diff --git "a/26829/metadata.json" "b/26829/metadata.json" new file mode 100644--- /dev/null +++ "b/26829/metadata.json" @@ -0,0 +1,14407 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "26829", + "quality_score": 0.9238, + "per_segment_quality_scores": [ + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.2, + "end": 122.26, + "probability": 0.0873 + }, + { + "start": 122.26, + "end": 122.26, + "probability": 0.0764 + }, + { + "start": 122.26, + "end": 122.26, + "probability": 0.2186 + }, + { + "start": 122.26, + "end": 122.26, + "probability": 0.1279 + }, + { + "start": 122.26, + "end": 122.26, + "probability": 0.0897 + }, + { + "start": 122.26, + "end": 126.84, + "probability": 0.8516 + }, + { + "start": 127.72, + "end": 128.51, + "probability": 0.5735 + }, + { + "start": 132.48, + "end": 133.08, + "probability": 0.5191 + }, + { + "start": 136.12, + "end": 138.26, + "probability": 0.5616 + }, + { + "start": 164.7, + "end": 170.08, + "probability": 0.7694 + }, + { + "start": 175.56, + "end": 177.68, + "probability": 0.6733 + }, + { + "start": 179.71, + "end": 182.06, + "probability": 0.98 + }, + { + "start": 182.14, + "end": 183.7, + "probability": 0.9928 + }, + { + "start": 183.78, + "end": 184.66, + "probability": 0.9328 + }, + { + "start": 184.68, + "end": 185.92, + "probability": 0.9864 + }, + { + "start": 186.66, + "end": 187.8, + "probability": 0.8336 + }, + { + "start": 188.52, + "end": 197.82, + "probability": 0.974 + }, + { + "start": 199.22, + "end": 203.78, + "probability": 0.9731 + }, + { + "start": 204.46, + "end": 209.28, + "probability": 0.9966 + }, + { + "start": 209.86, + "end": 213.6, + "probability": 0.9927 + }, + { + "start": 214.26, + "end": 214.88, + "probability": 0.4154 + }, + { + "start": 215.06, + "end": 223.54, + "probability": 0.9225 + }, + { + "start": 225.04, + "end": 230.08, + "probability": 0.926 + }, + { + "start": 230.94, + "end": 232.66, + "probability": 0.9822 + }, + { + "start": 233.1, + "end": 235.64, + "probability": 0.9933 + }, + { + "start": 235.68, + "end": 236.92, + "probability": 0.9736 + }, + { + "start": 237.06, + "end": 240.78, + "probability": 0.896 + }, + { + "start": 241.8, + "end": 246.06, + "probability": 0.7121 + }, + { + "start": 246.94, + "end": 248.58, + "probability": 0.743 + }, + { + "start": 248.76, + "end": 252.06, + "probability": 0.9471 + }, + { + "start": 252.06, + "end": 255.94, + "probability": 0.8015 + }, + { + "start": 256.8, + "end": 260.52, + "probability": 0.9377 + }, + { + "start": 261.18, + "end": 263.96, + "probability": 0.7471 + }, + { + "start": 264.18, + "end": 267.18, + "probability": 0.9756 + }, + { + "start": 267.26, + "end": 274.66, + "probability": 0.9851 + }, + { + "start": 274.72, + "end": 275.56, + "probability": 0.3031 + }, + { + "start": 275.56, + "end": 276.33, + "probability": 0.48 + }, + { + "start": 277.72, + "end": 280.4, + "probability": 0.6655 + }, + { + "start": 288.64, + "end": 292.8, + "probability": 0.7844 + }, + { + "start": 293.54, + "end": 296.36, + "probability": 0.9324 + }, + { + "start": 299.06, + "end": 304.44, + "probability": 0.9563 + }, + { + "start": 304.5, + "end": 308.61, + "probability": 0.9956 + }, + { + "start": 309.16, + "end": 314.36, + "probability": 0.9913 + }, + { + "start": 315.26, + "end": 318.5, + "probability": 0.8681 + }, + { + "start": 318.52, + "end": 322.5, + "probability": 0.9325 + }, + { + "start": 323.2, + "end": 331.48, + "probability": 0.9753 + }, + { + "start": 331.48, + "end": 337.94, + "probability": 0.9985 + }, + { + "start": 338.86, + "end": 340.68, + "probability": 0.9296 + }, + { + "start": 341.44, + "end": 341.94, + "probability": 0.3184 + }, + { + "start": 341.94, + "end": 347.92, + "probability": 0.8991 + }, + { + "start": 348.08, + "end": 349.7, + "probability": 0.4822 + }, + { + "start": 350.44, + "end": 355.12, + "probability": 0.9525 + }, + { + "start": 355.12, + "end": 358.58, + "probability": 0.9492 + }, + { + "start": 359.34, + "end": 362.16, + "probability": 0.5755 + }, + { + "start": 363.3, + "end": 369.12, + "probability": 0.9036 + }, + { + "start": 369.4, + "end": 373.84, + "probability": 0.7764 + }, + { + "start": 374.06, + "end": 377.64, + "probability": 0.6913 + }, + { + "start": 378.58, + "end": 383.46, + "probability": 0.8656 + }, + { + "start": 383.68, + "end": 384.3, + "probability": 0.705 + }, + { + "start": 384.46, + "end": 388.58, + "probability": 0.9582 + }, + { + "start": 388.6, + "end": 393.86, + "probability": 0.9765 + }, + { + "start": 396.42, + "end": 397.24, + "probability": 0.8643 + }, + { + "start": 398.26, + "end": 399.78, + "probability": 0.881 + }, + { + "start": 409.28, + "end": 409.94, + "probability": 0.7269 + }, + { + "start": 410.0, + "end": 412.46, + "probability": 0.937 + }, + { + "start": 412.6, + "end": 413.66, + "probability": 0.5709 + }, + { + "start": 414.26, + "end": 415.74, + "probability": 0.9136 + }, + { + "start": 415.76, + "end": 417.4, + "probability": 0.9751 + }, + { + "start": 418.34, + "end": 422.2, + "probability": 0.9585 + }, + { + "start": 422.56, + "end": 425.38, + "probability": 0.9345 + }, + { + "start": 425.58, + "end": 428.7, + "probability": 0.8885 + }, + { + "start": 429.3, + "end": 431.08, + "probability": 0.9313 + }, + { + "start": 431.26, + "end": 431.66, + "probability": 0.424 + }, + { + "start": 431.94, + "end": 434.24, + "probability": 0.9359 + }, + { + "start": 434.94, + "end": 438.04, + "probability": 0.9493 + }, + { + "start": 438.32, + "end": 443.02, + "probability": 0.942 + }, + { + "start": 443.28, + "end": 444.61, + "probability": 0.7617 + }, + { + "start": 444.72, + "end": 446.2, + "probability": 0.4075 + }, + { + "start": 446.48, + "end": 447.61, + "probability": 0.9168 + }, + { + "start": 448.22, + "end": 450.03, + "probability": 0.9312 + }, + { + "start": 450.46, + "end": 452.5, + "probability": 0.042 + }, + { + "start": 452.5, + "end": 455.16, + "probability": 0.8943 + }, + { + "start": 455.64, + "end": 460.16, + "probability": 0.7625 + }, + { + "start": 460.46, + "end": 462.0, + "probability": 0.9287 + }, + { + "start": 462.38, + "end": 462.7, + "probability": 0.57 + }, + { + "start": 462.82, + "end": 465.64, + "probability": 0.8474 + }, + { + "start": 465.84, + "end": 468.69, + "probability": 0.9912 + }, + { + "start": 469.04, + "end": 469.54, + "probability": 0.627 + }, + { + "start": 470.7, + "end": 471.59, + "probability": 0.6957 + }, + { + "start": 472.86, + "end": 474.5, + "probability": 0.9053 + }, + { + "start": 480.48, + "end": 481.6, + "probability": 0.6428 + }, + { + "start": 481.6, + "end": 487.42, + "probability": 0.8519 + }, + { + "start": 487.5, + "end": 488.49, + "probability": 0.8712 + }, + { + "start": 489.24, + "end": 494.14, + "probability": 0.9247 + }, + { + "start": 494.58, + "end": 496.72, + "probability": 0.6873 + }, + { + "start": 497.26, + "end": 498.08, + "probability": 0.6304 + }, + { + "start": 498.24, + "end": 498.68, + "probability": 0.9388 + }, + { + "start": 498.86, + "end": 504.28, + "probability": 0.8254 + }, + { + "start": 505.34, + "end": 508.86, + "probability": 0.6793 + }, + { + "start": 509.58, + "end": 516.14, + "probability": 0.9745 + }, + { + "start": 517.12, + "end": 520.0, + "probability": 0.898 + }, + { + "start": 520.38, + "end": 521.81, + "probability": 0.9773 + }, + { + "start": 522.36, + "end": 524.42, + "probability": 0.9902 + }, + { + "start": 524.84, + "end": 526.2, + "probability": 0.9272 + }, + { + "start": 527.06, + "end": 529.4, + "probability": 0.9927 + }, + { + "start": 530.2, + "end": 530.54, + "probability": 0.5016 + }, + { + "start": 531.58, + "end": 532.46, + "probability": 0.387 + }, + { + "start": 532.48, + "end": 533.5, + "probability": 0.746 + }, + { + "start": 533.58, + "end": 537.3, + "probability": 0.9961 + }, + { + "start": 537.3, + "end": 543.18, + "probability": 0.9723 + }, + { + "start": 543.82, + "end": 547.34, + "probability": 0.9972 + }, + { + "start": 547.72, + "end": 550.9, + "probability": 0.9934 + }, + { + "start": 551.9, + "end": 554.6, + "probability": 0.5763 + }, + { + "start": 554.66, + "end": 555.95, + "probability": 0.9236 + }, + { + "start": 556.3, + "end": 558.18, + "probability": 0.8935 + }, + { + "start": 558.44, + "end": 560.26, + "probability": 0.7725 + }, + { + "start": 560.32, + "end": 561.88, + "probability": 0.9094 + }, + { + "start": 562.14, + "end": 564.48, + "probability": 0.9848 + }, + { + "start": 564.78, + "end": 564.86, + "probability": 0.4737 + }, + { + "start": 564.94, + "end": 566.02, + "probability": 0.6479 + }, + { + "start": 566.22, + "end": 567.52, + "probability": 0.9582 + }, + { + "start": 567.58, + "end": 568.37, + "probability": 0.6258 + }, + { + "start": 569.06, + "end": 571.48, + "probability": 0.9486 + }, + { + "start": 572.26, + "end": 573.74, + "probability": 0.9411 + }, + { + "start": 574.5, + "end": 576.76, + "probability": 0.9858 + }, + { + "start": 576.8, + "end": 580.44, + "probability": 0.9938 + }, + { + "start": 580.7, + "end": 582.8, + "probability": 0.7606 + }, + { + "start": 582.9, + "end": 583.52, + "probability": 0.7101 + }, + { + "start": 584.62, + "end": 585.43, + "probability": 0.8625 + }, + { + "start": 589.88, + "end": 592.16, + "probability": 0.8666 + }, + { + "start": 600.46, + "end": 601.8, + "probability": 0.46 + }, + { + "start": 601.9, + "end": 607.64, + "probability": 0.9458 + }, + { + "start": 607.78, + "end": 609.39, + "probability": 0.6082 + }, + { + "start": 610.04, + "end": 614.26, + "probability": 0.9575 + }, + { + "start": 615.52, + "end": 618.22, + "probability": 0.8048 + }, + { + "start": 618.32, + "end": 621.36, + "probability": 0.9047 + }, + { + "start": 621.48, + "end": 622.84, + "probability": 0.8593 + }, + { + "start": 624.06, + "end": 627.54, + "probability": 0.8035 + }, + { + "start": 628.86, + "end": 638.36, + "probability": 0.9722 + }, + { + "start": 639.76, + "end": 646.1, + "probability": 0.9735 + }, + { + "start": 647.36, + "end": 652.1, + "probability": 0.98 + }, + { + "start": 652.1, + "end": 657.66, + "probability": 0.9951 + }, + { + "start": 658.38, + "end": 661.12, + "probability": 0.978 + }, + { + "start": 662.56, + "end": 665.38, + "probability": 0.958 + }, + { + "start": 666.02, + "end": 669.54, + "probability": 0.9788 + }, + { + "start": 669.82, + "end": 670.92, + "probability": 0.8363 + }, + { + "start": 671.12, + "end": 674.24, + "probability": 0.9937 + }, + { + "start": 675.1, + "end": 679.5, + "probability": 0.9702 + }, + { + "start": 679.5, + "end": 684.38, + "probability": 0.9926 + }, + { + "start": 685.6, + "end": 689.32, + "probability": 0.7222 + }, + { + "start": 689.4, + "end": 694.46, + "probability": 0.9971 + }, + { + "start": 695.04, + "end": 696.71, + "probability": 0.9949 + }, + { + "start": 697.4, + "end": 698.48, + "probability": 0.8261 + }, + { + "start": 698.96, + "end": 704.58, + "probability": 0.7977 + }, + { + "start": 704.84, + "end": 710.94, + "probability": 0.9401 + }, + { + "start": 711.22, + "end": 712.2, + "probability": 0.8462 + }, + { + "start": 712.44, + "end": 713.98, + "probability": 0.9006 + }, + { + "start": 714.32, + "end": 714.94, + "probability": 0.7315 + }, + { + "start": 715.66, + "end": 716.72, + "probability": 0.616 + }, + { + "start": 718.06, + "end": 719.8, + "probability": 0.7999 + }, + { + "start": 727.26, + "end": 728.32, + "probability": 0.6814 + }, + { + "start": 728.44, + "end": 729.7, + "probability": 0.6492 + }, + { + "start": 730.2, + "end": 736.38, + "probability": 0.9465 + }, + { + "start": 737.56, + "end": 739.56, + "probability": 0.9526 + }, + { + "start": 740.78, + "end": 743.22, + "probability": 0.9147 + }, + { + "start": 744.42, + "end": 748.24, + "probability": 0.5453 + }, + { + "start": 748.84, + "end": 749.62, + "probability": 0.4214 + }, + { + "start": 749.9, + "end": 753.54, + "probability": 0.8344 + }, + { + "start": 754.66, + "end": 756.18, + "probability": 0.7023 + }, + { + "start": 758.38, + "end": 764.7, + "probability": 0.7977 + }, + { + "start": 765.28, + "end": 769.36, + "probability": 0.9059 + }, + { + "start": 769.36, + "end": 776.18, + "probability": 0.8916 + }, + { + "start": 777.6, + "end": 783.58, + "probability": 0.9538 + }, + { + "start": 784.9, + "end": 787.18, + "probability": 0.8446 + }, + { + "start": 788.28, + "end": 792.9, + "probability": 0.8622 + }, + { + "start": 794.72, + "end": 797.3, + "probability": 0.9885 + }, + { + "start": 797.3, + "end": 802.22, + "probability": 0.9301 + }, + { + "start": 802.86, + "end": 804.97, + "probability": 0.6557 + }, + { + "start": 806.26, + "end": 806.94, + "probability": 0.7579 + }, + { + "start": 807.42, + "end": 808.33, + "probability": 0.5226 + }, + { + "start": 809.02, + "end": 811.04, + "probability": 0.8986 + }, + { + "start": 817.66, + "end": 818.62, + "probability": 0.633 + }, + { + "start": 818.72, + "end": 820.14, + "probability": 0.6993 + }, + { + "start": 820.64, + "end": 823.7, + "probability": 0.9539 + }, + { + "start": 823.7, + "end": 826.94, + "probability": 0.7725 + }, + { + "start": 826.98, + "end": 831.56, + "probability": 0.9906 + }, + { + "start": 831.68, + "end": 832.74, + "probability": 0.9 + }, + { + "start": 832.84, + "end": 835.92, + "probability": 0.7802 + }, + { + "start": 835.92, + "end": 839.62, + "probability": 0.9053 + }, + { + "start": 840.16, + "end": 840.76, + "probability": 0.8422 + }, + { + "start": 840.86, + "end": 841.9, + "probability": 0.6869 + }, + { + "start": 841.98, + "end": 846.68, + "probability": 0.6403 + }, + { + "start": 847.32, + "end": 848.58, + "probability": 0.9989 + }, + { + "start": 849.14, + "end": 850.32, + "probability": 0.8239 + }, + { + "start": 850.94, + "end": 854.8, + "probability": 0.9872 + }, + { + "start": 855.47, + "end": 861.06, + "probability": 0.9596 + }, + { + "start": 861.52, + "end": 864.0, + "probability": 0.9048 + }, + { + "start": 864.34, + "end": 864.82, + "probability": 0.6278 + }, + { + "start": 864.94, + "end": 865.78, + "probability": 0.6829 + }, + { + "start": 866.3, + "end": 873.46, + "probability": 0.8392 + }, + { + "start": 873.84, + "end": 875.66, + "probability": 0.6354 + }, + { + "start": 876.52, + "end": 877.46, + "probability": 0.7887 + }, + { + "start": 877.66, + "end": 878.4, + "probability": 0.7804 + }, + { + "start": 879.04, + "end": 880.15, + "probability": 0.6167 + }, + { + "start": 881.44, + "end": 883.56, + "probability": 0.746 + }, + { + "start": 890.42, + "end": 891.92, + "probability": 0.6313 + }, + { + "start": 892.0, + "end": 893.4, + "probability": 0.6921 + }, + { + "start": 893.76, + "end": 893.88, + "probability": 0.4868 + }, + { + "start": 894.04, + "end": 896.08, + "probability": 0.9263 + }, + { + "start": 896.62, + "end": 902.88, + "probability": 0.9102 + }, + { + "start": 903.56, + "end": 908.86, + "probability": 0.8573 + }, + { + "start": 908.96, + "end": 910.56, + "probability": 0.6717 + }, + { + "start": 911.04, + "end": 915.4, + "probability": 0.9471 + }, + { + "start": 915.4, + "end": 919.26, + "probability": 0.917 + }, + { + "start": 919.7, + "end": 922.88, + "probability": 0.9124 + }, + { + "start": 923.68, + "end": 924.28, + "probability": 0.7236 + }, + { + "start": 924.3, + "end": 924.9, + "probability": 0.7535 + }, + { + "start": 925.06, + "end": 927.3, + "probability": 0.9389 + }, + { + "start": 927.56, + "end": 930.0, + "probability": 0.7867 + }, + { + "start": 930.66, + "end": 935.86, + "probability": 0.974 + }, + { + "start": 936.04, + "end": 940.4, + "probability": 0.878 + }, + { + "start": 940.64, + "end": 942.58, + "probability": 0.9691 + }, + { + "start": 942.68, + "end": 943.24, + "probability": 0.6858 + }, + { + "start": 943.86, + "end": 947.32, + "probability": 0.9536 + }, + { + "start": 948.42, + "end": 952.9, + "probability": 0.9823 + }, + { + "start": 953.12, + "end": 954.38, + "probability": 0.669 + }, + { + "start": 954.46, + "end": 955.28, + "probability": 0.5437 + }, + { + "start": 956.02, + "end": 958.9, + "probability": 0.9801 + }, + { + "start": 959.62, + "end": 960.88, + "probability": 0.5993 + }, + { + "start": 961.34, + "end": 962.68, + "probability": 0.82 + }, + { + "start": 962.76, + "end": 966.58, + "probability": 0.979 + }, + { + "start": 966.62, + "end": 967.06, + "probability": 0.7151 + }, + { + "start": 967.24, + "end": 968.02, + "probability": 0.7573 + }, + { + "start": 968.96, + "end": 971.24, + "probability": 0.9408 + }, + { + "start": 977.1, + "end": 977.94, + "probability": 0.6306 + }, + { + "start": 978.08, + "end": 979.24, + "probability": 0.761 + }, + { + "start": 979.38, + "end": 984.34, + "probability": 0.9591 + }, + { + "start": 984.74, + "end": 987.02, + "probability": 0.9226 + }, + { + "start": 987.62, + "end": 988.53, + "probability": 0.5563 + }, + { + "start": 989.44, + "end": 993.56, + "probability": 0.7902 + }, + { + "start": 993.76, + "end": 994.08, + "probability": 0.6982 + }, + { + "start": 994.16, + "end": 995.18, + "probability": 0.7084 + }, + { + "start": 995.52, + "end": 1000.21, + "probability": 0.9452 + }, + { + "start": 1000.46, + "end": 1001.38, + "probability": 0.7971 + }, + { + "start": 1001.62, + "end": 1002.9, + "probability": 0.9794 + }, + { + "start": 1003.66, + "end": 1004.96, + "probability": 0.7495 + }, + { + "start": 1005.0, + "end": 1006.28, + "probability": 0.9586 + }, + { + "start": 1006.38, + "end": 1008.4, + "probability": 0.9797 + }, + { + "start": 1008.4, + "end": 1012.02, + "probability": 0.992 + }, + { + "start": 1012.5, + "end": 1014.88, + "probability": 0.9166 + }, + { + "start": 1014.88, + "end": 1018.16, + "probability": 0.998 + }, + { + "start": 1018.78, + "end": 1023.84, + "probability": 0.9792 + }, + { + "start": 1024.02, + "end": 1025.88, + "probability": 0.9918 + }, + { + "start": 1026.68, + "end": 1029.76, + "probability": 0.9402 + }, + { + "start": 1030.1, + "end": 1034.49, + "probability": 0.9007 + }, + { + "start": 1034.98, + "end": 1040.68, + "probability": 0.9192 + }, + { + "start": 1040.68, + "end": 1045.34, + "probability": 0.7574 + }, + { + "start": 1047.88, + "end": 1048.76, + "probability": 0.6074 + }, + { + "start": 1051.42, + "end": 1053.24, + "probability": 0.7821 + }, + { + "start": 1064.88, + "end": 1065.62, + "probability": 0.6477 + }, + { + "start": 1065.78, + "end": 1069.53, + "probability": 0.9734 + }, + { + "start": 1069.74, + "end": 1071.0, + "probability": 0.8802 + }, + { + "start": 1072.7, + "end": 1077.74, + "probability": 0.9414 + }, + { + "start": 1078.0, + "end": 1078.45, + "probability": 0.8119 + }, + { + "start": 1078.6, + "end": 1079.94, + "probability": 0.9754 + }, + { + "start": 1081.3, + "end": 1084.26, + "probability": 0.9875 + }, + { + "start": 1084.26, + "end": 1088.2, + "probability": 0.9855 + }, + { + "start": 1089.02, + "end": 1091.11, + "probability": 0.8467 + }, + { + "start": 1091.82, + "end": 1095.36, + "probability": 0.973 + }, + { + "start": 1095.5, + "end": 1097.0, + "probability": 0.9625 + }, + { + "start": 1097.86, + "end": 1099.8, + "probability": 0.9023 + }, + { + "start": 1100.06, + "end": 1103.65, + "probability": 0.9819 + }, + { + "start": 1104.18, + "end": 1108.42, + "probability": 0.9109 + }, + { + "start": 1108.42, + "end": 1112.7, + "probability": 0.9958 + }, + { + "start": 1113.36, + "end": 1116.06, + "probability": 0.963 + }, + { + "start": 1116.48, + "end": 1122.84, + "probability": 0.9839 + }, + { + "start": 1123.22, + "end": 1124.06, + "probability": 0.8136 + }, + { + "start": 1125.78, + "end": 1126.6, + "probability": 0.6759 + }, + { + "start": 1128.12, + "end": 1129.86, + "probability": 0.7943 + }, + { + "start": 1135.82, + "end": 1139.86, + "probability": 0.7003 + }, + { + "start": 1140.76, + "end": 1145.1, + "probability": 0.8671 + }, + { + "start": 1146.0, + "end": 1149.68, + "probability": 0.9803 + }, + { + "start": 1150.3, + "end": 1150.96, + "probability": 0.8121 + }, + { + "start": 1151.1, + "end": 1153.01, + "probability": 0.9995 + }, + { + "start": 1153.14, + "end": 1159.82, + "probability": 0.9991 + }, + { + "start": 1161.0, + "end": 1163.4, + "probability": 0.9837 + }, + { + "start": 1164.28, + "end": 1169.5, + "probability": 0.9856 + }, + { + "start": 1170.88, + "end": 1173.96, + "probability": 0.9982 + }, + { + "start": 1173.96, + "end": 1178.3, + "probability": 0.9777 + }, + { + "start": 1178.32, + "end": 1183.94, + "probability": 0.9926 + }, + { + "start": 1184.5, + "end": 1188.0, + "probability": 0.8991 + }, + { + "start": 1188.0, + "end": 1191.48, + "probability": 0.9743 + }, + { + "start": 1191.58, + "end": 1195.88, + "probability": 0.9788 + }, + { + "start": 1196.88, + "end": 1198.24, + "probability": 0.9432 + }, + { + "start": 1199.6, + "end": 1200.76, + "probability": 0.9269 + }, + { + "start": 1201.18, + "end": 1206.12, + "probability": 0.9129 + }, + { + "start": 1206.62, + "end": 1208.59, + "probability": 0.8369 + }, + { + "start": 1209.48, + "end": 1211.38, + "probability": 0.9342 + }, + { + "start": 1212.22, + "end": 1216.64, + "probability": 0.9471 + }, + { + "start": 1218.3, + "end": 1219.39, + "probability": 0.667 + }, + { + "start": 1220.92, + "end": 1223.7, + "probability": 0.9421 + }, + { + "start": 1223.78, + "end": 1224.58, + "probability": 0.8425 + }, + { + "start": 1229.15, + "end": 1231.8, + "probability": 0.6915 + }, + { + "start": 1232.0, + "end": 1232.72, + "probability": 0.8372 + }, + { + "start": 1232.82, + "end": 1233.3, + "probability": 0.6698 + }, + { + "start": 1233.5, + "end": 1237.06, + "probability": 0.9792 + }, + { + "start": 1238.14, + "end": 1242.14, + "probability": 0.9785 + }, + { + "start": 1243.14, + "end": 1245.22, + "probability": 0.9358 + }, + { + "start": 1245.9, + "end": 1247.22, + "probability": 0.8745 + }, + { + "start": 1248.46, + "end": 1251.74, + "probability": 0.9926 + }, + { + "start": 1251.74, + "end": 1256.34, + "probability": 0.9945 + }, + { + "start": 1256.74, + "end": 1257.48, + "probability": 0.9246 + }, + { + "start": 1257.64, + "end": 1258.78, + "probability": 0.7098 + }, + { + "start": 1259.04, + "end": 1261.72, + "probability": 0.9868 + }, + { + "start": 1262.48, + "end": 1267.98, + "probability": 0.9966 + }, + { + "start": 1268.9, + "end": 1275.0, + "probability": 0.9927 + }, + { + "start": 1276.06, + "end": 1281.72, + "probability": 0.9982 + }, + { + "start": 1281.9, + "end": 1286.44, + "probability": 0.9987 + }, + { + "start": 1286.94, + "end": 1288.88, + "probability": 0.9343 + }, + { + "start": 1289.3, + "end": 1291.38, + "probability": 0.8063 + }, + { + "start": 1291.98, + "end": 1299.8, + "probability": 0.9652 + }, + { + "start": 1300.82, + "end": 1307.32, + "probability": 0.9954 + }, + { + "start": 1307.9, + "end": 1310.6, + "probability": 0.9854 + }, + { + "start": 1311.84, + "end": 1313.48, + "probability": 0.9403 + }, + { + "start": 1313.82, + "end": 1318.3, + "probability": 0.9706 + }, + { + "start": 1318.3, + "end": 1318.8, + "probability": 0.513 + }, + { + "start": 1319.36, + "end": 1319.94, + "probability": 0.5017 + }, + { + "start": 1321.38, + "end": 1325.3, + "probability": 0.9075 + }, + { + "start": 1335.8, + "end": 1336.5, + "probability": 0.5436 + }, + { + "start": 1336.88, + "end": 1339.36, + "probability": 0.9896 + }, + { + "start": 1339.72, + "end": 1343.02, + "probability": 0.8693 + }, + { + "start": 1343.18, + "end": 1343.94, + "probability": 0.9519 + }, + { + "start": 1344.2, + "end": 1346.42, + "probability": 0.9979 + }, + { + "start": 1346.42, + "end": 1350.3, + "probability": 0.9251 + }, + { + "start": 1350.94, + "end": 1355.22, + "probability": 0.9868 + }, + { + "start": 1355.54, + "end": 1358.76, + "probability": 0.8406 + }, + { + "start": 1359.14, + "end": 1361.42, + "probability": 0.9178 + }, + { + "start": 1361.86, + "end": 1364.7, + "probability": 0.9946 + }, + { + "start": 1364.7, + "end": 1368.6, + "probability": 0.9917 + }, + { + "start": 1368.86, + "end": 1371.44, + "probability": 0.9347 + }, + { + "start": 1371.66, + "end": 1372.7, + "probability": 0.9315 + }, + { + "start": 1372.7, + "end": 1376.34, + "probability": 0.949 + }, + { + "start": 1376.38, + "end": 1379.82, + "probability": 0.9834 + }, + { + "start": 1379.98, + "end": 1384.44, + "probability": 0.784 + }, + { + "start": 1384.74, + "end": 1387.26, + "probability": 0.9114 + }, + { + "start": 1388.1, + "end": 1391.76, + "probability": 0.9898 + }, + { + "start": 1392.72, + "end": 1392.72, + "probability": 0.0481 + }, + { + "start": 1392.72, + "end": 1396.96, + "probability": 0.9968 + }, + { + "start": 1397.08, + "end": 1400.42, + "probability": 0.9955 + }, + { + "start": 1400.78, + "end": 1402.78, + "probability": 0.877 + }, + { + "start": 1403.08, + "end": 1405.38, + "probability": 0.9774 + }, + { + "start": 1405.4, + "end": 1407.82, + "probability": 0.9932 + }, + { + "start": 1408.24, + "end": 1410.68, + "probability": 0.991 + }, + { + "start": 1410.68, + "end": 1414.32, + "probability": 0.9946 + }, + { + "start": 