.01, + "probability": 0.958 + }, + { + "start": 10456.16, + "end": 10459.5, + "probability": 0.482 + }, + { + "start": 10459.8, + "end": 10460.76, + "probability": 0.7953 + }, + { + "start": 10461.42, + "end": 10464.14, + "probability": 0.8577 + }, + { + "start": 10466.19, + "end": 10469.24, + "probability": 0.6597 + }, + { + "start": 10469.24, + "end": 10470.22, + "probability": 0.9963 + }, + { + "start": 10475.98, + "end": 10479.32, + "probability": 0.9394 + }, + { + "start": 10479.48, + "end": 10480.44, + "probability": 0.8232 + }, + { + "start": 10483.18, + "end": 10484.31, + "probability": 0.0226 + }, + { + "start": 10486.66, + "end": 10486.74, + "probability": 0.0227 + }, + { + "start": 10486.74, + "end": 10486.86, + "probability": 0.1071 + }, + { + "start": 10507.32, + "end": 10508.08, + "probability": 0.2526 + }, + { + "start": 10512.94, + "end": 10518.84, + "probability": 0.9368 + }, + { + "start": 10519.78, + "end": 10521.16, + "probability": 0.3586 + }, + { + "start": 10521.4, + "end": 10523.34, + "probability": 0.516 + }, + { + "start": 10524.1, + "end": 10525.88, + "probability": 0.2548 + }, + { + "start": 10527.17, + "end": 10529.4, + "probability": 0.1361 + }, + { + "start": 10537.36, + "end": 10537.74, + "probability": 0.1867 + }, + { + "start": 10539.58, + "end": 10542.7, + "probability": 0.3566 + }, + { + "start": 10544.12, + "end": 10545.42, + "probability": 0.0392 + }, + { + "start": 10550.18, + "end": 10551.46, + "probability": 0.0238 + }, + { + "start": 10553.04, + "end": 10554.54, + "probability": 0.6603 + }, + { + "start": 10554.88, + "end": 10559.78, + "probability": 0.7886 + }, + { + "start": 10560.68, + "end": 10563.16, + "probability": 0.6093 + }, + { + "start": 10563.5, + "end": 10564.14, + "probability": 0.8796 + }, + { + "start": 10565.2, + "end": 10565.3, + "probability": 0.6086 + }, + { + "start": 10565.3, + "end": 10570.62, + "probability": 0.948 + }, + { + "start": 10571.32, + "end": 10573.04, + "probability": 0.8986 + }, + { + "start": 10573.56, + "end": 10577.34, + "probability": 0.9919 + }, + { + "start": 10577.34, + "end": 10581.0, + "probability": 0.9741 + }, + { + "start": 10581.04, + "end": 10583.46, + "probability": 0.9838 + }, + { + "start": 10583.46, + "end": 10586.68, + "probability": 0.979 + }, + { + "start": 10588.16, + "end": 10590.96, + "probability": 0.9869 + }, + { + "start": 10590.96, + "end": 10594.9, + "probability": 0.9603 + }, + { + "start": 10595.52, + "end": 10598.04, + "probability": 0.915 + }, + { + "start": 10598.72, + "end": 10601.54, + "probability": 0.9996 + }, + { + "start": 10602.52, + "end": 10604.78, + "probability": 0.9984 + }, + { + "start": 10605.44, + "end": 10608.98, + "probability": 0.9873 + }, + { + "start": 10609.76, + "end": 10612.26, + "probability": 0.9587 + }, + { + "start": 10613.22, + "end": 10613.88, + "probability": 0.9194 + }, + { + "start": 10614.38, + "end": 10616.58, + "probability": 0.994 + }, + { + "start": 10617.14, + "end": 10622.16, + "probability": 0.9184 + }, + { + "start": 10622.28, + "end": 10623.12, + "probability": 0.9241 + }, + { + "start": 10624.46, + "end": 10627.6, + "probability": 0.1078 + }, + { + "start": 10628.44, + "end": 10628.74, + "probability": 0.4904 + }, + { + "start": 10628.98, + "end": 10630.94, + "probability": 0.9885 + }, + { + "start": 10630.94, + "end": 10634.16, + "probability": 0.9964 + }, + { + "start": 10634.86, + "end": 10638.54, + "probability": 0.981 + }, + { + "start": 10639.28, + "end": 10644.0, + "probability": 0.9944 + }, + { + "start": 10644.0, + "end": 10648.6, + "probability": 0.9876 + }, + { + "start": 10649.66, + "end": 10649.96, + "probability": 0.2825 + }, + { + "start": 10650.06, + "end": 10653.46, + "probability": 0.9891 + }, + { + "start": 10653.46, + "end": 10656.04, + "probability": 0.9741 + }, + { + "start": 10656.82, + "end": 10660.18, + "probability": 0.9305 + }, + { + "start": 10661.7, + "end": 10663.46, + "probability": 0.998 + }, + { + "start": 10663.46, + "end": 10665.46, + "probability": 0.8359 + }, + { + "start": 10666.28, + "end": 10668.98, + "probability": 0.994 + }, + { + "start": 10668.98, + "end": 10671.54, + "probability": 0.9738 + }, + { + "start": 10672.08, + "end": 10675.34, + "probability": 0.8429 + }, + { + "start": 10675.34, + "end": 10679.2, + "probability": 0.9938 + }, + { + "start": 10679.7, + "end": 10683.0, + "probability": 0.9314 + }, + { + "start": 10683.84, + "end": 10684.18, + "probability": 0.7087 + }, + { + "start": 10684.24, + "end": 10686.9, + "probability": 0.9885 + }, + { + "start": 10686.9, + "end": 10691.08, + "probability": 0.9969 + }, + { + "start": 10691.82, + "end": 10695.3, + "probability": 0.997 + }, + { + "start": 10695.7, + "end": 10698.7, + "probability": 0.9921 + }, + { + "start": 10698.7, + "end": 10702.68, + "probability": 0.991 + }, + { + "start": 10703.26, + "end": 10705.36, + "probability": 0.9883 + }, + { + "start": 10705.44, + "end": 10708.7, + "probability": 0.9573 + }, + { + "start": 10708.7, + "end": 10712.12, + "probability": 0.9923 + }, + { + "start": 10712.98, + "end": 10713.62, + "probability": 0.4415 + }, + { + "start": 10713.62, + "end": 10716.8, + "probability": 0.9891 + }, + { + "start": 10718.3, + "end": 10721.04, + "probability": 0.9891 + }, + { + "start": 10721.78, + "end": 10722.41, + "probability": 0.9702 + }, + { + "start": 10722.52, + "end": 10727.48, + "probability": 0.9971 + }, + { + "start": 10727.48, + "end": 10731.1, + "probability": 0.8052 + }, + { + "start": 10731.72, + "end": 10732.96, + "probability": 0.8233 + }, + { + "start": 10733.68, + "end": 10738.48, + "probability": 0.9874 + }, + { + "start": 10739.47, + "end": 10740.08, + "probability": 0.5922 + }, + { + "start": 10741.52, + "end": 10743.88, + "probability": 0.7137 + }, + { + "start": 10744.22, + "end": 10744.66, + "probability": 0.7735 + }, + { + "start": 10745.96, + "end": 10750.1, + "probability": 0.9412 + }, + { + "start": 10750.26, + "end": 10753.66, + "probability": 0.8482 + }, + { + "start": 10753.98, + "end": 10754.64, + "probability": 0.1864 + }, + { + "start": 10755.8, + "end": 10758.74, + "probability": 0.8176 + }, + { + "start": 10759.48, + "end": 10759.72, + "probability": 0.6315 + }, + { + "start": 10759.74, + "end": 10760.78, + "probability": 0.6138 + }, + { + "start": 10761.02, + "end": 10765.2, + "probability": 0.9404 + }, + { + "start": 10765.24, + "end": 10766.82, + "probability": 0.5642 + }, + { + "start": 10767.66, + "end": 10769.16, + "probability": 0.3963 + }, + { + "start": 10770.26, + "end": 10773.24, + "probability": 0.6979 + }, + { + "start": 10775.98, + "end": 10779.48, + "probability": 0.0826 + }, + { + "start": 10780.22, + "end": 10780.92, + "probability": 0.0466 + }, + { + "start": 10787.86, + "end": 10788.46, + "probability": 0.5091 + }, + { + "start": 10788.46, + "end": 10788.56, + "probability": 0.061 + }, + { + "start": 10788.7, + "end": 10789.68, + "probability": 0.2043 + }, + { + "start": 10789.68, + "end": 10792.8, + "probability": 0.514 + }, + { + "start": 10793.18, + "end": 10795.4, + "probability": 0.7956 + }, + { + "start": 10795.56, + "end": 10796.04, + "probability": 0.6611 + }, + { + "start": 10796.68, + "end": 10797.06, + "probability": 0.8522 + }, + { + "start": 10797.7, + "end": 10799.96, + "probability": 0.7325 + }, + { + "start": 10800.04, + "end": 10803.18, + "probability": 0.7988 + }, + { + "start": 10803.18, + "end": 10806.36, + "probability": 0.7575 + }, + { + "start": 10806.82, + "end": 10809.16, + "probability": 0.7151 + }, + { + "start": 10809.64, + "end": 10810.3, + "probability": 0.7389 + }, + { + "start": 10810.86, + "end": 10812.78, + "probability": 0.8721 + }, + { + "start": 10812.78, + "end": 10815.48, + "probability": 0.7213 + }, + { + "start": 10815.58, + "end": 10816.46, + "probability": 0.3414 + }, + { + "start": 10816.58, + "end": 10819.54, + "probability": 0.7874 + }, + { + "start": 10819.86, + "end": 10821.16, + "probability": 0.8885 + }, + { + "start": 10824.44, + "end": 10825.76, + "probability": 0.9945 + }, + { + "start": 10827.02, + "end": 10829.05, + "probability": 0.6411 + }, + { + "start": 10829.72, + "end": 10830.5, + "probability": 0.8904 + }, + { + "start": 10837.92, + "end": 10838.48, + "probability": 0.7065 + }, + { + "start": 10838.56, + "end": 10840.98, + "probability": 0.6635 + }, + { + "start": 10842.64, + "end": 10844.04, + "probability": 0.9756 + }, + { + "start": 10845.36, + "end": 10847.08, + "probability": 0.7578 + }, + { + "start": 10847.46, + "end": 10848.92, + "probability": 0.6424 + }, + { + "start": 10849.14, + "end": 10852.66, + "probability": 0.6396 + }, + { + "start": 10853.24, + "end": 10855.64, + "probability": 0.9817 + }, + { + "start": 10856.16, + "end": 10858.12, + "probability": 0.9981 + }, + { + "start": 10858.66, + "end": 10861.46, + "probability": 0.6946 + }, + { + "start": 10861.76, + "end": 10862.2, + "probability": 0.3626 + }, + { + "start": 10862.2, + "end": 10864.24, + "probability": 0.9334 + }, + { + "start": 10864.3, + "end": 10865.48, + "probability": 0.5373 + }, + { + "start": 10867.32, + "end": 10867.54, + "probability": 0.0941 + }, + { + "start": 10867.54, + "end": 10867.54, + "probability": 0.1628 + }, + { + "start": 10867.54, + "end": 10868.04, + "probability": 0.057 + }, + { + "start": 10868.04, + "end": 10868.38, + "probability": 0.2118 + }, + { + "start": 10871.44, + "end": 10873.18, + "probability": 0.6743 + }, + { + "start": 10873.28, + "end": 10873.7, + "probability": 0.8129 + }, + { + "start": 10873.78, + "end": 10877.26, + "probability": 0.9637 + }, + { + "start": 10877.98, + "end": 10880.92, + "probability": 0.974 + }, + { + "start": 10881.38, + "end": 10882.1, + "probability": 0.8796 + }, + { + "start": 10882.34, + "end": 10887.16, + "probability": 0.9856 + }, + { + "start": 10887.86, + "end": 10889.16, + "probability": 0.9918 + }, + { + "start": 10889.56, + "end": 10891.48, + "probability": 0.9725 + }, + { + "start": 10891.52, + "end": 10892.44, + "probability": 0.9293 + }, + { + "start": 10892.72, + "end": 10897.44, + "probability": 0.245 + }, + { + "start": 10898.18, + "end": 10900.16, + "probability": 0.9087 + }, + { + "start": 10900.84, + "end": 10901.2, + "probability": 0.8551 + }, + { + "start": 10901.56, + "end": 10902.16, + "probability": 0.512 + }, + { + "start": 10902.32, + "end": 10903.94, + "probability": 0.7069 + }, + { + "start": 10904.02, + "end": 10906.42, + "probability": 0.9255 + }, + { + "start": 10907.36, + "end": 10908.1, + "probability": 0.6539 + }, + { + "start": 10908.88, + "end": 10909.62, + "probability": 0.5463 + }, + { + "start": 10909.96, + "end": 10911.44, + "probability": 0.9347 + }, + { + "start": 10911.92, + "end": 10913.26, + "probability": 0.9848 + }, + { + "start": 10914.9, + "end": 10918.5, + "probability": 0.8572 + }, + { + "start": 10919.22, + "end": 10923.42, + "probability": 0.9816 + }, + { + "start": 10924.0, + "end": 10928.7, + "probability": 0.9771 + }, + { + "start": 10929.46, + "end": 10932.18, + "probability": 0.9944 + }, + { + "start": 10932.8, + "end": 10935.58, + "probability": 0.9781 + }, + { + "start": 10936.22, + "end": 10937.7, + "probability": 0.9224 + }, + { + "start": 10938.22, + "end": 10939.0, + "probability": 0.6634 + }, + { + "start": 10939.4, + "end": 10942.38, + "probability": 0.9988 + }, + { + "start": 10942.48, + "end": 10943.92, + "probability": 0.9887 + }, + { + "start": 10944.04, + "end": 10945.82, + "probability": 0.952 + }, + { + "start": 10948.66, + "end": 10948.68, + "probability": 0.6488 + }, + { + "start": 10948.68, + "end": 10952.26, + "probability": 0.7781 + }, + { + "start": 10952.26, + "end": 10956.98, + "probability": 1.0 + }, + { + "start": 10959.96, + "end": 10963.68, + "probability": 0.9038 + }, + { + "start": 10963.68, + "end": 10968.18, + "probability": 0.9948 + }, + { + "start": 10969.82, + "end": 10972.74, + "probability": 0.9513 + }, + { + "start": 10972.84, + "end": 10977.32, + "probability": 0.9783 + }, + { + "start": 10977.84, + "end": 10979.3, + "probability": 0.9889 + }, + { + "start": 10981.52, + "end": 10982.72, + "probability": 0.976 + }, + { + "start": 10983.08, + "end": 10984.08, + "probability": 0.922 + }, + { + "start": 10984.46, + "end": 10986.28, + "probability": 0.9858 + }, + { + "start": 10986.38, + "end": 10987.06, + "probability": 0.8179 + }, + { + "start": 10987.16, + "end": 10988.0, + "probability": 0.9063 + }, + { + "start": 10988.64, + "end": 10990.24, + "probability": 0.9806 + }, + { + "start": 10990.32, + "end": 10992.02, + "probability": 0.9921 + }, + { + "start": 10992.42, + "end": 10993.66, + "probability": 0.9022 + }, + { + "start": 10993.7, + "end": 10993.8, + "probability": 0.8663 + }, + { + "start": 10994.14, + "end": 10995.38, + "probability": 0.9295 + }, + { + "start": 10996.32, + "end": 10997.02, + "probability": 0.7604 + }, + { + "start": 10997.18, + "end": 10998.92, + "probability": 0.944 + }, + { + "start": 10999.04, + "end": 11000.06, + "probability": 0.9074 + }, + { + "start": 11000.54, + "end": 11004.56, + "probability": 0.7197 + }, + { + "start": 11004.62, + "end": 11005.74, + "probability": 0.7366 + }, + { + "start": 11006.16, + "end": 11009.06, + "probability": 0.7434 + }, + { + "start": 11009.76, + "end": 11011.16, + "probability": 0.9236 + }, + { + "start": 11011.74, + "end": 11013.44, + "probability": 0.6235 + }, + { + "start": 11013.96, + "end": 11016.14, + "probability": 0.9456 + }, + { + "start": 11016.24, + "end": 11016.78, + "probability": 0.5539 + }, + { + "start": 11016.82, + "end": 11018.78, + "probability": 0.6405 + }, + { + "start": 11019.12, + "end": 11020.56, + "probability": 0.2793 + }, + { + "start": 11020.78, + "end": 11021.74, + "probability": 0.6448 + }, + { + "start": 11022.34, + "end": 11026.44, + "probability": 0.869 + }, + { + "start": 11026.52, + "end": 11028.66, + "probability": 0.9946 + }, + { + "start": 11030.26, + "end": 11037.16, + "probability": 0.9861 + }, + { + "start": 11037.16, + "end": 11040.02, + "probability": 0.998 + }, + { + "start": 11040.48, + "end": 11041.06, + "probability": 0.1562 + }, + { + "start": 11041.14, + "end": 11041.76, + "probability": 0.1715 + }, + { + "start": 11042.84, + "end": 11042.84, + "probability": 0.3244 + }, + { + "start": 11042.84, + "end": 11046.94, + "probability": 0.9775 + }, + { + "start": 11046.96, + "end": 11051.96, + "probability": 0.9988 + }, + { + "start": 11052.42, + "end": 11053.8, + "probability": 0.9504 + }, + { + "start": 11053.92, + "end": 11056.36, + "probability": 0.9696 + }, + { + "start": 11056.96, + "end": 11062.4, + "probability": 0.9863 + }, + { + "start": 11062.4, + "end": 11066.38, + "probability": 0.9952 + }, + { + "start": 11066.84, + "end": 11067.67, + "probability": 0.7413 + }, + { + "start": 11068.18, + "end": 11070.48, + "probability": 0.917 + }, + { + "start": 11071.0, + "end": 11072.96, + "probability": 0.9072 + }, + { + "start": 11073.34, + "end": 11076.12, + "probability": 0.6546 + }, + { + "start": 11077.06, + "end": 11080.14, + "probability": 0.3357 + }, + { + "start": 11080.84, + "end": 11082.96, + "probability": 0.9927 + }, + { + "start": 11083.08, + "end": 11087.12, + "probability": 0.5967 + }, + { + "start": 11087.2, + "end": 11087.2, + "probability": 0.5289 + }, + { + "start": 11087.2, + "end": 11088.18, + "probability": 0.9716 + }, + { + "start": 11088.28, + "end": 11089.44, + "probability": 0.9875 + }, + { + "start": 11089.84, + "end": 11090.74, + "probability": 0.938 + }, + { + "start": 11090.96, + "end": 11092.54, + "probability": 0.9906 + }, + { + "start": 11092.94, + "end": 11095.38, + "probability": 0.7308 + }, + { + "start": 11096.02, + "end": 11097.96, + "probability": 0.8651 + }, + { + "start": 11098.08, + "end": 11099.41, + "probability": 0.34 + }, + { + "start": 11101.04, + "end": 11101.54, + "probability": 0.8403 + }, + { + "start": 11101.7, + "end": 11104.16, + "probability": 0.1891 + }, + { + "start": 11104.54, + "end": 11105.78, + "probability": 0.5217 + }, + { + "start": 11105.96, + "end": 11107.46, + "probability": 0.8116 + }, + { + "start": 11107.88, + "end": 11108.56, + "probability": 0.4976 + }, + { + "start": 11108.56, + "end": 11109.9, + "probability": 0.5254 + }, + { + "start": 11110.57, + "end": 11112.58, + "probability": 0.4361 + }, + { + "start": 11112.58, + "end": 11114.64, + "probability": 0.6721 + }, + { + "start": 11115.5, + "end": 11116.92, + "probability": 0.4659 + }, + { + "start": 11116.92, + "end": 11119.14, + "probability": 0.9458 + }, + { + "start": 11119.45, + "end": 11120.66, + "probability": 0.7456 + }, + { + "start": 11120.72, + "end": 11122.18, + "probability": 0.5452 + }, + { + "start": 11122.78, + "end": 11127.46, + "probability": 0.9702 + }, + { + "start": 11127.92, + "end": 11131.1, + "probability": 0.9963 + }, + { + "start": 11131.64, + "end": 11135.38, + "probability": 0.9892 + }, + { + "start": 11135.38, + "end": 11138.24, + "probability": 0.9949 + }, + { + "start": 11138.58, + "end": 11141.16, + "probability": 0.8463 + }, + { + "start": 11141.66, + "end": 11142.54, + "probability": 0.6596 + }, + { + "start": 11142.58, + "end": 11143.98, + "probability": 0.7619 + }, + { + "start": 11144.14, + "end": 11148.22, + "probability": 0.9338 + }, + { + "start": 11148.22, + "end": 11152.28, + "probability": 0.9982 + }, + { + "start": 11152.28, + "end": 11156.66, + "probability": 0.9994 + }, + { + "start": 11158.26, + "end": 11160.42, + "probability": 0.9949 + }, + { + "start": 11160.52, + "end": 11163.26, + "probability": 0.9625 + }, + { + "start": 11163.3, + "end": 11165.42, + "probability": 0.2642 + }, + { + "start": 11165.64, + "end": 11166.23, + "probability": 0.5364 + }, + { + "start": 11166.64, + "end": 11167.63, + "probability": 0.8113 + }, + { + "start": 11168.32, + "end": 11173.32, + "probability": 0.8697 + }, + { + "start": 11173.7, + "end": 11177.96, + "probability": 0.9936 + }, + { + "start": 11177.96, + "end": 11181.22, + "probability": 0.9964 + }, + { + "start": 11181.84, + "end": 11183.52, + "probability": 0.9409 + }, + { + "start": 11183.7, + "end": 11187.14, + "probability": 0.998 + }, + { + "start": 11187.14, + "end": 11194.0, + "probability": 0.997 + }, + { + "start": 11194.0, + "end": 11197.84, + "probability": 0.9888 + }, + { + "start": 11198.2, + "end": 11199.6, + "probability": 0.8312 + }, + { + "start": 11201.26, + "end": 11203.76, + "probability": 0.9841 + }, + { + "start": 11203.94, + "end": 11204.4, + "probability": 0.779 + }, + { + "start": 11205.98, + "end": 11209.92, + "probability": 0.8193 + }, + { + "start": 11210.18, + "end": 11211.88, + "probability": 0.6035 + }, + { + "start": 11212.6, + "end": 11214.9, + "probability": 0.8389 + }, + { + "start": 11214.92, + "end": 11215.4, + "probability": 0.8422 + }, + { + "start": 11222.6, + "end": 11227.0, + "probability": 0.8135 + }, + { + "start": 11241.74, + "end": 11242.94, + "probability": 0.4811 + }, + { + "start": 11244.82, + "end": 11248.7, + "probability": 0.6862 + }, + { + "start": 11249.86, + "end": 11252.98, + "probability": 0.7511 + }, + { + "start": 11253.6, + "end": 11254.9, + "probability": 0.5368 + }, + { + "start": 11254.9, + "end": 11261.44, + "probability": 0.9739 + }, + { + "start": 11261.94, + "end": 11268.06, + "probability": 0.9956 + }, + { + "start": 11268.58, + "end": 11270.52, + "probability": 0.8251 + }, + { + "start": 11271.84, + "end": 11278.12, + "probability": 0.9912 + }, + { + "start": 11278.26, + "end": 11281.3, + "probability": 0.7541 + }, + { + "start": 11282.38, + "end": 11284.96, + "probability": 0.8444 + }, + { + "start": 11286.84, + "end": 11287.58, + "probability": 0.6014 + }, + { + "start": 11287.58, + "end": 11287.58, + "probability": 0.1571 + }, + { + "start": 11287.58, + "end": 11288.3, + "probability": 0.0664 + }, + { + "start": 11288.34, + "end": 11292.24, + "probability": 0.9849 + }, + { + "start": 11292.32, + "end": 11293.18, + "probability": 0.601 + }, + { + "start": 11293.7, + "end": 11295.31, + "probability": 0.4447 + }, + { + "start": 11295.82, + "end": 11296.58, + "probability": 0.7177 + }, + { + "start": 11297.04, + "end": 11298.78, + "probability": 0.4025 + }, + { + "start": 11299.44, + "end": 11302.82, + "probability": 0.9956 + }, + { + "start": 11302.9, + "end": 11304.63, + "probability": 0.6812 + }, + { + "start": 11306.48, + "end": 11310.66, + "probability": 0.7078 + }, + { + "start": 11311.4, + "end": 11316.21, + "probability": 0.9777 + }, + { + "start": 11317.12, + "end": 11319.22, + "probability": 0.4969 + }, + { + "start": 11319.72, + "end": 11324.16, + "probability": 0.946 + }, + { + "start": 11324.24, + "end": 11325.24, + "probability": 0.879 + }, + { + "start": 11325.38, + "end": 11326.72, + "probability": 0.9431 + }, + { + "start": 11327.36, + "end": 11330.36, + "probability": 0.9948 + }, + { + "start": 11330.62, + "end": 11333.07, + "probability": 0.9968 + }, + { + "start": 11333.8, + "end": 11335.88, + "probability": 0.9859 + }, + { + "start": 11335.88, + "end": 11339.36, + "probability": 0.9915 + }, + { + "start": 11339.44, + "end": 11344.96, + "probability": 0.9702 + }, + { + "start": 11346.98, + "end": 11353.52, + "probability": 0.9657 + }, + { + "start": 11354.38, + "end": 11355.22, + "probability": 0.7455 + }, + { + "start": 11355.32, + "end": 11358.34, + "probability": 0.8821 + }, + { + "start": 11358.48, + "end": 11361.83, + "probability": 0.9384 + }, + { + "start": 11364.38, + "end": 11367.42, + "probability": 0.9906 + }, + { + "start": 11367.54, + "end": 11368.92, + "probability": 0.9646 + }, + { + "start": 11369.02, + "end": 11372.94, + "probability": 0.9946 + }, + { + "start": 11372.94, + "end": 11377.1, + "probability": 0.9531 + }, + { + "start": 11377.8, + "end": 11383.88, + "probability": 0.9945 + }, + { + "start": 11384.0, + "end": 11384.76, + "probability": 0.5062 + }, + { + "start": 11385.34, + "end": 11388.44, + "probability": 0.8608 + }, + { + "start": 11389.54, + "end": 11391.94, + "probability": 0.9751 + }, + { + "start": 11392.06, + "end": 11392.77, + "probability": 0.6384 + }, + { + "start": 11393.12, + "end": 11395.56, + "probability": 0.9464 + }, + { + "start": 11396.14, + "end": 11398.64, + "probability": 0.9972 + }, + { + "start": 11398.64, + "end": 11402.28, + "probability": 0.9897 + }, + { + "start": 11402.8, + "end": 11405.78, + "probability": 0.9951 + }, + { + "start": 11405.94, + "end": 11406.88, + "probability": 0.8607 + }, + { + "start": 11407.34, + "end": 11411.32, + "probability": 0.8743 + }, + { + "start": 11411.87, + "end": 11417.13, + "probability": 0.9158 + }, + { + "start": 11418.72, + "end": 11419.04, + "probability": 0.5175 + }, + { + "start": 11419.2, + "end": 11420.58, + "probability": 0.8121 + }, + { + "start": 11420.86, + "end": 11428.36, + "probability": 0.9531 + }, + { + "start": 11428.48, + "end": 11432.58, + "probability": 0.9768 + }, + { + "start": 11432.58, + "end": 11435.88, + "probability": 0.9889 + }, + { + "start": 11436.32, + "end": 11438.86, + "probability": 0.3781 + }, + { + "start": 11439.46, + "end": 11442.34, + "probability": 0.9532 + }, + { + "start": 11442.42, + "end": 11444.98, + "probability": 0.992 + }, + { + "start": 11447.27, + "end": 11449.7, + "probability": 0.5703 + }, + { + "start": 11449.78, + "end": 11450.06, + "probability": 0.9306 + }, + { + "start": 11450.1, + "end": 11451.6, + "probability": 0.8884 + }, + { + "start": 11451.86, + "end": 11453.52, + "probability": 0.2955 + }, + { + "start": 11453.57, + "end": 11455.14, + "probability": 0.9297 + }, + { + "start": 11455.22, + "end": 11456.9, + "probability": 0.9939 + }, + { + "start": 11457.1, + "end": 11460.32, + "probability": 0.9985 + }, + { + "start": 11460.32, + "end": 11460.8, + "probability": 0.8513 + }, + { + "start": 11461.82, + "end": 11462.61, + "probability": 0.6851 + }, + { + "start": 11463.95, + "end": 11465.56, + "probability": 0.9678 + }, + { + "start": 11465.6, + "end": 11468.96, + "probability": 0.9526 + }, + { + "start": 11468.96, + "end": 11472.2, + "probability": 0.9985 + }, + { + "start": 11472.38, + "end": 11476.48, + "probability": 0.587 + }, + { + "start": 11477.2, + "end": 11479.52, + "probability": 0.8618 + }, + { + "start": 11479.7, + "end": 11485.44, + "probability": 0.9937 + }, + { + "start": 11486.22, + "end": 11486.98, + "probability": 0.7428 + }, + { + "start": 11487.75, + "end": 11495.38, + "probability": 0.979 + }, + { + "start": 11495.54, + "end": 11496.97, + "probability": 0.7597 + }, + { + "start": 11497.46, + "end": 11498.18, + "probability": 0.6235 + }, + { + "start": 11498.28, + "end": 11502.72, + "probability": 0.9857 + }, + { + "start": 11502.76, + "end": 11505.8, + "probability": 0.8689 + }, + { + "start": 11505.8, + "end": 11509.2, + "probability": 0.9979 + }, + { + "start": 11510.49, + "end": 