diff --git "a/129137/metadata.json" "b/129137/metadata.json" new file mode 100644--- /dev/null +++ "b/129137/metadata.json" @@ -0,0 +1,34327 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "129137", + "quality_score": 0.885, + "per_segment_quality_scores": [ + { + "start": 42.22, + "end": 45.26, + "probability": 0.0625 + }, + { + "start": 45.26, + "end": 45.7, + "probability": 0.0284 + }, + { + "start": 46.12, + "end": 49.76, + "probability": 0.6352 + }, + { + "start": 53.18, + "end": 53.26, + "probability": 0.178 + }, + { + "start": 53.26, + "end": 53.28, + "probability": 0.1787 + }, + { + "start": 53.28, + "end": 55.85, + "probability": 0.1566 + }, + { + "start": 56.24, + "end": 57.72, + "probability": 0.0022 + }, + { + "start": 58.24, + "end": 58.94, + "probability": 0.027 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 122.4, + "end": 128.34, + "probability": 0.9711 + }, + { + "start": 129.18, + "end": 132.78, + "probability": 0.9222 + }, + { + "start": 133.44, + "end": 134.56, + "probability": 0.8052 + }, + { + "start": 134.6, + "end": 136.12, + "probability": 0.9569 + }, + { + "start": 136.6, + "end": 137.78, + "probability": 0.866 + }, + { + "start": 138.68, + "end": 141.22, + "probability": 0.9979 + }, + { + "start": 141.22, + "end": 144.58, + "probability": 0.9928 + }, + { + "start": 145.66, + "end": 147.42, + "probability": 0.7414 + }, + { + "start": 147.82, + "end": 152.4, + "probability": 0.8263 + }, + { + "start": 152.92, + "end": 155.26, + "probability": 0.8911 + }, + { + "start": 156.12, + "end": 160.02, + "probability": 0.9756 + }, + { + "start": 160.58, + "end": 162.04, + "probability": 0.9948 + }, + { + "start": 162.62, + "end": 166.2, + "probability": 0.9972 + }, + { + "start": 167.04, + "end": 167.96, + "probability": 0.7243 + }, + { + "start": 168.22, + "end": 172.24, + "probability": 0.9753 + }, + { + "start": 172.8, + "end": 178.6, + "probability": 0.9709 + }, + { + "start": 179.06, + "end": 179.84, + "probability": 0.9781 + }, + { + "start": 180.46, + "end": 181.3, + "probability": 0.5593 + }, + { + "start": 181.34, + "end": 182.12, + "probability": 0.8804 + }, + { + "start": 182.46, + "end": 185.8, + "probability": 0.9893 + }, + { + "start": 190.18, + "end": 190.62, + "probability": 0.7702 + }, + { + "start": 192.7, + "end": 194.08, + "probability": 0.9773 + }, + { + "start": 199.1, + "end": 200.22, + "probability": 0.7445 + }, + { + "start": 201.52, + "end": 206.8, + "probability": 0.9713 + }, + { + "start": 207.86, + "end": 210.54, + "probability": 0.9548 + }, + { + "start": 211.2, + "end": 212.04, + "probability": 0.832 + }, + { + "start": 213.0, + "end": 215.12, + "probability": 0.9881 + }, + { + "start": 215.68, + "end": 216.48, + "probability": 0.7495 + }, + { + "start": 216.8, + "end": 217.92, + "probability": 0.9809 + }, + { + "start": 218.58, + "end": 220.62, + "probability": 0.9828 + }, + { + "start": 221.94, + "end": 222.78, + "probability": 0.8206 + }, + { + "start": 223.84, + "end": 225.88, + "probability": 0.9328 + }, + { + "start": 226.68, + "end": 228.26, + "probability": 0.9144 + }, + { + "start": 228.48, + "end": 230.2, + "probability": 0.7764 + }, + { + "start": 230.34, + "end": 231.24, + "probability": 0.996 + }, + { + "start": 232.0, + "end": 235.98, + "probability": 0.9937 + }, + { + "start": 236.5, + "end": 237.48, + "probability": 0.8573 + }, + { + "start": 238.04, + "end": 239.38, + "probability": 0.7694 + }, + { + "start": 239.98, + "end": 240.98, + "probability": 0.9765 + }, + { + "start": 241.58, + "end": 242.64, + "probability": 0.979 + }, + { + "start": 243.2, + "end": 246.34, + "probability": 0.9506 + }, + { + "start": 246.82, + "end": 249.4, + "probability": 0.9816 + }, + { + "start": 249.92, + "end": 254.27, + "probability": 0.9447 + }, + { + "start": 255.24, + "end": 257.24, + "probability": 0.9882 + }, + { + "start": 257.48, + "end": 257.94, + "probability": 0.7979 + }, + { + "start": 258.7, + "end": 259.64, + "probability": 0.8854 + }, + { + "start": 259.78, + "end": 260.72, + "probability": 0.6835 + }, + { + "start": 260.78, + "end": 263.18, + "probability": 0.9235 + }, + { + "start": 263.24, + "end": 265.05, + "probability": 0.9292 + }, + { + "start": 265.76, + "end": 267.78, + "probability": 0.9956 + }, + { + "start": 268.9, + "end": 271.26, + "probability": 0.6993 + }, + { + "start": 271.82, + "end": 277.44, + "probability": 0.9915 + }, + { + "start": 277.6, + "end": 279.84, + "probability": 0.3714 + }, + { + "start": 280.12, + "end": 281.9, + "probability": 0.9865 + }, + { + "start": 282.44, + "end": 285.26, + "probability": 0.8349 + }, + { + "start": 286.2, + "end": 287.02, + "probability": 0.8421 + }, + { + "start": 287.62, + "end": 291.84, + "probability": 0.9858 + }, + { + "start": 292.86, + "end": 293.44, + "probability": 0.9294 + }, + { + "start": 295.16, + "end": 301.36, + "probability": 0.4749 + }, + { + "start": 313.98, + "end": 313.98, + "probability": 0.1114 + }, + { + "start": 313.98, + "end": 313.98, + "probability": 0.0425 + }, + { + "start": 313.98, + "end": 317.44, + "probability": 0.6465 + }, + { + "start": 318.02, + "end": 319.56, + "probability": 0.7189 + }, + { + "start": 319.62, + "end": 320.78, + "probability": 0.7122 + }, + { + "start": 322.62, + "end": 324.24, + "probability": 0.9139 + }, + { + "start": 324.98, + "end": 326.16, + "probability": 0.9977 + }, + { + "start": 326.26, + "end": 328.06, + "probability": 0.9932 + }, + { + "start": 328.84, + "end": 331.02, + "probability": 0.8671 + }, + { + "start": 332.06, + "end": 337.64, + "probability": 0.9902 + }, + { + "start": 338.58, + "end": 340.92, + "probability": 0.925 + }, + { + "start": 342.22, + "end": 344.76, + "probability": 0.856 + }, + { + "start": 344.76, + "end": 346.88, + "probability": 0.9927 + }, + { + "start": 348.18, + "end": 350.36, + "probability": 0.9484 + }, + { + "start": 351.36, + "end": 352.01, + "probability": 0.944 + }, + { + "start": 353.38, + "end": 355.82, + "probability": 0.9987 + }, + { + "start": 356.64, + "end": 357.76, + "probability": 0.9692 + }, + { + "start": 358.92, + "end": 360.98, + "probability": 0.8174 + }, + { + "start": 361.24, + "end": 362.83, + "probability": 0.9914 + }, + { + "start": 364.0, + "end": 365.17, + "probability": 0.9166 + }, + { + "start": 366.48, + "end": 370.2, + "probability": 0.9932 + }, + { + "start": 371.26, + "end": 374.04, + "probability": 0.919 + }, + { + "start": 375.26, + "end": 377.88, + "probability": 0.9854 + }, + { + "start": 378.96, + "end": 383.84, + "probability": 0.9956 + }, + { + "start": 384.4, + "end": 388.56, + "probability": 0.9844 + }, + { + "start": 390.04, + "end": 391.62, + "probability": 0.8567 + }, + { + "start": 392.58, + "end": 394.6, + "probability": 0.7964 + }, + { + "start": 395.92, + "end": 396.62, + "probability": 0.8589 + }, + { + "start": 397.5, + "end": 400.74, + "probability": 0.6705 + }, + { + "start": 401.44, + "end": 403.46, + "probability": 0.8202 + }, + { + "start": 404.32, + "end": 406.98, + "probability": 0.9645 + }, + { + "start": 408.4, + "end": 411.54, + "probability": 0.927 + }, + { + "start": 412.58, + "end": 416.58, + "probability": 0.8008 + }, + { + "start": 417.4, + "end": 420.56, + "probability": 0.9952 + }, + { + "start": 420.56, + "end": 423.86, + "probability": 0.8678 + }, + { + "start": 425.5, + "end": 426.24, + "probability": 0.7901 + }, + { + "start": 426.3, + "end": 427.12, + "probability": 0.7089 + }, + { + "start": 428.1, + "end": 433.34, + "probability": 0.9583 + }, + { + "start": 435.2, + "end": 436.34, + "probability": 0.9438 + }, + { + "start": 437.32, + "end": 441.52, + "probability": 0.9971 + }, + { + "start": 442.44, + "end": 442.82, + "probability": 0.9784 + }, + { + "start": 443.38, + "end": 448.82, + "probability": 0.9922 + }, + { + "start": 449.84, + "end": 453.2, + "probability": 0.9779 + }, + { + "start": 453.2, + "end": 457.8, + "probability": 0.9966 + }, + { + "start": 458.64, + "end": 462.28, + "probability": 0.936 + }, + { + "start": 463.08, + "end": 464.9, + "probability": 0.9368 + }, + { + "start": 465.6, + "end": 468.34, + "probability": 0.9904 + }, + { + "start": 469.2, + "end": 470.14, + "probability": 0.2942 + }, + { + "start": 470.9, + "end": 472.36, + "probability": 0.9954 + }, + { + "start": 473.4, + "end": 474.06, + "probability": 0.665 + }, + { + "start": 474.58, + "end": 480.08, + "probability": 0.9672 + }, + { + "start": 480.32, + "end": 484.32, + "probability": 0.9421 + }, + { + "start": 485.34, + "end": 486.97, + "probability": 0.8875 + }, + { + "start": 487.76, + "end": 490.16, + "probability": 0.9766 + }, + { + "start": 490.82, + "end": 492.16, + "probability": 0.9712 + }, + { + "start": 492.84, + "end": 497.14, + "probability": 0.9858 + }, + { + "start": 497.98, + "end": 500.54, + "probability": 0.938 + }, + { + "start": 501.08, + "end": 503.94, + "probability": 0.877 + }, + { + "start": 504.88, + "end": 507.2, + "probability": 0.5133 + }, + { + "start": 507.3, + "end": 509.42, + "probability": 0.8706 + }, + { + "start": 509.52, + "end": 510.0, + "probability": 0.5992 + }, + { + "start": 510.9, + "end": 514.42, + "probability": 0.978 + }, + { + "start": 514.48, + "end": 515.26, + "probability": 0.752 + }, + { + "start": 515.96, + "end": 516.54, + "probability": 0.5493 + }, + { + "start": 517.18, + "end": 519.48, + "probability": 0.9852 + }, + { + "start": 520.22, + "end": 522.24, + "probability": 0.8286 + }, + { + "start": 522.54, + "end": 523.02, + "probability": 0.8934 + }, + { + "start": 524.2, + "end": 525.06, + "probability": 0.705 + }, + { + "start": 525.1, + "end": 527.82, + "probability": 0.9678 + }, + { + "start": 531.42, + "end": 532.18, + "probability": 0.9387 + }, + { + "start": 544.88, + "end": 546.78, + "probability": 0.485 + }, + { + "start": 546.86, + "end": 547.82, + "probability": 0.7647 + }, + { + "start": 549.28, + "end": 551.56, + "probability": 0.6616 + }, + { + "start": 552.38, + "end": 555.15, + "probability": 0.8843 + }, + { + "start": 556.18, + "end": 557.94, + "probability": 0.923 + }, + { + "start": 560.48, + "end": 564.34, + "probability": 0.9698 + }, + { + "start": 568.32, + "end": 569.18, + "probability": 0.5124 + }, + { + "start": 570.16, + "end": 572.56, + "probability": 0.4455 + }, + { + "start": 572.56, + "end": 574.92, + "probability": 0.9914 + }, + { + "start": 575.98, + "end": 578.92, + "probability": 0.8965 + }, + { + "start": 579.54, + "end": 581.14, + "probability": 0.9161 + }, + { + "start": 581.48, + "end": 582.74, + "probability": 0.8889 + }, + { + "start": 583.06, + "end": 584.46, + "probability": 0.9995 + }, + { + "start": 585.59, + "end": 590.7, + "probability": 0.9243 + }, + { + "start": 591.9, + "end": 598.86, + "probability": 0.976 + }, + { + "start": 598.94, + "end": 600.42, + "probability": 0.9888 + }, + { + "start": 601.2, + "end": 603.56, + "probability": 0.9817 + }, + { + "start": 604.54, + "end": 608.92, + "probability": 0.9987 + }, + { + "start": 610.36, + "end": 613.66, + "probability": 0.988 + }, + { + "start": 614.72, + "end": 620.2, + "probability": 0.8482 + }, + { + "start": 622.2, + "end": 625.0, + "probability": 0.8713 + }, + { + "start": 626.72, + "end": 628.4, + "probability": 0.9888 + }, + { + "start": 628.94, + "end": 629.74, + "probability": 0.8833 + }, + { + "start": 630.82, + "end": 634.3, + "probability": 0.9699 + }, + { + "start": 634.46, + "end": 636.84, + "probability": 0.5018 + }, + { + "start": 637.02, + "end": 638.42, + "probability": 0.8248 + }, + { + "start": 638.48, + "end": 640.82, + "probability": 0.8953 + }, + { + "start": 642.1, + "end": 646.66, + "probability": 0.9084 + }, + { + "start": 647.64, + "end": 652.97, + "probability": 0.3703 + }, + { + "start": 654.58, + "end": 655.98, + "probability": 0.2159 + }, + { + "start": 656.6, + "end": 657.02, + "probability": 0.6249 + }, + { + "start": 657.04, + "end": 657.26, + "probability": 0.857 + }, + { + "start": 657.4, + "end": 660.88, + "probability": 0.9838 + }, + { + "start": 661.94, + "end": 663.71, + "probability": 0.0302 + }, + { + "start": 665.2, + "end": 667.28, + "probability": 0.2916 + }, + { + "start": 667.28, + "end": 668.34, + "probability": 0.0836 + }, + { + "start": 668.85, + "end": 675.82, + "probability": 0.0169 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.0, + "end": 778.0, + "probability": 0.0 + }, + { + "start": 778.16, + "end": 779.66, + "probability": 0.388 + }, + { + "start": 780.52, + "end": 781.42, + "probability": 0.1063 + }, + { + "start": 781.42, + "end": 781.42, + "probability": 0.3633 + }, + { + "start": 781.42, + "end": 781.9, + "probability": 0.3836 + }, + { + "start": 782.16, + "end": 782.98, + "probability": 0.3934 + }, + { + "start": 784.76, + "end": 786.04, + "probability": 0.3369 + }, + { + "start": 786.72, + "end": 787.1, + "probability": 0.4658 + }, + { + "start": 788.18, + "end": 790.02, + "probability": 0.2349 + }, + { + "start": 791.16, + "end": 791.26, + "probability": 0.0373 + }, + { + "start": 795.94, + "end": 797.82, + "probability": 0.698 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.0, + "end": 898.0, + "probability": 0.0 + }, + { + "start": 898.12, + "end": 898.24, + "probability": 0.0105 + }, + { + "start": 898.24, + "end": 898.24, + "probability": 0.2182 + }, + { + "start": 898.24, + "end": 898.5, + "probability": 0.0908 + }, + { + "start": 898.5, + "end": 900.18, + "probability": 0.9158 + }, + { + "start": 901.94, + "end": 905.72, + "probability": 0.9232 + }, + { + "start": 906.56, + "end": 908.32, + "probability": 0.9034 + }, + { + "start": 909.24, + "end": 911.24, + "probability": 0.9866 + }, + { + "start": 912.88, + "end": 915.84, + "probability": 0.8694 + }, + { + "start": 916.38, + "end": 917.5, + "probability": 0.9602 + }, + { + "start": 918.02, + "end": 919.62, + "probability": 0.9329 + }, + { + "start": 920.5, + "end": 922.62, + "probability": 0.9869 + }, + { + "start": 923.68, + "end": 925.75, + "probability": 0.8975 + }, + { + "start": 926.1, + "end": 929.74, + "probability": 0.9964 + }, + { + "start": 930.4, + "end": 932.84, + "probability": 0.9983 + }, + { + "start": 933.44, + "end": 936.06, + "probability": 0.9934 + }, + { + "start": 936.66, + "end": 938.24, + "probability": 0.6589 + }, + { + "start": 939.24, + "end": 941.36, + "probability": 0.9536 + }, + { + "start": 941.94, + "end": 948.4, + "probability": 0.9492 + }, + { + "start": 949.6, + "end": 952.36, + "probability": 0.8941 + }, + { + "start": 953.26, + "end": 953.98, + "probability": 0.5049 + }, + { + "start": 954.68, + "end": 956.18, + "probability": 0.9545 + }, + { + "start": 956.72, + "end": 959.32, + "probability": 0.98 + }, + { + "start": 960.7, + "end": 964.44, + "probability": 0.9939 + }, + { + "start": 965.6, + "end": 968.76, + "probability": 0.7885 + }, + { + "start": 969.68, + "end": 972.04, + "probability": 0.9751 + }, + { + "start": 972.14, + "end": 973.18, + "probability": 0.8156 + }, + { + "start": 973.64, + "end": 976.7, + "probability": 0.9877 + }, + { + "start": 976.84, + "end": 977.5, + "probability": 0.7406 + }, + { + "start": 978.76, + "end": 981.28, + "probability": 0.7231 + }, + { + "start": 982.54, + "end": 983.66, + "probability": 0.8933 + }, + { + "start": 984.38, + "end": 986.16, + "probability": 0.8231 + }, + { + "start": 986.82, + "end": 989.66, + "probability": 0.9347 + }, + { + "start": 991.04, + "end": 993.1, + "probability": 0.9925 + }, + { + "start": 993.82, + "end": 994.0, + "probability": 0.917 + }, + { + "start": 995.38, + "end": 995.84, + "probability": 0.5883 + }, + { + "start": 997.46, + "end": 998.9, + "probability": 0.9927 + }, + { + "start": 999.86, + "end": 1000.92, + "probability": 0.9263 + }, + { + "start": 1002.1, + "end": 1004.42, + "probability": 0.985 + }, + { + "start": 1005.04, + "end": 1006.34, + "probability": 0.8285 + }, + { + "start": 1006.92, + "end": 1009.42, + "probability": 0.7739 + }, + { + "start": 1010.0, + "end": 1010.54, + "probability": 0.965 + }, + { + "start": 1010.54, + "end": 1012.16, + "probability": 0.936 + }, + { + "start": 1012.56, + "end": 1013.33, + "probability": 0.918 + }, + { + "start": 1014.12, + "end": 1015.0, + "probability": 0.5582 + }, + { + "start": 1015.94, + "end": 1021.2, + "probability": 0.9521 + }, + { + "start": 1022.76, + "end": 1027.18, + "probability": 0.9624 + }, + { + "start": 1028.04, + "end": 1029.62, + "probability": 0.95 + }, + { + "start": 1030.32, + "end": 1034.42, + "probability": 0.9608 + }, + { + "start": 1034.96, + "end": 1036.56, + "probability": 0.9314 + }, + { + "start": 1037.2, + "end": 1044.22, + "probability": 0.8649 + }, + { + "start": 1045.76, + "end": 1047.76, + "probability": 0.8947 + }, + { + "start": 1048.68, + "end": 1049.92, + "probability": 0.988 + }, + { + "start": 1050.18, + "end": 1050.87, + "probability": 0.7554 + }, + { + "start": 1052.44, + "end": 1055.46, + "probability": 0.9742 + }, + { + "start": 1056.34, + "end": 1061.38, + "probability": 0.9906 + }, + { + "start": 1062.1, + "end": 1063.06, + "probability": 0.8943 + }, + { + "start": 1064.02, + "end": 1065.0, + "probability": 0.818 + }, + { + "start": 1065.74, + "end": 1066.94, + "probability": 0.966 + }, + { + "start": 1068.52, + "end": 1071.54, + "probability": 0.5949 + }, + { + "start": 1071.76, + "end": 1072.44, + "probability": 0.8305 + }, + { + "start": 1072.56, + "end": 1073.08, + "probability": 0.938 + }, + { + "start": 1074.36, + "end": 1083.12, + "probability": 0.9858 + }, + { + "start": 1084.74, + "end": 1087.08, + "probability": 0.6983 + }, + { + "start": 1087.7, + "end": 1090.6, + "probability": 0.979 + }, + { + "start": 1091.22, + "end": 1092.64, + "probability": 0.897 + }, + { + "start": 1092.74, + "end": 1095.86, + "probability": 0.9966 + }, + { + "start": 1097.3, + "end": 1099.68, + "probability": 0.8682 + }, + { + "start": 1100.86, + "end": 1104.81, + "probability": 0.8889 + }, + { + "start": 1105.92, + "end": 1108.42, + "probability": 0.9219 + }, + { + "start": 1109.44, + "end": 1112.56, + "probability": 0.9956 + }, + { + "start": 1112.56, + "end": 1115.16, + "probability": 0.9986 + }, + { + "start": 1116.0, + "end": 1117.32, + "probability": 0.8698 + }, + { + "start": 1117.96, + "end": 1121.04, + "probability": 0.997 + }, + { + "start": 1121.94, + "end": 1125.58, + "probability": 0.9465 + }, + { + "start": 1126.22, + "end": 1131.1, + "probability": 0.9896 + }, + { + "start": 1131.1, + "end": 1135.82, + "probability": 0.9993 + }, + { + "start": 1136.44, + "end": 1138.52, + "probability": 0.8949 + }, + { + "start": 1139.26, + "end": 1141.56, + "probability": 0.9722 + }, + { + "start": 1142.94, + "end": 1146.14, + "probability": 0.929 + }, + { + "start": 1146.46, + "end": 1150.92, + "probability": 0.9097 + }, + { + "start": 1151.26, + "end": 1154.26, + "probability": 0.9944 + }, + { + "start": 1155.12, + "end": 1157.86, + "probability": 0.9813 + }, + { + "start": 1158.24, + "end": 1161.62, + "probability": 0.9918 + }, + { + "start": 1163.42, + "end": 1166.3, + "probability": 0.985 + }, + { + "start": 1167.14, + "end": 1171.56, + "probability": 0.9932 + }, + { + "start": 1173.92, + "end": 1177.28, + "probability": 0.9925 + }, + { + "start": 1178.06, + "end": 1178.86, + "probability": 0.907 + }, + { + "start": 1179.44, + "end": 1180.52, + "probability": 0.6745 + }, + { + "start": 1180.74, + "end": 1183.38, + "probability": 0.9931 + }, + { + "start": 1183.66, + "end": 1184.24, + "probability": 0.8508 + }, + { + "start": 1186.12, + "end": 1189.38, + "probability": 0.9102 + }, + { + "start": 1190.18, + "end": 1190.66, + "probability": 0.896 + }, + { + "start": 1191.56, + "end": 1194.0, + "probability": 0.9038 + }, + { + "start": 1194.44, + "end": 1195.98, + "probability": 0.991 + }, + { + "start": 1196.84, + "end": 1198.0, + "probability": 0.7693 + }, + { + "start": 1198.42, + "end": 1199.62, + "probability": 0.9011 + }, + { + "start": 1200.4, + "end": 1203.98, + "probability": 0.994 + }, + { + "start": 1204.12, + "end": 1205.84, + "probability": 0.9476 + }, + { + "start": 1206.9, + "end": 1211.56, + "probability": 0.986 + }, + { + "start": 1212.14, + "end": 1214.98, + "probability": 0.9756 + }, + { + "start": 1215.06, + "end": 1216.76, + "probability": 0.9515 + }, + { + "start": 1217.58, + "end": 1219.28, + "probability": 0.9785 + }, + { + "start": 1219.42, + "end": 1223.6, + "probability": 0.9761 + }, + { + "start": 1224.44, + "end": 1225.8, + "probability": 0.9904 + }, + { + "start": 1227.16, + "end": 1228.31, + "probability": 0.7485 + }, + { + "start": 1229.06, + "end": 1231.5, + "probability": 0.995 + }, + { + "start": 1231.78, + "end": 1233.88, + "probability": 0.9735 + }, + { + "start": 1234.84, + "end": 1235.42, + "probability": 0.8447 + }, + { + "start": 1236.84, + "end": 1238.0, + "probability": 0.9812 + }, + { + "start": 1238.6, + "end": 1240.52, + "probability": 0.9053 + }, + { + "start": 1241.46, + "end": 1242.12, + "probability": 0.9951 + }, + { + "start": 1242.92, + "end": 1244.78, + "probability": 0.9971 + }, + { + "start": 1245.34, + "end": 1248.2, + "probability": 0.8709 + }, + { + "start": 1248.82, + "end": 1248.88, + "probability": 0.4431 + }, + { + "start": 1248.88, + "end": 1250.02, + "probability": 0.9951 + }, + { + "start": 1251.74, + "end": 1253.2, + "probability": 0.8247 + }, + { + "start": 1253.5, + "end": 1254.84, + "probability": 0.957 + }, + { + "start": 1254.94, + "end": 1259.86, + "probability": 0.5233 + }, + { + "start": 1259.86, + "end": 1259.86, + "probability": 0.0297 + }, + { + "start": 1259.86, + "end": 1261.22, + "probability": 0.7019 + }, + { + "start": 1261.74, + "end": 1267.08, + "probability": 0.9831 + }, + { + "start": 1268.6, + "end": 1269.66, + "probability": 0.6527 + }, + { + "start": 1270.3, + "end": 1273.52, + "probability": 0.9838 + }, + { + "start": 1274.4, + "end": 1277.34, + "probability": 0.9834 + }, + { + "start": 1277.9, + "end": 1279.96, + "probability": 0.9917 + }, + { + "start": 1280.44, + "end": 1282.46, + "probability": 0.9914 + }, + { + "start": 1284.1, + "end": 1285.86, + "probability": 0.9951 + }, + { + "start": 1286.22, + "end": 1286.8, + "probability": 0.7366 + }, + { + "start": 1287.62, + "end": 1291.54, + "probability": 0.976 + }, + { + "start": 1292.02, + "end": 1294.75, + "probability": 0.9769 + }, + { + "start": 1296.24, + "end": 1298.54, + "probability": 0.9769 + }, + { + "start": 1300.0, + "end": 1302.02, + "probability": 0.9952 + }, + { + "start": 1302.46, + "end": 1305.34, + "probability": 0.9645 + }, + { + "start": 1306.24, + "end": 1309.24, + "probability": 0.894 + }, + { + "start": 1309.86, + "end": 1310.84, + "probability": 0.8087 + }, + { + "start": 1311.7, + "end": 1312.74, + "probability": 0.9718 + }, + { + "start": 1313.42, + "end": 1316.42, + "probability": 0.9912 + }, + { + "start": 1316.96, + "end": 1318.6, + "probability": 0.9626 + }, + { + "start": 1319.38, + "end": 1320.84, + "probability": 0.9875 + }, + { + "start": 1321.46, + "end": 1323.16, + "probability": 0.9797 + }, + { + "start": 1323.4, + "end": 1324.26, + "probability": 0.2422 + }, + { + "start": 1324.74, + "end": 1326.68, + "probability": 0.9773 + }, + { + "start": 1327.22, + "end": 1329.78, + "probability": 0.8728 + }, + { + "start": 1330.08, + "end": 1331.54, + "probability": 0.9944 + }, + { + "start": 1332.0, + "end": 1334.18, + "probability": 0.9875 + }, + { + "start": 1334.6, + "end": 1336.0, + "probability": 0.9744 + }, + { + "start": 1336.4, + "end": 1338.94, + "probability": 0.995 + }, + { + "start": 1339.62, + "end": 1341.88, + "probability": 0.9517 + }, + { + "start": 1342.44, + "end": 1344.76, + "probability": 0.9294 + }, + { + "start": 1344.82, + "end": 1345.16, + "probability": 0.92 + }, + { + "start": 1345.82, + "end": 1347.32, + "probability": 0.9858 + }, + { + "start": 1347.36, + "end": 1349.54, + "probability": 0.8744 + }, + { + "start": 1349.78, + "end": 1352.18, + "probability": 0.9861 + }, + { + "start": 1358.26, + "end": 1358.88, + "probability": 0.0902 + }, + { + "start": 1358.96, + "end": 1358.96, + "probability": 0.1673 + }, + { + "start": 1373.66, + "end": 1375.92, + "probability": 0.6717 + }, + { + "start": 1377.16, + "end": 1378.82, + "probability": 0.8801 + }, + { + "start": 1380.22, + "end": 1383.26, + "probability": 0.9716 + }, + { + "start": 1384.12, + "end": 1385.62, + "probability": 0.7115 + }, + { + "start": 1386.82, + "end": 1390.7, + "probability": 0.9375 + }, + { + "start": 1391.66, + "end": 1392.88, + "probability": 0.8254 + }, + { + "start": 1393.94, + "end": 1396.0, + "probability": 0.8045 + }, + { + "start": 1396.9, + "end": 1400.66, + "probability": 0.9904 + }, + { + "start": 1402.36, + "end": 1403.56, + "probability": 0.928 + }, + { + "start": 1404.2, + "end": 1405.3, + "probability": 0.9011 + }, + { + "start": 1406.32, + "end": 1410.17, + "probability": 0.9896 + }, + { + "start": 1410.68, + "end": 1412.78, + "probability": 0.9141 + }, + { + "start": 1413.3, + "end": 1415.24, + "probability": 0.9585 + }, + { + "start": 1415.9, + "end": 1420.56, + "probability": 0.8004 + }, + { + "start": 1421.5, + "end": 1425.22, + "probability": 0.9949 + }, + { + "start": 1425.94, + "end": 1430.38, + "probability": 0.9822 + }, + { + "start": 1430.38, + "end": 1438.8, + "probability": 0.4016 + }, + { + "start": 1439.54, + "end": 1439.54, + "probability": 0.007 + }, + { + "start": 1439.54, + "end": 1439.54, + "probability": 0.0896 + }, + { + "start": 1439.54, + "end": 1440.32, + "probability": 0.0494 + }, + { + "start": 1440.32, + "end": 1444.98, + "probability": 0.304 + }, + { + "start": 1445.86, + "end": 1446.46, + "probability": 0.3774 + }, + { + "start": 1447.22, + "end": 1448.48, + "probability": 0.3368 + }, + { + "start": 1448.56, + "end": 1448.76, + "probability": 0.6288 + }, + { + "start": 1448.88, + "end": 1450.98, + "probability": 0.5394 + }, + { + "start": 1451.02, + "end": 1458.56, + "probability": 0.6997 + }, + { + "start": 1458.78, + "end": 1464.08, + "probability": 0.4498 + }, + { + "start": 1464.2, + "end": 1464.48, + "probability": 0.1485 + }, + { + "start": 1464.48, + "end": 1464.48, + "probability": 0.4371 + }, + { + "start": 1464.48, + "end": 1465.0, + "probability": 0.2412 + }, + { + "start": 1465.12, + "end": 1466.34, + "probability": 0.6706 + }, + { + "start": 1466.5, + "end": 1469.48, + "probability": 0.9143 + }, + { + "start": 1469.98, + "end": 1473.04, + "probability": 0.9081 + }, + { + "start": 1473.38, + "end": 1473.48, + "probability": 0.0108 + }, + { + "start": 1473.48, + "end": 1479.26, + "probability": 0.7555 + }, + { + "start": 1479.42, + "end": 1480.56, + "probability": 0.8989 + }, + { + "start": 1481.12, + "end": 1485.66, + "probability": 0.6389 + }, + { + "start": 1486.14, + "end": 1486.98, + "probability": 0.7917 + }, + { + "start": 1487.76, + "end": 1490.96, + "probability": 0.4635 + }, + { + "start": 1491.14, + "end": 1491.66, + "probability": 0.3949 + }, + { + "start": 1491.66, + "end": 1493.38, + "probability": 0.0675 + }, + { + "start": 1497.47, + "end": 1498.94, + "probability": 0.0604 + }, + { + "start": 1500.51, + "end": 1502.37, + "probability": 0.0326 + }, + { + "start": 1502.7, + "end": 1504.4, + "probability": 0.5582 + }, + { + "start": 1504.4, + "end": 1507.2, + "probability": 0.668 + }, + { + "start": 1507.2, + "end": 1507.68, + "probability": 0.2746 + }, + { + "start": 1507.72, + "end": 1508.18, + "probability": 0.069 + }, + { + "start": 1508.34, + "end": 1510.6, + "probability": 0.6769 + }, + { + "start": 1510.6, + "end": 1511.28, + "probability": 0.1507 + }, + { + "start": 1513.36, + "end": 1513.58, + "probability": 0.3199 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1606.0, + "end": 1606.0, + "probability": 0.0 + }, + { + "start": 1607.12, + "end": 1609.28, + "probability": 0.1522 + }, + { + "start": 1609.3, + "end": 1611.68, + "probability": 0.0615 + }, + { + "start": 1611.68, + "end": 1616.33, + "probability": 0.0526 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.0, + "end": 1726.0, + "probability": 0.0 + }, + { + "start": 1726.14, + "end": 1726.2, + "probability": 0.0491 + }, + { + "start": 1726.2, + "end": 1726.2, + "probability": 0.3637 + }, + { + "start": 1726.2, + "end": 1726.2, + "probability": 0.2434 + }, + { + "start": 1726.2, + "end": 1727.24, + "probability": 0.0816 + }, + { + "start": 1728.4, + "end": 1729.8, + "probability": 0.9819 + }, + { + "start": 1730.24, + "end": 1732.12, + "probability": 0.6693 + }, + { + "start": 1748.38, + "end": 1748.44, + "probability": 0.0002 + }, + { + "start": 1752.42, + "end": 1758.2, + "probability": 0.067 + }, + { + "start": 1758.2, + "end": 1758.5, + "probability": 0.4417 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.0, + "end": 1846.0, + "probability": 0.0 + }, + { + "start": 1846.16, + "end": 1846.67, + "probability": 0.5385 + }, + { + "start": 1848.36, + "end": 1849.18, + "probability": 0.7396 + }, + { + "start": 1849.98, + "end": 1851.64, + "probability": 0.9264 + }, + { + "start": 1852.52, + "end": 1853.22, + "probability": 0.579 + }, + { + "start": 1853.82, + "end": 1856.36, + "probability": 0.7894 + }, + { + "start": 1857.2, + "end": 1859.36, + "probability": 0.8798 + }, + { + "start": 1860.23, + "end": 1861.74, + "probability": 0.6132 + }, + { + "start": 1861.8, + "end": 1863.62, + "probability": 0.9847 + }, + { + "start": 1864.42, + "end": 1865.26, + "probability": 0.9023 + }, + { + "start": 1866.44, + "end": 1869.52, + "probability": 0.9933 + }, + { + "start": 1869.52, + "end": 1873.94, + "probability": 0.583 + }, + { + "start": 1874.52, + "end": 1877.46, + "probability": 0.9702 + }, + { + "start": 1878.2, + "end": 1880.24, + "probability": 0.558 + }, + { + "start": 1880.88, + "end": 1881.98, + "probability": 0.7267 + }, + { + "start": 1882.48, + "end": 1883.62, + "probability": 0.7721 + }, + { + "start": 1885.3, + "end": 1885.7, + "probability": 0.3322 + }, + { + "start": 1899.44, + "end": 1904.64, + "probability": 0.4175 + }, + { + "start": 1904.72, + "end": 1907.96, + "probability": 0.9237 + }, + { + "start": 1908.94, + "end": 1909.64, + "probability": 0.6884 + }, + { + "start": 1913.84, + "end": 1916.54, + "probability": 0.3279 + }, + { + "start": 1916.54, + "end": 1917.67, + "probability": 0.0519 + }, + { + "start": 1920.97, + "end": 1925.9, + "probability": 0.0657 + }, + { + "start": 1939.94, + "end": 1941.36, + "probability": 0.0606 + }, + { + "start": 1942.04, + "end": 1943.78, + "probability": 0.0535 + }, + { + "start": 1943.82, + "end": 1944.24, + "probability": 0.0346 + }, + { + "start": 1957.66, + "end": 1962.54, + "probability": 0.1502 + }, + { + "start": 1962.54, + "end": 1965.32, + "probability": 0.1133 + }, + { + "start": 1965.94, + "end": 1970.94, + "probability": 0.0379 + }, + { + "start": 1986.0, + "end": 1986.0, + "probability": 0.0 + }, + { + "start": 1986.0, + "end": 1986.0, + "probability": 0.0 + }, + { + "start": 1986.0, + "end": 1986.0, + "probability": 0.0 + }, + { + "start": 1986.0, + "end": 1986.0, + "probability": 0.0 + }, + { + "start": 1986.0, + "end": 1986.0, + "probability": 0.0 + }, + { + "start": 1986.0, + "end": 1986.0, + "probability": 0.0 + }, + { + "start": 1986.0, + "end": 1986.0, + "probability": 0.0 + }, + { + "start": 1986.0, + "end": 1986.0, + "probability": 0.0 + }, + { + "start": 1986.0, + "end": 1986.0, + "probability": 0.0 + }, + { + "start": 1986.0, + "end": 1986.0, + "probability": 0.0 + }, + { + "start": 1986.1, + "end": 1991.04, + "probability": 0.0254 + }, + { + "start": 1992.64, + "end": 2000.2, + "probability": 0.0673 + }, + { + "start": 2003.42, + "end": 2005.28, + "probability": 0.16 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.0, + "probability": 0.0 + }, + { + "start": 2106.0, + "end": 2106.79, + "probability": 0.9766 + }, + { + "start": 2106.94, + "end": 2108.96, + "probability": 0.9871 + }, + { + "start": 2109.3, + "end": 2111.88, + "probability": 0.9673 + }, + { + "start": 2112.7, + "end": 2113.18, + "probability": 0.8453 + }, + { + "start": 2113.34, + "end": 2115.86, + "probability": 0.6577 + }, + { + "start": 2116.02, + "end": 2117.32, + "probability": 0.8547 + }, + { + "start": 2118.44, + "end": 2118.92, + "probability": 0.8648 + }, + { + "start": 2119.02, + "end": 2121.28, + "probability": 0.9939 + }, + { + "start": 2122.22, + "end": 2123.78, + "probability": 0.9696 + }, + { + "start": 2124.06, + "end": 2128.38, + "probability": 0.7341 + }, + { + "start": 2129.59, + "end": 2134.88, + "probability": 0.9471 + }, + { + "start": 2134.89, + "end": 2137.36, + "probability": 0.9048 + }, + { + "start": 2137.84, + "end": 2140.92, + "probability": 0.5476 + }, + { + "start": 2141.7, + "end": 2144.52, + "probability": 0.9352 + }, + { + "start": 2145.04, + "end": 2148.8, + "probability": 0.9912 + }, + { + "start": 2149.56, + "end": 2155.08, + "probability": 0.134 + }, + { + "start": 2155.72, + "end": 2160.72, + "probability": 0.9713 + }, + { + "start": 2161.28, + "end": 2163.06, + "probability": 0.9539 + }, + { + "start": 2163.1, + "end": 2165.62, + "probability": 0.844 + }, + { + "start": 2165.76, + "end": 2167.0, + "probability": 0.957 + }, + { + "start": 2167.0, + "end": 2168.6, + "probability": 0.6066 + }, + { + "start": 2170.1, + "end": 2172.96, + "probability": 0.9699 + }, + { + "start": 2173.04, + "end": 2173.56, + "probability": 0.7959 + }, + { + "start": 2174.64, + "end": 2176.36, + "probability": 0.8552 + }, + { + "start": 2176.48, + "end": 2178.18, + "probability": 0.8916 + }, + { + "start": 2179.16, + "end": 2179.98, + "probability": 0.9854 + }, + { + "start": 2180.2, + "end": 2183.54, + "probability": 0.7498 + }, + { + "start": 2183.6, + "end": 2186.2, + "probability": 0.8235 + }, + { + "start": 2186.66, + "end": 2187.82, + "probability": 0.7476 + }, + { + "start": 2188.2, + "end": 2189.08, + "probability": 0.9822 + }, + { + "start": 2189.46, + "end": 2191.98, + "probability": 0.9974 + }, + { + "start": 2192.52, + "end": 2195.38, + "probability": 0.9944 + }, + { + "start": 2195.46, + "end": 2195.9, + "probability": 0.9011 + }, + { + "start": 2196.34, + "end": 2197.1, + "probability": 0.8102 + }, + { + "start": 2197.16, + "end": 2198.38, + "probability": 0.6871 + }, + { + "start": 2198.5, + "end": 2198.87, + "probability": 0.8433 + }, + { + "start": 2199.34, + "end": 2199.58, + "probability": 0.6458 + }, + { + "start": 2200.5, + "end": 2201.44, + "probability": 0.8848 + }, + { + "start": 2201.62, + "end": 2205.02, + "probability": 0.984 + }, + { + "start": 2205.72, + "end": 2207.26, + "probability": 0.8986 + }, + { + "start": 2207.28, + "end": 2207.56, + "probability": 0.8845 + }, + { + "start": 2208.06, + "end": 2210.22, + "probability": 0.7439 + }, + { + "start": 2210.68, + "end": 2211.92, + "probability": 0.9926 + }, + { + "start": 2212.04, + "end": 2213.38, + "probability": 0.6248 + }, + { + "start": 2213.88, + "end": 2215.52, + "probability": 0.9467 + }, + { + "start": 2215.76, + "end": 2217.08, + "probability": 0.9963 + }, + { + "start": 2217.62, + "end": 2221.06, + "probability": 0.9042 + }, + { + "start": 2236.26, + "end": 2238.42, + "probability": 0.1186 + }, + { + "start": 2238.42, + "end": 2238.42, + "probability": 0.2221 + }, + { + "start": 2238.42, + "end": 2239.5, + "probability": 0.7082 + }, + { + "start": 2240.3, + "end": 2241.58, + "probability": 0.6564 + }, + { + "start": 2242.36, + "end": 2245.68, + "probability": 0.89 + }, + { + "start": 2246.1, + "end": 2247.74, + "probability": 0.9502 + }, + { + "start": 2248.26, + "end": 2252.33, + "probability": 0.4483 + }, + { + "start": 2253.9, + "end": 2254.2, + "probability": 0.8014 + }, + { + "start": 2254.98, + "end": 2257.42, + "probability": 0.9417 + }, + { + "start": 2258.88, + "end": 2259.4, + "probability": 0.939 + }, + { + "start": 2259.48, + "end": 2263.94, + "probability": 0.9425 + }, + { + "start": 2264.82, + "end": 2265.5, + "probability": 0.3948 + }, + { + "start": 2266.44, + "end": 2268.88, + "probability": 0.9974 + }, + { + "start": 2269.74, + "end": 2274.84, + "probability": 0.8684 + }, + { + "start": 2275.76, + "end": 2278.74, + "probability": 0.9818 + }, + { + "start": 2279.34, + "end": 2280.46, + "probability": 0.7554 + }, + { + "start": 2282.44, + "end": 2282.44, + "probability": 0.1959 + }, + { + "start": 2283.4, + "end": 2284.5, + "probability": 0.9517 + }, + { + "start": 2285.56, + "end": 2287.06, + "probability": 0.7714 + }, + { + "start": 2287.52, + "end": 2289.4, + "probability": 0.9341 + }, + { + "start": 2290.0, + "end": 2294.42, + "probability": 0.9495 + }, + { + "start": 2295.42, + "end": 2297.3, + "probability": 0.7216 + }, + { + "start": 2298.06, + "end": 2299.48, + "probability": 0.9976 + }, + { + "start": 2300.08, + "end": 2306.12, + "probability": 0.5591 + }, + { + "start": 2306.14, + "end": 2308.56, + "probability": 0.3544 + }, + { + "start": 2308.56, + "end": 2315.2, + "probability": 0.933 + }, + { + "start": 2315.76, + "end": 2318.08, + "probability": 0.9412 + }, + { + "start": 2318.14, + "end": 2325.58, + "probability": 0.8839 + }, + { + "start": 2325.58, + "end": 2331.86, + "probability": 0.9941 + }, + { + "start": 2332.46, + "end": 2334.76, + "probability": 0.9984 + }, + { + "start": 2335.38, + "end": 2342.14, + "probability": 0.9973 + }, + { + "start": 2343.08, + "end": 2345.94, + "probability": 0.7974 + }, + { + "start": 2346.44, + "end": 2350.5, + "probability": 0.7335 + }, + { + "start": 2351.08, + "end": 2354.02, + "probability": 0.9268 + }, + { + "start": 2354.44, + "end": 2358.32, + "probability": 0.9808 + }, + { + "start": 2358.82, + "end": 2360.82, + "probability": 0.9324 + }, + { + "start": 2361.22, + "end": 2364.26, + "probability": 0.9915 + }, + { + "start": 2364.48, + "end": 2366.44, + "probability": 0.8932 + }, + { + "start": 2366.7, + "end": 2367.38, + "probability": 0.31 + }, + { + "start": 2367.72, + "end": 2370.54, + "probability": 0.9 + }, + { + "start": 2371.68, + "end": 2373.7, + "probability": 0.7795 + }, + { + "start": 2374.14, + "end": 2377.76, + "probability": 0.9725 + }, + { + "start": 2378.74, + "end": 2379.42, + "probability": 0.6198 + }, + { + "start": 2379.74, + "end": 2381.1, + "probability": 0.6277 + }, + { + "start": 2381.58, + "end": 2382.7, + "probability": 0.4749 + }, + { + "start": 2383.18, + "end": 2384.68, + "probability": 0.9949 + }, + { + "start": 2386.7, + "end": 2387.4, + "probability": 0.9203 + }, + { + "start": 2387.52, + "end": 2389.22, + "probability": 0.7771 + }, + { + "start": 2389.38, + "end": 2390.42, + "probability": 0.7313 + }, + { + "start": 2391.02, + "end": 2393.26, + "probability": 0.9238 + }, + { + "start": 2393.96, + "end": 2395.22, + "probability": 0.9502 + }, + { + "start": 2395.82, + "end": 2396.46, + "probability": 0.5841 + }, + { + "start": 2397.2, + "end": 2398.68, + "probability": 0.9654 + }, + { + "start": 2399.44, + "end": 2399.92, + "probability": 0.9739 + }, + { + "start": 2407.62, + "end": 2408.98, + "probability": 0.6225 + }, + { + "start": 2409.06, + "end": 2410.3, + "probability": 0.6742 + }, + { + "start": 2411.0, + "end": 2416.22, + "probability": 0.9749 + }, + { + "start": 2418.78, + "end": 2420.18, + "probability": 0.9689 + }, + { + "start": 2420.4, + "end": 2421.16, + "probability": 0.5292 + }, + { + "start": 2422.02, + "end": 2422.74, + "probability": 0.8232 + }, + { + "start": 2422.98, + "end": 2423.34, + "probability": 0.4488 + }, + { + "start": 2423.38, + "end": 2423.6, + "probability": 0.776 + }, + { + "start": 2424.56, + "end": 2424.98, + "probability": 0.5105 + }, + { + "start": 2425.54, + "end": 2430.98, + "probability": 0.9026 + }, + { + "start": 2435.32, + "end": 2436.98, + "probability": 0.8346 + }, + { + "start": 2438.42, + "end": 2445.1, + "probability": 0.9441 + }, + { + "start": 2445.78, + "end": 2447.18, + "probability": 0.9314 + }, + { + "start": 2447.26, + "end": 2450.02, + "probability": 0.9218 + }, + { + "start": 2450.1, + "end": 2452.48, + "probability": 0.9628 + }, + { + "start": 2453.2, + "end": 2454.32, + "probability": 0.6434 + }, + { + "start": 2454.48, + "end": 2457.1, + "probability": 0.866 + }, + { + "start": 2457.62, + "end": 2458.32, + "probability": 0.9744 + }, + { + "start": 2459.4, + "end": 2460.88, + "probability": 0.7838 + }, + { + "start": 2461.36, + "end": 2466.84, + "probability": 0.8871 + }, + { + "start": 2466.84, + "end": 2469.8, + "probability": 0.9913 + }, + { + "start": 2470.46, + "end": 2472.1, + "probability": 0.9126 + }, + { + "start": 2472.18, + "end": 2473.04, + "probability": 0.9548 + }, + { + "start": 2474.06, + "end": 2475.66, + "probability": 0.691 + }, + { + "start": 2476.32, + "end": 2479.98, + "probability": 0.9648 + }, + { + "start": 2480.66, + "end": 2484.48, + "probability": 0.9394 + }, + { + "start": 2485.28, + "end": 2490.14, + "probability": 0.9231 + }, + { + "start": 2490.66, + "end": 2494.52, + "probability": 0.9977 + }, + { + "start": 2494.6, + "end": 2495.08, + "probability": 0.8128 + }, + { + "start": 2495.2, + "end": 2496.82, + "probability": 0.8486 + }, + { + "start": 2497.44, + "end": 2497.74, + "probability": 0.9113 + }, + { + "start": 2498.72, + "end": 2500.52, + "probability": 0.8937 + }, + { + "start": 2500.92, + "end": 2503.7, + "probability": 0.9745 + }, + { + "start": 2504.02, + "end": 2506.14, + "probability": 0.9856 + }, + { + "start": 2506.46, + "end": 2506.46, + "probability": 0.3728 + }, + { + "start": 2506.46, + "end": 2507.56, + "probability": 0.8239 + }, + { + "start": 2507.64, + "end": 2510.64, + "probability": 0.9829 + }, + { + "start": 2511.08, + "end": 2512.14, + "probability": 0.8799 + }, + { + "start": 2512.86, + "end": 2512.88, + "probability": 0.7964 + }, + { + "start": 2513.52, + "end": 2514.94, + "probability": 0.6244 + }, + { + "start": 2516.8, + "end": 2517.74, + "probability": 0.4594 + }, + { + "start": 2518.12, + "end": 2519.74, + "probability": 0.954 + }, + { + "start": 2520.0, + "end": 2522.0, + "probability": 0.8097 + }, + { + "start": 2522.92, + "end": 2524.16, + "probability": 0.769 + }, + { + "start": 2524.82, + "end": 2527.62, + "probability": 0.9557 + }, + { + "start": 2527.74, + "end": 2528.84, + "probability": 0.9468 + }, + { + "start": 2530.11, + "end": 2536.54, + "probability": 0.9315 + }, + { + "start": 2536.9, + "end": 2537.89, + "probability": 0.8915 + }, + { + "start": 2538.06, + "end": 2539.44, + "probability": 0.9788 + }, + { + "start": 2539.72, + "end": 2542.04, + "probability": 0.9952 + }, + { + "start": 2542.5, + "end": 2544.28, + "probability": 0.7638 + }, + { + "start": 2544.74, + "end": 2545.72, + "probability": 0.7727 + }, + { + "start": 2546.9, + "end": 2552.26, + "probability": 0.9518 + }, + { + "start": 2552.26, + "end": 2556.58, + "probability": 0.3736 + }, + { + "start": 2556.72, + "end": 2562.48, + "probability": 0.947 + }, + { + "start": 2562.96, + "end": 2564.58, + "probability": 0.9815 + }, + { + "start": 2565.34, + "end": 2567.26, + "probability": 0.9742 + }, + { + "start": 2567.26, + "end": 2569.52, + "probability": 0.9443 + }, + { + "start": 2569.96, + "end": 2571.28, + "probability": 0.9905 + }, + { + "start": 2572.0, + "end": 2574.88, + "probability": 0.7586 + }, + { + "start": 2575.2, + "end": 2576.76, + "probability": 0.9351 + }, + { + "start": 2576.8, + "end": 2579.38, + "probability": 0.9819 + }, + { + "start": 2579.44, + "end": 2582.52, + "probability": 0.9645 + }, + { + "start": 2583.14, + "end": 2586.84, + "probability": 0.9615 + }, + { + "start": 2587.44, + "end": 2590.26, + "probability": 0.632 + }, + { + "start": 2590.7, + "end": 2593.2, + "probability": 0.9924 + }, + { + "start": 2593.38, + "end": 2595.9, + "probability": 0.9863 + }, + { + "start": 2595.98, + "end": 2600.66, + "probability": 0.9649 + }, + { + "start": 2600.66, + "end": 2600.66, + "probability": 0.0134 + }, + { + "start": 2600.66, + "end": 2601.82, + "probability": 0.3321 + }, + { + "start": 2601.9, + "end": 2603.8, + "probability": 0.998 + }, + { + "start": 2606.2, + "end": 2610.28, + "probability": 0.9774 + }, + { + "start": 2610.76, + "end": 2613.26, + "probability": 0.7517 + }, + { + "start": 2613.4, + "end": 2613.62, + "probability": 0.3437 + }, + { + "start": 2613.74, + "end": 2615.94, + "probability": 0.9651 + }, + { + "start": 2616.26, + "end": 2618.88, + "probability": 0.9657 + }, + { + "start": 2619.56, + "end": 2619.66, + "probability": 0.3458 + }, + { + "start": 2619.66, + "end": 2623.45, + "probability": 0.8774 + }, + { + "start": 2625.2, + "end": 2625.42, + "probability": 0.0169 + }, + { + "start": 2625.42, + "end": 2625.42, + "probability": 0.1441 + }, + { + "start": 2625.42, + "end": 2630.14, + "probability": 0.7314 + }, + { + "start": 2630.3, + "end": 2632.82, + "probability": 0.8376 + }, + { + "start": 2633.0, + "end": 2633.6, + "probability": 0.847 + }, + { + "start": 2634.2, + "end": 2634.42, + "probability": 0.6536 + }, + { + "start": 2634.48, + "end": 2635.94, + "probability": 0.9574 + }, + { + "start": 2636.24, + "end": 2637.4, + "probability": 0.5682 + }, + { + "start": 2637.58, + "end": 2639.32, + "probability": 0.6676 + }, + { + "start": 2639.32, + "end": 2640.08, + "probability": 0.5173 + }, + { + "start": 2640.36, + "end": 2641.74, + "probability": 0.9918 + }, + { + "start": 2642.56, + "end": 2643.38, + "probability": 0.7244 + }, + { + "start": 2644.14, + "end": 2645.46, + "probability": 0.8165 + }, + { + "start": 2645.82, + "end": 2646.82, + "probability": 0.8928 + }, + { + "start": 2646.98, + "end": 2650.56, + "probability": 0.8819 + }, + { + "start": 2650.58, + "end": 2651.46, + "probability": 0.9674 + }, + { + "start": 2652.2, + "end": 2654.36, + "probability": 0.916 + }, + { + "start": 2654.96, + "end": 2656.3, + "probability": 0.8763 + }, + { + "start": 2657.14, + "end": 2658.26, + "probability": 0.899 + }, + { + "start": 2658.82, + "end": 2659.98, + "probability": 0.9891 + }, + { + "start": 2660.5, + "end": 2661.28, + "probability": 0.9464 + }, + { + "start": 2662.14, + "end": 2663.78, + "probability": 0.8972 + }, + { + "start": 2664.98, + "end": 2665.94, + "probability": 0.9854 + }, + { + "start": 2666.6, + "end": 2668.18, + "probability": 0.9341 + }, + { + "start": 2671.4, + "end": 2672.56, + "probability": 0.2023 + }, + { + "start": 2673.26, + "end": 2676.28, + "probability": 0.5709 + }, + { + "start": 2676.84, + "end": 2678.52, + "probability": 0.6229 + }, + { + "start": 2679.24, + "end": 2681.48, + "probability": 0.9692 + }, + { + "start": 2682.26, + "end": 2683.06, + "probability": 0.9379 + }, + { + "start": 2683.66, + "end": 2686.64, + "probability": 0.9602 + }, + { + "start": 2686.88, + "end": 2688.66, + "probability": 0.3436 + }, + { + "start": 2690.1, + "end": 2694.54, + "probability": 0.9037 + }, + { + "start": 2695.9, + "end": 2697.79, + "probability": 0.1426 + }, + { + "start": 2698.26, + "end": 2699.44, + "probability": 0.9771 + }, + { + "start": 2700.38, + "end": 2702.92, + "probability": 0.2837 + }, + { + "start": 2706.66, + "end": 2707.76, + "probability": 0.9504 + }, + { + "start": 2710.54, + "end": 2713.68, + "probability": 0.8566 + }, + { + "start": 2713.78, + "end": 2714.44, + "probability": 0.0832 + }, + { + "start": 2714.58, + "end": 2716.76, + "probability": 0.6593 + }, + { + "start": 2716.9, + "end": 2719.92, + "probability": 0.8472 + }, + { + "start": 2720.52, + "end": 2721.82, + "probability": 0.6982 + }, + { + "start": 2721.96, + "end": 2723.76, + "probability": 0.9648 + }, + { + "start": 2724.38, + "end": 2726.3, + "probability": 0.6544 + }, + { + "start": 2727.04, + "end": 2732.04, + "probability": 0.9338 + }, + { + "start": 2732.46, + "end": 2735.48, + "probability": 0.5946 + }, + { + "start": 2736.02, + "end": 2737.66, + "probability": 0.4155 + }, + { + "start": 2738.48, + "end": 2739.76, + "probability": 0.9052 + }, + { + "start": 2740.36, + "end": 2741.52, + "probability": 0.9589 + }, + { + "start": 2744.12, + "end": 2744.42, + "probability": 0.1831 + }, + { + "start": 2749.74, + "end": 2750.36, + "probability": 0.1078 + }, + { + "start": 2756.88, + "end": 2761.18, + "probability": 0.3815 + }, + { + "start": 2761.78, + "end": 2765.45, + "probability": 0.5746 + }, + { + "start": 2766.32, + "end": 2772.0, + "probability": 0.6898 + }, + { + "start": 2774.14, + "end": 2775.42, + "probability": 0.0677 + }, + { + "start": 2775.42, + "end": 2779.92, + "probability": 0.0268 + }, + { + "start": 2781.22, + "end": 2782.04, + "probability": 0.009 + }, + { + "start": 2782.66, + "end": 2784.06, + "probability": 0.1499 + }, + { + "start": 2785.16, + "end": 2790.16, + "probability": 0.1103 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.38, + "end": 2846.5, + "probability": 0.1847 + }, + { + "start": 2846.64, + "end": 2848.62, + "probability": 0.8705 + }, + { + "start": 2848.7, + "end": 2849.3, + "probability": 0.4619 + }, + { + "start": 2850.52, + "end": 2851.0, + "probability": 0.5655 + }, + { + "start": 2851.5, + "end": 2851.9, + "probability": 0.4761 + }, + { + "start": 2851.94, + "end": 2854.7, + "probability": 0.9277 + }, + { + "start": 2855.21, + "end": 2857.52, + "probability": 0.7505 + }, + { + "start": 2857.54, + "end": 2859.54, + "probability": 0.0366 + }, + { + "start": 2870.96, + "end": 2875.8, + "probability": 0.0282 + }, + { + "start": 2875.8, + "end": 2875.8, + "probability": 0.0746 + }, + { + "start": 2875.8, + "end": 2875.8, + "probability": 0.0832 + }, + { + "start": 2875.8, + "end": 2875.8, + "probability": 0.1533 + }, + { + "start": 2875.8, + "end": 2880.26, + "probability": 0.5363 + }, + { + "start": 2881.46, + "end": 2882.74, + "probability": 0.5936 + }, + { + "start": 2882.86, + "end": 2885.24, + "probability": 0.7787 + }, + { + "start": 2885.82, + "end": 2891.96, + "probability": 0.9704 + }, + { + "start": 2892.14, + "end": 2897.38, + "probability": 0.9843 + }, + { + "start": 2897.8, + "end": 2898.32, + "probability": 0.7106 + }, + { + "start": 2900.2, + "end": 2905.54, + "probability": 0.989 + }, + { + "start": 2906.04, + "end": 2908.54, + "probability": 0.7946 + }, + { + "start": 2910.06, + "end": 2913.58, + "probability": 0.9599 + }, + { + "start": 2913.6, + "end": 2915.16, + "probability": 0.5567 + }, + { + "start": 2915.72, + "end": 2917.06, + "probability": 0.7629 + }, + { + "start": 2917.1, + "end": 2918.12, + "probability": 0.8489 + }, + { + "start": 2918.22, + "end": 2919.56, + "probability": 0.96 + }, + { + "start": 2920.58, + "end": 2923.56, + "probability": 0.9094 + }, + { + "start": 2924.9, + "end": 2928.84, + "probability": 0.784 + }, + { + "start": 2928.88, + "end": 2931.92, + "probability": 0.942 + }, + { + "start": 2931.92, + "end": 2935.04, + "probability": 0.9984 + }, + { + "start": 2935.1, + "end": 2935.54, + "probability": 0.3778 + }, + { + "start": 2936.22, + "end": 2938.0, + "probability": 0.7169 + }, + { + "start": 2938.58, + "end": 2943.74, + "probability": 0.9318 + }, + { + "start": 2944.44, + "end": 2948.84, + "probability": 0.8382 + }, + { + "start": 2949.86, + "end": 2951.43, + "probability": 0.8472 + }, + { + "start": 2952.68, + "end": 2955.6, + "probability": 0.9752 + }, + { + "start": 2955.66, + "end": 2957.0, + "probability": 0.9683 + }, + { + "start": 2958.08, + "end": 2959.42, + "probability": 0.7291 + }, + { + "start": 2959.44, + "end": 2959.7, + "probability": 0.9263 + }, + { + "start": 2959.8, + "end": 2962.26, + "probability": 0.8651 + }, + { + "start": 2962.36, + "end": 2965.16, + "probability": 0.8587 + }, + { + "start": 2965.62, + "end": 2967.82, + "probability": 0.8463 + }, + { + "start": 2969.04, + "end": 2973.74, + "probability": 0.9733 + }, + { + "start": 2973.86, + "end": 2976.2, + "probability": 0.9961 + }, + { + "start": 2976.34, + "end": 2978.44, + "probability": 0.9899 + }, + { + "start": 2978.58, + "end": 2980.48, + "probability": 0.9928 + }, + { + "start": 2980.7, + "end": 2981.6, + "probability": 0.8869 + }, + { + "start": 2981.7, + "end": 2982.84, + "probability": 0.9022 + }, + { + "start": 2983.56, + "end": 2985.98, + "probability": 0.4989 + }, + { + "start": 2986.84, + "end": 2987.64, + "probability": 0.2358 + }, + { + "start": 2987.64, + "end": 2990.02, + "probability": 0.7306 + }, + { + "start": 2990.56, + "end": 2993.36, + "probability": 0.8203 + }, + { + "start": 2994.22, + "end": 2995.28, + "probability": 0.7852 + }, + { + "start": 2995.96, + "end": 2998.96, + "probability": 0.9692 + }, + { + "start": 2999.04, + "end": 2999.58, + "probability": 0.3666 + }, + { + "start": 2999.64, + "end": 2999.86, + "probability": 0.664 + }, + { + "start": 3000.0, + "end": 3001.7, + "probability": 0.9309 + }, + { + "start": 3002.24, + "end": 3003.04, + "probability": 0.7653 + }, + { + "start": 3003.5, + "end": 3007.01, + "probability": 0.9691 + }, + { + "start": 3007.18, + "end": 3007.38, + "probability": 0.6229 + }, + { + "start": 3007.64, + "end": 3008.3, + "probability": 0.6182 + }, + { + "start": 3008.42, + "end": 3009.76, + "probability": 0.952 + }, + { + "start": 3010.26, + "end": 3011.58, + "probability": 0.976 + }, + { + "start": 3012.98, + "end": 3015.22, + "probability": 0.9673 + }, + { + "start": 3015.86, + "end": 3017.22, + "probability": 0.8532 + }, + { + "start": 3017.34, + "end": 3020.1, + "probability": 0.9797 + }, + { + "start": 3020.7, + "end": 3022.44, + "probability": 0.9013 + }, + { + "start": 3023.34, + "end": 3026.63, + "probability": 0.9397 + }, + { + "start": 3026.8, + "end": 3027.87, + "probability": 0.9824 + }, + { + "start": 3028.7, + "end": 3030.86, + "probability": 0.9951 + }, + { + "start": 3031.98, + "end": 3034.98, + "probability": 0.8802 + }, + { + "start": 3035.46, + "end": 3036.56, + "probability": 0.9814 + }, + { + "start": 3036.9, + "end": 3038.22, + "probability": 0.7706 + }, + { + "start": 3038.26, + "end": 3040.13, + "probability": 0.8915 + }, + { + "start": 3040.66, + "end": 3040.88, + "probability": 0.3633 + }, + { + "start": 3040.9, + "end": 3042.5, + "probability": 0.9768 + }, + { + "start": 3043.38, + "end": 3044.22, + "probability": 0.7702 + }, + { + "start": 3044.9, + "end": 3046.36, + "probability": 0.9408 + }, + { + "start": 3046.62, + "end": 3048.06, + "probability": 0.6783 + }, + { + "start": 3048.56, + "end": 3049.24, + "probability": 0.5822 + }, + { + "start": 3049.36, + "end": 3051.04, + "probability": 0.9969 + }, + { + "start": 3052.46, + "end": 3054.14, + "probability": 0.8379 + }, + { + "start": 3054.6, + "end": 3059.84, + "probability": 0.9961 + }, + { + "start": 3061.28, + "end": 3061.98, + "probability": 0.7094 + }, + { + "start": 3062.34, + "end": 3063.78, + "probability": 0.9843 + }, + { + "start": 3063.98, + "end": 3066.2, + "probability": 0.8944 + }, + { + "start": 3066.86, + "end": 3067.76, + "probability": 0.9266 + }, + { + "start": 3067.94, + "end": 3070.56, + "probability": 0.918 + }, + { + "start": 3071.16, + "end": 3074.2, + "probability": 0.721 + }, + { + "start": 3074.58, + "end": 3076.3, + "probability": 0.9875 + }, + { + "start": 3076.66, + "end": 3077.96, + "probability": 0.8732 + }, + { + "start": 3078.5, + "end": 3080.6, + "probability": 0.5814 + }, + { + "start": 3080.6, + "end": 3083.38, + "probability": 0.9946 + }, + { + "start": 3083.44, + "end": 3085.45, + "probability": 0.9518 + }, + { + "start": 3086.62, + "end": 3087.46, + "probability": 0.7043 + }, + { + "start": 3088.16, + "end": 3091.86, + "probability": 0.6762 + }, + { + "start": 3092.06, + "end": 3093.24, + "probability": 0.5533 + }, + { + "start": 3093.34, + "end": 3093.96, + "probability": 0.481 + }, + { + "start": 3094.18, + "end": 3095.62, + "probability": 0.6505 + }, + { + "start": 3096.46, + "end": 3099.62, + "probability": 0.9272 + }, + { + "start": 3100.24, + "end": 3100.34, + "probability": 0.0004 + }, + { + "start": 3101.52, + "end": 3104.66, + "probability": 0.943 + }, + { + "start": 3104.82, + "end": 3105.96, + "probability": 0.7213 + }, + { + "start": 3106.04, + "end": 3106.7, + "probability": 0.9935 + }, + { + "start": 3106.82, + "end": 3107.0, + "probability": 0.4087 + }, + { + "start": 3107.42, + "end": 3108.7, + "probability": 0.9933 + }, + { + "start": 3108.84, + "end": 3109.2, + "probability": 0.7168 + }, + { + "start": 3109.5, + "end": 3110.08, + "probability": 0.8535 + }, + { + "start": 3110.42, + "end": 3111.82, + "probability": 0.8357 + }, + { + "start": 3112.38, + "end": 3113.5, + "probability": 0.7614 + }, + { + "start": 3113.56, + "end": 3115.45, + "probability": 0.9946 + }, + { + "start": 3115.94, + "end": 3116.46, + "probability": 