1414.84, + "end": 1415.24, + "probability": 0.7319 + }, + { + "start": 1415.68, + "end": 1416.58, + "probability": 0.8884 + }, + { + "start": 1417.92, + "end": 1420.04, + "probability": 0.4909 + }, + { + "start": 1425.06, + "end": 1429.08, + "probability": 0.7405 + }, + { + "start": 1429.66, + "end": 1430.32, + "probability": 0.5666 + }, + { + "start": 1430.52, + "end": 1430.84, + "probability": 0.9099 + }, + { + "start": 1430.98, + "end": 1437.54, + "probability": 0.9861 + }, + { + "start": 1438.06, + "end": 1445.84, + "probability": 0.9896 + }, + { + "start": 1446.7, + "end": 1453.22, + "probability": 0.9722 + }, + { + "start": 1453.9, + "end": 1456.66, + "probability": 0.8822 + }, + { + "start": 1457.3, + "end": 1464.26, + "probability": 0.9508 + }, + { + "start": 1464.36, + "end": 1465.12, + "probability": 0.9685 + }, + { + "start": 1465.58, + "end": 1467.7, + "probability": 0.9593 + }, + { + "start": 1467.8, + "end": 1468.16, + "probability": 0.6712 + }, + { + "start": 1468.26, + "end": 1469.02, + "probability": 0.8602 + }, + { + "start": 1469.6, + "end": 1470.88, + "probability": 0.9434 + }, + { + "start": 1470.92, + "end": 1472.7, + "probability": 0.9289 + }, + { + "start": 1473.18, + "end": 1474.72, + "probability": 0.985 + }, + { + "start": 1475.54, + "end": 1479.3, + "probability": 0.9833 + }, + { + "start": 1479.44, + "end": 1480.28, + "probability": 0.5991 + }, + { + "start": 1480.4, + "end": 1481.3, + "probability": 0.9427 + }, + { + "start": 1481.42, + "end": 1485.87, + "probability": 0.9946 + }, + { + "start": 1486.32, + "end": 1491.74, + "probability": 0.8159 + }, + { + "start": 1492.06, + "end": 1494.64, + "probability": 0.9854 + }, + { + "start": 1495.02, + "end": 1498.74, + "probability": 0.972 + }, + { + "start": 1502.04, + "end": 1503.02, + "probability": 0.6521 + }, + { + "start": 1504.54, + "end": 1507.9, + "probability": 0.8931 + }, + { + "start": 1515.52, + "end": 1516.88, + "probability": 0.7444 + }, + { + "start": 1517.2, + "end": 1518.28, + "probability": 0.8444 + }, + { + "start": 1518.46, + "end": 1520.08, + "probability": 0.9119 + }, + { + "start": 1520.22, + "end": 1523.28, + "probability": 0.9526 + }, + { + "start": 1524.1, + "end": 1529.09, + "probability": 0.9647 + }, + { + "start": 1529.88, + "end": 1531.24, + "probability": 0.9602 + }, + { + "start": 1531.28, + "end": 1534.27, + "probability": 0.849 + }, + { + "start": 1534.9, + "end": 1538.04, + "probability": 0.7937 + }, + { + "start": 1538.68, + "end": 1543.7, + "probability": 0.9746 + }, + { + "start": 1543.96, + "end": 1545.16, + "probability": 0.7472 + }, + { + "start": 1545.3, + "end": 1549.76, + "probability": 0.9883 + }, + { + "start": 1550.16, + "end": 1550.64, + "probability": 0.4124 + }, + { + "start": 1550.84, + "end": 1553.7, + "probability": 0.9943 + }, + { + "start": 1554.42, + "end": 1556.48, + "probability": 0.9983 + }, + { + "start": 1556.64, + "end": 1557.78, + "probability": 0.8242 + }, + { + "start": 1558.3, + "end": 1559.72, + "probability": 0.9856 + }, + { + "start": 1559.86, + "end": 1561.62, + "probability": 0.9819 + }, + { + "start": 1561.8, + "end": 1565.18, + "probability": 0.9867 + }, + { + "start": 1565.48, + "end": 1568.58, + "probability": 0.9897 + }, + { + "start": 1569.46, + "end": 1573.5, + "probability": 0.9451 + }, + { + "start": 1573.5, + "end": 1576.42, + "probability": 0.9888 + }, + { + "start": 1577.04, + "end": 1580.64, + "probability": 0.9968 + }, + { + "start": 1580.64, + "end": 1586.74, + "probability": 0.9718 + }, + { + "start": 1587.22, + "end": 1589.08, + "probability": 0.6182 + }, + { + "start": 1589.64, + "end": 1592.1, + "probability": 0.9834 + }, + { + "start": 1592.16, + "end": 1597.48, + "probability": 0.938 + }, + { + "start": 1597.64, + "end": 1601.32, + "probability": 0.9837 + }, + { + "start": 1602.24, + "end": 1603.35, + "probability": 0.8247 + }, + { + "start": 1604.52, + "end": 1607.48, + "probability": 0.8598 + }, + { + "start": 1616.28, + "end": 1617.22, + "probability": 0.5803 + }, + { + "start": 1617.38, + "end": 1618.61, + "probability": 0.684 + }, + { + "start": 1619.1, + "end": 1624.28, + "probability": 0.9608 + }, + { + "start": 1625.28, + "end": 1628.03, + "probability": 0.9538 + }, + { + "start": 1629.18, + "end": 1632.11, + "probability": 0.9797 + }, + { + "start": 1633.26, + "end": 1636.02, + "probability": 0.7575 + }, + { + "start": 1636.62, + "end": 1638.28, + "probability": 0.9884 + }, + { + "start": 1639.02, + "end": 1642.34, + "probability": 0.7143 + }, + { + "start": 1642.96, + "end": 1645.76, + "probability": 0.9281 + }, + { + "start": 1646.86, + "end": 1650.48, + "probability": 0.9901 + }, + { + "start": 1651.74, + "end": 1657.86, + "probability": 0.9873 + }, + { + "start": 1658.92, + "end": 1660.92, + "probability": 0.9591 + }, + { + "start": 1663.08, + "end": 1664.8, + "probability": 0.8909 + }, + { + "start": 1665.54, + "end": 1670.2, + "probability": 0.7015 + }, + { + "start": 1670.36, + "end": 1670.78, + "probability": 0.8963 + }, + { + "start": 1671.72, + "end": 1673.13, + "probability": 0.9549 + }, + { + "start": 1673.56, + "end": 1679.92, + "probability": 0.8931 + }, + { + "start": 1680.38, + "end": 1684.28, + "probability": 0.9366 + }, + { + "start": 1684.82, + "end": 1689.86, + "probability": 0.9774 + }, + { + "start": 1690.56, + "end": 1693.62, + "probability": 0.6827 + }, + { + "start": 1694.32, + "end": 1694.32, + "probability": 0.2065 + }, + { + "start": 1694.32, + "end": 1695.02, + "probability": 0.4405 + }, + { + "start": 1695.04, + "end": 1698.8, + "probability": 0.9446 + }, + { + "start": 1698.9, + "end": 1702.44, + "probability": 0.9886 + }, + { + "start": 1702.96, + "end": 1703.76, + "probability": 0.7438 + }, + { + "start": 1704.48, + "end": 1705.34, + "probability": 0.7324 + }, + { + "start": 1706.7, + "end": 1713.3, + "probability": 0.8163 + }, + { + "start": 1718.78, + "end": 1719.58, + "probability": 0.6782 + }, + { + "start": 1719.7, + "end": 1720.04, + "probability": 0.1336 + }, + { + "start": 1720.42, + "end": 1721.64, + "probability": 0.9607 + }, + { + "start": 1721.76, + "end": 1725.18, + "probability": 0.9304 + }, + { + "start": 1725.26, + "end": 1727.88, + "probability": 0.973 + }, + { + "start": 1729.08, + "end": 1729.98, + "probability": 0.9673 + }, + { + "start": 1730.04, + "end": 1735.3, + "probability": 0.8989 + }, + { + "start": 1735.52, + "end": 1737.02, + "probability": 0.884 + }, + { + "start": 1738.1, + "end": 1739.62, + "probability": 0.7402 + }, + { + "start": 1740.28, + "end": 1741.48, + "probability": 0.693 + }, + { + "start": 1741.5, + "end": 1745.64, + "probability": 0.7461 + }, + { + "start": 1746.76, + "end": 1750.52, + "probability": 0.9821 + }, + { + "start": 1750.56, + "end": 1752.04, + "probability": 0.8172 + }, + { + "start": 1752.52, + "end": 1757.3, + "probability": 0.9929 + }, + { + "start": 1757.44, + "end": 1761.88, + "probability": 0.9185 + }, + { + "start": 1762.02, + "end": 1764.95, + "probability": 0.9608 + }, + { + "start": 1766.04, + "end": 1770.48, + "probability": 0.9917 + }, + { + "start": 1770.96, + "end": 1774.68, + "probability": 0.8816 + }, + { + "start": 1776.06, + "end": 1782.92, + "probability": 0.9879 + }, + { + "start": 1782.92, + "end": 1785.94, + "probability": 0.9991 + }, + { + "start": 1786.08, + "end": 1787.28, + "probability": 0.9858 + }, + { + "start": 1787.3, + "end": 1793.14, + "probability": 0.9922 + }, + { + "start": 1794.42, + "end": 1795.08, + "probability": 0.646 + }, + { + "start": 1795.28, + "end": 1795.92, + "probability": 0.8547 + }, + { + "start": 1796.48, + "end": 1798.83, + "probability": 0.9845 + }, + { + "start": 1799.36, + "end": 1801.64, + "probability": 0.9615 + }, + { + "start": 1802.46, + "end": 1803.32, + "probability": 0.9392 + }, + { + "start": 1803.54, + "end": 1804.5, + "probability": 0.8764 + }, + { + "start": 1804.6, + "end": 1807.18, + "probability": 0.9141 + }, + { + "start": 1807.86, + "end": 1811.02, + "probability": 0.9963 + }, + { + "start": 1811.16, + "end": 1813.08, + "probability": 0.9951 + }, + { + "start": 1813.66, + "end": 1817.58, + "probability": 0.9675 + }, + { + "start": 1818.3, + "end": 1820.77, + "probability": 0.9945 + }, + { + "start": 1821.2, + "end": 1823.77, + "probability": 0.9954 + }, + { + "start": 1824.34, + "end": 1826.45, + "probability": 0.9098 + }, + { + "start": 1827.12, + "end": 1831.8, + "probability": 0.9966 + }, + { + "start": 1831.96, + "end": 1833.92, + "probability": 0.87 + }, + { + "start": 1833.96, + "end": 1834.38, + "probability": 0.8136 + }, + { + "start": 1835.52, + "end": 1836.28, + "probability": 0.5532 + }, + { + "start": 1836.54, + "end": 1838.84, + "probability": 0.93 + }, + { + "start": 1839.54, + "end": 1843.22, + "probability": 0.9561 + }, + { + "start": 1843.24, + "end": 1843.94, + "probability": 0.7925 + }, + { + "start": 1852.7, + "end": 1854.48, + "probability": 0.9705 + }, + { + "start": 1857.58, + "end": 1861.52, + "probability": 0.9966 + }, + { + "start": 1862.34, + "end": 1864.34, + "probability": 0.7298 + }, + { + "start": 1864.44, + "end": 1865.06, + "probability": 0.7843 + }, + { + "start": 1865.14, + "end": 1872.26, + "probability": 0.9159 + }, + { + "start": 1872.48, + "end": 1877.36, + "probability": 0.7279 + }, + { + "start": 1877.44, + "end": 1878.34, + "probability": 0.9737 + }, + { + "start": 1878.84, + "end": 1879.28, + "probability": 0.7854 + }, + { + "start": 1879.36, + "end": 1889.1, + "probability": 0.9087 + }, + { + "start": 1889.74, + "end": 1893.04, + "probability": 0.7423 + }, + { + "start": 1895.88, + "end": 1899.06, + "probability": 0.9295 + }, + { + "start": 1899.06, + "end": 1904.4, + "probability": 0.9592 + }, + { + "start": 1904.4, + "end": 1908.42, + "probability": 0.979 + }, + { + "start": 1908.76, + "end": 1912.68, + "probability": 0.863 + }, + { + "start": 1913.1, + "end": 1914.28, + "probability": 0.5285 + }, + { + "start": 1915.94, + "end": 1920.26, + "probability": 0.8683 + }, + { + "start": 1920.68, + "end": 1923.02, + "probability": 0.6742 + }, + { + "start": 1923.12, + "end": 1924.28, + "probability": 0.8282 + }, + { + "start": 1924.62, + "end": 1927.38, + "probability": 0.9824 + }, + { + "start": 1933.04, + "end": 1934.22, + "probability": 0.5748 + }, + { + "start": 1934.51, + "end": 1941.5, + "probability": 0.989 + }, + { + "start": 1943.48, + "end": 1944.78, + "probability": 0.9782 + }, + { + "start": 1945.12, + "end": 1948.94, + "probability": 0.9897 + }, + { + "start": 1949.5, + "end": 1950.68, + "probability": 0.9169 + }, + { + "start": 1952.02, + "end": 1957.6, + "probability": 0.9878 + }, + { + "start": 1958.16, + "end": 1964.44, + "probability": 0.9682 + }, + { + "start": 1966.86, + "end": 1968.74, + "probability": 0.9985 + }, + { + "start": 1970.36, + "end": 1974.26, + "probability": 0.9781 + }, + { + "start": 1974.46, + "end": 1980.72, + "probability": 0.9868 + }, + { + "start": 1981.24, + "end": 1982.72, + "probability": 0.8506 + }, + { + "start": 1983.42, + "end": 1984.93, + "probability": 0.8064 + }, + { + "start": 1986.18, + "end": 1987.74, + "probability": 0.9386 + }, + { + "start": 1987.84, + "end": 1989.1, + "probability": 0.9173 + }, + { + "start": 1989.48, + "end": 1990.7, + "probability": 0.979 + }, + { + "start": 1990.82, + "end": 1993.59, + "probability": 0.9939 + }, + { + "start": 1995.16, + "end": 2001.18, + "probability": 0.903 + }, + { + "start": 2001.54, + "end": 2003.07, + "probability": 0.9932 + }, + { + "start": 2003.72, + "end": 2004.58, + "probability": 0.8695 + }, + { + "start": 2004.64, + "end": 2005.6, + "probability": 0.7204 + }, + { + "start": 2005.98, + "end": 2007.52, + "probability": 0.9088 + }, + { + "start": 2008.36, + "end": 2009.92, + "probability": 0.8763 + }, + { + "start": 2010.32, + "end": 2013.52, + "probability": 0.9574 + }, + { + "start": 2013.62, + "end": 2017.02, + "probability": 0.711 + }, + { + "start": 2017.18, + "end": 2019.94, + "probability": 0.9006 + }, + { + "start": 2020.08, + "end": 2021.42, + "probability": 0.9564 + }, + { + "start": 2021.94, + "end": 2023.08, + "probability": 0.5709 + }, + { + "start": 2024.1, + "end": 2027.54, + "probability": 0.475 + }, + { + "start": 2028.56, + "end": 2031.66, + "probability": 0.1855 + }, + { + "start": 2031.96, + "end": 2034.98, + "probability": 0.8717 + }, + { + "start": 2034.98, + "end": 2038.82, + "probability": 0.998 + }, + { + "start": 2039.0, + "end": 2042.34, + "probability": 0.9191 + }, + { + "start": 2042.46, + "end": 2045.1, + "probability": 0.8988 + }, + { + "start": 2045.34, + "end": 2046.64, + "probability": 0.6088 + }, + { + "start": 2046.76, + "end": 2047.42, + "probability": 0.8372 + }, + { + "start": 2047.52, + "end": 2048.9, + "probability": 0.9507 + }, + { + "start": 2049.4, + "end": 2051.9, + "probability": 0.9923 + }, + { + "start": 2052.3, + "end": 2053.64, + "probability": 0.7246 + }, + { + "start": 2054.04, + "end": 2056.18, + "probability": 0.9371 + }, + { + "start": 2056.62, + "end": 2061.9, + "probability": 0.7932 + }, + { + "start": 2062.3, + "end": 2065.44, + "probability": 0.9534 + }, + { + "start": 2065.44, + "end": 2070.1, + "probability": 0.9694 + }, + { + "start": 2070.72, + "end": 2075.18, + "probability": 0.9685 + }, + { + "start": 2075.62, + "end": 2078.56, + "probability": 0.698 + }, + { + "start": 2078.94, + "end": 2079.56, + "probability": 0.7673 + }, + { + "start": 2080.06, + "end": 2082.42, + "probability": 0.7515 + }, + { + "start": 2082.42, + "end": 2084.92, + "probability": 0.9706 + }, + { + "start": 2085.4, + "end": 2087.28, + "probability": 0.9713 + }, + { + "start": 2087.62, + "end": 2089.68, + "probability": 0.975 + }, + { + "start": 2089.82, + "end": 2090.4, + "probability": 0.8952 + }, + { + "start": 2090.54, + "end": 2094.66, + "probability": 0.2439 + }, + { + "start": 2094.76, + "end": 2095.36, + "probability": 0.637 + }, + { + "start": 2095.48, + "end": 2096.54, + "probability": 0.8384 + }, + { + "start": 2096.66, + "end": 2099.53, + "probability": 0.9824 + }, + { + "start": 2099.92, + "end": 2103.62, + "probability": 0.8003 + }, + { + "start": 2103.74, + "end": 2107.64, + "probability": 0.8934 + }, + { + "start": 2107.66, + "end": 2110.26, + "probability": 0.9943 + }, + { + "start": 2110.26, + "end": 2112.62, + "probability": 0.9797 + }, + { + "start": 2112.76, + "end": 2113.22, + "probability": 0.7864 + }, + { + "start": 2113.32, + "end": 2117.34, + "probability": 0.9421 + }, + { + "start": 2118.12, + "end": 2120.8, + "probability": 0.5417 + }, + { + "start": 2126.26, + "end": 2128.14, + "probability": 0.7295 + }, + { + "start": 2129.06, + "end": 2132.84, + "probability": 0.9976 + }, + { + "start": 2132.84, + "end": 2136.72, + "probability": 0.9553 + }, + { + "start": 2136.84, + "end": 2137.78, + "probability": 0.9815 + }, + { + "start": 2137.92, + "end": 2139.1, + "probability": 0.8436 + }, + { + "start": 2139.24, + "end": 2140.76, + "probability": 0.8512 + }, + { + "start": 2140.8, + "end": 2142.68, + "probability": 0.8028 + }, + { + "start": 2142.7, + "end": 2146.62, + "probability": 0.9402 + }, + { + "start": 2147.26, + "end": 2149.44, + "probability": 0.9921 + }, + { + "start": 2149.44, + "end": 2152.34, + "probability": 0.9455 + }, + { + "start": 2152.98, + "end": 2155.38, + "probability": 0.902 + }, + { + "start": 2155.44, + "end": 2155.74, + "probability": 0.3555 + }, + { + "start": 2155.88, + "end": 2156.32, + "probability": 0.9316 + }, + { + "start": 2156.48, + "end": 2157.92, + "probability": 0.5171 + }, + { + "start": 2158.8, + "end": 2160.9, + "probability": 0.8169 + }, + { + "start": 2161.18, + "end": 2162.06, + "probability": 0.9706 + }, + { + "start": 2162.16, + "end": 2162.6, + "probability": 0.2151 + }, + { + "start": 2162.82, + "end": 2164.42, + "probability": 0.9403 + }, + { + "start": 2164.54, + "end": 2165.88, + "probability": 0.8541 + }, + { + "start": 2166.7, + "end": 2168.16, + "probability": 0.4444 + }, + { + "start": 2168.16, + "end": 2169.66, + "probability": 0.743 + }, + { + "start": 2169.94, + "end": 2172.36, + "probability": 0.9556 + }, + { + "start": 2173.46, + "end": 2178.16, + "probability": 0.9528 + }, + { + "start": 2178.76, + "end": 2181.32, + "probability": 0.9561 + }, + { + "start": 2181.46, + "end": 2182.34, + "probability": 0.1999 + }, + { + "start": 2182.46, + "end": 2183.94, + "probability": 0.7303 + }, + { + "start": 2184.66, + "end": 2186.62, + "probability": 0.9883 + }, + { + "start": 2187.0, + "end": 2190.0, + "probability": 0.9624 + }, + { + "start": 2190.58, + "end": 2192.52, + "probability": 0.9417 + }, + { + "start": 2192.6, + "end": 2196.2, + "probability": 0.993 + }, + { + "start": 2196.36, + "end": 2199.54, + "probability": 0.9894 + }, + { + "start": 2199.54, + "end": 2203.48, + "probability": 0.9717 + }, + { + "start": 2203.98, + "end": 2205.63, + "probability": 0.9927 + }, + { + "start": 2205.7, + "end": 2206.14, + "probability": 0.8752 + }, + { + "start": 2206.22, + "end": 2206.5, + "probability": 0.8669 + }, + { + "start": 2206.56, + "end": 2207.02, + "probability": 0.9739 + }, + { + "start": 2207.08, + "end": 2207.32, + "probability": 0.6078 + }, + { + "start": 2207.34, + "end": 2208.4, + "probability": 0.8448 + }, + { + "start": 2208.88, + "end": 2210.1, + "probability": 0.9143 + }, + { + "start": 2211.06, + "end": 2215.8, + "probability": 0.9217 + }, + { + "start": 2216.54, + "end": 2219.66, + "probability": 0.9165 + }, + { + "start": 2219.66, + "end": 2222.58, + "probability": 0.8731 + }, + { + "start": 2223.06, + "end": 2228.14, + "probability": 0.8512 + }, + { + "start": 2228.38, + "end": 2229.4, + "probability": 0.9128 + }, + { + "start": 2229.58, + "end": 2229.92, + "probability": 0.7278 + }, + { + "start": 2230.38, + "end": 2231.5, + "probability": 0.4888 + }, + { + "start": 2232.92, + "end": 2235.92, + "probability": 0.9752 + }, + { + "start": 2235.98, + "end": 2237.06, + "probability": 0.9111 + }, + { + "start": 2248.48, + "end": 2252.26, + "probability": 0.8315 + }, + { + "start": 2252.88, + "end": 2253.82, + "probability": 0.8509 + }, + { + "start": 2253.96, + "end": 2259.1, + "probability": 0.9589 + }, + { + "start": 2259.68, + "end": 2261.84, + "probability": 0.7875 + }, + { + "start": 2261.9, + "end": 2265.01, + "probability": 0.8042 + }, + { + "start": 2265.12, + "end": 2266.56, + "probability": 0.9531 + }, + { + "start": 2266.68, + "end": 2267.59, + "probability": 0.9012 + }, + { + "start": 2269.1, + "end": 2274.32, + "probability": 0.8145 + }, + { + "start": 2274.32, + "end": 2279.96, + "probability": 0.9815 + }, + { + "start": 2280.06, + "end": 2280.42, + "probability": 0.6712 + }, + { + "start": 2280.42, + "end": 2281.38, + "probability": 0.7115 + }, + { + "start": 2281.78, + "end": 2283.86, + "probability": 0.991 + }, + { + "start": 2283.9, + "end": 2285.2, + "probability": 0.7609 + }, + { + "start": 2285.7, + "end": 2290.02, + "probability": 0.9932 + }, + { + "start": 2290.06, + "end": 2294.48, + "probability": 0.7687 + }, + { + "start": 2295.49, + "end": 2297.64, + "probability": 0.9766 + }, + { + "start": 2297.86, + "end": 2304.3, + "probability": 0.8239 + }, + { + "start": 2304.3, + "end": 2310.38, + "probability": 0.9973 + }, + { + "start": 2310.96, + "end": 2311.88, + "probability": 0.8599 + }, + { + "start": 2312.34, + "end": 2317.32, + "probability": 0.9535 + }, + { + "start": 2318.14, + "end": 2319.19, + "probability": 0.7559 + }, + { + "start": 2320.88, + "end": 2323.78, + "probability": 0.8586 + }, + { + "start": 2329.2, + "end": 2330.78, + "probability": 0.5818 + }, + { + "start": 2330.88, + "end": 2332.48, + "probability": 0.8942 + }, + { + "start": 2332.66, + "end": 2336.62, + "probability": 0.9941 + }, + { + "start": 2337.42, + "end": 2339.22, + "probability": 0.7195 + }, + { + "start": 2339.82, + "end": 2343.3, + "probability": 0.9436 + }, + { + "start": 2343.36, + "end": 2343.8, + "probability": 0.9548 + }, + { + "start": 2343.84, + "end": 2345.34, + "probability": 0.9751 + }, + { + "start": 2345.6, + "end": 2346.68, + "probability": 0.787 + }, + { + "start": 2347.52, + "end": 2350.16, + "probability": 0.9592 + }, + { + "start": 2350.24, + "end": 2353.62, + "probability": 0.9915 + }, + { + "start": 2353.68, + "end": 2357.12, + "probability": 0.9861 + }, + { + "start": 2357.9, + "end": 2359.84, + "probability": 0.9968 + }, + { + "start": 2360.62, + "end": 2362.74, + "probability": 0.9432 + }, + { + "start": 2363.48, + "end": 2366.42, + "probability": 0.8994 + }, + { + "start": 2367.12, + "end": 2370.38, + "probability": 0.9554 + }, + { + "start": 2370.38, + "end": 2374.12, + "probability": 0.798 + }, + { + "start": 2374.56, + "end": 2375.74, + "probability": 0.8071 + }, + { + "start": 2376.64, + "end": 2377.4, + "probability": 0.9402 + }, + { + "start": 2377.64, + "end": 2378.64, + "probability": 0.9561 + }, + { + "start": 2378.86, + "end": 2380.48, + "probability": 0.9946 + }, + { + "start": 2380.8, + "end": 2382.18, + "probability": 0.9915 + }, + { + "start": 2383.78, + "end": 2385.92, + "probability": 0.9521 + }, + { + "start": 2387.14, + "end": 2388.07, + "probability": 0.9054 + }, + { + "start": 2388.4, + "end": 2389.42, + "probability": 0.8843 + }, + { + "start": 2389.5, + "end": 2389.58, + "probability": 0.6185 + }, + { + "start": 2389.64, + "end": 2390.21, + "probability": 0.7334 + }, + { + "start": 2390.3, + "end": 2390.95, + "probability": 0.7974 + }, + { + "start": 2391.54, + "end": 2395.74, + "probability": 0.9941 + }, + { + "start": 2396.3, + "end": 2398.38, + "probability": 0.8781 + }, + { + "start": 2399.48, + "end": 2403.62, + "probability": 0.7644 + }, + { + "start": 2405.3, + "end": 2406.02, + "probability": 0.5947 + }, + { + "start": 2406.08, + "end": 2406.08, + "probability": 0.6157 + }, + { + "start": 2406.14, + "end": 2408.84, + "probability": 0.9658 + }, + { + "start": 2409.32, + "end": 2410.86, + "probability": 0.7926 + }, + { + "start": 2411.0, + "end": 2412.16, + "probability": 0.9255 + }, + { + "start": 2412.3, + "end": 2414.04, + "probability": 0.9331 + }, + { + "start": 2414.48, + "end": 2416.48, + "probability": 0.9523 + }, + { + "start": 2416.52, + "end": 2417.56, + "probability": 0.9832 + }, + { + "start": 2418.16, + "end": 2420.14, + "probability": 0.958 + }, + { + "start": 2420.32, + "end": 2425.18, + "probability": 0.9866 + }, + { + "start": 2425.62, + "end": 2427.14, + "probability": 0.6706 + }, + { + "start": 2427.32, + "end": 2428.38, + "probability": 0.7124 + }, + { + "start": 2428.76, + "end": 2430.72, + "probability": 0.8643 + }, + { + "start": 2431.2, + "end": 2432.42, + "probability": 0.9775 + }, + { + "start": 2432.64, + "end": 2435.34, + "probability": 0.9698 + }, + { + "start": 2435.54, + "end": 2436.28, + "probability": 0.9751 + }, + { + "start": 2436.46, + "end": 2441.4, + "probability": 0.8755 + }, + { + "start": 2442.89, + "end": 2444.96, + "probability": 0.9042 + }, + { + "start": 2445.1, + "end": 2445.82, + "probability": 0.7959 + }, + { + "start": 2445.88, + "end": 2448.68, + "probability": 0.9932 + }, + { + "start": 2448.68, + "end": 2452.18, + "probability": 0.9239 + }, + { + "start": 2452.28, + "end": 2452.94, + "probability": 0.7455 + }, + { + "start": 2453.26, + "end": 2453.92, + "probability": 0.8922 + }, + { + "start": 2454.0, + "end": 2458.48, + "probability": 0.9727 + }, + { + "start": 2458.48, + "end": 2462.26, + "probability": 0.9374 + }, + { + "start": 2462.74, + "end": 2466.04, + "probability": 0.9868 + }, + { + "start": 2466.36, + "end": 2466.72, + "probability": 0.4607 + }, + { + "start": 2466.76, + "end": 2469.26, + "probability": 0.9929 + }, + { + "start": 2469.26, + "end": 2472.46, + "probability": 0.9794 + }, + { + "start": 2472.84, + "end": 2474.34, + "probability": 0.9419 + }, + { + "start": 2474.4, + "end": 2477.32, + "probability": 0.9302 + }, + { + "start": 2477.76, + "end": 2481.32, + "probability": 0.914 + }, + { + "start": 2481.4, + "end": 2482.46, + "probability": 0.9778 + }, + { + "start": 2482.8, + "end": 2483.63, + "probability": 0.9668 + }, + { + "start": 2484.24, + "end": 2488.52, + "probability": 0.9692 + }, + { + "start": 2489.14, + "end": 2490.83, + "probability": 0.9736 + }, + { + "start": 2491.36, + "end": 2492.0, + "probability": 0.5692 + }, + { + "start": 2493.52, + "end": 2496.84, + "probability": 0.8848 + }, + { + "start": 2504.3, + "end": 2505.22, + "probability": 0.7487 + }, + { + "start": 2505.28, + "end": 2506.4, + "probability": 0.9634 + }, + { + "start": 2506.6, + "end": 2511.38, + "probability": 0.9053 + }, + { + "start": 2511.82, + "end": 2516.18, + "probability": 0.9827 + }, + { + "start": 2517.02, + "end": 2522.1, + "probability": 0.9653 + }, + { + "start": 2522.1, + "end": 2526.2, + "probability": 0.867 + }, + { + "start": 2526.88, + "end": 2531.6, + "probability": 0.8921 + }, + { + "start": 2532.28, + "end": 2533.2, + "probability": 0.7354 + }, + { + "start": 