diff --git "a/29173/metadata.json" "b/29173/metadata.json" new file mode 100644--- /dev/null +++ "b/29173/metadata.json" @@ -0,0 +1,32507 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "29173", + "quality_score": 0.9075, + "per_segment_quality_scores": [ + { + "start": 16.06, + "end": 16.72, + "probability": 0.1378 + }, + { + "start": 37.7, + "end": 38.52, + "probability": 0.0053 + }, + { + "start": 38.52, + "end": 41.04, + "probability": 0.8726 + }, + { + "start": 44.08, + "end": 47.56, + "probability": 0.7084 + }, + { + "start": 47.68, + "end": 47.88, + "probability": 0.913 + }, + { + "start": 49.22, + "end": 50.5, + "probability": 0.7554 + }, + { + "start": 50.6, + "end": 51.82, + "probability": 0.828 + }, + { + "start": 51.88, + "end": 54.76, + "probability": 0.95 + }, + { + "start": 54.84, + "end": 55.78, + "probability": 0.876 + }, + { + "start": 56.34, + "end": 58.74, + "probability": 0.6572 + }, + { + "start": 59.38, + "end": 63.64, + "probability": 0.9865 + }, + { + "start": 64.54, + "end": 67.0, + "probability": 0.8342 + }, + { + "start": 67.3, + "end": 67.68, + "probability": 0.5972 + }, + { + "start": 68.3, + "end": 69.6, + "probability": 0.515 + }, + { + "start": 69.62, + "end": 72.34, + "probability": 0.6733 + }, + { + "start": 73.04, + "end": 75.66, + "probability": 0.9617 + }, + { + "start": 76.82, + "end": 77.68, + "probability": 0.6516 + }, + { + "start": 78.94, + "end": 84.46, + "probability": 0.9779 + }, + { + "start": 85.79, + "end": 86.96, + "probability": 0.7176 + }, + { + "start": 88.0, + "end": 88.42, + "probability": 0.519 + }, + { + "start": 88.9, + "end": 89.96, + "probability": 0.8171 + }, + { + "start": 90.06, + "end": 90.98, + "probability": 0.9472 + }, + { + "start": 92.44, + "end": 96.18, + "probability": 0.8811 + }, + { + "start": 96.26, + "end": 100.12, + "probability": 0.9606 + }, + { + "start": 101.12, + "end": 105.58, + "probability": 0.7972 + }, + { + "start": 106.28, + "end": 113.06, + "probability": 0.9662 + }, + { + "start": 113.68, + "end": 120.22, + "probability": 0.8108 + }, + { + "start": 120.34, + "end": 123.4, + "probability": 0.8688 + }, + { + "start": 123.9, + "end": 126.64, + "probability": 0.9146 + }, + { + "start": 127.32, + "end": 128.38, + "probability": 0.8295 + }, + { + "start": 128.42, + "end": 132.16, + "probability": 0.756 + }, + { + "start": 133.38, + "end": 134.42, + "probability": 0.9125 + }, + { + "start": 136.16, + "end": 137.68, + "probability": 0.452 + }, + { + "start": 139.34, + "end": 143.48, + "probability": 0.9445 + }, + { + "start": 144.0, + "end": 145.36, + "probability": 0.8481 + }, + { + "start": 145.96, + "end": 146.68, + "probability": 0.7888 + }, + { + "start": 146.92, + "end": 150.98, + "probability": 0.887 + }, + { + "start": 152.28, + "end": 155.62, + "probability": 0.6867 + }, + { + "start": 156.22, + "end": 159.76, + "probability": 0.804 + }, + { + "start": 160.96, + "end": 164.9, + "probability": 0.9532 + }, + { + "start": 165.62, + "end": 171.6, + "probability": 0.7835 + }, + { + "start": 171.92, + "end": 172.32, + "probability": 0.5472 + }, + { + "start": 172.96, + "end": 179.8, + "probability": 0.9671 + }, + { + "start": 180.0, + "end": 180.76, + "probability": 0.7206 + }, + { + "start": 181.38, + "end": 184.78, + "probability": 0.9769 + }, + { + "start": 185.62, + "end": 187.5, + "probability": 0.2288 + }, + { + "start": 188.62, + "end": 189.58, + "probability": 0.7958 + }, + { + "start": 190.26, + "end": 191.48, + "probability": 0.681 + }, + { + "start": 191.6, + "end": 192.8, + "probability": 0.9184 + }, + { + "start": 193.76, + "end": 196.22, + "probability": 0.6175 + }, + { + "start": 197.68, + "end": 200.4, + "probability": 0.991 + }, + { + "start": 201.82, + "end": 202.74, + "probability": 0.9952 + }, + { + "start": 203.3, + "end": 205.74, + "probability": 0.998 + }, + { + "start": 206.6, + "end": 212.0, + "probability": 0.9816 + }, + { + "start": 213.86, + "end": 214.86, + "probability": 0.812 + }, + { + "start": 215.04, + "end": 218.32, + "probability": 0.994 + }, + { + "start": 219.58, + "end": 225.76, + "probability": 0.9973 + }, + { + "start": 226.72, + "end": 229.68, + "probability": 0.9277 + }, + { + "start": 230.28, + "end": 234.36, + "probability": 0.9663 + }, + { + "start": 235.78, + "end": 238.88, + "probability": 0.8594 + }, + { + "start": 238.88, + "end": 243.38, + "probability": 0.9944 + }, + { + "start": 244.86, + "end": 248.52, + "probability": 0.9976 + }, + { + "start": 249.38, + "end": 252.12, + "probability": 0.9975 + }, + { + "start": 252.76, + "end": 255.56, + "probability": 0.9265 + }, + { + "start": 256.94, + "end": 258.14, + "probability": 0.8785 + }, + { + "start": 258.94, + "end": 264.66, + "probability": 0.9956 + }, + { + "start": 266.22, + "end": 270.62, + "probability": 0.8548 + }, + { + "start": 270.72, + "end": 271.12, + "probability": 0.8664 + }, + { + "start": 271.22, + "end": 272.58, + "probability": 0.9193 + }, + { + "start": 273.92, + "end": 276.6, + "probability": 0.9668 + }, + { + "start": 276.6, + "end": 280.2, + "probability": 0.9767 + }, + { + "start": 280.32, + "end": 281.0, + "probability": 0.6699 + }, + { + "start": 282.08, + "end": 285.44, + "probability": 0.7946 + }, + { + "start": 287.14, + "end": 290.36, + "probability": 0.9528 + }, + { + "start": 290.98, + "end": 293.46, + "probability": 0.6959 + }, + { + "start": 295.9, + "end": 299.04, + "probability": 0.8526 + }, + { + "start": 300.44, + "end": 302.2, + "probability": 0.9438 + }, + { + "start": 303.02, + "end": 306.38, + "probability": 0.978 + }, + { + "start": 307.14, + "end": 311.7, + "probability": 0.905 + }, + { + "start": 312.6, + "end": 318.04, + "probability": 0.9941 + }, + { + "start": 319.1, + "end": 320.7, + "probability": 0.9481 + }, + { + "start": 321.64, + "end": 323.27, + "probability": 0.9969 + }, + { + "start": 324.0, + "end": 325.72, + "probability": 0.853 + }, + { + "start": 326.84, + "end": 328.58, + "probability": 0.9067 + }, + { + "start": 329.66, + "end": 331.6, + "probability": 0.6647 + }, + { + "start": 333.02, + "end": 338.22, + "probability": 0.9731 + }, + { + "start": 339.16, + "end": 342.04, + "probability": 0.9443 + }, + { + "start": 342.7, + "end": 343.02, + "probability": 0.867 + }, + { + "start": 343.58, + "end": 345.46, + "probability": 0.9935 + }, + { + "start": 346.74, + "end": 349.04, + "probability": 0.9914 + }, + { + "start": 349.72, + "end": 353.78, + "probability": 0.9561 + }, + { + "start": 354.7, + "end": 355.4, + "probability": 0.7311 + }, + { + "start": 356.26, + "end": 359.9, + "probability": 0.7872 + }, + { + "start": 360.88, + "end": 362.98, + "probability": 0.988 + }, + { + "start": 364.06, + "end": 367.96, + "probability": 0.9701 + }, + { + "start": 369.1, + "end": 372.32, + "probability": 0.9704 + }, + { + "start": 373.26, + "end": 374.94, + "probability": 0.9976 + }, + { + "start": 375.96, + "end": 378.36, + "probability": 0.9571 + }, + { + "start": 379.34, + "end": 379.76, + "probability": 0.337 + }, + { + "start": 379.82, + "end": 381.36, + "probability": 0.9583 + }, + { + "start": 382.24, + "end": 383.52, + "probability": 0.8867 + }, + { + "start": 385.48, + "end": 387.76, + "probability": 0.9625 + }, + { + "start": 388.98, + "end": 392.14, + "probability": 0.7696 + }, + { + "start": 393.0, + "end": 397.5, + "probability": 0.5844 + }, + { + "start": 398.5, + "end": 401.94, + "probability": 0.9868 + }, + { + "start": 402.28, + "end": 406.12, + "probability": 0.9568 + }, + { + "start": 407.9, + "end": 410.62, + "probability": 0.9758 + }, + { + "start": 410.62, + "end": 413.6, + "probability": 0.9911 + }, + { + "start": 414.7, + "end": 420.54, + "probability": 0.9277 + }, + { + "start": 421.18, + "end": 427.14, + "probability": 0.9897 + }, + { + "start": 428.2, + "end": 431.3, + "probability": 0.8729 + }, + { + "start": 432.26, + "end": 434.1, + "probability": 0.9128 + }, + { + "start": 434.8, + "end": 436.2, + "probability": 0.3134 + }, + { + "start": 436.92, + "end": 438.84, + "probability": 0.9736 + }, + { + "start": 439.42, + "end": 441.44, + "probability": 0.9613 + }, + { + "start": 442.4, + "end": 447.7, + "probability": 0.9839 + }, + { + "start": 449.04, + "end": 452.26, + "probability": 0.853 + }, + { + "start": 453.22, + "end": 456.86, + "probability": 0.9198 + }, + { + "start": 458.02, + "end": 462.02, + "probability": 0.8567 + }, + { + "start": 462.66, + "end": 462.9, + "probability": 0.3938 + }, + { + "start": 462.92, + "end": 466.52, + "probability": 0.9779 + }, + { + "start": 467.28, + "end": 469.76, + "probability": 0.9922 + }, + { + "start": 470.68, + "end": 472.06, + "probability": 0.6187 + }, + { + "start": 472.12, + "end": 476.46, + "probability": 0.9279 + }, + { + "start": 477.04, + "end": 480.96, + "probability": 0.8889 + }, + { + "start": 481.9, + "end": 485.4, + "probability": 0.9873 + }, + { + "start": 485.98, + "end": 488.56, + "probability": 0.6365 + }, + { + "start": 489.8, + "end": 491.2, + "probability": 0.9744 + }, + { + "start": 492.72, + "end": 496.08, + "probability": 0.9293 + }, + { + "start": 499.14, + "end": 501.72, + "probability": 0.7705 + }, + { + "start": 501.82, + "end": 502.36, + "probability": 0.624 + }, + { + "start": 503.48, + "end": 504.19, + "probability": 0.6252 + }, + { + "start": 506.04, + "end": 512.38, + "probability": 0.9419 + }, + { + "start": 513.87, + "end": 516.54, + "probability": 0.9559 + }, + { + "start": 516.54, + "end": 519.74, + "probability": 0.8587 + }, + { + "start": 520.5, + "end": 521.32, + "probability": 0.2499 + }, + { + "start": 521.96, + "end": 526.29, + "probability": 0.9022 + }, + { + "start": 527.0, + "end": 531.58, + "probability": 0.9549 + }, + { + "start": 532.7, + "end": 534.86, + "probability": 0.9872 + }, + { + "start": 536.1, + "end": 540.3, + "probability": 0.9773 + }, + { + "start": 541.22, + "end": 543.26, + "probability": 0.8441 + }, + { + "start": 544.04, + "end": 545.98, + "probability": 0.9746 + }, + { + "start": 546.66, + "end": 550.28, + "probability": 0.9826 + }, + { + "start": 550.8, + "end": 551.78, + "probability": 0.9736 + }, + { + "start": 552.66, + "end": 554.46, + "probability": 0.9688 + }, + { + "start": 556.0, + "end": 558.64, + "probability": 0.9748 + }, + { + "start": 559.12, + "end": 561.82, + "probability": 0.9925 + }, + { + "start": 562.54, + "end": 568.06, + "probability": 0.9569 + }, + { + "start": 568.78, + "end": 569.96, + "probability": 0.6282 + }, + { + "start": 570.8, + "end": 574.3, + "probability": 0.9881 + }, + { + "start": 574.9, + "end": 577.06, + "probability": 0.8347 + }, + { + "start": 577.8, + "end": 579.08, + "probability": 0.9554 + }, + { + "start": 579.28, + "end": 580.2, + "probability": 0.9459 + }, + { + "start": 580.32, + "end": 581.66, + "probability": 0.9517 + }, + { + "start": 582.16, + "end": 587.4, + "probability": 0.992 + }, + { + "start": 588.0, + "end": 588.52, + "probability": 0.7949 + }, + { + "start": 589.22, + "end": 590.06, + "probability": 0.9186 + }, + { + "start": 590.2, + "end": 592.32, + "probability": 0.9294 + }, + { + "start": 593.98, + "end": 595.86, + "probability": 0.8341 + }, + { + "start": 596.12, + "end": 599.92, + "probability": 0.9711 + }, + { + "start": 600.84, + "end": 606.02, + "probability": 0.9324 + }, + { + "start": 606.68, + "end": 609.74, + "probability": 0.9172 + }, + { + "start": 610.84, + "end": 611.28, + "probability": 0.6576 + }, + { + "start": 611.44, + "end": 614.38, + "probability": 0.9013 + }, + { + "start": 615.04, + "end": 617.38, + "probability": 0.995 + }, + { + "start": 617.38, + "end": 619.56, + "probability": 0.9535 + }, + { + "start": 620.26, + "end": 625.06, + "probability": 0.9941 + }, + { + "start": 625.88, + "end": 630.14, + "probability": 0.9511 + }, + { + "start": 630.84, + "end": 631.16, + "probability": 0.7167 + }, + { + "start": 631.26, + "end": 632.28, + "probability": 0.5047 + }, + { + "start": 633.38, + "end": 635.82, + "probability": 0.9728 + }, + { + "start": 635.9, + "end": 636.62, + "probability": 0.8233 + }, + { + "start": 636.8, + "end": 641.18, + "probability": 0.7728 + }, + { + "start": 641.88, + "end": 643.46, + "probability": 0.7868 + }, + { + "start": 644.18, + "end": 649.18, + "probability": 0.9863 + }, + { + "start": 650.24, + "end": 652.46, + "probability": 0.6333 + }, + { + "start": 653.4, + "end": 656.38, + "probability": 0.8605 + }, + { + "start": 656.98, + "end": 662.56, + "probability": 0.9289 + }, + { + "start": 662.98, + "end": 665.36, + "probability": 0.8054 + }, + { + "start": 666.36, + "end": 667.86, + "probability": 0.8036 + }, + { + "start": 667.94, + "end": 669.32, + "probability": 0.9009 + }, + { + "start": 669.42, + "end": 672.98, + "probability": 0.963 + }, + { + "start": 673.7, + "end": 677.04, + "probability": 0.9131 + }, + { + "start": 678.1, + "end": 678.84, + "probability": 0.9674 + }, + { + "start": 678.9, + "end": 679.82, + "probability": 0.683 + }, + { + "start": 680.26, + "end": 681.0, + "probability": 0.8546 + }, + { + "start": 681.1, + "end": 683.02, + "probability": 0.9359 + }, + { + "start": 683.06, + "end": 684.35, + "probability": 0.9478 + }, + { + "start": 684.92, + "end": 686.18, + "probability": 0.7783 + }, + { + "start": 686.76, + "end": 689.86, + "probability": 0.993 + }, + { + "start": 690.46, + "end": 691.0, + "probability": 0.5386 + }, + { + "start": 691.2, + "end": 692.26, + "probability": 0.671 + }, + { + "start": 692.76, + "end": 694.46, + "probability": 0.8221 + }, + { + "start": 694.48, + "end": 695.36, + "probability": 0.8951 + }, + { + "start": 695.36, + "end": 696.0, + "probability": 0.9253 + }, + { + "start": 696.08, + "end": 697.22, + "probability": 0.5771 + }, + { + "start": 697.64, + "end": 699.22, + "probability": 0.9792 + }, + { + "start": 699.72, + "end": 703.64, + "probability": 0.987 + }, + { + "start": 703.76, + "end": 704.46, + "probability": 0.7229 + }, + { + "start": 704.54, + "end": 705.1, + "probability": 0.801 + }, + { + "start": 705.14, + "end": 707.92, + "probability": 0.8114 + }, + { + "start": 708.2, + "end": 708.64, + "probability": 0.4684 + }, + { + "start": 709.1, + "end": 710.36, + "probability": 0.8652 + }, + { + "start": 710.68, + "end": 712.26, + "probability": 0.8035 + }, + { + "start": 713.5, + "end": 714.52, + "probability": 0.8221 + }, + { + "start": 714.66, + "end": 721.06, + "probability": 0.9971 + }, + { + "start": 722.14, + "end": 722.66, + "probability": 0.2261 + }, + { + "start": 722.88, + "end": 724.72, + "probability": 0.791 + }, + { + "start": 725.68, + "end": 730.68, + "probability": 0.9799 + }, + { + "start": 730.68, + "end": 736.7, + "probability": 0.8925 + }, + { + "start": 736.78, + "end": 741.58, + "probability": 0.9891 + }, + { + "start": 742.24, + "end": 747.96, + "probability": 0.9749 + }, + { + "start": 748.64, + "end": 753.82, + "probability": 0.6655 + }, + { + "start": 753.88, + "end": 755.36, + "probability": 0.9051 + }, + { + "start": 755.88, + "end": 758.3, + "probability": 0.9919 + }, + { + "start": 758.84, + "end": 766.48, + "probability": 0.9609 + }, + { + "start": 766.8, + "end": 769.08, + "probability": 0.9797 + }, + { + "start": 770.14, + "end": 770.66, + "probability": 0.458 + }, + { + "start": 770.72, + "end": 777.54, + "probability": 0.8487 + }, + { + "start": 778.76, + "end": 780.58, + "probability": 0.3278 + }, + { + "start": 780.58, + "end": 780.58, + "probability": 0.2392 + }, + { + "start": 780.58, + "end": 780.58, + "probability": 0.0238 + }, + { + "start": 780.58, + "end": 782.42, + "probability": 0.937 + }, + { + "start": 782.58, + "end": 784.2, + "probability": 0.9155 + }, + { + "start": 784.68, + "end": 789.46, + "probability": 0.9933 + }, + { + "start": 790.56, + "end": 795.86, + "probability": 0.8743 + }, + { + "start": 796.22, + "end": 799.88, + "probability": 0.9977 + }, + { + "start": 800.5, + "end": 801.66, + "probability": 0.7753 + }, + { + "start": 802.28, + "end": 803.7, + "probability": 0.7298 + }, + { + "start": 803.78, + "end": 808.2, + "probability": 0.9663 + }, + { + "start": 808.34, + "end": 809.14, + "probability": 0.7164 + }, + { + "start": 809.34, + "end": 810.32, + "probability": 0.9153 + }, + { + "start": 810.34, + "end": 811.48, + "probability": 0.4379 + }, + { + "start": 812.08, + "end": 812.28, + "probability": 0.5406 + }, + { + "start": 812.44, + "end": 814.8, + "probability": 0.6172 + }, + { + "start": 815.6, + "end": 818.3, + "probability": 0.9642 + }, + { + "start": 818.44, + "end": 820.02, + "probability": 0.9949 + }, + { + "start": 820.6, + "end": 823.06, + "probability": 0.9059 + }, + { + "start": 823.64, + "end": 825.5, + "probability": 0.7062 + }, + { + "start": 825.96, + "end": 829.0, + "probability": 0.8988 + }, + { + "start": 829.08, + "end": 831.18, + "probability": 0.7515 + }, + { + "start": 831.58, + "end": 832.5, + "probability": 0.9368 + }, + { + "start": 832.94, + "end": 837.02, + "probability": 0.99 + }, + { + "start": 837.2, + "end": 839.26, + "probability": 0.9982 + }, + { + "start": 839.38, + "end": 845.62, + "probability": 0.9875 + }, + { + "start": 845.68, + "end": 848.16, + "probability": 0.8325 + }, + { + "start": 848.24, + "end": 849.24, + "probability": 0.8944 + }, + { + "start": 849.96, + "end": 850.98, + "probability": 0.8892 + }, + { + "start": 851.36, + "end": 853.38, + "probability": 0.9958 + }, + { + "start": 853.74, + "end": 855.44, + "probability": 0.688 + }, + { + "start": 855.54, + "end": 858.13, + "probability": 0.9048 + }, + { + "start": 858.22, + "end": 859.76, + "probability": 0.5676 + }, + { + "start": 860.4, + "end": 862.42, + "probability": 0.5008 + }, + { + "start": 862.5, + "end": 863.9, + "probability": 0.9609 + }, + { + "start": 863.92, + "end": 866.36, + "probability": 0.7844 + }, + { + "start": 866.36, + "end": 866.4, + "probability": 0.6694 + }, + { + "start": 866.6, + "end": 870.58, + "probability": 0.877 + }, + { + "start": 871.0, + "end": 877.46, + "probability": 0.9838 + }, + { + "start": 877.98, + "end": 883.32, + "probability": 0.8354 + }, + { + "start": 884.54, + "end": 888.12, + "probability": 0.8285 + }, + { + "start": 889.2, + "end": 890.88, + "probability": 0.7408 + }, + { + "start": 891.1, + "end": 892.0, + "probability": 0.9159 + }, + { + "start": 892.08, + "end": 895.82, + "probability": 0.9805 + }, + { + "start": 896.3, + "end": 898.46, + "probability": 0.9785 + }, + { + "start": 899.0, + "end": 901.18, + "probability": 0.9565 + }, + { + "start": 901.18, + "end": 906.66, + "probability": 0.9819 + }, + { + "start": 906.82, + "end": 907.26, + "probability": 0.6234 + }, + { + "start": 908.06, + "end": 911.5, + "probability": 0.9399 + }, + { + "start": 911.84, + "end": 918.42, + "probability": 0.9938 + }, + { + "start": 918.94, + "end": 922.2, + "probability": 0.9897 + }, + { + "start": 922.2, + "end": 925.4, + "probability": 0.9697 + }, + { + "start": 925.58, + "end": 929.94, + "probability": 0.7938 + }, + { + "start": 930.24, + "end": 932.44, + "probability": 0.9658 + }, + { + "start": 932.86, + "end": 933.62, + "probability": 0.9606 + }, + { + "start": 933.74, + "end": 934.8, + "probability": 0.9814 + }, + { + "start": 934.94, + "end": 935.8, + "probability": 0.5381 + }, + { + "start": 935.8, + "end": 938.88, + "probability": 0.9325 + }, + { + "start": 939.4, + "end": 944.33, + "probability": 0.9565 + }, + { + "start": 945.42, + "end": 947.8, + "probability": 0.9584 + }, + { + "start": 948.28, + "end": 952.9, + "probability": 0.9901 + }, + { + "start": 953.4, + "end": 953.8, + "probability": 0.695 + }, + { + "start": 954.44, + "end": 958.76, + "probability": 0.4331 + }, + { + "start": 958.86, + "end": 962.32, + "probability": 0.7324 + }, + { + "start": 962.7, + "end": 964.08, + "probability": 0.7886 + }, + { + "start": 964.3, + "end": 968.22, + "probability": 0.9927 + }, + { + "start": 968.98, + "end": 970.55, + "probability": 0.6595 + }, + { + "start": 971.64, + "end": 972.5, + "probability": 0.9589 + }, + { + "start": 972.76, + "end": 975.92, + "probability": 0.9403 + }, + { + "start": 976.48, + "end": 981.48, + "probability": 0.6573 + }, + { + "start": 981.7, + "end": 983.06, + "probability": 0.8325 + }, + { + "start": 983.28, + "end": 984.7, + "probability": 0.9594 + }, + { + "start": 985.22, + "end": 987.78, + "probability": 0.7799 + }, + { + "start": 988.28, + "end": 991.5, + "probability": 0.9152 + }, + { + "start": 992.52, + "end": 993.62, + "probability": 0.7498 + }, + { + "start": 994.06, + "end": 997.14, + "probability": 0.7485 + }, + { + "start": 997.82, + "end": 999.02, + "probability": 0.9097 + }, + { + "start": 999.68, + "end": 1003.2, + "probability": 0.9698 + }, + { + "start": 1003.66, + "end": 1007.56, + "probability": 0.9706 + }, + { + "start": 1008.28, + "end": 1009.98, + "probability": 0.9886 + }, + { + "start": 1010.52, + "end": 1016.52, + "probability": 0.9925 + }, + { + "start": 1016.74, + "end": 1018.82, + "probability": 0.5034 + }, + { + "start": 1019.0, + "end": 1019.8, + "probability": 0.8894 + }, + { + "start": 1019.9, + "end": 1021.48, + "probability": 0.5853 + }, + { + "start": 1021.58, + "end": 1022.48, + "probability": 0.778 + }, + { + "start": 1022.68, + "end": 1024.6, + "probability": 0.9226 + }, + { + "start": 1025.4, + "end": 1025.66, + "probability": 0.0254 + }, + { + "start": 1026.78, + "end": 1027.48, + "probability": 0.9161 + }, + { + "start": 1027.7, + "end": 1031.42, + "probability": 0.9843 + }, + { + "start": 1031.56, + "end": 1033.26, + "probability": 0.8018 + }, + { + "start": 1034.32, + "end": 1035.98, + "probability": 0.5186 + }, + { + "start": 1036.06, + "end": 1044.76, + "probability": 0.994 + }, + { + "start": 1045.54, + "end": 1048.18, + "probability": 0.7505 + }, + { + "start": 1048.76, + "end": 1049.18, + "probability": 0.0101 + }, + { + "start": 1050.82, + "end": 1054.58, + "probability": 0.9907 + }, + { + "start": 1055.06, + "end": 1058.64, + "probability": 0.7751 + }, + { + "start": 1059.24, + "end": 1061.9, + "probability": 0.989 + }, + { + "start": 1063.66, + "end": 1063.66, + "probability": 0.8364 + }, + { + "start": 1066.28, + "end": 1070.14, + "probability": 0.7898 + }, + { + "start": 1071.3, + "end": 1076.02, + "probability": 0.9883 + }, + { + "start": 1077.08, + "end": 1077.96, + "probability": 0.9575 + }, + { + "start": 1078.12, + "end": 1081.32, + "probability": 0.9877 + }, + { + "start": 1081.44, + "end": 1083.12, + "probability": 0.7634 + }, + { + "start": 1084.96, + "end": 1090.76, + "probability": 0.9829 + }, + { + "start": 1092.04, + "end": 1092.92, + "probability": 0.7666 + }, + { + "start": 1093.0, + "end": 1097.38, + "probability": 0.9661 + }, + { + "start": 1101.36, + "end": 1105.14, + "probability": 0.7016 + }, + { + "start": 1105.22, + "end": 1106.29, + "probability": 0.8025 + }, + { + "start": 1107.1, + "end": 1111.19, + "probability": 0.9924 + }, + { + "start": 1112.72, + "end": 1114.82, + "probability": 0.7757 + }, + { + "start": 1116.02, + "end": 1117.42, + "probability": 0.7493 + }, + { + "start": 1117.46, + "end": 1120.19, + "probability": 0.985 + }, + { + "start": 1121.48, + "end": 1123.88, + "probability": 0.944 + }, + { + "start": 1123.96, + "end": 1126.17, + "probability": 0.5559 + }, + { + "start": 1127.02, + "end": 1130.02, + "probability": 0.9543 + }, + { + "start": 1130.14, + "end": 1130.98, + "probability": 0.9792 + }, + { + "start": 1131.5, + "end": 1132.76, + "probability": 0.8785 + }, + { + "start": 1133.0, + "end": 1135.82, + "probability": 0.9655 + }, + { + "start": 1136.52, + "end": 1140.02, + "probability": 0.9767 + }, + { + "start": 1140.12, + "end": 1144.74, + "probability": 0.9675 + }, + { + "start": 1144.9, + "end": 1145.83, + "probability": 0.9822 + }, + { + "start": 1149.34, + "end": 1151.24, + "probability": 0.5029 + }, + { + "start": 1151.76, + "end": 1153.5, + "probability": 0.9977 + }, + { + "start": 1155.1, + "end": 1155.74, + "probability": 0.784 + }, + { + "start": 1157.44, + "end": 1158.81, + "probability": 0.9675 + }, + { + "start": 1158.98, + "end": 1163.54, + "probability": 0.9858 + }, + { + "start": 1163.6, + "end": 1164.02, + "probability": 0.6859 + }, + { + "start": 1164.46, + "end": 1165.21, + "probability": 0.9762 + }, + { + "start": 1165.56, + "end": 1169.94, + "probability": 0.9744 + }, + { + "start": 1169.94, + "end": 1173.1, + "probability": 0.9606 + }, + { + "start": 1173.32, + "end": 1173.62, + "probability": 0.584 + }, + { + "start": 1173.76, + "end": 1174.54, + "probability": 0.5876 + }, + { + "start": 1174.72, + "end": 1176.1, + "probability": 0.5998 + }, + { + "start": 1176.2, + "end": 1177.16, + "probability": 0.8512 + }, + { + "start": 1177.36, + "end": 1181.26, + "probability": 0.9661 + }, + { + "start": 1181.7, + "end": 1182.98, + "probability": 0.9702 + }, + { + "start": 1183.08, + "end": 1186.54, + "probability": 0.8287 + }, + { + "start": 1186.62, + "end": 1189.64, + "probability": 0.7804 + }, + { + "start": 1189.64, + "end": 1193.14, + "probability": 0.8846 + }, + { + "start": 1193.68, + "end": 1196.52, + "probability": 0.9833 + }, + { + "start": 1196.66, + "end": 1197.58, + "probability": 0.8657 + }, + { + "start": 1197.66, + "end": 1198.38, + "probability": 0.8463 + }, + { + "start": 1202.96, + "end": 1204.58, + "probability": 0.5414 + }, + { + "start": 1204.78, + "end": 1206.39, + "probability": 0.9767 + }, + { + "start": 1207.36, + "end": 1209.82, + "probability": 0.7198 + }, + { + "start": 1210.74, + "end": 1214.12, + "probability": 0.9553 + }, + { + "start": 1215.6, + "end": 1217.1, + "probability": 0.6695 + }, + { + "start": 1217.22, + "end": 1218.6, + "probability": 0.5832 + }, + { + "start": 1220.08, + "end": 1220.84, + "probability": 0.136 + }, + { + "start": 1221.54, + "end": 1222.92, + "probability": 0.3971 + }, + { + "start": 1224.86, + "end": 1227.2, + "probability": 0.7098 + }, + { + "start": 1227.92, + "end": 1229.36, + "probability": 0.9559 + }, + { + "start": 1230.88, + "end": 1232.62, + "probability": 0.9626 + }, + { + "start": 1232.82, + "end": 1234.6, + "probability": 0.9446 + }, + { + "start": 1235.52, + "end": 1239.74, + "probability": 0.9685 + }, + { + "start": 1240.68, + "end": 1245.78, + "probability": 0.9921 + }, + { + "start": 1246.54, + "end": 1247.94, + "probability": 0.9792 + }, + { + "start": 1248.12, + "end": 1249.34, + "probability": 0.9438 + }, + { + "start": 1249.56, + "end": 1250.26, + "probability": 0.709 + }, + { + "start": 1250.3, + "end": 1251.47, + "probability": 0.978 + }, + { + "start": 1252.2, + "end": 1253.48, + "probability": 0.7964 + }, + { + "start": 1254.54, + "end": 1257.54, + "probability": 0.8558 + }, + { + "start": 1259.26, + "end": 1261.92, + "probability": 0.998 + }, + { + "start": 1262.06, + "end": 1265.04, + "probability": 0.9972 + }, + { + "start": 1265.72, + "end": 1266.92, + "probability": 0.9495 + }, + { + "start": 1266.98, + "end": 1267.62, + "probability": 0.7954 + }, + { + "start": 1267.66, + "end": 1272.94, + "probability": 0.9648 + }, + { + "start": 1273.58, + "end": 1273.98, + "probability": 0.7374 + }, + { + "start": 1274.24, + "end": 1274.96, + "probability": 0.6522 + }, + { + "start": 1275.04, + "end": 1276.54, + "probability": 0.9075 + }, + { + "start": 1276.6, + "end": 1278.36, + "probability": 0.9515 + }, + { + "start": 1278.54, + "end": 1279.8, + "probability": 0.696 + }, + { + "start": 1279.84, + "end": 1281.58, + "probability": 0.9705 + }, + { + "start": 1282.22, + "end": 1283.44, + "probability": 0.9202 + }, + { + "start": 1283.48, + "end": 1285.48, + "probability": 0.9976 + }, + { + "start": 1285.7, + "end": 1287.9, + "probability": 0.9946 + }, + { + "start": 1289.32, + "end": 1294.88, + "probability": 0.988 + }, + { + "start": 1295.2, + "end": 1295.74, + "probability": 0.7978 + }, + { + "start": 1295.84, + "end": 1296.5, + "probability": 0.8434 + }, + { + "start": 1296.58, + "end": 1299.32, + "probability": 0.9067 + }, + { + "start": 1299.42, + "end": 1300.14, + "probability": 0.9378 + }, + { + "start": 1300.26, + "end": 1300.28, + "probability": 0.8818 + }, + { + "start": 1302.28, + "end": 1302.78, + "probability": 0.4971 + }, + { + "start": 1302.92, + "end": 1304.33, + "probability": 0.858 + }, + { + "start": 1305.4, + "end": 1311.28, + "probability": 0.9222 + }, + { + "start": 1311.5, + "end": 1313.0, + "probability": 0.8002 + }, + { + "start": 1313.1, + "end": 1314.38, + "probability": 0.4923 + }, + { + "start": 1314.64, + "end": 1316.28, + "probability": 0.9006 + }, + { + "start": 1316.4, + "end": 1316.95, + "probability": 0.9103 + }, + { + "start": 1317.44, + "end": 1318.7, + "probability": 0.6282 + }, + { + "start": 1319.72, + "end": 1321.42, + "probability": 0.1642 + }, + { + "start": 1322.52, + "end": 1324.16, + "probability": 0.9491 + }, + { + "start": 1324.8, + "end": 1326.16, + "probability": 0.4531 + }, + { + "start": 1326.3, + "end": 1328.06, + "probability": 0.9781 + }, + { + "start": 1328.1, + "end": 1329.72, + "probability": 0.9617 + }, + { + "start": 1330.45, + "end": 1334.08, + "probability": 0.0066 + }, + { + "start": 1334.08, + "end": 1334.08, + "probability": 0.0793 + }, + { + "start": 1334.08, + "end": 1334.08, + "probability": 0.0553 + }, + { + "start": 1334.08, + "end": 1334.66, + "probability": 0.2725 + }, + { + "start": 1334.74, + "end": 1335.58, + "probability": 0.4998 + }, + { + "start": 1335.86, + "end": 1336.46, + "probability": 0.5402 + }, + { + "start": 1336.46, + "end": 1337.24, + "probability": 0.7379 + }, + { + "start": 1337.7, + "end": 1339.64, + "probability": 0.9473 + }, + { + "start": 1340.68, + "end": 1343.08, + "probability": 0.9177 + }, + { + "start": 1343.42, + "end": 1349.86, + "probability": 0.9675 + }, + { + "start": 1350.28, + "end": 1351.92, + "probability": 0.653 + }, + { + "start": 1352.02, + "end": 1354.46, + "probability": 0.9795 + }, + { + "start": 1355.16, + "end": 1357.38, + "probability": 0.9659 + }, + { + "start": 1357.44, + "end": 1358.92, + "probability": 0.9437 + }, + { + "start": 1359.44, + "end": 1361.64, + "probability": 0.9726 + }, + { + "start": 1362.52, + "end": 1362.86, + "probability": 0.679 + }, + { + "start": 1362.94, + "end": 1363.84, + "probability": 0.9587 + }, + { + "start": 1364.04, + "end": 1368.34, + "probability": 0.9861 + }, + { + "start": 1369.58, + "end": 1370.16, + "probability": 0.9668 + }, + { + "start": 1370.68, + "end": 1374.26, + "probability": 0.9974 + }, + { + "start": 1374.9, + "end": 1375.8, + "probability": 0.7056 + }, + { + "start": 1376.56, + "end": 1377.98, + "probability": 0.9976 + }, + { + "start": 1378.1, + "end": 1378.68, + "probability": 0.8294 + }, + { + "start": 1378.74, + "end": 1380.42, + "probability": 0.7031 + }, + { + "start": 1380.6, + "end": 1381.38, + "probability": 0.7529 + }, + { + "start": 1381.46, + "end": 1382.18, + "probability": 0.5025 + }, + { + "start": 1382.52, + "end": 1383.42, + "probability": 0.8536 + }, + { + "start": 1383.84, + "end": 1388.18, + "probability": 0.872 + }, + { + "start": 1388.86, + "end": 1391.6, + "probability": 0.9644 + }, + { + "start": 1392.18, + "end": 1393.48, + "probability": 0.8403 + }, + { + "start": 1393.56, + "end": 1394.24, + "probability": 0.4938 + }, + { + "start": 1394.28, + "end": 1396.74, + "probability": 0.8469 + }, + { + "start": 1396.92, + "end": 1397.42, + "probability": 0.833 + }, + { + "start": 1397.54, + "end": 1398.48, + "probability": 0.7417 + }, + { + "start": 1399.66, + "end": 1402.38, + "probability": 0.0258 + }, + { + "start": 1402.38, + "end": 1402.38, + "probability": 0.2536 + }, + { + "start": 1402.38, + "end": 1403.16, + "probability": 0.4234 + }, + { + "start": 1403.4, + "end": 1403.4, + "probability": 0.5422 + }, + { + "start": 1403.74, + "end": 1404.76, + "probability": 0.8551 + }, + { + "start": 1404.9, + "end": 1407.08, + "probability": 0.7501 + }, + { + "start": 1407.24, + "end": 1409.08, + "probability": 0.8454 + }, + { + "start": 1409.64, + "end": 1411.74, + "probability": 0.8156 + }, + { + "start": 1412.38, + "end": 1415.5, + "probability": 0.9346 + }, + { + "start": 1415.64, + "end": 1415.94, + "probability": 0.6527 + }, + { + "start": 1416.34, + "end": 1416.7, + "probability": 0.57 + }, + { + "start": 1416.84, + "end": 1421.98, + "probability": 0.8263 + }, + { + "start": 1422.36, + "end": 1423.84, + "probability": 0.4853 + }, + { + "start": 1424.24, + "end": 1424.76, + "probability": 0.5128 + }, + { + "start": 1425.1, + "end": 1425.7, + "probability": 0.774 + }, + { + "start": 1425.86, + "end": 1426.2, + "probability": 0.3421 + }, + { + "start": 1426.2, + "end": 1427.92, + "probability": 0.3045 + }, + { + "start": 1427.92, + "end": 1427.92, + "probability": 0.2432 + }, + { + "start": 1427.92, + "end": 1429.89, + "probability": 0.6662 + }, + { + "start": 1430.76, + "end": 1433.44, + "probability": 0.6026 + }, + { + "start": 1434.24, + "end": 1435.22, + "probability": 0.9047 + }, + { + "start": 1435.36, + "end": 1436.6, + "probability": 0.5339 + }, + { + "start": 1436.64, + "end": 1440.16, + "probability": 0.637 + }, + { + "start": 1440.18, + "end": 1440.66, + "probability": 0.1169 + }, + { + "start": 1441.48, + "end": 1444.4, + "probability": 0.6411 + }, + { + "start": 1444.8, + "end": 1445.84, + "probability": 0.3332 + }, + { + "start": 1445.84, + "end": 1447.0, + "probability": 0.769 + }, + { + "start": 1447.52, + "end": 1448.38, + "probability": 0.8828 + }, + { + "start": 1449.12, + "end": 1450.66, + "probability": 0.9407 + }, + { + "start": 1450.72, + "end": 1452.64, + "probability": 0.8763 + }, + { + "start": 1453.14, + "end": 1454.24, + "probability": 0.925 + }, + { + "start": 1455.12, + "end": 1460.14, + "probability": 0.8513 + }, + { + "start": 1460.96, + "end": 1462.92, + "probability": 0.9586 + }, + { + "start": 1463.02, + "end": 1464.18, + "probability": 0.8728 + }, + { + "start": 1464.38, + "end": 1465.14, + "probability": 0.831 + }, + { + "start": 1465.18, + "end": 1466.14, + "probability": 0.9307 + }, + { + "start": 1466.74, + "end": 1469.38, + "probability": 0.8057 + }, + { + "start": 1469.5, + "end": 1471.44, + "probability": 0.8699 + }, + { + "start": 1471.94, + "end": 1472.34, + "probability": 0.6733 + }, + { + "start": 1472.36, + "end": 1473.8, + "probability": 0.929 + }, + { + "start": 1473.94, + "end": 1474.81, + "probability": 0.9713 + }, + { + "start": 1475.26, + "end": 1476.17, + "probability": 0.9779 + }, + { + "start": 1476.9, + "end": 1479.13, + "probability": 0.9082 + }, + { + "start": 1479.84, + "end": 1480.42, + "probability": 0.014 + }, + { + "start": 1481.68, + "end": 1485.85, + "probability": 0.9759 + }, + { + "start": 1486.5, + "end": 1486.66, + "probability": 0.0518 + }, + { + "start": 1486.66, + "end": 1487.16, + "probability": 0.349 + }, + { + "start": 1487.76, + "end": 1488.42, + "probability": 0.3918 + }, + { + "start": 1488.62, + "end": 1489.32, + "probability": 0.8885 + }, + { + "start": 1490.06, + "end": 1494.92, + "probability": 0.9194 + }, + { + "start": 1494.98, + "end": 1496.14, + "probability": 0.9747 + }, + { + "start": 1496.36, + "end": 1496.88, + "probability": 0.676 + }, + { + "start": 1497.4, + "end": 1500.08, + "probability": 0.8356 + }, + { + "start": 1500.66, + "end": 1501.24, + "probability": 0.6299 + }, + { + "start": 1501.34, + "end": 1502.02, + "probability": 0.6062 + }, + { + "start": 1502.2, + "end": 1502.2, + "probability": 0.5625 + }, + { + "start": 1502.52, + "end": 1504.96, + "probability": 0.9838 + }, + { + "start": 1505.02, + "end": 1507.82, + "probability": 0.9932 + }, + { + "start": 1507.82, + "end": 1511.28, + "probability": 0.9763 + }, + { + "start": 1512.38, + "end": 1514.92, + "probability": 0.9833 + }, + { + "start": 1515.96, + "end": 1519.92, + "probability": 0.9878 + }, + { + "start": 1519.98, + "end": 1521.72, + "probability": 0.8997 + }, + { + "start": 1522.54, + "end": 1527.36, + "probability": 0.8776 + }, + { + "start": 1527.36, + "end": 1531.34, + "probability": 0.9702 + }, + { + "start": 1531.44, + "end": 1532.46, + "probability": 0.5366 + }, + { + "start": 1532.52, + "end": 1534.46, + "probability": 0.7431 + }, + { + "start": 1534.52, + "end": 1536.5, + "probability": 0.935 + }, + { + "start": 1537.06, + "end": 1538.74, + "probability": 0.5279 + }, + { + "start": 1539.52, + "end": 1540.06, + "probability": 0.5684 + }, + { + "start": 1540.94, + "end": 1541.95, + "probability": 0.7219 + }, + { + "start": 1542.38, + "end": 1545.3, + "probability": 0.9807 + }, + { + "start": 1545.3, + "end": 1549.58, + "probability": 0.782 + }, + { + "start": 1550.4, + "end": 1552.22, + "probability": 0.5555 + }, + { + "start": 1552.36, + "end": 1552.64, + "probability": 0.5007 + }, + { + "start": 1552.74, + "end": 1554.14, + "probability": 0.6663 + }, + { + "start": 1554.34, + "end": 1555.52, + "probability": 0.7108 + }, + { + "start": 1556.22, + "end": 1557.94, + "probability": 0.5884 + }, + { + "start": 1557.94, + "end": 1559.52, + "probability": 0.6678 + }, + { + "start": 1559.58, + "end": 1561.52, + "probability": 0.9951 + }, + { + "start": 1561.9, + "end": 1562.54, + "probability": 0.9512 + }, + { + "start": 1563.6, + "end": 1564.9, + "probability": 0.8079 + }, + { + "start": 1565.42, + "end": 1566.16, + "probability": 0.7851 + }, + { + "start": 1566.98, + "end": 1569.66, + "probability": 0.9868 + }, + { + "start": 1570.18, + "end": 1572.6, + "probability": 0.8931 + }, + { + "start": 1572.98, + "end": 1573.68, + "probability": 0.9227 + }, + { + "start": 1576.85, + "end": 1578.0, + "probability": 0.2016 + }, + { + "start": 1578.04, + "end": 1578.46, + "probability": 0.4369 + }, + { + "start": 1579.08, + "end": 1582.98, + "probability": 0.8467 + }, + { + "start": 1584.12, + "end": 1584.18, + "probability": 0.034 + }, + { + "start": 1584.18, + "end": 1585.06, + "probability": 0.8247 + }, + { + "start": 1585.16, + "end": 1586.72, + "probability": 0.7752 + }, + { + "start": 1587.14, + "end": 1589.24, + "probability": 0.999 + }, + { + "start": 1589.32, + "end": 1590.18, + "probability": 0.969 + }, + { + "start": 1590.3, + "end": 1591.32, + "probability": 0.8077 + }, + { + "start": 1592.22, + "end": 1596.96, + "probability": 0.828 + }, + { + "start": 1597.88, + "end": 1601.1, + "probability": 0.9858 + }, + { + "start": 1601.74, + "end": 1602.14, + "probability": 0.3484 + }, + { + "start": 1602.34, + "end": 1605.82, + "probability": 0.9679 + }, + { + "start": 1605.86, + "end": 1609.66, + "probability": 0.9402 + }, + { + "start": 1610.2, + "end": 1611.06, + "probability": 0.9419 + }, + { + "start": 1611.22, + "end": 1611.58, + "probability": 0.8437 + }, + { + "start": 1611.82, + "end": 1612.48, + "probability": 0.2411 + }, + { + "start": 1612.58, + "end": 1613.76, + "probability": 0.9097 + }, + { + "start": 1614.02, + "end": 1615.08, + "probability": 0.5959 + }, + { + "start": 1616.04, + "end": 1616.82, + "probability": 0.977 + }, + { + "start": 1617.52, + "end": 1620.2, + "probability": 0.9837 + }, + { + "start": 1621.06, + "end": 1623.5, + "probability": 0.893 + }, + { + "start": 1623.52, + "end": 1623.86, + "probability": 0.8223 + }, + { + "start": 1624.0, + "end": 1625.04, + "probability": 0.9691 + }, + { + "start": 1625.36, + "end": 1632.0, + "probability": 0.8179 + }, + { + "start": 1633.0, + "end": 1634.02, + "probability": 0.6074 + }, + { + "start": 1634.1, + "end": 1637.66, + "probability": 0.9794 + }, + { + "start": 1638.32, + "end": 1639.0, + "probability": 0.6672 + }, + { + "start": 1639.38, + "end": 1640.58, + "probability": 0.9128 + }, + { + "start": 1640.66, + "end": 1641.43, + "probability": 0.9326 + }, + { + "start": 1642.0, + "end": 1647.45, + "probability": 0.9737 + }, + { + "start": 1648.66, + "end": 1649.48, + "probability": 0.9135 + }, + { + "start": 1649.68, + "end": 1650.92, + "probability": 0.9988 + }, + { + "start": 1651.34, + "end": 1652.5, + "probability": 0.9753 + }, + { + "start": 1652.56, + "end": 1652.96, + "probability": 0.7684 + }, + { + "start": 1652.98, + "end": 1653.7, + "probability": 0.8374 + }, + { + "start": 1653.82, + "end": 1654.6, + "probability": 0.0009 + }, + { + "start": 1654.76, + "end": 1654.86, + "probability": 0.0985 + }, + { + "start": 1654.86, + "end": 1655.24, + "probability": 0.5806 + }, + { + "start": 1655.94, + "end": 1658.53, + "probability": 0.8401 + }, + { + "start": 1658.74, + "end": 1659.9, + "probability": 0.92 + }, + { + "start": 1660.06, + "end": 1660.8, + "probability": 0.796 + }, + { + "start": 1661.26, + "end": 1663.15, + "probability": 0.9298 + }, + { + "start": 1665.0, + "end": 1666.47, + "probability": 0.9871 + }, + { + "start": 1667.14, + "end": 1669.74, + "probability": 0.7329 + }, + { + "start": 1670.68, + "end": 1670.68, + "probability": 0.0201 + }, + { + "start": 1670.68, + "end": 1670.68, + "probability": 0.105 + }, + { + "start": 1670.68, + "end": 1671.1, + "probability": 0.2992 + }, + { + "start": 1671.12, + "end": 1672.64, + "probability": 0.8737 + }, + { + "start": 1673.0, + "end": 1673.56, + "probability": 0.8674 + }, + { + "start": 1673.7, + "end": 1676.04, + "probability": 0.8193 + }, + { + "start": 1676.22, + "end": 1678.98, + "probability": 0.9648 + }, + { + "start": 1679.18, + "end": 1684.22, + "probability": 0.1093 + }, + { + "start": 1684.22, + "end": 1684.22, + "probability": 0.0238 + }, + { + "start": 1684.22, + "end": 1684.22, + "probability": 0.1281 + }, + { + "start": 1684.22, + "end": 1684.22, + "probability": 0.0278 + }, + { + "start": 1684.22, + "end": 1684.22, + "probability": 0.0436 + }, + { + "start": 1684.22, + "end": 1686.16, + "probability": 0.6499 + }, + { + "start": 1686.28, + "end": 1689.22, + "probability": 0.7991 + }, + { + "start": 1689.72, + "end": 1691.64, + "probability": 0.7538 + }, + { + "start": 1691.86, + "end": 1694.08, + "probability": 0.0685 + }, + { + "start": 1694.08, + "end": 1694.74, + "probability": 0.2114 + }, + { + "start": 1695.16, + "end": 1697.04, + "probability": 0.8813 + }, + { + "start": 1697.92, + "end": 1700.06, + "probability": 0.762 + }, + { + "start": 1700.5, + "end": 1700.5, + "probability": 0.3115 + }, + { + "start": 1700.5, + "end": 1702.6, + "probability": 0.923 + }, + { + "start": 1702.62, + "end": 1703.42, + "probability": 0.9053 + }, + { + "start": 1703.78, + "end": 1704.98, + "probability": 0.9202 + }, + { + "start": 1705.84, + "end": 1706.88, + "probability": 0.8408 + }, + { + "start": 1708.2, + "end": 1712.6, + "probability": 0.993 + }, + { + "start": 1713.2, + "end": 1714.14, + "probability": 0.9256 + }, + { + "start": 1714.42, + "end": 1714.76, + "probability": 0.3681 + }, + { + "start": 1714.92, + "end": 1715.0, + "probability": 0.0168 + }, + { + "start": 1715.0, + "end": 1717.74, + "probability": 0.9795 + }, + { + "start": 1717.76, + "end": 1718.56, + "probability": 0.7456 + }, + { + "start": 1726.7, + "end": 1729.84, + "probability": 0.7926 + }, + { + "start": 1730.52, + "end": 1730.88, + "probability": 0.7623 + }, + { + "start": 1730.92, + "end": 1732.76, + "probability": 0.9951 + }, + { + "start": 1733.8, + "end": 1734.78, + "probability": 0.7079 + }, + { + "start": 1734.94, + "end": 1738.92, + "probability": 0.9885 + }, + { + "start": 1739.3, + "end": 1740.56, + "probability": 0.8646 + }, + { + "start": 1740.72, + "end": 1741.81, + "probability": 0.9758 + }, + { + "start": 1742.48, + "end": 1745.02, + "probability": 0.9949 + }, + { + "start": 1745.34, + "end": 1746.12, + "probability": 0.9295 + }, + { + "start": 1746.64, + "end": 1747.74, + "probability": 0.8805 + }, + { + "start": 1748.02, + "end": 1748.7, + "probability": 0.7441 + }, + { + "start": 1749.08, + "end": 1750.34, + "probability": 0.8043 + }, + { + "start": 1750.74, + "end": 1751.72, + "probability": 0.99 + }, + { + "start": 1752.42, + "end": 1753.38, + "probability": 0.9265 + }, + { + "start": 1753.9, + "end": 1754.74, + "probability": 0.9353 + }, + { + "start": 1754.98, + "end": 1756.92, + "probability": 0.9946 + }, + { + "start": 1757.04, + "end": 1757.22, + "probability": 0.8455 + }, + { + "start": 1757.22, + "end": 1760.1, + "probability": 0.7853 + }, + { + "start": 1760.2, + "end": 1761.14, + "probability": 0.9536 + }, + { + "start": 1761.26, + "end": 1762.19, + "probability": 0.9559 + }, + { + "start": 1762.52, + "end": 1762.88, + "probability": 0.6743 + }, + { + "start": 1762.92, + "end": 1764.54, + "probability": 0.814 + }, + { + "start": 1764.54, + "end": 1764.6, + "probability": 0.3735 + }, + { + "start": 1764.6, + "end": 1765.45, + "probability": 0.4873 + }, + { + "start": 1765.8, + "end": 1766.52, + "probability": 0.799 + }, + { + "start": 1766.64, + "end": 1769.44, + "probability": 0.8318 + }, + { + "start": 1769.48, + "end": 1770.94, + "probability": 0.9812 + }, + { + "start": 1771.08, + "end": 1771.98, + "probability": 0.893 + }, + { + "start": 1772.5, + "end": 1775.14, + "probability": 0.8846 + }, + { + "start": 1775.54, + "end": 1776.52, + "probability": 0.8805 + }, + { + "start": 1776.64, + "end": 1776.98, + "probability": 0.8296 + }, + { + "start": 1777.04, + "end": 1777.96, + "probability": 0.9935 + }, + { + "start": 1778.04, + "end": 1778.96, + "probability": 0.8477 + }, + { + "start": 1779.36, + "end": 1781.5, + "probability": 0.9894 + }, + { + "start": 1781.58, + "end": 1782.4, + "probability": 0.5698 + }, + { + "start": 1782.54, + "end": 1783.74, + "probability": 0.5349 + }, + { + "start": 1783.74, + "end": 1787.64, + "probability": 0.8727 + }, + { + "start": 1788.08, + "end": 1788.56, + "probability": 0.8827 + }, + { + "start": 1788.58, + "end": 1790.9, + "probability": 0.7322 + }, + { + "start": 1792.24, + "end": 1793.36, + "probability": 0.9448 + }, + { + "start": 1793.7, + "end": 1796.6, + "probability": 0.9515 + }, + { + "start": 1796.6, + "end": 1799.48, + "probability": 0.9691 + }, + { + "start": 1799.96, + "end": 1803.52, + "probability": 0.9964 + }, + { + "start": 1803.64, + "end": 1805.48, + "probability": 0.905 + }, + { + "start": 1806.02, + "end": 1806.06, + "probability": 0.051 + }, + { + "start": 1806.06, + "end": 1807.3, + "probability": 0.9728 + }, + { + "start": 1807.42, + "end": 1809.47, + "probability": 0.9927 + }, + { + "start": 1809.62, + "end": 1811.34, + "probability": 0.7246 + }, + { + "start": 1811.36, + "end": 1811.88, + "probability": 0.8919 + }, + { + "start": 1812.24, + "end": 1813.2, + "probability": 0.9794 + }, + { + "start": 1813.46, + "end": 1813.9, + "probability": 0.4848 + }, + { + "start": 1814.52, + "end": 1817.34, + "probability": 0.9652 + }, + { + "start": 1817.78, + "end": 1818.5, + "probability": 0.8262 + }, + { + "start": 1819.24, + "end": 1820.32, + "probability": 0.9946 + }, + { + "start": 1820.84, + "end": 1822.62, + "probability": 0.9753 + }, + { + "start": 1823.22, + "end": 1824.44, + "probability": 0.9313 + }, + { + "start": 1824.56, + "end": 1825.08, + "probability": 0.6734 + }, + { + "start": 1825.12, + "end": 1825.97, + "probability": 0.9828 + }, + { + "start": 1827.04, + "end": 1828.82, + "probability": 0.9766 + }, + { + "start": 1829.54, + "end": 1834.45, + "probability": 0.9319 + }, + { + "start": 1834.7, + "end": 1838.98, + "probability": 0.8366 + }, + { + "start": 1839.54, + "end": 1841.72, + "probability": 0.9797 + }, + { + "start": 1841.72, + "end": 1842.82, + "probability": 0.9194 + }, + { + "start": 1843.28, + "end": 1845.54, + "probability": 0.7524 + }, + { + "start": 1845.54, + "end": 1849.56, + "probability": 0.6819 + }, + { + "start": 1849.72, + "end": 1850.56, + "probability": 0.9885 + }, + { + "start": 1851.3, + "end": 1853.78, + "probability": 0.9561 + }, + { + "start": 1854.0, + "end": 1854.46, + "probability": 0.9149 + }, + { + "start": 1854.84, + "end": 1855.9, + "probability": 0.9667 + }, + { + "start": 1855.98, + "end": 1857.54, + "probability": 0.9128 + }, + { + "start": 1857.94, + "end": 1859.12, + "probability": 0.7928 + }, + { + "start": 1859.16, + "end": 1860.62, + "probability": 0.7959 + }, + { + "start": 1861.08, + "end": 1861.22, + "probability": 0.0244 + }, + { + "start": 1861.22, + "end": 1861.57, + "probability": 0.2056 + }, + { + "start": 1861.9, + "end": 1863.2, + "probability": 0.5844 + }, + { + "start": 1864.64, + "end": 1865.72, + "probability": 0.876 + }, + { + "start": 1867.88, + "end": 1868.82, + "probability": 0.108 + }, + { + "start": 1868.82, + "end": 1869.1, + "probability": 0.0212 + }, + { + "start": 1869.76, + "end": 1870.02, + "probability": 0.072 + }, + { + "start": 1870.02, + "end": 1870.4, + "probability": 0.2222 + }, + { + "start": 1870.54, + "end": 1873.54, + "probability": 0.9832 + }, + { + "start": 1873.98, + "end": 1873.98, + "probability": 0.36 + }, + { + "start": 1873.98, + "end": 1876.12, + "probability": 0.7401 + }, + { + "start": 1876.44, + "end": 1878.34, + "probability": 0.7478 + }, + { + "start": 1878.64, + "end": 1879.62, + "probability": 0.8522 + }, + { + "start": 1879.64, + "end": 1881.06, + "probability": 0.9685 + }, + { + "start": 1881.28, + "end": 1883.54, + "probability": 0.9895 + }, + { + "start": 1884.16, + "end": 1888.84, + "probability": 0.9798 + }, + { + "start": 1889.04, + "end": 1891.0, + "probability": 0.9937 + }, + { + "start": 1891.1, + "end": 1893.52, + "probability": 0.9695 + }, + { + "start": 1893.62, + "end": 1895.3, + "probability": 0.9716 + }, + { + "start": 1895.68, + "end": 1898.16, + "probability": 0.988 + }, + { + "start": 1898.26, + "end": 1898.8, + "probability": 0.8749 + }, + { + "start": 1898.84, + "end": 1899.42, + "probability": 0.7338 + }, + { + "start": 1899.64, + "end": 1900.08, + "probability": 0.5328 + }, + { + "start": 1900.14, + "end": 1903.66, + "probability": 0.9541 + }, + { + "start": 1904.06, + "end": 1906.84, + "probability": 0.9794 + }, + { + "start": 1907.16, + "end": 1907.38, + "probability": 0.4595 + }, + { + "start": 1907.72, + "end": 1910.52, + "probability": 0.9708 + }, + { + "start": 1911.54, + "end": 1915.08, + "probability": 0.9561 + }, + { + "start": 1915.08, + "end": 1915.42, + "probability": 0.8837 + }, + { + "start": 1915.42, + "end": 1919.07, + "probability": 0.9575 + }, + { + "start": 1919.86, + "end": 1921.64, + "probability": 0.8649 + }, + { + "start": 1921.64, + "end": 1925.98, + "probability": 0.9562 + }, + { + "start": 1925.98, + "end": 1929.7, + "probability": 0.9826 + }, + { + "start": 1931.06, + "end": 1933.4, + "probability": 0.7065 + }, + { + "start": 1934.34, + "end": 1938.44, + "probability": 0.8842 + }, + { + "start": 1938.48, + "end": 1941.76, + "probability": 0.9155 + }, + { + "start": 1941.8, + "end": 1942.24, + "probability": 0.558 + }, + { + "start": 1942.42, + "end": 1942.42, + "probability": 0.1736 + }, + { + "start": 1942.42, + "end": 1944.86, + "probability": 0.8197 + }, + { + "start": 1945.02, + "end": 1946.24, + "probability": 0.3408 + }, + { + "start": 1947.1, + "end": 1948.18, + "probability": 0.5735 + }, + { + "start": 1948.28, + "end": 1948.86, + "probability": 0.8363 + }, + { + "start": 1948.9, + "end": 1949.7, + "probability": 0.8686 + }, + { + "start": 1949.72, + "end": 1954.24, + "probability": 0.9971 + }, + { + "start": 1954.9, + "end": 1957.6, + "probability": 0.8832 + }, + { + "start": 1957.76, + "end": 1957.86, + "probability": 0.4293 + }, + { + "start": 1958.48, + "end": 1959.06, + "probability": 0.0718 + }, + { + "start": 1959.06, + "end": 1960.83, + "probability": 0.965 + }, + { + "start": 1961.28, + "end": 1962.92, + "probability": 0.6932 + }, + { + "start": 1962.94, + "end": 1965.44, + "probability": 0.9038 + }, + { + "start": 1965.5, + "end": 1966.98, + "probability": 0.8895 + }, + { + "start": 1969.06, + "end": 1971.5, + "probability": 0.9355 + }, + { + "start": 1971.5, + "end": 1974.58, + "probability": 0.9934 + }, + { + "start": 1975.0, + "end": 1975.86, + "probability": 0.6175 + }, + { + "start": 1977.9, + "end": 1978.1, + "probability": 0.0738 + }, + { + "start": 1978.1, + "end": 1979.88, + "probability": 0.5558 + }, + { + "start": 1980.44, + "end": 1985.3, + "probability": 0.9059 + }, + { + "start": 1985.72, + "end": 1987.8, + "probability": 0.563 + }, + { + "start": 1987.84, + "end": 1988.14, + "probability": 0.8458 + }, + { + "start": 1988.2, + "end": 1988.8, + "probability": 0.4881 + }, + { + "start": 1989.06, + "end": 1993.62, + "probability": 0.8682 + }, + { + "start": 1994.14, + "end": 1994.44, + "probability": 0.3077 + }, + { + "start": 1994.54, + "end": 1995.68, + "probability": 0.3615 + }, + { + "start": 1995.72, + "end": 1996.6, + "probability": 0.7332 + }, + { + "start": 1996.8, + "end": 1999.5, + "probability": 0.9782 + }, + { + "start": 2000.92, + "end": 2002.02, + "probability": 0.7 + }, + { + "start": 2002.12, + "end": 2003.26, + "probability": 0.8748 + }, + { + "start": 2003.44, + "end": 2012.5, + "probability": 0.989 + }, + { + "start": 2013.2, + "end": 2015.46, + "probability": 0.6826 + }, + { + "start": 2015.48, + "end": 2018.02, + "probability": 0.8679 + }, + { + "start": 2021.84, + "end": 2021.86, + "probability": 0.2461 + }, + { + "start": 2021.86, + "end": 2021.86, + "probability": 0.1645 + }, + { + "start": 2021.86, + "end": 2025.2, + "probability": 0.9434 + }, + { + "start": 2025.22, + "end": 2030.16, + "probability": 0.2041 + }, + { + "start": 2030.16, + "end": 2030.3, + "probability": 0.0002 + }, + { + "start": 2030.94, + "end": 2032.2, + "probability": 0.2632 + }, + { + "start": 2032.2, + "end": 2032.2, + "probability": 0.2623 + }, + { + "start": 2032.56, + "end": 2033.28, + "probability": 0.4408 + }, + { + "start": 2033.34, + "end": 2039.2, + "probability": 0.9574 + }, + { + "start": 2039.26, + "end": 2041.76, + "probability": 0.9432 + }, + { + "start": 2042.62, + "end": 2047.08, + "probability": 0.9853 + }, + { + "start": 2047.8, + "end": 2049.2, + "probability": 0.6164 + }, + { + "start": 2049.48, + "end": 2052.3, + "probability": 0.8061 + }, + { + "start": 2052.44, + "end": 2053.52, + "probability": 0.9601 + }, + { + "start": 2053.7, + "end": 2055.68, + "probability": 0.9113 + }, + { + "start": 2056.4, + "end": 2063.46, + "probability": 0.9883 + }, + { + "start": 2063.62, + "end": 2068.2, + "probability": 0.9122 + }, + { + "start": 2068.88, + "end": 2071.41, + "probability": 0.9868 + }, + { + "start": 2072.08, + "end": 2073.06, + "probability": 0.6777 + }, + { + "start": 2073.74, + "end": 2075.7, + "probability": 0.8933 + }, + { + "start": 2076.36, + "end": 2078.92, + "probability": 0.9324 + }, + { + "start": 2080.8, + "end": 2083.44, + "probability": 0.9086 + }, + { + "start": 2084.06, + "end": 2086.78, + "probability": 0.9886 + }, + { + "start": 2087.32, + "end": 2092.04, + "probability": 0.9976 + }, + { + "start": 2093.04, + "end": 2099.52, + "probability": 0.9985 + }, + { + "start": 2099.78, + "end": 2100.46, + "probability": 0.7213 + }, + { + "start": 2101.14, + "end": 2102.64, + "probability": 0.9853 + }, + { + "start": 2103.36, + "end": 2103.4, + "probability": 0.1345 + }, + { + "start": 2103.4, + "end": 2107.8, + "probability": 0.9771 + }, + { + "start": 2108.64, + "end": 2112.3, + "probability": 0.9944 + }, + { + "start": 2112.92, + "end": 2114.32, + "probability": 0.7131 + }, + { + "start": 2115.08, + "end": 2121.72, + "probability": 0.9973 + }, + { + "start": 2122.08, + "end": 2123.5, + "probability": 0.8017 + }, + { + "start": 2123.96, + "end": 2124.7, + "probability": 0.9036 + }, + { + "start": 2125.42, + "end": 2129.48, + "probability": 0.8721 + }, + { + "start": 2129.98, + "end": 2132.28, + "probability": 0.9714 + }, + { + "start": 2132.84, + "end": 2135.34, + "probability": 0.3812 + }, + { + "start": 2135.48, + "end": 2135.99, + "probability": 0.4655 + }, + { + "start": 2136.48, + "end": 2140.64, + "probability": 0.9805 + }, + { + "start": 2141.4, + "end": 2143.9, + "probability": 0.9741 + }, + { + "start": 2144.6, + "end": 2147.14, + "probability": 0.9169 + }, + { + "start": 2147.84, + "end": 2156.12, + "probability": 0.3415 + }, + { + "start": 2156.12, + "end": 2160.88, + "probability": 0.6908 + }, + { + "start": 2162.04, + "end": 2166.66, + "probability": 0.9545 + }, + { + "start": 2166.66, + "end": 2169.39, + "probability": 0.9696 + }, + { + "start": 2170.42, + "end": 2171.2, + "probability": 0.4628 + }, + { + "start": 2172.1, + "end": 2173.08, + "probability": 0.9608 + }, + { + "start": 2174.08, + "end": 2177.02, + "probability": 0.736 + }, + { + "start": 2177.8, + "end": 2181.02, + "probability": 0.9622 + }, + { + "start": 2182.06, + "end": 2187.92, + "probability": 0.901 + }, + { + "start": 2188.46, + "end": 2192.82, + "probability": 0.8856 + }, + { + "start": 2193.5, + "end": 2195.92, + "probability": 0.9937 + }, + { + "start": 2196.76, + "end": 2198.6, + "probability": 0.783 + }, + { + "start": 2198.72, + "end": 2199.44, + "probability": 0.5598 + }, + { + "start": 2199.94, + "end": 2201.24, + "probability": 0.9672 + }, + { + "start": 2201.4, + "end": 2204.32, + "probability": 0.9266 + }, + { + "start": 2205.06, + "end": 2207.64, + "probability": 0.9772 + }, + { + "start": 2207.74, + "end": 2208.28, + "probability": 0.7342 + }, + { + "start": 2208.76, + "end": 2209.84, + "probability": 0.5769 + }, + { + "start": 2210.02, + "end": 2212.98, + "probability": 0.9469 + }, + { + "start": 2213.1, + "end": 2216.12, + "probability": 0.9313 + }, + { + "start": 2217.24, + "end": 2217.62, + "probability": 0.9466 + }, + { + "start": 2218.46, + "end": 2222.8, + "probability": 0.997 + }, + { + "start": 2222.8, + "end": 2225.36, + "probability": 0.9985 + }, + { + "start": 2225.52, + "end": 2226.2, + "probability": 0.8169 + }, + { + "start": 2226.32, + "end": 2227.68, + "probability": 0.7254 + }, + { + "start": 2228.56, + "end": 2231.24, + "probability": 0.9651 + }, + { + "start": 2231.72, + "end": 2236.46, + "probability": 0.9685 + }, + { + "start": 2236.94, + "end": 2238.0, + "probability": 0.9013 + }, + { + "start": 2238.12, + "end": 2241.04, + "probability": 0.9804 + }, + { + "start": 2241.18, + "end": 2242.18, + "probability": 0.4948 + }, + { + "start": 2242.76, + "end": 2243.0, + "probability": 0.6948 + }, + { + "start": 2243.2, + "end": 2246.64, + "probability": 0.8922 + }, + { + "start": 2247.12, + "end": 2247.74, + "probability": 0.6392 + }, + { + "start": 2247.9, + "end": 2253.3, + "probability": 0.9837 + }, + { + "start": 