0.8583 + }, + { + "start": 3116.54, + "end": 3117.06, + "probability": 0.9629 + }, + { + "start": 3117.1, + "end": 3117.62, + "probability": 0.7507 + }, + { + "start": 3117.7, + "end": 3118.44, + "probability": 0.9871 + }, + { + "start": 3118.94, + "end": 3119.9, + "probability": 0.7997 + }, + { + "start": 3120.06, + "end": 3120.8, + "probability": 0.9757 + }, + { + "start": 3121.14, + "end": 3121.66, + "probability": 0.9724 + }, + { + "start": 3121.84, + "end": 3122.06, + "probability": 0.6967 + }, + { + "start": 3122.1, + "end": 3124.06, + "probability": 0.9586 + }, + { + "start": 3124.14, + "end": 3124.38, + "probability": 0.2168 + }, + { + "start": 3124.78, + "end": 3125.9, + "probability": 0.5471 + }, + { + "start": 3126.6, + "end": 3128.42, + "probability": 0.8284 + }, + { + "start": 3128.92, + "end": 3131.31, + "probability": 0.7406 + }, + { + "start": 3132.0, + "end": 3132.56, + "probability": 0.5089 + }, + { + "start": 3133.62, + "end": 3138.68, + "probability": 0.9768 + }, + { + "start": 3139.16, + "end": 3140.74, + "probability": 0.9974 + }, + { + "start": 3141.52, + "end": 3142.2, + "probability": 0.7785 + }, + { + "start": 3142.6, + "end": 3143.72, + "probability": 0.6682 + }, + { + "start": 3143.84, + "end": 3145.7, + "probability": 0.6751 + }, + { + "start": 3145.76, + "end": 3146.48, + "probability": 0.5344 + }, + { + "start": 3147.16, + "end": 3147.82, + "probability": 0.8691 + }, + { + "start": 3147.88, + "end": 3148.74, + "probability": 0.6393 + }, + { + "start": 3148.84, + "end": 3149.78, + "probability": 0.6235 + }, + { + "start": 3149.84, + "end": 3150.14, + "probability": 0.8706 + }, + { + "start": 3150.24, + "end": 3150.82, + "probability": 0.9418 + }, + { + "start": 3150.9, + "end": 3151.42, + "probability": 0.8383 + }, + { + "start": 3151.52, + "end": 3152.14, + "probability": 0.5858 + }, + { + "start": 3152.38, + "end": 3154.64, + "probability": 0.9839 + }, + { + "start": 3154.84, + "end": 3158.66, + "probability": 0.6988 + }, + { + "start": 3158.7, + "end": 3159.3, + "probability": 0.5783 + }, + { + "start": 3159.66, + "end": 3162.74, + "probability": 0.9821 + }, + { + "start": 3163.0, + "end": 3166.1, + "probability": 0.9912 + }, + { + "start": 3166.22, + "end": 3166.92, + "probability": 0.6404 + }, + { + "start": 3167.3, + "end": 3167.74, + "probability": 0.3551 + }, + { + "start": 3167.92, + "end": 3170.52, + "probability": 0.942 + }, + { + "start": 3170.56, + "end": 3171.2, + "probability": 0.9789 + }, + { + "start": 3171.38, + "end": 3172.82, + "probability": 0.8398 + }, + { + "start": 3172.9, + "end": 3174.98, + "probability": 0.9966 + }, + { + "start": 3175.06, + "end": 3178.22, + "probability": 0.9461 + }, + { + "start": 3179.18, + "end": 3180.92, + "probability": 0.8434 + }, + { + "start": 3181.0, + "end": 3183.12, + "probability": 0.2418 + }, + { + "start": 3183.42, + "end": 3185.16, + "probability": 0.9846 + }, + { + "start": 3185.78, + "end": 3186.62, + "probability": 0.8386 + }, + { + "start": 3186.8, + "end": 3189.36, + "probability": 0.9878 + }, + { + "start": 3189.96, + "end": 3191.2, + "probability": 0.9985 + }, + { + "start": 3191.78, + "end": 3192.88, + "probability": 0.7604 + }, + { + "start": 3199.18, + "end": 3200.38, + "probability": 0.581 + }, + { + "start": 3200.86, + "end": 3202.48, + "probability": 0.7475 + }, + { + "start": 3202.68, + "end": 3206.18, + "probability": 0.9648 + }, + { + "start": 3207.2, + "end": 3210.9, + "probability": 0.9956 + }, + { + "start": 3210.9, + "end": 3216.22, + "probability": 0.9046 + }, + { + "start": 3216.8, + "end": 3218.0, + "probability": 0.7531 + }, + { + "start": 3219.24, + "end": 3223.4, + "probability": 0.855 + }, + { + "start": 3223.82, + "end": 3225.86, + "probability": 0.7952 + }, + { + "start": 3226.88, + "end": 3233.5, + "probability": 0.9734 + }, + { + "start": 3233.9, + "end": 3238.04, + "probability": 0.9956 + }, + { + "start": 3238.52, + "end": 3238.76, + "probability": 0.9493 + }, + { + "start": 3238.84, + "end": 3242.66, + "probability": 0.9968 + }, + { + "start": 3243.0, + "end": 3244.86, + "probability": 0.833 + }, + { + "start": 3245.32, + "end": 3248.38, + "probability": 0.9324 + }, + { + "start": 3249.16, + "end": 3255.94, + "probability": 0.9951 + }, + { + "start": 3256.06, + "end": 3260.57, + "probability": 0.9637 + }, + { + "start": 3261.3, + "end": 3261.66, + "probability": 0.5415 + }, + { + "start": 3261.76, + "end": 3262.92, + "probability": 0.8591 + }, + { + "start": 3263.12, + "end": 3266.14, + "probability": 0.9727 + }, + { + "start": 3267.3, + "end": 3269.66, + "probability": 0.8571 + }, + { + "start": 3270.12, + "end": 3273.66, + "probability": 0.986 + }, + { + "start": 3274.24, + "end": 3276.46, + "probability": 0.998 + }, + { + "start": 3277.18, + "end": 3279.08, + "probability": 0.999 + }, + { + "start": 3279.16, + "end": 3281.42, + "probability": 0.8579 + }, + { + "start": 3281.64, + "end": 3282.54, + "probability": 0.9779 + }, + { + "start": 3282.62, + "end": 3284.42, + "probability": 0.9307 + }, + { + "start": 3284.48, + "end": 3285.71, + "probability": 0.9794 + }, + { + "start": 3286.34, + "end": 3288.64, + "probability": 0.8674 + }, + { + "start": 3288.76, + "end": 3290.1, + "probability": 0.9907 + }, + { + "start": 3290.24, + "end": 3293.14, + "probability": 0.6566 + }, + { + "start": 3293.24, + "end": 3294.72, + "probability": 0.6784 + }, + { + "start": 3295.44, + "end": 3298.12, + "probability": 0.9772 + }, + { + "start": 3298.52, + "end": 3299.82, + "probability": 0.7985 + }, + { + "start": 3300.22, + "end": 3300.8, + "probability": 0.9388 + }, + { + "start": 3301.5, + "end": 3303.92, + "probability": 0.9373 + }, + { + "start": 3304.48, + "end": 3305.38, + "probability": 0.9087 + }, + { + "start": 3305.84, + "end": 3306.3, + "probability": 0.5045 + }, + { + "start": 3306.32, + "end": 3308.12, + "probability": 0.9085 + }, + { + "start": 3308.96, + "end": 3311.6, + "probability": 0.8583 + }, + { + "start": 3312.54, + "end": 3314.7, + "probability": 0.9812 + }, + { + "start": 3316.88, + "end": 3317.64, + "probability": 0.4896 + }, + { + "start": 3318.48, + "end": 3321.08, + "probability": 0.7796 + }, + { + "start": 3321.64, + "end": 3322.96, + "probability": 0.9343 + }, + { + "start": 3335.64, + "end": 3337.1, + "probability": 0.1798 + }, + { + "start": 3338.14, + "end": 3339.7, + "probability": 0.8868 + }, + { + "start": 3339.98, + "end": 3342.02, + "probability": 0.6302 + }, + { + "start": 3342.12, + "end": 3346.02, + "probability": 0.8403 + }, + { + "start": 3346.02, + "end": 3350.32, + "probability": 0.9756 + }, + { + "start": 3351.06, + "end": 3353.72, + "probability": 0.8491 + }, + { + "start": 3354.04, + "end": 3354.04, + "probability": 0.0288 + }, + { + "start": 3354.04, + "end": 3359.32, + "probability": 0.8041 + }, + { + "start": 3359.52, + "end": 3365.64, + "probability": 0.9946 + }, + { + "start": 3366.12, + "end": 3371.32, + "probability": 0.9644 + }, + { + "start": 3371.32, + "end": 3376.32, + "probability": 0.9725 + }, + { + "start": 3377.06, + "end": 3380.34, + "probability": 0.9917 + }, + { + "start": 3380.56, + "end": 3385.3, + "probability": 0.9938 + }, + { + "start": 3385.86, + "end": 3390.56, + "probability": 0.8513 + }, + { + "start": 3390.82, + "end": 3393.02, + "probability": 0.769 + }, + { + "start": 3393.38, + "end": 3394.8, + "probability": 0.8053 + }, + { + "start": 3395.3, + "end": 3401.66, + "probability": 0.9922 + }, + { + "start": 3402.38, + "end": 3408.6, + "probability": 0.9868 + }, + { + "start": 3409.52, + "end": 3410.08, + "probability": 0.266 + }, + { + "start": 3410.16, + "end": 3414.72, + "probability": 0.9351 + }, + { + "start": 3415.28, + "end": 3415.92, + "probability": 0.8387 + }, + { + "start": 3416.36, + "end": 3419.16, + "probability": 0.7708 + }, + { + "start": 3419.38, + "end": 3421.84, + "probability": 0.9611 + }, + { + "start": 3422.3, + "end": 3423.4, + "probability": 0.3368 + }, + { + "start": 3423.64, + "end": 3423.98, + "probability": 0.2615 + }, + { + "start": 3424.06, + "end": 3428.52, + "probability": 0.6945 + }, + { + "start": 3429.12, + "end": 3431.26, + "probability": 0.9927 + }, + { + "start": 3432.02, + "end": 3436.06, + "probability": 0.9494 + }, + { + "start": 3436.06, + "end": 3440.1, + "probability": 0.9901 + }, + { + "start": 3440.86, + "end": 3441.6, + "probability": 0.7797 + }, + { + "start": 3441.98, + "end": 3442.76, + "probability": 0.761 + }, + { + "start": 3442.9, + "end": 3450.9, + "probability": 0.9871 + }, + { + "start": 3451.4, + "end": 3455.32, + "probability": 0.8009 + }, + { + "start": 3455.46, + "end": 3461.01, + "probability": 0.9036 + }, + { + "start": 3461.98, + "end": 3467.62, + "probability": 0.8682 + }, + { + "start": 3468.04, + "end": 3470.86, + "probability": 0.9722 + }, + { + "start": 3471.44, + "end": 3471.74, + "probability": 0.7409 + }, + { + "start": 3471.82, + "end": 3472.42, + "probability": 0.8718 + }, + { + "start": 3472.58, + "end": 3475.26, + "probability": 0.9678 + }, + { + "start": 3475.3, + "end": 3476.18, + "probability": 0.5524 + }, + { + "start": 3476.88, + "end": 3477.66, + "probability": 0.8359 + }, + { + "start": 3478.14, + "end": 3478.82, + "probability": 0.8407 + }, + { + "start": 3478.82, + "end": 3482.24, + "probability": 0.9775 + }, + { + "start": 3482.7, + "end": 3483.33, + "probability": 0.9503 + }, + { + "start": 3484.02, + "end": 3488.66, + "probability": 0.9864 + }, + { + "start": 3489.56, + "end": 3491.4, + "probability": 0.9642 + }, + { + "start": 3491.56, + "end": 3498.14, + "probability": 0.9722 + }, + { + "start": 3499.18, + "end": 3504.3, + "probability": 0.9921 + }, + { + "start": 3504.88, + "end": 3509.92, + "probability": 0.9819 + }, + { + "start": 3510.44, + "end": 3515.24, + "probability": 0.9955 + }, + { + "start": 3515.64, + "end": 3516.2, + "probability": 0.8054 + }, + { + "start": 3516.72, + "end": 3520.64, + "probability": 0.9875 + }, + { + "start": 3520.72, + "end": 3525.2, + "probability": 0.9783 + }, + { + "start": 3525.28, + "end": 3529.88, + "probability": 0.9936 + }, + { + "start": 3529.98, + "end": 3531.96, + "probability": 0.6592 + }, + { + "start": 3532.02, + "end": 3532.98, + "probability": 0.3815 + }, + { + "start": 3533.0, + "end": 3533.56, + "probability": 0.5814 + }, + { + "start": 3533.6, + "end": 3535.38, + "probability": 0.962 + }, + { + "start": 3535.7, + "end": 3536.06, + "probability": 0.799 + }, + { + "start": 3536.2, + "end": 3537.02, + "probability": 0.7035 + }, + { + "start": 3537.1, + "end": 3540.22, + "probability": 0.8601 + }, + { + "start": 3541.06, + "end": 3542.92, + "probability": 0.9128 + }, + { + "start": 3562.16, + "end": 3564.39, + "probability": 0.9318 + }, + { + "start": 3565.02, + "end": 3566.98, + "probability": 0.6972 + }, + { + "start": 3567.9, + "end": 3569.17, + "probability": 0.9741 + }, + { + "start": 3570.46, + "end": 3573.76, + "probability": 0.6288 + }, + { + "start": 3573.86, + "end": 3576.3, + "probability": 0.7984 + }, + { + "start": 3577.32, + "end": 3581.18, + "probability": 0.7406 + }, + { + "start": 3582.5, + "end": 3585.41, + "probability": 0.9497 + }, + { + "start": 3585.92, + "end": 3586.8, + "probability": 0.3508 + }, + { + "start": 3586.98, + "end": 3590.08, + "probability": 0.195 + }, + { + "start": 3591.04, + "end": 3594.3, + "probability": 0.9893 + }, + { + "start": 3594.82, + "end": 3595.4, + "probability": 0.7427 + }, + { + "start": 3596.62, + "end": 3597.68, + "probability": 0.9851 + }, + { + "start": 3598.32, + "end": 3602.24, + "probability": 0.8638 + }, + { + "start": 3602.8, + "end": 3604.44, + "probability": 0.9505 + }, + { + "start": 3604.58, + "end": 3605.46, + "probability": 0.7615 + }, + { + "start": 3606.02, + "end": 3606.68, + "probability": 0.9665 + }, + { + "start": 3607.7, + "end": 3609.57, + "probability": 0.9888 + }, + { + "start": 3610.54, + "end": 3611.78, + "probability": 0.9683 + }, + { + "start": 3612.44, + "end": 3615.28, + "probability": 0.9921 + }, + { + "start": 3616.44, + "end": 3617.58, + "probability": 0.9716 + }, + { + "start": 3618.12, + "end": 3618.96, + "probability": 0.9332 + }, + { + "start": 3619.96, + "end": 3621.7, + "probability": 0.9921 + }, + { + "start": 3622.32, + "end": 3624.3, + "probability": 0.9971 + }, + { + "start": 3625.06, + "end": 3629.46, + "probability": 0.959 + }, + { + "start": 3630.28, + "end": 3633.32, + "probability": 0.8337 + }, + { + "start": 3633.86, + "end": 3636.36, + "probability": 0.9712 + }, + { + "start": 3636.94, + "end": 3637.92, + "probability": 0.9646 + }, + { + "start": 3638.34, + "end": 3639.64, + "probability": 0.8477 + }, + { + "start": 3639.72, + "end": 3641.64, + "probability": 0.9963 + }, + { + "start": 3642.12, + "end": 3643.52, + "probability": 0.9897 + }, + { + "start": 3643.96, + "end": 3645.8, + "probability": 0.9729 + }, + { + "start": 3646.76, + "end": 3651.36, + "probability": 0.9467 + }, + { + "start": 3651.36, + "end": 3654.5, + "probability": 0.979 + }, + { + "start": 3655.38, + "end": 3657.12, + "probability": 0.8838 + }, + { + "start": 3657.24, + "end": 3661.94, + "probability": 0.9685 + }, + { + "start": 3662.7, + "end": 3670.1, + "probability": 0.9816 + }, + { + "start": 3670.1, + "end": 3674.0, + "probability": 0.9897 + }, + { + "start": 3674.42, + "end": 3676.04, + "probability": 0.9173 + }, + { + "start": 3676.68, + "end": 3678.82, + "probability": 0.9924 + }, + { + "start": 3679.18, + "end": 3681.98, + "probability": 0.7037 + }, + { + "start": 3682.52, + "end": 3686.92, + "probability": 0.9895 + }, + { + "start": 3687.32, + "end": 3688.44, + "probability": 0.9556 + }, + { + "start": 3688.98, + "end": 3692.5, + "probability": 0.9852 + }, + { + "start": 3692.94, + "end": 3695.78, + "probability": 0.8599 + }, + { + "start": 3696.22, + "end": 3697.34, + "probability": 0.5918 + }, + { + "start": 3698.04, + "end": 3700.14, + "probability": 0.5492 + }, + { + "start": 3700.62, + "end": 3703.32, + "probability": 0.888 + }, + { + "start": 3704.1, + "end": 3706.54, + "probability": 0.9302 + }, + { + "start": 3707.32, + "end": 3708.78, + "probability": 0.7484 + }, + { + "start": 3708.88, + "end": 3710.58, + "probability": 0.7342 + }, + { + "start": 3710.8, + "end": 3712.0, + "probability": 0.8213 + }, + { + "start": 3713.12, + "end": 3717.84, + "probability": 0.991 + }, + { + "start": 3718.58, + "end": 3721.3, + "probability": 0.9946 + }, + { + "start": 3721.44, + "end": 3722.6, + "probability": 0.9684 + }, + { + "start": 3723.04, + "end": 3725.22, + "probability": 0.9499 + }, + { + "start": 3725.82, + "end": 3726.8, + "probability": 0.9578 + }, + { + "start": 3727.52, + "end": 3731.92, + "probability": 0.6555 + }, + { + "start": 3732.36, + "end": 3734.42, + "probability": 0.9804 + }, + { + "start": 3734.86, + "end": 3737.68, + "probability": 0.9673 + }, + { + "start": 3738.26, + "end": 3740.04, + "probability": 0.9971 + }, + { + "start": 3740.46, + "end": 3742.52, + "probability": 0.9888 + }, + { + "start": 3742.88, + "end": 3743.84, + "probability": 0.8909 + }, + { + "start": 3744.3, + "end": 3745.44, + "probability": 0.8501 + }, + { + "start": 3746.02, + "end": 3749.44, + "probability": 0.8009 + }, + { + "start": 3750.68, + "end": 3752.74, + "probability": 0.5651 + }, + { + "start": 3753.28, + "end": 3753.82, + "probability": 0.991 + }, + { + "start": 3754.9, + "end": 3756.78, + "probability": 0.999 + }, + { + "start": 3757.48, + "end": 3762.6, + "probability": 0.6144 + }, + { + "start": 3763.4, + "end": 3765.92, + "probability": 0.991 + }, + { + "start": 3766.32, + "end": 3767.8, + "probability": 0.8066 + }, + { + "start": 3768.3, + "end": 3768.32, + "probability": 0.6096 + }, + { + "start": 3768.32, + "end": 3771.88, + "probability": 0.6906 + }, + { + "start": 3772.12, + "end": 3773.36, + "probability": 0.8539 + }, + { + "start": 3773.46, + "end": 3773.84, + "probability": 0.7475 + }, + { + "start": 3774.16, + "end": 3774.58, + "probability": 0.752 + }, + { + "start": 3774.74, + "end": 3775.76, + "probability": 0.7454 + }, + { + "start": 3776.76, + "end": 3777.34, + "probability": 0.6582 + }, + { + "start": 3777.9, + "end": 3778.94, + "probability": 0.9631 + }, + { + "start": 3786.5, + "end": 3786.9, + "probability": 0.1693 + }, + { + "start": 3787.7, + "end": 3789.36, + "probability": 0.811 + }, + { + "start": 3790.86, + "end": 3793.04, + "probability": 0.6075 + }, + { + "start": 3794.32, + "end": 3794.88, + "probability": 0.6641 + }, + { + "start": 3795.02, + "end": 3796.6, + "probability": 0.8143 + }, + { + "start": 3797.0, + "end": 3798.5, + "probability": 0.7515 + }, + { + "start": 3798.86, + "end": 3800.08, + "probability": 0.9661 + }, + { + "start": 3803.5, + "end": 3804.06, + "probability": 0.8555 + }, + { + "start": 3804.82, + "end": 3805.98, + "probability": 0.8222 + }, + { + "start": 3807.2, + "end": 3807.9, + "probability": 0.4208 + }, + { + "start": 3808.42, + "end": 3809.84, + "probability": 0.971 + }, + { + "start": 3810.72, + "end": 3811.66, + "probability": 0.8044 + }, + { + "start": 3812.38, + "end": 3813.71, + "probability": 0.9916 + }, + { + "start": 3814.44, + "end": 3815.12, + "probability": 0.8509 + }, + { + "start": 3815.7, + "end": 3816.86, + "probability": 0.9777 + }, + { + "start": 3818.86, + "end": 3819.48, + "probability": 0.6984 + }, + { + "start": 3819.56, + "end": 3820.5, + "probability": 0.7908 + }, + { + "start": 3820.78, + "end": 3822.72, + "probability": 0.9899 + }, + { + "start": 3823.54, + "end": 3824.12, + "probability": 0.6582 + }, + { + "start": 3826.26, + "end": 3827.36, + "probability": 0.9229 + }, + { + "start": 3827.72, + "end": 3828.28, + "probability": 0.5694 + }, + { + "start": 3828.6, + "end": 3830.22, + "probability": 0.8296 + }, + { + "start": 3831.04, + "end": 3831.58, + "probability": 0.7997 + }, + { + "start": 3832.26, + "end": 3834.98, + "probability": 0.9606 + }, + { + "start": 3836.02, + "end": 3837.48, + "probability": 0.9804 + }, + { + "start": 3838.36, + "end": 3839.64, + "probability": 0.9915 + }, + { + "start": 3840.22, + "end": 3843.34, + "probability": 0.9739 + }, + { + "start": 3844.48, + "end": 3845.8, + "probability": 0.8846 + }, + { + "start": 3848.48, + "end": 3849.78, + "probability": 0.9396 + }, + { + "start": 3864.84, + "end": 3865.78, + "probability": 0.5395 + }, + { + "start": 3866.26, + "end": 3867.3, + "probability": 0.502 + }, + { + "start": 3867.76, + "end": 3871.22, + "probability": 0.8478 + }, + { + "start": 3871.54, + "end": 3872.3, + "probability": 0.4683 + }, + { + "start": 3872.36, + "end": 3873.46, + "probability": 0.9701 + }, + { + "start": 3874.94, + "end": 3879.96, + "probability": 0.8743 + }, + { + "start": 3880.0, + "end": 3882.22, + "probability": 0.7387 + }, + { + "start": 3882.56, + "end": 3882.68, + "probability": 0.259 + }, + { + "start": 3882.92, + "end": 3887.0, + "probability": 0.7969 + }, + { + "start": 3887.31, + "end": 3892.72, + "probability": 0.868 + }, + { + "start": 3893.54, + "end": 3899.28, + "probability": 0.8721 + }, + { + "start": 3899.46, + "end": 3902.42, + "probability": 0.929 + }, + { + "start": 3902.74, + "end": 3904.7, + "probability": 0.7206 + }, + { + "start": 3905.26, + "end": 3907.14, + "probability": 0.9509 + }, + { + "start": 3908.08, + "end": 3908.74, + "probability": 0.1124 + }, + { + "start": 3908.74, + "end": 3910.3, + "probability": 0.0931 + }, + { + "start": 3914.31, + "end": 3915.89, + "probability": 0.2888 + }, + { + "start": 3917.1, + "end": 3926.06, + "probability": 0.9625 + }, + { + "start": 3927.02, + "end": 3927.9, + "probability": 0.9622 + }, + { + "start": 3928.84, + "end": 3929.42, + "probability": 0.5969 + }, + { + "start": 3929.94, + "end": 3932.52, + "probability": 0.9967 + }, + { + "start": 3934.36, + "end": 3937.7, + "probability": 0.8702 + }, + { + "start": 3937.7, + "end": 3941.46, + "probability": 0.8014 + }, + { + "start": 3941.94, + "end": 3942.26, + "probability": 0.6765 + }, + { + "start": 3942.34, + "end": 3943.26, + "probability": 0.86 + }, + { + "start": 3944.44, + "end": 3945.52, + "probability": 0.92 + }, + { + "start": 3945.96, + "end": 3947.54, + "probability": 0.885 + }, + { + "start": 3949.32, + "end": 3950.04, + "probability": 0.2601 + }, + { + "start": 3950.44, + "end": 3951.82, + "probability": 0.9256 + }, + { + "start": 3952.3, + "end": 3955.52, + "probability": 0.5068 + }, + { + "start": 3955.7, + "end": 3958.08, + "probability": 0.5862 + }, + { + "start": 3958.08, + "end": 3958.46, + "probability": 0.2505 + }, + { + "start": 3958.76, + "end": 3963.44, + "probability": 0.8229 + }, + { + "start": 3964.06, + "end": 3965.2, + "probability": 0.9211 + }, + { + "start": 3965.34, + "end": 3970.4, + "probability": 0.9582 + }, + { + "start": 3970.6, + "end": 3976.4, + "probability": 0.7953 + }, + { + "start": 3976.62, + "end": 3977.66, + "probability": 0.6631 + }, + { + "start": 3977.72, + "end": 3978.84, + "probability": 0.8661 + }, + { + "start": 3979.3, + "end": 3980.02, + "probability": 0.6811 + }, + { + "start": 3980.52, + "end": 3981.43, + "probability": 0.9556 + }, + { + "start": 3981.6, + "end": 3984.12, + "probability": 0.8519 + }, + { + "start": 3984.3, + "end": 3987.8, + "probability": 0.8473 + }, + { + "start": 3988.0, + "end": 3988.24, + "probability": 0.7192 + }, + { + "start": 3989.72, + "end": 3990.3, + "probability": 0.7783 + }, + { + "start": 4000.12, + "end": 4001.08, + "probability": 0.6966 + }, + { + "start": 4001.84, + "end": 4002.48, + "probability": 0.4803 + }, + { + "start": 4003.78, + "end": 4005.5, + "probability": 0.8918 + }, + { + "start": 4005.86, + "end": 4006.58, + "probability": 0.5847 + }, + { + "start": 4006.74, + "end": 4008.26, + "probability": 0.9895 + }, + { + "start": 4009.08, + "end": 4009.76, + "probability": 0.5542 + }, + { + "start": 4010.88, + "end": 4011.96, + "probability": 0.9934 + }, + { + "start": 4030.06, + "end": 4030.98, + "probability": 0.6406 + }, + { + "start": 4031.16, + "end": 4032.18, + "probability": 0.8024 + }, + { + "start": 4032.34, + "end": 4039.94, + "probability": 0.9049 + }, + { + "start": 4040.8, + "end": 4041.56, + "probability": 0.582 + }, + { + "start": 4043.45, + "end": 4047.58, + "probability": 0.9084 + }, + { + "start": 4047.58, + "end": 4051.88, + "probability": 0.9805 + }, + { + "start": 4051.96, + "end": 4057.52, + "probability": 0.9886 + }, + { + "start": 4057.68, + "end": 4061.47, + "probability": 0.9429 + }, + { + "start": 4062.04, + "end": 4063.6, + "probability": 0.9471 + }, + { + "start": 4064.36, + "end": 4065.4, + "probability": 0.485 + }, + { + "start": 4066.96, + "end": 4068.7, + "probability": 0.6126 + }, + { + "start": 4069.3, + "end": 4069.8, + "probability": 0.9434 + }, + { + "start": 4071.12, + "end": 4074.16, + "probability": 0.9183 + }, + { + "start": 4074.74, + "end": 4076.2, + "probability": 0.6766 + }, + { + "start": 4078.22, + "end": 4083.76, + "probability": 0.5774 + }, + { + "start": 4086.04, + "end": 4086.88, + "probability": 0.2618 + }, + { + "start": 4086.88, + "end": 4086.88, + "probability": 0.1161 + }, + { + "start": 4086.88, + "end": 4087.14, + "probability": 0.0875 + }, + { + "start": 4087.3, + "end": 4088.14, + "probability": 0.3913 + }, + { + "start": 4088.66, + "end": 4091.12, + "probability": 0.7988 + }, + { + "start": 4091.68, + "end": 4094.28, + "probability": 0.927 + }, + { + "start": 4094.8, + "end": 4097.51, + "probability": 0.9976 + }, + { + "start": 4098.18, + "end": 4099.65, + "probability": 0.9832 + }, + { + "start": 4100.34, + "end": 4101.2, + "probability": 0.9362 + }, + { + "start": 4101.26, + "end": 4102.08, + "probability": 0.9164 + }, + { + "start": 4102.5, + "end": 4106.6, + "probability": 0.9418 + }, + { + "start": 4107.26, + "end": 4112.34, + "probability": 0.7793 + }, + { + "start": 4113.56, + "end": 4120.6, + "probability": 0.9871 + }, + { + "start": 4120.6, + "end": 4126.32, + "probability": 0.9899 + }, + { + "start": 4126.38, + "end": 4126.66, + "probability": 0.712 + }, + { + "start": 4131.72, + "end": 4135.08, + "probability": 0.7765 + }, + { + "start": 4135.22, + "end": 4140.4, + "probability": 0.961 + }, + { + "start": 4142.14, + "end": 4143.14, + "probability": 0.5451 + }, + { + "start": 4143.26, + "end": 4144.24, + "probability": 0.5503 + }, + { + "start": 4144.44, + "end": 4145.8, + "probability": 0.6888 + }, + { + "start": 4149.36, + "end": 4150.04, + "probability": 0.6362 + }, + { + "start": 4150.12, + "end": 4151.44, + "probability": 0.806 + }, + { + "start": 4153.84, + "end": 4155.7, + "probability": 0.6179 + }, + { + "start": 4159.56, + "end": 4163.86, + "probability": 0.05 + }, + { + "start": 4164.98, + "end": 4166.74, + "probability": 0.0687 + }, + { + "start": 4170.34, + "end": 4170.84, + "probability": 0.3737 + }, + { + "start": 4170.84, + "end": 4170.84, + "probability": 0.0826 + }, + { + "start": 4171.2, + "end": 4171.55, + "probability": 0.0597 + }, + { + "start": 4172.78, + "end": 4177.0, + "probability": 0.7266 + }, + { + "start": 4177.1, + "end": 4180.14, + "probability": 0.9919 + }, + { + "start": 4180.3, + "end": 4182.26, + "probability": 0.6316 + }, + { + "start": 4182.98, + "end": 4184.36, + "probability": 0.6639 + }, + { + "start": 4185.01, + "end": 4187.9, + "probability": 0.687 + }, + { + "start": 4187.9, + "end": 4192.4, + "probability": 0.8267 + }, + { + "start": 4192.58, + "end": 4194.2, + "probability": 0.9671 + }, + { + "start": 4194.2, + "end": 4196.14, + "probability": 0.9688 + }, + { + "start": 4196.2, + "end": 4197.06, + "probability": 0.275 + }, + { + "start": 4197.2, + "end": 4198.88, + "probability": 0.9868 + }, + { + "start": 4202.78, + "end": 4204.14, + "probability": 0.8271 + }, + { + "start": 4204.38, + "end": 4204.7, + "probability": 0.7352 + }, + { + "start": 4205.46, + "end": 4209.6, + "probability": 0.2581 + }, + { + "start": 4218.68, + "end": 4219.38, + "probability": 0.0061 + }, + { + "start": 4219.59, + "end": 4222.38, + "probability": 0.044 + }, + { + "start": 4222.48, + "end": 4222.64, + "probability": 0.0373 + }, + { + "start": 4222.64, + "end": 4224.46, + "probability": 0.4947 + }, + { + "start": 4230.0, + "end": 4232.16, + "probability": 0.6736 + }, + { + "start": 4232.2, + "end": 4240.3, + "probability": 0.3796 + }, + { + "start": 4251.74, + "end": 4251.94, + "probability": 0.3273 + }, + { + "start": 4263.48, + "end": 4265.62, + "probability": 0.1784 + }, + { + "start": 4269.54, + "end": 4270.06, + "probability": 0.0536 + }, + { + "start": 4270.06, + "end": 4272.5, + "probability": 0.1237 + }, + { + "start": 4272.5, + "end": 4273.26, + "probability": 0.2263 + }, + { + "start": 4273.26, + "end": 4274.36, + "probability": 0.1127 + }, + { + "start": 4275.87, + "end": 4281.74, + "probability": 0.0304 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.0, + "end": 4304.0, + "probability": 0.0 + }, + { + "start": 4304.24, + "end": 4304.3, + "probability": 0.0281 + }, + { + "start": 4304.3, + "end": 4309.98, + "probability": 0.9931 + }, + { + "start": 4312.12, + "end": 4315.64, + "probability": 0.9881 + }, + { + "start": 4315.64, + "end": 4318.5, + "probability": 0.9276 + }, + { + "start": 4318.96, + "end": 4320.76, + "probability": 0.6192 + }, + { + "start": 4321.52, + "end": 4322.98, + "probability": 0.916 + }, + { + "start": 4323.56, + "end": 4326.28, + "probability": 0.9604 + }, + { + "start": 4326.72, + "end": 4331.9, + "probability": 0.9916 + }, + { + "start": 4332.56, + "end": 4336.04, + "probability": 0.9949 + }, + { + "start": 4336.54, + "end": 4342.44, + "probability": 0.8735 + }, + { + "start": 4343.46, + "end": 4353.68, + "probability": 0.9666 + }, + { + "start": 4354.16, + "end": 4354.9, + "probability": 0.9434 + }, + { + "start": 4355.08, + "end": 4356.24, + "probability": 0.7866 + }, + { + "start": 4356.78, + "end": 4357.08, + "probability": 0.2722 + }, + { + "start": 4357.18, + "end": 4361.32, + "probability": 0.8979 + }, + { + "start": 4361.68, + "end": 4362.78, + "probability": 0.8741 + }, + { + "start": 4363.0, + "end": 4364.84, + "probability": 0.9526 + }, + { + "start": 4364.94, + "end": 4365.98, + "probability": 0.9633 + }, + { + "start": 4366.34, + "end": 4369.86, + "probability": 0.9827 + }, + { + "start": 4371.9, + "end": 4373.74, + "probability": 0.9951 + }, + { + "start": 4373.94, + "end": 4374.7, + "probability": 0.717 + }, + { + "start": 4374.76, + "end": 4378.08, + "probability": 0.8183 + }, + { + "start": 4378.14, + "end": 4378.64, + "probability": 0.8808 + }, + { + "start": 4378.68, + "end": 4379.62, + "probability": 0.9288 + }, + { + "start": 4380.08, + "end": 4382.9, + "probability": 0.9879 + }, + { + "start": 4383.78, + "end": 4385.9, + "probability": 0.7783 + }, + { + "start": 4386.66, + "end": 4389.0, + "probability": 0.9899 + }, + { + "start": 4389.56, + "end": 4393.72, + "probability": 0.9887 + }, + { + "start": 4398.24, + "end": 4400.2, + "probability": 0.9319 + }, + { + "start": 4402.44, + "end": 4403.94, + "probability": 0.8435 + }, + { + "start": 4404.3, + "end": 4404.98, + "probability": 0.9564 + }, + { + "start": 4405.06, + "end": 4405.66, + "probability": 0.6177 + }, + { + "start": 4405.78, + "end": 4406.56, + "probability": 0.3378 + }, + { + "start": 4407.12, + "end": 4407.62, + "probability": 0.7511 + }, + { + "start": 4409.9, + "end": 4410.6, + "probability": 0.4273 + }, + { + "start": 4411.82, + "end": 4418.96, + "probability": 0.9412 + }, + { + "start": 4419.96, + "end": 4422.92, + "probability": 0.7525 + }, + { + "start": 4424.3, + "end": 4426.12, + "probability": 0.8435 + }, + { + "start": 4426.74, + "end": 4428.2, + "probability": 0.79 + }, + { + "start": 4428.36, + "end": 4429.58, + "probability": 0.9125 + }, + { + "start": 4429.92, + "end": 4430.7, + "probability": 0.6125 + }, + { + "start": 4432.04, + "end": 4434.98, + "probability": 0.9729 + }, + { + "start": 4435.05, + "end": 4439.46, + "probability": 0.9871 + }, + { + "start": 4439.64, + "end": 4443.06, + "probability": 0.9959 + }, + { + "start": 4443.06, + "end": 4447.08, + "probability": 0.991 + }, + { + "start": 4447.9, + "end": 4449.2, + "probability": 0.7504 + }, + { + "start": 4452.1, + "end": 4454.38, + "probability": 0.9469 + }, + { + "start": 4456.66, + "end": 4458.2, + "probability": 0.9085 + }, + { + "start": 4458.96, + "end": 4459.22, + "probability": 0.9758 + }, + { + "start": 4459.34, + "end": 4462.24, + "probability": 0.9945 + }, + { + "start": 4462.84, + "end": 4470.58, + "probability": 0.9963 + }, + { + "start": 4471.48, + "end": 4475.21, + "probability": 0.945 + }, + { + "start": 4476.84, + "end": 4480.56, + "probability": 0.7886 + }, + { + "start": 4482.06, + "end": 4486.96, + "probability": 0.9948 + }, + { + "start": 4487.44, + "end": 4488.92, + "probability": 0.9917 + }, + { + "start": 4489.12, + "end": 4489.74, + "probability": 0.9115 + }, + { + "start": 4491.96, + "end": 4493.06, + "probability": 0.5375 + }, + { + "start": 4496.06, + "end": 4497.52, + "probability": 0.8958 + }, + { + "start": 4498.54, + "end": 4499.32, + "probability": 0.834 + }, + { + "start": 4500.32, + "end": 4501.66, + "probability": 0.9971 + }, + { + "start": 4502.64, + "end": 4504.62, + "probability": 0.8716 + }, + { + "start": 4505.26, + "end": 4505.84, + "probability": 0.5305 + }, + { + "start": 4507.62, + "end": 4508.88, + "probability": 0.7383 + }, + { + "start": 4509.8, + "end": 4510.56, + "probability": 0.8034 + }, + { + "start": 4511.74, + "end": 4512.46, + "probability": 0.8357 + }, + { + "start": 4513.56, + "end": 4514.3, + "probability": 0.949 + }, + { + "start": 4515.96, + "end": 4519.66, + "probability": 0.9107 + }, + { + "start": 4519.96, + "end": 4522.52, + "probability": 0.8935 + }, + { + "start": 4522.52, + "end": 4524.4, + "probability": 0.7842 + }, + { + "start": 4527.82, + "end": 4529.18, + "probability": 0.9414 + }, + { + "start": 4529.26, + "end": 4530.36, + "probability": 0.7751 + }, + { + "start": 4530.54, + "end": 4531.16, + "probability": 0.567 + }, + { + "start": 4532.72, + "end": 4534.92, + "probability": 0.9967 + }, + { + "start": 4535.96, + "end": 4536.56, + "probability": 0.6111 + }, + { + "start": 4537.56, + "end": 4538.88, + "probability": 0.7598 + }, + { + "start": 4538.98, + "end": 4540.06, + "probability": 0.9405 + }, + { + "start": 4540.56, + "end": 4540.84, + "probability": 0.7877 + }, + { + "start": 4540.92, + "end": 4542.64, + "probability": 0.9039 + }, + { + "start": 4544.94, + "end": 4546.38, + "probability": 0.7563 + }, + { + "start": 4546.56, + "end": 4549.24, + "probability": 0.96 + }, + { + "start": 4549.5, + "end": 4550.3, + "probability": 0.7721 + }, + { + "start": 4551.02, + "end": 4555.2, + "probability": 0.9967 + }, + { + "start": 4555.94, + "end": 4559.04, + "probability": 0.9256 + }, + { + "start": 4559.72, + "end": 4562.02, + "probability": 0.9861 + }, + { + "start": 4562.02, + "end": 4565.0, + "probability": 0.9917 + }, + { + "start": 4565.88, + "end": 4566.58, + "probability": 0.8674 + }, + { + "start": 4567.18, + "end": 4568.22, + "probability": 0.8003 + }, + { + "start": 4569.54, + "end": 4570.98, + "probability": 0.6758 + }, + { + "start": 4571.64, + "end": 4574.16, + "probability": 0.996 + }, + { + "start": 4574.82, + "end": 4576.16, + "probability": 0.6821 + }, + { + "start": 4576.62, + "end": 4581.02, + "probability": 0.9814 + }, + { + "start": 4581.02, + "end": 4584.64, + "probability": 0.9984 + }, + { + "start": 4586.62, + "end": 4590.04, + "probability": 0.6809 + }, + { + "start": 4590.96, + "end": 4591.72, + "probability": 0.9076 + }, + { + "start": 4592.6, + "end": 4592.96, + "probability": 0.5536 + }, + { + "start": 4592.96, + "end": 4594.26, + "probability": 0.9792 + }, + { + "start": 4594.38, + "end": 4596.82, + "probability": 0.7161 + }, + { + "start": 4596.84, + "end": 4597.96, + "probability": 0.894 + }, + { + "start": 4598.68, + "end": 4600.34, + "probability": 0.761 + }, + { + "start": 4600.68, + "end": 4601.96, + "probability": 0.9736 + }, + { + "start": 4602.68, + "end": 4604.54, + "probability": 0.7009 + }, + { + "start": 4605.28, + "end": 4606.44, + "probability": 0.9658 + }, + { + "start": 4607.0, + "end": 4607.04, + "probability": 0.2491 + }, + { + "start": 4607.26, + "end": 4608.32, + "probability": 0.7108 + }, + { + "start": 4608.42, + "end": 4610.94, + "probability": 0.0072 + }, + { + "start": 4611.38, + "end": 4612.34, + "probability": 0.1384 + }, + { + "start": 4616.72, + "end": 4618.06, + "probability": 0.4406 + }, + { + "start": 4618.34, + "end": 4619.98, + "probability": 0.0997 + }, + { + "start": 4619.98, + "end": 4620.98, + "probability": 0.4404 + }, + { + "start": 4621.2, + "end": 4622.34, + "probability": 0.5478 + }, + { + "start": 4622.34, + "end": 4623.62, + "probability": 0.837 + }, + { + "start": 4623.64, + "end": 4623.98, + "probability": 0.7013 + }, + { + "start": 4624.18, + "end": 4624.18, + "probability": 0.041 + }, + { + "start": 4624.18, + "end": 4627.2, + "probability": 0.7841 + }, + { + "start": 4627.74, + "end": 4628.54, + "probability": 0.8232 + }, + { + "start": 4628.66, + "end": 4629.66, + "probability": 0.9912 + }, + { + "start": 4629.72, + "end": 4634.3, + "probability": 0.8621 + }, + { + "start": 4634.72, + "end": 4634.92, + "probability": 0.6385 + }, + { + "start": 4634.98, + "end": 4636.64, + "probability": 0.8597 + }, + { + "start": 4636.68, + "end": 4639.26, + "probability": 0.9861 + }, + { + "start": 4639.66, + "end": 4642.12, + "probability": 0.9885 + }, + { + "start": 4642.58, + "end": 4644.4, + "probability": 0.9938 + }, + { + "start": 4644.44, + "end": 4647.51, + "probability": 0.5934 + }, + { + "start": 4648.62, + "end": 4654.42, + "probability": 0.877 + }, + { + "start": 4654.92, + "end": 4658.48, + "probability": 0.3384 + }, + { + "start": 4658.52, + "end": 4658.72, + "probability": 0.0592 + }, + { + "start": 4658.72, + "end": 4660.6, + "probability": 0.9916 + }, + { + "start": 4662.9, + "end": 4666.44, + "probability": 0.4473 + }, + { + "start": 4666.56, + "end": 4666.8, + "probability": 0.8793 + }, + { + "start": 4666.8, + "end": 4669.7, + "probability": 0.8325 + }, + { + "start": 4669.92, + "end": 4670.58, + "probability": 0.6006 + }, + { + "start": 4671.26, + "end": 4671.42, + "probability": 0.8938 + }, + { + "start": 4671.6, + "end": 4673.14, + "probability": 0.9969 + }, + { + "start": 4673.18, + "end": 4674.7, + "probability": 0.8994 + }, + { + "start": 4675.98, + "end": 4677.5, + "probability": 0.9709 + }, + { + "start": 4678.08, + "end": 4680.18, + "probability": 0.8833 + }, + { + "start": 4681.38, + "end": 4682.4, + "probability": 0.2305 + }, + { + "start": 4682.68, + "end": 4685.28, + "probability": 0.8998 + }, + { + "start": 4685.42, + "end": 4686.68, + "probability": 0.9219 + }, + { + "start": 4687.08, + "end": 4692.14, + "probability": 0.9819 + }, + { + "start": 4692.3, + "end": 4694.36, + "probability": 0.9748 + }, + { + "start": 4695.1, + "end": 4695.86, + "probability": 0.6717 + }, + { + "start": 4697.14, + "end": 4701.22, + "probability": 0.9434 + }, + { + "start": 4701.28, + "end": 4702.14, + "probability": 0.8037 + }, + { + "start": 4703.24, + "end": 4706.86, + "probability": 0.8291 + }, + { + "start": 4707.52, + "end": 4712.02, + "probability": 0.7648 + }, + { + "start": 4712.08, + "end": 4712.98, + "probability": 0.964 + }, + { + "start": 4713.8, + "end": 4715.44, + "probability": 0.7058 + }, + { + "start": 4716.44, + "end": 4717.88, + "probability": 0.7585 + }, + { + "start": 4718.22, + "end": 4721.26, + "probability": 0.9937 + }, + { + "start": 4722.38, + "end": 4723.68, + "probability": 0.9651 + }, + { + "start": 4723.78, + "end": 4724.72, + "probability": 0.9821 + }, + { + "start": 4724.74, + "end": 4725.44, + "probability": 0.9337 + }, + { + "start": 4725.54, + "end": 4726.2, + "probability": 0.9189 + }, + { + "start": 4726.3, + "end": 4727.66, + "probability": 0.947 + }, + { + "start": 4728.32, + "end": 4729.58, + "probability": 0.9326 + }, + { + "start": 4730.0, + "end": 4732.28, + "probability": 0.9727 + }, + { + "start": 4732.36, + "end": 4732.6, + "probability": 0.5119 + }, + { + "start": 4732.68, + "end": 4733.7, + "probability": 0.9607 + }, + { + "start": 4734.02, + "end": 4738.74, + "probability": 0.9978 + }, + { + "start": 4739.42, + "end": 4740.58, + "probability": 0.9987 + }, + { + "start": 4740.83, + "end": 4741.26, + "probability": 0.3464 + }, + { + "start": 4741.3, + "end": 4741.8, + "probability": 0.745 + }, + { + "start": 4741.96, + "end": 4742.14, + "probability": 0.3659 + }, + { + "start": 4742.46, + "end": 4742.98, + "probability": 0.8128 + }, + { + "start": 4743.96, + "end": 4745.86, + "probability": 0.9027 + }, + { + "start": 4746.02, + "end": 4746.46, + "probability": 0.9302 + }, + { + "start": 4746.58, + "end": 4747.2, + "probability": 0.8706 + }, + { + "start": 4747.7, + "end": 4747.96, + "probability": 0.6793 + }, + { + "start": 4748.08, + "end": 4748.78, + "probability": 0.677 + }, + { + "start": 4749.32, + "end": 4752.18, + "probability": 0.7815 + }, + { + "start": 4753.28, + "end": 4753.98, + "probability": 0.9136 + }, + { + "start": 4754.96, + "end": 4762.94, + "probability": 0.9883 + }, + { + "start": 4763.54, + "end": 4765.38, + "probability": 0.7194 + }, + { + "start": 4766.42, + "end": 4771.02, + "probability": 0.9802 + }, + { + "start": 4772.58, + "end": 4777.46, + "probability": 0.9988 + }, + { + "start": 4778.84, + "end": 4780.58, + "probability": 0.4869 + }, + { + "start": 4781.08, + "end": 4784.34, + "probability": 0.9805 + }, + { + "start": 4784.6, + "end": 4788.84, + "probability": 0.5801 + }, + { + "start": 4788.84, + "end": 4788.84, + "probability": 0.0259 + }, + { + "start": 4788.84, + "end": 4790.76, + "probability": 0.0212 + }, + { + "start": 4790.76, + "end": 4790.86, + "probability": 0.1385 + }, + { + "start": 4790.86, + "end": 4791.5, + "probability": 0.5969 + }, + { + "start": 4791.9, + "end": 4794.16, + "probability": 0.6082 + }, + { + "start": 4794.38, + "end": 4795.49, + "probability": 0.5302 + }, + { + "start": 4795.7, + "end": 4796.82, + "probability": 0.26 + }, + { + "start": 4797.1, + "end": 4798.2, + "probability": 0.1494 + }, + { + "start": 4798.34, + "end": 4799.12, + "probability": 0.0156 + }, + { + "start": 4800.89, + "end": 4804.76, + "probability": 0.6593 + }, + { + "start": 4805.0, + "end": 4805.24, + "probability": 0.0055 + }, + { + "start": 4805.24, + "end": 4806.46, + "probability": 0.6567 + }, + { + "start": 4807.02, + "end": 4807.44, + "probability": 0.3832 + }, + { + "start": 4807.44, + "end": 4807.5, + "probability": 0.4461 + }, + { + "start": 4807.68, + "end": 4809.67, + "probability": 0.6763 + }, + { + "start": 4809.68, + "end": 4810.76, + "probability": 0.2663 + }, + { + "start": 4813.38, + "end": 4816.64, + "probability": 0.5651 + }, + { + "start": 4818.9, + "end": 4821.28, + "probability": 0.9125 + }, + { + "start": 4821.6, + "end": 4823.44, + "probability": 0.8974 + }, + { + "start": 4824.82, + "end": 4829.22, + "probability": 0.9405 + }, + { + "start": 4829.54, + "end": 4830.18, + "probability": 0.2785 + }, + { + "start": 4830.32, + "end": 4834.4, + "probability": 0.9792 + }, + { + "start": 4834.66, + "end": 4836.06, + "probability": 0.9902 + }, + { + "start": 4836.12, + "end": 4838.84, + "probability": 0.9883 + }, + { + "start": 4839.36, + "end": 4841.32, + "probability": 0.9956 + }, + { + "start": 4841.7, + "end": 4843.04, + "probability": 0.972 + }, + { + "start": 4843.72, + "end": 4846.32, + "probability": 0.9501 + }, + { + "start": 4846.7, + "end": 4849.34, + "probability": 0.9342 + }, + { + "start": 4850.36, + "end": 4855.9, + "probability": 0.9844 + }, + { + "start": 4856.3, + "end": 4857.46, + "probability": 0.8989 + }, + { + "start": 4858.28, + "end": 4860.76, + "probability": 0.9696 + }, + { + "start": 4861.38, + "end": 4862.9, + "probability": 0.9885 + }, + { + "start": 4863.26, + "end": 4865.46, + "probability": 0.9893 + }, + { + "start": 4866.36, + "end": 4869.06, + "probability": 0.9818 + }, + { + "start": 4869.74, + "end": 4870.92, + "probability": 0.9985 + }, + { + "start": 4871.56, + "end": 4872.54, + "probability": 0.9546 + }, + { + "start": 4873.1, + "end": 4874.98, + "probability": 0.9637 + }, + { + "start": 4875.8, + "end": 4876.72, + "probability": 0.9175 + }, + { + "start": 4877.22, + "end": 4880.3, + "probability": 0.9954 + }, + { + "start": 4880.38, + "end": 4882.04, + "probability": 0.9462 + }, + { + "start": 4883.26, + "end": 4887.22, + "probability": 0.9946 + }, + { + "start": 4887.3, + "end": 4889.26, + "probability": 0.9513 + }, + { + "start": 4889.66, + "end": 4890.68, + "probability": 0.8809 + }, + { + "start": 4891.0, + "end": 4894.43, + "probability": 0.5496 + }, + { + "start": 4895.68, + "end": 4895.7, + "probability": 0.332 + }, + { + "start": 4895.7, + "end": 4897.55, + "probability": 0.3931 + }, + { + "start": 4897.96, + "end": 4898.94, + "probability": 0.8367 + }, + { + "start": 4901.72, + "end": 4906.36, + "probability": 0.109 + }, + { + "start": 4906.48, + "end": 4906.96, + "probability": 0.0678 + }, + { + "start": 4906.96, + "end": 4910.18, + "probability": 0.23 + }, + { + "start": 4911.38, + "end": 4912.62, + "probability": 0.7219 + }, + { + "start": 4913.76, + "end": 4913.76, + "probability": 0.0638 + }, + { + "start": 4913.76, + "end": 4913.76, + "probability": 0.079 + }, + { + "start": 4913.76, + "end": 4913.76, + "probability": 0.046 + }, + { + "start": 4913.76, + "end": 4913.76, + "probability": 0.3897 + }, + { + "start": 4913.76, + "end": 4915.24, + "probability": 0.7077 + }, + { + "start": 4915.32, + "end": 4915.8, + "probability": 0.503 + }, + { + "start": 4916.78, + "end": 4920.4, + "probability": 0.8249 + }, + { + "start": 4920.84, + "end": 4921.58, + "probability": 0.4458 + }, + { + "start": 4922.0, + "end": 4923.18, + "probability": 0.9609 + }, + { + "start": 4924.14, + "end": 4928.42, + "probability": 0.9951 + }, + { + "start": 4929.12, + "end": 4930.22, + "probability": 0.5737 + }, + { + "start": 4930.94, + "end": 4933.28, + "probability": 0.8015 + }, + { + "start": 4933.76, + "end": 4937.5, + "probability": 0.9933 + }, + { + "start": 4937.5, + "end": 4941.0, + "probability": 0.9856 + }, + { + "start": 4941.12, + "end": 4942.18, + "probability": 0.7374 + }, + { + "start": 4942.3, + "end": 4943.04, + "probability": 0.9617 + }, + { + "start": 4943.96, + "end": 4945.52, + "probability": 0.7742 + }, + { + "start": 4947.12, + "end": 4949.26, + "probability": 0.7928 + }, + { + "start": 4949.92, + "end": 4950.52, + "probability": 0.4149 + }, + { + "start": 4950.98, + "end": 4952.48, + "probability": 0.6478 + }, + { + "start": 4953.1, + "end": 4954.22, + "probability": 0.5335 + }, + { + "start": 4954.44, + "end": 4956.56, + "probability": 0.7246 + }, + { + "start": 4956.96, + "end": 4958.5, + "probability": 0.8906 + }, + { + "start": 4958.7, + "end": 4960.36, + "probability": 0.3972 + }, + { + "start": 4961.54, + "end": 4963.36, + "probability": 0.3347 + }, + { + "start": 4969.2, + "end": 4970.88, + "probability": 0.0521 + }, + { + "start": 4975.66, + "end": 4977.9, + "probability": 0.9022 + }, + { + "start": 4978.42, + "end": 4979.5, + "probability": 0.7496 + }, + { + "start": 4981.14, + "end": 4983.66, + "probability": 0.9982 + }, + { + "start": 4984.3, + "end": 4987.68, + "probability": 0.9581 + }, + { + "start": 4988.3, + "end": 4995.46, + "probability": 0.9686 + }, + { + "start": 4996.76, + "end": 4997.54, + "probability": 0.6851 + }, + { + "start": 4997.96, + "end": 5005.88, + "probability": 0.9908 + }, + { + "start": 5007.16, + "end": 5011.86, + "probability": 0.9905 + }, + { + "start": 5013.08, + "end": 5019.88, + "probability": 0.995 + }, + { + "start": 5020.82, + "end": 5027.44, + "probability": 0.9703 + }, + { + "start": 5028.42, + "end": 5029.66, + "probability": 0.9978 + }, + { + "start": 5030.46, + "end": 5031.82, + "probability": 0.6089 + }, + { + "start": 5032.56, + "end": 5036.24, + "probability": 0.7316 + }, + { + "start": 5036.94, + "end": 5037.6, + "probability": 0.6856 + }, + { + "start": 5038.42, + "end": 5041.56, + "probability": 0.8468 + }, + { + "start": 5043.08, + "end": 5043.76, + "probability": 0.8887 + }, + { + "start": 5044.54, + "end": 5052.24, + "probability": 0.9636 + }, + { + "start": 5053.76, + "end": 5060.2, + "probability": 0.9609 + }, + { + "start": 5061.32, + "end": 5064.28, + "probability": 0.9656 + }, + { + "start": 5065.38, + "end": 5071.14, + "probability": 0.9808 + }, + { + "start": 5072.5, + "end": 5073.66, + "probability": 0.7819 + }, + { + "start": 5075.1, + "end": 5076.56, + "probability": 0.992 + }, + { + "start": 5077.4, + "end": 5082.1, + "probability": 0.9988 + }, + { + "start": 5082.1, + "end": 5089.86, + "probability": 0.9976 + }, + { + "start": 5090.8, + "end": 5091.26, + "probability": 0.5391 + }, + { + "start": 5092.78, + "end": 5094.62, + "probability": 0.7722 + }, + { + "start": 5095.24, + "end": 5095.7, + "probability": 0.7701 + }, + { + "start": 5097.12, + "end": 5099.92, + "probability": 0.9877 + }, + { + "start": 5100.46, + "end": 5106.0, + "probability": 0.9819 + }, + { + "start": 5106.94, + "end": 5107.74, + "probability": 0.9784 + }, + { + "start": 5108.7, + "end": 5110.42, + "probability": 0.8728 + }, + { + "start": 5111.08, + "end": 5120.88, + "probability": 0.9922 + }, + { + "start": 5121.52, + "end": 5124.62, + "probability": 0.9884 + }, + { + "start": 5125.3, + "end": 5132.96, + "probability": 0.9712 + }, + { + "start": 5133.6, + "end": 5138.62, + "probability": 0.9783 + }, + { + "start": 5139.16, + "end": 5145.92, + "probability": 0.8875 + }, + { + "start": 5146.3, + "end": 5154.0, + "probability": 0.9793 + }, + { + "start": 5154.4, + "end": 5155.0, + "probability": 0.8391 + }, + { + "start": 5157.54, + "end": 5159.62, + "probability": 0.6669 + }, + { + "start": 5160.68, + "end": 5161.32, + "probability": 0.3868 + }, + { + "start": 5161.7, + "end": 5162.4, + "probability": 0.508 + }, + { + "start": 5181.82, + "end": 5182.6, + "probability": 0.5675 + }, + { + "start": 5182.84, + "end": 5185.98, + "probability": 0.9363 + }, + { + "start": 5185.98, + "end": 5190.72, + "probability": 0.7433 + }, + { + "start": 5190.88, + "end": 5194.16, + "probability": 0.9975 + }, + { + "start": 5194.92, + "end": 5196.22, + "probability": 0.8782 + }, + { + "start": 5196.86, + "end": 5197.88, + "probability": 0.8885 + }, + { + "start": 5198.02, + "end": 5198.88, + "probability": 0.8497 + }, + { + "start": 5199.12, + "end": 5207.08, + "probability": 0.929 + }, + { + "start": 5207.28, + "end": 5207.66, + "probability": 0.6656 + }, + { + "start": 5208.2, + "end": 5209.58, + "probability": 0.9992 + }, + { + "start": 5209.76, + "end": 5210.22, + "probability": 0.767 + }, + { + "start": 5211.28, + "end": 5216.12, + "probability": 0.9889 + }, + { + "start": 5216.2, + "end": 5220.52, + "probability": 0.9882 + }, + { + "start": 5220.9, + "end": 5224.22, + "probability": 0.9961 + }, + { + "start": 5225.68, + "end": 5228.86, + "probability": 0.8807 + }, + { + "start": 5230.16, + "end": 5234.11, + "probability": 0.8779 + }, + { + "start": 5234.54, + "end": 5236.7, + "probability": 0.9048 + }, + { + "start": 5237.82, + "end": 5239.84, + "probability": 0.9512 + }, + { + "start": 5241.52, + "end": 5243.32, + "probability": 0.8317 + }, + { + "start": 5244.18, + "end": 5247.1, + "probability": 0.9019 + }, + { + "start": 5248.28, + "end": 5249.12, + "probability": 0.7422 + }, + { + "start": 5250.3, + "end": 5252.64, + "probability": 0.641 + }, + { + "start": 5253.86, + "end": 5256.0, + "probability": 0.959 + }, + { + "start": 5257.34, + "end": 5260.42, + "probability": 0.9818 + }, + { + "start": 5261.96, + "end": 5264.6, + "probability": 0.9806 + }, + { + "start": 5266.48, + "end": 5267.6, + "probability": 0.8575 + }, + { + "start": 5267.68, + "end": 5273.48, + "probability": 0.9146 + }, + { + "start": 5274.1, + "end": 5276.29, + "probability": 0.8952 + }, + { + "start": 5276.56, + "end": 5278.38, + "probability": 0.4692 + }, + { + "start": 5279.16, + "end": 5283.24, + "probability": 0.9927 + }, + { + "start": 5284.26, + "end": 5288.5, + "probability": 0.9938 + }, + { + "start": 5290.4, + "end": 5292.32, + "probability": 0.9978 + }, + { + "start": 5293.14, + "end": 5294.92, + "probability": 0.833 + }, + { + "start": 5295.36, + "end": 5296.96, + "probability": 0.9471 + }, + { + "start": 5300.38, + "end": 5304.7, + "probability": 0.9985 + }, + { + "start": 5306.34, + "end": 5311.08, + "probability": 0.9446 + }, + { + "start": 5312.08, + "end": 5313.9, + "probability": 0.998 + }, + { + "start": 5314.64, + "end": 5320.32, + "probability": 0.9003 + }, + { + "start": 5320.42, + "end": 5322.35, + "probability": 0.5264 + }, + { + "start": 5323.02, + "end": 5324.24, + "probability": 0.9966 + }, + { + "start": 5325.12, + "end": 5328.56, + "probability": 0.927 + }, + { + "start": 5329.48, + "end": 5333.41, + "probability": 0.7439 + }, + { + "start": 5335.1, + "end": 5339.56, + "probability": 0.9048 + }, + { + "start": 5341.36, + "end": 5344.98, + "probability": 0.9665 + }, + { + "start": 5345.98, + "end": 5347.48, + "probability": 0.9771 + }, + { + "start": 5348.42, + "end": 5351.32, + "probability": 0.9561 + }, + { + "start": 5352.08, + "end": 5353.16, + "probability": 0.7616 + }, + { + "start": 5353.2, + "end": 5356.38, + "probability": 0.9967 + }, + { + "start": 5356.84, + "end": 5358.38, + "probability": 0.858 + }, + { + "start": 5359.84, + "end": 5363.2, + "probability": 0.8201 + }, + { + "start": 5363.42, + "end": 5364.7, + "probability": 0.5077 + }, + { + "start": 5364.7, + "end": 5364.98, + "probability": 0.6712 + }, + { + "start": 5365.52, + "end": 5366.72, + "probability": 0.309 + }, + { + "start": 5366.86, + "end": 5367.48, + "probability": 0.7371 + }, + { + "start": 5367.6, + "end": 5372.46, + "probability": 0.5363 + }, + { + "start": 5372.46, + "end": 5372.46, + "probability": 0.3182 + }, + { + "start": 5372.46, + "end": 5372.46, + "probability": 0.1926 + }, + { + "start": 5372.46, + "end": 5372.46, + "probability": 0.1678 + }, + { + "start": 5372.46, + "end": 5373.0, + "probability": 0.5239 + }, + { + "start": 5373.22, + "end": 5375.2, + "probability": 0.5765 + }, + { + "start": 5378.06, + "end": 5379.82, + "probability": 0.4064 + }, + { + "start": 5379.82, + "end": 5380.2, + "probability": 0.3333 + }, + { + "start": 5380.2, + "end": 5380.2, + "probability": 0.0701 + }, + { + "start": 5380.2, + "end": 5380.26, + "probability": 0.5877 + }, + { + "start": 5380.26, + "end": 5381.24, + "probability": 0.4482 + }, + { + "start": 5381.54, + "end": 5384.96, + "probability": 0.8549 + }, + { + "start": 5385.02, + "end": 5387.12, + "probability": 0.4802 + }, + { + "start": 5392.34, + "end": 5393.42, + "probability": 0.9383 + }, + { + "start": 5413.7, + "end": 5415.56, + "probability": 0.7301 + }, + { + "start": 5416.66, + "end": 5420.72, + "probability": 0.8236 + }, + { + "start": 5421.38, + "end": 5422.26, + "probability": 0.8525 + }, + { + "start": 5422.44, + "end": 5425.2, + "probability": 0.9932 + }, + { + "start": 5425.22, + "end": 5427.92, + "probability": 0.8794 + }, + { + "start": 5428.04, + "end": 5428.48, + "probability": 0.9802 + }, + { + "start": 5430.02, + "end": 5431.22, + "probability": 0.7538 + }, + { + "start": 5431.34, + "end": 5432.21, + "probability": 0.7466 + }, + { + "start": 5432.72, + "end": 5433.62, + "probability": 0.8942 + }, + { + "start": 5434.14, + "end": 5435.26, + "probability": 0.9485 + }, + { + "start": 5435.6, + "end": 5438.84, + "probability": 0.9635 + }, + { + "start": 5438.84, + "end": 5439.22, + "probability": 0.2967 + }, + { + "start": 5439.22, + "end": 5440.06, + "probability": 0.2747 + }, + { + "start": 5440.96, + "end": 5442.42, + "probability": 0.5355 + }, + { + "start": 5443.32, + "end": 5445.12, + "probability": 0.874 + }, + { + "start": 5446.92, + "end": 5448.68, + "probability": 0.9434 + }, + { + "start": 5449.98, + "end": 5453.74, + "probability": 0.8625 + }, + { + "start": 5453.82, + "end": 5457.36, + "probability": 0.998 + }, + { + "start": 5457.44, + "end": 5459.86, + "probability": 0.8504 + }, + { + "start": 5460.42, + "end": 5461.44, + "probability": 0.7946 + }, + { + "start": 5461.46, + "end": 5462.89, + "probability": 0.9852 + }, + { + "start": 5464.74, + "end": 5469.16, + "probability": 0.9929 + }, + { + "start": 5470.56, + "end": 5476.46, + "probability": 0.9892 + }, + { + "start": 5477.5, + "end": 5481.88, + "probability": 0.8299 + }, + { + "start": 5482.36, + "end": 5482.58, + "probability": 0.9163 + }, + { + "start": 5482.6, + "end": 5484.94, + "probability": 0.6268 + }, + { + "start": 5484.94, + "end": 5485.48, + "probability": 0.7442 + }, + { + "start": 5485.7, + "end": 5486.98, + "probability": 0.9295 + }, + { + "start": 5487.28, + "end": 5487.84, + "probability": 0.7486 + }, + { + "start": 5488.18, + "end": 5488.7, + "probability": 0.7925 + }, + { + "start": 5488.72, + "end": 5490.14, + "probability": 0.7141 + }, + { + "start": 5490.74, + "end": 5491.2, + "probability": 0.7723 + }, + { + "start": 5492.02, + "end": 5495.54, + "probability": 0.9688 + }, + { + "start": 5496.82, + "end": 5498.62, + "probability": 0.9067 + }, + { + "start": 5499.02, + "end": 5502.54, + "probability": 0.986 + }, + { + "start": 5503.0, + "end": 5508.16, + "probability": 0.9969 + }, + { + "start": 5509.32, + "end": 5511.12, + "probability": 0.8891 + }, + { + "start": 5511.24, + "end": 5515.64, + "probability": 0.9987 + }, + { + "start": 5516.7, + "end": 5522.31, + "probability": 0.9979 + }, + { + "start": 5523.28, + "end": 5526.44, + "probability": 0.9839 + }, + { + "start": 5526.58, + "end": 5528.32, + "probability": 0.9176 + }, + { + "start": 5528.68, + "end": 5530.68, + "probability": 0.9753 + }, + { + "start": 5531.24, + "end": 5532.03, + "probability": 0.8589 + }, + { + "start": 5532.78, + "end": 5533.68, + "probability": 0.8051 + }, + { + "start": 5533.74, + "end": 5535.29, + "probability": 0.8683 + }, + { + "start": 5535.82, + "end": 5536.82, + "probability": 0.8929 + }, + { + "start": 5536.94, + "end": 5540.02, + "probability": 0.8044 + }, + { + "start": 5541.28, + "end": 5543.26, + "probability": 0.9975 + }, + { + "start": 5543.64, + "end": 5544.56, + "probability": 0.7864 + }, + { + "start": 5544.64, + "end": 5549.54, + "probability": 0.9907 + }, + { + "start": 5551.6, + "end": 5557.24, + "probability": 0.894 + }, + { + "start": 5557.4, + "end": 