2533.82, + "end": 2542.78, + "probability": 0.9868 + }, + { + "start": 2543.32, + "end": 2544.3, + "probability": 0.5644 + }, + { + "start": 2545.08, + "end": 2547.98, + "probability": 0.8981 + }, + { + "start": 2548.56, + "end": 2549.88, + "probability": 0.8125 + }, + { + "start": 2550.16, + "end": 2552.58, + "probability": 0.9351 + }, + { + "start": 2552.68, + "end": 2553.52, + "probability": 0.7878 + }, + { + "start": 2554.56, + "end": 2555.86, + "probability": 0.2504 + }, + { + "start": 2556.92, + "end": 2564.4, + "probability": 0.8365 + }, + { + "start": 2568.42, + "end": 2569.28, + "probability": 0.7698 + }, + { + "start": 2569.52, + "end": 2571.2, + "probability": 0.8361 + }, + { + "start": 2571.4, + "end": 2577.38, + "probability": 0.9679 + }, + { + "start": 2577.9, + "end": 2579.64, + "probability": 0.9951 + }, + { + "start": 2579.76, + "end": 2581.24, + "probability": 0.4027 + }, + { + "start": 2581.46, + "end": 2584.04, + "probability": 0.7971 + }, + { + "start": 2584.04, + "end": 2586.56, + "probability": 0.9847 + }, + { + "start": 2587.16, + "end": 2590.61, + "probability": 0.9099 + }, + { + "start": 2591.28, + "end": 2593.92, + "probability": 0.859 + }, + { + "start": 2594.38, + "end": 2595.84, + "probability": 0.8239 + }, + { + "start": 2596.02, + "end": 2597.34, + "probability": 0.803 + }, + { + "start": 2597.68, + "end": 2599.3, + "probability": 0.8799 + }, + { + "start": 2599.84, + "end": 2602.14, + "probability": 0.9803 + }, + { + "start": 2603.16, + "end": 2606.38, + "probability": 0.8706 + }, + { + "start": 2606.74, + "end": 2610.66, + "probability": 0.9826 + }, + { + "start": 2610.66, + "end": 2615.86, + "probability": 0.9791 + }, + { + "start": 2616.2, + "end": 2618.72, + "probability": 0.9442 + }, + { + "start": 2619.14, + "end": 2620.98, + "probability": 0.9199 + }, + { + "start": 2621.16, + "end": 2622.94, + "probability": 0.9897 + }, + { + "start": 2623.3, + "end": 2627.16, + "probability": 0.9256 + }, + { + "start": 2627.24, + "end": 2630.32, + "probability": 0.9919 + }, + { + "start": 2630.58, + "end": 2633.39, + "probability": 0.8103 + }, + { + "start": 2634.34, + "end": 2637.16, + "probability": 0.9976 + }, + { + "start": 2637.94, + "end": 2641.18, + "probability": 0.8406 + }, + { + "start": 2641.62, + "end": 2644.16, + "probability": 0.9637 + }, + { + "start": 2644.32, + "end": 2646.16, + "probability": 0.9733 + }, + { + "start": 2646.52, + "end": 2648.06, + "probability": 0.9985 + }, + { + "start": 2648.5, + "end": 2649.95, + "probability": 0.9569 + }, + { + "start": 2650.14, + "end": 2650.56, + "probability": 0.8487 + }, + { + "start": 2650.78, + "end": 2651.73, + "probability": 0.9318 + }, + { + "start": 2653.64, + "end": 2654.84, + "probability": 0.8048 + }, + { + "start": 2654.84, + "end": 2659.74, + "probability": 0.8004 + }, + { + "start": 2660.26, + "end": 2664.0, + "probability": 0.7861 + }, + { + "start": 2664.0, + "end": 2669.38, + "probability": 0.8105 + }, + { + "start": 2673.8, + "end": 2675.9, + "probability": 0.8671 + }, + { + "start": 2682.68, + "end": 2682.96, + "probability": 0.16 + }, + { + "start": 2682.96, + "end": 2685.49, + "probability": 0.8073 + }, + { + "start": 2686.54, + "end": 2688.84, + "probability": 0.9795 + }, + { + "start": 2688.84, + "end": 2692.62, + "probability": 0.9918 + }, + { + "start": 2694.28, + "end": 2700.8, + "probability": 0.9717 + }, + { + "start": 2701.76, + "end": 2703.97, + "probability": 0.9795 + }, + { + "start": 2704.68, + "end": 2705.44, + "probability": 0.8471 + }, + { + "start": 2706.54, + "end": 2717.26, + "probability": 0.9591 + }, + { + "start": 2717.64, + "end": 2720.42, + "probability": 0.9949 + }, + { + "start": 2721.02, + "end": 2722.9, + "probability": 0.9719 + }, + { + "start": 2723.44, + "end": 2725.74, + "probability": 0.9968 + }, + { + "start": 2729.84, + "end": 2731.0, + "probability": 0.6094 + }, + { + "start": 2731.52, + "end": 2736.38, + "probability": 0.7598 + }, + { + "start": 2737.24, + "end": 2740.38, + "probability": 0.8267 + }, + { + "start": 2740.98, + "end": 2744.69, + "probability": 0.9554 + }, + { + "start": 2746.48, + "end": 2753.1, + "probability": 0.9966 + }, + { + "start": 2754.14, + "end": 2758.2, + "probability": 0.9778 + }, + { + "start": 2758.9, + "end": 2762.12, + "probability": 0.9897 + }, + { + "start": 2763.24, + "end": 2768.4, + "probability": 0.9829 + }, + { + "start": 2769.42, + "end": 2775.48, + "probability": 0.9723 + }, + { + "start": 2775.9, + "end": 2776.78, + "probability": 0.6837 + }, + { + "start": 2777.54, + "end": 2781.52, + "probability": 0.9223 + }, + { + "start": 2782.3, + "end": 2786.44, + "probability": 0.8724 + }, + { + "start": 2786.44, + "end": 2789.7, + "probability": 0.901 + }, + { + "start": 2790.42, + "end": 2793.52, + "probability": 0.9585 + }, + { + "start": 2794.44, + "end": 2797.78, + "probability": 0.9916 + }, + { + "start": 2797.78, + "end": 2801.96, + "probability": 0.9961 + }, + { + "start": 2803.12, + "end": 2805.44, + "probability": 0.9821 + }, + { + "start": 2805.44, + "end": 2808.8, + "probability": 0.9876 + }, + { + "start": 2809.74, + "end": 2811.84, + "probability": 0.9608 + }, + { + "start": 2812.64, + "end": 2813.3, + "probability": 0.5055 + }, + { + "start": 2813.3, + "end": 2818.7, + "probability": 0.9946 + }, + { + "start": 2818.7, + "end": 2822.46, + "probability": 0.9969 + }, + { + "start": 2823.16, + "end": 2824.28, + "probability": 0.9572 + }, + { + "start": 2824.34, + "end": 2826.82, + "probability": 0.9746 + }, + { + "start": 2827.24, + "end": 2831.52, + "probability": 0.9669 + }, + { + "start": 2832.48, + "end": 2837.64, + "probability": 0.9984 + }, + { + "start": 2838.2, + "end": 2841.68, + "probability": 0.8687 + }, + { + "start": 2842.82, + "end": 2843.8, + "probability": 0.7678 + }, + { + "start": 2844.66, + "end": 2846.08, + "probability": 0.7452 + }, + { + "start": 2846.16, + "end": 2850.48, + "probability": 0.9167 + }, + { + "start": 2851.68, + "end": 2854.72, + "probability": 0.8908 + }, + { + "start": 2855.5, + "end": 2859.44, + "probability": 0.9645 + }, + { + "start": 2860.58, + "end": 2861.78, + "probability": 0.8592 + }, + { + "start": 2861.9, + "end": 2865.56, + "probability": 0.9831 + }, + { + "start": 2865.64, + "end": 2867.64, + "probability": 0.8382 + }, + { + "start": 2867.82, + "end": 2871.08, + "probability": 0.9692 + }, + { + "start": 2871.98, + "end": 2874.94, + "probability": 0.9777 + }, + { + "start": 2875.58, + "end": 2876.9, + "probability": 0.6496 + }, + { + "start": 2878.42, + "end": 2884.72, + "probability": 0.8879 + }, + { + "start": 2885.46, + "end": 2892.0, + "probability": 0.9941 + }, + { + "start": 2892.34, + "end": 2894.72, + "probability": 0.9082 + }, + { + "start": 2895.36, + "end": 2899.02, + "probability": 0.7756 + }, + { + "start": 2900.0, + "end": 2904.64, + "probability": 0.8943 + }, + { + "start": 2905.36, + "end": 2909.28, + "probability": 0.943 + }, + { + "start": 2909.58, + "end": 2912.66, + "probability": 0.994 + }, + { + "start": 2913.1, + "end": 2915.5, + "probability": 0.7709 + }, + { + "start": 2916.04, + "end": 2920.24, + "probability": 0.9339 + }, + { + "start": 2920.96, + "end": 2926.2, + "probability": 0.8502 + }, + { + "start": 2927.0, + "end": 2929.66, + "probability": 0.982 + }, + { + "start": 2930.48, + "end": 2933.8, + "probability": 0.9917 + }, + { + "start": 2934.6, + "end": 2938.4, + "probability": 0.8619 + }, + { + "start": 2938.72, + "end": 2940.34, + "probability": 0.885 + }, + { + "start": 2941.1, + "end": 2943.55, + "probability": 0.9764 + }, + { + "start": 2944.58, + "end": 2949.04, + "probability": 0.9432 + }, + { + "start": 2949.84, + "end": 2951.22, + "probability": 0.9982 + }, + { + "start": 2951.84, + "end": 2956.08, + "probability": 0.9869 + }, + { + "start": 2956.08, + "end": 2960.12, + "probability": 0.9905 + }, + { + "start": 2960.42, + "end": 2961.86, + "probability": 0.8323 + }, + { + "start": 2962.5, + "end": 2964.8, + "probability": 0.9971 + }, + { + "start": 2965.04, + "end": 2966.38, + "probability": 0.6674 + }, + { + "start": 2966.9, + "end": 2969.36, + "probability": 0.9359 + }, + { + "start": 2969.92, + "end": 2971.2, + "probability": 0.6334 + }, + { + "start": 2971.92, + "end": 2974.24, + "probability": 0.9545 + }, + { + "start": 2974.66, + "end": 2976.44, + "probability": 0.9976 + }, + { + "start": 2976.86, + "end": 2977.34, + "probability": 0.8702 + }, + { + "start": 2977.42, + "end": 2978.04, + "probability": 0.7529 + }, + { + "start": 2978.56, + "end": 2982.32, + "probability": 0.9764 + }, + { + "start": 2983.14, + "end": 2987.68, + "probability": 0.9965 + }, + { + "start": 2987.68, + "end": 2991.74, + "probability": 0.9644 + }, + { + "start": 2992.34, + "end": 2995.68, + "probability": 0.987 + }, + { + "start": 2996.62, + "end": 2999.38, + "probability": 0.811 + }, + { + "start": 2999.38, + "end": 3003.56, + "probability": 0.9206 + }, + { + "start": 3004.26, + "end": 3008.51, + "probability": 0.9901 + }, + { + "start": 3009.74, + "end": 3011.2, + "probability": 0.9159 + }, + { + "start": 3012.06, + "end": 3013.94, + "probability": 0.9309 + }, + { + "start": 3014.72, + "end": 3019.08, + "probability": 0.9612 + }, + { + "start": 3019.74, + "end": 3022.56, + "probability": 0.7668 + }, + { + "start": 3023.1, + "end": 3023.98, + "probability": 0.9069 + }, + { + "start": 3024.76, + "end": 3027.88, + "probability": 0.7982 + }, + { + "start": 3028.54, + "end": 3031.58, + "probability": 0.7017 + }, + { + "start": 3032.02, + "end": 3035.22, + "probability": 0.9842 + }, + { + "start": 3036.68, + "end": 3037.94, + "probability": 0.9408 + }, + { + "start": 3039.08, + "end": 3041.5, + "probability": 0.9375 + }, + { + "start": 3041.76, + "end": 3043.34, + "probability": 0.9297 + }, + { + "start": 3043.74, + "end": 3045.49, + "probability": 0.8846 + }, + { + "start": 3046.64, + "end": 3051.72, + "probability": 0.994 + }, + { + "start": 3051.72, + "end": 3058.4, + "probability": 0.8894 + }, + { + "start": 3060.46, + "end": 3063.4, + "probability": 0.9466 + }, + { + "start": 3063.4, + "end": 3067.34, + "probability": 0.9389 + }, + { + "start": 3067.92, + "end": 3070.42, + "probability": 0.6421 + }, + { + "start": 3071.12, + "end": 3072.26, + "probability": 0.8927 + }, + { + "start": 3072.64, + "end": 3075.0, + "probability": 0.9827 + }, + { + "start": 3076.06, + "end": 3078.0, + "probability": 0.9957 + }, + { + "start": 3078.0, + "end": 3080.56, + "probability": 0.9956 + }, + { + "start": 3082.57, + "end": 3084.22, + "probability": 0.3265 + }, + { + "start": 3084.22, + "end": 3085.82, + "probability": 0.6047 + }, + { + "start": 3086.75, + "end": 3087.1, + "probability": 0.2267 + }, + { + "start": 3087.28, + "end": 3092.14, + "probability": 0.9748 + }, + { + "start": 3092.3, + "end": 3095.2, + "probability": 0.0423 + }, + { + "start": 3095.2, + "end": 3097.78, + "probability": 0.5365 + }, + { + "start": 3098.89, + "end": 3101.96, + "probability": 0.5923 + }, + { + "start": 3101.96, + "end": 3102.58, + "probability": 0.8199 + }, + { + "start": 3102.82, + "end": 3105.74, + "probability": 0.9954 + }, + { + "start": 3105.74, + "end": 3109.3, + "probability": 0.881 + }, + { + "start": 3110.26, + "end": 3112.22, + "probability": 0.9949 + }, + { + "start": 3112.22, + "end": 3114.88, + "probability": 0.9938 + }, + { + "start": 3114.88, + "end": 3115.98, + "probability": 0.8979 + }, + { + "start": 3116.12, + "end": 3116.7, + "probability": 0.9631 + }, + { + "start": 3116.74, + "end": 3117.6, + "probability": 0.9747 + }, + { + "start": 3117.92, + "end": 3120.38, + "probability": 0.9728 + }, + { + "start": 3121.18, + "end": 3123.74, + "probability": 0.9199 + }, + { + "start": 3124.78, + "end": 3127.32, + "probability": 0.857 + }, + { + "start": 3128.1, + "end": 3129.98, + "probability": 0.7514 + }, + { + "start": 3131.3, + "end": 3134.7, + "probability": 0.961 + }, + { + "start": 3135.4, + "end": 3139.42, + "probability": 0.9455 + }, + { + "start": 3139.42, + "end": 3142.58, + "probability": 0.9937 + }, + { + "start": 3142.58, + "end": 3145.98, + "probability": 0.9932 + }, + { + "start": 3146.88, + "end": 3147.74, + "probability": 0.5706 + }, + { + "start": 3147.94, + "end": 3148.26, + "probability": 0.6942 + }, + { + "start": 3148.36, + "end": 3151.08, + "probability": 0.8139 + }, + { + "start": 3151.68, + "end": 3153.8, + "probability": 0.8984 + }, + { + "start": 3155.38, + "end": 3156.2, + "probability": 0.7573 + }, + { + "start": 3157.68, + "end": 3161.8, + "probability": 0.9883 + }, + { + "start": 3162.14, + "end": 3167.36, + "probability": 0.9893 + }, + { + "start": 3167.52, + "end": 3170.44, + "probability": 0.9708 + }, + { + "start": 3170.94, + "end": 3171.5, + "probability": 0.5828 + }, + { + "start": 3171.58, + "end": 3173.82, + "probability": 0.9543 + }, + { + "start": 3174.46, + "end": 3176.88, + "probability": 0.942 + }, + { + "start": 3177.5, + "end": 3179.06, + "probability": 0.9629 + }, + { + "start": 3179.08, + "end": 3182.84, + "probability": 0.9929 + }, + { + "start": 3183.72, + "end": 3188.14, + "probability": 0.9929 + }, + { + "start": 3188.94, + "end": 3191.18, + "probability": 0.8576 + }, + { + "start": 3191.76, + "end": 3195.76, + "probability": 0.8832 + }, + { + "start": 3196.24, + "end": 3197.2, + "probability": 0.8988 + }, + { + "start": 3198.1, + "end": 3199.16, + "probability": 0.6773 + }, + { + "start": 3199.24, + "end": 3202.94, + "probability": 0.84 + }, + { + "start": 3203.36, + "end": 3205.76, + "probability": 0.9285 + }, + { + "start": 3206.52, + "end": 3209.58, + "probability": 0.9802 + }, + { + "start": 3209.7, + "end": 3213.94, + "probability": 0.9846 + }, + { + "start": 3214.6, + "end": 3217.4, + "probability": 0.8701 + }, + { + "start": 3217.92, + "end": 3219.94, + "probability": 0.9679 + }, + { + "start": 3220.44, + "end": 3223.12, + "probability": 0.9624 + }, + { + "start": 3223.12, + "end": 3227.0, + "probability": 0.8987 + }, + { + "start": 3227.64, + "end": 3229.8, + "probability": 0.9292 + }, + { + "start": 3229.8, + "end": 3232.94, + "probability": 0.9986 + }, + { + "start": 3233.4, + "end": 3236.48, + "probability": 0.9972 + }, + { + "start": 3236.48, + "end": 3239.36, + "probability": 0.9932 + }, + { + "start": 3239.92, + "end": 3240.48, + "probability": 0.858 + }, + { + "start": 3241.32, + "end": 3243.82, + "probability": 0.8167 + }, + { + "start": 3243.9, + "end": 3246.34, + "probability": 0.8088 + }, + { + "start": 3246.94, + "end": 3250.36, + "probability": 0.9923 + }, + { + "start": 3250.9, + "end": 3251.2, + "probability": 0.7236 + }, + { + "start": 3251.38, + "end": 3252.84, + "probability": 0.7489 + }, + { + "start": 3252.94, + "end": 3253.88, + "probability": 0.9619 + }, + { + "start": 3254.0, + "end": 3255.44, + "probability": 0.7387 + }, + { + "start": 3258.88, + "end": 3259.66, + "probability": 0.1276 + }, + { + "start": 3259.72, + "end": 3263.56, + "probability": 0.8207 + }, + { + "start": 3263.68, + "end": 3269.02, + "probability": 0.9081 + }, + { + "start": 3269.06, + "end": 3270.16, + "probability": 0.7943 + }, + { + "start": 3270.62, + "end": 3273.8, + "probability": 0.787 + }, + { + "start": 3273.92, + "end": 3278.26, + "probability": 0.759 + }, + { + "start": 3278.34, + "end": 3279.54, + "probability": 0.8314 + }, + { + "start": 3279.6, + "end": 3281.88, + "probability": 0.9022 + }, + { + "start": 3283.4, + "end": 3287.12, + "probability": 0.9971 + }, + { + "start": 3287.26, + "end": 3289.48, + "probability": 0.9751 + }, + { + "start": 3289.88, + "end": 3293.4, + "probability": 0.9961 + }, + { + "start": 3293.4, + "end": 3297.24, + "probability": 0.9977 + }, + { + "start": 3298.16, + "end": 3302.86, + "probability": 0.9691 + }, + { + "start": 3303.64, + "end": 3307.88, + "probability": 0.9633 + }, + { + "start": 3307.9, + "end": 3309.96, + "probability": 0.9257 + }, + { + "start": 3310.82, + "end": 3314.86, + "probability": 0.9972 + }, + { + "start": 3315.4, + "end": 3317.3, + "probability": 0.986 + }, + { + "start": 3318.08, + "end": 3320.76, + "probability": 0.9887 + }, + { + "start": 3321.98, + "end": 3324.3, + "probability": 0.9932 + }, + { + "start": 3325.08, + "end": 3327.2, + "probability": 0.9656 + }, + { + "start": 3327.28, + "end": 3332.1, + "probability": 0.974 + }, + { + "start": 3333.08, + "end": 3334.0, + "probability": 0.6768 + }, + { + "start": 3334.42, + "end": 3336.82, + "probability": 0.9773 + }, + { + "start": 3336.96, + "end": 3339.56, + "probability": 0.9446 + }, + { + "start": 3340.0, + "end": 3345.07, + "probability": 0.9424 + }, + { + "start": 3346.42, + "end": 3348.56, + "probability": 0.895 + }, + { + "start": 3348.94, + "end": 3351.73, + "probability": 0.9333 + }, + { + "start": 3352.24, + "end": 3355.08, + "probability": 0.9555 + }, + { + "start": 3355.94, + "end": 3357.72, + "probability": 0.9014 + }, + { + "start": 3358.26, + "end": 3360.58, + "probability": 0.9582 + }, + { + "start": 3361.46, + "end": 3363.74, + "probability": 0.9587 + }, + { + "start": 3363.74, + "end": 3367.06, + "probability": 0.8741 + }, + { + "start": 3367.16, + "end": 3371.34, + "probability": 0.9944 + }, + { + "start": 3372.12, + "end": 3374.4, + "probability": 0.9818 + }, + { + "start": 3374.4, + "end": 3377.4, + "probability": 0.9866 + }, + { + "start": 3377.78, + "end": 3380.02, + "probability": 0.9795 + }, + { + "start": 3380.02, + "end": 3383.66, + "probability": 0.9608 + }, + { + "start": 3383.72, + "end": 3387.74, + "probability": 0.9911 + }, + { + "start": 3387.74, + "end": 3392.64, + "probability": 0.9896 + }, + { + "start": 3393.72, + "end": 3395.86, + "probability": 0.9208 + }, + { + "start": 3395.88, + "end": 3397.48, + "probability": 0.6025 + }, + { + "start": 3397.94, + "end": 3399.34, + "probability": 0.7489 + }, + { + "start": 3399.56, + "end": 3402.26, + "probability": 0.9836 + }, + { + "start": 3402.39, + "end": 3406.66, + "probability": 0.985 + }, + { + "start": 3407.1, + "end": 3409.86, + "probability": 0.9956 + }, + { + "start": 3409.86, + "end": 3412.44, + "probability": 0.9643 + }, + { + "start": 3413.12, + "end": 3416.6, + "probability": 0.9985 + }, + { + "start": 3417.18, + "end": 3420.24, + "probability": 0.9908 + }, + { + "start": 3420.66, + "end": 3423.84, + "probability": 0.9014 + }, + { + "start": 3423.84, + "end": 3426.94, + "probability": 0.9945 + }, + { + "start": 3427.1, + "end": 3428.66, + "probability": 0.7298 + }, + { + "start": 3429.16, + "end": 3432.4, + "probability": 0.9961 + }, + { + "start": 3432.6, + "end": 3433.88, + "probability": 0.9247 + }, + { + "start": 3434.2, + "end": 3435.32, + "probability": 0.8409 + }, + { + "start": 3435.34, + "end": 3438.9, + "probability": 0.9649 + }, + { + "start": 3439.56, + "end": 3442.07, + "probability": 0.9961 + }, + { + "start": 3442.58, + "end": 3443.58, + "probability": 0.8338 + }, + { + "start": 3443.86, + "end": 3445.18, + "probability": 0.9553 + }, + { + "start": 3445.76, + "end": 3446.92, + "probability": 0.5375 + }, + { + "start": 3447.16, + "end": 3451.54, + "probability": 0.9274 + }, + { + "start": 3451.54, + "end": 3453.3, + "probability": 0.989 + }, + { + "start": 3453.76, + "end": 3455.38, + "probability": 0.926 + }, + { + "start": 3455.8, + "end": 3457.5, + "probability": 0.9263 + }, + { + "start": 3457.94, + "end": 3458.96, + "probability": 0.8928 + }, + { + "start": 3459.3, + "end": 3460.34, + "probability": 0.7644 + }, + { + "start": 3460.7, + "end": 3463.1, + "probability": 0.9851 + }, + { + "start": 3463.1, + "end": 3466.48, + "probability": 0.9789 + }, + { + "start": 3466.86, + "end": 3469.48, + "probability": 0.7935 + }, + { + "start": 3470.06, + "end": 3471.86, + "probability": 0.9847 + }, + { + "start": 3472.3, + "end": 3472.96, + "probability": 0.7741 + }, + { + "start": 3473.16, + "end": 3473.68, + "probability": 0.6547 + }, + { + "start": 3474.14, + "end": 3475.88, + "probability": 0.6652 + }, + { + "start": 3476.2, + "end": 3480.48, + "probability": 0.9917 + }, + { + "start": 3480.64, + "end": 3484.47, + "probability": 0.9916 + }, + { + "start": 3485.0, + "end": 3490.7, + "probability": 0.9768 + }, + { + "start": 3490.86, + "end": 3494.98, + "probability": 0.8571 + }, + { + "start": 3495.66, + "end": 3499.1, + "probability": 0.8713 + }, + { + "start": 3499.4, + "end": 3499.78, + "probability": 0.4518 + }, + { + "start": 3499.86, + "end": 3500.98, + "probability": 0.7014 + }, + { + "start": 3501.04, + "end": 3505.36, + "probability": 0.9071 + }, + { + "start": 3505.54, + "end": 3513.1, + "probability": 0.9067 + }, + { + "start": 3513.22, + "end": 3515.76, + "probability": 0.9483 + }, + { + "start": 3516.22, + "end": 3520.62, + "probability": 0.2646 + }, + { + "start": 3520.62, + "end": 3520.62, + "probability": 0.0289 + }, + { + "start": 3520.62, + "end": 3521.2, + "probability": 0.1364 + }, + { + "start": 3521.2, + "end": 3523.9, + "probability": 0.4792 + }, + { + "start": 3523.9, + "end": 3524.72, + "probability": 0.851 + }, + { + "start": 3537.92, + "end": 3542.12, + "probability": 0.8318 + }, + { + "start": 3543.68, + "end": 3547.02, + "probability": 0.9746 + }, + { + "start": 3547.02, + "end": 3550.7, + "probability": 0.9973 + }, + { + "start": 3551.46, + "end": 3557.45, + "probability": 0.998 + }, + { + "start": 3558.6, + "end": 3563.46, + "probability": 0.8081 + }, + { + "start": 3563.46, + "end": 3570.62, + "probability": 0.6644 + }, + { + "start": 3571.28, + "end": 3571.72, + "probability": 0.3906 + }, + { + "start": 3571.96, + "end": 3579.28, + "probability": 0.9568 + }, + { + "start": 3579.98, + "end": 3585.44, + "probability": 0.9982 + }, + { + "start": 3586.58, + "end": 3588.78, + "probability": 0.965 + }, + { + "start": 3589.42, + "end": 3590.76, + "probability": 0.8992 + }, + { + "start": 3591.36, + "end": 3594.1, + "probability": 0.9987 + }, + { + "start": 3594.84, + "end": 3599.8, + "probability": 0.992 + }, + { + "start": 3601.18, + "end": 3602.18, + "probability": 0.7586 + }, + { + "start": 3602.36, + "end": 3603.06, + "probability": 0.8701 + }, + { + "start": 3603.18, + "end": 3608.62, + "probability": 0.7807 + }, + { + "start": 3609.24, + "end": 3612.72, + "probability": 0.9226 + }, + { + "start": 3612.72, + "end": 3617.14, + "probability": 0.9927 + }, + { + "start": 3617.66, + "end": 3617.84, + "probability": 0.9741 + }, + { + "start": 3618.42, + "end": 3618.8, + "probability": 0.2162 + }, + { + "start": 3618.8, + "end": 3624.5, + "probability": 0.9717 + }, + { + "start": 3624.6, + "end": 3626.2, + "probability": 0.7874 + }, + { + "start": 3626.4, + "end": 3628.68, + "probability": 0.9713 + }, + { + "start": 3629.58, + "end": 3637.64, + "probability": 0.9792 + }, + { + "start": 3638.56, + "end": 3642.34, + "probability": 0.9985 + }, + { + "start": 3642.34, + "end": 3647.1, + "probability": 0.9949 + }, + { + "start": 3647.62, + "end": 3651.42, + "probability": 0.6829 + }, + { + "start": 3651.72, + "end": 3652.74, + "probability": 0.9185 + }, + { + "start": 3653.06, + "end": 3660.4, + "probability": 0.9826 + }, + { + "start": 3660.78, + "end": 3661.52, + "probability": 0.742 + }, + { + "start": 3662.31, + "end": 3665.4, + "probability": 0.6699 + }, + { + "start": 3666.34, + "end": 3670.94, + "probability": 0.917 + }, + { + "start": 3671.76, + "end": 3674.2, + "probability": 0.8654 + }, + { + "start": 3674.44, + "end": 3675.82, + "probability": 0.343 + }, + { + "start": 3675.96, + "end": 3676.82, + "probability": 0.4772 + }, + { + "start": 3676.82, + "end": 3677.1, + "probability": 0.4809 + }, + { + "start": 3677.46, + "end": 3678.74, + "probability": 0.7734 + }, + { + "start": 3679.12, + "end": 3680.24, + "probability": 0.3702 + }, + { + "start": 3681.3, + "end": 3683.64, + "probability": 0.2605 + }, + { + "start": 3683.76, + "end": 3684.08, + "probability": 0.6567 + }, + { + "start": 3684.16, + "end": 3684.5, + "probability": 0.3555 + }, + { + "start": 3684.6, + "end": 3685.26, + "probability": 0.4342 + }, + { + "start": 3685.54, + "end": 3686.46, + "probability": 0.5184 + }, + { + "start": 3687.3, + "end": 3689.29, + "probability": 0.9229 + }, + { + "start": 3689.34, + "end": 3690.76, + "probability": 0.9486 + }, + { + "start": 3690.88, + "end": 3691.84, + "probability": 0.759 + }, + { + "start": 3691.92, + "end": 3692.42, + "probability": 0.7139 + }, + { + "start": 3692.52, + "end": 3693.2, + "probability": 0.522 + }, + { + "start": 3693.64, + "end": 3696.54, + "probability": 0.8296 + }, + { + "start": 3696.6, + "end": 3697.86, + "probability": 0.884 + }, + { + "start": 3698.12, + "end": 3701.7, + "probability": 0.9183 + }, + { + "start": 3702.64, + "end": 3703.8, + "probability": 0.7756 + }, + { + "start": 3703.98, + "end": 3705.54, + "probability": 0.9873 + }, + { + "start": 3705.66, + "end": 3709.1, + "probability": 0.6504 + }, + { + "start": 3709.74, + "end": 3712.42, + "probability": 0.9392 + }, + { + "start": 3712.46, + "end": 3715.66, + "probability": 