2253.76, + "end": 2258.84, + "probability": 0.9836 + }, + { + "start": 2259.02, + "end": 2259.73, + "probability": 0.677 + }, + { + "start": 2260.3, + "end": 2262.1, + "probability": 0.8561 + }, + { + "start": 2262.62, + "end": 2266.18, + "probability": 0.9897 + }, + { + "start": 2266.78, + "end": 2269.0, + "probability": 0.9968 + }, + { + "start": 2269.5, + "end": 2271.3, + "probability": 0.9992 + }, + { + "start": 2271.66, + "end": 2272.26, + "probability": 0.5054 + }, + { + "start": 2272.28, + "end": 2274.38, + "probability": 0.9963 + }, + { + "start": 2274.38, + "end": 2277.16, + "probability": 0.9917 + }, + { + "start": 2277.5, + "end": 2278.1, + "probability": 0.3694 + }, + { + "start": 2278.44, + "end": 2280.64, + "probability": 0.8241 + }, + { + "start": 2280.66, + "end": 2282.92, + "probability": 0.9358 + }, + { + "start": 2286.38, + "end": 2287.32, + "probability": 0.5519 + }, + { + "start": 2287.34, + "end": 2288.88, + "probability": 0.7469 + }, + { + "start": 2288.96, + "end": 2290.04, + "probability": 0.7719 + }, + { + "start": 2290.2, + "end": 2293.16, + "probability": 0.9787 + }, + { + "start": 2293.38, + "end": 2297.18, + "probability": 0.945 + }, + { + "start": 2298.08, + "end": 2298.9, + "probability": 0.9198 + }, + { + "start": 2298.96, + "end": 2305.6, + "probability": 0.9868 + }, + { + "start": 2306.22, + "end": 2311.14, + "probability": 0.9941 + }, + { + "start": 2311.14, + "end": 2317.98, + "probability": 0.9493 + }, + { + "start": 2318.08, + "end": 2318.9, + "probability": 0.7035 + }, + { + "start": 2319.4, + "end": 2320.98, + "probability": 0.7323 + }, + { + "start": 2322.02, + "end": 2322.3, + "probability": 0.5042 + }, + { + "start": 2322.42, + "end": 2323.68, + "probability": 0.8063 + }, + { + "start": 2323.88, + "end": 2328.16, + "probability": 0.9379 + }, + { + "start": 2329.02, + "end": 2330.52, + "probability": 0.9883 + }, + { + "start": 2331.08, + "end": 2333.98, + "probability": 0.9878 + }, + { + "start": 2334.22, + "end": 2334.92, + "probability": 0.5267 + }, + { + "start": 2335.06, + "end": 2335.44, + "probability": 0.8014 + }, + { + "start": 2335.52, + "end": 2336.88, + "probability": 0.9805 + }, + { + "start": 2337.8, + "end": 2339.88, + "probability": 0.9919 + }, + { + "start": 2341.04, + "end": 2344.02, + "probability": 0.9274 + }, + { + "start": 2344.64, + "end": 2346.3, + "probability": 0.9839 + }, + { + "start": 2346.36, + "end": 2348.3, + "probability": 0.9568 + }, + { + "start": 2348.36, + "end": 2352.66, + "probability": 0.969 + }, + { + "start": 2352.7, + "end": 2355.16, + "probability": 0.8666 + }, + { + "start": 2355.5, + "end": 2357.76, + "probability": 0.9319 + }, + { + "start": 2357.84, + "end": 2361.44, + "probability": 0.998 + }, + { + "start": 2361.44, + "end": 2365.62, + "probability": 0.9989 + }, + { + "start": 2366.34, + "end": 2368.78, + "probability": 0.9943 + }, + { + "start": 2369.52, + "end": 2373.76, + "probability": 0.9703 + }, + { + "start": 2374.1, + "end": 2376.12, + "probability": 0.9883 + }, + { + "start": 2376.18, + "end": 2379.72, + "probability": 0.9987 + }, + { + "start": 2379.72, + "end": 2383.84, + "probability": 0.957 + }, + { + "start": 2383.9, + "end": 2384.88, + "probability": 0.7955 + }, + { + "start": 2385.2, + "end": 2387.02, + "probability": 0.9956 + }, + { + "start": 2387.16, + "end": 2387.8, + "probability": 0.8303 + }, + { + "start": 2388.42, + "end": 2392.88, + "probability": 0.9891 + }, + { + "start": 2392.88, + "end": 2396.46, + "probability": 0.9966 + }, + { + "start": 2397.02, + "end": 2400.5, + "probability": 0.8491 + }, + { + "start": 2401.22, + "end": 2403.06, + "probability": 0.9563 + }, + { + "start": 2403.18, + "end": 2406.38, + "probability": 0.9344 + }, + { + "start": 2406.5, + "end": 2410.46, + "probability": 0.991 + }, + { + "start": 2410.78, + "end": 2414.06, + "probability": 0.9832 + }, + { + "start": 2414.12, + "end": 2416.68, + "probability": 0.999 + }, + { + "start": 2416.84, + "end": 2419.1, + "probability": 0.9985 + }, + { + "start": 2419.38, + "end": 2422.24, + "probability": 0.9484 + }, + { + "start": 2422.42, + "end": 2425.68, + "probability": 0.9481 + }, + { + "start": 2426.26, + "end": 2428.52, + "probability": 0.9938 + }, + { + "start": 2428.64, + "end": 2434.66, + "probability": 0.9923 + }, + { + "start": 2435.1, + "end": 2439.12, + "probability": 0.9973 + }, + { + "start": 2439.12, + "end": 2444.26, + "probability": 0.9979 + }, + { + "start": 2444.72, + "end": 2445.08, + "probability": 0.3354 + }, + { + "start": 2445.26, + "end": 2447.9, + "probability": 0.9917 + }, + { + "start": 2449.4, + "end": 2449.6, + "probability": 0.5559 + }, + { + "start": 2449.7, + "end": 2450.5, + "probability": 0.8777 + }, + { + "start": 2450.64, + "end": 2454.36, + "probability": 0.9768 + }, + { + "start": 2455.65, + "end": 2461.36, + "probability": 0.9951 + }, + { + "start": 2461.62, + "end": 2462.66, + "probability": 0.4938 + }, + { + "start": 2462.96, + "end": 2464.56, + "probability": 0.9148 + }, + { + "start": 2465.3, + "end": 2466.64, + "probability": 0.8249 + }, + { + "start": 2467.0, + "end": 2470.82, + "probability": 0.8341 + }, + { + "start": 2470.82, + "end": 2473.4, + "probability": 0.6876 + }, + { + "start": 2473.5, + "end": 2476.2, + "probability": 0.4636 + }, + { + "start": 2476.88, + "end": 2477.18, + "probability": 0.7135 + }, + { + "start": 2477.42, + "end": 2480.45, + "probability": 0.9769 + }, + { + "start": 2480.62, + "end": 2482.04, + "probability": 0.9819 + }, + { + "start": 2482.6, + "end": 2484.22, + "probability": 0.9338 + }, + { + "start": 2484.54, + "end": 2489.88, + "probability": 0.9979 + }, + { + "start": 2491.57, + "end": 2493.6, + "probability": 0.9948 + }, + { + "start": 2493.66, + "end": 2494.2, + "probability": 0.4871 + }, + { + "start": 2494.22, + "end": 2496.46, + "probability": 0.9205 + }, + { + "start": 2496.54, + "end": 2499.64, + "probability": 0.8132 + }, + { + "start": 2499.88, + "end": 2500.32, + "probability": 0.738 + }, + { + "start": 2500.9, + "end": 2503.06, + "probability": 0.7754 + }, + { + "start": 2503.23, + "end": 2505.42, + "probability": 0.9545 + }, + { + "start": 2505.84, + "end": 2509.68, + "probability": 0.9006 + }, + { + "start": 2509.96, + "end": 2512.58, + "probability": 0.9584 + }, + { + "start": 2513.82, + "end": 2521.28, + "probability": 0.8538 + }, + { + "start": 2521.28, + "end": 2527.72, + "probability": 0.9229 + }, + { + "start": 2528.46, + "end": 2530.2, + "probability": 0.5781 + }, + { + "start": 2531.32, + "end": 2536.88, + "probability": 0.8956 + }, + { + "start": 2537.16, + "end": 2539.72, + "probability": 0.9928 + }, + { + "start": 2540.2, + "end": 2543.92, + "probability": 0.9806 + }, + { + "start": 2544.54, + "end": 2545.88, + "probability": 0.7827 + }, + { + "start": 2546.38, + "end": 2550.16, + "probability": 0.9937 + }, + { + "start": 2550.16, + "end": 2555.26, + "probability": 0.8862 + }, + { + "start": 2555.54, + "end": 2557.88, + "probability": 0.9837 + }, + { + "start": 2558.42, + "end": 2564.18, + "probability": 0.9844 + }, + { + "start": 2564.32, + "end": 2569.25, + "probability": 0.9788 + }, + { + "start": 2569.88, + "end": 2572.36, + "probability": 0.6393 + }, + { + "start": 2572.56, + "end": 2577.94, + "probability": 0.9893 + }, + { + "start": 2578.06, + "end": 2582.88, + "probability": 0.9988 + }, + { + "start": 2583.48, + "end": 2586.88, + "probability": 0.6028 + }, + { + "start": 2587.0, + "end": 2592.34, + "probability": 0.974 + }, + { + "start": 2593.08, + "end": 2594.85, + "probability": 0.9919 + }, + { + "start": 2596.14, + "end": 2598.46, + "probability": 0.9103 + }, + { + "start": 2598.62, + "end": 2600.56, + "probability": 0.7344 + }, + { + "start": 2601.0, + "end": 2602.1, + "probability": 0.5927 + }, + { + "start": 2602.14, + "end": 2607.72, + "probability": 0.939 + }, + { + "start": 2608.06, + "end": 2609.26, + "probability": 0.9207 + }, + { + "start": 2609.28, + "end": 2611.2, + "probability": 0.3497 + }, + { + "start": 2611.9, + "end": 2612.4, + "probability": 0.903 + }, + { + "start": 2612.48, + "end": 2615.33, + "probability": 0.9856 + }, + { + "start": 2619.08, + "end": 2621.54, + "probability": 0.0848 + }, + { + "start": 2622.86, + "end": 2627.64, + "probability": 0.9893 + }, + { + "start": 2628.5, + "end": 2629.58, + "probability": 0.7647 + }, + { + "start": 2629.74, + "end": 2635.7, + "probability": 0.8354 + }, + { + "start": 2636.08, + "end": 2642.14, + "probability": 0.946 + }, + { + "start": 2642.46, + "end": 2644.78, + "probability": 0.7756 + }, + { + "start": 2644.96, + "end": 2647.48, + "probability": 0.9908 + }, + { + "start": 2648.18, + "end": 2651.72, + "probability": 0.9752 + }, + { + "start": 2652.0, + "end": 2655.98, + "probability": 0.9825 + }, + { + "start": 2657.58, + "end": 2658.08, + "probability": 0.0442 + }, + { + "start": 2658.08, + "end": 2659.52, + "probability": 0.7972 + }, + { + "start": 2659.64, + "end": 2660.9, + "probability": 0.8518 + }, + { + "start": 2660.96, + "end": 2662.18, + "probability": 0.6187 + }, + { + "start": 2662.26, + "end": 2663.68, + "probability": 0.8739 + }, + { + "start": 2664.92, + "end": 2668.16, + "probability": 0.9359 + }, + { + "start": 2668.84, + "end": 2671.36, + "probability": 0.9004 + }, + { + "start": 2672.2, + "end": 2674.6, + "probability": 0.9919 + }, + { + "start": 2680.22, + "end": 2682.58, + "probability": 0.9026 + }, + { + "start": 2682.78, + "end": 2684.7, + "probability": 0.8793 + }, + { + "start": 2684.76, + "end": 2686.9, + "probability": 0.0891 + }, + { + "start": 2687.38, + "end": 2690.24, + "probability": 0.9927 + }, + { + "start": 2690.6, + "end": 2693.58, + "probability": 0.9895 + }, + { + "start": 2693.6, + "end": 2694.74, + "probability": 0.6859 + }, + { + "start": 2696.36, + "end": 2698.44, + "probability": 0.7566 + }, + { + "start": 2698.52, + "end": 2703.84, + "probability": 0.9724 + }, + { + "start": 2703.84, + "end": 2710.02, + "probability": 0.9468 + }, + { + "start": 2710.7, + "end": 2714.94, + "probability": 0.9993 + }, + { + "start": 2715.6, + "end": 2716.96, + "probability": 0.8526 + }, + { + "start": 2717.12, + "end": 2718.16, + "probability": 0.6472 + }, + { + "start": 2718.36, + "end": 2721.96, + "probability": 0.9702 + }, + { + "start": 2722.42, + "end": 2725.08, + "probability": 0.9767 + }, + { + "start": 2725.08, + "end": 2730.5, + "probability": 0.7623 + }, + { + "start": 2731.1, + "end": 2736.42, + "probability": 0.998 + }, + { + "start": 2737.18, + "end": 2740.12, + "probability": 0.9719 + }, + { + "start": 2740.36, + "end": 2740.82, + "probability": 0.7437 + }, + { + "start": 2741.76, + "end": 2742.3, + "probability": 0.3783 + }, + { + "start": 2742.44, + "end": 2744.5, + "probability": 0.9723 + }, + { + "start": 2746.26, + "end": 2748.76, + "probability": 0.9499 + }, + { + "start": 2749.04, + "end": 2750.22, + "probability": 0.88 + }, + { + "start": 2751.7, + "end": 2752.16, + "probability": 0.4672 + }, + { + "start": 2752.42, + "end": 2753.8, + "probability": 0.7456 + }, + { + "start": 2754.28, + "end": 2760.02, + "probability": 0.9922 + }, + { + "start": 2760.02, + "end": 2763.48, + "probability": 0.933 + }, + { + "start": 2764.44, + "end": 2767.06, + "probability": 0.9929 + }, + { + "start": 2767.06, + "end": 2769.96, + "probability": 0.9992 + }, + { + "start": 2770.5, + "end": 2773.02, + "probability": 0.6803 + }, + { + "start": 2773.58, + "end": 2775.24, + "probability": 0.7751 + }, + { + "start": 2776.04, + "end": 2781.26, + "probability": 0.995 + }, + { + "start": 2781.96, + "end": 2785.78, + "probability": 0.882 + }, + { + "start": 2786.32, + "end": 2786.7, + "probability": 0.4884 + }, + { + "start": 2786.82, + "end": 2787.72, + "probability": 0.8676 + }, + { + "start": 2787.8, + "end": 2791.38, + "probability": 0.9906 + }, + { + "start": 2791.38, + "end": 2793.58, + "probability": 0.8036 + }, + { + "start": 2793.68, + "end": 2798.36, + "probability": 0.7126 + }, + { + "start": 2799.24, + "end": 2800.88, + "probability": 0.3999 + }, + { + "start": 2800.9, + "end": 2801.72, + "probability": 0.8122 + }, + { + "start": 2801.98, + "end": 2803.48, + "probability": 0.7403 + }, + { + "start": 2805.2, + "end": 2805.4, + "probability": 0.6765 + }, + { + "start": 2805.46, + "end": 2808.02, + "probability": 0.982 + }, + { + "start": 2808.56, + "end": 2810.16, + "probability": 0.9789 + }, + { + "start": 2810.7, + "end": 2812.4, + "probability": 0.7346 + }, + { + "start": 2813.32, + "end": 2814.8, + "probability": 0.9984 + }, + { + "start": 2815.16, + "end": 2818.74, + "probability": 0.8491 + }, + { + "start": 2818.74, + "end": 2821.48, + "probability": 0.9974 + }, + { + "start": 2821.64, + "end": 2823.04, + "probability": 0.9103 + }, + { + "start": 2823.48, + "end": 2825.12, + "probability": 0.9792 + }, + { + "start": 2825.54, + "end": 2826.06, + "probability": 0.45 + }, + { + "start": 2826.1, + "end": 2830.68, + "probability": 0.8048 + }, + { + "start": 2831.1, + "end": 2831.32, + "probability": 0.6997 + }, + { + "start": 2831.34, + "end": 2831.94, + "probability": 0.8821 + }, + { + "start": 2832.06, + "end": 2833.8, + "probability": 0.9686 + }, + { + "start": 2834.26, + "end": 2835.98, + "probability": 0.9329 + }, + { + "start": 2836.8, + "end": 2839.08, + "probability": 0.6942 + }, + { + "start": 2839.5, + "end": 2842.34, + "probability": 0.9884 + }, + { + "start": 2842.5, + "end": 2842.72, + "probability": 0.4902 + }, + { + "start": 2842.78, + "end": 2843.52, + "probability": 0.7992 + }, + { + "start": 2843.92, + "end": 2844.89, + "probability": 0.9552 + }, + { + "start": 2845.42, + "end": 2846.94, + "probability": 0.9961 + }, + { + "start": 2847.34, + "end": 2851.92, + "probability": 0.7438 + }, + { + "start": 2852.06, + "end": 2853.48, + "probability": 0.9661 + }, + { + "start": 2853.76, + "end": 2853.98, + "probability": 0.7017 + }, + { + "start": 2854.26, + "end": 2855.54, + "probability": 0.5897 + }, + { + "start": 2855.82, + "end": 2859.34, + "probability": 0.999 + }, + { + "start": 2859.34, + "end": 2864.34, + "probability": 0.9915 + }, + { + "start": 2864.4, + "end": 2865.94, + "probability": 0.9517 + }, + { + "start": 2866.66, + "end": 2869.58, + "probability": 0.9459 + }, + { + "start": 2870.72, + "end": 2871.6, + "probability": 0.9608 + }, + { + "start": 2872.32, + "end": 2875.36, + "probability": 0.9532 + }, + { + "start": 2875.52, + "end": 2877.54, + "probability": 0.8343 + }, + { + "start": 2877.98, + "end": 2880.0, + "probability": 0.1819 + }, + { + "start": 2880.32, + "end": 2884.32, + "probability": 0.9435 + }, + { + "start": 2885.26, + "end": 2886.0, + "probability": 0.7365 + }, + { + "start": 2886.34, + "end": 2886.96, + "probability": 0.7631 + }, + { + "start": 2887.34, + "end": 2887.86, + "probability": 0.4337 + }, + { + "start": 2889.96, + "end": 2893.62, + "probability": 0.1203 + }, + { + "start": 2902.08, + "end": 2903.66, + "probability": 0.0499 + }, + { + "start": 2903.66, + "end": 2905.66, + "probability": 0.0621 + }, + { + "start": 2905.92, + "end": 2909.22, + "probability": 0.0221 + }, + { + "start": 2909.3, + "end": 2914.76, + "probability": 0.191 + }, + { + "start": 2914.94, + "end": 2917.57, + "probability": 0.647 + }, + { + "start": 2918.96, + "end": 2920.52, + "probability": 0.1142 + }, + { + "start": 2920.52, + "end": 2921.8, + "probability": 0.0286 + }, + { + "start": 2924.78, + "end": 2928.3, + "probability": 0.0763 + }, + { + "start": 2929.86, + "end": 2930.86, + "probability": 0.19 + }, + { + "start": 2931.52, + "end": 2933.78, + "probability": 0.1264 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2964.0, + "end": 2964.0, + "probability": 0.0 + }, + { + "start": 2969.48, + "end": 2970.1, + "probability": 0.7051 + }, + { + "start": 2971.41, + "end": 2975.52, + "probability": 0.7927 + }, + { + "start": 2976.08, + "end": 2979.42, + "probability": 0.8843 + }, + { + "start": 2979.96, + "end": 2980.34, + "probability": 0.7984 + }, + { + "start": 2981.26, + "end": 2981.84, + "probability": 0.4006 + }, + { + "start": 2981.98, + "end": 2983.78, + "probability": 0.8755 + }, + { + "start": 2983.94, + "end": 2985.08, + "probability": 0.9963 + }, + { + "start": 2985.26, + "end": 2990.78, + "probability": 0.9845 + }, + { + "start": 2990.84, + "end": 2991.02, + "probability": 0.5127 + }, + { + "start": 2991.2, + "end": 2993.88, + "probability": 0.5488 + }, + { + "start": 2994.6, + "end": 3001.46, + "probability": 0.9901 + }, + { + "start": 3001.76, + "end": 3004.7, + "probability": 0.4578 + }, + { + "start": 3005.74, + "end": 3007.82, + "probability": 0.5875 + }, + { + "start": 3008.36, + "end": 3012.54, + "probability": 0.8863 + }, + { + "start": 3013.64, + "end": 3014.3, + "probability": 0.0892 + }, + { + "start": 3014.44, + "end": 3014.88, + "probability": 0.4833 + }, + { + "start": 3015.28, + "end": 3017.02, + "probability": 0.9963 + }, + { + "start": 3017.18, + "end": 3018.62, + "probability": 0.9075 + }, + { + "start": 3018.68, + "end": 3019.55, + "probability": 0.9033 + }, + { + "start": 3020.1, + "end": 3022.18, + "probability": 0.9426 + }, + { + "start": 3022.44, + "end": 3025.84, + "probability": 0.9196 + }, + { + "start": 3025.84, + "end": 3028.84, + "probability": 0.9971 + }, + { + "start": 3029.06, + "end": 3030.16, + "probability": 0.9776 + }, + { + "start": 3030.4, + "end": 3034.22, + "probability": 0.8907 + }, + { + "start": 3034.56, + "end": 3037.64, + "probability": 0.7993 + }, + { + "start": 3038.0, + "end": 3041.18, + "probability": 0.9751 + }, + { + "start": 3041.88, + "end": 3041.9, + "probability": 0.0377 + }, + { + "start": 3041.9, + "end": 3043.06, + "probability": 0.5703 + }, + { + "start": 3043.58, + "end": 3044.6, + "probability": 0.8333 + }, + { + "start": 3044.66, + "end": 3044.94, + "probability": 0.7309 + }, + { + "start": 3045.12, + "end": 3050.58, + "probability": 0.962 + }, + { + "start": 3050.68, + "end": 3051.22, + "probability": 0.7465 + }, + { + "start": 3051.6, + "end": 3055.22, + "probability": 0.4558 + }, + { + "start": 3055.4, + "end": 3057.36, + "probability": 0.9878 + }, + { + "start": 3057.54, + "end": 3058.66, + "probability": 0.8245 + }, + { + "start": 3058.86, + "end": 3062.12, + "probability": 0.9972 + }, + { + "start": 3062.12, + "end": 3065.88, + "probability": 0.778 + }, + { + "start": 3065.97, + "end": 3069.18, + "probability": 0.8218 + }, + { + "start": 3069.42, + "end": 3070.12, + "probability": 0.5018 + }, + { + "start": 3070.16, + "end": 3073.32, + "probability": 0.8931 + }, + { + "start": 3073.84, + "end": 3077.84, + "probability": 0.9474 + }, + { + "start": 3078.42, + "end": 3083.28, + "probability": 0.9168 + }, + { + "start": 3083.52, + "end": 3085.22, + "probability": 0.4625 + }, + { + "start": 3085.52, + "end": 3086.68, + "probability": 0.9763 + }, + { + "start": 3086.92, + "end": 3087.9, + "probability": 0.9198 + }, + { + "start": 3088.28, + "end": 3089.98, + "probability": 0.9941 + }, + { + "start": 3090.26, + "end": 3092.94, + "probability": 0.9661 + }, + { + "start": 3092.94, + "end": 3095.64, + "probability": 0.9986 + }, + { + "start": 3096.14, + "end": 3099.34, + "probability": 0.9879 + }, + { + "start": 3099.34, + "end": 3102.1, + "probability": 0.9971 + }, + { + "start": 3102.54, + "end": 3107.06, + "probability": 0.9702 + }, + { + "start": 3107.2, + "end": 3108.26, + "probability": 0.771 + }, + { + "start": 3110.02, + "end": 3111.34, + "probability": 0.7625 + }, + { + "start": 3114.3, + "end": 3114.62, + "probability": 0.0 + }, + { + "start": 3116.04, + "end": 3116.88, + "probability": 0.1373 + }, + { + "start": 3117.66, + "end": 3119.1, + "probability": 0.7688 + }, + { + "start": 3123.36, + "end": 3124.78, + "probability": 0.7029 + }, + { + "start": 3124.94, + "end": 3125.92, + "probability": 0.8638 + }, + { + "start": 3126.16, + "end": 3129.16, + "probability": 0.9961 + }, + { + "start": 3129.72, + "end": 3132.85, + "probability": 0.9978 + }, + { + "start": 3133.3, + "end": 3137.52, + "probability": 0.9935 + }, + { + "start": 3138.08, + "end": 3140.62, + "probability": 0.9901 + }, + { + "start": 3140.8, + "end": 3143.7, + "probability": 0.9967 + }, + { + "start": 3143.86, + "end": 3145.52, + "probability": 0.9312 + }, + { + "start": 3145.7, + "end": 3146.12, + "probability": 0.5095 + }, + { + "start": 3146.12, + "end": 3150.76, + "probability": 0.8287 + }, + { + "start": 3150.76, + "end": 3153.42, + "probability": 0.9854 + }, + { + "start": 3153.96, + "end": 3157.9, + "probability": 0.7216 + }, + { + "start": 3158.58, + "end": 3161.92, + "probability": 0.9319 + }, + { + "start": 3161.92, + "end": 3164.96, + "probability": 0.9982 + }, + { + "start": 3165.02, + "end": 3166.3, + "probability": 0.9555 + }, + { + "start": 3166.94, + "end": 3167.16, + "probability": 0.571 + }, + { + "start": 3167.2, + "end": 3168.5, + "probability": 0.9113 + }, + { + "start": 3168.58, + "end": 3169.52, + "probability": 0.9009 + }, + { + "start": 3170.02, + "end": 3173.68, + "probability": 0.9316 + }, + { + "start": 3174.16, + "end": 3174.94, + "probability": 0.8892 + }, + { + "start": 3175.0, + "end": 3181.14, + "probability": 0.9546 + }, + { + "start": 3181.36, + "end": 3185.2, + "probability": 0.8887 + }, + { + "start": 3185.2, + "end": 3187.96, + "probability": 0.6573 + }, + { + "start": 3188.08, + "end": 3189.78, + "probability": 0.7562 + }, + { + "start": 3190.04, + "end": 3193.76, + "probability": 0.9696 + }, + { + "start": 3194.5, + "end": 3195.64, + "probability": 0.6273 + }, + { + "start": 3195.7, + "end": 3196.65, + "probability": 0.8645 + }, + { + "start": 3196.82, + "end": 3197.98, + "probability": 0.802 + }, + { + "start": 3198.4, + "end": 3200.28, + "probability": 0.9152 + }, + { + "start": 3200.36, + "end": 3203.4, + "probability": 0.9575 + }, + { + "start": 3204.22, + "end": 3207.18, + "probability": 0.8139 + }, + { + "start": 3207.6, + "end": 3209.2, + "probability": 0.9232 + }, + { + "start": 3209.4, + "end": 3211.3, + "probability": 0.9834 + }, + { + "start": 3212.28, + "end": 3216.58, + "probability": 0.9779 + }, + { + "start": 3216.72, + "end": 3220.0, + "probability": 0.729 + }, + { + "start": 3220.58, + "end": 3224.76, + "probability": 0.762 + }, + { + "start": 3225.03, + "end": 3229.14, + "probability": 0.4172 + }, + { + "start": 3229.68, + "end": 3229.96, + "probability": 0.2606 + }, + { + "start": 3229.96, + "end": 3230.52, + "probability": 0.3137 + }, + { + "start": 3230.58, + "end": 3233.68, + "probability": 0.7867 + }, + { + "start": 3234.28, + "end": 3237.28, + "probability": 0.9978 + }, + { + "start": 3238.0, + "end": 3243.4, + "probability": 0.9792 + }, + { + "start": 3243.4, + "end": 3248.66, + "probability": 0.9984 + }, + { + "start": 3249.3, + "end": 3253.36, + "probability": 0.9966 + }, + { + "start": 3254.2, + "end": 3256.74, + "probability": 0.9738 + }, + { + "start": 3256.74, + "end": 3260.02, + "probability": 0.9845 + }, + { + "start": 3260.54, + "end": 3263.74, + "probability": 0.9939 + }, + { + "start": 3264.34, + "end": 3267.06, + "probability": 0.9884 + }, + { + "start": 3267.14, + "end": 3269.2, + "probability": 0.9831 + }, + { + "start": 3269.68, + "end": 3275.18, + "probability": 0.987 + }, + { + "start": 3275.34, + "end": 3277.64, + "probability": 0.9199 + }, + { + "start": 3278.58, + "end": 3282.8, + "probability": 0.9484 + }, + { + "start": 3282.8, + "end": 3287.52, + "probability": 0.9907 + }, + { + "start": 3287.64, + "end": 3289.26, + "probability": 0.8497 + }, + { + "start": 3289.64, + "end": 3292.66, + "probability": 0.962 + }, + { + "start": 3292.82, + "end": 3295.18, + "probability": 0.8762 + }, + { + "start": 3295.96, + "end": 3300.36, + "probability": 0.9634 + }, + { + "start": 3301.72, + "end": 3307.64, + "probability": 0.9703 + }, + { + "start": 3307.74, + "end": 3308.92, + "probability": 0.8508 + }, + { + "start": 3308.96, + "end": 3313.48, + "probability": 0.9683 + }, + { + "start": 3314.08, + "end": 3316.38, + "probability": 0.9832 + }, + { + "start": 3317.28, + "end": 3319.66, + "probability": 0.6362 + }, + { + "start": 3321.06, + "end": 3324.42, + "probability": 0.8706 + }, + { + "start": 3325.02, + "end": 3327.2, + "probability": 0.8058 + }, + { + "start": 3331.62, + "end": 3331.94, + "probability": 0.5635 + }, + { + "start": 3332.1, + "end": 3332.62, + "probability": 0.4846 + }, + { + "start": 3332.94, + "end": 3336.78, + "probability": 0.8342 + }, + { + "start": 3341.84, + "end": 3345.72, + "probability": 0.7731 + }, + { + "start": 3345.94, + "end": 3348.36, + "probability": 0.8916 + }, + { + "start": 3357.44, + "end": 3361.14, + "probability": 0.7774 + }, + { + "start": 3361.96, + "end": 3367.4, + "probability": 0.6449 + }, + { + "start": 3368.12, + "end": 3370.64, + "probability": 0.7827 + }, + { + "start": 3371.96, + "end": 3373.34, + "probability": 0.2054 + }, + { + "start": 3374.54, + "end": 3376.9, + "probability": 0.2403 + }, + { + "start": 3377.82, + "end": 3381.26, + "probability": 0.9593 + }, + { + "start": 3381.9, + "end": 3385.0, + "probability": 0.9165 + }, + { + "start": 3386.04, + "end": 3387.16, + "probability": 0.8857 + }, + { + "start": 3388.64, + "end": 3395.82, + "probability": 0.9897 + }, + { + "start": 3396.38, + "end": 3399.6, + "probability": 0.993 + }, + { + "start": 3399.78, + "end": 3401.78, + "probability": 0.9705 + }, + { + "start": 3401.86, + "end": 3404.17, + "probability": 0.8473 + }, + { + "start": 3405.18, + "end": 3411.58, + "probability": 0.9807 + }, + { + "start": 3412.92, + "end": 3416.72, + "probability": 0.9406 + }, + { + "start": 3416.72, + "end": 3420.62, + "probability": 0.9711 + }, + { + "start": 3421.34, + "end": 3424.26, + "probability": 0.9449 + }, + { + "start": 3424.32, + "end": 3425.38, + "probability": 0.9814 + }, + { + "start": 3425.5, + "end": 3428.28, + "probability": 0.9885 + }, + { + "start": 3428.34, + "end": 3429.42, + "probability": 0.5478 + }, + { + "start": 3429.52, + "end": 3430.52, + "probability": 0.7147 + }, + { + "start": 3430.84, + "end": 3433.68, + "probability": 0.845 + }, + { + "start": 3433.8, + "end": 3436.6, + "probability": 0.997 + }, + { + "start": 3438.0, + "end": 3439.82, + "probability": 0.6771 + }, + { + "start": 3440.1, + "end": 3442.1, + "probability": 0.9393 + }, + { + "start": 3442.58, + "end": 3446.17, + "probability": 0.7882 + }, + { + "start": 3446.6, + "end": 3449.12, + "probability": 0.7724 + }, + { + "start": 3449.34, + "end": 3452.56, + "probability": 0.6984 + }, + { + "start": 3454.5, + "end": 3456.4, + "probability": 0.0559 + }, + { + "start": 3456.98, + "end": 3459.44, + "probability": 0.9237 + }, + { + "start": 3459.56, + "end": 3460.02, + "probability": 0.598 + }, + { + "start": 3460.1, + "end": 3460.76, + "probability": 0.5975 + }, + { + "start": 3461.1, + "end": 3461.8, + "probability": 0.788 + }, + { + "start": 3462.48, + "end": 3463.6, + "probability": 0.2531 + }, + { + "start": 3473.04, + "end": 3474.66, + "probability": 0.0663 + }, + { + "start": 3477.62, + "end": 3478.82, + "probability": 0.0251 + }, + { + "start": 3480.08, + "end": 3482.52, + "probability": 0.0793 + }, + { + "start": 3483.8, + "end": 3484.42, + "probability": 0.752 + }, + { + "start": 3489.56, + "end": 3489.66, + "probability": 0.056 + }, + { + "start": 3490.2, + "end": 3495.18, + "probability": 0.3413 + }, + { + "start": 3496.26, + "end": 3498.44, + "probability": 0.0804 + }, + { + "start": 3499.02, + "end": 3500.36, + "probability": 0.035 + }, + { + "start": 3501.94, + "end": 3504.54, + "probability": 0.0495 + }, + { + "start": 3504.54, + "end": 3505.32, + "probability": 0.1483 + }, + { + "start": 3521.66, + "end": 3525.12, + "probability": 0.0306 + }, + { + "start": 3526.25, + "end": 3528.57, + "probability": 0.0465 + }, + { + "start": 3532.32, + "end": 3533.86, + "probability": 0.626 + }, + { + "start": 3536.54, + "end": 3539.2, + "probability": 0.2154 + }, + { + "start": 3539.2, + "end": 3539.9, + "probability": 0.0232 + }, + { + "start": 3542.0, + "end": 3542.0, + "probability": 0.0954 + }, + { + "start": 3542.0, + "end": 3542.0, + "probability": 0.4609 + }, + { + "start": 3542.0, + "end": 3542.0, + "probability": 0.0 + }, + { + "start": 3542.0, + "end": 3542.0, + "probability": 0.0 + }, + { + "start": 3542.0, + "end": 3542.0, + "probability": 0.0 + }, + { + "start": 3542.0, + "end": 3542.0, + "probability": 0.0 + }, + { + "start": 3542.0, + "end": 3542.0, + "probability": 0.0 + }, + { + "start": 3542.0, + "end": 3542.56, + "probability": 0.2815 + }, + { + "start": 3542.58, + "end": 3544.26, + "probability": 0.385 + }, + { + "start": 3545.87, + "end": 3551.56, + "probability": 0.9867 + }, + { + "start": 3552.72, + "end": 3553.82, + "probability": 0.4816 + }, + { + "start": 3553.82, + "end": 3558.94, + "probability": 0.8354 + }, + { + "start": 3560.1, + "end": 3562.94, + "probability": 0.9133 + }, + { + "start": 3565.44, + "end": 3571.2, + "probability": 0.9665 + }, + { + "start": 3571.26, + "end": 3573.0, + "probability": 0.6519 + }, + { + "start": 3574.14, + "end": 3575.48, + "probability": 0.9104 + }, + { + "start": 3575.52, + "end": 3578.1, + "probability": 0.828 + }, + { + "start": 3578.24, + "end": 3579.66, + "probability": 0.9486 + }, + { + "start": 3580.2, + "end": 3581.1, + "probability": 0.6165 + }, + { + "start": 3581.8, + "end": 3583.06, + "probability": 0.9843 + }, + { + "start": 3583.92, + "end": 3586.18, + "probability": 0.9391 + }, + { + "start": 3589.56, + "end": 3591.76, + "probability": 0.8657 + }, + { + "start": 3591.84, + "end": 3592.26, + "probability": 0.9675 + }, + { + "start": 3592.5, + "end": 3596.02, + "probability": 0.9024 + }, + { + "start": 3598.7, + "end": 3601.58, + "probability": 0.995 + }, + { + "start": 3602.84, + "end": 3607.94, + "probability": 0.7792 + }, + { + "start": 3609.28, + "end": 3611.36, + "probability": 0.9972 + }, + { + "start": 3612.06, + "end": 3614.48, + "probability": 0.8803 + }, + { + "start": 3614.52, + "end": 3615.26, + "probability": 0.7786 + }, + { + "start": 3617.24, + "end": 3618.56, + "probability": 0.9773 + }, + { + "start": 3618.94, + "end": 3621.48, + "probability": 0.9865 + }, + { + "start": 3621.86, + "end": 3623.28, + "probability": 0.9133 + }, + { + "start": 3623.46, + "end": 3624.09, + "probability": 0.8048 + }, + { + "start": 3625.8, + "end": 3627.0, + "probability": 0.8625 + }, + { + "start": 3628.74, + "end": 3630.2, + "probability": 0.9839 + }, + { + "start": 3630.96, + "end": 3631.92, + "probability": 0.875 + }, + { + "start": 3632.04, + "end": 3636.44, + "probability": 0.9843 + }, + { + "start": 3638.02, + "end": 3642.14, + "probability": 0.9877 + }, + { + "start": 3642.24, + "end": 3643.86, + "probability": 0.9977 + }, + { + "start": 3643.94, + "end": 3644.75, + "probability": 0.5047 + }, + { + "start": 3644.92, + "end": 3645.88, + "probability": 0.6584 + }, + { + "start": 3645.88, + "end": 3646.06, + "probability": 0.1837 + }, + { + "start": 3646.26, + "end": 3646.6, + "probability": 0.828 + }, + { + "start": 3646.6, + "end": 3648.26, + "probability": 0.4068 + }, + { + "start": 3648.34, + "end": 3649.84, + "probability": 0.5929 + }, + { + "start": 3650.0, + "end": 3651.44, + "probability": 0.7921 + }, + { + "start": 3652.56, + "end": 3654.7, + "probability": 0.9801 + }, + { + "start": 3654.82, + "end": 3656.34, + "probability": 0.998 + }, + { + "start": 3656.5, + "end": 3657.76, + "probability": 0.6603 + }, + { + "start": 3658.52, + "end": 3659.58, + "probability": 0.9392 + }, + { + "start": 3661.28, + "end": 3664.82, + "probability": 0.974 + }, + { + "start": 3665.24, + "end": 3665.88, + "probability": 0.9592 + }, + { + "start": 3666.74, + "end": 3668.9, + "probability": 0.9475 + }, + { + "start": 3669.3, + "end": 3669.62, + "probability": 0.6602 + }, + { + "start": 3672.84, + "end": 3673.1, + "probability": 0.4362 + }, + { + "start": 3673.1, + "end": 3674.7, + "probability": 0.79 + }, + { + "start": 3680.24, + "end": 3681.44, + "probability": 0.7368 + }, + { + "start": 3682.56, + "end": 3683.16, + "probability": 0.7733 + }, + { + "start": 3684.32, + "end": 3685.9, + "probability": 0.6306 + }, + { + "start": 3688.92, + "end": 3689.94, + "probability": 0.8786 + }, + { + "start": 3690.48, + "end": 3692.8, + "probability": 0.9339 + }, + { + "start": 3693.2, + "end": 3695.4, + "probability": 0.9489 + }, + { + "start": 3695.6, + "end": 3696.63, + "probability": 0.2812 + }, + { + "start": 3696.72, + "end": 3700.22, + "probability": 0.7849 + }, + { + "start": 3700.28, + "end": 3702.94, + "probability": 0.3625 + }, + { + "start": 3703.1, + "end": 3703.84, + "probability": 0.9344 + }, + { + "start": 3703.98, + "end": 3709.58, + "probability": 0.996 + }, + { + "start": 3710.44, + "end": 3714.48, + "probability": 0.8525 + }, + { + "start": 3715.12, + "end": 3716.9, + "probability": 0.6685 + }, + { + "start": 3718.04, + "end": 3719.92, + "probability": 0.7712 + }, + { + "start": 3720.8, + "end": 3723.66, + "probability": 0.983 + }, + { + "start": 3725.72, + "end": 3729.36, + "probability": 0.8853 + }, + { + "start": 3731.0, + "end": 3733.42, + "probability": 0.9953 + }, + { + "start": 3734.06, + "end": 3734.67, + "probability": 0.966 + }, + { + "start": 3736.12, + "end": 3736.58, + "probability": 0.4796 + }, + { + "start": 3737.54, + "end": 3739.0, + "probability": 0.8816 + }, + { + "start": 3740.52, + "end": 3743.38, + "probability": 0.9167 + }, + { + "start": 3743.9, + "end": 3746.24, + "probability": 0.963 + }, + { + "start": 3746.9, + "end": 3749.28, + "probability": 0.9144 + }, + { + "start": 3749.74, + "end": 3750.74, + "probability": 0.7995 + }, + { + "start": 3750.98, + "end": 3752.22, + "probability": 0.9145 + }, + { + "start": 3752.52, + "end": 3754.0, + "probability": 0.947 + }, + { + "start": 3754.5, + "end": 3757.38, + "probability": 0.7916 + }, + { + "start": 3758.02, + "end": 3758.86, + "probability": 0.9209 + }, + { + "start": 3760.06, + "end": 3761.16, + "probability": 0.8074 + }, + { + "start": 3761.32, + "end": 3762.32, + "probability": 0.9384 + }, + { + "start": 3762.46, + "end": 3764.18, + "probability": 0.9971 + }, + { + "start": 3765.22, + "end": 3765.84, + "probability": 0.919 + }, + { + "start": 3767.12, + "end": 3768.24, + "probability": 0.9703 + }, + { + "start": 3768.34, + "end": 3769.48, + "probability": 0.4298 + }, + { + "start": 3769.96, + "end": 3774.42, + "probability": 0.9816 + }, + { + "start": 3774.68, + "end": 3775.7, + "probability": 0.8833 + }, + { + "start": 3776.08, + "end": 3777.74, + "probability": 0.6933 + }, + { + "start": 3777.88, + "end": 3779.16, + "probability": 0.8458 + }, + { + "start": 3779.28, + "end": 3780.4, + "probability": 0.8674 + }, + { + "start": 3780.9, + "end": 3783.5, + "probability": 0.921 + }, + { + "start": 3784.38, + "end": 3786.52, + "probability": 0.5407 + }, + { + "start": 3787.2, + "end": 3789.82, + "probability": 0.9906 + }, + { + "start": 3790.28, + "end": 3791.8, + "probability": 0.9676 + }, + { + "start": 3792.42, + "end": 3796.72, + "probability": 0.9964 + }, + { + "start": 3797.1, + "end": 3797.88, + "probability": 0.7354 + }, + { + "start": 3798.68, + "end": 3801.38, + "probability": 0.9768 + }, + { + "start": 3801.88, + "end": 3806.2, + "probability": 0.9766 + }, + { + "start": 3807.32, + "end": 3808.84, + "probability": 0.9922 + }, + { + "start": 3808.94, + "end": 3810.46, + "probability": 0.8033 + }, + { + "start": 3810.52, + "end": 3813.58, + "probability": 0.9626 + }, + { + "start": 3813.62, + "end": 3815.26, + "probability": 0.8008 + }, + { + "start": 3815.76, + "end": 3817.26, + "probability": 0.9321 + }, + { + "start": 3818.12, + "end": 3820.72, + "probability": 0.955 + }, + { + "start": 3820.82, + "end": 3821.62, + "probability": 0.8984 + }, + { + "start": 3822.64, + "end": 3825.72, + "probability": 0.8867 + }, + { + "start": 3827.96, + "end": 3829.82, + "probability": 0.9062 + }, + { + "start": 3831.16, + "end": 3834.24, + "probability": 0.9467 + }, + { + "start": 3836.1, + "end": 3841.28, + "probability": 0.9131 + }, + { + "start": 3842.46, + "end": 3843.64, + "probability": 0.8775 + }, + { + "start": 3844.9, + "end": 3846.99, + "probability": 0.9902 + }, + { + "start": 3848.18, + "end": 3852.86, + "probability": 0.4242 + }, + { + "start": 3853.02, + "end": 3853.52, + "probability": 0.1765 + }, + { + "start": 3853.52, + "end": 3855.14, + "probability": 0.9283 + }, + { + "start": 3855.36, + "end": 3857.52, + "probability": 0.9414 + }, + { + "start": 3857.62, + "end": 3861.22, + "probability": 0.9844 + }, + { + "start": 3863.4, + "end": 3865.56, + "probability": 0.7338 + }, + { + "start": 3866.1, + "end": 3867.6, + "probability": 0.7558 + }, + { + "start": 3867.82, + "end": 3871.78, + "probability": 0.7041 + }, + { + "start": 3872.4, + "end": 3873.32, + "probability": 0.9528 + }, + { + "start": 3874.1, + "end": 3875.88, + "probability": 0.3677 + }, + { + "start": 3876.72, + "end": 3877.06, + "probability": 0.9163 + }, + { + "start": 3877.18, + "end": 3879.54, + "probability": 0.6515 + }, + { + "start": 3879.54, + "end": 3880.74, + "probability": 0.8074 + }, + { + "start": 3880.9, + "end": 3882.1, + "probability": 0.9431 + }, + { + "start": 3882.64, + "end": 3884.48, + "probability": 0.9556 + }, + { + "start": 3885.0, + "end": 3885.76, + "probability": 0.9603 + }, + { + "start": 3886.66, + "end": 3888.46, + "probability": 0.7304 + }, + { + "start": 3889.38, + "end": 3891.82, + "probability": 0.7299 + }, + { + "start": 3892.66, + "end": 3894.0, + "probability": 0.8023 + }, + { + "start": 3895.0, + "end": 3897.2, + "probability": 0.5218 + }, + { + "start": 3898.76, + "end": 3904.62, + "probability": 0.746 + }, + { + "start": 3905.4, + "end": 3907.32, + "probability": 0.7988 + }, + { + "start": 3908.02, + "end": 3910.22, + "probability": 0.9667 + }, + { + "start": 3910.5, + "end": 3917.54, + "probability": 0.9478 + }, + { + "start": 3919.26, + "end": 3921.08, + "probability": 0.8584 + }, + { + "start": 3921.62, + "end": 3922.24, + "probability": 0.6281 + }, + { + "start": 3922.26, + "end": 3925.06, + "probability": 0.8452 + }, + { + "start": 3925.56, + "end": 3929.02, + "probability": 0.9659 + }, + { + "start": 3929.82, + "end": 3933.38, + "probability": 0.9927 + }, + { + "start": 3934.08, + "end": 3935.9, + "probability": 0.9832 + }, + { + "start": 3937.24, + "end": 3939.06, + "probability": 0.9344 + }, + { + "start": 3939.54, + "end": 3944.08, + "probability": 0.8737 + }, + { + "start": 3946.93, + "end": 3947.52, + "probability": 0.2152 + }, + { + "start": 3949.34, + "end": 3952.44, + "probability": 0.9924 + }, + { + "start": 3953.68, + "end": 3956.56, + "probability": 0.9651 + }, + { + "start": 3956.92, + "end": 3958.18, + "probability": 0.949 + }, + { + "start": 3959.2, + "end": 3961.36, + "probability": 0.9916 + }, + { + "start": 3962.06, + "end": 3965.2, + "probability": 0.8896 + }, + { + "start": 3965.72, + "end": 3968.28, + "probability": 0.6091 + }, + { + "start": 3968.54, + "end": 3972.42, + "probability": 0.8273 + }, + { + "start": 3972.98, + "end": 3974.84, + "probability": 0.9556 + }, + { + "start": 3975.88, + "end": 3980.6, + "probability": 0.7806 + }, + { + "start": 3981.62, + "end": 3984.3, + "probability": 0.9674 + }, + { + "start": 3984.66, + "end": 3987.1, + "probability": 0.7161 + }, + { + "start": 3987.76, + "end": 3990.4, + "probability": 0.8285 + }, + { + "start": 3991.0, + "end": 3993.92, + "probability": 0.8136 + }, + { + "start": 3994.5, + "end": 3996.74, + "probability": 0.7466 + }, + { + "start": 3997.14, + "end": 3999.64, + "probability": 0.9355 + }, + { + "start": 4000.1, + "end": 4001.64, + "probability": 0.9829 + }, + { + "start": 4002.42, + "end": 4006.12, + "probability": 0.9473 + }, + { + "start": 4006.74, + "end": 4009.12, + "probability": 0.3286 + }, + { + "start": 4011.86, + "end": 4015.62, + "probability": 0.4964 + }, + { + "start": 4016.14, + "end": 4017.7, + "probability": 0.9392 + }, + { + "start": 4017.9, + "end": 4019.34, + "probability": 0.7143 + }, + { + "start": 4019.4, + "end": 4025.06, + "probability": 0.9708 + }, + { + "start": 4026.12, + "end": 4028.46, + "probability": 0.5818 + }, + { + "start": 4029.22, + "end": 4034.38, + "probability": 0.9156 + }, + { + "start": 4036.18, + "end": 4037.52, + "probability": 0.9785 + }, + { + "start": 4038.44, + "end": 4042.22, + "probability": 0.9006 + }, + { + "start": 4042.9, + "end": 4046.9, + "probability": 0.6536 + }, + { + "start": 4047.44, + "end": 4053.36, + "probability": 0.9948 + }, + { + "start": 4053.9, + "end": 4056.1, + "probability": 0.9179 + }, + { + "start": 4056.52, + "end": 4058.56, + "probability": 0.6297 + }, + { + "start": 4059.22, + "end": 4060.92, + "probability": 0.9895 + }, + { + "start": 4061.58, + "end": 4063.22, + "probability": 0.9414 + }, + { + "start": 4063.84, + "end": 4065.98, + "probability": 0.9985 + }, + { + "start": 4066.64, + "end": 4067.46, + "probability": 0.7827 + }, + { + "start": 4067.52, + "end": 4068.42, + "probability": 0.926 + }, + { + "start": 4068.52, + "end": 4070.74, + "probability": 0.8932 + }, + { + "start": 4071.14, + "end": 4075.32, + "probability": 0.6246 + }, + { + "start": 4076.8, + "end": 4078.3, + "probability": 0.9572 + }, + { + "start": 4078.78, + "end": 4083.48, + "probability": 0.8778 + }, + { + "start": 4084.14, + "end": 4089.2, + "probability": 0.571 + }, + { + "start": 4089.66, + "end": 4090.74, + "probability": 0.9258 + }, + { + "start": 4091.26, + "end": 4092.22, + "probability": 0.9363 + }, + { + "start": 4092.8, + "end": 4093.56, + "probability": 0.7483 + }, + { + "start": 4093.76, + "end": 4094.42, + "probability": 0.7529 + }, + { + "start": 4095.0, + "end": 4096.4, + "probability": 0.5085 + }, + { + "start": 4097.04, + "end": 4097.8, + "probability": 0.5458 + }, + { + "start": 4098.7, + "end": 4100.16, + "probability": 0.6771 + }, + { + "start": 4100.36, + "end": 4103.76, + "probability": 0.4252 + }, + { + "start": 4104.22, + "end": 4105.32, + "probability": 0.8264 + }, + { + "start": 4105.56, + "end": 4108.18, + "probability": 0.9801 + }, + { + "start": 4108.72, + "end": 4112.78, + "probability": 0.9791 + }, + { + "start": 4113.24, + "end": 4119.76, + "probability": 0.9749 + }, + { + "start": 4120.32, + "end": 4121.56, + "probability": 0.9462 + }, + { + "start": 4121.9, + "end": 4122.64, + "probability": 0.9064 + }, + { + "start": 4122.94, + "end": 4126.69, + "probability": 0.7473 + }, + { + "start": 4128.48, + "end": 4134.28, + "probability": 0.972 + }, + { + "start": 4134.76, + "end": 4135.48, + "probability": 0.9118 + }, + { + "start": 4135.92, + "end": 4137.54, + "probability": 0.8586 + }, + { + "start": 4138.2, + "end": 4140.86, + "probability": 0.662 + }, + { + "start": 4141.28, + "end": 4141.62, + "probability": 0.8155 + }, + { + "start": 4142.6, + "end": 4144.0, + "probability": 0.2009 + }, + { + "start": 4144.32, + "end": 4145.09, + "probability": 0.6593 + }, + { + "start": 4146.04, + "end": 4146.58, + "probability": 0.3932 + }, + { + "start": 4147.74, + "end": 4148.47, + "probability": 0.2146 + }, + { + "start": 4149.6, + "end": 4150.74, + "probability": 0.322 + }, + { + "start": 4152.68, + "end": 4157.92, + "probability": 0.9507 + }, + { + "start": 4159.3, + "end": 4162.0, + "probability": 0.8537 + }, + { + "start": 4164.02, + "end": 4164.66, + "probability": 0.7261 + }, + { + "start": 4166.66, + "end": 4169.38, + "probability": 0.6567 + }, + { + "start": 4172.82, + "end": 4174.94, + "probability": 0.7725 + }, + { + "start": 4175.86, + "end": 4177.4, + "probability": 0.6062 + }, + { + "start": 4179.36, + "end": 4181.28, + "probability": 0.9177 + }, + { + "start": 4181.34, + "end": 4182.08, + "probability": 0.797 + }, + { + "start": 4183.34, + "end": 4184.74, + "probability": 0.594 + }, + { + "start": 4184.8, + "end": 4189.86, + "probability": 0.9955 + }, + { + "start": 4191.04, + "end": 4193.05, + "probability": 0.8719 + }, + { + "start": 4195.12, + "end": 4198.02, + "probability": 0.8524 + }, + { + "start": 4199.44, + "end": 4203.56, + "probability": 0.8939 + }, + { + "start": 4204.26, + "end": 4206.48, + "probability": 0.9902 + }, + { + "start": 4206.72, + "end": 4209.9, + "probability": 0.9937 + }, + { + "start": 4210.52, + "end": 4213.94, + "probability": 0.998 + }, + { + "start": 4213.94, + "end": 4217.5, + "probability": 0.9926 + }, + { + "start": 4218.18, + "end": 4220.0, + "probability": 0.7869 + }, + { + "start": 4221.76, + "end": 4223.12, + "probability": 0.9303 + }, + { + "start": 4223.62, + "end": 4227.38, + "probability": 0.9961 + }, + { + "start": 4227.84, + "end": 4230.14, + "probability": 0.9987 + }, + { + "start": 4230.86, + "end": 4234.34, + "probability": 0.973 + }, + { + "start": 4235.16, + "end": 4241.42, + "probability": 0.9679 + }, + { + "start": 4241.96, + "end": 4244.51, + "probability": 0.9858 + }, + { + "start": 4245.16, + "end": 4246.12, + "probability": 0.9893 + }, + { + "start": 4247.9, + "end": 4247.9, + "probability": 0.087 + }, + { + "start": 4247.9, + "end": 4247.9, + "probability": 0.3315 + }, + { + "start": 4247.9, + "end": 4250.18, + "probability": 0.729 + }, + { + "start": 4250.32, + "end": 4252.84, + "probability": 0.7823 + }, + { + "start": 4252.9, + "end": 4253.64, + "probability": 0.7512 + }, + { + "start": 4255.18, + "end": 4255.96, + "probability": 0.6665 + }, + { + "start": 4256.81, + "end": 4257.96, + "probability": 0.5732 + }, + { + "start": 4258.4, + "end": 4261.21, + "probability": 0.8822 + }, + { + "start": 4262.12, + "end": 4263.9, + "probability": 0.9973 + }, + { + "start": 4264.38, + "end": 4265.12, + "probability": 0.7768 + }, + { + "start": 4265.74, + "end": 4268.8, + "probability": 0.9056 + }, + { + "start": 4269.58, + "end": 4271.46, + "probability": 0.9654 + }, + { + "start": 4272.06, + "end": 4275.5, + "probability": 0.9733 + }, + { + "start": 4276.0, + "end": 4276.58, + "probability": 0.7487 + }, + { + "start": 4276.68, + "end": 4278.74, + "probability": 0.9695 + }, + { + "start": 4279.1, + "end": 4281.82, + "probability": 0.8163 + }, + { + "start": 4281.96, + "end": 4285.44, + "probability": 0.8644 + }, + { + "start": 4286.18, + "end": 4290.06, + "probability": 0.9458 + }, + { + "start": 4291.38, + "end": 4291.98, + "probability": 0.6629 + }, + { + "start": 4292.16, + "end": 4292.72, + "probability": 0.3985 + }, + { + "start": 4292.86, + "end": 4295.1, + "probability": 0.9352 + }, + { + "start": 4295.24, + "end": 4296.88, + "probability": 0.9815 + }, + { + "start": 4297.28, + "end": 4299.0, + "probability": 0.9883 + }, + { + "start": 4299.38, + "end": 4304.9, + "probability": 0.9751 + }, + { + "start": 4305.14, + "end": 4306.02, + "probability": 0.9456 + }, + { + "start": 4306.46, + "end": 4306.98, + "probability": 0.8818 + }, + { + "start": 4307.28, + "end": 4310.12, + "probability": 0.9941 + }, + { + "start": 4310.78, + "end": 4312.38, + "probability": 0.9839 + }, + { + "start": 4312.5, + "end": 4313.72, + "probability": 0.9471 + }, + { + "start": 4314.24, + "end": 4317.58, + "probability": 0.9901 + }, + { + "start": 4317.58, + "end": 4321.48, + "probability": 0.9994 + }, + { + "start": 4321.6, + "end": 4324.5, + "probability": 0.9813 + }, + { + "start": 4325.02, + "end": 4329.04, + "probability": 0.9888 + }, + { + "start": 4329.04, + "end": 4333.76, + "probability": 0.9726 + }, + { + "start": 4333.92, + "end": 4335.52, + "probability": 0.8521 + }, + { + "start": 4335.92, + "end": 4336.32, + "probability": 0.6431 + }, + { + "start": 4336.32, + "end": 4337.48, + "probability": 0.5632 + }, + { + "start": 4337.56, + "end": 4338.98, + "probability": 0.8223 + }, + { + "start": 4339.76, + "end": 4340.36, + "probability": 0.784 + }, + { + "start": 4340.4, + "end": 4348.24, + "probability": 0.9919 + }, + { + "start": 4348.96, + "end": 4354.9, + "probability": 0.918 + }, + { + "start": 4355.92, + "end": 4359.54, + "probability": 0.9753 + }, + { + "start": 4360.04, + "end": 4360.88, + "probability": 0.8371 + }, + { + "start": 4361.22, + "end": 4361.66, + "probability": 0.6016 + }, + { + "start": 4361.82, + "end": 4362.18, + "probability": 0.8283 + }, + { + "start": 4362.28, + "end": 4363.64, + "probability": 0.9743 + }, + { + "start": 4365.0, + "end": 4367.42, + "probability": 0.99 + }, + { + "start": 4367.42, + "end": 4371.66, + "probability": 0.6689 + }, + { + "start": 4371.74, + "end": 4372.36, + "probability": 0.7785 + }, + { + "start": 4372.44, + "end": 4373.64, + "probability": 0.5492 + }, + { + "start": 4374.06, + "end": 4376.48, + "probability": 0.9016 + }, + { + "start": 4377.16, + "end": 4380.7, + "probability": 0.9863 + }, + { + "start": 4380.7, + "end": 4383.16, + "probability": 0.9394 + }, + { + "start": 4383.88, + "end": 4384.68, + "probability": 0.7217 + }, + { + "start": 4385.8, + "end": 4390.56, + "probability": 0.953 + }, + { + "start": 4391.12, + "end": 4393.42, + "probability": 0.9976 + }, + { + "start": 4394.02, + "end": 4395.18, + "probability": 0.669 + }, + { + "start": 4395.76, + "end": 4401.52, + "probability": 0.9525 + }, + { + "start": 4402.1, + "end": 4404.48, + "probability": 0.812 + }, + { + "start": 4405.0, + "end": 4407.66, + "probability": 0.9734 + }, + { + "start": 4408.62, + "end": 4412.8, + "probability": 0.8586 + }, + { + "start": 4413.28, + "end": 4414.08, + "probability": 0.5502 + }, + { + "start": 4414.28, + "end": 4416.26, + "probability": 0.7852 + }, + { + "start": 4416.36, + "end": 4417.14, + "probability": 0.5319 + }, + { + "start": 4417.68, + "end": 4422.22, + "probability": 0.9194 + }, + { + "start": 4422.22, + "end": 4426.34, + "probability": 0.9796 + }, + { + "start": 4426.72, + "end": 4430.98, + "probability": 0.8195 + }, + { + "start": 4431.64, + "end": 4436.62, + "probability": 0.9169 + }, + { + "start": 4436.62, + "end": 4439.8, + "probability": 0.9985 + }, + { + "start": 4440.44, + "end": 4441.14, + "probability": 0.1943 + }, + { + "start": 4441.82, + "end": 4442.28, + "probability": 0.2892 + }, + { + "start": 4442.28, + "end": 4447.68, + "probability": 0.9937 + }, + { + "start": 4447.82, + "end": 4451.04, + "probability": 0.963 + }, + { + "start": 4451.38, + "end": 4453.29, + "probability": 0.6898 + }, + { + "start": 4454.26, + "end": 4457.68, + "probability": 0.9572 + }, + { + "start": 4457.74, + "end": 4458.1, + "probability": 0.7928 + }, + { + "start": 4459.1, + "end": 4461.01, + "probability": 0.9652 + }, + { + "start": 4461.38, + "end": 4464.32, + "probability": 0.9744 + }, + { + "start": 4464.86, + "end": 4466.36, + "probability": 0.7347 + }, + { + "start": 4467.38, + "end": 4468.06, + "probability": 0.6659 + }, + { + "start": 4468.74, + "end": 4470.52, + "probability": 0.2708 + }, + { + "start": 4471.78, + "end": 4475.08, + "probability": 0.909 + }, + { + "start": 4477.24, + "end": 4479.24, + "probability": 0.4053 + }, + { + "start": 4479.48, + "end": 4481.82, + "probability": 0.8948 + }, + { + "start": 4482.02, + "end": 4485.16, + "probability": 0.8484 + }, + { + "start": 4485.9, + "end": 4487.18, + "probability": 0.3731 + }, + { + "start": 4488.2, + "end": 4492.72, + "probability": 0.7909 + }, + { + "start": 4493.4, + "end": 4493.44, + "probability": 0.0851 + }, + { + "start": 4493.98, + "end": 4497.06, + "probability": 0.981 + }, + { + "start": 4498.18, + "end": 4499.96, + "probability": 0.9541 + }, + { + "start": 4500.24, + "end": 4500.78, + "probability": 0.5392 + }, + { + "start": 4500.82, + "end": 4502.02, + "probability": 0.5201 + }, + { + "start": 4502.02, + "end": 4502.96, + "probability": 0.9807 + }, + { + "start": 4502.98, + "end": 4503.9, + "probability": 0.7932 + }, + { + "start": 4503.9, + "end": 4505.94, + "probability": 0.9824 + }, + { + "start": 4506.26, + "end": 4510.94, + "probability": 0.9871 + }, + { + "start": 4511.92, + "end": 4514.14, + "probability": 0.9596 + }, + { + "start": 4514.58, + "end": 4517.92, + "probability": 0.9675 + }, + { + "start": 4518.36, + "end": 4519.46, + "probability": 0.8658 + }, + { + "start": 4519.48, + "end": 4521.7, + "probability": 0.9161 + }, + { + "start": 4522.22, + "end": 4525.22, + "probability": 0.9691 + }, + { + "start": 4525.54, + "end": 4527.04, + "probability": 0.9951 + }, + { + "start": 4527.54, + "end": 4531.68, + "probability": 0.9976 + }, + { + "start": 4532.46, + "end": 4533.26, + "probability": 0.7721 + }, + { + "start": 4533.58, + "end": 4535.1, + "probability": 0.5789 + }, + { + "start": 4535.22, + "end": 4538.88, + "probability": 0.8547 + }, + { + "start": 4539.54, + "end": 4544.29, + "probability": 0.9945 + }, + { + "start": 4544.61, + "end": 4545.43, + "probability": 0.5374 + }, + { + "start": 4546.15, + "end": 4549.17, + "probability": 0.9748 + }, + { + "start": 4549.25, + "end": 4549.62, + "probability": 0.9946 + }, + { + "start": 4550.73, + "end": 4554.61, + "probability": 0.979 + }, + { + "start": 4554.61, + "end": 4558.37, + "probability": 0.9296 + }, + { + "start": 4558.47, + "end": 4559.53, + "probability": 0.8428 + }, + { + "start": 4559.63, + "end": 4564.37, + "probability": 0.0525 + }, + { + "start": 4564.37, + "end": 4565.45, + "probability": 0.4927 + }, + { + "start": 4565.57, + "end": 4567.39, + "probability": 0.7023 + }, + { + "start": 4567.49, + "end": 4568.23, + "probability": 0.5885 + }, + { + "start": 4568.77, + "end": 4570.01, + "probability": 0.5393 + }, + { + "start": 4570.03, + "end": 4574.77, + "probability": 0.9146 + }, + { + "start": 4577.77, + "end": 4581.27, + "probability": 0.2255 + }, + { + "start": 4583.03, + "end": 4586.63, + "probability": 0.7247 + }, + { + "start": 4586.63, + "end": 4590.72, + "probability": 0.9399 + }, + { + "start": 4592.03, + "end": 4593.27, + "probability": 0.1007 + }, + { + "start": 4595.73, + "end": 4596.91, + "probability": 0.1725 + }, + { + "start": 4598.19, + "end": 4599.71, + "probability": 0.1772 + }, + { + "start": 4600.25, + "end": 4603.95, + "probability": 0.0238 + }, + { + "start": 4604.51, + "end": 4604.51, + "probability": 0.0679 + }, + { + "start": 4604.51, + "end": 4604.67, + "probability": 0.1059 + }, + { + "start": 4604.67, + "end": 4605.19, + "probability": 0.076 + }, + { + "start": 4605.19, + "end": 4606.55, + "probability": 0.2092 + }, + { + "start": 4607.31, + "end": 4607.99, + "probability": 0.0733 + }, + { + "start": 4623.25, + "end": 4626.87, + "probability": 0.1039 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4668.0, + "end": 4668.0, + "probability": 0.0 + }, + { + "start": 4669.24, + "end": 4671.36, + "probability": 0.4581 + }, + { + "start": 4671.86, + "end": 4672.82, + "probability": 0.6224 + }, + { + "start": 4672.9, + "end": 4673.14, + "probability": 0.281 + }, + { + "start": 4673.26, + "end": 4675.66, + "probability": 0.7501 + }, + { + "start": 4678.7, + "end": 4681.34, + "probability": 0.8083 + }, + { + "start": 4681.58, + "end": 4683.78, + "probability": 0.8372 + }, + { + "start": 4683.8, + "end": 4684.72, + "probability": 0.649 + }, + { + "start": 4685.3, + "end": 4687.38, + "probability": 0.9408 + }, + { + "start": 4687.64, + "end": 4688.16, + "probability": 0.9584 + }, + { + "start": 4688.28, + "end": 4691.02, + "probability": 0.6793 + }, + { + "start": 4691.32, + "end": 4694.14, + "probability": 0.9512 + }, + { + "start": 4694.8, + "end": 4695.98, + "probability": 0.9264 + }, + { + "start": 4696.12, + "end": 4696.56, + "probability": 0.738 + }, + { + "start": 4696.64, + "end": 4699.02, + "probability": 0.8376 + }, + { + "start": 4699.12, + "end": 4699.66, + "probability": 0.484 + }, + { + "start": 4699.9, + "end": 4701.38, + "probability": 0.9188 + }, + { + "start": 4701.5, + "end": 4702.9, + "probability": 0.9718 + }, + { + "start": 4702.94, + "end": 4704.44, + "probability": 0.6863 + }, + { + "start": 4705.06, + "end": 4706.34, + "probability": 0.9096 + }, + { + "start": 4706.52, + "end": 4707.2, + "probability": 0.5483 + }, + { + "start": 4707.42, + "end": 4708.84, + "probability": 0.8055 + }, + { + "start": 4709.24, + "end": 4713.68, + "probability": 0.8235 + }, + { + "start": 4713.9, + "end": 4719.8, + "probability": 0.9814 + }, + { + "start": 4720.2, + "end": 4723.18, + "probability": 0.7997 + }, + { + "start": 4723.52, + "end": 4724.62, + "probability": 0.897 + }, + { + "start": 4724.8, + "end": 4730.76, + "probability": 0.9219 + }, + { + "start": 4731.08, + "end": 4733.04, + "probability": 0.874 + }, + { + "start": 4733.46, + "end": 4735.64, + "probability": 0.9757 + }, + { + "start": 4735.68, + "end": 4738.84, + "probability": 0.8364 + }, + { + "start": 4738.94, + "end": 4741.74, + "probability": 0.7355 + }, + { + "start": 4742.06, + "end": 4743.96, + "probability": 0.9553 + }, + { + "start": 4744.38, + "end": 4748.12, + "probability": 0.9336 + }, + { + "start": 4748.28, + "end": 4749.48, + "probability": 0.8753 + }, + { + "start": 4749.96, + "end": 4752.74, + "probability": 0.9801 + }, + { + "start": 4753.14, + "end": 4756.52, + "probability": 0.8754 + }, + { + "start": 4757.06, + "end": 4757.42, + "probability": 0.4264 + }, + { + "start": 4757.6, + "end": 4758.98, + "probability": 0.9457 + }, + { + "start": 4759.1, + "end": 4760.74, + "probability": 0.926 + }, + { + "start": 4762.3, + "end": 4762.94, + "probability": 0.4347 + }, + { + "start": 4763.22, + "end": 4769.2, + "probability": 0.045 + }, + { + "start": 4769.92, + "end": 4770.5, + "probability": 0.1407 + }, + { + "start": 4770.68, + "end": 4772.94, + "probability": 0.8913 + }, + { + "start": 4773.12, + "end": 4774.42, + "probability": 0.8091 + }, + { + "start": 4774.64, + "end": 4777.16, + "probability": 0.1357 + }, + { + "start": 4777.82, + "end": 4779.34, + "probability": 0.9316 + }, + { + "start": 4779.64, + "end": 4781.97, + "probability": 0.9858 + }, + { + "start": 4782.7, + "end": 4784.25, + "probability": 0.9951 + }, + { + "start": 4785.56, + "end": 4788.12, + "probability": 0.9214 + }, + { + "start": 4788.78, + "end": 4794.52, + "probability": 0.9964 + }, + { + "start": 4795.52, + "end": 4795.64, + "probability": 0.1187 + }, + { + "start": 4795.64, + "end": 4795.64, + "probability": 0.2368 + }, + { + "start": 4795.64, + "end": 4797.68, + "probability": 0.9807 + }, + { + "start": 4797.88, + "end": 4798.84, + "probability": 0.5511 + }, + { + "start": 