5559.1, + "probability": 0.9769 + }, + { + "start": 5559.18, + "end": 5560.25, + "probability": 0.9883 + }, + { + "start": 5561.0, + "end": 5564.08, + "probability": 0.8961 + }, + { + "start": 5564.74, + "end": 5568.58, + "probability": 0.6025 + }, + { + "start": 5568.76, + "end": 5569.78, + "probability": 0.9907 + }, + { + "start": 5570.3, + "end": 5573.76, + "probability": 0.9976 + }, + { + "start": 5574.48, + "end": 5578.3, + "probability": 0.9893 + }, + { + "start": 5578.44, + "end": 5579.8, + "probability": 0.9964 + }, + { + "start": 5580.26, + "end": 5583.16, + "probability": 0.969 + }, + { + "start": 5583.48, + "end": 5586.88, + "probability": 0.995 + }, + { + "start": 5587.18, + "end": 5587.8, + "probability": 0.6302 + }, + { + "start": 5588.28, + "end": 5589.94, + "probability": 0.9968 + }, + { + "start": 5590.8, + "end": 5593.12, + "probability": 0.7956 + }, + { + "start": 5593.6, + "end": 5595.01, + "probability": 0.9595 + }, + { + "start": 5595.46, + "end": 5595.86, + "probability": 0.7844 + }, + { + "start": 5596.76, + "end": 5599.08, + "probability": 0.9913 + }, + { + "start": 5599.16, + "end": 5599.92, + "probability": 0.4848 + }, + { + "start": 5600.12, + "end": 5601.08, + "probability": 0.9626 + }, + { + "start": 5601.48, + "end": 5604.46, + "probability": 0.8925 + }, + { + "start": 5604.9, + "end": 5607.18, + "probability": 0.5334 + }, + { + "start": 5607.44, + "end": 5607.44, + "probability": 0.0138 + }, + { + "start": 5607.44, + "end": 5608.62, + "probability": 0.3017 + }, + { + "start": 5608.8, + "end": 5609.96, + "probability": 0.9678 + }, + { + "start": 5610.38, + "end": 5612.9, + "probability": 0.7573 + }, + { + "start": 5613.58, + "end": 5617.44, + "probability": 0.7415 + }, + { + "start": 5617.94, + "end": 5618.92, + "probability": 0.8085 + }, + { + "start": 5620.24, + "end": 5622.16, + "probability": 0.9006 + }, + { + "start": 5622.22, + "end": 5623.76, + "probability": 0.999 + }, + { + "start": 5623.9, + "end": 5625.16, + "probability": 0.6533 + }, + { + "start": 5625.38, + "end": 5626.66, + "probability": 0.9937 + }, + { + "start": 5626.7, + "end": 5631.32, + "probability": 0.9983 + }, + { + "start": 5631.52, + "end": 5631.52, + "probability": 0.7352 + }, + { + "start": 5631.6, + "end": 5635.3, + "probability": 0.9893 + }, + { + "start": 5635.74, + "end": 5636.52, + "probability": 0.6431 + }, + { + "start": 5639.52, + "end": 5640.76, + "probability": 0.9087 + }, + { + "start": 5657.72, + "end": 5658.62, + "probability": 0.637 + }, + { + "start": 5658.8, + "end": 5660.48, + "probability": 0.8195 + }, + { + "start": 5660.64, + "end": 5661.46, + "probability": 0.7469 + }, + { + "start": 5662.24, + "end": 5667.94, + "probability": 0.9692 + }, + { + "start": 5668.52, + "end": 5670.64, + "probability": 0.9793 + }, + { + "start": 5671.22, + "end": 5673.24, + "probability": 0.9894 + }, + { + "start": 5674.08, + "end": 5675.04, + "probability": 0.7738 + }, + { + "start": 5676.3, + "end": 5677.12, + "probability": 0.871 + }, + { + "start": 5677.72, + "end": 5682.68, + "probability": 0.9849 + }, + { + "start": 5683.78, + "end": 5685.02, + "probability": 0.0735 + }, + { + "start": 5685.08, + "end": 5686.44, + "probability": 0.5917 + }, + { + "start": 5688.06, + "end": 5689.46, + "probability": 0.9118 + }, + { + "start": 5690.18, + "end": 5692.92, + "probability": 0.9903 + }, + { + "start": 5693.88, + "end": 5696.96, + "probability": 0.5891 + }, + { + "start": 5698.14, + "end": 5700.42, + "probability": 0.8309 + }, + { + "start": 5701.04, + "end": 5703.6, + "probability": 0.9882 + }, + { + "start": 5705.56, + "end": 5712.5, + "probability": 0.9948 + }, + { + "start": 5712.7, + "end": 5714.34, + "probability": 0.923 + }, + { + "start": 5714.96, + "end": 5717.42, + "probability": 0.8159 + }, + { + "start": 5717.96, + "end": 5721.22, + "probability": 0.9177 + }, + { + "start": 5722.02, + "end": 5729.24, + "probability": 0.9768 + }, + { + "start": 5730.24, + "end": 5732.08, + "probability": 0.9993 + }, + { + "start": 5732.78, + "end": 5738.22, + "probability": 0.9958 + }, + { + "start": 5738.76, + "end": 5744.04, + "probability": 0.9894 + }, + { + "start": 5744.74, + "end": 5750.26, + "probability": 0.9966 + }, + { + "start": 5750.26, + "end": 5754.16, + "probability": 0.9988 + }, + { + "start": 5756.0, + "end": 5758.18, + "probability": 0.9148 + }, + { + "start": 5758.52, + "end": 5763.52, + "probability": 0.263 + }, + { + "start": 5763.72, + "end": 5766.7, + "probability": 0.6055 + }, + { + "start": 5766.82, + "end": 5771.64, + "probability": 0.9362 + }, + { + "start": 5772.52, + "end": 5774.1, + "probability": 0.9446 + }, + { + "start": 5774.66, + "end": 5776.9, + "probability": 0.9929 + }, + { + "start": 5778.16, + "end": 5780.34, + "probability": 0.8923 + }, + { + "start": 5780.94, + "end": 5781.82, + "probability": 0.9374 + }, + { + "start": 5782.44, + "end": 5785.66, + "probability": 0.9985 + }, + { + "start": 5786.86, + "end": 5787.4, + "probability": 0.304 + }, + { + "start": 5788.42, + "end": 5793.22, + "probability": 0.9963 + }, + { + "start": 5793.22, + "end": 5799.16, + "probability": 0.998 + }, + { + "start": 5799.96, + "end": 5803.32, + "probability": 0.9081 + }, + { + "start": 5804.58, + "end": 5808.78, + "probability": 0.9845 + }, + { + "start": 5808.78, + "end": 5814.14, + "probability": 0.99 + }, + { + "start": 5814.8, + "end": 5818.8, + "probability": 0.863 + }, + { + "start": 5819.58, + "end": 5821.86, + "probability": 0.9974 + }, + { + "start": 5822.54, + "end": 5826.32, + "probability": 0.8829 + }, + { + "start": 5827.12, + "end": 5831.96, + "probability": 0.9875 + }, + { + "start": 5832.96, + "end": 5837.18, + "probability": 0.9902 + }, + { + "start": 5837.8, + "end": 5839.36, + "probability": 0.7764 + }, + { + "start": 5839.46, + "end": 5839.5, + "probability": 0.686 + }, + { + "start": 5839.68, + "end": 5840.92, + "probability": 0.9642 + }, + { + "start": 5841.86, + "end": 5843.54, + "probability": 0.9164 + }, + { + "start": 5843.94, + "end": 5846.32, + "probability": 0.978 + }, + { + "start": 5846.32, + "end": 5849.52, + "probability": 0.98 + }, + { + "start": 5849.52, + "end": 5852.7, + "probability": 0.998 + }, + { + "start": 5852.86, + "end": 5852.98, + "probability": 0.754 + }, + { + "start": 5853.1, + "end": 5855.82, + "probability": 0.9518 + }, + { + "start": 5856.08, + "end": 5859.75, + "probability": 0.9954 + }, + { + "start": 5861.16, + "end": 5861.28, + "probability": 0.5269 + }, + { + "start": 5861.3, + "end": 5861.32, + "probability": 0.2549 + }, + { + "start": 5861.32, + "end": 5865.52, + "probability": 0.9851 + }, + { + "start": 5865.62, + "end": 5865.94, + "probability": 0.6824 + }, + { + "start": 5866.46, + "end": 5866.64, + "probability": 0.6779 + }, + { + "start": 5870.04, + "end": 5871.26, + "probability": 0.9352 + }, + { + "start": 5885.82, + "end": 5888.56, + "probability": 0.5896 + }, + { + "start": 5889.64, + "end": 5897.66, + "probability": 0.9764 + }, + { + "start": 5897.66, + "end": 5902.56, + "probability": 0.996 + }, + { + "start": 5903.52, + "end": 5907.94, + "probability": 0.7338 + }, + { + "start": 5910.18, + "end": 5913.14, + "probability": 0.4141 + }, + { + "start": 5914.44, + "end": 5922.38, + "probability": 0.9967 + }, + { + "start": 5922.38, + "end": 5927.92, + "probability": 0.9977 + }, + { + "start": 5929.62, + "end": 5932.62, + "probability": 0.9997 + }, + { + "start": 5932.76, + "end": 5934.16, + "probability": 0.9516 + }, + { + "start": 5935.76, + "end": 5940.7, + "probability": 0.9313 + }, + { + "start": 5940.82, + "end": 5942.87, + "probability": 0.7985 + }, + { + "start": 5944.12, + "end": 5946.5, + "probability": 0.7779 + }, + { + "start": 5947.78, + "end": 5950.33, + "probability": 0.7201 + }, + { + "start": 5952.18, + "end": 5957.66, + "probability": 0.9586 + }, + { + "start": 5958.0, + "end": 5959.78, + "probability": 0.8122 + }, + { + "start": 5960.62, + "end": 5964.44, + "probability": 0.9927 + }, + { + "start": 5965.64, + "end": 5966.24, + "probability": 0.9705 + }, + { + "start": 5967.18, + "end": 5967.44, + "probability": 0.8693 + }, + { + "start": 5969.1, + "end": 5973.24, + "probability": 0.9294 + }, + { + "start": 5974.16, + "end": 5976.1, + "probability": 0.9279 + }, + { + "start": 5977.8, + "end": 5978.24, + "probability": 0.6773 + }, + { + "start": 5978.32, + "end": 5978.68, + "probability": 0.8907 + }, + { + "start": 5978.86, + "end": 5979.72, + "probability": 0.8408 + }, + { + "start": 5980.2, + "end": 5984.2, + "probability": 0.905 + }, + { + "start": 5984.26, + "end": 5987.5, + "probability": 0.9839 + }, + { + "start": 5987.66, + "end": 5990.68, + "probability": 0.7223 + }, + { + "start": 5991.46, + "end": 5995.98, + "probability": 0.9956 + }, + { + "start": 5996.7, + "end": 5998.94, + "probability": 0.9858 + }, + { + "start": 5999.76, + "end": 6005.9, + "probability": 0.8041 + }, + { + "start": 6007.02, + "end": 6013.42, + "probability": 0.9671 + }, + { + "start": 6014.0, + "end": 6015.64, + "probability": 0.801 + }, + { + "start": 6015.76, + "end": 6020.16, + "probability": 0.9963 + }, + { + "start": 6021.12, + "end": 6022.38, + "probability": 0.8542 + }, + { + "start": 6022.94, + "end": 6025.33, + "probability": 0.7725 + }, + { + "start": 6025.84, + "end": 6027.68, + "probability": 0.9118 + }, + { + "start": 6027.7, + "end": 6028.82, + "probability": 0.8567 + }, + { + "start": 6028.96, + "end": 6030.54, + "probability": 0.9966 + }, + { + "start": 6031.14, + "end": 6034.46, + "probability": 0.9665 + }, + { + "start": 6035.56, + "end": 6039.8, + "probability": 0.9663 + }, + { + "start": 6040.06, + "end": 6041.96, + "probability": 0.9026 + }, + { + "start": 6042.58, + "end": 6048.28, + "probability": 0.9877 + }, + { + "start": 6049.06, + "end": 6051.06, + "probability": 0.9927 + }, + { + "start": 6051.6, + "end": 6056.42, + "probability": 0.9829 + }, + { + "start": 6056.48, + "end": 6062.44, + "probability": 0.8024 + }, + { + "start": 6063.24, + "end": 6067.78, + "probability": 0.9194 + }, + { + "start": 6068.44, + "end": 6070.68, + "probability": 0.8818 + }, + { + "start": 6071.4, + "end": 6075.12, + "probability": 0.9941 + }, + { + "start": 6075.12, + "end": 6080.26, + "probability": 0.9783 + }, + { + "start": 6080.7, + "end": 6083.68, + "probability": 0.9971 + }, + { + "start": 6083.78, + "end": 6084.3, + "probability": 0.881 + }, + { + "start": 6084.8, + "end": 6085.1, + "probability": 0.6988 + }, + { + "start": 6085.2, + "end": 6085.94, + "probability": 0.9709 + }, + { + "start": 6094.6, + "end": 6094.94, + "probability": 0.0394 + }, + { + "start": 6095.08, + "end": 6095.36, + "probability": 0.6312 + }, + { + "start": 6096.64, + "end": 6097.76, + "probability": 0.9521 + }, + { + "start": 6098.04, + "end": 6099.4, + "probability": 0.924 + }, + { + "start": 6099.46, + "end": 6101.14, + "probability": 0.9413 + }, + { + "start": 6102.4, + "end": 6103.84, + "probability": 0.7856 + }, + { + "start": 6103.92, + "end": 6107.1, + "probability": 0.9723 + }, + { + "start": 6107.88, + "end": 6108.36, + "probability": 0.7197 + }, + { + "start": 6109.48, + "end": 6111.62, + "probability": 0.8577 + }, + { + "start": 6112.52, + "end": 6114.08, + "probability": 0.9961 + }, + { + "start": 6114.84, + "end": 6116.66, + "probability": 0.9112 + }, + { + "start": 6117.52, + "end": 6122.72, + "probability": 0.9736 + }, + { + "start": 6124.04, + "end": 6124.8, + "probability": 0.7918 + }, + { + "start": 6125.68, + "end": 6129.48, + "probability": 0.9825 + }, + { + "start": 6130.74, + "end": 6131.6, + "probability": 0.955 + }, + { + "start": 6132.64, + "end": 6138.06, + "probability": 0.9962 + }, + { + "start": 6138.36, + "end": 6139.31, + "probability": 0.9421 + }, + { + "start": 6139.92, + "end": 6141.58, + "probability": 0.4037 + }, + { + "start": 6143.22, + "end": 6144.3, + "probability": 0.9719 + }, + { + "start": 6144.58, + "end": 6148.56, + "probability": 0.9518 + }, + { + "start": 6148.68, + "end": 6148.82, + "probability": 0.467 + }, + { + "start": 6148.94, + "end": 6149.38, + "probability": 0.8581 + }, + { + "start": 6149.44, + "end": 6150.1, + "probability": 0.9422 + }, + { + "start": 6150.8, + "end": 6152.98, + "probability": 0.8276 + }, + { + "start": 6153.66, + "end": 6155.48, + "probability": 0.7484 + }, + { + "start": 6156.08, + "end": 6159.14, + "probability": 0.959 + }, + { + "start": 6159.92, + "end": 6163.4, + "probability": 0.9644 + }, + { + "start": 6164.06, + "end": 6167.7, + "probability": 0.868 + }, + { + "start": 6168.9, + "end": 6172.34, + "probability": 0.7875 + }, + { + "start": 6174.16, + "end": 6175.72, + "probability": 0.6814 + }, + { + "start": 6176.96, + "end": 6179.1, + "probability": 0.9502 + }, + { + "start": 6180.0, + "end": 6181.44, + "probability": 0.9963 + }, + { + "start": 6181.96, + "end": 6183.36, + "probability": 0.9656 + }, + { + "start": 6186.06, + "end": 6186.54, + "probability": 0.814 + }, + { + "start": 6187.54, + "end": 6189.62, + "probability": 0.7293 + }, + { + "start": 6190.38, + "end": 6194.34, + "probability": 0.9808 + }, + { + "start": 6195.28, + "end": 6198.16, + "probability": 0.8452 + }, + { + "start": 6198.76, + "end": 6203.86, + "probability": 0.9777 + }, + { + "start": 6204.66, + "end": 6205.26, + "probability": 0.6225 + }, + { + "start": 6205.3, + "end": 6205.84, + "probability": 0.8335 + }, + { + "start": 6206.08, + "end": 6206.9, + "probability": 0.4466 + }, + { + "start": 6206.92, + "end": 6209.04, + "probability": 0.8821 + }, + { + "start": 6209.86, + "end": 6212.58, + "probability": 0.964 + }, + { + "start": 6213.6, + "end": 6217.76, + "probability": 0.9138 + }, + { + "start": 6218.34, + "end": 6221.4, + "probability": 0.9904 + }, + { + "start": 6222.34, + "end": 6225.86, + "probability": 0.8109 + }, + { + "start": 6226.54, + "end": 6228.7, + "probability": 0.9307 + }, + { + "start": 6229.32, + "end": 6230.56, + "probability": 0.8386 + }, + { + "start": 6231.2, + "end": 6232.7, + "probability": 0.9419 + }, + { + "start": 6233.08, + "end": 6235.0, + "probability": 0.9747 + }, + { + "start": 6235.64, + "end": 6237.72, + "probability": 0.9895 + }, + { + "start": 6238.44, + "end": 6239.52, + "probability": 0.9507 + }, + { + "start": 6239.74, + "end": 6240.04, + "probability": 0.6199 + }, + { + "start": 6240.06, + "end": 6242.82, + "probability": 0.9982 + }, + { + "start": 6243.34, + "end": 6246.7, + "probability": 0.9528 + }, + { + "start": 6247.3, + "end": 6248.49, + "probability": 0.7266 + }, + { + "start": 6249.52, + "end": 6250.88, + "probability": 0.9235 + }, + { + "start": 6251.56, + "end": 6252.04, + "probability": 0.7586 + }, + { + "start": 6252.68, + "end": 6253.42, + "probability": 0.949 + }, + { + "start": 6253.9, + "end": 6256.64, + "probability": 0.9818 + }, + { + "start": 6256.74, + "end": 6257.3, + "probability": 0.7911 + }, + { + "start": 6257.58, + "end": 6258.52, + "probability": 0.9024 + }, + { + "start": 6259.0, + "end": 6261.42, + "probability": 0.8427 + }, + { + "start": 6261.72, + "end": 6264.4, + "probability": 0.4166 + }, + { + "start": 6265.92, + "end": 6269.7, + "probability": 0.8801 + }, + { + "start": 6270.3, + "end": 6271.04, + "probability": 0.8755 + }, + { + "start": 6271.82, + "end": 6278.52, + "probability": 0.9534 + }, + { + "start": 6278.76, + "end": 6281.42, + "probability": 0.9487 + }, + { + "start": 6282.08, + "end": 6284.04, + "probability": 0.8659 + }, + { + "start": 6285.74, + "end": 6288.18, + "probability": 0.907 + }, + { + "start": 6289.7, + "end": 6291.38, + "probability": 0.9644 + }, + { + "start": 6292.5, + "end": 6294.1, + "probability": 0.9677 + }, + { + "start": 6294.64, + "end": 6298.4, + "probability": 0.9952 + }, + { + "start": 6299.5, + "end": 6303.6, + "probability": 0.9208 + }, + { + "start": 6305.21, + "end": 6307.54, + "probability": 0.8769 + }, + { + "start": 6308.12, + "end": 6310.3, + "probability": 0.7886 + }, + { + "start": 6311.38, + "end": 6313.96, + "probability": 0.9922 + }, + { + "start": 6314.04, + "end": 6315.56, + "probability": 0.9643 + }, + { + "start": 6317.1, + "end": 6319.78, + "probability": 0.9838 + }, + { + "start": 6320.34, + "end": 6322.84, + "probability": 0.8617 + }, + { + "start": 6322.9, + "end": 6323.28, + "probability": 0.7883 + }, + { + "start": 6325.34, + "end": 6325.56, + "probability": 0.4317 + }, + { + "start": 6325.64, + "end": 6326.76, + "probability": 0.7194 + }, + { + "start": 6334.1, + "end": 6336.02, + "probability": 0.6576 + }, + { + "start": 6336.92, + "end": 6338.06, + "probability": 0.6715 + }, + { + "start": 6338.88, + "end": 6339.66, + "probability": 0.7687 + }, + { + "start": 6340.5, + "end": 6341.54, + "probability": 0.9751 + }, + { + "start": 6341.84, + "end": 6342.34, + "probability": 0.8037 + }, + { + "start": 6342.71, + "end": 6344.62, + "probability": 0.939 + }, + { + "start": 6345.32, + "end": 6350.28, + "probability": 0.9962 + }, + { + "start": 6350.32, + "end": 6350.98, + "probability": 0.8728 + }, + { + "start": 6351.82, + "end": 6356.3, + "probability": 0.9888 + }, + { + "start": 6356.96, + "end": 6363.4, + "probability": 0.9907 + }, + { + "start": 6364.08, + "end": 6369.42, + "probability": 0.9368 + }, + { + "start": 6370.5, + "end": 6374.1, + "probability": 0.8733 + }, + { + "start": 6374.82, + "end": 6381.26, + "probability": 0.8524 + }, + { + "start": 6381.66, + "end": 6382.84, + "probability": 0.3627 + }, + { + "start": 6384.26, + "end": 6386.12, + "probability": 0.9755 + }, + { + "start": 6386.52, + "end": 6386.98, + "probability": 0.6349 + }, + { + "start": 6387.02, + "end": 6390.55, + "probability": 0.9786 + }, + { + "start": 6390.86, + "end": 6391.7, + "probability": 0.7967 + }, + { + "start": 6392.56, + "end": 6395.5, + "probability": 0.8237 + }, + { + "start": 6395.96, + "end": 6398.42, + "probability": 0.9934 + }, + { + "start": 6398.84, + "end": 6401.6, + "probability": 0.9473 + }, + { + "start": 6402.12, + "end": 6406.12, + "probability": 0.9859 + }, + { + "start": 6406.8, + "end": 6409.2, + "probability": 0.9355 + }, + { + "start": 6409.94, + "end": 6411.84, + "probability": 0.8512 + }, + { + "start": 6412.88, + "end": 6413.64, + "probability": 0.9528 + }, + { + "start": 6413.74, + "end": 6414.62, + "probability": 0.9619 + }, + { + "start": 6414.77, + "end": 6415.22, + "probability": 0.9163 + }, + { + "start": 6415.68, + "end": 6416.39, + "probability": 0.8441 + }, + { + "start": 6417.22, + "end": 6419.34, + "probability": 0.9287 + }, + { + "start": 6420.28, + "end": 6421.5, + "probability": 0.9806 + }, + { + "start": 6422.02, + "end": 6423.04, + "probability": 0.5162 + }, + { + "start": 6423.94, + "end": 6428.2, + "probability": 0.9388 + }, + { + "start": 6428.96, + "end": 6430.18, + "probability": 0.9907 + }, + { + "start": 6431.48, + "end": 6433.5, + "probability": 0.6711 + }, + { + "start": 6433.6, + "end": 6434.02, + "probability": 0.7576 + }, + { + "start": 6434.1, + "end": 6437.98, + "probability": 0.8619 + }, + { + "start": 6438.04, + "end": 6438.93, + "probability": 0.7669 + }, + { + "start": 6439.26, + "end": 6441.96, + "probability": 0.6669 + }, + { + "start": 6442.48, + "end": 6447.04, + "probability": 0.9154 + }, + { + "start": 6447.46, + "end": 6447.56, + "probability": 0.4672 + }, + { + "start": 6447.66, + "end": 6447.76, + "probability": 0.4932 + }, + { + "start": 6447.84, + "end": 6448.68, + "probability": 0.9782 + }, + { + "start": 6449.08, + "end": 6449.96, + "probability": 0.8401 + }, + { + "start": 6450.66, + "end": 6454.3, + "probability": 0.9391 + }, + { + "start": 6454.86, + "end": 6458.24, + "probability": 0.9164 + }, + { + "start": 6458.64, + "end": 6460.2, + "probability": 0.9155 + }, + { + "start": 6460.92, + "end": 6462.26, + "probability": 0.8796 + }, + { + "start": 6462.26, + "end": 6463.18, + "probability": 0.8543 + }, + { + "start": 6463.24, + "end": 6467.78, + "probability": 0.9539 + }, + { + "start": 6467.84, + "end": 6469.76, + "probability": 0.9434 + }, + { + "start": 6471.04, + "end": 6474.46, + "probability": 0.986 + }, + { + "start": 6475.38, + "end": 6478.46, + "probability": 0.9409 + }, + { + "start": 6479.08, + "end": 6482.28, + "probability": 0.8356 + }, + { + "start": 6482.82, + "end": 6484.98, + "probability": 0.9595 + }, + { + "start": 6485.04, + "end": 6491.22, + "probability": 0.9486 + }, + { + "start": 6492.62, + "end": 6498.1, + "probability": 0.948 + }, + { + "start": 6498.78, + "end": 6500.68, + "probability": 0.8389 + }, + { + "start": 6501.58, + "end": 6502.52, + "probability": 0.8066 + }, + { + "start": 6503.38, + "end": 6506.1, + "probability": 0.8075 + }, + { + "start": 6506.64, + "end": 6508.4, + "probability": 0.8752 + }, + { + "start": 6509.04, + "end": 6511.88, + "probability": 0.9519 + }, + { + "start": 6512.62, + "end": 6513.9, + "probability": 0.9923 + }, + { + "start": 6514.26, + "end": 6515.54, + "probability": 0.9089 + }, + { + "start": 6515.74, + "end": 6517.02, + "probability": 0.6597 + }, + { + "start": 6517.08, + "end": 6521.84, + "probability": 0.9775 + }, + { + "start": 6522.38, + "end": 6523.72, + "probability": 0.9791 + }, + { + "start": 6524.2, + "end": 6527.94, + "probability": 0.9822 + }, + { + "start": 6528.46, + "end": 6529.42, + "probability": 0.9552 + }, + { + "start": 6529.94, + "end": 6532.92, + "probability": 0.9915 + }, + { + "start": 6532.92, + "end": 6533.28, + "probability": 0.6169 + }, + { + "start": 6535.06, + "end": 6535.36, + "probability": 0.6834 + }, + { + "start": 6535.52, + "end": 6538.84, + "probability": 0.5889 + }, + { + "start": 6539.32, + "end": 6540.52, + "probability": 0.9155 + }, + { + "start": 6562.3, + "end": 6564.64, + "probability": 0.6109 + }, + { + "start": 6566.06, + "end": 6567.36, + "probability": 0.9028 + }, + { + "start": 6568.34, + "end": 6571.78, + "probability": 0.9741 + }, + { + "start": 6572.56, + "end": 6577.88, + "probability": 0.9941 + }, + { + "start": 6578.74, + "end": 6582.9, + "probability": 0.9985 + }, + { + "start": 6583.44, + "end": 6586.08, + "probability": 0.9974 + }, + { + "start": 6586.9, + "end": 6590.92, + "probability": 0.9421 + }, + { + "start": 6591.54, + "end": 6595.47, + "probability": 0.9955 + }, + { + "start": 6596.34, + "end": 6601.1, + "probability": 0.9828 + }, + { + "start": 6601.62, + "end": 6605.08, + "probability": 0.9964 + }, + { + "start": 6606.0, + "end": 6611.06, + "probability": 0.9905 + }, + { + "start": 6612.02, + "end": 6614.52, + "probability": 0.9847 + }, + { + "start": 6615.06, + "end": 6618.26, + "probability": 0.9495 + }, + { + "start": 6619.38, + "end": 6624.44, + "probability": 0.891 + }, + { + "start": 6625.38, + "end": 6631.72, + "probability": 0.9373 + }, + { + "start": 6632.54, + "end": 6634.28, + "probability": 0.8841 + }, + { + "start": 6634.96, + "end": 6637.36, + "probability": 0.7732 + }, + { + "start": 6638.04, + "end": 6642.46, + "probability": 0.9675 + }, + { + "start": 6643.24, + "end": 6644.14, + "probability": 0.5329 + }, + { + "start": 6645.88, + "end": 6647.04, + "probability": 0.9751 + }, + { + "start": 6647.92, + "end": 6653.06, + "probability": 0.9842 + }, + { + "start": 6653.06, + "end": 6657.48, + "probability": 0.9969 + }, + { + "start": 6658.26, + "end": 6665.26, + "probability": 0.9969 + }, + { + "start": 6665.84, + "end": 6669.52, + "probability": 0.8166 + }, + { + "start": 6670.32, + "end": 6675.12, + "probability": 0.8777 + }, + { + "start": 6676.32, + "end": 6683.06, + "probability": 0.9675 + }, + { + "start": 6683.58, + "end": 6685.6, + "probability": 0.9324 + }, + { + "start": 6686.26, + "end": 6687.34, + "probability": 0.969 + }, + { + "start": 6688.38, + "end": 6691.92, + "probability": 0.9988 + }, + { + "start": 6691.94, + "end": 6697.82, + "probability": 0.9985 + }, + { + "start": 6699.06, + "end": 6700.82, + "probability": 0.8607 + }, + { + "start": 6702.18, + "end": 6702.38, + "probability": 0.6365 + }, + { + "start": 6702.52, + "end": 6707.04, + "probability": 0.989 + }, + { + "start": 6707.8, + "end": 6710.34, + "probability": 0.9966 + }, + { + "start": 6711.04, + "end": 6711.72, + "probability": 0.9412 + }, + { + "start": 6712.36, + "end": 6715.46, + "probability": 0.681 + }, + { + "start": 6716.08, + "end": 6717.2, + "probability": 0.9834 + }, + { + "start": 6717.3, + "end": 6719.72, + "probability": 0.7668 + }, + { + "start": 6720.06, + "end": 6723.12, + "probability": 0.8802 + }, + { + "start": 6723.72, + "end": 6729.95, + "probability": 0.9709 + }, + { + "start": 6731.04, + "end": 6733.26, + "probability": 0.5981 + }, + { + "start": 6733.82, + "end": 6737.52, + "probability": 0.9032 + }, + { + "start": 6738.2, + "end": 6738.88, + "probability": 0.8329 + }, + { + "start": 6741.34, + "end": 6741.84, + "probability": 0.632 + }, + { + "start": 6741.88, + "end": 6743.12, + "probability": 0.8471 + }, + { + "start": 6757.66, + "end": 6757.7, + "probability": 0.0381 + }, + { + "start": 6765.18, + "end": 6767.32, + "probability": 0.4933 + }, + { + "start": 6768.86, + "end": 6771.58, + "probability": 0.9973 + }, + { + "start": 6773.46, + "end": 6777.52, + "probability": 0.9209 + }, + { + "start": 6780.06, + "end": 6781.0, + "probability": 0.5291 + }, + { + "start": 6782.2, + "end": 6784.44, + "probability": 0.9983 + }, + { + "start": 6786.42, + "end": 6789.94, + "probability": 0.9965 + }, + { + "start": 6791.06, + "end": 6794.54, + "probability": 0.9991 + }, + { + "start": 6794.68, + "end": 6795.88, + "probability": 0.9181 + }, + { + "start": 6796.84, + "end": 6801.5, + "probability": 0.9965 + }, + { + "start": 6804.32, + "end": 6806.64, + "probability": 0.9982 + }, + { + "start": 6807.64, + "end": 6809.52, + "probability": 0.9832 + }, + { + "start": 6811.0, + "end": 6817.28, + "probability": 0.9593 + }, + { + "start": 6818.1, + "end": 6819.7, + "probability": 0.9866 + }, + { + "start": 6820.32, + "end": 6822.52, + "probability": 0.9241 + }, + { + "start": 6823.32, + "end": 6826.08, + "probability": 0.8874 + }, + { + "start": 6826.7, + "end": 6829.6, + "probability": 0.9758 + }, + { + "start": 6830.18, + "end": 6831.28, + "probability": 0.9971 + }, + { + "start": 6832.12, + "end": 6833.82, + "probability": 0.9744 + }, + { + "start": 6834.4, + "end": 6835.24, + "probability": 0.9839 + }, + { + "start": 6836.28, + "end": 6838.2, + "probability": 0.9969 + }, + { + "start": 6840.02, + "end": 6842.78, + "probability": 0.9209 + }, + { + "start": 6843.34, + "end": 6844.32, + "probability": 0.4779 + }, + { + "start": 6846.7, + "end": 6847.98, + "probability": 0.8959 + }, + { + "start": 6848.02, + "end": 6852.72, + "probability": 0.9558 + }, + { + "start": 6853.14, + "end": 6858.46, + "probability": 0.9935 + }, + { + "start": 6858.46, + "end": 6860.92, + "probability": 0.9993 + }, + { + "start": 6862.64, + "end": 6865.28, + "probability": 0.9459 + }, + { + "start": 6866.34, + "end": 6868.52, + "probability": 0.8986 + }, + { + "start": 6869.44, + "end": 6870.26, + "probability": 0.7608 + }, + { + "start": 6872.26, + "end": 6875.64, + "probability": 0.8905 + }, + { + "start": 6876.26, + "end": 6877.9, + "probability": 0.8944 + }, + { + "start": 6878.86, + "end": 6881.46, + "probability": 0.9844 + }, + { + "start": 6883.22, + "end": 6886.56, + "probability": 0.9809 + }, + { + "start": 6887.74, + "end": 6891.88, + "probability": 0.9795 + }, + { + "start": 6893.2, + "end": 6896.24, + "probability": 0.997 + }, + { + "start": 6897.8, + "end": 6898.84, + "probability": 0.8685 + }, + { + "start": 6899.76, + "end": 6902.66, + "probability": 0.9848 + }, + { + "start": 6904.5, + "end": 6906.54, + "probability": 0.9985 + }, + { + "start": 6907.56, + "end": 6909.22, + "probability": 0.9991 + }, + { + "start": 6910.72, + "end": 6913.68, + "probability": 0.8536 + }, + { + "start": 6913.98, + "end": 6918.74, + "probability": 0.9566 + }, + { + "start": 6918.74, + "end": 6922.84, + "probability": 0.8128 + }, + { + "start": 6924.64, + "end": 6926.94, + "probability": 0.9655 + }, + { + "start": 6926.94, + "end": 6929.8, + "probability": 0.9977 + }, + { + "start": 6930.78, + "end": 6932.04, + "probability": 0.9859 + }, + { + "start": 6933.92, + "end": 6934.24, + "probability": 0.7548 + }, + { + "start": 6934.42, + "end": 6935.28, + "probability": 0.892 + }, + { + "start": 6935.5, + "end": 6937.1, + "probability": 0.8442 + }, + { + "start": 6937.5, + "end": 6938.14, + "probability": 0.7486 + }, + { + "start": 6938.34, + "end": 6938.89, + "probability": 0.726 + }, + { + "start": 6939.4, + "end": 6939.6, + "probability": 0.9362 + }, + { + "start": 6939.6, + "end": 6940.26, + "probability": 0.9026 + }, + { + "start": 6940.46, + "end": 6941.42, + "probability": 0.9891 + }, + { + "start": 6941.46, + "end": 6942.36, + "probability": 0.6543 + }, + { + "start": 6942.36, + "end": 6943.2, + "probability": 0.8191 + }, + { + "start": 6943.25, + "end": 6945.8, + "probability": 0.9528 + }, + { + "start": 6945.98, + "end": 6946.54, + "probability": 0.1976 + }, + { + "start": 6946.56, + "end": 6947.47, + "probability": 0.4711 + }, + { + "start": 6947.66, + "end": 6948.32, + "probability": 0.5376 + }, + { + "start": 6948.61, + "end": 6948.7, + "probability": 0.8492 + }, + { + "start": 6948.7, + "end": 6952.08, + "probability": 0.9878 + }, + { + "start": 6952.08, + "end": 6955.32, + "probability": 0.4951 + }, + { + "start": 6955.34, + "end": 6955.6, + "probability": 0.0239 + }, + { + "start": 6955.6, + "end": 6955.6, + "probability": 0.1479 + }, + { + "start": 6955.6, + "end": 6955.6, + "probability": 0.3656 + }, + { + "start": 6955.6, + "end": 6956.48, + "probability": 0.6237 + }, + { + "start": 6956.68, + "end": 6957.88, + "probability": 0.5119 + }, + { + "start": 6958.14, + "end": 6961.38, + "probability": 0.9547 + }, + { + "start": 6961.6, + "end": 6961.6, + "probability": 0.1097 + }, + { + "start": 6961.6, + "end": 6961.6, + "probability": 0.0283 + }, + { + "start": 6961.6, + "end": 6963.14, + "probability": 0.7264 + }, + { + "start": 6963.22, + "end": 6963.66, + "probability": 0.7496 + }, + { + "start": 6964.0, + "end": 6964.54, + "probability": 0.2134 + }, + { + "start": 6964.58, + "end": 6965.04, + "probability": 0.6962 + }, + { + "start": 6965.04, + "end": 6965.8, + "probability": 0.4387 + }, + { + "start": 6965.82, + "end": 6966.38, + "probability": 0.7452 + }, + { + "start": 6966.56, + "end": 6966.98, + "probability": 0.3231 + }, + { + "start": 6966.98, + "end": 6968.84, + "probability": 0.965 + }, + { + "start": 6971.5, + "end": 6972.8, + "probability": 0.4247 + }, + { + "start": 6986.96, + "end": 6988.42, + "probability": 0.3723 + }, + { + "start": 6989.94, + "end": 6991.3, + "probability": 0.8066 + }, + { + "start": 6992.4, + "end": 6993.0, + "probability": 0.9425 + }, + { + "start": 6994.0, + "end": 6995.0, + "probability": 0.4116 + }, + { + "start": 6995.6, + "end": 6996.94, + "probability": 0.8552 + }, + { + "start": 6997.94, + "end": 6998.5, + "probability": 0.5077 + }, + { + "start": 6999.02, + "end": 7002.1, + "probability": 0.9653 + }, + { + "start": 7002.8, + "end": 7003.34, + "probability": 0.7354 + }, + { + "start": 7004.18, + "end": 7007.02, + "probability": 0.9825 + }, + { + "start": 7008.2, + "end": 7010.3, + "probability": 0.9096 + }, + { + "start": 7010.82, + "end": 7011.24, + "probability": 0.5451 + }, + { + "start": 7012.14, + "end": 7013.2, + "probability": 0.6822 + }, + { + "start": 7013.78, + "end": 7016.3, + "probability": 0.9277 + }, + { + "start": 7017.02, + "end": 7017.38, + "probability": 0.9455 + }, + { + "start": 7018.7, + "end": 7020.88, + "probability": 0.9706 + }, + { + "start": 7022.24, + "end": 7023.32, + "probability": 0.9827 + }, + { + "start": 7024.36, + "end": 7025.28, + "probability": 0.7651 + }, + { + "start": 7026.02, + "end": 7030.18, + "probability": 0.9894 + }, + { + "start": 7031.82, + "end": 7033.46, + "probability": 0.8301 + }, + { + "start": 7034.56, + "end": 7036.14, + "probability": 0.9651 + }, + { + "start": 7038.04, + "end": 7038.76, + "probability": 0.499 + }, + { + "start": 7041.88, + "end": 7043.56, + "probability": 0.728 + }, + { + "start": 7047.18, + "end": 7048.04, + "probability": 0.8067 + }, + { + "start": 7049.06, + "end": 7049.44, + "probability": 0.5032 + }, + { + "start": 7050.48, + "end": 7052.76, + "probability": 0.9893 + }, + { + "start": 7053.72, + "end": 7054.5, + "probability": 0.7354 + }, + { + "start": 7057.4, + "end": 7058.2, + "probability": 0.7375 + }, + { + "start": 7058.62, + "end": 7061.5, + "probability": 0.998 + }, + { + "start": 7062.66, + "end": 7063.92, + "probability": 0.9653 + }, + { + "start": 7064.48, + "end": 7066.48, + "probability": 0.8051 + }, + { + "start": 7067.08, + "end": 7068.6, + "probability": 0.7867 + }, + { + "start": 7069.54, + "end": 7070.02, + "probability": 0.4792 + }, + { + "start": 7070.26, + "end": 7072.2, + "probability": 0.9017 + }, + { + "start": 7072.44, + "end": 7075.68, + "probability": 0.9634 + }, + { + "start": 7077.36, + "end": 7078.72, + "probability": 0.6324 + }, + { + "start": 7078.98, + "end": 7079.52, + "probability": 0.9109 + }, + { + "start": 7080.72, + "end": 7082.42, + "probability": 0.9847 + }, + { + "start": 7085.04, + "end": 7086.86, + "probability": 0.6069 + }, + { + "start": 7087.62, + "end": 7088.86, + "probability": 0.8841 + }, + { + "start": 7090.12, + "end": 7090.82, + "probability": 0.6228 + }, + { + "start": 7093.1, + "end": 7093.96, + "probability": 0.6166 + }, + { + "start": 7095.54, + "end": 7100.24, + "probability": 0.2697 + }, + { + "start": 7100.78, + "end": 7101.58, + "probability": 0.4815 + }, + { + "start": 7102.94, + "end": 7108.62, + "probability": 0.9696 + }, + { + "start": 7111.4, + "end": 7112.64, + "probability": 0.6792 + }, + { + "start": 7115.2, + "end": 7115.99, + "probability": 0.4514 + }, + { + "start": 7117.74, + "end": 7120.02, + "probability": 0.987 + }, + { + "start": 7127.08, + "end": 7127.5, + "probability": 0.7248 + }, + { + "start": 7129.1, + "end": 7134.18, + "probability": 0.8501 + }, + { + "start": 7135.32, + "end": 7137.36, + "probability": 0.8354 + }, + { + "start": 7138.04, + "end": 7138.68, + "probability": 0.8746 + }, + { + "start": 7139.88, + "end": 7142.8, + "probability": 0.9559 + }, + { + "start": 7143.54, + "end": 7143.78, + "probability": 0.2758 + }, + { + "start": 7144.32, + "end": 7145.14, + "probability": 0.4619 + }, + { + "start": 7145.24, + "end": 7145.52, + "probability": 0.8216 + }, + { + "start": 7145.72, + "end": 7148.4, + "probability": 0.7253 + }, + { + "start": 7149.04, + "end": 7149.64, + "probability": 0.7277 + }, + { + "start": 7149.72, + "end": 7150.74, + "probability": 0.9128 + }, + { + "start": 7151.24, + "end": 7153.72, + "probability": 0.6454 + }, + { + "start": 7153.72, + "end": 7156.52, + "probability": 0.8273 + }, + { + "start": 7156.64, + "end": 7157.24, + "probability": 0.5048 + }, + { + "start": 7157.46, + "end": 7159.44, + "probability": 0.9189 + }, + { + "start": 7160.04, + "end": 7161.02, + "probability": 0.6982 + }, + { + "start": 7161.88, + "end": 7164.04, + "probability": 0.927 + }, + { + "start": 7164.1, + "end": 7164.6, + "probability": 0.8792 + }, + { + "start": 7164.82, + "end": 7166.34, + "probability": 0.0197 + }, + { + "start": 7167.06, + "end": 7167.41, + "probability": 0.0022 + }, + { + "start": 7167.9, + "end": 7167.9, + "probability": 0.0037 + }, + { + "start": 7167.9, + "end": 7168.84, + "probability": 0.5859 + }, + { + "start": 7169.18, + "end": 7171.06, + "probability": 0.9256 + }, + { + "start": 7171.2, + "end": 7171.66, + "probability": 0.2529 + }, + { + "start": 7173.8, + "end": 7174.44, + "probability": 0.0048 + }, + { + "start": 7174.6, + "end": 7175.14, + "probability": 0.1092 + }, + { + "start": 7175.3, + "end": 7175.3, + "probability": 0.1072 + }, + { + "start": 7175.3, + "end": 7175.3, + "probability": 0.0896 + }, + { + "start": 7175.3, + "end": 7176.06, + "probability": 0.6491 + }, + { + "start": 7176.18, + "end": 7176.18, + "probability": 0.149 + }, + { + "start": 7176.18, + "end": 7176.96, + "probability": 0.8354 + }, + { + "start": 7177.16, + "end": 7181.1, + "probability": 0.8263 + }, + { + "start": 7181.1, + "end": 7181.76, + "probability": 0.8033 + }, + { + "start": 7181.98, + "end": 7182.42, + "probability": 0.4013 + }, + { + "start": 7182.62, + "end": 7184.46, + "probability": 0.9334 + }, + { + "start": 7184.58, + "end": 7187.52, + "probability": 0.1198 + }, + { + "start": 7187.56, + "end": 7188.66, + "probability": 0.7343 + }, + { + "start": 7188.96, + "end": 7191.62, + "probability": 0.8261 + }, + { + "start": 7192.02, + "end": 7192.52, + "probability": 0.4022 + }, + { + "start": 7192.62, + "end": 7192.62, + "probability": 0.0203 + }, + { + "start": 7192.62, + "end": 7193.89, + "probability": 0.4553 + }, + { + "start": 7196.15, + "end": 7197.9, + "probability": 0.7713 + }, + { + "start": 7197.96, + "end": 7198.88, + "probability": 0.1259 + }, + { + "start": 7199.2, + "end": 7200.06, + "probability": 0.8296 + }, + { + "start": 7200.86, + "end": 7202.76, + "probability": 0.993 + }, + { + "start": 7203.26, + "end": 7205.62, + "probability": 0.7959 + }, + { + "start": 7206.38, + "end": 7207.68, + "probability": 0.8426 + }, + { + "start": 7207.84, + "end": 7209.28, + "probability": 0.9521 + }, + { + "start": 7209.88, + "end": 7213.46, + "probability": 0.9201 + }, + { + "start": 7214.7, + "end": 7222.26, + "probability": 0.9705 + }, + { + "start": 7223.62, + "end": 7226.2, + "probability": 0.9539 + }, + { + "start": 7226.96, + "end": 7228.54, + "probability": 0.9875 + }, + { + "start": 7230.58, + "end": 7231.58, + "probability": 0.925 + }, + { + "start": 7232.22, + "end": 7232.72, + "probability": 0.6504 + }, + { + "start": 7234.0, + "end": 7236.02, + "probability": 0.7794 + }, + { + "start": 7238.38, + "end": 7242.58, + "probability": 0.9824 + }, + { + "start": 7244.67, + "end": 7247.44, + "probability": 0.9193 + }, + { + "start": 7249.26, + "end": 7251.4, + "probability": 0.985 + }, + { + "start": 7253.28, + "end": 7261.86, + "probability": 0.8937 + }, + { + "start": 7264.44, + "end": 7265.88, + "probability": 0.9615 + }, + { + "start": 7268.32, + "end": 7270.1, + "probability": 0.9502 + }, + { + "start": 7272.96, + "end": 7274.16, + "probability": 0.6731 + }, + { + "start": 7277.92, + "end": 7280.92, + "probability": 0.8621 + }, + { + "start": 7281.6, + "end": 7284.34, + "probability": 0.9924 + }, + { + "start": 7285.02, + "end": 7288.9, + "probability": 0.9646 + }, + { + "start": 7289.78, + "end": 7291.7, + "probability": 0.9811 + }, + { + "start": 7291.76, + "end": 7294.84, + "probability": 0.9588 + }, + { + "start": 7295.84, + "end": 7301.14, + "probability": 0.9597 + }, + { + "start": 7301.68, + "end": 7304.38, + "probability": 0.9403 + }, + { + "start": 7305.28, + "end": 7308.18, + "probability": 0.5903 + }, + { + "start": 7309.0, + "end": 7313.1, + "probability": 0.9865 + }, + { + "start": 7314.26, + "end": 7317.64, + "probability": 0.9346 + }, + { + "start": 7318.52, + "end": 7322.9, + "probability": 0.877 + }, + { + "start": 7323.12, + "end": 7323.6, + "probability": 0.7335 + }, + { + "start": 7326.78, + "end": 7328.28, + "probability": 0.8692 + }, + { + "start": 7328.6, + "end": 7329.16, + "probability": 0.9381 + }, + { + "start": 7329.56, + "end": 7331.06, + "probability": 0.9628 + }, + { + "start": 7331.44, + "end": 7335.06, + "probability": 0.7515 + }, + { + "start": 7336.06, + "end": 7337.6, + "probability": 0.7458 + }, + { + "start": 7340.26, + "end": 7340.78, + "probability": 0.4501 + }, + { + "start": 7340.78, + "end": 7340.78, + "probability": 0.2239 + }, + { + "start": 7340.78, + "end": 7341.83, + "probability": 0.5203 + }, + { + "start": 7342.14, + "end": 7342.78, + "probability": 0.6509 + }, + { + "start": 7343.26, + "end": 7344.37, + "probability": 0.7779 + }, + { + "start": 7345.48, + "end": 7347.1, + "probability": 0.8539 + }, + { + "start": 7349.38, + "end": 7350.1, + "probability": 0.7256 + }, + { + "start": 7362.12, + "end": 7364.82, + "probability": 0.0498 + }, + { + "start": 7365.34, + "end": 7367.22, + "probability": 0.1539 + }, + { + "start": 7368.48, + "end": 7369.2, + "probability": 0.0213 + }, + { + "start": 7400.42, + "end": 7401.04, + "probability": 0.0233 + }, + { + "start": 7401.04, + "end": 7402.84, + "probability": 0.0698 + }, + { + "start": 7404.31, + "end": 7406.26, + "probability": 0.1077 + }, + { + "start": 7406.26, + "end": 7406.62, + "probability": 0.058 + }, + { + "start": 7407.18, + "end": 7408.66, + "probability": 0.1131 + }, + { + "start": 7409.86, + "end": 7410.2, + "probability": 0.1726 + }, + { + "start": 7410.2, + "end": 7412.24, + "probability": 0.1144 + }, + { + "start": 7414.04, + "end": 7414.82, + "probability": 0.0704 + }, + { + "start": 7416.5, + "end": 7420.94, + "probability": 0.0172 + }, + { + "start": 7421.5, + "end": 7421.72, + "probability": 0.0074 + }, + { + "start": 7422.78, + "end": 7423.56, + "probability": 0.0756 + }, + { + "start": 7423.56, + "end": 7426.22, + "probability": 0.3762 + }, + { + "start": 7426.24, + "end": 7427.7, + "probability": 0.382 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.0, + "end": 7443.0, + "probability": 0.0 + }, + { + "start": 7443.78, + "end": 7445.22, + "probability": 0.2428 + }, + { + "start": 7445.22, + "end": 7449.1, + "probability": 0.1038 + }, + { + "start": 7451.16, + "end": 7453.7, + "probability": 0.8252 + }, + { + "start": 7453.7, + "end": 7453.82, + "probability": 0.2417 + }, + { + "start": 7455.14, + "end": 7455.14, + "probability": 0.5607 + }, + { + "start": 7455.14, + "end": 7455.14, + "probability": 0.5569 + }, + { + "start": 7455.14, + "end": 7455.99, + "probability": 0.647 + }, + { + "start": 7457.06, + "end": 7457.91, + "probability": 0.8125 + }, + { + "start": 7460.32, + "end": 7472.02, + "probability": 0.7772 + }, + { + "start": 7473.41, + "end": 7477.9, + "probability": 0.8348 + }, + { + "start": 7478.54, + "end": 7479.96, + "probability": 0.7582 + }, + { + "start": 7481.78, + "end": 7484.0, + "probability": 0.7214 + }, + { + "start": 7485.8, + "end": 7491.96, + "probability": 0.7078 + }, + { + "start": 7493.56, + "end": 7499.16, + "probability": 0.938 + }, + { + "start": 7499.78, + "end": 7502.02, + "probability": 0.691 + }, + { + "start": 7502.1, + "end": 7506.77, + "probability": 0.8502 + }, + { + "start": 7507.92, + "end": 7513.62, + "probability": 0.7107 + }, + { + "start": 7514.34, + "end": 7515.4, + "probability": 0.9918 + }, + { + "start": 7515.96, + "end": 7519.48, + "probability": 0.9957 + }, + { + "start": 7520.52, + "end": 7521.8, + "probability": 0.6146 + }, + { + "start": 7522.48, + "end": 7531.16, + "probability": 0.9578 + }, + { + "start": 7532.66, + "end": 7533.22, + "probability": 0.6736 + }, + { + "start": 7535.28, + "end": 7536.14, + "probability": 0.8949 + }, + { + "start": 7536.82, + "end": 7539.16, + "probability": 0.9822 + }, + { + "start": 7540.36, + "end": 7545.3, + "probability": 0.9918 + }, + { + "start": 7546.68, + "end": 7548.86, + "probability": 0.9969 + }, + { + "start": 7549.82, + "end": 7553.1, + "probability": 0.994 + }, + { + "start": 7554.34, + "end": 7560.6, + "probability": 0.8578 + }, + { + "start": 7561.64, + "end": 7562.4, + "probability": 0.576 + }, + { + "start": 7562.96, + "end": 7566.78, + "probability": 0.9952 + }, + { + "start": 7567.86, + "end": 7571.44, + "probability": 0.9056 + }, + { + "start": 7572.2, + "end": 7578.26, + "probability": 0.9992 + }, + { + "start": 7578.86, + "end": 7589.14, + "probability": 0.9949 + }, + { + "start": 7589.96, + "end": 7592.62, + "probability": 0.9438 + }, + { + "start": 7594.48, + "end": 7600.7, + "probability": 0.9987 + }, + { + "start": 7602.44, + "end": 7605.96, + "probability": 0.7251 + }, + { + "start": 7606.78, + "end": 7608.1, + "probability": 0.8452 + }, + { + "start": 7610.12, + "end": 7611.86, + "probability": 0.3212 + }, + { + "start": 7612.72, + "end": 7620.18, + "probability": 0.9932 + }, + { + "start": 7620.18, + "end": 7623.4, + "probability": 0.9912 + }, + { + "start": 7624.4, + "end": 7626.0, + "probability": 0.9248 + }, + { + "start": 7630.5, + "end": 7633.08, + "probability": 0.465 + }, + { + "start": 7635.6, + "end": 7637.8, + "probability": 0.708 + }, + { + "start": 7638.44, + "end": 7643.1, + "probability": 0.7211 + }, + { + "start": 7643.76, + "end": 7648.7, + "probability": 0.9274 + }, + { + "start": 7649.72, + "end": 7651.78, + "probability": 0.8328 + }, + { + "start": 7653.54, + "end": 7654.34, + "probability": 0.5166 + }, + { + "start": 7654.9, + "end": 7657.24, + "probability": 0.8847 + }, + { + "start": 7658.34, + "end": 7660.81, + "probability": 0.2502 + }, + { + "start": 7661.42, + "end": 7662.56, + "probability": 0.9731 + }, + { + "start": 7663.18, + "end": 7669.76, + "probability": 0.8151 + }, + { + "start": 7670.64, + "end": 7678.66, + "probability": 0.9594 + }, + { + "start": 7679.72, + "end": 7681.14, + "probability": 0.9788 + }, + { + "start": 7682.42, + "end": 7683.84, + "probability": 0.991 + }, + { + "start": 7684.46, + "end": 7685.92, + "probability": 0.9908 + }, + { + "start": 7687.12, + "end": 7689.3, + "probability": 0.7541 + }, + { + "start": 7690.3, + "end": 7690.7, + "probability": 0.5705 + }, + { + "start": 7691.24, + "end": 7692.16, + "probability": 0.9566 + }, + { + "start": 7693.16, + "end": 7694.74, + "probability": 0.993 + }, + { + "start": 7695.72, + "end": 7696.86, + "probability": 0.9512 + }, + { + "start": 7697.12, + "end": 7697.6, + "probability": 0.9657 + }, + { + "start": 7698.2, + "end": 7701.38, + "probability": 0.9865 + }, + { + "start": 7701.9, + "end": 7703.54, + "probability": 0.9508 + }, + { + "start": 7705.4, + "end": 7707.88, + "probability": 0.7137 + }, + { + "start": 7708.86, + "end": 7712.36, + "probability": 0.9467 + }, + { + "start": 7713.22, + "end": 7716.54, + "probability": 0.9967 + }, + { + "start": 7717.68, + "end": 7719.72, + "probability": 0.898 + }, + { + "start": 7720.34, + "end": 7724.18, + "probability": 0.995 + }, + { + "start": 7724.8, + "end": 7726.74, + "probability": 0.9919 + }, + { + "start": 7727.34, + "end": 7728.28, + "probability": 0.9811 + }, + { + "start": 7729.54, + "end": 7730.76, + "probability": 0.8846 + }, + { + "start": 7732.4, + "end": 7735.08, + "probability": 0.8522 + }, + { + "start": 7735.8, + "end": 7736.8, + "probability": 0.9639 + }, + { + "start": 7737.28, + "end": 7738.67, + "probability": 0.9058 + }, + { + "start": 7739.04, + "end": 7744.7, + "probability": 0.9955 + }, + { + "start": 7746.47, + "end": 7749.66, + "probability": 0.814 + }, + { + "start": 7750.94, + "end": 7754.58, + "probability": 0.9427 + }, + { + "start": 7755.54, + "end": 7756.96, + "probability": 0.7591 + }, + { + "start": 7757.62, + "end": 7760.54, + "probability": 0.9905 + }, + { + "start": 7760.68, + "end": 7763.34, + "probability": 0.9922 + }, + { + "start": 7763.64, + "end": 7765.01, + "probability": 0.9753 + }, + { + "start": 7766.32, + "end": 7766.8, + "probability": 0.9482 + }, + { + "start": 7767.12, + "end": 7771.64, + "probability": 0.9954 + }, + { + "start": 7772.62, + "end": 7775.44, + "probability": 0.9976 + }, + { + "start": 7775.84, + "end": 7776.38, + "probability": 0.747 + }, + { + "start": 7776.56, + "end": 7780.68, + "probability": 0.964 + }, + { + "start": 7780.68, + "end": 7783.24, + "probability": 0.6428 + }, + { + "start": 7783.7, + "end": 7785.5, + "probability": 0.6063 + }, + { + "start": 7785.54, + "end": 7789.8, + "probability": 0.8676 + }, + { + "start": 7789.98, + "end": 7794.3, + "probability": 0.0926 + }, + { + "start": 7805.48, + "end": 7806.42, + "probability": 0.8655 + }, + { + "start": 7807.5, + "end": 7808.84, + "probability": 0.1779 + }, + { + "start": 7808.84, + "end": 7810.44, + "probability": 0.2705 + }, + { + "start": 7810.44, + "end": 7810.44, + "probability": 0.1641 + }, + { + "start": 7810.44, + "end": 7812.66, + "probability": 0.3174 + }, + { + "start": 7813.24, + "end": 7813.24, + "probability": 0.1147 + }, + { + "start": 7813.24, + "end": 7815.1, + "probability": 0.1556 + }, + { + "start": 7822.78, + "end": 7823.5, + "probability": 0.0682 + }, + { + "start": 7823.5, + "end": 7824.54, + "probability": 0.0586 + }, + { + "start": 7825.4, + "end": 7825.44, + "probability": 0.2527 + }, + { + "start": 7825.44, + "end": 7825.62, + "probability": 0.7139 + }, + { + "start": 7825.62, + "end": 7827.7, + "probability": 0.1218 + }, + { + "start": 7832.28, + "end": 7833.96, + "probability": 0.49 + }, + { + "start": 7834.78, + "end": 7837.6, + "probability": 0.2006 + }, + { + "start": 7837.6, + "end": 7838.2, + "probability": 0.0119 + }, + { + "start": 7838.2, + "end": 7838.44, + "probability": 0.5299 + }, + { + "start": 7838.44, + "end": 7838.7, + "probability": 0.0504 + }, + { + "start": 7838.78, + "end": 7844.6, + "probability": 0.0661 + }, + { + "start": 7844.6, + "end": 7846.88, + "probability": 0.1717 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.0, + "end": 7881.0, + "probability": 0.0 + }, + { + "start": 7881.16, + "end": 7881.28, + "probability": 0.0837 + }, + { + "start": 7881.88, + "end": 7884.58, + "probability": 0.9888 + }, + { + "start": 7885.66, + "end": 7890.36, + "probability": 0.9654 + }, + { + "start": 7891.06, + "end": 7895.68, + "probability": 0.9603 + }, + { + "start": 7896.26, + "end": 7898.78, + "probability": 0.8538 + }, + { + "start": 7898.78, + "end": 7903.62, + "probability": 0.9798 + }, + { + "start": 7904.62, + "end": 7909.82, + "probability": 0.9883 + }, + { + "start": 7910.44, + "end": 7911.98, + "probability": 0.8188 + }, + { + "start": 7912.68, + "end": 7917.84, + "probability": 0.8709 + }, + { + "start": 7918.72, + "end": 7921.46, + "probability": 0.7535 + }, + { + "start": 7922.82, + "end": 7924.3, + "probability": 0.7455 + }, + { + "start": 7924.68, + "end": 7929.86, + "probability": 0.9911 + }, + { + "start": 7930.8, + "end": 7932.64, + "probability": 0.5673 + }, + { + "start": 7933.4, + "end": 7936.26, + "probability": 0.9793 + }, + { + "start": 7937.02, + "end": 7942.38, + "probability": 0.9857 + }, + { + "start": 7943.04, + "end": 7946.56, + "probability": 0.9957 + }, + { + "start": 7946.56, + "end": 7951.76, + "probability": 0.9607 + }, + { + "start": 7952.36, + "end": 7957.42, + "probability": 0.9944 + }, + { + "start": 7957.42, + "end": 7962.0, + "probability": 0.9738 + }, + { + "start": 7963.2, + "end": 7968.6, + "probability": 0.9347 + }, + { + "start": 7969.08, + "end": 7973.08, + "probability": 0.9749 + }, + { + "start": 7974.08, + "end": 7974.86, + "probability": 0.9435 + }, + { + "start": 7975.82, + "end": 7979.61, + "probability": 0.9863 + }, + { + "start": 7979.84, + "end": 7983.8, + "probability": 0.9796 + }, + { + "start": 7983.82, + "end": 7985.84, + "probability": 0.9791 + }, + { + "start": 7988.16, + "end": 7990.96, + "probability": 0.9888 + }, + { + "start": 7990.96, + "end": 7994.82, + "probability": 0.9944 + }, + { + "start": 7996.18, + "end": 7999.58, + "probability": 0.9822 + }, + { + "start": 7999.86, + "end": 8003.28, + "probability": 0.8414 + }, + { + "start": 8003.28, + "end": 8008.36, + "probability": 0.9675 + }, + { + "start": 8008.8, + "end": 8012.98, + "probability": 0.937 + }, + { + "start": 8013.44, + "end": 8016.3, + "probability": 0.9324 + }, + { + "start": 8017.02, + "end": 8022.26, + "probability": 0.9681 + }, + { + "start": 8022.6, + "end": 8024.44, + "probability": 0.856 + }, + { + "start": 8024.92, + "end": 8028.78, + "probability": 0.9769 + }, + { + "start": 8029.98, + "end": 8035.4, + "probability": 0.9523 + }, + { + "start": 8036.0, + "end": 8040.72, + "probability": 0.8481 + }, + { + "start": 8041.54, + "end": 8041.78, + "probability": 0.7406 + }, + { + "start": 8043.3, + "end": 8045.4, + "probability": 0.5145 + }, + { + "start": 8046.48, + "end": 8048.32, + "probability": 0.9065 + }, + { + "start": 8070.62, + "end": 8073.86, + "probability": 0.8323 + }, + { + "start": 8074.4, + "end": 8076.62, + "probability": 0.8543 + }, + { + "start": 8077.3, + "end": 8080.96, + "probability": 0.9934 + }, + { + "start": 8080.96, + "end": 8086.0, + "probability": 0.9694 + }, + { + "start": 8086.28, + "end": 8087.38, + "probability": 0.9485 + }, + { + "start": 8087.74, + "end": 8088.92, + "probability": 0.9719 + }, + { + "start": 8089.06, + "end": 8095.56, + "probability": 0.9951 + }, + { + "start": 8095.72, + "end": 8097.02, + "probability": 0.882 + }, + { + "start": 8097.5, + "end": 8102.92, + "probability": 0.9502 + }, + { + "start": 8103.3, + "end": 8105.48, + "probability": 0.989 + }, + { + "start": 8106.18, + "end": 8111.22, + "probability": 0.9881 + }, + { + "start": 8111.88, + "end": 8114.6, + "probability": 0.9773 + }, + { + "start": 8115.6, + "end": 8118.58, + "probability": 0.9751 + }, + { + "start": 8119.16, + "end": 8122.14, + "probability": 0.9865 + }, + { + "start": 8122.64, + "end": 8125.6, + "probability": 0.998 + }, + { + "start": 8126.12, + "end": 8131.56, + "probability": 0.9958 + }, + { + "start": 8132.32, + "end": 8136.72, + "probability": 0.9975 + }, + { + "start": 8137.54, + "end": 8140.47, + "probability": 0.9863 + }, + { + "start": 8140.88, + "end": 8142.8, + "probability": 0.9986 + }, + { + "start": 8143.18, + "end": 8143.64, + "probability": 0.9843 + }, + { + "start": 8144.4, + "end": 8144.79, + "probability": 0.9814 + }, + { + "start": 8145.68, + "end": 8146.14, + "probability": 0.9946 + }, + { + "start": 8146.76, + "end": 8147.26, + "probability": 0.9937 + }, + { + "start": 8147.88, + "end": 8148.5, + "probability": 0.9868 + }, + { + "start": 8149.02, + "end": 8149.57, + "probability": 0.9819 + }, + { + "start": 8150.38, + "end": 8155.84, + "probability": 0.9906 + }, + { + "start": 8156.42, + "end": 8161.56, + "probability": 0.9997 + }, + { + "start": 8162.18, + "end": 8166.04, + "probability": 0.998 + }, + { + "start": 8166.58, + "end": 8170.6, + "probability": 0.9947 + }, + { + "start": 8171.12, + "end": 8174.16, + "probability": 0.9725 + }, + { + "start": 8174.96, + "end": 8176.1, + "probability": 0.7402 + }, + { + "start": 8176.7, + "end": 8180.92, + "probability": 0.9964 + }, + { + "start": 8180.92, + "end": 8185.02, + "probability": 0.9988 + }, + { + "start": 8185.72, + "end": 8189.44, + "probability": 0.9922 + }, + { + "start": 8190.12, + "end": 8195.2, + "probability": 0.9949 + }, + { + "start": 8195.88, + "end": 8201.98, + "probability": 0.9849 + }, + { + "start": 8202.46, + "end": 8202.98, + "probability": 0.7523 + }, + { + "start": 8204.48, + "end": 8205.12, + "probability": 0.7825 + }, + { + "start": 8208.22, + "end": 8209.62, + "probability": 0.721 + }, + { + "start": 8210.28, + "end": 8210.72, + "probability": 0.5607 + }, + { + "start": 8211.32, + "end": 8213.64, + "probability": 0.7874 + }, + { + "start": 8214.06, + "end": 8215.14, + "probability": 0.9553 + }, + { + "start": 8216.06, + "end": 8217.44, + "probability": 0.0701 + }, + { + "start": 8239.14, + "end": 8240.1, + "probability": 0.0108 + }, + { + "start": 8241.92, + "end": 8244.08, + "probability": 0.9326 + }, + { + "start": 8244.08, + "end": 8245.46, + "probability": 0.9912 + }, + { + "start": 8246.74, + "end": 8248.76, + "probability": 0.7524 + }, + { + "start": 8249.96, + "end": 8250.96, + "probability": 0.4956 + }, + { + "start": 8251.02, + "end": 8252.9, + "probability": 0.9883 + }, + { + "start": 8253.06, + "end": 8253.9, + "probability": 0.733 + }, + { + "start": 8253.98, + "end": 8254.78, + "probability": 0.8815 + }, + { + "start": 8255.26, + "end": 8256.78, + "probability": 0.9827 + }, + { + "start": 8258.18, + "end": 8260.26, + "probability": 0.9784 + }, + { + "start": 8260.94, + "end": 8264.22, + "probability": 0.9062 + }, + { + "start": 8265.92, + "end": 8267.2, + "probability": 0.5925 + }, + { + "start": 8268.24, + "end": 8268.98, + "probability": 0.9603 + }, + { + "start": 8269.4, + "end": 8272.58, + "probability": 0.9272 + }, + { + "start": 8274.3, + "end": 8279.12, + "probability": 0.9791 + }, + { + "start": 8279.84, + "end": 8284.0, + "probability": 0.9814 + }, + { + "start": 8285.16, + "end": 8285.42, + "probability": 0.87 + }, + { + "start": 8285.48, + "end": 8286.42, + "probability": 0.8738 + }, + { + "start": 8286.54, + "end": 8287.91, + "probability": 0.9861 + }, + { + "start": 8288.24, + "end": 8290.86, + "probability": 0.9013 + }, + { + "start": 8292.22, + "end": 8295.18, + "probability": 0.9214 + }, + { + "start": 8296.74, + "end": 8301.56, + "probability": 0.9308 + }, + { + "start": 8302.32, + "end": 8307.34, + "probability": 0.9885 + }, + { + "start": 8308.34, + "end": 8309.34, + "probability": 0.8167 + }, + { + "start": 8309.96, + "end": 8311.02, + "probability": 0.9772 + }, + { + "start": 8312.26, + "end": 8316.84, + "probability": 0.8728 + }, + { + "start": 8316.96, + "end": 8318.82, + "probability": 0.9602 + }, + { + "start": 8318.94, + "end": 8320.86, + "probability": 0.9047 + }, + { + "start": 8321.78, + "end": 8322.9, + "probability": 0.7528 + }, + { + "start": 8324.02, + "end": 8330.78, + "probability": 0.9802 + }, + { + "start": 8334.16, + "end": 8336.5, + "probability": 0.998 + }, + { + "start": 8338.58, + "end": 8339.18, + "probability": 0.6989 + }, + { + "start": 8340.12, + "end": 8343.0, + "probability": 0.9883 + }, + { + "start": 8344.92, + "end": 8346.24, + "probability": 0.9597 + }, + { + "start": 8347.06, + "end": 8349.86, + "probability": 0.9854 + }, + { + "start": 8349.96, + "end": 8352.22, + "probability": 0.9633 + }, + { + "start": 8353.64, + "end": 8357.88, + "probability": 0.9719 + }, + { + "start": 8359.38, + "end": 8362.36, + "probability": 0.7489 + }, + { + "start": 8362.62, + "end": 8364.15, + "probability": 0.6962 + }, + { + "start": 8365.3, + "end": 8366.54, + "probability": 0.9205 + }, + { + "start": 8366.68, + "end": 8367.2, + "probability": 0.8295 + }, + { + "start": 8367.36, + "end": 8369.71, + "probability": 0.9731 + }, + { + "start": 8371.42, + "end": 8375.59, + "probability": 0.999 + }, + { + "start": 8376.59, + "end": 8382.03, + "probability": 0.578 + }, + { + "start": 8382.13, + "end": 8383.95, + "probability": 0.7853 + }, + { + "start": 8384.37, + "end": 8385.51, + "probability": 0.8539 + }, + { + "start": 8387.13, + "end": 8389.41, + "probability": 0.9885 + }, + { + "start": 8389.57, + "end": 8390.14, + "probability": 0.9839 + }, + { + "start": 8390.45, + "end": 8393.89, + "probability": 0.8901 + }, + { + "start": 8393.89, + "end": 8396.21, + "probability": 0.8901 + }, + { + "start": 8396.97, + "end": 8398.41, + "probability": 0.403 + }, + { + "start": 8400.35, + "end": 8403.24, + "probability": 0.8866 + }, + { + "start": 8405.23, + "end": 8406.89, + "probability": 0.965 + }, + { + "start": 8407.51, + "end": 8410.73, + "probability": 0.9888 + }, + { + "start": 8413.11, + "end": 8414.43, + "probability": 0.9752 + }, + { + "start": 8416.05, + "end": 8419.79, + "probability": 0.9753 + }, + { + "start": 8420.01, + "end": 8420.53, + "probability": 0.5011 + }, + { + "start": 8421.77, + "end": 8422.77, + "probability": 0.1066 + }, + { + "start": 8423.01, + "end": 8425.99, + "probability": 0.8088 + }, + { + "start": 8426.15, + "end": 8427.27, + "probability": 0.7286 + }, + { + "start": 8427.69, + "end": 8428.61, + "probability": 0.3801 + }, + { + "start": 8428.61, + "end": 8428.61, + "probability": 0.066 + }, + { + "start": 8428.61, + "end": 8428.61, + "probability": 0.4141 + }, + { + "start": 8428.61, + "end": 8430.79, + "probability": 0.38 + }, + { + "start": 8430.79, + "end": 8430.79, + "probability": 0.6751 + }, + { + "start": 8430.79, + "end": 8431.61, + "probability": 0.3963 + }, + { + "start": 8431.69, + "end": 8433.54, + "probability": 0.299 + }, + { + "start": 8434.41, + "end": 8434.79, + "probability": 0.3508 + }, + { + "start": 8434.79, + "end": 8435.84, + "probability": 0.3074 + }, + { + "start": 8436.45, + "end": 8437.09, + "probability": 0.2791 + }, + { + "start": 8437.09, + "end": 8438.51, + "probability": 0.7744 + }, + { + "start": 8449.19, + "end": 8450.03, + "probability": 0.0432 + }, + { + "start": 8450.03, + "end": 8451.63, + "probability": 0.2572 + }, + { + "start": 8453.65, + "end": 8454.51, + "probability": 0.0473 + }, + { + "start": 8454.51, + "end": 8455.07, + "probability": 0.2141 + }, + { + "start": 8456.19, + "end": 8456.41, + "probability": 0.29 + }, + { + "start": 8456.41, + "end": 8456.53, + "probability": 0.1169 + }, + { + "start": 8456.53, + "end": 8456.53, + "probability": 0.137 + }, + { + "start": 8459.71, + "end": 8463.23, + "probability": 0.6453 + }, + { + "start": 8466.25, + "end": 8467.75, + "probability": 0.4887 + }, + { + "start": 8469.34, + "end": 8469.41, + "probability": 0.3822 + }, + { + "start": 8469.67, + "end": 8470.95, + "probability": 0.3886 + }, + { + "start": 8472.47, + "end": 8473.15, + "probability": 0.6842 + }, + { + "start": 8473.97, + "end": 8476.17, + "probability": 0.4085 + }, + { + "start": 8476.63, + "end": 8477.49, + "probability": 0.2489 + }, + { + "start": 8477.49, + "end": 8477.59, + "probability": 0.195 + }, + { + "start": 8477.59, + "end": 8478.91, + "probability": 0.049 + }, + { + "start": 8478.91, + "end": 8479.25, + "probability": 0.0724 + }, + { + "start": 8479.25, + "end": 8479.89, + "probability": 0.3255 + }, + { + "start": 8480.47, + "end": 8481.59, + "probability": 0.2653 + }, + { + "start": 8481.61, + "end": 8483.85, + "probability": 0.3426 + }, + { + "start": 8484.97, + "end": 8484.97, + "probability": 0.1953 + }, + { + "start": 8486.34, + "end": 8487.21, + "probability": 0.1782 + }, + { + "start": 8487.69, + "end": 8488.17, + "probability": 0.0845 + }, + { + "start": 8488.77, + "end": 8489.35, + "probability": 0.22 + }, + { + "start": 8489.47, + "end": 8490.17, + "probability": 0.0659 + }, + { + "start": 8490.91, + "end": 8491.07, + "probability": 0.2821 + }, + { + "start": 8491.09, + "end": 8492.49, + "probability": 0.0382 + }, + { + "start": 8492.71, + "end": 8494.67, + "probability": 0.1478 + }, + { + "start": 8496.02, + "end": 8496.89, + "probability": 0.0294 + }, + { + "start": 8496.89, + "end": 8496.91, + "probability": 0.2387 + }, + { + "start": 8496.91, + "end": 8497.07, + "probability": 0.0793 + }, + { + "start": 8497.07, + "end": 8497.07, + "probability": 0.2921 + }, + { + "start": 8497.07, + "end": 8497.07, + "probability": 0.3091 + }, + { + "start": 8497.07, + "end": 8497.07, + "probability": 0.2596 + }, + { + "start": 8497.07, + "end": 8497.07, + "probability": 0.3226 + }, + { + "start": 8497.07, + "end": 8497.09, + "probability": 0.3678 + }, + { + "start": 8497.09, + "end": 8498.07, + "probability": 0.0207 + }, + { + "start": 8498.07, + "end": 8498.23, + "probability": 0.0139 + }, + { + "start": 8499.0, + "end": 8499.0, + "probability": 0.0 + }, + { + "start": 8499.0, + "end": 8499.0, + "probability": 0.0 + }, + { + "start": 8499.0, + "end": 8499.0, + "probability": 0.0 + }, + { + "start": 8499.0, + "end": 8499.0, + "probability": 0.0 + }, + { + "start": 8499.0, + "end": 8499.0, + "probability": 0.0 + }, + { + "start": 8499.0, + "end": 8499.0, + "probability": 0.0 + }, + { + "start": 8499.0, + "end": 8499.0, + "probability": 0.0 + }, + { + "start": 8500.05, + "end": 8501.4, + "probability": 0.036 + }, + { + "start": 8501.42, + "end": 8503.44, + "probability": 0.3125 + }, + { + "start": 8506.4, + "end": 8508.76, + "probability": 0.0331 + }, + { + "start": 8508.76, + "end": 8508.76, + "probability": 0.1157 + }, + { + "start": 8508.76, + "end": 8508.92, + "probability": 0.1442 + }, + { + "start": 8511.01, + "end": 8514.88, + "probability": 0.0328 + }, + { + "start": 8514.94, + "end": 8515.22, + "probability": 0.1322 + }, + { + "start": 8515.78, + "end": 8518.96, + "probability": 0.1133 + }, + { + "start": 8519.9, + "end": 8521.54, + "probability": 0.0864 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8619.0, + "end": 8619.0, + "probability": 0.0 + }, + { + "start": 8622.3, + "end": 8625.92, + "probability": 0.9956 + }, + { + "start": 8626.28, + "end": 8627.92, + "probability": 0.98 + }, + { + "start": 8628.18, + "end": 8629.32, + "probability": 0.9315 + }, + { + "start": 8630.76, + "end": 8632.56, + "probability": 0.965 + }, + { + "start": 8632.84, + "end": 8633.88, + "probability": 0.9864 + }, + { + "start": 8634.28, + "end": 8636.44, + "probability": 0.9856 + }, + { + "start": 8636.72, + "end": 8638.08, + "probability": 0.8846 + }, + { + "start": 8639.86, + "end": 8642.4, + "probability": 0.945 + }, + { + "start": 8642.7, + "end": 8644.12, + "probability": 0.9717 + }, + { + "start": 8644.26, + "end": 8645.18, + "probability": 0.9613 + }, + { + "start": 8646.52, + "end": 8648.14, + "probability": 0.8567 + }, + { + "start": 8648.26, + "end": 8649.22, + "probability": 0.9035 + }, + { + "start": 8649.26, + "end": 8649.96, + "probability": 0.9452 + }, + { + "start": 8650.04, + "end": 8651.2, + "probability": 0.958 + }, + { + "start": 8651.66, + "end": 8653.78, + "probability": 0.9971 + }, + { + "start": 8655.2, + "end": 8657.36, + "probability": 0.9946 + }, + { + "start": 8657.42, + "end": 8658.1, + "probability": 0.567 + }, + { + "start": 8658.18, + "end": 8660.38, + "probability": 0.9973 + }, + { + "start": 8660.72, + "end": 8663.42, + "probability": 0.9969 + }, + { + "start": 8664.44, + "end": 8669.26, + "probability": 0.9957 + }, + { + "start": 8669.52, + "end": 8670.7, + "probability": 0.7706 + }, + { + "start": 8671.74, + "end": 8673.04, + "probability": 0.9968 + }, + { + "start": 8673.42, + "end": 8677.4, + "probability": 0.9985 + }, + { + "start": 8678.44, + "end": 8681.08, + "probability": 0.9989 + }, + { + "start": 8682.5, + "end": 8685.86, + "probability": 0.995 + }, + { + "start": 8687.44, + "end": 8689.84, + "probability": 0.9839 + }, + { + "start": 8690.32, + "end": 8692.62, + "probability": 0.9934 + }, + { + "start": 8693.54, + "end": 8696.78, + "probability": 0.8523 + }, + { + "start": 8696.88, + "end": 8704.04, + "probability": 0.9679 + }, + { + "start": 8705.0, + "end": 8707.52, + "probability": 0.9978 + }, + { + "start": 8708.86, + "end": 8713.04, + "probability": 0.9966 + }, + { + "start": 8714.28, + "end": 8715.14, + "probability": 0.5449 + }, + { + "start": 8715.46, + "end": 8716.54, + "probability": 0.9758 + }, + { + "start": 8717.54, + "end": 8718.5, + "probability": 0.931 + }, + { + "start": 8718.86, + "end": 8721.88, + "probability": 0.9792 + }, + { + "start": 8722.0, + "end": 8723.28, + "probability": 0.9771 + }, + { + "start": 8723.62, + "end": 8726.86, + "probability": 0.9972 + }, + { + "start": 8726.86, + "end": 8730.22, + "probability": 0.9518 + }, + { + "start": 8730.49, + "end": 8732.82, + "probability": 0.998 + }, + { + "start": 8732.98, + "end": 8733.56, + "probability": 0.5128 + }, + { + "start": 8733.66, + "end": 8737.86, + "probability": 0.9976 + }, + { + "start": 8738.52, + "end": 8739.08, + "probability": 0.7661 + }, + { + "start": 8739.62, + "end": 8740.36, + "probability": 0.6098 + }, + { + "start": 8741.4, + "end": 8741.98, + "probability": 0.4393 + }, + { + "start": 8742.82, + "end": 8744.14, + "probability": 0.935 + }, + { + "start": 8763.82, + "end": 8764.84, + "probability": 0.5729 + }, + { + "start": 8766.02, + "end": 8767.2, + "probability": 0.7892 + }, + { + "start": 8768.4, + "end": 8772.26, + "probability": 0.9803 + }, + { + "start": 8772.26, + "end": 8774.52, + "probability": 0.9888 + }, + { + "start": 8775.18, + "end": 8777.34, + "probability": 0.981 + }, + { + "start": 8778.18, + "end": 8781.24, + "probability": 0.7687 + }, + { + "start": 8781.32, + "end": 8784.34, + "probability": 0.9915 + }, + { + "start": 8784.92, + "end": 8788.4, + "probability": 0.9583 + }, + { + "start": 8789.52, + "end": 8792.48, + "probability": 0.9686 + }, + { + "start": 8792.58, + "end": 8793.24, + "probability": 0.9294 + }, + { + "start": 8793.68, + "end": 8794.56, + "probability": 0.95 + }, + { + "start": 8795.68, + "end": 8800.38, + "probability": 0.9748 + }, + { + "start": 8801.24, + "end": 8808.12, + "probability": 0.6659 + }, + { + "start": 8809.16, + "end": 8810.28, + "probability": 0.6231 + }, + { + "start": 8811.08, + "end": 8816.96, + "probability": 0.929 + }, + { + "start": 8817.96, + "end": 8822.86, + "probability": 0.9613 + }, + { + "start": 8824.0, + "end": 8828.74, + "probability": 0.9011 + }, + { + "start": 8828.76, + "end": 8832.94, + "probability": 0.5208 + }, + { + "start": 8834.18, + "end": 8837.92, + "probability": 0.9891 + }, + { + "start": 8838.8, + "end": 8844.22, + "probability": 0.996 + }, + { + "start": 8844.34, + "end": 8844.88, + "probability": 0.4944 + }, + { + "start": 8846.82, + "end": 8851.38, + "probability": 0.638 + }, + { + "start": 8852.04, + "end": 8852.66, + "probability": 0.7304 + }, + { + "start": 8853.66, + "end": 8855.5, + "probability": 0.7238 + }, + { + "start": 8855.62, + "end": 8856.14, + "probability": 0.5343 + }, + { + "start": 8856.22, + "end": 8862.11, + "probability": 0.7554 + }, + { + "start": 8863.16, + "end": 8865.57, + "probability": 0.5522 + }, + { + "start": 8867.06, + "end": 8871.82, + "probability": 0.9682 + }, + { + "start": 8871.82, + "end": 8875.98, + "probability": 0.6106 + }, + { + "start": 8876.44, + "end": 8879.52, + "probability": 0.5723 + }, + { + "start": 8880.06, + "end": 8882.62, + "probability": 0.8021 + }, + { + "start": 8882.78, + "end": 8886.32, + "probability": 0.7959 + }, + { + "start": 8886.66, + "end": 8888.61, + "probability": 0.8666 + }, + { + "start": 8889.4, + "end": 8892.16, + "probability": 0.8921 + }, + { + "start": 8892.16, + "end": 8894.93, + "probability": 0.8877 + }, + { + "start": 8895.7, + "end": 8899.34, + "probability": 0.9785 + }, + { + "start": 8899.44, + "end": 8900.18, + "probability": 0.3419 + }, + { + "start": 8900.68, + "end": 8901.74, + "probability": 0.5159 + }, + { + "start": 8901.74, + "end": 8904.11, + "probability": 0.5829 + }, + { + "start": 8905.28, + "end": 8907.67, + "probability": 0.8628 + }, + { + "start": 8907.96, + "end": 8911.06, + "probability": 0.2528 + }, + { + "start": 8911.08, + "end": 8913.6, + "probability": 0.6253 + }, + { + "start": 8914.16, + "end": 8915.28, + "probability": 0.4675 + }, + { + "start": 8915.36, + "end": 8915.8, + "probability": 0.944 + }, + { + "start": 8916.5, + "end": 8920.5, + "probability": 0.7038 + }, + { + "start": 8921.6, + "end": 8922.16, + "probability": 0.746 + }, + { + "start": 8922.24, + "end": 8926.56, + "probability": 0.883 + }, + { + "start": 8926.62, + "end": 8929.08, + "probability": 0.9648 + }, + { + "start": 8929.7, + "end": 8936.32, + "probability": 0.9333 + }, + { + "start": 8937.06, + "end": 8937.7, + "probability": 0.8645 + }, + { + "start": 8938.64, + "end": 8939.36, + "probability": 0.7923 + }, + { + "start": 8939.52, + "end": 8942.4, + "probability": 0.7772 + }, + { + "start": 8942.64, + "end": 8945.52, + "probability": 0.5963 + }, + { + "start": 8945.94, + "end": 8948.1, + "probability": 0.8227 + }, + { + "start": 8948.18, + "end": 8949.26, + "probability": 0.9404 + }, + { + "start": 8950.16, + "end": 8951.24, + "probability": 0.8002 + }, + { + "start": 8951.76, + "end": 8961.76, + "probability": 0.6941 + }, + { + "start": 8962.48, + "end": 8964.28, + "probability": 0.9004 + }, + { + "start": 8964.38, + "end": 8967.84, + "probability": 0.9808 + }, + { + "start": 8968.32, + "end": 8968.54, + "probability": 0.7213 + }, + { + "start": 8969.12, + "end": 8970.4, + "probability": 0.5109 + }, + { + "start": 8971.76, + "end": 8972.38, + "probability": 0.5028 + }, + { + "start": 8972.96, + "end": 8974.0, + "probability": 0.7761 + }, + { + "start": 8974.48, + "end": 8976.4, + "probability": 0.7675 + }, + { + "start": 8976.66, + "end": 8978.36, + "probability": 0.8201 + }, + { + "start": 8978.4, + "end": 8979.02, + "probability": 0.8043 + }, + { + "start": 8979.84, + "end": 8981.12, + "probability": 0.9765 + }, + { + "start": 8981.76, + "end": 8983.9, + "probability": 0.801 + }, + { + "start": 8984.7, + "end": 8986.9, + "probability": 0.8146 + }, + { + "start": 8987.52, + "end": 8988.64, + "probability": 0.9197 + }, + { + "start": 8997.3, + "end": 8998.12, + "probability": 0.0744 + }, + { + "start": 9005.84, + "end": 9007.72, + "probability": 0.8914 + }, + { + "start": 9008.14, + "end": 9008.28, + "probability": 0.3645 + }, + { + "start": 9008.48, + "end": 9010.05, + "probability": 0.2174 + }, + { + "start": 9010.84, + "end": 9013.76, + "probability": 0.0842 + }, + { + "start": 9015.82, + "end": 9016.06, + "probability": 0.1806 + }, + { + "start": 9016.14, + "end": 9018.12, + "probability": 0.0638 + }, + { + "start": 9018.2, + "end": 9020.94, + "probability": 0.1269 + }, + { + "start": 9021.7, + "end": 9022.78, + "probability": 0.3829 + }, + { + "start": 9022.78, + "end": 9026.24, + "probability": 0.112 + }, + { + "start": 9033.7, + "end": 9035.12, + "probability": 0.0944 + }, + { + "start": 9035.12, + "end": 9037.18, + "probability": 0.5132 + }, + { + "start": 9039.08, + "end": 9044.2, + "probability": 0.1272 + }, + { + "start": 9061.92, + "end": 9067.3, + "probability": 0.4663 + }, + { + "start": 9068.68, + "end": 9072.58, + "probability": 0.8967 + }, + { + "start": 9072.96, + "end": 9073.85, + "probability": 0.9346 + }, + { + "start": 9074.04, + "end": 9074.14, + "probability": 0.0497 + }, + { + "start": 9077.32, + "end": 9081.24, + "probability": 0.9969 + }, + { + "start": 9081.42, + "end": 9084.62, + "probability": 0.9244 + }, + { + "start": 9084.86, + "end": 9088.26, + "probability": 0.9817 + }, + { + "start": 9090.1, + "end": 9091.82, + "probability": 0.6977 + }, + { + "start": 9091.88, + "end": 9094.94, + "probability": 0.9946 + }, + { + "start": 9095.16, + "end": 9099.28, + "probability": 0.9775 + }, + { + "start": 9100.3, + "end": 9103.0, + "probability": 0.8296 + }, + { + "start": 9105.42, + "end": 9107.06, + "probability": 0.9357 + }, + { + "start": 9107.88, + "end": 9108.58, + "probability": 0.4919 + }, + { + "start": 9108.66, + "end": 9110.98, + "probability": 0.8986 + }, + { + "start": 9111.0, + "end": 9113.16, + "probability": 0.9736 + }, + { + "start": 9114.12, + "end": 9116.08, + "probability": 0.9839 + }, + { + "start": 9116.34, + "end": 9119.76, + "probability": 0.926 + }, + { + "start": 9120.0, + "end": 9121.72, + "probability": 0.0209 + }, + { + "start": 9121.79, + "end": 9122.38, + "probability": 0.1525 + }, + { + "start": 9123.26, + "end": 9123.82, + "probability": 0.032 + }, + { + "start": 9123.82, + "end": 9124.66, + "probability": 0.0109 + }, + { + "start": 9124.92, + "end": 9129.24, + "probability": 0.7895 + }, + { + "start": 9130.14, + "end": 9132.58, + "probability": 0.9966 + }, + { + "start": 9132.68, + "end": 9136.04, + "probability": 0.9984 + }, + { + "start": 9136.5, + "end": 9138.28, + "probability": 0.9647 + }, + { + "start": 9138.62, + "end": 9139.3, + "probability": 0.3887 + }, + { + "start": 9139.82, + "end": 9140.78, + "probability": 0.4557 + }, + { + "start": 9141.08, + "end": 9145.12, + "probability": 0.7639 + }, + { + "start": 9145.88, + "end": 9147.04, + "probability": 0.8716 + }, + { + "start": 9147.26, + "end": 9151.92, + "probability": 0.9675 + }, + { + "start": 9153.56, + "end": 9154.16, + "probability": 0.5929 + }, + { + "start": 9155.44, + "end": 9156.34, + "probability": 0.78 + }, + { + "start": 9158.54, + "end": 9159.28, + "probability": 0.9056 + }, + { + "start": 9159.36, + "end": 9161.12, + "probability": 0.2629 + }, + { + "start": 9161.32, + "end": 9161.96, + "probability": 0.8643 + }, + { + "start": 9162.08, + "end": 9162.82, + "probability": 0.9829 + }, + { + "start": 9162.92, + "end": 9164.62, + "probability": 0.9754 + }, + { + "start": 9165.88, + "end": 9169.22, + "probability": 0.6893 + }, + { + "start": 9170.54, + "end": 9174.24, + "probability": 0.7074 + }, + { + "start": 9174.24, + "end": 9175.26, + "probability": 0.0167 + }, + { + "start": 9177.0, + "end": 9177.98, + "probability": 0.6689 + }, + { + "start": 9179.56, + "end": 9183.44, + "probability": 0.9577 + }, + { + "start": 9184.86, + "end": 9187.9, + "probability": 0.9666 + }, + { + "start": 9187.94, + "end": 9191.44, + "probability": 0.8202 + }, + { + "start": 9191.54, + "end": 9195.36, + "probability": 0.978 + }, + { + "start": 9195.82, + "end": 9196.58, + "probability": 0.82 + }, + { + "start": 9198.22, + "end": 9199.18, + "probability": 0.5238 + }, + { + "start": 9200.68, + "end": 9200.96, + "probability": 0.6748 + }, + { + "start": 9203.28, + "end": 9205.6, + "probability": 0.1901 + }, + { + "start": 9205.66, + "end": 9207.88, + "probability": 0.0978 + }, + { + "start": 9208.1, + "end": 9211.48, + "probability": 0.7833 + }, + { + "start": 9211.6, + "end": 9214.48, + "probability": 0.6098 + }, + { + "start": 9217.12, + "end": 9217.28, + "probability": 0.0014 + }, + { + "start": 9217.28, + "end": 9217.54, + "probability": 0.44 + }, + { + "start": 9217.54, + "end": 9217.54, + "probability": 0.2032 + }, + { + "start": 9217.54, + "end": 9218.06, + "probability": 0.1489 + }, + { + "start": 9219.64, + "end": 9221.56, + "probability": 0.769 + }, + { + "start": 9221.56, + "end": 9223.9, + "probability": 0.6129 + }, + { + "start": 9224.12, + "end": 9225.2, + "probability": 0.7438 + }, + { + "start": 9225.76, + "end": 9226.8, + "probability": 0.6624 + }, + { + "start": 9227.6, + "end": 9230.54, + "probability": 0.9927 + }, + { + "start": 9230.6, + "end": 9232.2, + "probability": 0.9526 + }, + { + "start": 9233.28, + "end": 9238.58, + "probability": 0.9304 + }, + { + "start": 9239.54, + "end": 9241.34, + "probability": 0.5199 + }, + { + "start": 9242.04, + "end": 9244.5, + "probability": 0.9458 + }, + { + "start": 9244.6, + "end": 9247.64, + "probability": 0.9238 + }, + { + "start": 9248.34, + "end": 9253.8, + "probability": 0.8544 + }, + { + "start": 9254.34, + "end": 9254.34, + "probability": 0.1108 + }, + { + "start": 9254.34, + "end": 9254.34, + "probability": 0.2006 + }, + { + "start": 9254.34, + "end": 9254.34, + "probability": 0.6073 + }, + { + "start": 9254.34, + "end": 9254.34, + "probability": 0.0203 + }, + { + "start": 9254.34, + "end": 9254.34, + "probability": 0.3711 + }, + { + "start": 9254.34, + "end": 9256.84, + "probability": 0.8309 + }, + { + "start": 9256.84, + "end": 9262.14, + "probability": 0.929 + }, + { + "start": 9262.68, + "end": 9266.22, + "probability": 0.8312 + }, + { + "start": 9266.88, + "end": 9266.92, + "probability": 0.6023 + }, + { + "start": 9266.92, + "end": 9267.98, + "probability": 0.9404 + }, + { + "start": 9268.08, + "end": 9268.98, + "probability": 0.7138 + }, + { + "start": 9269.0, + "end": 9269.58, + "probability": 0.9397 + }, + { + "start": 9269.64, + "end": 9271.73, + "probability": 0.9902 + }, + { + "start": 9272.12, + "end": 9272.76, + "probability": 0.9821 + }, + { + "start": 9274.0, + "end": 9278.08, + "probability": 0.0132 + }, + { + "start": 9279.52, + "end": 9282.46, + "probability": 0.0422 + }, + { + "start": 9282.92, + "end": 9284.22, + "probability": 0.1604 + }, + { + "start": 9284.22, + "end": 9285.06, + "probability": 0.3051 + }, + { + "start": 9285.54, + "end": 9287.5, + "probability": 0.1686 + }, + { + "start": 9287.5, + "end": 9288.28, + "probability": 0.4916 + }, + { + "start": 9289.82, + "end": 9292.36, + "probability": 0.0372 + }, + { + "start": 9292.58, + "end": 9293.14, + "probability": 0.2865 + }, + { + "start": 9293.91, + "end": 9295.36, + "probability": 0.5805 + }, + { + "start": 9295.7, + "end": 9296.3, + "probability": 0.7424 + }, + { + "start": 9298.38, + "end": 9299.52, + "probability": 0.8461 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.0, + "end": 9395.0, + "probability": 0.0 + }, + { + "start": 9395.08, + "end": 9395.08, + "probability": 0.3024 + }, + { + "start": 9395.08, + "end": 9395.48, + "probability": 0.5079 + }, + { + "start": 9396.44, + "end": 9399.5, + "probability": 0.8542 + }, + { + "start": 9400.62, + "end": 9402.06, + "probability": 0.8916 + }, + { + "start": 9402.64, + "end": 9405.9, + "probability": 0.9959 + }, + { + "start": 9406.88, + "end": 9412.28, + "probability": 0.9927 + }, + { + "start": 9414.58, + "end": 9417.72, + "probability": 0.6022 + }, + { + "start": 9418.48, + "end": 9419.74, + "probability": 0.993 + }, + { + "start": 9421.14, + "end": 9424.74, + "probability": 0.9305 + }, + { + "start": 9426.14, + "end": 9428.18, + "probability": 0.7427 + }, + { + "start": 9428.22, + "end": 9429.94, + "probability": 0.9222 + }, + { + "start": 9431.02, + "end": 9433.15, + "probability": 0.9956 + }, + { + "start": 9434.0, + "end": 9436.18, + "probability": 0.9965 + }, + { + "start": 9437.96, + "end": 9438.6, + "probability": 0.8777 + }, + { + "start": 9439.52, + "end": 9444.36, + "probability": 0.9759 + }, + { + "start": 9445.8, + "end": 9447.44, + "probability": 0.9673 + }, + { + "start": 9449.44, + "end": 9454.44, + "probability": 0.7718 + }, + { + "start": 9454.56, + "end": 9454.98, + "probability": 0.8434 + }, + { + "start": 9455.04, + "end": 9456.6, + "probability": 0.9004 + }, + { + "start": 9457.6, + "end": 9462.7, + "probability": 0.9833 + }, + { + "start": 9463.8, + "end": 9465.96, + "probability": 0.9912 + }, + { + "start": 9467.02, + "end": 9469.2, + "probability": 0.9963 + }, + { + "start": 9472.28, + "end": 9477.16, + "probability": 0.9689 + }, + { + "start": 9477.74, + "end": 9480.94, + "probability": 0.9436 + }, + { + "start": 9481.58, + "end": 9484.9, + "probability": 0.8049 + }, + { + "start": 9486.88, + "end": 9489.68, + "probability": 0.8889 + }, + { + "start": 9490.94, + "end": 9493.74, + "probability": 0.9791 + }, + { + "start": 9494.38, + "end": 9495.08, + "probability": 0.8528 + }, + { + "start": 9495.86, + "end": 9503.4, + "probability": 0.9249 + }, + { + "start": 9504.7, + "end": 9506.5, + "probability": 0.7293 + }, + { + "start": 9506.72, + "end": 9508.1, + "probability": 0.8544 + }, + { + "start": 9508.2, + "end": 9510.62, + "probability": 0.7706 + }, + { + "start": 9511.3, + "end": 9512.18, + "probability": 0.4624 + }, + { + "start": 9512.86, + "end": 9516.92, + "probability": 0.9849 + }, + { + "start": 9518.34, + "end": 9521.34, + "probability": 0.9672 + }, + { + "start": 9522.04, + "end": 9526.62, + "probability": 0.8596 + }, + { + "start": 9526.98, + "end": 9529.56, + "probability": 0.6819 + }, + { + "start": 9529.92, + "end": 9530.6, + "probability": 0.8104 + }, + { + "start": 9531.18, + "end": 9532.16, + "probability": 0.5236 + }, + { + "start": 9532.68, + "end": 9535.12, + "probability": 0.7964 + }, + { + "start": 9535.73, + "end": 9537.54, + "probability": 0.9119 + }, + { + "start": 9538.5, + "end": 9545.1, + "probability": 0.9822 + }, + { + "start": 9546.52, + "end": 9547.52, + "probability": 0.9737 + }, + { + "start": 9548.62, + "end": 9551.64, + "probability": 0.9827 + }, + { + "start": 9552.78, + "end": 9553.68, + "probability": 0.9587 + }, + { + "start": 9553.76, + "end": 9556.28, + "probability": 0.9534 + }, + { + "start": 9557.18, + "end": 9558.2, + "probability": 0.995 + }, + { + "start": 9559.16, + "end": 9561.06, + "probability": 0.9708 + }, + { + "start": 9561.84, + "end": 9563.9, + "probability": 0.974 + }, + { + "start": 9564.76, + "end": 9565.62, + "probability": 0.9966 + }, + { + "start": 9567.44, + "end": 9569.2, + "probability": 0.725 + }, + { + "start": 9569.72, + "end": 9570.24, + "probability": 0.7878 + }, + { + "start": 9571.14, + "end": 9575.32, + "probability": 0.9541 + }, + { + "start": 9576.46, + "end": 9577.24, + "probability": 0.7455 + }, + { + "start": 9577.38, + "end": 9578.18, + "probability": 0.8989 + }, + { + "start": 9578.8, + "end": 9580.9, + "probability": 0.9536 + }, + { + "start": 9582.36, + "end": 9583.44, + "probability": 0.7592 + }, + { + "start": 9584.28, + "end": 9588.72, + "probability": 0.9783 + }, + { + "start": 9589.34, + "end": 9590.36, + "probability": 0.7981 + }, + { + "start": 9591.32, + "end": 9595.02, + "probability": 0.9283 + }, + { + "start": 9596.02, + "end": 9596.9, + "probability": 0.915 + }, + { + "start": 9597.9, + "end": 9603.34, + "probability": 0.8994 + }, + { + "start": 9604.8, + "end": 9605.94, + "probability": 0.9751 + }, + { + "start": 9606.22, + "end": 9606.48, + "probability": 0.9562 + }, + { + "start": 9606.64, + "end": 9608.74, + "probability": 0.8395 + }, + { + "start": 9608.76, + "end": 9610.2, + "probability": 0.7657 + }, + { + "start": 9611.08, + "end": 9613.96, + "probability": 0.8625 + }, + { + "start": 9614.34, + "end": 9615.42, + "probability": 0.9221 + }, + { + "start": 9616.5, + "end": 9621.38, + "probability": 0.9934 + }, + { + "start": 9621.38, + "end": 9626.82, + "probability": 0.803 + }, + { + "start": 9628.26, + "end": 9630.28, + "probability": 0.9979 + }, + { + "start": 9630.36, + "end": 9632.1, + "probability": 0.9856 + }, + { + "start": 9632.38, + "end": 9633.68, + "probability": 0.9097 + }, + { + "start": 9633.88, + "end": 9636.94, + "probability": 0.9855 + }, + { + "start": 9639.48, + "end": 9643.52, + "probability": 0.9089 + }, + { + "start": 9644.02, + "end": 9645.04, + "probability": 0.9499 + }, + { + "start": 9645.08, + "end": 9645.8, + "probability": 0.6751 + }, + { + "start": 9645.86, + "end": 9646.9, + "probability": 0.5936 + }, + { + "start": 9647.18, + "end": 9648.78, + "probability": 0.9688 + }, + { + "start": 9649.6, + "end": 9653.62, + "probability": 0.9192 + }, + { + "start": 9654.82, + "end": 9660.42, + "probability": 0.8186 + }, + { + "start": 9661.54, + "end": 9663.58, + "probability": 0.4199 + }, + { + "start": 9664.08, + "end": 9664.8, + "probability": 0.7686 + }, + { + "start": 9666.2, + "end": 9667.82, + "probability": 0.7425 + }, + { + "start": 9670.04, + "end": 9674.28, + "probability": 0.9877 + }, + { + "start": 9675.16, + "end": 9678.82, + "probability": 0.8723 + }, + { + "start": 9681.0, + "end": 9683.4, + "probability": 0.8186 + }, + { + "start": 9684.44, + "end": 9686.18, + "probability": 0.9727 + }, + { + "start": 9687.56, + "end": 9690.14, + "probability": 0.998 + }, + { + "start": 9690.76, + "end": 9693.69, + "probability": 0.9917 + }, + { + "start": 9693.94, + "end": 9694.3, + "probability": 0.6783 + }, + { + "start": 9694.32, + "end": 9696.62, + "probability": 0.9791 + }, + { + "start": 9697.3, + "end": 9699.02, + "probability": 0.8494 + }, + { + "start": 9699.52, + "end": 9700.26, + "probability": 0.8945 + }, + { + "start": 9700.88, + "end": 9705.04, + "probability": 0.7928 + }, + { + "start": 9705.64, + "end": 9706.8, + "probability": 0.8404 + }, + { + "start": 9707.48, + "end": 9707.92, + "probability": 0.0024 + }, + { + "start": 9708.3, + "end": 9709.02, + "probability": 0.7685 + }, + { + "start": 9709.2, + "end": 9709.32, + "probability": 0.5442 + }, + { + "start": 9709.44, + "end": 9709.54, + "probability": 0.3862 + }, + { + "start": 9709.82, + "end": 9711.06, + "probability": 0.7159 + }, + { + "start": 9712.88, + "end": 9716.86, + "probability": 0.8252 + }, + { + "start": 9717.22, + "end": 9718.6, + "probability": 0.9631 + }, + { + "start": 9721.04, + "end": 9723.94, + "probability": 0.9174 + }, + { + "start": 9725.46, + "end": 9729.44, + "probability": 0.9821 + }, + { + "start": 9730.14, + "end": 9734.86, + "probability": 0.9667 + }, + { + "start": 9735.96, + "end": 9738.7, + "probability": 0.6995 + }, + { + "start": 9739.52, + "end": 9740.44, + "probability": 0.8 + }, + { + "start": 9741.3, + "end": 9743.68, + "probability": 0.9161 + }, + { + "start": 9745.0, + "end": 9745.68, + "probability": 0.7273 + }, + { + "start": 9746.9, + "end": 9749.26, + "probability": 0.9957 + }, + { + "start": 9750.36, + "end": 9753.34, + "probability": 0.8183 + }, + { + "start": 9753.98, + "end": 9756.66, + "probability": 0.9644 + }, + { + "start": 9757.6, + "end": 9762.1, + "probability": 0.9941 + }, + { + "start": 9762.68, + "end": 9763.62, + "probability": 0.9492 + }, + { + "start": 9763.82, + "end": 9764.24, + "probability": 0.8306 + }, + { + "start": 9765.08, + "end": 9767.24, + "probability": 0.9771 + }, + { + "start": 9767.72, + "end": 9769.1, + "probability": 0.9872 + }, + { + "start": 9770.18, + "end": 9771.04, + "probability": 0.4986 + }, + { + "start": 9772.18, + "end": 9775.35, + "probability": 0.9971 + }, + { + "start": 9776.72, + "end": 9777.54, + "probability": 0.8312 + }, + { + "start": 9779.1, + "end": 9780.02, + "probability": 0.8833 + }, + { + "start": 9781.3, + "end": 9782.4, + "probability": 0.9818 + }, + { + "start": 9782.7, + "end": 9783.08, + "probability": 0.8333 + }, + { + "start": 9783.08, + "end": 9786.66, + "probability": 0.6204 + }, + { + "start": 9786.94, + "end": 9787.75, + "probability": 0.8103 + }, + { + "start": 9788.16, + "end": 9788.51, + "probability": 0.6039 + }, + { + "start": 9790.14, + "end": 9790.36, + "probability": 0.7476 + }, + { + "start": 9791.42, + "end": 9794.78, + "probability": 0.5442 + }, + { + "start": 9795.92, + "end": 9799.04, + "probability": 0.9135 + }, + { + "start": 9800.24, + "end": 9802.62, + "probability": 0.9237 + }, + { + "start": 9803.2, + "end": 9805.36, + "probability": 0.981 + }, + { + "start": 9806.06, + "end": 9813.02, + "probability": 0.8237 + }, + { + "start": 9814.8, + "end": 9816.52, + "probability": 0.2114 + }, + { + "start": 9817.52, + "end": 9822.56, + "probability": 0.9343 + }, + { + "start": 9823.14, + "end": 9823.96, + "probability": 0.5304 + }, + { + "start": 9824.44, + "end": 9826.12, + "probability": 0.984 + }, + { + "start": 9826.5, + "end": 9828.32, + "probability": 0.9721 + }, + { + "start": 9829.86, + "end": 9834.58, + "probability": 0.861 + }, + { + "start": 9835.2, + "end": 9838.06, + "probability": 0.9946 + }, + { + "start": 9840.48, + "end": 9844.48, + "probability": 0.821 + }, + { + "start": 9844.7, + "end": 9848.3, + "probability": 0.9282 + }, + { + "start": 9849.22, + "end": 9851.94, + "probability": 0.9391 + }, + { + "start": 9853.02, + "end": 9855.82, + "probability": 0.9966 + }, + { + "start": 9855.84, + "end": 9856.64, + "probability": 0.8244 + }, + { + "start": 9858.16, + "end": 9861.1, + "probability": 0.8838 + }, + { + "start": 9861.1, + "end": 9862.5, + "probability": 0.4067 + }, + { + "start": 9862.82, + "end": 9864.36, + "probability": 0.7401 + }, + { + "start": 9864.98, + "end": 9869.58, + "probability": 0.9824 + }, + { + "start": 9869.58, + "end": 9873.83, + "probability": 0.8885 + }, + { + "start": 9874.5, + "end": 9878.12, + "probability": 0.8613 + }, + { + "start": 9880.1, + "end": 9882.12, + "probability": 0.9341 + }, + { + "start": 9882.96, + "end": 9885.1, + "probability": 0.9199 + }, + { + "start": 9886.2, + "end": 9889.24, + "probability": 0.9877 + }, + { + "start": 9889.32, + "end": 9890.56, + "probability": 0.9988 + }, + { + "start": 9891.04, + "end": 9894.99, + "probability": 0.8022 + }, + { + "start": 9896.02, + "end": 9899.69, + "probability": 0.8883 + }, + { + "start": 9899.92, + "end": 9902.43, + "probability": 0.9946 + }, + { + "start": 9904.24, + "end": 9905.46, + "probability": 0.9131 + }, + { + "start": 9905.9, + "end": 9909.44, + "probability": 0.9977 + }, + { + "start": 9909.44, + "end": 9914.02, + "probability": 0.985 + }, + { + "start": 9914.46, + "end": 9922.16, + "probability": 0.9497 + }, + { + "start": 9923.74, + "end": 9923.74, + "probability": 0.3777 + }, + { + "start": 9923.74, + "end": 9923.92, + "probability": 0.2764 + }, + { + "start": 9923.96, + "end": 9925.72, + "probability": 0.5171 + }, + { + "start": 9925.78, + "end": 9930.78, + "probability": 0.9985 + }, + { + "start": 9931.24, + "end": 9932.29, + "probability": 0.9489 + }, + { + "start": 9933.22, + "end": 9936.82, + "probability": 0.9937 + }, + { + "start": 9937.3, + "end": 9938.13, + "probability": 0.9925 + }, + { + "start": 9938.52, + "end": 9938.98, + "probability": 0.9333 + }, + { + "start": 9939.84, + "end": 9940.28, + "probability": 0.9454 + }, + { + "start": 9940.8, + "end": 9941.72, + "probability": 0.9573 + }, + { + "start": 9942.78, + "end": 9944.9, + "probability": 0.9982 + }, + { + "start": 9945.26, + "end": 9945.86, + "probability": 0.5134 + }, + { + "start": 9945.88, + "end": 9948.26, + "probability": 0.9564 + }, + { + "start": 9948.36, + "end": 9948.56, + "probability": 0.7502 + }, + { + "start": 9949.32, + "end": 9950.22, + "probability": 0.6885 + }, + { + "start": 9950.54, + "end": 9951.6, + "probability": 0.8851 + }, + { + "start": 9954.6, + "end": 9955.02, + "probability": 0.2826 + }, + { + "start": 9956.46, + "end": 9957.64, + "probability": 0.5461 + }, + { + "start": 9958.54, + "end": 9962.64, + "probability": 0.7962 + }, + { + "start": 9963.38, + "end": 9965.86, + "probability": 0.9636 + }, + { + "start": 9966.64, + "end": 9968.58, + "probability": 0.9738 + }, + { + "start": 9970.96, + "end": 9972.1, + "probability": 0.8963 + }, + { + "start": 9973.5, + "end": 9975.9, + "probability": 0.9297 + }, + { + "start": 9976.9, + "end": 9977.48, + "probability": 0.9042 + }, + { + "start": 9977.98, + "end": 9979.4, + "probability": 0.851 + }, + { + "start": 9979.48, + "end": 9980.02, + "probability": 0.9174 + }, + { + "start": 9980.18, + "end": 9981.64, + "probability": 0.8577 + }, + { + "start": 9982.46, + "end": 9983.16, + "probability": 0.9333 + }, + { + "start": 9984.34, + "end": 9985.66, + "probability": 0.9917 + }, + { + "start": 9987.38, + "end": 9989.4, + "probability": 0.7355 + }, + { + "start": 9990.27, + "end": 9992.58, + "probability": 0.8489 + }, + { + "start": 9993.1, + "end": 9993.6, + "probability": 0.8423 + }, + { + "start": 9994.24, + "end": 9995.3, + "probability": 0.8635 + }, + { + "start": 9995.5, + "end": 9996.12, + "probability": 0.9624 + }, + { + "start": 9996.2, + "end": 9997.1, + "probability": 0.9916 + }, + { + "start": 9997.1, + "end": 9997.5, + "probability": 0.6299 + }, + { + "start": 9997.62, + "end": 9999.12, + "probability": 0.9907 + }, + { + "start": 10000.36, + "end": 10000.84, + "probability": 0.4333 + }, + { + "start": 10001.5, + "end": 10002.7, + "probability": 0.8534 + }, + { + "start": 10003.18, + "end": 10003.84, + "probability": 0.5542 + }, + { + "start": 10004.34, + "end": 10005.92, + "probability": 0.896 + }, + { + "start": 10006.4, + "end": 10007.08, + "probability": 0.8403 + }, + { + "start": 10008.44, + "end": 10010.26, + "probability": 0.9236 + }, + { + "start": 10011.28, + "end": 10013.4, + "probability": 0.987 + }, + { + "start": 10013.92, + "end": 10014.96, + "probability": 0.9919 + }, + { + "start": 10016.18, + "end": 10016.86, + "probability": 0.7612 + }, + { + "start": 10019.32, + "end": 10019.77, + "probability": 0.9044 + }, + { + "start": 10020.22, + "end": 10020.8, + "probability": 0.8061 + }, + { + "start": 10021.34, + "end": 10021.8, + "probability": 0.7725 + }, + { + "start": 10022.72, + "end": 10024.28, + "probability": 0.9656 + }, + { + "start": 10024.82, + "end": 10027.86, + "probability": 0.8102 + }, + { + "start": 10028.68, + "end": 10030.12, + "probability": 0.18 + }, + { + "start": 10030.14, + "end": 10031.3, + "probability": 0.6388 + }, + { + "start": 10033.44, + "end": 10034.34, + "probability": 0.7184 + }, + { + "start": 10034.54, + "end": 10035.06, + "probability": 0.5306 + }, + { + "start": 10035.14, + "end": 10036.44, + "probability": 0.7653 + }, + { + "start": 10036.86, + "end": 10037.4, + "probability": 0.9015 + }, + { + "start": 10037.52, + "end": 10038.86, + "probability": 0.9783 + }, + { + "start": 10038.94, + "end": 10039.44, + "probability": 0.496 + }, + { + "start": 10040.18, + "end": 10044.18, + "probability": 0.8342 + }, + { + "start": 10045.02, + "end": 10046.28, + "probability": 0.8643 + }, + { + "start": 10047.5, + "end": 10049.45, + "probability": 0.8456 + }, + { + "start": 10049.82, + "end": 10050.46, + "probability": 0.4399 + }, + { + "start": 10050.84, + "end": 10051.88, + "probability": 0.843 + }, + { + "start": 10052.04, + "end": 10054.51, + "probability": 0.5323 + }, + { + "start": 10055.24, + "end": 10057.98, + "probability": 0.941 + }, + { + "start": 10058.1, + "end": 10060.86, + "probability": 0.7419 + }, + { + "start": 10062.5, + "end": 10063.91, + "probability": 0.19 + }, + { + "start": 10065.98, + "end": 10067.02, + "probability": 0.1195 + }, + { + "start": 10067.9, + "end": 10068.9, + "probability": 0.0007 + }, + { + "start": 10070.7, + "end": 10072.39, + "probability": 0.0138 + }, + { + "start": 10073.36, + "end": 10075.32, + "probability": 0.147 + }, + { + "start": 10076.02, + "end": 10076.36, + "probability": 0.2516 + }, + { + "start": 10076.36, + "end": 10079.6, + "probability": 0.7149 + }, + { + "start": 10080.2, + "end": 10083.62, + "probability": 0.9659 + }, + { + "start": 10083.74, + "end": 10085.64, + "probability": 0.7831 + }, + { + "start": 10086.56, + "end": 10087.98, + "probability": 0.8997 + }, + { + "start": 10088.76, + "end": 10090.18, + "probability": 0.9419 + }, + { + "start": 10092.48, + "end": 10095.06, + "probability": 0.6351 + }, + { + "start": 10095.12, + "end": 10099.32, + "probability": 0.9553 + }, + { + "start": 10099.92, + "end": 10101.54, + "probability": 0.7487 + }, + { + "start": 10136.72, + "end": 10138.26, + "probability": 0.5402 + }, + { + "start": 10139.38, + "end": 10140.58, + "probability": 0.6754 + }, + { + "start": 10141.52, + "end": 10146.96, + "probability": 0.6679 + }, + { + "start": 10147.14, + "end": 10149.54, + "probability": 0.0996 + }, + { + "start": 10149.84, + "end": 10151.36, + "probability": 0.918 + }, + { + "start": 10152.32, + "end": 10155.34, + "probability": 0.8821 + }, + { + "start": 10156.22, + "end": 10159.04, + "probability": 0.685 + }, + { + "start": 10160.94, + "end": 10166.16, + "probability": 0.9336 + }, + { + "start": 10166.18, + "end": 10168.78, + "probability": 0.999 + }, + { + "start": 10169.44, + "end": 10170.9, + "probability": 0.8553 + }, + { + "start": 10172.94, + "end": 10174.34, + "probability": 0.6413 + }, + { + "start": 10175.4, + "end": 10177.62, + "probability": 0.9954 + }, + { + "start": 10177.62, + "end": 10180.04, + "probability": 0.9982 + }, + { + "start": 10180.6, + "end": 10183.52, + "probability": 0.9929 + }, + { + "start": 10184.14, + "end": 10185.78, + "probability": 0.9589 + }, + { + "start": 10186.0, + "end": 10186.48, + "probability": 0.6899 + }, + { + "start": 10187.04, + "end": 10189.7, + "probability": 0.9475 + }, + { + "start": 10190.4, + "end": 10191.8, + "probability": 0.8114 + }, + { + "start": 10192.6, + "end": 10197.36, + "probability": 0.96 + }, + { + "start": 10197.36, + "end": 10204.3, + "probability": 0.9643 + }, + { + "start": 10205.64, + "end": 10208.44, + "probability": 0.7488 + }, + { + "start": 10209.04, + "end": 10209.5, + "probability": 0.7458 + }, + { + "start": 10210.04, + "end": 10212.16, + "probability": 0.7903 + }, + { + "start": 10212.2, + "end": 10216.16, + "probability": 0.9946 + }, + { + "start": 10216.92, + "end": 10221.1, + "probability": 0.9839 + }, + { + "start": 10221.1, + "end": 10225.48, + "probability": 0.9885 + }, + { + "start": 10226.06, + "end": 10229.48, + "probability": 0.8706 + }, + { + "start": 10229.6, + "end": 10230.7, + "probability": 0.99 + }, + { + "start": 10231.62, + "end": 10233.12, + "probability": 0.8598 + }, + { + "start": 10233.86, + "end": 10236.54, + "probability": 0.9923 + }, + { + "start": 10236.74, + "end": 10238.14, + "probability": 0.9398 + }, + { + "start": 10238.72, + "end": 10243.66, + "probability": 0.9842 + }, + { + "start": 10243.76, + "end": 10245.12, + "probability": 0.9785 + }, + { + "start": 10246.88, + "end": 10249.82, + "probability": 0.934 + }, + { + "start": 10250.62, + "end": 10251.42, + "probability": 0.9424 + }, + { + "start": 10252.16, + "end": 10254.74, + "probability": 0.9295 + }, + { + "start": 10255.44, + "end": 10257.7, + "probability": 0.9753 + }, + { + "start": 10257.7, + "end": 10260.52, + "probability": 0.9038 + }, + { + "start": 10260.66, + "end": 10261.16, + "probability": 0.8538 + }, + { + "start": 10261.7, + "end": 10264.16, + "probability": 0.8392 + }, + { + "start": 10265.06, + "end": 10267.02, + "probability": 0.7824 + }, + { + "start": 10267.64, + "end": 10269.54, + "probability": 0.9167 + }, + { + "start": 10270.18, + "end": 10273.18, + "probability": 0.9332 + }, + { + "start": 10273.72, + "end": 10276.72, + "probability": 0.9917 + }, + { + "start": 10276.72, + "end": 10280.14, + "probability": 0.9886 + }, + { + "start": 10280.82, + "end": 10283.8, + "probability": 0.8477 + }, + { + "start": 10284.0, + "end": 10284.92, + "probability": 0.6749 + }, + { + "start": 10285.42, + "end": 10288.94, + "probability": 0.9763 + }, + { + "start": 10289.72, + "end": 10290.04, + "probability": 0.5178 + }, + { + "start": 10290.14, + "end": 10293.48, + "probability": 0.9941 + }, + { + "start": 10293.48, + "end": 10298.62, + "probability": 0.9922 + }, + { + "start": 10298.62, + "end": 10302.98, + "probability": 0.9644 + }, + { + "start": 10303.56, + "end": 10306.0, + "probability": 0.9921 + }, + { + "start": 10306.6, + "end": 10311.26, + "probability": 0.9769 + }, + { + "start": 10312.82, + "end": 10313.46, + "probability": 0.7426 + }, + { + "start": 10313.62, + "end": 10318.5, + "probability": 0.9958 + }, + { + "start": 10319.0, + "end": 10322.34, + "probability": 0.8784 + }, + { + "start": 10322.34, + "end": 10326.76, + "probability": 0.9979 + }, + { + "start": 10327.52, + "end": 10331.18, + "probability": 0.981 + }, + { + "start": 10331.18, + "end": 10334.04, + "probability": 0.9996 + }, + { + "start": 10334.92, + "end": 10338.14, + "probability": 0.9847 + }, + { + "start": 10338.14, + "end": 10340.78, + "probability": 0.7836 + }, + { + "start": 10341.34, + "end": 10343.54, + "probability": 0.9467 + }, + { + "start": 10343.54, + "end": 10346.62, + "probability": 0.9705 + }, + { + "start": 10347.42, + "end": 10350.98, + "probability": 0.9838 + }, + { + "start": 10350.98, + "end": 10354.38, + "probability": 0.983 + }, + { + "start": 10354.92, + "end": 10357.54, + "probability": 0.9457 + }, + { + "start": 10358.24, + "end": 10363.0, + "probability": 0.9223 + }, + { + "start": 10363.56, + "end": 10365.82, + "probability": 0.9072 + }, + { + "start": 10367.34, + "end": 10368.0, + "probability": 0.8078 + }, + { + "start": 10368.26, + "end": 10372.32, + "probability": 0.994 + }, + { + "start": 10372.32, + "end": 10376.56, + "probability": 0.9846 + }, + { + "start": 10376.82, + "end": 10378.92, + "probability": 0.9194 + }, + { + "start": 10379.66, + "end": 10381.5, + "probability": 0.7738 + }, + { + "start": 10381.56, + "end": 10382.42, + "probability": 0.7495 + }, + { + "start": 10382.48, + "end": 10384.68, + "probability": 0.9278 + }, + { + "start": 10384.68, + "end": 10387.5, + "probability": 0.8081 + }, + { + "start": 10388.12, + "end": 10389.92, + "probability": 0.8326 + }, + { + "start": 10390.0, + "end": 10390.38, + "probability": 0.6968 + }, + { + "start": 10391.2, + "end": 10393.4, + "probability": 0.9841 + }, + { + "start": 10395.08, + "end": 10396.82, + "probability": 0.9208 + }, + { + "start": 10398.22, + "end": 10403.06, + "probability": 0.6672 + }, + { + "start": 10403.06, + "end": 10405.66, + "probability": 0.9714 + }, + { + "start": 10405.76, + "end": 10406.64, + "probability": 0.8965 + }, + { + "start": 10407.44, + "end": 10410.64, + "probability": 0.8894 + }, + { + "start": 10410.86, + "end": 10412.14, + "probability": 0.9922 + }, + { + "start": 10412.86, + "end": 10414.2, + "probability": 0.968 + }, + { + "start": 10414.42, + "end": 10415.12, + "probability": 0.9661 + }, + { + "start": 10416.54, + "end": 10417.7, + "probability": 0.9964 + }, + { + "start": 10418.36, + "end": 10419.34, + "probability": 0.9959 + }, + { + "start": 10420.18, + "end": 10420.61, + "probability": 0.9932 + }, + { + "start": 10421.86, + "end": 10425.52, + "probability": 0.996 + }, + { + "start": 10425.6, + "end": 10425.92, + "probability": 0.7458 + }, + { + "start": 10426.74, + "end": 10428.3, + "probability": 0.9904 + }, + { + "start": 10428.46, + "end": 10429.64, + "probability": 0.8211 + }, + { + "start": 10430.2, + "end": 10431.2, + "probability": 0.9542 + }, + { + "start": 10431.94, + "end": 10441.36, + "probability": 0.7579 + }, + { + "start": 10442.04, + "end": 10444.12, + "probability": 0.8958 + }, + { + "start": 10444.2, + "end": 10447.82, + "probability": 0.9798 + }, + { + "start": 10448.77, + "end": 10451.48, + "probability": 0.9499 + }, + { + "start": 10451.64, + "end": 10455.54, + "probability": 0.9653 + }, + { + "start": 10456.72, + "end": 10458.78, + "probability": 0.2163 + }, + { + "start": 10459.48, + "end": 10462.78, + "probability": 0.9613 + }, + { + "start": 10462.86, + "end": 10463.22, + "probability": 0.6873 + }, + { + "start": 10463.8, + "end": 10464.88, + "probability": 0.9982 + }, + { + "start": 10465.0, + "end": 10467.06, + "probability": 0.9294 + }, + { + "start": 10467.98, + "end": 10471.0, + "probability": 0.9922 + }, + { + "start": 10471.0, + "end": 10478.88, + "probability": 0.9928 + }, + { + "start": 10479.46, + "end": 10483.08, + "probability": 0.9971 + }, + { + "start": 10483.88, + "end": 10489.98, + "probability": 0.998 + }, + { + "start": 10489.98, + "end": 10493.92, + "probability": 0.9991 + }, + { + "start": 10494.04, + "end": 10494.88, + "probability": 0.9956 + }, + { + "start": 10495.68, + "end": 10496.7, + "probability": 0.6771 + }, + { + "start": 10496.9, + "end": 10500.16, + "probability": 0.9766 + }, + { + "start": 10501.54, + "end": 10502.16, + "probability": 0.6835 + }, + { + "start": 10502.24, + "end": 10504.24, + "probability": 0.5684 + }, + { + "start": 10504.24, + "end": 10506.66, + "probability": 0.984 + }, + { + "start": 10508.54, + "end": 10512.1, + "probability": 0.9852 + }, + { + "start": 10512.48, + "end": 10512.96, + "probability": 0.9899 + }, + { + "start": 10513.06, + "end": 10513.34, + "probability": 0.8102 + }, + { + "start": 10514.4, + "end": 10517.8, + "probability": 0.7001 + }, + { + "start": 10518.38, + "end": 10519.46, + "probability": 0.8813 + }, + { + "start": 10520.22, + "end": 10522.9, + "probability": 0.0373 + }, + { + "start": 10523.28, + "end": 10525.84, + "probability": 0.4271 + }, + { + "start": 10526.36, + "end": 10527.64, + "probability": 0.6848 + }, + { + "start": 10530.32, + "end": 10531.66, + "probability": 0.6798 + }, + { + "start": 10531.88, + "end": 10533.68, + "probability": 0.9725 + }, + { + "start": 10533.84, + "end": 10535.08, + "probability": 0.8327 + }, + { + "start": 10535.16, + "end": 10536.76, + "probability": 0.1796 + }, + { + "start": 10537.36, + "end": 10537.36, + "probability": 0.2764 + }, + { + "start": 10537.36, + "end": 10537.8, + "probability": 0.4348 + }, + { + "start": 10537.98, + "end": 10538.44, + "probability": 0.7781 + }, + { + "start": 10538.48, + "end": 10538.98, + "probability": 0.3209 + }, + { + "start": 10539.96, + "end": 10541.08, + "probability": 0.7184 + }, + { + "start": 10541.12, + "end": 10543.44, + "probability": 0.9487 + }, + { + "start": 10543.68, + "end": 10545.36, + "probability": 0.9341 + }, + { + "start": 10546.2, + "end": 10546.2, + "probability": 0.002 + }, + { + "start": 10547.42, + "end": 10548.58, + "probability": 0.464 + }, + { + "start": 10552.66, + "end": 10554.62, + "probability": 0.9617 + }, + { + "start": 10554.78, + "end": 10555.68, + "probability": 0.5357 + }, + { + "start": 10558.54, + "end": 10563.8, + "probability": 0.9819 + }, + { + "start": 10563.84, + "end": 10564.98, + "probability": 0.926 + }, + { + "start": 10565.06, + "end": 10568.2, + "probability": 0.9331 + }, + { + "start": 10568.96, + "end": 10573.34, + "probability": 0.9894 + }, + { + "start": 10579.82, + "end": 10581.26, + "probability": 0.9736 + }, + { + "start": 10581.46, + "end": 10584.26, + "probability": 0.9962 + }, + { + "start": 10584.36, + "end": 10585.3, + "probability": 0.7821 + }, + { + "start": 10587.58, + "end": 10591.3, + "probability": 0.9826 + }, + { + "start": 10593.24, + "end": 10599.18, + "probability": 0.9212 + }, + { + "start": 10599.84, + "end": 10600.9, + "probability": 0.0937 + }, + { + "start": 10602.22, + "end": 10606.96, + "probability": 0.8953 + }, + { + "start": 10606.96, + "end": 10607.94, + "probability": 0.276 + }, + { + "start": 10610.94, + "end": 10617.74, + "probability": 0.9706 + }, + { + "start": 10619.8, + "end": 10620.18, + "probability": 0.3479 + }, + { + "start": 10620.96, + "end": 10623.9, + "probability": 0.991 + }, + { + "start": 10623.92, + "end": 10626.52, + "probability": 0.9943 + }, + { + "start": 10628.76, + "end": 10631.06, + "probability": 0.9776 + }, + { + "start": 10632.72, + "end": 10635.94, + "probability": 0.9988 + }, + { + "start": 10637.26, + "end": 10642.56, + "probability": 0.9937 + }, + { + "start": 10642.58, + "end": 10644.84, + "probability": 0.958 + }, + { + "start": 10645.76, + "end": 10648.76, + "probability": 0.9926 + }, + { + "start": 10649.58, + "end": 10650.92, + "probability": 0.7456 + }, + { + "start": 10652.44, + "end": 10653.22, + "probability": 0.8607 + }, + { + "start": 10654.22, + "end": 10654.68, + "probability": 0.8146 + }, + { + "start": 10654.8, + "end": 10658.48, + "probability": 0.9551 + }, + { + "start": 10661.4, + "end": 10663.96, + "probability": 0.4766 + }, + { + "start": 10666.0, + "end": 10666.64, + "probability": 0.5971 + }, + { + "start": 10666.64, + "end": 10666.98, + "probability": 0.7301 + }, + { + "start": 10669.6, + "end": 10670.5, + "probability": 0.3253 + }, + { + "start": 10671.36, + "end": 10672.64, + "probability": 0.7422 + }, + { + "start": 10672.66, + "end": 10674.26, + "probability": 0.794 + }, + { + "start": 10674.46, + "end": 10675.1, + "probability": 0.8518 + }, + { + "start": 10675.22, + "end": 10675.74, + "probability": 0.881 + }, + { + "start": 10675.8, + "end": 10677.52, + "probability": 0.9351 + }, + { + "start": 10678.38, + "end": 10684.9, + "probability": 0.9741 + }, + { + "start": 10685.82, + "end": 10692.08, + "probability": 0.992 + }, + { + "start": 10692.22, + "end": 10692.5, + "probability": 0.5389 + }, + { + "start": 10692.72, + "end": 10694.66, + "probability": 0.9517 + }, + { + "start": 10695.76, + "end": 10696.18, + "probability": 0.678 + }, + { + "start": 10697.64, + "end": 10700.6, + "probability": 0.9627 + }, + { + "start": 10700.6, + "end": 10704.92, + "probability": 0.7225 + }, + { + "start": 10707.68, + "end": 10709.18, + "probability": 0.6562 + }, + { + "start": 10710.9, + "end": 10712.46, + "probability": 0.9455 + }, + { + "start": 10712.58, + "end": 10716.86, + "probability": 0.9797 + }, + { + "start": 10718.1, + "end": 10723.7, + "probability": 0.9809 + }, + { + "start": 10723.98, + "end": 10725.36, + "probability": 0.9371 + }, + { + "start": 10725.5, + "end": 10725.56, + "probability": 0.5232 + }, + { + "start": 10725.56, + "end": 10726.94, + "probability": 0.5537 + }, + { + "start": 10729.24, + "end": 10731.1, + "probability": 0.8988 + }, + { + "start": 10731.64, + "end": 10733.94, + "probability": 0.9544 + }, + { + "start": 10734.68, + "end": 10737.9, + "probability": 0.9752 + }, + { + "start": 10738.54, + "end": 10740.34, + "probability": 0.9823 + }, + { + "start": 10740.38, + "end": 10741.04, + "probability": 0.6948 + }, + { + "start": 10741.98, + "end": 10742.6, + "probability": 0.7444 + }, + { + "start": 10743.28, + "end": 10745.44, + "probability": 0.4391 + }, + { + "start": 10745.56, + "end": 10746.06, + "probability": 0.9194 + }, + { + "start": 10746.52, + "end": 10746.78, + "probability": 0.0655 + }, + { + "start": 10747.74, + "end": 10751.56, + "probability": 0.5919 + }, + { + "start": 10752.1, + "end": 10752.64, + "probability": 0.4811 + }, + { + "start": 10753.16, + "end": 10755.31, + "probability": 0.7219 + }, + { + "start": 10755.84, + "end": 10757.0, + "probability": 0.8714 + }, + { + "start": 10757.14, + "end": 10757.68, + "probability": 0.4946 + }, + { + "start": 10758.12, + "end": 10759.42, + "probability": 0.9609 + }, + { + "start": 10760.14, + "end": 10762.38, + "probability": 0.9924 + }, + { + "start": 10763.96, + "end": 10764.54, + "probability": 0.9811 + }, + { + "start": 10764.64, + "end": 10765.48, + "probability": 0.981 + }, + { + "start": 10765.52, + "end": 10766.04, + "probability": 0.9849 + }, + { + "start": 10766.1, + "end": 10767.34, + "probability": 0.9537 + }, + { + "start": 10767.48, + "end": 10767.68, + "probability": 0.9561 + }, + { + "start": 10768.32, + "end": 10768.98, + "probability": 0.6546 + }, + { + "start": 10770.1, + "end": 10772.98, + "probability": 0.7429 + }, + { + "start": 10773.82, + "end": 10774.95, + "probability": 0.9446 + }, + { + "start": 10775.12, + "end": 10775.54, + "probability": 0.7968 + }, + { + "start": 10775.54, + "end": 10776.64, + "probability": 0.6633 + }, + { + "start": 10776.7, + "end": 10777.2, + "probability": 0.4544 + }, + { + "start": 10777.3, + "end": 10779.84, + "probability": 0.8524 + }, + { + "start": 10783.86, + "end": 10785.26, + "probability": 0.3224 + }, + { + "start": 10785.78, + "end": 10786.74, + "probability": 0.4985 + }, + { + "start": 10788.04, + "end": 10790.0, + "probability": 0.8612 + }, + { + "start": 10791.44, + "end": 10791.98, + "probability": 0.4882 + }, + { + "start": 10800.06, + "end": 10800.5, + "probability": 0.0657 + }, + { + "start": 10804.68, + "end": 10807.36, + "probability": 0.0214 + }, + { + "start": 10807.44, + "end": 10808.22, + "probability": 0.7958 + }, + { + "start": 10808.4, + "end": 10809.72, + "probability": 0.9548 + }, + { + "start": 10809.74, + "end": 10812.24, + "probability": 0.8878 + }, + { + "start": 10814.04, + "end": 10815.92, + "probability": 0.9414 + }, + { + "start": 10816.68, + "end": 10816.94, + "probability": 0.5807 + }, + { + "start": 10818.94, + "end": 10824.42, + "probability": 0.3605 + }, + { + "start": 10824.42, + "end": 10825.2, + "probability": 0.5524 + }, + { + "start": 10825.2, + "end": 10826.56, + "probability": 0.087 + }, + { + "start": 10833.04, + "end": 10834.38, + "probability": 0.719 + }, + { + "start": 10834.58, + "end": 10838.64, + "probability": 0.8713 + }, + { + "start": 10838.7, + "end": 10839.68, + "probability": 0.6923 + }, + { + "start": 10839.8, + "end": 10843.66, + "probability": 0.9906 + }, + { + "start": 10844.12, + "end": 10845.12, + "probability": 0.6363 + }, + { + "start": 10845.76, + "end": 10846.28, + "probability": 0.6788 + }, + { + "start": 10847.23, + "end": 10849.78, + "probability": 0.9167 + }, + { + "start": 10851.28, + "end": 10852.34, + "probability": 0.942 + }, + { + "start": 10852.98, + "end": 10854.54, + "probability": 0.3977 + }, + { + "start": 10855.42, + "end": 10856.06, + "probability": 0.1591 + }, + { + "start": 10856.08, + "end": 10858.06, + "probability": 0.8219 + }, + { + "start": 10859.16, + "end": 10861.12, + "probability": 0.8381 + }, + { + "start": 10861.94, + "end": 10862.84, + "probability": 0.8073 + }, + { + "start": 10863.42, + "end": 10867.56, + "probability": 0.9891 + }, + { + "start": 10867.58, + "end": 10871.68, + "probability": 0.94 + }, + { + "start": 10871.84, + "end": 10875.18, + "probability": 0.9934 + }, + { + "start": 10876.34, + "end": 10878.42, + "probability": 0.719 + }, + { + "start": 10879.16, + "end": 10880.22, + "probability": 0.7779 + }, + { + "start": 10880.38, + "end": 10882.04, + "probability": 0.6504 + }, + { + "start": 10882.52, + "end": 10882.92, + "probability": 0.4865 + }, + { + "start": 10883.04, + "end": 10888.26, + "probability": 0.9928 + }, + { + "start": 10888.44, + "end": 10889.28, + "probability": 0.4308 + }, + { + "start": 10890.1, + "end": 10893.8, + "probability": 0.924 + }, + { + "start": 10894.64, + "end": 10896.04, + "probability": 0.9896 + }, + { + "start": 10896.58, + "end": 10900.33, + "probability": 0.9795 + }, + { + "start": 10901.82, + "end": 10903.72, + "probability": 0.9907 + }, + { + "start": 10904.02, + "end": 10905.16, + "probability": 0.9918 + }, + { + "start": 10905.32, + "end": 10905.6, + "probability": 0.566 + }, + { + "start": 10905.7, + "end": 10907.0, + "probability": 0.9821 + }, + { + "start": 10907.24, + "end": 10911.72, + "probability": 0.9948 + }, + { + "start": 10913.6, + "end": 10916.66, + "probability": 0.7134 + }, + { + "start": 10917.36, + "end": 10919.14, + "probability": 0.9866 + }, + { + "start": 10919.44, + "end": 10923.42, + "probability": 0.9619 + }, + { + "start": 10923.42, + "end": 10928.64, + "probability": 0.9775 + }, + { + "start": 10929.48, + "end": 10933.3, + "probability": 0.9878 + }, + { + "start": 10933.3, + "end": 10935.9, + "probability": 0.9904 + }, + { + "start": 10936.04, + "end": 10937.71, + "probability": 0.7935 + }, + { + "start": 10938.82, + "end": 10940.6, + "probability": 0.9856 + }, + { + "start": 10940.68, + "end": 10941.16, + "probability": 0.9698 + }, + { + "start": 10941.24, + "end": 10941.68, + "probability": 0.8302 + }, + { + "start": 10941.96, + "end": 10942.5, + "probability": 0.9944 + }, + { + "start": 10943.2, + "end": 10944.28, + "probability": 0.9954 + }, + { + "start": 10944.58, + "end": 10946.02, + "probability": 0.9797 + }, + { + "start": 10946.1, + "end": 10947.34, + "probability": 0.9914 + }, + { + "start": 10947.4, + "end": 10947.88, + "probability": 0.9971 + }, + { + "start": 10949.62, + "end": 10950.86, + "probability": 0.9962 + }, + { + "start": 10951.54, + "end": 10952.34, + "probability": 0.628 + }, + { + "start": 10952.56, + "end": 10955.04, + "probability": 0.9702 + }, + { + "start": 10955.12, + "end": 10955.7, + "probability": 0.9777 + }, + { + "start": 10955.78, + "end": 10956.84, + "probability": 0.6045 + }, + { + "start": 10956.9, + "end": 10958.0, + "probability": 0.9917 + }, + { + "start": 10958.78, + "end": 10961.3, + "probability": 0.9979 + }, + { + "start": 10961.92, + "end": 10963.04, + "probability": 0.9084 + }, + { + "start": 10963.38, + "end": 10967.6, + "probability": 0.9949 + }, + { + "start": 10967.8, + "end": 10970.94, + "probability": 0.9806 + }, + { + "start": 10971.16, + "end": 10972.22, + "probability": 0.9781 + }, + { + "start": 10972.36, + "end": 10972.56, + "probability": 0.8002 + }, + { + "start": 10972.58, + "end": 10972.74, + "probability": 0.8911 + }, + { + "start": 10972.8, + "end": 10975.8, + "probability": 0.9225 + }, + { + "start": 10976.76, + "end": 10977.48, + "probability": 0.9587 + }, + { + "start": 10977.88, + "end": 10979.94, + "probability": 0.9847 + }, + { + "start": 10980.78, + "end": 10982.74, + "probability": 0.9973 + }, + { + "start": 10982.84, + "end": 10984.74, + "probability": 0.9914 + }, + { + "start": 10984.84, + "end": 10986.3, + "probability": 0.9741 + }, + { + "start": 10986.92, + "end": 10989.5, + "probability": 0.9582 + }, + { + "start": 10990.22, + "end": 10993.0, + "probability": 0.9941 + }, + { + "start": 10993.5, + "end": 10995.0, + "probability": 0.9951 + }, + { + "start": 10995.16, + "end": 10997.98, + "probability": 0.6046 + }, + { + "start": 10998.62, + "end": 11002.22, + "probability": 0.9969 + }, + { + "start": 11002.24, + "end": 11005.46, + "probability": 0.8427 + }, + { + "start": 11005.88, + "end": 11007.14, + "probability": 0.6428 + }, + { + "start": 11008.14, + "end": 11010.8, + "probability": 0.9253 + }, + { + "start": 11010.98, + "end": 11011.78, + "probability": 0.9651 + }, + { + "start": 11012.02, + "end": 11013.1, + "probability": 0.9159 + }, + { + "start": 11013.2, + "end": 11013.8, + "probability": 0.9763 + }, + { + "start": 11013.84, + "end": 11014.66, + "probability": 0.748 + }, + { + "start": 11015.24, + "end": 11019.64, + "probability": 0.9932 + }, + { + "start": 11019.74, + "end": 11021.56, + "probability": 0.5815 + }, + { + "start": 11021.94, + "end": 11022.22, + "probability": 0.8163 + }, + { + "start": 11022.34, + "end": 11025.4, + "probability": 0.9904 + }, + { + "start": 11025.82, + "end": 11028.5, + "probability": 0.7526 + }, + { + "start": 11029.58, + "end": 11033.88, + "probability": 0.9876 + }, + { + "start": 11033.92, + "end": 11034.34, + "probability": 0.7321 + }, + { + "start": 11035.38, + "end": 11035.84, + "probability": 0.7536 + }, + { + "start": 11035.94, + "end": 11037.72, + "probability": 0.8667 + }, + { + "start": 11037.72, + "end": 11040.3, + "probability": 0.6935 + }, + { + "start": 11040.84, + "end": 11040.94, + "probability": 0.0935 + }, + { + "start": 11041.04, + "end": 11045.24, + "probability": 0.9162 + }, + { + "start": 11045.3, + "end": 11045.92, + "probability": 0.7708 + }, + { + "start": 11046.98, + "end": 11048.46, + "probability": 0.8706 + }, + { + "start": 11048.54, + "end": 11048.7, + "probability": 0.2898 + }, + { + "start": 11049.85, + "end": 11051.92, + "probability": 0.6013 + }, + { + "start": 11052.26, + "end": 11052.26, + "probability": 0.072 + }, + { + "start": 11052.26, + "end": 11052.26, + "probability": 0.1785 + }, + { + "start": 11052.26, + "end": 11053.12, + "probability": 0.6903 + }, + { + "start": 11053.22, + "end": 11054.12, + "probability": 0.5118 + }, + { + "start": 11054.14, + "end": 11054.92, + "probability": 0.4441 + }, + { + "start": 11055.28, + "end": 11056.36, + "probability": 0.8471 + }, + { + "start": 11056.96, + "end": 11059.34, + "probability": 0.805 + }, + { + "start": 11059.42, + "end": 11060.36, + "probability": 0.5649 + }, + { + "start": 11060.5, + "end": 11061.36, + "probability": 0.8804 + }, + { + "start": 11061.46, + "end": 11062.26, + "probability": 0.8051 + }, + { + "start": 11062.44, + "end": 11062.76, + "probability": 0.718 + }, + { + "start": 11062.78, + "end": 11066.67, + "probability": 0.9907 + }, + { + "start": 11067.5, + "end": 11067.58, + "probability": 0.9814 + }, + { + "start": 11067.58, + "end": 11068.58, + "probability": 0.6043 + }, + { + "start": 11068.58, + "end": 11071.7, + "probability": 0.9868 + }, + { + "start": 11072.14, + "end": 11072.74, + "probability": 0.0426 + }, + { + "start": 11086.28, + "end": 11088.48, + "probability": 0.1415 + }, + { + "start": 11093.94, + "end": 11094.56, + "probability": 0.0495 + }, + { + "start": 11094.58, + "end": 11100.66, + "probability": 0.0613 + }, + { + "start": 11100.66, + "end": 11104.66, + "probability": 0.0742 + }, + { + "start": 11104.92, + "end": 11111.26, + "probability": 0.0697 + }, + { + "start": 11115.04, + "end": 11115.84, + "probability": 0.0739 + }, + { + "start": 11115.84, + "end": 11116.16, + "probability": 0.0341 + }, + { + "start": 11116.16, + "end": 11116.66, + "probability": 0.0681 + }, + { + "start": 11116.66, + "end": 11119.45, + "probability": 0.029 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11164.0, + "end": 11164.0, + "probability": 0.0 + }, + { + "start": 11166.7, + "end": 11170.0, + "probability": 0.9813 + }, + { + "start": 11170.04, + "end": 11170.82, + "probability": 0.9088 + }, + { + "start": 11171.4, + "end": 11175.72, + "probability": 0.9976 + }, + { + "start": 11175.72, + "end": 11179.12, + "probability": 0.9974 + }, + { + "start": 11179.12, + "end": 11183.1, + "probability": 0.9795 + }, + { + "start": 11186.67, + "end": 11189.36, + "probability": 0.9674 + }, + { + "start": 11190.38, + "end": 11190.96, + "probability": 0.2978 + }, + { + "start": 11190.98, + "end": 11194.26, + "probability": 0.9864 + }, + { + "start": 11194.26, + "end": 11197.24, + "probability": 0.9835 + }, + { + "start": 11197.24, + "end": 11200.36, + "probability": 0.9657 + }, + { + "start": 11200.92, + "end": 11201.28, + "probability": 0.3918 + }, + { + "start": 11201.36, + "end": 11203.54, + "probability": 0.991 + }, + { + "start": 11203.54, + "end": 11205.98, + "probability": 0.9717 + }, + { + "start": 11206.06, + "end": 11206.8, + "probability": 0.6172 + }, + { + "start": 11206.96, + "end": 11209.5, + "probability": 0.9225 + }, + { + "start": 11209.5, + "end": 11213.4, + "probability": 0.9945 + }, + { + "start": 11213.4, + "end": 11217.9, + "probability": 0.9622 + }, + { + "start": 11218.34, + "end": 11221.56, + "probability": 0.9812 + }, + { + "start": 11222.06, + "end": 11222.24, + "probability": 0.3391 + }, + { + "start": 11222.38, + "end": 11224.2, + "probability": 0.9351 + }, + { + "start": 11225.62, + "end": 11227.14, + "probability": 0.7521 + }, + { + "start": 11227.68, + "end": 11230.66, + "probability": 0.9513 + }, + { + "start": 11231.32, + "end": 11231.64, + "probability": 0.6184 + }, + { + "start": 11231.76, + "end": 11235.84, + "probability": 0.8936 + }, + { + "start": 11236.34, + "end": 11239.28, + "probability": 0.9951 + }, + { + "start": 11239.28, + "end": 11243.12, + "probability": 0.9943 + }, + { + "start": 11243.56, + "end": 11246.72, + "probability": 0.9854 + }, + { + "start": 11246.78, + "end": 11250.18, + "probability": 0.6381 + }, + { + "start": 11250.68, + "end": 11252.54, + "probability": 0.9269 + }, + { + "start": 11253.1, + "end": 11254.5, + "probability": 0.8828 + }, + { + "start": 11254.6, + "end": 11256.9, + "probability": 0.9623 + }, + { + "start": 11256.9, + "end": 11259.42, + "probability": 0.9862 + }, + { + "start": 11260.09, + "end": 11264.66, + "probability": 0.9549 + }, + { + "start": 11265.4, + "end": 11267.66, + "probability": 0.7212 + }, + { + "start": 11267.74, + "end": 11269.3, + "probability": 0.9628 + }, + { + "start": 11270.66, + "end": 11271.18, + "probability": 0.8535 + }, + { + "start": 11271.22, + "end": 11275.24, + "probability": 0.9531 + }, + { + "start": 11275.88, + "end": 11277.09, + "probability": 0.9995 + }, + { + "start": 11277.58, + "end": 11281.94, + "probability": 0.7765 + }, + { + "start": 11282.88, + "end": 11285.48, + "probability": 0.9173 + }, + { + "start": 11288.56, + "end": 11290.18, + "probability": 0.667 + }, + { + "start": 11291.34, + "end": 11291.76, + "probability": 0.7328 + }, + { + "start": 11291.76, + "end": 11291.82, + "probability": 0.5219 + }, + { + "start": 11292.04, + "end": 11292.48, + "probability": 0.6596 + }, + { + "start": 11292.84, + "end": 11293.44, + "probability": 0.2109 + }, + { + "start": 11294.34, + "end": 11294.69, + "probability": 0.0083 + }, + { + "start": 11296.18, + "end": 11297.9, + "probability": 0.2526 + }, + { + "start": 11299.51, + "end": 11305.07, + "probability": 0.874 + }, + { + "start": 11305.54, + "end": 11307.64, + "probability": 0.8224 + }, + { + "start": 11308.72, + "end": 11309.22, + "probability": 0.5014 + }, + { + "start": 11309.42, + "end": 11310.34, + "probability": 0.8389 + }, + { + "start": 11310.4, + "end": 11312.06, + "probability": 0.2622 + }, + { + "start": 11312.24, + "end": 11313.3, + "probability": 0.3691 + }, + { + "start": 11313.3, + "end": 11313.3, + "probability": 0.4803 + }, + { + "start": 11313.3, + "end": 11314.0, + "probability": 0.7489 + }, + { + "start": 11314.28, + "end": 11314.76, + "probability": 0.7643 + }, + { + "start": 11314.86, + "end": 11315.9, + "probability": 0.6431 + }, + { + "start": 11316.84, + "end": 11317.38, + "probability": 0.8009 + }, + { + "start": 11317.5, + "end": 11318.44, + "probability": 0.8505 + }, + { + "start": 11318.5, + "end": 11319.96, + "probability": 0.4439 + }, + { + "start": 11320.08, + "end": 11321.02, + "probability": 0.4984 + }, + { + "start": 11321.02, + "end": 11321.02, + "probability": 0.6824 + }, + { + "start": 11321.02, + "end": 11321.52, + "probability": 0.5431 + }, + { + "start": 11321.64, + "end": 11322.2, + "probability": 0.8123 + }, + { + "start": 11322.9, + "end": 11324.0, + "probability": 0.8039 + }, + { + "start": 11324.04, + "end": 11324.5, + "probability": 0.5423 + }, + { + "start": 11324.58, + "end": 11325.66, + "probability": 0.7335 + }, + { + "start": 11325.74, + "end": 11325.92, + "probability": 0.2305 + }, + { + "start": 11326.06, + "end": 11326.82, + "probability": 0.4725 + }, + { + "start": 11326.84, + "end": 11327.22, + "probability": 0.7896 + }, + { + "start": 11327.76, + "end": 11328.88, + "probability": 0.7624 + }, + { + "start": 11329.28, + "end": 11329.94, + "probability": 0.7285 + }, + { + "start": 11329.98, + "end": 11331.6, + "probability": 0.9536 + }, + { + "start": 11331.7, + "end": 11332.24, + "probability": 0.8888 + }, + { + "start": 11332.82, + "end": 11335.64, + "probability": 0.9409 + }, + { + "start": 11335.72, + "end": 11336.26, + "probability": 0.2757 + }, + { + "start": 11336.26, + "end": 11336.26, + "probability": 0.2555 + }, + { + "start": 11336.26, + "end": 11336.83, + "probability": 0.691 + }, + { + "start": 11337.02, + "end": 11337.58, + "probability": 0.7932 + }, + { + "start": 11338.34, + "end": 11339.08, + "probability": 0.5884 + }, + { + "start": 11339.24, + "end": 11339.66, + "probability": 0.6527 + }, + { + "start": 11339.78, + "end": 11340.94, + "probability": 0.5271 + }, + { + "start": 11341.3, + "end": 11343.64, + "probability": 0.6833 + }, + { + "start": 11345.8, + "end": 11348.36, + "probability": 0.2627 + }, + { + "start": 11349.06, + "end": 11350.6, + "probability": 0.3798 + }, + { + "start": 11350.64, + "end": 11351.08, + "probability": 0.4881 + }, + { + "start": 11351.58, + "end": 11352.76, + "probability": 0.5541 + }, + { + "start": 11352.76, + "end": 11353.28, + "probability": 0.6708 + }, + { + "start": 11353.74, + "end": 11355.0, + "probability": 0.3725 + }, + { + "start": 11355.0, + "end": 11355.0, + "probability": 0.26 + }, + { + "start": 11355.0, + "end": 11355.0, + "probability": 0.1971 + }, + { + "start": 11355.0, + "end": 11355.0, + "probability": 0.3243 + }, + { + "start": 11355.0, + "end": 11355.98, + "probability": 0.5026 + }, + { + "start": 11360.36, + "end": 11360.71, + "probability": 0.0353 + }, + { + "start": 11366.2, + "end": 11367.64, + "probability": 0.5502 + }, + { + "start": 11368.2, + "end": 11368.72, + "probability": 0.5508 + }, + { + "start": 11369.0, + "end": 11370.08, + "probability": 0.5694 + }, + { + "start": 11370.1, + "end": 11370.4, + "probability": 0.4919 + }, + { + "start": 11370.48, + "end": 11371.32, + "probability": 0.7715 + }, + { + "start": 11371.32, + "end": 11371.76, + "probability": 0.8419 + }, + { + "start": 11372.32, + "end": 11374.54, + "probability": 0.674 + }, + { + "start": 11375.4, + "end": 11377.22, + "probability": 0.8834 + }, + { + "start": 11377.3, + "end": 11378.26, + "probability": 0.9656 + }, + { + "start": 11379.28, + "end": 11382.78, + "probability": 0.842 + }, + { + "start": 11382.86, + "end": 11383.82, + "probability": 0.4843 + }, + { + "start": 11384.72, + "end": 11386.32, + "probability": 0.9569 + }, + { + "start": 11387.38, + "end": 11388.26, + "probability": 0.7776 + }, + { + "start": 11389.2, + "end": 11389.72, + "probability": 0.0043 + }, + { + "start": 11403.9, + "end": 11404.12, + "probability": 0.0141 + }, + { + "start": 11404.12, + "end": 11405.8, + "probability": 0.6945 + }, + { + "start": 11406.06, + "end": 11407.22, + "probability": 0.9523 + }, + { + "start": 11407.26, + "end": 11409.58, + "probability": 0.8926 + }, + { + "start": 11410.48, + "end": 11411.06, + "probability": 0.7194 + }, + { + "start": 11413.46, + "end": 11418.04, + "probability": 0.5022 + }, + { + "start": 11418.34, + "end": 11420.48, + "probability": 0.317 + }, + { + "start": 11420.48, + "end": 11420.52, + "probability": 0.1126 + }, + { + "start": 11420.52, + "end": 11421.64, + "probability": 0.1837 + }, + { + "start": 11425.34, + "end": 11427.22, + "probability": 0.7962 + }, + { + "start": 11427.66, + "end": 11431.38, + "probability": 0.7032 + }, + { + "start": 11431.42, + "end": 11432.68, + "probability": 0.2907 + }, + { + "start": 11433.26, + "end": 11440.18, + "probability": 0.7784 + }, + { + "start": 11440.4, + "end": 11443.34, + "probability": 0.9874 + }, + { + "start": 11447.74, + "end": 11450.78, + "probability": 0.5786 + }, + { + "start": 11451.6, + "end": 11454.44, + "probability": 0.9741 + }, + { + "start": 11457.4, + "end": 11459.15, + "probability": 0.0252 + }, + { + "start": 11459.54, + "end": 11460.28, + "probability": 0.6235 + }, + { + "start": 11460.92, + "end": 11461.56, + "probability": 0.7687 + }, + { + "start": 11463.42, + "end": 11464.6, + "probability": 0.9706 + }, + { + "start": 11464.84, + "end": 11467.68, + "probability": 0.7088 + }, + { + "start": 11467.94, + "end": 11470.24, + "probability": 0.8846 + }, + { + "start": 11470.36, + "end": 11474.38, + "probability": 0.9929 + }, + { + "start": 11474.8, + "end": 11480.18, + "probability": 0.8666 + }, + { + "start": 11480.92, + "end": 11481.6, + "probability": 0.8262 + }, + { + "start": 11482.34, + "end": 11487.84, + "probability": 0.9923 + }, + { + "start": 11488.14, + "end": 11493.38, + "probability": 0.9893 + }, + { + "start": 11494.14, + "end": 11496.42, + "probability": 0.0261 + }, + { + "start": 11496.42, + "end": 11498.68, + "probability": 0.9081 + }, + { + "start": 11498.78, + "end": 11502.4, + "probability": 0.8131 + }, + { + "start": 11503.24, + "end": 11506.72, + "probability": 0.9178 + }, + { + "start": 11506.86, + "end": 11508.01, + "probability": 0.7544 + }, + { + "start": 11508.24, + "end": 11508.96, + "probability": 0.8871 + }, + { + "start": 11509.34, + "end": 11511.4, + "probability": 0.9973 + }, + { + "start": 11512.48, + "end": 11516.52, + "probability": 0.9673 + }, + { + "start": 11516.84, + "end": 11523.22, + "probability": 0.7301 + }, + { + "start": 11523.8, + "end": 11528.86, + "probability": 0.9505 + }, + { + "start": 11529.36, + "end": 11533.24, + "probability": 0.9744 + }, + { + "start": 11533.36, + "end": 11535.44, + "probability": 0.7653 + }, + { + "start": 11536.3, + "end": 11540.9, + "probability": 0.9933 + }, + { + "start": 11541.26, + "end": 11543.1, + "probability": 0.7539 + }, + { + "start": 11543.24, + "end": 11543.7, + "probability": 0.767 + }, + { + "start": 11543.78, + "end": 11544.02, + "probability": 0.785 + }, + { + "start": 11544.24, + "end": 11544.5, + "probability": 0.4751 + }, + { + "start": 11544.56, + "end": 11546.1, + "probability": 0.7286 + }, + { + "start": 11546.68, + "end": 11546.9, + "probability": 0.5386 + }, + { + "start": 11547.0, + "end": 11547.84, + "probability": 0.9007 + }, + { + "start": 11548.3, + "end": 11551.02, + "probability": 0.7671 + }, + { + "start": 11551.68, + "end": 11552.1, + "probability": 0.7035 + }, + { + "start": 11552.18, + "end": 11555.2, + "probability": 0.947 + }, + { + "start": 11555.32, + "end": 11557.6, + "probability": 0.9668 + }, + { + "start": 11557.72, + "end": 11562.86, + "probability": 0.9517 + }, + { + "start": 11563.78, + "end": 11566.42, + "probability": 0.9514 + }, + { + "start": 11566.64, + "end": 11567.58, + "probability": 0.981 + }, + { + "start": 11567.62, + "end": 11569.54, + "probability": 0.8962 + }, + { + "start": 11569.72, + "end": 11570.32, + "probability": 0.5142 + }, + { + "start": 11572.1, + "end": 11573.16, + "probability": 0.6844 + }, + { + "start": 11573.16, + "end": 11574.77, + "probability": 0.9671 + }, + { + "start": 11575.96, + "end": 11577.42, + "probability": 0.8551 + }, + { + "start": 11600.08, + "end": 11601.5, + "probability": 0.7079 + }, + { + "start": 11601.56, + "end": 11602.54, + "probability": 0.6158 + }, + { + "start": 11603.62, + "end": 11609.58, + "probability": 0.9568 + }, + { + "start": 11610.6, + "end": 11613.74, + "probability": 0.9449 + }, + { + "start": 11614.32, + "end": 11617.14, + "probability": 0.7361 + }, + { + "start": 11618.02, + "end": 11620.36, + "probability": 0.976 + }, + { + "start": 11621.76, + "end": 11625.02, + "probability": 0.9716 + }, + { + "start": 11625.72, + "end": 11628.8, + "probability": 0.9295 + }, + { + "start": 11629.64, + "end": 11632.82, + "probability": 0.9088 + }, + { + "start": 11632.82, + "end": 11636.78, + "probability": 0.9984 + }, + { + "start": 11637.38, + "end": 11640.92, + "probability": 0.9985 + }, + { + "start": 11641.52, + "end": 11642.64, + "probability": 0.9194 + }, + { + "start": 11642.78, + "end": 11647.88, + "probability": 0.9871 + }, + { + "start": 11648.8, + "end": 11653.16, + "probability": 0.8848 + }, + { + "start": 11653.28, + "end": 11654.1, + "probability": 0.8149 + }, + { + "start": 11654.9, + "end": 11657.9, + "probability": 0.9823 + }, + { + "start": 11658.88, + "end": 11659.92, + "probability": 0.602 + }, + { + "start": 11660.9, + "end": 11662.56, + "probability": 0.9145 + }, + { + "start": 11663.48, + "end": 11669.66, + "probability": 0.989 + }, + { + "start": 11670.92, + "end": 11673.6, + "probability": 0.9893 + }, + { + "start": 11674.96, + "end": 11675.42, + "probability": 0.0067 + }, + { + "start": 11676.0, + "end": 11677.52, + "probability": 0.5913 + }, + { + "start": 11677.62, + "end": 11677.9, + "probability": 0.0912 + }, + { + "start": 11678.58, + "end": 11680.0, + "probability": 0.8073 + }, + { + "start": 11680.78, + "end": 11681.82, + "probability": 0.8567 + }, + { + "start": 11682.68, + "end": 11685.88, + "probability": 0.9787 + }, + { + "start": 11686.42, + "end": 11687.82, + "probability": 0.9492 + }, + { + "start": 11688.44, + "end": 11691.78, + "probability": 0.9977 + }, + { + "start": 11692.34, + "end": 11694.56, + "probability": 0.9903 + }, + { + "start": 11695.5, + "end": 11699.04, + "probability": 0.958 + }, + { + "start": 11699.74, + "end": 11703.82, + "probability": 0.8604 + }, + { + "start": 11707.4, + "end": 11708.28, + "probability": 0.9792 + }, + { + "start": 11709.56, + "end": 11710.42, + "probability": 0.7583 + }, + { + "start": 11711.36, + "end": 11714.28, + "probability": 0.9814 + }, + { + "start": 11715.32, + "end": 11718.64, + "probability": 0.9646 + }, + { + "start": 11718.82, + "end": 11720.92, + "probability": 0.9954 + }, + { + "start": 11721.28, + "end": 11722.04, + "probability": 0.9847 + }, + { + "start": 11723.54, + "end": 11724.18, + "probability": 0.8183 + }, + { + "start": 11725.24, + "end": 11727.06, + "probability": 0.6009 + }, + { + "start": 11728.92, + "end": 11731.6, + "probability": 0.5395 + }, + { + "start": 11732.24, + "end": 11735.66, + "probability": 0.9745 + }, + { + "start": 11735.82, + "end": 11739.42, + "probability": 0.9878 + }, + { + "start": 11739.92, + "end": 11742.6, + "probability": 0.9817 + }, + { + "start": 11743.78, + "end": 11744.02, + "probability": 0.6332 + }, + { + "start": 11744.6, + "end": 11744.9, + "probability": 0.8268 + }, + { + "start": 11745.2, + "end": 11745.24, + "probability": 0.2629 + }, + { + "start": 11745.24, + "end": 11746.14, + "probability": 0.314 + }, + { + "start": 11747.64, + "end": 11748.0, + "probability": 0.2535 + }, + { + "start": 11748.0, + "end": 11751.23, + "probability": 0.9565 + }, + { + "start": 11752.68, + "end": 11755.1, + "probability": 0.7862 + }, + { + "start": 11755.16, + "end": 11756.78, + "probability": 0.9972 + }, + { + "start": 11757.72, + "end": 11758.8, + "probability": 0.9214 + }, + { + "start": 11759.22, + "end": 11763.14, + "probability": 0.7865 + }, + { + "start": 11763.28, + "end": 11765.12, + "probability": 0.8726 + }, + { + "start": 11765.64, + "end": 11767.26, + "probability": 0.9383 + }, + { + "start": 11767.4, + "end": 11770.4, + "probability": 0.9363 + }, + { + "start": 11770.58, + "end": 11771.56, + "probability": 0.722 + }, + { + "start": 11771.66, + "end": 11772.98, + "probability": 0.9125 + }, + { + "start": 11773.38, + "end": 11774.98, + "probability": 0.9874 + }, + { + "start": 11775.54, + "end": 11776.68, + "probability": 0.6345 + }, + { + "start": 11777.4, + "end": 11778.26, + "probability": 0.9937 + }, + { + "start": 11780.01, + "end": 11783.98, + "probability": 0.9987 + }, + { + "start": 11784.0, + "end": 11787.62, + "probability": 0.9934 + }, + { + "start": 11788.32, + "end": 11790.82, + "probability": 0.9985 + }, + { + "start": 11793.88, + "end": 11800.08, + "probability": 0.8953 + }, + { + "start": 11800.3, + "end": 11801.09, + "probability": 0.8323 + }, + { + "start": 11801.44, + "end": 11803.02, + "probability": 0.9983 + }, + { + "start": 11803.48, + "end": 11804.36, + "probability": 0.2564 + }, + { + "start": 11804.64, + "end": 11805.88, + "probability": 0.9705 + }, + { + "start": 11806.62, + "end": 11809.64, + "probability": 0.8209 + }, + { + "start": 11810.02, + "end": 11811.52, + "probability": 0.7899 + }, + { + "start": 11812.0, + "end": 11812.24, + "probability": 0.9418 + }, + { + "start": 11812.32, + "end": 11814.8, + "probability": 0.9756 + }, + { + "start": 11814.88, + "end": 11818.0, + "probability": 0.992 + }, + { + "start": 11818.58, + "end": 11821.14, + "probability": 0.9973 + }, + { + "start": 11821.26, + "end": 11822.92, + "probability": 0.9965 + }, + { + "start": 11823.34, + "end": 11827.2, + "probability": 0.9956 + }, + { + "start": 11827.7, + "end": 11828.5, + "probability": 0.9631 + }, + { + "start": 11829.02, + "end": 11832.26, + "probability": 0.9961 + }, + { + "start": 11832.26, + "end": 11835.18, + "probability": 0.9928 + }, + { + "start": 11835.3, + "end": 11836.84, + "probability": 0.8008 + }, + { + "start": 11838.42, + "end": 11840.18, + "probability": 0.9533 + }, + { + "start": 11841.06, + "end": 11841.54, + "probability": 0.4883 + }, + { + "start": 11841.85, + "end": 11846.64, + "probability": 0.9973 + }, + { + "start": 11846.94, + "end": 11847.94, + "probability": 0.998 + }, + { + "start": 11848.02, + "end": 11849.86, + "probability": 0.9685 + }, + { + "start": 11850.32, + "end": 11853.26, + "probability": 0.9912 + }, + { + "start": 11853.84, + "end": 11857.44, + "probability": 0.9972 + }, + { + "start": 11857.48, + "end": 11858.3, + "probability": 0.7368 + }, + { + "start": 11859.22, + "end": 11860.06, + "probability": 0.9099 + }, + { + "start": 11861.4, + "end": 11862.74, + "probability": 0.9979 + }, + { + "start": 11862.78, + "end": 11864.48, + "probability": 0.9972 + }, + { + "start": 11865.18, + "end": 11866.62, + "probability": 0.9966 + }, + { + "start": 11867.1, + "end": 11870.2, + "probability": 0.8921 + }, + { + "start": 11871.48, + "end": 11872.28, + "probability": 0.8312 + }, + { + "start": 11873.54, + "end": 11876.96, + "probability": 0.9248 + }, + { + "start": 11876.98, + "end": 11879.82, + "probability": 0.9974 + }, + { + "start": 11880.5, + "end": 11884.18, + "probability": 0.9937 + }, + { + "start": 11884.7, + "end": 11886.82, + "probability": 0.883 + }, + { + "start": 11887.79, + "end": 11890.18, + "probability": 0.9424 + }, + { + "start": 11890.3, + "end": 11890.91, + "probability": 0.9631 + }, + { + "start": 11891.68, + "end": 11891.98, + "probability": 0.5041 + }, + { + "start": 11892.5, + "end": 11893.92, + "probability": 0.9238 + }, + { + "start": 11894.86, + "end": 11897.68, + "probability": 0.9888 + }, + { + "start": 11898.24, + "end": 11899.76, + "probability": 0.9928 + }, + { + "start": 11900.7, + "end": 11905.0, + "probability": 0.9977 + }, + { + "start": 11905.12, + "end": 11907.94, + "probability": 0.9966 + }, + { + "start": 11907.94, + "end": 11910.36, + "probability": 0.9869 + }, + { + "start": 11910.8, + "end": 11911.58, + "probability": 0.8767 + }, + { + "start": 11911.66, + "end": 11914.4, + "probability": 0.1272 + }, + { + "start": 11914.4, + "end": 11914.88, + "probability": 0.1433 + }, + { + "start": 11914.88, + "end": 11916.66, + "probability": 0.9316 + }, + { + "start": 11917.54, + "end": 11917.86, + "probability": 0.4059 + }, + { + "start": 11918.72, + "end": 11922.03, + "probability": 0.9458 + }, + { + "start": 11922.84, + "end": 11923.56, + "probability": 0.714 + }, + { + "start": 11923.92, + "end": 11925.24, + "probability": 0.9941 + }, + { + "start": 11925.92, + "end": 11930.3, + "probability": 0.9918 + }, + { + "start": 11930.76, + "end": 11931.7, + "probability": 0.6613 + }, + { + "start": 11932.02, + "end": 11933.9, + "probability": 0.8809 + }, + { + "start": 11934.52, + "end": 11935.12, + "probability": 0.6675 + }, + { + "start": 11935.46, + "end": 11937.44, + "probability": 0.9951 + }, + { + "start": 11937.92, + "end": 11939.78, + "probability": 0.9881 + }, + { + "start": 11939.9, + "end": 11942.18, + "probability": 0.5826 + }, + { + "start": 11943.22, + "end": 11945.84, + "probability": 0.9992 + }, + { + "start": 11945.92, + "end": 11948.76, + "probability": 0.987 + }, + { + "start": 11949.4, + "end": 11950.5, + "probability": 0.99 + }, + { + "start": 11951.22, + "end": 11957.6, + "probability": 0.9921 + }, + { + "start": 11957.76, + "end": 11958.54, + "probability": 0.9895 + }, + { + "start": 11958.78, + "end": 11959.86, + "probability": 0.9436 + }, + { + "start": 11960.22, + "end": 11962.56, + "probability": 0.9346 + }, + { + "start": 11963.66, + "end": 11965.92, + "probability": 0.9912 + }, + { + "start": 11966.02, + "end": 11966.83, + "probability": 0.9672 + }, + { + "start": 11968.8, + "end": 11971.92, + "probability": 0.9976 + }, + { + "start": 11972.82, + "end": 11975.82, + "probability": 0.7413 + }, + { + "start": 11975.84, + "end": 11977.28, + "probability": 0.9124 + }, + { + "start": 11977.42, + "end": 11978.18, + "probability": 0.926 + }, + { + "start": 11979.48, + "end": 11982.08, + "probability": 0.9534 + }, + { + "start": 11982.24, + "end": 11983.22, + "probability": 0.6636 + }, + { + "start": 11983.24, + "end": 11984.26, + "probability": 0.9491 + }, + { + "start": 11985.54, + "end": 11991.4, + "probability": 0.9951 + }, + { + "start": 11992.3, + "end": 11995.72, + "probability": 0.999 + }, + { + "start": 11996.32, + "end": 12002.3, + "probability": 0.9824 + }, + { + "start": 12002.42, + "end": 12003.52, + "probability": 0.8194 + }, + { + "start": 12003.94, + "end": 12005.68, + "probability": 0.7183 + }, + { + "start": 12005.76, + "end": 12006.7, + "probability": 0.747 + }, + { + "start": 12006.78, + "end": 12010.0, + "probability": 0.9863 + }, + { + "start": 12010.52, + "end": 12011.5, + "probability": 0.8658 + }, + { + "start": 12011.78, + "end": 12012.64, + "probability": 0.9717 + }, + { + "start": 12012.74, + "end": 12013.74, + "probability": 0.8576 + }, + { + "start": 12014.16, + "end": 12016.5, + "probability": 0.9849 + }, + { + "start": 12016.56, + "end": 12017.66, + "probability": 0.7517 + }, + { + "start": 12018.02, + "end": 12019.82, + "probability": 0.9624 + }, + { + "start": 12020.98, + "end": 12022.26, + "probability": 0.9958 + }, + { + "start": 12022.34, + "end": 12024.66, + "probability": 0.9949 + }, + { + "start": 12024.9, + "end": 12025.66, + "probability": 0.6461 + }, + { + "start": 12026.02, + "end": 12026.64, + "probability": 0.845 + }, + { + "start": 12026.96, + "end": 12029.5, + "probability": 0.8057 + }, + { + "start": 12029.66, + "end": 12035.08, + "probability": 0.8052 + }, + { + "start": 12035.2, + "end": 12035.98, + "probability": 0.8872 + }, + { + "start": 12056.5, + "end": 12057.44, + "probability": 0.5733 + }, + { + "start": 12058.2, + "end": 12061.44, + "probability": 0.8728 + }, + { + "start": 12062.04, + "end": 12063.24, + "probability": 0.7477 + }, + { + "start": 12064.34, + "end": 12064.72, + "probability": 0.8918 + }, + { + "start": 12065.74, + "end": 12066.96, + "probability": 0.9241 + }, + { + "start": 12067.96, + "end": 12071.62, + "probability": 0.9956 + }, + { + "start": 12072.82, + "end": 12073.86, + "probability": 0.9898 + }, + { + "start": 12074.38, + "end": 12076.58, + "probability": 0.5122 + }, + { + "start": 12077.84, + "end": 12079.28, + "probability": 0.8163 + }, + { + "start": 12080.18, + "end": 12081.8, + "probability": 0.9656 + }, + { + "start": 12082.58, + "end": 12085.5, + "probability": 0.7144 + }, + { + "start": 12087.06, + "end": 12092.74, + "probability": 0.9533 + }, + { + "start": 12094.18, + "end": 12094.38, + "probability": 0.4978 + }, + { + "start": 12094.46, + "end": 12099.68, + "probability": 0.9256 + }, + { + "start": 12100.42, + "end": 12102.8, + "probability": 0.9265 + }, + { + "start": 12103.58, + "end": 12104.94, + "probability": 0.9064 + }, + { + "start": 12105.62, + "end": 12108.16, + "probability": 0.9939 + }, + { + "start": 12109.06, + "end": 12110.08, + "probability": 0.9943 + }, + { + "start": 12110.72, + "end": 12112.1, + "probability": 0.8668 + }, + { + "start": 12112.78, + "end": 12117.5, + "probability": 0.9863 + }, + { + "start": 12118.66, + "end": 12120.98, + "probability": 0.9824 + }, + { + "start": 12121.8, + "end": 12124.58, + "probability": 0.996 + }, + { + "start": 12125.6, + "end": 12127.8, + "probability": 0.9976 + }, + { + "start": 12128.52, + "end": 12134.12, + "probability": 0.9864 + }, + { + "start": 12134.94, + "end": 12135.98, + "probability": 0.5083 + }, + { + "start": 12136.52, + "end": 12136.62, + "probability": 0.5936 + }, + { + "start": 12136.72, + "end": 12137.84, + "probability": 0.9172 + }, + { + "start": 12138.34, + "end": 12140.84, + "probability": 0.957 + }, + { + "start": 12141.82, + "end": 12145.62, + "probability": 0.9974 + }, + { + "start": 12146.4, + "end": 12149.7, + "probability": 0.9921 + }, + { + "start": 12150.34, + "end": 12150.94, + "probability": 0.7591 + }, + { + "start": 12151.52, + "end": 12153.68, + "probability": 0.9941 + }, + { + "start": 12154.22, + "end": 12155.54, + "probability": 0.9919 + }, + { + "start": 12156.0, + "end": 12158.56, + "probability": 0.9613 + }, + { + "start": 12159.26, + "end": 12161.82, + "probability": 0.9747 + }, + { + "start": 12162.56, + "end": 12165.96, + "probability": 0.9982 + }, + { + "start": 12166.52, + "end": 12168.0, + "probability": 0.9969 + }, + { + "start": 12168.92, + "end": 12170.06, + "probability": 0.8618 + }, + { + "start": 12170.66, + "end": 12172.7, + "probability": 0.9899 + }, + { + "start": 12173.56, + "end": 12175.46, + "probability": 0.9036 + }, + { + "start": 12175.96, + "end": 12177.78, + "probability": 0.9515 + }, + { + "start": 12178.4, + "end": 12179.5, + "probability": 0.9673 + }, + { + "start": 12180.5, + "end": 12180.8, + "probability": 0.5381 + }, + { + "start": 12180.9, + "end": 12184.22, + "probability": 0.9807 + }, + { + "start": 12184.54, + "end": 12185.64, + "probability": 0.9845 + }, + { + "start": 12185.94, + "end": 12187.76, + "probability": 0.9871 + }, + { + "start": 12188.34, + "end": 12189.88, + "probability": 0.9913 + }, + { + "start": 12190.6, + "end": 12192.32, + "probability": 0.985 + }, + { + "start": 12193.1, + "end": 12193.76, + "probability": 0.7084 + }, + { + "start": 12194.26, + "end": 12197.5, + "probability": 0.7455 + }, + { + "start": 12197.94, + "end": 12200.44, + "probability": 0.988 + }, + { + "start": 12200.76, + "end": 12202.3, + "probability": 0.8998 + }, + { + "start": 12202.32, + "end": 12204.24, + "probability": 0.7498 + }, + { + "start": 12204.86, + "end": 12207.22, + "probability": 0.9177 + }, + { + "start": 12207.74, + "end": 12209.92, + "probability": 0.7515 + }, + { + "start": 12210.92, + "end": 12213.98, + "probability": 0.9439 + }, + { + "start": 12215.34, + "end": 12218.19, + "probability": 0.9849 + }, + { + "start": 12218.34, + "end": 12221.78, + "probability": 0.9775 + }, + { + "start": 12222.32, + "end": 12224.89, + "probability": 0.963 + }, + { + "start": 12226.18, + "end": 12226.82, + "probability": 0.8798 + }, + { + "start": 12227.42, + "end": 12228.24, + "probability": 0.9844 + }, + { + "start": 12228.78, + "end": 12232.2, + "probability": 0.9374 + }, + { + "start": 12233.12, + "end": 12234.7, + "probability": 0.9902 + }, + { + "start": 12235.3, + "end": 12236.14, + "probability": 0.7675 + }, + { + "start": 12236.66, + "end": 12239.58, + "probability": 0.7471 + }, + { + "start": 12240.2, + "end": 12242.54, + "probability": 0.7538 + }, + { + "start": 12243.12, + "end": 12246.6, + "probability": 0.9919 + }, + { + "start": 12247.74, + "end": 12249.98, + "probability": 0.9076 + }, + { + "start": 12250.02, + "end": 12253.98, + "probability": 0.9153 + }, + { + "start": 12254.48, + "end": 12259.16, + "probability": 0.9558 + }, + { + "start": 12259.72, + "end": 12263.98, + "probability": 0.88 + }, + { + "start": 12264.76, + "end": 12267.12, + "probability": 0.9966 + }, + { + "start": 12267.66, + "end": 12268.21, + "probability": 0.7755 + }, + { + "start": 12269.2, + "end": 12271.76, + "probability": 0.7688 + }, + { + "start": 12272.46, + "end": 12276.1, + "probability": 0.7682 + }, + { + "start": 12276.84, + "end": 12282.96, + "probability": 0.9575 + }, + { + "start": 12283.98, + "end": 12286.36, + "probability": 0.9818 + }, + { + "start": 12286.36, + "end": 12289.92, + "probability": 0.9906 + }, + { + "start": 12290.34, + "end": 12291.72, + "probability": 0.9927 + }, + { + "start": 12292.18, + "end": 12292.98, + "probability": 0.8171 + }, + { + "start": 12293.38, + "end": 12299.04, + "probability": 0.9801 + }, + { + "start": 12299.04, + "end": 12303.28, + "probability": 0.9844 + }, + { + "start": 12304.16, + "end": 12309.12, + "probability": 0.9907 + }, + { + "start": 12309.78, + "end": 12311.76, + "probability": 0.8553 + }, + { + "start": 12313.0, + "end": 12315.26, + "probability": 0.9185 + }, + { + "start": 12316.1, + "end": 12316.68, + "probability": 0.5585 + }, + { + "start": 12317.68, + "end": 12317.98, + "probability": 0.0216 + }, + { + "start": 12318.5, + "end": 12320.26, + "probability": 0.7391 + }, + { + "start": 12321.2, + "end": 12322.82, + "probability": 0.9106 + }, + { + "start": 12323.7, + "end": 12326.02, + "probability": 0.9822 + }, + { + "start": 12326.82, + "end": 12327.9, + "probability": 0.9579 + }, + { + "start": 12328.32, + "end": 12331.62, + "probability": 0.9326 + }, + { + "start": 12332.04, + "end": 12333.28, + "probability": 0.9842 + }, + { + "start": 12334.76, + "end": 12336.14, + "probability": 0.6931 + }, + { + "start": 12336.96, + "end": 12338.14, + "probability": 0.999 + }, + { + "start": 12338.58, + "end": 12340.9, + "probability": 0.7954 + }, + { + "start": 12341.88, + "end": 12342.68, + "probability": 0.9778 + }, + { + "start": 12343.02, + "end": 12345.34, + "probability": 0.976 + }, + { + "start": 12345.82, + "end": 12348.44, + "probability": 0.9788 + }, + { + "start": 12349.91, + "end": 12352.78, + "probability": 0.7979 + }, + { + "start": 12353.64, + "end": 12355.12, + "probability": 0.9952 + }, + { + "start": 12355.76, + "end": 12356.94, + "probability": 0.999 + }, + { + "start": 12357.88, + "end": 12362.18, + "probability": 0.9622 + }, + { + "start": 12362.52, + "end": 12364.72, + "probability": 0.6363 + }, + { + "start": 12365.08, + "end": 12366.66, + "probability": 0.811 + }, + { + "start": 12367.36, + "end": 12368.14, + "probability": 0.8089 + }, + { + "start": 12368.5, + "end": 12371.32, + "probability": 0.8674 + }, + { + "start": 12371.54, + "end": 12372.56, + "probability": 0.7798 + }, + { + "start": 12372.9, + "end": 12372.92, + "probability": 0.5461 + }, + { + "start": 12373.26, + "end": 12373.9, + "probability": 0.9797 + }, + { + "start": 12374.88, + "end": 12377.53, + "probability": 0.9512 + }, + { + "start": 12378.32, + "end": 12380.42, + "probability": 0.9524 + }, + { + "start": 12381.04, + "end": 12382.08, + "probability": 0.7579 + }, + { + "start": 12382.62, + "end": 12383.16, + "probability": 0.5762 + }, + { + "start": 12383.78, + "end": 12386.26, + "probability": 0.9283 + }, + { + "start": 12386.6, + "end": 12386.8, + "probability": 0.7527 + }, + { + "start": 12390.32, + "end": 12390.98, + "probability": 0.6763 + }, + { + "start": 12391.16, + "end": 12393.42, + "probability": 0.8969 + }, + { + "start": 12393.94, + "end": 12394.82, + "probability": 0.8417 + }, + { + "start": 12394.94, + "end": 12398.22, + "probability": 0.9605 + }, + { + "start": 12398.34, + "end": 12400.42, + "probability": 0.9649 + }, + { + "start": 12401.06, + "end": 12403.96, + "probability": 0.8761 + }, + { + "start": 12404.78, + "end": 12405.54, + "probability": 0.7672 + }, + { + "start": 12406.7, + "end": 12407.06, + "probability": 0.4696 + }, + { + "start": 12407.06, + "end": 12407.27, + "probability": 0.6667 + }, + { + "start": 12408.18, + "end": 12410.01, + "probability": 0.9351 + }, + { + "start": 12411.16, + "end": 12412.76, + "probability": 0.811 + }, + { + "start": 12412.88, + "end": 12414.74, + "probability": 0.746 + }, + { + "start": 12414.94, + "end": 12415.12, + "probability": 0.4473 + }, + { + "start": 12415.68, + "end": 12418.22, + "probability": 0.9884 + }, + { + "start": 12421.2, + "end": 12421.98, + "probability": 0.8997 + }, + { + "start": 12422.1, + "end": 12425.9, + "probability": 0.7417 + }, + { + "start": 12425.9, + "end": 12426.7, + "probability": 0.8444 + }, + { + "start": 12427.9, + "end": 12428.24, + "probability": 0.7151 + }, + { + "start": 12441.44, + "end": 12444.42, + "probability": 0.0028 + }, + { + "start": 12445.64, + "end": 12447.54, + "probability": 0.5938 + }, + { + "start": 12447.68, + "end": 12448.9, + "probability": 0.9331 + }, + { + "start": 12449.02, + "end": 12451.08, + "probability": 0.9803 + }, + { + "start": 12452.0, + "end": 12452.54, + "probability": 0.7253 + }, + { + "start": 12465.9, + "end": 12466.18, + "probability": 0.4948 + }, + { + "start": 12466.18, + "end": 12467.42, + "probability": 0.5869 + }, + { + "start": 12467.64, + "end": 12467.76, + "probability": 0.3008 + }, + { + "start": 12467.92, + "end": 12470.4, + "probability": 0.8326 + }, + { + "start": 12470.52, + "end": 12471.56, + "probability": 0.8622 + }, + { + "start": 12471.78, + "end": 12474.96, + "probability": 0.9717 + }, + { + "start": 12475.54, + "end": 12479.18, + "probability": 0.7876 + }, + { + "start": 12479.8, + "end": 12480.44, + "probability": 0.3431 + }, + { + "start": 12480.82, + "end": 12481.26, + "probability": 0.5129 + }, + { + "start": 12481.38, + "end": 12482.04, + "probability": 0.7076 + }, + { + "start": 12482.16, + "end": 12486.4, + "probability": 0.7504 + }, + { + "start": 12486.5, + "end": 12487.48, + "probability": 0.6288 + }, + { + "start": 12487.72, + "end": 12488.78, + "probability": 0.7803 + }, + { + "start": 12490.14, + "end": 12491.02, + "probability": 0.9976 + }, + { + "start": 12504.04, + "end": 12505.06, + "probability": 0.4624 + }, + { + "start": 12505.64, + "end": 12506.26, + "probability": 0.798 + }, + { + "start": 12506.36, + "end": 12507.26, + "probability": 0.8598 + }, + { + "start": 12507.4, + "end": 12508.8, + "probability": 0.7176 + }, + { + "start": 12508.9, + "end": 12509.6, + "probability": 0.9258 + }, + { + "start": 12509.72, + "end": 12511.28, + "probability": 0.9134 + }, + { + "start": 12512.12, + "end": 12515.06, + "probability": 0.8573 + }, + { + "start": 12515.1, + "end": 12515.48, + "probability": 0.3851 + }, + { + "start": 12515.56, + "end": 12516.06, + "probability": 0.7824 + }, + { + "start": 12516.14, + "end": 12516.66, + "probability": 0.3208 + }, + { + "start": 12517.24, + "end": 12521.7, + "probability": 0.9242 + }, + { + "start": 12522.56, + "end": 12525.68, + "probability": 0.6982 + }, + { + "start": 12525.76, + "end": 12529.52, + "probability": 0.9904 + }, + { + "start": 12529.52, + "end": 12534.12, + "probability": 0.8716 + }, + { + "start": 12536.74, + "end": 12537.3, + "probability": 0.8031 + }, + { + "start": 12538.24, + "end": 12541.06, + "probability": 0.941 + }, + { + "start": 12541.94, + "end": 12544.24, + "probability": 0.8735 + }, + { + "start": 12544.46, + "end": 12546.32, + "probability": 0.8912 + }, + { + "start": 12546.48, + "end": 12548.78, + "probability": 0.9643 + }, + { + "start": 12549.72, + "end": 12553.58, + "probability": 0.9978 + }, + { + "start": 12555.34, + "end": 12559.7, + "probability": 0.9775 + }, + { + "start": 12559.86, + "end": 12562.96, + "probability": 0.9065 + }, + { + "start": 12563.18, + "end": 12565.16, + "probability": 0.7796 + }, + { + "start": 12565.76, + "end": 12569.18, + "probability": 0.9985 + }, + { + "start": 12569.18, + "end": 12572.12, + "probability": 0.9537 + }, + { + "start": 12572.82, + "end": 12575.28, + "probability": 0.8839 + }, + { + "start": 12575.28, + "end": 12578.52, + "probability": 0.8273 + }, + { + "start": 12578.68, + "end": 12583.22, + "probability": 0.7881 + }, + { + "start": 12583.22, + "end": 12585.24, + "probability": 0.8616 + }, + { + "start": 12585.38, + "end": 12588.5, + "probability": 0.7417 + }, + { + "start": 12588.5, + "end": 12591.76, + "probability": 0.7921 + }, + { + "start": 12592.42, + "end": 12595.69, + "probability": 0.9592 + }, + { + "start": 12596.4, + "end": 12597.2, + "probability": 0.795 + }, + { + "start": 12597.26, + "end": 12599.3, + "probability": 0.9517 + }, + { + "start": 12599.3, + "end": 12603.86, + "probability": 0.9753 + }, + { + "start": 12604.46, + "end": 12606.8, + "probability": 0.9661 + }, + { + "start": 12606.8, + "end": 12612.02, + "probability": 0.9821 + }, + { + "start": 12612.18, + "end": 12616.1, + "probability": 0.9788 + }, + { + "start": 12616.98, + "end": 12618.88, + "probability": 0.7216 + }, + { + "start": 12619.64, + "end": 12622.8, + "probability": 0.9823 + }, + { + "start": 12623.38, + "end": 12626.74, + "probability": 0.9924 + }, + { + "start": 12627.34, + "end": 12629.56, + "probability": 0.9409 + }, + { + "start": 12629.78, + "end": 12631.56, + "probability": 0.7321 + }, + { + "start": 12632.8, + "end": 12634.38, + "probability": 0.9438 + }, + { + "start": 12634.6, + "end": 12638.9, + "probability": 0.7773 + }, + { + "start": 12639.64, + "end": 12642.2, + "probability": 0.993 + }, + { + "start": 12642.2, + "end": 12647.4, + "probability": 0.9856 + }, + { + "start": 12648.2, + "end": 12650.8, + "probability": 0.8812 + }, + { + "start": 12650.8, + "end": 12654.56, + "probability": 0.9785 + }, + { + "start": 12654.6, + "end": 12655.82, + "probability": 0.7918 + }, + { + "start": 12656.34, + "end": 12656.74, + "probability": 0.3056 + }, + { + "start": 12656.8, + "end": 12660.08, + "probability": 0.7344 + }, + { + "start": 12660.66, + "end": 12665.06, + "probability": 0.9834 + }, + { + "start": 12665.66, + "end": 12667.94, + "probability": 0.9707 + }, + { + "start": 12668.58, + "end": 12672.12, + "probability": 0.9892 + }, + { + "start": 12672.12, + "end": 12674.2, + "probability": 0.9982 + }, + { + "start": 12675.0, + "end": 12676.18, + "probability": 0.8456 + }, + { + "start": 12677.14, + "end": 12678.52, + "probability": 0.984 + }, + { + "start": 12678.6, + "end": 12682.36, + "probability": 0.9176 + }, + { + "start": 12682.7, + "end": 12685.66, + "probability": 0.9962 + }, + { + "start": 12685.66, + "end": 12690.96, + "probability": 0.9974 + }, + { + "start": 12690.96, + "end": 12694.52, + "probability": 0.9985 + }, + { + "start": 12695.08, + "end": 12697.44, + "probability": 0.4656 + }, + { + "start": 12698.1, + "end": 12700.66, + "probability": 0.9883 + }, + { + "start": 12700.66, + "end": 12703.36, + "probability": 0.963 + }, + { + "start": 12703.48, + "end": 12708.82, + "probability": 0.9881 + }, + { + "start": 12709.06, + "end": 12711.54, + "probability": 0.9971 + }, + { + "start": 12711.54, + "end": 12713.56, + "probability": 0.9824 + }, + { + "start": 12714.06, + "end": 12715.32, + "probability": 0.9951 + }, + { + "start": 12715.92, + "end": 12721.48, + "probability": 0.9948 + }, + { + "start": 12721.6, + "end": 12723.48, + "probability": 0.9106 + }, + { + "start": 12724.06, + "end": 12727.18, + "probability": 0.996 + }, + { + "start": 12727.46, + "end": 12728.98, + "probability": 0.8464 + }, + { + "start": 12729.56, + "end": 12731.14, + "probability": 0.9243 + }, + { + "start": 12731.48, + "end": 12733.68, + "probability": 0.9771 + }, + { + "start": 12734.22, + "end": 12736.46, + "probability": 0.3738 + }, + { + "start": 12737.54, + "end": 12743.46, + "probability": 0.9569 + }, + { + "start": 12743.64, + "end": 12748.2, + "probability": 0.9873 + }, + { + "start": 12748.94, + "end": 12752.62, + "probability": 0.9004 + }, + { + "start": 12753.48, + "end": 12755.9, + "probability": 0.9061 + }, + { + "start": 12756.56, + "end": 12760.6, + "probability": 0.9921 + }, + { + "start": 12760.6, + "end": 12763.66, + "probability": 0.9629 + }, + { + "start": 12764.48, + "end": 12766.44, + "probability": 0.9242 + }, + { + "start": 12766.44, + "end": 12769.26, + "probability": 0.948 + }, + { + "start": 12769.46, + "end": 12772.98, + "probability": 0.9941 + }, + { + "start": 12773.84, + "end": 12777.3, + "probability": 0.8042 + }, + { + "start": 12777.96, + "end": 12781.34, + "probability": 0.9182 + }, + { + "start": 12782.26, + "end": 12783.96, + "probability": 0.9556 + }, + { + "start": 12783.98, + "end": 12784.34, + "probability": 0.925 + }, + { + "start": 12784.66, + "end": 12787.62, + "probability": 0.976 + }, + { + "start": 12787.68, + "end": 12791.48, + "probability": 0.9838 + }, + { + "start": 12792.0, + "end": 12795.34, + "probability": 0.8158 + }, + { + "start": 12796.06, + "end": 12802.9, + "probability": 0.9932 + }, + { + "start": 12803.48, + "end": 12805.3, + "probability": 0.7583 + }, + { + "start": 12805.98, + "end": 12808.94, + "probability": 0.9911 + }, + { + "start": 12810.14, + "end": 12810.62, + "probability": 0.8084 + }, + { + "start": 12812.42, + "end": 12813.1, + "probability": 0.8356 + }, + { + "start": 12814.72, + "end": 12818.84, + "probability": 0.9703 + }, + { + "start": 12819.2, + "end": 12819.98, + "probability": 0.9189 + }, + { + "start": 12820.74, + "end": 12821.82, + "probability": 0.9506 + }, + { + "start": 12821.9, + "end": 12823.48, + "probability": 0.9782 + }, + { + "start": 12823.58, + "end": 12825.36, + "probability": 0.8519 + }, + { + "start": 12826.6, + "end": 12827.32, + "probability": 0.7482 + }, + { + "start": 12828.02, + "end": 12828.66, + "probability": 0.5376 + }, + { + "start": 12828.66, + "end": 12828.82, + "probability": 0.6979 + }, + { + "start": 12829.14, + "end": 12831.28, + "probability": 0.7956 + }, + { + "start": 12831.36, + "end": 12833.26, + "probability": 0.9269 + }, + { + "start": 12833.38, + "end": 12834.88, + "probability": 0.8947 + }, + { + "start": 12835.92, + "end": 12838.14, + "probability": 0.6054 + }, + { + "start": 12838.22, + "end": 12839.26, + "probability": 0.7891 + }, + { + "start": 12839.36, + "end": 12839.58, + "probability": 0.8785 + }, + { + "start": 12840.88, + "end": 12844.08, + "probability": 0.8716 + }, + { + "start": 12844.18, + "end": 12844.66, + "probability": 0.4969 + }, + { + "start": 12844.76, + "end": 12845.56, + "probability": 0.7023 + }, + { + "start": 12845.58, + "end": 12847.06, + "probability": 0.8944 + }, + { + "start": 12848.1, + "end": 12850.58, + "probability": 0.8681 + }, + { + "start": 12850.92, + "end": 12854.82, + "probability": 0.0005 + }, + { + "start": 12865.0, + "end": 12867.28, + "probability": 0.3296 + }, + { + "start": 12867.54, + "end": 12869.66, + "probability": 0.885 + }, + { + "start": 12869.66, + "end": 12872.56, + "probability": 0.5729 + }, + { + "start": 12874.46, + "end": 12875.28, + "probability": 0.8926 + }, + { + "start": 12875.84, + "end": 12877.42, + "probability": 0.1761 + }, + { + "start": 12877.74, + "end": 12879.36, + "probability": 0.9131 + }, + { + "start": 12880.82, + "end": 12881.94, + "probability": 0.8555 + }, + { + "start": 12882.56, + "end": 12884.62, + "probability": 0.9991 + }, + { + "start": 12884.72, + "end": 12885.18, + "probability": 0.739 + }, + { + "start": 12886.26, + "end": 12888.24, + "probability": 0.9918 + }, + { + "start": 12893.28, + "end": 12893.72, + "probability": 0.5037 + }, + { + "start": 12893.78, + "end": 12899.24, + "probability": 0.034 + }, + { + "start": 12899.9, + "end": 12900.08, + "probability": 0.0001 + }, + { + "start": 12903.68, + "end": 12906.56, + "probability": 0.0484 + }, + { + "start": 12906.56, + "end": 12910.64, + "probability": 0.7804 + }, + { + "start": 12911.58, + "end": 12915.22, + "probability": 0.9606 + }, + { + "start": 12915.7, + "end": 12919.81, + "probability": 0.8552 + }, + { + "start": 12937.8, + "end": 12940.28, + "probability": 0.7508 + }, + { + "start": 12940.7, + "end": 12942.0, + "probability": 0.724 + }, + { + "start": 12942.12, + "end": 12943.92, + "probability": 0.9888 + }, + { + "start": 12945.14, + "end": 12949.02, + "probability": 0.9272 + }, + { + "start": 12949.02, + "end": 12951.58, + "probability": 0.9012 + }, + { + "start": 12952.62, + "end": 12953.72, + "probability": 0.9488 + }, + { + "start": 12954.0, + "end": 12955.64, + "probability": 0.9495 + }, + { + "start": 12955.8, + "end": 12956.88, + "probability": 0.815 + }, + { + "start": 12957.48, + "end": 12959.98, + "probability": 0.9843 + }, + { + "start": 12960.9, + "end": 12965.5, + "probability": 0.9939 + }, + { + "start": 12966.3, + "end": 12967.0, + "probability": 0.9881 + }, + { + "start": 12968.02, + "end": 12970.92, + "probability": 0.9969 + }, + { + "start": 12971.98, + "end": 12974.02, + "probability": 0.8886 + }, + { + "start": 12974.66, + "end": 12975.44, + "probability": 0.6044 + }, + { + "start": 12976.12, + "end": 12977.34, + "probability": 0.9834 + }, + { + "start": 12978.24, + "end": 12979.38, + "probability": 0.9152 + }, + { + "start": 12980.32, + "end": 12985.08, + "probability": 0.9353 + }, + { + "start": 12986.16, + "end": 12992.6, + "probability": 0.9795 + }, + { + "start": 12993.94, + "end": 12995.36, + "probability": 0.6309 + }, + { + "start": 12996.76, + "end": 12999.6, + "probability": 0.9893 + }, + { + "start": 13000.56, + "end": 13001.94, + "probability": 0.9316 + }, + { + "start": 13002.04, + "end": 13004.68, + "probability": 0.9961 + }, + { + "start": 13006.49, + "end": 13008.58, + "probability": 0.7192 + }, + { + "start": 13010.26, + "end": 13011.08, + "probability": 0.9873 + }, + { + "start": 13011.88, + "end": 13015.22, + "probability": 0.956 + }, + { + "start": 13017.56, + "end": 13022.22, + "probability": 0.9747 + }, + { + "start": 13022.78, + "end": 13024.84, + "probability": 0.98 + }, + { + "start": 13025.82, + "end": 13026.84, + "probability": 0.8358 + }, + { + "start": 13027.42, + "end": 13029.39, + "probability": 0.9644 + }, + { + "start": 13031.1, + "end": 13032.22, + "probability": 0.4195 + }, + { + "start": 13032.6, + "end": 13034.51, + "probability": 