0.5437 + }, + { + "start": 3715.82, + "end": 3719.5, + "probability": 0.9819 + }, + { + "start": 3719.9, + "end": 3720.82, + "probability": 0.9854 + }, + { + "start": 3720.9, + "end": 3725.84, + "probability": 0.6992 + }, + { + "start": 3726.24, + "end": 3729.22, + "probability": 0.9469 + }, + { + "start": 3729.48, + "end": 3730.76, + "probability": 0.9131 + }, + { + "start": 3730.92, + "end": 3731.26, + "probability": 0.4387 + }, + { + "start": 3731.34, + "end": 3733.82, + "probability": 0.9347 + }, + { + "start": 3735.02, + "end": 3737.28, + "probability": 0.8287 + }, + { + "start": 3739.16, + "end": 3742.62, + "probability": 0.9229 + }, + { + "start": 3742.68, + "end": 3743.36, + "probability": 0.8383 + }, + { + "start": 3748.44, + "end": 3751.82, + "probability": 0.8027 + }, + { + "start": 3752.38, + "end": 3754.1, + "probability": 0.6338 + }, + { + "start": 3754.28, + "end": 3756.0, + "probability": 0.9354 + }, + { + "start": 3756.04, + "end": 3756.68, + "probability": 0.497 + }, + { + "start": 3756.92, + "end": 3759.62, + "probability": 0.777 + }, + { + "start": 3759.74, + "end": 3761.2, + "probability": 0.8906 + }, + { + "start": 3761.78, + "end": 3765.9, + "probability": 0.5362 + }, + { + "start": 3766.16, + "end": 3768.16, + "probability": 0.9182 + }, + { + "start": 3768.32, + "end": 3768.88, + "probability": 0.8484 + }, + { + "start": 3769.0, + "end": 3771.72, + "probability": 0.7062 + }, + { + "start": 3771.72, + "end": 3778.16, + "probability": 0.9744 + }, + { + "start": 3778.68, + "end": 3781.34, + "probability": 0.8195 + }, + { + "start": 3781.56, + "end": 3784.44, + "probability": 0.9791 + }, + { + "start": 3784.82, + "end": 3789.86, + "probability": 0.9348 + }, + { + "start": 3789.86, + "end": 3794.1, + "probability": 0.9908 + }, + { + "start": 3794.56, + "end": 3798.8, + "probability": 0.993 + }, + { + "start": 3798.8, + "end": 3803.02, + "probability": 0.9885 + }, + { + "start": 3803.86, + "end": 3807.82, + "probability": 0.9672 + }, + { + "start": 3807.88, + "end": 3811.28, + "probability": 0.7607 + }, + { + "start": 3811.32, + "end": 3813.54, + "probability": 0.9947 + }, + { + "start": 3813.68, + "end": 3814.6, + "probability": 0.6502 + }, + { + "start": 3814.68, + "end": 3815.34, + "probability": 0.9715 + }, + { + "start": 3815.58, + "end": 3816.94, + "probability": 0.4573 + }, + { + "start": 3817.02, + "end": 3820.38, + "probability": 0.753 + }, + { + "start": 3820.76, + "end": 3825.52, + "probability": 0.9938 + }, + { + "start": 3827.16, + "end": 3828.98, + "probability": 0.6703 + }, + { + "start": 3829.2, + "end": 3831.46, + "probability": 0.9547 + }, + { + "start": 3831.64, + "end": 3833.22, + "probability": 0.8776 + }, + { + "start": 3833.38, + "end": 3835.88, + "probability": 0.6867 + }, + { + "start": 3836.02, + "end": 3840.32, + "probability": 0.8883 + }, + { + "start": 3841.54, + "end": 3842.2, + "probability": 0.8805 + }, + { + "start": 3842.2, + "end": 3844.04, + "probability": 0.8701 + }, + { + "start": 3844.04, + "end": 3847.84, + "probability": 0.9939 + }, + { + "start": 3848.14, + "end": 3848.88, + "probability": 0.9656 + }, + { + "start": 3849.2, + "end": 3852.48, + "probability": 0.728 + }, + { + "start": 3852.64, + "end": 3853.08, + "probability": 0.872 + }, + { + "start": 3853.16, + "end": 3854.06, + "probability": 0.9867 + }, + { + "start": 3854.16, + "end": 3856.26, + "probability": 0.8942 + }, + { + "start": 3857.48, + "end": 3861.56, + "probability": 0.7881 + }, + { + "start": 3861.56, + "end": 3864.86, + "probability": 0.7251 + }, + { + "start": 3866.36, + "end": 3868.96, + "probability": 0.8693 + }, + { + "start": 3869.3, + "end": 3871.84, + "probability": 0.8484 + }, + { + "start": 3872.56, + "end": 3874.78, + "probability": 0.9803 + }, + { + "start": 3875.04, + "end": 3878.22, + "probability": 0.9189 + }, + { + "start": 3878.32, + "end": 3883.0, + "probability": 0.9784 + }, + { + "start": 3883.5, + "end": 3884.96, + "probability": 0.8202 + }, + { + "start": 3885.38, + "end": 3887.84, + "probability": 0.7471 + }, + { + "start": 3888.3, + "end": 3890.02, + "probability": 0.9961 + }, + { + "start": 3890.28, + "end": 3891.52, + "probability": 0.8202 + }, + { + "start": 3891.78, + "end": 3897.07, + "probability": 0.8919 + }, + { + "start": 3897.74, + "end": 3897.94, + "probability": 0.5351 + }, + { + "start": 3898.0, + "end": 3898.4, + "probability": 0.71 + }, + { + "start": 3898.48, + "end": 3900.91, + "probability": 0.7945 + }, + { + "start": 3901.68, + "end": 3905.42, + "probability": 0.9042 + }, + { + "start": 3905.6, + "end": 3906.57, + "probability": 0.93 + }, + { + "start": 3907.06, + "end": 3911.49, + "probability": 0.907 + }, + { + "start": 3912.96, + "end": 3915.72, + "probability": 0.7236 + }, + { + "start": 3917.12, + "end": 3919.78, + "probability": 0.8029 + }, + { + "start": 3919.98, + "end": 3920.54, + "probability": 0.7859 + }, + { + "start": 3921.18, + "end": 3921.64, + "probability": 0.6469 + }, + { + "start": 3922.48, + "end": 3927.36, + "probability": 0.9443 + }, + { + "start": 3927.78, + "end": 3930.4, + "probability": 0.735 + }, + { + "start": 3931.04, + "end": 3931.74, + "probability": 0.8251 + }, + { + "start": 3932.18, + "end": 3932.53, + "probability": 0.4492 + }, + { + "start": 3933.0, + "end": 3934.22, + "probability": 0.8283 + }, + { + "start": 3934.52, + "end": 3939.56, + "probability": 0.9873 + }, + { + "start": 3939.76, + "end": 3943.0, + "probability": 0.9006 + }, + { + "start": 3943.98, + "end": 3945.64, + "probability": 0.7735 + }, + { + "start": 3945.92, + "end": 3951.42, + "probability": 0.986 + }, + { + "start": 3952.04, + "end": 3952.6, + "probability": 0.5444 + }, + { + "start": 3952.74, + "end": 3955.04, + "probability": 0.5522 + }, + { + "start": 3955.1, + "end": 3956.76, + "probability": 0.9561 + }, + { + "start": 3956.78, + "end": 3958.38, + "probability": 0.9382 + }, + { + "start": 3958.46, + "end": 3961.38, + "probability": 0.9498 + }, + { + "start": 3961.94, + "end": 3962.12, + "probability": 0.3356 + }, + { + "start": 3962.24, + "end": 3964.11, + "probability": 0.7788 + }, + { + "start": 3964.24, + "end": 3968.92, + "probability": 0.9324 + }, + { + "start": 3968.94, + "end": 3971.58, + "probability": 0.9889 + }, + { + "start": 3971.78, + "end": 3973.04, + "probability": 0.9848 + }, + { + "start": 3973.24, + "end": 3973.92, + "probability": 0.749 + }, + { + "start": 3974.3, + "end": 3974.51, + "probability": 0.5449 + }, + { + "start": 3975.26, + "end": 3976.58, + "probability": 0.8196 + }, + { + "start": 3976.64, + "end": 3977.0, + "probability": 0.3382 + }, + { + "start": 3977.32, + "end": 3980.2, + "probability": 0.8411 + }, + { + "start": 3980.34, + "end": 3981.78, + "probability": 0.8645 + }, + { + "start": 3982.34, + "end": 3984.44, + "probability": 0.8071 + }, + { + "start": 3984.48, + "end": 3988.48, + "probability": 0.9824 + }, + { + "start": 3989.38, + "end": 3989.76, + "probability": 0.4875 + }, + { + "start": 3990.46, + "end": 3996.36, + "probability": 0.8726 + }, + { + "start": 3997.5, + "end": 3998.54, + "probability": 0.8276 + }, + { + "start": 3999.78, + "end": 4003.95, + "probability": 0.9268 + }, + { + "start": 4008.88, + "end": 4009.74, + "probability": 0.7547 + }, + { + "start": 4010.24, + "end": 4013.22, + "probability": 0.9213 + }, + { + "start": 4014.78, + "end": 4018.84, + "probability": 0.9028 + }, + { + "start": 4019.12, + "end": 4024.18, + "probability": 0.9845 + }, + { + "start": 4024.86, + "end": 4025.84, + "probability": 0.7911 + }, + { + "start": 4025.94, + "end": 4030.92, + "probability": 0.8789 + }, + { + "start": 4031.9, + "end": 4035.22, + "probability": 0.822 + }, + { + "start": 4036.04, + "end": 4041.0, + "probability": 0.677 + }, + { + "start": 4041.58, + "end": 4048.04, + "probability": 0.8816 + }, + { + "start": 4048.78, + "end": 4049.68, + "probability": 0.937 + }, + { + "start": 4049.94, + "end": 4050.74, + "probability": 0.9342 + }, + { + "start": 4050.94, + "end": 4052.9, + "probability": 0.825 + }, + { + "start": 4052.9, + "end": 4056.28, + "probability": 0.4954 + }, + { + "start": 4056.58, + "end": 4057.38, + "probability": 0.9546 + }, + { + "start": 4057.58, + "end": 4059.32, + "probability": 0.9673 + }, + { + "start": 4059.38, + "end": 4060.52, + "probability": 0.66 + }, + { + "start": 4060.8, + "end": 4061.96, + "probability": 0.7317 + }, + { + "start": 4062.16, + "end": 4064.7, + "probability": 0.8187 + }, + { + "start": 4065.66, + "end": 4066.3, + "probability": 0.9613 + }, + { + "start": 4066.36, + "end": 4067.8, + "probability": 0.6406 + }, + { + "start": 4067.96, + "end": 4072.82, + "probability": 0.9954 + }, + { + "start": 4073.84, + "end": 4074.4, + "probability": 0.6299 + }, + { + "start": 4074.46, + "end": 4075.8, + "probability": 0.9283 + }, + { + "start": 4075.86, + "end": 4077.16, + "probability": 0.8989 + }, + { + "start": 4077.28, + "end": 4077.96, + "probability": 0.6492 + }, + { + "start": 4078.28, + "end": 4079.98, + "probability": 0.937 + }, + { + "start": 4080.04, + "end": 4080.82, + "probability": 0.9037 + }, + { + "start": 4081.14, + "end": 4085.72, + "probability": 0.8951 + }, + { + "start": 4086.94, + "end": 4091.6, + "probability": 0.9082 + }, + { + "start": 4091.88, + "end": 4092.92, + "probability": 0.4548 + }, + { + "start": 4093.02, + "end": 4093.5, + "probability": 0.8773 + }, + { + "start": 4093.62, + "end": 4094.26, + "probability": 0.708 + }, + { + "start": 4094.6, + "end": 4099.62, + "probability": 0.933 + }, + { + "start": 4100.5, + "end": 4103.26, + "probability": 0.537 + }, + { + "start": 4103.8, + "end": 4107.98, + "probability": 0.8837 + }, + { + "start": 4108.44, + "end": 4110.08, + "probability": 0.9526 + }, + { + "start": 4110.26, + "end": 4113.08, + "probability": 0.9467 + }, + { + "start": 4113.54, + "end": 4114.64, + "probability": 0.9795 + }, + { + "start": 4116.08, + "end": 4116.88, + "probability": 0.6744 + }, + { + "start": 4116.98, + "end": 4117.42, + "probability": 0.8066 + }, + { + "start": 4117.72, + "end": 4119.6, + "probability": 0.787 + }, + { + "start": 4119.66, + "end": 4123.6, + "probability": 0.9939 + }, + { + "start": 4124.48, + "end": 4125.64, + "probability": 0.9406 + }, + { + "start": 4125.76, + "end": 4129.72, + "probability": 0.7553 + }, + { + "start": 4130.02, + "end": 4132.81, + "probability": 0.9229 + }, + { + "start": 4133.1, + "end": 4135.02, + "probability": 0.7852 + }, + { + "start": 4135.74, + "end": 4136.2, + "probability": 0.8033 + }, + { + "start": 4136.24, + "end": 4137.1, + "probability": 0.9468 + }, + { + "start": 4137.26, + "end": 4142.38, + "probability": 0.9888 + }, + { + "start": 4142.68, + "end": 4144.88, + "probability": 0.9206 + }, + { + "start": 4145.24, + "end": 4146.04, + "probability": 0.9889 + }, + { + "start": 4146.18, + "end": 4146.92, + "probability": 0.9695 + }, + { + "start": 4147.04, + "end": 4147.74, + "probability": 0.5092 + }, + { + "start": 4147.96, + "end": 4149.0, + "probability": 0.7734 + }, + { + "start": 4149.12, + "end": 4149.54, + "probability": 0.8241 + }, + { + "start": 4149.64, + "end": 4151.04, + "probability": 0.855 + }, + { + "start": 4151.3, + "end": 4151.92, + "probability": 0.8896 + }, + { + "start": 4152.06, + "end": 4156.78, + "probability": 0.9662 + }, + { + "start": 4157.0, + "end": 4159.54, + "probability": 0.7897 + }, + { + "start": 4160.08, + "end": 4162.08, + "probability": 0.5547 + }, + { + "start": 4163.88, + "end": 4166.64, + "probability": 0.7949 + }, + { + "start": 4170.16, + "end": 4174.2, + "probability": 0.7328 + }, + { + "start": 4175.4, + "end": 4180.66, + "probability": 0.8732 + }, + { + "start": 4180.72, + "end": 4183.96, + "probability": 0.9596 + }, + { + "start": 4185.14, + "end": 4190.06, + "probability": 0.7138 + }, + { + "start": 4190.46, + "end": 4191.44, + "probability": 0.6115 + }, + { + "start": 4191.44, + "end": 4192.08, + "probability": 0.3353 + }, + { + "start": 4192.44, + "end": 4193.42, + "probability": 0.6919 + }, + { + "start": 4194.34, + "end": 4199.5, + "probability": 0.9851 + }, + { + "start": 4199.5, + "end": 4201.74, + "probability": 0.9304 + }, + { + "start": 4201.8, + "end": 4203.7, + "probability": 0.9541 + }, + { + "start": 4204.6, + "end": 4208.28, + "probability": 0.9631 + }, + { + "start": 4210.86, + "end": 4216.2, + "probability": 0.9688 + }, + { + "start": 4217.42, + "end": 4222.18, + "probability": 0.7755 + }, + { + "start": 4222.72, + "end": 4224.6, + "probability": 0.9876 + }, + { + "start": 4225.1, + "end": 4229.08, + "probability": 0.8633 + }, + { + "start": 4229.66, + "end": 4233.1, + "probability": 0.8729 + }, + { + "start": 4234.14, + "end": 4236.97, + "probability": 0.9897 + }, + { + "start": 4237.36, + "end": 4241.86, + "probability": 0.9644 + }, + { + "start": 4242.08, + "end": 4242.82, + "probability": 0.9061 + }, + { + "start": 4242.94, + "end": 4243.88, + "probability": 0.6793 + }, + { + "start": 4244.92, + "end": 4249.16, + "probability": 0.9286 + }, + { + "start": 4249.18, + "end": 4249.58, + "probability": 0.7936 + }, + { + "start": 4249.86, + "end": 4251.36, + "probability": 0.9238 + }, + { + "start": 4251.86, + "end": 4255.16, + "probability": 0.9153 + }, + { + "start": 4256.12, + "end": 4256.34, + "probability": 0.114 + }, + { + "start": 4256.34, + "end": 4258.6, + "probability": 0.5539 + }, + { + "start": 4258.6, + "end": 4259.94, + "probability": 0.7939 + }, + { + "start": 4260.16, + "end": 4264.48, + "probability": 0.8492 + }, + { + "start": 4264.56, + "end": 4269.56, + "probability": 0.9359 + }, + { + "start": 4269.66, + "end": 4271.08, + "probability": 0.66 + }, + { + "start": 4271.54, + "end": 4272.44, + "probability": 0.9052 + }, + { + "start": 4272.58, + "end": 4273.26, + "probability": 0.6601 + }, + { + "start": 4273.4, + "end": 4273.78, + "probability": 0.4769 + }, + { + "start": 4273.8, + "end": 4278.14, + "probability": 0.7841 + }, + { + "start": 4278.44, + "end": 4281.06, + "probability": 0.9836 + }, + { + "start": 4281.52, + "end": 4283.4, + "probability": 0.9521 + }, + { + "start": 4283.56, + "end": 4284.86, + "probability": 0.9717 + }, + { + "start": 4285.02, + "end": 4285.64, + "probability": 0.9342 + }, + { + "start": 4287.54, + "end": 4290.14, + "probability": 0.9448 + }, + { + "start": 4290.84, + "end": 4295.02, + "probability": 0.8911 + }, + { + "start": 4295.18, + "end": 4296.48, + "probability": 0.9232 + }, + { + "start": 4296.58, + "end": 4302.46, + "probability": 0.9922 + }, + { + "start": 4302.96, + "end": 4303.6, + "probability": 0.6272 + }, + { + "start": 4303.7, + "end": 4304.36, + "probability": 0.9646 + }, + { + "start": 4304.7, + "end": 4306.34, + "probability": 0.9942 + }, + { + "start": 4306.34, + "end": 4309.6, + "probability": 0.9931 + }, + { + "start": 4309.72, + "end": 4310.46, + "probability": 0.8083 + }, + { + "start": 4310.7, + "end": 4311.22, + "probability": 0.9261 + }, + { + "start": 4311.3, + "end": 4312.64, + "probability": 0.9734 + }, + { + "start": 4313.04, + "end": 4313.52, + "probability": 0.5654 + }, + { + "start": 4313.64, + "end": 4316.52, + "probability": 0.8899 + }, + { + "start": 4316.64, + "end": 4318.42, + "probability": 0.7434 + }, + { + "start": 4321.11, + "end": 4325.42, + "probability": 0.7981 + }, + { + "start": 4325.88, + "end": 4326.8, + "probability": 0.9581 + }, + { + "start": 4327.46, + "end": 4329.74, + "probability": 0.8523 + }, + { + "start": 4330.1, + "end": 4332.69, + "probability": 0.7444 + }, + { + "start": 4333.64, + "end": 4334.49, + "probability": 0.9155 + }, + { + "start": 4335.22, + "end": 4335.4, + "probability": 0.2273 + }, + { + "start": 4335.52, + "end": 4336.34, + "probability": 0.6031 + }, + { + "start": 4336.52, + "end": 4337.72, + "probability": 0.7917 + }, + { + "start": 4337.96, + "end": 4341.16, + "probability": 0.6855 + }, + { + "start": 4341.78, + "end": 4342.76, + "probability": 0.3851 + }, + { + "start": 4342.88, + "end": 4345.5, + "probability": 0.6406 + }, + { + "start": 4345.66, + "end": 4346.76, + "probability": 0.6978 + }, + { + "start": 4347.28, + "end": 4350.26, + "probability": 0.8376 + }, + { + "start": 4350.74, + "end": 4352.64, + "probability": 0.6537 + }, + { + "start": 4352.86, + "end": 4356.58, + "probability": 0.7507 + }, + { + "start": 4356.58, + "end": 4359.62, + "probability": 0.9362 + }, + { + "start": 4359.74, + "end": 4361.8, + "probability": 0.9697 + }, + { + "start": 4362.1, + "end": 4363.15, + "probability": 0.9993 + }, + { + "start": 4363.54, + "end": 4364.6, + "probability": 0.9756 + }, + { + "start": 4364.96, + "end": 4366.38, + "probability": 0.9871 + }, + { + "start": 4366.98, + "end": 4369.76, + "probability": 0.9136 + }, + { + "start": 4369.76, + "end": 4370.88, + "probability": 0.6437 + }, + { + "start": 4372.26, + "end": 4377.76, + "probability": 0.793 + }, + { + "start": 4381.6, + "end": 4384.42, + "probability": 0.6622 + }, + { + "start": 4384.98, + "end": 4387.06, + "probability": 0.9334 + }, + { + "start": 4387.26, + "end": 4389.98, + "probability": 0.8207 + }, + { + "start": 4390.04, + "end": 4391.58, + "probability": 0.6658 + }, + { + "start": 4392.84, + "end": 4395.82, + "probability": 0.9573 + }, + { + "start": 4396.28, + "end": 4397.22, + "probability": 0.8158 + }, + { + "start": 4397.68, + "end": 4402.4, + "probability": 0.6904 + }, + { + "start": 4402.64, + "end": 4405.4, + "probability": 0.9833 + }, + { + "start": 4405.56, + "end": 4407.5, + "probability": 0.9834 + }, + { + "start": 4407.64, + "end": 4411.32, + "probability": 0.8285 + }, + { + "start": 4411.92, + "end": 4412.06, + "probability": 0.2478 + }, + { + "start": 4412.14, + "end": 4412.74, + "probability": 0.635 + }, + { + "start": 4412.78, + "end": 4415.1, + "probability": 0.7381 + }, + { + "start": 4415.16, + "end": 4415.98, + "probability": 0.8187 + }, + { + "start": 4416.16, + "end": 4417.4, + "probability": 0.7719 + }, + { + "start": 4417.82, + "end": 4422.02, + "probability": 0.9625 + }, + { + "start": 4422.22, + "end": 4424.08, + "probability": 0.8093 + }, + { + "start": 4424.68, + "end": 4426.3, + "probability": 0.5444 + }, + { + "start": 4426.92, + "end": 4429.2, + "probability": 0.9785 + }, + { + "start": 4429.22, + "end": 4430.02, + "probability": 0.4187 + }, + { + "start": 4430.46, + "end": 4431.02, + "probability": 0.4425 + }, + { + "start": 4431.18, + "end": 4434.88, + "probability": 0.9508 + }, + { + "start": 4435.56, + "end": 4437.08, + "probability": 0.9841 + }, + { + "start": 4437.16, + "end": 4440.68, + "probability": 0.9564 + }, + { + "start": 4440.76, + "end": 4441.7, + "probability": 0.9746 + }, + { + "start": 4441.76, + "end": 4443.88, + "probability": 0.9343 + }, + { + "start": 4444.2, + "end": 4447.42, + "probability": 0.9991 + }, + { + "start": 4447.56, + "end": 4448.8, + "probability": 0.9245 + }, + { + "start": 4449.1, + "end": 4450.54, + "probability": 0.9696 + }, + { + "start": 4451.64, + "end": 4452.87, + "probability": 0.7248 + }, + { + "start": 4453.46, + "end": 4456.72, + "probability": 0.9961 + }, + { + "start": 4457.18, + "end": 4458.7, + "probability": 0.9427 + }, + { + "start": 4459.3, + "end": 4460.14, + "probability": 0.7913 + }, + { + "start": 4460.26, + "end": 4462.24, + "probability": 0.989 + }, + { + "start": 4462.34, + "end": 4465.78, + "probability": 0.9834 + }, + { + "start": 4466.72, + "end": 4468.7, + "probability": 0.1758 + }, + { + "start": 4469.2, + "end": 4472.42, + "probability": 0.8651 + }, + { + "start": 4472.98, + "end": 4474.48, + "probability": 0.7149 + }, + { + "start": 4475.4, + "end": 4477.62, + "probability": 0.8139 + }, + { + "start": 4477.84, + "end": 4484.8, + "probability": 0.8564 + }, + { + "start": 4485.14, + "end": 4487.48, + "probability": 0.7799 + }, + { + "start": 4487.86, + "end": 4489.66, + "probability": 0.6676 + }, + { + "start": 4489.86, + "end": 4493.22, + "probability": 0.7938 + }, + { + "start": 4493.46, + "end": 4496.02, + "probability": 0.9319 + }, + { + "start": 4496.24, + "end": 4501.24, + "probability": 0.9156 + }, + { + "start": 4501.5, + "end": 4504.12, + "probability": 0.8965 + }, + { + "start": 4504.22, + "end": 4507.46, + "probability": 0.9445 + }, + { + "start": 4507.98, + "end": 4511.36, + "probability": 0.9962 + }, + { + "start": 4511.8, + "end": 4514.12, + "probability": 0.8239 + }, + { + "start": 4514.2, + "end": 4514.84, + "probability": 0.8783 + }, + { + "start": 4515.98, + "end": 4516.88, + "probability": 0.079 + }, + { + "start": 4517.4, + "end": 4517.68, + "probability": 0.3013 + }, + { + "start": 4518.52, + "end": 4521.74, + "probability": 0.7053 + }, + { + "start": 4521.78, + "end": 4523.14, + "probability": 0.8176 + }, + { + "start": 4523.3, + "end": 4525.24, + "probability": 0.4255 + }, + { + "start": 4525.24, + "end": 4526.08, + "probability": 0.9899 + }, + { + "start": 4526.58, + "end": 4529.64, + "probability": 0.7923 + }, + { + "start": 4529.96, + "end": 4533.04, + "probability": 0.98 + }, + { + "start": 4533.08, + "end": 4535.19, + "probability": 0.8958 + }, + { + "start": 4535.92, + "end": 4538.06, + "probability": 0.9893 + }, + { + "start": 4538.16, + "end": 4542.04, + "probability": 0.8268 + }, + { + "start": 4542.5, + "end": 4544.46, + "probability": 0.7179 + }, + { + "start": 4544.58, + "end": 4545.8, + "probability": 0.8693 + }, + { + "start": 4546.3, + "end": 4548.0, + "probability": 0.8115 + }, + { + "start": 4548.0, + "end": 4548.96, + "probability": 0.8141 + }, + { + "start": 4549.3, + "end": 4550.8, + "probability": 0.6625 + }, + { + "start": 4551.04, + "end": 4551.9, + "probability": 0.507 + }, + { + "start": 4551.96, + "end": 4554.94, + "probability": 0.9483 + }, + { + "start": 4555.02, + "end": 4555.7, + "probability": 0.7531 + }, + { + "start": 4555.88, + "end": 4556.42, + "probability": 0.9883 + }, + { + "start": 4556.9, + "end": 4557.28, + "probability": 0.919 + }, + { + "start": 4557.34, + "end": 4557.94, + "probability": 0.4858 + }, + { + "start": 4558.36, + "end": 4559.1, + "probability": 0.717 + }, + { + "start": 4559.18, + "end": 4561.64, + "probability": 0.8352 + }, + { + "start": 4561.98, + "end": 4564.41, + "probability": 0.9129 + }, + { + "start": 4564.44, + "end": 4567.8, + "probability": 0.9275 + }, + { + "start": 4568.0, + "end": 4569.82, + "probability": 0.5664 + }, + { + "start": 4570.96, + "end": 4571.93, + "probability": 0.0993 + }, + { + "start": 4572.54, + "end": 4574.48, + "probability": 0.9116 + }, + { + "start": 4574.54, + "end": 4575.72, + "probability": 0.988 + }, + { + "start": 4575.8, + "end": 4576.5, + "probability": 0.9126 + }, + { + "start": 4576.64, + "end": 4577.98, + "probability": 0.9792 + }, + { + "start": 4578.36, + "end": 4580.94, + "probability": 0.8279 + }, + { + "start": 4581.24, + "end": 4583.18, + "probability": 0.7224 + }, + { + "start": 4583.8, + "end": 4587.62, + "probability": 0.8212 + }, + { + "start": 4588.08, + "end": 4594.02, + "probability": 0.8169 + }, + { + "start": 4594.58, + "end": 4595.44, + "probability": 0.9634 + }, + { + "start": 4596.54, + "end": 4599.08, + "probability": 0.7749 + }, + { + "start": 4599.86, + "end": 4601.04, + "probability": 0.6504 + }, + { + "start": 4601.18, + "end": 4602.22, + "probability": 0.7253 + }, + { + "start": 4602.64, + "end": 4604.7, + "probability": 0.8646 + }, + { + "start": 4605.04, + "end": 4606.18, + "probability": 0.8755 + }, + { + "start": 4606.32, + "end": 4609.45, + "probability": 0.9104 + }, + { + "start": 4609.72, + "end": 4612.72, + "probability": 0.9602 + }, + { + "start": 4613.26, + "end": 4615.26, + "probability": 0.6899 + }, + { + "start": 4616.18, + "end": 4616.64, + "probability": 0.772 + }, + { + "start": 4620.2, + "end": 4621.04, + "probability": 0.5309 + }, + { + "start": 4621.5, + "end": 4621.64, + "probability": 0.5303 + }, + { + "start": 4621.64, + "end": 4625.68, + "probability": 0.7585 + }, + { + "start": 4629.28, + "end": 4630.54, + "probability": 0.7166 + }, + { + "start": 4630.6, + "end": 4632.98, + "probability": 0.7725 + }, + { + "start": 4632.98, + "end": 4635.34, + "probability": 0.9985 + }, + { + "start": 4635.36, + "end": 4635.74, + "probability": 0.9808 + }, + { + "start": 4636.6, + "end": 4637.37, + "probability": 0.9263 + }, + { + "start": 4637.46, + "end": 4638.62, + "probability": 0.9937 + }, + { + "start": 4638.84, + "end": 4639.62, + "probability": 0.9613 + }, + { + "start": 4639.78, + "end": 4640.14, + "probability": 0.8358 + }, + { + "start": 4640.18, + "end": 4641.16, + "probability": 0.9902 + }, + { + "start": 4642.12, + "end": 4642.72, + "probability": 0.9457 + }, + { + "start": 4643.96, + "end": 4647.56, + "probability": 0.9957 + }, + { + "start": 4648.22, + "end": 4656.62, + "probability": 0.9788 + }, + { + "start": 4657.3, + "end": 4663.1, + "probability": 0.9973 + }, + { + "start": 4664.24, + "end": 4672.16, + "probability": 0.8719 + }, + { + "start": 4672.4, + "end": 4674.9, + "probability": 0.8684 + }, + { + "start": 