11512.18, + "probability": 0.6721 + }, + { + "start": 11512.34, + "end": 11515.88, + "probability": 0.9962 + }, + { + "start": 11515.98, + "end": 11516.32, + "probability": 0.639 + }, + { + "start": 11517.08, + "end": 11518.64, + "probability": 0.5269 + }, + { + "start": 11520.52, + "end": 11522.96, + "probability": 0.5407 + }, + { + "start": 11523.5, + "end": 11525.32, + "probability": 0.839 + }, + { + "start": 11526.28, + "end": 11528.08, + "probability": 0.913 + }, + { + "start": 11549.78, + "end": 11551.12, + "probability": 0.7242 + }, + { + "start": 11551.76, + "end": 11553.46, + "probability": 0.721 + }, + { + "start": 11554.2, + "end": 11555.9, + "probability": 0.8199 + }, + { + "start": 11556.8, + "end": 11562.62, + "probability": 0.9797 + }, + { + "start": 11563.16, + "end": 11565.4, + "probability": 0.8146 + }, + { + "start": 11565.96, + "end": 11566.84, + "probability": 0.6899 + }, + { + "start": 11567.3, + "end": 11574.02, + "probability": 0.8771 + }, + { + "start": 11574.28, + "end": 11575.64, + "probability": 0.9701 + }, + { + "start": 11576.04, + "end": 11578.34, + "probability": 0.9271 + }, + { + "start": 11579.03, + "end": 11581.2, + "probability": 0.9646 + }, + { + "start": 11581.64, + "end": 11582.48, + "probability": 0.6835 + }, + { + "start": 11583.08, + "end": 11587.5, + "probability": 0.6552 + }, + { + "start": 11588.24, + "end": 11589.94, + "probability": 0.4531 + }, + { + "start": 11590.1, + "end": 11593.92, + "probability": 0.6718 + }, + { + "start": 11593.92, + "end": 11595.22, + "probability": 0.4076 + }, + { + "start": 11595.3, + "end": 11597.76, + "probability": 0.9242 + }, + { + "start": 11598.0, + "end": 11600.92, + "probability": 0.9792 + }, + { + "start": 11601.36, + "end": 11602.26, + "probability": 0.9156 + }, + { + "start": 11602.38, + "end": 11603.62, + "probability": 0.9069 + }, + { + "start": 11603.98, + "end": 11604.79, + "probability": 0.9424 + }, + { + "start": 11605.48, + "end": 11609.18, + "probability": 0.9797 + }, + { + "start": 11609.66, + "end": 11613.72, + "probability": 0.9847 + }, + { + "start": 11614.3, + "end": 11618.1, + "probability": 0.9983 + }, + { + "start": 11618.54, + "end": 11619.92, + "probability": 0.8913 + }, + { + "start": 11619.96, + "end": 11620.68, + "probability": 0.664 + }, + { + "start": 11620.76, + "end": 11623.86, + "probability": 0.9918 + }, + { + "start": 11624.32, + "end": 11630.48, + "probability": 0.9678 + }, + { + "start": 11631.64, + "end": 11634.14, + "probability": 0.9383 + }, + { + "start": 11634.14, + "end": 11634.53, + "probability": 0.9587 + }, + { + "start": 11635.04, + "end": 11637.28, + "probability": 0.8903 + }, + { + "start": 11637.32, + "end": 11641.2, + "probability": 0.7989 + }, + { + "start": 11641.62, + "end": 11641.7, + "probability": 0.0226 + }, + { + "start": 11641.7, + "end": 11643.78, + "probability": 0.9912 + }, + { + "start": 11643.8, + "end": 11644.02, + "probability": 0.0306 + }, + { + "start": 11644.02, + "end": 11644.12, + "probability": 0.5612 + }, + { + "start": 11644.32, + "end": 11647.08, + "probability": 0.8979 + }, + { + "start": 11647.36, + "end": 11647.86, + "probability": 0.0296 + }, + { + "start": 11647.86, + "end": 11649.46, + "probability": 0.3842 + }, + { + "start": 11651.28, + "end": 11652.1, + "probability": 0.6748 + }, + { + "start": 11653.66, + "end": 11654.62, + "probability": 0.8135 + }, + { + "start": 11655.12, + "end": 11656.84, + "probability": 0.9843 + }, + { + "start": 11657.4, + "end": 11659.1, + "probability": 0.9755 + }, + { + "start": 11659.36, + "end": 11661.72, + "probability": 0.9932 + }, + { + "start": 11662.26, + "end": 11665.94, + "probability": 0.9951 + }, + { + "start": 11666.34, + "end": 11668.42, + "probability": 0.8139 + }, + { + "start": 11668.68, + "end": 11670.82, + "probability": 0.9663 + }, + { + "start": 11671.18, + "end": 11672.7, + "probability": 0.7534 + }, + { + "start": 11672.98, + "end": 11673.17, + "probability": 0.361 + }, + { + "start": 11674.6, + "end": 11678.46, + "probability": 0.9564 + }, + { + "start": 11679.64, + "end": 11684.82, + "probability": 0.9905 + }, + { + "start": 11685.24, + "end": 11685.3, + "probability": 0.0077 + }, + { + "start": 11685.3, + "end": 11690.12, + "probability": 0.9618 + }, + { + "start": 11690.44, + "end": 11691.44, + "probability": 0.9102 + }, + { + "start": 11691.86, + "end": 11695.21, + "probability": 0.9757 + }, + { + "start": 11695.86, + "end": 11696.9, + "probability": 0.2291 + }, + { + "start": 11697.06, + "end": 11698.94, + "probability": 0.6546 + }, + { + "start": 11699.52, + "end": 11699.54, + "probability": 0.1566 + }, + { + "start": 11699.54, + "end": 11699.54, + "probability": 0.053 + }, + { + "start": 11699.54, + "end": 11699.54, + "probability": 0.3043 + }, + { + "start": 11699.54, + "end": 11699.54, + "probability": 0.2565 + }, + { + "start": 11699.54, + "end": 11704.06, + "probability": 0.1663 + }, + { + "start": 11704.06, + "end": 11705.8, + "probability": 0.3678 + }, + { + "start": 11705.9, + "end": 11707.28, + "probability": 0.343 + }, + { + "start": 11708.4, + "end": 11708.56, + "probability": 0.302 + }, + { + "start": 11713.38, + "end": 11716.14, + "probability": 0.0568 + }, + { + "start": 11716.2, + "end": 11717.32, + "probability": 0.1652 + }, + { + "start": 11717.46, + "end": 11717.58, + "probability": 0.3558 + }, + { + "start": 11717.68, + "end": 11721.16, + "probability": 0.1642 + }, + { + "start": 11722.18, + "end": 11723.1, + "probability": 0.1056 + }, + { + "start": 11728.06, + "end": 11729.18, + "probability": 0.3396 + }, + { + "start": 11730.34, + "end": 11730.94, + "probability": 0.02 + }, + { + "start": 11731.82, + "end": 11732.84, + "probability": 0.132 + }, + { + "start": 11733.06, + "end": 11734.56, + "probability": 0.2544 + }, + { + "start": 11734.56, + "end": 11734.74, + "probability": 0.2867 + }, + { + "start": 11734.82, + "end": 11735.88, + "probability": 0.1354 + }, + { + "start": 11735.88, + "end": 11738.64, + "probability": 0.054 + }, + { + "start": 11743.08, + "end": 11745.04, + "probability": 0.0626 + }, + { + "start": 11745.7, + "end": 11746.92, + "probability": 0.0441 + }, + { + "start": 11747.54, + "end": 11749.08, + "probability": 0.1704 + }, + { + "start": 11749.08, + "end": 11749.29, + "probability": 0.1278 + }, + { + "start": 11749.78, + "end": 11750.24, + "probability": 0.3176 + }, + { + "start": 11750.34, + "end": 11755.16, + "probability": 0.0943 + }, + { + "start": 11755.44, + "end": 11756.16, + "probability": 0.0711 + }, + { + "start": 11757.24, + "end": 11762.26, + "probability": 0.2331 + }, + { + "start": 11762.38, + "end": 11766.5, + "probability": 0.382 + }, + { + "start": 11767.56, + "end": 11770.84, + "probability": 0.0303 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11783.0, + "probability": 0.0 + }, + { + "start": 11783.0, + "end": 11785.18, + "probability": 0.8723 + }, + { + "start": 11785.72, + "end": 11790.43, + "probability": 0.9917 + }, + { + "start": 11790.94, + "end": 11792.51, + "probability": 0.761 + }, + { + "start": 11792.64, + "end": 11793.66, + "probability": 0.0125 + }, + { + "start": 11793.66, + "end": 11796.28, + "probability": 0.9009 + }, + { + "start": 11796.76, + "end": 11797.26, + "probability": 0.2464 + }, + { + "start": 11797.26, + "end": 11797.75, + "probability": 0.1584 + }, + { + "start": 11799.5, + "end": 11799.94, + "probability": 0.067 + }, + { + "start": 11800.2, + "end": 11801.96, + "probability": 0.9595 + }, + { + "start": 11802.76, + "end": 11804.02, + "probability": 0.8832 + }, + { + "start": 11805.0, + "end": 11808.68, + "probability": 0.9753 + }, + { + "start": 11808.7, + "end": 11810.92, + "probability": 0.8338 + }, + { + "start": 11811.7, + "end": 11812.38, + "probability": 0.7402 + }, + { + "start": 11812.44, + "end": 11816.74, + "probability": 0.9972 + }, + { + "start": 11817.28, + "end": 11821.92, + "probability": 0.9968 + }, + { + "start": 11822.48, + "end": 11826.28, + "probability": 0.9697 + }, + { + "start": 11826.34, + "end": 11827.12, + "probability": 0.7288 + }, + { + "start": 11827.2, + "end": 11828.08, + "probability": 0.5528 + }, + { + "start": 11828.34, + "end": 11830.62, + "probability": 0.9917 + }, + { + "start": 11830.62, + "end": 11834.22, + "probability": 0.9315 + }, + { + "start": 11834.46, + "end": 11837.32, + "probability": 0.819 + }, + { + "start": 11837.56, + "end": 11838.54, + "probability": 0.8794 + }, + { + "start": 11838.9, + "end": 11842.14, + "probability": 0.851 + }, + { + "start": 11842.24, + "end": 11843.56, + "probability": 0.9601 + }, + { + "start": 11843.66, + "end": 11843.86, + "probability": 0.3446 + }, + { + "start": 11844.96, + "end": 11845.56, + "probability": 0.5618 + }, + { + "start": 11845.58, + "end": 11846.6, + "probability": 0.6934 + }, + { + "start": 11847.28, + "end": 11851.52, + "probability": 0.8871 + }, + { + "start": 11851.62, + "end": 11853.11, + "probability": 0.4989 + }, + { + "start": 11853.92, + "end": 11854.66, + "probability": 0.8295 + }, + { + "start": 11855.66, + "end": 11859.58, + "probability": 0.8181 + }, + { + "start": 11859.58, + "end": 11859.88, + "probability": 0.8206 + }, + { + "start": 11860.86, + "end": 11863.66, + "probability": 0.396 + }, + { + "start": 11865.52, + "end": 11870.1, + "probability": 0.5967 + }, + { + "start": 11872.92, + "end": 11876.1, + "probability": 0.698 + }, + { + "start": 11876.96, + "end": 11880.14, + "probability": 0.8698 + }, + { + "start": 11882.1, + "end": 11886.02, + "probability": 0.9683 + }, + { + "start": 11887.92, + "end": 11891.06, + "probability": 0.5556 + }, + { + "start": 11891.6, + "end": 11892.76, + "probability": 0.4747 + }, + { + "start": 11892.84, + "end": 11895.92, + "probability": 0.6898 + }, + { + "start": 11896.22, + "end": 11896.84, + "probability": 0.6554 + }, + { + "start": 11897.12, + "end": 11898.62, + "probability": 0.5471 + }, + { + "start": 11912.66, + "end": 11914.62, + "probability": 0.0255 + }, + { + "start": 11914.72, + "end": 11916.12, + "probability": 0.0355 + }, + { + "start": 11916.16, + "end": 11917.22, + "probability": 0.1248 + }, + { + "start": 11917.46, + "end": 11919.12, + "probability": 0.2811 + }, + { + "start": 11919.42, + "end": 11923.52, + "probability": 0.5205 + }, + { + "start": 11924.46, + "end": 11928.9, + "probability": 0.6683 + }, + { + "start": 11930.36, + "end": 11932.88, + "probability": 0.8735 + }, + { + "start": 11933.86, + "end": 11936.54, + "probability": 0.9397 + }, + { + "start": 11939.44, + "end": 11943.24, + "probability": 0.7758 + }, + { + "start": 11944.3, + "end": 11950.82, + "probability": 0.8615 + }, + { + "start": 11952.64, + "end": 11953.68, + "probability": 0.9451 + }, + { + "start": 11954.22, + "end": 11955.22, + "probability": 0.755 + }, + { + "start": 11956.3, + "end": 11957.78, + "probability": 0.9735 + }, + { + "start": 11958.32, + "end": 11959.2, + "probability": 0.8653 + }, + { + "start": 11961.8, + "end": 11963.36, + "probability": 0.9542 + }, + { + "start": 11965.06, + "end": 11966.74, + "probability": 0.8115 + }, + { + "start": 11968.34, + "end": 11972.48, + "probability": 0.859 + }, + { + "start": 11973.1, + "end": 11973.64, + "probability": 0.9749 + }, + { + "start": 11976.5, + "end": 11977.46, + "probability": 0.632 + }, + { + "start": 11979.28, + "end": 11987.72, + "probability": 0.8306 + }, + { + "start": 11988.6, + "end": 11991.18, + "probability": 0.931 + }, + { + "start": 11992.51, + "end": 12000.1, + "probability": 0.8418 + }, + { + "start": 12001.24, + "end": 12003.56, + "probability": 0.233 + }, + { + "start": 12009.74, + "end": 12011.44, + "probability": 0.4057 + }, + { + "start": 12012.3, + "end": 12013.84, + "probability": 0.8174 + }, + { + "start": 12014.98, + "end": 12017.5, + "probability": 0.8995 + }, + { + "start": 12020.88, + "end": 12021.34, + "probability": 0.5135 + }, + { + "start": 12022.16, + "end": 12024.48, + "probability": 0.9744 + }, + { + "start": 12025.74, + "end": 12026.54, + "probability": 0.9265 + }, + { + "start": 12027.18, + "end": 12028.14, + "probability": 0.9468 + }, + { + "start": 12028.88, + "end": 12031.46, + "probability": 0.9553 + }, + { + "start": 12032.2, + "end": 12034.98, + "probability": 0.9887 + }, + { + "start": 12035.5, + "end": 12040.18, + "probability": 0.6951 + }, + { + "start": 12041.9, + "end": 12043.46, + "probability": 0.9126 + }, + { + "start": 12044.1, + "end": 12046.46, + "probability": 0.9641 + }, + { + "start": 12047.38, + "end": 12049.22, + "probability": 0.9099 + }, + { + "start": 12049.88, + "end": 12052.0, + "probability": 0.6899 + }, + { + "start": 12053.78, + "end": 12060.2, + "probability": 0.8776 + }, + { + "start": 12061.68, + "end": 12062.5, + "probability": 0.5233 + }, + { + "start": 12063.76, + "end": 12066.62, + "probability": 0.8261 + }, + { + "start": 12067.4, + "end": 12068.48, + "probability": 0.8113 + }, + { + "start": 12069.32, + "end": 12072.46, + "probability": 0.7496 + }, + { + "start": 12073.2, + "end": 12074.36, + "probability": 0.5076 + }, + { + "start": 12076.36, + "end": 12078.96, + "probability": 0.8106 + }, + { + "start": 12079.72, + "end": 12084.5, + "probability": 0.7953 + }, + { + "start": 12085.82, + "end": 12087.5, + "probability": 0.6052 + }, + { + "start": 12088.24, + "end": 12093.1, + "probability": 0.8147 + }, + { + "start": 12094.44, + "end": 12097.66, + "probability": 0.9688 + }, + { + "start": 12098.36, + "end": 12100.7, + "probability": 0.9778 + }, + { + "start": 12102.4, + "end": 12110.14, + "probability": 0.9724 + }, + { + "start": 12112.32, + "end": 12114.08, + "probability": 0.9242 + }, + { + "start": 12120.42, + "end": 12123.18, + "probability": 0.5983 + }, + { + "start": 12125.36, + "end": 12127.66, + "probability": 0.8426 + }, + { + "start": 12128.5, + "end": 12130.54, + "probability": 0.8924 + }, + { + "start": 12140.38, + "end": 12140.78, + "probability": 0.5725 + }, + { + "start": 12141.9, + "end": 12142.5, + "probability": 0.7296 + }, + { + "start": 12143.36, + "end": 12145.02, + "probability": 0.906 + }, + { + "start": 12147.62, + "end": 12149.78, + "probability": 0.7561 + }, + { + "start": 12150.5, + "end": 12156.68, + "probability": 0.9449 + }, + { + "start": 12157.72, + "end": 12160.26, + "probability": 0.918 + }, + { + "start": 12161.46, + "end": 12164.22, + "probability": 0.9845 + }, + { + "start": 12165.38, + "end": 12167.0, + "probability": 0.8211 + }, + { + "start": 12168.34, + "end": 12173.86, + "probability": 0.8647 + }, + { + "start": 12175.52, + "end": 12179.02, + "probability": 0.9779 + }, + { + "start": 12181.3, + "end": 12184.46, + "probability": 0.9489 + }, + { + "start": 12185.3, + "end": 12188.42, + "probability": 0.8582 + }, + { + "start": 12189.26, + "end": 12190.0, + "probability": 0.9871 + }, + { + "start": 12190.68, + "end": 12194.22, + "probability": 0.6603 + }, + { + "start": 12194.92, + "end": 12197.1, + "probability": 0.9602 + }, + { + "start": 12198.68, + "end": 12199.9, + "probability": 0.9391 + }, + { + "start": 12200.96, + "end": 12203.34, + "probability": 0.9202 + }, + { + "start": 12205.2, + "end": 12206.36, + "probability": 0.8674 + }, + { + "start": 12209.24, + "end": 12212.74, + "probability": 0.5859 + }, + { + "start": 12213.65, + "end": 12217.48, + "probability": 0.93 + }, + { + "start": 12218.18, + "end": 12222.64, + "probability": 0.8729 + }, + { + "start": 12223.82, + "end": 12225.58, + "probability": 0.9092 + }, + { + "start": 12226.36, + "end": 12228.64, + "probability": 0.7795 + }, + { + "start": 12230.54, + "end": 12233.2, + "probability": 0.7913 + }, + { + "start": 12234.26, + "end": 12236.68, + "probability": 0.683 + }, + { + "start": 12237.78, + "end": 12242.72, + "probability": 0.9664 + }, + { + "start": 12244.46, + "end": 12247.14, + "probability": 0.9512 + }, + { + "start": 12248.54, + "end": 12250.02, + "probability": 0.8568 + }, + { + "start": 12252.28, + "end": 12253.78, + "probability": 0.994 + }, + { + "start": 12255.88, + "end": 12256.66, + "probability": 0.8949 + }, + { + "start": 12257.26, + "end": 12259.7, + "probability": 0.9077 + }, + { + "start": 12260.42, + "end": 12260.96, + "probability": 0.9971 + }, + { + "start": 12261.88, + "end": 12266.58, + "probability": 0.4881 + }, + { + "start": 12269.1, + "end": 12270.96, + "probability": 0.9407 + }, + { + "start": 12271.6, + "end": 12272.18, + "probability": 0.9724 + }, + { + "start": 12273.0, + "end": 12273.9, + "probability": 0.9537 + }, + { + "start": 12275.68, + "end": 12276.62, + "probability": 0.9752 + }, + { + "start": 12277.14, + "end": 12278.3, + "probability": 0.9785 + }, + { + "start": 12278.82, + "end": 12282.68, + "probability": 0.979 + }, + { + "start": 12283.42, + "end": 12283.92, + "probability": 0.9922 + }, + { + "start": 12284.54, + "end": 12285.64, + "probability": 0.9715 + }, + { + "start": 12286.62, + "end": 12289.82, + "probability": 0.9542 + }, + { + "start": 12291.06, + "end": 12293.78, + "probability": 0.6337 + }, + { + "start": 12294.34, + "end": 12294.8, + "probability": 0.8957 + }, + { + "start": 12296.2, + "end": 12297.44, + "probability": 0.9447 + }, + { + "start": 12298.14, + "end": 12300.82, + "probability": 0.7695 + }, + { + "start": 12304.24, + "end": 12305.38, + "probability": 0.5831 + }, + { + "start": 12305.92, + "end": 12307.44, + "probability": 0.8802 + }, + { + "start": 12308.28, + "end": 12311.36, + "probability": 0.9089 + }, + { + "start": 12313.18, + "end": 12317.36, + "probability": 0.9396 + }, + { + "start": 12318.41, + "end": 12321.08, + "probability": 0.6647 + }, + { + "start": 12321.78, + "end": 12324.22, + "probability": 0.7983 + }, + { + "start": 12326.02, + "end": 12326.84, + "probability": 0.9667 + }, + { + "start": 12327.84, + "end": 12328.62, + "probability": 0.8738 + }, + { + "start": 12329.9, + "end": 12332.56, + "probability": 0.9688 + }, + { + "start": 12336.3, + "end": 12338.88, + "probability": 0.8806 + }, + { + "start": 12339.7, + "end": 12342.54, + "probability": 0.9745 + }, + { + "start": 12343.58, + "end": 12345.42, + "probability": 0.8102 + }, + { + "start": 12346.28, + "end": 12346.98, + "probability": 0.9829 + }, + { + "start": 12348.88, + "end": 12349.66, + "probability": 0.6626 + }, + { + "start": 12351.32, + "end": 12353.4, + "probability": 0.7513 + }, + { + "start": 12353.92, + "end": 12356.96, + "probability": 0.9749 + }, + { + "start": 12357.52, + "end": 12363.8, + "probability": 0.9668 + }, + { + "start": 12364.66, + "end": 12365.6, + "probability": 0.7286 + }, + { + "start": 12367.04, + "end": 12370.86, + "probability": 0.7567 + }, + { + "start": 12370.86, + "end": 12375.42, + "probability": 0.925 + }, + { + "start": 12375.6, + "end": 12376.3, + "probability": 0.4641 + }, + { + "start": 12376.74, + "end": 12379.92, + "probability": 0.8569 + }, + { + "start": 12380.44, + "end": 12381.18, + "probability": 0.9374 + }, + { + "start": 12384.36, + "end": 12390.72, + "probability": 0.7363 + }, + { + "start": 12392.26, + "end": 12394.04, + "probability": 0.783 + }, + { + "start": 12395.4, + "end": 12396.82, + "probability": 0.8727 + }, + { + "start": 12399.1, + "end": 12402.6, + "probability": 0.9176 + }, + { + "start": 12403.86, + "end": 12405.24, + "probability": 0.7019 + }, + { + "start": 12405.34, + "end": 12407.64, + "probability": 0.9726 + }, + { + "start": 12408.02, + "end": 12408.86, + "probability": 0.7242 + }, + { + "start": 12410.5, + "end": 12411.06, + "probability": 0.7812 + }, + { + "start": 12411.2, + "end": 12412.94, + "probability": 0.9638 + }, + { + "start": 12412.98, + "end": 12414.14, + "probability": 0.9618 + }, + { + "start": 12414.24, + "end": 12415.86, + "probability": 0.9471 + }, + { + "start": 12415.9, + "end": 12417.26, + "probability": 0.9103 + }, + { + "start": 12419.82, + "end": 12420.04, + "probability": 0.1884 + }, + { + "start": 12420.04, + "end": 12420.04, + "probability": 0.0153 + }, + { + "start": 12420.04, + "end": 12421.9, + "probability": 0.6511 + }, + { + "start": 12421.98, + "end": 12423.26, + "probability": 0.3864 + }, + { + "start": 12423.92, + "end": 12425.38, + "probability": 0.6531 + }, + { + "start": 12427.42, + "end": 12430.04, + "probability": 0.9095 + }, + { + "start": 12431.54, + "end": 12432.3, + "probability": 0.8051 + }, + { + "start": 12437.08, + "end": 12438.48, + "probability": 0.528 + }, + { + "start": 12439.46, + "end": 12440.76, + "probability": 0.8519 + }, + { + "start": 12440.92, + "end": 12443.0, + "probability": 0.9386 + }, + { + "start": 12443.32, + "end": 12444.56, + "probability": 0.9496 + }, + { + "start": 12445.34, + "end": 12447.02, + "probability": 0.8326 + }, + { + "start": 12447.74, + "end": 12450.8, + "probability": 0.8224 + }, + { + "start": 12451.98, + "end": 12454.08, + "probability": 0.8405 + }, + { + "start": 12455.58, + "end": 12458.44, + "probability": 0.8826 + }, + { + "start": 12459.16, + "end": 12461.16, + "probability": 0.9556 + }, + { + "start": 12461.86, + "end": 12462.62, + "probability": 0.9671 + }, + { + "start": 12462.74, + "end": 12464.42, + "probability": 0.9035 + }, + { + "start": 12464.42, + "end": 12465.72, + "probability": 0.9854 + }, + { + "start": 12466.3, + "end": 12468.38, + "probability": 0.7965 + }, + { + "start": 12468.88, + "end": 12470.34, + "probability": 0.6686 + }, + { + "start": 12471.02, + "end": 12472.64, + "probability": 0.8247 + }, + { + "start": 12472.88, + "end": 12474.26, + "probability": 0.9243 + }, + { + "start": 12474.34, + "end": 12474.92, + "probability": 0.5889 + }, + { + "start": 12476.3, + "end": 12477.46, + "probability": 0.6105 + }, + { + "start": 12479.18, + "end": 12480.86, + "probability": 0.8607 + }, + { + "start": 12480.94, + "end": 12482.78, + "probability": 0.9344 + }, + { + "start": 12483.02, + "end": 12484.84, + "probability": 0.8374 + }, + { + "start": 12484.88, + "end": 12487.46, + "probability": 0.8154 + }, + { + "start": 12487.58, + "end": 12491.44, + "probability": 0.9847 + }, + { + "start": 12491.44, + "end": 12493.82, + "probability": 0.7801 + }, + { + "start": 12495.04, + "end": 12495.22, + "probability": 0.0818 + }, + { + "start": 12495.24, + "end": 12496.94, + "probability": 0.6541 + }, + { + "start": 12543.84, + "end": 12545.06, + "probability": 0.0291 + }, + { + "start": 12546.32, + "end": 12546.44, + "probability": 0.0559 + }, + { + "start": 12547.22, + "end": 12548.34, + "probability": 0.1055 + }, + { + "start": 12549.22, + "end": 12552.04, + "probability": 0.0312 + }, + { + "start": 12604.52, + "end": 12604.88, + "probability": 0.0035 + }, + { + "start": 12623.48, + "end": 12625.2, + "probability": 0.003 + }, + { + "start": 12625.88, + "end": 12629.16, + "probability": 0.0284 + }, + { + "start": 12629.16, + "end": 12631.34, + "probability": 0.0053 + }, + { + "start": 12632.02, + "end": 12632.94, + "probability": 0.0269 + }, + { + "start": 12633.06, + "end": 12633.76, + "probability": 0.1076 + }, + { + "start": 12633.76, + "end": 12638.98, + "probability": 0.2619 + }, + { + "start": 12639.22, + "end": 12639.7, + "probability": 0.0368 + }, + { + "start": 12640.16, + "end": 12640.34, + "probability": 0.2833 + }, + { + "start": 12640.34, + "end": 12642.0, + "probability": 0.382 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.0, + "end": 12732.0, + "probability": 0.0 + }, + { + "start": 12732.2, + "end": 12733.88, + "probability": 0.0228 + }, + { + "start": 12733.96, + "end": 12735.26, + "probability": 0.0439 + }, + { + "start": 12736.82, + "end": 12737.38, + "probability": 0.0504 + }, + { + "start": 12738.1, + "end": 12739.69, + "probability": 0.1254 + }, + { + "start": 12740.48, + "end": 12741.7, + "probability": 0.0573 + }, + { + "start": 12741.96, + "end": 12742.65, + "probability": 0.1632 + }, + { + "start": 12743.88, + "end": 12743.92, + "probability": 0.7304 + }, + { + "start": 12743.92, + "end": 12745.94, + "probability": 0.0914 + }, + { + "start": 12747.88, + "end": 12750.14, + "probability": 0.0832 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12869.0, + "end": 12869.0, + "probability": 0.0 + }, + { + "start": 12898.06, + "end": 12900.28, + "probability": 0.4805 + }, + { + "start": 12902.2, + "end": 12904.1, + "probability": 0.0323 + }, + { + "start": 12914.76, + "end": 12916.32, + "probability": 0.0122 + }, + { + "start": 12918.08, + "end": 12918.62, + "probability": 0.0535 + }, + { + "start": 12918.62, + "end": 12921.58, + "probability": 0.0584 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 12994.0, + "end": 12994.0, + "probability": 0.0 + }, + { + "start": 13023.92, + "end": 13024.04, + "probability": 0.0004 + }, + { + "start": 13025.72, + "end": 13027.22, + "probability": 0.3975 + }, + { + "start": 13027.84, + "end": 13029.36, + "probability": 0.0606 + }, + { + "start": 13029.76, + "end": 13033.0, + "probability": 0.065 + }, + { + "start": 13033.0, + "end": 