0.9878 + }, + { + "start": 13034.92, + "end": 13036.15, + "probability": 0.9823 + }, + { + "start": 13038.8, + "end": 13039.7, + "probability": 0.978 + }, + { + "start": 13040.28, + "end": 13043.34, + "probability": 0.9806 + }, + { + "start": 13044.56, + "end": 13046.6, + "probability": 0.6565 + }, + { + "start": 13046.72, + "end": 13047.76, + "probability": 0.9644 + }, + { + "start": 13047.86, + "end": 13053.16, + "probability": 0.9984 + }, + { + "start": 13053.64, + "end": 13055.1, + "probability": 0.9338 + }, + { + "start": 13055.22, + "end": 13055.92, + "probability": 0.5052 + }, + { + "start": 13056.56, + "end": 13058.7, + "probability": 0.9616 + }, + { + "start": 13059.16, + "end": 13062.36, + "probability": 0.962 + }, + { + "start": 13062.54, + "end": 13065.44, + "probability": 0.9784 + }, + { + "start": 13066.08, + "end": 13069.7, + "probability": 0.9193 + }, + { + "start": 13070.32, + "end": 13072.94, + "probability": 0.9824 + }, + { + "start": 13073.6, + "end": 13078.0, + "probability": 0.9761 + }, + { + "start": 13079.48, + "end": 13083.04, + "probability": 0.9757 + }, + { + "start": 13083.1, + "end": 13085.32, + "probability": 0.8965 + }, + { + "start": 13085.44, + "end": 13086.44, + "probability": 0.9873 + }, + { + "start": 13087.66, + "end": 13088.48, + "probability": 0.9943 + }, + { + "start": 13089.22, + "end": 13091.42, + "probability": 0.9948 + }, + { + "start": 13091.72, + "end": 13092.96, + "probability": 0.8453 + }, + { + "start": 13093.12, + "end": 13093.64, + "probability": 0.441 + }, + { + "start": 13093.68, + "end": 13094.28, + "probability": 0.7765 + }, + { + "start": 13095.0, + "end": 13095.82, + "probability": 0.8918 + }, + { + "start": 13095.86, + "end": 13097.2, + "probability": 0.7739 + }, + { + "start": 13097.28, + "end": 13098.58, + "probability": 0.7125 + }, + { + "start": 13098.68, + "end": 13103.28, + "probability": 0.8671 + }, + { + "start": 13104.46, + "end": 13105.5, + "probability": 0.9729 + }, + { + "start": 13105.64, + "end": 13106.8, + "probability": 0.9028 + }, + { + "start": 13108.46, + "end": 13113.68, + "probability": 0.9967 + }, + { + "start": 13114.12, + "end": 13117.92, + "probability": 0.9976 + }, + { + "start": 13118.2, + "end": 13122.26, + "probability": 0.8724 + }, + { + "start": 13123.44, + "end": 13128.94, + "probability": 0.9497 + }, + { + "start": 13130.02, + "end": 13131.72, + "probability": 0.9125 + }, + { + "start": 13135.34, + "end": 13136.7, + "probability": 0.8023 + }, + { + "start": 13136.86, + "end": 13139.88, + "probability": 0.9115 + }, + { + "start": 13141.1, + "end": 13141.92, + "probability": 0.7752 + }, + { + "start": 13142.16, + "end": 13144.74, + "probability": 0.7979 + }, + { + "start": 13144.86, + "end": 13149.44, + "probability": 0.9932 + }, + { + "start": 13149.68, + "end": 13150.26, + "probability": 0.9655 + }, + { + "start": 13150.32, + "end": 13151.24, + "probability": 0.9259 + }, + { + "start": 13151.84, + "end": 13155.12, + "probability": 0.9874 + }, + { + "start": 13156.18, + "end": 13156.86, + "probability": 0.0385 + }, + { + "start": 13156.86, + "end": 13160.5, + "probability": 0.6289 + }, + { + "start": 13161.56, + "end": 13162.84, + "probability": 0.8309 + }, + { + "start": 13163.12, + "end": 13168.36, + "probability": 0.9363 + }, + { + "start": 13168.68, + "end": 13169.36, + "probability": 0.0471 + }, + { + "start": 13169.36, + "end": 13171.8, + "probability": 0.6138 + }, + { + "start": 13171.88, + "end": 13174.88, + "probability": 0.9366 + }, + { + "start": 13175.24, + "end": 13177.66, + "probability": 0.7274 + }, + { + "start": 13177.66, + "end": 13181.58, + "probability": 0.6864 + }, + { + "start": 13181.6, + "end": 13182.94, + "probability": 0.805 + }, + { + "start": 13182.94, + "end": 13187.86, + "probability": 0.8512 + }, + { + "start": 13187.96, + "end": 13188.7, + "probability": 0.7452 + }, + { + "start": 13189.83, + "end": 13194.56, + "probability": 0.728 + }, + { + "start": 13195.16, + "end": 13195.34, + "probability": 0.0605 + }, + { + "start": 13195.84, + "end": 13199.1, + "probability": 0.8586 + }, + { + "start": 13199.56, + "end": 13201.62, + "probability": 0.4709 + }, + { + "start": 13202.54, + "end": 13205.06, + "probability": 0.7204 + }, + { + "start": 13205.56, + "end": 13206.35, + "probability": 0.9937 + }, + { + "start": 13208.68, + "end": 13209.94, + "probability": 0.7604 + }, + { + "start": 13216.76, + "end": 13218.94, + "probability": 0.9147 + }, + { + "start": 13235.68, + "end": 13237.26, + "probability": 0.14 + }, + { + "start": 13237.93, + "end": 13240.76, + "probability": 0.207 + }, + { + "start": 13240.76, + "end": 13244.42, + "probability": 0.2921 + }, + { + "start": 13246.18, + "end": 13249.32, + "probability": 0.8039 + }, + { + "start": 13249.5, + "end": 13250.48, + "probability": 0.9222 + }, + { + "start": 13250.66, + "end": 13253.56, + "probability": 0.9922 + }, + { + "start": 13253.84, + "end": 13257.14, + "probability": 0.7098 + }, + { + "start": 13257.72, + "end": 13260.14, + "probability": 0.9963 + }, + { + "start": 13260.14, + "end": 13263.82, + "probability": 0.8101 + }, + { + "start": 13264.02, + "end": 13265.02, + "probability": 0.8354 + }, + { + "start": 13265.86, + "end": 13269.02, + "probability": 0.9951 + }, + { + "start": 13269.16, + "end": 13270.46, + "probability": 0.7086 + }, + { + "start": 13270.5, + "end": 13274.4, + "probability": 0.9871 + }, + { + "start": 13275.82, + "end": 13280.08, + "probability": 0.8574 + }, + { + "start": 13280.7, + "end": 13282.28, + "probability": 0.9627 + }, + { + "start": 13282.98, + "end": 13287.22, + "probability": 0.8003 + }, + { + "start": 13287.28, + "end": 13290.3, + "probability": 0.9291 + }, + { + "start": 13290.9, + "end": 13295.88, + "probability": 0.9736 + }, + { + "start": 13296.52, + "end": 13298.58, + "probability": 0.9761 + }, + { + "start": 13299.68, + "end": 13302.58, + "probability": 0.8416 + }, + { + "start": 13302.78, + "end": 13304.02, + "probability": 0.5513 + }, + { + "start": 13304.24, + "end": 13306.78, + "probability": 0.9386 + }, + { + "start": 13306.78, + "end": 13308.98, + "probability": 0.9271 + }, + { + "start": 13309.64, + "end": 13311.82, + "probability": 0.9845 + }, + { + "start": 13312.54, + "end": 13315.2, + "probability": 0.7175 + }, + { + "start": 13315.22, + "end": 13317.4, + "probability": 0.9167 + }, + { + "start": 13318.1, + "end": 13319.92, + "probability": 0.8903 + }, + { + "start": 13319.96, + "end": 13323.18, + "probability": 0.8147 + }, + { + "start": 13323.76, + "end": 13324.9, + "probability": 0.9221 + }, + { + "start": 13324.98, + "end": 13325.22, + "probability": 0.7171 + }, + { + "start": 13325.82, + "end": 13328.0, + "probability": 0.8821 + }, + { + "start": 13328.42, + "end": 13332.88, + "probability": 0.9846 + }, + { + "start": 13332.88, + "end": 13336.8, + "probability": 0.884 + }, + { + "start": 13337.64, + "end": 13340.52, + "probability": 0.6707 + }, + { + "start": 13340.6, + "end": 13341.72, + "probability": 0.7937 + }, + { + "start": 13342.02, + "end": 13342.62, + "probability": 0.8829 + }, + { + "start": 13343.22, + "end": 13347.62, + "probability": 0.9149 + }, + { + "start": 13348.12, + "end": 13350.4, + "probability": 0.723 + }, + { + "start": 13354.5, + "end": 13359.9, + "probability": 0.9642 + }, + { + "start": 13359.9, + "end": 13363.8, + "probability": 0.9202 + }, + { + "start": 13363.96, + "end": 13364.44, + "probability": 0.5027 + }, + { + "start": 13364.54, + "end": 13368.5, + "probability": 0.8207 + }, + { + "start": 13368.62, + "end": 13369.98, + "probability": 0.8954 + }, + { + "start": 13370.62, + "end": 13372.68, + "probability": 0.8853 + }, + { + "start": 13372.68, + "end": 13375.12, + "probability": 0.776 + }, + { + "start": 13375.84, + "end": 13379.92, + "probability": 0.6764 + }, + { + "start": 13379.92, + "end": 13382.84, + "probability": 0.959 + }, + { + "start": 13383.46, + "end": 13385.86, + "probability": 0.8593 + }, + { + "start": 13385.9, + "end": 13388.34, + "probability": 0.7332 + }, + { + "start": 13389.12, + "end": 13391.94, + "probability": 0.9123 + }, + { + "start": 13392.44, + "end": 13397.96, + "probability": 0.9927 + }, + { + "start": 13398.48, + "end": 13400.14, + "probability": 0.8457 + }, + { + "start": 13400.28, + "end": 13401.4, + "probability": 0.928 + }, + { + "start": 13401.92, + "end": 13407.54, + "probability": 0.9888 + }, + { + "start": 13407.7, + "end": 13411.86, + "probability": 0.9906 + }, + { + "start": 13412.42, + "end": 13413.38, + "probability": 0.6511 + }, + { + "start": 13413.5, + "end": 13416.44, + "probability": 0.9781 + }, + { + "start": 13416.86, + "end": 13420.24, + "probability": 0.9377 + }, + { + "start": 13420.4, + "end": 13425.82, + "probability": 0.9861 + }, + { + "start": 13426.28, + "end": 13428.04, + "probability": 0.937 + }, + { + "start": 13428.44, + "end": 13430.44, + "probability": 0.9048 + }, + { + "start": 13431.16, + "end": 13434.5, + "probability": 0.9252 + }, + { + "start": 13434.58, + "end": 13437.14, + "probability": 0.9883 + }, + { + "start": 13437.14, + "end": 13439.58, + "probability": 0.7864 + }, + { + "start": 13440.24, + "end": 13442.6, + "probability": 0.9966 + }, + { + "start": 13442.6, + "end": 13445.58, + "probability": 0.9967 + }, + { + "start": 13446.08, + "end": 13446.7, + "probability": 0.7638 + }, + { + "start": 13447.32, + "end": 13451.5, + "probability": 0.9854 + }, + { + "start": 13452.1, + "end": 13454.7, + "probability": 0.9759 + }, + { + "start": 13454.8, + "end": 13455.34, + "probability": 0.476 + }, + { + "start": 13455.5, + "end": 13458.04, + "probability": 0.5451 + }, + { + "start": 13458.04, + "end": 13461.12, + "probability": 0.7576 + }, + { + "start": 13461.18, + "end": 13462.4, + "probability": 0.8802 + }, + { + "start": 13463.3, + "end": 13464.76, + "probability": 0.8783 + }, + { + "start": 13464.8, + "end": 13468.04, + "probability": 0.9385 + }, + { + "start": 13468.04, + "end": 13471.22, + "probability": 0.8027 + }, + { + "start": 13471.4, + "end": 13473.24, + "probability": 0.9539 + }, + { + "start": 13474.22, + "end": 13478.41, + "probability": 0.9855 + }, + { + "start": 13480.16, + "end": 13482.9, + "probability": 0.9307 + }, + { + "start": 13482.92, + "end": 13486.4, + "probability": 0.8893 + }, + { + "start": 13486.68, + "end": 13487.26, + "probability": 0.8681 + }, + { + "start": 13490.28, + "end": 13496.62, + "probability": 0.9561 + }, + { + "start": 13496.62, + "end": 13500.1, + "probability": 0.9133 + }, + { + "start": 13500.52, + "end": 13503.8, + "probability": 0.7892 + }, + { + "start": 13504.16, + "end": 13507.02, + "probability": 0.7574 + }, + { + "start": 13507.14, + "end": 13507.52, + "probability": 0.7922 + }, + { + "start": 13507.7, + "end": 13508.88, + "probability": 0.6575 + }, + { + "start": 13509.38, + "end": 13510.82, + "probability": 0.9429 + }, + { + "start": 13510.9, + "end": 13512.92, + "probability": 0.9355 + }, + { + "start": 13513.56, + "end": 13514.6, + "probability": 0.8531 + }, + { + "start": 13515.7, + "end": 13519.2, + "probability": 0.7801 + }, + { + "start": 13520.24, + "end": 13521.98, + "probability": 0.9159 + }, + { + "start": 13522.2, + "end": 13525.66, + "probability": 0.9796 + }, + { + "start": 13525.8, + "end": 13528.38, + "probability": 0.9427 + }, + { + "start": 13528.38, + "end": 13530.66, + "probability": 0.9977 + }, + { + "start": 13530.7, + "end": 13534.7, + "probability": 0.9873 + }, + { + "start": 13535.26, + "end": 13538.6, + "probability": 0.8278 + }, + { + "start": 13539.18, + "end": 13540.38, + "probability": 0.5089 + }, + { + "start": 13540.64, + "end": 13544.46, + "probability": 0.5942 + }, + { + "start": 13546.06, + "end": 13547.7, + "probability": 0.9577 + }, + { + "start": 13547.86, + "end": 13550.6, + "probability": 0.7492 + }, + { + "start": 13550.6, + "end": 13552.82, + "probability": 0.8773 + }, + { + "start": 13553.96, + "end": 13557.02, + "probability": 0.7163 + }, + { + "start": 13557.8, + "end": 13559.94, + "probability": 0.9446 + }, + { + "start": 13560.02, + "end": 13562.6, + "probability": 0.9789 + }, + { + "start": 13562.92, + "end": 13566.64, + "probability": 0.8861 + }, + { + "start": 13567.22, + "end": 13568.22, + "probability": 0.7665 + }, + { + "start": 13568.9, + "end": 13571.56, + "probability": 0.9004 + }, + { + "start": 13571.56, + "end": 13574.72, + "probability": 0.9937 + }, + { + "start": 13574.8, + "end": 13577.74, + "probability": 0.9612 + }, + { + "start": 13578.34, + "end": 13579.24, + "probability": 0.9157 + }, + { + "start": 13582.5, + "end": 13584.36, + "probability": 0.5235 + }, + { + "start": 13584.36, + "end": 13584.74, + "probability": 0.1402 + }, + { + "start": 13584.78, + "end": 13585.0, + "probability": 0.138 + }, + { + "start": 13585.08, + "end": 13586.14, + "probability": 0.8177 + }, + { + "start": 13586.18, + "end": 13586.38, + "probability": 0.2328 + }, + { + "start": 13586.6, + "end": 13589.04, + "probability": 0.8188 + }, + { + "start": 13589.54, + "end": 13589.86, + "probability": 0.7905 + }, + { + "start": 13598.3, + "end": 13598.96, + "probability": 0.946 + }, + { + "start": 13602.58, + "end": 13605.66, + "probability": 0.9771 + }, + { + "start": 13607.02, + "end": 13607.12, + "probability": 0.0065 + }, + { + "start": 13609.54, + "end": 13611.1, + "probability": 0.7479 + }, + { + "start": 13611.88, + "end": 13612.32, + "probability": 0.9697 + }, + { + "start": 13613.4, + "end": 13615.42, + "probability": 0.9834 + }, + { + "start": 13615.8, + "end": 13617.04, + "probability": 0.748 + }, + { + "start": 13618.26, + "end": 13619.66, + "probability": 0.8295 + }, + { + "start": 13621.04, + "end": 13622.44, + "probability": 0.7161 + }, + { + "start": 13624.12, + "end": 13625.42, + "probability": 0.9095 + }, + { + "start": 13626.56, + "end": 13627.68, + "probability": 0.8708 + }, + { + "start": 13629.08, + "end": 13630.26, + "probability": 0.3925 + }, + { + "start": 13630.4, + "end": 13631.34, + "probability": 0.6988 + }, + { + "start": 13631.4, + "end": 13631.8, + "probability": 0.6854 + }, + { + "start": 13631.88, + "end": 13634.88, + "probability": 0.681 + }, + { + "start": 13634.9, + "end": 13636.48, + "probability": 0.4654 + }, + { + "start": 13636.66, + "end": 13637.36, + "probability": 0.138 + }, + { + "start": 13637.36, + "end": 13637.36, + "probability": 0.4484 + }, + { + "start": 13637.36, + "end": 13637.85, + "probability": 0.7685 + }, + { + "start": 13638.08, + "end": 13638.64, + "probability": 0.3798 + }, + { + "start": 13639.08, + "end": 13639.98, + "probability": 0.7694 + }, + { + "start": 13661.12, + "end": 13661.84, + "probability": 0.512 + }, + { + "start": 13662.6, + "end": 13664.0, + "probability": 0.84 + }, + { + "start": 13664.54, + "end": 13666.74, + "probability": 0.6745 + }, + { + "start": 13667.3, + "end": 13676.32, + "probability": 0.9419 + }, + { + "start": 13676.94, + "end": 13679.06, + "probability": 0.9442 + }, + { + "start": 13680.06, + "end": 13683.52, + "probability": 0.9929 + }, + { + "start": 13684.14, + "end": 13684.66, + "probability": 0.729 + }, + { + "start": 13685.36, + "end": 13687.46, + "probability": 0.999 + }, + { + "start": 13687.46, + "end": 13689.28, + "probability": 0.9299 + }, + { + "start": 13689.36, + "end": 13689.72, + "probability": 0.5417 + }, + { + "start": 13690.12, + "end": 13690.64, + "probability": 0.8218 + }, + { + "start": 13691.1, + "end": 13692.9, + "probability": 0.9983 + }, + { + "start": 13693.48, + "end": 13698.3, + "probability": 0.9736 + }, + { + "start": 13698.36, + "end": 13699.98, + "probability": 0.7901 + }, + { + "start": 13700.1, + "end": 13701.36, + "probability": 0.946 + }, + { + "start": 13702.04, + "end": 13703.7, + "probability": 0.9954 + }, + { + "start": 13703.7, + "end": 13707.04, + "probability": 0.9957 + }, + { + "start": 13707.74, + "end": 13713.68, + "probability": 0.9941 + }, + { + "start": 13713.68, + "end": 13714.08, + "probability": 0.6396 + }, + { + "start": 13714.52, + "end": 13717.98, + "probability": 0.999 + }, + { + "start": 13718.1, + "end": 13719.08, + "probability": 0.8944 + }, + { + "start": 13719.92, + "end": 13720.76, + "probability": 0.9219 + }, + { + "start": 13721.96, + "end": 13724.64, + "probability": 0.9618 + }, + { + "start": 13725.5, + "end": 13728.56, + "probability": 0.9357 + }, + { + "start": 13728.98, + "end": 13731.5, + "probability": 0.9874 + }, + { + "start": 13732.42, + "end": 13736.28, + "probability": 0.9984 + }, + { + "start": 13736.48, + "end": 13737.28, + "probability": 0.8904 + }, + { + "start": 13737.36, + "end": 13738.84, + "probability": 0.8359 + }, + { + "start": 13739.68, + "end": 13740.34, + "probability": 0.9658 + }, + { + "start": 13740.98, + "end": 13744.84, + "probability": 0.9123 + }, + { + "start": 13745.44, + "end": 13746.54, + "probability": 0.7866 + }, + { + "start": 13747.08, + "end": 13748.48, + "probability": 0.9978 + }, + { + "start": 13749.16, + "end": 13754.7, + "probability": 0.9903 + }, + { + "start": 13755.04, + "end": 13755.5, + "probability": 0.9571 + }, + { + "start": 13756.28, + "end": 13761.12, + "probability": 0.991 + }, + { + "start": 13761.42, + "end": 13762.78, + "probability": 0.8911 + }, + { + "start": 13763.04, + "end": 13765.52, + "probability": 0.902 + }, + { + "start": 13766.4, + "end": 13771.82, + "probability": 0.9807 + }, + { + "start": 13774.0, + "end": 13774.44, + "probability": 0.5748 + }, + { + "start": 13774.58, + "end": 13775.4, + "probability": 0.4919 + }, + { + "start": 13775.48, + "end": 13776.4, + "probability": 0.4279 + }, + { + "start": 13776.72, + "end": 13777.7, + "probability": 0.8084 + }, + { + "start": 13777.72, + "end": 13778.4, + "probability": 0.5858 + }, + { + "start": 13779.08, + "end": 13780.76, + "probability": 0.7366 + }, + { + "start": 13780.82, + "end": 13783.3, + "probability": 0.4608 + }, + { + "start": 13783.34, + "end": 13784.08, + "probability": 0.3635 + }, + { + "start": 13784.2, + "end": 13784.82, + "probability": 0.5026 + }, + { + "start": 13784.9, + "end": 13785.88, + "probability": 0.7075 + }, + { + "start": 13786.08, + "end": 13786.54, + "probability": 0.7818 + }, + { + "start": 13787.34, + "end": 13788.78, + "probability": 0.8692 + }, + { + "start": 13788.9, + "end": 13789.44, + "probability": 0.8951 + }, + { + "start": 13789.58, + "end": 13790.54, + "probability": 0.6447 + }, + { + "start": 13790.54, + "end": 13791.14, + "probability": 0.4873 + }, + { + "start": 13791.76, + "end": 13792.18, + "probability": 0.3133 + }, + { + "start": 13792.18, + "end": 13792.18, + "probability": 0.4808 + }, + { + "start": 13792.18, + "end": 13792.76, + "probability": 0.6702 + }, + { + "start": 13792.88, + "end": 13793.4, + "probability": 0.6141 + }, + { + "start": 13794.68, + "end": 13798.5, + "probability": 0.9618 + }, + { + "start": 13801.46, + "end": 13801.92, + "probability": 0.5319 + }, + { + "start": 13816.54, + "end": 13816.9, + "probability": 0.0032 + }, + { + "start": 13816.9, + "end": 13818.38, + "probability": 0.6202 + }, + { + "start": 13819.1, + "end": 13820.4, + "probability": 0.8499 + }, + { + "start": 13820.44, + "end": 13823.34, + "probability": 0.9087 + }, + { + "start": 13826.66, + "end": 13827.74, + "probability": 0.5287 + }, + { + "start": 13827.96, + "end": 13828.04, + "probability": 0.0026 + }, + { + "start": 13841.96, + "end": 13842.24, + "probability": 0.0138 + }, + { + "start": 13842.24, + "end": 13842.74, + "probability": 0.6229 + }, + { + "start": 13842.82, + "end": 13843.68, + "probability": 0.9054 + }, + { + "start": 13843.78, + "end": 13845.44, + "probability": 0.9855 + }, + { + "start": 13845.44, + "end": 13847.82, + "probability": 0.8447 + }, + { + "start": 13847.98, + "end": 13849.62, + "probability": 0.9419 + }, + { + "start": 13851.02, + "end": 13852.92, + "probability": 0.5677 + }, + { + "start": 13853.66, + "end": 13856.56, + "probability": 0.761 + }, + { + "start": 13864.32, + "end": 13871.12, + "probability": 0.9874 + }, + { + "start": 13871.24, + "end": 13872.06, + "probability": 0.9448 + }, + { + "start": 13872.56, + "end": 13876.68, + "probability": 0.9517 + }, + { + "start": 13876.68, + "end": 13878.84, + "probability": 0.8115 + }, + { + "start": 13880.94, + "end": 13882.54, + "probability": 0.6831 + }, + { + "start": 13882.94, + "end": 13883.24, + "probability": 0.8054 + }, + { + "start": 13883.76, + "end": 13887.02, + "probability": 0.8389 + }, + { + "start": 13887.54, + "end": 13889.82, + "probability": 0.5329 + }, + { + "start": 13890.32, + "end": 13892.98, + "probability": 0.9796 + }, + { + "start": 13893.6, + "end": 13897.86, + "probability": 0.9734 + }, + { + "start": 13898.58, + "end": 13901.72, + "probability": 0.9844 + }, + { + "start": 13901.98, + "end": 13902.32, + "probability": 0.8049 + }, + { + "start": 13902.96, + "end": 13905.8, + "probability": 0.7439 + }, + { + "start": 13906.5, + "end": 13908.14, + "probability": 0.7726 + }, + { + "start": 13908.56, + "end": 13909.15, + "probability": 0.5052 + }, + { + "start": 13909.82, + "end": 13910.68, + "probability": 0.5174 + }, + { + "start": 13910.76, + "end": 13914.52, + "probability": 0.9512 + }, + { + "start": 13914.76, + "end": 13918.07, + "probability": 0.9891 + }, + { + "start": 13918.34, + "end": 13920.02, + "probability": 0.9849 + }, + { + "start": 13920.54, + "end": 13924.46, + "probability": 0.9138 + }, + { + "start": 13924.56, + "end": 13927.72, + "probability": 0.9927 + }, + { + "start": 13927.72, + "end": 13932.12, + "probability": 0.9843 + }, + { + "start": 13932.12, + "end": 13935.72, + "probability": 0.9387 + }, + { + "start": 13935.82, + "end": 13936.2, + "probability": 0.474 + }, + { + "start": 13936.28, + "end": 13940.24, + "probability": 0.8991 + }, + { + "start": 13940.5, + "end": 13942.7, + "probability": 0.762 + }, + { + "start": 13942.7, + "end": 13948.18, + "probability": 0.8547 + }, + { + "start": 13948.34, + "end": 13949.74, + "probability": 0.8121 + }, + { + "start": 13950.28, + "end": 13953.32, + "probability": 0.9766 + }, + { + "start": 13953.32, + "end": 13957.18, + "probability": 0.6655 + }, + { + "start": 13957.32, + "end": 13958.6, + "probability": 0.3037 + }, + { + "start": 13958.68, + "end": 13961.67, + "probability": 0.7297 + }, + { + "start": 13961.76, + "end": 13964.28, + "probability": 0.8162 + }, + { + "start": 13964.66, + "end": 13966.04, + "probability": 0.9564 + }, + { + "start": 13966.2, + "end": 13969.46, + "probability": 0.9884 + }, + { + "start": 13970.08, + "end": 13973.36, + "probability": 0.9712 + }, + { + "start": 13973.54, + "end": 13975.76, + "probability": 0.984 + }, + { + "start": 13976.2, + "end": 13979.28, + "probability": 0.8458 + }, + { + "start": 13979.72, + "end": 13982.94, + "probability": 0.803 + }, + { + "start": 13982.94, + "end": 13986.22, + "probability": 0.8424 + }, + { + "start": 13987.34, + "end": 13991.34, + "probability": 0.9748 + }, + { + "start": 13991.34, + "end": 13995.16, + "probability": 0.9938 + }, + { + "start": 13995.16, + "end": 13999.42, + "probability": 0.9905 + }, + { + "start": 13999.64, + "end": 14001.12, + "probability": 0.6297 + }, + { + "start": 14001.62, + "end": 14003.38, + "probability": 0.8874 + }, + { + "start": 14003.96, + "end": 14005.1, + "probability": 0.6547 + }, + { + "start": 14005.18, + "end": 14005.66, + "probability": 0.7597 + }, + { + "start": 14005.78, + "end": 14011.05, + "probability": 0.8044 + }, + { + "start": 14012.44, + "end": 14013.62, + "probability": 0.8021 + }, + { + "start": 14014.1, + "end": 14016.0, + "probability": 0.9733 + }, + { + "start": 14016.36, + "end": 14018.48, + "probability": 0.8773 + }, + { + "start": 14018.62, + "end": 14021.86, + "probability": 0.9934 + }, + { + "start": 14022.46, + "end": 14027.56, + "probability": 0.9612 + }, + { + "start": 14027.56, + "end": 14031.7, + "probability": 0.9754 + }, + { + "start": 14031.92, + "end": 14031.96, + "probability": 0.7041 + }, + { + "start": 14031.98, + "end": 14038.3, + "probability": 0.9744 + }, + { + "start": 14038.3, + "end": 14041.7, + "probability": 0.9906 + }, + { + "start": 14041.7, + "end": 14045.38, + "probability": 0.999 + }, + { + "start": 14045.38, + "end": 14049.3, + "probability": 0.9966 + }, + { + "start": 14049.54, + "end": 14052.64, + "probability": 0.9302 + }, + { + "start": 14052.74, + "end": 14053.92, + "probability": 0.7498 + }, + { + "start": 14054.78, + "end": 14055.8, + "probability": 0.7526 + }, + { + "start": 14055.88, + "end": 14056.86, + "probability": 0.9826 + }, + { + "start": 14056.94, + "end": 14058.7, + "probability": 0.3814 + }, + { + "start": 14058.76, + "end": 14060.06, + "probability": 0.9522 + }, + { + "start": 14060.58, + "end": 14063.88, + "probability": 0.9774 + }, + { + "start": 14064.02, + "end": 14065.72, + "probability": 0.9561 + }, + { + "start": 14066.68, + "end": 14069.2, + "probability": 0.6155 + }, + { + "start": 14069.88, + "end": 14073.06, + "probability": 0.9106 + }, + { + "start": 14073.66, + "end": 14075.5, + "probability": 0.9563 + }, + { + "start": 14075.88, + "end": 14079.08, + "probability": 0.7408 + }, + { + "start": 14079.56, + "end": 14081.46, + "probability": 0.7053 + }, + { + "start": 14081.6, + "end": 14084.5, + "probability": 0.8429 + }, + { + "start": 14086.58, + "end": 14088.24, + "probability": 0.9882 + }, + { + "start": 14088.24, + "end": 14090.8, + "probability": 0.934 + }, + { + "start": 14091.02, + "end": 14092.3, + "probability": 0.7651 + }, + { + "start": 14092.86, + "end": 14098.62, + "probability": 0.9891 + }, + { + "start": 14098.8, + "end": 14101.76, + "probability": 0.9543 + }, + { + "start": 14101.76, + "end": 14104.34, + "probability": 0.9947 + }, + { + "start": 14104.94, + "end": 14106.9, + "probability": 0.9833 + }, + { + "start": 14107.46, + "end": 14108.36, + "probability": 0.7765 + }, + { + "start": 14108.4, + "end": 14111.32, + "probability": 0.9785 + }, + { + "start": 14111.36, + "end": 14112.24, + "probability": 0.913 + }, + { + "start": 14112.68, + "end": 14114.34, + "probability": 0.9911 + }, + { + "start": 14115.0, + "end": 14115.8, + "probability": 0.9917 + }, + { + "start": 14115.88, + "end": 14118.18, + "probability": 0.9038 + }, + { + "start": 14118.28, + "end": 14118.92, + "probability": 0.6853 + }, + { + "start": 14118.98, + "end": 14120.6, + "probability": 0.9836 + }, + { + "start": 14121.12, + "end": 14123.22, + "probability": 0.942 + }, + { + "start": 14123.74, + "end": 14124.24, + "probability": 0.6722 + }, + { + "start": 14124.64, + "end": 14126.68, + "probability": 0.9366 + }, + { + "start": 14126.74, + "end": 14128.8, + "probability": 0.9558 + }, + { + "start": 14128.88, + "end": 14129.42, + "probability": 0.6391 + }, + { + "start": 14129.54, + "end": 14130.48, + "probability": 0.6368 + }, + { + "start": 14130.94, + "end": 14135.24, + "probability": 0.9955 + }, + { + "start": 14135.8, + "end": 14136.5, + "probability": 0.545 + }, + { + "start": 14137.14, + "end": 14137.32, + "probability": 0.6575 + }, + { + "start": 14137.34, + "end": 14137.92, + "probability": 0.768 + }, + { + "start": 14139.75, + "end": 14142.32, + "probability": 0.7872 + }, + { + "start": 14142.32, + "end": 14142.46, + "probability": 0.7949 + }, + { + "start": 14142.9, + "end": 14143.82, + "probability": 0.745 + }, + { + "start": 14143.88, + "end": 14144.86, + "probability": 0.5713 + }, + { + "start": 14144.96, + "end": 14148.7, + "probability": 0.9713 + }, + { + "start": 14148.7, + "end": 14157.74, + "probability": 0.7948 + }, + { + "start": 14158.2, + "end": 14158.72, + "probability": 0.28 + }, + { + "start": 14158.84, + "end": 14159.3, + "probability": 0.7293 + }, + { + "start": 14159.46, + "end": 14161.08, + "probability": 0.7031 + }, + { + "start": 14162.92, + "end": 14166.98, + "probability": 0.0442 + }, + { + "start": 14166.98, + "end": 14167.1, + "probability": 0.0149 + }, + { + "start": 14167.1, + "end": 14167.1, + "probability": 0.2369 + }, + { + "start": 14167.1, + "end": 14167.1, + "probability": 0.0219 + }, + { + "start": 14167.1, + "end": 14168.32, + "probability": 0.4104 + }, + { + "start": 14169.4, + "end": 14171.4, + "probability": 0.2708 + }, + { + "start": 14171.68, + "end": 14173.14, + "probability": 0.6756 + }, + { + "start": 14173.82, + "end": 14178.22, + "probability": 0.0783 + }, + { + "start": 14179.54, + "end": 14179.54, + "probability": 0.0063 + }, + { + "start": 14183.44, + "end": 14186.02, + "probability": 0.556 + }, + { + "start": 14186.18, + "end": 14187.16, + "probability": 0.6523 + }, + { + "start": 14187.16, + "end": 14188.2, + "probability": 0.864 + }, + { + "start": 14190.58, + "end": 14193.6, + "probability": 0.7439 + }, + { + "start": 14193.7, + "end": 14194.68, + "probability": 0.8062 + }, + { + "start": 14195.14, + "end": 14197.3, + "probability": 0.9966 + }, + { + "start": 14198.14, + "end": 14201.44, + "probability": 0.7517 + }, + { + "start": 14201.96, + "end": 14203.52, + "probability": 0.8733 + }, + { + "start": 14203.74, + "end": 14204.3, + "probability": 0.687 + }, + { + "start": 14205.38, + "end": 14206.7, + "probability": 0.7532 + }, + { + "start": 14206.8, + "end": 14209.84, + "probability": 0.9689 + }, + { + "start": 14209.84, + "end": 14212.92, + "probability": 0.9963 + }, + { + "start": 14213.0, + "end": 14214.62, + "probability": 0.9644 + }, + { + "start": 14215.96, + "end": 14219.84, + "probability": 0.8371 + }, + { + "start": 14219.84, + "end": 14222.06, + "probability": 0.9964 + }, + { + "start": 14222.23, + "end": 14224.38, + "probability": 0.9385 + }, + { + "start": 14224.5, + "end": 14227.64, + "probability": 0.7118 + }, + { + "start": 14227.9, + "end": 14229.9, + "probability": 0.9805 + }, + { + "start": 14231.56, + "end": 14234.0, + "probability": 0.9931 + }, + { + "start": 14234.18, + "end": 14237.52, + "probability": 0.7952 + }, + { + "start": 14237.62, + "end": 14238.76, + "probability": 0.8592 + }, + { + "start": 14239.54, + "end": 14241.32, + "probability": 0.947 + }, + { + "start": 14241.48, + "end": 14243.62, + "probability": 0.9659 + }, + { + "start": 14245.56, + "end": 14246.2, + "probability": 0.8135 + }, + { + "start": 14246.72, + "end": 14249.68, + "probability": 0.9922 + }, + { + "start": 14249.68, + "end": 14253.58, + "probability": 0.9904 + }, + { + "start": 14253.85, + "end": 14257.48, + "probability": 0.9888 + }, + { + "start": 14257.84, + "end": 14260.18, + "probability": 0.9516 + }, + { + "start": 14261.36, + "end": 14266.94, + "probability": 0.9422 + }, + { + "start": 14266.94, + "end": 14272.0, + "probability": 0.9819 + }, + { + "start": 14272.3, + "end": 14274.32, + "probability": 0.9904 + }, + { + "start": 14274.48, + "end": 14275.54, + "probability": 0.8433 + }, + { + "start": 14276.48, + "end": 14279.34, + "probability": 0.9147 + }, + { + "start": 14280.18, + "end": 14284.32, + "probability": 0.8857 + }, + { + "start": 14284.46, + "end": 14284.98, + "probability": 0.9888 + }, + { + "start": 14288.56, + "end": 14292.8, + "probability": 0.8454 + }, + { + "start": 14292.86, + "end": 14293.82, + "probability": 0.6761 + }, + { + "start": 14293.86, + "end": 14297.96, + "probability": 0.875 + }, + { + "start": 14297.96, + "end": 14301.84, + "probability": 0.7314 + }, + { + "start": 14301.9, + "end": 14307.66, + "probability": 0.81 + }, + { + "start": 14307.8, + "end": 14309.86, + "probability": 0.7134 + }, + { + "start": 14310.04, + "end": 14314.14, + "probability": 0.8039 + }, + { + "start": 14314.4, + "end": 14315.58, + "probability": 0.8732 + }, + { + "start": 14316.32, + "end": 14320.64, + "probability": 0.9727 + }, + { + "start": 14320.7, + "end": 14324.56, + "probability": 0.9563 + }, + { + "start": 14324.56, + "end": 14329.04, + "probability": 0.9008 + }, + { + "start": 14329.2, + "end": 14334.12, + "probability": 0.9592 + }, + { + "start": 14334.74, + "end": 14335.52, + "probability": 0.6414 + }, + { + "start": 14335.56, + "end": 14336.14, + "probability": 0.806 + }, + { + "start": 14336.84, + "end": 14341.76, + "probability": 0.9878 + }, + { + "start": 14341.76, + "end": 14347.36, + "probability": 0.9771 + }, + { + "start": 14347.54, + "end": 14349.94, + "probability": 0.8456 + }, + { + "start": 14350.54, + "end": 14352.76, + "probability": 0.9925 + }, + { + "start": 14352.92, + "end": 14355.68, + "probability": 0.9985 + }, + { + "start": 14358.4, + "end": 14362.5, + "probability": 0.9626 + }, + { + "start": 14362.56, + "end": 14366.76, + "probability": 0.8906 + }, + { + "start": 14366.78, + "end": 14369.42, + "probability": 0.6325 + }, + { + "start": 14369.56, + "end": 14372.7, + "probability": 0.8729 + }, + { + "start": 14372.7, + "end": 14376.82, + "probability": 0.9954 + }, + { + "start": 14378.02, + "end": 14381.19, + "probability": 0.9523 + }, + { + "start": 14381.92, + "end": 14384.54, + "probability": 0.7051 + }, + { + "start": 14384.78, + "end": 14391.04, + "probability": 0.9149 + }, + { + "start": 14391.24, + "end": 14394.22, + "probability": 0.9843 + }, + { + "start": 14394.3, + "end": 14397.74, + "probability": 0.9285 + }, + { + "start": 14397.84, + "end": 14400.62, + "probability": 0.9294 + }, + { + "start": 14401.2, + "end": 14404.92, + "probability": 0.9854 + }, + { + "start": 14404.92, + "end": 14409.96, + "probability": 0.9895 + }, + { + "start": 14410.56, + "end": 14411.32, + "probability": 0.7447 + }, + { + "start": 14412.02, + "end": 14415.32, + "probability": 0.9906 + }, + { + "start": 14415.52, + "end": 14419.78, + "probability": 0.9961 + }, + { + "start": 14420.62, + "end": 14421.64, + "probability": 0.7461 + }, + { + "start": 14423.44, + "end": 14425.84, + "probability": 0.5325 + }, + { + "start": 14426.06, + "end": 14428.14, + "probability": 0.7092 + }, + { + "start": 14428.36, + "end": 14429.64, + "probability": 0.9213 + }, + { + "start": 14429.82, + "end": 14432.66, + "probability": 0.9673 + }, + { + "start": 14432.86, + "end": 14433.6, + "probability": 0.7668 + }, + { + "start": 14435.8, + "end": 14436.46, + "probability": 0.8738 + }, + { + "start": 14442.52, + "end": 14447.84, + "probability": 0.673 + }, + { + "start": 14449.19, + "end": 14452.48, + "probability": 0.7002 + }, + { + "start": 14454.03, + "end": 14457.34, + "probability": 0.7924 + }, + { + "start": 14458.24, + "end": 14460.6, + "probability": 0.675 + }, + { + "start": 14461.76, + "end": 14461.96, + "probability": 0.6138 + }, + { + "start": 14463.0, + "end": 14465.68, + "probability": 0.4022 + }, + { + "start": 14468.57, + "end": 14469.88, + "probability": 0.5112 + }, + { + "start": 14474.12, + "end": 14475.66, + "probability": 0.8362 + }, + { + "start": 14475.8, + "end": 14476.98, + "probability": 0.9691 + }, + { + "start": 14477.06, + "end": 14477.48, + "probability": 0.6176 + }, + { + "start": 14477.64, + "end": 14480.66, + "probability": 0.1364 + }, + { + "start": 14481.04, + "end": 14483.52, + "probability": 0.9375 + }, + { + "start": 14485.0, + "end": 14487.48, + "probability": 0.9147 + }, + { + "start": 14489.12, + "end": 14490.62, + "probability": 0.4635 + }, + { + "start": 14491.22, + "end": 14493.82, + "probability": 0.8844 + }, + { + "start": 14494.76, + "end": 14495.9, + "probability": 0.7936 + }, + { + "start": 14495.98, + "end": 14496.44, + "probability": 0.7417 + }, + { + "start": 14496.58, + "end": 14497.64, + "probability": 0.9705 + }, + { + "start": 14497.66, + "end": 14498.32, + "probability": 0.7493 + }, + { + "start": 14511.72, + "end": 14513.14, + "probability": 0.0968 + }, + { + "start": 14513.4, + "end": 14513.96, + "probability": 0.5346 + }, + { + "start": 14514.04, + "end": 14515.18, + "probability": 0.2037 + }, + { + "start": 14515.36, + "end": 14515.94, + "probability": 0.5639 + }, + { + "start": 14531.22, + "end": 14533.12, + "probability": 0.4954 + }, + { + "start": 14534.6, + "end": 14535.62, + "probability": 0.4337 + }, + { + "start": 14536.18, + "end": 14537.45, + "probability": 0.5868 + }, + { + "start": 14537.86, + "end": 14538.56, + "probability": 0.6496 + }, + { + "start": 14538.7, + "end": 14539.94, + "probability": 0.0512 + }, + { + "start": 14539.94, + "end": 14540.62, + "probability": 0.3105 + }, + { + "start": 14540.7, + "end": 14541.46, + "probability": 0.219 + }, + { + "start": 14541.46, + "end": 14541.46, + "probability": 0.2059 + }, + { + "start": 14541.46, + "end": 14542.94, + "probability": 0.1257 + }, + { + "start": 14544.06, + "end": 14544.59, + "probability": 0.6001 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.0, + "end": 14545.0, + "probability": 0.0 + }, + { + "start": 14545.36, + "end": 14546.81, + "probability": 0.5487 + }, + { + "start": 14548.48, + "end": 14549.6, + "probability": 0.8738 + }, + { + "start": 14549.94, + "end": 14550.56, + "probability": 0.6736 + }, + { + "start": 14550.7, + "end": 14551.74, + "probability": 0.8839 + }, + { + "start": 14551.76, + "end": 14552.22, + "probability": 0.7975 + }, + { + "start": 14552.3, + "end": 14553.28, + "probability": 0.9336 + }, + { + "start": 14553.28, + "end": 14553.66, + "probability": 0.9103 + }, + { + "start": 14553.74, + "end": 14555.04, + "probability": 0.9742 + }, + { + "start": 14555.04, + "end": 14555.72, + "probability": 0.6465 + }, + { + "start": 14556.56, + "end": 14557.14, + "probability": 0.2054 + }, + { + "start": 14557.14, + "end": 14557.14, + "probability": 0.3915 + }, + { + "start": 14557.14, + "end": 14557.62, + "probability": 0.6665 + }, + { + "start": 14557.72, + "end": 14558.44, + "probability": 0.7379 + }, + { + "start": 14559.04, + "end": 14560.72, + "probability": 0.853 + }, + { + "start": 14561.28, + "end": 14562.06, + "probability": 0.6864 + }, + { + "start": 14562.9, + "end": 14567.92, + "probability": 0.9584 + }, + { + "start": 14568.14, + "end": 14569.38, + "probability": 0.6506 + }, + { + "start": 14570.62, + "end": 14571.66, + "probability": 0.0002 + }, + { + "start": 14583.48, + "end": 14584.38, + "probability": 0.0784 + }, + { + "start": 14585.46, + "end": 14587.2, + "probability": 0.6786 + }, + { + "start": 14587.36, + "end": 14589.52, + "probability": 0.8722 + }, + { + "start": 14589.74, + "end": 14592.26, + "probability": 0.9953 + }, + { + "start": 14593.02, + "end": 14595.3, + "probability": 0.7891 + }, + { + "start": 14597.12, + "end": 14600.26, + "probability": 0.0162 + }, + { + "start": 14608.86, + "end": 14609.4, + "probability": 0.1551 + }, + { + "start": 14609.4, + "end": 14610.46, + "probability": 0.544 + }, + { + "start": 14610.52, + "end": 14613.82, + "probability": 0.792 + }, + { + "start": 14613.9, + "end": 14614.7, + "probability": 0.7798 + }, + { + "start": 14616.0, + "end": 14616.82, + "probability": 0.9669 + }, + { + "start": 14616.88, + "end": 14618.72, + "probability": 0.9834 + }, + { + "start": 14618.86, + "end": 14620.64, + "probability": 0.6713 + }, + { + "start": 14621.5, + "end": 14622.56, + "probability": 0.0174 + }, + { + "start": 14622.9, + "end": 14623.38, + "probability": 0.4955 + }, + { + "start": 14623.74, + "end": 14624.16, + "probability": 0.9369 + }, + { + "start": 14624.3, + "end": 14624.9, + "probability": 0.8345 + }, + { + "start": 14625.48, + "end": 14627.47, + "probability": 0.8604 + }, + { + "start": 14630.18, + "end": 14631.75, + "probability": 0.1056 + }, + { + "start": 14632.9, + "end": 14633.38, + "probability": 0.0926 + }, + { + "start": 14634.58, + "end": 14634.58, + "probability": 0.0045 + }, + { + "start": 14636.66, + "end": 14638.38, + "probability": 0.2209 + }, + { + "start": 14639.86, + "end": 14639.86, + "probability": 0.0615 + }, + { + "start": 14640.42, + "end": 14640.82, + "probability": 0.0134 + }, + { + "start": 14641.3, + "end": 14644.18, + "probability": 0.0098 + }, + { + "start": 14645.28, + "end": 14647.34, + "probability": 0.0141 + }, + { + "start": 14647.44, + "end": 14648.36, + "probability": 0.3467 + }, + { + "start": 14648.48, + "end": 14649.62, + "probability": 0.3167 + }, + { + "start": 14654.6, + "end": 14656.6, + "probability": 0.6305 + }, + { + "start": 14657.64, + "end": 14661.44, + "probability": 0.9597 + }, + { + "start": 14662.52, + "end": 14664.76, + "probability": 0.9824 + }, + { + "start": 14665.4, + "end": 14667.62, + "probability": 0.9998 + }, + { + "start": 14668.12, + "end": 14673.62, + "probability": 0.9992 + }, + { + "start": 14674.9, + "end": 14675.86, + "probability": 0.8339 + }, + { + "start": 14678.2, + "end": 14683.58, + "probability": 0.8194 + }, + { + "start": 14684.66, + "end": 14686.98, + "probability": 0.9819 + }, + { + "start": 14687.88, + "end": 14692.0, + "probability": 0.9917 + }, + { + "start": 14692.62, + "end": 14694.68, + "probability": 0.8554 + }, + { + "start": 14695.32, + "end": 14697.13, + "probability": 0.7803 + }, + { + "start": 14698.06, + "end": 14700.6, + "probability": 0.9893 + }, + { + "start": 14701.3, + "end": 14702.66, + "probability": 0.824 + }, + { + "start": 14703.92, + "end": 14708.2, + "probability": 0.9906 + }, + { + "start": 14708.94, + "end": 14713.32, + "probability": 0.9984 + }, + { + "start": 14713.72, + "end": 14714.76, + "probability": 0.6486 + }, + { + "start": 14715.8, + "end": 14719.14, + "probability": 0.9558 + }, + { + "start": 14719.88, + "end": 14721.78, + "probability": 0.9979 + }, + { + "start": 14722.84, + "end": 14727.98, + "probability": 0.9675 + }, + { + "start": 14728.54, + "end": 14729.54, + "probability": 0.7697 + }, + { + "start": 14731.02, + "end": 14731.92, + "probability": 0.999 + }, + { + "start": 14733.56, + "end": 14737.44, + "probability": 0.6481 + }, + { + "start": 14738.46, + "end": 14743.5, + "probability": 0.9374 + }, + { + "start": 14744.36, + "end": 14746.18, + "probability": 0.7298 + }, + { + "start": 14746.96, + "end": 14750.16, + "probability": 0.9109 + }, + { + "start": 14750.74, + "end": 14751.62, + "probability": 0.7209 + }, + { + "start": 14752.04, + "end": 14756.86, + "probability": 0.9604 + }, + { + "start": 14757.22, + "end": 14758.34, + "probability": 0.8066 + }, + { + "start": 14759.78, + "end": 14761.36, + "probability": 0.7518 + }, + { + "start": 14761.58, + "end": 14762.46, + "probability": 0.8236 + }, + { + "start": 14762.6, + "end": 14763.82, + "probability": 0.9932 + }, + { + "start": 14764.68, + "end": 14769.14, + "probability": 0.9941 + }, + { + "start": 14769.14, + "end": 14776.02, + "probability": 0.9983 + }, + { + "start": 14777.82, + "end": 14779.52, + "probability": 0.9984 + }, + { + "start": 14780.26, + "end": 14781.9, + "probability": 0.9481 + }, + { + "start": 14782.6, + "end": 14786.48, + "probability": 0.9955 + }, + { + "start": 14786.48, + "end": 14791.26, + "probability": 0.9973 + }, + { + "start": 14791.36, + "end": 14791.84, + "probability": 0.7948 + }, + { + "start": 14791.94, + "end": 14793.04, + "probability": 0.4716 + }, + { + "start": 14793.04, + "end": 14794.56, + "probability": 0.6012 + }, + { + "start": 14794.62, + "end": 14796.12, + "probability": 0.9541 + }, + { + "start": 14802.48, + "end": 14803.94, + "probability": 0.0286 + }, + { + "start": 14806.46, + "end": 14808.62, + "probability": 0.4769 + }, + { + "start": 14808.7, + "end": 14808.88, + "probability": 0.9093 + }, + { + "start": 14809.4, + "end": 14813.1, + "probability": 0.4621 + }, + { + "start": 14813.8, + "end": 14814.28, + "probability": 0.7812 + }, + { + "start": 14814.44, + "end": 14818.34, + "probability": 0.7312 + }, + { + "start": 14818.96, + "end": 14821.52, + "probability": 0.9932 + }, + { + "start": 14821.6, + "end": 14821.6, + "probability": 0.3114 + }, + { + "start": 14821.6, + "end": 14821.88, + "probability": 0.2924 + }, + { + "start": 14822.5, + "end": 14824.2, + "probability": 0.789 + }, + { + "start": 14824.28, + "end": 14829.3, + "probability": 0.9443 + }, + { + "start": 14830.14, + "end": 14832.42, + "probability": 0.9314 + }, + { + "start": 14832.74, + "end": 14834.22, + "probability": 0.9666 + }, + { + "start": 14834.34, + "end": 14835.7, + "probability": 0.7784 + }, + { + "start": 14835.76, + "end": 14836.62, + "probability": 0.8508 + }, + { + "start": 14837.0, + "end": 14837.1, + "probability": 0.3917 + }, + { + "start": 14837.12, + "end": 14837.38, + "probability": 0.9036 + }, + { + "start": 14837.44, + "end": 14837.88, + "probability": 0.8959 + }, + { + "start": 14838.3, + "end": 14840.54, + "probability": 0.8639 + }, + { + "start": 14840.98, + "end": 14845.06, + "probability": 0.9557 + }, + { + "start": 14845.5, + "end": 14848.9, + "probability": 0.9577 + }, + { + "start": 14849.28, + "end": 14849.98, + "probability": 0.7193 + }, + { + "start": 14850.08, + "end": 14851.74, + "probability": 0.6092 + }, + { + "start": 14852.34, + "end": 14856.2, + "probability": 0.8904 + }, + { + "start": 14856.38, + "end": 14857.7, + "probability": 0.5882 + }, + { + "start": 14858.22, + "end": 14859.0, + "probability": 0.6391 + }, + { + "start": 14859.14, + "end": 14861.74, + "probability": 0.9139 + }, + { + "start": 14862.16, + "end": 14867.4, + "probability": 0.9974 + }, + { + "start": 14867.54, + "end": 14872.14, + "probability": 0.9449 + }, + { + "start": 14872.14, + "end": 14873.02, + "probability": 0.4296 + }, + { + "start": 14873.2, + "end": 14873.72, + "probability": 0.9266 + }, + { + "start": 14874.22, + "end": 14881.36, + "probability": 0.9915 + }, + { + "start": 14882.08, + "end": 14883.5, + "probability": 0.9958 + }, + { + "start": 14883.66, + "end": 14887.06, + "probability": 0.9817 + }, + { + "start": 14887.78, + "end": 14890.54, + "probability": 0.7499 + }, + { + "start": 14890.98, + "end": 14893.56, + "probability": 0.9959 + }, + { + "start": 14893.56, + "end": 14899.32, + "probability": 0.952 + }, + { + "start": 14900.24, + "end": 14901.84, + "probability": 0.9783 + }, + { + "start": 14902.84, + "end": 14905.02, + "probability": 0.9757 + }, + { + "start": 14906.06, + "end": 14909.14, + "probability": 0.6253 + }, + { + "start": 14909.92, + "end": 14911.8, + "probability": 0.9315 + }, + { + "start": 14912.34, + "end": 14913.2, + "probability": 0.9485 + }, + { + "start": 14914.46, + "end": 14916.7, + "probability": 0.9989 + }, + { + "start": 14917.46, + "end": 14922.6, + "probability": 0.963 + }, + { + "start": 14923.84, + "end": 14929.02, + "probability": 0.9948 + }, + { + "start": 14929.16, + "end": 14930.32, + "probability": 0.9861 + }, + { + "start": 14930.94, + "end": 14934.18, + "probability": 0.9958 + }, + { + "start": 14934.36, + "end": 14936.73, + "probability": 0.9379 + }, + { + "start": 14936.86, + "end": 14939.28, + "probability": 0.9829 + }, + { + "start": 14939.44, + "end": 14941.22, + "probability": 0.9976 + }, + { + "start": 14941.58, + "end": 14944.96, + "probability": 0.9132 + }, + { + "start": 14945.72, + "end": 14948.28, + "probability": 0.9971 + }, + { + "start": 14948.38, + "end": 14950.88, + "probability": 0.9369 + }, + { + "start": 14951.1, + "end": 14951.62, + "probability": 0.9968 + }, + { + "start": 14952.14, + "end": 14953.78, + "probability": 0.9883 + }, + { + "start": 14954.92, + "end": 14957.88, + "probability": 0.5006 + }, + { + "start": 14958.12, + "end": 14960.12, + "probability": 0.8792 + }, + { + "start": 14960.56, + "end": 14960.68, + "probability": 0.3539 + }, + { + "start": 14960.68, + "end": 14960.68, + "probability": 0.5403 + }, + { + "start": 14960.68, + "end": 14961.46, + "probability": 0.9026 + }, + { + "start": 14963.56, + "end": 14964.28, + "probability": 0.7836 + }, + { + "start": 14964.84, + "end": 14965.46, + "probability": 0.322 + }, + { + "start": 14965.5, + "end": 14966.85, + "probability": 0.7886 + }, + { + "start": 14967.32, + "end": 14968.68, + "probability": 0.9336 + }, + { + "start": 14969.06, + "end": 14970.2, + "probability": 0.8579 + }, + { + "start": 14970.88, + "end": 14972.66, + "probability": 0.9124 + }, + { + "start": 14972.9, + "end": 14975.1, + "probability": 0.884 + }, + { + "start": 14975.57, + "end": 14980.72, + "probability": 0.9883 + }, + { + "start": 14980.72, + "end": 14983.22, + "probability": 0.9696 + }, + { + "start": 14983.74, + "end": 14986.62, + "probability": 0.9894 + }, + { + "start": 14987.08, + "end": 14987.36, + "probability": 0.8594 + }, + { + "start": 14987.8, + "end": 14988.88, + "probability": 0.7016 + }, + { + "start": 14989.24, + "end": 14991.08, + "probability": 0.3178 + }, + { + "start": 14993.3, + "end": 14993.44, + "probability": 0.0839 + }, + { + "start": 14993.44, + "end": 14994.28, + "probability": 0.6348 + }, + { + "start": 14994.34, + "end": 14995.26, + "probability": 0.5144 + }, + { + "start": 14995.34, + "end": 14997.66, + "probability": 0.9259 + }, + { + "start": 14997.78, + "end": 15000.84, + "probability": 0.7655 + }, + { + "start": 15000.92, + "end": 15001.9, + "probability": 0.5911 + }, + { + "start": 15002.02, + "end": 15003.32, + "probability": 0.9287 + }, + { + "start": 15003.78, + "end": 15004.48, + "probability": 0.6416 + }, + { + "start": 15004.54, + "end": 15006.58, + "probability": 0.8997 + }, + { + "start": 15006.58, + "end": 15010.28, + "probability": 0.662 + }, + { + "start": 15010.38, + "end": 15011.58, + "probability": 0.6476 + }, + { + "start": 15011.66, + "end": 15013.3, + "probability": 0.9456 + }, + { + "start": 15013.74, + "end": 15016.72, + "probability": 0.6654 + }, + { + "start": 15016.84, + "end": 15017.88, + "probability": 0.2852 + }, + { + "start": 15017.98, + "end": 15019.34, + "probability": 0.8833 + }, + { + "start": 15019.44, + "end": 15019.68, + "probability": 0.8763 + }, + { + "start": 15020.48, + "end": 15021.0, + "probability": 0.7556 + }, + { + "start": 15021.34, + "end": 15023.2, + "probability": 0.9651 + }, + { + "start": 15023.22, + "end": 15025.5, + "probability": 0.599 + }, + { + "start": 15025.64, + "end": 15026.74, + "probability": 0.3724 + }, + { + "start": 15026.98, + "end": 15028.88, + "probability": 0.9316 + }, + { + "start": 15029.06, + "end": 15032.24, + "probability": 0.9308 + }, + { + "start": 15032.24, + "end": 15035.96, + "probability": 0.9838 + }, + { + "start": 15036.42, + "end": 15037.92, + "probability": 0.8734 + }, + { + "start": 15050.48, + "end": 15053.34, + "probability": 0.734 + }, + { + "start": 15054.34, + "end": 15058.04, + "probability": 0.9943 + }, + { + "start": 15058.04, + "end": 15061.7, + "probability": 0.9708 + }, + { + "start": 15062.42, + "end": 15063.16, + "probability": 0.2927 + }, + { + "start": 15063.96, + "end": 15067.76, + "probability": 0.6662 + }, + { + "start": 15068.36, + "end": 15074.62, + "probability": 0.908 + }, + { + "start": 15075.36, + "end": 15077.9, + "probability": 0.6823 + }, + { + "start": 15078.4, + "end": 15082.48, + "probability": 0.9976 + }, + { + "start": 15082.48, + "end": 15087.18, + "probability": 0.9955 + }, + { + "start": 15088.42, + "end": 15089.8, + "probability": 0.9431 + }, + { + "start": 15090.04, + "end": 15091.73, + "probability": 0.9897 + }, + { + "start": 15092.3, + "end": 15093.98, + "probability": 0.813 + }, + { + "start": 15094.28, + "end": 15096.61, + "probability": 0.9006 + }, + { + "start": 15097.12, + "end": 15098.6, + "probability": 0.867 + }, + { + "start": 15099.46, + "end": 15102.58, + "probability": 0.3475 + }, + { + "start": 15102.64, + "end": 15106.96, + "probability": 0.9755 + }, + { + "start": 15107.66, + "end": 15110.57, + "probability": 0.991 + }, + { + "start": 15110.68, + "end": 15115.08, + "probability": 0.9449 + }, + { + "start": 15115.28, + "end": 15118.4, + "probability": 0.9725 + }, + { + "start": 15119.56, + "end": 15123.16, + "probability": 0.9978 + }, + { + "start": 15123.62, + "end": 15127.12, + "probability": 0.9976 + }, + { + "start": 15127.48, + "end": 15128.7, + "probability": 0.8147 + }, + { + "start": 15129.16, + "end": 15130.0, + "probability": 0.7785 + }, + { + "start": 15130.42, + "end": 15133.64, + "probability": 0.9067 + }, + { + "start": 15135.62, + "end": 15139.46, + "probability": 0.9861 + }, + { + "start": 15139.54, + "end": 15141.42, + "probability": 0.7227 + }, + { + "start": 15142.46, + "end": 15143.08, + "probability": 0.121 + }, + { + "start": 15143.16, + "end": 15144.5, + "probability": 0.4149 + }, + { + "start": 15144.6, + "end": 15145.38, + "probability": 0.6595 + }, + { + "start": 15145.38, + "end": 15146.28, + "probability": 0.7517 + }, + { + "start": 15146.48, + "end": 15147.0, + "probability": 0.9128 + }, + { + "start": 15147.56, + "end": 15148.44, + "probability": 0.3912 + }, + { + "start": 15149.16, + "end": 15150.08, + "probability": 0.8765 + }, + { + "start": 15150.44, + "end": 15151.24, + "probability": 0.9398 + }, + { + "start": 15151.38, + "end": 15152.14, + "probability": 0.8721 + }, + { + "start": 15153.8, + "end": 15154.6, + "probability": 0.5548 + }, + { + "start": 15154.78, + "end": 15159.92, + "probability": 0.963 + }, + { + "start": 15160.66, + "end": 15165.38, + "probability": 0.9905 + }, + { + "start": 15165.92, + "end": 15169.02, + "probability": 0.9975 + }, + { + "start": 15169.66, + "end": 15171.2, + "probability": 0.7141 + }, + { + "start": 15171.62, + "end": 15172.1, + "probability": 0.7951 + }, + { + "start": 15172.18, + "end": 15173.92, + "probability": 0.9984 + }, + { + "start": 15174.74, + "end": 15176.6, + "probability": 0.9966 + }, + { + "start": 15176.88, + "end": 15179.34, + "probability": 0.9976 + }, + { + "start": 15179.42, + "end": 15184.32, + "probability": 0.9951 + }, + { + "start": 15185.2, + "end": 15188.26, + "probability": 0.9003 + }, + { + "start": 15188.84, + "end": 15193.98, + "probability": 0.9078 + }, + { + "start": 15194.48, + "end": 15197.6, + "probability": 0.9952 + }, + { + "start": 15199.0, + "end": 15200.78, + "probability": 0.7801 + }, + { + "start": 15200.92, + "end": 15204.58, + "probability": 0.9771 + }, + { + "start": 15204.66, + "end": 15206.35, + "probability": 0.9829 + }, + { + "start": 15206.9, + "end": 15208.48, + "probability": 0.9466 + }, + { + "start": 15209.04, + "end": 15211.82, + "probability": 0.8359 + }, + { + "start": 15212.82, + "end": 15214.48, + "probability": 0.995 + }, + { + "start": 15214.6, + "end": 15217.56, + "probability": 0.981 + }, + { + "start": 15218.38, + "end": 15219.28, + "probability": 0.6837 + }, + { + "start": 15219.48, + "end": 15223.66, + "probability": 0.9819 + }, + { + "start": 15224.3, + "end": 15227.55, + "probability": 0.9911 + }, + { + "start": 15228.36, + "end": 15230.52, + "probability": 0.9968 + }, + { + "start": 15231.1, + "end": 15234.7, + "probability": 0.9787 + }, + { + "start": 15235.32, + "end": 15238.12, + "probability": 0.8679 + }, + { + "start": 15238.26, + "end": 15239.1, + "probability": 0.9469 + }, + { + "start": 15239.1, + "end": 15242.5, + "probability": 0.9318 + }, + { + "start": 15242.5, + "end": 15246.08, + "probability": 0.9588 + }, + { + "start": 15246.4, + "end": 15248.0, + "probability": 0.6665 + }, + { + "start": 15248.56, + "end": 15248.92, + "probability": 0.6069 + }, + { + "start": 15249.08, + "end": 15253.84, + "probability": 0.9873 + }, + { + "start": 15253.84, + "end": 15259.12, + "probability": 0.9739 + }, + { + "start": 15259.66, + "end": 15262.2, + "probability": 0.7317 + }, + { + "start": 15262.86, + "end": 15267.28, + "probability": 0.9565 + }, + { + "start": 15267.34, + "end": 15269.4, + "probability": 0.8792 + }, + { + "start": 15269.48, + "end": 15271.74, + "probability": 0.9692 + }, + { + "start": 15272.66, + "end": 15273.18, + "probability": 0.7338 + }, + { + "start": 15273.96, + "end": 15278.56, + "probability": 0.9962 + }, + { + "start": 15279.1, + "end": 15282.42, + "probability": 0.9958 + }, + { + "start": 15282.42, + "end": 15286.06, + "probability": 0.9973 + }, + { + "start": 15286.14, + "end": 15286.7, + "probability": 0.7239 + }, + { + "start": 15287.12, + "end": 15288.06, + "probability": 0.8722 + }, + { + "start": 15290.2, + "end": 15293.54, + "probability": 0.971 + }, + { + "start": 15293.54, + "end": 15296.82, + "probability": 0.9773 + }, + { + "start": 15297.51, + "end": 15301.78, + "probability": 0.9922 + }, + { + "start": 15301.88, + "end": 15302.37, + "probability": 0.5298 + }, + { + "start": 15302.58, + "end": 15306.16, + "probability": 0.9837 + }, + { + "start": 15306.7, + "end": 15310.34, + "probability": 0.996 + }, + { + "start": 15310.54, + "end": 15311.5, + "probability": 0.8427 + }, + { + "start": 15312.18, + "end": 15313.52, + "probability": 0.9816 + }, + { + "start": 15313.78, + "end": 15315.96, + "probability": 0.6748 + }, + { + "start": 15316.7, + "end": 15319.56, + "probability": 0.9897 + }, + { + "start": 15319.82, + "end": 