4675.6, + "end": 4677.78, + "probability": 0.9949 + }, + { + "start": 4678.04, + "end": 4683.7, + "probability": 0.9984 + }, + { + "start": 4684.22, + "end": 4686.8, + "probability": 0.9833 + }, + { + "start": 4687.72, + "end": 4688.38, + "probability": 0.9727 + }, + { + "start": 4688.5, + "end": 4690.44, + "probability": 0.97 + }, + { + "start": 4691.3, + "end": 4694.72, + "probability": 0.9928 + }, + { + "start": 4695.76, + "end": 4698.28, + "probability": 0.6516 + }, + { + "start": 4699.1, + "end": 4701.44, + "probability": 0.7503 + }, + { + "start": 4702.12, + "end": 4707.16, + "probability": 0.9812 + }, + { + "start": 4707.54, + "end": 4709.66, + "probability": 0.9395 + }, + { + "start": 4709.66, + "end": 4716.42, + "probability": 0.8765 + }, + { + "start": 4717.08, + "end": 4718.82, + "probability": 0.9454 + }, + { + "start": 4719.84, + "end": 4723.7, + "probability": 0.7927 + }, + { + "start": 4724.3, + "end": 4728.78, + "probability": 0.9855 + }, + { + "start": 4730.56, + "end": 4732.54, + "probability": 0.9371 + }, + { + "start": 4732.72, + "end": 4737.14, + "probability": 0.8971 + }, + { + "start": 4737.38, + "end": 4739.32, + "probability": 0.9053 + }, + { + "start": 4739.32, + "end": 4740.6, + "probability": 0.6829 + }, + { + "start": 4741.12, + "end": 4742.2, + "probability": 0.9789 + }, + { + "start": 4742.28, + "end": 4747.26, + "probability": 0.9723 + }, + { + "start": 4747.52, + "end": 4749.62, + "probability": 0.7147 + }, + { + "start": 4750.12, + "end": 4751.56, + "probability": 0.8318 + }, + { + "start": 4751.74, + "end": 4753.2, + "probability": 0.912 + }, + { + "start": 4753.78, + "end": 4754.26, + "probability": 0.6232 + }, + { + "start": 4754.5, + "end": 4756.58, + "probability": 0.8599 + }, + { + "start": 4756.74, + "end": 4762.22, + "probability": 0.8765 + }, + { + "start": 4762.98, + "end": 4763.26, + "probability": 0.6593 + }, + { + "start": 4763.3, + "end": 4764.82, + "probability": 0.9567 + }, + { + "start": 4764.84, + "end": 4765.98, + "probability": 0.9541 + }, + { + "start": 4766.12, + "end": 4767.28, + "probability": 0.9636 + }, + { + "start": 4767.3, + "end": 4768.4, + "probability": 0.9728 + }, + { + "start": 4768.62, + "end": 4773.0, + "probability": 0.967 + }, + { + "start": 4773.26, + "end": 4775.46, + "probability": 0.9739 + }, + { + "start": 4775.46, + "end": 4778.1, + "probability": 0.998 + }, + { + "start": 4778.58, + "end": 4780.3, + "probability": 0.9824 + }, + { + "start": 4781.08, + "end": 4784.04, + "probability": 0.7585 + }, + { + "start": 4784.14, + "end": 4784.64, + "probability": 0.9464 + }, + { + "start": 4784.76, + "end": 4789.28, + "probability": 0.9912 + }, + { + "start": 4789.82, + "end": 4791.32, + "probability": 0.8605 + }, + { + "start": 4791.4, + "end": 4793.56, + "probability": 0.8219 + }, + { + "start": 4794.24, + "end": 4795.12, + "probability": 0.6343 + }, + { + "start": 4795.58, + "end": 4796.76, + "probability": 0.8611 + }, + { + "start": 4796.96, + "end": 4799.11, + "probability": 0.9722 + }, + { + "start": 4799.72, + "end": 4802.48, + "probability": 0.926 + }, + { + "start": 4802.54, + "end": 4803.14, + "probability": 0.4955 + }, + { + "start": 4803.18, + "end": 4805.08, + "probability": 0.7821 + }, + { + "start": 4805.2, + "end": 4807.38, + "probability": 0.9652 + }, + { + "start": 4807.54, + "end": 4808.34, + "probability": 0.8102 + }, + { + "start": 4809.1, + "end": 4810.1, + "probability": 0.7964 + }, + { + "start": 4810.7, + "end": 4813.88, + "probability": 0.9551 + }, + { + "start": 4813.9, + "end": 4814.9, + "probability": 0.8307 + }, + { + "start": 4822.08, + "end": 4823.9, + "probability": 0.5909 + }, + { + "start": 4824.58, + "end": 4827.52, + "probability": 0.7275 + }, + { + "start": 4829.6, + "end": 4830.76, + "probability": 0.7371 + }, + { + "start": 4831.52, + "end": 4837.24, + "probability": 0.9339 + }, + { + "start": 4838.1, + "end": 4841.46, + "probability": 0.9766 + }, + { + "start": 4842.04, + "end": 4846.74, + "probability": 0.9876 + }, + { + "start": 4847.08, + "end": 4848.1, + "probability": 0.695 + }, + { + "start": 4848.68, + "end": 4851.96, + "probability": 0.9165 + }, + { + "start": 4854.08, + "end": 4856.74, + "probability": 0.7928 + }, + { + "start": 4858.1, + "end": 4861.98, + "probability": 0.8857 + }, + { + "start": 4863.88, + "end": 4865.84, + "probability": 0.939 + }, + { + "start": 4867.95, + "end": 4874.16, + "probability": 0.9126 + }, + { + "start": 4875.06, + "end": 4878.3, + "probability": 0.9016 + }, + { + "start": 4879.12, + "end": 4882.8, + "probability": 0.641 + }, + { + "start": 4883.42, + "end": 4886.38, + "probability": 0.7664 + }, + { + "start": 4887.04, + "end": 4891.94, + "probability": 0.9421 + }, + { + "start": 4893.02, + "end": 4895.14, + "probability": 0.8512 + }, + { + "start": 4895.7, + "end": 4899.18, + "probability": 0.9093 + }, + { + "start": 4899.2, + "end": 4900.88, + "probability": 0.9969 + }, + { + "start": 4901.46, + "end": 4902.54, + "probability": 0.8426 + }, + { + "start": 4903.36, + "end": 4905.44, + "probability": 0.0792 + }, + { + "start": 4905.74, + "end": 4908.04, + "probability": 0.1104 + }, + { + "start": 4909.86, + "end": 4910.92, + "probability": 0.4057 + }, + { + "start": 4910.92, + "end": 4911.32, + "probability": 0.6167 + }, + { + "start": 4911.7, + "end": 4912.32, + "probability": 0.2218 + }, + { + "start": 4912.36, + "end": 4912.4, + "probability": 0.0929 + }, + { + "start": 4912.4, + "end": 4914.66, + "probability": 0.2683 + }, + { + "start": 4915.02, + "end": 4915.46, + "probability": 0.0324 + }, + { + "start": 4915.8, + "end": 4916.81, + "probability": 0.7359 + }, + { + "start": 4917.34, + "end": 4918.36, + "probability": 0.6797 + }, + { + "start": 4918.36, + "end": 4920.2, + "probability": 0.7007 + }, + { + "start": 4920.24, + "end": 4921.5, + "probability": 0.0352 + }, + { + "start": 4921.52, + "end": 4921.52, + "probability": 0.0225 + }, + { + "start": 4921.52, + "end": 4922.68, + "probability": 0.2715 + }, + { + "start": 4922.78, + "end": 4923.25, + "probability": 0.4352 + }, + { + "start": 4923.62, + "end": 4928.08, + "probability": 0.8647 + }, + { + "start": 4928.46, + "end": 4929.8, + "probability": 0.6548 + }, + { + "start": 4929.88, + "end": 4930.48, + "probability": 0.5295 + }, + { + "start": 4930.48, + "end": 4931.42, + "probability": 0.7186 + }, + { + "start": 4931.46, + "end": 4932.78, + "probability": 0.8645 + }, + { + "start": 4933.51, + "end": 4934.44, + "probability": 0.4404 + }, + { + "start": 4934.62, + "end": 4935.38, + "probability": 0.9355 + }, + { + "start": 4935.94, + "end": 4936.62, + "probability": 0.9807 + }, + { + "start": 4936.7, + "end": 4937.8, + "probability": 0.6874 + }, + { + "start": 4938.06, + "end": 4940.02, + "probability": 0.9105 + }, + { + "start": 4940.54, + "end": 4941.16, + "probability": 0.8557 + }, + { + "start": 4941.2, + "end": 4943.58, + "probability": 0.981 + }, + { + "start": 4944.36, + "end": 4945.46, + "probability": 0.7545 + }, + { + "start": 4945.5, + "end": 4948.72, + "probability": 0.9973 + }, + { + "start": 4948.98, + "end": 4949.66, + "probability": 0.8198 + }, + { + "start": 4949.9, + "end": 4951.08, + "probability": 0.485 + }, + { + "start": 4951.46, + "end": 4952.0, + "probability": 0.8021 + }, + { + "start": 4952.08, + "end": 4953.64, + "probability": 0.8203 + }, + { + "start": 4954.06, + "end": 4954.28, + "probability": 0.5454 + }, + { + "start": 4954.38, + "end": 4955.28, + "probability": 0.8394 + }, + { + "start": 4955.4, + "end": 4956.86, + "probability": 0.5298 + }, + { + "start": 4957.54, + "end": 4960.33, + "probability": 0.6547 + }, + { + "start": 4960.9, + "end": 4962.22, + "probability": 0.8234 + }, + { + "start": 4963.82, + "end": 4968.66, + "probability": 0.845 + }, + { + "start": 4968.82, + "end": 4970.7, + "probability": 0.9658 + }, + { + "start": 4970.86, + "end": 4972.24, + "probability": 0.6078 + }, + { + "start": 4972.42, + "end": 4977.3, + "probability": 0.9473 + }, + { + "start": 4977.84, + "end": 4981.68, + "probability": 0.9123 + }, + { + "start": 4982.0, + "end": 4983.36, + "probability": 0.6465 + }, + { + "start": 4983.78, + "end": 4986.77, + "probability": 0.8286 + }, + { + "start": 4986.98, + "end": 4993.48, + "probability": 0.9415 + }, + { + "start": 4994.02, + "end": 4995.06, + "probability": 0.4911 + }, + { + "start": 4995.16, + "end": 4997.56, + "probability": 0.9741 + }, + { + "start": 4997.64, + "end": 5000.5, + "probability": 0.8758 + }, + { + "start": 5000.88, + "end": 5002.78, + "probability": 0.9909 + }, + { + "start": 5003.34, + "end": 5004.52, + "probability": 0.542 + }, + { + "start": 5004.66, + "end": 5005.74, + "probability": 0.8991 + }, + { + "start": 5006.36, + "end": 5008.8, + "probability": 0.8296 + }, + { + "start": 5009.38, + "end": 5011.03, + "probability": 0.8564 + }, + { + "start": 5011.56, + "end": 5015.42, + "probability": 0.9233 + }, + { + "start": 5015.52, + "end": 5016.18, + "probability": 0.7551 + }, + { + "start": 5017.08, + "end": 5019.08, + "probability": 0.891 + }, + { + "start": 5019.84, + "end": 5020.42, + "probability": 0.9009 + }, + { + "start": 5020.92, + "end": 5022.14, + "probability": 0.9831 + }, + { + "start": 5022.16, + "end": 5026.96, + "probability": 0.9892 + }, + { + "start": 5027.4, + "end": 5029.32, + "probability": 0.8651 + }, + { + "start": 5029.84, + "end": 5032.5, + "probability": 0.9899 + }, + { + "start": 5034.22, + "end": 5034.54, + "probability": 0.0864 + }, + { + "start": 5034.54, + "end": 5035.16, + "probability": 0.3885 + }, + { + "start": 5036.94, + "end": 5037.9, + "probability": 0.6494 + }, + { + "start": 5039.72, + "end": 5039.72, + "probability": 0.1221 + }, + { + "start": 5039.72, + "end": 5039.72, + "probability": 0.3814 + }, + { + "start": 5039.72, + "end": 5041.8, + "probability": 0.4901 + }, + { + "start": 5045.86, + "end": 5047.34, + "probability": 0.6723 + }, + { + "start": 5048.46, + "end": 5049.66, + "probability": 0.7859 + }, + { + "start": 5050.5, + "end": 5053.6, + "probability": 0.9717 + }, + { + "start": 5054.9, + "end": 5062.68, + "probability": 0.9899 + }, + { + "start": 5062.68, + "end": 5069.3, + "probability": 0.998 + }, + { + "start": 5071.54, + "end": 5074.86, + "probability": 0.9136 + }, + { + "start": 5075.76, + "end": 5077.5, + "probability": 0.8355 + }, + { + "start": 5077.92, + "end": 5080.3, + "probability": 0.876 + }, + { + "start": 5080.3, + "end": 5081.42, + "probability": 0.8494 + }, + { + "start": 5081.88, + "end": 5082.8, + "probability": 0.9675 + }, + { + "start": 5083.42, + "end": 5084.32, + "probability": 0.8268 + }, + { + "start": 5085.04, + "end": 5087.2, + "probability": 0.9238 + }, + { + "start": 5087.92, + "end": 5088.78, + "probability": 0.6852 + }, + { + "start": 5088.84, + "end": 5092.32, + "probability": 0.6516 + }, + { + "start": 5094.04, + "end": 5097.92, + "probability": 0.8931 + }, + { + "start": 5098.0, + "end": 5100.28, + "probability": 0.9348 + }, + { + "start": 5101.1, + "end": 5103.86, + "probability": 0.684 + }, + { + "start": 5104.36, + "end": 5105.82, + "probability": 0.6177 + }, + { + "start": 5105.9, + "end": 5107.62, + "probability": 0.9866 + }, + { + "start": 5107.78, + "end": 5113.34, + "probability": 0.8937 + }, + { + "start": 5114.52, + "end": 5116.02, + "probability": 0.9731 + }, + { + "start": 5116.94, + "end": 5120.48, + "probability": 0.7266 + }, + { + "start": 5120.62, + "end": 5121.84, + "probability": 0.7203 + }, + { + "start": 5122.2, + "end": 5123.5, + "probability": 0.7046 + }, + { + "start": 5123.76, + "end": 5124.48, + "probability": 0.6761 + }, + { + "start": 5124.64, + "end": 5125.51, + "probability": 0.8761 + }, + { + "start": 5126.14, + "end": 5127.72, + "probability": 0.8761 + }, + { + "start": 5127.86, + "end": 5128.58, + "probability": 0.7352 + }, + { + "start": 5128.66, + "end": 5130.72, + "probability": 0.7313 + }, + { + "start": 5131.12, + "end": 5134.16, + "probability": 0.9961 + }, + { + "start": 5134.66, + "end": 5137.68, + "probability": 0.8467 + }, + { + "start": 5137.86, + "end": 5140.02, + "probability": 0.8909 + }, + { + "start": 5140.78, + "end": 5141.6, + "probability": 0.9082 + }, + { + "start": 5141.9, + "end": 5143.14, + "probability": 0.9185 + }, + { + "start": 5143.38, + "end": 5144.1, + "probability": 0.814 + }, + { + "start": 5144.68, + "end": 5147.34, + "probability": 0.82 + }, + { + "start": 5148.38, + "end": 5149.36, + "probability": 0.5189 + }, + { + "start": 5149.42, + "end": 5151.08, + "probability": 0.9725 + }, + { + "start": 5151.16, + "end": 5155.5, + "probability": 0.9538 + }, + { + "start": 5155.82, + "end": 5158.58, + "probability": 0.9669 + }, + { + "start": 5159.24, + "end": 5160.35, + "probability": 0.8894 + }, + { + "start": 5161.1, + "end": 5161.63, + "probability": 0.8922 + }, + { + "start": 5161.84, + "end": 5163.89, + "probability": 0.9583 + }, + { + "start": 5164.46, + "end": 5164.84, + "probability": 0.7347 + }, + { + "start": 5164.94, + "end": 5167.36, + "probability": 0.7626 + }, + { + "start": 5167.82, + "end": 5170.34, + "probability": 0.938 + }, + { + "start": 5170.56, + "end": 5171.82, + "probability": 0.9297 + }, + { + "start": 5172.1, + "end": 5174.4, + "probability": 0.9319 + }, + { + "start": 5174.58, + "end": 5177.06, + "probability": 0.9185 + }, + { + "start": 5177.28, + "end": 5178.22, + "probability": 0.8902 + }, + { + "start": 5178.7, + "end": 5180.56, + "probability": 0.8441 + }, + { + "start": 5180.94, + "end": 5183.36, + "probability": 0.7203 + }, + { + "start": 5183.54, + "end": 5184.92, + "probability": 0.4923 + }, + { + "start": 5185.16, + "end": 5186.26, + "probability": 0.6708 + }, + { + "start": 5187.12, + "end": 5188.64, + "probability": 0.9464 + }, + { + "start": 5189.02, + "end": 5191.32, + "probability": 0.9697 + }, + { + "start": 5192.02, + "end": 5195.14, + "probability": 0.9784 + }, + { + "start": 5195.66, + "end": 5199.0, + "probability": 0.9778 + }, + { + "start": 5199.5, + "end": 5200.64, + "probability": 0.8171 + }, + { + "start": 5200.7, + "end": 5202.64, + "probability": 0.9608 + }, + { + "start": 5203.06, + "end": 5206.1, + "probability": 0.8124 + }, + { + "start": 5207.14, + "end": 5207.34, + "probability": 0.1089 + }, + { + "start": 5207.34, + "end": 5208.22, + "probability": 0.4986 + }, + { + "start": 5209.58, + "end": 5216.5, + "probability": 0.9577 + }, + { + "start": 5223.52, + "end": 5224.52, + "probability": 0.5916 + }, + { + "start": 5224.52, + "end": 5225.24, + "probability": 0.7126 + }, + { + "start": 5225.46, + "end": 5229.2, + "probability": 0.7305 + }, + { + "start": 5229.54, + "end": 5233.28, + "probability": 0.9949 + }, + { + "start": 5233.84, + "end": 5235.86, + "probability": 0.4011 + }, + { + "start": 5236.14, + "end": 5238.7, + "probability": 0.8305 + }, + { + "start": 5238.7, + "end": 5242.9, + "probability": 0.8579 + }, + { + "start": 5243.36, + "end": 5246.18, + "probability": 0.9883 + }, + { + "start": 5248.3, + "end": 5250.24, + "probability": 0.7128 + }, + { + "start": 5251.36, + "end": 5252.94, + "probability": 0.9489 + }, + { + "start": 5252.98, + "end": 5259.08, + "probability": 0.8493 + }, + { + "start": 5259.44, + "end": 5264.2, + "probability": 0.7872 + }, + { + "start": 5264.7, + "end": 5268.9, + "probability": 0.9791 + }, + { + "start": 5269.52, + "end": 5274.16, + "probability": 0.9644 + }, + { + "start": 5274.16, + "end": 5278.46, + "probability": 0.8972 + }, + { + "start": 5279.3, + "end": 5280.28, + "probability": 0.863 + }, + { + "start": 5280.48, + "end": 5281.68, + "probability": 0.6174 + }, + { + "start": 5282.16, + "end": 5287.52, + "probability": 0.9102 + }, + { + "start": 5287.84, + "end": 5289.62, + "probability": 0.9395 + }, + { + "start": 5289.62, + "end": 5292.06, + "probability": 0.8283 + }, + { + "start": 5293.91, + "end": 5296.36, + "probability": 0.8472 + }, + { + "start": 5296.62, + "end": 5300.18, + "probability": 0.9761 + }, + { + "start": 5300.68, + "end": 5301.56, + "probability": 0.9531 + }, + { + "start": 5301.62, + "end": 5305.26, + "probability": 0.8421 + }, + { + "start": 5305.42, + "end": 5307.66, + "probability": 0.9812 + }, + { + "start": 5308.1, + "end": 5318.48, + "probability": 0.6985 + }, + { + "start": 5319.28, + "end": 5323.7, + "probability": 0.8626 + }, + { + "start": 5324.8, + "end": 5327.98, + "probability": 0.8396 + }, + { + "start": 5328.32, + "end": 5329.66, + "probability": 0.7936 + }, + { + "start": 5330.42, + "end": 5330.78, + "probability": 0.8955 + }, + { + "start": 5331.4, + "end": 5333.62, + "probability": 0.9903 + }, + { + "start": 5335.29, + "end": 5338.7, + "probability": 0.9619 + }, + { + "start": 5338.9, + "end": 5340.2, + "probability": 0.5458 + }, + { + "start": 5340.68, + "end": 5343.8, + "probability": 0.9393 + }, + { + "start": 5343.98, + "end": 5346.86, + "probability": 0.6631 + }, + { + "start": 5347.4, + "end": 5352.76, + "probability": 0.979 + }, + { + "start": 5353.84, + "end": 5357.48, + "probability": 0.8844 + }, + { + "start": 5357.48, + "end": 5360.18, + "probability": 0.9946 + }, + { + "start": 5360.5, + "end": 5361.0, + "probability": 0.7452 + }, + { + "start": 5361.54, + "end": 5363.46, + "probability": 0.8184 + }, + { + "start": 5363.56, + "end": 5365.38, + "probability": 0.6981 + }, + { + "start": 5366.08, + "end": 5367.18, + "probability": 0.7225 + }, + { + "start": 5367.6, + "end": 5368.2, + "probability": 0.9385 + }, + { + "start": 5368.36, + "end": 5370.78, + "probability": 0.9396 + }, + { + "start": 5371.22, + "end": 5374.4, + "probability": 0.815 + }, + { + "start": 5375.04, + "end": 5375.63, + "probability": 0.8504 + }, + { + "start": 5378.24, + "end": 5381.54, + "probability": 0.9298 + }, + { + "start": 5381.54, + "end": 5383.9, + "probability": 0.8659 + }, + { + "start": 5384.38, + "end": 5385.16, + "probability": 0.8825 + }, + { + "start": 5385.24, + "end": 5386.52, + "probability": 0.7453 + }, + { + "start": 5386.82, + "end": 5390.04, + "probability": 0.719 + }, + { + "start": 5390.46, + "end": 5395.24, + "probability": 0.6115 + }, + { + "start": 5395.6, + "end": 5396.64, + "probability": 0.1677 + }, + { + "start": 5396.92, + "end": 5398.96, + "probability": 0.9365 + }, + { + "start": 5400.54, + "end": 5401.46, + "probability": 0.0093 + }, + { + "start": 5403.22, + "end": 5405.1, + "probability": 0.0237 + }, + { + "start": 5405.22, + "end": 5405.72, + "probability": 0.1849 + }, + { + "start": 5405.72, + "end": 5406.1, + "probability": 0.0165 + }, + { + "start": 5406.62, + "end": 5409.01, + "probability": 0.2431 + }, + { + "start": 5409.6, + "end": 5410.86, + "probability": 0.9634 + }, + { + "start": 5411.22, + "end": 5412.56, + "probability": 0.8229 + }, + { + "start": 5412.68, + "end": 5414.12, + "probability": 0.8409 + }, + { + "start": 5414.16, + "end": 5419.88, + "probability": 0.978 + }, + { + "start": 5420.1, + "end": 5424.54, + "probability": 0.9552 + }, + { + "start": 5424.6, + "end": 5426.14, + "probability": 0.2422 + }, + { + "start": 5426.42, + "end": 5427.24, + "probability": 0.869 + }, + { + "start": 5427.64, + "end": 5428.96, + "probability": 0.9643 + }, + { + "start": 5429.18, + "end": 5429.56, + "probability": 0.9988 + }, + { + "start": 5430.22, + "end": 5434.14, + "probability": 0.9668 + }, + { + "start": 5434.5, + "end": 5438.86, + "probability": 0.9408 + }, + { + "start": 5439.26, + "end": 5442.26, + "probability": 0.563 + }, + { + "start": 5442.44, + "end": 5444.76, + "probability": 0.9819 + }, + { + "start": 5444.84, + "end": 5446.31, + "probability": 0.9323 + }, + { + "start": 5447.58, + "end": 5449.48, + "probability": 0.3277 + }, + { + "start": 5449.48, + "end": 5453.18, + "probability": 0.3538 + }, + { + "start": 5453.32, + "end": 5455.2, + "probability": 0.4322 + }, + { + "start": 5455.3, + "end": 5456.2, + "probability": 0.5829 + }, + { + "start": 5456.32, + "end": 5458.18, + "probability": 0.699 + }, + { + "start": 5458.64, + "end": 5459.16, + "probability": 0.5093 + }, + { + "start": 5459.45, + "end": 5460.46, + "probability": 0.6886 + }, + { + "start": 5460.46, + "end": 5463.08, + "probability": 0.9001 + }, + { + "start": 5463.16, + "end": 5463.44, + "probability": 0.6738 + }, + { + "start": 5463.68, + "end": 5464.12, + "probability": 0.7258 + }, + { + "start": 5464.16, + "end": 5465.68, + "probability": 0.6873 + }, + { + "start": 5466.54, + "end": 5467.96, + "probability": 0.9289 + }, + { + "start": 5468.08, + "end": 5468.78, + "probability": 0.5469 + }, + { + "start": 5469.0, + "end": 5471.28, + "probability": 0.9229 + }, + { + "start": 5472.1, + "end": 5472.92, + "probability": 0.9438 + }, + { + "start": 5472.98, + "end": 5474.96, + "probability": 0.949 + }, + { + "start": 5475.1, + "end": 5476.32, + "probability": 0.6702 + }, + { + "start": 5476.5, + "end": 5478.2, + "probability": 0.88 + }, + { + "start": 5478.98, + "end": 5479.37, + "probability": 0.0625 + }, + { + "start": 5480.76, + "end": 5480.76, + "probability": 0.0433 + }, + { + "start": 5480.76, + "end": 5480.76, + "probability": 0.1458 + }, + { + "start": 5480.76, + "end": 5481.32, + "probability": 0.4615 + }, + { + "start": 5481.88, + "end": 5482.04, + "probability": 0.1651 + }, + { + "start": 5482.1, + "end": 5485.72, + "probability": 0.7085 + }, + { + "start": 5486.3, + "end": 5487.7, + "probability": 0.2761 + }, + { + "start": 5487.88, + "end": 5488.36, + "probability": 0.6028 + }, + { + "start": 5488.42, + "end": 5488.98, + "probability": 0.16 + }, + { + "start": 5489.42, + "end": 5489.68, + "probability": 0.5033 + }, + { + "start": 5489.7, + "end": 5491.56, + "probability": 0.6661 + }, + { + "start": 5492.06, + "end": 5492.78, + "probability": 0.0518 + }, + { + "start": 5493.24, + "end": 5495.38, + "probability": 0.6816 + }, + { + "start": 5495.64, + "end": 5496.52, + "probability": 0.9324 + }, + { + "start": 5497.18, + "end": 5502.82, + "probability": 0.9813 + }, + { + "start": 5503.7, + "end": 5504.0, + "probability": 0.3142 + }, + { + "start": 5504.46, + "end": 5509.52, + "probability": 0.8976 + }, + { + "start": 5509.7, + "end": 5510.34, + "probability": 0.9047 + }, + { + "start": 5510.46, + "end": 5514.32, + "probability": 0.8228 + }, + { + "start": 5514.6, + "end": 5515.56, + "probability": 0.7132 + }, + { + "start": 5515.58, + "end": 5517.88, + "probability": 0.9814 + }, + { + "start": 5519.32, + "end": 5520.25, + "probability": 0.8971 + }, + { + "start": 5522.08, + "end": 5524.66, + "probability": 0.7619 + }, + { + "start": 5530.46, + "end": 5530.92, + "probability": 0.526 + }, + { + "start": 5531.0, + "end": 5531.1, + "probability": 0.558 + }, + { + "start": 5531.18, + "end": 5532.94, + "probability": 0.8931 + }, + { + "start": 5532.94, + "end": 5532.94, + "probability": 0.2609 + }, + { + "start": 5532.94, + "end": 5536.08, + "probability": 0.9562 + }, + { + "start": 5536.18, + "end": 5538.38, + "probability": 0.8313 + }, + { + "start": 5538.38, + "end": 5542.46, + "probability": 0.9076 + }, + { + "start": 5543.06, + "end": 5544.1, + "probability": 0.8315 + }, + { + "start": 5544.6, + "end": 5545.34, + "probability": 0.907 + }, + { + "start": 5545.48, + "end": 5547.64, + "probability": 0.8398 + }, + { + "start": 5547.84, + "end": 5548.76, + "probability": 0.7048 + }, + { + "start": 5549.44, + "end": 5551.44, + "probability": 0.8804 + }, + { + "start": 5551.92, + "end": 5555.54, + "probability": 0.893 + }, + { + "start": 5556.48, + "end": 5557.86, + "probability": 0.9816 + }, + { + "start": 5558.06, + "end": 5559.66, + "probability": 0.818 + }, + { + "start": 5559.78, + "end": 5560.46, + "probability": 0.9744 + }, + { + "start": 5560.96, + "end": 5562.42, + "probability": 0.8537 + }, + { + "start": 5562.88, + "end": 5564.6, + "probability": 0.7934 + }, + { + "start": 5564.72, + "end": 5566.65, + "probability": 0.9229 + }, + { + "start": 5566.96, + "end": 5568.78, + "probability": 0.9503 + }, + { + "start": 5569.12, + "end": 5572.62, + "probability": 0.9771 + }, + { + "start": 5573.0, + "end": 5574.78, + "probability": 0.7902 + }, + { + "start": 5574.86, + "end": 5576.16, + "probability": 0.833 + }, + { + "start": 5576.48, + "end": 5580.14, + "probability": 0.8867 + }, + { + "start": 5580.14, + "end": 5581.3, + "probability": 0.932 + }, + { + "start": 5582.08, + "end": 5583.52, + "probability": 0.9244 + }, + { + "start": 5583.96, + "end": 5585.1, + "probability": 0.9882 + }, + { + "start": 5585.18, + "end": 5586.16, + "probability": 0.9765 + }, + { + "start": 5586.24, + "end": 5587.7, + "probability": 0.8892 + }, + { + "start": 5587.7, + "end": 5589.6, + "probability": 0.7825 + }, + { + "start": 5589.7, + "end": 5591.88, + "probability": 0.6589 + }, + { + "start": 5592.18, + "end": 5594.04, + "probability": 0.7582 + }, + { + "start": 5594.1, + "end": 5594.75, + "probability": 0.9844 + }, + { + "start": 5594.93, + "end": 5600.71, + "probability": 0.7314 + }, + { + "start": 5601.45, + "end": 