4798.94, + "end": 4799.84, + "probability": 0.804 + }, + { + "start": 4800.42, + "end": 4804.61, + "probability": 0.946 + }, + { + "start": 4804.92, + "end": 4805.24, + "probability": 0.3489 + }, + { + "start": 4805.68, + "end": 4808.52, + "probability": 0.9941 + }, + { + "start": 4808.6, + "end": 4810.64, + "probability": 0.9893 + }, + { + "start": 4810.82, + "end": 4812.86, + "probability": 0.9053 + }, + { + "start": 4812.86, + "end": 4817.3, + "probability": 0.9943 + }, + { + "start": 4817.74, + "end": 4821.72, + "probability": 0.7355 + }, + { + "start": 4822.1, + "end": 4823.36, + "probability": 0.7395 + }, + { + "start": 4823.74, + "end": 4826.18, + "probability": 0.9795 + }, + { + "start": 4826.46, + "end": 4827.16, + "probability": 0.814 + }, + { + "start": 4827.62, + "end": 4830.36, + "probability": 0.967 + }, + { + "start": 4830.82, + "end": 4831.76, + "probability": 0.068 + }, + { + "start": 4832.08, + "end": 4833.92, + "probability": 0.1827 + }, + { + "start": 4834.31, + "end": 4836.76, + "probability": 0.8154 + }, + { + "start": 4836.9, + "end": 4838.18, + "probability": 0.4117 + }, + { + "start": 4838.26, + "end": 4840.24, + "probability": 0.8519 + }, + { + "start": 4840.48, + "end": 4842.26, + "probability": 0.9823 + }, + { + "start": 4842.36, + "end": 4843.28, + "probability": 0.8353 + }, + { + "start": 4843.38, + "end": 4845.76, + "probability": 0.0673 + }, + { + "start": 4845.96, + "end": 4848.44, + "probability": 0.9917 + }, + { + "start": 4848.8, + "end": 4853.78, + "probability": 0.9919 + }, + { + "start": 4854.14, + "end": 4855.9, + "probability": 0.9877 + }, + { + "start": 4856.64, + "end": 4863.48, + "probability": 0.6795 + }, + { + "start": 4864.94, + "end": 4867.68, + "probability": 0.9865 + }, + { + "start": 4869.02, + "end": 4874.18, + "probability": 0.9695 + }, + { + "start": 4874.98, + "end": 4877.28, + "probability": 0.7739 + }, + { + "start": 4878.8, + "end": 4881.32, + "probability": 0.9956 + }, + { + "start": 4882.42, + "end": 4883.28, + "probability": 0.922 + }, + { + "start": 4885.98, + "end": 4887.74, + "probability": 0.7468 + }, + { + "start": 4889.08, + "end": 4891.02, + "probability": 0.7892 + }, + { + "start": 4892.26, + "end": 4895.46, + "probability": 0.907 + }, + { + "start": 4896.24, + "end": 4898.14, + "probability": 0.9961 + }, + { + "start": 4900.24, + "end": 4903.12, + "probability": 0.7229 + }, + { + "start": 4904.22, + "end": 4908.32, + "probability": 0.7222 + }, + { + "start": 4908.52, + "end": 4911.78, + "probability": 0.9788 + }, + { + "start": 4912.14, + "end": 4913.62, + "probability": 0.9944 + }, + { + "start": 4914.14, + "end": 4919.44, + "probability": 0.9131 + }, + { + "start": 4920.18, + "end": 4921.46, + "probability": 0.9668 + }, + { + "start": 4921.7, + "end": 4922.06, + "probability": 0.9832 + }, + { + "start": 4922.44, + "end": 4923.98, + "probability": 0.8687 + }, + { + "start": 4924.46, + "end": 4932.44, + "probability": 0.8594 + }, + { + "start": 4932.68, + "end": 4934.8, + "probability": 0.5351 + }, + { + "start": 4935.12, + "end": 4938.46, + "probability": 0.5043 + }, + { + "start": 4938.5, + "end": 4939.52, + "probability": 0.6451 + }, + { + "start": 4940.3, + "end": 4944.64, + "probability": 0.9437 + }, + { + "start": 4945.46, + "end": 4947.34, + "probability": 0.5584 + }, + { + "start": 4948.76, + "end": 4949.26, + "probability": 0.959 + }, + { + "start": 4949.62, + "end": 4950.63, + "probability": 0.8306 + }, + { + "start": 4950.74, + "end": 4951.7, + "probability": 0.5412 + }, + { + "start": 4951.7, + "end": 4953.26, + "probability": 0.5348 + }, + { + "start": 4953.44, + "end": 4954.96, + "probability": 0.9423 + }, + { + "start": 4955.16, + "end": 4955.68, + "probability": 0.9512 + }, + { + "start": 4956.66, + "end": 4958.18, + "probability": 0.653 + }, + { + "start": 4959.0, + "end": 4962.92, + "probability": 0.6617 + }, + { + "start": 4963.48, + "end": 4965.72, + "probability": 0.7871 + }, + { + "start": 4966.36, + "end": 4967.66, + "probability": 0.8843 + }, + { + "start": 4968.56, + "end": 4970.56, + "probability": 0.9172 + }, + { + "start": 4970.88, + "end": 4972.42, + "probability": 0.9861 + }, + { + "start": 4972.5, + "end": 4973.16, + "probability": 0.6618 + }, + { + "start": 4976.38, + "end": 4978.92, + "probability": 0.7807 + }, + { + "start": 4979.06, + "end": 4980.26, + "probability": 0.8542 + }, + { + "start": 4981.3, + "end": 4982.0, + "probability": 0.8714 + }, + { + "start": 4982.92, + "end": 4983.7, + "probability": 0.9167 + }, + { + "start": 4984.24, + "end": 4988.18, + "probability": 0.8787 + }, + { + "start": 4991.6, + "end": 4994.4, + "probability": 0.6287 + }, + { + "start": 4995.22, + "end": 4995.86, + "probability": 0.2118 + }, + { + "start": 4997.28, + "end": 5000.46, + "probability": 0.8818 + }, + { + "start": 5002.88, + "end": 5003.58, + "probability": 0.6848 + }, + { + "start": 5004.14, + "end": 5007.98, + "probability": 0.9848 + }, + { + "start": 5009.9, + "end": 5012.12, + "probability": 0.819 + }, + { + "start": 5013.66, + "end": 5017.5, + "probability": 0.8092 + }, + { + "start": 5018.76, + "end": 5021.03, + "probability": 0.9531 + }, + { + "start": 5021.8, + "end": 5024.94, + "probability": 0.8513 + }, + { + "start": 5025.34, + "end": 5027.84, + "probability": 0.8855 + }, + { + "start": 5029.62, + "end": 5032.56, + "probability": 0.6589 + }, + { + "start": 5032.7, + "end": 5033.98, + "probability": 0.7524 + }, + { + "start": 5034.52, + "end": 5036.22, + "probability": 0.653 + }, + { + "start": 5036.66, + "end": 5041.2, + "probability": 0.8351 + }, + { + "start": 5041.36, + "end": 5042.16, + "probability": 0.9126 + }, + { + "start": 5042.82, + "end": 5046.0, + "probability": 0.5509 + }, + { + "start": 5046.58, + "end": 5049.16, + "probability": 0.7696 + }, + { + "start": 5049.48, + "end": 5050.27, + "probability": 0.6291 + }, + { + "start": 5050.98, + "end": 5054.88, + "probability": 0.8496 + }, + { + "start": 5055.16, + "end": 5058.64, + "probability": 0.9436 + }, + { + "start": 5058.84, + "end": 5061.64, + "probability": 0.957 + }, + { + "start": 5062.5, + "end": 5062.96, + "probability": 0.4859 + }, + { + "start": 5064.12, + "end": 5065.23, + "probability": 0.712 + }, + { + "start": 5065.68, + "end": 5068.41, + "probability": 0.9132 + }, + { + "start": 5068.58, + "end": 5069.14, + "probability": 0.9659 + }, + { + "start": 5069.24, + "end": 5069.82, + "probability": 0.9671 + }, + { + "start": 5070.28, + "end": 5071.12, + "probability": 0.8097 + }, + { + "start": 5072.6, + "end": 5075.6, + "probability": 0.973 + }, + { + "start": 5076.0, + "end": 5077.1, + "probability": 0.8529 + }, + { + "start": 5077.16, + "end": 5078.04, + "probability": 0.9581 + }, + { + "start": 5078.22, + "end": 5079.04, + "probability": 0.7413 + }, + { + "start": 5079.64, + "end": 5080.06, + "probability": 0.3718 + }, + { + "start": 5080.14, + "end": 5081.16, + "probability": 0.8385 + }, + { + "start": 5081.4, + "end": 5083.9, + "probability": 0.7565 + }, + { + "start": 5084.08, + "end": 5085.01, + "probability": 0.5051 + }, + { + "start": 5086.86, + "end": 5087.78, + "probability": 0.7443 + }, + { + "start": 5089.48, + "end": 5090.36, + "probability": 0.6993 + }, + { + "start": 5091.32, + "end": 5095.6, + "probability": 0.8097 + }, + { + "start": 5095.7, + "end": 5096.26, + "probability": 0.4016 + }, + { + "start": 5096.34, + "end": 5096.74, + "probability": 0.5705 + }, + { + "start": 5096.98, + "end": 5098.14, + "probability": 0.7208 + }, + { + "start": 5098.26, + "end": 5099.04, + "probability": 0.9301 + }, + { + "start": 5099.5, + "end": 5101.3, + "probability": 0.7865 + }, + { + "start": 5102.2, + "end": 5102.92, + "probability": 0.5893 + }, + { + "start": 5104.2, + "end": 5107.14, + "probability": 0.8975 + }, + { + "start": 5107.96, + "end": 5113.11, + "probability": 0.9414 + }, + { + "start": 5113.52, + "end": 5116.7, + "probability": 0.7582 + }, + { + "start": 5117.36, + "end": 5118.32, + "probability": 0.9215 + }, + { + "start": 5118.84, + "end": 5122.42, + "probability": 0.9703 + }, + { + "start": 5123.12, + "end": 5125.1, + "probability": 0.9351 + }, + { + "start": 5127.44, + "end": 5130.08, + "probability": 0.4999 + }, + { + "start": 5131.0, + "end": 5136.46, + "probability": 0.9666 + }, + { + "start": 5138.1, + "end": 5138.94, + "probability": 0.7568 + }, + { + "start": 5139.02, + "end": 5141.27, + "probability": 0.989 + }, + { + "start": 5141.44, + "end": 5143.14, + "probability": 0.9966 + }, + { + "start": 5143.98, + "end": 5149.72, + "probability": 0.9801 + }, + { + "start": 5150.24, + "end": 5151.52, + "probability": 0.6265 + }, + { + "start": 5152.47, + "end": 5155.94, + "probability": 0.7864 + }, + { + "start": 5156.26, + "end": 5158.46, + "probability": 0.9812 + }, + { + "start": 5159.94, + "end": 5162.78, + "probability": 0.9533 + }, + { + "start": 5163.44, + "end": 5166.32, + "probability": 0.8004 + }, + { + "start": 5167.04, + "end": 5167.42, + "probability": 0.231 + }, + { + "start": 5167.58, + "end": 5168.14, + "probability": 0.6611 + }, + { + "start": 5168.56, + "end": 5171.6, + "probability": 0.6704 + }, + { + "start": 5171.92, + "end": 5172.32, + "probability": 0.747 + }, + { + "start": 5173.54, + "end": 5175.54, + "probability": 0.9927 + }, + { + "start": 5176.0, + "end": 5180.24, + "probability": 0.944 + }, + { + "start": 5180.5, + "end": 5182.01, + "probability": 0.9593 + }, + { + "start": 5182.5, + "end": 5184.54, + "probability": 0.9714 + }, + { + "start": 5184.68, + "end": 5186.94, + "probability": 0.9896 + }, + { + "start": 5187.5, + "end": 5188.6, + "probability": 0.8493 + }, + { + "start": 5188.7, + "end": 5190.44, + "probability": 0.9697 + }, + { + "start": 5190.58, + "end": 5192.52, + "probability": 0.7686 + }, + { + "start": 5192.62, + "end": 5194.08, + "probability": 0.9829 + }, + { + "start": 5194.33, + "end": 5196.3, + "probability": 0.6794 + }, + { + "start": 5196.78, + "end": 5199.9, + "probability": 0.9814 + }, + { + "start": 5200.02, + "end": 5201.78, + "probability": 0.8353 + }, + { + "start": 5202.08, + "end": 5205.82, + "probability": 0.9783 + }, + { + "start": 5205.92, + "end": 5207.0, + "probability": 0.8287 + }, + { + "start": 5208.26, + "end": 5209.12, + "probability": 0.7315 + }, + { + "start": 5210.7, + "end": 5211.44, + "probability": 0.7934 + }, + { + "start": 5212.32, + "end": 5213.54, + "probability": 0.9778 + }, + { + "start": 5214.48, + "end": 5217.6, + "probability": 0.9977 + }, + { + "start": 5217.7, + "end": 5221.94, + "probability": 0.8387 + }, + { + "start": 5223.68, + "end": 5224.82, + "probability": 0.9319 + }, + { + "start": 5224.9, + "end": 5227.32, + "probability": 0.9801 + }, + { + "start": 5227.4, + "end": 5229.3, + "probability": 0.7294 + }, + { + "start": 5229.92, + "end": 5231.32, + "probability": 0.6056 + }, + { + "start": 5232.18, + "end": 5234.54, + "probability": 0.9489 + }, + { + "start": 5235.64, + "end": 5237.48, + "probability": 0.9949 + }, + { + "start": 5238.7, + "end": 5239.82, + "probability": 0.6757 + }, + { + "start": 5240.14, + "end": 5240.86, + "probability": 0.76 + }, + { + "start": 5241.38, + "end": 5242.22, + "probability": 0.6054 + }, + { + "start": 5242.26, + "end": 5243.14, + "probability": 0.4624 + }, + { + "start": 5243.22, + "end": 5245.92, + "probability": 0.8945 + }, + { + "start": 5246.0, + "end": 5247.94, + "probability": 0.9941 + }, + { + "start": 5248.16, + "end": 5249.46, + "probability": 0.9104 + }, + { + "start": 5249.88, + "end": 5250.02, + "probability": 0.2786 + }, + { + "start": 5250.14, + "end": 5252.8, + "probability": 0.7983 + }, + { + "start": 5253.18, + "end": 5255.16, + "probability": 0.9444 + }, + { + "start": 5255.24, + "end": 5255.64, + "probability": 0.8617 + }, + { + "start": 5256.52, + "end": 5257.14, + "probability": 0.4512 + }, + { + "start": 5257.3, + "end": 5260.64, + "probability": 0.9368 + }, + { + "start": 5260.86, + "end": 5265.02, + "probability": 0.9056 + }, + { + "start": 5272.94, + "end": 5273.74, + "probability": 0.6147 + }, + { + "start": 5275.0, + "end": 5277.5, + "probability": 0.6378 + }, + { + "start": 5277.92, + "end": 5280.64, + "probability": 0.8407 + }, + { + "start": 5280.86, + "end": 5282.34, + "probability": 0.659 + }, + { + "start": 5283.4, + "end": 5285.34, + "probability": 0.9258 + }, + { + "start": 5285.82, + "end": 5287.4, + "probability": 0.5194 + }, + { + "start": 5287.94, + "end": 5290.84, + "probability": 0.9939 + }, + { + "start": 5291.64, + "end": 5293.23, + "probability": 0.8556 + }, + { + "start": 5293.74, + "end": 5295.46, + "probability": 0.9758 + }, + { + "start": 5295.68, + "end": 5298.78, + "probability": 0.9054 + }, + { + "start": 5298.98, + "end": 5302.12, + "probability": 0.8181 + }, + { + "start": 5302.68, + "end": 5307.62, + "probability": 0.7182 + }, + { + "start": 5308.06, + "end": 5309.94, + "probability": 0.8875 + }, + { + "start": 5310.06, + "end": 5311.7, + "probability": 0.62 + }, + { + "start": 5312.34, + "end": 5313.12, + "probability": 0.9048 + }, + { + "start": 5313.26, + "end": 5315.34, + "probability": 0.9442 + }, + { + "start": 5315.38, + "end": 5315.72, + "probability": 0.8097 + }, + { + "start": 5316.3, + "end": 5317.96, + "probability": 0.8494 + }, + { + "start": 5318.06, + "end": 5319.5, + "probability": 0.6808 + }, + { + "start": 5319.76, + "end": 5322.98, + "probability": 0.9937 + }, + { + "start": 5323.08, + "end": 5324.32, + "probability": 0.6975 + }, + { + "start": 5324.88, + "end": 5327.66, + "probability": 0.0385 + }, + { + "start": 5327.82, + "end": 5329.7, + "probability": 0.8356 + }, + { + "start": 5331.96, + "end": 5332.82, + "probability": 0.7389 + }, + { + "start": 5333.22, + "end": 5334.3, + "probability": 0.833 + }, + { + "start": 5334.98, + "end": 5335.24, + "probability": 0.7986 + }, + { + "start": 5341.4, + "end": 5342.6, + "probability": 0.509 + }, + { + "start": 5347.98, + "end": 5351.88, + "probability": 0.9952 + }, + { + "start": 5353.56, + "end": 5353.56, + "probability": 0.1385 + }, + { + "start": 5353.56, + "end": 5353.86, + "probability": 0.0509 + }, + { + "start": 5353.86, + "end": 5354.16, + "probability": 0.0313 + }, + { + "start": 5354.16, + "end": 5354.16, + "probability": 0.0873 + }, + { + "start": 5354.16, + "end": 5357.48, + "probability": 0.4865 + }, + { + "start": 5357.54, + "end": 5361.44, + "probability": 0.9834 + }, + { + "start": 5364.02, + "end": 5365.18, + "probability": 0.7998 + }, + { + "start": 5366.14, + "end": 5372.48, + "probability": 0.9888 + }, + { + "start": 5372.52, + "end": 5374.6, + "probability": 0.169 + }, + { + "start": 5374.92, + "end": 5377.26, + "probability": 0.8292 + }, + { + "start": 5377.84, + "end": 5378.6, + "probability": 0.961 + }, + { + "start": 5378.7, + "end": 5379.96, + "probability": 0.9721 + }, + { + "start": 5380.32, + "end": 5382.8, + "probability": 0.9431 + }, + { + "start": 5383.54, + "end": 5384.46, + "probability": 0.689 + }, + { + "start": 5384.52, + "end": 5385.5, + "probability": 0.7266 + }, + { + "start": 5385.68, + "end": 5387.12, + "probability": 0.7252 + }, + { + "start": 5387.26, + "end": 5391.62, + "probability": 0.9392 + }, + { + "start": 5392.24, + "end": 5394.76, + "probability": 0.9939 + }, + { + "start": 5394.88, + "end": 5395.66, + "probability": 0.329 + }, + { + "start": 5395.72, + "end": 5396.72, + "probability": 0.6558 + }, + { + "start": 5401.36, + "end": 5407.54, + "probability": 0.0887 + }, + { + "start": 5407.54, + "end": 5407.54, + "probability": 0.0619 + }, + { + "start": 5407.54, + "end": 5407.64, + "probability": 0.132 + }, + { + "start": 5408.94, + "end": 5414.34, + "probability": 0.6458 + }, + { + "start": 5415.12, + "end": 5417.88, + "probability": 0.967 + }, + { + "start": 5418.94, + "end": 5419.88, + "probability": 0.9352 + }, + { + "start": 5420.12, + "end": 5424.22, + "probability": 0.5483 + }, + { + "start": 5424.38, + "end": 5429.1, + "probability": 0.9044 + }, + { + "start": 5429.82, + "end": 5433.96, + "probability": 0.9966 + }, + { + "start": 5434.02, + "end": 5439.34, + "probability": 0.8429 + }, + { + "start": 5439.52, + "end": 5442.83, + "probability": 0.8665 + }, + { + "start": 5443.68, + "end": 5445.98, + "probability": 0.965 + }, + { + "start": 5446.18, + "end": 5448.4, + "probability": 0.8464 + }, + { + "start": 5448.86, + "end": 5449.9, + "probability": 0.7139 + }, + { + "start": 5454.68, + "end": 5456.31, + "probability": 0.7389 + }, + { + "start": 5456.92, + "end": 5458.14, + "probability": 0.7123 + }, + { + "start": 5458.78, + "end": 5461.38, + "probability": 0.6312 + }, + { + "start": 5463.6, + "end": 5465.82, + "probability": 0.4551 + }, + { + "start": 5467.56, + "end": 5477.88, + "probability": 0.97 + }, + { + "start": 5477.88, + "end": 5482.04, + "probability": 0.8948 + }, + { + "start": 5484.68, + "end": 5486.42, + "probability": 0.445 + }, + { + "start": 5486.84, + "end": 5491.58, + "probability": 0.8118 + }, + { + "start": 5491.76, + "end": 5492.75, + "probability": 0.9714 + }, + { + "start": 5494.36, + "end": 5495.66, + "probability": 0.9646 + }, + { + "start": 5496.66, + "end": 5497.64, + "probability": 0.7915 + }, + { + "start": 5498.36, + "end": 5500.92, + "probability": 0.9456 + }, + { + "start": 5501.3, + "end": 5503.12, + "probability": 0.9548 + }, + { + "start": 5503.8, + "end": 5507.42, + "probability": 0.9277 + }, + { + "start": 5507.98, + "end": 5513.86, + "probability": 0.8223 + }, + { + "start": 5515.1, + "end": 5518.12, + "probability": 0.9819 + }, + { + "start": 5518.26, + "end": 5521.12, + "probability": 0.958 + }, + { + "start": 5521.9, + "end": 5522.81, + "probability": 0.8057 + }, + { + "start": 5523.24, + "end": 5523.81, + "probability": 0.8342 + }, + { + "start": 5523.96, + "end": 5524.1, + "probability": 0.4967 + }, + { + "start": 5524.18, + "end": 5525.02, + "probability": 0.7529 + }, + { + "start": 5525.24, + "end": 5526.52, + "probability": 0.7991 + }, + { + "start": 5527.84, + "end": 5528.68, + "probability": 0.9802 + }, + { + "start": 5529.56, + "end": 5531.3, + "probability": 0.993 + }, + { + "start": 5532.06, + "end": 5536.04, + "probability": 0.9544 + }, + { + "start": 5536.4, + "end": 5537.6, + "probability": 0.8902 + }, + { + "start": 5538.7, + "end": 5541.48, + "probability": 0.7255 + }, + { + "start": 5542.22, + "end": 5543.82, + "probability": 0.9745 + }, + { + "start": 5544.72, + "end": 5552.42, + "probability": 0.813 + }, + { + "start": 5553.76, + "end": 5555.62, + "probability": 0.6486 + }, + { + "start": 5556.82, + "end": 5562.12, + "probability": 0.9065 + }, + { + "start": 5562.9, + "end": 5567.22, + "probability": 0.7423 + }, + { + "start": 5568.3, + "end": 5571.98, + "probability": 0.606 + }, + { + "start": 5572.76, + "end": 5573.91, + "probability": 0.7581 + }, + { + "start": 5575.18, + "end": 5580.36, + "probability": 0.9705 + }, + { + "start": 5582.32, + "end": 5583.56, + "probability": 0.9758 + }, + { + "start": 5583.72, + "end": 5589.88, + "probability": 0.9069 + }, + { + "start": 5590.54, + "end": 5593.7, + "probability": 0.9839 + }, + { + "start": 5594.84, + "end": 5600.18, + "probability": 0.9932 + }, + { + "start": 5601.04, + "end": 5604.66, + "probability": 0.8704 + }, + { + "start": 5605.72, + "end": 5613.96, + "probability": 0.9839 + }, + { + "start": 5614.26, + "end": 5618.64, + "probability": 0.8833 + }, + { + "start": 5619.26, + "end": 5621.18, + "probability": 0.4067 + }, + { + "start": 5621.78, + "end": 5624.03, + "probability": 0.5895 + }, + { + "start": 5624.6, + "end": 5626.28, + "probability": 0.0558 + }, + { + "start": 5626.28, + "end": 5627.94, + "probability": 0.7925 + }, + { + "start": 5628.04, + "end": 5628.6, + "probability": 0.8107 + }, + { + "start": 5628.68, + "end": 5631.64, + "probability": 0.9836 + }, + { + "start": 5631.94, + "end": 5633.66, + "probability": 0.0046 + }, + { + "start": 5633.82, + "end": 5633.82, + "probability": 0.1657 + }, + { + "start": 5633.82, + "end": 5633.82, + "probability": 0.3204 + }, + { + "start": 5633.82, + "end": 5635.32, + "probability": 0.7495 + }, + { + "start": 5635.36, + "end": 5636.22, + "probability": 0.2487 + }, + { + "start": 5636.42, + "end": 5637.48, + "probability": 0.7415 + }, + { + "start": 5637.58, + "end": 5638.42, + "probability": 0.7205 + }, + { + "start": 5638.54, + "end": 5640.42, + "probability": 0.6124 + }, + { + "start": 5642.48, + "end": 5646.6, + "probability": 0.9631 + }, + { + "start": 5646.6, + "end": 5648.62, + "probability": 0.7152 + }, + { + "start": 5648.88, + "end": 5650.16, + "probability": 0.7706 + }, + { + "start": 5650.78, + "end": 5652.96, + "probability": 0.9773 + }, + { + "start": 5653.5, + "end": 5657.92, + "probability": 0.9196 + }, + { + "start": 5658.98, + "end": 5663.7, + "probability": 0.6401 + }, + { + "start": 5663.88, + "end": 5663.88, + "probability": 0.0178 + }, + { + "start": 5663.88, + "end": 5663.88, + "probability": 0.0559 + }, + { + "start": 5663.88, + "end": 5664.74, + "probability": 0.6226 + }, + { + "start": 5665.2, + "end": 5665.8, + "probability": 0.6791 + }, + { + "start": 5665.94, + "end": 5666.74, + "probability": 0.967 + }, + { + "start": 5667.08, + "end": 5667.7, + "probability": 0.5678 + }, + { + "start": 5667.94, + "end": 5668.54, + "probability": 0.779 + }, + { + "start": 5668.66, + "end": 5669.68, + "probability": 0.7426 + }, + { + "start": 5670.36, + "end": 5678.16, + "probability": 0.9909 + }, + { + "start": 5678.74, + "end": 5685.66, + "probability": 0.986 + }, + { + "start": 5687.14, + "end": 5691.66, + "probability": 0.9331 + }, + { + "start": 5692.04, + "end": 5693.7, + "probability": 0.9238 + }, + { + "start": 5694.4, + "end": 5695.7, + "probability": 0.7131 + }, + { + "start": 5696.44, + "end": 5698.78, + "probability": 0.9016 + }, + { + "start": 5700.16, + "end": 5704.57, + "probability": 0.8858 + }, + { + "start": 5704.86, + "end": 5705.68, + "probability": 0.336 + }, + { + "start": 5705.8, + "end": 5707.06, + "probability": 0.7477 + }, + { + "start": 5707.16, + "end": 5708.32, + "probability": 0.7872 + }, + { + "start": 5709.2, + "end": 5712.46, + "probability": 0.905 + }, + { + "start": 5712.54, + "end": 5713.74, + "probability": 0.9126 + }, + { + "start": 5714.42, + "end": 5716.84, + "probability": 0.877 + }, + { + "start": 5717.82, + "end": 5721.02, + "probability": 0.9823 + }, + { + "start": 5721.36, + "end": 5723.49, + "probability": 0.5897 + }, + { + "start": 5724.28, + "end": 5727.64, + "probability": 0.9717 + }, + { + "start": 5727.98, + "end": 5729.32, + "probability": 0.9648 + }, + { + "start": 5729.34, + "end": 5729.94, + "probability": 0.9462 + }, + { + "start": 5730.26, + "end": 5735.24, + "probability": 0.9146 + }, + { + "start": 5735.3, + "end": 5736.2, + "probability": 0.9513 + }, + { + "start": 5736.72, + "end": 5740.06, + "probability": 0.8823 + }, + { + "start": 5740.76, + "end": 5741.9, + "probability": 0.8614 + }, + { + "start": 5742.66, + "end": 5744.86, + "probability": 0.7392 + }, + { + "start": 5745.5, + "end": 5750.5, + "probability": 0.7859 + }, + { + "start": 5751.36, + "end": 5752.83, + "probability": 0.9426 + }, + { + "start": 5753.64, + "end": 5757.48, + "probability": 0.9738 + }, + { + "start": 5757.62, + "end": 5758.62, + "probability": 0.5949 + }, + { + "start": 5759.02, + "end": 5759.88, + "probability": 0.7242 + }, + { + "start": 5760.04, + "end": 5760.52, + "probability": 0.9816 + }, + { + "start": 5760.9, + "end": 5765.74, + "probability": 0.9808 + }, + { + "start": 5765.84, + "end": 5767.26, + "probability": 0.7766 + }, + { + "start": 5767.32, + "end": 5768.72, + "probability": 0.9945 + }, + { + "start": 5769.3, + "end": 5771.26, + "probability": 0.9794 + }, + { + "start": 5772.22, + "end": 5773.34, + "probability": 0.9817 + }, + { + "start": 5773.6, + "end": 5773.76, + "probability": 0.8283 + }, + { + "start": 5773.9, + "end": 5775.23, + "probability": 0.946 + }, + { + "start": 5775.48, + "end": 5776.72, + "probability": 0.894 + }, + { + "start": 5777.28, + "end": 5778.39, + "probability": 0.9586 + }, + { + "start": 5778.62, + "end": 5779.67, + "probability": 0.9009 + }, + { + "start": 5780.34, + "end": 5782.2, + "probability": 0.7328 + }, + { + "start": 5782.88, + "end": 5784.52, + "probability": 0.6913 + }, + { + "start": 5784.96, + "end": 5785.5, + "probability": 0.9588 + }, + { + "start": 5785.62, + "end": 5786.24, + "probability": 0.9146 + }, + { + "start": 5786.52, + "end": 5787.38, + "probability": 0.8693 + }, + { + "start": 5787.72, + "end": 5790.43, + "probability": 0.9961 + }, + { + "start": 5791.06, + "end": 5792.68, + "probability": 0.9686 + }, + { + "start": 5793.2, + "end": 5794.27, + "probability": 0.7942 + }, + { + "start": 5794.8, + "end": 5796.9, + "probability": 0.9161 + }, + { + "start": 5798.46, + "end": 5801.56, + "probability": 0.6054 + }, + { + "start": 5803.76, + "end": 5810.56, + "probability": 0.9504 + }, + { + "start": 5811.38, + "end": 5816.46, + "probability": 0.91 + }, + { + "start": 5817.1, + "end": 5819.1, + "probability": 0.7481 + }, + { + "start": 5820.1, + "end": 5823.66, + "probability": 0.7556 + }, + { + "start": 5824.86, + "end": 5829.0, + "probability": 0.9352 + }, + { + "start": 5829.9, + "end": 5832.9, + "probability": 0.7716 + }, + { + "start": 5833.38, + "end": 5840.34, + "probability": 0.96 + }, + { + "start": 5840.98, + "end": 5843.28, + "probability": 0.9819 + }, + { + "start": 5845.08, + "end": 5850.46, + "probability": 0.9722 + }, + { + "start": 5850.88, + "end": 5855.1, + "probability": 0.9899 + }, + { + "start": 5855.92, + "end": 5859.24, + "probability": 0.9922 + }, + { + "start": 5859.76, + "end": 5862.9, + "probability": 0.8911 + }, + { + "start": 5863.58, + "end": 5866.86, + "probability": 0.9843 + }, + { + "start": 5867.93, + "end": 5872.08, + "probability": 0.8016 + }, + { + "start": 5872.08, + "end": 5872.12, + "probability": 0.4791 + }, + { + "start": 5872.34, + "end": 5873.54, + "probability": 0.5984 + }, + { + "start": 5873.58, + "end": 5874.2, + "probability": 0.7477 + }, + { + "start": 5874.26, + "end": 5875.84, + "probability": 0.8086 + }, + { + "start": 5876.24, + "end": 5877.36, + "probability": 0.8288 + }, + { + "start": 5877.76, + "end": 5878.08, + "probability": 0.8456 + }, + { + "start": 5883.28, + "end": 5883.28, + "probability": 0.09 + }, + { + "start": 5883.28, + "end": 5884.14, + "probability": 0.4436 + }, + { + "start": 5884.74, + "end": 5886.76, + "probability": 0.8757 + }, + { + "start": 5887.44, + "end": 5890.6, + "probability": 0.8409 + }, + { + "start": 5892.44, + "end": 5900.12, + "probability": 0.9209 + }, + { + "start": 5901.12, + "end": 5902.48, + "probability": 0.6878 + }, + { + "start": 5902.98, + "end": 5905.02, + "probability": 0.818 + }, + { + "start": 5905.12, + "end": 5908.4, + "probability": 0.9648 + }, + { + "start": 5909.52, + "end": 5912.82, + "probability": 0.9374 + }, + { + "start": 5914.02, + "end": 5918.77, + "probability": 0.9749 + }, + { + "start": 5919.54, + "end": 5923.42, + "probability": 0.7958 + }, + { + "start": 5923.48, + "end": 5928.22, + "probability": 0.9536 + }, + { + "start": 5929.04, + "end": 5930.24, + "probability": 0.9594 + }, + { + "start": 5930.98, + "end": 5933.08, + "probability": 0.7746 + }, + { + "start": 5933.74, + "end": 5936.34, + "probability": 0.9894 + }, + { + "start": 5936.84, + "end": 5937.9, + "probability": 0.5219 + }, + { + "start": 5938.0, + "end": 5939.9, + "probability": 0.7735 + }, + { + "start": 5940.26, + "end": 5940.68, + "probability": 0.4372 + }, + { + "start": 5942.04, + "end": 5944.11, + "probability": 0.9382 + }, + { + "start": 5945.0, + "end": 5946.52, + "probability": 0.703 + }, + { + "start": 5946.58, + "end": 5948.09, + "probability": 0.8354 + }, + { + "start": 5948.24, + "end": 5949.39, + "probability": 0.8466 + }, + { + "start": 5950.18, + "end": 5951.92, + "probability": 0.5564 + }, + { + "start": 5952.08, + "end": 5953.74, + "probability": 0.4176 + }, + { + "start": 5954.14, + "end": 5954.24, + "probability": 0.1624 + }, + { + "start": 5954.24, + "end": 5957.7, + "probability": 0.6998 + }, + { + "start": 5957.78, + "end": 5960.14, + "probability": 0.8152 + }, + { + "start": 5960.32, + "end": 5962.68, + "probability": 0.4661 + }, + { + "start": 5963.14, + "end": 5963.24, + "probability": 0.1139 + }, + { + "start": 5963.24, + "end": 5965.51, + "probability": 0.679 + }, + { + "start": 5966.4, + "end": 5969.56, + "probability": 0.8298 + }, + { + "start": 5971.1, + "end": 5972.78, + "probability": 0.4125 + }, + { + "start": 5973.36, + "end": 5976.45, + "probability": 0.9634 + }, + { + "start": 5978.9, + "end": 5983.24, + "probability": 0.9579 + }, + { + "start": 5983.94, + "end": 5985.94, + "probability": 0.8625 + }, + { + "start": 5986.42, + "end": 5990.72, + "probability": 0.9517 + }, + { + "start": 5991.14, + "end": 5993.86, + "probability": 0.8531 + }, + { + "start": 5994.16, + "end": 5999.76, + "probability": 0.8764 + }, + { + "start": 6000.66, + "end": 6003.4, + "probability": 0.8253 + }, + { + "start": 6003.58, + "end": 6006.12, + "probability": 0.8235 + }, + { + "start": 6006.2, + "end": 6007.14, + "probability": 0.9917 + }, + { + "start": 6008.1, + "end": 6009.64, + "probability": 0.9951 + }, + { + "start": 6010.36, + "end": 6013.54, + "probability": 0.7473 + }, + { + "start": 6013.88, + "end": 6015.44, + "probability": 0.9119 + }, + { + "start": 6015.64, + "end": 6016.24, + "probability": 0.6107 + }, + { + "start": 6016.28, + "end": 6016.82, + "probability": 0.7106 + }, + { + "start": 6016.86, + "end": 6017.6, + "probability": 0.9385 + }, + { + "start": 6017.78, + "end": 6020.04, + "probability": 0.9961 + }, + { + "start": 6022.3, + "end": 6023.52, + "probability": 0.6649 + }, + { + "start": 6023.62, + "end": 6025.26, + "probability": 0.8463 + }, + { + "start": 6026.27, + "end": 6028.54, + "probability": 0.6025 + }, + { + "start": 6028.82, + "end": 6029.4, + "probability": 0.3267 + }, + { + "start": 6029.52, + "end": 6030.52, + "probability": 0.5702 + }, + { + "start": 6030.62, + "end": 6031.38, + "probability": 0.3041 + }, + { + "start": 6031.94, + "end": 6032.74, + "probability": 0.4664 + }, + { + "start": 6032.9, + "end": 6034.74, + "probability": 0.5524 + }, + { + "start": 6035.28, + "end": 6037.8, + "probability": 0.9839 + }, + { + "start": 6037.8, + "end": 6043.44, + "probability": 0.9961 + }, + { + "start": 6044.18, + "end": 6046.11, + "probability": 0.0734 + }, + { + "start": 6046.5, + "end": 6046.64, + "probability": 0.2763 + }, + { + "start": 6047.06, + "end": 6049.12, + "probability": 0.5818 + }, + { + "start": 6049.32, + "end": 6049.42, + "probability": 0.1718 + }, + { + "start": 6049.42, + "end": 6051.75, + "probability": 0.5436 + }, + { + "start": 6052.94, + "end": 6054.34, + "probability": 0.1639 + }, + { + "start": 6054.34, + "end": 6055.86, + "probability": 0.2446 + }, + { + "start": 6056.4, + "end": 6057.02, + "probability": 0.5078 + }, + { + "start": 6057.08, + "end": 6057.28, + "probability": 0.3707 + }, + { + "start": 6057.28, + "end": 6057.88, + "probability": 0.8768 + }, + { + "start": 6057.92, + "end": 6059.43, + "probability": 0.8369 + }, + { + "start": 6059.46, + "end": 6060.18, + "probability": 0.7449 + }, + { + "start": 6061.36, + "end": 6066.64, + "probability": 0.9344 + }, + { + "start": 6066.64, + "end": 6069.19, + "probability": 0.9372 + }, + { + "start": 6070.7, + "end": 6075.58, + "probability": 0.9246 + }, + { + "start": 6076.44, + "end": 6081.8, + "probability": 0.929 + }, + { + "start": 6081.8, + "end": 6090.24, + "probability": 0.8854 + }, + { + "start": 6090.5, + "end": 6093.06, + "probability": 0.6679 + }, + { + "start": 6093.18, + "end": 6094.24, + "probability": 0.6225 + }, + { + "start": 6094.76, + "end": 6096.66, + "probability": 0.9802 + }, + { + "start": 6097.64, + "end": 6104.14, + "probability": 0.9469 + }, + { + "start": 6104.98, + "end": 6108.16, + "probability": 0.8683 + }, + { + "start": 6109.47, + "end": 6116.74, + "probability": 0.9896 + }, + { + "start": 6116.74, + "end": 6117.62, + "probability": 0.5784 + }, + { + "start": 6117.62, + "end": 6118.56, + "probability": 0.5194 + }, + { + "start": 6118.56, + "end": 6120.96, + "probability": 0.5469 + }, + { + "start": 6121.02, + "end": 6126.68, + "probability": 0.9614 + }, + { + "start": 6126.68, + "end": 6131.94, + "probability": 0.9945 + }, + { + "start": 6132.56, + "end": 6136.5, + "probability": 0.9907 + }, + { + "start": 6136.5, + "end": 6140.02, + "probability": 0.9664 + }, + { + "start": 6140.22, + "end": 6140.42, + "probability": 0.3936 + }, + { + "start": 6140.5, + "end": 6141.52, + "probability": 0.0423 + }, + { + "start": 6141.58, + "end": 6144.06, + "probability": 0.668 + }, + { + "start": 6144.06, + "end": 6144.34, + "probability": 0.6177 + }, + { + "start": 6145.94, + "end": 6148.28, + "probability": 0.7885 + }, + { + "start": 6148.96, + "end": 6151.82, + "probability": 0.9959 + }, + { + "start": 6152.34, + "end": 6154.78, + "probability": 0.9571 + }, + { + "start": 6157.38, + "end": 6159.68, + "probability": 0.7967 + }, + { + "start": 6162.04, + "end": 6162.76, + "probability": 0.9003 + }, + { + "start": 6169.92, + "end": 6172.58, + "probability": 0.5674 + }, + { + "start": 6174.68, + "end": 6178.28, + "probability": 0.9583 + }, + { + "start": 6180.02, + "end": 6182.28, + "probability": 0.9814 + }, + { + "start": 6182.4, + "end": 6185.74, + "probability": 0.6111 + }, + { + "start": 6186.8, + "end": 6188.18, + "probability": 0.8165 + }, + { + "start": 6188.74, + "end": 6192.16, + "probability": 0.959 + }, + { + "start": 6192.98, + "end": 6194.04, + "probability": 0.7681 + }, + { + "start": 6195.88, + "end": 6202.22, + "probability": 0.9724 + }, + { + "start": 6203.46, + "end": 6207.1, + "probability": 0.9138 + }, + { + "start": 6207.98, + "end": 6208.98, + "probability": 0.9193 + }, + { + "start": 6209.85, + "end": 6215.02, + "probability": 0.9677 + }, + { + "start": 6215.84, + "end": 6220.4, + "probability": 0.7788 + }, + { + "start": 6220.4, + "end": 6223.66, + "probability": 0.9874 + }, + { + "start": 6224.84, + "end": 6227.26, + "probability": 0.9062 + }, + { + "start": 6227.96, + "end": 6231.52, + "probability": 0.9729 + }, + { + "start": 6232.76, + "end": 6236.5, + "probability": 0.7622 + }, + { + "start": 6237.24, + "end": 6244.7, + "probability": 0.6927 + }, + { + "start": 6245.0, + "end": 6245.2, + "probability": 0.1913 + }, + { + "start": 6245.26, + "end": 6245.82, + "probability": 0.7383 + }, + { + "start": 6245.82, + "end": 6247.4, + "probability": 0.706 + }, + { + "start": 6247.72, + "end": 6249.3, + "probability": 0.8754 + }, + { + "start": 6249.82, + "end": 6251.98, + "probability": 0.9791 + }, + { + "start": 6252.26, + "end": 6253.76, + "probability": 0.7946 + }, + { + "start": 6253.8, + "end": 6256.2, + "probability": 0.8676 + }, + { + "start": 6256.48, + "end": 6257.26, + "probability": 0.018 + }, + { + "start": 6257.26, + "end": 6259.9, + "probability": 0.4743 + }, + { + "start": 6260.04, + "end": 6260.64, + "probability": 0.0822 + }, + { + "start": 6261.58, + "end": 6261.84, + "probability": 0.2232 + }, + { + "start": 6261.84, + "end": 6263.58, + "probability": 0.835 + }, + { + "start": 6263.66, + "end": 6269.22, + "probability": 0.7266 + }, + { + "start": 6270.14, + "end": 6271.88, + "probability": 0.8918 + }, + { + "start": 6272.56, + "end": 6277.1, + "probability": 0.9935 + }, + { + "start": 6277.62, + "end": 6280.42, + "probability": 0.7419 + }, + { + "start": 6280.86, + "end": 6282.02, + "probability": 0.7627 + }, + { + "start": 6282.84, + "end": 6285.74, + "probability": 0.653 + }, + { + "start": 6286.36, + "end": 6287.16, + "probability": 0.6661 + }, + { + "start": 6288.5, + "end": 6293.58, + "probability": 0.9905 + }, + { + "start": 6293.76, + "end": 6294.94, + "probability": 0.9567 + }, + { + "start": 6295.06, + "end": 6298.36, + "probability": 0.9464 + }, + { + "start": 6298.84, + "end": 6304.22, + "probability": 0.9748 + }, + { + "start": 6304.24, + "end": 6308.8, + "probability": 0.9754 + }, + { + "start": 6309.38, + "end": 6312.92, + "probability": 0.9842 + }, + { + "start": 6313.02, + "end": 6314.26, + "probability": 0.8497 + }, + { + "start": 6315.34, + "end": 6318.88, + "probability": 0.9949 + }, + { + "start": 6320.24, + "end": 6324.72, + "probability": 0.9883 + }, + { + "start": 6324.82, + "end": 6326.9, + "probability": 0.9402 + }, + { + "start": 6327.06, + "end": 6328.52, + "probability": 0.7579 + }, + { + "start": 6328.82, + "end": 6331.44, + "probability": 0.9922 + }, + { + "start": 6331.96, + "end": 6338.8, + "probability": 0.9571 + }, + { + "start": 6339.46, + "end": 6341.2, + "probability": 0.7855 + }, + { + "start": 6341.32, + "end": 6345.04, + "probability": 0.9843 + }, + { + "start": 6345.14, + "end": 6347.64, + "probability": 0.9609 + }, + { + "start": 6348.12, + "end": 6351.76, + "probability": 0.9846 + }, + { + "start": 6351.82, + "end": 6352.66, + "probability": 0.4326 + }, + { + "start": 6352.98, + "end": 6353.7, + "probability": 0.1902 + }, + { + "start": 6353.8, + "end": 6355.36, + "probability": 0.8152 + }, + { + "start": 6355.96, + "end": 6357.1, + "probability": 0.64 + }, + { + "start": 6358.72, + "end": 6359.94, + "probability": 0.8086 + }, + { + "start": 6360.12, + "end": 6363.34, + "probability": 0.969 + }, + { + "start": 6363.86, + "end": 6365.92, + "probability": 0.9107 + }, + { + "start": 6366.4, + "end": 6369.96, + "probability": 0.8212 + }, + { + "start": 6370.54, + "end": 6374.68, + "probability": 0.9946 + }, + { + "start": 6375.12, + "end": 6378.3, + "probability": 0.9379 + }, + { + "start": 6378.94, + "end": 6382.37, + "probability": 0.8022 + }, + { + "start": 6382.82, + "end": 6386.52, + "probability": 0.9847 + }, + { + "start": 6387.22, + "end": 6387.56, + "probability": 0.8597 + }, + { + "start": 6387.56, + "end": 6388.92, + "probability": 0.9291 + }, + { + "start": 6389.08, + "end": 6392.26, + "probability": 0.9321 + }, + { + "start": 6393.02, + "end": 6394.64, + "probability": 0.8066 + }, + { + "start": 6394.76, + "end": 6397.12, + "probability": 0.9939 + }, + { + "start": 6402.62, + "end": 6406.74, + "probability": 0.0989 + }, + { + "start": 6407.09, + "end": 6409.4, + "probability": 0.4111 + }, + { + "start": 6409.92, + "end": 6410.56, + "probability": 0.0416 + }, + { + "start": 6412.93, + "end": 6416.16, + "probability": 0.988 + }, + { + "start": 6416.3, + "end": 6417.54, + "probability": 0.5656 + }, + { + "start": 6417.62, + "end": 6420.1, + "probability": 0.4517 + }, + { + "start": 6420.66, + "end": 6427.24, + "probability": 0.8593 + }, + { + "start": 6427.24, + "end": 6432.68, + "probability": 0.9858 + }, + { + "start": 6432.78, + "end": 6432.9, + "probability": 0.4022 + }, + { + "start": 6432.98, + "end": 6433.62, + "probability": 0.8125 + }, + { + "start": 6433.92, + "end": 6435.92, + "probability": 0.6575 + }, + { + "start": 6438.53, + "end": 6447.92, + "probability": 0.9634 + }, + { + "start": 6448.36, + "end": 6453.12, + "probability": 0.8589 + }, + { + "start": 6454.0, + "end": 6456.38, + "probability": 0.9912 + }, + { + "start": 6456.38, + "end": 6460.14, + "probability": 0.95 + }, + { + "start": 6460.66, + "end": 6461.18, + "probability": 0.7063 + }, + { + "start": 6461.3, + "end": 6467.36, + "probability": 0.9641 + }, + { + "start": 6468.16, + "end": 6473.44, + "probability": 0.8536 + }, + { + "start": 6473.44, + "end": 6479.28, + "probability": 0.8942 + }, + { + "start": 6480.1, + "end": 6484.5, + "probability": 0.9556 + }, + { + "start": 6484.7, + "end": 6488.64, + "probability": 0.979 + }, + { + "start": 6489.2, + "end": 6489.68, + "probability": 0.5188 + }, + { + "start": 6489.94, + "end": 6496.0, + "probability": 0.9239 + }, + { + "start": 6497.02, + "end": 6498.4, + "probability": 0.8633 + }, + { + "start": 6498.8, + "end": 6501.14, + "probability": 0.8919 + }, + { + "start": 6501.22, + "end": 6502.17, + "probability": 0.877 + }, + { + "start": 6502.8, + "end": 6503.08, + "probability": 0.4931 + }, + { + "start": 6503.2, + "end": 6506.54, + "probability": 0.9865 + }, + { + "start": 6507.0, + "end": 6508.14, + "probability": 0.7593 + }, + { + "start": 6509.0, + "end": 6509.56, + "probability": 0.8014 + }, + { + "start": 6509.62, + "end": 6514.16, + "probability": 0.9873 + }, + { + "start": 6514.22, + "end": 6514.82, + "probability": 0.8137 + }, + { + "start": 6515.38, + "end": 6517.52, + "probability": 0.9771 + }, + { + "start": 6517.64, + "end": 6518.76, + "probability": 0.9233 + }, + { + "start": 6518.92, + "end": 6521.46, + "probability": 0.1896 + }, + { + "start": 6521.46, + "end": 6521.46, + "probability": 0.1954 + }, + { + "start": 6521.46, + "end": 6521.98, + "probability": 0.2192 + }, + { + "start": 6523.06, + "end": 6528.16, + "probability": 0.7126 + }, + { + "start": 6528.94, + "end": 6530.4, + "probability": 0.5468 + }, + { + "start": 6531.0, + "end": 6531.74, + "probability": 0.7167 + }, + { + "start": 6532.12, + "end": 6532.76, + "probability": 0.2669 + }, + { + "start": 6533.88, + "end": 6536.66, + "probability": 0.0194 + }, + { + "start": 6536.66, + "end": 6539.35, + "probability": 0.0401 + }, + { + "start": 6549.54, + "end": 6551.3, + "probability": 0.068 + }, + { + "start": 6561.68, + "end": 6561.68, + "probability": 0.1572 + }, + { + "start": 6561.68, + "end": 6562.0, + "probability": 0.2702 + }, + { + "start": 6562.02, + "end": 6563.04, + "probability": 0.4122 + }, + { + "start": 6563.36, + "end": 6563.64, + "probability": 0.5866 + }, + { + "start": 6563.76, + "end": 6568.4, + "probability": 0.8359 + }, + { + "start": 6569.48, + "end": 6570.84, + "probability": 0.996 + }, + { + "start": 6574.98, + "end": 6580.26, + "probability": 0.4971 + }, + { + "start": 6580.42, + "end": 6583.62, + "probability": 0.8595 + }, + { + "start": 6584.46, + "end": 6589.36, + "probability": 0.4018 + }, + { + "start": 6589.36, + "end": 6589.36, + "probability": 0.0078 + }, + { + "start": 6592.02, + "end": 6592.22, + "probability": 0.0013 + }, + { + "start": 6596.5, + "end": 6597.4, + "probability": 0.0173 + }, + { + "start": 6619.38, + "end": 6626.95, + "probability": 0.6521 + }, + { + "start": 6627.72, + "end": 6629.52, + "probability": 0.8103 + }, + { + "start": 6630.12, + "end": 6633.5, + "probability": 0.9259 + }, + { + "start": 6636.04, + "end": 6637.98, + "probability": 0.5368 + }, + { + "start": 6638.1, + "end": 6641.98, + "probability": 0.8869 + }, + { + "start": 6641.98, + "end": 6645.38, + "probability": 0.9392 + }, + { + "start": 6646.06, + "end": 6649.0, + "probability": 0.9391 + }, + { + "start": 6649.34, + "end": 6649.86, + "probability": 0.7872 + }, + { + "start": 6650.04, + "end": 6650.96, + "probability": 0.7105 + }, + { + "start": 6651.42, + "end": 6652.8, + "probability": 0.6605 + }, + { + "start": 6653.58, + "end": 6657.06, + "probability": 0.9773 + }, + { + "start": 6657.82, + "end": 6663.58, + "probability": 0.974 + }, + { + "start": 6665.1, + "end": 6667.82, + "probability": 0.9714 + }, + { + "start": 6668.48, + "end": 6673.64, + "probability": 0.96 + }, + { + "start": 6673.64, + "end": 6678.4, + "probability": 0.999 + }, + { + "start": 6679.54, + "end": 6681.22, + "probability": 0.9961 + }, + { + "start": 6682.2, + "end": 6690.12, + "probability": 0.9979 + }, + { + "start": 6690.88, + "end": 6692.58, + "probability": 0.8127 + }, + { + "start": 6695.26, + "end": 6701.44, + "probability": 0.8696 + }, + { + "start": 6702.12, + "end": 6705.5, + "probability": 0.6506 + }, + { + "start": 6705.52, + "end": 6705.88, + "probability": 0.3978 + }, + { + "start": 6706.0, + "end": 6707.1, + "probability": 0.6659 + }, + { + "start": 6707.52, + "end": 6711.84, + "probability": 0.9678 + }, + { + "start": 6712.48, + "end": 6719.08, + "probability": 0.9919 + }, + { + "start": 6719.08, + "end": 6725.24, + "probability": 0.8146 + }, + { + "start": 6726.4, + "end": 6728.48, + "probability": 0.7566 + }, + { + "start": 6728.98, + "end": 6729.96, + "probability": 0.8882 + }, + { + "start": 6730.6, + "end": 6733.74, + "probability": 0.9878 + }, + { + "start": 6735.46, + "end": 6742.66, + "probability": 0.9307 + }, + { + "start": 6742.66, + "end": 6751.28, + "probability": 0.9914 + }, + { + "start": 6751.94, + "end": 6754.36, + "probability": 0.451 + }, + { + "start": 6754.96, + "end": 6761.14, + "probability": 0.8099 + }, + { + "start": 6761.98, + "end": 6764.64, + "probability": 0.8159 + }, + { + "start": 6764.74, + "end": 6767.96, + "probability": 0.9551 + }, + { + "start": 6767.96, + "end": 6771.26, + "probability": 0.9878 + }, + { + "start": 6771.8, + "end": 6776.78, + "probability": 0.8952 + }, + { + "start": 6777.08, + "end": 6778.24, + "probability": 0.8999 + }, + { + "start": 6779.06, + "end": 6781.32, + "probability": 0.9353 + }, + { + "start": 6781.96, + "end": 6782.84, + "probability": 0.7909 + }, + { + "start": 6783.62, + "end": 6785.8, + "probability": 0.8318 + }, + { + "start": 6786.46, + "end": 6787.06, + "probability": 0.4057 + }, + { + "start": 6787.26, + "end": 6791.68, + "probability": 0.7576 + }, + { + "start": 6792.24, + "end": 6792.82, + "probability": 0.8066 + }, + { + "start": 6796.6, + "end": 6801.24, + "probability": 0.98 + }, + { + "start": 6801.86, + "end": 6804.28, + "probability": 0.8385 + }, + { + "start": 6804.86, + "end": 6810.4, + "probability": 0.9931 + }, + { + "start": 6810.4, + "end": 6816.54, + "probability": 0.9993 + }, + { + "start": 6817.22, + "end": 6818.0, + "probability": 0.7267 + }, + { + "start": 6818.62, + "end": 6824.68, + "probability": 0.9595 + }, + { + "start": 6825.86, + "end": 6828.62, + "probability": 0.9712 + }, + { + "start": 6828.7, + "end": 6831.98, + "probability": 0.8986 + }, + { + "start": 6833.24, + "end": 6838.14, + "probability": 0.9883 + }, + { + "start": 6838.7, + "end": 6842.98, + "probability": 0.6988 + }, + { + "start": 6842.98, + "end": 6849.5, + "probability": 0.9312 + }, + { + "start": 6850.12, + "end": 6853.22, + "probability": 0.6337 + }, + { + "start": 6853.32, + "end": 6854.32, + "probability": 0.7489 + }, + { + "start": 6854.7, + "end": 6856.15, + "probability": 0.7835 + }, + { + "start": 6856.86, + "end": 6862.14, + "probability": 0.964 + }, + { + "start": 6862.98, + "end": 6863.78, + "probability": 0.8363 + }, + { + "start": 6864.44, + "end": 6867.04, + "probability": 0.8176 + }, + { + "start": 6867.66, + "end": 6871.28, + "probability": 0.96 + }, + { + "start": 6871.7, + "end": 6872.08, + "probability": 0.0659 + }, + { + "start": 6872.24, + "end": 6873.86, + "probability": 0.9208 + }, + { + "start": 6874.16, + "end": 6875.34, + "probability": 0.7135 + }, + { + "start": 6875.98, + "end": 6876.48, + "probability": 0.5166 + }, + { + "start": 6876.52, + "end": 6879.28, + "probability": 0.8047 + }, + { + "start": 6880.1, + "end": 6881.4, + "probability": 0.9126 + }, + { + "start": 6882.08, + "end": 6883.27, + "probability": 0.516 + }, + { + "start": 6884.72, + "end": 6892.84, + "probability": 0.9726 + }, + { + "start": 6892.84, + "end": 6894.84, + "probability": 0.6432 + }, + { + "start": 6895.44, + "end": 6900.3, + "probability": 0.9867 + }, + { + "start": 6901.8, + "end": 6907.74, + "probability": 0.8709 + }, + { + "start": 6908.92, + "end": 6911.38, + "probability": 0.896 + }, + { + "start": 6911.56, + "end": 6915.3, + "probability": 0.8817 + }, + { + "start": 6916.2, + "end": 6917.06, + "probability": 0.8461 + }, + { + "start": 6917.64, + "end": 6919.38, + "probability": 0.8849 + }, + { + "start": 6920.02, + "end": 6922.9, + "probability": 0.9887 + }, + { + "start": 6923.52, + "end": 6927.94, + "probability": 0.956 + }, + { + "start": 6928.28, + "end": 6933.44, + "probability": 0.9864 + }, + { + "start": 6934.36, + "end": 6938.58, + "probability": 0.9013 + }, + { + "start": 6939.18, + "end": 6943.76, + "probability": 0.8589 + }, + { + "start": 6944.48, + "end": 6946.2, + "probability": 0.8034 + }, + { + "start": 6947.04, + "end": 6948.08, + "probability": 0.9541 + }, + { + "start": 6948.72, + "end": 6954.32, + "probability": 0.9704 + }, + { + "start": 6954.32, + "end": 6959.42, + "probability": 0.9965 + }, + { + "start": 6960.16, + "end": 6961.44, + "probability": 0.684 + }, + { + "start": 6961.66, + "end": 6966.9, + "probability": 0.9663 + }, + { + "start": 6967.46, + "end": 6968.28, + "probability": 0.3732 + }, + { + "start": 6968.64, + "end": 6972.11, + "probability": 0.9512 + }, + { + "start": 6972.7, + "end": 6979.76, + "probability": 0.8788 + }, + { + "start": 6980.68, + "end": 6983.9, + "probability": 0.6386 + }, + { + "start": 6984.56, + "end": 6987.06, + "probability": 0.8251 + }, + { + "start": 6987.78, + "end": 6995.88, + "probability": 0.9675 + }, + { + "start": 6996.26, + "end": 7002.38, + "probability": 0.9387 + }, + { + "start": 7003.16, + "end": 7003.3, + "probability": 0.5167 + }, + { + "start": 7003.38, + "end": 7003.9, + "probability": 0.9127 + }, + { + "start": 7004.08, + "end": 7008.9, + "probability": 0.9862 + }, + { + "start": 7009.44, + "end": 7011.15, + "probability": 0.9609 + }, + { + "start": 7012.0, + "end": 7021.42, + "probability": 0.9752 + }, + { + "start": 7022.46, + "end": 7028.84, + "probability": 0.9478 + }, + { + "start": 7030.1, + "end": 7033.98, + "probability": 0.5749 + }, + { + "start": 7034.04, + "end": 7034.96, + "probability": 0.5841 + }, + { + "start": 7034.98, + "end": 7035.19, + "probability": 0.7758 + }, + { + "start": 7035.54, + "end": 7036.88, + "probability": 0.561 + }, + { + "start": 7037.84, + "end": 7039.2, + "probability": 0.9314 + }, + { + "start": 7039.28, + "end": 7041.24, + "probability": 0.7712 + }, + { + "start": 7041.66, + "end": 7044.54, + "probability": 0.9175 + }, + { + "start": 7045.48, + "end": 7053.12, + "probability": 0.8854 + }, + { + "start": 7053.86, + "end": 7062.3, + "probability": 0.9471 + }, + { + "start": 7063.16, + "end": 7064.62, + "probability": 0.7367 + }, + { + "start": 7066.78, + "end": 7069.75, + "probability": 0.874 + }, + { + "start": 7071.12, + "end": 7071.68, + "probability": 0.8701 + }, + { + "start": 7072.62, + "end": 7073.74, + "probability": 0.9546 + }, + { + "start": 7073.84, + "end": 7078.08, + "probability": 0.9662 + }, + { + "start": 7079.14, + "end": 7081.36, + "probability": 0.9861 + }, + { + "start": 7081.36, + "end": 7086.54, + "probability": 0.8646 + }, + { + "start": 7087.48, + "end": 7095.82, + "probability": 0.8054 + }, + { + "start": 7096.84, + "end": 7102.26, + "probability": 0.8811 + }, + { + "start": 7103.34, + "end": 7106.06, + "probability": 0.7582 + }, + { + "start": 7106.86, + "end": 7109.7, + "probability": 0.9846 + }, + { + "start": 7110.68, + "end": 7112.86, + "probability": 0.9785 + }, + { + "start": 7114.16, + "end": 7115.78, + "probability": 0.8418 + }, + { + "start": 7116.58, + "end": 7118.48, + "probability": 0.8281 + }, + { + "start": 7119.9, + "end": 7122.42, + "probability": 0.9341 + }, + { + "start": 7127.52, + "end": 7128.32, + "probability": 0.1925 + }, + { + "start": 7129.6, + "end": 7131.32, + "probability": 0.365 + }, + { + "start": 7131.48, + "end": 7132.4, + "probability": 0.3161 + }, + { + "start": 7132.42, + "end": 7132.46, + "probability": 0.0072 + }, + { + "start": 7133.92, + "end": 7134.62, + "probability": 0.2862 + }, + { + "start": 7134.84, + "end": 7136.32, + "probability": 0.6774 + }, + { + "start": 7136.48, + "end": 7136.92, + "probability": 0.1041 + }, + { + "start": 7136.92, + "end": 7138.62, + "probability": 0.3646 + }, + { + "start": 7138.94, + "end": 7139.06, + "probability": 0.9016 + }, + { + "start": 7139.2, + "end": 7147.12, + "probability": 0.9786 + }, + { + "start": 7148.66, + "end": 7152.88, + "probability": 0.9292 + }, + { + "start": 7152.88, + "end": 7152.88, + "probability": 0.2434 + }, + { + "start": 7152.88, + "end": 7154.01, + "probability": 0.3261 + }, + { + "start": 7154.62, + "end": 7159.0, + "probability": 0.5371 + }, + { + "start": 7161.2, + "end": 7161.38, + "probability": 0.0067 + }, + { + "start": 7161.38, + "end": 7162.1, + "probability": 0.0829 + }, + { + "start": 7162.66, + "end": 7165.1, + "probability": 0.7301 + }, + { + "start": 7165.2, + "end": 7167.52, + "probability": 0.9775 + }, + { + "start": 7167.6, + "end": 7168.65, + "probability": 0.9722 + }, + { + "start": 7169.3, + "end": 7174.14, + "probability": 0.8617 + }, + { + "start": 7175.28, + "end": 7177.8, + "probability": 0.9684 + }, + { + "start": 7178.4, + "end": 7181.76, + "probability": 0.9434 + }, + { + "start": 7183.96, + "end": 7189.5, + "probability": 0.9812 + }, + { + "start": 7189.52, + "end": 7194.14, + "probability": 0.9858 + }, + { + "start": 7194.14, + "end": 7198.02, + "probability": 0.9844 + }, + { + "start": 7199.14, + "end": 7201.02, + "probability": 0.655 + }, + { + "start": 7202.16, + "end": 7205.84, + "probability": 0.9849 + }, + { + "start": 7206.5, + "end": 7209.0, + "probability": 0.8461 + }, + { + "start": 7209.58, + "end": 7215.38, + "probability": 0.9419 + }, + { + "start": 7216.02, + "end": 7218.4, + "probability": 0.8652 + }, + { + "start": 7219.02, + "end": 7221.88, + "probability": 0.8457 + }, + { + "start": 7222.62, + "end": 7228.12, + "probability": 0.9905 + }, + { + "start": 7228.64, + "end": 7229.84, + "probability": 0.5108 + }, + { + "start": 7230.52, + "end": 7231.98, + "probability": 0.6227 + }, + { + "start": 7232.68, + "end": 7234.7, + "probability": 0.9924 + }, + { + "start": 7235.1, + "end": 7236.06, + "probability": 0.9019 + }, + { + "start": 7236.12, + "end": 7240.7, + "probability": 0.9809 + }, + { + "start": 7241.46, + "end": 7243.9, + "probability": 0.8295 + }, + { + "start": 7244.04, + "end": 7245.6, + "probability": 0.8345 + }, + { + "start": 7246.16, + "end": 7247.22, + "probability": 0.8726 + }, + { + "start": 7248.3, + "end": 7251.52, + "probability": 0.9324 + }, + { + "start": 7252.94, + "end": 7254.58, + "probability": 0.5861 + }, + { + "start": 7255.52, + "end": 7259.4, + "probability": 0.9214 + }, + { + "start": 7259.54, + "end": 7262.68, + "probability": 0.832 + }, + { + "start": 7263.0, + "end": 7266.16, + "probability": 0.8495 + }, + { + "start": 7266.46, + "end": 7268.86, + "probability": 0.5922 + }, + { + "start": 7270.22, + "end": 7271.42, + "probability": 0.6783 + }, + { + "start": 7272.02, + "end": 7272.44, + "probability": 0.7024 + }, + { + "start": 7272.5, + "end": 7273.72, + "probability": 0.662 + }, + { + "start": 7273.88, + "end": 7280.48, + "probability": 0.8926 + }, + { + "start": 7281.96, + "end": 7283.44, + "probability": 0.8312 + }, + { + "start": 7284.36, + "end": 7288.9, + "probability": 0.9807 + }, + { + "start": 7288.92, + "end": 7292.68, + "probability": 0.5869 + }, + { + "start": 7292.8, + "end": 7295.56, + "probability": 0.9966 + }, + { + "start": 7296.18, + "end": 7296.74, + "probability": 0.3709 + }, + { + "start": 7297.74, + "end": 7298.24, + "probability": 0.6926 + }, + { + "start": 7298.32, + "end": 7299.16, + "probability": 0.7164 + }, + { + "start": 7299.3, + "end": 7303.64, + "probability": 0.8024 + }, + { + "start": 7303.8, + "end": 7307.66, + "probability": 0.9736 + }, + { + "start": 7307.72, + "end": 7312.5, + "probability": 0.7539 + }, + { + "start": 7312.92, + "end": 7314.9, + "probability": 0.9827 + }, + { + "start": 7315.56, + "end": 7319.92, + "probability": 0.9935 + }, + { + "start": 7320.22, + "end": 7321.42, + "probability": 0.6251 + }, + { + "start": 7321.42, + "end": 7321.63, + "probability": 0.752 + }, + { + "start": 7322.28, + "end": 7323.79, + "probability": 0.7081 + }, + { + "start": 7324.28, + "end": 7326.58, + "probability": 0.6644 + }, + { + "start": 7327.32, + "end": 7328.12, + "probability": 0.5252 + }, + { + "start": 7328.22, + "end": 7328.26, + "probability": 0.4725 + }, + { + "start": 7328.28, + "end": 7330.46, + "probability": 0.4905 + }, + { + "start": 7330.94, + "end": 7331.36, + "probability": 0.6278 + }, + { + "start": 7331.36, + "end": 7331.36, + "probability": 0.0234 + }, + { + "start": 7332.02, + "end": 7334.88, + "probability": 0.0201 + }, + { + "start": 7334.88, + "end": 7334.88, + "probability": 0.0774 + }, + { + "start": 7334.88, + "end": 7335.76, + "probability": 0.4069 + }, + { + "start": 7338.82, + "end": 7342.7, + "probability": 0.9236 + }, + { + "start": 7355.4, + "end": 7356.3, + "probability": 0.3175 + }, + { + "start": 7356.62, + "end": 7359.1, + "probability": 0.7212 + }, + { + "start": 7359.1, + "end": 7364.22, + "probability": 0.9578 + }, + { + "start": 7364.48, + "end": 7367.81, + "probability": 0.9854 + }, + { + "start": 7368.8, + "end": 7371.1, + "probability": 0.9844 + }, + { + "start": 7372.04, + "end": 7373.06, + "probability": 0.5204 + }, + { + "start": 7373.18, + "end": 7374.88, + "probability": 0.9835 + }, + { + "start": 7375.02, + "end": 7379.16, + "probability": 0.8868 + }, + { + "start": 7379.22, + "end": 7381.4, + "probability": 0.8549 + }, + { + "start": 7381.98, + "end": 7382.3, + "probability": 0.4944 + }, + { + "start": 7382.4, + "end": 7385.16, + "probability": 0.9961 + }, + { + "start": 7385.16, + "end": 7389.32, + "probability": 0.8777 + }, + { + "start": 7389.52, + "end": 7392.58, + "probability": 0.6075 + }, + { + "start": 7392.58, + "end": 7393.76, + "probability": 0.5848 + }, + { + "start": 7393.92, + "end": 7394.26, + "probability": 0.5482 + }, + { + "start": 7394.34, + "end": 7395.1, + "probability": 0.9482 + }, + { + "start": 7395.14, + "end": 7396.32, + "probability": 0.6527 + }, + { + "start": 7396.38, + "end": 7397.24, + "probability": 0.586 + }, + { + "start": 7398.08, + "end": 7400.92, + "probability": 0.9888 + }, + { + "start": 7400.92, + "end": 7404.44, + "probability": 0.7339 + }, + { + "start": 7404.66, + "end": 7407.88, + "probability": 0.8539 + }, + { + "start": 7413.7, + "end": 7415.78, + "probability": 0.6464 + }, + { + "start": 7415.92, + "end": 7419.84, + "probability": 0.9585 + }, + { + "start": 7421.2, + "end": 7423.58, + "probability": 0.5902 + }, + { + "start": 7423.7, + "end": 7424.44, + "probability": 0.6894 + }, + { + "start": 7424.85, + "end": 7428.01, + "probability": 0.8329 + }, + { + "start": 7428.8, + "end": 7431.18, + "probability": 0.4055 + }, + { + "start": 