13036.41, + "probability": 0.1222 + }, + { + "start": 13042.48, + "end": 13048.16, + "probability": 0.0498 + }, + { + "start": 13050.63, + "end": 13052.4, + "probability": 0.0416 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13115.0, + "end": 13115.0, + "probability": 0.0 + }, + { + "start": 13118.56, + "end": 13118.96, + "probability": 0.6808 + }, + { + "start": 13120.0, + "end": 13120.86, + "probability": 0.9427 + }, + { + "start": 13121.58, + "end": 13124.76, + "probability": 0.9535 + }, + { + "start": 13124.8, + "end": 13125.52, + "probability": 0.7959 + }, + { + "start": 13125.9, + "end": 13126.2, + "probability": 0.9637 + }, + { + "start": 13126.28, + "end": 13126.94, + "probability": 0.6805 + }, + { + "start": 13126.94, + "end": 13128.02, + "probability": 0.9421 + }, + { + "start": 13128.76, + "end": 13130.94, + "probability": 0.9009 + }, + { + "start": 13131.64, + "end": 13134.92, + "probability": 0.9989 + }, + { + "start": 13135.92, + "end": 13137.2, + "probability": 0.7827 + }, + { + "start": 13137.42, + "end": 13138.28, + "probability": 0.5012 + }, + { + "start": 13138.38, + "end": 13140.55, + "probability": 0.8807 + }, + { + "start": 13141.58, + "end": 13145.52, + "probability": 0.8585 + }, + { + "start": 13146.04, + "end": 13147.45, + "probability": 0.9363 + }, + { + "start": 13148.32, + "end": 13149.34, + "probability": 0.7006 + }, + { + "start": 13150.1, + "end": 13156.12, + "probability": 0.9844 + }, + { + "start": 13156.74, + "end": 13158.45, + "probability": 0.9932 + }, + { + "start": 13158.62, + "end": 13159.18, + "probability": 0.756 + }, + { + "start": 13159.22, + "end": 13160.14, + "probability": 0.8327 + }, + { + "start": 13160.2, + "end": 13160.8, + "probability": 0.7198 + }, + { + "start": 13161.56, + "end": 13162.06, + "probability": 0.5549 + }, + { + "start": 13162.12, + "end": 13162.86, + "probability": 0.9839 + }, + { + "start": 13163.52, + "end": 13167.24, + "probability": 0.9833 + }, + { + "start": 13167.52, + "end": 13169.42, + "probability": 0.9941 + }, + { + "start": 13170.2, + "end": 13173.4, + "probability": 0.7855 + }, + { + "start": 13173.52, + "end": 13176.72, + "probability": 0.9621 + }, + { + "start": 13176.9, + "end": 13178.02, + "probability": 0.8149 + }, + { + "start": 13178.4, + "end": 13181.68, + "probability": 0.8501 + }, + { + "start": 13182.7, + "end": 13185.02, + "probability": 0.9775 + }, + { + "start": 13185.4, + "end": 13187.96, + "probability": 0.996 + }, + { + "start": 13188.96, + "end": 13191.86, + "probability": 0.9422 + }, + { + "start": 13193.24, + "end": 13197.54, + "probability": 0.7122 + }, + { + "start": 13197.62, + "end": 13199.16, + "probability": 0.9829 + }, + { + "start": 13200.02, + "end": 13204.64, + "probability": 0.8962 + }, + { + "start": 13205.6, + "end": 13209.12, + "probability": 0.9808 + }, + { + "start": 13209.66, + "end": 13210.31, + "probability": 0.6832 + }, + { + "start": 13211.18, + "end": 13211.3, + "probability": 0.4702 + }, + { + "start": 13211.42, + "end": 13214.78, + "probability": 0.9133 + }, + { + "start": 13214.84, + "end": 13215.96, + "probability": 0.9204 + }, + { + "start": 13216.02, + "end": 13218.26, + "probability": 0.989 + }, + { + "start": 13218.34, + "end": 13218.96, + "probability": 0.7766 + }, + { + "start": 13219.0, + "end": 13219.36, + "probability": 0.6017 + }, + { + "start": 13219.7, + "end": 13219.7, + "probability": 0.5615 + }, + { + "start": 13219.82, + "end": 13221.96, + "probability": 0.9861 + }, + { + "start": 13222.06, + "end": 13224.98, + "probability": 0.9192 + }, + { + "start": 13226.22, + "end": 13228.34, + "probability": 0.8406 + }, + { + "start": 13229.24, + "end": 13233.48, + "probability": 0.9077 + }, + { + "start": 13233.6, + "end": 13235.8, + "probability": 0.9934 + }, + { + "start": 13236.66, + "end": 13241.88, + "probability": 0.9697 + }, + { + "start": 13241.98, + "end": 13242.24, + "probability": 0.9174 + }, + { + "start": 13243.14, + "end": 13243.84, + "probability": 0.1224 + }, + { + "start": 13244.2, + "end": 13246.5, + "probability": 0.6419 + }, + { + "start": 13247.28, + "end": 13251.22, + "probability": 0.6734 + }, + { + "start": 13251.82, + "end": 13254.18, + "probability": 0.8993 + }, + { + "start": 13254.28, + "end": 13258.1, + "probability": 0.932 + }, + { + "start": 13258.48, + "end": 13259.58, + "probability": 0.4109 + }, + { + "start": 13259.62, + "end": 13262.14, + "probability": 0.4482 + }, + { + "start": 13262.4, + "end": 13263.38, + "probability": 0.8777 + }, + { + "start": 13266.64, + "end": 13270.16, + "probability": 0.9171 + }, + { + "start": 13270.66, + "end": 13272.12, + "probability": 0.7979 + }, + { + "start": 13273.2, + "end": 13276.06, + "probability": 0.8864 + }, + { + "start": 13276.9, + "end": 13278.72, + "probability": 0.4896 + }, + { + "start": 13279.0, + "end": 13286.06, + "probability": 0.9924 + }, + { + "start": 13286.3, + "end": 13291.28, + "probability": 0.995 + }, + { + "start": 13292.02, + "end": 13296.14, + "probability": 0.7271 + }, + { + "start": 13296.7, + "end": 13298.4, + "probability": 0.7716 + }, + { + "start": 13299.38, + "end": 13300.82, + "probability": 0.5276 + }, + { + "start": 13301.0, + "end": 13302.9, + "probability": 0.7882 + }, + { + "start": 13302.98, + "end": 13304.96, + "probability": 0.6838 + }, + { + "start": 13305.52, + "end": 13306.7, + "probability": 0.8999 + }, + { + "start": 13307.56, + "end": 13308.34, + "probability": 0.8899 + }, + { + "start": 13308.6, + "end": 13309.7, + "probability": 0.9655 + }, + { + "start": 13310.1, + "end": 13311.72, + "probability": 0.9889 + }, + { + "start": 13311.82, + "end": 13312.94, + "probability": 0.9758 + }, + { + "start": 13313.54, + "end": 13316.05, + "probability": 0.9606 + }, + { + "start": 13316.5, + "end": 13318.04, + "probability": 0.6514 + }, + { + "start": 13318.68, + "end": 13321.3, + "probability": 0.8409 + }, + { + "start": 13322.5, + "end": 13329.1, + "probability": 0.9795 + }, + { + "start": 13330.06, + "end": 13333.66, + "probability": 0.9907 + }, + { + "start": 13336.28, + "end": 13340.86, + "probability": 0.9902 + }, + { + "start": 13341.54, + "end": 13344.46, + "probability": 0.7476 + }, + { + "start": 13345.24, + "end": 13347.04, + "probability": 0.9849 + }, + { + "start": 13347.22, + "end": 13348.56, + "probability": 0.9591 + }, + { + "start": 13348.66, + "end": 13351.32, + "probability": 0.9473 + }, + { + "start": 13351.66, + "end": 13354.0, + "probability": 0.7628 + }, + { + "start": 13354.22, + "end": 13359.24, + "probability": 0.98 + }, + { + "start": 13359.46, + "end": 13362.68, + "probability": 0.6819 + }, + { + "start": 13362.8, + "end": 13365.0, + "probability": 0.991 + }, + { + "start": 13365.62, + "end": 13367.48, + "probability": 0.8461 + }, + { + "start": 13367.62, + "end": 13371.3, + "probability": 0.9849 + }, + { + "start": 13371.42, + "end": 13375.68, + "probability": 0.9962 + }, + { + "start": 13376.28, + "end": 13382.98, + "probability": 0.9536 + }, + { + "start": 13383.56, + "end": 13384.32, + "probability": 0.9336 + }, + { + "start": 13384.52, + "end": 13390.14, + "probability": 0.9791 + }, + { + "start": 13390.84, + "end": 13396.5, + "probability": 0.9288 + }, + { + "start": 13397.32, + "end": 13400.1, + "probability": 0.8735 + }, + { + "start": 13400.74, + "end": 13404.0, + "probability": 0.9878 + }, + { + "start": 13404.44, + "end": 13409.06, + "probability": 0.9876 + }, + { + "start": 13409.78, + "end": 13414.46, + "probability": 0.98 + }, + { + "start": 13415.22, + "end": 13421.36, + "probability": 0.9971 + }, + { + "start": 13422.36, + "end": 13426.44, + "probability": 0.9961 + }, + { + "start": 13427.04, + "end": 13428.3, + "probability": 0.6635 + }, + { + "start": 13429.12, + "end": 13432.34, + "probability": 0.7471 + }, + { + "start": 13433.14, + "end": 13436.52, + "probability": 0.9362 + }, + { + "start": 13436.74, + "end": 13438.54, + "probability": 0.9541 + }, + { + "start": 13439.4, + "end": 13443.62, + "probability": 0.989 + }, + { + "start": 13443.88, + "end": 13445.98, + "probability": 0.6162 + }, + { + "start": 13446.0, + "end": 13452.18, + "probability": 0.9937 + }, + { + "start": 13452.54, + "end": 13453.28, + "probability": 0.0373 + }, + { + "start": 13455.36, + "end": 13455.7, + "probability": 0.0831 + }, + { + "start": 13455.7, + "end": 13455.7, + "probability": 0.046 + }, + { + "start": 13455.7, + "end": 13456.44, + "probability": 0.347 + }, + { + "start": 13456.6, + "end": 13458.84, + "probability": 0.7915 + }, + { + "start": 13458.96, + "end": 13465.58, + "probability": 0.9813 + }, + { + "start": 13465.58, + "end": 13465.91, + "probability": 0.0096 + }, + { + "start": 13466.36, + "end": 13468.88, + "probability": 0.7817 + }, + { + "start": 13468.92, + "end": 13472.46, + "probability": 0.9004 + }, + { + "start": 13472.88, + "end": 13472.88, + "probability": 0.0601 + }, + { + "start": 13472.88, + "end": 13474.22, + "probability": 0.619 + }, + { + "start": 13474.32, + "end": 13478.42, + "probability": 0.7202 + }, + { + "start": 13478.52, + "end": 13484.08, + "probability": 0.9663 + }, + { + "start": 13484.18, + "end": 13484.74, + "probability": 0.774 + }, + { + "start": 13485.98, + "end": 13485.98, + "probability": 0.1528 + }, + { + "start": 13485.98, + "end": 13485.98, + "probability": 0.0111 + }, + { + "start": 13485.98, + "end": 13487.65, + "probability": 0.495 + }, + { + "start": 13487.96, + "end": 13491.7, + "probability": 0.6591 + }, + { + "start": 13491.98, + "end": 13494.34, + "probability": 0.1594 + }, + { + "start": 13494.86, + "end": 13495.74, + "probability": 0.4908 + }, + { + "start": 13495.8, + "end": 13497.3, + "probability": 0.1311 + }, + { + "start": 13497.48, + "end": 13498.84, + "probability": 0.2514 + }, + { + "start": 13499.34, + "end": 13501.4, + "probability": 0.1336 + }, + { + "start": 13501.48, + "end": 13507.06, + "probability": 0.0565 + }, + { + "start": 13507.06, + "end": 13507.06, + "probability": 0.2666 + }, + { + "start": 13507.06, + "end": 13507.95, + "probability": 0.1604 + }, + { + "start": 13509.04, + "end": 13511.66, + "probability": 0.1303 + }, + { + "start": 13512.49, + "end": 13513.1, + "probability": 0.2067 + }, + { + "start": 13514.8, + "end": 13516.66, + "probability": 0.1713 + }, + { + "start": 13516.8, + "end": 13518.94, + "probability": 0.5476 + }, + { + "start": 13519.16, + "end": 13521.03, + "probability": 0.7284 + }, + { + "start": 13521.74, + "end": 13525.16, + "probability": 0.9752 + }, + { + "start": 13525.34, + "end": 13528.94, + "probability": 0.9531 + }, + { + "start": 13528.98, + "end": 13532.26, + "probability": 0.7412 + }, + { + "start": 13534.04, + "end": 13539.58, + "probability": 0.8167 + }, + { + "start": 13539.66, + "end": 13540.58, + "probability": 0.7891 + }, + { + "start": 13540.84, + "end": 13543.32, + "probability": 0.8397 + }, + { + "start": 13544.0, + "end": 13546.96, + "probability": 0.9936 + }, + { + "start": 13547.44, + "end": 13549.0, + "probability": 0.9069 + }, + { + "start": 13549.6, + "end": 13551.32, + "probability": 0.0055 + }, + { + "start": 13551.32, + "end": 13551.32, + "probability": 0.4172 + }, + { + "start": 13551.32, + "end": 13551.74, + "probability": 0.3484 + }, + { + "start": 13551.84, + "end": 13553.4, + "probability": 0.7853 + }, + { + "start": 13554.02, + "end": 13555.5, + "probability": 0.9546 + }, + { + "start": 13556.2, + "end": 13559.2, + "probability": 0.7775 + }, + { + "start": 13559.86, + "end": 13562.18, + "probability": 0.9045 + }, + { + "start": 13562.28, + "end": 13565.2, + "probability": 0.991 + }, + { + "start": 13565.82, + "end": 13568.74, + "probability": 0.9841 + }, + { + "start": 13568.92, + "end": 13569.4, + "probability": 0.5278 + }, + { + "start": 13569.52, + "end": 13571.54, + "probability": 0.9606 + }, + { + "start": 13572.34, + "end": 13573.13, + "probability": 0.9297 + }, + { + "start": 13574.0, + "end": 13579.48, + "probability": 0.9886 + }, + { + "start": 13579.68, + "end": 13580.33, + "probability": 0.9951 + }, + { + "start": 13581.86, + "end": 13587.32, + "probability": 0.8893 + }, + { + "start": 13588.17, + "end": 13591.76, + "probability": 0.9932 + }, + { + "start": 13592.21, + "end": 13596.16, + "probability": 0.9817 + }, + { + "start": 13596.22, + "end": 13597.82, + "probability": 0.8879 + }, + { + "start": 13598.06, + "end": 13600.44, + "probability": 0.9957 + }, + { + "start": 13601.0, + "end": 13606.64, + "probability": 0.9938 + }, + { + "start": 13607.44, + "end": 13610.06, + "probability": 0.5593 + }, + { + "start": 13610.3, + "end": 13615.68, + "probability": 0.8183 + }, + { + "start": 13615.8, + "end": 13622.28, + "probability": 0.9946 + }, + { + "start": 13623.64, + "end": 13625.1, + "probability": 0.9005 + }, + { + "start": 13625.26, + "end": 13626.1, + "probability": 0.2882 + }, + { + "start": 13626.28, + "end": 13632.58, + "probability": 0.99 + }, + { + "start": 13634.87, + "end": 13635.54, + "probability": 0.0953 + }, + { + "start": 13635.54, + "end": 13638.7, + "probability": 0.1443 + }, + { + "start": 13639.83, + "end": 13640.88, + "probability": 0.3311 + }, + { + "start": 13640.88, + "end": 13642.94, + "probability": 0.9144 + }, + { + "start": 13643.06, + "end": 13645.62, + "probability": 0.8608 + }, + { + "start": 13645.84, + "end": 13647.96, + "probability": 0.837 + }, + { + "start": 13648.08, + "end": 13649.01, + "probability": 0.8279 + }, + { + "start": 13649.08, + "end": 13651.17, + "probability": 0.9706 + }, + { + "start": 13651.76, + "end": 13654.44, + "probability": 0.9615 + }, + { + "start": 13654.82, + "end": 13661.46, + "probability": 0.9861 + }, + { + "start": 13661.8, + "end": 13663.14, + "probability": 0.8597 + }, + { + "start": 13663.32, + "end": 13666.1, + "probability": 0.9891 + }, + { + "start": 13666.2, + "end": 13666.88, + "probability": 0.8023 + }, + { + "start": 13667.06, + "end": 13670.38, + "probability": 0.9868 + }, + { + "start": 13671.54, + "end": 13679.16, + "probability": 0.9728 + }, + { + "start": 13679.56, + "end": 13682.32, + "probability": 0.9864 + }, + { + "start": 13682.72, + "end": 13685.12, + "probability": 0.9181 + }, + { + "start": 13685.76, + "end": 13688.62, + "probability": 0.9473 + }, + { + "start": 13688.8, + "end": 13691.2, + "probability": 0.9725 + }, + { + "start": 13691.48, + "end": 13694.8, + "probability": 0.9878 + }, + { + "start": 13694.8, + "end": 13697.42, + "probability": 0.9376 + }, + { + "start": 13698.0, + "end": 13699.64, + "probability": 0.984 + }, + { + "start": 13699.78, + "end": 13701.56, + "probability": 0.947 + }, + { + "start": 13701.66, + "end": 13703.04, + "probability": 0.0793 + }, + { + "start": 13703.04, + "end": 13703.26, + "probability": 0.0737 + }, + { + "start": 13703.26, + "end": 13703.62, + "probability": 0.6937 + }, + { + "start": 13705.14, + "end": 13708.74, + "probability": 0.998 + }, + { + "start": 13709.36, + "end": 13712.14, + "probability": 0.9612 + }, + { + "start": 13712.59, + "end": 13715.44, + "probability": 0.9964 + }, + { + "start": 13716.06, + "end": 13720.66, + "probability": 0.9883 + }, + { + "start": 13721.24, + "end": 13723.5, + "probability": 0.9896 + }, + { + "start": 13723.66, + "end": 13724.9, + "probability": 0.7281 + }, + { + "start": 13724.96, + "end": 13728.04, + "probability": 0.9928 + }, + { + "start": 13728.86, + "end": 13734.7, + "probability": 0.9961 + }, + { + "start": 13734.9, + "end": 13736.76, + "probability": 0.9669 + }, + { + "start": 13737.18, + "end": 13744.0, + "probability": 0.9951 + }, + { + "start": 13745.86, + "end": 13746.3, + "probability": 0.1459 + }, + { + "start": 13746.3, + "end": 13749.36, + "probability": 0.4309 + }, + { + "start": 13750.26, + "end": 13750.26, + "probability": 0.6196 + }, + { + "start": 13750.26, + "end": 13754.04, + "probability": 0.8591 + }, + { + "start": 13754.86, + "end": 13755.56, + "probability": 0.7998 + }, + { + "start": 13757.2, + "end": 13760.78, + "probability": 0.9268 + }, + { + "start": 13762.16, + "end": 13766.44, + "probability": 0.8511 + }, + { + "start": 13776.1, + "end": 13776.42, + "probability": 0.3315 + }, + { + "start": 13776.42, + "end": 13777.24, + "probability": 0.6728 + }, + { + "start": 13778.1, + "end": 13778.22, + "probability": 0.1869 + }, + { + "start": 13778.22, + "end": 13780.54, + "probability": 0.4662 + }, + { + "start": 13783.5, + "end": 13786.94, + "probability": 0.9494 + }, + { + "start": 13788.5, + "end": 13789.8, + "probability": 0.7882 + }, + { + "start": 13790.5, + "end": 13793.2, + "probability": 0.9784 + }, + { + "start": 13793.46, + "end": 13794.2, + "probability": 0.7154 + }, + { + "start": 13795.24, + "end": 13796.6, + "probability": 0.8902 + }, + { + "start": 13797.94, + "end": 13798.56, + "probability": 0.6621 + }, + { + "start": 13800.4, + "end": 13803.98, + "probability": 0.9932 + }, + { + "start": 13805.84, + "end": 13809.98, + "probability": 0.953 + }, + { + "start": 13811.32, + "end": 13813.98, + "probability": 0.7736 + }, + { + "start": 13815.08, + "end": 13816.1, + "probability": 0.9939 + }, + { + "start": 13816.94, + "end": 13819.34, + "probability": 0.9976 + }, + { + "start": 13819.95, + "end": 13822.22, + "probability": 0.9987 + }, + { + "start": 13824.04, + "end": 13826.98, + "probability": 0.9172 + }, + { + "start": 13827.96, + "end": 13829.12, + "probability": 0.9159 + }, + { + "start": 13829.66, + "end": 13831.4, + "probability": 0.9927 + }, + { + "start": 13832.56, + "end": 13834.66, + "probability": 0.6855 + }, + { + "start": 13834.86, + "end": 13836.44, + "probability": 0.7239 + }, + { + "start": 13837.36, + "end": 13837.36, + "probability": 0.6213 + }, + { + "start": 13837.36, + "end": 13837.36, + "probability": 0.559 + }, + { + "start": 13837.36, + "end": 13839.68, + "probability": 0.4186 + }, + { + "start": 13840.54, + "end": 13840.78, + "probability": 0.3915 + }, + { + "start": 13840.86, + "end": 13842.67, + "probability": 0.8228 + }, + { + "start": 13844.0, + "end": 13844.58, + "probability": 0.936 + }, + { + "start": 13849.4, + "end": 13851.66, + "probability": 0.6386 + }, + { + "start": 13852.64, + "end": 13855.74, + "probability": 0.5616 + }, + { + "start": 13855.74, + "end": 13856.1, + "probability": 0.4017 + }, + { + "start": 13856.1, + "end": 13858.71, + "probability": 0.382 + }, + { + "start": 13859.02, + "end": 13860.42, + "probability": 0.6706 + }, + { + "start": 13875.16, + "end": 13879.1, + "probability": 0.1315 + }, + { + "start": 13880.6, + "end": 13882.26, + "probability": 0.8643 + }, + { + "start": 13897.02, + "end": 13897.56, + "probability": 0.0094 + }, + { + "start": 13899.22, + "end": 13903.52, + "probability": 0.6327 + }, + { + "start": 13903.92, + "end": 13905.12, + "probability": 0.3449 + }, + { + "start": 13905.36, + "end": 13906.36, + "probability": 0.4091 + }, + { + "start": 13906.36, + "end": 13906.6, + "probability": 0.1611 + }, + { + "start": 13906.6, + "end": 13908.06, + "probability": 0.0842 + }, + { + "start": 13911.7, + "end": 13912.1, + "probability": 0.0162 + }, + { + "start": 13924.46, + "end": 13926.98, + "probability": 0.2293 + }, + { + "start": 13927.06, + "end": 13928.36, + "probability": 0.5539 + }, + { + "start": 13929.04, + "end": 13930.36, + "probability": 0.5474 + }, + { + "start": 13930.56, + "end": 13930.56, + "probability": 0.0334 + }, + { + "start": 13930.56, + "end": 13930.56, + "probability": 0.0668 + }, + { + "start": 13930.56, + "end": 13931.9, + "probability": 0.0748 + }, + { + "start": 13931.9, + "end": 13934.86, + "probability": 0.7928 + }, + { + "start": 13934.86, + "end": 13937.92, + "probability": 0.678 + }, + { + "start": 13938.42, + "end": 13940.28, + "probability": 0.0467 + }, + { + "start": 13940.32, + "end": 13940.98, + "probability": 0.077 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.0, + "end": 13941.0, + "probability": 0.0 + }, + { + "start": 13941.1, + "end": 13943.78, + "probability": 0.668 + }, + { + "start": 13945.6, + "end": 13946.58, + "probability": 0.6457 + }, + { + "start": 13948.52, + "end": 13949.16, + "probability": 0.8024 + }, + { + "start": 13950.66, + "end": 13950.78, + "probability": 0.1057 + }, + { + "start": 13950.78, + "end": 13952.92, + "probability": 0.9471 + }, + { + "start": 13953.06, + "end": 13953.76, + "probability": 0.955 + }, + { + "start": 13954.32, + "end": 13956.93, + "probability": 0.7748 + }, + { + "start": 13957.26, + "end": 13959.26, + "probability": 0.5517 + }, + { + "start": 13959.92, + "end": 13961.4, + "probability": 0.504 + }, + { + "start": 13961.5, + "end": 13961.7, + "probability": 0.8335 + }, + { + "start": 13962.62, + "end": 13966.82, + "probability": 0.6779 + }, + { + "start": 13967.64, + "end": 13968.88, + "probability": 0.6903 + }, + { + "start": 13971.44, + "end": 13974.04, + "probability": 0.9983 + }, + { + "start": 13974.04, + "end": 13977.18, + "probability": 0.9966 + }, + { + "start": 13977.68, + "end": 13977.68, + "probability": 0.9749 + }, + { + "start": 13977.68, + "end": 13980.64, + "probability": 0.4792 + }, + { + "start": 13980.96, + "end": 13982.88, + "probability": 0.9993 + }, + { + "start": 13983.34, + "end": 13984.8, + "probability": 0.936 + }, + { + "start": 13985.32, + "end": 13986.39, + "probability": 0.795 + }, + { + "start": 13986.44, + "end": 13986.62, + "probability": 0.722 + }, + { + "start": 13986.68, + "end": 13988.84, + "probability": 0.9551 + }, + { + "start": 13989.16, + "end": 13992.96, + "probability": 0.7693 + }, + { + "start": 13992.96, + "end": 13995.72, + "probability": 0.8701 + }, + { + "start": 13996.18, + "end": 13996.22, + "probability": 0.1201 + }, + { + "start": 13996.22, + "end": 13997.82, + "probability": 0.6729 + }, + { + "start": 13999.22, + "end": 14003.5, + "probability": 0.5175 + }, + { + "start": 14003.7, + "end": 14012.38, + "probability": 0.7487 + }, + { + "start": 14012.72, + "end": 14014.38, + "probability": 0.5936 + }, + { + "start": 14014.44, + "end": 14015.1, + "probability": 0.3993 + }, + { + "start": 14015.32, + "end": 14017.64, + "probability": 0.9785 + }, + { + "start": 14017.64, + "end": 14021.16, + "probability": 0.9693 + }, + { + "start": 14021.3, + "end": 14023.97, + "probability": 0.9951 + }, + { + "start": 14024.38, + "end": 14027.22, + "probability": 0.813 + }, + { + "start": 14027.8, + "end": 14030.26, + "probability": 0.9601 + }, + { + "start": 14030.3, + "end": 14033.16, + "probability": 0.929 + }, + { + "start": 14033.5, + "end": 14033.9, + "probability": 0.0421 + }, + { + "start": 14033.97, + "end": 14039.42, + "probability": 0.9718 + }, + { + "start": 14039.64, + "end": 14041.12, + "probability": 0.697 + }, + { + "start": 14041.42, + "end": 14041.92, + "probability": 0.9673 + }, + { + "start": 14042.0, + "end": 14042.46, + "probability": 0.8624 + }, + { + "start": 14042.68, + "end": 14042.88, + "probability": 0.1977 + }, + { + "start": 14043.18, + "end": 14044.06, + "probability": 0.8657 + }, + { + "start": 14046.38, + "end": 14046.9, + "probability": 0.0813 + }, + { + "start": 14047.02, + "end": 14047.38, + "probability": 0.4623 + }, + { + "start": 14047.56, + "end": 14049.34, + "probability": 0.2405 + }, + { + "start": 14049.72, + "end": 14050.62, + "probability": 0.373 + }, + { + "start": 14050.64, + "end": 14051.78, + "probability": 0.9526 + }, + { + "start": 14052.0, + "end": 14052.56, + "probability": 0.4095 + }, + { + "start": 14052.68, + "end": 14053.69, + "probability": 0.7034 + }, + { + "start": 14054.08, + "end": 14054.26, + "probability": 0.4815 + }, + { + "start": 14054.26, + "end": 14054.4, + "probability": 0.8228 + }, + { + "start": 14054.84, + "end": 14055.28, + "probability": 0.7194 + }, + { + "start": 14055.44, + "end": 14056.78, + "probability": 0.8677 + }, + { + "start": 14056.92, + "end": 14058.08, + "probability": 0.6633 + }, + { + "start": 14058.36, + "end": 14058.38, + "probability": 0.0268 + }, + { + "start": 14058.38, + "end": 14059.06, + "probability": 0.3567 + }, + { + "start": 14059.06, + "end": 14061.08, + "probability": 0.4484 + }, + { + "start": 14061.4, + "end": 14062.18, + "probability": 0.3264 + }, + { + "start": 14062.18, + "end": 14062.18, + "probability": 0.2814 + }, + { + "start": 14062.18, + "end": 14064.78, + "probability": 0.7181 + }, + { + "start": 14064.78, + "end": 14065.5, + "probability": 0.8565 + }, + { + "start": 14065.74, + "end": 14067.62, + "probability": 0.2259 + }, + { + "start": 14067.62, + "end": 14068.22, + "probability": 0.6083 + }, + { + "start": 14068.38, + "end": 14070.7, + "probability": 0.7955 + }, + { + "start": 14074.04, + "end": 14076.58, + "probability": 0.2422 + }, + { + "start": 14076.58, + "end": 14076.72, + "probability": 0.2245 + }, + { + "start": 14076.72, + "end": 14078.92, + "probability": 0.7778 + }, + { + "start": 14079.0, + "end": 14080.92, + "probability": 0.9482 + }, + { + "start": 14081.02, + "end": 