5603.59, + "probability": 0.7791 + }, + { + "start": 5605.29, + "end": 5608.01, + "probability": 0.9141 + }, + { + "start": 5608.09, + "end": 5608.83, + "probability": 0.8582 + }, + { + "start": 5609.17, + "end": 5609.85, + "probability": 0.5891 + }, + { + "start": 5610.63, + "end": 5613.63, + "probability": 0.9007 + }, + { + "start": 5613.97, + "end": 5615.27, + "probability": 0.9697 + }, + { + "start": 5615.47, + "end": 5618.41, + "probability": 0.8085 + }, + { + "start": 5618.41, + "end": 5621.59, + "probability": 0.9016 + }, + { + "start": 5622.13, + "end": 5626.79, + "probability": 0.9961 + }, + { + "start": 5626.95, + "end": 5631.83, + "probability": 0.9663 + }, + { + "start": 5631.83, + "end": 5633.55, + "probability": 0.8887 + }, + { + "start": 5633.65, + "end": 5634.59, + "probability": 0.795 + }, + { + "start": 5634.63, + "end": 5636.45, + "probability": 0.4516 + }, + { + "start": 5636.51, + "end": 5640.15, + "probability": 0.9493 + }, + { + "start": 5640.25, + "end": 5643.75, + "probability": 0.7975 + }, + { + "start": 5644.71, + "end": 5649.57, + "probability": 0.7481 + }, + { + "start": 5659.45, + "end": 5661.61, + "probability": 0.1179 + }, + { + "start": 5668.45, + "end": 5674.59, + "probability": 0.0301 + }, + { + "start": 5675.35, + "end": 5675.65, + "probability": 0.0694 + }, + { + "start": 5676.52, + "end": 5678.09, + "probability": 0.0075 + }, + { + "start": 5678.45, + "end": 5680.65, + "probability": 0.0714 + }, + { + "start": 5681.35, + "end": 5688.49, + "probability": 0.0417 + }, + { + "start": 5688.51, + "end": 5688.67, + "probability": 0.0392 + }, + { + "start": 5689.69, + "end": 5690.53, + "probability": 0.0451 + }, + { + "start": 5691.47, + "end": 5697.39, + "probability": 0.0448 + }, + { + "start": 5697.39, + "end": 5698.41, + "probability": 0.1178 + }, + { + "start": 5698.41, + "end": 5698.41, + "probability": 0.0806 + }, + { + "start": 5699.09, + "end": 5700.59, + "probability": 0.05 + }, + { + "start": 5703.12, + "end": 5704.99, + "probability": 0.0302 + }, + { + "start": 5704.99, + "end": 5706.27, + "probability": 0.0149 + }, + { + "start": 5706.27, + "end": 5707.57, + "probability": 0.0184 + }, + { + "start": 5709.21, + "end": 5709.63, + "probability": 0.0367 + }, + { + "start": 5709.89, + "end": 5710.09, + "probability": 0.079 + }, + { + "start": 5710.09, + "end": 5710.13, + "probability": 0.1968 + }, + { + "start": 5710.13, + "end": 5710.73, + "probability": 0.1697 + }, + { + "start": 5711.99, + "end": 5715.75, + "probability": 0.0487 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.0, + "end": 5716.0, + "probability": 0.0 + }, + { + "start": 5716.64, + "end": 5718.98, + "probability": 0.6724 + }, + { + "start": 5719.0, + "end": 5719.58, + "probability": 0.551 + }, + { + "start": 5719.96, + "end": 5720.64, + "probability": 0.7708 + }, + { + "start": 5720.78, + "end": 5723.06, + "probability": 0.9482 + }, + { + "start": 5723.5, + "end": 5726.28, + "probability": 0.8066 + }, + { + "start": 5726.8, + "end": 5728.4, + "probability": 0.9332 + }, + { + "start": 5728.48, + "end": 5729.12, + "probability": 0.7383 + }, + { + "start": 5729.18, + "end": 5730.02, + "probability": 0.7435 + }, + { + "start": 5730.66, + "end": 5734.6, + "probability": 0.7655 + }, + { + "start": 5734.98, + "end": 5735.74, + "probability": 0.9351 + }, + { + "start": 5736.32, + "end": 5741.1, + "probability": 0.9358 + }, + { + "start": 5741.94, + "end": 5744.75, + "probability": 0.882 + }, + { + "start": 5745.28, + "end": 5746.1, + "probability": 0.8583 + }, + { + "start": 5746.34, + "end": 5746.84, + "probability": 0.462 + }, + { + "start": 5746.84, + "end": 5749.96, + "probability": 0.8519 + }, + { + "start": 5750.58, + "end": 5753.42, + "probability": 0.9478 + }, + { + "start": 5753.46, + "end": 5754.38, + "probability": 0.9565 + }, + { + "start": 5755.56, + "end": 5757.5, + "probability": 0.9521 + }, + { + "start": 5757.66, + "end": 5759.72, + "probability": 0.7307 + }, + { + "start": 5759.88, + "end": 5760.91, + "probability": 0.7673 + }, + { + "start": 5761.3, + "end": 5762.0, + "probability": 0.8147 + }, + { + "start": 5762.14, + "end": 5762.96, + "probability": 0.7303 + }, + { + "start": 5763.72, + "end": 5766.64, + "probability": 0.6282 + }, + { + "start": 5766.72, + "end": 5767.48, + "probability": 0.8965 + }, + { + "start": 5768.38, + "end": 5769.1, + "probability": 0.8979 + }, + { + "start": 5769.74, + "end": 5772.18, + "probability": 0.9464 + }, + { + "start": 5772.24, + "end": 5773.83, + "probability": 0.9233 + }, + { + "start": 5775.35, + "end": 5776.86, + "probability": 0.967 + }, + { + "start": 5776.96, + "end": 5777.68, + "probability": 0.9425 + }, + { + "start": 5778.86, + "end": 5778.88, + "probability": 0.1898 + }, + { + "start": 5778.88, + "end": 5781.16, + "probability": 0.9876 + }, + { + "start": 5781.54, + "end": 5785.96, + "probability": 0.6289 + }, + { + "start": 5785.98, + "end": 5787.9, + "probability": 0.9375 + }, + { + "start": 5787.98, + "end": 5788.66, + "probability": 0.7847 + }, + { + "start": 5788.66, + "end": 5792.86, + "probability": 0.9951 + }, + { + "start": 5796.2, + "end": 5797.62, + "probability": 0.6607 + }, + { + "start": 5797.62, + "end": 5798.48, + "probability": 0.6767 + }, + { + "start": 5798.48, + "end": 5798.48, + "probability": 0.0146 + }, + { + "start": 5798.48, + "end": 5798.62, + "probability": 0.7533 + }, + { + "start": 5798.68, + "end": 5799.3, + "probability": 0.7711 + }, + { + "start": 5799.46, + "end": 5801.19, + "probability": 0.9829 + }, + { + "start": 5801.7, + "end": 5805.0, + "probability": 0.96 + }, + { + "start": 5805.7, + "end": 5807.86, + "probability": 0.8658 + }, + { + "start": 5807.96, + "end": 5810.09, + "probability": 0.9545 + }, + { + "start": 5811.06, + "end": 5812.01, + "probability": 0.9285 + }, + { + "start": 5812.32, + "end": 5814.99, + "probability": 0.6114 + }, + { + "start": 5815.22, + "end": 5815.72, + "probability": 0.7882 + }, + { + "start": 5815.8, + "end": 5816.56, + "probability": 0.8929 + }, + { + "start": 5816.62, + "end": 5817.58, + "probability": 0.8107 + }, + { + "start": 5817.7, + "end": 5818.52, + "probability": 0.8777 + }, + { + "start": 5818.72, + "end": 5819.46, + "probability": 0.4005 + }, + { + "start": 5819.94, + "end": 5821.2, + "probability": 0.602 + }, + { + "start": 5821.22, + "end": 5823.38, + "probability": 0.6736 + }, + { + "start": 5823.6, + "end": 5827.94, + "probability": 0.9137 + }, + { + "start": 5828.64, + "end": 5830.78, + "probability": 0.9576 + }, + { + "start": 5831.48, + "end": 5832.75, + "probability": 0.9773 + }, + { + "start": 5832.86, + "end": 5834.24, + "probability": 0.9598 + }, + { + "start": 5834.46, + "end": 5835.52, + "probability": 0.8296 + }, + { + "start": 5836.02, + "end": 5837.8, + "probability": 0.686 + }, + { + "start": 5837.9, + "end": 5839.9, + "probability": 0.7545 + }, + { + "start": 5840.26, + "end": 5841.28, + "probability": 0.9766 + }, + { + "start": 5841.98, + "end": 5843.8, + "probability": 0.9661 + }, + { + "start": 5844.54, + "end": 5845.04, + "probability": 0.518 + }, + { + "start": 5845.56, + "end": 5849.38, + "probability": 0.9626 + }, + { + "start": 5849.96, + "end": 5851.09, + "probability": 0.9497 + }, + { + "start": 5851.9, + "end": 5856.52, + "probability": 0.9866 + }, + { + "start": 5863.82, + "end": 5864.86, + "probability": 0.8612 + }, + { + "start": 5864.98, + "end": 5865.58, + "probability": 0.7154 + }, + { + "start": 5865.68, + "end": 5869.62, + "probability": 0.9858 + }, + { + "start": 5869.88, + "end": 5871.56, + "probability": 0.6734 + }, + { + "start": 5873.92, + "end": 5875.7, + "probability": 0.7237 + }, + { + "start": 5875.7, + "end": 5877.3, + "probability": 0.92 + }, + { + "start": 5877.5, + "end": 5879.44, + "probability": 0.9927 + }, + { + "start": 5879.44, + "end": 5882.78, + "probability": 0.9929 + }, + { + "start": 5883.26, + "end": 5884.78, + "probability": 0.9906 + }, + { + "start": 5884.94, + "end": 5886.1, + "probability": 0.798 + }, + { + "start": 5886.42, + "end": 5886.68, + "probability": 0.8291 + }, + { + "start": 5886.76, + "end": 5887.48, + "probability": 0.9956 + }, + { + "start": 5887.54, + "end": 5892.66, + "probability": 0.991 + }, + { + "start": 5892.66, + "end": 5895.98, + "probability": 0.988 + }, + { + "start": 5896.3, + "end": 5898.12, + "probability": 0.9797 + }, + { + "start": 5898.22, + "end": 5898.89, + "probability": 0.3776 + }, + { + "start": 5899.72, + "end": 5900.54, + "probability": 0.6978 + }, + { + "start": 5900.54, + "end": 5902.22, + "probability": 0.9781 + }, + { + "start": 5902.76, + "end": 5903.16, + "probability": 0.8026 + }, + { + "start": 5903.3, + "end": 5903.88, + "probability": 0.9526 + }, + { + "start": 5903.92, + "end": 5904.84, + "probability": 0.9917 + }, + { + "start": 5905.04, + "end": 5905.67, + "probability": 0.522 + }, + { + "start": 5906.0, + "end": 5906.48, + "probability": 0.9626 + }, + { + "start": 5906.56, + "end": 5908.58, + "probability": 0.976 + }, + { + "start": 5908.72, + "end": 5913.76, + "probability": 0.956 + }, + { + "start": 5914.26, + "end": 5916.74, + "probability": 0.9351 + }, + { + "start": 5916.9, + "end": 5922.28, + "probability": 0.8317 + }, + { + "start": 5923.56, + "end": 5924.3, + "probability": 0.7118 + }, + { + "start": 5924.46, + "end": 5926.37, + "probability": 0.8799 + }, + { + "start": 5927.12, + "end": 5929.47, + "probability": 0.6662 + }, + { + "start": 5930.32, + "end": 5933.22, + "probability": 0.9949 + }, + { + "start": 5933.9, + "end": 5935.72, + "probability": 0.5084 + }, + { + "start": 5935.86, + "end": 5937.39, + "probability": 0.8337 + }, + { + "start": 5937.58, + "end": 5938.58, + "probability": 0.8652 + }, + { + "start": 5938.66, + "end": 5940.0, + "probability": 0.8867 + }, + { + "start": 5940.46, + "end": 5942.97, + "probability": 0.9597 + }, + { + "start": 5943.54, + "end": 5944.42, + "probability": 0.749 + }, + { + "start": 5944.82, + "end": 5945.61, + "probability": 0.9087 + }, + { + "start": 5946.58, + "end": 5949.14, + "probability": 0.9925 + }, + { + "start": 5949.14, + "end": 5953.72, + "probability": 0.9745 + }, + { + "start": 5953.92, + "end": 5954.3, + "probability": 0.6459 + }, + { + "start": 5954.4, + "end": 5955.4, + "probability": 0.7512 + }, + { + "start": 5955.98, + "end": 5958.46, + "probability": 0.8889 + }, + { + "start": 5958.88, + "end": 5961.4, + "probability": 0.9959 + }, + { + "start": 5961.54, + "end": 5962.0, + "probability": 0.6846 + }, + { + "start": 5962.08, + "end": 5964.73, + "probability": 0.988 + }, + { + "start": 5965.66, + "end": 5968.4, + "probability": 0.7755 + }, + { + "start": 5969.92, + "end": 5973.14, + "probability": 0.78 + }, + { + "start": 5973.62, + "end": 5978.7, + "probability": 0.9783 + }, + { + "start": 5979.2, + "end": 5981.76, + "probability": 0.9771 + }, + { + "start": 5982.56, + "end": 5986.58, + "probability": 0.9978 + }, + { + "start": 5986.58, + "end": 5990.38, + "probability": 0.9711 + }, + { + "start": 5990.72, + "end": 5992.24, + "probability": 0.9942 + }, + { + "start": 5993.5, + "end": 5997.08, + "probability": 0.9336 + }, + { + "start": 5997.6, + "end": 5999.42, + "probability": 0.8485 + }, + { + "start": 5999.42, + "end": 6000.7, + "probability": 0.9507 + }, + { + "start": 6000.88, + "end": 6001.08, + "probability": 0.8481 + }, + { + "start": 6001.1, + "end": 6002.32, + "probability": 0.9899 + }, + { + "start": 6003.04, + "end": 6003.82, + "probability": 0.9264 + }, + { + "start": 6004.0, + "end": 6006.68, + "probability": 0.9531 + }, + { + "start": 6006.74, + "end": 6008.27, + "probability": 0.8445 + }, + { + "start": 6009.84, + "end": 6012.61, + "probability": 0.995 + }, + { + "start": 6013.22, + "end": 6015.88, + "probability": 0.9303 + }, + { + "start": 6016.32, + "end": 6018.34, + "probability": 0.9849 + }, + { + "start": 6019.12, + "end": 6022.42, + "probability": 0.9606 + }, + { + "start": 6023.08, + "end": 6025.04, + "probability": 0.7087 + }, + { + "start": 6025.7, + "end": 6030.56, + "probability": 0.983 + }, + { + "start": 6030.56, + "end": 6034.52, + "probability": 0.9692 + }, + { + "start": 6035.14, + "end": 6040.32, + "probability": 0.985 + }, + { + "start": 6040.58, + "end": 6044.13, + "probability": 0.9033 + }, + { + "start": 6044.48, + "end": 6048.08, + "probability": 0.9824 + }, + { + "start": 6048.08, + "end": 6052.72, + "probability": 0.9989 + }, + { + "start": 6053.34, + "end": 6054.04, + "probability": 0.2629 + }, + { + "start": 6054.5, + "end": 6055.1, + "probability": 0.9496 + }, + { + "start": 6055.5, + "end": 6058.0, + "probability": 0.9122 + }, + { + "start": 6058.66, + "end": 6061.12, + "probability": 0.9904 + }, + { + "start": 6061.5, + "end": 6063.42, + "probability": 0.8416 + }, + { + "start": 6063.96, + "end": 6068.92, + "probability": 0.9656 + }, + { + "start": 6069.44, + "end": 6071.84, + "probability": 0.9849 + }, + { + "start": 6071.84, + "end": 6075.26, + "probability": 0.999 + }, + { + "start": 6075.26, + "end": 6075.92, + "probability": 0.7502 + }, + { + "start": 6076.46, + "end": 6078.12, + "probability": 0.7413 + }, + { + "start": 6079.02, + "end": 6079.58, + "probability": 0.9471 + }, + { + "start": 6079.68, + "end": 6081.32, + "probability": 0.9708 + }, + { + "start": 6081.46, + "end": 6085.4, + "probability": 0.8662 + }, + { + "start": 6085.88, + "end": 6088.84, + "probability": 0.9508 + }, + { + "start": 6088.94, + "end": 6089.68, + "probability": 0.599 + }, + { + "start": 6090.9, + "end": 6092.32, + "probability": 0.5251 + }, + { + "start": 6095.17, + "end": 6100.22, + "probability": 0.814 + }, + { + "start": 6100.26, + "end": 6101.04, + "probability": 0.8589 + }, + { + "start": 6102.48, + "end": 6103.35, + "probability": 0.8989 + }, + { + "start": 6104.22, + "end": 6104.92, + "probability": 0.3288 + }, + { + "start": 6105.18, + "end": 6106.24, + "probability": 0.9105 + }, + { + "start": 6108.39, + "end": 6111.7, + "probability": 0.5676 + }, + { + "start": 6111.76, + "end": 6112.86, + "probability": 0.4192 + }, + { + "start": 6113.2, + "end": 6113.99, + "probability": 0.7681 + }, + { + "start": 6114.66, + "end": 6118.06, + "probability": 0.9668 + }, + { + "start": 6118.12, + "end": 6119.98, + "probability": 0.9456 + }, + { + "start": 6120.16, + "end": 6120.76, + "probability": 0.8888 + }, + { + "start": 6121.04, + "end": 6126.82, + "probability": 0.895 + }, + { + "start": 6127.28, + "end": 6128.72, + "probability": 0.4698 + }, + { + "start": 6128.86, + "end": 6130.23, + "probability": 0.913 + }, + { + "start": 6131.98, + "end": 6136.94, + "probability": 0.98 + }, + { + "start": 6136.94, + "end": 6139.3, + "probability": 0.9594 + }, + { + "start": 6140.44, + "end": 6141.08, + "probability": 0.7497 + }, + { + "start": 6141.26, + "end": 6142.06, + "probability": 0.6667 + }, + { + "start": 6142.32, + "end": 6145.5, + "probability": 0.979 + }, + { + "start": 6145.58, + "end": 6149.78, + "probability": 0.9321 + }, + { + "start": 6149.94, + "end": 6150.66, + "probability": 0.8445 + }, + { + "start": 6151.14, + "end": 6152.35, + "probability": 0.6562 + }, + { + "start": 6153.02, + "end": 6155.86, + "probability": 0.7095 + }, + { + "start": 6155.98, + "end": 6156.58, + "probability": 0.611 + }, + { + "start": 6156.86, + "end": 6158.52, + "probability": 0.8247 + }, + { + "start": 6158.92, + "end": 6160.5, + "probability": 0.7307 + }, + { + "start": 6160.5, + "end": 6161.02, + "probability": 0.4432 + }, + { + "start": 6161.18, + "end": 6163.12, + "probability": 0.9504 + }, + { + "start": 6163.52, + "end": 6164.94, + "probability": 0.6642 + }, + { + "start": 6166.12, + "end": 6167.94, + "probability": 0.8421 + }, + { + "start": 6168.02, + "end": 6170.08, + "probability": 0.7646 + }, + { + "start": 6170.42, + "end": 6171.64, + "probability": 0.9027 + }, + { + "start": 6171.8, + "end": 6172.24, + "probability": 0.7036 + }, + { + "start": 6172.34, + "end": 6172.66, + "probability": 0.342 + }, + { + "start": 6172.68, + "end": 6174.24, + "probability": 0.9058 + }, + { + "start": 6174.3, + "end": 6179.36, + "probability": 0.8662 + }, + { + "start": 6179.5, + "end": 6183.76, + "probability": 0.9878 + }, + { + "start": 6184.56, + "end": 6185.76, + "probability": 0.741 + }, + { + "start": 6186.06, + "end": 6188.77, + "probability": 0.9624 + }, + { + "start": 6189.32, + "end": 6190.87, + "probability": 0.8148 + }, + { + "start": 6191.7, + "end": 6192.6, + "probability": 0.9307 + }, + { + "start": 6192.82, + "end": 6194.46, + "probability": 0.8031 + }, + { + "start": 6194.5, + "end": 6194.98, + "probability": 0.7298 + }, + { + "start": 6195.66, + "end": 6196.71, + "probability": 0.7333 + }, + { + "start": 6196.96, + "end": 6198.86, + "probability": 0.9059 + }, + { + "start": 6198.9, + "end": 6199.42, + "probability": 0.6699 + }, + { + "start": 6199.56, + "end": 6200.06, + "probability": 0.5159 + }, + { + "start": 6200.34, + "end": 6201.32, + "probability": 0.8704 + }, + { + "start": 6201.48, + "end": 6204.32, + "probability": 0.9636 + }, + { + "start": 6204.74, + "end": 6205.7, + "probability": 0.9602 + }, + { + "start": 6205.82, + "end": 6206.6, + "probability": 0.7097 + }, + { + "start": 6206.7, + "end": 6208.26, + "probability": 0.6049 + }, + { + "start": 6208.42, + "end": 6210.04, + "probability": 0.885 + }, + { + "start": 6210.1, + "end": 6213.72, + "probability": 0.8932 + }, + { + "start": 6214.04, + "end": 6216.2, + "probability": 0.7428 + }, + { + "start": 6216.4, + "end": 6217.14, + "probability": 0.7902 + }, + { + "start": 6217.4, + "end": 6223.3, + "probability": 0.939 + }, + { + "start": 6224.0, + "end": 6224.22, + "probability": 0.0355 + }, + { + "start": 6224.48, + "end": 6226.08, + "probability": 0.9812 + }, + { + "start": 6226.4, + "end": 6227.82, + "probability": 0.8987 + }, + { + "start": 6228.12, + "end": 6228.6, + "probability": 0.3768 + }, + { + "start": 6228.7, + "end": 6229.92, + "probability": 0.934 + }, + { + "start": 6229.96, + "end": 6233.42, + "probability": 0.8344 + }, + { + "start": 6233.74, + "end": 6236.12, + "probability": 0.9849 + }, + { + "start": 6236.32, + "end": 6236.74, + "probability": 0.4611 + }, + { + "start": 6236.84, + "end": 6237.96, + "probability": 0.8838 + }, + { + "start": 6238.42, + "end": 6241.03, + "probability": 0.6567 + }, + { + "start": 6241.44, + "end": 6242.98, + "probability": 0.7337 + }, + { + "start": 6243.34, + "end": 6244.41, + "probability": 0.8311 + }, + { + "start": 6245.52, + "end": 6246.24, + "probability": 0.4821 + }, + { + "start": 6246.78, + "end": 6247.62, + "probability": 0.7673 + }, + { + "start": 6247.7, + "end": 6252.0, + "probability": 0.9609 + }, + { + "start": 6253.3, + "end": 6255.13, + "probability": 0.8583 + }, + { + "start": 6256.04, + "end": 6257.6, + "probability": 0.9961 + }, + { + "start": 6257.7, + "end": 6258.5, + "probability": 0.8433 + }, + { + "start": 6258.94, + "end": 6261.0, + "probability": 0.5623 + }, + { + "start": 6261.16, + "end": 6263.4, + "probability": 0.9523 + }, + { + "start": 6263.72, + "end": 6266.78, + "probability": 0.7296 + }, + { + "start": 6266.88, + "end": 6268.32, + "probability": 0.9861 + }, + { + "start": 6268.92, + "end": 6269.78, + "probability": 0.8393 + }, + { + "start": 6270.3, + "end": 6273.36, + "probability": 0.8922 + }, + { + "start": 6273.5, + "end": 6274.84, + "probability": 0.9247 + }, + { + "start": 6274.92, + "end": 6276.14, + "probability": 0.7087 + }, + { + "start": 6276.22, + "end": 6277.04, + "probability": 0.492 + }, + { + "start": 6277.2, + "end": 6278.1, + "probability": 0.9753 + }, + { + "start": 6278.76, + "end": 6280.14, + "probability": 0.8201 + }, + { + "start": 6280.26, + "end": 6281.74, + "probability": 0.8739 + }, + { + "start": 6281.98, + "end": 6283.6, + "probability": 0.9961 + }, + { + "start": 6283.9, + "end": 6285.44, + "probability": 0.958 + }, + { + "start": 6285.98, + "end": 6287.1, + "probability": 0.2709 + }, + { + "start": 6287.68, + "end": 6288.54, + "probability": 0.2239 + }, + { + "start": 6288.75, + "end": 6291.38, + "probability": 0.8727 + }, + { + "start": 6291.38, + "end": 6294.04, + "probability": 0.2218 + }, + { + "start": 6294.2, + "end": 6297.4, + "probability": 0.9866 + }, + { + "start": 6297.56, + "end": 6297.72, + "probability": 0.7113 + }, + { + "start": 6297.74, + "end": 6299.68, + "probability": 0.7993 + }, + { + "start": 6299.94, + "end": 6301.02, + "probability": 0.977 + }, + { + "start": 6301.12, + "end": 6302.42, + "probability": 0.6514 + }, + { + "start": 6302.5, + "end": 6305.16, + "probability": 0.9358 + }, + { + "start": 6305.2, + "end": 6306.82, + "probability": 0.7276 + }, + { + "start": 6307.0, + "end": 6307.7, + "probability": 0.8406 + }, + { + "start": 6307.9, + "end": 6309.4, + "probability": 0.9648 + }, + { + "start": 6310.42, + "end": 6313.58, + "probability": 0.897 + }, + { + "start": 6313.6, + "end": 6314.48, + "probability": 0.7167 + }, + { + "start": 6324.84, + "end": 6325.7, + "probability": 0.726 + }, + { + "start": 6325.92, + "end": 6326.66, + "probability": 0.8336 + }, + { + "start": 6327.02, + "end": 6329.5, + "probability": 0.732 + }, + { + "start": 6329.54, + "end": 6332.58, + "probability": 0.8901 + }, + { + "start": 6332.74, + "end": 6338.78, + "probability": 0.9474 + }, + { + "start": 6339.06, + "end": 6340.7, + "probability": 0.9771 + }, + { + "start": 6340.94, + "end": 6343.04, + "probability": 0.8095 + }, + { + "start": 6343.34, + "end": 6345.92, + "probability": 0.9202 + }, + { + "start": 6346.02, + "end": 6350.44, + "probability": 0.999 + }, + { + "start": 6350.98, + "end": 6354.64, + "probability": 0.852 + }, + { + "start": 6355.5, + "end": 6364.12, + "probability": 0.9886 + }, + { + "start": 6365.2, + "end": 6368.14, + "probability": 0.9965 + }, + { + "start": 6368.58, + "end": 6370.02, + "probability": 0.721 + }, + { + "start": 6370.22, + "end": 6376.9, + "probability": 0.9881 + }, + { + "start": 6377.2, + "end": 6378.67, + "probability": 0.8624 + }, + { + "start": 6379.12, + "end": 6382.66, + "probability": 0.4086 + }, + { + "start": 6382.66, + "end": 6385.52, + "probability": 0.9671 + }, + { + "start": 6385.6, + "end": 6386.48, + "probability": 0.852 + }, + { + "start": 6386.5, + "end": 6391.84, + "probability": 0.9531 + }, + { + "start": 6392.42, + "end": 6394.84, + "probability": 0.9819 + }, + { + "start": 6394.94, + "end": 6396.58, + "probability": 0.9424 + }, + { + "start": 6397.8, + "end": 6398.64, + "probability": 0.5789 + }, + { + "start": 6398.68, + "end": 6399.28, + "probability": 0.654 + }, + { + "start": 6399.48, + "end": 6402.1, + "probability": 0.8258 + }, + { + "start": 6402.64, + "end": 6403.66, + "probability": 0.8621 + }, + { + "start": 6403.88, + "end": 6407.12, + "probability": 0.9121 + }, + { + "start": 6407.12, + "end": 6411.1, + "probability": 0.9951 + }, + { + "start": 6412.34, + "end": 6413.54, + "probability": 0.3864 + }, + { + "start": 6413.82, + "end": 6416.58, + "probability": 0.9925 + }, + { + "start": 6417.42, + "end": 6419.7, + "probability": 0.9258 + }, + { + "start": 6419.92, + "end": 6420.44, + "probability": 0.7107 + }, + { + "start": 6420.8, + "end": 6422.68, + "probability": 0.825 + }, + { + "start": 6422.7, + "end": 6424.46, + "probability": 0.7093 + }, + { + "start": 6424.52, + "end": 6426.49, + "probability": 0.954 + }, + { + "start": 6427.12, + "end": 6429.12, + "probability": 0.8119 + }, + { + "start": 6429.52, + "end": 6430.38, + "probability": 0.6525 + }, + { + "start": 6430.5, + "end": 6436.27, + "probability": 0.9727 + }, + { + "start": 6436.38, + "end": 6441.9, + "probability": 0.9226 + }, + { + "start": 6441.9, + "end": 6442.22, + "probability": 0.6695 + }, + { + "start": 6442.32, + "end": 6445.1, + "probability": 0.9581 + }, + { + "start": 6445.42, + "end": 6446.05, + "probability": 0.6201 + }, + { + "start": 6446.24, + "end": 6446.7, + "probability": 0.8607 + }, + { + "start": 6446.86, + "end": 6448.06, + "probability": 0.9138 + }, + { + "start": 6448.14, + "end": 6449.2, + "probability": 0.7329 + }, + { + "start": 6449.22, + "end": 6451.28, + "probability": 0.989 + }, + { + "start": 6452.48, + "end": 6454.04, + "probability": 0.8235 + }, + { + "start": 6454.26, + "end": 6457.28, + "probability": 0.9937 + }, + { + "start": 6457.38, + "end": 6458.7, + "probability": 0.9932 + }, + { + "start": 6460.08, + "end": 6461.44, + "probability": 0.9873 + }, + { + "start": 6461.58, + "end": 6466.42, + "probability": 0.9812 + }, + { + "start": 6466.42, + "end": 6466.64, + "probability": 0.451 + }, + { + "start": 6467.0, + "end": 6468.59, + "probability": 0.9702 + }, + { + "start": 6469.54, + "end": 6470.0, + "probability": 0.5811 + }, + { + "start": 6470.54, + "end": 6473.64, + "probability": 0.9934 + }, + { + "start": 6474.08, + "end": 6474.8, + "probability": 0.6816 + }, + { + "start": 6475.84, + "end": 6478.2, + "probability": 0.9698 + }, + { + "start": 6478.4, + "end": 6481.94, + "probability": 