7433.8, + "end": 7434.24, + "probability": 0.0225 + }, + { + "start": 7435.18, + "end": 7435.7, + "probability": 0.0213 + }, + { + "start": 7445.1, + "end": 7450.35, + "probability": 0.0132 + }, + { + "start": 7451.78, + "end": 7452.22, + "probability": 0.0176 + }, + { + "start": 7453.48, + "end": 7454.86, + "probability": 0.5794 + }, + { + "start": 7455.64, + "end": 7455.64, + "probability": 0.208 + }, + { + "start": 7455.64, + "end": 7455.64, + "probability": 0.0242 + }, + { + "start": 7455.64, + "end": 7456.76, + "probability": 0.648 + }, + { + "start": 7458.58, + "end": 7462.54, + "probability": 0.7922 + }, + { + "start": 7462.66, + "end": 7465.48, + "probability": 0.4229 + }, + { + "start": 7466.16, + "end": 7466.76, + "probability": 0.7048 + }, + { + "start": 7468.54, + "end": 7473.76, + "probability": 0.8749 + }, + { + "start": 7474.4, + "end": 7478.2, + "probability": 0.8724 + }, + { + "start": 7478.86, + "end": 7483.34, + "probability": 0.3527 + }, + { + "start": 7505.3, + "end": 7506.46, + "probability": 0.3539 + }, + { + "start": 7507.12, + "end": 7508.98, + "probability": 0.9454 + }, + { + "start": 7510.46, + "end": 7513.28, + "probability": 0.5336 + }, + { + "start": 7517.4, + "end": 7522.54, + "probability": 0.6235 + }, + { + "start": 7523.26, + "end": 7525.54, + "probability": 0.9286 + }, + { + "start": 7526.48, + "end": 7529.9, + "probability": 0.9861 + }, + { + "start": 7529.9, + "end": 7538.18, + "probability": 0.9655 + }, + { + "start": 7538.24, + "end": 7541.48, + "probability": 0.9429 + }, + { + "start": 7541.62, + "end": 7547.15, + "probability": 0.7404 + }, + { + "start": 7549.04, + "end": 7551.22, + "probability": 0.8938 + }, + { + "start": 7551.7, + "end": 7555.46, + "probability": 0.9845 + }, + { + "start": 7555.46, + "end": 7558.49, + "probability": 0.3884 + }, + { + "start": 7559.48, + "end": 7561.24, + "probability": 0.6548 + }, + { + "start": 7561.3, + "end": 7563.46, + "probability": 0.6422 + }, + { + "start": 7563.5, + "end": 7564.44, + "probability": 0.87 + }, + { + "start": 7564.56, + "end": 7565.22, + "probability": 0.8688 + }, + { + "start": 7565.24, + "end": 7565.9, + "probability": 0.8897 + }, + { + "start": 7565.98, + "end": 7566.66, + "probability": 0.8342 + }, + { + "start": 7567.4, + "end": 7571.1, + "probability": 0.995 + }, + { + "start": 7571.24, + "end": 7572.48, + "probability": 0.7091 + }, + { + "start": 7573.4, + "end": 7574.28, + "probability": 0.9052 + }, + { + "start": 7577.04, + "end": 7578.64, + "probability": 0.9539 + }, + { + "start": 7579.34, + "end": 7581.84, + "probability": 0.8271 + }, + { + "start": 7582.42, + "end": 7587.14, + "probability": 0.9796 + }, + { + "start": 7587.9, + "end": 7592.56, + "probability": 0.8574 + }, + { + "start": 7592.7, + "end": 7593.92, + "probability": 0.3247 + }, + { + "start": 7595.04, + "end": 7597.7, + "probability": 0.9939 + }, + { + "start": 7597.84, + "end": 7598.66, + "probability": 0.7721 + }, + { + "start": 7598.76, + "end": 7602.98, + "probability": 0.8719 + }, + { + "start": 7603.64, + "end": 7606.6, + "probability": 0.9967 + }, + { + "start": 7607.16, + "end": 7609.38, + "probability": 0.9355 + }, + { + "start": 7609.82, + "end": 7611.09, + "probability": 0.9431 + }, + { + "start": 7611.2, + "end": 7612.94, + "probability": 0.9849 + }, + { + "start": 7613.48, + "end": 7615.4, + "probability": 0.5094 + }, + { + "start": 7615.44, + "end": 7616.0, + "probability": 0.6682 + }, + { + "start": 7616.08, + "end": 7616.64, + "probability": 0.8834 + }, + { + "start": 7616.7, + "end": 7617.8, + "probability": 0.8389 + }, + { + "start": 7617.82, + "end": 7619.46, + "probability": 0.4726 + }, + { + "start": 7619.96, + "end": 7621.74, + "probability": 0.4602 + }, + { + "start": 7622.72, + "end": 7625.66, + "probability": 0.5903 + }, + { + "start": 7625.82, + "end": 7626.3, + "probability": 0.6636 + }, + { + "start": 7626.3, + "end": 7627.28, + "probability": 0.7002 + }, + { + "start": 7628.96, + "end": 7631.98, + "probability": 0.7131 + }, + { + "start": 7632.6, + "end": 7634.92, + "probability": 0.6356 + }, + { + "start": 7635.56, + "end": 7638.24, + "probability": 0.6931 + }, + { + "start": 7638.36, + "end": 7639.08, + "probability": 0.8146 + }, + { + "start": 7641.11, + "end": 7643.14, + "probability": 0.3981 + }, + { + "start": 7643.24, + "end": 7644.69, + "probability": 0.6071 + }, + { + "start": 7644.96, + "end": 7645.58, + "probability": 0.557 + }, + { + "start": 7645.62, + "end": 7650.0, + "probability": 0.5976 + }, + { + "start": 7650.34, + "end": 7651.44, + "probability": 0.8972 + }, + { + "start": 7651.5, + "end": 7652.56, + "probability": 0.3954 + }, + { + "start": 7652.68, + "end": 7653.72, + "probability": 0.9305 + }, + { + "start": 7653.82, + "end": 7655.84, + "probability": 0.4837 + }, + { + "start": 7655.94, + "end": 7657.32, + "probability": 0.0837 + }, + { + "start": 7657.32, + "end": 7658.82, + "probability": 0.1487 + }, + { + "start": 7658.82, + "end": 7659.12, + "probability": 0.0198 + }, + { + "start": 7659.24, + "end": 7661.84, + "probability": 0.125 + }, + { + "start": 7662.26, + "end": 7665.14, + "probability": 0.4327 + }, + { + "start": 7665.54, + "end": 7666.57, + "probability": 0.581 + }, + { + "start": 7666.9, + "end": 7670.28, + "probability": 0.1856 + }, + { + "start": 7670.56, + "end": 7672.16, + "probability": 0.6214 + }, + { + "start": 7672.22, + "end": 7672.86, + "probability": 0.7378 + }, + { + "start": 7673.96, + "end": 7677.52, + "probability": 0.993 + }, + { + "start": 7677.52, + "end": 7681.88, + "probability": 0.9595 + }, + { + "start": 7682.34, + "end": 7686.06, + "probability": 0.7388 + }, + { + "start": 7686.66, + "end": 7689.0, + "probability": 0.9604 + }, + { + "start": 7689.58, + "end": 7695.26, + "probability": 0.9137 + }, + { + "start": 7695.26, + "end": 7700.76, + "probability": 0.9426 + }, + { + "start": 7701.16, + "end": 7702.66, + "probability": 0.9765 + }, + { + "start": 7702.7, + "end": 7703.78, + "probability": 0.7034 + }, + { + "start": 7704.18, + "end": 7705.94, + "probability": 0.779 + }, + { + "start": 7706.18, + "end": 7709.71, + "probability": 0.9434 + }, + { + "start": 7710.12, + "end": 7712.7, + "probability": 0.8204 + }, + { + "start": 7712.82, + "end": 7714.36, + "probability": 0.9603 + }, + { + "start": 7715.68, + "end": 7715.68, + "probability": 0.0308 + }, + { + "start": 7715.68, + "end": 7718.16, + "probability": 0.6915 + }, + { + "start": 7718.18, + "end": 7722.34, + "probability": 0.8247 + }, + { + "start": 7722.96, + "end": 7724.41, + "probability": 0.8525 + }, + { + "start": 7725.44, + "end": 7726.88, + "probability": 0.8986 + }, + { + "start": 7727.0, + "end": 7727.78, + "probability": 0.9243 + }, + { + "start": 7728.22, + "end": 7728.96, + "probability": 0.8618 + }, + { + "start": 7729.06, + "end": 7731.06, + "probability": 0.9978 + }, + { + "start": 7731.06, + "end": 7731.84, + "probability": 0.835 + }, + { + "start": 7731.86, + "end": 7731.86, + "probability": 0.2187 + }, + { + "start": 7732.0, + "end": 7735.96, + "probability": 0.8848 + }, + { + "start": 7736.06, + "end": 7736.8, + "probability": 0.798 + }, + { + "start": 7736.86, + "end": 7737.97, + "probability": 0.9691 + }, + { + "start": 7738.44, + "end": 7745.65, + "probability": 0.9716 + }, + { + "start": 7746.72, + "end": 7747.22, + "probability": 0.0118 + }, + { + "start": 7748.32, + "end": 7748.88, + "probability": 0.1725 + }, + { + "start": 7749.12, + "end": 7749.82, + "probability": 0.3591 + }, + { + "start": 7750.56, + "end": 7753.0, + "probability": 0.5134 + }, + { + "start": 7753.18, + "end": 7754.06, + "probability": 0.2282 + }, + { + "start": 7754.22, + "end": 7755.71, + "probability": 0.2353 + }, + { + "start": 7756.96, + "end": 7757.46, + "probability": 0.1241 + }, + { + "start": 7757.52, + "end": 7757.64, + "probability": 0.082 + }, + { + "start": 7757.64, + "end": 7761.01, + "probability": 0.978 + }, + { + "start": 7761.5, + "end": 7763.9, + "probability": 0.9333 + }, + { + "start": 7764.02, + "end": 7765.12, + "probability": 0.8706 + }, + { + "start": 7765.28, + "end": 7771.18, + "probability": 0.9966 + }, + { + "start": 7771.78, + "end": 7775.0, + "probability": 0.9918 + }, + { + "start": 7775.52, + "end": 7775.54, + "probability": 0.0211 + }, + { + "start": 7775.54, + "end": 7780.42, + "probability": 0.9709 + }, + { + "start": 7780.8, + "end": 7781.75, + "probability": 0.6483 + }, + { + "start": 7782.66, + "end": 7785.34, + "probability": 0.591 + }, + { + "start": 7785.34, + "end": 7785.64, + "probability": 0.2161 + }, + { + "start": 7785.8, + "end": 7786.52, + "probability": 0.5116 + }, + { + "start": 7786.54, + "end": 7788.12, + "probability": 0.5518 + }, + { + "start": 7788.36, + "end": 7790.68, + "probability": 0.9775 + }, + { + "start": 7791.06, + "end": 7792.56, + "probability": 0.9771 + }, + { + "start": 7793.0, + "end": 7795.82, + "probability": 0.9167 + }, + { + "start": 7795.88, + "end": 7799.56, + "probability": 0.9667 + }, + { + "start": 7799.56, + "end": 7805.04, + "probability": 0.9905 + }, + { + "start": 7805.54, + "end": 7810.22, + "probability": 0.9978 + }, + { + "start": 7810.4, + "end": 7811.92, + "probability": 0.6567 + }, + { + "start": 7812.42, + "end": 7813.88, + "probability": 0.9712 + }, + { + "start": 7814.58, + "end": 7819.28, + "probability": 0.9988 + }, + { + "start": 7819.28, + "end": 7823.56, + "probability": 0.9722 + }, + { + "start": 7824.0, + "end": 7824.76, + "probability": 0.3732 + }, + { + "start": 7824.86, + "end": 7826.06, + "probability": 0.7833 + }, + { + "start": 7826.54, + "end": 7828.11, + "probability": 0.9338 + }, + { + "start": 7829.1, + "end": 7830.26, + "probability": 0.7128 + }, + { + "start": 7830.36, + "end": 7830.75, + "probability": 0.5263 + }, + { + "start": 7831.02, + "end": 7833.6, + "probability": 0.9216 + }, + { + "start": 7833.84, + "end": 7836.98, + "probability": 0.9723 + }, + { + "start": 7837.34, + "end": 7840.98, + "probability": 0.9911 + }, + { + "start": 7840.98, + "end": 7846.86, + "probability": 0.9932 + }, + { + "start": 7847.68, + "end": 7852.14, + "probability": 0.9934 + }, + { + "start": 7852.14, + "end": 7855.6, + "probability": 0.9572 + }, + { + "start": 7855.76, + "end": 7857.16, + "probability": 0.9978 + }, + { + "start": 7857.72, + "end": 7859.96, + "probability": 0.9895 + }, + { + "start": 7860.66, + "end": 7862.38, + "probability": 0.7247 + }, + { + "start": 7862.54, + "end": 7867.78, + "probability": 0.9525 + }, + { + "start": 7868.14, + "end": 7868.96, + "probability": 0.7041 + }, + { + "start": 7869.16, + "end": 7870.34, + "probability": 0.9122 + }, + { + "start": 7870.64, + "end": 7875.32, + "probability": 0.9876 + }, + { + "start": 7875.74, + "end": 7879.06, + "probability": 0.9524 + }, + { + "start": 7880.74, + "end": 7882.5, + "probability": 0.6956 + }, + { + "start": 7882.56, + "end": 7884.64, + "probability": 0.9888 + }, + { + "start": 7885.4, + "end": 7887.88, + "probability": 0.7947 + }, + { + "start": 7888.32, + "end": 7889.2, + "probability": 0.6047 + }, + { + "start": 7889.24, + "end": 7893.32, + "probability": 0.8743 + }, + { + "start": 7893.5, + "end": 7894.12, + "probability": 0.9072 + }, + { + "start": 7894.18, + "end": 7895.14, + "probability": 0.8273 + }, + { + "start": 7897.28, + "end": 7897.4, + "probability": 0.0099 + }, + { + "start": 7897.48, + "end": 7898.84, + "probability": 0.798 + }, + { + "start": 7898.9, + "end": 7902.42, + "probability": 0.7803 + }, + { + "start": 7902.76, + "end": 7904.68, + "probability": 0.9677 + }, + { + "start": 7904.9, + "end": 7905.78, + "probability": 0.9004 + }, + { + "start": 7905.96, + "end": 7907.64, + "probability": 0.9482 + }, + { + "start": 7907.84, + "end": 7911.36, + "probability": 0.8666 + }, + { + "start": 7911.98, + "end": 7912.86, + "probability": 0.8643 + }, + { + "start": 7912.9, + "end": 7913.28, + "probability": 0.293 + }, + { + "start": 7913.4, + "end": 7914.52, + "probability": 0.8222 + }, + { + "start": 7914.84, + "end": 7916.02, + "probability": 0.807 + }, + { + "start": 7916.44, + "end": 7917.46, + "probability": 0.7985 + }, + { + "start": 7917.52, + "end": 7918.26, + "probability": 0.8664 + }, + { + "start": 7918.3, + "end": 7920.56, + "probability": 0.9901 + }, + { + "start": 7920.94, + "end": 7924.16, + "probability": 0.9374 + }, + { + "start": 7924.18, + "end": 7926.18, + "probability": 0.7872 + }, + { + "start": 7926.56, + "end": 7931.02, + "probability": 0.9936 + }, + { + "start": 7931.08, + "end": 7935.59, + "probability": 0.9785 + }, + { + "start": 7935.74, + "end": 7938.64, + "probability": 0.7722 + }, + { + "start": 7940.34, + "end": 7944.78, + "probability": 0.9268 + }, + { + "start": 7944.82, + "end": 7946.28, + "probability": 0.9675 + }, + { + "start": 7947.02, + "end": 7949.6, + "probability": 0.9458 + }, + { + "start": 7949.82, + "end": 7951.74, + "probability": 0.7769 + }, + { + "start": 7952.9, + "end": 7960.52, + "probability": 0.8315 + }, + { + "start": 7961.32, + "end": 7963.36, + "probability": 0.8072 + }, + { + "start": 7963.48, + "end": 7965.42, + "probability": 0.9714 + }, + { + "start": 7965.84, + "end": 7968.54, + "probability": 0.9714 + }, + { + "start": 7969.3, + "end": 7973.28, + "probability": 0.9933 + }, + { + "start": 7973.76, + "end": 7979.18, + "probability": 0.9937 + }, + { + "start": 7979.94, + "end": 7983.54, + "probability": 0.9915 + }, + { + "start": 7983.54, + "end": 7987.4, + "probability": 0.9671 + }, + { + "start": 7987.96, + "end": 7990.18, + "probability": 0.9414 + }, + { + "start": 7990.6, + "end": 7992.96, + "probability": 0.9932 + }, + { + "start": 7992.96, + "end": 7996.24, + "probability": 0.6477 + }, + { + "start": 7996.76, + "end": 7999.62, + "probability": 0.4929 + }, + { + "start": 8000.12, + "end": 8001.4, + "probability": 0.665 + }, + { + "start": 8001.54, + "end": 8003.0, + "probability": 0.6568 + }, + { + "start": 8003.72, + "end": 8006.64, + "probability": 0.7165 + }, + { + "start": 8007.24, + "end": 8009.44, + "probability": 0.9786 + }, + { + "start": 8009.86, + "end": 8013.58, + "probability": 0.9695 + }, + { + "start": 8013.68, + "end": 8016.5, + "probability": 0.992 + }, + { + "start": 8016.88, + "end": 8022.04, + "probability": 0.9977 + }, + { + "start": 8022.04, + "end": 8026.03, + "probability": 0.957 + }, + { + "start": 8026.28, + "end": 8028.12, + "probability": 0.9806 + }, + { + "start": 8028.46, + "end": 8029.18, + "probability": 0.4905 + }, + { + "start": 8029.76, + "end": 8035.32, + "probability": 0.9941 + }, + { + "start": 8035.44, + "end": 8038.26, + "probability": 0.969 + }, + { + "start": 8038.44, + "end": 8041.7, + "probability": 0.9593 + }, + { + "start": 8041.74, + "end": 8042.34, + "probability": 0.6771 + }, + { + "start": 8042.36, + "end": 8044.44, + "probability": 0.9773 + }, + { + "start": 8044.64, + "end": 8045.27, + "probability": 0.795 + }, + { + "start": 8045.96, + "end": 8051.28, + "probability": 0.9923 + }, + { + "start": 8051.86, + "end": 8053.84, + "probability": 0.9757 + }, + { + "start": 8054.14, + "end": 8058.52, + "probability": 0.9643 + }, + { + "start": 8058.78, + "end": 8061.3, + "probability": 0.9855 + }, + { + "start": 8061.54, + "end": 8063.74, + "probability": 0.9819 + }, + { + "start": 8063.88, + "end": 8065.42, + "probability": 0.929 + }, + { + "start": 8065.56, + "end": 8066.92, + "probability": 0.5347 + }, + { + "start": 8067.04, + "end": 8069.06, + "probability": 0.9829 + }, + { + "start": 8069.82, + "end": 8075.62, + "probability": 0.9915 + }, + { + "start": 8075.88, + "end": 8080.02, + "probability": 0.9962 + }, + { + "start": 8080.2, + "end": 8081.81, + "probability": 0.9966 + }, + { + "start": 8081.98, + "end": 8083.75, + "probability": 0.6556 + }, + { + "start": 8084.32, + "end": 8086.62, + "probability": 0.8028 + }, + { + "start": 8087.62, + "end": 8088.74, + "probability": 0.36 + }, + { + "start": 8088.74, + "end": 8090.26, + "probability": 0.3834 + }, + { + "start": 8091.04, + "end": 8092.26, + "probability": 0.9946 + }, + { + "start": 8092.38, + "end": 8098.12, + "probability": 0.936 + }, + { + "start": 8098.6, + "end": 8099.12, + "probability": 0.8189 + }, + { + "start": 8099.22, + "end": 8100.06, + "probability": 0.845 + }, + { + "start": 8100.32, + "end": 8103.02, + "probability": 0.8489 + }, + { + "start": 8103.24, + "end": 8106.0, + "probability": 0.993 + }, + { + "start": 8106.32, + "end": 8108.55, + "probability": 0.9781 + }, + { + "start": 8108.84, + "end": 8110.83, + "probability": 0.9587 + }, + { + "start": 8111.14, + "end": 8114.36, + "probability": 0.9686 + }, + { + "start": 8114.76, + "end": 8118.3, + "probability": 0.9647 + }, + { + "start": 8118.42, + "end": 8123.4, + "probability": 0.9944 + }, + { + "start": 8123.48, + "end": 8124.22, + "probability": 0.9308 + }, + { + "start": 8126.36, + "end": 8127.98, + "probability": 0.6832 + }, + { + "start": 8128.06, + "end": 8130.36, + "probability": 0.9219 + }, + { + "start": 8130.42, + "end": 8130.9, + "probability": 0.9166 + }, + { + "start": 8134.92, + "end": 8135.18, + "probability": 0.7754 + }, + { + "start": 8138.98, + "end": 8143.04, + "probability": 0.9942 + }, + { + "start": 8143.5, + "end": 8145.14, + "probability": 0.974 + }, + { + "start": 8145.72, + "end": 8146.68, + "probability": 0.853 + }, + { + "start": 8147.84, + "end": 8149.13, + "probability": 0.9917 + }, + { + "start": 8149.82, + "end": 8151.28, + "probability": 0.5993 + }, + { + "start": 8151.88, + "end": 8151.88, + "probability": 0.2894 + }, + { + "start": 8152.16, + "end": 8155.24, + "probability": 0.6788 + }, + { + "start": 8156.72, + "end": 8158.12, + "probability": 0.998 + }, + { + "start": 8158.8, + "end": 8160.86, + "probability": 0.9913 + }, + { + "start": 8162.04, + "end": 8163.32, + "probability": 0.9541 + }, + { + "start": 8163.86, + "end": 8164.6, + "probability": 0.708 + }, + { + "start": 8164.62, + "end": 8164.98, + "probability": 0.5062 + }, + { + "start": 8166.7, + "end": 8166.7, + "probability": 0.7524 + }, + { + "start": 8166.7, + "end": 8167.75, + "probability": 0.9263 + }, + { + "start": 8168.32, + "end": 8169.26, + "probability": 0.5057 + }, + { + "start": 8169.96, + "end": 8172.94, + "probability": 0.7519 + }, + { + "start": 8173.34, + "end": 8173.7, + "probability": 0.739 + }, + { + "start": 8179.74, + "end": 8183.04, + "probability": 0.9922 + }, + { + "start": 8183.04, + "end": 8183.88, + "probability": 0.5788 + }, + { + "start": 8184.22, + "end": 8185.76, + "probability": 0.9155 + }, + { + "start": 8186.16, + "end": 8188.42, + "probability": 0.9683 + }, + { + "start": 8189.62, + "end": 8190.3, + "probability": 0.8817 + }, + { + "start": 8190.94, + "end": 8191.18, + "probability": 0.6462 + }, + { + "start": 8191.36, + "end": 8194.22, + "probability": 0.9946 + }, + { + "start": 8194.58, + "end": 8196.86, + "probability": 0.9455 + }, + { + "start": 8197.52, + "end": 8202.36, + "probability": 0.8664 + }, + { + "start": 8202.6, + "end": 8204.76, + "probability": 0.9961 + }, + { + "start": 8205.84, + "end": 8206.86, + "probability": 0.0244 + }, + { + "start": 8207.68, + "end": 8208.3, + "probability": 0.0422 + }, + { + "start": 8208.3, + "end": 8208.8, + "probability": 0.1245 + }, + { + "start": 8209.04, + "end": 8211.4, + "probability": 0.5031 + }, + { + "start": 8211.44, + "end": 8212.08, + "probability": 0.1903 + }, + { + "start": 8212.2, + "end": 8214.16, + "probability": 0.7127 + }, + { + "start": 8217.28, + "end": 8217.4, + "probability": 0.2052 + }, + { + "start": 8217.4, + "end": 8217.4, + "probability": 0.0265 + }, + { + "start": 8217.4, + "end": 8219.47, + "probability": 0.7459 + }, + { + "start": 8220.64, + "end": 8220.96, + "probability": 0.0635 + }, + { + "start": 8220.96, + "end": 8222.98, + "probability": 0.1234 + }, + { + "start": 8224.92, + "end": 8225.34, + "probability": 0.0864 + }, + { + "start": 8225.34, + "end": 8225.66, + "probability": 0.0209 + }, + { + "start": 8225.72, + "end": 8226.27, + "probability": 0.3135 + }, + { + "start": 8226.92, + "end": 8227.64, + "probability": 0.4556 + }, + { + "start": 8227.72, + "end": 8228.16, + "probability": 0.9415 + }, + { + "start": 8228.92, + "end": 8228.96, + "probability": 0.2134 + }, + { + "start": 8228.96, + "end": 8229.58, + "probability": 0.751 + }, + { + "start": 8229.6, + "end": 8231.92, + "probability": 0.8946 + }, + { + "start": 8232.3, + "end": 8233.18, + "probability": 0.2173 + }, + { + "start": 8234.6, + "end": 8238.74, + "probability": 0.9765 + }, + { + "start": 8238.86, + "end": 8242.26, + "probability": 0.9893 + }, + { + "start": 8242.26, + "end": 8246.06, + "probability": 0.9927 + }, + { + "start": 8246.62, + "end": 8249.04, + "probability": 0.9313 + }, + { + "start": 8249.16, + "end": 8251.18, + "probability": 0.7177 + }, + { + "start": 8252.16, + "end": 8253.5, + "probability": 0.8965 + }, + { + "start": 8253.92, + "end": 8256.26, + "probability": 0.9763 + }, + { + "start": 8257.06, + "end": 8259.6, + "probability": 0.993 + }, + { + "start": 8259.6, + "end": 8262.98, + "probability": 0.9728 + }, + { + "start": 8263.62, + "end": 8266.56, + "probability": 0.9599 + }, + { + "start": 8267.2, + "end": 8271.72, + "probability": 0.978 + }, + { + "start": 8272.34, + "end": 8272.94, + "probability": 0.8984 + }, + { + "start": 8273.04, + "end": 8276.38, + "probability": 0.9733 + }, + { + "start": 8276.58, + "end": 8280.16, + "probability": 0.7855 + }, + { + "start": 8280.28, + "end": 8281.92, + "probability": 0.8243 + }, + { + "start": 8282.28, + "end": 8284.16, + "probability": 0.758 + }, + { + "start": 8284.52, + "end": 8287.4, + "probability": 0.8447 + }, + { + "start": 8287.94, + "end": 8288.62, + "probability": 0.8394 + }, + { + "start": 8289.04, + "end": 8289.44, + "probability": 0.5309 + }, + { + "start": 8290.02, + "end": 8290.62, + "probability": 0.7804 + }, + { + "start": 8291.6, + "end": 8293.18, + "probability": 0.527 + }, + { + "start": 8293.3, + "end": 8294.44, + "probability": 0.7036 + }, + { + "start": 8295.7, + "end": 8296.52, + "probability": 0.9454 + }, + { + "start": 8296.7, + "end": 8297.14, + "probability": 0.5973 + }, + { + "start": 8297.16, + "end": 8299.9, + "probability": 0.5835 + }, + { + "start": 8300.48, + "end": 8301.76, + "probability": 0.9666 + }, + { + "start": 8304.3, + "end": 8304.32, + "probability": 0.4465 + }, + { + "start": 8304.32, + "end": 8310.24, + "probability": 0.6231 + }, + { + "start": 8311.24, + "end": 8312.56, + "probability": 0.5801 + }, + { + "start": 8312.8, + "end": 8313.44, + "probability": 0.2061 + }, + { + "start": 8316.34, + "end": 8317.1, + "probability": 0.728 + }, + { + "start": 8317.18, + "end": 8317.88, + "probability": 0.3489 + }, + { + "start": 8318.18, + "end": 8318.38, + "probability": 0.4906 + }, + { + "start": 8319.96, + "end": 8321.6, + "probability": 0.6274 + }, + { + "start": 8326.68, + "end": 8331.82, + "probability": 0.9902 + }, + { + "start": 8331.94, + "end": 8333.64, + "probability": 0.685 + }, + { + "start": 8333.78, + "end": 8337.06, + "probability": 0.9867 + }, + { + "start": 8337.36, + "end": 8340.94, + "probability": 0.811 + }, + { + "start": 8341.36, + "end": 8341.57, + "probability": 0.8379 + }, + { + "start": 8342.0, + "end": 8343.46, + "probability": 0.6211 + }, + { + "start": 8344.12, + "end": 8347.6, + "probability": 0.9844 + }, + { + "start": 8348.28, + "end": 8350.4, + "probability": 0.7773 + }, + { + "start": 8350.98, + "end": 8351.68, + "probability": 0.7355 + }, + { + "start": 8351.86, + "end": 8353.06, + "probability": 0.922 + }, + { + "start": 8353.56, + "end": 8355.32, + "probability": 0.981 + }, + { + "start": 8355.66, + "end": 8358.17, + "probability": 0.9878 + }, + { + "start": 8358.56, + "end": 8360.18, + "probability": 0.9485 + }, + { + "start": 8360.2, + "end": 8362.86, + "probability": 0.9674 + }, + { + "start": 8363.28, + "end": 8365.52, + "probability": 0.9265 + }, + { + "start": 8365.92, + "end": 8367.38, + "probability": 0.835 + }, + { + "start": 8367.44, + "end": 8368.4, + "probability": 0.7604 + }, + { + "start": 8368.58, + "end": 8372.62, + "probability": 0.9888 + }, + { + "start": 8372.62, + "end": 8376.08, + "probability": 0.9984 + }, + { + "start": 8376.82, + "end": 8380.52, + "probability": 0.9641 + }, + { + "start": 8380.68, + "end": 8383.56, + "probability": 0.8656 + }, + { + "start": 8383.9, + "end": 8384.74, + "probability": 0.7948 + }, + { + "start": 8384.92, + "end": 8387.8, + "probability": 0.8884 + }, + { + "start": 8387.98, + "end": 8391.36, + "probability": 0.9836 + }, + { + "start": 8391.78, + "end": 8396.46, + "probability": 0.9937 + }, + { + "start": 8396.72, + "end": 8400.24, + "probability": 0.9553 + }, + { + "start": 8400.24, + "end": 8403.68, + "probability": 0.8199 + }, + { + "start": 8404.48, + "end": 8408.24, + "probability": 0.7041 + }, + { + "start": 8408.54, + "end": 8410.62, + "probability": 0.8531 + }, + { + "start": 8411.16, + "end": 8412.44, + "probability": 0.6678 + }, + { + "start": 8412.56, + "end": 8413.33, + "probability": 0.1741 + }, + { + "start": 8413.54, + "end": 8415.14, + "probability": 0.7185 + }, + { + "start": 8415.4, + "end": 8416.64, + "probability": 0.9973 + }, + { + "start": 8416.64, + "end": 8417.56, + "probability": 0.507 + }, + { + "start": 8417.92, + "end": 8420.84, + "probability": 0.8535 + }, + { + "start": 8421.24, + "end": 8424.09, + "probability": 0.9803 + }, + { + "start": 8424.38, + "end": 8425.4, + "probability": 0.5447 + }, + { + "start": 8425.74, + "end": 8429.54, + "probability": 0.9164 + }, + { + "start": 8430.02, + "end": 8435.04, + "probability": 0.9567 + }, + { + "start": 8435.16, + "end": 8435.78, + "probability": 0.7254 + }, + { + "start": 8435.86, + "end": 8439.92, + "probability": 0.9924 + }, + { + "start": 8440.08, + "end": 8441.75, + "probability": 0.9614 + }, + { + "start": 8441.94, + "end": 8443.38, + "probability": 0.9927 + }, + { + "start": 8443.52, + "end": 8446.34, + "probability": 0.9938 + }, + { + "start": 8446.34, + "end": 8447.94, + "probability": 0.7994 + }, + { + "start": 8448.98, + "end": 8450.74, + "probability": 0.1722 + }, + { + "start": 8450.74, + "end": 8450.74, + "probability": 0.1817 + }, + { + "start": 8450.74, + "end": 8450.74, + "probability": 0.0346 + }, + { + "start": 8450.74, + "end": 8452.32, + "probability": 0.3835 + }, + { + "start": 8452.64, + "end": 8454.44, + "probability": 0.8796 + }, + { + "start": 8454.76, + "end": 8455.18, + "probability": 0.7154 + }, + { + "start": 8455.26, + "end": 8456.14, + "probability": 0.9274 + }, + { + "start": 8456.36, + "end": 8459.64, + "probability": 0.9509 + }, + { + "start": 8459.84, + "end": 8462.2, + "probability": 0.9285 + }, + { + "start": 8462.28, + "end": 8462.96, + "probability": 0.7287 + }, + { + "start": 8463.68, + "end": 8465.58, + "probability": 0.3839 + }, + { + "start": 8465.9, + "end": 8466.32, + "probability": 0.0348 + }, + { + "start": 8466.68, + "end": 8468.98, + "probability": 0.5243 + }, + { + "start": 8469.58, + "end": 8470.94, + "probability": 0.8297 + }, + { + "start": 8471.18, + "end": 8474.94, + "probability": 0.7798 + }, + { + "start": 8475.22, + "end": 8475.22, + "probability": 0.1136 + }, + { + "start": 8475.22, + "end": 8478.02, + "probability": 0.9619 + }, + { + "start": 8478.36, + "end": 8479.72, + "probability": 0.369 + }, + { + "start": 8479.72, + "end": 8481.62, + "probability": 0.225 + }, + { + "start": 8481.74, + "end": 8482.28, + "probability": 0.1246 + }, + { + "start": 8482.66, + "end": 8484.86, + "probability": 0.6927 + }, + { + "start": 8485.34, + "end": 8485.9, + "probability": 0.6896 + }, + { + "start": 8486.04, + "end": 8486.94, + "probability": 0.7556 + }, + { + "start": 8487.18, + "end": 8492.1, + "probability": 0.7949 + }, + { + "start": 8492.96, + "end": 8498.06, + "probability": 0.8717 + }, + { + "start": 8498.46, + "end": 8501.78, + "probability": 0.8435 + }, + { + "start": 8502.42, + "end": 8505.78, + "probability": 0.9349 + }, + { + "start": 8506.64, + "end": 8510.02, + "probability": 0.9256 + }, + { + "start": 8510.46, + "end": 8511.79, + "probability": 0.9536 + }, + { + "start": 8512.36, + "end": 8516.18, + "probability": 0.9976 + }, + { + "start": 8516.18, + "end": 8520.18, + "probability": 0.7946 + }, + { + "start": 8520.64, + "end": 8525.7, + "probability": 0.9161 + }, + { + "start": 8525.82, + "end": 8529.28, + "probability": 0.9008 + }, + { + "start": 8529.36, + "end": 8530.46, + "probability": 0.6864 + }, + { + "start": 8530.54, + "end": 8534.02, + "probability": 0.828 + }, + { + "start": 8535.92, + "end": 8536.96, + "probability": 0.4189 + }, + { + "start": 8536.96, + "end": 8536.96, + "probability": 0.2337 + }, + { + "start": 8536.96, + "end": 8538.36, + "probability": 0.4545 + }, + { + "start": 8538.72, + "end": 8540.6, + "probability": 0.9868 + }, + { + "start": 8540.88, + "end": 8543.56, + "probability": 0.9675 + }, + { + "start": 8544.38, + "end": 8547.74, + "probability": 0.9398 + }, + { + "start": 8547.74, + "end": 8549.58, + "probability": 0.5174 + }, + { + "start": 8549.6, + "end": 8550.78, + "probability": 0.5946 + }, + { + "start": 8550.86, + "end": 8552.54, + "probability": 0.7017 + }, + { + "start": 8552.54, + "end": 8553.12, + "probability": 0.6428 + }, + { + "start": 8553.36, + "end": 8555.46, + "probability": 0.9953 + }, + { + "start": 8555.64, + "end": 8556.86, + "probability": 0.9502 + }, + { + "start": 8556.86, + "end": 8559.18, + "probability": 0.5213 + }, + { + "start": 8559.42, + "end": 8560.36, + "probability": 0.7104 + }, + { + "start": 8560.38, + "end": 8561.0, + "probability": 0.687 + }, + { + "start": 8561.46, + "end": 8562.06, + "probability": 0.8722 + }, + { + "start": 8562.24, + "end": 8566.24, + "probability": 0.918 + }, + { + "start": 8566.36, + "end": 8567.02, + "probability": 0.826 + }, + { + "start": 8567.06, + "end": 8568.46, + "probability": 0.5822 + }, + { + "start": 8568.52, + "end": 8568.52, + "probability": 0.6152 + }, + { + "start": 8568.52, + "end": 8572.24, + "probability": 0.7524 + }, + { + "start": 8572.44, + "end": 8576.74, + "probability": 0.8014 + }, + { + "start": 8577.02, + "end": 8578.36, + "probability": 0.8179 + }, + { + "start": 8578.4, + "end": 8579.8, + "probability": 0.8027 + }, + { + "start": 8579.88, + "end": 8580.7, + "probability": 0.3394 + }, + { + "start": 8580.7, + "end": 8584.94, + "probability": 0.9001 + }, + { + "start": 8585.22, + "end": 8586.49, + "probability": 0.9546 + }, + { + "start": 8586.66, + "end": 8590.24, + "probability": 0.9568 + }, + { + "start": 8590.32, + "end": 8591.22, + "probability": 0.8716 + }, + { + "start": 8591.38, + "end": 8591.9, + "probability": 0.5148 + }, + { + "start": 8592.32, + "end": 8593.53, + "probability": 0.9969 + }, + { + "start": 8595.08, + "end": 8596.2, + "probability": 0.636 + }, + { + "start": 8596.22, + "end": 8596.94, + "probability": 0.692 + }, + { + "start": 8597.4, + "end": 8598.26, + "probability": 0.6428 + }, + { + "start": 8605.46, + "end": 8605.56, + "probability": 0.4364 + }, + { + "start": 8607.38, + "end": 8608.86, + "probability": 0.0259 + }, + { + "start": 8611.78, + "end": 8621.34, + "probability": 0.0247 + }, + { + "start": 8621.34, + "end": 8621.34, + "probability": 0.0374 + }, + { + "start": 8621.62, + "end": 8621.62, + "probability": 0.0423 + }, + { + "start": 8621.62, + "end": 8621.62, + "probability": 0.4794 + }, + { + "start": 8621.62, + "end": 8622.66, + "probability": 0.256 + }, + { + "start": 8623.56, + "end": 8629.2, + "probability": 0.91 + }, + { + "start": 8629.58, + "end": 8630.76, + "probability": 0.9897 + }, + { + "start": 8630.98, + "end": 8636.96, + "probability": 0.9415 + }, + { + "start": 8637.86, + "end": 8644.02, + "probability": 0.8083 + }, + { + "start": 8644.52, + "end": 8645.4, + "probability": 0.518 + }, + { + "start": 8645.48, + "end": 8646.02, + "probability": 0.8335 + }, + { + "start": 8653.4, + "end": 8653.74, + "probability": 0.4507 + }, + { + "start": 8662.4, + "end": 8664.12, + "probability": 0.4481 + }, + { + "start": 8665.48, + "end": 8667.82, + "probability": 0.6484 + }, + { + "start": 8669.54, + "end": 8673.48, + "probability": 0.9779 + }, + { + "start": 8673.58, + "end": 8675.1, + "probability": 0.9868 + }, + { + "start": 8676.0, + "end": 8680.16, + "probability": 0.9806 + }, + { + "start": 8681.04, + "end": 8685.04, + "probability": 0.7356 + }, + { + "start": 8687.38, + "end": 8691.44, + "probability": 0.9963 + }, + { + "start": 8691.44, + "end": 8698.42, + "probability": 0.9963 + }, + { + "start": 8699.92, + "end": 8703.7, + "probability": 0.9921 + }, + { + "start": 8704.46, + "end": 8707.76, + "probability": 0.9969 + }, + { + "start": 8708.76, + "end": 8712.02, + "probability": 0.9952 + }, + { + "start": 8712.14, + "end": 8713.3, + "probability": 0.6874 + }, + { + "start": 8714.3, + "end": 8717.6, + "probability": 0.9976 + }, + { + "start": 8721.62, + "end": 8726.92, + "probability": 0.5888 + }, + { + "start": 8727.1, + "end": 8730.12, + "probability": 0.5009 + }, + { + "start": 8731.12, + "end": 8733.86, + "probability": 0.595 + }, + { + "start": 8734.2, + "end": 8735.2, + "probability": 0.3548 + }, + { + "start": 8735.42, + "end": 8736.04, + "probability": 0.6728 + }, + { + "start": 8737.54, + "end": 8737.54, + "probability": 0.1622 + }, + { + "start": 8737.54, + "end": 8740.06, + "probability": 0.482 + }, + { + "start": 8740.16, + "end": 8740.7, + "probability": 0.818 + }, + { + "start": 8741.36, + "end": 8741.68, + "probability": 0.0259 + }, + { + "start": 8741.68, + "end": 8741.92, + "probability": 0.2451 + }, + { + "start": 8742.82, + "end": 8744.38, + "probability": 0.9007 + }, + { + "start": 8745.9, + "end": 8750.66, + "probability": 0.9356 + }, + { + "start": 8750.7, + "end": 8751.92, + "probability": 0.8588 + }, + { + "start": 8752.92, + "end": 8755.32, + "probability": 0.9079 + }, + { + "start": 8755.78, + "end": 8757.45, + "probability": 0.8582 + }, + { + "start": 8758.98, + "end": 8761.86, + "probability": 0.9368 + }, + { + "start": 8762.76, + "end": 8763.36, + "probability": 0.6519 + }, + { + "start": 8763.42, + "end": 8766.56, + "probability": 0.9888 + }, + { + "start": 8766.64, + "end": 8770.46, + "probability": 0.6062 + }, + { + "start": 8770.84, + "end": 8774.92, + "probability": 0.946 + }, + { + "start": 8774.92, + "end": 8777.98, + "probability": 0.998 + }, + { + "start": 8778.86, + "end": 8784.22, + "probability": 0.7549 + }, + { + "start": 8785.46, + "end": 8791.2, + "probability": 0.9593 + }, + { + "start": 8791.72, + "end": 8794.96, + "probability": 0.9487 + }, + { + "start": 8795.08, + "end": 8798.28, + "probability": 0.7373 + }, + { + "start": 8798.36, + "end": 8798.96, + "probability": 0.8357 + }, + { + "start": 8799.1, + "end": 8806.38, + "probability": 0.9521 + }, + { + "start": 8807.96, + "end": 8809.6, + "probability": 0.9898 + }, + { + "start": 8811.38, + "end": 8818.0, + "probability": 0.9875 + }, + { + "start": 8818.1, + "end": 8819.26, + "probability": 0.8843 + }, + { + "start": 8819.86, + "end": 8820.36, + "probability": 0.5435 + }, + { + "start": 8820.44, + "end": 8821.34, + "probability": 0.957 + }, + { + "start": 8821.4, + "end": 8826.76, + "probability": 0.9692 + }, + { + "start": 8827.52, + "end": 8831.48, + "probability": 0.9636 + }, + { + "start": 8831.48, + "end": 8834.82, + "probability": 0.938 + }, + { + "start": 8835.74, + "end": 8839.15, + "probability": 0.9609 + }, + { + "start": 8840.06, + "end": 8844.02, + "probability": 0.8975 + }, + { + "start": 8844.02, + "end": 8847.44, + "probability": 0.9867 + }, + { + "start": 8848.46, + "end": 8849.6, + "probability": 0.8311 + }, + { + "start": 8850.88, + "end": 8852.14, + "probability": 0.6219 + }, + { + "start": 8853.3, + "end": 8854.7, + "probability": 0.9502 + }, + { + "start": 8854.78, + "end": 8855.12, + "probability": 0.5025 + }, + { + "start": 8855.18, + "end": 8857.18, + "probability": 0.8883 + }, + { + "start": 8857.88, + "end": 8860.88, + "probability": 0.9575 + }, + { + "start": 8861.58, + "end": 8871.1, + "probability": 0.9535 + }, + { + "start": 8871.84, + "end": 8874.74, + "probability": 0.9639 + }, + { + "start": 8876.14, + "end": 8882.16, + "probability": 0.9905 + }, + { + "start": 8882.62, + "end": 8885.24, + "probability": 0.8404 + }, + { + "start": 8885.36, + "end": 8886.36, + "probability": 0.7437 + }, + { + "start": 8886.78, + "end": 8887.93, + "probability": 0.9076 + }, + { + "start": 8889.46, + "end": 8895.46, + "probability": 0.8645 + }, + { + "start": 8897.24, + "end": 8898.51, + "probability": 0.9806 + }, + { + "start": 8898.76, + "end": 8900.82, + "probability": 0.9296 + }, + { + "start": 8901.08, + "end": 8901.48, + "probability": 0.7608 + }, + { + "start": 8901.72, + "end": 8902.74, + "probability": 0.8129 + }, + { + "start": 8904.38, + "end": 8908.52, + "probability": 0.9797 + }, + { + "start": 8909.04, + "end": 8914.78, + "probability": 0.9908 + }, + { + "start": 8914.96, + "end": 8915.92, + "probability": 0.8174 + }, + { + "start": 8917.74, + "end": 8922.16, + "probability": 0.9361 + }, + { + "start": 8923.72, + "end": 8930.62, + "probability": 0.9421 + }, + { + "start": 8930.68, + "end": 8931.14, + "probability": 0.6727 + }, + { + "start": 8931.42, + "end": 8932.26, + "probability": 0.9259 + }, + { + "start": 8934.32, + "end": 8935.78, + "probability": 0.9033 + }, + { + "start": 8936.84, + "end": 8938.0, + "probability": 0.9539 + }, + { + "start": 8938.06, + "end": 8939.64, + "probability": 0.9646 + }, + { + "start": 8939.76, + "end": 8942.02, + "probability": 0.9922 + }, + { + "start": 8944.26, + "end": 8949.34, + "probability": 0.9933 + }, + { + "start": 8950.14, + "end": 8952.82, + "probability": 0.9871 + }, + { + "start": 8953.34, + "end": 8956.08, + "probability": 0.9966 + }, + { + "start": 8957.44, + "end": 8962.96, + "probability": 0.9126 + }, + { + "start": 8962.96, + "end": 8967.44, + "probability": 0.988 + }, + { + "start": 8967.6, + "end": 8969.15, + "probability": 0.9979 + }, + { + "start": 8970.54, + "end": 8972.36, + "probability": 0.9951 + }, + { + "start": 8973.72, + "end": 8976.8, + "probability": 0.8475 + }, + { + "start": 8977.82, + "end": 8979.1, + "probability": 0.8545 + }, + { + "start": 8980.14, + "end": 8980.9, + "probability": 0.5808 + }, + { + "start": 8982.02, + "end": 8988.48, + "probability": 0.9951 + }, + { + "start": 8988.94, + "end": 8993.43, + "probability": 0.8772 + }, + { + "start": 8994.02, + "end": 8996.88, + "probability": 0.9985 + }, + { + "start": 8998.16, + "end": 8998.94, + "probability": 0.9881 + }, + { + "start": 9000.02, + "end": 9001.8, + "probability": 0.9987 + }, + { + "start": 9002.36, + "end": 9004.16, + "probability": 0.6116 + }, + { + "start": 9004.88, + "end": 9009.44, + "probability": 0.8878 + }, + { + "start": 9010.28, + "end": 9011.93, + "probability": 0.9697 + }, + { + "start": 9014.98, + "end": 9017.06, + "probability": 0.9958 + }, + { + "start": 9018.42, + "end": 9022.42, + "probability": 0.9165 + }, + { + "start": 9022.96, + "end": 9024.72, + "probability": 0.801 + }, + { + "start": 9025.4, + "end": 9027.16, + "probability": 0.9971 + }, + { + "start": 9028.14, + "end": 9029.16, + "probability": 0.904 + }, + { + "start": 9030.02, + "end": 9033.62, + "probability": 0.9806 + }, + { + "start": 9034.94, + "end": 9037.98, + "probability": 0.6017 + }, + { + "start": 9038.88, + "end": 9041.28, + "probability": 0.708 + }, + { + "start": 9042.2, + "end": 9045.72, + "probability": 0.9936 + }, + { + "start": 9046.46, + "end": 9047.66, + "probability": 0.8572 + }, + { + "start": 9048.74, + "end": 9049.63, + "probability": 0.9761 + }, + { + "start": 9050.42, + "end": 9054.8, + "probability": 0.3834 + }, + { + "start": 9055.3, + "end": 9055.88, + "probability": 0.4849 + }, + { + "start": 9055.98, + "end": 9057.32, + "probability": 0.82 + }, + { + "start": 9057.36, + "end": 9058.84, + "probability": 0.6768 + }, + { + "start": 9058.96, + "end": 9059.66, + "probability": 0.7616 + }, + { + "start": 9059.8, + "end": 9063.06, + "probability": 0.9863 + }, + { + "start": 9063.16, + "end": 9063.7, + "probability": 0.8424 + }, + { + "start": 9064.0, + "end": 9064.5, + "probability": 0.3449 + }, + { + "start": 9064.52, + "end": 9067.16, + "probability": 0.9099 + }, + { + "start": 9067.66, + "end": 9069.3, + "probability": 0.9929 + }, + { + "start": 9069.7, + "end": 9070.68, + "probability": 0.3057 + }, + { + "start": 9070.74, + "end": 9071.72, + "probability": 0.359 + }, + { + "start": 9071.8, + "end": 9072.24, + "probability": 0.7288 + }, + { + "start": 9072.38, + "end": 9072.56, + "probability": 0.7997 + }, + { + "start": 9072.64, + "end": 9073.29, + "probability": 0.3064 + }, + { + "start": 9073.58, + "end": 9075.92, + "probability": 0.985 + }, + { + "start": 9075.98, + "end": 9077.6, + "probability": 0.1674 + }, + { + "start": 9077.6, + "end": 9078.14, + "probability": 0.4226 + }, + { + "start": 9078.18, + "end": 9079.08, + "probability": 0.7421 + }, + { + "start": 9079.44, + "end": 9081.26, + "probability": 0.7838 + }, + { + "start": 9081.34, + "end": 9083.84, + "probability": 0.9849 + }, + { + "start": 9083.98, + "end": 9086.12, + "probability": 0.9958 + }, + { + "start": 9086.42, + "end": 9088.19, + "probability": 0.9925 + }, + { + "start": 9088.42, + "end": 9089.74, + "probability": 0.4829 + }, + { + "start": 9090.04, + "end": 9091.34, + "probability": 0.7055 + }, + { + "start": 9091.4, + "end": 9092.78, + "probability": 0.9951 + }, + { + "start": 9092.84, + "end": 9093.46, + "probability": 0.9364 + }, + { + "start": 9093.52, + "end": 9094.78, + "probability": 0.9756 + }, + { + "start": 9095.72, + "end": 9097.93, + "probability": 0.0877 + }, + { + "start": 9099.54, + "end": 9101.5, + "probability": 0.1003 + }, + { + "start": 9103.66, + "end": 9106.36, + "probability": 0.0466 + }, + { + "start": 9106.44, + "end": 9106.58, + "probability": 0.2664 + }, + { + "start": 9106.58, + "end": 9109.04, + "probability": 0.1379 + }, + { + "start": 9109.04, + "end": 9109.04, + "probability": 0.0687 + }, + { + "start": 9109.04, + "end": 9109.04, + "probability": 0.1311 + }, + { + "start": 9109.04, + "end": 9109.04, + "probability": 0.2839 + }, + { + "start": 9109.04, + "end": 9109.04, + "probability": 0.0906 + }, + { + "start": 9109.04, + "end": 9113.9, + "probability": 0.7114 + }, + { + "start": 9115.22, + "end": 9117.86, + "probability": 0.978 + }, + { + "start": 9118.58, + "end": 9120.82, + "probability": 0.9939 + }, + { + "start": 9122.1, + "end": 9126.94, + "probability": 0.997 + }, + { + "start": 9128.9, + "end": 9133.86, + "probability": 0.991 + }, + { + "start": 9133.94, + "end": 9136.48, + "probability": 0.9911 + }, + { + "start": 9137.4, + "end": 9139.93, + "probability": 0.9644 + }, + { + "start": 9140.14, + "end": 9142.14, + "probability": 0.9106 + }, + { + "start": 9143.04, + "end": 9145.46, + "probability": 0.9043 + }, + { + "start": 9146.84, + "end": 9147.51, + "probability": 0.9932 + }, + { + "start": 9148.14, + "end": 9149.12, + "probability": 0.2517 + }, + { + "start": 9149.8, + "end": 9152.9, + "probability": 0.9412 + }, + { + "start": 9154.36, + "end": 9158.96, + "probability": 0.8587 + }, + { + "start": 9158.96, + "end": 9161.6, + "probability": 0.9961 + }, + { + "start": 9161.86, + "end": 9165.82, + "probability": 0.9833 + }, + { + "start": 9165.98, + "end": 9170.42, + "probability": 0.9789 + }, + { + "start": 9170.42, + "end": 9172.56, + "probability": 0.9988 + }, + { + "start": 9172.64, + "end": 9173.62, + "probability": 0.9951 + }, + { + "start": 9175.66, + "end": 9180.18, + "probability": 0.996 + }, + { + "start": 9180.3, + "end": 9181.88, + "probability": 0.0208 + }, + { + "start": 9181.88, + "end": 9184.22, + "probability": 0.8711 + }, + { + "start": 9184.3, + "end": 9187.28, + "probability": 0.0587 + }, + { + "start": 9187.3, + "end": 9188.2, + "probability": 0.0764 + }, + { + "start": 9188.2, + "end": 9188.58, + "probability": 0.1088 + }, + { + "start": 9188.58, + "end": 9189.38, + "probability": 0.0221 + }, + { + "start": 9192.04, + "end": 9193.5, + "probability": 0.8981 + }, + { + "start": 9194.78, + "end": 9197.44, + "probability": 0.9621 + }, + { + "start": 9198.2, + "end": 9198.54, + "probability": 0.3204 + }, + { + "start": 9198.68, + "end": 9199.76, + "probability": 0.8627 + }, + { + "start": 9199.82, + "end": 9203.73, + "probability": 0.69 + }, + { + "start": 9204.34, + "end": 9205.44, + "probability": 0.9484 + }, + { + "start": 9205.54, + "end": 9207.46, + "probability": 0.8802 + }, + { + "start": 9207.86, + "end": 9209.26, + "probability": 0.9805 + }, + { + "start": 9209.68, + "end": 9211.54, + "probability": 0.9119 + }, + { + "start": 9211.8, + "end": 9212.56, + "probability": 0.9956 + }, + { + "start": 9212.6, + "end": 9212.8, + "probability": 0.8713 + }, + { + "start": 9212.88, + "end": 9213.9, + "probability": 0.9951 + }, + { + "start": 9215.12, + "end": 9215.12, + "probability": 0.2735 + }, + { + "start": 9215.14, + "end": 9218.04, + "probability": 0.9912 + }, + { + "start": 9218.56, + "end": 9222.34, + "probability": 0.887 + }, + { + "start": 9222.38, + "end": 9224.96, + "probability": 0.9966 + }, + { + "start": 9225.64, + "end": 9227.24, + "probability": 0.9109 + }, + { + "start": 9227.46, + "end": 9229.1, + "probability": 0.0237 + }, + { + "start": 9229.1, + "end": 9232.38, + "probability": 0.9941 + }, + { + "start": 9232.92, + "end": 9233.42, + "probability": 0.5238 + }, + { + "start": 9233.62, + "end": 9235.1, + "probability": 0.7729 + }, + { + "start": 9235.3, + "end": 9235.98, + "probability": 0.7859 + }, + { + "start": 9236.12, + "end": 9238.5, + "probability": 0.9698 + }, + { + "start": 9238.58, + "end": 9241.11, + "probability": 0.975 + }, + { + "start": 9242.12, + "end": 9245.84, + "probability": 0.9872 + }, + { + "start": 9246.28, + "end": 9249.44, + "probability": 0.9971 + }, + { + "start": 9250.96, + "end": 9254.06, + "probability": 0.9536 + }, + { + "start": 9254.72, + "end": 9257.2, + "probability": 0.9824 + }, + { + "start": 9257.52, + "end": 9258.48, + "probability": 0.6488 + }, + { + "start": 9259.32, + "end": 9262.86, + "probability": 0.8708 + }, + { + "start": 9262.98, + "end": 9266.2, + "probability": 0.9868 + }, + { + "start": 9267.34, + "end": 9268.54, + "probability": 0.9933 + }, + { + "start": 9269.46, + "end": 9271.52, + "probability": 0.8918 + }, + { + "start": 9273.18, + "end": 9277.28, + "probability": 0.9441 + }, + { + "start": 9278.46, + "end": 9284.94, + "probability": 0.9609 + }, + { + "start": 9285.44, + "end": 9286.06, + "probability": 0.8602 + }, + { + "start": 9286.14, + "end": 9286.66, + "probability": 0.83 + }, + { + "start": 9286.76, + "end": 9287.54, + "probability": 0.7544 + }, + { + "start": 9288.1, + "end": 9289.8, + "probability": 0.5585 + }, + { + "start": 9289.8, + "end": 9292.02, + "probability": 0.7798 + }, + { + "start": 9294.42, + "end": 9296.62, + "probability": 0.9458 + }, + { + "start": 9297.06, + "end": 9300.56, + "probability": 0.998 + }, + { + "start": 9301.2, + "end": 9302.96, + "probability": 0.9409 + }, + { + "start": 9303.52, + "end": 9304.96, + "probability": 0.8472 + }, + { + "start": 9305.44, + "end": 9307.8, + "probability": 0.9648 + }, + { + "start": 9310.54, + "end": 9314.5, + "probability": 0.8331 + }, + { + "start": 9315.1, + "end": 9317.6, + "probability": 0.9981 + }, + { + "start": 9318.44, + "end": 9323.86, + "probability": 0.9977 + }, + { + "start": 9324.68, + "end": 9327.7, + "probability": 0.9982 + }, + { + "start": 9329.02, + "end": 9332.64, + "probability": 0.9935 + }, + { + "start": 9333.3, + "end": 9337.22, + "probability": 0.9783 + }, + { + "start": 9337.22, + "end": 9340.26, + "probability": 0.9981 + }, + { + "start": 9340.32, + "end": 9342.72, + "probability": 0.8752 + }, + { + "start": 9343.44, + "end": 9347.44, + "probability": 0.9929 + }, + { + "start": 9348.08, + "end": 9348.48, + "probability": 0.7991 + }, + { + "start": 9349.72, + "end": 9354.66, + "probability": 0.835 + }, + { + "start": 9355.74, + "end": 9357.82, + "probability": 0.9137 + }, + { + "start": 9358.2, + "end": 9359.46, + "probability": 0.7749 + }, + { + "start": 9359.5, + "end": 9359.62, + "probability": 0.3819 + }, + { + "start": 9359.62, + "end": 9360.5, + "probability": 0.4889 + }, + { + "start": 9360.58, + "end": 9361.74, + "probability": 0.6903 + }, + { + "start": 9362.26, + "end": 9364.56, + "probability": 0.7387 + }, + { + "start": 9365.88, + "end": 9370.1, + "probability": 0.9755 + }, + { + "start": 9370.1, + "end": 9373.36, + "probability": 0.9858 + }, + { + "start": 9373.84, + "end": 9375.04, + "probability": 0.9697 + }, + { + "start": 9375.62, + "end": 9376.74, + "probability": 0.7977 + }, + { + "start": 9377.26, + "end": 9380.38, + "probability": 0.989 + }, + { + "start": 9380.38, + "end": 9383.14, + "probability": 0.9375 + }, + { + "start": 9383.56, + "end": 9383.74, + "probability": 0.437 + }, + { + "start": 9384.04, + "end": 9384.66, + "probability": 0.4792 + }, + { + "start": 9385.04, + "end": 9386.14, + "probability": 0.9907 + }, + { + "start": 9386.32, + "end": 9387.76, + "probability": 0.9442 + }, + { + "start": 9388.14, + "end": 9390.42, + "probability": 0.8247 + }, + { + "start": 9390.92, + "end": 9391.4, + "probability": 0.8327 + }, + { + "start": 9391.82, + "end": 9393.8, + "probability": 0.7717 + }, + { + "start": 9394.04, + "end": 9397.52, + "probability": 0.9039 + }, + { + "start": 9397.98, + "end": 9398.34, + "probability": 0.8435 + }, + { + "start": 9426.18, + "end": 9426.28, + "probability": 0.0929 + }, + { + "start": 9426.28, + "end": 9428.42, + "probability": 0.6396 + }, + { + "start": 9429.78, + "end": 9430.27, + "probability": 0.7446 + }, + { + "start": 9435.93, + "end": 9440.22, + "probability": 0.0573 + }, + { + "start": 9441.5, + "end": 9443.06, + "probability": 0.4465 + }, + { + "start": 9444.32, + "end": 9445.82, + "probability": 0.7097 + }, + { + "start": 9448.51, + "end": 9452.2, + "probability": 0.9961 + }, + { + "start": 9453.4, + "end": 9459.1, + "probability": 0.9953 + }, + { + "start": 9460.24, + "end": 9465.48, + "probability": 0.915 + }, + { + "start": 9465.82, + "end": 9467.66, + "probability": 0.8182 + }, + { + "start": 9469.26, + "end": 9473.22, + "probability": 0.0679 + }, + { + "start": 9473.3, + "end": 9476.36, + "probability": 0.1286 + }, + { + "start": 9477.78, + "end": 9481.16, + "probability": 0.2231 + }, + { + "start": 9482.72, + "end": 9487.8, + "probability": 0.56 + }, + { + "start": 9490.1, + "end": 9490.64, + "probability": 0.1796 + }, + { + "start": 9493.76, + "end": 9494.66, + "probability": 0.3392 + }, + { + "start": 9494.86, + "end": 9496.62, + "probability": 0.8539 + }, + { + "start": 9496.76, + "end": 9497.39, + "probability": 0.643 + }, + { + "start": 9498.13, + "end": 9500.16, + "probability": 0.6512 + }, + { + "start": 9500.16, + "end": 9500.96, + "probability": 0.2289 + }, + { + "start": 9501.88, + "end": 9503.02, + "probability": 0.9103 + }, + { + "start": 9503.14, + "end": 9507.98, + "probability": 0.8539 + }, + { + "start": 9508.24, + "end": 9509.4, + "probability": 0.8402 + }, + { + "start": 9511.48, + "end": 9514.36, + "probability": 0.8983 + }, + { + "start": 9515.12, + "end": 9519.1, + "probability": 0.9912 + }, + { + "start": 9520.18, + "end": 9522.28, + "probability": 0.9993 + }, + { + "start": 9522.86, + "end": 9528.36, + "probability": 0.9909 + }, + { + "start": 9529.8, + "end": 9537.18, + "probability": 0.9986 + }, + { + "start": 9538.74, + "end": 9541.2, + "probability": 0.5709 + }, + { + "start": 9541.94, + "end": 9544.28, + "probability": 0.638 + }, + { + "start": 9545.56, + "end": 9547.74, + "probability": 0.888 + }, + { + "start": 9547.94, + "end": 9549.02, + "probability": 0.7218 + }, + { + "start": 9549.1, + "end": 9550.52, + "probability": 0.7028 + }, + { + "start": 9550.52, + "end": 9551.26, + "probability": 0.9286 + }, + { + "start": 9551.96, + "end": 9556.34, + "probability": 0.9971 + }, + { + "start": 9557.08, + "end": 9562.18, + "probability": 0.9888 + }, + { + "start": 9562.46, + "end": 9566.02, + "probability": 0.1955 + }, + { + "start": 9566.16, + "end": 9567.55, + "probability": 0.4552 + }, + { + "start": 9570.64, + "end": 9572.86, + "probability": 0.3274 + }, + { + "start": 9574.48, + "end": 9574.48, + "probability": 0.0884 + }, + { + "start": 9574.48, + "end": 9574.48, + "probability": 0.0506 + }, + { + "start": 9574.48, + "end": 9574.48, + "probability": 0.1129 + }, + { + "start": 9574.48, + "end": 9574.76, + "probability": 0.1662 + }, + { + "start": 9576.7, + "end": 9578.48, + "probability": 0.8435 + }, + { + "start": 9580.9, + "end": 9582.1, + "probability": 0.8276 + }, + { + "start": 9583.04, + "end": 9583.52, + "probability": 0.6176 + }, + { + "start": 9583.7, + "end": 9588.9, + "probability": 0.9401 + }, + { + "start": 9591.48, + "end": 9591.52, + "probability": 0.201 + }, + { + "start": 9591.52, + "end": 9594.86, + "probability": 0.9363 + }, + { + "start": 9595.84, + "end": 9597.34, + "probability": 0.9917 + }, + { + "start": 9597.52, + "end": 9598.7, + "probability": 0.9387 + }, + { + "start": 9598.86, + "end": 9598.9, + "probability": 0.1969 + }, + { + "start": 9599.16, + "end": 9600.38, + "probability": 0.1166 + }, + { + "start": 9600.58, + "end": 9600.68, + "probability": 0.0251 + }, + { + "start": 9600.68, + "end": 9602.94, + "probability": 0.6166 + }, + { + "start": 9603.2, + "end": 9605.38, + "probability": 0.4347 + }, + { + "start": 9606.02, + "end": 9611.48, + "probability": 0.3082 + }, + { + "start": 9612.2, + "end": 9612.4, + "probability": 0.4221 + }, + { + "start": 9612.4, + "end": 9612.58, + "probability": 0.0826 + }, + { + "start": 9612.58, + "end": 9612.58, + "probability": 0.1108 + }, + { + "start": 9612.58, + "end": 9614.03, + "probability": 0.8202 + }, + { + "start": 9614.96, + "end": 9617.12, + "probability": 0.9795 + }, + { + "start": 9618.2, + "end": 9618.94, + "probability": 0.4614 + }, + { + "start": 9619.04, + "end": 9620.92, + "probability": 0.8578 + }, + { + "start": 9621.08, + "end": 9624.84, + "probability": 0.8863 + }, + { + "start": 9624.84, + "end": 9625.08, + "probability": 0.1149 + }, + { + "start": 9625.2, + "end": 9625.44, + "probability": 0.555 + }, + { + "start": 9625.6, + "end": 9627.1, + "probability": 0.7633 + }, + { + "start": 9627.16, + "end": 9627.34, + "probability": 0.3929 + }, + { + "start": 9627.34, + "end": 9629.16, + "probability": 0.5483 + }, + { + "start": 9629.28, + "end": 9630.6, + "probability": 0.948 + }, + { + "start": 9631.38, + "end": 9633.14, + "probability": 0.9314 + }, + { + "start": 9633.22, + "end": 9636.62, + "probability": 0.9712 + }, + { + "start": 9636.68, + "end": 9637.14, + "probability": 0.1658 + }, + { + "start": 9637.16, + "end": 9640.08, + "probability": 0.932 + }, + { + "start": 9640.58, + "end": 9642.96, + "probability": 0.9911 + }, + { + "start": 9643.06, + "end": 9645.3, + "probability": 0.9585 + }, + { + "start": 9645.8, + "end": 9647.08, + "probability": 0.9695 + }, + { + "start": 9647.14, + "end": 9648.62, + "probability": 0.8574 + }, + { + "start": 9649.54, + "end": 9651.46, + "probability": 0.6689 + }, + { + "start": 9652.04, + "end": 9656.08, + "probability": 0.9893 + }, + { + "start": 9656.5, + "end": 9657.42, + "probability": 0.5614 + }, + { + "start": 9657.5, + "end": 9658.28, + "probability": 0.7697 + }, + { + "start": 9658.5, + "end": 9660.44, + "probability": 0.9087 + }, + { + "start": 9661.04, + "end": 9664.29, + "probability": 0.0481 + }, + { + "start": 9664.52, + "end": 9664.52, + "probability": 0.0263 + }, + { + "start": 9664.52, + "end": 9666.55, + "probability": 0.1173 + }, + { + "start": 9667.02, + "end": 9667.51, + "probability": 0.3025 + }, + { + "start": 9669.04, + "end": 9669.4, + "probability": 0.2825 + }, + { + "start": 9669.4, + "end": 9669.8, + "probability": 0.2878 + }, + { + "start": 9671.81, + "end": 9673.94, + "probability": 0.5327 + }, + { + "start": 9686.54, + "end": 9688.64, + "probability": 0.8682 + }, + { + "start": 9689.04, + "end": 9689.34, + "probability": 0.6973 + }, + { + "start": 9689.46, + "end": 9690.72, + "probability": 0.8899 + }, + { + "start": 9690.86, + "end": 9695.56, + "probability": 0.9753 + }, + { + "start": 9696.62, + "end": 9698.76, + "probability": 0.9487 + }, + { + "start": 9698.8, + "end": 9699.62, + "probability": 0.9495 + }, + { + "start": 9699.68, + "end": 9700.74, + "probability": 0.9077 + }, + { + "start": 9701.54, + "end": 9703.14, + "probability": 0.5372 + }, + { + "start": 9704.5, + "end": 9705.26, + "probability": 0.8988 + }, + { + "start": 9705.86, + "end": 9707.32, + "probability": 0.7059 + }, + { + "start": 9707.4, + "end": 9708.16, + "probability": 0.6279 + }, + { + "start": 9708.3, + "end": 9708.9, + "probability": 0.7849 + }, + { + "start": 9709.26, + "end": 9710.16, + "probability": 0.9277 + }, + { + "start": 9710.56, + "end": 9713.3, + "probability": 0.9744 + }, + { + "start": 9714.74, + "end": 9721.64, + "probability": 0.9929 + }, + { + "start": 9722.7, + "end": 9727.74, + "probability": 0.906 + }, + { + "start": 9727.88, + "end": 9727.88, + "probability": 0.7568 + }, + { + "start": 9727.88, + "end": 9728.94, + "probability": 0.8193 + }, + { + "start": 9729.14, + "end": 9730.34, + "probability": 0.6133 + }, + { + "start": 9730.44, + "end": 9730.46, + "probability": 0.5187 + }, + { + "start": 9730.46, + "end": 9730.54, + "probability": 0.2929 + }, + { + "start": 9730.54, + "end": 9731.82, + "probability": 0.938 + }, + { + "start": 9731.9, + "end": 9733.6, + "probability": 0.8554 + }, + { + "start": 9733.9, + "end": 9738.33, + "probability": 0.875 + }, + { + "start": 9738.84, + "end": 9739.92, + "probability": 0.8753 + }, + { + "start": 9740.6, + "end": 9744.1, + "probability": 0.9341 + }, + { + "start": 9744.82, + "end": 9745.76, + "probability": 0.7776 + }, + { + "start": 9745.92, + "end": 9749.64, + "probability": 0.9564 + }, + { + "start": 9749.84, + "end": 9754.38, + "probability": 0.7843 + }, + { + "start": 9755.46, + "end": 9757.66, + "probability": 0.9716 + }, + { + "start": 9758.92, + "end": 9760.48, + "probability": 0.9932 + }, + { + "start": 9761.92, + "end": 9766.36, + "probability": 0.9696 + }, + { + "start": 9767.52, + "end": 9769.05, + "probability": 0.9888 + }, + { + "start": 9769.18, + "end": 9772.06, + "probability": 0.7949 + }, + { + "start": 9772.78, + "end": 9774.7, + "probability": 0.9902 + }, + { + "start": 9775.24, + "end": 9777.36, + "probability": 0.8516 + }, + { + "start": 9779.56, + "end": 9784.02, + "probability": 0.9776 + }, + { + "start": 9786.3, + "end": 9789.21, + "probability": 0.9916 + }, + { + "start": 9789.22, + "end": 9791.94, + "probability": 0.9919 + }, + { + "start": 9792.78, + "end": 9793.06, + "probability": 0.8806 + }, + { + "start": 9793.6, + "end": 9794.28, + "probability": 0.4581 + }, + { + "start": 9794.3, + "end": 9799.14, + "probability": 0.9933 + }, + { + "start": 9804.31, + "end": 9808.84, + "probability": 0.7831 + }, + { + "start": 9808.98, + "end": 9811.46, + "probability": 0.974 + }, + { + "start": 9812.22, + "end": 9812.74, + "probability": 0.7 + }, + { + "start": 9812.84, + "end": 9813.62, + "probability": 0.7424 + }, + { + "start": 9813.76, + "end": 9814.8, + "probability": 0.9122 + }, + { + "start": 9817.9, + "end": 9819.3, + "probability": 0.076 + }, + { + "start": 9820.34, + "end": 9821.88, + "probability": 0.3266 + }, + { + "start": 9834.23, + "end": 9835.9, + "probability": 0.0648 + }, + { + "start": 9835.9, + "end": 9839.5, + "probability": 0.9377 + }, + { + "start": 9839.94, + "end": 9841.12, + "probability": 0.8888 + }, + { + "start": 9841.6, + "end": 9844.98, + "probability": 0.9935 + }, + { + "start": 9846.92, + "end": 9849.8, + "probability": 0.7545 + }, + { + "start": 9849.98, + "end": 9851.28, + "probability": 0.5286 + }, + { + "start": 9851.74, + "end": 9853.5, + "probability": 0.8232 + }, + { + "start": 9853.66, + "end": 9854.1, + "probability": 0.663 + }, + { + "start": 9854.14, + "end": 9855.1, + "probability": 0.798 + }, + { + "start": 9855.42, + "end": 9858.98, + "probability": 0.8582 + }, + { + "start": 9858.98, + "end": 9863.52, + "probability": 0.8531 + }, + { + "start": 9863.98, + "end": 9866.12, + "probability": 0.156 + }, + { + "start": 9866.42, + "end": 9870.48, + "probability": 0.7431 + }, + { + "start": 9870.52, + "end": 9870.8, + "probability": 0.7659 + }, + { + "start": 9872.48, + "end": 9873.54, + "probability": 0.8003 + }, + { + "start": 9873.96, + "end": 9875.08, + "probability": 0.6167 + }, + { + "start": 9876.0, + "end": 9882.24, + "probability": 0.9392 + }, + { + "start": 9882.24, + "end": 9886.36, + "probability": 0.9862 + }, + { + "start": 9887.22, + "end": 9887.46, + "probability": 0.0 + }, + { + "start": 9888.0, + "end": 9889.28, + "probability": 0.0789 + }, + { + "start": 9903.2, + "end": 9903.2, + "probability": 0.2787 + }, + { + "start": 9903.2, + "end": 9903.2, + "probability": 0.1045 + }, + { + "start": 9903.2, + "end": 9904.62, + "probability": 0.1407 + }, + { + "start": 9904.7, + "end": 9905.6, + "probability": 0.4339 + }, + { + "start": 9905.84, + "end": 9910.04, + "probability": 0.4785 + }, + { + "start": 9910.14, + "end": 9915.16, + "probability": 0.4421 + }, + { + "start": 9915.16, + "end": 9920.74, + "probability": 0.9623 + }, + { + "start": 9921.6, + "end": 9923.0, + "probability": 0.6182 + }, + { + "start": 9923.02, + "end": 9926.82, + "probability": 0.8674 + }, + { + "start": 9926.84, + "end": 9928.38, + "probability": 0.9258 + }, + { + "start": 9928.54, + "end": 9929.62, + "probability": 0.6849 + }, + { + "start": 9929.66, + "end": 9929.74, + "probability": 0.0888 + }, + { + "start": 9930.14, + "end": 9930.56, + "probability": 0.5454 + }, + { + "start": 9931.2, + "end": 9931.46, + "probability": 0.5207 + }, + { + "start": 9931.64, + "end": 9936.36, + "probability": 0.6342 + }, + { + "start": 9936.36, + "end": 9939.88, + "probability": 0.9878 + }, + { + "start": 9940.14, + "end": 9940.86, + "probability": 0.6857 + }, + { + "start": 9941.28, + "end": 9943.94, + "probability": 0.7672 + }, + { + "start": 9944.0, + "end": 9944.7, + "probability": 0.8731 + }, + { + "start": 9944.76, + "end": 9946.06, + "probability": 0.823 + }, + { + "start": 9946.12, + "end": 9946.96, + "probability": 0.967 + }, + { + "start": 9947.52, + "end": 9947.52, + "probability": 0.1014 + }, + { + "start": 9947.54, + "end": 9950.82, + "probability": 0.7812 + }, + { + "start": 9951.3, + "end": 9954.2, + "probability": 0.9795 + }, + { + "start": 9954.36, + "end": 9956.32, + "probability": 0.842 + }, + { + "start": 9956.42, + "end": 9956.56, + "probability": 0.3238 + }, + { + "start": 9956.64, + "end": 9958.08, + "probability": 0.9593 + }, + { + "start": 9958.16, + "end": 9958.78, + "probability": 0.8098 + }, + { + "start": 9958.94, + "end": 9960.1, + "probability": 0.9392 + }, + { + "start": 9960.66, + "end": 9961.24, + "probability": 0.5343 + }, + { + "start": 9961.28, + "end": 9962.76, + "probability": 0.8086 + }, + { + "start": 9963.36, + "end": 9963.72, + "probability": 0.2814 + }, + { + "start": 9963.72, + "end": 9964.42, + "probability": 0.1573 + }, + { + "start": 9964.68, + "end": 9968.14, + "probability": 0.9702 + }, + { + "start": 9968.14, + "end": 9971.58, + "probability": 0.9988 + }, + { + "start": 9971.68, + "end": 9975.22, + "probability": 0.9421 + }, + { + "start": 9975.22, + "end": 9978.7, + "probability": 0.9925 + }, + { + "start": 9978.82, + "end": 9979.94, + "probability": 0.988 + }, + { + "start": 9980.42, + "end": 9984.42, + "probability": 0.9775 + }, + { + "start": 9984.96, + "end": 9987.36, + "probability": 0.9187 + }, + { + "start": 9987.86, + "end": 9992.38, + "probability": 0.9556 + }, + { + "start": 9992.72, + "end": 9997.18, + "probability": 0.9778 + }, + { + "start": 9997.22, + "end": 9999.62, + "probability": 0.9246 + }, + { + "start": 9999.72, + "end": 10004.86, + "probability": 0.9756 + }, + { + "start": 10004.88, + "end": 10007.52, + "probability": 0.9824 + }, + { + "start": 10008.06, + "end": 10011.72, + "probability": 0.9958 + }, + { + "start": 10012.2, + "end": 10017.76, + "probability": 0.8062 + }, + { + "start": 10017.82, + "end": 10018.68, + "probability": 0.6658 + }, + { + "start": 10018.68, + "end": 10019.38, + "probability": 0.8161 + }, + { + "start": 10019.54, + "end": 10020.2, + "probability": 0.7792 + }, + { + "start": 10020.48, + "end": 10021.4, + "probability": 0.5323 + }, + { + "start": 10022.2, + "end": 10023.82, + "probability": 0.4808 + }, + { + "start": 10023.82, + "end": 10025.48, + "probability": 0.1023 + }, + { + "start": 10029.36, + "end": 10034.04, + "probability": 0.8972 + }, + { + "start": 10035.2, + "end": 10035.74, + "probability": 0.5322 + }, + { + "start": 10035.88, + "end": 10039.76, + "probability": 0.9931 + }, + { + "start": 10040.56, + "end": 10044.48, + "probability": 0.9717 + }, + { + "start": 10045.78, + "end": 10048.28, + "probability": 0.9821 + }, + { + "start": 10048.42, + "end": 10052.22, + "probability": 0.9223 + }, + { + "start": 10052.86, + "end": 10054.14, + "probability": 0.9824 + }, + { + "start": 10054.3, + "end": 10055.56, + "probability": 0.8954 + }, + { + "start": 10055.72, + "end": 10056.68, + "probability": 0.945 + }, + { + "start": 10056.74, + "end": 10063.92, + "probability": 0.9727 + }, + { + "start": 10066.52, + "end": 10067.24, + "probability": 0.2949 + }, + { + "start": 10067.68, + "end": 10069.84, + "probability": 0.5567 + }, + { + "start": 10069.84, + "end": 10070.12, + "probability": 0.0682 + }, + { + "start": 10071.08, + "end": 10072.16, + "probability": 0.3472 + }, + { + "start": 10072.28, + "end": 10072.86, + "probability": 0.6712 + }, + { + "start": 10072.94, + "end": 10074.56, + "probability": 0.716 + }, + { + "start": 10074.66, + "end": 10076.04, + "probability": 0.409 + }, + { + "start": 10077.78, + "end": 10080.7, + "probability": 0.8931 + }, + { + "start": 10081.22, + "end": 10084.46, + "probability": 0.9902 + }, + { + "start": 10084.46, + "end": 10087.66, + "probability": 0.9928 + }, + { + "start": 10088.18, + "end": 10091.26, + "probability": 0.9969 + }, + { + "start": 10091.38, + "end": 10097.84, + "probability": 0.9813 + }, + { + "start": 10098.52, + "end": 10101.28, + "probability": 0.9971 + }, + { + "start": 10101.28, + "end": 10103.82, + "probability": 0.5015 + }, + { + "start": 10103.98, + "end": 10105.76, + "probability": 0.8679 + }, + { + "start": 10106.02, + "end": 10109.72, + "probability": 0.9707 + }, + { + "start": 10109.96, + "end": 10112.18, + "probability": 0.9961 + }, + { + "start": 10113.06, + "end": 10116.76, + "probability": 0.9116 + }, + { + "start": 10117.64, + "end": 10119.66, + "probability": 0.9935 + }, + { + "start": 10120.34, + "end": 10121.74, + "probability": 0.9219 + }, + { + "start": 10122.4, + "end": 10126.16, + "probability": 0.9976 + }, + { + "start": 10126.16, + "end": 10131.5, + "probability": 0.9855 + }, + { + "start": 10131.68, + "end": 10133.42, + "probability": 0.899 + }, + { + "start": 10134.0, + "end": 10135.54, + "probability": 0.998 + }, + { + "start": 10135.9, + "end": 10142.16, + "probability": 0.9874 + }, + { + "start": 10142.68, + "end": 10145.5, + "probability": 0.9998 + }, + { + "start": 10146.48, + "end": 10146.48, + "probability": 0.1249 + }, + { + "start": 10146.82, + "end": 10148.16, + "probability": 0.9607 + }, + { + "start": 10148.28, + "end": 10149.74, + "probability": 0.8263 + }, + { + "start": 10149.86, + "end": 10151.94, + "probability": 0.9985 + }, + { + "start": 10152.4, + "end": 10155.65, + "probability": 0.9985 + }, + { + "start": 10156.56, + "end": 10157.7, + "probability": 0.9119 + }, + { + "start": 10157.72, + "end": 10159.12, + "probability": 0.8945 + }, + { + "start": 10159.46, + "end": 10160.2, + "probability": 0.7118 + }, + { + "start": 10160.3, + "end": 10160.66, + "probability": 0.6291 + }, + { + "start": 10160.92, + "end": 10162.94, + "probability": 0.904 + }, + { + "start": 10163.28, + "end": 10163.84, + "probability": 0.8648 + }, + { + "start": 10163.92, + "end": 10165.52, + "probability": 0.9906 + }, + { + "start": 10165.58, + "end": 10166.14, + "probability": 0.718 + }, + { + "start": 10166.2, + "end": 10166.94, + "probability": 0.8517 + }, + { + "start": 10166.98, + "end": 10168.74, + "probability": 0.9409 + }, + { + "start": 10169.12, + "end": 10171.4, + "probability": 0.9762 + }, + { + "start": 10171.54, + "end": 10173.38, + "probability": 0.6535 + }, + { + "start": 10173.44, + "end": 10174.86, + "probability": 0.9855 + }, + { + "start": 10175.64, + "end": 10178.88, + "probability": 0.9725 + }, + { + "start": 10179.24, + "end": 10181.06, + "probability": 0.9907 + }, + { + "start": 10181.66, + "end": 10185.2, + "probability": 0.9949 + }, + { + "start": 10185.4, + "end": 10187.08, + "probability": 0.988 + }, + { + "start": 10187.16, + "end": 10188.22, + "probability": 0.9865 + }, + { + "start": 10188.62, + "end": 10191.18, + "probability": 0.9831 + }, + { + "start": 10191.18, + "end": 10195.36, + "probability": 0.9972 + }, + { + "start": 10195.44, + "end": 10199.74, + "probability": 0.9963 + }, + { + "start": 10199.74, + "end": 10203.56, + "probability": 0.9931 + }, + { + "start": 10204.32, + "end": 10207.39, + "probability": 0.4914 + }, + { + "start": 10207.76, + "end": 10208.3, + "probability": 0.8286 + }, + { + "start": 10208.5, + "end": 10209.94, + "probability": 0.6448 + }, + { + "start": 10210.08, + "end": 10211.08, + "probability": 0.8883 + }, + { + "start": 10211.84, + "end": 10212.96, + "probability": 0.7353 + }, + { + "start": 10213.66, + "end": 10214.78, + "probability": 0.6393 + }, + { + "start": 10215.76, + "end": 10217.94, + "probability": 0.7525 + }, + { + "start": 10219.14, + "end": 10221.36, + "probability": 0.6434 + }, + { + "start": 10222.0, + "end": 10224.3, + "probability": 0.5628 + }, + { + "start": 10224.46, + "end": 10228.66, + "probability": 0.5686 + }, + { + "start": 10228.7, + "end": 10232.36, + "probability": 0.9139 + }, + { + "start": 10232.78, + "end": 10236.32, + "probability": 0.9965 + }, + { + "start": 10236.36, + "end": 10237.3, + "probability": 0.749 + }, + { + "start": 10237.74, + "end": 10240.0, + "probability": 0.9855 + }, + { + "start": 10240.16, + "end": 10241.5, + "probability": 0.8379 + }, + { + "start": 10241.6, + "end": 10242.9, + "probability": 0.851 + }, + { + "start": 10243.06, + "end": 10247.74, + "probability": 0.9461 + }, + { + "start": 10247.88, + "end": 10250.14, + "probability": 0.9194 + }, + { + "start": 10250.66, + "end": 10252.92, + "probability": 0.9946 + }, + { + "start": 10253.06, + "end": 10254.3, + "probability": 0.6619 + }, + { + "start": 10254.7, + "end": 10257.12, + "probability": 0.9958 + }, + { + "start": 10257.12, + "end": 10260.1, + "probability": 0.9949 + }, + { + "start": 10260.64, + "end": 10261.7, + "probability": 0.8065 + }, + { + "start": 10262.42, + "end": 10264.46, + "probability": 0.8426 + }, + { + "start": 10264.6, + "end": 10265.42, + "probability": 0.709 + }, + { + "start": 10265.58, + "end": 10268.15, + "probability": 0.9766 + }, + { + "start": 10268.72, + "end": 10274.4, + "probability": 0.928 + }, + { + "start": 10274.46, + "end": 10279.24, + "probability": 0.9858 + }, + { + "start": 10279.76, + "end": 10281.94, + "probability": 0.6424 + }, + { + "start": 10282.54, + "end": 10283.32, + "probability": 0.6943 + }, + { + "start": 10284.08, + "end": 10285.64, + "probability": 0.7952 + }, + { + "start": 10285.64, + "end": 10287.08, + "probability": 0.3607 + }, + { + "start": 10287.54, + "end": 10288.34, + "probability": 0.566 + }, + { + "start": 10288.34, + "end": 10293.12, + "probability": 0.8056 + }, + { + "start": 10293.85, + "end": 10298.44, + "probability": 0.995 + }, + { + "start": 10298.7, + "end": 10302.9, + "probability": 0.9598 + }, + { + "start": 10304.72, + "end": 10307.32, + "probability": 0.5671 + }, + { + "start": 10307.78, + "end": 10309.42, + "probability": 0.8736 + }, + { + "start": 10309.64, + "end": 10311.8, + "probability": 0.8413 + }, + { + "start": 10312.64, + "end": 10313.36, + "probability": 0.7723 + }, + { + "start": 10313.38, + "end": 10315.72, + "probability": 0.9576 + }, + { + "start": 10315.94, + "end": 10324.54, + "probability": 0.9771 + }, + { + "start": 10325.23, + "end": 10328.43, + "probability": 0.8342 + }, + { + "start": 10328.56, + "end": 10329.3, + "probability": 0.9463 + }, + { + "start": 10329.58, + "end": 10330.06, + "probability": 0.7629 + }, + { + "start": 10330.38, + "end": 10331.1, + "probability": 0.8984 + }, + { + "start": 10331.52, + "end": 10333.7, + "probability": 0.9482 + }, + { + "start": 10333.8, + "end": 10334.93, + "probability": 0.9401 + }, + { + "start": 10335.24, + "end": 10337.72, + "probability": 0.9743 + }, + { + "start": 10337.82, + "end": 10338.08, + "probability": 0.6843 + }, + { + "start": 10339.0, + "end": 10339.78, + "probability": 0.6824 + }, + { + "start": 10340.32, + "end": 10342.1, + "probability": 0.856 + }, + { + "start": 10345.0, + "end": 10347.54, + "probability": 0.9854 + }, + { + "start": 10348.8, + "end": 10349.46, + "probability": 0.8827 + }, + { + "start": 10363.2, + "end": 10364.34, + "probability": 0.8169 + }, + { + "start": 10364.54, + "end": 10368.96, + "probability": 0.9893 + }, + { + "start": 10368.96, + "end": 10375.0, + "probability": 0.8948 + }, + { + "start": 10375.42, + "end": 10376.74, + "probability": 0.8671 + }, + { + "start": 10376.84, + "end": 10378.22, + "probability": 0.998 + }, + { + "start": 10378.6, + "end": 10379.06, + "probability": 0.8312 + }, + { + "start": 10380.56, + "end": 10381.58, + "probability": 0.1571 + }, + { + "start": 10382.8, + "end": 10383.06, + "probability": 0.2248 + }, + { + "start": 10383.16, + "end": 10384.72, + "probability": 0.8613 + }, + { + "start": 10384.82, + "end": 10385.31, + "probability": 0.9285 + }, + { + "start": 10385.42, + "end": 10387.32, + "probability": 0.861 + }, + { + "start": 10388.06, + "end": 10389.74, + "probability": 0.1898 + }, + { + "start": 10390.98, + "end": 10393.32, + "probability": 0.8726 + }, + { + "start": 10393.42, + "end": 10394.56, + "probability": 0.8987 + }, + { + "start": 10394.76, + "end": 10395.84, + "probability": 0.3918 + }, + { + "start": 10395.84, + "end": 10397.36, + "probability": 0.3668 + }, + { + "start": 10397.76, + "end": 10398.9, + "probability": 0.7332 + }, + { + "start": 10399.48, + "end": 10400.28, + "probability": 0.2117 + }, + { + "start": 10400.76, + "end": 10400.9, + "probability": 0.0376 + }, + { + "start": 10400.9, + "end": 10401.4, + "probability": 0.2189 + }, + { + "start": 10401.62, + "end": 10403.66, + "probability": 0.3566 + }, + { + "start": 10403.84, + "end": 10406.01, + "probability": 0.4339 + }, + { + "start": 10406.34, + "end": 10409.36, + "probability": 0.5386 + }, + { + "start": 10410.42, + "end": 10410.42, + "probability": 0.2264 + }, + { + "start": 10410.42, + "end": 10413.64, + "probability": 0.4062 + }, + { + "start": 10415.02, + "end": 10416.34, + "probability": 0.7558 + }, + { + "start": 10416.54, + "end": 10419.92, + "probability": 0.9769 + }, + { + "start": 10420.16, + "end": 10421.28, + "probability": 0.9329 + }, + { + "start": 10421.82, + "end": 10422.88, + "probability": 0.8831 + }, + { + "start": 10423.26, + "end": 10424.72, + "probability": 0.9875 + }, + { + "start": 10424.88, + "end": 10426.94, + "probability": 0.9353 + }, + { + "start": 10427.82, + "end": 10431.26, + "probability": 0.9872 + }, + { + "start": 10431.52, + "end": 10432.68, + "probability": 0.8741 + }, + { + "start": 10433.1, + "end": 10438.28, + "probability": 0.99 + }, + { + "start": 10439.0, + "end": 10440.84, + "probability": 0.6226 + }, + { + "start": 10441.64, + "end": 10444.26, + "probability": 0.9872 + }, + { + "start": 10444.4, + "end": 10445.4, + "probability": 0.957 + }, + { + "start": 10445.54, + "end": 10450.04, + "probability": 0.991 + }, + { + "start": 10450.96, + "end": 10452.61, + "probability": 0.9518 + }, + { + "start": 10453.56, + "end": 10457.66, + "probability": 0.9978 + }, + { + "start": 10457.76, + "end": 10458.94, + "probability": 0.9644 + }, + { + "start": 10459.74, + "end": 10460.94, + "probability": 0.8404 + }, + { + "start": 10461.9, + "end": 10463.32, + "probability": 0.9696 + }, + { + "start": 10463.94, + "end": 10467.96, + "probability": 0.9598 + }, + { + "start": 10468.08, + "end": 10469.22, + "probability": 0.9098 + }, + { + "start": 10469.32, + "end": 10469.92, + "probability": 0.4447 + }, + { + "start": 10470.02, + "end": 10471.3, + "probability": 0.8339 + }, + { + "start": 10471.92, + "end": 10474.58, + "probability": 0.93 + }, + { + "start": 10474.78, + "end": 10478.92, + "probability": 0.9766 + }, + { + "start": 10479.52, + "end": 10480.16, + "probability": 0.6037 + }, + { + "start": 10480.3, + "end": 10481.44, + "probability": 0.9354 + }, + { + "start": 10481.52, + "end": 10481.86, + "probability": 0.4533 + }, + { + "start": 10481.96, + "end": 10482.62, + "probability": 0.8761 + }, + { + "start": 10483.08, + "end": 10485.58, + "probability": 0.9707 + }, + { + "start": 10486.18, + "end": 10488.14, + "probability": 0.9017 + }, + { + "start": 10488.26, + "end": 10489.58, + "probability": 0.9604 + }, + { + "start": 10490.38, + "end": 10493.92, + "probability": 0.9106 + }, + { + "start": 10493.94, + "end": 10494.88, + "probability": 0.6162 + }, + { + "start": 10495.16, + "end": 10495.84, + "probability": 0.6968 + }, + { + "start": 10496.22, + "end": 10496.74, + "probability": 0.9088 + }, + { + "start": 10496.84, + "end": 10498.74, + "probability": 0.9639 + }, + { + "start": 10498.94, + "end": 10499.38, + "probability": 0.4991 + }, + { + "start": 10499.54, + "end": 10500.76, + "probability": 0.9771 + }, + { + "start": 10501.46, + "end": 10502.68, + "probability": 0.8376 + }, + { + "start": 10502.82, + "end": 10505.69, + "probability": 0.9915 + }, + { + "start": 10506.26, + "end": 10509.82, + "probability": 0.9907 + }, + { + "start": 10509.82, + "end": 10514.67, + "probability": 0.9902 + }, + { + "start": 10514.72, + "end": 10515.44, + "probability": 0.9153 + }, + { + "start": 10515.54, + "end": 10516.62, + "probability": 0.8731 + }, + { + "start": 10518.36, + "end": 10520.14, + "probability": 0.5351 + }, + { + "start": 10520.24, + "end": 10521.52, + "probability": 0.7743 + }, + { + "start": 10521.58, + "end": 10522.1, + "probability": 0.7631 + }, + { + "start": 10522.32, + "end": 10523.92, + "probability": 0.8461 + }, + { + "start": 10524.92, + "end": 10528.52, + "probability": 0.9969 + }, + { + "start": 10529.24, + "end": 10532.28, + "probability": 0.9801 + }, + { + "start": 10532.98, + "end": 10536.52, + "probability": 0.6816 + }, + { + "start": 10537.12, + "end": 10539.1, + "probability": 0.608 + }, + { + "start": 10539.72, + "end": 10540.56, + "probability": 0.8736 + }, + { + "start": 10541.06, + "end": 10543.52, + "probability": 0.9558 + }, + { + "start": 10543.66, + "end": 10545.56, + "probability": 0.9112 + }, + { + "start": 10546.2, + "end": 10547.9, + "probability": 0.8902 + }, + { + "start": 10548.56, + "end": 10549.98, + "probability": 0.8724 + }, + { + "start": 10550.08, + "end": 10551.32, + "probability": 0.7969 + }, + { + "start": 10551.36, + "end": 10552.7, + "probability": 0.7603 + }, + { + "start": 10553.18, + "end": 10553.96, + "probability": 0.6662 + }, + { + "start": 10554.12, + "end": 10555.42, + "probability": 0.9169 + }, + { + "start": 10555.56, + "end": 10560.98, + "probability": 0.9595 + }, + { + "start": 10561.14, + "end": 10562.84, + "probability": 0.8671 + }, + { + "start": 10563.36, + "end": 10566.58, + "probability": 0.9854 + }, + { + "start": 10567.34, + "end": 10569.02, + "probability": 0.9387 + }, + { + "start": 10569.18, + "end": 10572.46, + "probability": 0.5671 + }, + { + "start": 10572.76, + "end": 10573.52, + "probability": 0.3827 + }, + { + "start": 10573.68, + "end": 10574.74, + "probability": 0.9168 + }, + { + "start": 10574.84, + "end": 10575.22, + "probability": 0.2975 + }, + { + "start": 10575.3, + "end": 10576.26, + "probability": 0.8168 + }, + { + "start": 10576.44, + "end": 10577.18, + "probability": 0.3581 + }, + { + "start": 10577.26, + "end": 10578.22, + "probability": 0.9917 + }, + { + "start": 10578.38, + "end": 10579.32, + "probability": 0.9413 + }, + { + "start": 10579.66, + "end": 10580.38, + "probability": 0.8323 + }, + { + "start": 10580.46, + "end": 10581.42, + "probability": 0.7414 + }, + { + "start": 10582.1, + "end": 10586.04, + "probability": 0.9446 + }, + { + "start": 10586.14, + "end": 10586.96, + "probability": 0.5738 + }, + { + "start": 10587.06, + "end": 10588.06, + "probability": 0.8859 + }, + { + "start": 10588.68, + "end": 10592.24, + "probability": 0.9397 + }, + { + "start": 10592.28, + "end": 10594.02, + "probability": 0.9668 + }, + { + "start": 10594.7, + "end": 10597.82, + "probability": 0.9526 + }, + { + "start": 10597.9, + "end": 10601.68, + "probability": 0.9603 + }, + { + "start": 10602.34, + "end": 10604.96, + "probability": 0.9575 + }, + { + "start": 10605.68, + "end": 10609.74, + "probability": 0.9626 + }, + { + "start": 10610.3, + "end": 10614.28, + "probability": 0.9759 + }, + { + "start": 10618.0, + "end": 10620.08, + "probability": 0.992 + }, + { + "start": 10620.26, + "end": 10622.12, + "probability": 0.8938 + }, + { + "start": 10622.2, + "end": 10623.88, + "probability": 0.9883 + }, + { + "start": 10624.04, + "end": 10625.14, + "probability": 0.9409 + }, + { + "start": 10625.52, + "end": 10628.28, + "probability": 0.9971 + }, + { + "start": 10628.42, + "end": 10628.88, + "probability": 0.6987 + }, + { + "start": 10629.02, + "end": 10630.62, + "probability": 0.7511 + }, + { + "start": 10630.8, + "end": 10635.32, + "probability": 0.9203 + }, + { + "start": 10635.88, + "end": 10636.34, + "probability": 0.5901 + }, + { + "start": 10636.38, + "end": 10636.68, + "probability": 0.7504 + }, + { + "start": 10636.76, + "end": 10639.8, + "probability": 0.9946 + }, + { + "start": 10639.8, + "end": 10642.64, + "probability": 0.9968 + }, + { + "start": 10642.94, + "end": 10644.74, + "probability": 0.8518 + }, + { + "start": 10644.8, + "end": 10652.54, + "probability": 0.9126 + }, + { + "start": 10652.64, + "end": 10655.96, + "probability": 0.9965 + }, + { + "start": 10656.44, + "end": 10660.2, + "probability": 0.9873 + }, + { + "start": 10660.4, + "end": 10660.94, + "probability": 0.7002 + }, + { + "start": 10661.38, + "end": 10661.96, + "probability": 0.8983 + }, + { + "start": 10662.06, + "end": 10663.72, + "probability": 0.7978 + }, + { + "start": 10664.46, + "end": 10665.62, + "probability": 0.8545 + }, + { + "start": 10665.82, + "end": 10666.62, + "probability": 0.9866 + }, + { + "start": 10666.74, + "end": 10668.56, + "probability": 0.9744 + }, + { + "start": 10668.68, + "end": 10670.0, + "probability": 0.8618 + }, + { + "start": 10670.82, + "end": 10673.62, + "probability": 0.9882 + }, + { + "start": 10673.68, + "end": 10677.72, + "probability": 0.9963 + }, + { + "start": 10677.78, + "end": 10678.02, + "probability": 0.8203 + }, + { + "start": 10678.64, + "end": 10680.52, + "probability": 0.7807 + }, + { + "start": 10680.6, + "end": 10682.58, + "probability": 0.8069 + }, + { + "start": 10683.68, + "end": 10685.9, + "probability": 0.8931 + }, + { + "start": 10695.08, + "end": 10695.26, + "probability": 0.5651 + }, + { + "start": 10704.14, + "end": 10706.76, + "probability": 0.3002 + }, + { + "start": 10709.98, + "end": 10711.52, + "probability": 0.998 + }, + { + "start": 10712.16, + "end": 10713.72, + "probability": 0.9749 + }, + { + "start": 10714.1, + "end": 10718.16, + "probability": 0.7819 + }, + { + "start": 10719.0, + "end": 10722.46, + "probability": 0.9921 + }, + { + "start": 10723.72, + "end": 10730.58, + "probability": 0.8452 + }, + { + "start": 10730.72, + "end": 10732.0, + "probability": 0.8338 + }, + { + "start": 10732.24, + "end": 10734.54, + "probability": 0.9688 + }, + { + "start": 10734.92, + "end": 10738.84, + "probability": 0.9124 + }, + { + "start": 10739.12, + "end": 10743.44, + "probability": 0.9548 + }, + { + "start": 10745.34, + "end": 10748.44, + "probability": 0.8307 + }, + { + "start": 10748.8, + "end": 10752.36, + "probability": 0.8109 + }, + { + "start": 10753.42, + "end": 10753.52, + "probability": 0.9052 + }, + { + "start": 10754.08, + "end": 10754.86, + "probability": 0.7168 + }, + { + "start": 10755.0, + "end": 10756.28, + "probability": 0.9801 + }, + { + "start": 10756.56, + "end": 10758.18, + "probability": 0.986 + }, + { + "start": 10758.84, + "end": 10758.94, + "probability": 0.7949 + }, + { + "start": 10760.06, + "end": 10760.92, + "probability": 0.981 + }, + { + "start": 10761.9, + "end": 10762.24, + "probability": 0.7036 + }, + { + "start": 10762.32, + "end": 10764.38, + "probability": 0.9789 + }, + { + "start": 10764.8, + "end": 10765.88, + "probability": 0.8535 + }, + { + "start": 10765.96, + "end": 10766.88, + "probability": 0.981 + }, + { + "start": 10767.02, + "end": 10768.1, + "probability": 0.9951 + }, + { + "start": 10768.66, + "end": 10771.68, + "probability": 0.9792 + }, + { + "start": 10771.68, + "end": 10776.64, + "probability": 0.9963 + }, + { + "start": 10777.02, + "end": 10781.08, + "probability": 0.9895 + }, + { + "start": 10781.38, + "end": 10782.92, + "probability": 0.7761 + }, + { + "start": 10783.48, + "end": 10785.82, + "probability": 0.9866 + }, + { + "start": 10785.94, + "end": 10787.12, + "probability": 0.6313 + }, + { + "start": 10787.42, + "end": 10788.44, + "probability": 0.8082 + }, + { + "start": 10789.06, + "end": 10790.18, + "probability": 0.9221 + }, + { + "start": 10791.42, + "end": 10792.76, + "probability": 0.7881 + }, + { + "start": 10793.2, + "end": 10793.22, + "probability": 0.4428 + }, + { + "start": 10793.22, + "end": 10794.44, + "probability": 0.8106 + }, + { + "start": 10794.68, + "end": 10796.82, + "probability": 0.9829 + }, + { + "start": 10797.4, + "end": 10797.74, + "probability": 0.751 + }, + { + "start": 10797.88, + "end": 10798.48, + "probability": 0.6328 + }, + { + "start": 10799.06, + "end": 10799.86, + "probability": 0.9116 + }, + { + "start": 10799.96, + "end": 10802.2, + "probability": 0.962 + }, + { + "start": 10802.68, + "end": 10804.36, + "probability": 0.8598 + }, + { + "start": 10804.64, + "end": 10805.76, + "probability": 0.9719 + }, + { + "start": 10805.96, + "end": 10811.18, + "probability": 0.9678 + }, + { + "start": 10811.6, + "end": 10813.94, + "probability": 0.8952 + }, + { + "start": 10814.22, + "end": 10815.6, + "probability": 0.991 + }, + { + "start": 10815.68, + "end": 10816.72, + "probability": 0.7591 + }, + { + "start": 10816.78, + "end": 10817.48, + "probability": 0.8842 + }, + { + "start": 10817.64, + "end": 10820.32, + "probability": 0.9946 + }, + { + "start": 10820.88, + "end": 10823.8, + "probability": 0.9958 + }, + { + "start": 10823.8, + "end": 10827.56, + "probability": 0.9946 + }, + { + "start": 10828.04, + "end": 10829.89, + "probability": 0.8912 + }, + { + "start": 10830.34, + "end": 10833.22, + "probability": 0.9947 + }, + { + "start": 10833.62, + "end": 10837.56, + "probability": 0.7418 + }, + { + "start": 10843.98, + "end": 10847.2, + "probability": 0.997 + }, + { + "start": 10847.56, + "end": 10848.8, + "probability": 0.9656 + }, + { + "start": 10849.64, + "end": 10850.77, + "probability": 0.9902 + }, + { + "start": 10851.44, + "end": 10853.4, + "probability": 0.9727 + }, + { + "start": 10853.74, + "end": 10854.86, + "probability": 0.8254 + }, + { + "start": 10855.48, + "end": 10856.04, + "probability": 0.746 + }, + { + "start": 10856.1, + "end": 10856.78, + "probability": 0.8591 + }, + { + "start": 10856.9, + "end": 10859.92, + "probability": 0.965 + }, + { + "start": 10860.32, + "end": 10863.02, + "probability": 0.9912 + }, + { + "start": 10863.62, + "end": 10864.82, + "probability": 0.952 + }, + { + "start": 10865.2, + "end": 10869.44, + "probability": 0.9821 + }, + { + "start": 10870.08, + "end": 10871.68, + "probability": 0.9828 + }, + { + "start": 10872.12, + "end": 10873.96, + "probability": 0.7682 + }, + { + "start": 10874.04, + "end": 10876.04, + "probability": 0.9351 + }, + { + "start": 10876.56, + "end": 10878.48, + "probability": 0.7605 + }, + { + "start": 10878.58, + "end": 10881.42, + "probability": 0.9789 + }, + { + "start": 10882.08, + "end": 10884.42, + "probability": 0.8775 + }, + { + "start": 10884.56, + "end": 10887.14, + "probability": 0.876 + }, + { + "start": 10887.24, + "end": 10889.38, + "probability": 0.9937 + }, + { + "start": 10889.38, + "end": 10890.02, + "probability": 0.4845 + }, + { + "start": 10890.82, + "end": 10893.0, + "probability": 0.7884 + }, + { + "start": 10893.08, + "end": 10894.34, + "probability": 0.9355 + }, + { + "start": 10894.6, + "end": 10894.94, + "probability": 0.3402 + }, + { + "start": 10895.02, + "end": 10897.46, + "probability": 0.989 + }, + { + "start": 10897.46, + "end": 10900.08, + "probability": 0.9914 + }, + { + "start": 10900.14, + "end": 10900.68, + "probability": 0.8877 + }, + { + "start": 10900.76, + "end": 10902.7, + "probability": 0.9782 + }, + { + "start": 10903.18, + "end": 10904.25, + "probability": 0.9456 + }, + { + "start": 10904.74, + "end": 10909.32, + "probability": 0.9641 + }, + { + "start": 10909.46, + "end": 10910.96, + "probability": 0.9248 + }, + { + "start": 10910.96, + "end": 10913.12, + "probability": 0.949 + }, + { + "start": 10914.6, + "end": 10915.5, + "probability": 0.6877 + }, + { + "start": 10916.08, + "end": 10920.04, + "probability": 0.7772 + }, + { + "start": 10920.5, + "end": 10920.98, + "probability": 0.8745 + }, + { + "start": 10921.34, + "end": 10924.7, + "probability": 0.9939 + }, + { + "start": 10924.86, + "end": 10928.98, + "probability": 0.9478 + }, + { + "start": 10929.3, + "end": 10932.42, + "probability": 0.9914 + }, + { + "start": 10932.68, + "end": 10933.16, + "probability": 0.8203 + }, + { + "start": 10933.78, + "end": 10937.14, + "probability": 0.9714 + }, + { + "start": 10937.5, + "end": 10939.18, + "probability": 0.9708 + }, + { + "start": 10939.72, + "end": 10942.78, + "probability": 0.9736 + }, + { + "start": 10943.32, + "end": 10946.92, + "probability": 0.9653 + }, + { + "start": 10947.26, + "end": 10947.9, + "probability": 0.4762 + }, + { + "start": 10947.94, + "end": 10948.62, + "probability": 0.7969 + }, + { + "start": 10948.72, + "end": 10951.46, + "probability": 0.8192 + }, + { + "start": 10951.46, + "end": 10952.74, + "probability": 0.2433 + }, + { + "start": 10952.9, + "end": 10953.14, + "probability": 0.0713 + }, + { + "start": 10953.14, + "end": 10953.76, + "probability": 0.5393 + }, + { + "start": 10953.76, + "end": 10954.55, + "probability": 0.5198 + }, + { + "start": 10955.44, + "end": 10956.04, + "probability": 0.6448 + }, + { + "start": 10956.34, + "end": 10959.36, + "probability": 0.9941 + }, + { + "start": 10959.8, + "end": 10960.42, + "probability": 0.4821 + }, + { + "start": 10960.48, + "end": 10961.12, + "probability": 0.8008 + }, + { + "start": 10961.22, + "end": 10963.22, + "probability": 0.7373 + }, + { + "start": 10963.54, + "end": 10966.6, + "probability": 0.9504 + }, + { + "start": 10966.6, + "end": 10970.54, + "probability": 0.9311 + }, + { + "start": 10970.66, + "end": 10971.2, + "probability": 0.2566 + }, + { + "start": 10971.2, + "end": 10972.24, + "probability": 0.4756 + }, + { + "start": 10972.24, + "end": 10973.04, + "probability": 0.6196 + }, + { + "start": 10973.46, + "end": 10975.46, + "probability": 0.5221 + }, + { + "start": 10975.56, + "end": 10976.95, + "probability": 0.8267 + }, + { + "start": 10977.22, + "end": 10978.56, + "probability": 0.859 + }, + { + "start": 10978.64, + "end": 10981.14, + "probability": 0.9857 + }, + { + "start": 10981.48, + "end": 10982.46, + "probability": 0.2983 + }, + { + "start": 10982.84, + "end": 10984.38, + "probability": 0.7876 + }, + { + "start": 10984.66, + "end": 10986.22, + "probability": 0.9119 + }, + { + "start": 10986.6, + "end": 10988.16, + "probability": 0.9797 + }, + { + "start": 10988.5, + "end": 10990.42, + "probability": 0.8885 + }, + { + "start": 10990.7, + "end": 10992.54, + "probability": 0.9085 + }, + { + "start": 10992.96, + "end": 10998.42, + "probability": 0.9881 + }, + { + "start": 10998.54, + "end": 10999.26, + "probability": 0.8635 + }, + { + "start": 10999.54, + "end": 11002.1, + "probability": 0.9476 + }, + { + "start": 11002.4, + "end": 11004.6, + "probability": 0.9982 + }, + { + "start": 11004.86, + "end": 11008.1, + "probability": 0.9871 + }, + { + "start": 11008.1, + "end": 11011.2, + "probability": 0.874 + }, + { + "start": 11011.82, + "end": 11012.04, + "probability": 0.6083 + }, + { + "start": 11012.58, + "end": 11013.38, + "probability": 0.8285 + }, + { + "start": 11021.54, + "end": 11021.7, + "probability": 0.1779 + }, + { + "start": 11021.7, + "end": 11023.02, + "probability": 0.7742 + }, + { + "start": 11030.88, + "end": 11031.98, + "probability": 0.441 + }, + { + "start": 11032.64, + "end": 11034.96, + "probability": 0.5916 + }, + { + "start": 11036.38, + "end": 11042.66, + "probability": 0.9584 + }, + { + "start": 11044.4, + "end": 11045.88, + "probability": 0.9368 + }, + { + "start": 11047.32, + "end": 11048.76, + "probability": 0.9928 + }, + { + "start": 11049.3, + "end": 11053.36, + "probability": 0.9764 + }, + { + "start": 11054.92, + "end": 11056.96, + "probability": 0.6797 + }, + { + "start": 11057.94, + "end": 11059.22, + "probability": 0.9758 + }, + { + "start": 11060.28, + "end": 11064.86, + "probability": 0.7127 + }, + { + "start": 11066.22, + "end": 11071.62, + "probability": 0.6635 + }, + { + "start": 11072.48, + "end": 11078.6, + "probability": 0.6434 + }, + { + "start": 11078.72, + "end": 11080.04, + "probability": 0.7764 + }, + { + "start": 11081.22, + "end": 11086.34, + "probability": 0.9385 + }, + { + "start": 11087.2, + "end": 11087.5, + "probability": 0.3128 + }, + { + "start": 11087.62, + "end": 11092.8, + "probability": 0.9802 + }, + { + "start": 11093.36, + "end": 11098.56, + "probability": 0.9767 + }, + { + "start": 11099.92, + "end": 11103.48, + "probability": 0.8921 + }, + { + "start": 11104.78, + "end": 11111.42, + "probability": 0.9877 + }, + { + "start": 11112.12, + "end": 11122.3, + "probability": 0.9236 + }, + { + "start": 11123.24, + "end": 11128.62, + "probability": 0.7941 + }, + { + "start": 11129.34, + "end": 11130.92, + "probability": 0.8211 + }, + { + "start": 11131.68, + "end": 11133.46, + "probability": 0.9592 + }, + { + "start": 11134.16, + "end": 11139.28, + "probability": 0.936 + }, + { + "start": 11139.82, + "end": 11140.82, + "probability": 0.7445 + }, + { + "start": 11141.86, + "end": 11144.44, + "probability": 0.5588 + }, + { + "start": 11145.62, + "end": 11148.62, + "probability": 0.8202 + }, + { + "start": 11149.48, + "end": 11151.24, + "probability": 0.8006 + }, + { + "start": 11151.78, + "end": 11156.06, + "probability": 0.9041 + }, + { + "start": 11156.56, + "end": 11158.2, + "probability": 0.7093 + }, + { + "start": 11159.18, + "end": 11161.17, + "probability": 0.6261 + }, + { + "start": 11162.32, + "end": 11165.7, + "probability": 0.6538 + }, + { + "start": 11166.46, + "end": 11168.68, + "probability": 0.4889 + }, + { + "start": 11169.18, + "end": 11171.08, + "probability": 0.7821 + }, + { + "start": 11171.12, + "end": 11171.68, + "probability": 0.7697 + }, + { + "start": 11172.36, + "end": 11172.7, + "probability": 0.2995 + }, + { + "start": 11172.7, + "end": 11177.95, + "probability": 0.9066 + }, + { + "start": 11178.42, + "end": 11179.24, + "probability": 0.373 + }, + { + "start": 11179.88, + "end": 11188.28, + "probability": 0.6131 + }, + { + "start": 11188.82, + "end": 11193.36, + "probability": 0.6765 + }, + { + "start": 11194.3, + "end": 11197.44, + "probability": 0.9661 + }, + { + "start": 11197.6, + "end": 11198.92, + "probability": 0.8239 + }, + { + "start": 11199.4, + "end": 11202.7, + "probability": 0.8311 + }, + { + "start": 11202.98, + "end": 11206.28, + "probability": 0.7404 + }, + { + "start": 11206.88, + "end": 11210.22, + "probability": 0.8357 + }, + { + "start": 11210.44, + "end": 11213.2, + "probability": 0.9291 + }, + { + "start": 11213.52, + "end": 11215.7, + "probability": 0.9873 + }, + { + "start": 11215.78, + "end": 11217.06, + "probability": 0.6563 + }, + { + "start": 11217.4, + "end": 11218.33, + "probability": 0.7468 + }, + { + "start": 11218.94, + "end": 11220.56, + "probability": 0.5529 + }, + { + "start": 11220.86, + "end": 11221.78, + "probability": 0.8273 + }, + { + "start": 11222.48, + "end": 11224.44, + "probability": 0.7102 + }, + { + "start": 11224.9, + "end": 11227.5, + "probability": 0.7645 + }, + { + "start": 11227.98, + "end": 11228.9, + "probability": 0.8873 + }, + { + "start": 11229.24, + "end": 11230.6, + "probability": 0.8708 + }, + { + "start": 11230.9, + "end": 11232.15, + "probability": 0.96 + }, + { + "start": 11232.68, + "end": 11233.76, + "probability": 0.3014 + }, + { + "start": 11233.76, + "end": 11235.34, + "probability": 0.1225 + }, + { + "start": 11235.34, + "end": 11236.58, + "probability": 0.5116 + }, + { + "start": 11238.7, + "end": 11243.2, + "probability": 0.6833 + }, + { + "start": 11243.2, + "end": 11246.04, + "probability": 0.7622 + }, + { + "start": 11246.58, + "end": 11248.26, + "probability": 0.6429 + }, + { + "start": 11248.34, + "end": 11249.18, + "probability": 0.8843 + }, + { + "start": 11249.52, + "end": 11253.4, + "probability": 0.8776 + }, + { + "start": 11253.56, + "end": 11256.04, + "probability": 0.533 + }, + { + "start": 11256.14, + "end": 11257.66, + "probability": 0.6173 + }, + { + "start": 11257.76, + "end": 11258.33, + "probability": 0.6727 + }, + { + "start": 11258.54, + "end": 11260.58, + "probability": 0.5114 + }, + { + "start": 11260.58, + "end": 11261.78, + "probability": 0.7557 + }, + { + "start": 11261.78, + "end": 11262.58, + "probability": 0.701 + }, + { + "start": 11263.0, + "end": 11263.58, + "probability": 0.6119 + }, + { + "start": 11276.67, + "end": 11280.28, + "probability": 0.3077 + }, + { + "start": 11280.28, + "end": 11280.94, + "probability": 0.0898 + }, + { + "start": 11281.14, + "end": 11282.12, + "probability": 0.1596 + }, + { + "start": 11283.12, + "end": 11283.12, + "probability": 0.219 + }, + { + "start": 11283.12, + "end": 11283.12, + "probability": 0.0761 + }, + { + "start": 11283.12, + "end": 11283.18, + "probability": 0.1627 + }, + { + "start": 11283.18, + "end": 11284.18, + "probability": 0.2742 + }, + { + "start": 11284.46, + "end": 11286.38, + "probability": 0.86 + }, + { + "start": 11306.48, + "end": 11307.82, + "probability": 0.8017 + }, + { + "start": 11309.64, + "end": 11310.58, + "probability": 0.716 + }, + { + "start": 11310.6, + "end": 11313.48, + "probability": 0.7407 + }, + { + "start": 11313.58, + "end": 11314.6, + "probability": 0.6187 + }, + { + "start": 11314.78, + "end": 11316.52, + "probability": 0.872 + }, + { + "start": 11317.6, + "end": 11318.82, + "probability": 0.9102 + }, + { + "start": 11319.48, + "end": 11319.94, + "probability": 0.8805 + }, + { + "start": 11320.86, + "end": 11322.4, + "probability": 0.9884 + }, + { + "start": 11323.6, + "end": 11326.03, + "probability": 0.9812 + }, + { + "start": 11327.44, + "end": 11331.18, + "probability": 0.9138 + }, + { + "start": 11331.72, + "end": 11334.14, + "probability": 0.9974 + }, + { + "start": 11334.72, + "end": 11336.2, + "probability": 0.7551 + }, + { + "start": 11336.74, + "end": 11341.76, + "probability": 0.9822 + }, + { + "start": 11342.28, + "end": 11349.26, + "probability": 0.7634 + }, + { + "start": 11349.8, + "end": 11350.34, + "probability": 0.0014 + }, + { + "start": 11350.77, + "end": 11353.82, + "probability": 0.0713 + }, + { + "start": 11354.56, + "end": 11357.26, + "probability": 0.819 + }, + { + "start": 11357.36, + "end": 11360.82, + "probability": 0.9462 + }, + { + "start": 11361.52, + "end": 11363.38, + "probability": 0.9842 + }, + { + "start": 11363.88, + "end": 11364.5, + "probability": 0.582 + }, + { + "start": 11364.62, + "end": 11367.24, + "probability": 0.9829 + }, + { + "start": 11367.24, + "end": 11370.84, + "probability": 0.9967 + }, + { + "start": 11373.69, + "end": 11378.08, + "probability": 0.9873 + }, + { + "start": 11378.16, + "end": 11379.76, + "probability": 0.9113 + }, + { + "start": 11379.9, + "end": 11382.46, + "probability": 0.934 + }, + { + "start": 11383.32, + "end": 11385.1, + "probability": 0.9008 + }, + { + "start": 11385.58, + "end": 11389.12, + "probability": 0.9864 + }, + { + "start": 11391.64, + "end": 11394.7, + "probability": 0.631 + }, + { + "start": 11394.74, + "end": 11397.62, + "probability": 0.9951 + }, + { + "start": 11397.82, + "end": 11400.56, + "probability": 0.8006 + }, + { + "start": 11401.36, + "end": 11405.62, + "probability": 0.9839 + }, + { + "start": 11406.36, + "end": 11408.84, + "probability": 0.998 + }, + { + "start": 11409.82, + "end": 11411.0, + "probability": 0.6158 + }, + { + "start": 11411.1, + "end": 11412.1, + "probability": 0.7988 + }, + { + "start": 11412.18, + "end": 11413.12, + "probability": 0.3884 + }, + { + "start": 11413.22, + "end": 11415.56, + "probability": 0.9371 + }, + { + "start": 11416.2, + "end": 11420.12, + "probability": 0.9785 + }, + { + "start": 11420.44, + "end": 11422.36, + "probability": 0.989 + }, + { + "start": 11422.8, + "end": 11424.6, + "probability": 0.9009 + }, + { + "start": 11425.26, + "end": 11428.08, + "probability": 0.9918 + }, + { + "start": 11428.5, + "end": 11429.38, + "probability": 0.7635 + }, + { + "start": 11429.68, + "end": 11430.18, + "probability": 0.6201 + }, + { + "start": 11430.24, + "end": 11431.06, + "probability": 0.294 + }, + { + "start": 11431.5, + "end": 11434.04, + "probability": 0.9777 + }, + { + "start": 11434.7, + "end": 11436.78, + "probability": 0.9912 + }, + { + "start": 11436.92, + "end": 11438.44, + "probability": 0.4756 + }, + { + "start": 11439.42, + "end": 11443.56, + "probability": 0.7167 + }, + { + "start": 11444.12, + "end": 11445.54, + "probability": 0.8434 + }, + { + "start": 11445.64, + "end": 11446.88, + "probability": 0.9824 + }, + { + "start": 11447.08, + "end": 11448.32, + "probability": 0.9297 + }, + { + "start": 11448.58, + "end": 11449.14, + "probability": 0.6374 + }, + { + "start": 11449.42, + "end": 11451.34, + "probability": 0.6562 + }, + { + "start": 11451.68, + "end": 11452.56, + "probability": 0.7066 + }, + { + "start": 11452.98, + "end": 11455.4, + "probability": 0.9756 + }, + { + "start": 11455.4, + "end": 11460.34, + "probability": 0.9937 + }, + { + "start": 11460.5, + "end": 11462.62, + "probability": 0.6929 + }, + { + "start": 11463.02, + "end": 11466.1, + "probability": 0.9778 + }, + { + "start": 11466.3, + "end": 11468.86, + "probability": 0.968 + }, + { + "start": 11469.02, + "end": 11471.78, + "probability": 0.9898 + }, + { + "start": 11472.08, + "end": 11472.78, + "probability": 0.5059 + }, + { + "start": 11472.84, + "end": 11473.5, + "probability": 0.789 + }, + { + "start": 11473.58, + "end": 11475.49, + "probability": 0.9741 + }, + { + "start": 11475.66, + "end": 11478.74, + "probability": 0.9147 + }, + { + "start": 11478.96, + "end": 11481.42, + "probability": 0.8278 + }, + { + "start": 11481.84, + "end": 11482.66, + "probability": 0.7519 + }, + { + "start": 11482.76, + "end": 11487.96, + "probability": 0.9429 + }, + { + "start": 11488.14, + "end": 11488.56, + "probability": 0.721 + }, + { + "start": 11488.72, + "end": 11489.46, + "probability": 0.4723 + }, + { + "start": 11489.62, + "end": 11492.68, + "probability": 0.9742 + }, + { + "start": 11492.78, + "end": 11494.88, + "probability": 0.8533 + }, + { + "start": 11495.76, + "end": 11499.34, + "probability": 0.9827 + }, + { + "start": 11499.64, + "end": 11501.18, + "probability": 0.9626 + }, + { + "start": 11501.44, + "end": 11502.06, + "probability": 0.8519 + }, + { + "start": 11502.18, + "end": 11507.82, + "probability": 0.8603 + }, + { + "start": 11507.88, + "end": 11509.36, + "probability": 0.6809 + }, + { + "start": 11509.94, + "end": 11514.28, + "probability": 0.9796 + }, + { + "start": 11514.5, + "end": 11516.36, + "probability": 0.8315 + }, + { + "start": 11516.56, + "end": 11517.74, + "probability": 0.8475 + }, + { + "start": 11517.88, + "end": 11518.78, + "probability": 0.8249 + }, + { + "start": 11519.12, + "end": 11520.62, + "probability": 0.8187 + }, + { + "start": 11520.7, + "end": 11522.84, + "probability": 0.8439 + }, + { + "start": 11523.08, + "end": 11524.22, + "probability": 0.7658 + }, + { + "start": 11524.28, + "end": 11524.58, + "probability": 0.2551 + }, + { + "start": 11524.58, + "end": 11526.39, + "probability": 0.7656 + }, + { + "start": 11526.5, + "end": 11528.3, + "probability": 0.9912 + }, + { + "start": 11528.38, + "end": 11530.84, + "probability": 0.9254 + }, + { + "start": 11531.34, + "end": 11533.24, + "probability": 0.7764 + }, + { + "start": 11533.98, + "end": 11534.22, + "probability": 0.1773 + }, + { + "start": 11534.22, + "end": 11534.22, + "probability": 0.2084 + }, + { + "start": 11534.22, + "end": 11534.22, + "probability": 0.4916 + }, + { + "start": 11534.22, + "end": 11536.38, + "probability": 0.6534 + }, + { + "start": 11536.9, + "end": 11540.1, + "probability": 0.5295 + }, + { + "start": 11540.46, + "end": 11540.48, + "probability": 0.1875 + }, + { + "start": 11540.48, + "end": 11545.4, + "probability": 0.8313 + }, + { + "start": 11545.66, + "end": 11546.38, + "probability": 0.6258 + }, + { + "start": 11546.5, + "end": 11547.3, + "probability": 0.9449 + }, + { + "start": 11547.48, + "end": 11548.32, + "probability": 0.644 + }, + { + "start": 11548.88, + "end": 11548.88, + "probability": 0.0331 + }, + { + "start": 11548.88, + "end": 11553.18, + "probability": 0.9836 + }, + { + "start": 11553.18, + "end": 11553.18, + "probability": 0.5939 + }, + { + "start": 11553.26, + "end": 11556.02, + "probability": 0.9868 + }, + { + "start": 11556.12, + "end": 11558.14, + "probability": 0.9252 + }, + { + "start": 11558.76, + "end": 11560.66, + "probability": 0.7541 + }, + { + "start": 11573.28, + "end": 11574.52, + "probability": 0.6877 + }, + { + "start": 11575.99, + "end": 11578.08, + "probability": 0.6609 + }, + { + "start": 11579.24, + "end": 11580.84, + "probability": 0.6556 + }, + { + "start": 11581.9, + "end": 11585.48, + "probability": 0.8684 + }, + { + "start": 11585.86, + "end": 11587.02, + "probability": 0.9653 + }, + { + "start": 11587.76, + "end": 11595.2, + "probability": 0.9576 + }, + { + "start": 11595.54, + "end": 11596.92, + "probability": 0.8772 + }, + { + "start": 11597.5, + "end": 11599.08, + "probability": 0.9476 + }, + { + "start": 11599.82, + "end": 11600.24, + "probability": 0.7512 + }, + { + "start": 11600.72, + "end": 11606.22, + "probability": 0.91 + }, + { + "start": 11606.32, + "end": 11607.28, + "probability": 0.6077 + }, + { + "start": 11607.68, + "end": 11608.9, + "probability": 0.9008 + }, + { + "start": 11608.9, + "end": 11609.52, + "probability": 0.5658 + }, + { + "start": 11610.06, + "end": 11610.44, + "probability": 0.5504 + }, + { + "start": 11610.6, + "end": 11614.28, + "probability": 0.9873 + }, + { + "start": 11614.42, + "end": 11617.56, + "probability": 0.9556 + }, + { + "start": 11617.78, + "end": 11621.26, + "probability": 0.9938 + }, + { + "start": 11621.62, + "end": 11622.16, + "probability": 0.5081 + }, + { + "start": 11622.16, + "end": 11623.64, + "probability": 0.9137 + }, + { + "start": 11623.98, + "end": 11628.44, + "probability": 0.9893 + }, + { + "start": 11628.64, + "end": 11632.21, + "probability": 0.443 + }, + { + "start": 11632.78, + "end": 11634.04, + "probability": 0.853 + }, + { + "start": 11634.14, + "end": 11634.62, + "probability": 0.5055 + }, + { + "start": 11634.94, + "end": 11635.56, + "probability": 0.9067 + }, + { + "start": 11636.52, + "end": 11638.12, + "probability": 0.8953 + }, + { + "start": 11638.34, + "end": 11638.98, + "probability": 0.7008 + }, + { + "start": 11639.32, + "end": 11641.8, + "probability": 0.8832 + }, + { + "start": 11642.2, + "end": 11643.9, + "probability": 0.9917 + }, + { + "start": 11644.32, + "end": 11646.44, + "probability": 0.9661 + }, + { + "start": 11646.98, + "end": 11647.76, + "probability": 0.8513 + }, + { + "start": 11647.82, + "end": 11648.9, + "probability": 0.9793 + }, + { + "start": 11649.08, + "end": 11651.36, + "probability": 0.7921 + }, + { + "start": 11651.4, + "end": 11654.92, + "probability": 0.9238 + }, + { + "start": 11655.34, + "end": 11655.8, + "probability": 0.7183 + }, + { + "start": 11655.98, + "end": 11656.52, + "probability": 0.7067 + }, + { + "start": 11657.04, + "end": 11657.26, + "probability": 0.6111 + }, + { + "start": 11657.3, + "end": 11657.8, + "probability": 0.5476 + }, + { + "start": 11657.86, + "end": 11659.76, + "probability": 0.8643 + }, + { + "start": 11660.64, + "end": 11663.96, + "probability": 0.9736 + }, + { + "start": 11664.04, + "end": 11665.11, + "probability": 0.8469 + }, + { + "start": 11665.74, + "end": 11666.16, + "probability": 0.7081 + }, + { + "start": 11666.26, + "end": 11666.92, + "probability": 0.6202 + }, + { + "start": 11666.96, + "end": 11671.58, + "probability": 0.9119 + }, + { + "start": 11672.37, + "end": 11676.62, + "probability": 0.819 + }, + { + "start": 11677.08, + "end": 11679.06, + "probability": 0.8877 + }, + { + "start": 11679.2, + "end": 11680.1, + "probability": 0.7267 + }, + { + "start": 11680.48, + "end": 11682.18, + "probability": 0.9968 + }, + { + "start": 11682.32, + "end": 11684.66, + "probability": 0.9102 + }, + { + "start": 11685.0, + "end": 11686.09, + "probability": 0.9793 + }, + { + "start": 11686.54, + "end": 11687.68, + "probability": 0.9734 + }, + { + "start": 11687.74, + "end": 11688.93, + "probability": 0.9289 + }, + { + "start": 11690.7, + "end": 11693.4, + "probability": 0.9297 + }, + { + "start": 11694.03, + "end": 11694.64, + "probability": 0.8059 + }, + { + "start": 11694.72, + "end": 11696.56, + "probability": 0.9854 + }, + { + "start": 11696.62, + "end": 11698.02, + "probability": 0.9736 + }, + { + "start": 11698.34, + "end": 11699.96, + "probability": 0.949 + }, + { + "start": 11700.36, + "end": 11702.06, + "probability": 0.8583 + }, + { + "start": 11702.38, + "end": 11703.74, + "probability": 0.9351 + }, + { + "start": 11703.78, + "end": 11706.36, + "probability": 0.7703 + }, + { + "start": 11706.76, + "end": 11707.58, + "probability": 0.6965 + }, + { + "start": 11707.6, + "end": 11710.22, + "probability": 0.8625 + }, + { + "start": 11710.62, + "end": 11711.08, + "probability": 0.1967 + }, + { + "start": 11711.26, + "end": 11712.76, + "probability": 0.9099 + }, + { + "start": 11712.84, + "end": 11714.66, + "probability": 0.8651 + }, + { + "start": 11714.82, + "end": 11716.22, + "probability": 0.9072 + }, + { + "start": 11716.36, + "end": 11716.9, + "probability": 0.7329 + }, + { + "start": 11717.1, + "end": 11717.86, + "probability": 0.6691 + }, + { + "start": 11717.96, + "end": 11718.66, + "probability": 0.6344 + }, + { + "start": 11718.76, + "end": 11719.7, + "probability": 0.6949 + }, + { + "start": 11719.76, + "end": 11720.4, + "probability": 0.8621 + }, + { + "start": 11720.48, + "end": 11721.04, + "probability": 0.9597 + }, + { + "start": 11721.12, + "end": 11722.32, + "probability": 0.9445 + }, + { + "start": 11722.52, + "end": 11725.42, + "probability": 0.8778 + }, + { + "start": 11726.04, + "end": 11727.56, + "probability": 0.8221 + }, + { + "start": 11728.14, + "end": 11729.72, + "probability": 0.8327 + }, + { + "start": 11729.82, + "end": 11731.2, + "probability": 0.9249 + }, + { + "start": 11731.7, + "end": 11733.06, + "probability": 0.9031 + }, + { + "start": 11733.26, + "end": 11734.16, + "probability": 0.9382 + }, + { + "start": 11734.32, + "end": 11735.4, + "probability": 0.8014 + }, + { + "start": 11735.46, + "end": 11736.34, + "probability": 0.8467 + }, + { + "start": 11736.38, + "end": 11737.22, + "probability": 0.9629 + }, + { + "start": 11737.28, + "end": 11737.58, + "probability": 0.546 + }, + { + "start": 11737.7, + "end": 11738.8, + "probability": 0.5161 + }, + { + "start": 11738.88, + "end": 11740.07, + "probability": 0.9666 + }, + { + "start": 11740.32, + "end": 11742.08, + "probability": 0.8999 + }, + { + "start": 11742.16, + "end": 11743.12, + "probability": 0.7429 + }, + { + "start": 11743.48, + "end": 11744.18, + "probability": 0.6524 + }, + { + "start": 11744.18, + "end": 11745.62, + "probability": 0.6153 + }, + { + "start": 11745.66, + "end": 11746.2, + "probability": 0.55 + }, + { + "start": 11746.32, + "end": 11748.38, + "probability": 0.9708 + }, + { + "start": 11748.42, + "end": 11749.6, + "probability": 0.9707 + }, + { + "start": 11749.6, + "end": 11751.28, + "probability": 0.6969 + }, + { + "start": 11751.32, + "end": 11753.38, + "probability": 0.9652 + }, + { + "start": 11754.08, + "end": 11755.64, + "probability": 0.8981 + }, + { + "start": 11756.02, + "end": 11757.02, + "probability": 0.9839 + }, + { + "start": 11757.14, + "end": 11757.92, + "probability": 0.8369 + }, + { + "start": 11758.0, + "end": 11759.36, + "probability": 0.9642 + }, + { + "start": 11759.72, + "end": 11760.47, + "probability": 0.8285 + }, + { + "start": 11760.82, + "end": 11762.58, + "probability": 0.2685 + }, + { + "start": 11762.72, + "end": 11763.9, + "probability": 0.915 + }, + { + "start": 11764.62, + "end": 11765.58, + "probability": 0.5539 + }, + { + "start": 11765.84, + "end": 11769.38, + "probability": 0.7541 + }, + { + "start": 11769.48, + "end": 11770.47, + "probability": 0.845 + }, + { + "start": 11770.64, + "end": 11772.66, + "probability": 0.9739 + }, + { + "start": 11773.4, + "end": 11774.9, + "probability": 0.6472 + }, + { + "start": 11775.3, + "end": 11776.3, + "probability": 0.8091 + }, + { + "start": 11776.4, + "end": 11777.12, + "probability": 0.7761 + }, + { + "start": 11777.24, + "end": 11779.08, + "probability": 0.9561 + }, + { + "start": 11779.44, + "end": 11780.48, + "probability": 0.6759 + }, + { + "start": 11780.52, + "end": 11781.58, + "probability": 0.8892 + }, + { + "start": 11781.64, + "end": 11782.77, + "probability": 0.867 + }, + { + "start": 11783.6, + "end": 11784.95, + "probability": 0.6995 + }, + { + "start": 11785.14, + "end": 11786.14, + "probability": 0.906 + }, + { + "start": 11786.62, + "end": 11788.68, + "probability": 0.7141 + }, + { + "start": 11788.9, + "end": 11790.44, + "probability": 0.8511 + }, + { + "start": 11790.56, + "end": 11791.66, + "probability": 0.8628 + }, + { + "start": 11792.4, + "end": 11794.66, + "probability": 0.7898 + }, + { + "start": 11795.04, + "end": 11796.3, + "probability": 0.8656 + }, + { + "start": 11796.46, + "end": 11796.74, + "probability": 0.4226 + }, + { + "start": 11796.74, + "end": 11796.9, + "probability": 0.1979 + }, + { + "start": 11797.07, + "end": 11798.35, + "probability": 0.8835 + }, + { + "start": 11798.36, + "end": 11800.52, + "probability": 0.6832 + }, + { + "start": 11800.8, + "end": 11802.08, + "probability": 0.8444 + }, + { + "start": 11802.46, + "end": 11804.82, + "probability": 0.9689 + }, + { + "start": 11804.92, + "end": 11806.4, + "probability": 0.8145 + }, + { + "start": 11807.18, + "end": 11811.0, + "probability": 0.748 + }, + { + "start": 11811.22, + "end": 11813.6, + "probability": 0.8798 + }, + { + "start": 11813.6, + "end": 11813.74, + "probability": 0.0223 + }, + { + "start": 11813.74, + "end": 11814.8, + "probability": 0.6271 + }, + { + "start": 11814.82, + "end": 11816.56, + "probability": 0.9104 + }, + { + "start": 11816.62, + "end": 11817.14, + "probability": 0.0186 + }, + { + "start": 11817.38, + "end": 11820.1, + "probability": 0.5025 + }, + { + "start": 11821.52, + "end": 11821.86, + "probability": 0.0514 + }, + { + "start": 11821.86, + "end": 11821.86, + "probability": 0.0481 + }, + { + "start": 11821.86, + "end": 11821.86, + "probability": 0.0354 + }, + { + "start": 11821.86, + "end": 11821.86, + "probability": 0.077 + }, + { + "start": 11821.86, + "end": 11823.92, + "probability": 0.5458 + }, + { + "start": 11824.08, + "end": 11828.9, + "probability": 0.9709 + }, + { + "start": 11830.32, + "end": 11830.78, + "probability": 