14082.62, + "probability": 0.8096 + }, + { + "start": 14082.72, + "end": 14083.8, + "probability": 0.4577 + }, + { + "start": 14083.86, + "end": 14084.62, + "probability": 0.1545 + }, + { + "start": 14085.3, + "end": 14085.3, + "probability": 0.5957 + }, + { + "start": 14085.3, + "end": 14085.88, + "probability": 0.0996 + }, + { + "start": 14086.64, + "end": 14089.44, + "probability": 0.4442 + }, + { + "start": 14090.58, + "end": 14093.54, + "probability": 0.8513 + }, + { + "start": 14093.68, + "end": 14093.78, + "probability": 0.1812 + }, + { + "start": 14094.16, + "end": 14094.68, + "probability": 0.2435 + }, + { + "start": 14094.68, + "end": 14095.96, + "probability": 0.4072 + }, + { + "start": 14096.02, + "end": 14099.84, + "probability": 0.7216 + }, + { + "start": 14099.84, + "end": 14101.7, + "probability": 0.3639 + }, + { + "start": 14101.92, + "end": 14103.82, + "probability": 0.6819 + }, + { + "start": 14103.82, + "end": 14104.19, + "probability": 0.091 + }, + { + "start": 14104.72, + "end": 14107.3, + "probability": 0.7341 + }, + { + "start": 14107.54, + "end": 14108.44, + "probability": 0.7103 + }, + { + "start": 14109.08, + "end": 14112.82, + "probability": 0.9588 + }, + { + "start": 14112.9, + "end": 14116.4, + "probability": 0.9396 + }, + { + "start": 14116.52, + "end": 14119.52, + "probability": 0.9849 + }, + { + "start": 14119.68, + "end": 14121.5, + "probability": 0.713 + }, + { + "start": 14121.86, + "end": 14122.72, + "probability": 0.1287 + }, + { + "start": 14122.72, + "end": 14122.92, + "probability": 0.1273 + }, + { + "start": 14122.98, + "end": 14125.94, + "probability": 0.9062 + }, + { + "start": 14126.3, + "end": 14126.72, + "probability": 0.3326 + }, + { + "start": 14126.9, + "end": 14127.34, + "probability": 0.358 + }, + { + "start": 14127.9, + "end": 14127.92, + "probability": 0.6968 + }, + { + "start": 14127.94, + "end": 14129.6, + "probability": 0.9964 + }, + { + "start": 14129.68, + "end": 14130.62, + "probability": 0.769 + }, + { + "start": 14130.74, + "end": 14131.19, + "probability": 0.5525 + }, + { + "start": 14131.64, + "end": 14132.62, + "probability": 0.1181 + }, + { + "start": 14132.62, + "end": 14134.58, + "probability": 0.6652 + }, + { + "start": 14134.58, + "end": 14136.48, + "probability": 0.9972 + }, + { + "start": 14136.94, + "end": 14138.08, + "probability": 0.456 + }, + { + "start": 14138.34, + "end": 14138.94, + "probability": 0.602 + }, + { + "start": 14139.32, + "end": 14143.1, + "probability": 0.8304 + }, + { + "start": 14143.22, + "end": 14143.8, + "probability": 0.7748 + }, + { + "start": 14144.71, + "end": 14147.18, + "probability": 0.7551 + }, + { + "start": 14147.52, + "end": 14147.8, + "probability": 0.4742 + }, + { + "start": 14147.92, + "end": 14148.48, + "probability": 0.8181 + }, + { + "start": 14148.56, + "end": 14152.34, + "probability": 0.8203 + }, + { + "start": 14152.84, + "end": 14154.74, + "probability": 0.7561 + }, + { + "start": 14155.12, + "end": 14157.08, + "probability": 0.9651 + }, + { + "start": 14157.52, + "end": 14159.62, + "probability": 0.9775 + }, + { + "start": 14159.92, + "end": 14160.4, + "probability": 0.8927 + }, + { + "start": 14160.48, + "end": 14161.02, + "probability": 0.9817 + }, + { + "start": 14161.16, + "end": 14163.64, + "probability": 0.9749 + }, + { + "start": 14164.5, + "end": 14170.0, + "probability": 0.9643 + }, + { + "start": 14170.06, + "end": 14170.62, + "probability": 0.8594 + }, + { + "start": 14170.64, + "end": 14171.05, + "probability": 0.078 + }, + { + "start": 14171.4, + "end": 14172.08, + "probability": 0.9852 + }, + { + "start": 14172.58, + "end": 14172.98, + "probability": 0.8246 + }, + { + "start": 14174.9, + "end": 14176.7, + "probability": 0.7485 + }, + { + "start": 14177.2, + "end": 14178.32, + "probability": 0.5647 + }, + { + "start": 14178.4, + "end": 14180.04, + "probability": 0.9764 + }, + { + "start": 14180.58, + "end": 14181.48, + "probability": 0.4783 + }, + { + "start": 14181.62, + "end": 14182.72, + "probability": 0.5613 + }, + { + "start": 14182.82, + "end": 14184.72, + "probability": 0.543 + }, + { + "start": 14185.46, + "end": 14186.22, + "probability": 0.8482 + }, + { + "start": 14186.92, + "end": 14189.58, + "probability": 0.9606 + }, + { + "start": 14195.04, + "end": 14195.84, + "probability": 0.5194 + }, + { + "start": 14195.92, + "end": 14196.76, + "probability": 0.8901 + }, + { + "start": 14196.88, + "end": 14202.88, + "probability": 0.9702 + }, + { + "start": 14202.98, + "end": 14203.92, + "probability": 0.8821 + }, + { + "start": 14205.08, + "end": 14206.58, + "probability": 0.9159 + }, + { + "start": 14206.62, + "end": 14210.46, + "probability": 0.9432 + }, + { + "start": 14210.56, + "end": 14212.54, + "probability": 0.993 + }, + { + "start": 14213.32, + "end": 14216.6, + "probability": 0.9188 + }, + { + "start": 14217.7, + "end": 14220.62, + "probability": 0.8994 + }, + { + "start": 14221.32, + "end": 14224.76, + "probability": 0.9829 + }, + { + "start": 14226.6, + "end": 14233.2, + "probability": 0.9656 + }, + { + "start": 14234.06, + "end": 14236.74, + "probability": 0.9922 + }, + { + "start": 14236.9, + "end": 14237.32, + "probability": 0.4981 + }, + { + "start": 14237.38, + "end": 14237.64, + "probability": 0.8222 + }, + { + "start": 14237.7, + "end": 14238.04, + "probability": 0.7166 + }, + { + "start": 14238.12, + "end": 14238.68, + "probability": 0.8274 + }, + { + "start": 14239.66, + "end": 14243.69, + "probability": 0.89 + }, + { + "start": 14244.9, + "end": 14247.84, + "probability": 0.9548 + }, + { + "start": 14249.1, + "end": 14254.02, + "probability": 0.9677 + }, + { + "start": 14254.28, + "end": 14255.62, + "probability": 0.9577 + }, + { + "start": 14256.66, + "end": 14260.48, + "probability": 0.9643 + }, + { + "start": 14261.68, + "end": 14266.4, + "probability": 0.9851 + }, + { + "start": 14267.68, + "end": 14269.74, + "probability": 0.6093 + }, + { + "start": 14270.22, + "end": 14272.18, + "probability": 0.9937 + }, + { + "start": 14275.27, + "end": 14277.0, + "probability": 0.6223 + }, + { + "start": 14278.18, + "end": 14282.14, + "probability": 0.8285 + }, + { + "start": 14282.84, + "end": 14283.16, + "probability": 0.939 + }, + { + "start": 14284.04, + "end": 14288.3, + "probability": 0.9723 + }, + { + "start": 14288.84, + "end": 14289.46, + "probability": 0.8108 + }, + { + "start": 14290.34, + "end": 14291.38, + "probability": 0.9219 + }, + { + "start": 14293.22, + "end": 14296.64, + "probability": 0.8441 + }, + { + "start": 14297.88, + "end": 14301.66, + "probability": 0.8974 + }, + { + "start": 14302.42, + "end": 14304.28, + "probability": 0.9177 + }, + { + "start": 14305.12, + "end": 14306.24, + "probability": 0.6154 + }, + { + "start": 14307.7, + "end": 14309.06, + "probability": 0.925 + }, + { + "start": 14309.98, + "end": 14313.77, + "probability": 0.931 + }, + { + "start": 14314.58, + "end": 14315.08, + "probability": 0.5541 + }, + { + "start": 14315.12, + "end": 14322.06, + "probability": 0.9314 + }, + { + "start": 14322.64, + "end": 14325.18, + "probability": 0.8139 + }, + { + "start": 14325.86, + "end": 14327.08, + "probability": 0.4449 + }, + { + "start": 14327.94, + "end": 14330.78, + "probability": 0.98 + }, + { + "start": 14330.78, + "end": 14335.54, + "probability": 0.9409 + }, + { + "start": 14335.56, + "end": 14338.22, + "probability": 0.9866 + }, + { + "start": 14338.92, + "end": 14341.12, + "probability": 0.9981 + }, + { + "start": 14342.1, + "end": 14343.3, + "probability": 0.8343 + }, + { + "start": 14344.24, + "end": 14347.64, + "probability": 0.9934 + }, + { + "start": 14347.64, + "end": 14352.14, + "probability": 0.9824 + }, + { + "start": 14354.02, + "end": 14356.76, + "probability": 0.9613 + }, + { + "start": 14357.16, + "end": 14359.3, + "probability": 0.8752 + }, + { + "start": 14359.62, + "end": 14360.82, + "probability": 0.9737 + }, + { + "start": 14361.52, + "end": 14363.24, + "probability": 0.9516 + }, + { + "start": 14365.58, + "end": 14368.22, + "probability": 0.9939 + }, + { + "start": 14370.1, + "end": 14371.68, + "probability": 0.7175 + }, + { + "start": 14372.76, + "end": 14376.08, + "probability": 0.0188 + }, + { + "start": 14376.84, + "end": 14378.61, + "probability": 0.0423 + }, + { + "start": 14379.72, + "end": 14380.04, + "probability": 0.2975 + }, + { + "start": 14382.22, + "end": 14383.06, + "probability": 0.0102 + }, + { + "start": 14383.06, + "end": 14384.49, + "probability": 0.1089 + }, + { + "start": 14385.27, + "end": 14387.06, + "probability": 0.0177 + }, + { + "start": 14387.06, + "end": 14390.28, + "probability": 0.0664 + }, + { + "start": 14391.53, + "end": 14394.82, + "probability": 0.0811 + }, + { + "start": 14395.98, + "end": 14396.62, + "probability": 0.0221 + }, + { + "start": 14396.9, + "end": 14399.52, + "probability": 0.0827 + }, + { + "start": 14400.24, + "end": 14407.86, + "probability": 0.0644 + }, + { + "start": 14409.62, + "end": 14414.32, + "probability": 0.1693 + }, + { + "start": 14415.88, + "end": 14417.58, + "probability": 0.151 + }, + { + "start": 14417.78, + "end": 14421.32, + "probability": 0.1641 + }, + { + "start": 14422.58, + "end": 14423.44, + "probability": 0.0163 + }, + { + "start": 14423.44, + "end": 14426.6, + "probability": 0.0437 + }, + { + "start": 14427.6, + "end": 14432.04, + "probability": 0.0817 + }, + { + "start": 14432.96, + "end": 14433.8, + "probability": 0.2682 + }, + { + "start": 14435.46, + "end": 14437.74, + "probability": 0.1748 + }, + { + "start": 14437.82, + "end": 14440.92, + "probability": 0.1035 + }, + { + "start": 14464.0, + "end": 14464.0, + "probability": 0.0 + }, + { + "start": 14464.0, + "end": 14464.0, + "probability": 0.0 + }, + { + "start": 14464.0, + "end": 14464.0, + "probability": 0.0 + }, + { + "start": 14464.0, + "end": 14464.0, + "probability": 0.0 + }, + { + "start": 14464.0, + "end": 14464.0, + "probability": 0.0 + }, + { + "start": 14464.0, + "end": 14464.0, + "probability": 0.0 + }, + { + "start": 14464.0, + "end": 14464.0, + "probability": 0.0 + }, + { + "start": 14464.0, + "end": 14464.0, + "probability": 0.0 + }, + { + "start": 14464.0, + "end": 14464.0, + "probability": 0.0 + }, + { + "start": 14464.0, + "end": 14464.0, + "probability": 0.0 + }, + { + "start": 14464.58, + "end": 14467.7, + "probability": 0.6225 + }, + { + "start": 14467.7, + "end": 14470.52, + "probability": 0.725 + }, + { + "start": 14470.62, + "end": 14471.06, + "probability": 0.5277 + }, + { + "start": 14471.14, + "end": 14472.26, + "probability": 0.6753 + }, + { + "start": 14472.4, + "end": 14476.5, + "probability": 0.6288 + }, + { + "start": 14476.6, + "end": 14478.9, + "probability": 0.8473 + }, + { + "start": 14478.96, + "end": 14479.8, + "probability": 0.5569 + }, + { + "start": 14480.72, + "end": 14483.46, + "probability": 0.8569 + }, + { + "start": 14484.08, + "end": 14489.44, + "probability": 0.6487 + }, + { + "start": 14489.52, + "end": 14490.0, + "probability": 0.8811 + }, + { + "start": 14490.66, + "end": 14492.4, + "probability": 0.9371 + }, + { + "start": 14493.52, + "end": 14493.82, + "probability": 0.5332 + }, + { + "start": 14494.6, + "end": 14496.88, + "probability": 0.8043 + }, + { + "start": 14497.86, + "end": 14498.58, + "probability": 0.8036 + }, + { + "start": 14502.56, + "end": 14505.72, + "probability": 0.7741 + }, + { + "start": 14506.66, + "end": 14509.9, + "probability": 0.9918 + }, + { + "start": 14511.58, + "end": 14513.16, + "probability": 0.8458 + }, + { + "start": 14514.18, + "end": 14515.64, + "probability": 0.8555 + }, + { + "start": 14516.42, + "end": 14518.8, + "probability": 0.7637 + }, + { + "start": 14518.86, + "end": 14520.66, + "probability": 0.6698 + }, + { + "start": 14520.74, + "end": 14521.3, + "probability": 0.4715 + }, + { + "start": 14521.44, + "end": 14521.66, + "probability": 0.023 + }, + { + "start": 14521.66, + "end": 14522.02, + "probability": 0.5024 + }, + { + "start": 14522.48, + "end": 14526.32, + "probability": 0.7781 + }, + { + "start": 14527.18, + "end": 14528.68, + "probability": 0.9829 + }, + { + "start": 14529.32, + "end": 14531.0, + "probability": 0.9872 + }, + { + "start": 14532.04, + "end": 14534.82, + "probability": 0.9383 + }, + { + "start": 14535.66, + "end": 14536.18, + "probability": 0.9207 + }, + { + "start": 14536.94, + "end": 14539.05, + "probability": 0.9849 + }, + { + "start": 14539.86, + "end": 14542.84, + "probability": 0.8798 + }, + { + "start": 14543.48, + "end": 14547.74, + "probability": 0.9934 + }, + { + "start": 14547.86, + "end": 14549.0, + "probability": 0.8262 + }, + { + "start": 14549.04, + "end": 14552.98, + "probability": 0.9253 + }, + { + "start": 14553.26, + "end": 14554.84, + "probability": 0.8916 + }, + { + "start": 14556.21, + "end": 14559.84, + "probability": 0.9838 + }, + { + "start": 14560.68, + "end": 14562.92, + "probability": 0.7616 + }, + { + "start": 14563.5, + "end": 14565.06, + "probability": 0.9708 + }, + { + "start": 14565.7, + "end": 14566.64, + "probability": 0.9739 + }, + { + "start": 14566.76, + "end": 14572.26, + "probability": 0.9844 + }, + { + "start": 14572.44, + "end": 14573.64, + "probability": 0.3741 + }, + { + "start": 14574.44, + "end": 14575.7, + "probability": 0.8669 + }, + { + "start": 14576.52, + "end": 14581.4, + "probability": 0.9933 + }, + { + "start": 14581.94, + "end": 14582.46, + "probability": 0.8767 + }, + { + "start": 14582.98, + "end": 14585.06, + "probability": 0.7486 + }, + { + "start": 14585.56, + "end": 14588.08, + "probability": 0.9789 + }, + { + "start": 14588.66, + "end": 14589.56, + "probability": 0.7634 + }, + { + "start": 14589.66, + "end": 14590.65, + "probability": 0.7433 + }, + { + "start": 14591.3, + "end": 14591.92, + "probability": 0.9841 + }, + { + "start": 14592.08, + "end": 14592.82, + "probability": 0.7872 + }, + { + "start": 14592.86, + "end": 14593.86, + "probability": 0.7204 + }, + { + "start": 14594.5, + "end": 14595.68, + "probability": 0.7885 + }, + { + "start": 14596.24, + "end": 14597.22, + "probability": 0.8095 + }, + { + "start": 14597.44, + "end": 14600.88, + "probability": 0.9844 + }, + { + "start": 14601.2, + "end": 14602.22, + "probability": 0.9681 + }, + { + "start": 14602.8, + "end": 14603.94, + "probability": 0.8976 + }, + { + "start": 14604.14, + "end": 14609.78, + "probability": 0.9819 + }, + { + "start": 14610.36, + "end": 14611.3, + "probability": 0.9068 + }, + { + "start": 14612.0, + "end": 14612.24, + "probability": 0.7216 + }, + { + "start": 14612.24, + "end": 14620.62, + "probability": 0.8046 + }, + { + "start": 14621.18, + "end": 14625.56, + "probability": 0.9907 + }, + { + "start": 14626.16, + "end": 14627.88, + "probability": 0.9921 + }, + { + "start": 14628.76, + "end": 14629.88, + "probability": 0.9167 + }, + { + "start": 14630.14, + "end": 14632.46, + "probability": 0.9811 + }, + { + "start": 14632.98, + "end": 14636.18, + "probability": 0.5006 + }, + { + "start": 14636.32, + "end": 14637.96, + "probability": 0.8814 + }, + { + "start": 14637.98, + "end": 14638.74, + "probability": 0.877 + }, + { + "start": 14639.44, + "end": 14641.5, + "probability": 0.9475 + }, + { + "start": 14642.54, + "end": 14643.36, + "probability": 0.9604 + }, + { + "start": 14643.42, + "end": 14645.08, + "probability": 0.9971 + }, + { + "start": 14645.96, + "end": 14648.3, + "probability": 0.598 + }, + { + "start": 14648.42, + "end": 14650.32, + "probability": 0.9057 + }, + { + "start": 14650.4, + "end": 14653.52, + "probability": 0.8826 + }, + { + "start": 14654.02, + "end": 14655.94, + "probability": 0.9595 + }, + { + "start": 14656.66, + "end": 14661.38, + "probability": 0.6724 + }, + { + "start": 14661.5, + "end": 14662.43, + "probability": 0.7915 + }, + { + "start": 14663.12, + "end": 14665.46, + "probability": 0.9286 + }, + { + "start": 14665.98, + "end": 14667.02, + "probability": 0.9351 + }, + { + "start": 14667.48, + "end": 14669.68, + "probability": 0.9663 + }, + { + "start": 14669.68, + "end": 14673.1, + "probability": 0.9847 + }, + { + "start": 14673.3, + "end": 14673.92, + "probability": 0.593 + }, + { + "start": 14673.98, + "end": 14676.46, + "probability": 0.9726 + }, + { + "start": 14676.94, + "end": 14677.58, + "probability": 0.8174 + }, + { + "start": 14677.7, + "end": 14685.36, + "probability": 0.9442 + }, + { + "start": 14686.24, + "end": 14692.08, + "probability": 0.9912 + }, + { + "start": 14692.84, + "end": 14695.62, + "probability": 0.9829 + }, + { + "start": 14696.16, + "end": 14699.44, + "probability": 0.9305 + }, + { + "start": 14700.14, + "end": 14702.51, + "probability": 0.9832 + }, + { + "start": 14703.3, + "end": 14706.7, + "probability": 0.8646 + }, + { + "start": 14708.66, + "end": 14715.82, + "probability": 0.9795 + }, + { + "start": 14716.12, + "end": 14717.57, + "probability": 0.9429 + }, + { + "start": 14717.64, + "end": 14718.72, + "probability": 0.8154 + }, + { + "start": 14719.14, + "end": 14721.38, + "probability": 0.9751 + }, + { + "start": 14721.46, + "end": 14726.28, + "probability": 0.8357 + }, + { + "start": 14726.92, + "end": 14730.24, + "probability": 0.8529 + }, + { + "start": 14730.44, + "end": 14736.3, + "probability": 0.9493 + }, + { + "start": 14737.32, + "end": 14740.5, + "probability": 0.9678 + }, + { + "start": 14741.26, + "end": 14741.38, + "probability": 0.9214 + }, + { + "start": 14741.52, + "end": 14742.1, + "probability": 0.9205 + }, + { + "start": 14742.24, + "end": 14742.92, + "probability": 0.8563 + }, + { + "start": 14743.04, + "end": 14743.94, + "probability": 0.906 + }, + { + "start": 14744.0, + "end": 14745.42, + "probability": 0.9576 + }, + { + "start": 14746.42, + "end": 14750.56, + "probability": 0.9315 + }, + { + "start": 14750.7, + "end": 14751.72, + "probability": 0.5813 + }, + { + "start": 14752.1, + "end": 14753.16, + "probability": 0.6239 + }, + { + "start": 14753.52, + "end": 14754.58, + "probability": 0.9402 + }, + { + "start": 14754.88, + "end": 14760.82, + "probability": 0.9209 + }, + { + "start": 14761.38, + "end": 14762.5, + "probability": 0.9273 + }, + { + "start": 14762.74, + "end": 14765.3, + "probability": 0.902 + }, + { + "start": 14765.3, + "end": 14770.56, + "probability": 0.9733 + }, + { + "start": 14770.64, + "end": 14771.56, + "probability": 0.9837 + }, + { + "start": 14772.36, + "end": 14775.12, + "probability": 0.9956 + }, + { + "start": 14775.22, + "end": 14778.6, + "probability": 0.889 + }, + { + "start": 14778.7, + "end": 14780.3, + "probability": 0.6853 + }, + { + "start": 14780.72, + "end": 14783.14, + "probability": 0.9919 + }, + { + "start": 14783.5, + "end": 14784.6, + "probability": 0.9265 + }, + { + "start": 14784.64, + "end": 14785.92, + "probability": 0.7582 + }, + { + "start": 14786.06, + "end": 14788.72, + "probability": 0.9897 + }, + { + "start": 14788.72, + "end": 14792.96, + "probability": 0.9949 + }, + { + "start": 14793.02, + "end": 14794.58, + "probability": 0.988 + }, + { + "start": 14794.68, + "end": 14795.65, + "probability": 0.8395 + }, + { + "start": 14796.62, + "end": 14797.88, + "probability": 0.6674 + }, + { + "start": 14798.64, + "end": 14803.64, + "probability": 0.9459 + }, + { + "start": 14803.66, + "end": 14805.32, + "probability": 0.9294 + }, + { + "start": 14805.6, + "end": 14806.51, + "probability": 0.7766 + }, + { + "start": 14807.08, + "end": 14808.92, + "probability": 0.9543 + }, + { + "start": 14809.34, + "end": 14810.86, + "probability": 0.9249 + }, + { + "start": 14811.26, + "end": 14818.0, + "probability": 0.9721 + }, + { + "start": 14818.16, + "end": 14818.96, + "probability": 0.7327 + }, + { + "start": 14819.58, + "end": 14821.72, + "probability": 0.6663 + }, + { + "start": 14821.8, + "end": 14822.8, + "probability": 0.3634 + }, + { + "start": 14823.38, + "end": 14826.62, + "probability": 0.9929 + }, + { + "start": 14826.96, + "end": 14830.26, + "probability": 0.9939 + }, + { + "start": 14831.36, + "end": 14834.7, + "probability": 0.7261 + }, + { + "start": 14835.2, + "end": 14838.46, + "probability": 0.8278 + }, + { + "start": 14838.46, + "end": 14842.02, + "probability": 0.9068 + }, + { + "start": 14842.5, + "end": 14843.66, + "probability": 0.7841 + }, + { + "start": 14843.84, + "end": 14846.4, + "probability": 0.8992 + }, + { + "start": 14846.56, + "end": 14848.52, + "probability": 0.9438 + }, + { + "start": 14849.44, + "end": 14850.12, + "probability": 0.9841 + }, + { + "start": 14850.3, + "end": 14850.52, + "probability": 0.8143 + }, + { + "start": 14851.7, + "end": 14855.66, + "probability": 0.3846 + }, + { + "start": 14855.92, + "end": 14857.9, + "probability": 0.779 + }, + { + "start": 14881.88, + "end": 14883.32, + "probability": 0.7153 + }, + { + "start": 14883.4, + "end": 14884.44, + "probability": 0.6206 + }, + { + "start": 14884.96, + "end": 14887.14, + "probability": 0.5756 + }, + { + "start": 14887.22, + "end": 14891.76, + "probability": 0.9834 + }, + { + "start": 14892.36, + "end": 14893.42, + "probability": 0.9803 + }, + { + "start": 14893.46, + "end": 14897.3, + "probability": 0.9094 + }, + { + "start": 14897.8, + "end": 14898.8, + "probability": 0.4657 + }, + { + "start": 14899.46, + "end": 14900.82, + "probability": 0.7795 + }, + { + "start": 14901.4, + "end": 14904.6, + "probability": 0.9639 + }, + { + "start": 14905.12, + "end": 14905.16, + "probability": 0.0344 + }, + { + "start": 14905.16, + "end": 14910.24, + "probability": 0.9834 + }, + { + "start": 14910.36, + "end": 14911.64, + "probability": 0.9464 + }, + { + "start": 14912.2, + "end": 14914.4, + "probability": 0.9227 + }, + { + "start": 14914.46, + "end": 14919.2, + "probability": 0.9074 + }, + { + "start": 14919.4, + "end": 14920.4, + "probability": 0.6318 + }, + { + "start": 14920.44, + "end": 14921.44, + "probability": 0.7891 + }, + { + "start": 14924.46, + "end": 14925.0, + "probability": 0.7206 + }, + { + "start": 14925.72, + "end": 14928.98, + "probability": 0.9543 + }, + { + "start": 14929.0, + "end": 14932.44, + "probability": 0.9601 + }, + { + "start": 14933.26, + "end": 14937.36, + "probability": 0.9876 + }, + { + "start": 14939.48, + "end": 14941.02, + "probability": 0.8292 + }, + { + "start": 14941.1, + "end": 14944.9, + "probability": 0.924 + }, + { + "start": 14945.04, + "end": 14946.28, + "probability": 0.9897 + }, + { + "start": 14946.66, + "end": 14949.9, + "probability": 0.7636 + }, + { + "start": 14950.52, + "end": 14955.82, + "probability": 0.8482 + }, + { + "start": 14955.9, + "end": 14957.91, + "probability": 0.9973 + }, + { + "start": 14958.84, + "end": 14961.62, + "probability": 0.9979 + }, + { + "start": 14961.7, + "end": 14963.47, + "probability": 0.999 + }, + { + "start": 14963.88, + "end": 14964.3, + "probability": 0.8321 + }, + { + "start": 14964.84, + "end": 14965.52, + "probability": 0.9727 + }, + { + "start": 14965.6, + "end": 14966.69, + "probability": 0.9775 + }, + { + "start": 14966.96, + "end": 14969.0, + "probability": 0.9458 + }, + { + "start": 14969.48, + "end": 14972.07, + "probability": 0.9937 + }, + { + "start": 14972.52, + "end": 14975.14, + "probability": 0.9462 + }, + { + "start": 14975.68, + "end": 14980.2, + "probability": 0.9905 + }, + { + "start": 14980.8, + "end": 14982.06, + "probability": 0.9663 + }, + { + "start": 14982.7, + "end": 14987.22, + "probability": 0.9805 + }, + { + "start": 14987.88, + "end": 14988.8, + "probability": 0.925 + }, + { + "start": 14990.76, + "end": 14992.6, + "probability": 0.9468 + }, + { + "start": 14992.68, + "end": 14994.58, + "probability": 0.7878 + }, + { + "start": 14995.44, + "end": 14998.6, + "probability": 0.5812 + }, + { + "start": 14999.0, + "end": 15002.16, + "probability": 0.917 + }, + { + "start": 15002.3, + "end": 15002.64, + "probability": 0.6451 + }, + { + "start": 15002.68, + "end": 15004.14, + "probability": 0.8461 + }, + { + "start": 15004.66, + "end": 15006.09, + "probability": 0.9297 + }, + { + "start": 15006.68, + "end": 15009.34, + "probability": 0.939 + }, + { + "start": 15009.8, + "end": 15012.25, + "probability": 0.9385 + }, + { + "start": 15012.48, + "end": 15014.24, + "probability": 0.8366 + }, + { + "start": 15015.78, + "end": 15017.84, + "probability": 0.8109 + }, + { + "start": 15017.92, + "end": 15022.1, + "probability": 0.9972 + }, + { + "start": 15022.76, + "end": 15026.94, + "probability": 0.6271 + }, + { + "start": 15027.46, + "end": 15029.12, + "probability": 0.8819 + }, + { + "start": 15029.56, + "end": 15030.49, + "probability": 0.7976 + }, + { + "start": 15030.74, + "end": 15032.18, + "probability": 0.9347 + }, + { + "start": 15032.68, + "end": 15036.84, + "probability": 0.9286 + }, + { + "start": 15037.34, + "end": 15038.58, + "probability": 0.8768 + }, + { + "start": 15039.16, + "end": 15042.1, + "probability": 0.9455 + }, + { + "start": 15042.76, + "end": 