0.8406 + }, + { + "start": 6482.1, + "end": 6486.48, + "probability": 0.9788 + }, + { + "start": 6486.56, + "end": 6489.05, + "probability": 0.9056 + }, + { + "start": 6489.74, + "end": 6490.22, + "probability": 0.6234 + }, + { + "start": 6490.36, + "end": 6492.28, + "probability": 0.9302 + }, + { + "start": 6493.14, + "end": 6496.24, + "probability": 0.8462 + }, + { + "start": 6496.42, + "end": 6497.69, + "probability": 0.9922 + }, + { + "start": 6497.86, + "end": 6499.78, + "probability": 0.9985 + }, + { + "start": 6499.92, + "end": 6501.0, + "probability": 0.988 + }, + { + "start": 6501.08, + "end": 6502.84, + "probability": 0.7897 + }, + { + "start": 6502.94, + "end": 6503.72, + "probability": 0.7937 + }, + { + "start": 6503.9, + "end": 6504.68, + "probability": 0.7885 + }, + { + "start": 6505.26, + "end": 6508.94, + "probability": 0.9276 + }, + { + "start": 6509.76, + "end": 6510.78, + "probability": 0.7582 + }, + { + "start": 6511.36, + "end": 6516.9, + "probability": 0.8592 + }, + { + "start": 6521.56, + "end": 6522.94, + "probability": 0.6942 + }, + { + "start": 6523.06, + "end": 6523.72, + "probability": 0.6614 + }, + { + "start": 6523.88, + "end": 6526.36, + "probability": 0.986 + }, + { + "start": 6527.08, + "end": 6529.78, + "probability": 0.8062 + }, + { + "start": 6530.5, + "end": 6534.0, + "probability": 0.5431 + }, + { + "start": 6534.54, + "end": 6537.96, + "probability": 0.8101 + }, + { + "start": 6538.66, + "end": 6542.06, + "probability": 0.9745 + }, + { + "start": 6542.6, + "end": 6548.3, + "probability": 0.988 + }, + { + "start": 6548.42, + "end": 6549.42, + "probability": 0.891 + }, + { + "start": 6550.16, + "end": 6551.98, + "probability": 0.7283 + }, + { + "start": 6552.08, + "end": 6552.62, + "probability": 0.9755 + }, + { + "start": 6552.84, + "end": 6554.28, + "probability": 0.715 + }, + { + "start": 6554.68, + "end": 6558.02, + "probability": 0.9874 + }, + { + "start": 6558.14, + "end": 6563.68, + "probability": 0.9017 + }, + { + "start": 6563.68, + "end": 6568.1, + "probability": 0.7594 + }, + { + "start": 6568.6, + "end": 6571.12, + "probability": 0.9935 + }, + { + "start": 6571.12, + "end": 6573.88, + "probability": 0.9846 + }, + { + "start": 6574.12, + "end": 6576.82, + "probability": 0.978 + }, + { + "start": 6576.82, + "end": 6580.58, + "probability": 0.9163 + }, + { + "start": 6581.24, + "end": 6581.42, + "probability": 0.046 + }, + { + "start": 6581.42, + "end": 6582.36, + "probability": 0.7942 + }, + { + "start": 6583.08, + "end": 6587.0, + "probability": 0.7909 + }, + { + "start": 6587.0, + "end": 6591.52, + "probability": 0.794 + }, + { + "start": 6591.6, + "end": 6597.32, + "probability": 0.886 + }, + { + "start": 6597.38, + "end": 6598.51, + "probability": 0.7887 + }, + { + "start": 6599.28, + "end": 6599.9, + "probability": 0.7554 + }, + { + "start": 6599.96, + "end": 6600.66, + "probability": 0.9269 + }, + { + "start": 6600.72, + "end": 6603.7, + "probability": 0.9453 + }, + { + "start": 6603.7, + "end": 6604.5, + "probability": 0.7756 + }, + { + "start": 6604.76, + "end": 6606.48, + "probability": 0.9654 + }, + { + "start": 6606.64, + "end": 6614.28, + "probability": 0.9896 + }, + { + "start": 6614.36, + "end": 6615.26, + "probability": 0.8615 + }, + { + "start": 6634.32, + "end": 6636.98, + "probability": 0.7288 + }, + { + "start": 6637.84, + "end": 6643.32, + "probability": 0.9739 + }, + { + "start": 6643.76, + "end": 6648.24, + "probability": 0.9461 + }, + { + "start": 6649.26, + "end": 6650.48, + "probability": 0.9899 + }, + { + "start": 6651.66, + "end": 6653.16, + "probability": 0.9066 + }, + { + "start": 6653.8, + "end": 6656.66, + "probability": 0.9057 + }, + { + "start": 6658.02, + "end": 6661.2, + "probability": 0.9958 + }, + { + "start": 6662.34, + "end": 6664.2, + "probability": 0.9264 + }, + { + "start": 6665.08, + "end": 6666.88, + "probability": 0.8953 + }, + { + "start": 6667.86, + "end": 6671.0, + "probability": 0.9863 + }, + { + "start": 6671.58, + "end": 6674.36, + "probability": 0.9705 + }, + { + "start": 6675.38, + "end": 6677.18, + "probability": 0.9319 + }, + { + "start": 6677.46, + "end": 6678.74, + "probability": 0.9406 + }, + { + "start": 6679.16, + "end": 6681.14, + "probability": 0.9869 + }, + { + "start": 6681.32, + "end": 6683.82, + "probability": 0.8383 + }, + { + "start": 6684.5, + "end": 6689.8, + "probability": 0.8442 + }, + { + "start": 6689.8, + "end": 6694.24, + "probability": 0.9995 + }, + { + "start": 6695.58, + "end": 6698.02, + "probability": 0.684 + }, + { + "start": 6698.94, + "end": 6703.0, + "probability": 0.9071 + }, + { + "start": 6703.4, + "end": 6706.06, + "probability": 0.8631 + }, + { + "start": 6706.32, + "end": 6707.38, + "probability": 0.8875 + }, + { + "start": 6708.24, + "end": 6711.6, + "probability": 0.9536 + }, + { + "start": 6712.14, + "end": 6713.3, + "probability": 0.818 + }, + { + "start": 6713.78, + "end": 6715.04, + "probability": 0.7546 + }, + { + "start": 6715.18, + "end": 6720.7, + "probability": 0.9785 + }, + { + "start": 6720.7, + "end": 6725.34, + "probability": 0.9746 + }, + { + "start": 6727.5, + "end": 6730.9, + "probability": 0.9956 + }, + { + "start": 6731.42, + "end": 6735.24, + "probability": 0.9647 + }, + { + "start": 6735.86, + "end": 6740.52, + "probability": 0.7118 + }, + { + "start": 6741.22, + "end": 6742.96, + "probability": 0.96 + }, + { + "start": 6743.16, + "end": 6747.44, + "probability": 0.9518 + }, + { + "start": 6748.32, + "end": 6754.28, + "probability": 0.9931 + }, + { + "start": 6755.56, + "end": 6761.42, + "probability": 0.988 + }, + { + "start": 6763.08, + "end": 6768.0, + "probability": 0.9971 + }, + { + "start": 6768.0, + "end": 6772.44, + "probability": 0.9976 + }, + { + "start": 6773.74, + "end": 6778.0, + "probability": 0.9735 + }, + { + "start": 6778.0, + "end": 6783.92, + "probability": 0.9948 + }, + { + "start": 6784.64, + "end": 6789.2, + "probability": 0.9985 + }, + { + "start": 6792.02, + "end": 6794.22, + "probability": 0.9655 + }, + { + "start": 6795.24, + "end": 6796.01, + "probability": 0.4232 + }, + { + "start": 6796.58, + "end": 6797.2, + "probability": 0.9874 + }, + { + "start": 6797.42, + "end": 6798.34, + "probability": 0.933 + }, + { + "start": 6798.82, + "end": 6802.46, + "probability": 0.9277 + }, + { + "start": 6802.8, + "end": 6805.74, + "probability": 0.9722 + }, + { + "start": 6806.88, + "end": 6810.88, + "probability": 0.875 + }, + { + "start": 6811.52, + "end": 6813.98, + "probability": 0.9983 + }, + { + "start": 6814.98, + "end": 6818.06, + "probability": 0.9939 + }, + { + "start": 6818.06, + "end": 6822.44, + "probability": 0.969 + }, + { + "start": 6823.06, + "end": 6825.46, + "probability": 0.6086 + }, + { + "start": 6826.22, + "end": 6827.24, + "probability": 0.6512 + }, + { + "start": 6827.36, + "end": 6828.74, + "probability": 0.8665 + }, + { + "start": 6828.86, + "end": 6833.4, + "probability": 0.9811 + }, + { + "start": 6834.44, + "end": 6841.4, + "probability": 0.912 + }, + { + "start": 6841.82, + "end": 6846.04, + "probability": 0.9828 + }, + { + "start": 6846.92, + "end": 6850.3, + "probability": 0.9926 + }, + { + "start": 6850.3, + "end": 6853.94, + "probability": 0.8517 + }, + { + "start": 6854.6, + "end": 6860.28, + "probability": 0.9852 + }, + { + "start": 6861.56, + "end": 6865.4, + "probability": 0.825 + }, + { + "start": 6865.98, + "end": 6866.48, + "probability": 0.6429 + }, + { + "start": 6866.58, + "end": 6867.26, + "probability": 0.8252 + }, + { + "start": 6867.34, + "end": 6868.56, + "probability": 0.7538 + }, + { + "start": 6868.74, + "end": 6870.4, + "probability": 0.5305 + }, + { + "start": 6870.78, + "end": 6874.2, + "probability": 0.771 + }, + { + "start": 6875.02, + "end": 6878.64, + "probability": 0.9946 + }, + { + "start": 6879.28, + "end": 6884.22, + "probability": 0.8083 + }, + { + "start": 6884.68, + "end": 6886.28, + "probability": 0.9764 + }, + { + "start": 6887.82, + "end": 6892.12, + "probability": 0.9908 + }, + { + "start": 6892.12, + "end": 6897.2, + "probability": 0.9973 + }, + { + "start": 6898.6, + "end": 6901.28, + "probability": 0.9839 + }, + { + "start": 6902.16, + "end": 6906.2, + "probability": 0.9576 + }, + { + "start": 6906.74, + "end": 6908.9, + "probability": 0.9201 + }, + { + "start": 6909.42, + "end": 6910.44, + "probability": 0.8921 + }, + { + "start": 6910.66, + "end": 6918.44, + "probability": 0.9656 + }, + { + "start": 6919.44, + "end": 6923.64, + "probability": 0.965 + }, + { + "start": 6923.64, + "end": 6929.46, + "probability": 0.9738 + }, + { + "start": 6930.54, + "end": 6932.6, + "probability": 0.8081 + }, + { + "start": 6933.4, + "end": 6935.78, + "probability": 0.9122 + }, + { + "start": 6936.32, + "end": 6943.22, + "probability": 0.9917 + }, + { + "start": 6945.04, + "end": 6948.14, + "probability": 0.7338 + }, + { + "start": 6948.88, + "end": 6951.78, + "probability": 0.9948 + }, + { + "start": 6952.36, + "end": 6956.74, + "probability": 0.9411 + }, + { + "start": 6957.48, + "end": 6961.1, + "probability": 0.9159 + }, + { + "start": 6961.48, + "end": 6965.08, + "probability": 0.9155 + }, + { + "start": 6965.7, + "end": 6967.07, + "probability": 0.9516 + }, + { + "start": 6967.76, + "end": 6970.22, + "probability": 0.9023 + }, + { + "start": 6970.6, + "end": 6974.4, + "probability": 0.9753 + }, + { + "start": 6974.94, + "end": 6975.7, + "probability": 0.8532 + }, + { + "start": 6977.74, + "end": 6984.4, + "probability": 0.9528 + }, + { + "start": 6985.6, + "end": 6987.68, + "probability": 0.7516 + }, + { + "start": 6988.02, + "end": 6988.52, + "probability": 0.811 + }, + { + "start": 6988.9, + "end": 6990.12, + "probability": 0.8664 + }, + { + "start": 6990.38, + "end": 6992.28, + "probability": 0.9568 + }, + { + "start": 6993.3, + "end": 6994.78, + "probability": 0.8995 + }, + { + "start": 6995.2, + "end": 6999.86, + "probability": 0.9736 + }, + { + "start": 7000.36, + "end": 7005.86, + "probability": 0.957 + }, + { + "start": 7006.68, + "end": 7010.6, + "probability": 0.8824 + }, + { + "start": 7011.14, + "end": 7015.02, + "probability": 0.9018 + }, + { + "start": 7015.8, + "end": 7017.48, + "probability": 0.9395 + }, + { + "start": 7018.12, + "end": 7020.0, + "probability": 0.9294 + }, + { + "start": 7020.58, + "end": 7022.24, + "probability": 0.5876 + }, + { + "start": 7023.2, + "end": 7028.2, + "probability": 0.9702 + }, + { + "start": 7028.78, + "end": 7032.22, + "probability": 0.8649 + }, + { + "start": 7033.34, + "end": 7035.22, + "probability": 0.9764 + }, + { + "start": 7035.62, + "end": 7041.8, + "probability": 0.7745 + }, + { + "start": 7042.42, + "end": 7048.2, + "probability": 0.8992 + }, + { + "start": 7049.54, + "end": 7054.88, + "probability": 0.8359 + }, + { + "start": 7054.98, + "end": 7060.14, + "probability": 0.9987 + }, + { + "start": 7060.92, + "end": 7065.0, + "probability": 0.9458 + }, + { + "start": 7066.82, + "end": 7068.32, + "probability": 0.5281 + }, + { + "start": 7068.88, + "end": 7070.88, + "probability": 0.8102 + }, + { + "start": 7071.88, + "end": 7075.24, + "probability": 0.9522 + }, + { + "start": 7076.96, + "end": 7078.48, + "probability": 0.9621 + }, + { + "start": 7078.82, + "end": 7082.36, + "probability": 0.9611 + }, + { + "start": 7083.16, + "end": 7087.96, + "probability": 0.9895 + }, + { + "start": 7088.24, + "end": 7090.1, + "probability": 0.809 + }, + { + "start": 7090.38, + "end": 7091.6, + "probability": 0.8636 + }, + { + "start": 7093.04, + "end": 7097.32, + "probability": 0.9199 + }, + { + "start": 7097.76, + "end": 7099.12, + "probability": 0.872 + }, + { + "start": 7099.28, + "end": 7100.66, + "probability": 0.972 + }, + { + "start": 7101.0, + "end": 7102.2, + "probability": 0.7463 + }, + { + "start": 7102.72, + "end": 7105.72, + "probability": 0.9556 + }, + { + "start": 7106.62, + "end": 7112.42, + "probability": 0.9935 + }, + { + "start": 7113.72, + "end": 7119.04, + "probability": 0.9958 + }, + { + "start": 7120.08, + "end": 7125.9, + "probability": 0.9445 + }, + { + "start": 7129.14, + "end": 7135.56, + "probability": 0.9515 + }, + { + "start": 7135.96, + "end": 7142.06, + "probability": 0.8926 + }, + { + "start": 7142.44, + "end": 7146.36, + "probability": 0.9263 + }, + { + "start": 7146.76, + "end": 7150.46, + "probability": 0.9694 + }, + { + "start": 7150.94, + "end": 7155.16, + "probability": 0.9863 + }, + { + "start": 7156.58, + "end": 7158.7, + "probability": 0.9875 + }, + { + "start": 7159.36, + "end": 7164.76, + "probability": 0.8596 + }, + { + "start": 7166.52, + "end": 7172.16, + "probability": 0.9632 + }, + { + "start": 7172.56, + "end": 7175.52, + "probability": 0.9937 + }, + { + "start": 7176.24, + "end": 7182.26, + "probability": 0.9867 + }, + { + "start": 7183.1, + "end": 7187.9, + "probability": 0.9608 + }, + { + "start": 7188.24, + "end": 7189.26, + "probability": 0.8951 + }, + { + "start": 7189.68, + "end": 7193.08, + "probability": 0.9909 + }, + { + "start": 7193.08, + "end": 7198.26, + "probability": 0.9312 + }, + { + "start": 7199.78, + "end": 7202.78, + "probability": 0.6923 + }, + { + "start": 7204.0, + "end": 7206.44, + "probability": 0.9966 + }, + { + "start": 7207.08, + "end": 7212.4, + "probability": 0.9911 + }, + { + "start": 7213.1, + "end": 7217.1, + "probability": 0.8796 + }, + { + "start": 7218.6, + "end": 7221.96, + "probability": 0.9929 + }, + { + "start": 7223.18, + "end": 7223.7, + "probability": 0.8699 + }, + { + "start": 7223.86, + "end": 7229.28, + "probability": 0.8864 + }, + { + "start": 7229.9, + "end": 7231.86, + "probability": 0.9539 + }, + { + "start": 7234.14, + "end": 7235.34, + "probability": 0.156 + }, + { + "start": 7236.2, + "end": 7241.74, + "probability": 0.9748 + }, + { + "start": 7242.26, + "end": 7245.52, + "probability": 0.991 + }, + { + "start": 7246.66, + "end": 7248.16, + "probability": 0.8896 + }, + { + "start": 7249.46, + "end": 7251.76, + "probability": 0.7111 + }, + { + "start": 7252.34, + "end": 7253.66, + "probability": 0.9043 + }, + { + "start": 7254.52, + "end": 7257.08, + "probability": 0.9714 + }, + { + "start": 7258.24, + "end": 7259.06, + "probability": 0.4467 + }, + { + "start": 7259.14, + "end": 7263.34, + "probability": 0.8776 + }, + { + "start": 7263.34, + "end": 7268.22, + "probability": 0.9878 + }, + { + "start": 7268.94, + "end": 7274.22, + "probability": 0.9571 + }, + { + "start": 7274.56, + "end": 7277.66, + "probability": 0.9836 + }, + { + "start": 7278.2, + "end": 7281.74, + "probability": 0.8464 + }, + { + "start": 7283.48, + "end": 7288.64, + "probability": 0.9617 + }, + { + "start": 7289.92, + "end": 7291.16, + "probability": 0.8247 + }, + { + "start": 7291.64, + "end": 7299.26, + "probability": 0.9705 + }, + { + "start": 7299.74, + "end": 7300.36, + "probability": 0.4507 + }, + { + "start": 7300.44, + "end": 7304.0, + "probability": 0.7186 + }, + { + "start": 7305.14, + "end": 7308.36, + "probability": 0.8923 + }, + { + "start": 7309.48, + "end": 7315.64, + "probability": 0.9827 + }, + { + "start": 7316.08, + "end": 7319.96, + "probability": 0.9751 + }, + { + "start": 7319.96, + "end": 7320.52, + "probability": 0.7554 + }, + { + "start": 7320.98, + "end": 7324.74, + "probability": 0.7715 + }, + { + "start": 7326.58, + "end": 7327.72, + "probability": 0.565 + }, + { + "start": 7328.32, + "end": 7333.54, + "probability": 0.9181 + }, + { + "start": 7333.96, + "end": 7336.38, + "probability": 0.9778 + }, + { + "start": 7336.96, + "end": 7338.1, + "probability": 0.7739 + }, + { + "start": 7338.58, + "end": 7340.42, + "probability": 0.6579 + }, + { + "start": 7341.18, + "end": 7347.2, + "probability": 0.9437 + }, + { + "start": 7347.64, + "end": 7349.44, + "probability": 0.9368 + }, + { + "start": 7350.34, + "end": 7355.18, + "probability": 0.9798 + }, + { + "start": 7355.18, + "end": 7359.78, + "probability": 0.9979 + }, + { + "start": 7360.34, + "end": 7361.48, + "probability": 0.8179 + }, + { + "start": 7362.94, + "end": 7369.58, + "probability": 0.998 + }, + { + "start": 7369.88, + "end": 7370.4, + "probability": 0.8468 + }, + { + "start": 7370.7, + "end": 7371.76, + "probability": 0.8853 + }, + { + "start": 7373.72, + "end": 7376.7, + "probability": 0.9981 + }, + { + "start": 7377.32, + "end": 7379.79, + "probability": 0.529 + }, + { + "start": 7381.16, + "end": 7383.26, + "probability": 0.7236 + }, + { + "start": 7383.48, + "end": 7385.64, + "probability": 0.7671 + }, + { + "start": 7386.26, + "end": 7391.94, + "probability": 0.9908 + }, + { + "start": 7392.72, + "end": 7394.88, + "probability": 0.9912 + }, + { + "start": 7395.38, + "end": 7400.4, + "probability": 0.998 + }, + { + "start": 7401.28, + "end": 7403.15, + "probability": 0.9961 + }, + { + "start": 7406.94, + "end": 7413.22, + "probability": 0.993 + }, + { + "start": 7413.74, + "end": 7414.88, + "probability": 0.8392 + }, + { + "start": 7415.34, + "end": 7422.14, + "probability": 0.9941 + }, + { + "start": 7422.68, + "end": 7427.88, + "probability": 0.9636 + }, + { + "start": 7428.84, + "end": 7429.56, + "probability": 0.7179 + }, + { + "start": 7429.94, + "end": 7431.67, + "probability": 0.6218 + }, + { + "start": 7432.1, + "end": 7432.48, + "probability": 0.8005 + }, + { + "start": 7451.82, + "end": 7451.82, + "probability": 0.4715 + }, + { + "start": 7451.82, + "end": 7453.72, + "probability": 0.9762 + }, + { + "start": 7454.3, + "end": 7457.4, + "probability": 0.9753 + }, + { + "start": 7460.58, + "end": 7463.5, + "probability": 0.8885 + }, + { + "start": 7465.0, + "end": 7467.28, + "probability": 0.8793 + }, + { + "start": 7483.54, + "end": 7487.54, + "probability": 0.702 + }, + { + "start": 7487.7, + "end": 7489.68, + "probability": 0.7498 + }, + { + "start": 7491.12, + "end": 7493.32, + "probability": 0.688 + }, + { + "start": 7493.32, + "end": 7495.5, + "probability": 0.2779 + }, + { + "start": 7496.38, + "end": 7497.94, + "probability": 0.1392 + }, + { + "start": 7501.14, + "end": 7502.84, + "probability": 0.0431 + }, + { + "start": 7514.32, + "end": 7518.46, + "probability": 0.709 + }, + { + "start": 7518.56, + "end": 7519.5, + "probability": 0.8724 + }, + { + "start": 7519.5, + "end": 7522.54, + "probability": 0.651 + }, + { + "start": 7523.0, + "end": 7523.62, + "probability": 0.2997 + }, + { + "start": 7523.64, + "end": 7526.3, + "probability": 0.7577 + }, + { + "start": 7526.3, + "end": 7528.77, + "probability": 0.9819 + }, + { + "start": 7529.8, + "end": 7531.38, + "probability": 0.6874 + }, + { + "start": 7531.5, + "end": 7534.54, + "probability": 0.9562 + }, + { + "start": 7534.84, + "end": 7537.18, + "probability": 0.6811 + }, + { + "start": 7537.82, + "end": 7538.66, + "probability": 0.6246 + }, + { + "start": 7538.82, + "end": 7540.54, + "probability": 0.9509 + }, + { + "start": 7540.64, + "end": 7542.2, + "probability": 0.4687 + }, + { + "start": 7542.34, + "end": 7542.71, + "probability": 0.902 + }, + { + "start": 7543.12, + "end": 7543.87, + "probability": 0.5396 + }, + { + "start": 7544.9, + "end": 7546.6, + "probability": 0.9419 + }, + { + "start": 7546.88, + "end": 7549.08, + "probability": 0.9146 + }, + { + "start": 7549.08, + "end": 7550.62, + "probability": 0.8802 + }, + { + "start": 7550.7, + "end": 7551.4, + "probability": 0.8576 + }, + { + "start": 7552.07, + "end": 7555.34, + "probability": 0.9262 + }, + { + "start": 7555.42, + "end": 7560.1, + "probability": 0.8969 + }, + { + "start": 7560.66, + "end": 7561.42, + "probability": 0.7339 + }, + { + "start": 7562.32, + "end": 7564.39, + "probability": 0.8326 + }, + { + "start": 7565.62, + "end": 7567.24, + "probability": 0.7559 + }, + { + "start": 7569.04, + "end": 7570.32, + "probability": 0.0433 + }, + { + "start": 7570.32, + "end": 7570.32, + "probability": 0.0972 + }, + { + "start": 7570.32, + "end": 7571.13, + "probability": 0.015 + }, + { + "start": 7572.06, + "end": 7574.14, + "probability": 0.9429 + }, + { + "start": 7574.22, + "end": 7574.68, + "probability": 0.4091 + }, + { + "start": 7574.72, + "end": 7576.4, + "probability": 0.9891 + }, + { + "start": 7577.04, + "end": 7579.76, + "probability": 0.8735 + }, + { + "start": 7580.82, + "end": 7583.56, + "probability": 0.556 + }, + { + "start": 7584.46, + "end": 7586.64, + "probability": 0.9814 + }, + { + "start": 7586.72, + "end": 7589.84, + "probability": 0.8237 + }, + { + "start": 7590.16, + "end": 7591.42, + "probability": 0.2097 + }, + { + "start": 7591.46, + "end": 7595.22, + "probability": 0.7123 + }, + { + "start": 7595.6, + "end": 7598.24, + "probability": 0.8259 + }, + { + "start": 7599.14, + "end": 7602.33, + "probability": 0.9399 + }, + { + "start": 7602.62, + "end": 7605.66, + "probability": 0.9182 + }, + { + "start": 7605.76, + "end": 7606.16, + "probability": 0.8851 + }, + { + "start": 7606.28, + "end": 7609.2, + "probability": 0.9407 + }, + { + "start": 7609.32, + "end": 7611.9, + "probability": 0.8333 + }, + { + "start": 7612.3, + "end": 7613.25, + "probability": 0.9888 + }, + { + "start": 7613.56, + "end": 7614.46, + "probability": 0.7261 + }, + { + "start": 7614.68, + "end": 7614.96, + "probability": 0.6127 + }, + { + "start": 7614.96, + "end": 7618.67, + "probability": 0.9937 + }, + { + "start": 7618.76, + "end": 7622.6, + "probability": 0.9922 + }, + { + "start": 7622.9, + "end": 7624.62, + "probability": 0.9207 + }, + { + "start": 7625.5, + "end": 7627.98, + "probability": 0.8196 + }, + { + "start": 7628.7, + "end": 7630.82, + "probability": 0.6967 + }, + { + "start": 7630.9, + "end": 7634.12, + "probability": 0.9457 + }, + { + "start": 7634.78, + "end": 7637.62, + "probability": 0.6092 + }, + { + "start": 7638.24, + "end": 7640.92, + "probability": 0.5594 + }, + { + "start": 7641.06, + "end": 7642.81, + "probability": 0.9475 + }, + { + "start": 7643.28, + "end": 7645.58, + "probability": 0.9885 + }, + { + "start": 7646.18, + "end": 7647.24, + "probability": 0.7881 + }, + { + "start": 7647.84, + "end": 7652.62, + "probability": 0.774 + }, + { + "start": 7652.66, + "end": 7654.09, + "probability": 0.8822 + }, + { + "start": 7655.36, + "end": 7656.46, + "probability": 0.853 + }, + { + "start": 7656.88, + "end": 7658.62, + "probability": 0.8771 + }, + { + "start": 7658.86, + "end": 7660.0, + "probability": 0.8996 + }, + { + "start": 7660.12, + "end": 7660.88, + "probability": 0.6231 + }, + { + "start": 7660.98, + "end": 7662.11, + "probability": 0.846 + }, + { + "start": 7662.82, + "end": 7665.86, + "probability": 0.9281 + }, + { + "start": 7665.86, + "end": 7668.54, + "probability": 0.8982 + }, + { + "start": 7669.06, + "end": 7670.9, + "probability": 0.7614 + }, + { + "start": 7671.04, + "end": 7672.54, + "probability": 0.9133 + }, + { + "start": 7672.8, + "end": 7673.48, + "probability": 0.5205 + }, + { + "start": 7673.52, + "end": 7675.84, + "probability": 0.9774 + }, + { + "start": 7675.84, + "end": 7681.02, + "probability": 0.7692 + }, + { + "start": 7681.12, + "end": 7683.26, + "probability": 0.5195 + }, + { + "start": 7683.34, + "end": 7688.34, + "probability": 0.8029 + }, + { + "start": 7688.46, + "end": 7689.22, + "probability": 0.9451 + }, + { + "start": 7689.3, + "end": 7691.56, + "probability": 0.7821 + }, + { + "start": 7691.64, + "end": 7694.68, + "probability": 0.8558 + }, + { + "start": 7694.74, + "end": 7696.02, + "probability": 0.9601 + }, + { + "start": 7696.78, + "end": 7697.2, + "probability": 0.3298 + }, + { + "start": 7697.24, + "end": 7697.88, + "probability": 0.6038 + }, + { + "start": 7697.94, + "end": 7701.44, + "probability": 0.7567 + }, + { + "start": 7701.56, + "end": 7702.22, + "probability": 0.1107 + }, + { + "start": 7702.36, + "end": 7703.1, + "probability": 0.5078 + }, + { + "start": 7703.22, + "end": 7705.64, + "probability": 0.5295 + }, + { + "start": 7706.32, + "end": 7707.96, + "probability": 0.7874 + }, + { + "start": 7708.48, + "end": 7709.5, + "probability": 0.7624 + }, + { + "start": 7709.64, + "end": 7712.42, + "probability": 0.7135 + }, + { + "start": 7712.6, + "end": 7714.76, + "probability": 0.8005 + }, + { + "start": 7714.86, + "end": 7715.56, + "probability": 0.2776 + }, + { + "start": 7717.11, + "end": 7719.04, + "probability": 0.6477 + }, + { + "start": 7719.22, + "end": 7720.42, + "probability": 0.3314 + }, + { + "start": 7720.98, + "end": 7723.46, + "probability": 0.8201 + }, + { + "start": 7723.84, + "end": 7726.6, + "probability": 0.9675 + }, + { + "start": 7726.92, + "end": 7728.6, + "probability": 0.7345 + }, + { + "start": 7728.72, + "end": 7731.72, + "probability": 0.6992 + }, + { + "start": 7731.74, + "end": 7733.36, + "probability": 0.889 + }, + { + "start": 7733.46, + "end": 7735.8, + "probability": 0.925 + }, + { + "start": 7735.86, + "end": 7738.32, + "probability": 0.9705 + }, + { + "start": 7738.56, + "end": 7739.08, + "probability": 0.7352 + }, + { + "start": 7739.2, + "end": 7740.4, + "probability": 0.6934 + }, + { + "start": 