15322.38, + "probability": 0.9951 + }, + { + "start": 15322.5, + "end": 15326.28, + "probability": 0.9842 + }, + { + "start": 15326.84, + "end": 15329.12, + "probability": 0.9872 + }, + { + "start": 15329.9, + "end": 15332.02, + "probability": 0.9915 + }, + { + "start": 15332.46, + "end": 15337.0, + "probability": 0.997 + }, + { + "start": 15337.12, + "end": 15338.18, + "probability": 0.6052 + }, + { + "start": 15338.22, + "end": 15345.3, + "probability": 0.995 + }, + { + "start": 15345.4, + "end": 15346.36, + "probability": 0.9605 + }, + { + "start": 15347.12, + "end": 15348.76, + "probability": 0.9266 + }, + { + "start": 15349.58, + "end": 15353.22, + "probability": 0.9965 + }, + { + "start": 15353.36, + "end": 15356.4, + "probability": 0.991 + }, + { + "start": 15357.18, + "end": 15361.98, + "probability": 0.9505 + }, + { + "start": 15362.6, + "end": 15365.76, + "probability": 0.9825 + }, + { + "start": 15365.88, + "end": 15366.76, + "probability": 0.8358 + }, + { + "start": 15367.28, + "end": 15370.64, + "probability": 0.5297 + }, + { + "start": 15371.18, + "end": 15372.76, + "probability": 0.7905 + }, + { + "start": 15373.66, + "end": 15376.14, + "probability": 0.9752 + }, + { + "start": 15376.2, + "end": 15377.64, + "probability": 0.909 + }, + { + "start": 15378.08, + "end": 15380.06, + "probability": 0.9954 + }, + { + "start": 15380.12, + "end": 15381.28, + "probability": 0.7206 + }, + { + "start": 15381.86, + "end": 15384.82, + "probability": 0.9831 + }, + { + "start": 15384.82, + "end": 15389.52, + "probability": 0.8731 + }, + { + "start": 15389.58, + "end": 15391.14, + "probability": 0.6207 + }, + { + "start": 15391.2, + "end": 15391.8, + "probability": 0.7385 + }, + { + "start": 15391.9, + "end": 15392.82, + "probability": 0.7849 + }, + { + "start": 15393.16, + "end": 15393.65, + "probability": 0.468 + }, + { + "start": 15393.92, + "end": 15394.74, + "probability": 0.9136 + }, + { + "start": 15395.04, + "end": 15399.34, + "probability": 0.9949 + }, + { + "start": 15400.22, + "end": 15404.44, + "probability": 0.9631 + }, + { + "start": 15404.7, + "end": 15406.04, + "probability": 0.9846 + }, + { + "start": 15406.58, + "end": 15406.67, + "probability": 0.4183 + }, + { + "start": 15407.28, + "end": 15407.9, + "probability": 0.5677 + }, + { + "start": 15408.2, + "end": 15408.96, + "probability": 0.8516 + }, + { + "start": 15409.04, + "end": 15411.8, + "probability": 0.9038 + }, + { + "start": 15412.16, + "end": 15414.4, + "probability": 0.772 + }, + { + "start": 15415.0, + "end": 15417.62, + "probability": 0.9408 + }, + { + "start": 15437.86, + "end": 15439.9, + "probability": 0.5959 + }, + { + "start": 15440.0, + "end": 15440.56, + "probability": 0.9193 + }, + { + "start": 15440.6, + "end": 15444.98, + "probability": 0.7645 + }, + { + "start": 15447.13, + "end": 15455.88, + "probability": 0.8029 + }, + { + "start": 15456.5, + "end": 15456.98, + "probability": 0.8824 + }, + { + "start": 15458.04, + "end": 15459.02, + "probability": 0.772 + }, + { + "start": 15459.1, + "end": 15461.56, + "probability": 0.9951 + }, + { + "start": 15462.36, + "end": 15463.62, + "probability": 0.9457 + }, + { + "start": 15463.72, + "end": 15464.34, + "probability": 0.8481 + }, + { + "start": 15465.14, + "end": 15466.44, + "probability": 0.9713 + }, + { + "start": 15466.8, + "end": 15469.86, + "probability": 0.9858 + }, + { + "start": 15470.02, + "end": 15471.78, + "probability": 0.711 + }, + { + "start": 15472.5, + "end": 15473.2, + "probability": 0.6945 + }, + { + "start": 15473.32, + "end": 15473.56, + "probability": 0.8756 + }, + { + "start": 15473.66, + "end": 15476.54, + "probability": 0.9917 + }, + { + "start": 15476.72, + "end": 15478.04, + "probability": 0.7109 + }, + { + "start": 15478.56, + "end": 15481.44, + "probability": 0.9033 + }, + { + "start": 15481.46, + "end": 15484.32, + "probability": 0.9778 + }, + { + "start": 15485.12, + "end": 15488.18, + "probability": 0.9933 + }, + { + "start": 15489.08, + "end": 15491.38, + "probability": 0.9931 + }, + { + "start": 15491.94, + "end": 15496.5, + "probability": 0.9974 + }, + { + "start": 15496.92, + "end": 15498.9, + "probability": 0.9686 + }, + { + "start": 15499.36, + "end": 15501.18, + "probability": 0.9161 + }, + { + "start": 15501.26, + "end": 15502.64, + "probability": 0.9792 + }, + { + "start": 15502.96, + "end": 15503.66, + "probability": 0.9725 + }, + { + "start": 15503.72, + "end": 15504.28, + "probability": 0.9738 + }, + { + "start": 15504.38, + "end": 15504.78, + "probability": 0.552 + }, + { + "start": 15505.38, + "end": 15507.36, + "probability": 0.7802 + }, + { + "start": 15508.14, + "end": 15510.24, + "probability": 0.9863 + }, + { + "start": 15511.02, + "end": 15513.42, + "probability": 0.9969 + }, + { + "start": 15514.62, + "end": 15517.78, + "probability": 0.9507 + }, + { + "start": 15519.06, + "end": 15521.1, + "probability": 0.9053 + }, + { + "start": 15521.72, + "end": 15524.21, + "probability": 0.8431 + }, + { + "start": 15525.06, + "end": 15527.84, + "probability": 0.9844 + }, + { + "start": 15528.58, + "end": 15532.1, + "probability": 0.999 + }, + { + "start": 15532.1, + "end": 15534.2, + "probability": 0.9989 + }, + { + "start": 15535.34, + "end": 15536.69, + "probability": 0.5774 + }, + { + "start": 15536.8, + "end": 15540.78, + "probability": 0.9873 + }, + { + "start": 15541.88, + "end": 15545.52, + "probability": 0.9857 + }, + { + "start": 15546.5, + "end": 15550.88, + "probability": 0.8519 + }, + { + "start": 15551.92, + "end": 15554.6, + "probability": 0.9408 + }, + { + "start": 15555.38, + "end": 15561.08, + "probability": 0.9683 + }, + { + "start": 15561.56, + "end": 15563.58, + "probability": 0.9762 + }, + { + "start": 15564.82, + "end": 15569.9, + "probability": 0.9897 + }, + { + "start": 15570.28, + "end": 15571.5, + "probability": 0.7718 + }, + { + "start": 15572.26, + "end": 15575.36, + "probability": 0.9971 + }, + { + "start": 15576.1, + "end": 15580.16, + "probability": 0.9238 + }, + { + "start": 15581.42, + "end": 15585.44, + "probability": 0.9989 + }, + { + "start": 15585.52, + "end": 15586.1, + "probability": 0.7476 + }, + { + "start": 15586.22, + "end": 15587.1, + "probability": 0.7664 + }, + { + "start": 15587.3, + "end": 15588.04, + "probability": 0.578 + }, + { + "start": 15600.95, + "end": 15605.52, + "probability": 0.9886 + }, + { + "start": 15606.36, + "end": 15612.14, + "probability": 0.9964 + }, + { + "start": 15613.12, + "end": 15616.16, + "probability": 0.9537 + }, + { + "start": 15617.06, + "end": 15618.14, + "probability": 0.9098 + }, + { + "start": 15618.92, + "end": 15622.38, + "probability": 0.9962 + }, + { + "start": 15622.42, + "end": 15625.16, + "probability": 0.9991 + }, + { + "start": 15625.22, + "end": 15627.86, + "probability": 0.9966 + }, + { + "start": 15628.78, + "end": 15632.7, + "probability": 0.9761 + }, + { + "start": 15633.52, + "end": 15635.62, + "probability": 0.9963 + }, + { + "start": 15635.74, + "end": 15636.2, + "probability": 0.8095 + }, + { + "start": 15636.26, + "end": 15637.44, + "probability": 0.8694 + }, + { + "start": 15637.58, + "end": 15638.4, + "probability": 0.9189 + }, + { + "start": 15638.92, + "end": 15643.94, + "probability": 0.9973 + }, + { + "start": 15644.28, + "end": 15645.76, + "probability": 0.999 + }, + { + "start": 15646.2, + "end": 15648.8, + "probability": 0.9954 + }, + { + "start": 15649.56, + "end": 15652.98, + "probability": 0.988 + }, + { + "start": 15654.18, + "end": 15655.12, + "probability": 0.7038 + }, + { + "start": 15655.62, + "end": 15662.18, + "probability": 0.9855 + }, + { + "start": 15662.32, + "end": 15664.9, + "probability": 0.8593 + }, + { + "start": 15665.14, + "end": 15665.6, + "probability": 0.7809 + }, + { + "start": 15665.76, + "end": 15667.72, + "probability": 0.9484 + }, + { + "start": 15668.7, + "end": 15669.42, + "probability": 0.3362 + }, + { + "start": 15669.48, + "end": 15674.78, + "probability": 0.995 + }, + { + "start": 15675.26, + "end": 15682.44, + "probability": 0.9932 + }, + { + "start": 15683.04, + "end": 15686.28, + "probability": 0.9313 + }, + { + "start": 15686.8, + "end": 15689.5, + "probability": 0.9951 + }, + { + "start": 15690.34, + "end": 15694.7, + "probability": 0.9958 + }, + { + "start": 15694.7, + "end": 15698.18, + "probability": 0.9987 + }, + { + "start": 15698.52, + "end": 15703.52, + "probability": 0.9973 + }, + { + "start": 15703.6, + "end": 15707.36, + "probability": 0.9982 + }, + { + "start": 15707.36, + "end": 15710.16, + "probability": 0.9982 + }, + { + "start": 15711.68, + "end": 15712.06, + "probability": 0.7579 + }, + { + "start": 15712.58, + "end": 15714.84, + "probability": 0.9844 + }, + { + "start": 15715.5, + "end": 15717.36, + "probability": 0.9937 + }, + { + "start": 15717.36, + "end": 15720.92, + "probability": 0.9075 + }, + { + "start": 15721.0, + "end": 15721.78, + "probability": 0.5576 + }, + { + "start": 15722.62, + "end": 15727.5, + "probability": 0.9974 + }, + { + "start": 15728.26, + "end": 15730.64, + "probability": 0.9924 + }, + { + "start": 15731.46, + "end": 15734.14, + "probability": 0.9949 + }, + { + "start": 15734.28, + "end": 15737.44, + "probability": 0.9866 + }, + { + "start": 15737.72, + "end": 15738.26, + "probability": 0.496 + }, + { + "start": 15738.7, + "end": 15741.54, + "probability": 0.9932 + }, + { + "start": 15742.02, + "end": 15743.28, + "probability": 0.8584 + }, + { + "start": 15744.0, + "end": 15746.22, + "probability": 0.8982 + }, + { + "start": 15747.26, + "end": 15749.16, + "probability": 0.9947 + }, + { + "start": 15749.42, + "end": 15749.64, + "probability": 0.6793 + }, + { + "start": 15749.66, + "end": 15750.74, + "probability": 0.6655 + }, + { + "start": 15751.06, + "end": 15752.3, + "probability": 0.5877 + }, + { + "start": 15752.42, + "end": 15754.18, + "probability": 0.6458 + }, + { + "start": 15754.66, + "end": 15756.94, + "probability": 0.7395 + }, + { + "start": 15757.2, + "end": 15760.98, + "probability": 0.9067 + }, + { + "start": 15761.54, + "end": 15767.05, + "probability": 0.9633 + }, + { + "start": 15767.56, + "end": 15768.12, + "probability": 0.5473 + }, + { + "start": 15768.68, + "end": 15771.58, + "probability": 0.8782 + }, + { + "start": 15771.94, + "end": 15774.91, + "probability": 0.9899 + }, + { + "start": 15775.84, + "end": 15778.74, + "probability": 0.9846 + }, + { + "start": 15778.82, + "end": 15781.36, + "probability": 0.9963 + }, + { + "start": 15781.78, + "end": 15784.16, + "probability": 0.9893 + }, + { + "start": 15784.3, + "end": 15787.14, + "probability": 0.9813 + }, + { + "start": 15787.6, + "end": 15789.7, + "probability": 0.7726 + }, + { + "start": 15790.3, + "end": 15791.84, + "probability": 0.9198 + }, + { + "start": 15792.38, + "end": 15795.02, + "probability": 0.805 + }, + { + "start": 15795.2, + "end": 15795.58, + "probability": 0.8404 + }, + { + "start": 15796.02, + "end": 15797.06, + "probability": 0.7401 + }, + { + "start": 15797.46, + "end": 15799.5, + "probability": 0.9536 + }, + { + "start": 15799.82, + "end": 15802.66, + "probability": 0.6125 + }, + { + "start": 15802.66, + "end": 15804.66, + "probability": 0.8799 + }, + { + "start": 15814.32, + "end": 15814.44, + "probability": 0.3291 + }, + { + "start": 15815.46, + "end": 15816.16, + "probability": 0.864 + }, + { + "start": 15817.1, + "end": 15817.68, + "probability": 0.5723 + }, + { + "start": 15819.48, + "end": 15822.32, + "probability": 0.8352 + }, + { + "start": 15824.6, + "end": 15826.08, + "probability": 0.682 + }, + { + "start": 15826.16, + "end": 15827.5, + "probability": 0.7212 + }, + { + "start": 15828.06, + "end": 15830.1, + "probability": 0.8866 + }, + { + "start": 15831.62, + "end": 15835.92, + "probability": 0.8806 + }, + { + "start": 15836.86, + "end": 15837.44, + "probability": 0.7467 + }, + { + "start": 15838.24, + "end": 15841.54, + "probability": 0.9652 + }, + { + "start": 15842.36, + "end": 15846.3, + "probability": 0.9881 + }, + { + "start": 15846.36, + "end": 15848.14, + "probability": 0.9391 + }, + { + "start": 15848.94, + "end": 15849.26, + "probability": 0.94 + }, + { + "start": 15849.28, + "end": 15850.12, + "probability": 0.9933 + }, + { + "start": 15850.42, + "end": 15853.5, + "probability": 0.9818 + }, + { + "start": 15854.82, + "end": 15858.38, + "probability": 0.9973 + }, + { + "start": 15859.26, + "end": 15862.2, + "probability": 0.9984 + }, + { + "start": 15862.2, + "end": 15866.92, + "probability": 0.9937 + }, + { + "start": 15867.76, + "end": 15870.86, + "probability": 0.9464 + }, + { + "start": 15872.2, + "end": 15873.08, + "probability": 0.7443 + }, + { + "start": 15873.16, + "end": 15874.58, + "probability": 0.9939 + }, + { + "start": 15874.7, + "end": 15875.84, + "probability": 0.9796 + }, + { + "start": 15875.92, + "end": 15877.0, + "probability": 0.7975 + }, + { + "start": 15877.56, + "end": 15881.86, + "probability": 0.9962 + }, + { + "start": 15882.02, + "end": 15883.77, + "probability": 0.9802 + }, + { + "start": 15884.04, + "end": 15885.2, + "probability": 0.9786 + }, + { + "start": 15885.6, + "end": 15887.14, + "probability": 0.8116 + }, + { + "start": 15887.56, + "end": 15888.28, + "probability": 0.9412 + }, + { + "start": 15889.0, + "end": 15892.9, + "probability": 0.9987 + }, + { + "start": 15893.5, + "end": 15895.32, + "probability": 0.9953 + }, + { + "start": 15896.08, + "end": 15896.89, + "probability": 0.9594 + }, + { + "start": 15897.04, + "end": 15897.94, + "probability": 0.9895 + }, + { + "start": 15898.4, + "end": 15903.08, + "probability": 0.9938 + }, + { + "start": 15903.84, + "end": 15908.12, + "probability": 0.9979 + }, + { + "start": 15908.84, + "end": 15911.1, + "probability": 0.9977 + }, + { + "start": 15911.7, + "end": 15915.78, + "probability": 0.9978 + }, + { + "start": 15917.32, + "end": 15919.48, + "probability": 0.8781 + }, + { + "start": 15919.56, + "end": 15920.5, + "probability": 0.9156 + }, + { + "start": 15920.6, + "end": 15921.52, + "probability": 0.6964 + }, + { + "start": 15921.86, + "end": 15922.92, + "probability": 0.5713 + }, + { + "start": 15923.0, + "end": 15926.52, + "probability": 0.9901 + }, + { + "start": 15926.66, + "end": 15928.02, + "probability": 0.9713 + }, + { + "start": 15928.7, + "end": 15931.22, + "probability": 0.999 + }, + { + "start": 15931.56, + "end": 15934.96, + "probability": 0.7488 + }, + { + "start": 15935.02, + "end": 15936.5, + "probability": 0.9375 + }, + { + "start": 15937.32, + "end": 15937.8, + "probability": 0.8364 + }, + { + "start": 15937.86, + "end": 15940.84, + "probability": 0.9956 + }, + { + "start": 15941.8, + "end": 15942.54, + "probability": 0.562 + }, + { + "start": 15942.54, + "end": 15943.96, + "probability": 0.8762 + }, + { + "start": 15944.06, + "end": 15944.46, + "probability": 0.9064 + }, + { + "start": 15944.9, + "end": 15947.76, + "probability": 0.9961 + }, + { + "start": 15948.32, + "end": 15949.52, + "probability": 0.9809 + }, + { + "start": 15950.42, + "end": 15951.68, + "probability": 0.8555 + }, + { + "start": 15952.3, + "end": 15954.82, + "probability": 0.9756 + }, + { + "start": 15954.82, + "end": 15957.38, + "probability": 0.9824 + }, + { + "start": 15957.92, + "end": 15961.6, + "probability": 0.9946 + }, + { + "start": 15961.6, + "end": 15964.54, + "probability": 0.9873 + }, + { + "start": 15965.3, + "end": 15966.88, + "probability": 0.998 + }, + { + "start": 15968.04, + "end": 15970.64, + "probability": 0.7163 + }, + { + "start": 15970.66, + "end": 15971.6, + "probability": 0.73 + }, + { + "start": 15971.94, + "end": 15973.46, + "probability": 0.9935 + }, + { + "start": 15973.62, + "end": 15974.26, + "probability": 0.8998 + }, + { + "start": 15974.42, + "end": 15975.3, + "probability": 0.8161 + }, + { + "start": 15976.08, + "end": 15980.74, + "probability": 0.9901 + }, + { + "start": 15981.4, + "end": 15983.36, + "probability": 0.4982 + }, + { + "start": 15983.76, + "end": 15988.14, + "probability": 0.9524 + }, + { + "start": 15988.92, + "end": 15991.28, + "probability": 0.9897 + }, + { + "start": 15991.28, + "end": 15995.1, + "probability": 0.9961 + }, + { + "start": 15995.52, + "end": 15998.96, + "probability": 0.9983 + }, + { + "start": 16000.63, + "end": 16004.16, + "probability": 0.9818 + }, + { + "start": 16004.16, + "end": 16007.18, + "probability": 0.9736 + }, + { + "start": 16007.54, + "end": 16008.78, + "probability": 0.9829 + }, + { + "start": 16009.36, + "end": 16012.96, + "probability": 0.996 + }, + { + "start": 16014.06, + "end": 16016.3, + "probability": 0.986 + }, + { + "start": 16016.42, + "end": 16017.08, + "probability": 0.7455 + }, + { + "start": 16017.5, + "end": 16021.2, + "probability": 0.9966 + }, + { + "start": 16021.58, + "end": 16023.16, + "probability": 0.9956 + }, + { + "start": 16024.2, + "end": 16026.58, + "probability": 0.9939 + }, + { + "start": 16026.58, + "end": 16029.78, + "probability": 0.9796 + }, + { + "start": 16029.96, + "end": 16031.58, + "probability": 0.9878 + }, + { + "start": 16032.4, + "end": 16035.42, + "probability": 0.9973 + }, + { + "start": 16035.42, + "end": 16037.78, + "probability": 0.9966 + }, + { + "start": 16038.08, + "end": 16041.18, + "probability": 0.9942 + }, + { + "start": 16042.12, + "end": 16044.76, + "probability": 0.9965 + }, + { + "start": 16044.88, + "end": 16047.7, + "probability": 0.9878 + }, + { + "start": 16048.28, + "end": 16052.06, + "probability": 0.9937 + }, + { + "start": 16052.78, + "end": 16056.26, + "probability": 0.9231 + }, + { + "start": 16056.64, + "end": 16062.68, + "probability": 0.9927 + }, + { + "start": 16063.12, + "end": 16065.0, + "probability": 0.7132 + }, + { + "start": 16065.1, + "end": 16065.94, + "probability": 0.9574 + }, + { + "start": 16066.44, + "end": 16067.52, + "probability": 0.9381 + }, + { + "start": 16067.58, + "end": 16070.2, + "probability": 0.9985 + }, + { + "start": 16070.62, + "end": 16073.36, + "probability": 0.9876 + }, + { + "start": 16073.5, + "end": 16076.36, + "probability": 0.9048 + }, + { + "start": 16076.72, + "end": 16077.78, + "probability": 0.9126 + }, + { + "start": 16078.0, + "end": 16082.0, + "probability": 0.9991 + }, + { + "start": 16082.76, + "end": 16085.94, + "probability": 0.9909 + }, + { + "start": 16085.96, + "end": 16087.08, + "probability": 0.8714 + }, + { + "start": 16087.22, + "end": 16090.5, + "probability": 0.9912 + }, + { + "start": 16091.3, + "end": 16093.92, + "probability": 0.9314 + }, + { + "start": 16093.96, + "end": 16095.74, + "probability": 0.8156 + }, + { + "start": 16096.1, + "end": 16099.14, + "probability": 0.9747 + }, + { + "start": 16099.84, + "end": 16101.92, + "probability": 0.9874 + }, + { + "start": 16102.28, + "end": 16104.42, + "probability": 0.9973 + }, + { + "start": 16105.24, + "end": 16107.88, + "probability": 0.9929 + }, + { + "start": 16107.98, + "end": 16108.98, + "probability": 0.9241 + }, + { + "start": 16109.44, + "end": 16110.14, + "probability": 0.9752 + }, + { + "start": 16110.18, + "end": 16111.16, + "probability": 0.8362 + }, + { + "start": 16111.24, + "end": 16114.7, + "probability": 0.9982 + }, + { + "start": 16115.7, + "end": 16118.46, + "probability": 0.9931 + }, + { + "start": 16118.98, + "end": 16121.22, + "probability": 0.9022 + }, + { + "start": 16121.3, + "end": 16124.24, + "probability": 0.9987 + }, + { + "start": 16125.08, + "end": 16125.7, + "probability": 0.7708 + }, + { + "start": 16125.88, + "end": 16129.92, + "probability": 0.9958 + }, + { + "start": 16130.62, + "end": 16132.76, + "probability": 0.9465 + }, + { + "start": 16132.88, + "end": 16135.56, + "probability": 0.9962 + }, + { + "start": 16136.12, + "end": 16137.12, + "probability": 0.9817 + }, + { + "start": 16137.18, + "end": 16137.56, + "probability": 0.8191 + }, + { + "start": 16137.6, + "end": 16138.48, + "probability": 0.7426 + }, + { + "start": 16139.38, + "end": 16140.02, + "probability": 0.3768 + }, + { + "start": 16141.28, + "end": 16141.38, + "probability": 0.058 + }, + { + "start": 16142.42, + "end": 16143.24, + "probability": 0.492 + }, + { + "start": 16143.24, + "end": 16143.28, + "probability": 0.4003 + }, + { + "start": 16143.28, + "end": 16143.78, + "probability": 0.8891 + }, + { + "start": 16144.58, + "end": 16148.74, + "probability": 0.986 + }, + { + "start": 16150.08, + "end": 16151.1, + "probability": 0.9435 + }, + { + "start": 16151.4, + "end": 16152.1, + "probability": 0.9236 + }, + { + "start": 16152.2, + "end": 16152.76, + "probability": 0.7967 + }, + { + "start": 16152.84, + "end": 16153.52, + "probability": 0.6575 + }, + { + "start": 16153.56, + "end": 16154.16, + "probability": 0.9628 + }, + { + "start": 16154.3, + "end": 16154.92, + "probability": 0.967 + }, + { + "start": 16155.0, + "end": 16155.62, + "probability": 0.6604 + }, + { + "start": 16155.72, + "end": 16156.48, + "probability": 0.5631 + }, + { + "start": 16156.58, + "end": 16157.64, + "probability": 0.8418 + }, + { + "start": 16157.72, + "end": 16158.66, + "probability": 0.5854 + }, + { + "start": 16158.76, + "end": 16159.34, + "probability": 0.6959 + }, + { + "start": 16160.2, + "end": 16161.56, + "probability": 0.4385 + }, + { + "start": 16161.6, + "end": 16162.56, + "probability": 0.5947 + }, + { + "start": 16162.74, + "end": 16163.22, + "probability": 0.4473 + }, + { + "start": 16163.3, + "end": 16164.26, + "probability": 0.5672 + }, + { + "start": 16164.46, + "end": 16165.28, + "probability": 0.7502 + }, + { + "start": 16165.44, + "end": 16166.08, + "probability": 0.8729 + }, + { + "start": 16166.16, + "end": 16166.78, + "probability": 0.9141 + }, + { + "start": 16167.42, + "end": 16170.08, + "probability": 0.8796 + }, + { + "start": 16171.14, + "end": 16172.4, + "probability": 0.9611 + }, + { + "start": 16173.46, + "end": 16175.82, + "probability": 0.8707 + }, + { + "start": 16177.5, + "end": 16179.96, + "probability": 0.9688 + }, + { + "start": 16179.96, + "end": 16182.66, + "probability": 0.4605 + }, + { + "start": 16182.66, + "end": 16182.94, + "probability": 0.3605 + }, + { + "start": 16183.28, + "end": 16184.32, + "probability": 0.8214 + }, + { + "start": 16184.38, + "end": 16185.06, + "probability": 0.7414 + }, + { + "start": 16185.74, + "end": 16189.94, + "probability": 0.9019 + }, + { + "start": 16204.46, + "end": 16204.84, + "probability": 0.0037 + }, + { + "start": 16204.84, + "end": 16207.32, + "probability": 0.7787 + }, + { + "start": 16208.1, + "end": 16209.0, + "probability": 0.8511 + }, + { + "start": 16210.42, + "end": 16216.32, + "probability": 0.9081 + }, + { + "start": 16218.04, + "end": 16219.16, + "probability": 0.7524 + }, + { + "start": 16236.22, + "end": 16238.64, + "probability": 0.4955 + }, + { + "start": 16239.32, + "end": 16239.42, + "probability": 0.0724 + }, + { + "start": 16240.22, + "end": 16241.94, + "probability": 0.2119 + }, + { + "start": 16242.46, + "end": 16242.62, + "probability": 0.0092 + }, + { + "start": 16243.68, + "end": 16243.98, + "probability": 0.0573 + }, + { + "start": 16245.6, + "end": 16245.7, + "probability": 0.0948 + }, + { + "start": 16248.78, + "end": 16252.52, + "probability": 0.0158 + }, + { + "start": 16252.72, + "end": 16253.62, + "probability": 0.1672 + }, + { + "start": 16254.02, + "end": 16257.58, + "probability": 0.6611 + }, + { + "start": 16260.19, + "end": 16260.82, + "probability": 0.2063 + }, + { + "start": 16260.82, + "end": 16262.02, + "probability": 0.0351 + }, + { + "start": 16263.22, + "end": 16264.04, + "probability": 0.0293 + }, + { + "start": 16273.8, + "end": 16275.74, + "probability": 0.1534 + }, + { + "start": 16276.52, + "end": 16277.29, + "probability": 0.2126 + }, + { + "start": 16280.96, + "end": 16281.74, + "probability": 0.1828 + }, + { + "start": 16281.96, + "end": 16281.96, + "probability": 0.0851 + }, + { + "start": 16281.96, + "end": 16281.96, + "probability": 0.2905 + }, + { + "start": 16282.26, + "end": 16282.34, + "probability": 0.1935 + }, + { + "start": 16282.34, + "end": 16282.34, + "probability": 0.3573 + }, + { + "start": 16282.34, + "end": 16282.34, + "probability": 0.1912 + }, + { + "start": 16282.34, + "end": 16288.9, + "probability": 0.7897 + }, + { + "start": 16289.27, + "end": 16295.2, + "probability": 0.9983 + }, + { + "start": 16295.76, + "end": 16303.92, + "probability": 0.9533 + }, + { + "start": 16304.27, + "end": 16310.46, + "probability": 0.9903 + }, + { + "start": 16311.7, + "end": 16317.44, + "probability": 0.9962 + }, + { + "start": 16317.44, + "end": 16324.6, + "probability": 0.9985 + }, + { + "start": 16324.6, + "end": 16331.81, + "probability": 0.9859 + }, + { + "start": 16331.9, + "end": 16332.26, + "probability": 0.7816 + }, + { + "start": 16332.28, + "end": 16339.58, + "probability": 0.9142 + }, + { + "start": 16341.34, + "end": 16346.59, + "probability": 0.9781 + }, + { + "start": 16346.94, + "end": 16347.34, + "probability": 0.8523 + }, + { + "start": 16347.38, + "end": 16351.86, + "probability": 0.944 + }, + { + "start": 16353.26, + "end": 16358.46, + "probability": 0.8532 + }, + { + "start": 16358.46, + "end": 16363.1, + "probability": 0.9963 + }, + { + "start": 16363.1, + "end": 16371.36, + "probability": 0.9655 + }, + { + "start": 16371.36, + "end": 16381.44, + "probability": 0.9856 + }, + { + "start": 16382.26, + "end": 16386.9, + "probability": 0.9777 + }, + { + "start": 16387.42, + "end": 16392.02, + "probability": 0.9914 + }, + { + "start": 16393.02, + "end": 16394.68, + "probability": 0.8626 + }, + { + "start": 16394.8, + "end": 16397.74, + "probability": 0.8354 + }, + { + "start": 16398.54, + "end": 16400.3, + "probability": 0.9516 + }, + { + "start": 16400.82, + "end": 16401.9, + "probability": 0.945 + }, + { + "start": 16404.44, + "end": 16408.42, + "probability": 0.8475 + }, + { + "start": 16408.42, + "end": 16413.56, + "probability": 0.998 + }, + { + "start": 16415.04, + "end": 16417.78, + "probability": 0.9988 + }, + { + "start": 16418.1, + "end": 16421.12, + "probability": 0.9589 + }, + { + "start": 16421.22, + "end": 16422.16, + "probability": 0.8033 + }, + { + "start": 16422.64, + "end": 16426.14, + "probability": 0.9966 + }, + { + "start": 16426.22, + "end": 16427.4, + "probability": 0.9973 + }, + { + "start": 16427.74, + "end": 16428.94, + "probability": 0.9668 + }, + { + "start": 16429.06, + "end": 16432.26, + "probability": 0.981 + }, + { + "start": 16432.3, + "end": 16434.2, + "probability": 0.7948 + }, + { + "start": 16434.88, + "end": 16439.0, + "probability": 0.9631 + }, + { + "start": 16439.44, + "end": 16441.66, + "probability": 0.4822 + }, + { + "start": 16441.86, + "end": 16442.38, + "probability": 0.7242 + }, + { + "start": 16442.72, + "end": 16445.1, + "probability": 0.9443 + }, + { + "start": 16446.16, + "end": 16447.66, + "probability": 0.9946 + }, + { + "start": 16448.8, + "end": 16453.52, + "probability": 0.9506 + }, + { + "start": 16453.58, + "end": 16457.86, + "probability": 0.9755 + }, + { + "start": 16459.08, + "end": 16461.2, + "probability": 0.7617 + }, + { + "start": 16462.02, + "end": 16465.36, + "probability": 0.7701 + }, + { + "start": 16465.48, + "end": 16470.14, + "probability": 0.9766 + }, + { + "start": 16470.72, + "end": 16473.74, + "probability": 0.9727 + }, + { + "start": 16474.7, + "end": 16478.68, + "probability": 0.6794 + }, + { + "start": 16478.74, + "end": 16481.5, + "probability": 0.7256 + }, + { + "start": 16482.22, + "end": 16486.28, + "probability": 0.9322 + }, + { + "start": 16486.32, + "end": 16486.44, + "probability": 0.0113 + }, + { + "start": 16487.44, + "end": 16488.82, + "probability": 0.7461 + }, + { + "start": 16489.16, + "end": 16494.12, + "probability": 0.9922 + }, + { + "start": 16494.62, + "end": 16496.4, + "probability": 0.1144 + }, + { + "start": 16497.0, + "end": 16503.92, + "probability": 0.9661 + }, + { + "start": 16504.52, + "end": 16509.56, + "probability": 0.9857 + }, + { + "start": 16509.58, + "end": 16511.1, + "probability": 0.9697 + }, + { + "start": 16511.18, + "end": 16512.6, + "probability": 0.9884 + }, + { + "start": 16514.0, + "end": 16514.42, + "probability": 0.5259 + }, + { + "start": 16515.0, + "end": 16516.54, + "probability": 0.8706 + }, + { + "start": 16517.08, + "end": 16519.38, + "probability": 0.863 + }, + { + "start": 16519.8, + "end": 16521.12, + "probability": 0.8539 + }, + { + "start": 16521.26, + "end": 16524.12, + "probability": 0.9606 + }, + { + "start": 16524.28, + "end": 16531.02, + "probability": 0.9778 + }, + { + "start": 16531.6, + "end": 16532.28, + "probability": 0.938 + }, + { + "start": 16532.38, + "end": 16535.84, + "probability": 0.7362 + }, + { + "start": 16535.92, + "end": 16538.7, + "probability": 0.4932 + }, + { + "start": 16538.98, + "end": 16539.46, + "probability": 0.8237 + }, + { + "start": 16541.34, + "end": 16543.38, + "probability": 0.6919 + }, + { + "start": 16543.64, + "end": 16546.11, + "probability": 0.5298 + }, + { + "start": 16546.8, + "end": 16547.62, + "probability": 0.8346 + }, + { + "start": 16547.68, + "end": 16548.22, + "probability": 0.6873 + }, + { + "start": 16548.36, + "end": 16548.96, + "probability": 0.5436 + }, + { + "start": 16549.0, + "end": 16549.52, + "probability": 0.7979 + }, + { + "start": 16549.74, + "end": 16550.82, + "probability": 0.8212 + }, + { + "start": 16550.92, + "end": 16551.44, + "probability": 0.5964 + }, + { + "start": 16551.58, + "end": 16552.3, + "probability": 0.9776 + }, + { + "start": 16552.74, + "end": 16553.44, + "probability": 0.766 + }, + { + "start": 16553.5, + "end": 16554.0, + "probability": 0.687 + }, + { + "start": 16554.06, + "end": 16554.68, + "probability": 0.5991 + }, + { + "start": 16554.74, + "end": 16555.16, + "probability": 0.7232 + }, + { + "start": 16555.2, + "end": 16555.78, + "probability": 0.8815 + }, + { + "start": 16555.88, + "end": 16556.42, + "probability": 0.8997 + }, + { + "start": 16556.6, + "end": 16557.34, + "probability": 0.5524 + }, + { + "start": 16557.4, + "end": 16559.0, + "probability": 0.7304 + }, + { + "start": 16559.1, + "end": 16559.94, + "probability": 0.848 + }, + { + "start": 16560.02, + "end": 16560.5, + "probability": 0.6682 + }, + { + "start": 16560.66, + "end": 16561.96, + "probability": 0.4906 + }, + { + "start": 16562.0, + "end": 16562.88, + "probability": 0.6813 + }, + { + "start": 16562.92, + "end": 16563.34, + "probability": 0.4598 + }, + { + "start": 16563.4, + "end": 16564.9, + "probability": 0.671 + }, + { + "start": 16564.98, + "end": 16565.8, + "probability": 0.8073 + }, + { + "start": 16565.86, + "end": 16566.52, + "probability": 0.797 + }, + { + "start": 16566.6, + "end": 16567.08, + "probability": 0.8651 + }, + { + "start": 16567.24, + "end": 16567.88, + "probability": 0.3438 + }, + { + "start": 16567.88, + "end": 16569.0, + "probability": 0.8883 + }, + { + "start": 16569.16, + "end": 16569.64, + "probability": 0.4034 + }, + { + "start": 16569.78, + "end": 16570.5, + "probability": 0.5075 + }, + { + "start": 16570.58, + "end": 16571.06, + "probability": 0.9066 + }, + { + "start": 16571.16, + "end": 16571.88, + "probability": 0.6378 + }, + { + "start": 16571.9, + "end": 16572.58, + "probability": 0.7244 + }, + { + "start": 16573.16, + "end": 16573.72, + "probability": 0.8084 + }, + { + "start": 16573.86, + "end": 16574.74, + "probability": 0.6837 + }, + { + "start": 16574.82, + "end": 16575.64, + "probability": 0.8119 + }, + { + "start": 16575.7, + "end": 16576.38, + "probability": 0.5114 + }, + { + "start": 16576.48, + "end": 16577.18, + "probability": 0.4906 + }, + { + "start": 16577.64, + "end": 16579.46, + "probability": 0.8928 + }, + { + "start": 16579.56, + "end": 16580.96, + "probability": 0.9647 + }, + { + "start": 16581.12, + "end": 16581.72, + "probability": 0.8531 + }, + { + "start": 16581.78, + "end": 16582.78, + "probability": 0.8325 + }, + { + "start": 16582.8, + "end": 16585.02, + "probability": 0.6724 + }, + { + "start": 16586.47, + "end": 16587.82, + "probability": 0.5642 + }, + { + "start": 16587.82, + "end": 16588.17, + "probability": 0.6257 + }, + { + "start": 16588.44, + "end": 16589.04, + "probability": 0.8084 + }, + { + "start": 16590.04, + "end": 16591.04, + "probability": 0.985 + }, + { + "start": 16591.08, + "end": 16591.38, + "probability": 0.5055 + }, + { + "start": 16591.8, + "end": 16593.44, + "probability": 0.9045 + }, + { + "start": 16595.86, + "end": 16597.22, + "probability": 0.6757 + }, + { + "start": 16597.46, + "end": 16598.1, + "probability": 0.943 + }, + { + "start": 16599.29, + "end": 16601.19, + "probability": 0.9055 + }, + { + "start": 16602.02, + "end": 16603.28, + "probability": 0.7005 + }, + { + "start": 16603.46, + "end": 16605.14, + "probability": 0.6897 + }, + { + "start": 16606.36, + "end": 16610.42, + "probability": 0.9626 + }, + { + "start": 16611.3, + "end": 16614.64, + "probability": 0.8011 + }, + { + "start": 16614.72, + "end": 16616.76, + "probability": 0.5586 + }, + { + "start": 16617.52, + "end": 16619.16, + "probability": 0.8677 + }, + { + "start": 16619.22, + "end": 16622.52, + "probability": 0.8059 + }, + { + "start": 16623.22, + "end": 16626.99, + "probability": 0.8269 + }, + { + "start": 16627.12, + "end": 16628.06, + "probability": 0.9044 + }, + { + "start": 16629.18, + "end": 16630.82, + "probability": 0.9987 + }, + { + "start": 16630.9, + "end": 16631.84, + "probability": 0.9576 + }, + { + "start": 16631.94, + "end": 16632.98, + "probability": 0.832 + }, + { + "start": 16633.98, + "end": 16635.36, + "probability": 0.8314 + }, + { + "start": 16635.52, + "end": 16637.82, + "probability": 0.9395 + }, + { + "start": 16638.5, + "end": 16639.25, + "probability": 0.4326 + }, + { + "start": 16640.34, + "end": 16643.33, + "probability": 0.303 + }, + { + "start": 16646.4, + "end": 16646.4, + "probability": 0.1397 + }, + { + "start": 16646.4, + "end": 16646.4, + "probability": 0.2347 + }, + { + "start": 16646.4, + "end": 16646.4, + "probability": 0.0115 + }, + { + "start": 16646.4, + "end": 16646.4, + "probability": 0.2225 + }, + { + "start": 16646.4, + "end": 16647.81, + "probability": 0.5007 + }, + { + "start": 16648.44, + "end": 16650.18, + "probability": 0.3856 + }, + { + "start": 16651.22, + "end": 16655.53, + "probability": 0.1273 + }, + { + "start": 16656.46, + "end": 16659.54, + "probability": 0.6469 + }, + { + "start": 16659.89, + "end": 16660.76, + "probability": 0.1223 + }, + { + "start": 16661.18, + "end": 16661.92, + "probability": 0.7994 + }, + { + "start": 16662.0, + "end": 16662.52, + "probability": 0.6873 + }, + { + "start": 16662.56, + "end": 16664.06, + "probability": 0.7717 + }, + { + "start": 16664.14, + "end": 16665.6, + "probability": 0.982 + }, + { + "start": 16666.14, + "end": 16668.2, + "probability": 0.9742 + }, + { + "start": 16670.24, + "end": 16673.22, + "probability": 0.9661 + }, + { + "start": 16673.52, + "end": 16673.92, + "probability": 0.6654 + }, + { + "start": 16674.58, + "end": 16676.0, + "probability": 0.7182 + }, + { + "start": 16676.56, + "end": 16678.58, + "probability": 0.9937 + }, + { + "start": 16679.82, + "end": 16682.05, + "probability": 0.8761 + }, + { + "start": 16682.66, + "end": 16689.32, + "probability": 0.8649 + }, + { + "start": 16690.16, + "end": 16690.84, + "probability": 0.3716 + }, + { + "start": 16693.86, + "end": 16696.62, + "probability": 0.5155 + }, + { + "start": 16697.48, + "end": 16698.84, + "probability": 0.6372 + }, + { + "start": 16700.92, + "end": 16701.28, + "probability": 0.0028 + }, + { + "start": 16711.52, + "end": 16712.04, + "probability": 0.0382 + }, + { + "start": 16712.04, + "end": 16712.74, + "probability": 0.2242 + }, + { + "start": 16714.34, + "end": 16716.54, + "probability": 0.5532 + }, + { + "start": 16721.26, + "end": 16723.1, + "probability": 0.9794 + }, + { + "start": 16723.34, + "end": 16725.52, + "probability": 0.9624 + }, + { + "start": 16726.4, + "end": 16727.1, + "probability": 0.7524 + }, + { + "start": 16732.66, + "end": 16733.46, + "probability": 0.0283 + }, + { + "start": 16749.34, + "end": 16749.76, + "probability": 0.0312 + }, + { + "start": 16749.76, + "end": 16753.12, + "probability": 0.6934 + }, + { + "start": 16753.8, + "end": 16754.28, + "probability": 0.4759 + }, + { + "start": 16755.72, + "end": 16761.52, + "probability": 0.997 + }, + { + "start": 16762.8, + "end": 16763.96, + "probability": 0.9393 + }, + { + "start": 16767.11, + "end": 16774.1, + "probability": 0.513 + }, + { + "start": 16774.22, + "end": 16778.36, + "probability": 0.7623 + }, + { + "start": 16778.92, + "end": 16781.88, + "probability": 0.674 + }, + { + "start": 16782.14, + "end": 16782.56, + "probability": 0.8087 + }, + { + "start": 16797.54, + "end": 16798.26, + "probability": 0.6658 + }, + { + "start": 16799.06, + "end": 16800.32, + "probability": 0.7079 + }, + { + "start": 16800.54, + "end": 16801.58, + "probability": 0.8221 + }, + { + "start": 16801.86, + "end": 16804.64, + "probability": 0.9901 + }, + { + "start": 16807.6, + "end": 16812.76, + "probability": 0.9987 + }, + { + "start": 16812.92, + "end": 16818.84, + "probability": 0.9914 + }, + { + "start": 16819.42, + "end": 16821.54, + "probability": 0.978 + }, + { + "start": 16821.98, + "end": 16826.44, + "probability": 0.9978 + }, + { + "start": 16826.57, + "end": 16832.88, + "probability": 0.9835 + }, + { + "start": 16833.44, + "end": 16834.8, + "probability": 0.7358 + }, + { + "start": 16835.72, + "end": 16836.52, + "probability": 0.7838 + }, + { + "start": 16837.04, + "end": 16837.68, + "probability": 0.8896 + }, + { + "start": 16837.82, + "end": 16838.78, + "probability": 0.848 + }, + { + "start": 16838.92, + "end": 16841.24, + "probability": 0.8086 + }, + { + "start": 16842.56, + "end": 16847.18, + "probability": 0.7903 + }, + { + "start": 16847.84, + "end": 16851.36, + "probability": 0.9873 + }, + { + "start": 16852.32, + "end": 16854.84, + "probability": 0.787 + }, + { + "start": 16855.7, + "end": 16856.62, + "probability": 0.8116 + }, + { + "start": 16856.66, + "end": 16857.92, + "probability": 0.9905 + }, + { + "start": 16858.0, + "end": 16864.62, + "probability": 0.961 + }, + { + "start": 16865.24, + "end": 16869.6, + "probability": 0.9941 + }, + { + "start": 16870.12, + "end": 16871.31, + "probability": 0.9685 + }, + { + "start": 16871.52, + "end": 16876.52, + "probability": 0.9457 + }, + { + "start": 16877.14, + "end": 16880.88, + "probability": 0.9604 + }, + { + "start": 16881.6, + "end": 16883.76, + "probability": 0.9965 + }, + { + "start": 16884.14, + "end": 16891.92, + "probability": 0.9952 + }, + { + "start": 16892.86, + "end": 16894.96, + "probability": 0.9017 + }, + { + "start": 16895.66, + "end": 16900.7, + "probability": 0.9915 + }, + { + "start": 16901.24, + "end": 16903.6, + "probability": 0.8204 + }, + { + "start": 16905.36, + "end": 16911.94, + "probability": 0.9542 + }, + { + "start": 16916.13, + "end": 16917.7, + "probability": 0.9221 + }, + { + "start": 16917.94, + "end": 16920.08, + "probability": 0.9197 + }, + { + "start": 16920.56, + "end": 16922.58, + "probability": 0.9946 + }, + { + "start": 16923.42, + "end": 16923.98, + "probability": 0.9136 + }, + { + "start": 16924.04, + "end": 16926.42, + "probability": 0.9933 + }, + { + "start": 16926.68, + "end": 16927.78, + "probability": 0.9965 + }, + { + "start": 16927.86, + "end": 16928.04, + "probability": 0.9175 + }, + { + "start": 16928.62, + "end": 16929.44, + "probability": 0.9891 + }, + { + "start": 16929.5, + "end": 16930.26, + "probability": 0.9786 + }, + { + "start": 16930.36, + "end": 16932.44, + "probability": 0.8077 + }, + { + "start": 16933.0, + "end": 16938.58, + "probability": 0.9727 + }, + { + "start": 16939.32, + "end": 16941.98, + "probability": 0.8231 + }, + { + "start": 16942.06, + "end": 16942.16, + "probability": 0.9187 + }, + { + "start": 16942.32, + "end": 16943.64, + "probability": 0.9725 + }, + { + "start": 16943.72, + "end": 16943.82, + "probability": 0.4778 + }, + { + "start": 16943.96, + "end": 16944.98, + "probability": 0.6821 + }, + { + "start": 16945.54, + "end": 16949.0, + "probability": 0.942 + }, + { + "start": 16950.0, + "end": 16950.26, + "probability": 0.8507 + }, + { + "start": 16950.3, + "end": 16952.78, + "probability": 0.7845 + }, + { + "start": 16952.92, + "end": 16956.38, + "probability": 0.9956 + }, + { + "start": 16956.38, + "end": 16959.36, + "probability": 0.9937 + }, + { + "start": 16959.78, + "end": 16963.04, + "probability": 0.9642 + }, + { + "start": 16965.02, + "end": 16970.66, + "probability": 0.994 + }, + { + "start": 16971.02, + "end": 16973.98, + "probability": 0.9149 + }, + { + "start": 16974.36, + "end": 16976.38, + "probability": 0.7539 + }, + { + "start": 16976.48, + "end": 16977.64, + "probability": 0.8412 + }, + { + "start": 16978.36, + "end": 16983.06, + "probability": 0.9749 + }, + { + "start": 16983.72, + "end": 16988.32, + "probability": 0.9478 + }, + { + "start": 16989.0, + "end": 16991.62, + "probability": 0.9939 + }, + { + "start": 16991.68, + "end": 16996.06, + "probability": 0.9951 + }, + { + "start": 16997.1, + "end": 16999.48, + "probability": 0.8331 + }, + { + "start": 16999.66, + "end": 17001.78, + "probability": 0.8616 + }, + { + "start": 17002.76, + "end": 17004.86, + "probability": 0.9419 + }, + { + "start": 17005.52, + "end": 17007.16, + "probability": 0.818 + }, + { + "start": 17007.22, + "end": 17008.14, + "probability": 0.8994 + }, + { + "start": 17009.22, + "end": 17010.88, + "probability": 0.728 + }, + { + "start": 17010.96, + "end": 17013.08, + "probability": 0.4947 + }, + { + "start": 17013.18, + "end": 17015.58, + "probability": 0.9632 + }, + { + "start": 17016.08, + "end": 17017.12, + "probability": 0.772 + }, + { + "start": 17017.16, + "end": 17020.62, + "probability": 0.8409 + }, + { + "start": 17021.1, + "end": 17021.7, + "probability": 0.9316 + }, + { + "start": 17022.96, + "end": 17026.49, + "probability": 0.9885 + }, + { + "start": 17027.76, + "end": 17030.02, + "probability": 0.5895 + }, + { + "start": 17030.72, + "end": 17031.16, + "probability": 0.8873 + }, + { + "start": 17031.62, + "end": 17032.48, + "probability": 0.7144 + }, + { + "start": 17032.54, + "end": 17034.94, + "probability": 0.9948 + }, + { + "start": 17035.38, + "end": 17035.82, + "probability": 0.9365 + }, + { + "start": 17035.92, + "end": 17036.2, + "probability": 0.9192 + }, + { + "start": 17036.5, + "end": 17037.2, + "probability": 0.4788 + }, + { + "start": 17037.34, + "end": 17038.88, + "probability": 0.8648 + }, + { + "start": 17039.66, + "end": 17041.14, + "probability": 0.903 + }, + { + "start": 17041.3, + "end": 17042.72, + "probability": 0.5874 + }, + { + "start": 17042.92, + "end": 17043.63, + "probability": 0.7794 + }, + { + "start": 17044.01, + "end": 17046.54, + "probability": 0.9623 + }, + { + "start": 17046.72, + "end": 17047.56, + "probability": 0.516 + }, + { + "start": 17047.68, + "end": 17048.3, + "probability": 0.738 + }, + { + "start": 17048.34, + "end": 17048.78, + "probability": 0.9141 + }, + { + "start": 17048.9, + "end": 17049.52, + "probability": 0.9128 + }, + { + "start": 17049.62, + "end": 17050.22, + "probability": 0.6367 + }, + { + "start": 17050.3, + "end": 17051.28, + "probability": 0.7116 + }, + { + "start": 17051.34, + "end": 17052.0, + "probability": 0.7017 + }, + { + "start": 17052.06, + "end": 17052.58, + "probability": 0.5469 + }, + { + "start": 17052.64, + "end": 17053.04, + "probability": 0.8243 + }, + { + "start": 17054.52, + "end": 17055.46, + "probability": 0.8392 + }, + { + "start": 17058.18, + "end": 17059.62, + "probability": 0.6604 + }, + { + "start": 17059.74, + "end": 17060.34, + "probability": 0.4171 + }, + { + "start": 17060.46, + "end": 17060.92, + "probability": 0.4078 + }, + { + "start": 17061.12, + "end": 17061.66, + "probability": 0.5029 + }, + { + "start": 17061.78, + "end": 17062.42, + "probability": 0.7703 + }, + { + "start": 17062.54, + "end": 17063.0, + "probability": 0.6492 + }, + { + "start": 17063.12, + "end": 17063.9, + "probability": 0.8372 + }, + { + "start": 17064.38, + "end": 17065.0, + "probability": 0.9307 + }, + { + "start": 17065.18, + "end": 17065.84, + "probability": 0.6163 + }, + { + "start": 17065.94, + "end": 17066.64, + "probability": 0.7588 + }, + { + "start": 17066.78, + "end": 17067.4, + "probability": 0.5606 + }, + { + "start": 17067.42, + "end": 17068.08, + "probability": 0.4597 + }, + { + "start": 17068.18, + "end": 17068.96, + "probability": 0.6664 + }, + { + "start": 17069.02, + "end": 17069.68, + "probability": 0.8096 + }, + { + "start": 17070.64, + "end": 17073.8, + "probability": 0.9441 + }, + { + "start": 17074.84, + "end": 17076.6, + "probability": 0.7731 + }, + { + "start": 17076.62, + "end": 17078.66, + "probability": 0.8981 + }, + { + "start": 17079.76, + "end": 17080.14, + "probability": 0.965 + }, + { + "start": 17081.18, + "end": 17083.26, + "probability": 0.8756 + }, + { + "start": 17087.14, + "end": 17090.38, + "probability": 0.9086 + }, + { + "start": 17091.5, + "end": 17091.94, + "probability": 0.2279 + }, + { + "start": 17092.52, + "end": 17092.96, + "probability": 0.2029 + }, + { + "start": 17092.96, + "end": 17094.0, + "probability": 0.7087 + }, + { + "start": 17094.04, + "end": 17094.62, + "probability": 0.5943 + }, + { + "start": 17097.7, + "end": 17098.76, + "probability": 0.7608 + }, + { + "start": 17112.85, + "end": 17115.04, + "probability": 0.1887 + }, + { + "start": 17115.7, + "end": 17115.7, + "probability": 0.0054 + }, + { + "start": 17116.36, + "end": 17120.08, + "probability": 0.01 + }, + { + "start": 17120.16, + "end": 17122.82, + "probability": 0.0159 + }, + { + "start": 17124.76, + "end": 17127.26, + "probability": 0.1127 + }, + { + "start": 17127.8, + "end": 17130.49, + "probability": 0.1443 + }, + { + "start": 17131.87, + "end": 17134.48, + "probability": 0.0283 + }, + { + "start": 17135.1, + "end": 17135.48, + "probability": 0.1466 + }, + { + "start": 17138.8, + "end": 17140.34, + "probability": 0.4276 + }, + { + "start": 17145.06, + "end": 17145.7, + "probability": 0.1135 + }, + { + "start": 17154.82, + "end": 17157.86, + "probability": 0.0717 + }, + { + "start": 17157.86, + "end": 17164.76, + "probability": 0.1679 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.0, + "end": 17172.0, + "probability": 0.0 + }, + { + "start": 17172.22, + "end": 17172.42, + "probability": 0.1212 + }, + { + "start": 17172.42, + "end": 17172.5, + "probability": 0.0999 + }, + { + "start": 17172.94, + "end": 17174.54, + "probability": 0.9893 + }, + { + "start": 17174.72, + "end": 17176.24, + "probability": 0.9832 + }, + { + "start": 17177.42, + "end": 17177.94, + "probability": 0.7745 + }, + { + "start": 17179.1, + "end": 17179.82, + "probability": 0.6125 + }, + { + "start": 17182.28, + "end": 17183.06, + "probability": 0.8513 + }, + { + "start": 17191.3, + "end": 17191.76, + "probability": 0.3991 + }, + { + "start": 17191.9, + "end": 17193.24, + "probability": 0.676 + }, + { + "start": 17193.84, + "end": 17196.02, + "probability": 0.9146 + }, + { + "start": 17196.62, + "end": 17198.0, + "probability": 0.9498 + }, + { + "start": 17198.96, + "end": 17205.94, + "probability": 0.9668 + }, + { + "start": 17206.94, + "end": 17209.76, + "probability": 0.9873 + }, + { + "start": 17211.06, + "end": 17211.44, + "probability": 0.8422 + }, + { + "start": 17215.88, + "end": 17218.04, + "probability": 0.9619 + }, + { + "start": 17219.66, + "end": 17224.46, + "probability": 0.9757 + }, + { + "start": 17225.6, + "end": 17227.78, + "probability": 0.9861 + }, + { + "start": 17230.02, + "end": 17230.36, + "probability": 0.013 + }, + { + "start": 17231.88, + "end": 17233.38, + "probability": 0.9555 + }, + { + "start": 17233.78, + "end": 17237.7, + "probability": 0.9795 + }, + { + "start": 17238.02, + "end": 17241.56, + "probability": 0.9675 + }, + { + "start": 17242.2, + "end": 17244.4, + "probability": 0.9501 + }, + { + "start": 17245.08, + "end": 17246.56, + "probability": 0.7808 + }, + { + "start": 17246.8, + "end": 17247.98, + "probability": 0.9772 + }, + { + "start": 17248.64, + "end": 17251.4, + "probability": 0.9909 + }, + { + "start": 17251.4, + "end": 17254.86, + "probability": 0.9917 + }, + { + "start": 17255.12, + "end": 17257.68, + "probability": 0.4859 + }, + { + "start": 17257.74, + "end": 17259.22, + "probability": 0.9936 + }, + { + "start": 17259.48, + "end": 17261.38, + "probability": 0.8294 + }, + { + "start": 17262.28, + "end": 17264.51, + "probability": 0.9404 + }, + { + "start": 17266.04, + "end": 17268.42, + "probability": 0.6764 + }, + { + "start": 17268.68, + "end": 17269.42, + "probability": 0.7966 + }, + { + "start": 17269.94, + "end": 17271.14, + "probability": 0.5465 + }, + { + "start": 17272.19, + "end": 17275.08, + "probability": 0.9713 + }, + { + "start": 17275.18, + "end": 17276.06, + "probability": 0.682 + }, + { + "start": 17276.24, + "end": 17278.88, + "probability": 0.8486 + }, + { + "start": 17280.32, + "end": 17284.08, + "probability": 0.3169 + }, + { + "start": 17284.08, + "end": 17284.08, + "probability": 0.0745 + }, + { + "start": 17284.08, + "end": 17284.08, + "probability": 0.1693 + }, + { + "start": 17284.08, + "end": 17284.08, + "probability": 0.045 + }, + { + "start": 17284.08, + "end": 17287.43, + "probability": 0.7455 + }, + { + "start": 17287.88, + "end": 17291.08, + "probability": 0.9863 + }, + { + "start": 17291.36, + "end": 17293.34, + "probability": 0.6355 + }, + { + "start": 17293.92, + "end": 17296.8, + "probability": 0.8491 + }, + { + "start": 17297.34, + "end": 17297.88, + "probability": 0.991 + }, + { + "start": 17298.75, + "end": 17300.96, + "probability": 0.9878 + }, + { + "start": 17301.04, + "end": 17302.38, + "probability": 0.9354 + }, + { + "start": 17303.22, + "end": 17305.3, + "probability": 0.9961 + }, + { + "start": 17306.84, + "end": 17309.16, + "probability": 0.9965 + }, + { + "start": 17309.6, + "end": 17314.32, + "probability": 0.9966 + }, + { + "start": 17315.28, + "end": 17316.1, + "probability": 0.9875 + }, + { + "start": 17316.24, + "end": 17317.94, + "probability": 0.9188 + }, + { + "start": 17318.48, + "end": 17319.14, + "probability": 0.8489 + }, + { + "start": 17319.74, + "end": 17322.48, + "probability": 0.996 + }, + { + "start": 17324.15, + "end": 17327.34, + "probability": 0.9813 + }, + { + "start": 17327.34, + "end": 17329.66, + "probability": 0.9949 + }, + { + "start": 17329.74, + "end": 17331.26, + "probability": 0.988 + }, + { + "start": 17332.76, + "end": 17335.42, + "probability": 0.8227 + }, + { + "start": 17336.26, + "end": 17338.76, + "probability": 0.9751 + }, + { + "start": 17339.42, + "end": 17341.56, + "probability": 0.9219 + }, + { + "start": 17342.88, + "end": 17345.36, + "probability": 0.9271 + }, + { + "start": 17345.46, + "end": 17349.5, + "probability": 0.9958 + }, + { + "start": 17349.68, + "end": 17350.88, + "probability": 0.9253 + }, + { + "start": 17351.64, + "end": 17353.34, + "probability": 0.9956 + }, + { + "start": 17354.22, + "end": 17358.12, + "probability": 0.988 + }, + { + "start": 17359.34, + "end": 17361.62, + "probability": 0.9949 + }, + { + "start": 17362.58, + "end": 17365.36, + "probability": 0.9976 + }, + { + "start": 17365.9, + "end": 17367.1, + "probability": 0.9698 + }, + { + "start": 17367.32, + "end": 17368.46, + "probability": 0.9284 + }, + { + "start": 17368.92, + "end": 17370.68, + "probability": 0.9077 + }, + { + "start": 17370.78, + "end": 17371.72, + "probability": 0.9888 + }, + { + "start": 17372.54, + "end": 17373.68, + "probability": 0.9143 + }, + { + "start": 17374.32, + "end": 17375.96, + "probability": 0.9866 + }, + { + "start": 17378.68, + "end": 17381.16, + "probability": 0.8662 + }, + { + "start": 17381.96, + "end": 17386.26, + "probability": 0.9946 + }, + { + "start": 17387.34, + "end": 17390.4, + "probability": 0.9717 + }, + { + "start": 17390.52, + "end": 17395.46, + "probability": 0.9666 + }, + { + "start": 17395.5, + "end": 17398.14, + "probability": 0.9932 + }, + { + "start": 17399.14, + "end": 17399.54, + "probability": 0.6935 + }, + { + "start": 17399.66, + "end": 17401.14, + "probability": 0.8069 + }, + { + "start": 17401.22, + "end": 17404.4, + "probability": 0.9917 + }, + { + "start": 17406.02, + "end": 17408.28, + "probability": 0.9734 + }, + { + "start": 17409.16, + "end": 17412.18, + "probability": 0.9915 + }, + { + "start": 17412.18, + "end": 17415.54, + "probability": 0.9992 + }, + { + "start": 17416.1, + "end": 17419.6, + "probability": 0.9985 + }, + { + "start": 17419.6, + "end": 17423.3, + "probability": 0.9993 + }, + { + "start": 17424.06, + "end": 17424.58, + "probability": 0.4947 + }, + { + "start": 17425.38, + "end": 17428.42, + "probability": 0.9912 + }, + { + "start": 17428.5, + "end": 17432.6, + "probability": 0.9954 + }, + { + "start": 17433.16, + "end": 17435.5, + "probability": 0.8208 + }, + { + "start": 17436.2, + "end": 17437.54, + "probability": 0.7593 + }, + { + "start": 17437.72, + "end": 17438.14, + "probability": 0.9961 + }, + { + "start": 17438.72, + "end": 17441.26, + "probability": 0.941 + }, + { + "start": 17442.08, + "end": 17443.24, + "probability": 0.9805 + }, + { + "start": 17444.06, + "end": 17448.34, + "probability": 0.993 + }, + { + "start": 17449.06, + "end": 17451.62, + "probability": 0.9865 + }, + { + "start": 17452.26, + "end": 17453.92, + "probability": 0.9941 + }, + { + "start": 17454.16, + "end": 17456.44, + "probability": 0.9987 + }, + { + "start": 17456.44, + "end": 17461.4, + "probability": 0.9749 + }, + { + "start": 17461.56, + "end": 17463.18, + "probability": 0.9836 + }, + { + "start": 17463.92, + "end": 17466.6, + "probability": 0.9971 + }, + { + "start": 17466.6, + "end": 17470.18, + "probability": 0.9697 + }, + { + "start": 17470.76, + "end": 17471.91, + "probability": 0.9927 + }, + { + "start": 17472.54, + "end": 17475.86, + "probability": 0.9702 + }, + { + "start": 17475.94, + "end": 17479.92, + "probability": 0.9446 + }, + { + "start": 17481.06, + "end": 17483.38, + "probability": 0.9967 + }, + { + "start": 17483.8, + "end": 17487.52, + "probability": 0.981 + }, + { + "start": 17488.1, + "end": 17490.68, + "probability": 0.9035 + }, + { + "start": 17490.82, + "end": 17491.36, + "probability": 0.8404 + }, + { + "start": 17491.98, + "end": 17494.44, + "probability": 0.7992 + }, + { + "start": 17495.52, + "end": 17496.58, + "probability": 0.7961 + }, + { + "start": 17497.44, + "end": 17499.4, + "probability": 0.8962 + }, + { + "start": 17500.28, + "end": 17502.94, + "probability": 0.7568 + }, + { + "start": 17503.56, + "end": 17504.24, + "probability": 0.7021 + }, + { + "start": 17504.32, + "end": 17505.82, + "probability": 0.9394 + }, + { + "start": 17505.9, + "end": 17507.48, + "probability": 0.9941 + }, + { + "start": 17508.4, + "end": 17515.8, + "probability": 0.9959 + }, + { + "start": 17516.06, + "end": 17516.72, + "probability": 0.6701 + }, + { + "start": 17517.54, + "end": 17521.58, + "probability": 0.9863 + }, + { + "start": 17521.74, + "end": 17525.96, + "probability": 0.8843 + }, + { + "start": 17526.68, + "end": 17528.46, + "probability": 0.9425 + }, + { + "start": 17529.68, + "end": 17533.88, + "probability": 0.9905 + }, + { + "start": 17534.5, + "end": 17536.44, + "probability": 0.8375 + }, + { + "start": 17537.4, + "end": 17542.06, + "probability": 0.9778 + }, + { + "start": 17543.08, + "end": 17544.18, + "probability": 0.9346 + }, + { + "start": 17545.28, + "end": 17549.14, + "probability": 0.9976 + }, + { + "start": 17549.72, + "end": 17551.3, + "probability": 0.9164 + }, + { + "start": 17552.52, + "end": 17553.5, + "probability": 0.7535 + }, + { + "start": 17554.24, + "end": 17554.92, + "probability": 0.755 + }, + { + "start": 17555.1, + "end": 17556.28, + "probability": 0.9837 + }, + { + "start": 17557.12, + "end": 17558.84, + "probability": 0.9014 + }, + { + "start": 17560.3, + "end": 17562.78, + "probability": 0.9648 + }, + { + "start": 17562.78, + "end": 17565.9, + "probability": 0.9893 + }, + { + "start": 17566.54, + "end": 17570.49, + "probability": 0.995 + }, + { + "start": 17571.88, + "end": 17572.53, + "probability": 0.4395 + }, + { + "start": 17573.52, + "end": 17578.08, + "probability": 0.6736 + }, + { + "start": 17578.32, + "end": 17579.48, + "probability": 0.9009 + }, + { + "start": 17581.64, + "end": 17582.28, + "probability": 0.1213 + }, + { + "start": 