15046.72, + "probability": 0.8767 + }, + { + "start": 15047.14, + "end": 15052.1, + "probability": 0.6922 + }, + { + "start": 15053.78, + "end": 15058.54, + "probability": 0.9873 + }, + { + "start": 15059.18, + "end": 15063.92, + "probability": 0.9961 + }, + { + "start": 15064.5, + "end": 15068.38, + "probability": 0.9782 + }, + { + "start": 15068.88, + "end": 15072.46, + "probability": 0.8693 + }, + { + "start": 15073.26, + "end": 15075.6, + "probability": 0.8278 + }, + { + "start": 15076.08, + "end": 15078.2, + "probability": 0.9032 + }, + { + "start": 15078.22, + "end": 15080.53, + "probability": 0.9956 + }, + { + "start": 15080.96, + "end": 15086.5, + "probability": 0.9866 + }, + { + "start": 15086.6, + "end": 15091.86, + "probability": 0.9854 + }, + { + "start": 15091.98, + "end": 15094.18, + "probability": 0.9883 + }, + { + "start": 15094.18, + "end": 15096.06, + "probability": 0.6751 + }, + { + "start": 15096.64, + "end": 15099.24, + "probability": 0.989 + }, + { + "start": 15099.24, + "end": 15102.6, + "probability": 0.9976 + }, + { + "start": 15102.76, + "end": 15104.14, + "probability": 0.998 + }, + { + "start": 15104.64, + "end": 15110.24, + "probability": 0.1714 + }, + { + "start": 15110.32, + "end": 15111.88, + "probability": 0.3402 + }, + { + "start": 15111.98, + "end": 15114.92, + "probability": 0.9865 + }, + { + "start": 15115.16, + "end": 15116.46, + "probability": 0.561 + }, + { + "start": 15116.86, + "end": 15119.22, + "probability": 0.824 + }, + { + "start": 15119.38, + "end": 15120.4, + "probability": 0.67 + }, + { + "start": 15120.54, + "end": 15121.38, + "probability": 0.3286 + }, + { + "start": 15121.48, + "end": 15122.97, + "probability": 0.7727 + }, + { + "start": 15123.62, + "end": 15123.88, + "probability": 0.6989 + }, + { + "start": 15124.06, + "end": 15130.42, + "probability": 0.9155 + }, + { + "start": 15130.9, + "end": 15131.78, + "probability": 0.9907 + }, + { + "start": 15132.2, + "end": 15132.68, + "probability": 0.784 + }, + { + "start": 15132.72, + "end": 15133.16, + "probability": 0.8159 + }, + { + "start": 15133.38, + "end": 15136.28, + "probability": 0.8627 + }, + { + "start": 15136.56, + "end": 15140.04, + "probability": 0.989 + }, + { + "start": 15140.62, + "end": 15140.82, + "probability": 0.9814 + }, + { + "start": 15141.12, + "end": 15141.3, + "probability": 0.5408 + }, + { + "start": 15141.3, + "end": 15142.56, + "probability": 0.7324 + }, + { + "start": 15142.96, + "end": 15146.9, + "probability": 0.8572 + }, + { + "start": 15147.02, + "end": 15147.06, + "probability": 0.7269 + }, + { + "start": 15147.32, + "end": 15147.62, + "probability": 0.2669 + }, + { + "start": 15147.66, + "end": 15149.42, + "probability": 0.9989 + }, + { + "start": 15149.42, + "end": 15152.44, + "probability": 0.9084 + }, + { + "start": 15152.84, + "end": 15154.46, + "probability": 0.6597 + }, + { + "start": 15154.64, + "end": 15154.76, + "probability": 0.4161 + }, + { + "start": 15154.84, + "end": 15155.18, + "probability": 0.6701 + }, + { + "start": 15155.24, + "end": 15156.54, + "probability": 0.8391 + }, + { + "start": 15157.06, + "end": 15158.4, + "probability": 0.9478 + }, + { + "start": 15158.44, + "end": 15160.72, + "probability": 0.8623 + }, + { + "start": 15160.78, + "end": 15161.38, + "probability": 0.8408 + }, + { + "start": 15163.02, + "end": 15164.04, + "probability": 0.4981 + }, + { + "start": 15164.08, + "end": 15165.55, + "probability": 0.8292 + }, + { + "start": 15165.76, + "end": 15170.78, + "probability": 0.8871 + }, + { + "start": 15172.0, + "end": 15174.76, + "probability": 0.9946 + }, + { + "start": 15174.76, + "end": 15175.18, + "probability": 0.767 + }, + { + "start": 15176.1, + "end": 15177.26, + "probability": 0.8919 + }, + { + "start": 15180.04, + "end": 15180.38, + "probability": 0.526 + }, + { + "start": 15182.32, + "end": 15182.6, + "probability": 0.5874 + }, + { + "start": 15184.9, + "end": 15186.98, + "probability": 0.7156 + }, + { + "start": 15188.0, + "end": 15190.82, + "probability": 0.7397 + }, + { + "start": 15192.94, + "end": 15196.96, + "probability": 0.9707 + }, + { + "start": 15197.66, + "end": 15201.34, + "probability": 0.7952 + }, + { + "start": 15202.96, + "end": 15206.28, + "probability": 0.8383 + }, + { + "start": 15206.44, + "end": 15207.22, + "probability": 0.8333 + }, + { + "start": 15208.18, + "end": 15209.38, + "probability": 0.7392 + }, + { + "start": 15210.02, + "end": 15212.08, + "probability": 0.8943 + }, + { + "start": 15212.68, + "end": 15215.24, + "probability": 0.8343 + }, + { + "start": 15215.82, + "end": 15218.8, + "probability": 0.9162 + }, + { + "start": 15219.7, + "end": 15221.12, + "probability": 0.8097 + }, + { + "start": 15222.8, + "end": 15225.98, + "probability": 0.7111 + }, + { + "start": 15226.1, + "end": 15226.18, + "probability": 0.4295 + }, + { + "start": 15226.18, + "end": 15226.52, + "probability": 0.5207 + }, + { + "start": 15227.7, + "end": 15229.78, + "probability": 0.6847 + }, + { + "start": 15230.84, + "end": 15236.24, + "probability": 0.992 + }, + { + "start": 15236.76, + "end": 15238.7, + "probability": 0.9985 + }, + { + "start": 15239.56, + "end": 15241.54, + "probability": 0.9883 + }, + { + "start": 15242.02, + "end": 15244.84, + "probability": 0.999 + }, + { + "start": 15245.64, + "end": 15247.44, + "probability": 0.9992 + }, + { + "start": 15248.24, + "end": 15249.28, + "probability": 0.8034 + }, + { + "start": 15250.12, + "end": 15250.64, + "probability": 0.3473 + }, + { + "start": 15250.76, + "end": 15251.32, + "probability": 0.7614 + }, + { + "start": 15251.4, + "end": 15254.94, + "probability": 0.9647 + }, + { + "start": 15256.04, + "end": 15260.3, + "probability": 0.7825 + }, + { + "start": 15260.94, + "end": 15267.38, + "probability": 0.957 + }, + { + "start": 15268.52, + "end": 15269.98, + "probability": 0.344 + }, + { + "start": 15270.36, + "end": 15273.62, + "probability": 0.6144 + }, + { + "start": 15274.84, + "end": 15276.36, + "probability": 0.4323 + }, + { + "start": 15276.5, + "end": 15281.18, + "probability": 0.9769 + }, + { + "start": 15282.3, + "end": 15285.9, + "probability": 0.8789 + }, + { + "start": 15285.98, + "end": 15289.86, + "probability": 0.7924 + }, + { + "start": 15290.74, + "end": 15297.84, + "probability": 0.9553 + }, + { + "start": 15298.02, + "end": 15302.24, + "probability": 0.799 + }, + { + "start": 15303.02, + "end": 15310.2, + "probability": 0.9751 + }, + { + "start": 15310.32, + "end": 15311.74, + "probability": 0.7197 + }, + { + "start": 15312.72, + "end": 15316.46, + "probability": 0.7518 + }, + { + "start": 15316.98, + "end": 15320.02, + "probability": 0.6177 + }, + { + "start": 15321.16, + "end": 15324.0, + "probability": 0.9372 + }, + { + "start": 15325.14, + "end": 15328.3, + "probability": 0.9512 + }, + { + "start": 15328.42, + "end": 15329.72, + "probability": 0.7475 + }, + { + "start": 15330.56, + "end": 15333.16, + "probability": 0.871 + }, + { + "start": 15333.68, + "end": 15336.94, + "probability": 0.9712 + }, + { + "start": 15336.94, + "end": 15340.52, + "probability": 0.9474 + }, + { + "start": 15340.74, + "end": 15343.62, + "probability": 0.7727 + }, + { + "start": 15344.64, + "end": 15346.76, + "probability": 0.9888 + }, + { + "start": 15348.46, + "end": 15350.36, + "probability": 0.9791 + }, + { + "start": 15350.44, + "end": 15353.6, + "probability": 0.996 + }, + { + "start": 15353.6, + "end": 15357.5, + "probability": 0.8791 + }, + { + "start": 15357.82, + "end": 15361.2, + "probability": 0.9224 + }, + { + "start": 15361.84, + "end": 15364.06, + "probability": 0.9747 + }, + { + "start": 15364.86, + "end": 15366.54, + "probability": 0.9951 + }, + { + "start": 15367.0, + "end": 15370.1, + "probability": 0.8527 + }, + { + "start": 15371.25, + "end": 15372.32, + "probability": 0.4578 + }, + { + "start": 15372.42, + "end": 15374.74, + "probability": 0.7403 + }, + { + "start": 15375.62, + "end": 15378.76, + "probability": 0.6446 + }, + { + "start": 15378.76, + "end": 15381.92, + "probability": 0.8358 + }, + { + "start": 15382.68, + "end": 15387.94, + "probability": 0.9811 + }, + { + "start": 15388.94, + "end": 15392.66, + "probability": 0.9301 + }, + { + "start": 15394.04, + "end": 15397.36, + "probability": 0.974 + }, + { + "start": 15398.06, + "end": 15399.58, + "probability": 0.7468 + }, + { + "start": 15399.66, + "end": 15404.96, + "probability": 0.9712 + }, + { + "start": 15405.7, + "end": 15409.16, + "probability": 0.8914 + }, + { + "start": 15409.16, + "end": 15412.68, + "probability": 0.5144 + }, + { + "start": 15413.48, + "end": 15416.04, + "probability": 0.6943 + }, + { + "start": 15416.76, + "end": 15418.0, + "probability": 0.6698 + }, + { + "start": 15418.1, + "end": 15422.4, + "probability": 0.9005 + }, + { + "start": 15422.5, + "end": 15425.52, + "probability": 0.8958 + }, + { + "start": 15425.52, + "end": 15428.74, + "probability": 0.9341 + }, + { + "start": 15429.22, + "end": 15430.44, + "probability": 0.9754 + }, + { + "start": 15431.66, + "end": 15432.26, + "probability": 0.9937 + }, + { + "start": 15432.86, + "end": 15435.94, + "probability": 0.9686 + }, + { + "start": 15436.72, + "end": 15438.8, + "probability": 0.9465 + }, + { + "start": 15439.82, + "end": 15440.9, + "probability": 0.7988 + }, + { + "start": 15441.0, + "end": 15441.58, + "probability": 0.4027 + }, + { + "start": 15442.34, + "end": 15442.52, + "probability": 0.3724 + }, + { + "start": 15443.02, + "end": 15443.46, + "probability": 0.4306 + }, + { + "start": 15444.14, + "end": 15446.14, + "probability": 0.9824 + }, + { + "start": 15446.34, + "end": 15447.06, + "probability": 0.5433 + }, + { + "start": 15447.94, + "end": 15450.56, + "probability": 0.2634 + }, + { + "start": 15451.6, + "end": 15454.92, + "probability": 0.9736 + }, + { + "start": 15456.38, + "end": 15460.78, + "probability": 0.9917 + }, + { + "start": 15461.36, + "end": 15462.72, + "probability": 0.7215 + }, + { + "start": 15463.62, + "end": 15464.46, + "probability": 0.8282 + }, + { + "start": 15464.6, + "end": 15467.3, + "probability": 0.9826 + }, + { + "start": 15468.14, + "end": 15469.74, + "probability": 0.9734 + }, + { + "start": 15470.1, + "end": 15470.26, + "probability": 0.52 + }, + { + "start": 15470.48, + "end": 15472.72, + "probability": 0.9437 + }, + { + "start": 15473.88, + "end": 15477.75, + "probability": 0.8501 + }, + { + "start": 15478.6, + "end": 15482.92, + "probability": 0.9526 + }, + { + "start": 15483.4, + "end": 15487.22, + "probability": 0.7765 + }, + { + "start": 15487.92, + "end": 15491.64, + "probability": 0.9183 + }, + { + "start": 15492.82, + "end": 15494.52, + "probability": 0.9922 + }, + { + "start": 15495.84, + "end": 15496.36, + "probability": 0.8356 + }, + { + "start": 15496.62, + "end": 15499.58, + "probability": 0.9874 + }, + { + "start": 15499.58, + "end": 15504.17, + "probability": 0.9808 + }, + { + "start": 15505.14, + "end": 15506.32, + "probability": 0.6724 + }, + { + "start": 15507.08, + "end": 15508.52, + "probability": 0.9574 + }, + { + "start": 15508.9, + "end": 15512.6, + "probability": 0.913 + }, + { + "start": 15512.8, + "end": 15513.0, + "probability": 0.5093 + }, + { + "start": 15513.72, + "end": 15515.92, + "probability": 0.7322 + }, + { + "start": 15515.92, + "end": 15516.48, + "probability": 0.258 + }, + { + "start": 15518.73, + "end": 15523.86, + "probability": 0.8836 + }, + { + "start": 15524.36, + "end": 15527.22, + "probability": 0.9204 + }, + { + "start": 15528.6, + "end": 15532.94, + "probability": 0.9806 + }, + { + "start": 15533.68, + "end": 15537.76, + "probability": 0.9736 + }, + { + "start": 15537.88, + "end": 15540.28, + "probability": 0.998 + }, + { + "start": 15540.84, + "end": 15543.86, + "probability": 0.5885 + }, + { + "start": 15544.44, + "end": 15550.82, + "probability": 0.933 + }, + { + "start": 15550.88, + "end": 15553.56, + "probability": 0.9953 + }, + { + "start": 15553.6, + "end": 15557.12, + "probability": 0.9755 + }, + { + "start": 15557.66, + "end": 15559.62, + "probability": 0.9275 + }, + { + "start": 15561.36, + "end": 15567.02, + "probability": 0.7256 + }, + { + "start": 15567.62, + "end": 15570.96, + "probability": 0.8681 + }, + { + "start": 15572.66, + "end": 15578.2, + "probability": 0.5636 + }, + { + "start": 15578.8, + "end": 15582.12, + "probability": 0.8589 + }, + { + "start": 15582.84, + "end": 15586.18, + "probability": 0.9102 + }, + { + "start": 15586.82, + "end": 15589.94, + "probability": 0.8984 + }, + { + "start": 15590.94, + "end": 15591.98, + "probability": 0.6505 + }, + { + "start": 15592.12, + "end": 15594.5, + "probability": 0.9912 + }, + { + "start": 15595.5, + "end": 15599.14, + "probability": 0.7391 + }, + { + "start": 15600.9, + "end": 15603.96, + "probability": 0.8874 + }, + { + "start": 15604.64, + "end": 15605.7, + "probability": 0.833 + }, + { + "start": 15606.24, + "end": 15607.48, + "probability": 0.9512 + }, + { + "start": 15608.32, + "end": 15609.36, + "probability": 0.8531 + }, + { + "start": 15609.46, + "end": 15610.16, + "probability": 0.6714 + }, + { + "start": 15610.9, + "end": 15612.4, + "probability": 0.8035 + }, + { + "start": 15612.46, + "end": 15614.42, + "probability": 0.8599 + }, + { + "start": 15614.76, + "end": 15615.92, + "probability": 0.022 + }, + { + "start": 15616.32, + "end": 15616.82, + "probability": 0.3793 + }, + { + "start": 15617.12, + "end": 15619.48, + "probability": 0.5949 + }, + { + "start": 15619.56, + "end": 15622.5, + "probability": 0.9426 + }, + { + "start": 15622.54, + "end": 15626.52, + "probability": 0.9919 + }, + { + "start": 15627.22, + "end": 15630.72, + "probability": 0.9844 + }, + { + "start": 15631.28, + "end": 15634.66, + "probability": 0.9934 + }, + { + "start": 15636.65, + "end": 15638.6, + "probability": 0.9373 + }, + { + "start": 15639.28, + "end": 15641.56, + "probability": 0.9018 + }, + { + "start": 15642.1, + "end": 15644.1, + "probability": 0.6046 + }, + { + "start": 15644.92, + "end": 15645.8, + "probability": 0.8837 + }, + { + "start": 15646.44, + "end": 15647.42, + "probability": 0.4118 + }, + { + "start": 15648.38, + "end": 15650.68, + "probability": 0.9674 + }, + { + "start": 15651.68, + "end": 15656.16, + "probability": 0.951 + }, + { + "start": 15656.66, + "end": 15659.95, + "probability": 0.8173 + }, + { + "start": 15661.34, + "end": 15665.84, + "probability": 0.97 + }, + { + "start": 15666.4, + "end": 15666.78, + "probability": 0.8684 + }, + { + "start": 15667.06, + "end": 15669.68, + "probability": 0.9967 + }, + { + "start": 15669.68, + "end": 15673.12, + "probability": 0.9985 + }, + { + "start": 15673.94, + "end": 15677.24, + "probability": 0.9741 + }, + { + "start": 15678.12, + "end": 15681.64, + "probability": 0.812 + }, + { + "start": 15682.6, + "end": 15686.74, + "probability": 0.5151 + }, + { + "start": 15688.68, + "end": 15689.03, + "probability": 0.4088 + }, + { + "start": 15690.54, + "end": 15691.52, + "probability": 0.9482 + }, + { + "start": 15692.32, + "end": 15693.18, + "probability": 0.8453 + }, + { + "start": 15693.56, + "end": 15696.08, + "probability": 0.9922 + }, + { + "start": 15696.62, + "end": 15697.92, + "probability": 0.6861 + }, + { + "start": 15698.02, + "end": 15698.74, + "probability": 0.7498 + }, + { + "start": 15698.8, + "end": 15701.38, + "probability": 0.7989 + }, + { + "start": 15701.42, + "end": 15703.88, + "probability": 0.9723 + }, + { + "start": 15705.3, + "end": 15709.94, + "probability": 0.9891 + }, + { + "start": 15710.46, + "end": 15710.84, + "probability": 0.8829 + }, + { + "start": 15711.44, + "end": 15712.04, + "probability": 0.0626 + }, + { + "start": 15712.48, + "end": 15714.52, + "probability": 0.0778 + }, + { + "start": 15715.04, + "end": 15716.28, + "probability": 0.4763 + }, + { + "start": 15716.28, + "end": 15719.28, + "probability": 0.114 + }, + { + "start": 15720.32, + "end": 15727.04, + "probability": 0.9121 + }, + { + "start": 15727.1, + "end": 15728.99, + "probability": 0.8281 + }, + { + "start": 15729.78, + "end": 15731.54, + "probability": 0.8769 + }, + { + "start": 15731.64, + "end": 15734.7, + "probability": 0.8145 + }, + { + "start": 15734.86, + "end": 15738.12, + "probability": 0.9849 + }, + { + "start": 15738.5, + "end": 15740.61, + "probability": 0.6122 + }, + { + "start": 15740.68, + "end": 15742.9, + "probability": 0.9207 + }, + { + "start": 15743.98, + "end": 15750.34, + "probability": 0.9561 + }, + { + "start": 15750.64, + "end": 15753.24, + "probability": 0.9951 + }, + { + "start": 15753.6, + "end": 15755.76, + "probability": 0.9794 + }, + { + "start": 15756.46, + "end": 15759.06, + "probability": 0.7089 + }, + { + "start": 15759.9, + "end": 15763.66, + "probability": 0.9731 + }, + { + "start": 15764.4, + "end": 15764.66, + "probability": 0.8986 + }, + { + "start": 15764.78, + "end": 15767.96, + "probability": 0.8876 + }, + { + "start": 15769.94, + "end": 15771.9, + "probability": 0.9451 + }, + { + "start": 15771.98, + "end": 15772.52, + "probability": 0.7159 + }, + { + "start": 15772.64, + "end": 15776.82, + "probability": 0.9782 + }, + { + "start": 15777.48, + "end": 15777.8, + "probability": 0.5324 + }, + { + "start": 15779.1, + "end": 15780.38, + "probability": 0.7102 + }, + { + "start": 15781.38, + "end": 15785.78, + "probability": 0.6633 + }, + { + "start": 15785.78, + "end": 15790.6, + "probability": 0.8683 + }, + { + "start": 15791.1, + "end": 15791.62, + "probability": 0.4646 + }, + { + "start": 15792.22, + "end": 15793.26, + "probability": 0.8448 + }, + { + "start": 15793.36, + "end": 15794.1, + "probability": 0.3639 + }, + { + "start": 15794.18, + "end": 15797.72, + "probability": 0.9888 + }, + { + "start": 15797.94, + "end": 15802.0, + "probability": 0.9958 + }, + { + "start": 15802.04, + "end": 15802.58, + "probability": 0.7368 + }, + { + "start": 15804.24, + "end": 15804.9, + "probability": 0.7408 + }, + { + "start": 15805.08, + "end": 15807.54, + "probability": 0.9376 + }, + { + "start": 15809.6, + "end": 15810.94, + "probability": 0.6247 + }, + { + "start": 15815.28, + "end": 15817.06, + "probability": 0.9515 + }, + { + "start": 15817.06, + "end": 15819.66, + "probability": 0.8101 + }, + { + "start": 15819.78, + "end": 15825.26, + "probability": 0.9066 + }, + { + "start": 15825.4, + "end": 15829.56, + "probability": 0.4208 + }, + { + "start": 15830.18, + "end": 15830.42, + "probability": 0.2718 + }, + { + "start": 15831.68, + "end": 15833.0, + "probability": 0.464 + }, + { + "start": 15833.42, + "end": 15834.7, + "probability": 0.7939 + }, + { + "start": 15836.42, + "end": 15837.0, + "probability": 0.715 + }, + { + "start": 15837.92, + "end": 15838.02, + "probability": 0.2898 + }, + { + "start": 15839.6, + "end": 15840.54, + "probability": 0.037 + }, + { + "start": 15841.58, + "end": 15842.02, + "probability": 0.0093 + }, + { + "start": 15846.72, + "end": 15852.24, + "probability": 0.0356 + }, + { + "start": 15853.82, + "end": 15856.6, + "probability": 0.0152 + }, + { + "start": 15859.78, + "end": 15859.88, + "probability": 0.0128 + }, + { + "start": 15860.98, + "end": 15865.48, + "probability": 0.1168 + }, + { + "start": 15866.2, + "end": 15866.9, + "probability": 0.0385 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15925.0, + "end": 15925.0, + "probability": 0.0 + }, + { + "start": 15937.4, + "end": 15941.38, + "probability": 0.5412 + }, + { + "start": 15942.02, + "end": 15944.46, + "probability": 0.0216 + }, + { + "start": 15958.74, + "end": 15962.42, + "probability": 0.0244 + }, + { + "start": 15963.43, + "end": 15965.12, + "probability": 0.0354 + }, + { + "start": 15965.86, + "end": 15966.6, + "probability": 0.374 + }, + { + "start": 15966.6, + "end": 15968.14, + "probability": 0.3331 + }, + { + "start": 15969.6, + "end": 15969.95, + "probability": 0.1595 + }, + { + "start": 15972.28, + "end": 15974.92, + "probability": 0.0254 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.0, + "end": 16048.0, + "probability": 0.0 + }, + { + "start": 16048.16, + "end": 16048.4, + "probability": 0.0209 + }, + { + "start": 16048.4, + "end": 16050.76, + "probability": 0.8466 + }, + { + "start": 16051.64, + "end": 16053.44, + "probability": 0.6673 + }, + { + "start": 16053.88, + "end": 16055.96, + "probability": 0.954 + }, + { + "start": 16056.01, + "end": 16060.44, + "probability": 0.9871 + }, + { + "start": 16061.18, + "end": 16063.7, + "probability": 0.9836 + }, + { + "start": 16064.12, + "end": 16066.56, + "probability": 0.8086 + }, + { + "start": 16066.98, + "end": 16070.82, + "probability": 0.9757 + }, + { + "start": 16071.28, + "end": 16073.78, + "probability": 0.9893 + }, + { + "start": 16074.16, + "end": 16076.24, + "probability": 0.9658 + }, + { + "start": 16076.72, + "end": 16078.52, + "probability": 0.916 + }, + { + "start": 16079.08, + "end": 16079.62, + "probability": 0.5954 + }, + { + "start": 16079.78, + "end": 16084.12, + "probability": 0.8416 + }, + { + "start": 16084.56, + "end": 16086.12, + "probability": 0.5305 + }, + { + "start": 16086.2, + "end": 16089.42, + "probability": 0.8743 + }, + { + "start": 16089.54, + "end": 16090.76, + "probability": 0.9582 + }, + { + "start": 16091.14, + "end": 16092.4, + "probability": 0.4266 + }, + { + "start": 16092.64, + "end": 16092.68, + "probability": 0.3039 + }, + { + "start": 16093.14, + "end": 16093.54, + "probability": 0.289 + }, + { + "start": 16093.54, + "end": 16093.66, + "probability": 0.1803 + }, + { + "start": 16093.66, + "end": 16096.7, + "probability": 0.6418 + }, + { + "start": 16096.76, + "end": 16101.3, + "probability": 0.8325 + }, + { + "start": 16101.38, + "end": 16103.56, + "probability": 0.8058 + }, + { + "start": 16103.74, + "end": 16106.62, + "probability": 0.9388 + }, + { + "start": 16106.62, + "end": 16110.54, + "probability": 0.9231 + }, + { + "start": 16110.9, + "end": 16114.58, + "probability": 0.9423 + }, + { + "start": 16116.14, + "end": 16116.46, + "probability": 0.5449 + }, + { + "start": 16116.66, + "end": 16119.28, + "probability": 0.6436 + }, + { + "start": 16119.74, + "end": 16121.08, + "probability": 0.1681 + }, + { + "start": 16121.08, + "end": 16123.24, + "probability": 0.7833 + }, + { + "start": 16128.66, + "end": 16129.06, + "probability": 0.6599 + }, + { + "start": 16145.75, + "end": 16151.06, + "probability": 0.5972 + }, + { + "start": 16152.86, + "end": 16153.54, + "probability": 0.0391 + }, + { + "start": 16156.58, + "end": 16159.68, + "probability": 0.7191 + }, + { + "start": 16159.68, + "end": 16162.53, + "probability": 0.7719 + }, + { + "start": 16163.3, + "end": 16164.54, + "probability": 0.7424 + }, + { + "start": 16181.98, + "end": 16182.56, + "probability": 0.0755 + }, + { + "start": 16182.56, + "end": 16183.18, + "probability": 0.0237 + }, + { + "start": 16190.9, + "end": 16192.16, + "probability": 0.1617 + }, + { + "start": 16198.37, + "end": 16201.16, + "probability": 0.016 + }, + { + "start": 16203.36, + "end": 16203.36, + "probability": 0.0269 + }, + { + "start": 16211.02, + "end": 16212.82, + "probability": 0.0212 + }, + { + "start": 16212.82, + "end": 16216.34, + "probability": 0.0556 + }, + { + "start": 16228.9, + "end": 16230.08, + "probability": 0.0737 + }, + { + "start": 16231.92, + "end": 16233.36, + "probability": 0.027 + }, + { + "start": 16236.42, + "end": 16236.84, + "probability": 0.0781 + }, + { + "start": 16237.0, + "end": 16237.0, + "probability": 0.0 + }, + { + "start": 16237.0, + "end": 16237.0, + "probability": 0.0 + }, + { + "start": 16237.0, + "end": 16237.0, + "probability": 0.0 + }, + { + "start": 16237.0, + "end": 16237.0, + "probability": 0.0 + }, + { + "start": 16237.0, + "end": 16237.0, + "probability": 0.0 + }, + { + "start": 16237.0, + "end": 16237.0, + "probability": 0.0 + }, + { + "start": 16237.0, + "end": 16237.0, + "probability": 0.0 + }, + { + "start": 16237.0, + "end": 16237.0, + "probability": 0.0 + }, + { + "start": 16237.0, + "end": 16237.0, + "probability": 0.0 + }, + { + "start": 16237.82, + "end": 16238.26, + "probability": 0.1628 + }, + { + "start": 16238.26, + "end": 16238.26, + "probability": 0.2153 + }, + { + "start": 16238.26, + "end": 16242.77, + "probability": 0.7341 + }, + { + "start": 16245.04, + "end": 16250.78, + "probability": 0.9236 + }, + { + "start": 16253.04, + "end": 16258.62, + "probability": 0.9961 + }, + { + "start": 16258.82, + "end": 16262.22, + "probability": 0.9979 + }, + { + "start": 16262.74, + "end": 16263.84, + "probability": 0.992 + }, + { + "start": 16266.68, + "end": 16267.96, + "probability": 0.9995 + }, + { + "start": 16269.78, + "end": 16270.5, + "probability": 0.918 + }, + { + "start": 16271.82, + "end": 16276.78, + "probability": 0.999 + }, + { + "start": 16276.78, + "end": 16280.64, + "probability": 0.9988 + }, + { + "start": 16281.78, + "end": 