0.3279 + }, + { + "start": 11830.78, + "end": 11830.78, + "probability": 0.3282 + }, + { + "start": 11830.78, + "end": 11830.78, + "probability": 0.1248 + }, + { + "start": 11830.78, + "end": 11832.68, + "probability": 0.7785 + }, + { + "start": 11832.94, + "end": 11834.5, + "probability": 0.8926 + }, + { + "start": 11834.52, + "end": 11836.02, + "probability": 0.921 + }, + { + "start": 11836.26, + "end": 11838.94, + "probability": 0.9073 + }, + { + "start": 11839.34, + "end": 11839.74, + "probability": 0.5776 + }, + { + "start": 11839.76, + "end": 11841.18, + "probability": 0.5899 + }, + { + "start": 11841.22, + "end": 11842.38, + "probability": 0.496 + }, + { + "start": 11842.54, + "end": 11847.18, + "probability": 0.9348 + }, + { + "start": 11847.94, + "end": 11851.46, + "probability": 0.9399 + }, + { + "start": 11851.5, + "end": 11852.58, + "probability": 0.7323 + }, + { + "start": 11853.06, + "end": 11855.36, + "probability": 0.9707 + }, + { + "start": 11855.5, + "end": 11856.34, + "probability": 0.781 + }, + { + "start": 11856.4, + "end": 11857.28, + "probability": 0.8693 + }, + { + "start": 11857.34, + "end": 11858.76, + "probability": 0.781 + }, + { + "start": 11858.8, + "end": 11860.7, + "probability": 0.8033 + }, + { + "start": 11860.76, + "end": 11861.77, + "probability": 0.6363 + }, + { + "start": 11862.34, + "end": 11865.1, + "probability": 0.7943 + }, + { + "start": 11865.36, + "end": 11866.22, + "probability": 0.8207 + }, + { + "start": 11866.34, + "end": 11868.96, + "probability": 0.8938 + }, + { + "start": 11869.22, + "end": 11869.28, + "probability": 0.0422 + }, + { + "start": 11869.28, + "end": 11870.34, + "probability": 0.8906 + }, + { + "start": 11870.46, + "end": 11871.16, + "probability": 0.8496 + }, + { + "start": 11871.24, + "end": 11872.38, + "probability": 0.981 + }, + { + "start": 11872.38, + "end": 11873.0, + "probability": 0.4446 + }, + { + "start": 11873.18, + "end": 11876.1, + "probability": 0.4785 + }, + { + "start": 11876.26, + "end": 11877.06, + "probability": 0.8602 + }, + { + "start": 11877.7, + "end": 11879.16, + "probability": 0.8282 + }, + { + "start": 11879.78, + "end": 11881.32, + "probability": 0.9037 + }, + { + "start": 11881.4, + "end": 11882.2, + "probability": 0.6449 + }, + { + "start": 11882.34, + "end": 11883.1, + "probability": 0.8496 + }, + { + "start": 11883.22, + "end": 11884.0, + "probability": 0.8769 + }, + { + "start": 11884.06, + "end": 11886.12, + "probability": 0.9359 + }, + { + "start": 11886.18, + "end": 11886.76, + "probability": 0.843 + }, + { + "start": 11887.18, + "end": 11889.14, + "probability": 0.9384 + }, + { + "start": 11889.98, + "end": 11892.84, + "probability": 0.8779 + }, + { + "start": 11915.54, + "end": 11915.98, + "probability": 0.0336 + }, + { + "start": 11915.98, + "end": 11917.94, + "probability": 0.6509 + }, + { + "start": 11918.7, + "end": 11920.78, + "probability": 0.9663 + }, + { + "start": 11922.14, + "end": 11926.32, + "probability": 0.6825 + }, + { + "start": 11926.36, + "end": 11927.52, + "probability": 0.806 + }, + { + "start": 11928.82, + "end": 11936.2, + "probability": 0.9434 + }, + { + "start": 11937.1, + "end": 11938.52, + "probability": 0.9937 + }, + { + "start": 11944.02, + "end": 11945.32, + "probability": 0.5994 + }, + { + "start": 11947.18, + "end": 11950.52, + "probability": 0.9246 + }, + { + "start": 11951.58, + "end": 11953.84, + "probability": 0.7625 + }, + { + "start": 11955.58, + "end": 11958.62, + "probability": 0.9912 + }, + { + "start": 11959.22, + "end": 11967.32, + "probability": 0.8385 + }, + { + "start": 11967.8, + "end": 11969.84, + "probability": 0.9963 + }, + { + "start": 11970.16, + "end": 11972.67, + "probability": 0.9819 + }, + { + "start": 11974.22, + "end": 11976.14, + "probability": 0.8071 + }, + { + "start": 11976.94, + "end": 11978.96, + "probability": 0.9103 + }, + { + "start": 11980.28, + "end": 11981.18, + "probability": 0.8984 + }, + { + "start": 11981.22, + "end": 11983.68, + "probability": 0.9949 + }, + { + "start": 11983.76, + "end": 11985.48, + "probability": 0.9844 + }, + { + "start": 11985.54, + "end": 11986.12, + "probability": 0.8887 + }, + { + "start": 11987.12, + "end": 11989.68, + "probability": 0.9875 + }, + { + "start": 11989.76, + "end": 11991.86, + "probability": 0.5363 + }, + { + "start": 11992.22, + "end": 11993.86, + "probability": 0.9687 + }, + { + "start": 11994.42, + "end": 11996.02, + "probability": 0.7213 + }, + { + "start": 11997.68, + "end": 12002.0, + "probability": 0.9191 + }, + { + "start": 12002.56, + "end": 12005.84, + "probability": 0.9915 + }, + { + "start": 12006.44, + "end": 12007.14, + "probability": 0.7199 + }, + { + "start": 12007.88, + "end": 12010.5, + "probability": 0.5131 + }, + { + "start": 12011.02, + "end": 12012.36, + "probability": 0.8979 + }, + { + "start": 12014.1, + "end": 12018.67, + "probability": 0.8505 + }, + { + "start": 12019.74, + "end": 12022.22, + "probability": 0.9639 + }, + { + "start": 12023.74, + "end": 12028.9, + "probability": 0.9944 + }, + { + "start": 12030.12, + "end": 12033.96, + "probability": 0.968 + }, + { + "start": 12034.82, + "end": 12035.98, + "probability": 0.9305 + }, + { + "start": 12036.52, + "end": 12038.5, + "probability": 0.9642 + }, + { + "start": 12039.1, + "end": 12041.66, + "probability": 0.9963 + }, + { + "start": 12042.8, + "end": 12044.54, + "probability": 0.9956 + }, + { + "start": 12044.66, + "end": 12045.64, + "probability": 0.9204 + }, + { + "start": 12045.7, + "end": 12046.58, + "probability": 0.8831 + }, + { + "start": 12047.6, + "end": 12049.73, + "probability": 0.9946 + }, + { + "start": 12050.48, + "end": 12051.28, + "probability": 0.7183 + }, + { + "start": 12051.28, + "end": 12051.5, + "probability": 0.301 + }, + { + "start": 12051.58, + "end": 12052.23, + "probability": 0.791 + }, + { + "start": 12052.92, + "end": 12056.6, + "probability": 0.979 + }, + { + "start": 12056.88, + "end": 12057.12, + "probability": 0.6922 + }, + { + "start": 12057.2, + "end": 12058.46, + "probability": 0.4968 + }, + { + "start": 12058.46, + "end": 12059.12, + "probability": 0.1953 + }, + { + "start": 12059.14, + "end": 12061.48, + "probability": 0.8751 + }, + { + "start": 12063.26, + "end": 12063.46, + "probability": 0.0277 + }, + { + "start": 12063.46, + "end": 12063.46, + "probability": 0.154 + }, + { + "start": 12063.46, + "end": 12065.29, + "probability": 0.6475 + }, + { + "start": 12066.06, + "end": 12068.96, + "probability": 0.9905 + }, + { + "start": 12069.48, + "end": 12072.92, + "probability": 0.9678 + }, + { + "start": 12074.2, + "end": 12078.8, + "probability": 0.8844 + }, + { + "start": 12079.56, + "end": 12081.92, + "probability": 0.9428 + }, + { + "start": 12082.5, + "end": 12085.9, + "probability": 0.9641 + }, + { + "start": 12086.94, + "end": 12089.3, + "probability": 0.612 + }, + { + "start": 12089.46, + "end": 12091.52, + "probability": 0.6372 + }, + { + "start": 12091.62, + "end": 12096.5, + "probability": 0.9277 + }, + { + "start": 12097.04, + "end": 12097.84, + "probability": 0.7157 + }, + { + "start": 12098.42, + "end": 12099.54, + "probability": 0.5141 + }, + { + "start": 12100.84, + "end": 12102.1, + "probability": 0.3433 + }, + { + "start": 12102.1, + "end": 12102.96, + "probability": 0.6224 + }, + { + "start": 12102.98, + "end": 12106.0, + "probability": 0.9779 + }, + { + "start": 12106.64, + "end": 12108.54, + "probability": 0.1334 + }, + { + "start": 12108.54, + "end": 12108.9, + "probability": 0.2163 + }, + { + "start": 12108.9, + "end": 12109.24, + "probability": 0.4438 + }, + { + "start": 12109.54, + "end": 12111.6, + "probability": 0.9188 + }, + { + "start": 12111.92, + "end": 12114.18, + "probability": 0.9933 + }, + { + "start": 12115.92, + "end": 12118.42, + "probability": 0.9111 + }, + { + "start": 12118.56, + "end": 12119.66, + "probability": 0.8197 + }, + { + "start": 12119.78, + "end": 12121.8, + "probability": 0.6412 + }, + { + "start": 12122.36, + "end": 12128.32, + "probability": 0.9819 + }, + { + "start": 12128.66, + "end": 12133.52, + "probability": 0.9006 + }, + { + "start": 12133.9, + "end": 12135.18, + "probability": 0.9993 + }, + { + "start": 12135.96, + "end": 12139.54, + "probability": 0.8765 + }, + { + "start": 12140.38, + "end": 12142.34, + "probability": 0.866 + }, + { + "start": 12142.52, + "end": 12148.0, + "probability": 0.7108 + }, + { + "start": 12148.28, + "end": 12149.18, + "probability": 0.6816 + }, + { + "start": 12149.6, + "end": 12151.1, + "probability": 0.9946 + }, + { + "start": 12151.1, + "end": 12152.12, + "probability": 0.7202 + }, + { + "start": 12152.16, + "end": 12153.68, + "probability": 0.9209 + }, + { + "start": 12154.52, + "end": 12158.58, + "probability": 0.6327 + }, + { + "start": 12159.06, + "end": 12162.15, + "probability": 0.9062 + }, + { + "start": 12164.06, + "end": 12165.34, + "probability": 0.6026 + }, + { + "start": 12165.44, + "end": 12166.94, + "probability": 0.8001 + }, + { + "start": 12167.42, + "end": 12167.9, + "probability": 0.6818 + }, + { + "start": 12168.08, + "end": 12169.24, + "probability": 0.801 + }, + { + "start": 12169.64, + "end": 12172.84, + "probability": 0.9714 + }, + { + "start": 12173.44, + "end": 12178.98, + "probability": 0.9814 + }, + { + "start": 12179.78, + "end": 12183.14, + "probability": 0.7025 + }, + { + "start": 12185.19, + "end": 12188.04, + "probability": 0.5257 + }, + { + "start": 12189.78, + "end": 12191.32, + "probability": 0.5361 + }, + { + "start": 12191.44, + "end": 12194.78, + "probability": 0.9528 + }, + { + "start": 12195.78, + "end": 12197.16, + "probability": 0.8948 + }, + { + "start": 12198.26, + "end": 12200.92, + "probability": 0.9966 + }, + { + "start": 12200.98, + "end": 12203.67, + "probability": 0.9907 + }, + { + "start": 12203.94, + "end": 12205.88, + "probability": 0.9446 + }, + { + "start": 12207.2, + "end": 12210.5, + "probability": 0.9957 + }, + { + "start": 12210.5, + "end": 12214.7, + "probability": 0.9805 + }, + { + "start": 12215.22, + "end": 12218.86, + "probability": 0.9956 + }, + { + "start": 12220.04, + "end": 12222.96, + "probability": 0.9829 + }, + { + "start": 12222.96, + "end": 12225.64, + "probability": 0.999 + }, + { + "start": 12226.28, + "end": 12228.32, + "probability": 0.9843 + }, + { + "start": 12229.2, + "end": 12234.0, + "probability": 0.9561 + }, + { + "start": 12234.96, + "end": 12237.06, + "probability": 0.5578 + }, + { + "start": 12237.18, + "end": 12237.66, + "probability": 0.9056 + }, + { + "start": 12237.76, + "end": 12238.82, + "probability": 0.9062 + }, + { + "start": 12239.6, + "end": 12244.54, + "probability": 0.8994 + }, + { + "start": 12245.02, + "end": 12245.98, + "probability": 0.8896 + }, + { + "start": 12246.78, + "end": 12249.2, + "probability": 0.9894 + }, + { + "start": 12249.74, + "end": 12252.24, + "probability": 0.9995 + }, + { + "start": 12252.96, + "end": 12256.28, + "probability": 0.9011 + }, + { + "start": 12257.58, + "end": 12258.28, + "probability": 0.4718 + }, + { + "start": 12258.86, + "end": 12261.84, + "probability": 0.4134 + }, + { + "start": 12262.34, + "end": 12265.6, + "probability": 0.8589 + }, + { + "start": 12265.6, + "end": 12268.56, + "probability": 0.988 + }, + { + "start": 12269.24, + "end": 12273.78, + "probability": 0.9963 + }, + { + "start": 12273.78, + "end": 12278.42, + "probability": 0.9546 + }, + { + "start": 12281.96, + "end": 12285.06, + "probability": 0.9368 + }, + { + "start": 12286.28, + "end": 12288.66, + "probability": 0.7356 + }, + { + "start": 12289.78, + "end": 12291.64, + "probability": 0.9926 + }, + { + "start": 12292.44, + "end": 12294.08, + "probability": 0.726 + }, + { + "start": 12295.04, + "end": 12297.56, + "probability": 0.9943 + }, + { + "start": 12298.0, + "end": 12299.42, + "probability": 0.5788 + }, + { + "start": 12300.4, + "end": 12301.44, + "probability": 0.8939 + }, + { + "start": 12301.56, + "end": 12305.26, + "probability": 0.8493 + }, + { + "start": 12305.94, + "end": 12308.46, + "probability": 0.8133 + }, + { + "start": 12309.5, + "end": 12310.34, + "probability": 0.98 + }, + { + "start": 12311.78, + "end": 12313.64, + "probability": 0.7926 + }, + { + "start": 12314.62, + "end": 12316.76, + "probability": 0.9273 + }, + { + "start": 12317.48, + "end": 12320.02, + "probability": 0.9703 + }, + { + "start": 12321.04, + "end": 12323.98, + "probability": 0.8671 + }, + { + "start": 12324.82, + "end": 12326.62, + "probability": 0.9731 + }, + { + "start": 12326.7, + "end": 12327.94, + "probability": 0.9294 + }, + { + "start": 12329.52, + "end": 12332.28, + "probability": 0.9866 + }, + { + "start": 12332.92, + "end": 12336.92, + "probability": 0.9731 + }, + { + "start": 12338.1, + "end": 12341.72, + "probability": 0.9901 + }, + { + "start": 12342.6, + "end": 12347.44, + "probability": 0.9615 + }, + { + "start": 12348.18, + "end": 12350.28, + "probability": 0.9954 + }, + { + "start": 12350.82, + "end": 12355.5, + "probability": 0.8942 + }, + { + "start": 12355.92, + "end": 12359.32, + "probability": 0.9868 + }, + { + "start": 12360.1, + "end": 12363.12, + "probability": 0.9421 + }, + { + "start": 12364.88, + "end": 12369.04, + "probability": 0.966 + }, + { + "start": 12369.16, + "end": 12369.96, + "probability": 0.6406 + }, + { + "start": 12370.58, + "end": 12372.82, + "probability": 0.9244 + }, + { + "start": 12373.2, + "end": 12374.22, + "probability": 0.6738 + }, + { + "start": 12375.24, + "end": 12377.26, + "probability": 0.924 + }, + { + "start": 12377.44, + "end": 12381.1, + "probability": 0.9918 + }, + { + "start": 12381.9, + "end": 12385.64, + "probability": 0.7722 + }, + { + "start": 12386.92, + "end": 12390.88, + "probability": 0.9851 + }, + { + "start": 12391.38, + "end": 12394.08, + "probability": 0.8852 + }, + { + "start": 12394.98, + "end": 12396.66, + "probability": 0.9313 + }, + { + "start": 12396.76, + "end": 12400.22, + "probability": 0.9868 + }, + { + "start": 12401.48, + "end": 12406.32, + "probability": 0.7981 + }, + { + "start": 12407.14, + "end": 12408.4, + "probability": 0.6094 + }, + { + "start": 12408.98, + "end": 12408.98, + "probability": 0.0002 + }, + { + "start": 12410.4, + "end": 12411.5, + "probability": 0.5497 + }, + { + "start": 12411.5, + "end": 12413.08, + "probability": 0.8643 + }, + { + "start": 12413.98, + "end": 12414.86, + "probability": 0.5852 + }, + { + "start": 12415.4, + "end": 12417.42, + "probability": 0.977 + }, + { + "start": 12417.68, + "end": 12418.82, + "probability": 0.8444 + }, + { + "start": 12419.72, + "end": 12423.44, + "probability": 0.9117 + }, + { + "start": 12423.88, + "end": 12424.46, + "probability": 0.7948 + }, + { + "start": 12424.98, + "end": 12427.82, + "probability": 0.9357 + }, + { + "start": 12428.98, + "end": 12430.9, + "probability": 0.973 + }, + { + "start": 12431.5, + "end": 12432.96, + "probability": 0.8309 + }, + { + "start": 12433.1, + "end": 12435.04, + "probability": 0.9824 + }, + { + "start": 12435.5, + "end": 12439.52, + "probability": 0.9526 + }, + { + "start": 12440.18, + "end": 12442.78, + "probability": 0.9262 + }, + { + "start": 12443.88, + "end": 12445.14, + "probability": 0.7835 + }, + { + "start": 12445.24, + "end": 12446.02, + "probability": 0.7973 + }, + { + "start": 12446.12, + "end": 12447.58, + "probability": 0.7938 + }, + { + "start": 12448.5, + "end": 12451.76, + "probability": 0.9641 + }, + { + "start": 12453.12, + "end": 12455.18, + "probability": 0.9175 + }, + { + "start": 12456.02, + "end": 12458.2, + "probability": 0.9529 + }, + { + "start": 12458.62, + "end": 12460.32, + "probability": 0.9329 + }, + { + "start": 12461.32, + "end": 12462.26, + "probability": 0.6934 + }, + { + "start": 12462.44, + "end": 12462.74, + "probability": 0.8988 + }, + { + "start": 12462.88, + "end": 12468.2, + "probability": 0.9175 + }, + { + "start": 12468.72, + "end": 12474.28, + "probability": 0.6941 + }, + { + "start": 12475.12, + "end": 12476.78, + "probability": 0.924 + }, + { + "start": 12477.96, + "end": 12480.14, + "probability": 0.7817 + }, + { + "start": 12481.24, + "end": 12483.6, + "probability": 0.6809 + }, + { + "start": 12483.78, + "end": 12485.39, + "probability": 0.732 + }, + { + "start": 12486.18, + "end": 12488.54, + "probability": 0.9675 + }, + { + "start": 12489.06, + "end": 12491.07, + "probability": 0.9159 + }, + { + "start": 12491.82, + "end": 12493.56, + "probability": 0.7459 + }, + { + "start": 12494.26, + "end": 12495.44, + "probability": 0.6529 + }, + { + "start": 12496.08, + "end": 12496.5, + "probability": 0.2108 + }, + { + "start": 12497.68, + "end": 12499.22, + "probability": 0.3443 + }, + { + "start": 12499.52, + "end": 12504.52, + "probability": 0.1256 + }, + { + "start": 12505.3, + "end": 12505.34, + "probability": 0.1694 + }, + { + "start": 12506.68, + "end": 12508.34, + "probability": 0.0505 + }, + { + "start": 12508.82, + "end": 12510.32, + "probability": 0.1903 + }, + { + "start": 12510.74, + "end": 12513.66, + "probability": 0.5825 + }, + { + "start": 12513.86, + "end": 12516.56, + "probability": 0.371 + }, + { + "start": 12516.84, + "end": 12518.18, + "probability": 0.6615 + }, + { + "start": 12518.18, + "end": 12519.76, + "probability": 0.3185 + }, + { + "start": 12520.18, + "end": 12521.18, + "probability": 0.6355 + }, + { + "start": 12521.22, + "end": 12523.96, + "probability": 0.1201 + }, + { + "start": 12524.72, + "end": 12525.78, + "probability": 0.7352 + }, + { + "start": 12527.44, + "end": 12529.98, + "probability": 0.6854 + }, + { + "start": 12530.9, + "end": 12534.14, + "probability": 0.7449 + }, + { + "start": 12534.2, + "end": 12535.18, + "probability": 0.8107 + }, + { + "start": 12535.3, + "end": 12536.68, + "probability": 0.649 + }, + { + "start": 12536.74, + "end": 12537.9, + "probability": 0.7456 + }, + { + "start": 12537.92, + "end": 12538.72, + "probability": 0.8691 + }, + { + "start": 12538.74, + "end": 12539.98, + "probability": 0.8344 + }, + { + "start": 12541.42, + "end": 12541.6, + "probability": 0.0312 + }, + { + "start": 12541.6, + "end": 12542.34, + "probability": 0.0728 + }, + { + "start": 12545.59, + "end": 12546.63, + "probability": 0.7259 + }, + { + "start": 12546.65, + "end": 12548.23, + "probability": 0.9932 + }, + { + "start": 12548.39, + "end": 12549.82, + "probability": 0.6164 + }, + { + "start": 12550.35, + "end": 12551.84, + "probability": 0.9199 + }, + { + "start": 12554.61, + "end": 12559.42, + "probability": 0.7857 + }, + { + "start": 12561.51, + "end": 12563.85, + "probability": 0.8906 + }, + { + "start": 12563.95, + "end": 12568.17, + "probability": 0.958 + }, + { + "start": 12568.17, + "end": 12570.99, + "probability": 0.8872 + }, + { + "start": 12571.15, + "end": 12573.25, + "probability": 0.9218 + }, + { + "start": 12573.53, + "end": 12577.73, + "probability": 0.983 + }, + { + "start": 12578.03, + "end": 12582.15, + "probability": 0.9965 + }, + { + "start": 12582.67, + "end": 12585.41, + "probability": 0.5802 + }, + { + "start": 12585.65, + "end": 12586.73, + "probability": 0.3923 + }, + { + "start": 12586.89, + "end": 12588.29, + "probability": 0.8375 + }, + { + "start": 12588.41, + "end": 12592.38, + "probability": 0.8784 + }, + { + "start": 12593.13, + "end": 12597.65, + "probability": 0.9774 + }, + { + "start": 12597.95, + "end": 12601.27, + "probability": 0.8003 + }, + { + "start": 12601.57, + "end": 12604.73, + "probability": 0.9443 + }, + { + "start": 12604.95, + "end": 12606.57, + "probability": 0.79 + }, + { + "start": 12606.67, + "end": 12608.09, + "probability": 0.7869 + }, + { + "start": 12608.21, + "end": 12611.55, + "probability": 0.9738 + }, + { + "start": 12611.83, + "end": 12613.81, + "probability": 0.9802 + }, + { + "start": 12613.97, + "end": 12614.85, + "probability": 0.8485 + }, + { + "start": 12614.99, + "end": 12617.19, + "probability": 0.8221 + }, + { + "start": 12617.63, + "end": 12620.15, + "probability": 0.9216 + }, + { + "start": 12620.31, + "end": 12625.61, + "probability": 0.9835 + }, + { + "start": 12625.77, + "end": 12628.33, + "probability": 0.6951 + }, + { + "start": 12628.59, + "end": 12630.87, + "probability": 0.9685 + }, + { + "start": 12631.25, + "end": 12633.69, + "probability": 0.9568 + }, + { + "start": 12633.97, + "end": 12635.95, + "probability": 0.9813 + }, + { + "start": 12636.13, + "end": 12636.77, + "probability": 0.8025 + }, + { + "start": 12636.91, + "end": 12639.23, + "probability": 0.9172 + }, + { + "start": 12639.41, + "end": 12641.43, + "probability": 0.9451 + }, + { + "start": 12642.61, + "end": 12644.39, + "probability": 0.1626 + }, + { + "start": 12644.59, + "end": 12645.57, + "probability": 0.7676 + }, + { + "start": 12645.73, + "end": 12651.93, + "probability": 0.9932 + }, + { + "start": 12652.07, + "end": 12654.81, + "probability": 0.9941 + }, + { + "start": 12655.01, + "end": 12655.36, + "probability": 0.4458 + }, + { + "start": 12655.81, + "end": 12658.85, + "probability": 0.9879 + }, + { + "start": 12659.43, + "end": 12662.13, + "probability": 0.9657 + }, + { + "start": 12662.79, + "end": 12663.85, + "probability": 0.4713 + }, + { + "start": 12664.11, + "end": 12666.33, + "probability": 0.8462 + }, + { + "start": 12666.69, + "end": 12670.93, + "probability": 0.9878 + }, + { + "start": 12671.31, + "end": 12672.21, + "probability": 0.6227 + }, + { + "start": 12672.37, + "end": 12673.75, + "probability": 0.7992 + }, + { + "start": 12673.79, + "end": 12676.19, + "probability": 0.8934 + }, + { + "start": 12676.69, + "end": 12681.73, + "probability": 0.9419 + }, + { + "start": 12681.73, + "end": 12685.13, + "probability": 0.8949 + }, + { + "start": 12685.39, + "end": 12685.97, + "probability": 0.4428 + }, + { + "start": 12686.09, + "end": 12686.69, + "probability": 0.5569 + }, + { + "start": 12686.75, + "end": 12688.79, + "probability": 0.8145 + }, + { + "start": 12688.83, + "end": 12691.05, + "probability": 0.7009 + }, + { + "start": 12691.23, + "end": 12695.23, + "probability": 0.6666 + }, + { + "start": 12695.75, + "end": 12696.49, + "probability": 0.9066 + }, + { + "start": 12696.57, + "end": 12698.05, + "probability": 0.8813 + }, + { + "start": 12698.07, + "end": 12699.17, + "probability": 0.8167 + }, + { + "start": 12699.55, + "end": 12700.41, + "probability": 0.9816 + }, + { + "start": 12700.53, + "end": 12701.39, + "probability": 0.981 + }, + { + "start": 12701.49, + "end": 12702.5, + "probability": 0.9904 + }, + { + "start": 12702.71, + "end": 12704.93, + "probability": 0.8618 + }, + { + "start": 12705.07, + "end": 12705.81, + "probability": 0.9561 + }, + { + "start": 12706.03, + "end": 12706.31, + "probability": 0.7297 + }, + { + "start": 12706.95, + "end": 12708.97, + "probability": 0.8622 + }, + { + "start": 12709.45, + "end": 12712.23, + "probability": 0.7119 + }, + { + "start": 12717.07, + "end": 12718.15, + "probability": 0.6232 + }, + { + "start": 12718.29, + "end": 12719.53, + "probability": 0.8031 + }, + { + "start": 12719.81, + "end": 12723.03, + "probability": 0.9751 + }, + { + "start": 12723.67, + "end": 12728.75, + "probability": 0.8891 + }, + { + "start": 12728.79, + "end": 12730.45, + "probability": 0.8558 + }, + { + "start": 12730.77, + "end": 12733.11, + "probability": 0.7681 + }, + { + "start": 12733.67, + "end": 12739.99, + "probability": 0.9932 + }, + { + "start": 12740.37, + "end": 12741.14, + "probability": 0.486 + }, + { + "start": 12741.39, + "end": 12744.23, + "probability": 0.82 + }, + { + "start": 12744.61, + "end": 12748.57, + "probability": 0.9782 + }, + { + "start": 12749.07, + "end": 12750.05, + "probability": 0.7521 + }, + { + "start": 12750.79, + "end": 12755.87, + "probability": 0.9749 + }, + { + "start": 12756.47, + "end": 12760.51, + "probability": 0.9375 + }, + { + "start": 12761.93, + "end": 12763.49, + "probability": 0.6121 + }, + { + "start": 12763.87, + "end": 12767.43, + "probability": 0.9478 + }, + { + "start": 12767.69, + "end": 12771.49, + "probability": 0.9692 + }, + { + "start": 12771.61, + "end": 12771.89, + "probability": 0.7104 + }, + { + "start": 12772.05, + "end": 12773.09, + "probability": 0.9512 + }, + { + "start": 12773.75, + "end": 12777.41, + "probability": 0.9932 + }, + { + "start": 12777.49, + "end": 12778.67, + "probability": 0.6404 + }, + { + "start": 12778.93, + "end": 12779.25, + "probability": 0.7222 + }, + { + "start": 12779.57, + "end": 12782.61, + "probability": 0.9323 + }, + { + "start": 12782.65, + "end": 12786.41, + "probability": 0.8573 + }, + { + "start": 12786.65, + "end": 12789.19, + "probability": 0.6313 + }, + { + "start": 12789.63, + "end": 12790.4, + "probability": 0.6354 + }, + { + "start": 12790.65, + "end": 12795.27, + "probability": 0.7031 + }, + { + "start": 12795.47, + "end": 12796.23, + "probability": 0.9415 + }, + { + "start": 12796.57, + "end": 12798.49, + "probability": 0.743 + }, + { + "start": 12798.71, + "end": 12799.48, + "probability": 0.9189 + }, + { + "start": 12808.37, + "end": 12809.77, + "probability": 0.5839 + }, + { + "start": 12810.27, + "end": 12810.91, + "probability": 0.4754 + }, + { + "start": 12818.83, + "end": 12818.83, + "probability": 0.0382 + }, + { + "start": 12818.83, + "end": 12820.75, + "probability": 0.3702 + }, + { + "start": 12820.81, + "end": 12822.25, + "probability": 0.869 + }, + { + "start": 12824.33, + "end": 12826.19, + "probability": 0.2961 + }, + { + "start": 12827.67, + "end": 12831.71, + "probability": 0.5224 + }, + { + "start": 12834.47, + "end": 12841.23, + "probability": 0.2277 + }, + { + "start": 12842.01, + "end": 12842.55, + "probability": 0.0216 + }, + { + "start": 12843.43, + "end": 12845.25, + "probability": 0.0253 + }, + { + "start": 12845.45, + "end": 12846.25, + "probability": 0.0804 + }, + { + "start": 12846.25, + "end": 12846.25, + "probability": 0.0543 + }, + { + "start": 12846.25, + "end": 12846.25, + "probability": 0.372 + }, + { + "start": 12846.25, + "end": 12846.25, + "probability": 0.0828 + }, + { + "start": 12846.25, + "end": 12847.15, + "probability": 0.7076 + }, + { + "start": 12847.15, + "end": 12848.37, + "probability": 0.5548 + }, + { + "start": 12853.13, + "end": 12855.97, + "probability": 0.7254 + }, + { + "start": 12856.53, + "end": 12859.21, + "probability": 0.962 + }, + { + "start": 12860.19, + "end": 12862.44, + "probability": 0.6538 + }, + { + "start": 12863.31, + "end": 12865.53, + "probability": 0.9455 + }, + { + "start": 12865.53, + "end": 12867.73, + "probability": 0.8285 + }, + { + "start": 12868.03, + "end": 12869.45, + "probability": 0.805 + }, + { + "start": 12869.69, + "end": 12872.33, + "probability": 0.9904 + }, + { + "start": 12873.07, + "end": 12875.09, + "probability": 0.067 + }, + { + "start": 12875.09, + "end": 12875.71, + "probability": 0.8654 + }, + { + "start": 12875.83, + "end": 12876.37, + "probability": 0.4926 + }, + { + "start": 12876.53, + "end": 12881.11, + "probability": 0.9297 + }, + { + "start": 12881.27, + "end": 12882.91, + "probability": 0.2399 + }, + { + "start": 12884.37, + "end": 12885.67, + "probability": 0.4218 + }, + { + "start": 12886.15, + "end": 12886.15, + "probability": 0.1434 + }, + { + "start": 12886.15, + "end": 12892.47, + "probability": 0.7296 + }, + { + "start": 12893.55, + "end": 12896.43, + "probability": 0.984 + }, + { + "start": 12896.67, + "end": 12897.49, + "probability": 0.8996 + }, + { + "start": 12897.93, + "end": 12901.71, + "probability": 0.7263 + }, + { + "start": 12902.29, + "end": 12903.87, + "probability": 0.9946 + }, + { + "start": 12905.72, + "end": 12909.59, + "probability": 0.7399 + }, + { + "start": 12910.53, + "end": 12911.51, + "probability": 0.7019 + }, + { + "start": 12912.05, + "end": 12913.99, + "probability": 0.78 + }, + { + "start": 12914.39, + "end": 12915.81, + "probability": 0.8984 + }, + { + "start": 12916.27, + "end": 12918.0, + "probability": 0.8704 + }, + { + "start": 12919.91, + "end": 12925.59, + "probability": 0.9569 + }, + { + "start": 12926.63, + "end": 12929.07, + "probability": 0.8497 + }, + { + "start": 12929.95, + "end": 12931.03, + "probability": 0.9956 + }, + { + "start": 12932.25, + "end": 12932.97, + "probability": 0.8647 + }, + { + "start": 12933.19, + "end": 12936.03, + "probability": 0.9834 + }, + { + "start": 12936.49, + "end": 12937.69, + "probability": 0.9731 + }, + { + "start": 12937.79, + "end": 12940.15, + "probability": 0.9496 + }, + { + "start": 12940.73, + "end": 12942.29, + "probability": 0.8227 + }, + { + "start": 12943.37, + "end": 12949.69, + "probability": 0.9619 + }, + { + "start": 12950.61, + "end": 12953.31, + "probability": 0.7817 + }, + { + "start": 12953.67, + "end": 12954.55, + "probability": 0.4412 + }, + { + "start": 12954.73, + "end": 12955.69, + "probability": 0.903 + }, + { + "start": 12955.75, + "end": 12958.33, + "probability": 0.8322 + }, + { + "start": 12958.33, + "end": 12958.69, + "probability": 0.4313 + }, + { + "start": 12958.69, + "end": 12960.75, + "probability": 0.9893 + }, + { + "start": 12962.33, + "end": 12967.39, + "probability": 0.9901 + }, + { + "start": 12967.97, + "end": 12970.15, + "probability": 0.8402 + }, + { + "start": 12970.81, + "end": 12974.97, + "probability": 0.9612 + }, + { + "start": 12976.27, + "end": 12980.27, + "probability": 0.9526 + }, + { + "start": 12981.05, + "end": 12987.51, + "probability": 0.8584 + }, + { + "start": 12988.47, + "end": 12992.79, + "probability": 0.9604 + }, + { + "start": 12994.65, + "end": 12996.77, + "probability": 0.8364 + }, + { + "start": 12997.05, + "end": 13000.67, + "probability": 0.9946 + }, + { + "start": 13001.21, + "end": 13002.59, + "probability": 0.6389 + }, + { + "start": 13003.93, + "end": 13006.37, + "probability": 0.9914 + }, + { + "start": 13006.49, + "end": 13007.53, + "probability": 0.8516 + }, + { + "start": 13008.59, + "end": 13008.67, + "probability": 0.1816 + }, + { + "start": 13009.01, + "end": 13012.69, + "probability": 0.9577 + }, + { + "start": 13013.69, + "end": 13017.99, + "probability": 0.979 + }, + { + "start": 13019.23, + "end": 13021.69, + "probability": 0.9867 + }, + { + "start": 13021.99, + "end": 13023.27, + "probability": 0.9979 + }, + { + "start": 13025.28, + "end": 13026.15, + "probability": 0.1016 + }, + { + "start": 13026.15, + "end": 13028.83, + "probability": 0.3712 + }, + { + "start": 13029.57, + "end": 13032.09, + "probability": 0.9631 + }, + { + "start": 13032.61, + "end": 13033.55, + "probability": 0.8247 + }, + { + "start": 13033.75, + "end": 13036.63, + "probability": 0.9932 + }, + { + "start": 13037.27, + "end": 13037.62, + "probability": 0.915 + }, + { + "start": 13038.13, + "end": 13038.5, + "probability": 0.9833 + }, + { + "start": 13039.13, + "end": 13040.45, + "probability": 0.9648 + }, + { + "start": 13040.77, + "end": 13041.47, + "probability": 0.7486 + }, + { + "start": 13041.71, + "end": 13043.13, + "probability": 0.9266 + }, + { + "start": 13043.33, + "end": 13045.09, + "probability": 0.9856 + }, + { + "start": 13045.39, + "end": 13052.87, + "probability": 0.8415 + }, + { + "start": 13053.23, + "end": 13054.05, + "probability": 0.6746 + }, + { + "start": 13054.55, + "end": 13055.75, + "probability": 0.9296 + }, + { + "start": 13056.29, + "end": 13058.47, + "probability": 0.9101 + }, + { + "start": 13059.65, + "end": 13063.61, + "probability": 0.9727 + }, + { + "start": 13063.61, + "end": 13065.49, + "probability": 0.7498 + }, + { + "start": 13065.63, + "end": 13067.77, + "probability": 0.7849 + }, + { + "start": 13068.63, + "end": 13072.09, + "probability": 0.9108 + }, + { + "start": 13072.69, + "end": 13075.25, + "probability": 0.9079 + }, + { + "start": 13075.57, + "end": 13077.75, + "probability": 0.9039 + }, + { + "start": 13078.09, + "end": 13079.77, + "probability": 0.9663 + }, + { + "start": 13080.01, + "end": 13082.35, + "probability": 0.656 + }, + { + "start": 13082.45, + "end": 13084.13, + "probability": 0.9741 + }, + { + "start": 13096.23, + "end": 13098.09, + "probability": 0.6987 + }, + { + "start": 13099.21, + "end": 13100.33, + "probability": 0.554 + }, + { + "start": 13105.65, + "end": 13109.33, + "probability": 0.7445 + }, + { + "start": 13110.41, + "end": 13111.91, + "probability": 0.8754 + }, + { + "start": 13112.01, + "end": 13118.37, + "probability": 0.8489 + }, + { + "start": 13120.39, + "end": 13124.59, + "probability": 0.9292 + }, + { + "start": 13125.05, + "end": 13125.07, + "probability": 0.0818 + }, + { + "start": 13125.83, + "end": 13128.33, + "probability": 0.9937 + }, + { + "start": 13129.31, + "end": 13133.35, + "probability": 0.9641 + }, + { + "start": 13134.05, + "end": 13138.13, + "probability": 0.9944 + }, + { + "start": 13138.83, + "end": 13141.01, + "probability": 0.9417 + }, + { + "start": 13141.09, + "end": 13145.91, + "probability": 0.8389 + }, + { + "start": 13145.97, + "end": 13146.77, + "probability": 0.8926 + }, + { + "start": 13148.01, + "end": 13148.35, + "probability": 0.4 + }, + { + "start": 13148.37, + "end": 13150.25, + "probability": 0.8591 + }, + { + "start": 13151.25, + "end": 13153.93, + "probability": 0.9639 + }, + { + "start": 13154.33, + "end": 13159.19, + "probability": 0.959 + }, + { + "start": 13160.41, + "end": 13162.77, + "probability": 0.9235 + }, + { + "start": 13163.21, + "end": 13165.71, + "probability": 0.8823 + }, + { + "start": 13166.01, + "end": 13167.17, + "probability": 0.4296 + }, + { + "start": 13168.73, + "end": 13179.55, + "probability": 0.9941 + }, + { + "start": 13181.71, + "end": 13184.41, + "probability": 0.8916 + }, + { + "start": 13185.45, + "end": 13188.93, + "probability": 0.9737 + }, + { + "start": 13190.55, + "end": 13194.29, + "probability": 0.9285 + }, + { + "start": 13194.89, + "end": 13199.11, + "probability": 0.9664 + }, + { + "start": 13199.27, + "end": 13202.33, + "probability": 0.8868 + }, + { + "start": 13203.03, + "end": 13204.75, + "probability": 0.8564 + }, + { + "start": 13204.89, + "end": 13206.07, + "probability": 0.6871 + }, + { + "start": 13206.11, + "end": 13208.51, + "probability": 0.9764 + }, + { + "start": 13208.63, + "end": 13209.93, + "probability": 0.6741 + }, + { + "start": 13210.17, + "end": 13211.47, + "probability": 0.7982 + }, + { + "start": 13211.67, + "end": 13213.03, + "probability": 0.5088 + }, + { + "start": 13213.07, + "end": 13213.79, + "probability": 0.8046 + }, + { + "start": 13214.35, + "end": 13217.33, + "probability": 0.8481 + }, + { + "start": 13217.37, + "end": 13218.11, + "probability": 0.4371 + }, + { + "start": 13218.79, + "end": 13222.51, + "probability": 0.9671 + }, + { + "start": 13223.31, + "end": 13226.07, + "probability": 0.6333 + }, + { + "start": 13226.19, + "end": 13227.49, + "probability": 0.4711 + }, + { + "start": 13227.71, + "end": 13229.19, + "probability": 0.7138 + }, + { + "start": 13230.03, + "end": 13231.13, + "probability": 0.4987 + }, + { + "start": 13231.83, + "end": 13235.39, + "probability": 0.9475 + }, + { + "start": 13236.09, + "end": 13236.67, + "probability": 0.8146 + }, + { + "start": 13236.79, + "end": 13239.81, + "probability": 0.9543 + }, + { + "start": 13240.01, + "end": 13242.93, + "probability": 0.8181 + }, + { + "start": 13243.03, + "end": 13244.75, + "probability": 0.832 + }, + { + "start": 13244.79, + "end": 13254.12, + "probability": 0.9307 + }, + { + "start": 13256.61, + "end": 13257.31, + "probability": 0.7572 + }, + { + "start": 13258.25, + "end": 13258.49, + "probability": 0.6599 + }, + { + "start": 13258.73, + "end": 13259.97, + "probability": 0.9246 + }, + { + "start": 13260.33, + "end": 13265.07, + "probability": 0.9816 + }, + { + "start": 13265.15, + "end": 13266.75, + "probability": 0.8797 + }, + { + "start": 13268.55, + "end": 13270.93, + "probability": 0.8943 + }, + { + "start": 13271.01, + "end": 13272.91, + "probability": 0.9325 + }, + { + "start": 13272.91, + "end": 13275.21, + "probability": 0.8103 + }, + { + "start": 13275.59, + "end": 13277.47, + "probability": 0.9967 + }, + { + "start": 13277.93, + "end": 13279.33, + "probability": 0.6772 + }, + { + "start": 13279.79, + "end": 13280.81, + "probability": 0.7726 + }, + { + "start": 13280.99, + "end": 13282.63, + "probability": 0.9758 + }, + { + "start": 13282.73, + "end": 13284.05, + "probability": 0.7086 + }, + { + "start": 13285.85, + "end": 13290.71, + "probability": 0.9663 + }, + { + "start": 13291.09, + "end": 13292.99, + "probability": 0.9951 + }, + { + "start": 13293.01, + "end": 13293.39, + "probability": 0.9427 + }, + { + "start": 13293.73, + "end": 13295.63, + "probability": 0.8333 + }, + { + "start": 13296.11, + "end": 13297.69, + "probability": 0.9233 + }, + { + "start": 13311.17, + "end": 13312.47, + "probability": 0.7661 + }, + { + "start": 13319.67, + "end": 13320.35, + "probability": 0.1913 + }, + { + "start": 13320.93, + "end": 13322.19, + "probability": 0.8299 + }, + { + "start": 13323.57, + "end": 13325.65, + "probability": 0.9815 + }, + { + "start": 13327.17, + "end": 13329.83, + "probability": 0.996 + }, + { + "start": 13331.85, + "end": 13334.18, + "probability": 0.9978 + }, + { + "start": 13335.71, + "end": 13338.29, + "probability": 0.8142 + }, + { + "start": 13339.09, + "end": 13342.55, + "probability": 0.9689 + }, + { + "start": 13343.53, + "end": 13344.59, + "probability": 0.4336 + }, + { + "start": 13345.15, + "end": 13349.59, + "probability": 0.984 + }, + { + "start": 13349.77, + "end": 13350.63, + "probability": 0.7358 + }, + { + "start": 13350.71, + "end": 13351.73, + "probability": 0.3719 + }, + { + "start": 13351.85, + "end": 13352.43, + "probability": 0.8312 + }, + { + "start": 13353.09, + "end": 13356.29, + "probability": 0.9522 + }, + { + "start": 13356.35, + "end": 13359.11, + "probability": 0.9979 + }, + { + "start": 13359.59, + "end": 13361.21, + "probability": 0.956 + }, + { + "start": 13361.81, + "end": 13365.13, + "probability": 0.9927 + }, + { + "start": 13365.93, + "end": 13370.41, + "probability": 0.9705 + }, + { + "start": 13371.07, + "end": 13372.93, + "probability": 0.9556 + }, + { + "start": 13373.05, + "end": 13373.75, + "probability": 0.7036 + }, + { + "start": 13373.99, + "end": 13376.85, + "probability": 0.86 + }, + { + "start": 13378.89, + "end": 13381.15, + "probability": 0.9829 + }, + { + "start": 13381.33, + "end": 13382.19, + "probability": 0.9521 + }, + { + "start": 13382.31, + "end": 13383.83, + "probability": 0.9933 + }, + { + "start": 13383.95, + "end": 13384.53, + "probability": 0.3747 + }, + { + "start": 13385.39, + "end": 13390.25, + "probability": 0.9873 + }, + { + "start": 13390.55, + "end": 13391.79, + "probability": 0.9433 + }, + { + "start": 13391.93, + "end": 13396.35, + "probability": 0.8354 + }, + { + "start": 13396.51, + "end": 13398.07, + "probability": 0.9833 + }, + { + "start": 13398.53, + "end": 13399.45, + "probability": 0.924 + }, + { + "start": 13399.99, + "end": 13402.01, + "probability": 0.934 + }, + { + "start": 13402.17, + "end": 13404.01, + "probability": 0.707 + }, + { + "start": 13404.51, + "end": 13407.95, + "probability": 0.9407 + }, + { + "start": 13408.39, + "end": 13410.11, + "probability": 0.948 + }, + { + "start": 13410.51, + "end": 13411.59, + "probability": 0.7211 + }, + { + "start": 13411.61, + "end": 13412.31, + "probability": 0.9611 + }, + { + "start": 13413.33, + "end": 13417.73, + "probability": 0.7282 + }, + { + "start": 13418.27, + "end": 13420.37, + "probability": 0.9897 + }, + { + "start": 13421.03, + "end": 13423.68, + "probability": 0.7891 + }, + { + "start": 13424.87, + "end": 13426.03, + "probability": 0.8765 + }, + { + "start": 13426.23, + "end": 13427.54, + "probability": 0.9702 + }, + { + "start": 13428.69, + "end": 13431.67, + "probability": 0.9382 + }, + { + "start": 13432.31, + "end": 13433.45, + "probability": 0.727 + }, + { + "start": 13433.81, + "end": 13436.89, + "probability": 0.8448 + }, + { + "start": 13437.25, + "end": 13440.19, + "probability": 0.9915 + }, + { + "start": 13440.31, + "end": 13443.29, + "probability": 0.9952 + }, + { + "start": 13443.41, + "end": 13444.01, + "probability": 0.8616 + }, + { + "start": 13444.63, + "end": 13447.01, + "probability": 0.8502 + }, + { + "start": 13447.11, + "end": 13448.05, + "probability": 0.7711 + }, + { + "start": 13449.05, + "end": 13450.43, + "probability": 0.8231 + }, + { + "start": 13450.75, + "end": 13452.77, + "probability": 0.9881 + }, + { + "start": 13454.09, + "end": 13456.58, + "probability": 0.8203 + }, + { + "start": 13457.35, + "end": 13459.4, + "probability": 0.6865 + }, + { + "start": 13459.65, + "end": 13461.67, + "probability": 0.9486 + }, + { + "start": 13462.27, + "end": 13465.65, + "probability": 0.7305 + }, + { + "start": 13465.73, + "end": 13467.39, + "probability": 0.9101 + }, + { + "start": 13467.83, + "end": 13467.85, + "probability": 0.2424 + }, + { + "start": 13467.91, + "end": 13468.27, + "probability": 0.8262 + }, + { + "start": 13468.43, + "end": 13471.61, + "probability": 0.865 + }, + { + "start": 13472.71, + "end": 13476.01, + "probability": 0.7517 + }, + { + "start": 13476.35, + "end": 13477.11, + "probability": 0.6276 + }, + { + "start": 13477.19, + "end": 13477.91, + "probability": 0.9573 + }, + { + "start": 13478.01, + "end": 13480.37, + "probability": 0.7105 + }, + { + "start": 13480.47, + "end": 13481.17, + "probability": 0.9408 + }, + { + "start": 13481.65, + "end": 13484.69, + "probability": 0.9404 + }, + { + "start": 13485.97, + "end": 13487.3, + "probability": 0.6383 + }, + { + "start": 13488.15, + "end": 13489.58, + "probability": 0.803 + }, + { + "start": 13490.29, + "end": 13492.05, + "probability": 0.9743 + }, + { + "start": 13492.63, + "end": 13495.61, + "probability": 0.6821 + }, + { + "start": 13495.67, + "end": 13496.04, + "probability": 0.9307 + }, + { + "start": 13496.41, + "end": 13496.75, + "probability": 0.0373 + }, + { + "start": 13497.07, + "end": 13498.69, + "probability": 0.5509 + }, + { + "start": 13499.49, + "end": 13503.63, + "probability": 0.944 + }, + { + "start": 13503.63, + "end": 13503.91, + "probability": 0.4509 + }, + { + "start": 13504.21, + "end": 13505.39, + "probability": 0.7958 + }, + { + "start": 13505.73, + "end": 13507.41, + "probability": 0.9907 + }, + { + "start": 13507.81, + "end": 13509.66, + "probability": 0.989 + }, + { + "start": 13510.09, + "end": 13510.75, + "probability": 0.717 + }, + { + "start": 13510.93, + "end": 13511.39, + "probability": 0.6441 + }, + { + "start": 13511.85, + "end": 13512.33, + "probability": 0.9172 + }, + { + "start": 13512.41, + "end": 13515.71, + "probability": 0.9328 + }, + { + "start": 13515.81, + "end": 13517.15, + "probability": 0.8082 + }, + { + "start": 13517.21, + "end": 13519.87, + "probability": 0.8986 + }, + { + "start": 13520.21, + "end": 13520.99, + "probability": 0.8036 + }, + { + "start": 13521.09, + "end": 13522.36, + "probability": 0.9562 + }, + { + "start": 13523.17, + "end": 13525.51, + "probability": 0.9659 + }, + { + "start": 13526.11, + "end": 13529.17, + "probability": 0.7501 + }, + { + "start": 13529.57, + "end": 13531.35, + "probability": 0.9542 + }, + { + "start": 13531.47, + "end": 13532.81, + "probability": 0.8724 + }, + { + "start": 13532.87, + "end": 13533.89, + "probability": 0.9263 + }, + { + "start": 13534.19, + "end": 13535.01, + "probability": 0.7207 + }, + { + "start": 13535.55, + "end": 13537.6, + "probability": 0.7996 + }, + { + "start": 13537.97, + "end": 13540.17, + "probability": 0.9978 + }, + { + "start": 13540.53, + "end": 13540.67, + "probability": 0.0924 + }, + { + "start": 13540.67, + "end": 13540.73, + "probability": 0.5227 + }, + { + "start": 13540.75, + "end": 13543.53, + "probability": 0.976 + }, + { + "start": 13543.61, + "end": 13544.55, + "probability": 0.9397 + }, + { + "start": 13544.57, + "end": 13545.39, + "probability": 0.9005 + }, + { + "start": 13545.75, + "end": 13545.93, + "probability": 0.9017 + }, + { + "start": 13546.45, + "end": 13548.93, + "probability": 0.957 + }, + { + "start": 13549.09, + "end": 13551.07, + "probability": 0.7876 + }, + { + "start": 13551.79, + "end": 13553.09, + "probability": 0.7478 + }, + { + "start": 13567.33, + "end": 13567.39, + "probability": 0.0426 + }, + { + "start": 13578.19, + "end": 13580.71, + "probability": 0.7093 + }, + { + "start": 13582.41, + "end": 13583.66, + "probability": 0.9812 + }, + { + "start": 13584.29, + "end": 13588.11, + "probability": 0.9813 + }, + { + "start": 13589.33, + "end": 13593.53, + "probability": 0.8314 + }, + { + "start": 13594.99, + "end": 13597.55, + "probability": 0.9264 + }, + { + "start": 13599.03, + "end": 13601.47, + "probability": 0.9673 + }, + { + "start": 13601.47, + "end": 13606.17, + "probability": 0.9912 + }, + { + "start": 13607.21, + "end": 13609.95, + "probability": 0.9958 + }, + { + "start": 13611.37, + "end": 13612.93, + "probability": 0.7251 + }, + { + "start": 13614.39, + "end": 13618.15, + "probability": 0.9284 + }, + { + "start": 13619.77, + "end": 13622.67, + "probability": 0.7033 + }, + { + "start": 13622.81, + "end": 13624.17, + "probability": 0.8942 + }, + { + "start": 13624.29, + "end": 13625.65, + "probability": 0.8142 + }, + { + "start": 13626.63, + "end": 13629.73, + "probability": 0.8281 + }, + { + "start": 13630.39, + "end": 13631.87, + "probability": 0.774 + }, + { + "start": 13637.69, + "end": 13640.57, + "probability": 0.7661 + }, + { + "start": 13641.15, + "end": 13642.31, + "probability": 0.7875 + }, + { + "start": 13643.59, + "end": 13649.09, + "probability": 0.9419 + }, + { + "start": 13649.21, + "end": 13650.45, + "probability": 0.5143 + }, + { + "start": 13650.49, + "end": 13651.89, + "probability": 0.963 + }, + { + "start": 13652.91, + "end": 13654.49, + "probability": 0.8216 + }, + { + "start": 13654.87, + "end": 13656.47, + "probability": 0.8318 + }, + { + "start": 13657.53, + "end": 13659.97, + "probability": 0.9964 + }, + { + "start": 13660.09, + "end": 13661.47, + "probability": 0.1627 + }, + { + "start": 13662.15, + "end": 13662.79, + "probability": 0.7834 + }, + { + "start": 13662.89, + "end": 13665.31, + "probability": 0.9916 + }, + { + "start": 13666.41, + "end": 13671.07, + "probability": 0.9349 + }, + { + "start": 13671.07, + "end": 13673.83, + "probability": 0.9771 + }, + { + "start": 13674.77, + "end": 13677.43, + "probability": 0.6737 + }, + { + "start": 13678.21, + "end": 13678.67, + "probability": 0.4458 + }, + { + "start": 13678.67, + "end": 13680.17, + "probability": 0.8067 + }, + { + "start": 13680.27, + "end": 13681.21, + "probability": 0.9556 + }, + { + "start": 13681.33, + "end": 13685.11, + "probability": 0.9474 + }, + { + "start": 13685.49, + "end": 13690.91, + "probability": 0.9351 + }, + { + "start": 13691.81, + "end": 13695.17, + "probability": 0.8295 + }, + { + "start": 13696.01, + "end": 13700.27, + "probability": 0.9955 + }, + { + "start": 13701.05, + "end": 13703.31, + "probability": 0.7322 + }, + { + "start": 13703.89, + "end": 13705.79, + "probability": 0.9942 + }, + { + "start": 13706.63, + "end": 13711.11, + "probability": 0.8934 + }, + { + "start": 13711.69, + "end": 13712.97, + "probability": 0.8822 + }, + { + "start": 13713.31, + "end": 13718.05, + "probability": 0.961 + }, + { + "start": 13718.93, + "end": 13722.73, + "probability": 0.7992 + }, + { + "start": 13723.31, + "end": 13727.11, + "probability": 0.987 + }, + { + "start": 13728.21, + "end": 13731.15, + "probability": 0.953 + }, + { + "start": 13731.37, + "end": 13731.87, + "probability": 0.7668 + }, + { + "start": 13732.59, + "end": 13735.19, + "probability": 0.6634 + }, + { + "start": 13735.31, + "end": 13735.95, + "probability": 0.7198 + }, + { + "start": 13736.03, + "end": 13738.37, + "probability": 0.9363 + }, + { + "start": 13739.39, + "end": 13739.81, + "probability": 0.5962 + }, + { + "start": 13740.11, + "end": 13742.91, + "probability": 0.8672 + }, + { + "start": 13742.91, + "end": 13746.11, + "probability": 0.9087 + }, + { + "start": 13747.05, + "end": 13751.59, + "probability": 0.9109 + }, + { + "start": 13752.59, + "end": 13754.15, + "probability": 0.8159 + }, + { + "start": 13754.57, + "end": 13754.99, + "probability": 0.8005 + }, + { + "start": 13755.17, + "end": 13759.37, + "probability": 0.9438 + }, + { + "start": 13760.67, + "end": 13764.23, + "probability": 0.9827 + }, + { + "start": 13764.77, + "end": 13766.05, + "probability": 0.7915 + }, + { + "start": 13766.37, + "end": 13767.8, + "probability": 0.6885 + }, + { + "start": 13768.81, + "end": 13772.07, + "probability": 0.9548 + }, + { + "start": 13772.07, + "end": 13776.31, + "probability": 0.984 + }, + { + "start": 13777.29, + "end": 13778.85, + "probability": 0.7239 + }, + { + "start": 13778.93, + "end": 13783.01, + "probability": 0.9051 + }, + { + "start": 13783.11, + "end": 13785.03, + "probability": 0.9727 + }, + { + "start": 13785.79, + "end": 13789.39, + "probability": 0.9819 + }, + { + "start": 13789.39, + "end": 13794.23, + "probability": 0.966 + }, + { + "start": 13795.21, + "end": 13798.51, + "probability": 0.6334 + }, + { + "start": 13799.11, + "end": 13803.43, + "probability": 0.9117 + }, + { + "start": 13803.53, + "end": 13805.55, + "probability": 0.6602 + }, + { + "start": 13805.55, + "end": 13807.85, + "probability": 0.7833 + }, + { + "start": 13808.61, + "end": 13813.05, + "probability": 0.9854 + }, + { + "start": 13813.73, + "end": 13814.39, + "probability": 0.7041 + }, + { + "start": 13814.51, + "end": 13816.15, + "probability": 0.9097 + }, + { + "start": 13816.21, + "end": 13817.19, + "probability": 0.6715 + }, + { + "start": 13818.45, + "end": 13819.19, + "probability": 0.4308 + }, + { + "start": 13819.41, + "end": 13820.25, + "probability": 0.6602 + }, + { + "start": 13820.67, + "end": 13821.87, + "probability": 0.611 + }, + { + "start": 13822.13, + "end": 13825.33, + "probability": 0.903 + }, + { + "start": 13825.93, + "end": 13829.15, + "probability": 0.8695 + }, + { + "start": 13829.91, + "end": 13830.63, + "probability": 0.9518 + }, + { + "start": 13830.99, + "end": 13838.67, + "probability": 0.9029 + }, + { + "start": 13839.41, + "end": 13843.29, + "probability": 0.9875 + }, + { + "start": 13843.67, + "end": 13844.86, + "probability": 0.9739 + }, + { + "start": 13846.15, + "end": 13850.83, + "probability": 0.9438 + }, + { + "start": 13851.41, + "end": 13853.71, + "probability": 0.8048 + }, + { + "start": 13853.75, + "end": 13855.33, + "probability": 0.7064 + }, + { + "start": 13857.93, + "end": 13858.39, + "probability": 0.0648 + }, + { + "start": 13859.73, + "end": 13861.01, + "probability": 0.8852 + }, + { + "start": 13883.13, + "end": 13883.13, + "probability": 0.327 + }, + { + "start": 13883.13, + "end": 13885.25, + "probability": 0.5952 + }, + { + "start": 13886.65, + "end": 13889.31, + "probability": 0.3275 + }, + { + "start": 13889.31, + "end": 13890.33, + "probability": 0.3813 + }, + { + "start": 13890.91, + "end": 13894.47, + "probability": 0.7053 + }, + { + "start": 13894.93, + "end": 13895.05, + "probability": 0.018 + }, + { + "start": 13895.05, + "end": 13895.05, + "probability": 0.0797 + }, + { + "start": 13895.05, + "end": 13896.57, + "probability": 0.8166 + }, + { + "start": 13915.69, + "end": 13917.83, + "probability": 0.6797 + }, + { + "start": 13920.53, + "end": 13922.55, + "probability": 0.3844 + }, + { + "start": 13923.27, + "end": 13925.58, + "probability": 0.5885 + }, + { + "start": 13927.16, + "end": 13932.43, + "probability": 0.9066 + }, + { + "start": 13933.69, + "end": 13934.87, + "probability": 0.9281 + }, + { + "start": 13935.51, + "end": 13943.91, + "probability": 0.9789 + }, + { + "start": 13945.19, + "end": 13947.45, + "probability": 0.7662 + }, + { + "start": 13947.63, + "end": 13951.49, + "probability": 0.979 + }, + { + "start": 13952.47, + "end": 13954.63, + "probability": 0.6661 + }, + { + "start": 13955.49, + "end": 13958.09, + "probability": 0.9898 + }, + { + "start": 13958.45, + "end": 13966.11, + "probability": 0.9577 + }, + { + "start": 13966.11, + "end": 13972.49, + "probability": 0.8987 + }, + { + "start": 13972.99, + "end": 13974.91, + "probability": 0.8174 + }, + { + "start": 13975.69, + "end": 13979.87, + "probability": 0.9258 + }, + { + "start": 13981.71, + "end": 13983.49, + "probability": 0.7355 + }, + { + "start": 13983.79, + "end": 13984.83, + "probability": 0.8439 + }, + { + "start": 13985.62, + "end": 13989.21, + "probability": 0.9927 + }, + { + "start": 13989.27, + "end": 13990.01, + "probability": 0.9249 + }, + { + "start": 13990.59, + "end": 13996.09, + "probability": 0.9579 + }, + { + "start": 13996.79, + "end": 13997.67, + "probability": 0.9988 + }, + { + "start": 13998.25, + "end": 14000.14, + "probability": 0.8762 + }, + { + "start": 14001.85, + "end": 14006.19, + "probability": 0.9852 + }, + { + "start": 14007.23, + "end": 14008.21, + "probability": 0.4956 + }, + { + "start": 14009.37, + "end": 14011.25, + "probability": 0.6569 + }, + { + "start": 14011.55, + "end": 14015.19, + "probability": 0.996 + }, + { + "start": 14016.03, + "end": 14019.17, + "probability": 0.953 + }, + { + "start": 14019.23, + "end": 14020.05, + "probability": 0.9167 + }, + { + "start": 14020.15, + "end": 14021.53, + "probability": 0.8787 + }, + { + "start": 14021.93, + "end": 14026.37, + "probability": 0.9604 + }, + { + "start": 14026.61, + "end": 14027.09, + "probability": 0.9946 + }, + { + "start": 14027.67, + "end": 14029.27, + "probability": 0.9846 + }, + { + "start": 14030.51, + "end": 14031.59, + "probability": 0.9255 + }, + { + "start": 14032.15, + "end": 14037.03, + "probability": 0.9486 + }, + { + "start": 14038.11, + "end": 14039.07, + "probability": 0.8854 + }, + { + "start": 14039.57, + "end": 14042.09, + "probability": 0.995 + }, + { + "start": 14043.11, + "end": 14049.89, + "probability": 0.9751 + }, + { + "start": 14050.83, + "end": 14052.23, + "probability": 0.6724 + }, + { + "start": 14052.37, + "end": 14056.65, + "probability": 0.9569 + }, + { + "start": 14057.19, + "end": 14059.29, + "probability": 0.7111 + }, + { + "start": 14059.39, + "end": 14059.97, + "probability": 0.9362 + }, + { + "start": 14060.33, + "end": 14061.09, + "probability": 0.9208 + }, + { + "start": 14061.27, + "end": 14061.79, + "probability": 0.6447 + }, + { + "start": 14062.43, + "end": 14064.37, + "probability": 0.8108 + }, + { + "start": 14065.19, + "end": 14067.79, + "probability": 0.8907 + }, + { + "start": 14068.45, + "end": 14070.39, + "probability": 0.9978 + }, + { + "start": 14071.63, + "end": 14073.43, + "probability": 0.85 + }, + { + "start": 14073.63, + "end": 14074.73, + "probability": 0.6072 + }, + { + "start": 14074.87, + "end": 14079.1, + "probability": 0.9857 + }, + { + "start": 14079.23, + "end": 14085.27, + "probability": 0.9518 + }, + { + "start": 14085.45, + "end": 14086.63, + "probability": 0.9248 + }, + { + "start": 14087.21, + "end": 14090.79, + "probability": 0.9076 + }, + { + "start": 14090.79, + "end": 14094.21, + "probability": 0.9468 + }, + { + "start": 14095.05, + "end": 14097.55, + "probability": 0.9886 + }, + { + "start": 14098.13, + "end": 14099.59, + "probability": 0.4692 + }, + { + "start": 14100.53, + "end": 14104.51, + "probability": 0.9172 + }, + { + "start": 14105.07, + "end": 14106.11, + "probability": 0.9695 + }, + { + "start": 14106.21, + "end": 14108.25, + "probability": 0.5511 + }, + { + "start": 14108.27, + "end": 14110.75, + "probability": 0.968 + }, + { + "start": 14110.87, + "end": 14111.41, + "probability": 0.6309 + }, + { + "start": 14113.54, + "end": 14115.61, + "probability": 0.7408 + }, + { + "start": 14116.55, + "end": 14118.97, + "probability": 0.9975 + }, + { + "start": 14120.59, + "end": 14124.07, + "probability": 0.7991 + }, + { + "start": 14124.85, + "end": 14126.85, + "probability": 0.7959 + }, + { + "start": 14127.83, + "end": 14129.45, + "probability": 0.9063 + }, + { + "start": 14130.46, + "end": 14137.71, + "probability": 0.9644 + }, + { + "start": 14138.55, + "end": 14140.85, + "probability": 0.9872 + }, + { + "start": 14142.15, + "end": 14142.92, + "probability": 0.4736 + }, + { + "start": 14143.77, + "end": 14148.81, + "probability": 0.9924 + }, + { + "start": 14149.37, + "end": 14151.57, + "probability": 0.9316 + }, + { + "start": 14152.07, + "end": 14153.33, + "probability": 0.7542 + }, + { + "start": 14154.09, + "end": 14155.51, + "probability": 0.4038 + }, + { + "start": 14155.51, + "end": 14156.47, + "probability": 0.4136 + }, + { + "start": 14156.87, + "end": 14156.93, + "probability": 0.2082 + }, + { + "start": 14157.43, + "end": 14160.55, + "probability": 0.9419 + }, + { + "start": 14160.69, + "end": 14164.51, + "probability": 0.9385 + }, + { + "start": 14165.43, + "end": 14168.63, + "probability": 0.9639 + }, + { + "start": 14168.63, + "end": 14172.37, + "probability": 0.9745 + }, + { + "start": 14172.57, + "end": 14174.55, + "probability": 0.9321 + }, + { + "start": 14175.41, + "end": 14176.49, + "probability": 0.9063 + }, + { + "start": 14176.79, + "end": 14178.75, + "probability": 0.9683 + }, + { + "start": 14179.33, + "end": 14181.41, + "probability": 0.9946 + }, + { + "start": 14181.67, + "end": 14182.5, + "probability": 0.3826 + }, + { + "start": 14183.35, + "end": 14186.57, + "probability": 0.9946 + }, + { + "start": 14187.19, + "end": 14188.63, + "probability": 0.9691 + }, + { + "start": 14188.85, + "end": 14190.99, + "probability": 0.989 + }, + { + "start": 14191.69, + "end": 14195.47, + "probability": 0.904 + }, + { + "start": 14195.51, + "end": 14195.61, + "probability": 0.7445 + }, + { + "start": 14196.41, + "end": 14198.43, + "probability": 0.9777 + }, + { + "start": 14198.47, + "end": 14200.09, + "probability": 0.9177 + }, + { + "start": 14220.55, + "end": 14221.81, + "probability": 0.2132 + }, + { + "start": 14222.69, + "end": 14223.77, + "probability": 0.4937 + }, + { + "start": 14225.19, + "end": 14226.41, + "probability": 0.8521 + }, + { + "start": 14227.09, + "end": 14229.35, + "probability": 0.8963 + }, + { + "start": 14230.31, + "end": 14233.25, + "probability": 0.9936 + }, + { + "start": 14233.45, + "end": 14233.95, + "probability": 0.6962 + }, + { + "start": 14236.11, + "end": 