17582.28, + "end": 17583.32, + "probability": 0.6629 + }, + { + "start": 17584.22, + "end": 17588.02, + "probability": 0.9961 + }, + { + "start": 17589.44, + "end": 17592.48, + "probability": 0.9912 + }, + { + "start": 17593.38, + "end": 17594.74, + "probability": 0.9814 + }, + { + "start": 17595.9, + "end": 17598.01, + "probability": 0.9995 + }, + { + "start": 17598.66, + "end": 17599.24, + "probability": 0.993 + }, + { + "start": 17599.84, + "end": 17602.48, + "probability": 0.9989 + }, + { + "start": 17603.24, + "end": 17604.96, + "probability": 0.9482 + }, + { + "start": 17606.34, + "end": 17609.7, + "probability": 0.9907 + }, + { + "start": 17610.02, + "end": 17610.72, + "probability": 0.499 + }, + { + "start": 17610.74, + "end": 17611.32, + "probability": 0.7796 + }, + { + "start": 17612.16, + "end": 17614.32, + "probability": 0.9921 + }, + { + "start": 17615.46, + "end": 17616.5, + "probability": 0.9497 + }, + { + "start": 17617.34, + "end": 17620.26, + "probability": 0.9973 + }, + { + "start": 17620.38, + "end": 17621.74, + "probability": 0.9799 + }, + { + "start": 17622.22, + "end": 17623.54, + "probability": 0.8921 + }, + { + "start": 17624.62, + "end": 17629.4, + "probability": 0.9988 + }, + { + "start": 17629.7, + "end": 17631.27, + "probability": 0.9952 + }, + { + "start": 17631.4, + "end": 17633.36, + "probability": 0.9945 + }, + { + "start": 17634.14, + "end": 17635.8, + "probability": 0.9819 + }, + { + "start": 17636.52, + "end": 17637.24, + "probability": 0.7487 + }, + { + "start": 17637.88, + "end": 17639.78, + "probability": 0.8381 + }, + { + "start": 17640.72, + "end": 17643.7, + "probability": 0.9622 + }, + { + "start": 17644.2, + "end": 17645.58, + "probability": 0.9028 + }, + { + "start": 17646.0, + "end": 17646.52, + "probability": 0.9813 + }, + { + "start": 17646.76, + "end": 17647.18, + "probability": 0.5218 + }, + { + "start": 17647.82, + "end": 17650.92, + "probability": 0.9294 + }, + { + "start": 17652.54, + "end": 17653.54, + "probability": 0.8391 + }, + { + "start": 17653.92, + "end": 17656.12, + "probability": 0.9913 + }, + { + "start": 17657.14, + "end": 17659.06, + "probability": 0.9991 + }, + { + "start": 17660.0, + "end": 17662.54, + "probability": 0.989 + }, + { + "start": 17662.76, + "end": 17663.0, + "probability": 0.8839 + }, + { + "start": 17663.4, + "end": 17664.14, + "probability": 0.415 + }, + { + "start": 17664.14, + "end": 17665.34, + "probability": 0.9048 + }, + { + "start": 17665.44, + "end": 17666.78, + "probability": 0.8572 + }, + { + "start": 17666.82, + "end": 17668.04, + "probability": 0.9379 + }, + { + "start": 17668.12, + "end": 17668.66, + "probability": 0.907 + }, + { + "start": 17669.2, + "end": 17670.36, + "probability": 0.5519 + }, + { + "start": 17670.54, + "end": 17670.68, + "probability": 0.1325 + }, + { + "start": 17671.22, + "end": 17673.22, + "probability": 0.1595 + }, + { + "start": 17673.52, + "end": 17676.44, + "probability": 0.0234 + }, + { + "start": 17698.88, + "end": 17702.86, + "probability": 0.5172 + }, + { + "start": 17704.36, + "end": 17705.84, + "probability": 0.827 + }, + { + "start": 17708.1, + "end": 17710.24, + "probability": 0.9934 + }, + { + "start": 17710.24, + "end": 17713.2, + "probability": 0.9386 + }, + { + "start": 17713.92, + "end": 17715.96, + "probability": 0.957 + }, + { + "start": 17716.26, + "end": 17716.76, + "probability": 0.4859 + }, + { + "start": 17717.04, + "end": 17718.78, + "probability": 0.991 + }, + { + "start": 17719.32, + "end": 17721.76, + "probability": 0.9898 + }, + { + "start": 17722.66, + "end": 17723.78, + "probability": 0.9376 + }, + { + "start": 17725.2, + "end": 17725.42, + "probability": 0.5016 + }, + { + "start": 17725.58, + "end": 17729.52, + "probability": 0.9946 + }, + { + "start": 17730.16, + "end": 17734.38, + "probability": 0.9879 + }, + { + "start": 17734.92, + "end": 17738.84, + "probability": 0.8271 + }, + { + "start": 17739.56, + "end": 17741.36, + "probability": 0.7176 + }, + { + "start": 17742.53, + "end": 17745.1, + "probability": 0.9789 + }, + { + "start": 17745.14, + "end": 17746.16, + "probability": 0.8481 + }, + { + "start": 17747.12, + "end": 17748.44, + "probability": 0.9917 + }, + { + "start": 17748.68, + "end": 17753.84, + "probability": 0.9852 + }, + { + "start": 17755.2, + "end": 17758.64, + "probability": 0.8766 + }, + { + "start": 17759.24, + "end": 17761.55, + "probability": 0.8324 + }, + { + "start": 17763.96, + "end": 17767.18, + "probability": 0.7475 + }, + { + "start": 17768.77, + "end": 17773.76, + "probability": 0.9774 + }, + { + "start": 17774.32, + "end": 17775.38, + "probability": 0.9876 + }, + { + "start": 17776.9, + "end": 17779.24, + "probability": 0.4348 + }, + { + "start": 17779.24, + "end": 17781.54, + "probability": 0.8406 + }, + { + "start": 17782.18, + "end": 17784.94, + "probability": 0.9961 + }, + { + "start": 17785.56, + "end": 17786.82, + "probability": 0.9907 + }, + { + "start": 17787.68, + "end": 17787.8, + "probability": 0.489 + }, + { + "start": 17787.9, + "end": 17792.68, + "probability": 0.998 + }, + { + "start": 17793.36, + "end": 17798.57, + "probability": 0.9736 + }, + { + "start": 17799.18, + "end": 17802.26, + "probability": 0.9961 + }, + { + "start": 17803.74, + "end": 17806.26, + "probability": 0.9932 + }, + { + "start": 17806.26, + "end": 17808.84, + "probability": 0.9976 + }, + { + "start": 17810.02, + "end": 17812.5, + "probability": 0.9964 + }, + { + "start": 17812.5, + "end": 17815.0, + "probability": 0.9978 + }, + { + "start": 17815.54, + "end": 17816.74, + "probability": 0.9214 + }, + { + "start": 17817.82, + "end": 17820.44, + "probability": 0.8765 + }, + { + "start": 17820.86, + "end": 17825.48, + "probability": 0.9865 + }, + { + "start": 17826.32, + "end": 17827.86, + "probability": 0.9888 + }, + { + "start": 17828.96, + "end": 17829.48, + "probability": 0.7198 + }, + { + "start": 17829.66, + "end": 17833.38, + "probability": 0.9588 + }, + { + "start": 17833.58, + "end": 17835.49, + "probability": 0.9139 + }, + { + "start": 17836.7, + "end": 17837.54, + "probability": 0.5748 + }, + { + "start": 17838.78, + "end": 17841.74, + "probability": 0.9586 + }, + { + "start": 17842.64, + "end": 17842.84, + "probability": 0.9102 + }, + { + "start": 17843.36, + "end": 17844.5, + "probability": 0.6993 + }, + { + "start": 17845.1, + "end": 17847.86, + "probability": 0.6642 + }, + { + "start": 17847.96, + "end": 17850.44, + "probability": 0.9787 + }, + { + "start": 17851.5, + "end": 17853.5, + "probability": 0.8001 + }, + { + "start": 17854.8, + "end": 17856.78, + "probability": 0.9855 + }, + { + "start": 17856.96, + "end": 17861.9, + "probability": 0.9882 + }, + { + "start": 17862.48, + "end": 17865.08, + "probability": 0.9604 + }, + { + "start": 17865.72, + "end": 17866.4, + "probability": 0.4032 + }, + { + "start": 17867.23, + "end": 17871.24, + "probability": 0.9902 + }, + { + "start": 17872.46, + "end": 17875.2, + "probability": 0.9916 + }, + { + "start": 17875.36, + "end": 17878.6, + "probability": 0.8697 + }, + { + "start": 17878.7, + "end": 17881.22, + "probability": 0.9666 + }, + { + "start": 17882.18, + "end": 17886.9, + "probability": 0.966 + }, + { + "start": 17887.0, + "end": 17887.06, + "probability": 0.2609 + }, + { + "start": 17887.06, + "end": 17890.68, + "probability": 0.9316 + }, + { + "start": 17891.44, + "end": 17893.91, + "probability": 0.9866 + }, + { + "start": 17893.98, + "end": 17897.92, + "probability": 0.9888 + }, + { + "start": 17898.1, + "end": 17898.54, + "probability": 0.7515 + }, + { + "start": 17899.12, + "end": 17900.12, + "probability": 0.6454 + }, + { + "start": 17900.22, + "end": 17903.6, + "probability": 0.9785 + }, + { + "start": 17904.8, + "end": 17907.88, + "probability": 0.9658 + }, + { + "start": 17909.08, + "end": 17910.14, + "probability": 0.9043 + }, + { + "start": 17917.78, + "end": 17919.66, + "probability": 0.6587 + }, + { + "start": 17919.72, + "end": 17920.74, + "probability": 0.5768 + }, + { + "start": 17921.62, + "end": 17927.8, + "probability": 0.9067 + }, + { + "start": 17927.9, + "end": 17928.62, + "probability": 0.7222 + }, + { + "start": 17929.14, + "end": 17931.28, + "probability": 0.9575 + }, + { + "start": 17931.94, + "end": 17937.17, + "probability": 0.9675 + }, + { + "start": 17937.78, + "end": 17938.34, + "probability": 0.7905 + }, + { + "start": 17938.82, + "end": 17941.82, + "probability": 0.958 + }, + { + "start": 17942.33, + "end": 17948.6, + "probability": 0.9443 + }, + { + "start": 17949.6, + "end": 17952.24, + "probability": 0.9718 + }, + { + "start": 17952.76, + "end": 17955.68, + "probability": 0.9988 + }, + { + "start": 17956.36, + "end": 17957.98, + "probability": 0.6982 + }, + { + "start": 17958.06, + "end": 17958.36, + "probability": 0.7603 + }, + { + "start": 17958.66, + "end": 17959.8, + "probability": 0.7118 + }, + { + "start": 17960.2, + "end": 17961.5, + "probability": 0.972 + }, + { + "start": 17963.04, + "end": 17966.68, + "probability": 0.6866 + }, + { + "start": 17966.8, + "end": 17967.78, + "probability": 0.8056 + }, + { + "start": 17968.66, + "end": 17969.4, + "probability": 0.7113 + }, + { + "start": 17969.5, + "end": 17970.24, + "probability": 0.5114 + }, + { + "start": 17970.32, + "end": 17972.58, + "probability": 0.6822 + }, + { + "start": 17972.7, + "end": 17973.44, + "probability": 0.8659 + }, + { + "start": 17973.64, + "end": 17974.12, + "probability": 0.6718 + }, + { + "start": 17974.3, + "end": 17975.2, + "probability": 0.7644 + }, + { + "start": 17975.26, + "end": 17976.12, + "probability": 0.7649 + }, + { + "start": 17976.22, + "end": 17976.7, + "probability": 0.6518 + }, + { + "start": 17976.84, + "end": 17977.26, + "probability": 0.9484 + }, + { + "start": 17977.36, + "end": 17977.68, + "probability": 0.5456 + }, + { + "start": 17978.06, + "end": 17978.68, + "probability": 0.2376 + }, + { + "start": 17979.26, + "end": 17979.8, + "probability": 0.5193 + }, + { + "start": 17979.94, + "end": 17980.42, + "probability": 0.4918 + }, + { + "start": 17980.5, + "end": 17981.0, + "probability": 0.7713 + }, + { + "start": 17981.04, + "end": 17981.68, + "probability": 0.9397 + }, + { + "start": 17981.72, + "end": 17982.42, + "probability": 0.4911 + }, + { + "start": 17982.5, + "end": 17982.98, + "probability": 0.4098 + }, + { + "start": 17983.1, + "end": 17983.74, + "probability": 0.3196 + }, + { + "start": 17983.74, + "end": 17984.4, + "probability": 0.748 + }, + { + "start": 17984.44, + "end": 17985.14, + "probability": 0.7639 + }, + { + "start": 17985.66, + "end": 17986.14, + "probability": 0.7837 + }, + { + "start": 17986.26, + "end": 17986.86, + "probability": 0.7864 + }, + { + "start": 17987.04, + "end": 17987.6, + "probability": 0.4919 + }, + { + "start": 17987.72, + "end": 17988.36, + "probability": 0.5766 + }, + { + "start": 17988.46, + "end": 17989.14, + "probability": 0.6722 + }, + { + "start": 17989.16, + "end": 17989.86, + "probability": 0.5537 + }, + { + "start": 17990.26, + "end": 17992.34, + "probability": 0.8622 + }, + { + "start": 17993.34, + "end": 17993.94, + "probability": 0.5039 + }, + { + "start": 17994.64, + "end": 17995.58, + "probability": 0.6666 + }, + { + "start": 17996.6, + "end": 17997.4, + "probability": 0.3467 + }, + { + "start": 17998.16, + "end": 18003.64, + "probability": 0.8691 + }, + { + "start": 18004.14, + "end": 18006.24, + "probability": 0.5896 + }, + { + "start": 18006.82, + "end": 18007.88, + "probability": 0.2097 + }, + { + "start": 18008.56, + "end": 18011.08, + "probability": 0.2192 + }, + { + "start": 18017.32, + "end": 18019.2, + "probability": 0.9176 + }, + { + "start": 18019.36, + "end": 18020.18, + "probability": 0.9534 + }, + { + "start": 18021.64, + "end": 18026.76, + "probability": 0.7166 + }, + { + "start": 18027.2, + "end": 18028.42, + "probability": 0.7794 + }, + { + "start": 18028.52, + "end": 18029.22, + "probability": 0.7806 + }, + { + "start": 18031.52, + "end": 18033.08, + "probability": 0.89 + }, + { + "start": 18034.66, + "end": 18035.22, + "probability": 0.1182 + }, + { + "start": 18042.48, + "end": 18043.36, + "probability": 0.1329 + }, + { + "start": 18043.98, + "end": 18045.24, + "probability": 0.2865 + }, + { + "start": 18048.03, + "end": 18053.06, + "probability": 0.2368 + }, + { + "start": 18053.08, + "end": 18053.94, + "probability": 0.227 + }, + { + "start": 18054.2, + "end": 18058.02, + "probability": 0.496 + }, + { + "start": 18059.9, + "end": 18060.88, + "probability": 0.0147 + }, + { + "start": 18061.46, + "end": 18063.22, + "probability": 0.0908 + }, + { + "start": 18063.26, + "end": 18064.34, + "probability": 0.0726 + }, + { + "start": 18079.12, + "end": 18081.41, + "probability": 0.0347 + }, + { + "start": 18082.28, + "end": 18082.72, + "probability": 0.3257 + }, + { + "start": 18083.66, + "end": 18085.38, + "probability": 0.0848 + }, + { + "start": 18086.18, + "end": 18087.78, + "probability": 0.0905 + }, + { + "start": 18125.0, + "end": 18125.0, + "probability": 0.0 + }, + { + "start": 18125.0, + "end": 18125.0, + "probability": 0.0 + }, + { + "start": 18125.0, + "end": 18125.0, + "probability": 0.0 + }, + { + "start": 18125.0, + "end": 18125.0, + "probability": 0.0 + }, + { + "start": 18125.0, + "end": 18125.0, + "probability": 0.0 + }, + { + "start": 18125.0, + "end": 18125.0, + "probability": 0.0 + }, + { + "start": 18125.0, + "end": 18125.0, + "probability": 0.0 + }, + { + "start": 18125.26, + "end": 18126.06, + "probability": 0.2456 + }, + { + "start": 18127.3, + "end": 18128.76, + "probability": 0.8252 + }, + { + "start": 18129.44, + "end": 18130.6, + "probability": 0.7686 + }, + { + "start": 18130.7, + "end": 18133.46, + "probability": 0.9783 + }, + { + "start": 18135.42, + "end": 18141.62, + "probability": 0.9417 + }, + { + "start": 18143.24, + "end": 18143.56, + "probability": 0.7211 + }, + { + "start": 18143.9, + "end": 18146.08, + "probability": 0.9335 + }, + { + "start": 18148.04, + "end": 18149.34, + "probability": 0.5908 + }, + { + "start": 18150.68, + "end": 18151.76, + "probability": 0.8443 + }, + { + "start": 18152.7, + "end": 18154.56, + "probability": 0.9731 + }, + { + "start": 18154.66, + "end": 18157.56, + "probability": 0.9526 + }, + { + "start": 18159.74, + "end": 18164.9, + "probability": 0.8221 + }, + { + "start": 18165.98, + "end": 18167.82, + "probability": 0.8551 + }, + { + "start": 18168.68, + "end": 18170.8, + "probability": 0.7856 + }, + { + "start": 18171.28, + "end": 18172.54, + "probability": 0.9666 + }, + { + "start": 18174.22, + "end": 18176.2, + "probability": 0.9971 + }, + { + "start": 18178.14, + "end": 18180.82, + "probability": 0.5352 + }, + { + "start": 18182.02, + "end": 18183.62, + "probability": 0.9973 + }, + { + "start": 18185.2, + "end": 18188.08, + "probability": 0.9966 + }, + { + "start": 18188.94, + "end": 18192.36, + "probability": 0.9542 + }, + { + "start": 18192.44, + "end": 18193.09, + "probability": 0.9753 + }, + { + "start": 18193.34, + "end": 18194.1, + "probability": 0.9252 + }, + { + "start": 18195.98, + "end": 18199.86, + "probability": 0.994 + }, + { + "start": 18201.4, + "end": 18204.58, + "probability": 0.9961 + }, + { + "start": 18205.16, + "end": 18206.3, + "probability": 0.8951 + }, + { + "start": 18207.56, + "end": 18208.76, + "probability": 0.9901 + }, + { + "start": 18209.62, + "end": 18211.5, + "probability": 0.989 + }, + { + "start": 18212.58, + "end": 18213.8, + "probability": 0.9307 + }, + { + "start": 18214.6, + "end": 18216.02, + "probability": 0.7397 + }, + { + "start": 18216.02, + "end": 18217.26, + "probability": 0.9573 + }, + { + "start": 18217.56, + "end": 18218.7, + "probability": 0.7235 + }, + { + "start": 18219.48, + "end": 18222.96, + "probability": 0.9221 + }, + { + "start": 18224.6, + "end": 18225.64, + "probability": 0.7837 + }, + { + "start": 18225.82, + "end": 18227.86, + "probability": 0.9646 + }, + { + "start": 18228.96, + "end": 18229.58, + "probability": 0.9833 + }, + { + "start": 18230.8, + "end": 18231.6, + "probability": 0.998 + }, + { + "start": 18232.44, + "end": 18234.25, + "probability": 0.9805 + }, + { + "start": 18234.66, + "end": 18235.24, + "probability": 0.4934 + }, + { + "start": 18235.32, + "end": 18235.94, + "probability": 0.4355 + }, + { + "start": 18235.96, + "end": 18238.46, + "probability": 0.1764 + }, + { + "start": 18238.46, + "end": 18239.17, + "probability": 0.3878 + }, + { + "start": 18240.4, + "end": 18241.18, + "probability": 0.7572 + }, + { + "start": 18242.6, + "end": 18244.46, + "probability": 0.9539 + }, + { + "start": 18244.46, + "end": 18247.12, + "probability": 0.9891 + }, + { + "start": 18248.02, + "end": 18248.22, + "probability": 0.0133 + }, + { + "start": 18248.22, + "end": 18249.04, + "probability": 0.9322 + }, + { + "start": 18249.16, + "end": 18250.7, + "probability": 0.9045 + }, + { + "start": 18251.22, + "end": 18253.96, + "probability": 0.9652 + }, + { + "start": 18255.04, + "end": 18257.08, + "probability": 0.9932 + }, + { + "start": 18257.48, + "end": 18260.12, + "probability": 0.994 + }, + { + "start": 18260.12, + "end": 18265.34, + "probability": 0.9983 + }, + { + "start": 18266.44, + "end": 18268.44, + "probability": 0.939 + }, + { + "start": 18269.26, + "end": 18270.28, + "probability": 0.9963 + }, + { + "start": 18271.12, + "end": 18272.76, + "probability": 0.999 + }, + { + "start": 18274.06, + "end": 18275.21, + "probability": 0.9287 + }, + { + "start": 18276.16, + "end": 18279.46, + "probability": 0.7458 + }, + { + "start": 18280.04, + "end": 18282.02, + "probability": 0.3708 + }, + { + "start": 18282.76, + "end": 18285.06, + "probability": 0.9692 + }, + { + "start": 18287.52, + "end": 18288.5, + "probability": 0.6469 + }, + { + "start": 18291.94, + "end": 18298.16, + "probability": 0.8497 + }, + { + "start": 18298.16, + "end": 18302.42, + "probability": 0.9952 + }, + { + "start": 18303.9, + "end": 18305.95, + "probability": 0.8302 + }, + { + "start": 18308.36, + "end": 18310.06, + "probability": 0.9618 + }, + { + "start": 18311.22, + "end": 18313.06, + "probability": 0.6426 + }, + { + "start": 18313.8, + "end": 18316.34, + "probability": 0.9885 + }, + { + "start": 18316.9, + "end": 18321.16, + "probability": 0.8475 + }, + { + "start": 18321.9, + "end": 18323.84, + "probability": 0.5757 + }, + { + "start": 18324.56, + "end": 18328.18, + "probability": 0.955 + }, + { + "start": 18329.42, + "end": 18333.06, + "probability": 0.9548 + }, + { + "start": 18333.72, + "end": 18338.52, + "probability": 0.9462 + }, + { + "start": 18339.92, + "end": 18342.2, + "probability": 0.9238 + }, + { + "start": 18343.96, + "end": 18347.54, + "probability": 0.8472 + }, + { + "start": 18348.08, + "end": 18350.3, + "probability": 0.9799 + }, + { + "start": 18351.16, + "end": 18351.72, + "probability": 0.3444 + }, + { + "start": 18352.24, + "end": 18352.78, + "probability": 0.325 + }, + { + "start": 18353.02, + "end": 18354.84, + "probability": 0.9688 + }, + { + "start": 18356.22, + "end": 18356.46, + "probability": 0.6109 + }, + { + "start": 18356.54, + "end": 18358.82, + "probability": 0.8295 + }, + { + "start": 18358.9, + "end": 18359.82, + "probability": 0.7164 + }, + { + "start": 18359.88, + "end": 18362.96, + "probability": 0.9673 + }, + { + "start": 18363.14, + "end": 18363.7, + "probability": 0.7382 + }, + { + "start": 18363.74, + "end": 18364.14, + "probability": 0.4989 + }, + { + "start": 18364.4, + "end": 18364.89, + "probability": 0.1958 + }, + { + "start": 18365.74, + "end": 18368.82, + "probability": 0.3353 + }, + { + "start": 18369.4, + "end": 18370.98, + "probability": 0.3209 + }, + { + "start": 18371.08, + "end": 18372.0, + "probability": 0.8708 + }, + { + "start": 18372.32, + "end": 18373.68, + "probability": 0.9812 + }, + { + "start": 18374.1, + "end": 18375.34, + "probability": 0.8552 + }, + { + "start": 18376.34, + "end": 18377.34, + "probability": 0.9896 + }, + { + "start": 18378.16, + "end": 18380.34, + "probability": 0.6766 + }, + { + "start": 18380.52, + "end": 18381.3, + "probability": 0.4964 + }, + { + "start": 18381.46, + "end": 18383.74, + "probability": 0.6459 + }, + { + "start": 18384.7, + "end": 18387.0, + "probability": 0.9774 + }, + { + "start": 18388.64, + "end": 18390.84, + "probability": 0.9929 + }, + { + "start": 18391.0, + "end": 18394.7, + "probability": 0.9556 + }, + { + "start": 18397.74, + "end": 18401.1, + "probability": 0.685 + }, + { + "start": 18401.2, + "end": 18405.38, + "probability": 0.9865 + }, + { + "start": 18405.38, + "end": 18407.58, + "probability": 0.9648 + }, + { + "start": 18408.2, + "end": 18408.92, + "probability": 0.932 + }, + { + "start": 18409.44, + "end": 18410.36, + "probability": 0.891 + }, + { + "start": 18411.26, + "end": 18414.52, + "probability": 0.9954 + }, + { + "start": 18415.84, + "end": 18418.18, + "probability": 0.8392 + }, + { + "start": 18419.68, + "end": 18423.78, + "probability": 0.8667 + }, + { + "start": 18424.76, + "end": 18426.02, + "probability": 0.9935 + }, + { + "start": 18426.54, + "end": 18430.38, + "probability": 0.9912 + }, + { + "start": 18431.32, + "end": 18432.68, + "probability": 0.6483 + }, + { + "start": 18432.86, + "end": 18436.34, + "probability": 0.8435 + }, + { + "start": 18436.9, + "end": 18437.78, + "probability": 0.9757 + }, + { + "start": 18438.1, + "end": 18438.44, + "probability": 0.6251 + }, + { + "start": 18438.52, + "end": 18441.24, + "probability": 0.8572 + }, + { + "start": 18442.12, + "end": 18444.98, + "probability": 0.9236 + }, + { + "start": 18446.2, + "end": 18450.16, + "probability": 0.9942 + }, + { + "start": 18451.08, + "end": 18453.22, + "probability": 0.984 + }, + { + "start": 18454.0, + "end": 18457.16, + "probability": 0.9234 + }, + { + "start": 18459.1, + "end": 18463.26, + "probability": 0.9633 + }, + { + "start": 18464.26, + "end": 18467.26, + "probability": 0.8095 + }, + { + "start": 18468.5, + "end": 18469.86, + "probability": 0.6997 + }, + { + "start": 18470.42, + "end": 18472.88, + "probability": 0.8676 + }, + { + "start": 18474.2, + "end": 18478.1, + "probability": 0.8608 + }, + { + "start": 18478.7, + "end": 18480.02, + "probability": 0.8865 + }, + { + "start": 18480.78, + "end": 18484.15, + "probability": 0.9912 + }, + { + "start": 18486.1, + "end": 18492.32, + "probability": 0.9647 + }, + { + "start": 18493.24, + "end": 18495.6, + "probability": 0.9642 + }, + { + "start": 18495.6, + "end": 18498.86, + "probability": 0.9049 + }, + { + "start": 18500.12, + "end": 18504.74, + "probability": 0.8788 + }, + { + "start": 18505.3, + "end": 18507.68, + "probability": 0.9235 + }, + { + "start": 18508.66, + "end": 18514.26, + "probability": 0.9673 + }, + { + "start": 18514.76, + "end": 18520.2, + "probability": 0.9988 + }, + { + "start": 18522.2, + "end": 18522.5, + "probability": 0.5376 + }, + { + "start": 18523.12, + "end": 18526.06, + "probability": 0.8618 + }, + { + "start": 18526.62, + "end": 18527.98, + "probability": 0.7573 + }, + { + "start": 18528.86, + "end": 18531.72, + "probability": 0.9667 + }, + { + "start": 18531.78, + "end": 18533.02, + "probability": 0.5896 + }, + { + "start": 18533.3, + "end": 18533.94, + "probability": 0.3756 + }, + { + "start": 18534.5, + "end": 18535.46, + "probability": 0.7637 + }, + { + "start": 18536.02, + "end": 18537.68, + "probability": 0.797 + }, + { + "start": 18539.66, + "end": 18542.18, + "probability": 0.8519 + }, + { + "start": 18543.58, + "end": 18547.32, + "probability": 0.8894 + }, + { + "start": 18549.36, + "end": 18551.94, + "probability": 0.9821 + }, + { + "start": 18552.7, + "end": 18555.32, + "probability": 0.8686 + }, + { + "start": 18557.04, + "end": 18559.56, + "probability": 0.8517 + }, + { + "start": 18560.44, + "end": 18562.86, + "probability": 0.8447 + }, + { + "start": 18563.0, + "end": 18565.1, + "probability": 0.9912 + }, + { + "start": 18565.54, + "end": 18569.4, + "probability": 0.9967 + }, + { + "start": 18570.28, + "end": 18573.68, + "probability": 0.9925 + }, + { + "start": 18575.86, + "end": 18578.52, + "probability": 0.9971 + }, + { + "start": 18578.52, + "end": 18581.2, + "probability": 0.9984 + }, + { + "start": 18582.06, + "end": 18582.82, + "probability": 0.4574 + }, + { + "start": 18586.38, + "end": 18587.72, + "probability": 0.5847 + }, + { + "start": 18588.86, + "end": 18590.82, + "probability": 0.5995 + }, + { + "start": 18590.82, + "end": 18593.1, + "probability": 0.9459 + }, + { + "start": 18593.68, + "end": 18595.18, + "probability": 0.967 + }, + { + "start": 18595.74, + "end": 18599.42, + "probability": 0.9619 + }, + { + "start": 18600.58, + "end": 18601.91, + "probability": 0.7406 + }, + { + "start": 18602.04, + "end": 18602.52, + "probability": 0.6271 + }, + { + "start": 18602.98, + "end": 18605.56, + "probability": 0.8623 + }, + { + "start": 18605.64, + "end": 18606.6, + "probability": 0.8474 + }, + { + "start": 18606.76, + "end": 18608.86, + "probability": 0.9065 + }, + { + "start": 18608.88, + "end": 18610.99, + "probability": 0.9478 + }, + { + "start": 18611.1, + "end": 18614.16, + "probability": 0.7407 + }, + { + "start": 18614.92, + "end": 18616.68, + "probability": 0.9207 + }, + { + "start": 18617.86, + "end": 18620.72, + "probability": 0.9621 + }, + { + "start": 18621.48, + "end": 18623.72, + "probability": 0.6273 + }, + { + "start": 18624.48, + "end": 18630.08, + "probability": 0.9962 + }, + { + "start": 18630.6, + "end": 18633.58, + "probability": 0.9998 + }, + { + "start": 18635.01, + "end": 18641.06, + "probability": 0.9997 + }, + { + "start": 18641.36, + "end": 18644.04, + "probability": 0.638 + }, + { + "start": 18645.26, + "end": 18647.58, + "probability": 0.773 + }, + { + "start": 18648.82, + "end": 18649.4, + "probability": 0.9879 + }, + { + "start": 18650.0, + "end": 18652.08, + "probability": 0.7122 + }, + { + "start": 18652.78, + "end": 18655.42, + "probability": 0.6767 + }, + { + "start": 18657.52, + "end": 18663.04, + "probability": 0.7548 + }, + { + "start": 18663.94, + "end": 18665.4, + "probability": 0.9799 + }, + { + "start": 18666.66, + "end": 18669.7, + "probability": 0.979 + }, + { + "start": 18671.04, + "end": 18671.74, + "probability": 0.9893 + }, + { + "start": 18672.94, + "end": 18675.26, + "probability": 0.9874 + }, + { + "start": 18676.48, + "end": 18677.64, + "probability": 0.8755 + }, + { + "start": 18677.76, + "end": 18679.94, + "probability": 0.9912 + }, + { + "start": 18680.7, + "end": 18681.64, + "probability": 0.953 + }, + { + "start": 18681.7, + "end": 18686.11, + "probability": 0.8936 + }, + { + "start": 18686.9, + "end": 18689.44, + "probability": 0.9894 + }, + { + "start": 18690.32, + "end": 18693.98, + "probability": 0.9006 + }, + { + "start": 18694.9, + "end": 18696.2, + "probability": 0.9938 + }, + { + "start": 18699.94, + "end": 18701.7, + "probability": 0.98 + }, + { + "start": 18702.04, + "end": 18704.88, + "probability": 0.6644 + }, + { + "start": 18705.42, + "end": 18707.48, + "probability": 0.7786 + }, + { + "start": 18708.12, + "end": 18709.06, + "probability": 0.7886 + }, + { + "start": 18709.8, + "end": 18710.85, + "probability": 0.5791 + }, + { + "start": 18710.94, + "end": 18712.42, + "probability": 0.4651 + }, + { + "start": 18712.48, + "end": 18713.73, + "probability": 0.9201 + }, + { + "start": 18714.2, + "end": 18714.65, + "probability": 0.7714 + }, + { + "start": 18715.94, + "end": 18721.42, + "probability": 0.8135 + }, + { + "start": 18722.22, + "end": 18722.88, + "probability": 0.8678 + }, + { + "start": 18723.8, + "end": 18726.54, + "probability": 0.9963 + }, + { + "start": 18727.04, + "end": 18728.68, + "probability": 0.966 + }, + { + "start": 18728.74, + "end": 18729.94, + "probability": 0.8488 + }, + { + "start": 18730.04, + "end": 18730.38, + "probability": 0.624 + }, + { + "start": 18730.92, + "end": 18731.78, + "probability": 0.8239 + }, + { + "start": 18732.8, + "end": 18735.47, + "probability": 0.9846 + }, + { + "start": 18736.16, + "end": 18736.6, + "probability": 0.9202 + }, + { + "start": 18737.74, + "end": 18738.9, + "probability": 0.7866 + }, + { + "start": 18738.9, + "end": 18739.54, + "probability": 0.6195 + }, + { + "start": 18740.24, + "end": 18744.56, + "probability": 0.9907 + }, + { + "start": 18747.3, + "end": 18747.98, + "probability": 0.9106 + }, + { + "start": 18748.04, + "end": 18748.64, + "probability": 0.9807 + }, + { + "start": 18748.82, + "end": 18749.92, + "probability": 0.6169 + }, + { + "start": 18750.74, + "end": 18753.2, + "probability": 0.667 + }, + { + "start": 18754.38, + "end": 18756.1, + "probability": 0.4896 + }, + { + "start": 18757.12, + "end": 18758.16, + "probability": 0.8678 + }, + { + "start": 18759.28, + "end": 18760.64, + "probability": 0.8946 + }, + { + "start": 18762.34, + "end": 18767.3, + "probability": 0.9625 + }, + { + "start": 18768.1, + "end": 18768.86, + "probability": 0.7157 + }, + { + "start": 18769.1, + "end": 18771.68, + "probability": 0.9666 + }, + { + "start": 18772.62, + "end": 18775.94, + "probability": 0.7455 + }, + { + "start": 18776.64, + "end": 18779.36, + "probability": 0.8412 + }, + { + "start": 18779.96, + "end": 18781.06, + "probability": 0.7771 + }, + { + "start": 18781.7, + "end": 18787.72, + "probability": 0.7385 + }, + { + "start": 18788.3, + "end": 18789.08, + "probability": 0.4939 + }, + { + "start": 18789.14, + "end": 18790.68, + "probability": 0.8571 + }, + { + "start": 18791.26, + "end": 18792.98, + "probability": 0.6414 + }, + { + "start": 18792.98, + "end": 18793.16, + "probability": 0.0064 + }, + { + "start": 18793.16, + "end": 18793.93, + "probability": 0.556 + }, + { + "start": 18794.7, + "end": 18796.14, + "probability": 0.8921 + }, + { + "start": 18796.3, + "end": 18796.36, + "probability": 0.6015 + }, + { + "start": 18796.36, + "end": 18797.22, + "probability": 0.8236 + }, + { + "start": 18797.34, + "end": 18800.28, + "probability": 0.7922 + }, + { + "start": 18801.14, + "end": 18803.82, + "probability": 0.7119 + }, + { + "start": 18803.92, + "end": 18805.7, + "probability": 0.9485 + }, + { + "start": 18806.04, + "end": 18806.48, + "probability": 0.7444 + }, + { + "start": 18806.48, + "end": 18806.62, + "probability": 0.3696 + }, + { + "start": 18807.18, + "end": 18807.52, + "probability": 0.9409 + }, + { + "start": 18808.94, + "end": 18811.46, + "probability": 0.515 + }, + { + "start": 18811.98, + "end": 18814.14, + "probability": 0.6624 + }, + { + "start": 18814.3, + "end": 18814.72, + "probability": 0.5893 + }, + { + "start": 18814.76, + "end": 18815.62, + "probability": 0.6597 + }, + { + "start": 18815.8, + "end": 18817.54, + "probability": 0.9734 + }, + { + "start": 18817.64, + "end": 18820.04, + "probability": 0.9739 + }, + { + "start": 18822.06, + "end": 18823.92, + "probability": 0.9404 + }, + { + "start": 18824.86, + "end": 18826.92, + "probability": 0.7918 + }, + { + "start": 18827.02, + "end": 18829.08, + "probability": 0.9845 + }, + { + "start": 18829.18, + "end": 18829.86, + "probability": 0.7997 + }, + { + "start": 18830.18, + "end": 18831.34, + "probability": 0.4327 + }, + { + "start": 18831.58, + "end": 18833.78, + "probability": 0.9075 + }, + { + "start": 18834.74, + "end": 18837.82, + "probability": 0.7926 + }, + { + "start": 18838.18, + "end": 18838.96, + "probability": 0.9692 + }, + { + "start": 18857.62, + "end": 18859.0, + "probability": 0.8733 + }, + { + "start": 18859.0, + "end": 18859.04, + "probability": 0.4135 + }, + { + "start": 18859.04, + "end": 18859.54, + "probability": 0.4583 + }, + { + "start": 18859.62, + "end": 18861.45, + "probability": 0.9253 + }, + { + "start": 18863.62, + "end": 18871.08, + "probability": 0.9909 + }, + { + "start": 18873.52, + "end": 18875.9, + "probability": 0.9252 + }, + { + "start": 18877.36, + "end": 18878.62, + "probability": 0.9801 + }, + { + "start": 18880.76, + "end": 18881.78, + "probability": 0.7272 + }, + { + "start": 18884.08, + "end": 18888.06, + "probability": 0.9373 + }, + { + "start": 18889.3, + "end": 18891.5, + "probability": 0.9552 + }, + { + "start": 18892.54, + "end": 18893.36, + "probability": 0.9841 + }, + { + "start": 18894.18, + "end": 18899.58, + "probability": 0.9321 + }, + { + "start": 18900.22, + "end": 18900.62, + "probability": 0.4056 + }, + { + "start": 18901.18, + "end": 18903.77, + "probability": 0.9858 + }, + { + "start": 18904.88, + "end": 18907.78, + "probability": 0.8887 + }, + { + "start": 18908.3, + "end": 18909.72, + "probability": 0.8582 + }, + { + "start": 18909.76, + "end": 18913.88, + "probability": 0.9882 + }, + { + "start": 18915.06, + "end": 18919.82, + "probability": 0.9487 + }, + { + "start": 18921.14, + "end": 18923.19, + "probability": 0.8633 + }, + { + "start": 18924.36, + "end": 18926.28, + "probability": 0.9651 + }, + { + "start": 18926.7, + "end": 18927.72, + "probability": 0.975 + }, + { + "start": 18928.2, + "end": 18929.78, + "probability": 0.9559 + }, + { + "start": 18929.88, + "end": 18931.28, + "probability": 0.9655 + }, + { + "start": 18933.78, + "end": 18936.52, + "probability": 0.9902 + }, + { + "start": 18937.94, + "end": 18938.82, + "probability": 0.9812 + }, + { + "start": 18941.32, + "end": 18942.76, + "probability": 0.8155 + }, + { + "start": 18943.96, + "end": 18946.26, + "probability": 0.973 + }, + { + "start": 18947.6, + "end": 18949.1, + "probability": 0.9132 + }, + { + "start": 18950.04, + "end": 18950.8, + "probability": 0.6697 + }, + { + "start": 18952.48, + "end": 18954.26, + "probability": 0.9768 + }, + { + "start": 18954.32, + "end": 18955.16, + "probability": 0.6787 + }, + { + "start": 18955.26, + "end": 18956.24, + "probability": 0.5457 + }, + { + "start": 18956.24, + "end": 18958.98, + "probability": 0.8927 + }, + { + "start": 18961.06, + "end": 18962.74, + "probability": 0.8434 + }, + { + "start": 18962.78, + "end": 18964.66, + "probability": 0.9943 + }, + { + "start": 18965.92, + "end": 18966.86, + "probability": 0.9678 + }, + { + "start": 18981.12, + "end": 18984.1, + "probability": 0.7149 + }, + { + "start": 18985.32, + "end": 18985.98, + "probability": 0.7336 + }, + { + "start": 18986.0, + "end": 18986.18, + "probability": 0.9046 + }, + { + "start": 18986.24, + "end": 18988.14, + "probability": 0.8895 + }, + { + "start": 18988.18, + "end": 18989.8, + "probability": 0.9783 + }, + { + "start": 18990.58, + "end": 18993.78, + "probability": 0.998 + }, + { + "start": 18994.38, + "end": 18997.24, + "probability": 0.9904 + }, + { + "start": 18997.78, + "end": 19002.38, + "probability": 0.9075 + }, + { + "start": 19002.52, + "end": 19003.58, + "probability": 0.3964 + }, + { + "start": 19004.82, + "end": 19006.1, + "probability": 0.5868 + }, + { + "start": 19008.16, + "end": 19009.46, + "probability": 0.9988 + }, + { + "start": 19010.66, + "end": 19011.22, + "probability": 0.7804 + }, + { + "start": 19011.36, + "end": 19014.0, + "probability": 0.986 + }, + { + "start": 19014.5, + "end": 19016.64, + "probability": 0.6703 + }, + { + "start": 19017.48, + "end": 19021.32, + "probability": 0.7557 + }, + { + "start": 19022.44, + "end": 19026.14, + "probability": 0.9383 + }, + { + "start": 19028.12, + "end": 19033.8, + "probability": 0.9977 + }, + { + "start": 19034.64, + "end": 19041.6, + "probability": 0.9268 + }, + { + "start": 19041.64, + "end": 19042.98, + "probability": 0.7596 + }, + { + "start": 19043.06, + "end": 19044.24, + "probability": 0.8404 + }, + { + "start": 19044.36, + "end": 19045.3, + "probability": 0.7347 + }, + { + "start": 19045.36, + "end": 19046.76, + "probability": 0.9857 + }, + { + "start": 19048.57, + "end": 19050.5, + "probability": 0.9977 + }, + { + "start": 19051.02, + "end": 19054.0, + "probability": 0.998 + }, + { + "start": 19054.0, + "end": 19057.9, + "probability": 0.9989 + }, + { + "start": 19058.6, + "end": 19059.5, + "probability": 0.7913 + }, + { + "start": 19059.82, + "end": 19061.36, + "probability": 0.9707 + }, + { + "start": 19061.76, + "end": 19063.04, + "probability": 0.5701 + }, + { + "start": 19063.7, + "end": 19066.02, + "probability": 0.7469 + }, + { + "start": 19067.48, + "end": 19068.66, + "probability": 0.5911 + }, + { + "start": 19069.48, + "end": 19071.22, + "probability": 0.7712 + }, + { + "start": 19071.4, + "end": 19074.16, + "probability": 0.967 + }, + { + "start": 19074.16, + "end": 19077.78, + "probability": 0.9551 + }, + { + "start": 19078.38, + "end": 19080.74, + "probability": 0.8837 + }, + { + "start": 19081.54, + "end": 19083.84, + "probability": 0.9797 + }, + { + "start": 19085.23, + "end": 19091.54, + "probability": 0.7535 + }, + { + "start": 19092.34, + "end": 19093.58, + "probability": 0.5694 + }, + { + "start": 19094.2, + "end": 19097.84, + "probability": 0.969 + }, + { + "start": 19098.38, + "end": 19102.82, + "probability": 0.9575 + }, + { + "start": 19103.48, + "end": 19105.9, + "probability": 0.9765 + }, + { + "start": 19106.14, + "end": 19107.16, + "probability": 0.8754 + }, + { + "start": 19107.58, + "end": 19108.38, + "probability": 0.9069 + }, + { + "start": 19109.12, + "end": 19109.92, + "probability": 0.9172 + }, + { + "start": 19111.88, + "end": 19112.2, + "probability": 0.907 + }, + { + "start": 19112.96, + "end": 19115.98, + "probability": 0.821 + }, + { + "start": 19116.16, + "end": 19118.32, + "probability": 0.9173 + }, + { + "start": 19118.9, + "end": 19122.22, + "probability": 0.9968 + }, + { + "start": 19122.53, + "end": 19126.34, + "probability": 0.9893 + }, + { + "start": 19126.92, + "end": 19127.54, + "probability": 0.354 + }, + { + "start": 19127.6, + "end": 19132.36, + "probability": 0.9836 + }, + { + "start": 19133.18, + "end": 19134.76, + "probability": 0.8857 + }, + { + "start": 19135.48, + "end": 19136.54, + "probability": 0.7388 + }, + { + "start": 19136.92, + "end": 19137.98, + "probability": 0.7375 + }, + { + "start": 19138.72, + "end": 19140.3, + "probability": 0.141 + }, + { + "start": 19140.44, + "end": 19142.9, + "probability": 0.8271 + }, + { + "start": 19143.42, + "end": 19143.58, + "probability": 0.7915 + }, + { + "start": 19143.7, + "end": 19144.72, + "probability": 0.9622 + }, + { + "start": 19144.76, + "end": 19145.75, + "probability": 0.6365 + }, + { + "start": 19146.22, + "end": 19146.86, + "probability": 0.9831 + }, + { + "start": 19146.98, + "end": 19147.56, + "probability": 0.8068 + }, + { + "start": 19148.66, + "end": 19149.72, + "probability": 0.9844 + }, + { + "start": 19150.2, + "end": 19152.42, + "probability": 0.9336 + }, + { + "start": 19153.66, + "end": 19155.74, + "probability": 0.9197 + }, + { + "start": 19157.4, + "end": 19159.14, + "probability": 0.9883 + }, + { + "start": 19160.18, + "end": 19161.86, + "probability": 0.7473 + }, + { + "start": 19162.26, + "end": 19164.62, + "probability": 0.9194 + }, + { + "start": 19165.2, + "end": 19165.94, + "probability": 0.7278 + }, + { + "start": 19166.12, + "end": 19170.22, + "probability": 0.9988 + }, + { + "start": 19171.2, + "end": 19174.08, + "probability": 0.9997 + }, + { + "start": 19174.78, + "end": 19179.28, + "probability": 0.8353 + }, + { + "start": 19180.62, + "end": 19184.24, + "probability": 0.9911 + }, + { + "start": 19184.4, + "end": 19186.66, + "probability": 0.9944 + }, + { + "start": 19186.66, + "end": 19188.52, + "probability": 0.9082 + }, + { + "start": 19189.6, + "end": 19192.96, + "probability": 0.9875 + }, + { + "start": 19193.12, + "end": 19193.92, + "probability": 0.9207 + }, + { + "start": 19194.74, + "end": 19197.86, + "probability": 0.8438 + }, + { + "start": 19198.56, + "end": 19199.4, + "probability": 0.7471 + }, + { + "start": 19199.7, + "end": 19200.18, + "probability": 0.5542 + }, + { + "start": 19200.4, + "end": 19203.1, + "probability": 0.9081 + }, + { + "start": 19203.58, + "end": 19205.64, + "probability": 0.8896 + }, + { + "start": 19205.72, + "end": 19206.7, + "probability": 0.8354 + }, + { + "start": 19207.58, + "end": 19211.08, + "probability": 0.9709 + }, + { + "start": 19211.66, + "end": 19215.3, + "probability": 0.918 + }, + { + "start": 19216.18, + "end": 19218.22, + "probability": 0.8372 + }, + { + "start": 19219.22, + "end": 19221.08, + "probability": 0.8113 + }, + { + "start": 19221.18, + "end": 19224.2, + "probability": 0.9968 + }, + { + "start": 19224.64, + "end": 19225.36, + "probability": 0.7649 + }, + { + "start": 19225.56, + "end": 19226.56, + "probability": 0.9749 + }, + { + "start": 19226.68, + "end": 19229.28, + "probability": 0.998 + }, + { + "start": 19230.3, + "end": 19231.26, + "probability": 0.5103 + }, + { + "start": 19231.66, + "end": 19236.0, + "probability": 0.9883 + }, + { + "start": 19236.26, + "end": 19240.76, + "probability": 0.9897 + }, + { + "start": 19240.84, + "end": 19242.32, + "probability": 0.9883 + }, + { + "start": 19242.32, + "end": 19244.3, + "probability": 0.9905 + }, + { + "start": 19245.74, + "end": 19249.24, + "probability": 0.9902 + }, + { + "start": 19249.26, + "end": 19250.68, + "probability": 0.9572 + }, + { + "start": 19251.96, + "end": 19252.1, + "probability": 0.5579 + }, + { + "start": 19252.1, + "end": 19255.22, + "probability": 0.9601 + }, + { + "start": 19255.3, + "end": 19256.06, + "probability": 0.9638 + }, + { + "start": 19256.12, + "end": 19258.48, + "probability": 0.9098 + }, + { + "start": 19258.56, + "end": 19260.94, + "probability": 0.8554 + }, + { + "start": 19261.18, + "end": 19262.72, + "probability": 0.7875 + }, + { + "start": 19264.02, + "end": 19267.78, + "probability": 0.9901 + }, + { + "start": 19268.42, + "end": 19270.4, + "probability": 0.9627 + }, + { + "start": 19270.58, + "end": 19271.62, + "probability": 0.9844 + }, + { + "start": 19272.24, + "end": 19274.44, + "probability": 0.9927 + }, + { + "start": 19274.44, + "end": 19277.86, + "probability": 0.9985 + }, + { + "start": 19278.38, + "end": 19283.78, + "probability": 0.9967 + }, + { + "start": 19283.86, + "end": 19284.1, + "probability": 0.7686 + }, + { + "start": 19284.5, + "end": 19285.26, + "probability": 0.6429 + }, + { + "start": 19285.64, + "end": 19287.09, + "probability": 0.9723 + }, + { + "start": 19288.46, + "end": 19289.36, + "probability": 0.896 + }, + { + "start": 19289.62, + "end": 19291.58, + "probability": 0.9956 + }, + { + "start": 19292.72, + "end": 19296.16, + "probability": 0.9086 + }, + { + "start": 19297.22, + "end": 19299.38, + "probability": 0.8969 + }, + { + "start": 19312.34, + "end": 19313.58, + "probability": 0.8416 + }, + { + "start": 19313.78, + "end": 19314.58, + "probability": 0.5934 + }, + { + "start": 19321.16, + "end": 19323.66, + "probability": 0.5731 + }, + { + "start": 19324.74, + "end": 19325.94, + "probability": 0.7607 + }, + { + "start": 19327.48, + "end": 19328.46, + "probability": 0.9653 + }, + { + "start": 19328.54, + "end": 19328.9, + "probability": 0.5647 + }, + { + "start": 19328.92, + "end": 19329.24, + "probability": 0.6122 + }, + { + "start": 19329.36, + "end": 19329.86, + "probability": 0.7655 + }, + { + "start": 19329.94, + "end": 19330.62, + "probability": 0.7339 + }, + { + "start": 19330.66, + "end": 19331.3, + "probability": 0.6957 + }, + { + "start": 19331.88, + "end": 19333.88, + "probability": 0.9584 + }, + { + "start": 19334.39, + "end": 19338.38, + "probability": 0.998 + }, + { + "start": 19338.48, + "end": 19339.24, + "probability": 0.6935 + }, + { + "start": 19339.34, + "end": 19340.84, + "probability": 0.6763 + }, + { + "start": 19341.22, + "end": 19343.09, + "probability": 0.8777 + }, + { + "start": 19343.16, + "end": 19345.5, + "probability": 0.7787 + }, + { + "start": 19345.62, + "end": 19347.2, + "probability": 0.9941 + }, + { + "start": 19348.32, + "end": 19351.1, + "probability": 0.665 + }, + { + "start": 19351.14, + "end": 19351.82, + "probability": 0.801 + }, + { + "start": 19351.94, + "end": 19352.94, + "probability": 0.7057 + }, + { + "start": 19353.26, + "end": 19357.16, + "probability": 0.9534 + }, + { + "start": 19357.56, + "end": 19358.52, + "probability": 0.9844 + }, + { + "start": 19361.56, + "end": 19364.16, + "probability": 0.9688 + }, + { + "start": 19364.24, + "end": 19365.82, + "probability": 0.9941 + }, + { + "start": 19366.32, + "end": 19369.8, + "probability": 0.8646 + }, + { + "start": 19370.6, + "end": 19374.14, + "probability": 0.6602 + }, + { + "start": 19374.32, + "end": 19375.28, + "probability": 0.6815 + }, + { + "start": 19375.28, + "end": 19378.24, + "probability": 0.9026 + }, + { + "start": 19378.3, + "end": 19378.94, + "probability": 0.9822 + }, + { + "start": 19379.28, + "end": 19380.16, + "probability": 0.9022 + }, + { + "start": 19380.22, + "end": 19382.94, + "probability": 0.9619 + }, + { + "start": 19383.02, + "end": 19384.7, + "probability": 0.8641 + }, + { + "start": 19384.94, + "end": 19385.34, + "probability": 0.8261 + }, + { + "start": 19385.62, + "end": 19386.04, + "probability": 0.8184 + }, + { + "start": 19386.58, + "end": 19387.7, + "probability": 0.6162 + }, + { + "start": 19388.2, + "end": 19388.74, + "probability": 0.2104 + }, + { + "start": 19388.88, + "end": 19390.37, + "probability": 0.8695 + }, + { + "start": 19390.46, + "end": 19391.36, + "probability": 0.8037 + }, + { + "start": 19391.58, + "end": 19393.64, + "probability": 0.9845 + }, + { + "start": 19394.04, + "end": 19394.98, + "probability": 0.9827 + }, + { + "start": 19395.0, + "end": 19395.74, + "probability": 0.8815 + }, + { + "start": 19395.76, + "end": 19396.32, + "probability": 0.8545 + }, + { + "start": 19396.66, + "end": 19397.14, + "probability": 0.7235 + }, + { + "start": 19397.24, + "end": 19397.44, + "probability": 0.9227 + }, + { + "start": 19397.6, + "end": 19400.1, + "probability": 0.3599 + }, + { + "start": 19400.22, + "end": 19400.84, + "probability": 0.8194 + }, + { + "start": 19401.54, + "end": 19406.34, + "probability": 0.9954 + }, + { + "start": 19406.4, + "end": 19407.96, + "probability": 0.8893 + }, + { + "start": 19408.18, + "end": 19408.68, + "probability": 0.6753 + }, + { + "start": 19409.1, + "end": 19410.06, + "probability": 0.7745 + }, + { + "start": 19411.0, + "end": 19411.88, + "probability": 0.5406 + }, + { + "start": 19411.94, + "end": 19412.42, + "probability": 0.6346 + }, + { + "start": 19412.52, + "end": 19413.78, + "probability": 0.995 + }, + { + "start": 19414.86, + "end": 19415.3, + "probability": 0.9781 + }, + { + "start": 19415.8, + "end": 19417.84, + "probability": 0.7847 + }, + { + "start": 19418.56, + "end": 19418.9, + "probability": 0.9757 + }, + { + "start": 19418.9, + "end": 19422.2, + "probability": 0.916 + }, + { + "start": 19422.62, + "end": 19423.76, + "probability": 0.8945 + }, + { + "start": 19424.06, + "end": 19425.52, + "probability": 0.9154 + }, + { + "start": 19425.66, + "end": 19427.6, + "probability": 0.9839 + }, + { + "start": 19427.66, + "end": 19428.48, + "probability": 0.9645 + }, + { + "start": 19428.8, + "end": 19429.16, + "probability": 0.7853 + }, + { + "start": 19429.72, + "end": 19432.54, + "probability": 0.9598 + }, + { + "start": 19433.08, + "end": 19436.58, + "probability": 0.8727 + }, + { + "start": 19436.82, + "end": 19438.56, + "probability": 0.9973 + }, + { + "start": 19438.68, + "end": 19439.7, + "probability": 0.5775 + }, + { + "start": 19439.92, + "end": 19440.92, + "probability": 0.8056 + }, + { + "start": 19441.38, + "end": 19443.54, + "probability": 0.9405 + }, + { + "start": 19443.68, + "end": 19444.18, + "probability": 0.6064 + }, + { + "start": 19444.8, + "end": 19446.7, + "probability": 0.8039 + }, + { + "start": 19447.1, + "end": 19450.96, + "probability": 0.959 + }, + { + "start": 19451.48, + "end": 19452.14, + "probability": 0.5387 + }, + { + "start": 19452.54, + "end": 19454.7, + "probability": 0.9854 + }, + { + "start": 19454.74, + "end": 19455.28, + "probability": 0.5726 + }, + { + "start": 19455.32, + "end": 19455.68, + "probability": 0.8073 + }, + { + "start": 19455.84, + "end": 19457.86, + "probability": 0.7431 + }, + { + "start": 19458.14, + "end": 19459.26, + "probability": 0.9049 + }, + { + "start": 19459.66, + "end": 19461.08, + "probability": 0.9811 + }, + { + "start": 19461.14, + "end": 19462.86, + "probability": 0.9315 + }, + { + "start": 19462.98, + "end": 19466.16, + "probability": 0.8314 + }, + { + "start": 19466.16, + "end": 19471.42, + "probability": 0.9563 + }, + { + "start": 19471.82, + "end": 19472.4, + "probability": 0.901 + }, + { + "start": 19472.9, + "end": 19473.48, + "probability": 0.7167 + }, + { + "start": 19473.62, + "end": 19477.98, + "probability": 0.9842 + }, + { + "start": 19478.14, + "end": 19478.36, + "probability": 0.4921 + }, + { + "start": 19478.5, + "end": 19478.84, + "probability": 0.968 + }, + { + "start": 19478.98, + "end": 19480.1, + "probability": 0.9753 + }, + { + "start": 19480.2, + "end": 19481.12, + "probability": 0.9103 + }, + { + "start": 19481.44, + "end": 19485.58, + "probability": 0.9691 + }, + { + "start": 19485.7, + "end": 19486.3, + "probability": 0.8335 + }, + { + "start": 19486.42, + "end": 19486.96, + "probability": 0.8116 + }, + { + "start": 19487.56, + "end": 19489.6, + "probability": 0.7104 + }, + { + "start": 19489.88, + "end": 19490.62, + "probability": 0.4945 + }, + { + "start": 19491.56, + "end": 19492.17, + "probability": 0.7745 + }, + { + "start": 19493.04, + "end": 19496.8, + "probability": 0.7859 + }, + { + "start": 19496.8, + "end": 19499.56, + "probability": 0.8538 + }, + { + "start": 19499.66, + "end": 19500.64, + "probability": 0.8774 + }, + { + "start": 19501.32, + "end": 19502.26, + "probability": 0.6754 + }, + { + "start": 19502.82, + "end": 19503.46, + "probability": 0.9313 + }, + { + "start": 19503.56, + "end": 19504.82, + "probability": 0.9985 + }, + { + "start": 19505.62, + "end": 19507.48, + "probability": 0.5225 + }, + { + "start": 19507.76, + "end": 19508.7, + "probability": 0.8754 + }, + { + "start": 19509.16, + "end": 19510.36, + "probability": 0.6907 + }, + { + "start": 19510.5, + "end": 19510.82, + "probability": 0.7935 + }, + { + "start": 19511.2, + "end": 19511.72, + "probability": 0.8912 + }, + { + "start": 19511.78, + "end": 19513.33, + "probability": 0.9122 + }, + { + "start": 19514.48, + "end": 19516.34, + "probability": 0.8992 + }, + { + "start": 19516.34, + "end": 19517.04, + "probability": 0.8751 + }, + { + "start": 19517.42, + "end": 19519.26, + "probability": 0.9937 + }, + { + "start": 19519.62, + "end": 19520.08, + "probability": 0.5938 + }, + { + "start": 19520.18, + "end": 19520.56, + "probability": 0.7803 + }, + { + "start": 19520.92, + "end": 19522.5, + "probability": 0.8359 + }, + { + "start": 19522.86, + "end": 19524.88, + "probability": 0.9684 + }, + { + "start": 19525.08, + "end": 19527.26, + "probability": 0.9866 + }, + { + "start": 19527.68, + "end": 19530.76, + "probability": 0.9861 + }, + { + "start": 19530.8, + "end": 19533.92, + "probability": 0.9312 + }, + { + "start": 19534.28, + "end": 19536.64, + "probability": 0.9878 + }, + { + "start": 19537.12, + "end": 19538.74, + "probability": 0.7682 + }, + { + "start": 19539.1, + "end": 19541.62, + "probability": 0.9707 + }, + { + "start": 19541.68, + "end": 19543.76, + "probability": 0.9868 + }, + { + "start": 19544.44, + "end": 19546.4, + "probability": 0.6737 + }, + { + "start": 19547.2, + "end": 19549.42, + "probability": 0.7477 + }, + { + "start": 19549.87, + "end": 19551.01, + "probability": 0.9717 + }, + { + "start": 19551.52, + "end": 19553.23, + "probability": 0.9376 + }, + { + "start": 19553.82, + "end": 19555.34, + "probability": 0.971 + }, + { + "start": 19555.44, + "end": 19555.88, + "probability": 0.687 + }, + { + "start": 19555.98, + "end": 19556.5, + "probability": 0.8497 + }, + { + "start": 19556.96, + "end": 19557.34, + "probability": 0.7339 + }, + { + "start": 19557.42, + "end": 19560.16, + "probability": 0.9904 + }, + { + "start": 19560.16, + "end": 19563.78, + "probability": 0.9528 + }, + { + "start": 19564.2, + "end": 19565.92, + "probability": 0.9928 + }, + { + "start": 19566.46, + "end": 19567.4, + "probability": 0.9304 + }, + { + "start": 19568.34, + "end": 19569.02, + "probability": 0.5108 + }, + { + "start": 19569.1, + "end": 19569.64, + "probability": 0.742 + }, + { + "start": 19570.06, + "end": 19570.36, + "probability": 0.3949 + }, + { + "start": 19570.44, + "end": 19571.76, + "probability": 0.9258 + }, + { + "start": 19572.12, + "end": 19573.68, + "probability": 0.7421 + }, + { + "start": 19573.8, + "end": 19574.4, + "probability": 0.9427 + }, + { + "start": 19574.48, + "end": 19575.58, + "probability": 0.9341 + }, + { + "start": 19576.88, + "end": 19577.92, + "probability": 0.9956 + }, + { + "start": 19578.12, + "end": 19579.54, + "probability": 0.9821 + }, + { + "start": 19579.96, + "end": 19582.28, + "probability": 0.9971 + }, + { + "start": 19582.7, + "end": 19583.58, + "probability": 0.9664 + }, + { + "start": 19584.92, + "end": 19586.04, + "probability": 0.9703 + }, + { + "start": 19586.58, + "end": 19589.68, + "probability": 0.9888 + }, + { + "start": 19590.5, + "end": 19590.8, + "probability": 0.8129 + }, + { + "start": 19591.6, + "end": 19592.14, + "probability": 0.923 + }, + { + "start": 19592.38, + "end": 19592.54, + "probability": 0.8218 + }, + { + "start": 19592.7, + "end": 19593.4, + "probability": 0.9627 + }, + { + "start": 19593.72, + "end": 19594.7, + "probability": 0.9712 + }, + { + "start": 19595.08, + "end": 19598.28, + "probability": 0.9658 + }, + { + "start": 19598.64, + "end": 19600.2, + "probability": 0.9988 + }, + { + "start": 19600.3, + "end": 19603.54, + "probability": 0.5713 + }, + { + "start": 19603.88, + "end": 19607.28, + "probability": 0.9755 + }, + { + "start": 19607.68, + "end": 19609.77, + "probability": 0.9908 + }, + { + "start": 19610.28, + "end": 19613.56, + "probability": 0.968 + }, + { + "start": 19613.56, + "end": 19617.6, + "probability": 0.9803 + }, + { + "start": 19617.96, + "end": 19619.42, + "probability": 0.984 + }, + { + "start": 19619.7, + "end": 19620.28, + "probability": 0.8156 + }, + { + "start": 19620.6, + "end": 19620.72, + "probability": 0.4728 + }, + { + "start": 19620.76, + "end": 19625.06, + "probability": 0.7189 + }, + { + "start": 19625.14, + "end": 19625.94, + "probability": 0.8352 + }, + { + "start": 19626.08, + "end": 19628.48, + "probability": 0.9854 + }, + { + "start": 19628.68, + "end": 19629.2, + "probability": 0.502 + }, + { + "start": 19629.2, + "end": 19630.08, + "probability": 0.4771 + }, + { + "start": 19630.4, + "end": 19631.38, + "probability": 0.8026 + }, + { + "start": 19632.36, + "end": 19633.66, + "probability": 0.4809 + }, + { + "start": 19633.74, + "end": 19637.44, + "probability": 0.7975 + }, + { + "start": 19641.16, + "end": 19643.4, + "probability": 0.8711 + }, + { + "start": 19643.98, + "end": 19644.66, + "probability": 0.5398 + }, + { + "start": 19648.14, + "end": 19648.74, + "probability": 0.7245 + }, + { + "start": 19667.59, + "end": 19669.98, + "probability": 0.1988 + }, + { + "start": 19669.98, + "end": 19670.04, + "probability": 0.0376 + }, + { + "start": 19670.04, + "end": 19670.22, + "probability": 0.1599 + }, + { + "start": 19670.5, + "end": 19675.88, + "probability": 0.834 + }, + { + "start": 19678.26, + "end": 19680.72, + "probability": 0.1243 + }, + { + "start": 19682.12, + "end": 19682.12, + "probability": 0.0075 + }, + { + "start": 19683.6, + "end": 19683.94, + "probability": 0.467 + }, + { + "start": 19686.23, + "end": 19693.26, + "probability": 0.1324 + }, + { + "start": 19693.26, + "end": 19699.78, + "probability": 0.6522 + }, + { + "start": 19700.06, + "end": 19703.74, + "probability": 0.1765 + }, + { + "start": 19703.74, + "end": 19704.24, + "probability": 0.1414 + }, + { + "start": 19704.24, + "end": 19704.32, + "probability": 0.0809 + }, + { + "start": 19713.32, + "end": 19714.4, + "probability": 0.2604 + }, + { + "start": 19751.72, + "end": 19752.72, + "probability": 0.2016 + }, + { + "start": 19752.72, + "end": 19755.84, + "probability": 0.0878 + }, + { + "start": 19755.84, + "end": 19758.64, + "probability": 0.149 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + }, + { + "start": 20115.8, + "end": 20115.8, + "probability": 0.0 + } + ], + "segments_count": 6862, + "words_count": 34496, + "avg_words_per_segment": 5.0271, + "avg_segment_duration": 1.9565, + "avg_words_per_minute": 102.8923, + "plenum_id": "129137", + "duration": 20115.8, + "title": null, + "plenum_date": "2024-07-23" +} \ No newline at end of file