16284.82, + "probability": 0.9951 + }, + { + "start": 16284.9, + "end": 16291.26, + "probability": 0.9972 + }, + { + "start": 16291.26, + "end": 16296.0, + "probability": 0.9988 + }, + { + "start": 16296.98, + "end": 16298.54, + "probability": 0.7399 + }, + { + "start": 16299.34, + "end": 16300.06, + "probability": 0.7362 + }, + { + "start": 16300.74, + "end": 16304.08, + "probability": 0.7898 + }, + { + "start": 16304.1, + "end": 16307.08, + "probability": 0.9241 + }, + { + "start": 16307.2, + "end": 16308.76, + "probability": 0.6372 + }, + { + "start": 16309.32, + "end": 16311.06, + "probability": 0.9657 + }, + { + "start": 16311.58, + "end": 16312.42, + "probability": 0.99 + }, + { + "start": 16313.16, + "end": 16314.08, + "probability": 0.9508 + }, + { + "start": 16314.66, + "end": 16316.76, + "probability": 0.9943 + }, + { + "start": 16317.28, + "end": 16320.38, + "probability": 0.6448 + }, + { + "start": 16320.8, + "end": 16325.84, + "probability": 0.9946 + }, + { + "start": 16326.22, + "end": 16332.54, + "probability": 0.9928 + }, + { + "start": 16335.03, + "end": 16339.72, + "probability": 0.9131 + }, + { + "start": 16339.72, + "end": 16344.4, + "probability": 0.9428 + }, + { + "start": 16344.86, + "end": 16347.52, + "probability": 0.9388 + }, + { + "start": 16348.28, + "end": 16351.24, + "probability": 0.9553 + }, + { + "start": 16353.38, + "end": 16354.02, + "probability": 0.6849 + }, + { + "start": 16355.26, + "end": 16359.4, + "probability": 0.9954 + }, + { + "start": 16360.0, + "end": 16361.8, + "probability": 0.7545 + }, + { + "start": 16361.86, + "end": 16369.44, + "probability": 0.9932 + }, + { + "start": 16369.44, + "end": 16375.08, + "probability": 0.9973 + }, + { + "start": 16375.46, + "end": 16376.02, + "probability": 0.4512 + }, + { + "start": 16376.6, + "end": 16383.44, + "probability": 0.9674 + }, + { + "start": 16384.02, + "end": 16391.38, + "probability": 0.9224 + }, + { + "start": 16392.12, + "end": 16394.3, + "probability": 0.9712 + }, + { + "start": 16395.34, + "end": 16401.56, + "probability": 0.9491 + }, + { + "start": 16402.2, + "end": 16404.04, + "probability": 0.6428 + }, + { + "start": 16405.68, + "end": 16416.6, + "probability": 0.9763 + }, + { + "start": 16416.6, + "end": 16423.88, + "probability": 0.9984 + }, + { + "start": 16424.02, + "end": 16424.82, + "probability": 0.8311 + }, + { + "start": 16424.94, + "end": 16426.52, + "probability": 0.7003 + }, + { + "start": 16426.64, + "end": 16426.66, + "probability": 0.4265 + }, + { + "start": 16426.78, + "end": 16428.22, + "probability": 0.9054 + }, + { + "start": 16429.68, + "end": 16431.7, + "probability": 0.9989 + }, + { + "start": 16432.78, + "end": 16439.54, + "probability": 0.9916 + }, + { + "start": 16439.54, + "end": 16444.78, + "probability": 0.9719 + }, + { + "start": 16445.32, + "end": 16446.0, + "probability": 0.7327 + }, + { + "start": 16446.62, + "end": 16451.24, + "probability": 0.9564 + }, + { + "start": 16451.24, + "end": 16455.24, + "probability": 0.9874 + }, + { + "start": 16455.9, + "end": 16463.04, + "probability": 0.995 + }, + { + "start": 16463.05, + "end": 16468.24, + "probability": 0.9885 + }, + { + "start": 16469.34, + "end": 16470.48, + "probability": 0.7943 + }, + { + "start": 16470.98, + "end": 16473.7, + "probability": 0.9351 + }, + { + "start": 16473.86, + "end": 16476.38, + "probability": 0.9857 + }, + { + "start": 16476.5, + "end": 16476.76, + "probability": 0.5783 + }, + { + "start": 16478.54, + "end": 16479.12, + "probability": 0.7003 + }, + { + "start": 16479.44, + "end": 16482.06, + "probability": 0.7894 + }, + { + "start": 16483.38, + "end": 16484.0, + "probability": 0.9314 + }, + { + "start": 16484.06, + "end": 16484.41, + "probability": 0.2088 + }, + { + "start": 16484.98, + "end": 16484.98, + "probability": 0.7656 + }, + { + "start": 16486.04, + "end": 16488.32, + "probability": 0.9795 + }, + { + "start": 16488.34, + "end": 16489.84, + "probability": 0.6838 + }, + { + "start": 16491.9, + "end": 16492.5, + "probability": 0.8076 + }, + { + "start": 16492.92, + "end": 16494.8, + "probability": 0.4989 + }, + { + "start": 16494.94, + "end": 16494.94, + "probability": 0.0994 + }, + { + "start": 16495.1, + "end": 16495.86, + "probability": 0.0451 + }, + { + "start": 16496.02, + "end": 16496.42, + "probability": 0.1436 + }, + { + "start": 16496.42, + "end": 16496.58, + "probability": 0.3832 + }, + { + "start": 16496.66, + "end": 16497.18, + "probability": 0.2473 + }, + { + "start": 16497.36, + "end": 16499.12, + "probability": 0.5058 + }, + { + "start": 16500.54, + "end": 16503.88, + "probability": 0.9823 + }, + { + "start": 16504.56, + "end": 16505.37, + "probability": 0.4693 + }, + { + "start": 16505.96, + "end": 16506.54, + "probability": 0.7786 + }, + { + "start": 16506.58, + "end": 16508.16, + "probability": 0.6769 + }, + { + "start": 16509.41, + "end": 16514.14, + "probability": 0.9908 + }, + { + "start": 16514.14, + "end": 16518.86, + "probability": 0.9586 + }, + { + "start": 16520.04, + "end": 16522.08, + "probability": 0.9578 + }, + { + "start": 16522.08, + "end": 16524.54, + "probability": 0.9985 + }, + { + "start": 16524.7, + "end": 16526.68, + "probability": 0.9698 + }, + { + "start": 16527.72, + "end": 16528.96, + "probability": 0.7334 + }, + { + "start": 16530.18, + "end": 16534.24, + "probability": 0.9974 + }, + { + "start": 16534.4, + "end": 16536.88, + "probability": 0.9108 + }, + { + "start": 16537.9, + "end": 16540.22, + "probability": 0.9128 + }, + { + "start": 16540.36, + "end": 16541.7, + "probability": 0.7061 + }, + { + "start": 16542.42, + "end": 16543.42, + "probability": 0.9839 + }, + { + "start": 16543.72, + "end": 16547.72, + "probability": 0.9972 + }, + { + "start": 16548.54, + "end": 16552.64, + "probability": 0.9698 + }, + { + "start": 16553.2, + "end": 16555.32, + "probability": 0.84 + }, + { + "start": 16556.94, + "end": 16560.5, + "probability": 0.9915 + }, + { + "start": 16561.38, + "end": 16564.32, + "probability": 0.982 + }, + { + "start": 16565.34, + "end": 16567.66, + "probability": 0.9598 + }, + { + "start": 16567.66, + "end": 16570.22, + "probability": 0.998 + }, + { + "start": 16570.86, + "end": 16573.62, + "probability": 0.9937 + }, + { + "start": 16574.3, + "end": 16576.08, + "probability": 0.9554 + }, + { + "start": 16576.14, + "end": 16579.6, + "probability": 0.9123 + }, + { + "start": 16580.06, + "end": 16581.92, + "probability": 0.9974 + }, + { + "start": 16581.92, + "end": 16584.18, + "probability": 0.9811 + }, + { + "start": 16584.96, + "end": 16586.74, + "probability": 0.9703 + }, + { + "start": 16586.74, + "end": 16589.14, + "probability": 0.9849 + }, + { + "start": 16591.68, + "end": 16596.1, + "probability": 0.975 + }, + { + "start": 16597.24, + "end": 16599.68, + "probability": 0.9755 + }, + { + "start": 16602.14, + "end": 16604.22, + "probability": 0.916 + }, + { + "start": 16604.22, + "end": 16606.02, + "probability": 0.9966 + }, + { + "start": 16606.22, + "end": 16607.8, + "probability": 0.998 + }, + { + "start": 16607.82, + "end": 16609.86, + "probability": 0.9794 + }, + { + "start": 16611.6, + "end": 16612.46, + "probability": 0.9788 + }, + { + "start": 16612.62, + "end": 16616.64, + "probability": 0.7536 + }, + { + "start": 16618.34, + "end": 16619.14, + "probability": 0.6784 + }, + { + "start": 16619.46, + "end": 16620.38, + "probability": 0.8392 + }, + { + "start": 16621.1, + "end": 16622.01, + "probability": 0.9973 + }, + { + "start": 16622.56, + "end": 16627.78, + "probability": 0.9958 + }, + { + "start": 16628.96, + "end": 16630.42, + "probability": 0.9801 + }, + { + "start": 16630.62, + "end": 16634.98, + "probability": 0.9932 + }, + { + "start": 16635.1, + "end": 16635.34, + "probability": 0.8244 + }, + { + "start": 16637.82, + "end": 16638.42, + "probability": 0.7411 + }, + { + "start": 16639.02, + "end": 16640.08, + "probability": 0.6927 + }, + { + "start": 16640.74, + "end": 16641.98, + "probability": 0.7292 + }, + { + "start": 16644.4, + "end": 16646.68, + "probability": 0.7345 + }, + { + "start": 16648.16, + "end": 16648.76, + "probability": 0.4837 + }, + { + "start": 16649.42, + "end": 16651.56, + "probability": 0.9859 + }, + { + "start": 16652.56, + "end": 16652.94, + "probability": 0.8217 + }, + { + "start": 16679.94, + "end": 16681.6, + "probability": 0.7708 + }, + { + "start": 16682.52, + "end": 16683.42, + "probability": 0.6625 + }, + { + "start": 16684.7, + "end": 16691.24, + "probability": 0.7586 + }, + { + "start": 16691.86, + "end": 16695.6, + "probability": 0.8397 + }, + { + "start": 16695.66, + "end": 16697.56, + "probability": 0.9881 + }, + { + "start": 16698.74, + "end": 16703.26, + "probability": 0.994 + }, + { + "start": 16704.24, + "end": 16705.46, + "probability": 0.8999 + }, + { + "start": 16705.58, + "end": 16711.28, + "probability": 0.8697 + }, + { + "start": 16712.5, + "end": 16713.53, + "probability": 0.7164 + }, + { + "start": 16715.76, + "end": 16719.56, + "probability": 0.6977 + }, + { + "start": 16720.12, + "end": 16723.32, + "probability": 0.9869 + }, + { + "start": 16724.2, + "end": 16724.96, + "probability": 0.902 + }, + { + "start": 16725.14, + "end": 16727.78, + "probability": 0.9709 + }, + { + "start": 16727.78, + "end": 16732.14, + "probability": 0.9551 + }, + { + "start": 16732.28, + "end": 16733.1, + "probability": 0.7106 + }, + { + "start": 16733.96, + "end": 16737.78, + "probability": 0.9847 + }, + { + "start": 16737.78, + "end": 16742.74, + "probability": 0.8989 + }, + { + "start": 16742.82, + "end": 16746.68, + "probability": 0.6871 + }, + { + "start": 16748.04, + "end": 16748.96, + "probability": 0.7845 + }, + { + "start": 16749.78, + "end": 16751.06, + "probability": 0.9924 + }, + { + "start": 16752.34, + "end": 16756.66, + "probability": 0.9866 + }, + { + "start": 16757.16, + "end": 16758.88, + "probability": 0.9972 + }, + { + "start": 16758.88, + "end": 16762.22, + "probability": 0.5334 + }, + { + "start": 16763.74, + "end": 16764.54, + "probability": 0.7442 + }, + { + "start": 16764.54, + "end": 16765.74, + "probability": 0.4431 + }, + { + "start": 16766.42, + "end": 16772.2, + "probability": 0.8015 + }, + { + "start": 16772.56, + "end": 16775.92, + "probability": 0.347 + }, + { + "start": 16777.08, + "end": 16779.5, + "probability": 0.5358 + }, + { + "start": 16780.72, + "end": 16787.12, + "probability": 0.9939 + }, + { + "start": 16787.86, + "end": 16789.9, + "probability": 0.7352 + }, + { + "start": 16790.48, + "end": 16792.41, + "probability": 0.647 + }, + { + "start": 16793.58, + "end": 16795.74, + "probability": 0.6146 + }, + { + "start": 16796.58, + "end": 16796.9, + "probability": 0.458 + }, + { + "start": 16797.24, + "end": 16799.22, + "probability": 0.8635 + }, + { + "start": 16799.48, + "end": 16800.75, + "probability": 0.9916 + }, + { + "start": 16801.8, + "end": 16803.0, + "probability": 0.9476 + }, + { + "start": 16803.6, + "end": 16804.52, + "probability": 0.9688 + }, + { + "start": 16806.16, + "end": 16808.14, + "probability": 0.7337 + }, + { + "start": 16808.3, + "end": 16815.07, + "probability": 0.9725 + }, + { + "start": 16815.6, + "end": 16817.66, + "probability": 0.9517 + }, + { + "start": 16817.66, + "end": 16820.56, + "probability": 0.9486 + }, + { + "start": 16821.0, + "end": 16822.3, + "probability": 0.9785 + }, + { + "start": 16822.48, + "end": 16826.08, + "probability": 0.9403 + }, + { + "start": 16826.18, + "end": 16829.56, + "probability": 0.977 + }, + { + "start": 16830.9, + "end": 16833.54, + "probability": 0.8412 + }, + { + "start": 16833.54, + "end": 16836.56, + "probability": 0.7983 + }, + { + "start": 16837.04, + "end": 16837.42, + "probability": 0.4058 + }, + { + "start": 16837.52, + "end": 16842.88, + "probability": 0.9542 + }, + { + "start": 16842.88, + "end": 16845.6, + "probability": 0.9949 + }, + { + "start": 16846.52, + "end": 16847.16, + "probability": 0.7003 + }, + { + "start": 16847.26, + "end": 16848.02, + "probability": 0.648 + }, + { + "start": 16848.52, + "end": 16851.56, + "probability": 0.9395 + }, + { + "start": 16851.56, + "end": 16856.3, + "probability": 0.9951 + }, + { + "start": 16856.98, + "end": 16858.02, + "probability": 0.9131 + }, + { + "start": 16858.24, + "end": 16862.0, + "probability": 0.9828 + }, + { + "start": 16862.64, + "end": 16862.84, + "probability": 0.6869 + }, + { + "start": 16863.02, + "end": 16867.42, + "probability": 0.7096 + }, + { + "start": 16867.42, + "end": 16870.68, + "probability": 0.9944 + }, + { + "start": 16871.32, + "end": 16873.98, + "probability": 0.9917 + }, + { + "start": 16874.52, + "end": 16875.92, + "probability": 0.9953 + }, + { + "start": 16876.0, + "end": 16876.92, + "probability": 0.5669 + }, + { + "start": 16877.06, + "end": 16878.64, + "probability": 0.9486 + }, + { + "start": 16878.72, + "end": 16884.48, + "probability": 0.9947 + }, + { + "start": 16885.3, + "end": 16887.32, + "probability": 0.9883 + }, + { + "start": 16888.16, + "end": 16890.44, + "probability": 0.9771 + }, + { + "start": 16890.52, + "end": 16894.08, + "probability": 0.8427 + }, + { + "start": 16895.46, + "end": 16898.14, + "probability": 0.7675 + }, + { + "start": 16898.34, + "end": 16898.66, + "probability": 0.8463 + }, + { + "start": 16898.74, + "end": 16899.22, + "probability": 0.4437 + }, + { + "start": 16899.8, + "end": 16903.58, + "probability": 0.7814 + }, + { + "start": 16903.62, + "end": 16904.52, + "probability": 0.6051 + }, + { + "start": 16904.62, + "end": 16906.24, + "probability": 0.9575 + }, + { + "start": 16906.4, + "end": 16906.94, + "probability": 0.4069 + }, + { + "start": 16907.06, + "end": 16907.32, + "probability": 0.5133 + }, + { + "start": 16907.46, + "end": 16908.13, + "probability": 0.5612 + }, + { + "start": 16908.62, + "end": 16909.32, + "probability": 0.9701 + }, + { + "start": 16909.36, + "end": 16910.18, + "probability": 0.3082 + }, + { + "start": 16910.3, + "end": 16912.36, + "probability": 0.7126 + }, + { + "start": 16912.46, + "end": 16916.02, + "probability": 0.9162 + }, + { + "start": 16916.7, + "end": 16920.02, + "probability": 0.8641 + }, + { + "start": 16920.14, + "end": 16921.24, + "probability": 0.7583 + }, + { + "start": 16921.3, + "end": 16925.08, + "probability": 0.8921 + }, + { + "start": 16925.16, + "end": 16928.13, + "probability": 0.9714 + }, + { + "start": 16928.14, + "end": 16931.46, + "probability": 0.9888 + }, + { + "start": 16931.46, + "end": 16934.22, + "probability": 0.9561 + }, + { + "start": 16934.28, + "end": 16937.02, + "probability": 0.6535 + }, + { + "start": 16937.46, + "end": 16939.46, + "probability": 0.9534 + }, + { + "start": 16939.66, + "end": 16941.4, + "probability": 0.9098 + }, + { + "start": 16944.02, + "end": 16944.88, + "probability": 0.8146 + }, + { + "start": 16946.82, + "end": 16947.9, + "probability": 0.5416 + }, + { + "start": 16949.2, + "end": 16950.32, + "probability": 0.281 + }, + { + "start": 16950.32, + "end": 16951.44, + "probability": 0.9448 + }, + { + "start": 16952.44, + "end": 16954.08, + "probability": 0.7422 + }, + { + "start": 16954.24, + "end": 16956.08, + "probability": 0.688 + }, + { + "start": 16956.3, + "end": 16958.94, + "probability": 0.957 + }, + { + "start": 16958.98, + "end": 16960.7, + "probability": 0.721 + }, + { + "start": 16960.7, + "end": 16962.12, + "probability": 0.8115 + }, + { + "start": 16962.94, + "end": 16967.34, + "probability": 0.3508 + }, + { + "start": 16967.42, + "end": 16968.82, + "probability": 0.4222 + }, + { + "start": 16968.82, + "end": 16969.5, + "probability": 0.2782 + }, + { + "start": 16969.52, + "end": 16971.88, + "probability": 0.6473 + }, + { + "start": 16972.0, + "end": 16972.14, + "probability": 0.0988 + }, + { + "start": 16972.14, + "end": 16973.84, + "probability": 0.7566 + }, + { + "start": 16973.84, + "end": 16975.82, + "probability": 0.8997 + }, + { + "start": 16976.32, + "end": 16978.84, + "probability": 0.753 + }, + { + "start": 16979.28, + "end": 16982.38, + "probability": 0.7417 + }, + { + "start": 16982.38, + "end": 16985.6, + "probability": 0.7061 + }, + { + "start": 16986.22, + "end": 16986.22, + "probability": 0.8022 + }, + { + "start": 16986.76, + "end": 16990.3, + "probability": 0.6285 + }, + { + "start": 16990.96, + "end": 16991.3, + "probability": 0.7517 + }, + { + "start": 16991.94, + "end": 16992.5, + "probability": 0.7305 + }, + { + "start": 16995.08, + "end": 16997.06, + "probability": 0.8871 + }, + { + "start": 17006.46, + "end": 17007.18, + "probability": 0.5643 + }, + { + "start": 17007.24, + "end": 17008.06, + "probability": 0.8052 + }, + { + "start": 17008.2, + "end": 17010.48, + "probability": 0.838 + }, + { + "start": 17010.56, + "end": 17010.86, + "probability": 0.6069 + }, + { + "start": 17011.28, + "end": 17012.42, + "probability": 0.3999 + }, + { + "start": 17012.54, + "end": 17015.36, + "probability": 0.8744 + }, + { + "start": 17015.94, + "end": 17019.02, + "probability": 0.9413 + }, + { + "start": 17019.02, + "end": 17019.3, + "probability": 0.2505 + }, + { + "start": 17019.94, + "end": 17021.42, + "probability": 0.8713 + }, + { + "start": 17022.08, + "end": 17023.24, + "probability": 0.7017 + }, + { + "start": 17026.83, + "end": 17030.44, + "probability": 0.9496 + }, + { + "start": 17031.17, + "end": 17037.86, + "probability": 0.9282 + }, + { + "start": 17039.8, + "end": 17042.02, + "probability": 0.9329 + }, + { + "start": 17042.08, + "end": 17042.8, + "probability": 0.9512 + }, + { + "start": 17043.12, + "end": 17046.8, + "probability": 0.9525 + }, + { + "start": 17049.03, + "end": 17053.46, + "probability": 0.9787 + }, + { + "start": 17053.58, + "end": 17054.38, + "probability": 0.785 + }, + { + "start": 17055.04, + "end": 17056.82, + "probability": 0.9893 + }, + { + "start": 17056.82, + "end": 17062.94, + "probability": 0.9813 + }, + { + "start": 17063.88, + "end": 17065.99, + "probability": 0.9338 + }, + { + "start": 17067.42, + "end": 17069.54, + "probability": 0.9066 + }, + { + "start": 17069.54, + "end": 17070.88, + "probability": 0.8054 + }, + { + "start": 17071.04, + "end": 17072.0, + "probability": 0.8789 + }, + { + "start": 17072.04, + "end": 17072.94, + "probability": 0.8621 + }, + { + "start": 17074.86, + "end": 17076.42, + "probability": 0.6228 + }, + { + "start": 17078.12, + "end": 17079.94, + "probability": 0.9153 + }, + { + "start": 17080.64, + "end": 17083.06, + "probability": 0.963 + }, + { + "start": 17083.06, + "end": 17086.58, + "probability": 0.9907 + }, + { + "start": 17087.34, + "end": 17087.7, + "probability": 0.5213 + }, + { + "start": 17087.72, + "end": 17089.08, + "probability": 0.8867 + }, + { + "start": 17089.66, + "end": 17091.28, + "probability": 0.6531 + }, + { + "start": 17092.02, + "end": 17092.38, + "probability": 0.0329 + }, + { + "start": 17092.52, + "end": 17093.3, + "probability": 0.9204 + }, + { + "start": 17093.48, + "end": 17096.14, + "probability": 0.9868 + }, + { + "start": 17096.88, + "end": 17098.44, + "probability": 0.711 + }, + { + "start": 17099.02, + "end": 17103.01, + "probability": 0.979 + }, + { + "start": 17103.48, + "end": 17104.54, + "probability": 0.9818 + }, + { + "start": 17105.82, + "end": 17107.5, + "probability": 0.9623 + }, + { + "start": 17108.38, + "end": 17109.92, + "probability": 0.9583 + }, + { + "start": 17110.12, + "end": 17111.24, + "probability": 0.9618 + }, + { + "start": 17111.36, + "end": 17112.76, + "probability": 0.9512 + }, + { + "start": 17113.82, + "end": 17114.6, + "probability": 0.6915 + }, + { + "start": 17115.12, + "end": 17115.84, + "probability": 0.9094 + }, + { + "start": 17116.74, + "end": 17117.58, + "probability": 0.9855 + }, + { + "start": 17118.14, + "end": 17120.92, + "probability": 0.8889 + }, + { + "start": 17121.48, + "end": 17122.08, + "probability": 0.9716 + }, + { + "start": 17123.56, + "end": 17126.06, + "probability": 0.9679 + }, + { + "start": 17127.14, + "end": 17129.62, + "probability": 0.8381 + }, + { + "start": 17129.78, + "end": 17131.0, + "probability": 0.9799 + }, + { + "start": 17131.38, + "end": 17133.72, + "probability": 0.9582 + }, + { + "start": 17134.85, + "end": 17136.26, + "probability": 0.8231 + }, + { + "start": 17136.96, + "end": 17138.84, + "probability": 0.791 + }, + { + "start": 17140.42, + "end": 17141.78, + "probability": 0.9373 + }, + { + "start": 17142.04, + "end": 17143.1, + "probability": 0.9608 + }, + { + "start": 17143.2, + "end": 17145.26, + "probability": 0.9497 + }, + { + "start": 17147.84, + "end": 17148.88, + "probability": 0.2978 + }, + { + "start": 17149.14, + "end": 17150.68, + "probability": 0.7735 + }, + { + "start": 17151.72, + "end": 17152.46, + "probability": 0.8916 + }, + { + "start": 17152.56, + "end": 17153.58, + "probability": 0.9165 + }, + { + "start": 17153.98, + "end": 17154.84, + "probability": 0.9241 + }, + { + "start": 17155.24, + "end": 17155.96, + "probability": 0.9754 + }, + { + "start": 17156.36, + "end": 17158.4, + "probability": 0.9965 + }, + { + "start": 17160.1, + "end": 17161.3, + "probability": 0.9244 + }, + { + "start": 17161.58, + "end": 17163.68, + "probability": 0.9917 + }, + { + "start": 17164.18, + "end": 17166.38, + "probability": 0.981 + }, + { + "start": 17167.18, + "end": 17170.98, + "probability": 0.9783 + }, + { + "start": 17171.64, + "end": 17173.44, + "probability": 0.8723 + }, + { + "start": 17173.96, + "end": 17177.44, + "probability": 0.9968 + }, + { + "start": 17178.46, + "end": 17179.7, + "probability": 0.9666 + }, + { + "start": 17180.22, + "end": 17184.84, + "probability": 0.9979 + }, + { + "start": 17185.5, + "end": 17188.02, + "probability": 0.7033 + }, + { + "start": 17188.6, + "end": 17190.86, + "probability": 0.9974 + }, + { + "start": 17192.2, + "end": 17193.72, + "probability": 0.9824 + }, + { + "start": 17194.78, + "end": 17195.72, + "probability": 0.889 + }, + { + "start": 17195.98, + "end": 17196.82, + "probability": 0.6028 + }, + { + "start": 17196.94, + "end": 17199.38, + "probability": 0.5476 + }, + { + "start": 17199.54, + "end": 17200.76, + "probability": 0.7124 + }, + { + "start": 17201.24, + "end": 17203.8, + "probability": 0.9639 + }, + { + "start": 17204.78, + "end": 17206.22, + "probability": 0.8377 + }, + { + "start": 17206.9, + "end": 17206.92, + "probability": 0.1048 + }, + { + "start": 17206.92, + "end": 17206.92, + "probability": 0.1361 + }, + { + "start": 17206.92, + "end": 17207.56, + "probability": 0.3604 + }, + { + "start": 17207.7, + "end": 17208.72, + "probability": 0.6183 + }, + { + "start": 17208.76, + "end": 17210.36, + "probability": 0.8652 + }, + { + "start": 17210.44, + "end": 17211.24, + "probability": 0.9687 + }, + { + "start": 17212.22, + "end": 17212.98, + "probability": 0.5172 + }, + { + "start": 17213.08, + "end": 17215.4, + "probability": 0.9398 + }, + { + "start": 17216.12, + "end": 17217.12, + "probability": 0.9873 + }, + { + "start": 17218.02, + "end": 17222.38, + "probability": 0.9446 + }, + { + "start": 17223.2, + "end": 17225.0, + "probability": 0.955 + }, + { + "start": 17225.6, + "end": 17227.62, + "probability": 0.9244 + }, + { + "start": 17228.58, + "end": 17229.8, + "probability": 0.9793 + }, + { + "start": 17229.9, + "end": 17232.66, + "probability": 0.8243 + }, + { + "start": 17233.44, + "end": 17238.66, + "probability": 0.9727 + }, + { + "start": 17239.28, + "end": 17239.96, + "probability": 0.3919 + }, + { + "start": 17240.64, + "end": 17243.94, + "probability": 0.9862 + }, + { + "start": 17244.54, + "end": 17245.86, + "probability": 0.6892 + }, + { + "start": 17245.98, + "end": 17247.58, + "probability": 0.6506 + }, + { + "start": 17249.84, + "end": 17250.96, + "probability": 0.7563 + }, + { + "start": 17251.02, + "end": 17253.61, + "probability": 0.9474 + }, + { + "start": 17254.94, + "end": 17257.98, + "probability": 0.7986 + }, + { + "start": 17258.68, + "end": 17259.3, + "probability": 0.9871 + }, + { + "start": 17259.82, + "end": 17261.5, + "probability": 0.9451 + }, + { + "start": 17261.58, + "end": 17262.32, + "probability": 0.6984 + }, + { + "start": 17262.42, + "end": 17264.84, + "probability": 0.801 + }, + { + "start": 17265.36, + "end": 17267.18, + "probability": 0.5134 + }, + { + "start": 17268.0, + "end": 17271.52, + "probability": 0.9369 + }, + { + "start": 17272.14, + "end": 17274.38, + "probability": 0.8232 + }, + { + "start": 17274.76, + "end": 17279.14, + "probability": 0.9019 + }, + { + "start": 17279.62, + "end": 17282.6, + "probability": 0.7174 + }, + { + "start": 17283.48, + "end": 17287.66, + "probability": 0.9965 + }, + { + "start": 17287.66, + "end": 17291.64, + "probability": 0.9752 + }, + { + "start": 17292.54, + "end": 17293.14, + "probability": 0.6037 + }, + { + "start": 17293.38, + "end": 17293.9, + "probability": 0.2097 + }, + { + "start": 17294.28, + "end": 