14236.99, + "probability": 0.9604 + }, + { + "start": 14237.11, + "end": 14240.97, + "probability": 0.9014 + }, + { + "start": 14241.13, + "end": 14242.29, + "probability": 0.741 + }, + { + "start": 14242.93, + "end": 14246.11, + "probability": 0.9962 + }, + { + "start": 14246.19, + "end": 14250.65, + "probability": 0.993 + }, + { + "start": 14250.75, + "end": 14252.77, + "probability": 0.7561 + }, + { + "start": 14253.03, + "end": 14254.29, + "probability": 0.9979 + }, + { + "start": 14254.45, + "end": 14255.25, + "probability": 0.9888 + }, + { + "start": 14255.93, + "end": 14258.63, + "probability": 0.8555 + }, + { + "start": 14259.21, + "end": 14262.21, + "probability": 0.7948 + }, + { + "start": 14262.37, + "end": 14263.63, + "probability": 0.9814 + }, + { + "start": 14263.79, + "end": 14264.73, + "probability": 0.8537 + }, + { + "start": 14265.51, + "end": 14266.49, + "probability": 0.9789 + }, + { + "start": 14268.49, + "end": 14270.79, + "probability": 0.9665 + }, + { + "start": 14272.98, + "end": 14275.23, + "probability": 0.9883 + }, + { + "start": 14275.71, + "end": 14276.94, + "probability": 0.9917 + }, + { + "start": 14278.17, + "end": 14279.25, + "probability": 0.9221 + }, + { + "start": 14279.81, + "end": 14280.69, + "probability": 0.9359 + }, + { + "start": 14280.79, + "end": 14282.43, + "probability": 0.9518 + }, + { + "start": 14283.89, + "end": 14284.63, + "probability": 0.799 + }, + { + "start": 14284.83, + "end": 14286.51, + "probability": 0.8821 + }, + { + "start": 14286.59, + "end": 14287.43, + "probability": 0.9241 + }, + { + "start": 14287.83, + "end": 14289.98, + "probability": 0.9821 + }, + { + "start": 14290.93, + "end": 14293.35, + "probability": 0.9744 + }, + { + "start": 14293.63, + "end": 14299.21, + "probability": 0.9927 + }, + { + "start": 14299.25, + "end": 14300.85, + "probability": 0.7241 + }, + { + "start": 14301.85, + "end": 14302.67, + "probability": 0.4536 + }, + { + "start": 14303.03, + "end": 14305.57, + "probability": 0.8845 + }, + { + "start": 14306.11, + "end": 14307.11, + "probability": 0.9648 + }, + { + "start": 14308.13, + "end": 14309.57, + "probability": 0.6645 + }, + { + "start": 14310.19, + "end": 14311.2, + "probability": 0.9546 + }, + { + "start": 14311.51, + "end": 14315.51, + "probability": 0.957 + }, + { + "start": 14315.59, + "end": 14316.39, + "probability": 0.7489 + }, + { + "start": 14316.47, + "end": 14317.71, + "probability": 0.9954 + }, + { + "start": 14317.81, + "end": 14319.27, + "probability": 0.9949 + }, + { + "start": 14319.91, + "end": 14324.63, + "probability": 0.9624 + }, + { + "start": 14324.69, + "end": 14325.77, + "probability": 0.9415 + }, + { + "start": 14326.43, + "end": 14328.09, + "probability": 0.8851 + }, + { + "start": 14328.17, + "end": 14329.01, + "probability": 0.616 + }, + { + "start": 14329.33, + "end": 14329.63, + "probability": 0.9275 + }, + { + "start": 14329.69, + "end": 14331.41, + "probability": 0.7659 + }, + { + "start": 14332.15, + "end": 14335.25, + "probability": 0.6812 + }, + { + "start": 14335.37, + "end": 14336.05, + "probability": 0.9758 + }, + { + "start": 14336.13, + "end": 14337.51, + "probability": 0.9347 + }, + { + "start": 14338.15, + "end": 14340.87, + "probability": 0.9453 + }, + { + "start": 14342.33, + "end": 14342.49, + "probability": 0.0416 + }, + { + "start": 14342.49, + "end": 14343.55, + "probability": 0.9466 + }, + { + "start": 14345.01, + "end": 14346.09, + "probability": 0.8748 + }, + { + "start": 14346.69, + "end": 14347.81, + "probability": 0.9901 + }, + { + "start": 14347.87, + "end": 14349.91, + "probability": 0.9854 + }, + { + "start": 14350.03, + "end": 14350.85, + "probability": 0.9868 + }, + { + "start": 14350.91, + "end": 14352.09, + "probability": 0.9741 + }, + { + "start": 14353.81, + "end": 14357.57, + "probability": 0.9136 + }, + { + "start": 14357.93, + "end": 14359.03, + "probability": 0.9172 + }, + { + "start": 14359.41, + "end": 14361.53, + "probability": 0.9645 + }, + { + "start": 14361.61, + "end": 14361.71, + "probability": 0.3431 + }, + { + "start": 14361.83, + "end": 14361.95, + "probability": 0.1058 + }, + { + "start": 14362.81, + "end": 14365.01, + "probability": 0.692 + }, + { + "start": 14366.39, + "end": 14367.23, + "probability": 0.8242 + }, + { + "start": 14367.59, + "end": 14368.47, + "probability": 0.9717 + }, + { + "start": 14368.59, + "end": 14369.13, + "probability": 0.928 + }, + { + "start": 14369.69, + "end": 14370.43, + "probability": 0.9453 + }, + { + "start": 14371.83, + "end": 14373.03, + "probability": 0.9946 + }, + { + "start": 14373.53, + "end": 14377.16, + "probability": 0.9937 + }, + { + "start": 14378.43, + "end": 14378.67, + "probability": 0.8931 + }, + { + "start": 14378.73, + "end": 14380.19, + "probability": 0.9277 + }, + { + "start": 14380.53, + "end": 14380.83, + "probability": 0.5502 + }, + { + "start": 14380.83, + "end": 14381.81, + "probability": 0.8368 + }, + { + "start": 14381.87, + "end": 14382.75, + "probability": 0.988 + }, + { + "start": 14382.81, + "end": 14382.99, + "probability": 0.8043 + }, + { + "start": 14383.07, + "end": 14386.07, + "probability": 0.9701 + }, + { + "start": 14386.13, + "end": 14387.55, + "probability": 0.992 + }, + { + "start": 14387.65, + "end": 14388.53, + "probability": 0.8635 + }, + { + "start": 14388.69, + "end": 14390.59, + "probability": 0.9619 + }, + { + "start": 14391.27, + "end": 14391.69, + "probability": 0.0639 + }, + { + "start": 14391.87, + "end": 14392.95, + "probability": 0.5863 + }, + { + "start": 14393.17, + "end": 14393.43, + "probability": 0.4458 + }, + { + "start": 14393.57, + "end": 14394.49, + "probability": 0.8476 + }, + { + "start": 14394.49, + "end": 14394.99, + "probability": 0.813 + }, + { + "start": 14395.11, + "end": 14396.28, + "probability": 0.8962 + }, + { + "start": 14396.87, + "end": 14397.27, + "probability": 0.4023 + }, + { + "start": 14397.37, + "end": 14397.47, + "probability": 0.8508 + }, + { + "start": 14397.55, + "end": 14398.05, + "probability": 0.9578 + }, + { + "start": 14398.15, + "end": 14399.07, + "probability": 0.7495 + }, + { + "start": 14399.15, + "end": 14399.77, + "probability": 0.9032 + }, + { + "start": 14400.71, + "end": 14403.83, + "probability": 0.8623 + }, + { + "start": 14404.97, + "end": 14406.57, + "probability": 0.7373 + }, + { + "start": 14407.29, + "end": 14409.43, + "probability": 0.8139 + }, + { + "start": 14409.93, + "end": 14412.27, + "probability": 0.9987 + }, + { + "start": 14412.85, + "end": 14414.01, + "probability": 0.6709 + }, + { + "start": 14414.09, + "end": 14415.29, + "probability": 0.9849 + }, + { + "start": 14415.65, + "end": 14416.45, + "probability": 0.8692 + }, + { + "start": 14417.03, + "end": 14418.32, + "probability": 0.9958 + }, + { + "start": 14418.57, + "end": 14420.21, + "probability": 0.8718 + }, + { + "start": 14421.43, + "end": 14422.91, + "probability": 0.9731 + }, + { + "start": 14423.53, + "end": 14424.13, + "probability": 0.9122 + }, + { + "start": 14424.77, + "end": 14425.89, + "probability": 0.9325 + }, + { + "start": 14426.03, + "end": 14427.95, + "probability": 0.9704 + }, + { + "start": 14428.67, + "end": 14429.93, + "probability": 0.7889 + }, + { + "start": 14430.43, + "end": 14432.11, + "probability": 0.9347 + }, + { + "start": 14432.17, + "end": 14433.05, + "probability": 0.8902 + }, + { + "start": 14433.11, + "end": 14433.91, + "probability": 0.6994 + }, + { + "start": 14435.0, + "end": 14436.43, + "probability": 0.7555 + }, + { + "start": 14436.55, + "end": 14438.05, + "probability": 0.3922 + }, + { + "start": 14438.25, + "end": 14438.73, + "probability": 0.8337 + }, + { + "start": 14438.85, + "end": 14440.03, + "probability": 0.9475 + }, + { + "start": 14440.79, + "end": 14441.75, + "probability": 0.9875 + }, + { + "start": 14441.91, + "end": 14442.81, + "probability": 0.9562 + }, + { + "start": 14443.05, + "end": 14444.09, + "probability": 0.9954 + }, + { + "start": 14444.69, + "end": 14447.33, + "probability": 0.9953 + }, + { + "start": 14447.49, + "end": 14448.49, + "probability": 0.8879 + }, + { + "start": 14449.19, + "end": 14451.57, + "probability": 0.9863 + }, + { + "start": 14451.67, + "end": 14452.95, + "probability": 0.8414 + }, + { + "start": 14453.11, + "end": 14456.05, + "probability": 0.8142 + }, + { + "start": 14456.45, + "end": 14457.39, + "probability": 0.6066 + }, + { + "start": 14457.53, + "end": 14458.47, + "probability": 0.8188 + }, + { + "start": 14458.53, + "end": 14459.13, + "probability": 0.5577 + }, + { + "start": 14459.65, + "end": 14460.11, + "probability": 0.6397 + }, + { + "start": 14460.19, + "end": 14460.65, + "probability": 0.9312 + }, + { + "start": 14460.99, + "end": 14461.79, + "probability": 0.9509 + }, + { + "start": 14462.69, + "end": 14464.27, + "probability": 0.98 + }, + { + "start": 14465.41, + "end": 14467.43, + "probability": 0.9917 + }, + { + "start": 14468.35, + "end": 14469.12, + "probability": 0.762 + }, + { + "start": 14469.47, + "end": 14470.87, + "probability": 0.6803 + }, + { + "start": 14470.93, + "end": 14473.15, + "probability": 0.8987 + }, + { + "start": 14478.31, + "end": 14480.95, + "probability": 0.9376 + }, + { + "start": 14481.15, + "end": 14486.15, + "probability": 0.9852 + }, + { + "start": 14502.93, + "end": 14505.55, + "probability": 0.679 + }, + { + "start": 14507.09, + "end": 14515.97, + "probability": 0.8293 + }, + { + "start": 14516.46, + "end": 14518.23, + "probability": 0.9337 + }, + { + "start": 14518.49, + "end": 14521.19, + "probability": 0.925 + }, + { + "start": 14524.01, + "end": 14528.41, + "probability": 0.9459 + }, + { + "start": 14530.19, + "end": 14535.91, + "probability": 0.8823 + }, + { + "start": 14536.39, + "end": 14539.09, + "probability": 0.8309 + }, + { + "start": 14540.47, + "end": 14545.03, + "probability": 0.5769 + }, + { + "start": 14545.61, + "end": 14549.43, + "probability": 0.8981 + }, + { + "start": 14550.65, + "end": 14552.19, + "probability": 0.637 + }, + { + "start": 14553.07, + "end": 14556.85, + "probability": 0.9312 + }, + { + "start": 14557.99, + "end": 14560.07, + "probability": 0.8754 + }, + { + "start": 14560.15, + "end": 14565.09, + "probability": 0.944 + }, + { + "start": 14565.67, + "end": 14566.95, + "probability": 0.9719 + }, + { + "start": 14569.07, + "end": 14572.21, + "probability": 0.8 + }, + { + "start": 14573.61, + "end": 14575.05, + "probability": 0.9756 + }, + { + "start": 14575.79, + "end": 14577.39, + "probability": 0.6596 + }, + { + "start": 14577.69, + "end": 14578.51, + "probability": 0.6407 + }, + { + "start": 14578.53, + "end": 14578.95, + "probability": 0.3721 + }, + { + "start": 14579.05, + "end": 14579.23, + "probability": 0.2607 + }, + { + "start": 14579.35, + "end": 14582.93, + "probability": 0.1832 + }, + { + "start": 14583.11, + "end": 14583.13, + "probability": 0.0301 + }, + { + "start": 14583.49, + "end": 14588.85, + "probability": 0.6189 + }, + { + "start": 14589.75, + "end": 14597.01, + "probability": 0.9579 + }, + { + "start": 14597.19, + "end": 14598.67, + "probability": 0.813 + }, + { + "start": 14601.77, + "end": 14601.93, + "probability": 0.3385 + }, + { + "start": 14601.93, + "end": 14609.09, + "probability": 0.9275 + }, + { + "start": 14609.25, + "end": 14611.23, + "probability": 0.8553 + }, + { + "start": 14611.35, + "end": 14612.41, + "probability": 0.7529 + }, + { + "start": 14613.19, + "end": 14614.29, + "probability": 0.3093 + }, + { + "start": 14615.45, + "end": 14619.33, + "probability": 0.9085 + }, + { + "start": 14619.47, + "end": 14620.41, + "probability": 0.6144 + }, + { + "start": 14620.57, + "end": 14621.73, + "probability": 0.8443 + }, + { + "start": 14622.31, + "end": 14623.77, + "probability": 0.9191 + }, + { + "start": 14624.29, + "end": 14625.69, + "probability": 0.6678 + }, + { + "start": 14626.49, + "end": 14627.23, + "probability": 0.494 + }, + { + "start": 14627.39, + "end": 14628.81, + "probability": 0.9829 + }, + { + "start": 14629.03, + "end": 14631.59, + "probability": 0.7902 + }, + { + "start": 14632.29, + "end": 14635.29, + "probability": 0.9512 + }, + { + "start": 14636.09, + "end": 14637.79, + "probability": 0.9956 + }, + { + "start": 14639.65, + "end": 14642.27, + "probability": 0.9807 + }, + { + "start": 14642.83, + "end": 14649.13, + "probability": 0.9832 + }, + { + "start": 14649.95, + "end": 14652.97, + "probability": 0.6674 + }, + { + "start": 14653.17, + "end": 14656.41, + "probability": 0.9591 + }, + { + "start": 14657.13, + "end": 14659.71, + "probability": 0.9932 + }, + { + "start": 14659.75, + "end": 14663.67, + "probability": 0.9845 + }, + { + "start": 14665.15, + "end": 14666.18, + "probability": 0.9072 + }, + { + "start": 14666.29, + "end": 14668.81, + "probability": 0.7169 + }, + { + "start": 14669.05, + "end": 14674.53, + "probability": 0.9929 + }, + { + "start": 14674.61, + "end": 14678.23, + "probability": 0.9946 + }, + { + "start": 14679.05, + "end": 14683.11, + "probability": 0.9522 + }, + { + "start": 14683.11, + "end": 14686.83, + "probability": 0.9785 + }, + { + "start": 14687.09, + "end": 14692.19, + "probability": 0.9902 + }, + { + "start": 14692.83, + "end": 14696.05, + "probability": 0.8443 + }, + { + "start": 14697.95, + "end": 14701.11, + "probability": 0.993 + }, + { + "start": 14701.11, + "end": 14703.87, + "probability": 0.995 + }, + { + "start": 14703.99, + "end": 14705.35, + "probability": 0.4644 + }, + { + "start": 14706.15, + "end": 14707.55, + "probability": 0.8824 + }, + { + "start": 14707.79, + "end": 14713.55, + "probability": 0.9917 + }, + { + "start": 14713.77, + "end": 14714.95, + "probability": 0.9403 + }, + { + "start": 14715.13, + "end": 14717.78, + "probability": 0.8138 + }, + { + "start": 14718.51, + "end": 14719.89, + "probability": 0.9201 + }, + { + "start": 14720.83, + "end": 14722.45, + "probability": 0.9698 + }, + { + "start": 14724.12, + "end": 14725.63, + "probability": 0.1788 + }, + { + "start": 14725.63, + "end": 14729.45, + "probability": 0.472 + }, + { + "start": 14730.81, + "end": 14733.87, + "probability": 0.9926 + }, + { + "start": 14735.83, + "end": 14738.49, + "probability": 0.992 + }, + { + "start": 14738.65, + "end": 14739.07, + "probability": 0.6712 + }, + { + "start": 14739.17, + "end": 14741.29, + "probability": 0.6856 + }, + { + "start": 14741.35, + "end": 14742.55, + "probability": 0.7104 + }, + { + "start": 14743.41, + "end": 14748.29, + "probability": 0.7534 + }, + { + "start": 14748.99, + "end": 14751.01, + "probability": 0.8242 + }, + { + "start": 14751.19, + "end": 14753.83, + "probability": 0.961 + }, + { + "start": 14755.29, + "end": 14756.27, + "probability": 0.8092 + }, + { + "start": 14756.81, + "end": 14757.79, + "probability": 0.8169 + }, + { + "start": 14757.91, + "end": 14760.33, + "probability": 0.9166 + }, + { + "start": 14760.81, + "end": 14762.89, + "probability": 0.9737 + }, + { + "start": 14763.17, + "end": 14766.55, + "probability": 0.9579 + }, + { + "start": 14767.89, + "end": 14769.59, + "probability": 0.9573 + }, + { + "start": 14770.53, + "end": 14772.73, + "probability": 0.9592 + }, + { + "start": 14772.89, + "end": 14774.95, + "probability": 0.6266 + }, + { + "start": 14775.77, + "end": 14781.27, + "probability": 0.8672 + }, + { + "start": 14781.39, + "end": 14782.47, + "probability": 0.9086 + }, + { + "start": 14782.53, + "end": 14786.97, + "probability": 0.9956 + }, + { + "start": 14788.31, + "end": 14790.23, + "probability": 0.8043 + }, + { + "start": 14790.37, + "end": 14792.31, + "probability": 0.9358 + }, + { + "start": 14793.11, + "end": 14795.85, + "probability": 0.9384 + }, + { + "start": 14798.51, + "end": 14805.73, + "probability": 0.9663 + }, + { + "start": 14806.87, + "end": 14808.43, + "probability": 0.3306 + }, + { + "start": 14808.65, + "end": 14810.29, + "probability": 0.642 + }, + { + "start": 14810.49, + "end": 14812.49, + "probability": 0.9873 + }, + { + "start": 14812.55, + "end": 14813.77, + "probability": 0.8727 + }, + { + "start": 14814.17, + "end": 14816.07, + "probability": 0.9722 + }, + { + "start": 14817.39, + "end": 14821.15, + "probability": 0.6553 + }, + { + "start": 14822.41, + "end": 14823.51, + "probability": 0.9583 + }, + { + "start": 14824.83, + "end": 14828.41, + "probability": 0.999 + }, + { + "start": 14828.59, + "end": 14830.83, + "probability": 0.9899 + }, + { + "start": 14830.89, + "end": 14835.65, + "probability": 0.9638 + }, + { + "start": 14836.23, + "end": 14837.23, + "probability": 0.9065 + }, + { + "start": 14838.25, + "end": 14841.87, + "probability": 0.8492 + }, + { + "start": 14842.13, + "end": 14844.81, + "probability": 0.6725 + }, + { + "start": 14845.35, + "end": 14846.89, + "probability": 0.8849 + }, + { + "start": 14847.07, + "end": 14850.18, + "probability": 0.9358 + }, + { + "start": 14852.17, + "end": 14857.67, + "probability": 0.9961 + }, + { + "start": 14858.53, + "end": 14861.69, + "probability": 0.9946 + }, + { + "start": 14862.89, + "end": 14864.61, + "probability": 0.8792 + }, + { + "start": 14864.83, + "end": 14867.09, + "probability": 0.9781 + }, + { + "start": 14867.53, + "end": 14869.73, + "probability": 0.6986 + }, + { + "start": 14870.13, + "end": 14870.65, + "probability": 0.5975 + }, + { + "start": 14870.67, + "end": 14871.45, + "probability": 0.8046 + }, + { + "start": 14871.57, + "end": 14873.25, + "probability": 0.9718 + }, + { + "start": 14875.45, + "end": 14878.97, + "probability": 0.9401 + }, + { + "start": 14879.31, + "end": 14879.95, + "probability": 0.8098 + }, + { + "start": 14880.05, + "end": 14880.91, + "probability": 0.8459 + }, + { + "start": 14881.07, + "end": 14883.25, + "probability": 0.959 + }, + { + "start": 14884.31, + "end": 14886.33, + "probability": 0.9917 + }, + { + "start": 14886.73, + "end": 14889.99, + "probability": 0.8934 + }, + { + "start": 14891.43, + "end": 14894.87, + "probability": 0.9972 + }, + { + "start": 14896.98, + "end": 14899.53, + "probability": 0.7782 + }, + { + "start": 14899.89, + "end": 14902.29, + "probability": 0.9779 + }, + { + "start": 14903.01, + "end": 14905.73, + "probability": 0.8015 + }, + { + "start": 14906.75, + "end": 14910.43, + "probability": 0.9634 + }, + { + "start": 14910.49, + "end": 14911.97, + "probability": 0.7447 + }, + { + "start": 14912.19, + "end": 14913.19, + "probability": 0.6977 + }, + { + "start": 14913.27, + "end": 14913.53, + "probability": 0.6635 + }, + { + "start": 14914.03, + "end": 14915.39, + "probability": 0.7198 + }, + { + "start": 14915.51, + "end": 14916.51, + "probability": 0.814 + }, + { + "start": 14916.63, + "end": 14918.27, + "probability": 0.5789 + }, + { + "start": 14919.07, + "end": 14922.65, + "probability": 0.8982 + }, + { + "start": 14923.33, + "end": 14928.23, + "probability": 0.933 + }, + { + "start": 14928.93, + "end": 14929.99, + "probability": 0.8823 + }, + { + "start": 14930.81, + "end": 14935.95, + "probability": 0.8792 + }, + { + "start": 14936.93, + "end": 14938.23, + "probability": 0.7996 + }, + { + "start": 14939.81, + "end": 14943.35, + "probability": 0.962 + }, + { + "start": 14943.47, + "end": 14945.29, + "probability": 0.9292 + }, + { + "start": 14945.63, + "end": 14946.81, + "probability": 0.5438 + }, + { + "start": 14947.09, + "end": 14947.91, + "probability": 0.5875 + }, + { + "start": 14949.41, + "end": 14953.41, + "probability": 0.658 + }, + { + "start": 14954.95, + "end": 14960.72, + "probability": 0.888 + }, + { + "start": 14961.03, + "end": 14962.41, + "probability": 0.9678 + }, + { + "start": 14964.47, + "end": 14965.41, + "probability": 0.6365 + }, + { + "start": 14966.65, + "end": 14966.75, + "probability": 0.0846 + }, + { + "start": 14967.27, + "end": 14967.73, + "probability": 0.0039 + }, + { + "start": 14967.83, + "end": 14967.83, + "probability": 0.134 + }, + { + "start": 14967.83, + "end": 14968.03, + "probability": 0.6834 + }, + { + "start": 14968.21, + "end": 14968.87, + "probability": 0.9231 + }, + { + "start": 14970.01, + "end": 14972.67, + "probability": 0.9367 + }, + { + "start": 14973.23, + "end": 14974.13, + "probability": 0.7729 + }, + { + "start": 14974.21, + "end": 14978.43, + "probability": 0.4214 + }, + { + "start": 14978.67, + "end": 14980.97, + "probability": 0.6865 + }, + { + "start": 14981.07, + "end": 14982.72, + "probability": 0.9743 + }, + { + "start": 14983.27, + "end": 14985.41, + "probability": 0.9257 + }, + { + "start": 14985.65, + "end": 14988.65, + "probability": 0.9197 + }, + { + "start": 14989.05, + "end": 14990.37, + "probability": 0.8486 + }, + { + "start": 14991.09, + "end": 14993.65, + "probability": 0.7374 + }, + { + "start": 14993.83, + "end": 14995.33, + "probability": 0.7551 + }, + { + "start": 14995.95, + "end": 14997.31, + "probability": 0.7791 + }, + { + "start": 14998.77, + "end": 15002.33, + "probability": 0.4825 + }, + { + "start": 15003.01, + "end": 15003.67, + "probability": 0.9561 + }, + { + "start": 15004.03, + "end": 15007.13, + "probability": 0.7318 + }, + { + "start": 15008.01, + "end": 15009.45, + "probability": 0.9912 + }, + { + "start": 15009.59, + "end": 15009.67, + "probability": 0.3206 + }, + { + "start": 15009.77, + "end": 15011.6, + "probability": 0.9617 + }, + { + "start": 15011.85, + "end": 15013.21, + "probability": 0.9438 + }, + { + "start": 15013.35, + "end": 15014.87, + "probability": 0.9196 + }, + { + "start": 15015.75, + "end": 15017.37, + "probability": 0.7237 + }, + { + "start": 15018.27, + "end": 15019.74, + "probability": 0.7946 + }, + { + "start": 15020.57, + "end": 15024.23, + "probability": 0.8913 + }, + { + "start": 15024.53, + "end": 15025.29, + "probability": 0.6382 + }, + { + "start": 15025.69, + "end": 15028.03, + "probability": 0.8196 + }, + { + "start": 15028.13, + "end": 15031.71, + "probability": 0.9897 + }, + { + "start": 15032.27, + "end": 15032.49, + "probability": 0.0006 + }, + { + "start": 15033.15, + "end": 15035.09, + "probability": 0.013 + }, + { + "start": 15035.21, + "end": 15038.5, + "probability": 0.5663 + }, + { + "start": 15039.93, + "end": 15041.25, + "probability": 0.5964 + }, + { + "start": 15041.55, + "end": 15044.91, + "probability": 0.5092 + }, + { + "start": 15045.61, + "end": 15047.59, + "probability": 0.5743 + }, + { + "start": 15047.65, + "end": 15048.85, + "probability": 0.9333 + }, + { + "start": 15048.95, + "end": 15051.63, + "probability": 0.7585 + }, + { + "start": 15051.77, + "end": 15052.51, + "probability": 0.7049 + }, + { + "start": 15053.81, + "end": 15055.69, + "probability": 0.7622 + }, + { + "start": 15055.83, + "end": 15060.03, + "probability": 0.9664 + }, + { + "start": 15060.91, + "end": 15062.25, + "probability": 0.8872 + }, + { + "start": 15062.37, + "end": 15066.23, + "probability": 0.9299 + }, + { + "start": 15067.93, + "end": 15070.21, + "probability": 0.9868 + }, + { + "start": 15070.41, + "end": 15073.25, + "probability": 0.8923 + }, + { + "start": 15073.99, + "end": 15074.51, + "probability": 0.8506 + }, + { + "start": 15074.59, + "end": 15075.73, + "probability": 0.6726 + }, + { + "start": 15076.01, + "end": 15081.19, + "probability": 0.87 + }, + { + "start": 15081.65, + "end": 15083.49, + "probability": 0.9406 + }, + { + "start": 15084.31, + "end": 15085.91, + "probability": 0.9969 + }, + { + "start": 15086.09, + "end": 15088.23, + "probability": 0.7373 + }, + { + "start": 15088.65, + "end": 15093.23, + "probability": 0.8791 + }, + { + "start": 15093.25, + "end": 15093.79, + "probability": 0.5967 + }, + { + "start": 15093.91, + "end": 15095.15, + "probability": 0.5316 + }, + { + "start": 15095.29, + "end": 15096.45, + "probability": 0.9741 + }, + { + "start": 15096.53, + "end": 15097.59, + "probability": 0.5658 + }, + { + "start": 15098.23, + "end": 15100.17, + "probability": 0.8741 + }, + { + "start": 15103.19, + "end": 15104.65, + "probability": 0.7328 + }, + { + "start": 15104.73, + "end": 15107.59, + "probability": 0.647 + }, + { + "start": 15107.69, + "end": 15108.81, + "probability": 0.594 + }, + { + "start": 15108.87, + "end": 15109.15, + "probability": 0.7517 + }, + { + "start": 15109.93, + "end": 15112.81, + "probability": 0.9907 + }, + { + "start": 15112.99, + "end": 15114.03, + "probability": 0.2531 + }, + { + "start": 15114.15, + "end": 15117.33, + "probability": 0.9779 + }, + { + "start": 15136.27, + "end": 15136.27, + "probability": 0.3511 + }, + { + "start": 15136.27, + "end": 15138.41, + "probability": 0.6491 + }, + { + "start": 15138.53, + "end": 15140.89, + "probability": 0.9158 + }, + { + "start": 15141.61, + "end": 15144.95, + "probability": 0.6834 + }, + { + "start": 15144.95, + "end": 15150.79, + "probability": 0.7731 + }, + { + "start": 15153.39, + "end": 15154.46, + "probability": 0.9661 + }, + { + "start": 15154.77, + "end": 15156.48, + "probability": 0.9753 + }, + { + "start": 15158.73, + "end": 15159.55, + "probability": 0.7464 + }, + { + "start": 15159.85, + "end": 15161.85, + "probability": 0.8911 + }, + { + "start": 15163.95, + "end": 15164.79, + "probability": 0.5453 + }, + { + "start": 15164.91, + "end": 15166.73, + "probability": 0.8075 + }, + { + "start": 15186.31, + "end": 15187.11, + "probability": 0.5528 + }, + { + "start": 15187.35, + "end": 15189.15, + "probability": 0.858 + }, + { + "start": 15189.41, + "end": 15190.23, + "probability": 0.6242 + }, + { + "start": 15190.23, + "end": 15191.21, + "probability": 0.6259 + }, + { + "start": 15192.81, + "end": 15193.55, + "probability": 0.8142 + }, + { + "start": 15199.79, + "end": 15199.89, + "probability": 0.4194 + }, + { + "start": 15202.25, + "end": 15205.75, + "probability": 0.805 + }, + { + "start": 15205.77, + "end": 15206.13, + "probability": 0.4921 + }, + { + "start": 15206.41, + "end": 15207.15, + "probability": 0.4293 + }, + { + "start": 15207.95, + "end": 15210.85, + "probability": 0.8724 + }, + { + "start": 15213.06, + "end": 15224.77, + "probability": 0.9855 + }, + { + "start": 15226.79, + "end": 15231.59, + "probability": 0.9971 + }, + { + "start": 15231.59, + "end": 15237.64, + "probability": 0.995 + }, + { + "start": 15240.11, + "end": 15245.01, + "probability": 0.7514 + }, + { + "start": 15246.03, + "end": 15252.21, + "probability": 0.8432 + }, + { + "start": 15254.27, + "end": 15259.29, + "probability": 0.9956 + }, + { + "start": 15260.75, + "end": 15267.41, + "probability": 0.943 + }, + { + "start": 15268.49, + "end": 15269.31, + "probability": 0.7422 + }, + { + "start": 15271.27, + "end": 15273.41, + "probability": 0.5893 + }, + { + "start": 15274.58, + "end": 15282.95, + "probability": 0.998 + }, + { + "start": 15283.93, + "end": 15287.09, + "probability": 0.9892 + }, + { + "start": 15287.19, + "end": 15293.13, + "probability": 0.9598 + }, + { + "start": 15294.55, + "end": 15295.17, + "probability": 0.8326 + }, + { + "start": 15295.65, + "end": 15298.77, + "probability": 0.9773 + }, + { + "start": 15298.91, + "end": 15300.25, + "probability": 0.8896 + }, + { + "start": 15301.83, + "end": 15306.13, + "probability": 0.9908 + }, + { + "start": 15306.25, + "end": 15308.89, + "probability": 0.9227 + }, + { + "start": 15310.99, + "end": 15316.37, + "probability": 0.9948 + }, + { + "start": 15317.99, + "end": 15318.91, + "probability": 0.6072 + }, + { + "start": 15319.27, + "end": 15323.19, + "probability": 0.99 + }, + { + "start": 15323.19, + "end": 15326.59, + "probability": 0.9988 + }, + { + "start": 15326.83, + "end": 15329.05, + "probability": 0.988 + }, + { + "start": 15329.49, + "end": 15333.47, + "probability": 0.953 + }, + { + "start": 15333.71, + "end": 15337.25, + "probability": 0.9915 + }, + { + "start": 15337.35, + "end": 15340.27, + "probability": 0.9077 + }, + { + "start": 15340.37, + "end": 15344.2, + "probability": 0.9951 + }, + { + "start": 15345.8, + "end": 15349.25, + "probability": 0.5767 + }, + { + "start": 15349.45, + "end": 15350.51, + "probability": 0.442 + }, + { + "start": 15350.59, + "end": 15352.02, + "probability": 0.708 + }, + { + "start": 15352.43, + "end": 15353.55, + "probability": 0.9746 + }, + { + "start": 15353.67, + "end": 15354.29, + "probability": 0.7761 + }, + { + "start": 15355.01, + "end": 15355.63, + "probability": 0.8971 + }, + { + "start": 15355.85, + "end": 15357.27, + "probability": 0.8485 + }, + { + "start": 15357.95, + "end": 15359.41, + "probability": 0.9927 + }, + { + "start": 15360.81, + "end": 15364.07, + "probability": 0.7609 + }, + { + "start": 15364.23, + "end": 15366.33, + "probability": 0.9641 + }, + { + "start": 15366.37, + "end": 15367.81, + "probability": 0.8608 + }, + { + "start": 15368.33, + "end": 15369.25, + "probability": 0.9828 + }, + { + "start": 15369.31, + "end": 15370.65, + "probability": 0.7014 + }, + { + "start": 15370.91, + "end": 15372.78, + "probability": 0.9927 + }, + { + "start": 15374.67, + "end": 15376.43, + "probability": 0.96 + }, + { + "start": 15377.39, + "end": 15379.26, + "probability": 0.8076 + }, + { + "start": 15379.99, + "end": 15383.57, + "probability": 0.9637 + }, + { + "start": 15384.77, + "end": 15386.63, + "probability": 0.8779 + }, + { + "start": 15387.15, + "end": 15392.25, + "probability": 0.9536 + }, + { + "start": 15392.25, + "end": 15394.83, + "probability": 0.9958 + }, + { + "start": 15394.97, + "end": 15396.89, + "probability": 0.8719 + }, + { + "start": 15397.55, + "end": 15398.03, + "probability": 0.2758 + }, + { + "start": 15398.37, + "end": 15399.53, + "probability": 0.4644 + }, + { + "start": 15400.01, + "end": 15403.85, + "probability": 0.8542 + }, + { + "start": 15403.87, + "end": 15405.43, + "probability": 0.9009 + }, + { + "start": 15406.55, + "end": 15410.61, + "probability": 0.9023 + }, + { + "start": 15410.93, + "end": 15414.95, + "probability": 0.9771 + }, + { + "start": 15417.17, + "end": 15420.75, + "probability": 0.7962 + }, + { + "start": 15421.27, + "end": 15424.51, + "probability": 0.8726 + }, + { + "start": 15425.57, + "end": 15430.01, + "probability": 0.9247 + }, + { + "start": 15430.55, + "end": 15432.27, + "probability": 0.8645 + }, + { + "start": 15432.35, + "end": 15433.91, + "probability": 0.9131 + }, + { + "start": 15434.37, + "end": 15436.51, + "probability": 0.9927 + }, + { + "start": 15437.93, + "end": 15438.67, + "probability": 0.5339 + }, + { + "start": 15439.55, + "end": 15443.79, + "probability": 0.9393 + }, + { + "start": 15443.91, + "end": 15445.29, + "probability": 0.8396 + }, + { + "start": 15445.77, + "end": 15448.47, + "probability": 0.9836 + }, + { + "start": 15448.63, + "end": 15448.87, + "probability": 0.7423 + }, + { + "start": 15449.07, + "end": 15450.87, + "probability": 0.5982 + }, + { + "start": 15451.67, + "end": 15453.51, + "probability": 0.8848 + }, + { + "start": 15478.37, + "end": 15479.57, + "probability": 0.6766 + }, + { + "start": 15479.65, + "end": 15480.03, + "probability": 0.8248 + }, + { + "start": 15480.15, + "end": 15480.37, + "probability": 0.7948 + }, + { + "start": 15481.05, + "end": 15481.91, + "probability": 0.7614 + }, + { + "start": 15482.25, + "end": 15483.19, + "probability": 0.8724 + }, + { + "start": 15483.39, + "end": 15484.11, + "probability": 0.9418 + }, + { + "start": 15484.29, + "end": 15485.97, + "probability": 0.9091 + }, + { + "start": 15486.17, + "end": 15486.79, + "probability": 0.8328 + }, + { + "start": 15486.93, + "end": 15487.23, + "probability": 0.5029 + }, + { + "start": 15488.69, + "end": 15489.83, + "probability": 0.9669 + }, + { + "start": 15489.97, + "end": 15490.24, + "probability": 0.6558 + }, + { + "start": 15490.33, + "end": 15490.53, + "probability": 0.3762 + }, + { + "start": 15490.73, + "end": 15492.15, + "probability": 0.9069 + }, + { + "start": 15493.73, + "end": 15499.81, + "probability": 0.9738 + }, + { + "start": 15499.81, + "end": 15504.69, + "probability": 0.9385 + }, + { + "start": 15505.21, + "end": 15508.35, + "probability": 0.8889 + }, + { + "start": 15508.95, + "end": 15509.83, + "probability": 0.6971 + }, + { + "start": 15511.21, + "end": 15513.79, + "probability": 0.9683 + }, + { + "start": 15513.87, + "end": 15520.05, + "probability": 0.9731 + }, + { + "start": 15520.69, + "end": 15522.95, + "probability": 0.6832 + }, + { + "start": 15523.47, + "end": 15524.97, + "probability": 0.835 + }, + { + "start": 15525.67, + "end": 15528.13, + "probability": 0.7306 + }, + { + "start": 15530.42, + "end": 15533.39, + "probability": 0.62 + }, + { + "start": 15534.59, + "end": 15538.91, + "probability": 0.9463 + }, + { + "start": 15539.27, + "end": 15540.9, + "probability": 0.9956 + }, + { + "start": 15541.71, + "end": 15543.15, + "probability": 0.9822 + }, + { + "start": 15543.19, + "end": 15545.31, + "probability": 0.9762 + }, + { + "start": 15545.83, + "end": 15548.39, + "probability": 0.913 + }, + { + "start": 15548.51, + "end": 15553.99, + "probability": 0.9796 + }, + { + "start": 15554.11, + "end": 15556.89, + "probability": 0.8927 + }, + { + "start": 15557.21, + "end": 15559.69, + "probability": 0.9889 + }, + { + "start": 15559.69, + "end": 15561.45, + "probability": 0.8395 + }, + { + "start": 15561.95, + "end": 15562.63, + "probability": 0.9341 + }, + { + "start": 15562.69, + "end": 15565.51, + "probability": 0.9912 + }, + { + "start": 15565.73, + "end": 15568.57, + "probability": 0.7891 + }, + { + "start": 15568.85, + "end": 15574.07, + "probability": 0.9473 + }, + { + "start": 15574.55, + "end": 15575.45, + "probability": 0.9731 + }, + { + "start": 15575.61, + "end": 15576.23, + "probability": 0.8246 + }, + { + "start": 15576.39, + "end": 15577.29, + "probability": 0.8649 + }, + { + "start": 15577.65, + "end": 15580.41, + "probability": 0.9862 + }, + { + "start": 15580.45, + "end": 15581.39, + "probability": 0.89 + }, + { + "start": 15581.93, + "end": 15585.71, + "probability": 0.9678 + }, + { + "start": 15586.35, + "end": 15590.23, + "probability": 0.8671 + }, + { + "start": 15590.75, + "end": 15596.11, + "probability": 0.9907 + }, + { + "start": 15596.25, + "end": 15600.57, + "probability": 0.9919 + }, + { + "start": 15601.19, + "end": 15602.89, + "probability": 0.7661 + }, + { + "start": 15603.37, + "end": 15607.49, + "probability": 0.9766 + }, + { + "start": 15608.03, + "end": 15612.45, + "probability": 0.9587 + }, + { + "start": 15613.01, + "end": 15616.11, + "probability": 0.9532 + }, + { + "start": 15616.19, + "end": 15617.25, + "probability": 0.813 + }, + { + "start": 15617.37, + "end": 15617.85, + "probability": 0.8744 + }, + { + "start": 15618.19, + "end": 15620.11, + "probability": 0.9451 + }, + { + "start": 15620.33, + "end": 15622.13, + "probability": 0.9557 + }, + { + "start": 15623.17, + "end": 15623.77, + "probability": 0.7629 + }, + { + "start": 15626.91, + "end": 15628.21, + "probability": 0.9553 + }, + { + "start": 15647.39, + "end": 15649.95, + "probability": 0.5884 + }, + { + "start": 15650.03, + "end": 15650.39, + "probability": 0.8746 + }, + { + "start": 15650.49, + "end": 15651.03, + "probability": 0.7975 + }, + { + "start": 15651.73, + "end": 15655.23, + "probability": 0.9736 + }, + { + "start": 15655.23, + "end": 15657.85, + "probability": 0.9994 + }, + { + "start": 15659.15, + "end": 15659.29, + "probability": 0.1509 + }, + { + "start": 15659.29, + "end": 15662.55, + "probability": 0.9099 + }, + { + "start": 15663.01, + "end": 15667.37, + "probability": 0.9617 + }, + { + "start": 15667.77, + "end": 15670.21, + "probability": 0.6699 + }, + { + "start": 15670.35, + "end": 15673.33, + "probability": 0.9821 + }, + { + "start": 15674.09, + "end": 15676.01, + "probability": 0.9457 + }, + { + "start": 15676.15, + "end": 15678.65, + "probability": 0.9596 + }, + { + "start": 15678.77, + "end": 15682.77, + "probability": 0.9957 + }, + { + "start": 15683.35, + "end": 15685.89, + "probability": 0.9417 + }, + { + "start": 15686.65, + "end": 15689.59, + "probability": 0.9081 + }, + { + "start": 15689.59, + "end": 15692.69, + "probability": 0.9886 + }, + { + "start": 15694.65, + "end": 15696.21, + "probability": 0.5574 + }, + { + "start": 15696.39, + "end": 15698.63, + "probability": 0.9933 + }, + { + "start": 15699.05, + "end": 15704.15, + "probability": 0.8705 + }, + { + "start": 15704.77, + "end": 15708.23, + "probability": 0.9231 + }, + { + "start": 15709.35, + "end": 15713.89, + "probability": 0.9517 + }, + { + "start": 15714.05, + "end": 15715.17, + "probability": 0.8335 + }, + { + "start": 15716.49, + "end": 15717.89, + "probability": 0.9085 + }, + { + "start": 15718.33, + "end": 15719.69, + "probability": 0.7353 + }, + { + "start": 15719.83, + "end": 15722.47, + "probability": 0.7891 + }, + { + "start": 15722.99, + "end": 15725.89, + "probability": 0.9683 + }, + { + "start": 15726.31, + "end": 15728.91, + "probability": 0.9395 + }, + { + "start": 15730.03, + "end": 15731.91, + "probability": 0.9869 + }, + { + "start": 15732.49, + "end": 15735.35, + "probability": 0.9827 + }, + { + "start": 15735.63, + "end": 15736.35, + "probability": 0.8782 + }, + { + "start": 15737.27, + "end": 15738.67, + "probability": 0.9597 + }, + { + "start": 15738.89, + "end": 15741.23, + "probability": 0.9872 + }, + { + "start": 15741.39, + "end": 15742.45, + "probability": 0.9772 + }, + { + "start": 15742.47, + "end": 15743.03, + "probability": 0.8328 + }, + { + "start": 15743.15, + "end": 15745.67, + "probability": 0.9937 + }, + { + "start": 15746.93, + "end": 15747.17, + "probability": 0.5234 + }, + { + "start": 15747.23, + "end": 15750.63, + "probability": 0.99 + }, + { + "start": 15750.81, + "end": 15751.39, + "probability": 0.887 + }, + { + "start": 15751.43, + "end": 15751.95, + "probability": 0.7952 + }, + { + "start": 15752.45, + "end": 15756.79, + "probability": 0.9678 + }, + { + "start": 15757.33, + "end": 15758.95, + "probability": 0.6437 + }, + { + "start": 15759.53, + "end": 15762.63, + "probability": 0.9877 + }, + { + "start": 15762.63, + "end": 15765.43, + "probability": 0.9973 + }, + { + "start": 15766.23, + "end": 15766.99, + "probability": 0.7832 + }, + { + "start": 15767.07, + "end": 15769.45, + "probability": 0.9807 + }, + { + "start": 15769.83, + "end": 15772.35, + "probability": 0.9263 + }, + { + "start": 15772.79, + "end": 15773.55, + "probability": 0.4786 + }, + { + "start": 15775.43, + "end": 15776.81, + "probability": 0.7212 + }, + { + "start": 15777.53, + "end": 15782.63, + "probability": 0.9868 + }, + { + "start": 15782.63, + "end": 15787.99, + "probability": 0.936 + }, + { + "start": 15790.25, + "end": 15793.95, + "probability": 0.9884 + }, + { + "start": 15794.37, + "end": 15796.37, + "probability": 0.9987 + }, + { + "start": 15796.65, + "end": 15797.61, + "probability": 0.8187 + }, + { + "start": 15797.71, + "end": 15798.93, + "probability": 0.9856 + }, + { + "start": 15799.41, + "end": 15803.43, + "probability": 0.9976 + }, + { + "start": 15803.73, + "end": 15807.27, + "probability": 0.9958 + }, + { + "start": 15807.77, + "end": 15809.47, + "probability": 0.8552 + }, + { + "start": 15809.85, + "end": 15811.49, + "probability": 0.9585 + }, + { + "start": 15811.79, + "end": 15813.43, + "probability": 0.9387 + }, + { + "start": 15813.47, + "end": 15814.33, + "probability": 0.7735 + }, + { + "start": 15814.89, + "end": 15816.29, + "probability": 0.9771 + }, + { + "start": 15816.43, + "end": 15817.29, + "probability": 0.9879 + }, + { + "start": 15817.77, + "end": 15818.21, + "probability": 0.9876 + }, + { + "start": 15818.67, + "end": 15819.05, + "probability": 0.9418 + }, + { + "start": 15819.75, + "end": 15823.65, + "probability": 0.9805 + }, + { + "start": 15823.73, + "end": 15824.67, + "probability": 0.8446 + }, + { + "start": 15824.81, + "end": 15825.61, + "probability": 0.764 + }, + { + "start": 15826.01, + "end": 15826.21, + "probability": 0.7687 + }, + { + "start": 15827.67, + "end": 15828.41, + "probability": 0.8788 + }, + { + "start": 15829.49, + "end": 15834.69, + "probability": 0.9744 + }, + { + "start": 15885.81, + "end": 15885.93, + "probability": 0.0323 + }, + { + "start": 15885.93, + "end": 15886.91, + "probability": 0.6986 + }, + { + "start": 15889.53, + "end": 15891.07, + "probability": 0.7518 + }, + { + "start": 15893.07, + "end": 15895.83, + "probability": 0.8093 + }, + { + "start": 15897.53, + "end": 15898.67, + "probability": 0.5138 + }, + { + "start": 15899.05, + "end": 15902.95, + "probability": 0.9831 + }, + { + "start": 15904.21, + "end": 15905.83, + "probability": 0.8637 + }, + { + "start": 15906.21, + "end": 15907.41, + "probability": 0.3141 + }, + { + "start": 15908.03, + "end": 15908.55, + "probability": 0.6521 + }, + { + "start": 15909.15, + "end": 15910.45, + "probability": 0.9698 + }, + { + "start": 15911.91, + "end": 15914.09, + "probability": 0.093 + }, + { + "start": 15914.09, + "end": 15914.09, + "probability": 0.0022 + }, + { + "start": 15914.09, + "end": 15915.81, + "probability": 0.7844 + }, + { + "start": 15915.93, + "end": 15917.09, + "probability": 0.7961 + }, + { + "start": 15917.17, + "end": 15918.21, + "probability": 0.4908 + }, + { + "start": 15921.21, + "end": 15925.91, + "probability": 0.9932 + }, + { + "start": 15925.97, + "end": 15931.65, + "probability": 0.9906 + }, + { + "start": 15931.71, + "end": 15937.17, + "probability": 0.9818 + }, + { + "start": 15938.43, + "end": 15942.71, + "probability": 0.925 + }, + { + "start": 15943.49, + "end": 15945.17, + "probability": 0.8611 + }, + { + "start": 15946.13, + "end": 15946.95, + "probability": 0.6892 + }, + { + "start": 15947.67, + "end": 15955.01, + "probability": 0.9343 + }, + { + "start": 15955.61, + "end": 15960.39, + "probability": 0.8059 + }, + { + "start": 15960.51, + "end": 15968.11, + "probability": 0.9897 + }, + { + "start": 15968.33, + "end": 15973.15, + "probability": 0.9161 + }, + { + "start": 15975.69, + "end": 15978.97, + "probability": 0.9899 + }, + { + "start": 15978.97, + "end": 15985.13, + "probability": 0.998 + }, + { + "start": 15985.25, + "end": 15986.75, + "probability": 0.9948 + }, + { + "start": 15988.76, + "end": 15991.41, + "probability": 0.5371 + }, + { + "start": 15992.49, + "end": 15993.73, + "probability": 0.7643 + }, + { + "start": 15994.99, + "end": 15997.69, + "probability": 0.8497 + }, + { + "start": 15998.89, + "end": 16000.99, + "probability": 0.9792 + }, + { + "start": 16003.01, + "end": 16006.01, + "probability": 0.9246 + }, + { + "start": 16008.35, + "end": 16010.51, + "probability": 0.9079 + }, + { + "start": 16010.55, + "end": 16011.63, + "probability": 0.689 + }, + { + "start": 16011.67, + "end": 16012.29, + "probability": 0.6147 + }, + { + "start": 16012.77, + "end": 16015.55, + "probability": 0.9613 + }, + { + "start": 16015.93, + "end": 16016.97, + "probability": 0.9301 + }, + { + "start": 16017.91, + "end": 16018.71, + "probability": 0.8734 + }, + { + "start": 16021.79, + "end": 16021.89, + "probability": 0.1233 + }, + { + "start": 16021.89, + "end": 16022.21, + "probability": 0.0468 + }, + { + "start": 16022.29, + "end": 16022.81, + "probability": 0.8566 + }, + { + "start": 16023.53, + "end": 16024.57, + "probability": 0.6906 + }, + { + "start": 16027.05, + "end": 16027.55, + "probability": 0.7366 + }, + { + "start": 16028.69, + "end": 16030.17, + "probability": 0.923 + }, + { + "start": 16032.03, + "end": 16032.13, + "probability": 0.0327 + }, + { + "start": 16032.13, + "end": 16035.27, + "probability": 0.8309 + }, + { + "start": 16036.19, + "end": 16036.97, + "probability": 0.0455 + }, + { + "start": 16036.97, + "end": 16040.71, + "probability": 0.9766 + }, + { + "start": 16041.81, + "end": 16048.63, + "probability": 0.912 + }, + { + "start": 16050.81, + "end": 16056.09, + "probability": 0.9623 + }, + { + "start": 16056.73, + "end": 16057.71, + "probability": 0.9362 + }, + { + "start": 16058.55, + "end": 16063.57, + "probability": 0.9719 + }, + { + "start": 16065.19, + "end": 16069.66, + "probability": 0.9929 + }, + { + "start": 16070.19, + "end": 16073.09, + "probability": 0.8279 + }, + { + "start": 16073.95, + "end": 16078.25, + "probability": 0.9967 + }, + { + "start": 16079.27, + "end": 16080.05, + "probability": 0.7331 + }, + { + "start": 16080.79, + "end": 16085.97, + "probability": 0.9928 + }, + { + "start": 16086.93, + "end": 16090.91, + "probability": 0.9961 + }, + { + "start": 16091.63, + "end": 16093.73, + "probability": 0.951 + }, + { + "start": 16094.51, + "end": 16096.91, + "probability": 0.9912 + }, + { + "start": 16097.65, + "end": 16100.43, + "probability": 0.7469 + }, + { + "start": 16100.95, + "end": 16105.27, + "probability": 0.9953 + }, + { + "start": 16105.27, + "end": 16110.91, + "probability": 0.9983 + }, + { + "start": 16113.71, + "end": 16116.11, + "probability": 0.6051 + }, + { + "start": 16117.49, + "end": 16120.27, + "probability": 0.5214 + }, + { + "start": 16121.95, + "end": 16126.51, + "probability": 0.789 + }, + { + "start": 16126.57, + "end": 16129.79, + "probability": 0.7496 + }, + { + "start": 16130.39, + "end": 16132.55, + "probability": 0.8736 + }, + { + "start": 16133.07, + "end": 16136.79, + "probability": 0.8736 + }, + { + "start": 16137.37, + "end": 16139.71, + "probability": 0.8716 + }, + { + "start": 16140.01, + "end": 16140.85, + "probability": 0.0153 + }, + { + "start": 16140.85, + "end": 16140.85, + "probability": 0.3547 + }, + { + "start": 16140.85, + "end": 16140.85, + "probability": 0.0558 + }, + { + "start": 16140.85, + "end": 16142.89, + "probability": 0.5326 + }, + { + "start": 16143.59, + "end": 16145.07, + "probability": 0.6483 + }, + { + "start": 16145.11, + "end": 16145.8, + "probability": 0.3156 + }, + { + "start": 16146.77, + "end": 16147.31, + "probability": 0.2314 + }, + { + "start": 16148.73, + "end": 16151.55, + "probability": 0.3765 + }, + { + "start": 16151.63, + "end": 16155.11, + "probability": 0.8452 + }, + { + "start": 16155.93, + "end": 16155.93, + "probability": 0.0577 + }, + { + "start": 16155.93, + "end": 16160.61, + "probability": 0.9937 + }, + { + "start": 16160.73, + "end": 16162.54, + "probability": 0.8789 + }, + { + "start": 16163.47, + "end": 16164.43, + "probability": 0.8853 + }, + { + "start": 16164.73, + "end": 16165.59, + "probability": 0.0451 + }, + { + "start": 16165.91, + "end": 16166.49, + "probability": 0.6739 + }, + { + "start": 16166.97, + "end": 16168.27, + "probability": 0.9976 + }, + { + "start": 16168.51, + "end": 16171.79, + "probability": 0.9736 + }, + { + "start": 16172.63, + "end": 16174.17, + "probability": 0.6869 + }, + { + "start": 16175.31, + "end": 16179.61, + "probability": 0.8925 + }, + { + "start": 16180.29, + "end": 16181.57, + "probability": 0.7514 + }, + { + "start": 16182.11, + "end": 16182.31, + "probability": 0.214 + }, + { + "start": 16182.73, + "end": 16182.99, + "probability": 0.2747 + }, + { + "start": 16183.17, + "end": 16183.95, + "probability": 0.4511 + }, + { + "start": 16183.95, + "end": 16184.99, + "probability": 0.9844 + }, + { + "start": 16185.43, + "end": 16186.23, + "probability": 0.4304 + }, + { + "start": 16186.65, + "end": 16189.91, + "probability": 0.9622 + }, + { + "start": 16190.79, + "end": 16192.93, + "probability": 0.8342 + }, + { + "start": 16192.95, + "end": 16193.83, + "probability": 0.2269 + }, + { + "start": 16194.49, + "end": 16196.77, + "probability": 0.8729 + }, + { + "start": 16196.91, + "end": 16199.37, + "probability": 0.9532 + }, + { + "start": 16200.07, + "end": 16201.11, + "probability": 0.809 + }, + { + "start": 16201.39, + "end": 16206.55, + "probability": 0.93 + }, + { + "start": 16206.55, + "end": 16212.03, + "probability": 0.9881 + }, + { + "start": 16213.27, + "end": 16214.93, + "probability": 0.709 + }, + { + "start": 16215.67, + "end": 16221.94, + "probability": 0.8633 + }, + { + "start": 16223.27, + "end": 16223.83, + "probability": 0.5672 + }, + { + "start": 16224.59, + "end": 16225.59, + "probability": 0.8669 + }, + { + "start": 16225.67, + "end": 16225.83, + "probability": 0.0247 + }, + { + "start": 16225.83, + "end": 16229.43, + "probability": 0.8291 + }, + { + "start": 16230.17, + "end": 16233.55, + "probability": 0.8827 + }, + { + "start": 16234.49, + "end": 16234.49, + "probability": 0.0187 + }, + { + "start": 16234.49, + "end": 16235.51, + "probability": 0.9746 + }, + { + "start": 16235.71, + "end": 16238.51, + "probability": 0.9662 + }, + { + "start": 16239.31, + "end": 16241.51, + "probability": 0.9694 + }, + { + "start": 16242.09, + "end": 16245.17, + "probability": 0.923 + }, + { + "start": 16245.83, + "end": 16248.87, + "probability": 0.8696 + }, + { + "start": 16249.47, + "end": 16251.55, + "probability": 0.7665 + }, + { + "start": 16252.41, + "end": 16261.05, + "probability": 0.6663 + }, + { + "start": 16262.03, + "end": 16262.79, + "probability": 0.7207 + }, + { + "start": 16263.93, + "end": 16265.75, + "probability": 0.9985 + }, + { + "start": 16269.57, + "end": 16271.19, + "probability": 0.7584 + }, + { + "start": 16272.09, + "end": 16275.71, + "probability": 0.9911 + }, + { + "start": 16275.81, + "end": 16276.91, + "probability": 0.8126 + }, + { + "start": 16277.11, + "end": 16280.35, + "probability": 0.5932 + }, + { + "start": 16281.07, + "end": 16282.03, + "probability": 0.5569 + }, + { + "start": 16282.15, + "end": 16284.87, + "probability": 0.7374 + }, + { + "start": 16285.05, + "end": 16286.89, + "probability": 0.8829 + }, + { + "start": 16286.91, + "end": 16288.19, + "probability": 0.3652 + }, + { + "start": 16288.29, + "end": 16290.17, + "probability": 0.9641 + }, + { + "start": 16290.25, + "end": 16292.97, + "probability": 0.9196 + }, + { + "start": 16293.23, + "end": 16295.27, + "probability": 0.959 + }, + { + "start": 16295.77, + "end": 16297.78, + "probability": 0.736 + }, + { + "start": 16299.33, + "end": 16300.95, + "probability": 0.2278 + }, + { + "start": 16301.47, + "end": 16303.71, + "probability": 0.6208 + }, + { + "start": 16303.99, + "end": 16306.66, + "probability": 0.8307 + }, + { + "start": 16307.35, + "end": 16308.73, + "probability": 0.8831 + }, + { + "start": 16309.77, + "end": 16310.81, + "probability": 0.7882 + }, + { + "start": 16310.89, + "end": 16312.13, + "probability": 0.8079 + }, + { + "start": 16312.67, + "end": 16317.29, + "probability": 0.6879 + }, + { + "start": 16319.2, + "end": 16322.83, + "probability": 0.9678 + }, + { + "start": 16323.37, + "end": 16325.37, + "probability": 0.8427 + }, + { + "start": 16325.61, + "end": 16327.17, + "probability": 0.9961 + }, + { + "start": 16327.73, + "end": 16330.17, + "probability": 0.8899 + }, + { + "start": 16332.55, + "end": 16336.73, + "probability": 0.8927 + }, + { + "start": 16336.93, + "end": 16339.23, + "probability": 0.9941 + }, + { + "start": 16340.03, + "end": 16344.05, + "probability": 0.8772 + }, + { + "start": 16344.75, + "end": 16347.39, + "probability": 0.9048 + }, + { + "start": 16347.91, + "end": 16348.43, + "probability": 0.5773 + }, + { + "start": 16348.99, + "end": 16350.15, + "probability": 0.9793 + }, + { + "start": 16350.63, + "end": 16352.28, + "probability": 0.9771 + }, + { + "start": 16352.65, + "end": 16354.41, + "probability": 0.8429 + }, + { + "start": 16355.25, + "end": 16356.55, + "probability": 0.9193 + }, + { + "start": 16357.25, + "end": 16358.01, + "probability": 0.0761 + }, + { + "start": 16358.25, + "end": 16359.69, + "probability": 0.4855 + }, + { + "start": 16359.89, + "end": 16360.73, + "probability": 0.6913 + }, + { + "start": 16360.81, + "end": 16362.77, + "probability": 0.8007 + }, + { + "start": 16363.09, + "end": 16363.09, + "probability": 0.1426 + }, + { + "start": 16363.09, + "end": 16363.99, + "probability": 0.8534 + }, + { + "start": 16364.21, + "end": 16365.03, + "probability": 0.4998 + }, + { + "start": 16365.11, + "end": 16366.57, + "probability": 0.9839 + }, + { + "start": 16366.71, + "end": 16367.73, + "probability": 0.7845 + }, + { + "start": 16367.85, + "end": 16368.77, + "probability": 0.887 + }, + { + "start": 16368.79, + "end": 16370.05, + "probability": 0.9624 + }, + { + "start": 16370.47, + "end": 16372.11, + "probability": 0.896 + }, + { + "start": 16373.85, + "end": 16379.97, + "probability": 0.9136 + }, + { + "start": 16380.57, + "end": 16384.41, + "probability": 0.9741 + }, + { + "start": 16385.69, + "end": 16387.25, + "probability": 0.9808 + }, + { + "start": 16388.31, + "end": 16392.85, + "probability": 0.7385 + }, + { + "start": 16393.95, + "end": 16398.41, + "probability": 0.903 + }, + { + "start": 16399.27, + "end": 16405.22, + "probability": 0.7818 + }, + { + "start": 16407.63, + "end": 16410.45, + "probability": 0.9897 + }, + { + "start": 16410.57, + "end": 16413.13, + "probability": 0.9723 + }, + { + "start": 16413.23, + "end": 16413.89, + "probability": 0.8297 + }, + { + "start": 16415.31, + "end": 16416.73, + "probability": 0.7082 + }, + { + "start": 16418.07, + "end": 16422.81, + "probability": 0.99 + }, + { + "start": 16422.89, + "end": 16425.99, + "probability": 0.9691 + }, + { + "start": 16426.99, + "end": 16427.79, + "probability": 0.7722 + }, + { + "start": 16428.41, + "end": 16430.01, + "probability": 0.9445 + }, + { + "start": 16430.43, + "end": 16432.17, + "probability": 0.9932 + }, + { + "start": 16432.57, + "end": 16433.43, + "probability": 0.7825 + }, + { + "start": 16433.93, + "end": 16435.93, + "probability": 0.9094 + }, + { + "start": 16436.67, + "end": 16443.07, + "probability": 0.994 + }, + { + "start": 16445.15, + "end": 16448.07, + "probability": 0.6944 + }, + { + "start": 16448.85, + "end": 16450.2, + "probability": 0.7812 + }, + { + "start": 16450.43, + "end": 16451.27, + "probability": 0.958 + }, + { + "start": 16451.43, + "end": 16452.67, + "probability": 0.9062 + }, + { + "start": 16453.09, + "end": 16457.81, + "probability": 0.8623 + }, + { + "start": 16458.53, + "end": 16464.81, + "probability": 0.9951 + }, + { + "start": 16465.77, + "end": 16468.36, + "probability": 0.9628 + }, + { + "start": 16469.13, + "end": 16472.27, + "probability": 0.8482 + }, + { + "start": 16473.15, + "end": 16473.93, + "probability": 0.955 + }, + { + "start": 16474.89, + "end": 16481.67, + "probability": 0.8392 + }, + { + "start": 16482.49, + "end": 16487.47, + "probability": 0.9945 + }, + { + "start": 16488.33, + "end": 16495.57, + "probability": 0.9784 + }, + { + "start": 16496.93, + "end": 16499.07, + "probability": 0.9005 + }, + { + "start": 16499.75, + "end": 16500.33, + "probability": 0.7734 + }, + { + "start": 16500.87, + "end": 16502.53, + "probability": 0.8243 + }, + { + "start": 16503.75, + "end": 16506.43, + "probability": 0.9453 + }, + { + "start": 16509.07, + "end": 16513.13, + "probability": 0.9474 + }, + { + "start": 16513.19, + "end": 16513.44, + "probability": 0.0174 + }, + { + "start": 16515.01, + "end": 16515.69, + "probability": 0.5575 + }, + { + "start": 16516.27, + "end": 16517.19, + "probability": 0.9601 + }, + { + "start": 16517.27, + "end": 16518.43, + "probability": 0.9644 + }, + { + "start": 16518.65, + "end": 16520.87, + "probability": 0.9979 + }, + { + "start": 16521.21, + "end": 16522.25, + "probability": 0.0657 + }, + { + "start": 16522.93, + "end": 16525.71, + "probability": 0.9561 + }, + { + "start": 16525.81, + "end": 16526.99, + "probability": 0.5563 + }, + { + "start": 16527.75, + "end": 16532.71, + "probability": 0.9603 + }, + { + "start": 16533.51, + "end": 16534.01, + "probability": 0.3304 + }, + { + "start": 16534.11, + "end": 16535.43, + "probability": 0.6938 + }, + { + "start": 16535.53, + "end": 16537.27, + "probability": 0.8828 + }, + { + "start": 16537.59, + "end": 16540.59, + "probability": 0.6647 + }, + { + "start": 16541.35, + "end": 16541.93, + "probability": 0.8862 + }, + { + "start": 16543.79, + "end": 16546.83, + "probability": 0.9689 + }, + { + "start": 16548.01, + "end": 16550.01, + "probability": 0.9929 + }, + { + "start": 16551.21, + "end": 16552.99, + "probability": 0.7735 + }, + { + "start": 16554.35, + "end": 16555.43, + "probability": 0.8358 + }, + { + "start": 16555.97, + "end": 16560.17, + "probability": 0.9959 + }, + { + "start": 16560.87, + "end": 16562.61, + "probability": 0.7453 + }, + { + "start": 16563.45, + "end": 16564.83, + "probability": 0.8726 + }, + { + "start": 16565.81, + "end": 16569.19, + "probability": 0.8403 + }, + { + "start": 16569.33, + "end": 16570.55, + "probability": 0.9907 + }, + { + "start": 16571.91, + "end": 16573.33, + "probability": 0.9435 + }, + { + "start": 16573.91, + "end": 16577.39, + "probability": 0.8905 + }, + { + "start": 16577.79, + "end": 16579.19, + "probability": 0.0774 + }, + { + "start": 16579.33, + "end": 16584.53, + "probability": 0.6961 + }, + { + "start": 16585.03, + "end": 16587.27, + "probability": 0.3707 + }, + { + "start": 16587.27, + "end": 16590.53, + "probability": 0.9056 + }, + { + "start": 16592.29, + "end": 16597.58, + "probability": 0.8701 + }, + { + "start": 16598.63, + "end": 16600.55, + "probability": 0.9922 + }, + { + "start": 16604.49, + "end": 16606.11, + "probability": 0.8281 + }, + { + "start": 16607.11, + "end": 16608.75, + "probability": 0.9928 + }, + { + "start": 16609.59, + "end": 16612.99, + "probability": 0.9138 + }, + { + "start": 16614.05, + "end": 16616.97, + "probability": 0.9873 + }, + { + "start": 16616.97, + "end": 16619.81, + "probability": 0.9731 + }, + { + "start": 16620.81, + "end": 16627.55, + "probability": 0.9972 + }, + { + "start": 16627.55, + "end": 16634.59, + "probability": 0.9954 + }, + { + "start": 16635.39, + "end": 16640.61, + "probability": 0.8741 + }, + { + "start": 16640.79, + "end": 16641.19, + "probability": 0.4636 + }, + { + "start": 16641.33, + "end": 16642.55, + "probability": 0.8288 + }, + { + "start": 16643.91, + "end": 16647.97, + "probability": 0.922 + }, + { + "start": 16648.65, + "end": 16649.75, + "probability": 0.9064 + }, + { + "start": 16650.41, + "end": 16655.15, + "probability": 0.978 + }, + { + "start": 16655.21, + "end": 16658.17, + "probability": 0.9893 + }, + { + "start": 16658.73, + "end": 16660.45, + "probability": 0.9531 + }, + { + "start": 16661.29, + "end": 16664.21, + "probability": 0.9971 + }, + { + "start": 16665.07, + "end": 16671.19, + "probability": 0.9789 + }, + { + "start": 16672.03, + "end": 16674.53, + "probability": 0.9963 + }, + { + "start": 