7740.86, + "end": 7742.04, + "probability": 0.9219 + }, + { + "start": 7742.1, + "end": 7743.44, + "probability": 0.745 + }, + { + "start": 7743.76, + "end": 7744.54, + "probability": 0.7537 + }, + { + "start": 7745.04, + "end": 7747.36, + "probability": 0.5479 + }, + { + "start": 7747.82, + "end": 7755.82, + "probability": 0.9504 + }, + { + "start": 7775.26, + "end": 7776.56, + "probability": 0.1069 + }, + { + "start": 7777.92, + "end": 7779.2, + "probability": 0.2373 + }, + { + "start": 7779.2, + "end": 7779.42, + "probability": 0.0676 + }, + { + "start": 7802.58, + "end": 7803.88, + "probability": 0.2423 + }, + { + "start": 7804.48, + "end": 7808.54, + "probability": 0.9883 + }, + { + "start": 7808.54, + "end": 7813.6, + "probability": 0.999 + }, + { + "start": 7815.0, + "end": 7817.02, + "probability": 0.9985 + }, + { + "start": 7817.58, + "end": 7821.62, + "probability": 0.9228 + }, + { + "start": 7822.26, + "end": 7829.52, + "probability": 0.8356 + }, + { + "start": 7831.28, + "end": 7831.96, + "probability": 0.8403 + }, + { + "start": 7832.58, + "end": 7835.8, + "probability": 0.9296 + }, + { + "start": 7836.5, + "end": 7840.6, + "probability": 0.9957 + }, + { + "start": 7842.34, + "end": 7845.94, + "probability": 0.8483 + }, + { + "start": 7846.42, + "end": 7848.56, + "probability": 0.9468 + }, + { + "start": 7849.04, + "end": 7850.68, + "probability": 0.9745 + }, + { + "start": 7851.06, + "end": 7853.28, + "probability": 0.981 + }, + { + "start": 7853.92, + "end": 7854.6, + "probability": 0.7759 + }, + { + "start": 7854.68, + "end": 7855.2, + "probability": 0.9567 + }, + { + "start": 7855.4, + "end": 7858.0, + "probability": 0.9908 + }, + { + "start": 7858.32, + "end": 7860.14, + "probability": 0.9701 + }, + { + "start": 7861.3, + "end": 7864.82, + "probability": 0.9732 + }, + { + "start": 7866.14, + "end": 7867.08, + "probability": 0.8675 + }, + { + "start": 7867.54, + "end": 7868.1, + "probability": 0.857 + }, + { + "start": 7868.32, + "end": 7873.92, + "probability": 0.9883 + }, + { + "start": 7875.14, + "end": 7876.02, + "probability": 0.9155 + }, + { + "start": 7876.86, + "end": 7879.34, + "probability": 0.9852 + }, + { + "start": 7880.04, + "end": 7884.18, + "probability": 0.9841 + }, + { + "start": 7884.54, + "end": 7885.97, + "probability": 0.9752 + }, + { + "start": 7888.0, + "end": 7892.36, + "probability": 0.9951 + }, + { + "start": 7892.48, + "end": 7893.26, + "probability": 0.799 + }, + { + "start": 7893.7, + "end": 7894.86, + "probability": 0.9919 + }, + { + "start": 7895.56, + "end": 7898.4, + "probability": 0.9797 + }, + { + "start": 7898.72, + "end": 7899.78, + "probability": 0.7168 + }, + { + "start": 7900.18, + "end": 7902.4, + "probability": 0.9836 + }, + { + "start": 7903.14, + "end": 7904.74, + "probability": 0.8962 + }, + { + "start": 7905.64, + "end": 7908.48, + "probability": 0.9924 + }, + { + "start": 7909.18, + "end": 7911.38, + "probability": 0.9915 + }, + { + "start": 7911.38, + "end": 7916.04, + "probability": 0.8687 + }, + { + "start": 7916.48, + "end": 7922.46, + "probability": 0.9653 + }, + { + "start": 7923.0, + "end": 7927.73, + "probability": 0.9191 + }, + { + "start": 7929.04, + "end": 7932.14, + "probability": 0.7493 + }, + { + "start": 7932.7, + "end": 7937.0, + "probability": 0.7412 + }, + { + "start": 7937.76, + "end": 7939.11, + "probability": 0.1757 + }, + { + "start": 7940.1, + "end": 7943.1, + "probability": 0.9722 + }, + { + "start": 7943.9, + "end": 7948.1, + "probability": 0.9889 + }, + { + "start": 7948.62, + "end": 7953.32, + "probability": 0.9089 + }, + { + "start": 7954.98, + "end": 7955.16, + "probability": 0.5529 + }, + { + "start": 7955.26, + "end": 7958.64, + "probability": 0.9969 + }, + { + "start": 7958.64, + "end": 7963.02, + "probability": 0.9954 + }, + { + "start": 7963.18, + "end": 7964.0, + "probability": 0.4449 + }, + { + "start": 7964.38, + "end": 7965.32, + "probability": 0.9463 + }, + { + "start": 7965.4, + "end": 7966.98, + "probability": 0.6267 + }, + { + "start": 7968.1, + "end": 7969.72, + "probability": 0.8049 + }, + { + "start": 7970.34, + "end": 7974.06, + "probability": 0.9988 + }, + { + "start": 7975.12, + "end": 7976.84, + "probability": 0.9846 + }, + { + "start": 7978.0, + "end": 7979.2, + "probability": 0.9753 + }, + { + "start": 7980.2, + "end": 7985.4, + "probability": 0.9922 + }, + { + "start": 7986.5, + "end": 7988.8, + "probability": 0.9693 + }, + { + "start": 7989.72, + "end": 7991.99, + "probability": 0.9746 + }, + { + "start": 7993.12, + "end": 7995.3, + "probability": 0.9937 + }, + { + "start": 7996.68, + "end": 8001.14, + "probability": 0.9645 + }, + { + "start": 8001.66, + "end": 8003.02, + "probability": 0.7924 + }, + { + "start": 8003.54, + "end": 8005.32, + "probability": 0.774 + }, + { + "start": 8007.0, + "end": 8011.24, + "probability": 0.9906 + }, + { + "start": 8011.66, + "end": 8016.98, + "probability": 0.99 + }, + { + "start": 8018.04, + "end": 8018.6, + "probability": 0.4779 + }, + { + "start": 8019.2, + "end": 8020.26, + "probability": 0.8567 + }, + { + "start": 8020.9, + "end": 8025.05, + "probability": 0.9612 + }, + { + "start": 8025.74, + "end": 8026.86, + "probability": 0.8126 + }, + { + "start": 8027.44, + "end": 8029.4, + "probability": 0.9905 + }, + { + "start": 8029.92, + "end": 8032.54, + "probability": 0.9566 + }, + { + "start": 8033.18, + "end": 8036.08, + "probability": 0.9893 + }, + { + "start": 8036.92, + "end": 8038.9, + "probability": 0.9901 + }, + { + "start": 8040.64, + "end": 8045.78, + "probability": 0.9973 + }, + { + "start": 8045.94, + "end": 8048.7, + "probability": 0.9729 + }, + { + "start": 8048.9, + "end": 8049.62, + "probability": 0.8348 + }, + { + "start": 8049.68, + "end": 8050.12, + "probability": 0.5312 + }, + { + "start": 8050.62, + "end": 8056.48, + "probability": 0.9907 + }, + { + "start": 8057.96, + "end": 8058.2, + "probability": 0.874 + }, + { + "start": 8058.48, + "end": 8061.18, + "probability": 0.8267 + }, + { + "start": 8061.64, + "end": 8063.68, + "probability": 0.9871 + }, + { + "start": 8064.0, + "end": 8067.6, + "probability": 0.8939 + }, + { + "start": 8068.1, + "end": 8068.66, + "probability": 0.5337 + }, + { + "start": 8068.7, + "end": 8069.56, + "probability": 0.905 + }, + { + "start": 8069.92, + "end": 8070.86, + "probability": 0.9167 + }, + { + "start": 8071.58, + "end": 8076.28, + "probability": 0.9691 + }, + { + "start": 8076.96, + "end": 8082.18, + "probability": 0.9529 + }, + { + "start": 8083.68, + "end": 8087.68, + "probability": 0.9987 + }, + { + "start": 8088.2, + "end": 8090.91, + "probability": 0.7214 + }, + { + "start": 8091.92, + "end": 8095.96, + "probability": 0.9915 + }, + { + "start": 8096.28, + "end": 8101.68, + "probability": 0.9875 + }, + { + "start": 8102.62, + "end": 8108.12, + "probability": 0.9974 + }, + { + "start": 8108.12, + "end": 8112.58, + "probability": 0.9944 + }, + { + "start": 8113.3, + "end": 8119.66, + "probability": 0.9851 + }, + { + "start": 8120.74, + "end": 8126.08, + "probability": 0.9316 + }, + { + "start": 8126.74, + "end": 8132.64, + "probability": 0.9261 + }, + { + "start": 8133.32, + "end": 8139.66, + "probability": 0.9825 + }, + { + "start": 8140.2, + "end": 8141.98, + "probability": 0.804 + }, + { + "start": 8142.86, + "end": 8146.94, + "probability": 0.8298 + }, + { + "start": 8147.7, + "end": 8154.26, + "probability": 0.747 + }, + { + "start": 8154.36, + "end": 8159.02, + "probability": 0.8206 + }, + { + "start": 8160.08, + "end": 8164.18, + "probability": 0.7393 + }, + { + "start": 8165.26, + "end": 8166.78, + "probability": 0.9188 + }, + { + "start": 8166.88, + "end": 8169.28, + "probability": 0.9868 + }, + { + "start": 8169.44, + "end": 8171.56, + "probability": 0.9699 + }, + { + "start": 8172.36, + "end": 8176.38, + "probability": 0.9439 + }, + { + "start": 8176.38, + "end": 8180.22, + "probability": 0.9966 + }, + { + "start": 8180.66, + "end": 8182.28, + "probability": 0.7518 + }, + { + "start": 8182.78, + "end": 8186.4, + "probability": 0.986 + }, + { + "start": 8187.22, + "end": 8190.82, + "probability": 0.9044 + }, + { + "start": 8191.2, + "end": 8192.18, + "probability": 0.9521 + }, + { + "start": 8192.66, + "end": 8193.62, + "probability": 0.9423 + }, + { + "start": 8194.06, + "end": 8194.8, + "probability": 0.9566 + }, + { + "start": 8196.12, + "end": 8200.16, + "probability": 0.989 + }, + { + "start": 8201.0, + "end": 8203.9, + "probability": 0.9353 + }, + { + "start": 8204.74, + "end": 8206.42, + "probability": 0.8838 + }, + { + "start": 8206.6, + "end": 8207.6, + "probability": 0.6538 + }, + { + "start": 8207.8, + "end": 8211.21, + "probability": 0.9962 + }, + { + "start": 8212.1, + "end": 8217.0, + "probability": 0.8907 + }, + { + "start": 8217.5, + "end": 8219.7, + "probability": 0.9501 + }, + { + "start": 8220.0, + "end": 8223.94, + "probability": 0.9873 + }, + { + "start": 8225.22, + "end": 8229.0, + "probability": 0.9742 + }, + { + "start": 8229.5, + "end": 8233.2, + "probability": 0.8801 + }, + { + "start": 8234.34, + "end": 8235.18, + "probability": 0.619 + }, + { + "start": 8235.94, + "end": 8240.6, + "probability": 0.9629 + }, + { + "start": 8240.74, + "end": 8244.14, + "probability": 0.973 + }, + { + "start": 8244.3, + "end": 8248.66, + "probability": 0.9944 + }, + { + "start": 8250.54, + "end": 8253.06, + "probability": 0.9939 + }, + { + "start": 8253.56, + "end": 8256.04, + "probability": 0.9822 + }, + { + "start": 8256.26, + "end": 8257.94, + "probability": 0.979 + }, + { + "start": 8258.5, + "end": 8260.94, + "probability": 0.988 + }, + { + "start": 8260.94, + "end": 8266.88, + "probability": 0.9114 + }, + { + "start": 8267.4, + "end": 8270.67, + "probability": 0.9591 + }, + { + "start": 8271.24, + "end": 8271.78, + "probability": 0.8464 + }, + { + "start": 8272.4, + "end": 8273.28, + "probability": 0.9791 + }, + { + "start": 8273.4, + "end": 8276.64, + "probability": 0.9919 + }, + { + "start": 8276.94, + "end": 8279.42, + "probability": 0.9957 + }, + { + "start": 8279.52, + "end": 8281.24, + "probability": 0.9946 + }, + { + "start": 8281.7, + "end": 8282.96, + "probability": 0.9727 + }, + { + "start": 8283.22, + "end": 8284.62, + "probability": 0.9548 + }, + { + "start": 8285.04, + "end": 8285.7, + "probability": 0.5574 + }, + { + "start": 8285.74, + "end": 8288.4, + "probability": 0.9602 + }, + { + "start": 8289.32, + "end": 8293.7, + "probability": 0.9951 + }, + { + "start": 8293.72, + "end": 8299.12, + "probability": 0.9958 + }, + { + "start": 8300.22, + "end": 8301.26, + "probability": 0.911 + }, + { + "start": 8301.4, + "end": 8302.54, + "probability": 0.966 + }, + { + "start": 8302.98, + "end": 8304.16, + "probability": 0.9756 + }, + { + "start": 8304.36, + "end": 8305.48, + "probability": 0.9917 + }, + { + "start": 8305.94, + "end": 8307.76, + "probability": 0.9666 + }, + { + "start": 8308.24, + "end": 8310.46, + "probability": 0.9635 + }, + { + "start": 8311.36, + "end": 8313.33, + "probability": 0.9961 + }, + { + "start": 8313.7, + "end": 8315.68, + "probability": 0.9659 + }, + { + "start": 8316.18, + "end": 8320.8, + "probability": 0.9983 + }, + { + "start": 8322.3, + "end": 8322.84, + "probability": 0.5764 + }, + { + "start": 8322.9, + "end": 8327.54, + "probability": 0.9896 + }, + { + "start": 8327.62, + "end": 8332.94, + "probability": 0.999 + }, + { + "start": 8334.12, + "end": 8335.52, + "probability": 0.9593 + }, + { + "start": 8336.18, + "end": 8339.06, + "probability": 0.987 + }, + { + "start": 8339.4, + "end": 8343.2, + "probability": 0.9957 + }, + { + "start": 8343.7, + "end": 8350.74, + "probability": 0.9975 + }, + { + "start": 8351.78, + "end": 8351.96, + "probability": 0.3303 + }, + { + "start": 8352.06, + "end": 8352.74, + "probability": 0.8509 + }, + { + "start": 8352.98, + "end": 8357.0, + "probability": 0.9785 + }, + { + "start": 8357.0, + "end": 8361.32, + "probability": 0.9943 + }, + { + "start": 8362.22, + "end": 8364.46, + "probability": 0.9048 + }, + { + "start": 8365.24, + "end": 8368.69, + "probability": 0.9984 + }, + { + "start": 8369.9, + "end": 8370.08, + "probability": 0.3454 + }, + { + "start": 8370.12, + "end": 8370.56, + "probability": 0.8879 + }, + { + "start": 8370.64, + "end": 8374.94, + "probability": 0.9869 + }, + { + "start": 8374.94, + "end": 8381.18, + "probability": 0.9872 + }, + { + "start": 8382.54, + "end": 8384.76, + "probability": 0.9662 + }, + { + "start": 8385.4, + "end": 8386.14, + "probability": 0.4108 + }, + { + "start": 8386.34, + "end": 8388.1, + "probability": 0.8658 + }, + { + "start": 8388.4, + "end": 8390.29, + "probability": 0.8728 + }, + { + "start": 8391.02, + "end": 8395.94, + "probability": 0.9706 + }, + { + "start": 8396.66, + "end": 8401.0, + "probability": 0.9927 + }, + { + "start": 8401.0, + "end": 8405.78, + "probability": 0.9946 + }, + { + "start": 8405.84, + "end": 8413.1, + "probability": 0.1294 + }, + { + "start": 8413.46, + "end": 8413.48, + "probability": 0.1143 + }, + { + "start": 8415.5, + "end": 8416.06, + "probability": 0.1764 + }, + { + "start": 8416.9, + "end": 8423.8, + "probability": 0.5412 + }, + { + "start": 8423.86, + "end": 8424.22, + "probability": 0.4196 + }, + { + "start": 8424.42, + "end": 8425.78, + "probability": 0.6583 + }, + { + "start": 8425.82, + "end": 8426.7, + "probability": 0.888 + }, + { + "start": 8427.32, + "end": 8430.92, + "probability": 0.407 + }, + { + "start": 8431.32, + "end": 8435.64, + "probability": 0.9961 + }, + { + "start": 8435.64, + "end": 8440.52, + "probability": 0.9888 + }, + { + "start": 8440.98, + "end": 8444.98, + "probability": 0.9968 + }, + { + "start": 8445.5, + "end": 8448.28, + "probability": 0.9425 + }, + { + "start": 8448.76, + "end": 8449.8, + "probability": 0.7225 + }, + { + "start": 8450.16, + "end": 8452.04, + "probability": 0.9707 + }, + { + "start": 8452.34, + "end": 8455.6, + "probability": 0.9855 + }, + { + "start": 8456.5, + "end": 8460.34, + "probability": 0.9714 + }, + { + "start": 8460.78, + "end": 8463.48, + "probability": 0.9937 + }, + { + "start": 8464.8, + "end": 8470.44, + "probability": 0.9028 + }, + { + "start": 8471.12, + "end": 8474.42, + "probability": 0.8263 + }, + { + "start": 8475.12, + "end": 8479.46, + "probability": 0.975 + }, + { + "start": 8479.46, + "end": 8484.88, + "probability": 0.9983 + }, + { + "start": 8485.42, + "end": 8486.48, + "probability": 0.6959 + }, + { + "start": 8486.56, + "end": 8488.42, + "probability": 0.9491 + }, + { + "start": 8488.56, + "end": 8490.85, + "probability": 0.8237 + }, + { + "start": 8491.02, + "end": 8497.12, + "probability": 0.9856 + }, + { + "start": 8497.56, + "end": 8500.36, + "probability": 0.9618 + }, + { + "start": 8501.28, + "end": 8503.01, + "probability": 0.9282 + }, + { + "start": 8503.12, + "end": 8506.94, + "probability": 0.8714 + }, + { + "start": 8508.14, + "end": 8511.78, + "probability": 0.9881 + }, + { + "start": 8512.56, + "end": 8515.68, + "probability": 0.993 + }, + { + "start": 8516.54, + "end": 8521.06, + "probability": 0.8996 + }, + { + "start": 8521.3, + "end": 8522.48, + "probability": 0.7236 + }, + { + "start": 8522.9, + "end": 8524.66, + "probability": 0.8577 + }, + { + "start": 8525.3, + "end": 8529.64, + "probability": 0.9906 + }, + { + "start": 8529.64, + "end": 8536.0, + "probability": 0.9297 + }, + { + "start": 8537.2, + "end": 8540.42, + "probability": 0.9752 + }, + { + "start": 8542.08, + "end": 8543.68, + "probability": 0.9486 + }, + { + "start": 8544.56, + "end": 8547.34, + "probability": 0.9761 + }, + { + "start": 8547.34, + "end": 8551.7, + "probability": 0.9941 + }, + { + "start": 8552.62, + "end": 8558.08, + "probability": 0.9901 + }, + { + "start": 8558.24, + "end": 8561.7, + "probability": 0.9829 + }, + { + "start": 8561.7, + "end": 8565.44, + "probability": 0.9812 + }, + { + "start": 8566.88, + "end": 8567.94, + "probability": 0.6905 + }, + { + "start": 8568.4, + "end": 8572.4, + "probability": 0.9814 + }, + { + "start": 8572.4, + "end": 8575.68, + "probability": 0.9487 + }, + { + "start": 8576.84, + "end": 8580.68, + "probability": 0.9438 + }, + { + "start": 8581.22, + "end": 8584.44, + "probability": 0.9604 + }, + { + "start": 8584.44, + "end": 8587.72, + "probability": 0.9583 + }, + { + "start": 8589.34, + "end": 8590.16, + "probability": 0.9302 + }, + { + "start": 8590.42, + "end": 8593.8, + "probability": 0.9934 + }, + { + "start": 8594.9, + "end": 8597.3, + "probability": 0.9915 + }, + { + "start": 8597.3, + "end": 8600.26, + "probability": 0.9967 + }, + { + "start": 8600.9, + "end": 8603.34, + "probability": 0.9107 + }, + { + "start": 8603.72, + "end": 8606.52, + "probability": 0.9893 + }, + { + "start": 8606.86, + "end": 8610.54, + "probability": 0.9701 + }, + { + "start": 8611.72, + "end": 8612.56, + "probability": 0.7288 + }, + { + "start": 8613.1, + "end": 8614.57, + "probability": 0.967 + }, + { + "start": 8615.2, + "end": 8617.46, + "probability": 0.9952 + }, + { + "start": 8617.46, + "end": 8621.58, + "probability": 0.9957 + }, + { + "start": 8622.18, + "end": 8625.3, + "probability": 0.9818 + }, + { + "start": 8625.98, + "end": 8628.46, + "probability": 0.8496 + }, + { + "start": 8629.38, + "end": 8633.7, + "probability": 0.9859 + }, + { + "start": 8634.16, + "end": 8637.58, + "probability": 0.984 + }, + { + "start": 8638.56, + "end": 8641.12, + "probability": 0.9863 + }, + { + "start": 8642.7, + "end": 8646.46, + "probability": 0.9679 + }, + { + "start": 8646.46, + "end": 8650.68, + "probability": 0.999 + }, + { + "start": 8652.2, + "end": 8657.08, + "probability": 0.9824 + }, + { + "start": 8657.6, + "end": 8663.94, + "probability": 0.9669 + }, + { + "start": 8667.2, + "end": 8670.86, + "probability": 0.9564 + }, + { + "start": 8670.86, + "end": 8675.64, + "probability": 0.9934 + }, + { + "start": 8677.14, + "end": 8680.78, + "probability": 0.9446 + }, + { + "start": 8681.5, + "end": 8687.68, + "probability": 0.9803 + }, + { + "start": 8688.6, + "end": 8691.4, + "probability": 0.9738 + }, + { + "start": 8692.56, + "end": 8695.57, + "probability": 0.985 + }, + { + "start": 8695.61, + "end": 8701.99, + "probability": 0.8843 + }, + { + "start": 8703.08, + "end": 8705.7, + "probability": 0.9585 + }, + { + "start": 8706.4, + "end": 8711.5, + "probability": 0.9811 + }, + { + "start": 8712.06, + "end": 8715.72, + "probability": 0.993 + }, + { + "start": 8715.72, + "end": 8721.46, + "probability": 0.9976 + }, + { + "start": 8722.06, + "end": 8724.82, + "probability": 0.8872 + }, + { + "start": 8725.42, + "end": 8728.5, + "probability": 0.969 + }, + { + "start": 8728.5, + "end": 8733.65, + "probability": 0.9961 + }, + { + "start": 8734.34, + "end": 8740.22, + "probability": 0.9958 + }, + { + "start": 8741.18, + "end": 8744.8, + "probability": 0.9931 + }, + { + "start": 8744.84, + "end": 8749.1, + "probability": 0.9937 + }, + { + "start": 8749.24, + "end": 8753.78, + "probability": 0.988 + }, + { + "start": 8755.76, + "end": 8758.34, + "probability": 0.9944 + }, + { + "start": 8758.76, + "end": 8759.72, + "probability": 0.8818 + }, + { + "start": 8760.22, + "end": 8767.62, + "probability": 0.8867 + }, + { + "start": 8767.98, + "end": 8768.76, + "probability": 0.77 + }, + { + "start": 8769.56, + "end": 8771.58, + "probability": 0.93 + }, + { + "start": 8792.06, + "end": 8797.04, + "probability": 0.7472 + }, + { + "start": 8809.64, + "end": 8810.5, + "probability": 0.1738 + }, + { + "start": 8810.96, + "end": 8812.78, + "probability": 0.1767 + }, + { + "start": 8813.31, + "end": 8815.85, + "probability": 0.0437 + }, + { + "start": 8820.5, + "end": 8822.0, + "probability": 0.0141 + }, + { + "start": 8914.73, + "end": 8916.12, + "probability": 0.0382 + }, + { + "start": 8917.15, + "end": 8918.7, + "probability": 0.007 + }, + { + "start": 8922.56, + "end": 8924.06, + "probability": 0.0183 + }, + { + "start": 8926.05, + "end": 8927.66, + "probability": 0.0128 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.0, + "end": 9034.0, + "probability": 0.0 + }, + { + "start": 9034.48, + "end": 9035.48, + "probability": 0.9624 + }, + { + "start": 9036.28, + "end": 9041.62, + "probability": 0.9414 + }, + { + "start": 9042.68, + "end": 9047.8, + "probability": 0.8198 + }, + { + "start": 9048.48, + "end": 9051.8, + "probability": 0.8312 + }, + { + "start": 9051.8, + "end": 9054.54, + "probability": 0.0162 + }, + { + "start": 9054.98, + "end": 9055.4, + "probability": 0.2948 + }, + { + "start": 9055.4, + "end": 9055.4, + "probability": 0.229 + }, + { + "start": 9055.4, + "end": 9056.96, + "probability": 0.8556 + }, + { + "start": 9057.16, + "end": 9058.6, + "probability": 0.5165 + }, + { + "start": 9059.06, + "end": 9060.1, + "probability": 0.127 + }, + { + "start": 9061.38, + "end": 9064.7, + "probability": 0.8306 + }, + { + "start": 9066.62, + "end": 9071.42, + "probability": 0.924 + }, + { + "start": 9071.44, + "end": 9072.3, + "probability": 0.4215 + }, + { + "start": 9072.5, + "end": 9073.28, + "probability": 0.722 + }, + { + "start": 9073.32, + "end": 9074.22, + "probability": 0.8774 + }, + { + "start": 9074.5, + "end": 9075.2, + "probability": 0.7629 + }, + { + "start": 9075.26, + "end": 9075.88, + "probability": 0.7089 + }, + { + "start": 9075.92, + "end": 9076.12, + "probability": 0.5056 + }, + { + "start": 9076.26, + "end": 9077.22, + "probability": 0.6747 + }, + { + "start": 9077.26, + "end": 9077.56, + "probability": 0.86 + }, + { + "start": 9077.72, + "end": 9079.52, + "probability": 0.8751 + }, + { + "start": 9079.8, + "end": 9080.81, + "probability": 0.816 + }, + { + "start": 9081.22, + "end": 9082.37, + "probability": 0.9766 + }, + { + "start": 9082.9, + "end": 9083.48, + "probability": 0.6265 + }, + { + "start": 9083.7, + "end": 9086.4, + "probability": 0.9305 + }, + { + "start": 9086.8, + "end": 9087.74, + "probability": 0.9298 + }, + { + "start": 9087.8, + "end": 9091.91, + "probability": 0.9814 + }, + { + "start": 9095.83, + "end": 9099.0, + "probability": 0.9272 + }, + { + "start": 9100.04, + "end": 9102.0, + "probability": 0.4059 + }, + { + "start": 9102.9, + "end": 9104.74, + "probability": 0.7852 + }, + { + "start": 9105.58, + "end": 9107.62, + "probability": 0.9899 + }, + { + "start": 9108.56, + "end": 9110.32, + "probability": 0.9526 + }, + { + "start": 9113.38, + "end": 9114.94, + "probability": 0.9783 + }, + { + "start": 9115.04, + "end": 9115.82, + "probability": 0.8359 + }, + { + "start": 9115.92, + "end": 9118.52, + "probability": 0.9854 + }, + { + "start": 9118.6, + "end": 9120.39, + "probability": 0.9263 + }, + { + "start": 9122.48, + "end": 9125.38, + "probability": 0.9001 + }, + { + "start": 9125.62, + "end": 9126.78, + "probability": 0.8989 + }, + { + "start": 9126.88, + "end": 9127.42, + "probability": 0.6152 + }, + { + "start": 9127.54, + "end": 9128.8, + "probability": 0.8612 + }, + { + "start": 9129.04, + "end": 9131.24, + "probability": 0.8438 + }, + { + "start": 9131.58, + "end": 9133.06, + "probability": 0.8731 + }, + { + "start": 9135.82, + "end": 9140.92, + "probability": 0.7445 + }, + { + "start": 9142.18, + "end": 9144.54, + "probability": 0.847 + }, + { + "start": 9145.82, + "end": 9149.2, + "probability": 0.897 + }, + { + "start": 9150.3, + "end": 9153.52, + "probability": 0.9097 + }, + { + "start": 9154.7, + "end": 9156.84, + "probability": 0.9817 + }, + { + "start": 9159.58, + "end": 9161.84, + "probability": 0.9663 + }, + { + "start": 9162.0, + "end": 9162.52, + "probability": 0.3257 + }, + { + "start": 9162.54, + "end": 9164.9, + "probability": 0.9214 + }, + { + "start": 9165.18, + "end": 9165.8, + "probability": 0.6792 + }, + { + "start": 9165.9, + "end": 9168.48, + "probability": 0.8671 + }, + { + "start": 9168.64, + "end": 9174.94, + "probability": 0.9463 + }, + { + "start": 9176.44, + "end": 9178.06, + "probability": 0.8596 + }, + { + "start": 9178.72, + "end": 9181.48, + "probability": 0.9686 + }, + { + "start": 9181.5, + "end": 9183.52, + "probability": 0.8744 + }, + { + "start": 9183.58, + "end": 9184.12, + "probability": 0.7032 + }, + { + "start": 9185.02, + "end": 9185.84, + "probability": 0.8406 + }, + { + "start": 9187.3, + "end": 9189.22, + "probability": 0.569 + }, + { + "start": 9189.3, + "end": 9191.36, + "probability": 0.7477 + }, + { + "start": 9191.4, + "end": 9192.9, + "probability": 0.8448 + }, + { + "start": 9193.04, + "end": 9195.8, + "probability": 0.6705 + }, + { + "start": 9195.84, + "end": 9199.5, + "probability": 0.3599 + }, + { + "start": 9200.0, + "end": 9203.04, + "probability": 0.9009 + }, + { + "start": 9204.18, + "end": 9204.8, + "probability": 0.0718 + } + ], + "segments_count": 2878, + "words_count": 15364, + "avg_words_per_segment": 5.3384, + "avg_segment_duration": 2.4483, + "avg_words_per_minute": 98.2755, + "plenum_id": "26829", + "duration": 9380.16, + "title": null, + "plenum_date": "2013-02-26" +} \ No newline at end of file