17294.88, + "probability": 0.8695 + }, + { + "start": 17294.98, + "end": 17295.22, + "probability": 0.8019 + }, + { + "start": 17296.28, + "end": 17296.9, + "probability": 0.8012 + }, + { + "start": 17297.02, + "end": 17298.02, + "probability": 0.4216 + }, + { + "start": 17301.24, + "end": 17302.74, + "probability": 0.7445 + }, + { + "start": 17302.76, + "end": 17303.24, + "probability": 0.875 + }, + { + "start": 17305.84, + "end": 17308.22, + "probability": 0.1137 + }, + { + "start": 17310.46, + "end": 17313.06, + "probability": 0.4478 + }, + { + "start": 17332.88, + "end": 17336.34, + "probability": 0.7828 + }, + { + "start": 17338.36, + "end": 17341.16, + "probability": 0.984 + }, + { + "start": 17342.3, + "end": 17345.4, + "probability": 0.8893 + }, + { + "start": 17349.96, + "end": 17350.36, + "probability": 0.7448 + }, + { + "start": 17350.84, + "end": 17354.18, + "probability": 0.8805 + }, + { + "start": 17355.28, + "end": 17360.94, + "probability": 0.9821 + }, + { + "start": 17362.72, + "end": 17362.94, + "probability": 0.8826 + }, + { + "start": 17363.57, + "end": 17365.08, + "probability": 0.6925 + }, + { + "start": 17365.78, + "end": 17368.38, + "probability": 0.9456 + }, + { + "start": 17370.7, + "end": 17372.84, + "probability": 0.7297 + }, + { + "start": 17374.55, + "end": 17377.28, + "probability": 0.9915 + }, + { + "start": 17377.28, + "end": 17380.28, + "probability": 0.9978 + }, + { + "start": 17381.72, + "end": 17384.06, + "probability": 0.9755 + }, + { + "start": 17384.2, + "end": 17387.56, + "probability": 0.9994 + }, + { + "start": 17389.02, + "end": 17391.14, + "probability": 0.9945 + }, + { + "start": 17391.14, + "end": 17394.64, + "probability": 0.998 + }, + { + "start": 17395.6, + "end": 17400.0, + "probability": 0.9928 + }, + { + "start": 17402.56, + "end": 17403.76, + "probability": 0.7981 + }, + { + "start": 17404.26, + "end": 17407.36, + "probability": 0.9612 + }, + { + "start": 17408.2, + "end": 17409.6, + "probability": 0.8752 + }, + { + "start": 17410.4, + "end": 17414.22, + "probability": 0.986 + }, + { + "start": 17414.26, + "end": 17417.06, + "probability": 0.9804 + }, + { + "start": 17418.26, + "end": 17421.24, + "probability": 0.8846 + }, + { + "start": 17423.4, + "end": 17427.14, + "probability": 0.9653 + }, + { + "start": 17427.14, + "end": 17430.86, + "probability": 0.9927 + }, + { + "start": 17433.16, + "end": 17437.66, + "probability": 0.9905 + }, + { + "start": 17438.3, + "end": 17444.78, + "probability": 0.8549 + }, + { + "start": 17446.98, + "end": 17450.52, + "probability": 0.9916 + }, + { + "start": 17450.92, + "end": 17452.2, + "probability": 0.7609 + }, + { + "start": 17452.66, + "end": 17454.58, + "probability": 0.9863 + }, + { + "start": 17456.36, + "end": 17457.1, + "probability": 0.979 + }, + { + "start": 17457.24, + "end": 17460.04, + "probability": 0.9868 + }, + { + "start": 17460.2, + "end": 17462.28, + "probability": 0.9268 + }, + { + "start": 17462.98, + "end": 17464.94, + "probability": 0.9016 + }, + { + "start": 17467.58, + "end": 17467.98, + "probability": 0.8383 + }, + { + "start": 17470.26, + "end": 17472.98, + "probability": 0.9713 + }, + { + "start": 17473.16, + "end": 17477.94, + "probability": 0.959 + }, + { + "start": 17479.4, + "end": 17483.04, + "probability": 0.9848 + }, + { + "start": 17483.62, + "end": 17490.94, + "probability": 0.8637 + }, + { + "start": 17493.04, + "end": 17494.48, + "probability": 0.8019 + }, + { + "start": 17495.44, + "end": 17498.74, + "probability": 0.9923 + }, + { + "start": 17498.74, + "end": 17501.56, + "probability": 0.9716 + }, + { + "start": 17502.44, + "end": 17504.26, + "probability": 0.823 + }, + { + "start": 17505.8, + "end": 17510.38, + "probability": 0.9467 + }, + { + "start": 17510.38, + "end": 17514.48, + "probability": 0.998 + }, + { + "start": 17517.06, + "end": 17518.73, + "probability": 0.9906 + }, + { + "start": 17519.52, + "end": 17520.96, + "probability": 0.9277 + }, + { + "start": 17522.14, + "end": 17524.8, + "probability": 0.9998 + }, + { + "start": 17525.04, + "end": 17527.36, + "probability": 0.9844 + }, + { + "start": 17528.88, + "end": 17532.32, + "probability": 0.8838 + }, + { + "start": 17532.9, + "end": 17538.12, + "probability": 0.8945 + }, + { + "start": 17539.48, + "end": 17543.4, + "probability": 0.9503 + }, + { + "start": 17544.46, + "end": 17546.68, + "probability": 0.9142 + }, + { + "start": 17546.68, + "end": 17549.68, + "probability": 0.9737 + }, + { + "start": 17550.58, + "end": 17556.5, + "probability": 0.9841 + }, + { + "start": 17557.46, + "end": 17558.7, + "probability": 0.9896 + }, + { + "start": 17559.26, + "end": 17560.6, + "probability": 0.9598 + }, + { + "start": 17562.0, + "end": 17563.92, + "probability": 0.8739 + }, + { + "start": 17564.26, + "end": 17566.5, + "probability": 0.9187 + }, + { + "start": 17568.24, + "end": 17571.18, + "probability": 0.994 + }, + { + "start": 17571.6, + "end": 17578.12, + "probability": 0.9784 + }, + { + "start": 17578.98, + "end": 17582.0, + "probability": 0.8136 + }, + { + "start": 17585.04, + "end": 17586.78, + "probability": 0.8323 + }, + { + "start": 17587.6, + "end": 17590.2, + "probability": 0.9943 + }, + { + "start": 17590.2, + "end": 17592.3, + "probability": 0.9964 + }, + { + "start": 17593.28, + "end": 17596.94, + "probability": 0.9951 + }, + { + "start": 17598.6, + "end": 17603.4, + "probability": 0.9984 + }, + { + "start": 17605.72, + "end": 17609.24, + "probability": 0.9863 + }, + { + "start": 17610.58, + "end": 17614.12, + "probability": 0.9944 + }, + { + "start": 17614.12, + "end": 17617.04, + "probability": 0.9993 + }, + { + "start": 17618.56, + "end": 17621.16, + "probability": 0.9368 + }, + { + "start": 17621.58, + "end": 17625.26, + "probability": 0.9961 + }, + { + "start": 17626.32, + "end": 17628.54, + "probability": 0.8939 + }, + { + "start": 17631.0, + "end": 17632.04, + "probability": 0.7213 + }, + { + "start": 17632.14, + "end": 17634.98, + "probability": 0.9622 + }, + { + "start": 17635.0, + "end": 17636.38, + "probability": 0.8805 + }, + { + "start": 17638.16, + "end": 17642.32, + "probability": 0.9868 + }, + { + "start": 17642.58, + "end": 17644.14, + "probability": 0.9917 + }, + { + "start": 17644.74, + "end": 17646.16, + "probability": 0.9742 + }, + { + "start": 17647.3, + "end": 17651.1, + "probability": 0.994 + }, + { + "start": 17652.54, + "end": 17654.58, + "probability": 0.8313 + }, + { + "start": 17655.22, + "end": 17657.18, + "probability": 0.988 + }, + { + "start": 17657.7, + "end": 17658.5, + "probability": 0.6775 + }, + { + "start": 17658.64, + "end": 17663.54, + "probability": 0.9699 + }, + { + "start": 17664.78, + "end": 17668.68, + "probability": 0.9378 + }, + { + "start": 17669.3, + "end": 17672.74, + "probability": 0.9906 + }, + { + "start": 17673.58, + "end": 17678.9, + "probability": 0.7305 + }, + { + "start": 17678.9, + "end": 17685.92, + "probability": 0.9633 + }, + { + "start": 17686.0, + "end": 17686.44, + "probability": 0.5535 + }, + { + "start": 17687.72, + "end": 17689.74, + "probability": 0.9874 + }, + { + "start": 17689.74, + "end": 17692.96, + "probability": 0.942 + }, + { + "start": 17693.52, + "end": 17695.04, + "probability": 0.97 + }, + { + "start": 17695.84, + "end": 17696.72, + "probability": 0.9786 + }, + { + "start": 17697.62, + "end": 17699.14, + "probability": 0.8016 + }, + { + "start": 17699.72, + "end": 17701.74, + "probability": 0.9953 + }, + { + "start": 17702.28, + "end": 17705.22, + "probability": 0.9973 + }, + { + "start": 17707.28, + "end": 17708.06, + "probability": 0.7522 + }, + { + "start": 17709.8, + "end": 17711.98, + "probability": 0.981 + }, + { + "start": 17713.02, + "end": 17718.02, + "probability": 0.9951 + }, + { + "start": 17718.54, + "end": 17720.82, + "probability": 0.9751 + }, + { + "start": 17721.78, + "end": 17724.76, + "probability": 0.9946 + }, + { + "start": 17726.98, + "end": 17728.84, + "probability": 0.9154 + }, + { + "start": 17729.54, + "end": 17732.18, + "probability": 0.6951 + }, + { + "start": 17733.32, + "end": 17736.14, + "probability": 0.9805 + }, + { + "start": 17737.54, + "end": 17740.98, + "probability": 0.9945 + }, + { + "start": 17741.8, + "end": 17746.22, + "probability": 0.998 + }, + { + "start": 17746.92, + "end": 17749.4, + "probability": 0.9938 + }, + { + "start": 17752.64, + "end": 17755.74, + "probability": 0.9906 + }, + { + "start": 17756.22, + "end": 17758.6, + "probability": 0.9771 + }, + { + "start": 17759.92, + "end": 17764.6, + "probability": 0.998 + }, + { + "start": 17764.6, + "end": 17770.72, + "probability": 0.9988 + }, + { + "start": 17773.5, + "end": 17777.9, + "probability": 0.9729 + }, + { + "start": 17779.08, + "end": 17781.54, + "probability": 0.9526 + }, + { + "start": 17781.64, + "end": 17783.94, + "probability": 0.77 + }, + { + "start": 17785.1, + "end": 17788.8, + "probability": 0.6677 + }, + { + "start": 17788.8, + "end": 17791.9, + "probability": 0.98 + }, + { + "start": 17794.4, + "end": 17794.94, + "probability": 0.7167 + }, + { + "start": 17795.08, + "end": 17799.08, + "probability": 0.9915 + }, + { + "start": 17799.98, + "end": 17805.98, + "probability": 0.9866 + }, + { + "start": 17807.34, + "end": 17810.42, + "probability": 0.9217 + }, + { + "start": 17810.42, + "end": 17813.0, + "probability": 0.7487 + }, + { + "start": 17815.4, + "end": 17818.68, + "probability": 0.8787 + }, + { + "start": 17820.38, + "end": 17822.2, + "probability": 0.9946 + }, + { + "start": 17822.44, + "end": 17824.14, + "probability": 0.932 + }, + { + "start": 17825.1, + "end": 17830.06, + "probability": 0.9406 + }, + { + "start": 17830.22, + "end": 17832.72, + "probability": 0.8807 + }, + { + "start": 17833.82, + "end": 17837.32, + "probability": 0.9975 + }, + { + "start": 17838.94, + "end": 17844.06, + "probability": 0.9985 + }, + { + "start": 17845.52, + "end": 17849.8, + "probability": 0.9882 + }, + { + "start": 17850.9, + "end": 17852.44, + "probability": 0.8457 + }, + { + "start": 17853.02, + "end": 17857.02, + "probability": 0.9879 + }, + { + "start": 17858.14, + "end": 17860.72, + "probability": 0.9096 + }, + { + "start": 17861.24, + "end": 17865.1, + "probability": 0.6637 + }, + { + "start": 17865.4, + "end": 17866.14, + "probability": 0.7307 + }, + { + "start": 17866.22, + "end": 17870.88, + "probability": 0.9985 + }, + { + "start": 17871.8, + "end": 17873.88, + "probability": 0.9204 + }, + { + "start": 17874.46, + "end": 17877.78, + "probability": 0.9906 + }, + { + "start": 17877.86, + "end": 17880.74, + "probability": 0.9307 + }, + { + "start": 17881.76, + "end": 17886.48, + "probability": 0.9252 + }, + { + "start": 17887.14, + "end": 17891.9, + "probability": 0.9676 + }, + { + "start": 17892.58, + "end": 17896.98, + "probability": 0.9764 + }, + { + "start": 17900.18, + "end": 17901.8, + "probability": 0.9487 + }, + { + "start": 17902.18, + "end": 17906.72, + "probability": 0.9767 + }, + { + "start": 17907.62, + "end": 17910.52, + "probability": 0.9929 + }, + { + "start": 17910.52, + "end": 17913.12, + "probability": 0.999 + }, + { + "start": 17913.76, + "end": 17915.78, + "probability": 0.9841 + }, + { + "start": 17916.32, + "end": 17919.32, + "probability": 0.9914 + }, + { + "start": 17919.32, + "end": 17923.08, + "probability": 0.8336 + }, + { + "start": 17923.68, + "end": 17925.9, + "probability": 0.7449 + }, + { + "start": 17926.46, + "end": 17928.82, + "probability": 0.9956 + }, + { + "start": 17930.74, + "end": 17935.14, + "probability": 0.9978 + }, + { + "start": 17936.48, + "end": 17938.38, + "probability": 0.9948 + }, + { + "start": 17939.54, + "end": 17943.3, + "probability": 0.998 + }, + { + "start": 17943.3, + "end": 17947.04, + "probability": 0.9946 + }, + { + "start": 17948.58, + "end": 17951.6, + "probability": 0.9967 + }, + { + "start": 17951.6, + "end": 17957.34, + "probability": 0.9988 + }, + { + "start": 17959.3, + "end": 17963.88, + "probability": 0.9814 + }, + { + "start": 17964.78, + "end": 17967.6, + "probability": 0.9958 + }, + { + "start": 17967.6, + "end": 17971.54, + "probability": 0.9991 + }, + { + "start": 17971.72, + "end": 17976.4, + "probability": 0.9865 + }, + { + "start": 17977.7, + "end": 17981.52, + "probability": 0.9938 + }, + { + "start": 17982.22, + "end": 17984.12, + "probability": 0.7469 + }, + { + "start": 17984.86, + "end": 17987.7, + "probability": 0.9384 + }, + { + "start": 17987.7, + "end": 17992.04, + "probability": 0.991 + }, + { + "start": 17994.76, + "end": 17995.56, + "probability": 0.7337 + }, + { + "start": 17995.76, + "end": 17997.54, + "probability": 0.924 + }, + { + "start": 17997.64, + "end": 18004.94, + "probability": 0.9943 + }, + { + "start": 18005.84, + "end": 18007.62, + "probability": 0.9998 + }, + { + "start": 18008.6, + "end": 18015.92, + "probability": 0.9982 + }, + { + "start": 18016.38, + "end": 18016.92, + "probability": 0.7548 + }, + { + "start": 18017.98, + "end": 18018.56, + "probability": 0.7164 + }, + { + "start": 18019.42, + "end": 18020.12, + "probability": 0.2912 + }, + { + "start": 18020.97, + "end": 18021.32, + "probability": 0.0144 + }, + { + "start": 18032.58, + "end": 18037.34, + "probability": 0.8649 + }, + { + "start": 18038.68, + "end": 18039.69, + "probability": 0.7781 + }, + { + "start": 18040.26, + "end": 18041.06, + "probability": 0.891 + }, + { + "start": 18041.2, + "end": 18041.76, + "probability": 0.8291 + }, + { + "start": 18042.26, + "end": 18043.46, + "probability": 0.9182 + }, + { + "start": 18044.08, + "end": 18044.74, + "probability": 0.5771 + }, + { + "start": 18048.1, + "end": 18050.5, + "probability": 0.563 + }, + { + "start": 18051.96, + "end": 18052.42, + "probability": 0.2258 + }, + { + "start": 18056.02, + "end": 18056.86, + "probability": 0.4914 + }, + { + "start": 18059.85, + "end": 18061.74, + "probability": 0.8732 + }, + { + "start": 18062.24, + "end": 18064.14, + "probability": 0.9485 + }, + { + "start": 18065.18, + "end": 18066.24, + "probability": 0.4483 + }, + { + "start": 18066.34, + "end": 18067.34, + "probability": 0.3627 + }, + { + "start": 18068.98, + "end": 18070.02, + "probability": 0.5439 + }, + { + "start": 18070.16, + "end": 18070.7, + "probability": 0.4302 + }, + { + "start": 18070.82, + "end": 18071.92, + "probability": 0.3739 + }, + { + "start": 18071.92, + "end": 18072.56, + "probability": 0.2663 + }, + { + "start": 18072.56, + "end": 18073.26, + "probability": 0.5539 + }, + { + "start": 18073.74, + "end": 18074.18, + "probability": 0.6145 + }, + { + "start": 18074.28, + "end": 18075.1, + "probability": 0.5476 + }, + { + "start": 18076.24, + "end": 18077.3, + "probability": 0.5731 + }, + { + "start": 18077.38, + "end": 18080.22, + "probability": 0.9613 + }, + { + "start": 18081.76, + "end": 18082.62, + "probability": 0.6507 + }, + { + "start": 18082.68, + "end": 18083.86, + "probability": 0.5859 + }, + { + "start": 18087.91, + "end": 18090.72, + "probability": 0.7748 + }, + { + "start": 18091.2, + "end": 18092.36, + "probability": 0.6398 + }, + { + "start": 18092.54, + "end": 18094.3, + "probability": 0.9209 + }, + { + "start": 18094.44, + "end": 18095.15, + "probability": 0.4022 + }, + { + "start": 18095.4, + "end": 18095.9, + "probability": 0.1768 + }, + { + "start": 18096.66, + "end": 18096.94, + "probability": 0.0286 + }, + { + "start": 18097.18, + "end": 18098.34, + "probability": 0.5288 + }, + { + "start": 18098.38, + "end": 18100.84, + "probability": 0.1627 + }, + { + "start": 18100.92, + "end": 18102.18, + "probability": 0.0872 + }, + { + "start": 18102.4, + "end": 18103.56, + "probability": 0.3406 + }, + { + "start": 18103.72, + "end": 18104.8, + "probability": 0.3869 + }, + { + "start": 18104.8, + "end": 18105.4, + "probability": 0.2036 + }, + { + "start": 18105.48, + "end": 18107.26, + "probability": 0.6002 + }, + { + "start": 18107.4, + "end": 18108.99, + "probability": 0.7122 + }, + { + "start": 18109.4, + "end": 18111.58, + "probability": 0.6983 + }, + { + "start": 18134.08, + "end": 18134.26, + "probability": 0.3127 + }, + { + "start": 18134.26, + "end": 18135.34, + "probability": 0.2804 + }, + { + "start": 18135.86, + "end": 18136.76, + "probability": 0.6416 + }, + { + "start": 18137.52, + "end": 18140.07, + "probability": 0.9781 + }, + { + "start": 18141.66, + "end": 18142.12, + "probability": 0.8583 + }, + { + "start": 18143.74, + "end": 18145.5, + "probability": 0.9079 + }, + { + "start": 18145.74, + "end": 18150.7, + "probability": 0.9063 + }, + { + "start": 18151.32, + "end": 18154.16, + "probability": 0.9344 + }, + { + "start": 18155.02, + "end": 18156.46, + "probability": 0.9709 + }, + { + "start": 18157.04, + "end": 18158.98, + "probability": 0.8459 + }, + { + "start": 18160.4, + "end": 18162.58, + "probability": 0.713 + }, + { + "start": 18164.92, + "end": 18166.3, + "probability": 0.8966 + }, + { + "start": 18195.72, + "end": 18197.96, + "probability": 0.4278 + }, + { + "start": 18201.64, + "end": 18206.7, + "probability": 0.8279 + }, + { + "start": 18206.76, + "end": 18209.58, + "probability": 0.876 + }, + { + "start": 18210.94, + "end": 18213.74, + "probability": 0.9969 + }, + { + "start": 18215.02, + "end": 18218.82, + "probability": 0.9482 + }, + { + "start": 18219.76, + "end": 18225.26, + "probability": 0.9424 + }, + { + "start": 18226.38, + "end": 18228.01, + "probability": 0.9081 + }, + { + "start": 18228.96, + "end": 18231.06, + "probability": 0.9718 + }, + { + "start": 18231.24, + "end": 18231.82, + "probability": 0.9498 + }, + { + "start": 18232.48, + "end": 18236.22, + "probability": 0.9518 + }, + { + "start": 18239.49, + "end": 18241.61, + "probability": 0.6553 + }, + { + "start": 18242.94, + "end": 18244.86, + "probability": 0.7671 + }, + { + "start": 18245.48, + "end": 18248.3, + "probability": 0.9811 + }, + { + "start": 18248.92, + "end": 18252.02, + "probability": 0.9968 + }, + { + "start": 18252.22, + "end": 18255.26, + "probability": 0.9147 + }, + { + "start": 18255.46, + "end": 18258.3, + "probability": 0.8388 + }, + { + "start": 18260.23, + "end": 18262.84, + "probability": 0.7827 + }, + { + "start": 18262.84, + "end": 18266.56, + "probability": 0.9921 + }, + { + "start": 18266.6, + "end": 18268.08, + "probability": 0.6743 + }, + { + "start": 18269.12, + "end": 18271.84, + "probability": 0.5311 + }, + { + "start": 18272.88, + "end": 18273.76, + "probability": 0.9457 + }, + { + "start": 18274.88, + "end": 18276.62, + "probability": 0.8678 + }, + { + "start": 18276.76, + "end": 18279.06, + "probability": 0.8222 + }, + { + "start": 18279.22, + "end": 18280.31, + "probability": 0.9764 + }, + { + "start": 18281.46, + "end": 18284.06, + "probability": 0.9779 + }, + { + "start": 18284.06, + "end": 18290.78, + "probability": 0.9675 + }, + { + "start": 18291.02, + "end": 18291.88, + "probability": 0.6662 + }, + { + "start": 18292.92, + "end": 18299.08, + "probability": 0.9949 + }, + { + "start": 18300.1, + "end": 18303.06, + "probability": 0.9481 + }, + { + "start": 18304.06, + "end": 18305.8, + "probability": 0.6585 + }, + { + "start": 18306.34, + "end": 18307.39, + "probability": 0.5405 + }, + { + "start": 18308.78, + "end": 18310.65, + "probability": 0.497 + }, + { + "start": 18311.9, + "end": 18315.74, + "probability": 0.6074 + }, + { + "start": 18316.98, + "end": 18318.72, + "probability": 0.9307 + }, + { + "start": 18320.22, + "end": 18322.16, + "probability": 0.951 + }, + { + "start": 18323.14, + "end": 18327.34, + "probability": 0.9333 + }, + { + "start": 18328.48, + "end": 18331.88, + "probability": 0.9796 + }, + { + "start": 18332.46, + "end": 18334.64, + "probability": 0.9493 + }, + { + "start": 18334.82, + "end": 18336.66, + "probability": 0.9976 + }, + { + "start": 18338.42, + "end": 18339.64, + "probability": 0.9541 + }, + { + "start": 18339.7, + "end": 18342.48, + "probability": 0.9976 + }, + { + "start": 18343.78, + "end": 18346.58, + "probability": 0.5111 + }, + { + "start": 18347.42, + "end": 18349.7, + "probability": 0.5973 + }, + { + "start": 18350.54, + "end": 18352.24, + "probability": 0.5276 + }, + { + "start": 18352.36, + "end": 18353.28, + "probability": 0.663 + }, + { + "start": 18354.08, + "end": 18356.76, + "probability": 0.8803 + }, + { + "start": 18358.06, + "end": 18361.28, + "probability": 0.9075 + }, + { + "start": 18362.54, + "end": 18363.68, + "probability": 0.8984 + }, + { + "start": 18363.84, + "end": 18367.04, + "probability": 0.7141 + }, + { + "start": 18367.72, + "end": 18370.12, + "probability": 0.9985 + }, + { + "start": 18370.8, + "end": 18372.8, + "probability": 0.9854 + }, + { + "start": 18372.9, + "end": 18374.2, + "probability": 0.9597 + }, + { + "start": 18375.16, + "end": 18376.54, + "probability": 0.9169 + }, + { + "start": 18378.6, + "end": 18381.66, + "probability": 0.9923 + }, + { + "start": 18382.26, + "end": 18384.06, + "probability": 0.9927 + }, + { + "start": 18384.64, + "end": 18387.3, + "probability": 0.9633 + }, + { + "start": 18388.1, + "end": 18391.72, + "probability": 0.8449 + }, + { + "start": 18392.74, + "end": 18393.82, + "probability": 0.7758 + }, + { + "start": 18394.74, + "end": 18396.96, + "probability": 0.9775 + }, + { + "start": 18397.64, + "end": 18398.82, + "probability": 0.9313 + }, + { + "start": 18399.54, + "end": 18401.26, + "probability": 0.936 + }, + { + "start": 18401.78, + "end": 18402.26, + "probability": 0.932 + }, + { + "start": 18402.88, + "end": 18404.74, + "probability": 0.9495 + }, + { + "start": 18405.86, + "end": 18407.34, + "probability": 0.7239 + }, + { + "start": 18408.08, + "end": 18412.2, + "probability": 0.9901 + }, + { + "start": 18414.64, + "end": 18415.24, + "probability": 0.7122 + }, + { + "start": 18415.6, + "end": 18418.06, + "probability": 0.8508 + }, + { + "start": 18436.77, + "end": 18438.08, + "probability": 0.0501 + }, + { + "start": 18442.04, + "end": 18442.38, + "probability": 0.1754 + }, + { + "start": 18448.26, + "end": 18451.08, + "probability": 0.8301 + }, + { + "start": 18452.12, + "end": 18454.02, + "probability": 0.7378 + }, + { + "start": 18454.1, + "end": 18456.44, + "probability": 0.9925 + }, + { + "start": 18457.43, + "end": 18460.48, + "probability": 0.9171 + }, + { + "start": 18461.0, + "end": 18463.26, + "probability": 0.9482 + }, + { + "start": 18463.36, + "end": 18467.42, + "probability": 0.9771 + }, + { + "start": 18468.18, + "end": 18471.68, + "probability": 0.9865 + }, + { + "start": 18472.74, + "end": 18474.23, + "probability": 0.548 + }, + { + "start": 18474.52, + "end": 18476.4, + "probability": 0.8003 + }, + { + "start": 18476.52, + "end": 18478.34, + "probability": 0.9896 + }, + { + "start": 18478.82, + "end": 18480.68, + "probability": 0.998 + }, + { + "start": 18481.38, + "end": 18482.52, + "probability": 0.5261 + }, + { + "start": 18483.06, + "end": 18484.59, + "probability": 0.9939 + }, + { + "start": 18484.84, + "end": 18487.78, + "probability": 0.9891 + }, + { + "start": 18487.78, + "end": 18491.48, + "probability": 0.9927 + }, + { + "start": 18491.66, + "end": 18492.72, + "probability": 0.9355 + }, + { + "start": 18493.76, + "end": 18498.32, + "probability": 0.9966 + }, + { + "start": 18498.42, + "end": 18503.96, + "probability": 0.9988 + }, + { + "start": 18504.34, + "end": 18505.14, + "probability": 0.848 + }, + { + "start": 18505.26, + "end": 18508.14, + "probability": 0.9797 + }, + { + "start": 18508.14, + "end": 18511.52, + "probability": 0.9941 + }, + { + "start": 18512.44, + "end": 18514.12, + "probability": 0.9985 + }, + { + "start": 18514.28, + "end": 18519.9, + "probability": 0.9867 + }, + { + "start": 18520.6, + "end": 18522.92, + "probability": 0.7659 + }, + { + "start": 18523.56, + "end": 18523.82, + "probability": 0.7276 + }, + { + "start": 18523.9, + "end": 18527.84, + "probability": 0.9951 + }, + { + "start": 18528.04, + "end": 18531.52, + "probability": 0.9031 + }, + { + "start": 18531.64, + "end": 18532.78, + "probability": 0.5988 + }, + { + "start": 18533.84, + "end": 18539.24, + "probability": 0.854 + }, + { + "start": 18539.72, + "end": 18541.26, + "probability": 0.647 + }, + { + "start": 18541.78, + "end": 18546.54, + "probability": 0.1995 + }, + { + "start": 18547.18, + "end": 18550.92, + "probability": 0.9871 + }, + { + "start": 18550.92, + "end": 18555.42, + "probability": 0.9082 + }, + { + "start": 18555.52, + "end": 18556.22, + "probability": 0.6988 + }, + { + "start": 18556.5, + "end": 18556.96, + "probability": 0.5847 + }, + { + "start": 18557.02, + "end": 18561.76, + "probability": 0.9608 + }, + { + "start": 18561.92, + "end": 18565.0, + "probability": 0.9819 + }, + { + "start": 18565.5, + "end": 18570.64, + "probability": 0.5899 + }, + { + "start": 18570.84, + "end": 18572.22, + "probability": 0.6756 + }, + { + "start": 18572.56, + "end": 18573.2, + "probability": 0.5654 + }, + { + "start": 18574.02, + "end": 18578.48, + "probability": 0.9954 + }, + { + "start": 18579.48, + "end": 18580.44, + "probability": 0.8483 + }, + { + "start": 18580.62, + "end": 18582.56, + "probability": 0.9594 + }, + { + "start": 18582.72, + "end": 18584.04, + "probability": 0.6978 + }, + { + "start": 18584.76, + "end": 18589.64, + "probability": 0.9819 + }, + { + "start": 18590.58, + "end": 18591.5, + "probability": 0.8906 + }, + { + "start": 18591.6, + "end": 18595.4, + "probability": 0.9866 + }, + { + "start": 18596.18, + "end": 18600.42, + "probability": 0.8443 + }, + { + "start": 18600.94, + "end": 18601.84, + "probability": 0.5229 + }, + { + "start": 18602.14, + "end": 18602.77, + "probability": 0.9224 + }, + { + "start": 18603.24, + "end": 18603.58, + "probability": 0.8218 + }, + { + "start": 18603.74, + "end": 18606.98, + "probability": 0.9886 + }, + { + "start": 18607.44, + "end": 18609.88, + "probability": 0.9862 + }, + { + "start": 18610.98, + "end": 18611.42, + "probability": 0.8903 + }, + { + "start": 18612.02, + "end": 18615.82, + "probability": 0.9716 + }, + { + "start": 18615.82, + "end": 18621.56, + "probability": 0.9811 + }, + { + "start": 18622.0, + "end": 18623.48, + "probability": 0.8257 + }, + { + "start": 18624.24, + "end": 18626.8, + "probability": 0.9266 + }, + { + "start": 18627.52, + "end": 18631.46, + "probability": 0.7705 + }, + { + "start": 18631.6, + "end": 18632.14, + "probability": 0.3343 + }, + { + "start": 18632.22, + "end": 18634.4, + "probability": 0.9004 + }, + { + "start": 18634.98, + "end": 18636.12, + "probability": 0.7542 + }, + { + "start": 18636.24, + "end": 18639.48, + "probability": 0.9824 + }, + { + "start": 18639.74, + "end": 18642.78, + "probability": 0.9307 + }, + { + "start": 18643.9, + "end": 18649.4, + "probability": 0.9956 + }, + { + "start": 18649.48, + "end": 18653.26, + "probability": 0.9092 + }, + { + "start": 18653.28, + "end": 18653.44, + "probability": 0.3255 + }, + { + "start": 18653.56, + "end": 18654.32, + "probability": 0.5281 + }, + { + "start": 18654.42, + "end": 18654.94, + "probability": 0.7657 + }, + { + "start": 18655.04, + "end": 18656.26, + "probability": 0.8359 + }, + { + "start": 18656.54, + "end": 18657.04, + "probability": 0.8612 + }, + { + "start": 18657.46, + "end": 18662.84, + "probability": 0.9905 + }, + { + "start": 18663.18, + "end": 18665.46, + "probability": 0.9176 + }, + { + "start": 18665.92, + "end": 18668.68, + "probability": 0.9929 + }, + { + "start": 18668.8, + "end": 18672.98, + "probability": 0.9957 + }, + { + "start": 18673.52, + "end": 18676.1, + "probability": 0.7971 + }, + { + "start": 18676.6, + "end": 18682.16, + "probability": 0.9963 + }, + { + "start": 18682.44, + "end": 18685.36, + "probability": 0.9231 + }, + { + "start": 18686.12, + "end": 18690.16, + "probability": 0.9952 + }, + { + "start": 18690.84, + "end": 18693.28, + "probability": 0.9409 + }, + { + "start": 18694.0, + "end": 18695.3, + "probability": 0.962 + }, + { + "start": 18695.4, + "end": 18698.08, + "probability": 0.7415 + }, + { + "start": 18698.26, + "end": 18701.16, + "probability": 0.9753 + }, + { + "start": 18701.26, + "end": 18704.08, + "probability": 0.996 + }, + { + "start": 18704.08, + "end": 18707.08, + "probability": 0.8119 + }, + { + "start": 18707.6, + "end": 18708.14, + "probability": 0.7455 + }, + { + "start": 18708.24, + "end": 18711.5, + "probability": 0.9043 + }, + { + "start": 18712.2, + "end": 18715.91, + "probability": 0.9446 + }, + { + "start": 18716.56, + "end": 18718.52, + "probability": 0.9821 + }, + { + "start": 18719.32, + "end": 18722.02, + "probability": 0.9159 + }, + { + "start": 18722.02, + "end": 18725.32, + "probability": 0.9959 + }, + { + "start": 18725.86, + "end": 18727.72, + "probability": 0.9246 + }, + { + "start": 18728.28, + "end": 18729.98, + "probability": 0.9969 + }, + { + "start": 18731.46, + "end": 18732.22, + "probability": 0.7557 + }, + { + "start": 18732.3, + "end": 18735.48, + "probability": 0.7041 + }, + { + "start": 18736.24, + "end": 18737.38, + "probability": 0.7388 + }, + { + "start": 18737.78, + "end": 18739.38, + "probability": 0.967 + }, + { + "start": 18739.84, + "end": 18744.58, + "probability": 0.9933 + }, + { + "start": 18744.76, + "end": 18748.04, + "probability": 0.9883 + }, + { + "start": 18748.06, + "end": 18748.92, + "probability": 0.5079 + }, + { + "start": 18749.9, + "end": 18755.54, + "probability": 0.9378 + }, + { + "start": 18755.72, + "end": 18758.28, + "probability": 0.9966 + }, + { + "start": 18758.38, + "end": 18758.82, + "probability": 0.4377 + }, + { + "start": 18759.07, + "end": 18759.56, + "probability": 0.9548 + }, + { + "start": 18759.58, + "end": 18760.65, + "probability": 0.2324 + }, + { + "start": 18760.88, + "end": 18760.98, + "probability": 0.9495 + }, + { + "start": 18760.98, + "end": 18762.52, + "probability": 0.7702 + }, + { + "start": 18763.32, + "end": 18765.52, + "probability": 0.9941 + }, + { + "start": 18766.26, + "end": 18769.3, + "probability": 0.9954 + }, + { + "start": 18769.84, + "end": 18775.6, + "probability": 0.9946 + }, + { + "start": 18776.04, + "end": 18781.86, + "probability": 0.999 + }, + { + "start": 18782.28, + "end": 18785.36, + "probability": 0.9731 + }, + { + "start": 18785.36, + "end": 18788.58, + "probability": 0.9414 + }, + { + "start": 18788.8, + "end": 18789.38, + "probability": 0.7403 + }, + { + "start": 18790.3, + "end": 18790.36, + "probability": 0.4491 + }, + { + "start": 18792.48, + "end": 18794.34, + "probability": 0.8649 + }, + { + "start": 18817.38, + "end": 18820.4, + "probability": 0.7036 + }, + { + "start": 18821.86, + "end": 18824.38, + "probability": 0.9386 + }, + { + "start": 18826.1, + "end": 18826.92, + "probability": 0.946 + }, + { + "start": 18828.54, + "end": 18830.5, + "probability": 0.9602 + }, + { + "start": 18831.02, + "end": 18834.48, + "probability": 0.9973 + }, + { + "start": 18834.93, + "end": 18839.84, + "probability": 0.9837 + }, + { + "start": 18841.9, + "end": 18847.4, + "probability": 0.9696 + }, + { + "start": 18849.18, + "end": 18852.9, + "probability": 0.9861 + }, + { + "start": 18853.62, + "end": 18856.0, + "probability": 0.9346 + }, + { + "start": 18857.04, + "end": 18857.6, + "probability": 0.9602 + }, + { + "start": 18858.14, + "end": 18862.24, + "probability": 0.8366 + }, + { + "start": 18862.82, + "end": 18866.8, + "probability": 0.9875 + }, + { + "start": 18868.05, + "end": 18870.76, + "probability": 0.9817 + }, + { + "start": 18871.56, + "end": 18872.48, + "probability": 0.9473 + }, + { + "start": 18873.06, + "end": 18875.44, + "probability": 0.9344 + }, + { + "start": 18876.26, + "end": 18879.2, + "probability": 0.9915 + }, + { + "start": 18879.86, + "end": 18880.56, + "probability": 0.8044 + }, + { + "start": 18880.62, + "end": 18887.06, + "probability": 0.957 + }, + { + "start": 18887.86, + "end": 18892.16, + "probability": 0.9379 + }, + { + "start": 18893.38, + "end": 18898.04, + "probability": 0.979 + }, + { + "start": 18898.32, + "end": 18901.14, + "probability": 0.9949 + }, + { + "start": 18901.7, + "end": 18903.56, + "probability": 0.7986 + }, + { + "start": 18904.16, + "end": 18907.74, + "probability": 0.9779 + }, + { + "start": 18908.52, + "end": 18908.7, + "probability": 0.6368 + }, + { + "start": 18908.86, + "end": 18910.18, + "probability": 0.7408 + }, + { + "start": 18910.26, + "end": 18910.88, + "probability": 0.986 + }, + { + "start": 18911.02, + "end": 18912.74, + "probability": 0.7329 + }, + { + "start": 18912.9, + "end": 18915.02, + "probability": 0.8528 + }, + { + "start": 18915.62, + "end": 18920.36, + "probability": 0.9916 + }, + { + "start": 18920.88, + "end": 18925.84, + "probability": 0.9947 + }, + { + "start": 18926.44, + "end": 18929.42, + "probability": 0.9871 + }, + { + "start": 18930.46, + "end": 18931.08, + "probability": 0.7978 + }, + { + "start": 18931.16, + "end": 18939.2, + "probability": 0.9403 + }, + { + "start": 18939.72, + "end": 18943.48, + "probability": 0.9404 + }, + { + "start": 18945.04, + "end": 18948.2, + "probability": 0.9612 + }, + { + "start": 18949.86, + "end": 18950.38, + "probability": 0.9948 + }, + { + "start": 18951.54, + "end": 18959.02, + "probability": 0.9699 + }, + { + "start": 18959.54, + "end": 18960.96, + "probability": 0.9307 + }, + { + "start": 18961.8, + "end": 18962.44, + "probability": 0.7746 + }, + { + "start": 18963.6, + "end": 18969.36, + "probability": 0.9935 + }, + { + "start": 18969.6, + "end": 18970.24, + "probability": 0.8581 + }, + { + "start": 18971.28, + "end": 18971.94, + "probability": 0.8733 + }, + { + "start": 18974.12, + "end": 18975.72, + "probability": 0.8338 + }, + { + "start": 18976.48, + "end": 18977.0, + "probability": 0.3128 + }, + { + "start": 18977.1, + "end": 18978.56, + "probability": 0.956 + }, + { + "start": 18999.76, + "end": 19001.74, + "probability": 0.6388 + }, + { + "start": 19002.74, + "end": 19005.64, + "probability": 0.9834 + }, + { + "start": 19006.66, + "end": 19007.98, + "probability": 0.7605 + }, + { + "start": 19008.88, + "end": 19013.3, + "probability": 0.9982 + }, + { + "start": 19014.42, + "end": 19019.96, + "probability": 0.9786 + }, + { + "start": 19020.72, + "end": 19024.16, + "probability": 0.9984 + }, + { + "start": 19024.16, + "end": 19027.34, + "probability": 0.9967 + }, + { + "start": 19028.08, + "end": 19030.98, + "probability": 0.8784 + }, + { + "start": 19031.88, + "end": 19034.06, + "probability": 0.97 + }, + { + "start": 19034.84, + "end": 19036.44, + "probability": 0.9421 + }, + { + "start": 19037.84, + "end": 19039.52, + "probability": 0.9439 + }, + { + "start": 19040.18, + "end": 19044.08, + "probability": 0.9873 + }, + { + "start": 19044.08, + "end": 19049.16, + "probability": 0.8844 + }, + { + "start": 19049.82, + "end": 19050.06, + "probability": 0.7239 + }, + { + "start": 19051.08, + "end": 19055.74, + "probability": 0.9542 + }, + { + "start": 19056.42, + "end": 19059.5, + "probability": 0.9735 + }, + { + "start": 19060.26, + "end": 19061.78, + "probability": 0.9993 + }, + { + "start": 19062.9, + "end": 19065.24, + "probability": 0.9925 + }, + { + "start": 19065.32, + "end": 19070.18, + "probability": 0.9538 + }, + { + "start": 19070.34, + "end": 19075.88, + "probability": 0.9961 + }, + { + "start": 19076.86, + "end": 19080.32, + "probability": 0.9816 + }, + { + "start": 19080.82, + "end": 19084.46, + "probability": 0.9948 + }, + { + "start": 19085.14, + "end": 19089.04, + "probability": 0.9964 + }, + { + "start": 19089.54, + "end": 19093.32, + "probability": 0.9929 + }, + { + "start": 19093.76, + "end": 19096.44, + "probability": 0.9603 + }, + { + "start": 19097.98, + "end": 19101.1, + "probability": 0.9543 + }, + { + "start": 19102.54, + "end": 19106.58, + "probability": 0.9457 + }, + { + "start": 19107.16, + "end": 19109.16, + "probability": 0.9993 + }, + { + "start": 19109.84, + "end": 19113.24, + "probability": 0.9926 + }, + { + "start": 19114.46, + "end": 19116.18, + "probability": 0.579 + }, + { + "start": 19116.38, + "end": 19117.18, + "probability": 0.9214 + }, + { + "start": 19117.82, + "end": 19121.68, + "probability": 0.9969 + }, + { + "start": 19121.68, + "end": 19126.18, + "probability": 0.999 + }, + { + "start": 19127.42, + "end": 19128.98, + "probability": 0.8906 + }, + { + "start": 19130.16, + "end": 19134.68, + "probability": 0.8901 + }, + { + "start": 19135.0, + "end": 19139.98, + "probability": 0.9915 + }, + { + "start": 19140.94, + "end": 19143.07, + "probability": 0.8633 + }, + { + "start": 19143.28, + "end": 19146.07, + "probability": 0.9844 + }, + { + "start": 19147.32, + "end": 19150.74, + "probability": 0.9582 + }, + { + "start": 19151.94, + "end": 19152.74, + "probability": 0.9697 + }, + { + "start": 19153.52, + "end": 19155.96, + "probability": 0.9912 + }, + { + "start": 19156.02, + "end": 19159.08, + "probability": 0.9945 + }, + { + "start": 19159.08, + "end": 19162.28, + "probability": 0.9932 + }, + { + "start": 19162.96, + "end": 19163.68, + "probability": 0.2587 + }, + { + "start": 19163.72, + "end": 19164.06, + "probability": 0.5109 + }, + { + "start": 19164.16, + "end": 19166.1, + "probability": 0.9818 + }, + { + "start": 19166.24, + "end": 19167.22, + "probability": 0.8721 + }, + { + "start": 19167.74, + "end": 19171.36, + "probability": 0.9639 + }, + { + "start": 19172.0, + "end": 19174.26, + "probability": 0.9918 + }, + { + "start": 19174.74, + "end": 19177.6, + "probability": 0.9808 + }, + { + "start": 19178.14, + "end": 19181.0, + "probability": 0.9314 + }, + { + "start": 19181.78, + "end": 19185.64, + "probability": 0.9871 + }, + { + "start": 19186.26, + "end": 19190.42, + "probability": 0.9972 + }, + { + "start": 19191.08, + "end": 19194.52, + "probability": 0.9619 + }, + { + "start": 19194.64, + "end": 19199.52, + "probability": 0.9856 + }, + { + "start": 19200.02, + "end": 19203.3, + "probability": 0.9783 + }, + { + "start": 19203.84, + "end": 19205.72, + "probability": 0.9982 + }, + { + "start": 19205.8, + "end": 19210.82, + "probability": 0.9528 + }, + { + "start": 19211.58, + "end": 19213.38, + "probability": 0.9045 + }, + { + "start": 19213.68, + "end": 19218.56, + "probability": 0.9219 + }, + { + "start": 19218.56, + "end": 19222.72, + "probability": 0.9712 + }, + { + "start": 19223.58, + "end": 19226.88, + "probability": 0.9911 + }, + { + "start": 19227.22, + "end": 19227.62, + "probability": 0.9071 + }, + { + "start": 19227.76, + "end": 19228.84, + "probability": 0.9732 + }, + { + "start": 19229.14, + "end": 19229.4, + "probability": 0.8873 + }, + { + "start": 19231.08, + "end": 19231.68, + "probability": 0.8153 + }, + { + "start": 19232.04, + "end": 19233.9, + "probability": 0.5806 + }, + { + "start": 19253.62, + "end": 19255.32, + "probability": 0.7202 + }, + { + "start": 19256.4, + "end": 19258.98, + "probability": 0.9695 + }, + { + "start": 19259.26, + "end": 19260.28, + "probability": 0.8343 + }, + { + "start": 19260.28, + "end": 19265.16, + "probability": 0.8139 + }, + { + "start": 19265.36, + "end": 19266.66, + "probability": 0.9849 + }, + { + "start": 19266.82, + "end": 19271.16, + "probability": 0.9532 + }, + { + "start": 19272.16, + "end": 19273.6, + "probability": 0.9135 + }, + { + "start": 19274.18, + "end": 19275.96, + "probability": 0.7457 + }, + { + "start": 19276.68, + "end": 19279.92, + "probability": 0.9296 + }, + { + "start": 19280.96, + "end": 19284.12, + "probability": 0.9798 + }, + { + "start": 19284.84, + "end": 19285.52, + "probability": 0.7827 + }, + { + "start": 19286.34, + "end": 19291.22, + "probability": 0.7466 + }, + { + "start": 19292.48, + "end": 19293.04, + "probability": 0.8602 + }, + { + "start": 19293.1, + "end": 19293.56, + "probability": 0.7586 + }, + { + "start": 19293.64, + "end": 19293.86, + "probability": 0.4884 + }, + { + "start": 19293.92, + "end": 19296.1, + "probability": 0.8568 + }, + { + "start": 19296.2, + "end": 19297.86, + "probability": 0.9977 + }, + { + "start": 19299.08, + "end": 19301.28, + "probability": 0.5631 + }, + { + "start": 19302.12, + "end": 19305.3, + "probability": 0.7109 + }, + { + "start": 19307.76, + "end": 19313.1, + "probability": 0.9503 + }, + { + "start": 19313.26, + "end": 19313.92, + "probability": 0.799 + }, + { + "start": 19314.54, + "end": 19319.64, + "probability": 0.9943 + }, + { + "start": 19320.6, + "end": 19324.82, + "probability": 0.9624 + }, + { + "start": 19325.42, + "end": 19327.6, + "probability": 0.9925 + }, + { + "start": 19329.76, + "end": 19332.04, + "probability": 0.7042 + }, + { + "start": 19332.2, + "end": 19334.02, + "probability": 0.9826 + }, + { + "start": 19334.3, + "end": 19337.12, + "probability": 0.9238 + }, + { + "start": 19337.72, + "end": 19339.08, + "probability": 0.9998 + }, + { + "start": 19339.76, + "end": 19340.68, + "probability": 0.7578 + }, + { + "start": 19343.22, + "end": 19352.88, + "probability": 0.9029 + }, + { + "start": 19353.22, + "end": 19353.9, + "probability": 0.5953 + }, + { + "start": 19354.24, + "end": 19355.1, + "probability": 0.6871 + }, + { + "start": 19356.12, + "end": 19359.12, + "probability": 0.6678 + }, + { + "start": 19360.08, + "end": 19362.24, + "probability": 0.9028 + }, + { + "start": 19362.5, + "end": 19362.58, + "probability": 0.1409 + }, + { + "start": 19363.18, + "end": 19364.02, + "probability": 0.8106 + }, + { + "start": 19364.78, + "end": 19368.66, + "probability": 0.957 + }, + { + "start": 19369.26, + "end": 19371.48, + "probability": 0.9951 + }, + { + "start": 19372.32, + "end": 19376.86, + "probability": 0.8271 + }, + { + "start": 19377.52, + "end": 19380.04, + "probability": 0.9945 + }, + { + "start": 19380.74, + "end": 19382.54, + "probability": 0.9701 + }, + { + "start": 19383.56, + "end": 19385.97, + "probability": 0.8132 + }, + { + "start": 19386.84, + "end": 19388.22, + "probability": 0.97 + }, + { + "start": 19388.4, + "end": 19391.82, + "probability": 0.9272 + }, + { + "start": 19392.44, + "end": 19393.58, + "probability": 0.6532 + }, + { + "start": 19393.64, + "end": 19398.06, + "probability": 0.8376 + }, + { + "start": 19398.78, + "end": 19401.04, + "probability": 0.9374 + }, + { + "start": 19401.42, + "end": 19406.82, + "probability": 0.6775 + }, + { + "start": 19407.1, + "end": 19407.96, + "probability": 0.7091 + }, + { + "start": 19409.14, + "end": 19409.4, + "probability": 0.2778 + }, + { + "start": 19409.62, + "end": 19410.78, + "probability": 0.4915 + }, + { + "start": 19413.32, + "end": 19414.58, + "probability": 0.817 + }, + { + "start": 19415.5, + "end": 19416.64, + "probability": 0.6922 + }, + { + "start": 19418.14, + "end": 19419.12, + "probability": 0.9557 + }, + { + "start": 19453.18, + "end": 19454.24, + "probability": 0.6607 + }, + { + "start": 19456.12, + "end": 19458.77, + "probability": 0.986 + }, + { + "start": 19464.34, + "end": 19468.36, + "probability": 0.9912 + }, + { + "start": 19468.48, + "end": 19469.78, + "probability": 0.9555 + }, + { + "start": 19471.52, + "end": 19472.94, + "probability": 0.9383 + }, + { + "start": 19474.86, + "end": 19476.5, + "probability": 0.9842 + }, + { + "start": 19477.26, + "end": 19478.9, + "probability": 0.983 + }, + { + "start": 19479.62, + "end": 19484.74, + "probability": 0.9736 + }, + { + "start": 19488.28, + "end": 19490.92, + "probability": 0.6651 + }, + { + "start": 19491.5, + "end": 19495.81, + "probability": 0.9907 + }, + { + "start": 19496.26, + "end": 19499.28, + "probability": 0.9763 + }, + { + "start": 19500.86, + "end": 19504.18, + "probability": 0.9197 + }, + { + "start": 19504.3, + "end": 19507.09, + "probability": 0.9951 + }, + { + "start": 19509.18, + "end": 19513.12, + "probability": 0.9785 + }, + { + "start": 19515.42, + "end": 19519.9, + "probability": 0.9643 + }, + { + "start": 19519.9, + "end": 19525.48, + "probability": 0.9875 + }, + { + "start": 19526.64, + "end": 19530.26, + "probability": 0.7412 + }, + { + "start": 19531.3, + "end": 19533.0, + "probability": 0.829 + }, + { + "start": 19534.2, + "end": 19535.56, + "probability": 0.9698 + }, + { + "start": 19539.86, + "end": 19544.36, + "probability": 0.9808 + }, + { + "start": 19544.36, + "end": 19548.94, + "probability": 0.9937 + }, + { + "start": 19549.86, + "end": 19551.66, + "probability": 0.9526 + }, + { + "start": 19551.82, + "end": 19556.18, + "probability": 0.887 + }, + { + "start": 19556.7, + "end": 19558.7, + "probability": 0.9003 + }, + { + "start": 19560.32, + "end": 19564.64, + "probability": 0.9971 + }, + { + "start": 19564.78, + "end": 19565.08, + "probability": 0.8796 + }, + { + "start": 19565.12, + "end": 19565.92, + "probability": 0.9749 + }, + { + "start": 19568.08, + "end": 19572.24, + "probability": 0.994 + }, + { + "start": 19573.86, + "end": 19577.1, + "probability": 0.9811 + }, + { + "start": 19577.14, + "end": 19580.04, + "probability": 0.9943 + }, + { + "start": 19580.68, + "end": 19583.72, + "probability": 0.9894 + }, + { + "start": 19585.26, + "end": 19587.2, + "probability": 0.8147 + }, + { + "start": 19588.34, + "end": 19588.86, + "probability": 0.9266 + }, + { + "start": 19588.92, + "end": 19593.14, + "probability": 0.9633 + }, + { + "start": 19594.22, + "end": 19597.34, + "probability": 0.9791 + }, + { + "start": 19597.96, + "end": 19600.82, + "probability": 0.922 + }, + { + "start": 19601.42, + "end": 19603.94, + "probability": 0.8714 + }, + { + "start": 19607.44, + "end": 19612.56, + "probability": 0.983 + }, + { + "start": 19612.56, + "end": 19617.8, + "probability": 0.99 + }, + { + "start": 19619.0, + "end": 19620.8, + "probability": 0.77 + }, + { + "start": 19620.88, + "end": 19623.18, + "probability": 0.9901 + }, + { + "start": 19623.78, + "end": 19628.74, + "probability": 0.8125 + }, + { + "start": 19630.28, + "end": 19631.2, + "probability": 0.9457 + }, + { + "start": 19631.76, + "end": 19634.18, + "probability": 0.994 + }, + { + "start": 19634.78, + "end": 19637.46, + "probability": 0.9753 + }, + { + "start": 19639.68, + "end": 19642.28, + "probability": 0.9867 + }, + { + "start": 19643.54, + "end": 19651.42, + "probability": 0.9239 + }, + { + "start": 19652.26, + "end": 19655.7, + "probability": 0.9943 + }, + { + "start": 19655.9, + "end": 19656.84, + "probability": 0.7164 + }, + { + "start": 19658.4, + "end": 19661.76, + "probability": 0.8785 + }, + { + "start": 19661.76, + "end": 19665.36, + "probability": 0.9954 + }, + { + "start": 19666.0, + "end": 19667.96, + "probability": 0.8631 + }, + { + "start": 19668.76, + "end": 19670.4, + "probability": 0.7086 + }, + { + "start": 19671.12, + "end": 19676.94, + "probability": 0.9848 + }, + { + "start": 19680.7, + "end": 19683.02, + "probability": 0.6915 + }, + { + "start": 19683.02, + "end": 19685.58, + "probability": 0.9985 + }, + { + "start": 19685.72, + "end": 19688.56, + "probability": 0.8761 + }, + { + "start": 19689.44, + "end": 19693.5, + "probability": 0.9065 + }, + { + "start": 19694.16, + "end": 19697.36, + "probability": 0.8972 + }, + { + "start": 19698.66, + "end": 19699.3, + "probability": 0.6979 + }, + { + "start": 19699.36, + "end": 19704.06, + "probability": 0.9645 + }, + { + "start": 19705.06, + "end": 19710.34, + "probability": 0.9351 + }, + { + "start": 19711.22, + "end": 19711.96, + "probability": 0.6778 + }, + { + "start": 19712.96, + "end": 19714.18, + "probability": 0.9333 + }, + { + "start": 19714.7, + "end": 19715.16, + "probability": 0.7458 + }, + { + "start": 19715.34, + "end": 19715.84, + "probability": 0.9674 + }, + { + "start": 19717.22, + "end": 19717.58, + "probability": 0.6135 + }, + { + "start": 19717.62, + "end": 19718.87, + "probability": 0.924 + }, + { + "start": 19725.42, + "end": 19726.98, + "probability": 0.5904 + }, + { + "start": 19727.3, + "end": 19728.9, + "probability": 0.5942 + }, + { + "start": 19728.9, + "end": 19729.0, + "probability": 0.4821 + }, + { + "start": 19730.52, + "end": 19732.16, + "probability": 0.9622 + }, + { + "start": 19734.14, + "end": 19736.02, + "probability": 0.8358 + }, + { + "start": 19738.98, + "end": 19739.26, + "probability": 0.1456 + }, + { + "start": 19742.16, + "end": 19743.26, + "probability": 0.1246 + }, + { + "start": 19746.76, + "end": 19750.59, + "probability": 0.1063 + }, + { + "start": 19752.74, + "end": 19753.9, + "probability": 0.0553 + }, + { + "start": 19754.16, + "end": 19757.86, + "probability": 0.6669 + }, + { + "start": 19757.96, + "end": 19760.16, + "probability": 0.9229 + }, + { + "start": 19762.64, + "end": 19765.0, + "probability": 0.5984 + }, + { + "start": 19765.8, + "end": 19767.68, + "probability": 0.1349 + }, + { + "start": 19768.86, + "end": 19769.72, + "probability": 0.5245 + }, + { + "start": 19769.9, + "end": 19770.22, + "probability": 0.6441 + }, + { + "start": 19771.66, + "end": 19774.5, + "probability": 0.8721 + }, + { + "start": 19774.86, + "end": 19775.67, + "probability": 0.0852 + }, + { + "start": 19776.5, + "end": 19780.98, + "probability": 0.7385 + }, + { + "start": 19780.98, + "end": 19783.06, + "probability": 0.7517 + }, + { + "start": 19783.27, + "end": 19785.14, + "probability": 0.757 + }, + { + "start": 19785.2, + "end": 19786.38, + "probability": 0.7472 + }, + { + "start": 19787.28, + "end": 19792.08, + "probability": 0.9638 + }, + { + "start": 19792.88, + "end": 19793.48, + "probability": 0.7554 + }, + { + "start": 19810.92, + "end": 19813.72, + "probability": 0.0008 + }, + { + "start": 19846.5, + "end": 19846.88, + "probability": 0.0381 + }, + { + "start": 19847.26, + "end": 19853.08, + "probability": 0.0653 + } + ], + "segments_count": 6345, + "words_count": 33266, + "avg_words_per_segment": 5.2429, + "avg_segment_duration": 2.2418, + "avg_words_per_minute": 100.5302, + "plenum_id": "116626", + "duration": 19854.33, + "title": null, + "plenum_date": "2023-05-10" +} \ No newline at end of file