16675.33, + "end": 16679.05, + "probability": 0.9612 + }, + { + "start": 16679.87, + "end": 16684.51, + "probability": 0.4935 + }, + { + "start": 16685.33, + "end": 16685.79, + "probability": 0.7126 + }, + { + "start": 16685.81, + "end": 16687.15, + "probability": 0.8997 + }, + { + "start": 16687.33, + "end": 16690.13, + "probability": 0.9684 + }, + { + "start": 16690.25, + "end": 16691.93, + "probability": 0.9401 + }, + { + "start": 16692.53, + "end": 16696.73, + "probability": 0.9752 + }, + { + "start": 16697.87, + "end": 16705.29, + "probability": 0.9966 + }, + { + "start": 16706.29, + "end": 16707.36, + "probability": 0.5157 + }, + { + "start": 16708.15, + "end": 16710.85, + "probability": 0.9365 + }, + { + "start": 16711.47, + "end": 16714.07, + "probability": 0.7972 + }, + { + "start": 16714.57, + "end": 16716.31, + "probability": 0.9022 + }, + { + "start": 16716.37, + "end": 16718.15, + "probability": 0.9829 + }, + { + "start": 16719.45, + "end": 16720.47, + "probability": 0.2183 + }, + { + "start": 16721.09, + "end": 16724.57, + "probability": 0.8407 + }, + { + "start": 16725.43, + "end": 16728.57, + "probability": 0.9468 + }, + { + "start": 16730.15, + "end": 16735.11, + "probability": 0.9487 + }, + { + "start": 16735.71, + "end": 16740.85, + "probability": 0.9835 + }, + { + "start": 16741.39, + "end": 16743.01, + "probability": 0.9107 + }, + { + "start": 16743.55, + "end": 16747.33, + "probability": 0.9963 + }, + { + "start": 16748.39, + "end": 16753.33, + "probability": 0.9276 + }, + { + "start": 16755.47, + "end": 16755.89, + "probability": 0.4835 + }, + { + "start": 16756.13, + "end": 16759.57, + "probability": 0.9939 + }, + { + "start": 16759.73, + "end": 16760.71, + "probability": 0.7578 + }, + { + "start": 16761.45, + "end": 16764.57, + "probability": 0.8915 + }, + { + "start": 16765.23, + "end": 16766.05, + "probability": 0.5987 + }, + { + "start": 16766.93, + "end": 16769.27, + "probability": 0.9362 + }, + { + "start": 16769.79, + "end": 16771.35, + "probability": 0.9653 + }, + { + "start": 16772.83, + "end": 16772.91, + "probability": 0.588 + }, + { + "start": 16772.99, + "end": 16773.97, + "probability": 0.9701 + }, + { + "start": 16774.01, + "end": 16777.69, + "probability": 0.9668 + }, + { + "start": 16779.01, + "end": 16781.37, + "probability": 0.7502 + }, + { + "start": 16781.97, + "end": 16785.21, + "probability": 0.7288 + }, + { + "start": 16785.61, + "end": 16788.39, + "probability": 0.9487 + }, + { + "start": 16789.05, + "end": 16790.89, + "probability": 0.9736 + }, + { + "start": 16792.11, + "end": 16794.83, + "probability": 0.9548 + }, + { + "start": 16795.49, + "end": 16801.25, + "probability": 0.9947 + }, + { + "start": 16801.77, + "end": 16802.99, + "probability": 0.4739 + }, + { + "start": 16804.15, + "end": 16807.79, + "probability": 0.7726 + }, + { + "start": 16808.87, + "end": 16814.25, + "probability": 0.9917 + }, + { + "start": 16814.25, + "end": 16819.51, + "probability": 0.8719 + }, + { + "start": 16820.37, + "end": 16823.93, + "probability": 0.9884 + }, + { + "start": 16826.05, + "end": 16828.21, + "probability": 0.9977 + }, + { + "start": 16828.29, + "end": 16832.87, + "probability": 0.9462 + }, + { + "start": 16833.49, + "end": 16836.65, + "probability": 0.9025 + }, + { + "start": 16836.89, + "end": 16838.85, + "probability": 0.9901 + }, + { + "start": 16839.81, + "end": 16842.69, + "probability": 0.8888 + }, + { + "start": 16842.85, + "end": 16843.79, + "probability": 0.9182 + }, + { + "start": 16844.27, + "end": 16846.09, + "probability": 0.9199 + }, + { + "start": 16846.71, + "end": 16848.95, + "probability": 0.9291 + }, + { + "start": 16849.25, + "end": 16851.87, + "probability": 0.9124 + }, + { + "start": 16852.81, + "end": 16856.87, + "probability": 0.8514 + }, + { + "start": 16857.37, + "end": 16859.95, + "probability": 0.7114 + }, + { + "start": 16860.43, + "end": 16864.39, + "probability": 0.8601 + }, + { + "start": 16864.83, + "end": 16865.83, + "probability": 0.7182 + }, + { + "start": 16865.91, + "end": 16866.51, + "probability": 0.335 + }, + { + "start": 16866.91, + "end": 16868.97, + "probability": 0.9959 + }, + { + "start": 16870.83, + "end": 16871.85, + "probability": 0.9467 + }, + { + "start": 16873.81, + "end": 16876.33, + "probability": 0.98 + }, + { + "start": 16876.35, + "end": 16878.05, + "probability": 0.8244 + }, + { + "start": 16878.99, + "end": 16883.95, + "probability": 0.9967 + }, + { + "start": 16883.95, + "end": 16888.21, + "probability": 0.9658 + }, + { + "start": 16888.51, + "end": 16889.77, + "probability": 0.9152 + }, + { + "start": 16889.77, + "end": 16890.73, + "probability": 0.5331 + }, + { + "start": 16891.11, + "end": 16894.85, + "probability": 0.7676 + }, + { + "start": 16896.43, + "end": 16900.63, + "probability": 0.9924 + }, + { + "start": 16900.63, + "end": 16908.93, + "probability": 0.999 + }, + { + "start": 16909.65, + "end": 16912.47, + "probability": 0.9528 + }, + { + "start": 16912.85, + "end": 16915.03, + "probability": 0.3051 + }, + { + "start": 16915.07, + "end": 16915.21, + "probability": 0.1389 + }, + { + "start": 16915.21, + "end": 16916.71, + "probability": 0.5831 + }, + { + "start": 16917.16, + "end": 16923.77, + "probability": 0.9404 + }, + { + "start": 16923.99, + "end": 16923.99, + "probability": 0.0313 + }, + { + "start": 16924.31, + "end": 16924.77, + "probability": 0.0651 + }, + { + "start": 16924.77, + "end": 16925.71, + "probability": 0.1619 + }, + { + "start": 16925.85, + "end": 16928.47, + "probability": 0.7451 + }, + { + "start": 16928.71, + "end": 16929.97, + "probability": 0.542 + }, + { + "start": 16929.97, + "end": 16930.13, + "probability": 0.1742 + }, + { + "start": 16930.13, + "end": 16931.89, + "probability": 0.4684 + }, + { + "start": 16933.38, + "end": 16937.27, + "probability": 0.7716 + }, + { + "start": 16939.23, + "end": 16943.63, + "probability": 0.8629 + }, + { + "start": 16944.29, + "end": 16945.93, + "probability": 0.7112 + }, + { + "start": 16946.23, + "end": 16949.43, + "probability": 0.7559 + }, + { + "start": 16950.39, + "end": 16953.09, + "probability": 0.649 + }, + { + "start": 16953.67, + "end": 16955.89, + "probability": 0.8702 + }, + { + "start": 16956.13, + "end": 16957.85, + "probability": 0.7576 + }, + { + "start": 16957.89, + "end": 16959.15, + "probability": 0.916 + }, + { + "start": 16959.21, + "end": 16959.89, + "probability": 0.7977 + }, + { + "start": 16961.39, + "end": 16963.91, + "probability": 0.8283 + }, + { + "start": 16963.91, + "end": 16968.27, + "probability": 0.9333 + }, + { + "start": 16969.01, + "end": 16972.21, + "probability": 0.9988 + }, + { + "start": 16972.77, + "end": 16974.07, + "probability": 0.9237 + }, + { + "start": 16974.59, + "end": 16976.33, + "probability": 0.9582 + }, + { + "start": 16976.47, + "end": 16979.17, + "probability": 0.7899 + }, + { + "start": 16979.65, + "end": 16982.45, + "probability": 0.9967 + }, + { + "start": 16983.21, + "end": 16986.91, + "probability": 0.9595 + }, + { + "start": 16986.91, + "end": 16992.31, + "probability": 0.9871 + }, + { + "start": 16992.85, + "end": 16995.25, + "probability": 0.8174 + }, + { + "start": 16995.85, + "end": 16999.4, + "probability": 0.95 + }, + { + "start": 17000.07, + "end": 17004.21, + "probability": 0.9885 + }, + { + "start": 17004.21, + "end": 17007.61, + "probability": 0.9897 + }, + { + "start": 17008.13, + "end": 17014.39, + "probability": 0.992 + }, + { + "start": 17014.95, + "end": 17017.73, + "probability": 0.9382 + }, + { + "start": 17018.25, + "end": 17021.11, + "probability": 0.8831 + }, + { + "start": 17021.39, + "end": 17023.65, + "probability": 0.9723 + }, + { + "start": 17024.43, + "end": 17025.85, + "probability": 0.8211 + }, + { + "start": 17026.57, + "end": 17027.13, + "probability": 0.8291 + }, + { + "start": 17027.29, + "end": 17027.63, + "probability": 0.6304 + }, + { + "start": 17027.69, + "end": 17028.83, + "probability": 0.7327 + }, + { + "start": 17029.29, + "end": 17029.74, + "probability": 0.9312 + }, + { + "start": 17030.95, + "end": 17031.63, + "probability": 0.7161 + }, + { + "start": 17031.71, + "end": 17033.55, + "probability": 0.6547 + }, + { + "start": 17033.61, + "end": 17034.99, + "probability": 0.9048 + }, + { + "start": 17035.67, + "end": 17037.67, + "probability": 0.7561 + }, + { + "start": 17037.71, + "end": 17038.19, + "probability": 0.2148 + }, + { + "start": 17038.19, + "end": 17039.07, + "probability": 0.7551 + }, + { + "start": 17039.29, + "end": 17039.71, + "probability": 0.5465 + }, + { + "start": 17040.11, + "end": 17041.61, + "probability": 0.8988 + }, + { + "start": 17041.77, + "end": 17042.25, + "probability": 0.3672 + }, + { + "start": 17042.91, + "end": 17045.91, + "probability": 0.3519 + }, + { + "start": 17047.13, + "end": 17050.11, + "probability": 0.981 + }, + { + "start": 17051.33, + "end": 17052.07, + "probability": 0.8077 + }, + { + "start": 17052.39, + "end": 17053.19, + "probability": 0.7371 + }, + { + "start": 17055.77, + "end": 17057.55, + "probability": 0.9276 + }, + { + "start": 17057.69, + "end": 17058.65, + "probability": 0.1225 + }, + { + "start": 17058.75, + "end": 17059.21, + "probability": 0.6727 + }, + { + "start": 17060.15, + "end": 17060.95, + "probability": 0.915 + }, + { + "start": 17069.85, + "end": 17071.03, + "probability": 0.6268 + }, + { + "start": 17078.0, + "end": 17078.86, + "probability": 0.2389 + }, + { + "start": 17083.39, + "end": 17086.15, + "probability": 0.5569 + }, + { + "start": 17086.29, + "end": 17088.33, + "probability": 0.9616 + }, + { + "start": 17089.57, + "end": 17092.11, + "probability": 0.943 + }, + { + "start": 17096.71, + "end": 17097.89, + "probability": 0.772 + }, + { + "start": 17098.01, + "end": 17099.19, + "probability": 0.5469 + }, + { + "start": 17099.49, + "end": 17101.11, + "probability": 0.8035 + }, + { + "start": 17101.67, + "end": 17102.23, + "probability": 0.7405 + }, + { + "start": 17102.27, + "end": 17106.67, + "probability": 0.6069 + }, + { + "start": 17106.95, + "end": 17113.13, + "probability": 0.6289 + }, + { + "start": 17113.67, + "end": 17115.55, + "probability": 0.2734 + }, + { + "start": 17115.85, + "end": 17117.71, + "probability": 0.9865 + }, + { + "start": 17117.81, + "end": 17120.11, + "probability": 0.8541 + }, + { + "start": 17121.03, + "end": 17122.47, + "probability": 0.6402 + }, + { + "start": 17122.59, + "end": 17126.05, + "probability": 0.7874 + }, + { + "start": 17126.13, + "end": 17129.75, + "probability": 0.5649 + }, + { + "start": 17130.17, + "end": 17132.17, + "probability": 0.6885 + }, + { + "start": 17132.23, + "end": 17132.49, + "probability": 0.7426 + }, + { + "start": 17136.91, + "end": 17137.87, + "probability": 0.4641 + }, + { + "start": 17139.07, + "end": 17139.89, + "probability": 0.5219 + }, + { + "start": 17140.79, + "end": 17141.87, + "probability": 0.8641 + }, + { + "start": 17142.75, + "end": 17142.75, + "probability": 0.0015 + }, + { + "start": 17146.31, + "end": 17147.65, + "probability": 0.6316 + }, + { + "start": 17151.25, + "end": 17153.05, + "probability": 0.216 + }, + { + "start": 17154.07, + "end": 17157.39, + "probability": 0.9692 + }, + { + "start": 17160.07, + "end": 17163.03, + "probability": 0.9689 + }, + { + "start": 17163.03, + "end": 17165.33, + "probability": 0.8938 + }, + { + "start": 17165.69, + "end": 17169.23, + "probability": 0.6069 + }, + { + "start": 17169.65, + "end": 17170.21, + "probability": 0.7641 + }, + { + "start": 17177.63, + "end": 17180.07, + "probability": 0.4608 + }, + { + "start": 17180.21, + "end": 17180.81, + "probability": 0.7844 + }, + { + "start": 17180.91, + "end": 17181.75, + "probability": 0.8571 + }, + { + "start": 17181.89, + "end": 17183.53, + "probability": 0.7009 + }, + { + "start": 17184.43, + "end": 17184.95, + "probability": 0.8024 + }, + { + "start": 17184.97, + "end": 17187.65, + "probability": 0.981 + }, + { + "start": 17187.81, + "end": 17189.99, + "probability": 0.9889 + }, + { + "start": 17190.79, + "end": 17194.45, + "probability": 0.9852 + }, + { + "start": 17194.63, + "end": 17195.45, + "probability": 0.4658 + }, + { + "start": 17195.57, + "end": 17197.15, + "probability": 0.9619 + }, + { + "start": 17197.25, + "end": 17198.17, + "probability": 0.7658 + }, + { + "start": 17198.83, + "end": 17201.89, + "probability": 0.6914 + }, + { + "start": 17202.45, + "end": 17203.91, + "probability": 0.9683 + }, + { + "start": 17203.97, + "end": 17209.93, + "probability": 0.8532 + }, + { + "start": 17210.01, + "end": 17213.11, + "probability": 0.7988 + }, + { + "start": 17213.43, + "end": 17214.95, + "probability": 0.5817 + }, + { + "start": 17215.45, + "end": 17218.05, + "probability": 0.9036 + }, + { + "start": 17219.01, + "end": 17221.45, + "probability": 0.9598 + }, + { + "start": 17221.53, + "end": 17225.49, + "probability": 0.8013 + }, + { + "start": 17225.71, + "end": 17226.55, + "probability": 0.9324 + }, + { + "start": 17226.67, + "end": 17229.93, + "probability": 0.986 + }, + { + "start": 17230.05, + "end": 17233.21, + "probability": 0.7495 + }, + { + "start": 17234.17, + "end": 17235.83, + "probability": 0.9883 + }, + { + "start": 17235.91, + "end": 17237.61, + "probability": 0.8214 + }, + { + "start": 17238.05, + "end": 17243.71, + "probability": 0.9797 + }, + { + "start": 17244.25, + "end": 17248.15, + "probability": 0.8819 + }, + { + "start": 17248.61, + "end": 17249.56, + "probability": 0.6776 + }, + { + "start": 17249.89, + "end": 17251.19, + "probability": 0.9771 + }, + { + "start": 17251.45, + "end": 17254.41, + "probability": 0.9979 + }, + { + "start": 17254.69, + "end": 17260.45, + "probability": 0.9939 + }, + { + "start": 17260.97, + "end": 17264.71, + "probability": 0.9938 + }, + { + "start": 17265.07, + "end": 17268.59, + "probability": 0.9961 + }, + { + "start": 17268.79, + "end": 17270.19, + "probability": 0.7816 + }, + { + "start": 17270.51, + "end": 17272.19, + "probability": 0.9259 + }, + { + "start": 17272.65, + "end": 17274.37, + "probability": 0.873 + }, + { + "start": 17274.83, + "end": 17276.43, + "probability": 0.9974 + }, + { + "start": 17276.51, + "end": 17278.56, + "probability": 0.9233 + }, + { + "start": 17279.23, + "end": 17282.27, + "probability": 0.8159 + }, + { + "start": 17282.65, + "end": 17284.41, + "probability": 0.9484 + }, + { + "start": 17285.01, + "end": 17285.89, + "probability": 0.4608 + }, + { + "start": 17286.21, + "end": 17288.31, + "probability": 0.9883 + }, + { + "start": 17288.49, + "end": 17290.47, + "probability": 0.7266 + }, + { + "start": 17290.69, + "end": 17292.83, + "probability": 0.9814 + }, + { + "start": 17293.27, + "end": 17295.87, + "probability": 0.9331 + }, + { + "start": 17296.25, + "end": 17298.33, + "probability": 0.9214 + }, + { + "start": 17298.93, + "end": 17301.99, + "probability": 0.9834 + }, + { + "start": 17302.39, + "end": 17304.13, + "probability": 0.8005 + }, + { + "start": 17304.27, + "end": 17304.89, + "probability": 0.8768 + }, + { + "start": 17305.77, + "end": 17306.99, + "probability": 0.6696 + }, + { + "start": 17307.25, + "end": 17308.45, + "probability": 0.9065 + }, + { + "start": 17308.95, + "end": 17310.17, + "probability": 0.9288 + }, + { + "start": 17310.59, + "end": 17310.83, + "probability": 0.6715 + }, + { + "start": 17310.97, + "end": 17314.55, + "probability": 0.9883 + }, + { + "start": 17314.97, + "end": 17315.59, + "probability": 0.2773 + }, + { + "start": 17315.59, + "end": 17316.11, + "probability": 0.667 + }, + { + "start": 17316.73, + "end": 17318.77, + "probability": 0.8633 + }, + { + "start": 17318.95, + "end": 17320.52, + "probability": 0.9946 + }, + { + "start": 17321.07, + "end": 17322.87, + "probability": 0.9774 + }, + { + "start": 17325.51, + "end": 17326.19, + "probability": 0.2466 + }, + { + "start": 17326.19, + "end": 17327.29, + "probability": 0.8502 + }, + { + "start": 17327.77, + "end": 17329.67, + "probability": 0.9583 + }, + { + "start": 17329.81, + "end": 17331.37, + "probability": 0.9036 + }, + { + "start": 17331.65, + "end": 17332.43, + "probability": 0.8672 + }, + { + "start": 17332.47, + "end": 17334.81, + "probability": 0.9104 + }, + { + "start": 17335.25, + "end": 17337.33, + "probability": 0.9257 + }, + { + "start": 17337.77, + "end": 17340.85, + "probability": 0.9628 + }, + { + "start": 17341.11, + "end": 17343.63, + "probability": 0.8111 + }, + { + "start": 17344.01, + "end": 17345.41, + "probability": 0.8933 + }, + { + "start": 17345.51, + "end": 17347.12, + "probability": 0.9937 + }, + { + "start": 17347.49, + "end": 17349.77, + "probability": 0.9717 + }, + { + "start": 17349.81, + "end": 17350.73, + "probability": 0.8143 + }, + { + "start": 17350.85, + "end": 17351.99, + "probability": 0.6269 + }, + { + "start": 17352.07, + "end": 17353.61, + "probability": 0.9734 + }, + { + "start": 17353.89, + "end": 17355.31, + "probability": 0.9832 + }, + { + "start": 17355.65, + "end": 17356.77, + "probability": 0.9487 + }, + { + "start": 17356.93, + "end": 17357.11, + "probability": 0.7917 + }, + { + "start": 17358.63, + "end": 17358.63, + "probability": 0.0246 + }, + { + "start": 17358.63, + "end": 17361.77, + "probability": 0.9287 + }, + { + "start": 17361.87, + "end": 17362.09, + "probability": 0.0185 + }, + { + "start": 17362.11, + "end": 17362.71, + "probability": 0.1192 + }, + { + "start": 17362.85, + "end": 17363.83, + "probability": 0.7081 + }, + { + "start": 17363.83, + "end": 17364.92, + "probability": 0.7212 + }, + { + "start": 17365.73, + "end": 17367.85, + "probability": 0.8003 + }, + { + "start": 17367.85, + "end": 17368.93, + "probability": 0.4946 + }, + { + "start": 17370.11, + "end": 17372.01, + "probability": 0.4906 + }, + { + "start": 17372.11, + "end": 17374.75, + "probability": 0.063 + }, + { + "start": 17374.75, + "end": 17378.07, + "probability": 0.6655 + }, + { + "start": 17378.25, + "end": 17378.33, + "probability": 0.0676 + }, + { + "start": 17378.33, + "end": 17380.23, + "probability": 0.5249 + }, + { + "start": 17380.27, + "end": 17380.77, + "probability": 0.6227 + }, + { + "start": 17383.57, + "end": 17384.65, + "probability": 0.884 + }, + { + "start": 17394.29, + "end": 17397.79, + "probability": 0.2345 + }, + { + "start": 17398.35, + "end": 17399.79, + "probability": 0.2537 + }, + { + "start": 17399.83, + "end": 17402.6, + "probability": 0.1901 + }, + { + "start": 17403.37, + "end": 17407.77, + "probability": 0.8507 + }, + { + "start": 17408.91, + "end": 17415.49, + "probability": 0.985 + }, + { + "start": 17416.69, + "end": 17421.61, + "probability": 0.9604 + }, + { + "start": 17422.69, + "end": 17424.79, + "probability": 0.871 + }, + { + "start": 17426.33, + "end": 17432.16, + "probability": 0.9773 + }, + { + "start": 17432.23, + "end": 17436.87, + "probability": 0.9838 + }, + { + "start": 17439.09, + "end": 17444.89, + "probability": 0.9901 + }, + { + "start": 17446.69, + "end": 17453.11, + "probability": 0.9899 + }, + { + "start": 17453.11, + "end": 17458.99, + "probability": 0.9634 + }, + { + "start": 17459.69, + "end": 17462.27, + "probability": 0.8167 + }, + { + "start": 17462.91, + "end": 17464.65, + "probability": 0.9508 + }, + { + "start": 17465.17, + "end": 17469.17, + "probability": 0.8824 + }, + { + "start": 17469.95, + "end": 17471.83, + "probability": 0.9799 + }, + { + "start": 17471.87, + "end": 17473.17, + "probability": 0.8826 + }, + { + "start": 17473.29, + "end": 17474.55, + "probability": 0.8309 + }, + { + "start": 17476.49, + "end": 17478.31, + "probability": 0.766 + }, + { + "start": 17479.47, + "end": 17484.29, + "probability": 0.9705 + }, + { + "start": 17484.29, + "end": 17486.87, + "probability": 0.9481 + }, + { + "start": 17487.53, + "end": 17491.45, + "probability": 0.947 + }, + { + "start": 17491.45, + "end": 17494.71, + "probability": 0.968 + }, + { + "start": 17495.79, + "end": 17496.65, + "probability": 0.7426 + }, + { + "start": 17497.05, + "end": 17499.01, + "probability": 0.8953 + }, + { + "start": 17499.13, + "end": 17503.59, + "probability": 0.9678 + }, + { + "start": 17504.55, + "end": 17507.93, + "probability": 0.9608 + }, + { + "start": 17509.41, + "end": 17512.96, + "probability": 0.6287 + }, + { + "start": 17513.91, + "end": 17515.89, + "probability": 0.8074 + }, + { + "start": 17516.35, + "end": 17518.25, + "probability": 0.9724 + }, + { + "start": 17518.53, + "end": 17521.61, + "probability": 0.9941 + }, + { + "start": 17522.33, + "end": 17525.91, + "probability": 0.9387 + }, + { + "start": 17526.43, + "end": 17529.39, + "probability": 0.5729 + }, + { + "start": 17529.51, + "end": 17535.29, + "probability": 0.7748 + }, + { + "start": 17535.95, + "end": 17540.97, + "probability": 0.7744 + }, + { + "start": 17541.95, + "end": 17547.33, + "probability": 0.9597 + }, + { + "start": 17548.67, + "end": 17550.09, + "probability": 0.7431 + }, + { + "start": 17552.01, + "end": 17558.59, + "probability": 0.9836 + }, + { + "start": 17559.05, + "end": 17563.13, + "probability": 0.8929 + }, + { + "start": 17564.05, + "end": 17569.11, + "probability": 0.9749 + }, + { + "start": 17569.19, + "end": 17570.73, + "probability": 0.9784 + }, + { + "start": 17574.43, + "end": 17578.25, + "probability": 0.5264 + }, + { + "start": 17578.41, + "end": 17584.97, + "probability": 0.9416 + }, + { + "start": 17587.35, + "end": 17591.59, + "probability": 0.9692 + }, + { + "start": 17592.19, + "end": 17596.25, + "probability": 0.8892 + }, + { + "start": 17597.57, + "end": 17603.73, + "probability": 0.9397 + }, + { + "start": 17605.23, + "end": 17608.47, + "probability": 0.9445 + }, + { + "start": 17611.28, + "end": 17614.65, + "probability": 0.8169 + }, + { + "start": 17615.49, + "end": 17618.91, + "probability": 0.6848 + }, + { + "start": 17619.59, + "end": 17621.61, + "probability": 0.6525 + }, + { + "start": 17622.23, + "end": 17623.29, + "probability": 0.9932 + }, + { + "start": 17624.15, + "end": 17626.08, + "probability": 0.8331 + }, + { + "start": 17628.29, + "end": 17634.33, + "probability": 0.8811 + }, + { + "start": 17634.61, + "end": 17635.95, + "probability": 0.4751 + }, + { + "start": 17636.73, + "end": 17645.31, + "probability": 0.9383 + }, + { + "start": 17645.47, + "end": 17647.77, + "probability": 0.9896 + }, + { + "start": 17648.19, + "end": 17654.75, + "probability": 0.9902 + }, + { + "start": 17654.89, + "end": 17655.37, + "probability": 0.8462 + }, + { + "start": 17655.93, + "end": 17660.07, + "probability": 0.7555 + }, + { + "start": 17660.43, + "end": 17662.89, + "probability": 0.9868 + }, + { + "start": 17663.47, + "end": 17664.73, + "probability": 0.7172 + }, + { + "start": 17668.37, + "end": 17671.13, + "probability": 0.9979 + }, + { + "start": 17671.85, + "end": 17672.93, + "probability": 0.4728 + }, + { + "start": 17673.91, + "end": 17676.29, + "probability": 0.9136 + }, + { + "start": 17676.91, + "end": 17680.13, + "probability": 0.9722 + }, + { + "start": 17680.47, + "end": 17683.55, + "probability": 0.938 + }, + { + "start": 17683.85, + "end": 17684.63, + "probability": 0.6477 + }, + { + "start": 17686.13, + "end": 17688.13, + "probability": 0.9823 + }, + { + "start": 17690.63, + "end": 17694.03, + "probability": 0.8002 + }, + { + "start": 17696.19, + "end": 17697.21, + "probability": 0.8097 + }, + { + "start": 17697.21, + "end": 17698.87, + "probability": 0.9393 + }, + { + "start": 17700.39, + "end": 17701.63, + "probability": 0.8194 + }, + { + "start": 17704.89, + "end": 17707.87, + "probability": 0.9954 + }, + { + "start": 17708.99, + "end": 17712.45, + "probability": 0.9786 + }, + { + "start": 17713.27, + "end": 17715.07, + "probability": 0.9627 + }, + { + "start": 17715.23, + "end": 17715.95, + "probability": 0.528 + }, + { + "start": 17716.05, + "end": 17717.85, + "probability": 0.9 + }, + { + "start": 17717.89, + "end": 17720.57, + "probability": 0.6939 + }, + { + "start": 17721.21, + "end": 17722.89, + "probability": 0.9397 + }, + { + "start": 17723.25, + "end": 17727.21, + "probability": 0.9058 + }, + { + "start": 17728.43, + "end": 17730.27, + "probability": 0.9979 + }, + { + "start": 17732.33, + "end": 17734.11, + "probability": 0.8951 + }, + { + "start": 17735.49, + "end": 17737.41, + "probability": 0.9216 + }, + { + "start": 17738.33, + "end": 17739.03, + "probability": 0.7751 + }, + { + "start": 17740.59, + "end": 17747.17, + "probability": 0.8661 + }, + { + "start": 17748.11, + "end": 17754.17, + "probability": 0.8652 + }, + { + "start": 17754.37, + "end": 17756.03, + "probability": 0.9468 + }, + { + "start": 17756.57, + "end": 17757.73, + "probability": 0.2621 + }, + { + "start": 17758.55, + "end": 17759.81, + "probability": 0.5528 + }, + { + "start": 17761.19, + "end": 17763.66, + "probability": 0.8283 + }, + { + "start": 17765.61, + "end": 17766.12, + "probability": 0.9785 + }, + { + "start": 17767.25, + "end": 17772.55, + "probability": 0.8602 + }, + { + "start": 17772.55, + "end": 17776.99, + "probability": 0.9697 + }, + { + "start": 17777.45, + "end": 17777.75, + "probability": 0.3896 + }, + { + "start": 17778.37, + "end": 17778.57, + "probability": 0.6823 + }, + { + "start": 17779.55, + "end": 17781.63, + "probability": 0.9325 + }, + { + "start": 17782.37, + "end": 17783.81, + "probability": 0.8984 + }, + { + "start": 17784.83, + "end": 17787.71, + "probability": 0.8645 + }, + { + "start": 17787.71, + "end": 17797.93, + "probability": 0.9529 + }, + { + "start": 17798.83, + "end": 17800.17, + "probability": 0.7547 + }, + { + "start": 17800.31, + "end": 17802.75, + "probability": 0.5671 + }, + { + "start": 17804.11, + "end": 17807.63, + "probability": 0.7815 + }, + { + "start": 17808.47, + "end": 17812.39, + "probability": 0.9786 + }, + { + "start": 17813.25, + "end": 17813.79, + "probability": 0.6824 + }, + { + "start": 17814.55, + "end": 17818.45, + "probability": 0.8702 + }, + { + "start": 17819.27, + "end": 17822.79, + "probability": 0.9142 + }, + { + "start": 17826.01, + "end": 17827.67, + "probability": 0.8846 + }, + { + "start": 17828.45, + "end": 17831.47, + "probability": 0.9546 + }, + { + "start": 17831.63, + "end": 17836.57, + "probability": 0.9976 + }, + { + "start": 17837.55, + "end": 17840.21, + "probability": 0.9461 + }, + { + "start": 17840.41, + "end": 17841.17, + "probability": 0.4628 + }, + { + "start": 17842.55, + "end": 17844.72, + "probability": 0.9188 + }, + { + "start": 17845.41, + "end": 17847.33, + "probability": 0.9531 + }, + { + "start": 17848.55, + "end": 17848.87, + "probability": 0.7969 + }, + { + "start": 17848.97, + "end": 17852.75, + "probability": 0.9259 + }, + { + "start": 17852.95, + "end": 17856.61, + "probability": 0.9644 + }, + { + "start": 17856.73, + "end": 17859.79, + "probability": 0.8506 + }, + { + "start": 17861.85, + "end": 17861.85, + "probability": 0.032 + }, + { + "start": 17861.85, + "end": 17862.87, + "probability": 0.2549 + }, + { + "start": 17863.81, + "end": 17863.83, + "probability": 0.3751 + }, + { + "start": 17863.95, + "end": 17865.53, + "probability": 0.3001 + }, + { + "start": 17865.91, + "end": 17866.33, + "probability": 0.3499 + }, + { + "start": 17866.37, + "end": 17867.53, + "probability": 0.511 + }, + { + "start": 17867.75, + "end": 17875.95, + "probability": 0.9422 + }, + { + "start": 17876.77, + "end": 17877.53, + "probability": 0.9565 + }, + { + "start": 17878.93, + "end": 17879.35, + "probability": 0.6578 + }, + { + "start": 17882.23, + "end": 17889.34, + "probability": 0.9134 + }, + { + "start": 17889.77, + "end": 17892.32, + "probability": 0.693 + }, + { + "start": 17893.57, + "end": 17896.09, + "probability": 0.9132 + }, + { + "start": 17897.09, + "end": 17898.15, + "probability": 0.9695 + }, + { + "start": 17898.87, + "end": 17900.81, + "probability": 0.9941 + }, + { + "start": 17902.17, + "end": 17903.69, + "probability": 0.9531 + }, + { + "start": 17904.87, + "end": 17905.89, + "probability": 0.6121 + }, + { + "start": 17906.15, + "end": 17907.63, + "probability": 0.9917 + }, + { + "start": 17908.03, + "end": 17911.05, + "probability": 0.9972 + }, + { + "start": 17912.25, + "end": 17915.71, + "probability": 0.832 + }, + { + "start": 17917.13, + "end": 17918.25, + "probability": 0.9537 + }, + { + "start": 17920.17, + "end": 17926.69, + "probability": 0.9769 + }, + { + "start": 17926.69, + "end": 17931.79, + "probability": 0.7499 + }, + { + "start": 17932.41, + "end": 17933.91, + "probability": 0.866 + }, + { + "start": 17934.09, + "end": 17935.47, + "probability": 0.9413 + }, + { + "start": 17935.87, + "end": 17937.59, + "probability": 0.7524 + }, + { + "start": 17938.59, + "end": 17939.59, + "probability": 0.7268 + }, + { + "start": 17939.73, + "end": 17940.37, + "probability": 0.9034 + }, + { + "start": 17940.65, + "end": 17942.77, + "probability": 0.6322 + }, + { + "start": 17943.73, + "end": 17944.63, + "probability": 0.9135 + }, + { + "start": 17944.87, + "end": 17945.53, + "probability": 0.7108 + }, + { + "start": 17945.57, + "end": 17946.27, + "probability": 0.6908 + }, + { + "start": 17946.43, + "end": 17947.61, + "probability": 0.7492 + }, + { + "start": 17947.73, + "end": 17948.11, + "probability": 0.8417 + }, + { + "start": 17948.45, + "end": 17948.97, + "probability": 0.4912 + }, + { + "start": 17949.15, + "end": 17949.25, + "probability": 0.1043 + }, + { + "start": 17949.25, + "end": 17952.29, + "probability": 0.9343 + }, + { + "start": 17953.23, + "end": 17959.47, + "probability": 0.6995 + }, + { + "start": 17959.61, + "end": 17962.01, + "probability": 0.9761 + }, + { + "start": 17963.59, + "end": 17964.8, + "probability": 0.8606 + }, + { + "start": 17965.21, + "end": 17965.35, + "probability": 0.3587 + }, + { + "start": 17965.39, + "end": 17969.15, + "probability": 0.9268 + }, + { + "start": 17969.95, + "end": 17970.93, + "probability": 0.8451 + }, + { + "start": 17971.19, + "end": 17972.05, + "probability": 0.2704 + }, + { + "start": 17972.07, + "end": 17976.61, + "probability": 0.983 + }, + { + "start": 17976.77, + "end": 17977.29, + "probability": 0.3916 + }, + { + "start": 17978.11, + "end": 17979.26, + "probability": 0.8794 + }, + { + "start": 17980.73, + "end": 17982.35, + "probability": 0.8339 + }, + { + "start": 17982.51, + "end": 17983.27, + "probability": 0.8752 + }, + { + "start": 17983.53, + "end": 17987.11, + "probability": 0.6572 + }, + { + "start": 17987.75, + "end": 17991.09, + "probability": 0.9824 + }, + { + "start": 17992.55, + "end": 17998.15, + "probability": 0.7493 + }, + { + "start": 17998.37, + "end": 18000.43, + "probability": 0.8914 + }, + { + "start": 18001.75, + "end": 18006.97, + "probability": 0.9293 + }, + { + "start": 18007.29, + "end": 18011.73, + "probability": 0.8588 + }, + { + "start": 18011.81, + "end": 18012.59, + "probability": 0.391 + }, + { + "start": 18012.75, + "end": 18012.85, + "probability": 0.0121 + }, + { + "start": 18013.11, + "end": 18014.55, + "probability": 0.9019 + }, + { + "start": 18015.03, + "end": 18019.91, + "probability": 0.7607 + }, + { + "start": 18020.89, + "end": 18021.77, + "probability": 0.8227 + }, + { + "start": 18021.93, + "end": 18023.31, + "probability": 0.8435 + }, + { + "start": 18023.53, + "end": 18028.15, + "probability": 0.9821 + }, + { + "start": 18028.41, + "end": 18031.27, + "probability": 0.7011 + }, + { + "start": 18032.75, + "end": 18033.67, + "probability": 0.8169 + }, + { + "start": 18033.83, + "end": 18036.73, + "probability": 0.5308 + }, + { + "start": 18037.01, + "end": 18038.11, + "probability": 0.8737 + }, + { + "start": 18038.21, + "end": 18038.67, + "probability": 0.699 + }, + { + "start": 18038.71, + "end": 18039.19, + "probability": 0.7986 + }, + { + "start": 18039.25, + "end": 18040.71, + "probability": 0.9941 + }, + { + "start": 18040.75, + "end": 18044.05, + "probability": 0.7465 + }, + { + "start": 18044.43, + "end": 18047.85, + "probability": 0.663 + }, + { + "start": 18048.57, + "end": 18051.53, + "probability": 0.9507 + }, + { + "start": 18051.97, + "end": 18053.47, + "probability": 0.8423 + }, + { + "start": 18054.05, + "end": 18054.75, + "probability": 0.4233 + }, + { + "start": 18054.83, + "end": 18056.31, + "probability": 0.9947 + }, + { + "start": 18056.37, + "end": 18065.01, + "probability": 0.9922 + }, + { + "start": 18065.01, + "end": 18065.25, + "probability": 0.2509 + }, + { + "start": 18065.25, + "end": 18067.33, + "probability": 0.4999 + }, + { + "start": 18068.91, + "end": 18071.17, + "probability": 0.8995 + }, + { + "start": 18071.19, + "end": 18072.13, + "probability": 0.8518 + }, + { + "start": 18072.75, + "end": 18072.93, + "probability": 0.2716 + }, + { + "start": 18111.79, + "end": 18113.01, + "probability": 0.622 + }, + { + "start": 18114.39, + "end": 18115.79, + "probability": 0.8262 + }, + { + "start": 18116.85, + "end": 18118.15, + "probability": 0.5841 + }, + { + "start": 18118.27, + "end": 18118.53, + "probability": 0.6837 + }, + { + "start": 18118.67, + "end": 18120.03, + "probability": 0.9177 + }, + { + "start": 18120.53, + "end": 18125.71, + "probability": 0.9925 + }, + { + "start": 18126.87, + "end": 18129.33, + "probability": 0.9132 + }, + { + "start": 18129.93, + "end": 18133.03, + "probability": 0.8512 + }, + { + "start": 18134.01, + "end": 18138.35, + "probability": 0.8572 + }, + { + "start": 18138.45, + "end": 18139.41, + "probability": 0.9204 + }, + { + "start": 18140.83, + "end": 18142.93, + "probability": 0.905 + }, + { + "start": 18142.97, + "end": 18144.11, + "probability": 0.8778 + }, + { + "start": 18144.43, + "end": 18146.27, + "probability": 0.7159 + }, + { + "start": 18147.09, + "end": 18148.31, + "probability": 0.6527 + }, + { + "start": 18148.61, + "end": 18150.13, + "probability": 0.477 + }, + { + "start": 18156.87, + "end": 18158.31, + "probability": 0.7706 + }, + { + "start": 18159.11, + "end": 18165.69, + "probability": 0.9468 + }, + { + "start": 18167.67, + "end": 18170.41, + "probability": 0.9883 + }, + { + "start": 18170.87, + "end": 18175.01, + "probability": 0.9771 + }, + { + "start": 18176.25, + "end": 18176.95, + "probability": 0.9337 + }, + { + "start": 18177.11, + "end": 18181.95, + "probability": 0.9878 + }, + { + "start": 18181.95, + "end": 18189.59, + "probability": 0.7001 + }, + { + "start": 18190.61, + "end": 18196.09, + "probability": 0.9933 + }, + { + "start": 18196.09, + "end": 18201.47, + "probability": 0.9992 + }, + { + "start": 18202.15, + "end": 18206.51, + "probability": 0.9919 + }, + { + "start": 18207.45, + "end": 18208.51, + "probability": 0.7949 + }, + { + "start": 18209.15, + "end": 18213.97, + "probability": 0.9724 + }, + { + "start": 18214.55, + "end": 18217.29, + "probability": 0.8906 + }, + { + "start": 18217.33, + "end": 18220.47, + "probability": 0.8959 + }, + { + "start": 18220.89, + "end": 18222.83, + "probability": 0.9946 + }, + { + "start": 18223.73, + "end": 18228.09, + "probability": 0.8932 + }, + { + "start": 18228.87, + "end": 18234.21, + "probability": 0.9697 + }, + { + "start": 18234.21, + "end": 18240.5, + "probability": 0.9962 + }, + { + "start": 18240.61, + "end": 18248.03, + "probability": 0.9661 + }, + { + "start": 18248.83, + "end": 18254.91, + "probability": 0.8741 + }, + { + "start": 18255.61, + "end": 18256.79, + "probability": 0.8773 + }, + { + "start": 18257.27, + "end": 18257.91, + "probability": 0.8986 + }, + { + "start": 18258.29, + "end": 18263.34, + "probability": 0.9075 + }, + { + "start": 18263.61, + "end": 18269.71, + "probability": 0.9832 + }, + { + "start": 18269.97, + "end": 18272.17, + "probability": 0.9956 + }, + { + "start": 18273.33, + "end": 18277.77, + "probability": 0.9449 + }, + { + "start": 18277.77, + "end": 18281.39, + "probability": 0.7456 + }, + { + "start": 18282.21, + "end": 18285.51, + "probability": 0.9912 + }, + { + "start": 18286.05, + "end": 18288.37, + "probability": 0.9948 + }, + { + "start": 18288.97, + "end": 18293.35, + "probability": 0.976 + }, + { + "start": 18293.79, + "end": 18297.57, + "probability": 0.9928 + }, + { + "start": 18298.29, + "end": 18301.09, + "probability": 0.9617 + }, + { + "start": 18301.69, + "end": 18305.11, + "probability": 0.984 + }, + { + "start": 18305.79, + "end": 18310.73, + "probability": 0.9768 + }, + { + "start": 18311.81, + "end": 18314.05, + "probability": 0.9717 + }, + { + "start": 18315.23, + "end": 18315.89, + "probability": 0.6925 + }, + { + "start": 18316.41, + "end": 18319.11, + "probability": 0.7583 + }, + { + "start": 18319.11, + "end": 18322.55, + "probability": 0.9203 + }, + { + "start": 18323.63, + "end": 18329.07, + "probability": 0.8442 + }, + { + "start": 18329.73, + "end": 18334.17, + "probability": 0.9766 + }, + { + "start": 18334.23, + "end": 18336.69, + "probability": 0.9958 + }, + { + "start": 18337.23, + "end": 18340.85, + "probability": 0.9844 + }, + { + "start": 18340.85, + "end": 18345.67, + "probability": 0.9829 + }, + { + "start": 18346.03, + "end": 18347.69, + "probability": 0.7069 + }, + { + "start": 18349.71, + "end": 18351.95, + "probability": 0.9741 + }, + { + "start": 18352.31, + "end": 18354.21, + "probability": 0.7959 + }, + { + "start": 18354.33, + "end": 18356.43, + "probability": 0.9304 + }, + { + "start": 18357.11, + "end": 18362.99, + "probability": 0.8532 + }, + { + "start": 18363.41, + "end": 18365.21, + "probability": 0.9169 + }, + { + "start": 18365.65, + "end": 18367.49, + "probability": 0.5824 + }, + { + "start": 18367.65, + "end": 18369.75, + "probability": 0.9795 + }, + { + "start": 18370.03, + "end": 18371.65, + "probability": 0.9302 + }, + { + "start": 18371.81, + "end": 18375.49, + "probability": 0.9658 + }, + { + "start": 18376.51, + "end": 18376.87, + "probability": 0.7596 + }, + { + "start": 18377.53, + "end": 18380.19, + "probability": 0.8546 + }, + { + "start": 18380.19, + "end": 18382.75, + "probability": 0.9981 + }, + { + "start": 18383.61, + "end": 18387.13, + "probability": 0.9928 + }, + { + "start": 18387.13, + "end": 18390.87, + "probability": 0.9944 + }, + { + "start": 18391.67, + "end": 18395.51, + "probability": 0.9966 + }, + { + "start": 18395.51, + "end": 18400.25, + "probability": 0.9408 + }, + { + "start": 18400.31, + "end": 18400.73, + "probability": 0.836 + }, + { + "start": 18401.93, + "end": 18405.53, + "probability": 0.9669 + }, + { + "start": 18406.93, + "end": 18412.39, + "probability": 0.9456 + }, + { + "start": 18412.57, + "end": 18413.65, + "probability": 0.7507 + }, + { + "start": 18414.61, + "end": 18416.27, + "probability": 0.3826 + }, + { + "start": 18419.49, + "end": 18420.33, + "probability": 0.5283 + }, + { + "start": 18420.85, + "end": 18424.27, + "probability": 0.9335 + }, + { + "start": 18424.49, + "end": 18431.65, + "probability": 0.9712 + }, + { + "start": 18432.19, + "end": 18434.37, + "probability": 0.926 + }, + { + "start": 18435.37, + "end": 18441.09, + "probability": 0.9906 + }, + { + "start": 18441.75, + "end": 18447.67, + "probability": 0.9935 + }, + { + "start": 18448.25, + "end": 18451.93, + "probability": 0.9824 + }, + { + "start": 18452.67, + "end": 18454.53, + "probability": 0.8935 + }, + { + "start": 18455.03, + "end": 18456.71, + "probability": 0.9472 + }, + { + "start": 18456.77, + "end": 18460.19, + "probability": 0.9509 + }, + { + "start": 18460.61, + "end": 18462.29, + "probability": 0.71 + }, + { + "start": 18462.65, + "end": 18464.03, + "probability": 0.8669 + }, + { + "start": 18464.53, + "end": 18465.11, + "probability": 0.9425 + }, + { + "start": 18465.55, + "end": 18466.13, + "probability": 0.5285 + }, + { + "start": 18466.43, + "end": 18468.23, + "probability": 0.967 + }, + { + "start": 18468.35, + "end": 18471.29, + "probability": 0.9846 + }, + { + "start": 18471.65, + "end": 18473.81, + "probability": 0.2288 + }, + { + "start": 18475.63, + "end": 18477.65, + "probability": 0.9891 + }, + { + "start": 18478.25, + "end": 18479.73, + "probability": 0.8312 + }, + { + "start": 18481.97, + "end": 18485.15, + "probability": 0.9109 + }, + { + "start": 18485.67, + "end": 18487.19, + "probability": 0.7658 + }, + { + "start": 18487.35, + "end": 18489.75, + "probability": 0.7248 + }, + { + "start": 18490.07, + "end": 18495.43, + "probability": 0.9708 + }, + { + "start": 18495.57, + "end": 18496.63, + "probability": 0.9277 + }, + { + "start": 18496.67, + "end": 18497.51, + "probability": 0.6264 + }, + { + "start": 18498.29, + "end": 18500.71, + "probability": 0.9719 + }, + { + "start": 18502.63, + "end": 18504.29, + "probability": 0.9993 + }, + { + "start": 18504.81, + "end": 18507.47, + "probability": 0.9941 + }, + { + "start": 18507.47, + "end": 18509.71, + "probability": 0.9958 + }, + { + "start": 18509.93, + "end": 18512.09, + "probability": 0.995 + }, + { + "start": 18512.27, + "end": 18513.39, + "probability": 0.9781 + }, + { + "start": 18514.11, + "end": 18514.25, + "probability": 0.3308 + }, + { + "start": 18514.37, + "end": 18516.99, + "probability": 0.9927 + }, + { + "start": 18516.99, + "end": 18520.85, + "probability": 0.9926 + }, + { + "start": 18521.39, + "end": 18521.97, + "probability": 0.7567 + }, + { + "start": 18522.91, + "end": 18525.53, + "probability": 0.9924 + }, + { + "start": 18525.53, + "end": 18528.43, + "probability": 0.9976 + }, + { + "start": 18528.55, + "end": 18530.13, + "probability": 0.9613 + }, + { + "start": 18530.65, + "end": 18534.33, + "probability": 0.9707 + }, + { + "start": 18535.25, + "end": 18538.23, + "probability": 0.9942 + }, + { + "start": 18538.23, + "end": 18541.03, + "probability": 0.7955 + }, + { + "start": 18541.83, + "end": 18544.03, + "probability": 0.9963 + }, + { + "start": 18544.63, + "end": 18549.11, + "probability": 0.9937 + }, + { + "start": 18549.97, + "end": 18555.47, + "probability": 0.9972 + }, + { + "start": 18555.99, + "end": 18561.71, + "probability": 0.9812 + }, + { + "start": 18562.21, + "end": 18564.15, + "probability": 0.828 + }, + { + "start": 18564.71, + "end": 18566.47, + "probability": 0.7072 + }, + { + "start": 18566.57, + "end": 18570.31, + "probability": 0.9932 + }, + { + "start": 18570.55, + "end": 18573.89, + "probability": 0.9996 + }, + { + "start": 18574.49, + "end": 18576.93, + "probability": 0.9897 + }, + { + "start": 18576.93, + "end": 18579.93, + "probability": 0.9977 + }, + { + "start": 18580.73, + "end": 18585.29, + "probability": 0.9749 + }, + { + "start": 18586.27, + "end": 18599.65, + "probability": 0.9614 + }, + { + "start": 18599.65, + "end": 18606.05, + "probability": 0.9681 + }, + { + "start": 18606.63, + "end": 18612.67, + "probability": 0.9427 + }, + { + "start": 18613.25, + "end": 18616.81, + "probability": 0.6896 + }, + { + "start": 18616.89, + "end": 18619.95, + "probability": 0.7571 + }, + { + "start": 18619.95, + "end": 18620.87, + "probability": 0.8119 + }, + { + "start": 18621.39, + "end": 18623.93, + "probability": 0.8141 + }, + { + "start": 18625.27, + "end": 18628.33, + "probability": 0.9903 + }, + { + "start": 18628.33, + "end": 18634.17, + "probability": 0.874 + }, + { + "start": 18635.03, + "end": 18635.77, + "probability": 0.5683 + }, + { + "start": 18636.43, + "end": 18641.91, + "probability": 0.9937 + }, + { + "start": 18641.91, + "end": 18648.39, + "probability": 0.9937 + }, + { + "start": 18649.05, + "end": 18654.45, + "probability": 0.9832 + }, + { + "start": 18657.28, + "end": 18662.01, + "probability": 0.9257 + }, + { + "start": 18662.69, + "end": 18664.51, + "probability": 0.9953 + }, + { + "start": 18665.07, + "end": 18670.97, + "probability": 0.9551 + }, + { + "start": 18670.97, + "end": 18676.83, + "probability": 0.9955 + }, + { + "start": 18677.47, + "end": 18682.49, + "probability": 0.984 + }, + { + "start": 18682.57, + "end": 18687.71, + "probability": 0.989 + }, + { + "start": 18688.63, + "end": 18692.03, + "probability": 0.9868 + }, + { + "start": 18693.07, + "end": 18703.46, + "probability": 0.9011 + }, + { + "start": 18704.29, + "end": 18706.89, + "probability": 0.8522 + }, + { + "start": 18707.97, + "end": 18711.79, + "probability": 0.9415 + }, + { + "start": 18712.89, + "end": 18715.79, + "probability": 0.7863 + }, + { + "start": 18716.25, + "end": 18719.27, + "probability": 0.9946 + }, + { + "start": 18719.27, + "end": 18723.19, + "probability": 0.9806 + }, + { + "start": 18723.69, + "end": 18726.21, + "probability": 0.9896 + }, + { + "start": 18726.83, + "end": 18728.71, + "probability": 0.7971 + }, + { + "start": 18729.25, + "end": 18734.65, + "probability": 0.954 + }, + { + "start": 18735.75, + "end": 18736.51, + "probability": 0.8293 + }, + { + "start": 18736.97, + "end": 18737.99, + "probability": 0.6539 + }, + { + "start": 18738.07, + "end": 18740.53, + "probability": 0.9315 + }, + { + "start": 18740.99, + "end": 18742.91, + "probability": 0.9778 + }, + { + "start": 18743.43, + "end": 18746.95, + "probability": 0.9949 + }, + { + "start": 18747.31, + "end": 18752.95, + "probability": 0.9915 + }, + { + "start": 18752.95, + "end": 18757.67, + "probability": 0.9972 + }, + { + "start": 18758.17, + "end": 18763.33, + "probability": 0.6891 + }, + { + "start": 18763.71, + "end": 18767.09, + "probability": 0.8614 + }, + { + "start": 18767.21, + "end": 18770.83, + "probability": 0.955 + }, + { + "start": 18771.29, + "end": 18772.37, + "probability": 0.9556 + }, + { + "start": 18772.67, + "end": 18773.19, + "probability": 0.7875 + }, + { + "start": 18773.47, + "end": 18775.33, + "probability": 0.8031 + }, + { + "start": 18775.78, + "end": 18778.0, + "probability": 0.9937 + }, + { + "start": 18779.21, + "end": 18780.57, + "probability": 0.9028 + }, + { + "start": 18781.35, + "end": 18781.49, + "probability": 0.8931 + }, + { + "start": 18782.17, + "end": 18783.77, + "probability": 0.8567 + }, + { + "start": 18805.15, + "end": 18805.81, + "probability": 0.2289 + }, + { + "start": 18808.83, + "end": 18808.83, + "probability": 0.5486 + }, + { + "start": 18809.19, + "end": 18811.76, + "probability": 0.2456 + }, + { + "start": 18814.79, + "end": 18816.21, + "probability": 0.1997 + }, + { + "start": 18820.61, + "end": 18822.31, + "probability": 0.7421 + }, + { + "start": 18822.63, + "end": 18827.41, + "probability": 0.722 + }, + { + "start": 18829.81, + "end": 18832.37, + "probability": 0.5716 + }, + { + "start": 18832.73, + "end": 18833.29, + "probability": 0.7193 + }, + { + "start": 18833.37, + "end": 18836.55, + "probability": 0.9642 + }, + { + "start": 18836.81, + "end": 18839.47, + "probability": 0.5969 + }, + { + "start": 18839.53, + "end": 18839.93, + "probability": 0.4296 + }, + { + "start": 18840.03, + "end": 18842.31, + "probability": 0.708 + }, + { + "start": 18842.65, + "end": 18844.07, + "probability": 0.8674 + }, + { + "start": 18844.31, + "end": 18844.95, + "probability": 0.8336 + }, + { + "start": 18845.51, + "end": 18852.87, + "probability": 0.6826 + }, + { + "start": 18853.37, + "end": 18853.55, + "probability": 0.0013 + }, + { + "start": 18855.31, + "end": 18856.93, + "probability": 0.4597 + }, + { + "start": 18881.99, + "end": 18881.99, + "probability": 0.0276 + }, + { + "start": 18881.99, + "end": 18883.09, + "probability": 0.5111 + }, + { + "start": 18883.13, + "end": 18883.73, + "probability": 0.6845 + }, + { + "start": 18886.35, + "end": 18888.11, + "probability": 0.7671 + }, + { + "start": 18891.01, + "end": 18892.13, + "probability": 0.1905 + }, + { + "start": 18892.19, + "end": 18893.33, + "probability": 0.9484 + }, + { + "start": 18893.43, + "end": 18894.31, + "probability": 0.7231 + }, + { + "start": 18895.91, + "end": 18901.33, + "probability": 0.7213 + }, + { + "start": 18901.37, + "end": 18904.43, + "probability": 0.8612 + }, + { + "start": 18905.57, + "end": 18907.63, + "probability": 0.9556 + }, + { + "start": 18908.25, + "end": 18911.35, + "probability": 0.9173 + }, + { + "start": 18912.53, + "end": 18914.55, + "probability": 0.92 + }, + { + "start": 18915.63, + "end": 18917.45, + "probability": 0.8063 + }, + { + "start": 18917.61, + "end": 18920.35, + "probability": 0.9386 + }, + { + "start": 18920.81, + "end": 18922.11, + "probability": 0.9592 + }, + { + "start": 18923.17, + "end": 18924.41, + "probability": 0.8469 + }, + { + "start": 18924.65, + "end": 18928.03, + "probability": 0.8243 + }, + { + "start": 18929.21, + "end": 18929.67, + "probability": 0.6627 + }, + { + "start": 18929.79, + "end": 18932.83, + "probability": 0.9858 + }, + { + "start": 18933.51, + "end": 18936.3, + "probability": 0.9941 + }, + { + "start": 18936.87, + "end": 18938.65, + "probability": 0.9404 + }, + { + "start": 18939.31, + "end": 18942.23, + "probability": 0.9875 + }, + { + "start": 18942.79, + "end": 18946.37, + "probability": 0.9473 + }, + { + "start": 18947.05, + "end": 18949.37, + "probability": 0.8231 + }, + { + "start": 18949.55, + "end": 18952.41, + "probability": 0.8104 + }, + { + "start": 18952.55, + "end": 18953.35, + "probability": 0.6615 + }, + { + "start": 18953.37, + "end": 18953.77, + "probability": 0.7841 + }, + { + "start": 18953.87, + "end": 18954.55, + "probability": 0.6707 + }, + { + "start": 18954.57, + "end": 18955.17, + "probability": 0.6079 + }, + { + "start": 18955.21, + "end": 18957.85, + "probability": 0.9482 + }, + { + "start": 18958.09, + "end": 18958.61, + "probability": 0.8665 + }, + { + "start": 18958.69, + "end": 18959.59, + "probability": 0.8294 + }, + { + "start": 18959.75, + "end": 18961.91, + "probability": 0.947 + }, + { + "start": 18962.13, + "end": 18963.35, + "probability": 0.9438 + }, + { + "start": 18963.61, + "end": 18965.96, + "probability": 0.5625 + }, + { + "start": 18966.95, + "end": 18967.29, + "probability": 0.4794 + }, + { + "start": 18967.31, + "end": 18971.03, + "probability": 0.6404 + }, + { + "start": 18971.19, + "end": 18972.87, + "probability": 0.6945 + }, + { + "start": 18973.01, + "end": 18976.93, + "probability": 0.9325 + }, + { + "start": 18977.97, + "end": 18980.69, + "probability": 0.8788 + }, + { + "start": 18981.03, + "end": 18981.35, + "probability": 0.8249 + }, + { + "start": 18981.47, + "end": 18982.67, + "probability": 0.9631 + }, + { + "start": 18982.79, + "end": 18983.99, + "probability": 0.9587 + }, + { + "start": 18984.69, + "end": 18986.89, + "probability": 0.9932 + }, + { + "start": 18987.49, + "end": 18989.4, + "probability": 0.967 + }, + { + "start": 18990.25, + "end": 18991.98, + "probability": 0.971 + }, + { + "start": 18992.13, + "end": 18992.93, + "probability": 0.8372 + }, + { + "start": 18992.95, + "end": 18994.55, + "probability": 0.7721 + }, + { + "start": 18995.65, + "end": 18996.57, + "probability": 0.9759 + }, + { + "start": 18997.35, + "end": 19000.95, + "probability": 0.8584 + }, + { + "start": 19001.31, + "end": 19005.55, + "probability": 0.7275 + }, + { + "start": 19006.33, + "end": 19010.11, + "probability": 0.918 + }, + { + "start": 19010.39, + "end": 19011.67, + "probability": 0.9897 + }, + { + "start": 19012.17, + "end": 19014.81, + "probability": 0.9595 + }, + { + "start": 19015.79, + "end": 19018.47, + "probability": 0.7356 + }, + { + "start": 19018.47, + "end": 19023.79, + "probability": 0.9932 + }, + { + "start": 19024.65, + "end": 19025.73, + "probability": 0.8218 + }, + { + "start": 19026.57, + "end": 19031.89, + "probability": 0.9908 + }, + { + "start": 19032.05, + "end": 19033.07, + "probability": 0.9165 + }, + { + "start": 19034.51, + "end": 19034.99, + "probability": 0.5835 + }, + { + "start": 19036.99, + "end": 19038.51, + "probability": 0.9809 + }, + { + "start": 19039.05, + "end": 19042.1, + "probability": 0.9517 + }, + { + "start": 19042.65, + "end": 19044.41, + "probability": 0.9319 + }, + { + "start": 19044.49, + "end": 19049.51, + "probability": 0.998 + }, + { + "start": 19050.01, + "end": 19053.81, + "probability": 0.9466 + }, + { + "start": 19053.81, + "end": 19056.93, + "probability": 0.999 + }, + { + "start": 19057.45, + "end": 19058.77, + "probability": 0.9391 + }, + { + "start": 19059.05, + "end": 19063.47, + "probability": 0.9956 + }, + { + "start": 19063.47, + "end": 19066.03, + "probability": 0.9939 + }, + { + "start": 19066.95, + "end": 19068.37, + "probability": 0.832 + }, + { + "start": 19068.85, + "end": 19069.91, + "probability": 0.6995 + }, + { + "start": 19070.09, + "end": 19070.73, + "probability": 0.7596 + }, + { + "start": 19071.01, + "end": 19075.09, + "probability": 0.9145 + }, + { + "start": 19075.43, + "end": 19076.37, + "probability": 0.0421 + }, + { + "start": 19076.45, + "end": 19077.37, + "probability": 0.5709 + }, + { + "start": 19077.63, + "end": 19079.29, + "probability": 0.9829 + }, + { + "start": 19079.49, + "end": 19084.35, + "probability": 0.9594 + }, + { + "start": 19084.35, + "end": 19086.75, + "probability": 0.9019 + }, + { + "start": 19087.33, + "end": 19088.59, + "probability": 0.734 + }, + { + "start": 19089.07, + "end": 19090.03, + "probability": 0.6997 + }, + { + "start": 19090.11, + "end": 19091.2, + "probability": 0.7864 + }, + { + "start": 19091.67, + "end": 19093.07, + "probability": 0.7755 + }, + { + "start": 19093.19, + "end": 19094.6, + "probability": 0.5996 + }, + { + "start": 19095.05, + "end": 19096.75, + "probability": 0.9918 + }, + { + "start": 19097.51, + "end": 19100.05, + "probability": 0.9654 + }, + { + "start": 19100.37, + "end": 19101.51, + "probability": 0.7645 + }, + { + "start": 19102.07, + "end": 19102.39, + "probability": 0.876 + }, + { + "start": 19102.53, + "end": 19104.43, + "probability": 0.9658 + }, + { + "start": 19104.73, + "end": 19106.37, + "probability": 0.9995 + }, + { + "start": 19106.61, + "end": 19110.57, + "probability": 0.8268 + }, + { + "start": 19110.71, + "end": 19114.67, + "probability": 0.9827 + }, + { + "start": 19115.43, + "end": 19115.87, + "probability": 0.862 + }, + { + "start": 19117.25, + "end": 19120.37, + "probability": 0.9193 + }, + { + "start": 19121.33, + "end": 19123.99, + "probability": 0.9737 + }, + { + "start": 19125.05, + "end": 19127.53, + "probability": 0.823 + }, + { + "start": 19127.73, + "end": 19130.33, + "probability": 0.9958 + }, + { + "start": 19130.33, + "end": 19133.53, + "probability": 0.9466 + }, + { + "start": 19134.19, + "end": 19135.83, + "probability": 0.986 + }, + { + "start": 19136.35, + "end": 19139.83, + "probability": 0.8499 + }, + { + "start": 19140.47, + "end": 19141.25, + "probability": 0.9532 + }, + { + "start": 19141.57, + "end": 19144.63, + "probability": 0.9927 + }, + { + "start": 19144.87, + "end": 19145.53, + "probability": 0.99 + }, + { + "start": 19145.97, + "end": 19148.23, + "probability": 0.9893 + }, + { + "start": 19148.93, + "end": 19150.65, + "probability": 0.7119 + }, + { + "start": 19151.83, + "end": 19153.81, + "probability": 0.9737 + }, + { + "start": 19154.25, + "end": 19155.71, + "probability": 0.9927 + }, + { + "start": 19155.97, + "end": 19157.54, + "probability": 0.9546 + }, + { + "start": 19158.23, + "end": 19161.05, + "probability": 0.985 + }, + { + "start": 19161.05, + "end": 19163.75, + "probability": 0.7899 + }, + { + "start": 19164.01, + "end": 19166.07, + "probability": 0.6291 + }, + { + "start": 19166.07, + "end": 19169.77, + "probability": 0.9074 + }, + { + "start": 19170.01, + "end": 19174.89, + "probability": 0.9705 + }, + { + "start": 19175.41, + "end": 19178.85, + "probability": 0.9225 + }, + { + "start": 19179.09, + "end": 19179.53, + "probability": 0.7463 + }, + { + "start": 19180.03, + "end": 19180.93, + "probability": 0.7748 + }, + { + "start": 19182.13, + "end": 19183.39, + "probability": 0.7725 + }, + { + "start": 19183.45, + "end": 19184.53, + "probability": 0.7355 + }, + { + "start": 19184.73, + "end": 19185.93, + "probability": 0.889 + }, + { + "start": 19186.19, + "end": 19186.95, + "probability": 0.5063 + }, + { + "start": 19186.95, + "end": 19190.37, + "probability": 0.9675 + }, + { + "start": 19190.55, + "end": 19193.55, + "probability": 0.9607 + }, + { + "start": 19193.67, + "end": 19195.34, + "probability": 0.9387 + }, + { + "start": 19195.39, + "end": 19196.43, + "probability": 0.9135 + }, + { + "start": 19196.95, + "end": 19198.65, + "probability": 0.8775 + }, + { + "start": 19198.93, + "end": 19199.59, + "probability": 0.5064 + }, + { + "start": 19199.67, + "end": 19201.17, + "probability": 0.9803 + }, + { + "start": 19201.23, + "end": 19201.87, + "probability": 0.8574 + }, + { + "start": 19202.63, + "end": 19202.85, + "probability": 0.604 + }, + { + "start": 19202.89, + "end": 19203.67, + "probability": 0.4085 + }, + { + "start": 19203.69, + "end": 19205.77, + "probability": 0.8729 + }, + { + "start": 19206.19, + "end": 19206.21, + "probability": 0.8881 + }, + { + "start": 19206.73, + "end": 19207.41, + "probability": 0.1926 + }, + { + "start": 19208.27, + "end": 19208.91, + "probability": 0.664 + }, + { + "start": 19208.93, + "end": 19209.97, + "probability": 0.0624 + }, + { + "start": 19210.03, + "end": 19210.55, + "probability": 0.4026 + }, + { + "start": 19210.55, + "end": 19211.55, + "probability": 0.7529 + }, + { + "start": 19211.75, + "end": 19212.7, + "probability": 0.8657 + }, + { + "start": 19213.77, + "end": 19214.25, + "probability": 0.2383 + }, + { + "start": 19215.71, + "end": 19216.79, + "probability": 0.1706 + }, + { + "start": 19230.47, + "end": 19230.81, + "probability": 0.0889 + }, + { + "start": 19230.81, + "end": 19232.01, + "probability": 0.3406 + }, + { + "start": 19232.75, + "end": 19233.95, + "probability": 0.578 + }, + { + "start": 19234.05, + "end": 19235.89, + "probability": 0.8745 + }, + { + "start": 19243.39, + "end": 19244.53, + "probability": 0.311 + }, + { + "start": 19244.61, + "end": 19246.59, + "probability": 0.8252 + }, + { + "start": 19247.07, + "end": 19248.77, + "probability": 0.5529 + }, + { + "start": 19249.03, + "end": 19252.01, + "probability": 0.8455 + }, + { + "start": 19252.27, + "end": 19255.67, + "probability": 0.9568 + }, + { + "start": 19256.07, + "end": 19256.17, + "probability": 0.2052 + } + ], + "segments_count": 6498, + "words_count": 32408, + "avg_words_per_segment": 4.9874, + "avg_segment_duration": 2.2592, + "avg_words_per_minute": 100.6154, + "plenum_id": "29173", + "duration": 19325.87, + "title": null, + "plenum_date": "2013-06-12" +} \ No newline at end of file